1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 */ 26 27 /* 28 * - General Introduction: 29 * 30 * This file contains the implementation of the MAC client kernel 31 * API and related code. The MAC client API allows a kernel module 32 * to gain access to a MAC instance (physical NIC, link aggregation, etc). 33 * It allows a MAC client to associate itself with a MAC address, 34 * VLANs, callback functions for data traffic and for promiscuous mode. 35 * The MAC client API is also used to specify the properties associated 36 * with a MAC client, such as bandwidth limits, priority, CPUS, etc. 37 * These properties are further used to determine the hardware resources 38 * to allocate to the various MAC clients. 39 * 40 * - Primary MAC clients: 41 * 42 * The MAC client API refers to "primary MAC clients". A primary MAC 43 * client is a client which "owns" the primary MAC address of 44 * the underlying MAC instance. The primary MAC address is called out 45 * since it is associated with specific semantics: the primary MAC 46 * address is the MAC address which is assigned to the IP interface 47 * when it is plumbed, and the primary MAC address is assigned 48 * to VLAN data-links. The primary address of a MAC instance can 49 * also change dynamically from under the MAC client, for example 50 * as a result of a change of state of a link aggregation. In that 51 * case the MAC layer automatically updates all data-structures which 52 * refer to the current value of the primary MAC address. Typical 53 * primary MAC clients are dls, aggr, and xnb. A typical non-primary 54 * MAC client is the vnic driver. 55 * 56 * - Virtual Switching: 57 * 58 * The MAC layer implements a virtual switch between the MAC clients 59 * (primary and non-primary) defined on top of the same underlying 60 * NIC (physical, link aggregation, etc). The virtual switch is 61 * VLAN-aware, i.e. it allows multiple MAC clients to be member 62 * of one or more VLANs, and the virtual switch will distribute 63 * multicast tagged packets only to the member of the corresponding 64 * VLANs. 65 * 66 * - Upper vs Lower MAC: 67 * 68 * Creating a VNIC on top of a MAC instance effectively causes 69 * two MAC instances to be layered on top of each other, one for 70 * the VNIC(s), one for the underlying MAC instance (physical NIC, 71 * link aggregation, etc). In the code below we refer to the 72 * underlying NIC as the "lower MAC", and we refer to VNICs as 73 * the "upper MAC". 74 * 75 * - Pass-through for VNICs: 76 * 77 * When VNICs are created on top of an underlying MAC, this causes 78 * a layering of two MAC instances. Since the lower MAC already 79 * does the switching and demultiplexing to its MAC clients, the 80 * upper MAC would simply have to pass packets to the layer below 81 * or above it, which would introduce overhead. In order to avoid 82 * this overhead, the MAC layer implements a pass-through mechanism 83 * for VNICs. When a VNIC opens the lower MAC instance, it saves 84 * the MAC client handle it optains from the MAC layer. When a MAC 85 * client opens a VNIC (upper MAC), the MAC layer detects that 86 * the MAC being opened is a VNIC, and gets the MAC client handle 87 * that the VNIC driver obtained from the lower MAC. This exchange 88 * is done through a private capability between the MAC layer 89 * and the VNIC driver. The upper MAC then returns that handle 90 * directly to its MAC client. Any operation done by the upper 91 * MAC client is now done on the lower MAC client handle, which 92 * allows the VNIC driver to be completely bypassed for the 93 * performance sensitive data-path. 94 * 95 * - Secondary MACs for VNICs: 96 * 97 * VNICs support multiple upper mac clients to enable support for 98 * multiple MAC addresses on the VNIC. When the VNIC is created the 99 * initial mac client is the primary upper mac. Any additional mac 100 * clients are secondary macs. These are kept in sync with the primary 101 * (for things such as the rx function and resource control settings) 102 * using the same private capability interface between the MAC layer 103 * and the VNIC layer. 104 * 105 */ 106 107 #include <sys/types.h> 108 #include <sys/conf.h> 109 #include <sys/id_space.h> 110 #include <sys/esunddi.h> 111 #include <sys/stat.h> 112 #include <sys/mkdev.h> 113 #include <sys/stream.h> 114 #include <sys/strsun.h> 115 #include <sys/strsubr.h> 116 #include <sys/dlpi.h> 117 #include <sys/modhash.h> 118 #include <sys/mac_impl.h> 119 #include <sys/mac_client_impl.h> 120 #include <sys/mac_soft_ring.h> 121 #include <sys/mac_stat.h> 122 #include <sys/dls.h> 123 #include <sys/dld.h> 124 #include <sys/modctl.h> 125 #include <sys/fs/dv_node.h> 126 #include <sys/thread.h> 127 #include <sys/proc.h> 128 #include <sys/callb.h> 129 #include <sys/cpuvar.h> 130 #include <sys/atomic.h> 131 #include <sys/sdt.h> 132 #include <sys/mac_flow.h> 133 #include <sys/ddi_intr_impl.h> 134 #include <sys/disp.h> 135 #include <sys/sdt.h> 136 #include <sys/vnic.h> 137 #include <sys/vnic_impl.h> 138 #include <sys/vlan.h> 139 #include <inet/ip.h> 140 #include <inet/ip6.h> 141 #include <sys/exacct.h> 142 #include <sys/exacct_impl.h> 143 #include <inet/nd.h> 144 #include <sys/ethernet.h> 145 146 kmem_cache_t *mac_client_impl_cache; 147 kmem_cache_t *mac_promisc_impl_cache; 148 149 static boolean_t mac_client_single_rcvr(mac_client_impl_t *); 150 static flow_entry_t *mac_client_swap_mciflent(mac_client_impl_t *); 151 static flow_entry_t *mac_client_get_flow(mac_client_impl_t *, 152 mac_unicast_impl_t *); 153 static void mac_client_remove_flow_from_list(mac_client_impl_t *, 154 flow_entry_t *); 155 static void mac_client_add_to_flow_list(mac_client_impl_t *, flow_entry_t *); 156 static void mac_rename_flow_names(mac_client_impl_t *, const char *); 157 static void mac_virtual_link_update(mac_impl_t *); 158 static int mac_client_datapath_setup(mac_client_impl_t *, uint16_t, 159 uint8_t *, mac_resource_props_t *, boolean_t, mac_unicast_impl_t *); 160 static void mac_client_datapath_teardown(mac_client_handle_t, 161 mac_unicast_impl_t *, flow_entry_t *); 162 static int mac_resource_ctl_set(mac_client_handle_t, mac_resource_props_t *); 163 164 /* ARGSUSED */ 165 static int 166 i_mac_client_impl_ctor(void *buf, void *arg, int kmflag) 167 { 168 int i; 169 mac_client_impl_t *mcip = buf; 170 171 bzero(buf, MAC_CLIENT_IMPL_SIZE); 172 mutex_init(&mcip->mci_tx_cb_lock, NULL, MUTEX_DRIVER, NULL); 173 mcip->mci_tx_notify_cb_info.mcbi_lockp = &mcip->mci_tx_cb_lock; 174 175 ASSERT(mac_tx_percpu_cnt >= 0); 176 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 177 mutex_init(&mcip->mci_tx_pcpu[i].pcpu_tx_lock, NULL, 178 MUTEX_DRIVER, NULL); 179 } 180 cv_init(&mcip->mci_tx_cv, NULL, CV_DRIVER, NULL); 181 182 return (0); 183 } 184 185 /* ARGSUSED */ 186 static void 187 i_mac_client_impl_dtor(void *buf, void *arg) 188 { 189 int i; 190 mac_client_impl_t *mcip = buf; 191 192 ASSERT(mcip->mci_promisc_list == NULL); 193 ASSERT(mcip->mci_unicast_list == NULL); 194 ASSERT(mcip->mci_state_flags == 0); 195 ASSERT(mcip->mci_tx_flag == 0); 196 197 mutex_destroy(&mcip->mci_tx_cb_lock); 198 199 ASSERT(mac_tx_percpu_cnt >= 0); 200 for (i = 0; i <= mac_tx_percpu_cnt; i++) { 201 ASSERT(mcip->mci_tx_pcpu[i].pcpu_tx_refcnt == 0); 202 mutex_destroy(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 203 } 204 cv_destroy(&mcip->mci_tx_cv); 205 } 206 207 /* ARGSUSED */ 208 static int 209 i_mac_promisc_impl_ctor(void *buf, void *arg, int kmflag) 210 { 211 mac_promisc_impl_t *mpip = buf; 212 213 bzero(buf, sizeof (mac_promisc_impl_t)); 214 mpip->mpi_mci_link.mcb_objp = buf; 215 mpip->mpi_mci_link.mcb_objsize = sizeof (mac_promisc_impl_t); 216 mpip->mpi_mi_link.mcb_objp = buf; 217 mpip->mpi_mi_link.mcb_objsize = sizeof (mac_promisc_impl_t); 218 return (0); 219 } 220 221 /* ARGSUSED */ 222 static void 223 i_mac_promisc_impl_dtor(void *buf, void *arg) 224 { 225 mac_promisc_impl_t *mpip = buf; 226 227 ASSERT(mpip->mpi_mci_link.mcb_objp != NULL); 228 ASSERT(mpip->mpi_mci_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 229 ASSERT(mpip->mpi_mi_link.mcb_objp == mpip->mpi_mci_link.mcb_objp); 230 ASSERT(mpip->mpi_mi_link.mcb_objsize == sizeof (mac_promisc_impl_t)); 231 232 mpip->mpi_mci_link.mcb_objp = NULL; 233 mpip->mpi_mci_link.mcb_objsize = 0; 234 mpip->mpi_mi_link.mcb_objp = NULL; 235 mpip->mpi_mi_link.mcb_objsize = 0; 236 237 ASSERT(mpip->mpi_mci_link.mcb_flags == 0); 238 mpip->mpi_mci_link.mcb_objsize = 0; 239 } 240 241 void 242 mac_client_init(void) 243 { 244 ASSERT(mac_tx_percpu_cnt >= 0); 245 246 mac_client_impl_cache = kmem_cache_create("mac_client_impl_cache", 247 MAC_CLIENT_IMPL_SIZE, 0, i_mac_client_impl_ctor, 248 i_mac_client_impl_dtor, NULL, NULL, NULL, 0); 249 ASSERT(mac_client_impl_cache != NULL); 250 251 mac_promisc_impl_cache = kmem_cache_create("mac_promisc_impl_cache", 252 sizeof (mac_promisc_impl_t), 0, i_mac_promisc_impl_ctor, 253 i_mac_promisc_impl_dtor, NULL, NULL, NULL, 0); 254 ASSERT(mac_promisc_impl_cache != NULL); 255 } 256 257 void 258 mac_client_fini(void) 259 { 260 kmem_cache_destroy(mac_client_impl_cache); 261 kmem_cache_destroy(mac_promisc_impl_cache); 262 } 263 264 /* 265 * Return the lower MAC client handle from the VNIC driver for the 266 * specified VNIC MAC instance. 267 */ 268 mac_client_impl_t * 269 mac_vnic_lower(mac_impl_t *mip) 270 { 271 mac_capab_vnic_t cap; 272 mac_client_impl_t *mcip; 273 274 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 275 mcip = cap.mcv_mac_client_handle(cap.mcv_arg); 276 277 return (mcip); 278 } 279 280 /* 281 * Update the secondary macs 282 */ 283 void 284 mac_vnic_secondary_update(mac_impl_t *mip) 285 { 286 mac_capab_vnic_t cap; 287 288 VERIFY(i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_VNIC, &cap)); 289 cap.mcv_mac_secondary_update(cap.mcv_arg); 290 } 291 292 /* 293 * Return the MAC client handle of the primary MAC client for the 294 * specified MAC instance, or NULL otherwise. 295 */ 296 mac_client_impl_t * 297 mac_primary_client_handle(mac_impl_t *mip) 298 { 299 mac_client_impl_t *mcip; 300 301 if (mip->mi_state_flags & MIS_IS_VNIC) 302 return (mac_vnic_lower(mip)); 303 304 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 305 306 for (mcip = mip->mi_clients_list; mcip != NULL; 307 mcip = mcip->mci_client_next) { 308 if (MCIP_DATAPATH_SETUP(mcip) && mac_is_primary_client(mcip)) 309 return (mcip); 310 } 311 return (NULL); 312 } 313 314 /* 315 * Open a MAC specified by its MAC name. 316 */ 317 int 318 mac_open(const char *macname, mac_handle_t *mhp) 319 { 320 mac_impl_t *mip; 321 int err; 322 323 /* 324 * Look up its entry in the global hash table. 325 */ 326 if ((err = mac_hold(macname, &mip)) != 0) 327 return (err); 328 329 /* 330 * Hold the dip associated to the MAC to prevent it from being 331 * detached. For a softmac, its underlying dip is held by the 332 * mi_open() callback. 333 * 334 * This is done to be more tolerant with some defective drivers, 335 * which incorrectly handle mac_unregister() failure in their 336 * xxx_detach() routine. For example, some drivers ignore the 337 * failure of mac_unregister() and free all resources that 338 * that are needed for data transmition. 339 */ 340 e_ddi_hold_devi(mip->mi_dip); 341 342 if (!(mip->mi_callbacks->mc_callbacks & MC_OPEN)) { 343 *mhp = (mac_handle_t)mip; 344 return (0); 345 } 346 347 /* 348 * The mac perimeter is used in both mac_open and mac_close by the 349 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 350 */ 351 i_mac_perim_enter(mip); 352 mip->mi_oref++; 353 if (mip->mi_oref != 1 || ((err = mip->mi_open(mip->mi_driver)) == 0)) { 354 *mhp = (mac_handle_t)mip; 355 i_mac_perim_exit(mip); 356 return (0); 357 } 358 mip->mi_oref--; 359 ddi_release_devi(mip->mi_dip); 360 mac_rele(mip); 361 i_mac_perim_exit(mip); 362 return (err); 363 } 364 365 /* 366 * Open a MAC specified by its linkid. 367 */ 368 int 369 mac_open_by_linkid(datalink_id_t linkid, mac_handle_t *mhp) 370 { 371 dls_dl_handle_t dlh; 372 int err; 373 374 if ((err = dls_devnet_hold_tmp(linkid, &dlh)) != 0) 375 return (err); 376 377 dls_devnet_prop_task_wait(dlh); 378 379 err = mac_open(dls_devnet_mac(dlh), mhp); 380 381 dls_devnet_rele_tmp(dlh); 382 return (err); 383 } 384 385 /* 386 * Open a MAC specified by its link name. 387 */ 388 int 389 mac_open_by_linkname(const char *link, mac_handle_t *mhp) 390 { 391 datalink_id_t linkid; 392 int err; 393 394 if ((err = dls_mgmt_get_linkid(link, &linkid)) != 0) 395 return (err); 396 return (mac_open_by_linkid(linkid, mhp)); 397 } 398 399 /* 400 * Close the specified MAC. 401 */ 402 void 403 mac_close(mac_handle_t mh) 404 { 405 mac_impl_t *mip = (mac_impl_t *)mh; 406 407 i_mac_perim_enter(mip); 408 /* 409 * The mac perimeter is used in both mac_open and mac_close by the 410 * framework to single thread the MC_OPEN/MC_CLOSE of drivers. 411 */ 412 if (mip->mi_callbacks->mc_callbacks & MC_OPEN) { 413 ASSERT(mip->mi_oref != 0); 414 if (--mip->mi_oref == 0) { 415 if ((mip->mi_callbacks->mc_callbacks & MC_CLOSE)) 416 mip->mi_close(mip->mi_driver); 417 } 418 } 419 i_mac_perim_exit(mip); 420 ddi_release_devi(mip->mi_dip); 421 mac_rele(mip); 422 } 423 424 /* 425 * Misc utility functions to retrieve various information about a MAC 426 * instance or a MAC client. 427 */ 428 429 const mac_info_t * 430 mac_info(mac_handle_t mh) 431 { 432 return (&((mac_impl_t *)mh)->mi_info); 433 } 434 435 dev_info_t * 436 mac_devinfo_get(mac_handle_t mh) 437 { 438 return (((mac_impl_t *)mh)->mi_dip); 439 } 440 441 void * 442 mac_driver(mac_handle_t mh) 443 { 444 return (((mac_impl_t *)mh)->mi_driver); 445 } 446 447 const char * 448 mac_name(mac_handle_t mh) 449 { 450 return (((mac_impl_t *)mh)->mi_name); 451 } 452 453 int 454 mac_type(mac_handle_t mh) 455 { 456 return (((mac_impl_t *)mh)->mi_type->mt_type); 457 } 458 459 int 460 mac_nativetype(mac_handle_t mh) 461 { 462 return (((mac_impl_t *)mh)->mi_type->mt_nativetype); 463 } 464 465 char * 466 mac_client_name(mac_client_handle_t mch) 467 { 468 return (((mac_client_impl_t *)mch)->mci_name); 469 } 470 471 minor_t 472 mac_minor(mac_handle_t mh) 473 { 474 return (((mac_impl_t *)mh)->mi_minor); 475 } 476 477 /* 478 * Return the VID associated with a MAC client. This function should 479 * be called for clients which are associated with only one VID. 480 */ 481 uint16_t 482 mac_client_vid(mac_client_handle_t mch) 483 { 484 uint16_t vid = VLAN_ID_NONE; 485 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 486 flow_desc_t flow_desc; 487 488 if (mcip->mci_nflents == 0) 489 return (vid); 490 491 ASSERT(MCIP_DATAPATH_SETUP(mcip) && mac_client_single_rcvr(mcip)); 492 493 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 494 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 495 vid = flow_desc.fd_vid; 496 497 return (vid); 498 } 499 500 /* 501 * Return whether the specified MAC client corresponds to a VLAN VNIC. 502 */ 503 boolean_t 504 mac_client_is_vlan_vnic(mac_client_handle_t mch) 505 { 506 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 507 508 return (((mcip->mci_state_flags & MCIS_IS_VNIC) != 0) && 509 ((mcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) != 0)); 510 } 511 512 /* 513 * Return the link speed associated with the specified MAC client. 514 * 515 * The link speed of a MAC client is equal to the smallest value of 516 * 1) the current link speed of the underlying NIC, or 517 * 2) the bandwidth limit set for the MAC client. 518 * 519 * Note that the bandwidth limit can be higher than the speed 520 * of the underlying NIC. This is allowed to avoid spurious 521 * administration action failures or artifically lowering the 522 * bandwidth limit of a link that may have temporarily lowered 523 * its link speed due to hardware problem or administrator action. 524 */ 525 static uint64_t 526 mac_client_ifspeed(mac_client_impl_t *mcip) 527 { 528 mac_impl_t *mip = mcip->mci_mip; 529 uint64_t nic_speed; 530 531 nic_speed = mac_stat_get((mac_handle_t)mip, MAC_STAT_IFSPEED); 532 533 if (nic_speed == 0) { 534 return (0); 535 } else { 536 uint64_t policy_limit = (uint64_t)-1; 537 538 if (MCIP_RESOURCE_PROPS_MASK(mcip) & MRP_MAXBW) 539 policy_limit = MCIP_RESOURCE_PROPS_MAXBW(mcip); 540 541 return (MIN(policy_limit, nic_speed)); 542 } 543 } 544 545 /* 546 * Return the link state of the specified client. If here are more 547 * than one clients of the underying mac_impl_t, the link state 548 * will always be UP regardless of the link state of the underlying 549 * mac_impl_t. This is needed to allow the MAC clients to continue 550 * to communicate with each other even when the physical link of 551 * their mac_impl_t is down. 552 */ 553 static uint64_t 554 mac_client_link_state(mac_client_impl_t *mcip) 555 { 556 mac_impl_t *mip = mcip->mci_mip; 557 uint16_t vid; 558 mac_client_impl_t *mci_list; 559 mac_unicast_impl_t *mui_list, *oth_mui_list; 560 561 /* 562 * Returns LINK_STATE_UP if there are other MAC clients defined on 563 * mac_impl_t which share same VLAN ID as that of mcip. Note that 564 * if 'mcip' has more than one VID's then we match ANY one of the 565 * VID's with other MAC client's VID's and return LINK_STATE_UP. 566 */ 567 rw_enter(&mcip->mci_rw_lock, RW_READER); 568 for (mui_list = mcip->mci_unicast_list; mui_list != NULL; 569 mui_list = mui_list->mui_next) { 570 vid = mui_list->mui_vid; 571 for (mci_list = mip->mi_clients_list; mci_list != NULL; 572 mci_list = mci_list->mci_client_next) { 573 if (mci_list == mcip) 574 continue; 575 for (oth_mui_list = mci_list->mci_unicast_list; 576 oth_mui_list != NULL; oth_mui_list = oth_mui_list-> 577 mui_next) { 578 if (vid == oth_mui_list->mui_vid) { 579 rw_exit(&mcip->mci_rw_lock); 580 return (LINK_STATE_UP); 581 } 582 } 583 } 584 } 585 rw_exit(&mcip->mci_rw_lock); 586 587 return (mac_stat_get((mac_handle_t)mip, MAC_STAT_LINK_STATE)); 588 } 589 590 /* 591 * These statistics are consumed by dladm show-link -s <vnic>, 592 * dladm show-vnic -s and netstat. With the introduction of dlstat, 593 * dladm show-link -s and dladm show-vnic -s witll be EOL'ed while 594 * netstat will consume from kstats introduced for dlstat. This code 595 * will be removed at that time. 596 */ 597 598 /* 599 * Return the statistics of a MAC client. These statistics are different 600 * then the statistics of the underlying MAC which are returned by 601 * mac_stat_get(). 602 */ 603 uint64_t 604 mac_client_stat_get(mac_client_handle_t mch, uint_t stat) 605 { 606 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 607 mac_impl_t *mip = mcip->mci_mip; 608 flow_entry_t *flent = mcip->mci_flent; 609 mac_soft_ring_set_t *mac_srs; 610 mac_rx_stats_t *mac_rx_stat; 611 mac_tx_stats_t *mac_tx_stat; 612 int i; 613 uint64_t val = 0; 614 615 mac_srs = (mac_soft_ring_set_t *)(flent->fe_tx_srs); 616 mac_tx_stat = &mac_srs->srs_tx.st_stat; 617 618 switch (stat) { 619 case MAC_STAT_LINK_STATE: 620 val = mac_client_link_state(mcip); 621 break; 622 case MAC_STAT_LINK_UP: 623 val = (mac_client_link_state(mcip) == LINK_STATE_UP); 624 break; 625 case MAC_STAT_PROMISC: 626 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_PROMISC); 627 break; 628 case MAC_STAT_LOWLINK_STATE: 629 val = mac_stat_get((mac_handle_t)mip, MAC_STAT_LOWLINK_STATE); 630 break; 631 case MAC_STAT_IFSPEED: 632 val = mac_client_ifspeed(mcip); 633 break; 634 case MAC_STAT_MULTIRCV: 635 val = mcip->mci_misc_stat.mms_multircv; 636 break; 637 case MAC_STAT_BRDCSTRCV: 638 val = mcip->mci_misc_stat.mms_brdcstrcv; 639 break; 640 case MAC_STAT_MULTIXMT: 641 val = mcip->mci_misc_stat.mms_multixmt; 642 break; 643 case MAC_STAT_BRDCSTXMT: 644 val = mcip->mci_misc_stat.mms_brdcstxmt; 645 break; 646 case MAC_STAT_OBYTES: 647 val = mac_tx_stat->mts_obytes; 648 break; 649 case MAC_STAT_OPACKETS: 650 val = mac_tx_stat->mts_opackets; 651 break; 652 case MAC_STAT_OERRORS: 653 val = mac_tx_stat->mts_oerrors; 654 break; 655 case MAC_STAT_IPACKETS: 656 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 657 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 658 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 659 val += mac_rx_stat->mrs_intrcnt + 660 mac_rx_stat->mrs_pollcnt + mac_rx_stat->mrs_lclcnt; 661 } 662 break; 663 case MAC_STAT_RBYTES: 664 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 665 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 666 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 667 val += mac_rx_stat->mrs_intrbytes + 668 mac_rx_stat->mrs_pollbytes + 669 mac_rx_stat->mrs_lclbytes; 670 } 671 break; 672 case MAC_STAT_IERRORS: 673 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 674 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 675 mac_rx_stat = &mac_srs->srs_rx.sr_stat; 676 val += mac_rx_stat->mrs_ierrors; 677 } 678 break; 679 default: 680 val = mac_driver_stat_default(mip, stat); 681 break; 682 } 683 684 return (val); 685 } 686 687 /* 688 * Return the statistics of the specified MAC instance. 689 */ 690 uint64_t 691 mac_stat_get(mac_handle_t mh, uint_t stat) 692 { 693 mac_impl_t *mip = (mac_impl_t *)mh; 694 uint64_t val; 695 int ret; 696 697 /* 698 * The range of stat determines where it is maintained. Stat 699 * values from 0 up to (but not including) MAC_STAT_MIN are 700 * mainteined by the mac module itself. Everything else is 701 * maintained by the driver. 702 * 703 * If the mac_impl_t being queried corresponds to a VNIC, 704 * the stats need to be queried from the lower MAC client 705 * corresponding to the VNIC. (The mac_link_update() 706 * invoked by the driver to the lower MAC causes the *lower 707 * MAC* to update its mi_linkstate, and send a notification 708 * to its MAC clients. Due to the VNIC passthrough, 709 * these notifications are sent to the upper MAC clients 710 * of the VNIC directly, and the upper mac_impl_t of the VNIC 711 * does not have a valid mi_linkstate. 712 */ 713 if (stat < MAC_STAT_MIN && !(mip->mi_state_flags & MIS_IS_VNIC)) { 714 /* these stats are maintained by the mac module itself */ 715 switch (stat) { 716 case MAC_STAT_LINK_STATE: 717 return (mip->mi_linkstate); 718 case MAC_STAT_LINK_UP: 719 return (mip->mi_linkstate == LINK_STATE_UP); 720 case MAC_STAT_PROMISC: 721 return (mip->mi_devpromisc != 0); 722 case MAC_STAT_LOWLINK_STATE: 723 return (mip->mi_lowlinkstate); 724 default: 725 ASSERT(B_FALSE); 726 } 727 } 728 729 /* 730 * Call the driver to get the given statistic. 731 */ 732 ret = mip->mi_getstat(mip->mi_driver, stat, &val); 733 if (ret != 0) { 734 /* 735 * The driver doesn't support this statistic. Get the 736 * statistic's default value. 737 */ 738 val = mac_driver_stat_default(mip, stat); 739 } 740 return (val); 741 } 742 743 /* 744 * Query hardware rx ring corresponding to the pseudo ring. 745 */ 746 uint64_t 747 mac_pseudo_rx_ring_stat_get(mac_ring_handle_t handle, uint_t stat) 748 { 749 return (mac_rx_ring_stat_get(handle, stat)); 750 } 751 752 /* 753 * Query hardware tx ring corresponding to the pseudo ring. 754 */ 755 uint64_t 756 mac_pseudo_tx_ring_stat_get(mac_ring_handle_t handle, uint_t stat) 757 { 758 return (mac_tx_ring_stat_get(handle, stat)); 759 } 760 761 /* 762 * Utility function which returns the VID associated with a flow entry. 763 */ 764 uint16_t 765 i_mac_flow_vid(flow_entry_t *flent) 766 { 767 flow_desc_t flow_desc; 768 769 mac_flow_get_desc(flent, &flow_desc); 770 771 if ((flow_desc.fd_mask & FLOW_LINK_VID) != 0) 772 return (flow_desc.fd_vid); 773 return (VLAN_ID_NONE); 774 } 775 776 /* 777 * Verify the validity of the specified unicast MAC address. Returns B_TRUE 778 * if the address is valid, B_FALSE otherwise (multicast address, or incorrect 779 * length. 780 */ 781 boolean_t 782 mac_unicst_verify(mac_handle_t mh, const uint8_t *addr, uint_t len) 783 { 784 mac_impl_t *mip = (mac_impl_t *)mh; 785 786 /* 787 * Verify the address. No lock is needed since mi_type and plugin 788 * details don't change after mac_register(). 789 */ 790 if ((len != mip->mi_type->mt_addr_length) || 791 (mip->mi_type->mt_ops.mtops_unicst_verify(addr, 792 mip->mi_pdata)) != 0) { 793 return (B_FALSE); 794 } else { 795 return (B_TRUE); 796 } 797 } 798 799 void 800 mac_sdu_get(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu) 801 { 802 mac_impl_t *mip = (mac_impl_t *)mh; 803 804 if (min_sdu != NULL) 805 *min_sdu = mip->mi_sdu_min; 806 if (max_sdu != NULL) 807 *max_sdu = mip->mi_sdu_max; 808 } 809 810 void 811 mac_sdu_get2(mac_handle_t mh, uint_t *min_sdu, uint_t *max_sdu, 812 uint_t *multicast_sdu) 813 { 814 mac_impl_t *mip = (mac_impl_t *)mh; 815 816 if (min_sdu != NULL) 817 *min_sdu = mip->mi_sdu_min; 818 if (max_sdu != NULL) 819 *max_sdu = mip->mi_sdu_max; 820 if (multicast_sdu != NULL) 821 *multicast_sdu = mip->mi_sdu_multicast; 822 } 823 824 /* 825 * Update the MAC unicast address of the specified client's flows. Currently 826 * only one unicast MAC unicast address is allowed per client. 827 */ 828 static void 829 mac_unicast_update_client_flow(mac_client_impl_t *mcip) 830 { 831 mac_impl_t *mip = mcip->mci_mip; 832 flow_entry_t *flent = mcip->mci_flent; 833 mac_address_t *map = mcip->mci_unicast; 834 flow_desc_t flow_desc; 835 836 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 837 ASSERT(flent != NULL); 838 839 mac_flow_get_desc(flent, &flow_desc); 840 ASSERT(flow_desc.fd_mask & FLOW_LINK_DST); 841 842 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 843 mac_flow_set_desc(flent, &flow_desc); 844 845 /* 846 * The v6 local addr (used by mac protection) needs to be 847 * regenerated because our mac address has changed. 848 */ 849 mac_protect_update_v6_local_addr(mcip); 850 851 /* 852 * A MAC client could have one MAC address but multiple 853 * VLANs. In that case update the flow entries corresponding 854 * to all VLANs of the MAC client. 855 */ 856 for (flent = mcip->mci_flent_list; flent != NULL; 857 flent = flent->fe_client_next) { 858 mac_flow_get_desc(flent, &flow_desc); 859 if (!(flent->fe_type & FLOW_PRIMARY_MAC || 860 flent->fe_type & FLOW_VNIC_MAC)) 861 continue; 862 863 bcopy(map->ma_addr, flow_desc.fd_dst_mac, map->ma_len); 864 mac_flow_set_desc(flent, &flow_desc); 865 } 866 } 867 868 /* 869 * Update all clients that share the same unicast address. 870 */ 871 void 872 mac_unicast_update_clients(mac_impl_t *mip, mac_address_t *map) 873 { 874 mac_client_impl_t *mcip; 875 876 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 877 878 /* 879 * Find all clients that share the same unicast MAC address and update 880 * them appropriately. 881 */ 882 for (mcip = mip->mi_clients_list; mcip != NULL; 883 mcip = mcip->mci_client_next) { 884 /* 885 * Ignore clients that don't share this MAC address. 886 */ 887 if (map != mcip->mci_unicast) 888 continue; 889 890 /* 891 * Update those clients with same old unicast MAC address. 892 */ 893 mac_unicast_update_client_flow(mcip); 894 } 895 } 896 897 /* 898 * Update the unicast MAC address of the specified VNIC MAC client. 899 * 900 * Check whether the operation is valid. Any of following cases should fail: 901 * 902 * 1. It's a VLAN type of VNIC. 903 * 2. The new value is current "primary" MAC address. 904 * 3. The current MAC address is shared with other clients. 905 * 4. The new MAC address has been used. This case will be valid when 906 * client migration is fully supported. 907 */ 908 int 909 mac_vnic_unicast_set(mac_client_handle_t mch, const uint8_t *addr) 910 { 911 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 912 mac_impl_t *mip = mcip->mci_mip; 913 mac_address_t *map = mcip->mci_unicast; 914 int err; 915 916 ASSERT(!(mip->mi_state_flags & MIS_IS_VNIC)); 917 ASSERT(mcip->mci_state_flags & MCIS_IS_VNIC); 918 ASSERT(mcip->mci_flags != MAC_CLIENT_FLAGS_PRIMARY); 919 920 i_mac_perim_enter(mip); 921 922 /* 923 * If this is a VLAN type of VNIC, it's using "primary" MAC address 924 * of the underlying interface. Must fail here. Refer to case 1 above. 925 */ 926 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0) { 927 i_mac_perim_exit(mip); 928 return (ENOTSUP); 929 } 930 931 /* 932 * If the new address is the "primary" one, must fail. Refer to 933 * case 2 above. 934 */ 935 if (bcmp(addr, mip->mi_addr, map->ma_len) == 0) { 936 i_mac_perim_exit(mip); 937 return (EACCES); 938 } 939 940 /* 941 * If the address is shared by multiple clients, must fail. Refer 942 * to case 3 above. 943 */ 944 if (mac_check_macaddr_shared(map)) { 945 i_mac_perim_exit(mip); 946 return (EBUSY); 947 } 948 949 /* 950 * If the new address has been used, must fail for now. Refer to 951 * case 4 above. 952 */ 953 if (mac_find_macaddr(mip, (uint8_t *)addr) != NULL) { 954 i_mac_perim_exit(mip); 955 return (ENOTSUP); 956 } 957 958 /* 959 * Update the MAC address. 960 */ 961 err = mac_update_macaddr(map, (uint8_t *)addr); 962 963 if (err != 0) { 964 i_mac_perim_exit(mip); 965 return (err); 966 } 967 968 /* 969 * Update all flows of this MAC client. 970 */ 971 mac_unicast_update_client_flow(mcip); 972 973 i_mac_perim_exit(mip); 974 return (0); 975 } 976 977 /* 978 * Program the new primary unicast address of the specified MAC. 979 * 980 * Function mac_update_macaddr() takes care different types of underlying 981 * MAC. If the underlying MAC is VNIC, the VNIC driver must have registerd 982 * mi_unicst() entry point, that indirectly calls mac_vnic_unicast_set() 983 * which will take care of updating the MAC address of the corresponding 984 * MAC client. 985 * 986 * This is the only interface that allow the client to update the "primary" 987 * MAC address of the underlying MAC. The new value must have not been 988 * used by other clients. 989 */ 990 int 991 mac_unicast_primary_set(mac_handle_t mh, const uint8_t *addr) 992 { 993 mac_impl_t *mip = (mac_impl_t *)mh; 994 mac_address_t *map; 995 int err; 996 997 /* verify the address validity */ 998 if (!mac_unicst_verify(mh, addr, mip->mi_type->mt_addr_length)) 999 return (EINVAL); 1000 1001 i_mac_perim_enter(mip); 1002 1003 /* 1004 * If the new value is the same as the current primary address value, 1005 * there's nothing to do. 1006 */ 1007 if (bcmp(addr, mip->mi_addr, mip->mi_type->mt_addr_length) == 0) { 1008 i_mac_perim_exit(mip); 1009 return (0); 1010 } 1011 1012 if (mac_find_macaddr(mip, (uint8_t *)addr) != 0) { 1013 i_mac_perim_exit(mip); 1014 return (EBUSY); 1015 } 1016 1017 map = mac_find_macaddr(mip, mip->mi_addr); 1018 ASSERT(map != NULL); 1019 1020 /* 1021 * Update the MAC address. 1022 */ 1023 if (mip->mi_state_flags & MIS_IS_AGGR) { 1024 mac_capab_aggr_t aggr_cap; 1025 1026 /* 1027 * If the mac is an aggregation, other than the unicast 1028 * addresses programming, aggr must be informed about this 1029 * primary unicst address change to change its mac address 1030 * policy to be user-specified. 1031 */ 1032 ASSERT(map->ma_type == MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED); 1033 VERIFY(i_mac_capab_get(mh, MAC_CAPAB_AGGR, &aggr_cap)); 1034 err = aggr_cap.mca_unicst(mip->mi_driver, addr); 1035 if (err == 0) 1036 bcopy(addr, map->ma_addr, map->ma_len); 1037 } else { 1038 err = mac_update_macaddr(map, (uint8_t *)addr); 1039 } 1040 1041 if (err != 0) { 1042 i_mac_perim_exit(mip); 1043 return (err); 1044 } 1045 1046 mac_unicast_update_clients(mip, map); 1047 1048 /* 1049 * Save the new primary MAC address in mac_impl_t. 1050 */ 1051 bcopy(addr, mip->mi_addr, mip->mi_type->mt_addr_length); 1052 1053 i_mac_perim_exit(mip); 1054 1055 if (err == 0) 1056 i_mac_notify(mip, MAC_NOTE_UNICST); 1057 1058 return (err); 1059 } 1060 1061 /* 1062 * Return the current primary MAC address of the specified MAC. 1063 */ 1064 void 1065 mac_unicast_primary_get(mac_handle_t mh, uint8_t *addr) 1066 { 1067 mac_impl_t *mip = (mac_impl_t *)mh; 1068 1069 rw_enter(&mip->mi_rw_lock, RW_READER); 1070 bcopy(mip->mi_addr, addr, mip->mi_type->mt_addr_length); 1071 rw_exit(&mip->mi_rw_lock); 1072 } 1073 1074 /* 1075 * Return the secondary MAC address for the specified handle 1076 */ 1077 void 1078 mac_unicast_secondary_get(mac_client_handle_t mh, uint8_t *addr) 1079 { 1080 mac_client_impl_t *mcip = (mac_client_impl_t *)mh; 1081 1082 ASSERT(mcip->mci_unicast != NULL); 1083 bcopy(mcip->mci_unicast->ma_addr, addr, mcip->mci_unicast->ma_len); 1084 } 1085 1086 /* 1087 * Return information about the use of the primary MAC address of the 1088 * specified MAC instance: 1089 * 1090 * - if client_name is non-NULL, it must point to a string of at 1091 * least MAXNAMELEN bytes, and will be set to the name of the MAC 1092 * client which uses the primary MAC address. 1093 * 1094 * - if in_use is non-NULL, used to return whether the primary MAC 1095 * address is currently in use. 1096 */ 1097 void 1098 mac_unicast_primary_info(mac_handle_t mh, char *client_name, boolean_t *in_use) 1099 { 1100 mac_impl_t *mip = (mac_impl_t *)mh; 1101 mac_client_impl_t *cur_client; 1102 1103 if (in_use != NULL) 1104 *in_use = B_FALSE; 1105 if (client_name != NULL) 1106 bzero(client_name, MAXNAMELEN); 1107 1108 /* 1109 * The mi_rw_lock is used to protect threads that don't hold the 1110 * mac perimeter to get a consistent view of the mi_clients_list. 1111 * Threads that modify the list must hold both the mac perimeter and 1112 * mi_rw_lock(RW_WRITER) 1113 */ 1114 rw_enter(&mip->mi_rw_lock, RW_READER); 1115 for (cur_client = mip->mi_clients_list; cur_client != NULL; 1116 cur_client = cur_client->mci_client_next) { 1117 if (mac_is_primary_client(cur_client) || 1118 (mip->mi_state_flags & MIS_IS_VNIC)) { 1119 rw_exit(&mip->mi_rw_lock); 1120 if (in_use != NULL) 1121 *in_use = B_TRUE; 1122 if (client_name != NULL) { 1123 bcopy(cur_client->mci_name, client_name, 1124 MAXNAMELEN); 1125 } 1126 return; 1127 } 1128 } 1129 rw_exit(&mip->mi_rw_lock); 1130 } 1131 1132 /* 1133 * Return the current destination MAC address of the specified MAC. 1134 */ 1135 boolean_t 1136 mac_dst_get(mac_handle_t mh, uint8_t *addr) 1137 { 1138 mac_impl_t *mip = (mac_impl_t *)mh; 1139 1140 rw_enter(&mip->mi_rw_lock, RW_READER); 1141 if (mip->mi_dstaddr_set) 1142 bcopy(mip->mi_dstaddr, addr, mip->mi_type->mt_addr_length); 1143 rw_exit(&mip->mi_rw_lock); 1144 return (mip->mi_dstaddr_set); 1145 } 1146 1147 /* 1148 * Add the specified MAC client to the list of clients which opened 1149 * the specified MAC. 1150 */ 1151 static void 1152 mac_client_add(mac_client_impl_t *mcip) 1153 { 1154 mac_impl_t *mip = mcip->mci_mip; 1155 1156 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1157 1158 /* add VNIC to the front of the list */ 1159 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1160 mcip->mci_client_next = mip->mi_clients_list; 1161 mip->mi_clients_list = mcip; 1162 mip->mi_nclients++; 1163 rw_exit(&mip->mi_rw_lock); 1164 } 1165 1166 /* 1167 * Remove the specified MAC client from the list of clients which opened 1168 * the specified MAC. 1169 */ 1170 static void 1171 mac_client_remove(mac_client_impl_t *mcip) 1172 { 1173 mac_impl_t *mip = mcip->mci_mip; 1174 mac_client_impl_t **prev, *cclient; 1175 1176 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1177 1178 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1179 prev = &mip->mi_clients_list; 1180 cclient = *prev; 1181 while (cclient != NULL && cclient != mcip) { 1182 prev = &cclient->mci_client_next; 1183 cclient = *prev; 1184 } 1185 ASSERT(cclient != NULL); 1186 *prev = cclient->mci_client_next; 1187 mip->mi_nclients--; 1188 rw_exit(&mip->mi_rw_lock); 1189 } 1190 1191 static mac_unicast_impl_t * 1192 mac_client_find_vid(mac_client_impl_t *mcip, uint16_t vid) 1193 { 1194 mac_unicast_impl_t *muip = mcip->mci_unicast_list; 1195 1196 while ((muip != NULL) && (muip->mui_vid != vid)) 1197 muip = muip->mui_next; 1198 1199 return (muip); 1200 } 1201 1202 /* 1203 * Return whether the specified (MAC address, VID) tuple is already used by 1204 * one of the MAC clients associated with the specified MAC. 1205 */ 1206 static boolean_t 1207 mac_addr_in_use(mac_impl_t *mip, uint8_t *mac_addr, uint16_t vid) 1208 { 1209 mac_client_impl_t *client; 1210 mac_address_t *map; 1211 1212 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1213 1214 for (client = mip->mi_clients_list; client != NULL; 1215 client = client->mci_client_next) { 1216 1217 /* 1218 * Ignore clients that don't have unicast address. 1219 */ 1220 if (client->mci_unicast_list == NULL) 1221 continue; 1222 1223 map = client->mci_unicast; 1224 1225 if ((bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) && 1226 (mac_client_find_vid(client, vid) != NULL)) { 1227 return (B_TRUE); 1228 } 1229 } 1230 1231 return (B_FALSE); 1232 } 1233 1234 /* 1235 * Generate a random MAC address. The MAC address prefix is 1236 * stored in the array pointed to by mac_addr, and its length, in bytes, 1237 * is specified by prefix_len. The least significant bits 1238 * after prefix_len bytes are generated, and stored after the prefix 1239 * in the mac_addr array. 1240 */ 1241 int 1242 mac_addr_random(mac_client_handle_t mch, uint_t prefix_len, 1243 uint8_t *mac_addr, mac_diag_t *diag) 1244 { 1245 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1246 mac_impl_t *mip = mcip->mci_mip; 1247 size_t addr_len = mip->mi_type->mt_addr_length; 1248 1249 if (prefix_len >= addr_len) { 1250 *diag = MAC_DIAG_MACPREFIXLEN_INVALID; 1251 return (EINVAL); 1252 } 1253 1254 /* check the prefix value */ 1255 if (prefix_len > 0) { 1256 bzero(mac_addr + prefix_len, addr_len - prefix_len); 1257 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, 1258 addr_len)) { 1259 *diag = MAC_DIAG_MACPREFIX_INVALID; 1260 return (EINVAL); 1261 } 1262 } 1263 1264 /* generate the MAC address */ 1265 if (prefix_len < addr_len) { 1266 (void) random_get_pseudo_bytes(mac_addr + 1267 prefix_len, addr_len - prefix_len); 1268 } 1269 1270 *diag = 0; 1271 return (0); 1272 } 1273 1274 /* 1275 * Set the priority range for this MAC client. This will be used to 1276 * determine the absolute priority for the threads created for this 1277 * MAC client using the specified "low", "medium" and "high" level. 1278 * This will also be used for any subflows on this MAC client. 1279 */ 1280 #define MAC_CLIENT_SET_PRIORITY_RANGE(mcip, pri) { \ 1281 (mcip)->mci_min_pri = FLOW_MIN_PRIORITY(MINCLSYSPRI, \ 1282 MAXCLSYSPRI, (pri)); \ 1283 (mcip)->mci_max_pri = FLOW_MAX_PRIORITY(MINCLSYSPRI, \ 1284 MAXCLSYSPRI, (mcip)->mci_min_pri); \ 1285 } 1286 1287 /* 1288 * MAC client open entry point. Return a new MAC client handle. Each 1289 * MAC client is associated with a name, specified through the 'name' 1290 * argument. 1291 */ 1292 int 1293 mac_client_open(mac_handle_t mh, mac_client_handle_t *mchp, char *name, 1294 uint16_t flags) 1295 { 1296 mac_impl_t *mip = (mac_impl_t *)mh; 1297 mac_client_impl_t *mcip; 1298 int err = 0; 1299 boolean_t share_desired; 1300 flow_entry_t *flent = NULL; 1301 1302 share_desired = (flags & MAC_OPEN_FLAGS_SHARES_DESIRED) != 0; 1303 *mchp = NULL; 1304 1305 i_mac_perim_enter(mip); 1306 1307 if (mip->mi_state_flags & MIS_IS_VNIC) { 1308 /* 1309 * The underlying MAC is a VNIC. Return the MAC client 1310 * handle of the lower MAC which was obtained by 1311 * the VNIC driver when it did its mac_client_open(). 1312 */ 1313 1314 mcip = mac_vnic_lower(mip); 1315 1316 /* 1317 * Note that multiple mac clients share the same mcip in 1318 * this case. 1319 */ 1320 if (flags & MAC_OPEN_FLAGS_EXCLUSIVE) 1321 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1322 1323 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY) 1324 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY; 1325 1326 mip->mi_clients_list = mcip; 1327 i_mac_perim_exit(mip); 1328 *mchp = (mac_client_handle_t)mcip; 1329 1330 DTRACE_PROBE2(mac__client__open__nonallocated, mac_impl_t *, 1331 mcip->mci_mip, mac_client_impl_t *, mcip); 1332 1333 return (err); 1334 } 1335 1336 mcip = kmem_cache_alloc(mac_client_impl_cache, KM_SLEEP); 1337 1338 mcip->mci_mip = mip; 1339 mcip->mci_upper_mip = NULL; 1340 mcip->mci_rx_fn = mac_pkt_drop; 1341 mcip->mci_rx_arg = NULL; 1342 mcip->mci_rx_p_fn = NULL; 1343 mcip->mci_rx_p_arg = NULL; 1344 mcip->mci_p_unicast_list = NULL; 1345 mcip->mci_direct_rx_fn = NULL; 1346 mcip->mci_direct_rx_arg = NULL; 1347 1348 mcip->mci_unicast_list = NULL; 1349 1350 if ((flags & MAC_OPEN_FLAGS_IS_VNIC) != 0) 1351 mcip->mci_state_flags |= MCIS_IS_VNIC; 1352 1353 if ((flags & MAC_OPEN_FLAGS_EXCLUSIVE) != 0) 1354 mcip->mci_state_flags |= MCIS_EXCLUSIVE; 1355 1356 if ((flags & MAC_OPEN_FLAGS_IS_AGGR_PORT) != 0) 1357 mcip->mci_state_flags |= MCIS_IS_AGGR_PORT; 1358 1359 if (mip->mi_state_flags & MIS_IS_AGGR) 1360 mcip->mci_state_flags |= MCIS_IS_AGGR; 1361 1362 if ((flags & MAC_OPEN_FLAGS_USE_DATALINK_NAME) != 0) { 1363 datalink_id_t linkid; 1364 1365 ASSERT(name == NULL); 1366 if ((err = dls_devnet_macname2linkid(mip->mi_name, 1367 &linkid)) != 0) { 1368 goto done; 1369 } 1370 if ((err = dls_mgmt_get_linkinfo(linkid, mcip->mci_name, NULL, 1371 NULL, NULL)) != 0) { 1372 /* 1373 * Use mac name if dlmgmtd is not available. 1374 */ 1375 if (err == EBADF) { 1376 (void) strlcpy(mcip->mci_name, mip->mi_name, 1377 sizeof (mcip->mci_name)); 1378 err = 0; 1379 } else { 1380 goto done; 1381 } 1382 } 1383 mcip->mci_state_flags |= MCIS_USE_DATALINK_NAME; 1384 } else { 1385 ASSERT(name != NULL); 1386 if (strlen(name) > MAXNAMELEN) { 1387 err = EINVAL; 1388 goto done; 1389 } 1390 (void) strlcpy(mcip->mci_name, name, sizeof (mcip->mci_name)); 1391 } 1392 1393 if (flags & MAC_OPEN_FLAGS_MULTI_PRIMARY) 1394 mcip->mci_flags |= MAC_CLIENT_FLAGS_MULTI_PRIMARY; 1395 1396 if (flags & MAC_OPEN_FLAGS_NO_UNICAST_ADDR) 1397 mcip->mci_state_flags |= MCIS_NO_UNICAST_ADDR; 1398 1399 mac_protect_init(mcip); 1400 1401 /* the subflow table will be created dynamically */ 1402 mcip->mci_subflow_tab = NULL; 1403 1404 mcip->mci_misc_stat.mms_multircv = 0; 1405 mcip->mci_misc_stat.mms_brdcstrcv = 0; 1406 mcip->mci_misc_stat.mms_multixmt = 0; 1407 mcip->mci_misc_stat.mms_brdcstxmt = 0; 1408 1409 /* Create an initial flow */ 1410 1411 err = mac_flow_create(NULL, NULL, mcip->mci_name, NULL, 1412 mcip->mci_state_flags & MCIS_IS_VNIC ? FLOW_VNIC_MAC : 1413 FLOW_PRIMARY_MAC, &flent); 1414 if (err != 0) 1415 goto done; 1416 mcip->mci_flent = flent; 1417 FLOW_MARK(flent, FE_MC_NO_DATAPATH); 1418 flent->fe_mcip = mcip; 1419 /* 1420 * Place initial creation reference on the flow. This reference 1421 * is released in the corresponding delete action viz. 1422 * mac_unicast_remove after waiting for all transient refs to 1423 * to go away. The wait happens in mac_flow_wait. 1424 */ 1425 FLOW_REFHOLD(flent); 1426 1427 /* 1428 * Do this ahead of the mac_bcast_add() below so that the mi_nclients 1429 * will have the right value for mac_rx_srs_setup(). 1430 */ 1431 mac_client_add(mcip); 1432 1433 mcip->mci_share = NULL; 1434 if (share_desired) 1435 i_mac_share_alloc(mcip); 1436 1437 /* 1438 * We will do mimimal datapath setup to allow a MAC client to 1439 * transmit or receive non-unicast packets without waiting 1440 * for mac_unicast_add. 1441 */ 1442 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) { 1443 if ((err = mac_client_datapath_setup(mcip, VLAN_ID_NONE, 1444 NULL, NULL, B_TRUE, NULL)) != 0) { 1445 goto done; 1446 } 1447 } 1448 1449 DTRACE_PROBE2(mac__client__open__allocated, mac_impl_t *, 1450 mcip->mci_mip, mac_client_impl_t *, mcip); 1451 1452 *mchp = (mac_client_handle_t)mcip; 1453 i_mac_perim_exit(mip); 1454 return (0); 1455 1456 done: 1457 i_mac_perim_exit(mip); 1458 mcip->mci_state_flags = 0; 1459 mcip->mci_tx_flag = 0; 1460 kmem_cache_free(mac_client_impl_cache, mcip); 1461 return (err); 1462 } 1463 1464 /* 1465 * Close the specified MAC client handle. 1466 */ 1467 void 1468 mac_client_close(mac_client_handle_t mch, uint16_t flags) 1469 { 1470 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1471 mac_impl_t *mip = mcip->mci_mip; 1472 flow_entry_t *flent; 1473 1474 i_mac_perim_enter(mip); 1475 1476 if (flags & MAC_CLOSE_FLAGS_EXCLUSIVE) 1477 mcip->mci_state_flags &= ~MCIS_EXCLUSIVE; 1478 1479 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 1480 !(flags & MAC_CLOSE_FLAGS_IS_VNIC)) { 1481 /* 1482 * This is an upper VNIC client initiated operation. 1483 * The lower MAC client will be closed by the VNIC driver 1484 * when the VNIC is deleted. 1485 */ 1486 1487 i_mac_perim_exit(mip); 1488 return; 1489 } 1490 1491 /* If we have only setup up minimal datapth setup, tear it down */ 1492 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) { 1493 mac_client_datapath_teardown((mac_client_handle_t)mcip, NULL, 1494 mcip->mci_flent); 1495 mcip->mci_state_flags &= ~MCIS_NO_UNICAST_ADDR; 1496 } 1497 1498 /* 1499 * Remove the flent associated with the MAC client 1500 */ 1501 flent = mcip->mci_flent; 1502 mcip->mci_flent = NULL; 1503 FLOW_FINAL_REFRELE(flent); 1504 1505 /* 1506 * MAC clients must remove the unicast addresses and promisc callbacks 1507 * they added before issuing a mac_client_close(). 1508 */ 1509 ASSERT(mcip->mci_unicast_list == NULL); 1510 ASSERT(mcip->mci_promisc_list == NULL); 1511 ASSERT(mcip->mci_tx_notify_cb_list == NULL); 1512 1513 i_mac_share_free(mcip); 1514 mac_protect_fini(mcip); 1515 mac_client_remove(mcip); 1516 1517 i_mac_perim_exit(mip); 1518 mcip->mci_subflow_tab = NULL; 1519 mcip->mci_state_flags = 0; 1520 mcip->mci_tx_flag = 0; 1521 kmem_cache_free(mac_client_impl_cache, mch); 1522 } 1523 1524 /* 1525 * Set the rx bypass receive callback. 1526 */ 1527 boolean_t 1528 mac_rx_bypass_set(mac_client_handle_t mch, mac_direct_rx_t rx_fn, void *arg1) 1529 { 1530 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1531 mac_impl_t *mip = mcip->mci_mip; 1532 1533 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1534 1535 /* 1536 * If the mac_client is a VLAN, we should not do DLS bypass and 1537 * instead let the packets come up via mac_rx_deliver so the vlan 1538 * header can be stripped. 1539 */ 1540 if (mcip->mci_nvids > 0) 1541 return (B_FALSE); 1542 1543 /* 1544 * These are not accessed directly in the data path, and hence 1545 * don't need any protection 1546 */ 1547 mcip->mci_direct_rx_fn = rx_fn; 1548 mcip->mci_direct_rx_arg = arg1; 1549 return (B_TRUE); 1550 } 1551 1552 /* 1553 * Enable/Disable rx bypass. By default, bypass is assumed to be enabled. 1554 */ 1555 void 1556 mac_rx_bypass_enable(mac_client_handle_t mch) 1557 { 1558 ((mac_client_impl_t *)mch)->mci_state_flags &= ~MCIS_RX_BYPASS_DISABLE; 1559 } 1560 1561 void 1562 mac_rx_bypass_disable(mac_client_handle_t mch) 1563 { 1564 ((mac_client_impl_t *)mch)->mci_state_flags |= MCIS_RX_BYPASS_DISABLE; 1565 } 1566 1567 /* 1568 * Set the receive callback for the specified MAC client. There can be 1569 * at most one such callback per MAC client. 1570 */ 1571 void 1572 mac_rx_set(mac_client_handle_t mch, mac_rx_t rx_fn, void *arg) 1573 { 1574 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1575 mac_impl_t *mip = mcip->mci_mip; 1576 mac_impl_t *umip = mcip->mci_upper_mip; 1577 1578 /* 1579 * Instead of adding an extra set of locks and refcnts in 1580 * the datapath at the mac client boundary, we temporarily quiesce 1581 * the SRS and related entities. We then change the receive function 1582 * without interference from any receive data thread and then reenable 1583 * the data flow subsequently. 1584 */ 1585 i_mac_perim_enter(mip); 1586 mac_rx_client_quiesce(mch); 1587 1588 mcip->mci_rx_fn = rx_fn; 1589 mcip->mci_rx_arg = arg; 1590 mac_rx_client_restart(mch); 1591 i_mac_perim_exit(mip); 1592 1593 /* 1594 * If we're changing the rx function on the primary mac of a vnic, 1595 * make sure any secondary macs on the vnic are updated as well. 1596 */ 1597 if (umip != NULL) { 1598 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0); 1599 mac_vnic_secondary_update(umip); 1600 } 1601 } 1602 1603 /* 1604 * Reset the receive callback for the specified MAC client. 1605 */ 1606 void 1607 mac_rx_clear(mac_client_handle_t mch) 1608 { 1609 mac_rx_set(mch, mac_pkt_drop, NULL); 1610 } 1611 1612 void 1613 mac_secondary_dup(mac_client_handle_t smch, mac_client_handle_t dmch) 1614 { 1615 mac_client_impl_t *smcip = (mac_client_impl_t *)smch; 1616 mac_client_impl_t *dmcip = (mac_client_impl_t *)dmch; 1617 flow_entry_t *flent = dmcip->mci_flent; 1618 1619 /* This should only be called to setup secondary macs */ 1620 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0); 1621 1622 mac_rx_set(dmch, smcip->mci_rx_fn, smcip->mci_rx_arg); 1623 dmcip->mci_promisc_list = smcip->mci_promisc_list; 1624 1625 /* 1626 * Duplicate the primary mac resources to the secondary. 1627 * Since we already validated the resource controls when setting 1628 * them on the primary, we can ignore errors here. 1629 */ 1630 (void) mac_resource_ctl_set(dmch, MCIP_RESOURCE_PROPS(smcip)); 1631 } 1632 1633 /* 1634 * Called when removing a secondary MAC. Currently only clears the promisc_list 1635 * since we share the primary mac's promisc_list. 1636 */ 1637 void 1638 mac_secondary_cleanup(mac_client_handle_t mch) 1639 { 1640 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1641 flow_entry_t *flent = mcip->mci_flent; 1642 1643 /* This should only be called for secondary macs */ 1644 ASSERT((flent->fe_type & FLOW_PRIMARY_MAC) == 0); 1645 mcip->mci_promisc_list = NULL; 1646 } 1647 1648 /* 1649 * Walk the MAC client subflow table and updates their priority values. 1650 */ 1651 static int 1652 mac_update_subflow_priority_cb(flow_entry_t *flent, void *arg) 1653 { 1654 mac_flow_update_priority(arg, flent); 1655 return (0); 1656 } 1657 1658 void 1659 mac_update_subflow_priority(mac_client_impl_t *mcip) 1660 { 1661 (void) mac_flow_walk(mcip->mci_subflow_tab, 1662 mac_update_subflow_priority_cb, mcip); 1663 } 1664 1665 /* 1666 * Modify the TX or RX ring properties. We could either just move around 1667 * rings, i.e add/remove rings given to a client. Or this might cause the 1668 * client to move from hardware based to software or the other way around. 1669 * If we want to reset this property, then we clear the mask, additionally 1670 * if the client was given a non-default group we remove all rings except 1671 * for 1 and give it back to the default group. 1672 */ 1673 int 1674 mac_client_set_rings_prop(mac_client_impl_t *mcip, mac_resource_props_t *mrp, 1675 mac_resource_props_t *tmrp) 1676 { 1677 mac_impl_t *mip = mcip->mci_mip; 1678 flow_entry_t *flent = mcip->mci_flent; 1679 uint8_t *mac_addr; 1680 int err = 0; 1681 mac_group_t *defgrp; 1682 mac_group_t *group; 1683 mac_group_t *ngrp; 1684 mac_resource_props_t *cmrp = MCIP_RESOURCE_PROPS(mcip); 1685 uint_t ringcnt; 1686 boolean_t unspec; 1687 1688 if (mcip->mci_share != NULL) 1689 return (EINVAL); 1690 1691 if (mrp->mrp_mask & MRP_RX_RINGS) { 1692 unspec = mrp->mrp_mask & MRP_RXRINGS_UNSPEC; 1693 group = flent->fe_rx_ring_group; 1694 defgrp = MAC_DEFAULT_RX_GROUP(mip); 1695 mac_addr = flent->fe_flow_desc.fd_dst_mac; 1696 1697 /* 1698 * No resulting change. If we are resetting on a client on 1699 * which there was no rx rings property. For dynamic group 1700 * if we are setting the same number of rings already set. 1701 * For static group if we are requesting a group again. 1702 */ 1703 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1704 if (!(tmrp->mrp_mask & MRP_RX_RINGS)) 1705 return (0); 1706 } else { 1707 if (unspec) { 1708 if (tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 1709 return (0); 1710 } else if (mip->mi_rx_group_type == 1711 MAC_GROUP_TYPE_DYNAMIC) { 1712 if ((tmrp->mrp_mask & MRP_RX_RINGS) && 1713 !(tmrp->mrp_mask & MRP_RXRINGS_UNSPEC) && 1714 mrp->mrp_nrxrings == tmrp->mrp_nrxrings) { 1715 return (0); 1716 } 1717 } 1718 } 1719 /* Resetting the prop */ 1720 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1721 /* 1722 * We will just keep one ring and give others back if 1723 * we are not the primary. For the primary we give 1724 * all the rings in the default group except the 1725 * default ring. If it is a static group, then 1726 * we don't do anything, but clear the MRP_RX_RINGS 1727 * flag. 1728 */ 1729 if (group != defgrp) { 1730 if (mip->mi_rx_group_type == 1731 MAC_GROUP_TYPE_DYNAMIC) { 1732 /* 1733 * This group has reserved rings 1734 * that need to be released now, 1735 * so does the group. 1736 */ 1737 MAC_RX_RING_RELEASED(mip, 1738 group->mrg_cur_count); 1739 MAC_RX_GRP_RELEASED(mip); 1740 if ((flent->fe_type & 1741 FLOW_PRIMARY_MAC) != 0) { 1742 if (mip->mi_nactiveclients == 1743 1) { 1744 (void) 1745 mac_rx_switch_group( 1746 mcip, group, 1747 defgrp); 1748 return (0); 1749 } else { 1750 cmrp->mrp_nrxrings = 1751 group-> 1752 mrg_cur_count + 1753 defgrp-> 1754 mrg_cur_count - 1; 1755 } 1756 } else { 1757 cmrp->mrp_nrxrings = 1; 1758 } 1759 (void) mac_group_ring_modify(mcip, 1760 group, defgrp); 1761 } else { 1762 /* 1763 * If this is a static group, we 1764 * need to release the group. The 1765 * client will remain in the same 1766 * group till some other client 1767 * needs this group. 1768 */ 1769 MAC_RX_GRP_RELEASED(mip); 1770 } 1771 /* Let check if we can give this an excl group */ 1772 } else if (group == defgrp) { 1773 ngrp = mac_reserve_rx_group(mcip, mac_addr, 1774 B_TRUE); 1775 /* Couldn't give it a group, that's fine */ 1776 if (ngrp == NULL) 1777 return (0); 1778 /* Switch to H/W */ 1779 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 1780 0) { 1781 mac_stop_group(ngrp); 1782 return (0); 1783 } 1784 } 1785 /* 1786 * If the client is in the default group, we will 1787 * just clear the MRP_RX_RINGS and leave it as 1788 * it rather than look for an exclusive group 1789 * for it. 1790 */ 1791 return (0); 1792 } 1793 1794 if (group == defgrp && ((mrp->mrp_nrxrings > 0) || unspec)) { 1795 ngrp = mac_reserve_rx_group(mcip, mac_addr, B_TRUE); 1796 if (ngrp == NULL) 1797 return (ENOSPC); 1798 1799 /* Switch to H/W */ 1800 if (mac_rx_switch_group(mcip, defgrp, ngrp) != 0) { 1801 mac_release_rx_group(mcip, ngrp); 1802 return (ENOSPC); 1803 } 1804 MAC_RX_GRP_RESERVED(mip); 1805 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) 1806 MAC_RX_RING_RESERVED(mip, ngrp->mrg_cur_count); 1807 } else if (group != defgrp && !unspec && 1808 mrp->mrp_nrxrings == 0) { 1809 /* Switch to S/W */ 1810 ringcnt = group->mrg_cur_count; 1811 if (mac_rx_switch_group(mcip, group, defgrp) != 0) 1812 return (ENOSPC); 1813 if (tmrp->mrp_mask & MRP_RX_RINGS) { 1814 MAC_RX_GRP_RELEASED(mip); 1815 if (mip->mi_rx_group_type == 1816 MAC_GROUP_TYPE_DYNAMIC) { 1817 MAC_RX_RING_RELEASED(mip, ringcnt); 1818 } 1819 } 1820 } else if (group != defgrp && mip->mi_rx_group_type == 1821 MAC_GROUP_TYPE_DYNAMIC) { 1822 ringcnt = group->mrg_cur_count; 1823 err = mac_group_ring_modify(mcip, group, defgrp); 1824 if (err != 0) 1825 return (err); 1826 /* 1827 * Update the accounting. If this group 1828 * already had explicitly reserved rings, 1829 * we need to update the rings based on 1830 * the new ring count. If this group 1831 * had not explicitly reserved rings, 1832 * then we just reserve the rings asked for 1833 * and reserve the group. 1834 */ 1835 if (tmrp->mrp_mask & MRP_RX_RINGS) { 1836 if (ringcnt > group->mrg_cur_count) { 1837 MAC_RX_RING_RELEASED(mip, 1838 ringcnt - group->mrg_cur_count); 1839 } else { 1840 MAC_RX_RING_RESERVED(mip, 1841 group->mrg_cur_count - ringcnt); 1842 } 1843 } else { 1844 MAC_RX_RING_RESERVED(mip, group->mrg_cur_count); 1845 MAC_RX_GRP_RESERVED(mip); 1846 } 1847 } 1848 } 1849 if (mrp->mrp_mask & MRP_TX_RINGS) { 1850 unspec = mrp->mrp_mask & MRP_TXRINGS_UNSPEC; 1851 group = flent->fe_tx_ring_group; 1852 defgrp = MAC_DEFAULT_TX_GROUP(mip); 1853 1854 /* 1855 * For static groups we only allow rings=0 or resetting the 1856 * rings property. 1857 */ 1858 if (mrp->mrp_ntxrings > 0 && 1859 mip->mi_tx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 1860 return (ENOTSUP); 1861 } 1862 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1863 if (!(tmrp->mrp_mask & MRP_TX_RINGS)) 1864 return (0); 1865 } else { 1866 if (unspec) { 1867 if (tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 1868 return (0); 1869 } else if (mip->mi_tx_group_type == 1870 MAC_GROUP_TYPE_DYNAMIC) { 1871 if ((tmrp->mrp_mask & MRP_TX_RINGS) && 1872 !(tmrp->mrp_mask & MRP_TXRINGS_UNSPEC) && 1873 mrp->mrp_ntxrings == tmrp->mrp_ntxrings) { 1874 return (0); 1875 } 1876 } 1877 } 1878 /* Resetting the prop */ 1879 if (mrp->mrp_mask & MRP_RINGS_RESET) { 1880 if (group != defgrp) { 1881 if (mip->mi_tx_group_type == 1882 MAC_GROUP_TYPE_DYNAMIC) { 1883 ringcnt = group->mrg_cur_count; 1884 if ((flent->fe_type & 1885 FLOW_PRIMARY_MAC) != 0) { 1886 mac_tx_client_quiesce( 1887 (mac_client_handle_t) 1888 mcip); 1889 mac_tx_switch_group(mcip, 1890 group, defgrp); 1891 mac_tx_client_restart( 1892 (mac_client_handle_t) 1893 mcip); 1894 MAC_TX_GRP_RELEASED(mip); 1895 MAC_TX_RING_RELEASED(mip, 1896 ringcnt); 1897 return (0); 1898 } 1899 cmrp->mrp_ntxrings = 1; 1900 (void) mac_group_ring_modify(mcip, 1901 group, defgrp); 1902 /* 1903 * This group has reserved rings 1904 * that need to be released now. 1905 */ 1906 MAC_TX_RING_RELEASED(mip, ringcnt); 1907 } 1908 /* 1909 * If this is a static group, we 1910 * need to release the group. The 1911 * client will remain in the same 1912 * group till some other client 1913 * needs this group. 1914 */ 1915 MAC_TX_GRP_RELEASED(mip); 1916 } else if (group == defgrp && 1917 (flent->fe_type & FLOW_PRIMARY_MAC) == 0) { 1918 ngrp = mac_reserve_tx_group(mcip, B_TRUE); 1919 if (ngrp == NULL) 1920 return (0); 1921 mac_tx_client_quiesce( 1922 (mac_client_handle_t)mcip); 1923 mac_tx_switch_group(mcip, defgrp, ngrp); 1924 mac_tx_client_restart( 1925 (mac_client_handle_t)mcip); 1926 } 1927 /* 1928 * If the client is in the default group, we will 1929 * just clear the MRP_TX_RINGS and leave it as 1930 * it rather than look for an exclusive group 1931 * for it. 1932 */ 1933 return (0); 1934 } 1935 1936 /* Switch to H/W */ 1937 if (group == defgrp && ((mrp->mrp_ntxrings > 0) || unspec)) { 1938 ngrp = mac_reserve_tx_group(mcip, B_TRUE); 1939 if (ngrp == NULL) 1940 return (ENOSPC); 1941 mac_tx_client_quiesce((mac_client_handle_t)mcip); 1942 mac_tx_switch_group(mcip, defgrp, ngrp); 1943 mac_tx_client_restart((mac_client_handle_t)mcip); 1944 MAC_TX_GRP_RESERVED(mip); 1945 if (mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC) 1946 MAC_TX_RING_RESERVED(mip, ngrp->mrg_cur_count); 1947 /* Switch to S/W */ 1948 } else if (group != defgrp && !unspec && 1949 mrp->mrp_ntxrings == 0) { 1950 /* Switch to S/W */ 1951 ringcnt = group->mrg_cur_count; 1952 mac_tx_client_quiesce((mac_client_handle_t)mcip); 1953 mac_tx_switch_group(mcip, group, defgrp); 1954 mac_tx_client_restart((mac_client_handle_t)mcip); 1955 if (tmrp->mrp_mask & MRP_TX_RINGS) { 1956 MAC_TX_GRP_RELEASED(mip); 1957 if (mip->mi_tx_group_type == 1958 MAC_GROUP_TYPE_DYNAMIC) { 1959 MAC_TX_RING_RELEASED(mip, ringcnt); 1960 } 1961 } 1962 } else if (group != defgrp && mip->mi_tx_group_type == 1963 MAC_GROUP_TYPE_DYNAMIC) { 1964 ringcnt = group->mrg_cur_count; 1965 err = mac_group_ring_modify(mcip, group, defgrp); 1966 if (err != 0) 1967 return (err); 1968 /* 1969 * Update the accounting. If this group 1970 * already had explicitly reserved rings, 1971 * we need to update the rings based on 1972 * the new ring count. If this group 1973 * had not explicitly reserved rings, 1974 * then we just reserve the rings asked for 1975 * and reserve the group. 1976 */ 1977 if (tmrp->mrp_mask & MRP_TX_RINGS) { 1978 if (ringcnt > group->mrg_cur_count) { 1979 MAC_TX_RING_RELEASED(mip, 1980 ringcnt - group->mrg_cur_count); 1981 } else { 1982 MAC_TX_RING_RESERVED(mip, 1983 group->mrg_cur_count - ringcnt); 1984 } 1985 } else { 1986 MAC_TX_RING_RESERVED(mip, group->mrg_cur_count); 1987 MAC_TX_GRP_RESERVED(mip); 1988 } 1989 } 1990 } 1991 return (0); 1992 } 1993 1994 /* 1995 * When the MAC client is being brought up (i.e. we do a unicast_add) we need 1996 * to initialize the cpu and resource control structure in the 1997 * mac_client_impl_t from the mac_impl_t (i.e if there are any cached 1998 * properties before the flow entry for the unicast address was created). 1999 */ 2000 static int 2001 mac_resource_ctl_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 2002 { 2003 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2004 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 2005 mac_impl_t *umip = mcip->mci_upper_mip; 2006 int err = 0; 2007 flow_entry_t *flent = mcip->mci_flent; 2008 mac_resource_props_t *omrp, *nmrp = MCIP_RESOURCE_PROPS(mcip); 2009 2010 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2011 2012 err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ? 2013 mcip->mci_upper_mip : mip, mrp); 2014 if (err != 0) 2015 return (err); 2016 2017 /* 2018 * Copy over the existing properties since mac_update_resources 2019 * will modify the client's mrp. Currently, the saved property 2020 * is used to determine the difference between existing and 2021 * modified rings property. 2022 */ 2023 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP); 2024 bcopy(nmrp, omrp, sizeof (*omrp)); 2025 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 2026 if (MCIP_DATAPATH_SETUP(mcip)) { 2027 /* 2028 * We support rings only for primary client when there are 2029 * multiple clients sharing the same MAC address (e.g. VLAN). 2030 */ 2031 if (mrp->mrp_mask & MRP_RX_RINGS || 2032 mrp->mrp_mask & MRP_TX_RINGS) { 2033 2034 if ((err = mac_client_set_rings_prop(mcip, mrp, 2035 omrp)) != 0) { 2036 if (omrp->mrp_mask & MRP_RX_RINGS) { 2037 nmrp->mrp_mask |= MRP_RX_RINGS; 2038 nmrp->mrp_nrxrings = omrp->mrp_nrxrings; 2039 } else { 2040 nmrp->mrp_mask &= ~MRP_RX_RINGS; 2041 nmrp->mrp_nrxrings = 0; 2042 } 2043 if (omrp->mrp_mask & MRP_TX_RINGS) { 2044 nmrp->mrp_mask |= MRP_TX_RINGS; 2045 nmrp->mrp_ntxrings = omrp->mrp_ntxrings; 2046 } else { 2047 nmrp->mrp_mask &= ~MRP_TX_RINGS; 2048 nmrp->mrp_ntxrings = 0; 2049 } 2050 if (omrp->mrp_mask & MRP_RXRINGS_UNSPEC) 2051 omrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 2052 else 2053 omrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 2054 2055 if (omrp->mrp_mask & MRP_TXRINGS_UNSPEC) 2056 omrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 2057 else 2058 omrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 2059 kmem_free(omrp, sizeof (*omrp)); 2060 return (err); 2061 } 2062 2063 /* 2064 * If we modified the rings property of the primary 2065 * we need to update the property fields of its 2066 * VLANs as they inherit the primary's properites. 2067 */ 2068 if (mac_is_primary_client(mcip)) { 2069 mac_set_prim_vlan_rings(mip, 2070 MCIP_RESOURCE_PROPS(mcip)); 2071 } 2072 } 2073 /* 2074 * We have to set this prior to calling mac_flow_modify. 2075 */ 2076 if (mrp->mrp_mask & MRP_PRIORITY) { 2077 if (mrp->mrp_priority == MPL_RESET) { 2078 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2079 MPL_LINK_DEFAULT); 2080 } else { 2081 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2082 mrp->mrp_priority); 2083 } 2084 } 2085 2086 mac_flow_modify(mip->mi_flow_tab, flent, mrp); 2087 if (mrp->mrp_mask & MRP_PRIORITY) 2088 mac_update_subflow_priority(mcip); 2089 2090 /* Apply these resource settings to any secondary macs */ 2091 if (umip != NULL) { 2092 ASSERT((umip->mi_state_flags & MIS_IS_VNIC) != 0); 2093 mac_vnic_secondary_update(umip); 2094 } 2095 } 2096 kmem_free(omrp, sizeof (*omrp)); 2097 return (0); 2098 } 2099 2100 static int 2101 mac_unicast_flow_create(mac_client_impl_t *mcip, uint8_t *mac_addr, 2102 uint16_t vid, boolean_t is_primary, boolean_t first_flow, 2103 flow_entry_t **flent, mac_resource_props_t *mrp) 2104 { 2105 mac_impl_t *mip = (mac_impl_t *)mcip->mci_mip; 2106 flow_desc_t flow_desc; 2107 char flowname[MAXFLOWNAMELEN]; 2108 int err; 2109 uint_t flent_flags; 2110 2111 /* 2112 * First unicast address being added, create a new flow 2113 * for that MAC client. 2114 */ 2115 bzero(&flow_desc, sizeof (flow_desc)); 2116 2117 ASSERT(mac_addr != NULL || 2118 (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR)); 2119 if (mac_addr != NULL) { 2120 flow_desc.fd_mac_len = mip->mi_type->mt_addr_length; 2121 bcopy(mac_addr, flow_desc.fd_dst_mac, flow_desc.fd_mac_len); 2122 } 2123 flow_desc.fd_mask = FLOW_LINK_DST; 2124 if (vid != 0) { 2125 flow_desc.fd_vid = vid; 2126 flow_desc.fd_mask |= FLOW_LINK_VID; 2127 } 2128 2129 /* 2130 * XXX-nicolas. For now I'm keeping the FLOW_PRIMARY_MAC 2131 * and FLOW_VNIC. Even though they're a hack inherited 2132 * from the SRS code, we'll keep them for now. They're currently 2133 * consumed by mac_datapath_setup() to create the SRS. 2134 * That code should be eventually moved out of 2135 * mac_datapath_setup() and moved to a mac_srs_create() 2136 * function of some sort to keep things clean. 2137 * 2138 * Also, there's no reason why the SRS for the primary MAC 2139 * client should be different than any other MAC client. Until 2140 * this is cleaned-up, we support only one MAC unicast address 2141 * per client. 2142 * 2143 * We set FLOW_PRIMARY_MAC for the primary MAC address, 2144 * FLOW_VNIC for everything else. 2145 */ 2146 if (is_primary) 2147 flent_flags = FLOW_PRIMARY_MAC; 2148 else 2149 flent_flags = FLOW_VNIC_MAC; 2150 2151 /* 2152 * For the first flow we use the mac client's name - mci_name, for 2153 * subsequent ones we just create a name with the vid. This is 2154 * so that we can add these flows to the same flow table. This is 2155 * fine as the flow name (except for the one with the mac client's 2156 * name) is not visible. When the first flow is removed, we just replace 2157 * its fdesc with another from the list, so we will still retain the 2158 * flent with the MAC client's flow name. 2159 */ 2160 if (first_flow) { 2161 bcopy(mcip->mci_name, flowname, MAXFLOWNAMELEN); 2162 } else { 2163 (void) sprintf(flowname, "%s%u", mcip->mci_name, vid); 2164 flent_flags = FLOW_NO_STATS; 2165 } 2166 2167 if ((err = mac_flow_create(&flow_desc, mrp, flowname, NULL, 2168 flent_flags, flent)) != 0) 2169 return (err); 2170 2171 mac_misc_stat_create(*flent); 2172 FLOW_MARK(*flent, FE_INCIPIENT); 2173 (*flent)->fe_mcip = mcip; 2174 2175 /* 2176 * Place initial creation reference on the flow. This reference 2177 * is released in the corresponding delete action viz. 2178 * mac_unicast_remove after waiting for all transient refs to 2179 * to go away. The wait happens in mac_flow_wait. 2180 * We have already held the reference in mac_client_open(). 2181 */ 2182 if (!first_flow) 2183 FLOW_REFHOLD(*flent); 2184 return (0); 2185 } 2186 2187 /* Refresh the multicast grouping for this VID. */ 2188 int 2189 mac_client_update_mcast(void *arg, boolean_t add, const uint8_t *addrp) 2190 { 2191 flow_entry_t *flent = arg; 2192 mac_client_impl_t *mcip = flent->fe_mcip; 2193 uint16_t vid; 2194 flow_desc_t flow_desc; 2195 2196 mac_flow_get_desc(flent, &flow_desc); 2197 vid = (flow_desc.fd_mask & FLOW_LINK_VID) != 0 ? 2198 flow_desc.fd_vid : VLAN_ID_NONE; 2199 2200 /* 2201 * We don't call mac_multicast_add()/mac_multicast_remove() as 2202 * we want to add/remove for this specific vid. 2203 */ 2204 if (add) { 2205 return (mac_bcast_add(mcip, addrp, vid, 2206 MAC_ADDRTYPE_MULTICAST)); 2207 } else { 2208 mac_bcast_delete(mcip, addrp, vid); 2209 return (0); 2210 } 2211 } 2212 2213 static void 2214 mac_update_single_active_client(mac_impl_t *mip) 2215 { 2216 mac_client_impl_t *client = NULL; 2217 2218 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 2219 2220 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2221 if (mip->mi_nactiveclients == 1) { 2222 /* 2223 * Find the one active MAC client from the list of MAC 2224 * clients. The active MAC client has at least one 2225 * unicast address. 2226 */ 2227 for (client = mip->mi_clients_list; client != NULL; 2228 client = client->mci_client_next) { 2229 if (client->mci_unicast_list != NULL) 2230 break; 2231 } 2232 ASSERT(client != NULL); 2233 } 2234 2235 /* 2236 * mi_single_active_client is protected by the MAC impl's read/writer 2237 * lock, which allows mac_rx() to check the value of that pointer 2238 * as a reader. 2239 */ 2240 mip->mi_single_active_client = client; 2241 rw_exit(&mip->mi_rw_lock); 2242 } 2243 2244 /* 2245 * Set up the data path. Called from i_mac_unicast_add after having 2246 * done all the validations including making sure this is an active 2247 * client (i.e that is ready to process packets.) 2248 */ 2249 static int 2250 mac_client_datapath_setup(mac_client_impl_t *mcip, uint16_t vid, 2251 uint8_t *mac_addr, mac_resource_props_t *mrp, boolean_t isprimary, 2252 mac_unicast_impl_t *muip) 2253 { 2254 mac_impl_t *mip = mcip->mci_mip; 2255 boolean_t mac_started = B_FALSE; 2256 boolean_t bcast_added = B_FALSE; 2257 boolean_t nactiveclients_added = B_FALSE; 2258 flow_entry_t *flent; 2259 int err = 0; 2260 boolean_t no_unicast; 2261 2262 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR; 2263 2264 if ((err = mac_start((mac_handle_t)mip)) != 0) 2265 goto bail; 2266 2267 mac_started = B_TRUE; 2268 2269 /* add the MAC client to the broadcast address group by default */ 2270 if (mip->mi_type->mt_brdcst_addr != NULL) { 2271 err = mac_bcast_add(mcip, mip->mi_type->mt_brdcst_addr, vid, 2272 MAC_ADDRTYPE_BROADCAST); 2273 if (err != 0) 2274 goto bail; 2275 bcast_added = B_TRUE; 2276 } 2277 2278 /* 2279 * If this is the first unicast address addition for this 2280 * client, reuse the pre-allocated larval flow entry associated with 2281 * the MAC client. 2282 */ 2283 flent = (mcip->mci_nflents == 0) ? mcip->mci_flent : NULL; 2284 2285 /* We are configuring the unicast flow now */ 2286 if (!MCIP_DATAPATH_SETUP(mcip)) { 2287 2288 if (mrp != NULL) { 2289 MAC_CLIENT_SET_PRIORITY_RANGE(mcip, 2290 (mrp->mrp_mask & MRP_PRIORITY) ? mrp->mrp_priority : 2291 MPL_LINK_DEFAULT); 2292 } 2293 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 2294 isprimary, B_TRUE, &flent, mrp)) != 0) 2295 goto bail; 2296 2297 mip->mi_nactiveclients++; 2298 nactiveclients_added = B_TRUE; 2299 2300 /* 2301 * This will allocate the RX ring group if possible for the 2302 * flow and program the software classifier as needed. 2303 */ 2304 if ((err = mac_datapath_setup(mcip, flent, SRST_LINK)) != 0) 2305 goto bail; 2306 2307 if (no_unicast) 2308 goto done_setup; 2309 /* 2310 * The unicast MAC address must have been added successfully. 2311 */ 2312 ASSERT(mcip->mci_unicast != NULL); 2313 /* 2314 * Push down the sub-flows that were defined on this link 2315 * hitherto. The flows are added to the active flow table 2316 * and SRS, softrings etc. are created as needed. 2317 */ 2318 mac_link_init_flows((mac_client_handle_t)mcip); 2319 } else { 2320 mac_address_t *map = mcip->mci_unicast; 2321 2322 ASSERT(!no_unicast); 2323 /* 2324 * A unicast flow already exists for that MAC client, 2325 * this flow must be the same mac address but with 2326 * different VID. It has been checked by mac_addr_in_use(). 2327 * 2328 * We will use the SRS etc. from the mci_flent. Note that 2329 * We don't need to create kstat for this as except for 2330 * the fdesc, everything will be used from in the 1st flent. 2331 */ 2332 2333 if (bcmp(mac_addr, map->ma_addr, map->ma_len) != 0) { 2334 err = EINVAL; 2335 goto bail; 2336 } 2337 2338 if ((err = mac_unicast_flow_create(mcip, mac_addr, vid, 2339 isprimary, B_FALSE, &flent, NULL)) != 0) { 2340 goto bail; 2341 } 2342 if ((err = mac_flow_add(mip->mi_flow_tab, flent)) != 0) { 2343 FLOW_FINAL_REFRELE(flent); 2344 goto bail; 2345 } 2346 2347 /* update the multicast group for this vid */ 2348 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 2349 (void *)flent, B_TRUE); 2350 2351 } 2352 2353 /* populate the shared MAC address */ 2354 muip->mui_map = mcip->mci_unicast; 2355 2356 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 2357 muip->mui_next = mcip->mci_unicast_list; 2358 mcip->mci_unicast_list = muip; 2359 rw_exit(&mcip->mci_rw_lock); 2360 2361 done_setup: 2362 /* 2363 * First add the flent to the flow list of this mcip. Then set 2364 * the mip's mi_single_active_client if needed. The Rx path assumes 2365 * that mip->mi_single_active_client will always have an associated 2366 * flent. 2367 */ 2368 mac_client_add_to_flow_list(mcip, flent); 2369 if (nactiveclients_added) 2370 mac_update_single_active_client(mip); 2371 /* 2372 * Trigger a renegotiation of the capabilities when the number of 2373 * active clients changes from 1 to 2, since some of the capabilities 2374 * might have to be disabled. Also send a MAC_NOTE_LINK notification 2375 * to all the MAC clients whenever physical link is DOWN. 2376 */ 2377 if (mip->mi_nactiveclients == 2) { 2378 mac_capab_update((mac_handle_t)mip); 2379 mac_virtual_link_update(mip); 2380 } 2381 /* 2382 * Now that the setup is complete, clear the INCIPIENT flag. 2383 * The flag was set to avoid incoming packets seeing inconsistent 2384 * structures while the setup was in progress. Clear the mci_tx_flag 2385 * by calling mac_tx_client_block. It is possible that 2386 * mac_unicast_remove was called prior to this mac_unicast_add which 2387 * could have set the MCI_TX_QUIESCE flag. 2388 */ 2389 if (flent->fe_rx_ring_group != NULL) 2390 mac_rx_group_unmark(flent->fe_rx_ring_group, MR_INCIPIENT); 2391 FLOW_UNMARK(flent, FE_INCIPIENT); 2392 FLOW_UNMARK(flent, FE_MC_NO_DATAPATH); 2393 mac_tx_client_unblock(mcip); 2394 return (0); 2395 bail: 2396 if (bcast_added) 2397 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, vid); 2398 2399 if (nactiveclients_added) 2400 mip->mi_nactiveclients--; 2401 2402 if (mac_started) 2403 mac_stop((mac_handle_t)mip); 2404 2405 return (err); 2406 } 2407 2408 /* 2409 * Return the passive primary MAC client, if present. The passive client is 2410 * a stand-by client that has the same unicast address as another that is 2411 * currenly active. Once the active client goes away, the passive client 2412 * becomes active. 2413 */ 2414 static mac_client_impl_t * 2415 mac_get_passive_primary_client(mac_impl_t *mip) 2416 { 2417 mac_client_impl_t *mcip; 2418 2419 for (mcip = mip->mi_clients_list; mcip != NULL; 2420 mcip = mcip->mci_client_next) { 2421 if (mac_is_primary_client(mcip) && 2422 (mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 2423 return (mcip); 2424 } 2425 } 2426 return (NULL); 2427 } 2428 2429 /* 2430 * Add a new unicast address to the MAC client. 2431 * 2432 * The MAC address can be specified either by value, or the MAC client 2433 * can specify that it wants to use the primary MAC address of the 2434 * underlying MAC. See the introductory comments at the beginning 2435 * of this file for more more information on primary MAC addresses. 2436 * 2437 * Note also the tuple (MAC address, VID) must be unique 2438 * for the MAC clients defined on top of the same underlying MAC 2439 * instance, unless the MAC_UNICAST_NODUPCHECK is specified. 2440 * 2441 * In no case can a client use the PVID for the MAC, if the MAC has one set. 2442 */ 2443 int 2444 i_mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 2445 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 2446 { 2447 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2448 mac_impl_t *mip = mcip->mci_mip; 2449 int err; 2450 uint_t mac_len = mip->mi_type->mt_addr_length; 2451 boolean_t check_dups = !(flags & MAC_UNICAST_NODUPCHECK); 2452 boolean_t fastpath_disabled = B_FALSE; 2453 boolean_t is_primary = (flags & MAC_UNICAST_PRIMARY); 2454 boolean_t is_unicast_hw = (flags & MAC_UNICAST_HW); 2455 mac_resource_props_t *mrp; 2456 boolean_t passive_client = B_FALSE; 2457 mac_unicast_impl_t *muip; 2458 boolean_t is_vnic_primary = 2459 (flags & MAC_UNICAST_VNIC_PRIMARY); 2460 2461 /* when VID is non-zero, the underlying MAC can not be VNIC */ 2462 ASSERT(!((mip->mi_state_flags & MIS_IS_VNIC) && (vid != 0))); 2463 2464 /* 2465 * Can't unicast add if the client asked only for minimal datapath 2466 * setup. 2467 */ 2468 if (mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR) 2469 return (ENOTSUP); 2470 2471 /* 2472 * Check for an attempted use of the current Port VLAN ID, if enabled. 2473 * No client may use it. 2474 */ 2475 if (mip->mi_pvid != 0 && vid == mip->mi_pvid) 2476 return (EBUSY); 2477 2478 /* 2479 * Check whether it's the primary client and flag it. 2480 */ 2481 if (!(mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && vid == 0) 2482 mcip->mci_flags |= MAC_CLIENT_FLAGS_PRIMARY; 2483 2484 /* 2485 * is_vnic_primary is true when we come here as a VLAN VNIC 2486 * which uses the primary mac client's address but with a non-zero 2487 * VID. In this case the MAC address is not specified by an upper 2488 * MAC client. 2489 */ 2490 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && is_primary && 2491 !is_vnic_primary) { 2492 /* 2493 * The address is being set by the upper MAC client 2494 * of a VNIC. The MAC address was already set by the 2495 * VNIC driver during VNIC creation. 2496 * 2497 * Note: a VNIC has only one MAC address. We return 2498 * the MAC unicast address handle of the lower MAC client 2499 * corresponding to the VNIC. We allocate a new entry 2500 * which is flagged appropriately, so that mac_unicast_remove() 2501 * doesn't attempt to free the original entry that 2502 * was allocated by the VNIC driver. 2503 */ 2504 ASSERT(mcip->mci_unicast != NULL); 2505 2506 /* Check for VLAN flags, if present */ 2507 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 2508 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 2509 2510 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 2511 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 2512 2513 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 2514 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 2515 2516 /* 2517 * Ensure that the primary unicast address of the VNIC 2518 * is added only once unless we have the 2519 * MAC_CLIENT_FLAGS_MULTI_PRIMARY set (and this is not 2520 * a passive MAC client). 2521 */ 2522 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) != 0) { 2523 if ((mcip->mci_flags & 2524 MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 || 2525 (mcip->mci_flags & 2526 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 2527 return (EBUSY); 2528 } 2529 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2530 passive_client = B_TRUE; 2531 } 2532 2533 mcip->mci_flags |= MAC_CLIENT_FLAGS_VNIC_PRIMARY; 2534 2535 /* 2536 * Create a handle for vid 0. 2537 */ 2538 ASSERT(vid == 0); 2539 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 2540 muip->mui_vid = vid; 2541 *mah = (mac_unicast_handle_t)muip; 2542 /* 2543 * This will be used by the caller to defer setting the 2544 * rx functions. 2545 */ 2546 if (passive_client) 2547 return (EAGAIN); 2548 return (0); 2549 } 2550 2551 /* primary MAC clients cannot be opened on top of anchor VNICs */ 2552 if ((is_vnic_primary || is_primary) && 2553 i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_ANCHOR_VNIC, NULL)) { 2554 return (ENXIO); 2555 } 2556 2557 /* 2558 * If this is a VNIC/VLAN, disable softmac fast-path. 2559 */ 2560 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 2561 err = mac_fastpath_disable((mac_handle_t)mip); 2562 if (err != 0) 2563 return (err); 2564 fastpath_disabled = B_TRUE; 2565 } 2566 2567 /* 2568 * Return EBUSY if: 2569 * - there is an exclusively active mac client exists. 2570 * - this is an exclusive active mac client but 2571 * a. there is already active mac clients exist, or 2572 * b. fastpath streams are already plumbed on this legacy device 2573 * - the mac creator has disallowed active mac clients. 2574 */ 2575 if (mip->mi_state_flags & (MIS_EXCLUSIVE|MIS_NO_ACTIVE)) { 2576 if (fastpath_disabled) 2577 mac_fastpath_enable((mac_handle_t)mip); 2578 return (EBUSY); 2579 } 2580 2581 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2582 ASSERT(!fastpath_disabled); 2583 if (mip->mi_nactiveclients != 0) 2584 return (EBUSY); 2585 2586 if ((mip->mi_state_flags & MIS_LEGACY) && 2587 !(mip->mi_capab_legacy.ml_active_set(mip->mi_driver))) { 2588 return (EBUSY); 2589 } 2590 mip->mi_state_flags |= MIS_EXCLUSIVE; 2591 } 2592 2593 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 2594 if (is_primary && !(mcip->mci_state_flags & (MCIS_IS_VNIC | 2595 MCIS_IS_AGGR_PORT))) { 2596 /* 2597 * Apply the property cached in the mac_impl_t to the primary 2598 * mac client. If the mac client is a VNIC or an aggregation 2599 * port, its property should be set in the mcip when the 2600 * VNIC/aggr was created. 2601 */ 2602 mac_get_resources((mac_handle_t)mip, mrp); 2603 (void) mac_client_set_resources(mch, mrp); 2604 } else if (mcip->mci_state_flags & MCIS_IS_VNIC) { 2605 /* 2606 * This is a primary VLAN client, we don't support 2607 * specifying rings property for this as it inherits the 2608 * rings property from its MAC. 2609 */ 2610 if (is_vnic_primary) { 2611 mac_resource_props_t *vmrp; 2612 2613 vmrp = MCIP_RESOURCE_PROPS(mcip); 2614 if (vmrp->mrp_mask & MRP_RX_RINGS || 2615 vmrp->mrp_mask & MRP_TX_RINGS) { 2616 if (fastpath_disabled) 2617 mac_fastpath_enable((mac_handle_t)mip); 2618 kmem_free(mrp, sizeof (*mrp)); 2619 return (ENOTSUP); 2620 } 2621 /* 2622 * Additionally we also need to inherit any 2623 * rings property from the MAC. 2624 */ 2625 mac_get_resources((mac_handle_t)mip, mrp); 2626 if (mrp->mrp_mask & MRP_RX_RINGS) { 2627 vmrp->mrp_mask |= MRP_RX_RINGS; 2628 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 2629 } 2630 if (mrp->mrp_mask & MRP_TX_RINGS) { 2631 vmrp->mrp_mask |= MRP_TX_RINGS; 2632 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 2633 } 2634 } 2635 bcopy(MCIP_RESOURCE_PROPS(mcip), mrp, sizeof (*mrp)); 2636 } 2637 2638 muip = kmem_zalloc(sizeof (mac_unicast_impl_t), KM_SLEEP); 2639 muip->mui_vid = vid; 2640 2641 if (is_primary || is_vnic_primary) { 2642 mac_addr = mip->mi_addr; 2643 } else { 2644 2645 /* 2646 * Verify the validity of the specified MAC addresses value. 2647 */ 2648 if (!mac_unicst_verify((mac_handle_t)mip, mac_addr, mac_len)) { 2649 *diag = MAC_DIAG_MACADDR_INVALID; 2650 err = EINVAL; 2651 goto bail_out; 2652 } 2653 2654 /* 2655 * Make sure that the specified MAC address is different 2656 * than the unicast MAC address of the underlying NIC. 2657 */ 2658 if (check_dups && bcmp(mip->mi_addr, mac_addr, mac_len) == 0) { 2659 *diag = MAC_DIAG_MACADDR_NIC; 2660 err = EINVAL; 2661 goto bail_out; 2662 } 2663 } 2664 2665 /* 2666 * Set the flags here so that if this is a passive client, we 2667 * can return and set it when we call mac_client_datapath_setup 2668 * when this becomes the active client. If we defer to using these 2669 * flags to mac_client_datapath_setup, then for a passive client, 2670 * we'd have to store the flags somewhere (probably fe_flags) 2671 * and then use it. 2672 */ 2673 if (!MCIP_DATAPATH_SETUP(mcip)) { 2674 if (is_unicast_hw) { 2675 /* 2676 * The client requires a hardware MAC address slot 2677 * for that unicast address. Since we support only 2678 * one unicast MAC address per client, flag the 2679 * MAC client itself. 2680 */ 2681 mcip->mci_state_flags |= MCIS_UNICAST_HW; 2682 } 2683 2684 /* Check for VLAN flags, if present */ 2685 if ((flags & MAC_UNICAST_TAG_DISABLE) != 0) 2686 mcip->mci_state_flags |= MCIS_TAG_DISABLE; 2687 2688 if ((flags & MAC_UNICAST_STRIP_DISABLE) != 0) 2689 mcip->mci_state_flags |= MCIS_STRIP_DISABLE; 2690 2691 if ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0) 2692 mcip->mci_state_flags |= MCIS_DISABLE_TX_VID_CHECK; 2693 } else { 2694 /* 2695 * Assert that the specified flags are consistent with the 2696 * flags specified by previous calls to mac_unicast_add(). 2697 */ 2698 ASSERT(((flags & MAC_UNICAST_TAG_DISABLE) != 0 && 2699 (mcip->mci_state_flags & MCIS_TAG_DISABLE) != 0) || 2700 ((flags & MAC_UNICAST_TAG_DISABLE) == 0 && 2701 (mcip->mci_state_flags & MCIS_TAG_DISABLE) == 0)); 2702 2703 ASSERT(((flags & MAC_UNICAST_STRIP_DISABLE) != 0 && 2704 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) != 0) || 2705 ((flags & MAC_UNICAST_STRIP_DISABLE) == 0 && 2706 (mcip->mci_state_flags & MCIS_STRIP_DISABLE) == 0)); 2707 2708 ASSERT(((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) != 0 && 2709 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) != 0) || 2710 ((flags & MAC_UNICAST_DISABLE_TX_VID_CHECK) == 0 && 2711 (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) == 0)); 2712 2713 /* 2714 * Make sure the client is consistent about its requests 2715 * for MAC addresses. I.e. all requests from the clients 2716 * must have the MAC_UNICAST_HW flag set or clear. 2717 */ 2718 if ((mcip->mci_state_flags & MCIS_UNICAST_HW) != 0 && 2719 !is_unicast_hw || 2720 (mcip->mci_state_flags & MCIS_UNICAST_HW) == 0 && 2721 is_unicast_hw) { 2722 err = EINVAL; 2723 goto bail_out; 2724 } 2725 } 2726 /* 2727 * Make sure the MAC address is not already used by 2728 * another MAC client defined on top of the same 2729 * underlying NIC. Unless we have MAC_CLIENT_FLAGS_MULTI_PRIMARY 2730 * set when we allow a passive client to be present which will 2731 * be activated when the currently active client goes away - this 2732 * works only with primary addresses. 2733 */ 2734 if ((check_dups || is_primary || is_vnic_primary) && 2735 mac_addr_in_use(mip, mac_addr, vid)) { 2736 /* 2737 * Must have set the multiple primary address flag when 2738 * we did a mac_client_open AND this should be a primary 2739 * MAC client AND there should not already be a passive 2740 * primary. If all is true then we let this succeed 2741 * even if the address is a dup. 2742 */ 2743 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_MULTI_PRIMARY) == 0 || 2744 (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) == 0 || 2745 mac_get_passive_primary_client(mip) != NULL) { 2746 *diag = MAC_DIAG_MACADDR_INUSE; 2747 err = EEXIST; 2748 goto bail_out; 2749 } 2750 ASSERT((mcip->mci_flags & 2751 MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) == 0); 2752 mcip->mci_flags |= MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2753 kmem_free(mrp, sizeof (*mrp)); 2754 2755 /* 2756 * Stash the unicast address handle, we will use it when 2757 * we set up the passive client. 2758 */ 2759 mcip->mci_p_unicast_list = muip; 2760 *mah = (mac_unicast_handle_t)muip; 2761 return (0); 2762 } 2763 2764 err = mac_client_datapath_setup(mcip, vid, mac_addr, mrp, 2765 is_primary || is_vnic_primary, muip); 2766 if (err != 0) 2767 goto bail_out; 2768 2769 kmem_free(mrp, sizeof (*mrp)); 2770 *mah = (mac_unicast_handle_t)muip; 2771 return (0); 2772 2773 bail_out: 2774 if (fastpath_disabled) 2775 mac_fastpath_enable((mac_handle_t)mip); 2776 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2777 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2778 if (mip->mi_state_flags & MIS_LEGACY) { 2779 mip->mi_capab_legacy.ml_active_clear( 2780 mip->mi_driver); 2781 } 2782 } 2783 kmem_free(mrp, sizeof (*mrp)); 2784 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2785 return (err); 2786 } 2787 2788 /* 2789 * Wrapper function to mac_unicast_add when we want to have the same mac 2790 * client open for two instances, one that is currently active and another 2791 * that will become active when the current one is removed. In this case 2792 * mac_unicast_add will return EGAIN and we will save the rx function and 2793 * arg which will be used when we activate the passive client in 2794 * mac_unicast_remove. 2795 */ 2796 int 2797 mac_unicast_add_set_rx(mac_client_handle_t mch, uint8_t *mac_addr, 2798 uint16_t flags, mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag, 2799 mac_rx_t rx_fn, void *arg) 2800 { 2801 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2802 uint_t err; 2803 2804 err = mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 2805 if (err != 0 && err != EAGAIN) 2806 return (err); 2807 if (err == EAGAIN) { 2808 if (rx_fn != NULL) { 2809 mcip->mci_rx_p_fn = rx_fn; 2810 mcip->mci_rx_p_arg = arg; 2811 } 2812 return (0); 2813 } 2814 if (rx_fn != NULL) 2815 mac_rx_set(mch, rx_fn, arg); 2816 return (err); 2817 } 2818 2819 int 2820 mac_unicast_add(mac_client_handle_t mch, uint8_t *mac_addr, uint16_t flags, 2821 mac_unicast_handle_t *mah, uint16_t vid, mac_diag_t *diag) 2822 { 2823 mac_impl_t *mip = ((mac_client_impl_t *)mch)->mci_mip; 2824 uint_t err; 2825 2826 i_mac_perim_enter(mip); 2827 err = i_mac_unicast_add(mch, mac_addr, flags, mah, vid, diag); 2828 i_mac_perim_exit(mip); 2829 2830 return (err); 2831 } 2832 2833 static void 2834 mac_client_datapath_teardown(mac_client_handle_t mch, mac_unicast_impl_t *muip, 2835 flow_entry_t *flent) 2836 { 2837 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2838 mac_impl_t *mip = mcip->mci_mip; 2839 boolean_t no_unicast; 2840 2841 /* 2842 * If we have not added a unicast address for this MAC client, just 2843 * teardown the datapath. 2844 */ 2845 no_unicast = mcip->mci_state_flags & MCIS_NO_UNICAST_ADDR; 2846 2847 if (!no_unicast) { 2848 /* 2849 * We would have initialized subflows etc. only if we brought 2850 * up the primary client and set the unicast unicast address 2851 * etc. Deactivate the flows. The flow entry will be removed 2852 * from the active flow tables, and the associated SRS, 2853 * softrings etc will be deleted. But the flow entry itself 2854 * won't be destroyed, instead it will continue to be archived 2855 * off the the global flow hash list, for a possible future 2856 * activation when say IP is plumbed again. 2857 */ 2858 mac_link_release_flows(mch); 2859 } 2860 mip->mi_nactiveclients--; 2861 mac_update_single_active_client(mip); 2862 2863 /* Tear down the data path */ 2864 mac_datapath_teardown(mcip, mcip->mci_flent, SRST_LINK); 2865 2866 /* 2867 * Prevent any future access to the flow entry through the mci_flent 2868 * pointer by setting the mci_flent to NULL. Access to mci_flent in 2869 * mac_bcast_send is also under mi_rw_lock. 2870 */ 2871 rw_enter(&mip->mi_rw_lock, RW_WRITER); 2872 flent = mcip->mci_flent; 2873 mac_client_remove_flow_from_list(mcip, flent); 2874 2875 if (mcip->mci_state_flags & MCIS_DESC_LOGGED) 2876 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 2877 2878 /* 2879 * This is the last unicast address being removed and there shouldn't 2880 * be any outbound data threads at this point coming down from mac 2881 * clients. We have waited for the data threads to finish before 2882 * starting dld_str_detach. Non-data threads must access TX SRS 2883 * under mi_rw_lock. 2884 */ 2885 rw_exit(&mip->mi_rw_lock); 2886 2887 /* 2888 * Don't use FLOW_MARK with FE_MC_NO_DATAPATH, as the flow might 2889 * contain other flags, such as FE_CONDEMNED, which we need to 2890 * cleared. We don't call mac_flow_cleanup() for this unicast 2891 * flow as we have a already cleaned up SRSs etc. (via the teadown 2892 * path). We just clear the stats and reset the initial callback 2893 * function, the rest will be set when we call mac_flow_create, 2894 * if at all. 2895 */ 2896 mutex_enter(&flent->fe_lock); 2897 ASSERT(flent->fe_refcnt == 1 && flent->fe_mbg == NULL && 2898 flent->fe_tx_srs == NULL && flent->fe_rx_srs_cnt == 0); 2899 flent->fe_flags = FE_MC_NO_DATAPATH; 2900 flow_stat_destroy(flent); 2901 mac_misc_stat_delete(flent); 2902 2903 /* Initialize the receiver function to a safe routine */ 2904 flent->fe_cb_fn = (flow_fn_t)mac_pkt_drop; 2905 flent->fe_cb_arg1 = NULL; 2906 flent->fe_cb_arg2 = NULL; 2907 2908 flent->fe_index = -1; 2909 mutex_exit(&flent->fe_lock); 2910 2911 if (mip->mi_type->mt_brdcst_addr != NULL) { 2912 ASSERT(muip != NULL || no_unicast); 2913 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 2914 muip != NULL ? muip->mui_vid : VLAN_ID_NONE); 2915 } 2916 2917 if (mip->mi_nactiveclients == 1) { 2918 mac_capab_update((mac_handle_t)mip); 2919 mac_virtual_link_update(mip); 2920 } 2921 2922 if (mcip->mci_state_flags & MCIS_EXCLUSIVE) { 2923 mip->mi_state_flags &= ~MIS_EXCLUSIVE; 2924 2925 if (mip->mi_state_flags & MIS_LEGACY) 2926 mip->mi_capab_legacy.ml_active_clear(mip->mi_driver); 2927 } 2928 2929 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 2930 2931 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 2932 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 2933 2934 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 2935 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 2936 2937 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 2938 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 2939 2940 if (muip != NULL) 2941 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2942 mac_protect_cancel_timer(mcip); 2943 mac_protect_flush_dhcp(mcip); 2944 2945 bzero(&mcip->mci_misc_stat, sizeof (mcip->mci_misc_stat)); 2946 /* 2947 * Disable fastpath if this is a VNIC or a VLAN. 2948 */ 2949 if (mcip->mci_state_flags & MCIS_IS_VNIC) 2950 mac_fastpath_enable((mac_handle_t)mip); 2951 mac_stop((mac_handle_t)mip); 2952 } 2953 2954 /* 2955 * Remove a MAC address which was previously added by mac_unicast_add(). 2956 */ 2957 int 2958 mac_unicast_remove(mac_client_handle_t mch, mac_unicast_handle_t mah) 2959 { 2960 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 2961 mac_unicast_impl_t *muip = (mac_unicast_impl_t *)mah; 2962 mac_unicast_impl_t *pre; 2963 mac_impl_t *mip = mcip->mci_mip; 2964 flow_entry_t *flent; 2965 uint16_t mui_vid; 2966 2967 i_mac_perim_enter(mip); 2968 if (mcip->mci_flags & MAC_CLIENT_FLAGS_VNIC_PRIMARY) { 2969 /* 2970 * Called made by the upper MAC client of a VNIC. 2971 * There's nothing much to do, the unicast address will 2972 * be removed by the VNIC driver when the VNIC is deleted, 2973 * but let's ensure that all our transmit is done before 2974 * the client does a mac_client_stop lest it trigger an 2975 * assert in the driver. 2976 */ 2977 ASSERT(muip->mui_vid == 0); 2978 2979 mac_tx_client_flush(mcip); 2980 2981 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 2982 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 2983 if (mcip->mci_rx_p_fn != NULL) { 2984 mac_rx_set(mch, mcip->mci_rx_p_fn, 2985 mcip->mci_rx_p_arg); 2986 mcip->mci_rx_p_fn = NULL; 2987 mcip->mci_rx_p_arg = NULL; 2988 } 2989 kmem_free(muip, sizeof (mac_unicast_impl_t)); 2990 i_mac_perim_exit(mip); 2991 return (0); 2992 } 2993 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_VNIC_PRIMARY; 2994 2995 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 2996 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 2997 2998 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 2999 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 3000 3001 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 3002 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 3003 3004 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3005 i_mac_perim_exit(mip); 3006 return (0); 3007 } 3008 3009 ASSERT(muip != NULL); 3010 3011 /* 3012 * We are removing a passive client, we haven't setup the datapath 3013 * for this yet, so nothing much to do. 3014 */ 3015 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PASSIVE_PRIMARY) != 0) { 3016 3017 ASSERT((mcip->mci_flent->fe_flags & FE_MC_NO_DATAPATH) != 0); 3018 ASSERT(mcip->mci_p_unicast_list == muip); 3019 3020 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 3021 3022 mcip->mci_p_unicast_list = NULL; 3023 mcip->mci_rx_p_fn = NULL; 3024 mcip->mci_rx_p_arg = NULL; 3025 3026 mcip->mci_state_flags &= ~MCIS_UNICAST_HW; 3027 3028 if (mcip->mci_state_flags & MCIS_TAG_DISABLE) 3029 mcip->mci_state_flags &= ~MCIS_TAG_DISABLE; 3030 3031 if (mcip->mci_state_flags & MCIS_STRIP_DISABLE) 3032 mcip->mci_state_flags &= ~MCIS_STRIP_DISABLE; 3033 3034 if (mcip->mci_state_flags & MCIS_DISABLE_TX_VID_CHECK) 3035 mcip->mci_state_flags &= ~MCIS_DISABLE_TX_VID_CHECK; 3036 3037 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3038 i_mac_perim_exit(mip); 3039 return (0); 3040 } 3041 /* 3042 * Remove the VID from the list of client's VIDs. 3043 */ 3044 pre = mcip->mci_unicast_list; 3045 if (muip == pre) { 3046 mcip->mci_unicast_list = muip->mui_next; 3047 } else { 3048 while ((pre->mui_next != NULL) && (pre->mui_next != muip)) 3049 pre = pre->mui_next; 3050 ASSERT(pre->mui_next == muip); 3051 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 3052 pre->mui_next = muip->mui_next; 3053 rw_exit(&mcip->mci_rw_lock); 3054 } 3055 3056 if (!mac_client_single_rcvr(mcip)) { 3057 /* 3058 * This MAC client is shared by more than one unicast 3059 * addresses, so we will just remove the flent 3060 * corresponding to the address being removed. We don't invoke 3061 * mac_rx_classify_flow_rem() since the additional flow is 3062 * not associated with its own separate set of SRS and rings, 3063 * and these constructs are still needed for the remaining 3064 * flows. 3065 */ 3066 flent = mac_client_get_flow(mcip, muip); 3067 ASSERT(flent != NULL); 3068 3069 /* 3070 * The first one is disappearing, need to make sure 3071 * we replace it with another from the list of 3072 * shared clients. 3073 */ 3074 if (flent == mcip->mci_flent) 3075 flent = mac_client_swap_mciflent(mcip); 3076 mac_client_remove_flow_from_list(mcip, flent); 3077 mac_flow_remove(mip->mi_flow_tab, flent, B_FALSE); 3078 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 3079 3080 /* 3081 * The multicast groups that were added by the client so 3082 * far must be removed from the brodcast domain corresponding 3083 * to the VID being removed. 3084 */ 3085 mac_client_bcast_refresh(mcip, mac_client_update_mcast, 3086 (void *)flent, B_FALSE); 3087 3088 if (mip->mi_type->mt_brdcst_addr != NULL) { 3089 mac_bcast_delete(mcip, mip->mi_type->mt_brdcst_addr, 3090 muip->mui_vid); 3091 } 3092 3093 FLOW_FINAL_REFRELE(flent); 3094 ASSERT(!(mcip->mci_state_flags & MCIS_EXCLUSIVE)); 3095 /* 3096 * Enable fastpath if this is a VNIC or a VLAN. 3097 */ 3098 if (mcip->mci_state_flags & MCIS_IS_VNIC) 3099 mac_fastpath_enable((mac_handle_t)mip); 3100 mac_stop((mac_handle_t)mip); 3101 i_mac_perim_exit(mip); 3102 return (0); 3103 } 3104 3105 mui_vid = muip->mui_vid; 3106 mac_client_datapath_teardown(mch, muip, flent); 3107 3108 if ((mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY) && mui_vid == 0) { 3109 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PRIMARY; 3110 } else { 3111 i_mac_perim_exit(mip); 3112 return (0); 3113 } 3114 3115 /* 3116 * If we are removing the primary, check if we have a passive primary 3117 * client that we need to activate now. 3118 */ 3119 mcip = mac_get_passive_primary_client(mip); 3120 if (mcip != NULL) { 3121 mac_resource_props_t *mrp; 3122 mac_unicast_impl_t *muip; 3123 3124 mcip->mci_flags &= ~MAC_CLIENT_FLAGS_PASSIVE_PRIMARY; 3125 mrp = kmem_zalloc(sizeof (*mrp), KM_SLEEP); 3126 3127 /* 3128 * Apply the property cached in the mac_impl_t to the 3129 * primary mac client. 3130 */ 3131 mac_get_resources((mac_handle_t)mip, mrp); 3132 (void) mac_client_set_resources(mch, mrp); 3133 ASSERT(mcip->mci_p_unicast_list != NULL); 3134 muip = mcip->mci_p_unicast_list; 3135 mcip->mci_p_unicast_list = NULL; 3136 if (mac_client_datapath_setup(mcip, VLAN_ID_NONE, 3137 mip->mi_addr, mrp, B_TRUE, muip) == 0) { 3138 if (mcip->mci_rx_p_fn != NULL) { 3139 mac_rx_set(mch, mcip->mci_rx_p_fn, 3140 mcip->mci_rx_p_arg); 3141 mcip->mci_rx_p_fn = NULL; 3142 mcip->mci_rx_p_arg = NULL; 3143 } 3144 } else { 3145 kmem_free(muip, sizeof (mac_unicast_impl_t)); 3146 } 3147 kmem_free(mrp, sizeof (*mrp)); 3148 } 3149 i_mac_perim_exit(mip); 3150 return (0); 3151 } 3152 3153 /* 3154 * Multicast add function invoked by MAC clients. 3155 */ 3156 int 3157 mac_multicast_add(mac_client_handle_t mch, const uint8_t *addr) 3158 { 3159 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3160 mac_impl_t *mip = mcip->mci_mip; 3161 flow_entry_t *flent = mcip->mci_flent_list; 3162 flow_entry_t *prev_fe = NULL; 3163 uint16_t vid; 3164 int err = 0; 3165 3166 /* Verify the address is a valid multicast address */ 3167 if ((err = mip->mi_type->mt_ops.mtops_multicst_verify(addr, 3168 mip->mi_pdata)) != 0) 3169 return (err); 3170 3171 i_mac_perim_enter(mip); 3172 while (flent != NULL) { 3173 vid = i_mac_flow_vid(flent); 3174 3175 err = mac_bcast_add((mac_client_impl_t *)mch, addr, vid, 3176 MAC_ADDRTYPE_MULTICAST); 3177 if (err != 0) 3178 break; 3179 prev_fe = flent; 3180 flent = flent->fe_client_next; 3181 } 3182 3183 /* 3184 * If we failed adding, then undo all, rather than partial 3185 * success. 3186 */ 3187 if (flent != NULL && prev_fe != NULL) { 3188 flent = mcip->mci_flent_list; 3189 while (flent != prev_fe->fe_client_next) { 3190 vid = i_mac_flow_vid(flent); 3191 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 3192 flent = flent->fe_client_next; 3193 } 3194 } 3195 i_mac_perim_exit(mip); 3196 return (err); 3197 } 3198 3199 /* 3200 * Multicast delete function invoked by MAC clients. 3201 */ 3202 void 3203 mac_multicast_remove(mac_client_handle_t mch, const uint8_t *addr) 3204 { 3205 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3206 mac_impl_t *mip = mcip->mci_mip; 3207 flow_entry_t *flent; 3208 uint16_t vid; 3209 3210 i_mac_perim_enter(mip); 3211 for (flent = mcip->mci_flent_list; flent != NULL; 3212 flent = flent->fe_client_next) { 3213 vid = i_mac_flow_vid(flent); 3214 mac_bcast_delete((mac_client_impl_t *)mch, addr, vid); 3215 } 3216 i_mac_perim_exit(mip); 3217 } 3218 3219 /* 3220 * When a MAC client desires to capture packets on an interface, 3221 * it registers a promiscuous call back with mac_promisc_add(). 3222 * There are three types of promiscuous callbacks: 3223 * 3224 * * MAC_CLIENT_PROMISC_ALL 3225 * Captures all packets sent and received by the MAC client, 3226 * the physical interface, as well as all other MAC clients 3227 * defined on top of the same MAC. 3228 * 3229 * * MAC_CLIENT_PROMISC_FILTERED 3230 * Captures all packets sent and received by the MAC client, 3231 * plus all multicast traffic sent and received by the phyisical 3232 * interface and the other MAC clients. 3233 * 3234 * * MAC_CLIENT_PROMISC_MULTI 3235 * Captures all broadcast and multicast packets sent and 3236 * received by the MAC clients as well as the physical interface. 3237 * 3238 * In all cases, the underlying MAC is put in promiscuous mode. 3239 */ 3240 int 3241 mac_promisc_add(mac_client_handle_t mch, mac_client_promisc_type_t type, 3242 mac_rx_t fn, void *arg, mac_promisc_handle_t *mphp, uint16_t flags) 3243 { 3244 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3245 mac_impl_t *mip = mcip->mci_mip; 3246 mac_promisc_impl_t *mpip; 3247 mac_cb_info_t *mcbi; 3248 int rc; 3249 3250 i_mac_perim_enter(mip); 3251 3252 if ((rc = mac_start((mac_handle_t)mip)) != 0) { 3253 i_mac_perim_exit(mip); 3254 return (rc); 3255 } 3256 3257 if ((mcip->mci_state_flags & MCIS_IS_VNIC) && 3258 type == MAC_CLIENT_PROMISC_ALL) { 3259 /* 3260 * The function is being invoked by the upper MAC client 3261 * of a VNIC. The VNIC should only see the traffic 3262 * it is entitled to. 3263 */ 3264 type = MAC_CLIENT_PROMISC_FILTERED; 3265 } 3266 3267 3268 /* 3269 * Turn on promiscuous mode for the underlying NIC. 3270 * This is needed even for filtered callbacks which 3271 * expect to receive all multicast traffic on the wire. 3272 * 3273 * Physical promiscuous mode should not be turned on if 3274 * MAC_PROMISC_FLAGS_NO_PHYS is set. 3275 */ 3276 if ((flags & MAC_PROMISC_FLAGS_NO_PHYS) == 0) { 3277 if ((rc = i_mac_promisc_set(mip, B_TRUE)) != 0) { 3278 mac_stop((mac_handle_t)mip); 3279 i_mac_perim_exit(mip); 3280 return (rc); 3281 } 3282 } 3283 3284 mpip = kmem_cache_alloc(mac_promisc_impl_cache, KM_SLEEP); 3285 3286 mpip->mpi_type = type; 3287 mpip->mpi_fn = fn; 3288 mpip->mpi_arg = arg; 3289 mpip->mpi_mcip = mcip; 3290 mpip->mpi_no_tx_loop = ((flags & MAC_PROMISC_FLAGS_NO_TX_LOOP) != 0); 3291 mpip->mpi_no_phys = ((flags & MAC_PROMISC_FLAGS_NO_PHYS) != 0); 3292 mpip->mpi_strip_vlan_tag = 3293 ((flags & MAC_PROMISC_FLAGS_VLAN_TAG_STRIP) != 0); 3294 mpip->mpi_no_copy = ((flags & MAC_PROMISC_FLAGS_NO_COPY) != 0); 3295 3296 mcbi = &mip->mi_promisc_cb_info; 3297 mutex_enter(mcbi->mcbi_lockp); 3298 3299 mac_callback_add(&mip->mi_promisc_cb_info, &mcip->mci_promisc_list, 3300 &mpip->mpi_mci_link); 3301 mac_callback_add(&mip->mi_promisc_cb_info, &mip->mi_promisc_list, 3302 &mpip->mpi_mi_link); 3303 3304 mutex_exit(mcbi->mcbi_lockp); 3305 3306 *mphp = (mac_promisc_handle_t)mpip; 3307 3308 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 3309 mac_impl_t *umip = mcip->mci_upper_mip; 3310 3311 ASSERT(umip != NULL); 3312 mac_vnic_secondary_update(umip); 3313 } 3314 3315 i_mac_perim_exit(mip); 3316 3317 return (0); 3318 } 3319 3320 /* 3321 * Remove a multicast address previously aded through mac_promisc_add(). 3322 */ 3323 void 3324 mac_promisc_remove(mac_promisc_handle_t mph) 3325 { 3326 mac_promisc_impl_t *mpip = (mac_promisc_impl_t *)mph; 3327 mac_client_impl_t *mcip = mpip->mpi_mcip; 3328 mac_impl_t *mip = mcip->mci_mip; 3329 mac_cb_info_t *mcbi; 3330 int rv; 3331 3332 i_mac_perim_enter(mip); 3333 3334 /* 3335 * Even if the device can't be reset into normal mode, we still 3336 * need to clear the client promisc callbacks. The client may want 3337 * to close the mac end point and we can't have stale callbacks. 3338 */ 3339 if (!(mpip->mpi_no_phys)) { 3340 if ((rv = i_mac_promisc_set(mip, B_FALSE)) != 0) { 3341 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous" 3342 " mode because of error 0x%x", mip->mi_name, rv); 3343 } 3344 } 3345 mcbi = &mip->mi_promisc_cb_info; 3346 mutex_enter(mcbi->mcbi_lockp); 3347 if (mac_callback_remove(mcbi, &mip->mi_promisc_list, 3348 &mpip->mpi_mi_link)) { 3349 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 3350 &mcip->mci_promisc_list, &mpip->mpi_mci_link)); 3351 kmem_cache_free(mac_promisc_impl_cache, mpip); 3352 } else { 3353 mac_callback_remove_wait(&mip->mi_promisc_cb_info); 3354 } 3355 3356 if (mcip->mci_state_flags & MCIS_IS_VNIC) { 3357 mac_impl_t *umip = mcip->mci_upper_mip; 3358 3359 ASSERT(umip != NULL); 3360 mac_vnic_secondary_update(umip); 3361 } 3362 3363 mutex_exit(mcbi->mcbi_lockp); 3364 mac_stop((mac_handle_t)mip); 3365 3366 i_mac_perim_exit(mip); 3367 } 3368 3369 /* 3370 * Reference count the number of active Tx threads. MCI_TX_QUIESCE indicates 3371 * that a control operation wants to quiesce the Tx data flow in which case 3372 * we return an error. Holding any of the per cpu locks ensures that the 3373 * mci_tx_flag won't change. 3374 * 3375 * 'CPU' must be accessed just once and used to compute the index into the 3376 * percpu array, and that index must be used for the entire duration of the 3377 * packet send operation. Note that the thread may be preempted and run on 3378 * another cpu any time and so we can't use 'CPU' more than once for the 3379 * operation. 3380 */ 3381 #define MAC_TX_TRY_HOLD(mcip, mytx, error) \ 3382 { \ 3383 (error) = 0; \ 3384 (mytx) = &(mcip)->mci_tx_pcpu[CPU->cpu_seqid & mac_tx_percpu_cnt]; \ 3385 mutex_enter(&(mytx)->pcpu_tx_lock); \ 3386 if (!((mcip)->mci_tx_flag & MCI_TX_QUIESCE)) { \ 3387 (mytx)->pcpu_tx_refcnt++; \ 3388 } else { \ 3389 (error) = -1; \ 3390 } \ 3391 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3392 } 3393 3394 /* 3395 * Release the reference. If needed, signal any control operation waiting 3396 * for Tx quiescence. The wait and signal are always done using the 3397 * mci_tx_pcpu[0]'s lock 3398 */ 3399 #define MAC_TX_RELE(mcip, mytx) { \ 3400 mutex_enter(&(mytx)->pcpu_tx_lock); \ 3401 if (--(mytx)->pcpu_tx_refcnt == 0 && \ 3402 (mcip)->mci_tx_flag & MCI_TX_QUIESCE) { \ 3403 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3404 mutex_enter(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 3405 cv_signal(&(mcip)->mci_tx_cv); \ 3406 mutex_exit(&(mcip)->mci_tx_pcpu[0].pcpu_tx_lock); \ 3407 } else { \ 3408 mutex_exit(&(mytx)->pcpu_tx_lock); \ 3409 } \ 3410 } 3411 3412 /* 3413 * Send function invoked by MAC clients. 3414 */ 3415 mac_tx_cookie_t 3416 mac_tx(mac_client_handle_t mch, mblk_t *mp_chain, uintptr_t hint, 3417 uint16_t flag, mblk_t **ret_mp) 3418 { 3419 mac_tx_cookie_t cookie = NULL; 3420 int error; 3421 mac_tx_percpu_t *mytx; 3422 mac_soft_ring_set_t *srs; 3423 flow_entry_t *flent; 3424 boolean_t is_subflow = B_FALSE; 3425 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3426 mac_impl_t *mip = mcip->mci_mip; 3427 mac_srs_tx_t *srs_tx; 3428 3429 /* 3430 * Check whether the active Tx threads count is bumped already. 3431 */ 3432 if (!(flag & MAC_TX_NO_HOLD)) { 3433 MAC_TX_TRY_HOLD(mcip, mytx, error); 3434 if (error != 0) { 3435 freemsgchain(mp_chain); 3436 return (NULL); 3437 } 3438 } 3439 3440 /* 3441 * If mac protection is enabled, only the permissible packets will be 3442 * returned by mac_protect_check(). 3443 */ 3444 if ((mcip->mci_flent-> 3445 fe_resource_props.mrp_mask & MRP_PROTECT) != 0 && 3446 (mp_chain = mac_protect_check(mch, mp_chain)) == NULL) 3447 goto done; 3448 3449 if (mcip->mci_subflow_tab != NULL && 3450 mcip->mci_subflow_tab->ft_flow_count > 0 && 3451 mac_flow_lookup(mcip->mci_subflow_tab, mp_chain, 3452 FLOW_OUTBOUND, &flent) == 0) { 3453 /* 3454 * The main assumption here is that if in the event 3455 * we get a chain, all the packets will be classified 3456 * to the same Flow/SRS. If this changes for any 3457 * reason, the following logic should change as well. 3458 * I suppose the fanout_hint also assumes this . 3459 */ 3460 ASSERT(flent != NULL); 3461 is_subflow = B_TRUE; 3462 } else { 3463 flent = mcip->mci_flent; 3464 } 3465 3466 srs = flent->fe_tx_srs; 3467 /* 3468 * This is to avoid panics with PF_PACKET that can call mac_tx() 3469 * against an interface that is not capable of sending. A rewrite 3470 * of the mac datapath is required to remove this limitation. 3471 */ 3472 if (srs == NULL) { 3473 freemsgchain(mp_chain); 3474 goto done; 3475 } 3476 3477 srs_tx = &srs->srs_tx; 3478 if (srs_tx->st_mode == SRS_TX_DEFAULT && 3479 (srs->srs_state & SRS_ENQUEUED) == 0 && 3480 mip->mi_nactiveclients == 1 && mp_chain->b_next == NULL) { 3481 uint64_t obytes; 3482 3483 /* 3484 * Since dls always opens the underlying MAC, nclients equals 3485 * to 1 means that the only active client is dls itself acting 3486 * as a primary client of the MAC instance. Since dls will not 3487 * send tagged packets in that case, and dls is trusted to send 3488 * packets for its allowed VLAN(s), the VLAN tag insertion and 3489 * check is required only if nclients is greater than 1. 3490 */ 3491 if (mip->mi_nclients > 1) { 3492 if (MAC_VID_CHECK_NEEDED(mcip)) { 3493 int err = 0; 3494 3495 MAC_VID_CHECK(mcip, mp_chain, err); 3496 if (err != 0) { 3497 freemsg(mp_chain); 3498 mcip->mci_misc_stat.mms_txerrors++; 3499 goto done; 3500 } 3501 } 3502 if (MAC_TAG_NEEDED(mcip)) { 3503 mp_chain = mac_add_vlan_tag(mp_chain, 0, 3504 mac_client_vid(mch)); 3505 if (mp_chain == NULL) { 3506 mcip->mci_misc_stat.mms_txerrors++; 3507 goto done; 3508 } 3509 } 3510 } 3511 3512 obytes = (mp_chain->b_cont == NULL ? MBLKL(mp_chain) : 3513 msgdsize(mp_chain)); 3514 3515 MAC_TX(mip, srs_tx->st_arg2, mp_chain, mcip); 3516 if (mp_chain == NULL) { 3517 cookie = NULL; 3518 SRS_TX_STAT_UPDATE(srs, opackets, 1); 3519 SRS_TX_STAT_UPDATE(srs, obytes, obytes); 3520 } else { 3521 mutex_enter(&srs->srs_lock); 3522 cookie = mac_tx_srs_no_desc(srs, mp_chain, 3523 flag, ret_mp); 3524 mutex_exit(&srs->srs_lock); 3525 } 3526 } else { 3527 cookie = srs_tx->st_func(srs, mp_chain, hint, flag, ret_mp); 3528 } 3529 3530 done: 3531 if (is_subflow) 3532 FLOW_REFRELE(flent); 3533 3534 if (!(flag & MAC_TX_NO_HOLD)) 3535 MAC_TX_RELE(mcip, mytx); 3536 3537 return (cookie); 3538 } 3539 3540 /* 3541 * mac_tx_is_blocked 3542 * 3543 * Given a cookie, it returns if the ring identified by the cookie is 3544 * flow-controlled or not. If NULL is passed in place of a cookie, 3545 * then it finds out if any of the underlying rings belonging to the 3546 * SRS is flow controlled or not and returns that status. 3547 */ 3548 /* ARGSUSED */ 3549 boolean_t 3550 mac_tx_is_flow_blocked(mac_client_handle_t mch, mac_tx_cookie_t cookie) 3551 { 3552 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3553 mac_soft_ring_set_t *mac_srs; 3554 mac_soft_ring_t *sringp; 3555 boolean_t blocked = B_FALSE; 3556 mac_tx_percpu_t *mytx; 3557 int err; 3558 int i; 3559 3560 /* 3561 * Bump the reference count so that mac_srs won't be deleted. 3562 * If the client is currently quiesced and we failed to bump 3563 * the reference, return B_TRUE so that flow control stays 3564 * as enabled. 3565 * 3566 * Flow control will then be disabled once the client is no 3567 * longer quiesced. 3568 */ 3569 MAC_TX_TRY_HOLD(mcip, mytx, err); 3570 if (err != 0) 3571 return (B_TRUE); 3572 3573 if ((mac_srs = MCIP_TX_SRS(mcip)) == NULL) { 3574 MAC_TX_RELE(mcip, mytx); 3575 return (B_FALSE); 3576 } 3577 3578 mutex_enter(&mac_srs->srs_lock); 3579 /* 3580 * Only in the case of TX_FANOUT and TX_AGGR, the underlying 3581 * softring (s_ring_state) will have the HIWAT set. This is 3582 * the multiple Tx ring flow control case. For all other 3583 * case, SRS (srs_state) will store the condition. 3584 */ 3585 if (mac_srs->srs_tx.st_mode == SRS_TX_FANOUT || 3586 mac_srs->srs_tx.st_mode == SRS_TX_AGGR) { 3587 if (cookie != NULL) { 3588 sringp = (mac_soft_ring_t *)cookie; 3589 mutex_enter(&sringp->s_ring_lock); 3590 if (sringp->s_ring_state & S_RING_TX_HIWAT) 3591 blocked = B_TRUE; 3592 mutex_exit(&sringp->s_ring_lock); 3593 } else { 3594 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) { 3595 sringp = mac_srs->srs_tx_soft_rings[i]; 3596 mutex_enter(&sringp->s_ring_lock); 3597 if (sringp->s_ring_state & S_RING_TX_HIWAT) { 3598 blocked = B_TRUE; 3599 mutex_exit(&sringp->s_ring_lock); 3600 break; 3601 } 3602 mutex_exit(&sringp->s_ring_lock); 3603 } 3604 } 3605 } else { 3606 blocked = (mac_srs->srs_state & SRS_TX_HIWAT); 3607 } 3608 mutex_exit(&mac_srs->srs_lock); 3609 MAC_TX_RELE(mcip, mytx); 3610 return (blocked); 3611 } 3612 3613 /* 3614 * Check if the MAC client is the primary MAC client. 3615 */ 3616 boolean_t 3617 mac_is_primary_client(mac_client_impl_t *mcip) 3618 { 3619 return (mcip->mci_flags & MAC_CLIENT_FLAGS_PRIMARY); 3620 } 3621 3622 void 3623 mac_ioctl(mac_handle_t mh, queue_t *wq, mblk_t *bp) 3624 { 3625 mac_impl_t *mip = (mac_impl_t *)mh; 3626 int cmd = ((struct iocblk *)bp->b_rptr)->ioc_cmd; 3627 3628 if ((cmd == ND_GET && (mip->mi_callbacks->mc_callbacks & MC_GETPROP)) || 3629 (cmd == ND_SET && (mip->mi_callbacks->mc_callbacks & MC_SETPROP))) { 3630 /* 3631 * If ndd props were registered, call them. 3632 * Note that ndd ioctls are Obsolete 3633 */ 3634 mac_ndd_ioctl(mip, wq, bp); 3635 return; 3636 } 3637 3638 /* 3639 * Call the driver to handle the ioctl. The driver may not support 3640 * any ioctls, in which case we reply with a NAK on its behalf. 3641 */ 3642 if (mip->mi_callbacks->mc_callbacks & MC_IOCTL) 3643 mip->mi_ioctl(mip->mi_driver, wq, bp); 3644 else 3645 miocnak(wq, bp, 0, EINVAL); 3646 } 3647 3648 /* 3649 * Return the link state of the specified MAC instance. 3650 */ 3651 link_state_t 3652 mac_link_get(mac_handle_t mh) 3653 { 3654 return (((mac_impl_t *)mh)->mi_linkstate); 3655 } 3656 3657 /* 3658 * Add a mac client specified notification callback. Please see the comments 3659 * above mac_callback_add() for general information about mac callback 3660 * addition/deletion in the presence of mac callback list walkers 3661 */ 3662 mac_notify_handle_t 3663 mac_notify_add(mac_handle_t mh, mac_notify_t notify_fn, void *arg) 3664 { 3665 mac_impl_t *mip = (mac_impl_t *)mh; 3666 mac_notify_cb_t *mncb; 3667 mac_cb_info_t *mcbi; 3668 3669 /* 3670 * Allocate a notify callback structure, fill in the details and 3671 * use the mac callback list manipulation functions to chain into 3672 * the list of callbacks. 3673 */ 3674 mncb = kmem_zalloc(sizeof (mac_notify_cb_t), KM_SLEEP); 3675 mncb->mncb_fn = notify_fn; 3676 mncb->mncb_arg = arg; 3677 mncb->mncb_mip = mip; 3678 mncb->mncb_link.mcb_objp = mncb; 3679 mncb->mncb_link.mcb_objsize = sizeof (mac_notify_cb_t); 3680 mncb->mncb_link.mcb_flags = MCB_NOTIFY_CB_T; 3681 3682 mcbi = &mip->mi_notify_cb_info; 3683 3684 i_mac_perim_enter(mip); 3685 mutex_enter(mcbi->mcbi_lockp); 3686 3687 mac_callback_add(&mip->mi_notify_cb_info, &mip->mi_notify_cb_list, 3688 &mncb->mncb_link); 3689 3690 mutex_exit(mcbi->mcbi_lockp); 3691 i_mac_perim_exit(mip); 3692 return ((mac_notify_handle_t)mncb); 3693 } 3694 3695 void 3696 mac_notify_remove_wait(mac_handle_t mh) 3697 { 3698 mac_impl_t *mip = (mac_impl_t *)mh; 3699 mac_cb_info_t *mcbi = &mip->mi_notify_cb_info; 3700 3701 mutex_enter(mcbi->mcbi_lockp); 3702 mac_callback_remove_wait(&mip->mi_notify_cb_info); 3703 mutex_exit(mcbi->mcbi_lockp); 3704 } 3705 3706 /* 3707 * Remove a mac client specified notification callback 3708 */ 3709 int 3710 mac_notify_remove(mac_notify_handle_t mnh, boolean_t wait) 3711 { 3712 mac_notify_cb_t *mncb = (mac_notify_cb_t *)mnh; 3713 mac_impl_t *mip = mncb->mncb_mip; 3714 mac_cb_info_t *mcbi; 3715 int err = 0; 3716 3717 mcbi = &mip->mi_notify_cb_info; 3718 3719 i_mac_perim_enter(mip); 3720 mutex_enter(mcbi->mcbi_lockp); 3721 3722 ASSERT(mncb->mncb_link.mcb_objp == mncb); 3723 /* 3724 * If there aren't any list walkers, the remove would succeed 3725 * inline, else we wait for the deferred remove to complete 3726 */ 3727 if (mac_callback_remove(&mip->mi_notify_cb_info, 3728 &mip->mi_notify_cb_list, &mncb->mncb_link)) { 3729 kmem_free(mncb, sizeof (mac_notify_cb_t)); 3730 } else { 3731 err = EBUSY; 3732 } 3733 3734 mutex_exit(mcbi->mcbi_lockp); 3735 i_mac_perim_exit(mip); 3736 3737 /* 3738 * If we failed to remove the notification callback and "wait" is set 3739 * to be B_TRUE, wait for the callback to finish after we exit the 3740 * mac perimeter. 3741 */ 3742 if (err != 0 && wait) { 3743 mac_notify_remove_wait((mac_handle_t)mip); 3744 return (0); 3745 } 3746 3747 return (err); 3748 } 3749 3750 /* 3751 * Associate resource management callbacks with the specified MAC 3752 * clients. 3753 */ 3754 3755 void 3756 mac_resource_set_common(mac_client_handle_t mch, mac_resource_add_t add, 3757 mac_resource_remove_t remove, mac_resource_quiesce_t quiesce, 3758 mac_resource_restart_t restart, mac_resource_bind_t bind, 3759 void *arg) 3760 { 3761 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3762 3763 mcip->mci_resource_add = add; 3764 mcip->mci_resource_remove = remove; 3765 mcip->mci_resource_quiesce = quiesce; 3766 mcip->mci_resource_restart = restart; 3767 mcip->mci_resource_bind = bind; 3768 mcip->mci_resource_arg = arg; 3769 } 3770 3771 void 3772 mac_resource_set(mac_client_handle_t mch, mac_resource_add_t add, void *arg) 3773 { 3774 /* update the 'resource_add' callback */ 3775 mac_resource_set_common(mch, add, NULL, NULL, NULL, NULL, arg); 3776 } 3777 3778 /* 3779 * Sets up the client resources and enable the polling interface over all the 3780 * SRS's and the soft rings of the client 3781 */ 3782 void 3783 mac_client_poll_enable(mac_client_handle_t mch) 3784 { 3785 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3786 mac_soft_ring_set_t *mac_srs; 3787 flow_entry_t *flent; 3788 int i; 3789 3790 flent = mcip->mci_flent; 3791 ASSERT(flent != NULL); 3792 3793 mcip->mci_state_flags |= MCIS_CLIENT_POLL_CAPABLE; 3794 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 3795 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 3796 ASSERT(mac_srs->srs_mcip == mcip); 3797 mac_srs_client_poll_enable(mcip, mac_srs); 3798 } 3799 } 3800 3801 /* 3802 * Tears down the client resources and disable the polling interface over all 3803 * the SRS's and the soft rings of the client 3804 */ 3805 void 3806 mac_client_poll_disable(mac_client_handle_t mch) 3807 { 3808 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3809 mac_soft_ring_set_t *mac_srs; 3810 flow_entry_t *flent; 3811 int i; 3812 3813 flent = mcip->mci_flent; 3814 ASSERT(flent != NULL); 3815 3816 mcip->mci_state_flags &= ~MCIS_CLIENT_POLL_CAPABLE; 3817 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 3818 mac_srs = (mac_soft_ring_set_t *)flent->fe_rx_srs[i]; 3819 ASSERT(mac_srs->srs_mcip == mcip); 3820 mac_srs_client_poll_disable(mcip, mac_srs); 3821 } 3822 } 3823 3824 /* 3825 * Associate the CPUs specified by the given property with a MAC client. 3826 */ 3827 int 3828 mac_cpu_set(mac_client_handle_t mch, mac_resource_props_t *mrp) 3829 { 3830 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3831 mac_impl_t *mip = mcip->mci_mip; 3832 int err = 0; 3833 3834 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3835 3836 if ((err = mac_validate_props(mcip->mci_state_flags & MCIS_IS_VNIC ? 3837 mcip->mci_upper_mip : mip, mrp)) != 0) { 3838 return (err); 3839 } 3840 if (MCIP_DATAPATH_SETUP(mcip)) 3841 mac_flow_modify(mip->mi_flow_tab, mcip->mci_flent, mrp); 3842 3843 mac_update_resources(mrp, MCIP_RESOURCE_PROPS(mcip), B_FALSE); 3844 return (0); 3845 } 3846 3847 /* 3848 * Apply the specified properties to the specified MAC client. 3849 */ 3850 int 3851 mac_client_set_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 3852 { 3853 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3854 mac_impl_t *mip = mcip->mci_mip; 3855 int err = 0; 3856 3857 i_mac_perim_enter(mip); 3858 3859 if ((mrp->mrp_mask & MRP_MAXBW) || (mrp->mrp_mask & MRP_PRIORITY)) { 3860 err = mac_resource_ctl_set(mch, mrp); 3861 if (err != 0) 3862 goto done; 3863 } 3864 3865 if (mrp->mrp_mask & (MRP_CPUS|MRP_POOL)) { 3866 err = mac_cpu_set(mch, mrp); 3867 if (err != 0) 3868 goto done; 3869 } 3870 3871 if (mrp->mrp_mask & MRP_PROTECT) { 3872 err = mac_protect_set(mch, mrp); 3873 if (err != 0) 3874 goto done; 3875 } 3876 3877 if ((mrp->mrp_mask & MRP_RX_RINGS) || (mrp->mrp_mask & MRP_TX_RINGS)) 3878 err = mac_resource_ctl_set(mch, mrp); 3879 3880 done: 3881 i_mac_perim_exit(mip); 3882 return (err); 3883 } 3884 3885 /* 3886 * Return the properties currently associated with the specified MAC client. 3887 */ 3888 void 3889 mac_client_get_resources(mac_client_handle_t mch, mac_resource_props_t *mrp) 3890 { 3891 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3892 mac_resource_props_t *mcip_mrp = MCIP_RESOURCE_PROPS(mcip); 3893 3894 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 3895 } 3896 3897 /* 3898 * Return the effective properties currently associated with the specified 3899 * MAC client. 3900 */ 3901 void 3902 mac_client_get_effective_resources(mac_client_handle_t mch, 3903 mac_resource_props_t *mrp) 3904 { 3905 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 3906 mac_resource_props_t *mcip_mrp = MCIP_EFFECTIVE_PROPS(mcip); 3907 3908 bcopy(mcip_mrp, mrp, sizeof (mac_resource_props_t)); 3909 } 3910 3911 /* 3912 * Pass a copy of the specified packet to the promiscuous callbacks 3913 * of the specified MAC. 3914 * 3915 * If sender is NULL, the function is being invoked for a packet chain 3916 * received from the wire. If sender is non-NULL, it points to 3917 * the MAC client from which the packet is being sent. 3918 * 3919 * The packets are distributed to the promiscuous callbacks as follows: 3920 * 3921 * - all packets are sent to the MAC_CLIENT_PROMISC_ALL callbacks 3922 * - all broadcast and multicast packets are sent to the 3923 * MAC_CLIENT_PROMISC_FILTER and MAC_CLIENT_PROMISC_MULTI. 3924 * 3925 * The unicast packets of MAC_CLIENT_PROMISC_FILTER callbacks are dispatched 3926 * after classification by mac_rx_deliver(). 3927 */ 3928 3929 static void 3930 mac_promisc_dispatch_one(mac_promisc_impl_t *mpip, mblk_t *mp, 3931 boolean_t loopback) 3932 { 3933 mblk_t *mp_copy, *mp_next; 3934 3935 if (!mpip->mpi_no_copy || mpip->mpi_strip_vlan_tag) { 3936 mp_copy = copymsg(mp); 3937 if (mp_copy == NULL) 3938 return; 3939 3940 if (mpip->mpi_strip_vlan_tag) { 3941 mp_copy = mac_strip_vlan_tag_chain(mp_copy); 3942 if (mp_copy == NULL) 3943 return; 3944 } 3945 mp_next = NULL; 3946 } else { 3947 mp_copy = mp; 3948 mp_next = mp->b_next; 3949 } 3950 mp_copy->b_next = NULL; 3951 3952 mpip->mpi_fn(mpip->mpi_arg, NULL, mp_copy, loopback); 3953 if (mp_copy == mp) 3954 mp->b_next = mp_next; 3955 } 3956 3957 /* 3958 * Return the VID of a packet. Zero if the packet is not tagged. 3959 */ 3960 static uint16_t 3961 mac_ether_vid(mblk_t *mp) 3962 { 3963 struct ether_header *eth = (struct ether_header *)mp->b_rptr; 3964 3965 if (ntohs(eth->ether_type) == ETHERTYPE_VLAN) { 3966 struct ether_vlan_header *t_evhp = 3967 (struct ether_vlan_header *)mp->b_rptr; 3968 return (VLAN_ID(ntohs(t_evhp->ether_tci))); 3969 } 3970 3971 return (0); 3972 } 3973 3974 /* 3975 * Return whether the specified packet contains a multicast or broadcast 3976 * destination MAC address. 3977 */ 3978 static boolean_t 3979 mac_is_mcast(mac_impl_t *mip, mblk_t *mp) 3980 { 3981 mac_header_info_t hdr_info; 3982 3983 if (mac_header_info((mac_handle_t)mip, mp, &hdr_info) != 0) 3984 return (B_FALSE); 3985 return ((hdr_info.mhi_dsttype == MAC_ADDRTYPE_BROADCAST) || 3986 (hdr_info.mhi_dsttype == MAC_ADDRTYPE_MULTICAST)); 3987 } 3988 3989 /* 3990 * Send a copy of an mblk chain to the MAC clients of the specified MAC. 3991 * "sender" points to the sender MAC client for outbound packets, and 3992 * is set to NULL for inbound packets. 3993 */ 3994 void 3995 mac_promisc_dispatch(mac_impl_t *mip, mblk_t *mp_chain, 3996 mac_client_impl_t *sender) 3997 { 3998 mac_promisc_impl_t *mpip; 3999 mac_cb_t *mcb; 4000 mblk_t *mp; 4001 boolean_t is_mcast, is_sender; 4002 4003 MAC_PROMISC_WALKER_INC(mip); 4004 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 4005 is_mcast = mac_is_mcast(mip, mp); 4006 /* send packet to interested callbacks */ 4007 for (mcb = mip->mi_promisc_list; mcb != NULL; 4008 mcb = mcb->mcb_nextp) { 4009 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 4010 is_sender = (mpip->mpi_mcip == sender); 4011 4012 if (is_sender && mpip->mpi_no_tx_loop) 4013 /* 4014 * The sender doesn't want to receive 4015 * copies of the packets it sends. 4016 */ 4017 continue; 4018 4019 /* this client doesn't need any packets (bridge) */ 4020 if (mpip->mpi_fn == NULL) 4021 continue; 4022 4023 /* 4024 * For an ethernet MAC, don't displatch a multicast 4025 * packet to a non-PROMISC_ALL callbacks unless the VID 4026 * of the packet matches the VID of the client. 4027 */ 4028 if (is_mcast && 4029 mpip->mpi_type != MAC_CLIENT_PROMISC_ALL && 4030 !mac_client_check_flow_vid(mpip->mpi_mcip, 4031 mac_ether_vid(mp))) 4032 continue; 4033 4034 if (is_sender || 4035 mpip->mpi_type == MAC_CLIENT_PROMISC_ALL || 4036 is_mcast) 4037 mac_promisc_dispatch_one(mpip, mp, is_sender); 4038 } 4039 } 4040 MAC_PROMISC_WALKER_DCR(mip); 4041 } 4042 4043 void 4044 mac_promisc_client_dispatch(mac_client_impl_t *mcip, mblk_t *mp_chain) 4045 { 4046 mac_impl_t *mip = mcip->mci_mip; 4047 mac_promisc_impl_t *mpip; 4048 boolean_t is_mcast; 4049 mblk_t *mp; 4050 mac_cb_t *mcb; 4051 4052 /* 4053 * The unicast packets for the MAC client still 4054 * need to be delivered to the MAC_CLIENT_PROMISC_FILTERED 4055 * promiscuous callbacks. The broadcast and multicast 4056 * packets were delivered from mac_rx(). 4057 */ 4058 MAC_PROMISC_WALKER_INC(mip); 4059 for (mp = mp_chain; mp != NULL; mp = mp->b_next) { 4060 is_mcast = mac_is_mcast(mip, mp); 4061 for (mcb = mcip->mci_promisc_list; mcb != NULL; 4062 mcb = mcb->mcb_nextp) { 4063 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 4064 if (mpip->mpi_type == MAC_CLIENT_PROMISC_FILTERED && 4065 !is_mcast) { 4066 mac_promisc_dispatch_one(mpip, mp, B_FALSE); 4067 } 4068 } 4069 } 4070 MAC_PROMISC_WALKER_DCR(mip); 4071 } 4072 4073 /* 4074 * Return the margin value currently assigned to the specified MAC instance. 4075 */ 4076 void 4077 mac_margin_get(mac_handle_t mh, uint32_t *marginp) 4078 { 4079 mac_impl_t *mip = (mac_impl_t *)mh; 4080 4081 rw_enter(&(mip->mi_rw_lock), RW_READER); 4082 *marginp = mip->mi_margin; 4083 rw_exit(&(mip->mi_rw_lock)); 4084 } 4085 4086 /* 4087 * mac_info_get() is used for retrieving the mac_info when a DL_INFO_REQ is 4088 * issued before a DL_ATTACH_REQ. we walk the i_mac_impl_hash table and find 4089 * the first mac_impl_t with a matching driver name; then we copy its mac_info_t 4090 * to the caller. we do all this with i_mac_impl_lock held so the mac_impl_t 4091 * cannot disappear while we are accessing it. 4092 */ 4093 typedef struct i_mac_info_state_s { 4094 const char *mi_name; 4095 mac_info_t *mi_infop; 4096 } i_mac_info_state_t; 4097 4098 /*ARGSUSED*/ 4099 static uint_t 4100 i_mac_info_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4101 { 4102 i_mac_info_state_t *statep = arg; 4103 mac_impl_t *mip = (mac_impl_t *)val; 4104 4105 if (mip->mi_state_flags & MIS_DISABLED) 4106 return (MH_WALK_CONTINUE); 4107 4108 if (strcmp(statep->mi_name, 4109 ddi_driver_name(mip->mi_dip)) != 0) 4110 return (MH_WALK_CONTINUE); 4111 4112 statep->mi_infop = &mip->mi_info; 4113 return (MH_WALK_TERMINATE); 4114 } 4115 4116 boolean_t 4117 mac_info_get(const char *name, mac_info_t *minfop) 4118 { 4119 i_mac_info_state_t state; 4120 4121 rw_enter(&i_mac_impl_lock, RW_READER); 4122 state.mi_name = name; 4123 state.mi_infop = NULL; 4124 mod_hash_walk(i_mac_impl_hash, i_mac_info_walker, &state); 4125 if (state.mi_infop == NULL) { 4126 rw_exit(&i_mac_impl_lock); 4127 return (B_FALSE); 4128 } 4129 *minfop = *state.mi_infop; 4130 rw_exit(&i_mac_impl_lock); 4131 return (B_TRUE); 4132 } 4133 4134 /* 4135 * To get the capabilities that MAC layer cares about, such as rings, factory 4136 * mac address, vnic or not, it should directly invoke this function. If the 4137 * link is part of a bridge, then the only "capability" it has is the inability 4138 * to do zero copy. 4139 */ 4140 boolean_t 4141 i_mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 4142 { 4143 mac_impl_t *mip = (mac_impl_t *)mh; 4144 4145 if (mip->mi_bridge_link != NULL) 4146 return (cap == MAC_CAPAB_NO_ZCOPY); 4147 else if (mip->mi_callbacks->mc_callbacks & MC_GETCAPAB) 4148 return (mip->mi_getcapab(mip->mi_driver, cap, cap_data)); 4149 else 4150 return (B_FALSE); 4151 } 4152 4153 /* 4154 * Capability query function. If number of active mac clients is greater than 4155 * 1, only limited capabilities can be advertised to the caller no matter the 4156 * driver has certain capability or not. Else, we query the driver to get the 4157 * capability. 4158 */ 4159 boolean_t 4160 mac_capab_get(mac_handle_t mh, mac_capab_t cap, void *cap_data) 4161 { 4162 mac_impl_t *mip = (mac_impl_t *)mh; 4163 4164 /* 4165 * if mi_nactiveclients > 1, only MAC_CAPAB_LEGACY, MAC_CAPAB_HCKSUM, 4166 * MAC_CAPAB_NO_NATIVEVLAN and MAC_CAPAB_NO_ZCOPY can be advertised. 4167 */ 4168 if (mip->mi_nactiveclients > 1) { 4169 switch (cap) { 4170 case MAC_CAPAB_NO_ZCOPY: 4171 return (B_TRUE); 4172 case MAC_CAPAB_LEGACY: 4173 case MAC_CAPAB_HCKSUM: 4174 case MAC_CAPAB_NO_NATIVEVLAN: 4175 break; 4176 default: 4177 return (B_FALSE); 4178 } 4179 } 4180 4181 /* else get capab from driver */ 4182 return (i_mac_capab_get(mh, cap, cap_data)); 4183 } 4184 4185 boolean_t 4186 mac_sap_verify(mac_handle_t mh, uint32_t sap, uint32_t *bind_sap) 4187 { 4188 mac_impl_t *mip = (mac_impl_t *)mh; 4189 4190 return (mip->mi_type->mt_ops.mtops_sap_verify(sap, bind_sap, 4191 mip->mi_pdata)); 4192 } 4193 4194 mblk_t * 4195 mac_header(mac_handle_t mh, const uint8_t *daddr, uint32_t sap, mblk_t *payload, 4196 size_t extra_len) 4197 { 4198 mac_impl_t *mip = (mac_impl_t *)mh; 4199 const uint8_t *hdr_daddr; 4200 4201 /* 4202 * If the MAC is point-to-point with a fixed destination address, then 4203 * we must always use that destination in the MAC header. 4204 */ 4205 hdr_daddr = (mip->mi_dstaddr_set ? mip->mi_dstaddr : daddr); 4206 return (mip->mi_type->mt_ops.mtops_header(mip->mi_addr, hdr_daddr, sap, 4207 mip->mi_pdata, payload, extra_len)); 4208 } 4209 4210 int 4211 mac_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 4212 { 4213 mac_impl_t *mip = (mac_impl_t *)mh; 4214 4215 return (mip->mi_type->mt_ops.mtops_header_info(mp, mip->mi_pdata, 4216 mhip)); 4217 } 4218 4219 int 4220 mac_vlan_header_info(mac_handle_t mh, mblk_t *mp, mac_header_info_t *mhip) 4221 { 4222 mac_impl_t *mip = (mac_impl_t *)mh; 4223 boolean_t is_ethernet = (mip->mi_info.mi_media == DL_ETHER); 4224 int err = 0; 4225 4226 /* 4227 * Packets should always be at least 16 bit aligned. 4228 */ 4229 ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t))); 4230 4231 if ((err = mac_header_info(mh, mp, mhip)) != 0) 4232 return (err); 4233 4234 /* 4235 * If this is a VLAN-tagged Ethernet packet, then the SAP in the 4236 * mac_header_info_t as returned by mac_header_info() is 4237 * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header. 4238 */ 4239 if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) { 4240 struct ether_vlan_header *evhp; 4241 uint16_t sap; 4242 mblk_t *tmp = NULL; 4243 size_t size; 4244 4245 size = sizeof (struct ether_vlan_header); 4246 if (MBLKL(mp) < size) { 4247 /* 4248 * Pullup the message in order to get the MAC header 4249 * infomation. Note that this is a read-only function, 4250 * we keep the input packet intact. 4251 */ 4252 if ((tmp = msgpullup(mp, size)) == NULL) 4253 return (EINVAL); 4254 4255 mp = tmp; 4256 } 4257 evhp = (struct ether_vlan_header *)mp->b_rptr; 4258 sap = ntohs(evhp->ether_type); 4259 (void) mac_sap_verify(mh, sap, &mhip->mhi_bindsap); 4260 mhip->mhi_hdrsize = sizeof (struct ether_vlan_header); 4261 mhip->mhi_tci = ntohs(evhp->ether_tci); 4262 mhip->mhi_istagged = B_TRUE; 4263 freemsg(tmp); 4264 4265 if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI) 4266 return (EINVAL); 4267 } else { 4268 mhip->mhi_istagged = B_FALSE; 4269 mhip->mhi_tci = 0; 4270 } 4271 4272 return (0); 4273 } 4274 4275 mblk_t * 4276 mac_header_cook(mac_handle_t mh, mblk_t *mp) 4277 { 4278 mac_impl_t *mip = (mac_impl_t *)mh; 4279 4280 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_COOK) { 4281 if (DB_REF(mp) > 1) { 4282 mblk_t *newmp = copymsg(mp); 4283 if (newmp == NULL) 4284 return (NULL); 4285 freemsg(mp); 4286 mp = newmp; 4287 } 4288 return (mip->mi_type->mt_ops.mtops_header_cook(mp, 4289 mip->mi_pdata)); 4290 } 4291 return (mp); 4292 } 4293 4294 mblk_t * 4295 mac_header_uncook(mac_handle_t mh, mblk_t *mp) 4296 { 4297 mac_impl_t *mip = (mac_impl_t *)mh; 4298 4299 if (mip->mi_type->mt_ops.mtops_ops & MTOPS_HEADER_UNCOOK) { 4300 if (DB_REF(mp) > 1) { 4301 mblk_t *newmp = copymsg(mp); 4302 if (newmp == NULL) 4303 return (NULL); 4304 freemsg(mp); 4305 mp = newmp; 4306 } 4307 return (mip->mi_type->mt_ops.mtops_header_uncook(mp, 4308 mip->mi_pdata)); 4309 } 4310 return (mp); 4311 } 4312 4313 uint_t 4314 mac_addr_len(mac_handle_t mh) 4315 { 4316 mac_impl_t *mip = (mac_impl_t *)mh; 4317 4318 return (mip->mi_type->mt_addr_length); 4319 } 4320 4321 /* True if a MAC is a VNIC */ 4322 boolean_t 4323 mac_is_vnic(mac_handle_t mh) 4324 { 4325 return (((mac_impl_t *)mh)->mi_state_flags & MIS_IS_VNIC); 4326 } 4327 4328 mac_handle_t 4329 mac_get_lower_mac_handle(mac_handle_t mh) 4330 { 4331 mac_impl_t *mip = (mac_impl_t *)mh; 4332 4333 ASSERT(mac_is_vnic(mh)); 4334 return (((vnic_t *)mip->mi_driver)->vn_lower_mh); 4335 } 4336 4337 boolean_t 4338 mac_is_vnic_primary(mac_handle_t mh) 4339 { 4340 mac_impl_t *mip = (mac_impl_t *)mh; 4341 4342 ASSERT(mac_is_vnic(mh)); 4343 return (((vnic_t *)mip->mi_driver)->vn_addr_type == 4344 VNIC_MAC_ADDR_TYPE_PRIMARY); 4345 } 4346 4347 void 4348 mac_update_resources(mac_resource_props_t *nmrp, mac_resource_props_t *cmrp, 4349 boolean_t is_user_flow) 4350 { 4351 if (nmrp != NULL && cmrp != NULL) { 4352 if (nmrp->mrp_mask & MRP_PRIORITY) { 4353 if (nmrp->mrp_priority == MPL_RESET) { 4354 cmrp->mrp_mask &= ~MRP_PRIORITY; 4355 if (is_user_flow) { 4356 cmrp->mrp_priority = 4357 MPL_SUBFLOW_DEFAULT; 4358 } else { 4359 cmrp->mrp_priority = MPL_LINK_DEFAULT; 4360 } 4361 } else { 4362 cmrp->mrp_mask |= MRP_PRIORITY; 4363 cmrp->mrp_priority = nmrp->mrp_priority; 4364 } 4365 } 4366 if (nmrp->mrp_mask & MRP_MAXBW) { 4367 if (nmrp->mrp_maxbw == MRP_MAXBW_RESETVAL) { 4368 cmrp->mrp_mask &= ~MRP_MAXBW; 4369 cmrp->mrp_maxbw = 0; 4370 } else { 4371 cmrp->mrp_mask |= MRP_MAXBW; 4372 cmrp->mrp_maxbw = nmrp->mrp_maxbw; 4373 } 4374 } 4375 if (nmrp->mrp_mask & MRP_CPUS) 4376 MAC_COPY_CPUS(nmrp, cmrp); 4377 4378 if (nmrp->mrp_mask & MRP_POOL) { 4379 if (strlen(nmrp->mrp_pool) == 0) { 4380 cmrp->mrp_mask &= ~MRP_POOL; 4381 bzero(cmrp->mrp_pool, sizeof (cmrp->mrp_pool)); 4382 } else { 4383 cmrp->mrp_mask |= MRP_POOL; 4384 (void) strncpy(cmrp->mrp_pool, nmrp->mrp_pool, 4385 sizeof (cmrp->mrp_pool)); 4386 } 4387 4388 } 4389 4390 if (nmrp->mrp_mask & MRP_PROTECT) 4391 mac_protect_update(nmrp, cmrp); 4392 4393 /* 4394 * Update the rings specified. 4395 */ 4396 if (nmrp->mrp_mask & MRP_RX_RINGS) { 4397 if (nmrp->mrp_mask & MRP_RINGS_RESET) { 4398 cmrp->mrp_mask &= ~MRP_RX_RINGS; 4399 if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4400 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 4401 cmrp->mrp_nrxrings = 0; 4402 } else { 4403 cmrp->mrp_mask |= MRP_RX_RINGS; 4404 cmrp->mrp_nrxrings = nmrp->mrp_nrxrings; 4405 } 4406 } 4407 if (nmrp->mrp_mask & MRP_TX_RINGS) { 4408 if (nmrp->mrp_mask & MRP_RINGS_RESET) { 4409 cmrp->mrp_mask &= ~MRP_TX_RINGS; 4410 if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4411 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 4412 cmrp->mrp_ntxrings = 0; 4413 } else { 4414 cmrp->mrp_mask |= MRP_TX_RINGS; 4415 cmrp->mrp_ntxrings = nmrp->mrp_ntxrings; 4416 } 4417 } 4418 if (nmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4419 cmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 4420 else if (cmrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4421 cmrp->mrp_mask &= ~MRP_RXRINGS_UNSPEC; 4422 4423 if (nmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4424 cmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 4425 else if (cmrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4426 cmrp->mrp_mask &= ~MRP_TXRINGS_UNSPEC; 4427 } 4428 } 4429 4430 /* 4431 * i_mac_set_resources: 4432 * 4433 * This routine associates properties with the primary MAC client of 4434 * the specified MAC instance. 4435 * - Cache the properties in mac_impl_t 4436 * - Apply the properties to the primary MAC client if exists 4437 */ 4438 int 4439 i_mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4440 { 4441 mac_impl_t *mip = (mac_impl_t *)mh; 4442 mac_client_impl_t *mcip; 4443 int err = 0; 4444 uint32_t resmask, newresmask; 4445 mac_resource_props_t *tmrp, *umrp; 4446 4447 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4448 4449 err = mac_validate_props(mip, mrp); 4450 if (err != 0) 4451 return (err); 4452 4453 umrp = kmem_zalloc(sizeof (*umrp), KM_SLEEP); 4454 bcopy(&mip->mi_resource_props, umrp, sizeof (*umrp)); 4455 resmask = umrp->mrp_mask; 4456 mac_update_resources(mrp, umrp, B_FALSE); 4457 newresmask = umrp->mrp_mask; 4458 4459 if (resmask == 0 && newresmask != 0) { 4460 /* 4461 * Bandwidth, priority, cpu or pool link properties configured, 4462 * must disable fastpath. 4463 */ 4464 if ((err = mac_fastpath_disable((mac_handle_t)mip)) != 0) { 4465 kmem_free(umrp, sizeof (*umrp)); 4466 return (err); 4467 } 4468 } 4469 4470 /* 4471 * Since bind_cpu may be modified by mac_client_set_resources() 4472 * we use a copy of bind_cpu and finally cache bind_cpu in mip. 4473 * This allows us to cache only user edits in mip. 4474 */ 4475 tmrp = kmem_zalloc(sizeof (*tmrp), KM_SLEEP); 4476 bcopy(mrp, tmrp, sizeof (*tmrp)); 4477 mcip = mac_primary_client_handle(mip); 4478 if (mcip != NULL && (mcip->mci_state_flags & MCIS_IS_AGGR_PORT) == 0) { 4479 err = mac_client_set_resources((mac_client_handle_t)mcip, tmrp); 4480 } else if ((mrp->mrp_mask & MRP_RX_RINGS || 4481 mrp->mrp_mask & MRP_TX_RINGS)) { 4482 mac_client_impl_t *vmcip; 4483 4484 /* 4485 * If the primary is not up, we need to check if there 4486 * are any VLANs on this primary. If there are then 4487 * we need to set this property on the VLANs since 4488 * VLANs follow the primary they are based on. Just 4489 * look for the first VLAN and change its properties, 4490 * all the other VLANs should be in the same group. 4491 */ 4492 for (vmcip = mip->mi_clients_list; vmcip != NULL; 4493 vmcip = vmcip->mci_client_next) { 4494 if ((vmcip->mci_flent->fe_type & FLOW_PRIMARY_MAC) && 4495 mac_client_vid((mac_client_handle_t)vmcip) != 4496 VLAN_ID_NONE) { 4497 break; 4498 } 4499 } 4500 if (vmcip != NULL) { 4501 mac_resource_props_t *omrp; 4502 mac_resource_props_t *vmrp; 4503 4504 omrp = kmem_zalloc(sizeof (*omrp), KM_SLEEP); 4505 bcopy(MCIP_RESOURCE_PROPS(vmcip), omrp, sizeof (*omrp)); 4506 /* 4507 * We dont' call mac_update_resources since we 4508 * want to take only the ring properties and 4509 * not all the properties that may have changed. 4510 */ 4511 vmrp = MCIP_RESOURCE_PROPS(vmcip); 4512 if (mrp->mrp_mask & MRP_RX_RINGS) { 4513 if (mrp->mrp_mask & MRP_RINGS_RESET) { 4514 vmrp->mrp_mask &= ~MRP_RX_RINGS; 4515 if (vmrp->mrp_mask & 4516 MRP_RXRINGS_UNSPEC) { 4517 vmrp->mrp_mask &= 4518 ~MRP_RXRINGS_UNSPEC; 4519 } 4520 vmrp->mrp_nrxrings = 0; 4521 } else { 4522 vmrp->mrp_mask |= MRP_RX_RINGS; 4523 vmrp->mrp_nrxrings = mrp->mrp_nrxrings; 4524 } 4525 } 4526 if (mrp->mrp_mask & MRP_TX_RINGS) { 4527 if (mrp->mrp_mask & MRP_RINGS_RESET) { 4528 vmrp->mrp_mask &= ~MRP_TX_RINGS; 4529 if (vmrp->mrp_mask & 4530 MRP_TXRINGS_UNSPEC) { 4531 vmrp->mrp_mask &= 4532 ~MRP_TXRINGS_UNSPEC; 4533 } 4534 vmrp->mrp_ntxrings = 0; 4535 } else { 4536 vmrp->mrp_mask |= MRP_TX_RINGS; 4537 vmrp->mrp_ntxrings = mrp->mrp_ntxrings; 4538 } 4539 } 4540 if (mrp->mrp_mask & MRP_RXRINGS_UNSPEC) 4541 vmrp->mrp_mask |= MRP_RXRINGS_UNSPEC; 4542 4543 if (mrp->mrp_mask & MRP_TXRINGS_UNSPEC) 4544 vmrp->mrp_mask |= MRP_TXRINGS_UNSPEC; 4545 4546 if ((err = mac_client_set_rings_prop(vmcip, mrp, 4547 omrp)) != 0) { 4548 bcopy(omrp, MCIP_RESOURCE_PROPS(vmcip), 4549 sizeof (*omrp)); 4550 } else { 4551 mac_set_prim_vlan_rings(mip, vmrp); 4552 } 4553 kmem_free(omrp, sizeof (*omrp)); 4554 } 4555 } 4556 4557 /* Only update the values if mac_client_set_resources succeeded */ 4558 if (err == 0) { 4559 bcopy(umrp, &mip->mi_resource_props, sizeof (*umrp)); 4560 /* 4561 * If bandwidth, priority or cpu link properties cleared, 4562 * renable fastpath. 4563 */ 4564 if (resmask != 0 && newresmask == 0) 4565 mac_fastpath_enable((mac_handle_t)mip); 4566 } else if (resmask == 0 && newresmask != 0) { 4567 mac_fastpath_enable((mac_handle_t)mip); 4568 } 4569 kmem_free(tmrp, sizeof (*tmrp)); 4570 kmem_free(umrp, sizeof (*umrp)); 4571 return (err); 4572 } 4573 4574 int 4575 mac_set_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4576 { 4577 int err; 4578 4579 i_mac_perim_enter((mac_impl_t *)mh); 4580 err = i_mac_set_resources(mh, mrp); 4581 i_mac_perim_exit((mac_impl_t *)mh); 4582 return (err); 4583 } 4584 4585 /* 4586 * Get the properties cached for the specified MAC instance. 4587 */ 4588 void 4589 mac_get_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4590 { 4591 mac_impl_t *mip = (mac_impl_t *)mh; 4592 mac_client_impl_t *mcip; 4593 4594 mcip = mac_primary_client_handle(mip); 4595 if (mcip != NULL) { 4596 mac_client_get_resources((mac_client_handle_t)mcip, mrp); 4597 return; 4598 } 4599 bcopy(&mip->mi_resource_props, mrp, sizeof (mac_resource_props_t)); 4600 } 4601 4602 /* 4603 * Get the effective properties from the primary client of the 4604 * specified MAC instance. 4605 */ 4606 void 4607 mac_get_effective_resources(mac_handle_t mh, mac_resource_props_t *mrp) 4608 { 4609 mac_impl_t *mip = (mac_impl_t *)mh; 4610 mac_client_impl_t *mcip; 4611 4612 mcip = mac_primary_client_handle(mip); 4613 if (mcip != NULL) { 4614 mac_client_get_effective_resources((mac_client_handle_t)mcip, 4615 mrp); 4616 return; 4617 } 4618 bzero(mrp, sizeof (mac_resource_props_t)); 4619 } 4620 4621 int 4622 mac_set_pvid(mac_handle_t mh, uint16_t pvid) 4623 { 4624 mac_impl_t *mip = (mac_impl_t *)mh; 4625 mac_client_impl_t *mcip; 4626 mac_unicast_impl_t *muip; 4627 4628 i_mac_perim_enter(mip); 4629 if (pvid != 0) { 4630 for (mcip = mip->mi_clients_list; mcip != NULL; 4631 mcip = mcip->mci_client_next) { 4632 for (muip = mcip->mci_unicast_list; muip != NULL; 4633 muip = muip->mui_next) { 4634 if (muip->mui_vid == pvid) { 4635 i_mac_perim_exit(mip); 4636 return (EBUSY); 4637 } 4638 } 4639 } 4640 } 4641 mip->mi_pvid = pvid; 4642 i_mac_perim_exit(mip); 4643 return (0); 4644 } 4645 4646 uint16_t 4647 mac_get_pvid(mac_handle_t mh) 4648 { 4649 mac_impl_t *mip = (mac_impl_t *)mh; 4650 4651 return (mip->mi_pvid); 4652 } 4653 4654 uint32_t 4655 mac_get_llimit(mac_handle_t mh) 4656 { 4657 mac_impl_t *mip = (mac_impl_t *)mh; 4658 4659 return (mip->mi_llimit); 4660 } 4661 4662 uint32_t 4663 mac_get_ldecay(mac_handle_t mh) 4664 { 4665 mac_impl_t *mip = (mac_impl_t *)mh; 4666 4667 return (mip->mi_ldecay); 4668 } 4669 4670 /* 4671 * Rename a mac client, its flow, and the kstat. 4672 */ 4673 int 4674 mac_rename_primary(mac_handle_t mh, const char *new_name) 4675 { 4676 mac_impl_t *mip = (mac_impl_t *)mh; 4677 mac_client_impl_t *cur_clnt = NULL; 4678 flow_entry_t *fep; 4679 4680 i_mac_perim_enter(mip); 4681 4682 /* 4683 * VNICs: we need to change the sys flow name and 4684 * the associated flow kstat. 4685 */ 4686 if (mip->mi_state_flags & MIS_IS_VNIC) { 4687 mac_client_impl_t *mcip = mac_vnic_lower(mip); 4688 ASSERT(new_name != NULL); 4689 mac_rename_flow_names(mcip, new_name); 4690 mac_stat_rename(mcip); 4691 goto done; 4692 } 4693 /* 4694 * This mac may itself be an aggr link, or it may have some client 4695 * which is an aggr port. For both cases, we need to change the 4696 * aggr port's mac client name, its flow name and the associated flow 4697 * kstat. 4698 */ 4699 if (mip->mi_state_flags & MIS_IS_AGGR) { 4700 mac_capab_aggr_t aggr_cap; 4701 mac_rename_fn_t rename_fn; 4702 boolean_t ret; 4703 4704 ASSERT(new_name != NULL); 4705 ret = i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_AGGR, 4706 (void *)(&aggr_cap)); 4707 ASSERT(ret == B_TRUE); 4708 rename_fn = aggr_cap.mca_rename_fn; 4709 rename_fn(new_name, mip->mi_driver); 4710 /* 4711 * The aggr's client name and kstat flow name will be 4712 * updated below, i.e. via mac_rename_flow_names. 4713 */ 4714 } 4715 4716 for (cur_clnt = mip->mi_clients_list; cur_clnt != NULL; 4717 cur_clnt = cur_clnt->mci_client_next) { 4718 if (cur_clnt->mci_state_flags & MCIS_IS_AGGR_PORT) { 4719 if (new_name != NULL) { 4720 char *str_st = cur_clnt->mci_name; 4721 char *str_del = strchr(str_st, '-'); 4722 4723 ASSERT(str_del != NULL); 4724 bzero(str_del + 1, MAXNAMELEN - 4725 (str_del - str_st + 1)); 4726 bcopy(new_name, str_del + 1, 4727 strlen(new_name)); 4728 } 4729 fep = cur_clnt->mci_flent; 4730 mac_rename_flow(fep, cur_clnt->mci_name); 4731 break; 4732 } else if (new_name != NULL && 4733 cur_clnt->mci_state_flags & MCIS_USE_DATALINK_NAME) { 4734 mac_rename_flow_names(cur_clnt, new_name); 4735 break; 4736 } 4737 } 4738 4739 /* Recreate kstats associated with aggr pseudo rings */ 4740 if (mip->mi_state_flags & MIS_IS_AGGR) 4741 mac_pseudo_ring_stat_rename(mip); 4742 4743 done: 4744 i_mac_perim_exit(mip); 4745 return (0); 4746 } 4747 4748 /* 4749 * Rename the MAC client's flow names 4750 */ 4751 static void 4752 mac_rename_flow_names(mac_client_impl_t *mcip, const char *new_name) 4753 { 4754 flow_entry_t *flent; 4755 uint16_t vid; 4756 char flowname[MAXFLOWNAMELEN]; 4757 mac_impl_t *mip = mcip->mci_mip; 4758 4759 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4760 4761 /* 4762 * Use mi_rw_lock to ensure that threads not in the mac perimeter 4763 * see a self-consistent value for mci_name 4764 */ 4765 rw_enter(&mip->mi_rw_lock, RW_WRITER); 4766 (void) strlcpy(mcip->mci_name, new_name, sizeof (mcip->mci_name)); 4767 rw_exit(&mip->mi_rw_lock); 4768 4769 mac_rename_flow(mcip->mci_flent, new_name); 4770 4771 if (mcip->mci_nflents == 1) 4772 return; 4773 4774 /* 4775 * We have to rename all the others too, no stats to destroy for 4776 * these. 4777 */ 4778 for (flent = mcip->mci_flent_list; flent != NULL; 4779 flent = flent->fe_client_next) { 4780 if (flent != mcip->mci_flent) { 4781 vid = i_mac_flow_vid(flent); 4782 (void) sprintf(flowname, "%s%u", new_name, vid); 4783 mac_flow_set_name(flent, flowname); 4784 } 4785 } 4786 } 4787 4788 4789 /* 4790 * Add a flow to the MAC client's flow list - i.e list of MAC/VID tuples 4791 * defined for the specified MAC client. 4792 */ 4793 static void 4794 mac_client_add_to_flow_list(mac_client_impl_t *mcip, flow_entry_t *flent) 4795 { 4796 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4797 /* 4798 * The promisc Rx data path walks the mci_flent_list. Protect by 4799 * using mi_rw_lock 4800 */ 4801 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4802 4803 /* Add it to the head */ 4804 flent->fe_client_next = mcip->mci_flent_list; 4805 mcip->mci_flent_list = flent; 4806 mcip->mci_nflents++; 4807 4808 /* 4809 * Keep track of the number of non-zero VIDs addresses per MAC 4810 * client to avoid figuring it out in the data-path. 4811 */ 4812 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 4813 mcip->mci_nvids++; 4814 4815 rw_exit(&mcip->mci_rw_lock); 4816 } 4817 4818 /* 4819 * Remove a flow entry from the MAC client's list. 4820 */ 4821 static void 4822 mac_client_remove_flow_from_list(mac_client_impl_t *mcip, flow_entry_t *flent) 4823 { 4824 flow_entry_t *fe = mcip->mci_flent_list; 4825 flow_entry_t *prev_fe = NULL; 4826 4827 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4828 /* 4829 * The promisc Rx data path walks the mci_flent_list. Protect by 4830 * using mci_rw_lock 4831 */ 4832 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4833 while ((fe != NULL) && (fe != flent)) { 4834 prev_fe = fe; 4835 fe = fe->fe_client_next; 4836 } 4837 4838 ASSERT(fe != NULL); 4839 if (prev_fe == NULL) { 4840 /* Deleting the first node */ 4841 mcip->mci_flent_list = fe->fe_client_next; 4842 } else { 4843 prev_fe->fe_client_next = fe->fe_client_next; 4844 } 4845 mcip->mci_nflents--; 4846 4847 if (i_mac_flow_vid(flent) != VLAN_ID_NONE) 4848 mcip->mci_nvids--; 4849 4850 rw_exit(&mcip->mci_rw_lock); 4851 } 4852 4853 /* 4854 * Check if the given VID belongs to this MAC client. 4855 */ 4856 boolean_t 4857 mac_client_check_flow_vid(mac_client_impl_t *mcip, uint16_t vid) 4858 { 4859 flow_entry_t *flent; 4860 uint16_t mci_vid; 4861 4862 /* The mci_flent_list is protected by mci_rw_lock */ 4863 rw_enter(&mcip->mci_rw_lock, RW_WRITER); 4864 for (flent = mcip->mci_flent_list; flent != NULL; 4865 flent = flent->fe_client_next) { 4866 mci_vid = i_mac_flow_vid(flent); 4867 if (vid == mci_vid) { 4868 rw_exit(&mcip->mci_rw_lock); 4869 return (B_TRUE); 4870 } 4871 } 4872 rw_exit(&mcip->mci_rw_lock); 4873 return (B_FALSE); 4874 } 4875 4876 /* 4877 * Get the flow entry for the specified <MAC addr, VID> tuple. 4878 */ 4879 static flow_entry_t * 4880 mac_client_get_flow(mac_client_impl_t *mcip, mac_unicast_impl_t *muip) 4881 { 4882 mac_address_t *map = mcip->mci_unicast; 4883 flow_entry_t *flent; 4884 uint16_t vid; 4885 flow_desc_t flow_desc; 4886 4887 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4888 4889 mac_flow_get_desc(mcip->mci_flent, &flow_desc); 4890 if (bcmp(flow_desc.fd_dst_mac, map->ma_addr, map->ma_len) != 0) 4891 return (NULL); 4892 4893 for (flent = mcip->mci_flent_list; flent != NULL; 4894 flent = flent->fe_client_next) { 4895 vid = i_mac_flow_vid(flent); 4896 if (vid == muip->mui_vid) { 4897 return (flent); 4898 } 4899 } 4900 4901 return (NULL); 4902 } 4903 4904 /* 4905 * Since mci_flent has the SRSs, when we want to remove it, we replace 4906 * the flow_desc_t in mci_flent with that of an existing flent and then 4907 * remove that flent instead of mci_flent. 4908 */ 4909 static flow_entry_t * 4910 mac_client_swap_mciflent(mac_client_impl_t *mcip) 4911 { 4912 flow_entry_t *flent = mcip->mci_flent; 4913 flow_tab_t *ft = flent->fe_flow_tab; 4914 flow_entry_t *flent1; 4915 flow_desc_t fl_desc; 4916 char fl_name[MAXFLOWNAMELEN]; 4917 int err; 4918 4919 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 4920 ASSERT(mcip->mci_nflents > 1); 4921 4922 /* get the next flent following the primary flent */ 4923 flent1 = mcip->mci_flent_list->fe_client_next; 4924 ASSERT(flent1 != NULL && flent1->fe_flow_tab == ft); 4925 4926 /* 4927 * Remove the flent from the flow table before updating the 4928 * flow descriptor as the hash depends on the flow descriptor. 4929 * This also helps incoming packet classification avoid having 4930 * to grab fe_lock. Access to fe_flow_desc of a flent not in the 4931 * flow table is done under the fe_lock so that log or stat functions 4932 * see a self-consistent fe_flow_desc. The name and desc are specific 4933 * to a flow, the rest are shared by all the clients, including 4934 * resource control etc. 4935 */ 4936 mac_flow_remove(ft, flent, B_TRUE); 4937 mac_flow_remove(ft, flent1, B_TRUE); 4938 4939 bcopy(&flent->fe_flow_desc, &fl_desc, sizeof (flow_desc_t)); 4940 bcopy(flent->fe_flow_name, fl_name, MAXFLOWNAMELEN); 4941 4942 /* update the primary flow entry */ 4943 mutex_enter(&flent->fe_lock); 4944 bcopy(&flent1->fe_flow_desc, &flent->fe_flow_desc, 4945 sizeof (flow_desc_t)); 4946 bcopy(&flent1->fe_flow_name, &flent->fe_flow_name, MAXFLOWNAMELEN); 4947 mutex_exit(&flent->fe_lock); 4948 4949 /* update the flow entry that is to be freed */ 4950 mutex_enter(&flent1->fe_lock); 4951 bcopy(&fl_desc, &flent1->fe_flow_desc, sizeof (flow_desc_t)); 4952 bcopy(fl_name, &flent1->fe_flow_name, MAXFLOWNAMELEN); 4953 mutex_exit(&flent1->fe_lock); 4954 4955 /* now reinsert the flow entries in the table */ 4956 err = mac_flow_add(ft, flent); 4957 ASSERT(err == 0); 4958 4959 err = mac_flow_add(ft, flent1); 4960 ASSERT(err == 0); 4961 4962 return (flent1); 4963 } 4964 4965 /* 4966 * Return whether there is only one flow entry associated with this 4967 * MAC client. 4968 */ 4969 static boolean_t 4970 mac_client_single_rcvr(mac_client_impl_t *mcip) 4971 { 4972 return (mcip->mci_nflents == 1); 4973 } 4974 4975 int 4976 mac_validate_props(mac_impl_t *mip, mac_resource_props_t *mrp) 4977 { 4978 boolean_t reset; 4979 uint32_t rings_needed; 4980 uint32_t rings_avail; 4981 mac_group_type_t gtype; 4982 mac_resource_props_t *mip_mrp; 4983 4984 if (mrp == NULL) 4985 return (0); 4986 4987 if (mrp->mrp_mask & MRP_PRIORITY) { 4988 mac_priority_level_t pri = mrp->mrp_priority; 4989 4990 if (pri < MPL_LOW || pri > MPL_RESET) 4991 return (EINVAL); 4992 } 4993 4994 if (mrp->mrp_mask & MRP_MAXBW) { 4995 uint64_t maxbw = mrp->mrp_maxbw; 4996 4997 if (maxbw < MRP_MAXBW_MINVAL && maxbw != 0) 4998 return (EINVAL); 4999 } 5000 if (mrp->mrp_mask & MRP_CPUS) { 5001 int i, j; 5002 mac_cpu_mode_t fanout; 5003 5004 if (mrp->mrp_ncpus > ncpus) 5005 return (EINVAL); 5006 5007 for (i = 0; i < mrp->mrp_ncpus; i++) { 5008 for (j = 0; j < mrp->mrp_ncpus; j++) { 5009 if (i != j && 5010 mrp->mrp_cpu[i] == mrp->mrp_cpu[j]) { 5011 return (EINVAL); 5012 } 5013 } 5014 } 5015 5016 for (i = 0; i < mrp->mrp_ncpus; i++) { 5017 cpu_t *cp; 5018 int rv; 5019 5020 mutex_enter(&cpu_lock); 5021 cp = cpu_get(mrp->mrp_cpu[i]); 5022 if (cp != NULL) 5023 rv = cpu_is_online(cp); 5024 else 5025 rv = 0; 5026 mutex_exit(&cpu_lock); 5027 if (rv == 0) 5028 return (EINVAL); 5029 } 5030 5031 fanout = mrp->mrp_fanout_mode; 5032 if (fanout < 0 || fanout > MCM_CPUS) 5033 return (EINVAL); 5034 } 5035 5036 if (mrp->mrp_mask & MRP_PROTECT) { 5037 int err = mac_protect_validate(mrp); 5038 if (err != 0) 5039 return (err); 5040 } 5041 5042 if (!(mrp->mrp_mask & MRP_RX_RINGS) && 5043 !(mrp->mrp_mask & MRP_TX_RINGS)) { 5044 return (0); 5045 } 5046 5047 /* 5048 * mip will be null when we come from mac_flow_create or 5049 * mac_link_flow_modify. In the latter case it is a user flow, 5050 * for which we don't support rings. In the former we would 5051 * have validated the props beforehand (i_mac_unicast_add -> 5052 * mac_client_set_resources -> validate for the primary and 5053 * vnic_dev_create -> mac_client_set_resources -> validate for 5054 * a vnic. 5055 */ 5056 if (mip == NULL) 5057 return (0); 5058 5059 /* 5060 * We don't support setting rings property for a VNIC that is using a 5061 * primary address (VLAN) 5062 */ 5063 if ((mip->mi_state_flags & MIS_IS_VNIC) && 5064 mac_is_vnic_primary((mac_handle_t)mip)) { 5065 return (ENOTSUP); 5066 } 5067 5068 mip_mrp = &mip->mi_resource_props; 5069 /* 5070 * The rings property should be validated against the NICs 5071 * resources 5072 */ 5073 if (mip->mi_state_flags & MIS_IS_VNIC) 5074 mip = (mac_impl_t *)mac_get_lower_mac_handle((mac_handle_t)mip); 5075 5076 reset = mrp->mrp_mask & MRP_RINGS_RESET; 5077 /* 5078 * If groups are not supported, return error. 5079 */ 5080 if (((mrp->mrp_mask & MRP_RX_RINGS) && mip->mi_rx_groups == NULL) || 5081 ((mrp->mrp_mask & MRP_TX_RINGS) && mip->mi_tx_groups == NULL)) { 5082 return (EINVAL); 5083 } 5084 /* 5085 * If we are just resetting, there is no validation needed. 5086 */ 5087 if (reset) 5088 return (0); 5089 5090 if (mrp->mrp_mask & MRP_RX_RINGS) { 5091 rings_needed = mrp->mrp_nrxrings; 5092 /* 5093 * We just want to check if the number of additional 5094 * rings requested is available. 5095 */ 5096 if (mip_mrp->mrp_mask & MRP_RX_RINGS) { 5097 if (mrp->mrp_nrxrings > mip_mrp->mrp_nrxrings) 5098 /* Just check for the additional rings */ 5099 rings_needed -= mip_mrp->mrp_nrxrings; 5100 else 5101 /* We are not asking for additional rings */ 5102 rings_needed = 0; 5103 } 5104 rings_avail = mip->mi_rxrings_avail; 5105 gtype = mip->mi_rx_group_type; 5106 } else { 5107 rings_needed = mrp->mrp_ntxrings; 5108 /* Similarly for the TX rings */ 5109 if (mip_mrp->mrp_mask & MRP_TX_RINGS) { 5110 if (mrp->mrp_ntxrings > mip_mrp->mrp_ntxrings) 5111 /* Just check for the additional rings */ 5112 rings_needed -= mip_mrp->mrp_ntxrings; 5113 else 5114 /* We are not asking for additional rings */ 5115 rings_needed = 0; 5116 } 5117 rings_avail = mip->mi_txrings_avail; 5118 gtype = mip->mi_tx_group_type; 5119 } 5120 5121 /* Error if the group is dynamic .. */ 5122 if (gtype == MAC_GROUP_TYPE_DYNAMIC) { 5123 /* 5124 * .. and rings specified are more than available. 5125 */ 5126 if (rings_needed > rings_avail) 5127 return (EINVAL); 5128 } else { 5129 /* 5130 * OR group is static and we have specified some rings. 5131 */ 5132 if (rings_needed > 0) 5133 return (EINVAL); 5134 } 5135 return (0); 5136 } 5137 5138 /* 5139 * Send a MAC_NOTE_LINK notification to all the MAC clients whenever the 5140 * underlying physical link is down. This is to allow MAC clients to 5141 * communicate with other clients. 5142 */ 5143 void 5144 mac_virtual_link_update(mac_impl_t *mip) 5145 { 5146 if (mip->mi_linkstate != LINK_STATE_UP) 5147 i_mac_notify(mip, MAC_NOTE_LINK); 5148 } 5149 5150 /* 5151 * For clients that have a pass-thru MAC, e.g. VNIC, we set the VNIC's 5152 * mac handle in the client. 5153 */ 5154 void 5155 mac_set_upper_mac(mac_client_handle_t mch, mac_handle_t mh, 5156 mac_resource_props_t *mrp) 5157 { 5158 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5159 mac_impl_t *mip = (mac_impl_t *)mh; 5160 5161 mcip->mci_upper_mip = mip; 5162 /* If there are any properties, copy it over too */ 5163 if (mrp != NULL) { 5164 bcopy(mrp, &mip->mi_resource_props, 5165 sizeof (mac_resource_props_t)); 5166 } 5167 } 5168 5169 /* 5170 * Mark the mac as being used exclusively by the single mac client that is 5171 * doing some control operation on this mac. No further opens of this mac 5172 * will be allowed until this client calls mac_unmark_exclusive. The mac 5173 * client calling this function must already be in the mac perimeter 5174 */ 5175 int 5176 mac_mark_exclusive(mac_handle_t mh) 5177 { 5178 mac_impl_t *mip = (mac_impl_t *)mh; 5179 5180 ASSERT(MAC_PERIM_HELD(mh)); 5181 /* 5182 * Look up its entry in the global hash table. 5183 */ 5184 rw_enter(&i_mac_impl_lock, RW_WRITER); 5185 if (mip->mi_state_flags & MIS_DISABLED) { 5186 rw_exit(&i_mac_impl_lock); 5187 return (ENOENT); 5188 } 5189 5190 /* 5191 * A reference to mac is held even if the link is not plumbed. 5192 * In i_dls_link_create() we open the MAC interface and hold the 5193 * reference. There is an additional reference for the mac_open 5194 * done in acquiring the mac perimeter 5195 */ 5196 if (mip->mi_ref != 2) { 5197 rw_exit(&i_mac_impl_lock); 5198 return (EBUSY); 5199 } 5200 5201 ASSERT(!(mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 5202 mip->mi_state_flags |= MIS_EXCLUSIVE_HELD; 5203 rw_exit(&i_mac_impl_lock); 5204 return (0); 5205 } 5206 5207 void 5208 mac_unmark_exclusive(mac_handle_t mh) 5209 { 5210 mac_impl_t *mip = (mac_impl_t *)mh; 5211 5212 ASSERT(MAC_PERIM_HELD(mh)); 5213 5214 rw_enter(&i_mac_impl_lock, RW_WRITER); 5215 /* 1 for the creation and another for the perimeter */ 5216 ASSERT(mip->mi_ref == 2 && (mip->mi_state_flags & MIS_EXCLUSIVE_HELD)); 5217 mip->mi_state_flags &= ~MIS_EXCLUSIVE_HELD; 5218 rw_exit(&i_mac_impl_lock); 5219 } 5220 5221 /* 5222 * Set the MTU for the specified MAC. 5223 */ 5224 int 5225 mac_set_mtu(mac_handle_t mh, uint_t new_mtu, uint_t *old_mtu_arg) 5226 { 5227 mac_impl_t *mip = (mac_impl_t *)mh; 5228 uint_t old_mtu; 5229 int rv = 0; 5230 5231 i_mac_perim_enter(mip); 5232 5233 if (!(mip->mi_callbacks->mc_callbacks & (MC_SETPROP|MC_GETPROP))) { 5234 rv = ENOTSUP; 5235 goto bail; 5236 } 5237 5238 old_mtu = mip->mi_sdu_max; 5239 5240 if (new_mtu == 0 || new_mtu < mip->mi_sdu_min) { 5241 rv = EINVAL; 5242 goto bail; 5243 } 5244 5245 if (old_mtu != new_mtu) { 5246 rv = mip->mi_callbacks->mc_setprop(mip->mi_driver, 5247 "mtu", MAC_PROP_MTU, sizeof (uint_t), &new_mtu); 5248 if (rv != 0) 5249 goto bail; 5250 rv = mac_maxsdu_update(mh, new_mtu); 5251 ASSERT(rv == 0); 5252 } 5253 5254 bail: 5255 i_mac_perim_exit(mip); 5256 5257 if (rv == 0 && old_mtu_arg != NULL) 5258 *old_mtu_arg = old_mtu; 5259 return (rv); 5260 } 5261 5262 /* 5263 * Return the RX h/w information for the group indexed by grp_num. 5264 */ 5265 void 5266 mac_get_hwrxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 5267 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts, 5268 char *clnts_name) 5269 { 5270 mac_impl_t *mip = (mac_impl_t *)mh; 5271 mac_grp_client_t *mcip; 5272 uint_t i = 0, index = 0; 5273 mac_ring_t *ring; 5274 5275 /* Revisit when we implement fully dynamic group allocation */ 5276 ASSERT(grp_index >= 0 && grp_index < mip->mi_rx_group_count); 5277 5278 rw_enter(&mip->mi_rw_lock, RW_READER); 5279 *grp_num = mip->mi_rx_groups[grp_index].mrg_index; 5280 *type = mip->mi_rx_groups[grp_index].mrg_type; 5281 *n_rings = mip->mi_rx_groups[grp_index].mrg_cur_count; 5282 ring = mip->mi_rx_groups[grp_index].mrg_rings; 5283 for (index = 0; index < mip->mi_rx_groups[grp_index].mrg_cur_count; 5284 index++) { 5285 rings[index] = ring->mr_index; 5286 ring = ring->mr_next; 5287 } 5288 /* Assuming the 1st is the default group */ 5289 index = 0; 5290 if (grp_index == 0) { 5291 (void) strlcpy(clnts_name, "<default,mcast>,", 5292 MAXCLIENTNAMELEN); 5293 index += strlen("<default,mcast>,"); 5294 } 5295 for (mcip = mip->mi_rx_groups[grp_index].mrg_clients; mcip != NULL; 5296 mcip = mcip->mgc_next) { 5297 int name_len = strlen(mcip->mgc_client->mci_name); 5298 5299 /* 5300 * MAXCLIENTNAMELEN is the buffer size reserved for client 5301 * names. 5302 * XXXX Formating the client name string needs to be moved 5303 * to user land when fixing the size of dhi_clnts in 5304 * dld_hwgrpinfo_t. We should use n_clients * client_name for 5305 * dhi_clntsin instead of MAXCLIENTNAMELEN 5306 */ 5307 if (index + name_len >= MAXCLIENTNAMELEN) { 5308 index = MAXCLIENTNAMELEN; 5309 break; 5310 } 5311 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 5312 name_len); 5313 index += name_len; 5314 clnts_name[index++] = ','; 5315 i++; 5316 } 5317 5318 /* Get rid of the last , */ 5319 if (index > 0) 5320 clnts_name[index - 1] = '\0'; 5321 *n_clnts = i; 5322 rw_exit(&mip->mi_rw_lock); 5323 } 5324 5325 /* 5326 * Return the TX h/w information for the group indexed by grp_num. 5327 */ 5328 void 5329 mac_get_hwtxgrp_info(mac_handle_t mh, int grp_index, uint_t *grp_num, 5330 uint_t *n_rings, uint_t *rings, uint_t *type, uint_t *n_clnts, 5331 char *clnts_name) 5332 { 5333 mac_impl_t *mip = (mac_impl_t *)mh; 5334 mac_grp_client_t *mcip; 5335 uint_t i = 0, index = 0; 5336 mac_ring_t *ring; 5337 5338 /* Revisit when we implement fully dynamic group allocation */ 5339 ASSERT(grp_index >= 0 && grp_index <= mip->mi_tx_group_count); 5340 5341 rw_enter(&mip->mi_rw_lock, RW_READER); 5342 *grp_num = mip->mi_tx_groups[grp_index].mrg_index > 0 ? 5343 mip->mi_tx_groups[grp_index].mrg_index : grp_index; 5344 *type = mip->mi_tx_groups[grp_index].mrg_type; 5345 *n_rings = mip->mi_tx_groups[grp_index].mrg_cur_count; 5346 ring = mip->mi_tx_groups[grp_index].mrg_rings; 5347 for (index = 0; index < mip->mi_tx_groups[grp_index].mrg_cur_count; 5348 index++) { 5349 rings[index] = ring->mr_index; 5350 ring = ring->mr_next; 5351 } 5352 index = 0; 5353 /* Default group has an index of -1 */ 5354 if (mip->mi_tx_groups[grp_index].mrg_index < 0) { 5355 (void) strlcpy(clnts_name, "<default>,", 5356 MAXCLIENTNAMELEN); 5357 index += strlen("<default>,"); 5358 } 5359 for (mcip = mip->mi_tx_groups[grp_index].mrg_clients; mcip != NULL; 5360 mcip = mcip->mgc_next) { 5361 int name_len = strlen(mcip->mgc_client->mci_name); 5362 5363 /* 5364 * MAXCLIENTNAMELEN is the buffer size reserved for client 5365 * names. 5366 * XXXX Formating the client name string needs to be moved 5367 * to user land when fixing the size of dhi_clnts in 5368 * dld_hwgrpinfo_t. We should use n_clients * client_name for 5369 * dhi_clntsin instead of MAXCLIENTNAMELEN 5370 */ 5371 if (index + name_len >= MAXCLIENTNAMELEN) { 5372 index = MAXCLIENTNAMELEN; 5373 break; 5374 } 5375 bcopy(mcip->mgc_client->mci_name, &(clnts_name[index]), 5376 name_len); 5377 index += name_len; 5378 clnts_name[index++] = ','; 5379 i++; 5380 } 5381 5382 /* Get rid of the last , */ 5383 if (index > 0) 5384 clnts_name[index - 1] = '\0'; 5385 *n_clnts = i; 5386 rw_exit(&mip->mi_rw_lock); 5387 } 5388 5389 /* 5390 * Return the group count for RX or TX. 5391 */ 5392 uint_t 5393 mac_hwgrp_num(mac_handle_t mh, int type) 5394 { 5395 mac_impl_t *mip = (mac_impl_t *)mh; 5396 5397 /* 5398 * Return the Rx and Tx group count; for the Tx we need to 5399 * include the default too. 5400 */ 5401 return (type == MAC_RING_TYPE_RX ? mip->mi_rx_group_count : 5402 mip->mi_tx_groups != NULL ? mip->mi_tx_group_count + 1 : 0); 5403 } 5404 5405 /* 5406 * The total number of free TX rings for this MAC. 5407 */ 5408 uint_t 5409 mac_txavail_get(mac_handle_t mh) 5410 { 5411 mac_impl_t *mip = (mac_impl_t *)mh; 5412 5413 return (mip->mi_txrings_avail); 5414 } 5415 5416 /* 5417 * The total number of free RX rings for this MAC. 5418 */ 5419 uint_t 5420 mac_rxavail_get(mac_handle_t mh) 5421 { 5422 mac_impl_t *mip = (mac_impl_t *)mh; 5423 5424 return (mip->mi_rxrings_avail); 5425 } 5426 5427 /* 5428 * The total number of reserved RX rings on this MAC. 5429 */ 5430 uint_t 5431 mac_rxrsvd_get(mac_handle_t mh) 5432 { 5433 mac_impl_t *mip = (mac_impl_t *)mh; 5434 5435 return (mip->mi_rxrings_rsvd); 5436 } 5437 5438 /* 5439 * The total number of reserved TX rings on this MAC. 5440 */ 5441 uint_t 5442 mac_txrsvd_get(mac_handle_t mh) 5443 { 5444 mac_impl_t *mip = (mac_impl_t *)mh; 5445 5446 return (mip->mi_txrings_rsvd); 5447 } 5448 5449 /* 5450 * Total number of free RX groups on this MAC. 5451 */ 5452 uint_t 5453 mac_rxhwlnksavail_get(mac_handle_t mh) 5454 { 5455 mac_impl_t *mip = (mac_impl_t *)mh; 5456 5457 return (mip->mi_rxhwclnt_avail); 5458 } 5459 5460 /* 5461 * Total number of RX groups reserved on this MAC. 5462 */ 5463 uint_t 5464 mac_rxhwlnksrsvd_get(mac_handle_t mh) 5465 { 5466 mac_impl_t *mip = (mac_impl_t *)mh; 5467 5468 return (mip->mi_rxhwclnt_used); 5469 } 5470 5471 /* 5472 * Total number of free TX groups on this MAC. 5473 */ 5474 uint_t 5475 mac_txhwlnksavail_get(mac_handle_t mh) 5476 { 5477 mac_impl_t *mip = (mac_impl_t *)mh; 5478 5479 return (mip->mi_txhwclnt_avail); 5480 } 5481 5482 /* 5483 * Total number of TX groups reserved on this MAC. 5484 */ 5485 uint_t 5486 mac_txhwlnksrsvd_get(mac_handle_t mh) 5487 { 5488 mac_impl_t *mip = (mac_impl_t *)mh; 5489 5490 return (mip->mi_txhwclnt_used); 5491 } 5492 5493 /* 5494 * Initialize the rings property for a mac client. A non-0 value for 5495 * rxring or txring specifies the number of rings required, a value 5496 * of MAC_RXRINGS_NONE/MAC_TXRINGS_NONE specifies that it doesn't need 5497 * any RX/TX rings and a value of MAC_RXRINGS_DONTCARE/MAC_TXRINGS_DONTCARE 5498 * means the system can decide whether it can give any rings or not. 5499 */ 5500 void 5501 mac_client_set_rings(mac_client_handle_t mch, int rxrings, int txrings) 5502 { 5503 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5504 mac_resource_props_t *mrp = MCIP_RESOURCE_PROPS(mcip); 5505 5506 if (rxrings != MAC_RXRINGS_DONTCARE) { 5507 mrp->mrp_mask |= MRP_RX_RINGS; 5508 mrp->mrp_nrxrings = rxrings; 5509 } 5510 5511 if (txrings != MAC_TXRINGS_DONTCARE) { 5512 mrp->mrp_mask |= MRP_TX_RINGS; 5513 mrp->mrp_ntxrings = txrings; 5514 } 5515 } 5516