xref: /titanic_44/usr/src/uts/common/io/nge/nge_main.c (revision ee0eb9f2d12b8a03b5a193cd667735c1962e0c7b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "nge.h"
30 
31 /*
32  * Describes the chip's DMA engine
33  */
34 
35 static ddi_dma_attr_t hot_dma_attr = {
36 	DMA_ATTR_V0,			/* dma_attr version	*/
37 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
38 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
39 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
40 	0x0000000000000010ull,		/* dma_attr_align	*/
41 	0x00000FFF,			/* dma_attr_burstsizes	*/
42 	0x00000001,			/* dma_attr_minxfer	*/
43 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
44 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
45 	1,				/* dma_attr_sgllen 	*/
46 	0x00000001,			/* dma_attr_granular 	*/
47 	0
48 };
49 
50 static ddi_dma_attr_t hot_tx_dma_attr = {
51 	DMA_ATTR_V0,			/* dma_attr version	*/
52 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
53 	0x000000FFFFFFFFFFull,		/* dma_attr_addr_hi	*/
54 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
55 	0x0000000000000010ull,		/* dma_attr_align	*/
56 	0x00000FFF,			/* dma_attr_burstsizes	*/
57 	0x00000001,			/* dma_attr_minxfer	*/
58 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
59 	0x000000FFFFFFFFFFull,		/* dma_attr_seg		*/
60 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
61 	1,				/* dma_attr_granular 	*/
62 	0
63 };
64 
65 static ddi_dma_attr_t sum_dma_attr = {
66 	DMA_ATTR_V0,			/* dma_attr version	*/
67 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
68 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
69 	0x000000007FFFFFFFull,		/* dma_attr_count_max	*/
70 	0x0000000000000010ull,		/* dma_attr_align	*/
71 	0x00000FFF,			/* dma_attr_burstsizes	*/
72 	0x00000001,			/* dma_attr_minxfer	*/
73 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
74 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
75 	1,				/* dma_attr_sgllen 	*/
76 	0x00000001,			/* dma_attr_granular 	*/
77 	0
78 };
79 
80 static ddi_dma_attr_t sum_tx_dma_attr = {
81 	DMA_ATTR_V0,			/* dma_attr version	*/
82 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
83 	0x00000000FFFFFFFFull,		/* dma_attr_addr_hi	*/
84 	0x0000000000003FFFull,		/* dma_attr_count_max	*/
85 	0x0000000000000010ull,		/* dma_attr_align	*/
86 	0x00000FFF,			/* dma_attr_burstsizes	*/
87 	0x00000001,			/* dma_attr_minxfer	*/
88 	0x0000000000003FFFull,		/* dma_attr_maxxfer	*/
89 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
90 	NGE_MAX_COOKIES,		/* dma_attr_sgllen 	*/
91 	1,				/* dma_attr_granular 	*/
92 	0
93 };
94 
95 /*
96  * DMA access attributes for data.
97  */
98 ddi_device_acc_attr_t nge_data_accattr = {
99 	DDI_DEVICE_ATTR_V0,
100 	DDI_STRUCTURE_LE_ACC,
101 	DDI_STRICTORDER_ACC,
102 	DDI_DEFAULT_ACC
103 };
104 
105 /*
106  * DMA access attributes for descriptors.
107  */
108 static ddi_device_acc_attr_t nge_desc_accattr = {
109 	DDI_DEVICE_ATTR_V0,
110 	DDI_STRUCTURE_LE_ACC,
111 	DDI_STRICTORDER_ACC,
112 	DDI_DEFAULT_ACC
113 };
114 
115 /*
116  * PIO access attributes for registers
117  */
118 static ddi_device_acc_attr_t nge_reg_accattr = {
119 	DDI_DEVICE_ATTR_V0,
120 	DDI_STRUCTURE_LE_ACC,
121 	DDI_STRICTORDER_ACC,
122 	DDI_DEFAULT_ACC
123 };
124 
125 /*
126  * NIC DESC MODE 2
127  */
128 
129 static const nge_desc_attr_t nge_sum_desc = {
130 
131 	sizeof (sum_rx_bd),
132 	sizeof (sum_tx_bd),
133 	&sum_dma_attr,
134 	&sum_tx_dma_attr,
135 	nge_sum_rxd_fill,
136 	nge_sum_rxd_check,
137 	nge_sum_txd_fill,
138 	nge_sum_txd_check,
139 };
140 
141 /*
142  * NIC DESC MODE 3
143  */
144 
145 static const nge_desc_attr_t nge_hot_desc = {
146 
147 	sizeof (hot_rx_bd),
148 	sizeof (hot_tx_bd),
149 	&hot_dma_attr,
150 	&hot_tx_dma_attr,
151 	nge_hot_rxd_fill,
152 	nge_hot_rxd_check,
153 	nge_hot_txd_fill,
154 	nge_hot_txd_check,
155 };
156 
157 static char nge_ident[] = "nVidia 1Gb Ethernet";
158 static char clsize_propname[] = "cache-line-size";
159 static char latency_propname[] = "latency-timer";
160 static char debug_propname[]	= "nge-debug-flags";
161 static char intr_moderation[] = "intr-moderation";
162 static char rx_data_hw[] = "rx-data-hw";
163 static char rx_prd_lw[] = "rx-prd-lw";
164 static char rx_prd_hw[] = "rx-prd-hw";
165 static char sw_intr_intv[] = "sw-intr-intvl";
166 static char nge_desc_mode[] = "desc-mode";
167 static char default_mtu[] = "default_mtu";
168 static char low_memory_mode[] = "minimal-memory-usage";
169 extern kmutex_t nge_log_mutex[1];
170 
171 static int		nge_m_start(void *);
172 static void		nge_m_stop(void *);
173 static int		nge_m_promisc(void *, boolean_t);
174 static int		nge_m_multicst(void *, boolean_t, const uint8_t *);
175 static int		nge_m_unicst(void *, const uint8_t *);
176 static void		nge_m_ioctl(void *, queue_t *, mblk_t *);
177 static boolean_t	nge_m_getcapab(void *, mac_capab_t, void *);
178 static int		nge_m_setprop(void *, const char *, mac_prop_id_t,
179 	uint_t, const void *);
180 static int		nge_m_getprop(void *, const char *, mac_prop_id_t,
181 	uint_t, uint_t, void *);
182 static int		nge_set_priv_prop(nge_t *, const char *, uint_t,
183 	const void *);
184 static int		nge_get_priv_prop(nge_t *, const char *, uint_t,
185 	uint_t, void *);
186 
187 #define		NGE_M_CALLBACK_FLAGS\
188 		(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
189 
190 static mac_callbacks_t nge_m_callbacks = {
191 	NGE_M_CALLBACK_FLAGS,
192 	nge_m_stat,
193 	nge_m_start,
194 	nge_m_stop,
195 	nge_m_promisc,
196 	nge_m_multicst,
197 	nge_m_unicst,
198 	nge_m_tx,
199 	NULL,
200 	nge_m_ioctl,
201 	nge_m_getcapab,
202 	NULL,
203 	NULL,
204 	nge_m_setprop,
205 	nge_m_getprop
206 };
207 
208 mac_priv_prop_t nge_priv_props[] = {
209 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
210 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
211 	{"_recv_max_packet", MAC_PROP_PERM_RW},
212 	{"_poll_quiet_time", MAC_PROP_PERM_RW},
213 	{"_poll_busy_time", MAC_PROP_PERM_RW},
214 	{"_rx_intr_hwater", MAC_PROP_PERM_RW},
215 	{"_rx_intr_lwater", MAC_PROP_PERM_RW},
216 	{"_adv_pause_cap", MAC_PROP_PERM_RW},
217 	{"_adv_asym_pause_cap", MAC_PROP_PERM_RW},
218 	{"_tx_n_intr", MAC_PROP_PERM_RW}
219 };
220 
221 #define	NGE_MAX_PRIV_PROPS \
222 	(sizeof (nge_priv_props)/sizeof (mac_priv_prop_t))
223 
224 static int nge_add_intrs(nge_t *, int);
225 static void nge_rem_intrs(nge_t *);
226 static int nge_register_intrs_and_init_locks(nge_t *);
227 
228 /*
229  * NGE MSI tunable:
230  */
231 boolean_t nge_enable_msi = B_FALSE;
232 
233 static enum ioc_reply
234 nge_set_loop_mode(nge_t *ngep, uint32_t mode)
235 {
236 	/*
237 	 * If the mode isn't being changed, there's nothing to do ...
238 	 */
239 	if (mode == ngep->param_loop_mode)
240 		return (IOC_ACK);
241 
242 	/*
243 	 * Validate the requested mode and prepare a suitable message
244 	 * to explain the link down/up cycle that the change will
245 	 * probably induce ...
246 	 */
247 	switch (mode) {
248 	default:
249 		return (IOC_INVAL);
250 
251 	case NGE_LOOP_NONE:
252 	case NGE_LOOP_EXTERNAL_100:
253 	case NGE_LOOP_EXTERNAL_10:
254 	case NGE_LOOP_INTERNAL_PHY:
255 		break;
256 	}
257 
258 	/*
259 	 * All OK; tell the caller to reprogram
260 	 * the PHY and/or MAC for the new mode ...
261 	 */
262 	ngep->param_loop_mode = mode;
263 	return (IOC_RESTART_ACK);
264 }
265 
266 #undef	NGE_DBG
267 #define	NGE_DBG		NGE_DBG_INIT
268 
269 /*
270  * Utility routine to carve a slice off a chunk of allocated memory,
271  * updating the chunk descriptor accordingly.  The size of the slice
272  * is given by the product of the <qty> and <size> parameters.
273  */
274 void
275 nge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
276     uint32_t qty, uint32_t size)
277 {
278 	size_t totsize;
279 
280 	totsize = qty*size;
281 	ASSERT(size > 0);
282 	ASSERT(totsize <= chunk->alength);
283 
284 	*slice = *chunk;
285 	slice->nslots = qty;
286 	slice->size = size;
287 	slice->alength = totsize;
288 
289 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
290 	chunk->alength -= totsize;
291 	chunk->offset += totsize;
292 	chunk->cookie.dmac_laddress += totsize;
293 	chunk->cookie.dmac_size -= totsize;
294 }
295 
296 /*
297  * Allocate an area of memory and a DMA handle for accessing it
298  */
299 int
300 nge_alloc_dma_mem(nge_t *ngep, size_t memsize, ddi_device_acc_attr_t *attr_p,
301     uint_t dma_flags, dma_area_t *dma_p)
302 {
303 	int err;
304 	caddr_t va;
305 
306 	NGE_TRACE(("nge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
307 	    (void *)ngep, memsize, attr_p, dma_flags, dma_p));
308 	/*
309 	 * Allocate handle
310 	 */
311 	err = ddi_dma_alloc_handle(ngep->devinfo, ngep->desc_attr.dma_attr,
312 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
313 	if (err != DDI_SUCCESS)
314 		goto fail;
315 
316 	/*
317 	 * Allocate memory
318 	 */
319 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
320 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
321 	    DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength, &dma_p->acc_hdl);
322 	if (err != DDI_SUCCESS)
323 		goto fail;
324 
325 	/*
326 	 * Bind the two together
327 	 */
328 	dma_p->mem_va = va;
329 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
330 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
331 	    &dma_p->cookie, &dma_p->ncookies);
332 
333 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
334 		goto fail;
335 
336 	dma_p->nslots = ~0U;
337 	dma_p->size = ~0U;
338 	dma_p->offset = 0;
339 
340 	return (DDI_SUCCESS);
341 
342 fail:
343 	nge_free_dma_mem(dma_p);
344 	NGE_DEBUG(("nge_alloc_dma_mem: fail to alloc dma memory!"));
345 
346 	return (DDI_FAILURE);
347 }
348 
349 /*
350  * Free one allocated area of DMAable memory
351  */
352 void
353 nge_free_dma_mem(dma_area_t *dma_p)
354 {
355 	if (dma_p->dma_hdl != NULL) {
356 		if (dma_p->ncookies) {
357 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
358 			dma_p->ncookies = 0;
359 		}
360 	}
361 	if (dma_p->acc_hdl != NULL) {
362 		ddi_dma_mem_free(&dma_p->acc_hdl);
363 		dma_p->acc_hdl = NULL;
364 	}
365 	if (dma_p->dma_hdl != NULL) {
366 		ddi_dma_free_handle(&dma_p->dma_hdl);
367 		dma_p->dma_hdl = NULL;
368 	}
369 }
370 
371 #define	ALLOC_TX_BUF	0x1
372 #define	ALLOC_TX_DESC	0x2
373 #define	ALLOC_RX_DESC	0x4
374 
375 int
376 nge_alloc_bufs(nge_t *ngep)
377 {
378 	int err;
379 	int split;
380 	int progress;
381 	size_t txbuffsize;
382 	size_t rxdescsize;
383 	size_t txdescsize;
384 
385 	txbuffsize = ngep->tx_desc * ngep->buf_size;
386 	rxdescsize = ngep->rx_desc;
387 	txdescsize = ngep->tx_desc;
388 	rxdescsize *= ngep->desc_attr.rxd_size;
389 	txdescsize *= ngep->desc_attr.txd_size;
390 	progress = 0;
391 
392 	NGE_TRACE(("nge_alloc_bufs($%p)", (void *)ngep));
393 	/*
394 	 * Allocate memory & handles for TX buffers
395 	 */
396 	ASSERT((txbuffsize % ngep->nge_split) == 0);
397 	for (split = 0; split < ngep->nge_split; ++split) {
398 		err = nge_alloc_dma_mem(ngep, txbuffsize/ngep->nge_split,
399 		    &nge_data_accattr, DDI_DMA_WRITE | NGE_DMA_MODE,
400 		    &ngep->send->buf[split]);
401 		if (err != DDI_SUCCESS)
402 			goto fail;
403 	}
404 
405 	progress |= ALLOC_TX_BUF;
406 
407 	/*
408 	 * Allocate memory & handles for receive return rings and
409 	 * buffer (producer) descriptor rings
410 	 */
411 	err = nge_alloc_dma_mem(ngep, rxdescsize, &nge_desc_accattr,
412 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->recv->desc);
413 	if (err != DDI_SUCCESS)
414 		goto fail;
415 	progress |= ALLOC_RX_DESC;
416 
417 	/*
418 	 * Allocate memory & handles for TX descriptor rings,
419 	 */
420 	err = nge_alloc_dma_mem(ngep, txdescsize, &nge_desc_accattr,
421 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &ngep->send->desc);
422 	if (err != DDI_SUCCESS)
423 		goto fail;
424 	return (DDI_SUCCESS);
425 
426 fail:
427 	if (progress & ALLOC_RX_DESC)
428 		nge_free_dma_mem(&ngep->recv->desc);
429 	if (progress & ALLOC_TX_BUF) {
430 		for (split = 0; split < ngep->nge_split; ++split)
431 			nge_free_dma_mem(&ngep->send->buf[split]);
432 	}
433 
434 	return (DDI_FAILURE);
435 }
436 
437 /*
438  * This routine frees the transmit and receive buffers and descriptors.
439  * Make sure the chip is stopped before calling it!
440  */
441 void
442 nge_free_bufs(nge_t *ngep)
443 {
444 	int split;
445 
446 	NGE_TRACE(("nge_free_bufs($%p)", (void *)ngep));
447 
448 	nge_free_dma_mem(&ngep->recv->desc);
449 	nge_free_dma_mem(&ngep->send->desc);
450 
451 	for (split = 0; split < ngep->nge_split; ++split)
452 		nge_free_dma_mem(&ngep->send->buf[split]);
453 }
454 
455 /*
456  * Clean up initialisation done above before the memory is freed
457  */
458 static void
459 nge_fini_send_ring(nge_t *ngep)
460 {
461 	uint32_t slot;
462 	size_t dmah_num;
463 	send_ring_t *srp;
464 	sw_tx_sbd_t *ssbdp;
465 
466 	srp = ngep->send;
467 	ssbdp = srp->sw_sbds;
468 
469 	NGE_TRACE(("nge_fini_send_ring($%p)", (void *)ngep));
470 
471 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
472 
473 	for (slot = 0; slot < dmah_num; ++slot) {
474 		if (srp->dmahndl[slot].hndl) {
475 			(void) ddi_dma_unbind_handle(srp->dmahndl[slot].hndl);
476 			ddi_dma_free_handle(&srp->dmahndl[slot].hndl);
477 			srp->dmahndl[slot].hndl = NULL;
478 			srp->dmahndl[slot].next = NULL;
479 		}
480 	}
481 
482 	srp->dmah_free.head = NULL;
483 	srp->dmah_free.tail = NULL;
484 
485 	kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp));
486 
487 }
488 
489 /*
490  * Initialise the specified Send Ring, using the information in the
491  * <dma_area> descriptors that it contains to set up all the other
492  * fields. This routine should be called only once for each ring.
493  */
494 static int
495 nge_init_send_ring(nge_t *ngep)
496 {
497 	size_t dmah_num;
498 	uint32_t nslots;
499 	uint32_t err;
500 	uint32_t slot;
501 	uint32_t split;
502 	send_ring_t *srp;
503 	sw_tx_sbd_t *ssbdp;
504 	dma_area_t desc;
505 	dma_area_t pbuf;
506 
507 	srp = ngep->send;
508 	srp->desc.nslots = ngep->tx_desc;
509 	nslots = srp->desc.nslots;
510 
511 	NGE_TRACE(("nge_init_send_ring($%p)", (void *)ngep));
512 	/*
513 	 * Other one-off initialisation of per-ring data
514 	 */
515 	srp->ngep = ngep;
516 
517 	/*
518 	 * Allocate the array of s/w Send Buffer Descriptors
519 	 */
520 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
521 	srp->sw_sbds = ssbdp;
522 
523 	/*
524 	 * Now initialise each array element once and for all
525 	 */
526 	desc = srp->desc;
527 	for (split = 0; split < ngep->nge_split; ++split) {
528 		pbuf = srp->buf[split];
529 		for (slot = 0; slot < nslots/ngep->nge_split; ++ssbdp, ++slot) {
530 			nge_slice_chunk(&ssbdp->desc, &desc, 1,
531 			    ngep->desc_attr.txd_size);
532 			nge_slice_chunk(&ssbdp->pbuf, &pbuf, 1,
533 			    ngep->buf_size);
534 		}
535 		ASSERT(pbuf.alength == 0);
536 	}
537 	ASSERT(desc.alength == 0);
538 
539 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
540 
541 	/* preallocate dma handles for tx buffer */
542 	for (slot = 0; slot < dmah_num; ++slot) {
543 
544 		err = ddi_dma_alloc_handle(ngep->devinfo,
545 		    ngep->desc_attr.tx_dma_attr, DDI_DMA_DONTWAIT,
546 		    NULL, &srp->dmahndl[slot].hndl);
547 
548 		if (err != DDI_SUCCESS) {
549 			nge_fini_send_ring(ngep);
550 			nge_error(ngep,
551 			    "nge_init_send_ring: alloc dma handle fails");
552 			return (DDI_FAILURE);
553 		}
554 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
555 	}
556 
557 	srp->dmah_free.head = srp->dmahndl;
558 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
559 	srp->dmah_free.tail->next = NULL;
560 
561 	return (DDI_SUCCESS);
562 }
563 
564 /*
565  * Intialize the tx recycle pointer and tx sending pointer of tx ring
566  * and set the type of tx's data descriptor by default.
567  */
568 static void
569 nge_reinit_send_ring(nge_t *ngep)
570 {
571 	size_t dmah_num;
572 	uint32_t slot;
573 	send_ring_t *srp;
574 	sw_tx_sbd_t *ssbdp;
575 
576 	srp = ngep->send;
577 
578 	/*
579 	 * Reinitialise control variables ...
580 	 */
581 
582 	srp->tx_hwmark = NGE_DESC_MIN;
583 	srp->tx_lwmark = NGE_DESC_MIN;
584 
585 	srp->tx_next = 0;
586 	srp->tx_free = srp->desc.nslots;
587 	srp->tc_next = 0;
588 
589 	dmah_num = sizeof (srp->dmahndl) / sizeof (srp->dmahndl[0]);
590 
591 	for (slot = 0; slot - dmah_num != 0; ++slot)
592 		srp->dmahndl[slot].next = srp->dmahndl + slot + 1;
593 
594 	srp->dmah_free.head = srp->dmahndl;
595 	srp->dmah_free.tail = srp->dmahndl + dmah_num - 1;
596 	srp->dmah_free.tail->next = NULL;
597 
598 	/*
599 	 * Zero and sync all the h/w Send Buffer Descriptors
600 	 */
601 	for (slot = 0; slot < srp->desc.nslots; ++slot) {
602 		ssbdp = &srp->sw_sbds[slot];
603 		ssbdp->flags = HOST_OWN;
604 	}
605 
606 	DMA_ZERO(srp->desc);
607 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
608 }
609 
610 /*
611  * Initialize the slot number of rx's ring
612  */
613 static void
614 nge_init_recv_ring(nge_t *ngep)
615 {
616 	recv_ring_t *rrp;
617 
618 	rrp = ngep->recv;
619 	rrp->desc.nslots = ngep->rx_desc;
620 	rrp->ngep = ngep;
621 }
622 
623 /*
624  * Intialize the rx recycle pointer and rx sending pointer of rx ring
625  */
626 static void
627 nge_reinit_recv_ring(nge_t *ngep)
628 {
629 	recv_ring_t *rrp;
630 
631 	rrp = ngep->recv;
632 
633 	/*
634 	 * Reinitialise control variables ...
635 	 */
636 	rrp->prod_index = 0;
637 	/*
638 	 * Zero and sync all the h/w Send Buffer Descriptors
639 	 */
640 	DMA_ZERO(rrp->desc);
641 	DMA_SYNC(rrp->desc, DDI_DMA_SYNC_FORDEV);
642 }
643 
644 /*
645  * Clean up initialisation done above before the memory is freed
646  */
647 static void
648 nge_fini_buff_ring(nge_t *ngep)
649 {
650 	uint32_t i;
651 	buff_ring_t *brp;
652 	dma_area_t *bufp;
653 	sw_rx_sbd_t *bsbdp;
654 
655 	brp = ngep->buff;
656 	bsbdp = brp->sw_rbds;
657 
658 	NGE_DEBUG(("nge_fini_buff_ring($%p)", (void *)ngep));
659 
660 	mutex_enter(brp->recycle_lock);
661 	brp->buf_sign++;
662 	mutex_exit(brp->recycle_lock);
663 	for (i = 0; i < ngep->rx_desc; i++, ++bsbdp) {
664 		if (bsbdp->bufp) {
665 			if (bsbdp->bufp->mp)
666 				freemsg(bsbdp->bufp->mp);
667 			nge_free_dma_mem(bsbdp->bufp);
668 			kmem_free(bsbdp->bufp, sizeof (dma_area_t));
669 			bsbdp->bufp = NULL;
670 		}
671 	}
672 	while (brp->free_list != NULL) {
673 		bufp = brp->free_list;
674 		brp->free_list = bufp->next;
675 		bufp->next = NULL;
676 		if (bufp->mp)
677 			freemsg(bufp->mp);
678 		nge_free_dma_mem(bufp);
679 		kmem_free(bufp, sizeof (dma_area_t));
680 	}
681 	while (brp->recycle_list != NULL) {
682 		bufp = brp->recycle_list;
683 		brp->recycle_list = bufp->next;
684 		bufp->next = NULL;
685 		if (bufp->mp)
686 			freemsg(bufp->mp);
687 		nge_free_dma_mem(bufp);
688 		kmem_free(bufp, sizeof (dma_area_t));
689 	}
690 
691 
692 	kmem_free(brp->sw_rbds, (ngep->rx_desc * sizeof (*bsbdp)));
693 	brp->sw_rbds = NULL;
694 }
695 
696 /*
697  * Intialize the Rx's data ring and free ring
698  */
699 static int
700 nge_init_buff_ring(nge_t *ngep)
701 {
702 	uint32_t err;
703 	uint32_t slot;
704 	uint32_t nslots_buff;
705 	uint32_t nslots_recv;
706 	buff_ring_t *brp;
707 	recv_ring_t *rrp;
708 	dma_area_t desc;
709 	dma_area_t *bufp;
710 	sw_rx_sbd_t *bsbdp;
711 
712 	rrp = ngep->recv;
713 	brp = ngep->buff;
714 	brp->nslots = ngep->rx_buf;
715 	brp->rx_bcopy = B_FALSE;
716 	nslots_recv = rrp->desc.nslots;
717 	nslots_buff = brp->nslots;
718 	brp->ngep = ngep;
719 
720 	NGE_TRACE(("nge_init_buff_ring($%p)", (void *)ngep));
721 
722 	/*
723 	 * Allocate the array of s/w Recv Buffer Descriptors
724 	 */
725 	bsbdp = kmem_zalloc(nslots_recv *sizeof (*bsbdp), KM_SLEEP);
726 	brp->sw_rbds = bsbdp;
727 	brp->free_list = NULL;
728 	brp->recycle_list = NULL;
729 	for (slot = 0; slot < nslots_buff; ++slot) {
730 		bufp = kmem_zalloc(sizeof (dma_area_t), KM_SLEEP);
731 		err = nge_alloc_dma_mem(ngep, (ngep->buf_size
732 		    + NGE_HEADROOM),
733 		    &nge_data_accattr, DDI_DMA_READ | NGE_DMA_MODE, bufp);
734 		if (err != DDI_SUCCESS) {
735 			kmem_free(bufp, sizeof (dma_area_t));
736 			return (DDI_FAILURE);
737 		}
738 
739 		bufp->alength -= NGE_HEADROOM;
740 		bufp->offset += NGE_HEADROOM;
741 		bufp->private = (caddr_t)ngep;
742 		bufp->rx_recycle.free_func = nge_recv_recycle;
743 		bufp->rx_recycle.free_arg = (caddr_t)bufp;
744 		bufp->signature = brp->buf_sign;
745 		bufp->rx_delivered = B_FALSE;
746 		bufp->mp = desballoc(DMA_VPTR(*bufp),
747 		    ngep->buf_size + NGE_HEADROOM,
748 		    0, &bufp->rx_recycle);
749 
750 		if (bufp->mp == NULL) {
751 			return (DDI_FAILURE);
752 		}
753 		bufp->next = brp->free_list;
754 		brp->free_list = bufp;
755 	}
756 
757 	/*
758 	 * Now initialise each array element once and for all
759 	 */
760 	desc = rrp->desc;
761 	for (slot = 0; slot < nslots_recv; ++slot, ++bsbdp) {
762 		nge_slice_chunk(&bsbdp->desc, &desc, 1,
763 		    ngep->desc_attr.rxd_size);
764 		bufp = brp->free_list;
765 		brp->free_list = bufp->next;
766 		bsbdp->bufp = bufp;
767 		bsbdp->flags = CONTROLER_OWN;
768 		bufp->next = NULL;
769 	}
770 
771 	ASSERT(desc.alength == 0);
772 	return (DDI_SUCCESS);
773 }
774 
775 /*
776  * Fill the host address of data in rx' descriptor
777  * and initialize free pointers of rx free ring
778  */
779 static int
780 nge_reinit_buff_ring(nge_t *ngep)
781 {
782 	uint32_t slot;
783 	uint32_t nslots_recv;
784 	buff_ring_t *brp;
785 	recv_ring_t *rrp;
786 	sw_rx_sbd_t *bsbdp;
787 	void *hw_bd_p;
788 
789 	brp = ngep->buff;
790 	rrp = ngep->recv;
791 	bsbdp = brp->sw_rbds;
792 	nslots_recv = rrp->desc.nslots;
793 	for (slot = 0; slot < nslots_recv; ++bsbdp, ++slot) {
794 		hw_bd_p = DMA_VPTR(bsbdp->desc);
795 	/*
796 	 * There is a scenario: When the traffic of small tcp
797 	 * packet is heavy, suspending the tcp traffic will
798 	 * cause the preallocated buffers for rx not to be
799 	 * released in time by tcp taffic and cause rx's buffer
800 	 * pointers not to be refilled in time.
801 	 *
802 	 * At this point, if we reinitialize the driver, the bufp
803 	 * pointer for rx's traffic will be NULL.
804 	 * So the result of the reinitializion fails.
805 	 */
806 		if (bsbdp->bufp == NULL)
807 			return (DDI_FAILURE);
808 
809 		ngep->desc_attr.rxd_fill(hw_bd_p, &bsbdp->bufp->cookie,
810 		    bsbdp->bufp->alength);
811 	}
812 	return (DDI_SUCCESS);
813 }
814 
815 static void
816 nge_init_ring_param_lock(nge_t *ngep)
817 {
818 	buff_ring_t *brp;
819 	send_ring_t *srp;
820 
821 	srp = ngep->send;
822 	brp = ngep->buff;
823 
824 	/* Init the locks for send ring */
825 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
826 	    DDI_INTR_PRI(ngep->intr_pri));
827 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
828 	    DDI_INTR_PRI(ngep->intr_pri));
829 	mutex_init(&srp->dmah_lock, NULL, MUTEX_DRIVER,
830 	    DDI_INTR_PRI(ngep->intr_pri));
831 
832 	/* Init parameters of buffer ring */
833 	brp->free_list = NULL;
834 	brp->recycle_list = NULL;
835 	brp->rx_hold = 0;
836 	brp->buf_sign = 0;
837 
838 	/* Init recycle list lock */
839 	mutex_init(brp->recycle_lock, NULL, MUTEX_DRIVER,
840 	    DDI_INTR_PRI(ngep->intr_pri));
841 }
842 
843 int
844 nge_init_rings(nge_t *ngep)
845 {
846 	uint32_t err;
847 
848 	err = nge_init_send_ring(ngep);
849 	if (err != DDI_SUCCESS) {
850 		return (err);
851 	}
852 	nge_init_recv_ring(ngep);
853 
854 	err = nge_init_buff_ring(ngep);
855 	if (err != DDI_SUCCESS) {
856 		nge_fini_send_ring(ngep);
857 		return (DDI_FAILURE);
858 	}
859 
860 	return (err);
861 }
862 
863 static int
864 nge_reinit_ring(nge_t *ngep)
865 {
866 	int err;
867 
868 	nge_reinit_recv_ring(ngep);
869 	nge_reinit_send_ring(ngep);
870 	err = nge_reinit_buff_ring(ngep);
871 	return (err);
872 }
873 
874 
875 void
876 nge_fini_rings(nge_t *ngep)
877 {
878 	/*
879 	 * For receive ring, nothing need to be finished.
880 	 * So only finish buffer ring and send ring here.
881 	 */
882 	nge_fini_buff_ring(ngep);
883 	nge_fini_send_ring(ngep);
884 }
885 
886 /*
887  * Loopback ioctl code
888  */
889 
890 static lb_property_t loopmodes[] = {
891 	{ normal,	"normal",	NGE_LOOP_NONE		},
892 	{ external,	"100Mbps",	NGE_LOOP_EXTERNAL_100	},
893 	{ external,	"10Mbps",	NGE_LOOP_EXTERNAL_10	},
894 	{ internal,	"PHY",		NGE_LOOP_INTERNAL_PHY	},
895 };
896 
897 enum ioc_reply
898 nge_loop_ioctl(nge_t *ngep, mblk_t *mp, struct iocblk *iocp)
899 {
900 	int cmd;
901 	uint32_t *lbmp;
902 	lb_info_sz_t *lbsp;
903 	lb_property_t *lbpp;
904 
905 	/*
906 	 * Validate format of ioctl
907 	 */
908 	if (mp->b_cont == NULL)
909 		return (IOC_INVAL);
910 
911 	cmd = iocp->ioc_cmd;
912 
913 	switch (cmd) {
914 	default:
915 		return (IOC_INVAL);
916 
917 	case LB_GET_INFO_SIZE:
918 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
919 			return (IOC_INVAL);
920 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
921 		*lbsp = sizeof (loopmodes);
922 		return (IOC_REPLY);
923 
924 	case LB_GET_INFO:
925 		if (iocp->ioc_count != sizeof (loopmodes))
926 			return (IOC_INVAL);
927 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
928 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
929 		return (IOC_REPLY);
930 
931 	case LB_GET_MODE:
932 		if (iocp->ioc_count != sizeof (uint32_t))
933 			return (IOC_INVAL);
934 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
935 		*lbmp = ngep->param_loop_mode;
936 		return (IOC_REPLY);
937 
938 	case LB_SET_MODE:
939 		if (iocp->ioc_count != sizeof (uint32_t))
940 			return (IOC_INVAL);
941 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
942 		return (nge_set_loop_mode(ngep, *lbmp));
943 	}
944 }
945 
946 #undef	NGE_DBG
947 #define	NGE_DBG	NGE_DBG_NEMO
948 
949 
950 static void
951 nge_check_desc_prop(nge_t *ngep)
952 {
953 	if (ngep->desc_mode != DESC_HOT && ngep->desc_mode != DESC_OFFLOAD)
954 		ngep->desc_mode = DESC_HOT;
955 
956 	if (ngep->desc_mode == DESC_OFFLOAD)	{
957 
958 		ngep->desc_attr = nge_sum_desc;
959 
960 	}	else if (ngep->desc_mode == DESC_HOT)	{
961 
962 		ngep->desc_attr = nge_hot_desc;
963 	}
964 }
965 
966 /*
967  * nge_get_props -- get the parameters to tune the driver
968  */
969 static void
970 nge_get_props(nge_t *ngep)
971 {
972 	chip_info_t *infop;
973 	dev_info_t *devinfo;
974 	nge_dev_spec_param_t *dev_param_p;
975 
976 	devinfo = ngep->devinfo;
977 	infop = (chip_info_t *)&ngep->chipinfo;
978 	dev_param_p = &ngep->dev_spec_param;
979 
980 	infop->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
981 	    DDI_PROP_DONTPASS, clsize_propname, 32);
982 
983 	infop->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
984 	    DDI_PROP_DONTPASS, latency_propname, 64);
985 	ngep->intr_moderation = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
986 	    DDI_PROP_DONTPASS, intr_moderation, NGE_SET);
987 	ngep->rx_datahwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
988 	    DDI_PROP_DONTPASS, rx_data_hw, 0x20);
989 	ngep->rx_prdlwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
990 	    DDI_PROP_DONTPASS, rx_prd_lw, 0x4);
991 	ngep->rx_prdhwm = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
992 	    DDI_PROP_DONTPASS, rx_prd_hw, 0xc);
993 
994 	ngep->sw_intr_intv = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
995 	    DDI_PROP_DONTPASS, sw_intr_intv, SWTR_ITC);
996 	ngep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
997 	    DDI_PROP_DONTPASS, debug_propname, NGE_DBG_CHIP);
998 	ngep->desc_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
999 	    DDI_PROP_DONTPASS, nge_desc_mode, dev_param_p->desc_type);
1000 	ngep->lowmem_mode = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
1001 	    DDI_PROP_DONTPASS, low_memory_mode, 0);
1002 
1003 	if (dev_param_p->jumbo) {
1004 		ngep->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
1005 		    DDI_PROP_DONTPASS, default_mtu, ETHERMTU);
1006 	} else
1007 		ngep->default_mtu = ETHERMTU;
1008 
1009 	if (ngep->default_mtu > ETHERMTU &&
1010 	    ngep->default_mtu <= NGE_MTU_2500) {
1011 		ngep->buf_size = NGE_JB2500_BUFSZ;
1012 		ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
1013 		ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
1014 		ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
1015 		ngep->nge_split = NGE_SPLIT_256;
1016 	} else if (ngep->default_mtu > NGE_MTU_2500 &&
1017 	    ngep->default_mtu <= NGE_MTU_4500) {
1018 		ngep->buf_size = NGE_JB4500_BUFSZ;
1019 		ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
1020 		ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
1021 		ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
1022 		ngep->nge_split = NGE_SPLIT_256;
1023 	} else if (ngep->default_mtu > NGE_MTU_4500 &&
1024 	    ngep->default_mtu <= NGE_MAX_MTU) {
1025 		ngep->buf_size = NGE_JB9000_BUFSZ;
1026 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1027 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1028 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1029 		ngep->nge_split = NGE_SPLIT_256;
1030 	} else if (ngep->default_mtu > NGE_MAX_MTU) {
1031 		ngep->default_mtu = NGE_MAX_MTU;
1032 		ngep->buf_size = NGE_JB9000_BUFSZ;
1033 		ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1034 		ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1035 		ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1036 		ngep->nge_split = NGE_SPLIT_256;
1037 	} else if (ngep->lowmem_mode != 0) {
1038 		ngep->default_mtu = ETHERMTU;
1039 		ngep->buf_size = NGE_STD_BUFSZ;
1040 		ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
1041 		ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
1042 		ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
1043 		ngep->nge_split = NGE_SPLIT_32;
1044 	} else {
1045 		ngep->default_mtu = ETHERMTU;
1046 		ngep->buf_size = NGE_STD_BUFSZ;
1047 		ngep->tx_desc = dev_param_p->tx_desc_num;
1048 		ngep->rx_desc = dev_param_p->rx_desc_num;
1049 		ngep->rx_buf = dev_param_p->rx_desc_num * 2;
1050 		ngep->nge_split = dev_param_p->nge_split;
1051 	}
1052 
1053 	nge_check_desc_prop(ngep);
1054 }
1055 
1056 
1057 static int
1058 nge_reset(nge_t *ngep)
1059 {
1060 	int err;
1061 	nge_mul_addr1 maddr1;
1062 	nge_sw_statistics_t *sw_stp;
1063 	sw_stp = &ngep->statistics.sw_statistics;
1064 	send_ring_t *srp = ngep->send;
1065 
1066 	ASSERT(mutex_owned(ngep->genlock));
1067 	mutex_enter(srp->tc_lock);
1068 	mutex_enter(srp->tx_lock);
1069 
1070 	nge_tx_recycle_all(ngep);
1071 	err = nge_reinit_ring(ngep);
1072 	if (err == DDI_FAILURE) {
1073 		mutex_exit(srp->tx_lock);
1074 		mutex_exit(srp->tc_lock);
1075 		return (err);
1076 	}
1077 	err = nge_chip_reset(ngep);
1078 	/*
1079 	 * Clear the Multicast mac address table
1080 	 */
1081 	nge_reg_put32(ngep, NGE_MUL_ADDR0, 0);
1082 	maddr1.addr_val = nge_reg_get32(ngep, NGE_MUL_ADDR1);
1083 	maddr1.addr_bits.addr = 0;
1084 	nge_reg_put32(ngep, NGE_MUL_ADDR1, maddr1.addr_val);
1085 
1086 	mutex_exit(srp->tx_lock);
1087 	mutex_exit(srp->tc_lock);
1088 	if (err == DDI_FAILURE)
1089 		return (err);
1090 	ngep->watchdog = 0;
1091 	ngep->resched_needed = B_FALSE;
1092 	ngep->promisc = B_FALSE;
1093 	ngep->param_loop_mode = NGE_LOOP_NONE;
1094 	ngep->factotum_flag = 0;
1095 	ngep->resched_needed = 0;
1096 	ngep->nge_mac_state = NGE_MAC_RESET;
1097 	ngep->max_sdu = ngep->default_mtu + ETHER_HEAD_LEN + ETHERFCSL;
1098 	ngep->max_sdu += VTAG_SIZE;
1099 	ngep->rx_def = 0x16;
1100 
1101 	/* Clear the software statistics */
1102 	sw_stp->recv_count = 0;
1103 	sw_stp->xmit_count = 0;
1104 	sw_stp->rbytes = 0;
1105 	sw_stp->obytes = 0;
1106 
1107 	return (DDI_SUCCESS);
1108 }
1109 
1110 static void
1111 nge_m_stop(void *arg)
1112 {
1113 	nge_t *ngep = arg;		/* private device info	*/
1114 
1115 	NGE_TRACE(("nge_m_stop($%p)", arg));
1116 
1117 	/*
1118 	 * Just stop processing, then record new MAC state
1119 	 */
1120 	mutex_enter(ngep->genlock);
1121 	/* If suspended, the adapter is already stopped, just return. */
1122 	if (ngep->suspended) {
1123 		ASSERT(ngep->nge_mac_state == NGE_MAC_STOPPED);
1124 		mutex_exit(ngep->genlock);
1125 		return;
1126 	}
1127 	rw_enter(ngep->rwlock, RW_WRITER);
1128 
1129 	(void) nge_chip_stop(ngep, B_FALSE);
1130 	ngep->nge_mac_state = NGE_MAC_STOPPED;
1131 
1132 	/* Recycle all the TX BD */
1133 	nge_tx_recycle_all(ngep);
1134 	nge_fini_rings(ngep);
1135 	nge_free_bufs(ngep);
1136 
1137 	NGE_DEBUG(("nge_m_stop($%p) done", arg));
1138 
1139 	rw_exit(ngep->rwlock);
1140 	mutex_exit(ngep->genlock);
1141 }
1142 
1143 static int
1144 nge_m_start(void *arg)
1145 {
1146 	int err;
1147 	nge_t *ngep = arg;
1148 
1149 	NGE_TRACE(("nge_m_start($%p)", arg));
1150 
1151 	/*
1152 	 * Start processing and record new MAC state
1153 	 */
1154 	mutex_enter(ngep->genlock);
1155 	/*
1156 	 * If suspended, don't start, as the resume processing
1157 	 * will recall this function with the suspended flag off.
1158 	 */
1159 	if (ngep->suspended) {
1160 		mutex_exit(ngep->genlock);
1161 		return (EIO);
1162 	}
1163 	rw_enter(ngep->rwlock, RW_WRITER);
1164 	err = nge_alloc_bufs(ngep);
1165 	if (err != DDI_SUCCESS) {
1166 		nge_problem(ngep, "nge_m_start: DMA buffer allocation failed");
1167 		goto finish;
1168 	}
1169 	err = nge_init_rings(ngep);
1170 	if (err != DDI_SUCCESS) {
1171 		nge_free_bufs(ngep);
1172 		nge_problem(ngep, "nge_init_rings() failed,err=%x", err);
1173 		goto finish;
1174 	}
1175 	err = nge_restart(ngep);
1176 
1177 	NGE_DEBUG(("nge_m_start($%p) done", arg));
1178 finish:
1179 	rw_exit(ngep->rwlock);
1180 	mutex_exit(ngep->genlock);
1181 
1182 	return (err == DDI_SUCCESS ? 0 : EIO);
1183 }
1184 
1185 static int
1186 nge_m_unicst(void *arg, const uint8_t *macaddr)
1187 {
1188 	nge_t *ngep = arg;
1189 
1190 	NGE_TRACE(("nge_m_unicst($%p)", arg));
1191 	/*
1192 	 * Remember the new current address in the driver state
1193 	 * Sync the chip's idea of the address too ...
1194 	 */
1195 	mutex_enter(ngep->genlock);
1196 
1197 	ethaddr_copy(macaddr, ngep->cur_uni_addr.addr);
1198 	ngep->cur_uni_addr.set = 1;
1199 
1200 	/*
1201 	 * If we are suspended, we want to quit now, and not update
1202 	 * the chip.  Doing so might put it in a bad state, but the
1203 	 * resume will get the unicast address installed.
1204 	 */
1205 	if (ngep->suspended) {
1206 		mutex_exit(ngep->genlock);
1207 		return (DDI_SUCCESS);
1208 	}
1209 	nge_chip_sync(ngep);
1210 
1211 	NGE_DEBUG(("nge_m_unicst($%p) done", arg));
1212 	mutex_exit(ngep->genlock);
1213 
1214 	return (0);
1215 }
1216 
1217 static int
1218 nge_m_promisc(void *arg, boolean_t on)
1219 {
1220 	nge_t *ngep = arg;
1221 
1222 	NGE_TRACE(("nge_m_promisc($%p)", arg));
1223 
1224 	/*
1225 	 * Store specified mode and pass to chip layer to update h/w
1226 	 */
1227 	mutex_enter(ngep->genlock);
1228 	/*
1229 	 * If suspended, there is no need to do anything, even
1230 	 * recording the promiscuious mode is not neccessary, as
1231 	 * it won't be properly set on resume.  Just return failing.
1232 	 */
1233 	if (ngep->suspended) {
1234 		mutex_exit(ngep->genlock);
1235 		return (DDI_FAILURE);
1236 	}
1237 	if (ngep->promisc == on) {
1238 		mutex_exit(ngep->genlock);
1239 		NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1240 		return (0);
1241 	}
1242 	ngep->promisc = on;
1243 	ngep->record_promisc = ngep->promisc;
1244 	nge_chip_sync(ngep);
1245 	NGE_DEBUG(("nge_m_promisc($%p) done", arg));
1246 	mutex_exit(ngep->genlock);
1247 
1248 	return (0);
1249 }
1250 
1251 static void nge_mulparam(nge_t *ngep)
1252 {
1253 	uint8_t number;
1254 	ether_addr_t pand;
1255 	ether_addr_t por;
1256 	mul_item *plist;
1257 
1258 	for (number = 0; number < ETHERADDRL; number++) {
1259 		pand[number] = 0x00;
1260 		por[number] = 0x00;
1261 	}
1262 	for (plist = ngep->pcur_mulist; plist != NULL; plist = plist->next) {
1263 		for (number = 0; number < ETHERADDRL; number++) {
1264 			pand[number] &= plist->mul_addr[number];
1265 			por[number] |= plist->mul_addr[number];
1266 		}
1267 	}
1268 	for (number = 0; number < ETHERADDRL; number++) {
1269 		ngep->cur_mul_addr.addr[number]
1270 		    = pand[number] & por[number];
1271 		ngep->cur_mul_mask.addr[number]
1272 		    = pand [number] | (~por[number]);
1273 	}
1274 }
1275 static int
1276 nge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1277 {
1278 	boolean_t update;
1279 	boolean_t b_eq;
1280 	nge_t *ngep = arg;
1281 	mul_item *plist;
1282 	mul_item *plist_prev;
1283 	mul_item *pitem;
1284 
1285 	NGE_TRACE(("nge_m_multicst($%p, %s, %s)", arg,
1286 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1287 
1288 	update = B_FALSE;
1289 	plist = plist_prev = NULL;
1290 	mutex_enter(ngep->genlock);
1291 	if (add) {
1292 		if (ngep->pcur_mulist != NULL) {
1293 			for (plist = ngep->pcur_mulist; plist != NULL;
1294 			    plist = plist->next) {
1295 				b_eq = ether_eq(plist->mul_addr, mca);
1296 				if (b_eq) {
1297 					plist->ref_cnt++;
1298 					break;
1299 				}
1300 				plist_prev = plist;
1301 			}
1302 		}
1303 
1304 		if (plist == NULL) {
1305 			pitem = kmem_zalloc(sizeof (mul_item), KM_SLEEP);
1306 			ether_copy(mca, pitem->mul_addr);
1307 			pitem ->ref_cnt++;
1308 			pitem ->next = NULL;
1309 			if (plist_prev == NULL)
1310 				ngep->pcur_mulist = pitem;
1311 			else
1312 				plist_prev->next = pitem;
1313 			update = B_TRUE;
1314 		}
1315 	} else {
1316 		if (ngep->pcur_mulist != NULL) {
1317 			for (plist = ngep->pcur_mulist; plist != NULL;
1318 			    plist = plist->next) {
1319 				b_eq = ether_eq(plist->mul_addr, mca);
1320 				if (b_eq) {
1321 					update = B_TRUE;
1322 					break;
1323 				}
1324 				plist_prev = plist;
1325 			}
1326 
1327 			if (update) {
1328 				if ((plist_prev == NULL) &&
1329 				    (plist->next == NULL))
1330 					ngep->pcur_mulist = NULL;
1331 				else if ((plist_prev == NULL) &&
1332 				    (plist->next != NULL))
1333 					ngep->pcur_mulist = plist->next;
1334 				else
1335 					plist_prev->next = plist->next;
1336 				kmem_free(plist, sizeof (mul_item));
1337 			}
1338 		}
1339 	}
1340 
1341 	if (update && !ngep->suspended) {
1342 		nge_mulparam(ngep);
1343 		nge_chip_sync(ngep);
1344 	}
1345 	NGE_DEBUG(("nge_m_multicst($%p) done", arg));
1346 	mutex_exit(ngep->genlock);
1347 
1348 	return (0);
1349 }
1350 
1351 static void
1352 nge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1353 {
1354 	int err;
1355 	int cmd;
1356 	nge_t *ngep = arg;
1357 	struct iocblk *iocp;
1358 	enum ioc_reply status;
1359 	boolean_t need_privilege;
1360 
1361 	/*
1362 	 * If suspended, we might actually be able to do some of
1363 	 * these ioctls, but it is harder to make sure they occur
1364 	 * without actually putting the hardware in an undesireable
1365 	 * state.  So just NAK it.
1366 	 */
1367 	mutex_enter(ngep->genlock);
1368 	if (ngep->suspended) {
1369 		miocnak(wq, mp, 0, EINVAL);
1370 		mutex_exit(ngep->genlock);
1371 		return;
1372 	}
1373 	mutex_exit(ngep->genlock);
1374 
1375 	/*
1376 	 * Validate the command before bothering with the mutex ...
1377 	 */
1378 	iocp = (struct iocblk *)mp->b_rptr;
1379 	iocp->ioc_error = 0;
1380 	need_privilege = B_TRUE;
1381 	cmd = iocp->ioc_cmd;
1382 
1383 	NGE_DEBUG(("nge_m_ioctl:  cmd 0x%x", cmd));
1384 	switch (cmd) {
1385 	default:
1386 		NGE_LDB(NGE_DBG_BADIOC,
1387 		    ("nge_m_ioctl: unknown cmd 0x%x", cmd));
1388 
1389 		miocnak(wq, mp, 0, EINVAL);
1390 		return;
1391 
1392 	case NGE_MII_READ:
1393 	case NGE_MII_WRITE:
1394 	case NGE_SEE_READ:
1395 	case NGE_SEE_WRITE:
1396 	case NGE_DIAG:
1397 	case NGE_PEEK:
1398 	case NGE_POKE:
1399 	case NGE_PHY_RESET:
1400 	case NGE_SOFT_RESET:
1401 	case NGE_HARD_RESET:
1402 		break;
1403 
1404 	case LB_GET_INFO_SIZE:
1405 	case LB_GET_INFO:
1406 	case LB_GET_MODE:
1407 		need_privilege = B_FALSE;
1408 		break;
1409 	case LB_SET_MODE:
1410 		break;
1411 	}
1412 
1413 	if (need_privilege) {
1414 		/*
1415 		 * Check for specific net_config privilege.
1416 		 */
1417 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1418 		if (err != 0) {
1419 			NGE_DEBUG(("nge_m_ioctl: rejected cmd 0x%x, err %d",
1420 			    cmd, err));
1421 			miocnak(wq, mp, 0, err);
1422 			return;
1423 		}
1424 	}
1425 
1426 	mutex_enter(ngep->genlock);
1427 
1428 	switch (cmd) {
1429 	default:
1430 		_NOTE(NOTREACHED)
1431 		status = IOC_INVAL;
1432 	break;
1433 
1434 	case NGE_MII_READ:
1435 	case NGE_MII_WRITE:
1436 	case NGE_SEE_READ:
1437 	case NGE_SEE_WRITE:
1438 	case NGE_DIAG:
1439 	case NGE_PEEK:
1440 	case NGE_POKE:
1441 	case NGE_PHY_RESET:
1442 	case NGE_SOFT_RESET:
1443 	case NGE_HARD_RESET:
1444 		status = nge_chip_ioctl(ngep, mp, iocp);
1445 	break;
1446 
1447 	case LB_GET_INFO_SIZE:
1448 	case LB_GET_INFO:
1449 	case LB_GET_MODE:
1450 	case LB_SET_MODE:
1451 		status = nge_loop_ioctl(ngep, mp, iocp);
1452 	break;
1453 
1454 	}
1455 
1456 	/*
1457 	 * Do we need to reprogram the PHY and/or the MAC?
1458 	 * Do it now, while we still have the mutex.
1459 	 *
1460 	 * Note: update the PHY first, 'cos it controls the
1461 	 * speed/duplex parameters that the MAC code uses.
1462 	 */
1463 
1464 	NGE_DEBUG(("nge_m_ioctl: cmd 0x%x status %d", cmd, status));
1465 
1466 	switch (status) {
1467 	case IOC_RESTART_REPLY:
1468 	case IOC_RESTART_ACK:
1469 		(*ngep->physops->phys_update)(ngep);
1470 		nge_chip_sync(ngep);
1471 		break;
1472 
1473 	default:
1474 	break;
1475 	}
1476 
1477 	mutex_exit(ngep->genlock);
1478 
1479 	/*
1480 	 * Finally, decide how to reply
1481 	 */
1482 	switch (status) {
1483 
1484 	default:
1485 	case IOC_INVAL:
1486 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1487 		    EINVAL : iocp->ioc_error);
1488 		break;
1489 
1490 	case IOC_DONE:
1491 		break;
1492 
1493 	case IOC_RESTART_ACK:
1494 	case IOC_ACK:
1495 		miocack(wq, mp, 0, 0);
1496 		break;
1497 
1498 	case IOC_RESTART_REPLY:
1499 	case IOC_REPLY:
1500 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1501 		    M_IOCACK : M_IOCNAK;
1502 		qreply(wq, mp);
1503 		break;
1504 	}
1505 }
1506 
1507 static boolean_t
1508 nge_param_locked(mac_prop_id_t pr_num)
1509 {
1510 	/*
1511 	 * All adv_* parameters are locked (read-only) while
1512 	 * the device is in any sort of loopback mode ...
1513 	 */
1514 	switch (pr_num) {
1515 		case MAC_PROP_ADV_1000FDX_CAP:
1516 		case MAC_PROP_EN_1000FDX_CAP:
1517 		case MAC_PROP_ADV_1000HDX_CAP:
1518 		case MAC_PROP_EN_1000HDX_CAP:
1519 		case MAC_PROP_ADV_100FDX_CAP:
1520 		case MAC_PROP_EN_100FDX_CAP:
1521 		case MAC_PROP_ADV_100HDX_CAP:
1522 		case MAC_PROP_EN_100HDX_CAP:
1523 		case MAC_PROP_ADV_10FDX_CAP:
1524 		case MAC_PROP_EN_10FDX_CAP:
1525 		case MAC_PROP_ADV_10HDX_CAP:
1526 		case MAC_PROP_EN_10HDX_CAP:
1527 		case MAC_PROP_AUTONEG:
1528 		case MAC_PROP_FLOWCTRL:
1529 			return (B_TRUE);
1530 	}
1531 	return (B_FALSE);
1532 }
1533 
1534 /*
1535  * callback functions for set/get of properties
1536  */
1537 static int
1538 nge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1539     uint_t pr_valsize, const void *pr_val)
1540 {
1541 	nge_t *ngep = barg;
1542 	int err = 0;
1543 	uint32_t cur_mtu, new_mtu;
1544 	link_flowctrl_t fl;
1545 
1546 	mutex_enter(ngep->genlock);
1547 	if (ngep->param_loop_mode != NGE_LOOP_NONE &&
1548 	    nge_param_locked(pr_num)) {
1549 		/*
1550 		 * All adv_* parameters are locked (read-only)
1551 		 * while the device is in any sort of loopback mode.
1552 		 */
1553 		mutex_exit(ngep->genlock);
1554 		return (EBUSY);
1555 	}
1556 	switch (pr_num) {
1557 		case MAC_PROP_EN_1000FDX_CAP:
1558 			ngep->param_en_1000fdx = *(uint8_t *)pr_val;
1559 			ngep->param_adv_1000fdx = *(uint8_t *)pr_val;
1560 			goto reprogram;
1561 		case MAC_PROP_EN_100FDX_CAP:
1562 			ngep->param_en_100fdx = *(uint8_t *)pr_val;
1563 			ngep->param_adv_100fdx = *(uint8_t *)pr_val;
1564 			goto reprogram;
1565 		case MAC_PROP_EN_100HDX_CAP:
1566 			ngep->param_en_100hdx = *(uint8_t *)pr_val;
1567 			ngep->param_adv_100hdx = *(uint8_t *)pr_val;
1568 			goto reprogram;
1569 		case MAC_PROP_EN_10FDX_CAP:
1570 			ngep->param_en_10fdx = *(uint8_t *)pr_val;
1571 			ngep->param_adv_10fdx = *(uint8_t *)pr_val;
1572 			goto reprogram;
1573 		case MAC_PROP_EN_10HDX_CAP:
1574 			ngep->param_en_10hdx = *(uint8_t *)pr_val;
1575 			ngep->param_adv_10hdx = *(uint8_t *)pr_val;
1576 reprogram:
1577 		(*ngep->physops->phys_update)(ngep);
1578 		nge_chip_sync(ngep);
1579 		break;
1580 
1581 		case MAC_PROP_ADV_1000FDX_CAP:
1582 		case MAC_PROP_ADV_1000HDX_CAP:
1583 		case MAC_PROP_ADV_100FDX_CAP:
1584 		case MAC_PROP_ADV_100HDX_CAP:
1585 		case MAC_PROP_ADV_10FDX_CAP:
1586 		case MAC_PROP_ADV_10HDX_CAP:
1587 		case MAC_PROP_STATUS:
1588 		case MAC_PROP_SPEED:
1589 		case MAC_PROP_DUPLEX:
1590 		case MAC_PROP_EN_1000HDX_CAP:
1591 			err = ENOTSUP; /* read-only prop. Can't set this */
1592 			break;
1593 		case MAC_PROP_AUTONEG:
1594 			ngep->param_adv_autoneg = *(uint8_t *)pr_val;
1595 			(*ngep->physops->phys_update)(ngep);
1596 			nge_chip_sync(ngep);
1597 			break;
1598 		case MAC_PROP_MTU:
1599 			cur_mtu = ngep->default_mtu;
1600 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
1601 			if (new_mtu == cur_mtu) {
1602 				err = 0;
1603 				break;
1604 			}
1605 			if (new_mtu < ETHERMTU ||
1606 			    new_mtu > NGE_MAX_MTU) {
1607 				err = EINVAL;
1608 				break;
1609 			}
1610 			if ((new_mtu > ETHERMTU) &&
1611 			    (!ngep->dev_spec_param.jumbo)) {
1612 				err = EINVAL;
1613 				break;
1614 			}
1615 			if (ngep->nge_mac_state == NGE_MAC_STARTED) {
1616 				err = EBUSY;
1617 				break;
1618 			}
1619 
1620 			ngep->default_mtu = new_mtu;
1621 			if (ngep->default_mtu > ETHERMTU &&
1622 			    ngep->default_mtu <= NGE_MTU_2500) {
1623 				ngep->buf_size = NGE_JB2500_BUFSZ;
1624 				ngep->tx_desc = NGE_SEND_JB2500_SLOTS_DESC;
1625 				ngep->rx_desc = NGE_RECV_JB2500_SLOTS_DESC;
1626 				ngep->rx_buf = NGE_RECV_JB2500_SLOTS_DESC * 2;
1627 				ngep->nge_split = NGE_SPLIT_256;
1628 			} else if (ngep->default_mtu > NGE_MTU_2500 &&
1629 			    ngep->default_mtu <= NGE_MTU_4500) {
1630 				ngep->buf_size = NGE_JB4500_BUFSZ;
1631 				ngep->tx_desc = NGE_SEND_JB4500_SLOTS_DESC;
1632 				ngep->rx_desc = NGE_RECV_JB4500_SLOTS_DESC;
1633 				ngep->rx_buf = NGE_RECV_JB4500_SLOTS_DESC * 2;
1634 				ngep->nge_split = NGE_SPLIT_256;
1635 			} else if (ngep->default_mtu > NGE_MTU_4500 &&
1636 			    ngep->default_mtu <= NGE_MAX_MTU) {
1637 				ngep->buf_size = NGE_JB9000_BUFSZ;
1638 				ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1639 				ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1640 				ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1641 				ngep->nge_split = NGE_SPLIT_256;
1642 			} else if (ngep->default_mtu > NGE_MAX_MTU) {
1643 				ngep->default_mtu = NGE_MAX_MTU;
1644 				ngep->buf_size = NGE_JB9000_BUFSZ;
1645 				ngep->tx_desc = NGE_SEND_JB9000_SLOTS_DESC;
1646 				ngep->rx_desc = NGE_RECV_JB9000_SLOTS_DESC;
1647 				ngep->rx_buf = NGE_RECV_JB9000_SLOTS_DESC * 2;
1648 				ngep->nge_split = NGE_SPLIT_256;
1649 			} else if (ngep->lowmem_mode != 0) {
1650 				ngep->default_mtu = ETHERMTU;
1651 				ngep->buf_size = NGE_STD_BUFSZ;
1652 				ngep->tx_desc = NGE_SEND_LOWMEM_SLOTS_DESC;
1653 				ngep->rx_desc = NGE_RECV_LOWMEM_SLOTS_DESC;
1654 				ngep->rx_buf = NGE_RECV_LOWMEM_SLOTS_DESC * 2;
1655 				ngep->nge_split = NGE_SPLIT_32;
1656 			} else {
1657 				ngep->default_mtu = ETHERMTU;
1658 				ngep->buf_size = NGE_STD_BUFSZ;
1659 				ngep->tx_desc =
1660 				    ngep->dev_spec_param.tx_desc_num;
1661 				ngep->rx_desc =
1662 				    ngep->dev_spec_param.rx_desc_num;
1663 				ngep->rx_buf =
1664 				    ngep->dev_spec_param.rx_desc_num * 2;
1665 				ngep->nge_split =
1666 				    ngep->dev_spec_param.nge_split;
1667 			}
1668 
1669 			err = mac_maxsdu_update(ngep->mh, ngep->default_mtu);
1670 
1671 			break;
1672 		case MAC_PROP_FLOWCTRL:
1673 			bcopy(pr_val, &fl, sizeof (fl));
1674 			switch (fl) {
1675 			default:
1676 				err = ENOTSUP;
1677 				break;
1678 			case LINK_FLOWCTRL_NONE:
1679 				ngep->param_adv_pause = 0;
1680 				ngep->param_adv_asym_pause = 0;
1681 
1682 				ngep->param_link_rx_pause = B_FALSE;
1683 				ngep->param_link_tx_pause = B_FALSE;
1684 				break;
1685 			case LINK_FLOWCTRL_RX:
1686 				if (!((ngep->param_lp_pause == 0) &&
1687 				    (ngep->param_lp_asym_pause == 1))) {
1688 					err = EINVAL;
1689 					break;
1690 				}
1691 				ngep->param_adv_pause = 1;
1692 				ngep->param_adv_asym_pause = 1;
1693 
1694 				ngep->param_link_rx_pause = B_TRUE;
1695 				ngep->param_link_tx_pause = B_FALSE;
1696 				break;
1697 			case LINK_FLOWCTRL_TX:
1698 				if (!((ngep->param_lp_pause == 1) &&
1699 				    (ngep->param_lp_asym_pause == 1))) {
1700 					err = EINVAL;
1701 					break;
1702 				}
1703 				ngep->param_adv_pause = 0;
1704 				ngep->param_adv_asym_pause = 1;
1705 
1706 				ngep->param_link_rx_pause = B_FALSE;
1707 				ngep->param_link_tx_pause = B_TRUE;
1708 				break;
1709 			case LINK_FLOWCTRL_BI:
1710 				if (ngep->param_lp_pause != 1) {
1711 					err = EINVAL;
1712 					break;
1713 				}
1714 				ngep->param_adv_pause = 1;
1715 
1716 				ngep->param_link_rx_pause = B_TRUE;
1717 				ngep->param_link_tx_pause = B_TRUE;
1718 				break;
1719 			}
1720 
1721 			if (err == 0) {
1722 				(*ngep->physops->phys_update)(ngep);
1723 				nge_chip_sync(ngep);
1724 			}
1725 
1726 			break;
1727 		case MAC_PROP_PRIVATE:
1728 			err = nge_set_priv_prop(ngep, pr_name, pr_valsize,
1729 			    pr_val);
1730 			if (err == 0) {
1731 				(*ngep->physops->phys_update)(ngep);
1732 				nge_chip_sync(ngep);
1733 			}
1734 			break;
1735 		default:
1736 			err = ENOTSUP;
1737 	}
1738 	mutex_exit(ngep->genlock);
1739 	return (err);
1740 }
1741 
1742 static int
1743 nge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1744     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
1745 {
1746 	nge_t *ngep = barg;
1747 	int err = 0;
1748 	link_flowctrl_t fl;
1749 	uint64_t speed;
1750 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
1751 
1752 	if (pr_valsize == 0)
1753 		return (EINVAL);
1754 
1755 	bzero(pr_val, pr_valsize);
1756 	switch (pr_num) {
1757 		case MAC_PROP_DUPLEX:
1758 			if (pr_valsize >= sizeof (link_duplex_t)) {
1759 				bcopy(&ngep->param_link_duplex, pr_val,
1760 				    sizeof (link_duplex_t));
1761 			} else
1762 				err = EINVAL;
1763 			break;
1764 		case MAC_PROP_SPEED:
1765 			if (pr_valsize >= sizeof (uint64_t)) {
1766 				speed = ngep->param_link_speed * 1000000ull;
1767 				bcopy(&speed, pr_val, sizeof (speed));
1768 			} else
1769 				err = EINVAL;
1770 			break;
1771 		case MAC_PROP_AUTONEG:
1772 			if (is_default) {
1773 				*(uint8_t *)pr_val = 1;
1774 			} else {
1775 				*(uint8_t *)pr_val = ngep->param_adv_autoneg;
1776 			}
1777 			break;
1778 		case MAC_PROP_FLOWCTRL:
1779 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
1780 				if (pr_flags & MAC_PROP_DEFAULT) {
1781 					fl = LINK_FLOWCTRL_BI;
1782 					bcopy(&fl, pr_val, sizeof (fl));
1783 					break;
1784 				}
1785 				if (ngep->param_link_rx_pause &&
1786 				    !ngep->param_link_tx_pause)
1787 					fl = LINK_FLOWCTRL_RX;
1788 
1789 				if (!ngep->param_link_rx_pause &&
1790 				    !ngep->param_link_tx_pause)
1791 					fl = LINK_FLOWCTRL_NONE;
1792 
1793 				if (!ngep->param_link_rx_pause &&
1794 				    ngep->param_link_tx_pause)
1795 					fl = LINK_FLOWCTRL_TX;
1796 
1797 				if (ngep->param_link_rx_pause &&
1798 				    ngep->param_link_tx_pause)
1799 					fl = LINK_FLOWCTRL_BI;
1800 				bcopy(&fl, pr_val, sizeof (fl));
1801 			} else
1802 				err = EINVAL;
1803 			break;
1804 		case MAC_PROP_ADV_1000FDX_CAP:
1805 			if (is_default) {
1806 				*(uint8_t *)pr_val = 1;
1807 			} else {
1808 				*(uint8_t *)pr_val = ngep->param_adv_1000fdx;
1809 			}
1810 			break;
1811 		case MAC_PROP_EN_1000FDX_CAP:
1812 			if (is_default) {
1813 				*(uint8_t *)pr_val = 1;
1814 			} else {
1815 				*(uint8_t *)pr_val = ngep->param_en_1000fdx;
1816 			}
1817 			break;
1818 		case MAC_PROP_ADV_1000HDX_CAP:
1819 			if (is_default) {
1820 				*(uint8_t *)pr_val = 0;
1821 			} else {
1822 				*(uint8_t *)pr_val = ngep->param_adv_1000hdx;
1823 			}
1824 			break;
1825 		case MAC_PROP_EN_1000HDX_CAP:
1826 			if (is_default) {
1827 				*(uint8_t *)pr_val = 0;
1828 			} else {
1829 				*(uint8_t *)pr_val = ngep->param_en_1000hdx;
1830 			}
1831 			break;
1832 		case MAC_PROP_ADV_100FDX_CAP:
1833 			if (is_default) {
1834 				*(uint8_t *)pr_val = 1;
1835 			} else {
1836 				*(uint8_t *)pr_val = ngep->param_adv_100fdx;
1837 			}
1838 			break;
1839 		case MAC_PROP_EN_100FDX_CAP:
1840 			if (is_default) {
1841 				*(uint8_t *)pr_val = 1;
1842 			} else {
1843 				*(uint8_t *)pr_val = ngep->param_en_100fdx;
1844 			}
1845 			break;
1846 		case MAC_PROP_ADV_100HDX_CAP:
1847 			if (is_default) {
1848 				*(uint8_t *)pr_val = 1;
1849 			} else {
1850 				*(uint8_t *)pr_val = ngep->param_adv_100hdx;
1851 			}
1852 			break;
1853 		case MAC_PROP_EN_100HDX_CAP:
1854 			if (is_default) {
1855 				*(uint8_t *)pr_val = 1;
1856 			} else {
1857 				*(uint8_t *)pr_val = ngep->param_en_100hdx;
1858 			}
1859 			break;
1860 		case MAC_PROP_ADV_10FDX_CAP:
1861 			if (is_default) {
1862 				*(uint8_t *)pr_val = 1;
1863 			} else {
1864 				*(uint8_t *)pr_val = ngep->param_adv_10fdx;
1865 			}
1866 			break;
1867 		case MAC_PROP_EN_10FDX_CAP:
1868 			if (is_default) {
1869 				*(uint8_t *)pr_val = 1;
1870 			} else {
1871 				*(uint8_t *)pr_val = ngep->param_en_10fdx;
1872 			}
1873 			break;
1874 		case MAC_PROP_ADV_10HDX_CAP:
1875 			if (is_default) {
1876 				*(uint8_t *)pr_val = 1;
1877 			} else {
1878 				*(uint8_t *)pr_val = ngep->param_adv_10hdx;
1879 			}
1880 			break;
1881 		case MAC_PROP_EN_10HDX_CAP:
1882 			if (is_default) {
1883 				*(uint8_t *)pr_val = 1;
1884 			} else {
1885 				*(uint8_t *)pr_val = ngep->param_en_10hdx;
1886 			}
1887 			break;
1888 		case MAC_PROP_ADV_100T4_CAP:
1889 		case MAC_PROP_EN_100T4_CAP:
1890 			*(uint8_t *)pr_val = 0;
1891 			break;
1892 		case MAC_PROP_PRIVATE:
1893 			err = nge_get_priv_prop(ngep, pr_name, pr_flags,
1894 			    pr_valsize, pr_val);
1895 			break;
1896 		default:
1897 			err = ENOTSUP;
1898 	}
1899 	return (err);
1900 }
1901 
1902 /* ARGSUSED */
1903 static int
1904 nge_set_priv_prop(nge_t *ngep, const char *pr_name, uint_t pr_valsize,
1905     const void *pr_val)
1906 {
1907 	int err = 0;
1908 	long result;
1909 
1910 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
1911 		if (pr_val == NULL) {
1912 			err = EINVAL;
1913 			return (err);
1914 		}
1915 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1916 		if (result < 0 || result > NGE_MAX_SDU) {
1917 			err = EINVAL;
1918 		} else {
1919 			ngep->param_txbcopy_threshold = (uint32_t)result;
1920 			goto reprogram;
1921 		}
1922 		return (err);
1923 	}
1924 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
1925 		if (pr_val == NULL) {
1926 			err = EINVAL;
1927 			return (err);
1928 		}
1929 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1930 		if (result < 0 || result > NGE_MAX_SDU) {
1931 			err = EINVAL;
1932 		} else {
1933 			ngep->param_rxbcopy_threshold = (uint32_t)result;
1934 			goto reprogram;
1935 		}
1936 		return (err);
1937 	}
1938 	if (strcmp(pr_name, "_recv_max_packet") == 0) {
1939 		if (pr_val == NULL) {
1940 			err = EINVAL;
1941 			return (err);
1942 		}
1943 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1944 		if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
1945 			err = EINVAL;
1946 		} else {
1947 			ngep->param_recv_max_packet = (uint32_t)result;
1948 			goto reprogram;
1949 		}
1950 		return (err);
1951 	}
1952 	if (strcmp(pr_name, "_poll_quiet_time") == 0) {
1953 		if (pr_val == NULL) {
1954 			err = EINVAL;
1955 			return (err);
1956 		}
1957 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1958 		if (result < 0 || result > 10000) {
1959 			err = EINVAL;
1960 		} else {
1961 			ngep->param_poll_quiet_time = (uint32_t)result;
1962 			goto reprogram;
1963 		}
1964 		return (err);
1965 	}
1966 	if (strcmp(pr_name, "_poll_busy_time") == 0) {
1967 		if (pr_val == NULL) {
1968 			err = EINVAL;
1969 			return (err);
1970 		}
1971 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1972 		if (result < 0 || result > 10000) {
1973 			err = EINVAL;
1974 		} else {
1975 			ngep->param_poll_busy_time = (uint32_t)result;
1976 			goto reprogram;
1977 		}
1978 		return (err);
1979 	}
1980 	if (strcmp(pr_name, "_rx_intr_hwater") == 0) {
1981 		if (pr_val == NULL) {
1982 			err = EINVAL;
1983 			return (err);
1984 		}
1985 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1986 		if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
1987 			err = EINVAL;
1988 		} else {
1989 			ngep->param_rx_intr_hwater = (uint32_t)result;
1990 			goto reprogram;
1991 		}
1992 		return (err);
1993 	}
1994 	if (strcmp(pr_name, "_rx_intr_lwater") == 0) {
1995 		if (pr_val == NULL) {
1996 			err = EINVAL;
1997 			return (err);
1998 		}
1999 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2000 		if (result < 0 || result > NGE_RECV_SLOTS_DESC_1024) {
2001 			err = EINVAL;
2002 		} else {
2003 			ngep->param_rx_intr_lwater = (uint32_t)result;
2004 			goto reprogram;
2005 		}
2006 		return (err);
2007 	}
2008 	if (strcmp(pr_name, "_tx_n_intr") == 0) {
2009 		if (pr_val == NULL) {
2010 			err = EINVAL;
2011 			return (err);
2012 		}
2013 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2014 		if (result < 1 || result > 10000) {
2015 			err = EINVAL;
2016 		} else {
2017 			ngep->param_tx_n_intr = (uint32_t)result;
2018 			goto reprogram;
2019 		}
2020 		return (err);
2021 	}
2022 
2023 	err = ENOTSUP;
2024 	return (err);
2025 
2026 reprogram:
2027 	if (err == 0) {
2028 		(*ngep->physops->phys_update)(ngep);
2029 		nge_chip_sync(ngep);
2030 	}
2031 
2032 	return (err);
2033 }
2034 
2035 static int
2036 nge_get_priv_prop(nge_t *ngep, const char *pr_name, uint_t pr_flags,
2037     uint_t pr_valsize, void *pr_val)
2038 {
2039 	int err = ENOTSUP;
2040 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
2041 	int value;
2042 
2043 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
2044 		value = (is_default ? 1 : ngep->param_adv_pause);
2045 		err = 0;
2046 		goto done;
2047 	}
2048 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
2049 		value = (is_default ? 1 : ngep->param_adv_asym_pause);
2050 		err = 0;
2051 		goto done;
2052 	}
2053 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2054 		value = (is_default ? NGE_TX_COPY_SIZE :
2055 		    ngep->param_txbcopy_threshold);
2056 		err = 0;
2057 		goto done;
2058 	}
2059 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
2060 		value = (is_default ? NGE_RX_COPY_SIZE :
2061 		    ngep->param_rxbcopy_threshold);
2062 		err = 0;
2063 		goto done;
2064 	}
2065 	if (strcmp(pr_name, "_recv_max_packet") == 0) {
2066 		value = (is_default ? 128 : ngep->param_recv_max_packet);
2067 		err = 0;
2068 		goto done;
2069 	}
2070 	if (strcmp(pr_name, "_poll_quiet_time") == 0) {
2071 		value = (is_default ? NGE_POLL_QUIET_TIME :
2072 		    ngep->param_poll_quiet_time);
2073 		err = 0;
2074 		goto done;
2075 	}
2076 	if (strcmp(pr_name, "_poll_busy_time") == 0) {
2077 		value = (is_default ? NGE_POLL_BUSY_TIME :
2078 		    ngep->param_poll_busy_time);
2079 		err = 0;
2080 		goto done;
2081 	}
2082 	if (strcmp(pr_name, "_rx_intr_hwater") == 0) {
2083 		value = (is_default ? 1 : ngep->param_rx_intr_hwater);
2084 		err = 0;
2085 		goto done;
2086 	}
2087 	if (strcmp(pr_name, "_rx_intr_lwater") == 0) {
2088 		value = (is_default ? 8 : ngep->param_rx_intr_lwater);
2089 		err = 0;
2090 		goto done;
2091 	}
2092 	if (strcmp(pr_name, "_tx_n_intr") == 0) {
2093 		value = (is_default ? NGE_TX_N_INTR :
2094 		    ngep->param_tx_n_intr);
2095 		err = 0;
2096 		goto done;
2097 	}
2098 
2099 done:
2100 	if (err == 0) {
2101 		(void) snprintf(pr_val, pr_valsize, "%d", value);
2102 	}
2103 	return (err);
2104 }
2105 
2106 /* ARGSUSED */
2107 static boolean_t
2108 nge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2109 {
2110 	nge_t	*ngep = arg;
2111 	nge_dev_spec_param_t *dev_param_p;
2112 
2113 	dev_param_p = &ngep->dev_spec_param;
2114 
2115 	switch (cap) {
2116 	case MAC_CAPAB_HCKSUM: {
2117 		uint32_t *hcksum_txflags = cap_data;
2118 
2119 		if (dev_param_p->tx_hw_checksum) {
2120 			*hcksum_txflags = dev_param_p->tx_hw_checksum;
2121 		} else
2122 			return (B_FALSE);
2123 		break;
2124 	}
2125 	case MAC_CAPAB_POLL:
2126 		/*
2127 		 * There's nothing for us to fill in, simply returning
2128 		 * B_TRUE, stating that we support polling is sufficient.
2129 		 */
2130 		break;
2131 	default:
2132 		return (B_FALSE);
2133 	}
2134 	return (B_TRUE);
2135 }
2136 
2137 #undef	NGE_DBG
2138 #define	NGE_DBG	NGE_DBG_INIT	/* debug flag for this code	*/
2139 int
2140 nge_restart(nge_t *ngep)
2141 {
2142 	int err = 0;
2143 	err = nge_reset(ngep);
2144 	/* write back the promisc setting */
2145 	ngep->promisc = ngep->record_promisc;
2146 	nge_chip_sync(ngep);
2147 	if (!err)
2148 		err = nge_chip_start(ngep);
2149 
2150 	if (err) {
2151 		ngep->nge_mac_state = NGE_MAC_STOPPED;
2152 		return (DDI_FAILURE);
2153 	} else {
2154 		ngep->nge_mac_state = NGE_MAC_STARTED;
2155 		return (DDI_SUCCESS);
2156 	}
2157 }
2158 
2159 void
2160 nge_wake_factotum(nge_t *ngep)
2161 {
2162 	mutex_enter(ngep->softlock);
2163 	if (ngep->factotum_flag == 0) {
2164 		ngep->factotum_flag = 1;
2165 		(void) ddi_intr_trigger_softint(ngep->factotum_hdl, NULL);
2166 	}
2167 	mutex_exit(ngep->softlock);
2168 }
2169 
2170 /*
2171  * High-level cyclic handler
2172  *
2173  * This routine schedules a (low-level) softint callback to the
2174  * factotum.
2175  */
2176 
2177 static void
2178 nge_chip_cyclic(void *arg)
2179 {
2180 	nge_t *ngep;
2181 
2182 	ngep = (nge_t *)arg;
2183 
2184 	switch (ngep->nge_chip_state) {
2185 	default:
2186 		return;
2187 
2188 	case NGE_CHIP_RUNNING:
2189 		break;
2190 
2191 	case NGE_CHIP_FAULT:
2192 	case NGE_CHIP_ERROR:
2193 		break;
2194 	}
2195 
2196 	nge_wake_factotum(ngep);
2197 }
2198 
2199 static void
2200 nge_unattach(nge_t *ngep)
2201 {
2202 	send_ring_t *srp;
2203 	buff_ring_t *brp;
2204 
2205 	srp = ngep->send;
2206 	brp = ngep->buff;
2207 	NGE_TRACE(("nge_unattach($%p)", (void *)ngep));
2208 
2209 	/*
2210 	 * Flag that no more activity may be initiated
2211 	 */
2212 	ngep->progress &= ~PROGRESS_READY;
2213 	ngep->nge_mac_state = NGE_MAC_UNATTACH;
2214 
2215 	/*
2216 	 * Quiesce the PHY and MAC (leave it reset but still powered).
2217 	 * Clean up and free all NGE data structures
2218 	 */
2219 	if (ngep->periodic_id != NULL) {
2220 		ddi_periodic_delete(ngep->periodic_id);
2221 		ngep->periodic_id = NULL;
2222 	}
2223 
2224 	if (ngep->progress & PROGRESS_KSTATS)
2225 		nge_fini_kstats(ngep);
2226 
2227 	if (ngep->progress & PROGRESS_HWINT) {
2228 		mutex_enter(ngep->genlock);
2229 		nge_restore_mac_addr(ngep);
2230 		(void) nge_chip_stop(ngep, B_FALSE);
2231 		mutex_exit(ngep->genlock);
2232 	}
2233 
2234 	if (ngep->progress & PROGRESS_SWINT)
2235 		nge_rem_intrs(ngep);
2236 
2237 	if (ngep->progress & PROGRESS_FACTOTUM)
2238 		(void) ddi_intr_remove_softint(ngep->factotum_hdl);
2239 
2240 	if (ngep->progress & PROGRESS_RESCHED)
2241 		(void) ddi_intr_remove_softint(ngep->resched_hdl);
2242 
2243 	if (ngep->progress & PROGRESS_INTR) {
2244 		mutex_destroy(srp->tx_lock);
2245 		mutex_destroy(srp->tc_lock);
2246 		mutex_destroy(&srp->dmah_lock);
2247 		mutex_destroy(brp->recycle_lock);
2248 
2249 		mutex_destroy(ngep->genlock);
2250 		mutex_destroy(ngep->softlock);
2251 		rw_destroy(ngep->rwlock);
2252 	}
2253 
2254 	if (ngep->progress & PROGRESS_REGS)
2255 		ddi_regs_map_free(&ngep->io_handle);
2256 
2257 	if (ngep->progress & PROGRESS_CFG)
2258 		pci_config_teardown(&ngep->cfg_handle);
2259 
2260 	ddi_remove_minor_node(ngep->devinfo, NULL);
2261 
2262 	kmem_free(ngep, sizeof (*ngep));
2263 }
2264 
2265 static int
2266 nge_resume(dev_info_t *devinfo)
2267 {
2268 	nge_t		*ngep;
2269 	chip_info_t	*infop;
2270 	int 		err;
2271 
2272 	ASSERT(devinfo != NULL);
2273 
2274 	ngep = ddi_get_driver_private(devinfo);
2275 	err = 0;
2276 
2277 	/*
2278 	 * If there are state inconsistancies, this is bad.  Returning
2279 	 * DDI_FAILURE here will eventually cause the machine to panic,
2280 	 * so it is best done here so that there is a possibility of
2281 	 * debugging the problem.
2282 	 */
2283 	if (ngep == NULL)
2284 		cmn_err(CE_PANIC,
2285 		    "nge: ngep returned from ddi_get_driver_private was NULL");
2286 	infop = (chip_info_t *)&ngep->chipinfo;
2287 
2288 	if (ngep->devinfo != devinfo)
2289 		cmn_err(CE_PANIC,
2290 		    "nge: passed devinfo not the same as saved devinfo");
2291 
2292 	mutex_enter(ngep->genlock);
2293 	rw_enter(ngep->rwlock, RW_WRITER);
2294 
2295 	/*
2296 	 * Fetch the config space.  Even though we have most of it cached,
2297 	 * some values *might* change across a suspend/resume.
2298 	 */
2299 	nge_chip_cfg_init(ngep, infop, B_FALSE);
2300 
2301 	/*
2302 	 * Only in one case, this conditional branch can be executed: the port
2303 	 * hasn't been plumbed.
2304 	 */
2305 	if (ngep->suspended == B_FALSE) {
2306 		rw_exit(ngep->rwlock);
2307 		mutex_exit(ngep->genlock);
2308 		return (DDI_SUCCESS);
2309 	}
2310 
2311 	nge_tx_recycle_all(ngep);
2312 	err = nge_reinit_ring(ngep);
2313 	if (!err) {
2314 		err = nge_chip_reset(ngep);
2315 		if (!err)
2316 			err = nge_chip_start(ngep);
2317 	}
2318 
2319 	if (err) {
2320 		/*
2321 		 * We note the failure, but return success, as the
2322 		 * system is still usable without this controller.
2323 		 */
2324 		cmn_err(CE_WARN, "nge: resume: failed to restart controller");
2325 	} else {
2326 		ngep->nge_mac_state = NGE_MAC_STARTED;
2327 	}
2328 	ngep->suspended = B_FALSE;
2329 
2330 	rw_exit(ngep->rwlock);
2331 	mutex_exit(ngep->genlock);
2332 
2333 	return (DDI_SUCCESS);
2334 }
2335 
2336 /*
2337  * attach(9E) -- Attach a device to the system
2338  *
2339  * Called once for each board successfully probed.
2340  */
2341 static int
2342 nge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2343 {
2344 	int		err;
2345 	int		i;
2346 	int		instance;
2347 	caddr_t		regs;
2348 	nge_t		*ngep;
2349 	chip_info_t	*infop;
2350 	mac_register_t	*macp;
2351 
2352 	switch (cmd) {
2353 	default:
2354 		return (DDI_FAILURE);
2355 
2356 	case DDI_RESUME:
2357 		return (nge_resume(devinfo));
2358 
2359 	case DDI_ATTACH:
2360 		break;
2361 	}
2362 
2363 	ngep = kmem_zalloc(sizeof (*ngep), KM_SLEEP);
2364 	instance = ddi_get_instance(devinfo);
2365 	ddi_set_driver_private(devinfo, ngep);
2366 	ngep->devinfo = devinfo;
2367 
2368 	(void) snprintf(ngep->ifname, sizeof (ngep->ifname), "%s%d",
2369 	    NGE_DRIVER_NAME, instance);
2370 	err = pci_config_setup(devinfo, &ngep->cfg_handle);
2371 	if (err != DDI_SUCCESS) {
2372 		nge_problem(ngep, "nge_attach: pci_config_setup() failed");
2373 		goto attach_fail;
2374 	}
2375 	/*
2376 	 * param_txbcopy_threshold and param_rxbcopy_threshold are tx/rx bcopy
2377 	 * thresholds. Bounds: min 0, max NGE_MAX_SDU
2378 	 */
2379 	ngep->param_txbcopy_threshold = NGE_TX_COPY_SIZE;
2380 	ngep->param_rxbcopy_threshold = NGE_RX_COPY_SIZE;
2381 
2382 	/*
2383 	 * param_recv_max_packet is max packet received per interupt.
2384 	 * Bounds: min 0, max NGE_RECV_SLOTS_DESC_1024
2385 	 */
2386 	ngep->param_recv_max_packet = 128;
2387 
2388 	/*
2389 	 * param_poll_quiet_time and param_poll_busy_time are quiet/busy time
2390 	 * switch from per packet interrupt to polling interrupt.
2391 	 * Bounds: min 0, max 10000
2392 	 */
2393 	ngep->param_poll_quiet_time = NGE_POLL_QUIET_TIME;
2394 	ngep->param_poll_busy_time = NGE_POLL_BUSY_TIME;
2395 
2396 	/*
2397 	 * param_rx_intr_hwater/param_rx_intr_lwater: ackets received
2398 	 * to trigger the poll_quiet_time/poll_busy_time counter.
2399 	 * Bounds: min 0, max  NGE_RECV_SLOTS_DESC_1024.
2400 	 */
2401 	ngep->param_rx_intr_hwater = 1;
2402 	ngep->param_rx_intr_lwater = 8;
2403 
2404 	/*
2405 	 * param_tx_n_intr: Per N tx packets to do tx recycle in poll mode.
2406 	 * Bounds: min 1, max 10000.
2407 	 */
2408 	ngep->param_tx_n_intr = NGE_TX_N_INTR;
2409 
2410 	infop = (chip_info_t *)&ngep->chipinfo;
2411 	nge_chip_cfg_init(ngep, infop, B_FALSE);
2412 	nge_init_dev_spec_param(ngep);
2413 	nge_get_props(ngep);
2414 	ngep->progress |= PROGRESS_CFG;
2415 
2416 	err = ddi_regs_map_setup(devinfo, NGE_PCI_OPREGS_RNUMBER,
2417 	    &regs, 0, 0, &nge_reg_accattr, &ngep->io_handle);
2418 	if (err != DDI_SUCCESS) {
2419 		nge_problem(ngep, "nge_attach: ddi_regs_map_setup() failed");
2420 		goto attach_fail;
2421 	}
2422 	ngep->io_regs = regs;
2423 	ngep->progress |= PROGRESS_REGS;
2424 
2425 	err = nge_register_intrs_and_init_locks(ngep);
2426 	if (err != DDI_SUCCESS) {
2427 		nge_problem(ngep, "nge_attach:"
2428 		    " register intrs and init locks failed");
2429 		goto attach_fail;
2430 	}
2431 	nge_init_ring_param_lock(ngep);
2432 	ngep->progress |= PROGRESS_INTR;
2433 
2434 	mutex_enter(ngep->genlock);
2435 
2436 	/*
2437 	 * Initialise link state variables
2438 	 * Stop, reset & reinitialise the chip.
2439 	 * Initialise the (internal) PHY.
2440 	 */
2441 	nge_phys_init(ngep);
2442 	err = nge_chip_reset(ngep);
2443 	if (err != DDI_SUCCESS) {
2444 		nge_problem(ngep, "nge_attach: nge_chip_reset() failed");
2445 		mutex_exit(ngep->genlock);
2446 		goto attach_fail;
2447 	}
2448 	nge_chip_sync(ngep);
2449 
2450 	/*
2451 	 * Now that mutex locks are initialized, enable interrupts.
2452 	 */
2453 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
2454 		/* Call ddi_intr_block_enable() for MSI interrupts */
2455 		(void) ddi_intr_block_enable(ngep->htable,
2456 		    ngep->intr_actual_cnt);
2457 	} else {
2458 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
2459 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
2460 			(void) ddi_intr_enable(ngep->htable[i]);
2461 		}
2462 	}
2463 
2464 	ngep->link_state = LINK_STATE_UNKNOWN;
2465 	ngep->progress |= PROGRESS_HWINT;
2466 
2467 	/*
2468 	 * Register NDD-tweakable parameters
2469 	 */
2470 	if (nge_nd_init(ngep)) {
2471 		nge_problem(ngep, "nge_attach: nge_nd_init() failed");
2472 		mutex_exit(ngep->genlock);
2473 		goto attach_fail;
2474 	}
2475 	ngep->progress |= PROGRESS_NDD;
2476 
2477 	/*
2478 	 * Create & initialise named kstats
2479 	 */
2480 	nge_init_kstats(ngep, instance);
2481 	ngep->progress |= PROGRESS_KSTATS;
2482 
2483 	mutex_exit(ngep->genlock);
2484 
2485 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
2486 		goto attach_fail;
2487 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
2488 	macp->m_driver = ngep;
2489 	macp->m_dip = devinfo;
2490 	macp->m_src_addr = infop->vendor_addr.addr;
2491 	macp->m_callbacks = &nge_m_callbacks;
2492 	macp->m_min_sdu = 0;
2493 	macp->m_max_sdu = ngep->default_mtu;
2494 	macp->m_margin = VTAG_SIZE;
2495 	macp->m_priv_props = nge_priv_props;
2496 	macp->m_priv_prop_count = NGE_MAX_PRIV_PROPS;
2497 	/*
2498 	 * Finally, we're ready to register ourselves with the mac
2499 	 * interface; if this succeeds, we're all ready to start()
2500 	 */
2501 	err = mac_register(macp, &ngep->mh);
2502 	mac_free(macp);
2503 	if (err != 0)
2504 		goto attach_fail;
2505 
2506 	/*
2507 	 * Register a periodical handler.
2508 	 * nge_chip_cyclic() is invoked in kernel context.
2509 	 */
2510 	ngep->periodic_id = ddi_periodic_add(nge_chip_cyclic, ngep,
2511 	    NGE_CYCLIC_PERIOD, DDI_IPL_0);
2512 
2513 	ngep->progress |= PROGRESS_READY;
2514 	return (DDI_SUCCESS);
2515 
2516 attach_fail:
2517 	nge_unattach(ngep);
2518 	return (DDI_FAILURE);
2519 }
2520 
2521 static int
2522 nge_suspend(nge_t *ngep)
2523 {
2524 	mutex_enter(ngep->genlock);
2525 	rw_enter(ngep->rwlock, RW_WRITER);
2526 
2527 	/* if the port hasn't been plumbed, just return */
2528 	if (ngep->nge_mac_state != NGE_MAC_STARTED) {
2529 		rw_exit(ngep->rwlock);
2530 		mutex_exit(ngep->genlock);
2531 		return (DDI_SUCCESS);
2532 	}
2533 	ngep->suspended = B_TRUE;
2534 	(void) nge_chip_stop(ngep, B_FALSE);
2535 	ngep->nge_mac_state = NGE_MAC_STOPPED;
2536 
2537 	rw_exit(ngep->rwlock);
2538 	mutex_exit(ngep->genlock);
2539 	return (DDI_SUCCESS);
2540 }
2541 
2542 /*
2543  * detach(9E) -- Detach a device from the system
2544  */
2545 static int
2546 nge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2547 {
2548 	int i;
2549 	nge_t *ngep;
2550 	mul_item *p, *nextp;
2551 	buff_ring_t *brp;
2552 
2553 	NGE_GTRACE(("nge_detach($%p, %d)", (void *)devinfo, cmd));
2554 
2555 	ngep = ddi_get_driver_private(devinfo);
2556 	brp = ngep->buff;
2557 
2558 	switch (cmd) {
2559 	default:
2560 		return (DDI_FAILURE);
2561 
2562 	case DDI_SUSPEND:
2563 		/*
2564 		 * Stop the NIC
2565 		 * Note: This driver doesn't currently support WOL, but
2566 		 *	should it in the future, it is important to
2567 		 *	make sure the PHY remains powered so that the
2568 		 *	wakeup packet can actually be recieved.
2569 		 */
2570 		return (nge_suspend(ngep));
2571 
2572 	case DDI_DETACH:
2573 		break;
2574 	}
2575 
2576 	/* Try to wait all the buffer post to upper layer be released */
2577 	for (i = 0; i < 1000; i++) {
2578 		if (brp->rx_hold == 0)
2579 			break;
2580 		drv_usecwait(1000);
2581 	}
2582 
2583 	/* If there is any posted buffer, reject to detach */
2584 	if (brp->rx_hold != 0)
2585 		return (DDI_FAILURE);
2586 
2587 	/*
2588 	 * Unregister from the GLD subsystem.  This can fail, in
2589 	 * particular if there are DLPI style-2 streams still open -
2590 	 * in which case we just return failure without shutting
2591 	 * down chip operations.
2592 	 */
2593 	if (mac_unregister(ngep->mh) != DDI_SUCCESS)
2594 		return (DDI_FAILURE);
2595 
2596 	/*
2597 	 * Recycle the multicast table. mac_unregister() should be called
2598 	 * before it to ensure the multicast table can be used even if
2599 	 * mac_unregister() fails.
2600 	 */
2601 	for (p = ngep->pcur_mulist; p != NULL; p = nextp) {
2602 		nextp = p->next;
2603 		kmem_free(p, sizeof (mul_item));
2604 	}
2605 	ngep->pcur_mulist = NULL;
2606 
2607 	/*
2608 	 * All activity stopped, so we can clean up & exit
2609 	 */
2610 	nge_unattach(ngep);
2611 	return (DDI_SUCCESS);
2612 }
2613 
2614 
2615 /*
2616  * ========== Module Loading Data & Entry Points ==========
2617  */
2618 
2619 DDI_DEFINE_STREAM_OPS(nge_dev_ops, nulldev, nulldev, nge_attach, nge_detach,
2620     nodev, NULL, D_MP, NULL);
2621 
2622 
2623 static struct modldrv nge_modldrv = {
2624 	&mod_driverops,		/* Type of module.  This one is a driver */
2625 	nge_ident,		/* short description */
2626 	&nge_dev_ops		/* driver specific ops */
2627 };
2628 
2629 static struct modlinkage modlinkage = {
2630 	MODREV_1, (void *)&nge_modldrv, NULL
2631 };
2632 
2633 
2634 int
2635 _info(struct modinfo *modinfop)
2636 {
2637 	return (mod_info(&modlinkage, modinfop));
2638 }
2639 
2640 int
2641 _init(void)
2642 {
2643 	int status;
2644 
2645 	mac_init_ops(&nge_dev_ops, "nge");
2646 	status = mod_install(&modlinkage);
2647 	if (status != DDI_SUCCESS)
2648 		mac_fini_ops(&nge_dev_ops);
2649 	else
2650 		mutex_init(nge_log_mutex, NULL, MUTEX_DRIVER, NULL);
2651 
2652 	return (status);
2653 }
2654 
2655 int
2656 _fini(void)
2657 {
2658 	int status;
2659 
2660 	status = mod_remove(&modlinkage);
2661 	if (status == DDI_SUCCESS) {
2662 		mac_fini_ops(&nge_dev_ops);
2663 		mutex_destroy(nge_log_mutex);
2664 	}
2665 
2666 	return (status);
2667 }
2668 
2669 /*
2670  * ============ Init MSI/Fixed/SoftInterrupt routines ==============
2671  */
2672 
2673 /*
2674  * Register interrupts and initialize each mutex and condition variables
2675  */
2676 
2677 static int
2678 nge_register_intrs_and_init_locks(nge_t *ngep)
2679 {
2680 	int		err;
2681 	int		intr_types;
2682 	uint_t		soft_prip;
2683 	nge_msi_mask	msi_mask;
2684 	nge_msi_map0_vec map0_vec;
2685 	nge_msi_map1_vec map1_vec;
2686 
2687 	/*
2688 	 * Add the softint handlers:
2689 	 *
2690 	 * Both of these handlers are used to avoid restrictions on the
2691 	 * context and/or mutexes required for some operations.  In
2692 	 * particular, the hardware interrupt handler and its subfunctions
2693 	 * can detect a number of conditions that we don't want to handle
2694 	 * in that context or with that set of mutexes held.  So, these
2695 	 * softints are triggered instead:
2696 	 *
2697 	 * the <resched> softint is triggered if if we have previously
2698 	 * had to refuse to send a packet because of resource shortage
2699 	 * (we've run out of transmit buffers), but the send completion
2700 	 * interrupt handler has now detected that more buffers have
2701 	 * become available.  Its only purpose is to call gld_sched()
2702 	 * to retry the pending transmits (we're not allowed to hold
2703 	 * driver-defined mutexes across gld_sched()).
2704 	 *
2705 	 * the <factotum> is triggered if the h/w interrupt handler
2706 	 * sees the <link state changed> or <error> bits in the status
2707 	 * block.  It's also triggered periodically to poll the link
2708 	 * state, just in case we aren't getting link status change
2709 	 * interrupts ...
2710 	 */
2711 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->resched_hdl,
2712 	    DDI_INTR_SOFTPRI_MIN, nge_reschedule, (caddr_t)ngep);
2713 	if (err != DDI_SUCCESS) {
2714 		nge_problem(ngep,
2715 		    "nge_attach: add nge_reschedule softintr failed");
2716 
2717 		return (DDI_FAILURE);
2718 	}
2719 	ngep->progress |= PROGRESS_RESCHED;
2720 	err = ddi_intr_add_softint(ngep->devinfo, &ngep->factotum_hdl,
2721 	    DDI_INTR_SOFTPRI_MIN, nge_chip_factotum, (caddr_t)ngep);
2722 	if (err != DDI_SUCCESS) {
2723 		nge_problem(ngep,
2724 		    "nge_attach: add nge_chip_factotum softintr failed!");
2725 
2726 		return (DDI_FAILURE);
2727 	}
2728 	if (ddi_intr_get_softint_pri(ngep->factotum_hdl, &soft_prip)
2729 	    != DDI_SUCCESS) {
2730 		nge_problem(ngep, "nge_attach: get softintr priority failed\n");
2731 
2732 		return (DDI_FAILURE);
2733 	}
2734 	ngep->soft_pri = soft_prip;
2735 
2736 	ngep->progress |= PROGRESS_FACTOTUM;
2737 	/* Get supported interrupt types */
2738 	if (ddi_intr_get_supported_types(ngep->devinfo, &intr_types)
2739 	    != DDI_SUCCESS) {
2740 		nge_error(ngep, "ddi_intr_get_supported_types failed\n");
2741 
2742 		return (DDI_FAILURE);
2743 	}
2744 
2745 	NGE_DEBUG(("ddi_intr_get_supported_types() returned: %x",
2746 	    intr_types));
2747 
2748 	if ((intr_types & DDI_INTR_TYPE_MSI) && nge_enable_msi) {
2749 
2750 		/* MSI Configurations for mcp55 chipset */
2751 		if (ngep->chipinfo.device == DEVICE_ID_MCP55_373 ||
2752 		    ngep->chipinfo.device == DEVICE_ID_MCP55_372) {
2753 
2754 
2755 			/* Enable the 8 vectors */
2756 			msi_mask.msi_mask_val =
2757 			    nge_reg_get32(ngep, NGE_MSI_MASK);
2758 			msi_mask.msi_msk_bits.vec0 = NGE_SET;
2759 			msi_mask.msi_msk_bits.vec1 = NGE_SET;
2760 			msi_mask.msi_msk_bits.vec2 = NGE_SET;
2761 			msi_mask.msi_msk_bits.vec3 = NGE_SET;
2762 			msi_mask.msi_msk_bits.vec4 = NGE_SET;
2763 			msi_mask.msi_msk_bits.vec5 = NGE_SET;
2764 			msi_mask.msi_msk_bits.vec6 = NGE_SET;
2765 			msi_mask.msi_msk_bits.vec7 = NGE_SET;
2766 			nge_reg_put32(ngep, NGE_MSI_MASK,
2767 			    msi_mask.msi_mask_val);
2768 
2769 			/*
2770 			 * Remapping the MSI MAP0 and MAP1. MCP55
2771 			 * is default mapping all the interrupt to 0 vector.
2772 			 * Software needs to remapping this.
2773 			 * This mapping is same as CK804.
2774 			 */
2775 			map0_vec.msi_map0_val =
2776 			    nge_reg_get32(ngep, NGE_MSI_MAP0);
2777 			map1_vec.msi_map1_val =
2778 			    nge_reg_get32(ngep, NGE_MSI_MAP1);
2779 			map0_vec.vecs_bits.reint_vec = 0;
2780 			map0_vec.vecs_bits.rcint_vec = 0;
2781 			map0_vec.vecs_bits.miss_vec = 3;
2782 			map0_vec.vecs_bits.teint_vec = 5;
2783 			map0_vec.vecs_bits.tcint_vec = 5;
2784 			map0_vec.vecs_bits.stint_vec = 2;
2785 			map0_vec.vecs_bits.mint_vec = 6;
2786 			map0_vec.vecs_bits.rfint_vec = 0;
2787 			map1_vec.vecs_bits.tfint_vec = 5;
2788 			map1_vec.vecs_bits.feint_vec = 6;
2789 			map1_vec.vecs_bits.resv8_11 = 3;
2790 			map1_vec.vecs_bits.resv12_15 = 1;
2791 			map1_vec.vecs_bits.resv16_19 = 0;
2792 			map1_vec.vecs_bits.resv20_23 = 7;
2793 			map1_vec.vecs_bits.resv24_31 = 0xff;
2794 			nge_reg_put32(ngep, NGE_MSI_MAP0,
2795 			    map0_vec.msi_map0_val);
2796 			nge_reg_put32(ngep, NGE_MSI_MAP1,
2797 			    map1_vec.msi_map1_val);
2798 		}
2799 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
2800 			NGE_DEBUG(("MSI registration failed, "
2801 			    "trying FIXED interrupt type\n"));
2802 		} else {
2803 			nge_log(ngep, "Using MSI interrupt type\n");
2804 
2805 			ngep->intr_type = DDI_INTR_TYPE_MSI;
2806 			ngep->progress |= PROGRESS_SWINT;
2807 		}
2808 	}
2809 
2810 	if (!(ngep->progress & PROGRESS_SWINT) &&
2811 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
2812 		if (nge_add_intrs(ngep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
2813 			nge_error(ngep, "FIXED interrupt "
2814 			    "registration failed\n");
2815 
2816 			return (DDI_FAILURE);
2817 		}
2818 
2819 		nge_log(ngep, "Using FIXED interrupt type\n");
2820 
2821 		ngep->intr_type = DDI_INTR_TYPE_FIXED;
2822 		ngep->progress |= PROGRESS_SWINT;
2823 	}
2824 
2825 
2826 	if (!(ngep->progress & PROGRESS_SWINT)) {
2827 		nge_error(ngep, "No interrupts registered\n");
2828 
2829 		return (DDI_FAILURE);
2830 	}
2831 	mutex_init(ngep->genlock, NULL, MUTEX_DRIVER,
2832 	    DDI_INTR_PRI(ngep->intr_pri));
2833 	mutex_init(ngep->softlock, NULL, MUTEX_DRIVER,
2834 	    DDI_INTR_PRI(ngep->soft_pri));
2835 	rw_init(ngep->rwlock, NULL, RW_DRIVER,
2836 	    DDI_INTR_PRI(ngep->intr_pri));
2837 
2838 	return (DDI_SUCCESS);
2839 }
2840 
2841 /*
2842  * nge_add_intrs:
2843  *
2844  * Register FIXED or MSI interrupts.
2845  */
2846 static int
2847 nge_add_intrs(nge_t *ngep, int	intr_type)
2848 {
2849 	dev_info_t	*dip = ngep->devinfo;
2850 	int		avail, actual, intr_size, count = 0;
2851 	int		i, flag, ret;
2852 
2853 	NGE_DEBUG(("nge_add_intrs: interrupt type 0x%x\n", intr_type));
2854 
2855 	/* Get number of interrupts */
2856 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
2857 	if ((ret != DDI_SUCCESS) || (count == 0)) {
2858 		nge_error(ngep, "ddi_intr_get_nintrs() failure, ret: %d, "
2859 		    "count: %d", ret, count);
2860 
2861 		return (DDI_FAILURE);
2862 	}
2863 
2864 	/* Get number of available interrupts */
2865 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
2866 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
2867 		nge_error(ngep, "ddi_intr_get_navail() failure, "
2868 		    "ret: %d, avail: %d\n", ret, avail);
2869 
2870 		return (DDI_FAILURE);
2871 	}
2872 
2873 	if (avail < count) {
2874 		NGE_DEBUG(("nitrs() returned %d, navail returned %d\n",
2875 		    count, avail));
2876 	}
2877 	flag = DDI_INTR_ALLOC_NORMAL;
2878 
2879 	/* Allocate an array of interrupt handles */
2880 	intr_size = count * sizeof (ddi_intr_handle_t);
2881 	ngep->htable = kmem_alloc(intr_size, KM_SLEEP);
2882 
2883 	/* Call ddi_intr_alloc() */
2884 	ret = ddi_intr_alloc(dip, ngep->htable, intr_type, 0,
2885 	    count, &actual, flag);
2886 
2887 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
2888 		nge_error(ngep, "ddi_intr_alloc() failed %d\n", ret);
2889 
2890 		kmem_free(ngep->htable, intr_size);
2891 		return (DDI_FAILURE);
2892 	}
2893 
2894 	if (actual < count) {
2895 		NGE_DEBUG(("Requested: %d, Received: %d\n",
2896 		    count, actual));
2897 	}
2898 
2899 	ngep->intr_actual_cnt = actual;
2900 	ngep->intr_req_cnt = count;
2901 
2902 	/*
2903 	 * Get priority for first msi, assume remaining are all the same
2904 	 */
2905 	if ((ret = ddi_intr_get_pri(ngep->htable[0], &ngep->intr_pri)) !=
2906 	    DDI_SUCCESS) {
2907 		nge_error(ngep, "ddi_intr_get_pri() failed %d\n", ret);
2908 
2909 		/* Free already allocated intr */
2910 		for (i = 0; i < actual; i++) {
2911 			(void) ddi_intr_free(ngep->htable[i]);
2912 		}
2913 
2914 		kmem_free(ngep->htable, intr_size);
2915 
2916 		return (DDI_FAILURE);
2917 	}
2918 	/* Test for high level mutex */
2919 	if (ngep->intr_pri >= ddi_intr_get_hilevel_pri()) {
2920 		nge_error(ngep, "nge_add_intrs:"
2921 		    "Hi level interrupt not supported");
2922 
2923 		for (i = 0; i < actual; i++)
2924 			(void) ddi_intr_free(ngep->htable[i]);
2925 
2926 		kmem_free(ngep->htable, intr_size);
2927 
2928 		return (DDI_FAILURE);
2929 	}
2930 
2931 
2932 	/* Call ddi_intr_add_handler() */
2933 	for (i = 0; i < actual; i++) {
2934 		if ((ret = ddi_intr_add_handler(ngep->htable[i], nge_chip_intr,
2935 		    (caddr_t)ngep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
2936 			nge_error(ngep, "ddi_intr_add_handler() "
2937 			    "failed %d\n", ret);
2938 
2939 			/* Free already allocated intr */
2940 			for (i = 0; i < actual; i++) {
2941 				(void) ddi_intr_free(ngep->htable[i]);
2942 			}
2943 
2944 			kmem_free(ngep->htable, intr_size);
2945 
2946 			return (DDI_FAILURE);
2947 		}
2948 	}
2949 
2950 	if ((ret = ddi_intr_get_cap(ngep->htable[0], &ngep->intr_cap))
2951 	    != DDI_SUCCESS) {
2952 		nge_error(ngep, "ddi_intr_get_cap() failed %d\n", ret);
2953 
2954 		for (i = 0; i < actual; i++) {
2955 			(void) ddi_intr_remove_handler(ngep->htable[i]);
2956 			(void) ddi_intr_free(ngep->htable[i]);
2957 		}
2958 
2959 		kmem_free(ngep->htable, intr_size);
2960 
2961 		return (DDI_FAILURE);
2962 	}
2963 
2964 	return (DDI_SUCCESS);
2965 }
2966 
2967 /*
2968  * nge_rem_intrs:
2969  *
2970  * Unregister FIXED or MSI interrupts
2971  */
2972 static void
2973 nge_rem_intrs(nge_t *ngep)
2974 {
2975 	int	i;
2976 
2977 	NGE_DEBUG(("nge_rem_intrs\n"));
2978 
2979 	/* Disable all interrupts */
2980 	if (ngep->intr_cap & DDI_INTR_FLAG_BLOCK) {
2981 		/* Call ddi_intr_block_disable() */
2982 		(void) ddi_intr_block_disable(ngep->htable,
2983 		    ngep->intr_actual_cnt);
2984 	} else {
2985 		for (i = 0; i < ngep->intr_actual_cnt; i++) {
2986 			(void) ddi_intr_disable(ngep->htable[i]);
2987 		}
2988 	}
2989 
2990 	/* Call ddi_intr_remove_handler() */
2991 	for (i = 0; i < ngep->intr_actual_cnt; i++) {
2992 		(void) ddi_intr_remove_handler(ngep->htable[i]);
2993 		(void) ddi_intr_free(ngep->htable[i]);
2994 	}
2995 
2996 	kmem_free(ngep->htable,
2997 	    ngep->intr_req_cnt * sizeof (ddi_intr_handle_t));
2998 }
2999