xref: /titanic_44/usr/src/uts/common/io/mac/mac.c (revision e61f9225a04b4fd585d00a48ef90f7948290b900)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * MAC Services Module
29  *
30  * The GLDv3 framework locking -  The MAC layer
31  * --------------------------------------------
32  *
33  * The MAC layer is central to the GLD framework and can provide the locking
34  * framework needed for itself and for the use of MAC clients. MAC end points
35  * are fairly disjoint and don't share a lot of state. So a coarse grained
36  * multi-threading scheme is to single thread all create/modify/delete or set
37  * type of control operations on a per mac end point while allowing data threads
38  * concurrently.
39  *
40  * Control operations (set) that modify a mac end point are always serialized on
41  * a per mac end point basis, We have at most 1 such thread per mac end point
42  * at a time.
43  *
44  * All other operations that are not serialized are essentially multi-threaded.
45  * For example a control operation (get) like getting statistics which may not
46  * care about reading values atomically or data threads sending or receiving
47  * data. Mostly these type of operations don't modify the control state. Any
48  * state these operations care about are protected using traditional locks.
49  *
50  * The perimeter only serializes serial operations. It does not imply there
51  * aren't any other concurrent operations. However a serialized operation may
52  * sometimes need to make sure it is the only thread. In this case it needs
53  * to use reference counting mechanisms to cv_wait until any current data
54  * threads are done.
55  *
56  * The mac layer itself does not hold any locks across a call to another layer.
57  * The perimeter is however held across a down call to the driver to make the
58  * whole control operation atomic with respect to other control operations.
59  * Also the data path and get type control operations may proceed concurrently.
60  * These operations synchronize with the single serial operation on a given mac
61  * end point using regular locks. The perimeter ensures that conflicting
62  * operations like say a mac_multicast_add and a mac_multicast_remove on the
63  * same mac end point don't interfere with each other and also ensures that the
64  * changes in the mac layer and the call to the underlying driver to say add a
65  * multicast address are done atomically without interference from a thread
66  * trying to delete the same address.
67  *
68  * For example, consider
69  * mac_multicst_add()
70  * {
71  *	mac_perimeter_enter();	serialize all control operations
72  *
73  *	grab list lock		protect against access by data threads
74  *	add to list
75  *	drop list lock
76  *
77  *	call driver's mi_multicst
78  *
79  *	mac_perimeter_exit();
80  * }
81  *
82  * To lessen the number of serialization locks and simplify the lock hierarchy,
83  * we serialize all the control operations on a per mac end point by using a
84  * single serialization lock called the perimeter. We allow recursive entry into
85  * the perimeter to facilitate use of this mechanism by both the mac client and
86  * the MAC layer itself.
87  *
88  * MAC client means an entity that does an operation on a mac handle
89  * obtained from a mac_open/mac_client_open. Similarly MAC driver means
90  * an entity that does an operation on a mac handle obtained from a
91  * mac_register. An entity could be both client and driver but on different
92  * handles eg. aggr. and should only make the corresponding mac interface calls
93  * i.e. mac driver interface or mac client interface as appropriate for that
94  * mac handle.
95  *
96  * General rules.
97  * -------------
98  *
99  * R1. The lock order of upcall threads is natually opposite to downcall
100  * threads. Hence upcalls must not hold any locks across layers for fear of
101  * recursive lock enter and lock order violation. This applies to all layers.
102  *
103  * R2. The perimeter is just another lock. Since it is held in the down
104  * direction, acquiring the perimeter in an upcall is prohibited as it would
105  * cause a deadlock. This applies to all layers.
106  *
107  * Note that upcalls that need to grab the mac perimeter (for example
108  * mac_notify upcalls) can still achieve that by posting the request to a
109  * thread, which can then grab all the required perimeters and locks in the
110  * right global order. Note that in the above example the mac layer iself
111  * won't grab the mac perimeter in the mac_notify upcall, instead the upcall
112  * to the client must do that. Please see the aggr code for an example.
113  *
114  * MAC client rules
115  * ----------------
116  *
117  * R3. A MAC client may use the MAC provided perimeter facility to serialize
118  * control operations on a per mac end point. It does this by by acquring
119  * and holding the perimeter across a sequence of calls to the mac layer.
120  * This ensures atomicity across the entire block of mac calls. In this
121  * model the MAC client must not hold any client locks across the calls to
122  * the mac layer. This model is the preferred solution.
123  *
124  * R4. However if a MAC client has a lot of global state across all mac end
125  * points the per mac end point serialization may not be sufficient. In this
126  * case the client may choose to use global locks or use its own serialization.
127  * To avoid deadlocks, these client layer locks held across the mac calls
128  * in the control path must never be acquired by the data path for the reason
129  * mentioned below.
130  *
131  * (Assume that a control operation that holds a client lock blocks in the
132  * mac layer waiting for upcall reference counts to drop to zero. If an upcall
133  * data thread that holds this reference count, tries to acquire the same
134  * client lock subsequently it will deadlock).
135  *
136  * A MAC client may follow either the R3 model or the R4 model, but can't
137  * mix both. In the former, the hierarchy is Perim -> client locks, but in
138  * the latter it is client locks -> Perim.
139  *
140  * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able
141  * context since they may block while trying to acquire the perimeter.
142  * In addition some calls may block waiting for upcall refcnts to come down to
143  * zero.
144  *
145  * R6. MAC clients must make sure that they are single threaded and all threads
146  * from the top (in particular data threads) have finished before calling
147  * mac_client_close. The MAC framework does not track the number of client
148  * threads using the mac client handle. Also mac clients must make sure
149  * they have undone all the control operations before calling mac_client_close.
150  * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding
151  * mac_unicast_add/mac_multicast_add.
152  *
153  * MAC framework rules
154  * -------------------
155  *
156  * R7. The mac layer itself must not hold any mac layer locks (except the mac
157  * perimeter) across a call to any other layer from the mac layer. The call to
158  * any other layer could be via mi_* entry points, classifier entry points into
159  * the driver or via upcall pointers into layers above. The mac perimeter may
160  * be acquired or held only in the down direction, for e.g. when calling into
161  * a mi_* driver enty point to provide atomicity of the operation.
162  *
163  * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across
164  * mac driver interfaces, the MAC layer must provide a cut out for control
165  * interfaces like upcall notifications and start them in a separate thread.
166  *
167  * R9. Note that locking order also implies a plumbing order. For example
168  * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt
169  * to plumb in any other order must be failed at mac_open time, otherwise it
170  * could lead to deadlocks due to inverse locking order.
171  *
172  * R10. MAC driver interfaces must not block since the driver could call them
173  * in interrupt context.
174  *
175  * R11. Walkers must preferably not hold any locks while calling walker
176  * callbacks. Instead these can operate on reference counts. In simple
177  * callbacks it may be ok to hold a lock and call the callbacks, but this is
178  * harder to maintain in the general case of arbitrary callbacks.
179  *
180  * R12. The MAC layer must protect upcall notification callbacks using reference
181  * counts rather than holding locks across the callbacks.
182  *
183  * R13. Given the variety of drivers, it is preferable if the MAC layer can make
184  * sure that any pointers (such as mac ring pointers) it passes to the driver
185  * remain valid until mac unregister time. Currently the mac layer achieves
186  * this by using generation numbers for rings and freeing the mac rings only
187  * at unregister time.  The MAC layer must provide a layer of indirection and
188  * must not expose underlying driver rings or driver data structures/pointers
189  * directly to MAC clients.
190  *
191  * MAC driver rules
192  * ----------------
193  *
194  * R14. It would be preferable if MAC drivers don't hold any locks across any
195  * mac call. However at a minimum they must not hold any locks across data
196  * upcalls. They must also make sure that all references to mac data structures
197  * are cleaned up and that it is single threaded at mac_unregister time.
198  *
199  * R15. MAC driver interfaces don't block and so the action may be done
200  * asynchronously in a separate thread as for example handling notifications.
201  * The driver must not assume that the action is complete when the call
202  * returns.
203  *
204  * R16. Drivers must maintain a generation number per Rx ring, and pass it
205  * back to mac_rx_ring(); They are expected to increment the generation
206  * number whenever the ring's stop routine is invoked.
207  * See comments in mac_rx_ring();
208  *
209  * R17 Similarly mi_stop is another synchronization point and the driver must
210  * ensure that all upcalls are done and there won't be any future upcall
211  * before returning from mi_stop.
212  *
213  * R18. The driver may assume that all set/modify control operations via
214  * the mi_* entry points are single threaded on a per mac end point.
215  *
216  * Lock and Perimeter hierarchy scenarios
217  * ---------------------------------------
218  *
219  * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify]
220  *
221  * ft_lock -> fe_lock [mac_flow_lookup]
222  *
223  * mi_rw_lock -> fe_lock [mac_bcast_send]
224  *
225  * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw]
226  *
227  * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind]
228  *
229  * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename]
230  *
231  * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac
232  * client to driver. In the case of clients that explictly use the mac provided
233  * perimeter mechanism for its serialization, the hierarchy is
234  * Perimeter -> mac layer locks, since the client never holds any locks across
235  * the mac calls. In the case of clients that use its own locks the hierarchy
236  * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly
237  * calls mac_perim_enter/exit in this case.
238  *
239  * Subflow creation rules
240  * ---------------------------
241  * o In case of a user specified cpulist present on underlying link and flows,
242  * the flows cpulist must be a subset of the underlying link.
243  * o In case of a user specified fanout mode present on link and flow, the
244  * subflow fanout count has to be less than or equal to that of the
245  * underlying link. The cpu-bindings for the subflows will be a subset of
246  * the underlying link.
247  * o In case if no cpulist specified on both underlying link and flow, the
248  * underlying link relies on a  MAC tunable to provide out of box fanout.
249  * The subflow will have no cpulist (the subflow will be unbound)
250  * o In case if no cpulist is specified on the underlying link, a subflow can
251  * carry  either a user-specified cpulist or fanout count. The cpu-bindings
252  * for the subflow will not adhere to restriction that they need to be subset
253  * of the underlying link.
254  * o In case where the underlying link is carrying either a user specified
255  * cpulist or fanout mode and for a unspecified subflow, the subflow will be
256  * created unbound.
257  * o While creating unbound subflows, bandwidth mode changes attempt to
258  * figure a right fanout count. In such cases the fanout count will override
259  * the unbound cpu-binding behavior.
260  * o In addition to this, while cycling between flow and link properties, we
261  * impose a restriction that if a link property has a subflow with
262  * user-specified attributes, we will not allow changing the link property.
263  * The administrator needs to reset all the user specified properties for the
264  * subflows before attempting a link property change.
265  * Some of the above rules can be overridden by specifying additional command
266  * line options while creating or modifying link or subflow properties.
267  */
268 
269 #include <sys/types.h>
270 #include <sys/conf.h>
271 #include <sys/id_space.h>
272 #include <sys/esunddi.h>
273 #include <sys/stat.h>
274 #include <sys/mkdev.h>
275 #include <sys/stream.h>
276 #include <sys/strsun.h>
277 #include <sys/strsubr.h>
278 #include <sys/dlpi.h>
279 #include <sys/modhash.h>
280 #include <sys/mac_provider.h>
281 #include <sys/mac_client_impl.h>
282 #include <sys/mac_soft_ring.h>
283 #include <sys/mac_impl.h>
284 #include <sys/mac.h>
285 #include <sys/dls.h>
286 #include <sys/dld.h>
287 #include <sys/modctl.h>
288 #include <sys/fs/dv_node.h>
289 #include <sys/thread.h>
290 #include <sys/proc.h>
291 #include <sys/callb.h>
292 #include <sys/cpuvar.h>
293 #include <sys/atomic.h>
294 #include <sys/bitmap.h>
295 #include <sys/sdt.h>
296 #include <sys/mac_flow.h>
297 #include <sys/ddi_intr_impl.h>
298 #include <sys/disp.h>
299 #include <sys/sdt.h>
300 #include <sys/vnic.h>
301 #include <sys/vnic_impl.h>
302 #include <sys/vlan.h>
303 #include <inet/ip.h>
304 #include <inet/ip6.h>
305 #include <sys/exacct.h>
306 #include <sys/exacct_impl.h>
307 #include <inet/nd.h>
308 #include <sys/ethernet.h>
309 
310 #define	IMPL_HASHSZ	67	/* prime */
311 
312 kmem_cache_t	*i_mac_impl_cachep;
313 mod_hash_t		*i_mac_impl_hash;
314 krwlock_t		i_mac_impl_lock;
315 uint_t			i_mac_impl_count;
316 static kmem_cache_t	*mac_ring_cache;
317 static id_space_t	*minor_ids;
318 static uint32_t		minor_count;
319 
320 /*
321  * Logging stuff. Perhaps mac_logging_interval could be broken into
322  * mac_flow_log_interval and mac_link_log_interval if we want to be
323  * able to schedule them differently.
324  */
325 uint_t			mac_logging_interval;
326 boolean_t		mac_flow_log_enable;
327 boolean_t		mac_link_log_enable;
328 timeout_id_t		mac_logging_timer;
329 
330 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */
331 int mac_dbg = 0;
332 
333 #define	MACTYPE_KMODDIR	"mac"
334 #define	MACTYPE_HASHSZ	67
335 static mod_hash_t	*i_mactype_hash;
336 /*
337  * i_mactype_lock synchronizes threads that obtain references to mactype_t
338  * structures through i_mactype_getplugin().
339  */
340 static kmutex_t		i_mactype_lock;
341 
342 /*
343  * mac_tx_percpu_cnt
344  *
345  * Number of per cpu locks per mac_client_impl_t. Used by the transmit side
346  * in mac_tx to reduce lock contention. This is sized at boot time in mac_init.
347  * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2.
348  * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1.
349  */
350 int mac_tx_percpu_cnt;
351 int mac_tx_percpu_cnt_max = 128;
352 
353 static int i_mac_constructor(void *, void *, int);
354 static void i_mac_destructor(void *, void *);
355 static int i_mac_ring_ctor(void *, void *, int);
356 static void i_mac_ring_dtor(void *, void *);
357 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *);
358 void mac_tx_client_flush(mac_client_impl_t *);
359 void mac_tx_client_block(mac_client_impl_t *);
360 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t);
361 static int mac_start_group_and_rings(mac_group_t *);
362 static void mac_stop_group_and_rings(mac_group_t *);
363 
364 /*
365  * Module initialization functions.
366  */
367 
368 void
369 mac_init(void)
370 {
371 	mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus :
372 	    boot_max_ncpus);
373 
374 	/* Upper bound is mac_tx_percpu_cnt_max */
375 	if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max)
376 		mac_tx_percpu_cnt = mac_tx_percpu_cnt_max;
377 
378 	if (mac_tx_percpu_cnt < 1) {
379 		/* Someone set max_tx_percpu_cnt_max to 0 or less */
380 		mac_tx_percpu_cnt = 1;
381 	}
382 
383 	ASSERT(mac_tx_percpu_cnt >= 1);
384 	mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1));
385 	/*
386 	 * Make it of the form 2**N - 1 in the range
387 	 * [0 .. mac_tx_percpu_cnt_max - 1]
388 	 */
389 	mac_tx_percpu_cnt--;
390 
391 	i_mac_impl_cachep = kmem_cache_create("mac_impl_cache",
392 	    sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor,
393 	    NULL, NULL, NULL, 0);
394 	ASSERT(i_mac_impl_cachep != NULL);
395 
396 	mac_ring_cache = kmem_cache_create("mac_ring_cache",
397 	    sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL,
398 	    NULL, NULL, 0);
399 	ASSERT(mac_ring_cache != NULL);
400 
401 	i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash",
402 	    IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor,
403 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
404 	rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL);
405 
406 	mac_flow_init();
407 	mac_soft_ring_init();
408 	mac_bcast_init();
409 	mac_client_init();
410 
411 	i_mac_impl_count = 0;
412 
413 	i_mactype_hash = mod_hash_create_extended("mactype_hash",
414 	    MACTYPE_HASHSZ,
415 	    mod_hash_null_keydtor, mod_hash_null_valdtor,
416 	    mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
417 
418 	/*
419 	 * Allocate an id space to manage minor numbers. The range of the
420 	 * space will be from MAC_MAX_MINOR+1 to MAXMIN32 (maximum legal
421 	 * minor number is MAXMIN, but id_t is type of integer and does not
422 	 * allow MAXMIN).
423 	 */
424 	minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, MAXMIN32);
425 	ASSERT(minor_ids != NULL);
426 	minor_count = 0;
427 
428 	/* Let's default to 20 seconds */
429 	mac_logging_interval = 20;
430 	mac_flow_log_enable = B_FALSE;
431 	mac_link_log_enable = B_FALSE;
432 	mac_logging_timer = 0;
433 }
434 
435 int
436 mac_fini(void)
437 {
438 	if (i_mac_impl_count > 0 || minor_count > 0)
439 		return (EBUSY);
440 
441 	id_space_destroy(minor_ids);
442 	mac_flow_fini();
443 
444 	mod_hash_destroy_hash(i_mac_impl_hash);
445 	rw_destroy(&i_mac_impl_lock);
446 
447 	mac_client_fini();
448 	kmem_cache_destroy(mac_ring_cache);
449 
450 	mod_hash_destroy_hash(i_mactype_hash);
451 	mac_soft_ring_finish();
452 	return (0);
453 }
454 
455 void
456 mac_init_ops(struct dev_ops *ops, const char *name)
457 {
458 	dld_init_ops(ops, name);
459 }
460 
461 void
462 mac_fini_ops(struct dev_ops *ops)
463 {
464 	dld_fini_ops(ops);
465 }
466 
467 /*ARGSUSED*/
468 static int
469 i_mac_constructor(void *buf, void *arg, int kmflag)
470 {
471 	mac_impl_t	*mip = buf;
472 
473 	bzero(buf, sizeof (mac_impl_t));
474 
475 	mip->mi_linkstate = LINK_STATE_UNKNOWN;
476 	mip->mi_nclients = 0;
477 
478 	mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL);
479 	rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL);
480 	mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL);
481 	mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL);
482 	mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL);
483 
484 	mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock;
485 	cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
486 	mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock;
487 	cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL);
488 	return (0);
489 }
490 
491 /*ARGSUSED*/
492 static void
493 i_mac_destructor(void *buf, void *arg)
494 {
495 	mac_impl_t	*mip = buf;
496 	mac_cb_info_t	*mcbi;
497 
498 	ASSERT(mip->mi_ref == 0);
499 	ASSERT(mip->mi_active == 0);
500 	ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN);
501 	ASSERT(mip->mi_devpromisc == 0);
502 	ASSERT(mip->mi_promisc == 0);
503 	ASSERT(mip->mi_ksp == NULL);
504 	ASSERT(mip->mi_kstat_count == 0);
505 	ASSERT(mip->mi_nclients == 0);
506 	ASSERT(mip->mi_nactiveclients == 0);
507 	ASSERT(mip->mi_single_active_client == NULL);
508 	ASSERT(mip->mi_state_flags == 0);
509 	ASSERT(mip->mi_factory_addr == NULL);
510 	ASSERT(mip->mi_factory_addr_num == 0);
511 	ASSERT(mip->mi_default_tx_ring == NULL);
512 
513 	mcbi = &mip->mi_notify_cb_info;
514 	ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0);
515 	ASSERT(mip->mi_notify_bits == 0);
516 	ASSERT(mip->mi_notify_thread == NULL);
517 	ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock);
518 	mcbi->mcbi_lockp = NULL;
519 
520 	mcbi = &mip->mi_promisc_cb_info;
521 	ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL);
522 	ASSERT(mip->mi_promisc_list == NULL);
523 	ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock);
524 	mcbi->mcbi_lockp = NULL;
525 
526 	ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL);
527 	ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0);
528 
529 	mutex_destroy(&mip->mi_lock);
530 	rw_destroy(&mip->mi_rw_lock);
531 
532 	mutex_destroy(&mip->mi_promisc_lock);
533 	cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv);
534 	mutex_destroy(&mip->mi_notify_lock);
535 	cv_destroy(&mip->mi_notify_cb_info.mcbi_cv);
536 	mutex_destroy(&mip->mi_ring_lock);
537 }
538 
539 /* ARGSUSED */
540 static int
541 i_mac_ring_ctor(void *buf, void *arg, int kmflag)
542 {
543 	mac_ring_t *ring = (mac_ring_t *)buf;
544 
545 	bzero(ring, sizeof (mac_ring_t));
546 	cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL);
547 	mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL);
548 	ring->mr_state = MR_FREE;
549 	return (0);
550 }
551 
552 /* ARGSUSED */
553 static void
554 i_mac_ring_dtor(void *buf, void *arg)
555 {
556 	mac_ring_t *ring = (mac_ring_t *)buf;
557 
558 	cv_destroy(&ring->mr_cv);
559 	mutex_destroy(&ring->mr_lock);
560 }
561 
562 /*
563  * Common functions to do mac callback addition and deletion. Currently this is
564  * used by promisc callbacks and notify callbacks. List addition and deletion
565  * need to take care of list walkers. List walkers in general, can't hold list
566  * locks and make upcall callbacks due to potential lock order and recursive
567  * reentry issues. Instead list walkers increment the list walker count to mark
568  * the presence of a walker thread. Addition can be carefully done to ensure
569  * that the list walker always sees either the old list or the new list.
570  * However the deletion can't be done while the walker is active, instead the
571  * deleting thread simply marks the entry as logically deleted. The last walker
572  * physically deletes and frees up the logically deleted entries when the walk
573  * is complete.
574  */
575 void
576 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
577     mac_cb_t *mcb_elem)
578 {
579 	mac_cb_t	*p;
580 	mac_cb_t	**pp;
581 
582 	/* Verify it is not already in the list */
583 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
584 		if (p == mcb_elem)
585 			break;
586 	}
587 	VERIFY(p == NULL);
588 
589 	/*
590 	 * Add it to the head of the callback list. The membar ensures that
591 	 * the following list pointer manipulations reach global visibility
592 	 * in exactly the program order below.
593 	 */
594 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
595 
596 	mcb_elem->mcb_nextp = *mcb_head;
597 	membar_producer();
598 	*mcb_head = mcb_elem;
599 }
600 
601 /*
602  * Mark the entry as logically deleted. If there aren't any walkers unlink
603  * from the list. In either case return the corresponding status.
604  */
605 boolean_t
606 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head,
607     mac_cb_t *mcb_elem)
608 {
609 	mac_cb_t	*p;
610 	mac_cb_t	**pp;
611 
612 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
613 	/*
614 	 * Search the callback list for the entry to be removed
615 	 */
616 	for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) {
617 		if (p == mcb_elem)
618 			break;
619 	}
620 	VERIFY(p != NULL);
621 
622 	/*
623 	 * If there are walkers just mark it as deleted and the last walker
624 	 * will remove from the list and free it.
625 	 */
626 	if (mcbi->mcbi_walker_cnt != 0) {
627 		p->mcb_flags |= MCB_CONDEMNED;
628 		mcbi->mcbi_del_cnt++;
629 		return (B_FALSE);
630 	}
631 
632 	ASSERT(mcbi->mcbi_del_cnt == 0);
633 	*pp = p->mcb_nextp;
634 	p->mcb_nextp = NULL;
635 	return (B_TRUE);
636 }
637 
638 /*
639  * Wait for all pending callback removals to be completed
640  */
641 void
642 mac_callback_remove_wait(mac_cb_info_t *mcbi)
643 {
644 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
645 	while (mcbi->mcbi_del_cnt != 0) {
646 		DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi);
647 		cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp);
648 	}
649 }
650 
651 /*
652  * The last mac callback walker does the cleanup. Walk the list and unlik
653  * all the logically deleted entries and construct a temporary list of
654  * removed entries. Return the list of removed entries to the caller.
655  */
656 mac_cb_t *
657 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head)
658 {
659 	mac_cb_t	*p;
660 	mac_cb_t	**pp;
661 	mac_cb_t	*rmlist = NULL;		/* List of removed elements */
662 	int	cnt = 0;
663 
664 	ASSERT(MUTEX_HELD(mcbi->mcbi_lockp));
665 	ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0);
666 
667 	pp = mcb_head;
668 	while (*pp != NULL) {
669 		if ((*pp)->mcb_flags & MCB_CONDEMNED) {
670 			p = *pp;
671 			*pp = p->mcb_nextp;
672 			p->mcb_nextp = rmlist;
673 			rmlist = p;
674 			cnt++;
675 			continue;
676 		}
677 		pp = &(*pp)->mcb_nextp;
678 	}
679 
680 	ASSERT(mcbi->mcbi_del_cnt == cnt);
681 	mcbi->mcbi_del_cnt = 0;
682 	return (rmlist);
683 }
684 
685 boolean_t
686 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
687 {
688 	mac_cb_t	*mcb;
689 
690 	/* Verify it is not already in the list */
691 	for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) {
692 		if (mcb == mcb_elem)
693 			return (B_TRUE);
694 	}
695 
696 	return (B_FALSE);
697 }
698 
699 boolean_t
700 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem)
701 {
702 	boolean_t	found;
703 
704 	mutex_enter(mcbi->mcbi_lockp);
705 	found = mac_callback_lookup(mcb_headp, mcb_elem);
706 	mutex_exit(mcbi->mcbi_lockp);
707 
708 	return (found);
709 }
710 
711 /* Free the list of removed callbacks */
712 void
713 mac_callback_free(mac_cb_t *rmlist)
714 {
715 	mac_cb_t	*mcb;
716 	mac_cb_t	*mcb_next;
717 
718 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
719 		mcb_next = mcb->mcb_nextp;
720 		kmem_free(mcb->mcb_objp, mcb->mcb_objsize);
721 	}
722 }
723 
724 /*
725  * The promisc callbacks are in 2 lists, one off the 'mip' and another off the
726  * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there
727  * is only a single shared total walker count, and an entry can't be physically
728  * unlinked if a walker is active on either list. The last walker does this
729  * cleanup of logically deleted entries.
730  */
731 void
732 i_mac_promisc_walker_cleanup(mac_impl_t *mip)
733 {
734 	mac_cb_t	*rmlist;
735 	mac_cb_t	*mcb;
736 	mac_cb_t	*mcb_next;
737 	mac_promisc_impl_t	*mpip;
738 
739 	/*
740 	 * Construct a temporary list of deleted callbacks by walking the
741 	 * the mi_promisc_list. Then for each entry in the temporary list,
742 	 * remove it from the mci_promisc_list and free the entry.
743 	 */
744 	rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info,
745 	    &mip->mi_promisc_list);
746 
747 	for (mcb = rmlist; mcb != NULL; mcb = mcb_next) {
748 		mcb_next = mcb->mcb_nextp;
749 		mpip = (mac_promisc_impl_t *)mcb->mcb_objp;
750 		VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info,
751 		    &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link));
752 		mcb->mcb_flags = 0;
753 		mcb->mcb_nextp = NULL;
754 		kmem_cache_free(mac_promisc_impl_cache, mpip);
755 	}
756 }
757 
758 void
759 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type)
760 {
761 	mac_cb_info_t	*mcbi;
762 
763 	/*
764 	 * Signal the notify thread even after mi_ref has become zero and
765 	 * mi_disabled is set. The synchronization with the notify thread
766 	 * happens in mac_unregister and that implies the driver must make
767 	 * sure it is single-threaded (with respect to mac calls) and that
768 	 * all pending mac calls have returned before it calls mac_unregister
769 	 */
770 	rw_enter(&i_mac_impl_lock, RW_READER);
771 	if (mip->mi_state_flags & MIS_DISABLED)
772 		goto exit;
773 
774 	/*
775 	 * Guard against incorrect notifications.  (Running a newer
776 	 * mac client against an older implementation?)
777 	 */
778 	if (type >= MAC_NNOTE)
779 		goto exit;
780 
781 	mcbi = &mip->mi_notify_cb_info;
782 	mutex_enter(mcbi->mcbi_lockp);
783 	mip->mi_notify_bits |= (1 << type);
784 	cv_broadcast(&mcbi->mcbi_cv);
785 	mutex_exit(mcbi->mcbi_lockp);
786 
787 exit:
788 	rw_exit(&i_mac_impl_lock);
789 }
790 
791 /*
792  * Mac serialization primitives. Please see the block comment at the
793  * top of the file.
794  */
795 void
796 i_mac_perim_enter(mac_impl_t *mip)
797 {
798 	mac_client_impl_t	*mcip;
799 
800 	if (mip->mi_state_flags & MIS_IS_VNIC) {
801 		/*
802 		 * This is a VNIC. Return the lower mac since that is what
803 		 * we want to serialize on.
804 		 */
805 		mcip = mac_vnic_lower(mip);
806 		mip = mcip->mci_mip;
807 	}
808 
809 	mutex_enter(&mip->mi_perim_lock);
810 	if (mip->mi_perim_owner == curthread) {
811 		mip->mi_perim_ocnt++;
812 		mutex_exit(&mip->mi_perim_lock);
813 		return;
814 	}
815 
816 	while (mip->mi_perim_owner != NULL)
817 		cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock);
818 
819 	mip->mi_perim_owner = curthread;
820 	ASSERT(mip->mi_perim_ocnt == 0);
821 	mip->mi_perim_ocnt++;
822 #ifdef DEBUG
823 	mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack,
824 	    MAC_PERIM_STACK_DEPTH);
825 #endif
826 	mutex_exit(&mip->mi_perim_lock);
827 }
828 
829 int
830 i_mac_perim_enter_nowait(mac_impl_t *mip)
831 {
832 	/*
833 	 * The vnic is a special case, since the serialization is done based
834 	 * on the lower mac. If the lower mac is busy, it does not imply the
835 	 * vnic can't be unregistered. But in the case of other drivers,
836 	 * a busy perimeter or open mac handles implies that the mac is busy
837 	 * and can't be unregistered.
838 	 */
839 	if (mip->mi_state_flags & MIS_IS_VNIC) {
840 		i_mac_perim_enter(mip);
841 		return (0);
842 	}
843 
844 	mutex_enter(&mip->mi_perim_lock);
845 	if (mip->mi_perim_owner != NULL) {
846 		mutex_exit(&mip->mi_perim_lock);
847 		return (EBUSY);
848 	}
849 	ASSERT(mip->mi_perim_ocnt == 0);
850 	mip->mi_perim_owner = curthread;
851 	mip->mi_perim_ocnt++;
852 	mutex_exit(&mip->mi_perim_lock);
853 
854 	return (0);
855 }
856 
857 void
858 i_mac_perim_exit(mac_impl_t *mip)
859 {
860 	mac_client_impl_t *mcip;
861 
862 	if (mip->mi_state_flags & MIS_IS_VNIC) {
863 		/*
864 		 * This is a VNIC. Return the lower mac since that is what
865 		 * we want to serialize on.
866 		 */
867 		mcip = mac_vnic_lower(mip);
868 		mip = mcip->mci_mip;
869 	}
870 
871 	ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0);
872 
873 	mutex_enter(&mip->mi_perim_lock);
874 	if (--mip->mi_perim_ocnt == 0) {
875 		mip->mi_perim_owner = NULL;
876 		cv_signal(&mip->mi_perim_cv);
877 	}
878 	mutex_exit(&mip->mi_perim_lock);
879 }
880 
881 /*
882  * Returns whether the current thread holds the mac perimeter. Used in making
883  * assertions.
884  */
885 boolean_t
886 mac_perim_held(mac_handle_t mh)
887 {
888 	mac_impl_t	*mip = (mac_impl_t *)mh;
889 	mac_client_impl_t *mcip;
890 
891 	if (mip->mi_state_flags & MIS_IS_VNIC) {
892 		/*
893 		 * This is a VNIC. Return the lower mac since that is what
894 		 * we want to serialize on.
895 		 */
896 		mcip = mac_vnic_lower(mip);
897 		mip = mcip->mci_mip;
898 	}
899 	return (mip->mi_perim_owner == curthread);
900 }
901 
902 /*
903  * mac client interfaces to enter the mac perimeter of a mac end point, given
904  * its mac handle, or macname or linkid.
905  */
906 void
907 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp)
908 {
909 	mac_impl_t	*mip = (mac_impl_t *)mh;
910 
911 	i_mac_perim_enter(mip);
912 	/*
913 	 * The mac_perim_handle_t returned encodes the 'mip' and whether a
914 	 * mac_open has been done internally while entering the perimeter.
915 	 * This information is used in mac_perim_exit
916 	 */
917 	MAC_ENCODE_MPH(*mphp, mip, 0);
918 }
919 
920 int
921 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp)
922 {
923 	int	err;
924 	mac_handle_t	mh;
925 
926 	if ((err = mac_open(name, &mh)) != 0)
927 		return (err);
928 
929 	mac_perim_enter_by_mh(mh, mphp);
930 	MAC_ENCODE_MPH(*mphp, mh, 1);
931 	return (0);
932 }
933 
934 int
935 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp)
936 {
937 	int	err;
938 	mac_handle_t	mh;
939 
940 	if ((err = mac_open_by_linkid(linkid, &mh)) != 0)
941 		return (err);
942 
943 	mac_perim_enter_by_mh(mh, mphp);
944 	MAC_ENCODE_MPH(*mphp, mh, 1);
945 	return (0);
946 }
947 
948 void
949 mac_perim_exit(mac_perim_handle_t mph)
950 {
951 	mac_impl_t	*mip;
952 	boolean_t	need_close;
953 
954 	MAC_DECODE_MPH(mph, mip, need_close);
955 	i_mac_perim_exit(mip);
956 	if (need_close)
957 		mac_close((mac_handle_t)mip);
958 }
959 
960 int
961 mac_hold(const char *macname, mac_impl_t **pmip)
962 {
963 	mac_impl_t	*mip;
964 	int		err;
965 
966 	/*
967 	 * Check the device name length to make sure it won't overflow our
968 	 * buffer.
969 	 */
970 	if (strlen(macname) >= MAXNAMELEN)
971 		return (EINVAL);
972 
973 	/*
974 	 * Look up its entry in the global hash table.
975 	 */
976 	rw_enter(&i_mac_impl_lock, RW_WRITER);
977 	err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname,
978 	    (mod_hash_val_t *)&mip);
979 
980 	if (err != 0) {
981 		rw_exit(&i_mac_impl_lock);
982 		return (ENOENT);
983 	}
984 
985 	if (mip->mi_state_flags & MIS_DISABLED) {
986 		rw_exit(&i_mac_impl_lock);
987 		return (ENOENT);
988 	}
989 
990 	if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) {
991 		rw_exit(&i_mac_impl_lock);
992 		return (EBUSY);
993 	}
994 
995 	mip->mi_ref++;
996 	rw_exit(&i_mac_impl_lock);
997 
998 	*pmip = mip;
999 	return (0);
1000 }
1001 
1002 void
1003 mac_rele(mac_impl_t *mip)
1004 {
1005 	rw_enter(&i_mac_impl_lock, RW_WRITER);
1006 	ASSERT(mip->mi_ref != 0);
1007 	if (--mip->mi_ref == 0) {
1008 		ASSERT(mip->mi_nactiveclients == 0 &&
1009 		    !(mip->mi_state_flags & MIS_EXCLUSIVE));
1010 	}
1011 	rw_exit(&i_mac_impl_lock);
1012 }
1013 
1014 /*
1015  * Private GLDv3 function to start a MAC instance.
1016  */
1017 int
1018 mac_start(mac_handle_t mh)
1019 {
1020 	mac_impl_t	*mip = (mac_impl_t *)mh;
1021 	int		err = 0;
1022 
1023 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1024 	ASSERT(mip->mi_start != NULL);
1025 
1026 	/*
1027 	 * Check whether the device is already started.
1028 	 */
1029 	if (mip->mi_active++ == 0) {
1030 		mac_ring_t *ring = NULL;
1031 
1032 		/*
1033 		 * Start the device.
1034 		 */
1035 		err = mip->mi_start(mip->mi_driver);
1036 		if (err != 0) {
1037 			mip->mi_active--;
1038 			return (err);
1039 		}
1040 
1041 		/*
1042 		 * Start the default tx ring.
1043 		 */
1044 		if (mip->mi_default_tx_ring != NULL) {
1045 
1046 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1047 			err = mac_start_ring(ring);
1048 			if (err != 0) {
1049 				mip->mi_active--;
1050 				return (err);
1051 			}
1052 			ring->mr_state = MR_INUSE;
1053 		}
1054 
1055 		if (mip->mi_rx_groups != NULL) {
1056 			/*
1057 			 * Start the default ring, since it will be needed
1058 			 * to receive broadcast and multicast traffic for
1059 			 * both primary and non-primary MAC clients.
1060 			 */
1061 			mac_group_t *grp = &mip->mi_rx_groups[0];
1062 
1063 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED);
1064 			err = mac_start_group_and_rings(grp);
1065 			if (err != 0) {
1066 				mip->mi_active--;
1067 				if (ring != NULL) {
1068 					mac_stop_ring(ring);
1069 					ring->mr_state = MR_FREE;
1070 				}
1071 				return (err);
1072 			}
1073 			mac_set_rx_group_state(grp, MAC_GROUP_STATE_SHARED);
1074 		}
1075 	}
1076 
1077 	return (err);
1078 }
1079 
1080 /*
1081  * Private GLDv3 function to stop a MAC instance.
1082  */
1083 void
1084 mac_stop(mac_handle_t mh)
1085 {
1086 	mac_impl_t	*mip = (mac_impl_t *)mh;
1087 
1088 	ASSERT(mip->mi_stop != NULL);
1089 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1090 
1091 	/*
1092 	 * Check whether the device is still needed.
1093 	 */
1094 	ASSERT(mip->mi_active != 0);
1095 	if (--mip->mi_active == 0) {
1096 		if (mip->mi_rx_groups != NULL) {
1097 			/*
1098 			 * There should be no more active clients since the
1099 			 * MAC is being stopped. Stop the default RX group
1100 			 * and transition it back to registered state.
1101 			 */
1102 			mac_group_t *grp = &mip->mi_rx_groups[0];
1103 
1104 			/*
1105 			 * When clients are torn down, the groups
1106 			 * are release via mac_release_rx_group which
1107 			 * knows the the default group is always in
1108 			 * started mode since broadcast uses it. So
1109 			 * we can assert that their are no clients
1110 			 * (since mac_bcast_add doesn't register itself
1111 			 * as a client) and group is in SHARED state.
1112 			 */
1113 			ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED);
1114 			ASSERT(MAC_RX_GROUP_NO_CLIENT(grp) &&
1115 			    mip->mi_nactiveclients == 0);
1116 			mac_stop_group_and_rings(grp);
1117 			mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED);
1118 		}
1119 
1120 		if (mip->mi_default_tx_ring != NULL) {
1121 			mac_ring_t *ring;
1122 
1123 			ring = (mac_ring_t *)mip->mi_default_tx_ring;
1124 			mac_stop_ring(ring);
1125 			ring->mr_state = MR_FREE;
1126 		}
1127 
1128 		/*
1129 		 * Stop the device.
1130 		 */
1131 		mip->mi_stop(mip->mi_driver);
1132 	}
1133 }
1134 
1135 int
1136 i_mac_promisc_set(mac_impl_t *mip, boolean_t on, mac_promisc_type_t ptype)
1137 {
1138 	int		err = 0;
1139 
1140 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1141 	ASSERT(mip->mi_setpromisc != NULL);
1142 	ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC);
1143 
1144 	/*
1145 	 * Determine whether we should enable or disable promiscuous mode.
1146 	 * For details on the distinction between "device promiscuous mode"
1147 	 * and "MAC promiscuous mode", see PSARC/2005/289.
1148 	 */
1149 	if (on) {
1150 		/*
1151 		 * Enable promiscuous mode on the device if not yet enabled.
1152 		 */
1153 		if (mip->mi_devpromisc++ == 0) {
1154 			err = mip->mi_setpromisc(mip->mi_driver, B_TRUE);
1155 			if (err != 0) {
1156 				mip->mi_devpromisc--;
1157 				return (err);
1158 			}
1159 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1160 		}
1161 
1162 		/*
1163 		 * Enable promiscuous mode on the MAC if not yet enabled.
1164 		 */
1165 		if (ptype == MAC_PROMISC && mip->mi_promisc++ == 0)
1166 			i_mac_notify(mip, MAC_NOTE_PROMISC);
1167 	} else {
1168 		if (mip->mi_devpromisc == 0)
1169 			return (EPROTO);
1170 
1171 		/*
1172 		 * Disable promiscuous mode on the device if this is the last
1173 		 * enabling.
1174 		 */
1175 		if (--mip->mi_devpromisc == 0) {
1176 			err = mip->mi_setpromisc(mip->mi_driver, B_FALSE);
1177 			if (err != 0) {
1178 				mip->mi_devpromisc++;
1179 				return (err);
1180 			}
1181 			i_mac_notify(mip, MAC_NOTE_DEVPROMISC);
1182 		}
1183 
1184 		/*
1185 		 * Disable promiscuous mode on the MAC if this is the last
1186 		 * enabling.
1187 		 */
1188 		if (ptype == MAC_PROMISC && --mip->mi_promisc == 0)
1189 			i_mac_notify(mip, MAC_NOTE_PROMISC);
1190 	}
1191 
1192 	return (0);
1193 }
1194 
1195 int
1196 mac_promisc_set(mac_handle_t mh, boolean_t on, mac_promisc_type_t ptype)
1197 {
1198 	mac_impl_t	*mip = (mac_impl_t *)mh;
1199 	int		rv;
1200 
1201 	i_mac_perim_enter(mip);
1202 	rv = i_mac_promisc_set(mip, on, ptype);
1203 	i_mac_perim_exit(mip);
1204 
1205 	return (rv);
1206 }
1207 
1208 /*
1209  * The promiscuity state can change any time. If the caller needs to take
1210  * actions that are atomic with the promiscuity state, then the caller needs
1211  * to bracket the entire sequence with mac_perim_enter/exit
1212  */
1213 boolean_t
1214 mac_promisc_get(mac_handle_t mh, mac_promisc_type_t ptype)
1215 {
1216 	mac_impl_t		*mip = (mac_impl_t *)mh;
1217 
1218 	ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC);
1219 
1220 	/*
1221 	 * Return the current promiscuity.
1222 	 */
1223 	if (ptype == MAC_DEVPROMISC)
1224 		return (mip->mi_devpromisc != 0);
1225 	else
1226 		return (mip->mi_promisc != 0);
1227 }
1228 
1229 /*
1230  * Invoked at MAC instance attach time to initialize the list
1231  * of factory MAC addresses supported by a MAC instance. This function
1232  * builds a local cache in the mac_impl_t for the MAC addresses
1233  * supported by the underlying hardware. The MAC clients themselves
1234  * use the mac_addr_factory*() functions to query and reserve
1235  * factory MAC addresses.
1236  */
1237 void
1238 mac_addr_factory_init(mac_impl_t *mip)
1239 {
1240 	mac_capab_multifactaddr_t capab;
1241 	uint8_t *addr;
1242 	int i;
1243 
1244 	/*
1245 	 * First round to see how many factory MAC addresses are available.
1246 	 */
1247 	bzero(&capab, sizeof (capab));
1248 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR,
1249 	    &capab) || (capab.mcm_naddr == 0)) {
1250 		/*
1251 		 * The MAC instance doesn't support multiple factory
1252 		 * MAC addresses, we're done here.
1253 		 */
1254 		return;
1255 	}
1256 
1257 	/*
1258 	 * Allocate the space and get all the factory addresses.
1259 	 */
1260 	addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP);
1261 	capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr);
1262 
1263 	mip->mi_factory_addr_num = capab.mcm_naddr;
1264 	mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num *
1265 	    sizeof (mac_factory_addr_t), KM_SLEEP);
1266 
1267 	for (i = 0; i < capab.mcm_naddr; i++) {
1268 		bcopy(addr + i * MAXMACADDRLEN,
1269 		    mip->mi_factory_addr[i].mfa_addr,
1270 		    mip->mi_type->mt_addr_length);
1271 		mip->mi_factory_addr[i].mfa_in_use = B_FALSE;
1272 	}
1273 
1274 	kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN);
1275 }
1276 
1277 void
1278 mac_addr_factory_fini(mac_impl_t *mip)
1279 {
1280 	if (mip->mi_factory_addr == NULL) {
1281 		ASSERT(mip->mi_factory_addr_num == 0);
1282 		return;
1283 	}
1284 
1285 	kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num *
1286 	    sizeof (mac_factory_addr_t));
1287 
1288 	mip->mi_factory_addr = NULL;
1289 	mip->mi_factory_addr_num = 0;
1290 }
1291 
1292 /*
1293  * Reserve a factory MAC address. If *slot is set to -1, the function
1294  * attempts to reserve any of the available factory MAC addresses and
1295  * returns the reserved slot id. If no slots are available, the function
1296  * returns ENOSPC. If *slot is not set to -1, the function reserves
1297  * the specified slot if it is available, or returns EBUSY is the slot
1298  * is already used. Returns ENOTSUP if the underlying MAC does not
1299  * support multiple factory addresses. If the slot number is not -1 but
1300  * is invalid, returns EINVAL.
1301  */
1302 int
1303 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot)
1304 {
1305 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1306 	mac_impl_t *mip = mcip->mci_mip;
1307 	int i, ret = 0;
1308 
1309 	i_mac_perim_enter(mip);
1310 	/*
1311 	 * Protect against concurrent readers that may need a self-consistent
1312 	 * view of the factory addresses
1313 	 */
1314 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1315 
1316 	if (mip->mi_factory_addr_num == 0) {
1317 		ret = ENOTSUP;
1318 		goto bail;
1319 	}
1320 
1321 	if (*slot != -1) {
1322 		/* check the specified slot */
1323 		if (*slot < 1 || *slot > mip->mi_factory_addr_num) {
1324 			ret = EINVAL;
1325 			goto bail;
1326 		}
1327 		if (mip->mi_factory_addr[*slot-1].mfa_in_use) {
1328 			ret = EBUSY;
1329 			goto bail;
1330 		}
1331 	} else {
1332 		/* pick the next available slot */
1333 		for (i = 0; i < mip->mi_factory_addr_num; i++) {
1334 			if (!mip->mi_factory_addr[i].mfa_in_use)
1335 				break;
1336 		}
1337 
1338 		if (i == mip->mi_factory_addr_num) {
1339 			ret = ENOSPC;
1340 			goto bail;
1341 		}
1342 		*slot = i+1;
1343 	}
1344 
1345 	mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE;
1346 	mip->mi_factory_addr[*slot-1].mfa_client = mcip;
1347 
1348 bail:
1349 	rw_exit(&mip->mi_rw_lock);
1350 	i_mac_perim_exit(mip);
1351 	return (ret);
1352 }
1353 
1354 /*
1355  * Release the specified factory MAC address slot.
1356  */
1357 void
1358 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot)
1359 {
1360 	mac_client_impl_t *mcip = (mac_client_impl_t *)mch;
1361 	mac_impl_t *mip = mcip->mci_mip;
1362 
1363 	i_mac_perim_enter(mip);
1364 	/*
1365 	 * Protect against concurrent readers that may need a self-consistent
1366 	 * view of the factory addresses
1367 	 */
1368 	rw_enter(&mip->mi_rw_lock, RW_WRITER);
1369 
1370 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1371 	ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use);
1372 
1373 	mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE;
1374 
1375 	rw_exit(&mip->mi_rw_lock);
1376 	i_mac_perim_exit(mip);
1377 }
1378 
1379 /*
1380  * Stores in mac_addr the value of the specified MAC address. Returns
1381  * 0 on success, or EINVAL if the slot number is not valid for the MAC.
1382  * The caller must provide a string of at least MAXNAMELEN bytes.
1383  */
1384 void
1385 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr,
1386     uint_t *addr_len, char *client_name, boolean_t *in_use_arg)
1387 {
1388 	mac_impl_t *mip = (mac_impl_t *)mh;
1389 	boolean_t in_use;
1390 
1391 	ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num);
1392 
1393 	/*
1394 	 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter
1395 	 * and mi_rw_lock
1396 	 */
1397 	rw_enter(&mip->mi_rw_lock, RW_READER);
1398 	bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN);
1399 	*addr_len = mip->mi_type->mt_addr_length;
1400 	in_use = mip->mi_factory_addr[slot-1].mfa_in_use;
1401 	if (in_use && client_name != NULL) {
1402 		bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name,
1403 		    client_name, MAXNAMELEN);
1404 	}
1405 	if (in_use_arg != NULL)
1406 		*in_use_arg = in_use;
1407 	rw_exit(&mip->mi_rw_lock);
1408 }
1409 
1410 /*
1411  * Returns the number of factory MAC addresses (in addition to the
1412  * primary MAC address), 0 if the underlying MAC doesn't support
1413  * that feature.
1414  */
1415 uint_t
1416 mac_addr_factory_num(mac_handle_t mh)
1417 {
1418 	mac_impl_t *mip = (mac_impl_t *)mh;
1419 
1420 	return (mip->mi_factory_addr_num);
1421 }
1422 
1423 
1424 void
1425 mac_rx_group_unmark(mac_group_t *grp, uint_t flag)
1426 {
1427 	mac_ring_t	*ring;
1428 
1429 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next)
1430 		ring->mr_flag &= ~flag;
1431 }
1432 
1433 /*
1434  * The following mac_hwrings_xxx() functions are private mac client functions
1435  * used by the aggr driver to access and control the underlying HW Rx group
1436  * and rings. In this case, the aggr driver has exclusive control of the
1437  * underlying HW Rx group/rings, it calls the following functions to
1438  * start/stop the HW Rx rings, disable/enable polling, add/remove mac'
1439  * addresses, or set up the Rx callback.
1440  */
1441 /* ARGSUSED */
1442 static void
1443 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs,
1444     mblk_t *mp_chain, boolean_t loopback)
1445 {
1446 	mac_soft_ring_set_t	*mac_srs = (mac_soft_ring_set_t *)srs;
1447 	mac_srs_rx_t		*srs_rx = &mac_srs->srs_rx;
1448 	mac_direct_rx_t		proc;
1449 	void			*arg1;
1450 	mac_resource_handle_t	arg2;
1451 
1452 	proc = srs_rx->sr_func;
1453 	arg1 = srs_rx->sr_arg1;
1454 	arg2 = mac_srs->srs_mrh;
1455 
1456 	proc(arg1, arg2, mp_chain, NULL);
1457 }
1458 
1459 /*
1460  * This function is called to get the list of HW rings that are reserved by
1461  * an exclusive mac client.
1462  *
1463  * Return value: the number of HW rings.
1464  */
1465 int
1466 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh,
1467     mac_ring_handle_t *hwrh)
1468 {
1469 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1470 	flow_entry_t		*flent = mcip->mci_flent;
1471 	mac_group_t		*grp = flent->fe_rx_ring_group;
1472 	mac_ring_t		*ring;
1473 	int			cnt = 0;
1474 
1475 	/*
1476 	 * The mac client did not reserve any RX group, return directly.
1477 	 * This is probably because the underlying MAC does not support
1478 	 * any RX groups.
1479 	 */
1480 	*hwgh = NULL;
1481 	if (grp == NULL)
1482 		return (0);
1483 
1484 	/*
1485 	 * This RX group must be reserved by this mac client.
1486 	 */
1487 	ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) &&
1488 	    (mch == (mac_client_handle_t)(MAC_RX_GROUP_ONLY_CLIENT(grp))));
1489 
1490 	for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) {
1491 		ASSERT(cnt < MAX_RINGS_PER_GROUP);
1492 		hwrh[cnt++] = (mac_ring_handle_t)ring;
1493 	}
1494 	*hwgh = (mac_group_handle_t)grp;
1495 	return (cnt);
1496 }
1497 
1498 /*
1499  * Setup the RX callback of the mac client which exclusively controls HW ring.
1500  */
1501 void
1502 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh)
1503 {
1504 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1505 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1506 
1507 	mac_srs->srs_mrh = prh;
1508 	mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process;
1509 }
1510 
1511 void
1512 mac_hwring_teardown(mac_ring_handle_t hwrh)
1513 {
1514 	mac_ring_t		*hw_ring = (mac_ring_t *)hwrh;
1515 	mac_soft_ring_set_t	*mac_srs = hw_ring->mr_srs;
1516 
1517 	mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process;
1518 	mac_srs->srs_mrh = NULL;
1519 }
1520 
1521 int
1522 mac_hwring_disable_intr(mac_ring_handle_t rh)
1523 {
1524 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1525 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1526 
1527 	return (intr->mi_disable(intr->mi_handle));
1528 }
1529 
1530 int
1531 mac_hwring_enable_intr(mac_ring_handle_t rh)
1532 {
1533 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1534 	mac_intr_t *intr = &rr_ring->mr_info.mri_intr;
1535 
1536 	return (intr->mi_enable(intr->mi_handle));
1537 }
1538 
1539 int
1540 mac_hwring_start(mac_ring_handle_t rh)
1541 {
1542 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1543 
1544 	MAC_RING_UNMARK(rr_ring, MR_QUIESCE);
1545 	return (0);
1546 }
1547 
1548 void
1549 mac_hwring_stop(mac_ring_handle_t rh)
1550 {
1551 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1552 
1553 	mac_rx_ring_quiesce(rr_ring, MR_QUIESCE);
1554 }
1555 
1556 mblk_t *
1557 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup)
1558 {
1559 	mac_ring_t *rr_ring = (mac_ring_t *)rh;
1560 	mac_ring_info_t *info = &rr_ring->mr_info;
1561 
1562 	return (info->mri_poll(info->mri_driver, bytes_to_pickup));
1563 }
1564 
1565 int
1566 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr)
1567 {
1568 	mac_group_t *group = (mac_group_t *)gh;
1569 
1570 	return (mac_group_addmac(group, addr));
1571 }
1572 
1573 int
1574 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr)
1575 {
1576 	mac_group_t *group = (mac_group_t *)gh;
1577 
1578 	return (mac_group_remmac(group, addr));
1579 }
1580 
1581 /*
1582  * Set the RX group to be shared/reserved. Note that the group must be
1583  * started/stopped outside of this function.
1584  */
1585 void
1586 mac_set_rx_group_state(mac_group_t *grp, mac_group_state_t state)
1587 {
1588 	/*
1589 	 * If there is no change in the group state, just return.
1590 	 */
1591 	if (grp->mrg_state == state)
1592 		return;
1593 
1594 	switch (state) {
1595 	case MAC_GROUP_STATE_RESERVED:
1596 		/*
1597 		 * Successfully reserved the group.
1598 		 *
1599 		 * Given that there is an exclusive client controlling this
1600 		 * group, we enable the group level polling when available,
1601 		 * so that SRSs get to turn on/off individual rings they's
1602 		 * assigned to.
1603 		 */
1604 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1605 
1606 		if (GROUP_INTR_DISABLE_FUNC(grp) != NULL)
1607 			GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1608 
1609 		break;
1610 
1611 	case MAC_GROUP_STATE_SHARED:
1612 		/*
1613 		 * Set all rings of this group to software classified.
1614 		 * If the group has an overriding interrupt, then re-enable it.
1615 		 */
1616 		ASSERT(MAC_PERIM_HELD(grp->mrg_mh));
1617 
1618 		if (GROUP_INTR_ENABLE_FUNC(grp) != NULL)
1619 			GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp));
1620 
1621 		/* The ring is not available for reservations any more */
1622 		break;
1623 
1624 	case MAC_GROUP_STATE_REGISTERED:
1625 		/* Also callable from mac_register, perim is not held */
1626 		break;
1627 
1628 	default:
1629 		ASSERT(B_FALSE);
1630 		break;
1631 	}
1632 
1633 	grp->mrg_state = state;
1634 }
1635 
1636 /*
1637  * Quiesce future hardware classified packets for the specified Rx ring
1638  */
1639 static void
1640 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag)
1641 {
1642 	ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER);
1643 	ASSERT(ring_flag == MR_CONDEMNED || ring_flag  == MR_QUIESCE);
1644 
1645 	mutex_enter(&rx_ring->mr_lock);
1646 	rx_ring->mr_flag |= ring_flag;
1647 	while (rx_ring->mr_refcnt != 0)
1648 		cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock);
1649 	mutex_exit(&rx_ring->mr_lock);
1650 }
1651 
1652 /*
1653  * Please see mac_tx for details about the per cpu locking scheme
1654  */
1655 static void
1656 mac_tx_lock_all(mac_client_impl_t *mcip)
1657 {
1658 	int	i;
1659 
1660 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1661 		mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1662 }
1663 
1664 static void
1665 mac_tx_unlock_all(mac_client_impl_t *mcip)
1666 {
1667 	int	i;
1668 
1669 	for (i = mac_tx_percpu_cnt; i >= 0; i--)
1670 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1671 }
1672 
1673 static void
1674 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip)
1675 {
1676 	int	i;
1677 
1678 	for (i = mac_tx_percpu_cnt; i > 0; i--)
1679 		mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock);
1680 }
1681 
1682 static int
1683 mac_tx_sum_refcnt(mac_client_impl_t *mcip)
1684 {
1685 	int	i;
1686 	int	refcnt = 0;
1687 
1688 	for (i = 0; i <= mac_tx_percpu_cnt; i++)
1689 		refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt;
1690 
1691 	return (refcnt);
1692 }
1693 
1694 /*
1695  * Stop future Tx packets coming down from the client in preparation for
1696  * quiescing the Tx side. This is needed for dynamic reclaim and reassignment
1697  * of rings between clients
1698  */
1699 void
1700 mac_tx_client_block(mac_client_impl_t *mcip)
1701 {
1702 	mac_tx_lock_all(mcip);
1703 	mcip->mci_tx_flag |= MCI_TX_QUIESCE;
1704 	while (mac_tx_sum_refcnt(mcip) != 0) {
1705 		mac_tx_unlock_allbutzero(mcip);
1706 		cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1707 		mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock);
1708 		mac_tx_lock_all(mcip);
1709 	}
1710 	mac_tx_unlock_all(mcip);
1711 }
1712 
1713 void
1714 mac_tx_client_unblock(mac_client_impl_t *mcip)
1715 {
1716 	mac_tx_lock_all(mcip);
1717 	mcip->mci_tx_flag &= ~MCI_TX_QUIESCE;
1718 	mac_tx_unlock_all(mcip);
1719 	/*
1720 	 * We may fail to disable flow control for the last MAC_NOTE_TX
1721 	 * notification because the MAC client is quiesced. Send the
1722 	 * notification again.
1723 	 */
1724 	i_mac_notify(mcip->mci_mip, MAC_NOTE_TX);
1725 }
1726 
1727 /*
1728  * Wait for an SRS to quiesce. The SRS worker will signal us when the
1729  * quiesce is done.
1730  */
1731 static void
1732 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag)
1733 {
1734 	mutex_enter(&srs->srs_lock);
1735 	while (!(srs->srs_state & srs_flag))
1736 		cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock);
1737 	mutex_exit(&srs->srs_lock);
1738 }
1739 
1740 /*
1741  * Quiescing an Rx SRS is achieved by the following sequence. The protocol
1742  * works bottom up by cutting off packet flow from the bottommost point in the
1743  * mac, then the SRS, and then the soft rings. There are 2 use cases of this
1744  * mechanism. One is a temporary quiesce of the SRS, such as say while changing
1745  * the Rx callbacks. Another use case is Rx SRS teardown. In the former case
1746  * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used
1747  * for the SRS and MR flags. In the former case the threads pause waiting for
1748  * a restart, while in the latter case the threads exit. The Tx SRS teardown
1749  * is also mostly similar to the above.
1750  *
1751  * 1. Stop future hardware classified packets at the lowest level in the mac.
1752  *    Remove any hardware classification rule (CONDEMNED case) and mark the
1753  *    rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt
1754  *    from increasing. Upcalls from the driver that come through hardware
1755  *    classification will be dropped in mac_rx from now on. Then we wait for
1756  *    the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are
1757  *    sure there aren't any upcall threads from the driver through hardware
1758  *    classification. In the case of SRS teardown we also remove the
1759  *    classification rule in the driver.
1760  *
1761  * 2. Stop future software classified packets by marking the flow entry with
1762  *    FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from
1763  *    increasing. We also remove the flow entry from the table in the latter
1764  *    case. Then wait for the fe_refcnt to reach an appropriate quiescent value
1765  *    that indicates there aren't any active threads using that flow entry.
1766  *
1767  * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread,
1768  *    SRS worker thread, and the soft ring threads are quiesced in sequence
1769  *    with the SRS worker thread serving as a master controller. This
1770  *    mechansim is explained in mac_srs_worker_quiesce().
1771  *
1772  * The restart mechanism to reactivate the SRS and softrings is explained
1773  * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the
1774  * restart sequence.
1775  */
1776 void
1777 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
1778 {
1779 	flow_entry_t	*flent = srs->srs_flent;
1780 	uint_t	mr_flag, srs_done_flag;
1781 
1782 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1783 	ASSERT(!(srs->srs_type & SRST_TX));
1784 
1785 	if (srs_quiesce_flag == SRS_CONDEMNED) {
1786 		mr_flag = MR_CONDEMNED;
1787 		srs_done_flag = SRS_CONDEMNED_DONE;
1788 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1789 			mac_srs_client_poll_disable(srs->srs_mcip, srs);
1790 	} else {
1791 		ASSERT(srs_quiesce_flag == SRS_QUIESCE);
1792 		mr_flag = MR_QUIESCE;
1793 		srs_done_flag = SRS_QUIESCE_DONE;
1794 		if (srs->srs_type & SRST_CLIENT_POLL_ENABLED)
1795 			mac_srs_client_poll_quiesce(srs->srs_mcip, srs);
1796 	}
1797 
1798 	if (srs->srs_ring != NULL) {
1799 		mac_rx_ring_quiesce(srs->srs_ring, mr_flag);
1800 	} else {
1801 		/*
1802 		 * SRS is driven by software classification. In case
1803 		 * of CONDEMNED, the top level teardown functions will
1804 		 * deal with flow removal.
1805 		 */
1806 		if (srs_quiesce_flag != SRS_CONDEMNED) {
1807 			FLOW_MARK(flent, FE_QUIESCE);
1808 			mac_flow_wait(flent, FLOW_DRIVER_UPCALL);
1809 		}
1810 	}
1811 
1812 	/*
1813 	 * Signal the SRS to quiesce itself, and then cv_wait for the
1814 	 * SRS quiesce to complete. The SRS worker thread will wake us
1815 	 * up when the quiesce is complete
1816 	 */
1817 	mac_srs_signal(srs, srs_quiesce_flag);
1818 	mac_srs_quiesce_wait(srs, srs_done_flag);
1819 }
1820 
1821 /*
1822  * Remove an SRS.
1823  */
1824 void
1825 mac_rx_srs_remove(mac_soft_ring_set_t *srs)
1826 {
1827 	flow_entry_t *flent = srs->srs_flent;
1828 	int i;
1829 
1830 	mac_rx_srs_quiesce(srs, SRS_CONDEMNED);
1831 	/*
1832 	 * Locate and remove our entry in the fe_rx_srs[] array, and
1833 	 * adjust the fe_rx_srs array entries and array count by
1834 	 * moving the last entry into the vacated spot.
1835 	 */
1836 	mutex_enter(&flent->fe_lock);
1837 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1838 		if (flent->fe_rx_srs[i] == srs)
1839 			break;
1840 	}
1841 
1842 	ASSERT(i != 0 && i < flent->fe_rx_srs_cnt);
1843 	if (i != flent->fe_rx_srs_cnt - 1) {
1844 		flent->fe_rx_srs[i] =
1845 		    flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1];
1846 		i = flent->fe_rx_srs_cnt - 1;
1847 	}
1848 
1849 	flent->fe_rx_srs[i] = NULL;
1850 	flent->fe_rx_srs_cnt--;
1851 	mutex_exit(&flent->fe_lock);
1852 
1853 	mac_srs_free(srs);
1854 }
1855 
1856 static void
1857 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag)
1858 {
1859 	mutex_enter(&srs->srs_lock);
1860 	srs->srs_state &= ~flag;
1861 	mutex_exit(&srs->srs_lock);
1862 }
1863 
1864 void
1865 mac_rx_srs_restart(mac_soft_ring_set_t *srs)
1866 {
1867 	flow_entry_t	*flent = srs->srs_flent;
1868 	mac_ring_t	*mr;
1869 
1870 	ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent)));
1871 	ASSERT((srs->srs_type & SRST_TX) == 0);
1872 
1873 	/*
1874 	 * This handles a change in the number of SRSs between the quiesce and
1875 	 * and restart operation of a flow.
1876 	 */
1877 	if (!SRS_QUIESCED(srs))
1878 		return;
1879 
1880 	/*
1881 	 * Signal the SRS to restart itself. Wait for the restart to complete
1882 	 * Note that we only restart the SRS if it is not marked as
1883 	 * permanently quiesced.
1884 	 */
1885 	if (!SRS_QUIESCED_PERMANENT(srs)) {
1886 		mac_srs_signal(srs, SRS_RESTART);
1887 		mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
1888 		mac_srs_clear_flag(srs, SRS_RESTART_DONE);
1889 
1890 		mac_srs_client_poll_restart(srs->srs_mcip, srs);
1891 	}
1892 
1893 	/* Finally clear the flags to let the packets in */
1894 	mr = srs->srs_ring;
1895 	if (mr != NULL) {
1896 		MAC_RING_UNMARK(mr, MR_QUIESCE);
1897 		/* In case the ring was stopped, safely restart it */
1898 		(void) mac_start_ring(mr);
1899 	} else {
1900 		FLOW_UNMARK(flent, FE_QUIESCE);
1901 	}
1902 }
1903 
1904 /*
1905  * Temporary quiesce of a flow and associated Rx SRS.
1906  * Please see block comment above mac_rx_classify_flow_rem.
1907  */
1908 /* ARGSUSED */
1909 int
1910 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg)
1911 {
1912 	int		i;
1913 
1914 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1915 		mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i],
1916 		    SRS_QUIESCE);
1917 	}
1918 	return (0);
1919 }
1920 
1921 /*
1922  * Restart a flow and associated Rx SRS that has been quiesced temporarily
1923  * Please see block comment above mac_rx_classify_flow_rem
1924  */
1925 /* ARGSUSED */
1926 int
1927 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg)
1928 {
1929 	int		i;
1930 
1931 	for (i = 0; i < flent->fe_rx_srs_cnt; i++)
1932 		mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]);
1933 
1934 	return (0);
1935 }
1936 
1937 void
1938 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on)
1939 {
1940 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1941 	flow_entry_t		*flent = mcip->mci_flent;
1942 	mac_impl_t		*mip = mcip->mci_mip;
1943 	mac_soft_ring_set_t	*mac_srs;
1944 	int			i;
1945 
1946 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1947 
1948 	if (flent == NULL)
1949 		return;
1950 
1951 	for (i = 0; i < flent->fe_rx_srs_cnt; i++) {
1952 		mac_srs = flent->fe_rx_srs[i];
1953 		mutex_enter(&mac_srs->srs_lock);
1954 		if (on)
1955 			mac_srs->srs_state |= SRS_QUIESCE_PERM;
1956 		else
1957 			mac_srs->srs_state &= ~SRS_QUIESCE_PERM;
1958 		mutex_exit(&mac_srs->srs_lock);
1959 	}
1960 }
1961 
1962 void
1963 mac_rx_client_quiesce(mac_client_handle_t mch)
1964 {
1965 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1966 	mac_impl_t		*mip = mcip->mci_mip;
1967 
1968 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1969 
1970 	if (MCIP_DATAPATH_SETUP(mcip)) {
1971 		(void) mac_rx_classify_flow_quiesce(mcip->mci_flent,
1972 		    NULL);
1973 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
1974 		    mac_rx_classify_flow_quiesce, NULL);
1975 	}
1976 }
1977 
1978 void
1979 mac_rx_client_restart(mac_client_handle_t mch)
1980 {
1981 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
1982 	mac_impl_t		*mip = mcip->mci_mip;
1983 
1984 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
1985 
1986 	if (MCIP_DATAPATH_SETUP(mcip)) {
1987 		(void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL);
1988 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
1989 		    mac_rx_classify_flow_restart, NULL);
1990 	}
1991 }
1992 
1993 /*
1994  * This function only quiesces the Tx SRS and softring worker threads. Callers
1995  * need to make sure that there aren't any mac client threads doing current or
1996  * future transmits in the mac before calling this function.
1997  */
1998 void
1999 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag)
2000 {
2001 	mac_client_impl_t	*mcip = srs->srs_mcip;
2002 
2003 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2004 
2005 	ASSERT(srs->srs_type & SRST_TX);
2006 	ASSERT(srs_quiesce_flag == SRS_CONDEMNED ||
2007 	    srs_quiesce_flag == SRS_QUIESCE);
2008 
2009 	/*
2010 	 * Signal the SRS to quiesce itself, and then cv_wait for the
2011 	 * SRS quiesce to complete. The SRS worker thread will wake us
2012 	 * up when the quiesce is complete
2013 	 */
2014 	mac_srs_signal(srs, srs_quiesce_flag);
2015 	mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ?
2016 	    SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE);
2017 }
2018 
2019 void
2020 mac_tx_srs_restart(mac_soft_ring_set_t *srs)
2021 {
2022 	/*
2023 	 * Resizing the fanout could result in creation of new SRSs.
2024 	 * They may not necessarily be in the quiesced state in which
2025 	 * case it need be restarted
2026 	 */
2027 	if (!SRS_QUIESCED(srs))
2028 		return;
2029 
2030 	mac_srs_signal(srs, SRS_RESTART);
2031 	mac_srs_quiesce_wait(srs, SRS_RESTART_DONE);
2032 	mac_srs_clear_flag(srs, SRS_RESTART_DONE);
2033 }
2034 
2035 /*
2036  * Temporary quiesce of a flow and associated Rx SRS.
2037  * Please see block comment above mac_rx_srs_quiesce
2038  */
2039 /* ARGSUSED */
2040 int
2041 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg)
2042 {
2043 	/*
2044 	 * The fe_tx_srs is null for a subflow on an interface that is
2045 	 * not plumbed
2046 	 */
2047 	if (flent->fe_tx_srs != NULL)
2048 		mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE);
2049 	return (0);
2050 }
2051 
2052 /* ARGSUSED */
2053 int
2054 mac_tx_flow_restart(flow_entry_t *flent, void *arg)
2055 {
2056 	/*
2057 	 * The fe_tx_srs is null for a subflow on an interface that is
2058 	 * not plumbed
2059 	 */
2060 	if (flent->fe_tx_srs != NULL)
2061 		mac_tx_srs_restart(flent->fe_tx_srs);
2062 	return (0);
2063 }
2064 
2065 void
2066 mac_tx_client_quiesce(mac_client_impl_t *mcip, uint_t srs_quiesce_flag)
2067 {
2068 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2069 
2070 	mac_tx_client_block(mcip);
2071 	if (MCIP_TX_SRS(mcip) != NULL) {
2072 		mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag);
2073 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2074 		    mac_tx_flow_quiesce, NULL);
2075 	}
2076 }
2077 
2078 void
2079 mac_tx_client_restart(mac_client_impl_t *mcip)
2080 {
2081 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2082 
2083 	mac_tx_client_unblock(mcip);
2084 	if (MCIP_TX_SRS(mcip) != NULL) {
2085 		mac_tx_srs_restart(MCIP_TX_SRS(mcip));
2086 		(void) mac_flow_walk_nolock(mcip->mci_subflow_tab,
2087 		    mac_tx_flow_restart, NULL);
2088 	}
2089 }
2090 
2091 void
2092 mac_tx_client_flush(mac_client_impl_t *mcip)
2093 {
2094 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
2095 
2096 	mac_tx_client_quiesce(mcip, SRS_QUIESCE);
2097 	mac_tx_client_restart(mcip);
2098 }
2099 
2100 void
2101 mac_client_quiesce(mac_client_impl_t *mcip)
2102 {
2103 	mac_rx_client_quiesce((mac_client_handle_t)mcip);
2104 	mac_tx_client_quiesce(mcip, SRS_QUIESCE);
2105 }
2106 
2107 void
2108 mac_client_restart(mac_client_impl_t *mcip)
2109 {
2110 	mac_rx_client_restart((mac_client_handle_t)mcip);
2111 	mac_tx_client_restart(mcip);
2112 }
2113 
2114 /*
2115  * Allocate a minor number.
2116  */
2117 minor_t
2118 mac_minor_hold(boolean_t sleep)
2119 {
2120 	minor_t	minor;
2121 
2122 	/*
2123 	 * Grab a value from the arena.
2124 	 */
2125 	atomic_add_32(&minor_count, 1);
2126 
2127 	if (sleep)
2128 		minor = (uint_t)id_alloc(minor_ids);
2129 	else
2130 		minor = (uint_t)id_alloc_nosleep(minor_ids);
2131 
2132 	if (minor == 0) {
2133 		atomic_add_32(&minor_count, -1);
2134 		return (0);
2135 	}
2136 
2137 	return (minor);
2138 }
2139 
2140 /*
2141  * Release a previously allocated minor number.
2142  */
2143 void
2144 mac_minor_rele(minor_t minor)
2145 {
2146 	/*
2147 	 * Return the value to the arena.
2148 	 */
2149 	id_free(minor_ids, minor);
2150 	atomic_add_32(&minor_count, -1);
2151 }
2152 
2153 uint32_t
2154 mac_no_notification(mac_handle_t mh)
2155 {
2156 	mac_impl_t *mip = (mac_impl_t *)mh;
2157 	return (mip->mi_unsup_note);
2158 }
2159 
2160 /*
2161  * Prevent any new opens of this mac in preparation for unregister
2162  */
2163 int
2164 i_mac_disable(mac_impl_t *mip)
2165 {
2166 	mac_client_impl_t	*mcip;
2167 
2168 	rw_enter(&i_mac_impl_lock, RW_WRITER);
2169 	if (mip->mi_state_flags & MIS_DISABLED) {
2170 		/* Already disabled, return success */
2171 		rw_exit(&i_mac_impl_lock);
2172 		return (0);
2173 	}
2174 	/*
2175 	 * See if there are any other references to this mac_t (e.g., VLAN's).
2176 	 * If so return failure. If all the other checks below pass, then
2177 	 * set mi_disabled atomically under the i_mac_impl_lock to prevent
2178 	 * any new VLAN's from being created or new mac client opens of this
2179 	 * mac end point.
2180 	 */
2181 	if (mip->mi_ref > 0) {
2182 		rw_exit(&i_mac_impl_lock);
2183 		return (EBUSY);
2184 	}
2185 
2186 	/*
2187 	 * mac clients must delete all multicast groups they join before
2188 	 * closing. bcast groups are reference counted, the last client
2189 	 * to delete the group will wait till the group is physically
2190 	 * deleted. Since all clients have closed this mac end point
2191 	 * mi_bcast_ngrps must be zero at this point
2192 	 */
2193 	ASSERT(mip->mi_bcast_ngrps == 0);
2194 
2195 	/*
2196 	 * Don't let go of this if it has some flows.
2197 	 * All other code guarantees no flows are added to a disabled
2198 	 * mac, therefore it is sufficient to check for the flow table
2199 	 * only here.
2200 	 */
2201 	mcip = mac_primary_client_handle(mip);
2202 	if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) {
2203 		rw_exit(&i_mac_impl_lock);
2204 		return (ENOTEMPTY);
2205 	}
2206 
2207 	mip->mi_state_flags |= MIS_DISABLED;
2208 	rw_exit(&i_mac_impl_lock);
2209 	return (0);
2210 }
2211 
2212 int
2213 mac_disable_nowait(mac_handle_t mh)
2214 {
2215 	mac_impl_t	*mip = (mac_impl_t *)mh;
2216 	int err;
2217 
2218 	if ((err = i_mac_perim_enter_nowait(mip)) != 0)
2219 		return (err);
2220 	err = i_mac_disable(mip);
2221 	i_mac_perim_exit(mip);
2222 	return (err);
2223 }
2224 
2225 int
2226 mac_disable(mac_handle_t mh)
2227 {
2228 	mac_impl_t	*mip = (mac_impl_t *)mh;
2229 	int err;
2230 
2231 	i_mac_perim_enter(mip);
2232 	err = i_mac_disable(mip);
2233 	i_mac_perim_exit(mip);
2234 
2235 	/*
2236 	 * Clean up notification thread and wait for it to exit.
2237 	 */
2238 	if (err == 0)
2239 		i_mac_notify_exit(mip);
2240 
2241 	return (err);
2242 }
2243 
2244 /*
2245  * Called when the MAC instance has a non empty flow table, to de-multiplex
2246  * incoming packets to the right flow.
2247  * The MAC's rw lock is assumed held as a READER.
2248  */
2249 /* ARGSUSED */
2250 static mblk_t *
2251 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp)
2252 {
2253 	flow_entry_t	*flent = NULL;
2254 	uint_t		flags = FLOW_INBOUND;
2255 	int		err;
2256 
2257 	/*
2258 	 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN
2259 	 * to mac_flow_lookup() so that the VLAN packets can be successfully
2260 	 * passed to the non-VLAN aggregation flows.
2261 	 *
2262 	 * Note that there is possibly a race between this and
2263 	 * mac_unicast_remove/add() and VLAN packets could be incorrectly
2264 	 * classified to non-VLAN flows of non-aggregation mac clients. These
2265 	 * VLAN packets will be then filtered out by the mac module.
2266 	 */
2267 	if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0)
2268 		flags |= FLOW_IGNORE_VLAN;
2269 
2270 	err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent);
2271 	if (err != 0) {
2272 		/* no registered receive function */
2273 		return (mp);
2274 	} else {
2275 		mac_client_impl_t	*mcip;
2276 
2277 		/*
2278 		 * This flent might just be an additional one on the MAC client,
2279 		 * i.e. for classification purposes (different fdesc), however
2280 		 * the resources, SRS et. al., are in the mci_flent, so if
2281 		 * this isn't the mci_flent, we need to get it.
2282 		 */
2283 		if ((mcip = flent->fe_mcip) != NULL &&
2284 		    mcip->mci_flent != flent) {
2285 			FLOW_REFRELE(flent);
2286 			flent = mcip->mci_flent;
2287 			FLOW_TRY_REFHOLD(flent, err);
2288 			if (err != 0)
2289 				return (mp);
2290 		}
2291 		(flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp,
2292 		    B_FALSE);
2293 		FLOW_REFRELE(flent);
2294 	}
2295 	return (NULL);
2296 }
2297 
2298 mblk_t *
2299 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain)
2300 {
2301 	mac_impl_t	*mip = (mac_impl_t *)mh;
2302 	mblk_t		*bp, *bp1, **bpp, *list = NULL;
2303 
2304 	/*
2305 	 * We walk the chain and attempt to classify each packet.
2306 	 * The packets that couldn't be classified will be returned
2307 	 * back to the caller.
2308 	 */
2309 	bp = mp_chain;
2310 	bpp = &list;
2311 	while (bp != NULL) {
2312 		bp1 = bp;
2313 		bp = bp->b_next;
2314 		bp1->b_next = NULL;
2315 
2316 		if (mac_rx_classify(mip, mrh, bp1) != NULL) {
2317 			*bpp = bp1;
2318 			bpp = &bp1->b_next;
2319 		}
2320 	}
2321 	return (list);
2322 }
2323 
2324 static int
2325 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg)
2326 {
2327 	mac_ring_handle_t ring = arg;
2328 
2329 	if (flent->fe_tx_srs)
2330 		mac_tx_srs_wakeup(flent->fe_tx_srs, ring);
2331 	return (0);
2332 }
2333 
2334 void
2335 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring)
2336 {
2337 	mac_client_impl_t	*cclient;
2338 	mac_soft_ring_set_t	*mac_srs;
2339 
2340 	/*
2341 	 * After grabbing the mi_rw_lock, the list of clients can't change.
2342 	 * If there are any clients mi_disabled must be B_FALSE and can't
2343 	 * get set since there are clients. If there aren't any clients we
2344 	 * don't do anything. In any case the mip has to be valid. The driver
2345 	 * must make sure that it goes single threaded (with respect to mac
2346 	 * calls) and wait for all pending mac calls to finish before calling
2347 	 * mac_unregister.
2348 	 */
2349 	rw_enter(&i_mac_impl_lock, RW_READER);
2350 	if (mip->mi_state_flags & MIS_DISABLED) {
2351 		rw_exit(&i_mac_impl_lock);
2352 		return;
2353 	}
2354 
2355 	/*
2356 	 * Get MAC tx srs from walking mac_client_handle list.
2357 	 */
2358 	rw_enter(&mip->mi_rw_lock, RW_READER);
2359 	for (cclient = mip->mi_clients_list; cclient != NULL;
2360 	    cclient = cclient->mci_client_next) {
2361 		if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL)
2362 			mac_tx_srs_wakeup(mac_srs, ring);
2363 		(void) mac_flow_walk(cclient->mci_subflow_tab,
2364 		    mac_tx_flow_srs_wakeup, ring);
2365 	}
2366 	rw_exit(&mip->mi_rw_lock);
2367 	rw_exit(&i_mac_impl_lock);
2368 }
2369 
2370 /* ARGSUSED */
2371 void
2372 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg,
2373     boolean_t add)
2374 {
2375 	mac_impl_t *mip = (mac_impl_t *)mh;
2376 
2377 	i_mac_perim_enter((mac_impl_t *)mh);
2378 	/*
2379 	 * If no specific refresh function was given then default to the
2380 	 * driver's m_multicst entry point.
2381 	 */
2382 	if (refresh == NULL) {
2383 		refresh = mip->mi_multicst;
2384 		arg = mip->mi_driver;
2385 	}
2386 
2387 	mac_bcast_refresh(mip, refresh, arg, add);
2388 	i_mac_perim_exit((mac_impl_t *)mh);
2389 }
2390 
2391 void
2392 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg)
2393 {
2394 	mac_impl_t	*mip = (mac_impl_t *)mh;
2395 
2396 	/*
2397 	 * If no specific refresh function was given then default to the
2398 	 * driver's m_promisc entry point.
2399 	 */
2400 	if (refresh == NULL) {
2401 		refresh = mip->mi_setpromisc;
2402 		arg = mip->mi_driver;
2403 	}
2404 	ASSERT(refresh != NULL);
2405 
2406 	/*
2407 	 * Call the refresh function with the current promiscuity.
2408 	 */
2409 	refresh(arg, (mip->mi_devpromisc != 0));
2410 }
2411 
2412 /*
2413  * The mac client requests that the mac not to change its margin size to
2414  * be less than the specified value.  If "current" is B_TRUE, then the client
2415  * requests the mac not to change its margin size to be smaller than the
2416  * current size. Further, return the current margin size value in this case.
2417  *
2418  * We keep every requested size in an ordered list from largest to smallest.
2419  */
2420 int
2421 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current)
2422 {
2423 	mac_impl_t		*mip = (mac_impl_t *)mh;
2424 	mac_margin_req_t	**pp, *p;
2425 	int			err = 0;
2426 
2427 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2428 	if (current)
2429 		*marginp = mip->mi_margin;
2430 
2431 	/*
2432 	 * If the current margin value cannot satisfy the margin requested,
2433 	 * return ENOTSUP directly.
2434 	 */
2435 	if (*marginp > mip->mi_margin) {
2436 		err = ENOTSUP;
2437 		goto done;
2438 	}
2439 
2440 	/*
2441 	 * Check whether the given margin is already in the list. If so,
2442 	 * bump the reference count.
2443 	 */
2444 	for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) {
2445 		if (p->mmr_margin == *marginp) {
2446 			/*
2447 			 * The margin requested is already in the list,
2448 			 * so just bump the reference count.
2449 			 */
2450 			p->mmr_ref++;
2451 			goto done;
2452 		}
2453 		if (p->mmr_margin < *marginp)
2454 			break;
2455 	}
2456 
2457 
2458 	p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP);
2459 	p->mmr_margin = *marginp;
2460 	p->mmr_ref++;
2461 	p->mmr_nextp = *pp;
2462 	*pp = p;
2463 
2464 done:
2465 	rw_exit(&(mip->mi_rw_lock));
2466 	return (err);
2467 }
2468 
2469 /*
2470  * The mac client requests to cancel its previous mac_margin_add() request.
2471  * We remove the requested margin size from the list.
2472  */
2473 int
2474 mac_margin_remove(mac_handle_t mh, uint32_t margin)
2475 {
2476 	mac_impl_t		*mip = (mac_impl_t *)mh;
2477 	mac_margin_req_t	**pp, *p;
2478 	int			err = 0;
2479 
2480 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2481 	/*
2482 	 * Find the entry in the list for the given margin.
2483 	 */
2484 	for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) {
2485 		if (p->mmr_margin == margin) {
2486 			if (--p->mmr_ref == 0)
2487 				break;
2488 
2489 			/*
2490 			 * There is still a reference to this address so
2491 			 * there's nothing more to do.
2492 			 */
2493 			goto done;
2494 		}
2495 	}
2496 
2497 	/*
2498 	 * We did not find an entry for the given margin.
2499 	 */
2500 	if (p == NULL) {
2501 		err = ENOENT;
2502 		goto done;
2503 	}
2504 
2505 	ASSERT(p->mmr_ref == 0);
2506 
2507 	/*
2508 	 * Remove it from the list.
2509 	 */
2510 	*pp = p->mmr_nextp;
2511 	kmem_free(p, sizeof (mac_margin_req_t));
2512 done:
2513 	rw_exit(&(mip->mi_rw_lock));
2514 	return (err);
2515 }
2516 
2517 boolean_t
2518 mac_margin_update(mac_handle_t mh, uint32_t margin)
2519 {
2520 	mac_impl_t	*mip = (mac_impl_t *)mh;
2521 	uint32_t	margin_needed = 0;
2522 
2523 	rw_enter(&(mip->mi_rw_lock), RW_WRITER);
2524 
2525 	if (mip->mi_mmrp != NULL)
2526 		margin_needed = mip->mi_mmrp->mmr_margin;
2527 
2528 	if (margin_needed <= margin)
2529 		mip->mi_margin = margin;
2530 
2531 	rw_exit(&(mip->mi_rw_lock));
2532 
2533 	if (margin_needed <= margin)
2534 		i_mac_notify(mip, MAC_NOTE_MARGIN);
2535 
2536 	return (margin_needed <= margin);
2537 }
2538 
2539 /*
2540  * MAC Type Plugin functions.
2541  */
2542 
2543 mactype_t *
2544 mactype_getplugin(const char *pname)
2545 {
2546 	mactype_t	*mtype = NULL;
2547 	boolean_t	tried_modload = B_FALSE;
2548 
2549 	mutex_enter(&i_mactype_lock);
2550 
2551 find_registered_mactype:
2552 	if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname,
2553 	    (mod_hash_val_t *)&mtype) != 0) {
2554 		if (!tried_modload) {
2555 			/*
2556 			 * If the plugin has not yet been loaded, then
2557 			 * attempt to load it now.  If modload() succeeds,
2558 			 * the plugin should have registered using
2559 			 * mactype_register(), in which case we can go back
2560 			 * and attempt to find it again.
2561 			 */
2562 			if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) {
2563 				tried_modload = B_TRUE;
2564 				goto find_registered_mactype;
2565 			}
2566 		}
2567 	} else {
2568 		/*
2569 		 * Note that there's no danger that the plugin we've loaded
2570 		 * could be unloaded between the modload() step and the
2571 		 * reference count bump here, as we're holding
2572 		 * i_mactype_lock, which mactype_unregister() also holds.
2573 		 */
2574 		atomic_inc_32(&mtype->mt_ref);
2575 	}
2576 
2577 	mutex_exit(&i_mactype_lock);
2578 	return (mtype);
2579 }
2580 
2581 mactype_register_t *
2582 mactype_alloc(uint_t mactype_version)
2583 {
2584 	mactype_register_t *mtrp;
2585 
2586 	/*
2587 	 * Make sure there isn't a version mismatch between the plugin and
2588 	 * the framework.  In the future, if multiple versions are
2589 	 * supported, this check could become more sophisticated.
2590 	 */
2591 	if (mactype_version != MACTYPE_VERSION)
2592 		return (NULL);
2593 
2594 	mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP);
2595 	mtrp->mtr_version = mactype_version;
2596 	return (mtrp);
2597 }
2598 
2599 void
2600 mactype_free(mactype_register_t *mtrp)
2601 {
2602 	kmem_free(mtrp, sizeof (mactype_register_t));
2603 }
2604 
2605 int
2606 mactype_register(mactype_register_t *mtrp)
2607 {
2608 	mactype_t	*mtp;
2609 	mactype_ops_t	*ops = mtrp->mtr_ops;
2610 
2611 	/* Do some sanity checking before we register this MAC type. */
2612 	if (mtrp->mtr_ident == NULL || ops == NULL)
2613 		return (EINVAL);
2614 
2615 	/*
2616 	 * Verify that all mandatory callbacks are set in the ops
2617 	 * vector.
2618 	 */
2619 	if (ops->mtops_unicst_verify == NULL ||
2620 	    ops->mtops_multicst_verify == NULL ||
2621 	    ops->mtops_sap_verify == NULL ||
2622 	    ops->mtops_header == NULL ||
2623 	    ops->mtops_header_info == NULL) {
2624 		return (EINVAL);
2625 	}
2626 
2627 	mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP);
2628 	mtp->mt_ident = mtrp->mtr_ident;
2629 	mtp->mt_ops = *ops;
2630 	mtp->mt_type = mtrp->mtr_mactype;
2631 	mtp->mt_nativetype = mtrp->mtr_nativetype;
2632 	mtp->mt_addr_length = mtrp->mtr_addrlen;
2633 	if (mtrp->mtr_brdcst_addr != NULL) {
2634 		mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP);
2635 		bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr,
2636 		    mtrp->mtr_addrlen);
2637 	}
2638 
2639 	mtp->mt_stats = mtrp->mtr_stats;
2640 	mtp->mt_statcount = mtrp->mtr_statcount;
2641 
2642 	mtp->mt_mapping = mtrp->mtr_mapping;
2643 	mtp->mt_mappingcount = mtrp->mtr_mappingcount;
2644 
2645 	if (mod_hash_insert(i_mactype_hash,
2646 	    (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) {
2647 		kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2648 		kmem_free(mtp, sizeof (*mtp));
2649 		return (EEXIST);
2650 	}
2651 	return (0);
2652 }
2653 
2654 int
2655 mactype_unregister(const char *ident)
2656 {
2657 	mactype_t	*mtp;
2658 	mod_hash_val_t	val;
2659 	int 		err;
2660 
2661 	/*
2662 	 * Let's not allow MAC drivers to use this plugin while we're
2663 	 * trying to unregister it.  Holding i_mactype_lock also prevents a
2664 	 * plugin from unregistering while a MAC driver is attempting to
2665 	 * hold a reference to it in i_mactype_getplugin().
2666 	 */
2667 	mutex_enter(&i_mactype_lock);
2668 
2669 	if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident,
2670 	    (mod_hash_val_t *)&mtp)) != 0) {
2671 		/* A plugin is trying to unregister, but it never registered. */
2672 		err = ENXIO;
2673 		goto done;
2674 	}
2675 
2676 	if (mtp->mt_ref != 0) {
2677 		err = EBUSY;
2678 		goto done;
2679 	}
2680 
2681 	err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val);
2682 	ASSERT(err == 0);
2683 	if (err != 0) {
2684 		/* This should never happen, thus the ASSERT() above. */
2685 		err = EINVAL;
2686 		goto done;
2687 	}
2688 	ASSERT(mtp == (mactype_t *)val);
2689 
2690 	kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length);
2691 	kmem_free(mtp, sizeof (mactype_t));
2692 done:
2693 	mutex_exit(&i_mactype_lock);
2694 	return (err);
2695 }
2696 
2697 /*
2698  * Returns TRUE when the specified property is intended for the MAC framework,
2699  * as opposed to driver defined properties.
2700  */
2701 static boolean_t
2702 mac_is_macprop(mac_prop_t *macprop)
2703 {
2704 	switch (macprop->mp_id) {
2705 	case MAC_PROP_MAXBW:
2706 	case MAC_PROP_PRIO:
2707 	case MAC_PROP_BIND_CPU:
2708 		return (B_TRUE);
2709 	default:
2710 		return (B_FALSE);
2711 	}
2712 }
2713 
2714 /*
2715  * mac_set_prop() sets mac or hardware driver properties:
2716  * 	mac properties include maxbw, priority, and cpu binding list. Driver
2717  *	properties are private properties to the hardware, such as mtu, speed
2718  *	etc.
2719  * If the property is a driver property, mac_set_prop() calls driver's callback
2720  * function to set it.
2721  * If the property is a mac property, mac_set_prop() invokes mac_set_resources()
2722  * which will cache the property value in mac_impl_t and may call
2723  * mac_client_set_resource() to update property value of the primary mac client,
2724  * if it exists.
2725  */
2726 int
2727 mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize)
2728 {
2729 	int err = ENOTSUP;
2730 	mac_impl_t *mip = (mac_impl_t *)mh;
2731 
2732 	ASSERT(MAC_PERIM_HELD(mh));
2733 
2734 	/* If it is mac property, call mac_set_resources() */
2735 	if (mac_is_macprop(macprop)) {
2736 		mac_resource_props_t mrp;
2737 
2738 		if (valsize < sizeof (mac_resource_props_t))
2739 			return (EINVAL);
2740 		bzero(&mrp, sizeof (mac_resource_props_t));
2741 		bcopy(val, &mrp, sizeof (mrp));
2742 		return (mac_set_resources(mh, &mrp));
2743 	}
2744 	switch (macprop->mp_id) {
2745 	case MAC_PROP_MTU: {
2746 		uint32_t mtu;
2747 
2748 		if (valsize < sizeof (mtu))
2749 			return (EINVAL);
2750 		bcopy(val, &mtu, sizeof (mtu));
2751 		err = mac_set_mtu(mh, mtu, NULL);
2752 		break;
2753 	}
2754 	default:
2755 		/* For other driver properties, call driver's callback */
2756 		if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) {
2757 			err = mip->mi_callbacks->mc_setprop(mip->mi_driver,
2758 			    macprop->mp_name, macprop->mp_id, valsize, val);
2759 		}
2760 	}
2761 	return (err);
2762 }
2763 
2764 /*
2765  * mac_get_prop() gets mac or hardware driver properties.
2766  *
2767  * If the property is a driver property, mac_get_prop() calls driver's callback
2768  * function to get it.
2769  * If the property is a mac property, mac_get_prop() invokes mac_get_resources()
2770  * which returns the cached value in mac_impl_t.
2771  */
2772 int
2773 mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize,
2774     uint_t *perm)
2775 {
2776 	int err = ENOTSUP;
2777 	mac_impl_t *mip = (mac_impl_t *)mh;
2778 	uint32_t sdu;
2779 	link_state_t link_state;
2780 
2781 	/* If mac property, read from cache */
2782 	if (mac_is_macprop(macprop)) {
2783 		mac_resource_props_t mrp;
2784 
2785 		if (valsize < sizeof (mac_resource_props_t))
2786 			return (EINVAL);
2787 		bzero(&mrp, sizeof (mac_resource_props_t));
2788 		mac_get_resources(mh, &mrp);
2789 		bcopy(&mrp, val, sizeof (mac_resource_props_t));
2790 		return (0);
2791 	}
2792 
2793 	switch (macprop->mp_id) {
2794 	case MAC_PROP_MTU:
2795 		if (valsize < sizeof (sdu))
2796 			return (EINVAL);
2797 		if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) {
2798 			mac_sdu_get(mh, NULL, &sdu);
2799 			bcopy(&sdu, val, sizeof (sdu));
2800 			if ((mip->mi_callbacks->mc_callbacks & MC_SETPROP) &&
2801 			    (mip->mi_callbacks->mc_setprop(mip->mi_driver,
2802 			    macprop->mp_name, macprop->mp_id, valsize,
2803 			    val) == 0)) {
2804 				*perm = MAC_PROP_PERM_RW;
2805 			} else {
2806 				*perm = MAC_PROP_PERM_READ;
2807 			}
2808 			return (0);
2809 		} else {
2810 			if (mip->mi_info.mi_media == DL_ETHER) {
2811 				sdu = ETHERMTU;
2812 				bcopy(&sdu, val, sizeof (sdu));
2813 
2814 				return (0);
2815 			}
2816 			/*
2817 			 * ask driver for its default.
2818 			 */
2819 			break;
2820 		}
2821 	case MAC_PROP_STATUS:
2822 		if (valsize < sizeof (link_state))
2823 			return (EINVAL);
2824 		*perm = MAC_PROP_PERM_READ;
2825 		link_state = mac_link_get(mh);
2826 		bcopy(&link_state, val, sizeof (link_state));
2827 		return (0);
2828 	default:
2829 		break;
2830 
2831 	}
2832 	/* If driver property, request from driver */
2833 	if (mip->mi_callbacks->mc_callbacks & MC_GETPROP) {
2834 		err = mip->mi_callbacks->mc_getprop(mip->mi_driver,
2835 		    macprop->mp_name, macprop->mp_id, macprop->mp_flags,
2836 		    valsize, val, perm);
2837 	}
2838 	return (err);
2839 }
2840 
2841 void
2842 mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop)
2843 {
2844 	mac_priv_prop_t *mpriv;
2845 
2846 	if (mpp == NULL)
2847 		return;
2848 
2849 	mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP);
2850 	(void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv));
2851 	mip->mi_priv_prop = mpriv;
2852 	mip->mi_priv_prop_count = nprop;
2853 }
2854 
2855 void
2856 mac_unregister_priv_prop(mac_impl_t *mip)
2857 {
2858 	mac_priv_prop_t	*mpriv;
2859 
2860 	mpriv = mip->mi_priv_prop;
2861 	if (mpriv != NULL) {
2862 		kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv));
2863 		mip->mi_priv_prop = NULL;
2864 	}
2865 	mip->mi_priv_prop_count = 0;
2866 }
2867 
2868 /*
2869  * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure
2870  * (by invoking mac_rx()) even after processing mac_stop_ring(). In such
2871  * cases if MAC free's the ring structure after mac_stop_ring(), any
2872  * illegal access to the ring structure coming from the driver will panic
2873  * the system. In order to protect the system from such inadverent access,
2874  * we maintain a cache of rings in the mac_impl_t after they get free'd up.
2875  * When packets are received on free'd up rings, MAC (through the generation
2876  * count mechanism) will drop such packets.
2877  */
2878 static mac_ring_t *
2879 mac_ring_alloc(mac_impl_t *mip, mac_capab_rings_t *cap_rings)
2880 {
2881 	mac_ring_t *ring;
2882 
2883 	if (cap_rings->mr_type == MAC_RING_TYPE_RX) {
2884 		mutex_enter(&mip->mi_ring_lock);
2885 		if (mip->mi_ring_freelist != NULL) {
2886 			ring = mip->mi_ring_freelist;
2887 			mip->mi_ring_freelist = ring->mr_next;
2888 			bzero(ring, sizeof (mac_ring_t));
2889 		} else {
2890 			ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP);
2891 		}
2892 		mutex_exit(&mip->mi_ring_lock);
2893 	} else {
2894 		ring = kmem_zalloc(sizeof (mac_ring_t), KM_SLEEP);
2895 	}
2896 	ASSERT((ring != NULL) && (ring->mr_state == MR_FREE));
2897 	return (ring);
2898 }
2899 
2900 static void
2901 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring)
2902 {
2903 	if (ring->mr_type == MAC_RING_TYPE_RX) {
2904 		mutex_enter(&mip->mi_ring_lock);
2905 		ring->mr_state = MR_FREE;
2906 		ring->mr_flag = 0;
2907 		ring->mr_next = mip->mi_ring_freelist;
2908 		mip->mi_ring_freelist = ring;
2909 		mutex_exit(&mip->mi_ring_lock);
2910 	} else {
2911 		kmem_free(ring, sizeof (mac_ring_t));
2912 	}
2913 }
2914 
2915 static void
2916 mac_ring_freeall(mac_impl_t *mip)
2917 {
2918 	mac_ring_t *ring_next;
2919 	mutex_enter(&mip->mi_ring_lock);
2920 	mac_ring_t *ring = mip->mi_ring_freelist;
2921 	while (ring != NULL) {
2922 		ring_next = ring->mr_next;
2923 		kmem_cache_free(mac_ring_cache, ring);
2924 		ring = ring_next;
2925 	}
2926 	mip->mi_ring_freelist = NULL;
2927 	mutex_exit(&mip->mi_ring_lock);
2928 }
2929 
2930 int
2931 mac_start_ring(mac_ring_t *ring)
2932 {
2933 	int rv = 0;
2934 
2935 	if (ring->mr_start != NULL)
2936 		rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num);
2937 
2938 	return (rv);
2939 }
2940 
2941 void
2942 mac_stop_ring(mac_ring_t *ring)
2943 {
2944 	if (ring->mr_stop != NULL)
2945 		ring->mr_stop(ring->mr_driver);
2946 
2947 	/*
2948 	 * Increment the ring generation number for this ring.
2949 	 */
2950 	ring->mr_gen_num++;
2951 }
2952 
2953 int
2954 mac_start_group(mac_group_t *group)
2955 {
2956 	int rv = 0;
2957 
2958 	if (group->mrg_start != NULL)
2959 		rv = group->mrg_start(group->mrg_driver);
2960 
2961 	return (rv);
2962 }
2963 
2964 void
2965 mac_stop_group(mac_group_t *group)
2966 {
2967 	if (group->mrg_stop != NULL)
2968 		group->mrg_stop(group->mrg_driver);
2969 }
2970 
2971 /*
2972  * Called from mac_start() on the default Rx group. Broadcast and multicast
2973  * packets are received only on the default group. Hence the default group
2974  * needs to be up even if the primary client is not up, for the other groups
2975  * to be functional. We do this by calling this function at mac_start time
2976  * itself. However the broadcast packets that are received can't make their
2977  * way beyond mac_rx until a mac client creates a broadcast flow.
2978  */
2979 static int
2980 mac_start_group_and_rings(mac_group_t *group)
2981 {
2982 	mac_ring_t	*ring;
2983 	int		rv = 0;
2984 
2985 	ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED);
2986 	if ((rv = mac_start_group(group)) != 0)
2987 		return (rv);
2988 
2989 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
2990 		ASSERT(ring->mr_state == MR_FREE);
2991 		if ((rv = mac_start_ring(ring)) != 0)
2992 			goto error;
2993 		ring->mr_state = MR_INUSE;
2994 		ring->mr_classify_type = MAC_SW_CLASSIFIER;
2995 	}
2996 	return (0);
2997 
2998 error:
2999 	mac_stop_group_and_rings(group);
3000 	return (rv);
3001 }
3002 
3003 /* Called from mac_stop on the default Rx group */
3004 static void
3005 mac_stop_group_and_rings(mac_group_t *group)
3006 {
3007 	mac_ring_t	*ring;
3008 
3009 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
3010 		if (ring->mr_state != MR_FREE) {
3011 			mac_stop_ring(ring);
3012 			ring->mr_state = MR_FREE;
3013 			ring->mr_flag = 0;
3014 			ring->mr_classify_type = MAC_NO_CLASSIFIER;
3015 		}
3016 	}
3017 	mac_stop_group(group);
3018 }
3019 
3020 
3021 static mac_ring_t *
3022 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index,
3023     mac_capab_rings_t *cap_rings)
3024 {
3025 	mac_ring_t *ring;
3026 	mac_ring_info_t ring_info;
3027 
3028 	ring = mac_ring_alloc(mip, cap_rings);
3029 
3030 	/* Prepare basic information of ring */
3031 	ring->mr_index = index;
3032 	ring->mr_type = group->mrg_type;
3033 	ring->mr_gh = (mac_group_handle_t)group;
3034 
3035 	/* Insert the new ring to the list. */
3036 	ring->mr_next = group->mrg_rings;
3037 	group->mrg_rings = ring;
3038 
3039 	/* Zero to reuse the info data structure */
3040 	bzero(&ring_info, sizeof (ring_info));
3041 
3042 	/* Query ring information from driver */
3043 	cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index,
3044 	    index, &ring_info, (mac_ring_handle_t)ring);
3045 
3046 	ring->mr_info = ring_info;
3047 
3048 	/* Update ring's status */
3049 	ring->mr_state = MR_FREE;
3050 	ring->mr_flag = 0;
3051 
3052 	/* Update the ring count of the group */
3053 	group->mrg_cur_count++;
3054 	return (ring);
3055 }
3056 
3057 /*
3058  * Rings are chained together for easy regrouping.
3059  */
3060 static void
3061 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size,
3062     mac_capab_rings_t *cap_rings)
3063 {
3064 	int index;
3065 
3066 	/*
3067 	 * Initialize all ring members of this group. Size of zero will not
3068 	 * enter the loop, so it's safe for initializing an empty group.
3069 	 */
3070 	for (index = size - 1; index >= 0; index--)
3071 		(void) mac_init_ring(mip, group, index, cap_rings);
3072 }
3073 
3074 int
3075 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3076 {
3077 	mac_capab_rings_t *cap_rings;
3078 	mac_group_t *group, *groups;
3079 	mac_group_info_t group_info;
3080 	uint_t group_free = 0;
3081 	uint_t ring_left;
3082 	mac_ring_t *ring;
3083 	int g, err = 0;
3084 
3085 	switch (rtype) {
3086 	case MAC_RING_TYPE_RX:
3087 		ASSERT(mip->mi_rx_groups == NULL);
3088 
3089 		cap_rings = &mip->mi_rx_rings_cap;
3090 		cap_rings->mr_type = MAC_RING_TYPE_RX;
3091 		break;
3092 	case MAC_RING_TYPE_TX:
3093 		ASSERT(mip->mi_tx_groups == NULL);
3094 
3095 		cap_rings = &mip->mi_tx_rings_cap;
3096 		cap_rings->mr_type = MAC_RING_TYPE_TX;
3097 		break;
3098 	default:
3099 		ASSERT(B_FALSE);
3100 	}
3101 
3102 	if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS,
3103 	    cap_rings))
3104 		return (0);
3105 
3106 	/*
3107 	 * Allocate a contiguous buffer for all groups.
3108 	 */
3109 	groups = kmem_zalloc(sizeof (mac_group_t) * (cap_rings->mr_gnum + 1),
3110 	    KM_SLEEP);
3111 
3112 	ring_left = cap_rings->mr_rnum;
3113 
3114 	/*
3115 	 * Get all ring groups if any, and get their ring members
3116 	 * if any.
3117 	 */
3118 	for (g = 0; g < cap_rings->mr_gnum; g++) {
3119 		group = groups + g;
3120 
3121 		/* Prepare basic information of the group */
3122 		group->mrg_index = g;
3123 		group->mrg_type = rtype;
3124 		group->mrg_state = MAC_GROUP_STATE_UNINIT;
3125 		group->mrg_mh = (mac_handle_t)mip;
3126 		group->mrg_next = group + 1;
3127 
3128 		/* Zero to reuse the info data structure */
3129 		bzero(&group_info, sizeof (group_info));
3130 
3131 		/* Query group information from driver */
3132 		cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info,
3133 		    (mac_group_handle_t)group);
3134 
3135 		switch (cap_rings->mr_group_type) {
3136 		case MAC_GROUP_TYPE_DYNAMIC:
3137 			if (cap_rings->mr_gaddring == NULL ||
3138 			    cap_rings->mr_gremring == NULL) {
3139 				DTRACE_PROBE3(
3140 				    mac__init__rings_no_addremring,
3141 				    char *, mip->mi_name,
3142 				    mac_group_add_ring_t,
3143 				    cap_rings->mr_gaddring,
3144 				    mac_group_add_ring_t,
3145 				    cap_rings->mr_gremring);
3146 				err = EINVAL;
3147 				goto bail;
3148 			}
3149 
3150 			switch (rtype) {
3151 			case MAC_RING_TYPE_RX:
3152 				/*
3153 				 * The first RX group must have non-zero
3154 				 * rings, and the following groups must
3155 				 * have zero rings.
3156 				 */
3157 				if (g == 0 && group_info.mgi_count == 0) {
3158 					DTRACE_PROBE1(
3159 					    mac__init__rings__rx__def__zero,
3160 					    char *, mip->mi_name);
3161 					err = EINVAL;
3162 					goto bail;
3163 				}
3164 				if (g > 0 && group_info.mgi_count != 0) {
3165 					DTRACE_PROBE3(
3166 					    mac__init__rings__rx__nonzero,
3167 					    char *, mip->mi_name,
3168 					    int, g, int, group_info.mgi_count);
3169 					err = EINVAL;
3170 					goto bail;
3171 				}
3172 				break;
3173 			case MAC_RING_TYPE_TX:
3174 				/*
3175 				 * All TX ring groups must have zero rings.
3176 				 */
3177 				if (group_info.mgi_count != 0) {
3178 					DTRACE_PROBE3(
3179 					    mac__init__rings__tx__nonzero,
3180 					    char *, mip->mi_name,
3181 					    int, g, int, group_info.mgi_count);
3182 					err = EINVAL;
3183 					goto bail;
3184 				}
3185 				break;
3186 			}
3187 			break;
3188 		case MAC_GROUP_TYPE_STATIC:
3189 			/*
3190 			 * Note that an empty group is allowed, e.g., an aggr
3191 			 * would start with an empty group.
3192 			 */
3193 			break;
3194 		default:
3195 			/* unknown group type */
3196 			DTRACE_PROBE2(mac__init__rings__unknown__type,
3197 			    char *, mip->mi_name,
3198 			    int, cap_rings->mr_group_type);
3199 			err = EINVAL;
3200 			goto bail;
3201 		}
3202 
3203 
3204 		/*
3205 		 * Driver must register group->mgi_addmac/remmac() for rx groups
3206 		 * to support multiple MAC addresses.
3207 		 */
3208 		if (rtype == MAC_RING_TYPE_RX) {
3209 			if ((group_info.mgi_addmac == NULL) ||
3210 			    (group_info.mgi_addmac == NULL))
3211 				goto bail;
3212 		}
3213 
3214 		/* Cache driver-supplied information */
3215 		group->mrg_info = group_info;
3216 
3217 		/* Update the group's status and group count. */
3218 		mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED);
3219 		group_free++;
3220 
3221 		group->mrg_rings = NULL;
3222 		group->mrg_cur_count = 0;
3223 		mac_init_group(mip, group, group_info.mgi_count, cap_rings);
3224 		ring_left -= group_info.mgi_count;
3225 
3226 		/* The current group size should be equal to default value */
3227 		ASSERT(group->mrg_cur_count == group_info.mgi_count);
3228 	}
3229 
3230 	/* Build up a dummy group for free resources as a pool */
3231 	group = groups + cap_rings->mr_gnum;
3232 
3233 	/* Prepare basic information of the group */
3234 	group->mrg_index = -1;
3235 	group->mrg_type = rtype;
3236 	group->mrg_state = MAC_GROUP_STATE_UNINIT;
3237 	group->mrg_mh = (mac_handle_t)mip;
3238 	group->mrg_next = NULL;
3239 
3240 	/*
3241 	 * If there are ungrouped rings, allocate a continuous buffer for
3242 	 * remaining resources.
3243 	 */
3244 	if (ring_left != 0) {
3245 		group->mrg_rings = NULL;
3246 		group->mrg_cur_count = 0;
3247 		mac_init_group(mip, group, ring_left, cap_rings);
3248 
3249 		/* The current group size should be equal to ring_left */
3250 		ASSERT(group->mrg_cur_count == ring_left);
3251 
3252 		ring_left = 0;
3253 
3254 		/* Update this group's status */
3255 		mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED);
3256 	} else
3257 		group->mrg_rings = NULL;
3258 
3259 	ASSERT(ring_left == 0);
3260 
3261 bail:
3262 	/* Cache other important information to finalize the initialization */
3263 	switch (rtype) {
3264 	case MAC_RING_TYPE_RX:
3265 		mip->mi_rx_group_type = cap_rings->mr_group_type;
3266 		mip->mi_rx_group_count = cap_rings->mr_gnum;
3267 		mip->mi_rx_groups = groups;
3268 		break;
3269 	case MAC_RING_TYPE_TX:
3270 		mip->mi_tx_group_type = cap_rings->mr_group_type;
3271 		mip->mi_tx_group_count = cap_rings->mr_gnum;
3272 		mip->mi_tx_group_free = group_free;
3273 		mip->mi_tx_groups = groups;
3274 
3275 		/*
3276 		 * Ring 0 is used as the default one and it could be assigned
3277 		 * to a client as well.
3278 		 */
3279 		group = groups + cap_rings->mr_gnum;
3280 		ring = group->mrg_rings;
3281 		while ((ring->mr_index != 0) && (ring->mr_next != NULL))
3282 			ring = ring->mr_next;
3283 		ASSERT(ring->mr_index == 0);
3284 		mip->mi_default_tx_ring = (mac_ring_handle_t)ring;
3285 		break;
3286 	default:
3287 		ASSERT(B_FALSE);
3288 	}
3289 
3290 	if (err != 0)
3291 		mac_free_rings(mip, rtype);
3292 
3293 	return (err);
3294 }
3295 
3296 /*
3297  * Called to free all ring groups with particular type. It's supposed all groups
3298  * have been released by clinet.
3299  */
3300 void
3301 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype)
3302 {
3303 	mac_group_t *group, *groups;
3304 	uint_t group_count;
3305 
3306 	switch (rtype) {
3307 	case MAC_RING_TYPE_RX:
3308 		if (mip->mi_rx_groups == NULL)
3309 			return;
3310 
3311 		groups = mip->mi_rx_groups;
3312 		group_count = mip->mi_rx_group_count;
3313 
3314 		mip->mi_rx_groups = NULL;
3315 		mip->mi_rx_group_count = 0;
3316 		break;
3317 	case MAC_RING_TYPE_TX:
3318 		ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free);
3319 
3320 		if (mip->mi_tx_groups == NULL)
3321 			return;
3322 
3323 		groups = mip->mi_tx_groups;
3324 		group_count = mip->mi_tx_group_count;
3325 
3326 		mip->mi_tx_groups = NULL;
3327 		mip->mi_tx_group_count = 0;
3328 		mip->mi_tx_group_free = 0;
3329 		mip->mi_default_tx_ring = NULL;
3330 		break;
3331 	default:
3332 		ASSERT(B_FALSE);
3333 	}
3334 
3335 	for (group = groups; group != NULL; group = group->mrg_next) {
3336 		mac_ring_t *ring;
3337 
3338 		if (group->mrg_cur_count == 0)
3339 			continue;
3340 
3341 		ASSERT(group->mrg_rings != NULL);
3342 
3343 		while ((ring = group->mrg_rings) != NULL) {
3344 			group->mrg_rings = ring->mr_next;
3345 			mac_ring_free(mip, ring);
3346 		}
3347 	}
3348 
3349 	/* Free all the cached rings */
3350 	mac_ring_freeall(mip);
3351 	/* Free the block of group data strutures */
3352 	kmem_free(groups, sizeof (mac_group_t) * (group_count + 1));
3353 }
3354 
3355 /*
3356  * Associate a MAC address with a receive group.
3357  *
3358  * The return value of this function should always be checked properly, because
3359  * any type of failure could cause unexpected results. A group can be added
3360  * or removed with a MAC address only after it has been reserved. Ideally,
3361  * a successful reservation always leads to calling mac_group_addmac() to
3362  * steer desired traffic. Failure of adding an unicast MAC address doesn't
3363  * always imply that the group is functioning abnormally.
3364  *
3365  * Currently this function is called everywhere, and it reflects assumptions
3366  * about MAC addresses in the implementation. CR 6735196.
3367  */
3368 int
3369 mac_group_addmac(mac_group_t *group, const uint8_t *addr)
3370 {
3371 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
3372 	ASSERT(group->mrg_info.mgi_addmac != NULL);
3373 
3374 	return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr));
3375 }
3376 
3377 /*
3378  * Remove the association between MAC address and receive group.
3379  */
3380 int
3381 mac_group_remmac(mac_group_t *group, const uint8_t *addr)
3382 {
3383 	ASSERT(group->mrg_type == MAC_RING_TYPE_RX);
3384 	ASSERT(group->mrg_info.mgi_remmac != NULL);
3385 
3386 	return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr));
3387 }
3388 
3389 /*
3390  * Release a ring in use by marking it MR_FREE.
3391  * Any other client may reserve it for its use.
3392  */
3393 void
3394 mac_release_tx_ring(mac_ring_handle_t rh)
3395 {
3396 	mac_ring_t *ring = (mac_ring_t *)rh;
3397 	mac_group_t *group = (mac_group_t *)ring->mr_gh;
3398 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
3399 
3400 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3401 	ASSERT(ring->mr_state != MR_FREE);
3402 
3403 	/*
3404 	 * Default tx ring will be released by mac_stop().
3405 	 */
3406 	if (rh == mip->mi_default_tx_ring)
3407 		return;
3408 
3409 	mac_stop_ring(ring);
3410 
3411 	ring->mr_state = MR_FREE;
3412 	ring->mr_flag = 0;
3413 }
3414 
3415 /*
3416  * Send packets through a selected tx ring.
3417  */
3418 mblk_t *
3419 mac_ring_tx(mac_ring_handle_t rh, mblk_t *mp)
3420 {
3421 	mac_ring_t *ring = (mac_ring_t *)rh;
3422 	mac_ring_info_t *info = &ring->mr_info;
3423 
3424 	ASSERT(ring->mr_type == MAC_RING_TYPE_TX);
3425 	ASSERT(ring->mr_state >= MR_INUSE);
3426 	ASSERT(info->mri_tx != NULL);
3427 
3428 	return (info->mri_tx(info->mri_driver, mp));
3429 }
3430 
3431 /*
3432  * Find a ring from its index.
3433  */
3434 mac_ring_t *
3435 mac_find_ring(mac_group_t *group, int index)
3436 {
3437 	mac_ring_t *ring = group->mrg_rings;
3438 
3439 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next)
3440 		if (ring->mr_index == index)
3441 			break;
3442 
3443 	return (ring);
3444 }
3445 /*
3446  * Add a ring to an existing group.
3447  *
3448  * The ring must be either passed directly (for example if the ring
3449  * movement is initiated by the framework), or specified through a driver
3450  * index (for example when the ring is added by the driver.
3451  *
3452  * The caller needs to call mac_perim_enter() before calling this function.
3453  */
3454 int
3455 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index)
3456 {
3457 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
3458 	mac_capab_rings_t *cap_rings;
3459 	boolean_t driver_call = (ring == NULL);
3460 	mac_group_type_t group_type;
3461 	int ret = 0;
3462 
3463 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3464 
3465 	switch (group->mrg_type) {
3466 	case MAC_RING_TYPE_RX:
3467 		cap_rings = &mip->mi_rx_rings_cap;
3468 		group_type = mip->mi_rx_group_type;
3469 		break;
3470 	case MAC_RING_TYPE_TX:
3471 		cap_rings = &mip->mi_tx_rings_cap;
3472 		group_type = mip->mi_tx_group_type;
3473 		break;
3474 	default:
3475 		ASSERT(B_FALSE);
3476 	}
3477 
3478 	/*
3479 	 * There should be no ring with the same ring index in the target
3480 	 * group.
3481 	 */
3482 	ASSERT(mac_find_ring(group, driver_call ? index : ring->mr_index) ==
3483 	    NULL);
3484 
3485 	if (driver_call) {
3486 		/*
3487 		 * The function is called as a result of a request from
3488 		 * a driver to add a ring to an existing group, for example
3489 		 * from the aggregation driver. Allocate a new mac_ring_t
3490 		 * for that ring.
3491 		 */
3492 		ring = mac_init_ring(mip, group, index, cap_rings);
3493 		ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT);
3494 	} else {
3495 		/*
3496 		 * The function is called as a result of a MAC layer request
3497 		 * to add a ring to an existing group. In this case the
3498 		 * ring is being moved between groups, which requires
3499 		 * the underlying driver to support dynamic grouping,
3500 		 * and the mac_ring_t already exists.
3501 		 */
3502 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
3503 		ASSERT(cap_rings->mr_gaddring != NULL);
3504 		ASSERT(ring->mr_gh == NULL);
3505 	}
3506 
3507 	/*
3508 	 * At this point the ring should not be in use, and it should be
3509 	 * of the right for the target group.
3510 	 */
3511 	ASSERT(ring->mr_state < MR_INUSE);
3512 	ASSERT(ring->mr_srs == NULL);
3513 	ASSERT(ring->mr_type == group->mrg_type);
3514 
3515 	if (!driver_call) {
3516 		/*
3517 		 * Add the driver level hardware ring if the process was not
3518 		 * initiated by the driver, and the target group is not the
3519 		 * group.
3520 		 */
3521 		if (group->mrg_driver != NULL) {
3522 			cap_rings->mr_gaddring(group->mrg_driver,
3523 			    ring->mr_driver, ring->mr_type);
3524 		}
3525 
3526 		/*
3527 		 * Insert the ring ahead existing rings.
3528 		 */
3529 		ring->mr_next = group->mrg_rings;
3530 		group->mrg_rings = ring;
3531 		ring->mr_gh = (mac_group_handle_t)group;
3532 		group->mrg_cur_count++;
3533 	}
3534 
3535 	/*
3536 	 * If the group has not been actively used, we're done.
3537 	 */
3538 	if (group->mrg_index != -1 &&
3539 	    group->mrg_state < MAC_GROUP_STATE_RESERVED)
3540 		return (0);
3541 
3542 	/*
3543 	 * Set up SRS/SR according to the ring type.
3544 	 */
3545 	switch (ring->mr_type) {
3546 	case MAC_RING_TYPE_RX:
3547 		/*
3548 		 * Setup SRS on top of the new ring if the group is
3549 		 * reserved for someones exclusive use.
3550 		 */
3551 		if (group->mrg_state == MAC_GROUP_STATE_RESERVED) {
3552 			flow_entry_t *flent;
3553 			mac_client_impl_t *mcip;
3554 
3555 			mcip = MAC_RX_GROUP_ONLY_CLIENT(group);
3556 			ASSERT(mcip != NULL);
3557 			flent = mcip->mci_flent;
3558 			ASSERT(flent->fe_rx_srs_cnt > 0);
3559 			mac_srs_group_setup(mcip, flent, group, SRST_LINK);
3560 		}
3561 		break;
3562 	case MAC_RING_TYPE_TX:
3563 		/*
3564 		 * For TX this function is only invoked during the
3565 		 * initial creation of a group when a share is
3566 		 * associated with a MAC client. So the datapath is not
3567 		 * yet setup, and will be setup later after the
3568 		 * group has been reserved and populated.
3569 		 */
3570 		break;
3571 	default:
3572 		ASSERT(B_FALSE);
3573 	}
3574 
3575 	/*
3576 	 * Start the ring if needed. Failure causes to undo the grouping action.
3577 	 */
3578 	if ((ret = mac_start_ring(ring)) != 0) {
3579 		if (ring->mr_type == MAC_RING_TYPE_RX) {
3580 			if (ring->mr_srs != NULL) {
3581 				mac_rx_srs_remove(ring->mr_srs);
3582 				ring->mr_srs = NULL;
3583 			}
3584 		}
3585 		if (!driver_call) {
3586 			cap_rings->mr_gremring(group->mrg_driver,
3587 			    ring->mr_driver, ring->mr_type);
3588 		}
3589 		group->mrg_cur_count--;
3590 		group->mrg_rings = ring->mr_next;
3591 
3592 		ring->mr_gh = NULL;
3593 
3594 		if (driver_call)
3595 			mac_ring_free(mip, ring);
3596 
3597 		return (ret);
3598 	}
3599 
3600 	/*
3601 	 * Update the ring's state.
3602 	 */
3603 	ring->mr_state = MR_INUSE;
3604 	MAC_RING_UNMARK(ring, MR_INCIPIENT);
3605 	return (0);
3606 }
3607 
3608 /*
3609  * Remove a ring from it's current group. MAC internal function for dynamic
3610  * grouping.
3611  *
3612  * The caller needs to call mac_perim_enter() before calling this function.
3613  */
3614 void
3615 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring,
3616     boolean_t driver_call)
3617 {
3618 	mac_impl_t *mip = (mac_impl_t *)group->mrg_mh;
3619 	mac_capab_rings_t *cap_rings = NULL;
3620 	mac_group_type_t group_type;
3621 
3622 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3623 
3624 	ASSERT(mac_find_ring(group, ring->mr_index) == ring);
3625 	ASSERT((mac_group_t *)ring->mr_gh == group);
3626 	ASSERT(ring->mr_type == group->mrg_type);
3627 
3628 	switch (ring->mr_type) {
3629 	case MAC_RING_TYPE_RX:
3630 		group_type = mip->mi_rx_group_type;
3631 		cap_rings = &mip->mi_rx_rings_cap;
3632 
3633 		if (group->mrg_state >= MAC_GROUP_STATE_RESERVED)
3634 			mac_stop_ring(ring);
3635 
3636 		/*
3637 		 * Only hardware classified packets hold a reference to the
3638 		 * ring all the way up the Rx path. mac_rx_srs_remove()
3639 		 * will take care of quiescing the Rx path and removing the
3640 		 * SRS. The software classified path neither holds a reference
3641 		 * nor any association with the ring in mac_rx.
3642 		 */
3643 		if (ring->mr_srs != NULL) {
3644 			mac_rx_srs_remove(ring->mr_srs);
3645 			ring->mr_srs = NULL;
3646 		}
3647 		ring->mr_state = MR_FREE;
3648 		ring->mr_flag = 0;
3649 
3650 		break;
3651 	case MAC_RING_TYPE_TX:
3652 		/*
3653 		 * For TX this function is only invoked in two
3654 		 * cases:
3655 		 *
3656 		 * 1) In the case of a failure during the
3657 		 * initial creation of a group when a share is
3658 		 * associated with a MAC client. So the SRS is not
3659 		 * yet setup, and will be setup later after the
3660 		 * group has been reserved and populated.
3661 		 *
3662 		 * 2) From mac_release_tx_group() when freeing
3663 		 * a TX SRS.
3664 		 *
3665 		 * In both cases the SRS and its soft rings are
3666 		 * already quiesced.
3667 		 */
3668 		ASSERT(!driver_call);
3669 		group_type = mip->mi_tx_group_type;
3670 		cap_rings = &mip->mi_tx_rings_cap;
3671 		break;
3672 	default:
3673 		ASSERT(B_FALSE);
3674 	}
3675 
3676 	/*
3677 	 * Remove the ring from the group.
3678 	 */
3679 	if (ring == group->mrg_rings)
3680 		group->mrg_rings = ring->mr_next;
3681 	else {
3682 		mac_ring_t *pre;
3683 
3684 		pre = group->mrg_rings;
3685 		while (pre->mr_next != ring)
3686 			pre = pre->mr_next;
3687 		pre->mr_next = ring->mr_next;
3688 	}
3689 	group->mrg_cur_count--;
3690 
3691 	if (!driver_call) {
3692 		ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC);
3693 		ASSERT(cap_rings->mr_gremring != NULL);
3694 
3695 		/*
3696 		 * Remove the driver level hardware ring.
3697 		 */
3698 		if (group->mrg_driver != NULL) {
3699 			cap_rings->mr_gremring(group->mrg_driver,
3700 			    ring->mr_driver, ring->mr_type);
3701 		}
3702 	}
3703 
3704 	ring->mr_gh = NULL;
3705 	if (driver_call) {
3706 		mac_ring_free(mip, ring);
3707 	} else {
3708 		ring->mr_state = MR_FREE;
3709 		ring->mr_flag = 0;
3710 	}
3711 }
3712 
3713 /*
3714  * Move a ring to the target group. If needed, remove the ring from the group
3715  * that it currently belongs to.
3716  *
3717  * The caller need to enter MAC's perimeter by calling mac_perim_enter().
3718  */
3719 static int
3720 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring)
3721 {
3722 	mac_group_t *s_group = (mac_group_t *)ring->mr_gh;
3723 	int rv;
3724 
3725 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3726 	ASSERT(d_group != NULL);
3727 	ASSERT(s_group->mrg_mh == d_group->mrg_mh);
3728 
3729 	if (s_group == d_group)
3730 		return (0);
3731 
3732 	/*
3733 	 * Remove it from current group first.
3734 	 */
3735 	if (s_group != NULL)
3736 		i_mac_group_rem_ring(s_group, ring, B_FALSE);
3737 
3738 	/*
3739 	 * Add it to the new group.
3740 	 */
3741 	rv = i_mac_group_add_ring(d_group, ring, 0);
3742 	if (rv != 0) {
3743 		/*
3744 		 * Failed to add ring back to source group. If
3745 		 * that fails, the ring is stuck in limbo, log message.
3746 		 */
3747 		if (i_mac_group_add_ring(s_group, ring, 0)) {
3748 			cmn_err(CE_WARN, "%s: failed to move ring %p\n",
3749 			    mip->mi_name, (void *)ring);
3750 		}
3751 	}
3752 
3753 	return (rv);
3754 }
3755 
3756 /*
3757  * Find a MAC address according to its value.
3758  */
3759 mac_address_t *
3760 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr)
3761 {
3762 	mac_address_t *map;
3763 
3764 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3765 
3766 	for (map = mip->mi_addresses; map != NULL; map = map->ma_next) {
3767 		if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0)
3768 			break;
3769 	}
3770 
3771 	return (map);
3772 }
3773 
3774 /*
3775  * Check whether the MAC address is shared by multiple clients.
3776  */
3777 boolean_t
3778 mac_check_macaddr_shared(mac_address_t *map)
3779 {
3780 	ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip));
3781 
3782 	return (map->ma_nusers > 1);
3783 }
3784 
3785 /*
3786  * Remove the specified MAC address from the MAC address list and free it.
3787  */
3788 static void
3789 mac_free_macaddr(mac_address_t *map)
3790 {
3791 	mac_impl_t *mip = map->ma_mip;
3792 
3793 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3794 	ASSERT(mip->mi_addresses != NULL);
3795 
3796 	map = mac_find_macaddr(mip, map->ma_addr);
3797 
3798 	ASSERT(map != NULL);
3799 	ASSERT(map->ma_nusers == 0);
3800 
3801 	if (map == mip->mi_addresses) {
3802 		mip->mi_addresses = map->ma_next;
3803 	} else {
3804 		mac_address_t *pre;
3805 
3806 		pre = mip->mi_addresses;
3807 		while (pre->ma_next != map)
3808 			pre = pre->ma_next;
3809 		pre->ma_next = map->ma_next;
3810 	}
3811 
3812 	kmem_free(map, sizeof (mac_address_t));
3813 }
3814 
3815 /*
3816  * Add a MAC address reference for a client. If the desired MAC address
3817  * exists, add a reference to it. Otherwise, add the new address by adding
3818  * it to a reserved group or setting promiscuous mode. Won't try different
3819  * group is the group is non-NULL, so the caller must explictly share
3820  * default group when needed.
3821  *
3822  * Note, the primary MAC address is initialized at registration time, so
3823  * to add it to default group only need to activate it if its reference
3824  * count is still zero. Also, some drivers may not have advertised RINGS
3825  * capability.
3826  */
3827 int
3828 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr,
3829     boolean_t use_hw)
3830 {
3831 	mac_address_t *map;
3832 	int err = 0;
3833 	boolean_t allocated_map = B_FALSE;
3834 
3835 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3836 
3837 	map = mac_find_macaddr(mip, mac_addr);
3838 
3839 	/*
3840 	 * If the new MAC address has not been added. Allocate a new one
3841 	 * and set it up.
3842 	 */
3843 	if (map == NULL) {
3844 		map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
3845 		map->ma_len = mip->mi_type->mt_addr_length;
3846 		bcopy(mac_addr, map->ma_addr, map->ma_len);
3847 		map->ma_nusers = 0;
3848 		map->ma_group = group;
3849 		map->ma_mip = mip;
3850 
3851 		/* add the new MAC address to the head of the address list */
3852 		map->ma_next = mip->mi_addresses;
3853 		mip->mi_addresses = map;
3854 
3855 		allocated_map = B_TRUE;
3856 	}
3857 
3858 	ASSERT(map->ma_group == group);
3859 
3860 	/*
3861 	 * If the MAC address is already in use, simply account for the
3862 	 * new client.
3863 	 */
3864 	if (map->ma_nusers++ > 0)
3865 		return (0);
3866 
3867 	/*
3868 	 * Activate this MAC address by adding it to the reserved group.
3869 	 */
3870 	if (group != NULL) {
3871 		err = mac_group_addmac(group, (const uint8_t *)mac_addr);
3872 		if (err == 0) {
3873 			map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
3874 			return (0);
3875 		}
3876 	}
3877 
3878 	/*
3879 	 * The MAC address addition failed. If the client requires a
3880 	 * hardware classified MAC address, fail the operation.
3881 	 */
3882 	if (use_hw) {
3883 		err = ENOSPC;
3884 		goto bail;
3885 	}
3886 
3887 	/*
3888 	 * Try promiscuous mode.
3889 	 *
3890 	 * For drivers that don't advertise RINGS capability, do
3891 	 * nothing for the primary address.
3892 	 */
3893 	if ((group == NULL) &&
3894 	    (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) {
3895 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
3896 		return (0);
3897 	}
3898 
3899 	/*
3900 	 * Enable promiscuous mode in order to receive traffic
3901 	 * to the new MAC address.
3902 	 */
3903 	if ((err = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC)) == 0) {
3904 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC;
3905 		return (0);
3906 	}
3907 
3908 	/*
3909 	 * Free the MAC address that could not be added. Don't free
3910 	 * a pre-existing address, it could have been the entry
3911 	 * for the primary MAC address which was pre-allocated by
3912 	 * mac_init_macaddr(), and which must remain on the list.
3913 	 */
3914 bail:
3915 	map->ma_nusers--;
3916 	if (allocated_map)
3917 		mac_free_macaddr(map);
3918 	return (err);
3919 }
3920 
3921 /*
3922  * Remove a reference to a MAC address. This may cause to remove the MAC
3923  * address from an associated group or to turn off promiscuous mode.
3924  * The caller needs to handle the failure properly.
3925  */
3926 int
3927 mac_remove_macaddr(mac_address_t *map)
3928 {
3929 	mac_impl_t *mip = map->ma_mip;
3930 	int err = 0;
3931 
3932 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3933 
3934 	ASSERT(map == mac_find_macaddr(mip, map->ma_addr));
3935 
3936 	/*
3937 	 * If it's not the last client using this MAC address, only update
3938 	 * the MAC clients count.
3939 	 */
3940 	if (--map->ma_nusers > 0)
3941 		return (0);
3942 
3943 	/*
3944 	 * The MAC address is no longer used by any MAC client, so remove
3945 	 * it from its associated group, or turn off promiscuous mode
3946 	 * if it was enabled for the MAC address.
3947 	 */
3948 	switch (map->ma_type) {
3949 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
3950 		/*
3951 		 * Don't free the preset primary address for drivers that
3952 		 * don't advertise RINGS capability.
3953 		 */
3954 		if (map->ma_group == NULL)
3955 			return (0);
3956 
3957 		err = mac_group_remmac(map->ma_group, map->ma_addr);
3958 		break;
3959 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
3960 		err = i_mac_promisc_set(mip, B_FALSE, MAC_DEVPROMISC);
3961 		break;
3962 	default:
3963 		ASSERT(B_FALSE);
3964 	}
3965 
3966 	if (err != 0)
3967 		return (err);
3968 
3969 	/*
3970 	 * We created MAC address for the primary one at registration, so we
3971 	 * won't free it here. mac_fini_macaddr() will take care of it.
3972 	 */
3973 	if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0)
3974 		mac_free_macaddr(map);
3975 
3976 	return (0);
3977 }
3978 
3979 /*
3980  * Update an existing MAC address. The caller need to make sure that the new
3981  * value has not been used.
3982  */
3983 int
3984 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr)
3985 {
3986 	mac_impl_t *mip = map->ma_mip;
3987 	int err = 0;
3988 
3989 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
3990 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
3991 
3992 	switch (map->ma_type) {
3993 	case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED:
3994 		/*
3995 		 * Update the primary address for drivers that are not
3996 		 * RINGS capable.
3997 		 */
3998 		if (map->ma_group == NULL) {
3999 			err = mip->mi_unicst(mip->mi_driver, (const uint8_t *)
4000 			    mac_addr);
4001 			if (err != 0)
4002 				return (err);
4003 			break;
4004 		}
4005 
4006 		/*
4007 		 * If this MAC address is not currently in use,
4008 		 * simply break out and update the value.
4009 		 */
4010 		if (map->ma_nusers == 0)
4011 			break;
4012 
4013 		/*
4014 		 * Need to replace the MAC address associated with a group.
4015 		 */
4016 		err = mac_group_remmac(map->ma_group, map->ma_addr);
4017 		if (err != 0)
4018 			return (err);
4019 
4020 		err = mac_group_addmac(map->ma_group, mac_addr);
4021 
4022 		/*
4023 		 * Failure hints hardware error. The MAC layer needs to
4024 		 * have error notification facility to handle this.
4025 		 * Now, simply try to restore the value.
4026 		 */
4027 		if (err != 0)
4028 			(void) mac_group_addmac(map->ma_group, map->ma_addr);
4029 
4030 		break;
4031 	case MAC_ADDRESS_TYPE_UNICAST_PROMISC:
4032 		/*
4033 		 * Need to do nothing more if in promiscuous mode.
4034 		 */
4035 		break;
4036 	default:
4037 		ASSERT(B_FALSE);
4038 	}
4039 
4040 	/*
4041 	 * Successfully replaced the MAC address.
4042 	 */
4043 	if (err == 0)
4044 		bcopy(mac_addr, map->ma_addr, map->ma_len);
4045 
4046 	return (err);
4047 }
4048 
4049 /*
4050  * Freshen the MAC address with new value. Its caller must have updated the
4051  * hardware MAC address before calling this function.
4052  * This funcitons is supposed to be used to handle the MAC address change
4053  * notification from underlying drivers.
4054  */
4055 void
4056 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr)
4057 {
4058 	mac_impl_t *mip = map->ma_mip;
4059 
4060 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4061 	ASSERT(mac_find_macaddr(mip, mac_addr) == NULL);
4062 
4063 	/*
4064 	 * Freshen the MAC address with new value.
4065 	 */
4066 	bcopy(mac_addr, map->ma_addr, map->ma_len);
4067 	bcopy(mac_addr, mip->mi_addr, map->ma_len);
4068 
4069 	/*
4070 	 * Update all MAC clients that share this MAC address.
4071 	 */
4072 	mac_unicast_update_clients(mip, map);
4073 }
4074 
4075 /*
4076  * Set up the primary MAC address.
4077  */
4078 void
4079 mac_init_macaddr(mac_impl_t *mip)
4080 {
4081 	mac_address_t *map;
4082 
4083 	/*
4084 	 * The reference count is initialized to zero, until it's really
4085 	 * activated.
4086 	 */
4087 	map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP);
4088 	map->ma_len = mip->mi_type->mt_addr_length;
4089 	bcopy(mip->mi_addr, map->ma_addr, map->ma_len);
4090 
4091 	/*
4092 	 * If driver advertises RINGS capability, it shouldn't have initialized
4093 	 * its primary MAC address. For other drivers, including VNIC, the
4094 	 * primary address must work after registration.
4095 	 */
4096 	if (mip->mi_rx_groups == NULL)
4097 		map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED;
4098 
4099 	/*
4100 	 * The primary MAC address is reserved for default group according
4101 	 * to current design.
4102 	 */
4103 	map->ma_group = mip->mi_rx_groups;
4104 	map->ma_mip = mip;
4105 
4106 	mip->mi_addresses = map;
4107 }
4108 
4109 /*
4110  * Clean up the primary MAC address. Note, only one primary MAC address
4111  * is allowed. All other MAC addresses must have been freed appropriately.
4112  */
4113 void
4114 mac_fini_macaddr(mac_impl_t *mip)
4115 {
4116 	mac_address_t *map = mip->mi_addresses;
4117 
4118 	if (map == NULL)
4119 		return;
4120 
4121 	/*
4122 	 * If mi_addresses is initialized, there should be exactly one
4123 	 * entry left on the list with no users.
4124 	 */
4125 	ASSERT(map->ma_nusers == 0);
4126 	ASSERT(map->ma_next == NULL);
4127 
4128 	kmem_free(map, sizeof (mac_address_t));
4129 	mip->mi_addresses = NULL;
4130 }
4131 
4132 /*
4133  * Logging related functions.
4134  */
4135 
4136 /* Write the Flow description to the log file */
4137 int
4138 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip)
4139 {
4140 	flow_desc_t		*fdesc;
4141 	mac_resource_props_t	*mrp;
4142 	net_desc_t		ndesc;
4143 
4144 	bzero(&ndesc, sizeof (net_desc_t));
4145 
4146 	/*
4147 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
4148 	 * Updates to the fe_flow_desc are done under the fe_lock
4149 	 */
4150 	mutex_enter(&flent->fe_lock);
4151 	fdesc = &flent->fe_flow_desc;
4152 	mrp = &flent->fe_resource_props;
4153 
4154 	ndesc.nd_name = flent->fe_flow_name;
4155 	ndesc.nd_devname = mcip->mci_name;
4156 	bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL);
4157 	bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL);
4158 	ndesc.nd_sap = htonl(fdesc->fd_sap);
4159 	ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION;
4160 	ndesc.nd_bw_limit = mrp->mrp_maxbw;
4161 	if (ndesc.nd_isv4) {
4162 		ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]);
4163 		ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]);
4164 	} else {
4165 		bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN);
4166 		bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN);
4167 	}
4168 	ndesc.nd_sport = htons(fdesc->fd_local_port);
4169 	ndesc.nd_dport = htons(fdesc->fd_remote_port);
4170 	ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol;
4171 	mutex_exit(&flent->fe_lock);
4172 
4173 	return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC));
4174 }
4175 
4176 /* Write the Flow statistics to the log file */
4177 int
4178 mac_write_flow_stats(flow_entry_t *flent)
4179 {
4180 	flow_stats_t	*fl_stats;
4181 	net_stat_t	nstat;
4182 
4183 	fl_stats = &flent->fe_flowstats;
4184 	nstat.ns_name = flent->fe_flow_name;
4185 	nstat.ns_ibytes = fl_stats->fs_rbytes;
4186 	nstat.ns_obytes = fl_stats->fs_obytes;
4187 	nstat.ns_ipackets = fl_stats->fs_ipackets;
4188 	nstat.ns_opackets = fl_stats->fs_opackets;
4189 	nstat.ns_ierrors = fl_stats->fs_ierrors;
4190 	nstat.ns_oerrors = fl_stats->fs_oerrors;
4191 
4192 	return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC));
4193 }
4194 
4195 /* Write the Link Description to the log file */
4196 int
4197 mac_write_link_desc(mac_client_impl_t *mcip)
4198 {
4199 	net_desc_t		ndesc;
4200 	flow_entry_t		*flent = mcip->mci_flent;
4201 
4202 	bzero(&ndesc, sizeof (net_desc_t));
4203 
4204 	ndesc.nd_name = mcip->mci_name;
4205 	ndesc.nd_devname = mcip->mci_name;
4206 	ndesc.nd_isv4 = B_TRUE;
4207 	/*
4208 	 * Grab the fe_lock to see a self-consistent fe_flow_desc.
4209 	 * Updates to the fe_flow_desc are done under the fe_lock
4210 	 * after removing the flent from the flow table.
4211 	 */
4212 	mutex_enter(&flent->fe_lock);
4213 	bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL);
4214 	mutex_exit(&flent->fe_lock);
4215 
4216 	return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC));
4217 }
4218 
4219 /* Write the Link statistics to the log file */
4220 int
4221 mac_write_link_stats(mac_client_impl_t *mcip)
4222 {
4223 	net_stat_t	nstat;
4224 
4225 	nstat.ns_name = mcip->mci_name;
4226 	nstat.ns_ibytes = mcip->mci_stat_ibytes;
4227 	nstat.ns_obytes = mcip->mci_stat_obytes;
4228 	nstat.ns_ipackets = mcip->mci_stat_ipackets;
4229 	nstat.ns_opackets = mcip->mci_stat_opackets;
4230 	nstat.ns_ierrors = mcip->mci_stat_ierrors;
4231 	nstat.ns_oerrors = mcip->mci_stat_oerrors;
4232 
4233 	return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC));
4234 }
4235 
4236 /*
4237  * For a given flow, if the descrition has not been logged before, do it now.
4238  * If it is a VNIC, then we have collected information about it from the MAC
4239  * table, so skip it.
4240  */
4241 /*ARGSUSED*/
4242 static int
4243 mac_log_flowinfo(flow_entry_t *flent, void *args)
4244 {
4245 	mac_client_impl_t	*mcip = flent->fe_mcip;
4246 
4247 	if (mcip == NULL)
4248 		return (0);
4249 
4250 	/*
4251 	 * If the name starts with "vnic", and fe_user_generated is true (to
4252 	 * exclude the mcast and active flow entries created implicitly for
4253 	 * a vnic, it is a VNIC flow.  i.e. vnic1 is a vnic flow,
4254 	 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active.
4255 	 */
4256 	if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 &&
4257 	    (flent->fe_type & FLOW_USER) != 0) {
4258 		return (0);
4259 	}
4260 
4261 	if (!flent->fe_desc_logged) {
4262 		/*
4263 		 * We don't return error because we want to continu the
4264 		 * walk in case this is the last walk which means we
4265 		 * need to reset fe_desc_logged in all the flows.
4266 		 */
4267 		if (mac_write_flow_desc(flent, mcip) != 0)
4268 			return (0);
4269 		flent->fe_desc_logged = B_TRUE;
4270 	}
4271 
4272 	/*
4273 	 * Regardless of the error, we want to proceed in case we have to
4274 	 * reset fe_desc_logged.
4275 	 */
4276 	(void) mac_write_flow_stats(flent);
4277 
4278 	if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED))
4279 		flent->fe_desc_logged = B_FALSE;
4280 
4281 	return (0);
4282 }
4283 
4284 typedef struct i_mac_log_state_s {
4285 	boolean_t	mi_last;
4286 	int		mi_fenable;
4287 	int		mi_lenable;
4288 } i_mac_log_state_t;
4289 
4290 /*
4291  * Walk the mac_impl_ts and log the description for each mac client of this mac,
4292  * if it hasn't already been done. Additionally, log statistics for the link as
4293  * well. Walk the flow table and log information for each flow as well.
4294  * If it is the last walk (mci_last), then we turn off mci_desc_logged (and
4295  * also fe_desc_logged, if flow logging is on) since we want to log the
4296  * description if and when logging is restarted.
4297  */
4298 /*ARGSUSED*/
4299 static uint_t
4300 i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
4301 {
4302 	mac_impl_t		*mip = (mac_impl_t *)val;
4303 	i_mac_log_state_t	*lstate = (i_mac_log_state_t *)arg;
4304 	int			ret;
4305 	mac_client_impl_t	*mcip;
4306 
4307 	/*
4308 	 * Only walk the client list for NIC and etherstub
4309 	 */
4310 	if ((mip->mi_state_flags & MIS_DISABLED) ||
4311 	    ((mip->mi_state_flags & MIS_IS_VNIC) &&
4312 	    (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL)))
4313 		return (MH_WALK_CONTINUE);
4314 
4315 	for (mcip = mip->mi_clients_list; mcip != NULL;
4316 	    mcip = mcip->mci_client_next) {
4317 		if (!MCIP_DATAPATH_SETUP(mcip))
4318 			continue;
4319 		if (lstate->mi_lenable) {
4320 			if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) {
4321 				ret = mac_write_link_desc(mcip);
4322 				if (ret != 0) {
4323 				/*
4324 				 * We can't terminate it if this is the last
4325 				 * walk, else there might be some links with
4326 				 * mi_desc_logged set to true, which means
4327 				 * their description won't be logged the next
4328 				 * time logging is started (similarly for the
4329 				 * flows within such links). We can continue
4330 				 * without walking the flow table (i.e. to
4331 				 * set fe_desc_logged to false) because we
4332 				 * won't have written any flow stuff for this
4333 				 * link as we haven't logged the link itself.
4334 				 */
4335 					if (lstate->mi_last)
4336 						return (MH_WALK_CONTINUE);
4337 					else
4338 						return (MH_WALK_TERMINATE);
4339 				}
4340 				mcip->mci_state_flags |= MCIS_DESC_LOGGED;
4341 			}
4342 		}
4343 
4344 		if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last)
4345 			return (MH_WALK_TERMINATE);
4346 
4347 		if (lstate->mi_last)
4348 			mcip->mci_state_flags &= ~MCIS_DESC_LOGGED;
4349 
4350 		if (lstate->mi_fenable) {
4351 			if (mcip->mci_subflow_tab != NULL) {
4352 				(void) mac_flow_walk(mcip->mci_subflow_tab,
4353 				    mac_log_flowinfo, mip);
4354 			}
4355 		}
4356 	}
4357 	return (MH_WALK_CONTINUE);
4358 }
4359 
4360 /*
4361  * The timer thread that runs every mac_logging_interval seconds and logs
4362  * link and/or flow information.
4363  */
4364 /* ARGSUSED */
4365 void
4366 mac_log_linkinfo(void *arg)
4367 {
4368 	i_mac_log_state_t	lstate;
4369 
4370 	rw_enter(&i_mac_impl_lock, RW_READER);
4371 	if (!mac_flow_log_enable && !mac_link_log_enable) {
4372 		rw_exit(&i_mac_impl_lock);
4373 		return;
4374 	}
4375 	lstate.mi_fenable = mac_flow_log_enable;
4376 	lstate.mi_lenable = mac_link_log_enable;
4377 	lstate.mi_last = B_FALSE;
4378 	rw_exit(&i_mac_impl_lock);
4379 
4380 	mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate);
4381 
4382 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4383 	if (mac_flow_log_enable || mac_link_log_enable) {
4384 		mac_logging_timer = timeout(mac_log_linkinfo, NULL,
4385 		    SEC_TO_TICK(mac_logging_interval));
4386 	}
4387 	rw_exit(&i_mac_impl_lock);
4388 }
4389 
4390 /*
4391  * Start the logging timer.
4392  */
4393 void
4394 mac_start_logusage(mac_logtype_t type, uint_t interval)
4395 {
4396 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4397 	switch (type) {
4398 	case MAC_LOGTYPE_FLOW:
4399 		if (mac_flow_log_enable) {
4400 			rw_exit(&i_mac_impl_lock);
4401 			return;
4402 		}
4403 		mac_flow_log_enable = B_TRUE;
4404 		/* FALLTHRU */
4405 	case MAC_LOGTYPE_LINK:
4406 		if (mac_link_log_enable) {
4407 			rw_exit(&i_mac_impl_lock);
4408 			return;
4409 		}
4410 		mac_link_log_enable = B_TRUE;
4411 		break;
4412 	default:
4413 		ASSERT(0);
4414 	}
4415 	mac_logging_interval = interval;
4416 	rw_exit(&i_mac_impl_lock);
4417 	mac_log_linkinfo(NULL);
4418 }
4419 
4420 /*
4421  * Stop the logging timer if both Link and Flow logging are turned off.
4422  */
4423 void
4424 mac_stop_logusage(mac_logtype_t type)
4425 {
4426 	i_mac_log_state_t	lstate;
4427 
4428 	rw_enter(&i_mac_impl_lock, RW_WRITER);
4429 	lstate.mi_fenable = mac_flow_log_enable;
4430 	lstate.mi_lenable = mac_link_log_enable;
4431 
4432 	/* Last walk */
4433 	lstate.mi_last = B_TRUE;
4434 
4435 	switch (type) {
4436 	case MAC_LOGTYPE_FLOW:
4437 		if (lstate.mi_fenable) {
4438 			ASSERT(mac_link_log_enable);
4439 			mac_flow_log_enable = B_FALSE;
4440 			mac_link_log_enable = B_FALSE;
4441 			break;
4442 		}
4443 		/* FALLTHRU */
4444 	case MAC_LOGTYPE_LINK:
4445 		if (!lstate.mi_lenable || mac_flow_log_enable) {
4446 			rw_exit(&i_mac_impl_lock);
4447 			return;
4448 		}
4449 		mac_link_log_enable = B_FALSE;
4450 		break;
4451 	default:
4452 		ASSERT(0);
4453 	}
4454 	rw_exit(&i_mac_impl_lock);
4455 	(void) untimeout(mac_logging_timer);
4456 	mac_logging_timer = 0;
4457 
4458 	/* Last walk */
4459 	mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate);
4460 }
4461 
4462 /*
4463  * Walk the rx and tx SRS/SRs for a flow and update the priority value.
4464  */
4465 void
4466 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent)
4467 {
4468 	pri_t			pri;
4469 	int			count;
4470 	mac_soft_ring_set_t	*mac_srs;
4471 
4472 	if (flent->fe_rx_srs_cnt <= 0)
4473 		return;
4474 
4475 	if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type ==
4476 	    SRST_FLOW) {
4477 		pri = FLOW_PRIORITY(mcip->mci_min_pri,
4478 		    mcip->mci_max_pri,
4479 		    flent->fe_resource_props.mrp_priority);
4480 	} else {
4481 		pri = mcip->mci_max_pri;
4482 	}
4483 
4484 	for (count = 0; count < flent->fe_rx_srs_cnt; count++) {
4485 		mac_srs = flent->fe_rx_srs[count];
4486 		mac_update_srs_priority(mac_srs, pri);
4487 	}
4488 	/*
4489 	 * If we have a Tx SRS, we need to modify all the threads associated
4490 	 * with it.
4491 	 */
4492 	if (flent->fe_tx_srs != NULL)
4493 		mac_update_srs_priority(flent->fe_tx_srs, pri);
4494 }
4495 
4496 /*
4497  * RX and TX rings are reserved according to different semantics depending
4498  * on the requests from the MAC clients and type of rings:
4499  *
4500  * On the Tx side, by default we reserve individual rings, independently from
4501  * the groups.
4502  *
4503  * On the Rx side, the reservation is at the granularity of the group
4504  * of rings, and used for v12n level 1 only. It has a special case for the
4505  * primary client.
4506  *
4507  * If a share is allocated to a MAC client, we allocate a TX group and an
4508  * RX group to the client, and assign TX rings and RX rings to these
4509  * groups according to information gathered from the driver through
4510  * the share capability.
4511  *
4512  * The foreseable evolution of Rx rings will handle v12n level 2 and higher
4513  * to allocate individual rings out of a group and program the hw classifier
4514  * based on IP address or higher level criteria.
4515  */
4516 
4517 /*
4518  * mac_reserve_tx_ring()
4519  * Reserve a unused ring by marking it with MR_INUSE state.
4520  * As reserved, the ring is ready to function.
4521  *
4522  * Notes for Hybrid I/O:
4523  *
4524  * If a specific ring is needed, it is specified through the desired_ring
4525  * argument. Otherwise that argument is set to NULL.
4526  * If the desired ring was previous allocated to another client, this
4527  * function swaps it with a new ring from the group of unassigned rings.
4528  */
4529 mac_ring_t *
4530 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring)
4531 {
4532 	mac_group_t *group;
4533 	mac_ring_t *ring;
4534 
4535 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4536 
4537 	if (mip->mi_tx_groups == NULL)
4538 		return (NULL);
4539 
4540 	/*
4541 	 * Find an available ring and start it before changing its status.
4542 	 * The unassigned rings are at the end of the mi_tx_groups
4543 	 * array.
4544 	 */
4545 	group = mip->mi_tx_groups + mip->mi_tx_group_count;
4546 
4547 	for (ring = group->mrg_rings; ring != NULL;
4548 	    ring = ring->mr_next) {
4549 		if (desired_ring == NULL) {
4550 			if (ring->mr_state == MR_FREE)
4551 				/* wanted any free ring and found one */
4552 				break;
4553 		} else {
4554 			mac_ring_t *sring;
4555 			mac_client_impl_t *client;
4556 			mac_soft_ring_set_t *srs;
4557 
4558 			if (ring != desired_ring)
4559 				/* wants a desired ring but this one ain't it */
4560 				continue;
4561 
4562 			if (ring->mr_state == MR_FREE)
4563 				break;
4564 
4565 			/*
4566 			 * Found the desired ring but it's already in use.
4567 			 * Swap it with a new ring.
4568 			 */
4569 
4570 			/* find the client which owns that ring */
4571 			for (client = mip->mi_clients_list; client != NULL;
4572 			    client = client->mci_client_next) {
4573 				srs = MCIP_TX_SRS(client);
4574 				if (srs != NULL && mac_tx_srs_ring_present(srs,
4575 				    desired_ring)) {
4576 					/* found our ring */
4577 					break;
4578 				}
4579 			}
4580 			if (client == NULL) {
4581 				/*
4582 				 * The TX ring is in use, but it's not
4583 				 * associated with any clients, so it
4584 				 * has to be the default ring. In that
4585 				 * case we can simply assign a new ring
4586 				 * as the default ring, and we're done.
4587 				 */
4588 				ASSERT(mip->mi_default_tx_ring ==
4589 				    (mac_ring_handle_t)desired_ring);
4590 
4591 				/*
4592 				 * Quiesce all clients on top of
4593 				 * the NIC to make sure there are no
4594 				 * pending threads still relying on
4595 				 * that default ring, for example
4596 				 * the multicast path.
4597 				 */
4598 				for (client = mip->mi_clients_list;
4599 				    client != NULL;
4600 				    client = client->mci_client_next) {
4601 					mac_tx_client_quiesce(client,
4602 					    SRS_QUIESCE);
4603 				}
4604 
4605 				mip->mi_default_tx_ring = (mac_ring_handle_t)
4606 				    mac_reserve_tx_ring(mip, NULL);
4607 
4608 				/* resume the clients */
4609 				for (client = mip->mi_clients_list;
4610 				    client != NULL;
4611 				    client = client->mci_client_next)
4612 					mac_tx_client_restart(client);
4613 
4614 				break;
4615 			}
4616 
4617 			/*
4618 			 * Note that we cannot simply invoke the group
4619 			 * add/rem routines since the client doesn't have a
4620 			 * TX group. So we need to instead add/remove
4621 			 * the rings from the SRS.
4622 			 */
4623 			ASSERT(client->mci_share == NULL);
4624 
4625 			/* first quiece the client */
4626 			mac_tx_client_quiesce(client, SRS_QUIESCE);
4627 
4628 			/* give a new ring to the client... */
4629 			sring = mac_reserve_tx_ring(mip, NULL);
4630 			if (sring != NULL) {
4631 				/*
4632 				 * There are no other available ring
4633 				 * on that MAC instance. The client
4634 				 * will fallback to the shared TX
4635 				 * ring.
4636 				 */
4637 				mac_tx_srs_add_ring(srs, sring);
4638 			}
4639 
4640 			/* ... in exchange for our desired ring */
4641 			mac_tx_srs_del_ring(srs, desired_ring);
4642 
4643 			/* restart the client */
4644 			mac_tx_client_restart(client);
4645 
4646 			if (mip->mi_default_tx_ring ==
4647 			    (mac_ring_handle_t)desired_ring) {
4648 				/*
4649 				 * The desired ring is the default ring,
4650 				 * and there are one or more clients
4651 				 * using that default ring directly.
4652 				 */
4653 				mip->mi_default_tx_ring =
4654 				    (mac_ring_handle_t)sring;
4655 				/*
4656 				 * Find clients using default ring and
4657 				 * swap it with the new default ring.
4658 				 */
4659 				for (client = mip->mi_clients_list;
4660 				    client != NULL;
4661 				    client = client->mci_client_next) {
4662 					srs = MCIP_TX_SRS(client);
4663 					if (srs != NULL &&
4664 					    mac_tx_srs_ring_present(srs,
4665 					    desired_ring)) {
4666 						/* first quiece the client */
4667 						mac_tx_client_quiesce(client,
4668 						    SRS_QUIESCE);
4669 
4670 						/*
4671 						 * Give it the new default
4672 						 * ring, and remove the old
4673 						 * one.
4674 						 */
4675 						if (sring != NULL) {
4676 							mac_tx_srs_add_ring(srs,
4677 							    sring);
4678 						}
4679 						mac_tx_srs_del_ring(srs,
4680 						    desired_ring);
4681 
4682 						/* restart the client */
4683 						mac_tx_client_restart(client);
4684 					}
4685 				}
4686 			}
4687 			break;
4688 		}
4689 	}
4690 
4691 	if (ring != NULL) {
4692 		if (mac_start_ring(ring) != 0)
4693 			return (NULL);
4694 		ring->mr_state = MR_INUSE;
4695 	}
4696 
4697 	return (ring);
4698 }
4699 
4700 /*
4701  * Minimum number of rings to leave in the default TX group when allocating
4702  * rings to new clients.
4703  */
4704 static uint_t mac_min_rx_default_rings = 1;
4705 
4706 /*
4707  * Populate a zero-ring group with rings. If the share is non-NULL,
4708  * the rings are chosen according to that share.
4709  * Invoked after allocating a new RX or TX group through
4710  * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively.
4711  * Returns zero on success, an errno otherwise.
4712  */
4713 int
4714 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type,
4715     mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share)
4716 {
4717 	mac_ring_t **rings, *tmp_ring[1], *ring;
4718 	uint_t nrings;
4719 	int rv, i, j;
4720 
4721 	ASSERT(mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC &&
4722 	    mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC);
4723 	ASSERT(new_group->mrg_cur_count == 0);
4724 
4725 	/*
4726 	 * First find the rings to allocate to the group.
4727 	 */
4728 	if (share != NULL) {
4729 		/* get rings through ms_squery() */
4730 		mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings);
4731 		ASSERT(nrings != 0);
4732 		rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t),
4733 		    KM_SLEEP);
4734 		mip->mi_share_capab.ms_squery(share, ring_type,
4735 		    (mac_ring_handle_t *)rings, &nrings);
4736 	} else {
4737 		/* this function is called for TX only with a share */
4738 		ASSERT(ring_type == MAC_RING_TYPE_RX);
4739 		/*
4740 		 * Pick one ring from default group.
4741 		 *
4742 		 * for now pick the second ring which requires the first ring
4743 		 * at index 0 to stay in the default group, since it is the
4744 		 * ring which carries the multicast traffic.
4745 		 * We need a better way for a driver to indicate this,
4746 		 * for example a per-ring flag.
4747 		 */
4748 		for (ring = src_group->mrg_rings; ring != NULL;
4749 		    ring = ring->mr_next) {
4750 			if (ring->mr_index != 0)
4751 				break;
4752 		}
4753 		ASSERT(ring != NULL);
4754 		nrings = 1;
4755 		tmp_ring[0] = ring;
4756 		rings = tmp_ring;
4757 	}
4758 
4759 	switch (ring_type) {
4760 	case MAC_RING_TYPE_RX:
4761 		if (src_group->mrg_cur_count - nrings <
4762 		    mac_min_rx_default_rings) {
4763 			/* we ran out of rings */
4764 			return (ENOSPC);
4765 		}
4766 
4767 		/* move receive rings to new group */
4768 		for (i = 0; i < nrings; i++) {
4769 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
4770 			if (rv != 0) {
4771 				/* move rings back on failure */
4772 				for (j = 0; j < i; j++) {
4773 					(void) mac_group_mov_ring(mip,
4774 					    src_group, rings[j]);
4775 				}
4776 				return (rv);
4777 			}
4778 		}
4779 		break;
4780 
4781 	case MAC_RING_TYPE_TX: {
4782 		mac_ring_t *tmp_ring;
4783 
4784 		/* move the TX rings to the new group */
4785 		ASSERT(src_group == NULL);
4786 		for (i = 0; i < nrings; i++) {
4787 			/* get the desired ring */
4788 			tmp_ring = mac_reserve_tx_ring(mip, rings[i]);
4789 			ASSERT(tmp_ring == rings[i]);
4790 			rv = mac_group_mov_ring(mip, new_group, rings[i]);
4791 			if (rv != 0) {
4792 				/* cleanup on failure */
4793 				for (j = 0; j < i; j++) {
4794 					(void) mac_group_mov_ring(mip,
4795 					    mip->mi_tx_groups +
4796 					    mip->mi_tx_group_count, rings[j]);
4797 				}
4798 			}
4799 		}
4800 		break;
4801 	}
4802 	}
4803 
4804 	if (share != NULL) {
4805 		/* add group to share */
4806 		mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver);
4807 		/* free temporary array of rings */
4808 		kmem_free(rings, nrings * sizeof (mac_ring_handle_t));
4809 	}
4810 
4811 	return (0);
4812 }
4813 
4814 void
4815 mac_rx_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip)
4816 {
4817 	mac_grp_client_t *mgcp;
4818 
4819 	for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) {
4820 		if (mgcp->mgc_client == mcip)
4821 			break;
4822 	}
4823 
4824 	VERIFY(mgcp == NULL);
4825 
4826 	mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP);
4827 	mgcp->mgc_client = mcip;
4828 	mgcp->mgc_next = grp->mrg_clients;
4829 	grp->mrg_clients = mgcp;
4830 
4831 }
4832 
4833 void
4834 mac_rx_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip)
4835 {
4836 	mac_grp_client_t *mgcp, **pprev;
4837 
4838 	for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL;
4839 	    pprev = &mgcp->mgc_next, mgcp = *pprev) {
4840 		if (mgcp->mgc_client == mcip)
4841 			break;
4842 	}
4843 
4844 	ASSERT(mgcp != NULL);
4845 
4846 	*pprev = mgcp->mgc_next;
4847 	kmem_free(mgcp, sizeof (mac_grp_client_t));
4848 }
4849 
4850 /*
4851  * mac_reserve_rx_group()
4852  *
4853  * Finds an available group and exclusively reserves it for a client.
4854  * The group is chosen to suit the flow's resource controls (bandwidth and
4855  * fanout requirements) and the address type.
4856  * If the requestor is the pimary MAC then return the group with the
4857  * largest number of rings, otherwise the default ring when available.
4858  */
4859 mac_group_t *
4860 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr,
4861     mac_rx_group_reserve_type_t rtype)
4862 {
4863 	mac_share_handle_t	share = mcip->mci_share;
4864 	mac_impl_t		*mip = mcip->mci_mip;
4865 	mac_group_t		*grp = NULL;
4866 	int			i, start, loopcount;
4867 	int			err;
4868 	mac_address_t		*map;
4869 
4870 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mip));
4871 
4872 	/* Check if a group already has this mac address (case of VLANs) */
4873 	if ((map = mac_find_macaddr(mip, mac_addr)) != NULL)
4874 		return (map->ma_group);
4875 
4876 	if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0 ||
4877 	    rtype == MAC_RX_NO_RESERVE)
4878 		return (NULL);
4879 
4880 	/*
4881 	 * Try to exclusively reserve a RX group.
4882 	 *
4883 	 * For flows requires SW_RING it always goes to the default group
4884 	 * (Until we can explicitely call out default groups (CR 6695600),
4885 	 * we assume that the default group is always at position zero);
4886 	 *
4887 	 * For flows requires HW_DEFAULT_RING (unicast flow of the primary
4888 	 * client), try to reserve the default RX group only.
4889 	 *
4890 	 * For flows requires HW_RING (unicast flow of other clients), try
4891 	 * to reserve non-default RX group then the default group.
4892 	 */
4893 	switch (rtype) {
4894 	case MAC_RX_RESERVE_DEFAULT:
4895 		start = 0;
4896 		loopcount = 1;
4897 		break;
4898 	case MAC_RX_RESERVE_NONDEFAULT:
4899 		start = 1;
4900 		loopcount = mip->mi_rx_group_count;
4901 	}
4902 
4903 	for (i = start; i < start + loopcount; i++) {
4904 		grp = &mip->mi_rx_groups[i % mip->mi_rx_group_count];
4905 
4906 		DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name,
4907 		    int, grp->mrg_index, mac_group_state_t, grp->mrg_state);
4908 
4909 		/*
4910 		 * Check to see whether this mac client is the only client
4911 		 * on this RX group. If not, we cannot exclusively reserve
4912 		 * this RX group.
4913 		 */
4914 		if (!MAC_RX_GROUP_NO_CLIENT(grp) &&
4915 		    (MAC_RX_GROUP_ONLY_CLIENT(grp) != mcip)) {
4916 			continue;
4917 		}
4918 
4919 		/*
4920 		 * This group could already be SHARED by other multicast
4921 		 * flows on this client. In that case, the group would
4922 		 * be shared and has already been started.
4923 		 */
4924 		ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT);
4925 
4926 		if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) &&
4927 		    (mac_start_group(grp) != 0)) {
4928 			continue;
4929 		}
4930 
4931 		if ((i % mip->mi_rx_group_count) == 0 ||
4932 		    mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) {
4933 			break;
4934 		}
4935 
4936 		ASSERT(grp->mrg_cur_count == 0);
4937 
4938 		/*
4939 		 * Populate the group. Rings should be taken
4940 		 * from the default group at position 0 for now.
4941 		 */
4942 
4943 		err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX,
4944 		    &mip->mi_rx_groups[0], grp, share);
4945 		if (err == 0)
4946 			break;
4947 
4948 		DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *,
4949 		    mip->mi_name, int, grp->mrg_index, int, err);
4950 
4951 		/*
4952 		 * It's a dynamic group but the grouping operation failed.
4953 		 */
4954 		mac_stop_group(grp);
4955 	}
4956 
4957 	if (i == start + loopcount)
4958 		return (NULL);
4959 
4960 	ASSERT(grp != NULL);
4961 
4962 	DTRACE_PROBE2(rx__group__reserved,
4963 	    char *, mip->mi_name, int, grp->mrg_index);
4964 	return (grp);
4965 }
4966 
4967 /*
4968  * mac_rx_release_group()
4969  *
4970  * This is called when there are no clients left for the group.
4971  * The group is stopped and marked MAC_GROUP_STATE_REGISTERED,
4972  * and if it is a non default group, the shares are removed and
4973  * all rings are assigned back to default group.
4974  */
4975 void
4976 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group)
4977 {
4978 	mac_impl_t	*mip = mcip->mci_mip;
4979 	mac_ring_t	*ring;
4980 
4981 	ASSERT(group != &mip->mi_rx_groups[0]);
4982 
4983 	/*
4984 	 * This is the case where there are no clients left. Any
4985 	 * SRS etc on this group have also be quiesced.
4986 	 */
4987 	for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) {
4988 		if (ring->mr_classify_type == MAC_HW_CLASSIFIER) {
4989 			ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED);
4990 			/*
4991 			 * Remove the SRS associated with the HW ring.
4992 			 * As a result, polling will be disabled.
4993 			 */
4994 			ring->mr_srs = NULL;
4995 		}
4996 		ASSERT(ring->mr_state == MR_INUSE);
4997 		mac_stop_ring(ring);
4998 		ring->mr_state = MR_FREE;
4999 		ring->mr_flag = 0;
5000 	}
5001 
5002 	/* remove group from share */
5003 	if (mcip->mci_share != NULL) {
5004 		mip->mi_share_capab.ms_sremove(mcip->mci_share,
5005 		    group->mrg_driver);
5006 	}
5007 
5008 	if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) {
5009 		mac_ring_t *ring;
5010 
5011 		/*
5012 		 * Rings were dynamically allocated to group.
5013 		 * Move rings back to default group.
5014 		 */
5015 		while ((ring = group->mrg_rings) != NULL) {
5016 			(void) mac_group_mov_ring(mip,
5017 			    &mip->mi_rx_groups[0], ring);
5018 		}
5019 	}
5020 	mac_stop_group(group);
5021 	/*
5022 	 * Possible improvement: See if we can assign the group just released
5023 	 * to a another client of the mip
5024 	 */
5025 }
5026 
5027 /*
5028  * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup()
5029  * when a share was allocated to the client.
5030  */
5031 mac_group_t *
5032 mac_reserve_tx_group(mac_impl_t *mip, mac_share_handle_t share)
5033 {
5034 	mac_group_t *grp;
5035 	int rv, i;
5036 
5037 	/*
5038 	 * TX groups are currently allocated only to MAC clients
5039 	 * which are associated with a share. Since we have a fixed
5040 	 * number of share and groups, and we already successfully
5041 	 * allocated a share, find an available TX group.
5042 	 */
5043 	ASSERT(share != NULL);
5044 	ASSERT(mip->mi_tx_group_free > 0);
5045 
5046 	for (i = 0; i <  mip->mi_tx_group_count; i++) {
5047 		grp = &mip->mi_tx_groups[i];
5048 
5049 		if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) ||
5050 		    (grp->mrg_state == MAC_GROUP_STATE_UNINIT))
5051 			continue;
5052 
5053 		rv = mac_start_group(grp);
5054 		ASSERT(rv == 0);
5055 
5056 		grp->mrg_state = MAC_GROUP_STATE_RESERVED;
5057 		break;
5058 	}
5059 
5060 	ASSERT(grp != NULL);
5061 
5062 	/*
5063 	 * Populate the group. Rings should be taken from the group
5064 	 * of unassigned rings, which is past the array of TX
5065 	 * groups adversized by the driver.
5066 	 */
5067 	rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, NULL,
5068 	    grp, share);
5069 	if (rv != 0) {
5070 		DTRACE_PROBE3(tx__group__reserve__alloc__rings,
5071 		    char *, mip->mi_name, int, grp->mrg_index, int, rv);
5072 
5073 		mac_stop_group(grp);
5074 		grp->mrg_state = MAC_GROUP_STATE_UNINIT;
5075 
5076 		return (NULL);
5077 	}
5078 
5079 	mip->mi_tx_group_free--;
5080 
5081 	return (grp);
5082 }
5083 
5084 void
5085 mac_release_tx_group(mac_impl_t *mip, mac_group_t *grp)
5086 {
5087 	mac_client_impl_t *mcip = grp->mrg_tx_client;
5088 	mac_share_handle_t share = mcip->mci_share;
5089 	mac_ring_t *ring;
5090 
5091 	ASSERT(mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC);
5092 	ASSERT(share != NULL);
5093 	ASSERT(grp->mrg_state == MAC_GROUP_STATE_RESERVED);
5094 
5095 	mip->mi_share_capab.ms_sremove(share, grp->mrg_driver);
5096 	while ((ring = grp->mrg_rings) != NULL) {
5097 		/* move the ring back to the pool */
5098 		(void) mac_group_mov_ring(mip, mip->mi_tx_groups +
5099 		    mip->mi_tx_group_count, ring);
5100 	}
5101 	mac_stop_group(grp);
5102 	mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED);
5103 	grp->mrg_tx_client = NULL;
5104 	mip->mi_tx_group_free++;
5105 }
5106 
5107 /*
5108  * This is a 1-time control path activity initiated by the client (IP).
5109  * The mac perimeter protects against other simultaneous control activities,
5110  * for example an ioctl that attempts to change the degree of fanout and
5111  * increase or decrease the number of softrings associated with this Tx SRS.
5112  */
5113 static mac_tx_notify_cb_t *
5114 mac_client_tx_notify_add(mac_client_impl_t *mcip,
5115     mac_tx_notify_t notify, void *arg)
5116 {
5117 	mac_cb_info_t *mcbi;
5118 	mac_tx_notify_cb_t *mtnfp;
5119 
5120 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5121 
5122 	mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP);
5123 	mtnfp->mtnf_fn = notify;
5124 	mtnfp->mtnf_arg = arg;
5125 	mtnfp->mtnf_link.mcb_objp = mtnfp;
5126 	mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t);
5127 	mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T;
5128 
5129 	mcbi = &mcip->mci_tx_notify_cb_info;
5130 	mutex_enter(mcbi->mcbi_lockp);
5131 	mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link);
5132 	mutex_exit(mcbi->mcbi_lockp);
5133 	return (mtnfp);
5134 }
5135 
5136 static void
5137 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp)
5138 {
5139 	mac_cb_info_t	*mcbi;
5140 	mac_cb_t	**cblist;
5141 
5142 	ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip));
5143 
5144 	if (!mac_callback_find(&mcip->mci_tx_notify_cb_info,
5145 	    &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) {
5146 		cmn_err(CE_WARN,
5147 		    "mac_client_tx_notify_remove: callback not "
5148 		    "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp);
5149 		return;
5150 	}
5151 
5152 	mcbi = &mcip->mci_tx_notify_cb_info;
5153 	cblist = &mcip->mci_tx_notify_cb_list;
5154 	mutex_enter(mcbi->mcbi_lockp);
5155 	if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link))
5156 		kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t));
5157 	else
5158 		mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info);
5159 	mutex_exit(mcbi->mcbi_lockp);
5160 }
5161 
5162 /*
5163  * mac_client_tx_notify():
5164  * call to add and remove flow control callback routine.
5165  */
5166 mac_tx_notify_handle_t
5167 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func,
5168     void *ptr)
5169 {
5170 	mac_client_impl_t	*mcip = (mac_client_impl_t *)mch;
5171 	mac_tx_notify_cb_t	*mtnfp = NULL;
5172 
5173 	i_mac_perim_enter(mcip->mci_mip);
5174 
5175 	if (callb_func != NULL) {
5176 		/* Add a notify callback */
5177 		mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr);
5178 	} else {
5179 		mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr);
5180 	}
5181 	i_mac_perim_exit(mcip->mci_mip);
5182 
5183 	return ((mac_tx_notify_handle_t)mtnfp);
5184 }
5185