1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * MAC Services Module 29 * 30 * The GLDv3 framework locking - The MAC layer 31 * -------------------------------------------- 32 * 33 * The MAC layer is central to the GLD framework and can provide the locking 34 * framework needed for itself and for the use of MAC clients. MAC end points 35 * are fairly disjoint and don't share a lot of state. So a coarse grained 36 * multi-threading scheme is to single thread all create/modify/delete or set 37 * type of control operations on a per mac end point while allowing data threads 38 * concurrently. 39 * 40 * Control operations (set) that modify a mac end point are always serialized on 41 * a per mac end point basis, We have at most 1 such thread per mac end point 42 * at a time. 43 * 44 * All other operations that are not serialized are essentially multi-threaded. 45 * For example a control operation (get) like getting statistics which may not 46 * care about reading values atomically or data threads sending or receiving 47 * data. Mostly these type of operations don't modify the control state. Any 48 * state these operations care about are protected using traditional locks. 49 * 50 * The perimeter only serializes serial operations. It does not imply there 51 * aren't any other concurrent operations. However a serialized operation may 52 * sometimes need to make sure it is the only thread. In this case it needs 53 * to use reference counting mechanisms to cv_wait until any current data 54 * threads are done. 55 * 56 * The mac layer itself does not hold any locks across a call to another layer. 57 * The perimeter is however held across a down call to the driver to make the 58 * whole control operation atomic with respect to other control operations. 59 * Also the data path and get type control operations may proceed concurrently. 60 * These operations synchronize with the single serial operation on a given mac 61 * end point using regular locks. The perimeter ensures that conflicting 62 * operations like say a mac_multicast_add and a mac_multicast_remove on the 63 * same mac end point don't interfere with each other and also ensures that the 64 * changes in the mac layer and the call to the underlying driver to say add a 65 * multicast address are done atomically without interference from a thread 66 * trying to delete the same address. 67 * 68 * For example, consider 69 * mac_multicst_add() 70 * { 71 * mac_perimeter_enter(); serialize all control operations 72 * 73 * grab list lock protect against access by data threads 74 * add to list 75 * drop list lock 76 * 77 * call driver's mi_multicst 78 * 79 * mac_perimeter_exit(); 80 * } 81 * 82 * To lessen the number of serialization locks and simplify the lock hierarchy, 83 * we serialize all the control operations on a per mac end point by using a 84 * single serialization lock called the perimeter. We allow recursive entry into 85 * the perimeter to facilitate use of this mechanism by both the mac client and 86 * the MAC layer itself. 87 * 88 * MAC client means an entity that does an operation on a mac handle 89 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 90 * an entity that does an operation on a mac handle obtained from a 91 * mac_register. An entity could be both client and driver but on different 92 * handles eg. aggr. and should only make the corresponding mac interface calls 93 * i.e. mac driver interface or mac client interface as appropriate for that 94 * mac handle. 95 * 96 * General rules. 97 * ------------- 98 * 99 * R1. The lock order of upcall threads is natually opposite to downcall 100 * threads. Hence upcalls must not hold any locks across layers for fear of 101 * recursive lock enter and lock order violation. This applies to all layers. 102 * 103 * R2. The perimeter is just another lock. Since it is held in the down 104 * direction, acquiring the perimeter in an upcall is prohibited as it would 105 * cause a deadlock. This applies to all layers. 106 * 107 * Note that upcalls that need to grab the mac perimeter (for example 108 * mac_notify upcalls) can still achieve that by posting the request to a 109 * thread, which can then grab all the required perimeters and locks in the 110 * right global order. Note that in the above example the mac layer iself 111 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 112 * to the client must do that. Please see the aggr code for an example. 113 * 114 * MAC client rules 115 * ---------------- 116 * 117 * R3. A MAC client may use the MAC provided perimeter facility to serialize 118 * control operations on a per mac end point. It does this by by acquring 119 * and holding the perimeter across a sequence of calls to the mac layer. 120 * This ensures atomicity across the entire block of mac calls. In this 121 * model the MAC client must not hold any client locks across the calls to 122 * the mac layer. This model is the preferred solution. 123 * 124 * R4. However if a MAC client has a lot of global state across all mac end 125 * points the per mac end point serialization may not be sufficient. In this 126 * case the client may choose to use global locks or use its own serialization. 127 * To avoid deadlocks, these client layer locks held across the mac calls 128 * in the control path must never be acquired by the data path for the reason 129 * mentioned below. 130 * 131 * (Assume that a control operation that holds a client lock blocks in the 132 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 133 * data thread that holds this reference count, tries to acquire the same 134 * client lock subsequently it will deadlock). 135 * 136 * A MAC client may follow either the R3 model or the R4 model, but can't 137 * mix both. In the former, the hierarchy is Perim -> client locks, but in 138 * the latter it is client locks -> Perim. 139 * 140 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 141 * context since they may block while trying to acquire the perimeter. 142 * In addition some calls may block waiting for upcall refcnts to come down to 143 * zero. 144 * 145 * R6. MAC clients must make sure that they are single threaded and all threads 146 * from the top (in particular data threads) have finished before calling 147 * mac_client_close. The MAC framework does not track the number of client 148 * threads using the mac client handle. Also mac clients must make sure 149 * they have undone all the control operations before calling mac_client_close. 150 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 151 * mac_unicast_add/mac_multicast_add. 152 * 153 * MAC framework rules 154 * ------------------- 155 * 156 * R7. The mac layer itself must not hold any mac layer locks (except the mac 157 * perimeter) across a call to any other layer from the mac layer. The call to 158 * any other layer could be via mi_* entry points, classifier entry points into 159 * the driver or via upcall pointers into layers above. The mac perimeter may 160 * be acquired or held only in the down direction, for e.g. when calling into 161 * a mi_* driver enty point to provide atomicity of the operation. 162 * 163 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 164 * mac driver interfaces, the MAC layer must provide a cut out for control 165 * interfaces like upcall notifications and start them in a separate thread. 166 * 167 * R9. Note that locking order also implies a plumbing order. For example 168 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 169 * to plumb in any other order must be failed at mac_open time, otherwise it 170 * could lead to deadlocks due to inverse locking order. 171 * 172 * R10. MAC driver interfaces must not block since the driver could call them 173 * in interrupt context. 174 * 175 * R11. Walkers must preferably not hold any locks while calling walker 176 * callbacks. Instead these can operate on reference counts. In simple 177 * callbacks it may be ok to hold a lock and call the callbacks, but this is 178 * harder to maintain in the general case of arbitrary callbacks. 179 * 180 * R12. The MAC layer must protect upcall notification callbacks using reference 181 * counts rather than holding locks across the callbacks. 182 * 183 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 184 * sure that any pointers (such as mac ring pointers) it passes to the driver 185 * remain valid until mac unregister time. Currently the mac layer achieves 186 * this by using generation numbers for rings and freeing the mac rings only 187 * at unregister time. The MAC layer must provide a layer of indirection and 188 * must not expose underlying driver rings or driver data structures/pointers 189 * directly to MAC clients. 190 * 191 * MAC driver rules 192 * ---------------- 193 * 194 * R14. It would be preferable if MAC drivers don't hold any locks across any 195 * mac call. However at a minimum they must not hold any locks across data 196 * upcalls. They must also make sure that all references to mac data structures 197 * are cleaned up and that it is single threaded at mac_unregister time. 198 * 199 * R15. MAC driver interfaces don't block and so the action may be done 200 * asynchronously in a separate thread as for example handling notifications. 201 * The driver must not assume that the action is complete when the call 202 * returns. 203 * 204 * R16. Drivers must maintain a generation number per Rx ring, and pass it 205 * back to mac_rx_ring(); They are expected to increment the generation 206 * number whenever the ring's stop routine is invoked. 207 * See comments in mac_rx_ring(); 208 * 209 * R17 Similarly mi_stop is another synchronization point and the driver must 210 * ensure that all upcalls are done and there won't be any future upcall 211 * before returning from mi_stop. 212 * 213 * R18. The driver may assume that all set/modify control operations via 214 * the mi_* entry points are single threaded on a per mac end point. 215 * 216 * Lock and Perimeter hierarchy scenarios 217 * --------------------------------------- 218 * 219 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 220 * 221 * ft_lock -> fe_lock [mac_flow_lookup] 222 * 223 * mi_rw_lock -> fe_lock [mac_bcast_send] 224 * 225 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 226 * 227 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 228 * 229 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 230 * 231 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 232 * client to driver. In the case of clients that explictly use the mac provided 233 * perimeter mechanism for its serialization, the hierarchy is 234 * Perimeter -> mac layer locks, since the client never holds any locks across 235 * the mac calls. In the case of clients that use its own locks the hierarchy 236 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 237 * calls mac_perim_enter/exit in this case. 238 * 239 * Subflow creation rules 240 * --------------------------- 241 * o In case of a user specified cpulist present on underlying link and flows, 242 * the flows cpulist must be a subset of the underlying link. 243 * o In case of a user specified fanout mode present on link and flow, the 244 * subflow fanout count has to be less than or equal to that of the 245 * underlying link. The cpu-bindings for the subflows will be a subset of 246 * the underlying link. 247 * o In case if no cpulist specified on both underlying link and flow, the 248 * underlying link relies on a MAC tunable to provide out of box fanout. 249 * The subflow will have no cpulist (the subflow will be unbound) 250 * o In case if no cpulist is specified on the underlying link, a subflow can 251 * carry either a user-specified cpulist or fanout count. The cpu-bindings 252 * for the subflow will not adhere to restriction that they need to be subset 253 * of the underlying link. 254 * o In case where the underlying link is carrying either a user specified 255 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 256 * created unbound. 257 * o While creating unbound subflows, bandwidth mode changes attempt to 258 * figure a right fanout count. In such cases the fanout count will override 259 * the unbound cpu-binding behavior. 260 * o In addition to this, while cycling between flow and link properties, we 261 * impose a restriction that if a link property has a subflow with 262 * user-specified attributes, we will not allow changing the link property. 263 * The administrator needs to reset all the user specified properties for the 264 * subflows before attempting a link property change. 265 * Some of the above rules can be overridden by specifying additional command 266 * line options while creating or modifying link or subflow properties. 267 */ 268 269 #include <sys/types.h> 270 #include <sys/conf.h> 271 #include <sys/id_space.h> 272 #include <sys/esunddi.h> 273 #include <sys/stat.h> 274 #include <sys/mkdev.h> 275 #include <sys/stream.h> 276 #include <sys/strsun.h> 277 #include <sys/strsubr.h> 278 #include <sys/dlpi.h> 279 #include <sys/modhash.h> 280 #include <sys/mac_provider.h> 281 #include <sys/mac_client_impl.h> 282 #include <sys/mac_soft_ring.h> 283 #include <sys/mac_impl.h> 284 #include <sys/mac.h> 285 #include <sys/dls.h> 286 #include <sys/dld.h> 287 #include <sys/modctl.h> 288 #include <sys/fs/dv_node.h> 289 #include <sys/thread.h> 290 #include <sys/proc.h> 291 #include <sys/callb.h> 292 #include <sys/cpuvar.h> 293 #include <sys/atomic.h> 294 #include <sys/bitmap.h> 295 #include <sys/sdt.h> 296 #include <sys/mac_flow.h> 297 #include <sys/ddi_intr_impl.h> 298 #include <sys/disp.h> 299 #include <sys/sdt.h> 300 #include <sys/vnic.h> 301 #include <sys/vnic_impl.h> 302 #include <sys/vlan.h> 303 #include <inet/ip.h> 304 #include <inet/ip6.h> 305 #include <sys/exacct.h> 306 #include <sys/exacct_impl.h> 307 #include <inet/nd.h> 308 #include <sys/ethernet.h> 309 310 #define IMPL_HASHSZ 67 /* prime */ 311 312 kmem_cache_t *i_mac_impl_cachep; 313 mod_hash_t *i_mac_impl_hash; 314 krwlock_t i_mac_impl_lock; 315 uint_t i_mac_impl_count; 316 static kmem_cache_t *mac_ring_cache; 317 static id_space_t *minor_ids; 318 static uint32_t minor_count; 319 320 /* 321 * Logging stuff. Perhaps mac_logging_interval could be broken into 322 * mac_flow_log_interval and mac_link_log_interval if we want to be 323 * able to schedule them differently. 324 */ 325 uint_t mac_logging_interval; 326 boolean_t mac_flow_log_enable; 327 boolean_t mac_link_log_enable; 328 timeout_id_t mac_logging_timer; 329 330 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 331 int mac_dbg = 0; 332 333 #define MACTYPE_KMODDIR "mac" 334 #define MACTYPE_HASHSZ 67 335 static mod_hash_t *i_mactype_hash; 336 /* 337 * i_mactype_lock synchronizes threads that obtain references to mactype_t 338 * structures through i_mactype_getplugin(). 339 */ 340 static kmutex_t i_mactype_lock; 341 342 /* 343 * mac_tx_percpu_cnt 344 * 345 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 346 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 347 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 348 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 349 */ 350 int mac_tx_percpu_cnt; 351 int mac_tx_percpu_cnt_max = 128; 352 353 static int i_mac_constructor(void *, void *, int); 354 static void i_mac_destructor(void *, void *); 355 static int i_mac_ring_ctor(void *, void *, int); 356 static void i_mac_ring_dtor(void *, void *); 357 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 358 void mac_tx_client_flush(mac_client_impl_t *); 359 void mac_tx_client_block(mac_client_impl_t *); 360 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 361 static int mac_start_group_and_rings(mac_group_t *); 362 static void mac_stop_group_and_rings(mac_group_t *); 363 364 /* 365 * Module initialization functions. 366 */ 367 368 void 369 mac_init(void) 370 { 371 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 372 boot_max_ncpus); 373 374 /* Upper bound is mac_tx_percpu_cnt_max */ 375 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 376 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 377 378 if (mac_tx_percpu_cnt < 1) { 379 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 380 mac_tx_percpu_cnt = 1; 381 } 382 383 ASSERT(mac_tx_percpu_cnt >= 1); 384 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 385 /* 386 * Make it of the form 2**N - 1 in the range 387 * [0 .. mac_tx_percpu_cnt_max - 1] 388 */ 389 mac_tx_percpu_cnt--; 390 391 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 392 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 393 NULL, NULL, NULL, 0); 394 ASSERT(i_mac_impl_cachep != NULL); 395 396 mac_ring_cache = kmem_cache_create("mac_ring_cache", 397 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 398 NULL, NULL, 0); 399 ASSERT(mac_ring_cache != NULL); 400 401 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 402 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 403 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 404 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 405 406 mac_flow_init(); 407 mac_soft_ring_init(); 408 mac_bcast_init(); 409 mac_client_init(); 410 411 i_mac_impl_count = 0; 412 413 i_mactype_hash = mod_hash_create_extended("mactype_hash", 414 MACTYPE_HASHSZ, 415 mod_hash_null_keydtor, mod_hash_null_valdtor, 416 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 417 418 /* 419 * Allocate an id space to manage minor numbers. The range of the 420 * space will be from MAC_MAX_MINOR+1 to MAXMIN32 (maximum legal 421 * minor number is MAXMIN, but id_t is type of integer and does not 422 * allow MAXMIN). 423 */ 424 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, MAXMIN32); 425 ASSERT(minor_ids != NULL); 426 minor_count = 0; 427 428 /* Let's default to 20 seconds */ 429 mac_logging_interval = 20; 430 mac_flow_log_enable = B_FALSE; 431 mac_link_log_enable = B_FALSE; 432 mac_logging_timer = 0; 433 } 434 435 int 436 mac_fini(void) 437 { 438 if (i_mac_impl_count > 0 || minor_count > 0) 439 return (EBUSY); 440 441 id_space_destroy(minor_ids); 442 mac_flow_fini(); 443 444 mod_hash_destroy_hash(i_mac_impl_hash); 445 rw_destroy(&i_mac_impl_lock); 446 447 mac_client_fini(); 448 kmem_cache_destroy(mac_ring_cache); 449 450 mod_hash_destroy_hash(i_mactype_hash); 451 mac_soft_ring_finish(); 452 return (0); 453 } 454 455 void 456 mac_init_ops(struct dev_ops *ops, const char *name) 457 { 458 dld_init_ops(ops, name); 459 } 460 461 void 462 mac_fini_ops(struct dev_ops *ops) 463 { 464 dld_fini_ops(ops); 465 } 466 467 /*ARGSUSED*/ 468 static int 469 i_mac_constructor(void *buf, void *arg, int kmflag) 470 { 471 mac_impl_t *mip = buf; 472 473 bzero(buf, sizeof (mac_impl_t)); 474 475 mip->mi_linkstate = LINK_STATE_UNKNOWN; 476 mip->mi_nclients = 0; 477 478 mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL); 479 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 480 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 481 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 482 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 483 484 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 485 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 486 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 487 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 488 return (0); 489 } 490 491 /*ARGSUSED*/ 492 static void 493 i_mac_destructor(void *buf, void *arg) 494 { 495 mac_impl_t *mip = buf; 496 mac_cb_info_t *mcbi; 497 498 ASSERT(mip->mi_ref == 0); 499 ASSERT(mip->mi_active == 0); 500 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 501 ASSERT(mip->mi_devpromisc == 0); 502 ASSERT(mip->mi_promisc == 0); 503 ASSERT(mip->mi_ksp == NULL); 504 ASSERT(mip->mi_kstat_count == 0); 505 ASSERT(mip->mi_nclients == 0); 506 ASSERT(mip->mi_nactiveclients == 0); 507 ASSERT(mip->mi_single_active_client == NULL); 508 ASSERT(mip->mi_state_flags == 0); 509 ASSERT(mip->mi_factory_addr == NULL); 510 ASSERT(mip->mi_factory_addr_num == 0); 511 ASSERT(mip->mi_default_tx_ring == NULL); 512 513 mcbi = &mip->mi_notify_cb_info; 514 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 515 ASSERT(mip->mi_notify_bits == 0); 516 ASSERT(mip->mi_notify_thread == NULL); 517 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 518 mcbi->mcbi_lockp = NULL; 519 520 mcbi = &mip->mi_promisc_cb_info; 521 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 522 ASSERT(mip->mi_promisc_list == NULL); 523 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 524 mcbi->mcbi_lockp = NULL; 525 526 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 527 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 528 529 mutex_destroy(&mip->mi_lock); 530 rw_destroy(&mip->mi_rw_lock); 531 532 mutex_destroy(&mip->mi_promisc_lock); 533 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 534 mutex_destroy(&mip->mi_notify_lock); 535 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 536 mutex_destroy(&mip->mi_ring_lock); 537 } 538 539 /* ARGSUSED */ 540 static int 541 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 542 { 543 mac_ring_t *ring = (mac_ring_t *)buf; 544 545 bzero(ring, sizeof (mac_ring_t)); 546 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 547 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 548 ring->mr_state = MR_FREE; 549 return (0); 550 } 551 552 /* ARGSUSED */ 553 static void 554 i_mac_ring_dtor(void *buf, void *arg) 555 { 556 mac_ring_t *ring = (mac_ring_t *)buf; 557 558 cv_destroy(&ring->mr_cv); 559 mutex_destroy(&ring->mr_lock); 560 } 561 562 /* 563 * Common functions to do mac callback addition and deletion. Currently this is 564 * used by promisc callbacks and notify callbacks. List addition and deletion 565 * need to take care of list walkers. List walkers in general, can't hold list 566 * locks and make upcall callbacks due to potential lock order and recursive 567 * reentry issues. Instead list walkers increment the list walker count to mark 568 * the presence of a walker thread. Addition can be carefully done to ensure 569 * that the list walker always sees either the old list or the new list. 570 * However the deletion can't be done while the walker is active, instead the 571 * deleting thread simply marks the entry as logically deleted. The last walker 572 * physically deletes and frees up the logically deleted entries when the walk 573 * is complete. 574 */ 575 void 576 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 577 mac_cb_t *mcb_elem) 578 { 579 mac_cb_t *p; 580 mac_cb_t **pp; 581 582 /* Verify it is not already in the list */ 583 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 584 if (p == mcb_elem) 585 break; 586 } 587 VERIFY(p == NULL); 588 589 /* 590 * Add it to the head of the callback list. The membar ensures that 591 * the following list pointer manipulations reach global visibility 592 * in exactly the program order below. 593 */ 594 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 595 596 mcb_elem->mcb_nextp = *mcb_head; 597 membar_producer(); 598 *mcb_head = mcb_elem; 599 } 600 601 /* 602 * Mark the entry as logically deleted. If there aren't any walkers unlink 603 * from the list. In either case return the corresponding status. 604 */ 605 boolean_t 606 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 607 mac_cb_t *mcb_elem) 608 { 609 mac_cb_t *p; 610 mac_cb_t **pp; 611 612 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 613 /* 614 * Search the callback list for the entry to be removed 615 */ 616 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 617 if (p == mcb_elem) 618 break; 619 } 620 VERIFY(p != NULL); 621 622 /* 623 * If there are walkers just mark it as deleted and the last walker 624 * will remove from the list and free it. 625 */ 626 if (mcbi->mcbi_walker_cnt != 0) { 627 p->mcb_flags |= MCB_CONDEMNED; 628 mcbi->mcbi_del_cnt++; 629 return (B_FALSE); 630 } 631 632 ASSERT(mcbi->mcbi_del_cnt == 0); 633 *pp = p->mcb_nextp; 634 p->mcb_nextp = NULL; 635 return (B_TRUE); 636 } 637 638 /* 639 * Wait for all pending callback removals to be completed 640 */ 641 void 642 mac_callback_remove_wait(mac_cb_info_t *mcbi) 643 { 644 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 645 while (mcbi->mcbi_del_cnt != 0) { 646 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 647 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 648 } 649 } 650 651 /* 652 * The last mac callback walker does the cleanup. Walk the list and unlik 653 * all the logically deleted entries and construct a temporary list of 654 * removed entries. Return the list of removed entries to the caller. 655 */ 656 mac_cb_t * 657 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 658 { 659 mac_cb_t *p; 660 mac_cb_t **pp; 661 mac_cb_t *rmlist = NULL; /* List of removed elements */ 662 int cnt = 0; 663 664 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 665 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 666 667 pp = mcb_head; 668 while (*pp != NULL) { 669 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 670 p = *pp; 671 *pp = p->mcb_nextp; 672 p->mcb_nextp = rmlist; 673 rmlist = p; 674 cnt++; 675 continue; 676 } 677 pp = &(*pp)->mcb_nextp; 678 } 679 680 ASSERT(mcbi->mcbi_del_cnt == cnt); 681 mcbi->mcbi_del_cnt = 0; 682 return (rmlist); 683 } 684 685 boolean_t 686 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 687 { 688 mac_cb_t *mcb; 689 690 /* Verify it is not already in the list */ 691 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 692 if (mcb == mcb_elem) 693 return (B_TRUE); 694 } 695 696 return (B_FALSE); 697 } 698 699 boolean_t 700 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 701 { 702 boolean_t found; 703 704 mutex_enter(mcbi->mcbi_lockp); 705 found = mac_callback_lookup(mcb_headp, mcb_elem); 706 mutex_exit(mcbi->mcbi_lockp); 707 708 return (found); 709 } 710 711 /* Free the list of removed callbacks */ 712 void 713 mac_callback_free(mac_cb_t *rmlist) 714 { 715 mac_cb_t *mcb; 716 mac_cb_t *mcb_next; 717 718 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 719 mcb_next = mcb->mcb_nextp; 720 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 721 } 722 } 723 724 /* 725 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 726 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 727 * is only a single shared total walker count, and an entry can't be physically 728 * unlinked if a walker is active on either list. The last walker does this 729 * cleanup of logically deleted entries. 730 */ 731 void 732 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 733 { 734 mac_cb_t *rmlist; 735 mac_cb_t *mcb; 736 mac_cb_t *mcb_next; 737 mac_promisc_impl_t *mpip; 738 739 /* 740 * Construct a temporary list of deleted callbacks by walking the 741 * the mi_promisc_list. Then for each entry in the temporary list, 742 * remove it from the mci_promisc_list and free the entry. 743 */ 744 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 745 &mip->mi_promisc_list); 746 747 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 748 mcb_next = mcb->mcb_nextp; 749 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 750 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 751 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 752 mcb->mcb_flags = 0; 753 mcb->mcb_nextp = NULL; 754 kmem_cache_free(mac_promisc_impl_cache, mpip); 755 } 756 } 757 758 void 759 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 760 { 761 mac_cb_info_t *mcbi; 762 763 /* 764 * Signal the notify thread even after mi_ref has become zero and 765 * mi_disabled is set. The synchronization with the notify thread 766 * happens in mac_unregister and that implies the driver must make 767 * sure it is single-threaded (with respect to mac calls) and that 768 * all pending mac calls have returned before it calls mac_unregister 769 */ 770 rw_enter(&i_mac_impl_lock, RW_READER); 771 if (mip->mi_state_flags & MIS_DISABLED) 772 goto exit; 773 774 /* 775 * Guard against incorrect notifications. (Running a newer 776 * mac client against an older implementation?) 777 */ 778 if (type >= MAC_NNOTE) 779 goto exit; 780 781 mcbi = &mip->mi_notify_cb_info; 782 mutex_enter(mcbi->mcbi_lockp); 783 mip->mi_notify_bits |= (1 << type); 784 cv_broadcast(&mcbi->mcbi_cv); 785 mutex_exit(mcbi->mcbi_lockp); 786 787 exit: 788 rw_exit(&i_mac_impl_lock); 789 } 790 791 /* 792 * Mac serialization primitives. Please see the block comment at the 793 * top of the file. 794 */ 795 void 796 i_mac_perim_enter(mac_impl_t *mip) 797 { 798 mac_client_impl_t *mcip; 799 800 if (mip->mi_state_flags & MIS_IS_VNIC) { 801 /* 802 * This is a VNIC. Return the lower mac since that is what 803 * we want to serialize on. 804 */ 805 mcip = mac_vnic_lower(mip); 806 mip = mcip->mci_mip; 807 } 808 809 mutex_enter(&mip->mi_perim_lock); 810 if (mip->mi_perim_owner == curthread) { 811 mip->mi_perim_ocnt++; 812 mutex_exit(&mip->mi_perim_lock); 813 return; 814 } 815 816 while (mip->mi_perim_owner != NULL) 817 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 818 819 mip->mi_perim_owner = curthread; 820 ASSERT(mip->mi_perim_ocnt == 0); 821 mip->mi_perim_ocnt++; 822 #ifdef DEBUG 823 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 824 MAC_PERIM_STACK_DEPTH); 825 #endif 826 mutex_exit(&mip->mi_perim_lock); 827 } 828 829 int 830 i_mac_perim_enter_nowait(mac_impl_t *mip) 831 { 832 /* 833 * The vnic is a special case, since the serialization is done based 834 * on the lower mac. If the lower mac is busy, it does not imply the 835 * vnic can't be unregistered. But in the case of other drivers, 836 * a busy perimeter or open mac handles implies that the mac is busy 837 * and can't be unregistered. 838 */ 839 if (mip->mi_state_flags & MIS_IS_VNIC) { 840 i_mac_perim_enter(mip); 841 return (0); 842 } 843 844 mutex_enter(&mip->mi_perim_lock); 845 if (mip->mi_perim_owner != NULL) { 846 mutex_exit(&mip->mi_perim_lock); 847 return (EBUSY); 848 } 849 ASSERT(mip->mi_perim_ocnt == 0); 850 mip->mi_perim_owner = curthread; 851 mip->mi_perim_ocnt++; 852 mutex_exit(&mip->mi_perim_lock); 853 854 return (0); 855 } 856 857 void 858 i_mac_perim_exit(mac_impl_t *mip) 859 { 860 mac_client_impl_t *mcip; 861 862 if (mip->mi_state_flags & MIS_IS_VNIC) { 863 /* 864 * This is a VNIC. Return the lower mac since that is what 865 * we want to serialize on. 866 */ 867 mcip = mac_vnic_lower(mip); 868 mip = mcip->mci_mip; 869 } 870 871 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 872 873 mutex_enter(&mip->mi_perim_lock); 874 if (--mip->mi_perim_ocnt == 0) { 875 mip->mi_perim_owner = NULL; 876 cv_signal(&mip->mi_perim_cv); 877 } 878 mutex_exit(&mip->mi_perim_lock); 879 } 880 881 /* 882 * Returns whether the current thread holds the mac perimeter. Used in making 883 * assertions. 884 */ 885 boolean_t 886 mac_perim_held(mac_handle_t mh) 887 { 888 mac_impl_t *mip = (mac_impl_t *)mh; 889 mac_client_impl_t *mcip; 890 891 if (mip->mi_state_flags & MIS_IS_VNIC) { 892 /* 893 * This is a VNIC. Return the lower mac since that is what 894 * we want to serialize on. 895 */ 896 mcip = mac_vnic_lower(mip); 897 mip = mcip->mci_mip; 898 } 899 return (mip->mi_perim_owner == curthread); 900 } 901 902 /* 903 * mac client interfaces to enter the mac perimeter of a mac end point, given 904 * its mac handle, or macname or linkid. 905 */ 906 void 907 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 908 { 909 mac_impl_t *mip = (mac_impl_t *)mh; 910 911 i_mac_perim_enter(mip); 912 /* 913 * The mac_perim_handle_t returned encodes the 'mip' and whether a 914 * mac_open has been done internally while entering the perimeter. 915 * This information is used in mac_perim_exit 916 */ 917 MAC_ENCODE_MPH(*mphp, mip, 0); 918 } 919 920 int 921 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 922 { 923 int err; 924 mac_handle_t mh; 925 926 if ((err = mac_open(name, &mh)) != 0) 927 return (err); 928 929 mac_perim_enter_by_mh(mh, mphp); 930 MAC_ENCODE_MPH(*mphp, mh, 1); 931 return (0); 932 } 933 934 int 935 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 936 { 937 int err; 938 mac_handle_t mh; 939 940 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 941 return (err); 942 943 mac_perim_enter_by_mh(mh, mphp); 944 MAC_ENCODE_MPH(*mphp, mh, 1); 945 return (0); 946 } 947 948 void 949 mac_perim_exit(mac_perim_handle_t mph) 950 { 951 mac_impl_t *mip; 952 boolean_t need_close; 953 954 MAC_DECODE_MPH(mph, mip, need_close); 955 i_mac_perim_exit(mip); 956 if (need_close) 957 mac_close((mac_handle_t)mip); 958 } 959 960 int 961 mac_hold(const char *macname, mac_impl_t **pmip) 962 { 963 mac_impl_t *mip; 964 int err; 965 966 /* 967 * Check the device name length to make sure it won't overflow our 968 * buffer. 969 */ 970 if (strlen(macname) >= MAXNAMELEN) 971 return (EINVAL); 972 973 /* 974 * Look up its entry in the global hash table. 975 */ 976 rw_enter(&i_mac_impl_lock, RW_WRITER); 977 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 978 (mod_hash_val_t *)&mip); 979 980 if (err != 0) { 981 rw_exit(&i_mac_impl_lock); 982 return (ENOENT); 983 } 984 985 if (mip->mi_state_flags & MIS_DISABLED) { 986 rw_exit(&i_mac_impl_lock); 987 return (ENOENT); 988 } 989 990 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 991 rw_exit(&i_mac_impl_lock); 992 return (EBUSY); 993 } 994 995 mip->mi_ref++; 996 rw_exit(&i_mac_impl_lock); 997 998 *pmip = mip; 999 return (0); 1000 } 1001 1002 void 1003 mac_rele(mac_impl_t *mip) 1004 { 1005 rw_enter(&i_mac_impl_lock, RW_WRITER); 1006 ASSERT(mip->mi_ref != 0); 1007 if (--mip->mi_ref == 0) { 1008 ASSERT(mip->mi_nactiveclients == 0 && 1009 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1010 } 1011 rw_exit(&i_mac_impl_lock); 1012 } 1013 1014 /* 1015 * Private GLDv3 function to start a MAC instance. 1016 */ 1017 int 1018 mac_start(mac_handle_t mh) 1019 { 1020 mac_impl_t *mip = (mac_impl_t *)mh; 1021 int err = 0; 1022 1023 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1024 ASSERT(mip->mi_start != NULL); 1025 1026 /* 1027 * Check whether the device is already started. 1028 */ 1029 if (mip->mi_active++ == 0) { 1030 mac_ring_t *ring = NULL; 1031 1032 /* 1033 * Start the device. 1034 */ 1035 err = mip->mi_start(mip->mi_driver); 1036 if (err != 0) { 1037 mip->mi_active--; 1038 return (err); 1039 } 1040 1041 /* 1042 * Start the default tx ring. 1043 */ 1044 if (mip->mi_default_tx_ring != NULL) { 1045 1046 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1047 err = mac_start_ring(ring); 1048 if (err != 0) { 1049 mip->mi_active--; 1050 return (err); 1051 } 1052 ring->mr_state = MR_INUSE; 1053 } 1054 1055 if (mip->mi_rx_groups != NULL) { 1056 /* 1057 * Start the default ring, since it will be needed 1058 * to receive broadcast and multicast traffic for 1059 * both primary and non-primary MAC clients. 1060 */ 1061 mac_group_t *grp = &mip->mi_rx_groups[0]; 1062 1063 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1064 err = mac_start_group_and_rings(grp); 1065 if (err != 0) { 1066 mip->mi_active--; 1067 if (ring != NULL) { 1068 mac_stop_ring(ring); 1069 ring->mr_state = MR_FREE; 1070 } 1071 return (err); 1072 } 1073 mac_set_rx_group_state(grp, MAC_GROUP_STATE_SHARED); 1074 } 1075 } 1076 1077 return (err); 1078 } 1079 1080 /* 1081 * Private GLDv3 function to stop a MAC instance. 1082 */ 1083 void 1084 mac_stop(mac_handle_t mh) 1085 { 1086 mac_impl_t *mip = (mac_impl_t *)mh; 1087 1088 ASSERT(mip->mi_stop != NULL); 1089 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1090 1091 /* 1092 * Check whether the device is still needed. 1093 */ 1094 ASSERT(mip->mi_active != 0); 1095 if (--mip->mi_active == 0) { 1096 if (mip->mi_rx_groups != NULL) { 1097 /* 1098 * There should be no more active clients since the 1099 * MAC is being stopped. Stop the default RX group 1100 * and transition it back to registered state. 1101 */ 1102 mac_group_t *grp = &mip->mi_rx_groups[0]; 1103 1104 /* 1105 * When clients are torn down, the groups 1106 * are release via mac_release_rx_group which 1107 * knows the the default group is always in 1108 * started mode since broadcast uses it. So 1109 * we can assert that their are no clients 1110 * (since mac_bcast_add doesn't register itself 1111 * as a client) and group is in SHARED state. 1112 */ 1113 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1114 ASSERT(MAC_RX_GROUP_NO_CLIENT(grp) && 1115 mip->mi_nactiveclients == 0); 1116 mac_stop_group_and_rings(grp); 1117 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1118 } 1119 1120 if (mip->mi_default_tx_ring != NULL) { 1121 mac_ring_t *ring; 1122 1123 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1124 mac_stop_ring(ring); 1125 ring->mr_state = MR_FREE; 1126 } 1127 1128 /* 1129 * Stop the device. 1130 */ 1131 mip->mi_stop(mip->mi_driver); 1132 } 1133 } 1134 1135 int 1136 i_mac_promisc_set(mac_impl_t *mip, boolean_t on, mac_promisc_type_t ptype) 1137 { 1138 int err = 0; 1139 1140 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1141 ASSERT(mip->mi_setpromisc != NULL); 1142 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 1143 1144 /* 1145 * Determine whether we should enable or disable promiscuous mode. 1146 * For details on the distinction between "device promiscuous mode" 1147 * and "MAC promiscuous mode", see PSARC/2005/289. 1148 */ 1149 if (on) { 1150 /* 1151 * Enable promiscuous mode on the device if not yet enabled. 1152 */ 1153 if (mip->mi_devpromisc++ == 0) { 1154 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1155 if (err != 0) { 1156 mip->mi_devpromisc--; 1157 return (err); 1158 } 1159 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1160 } 1161 1162 /* 1163 * Enable promiscuous mode on the MAC if not yet enabled. 1164 */ 1165 if (ptype == MAC_PROMISC && mip->mi_promisc++ == 0) 1166 i_mac_notify(mip, MAC_NOTE_PROMISC); 1167 } else { 1168 if (mip->mi_devpromisc == 0) 1169 return (EPROTO); 1170 1171 /* 1172 * Disable promiscuous mode on the device if this is the last 1173 * enabling. 1174 */ 1175 if (--mip->mi_devpromisc == 0) { 1176 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1177 if (err != 0) { 1178 mip->mi_devpromisc++; 1179 return (err); 1180 } 1181 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1182 } 1183 1184 /* 1185 * Disable promiscuous mode on the MAC if this is the last 1186 * enabling. 1187 */ 1188 if (ptype == MAC_PROMISC && --mip->mi_promisc == 0) 1189 i_mac_notify(mip, MAC_NOTE_PROMISC); 1190 } 1191 1192 return (0); 1193 } 1194 1195 int 1196 mac_promisc_set(mac_handle_t mh, boolean_t on, mac_promisc_type_t ptype) 1197 { 1198 mac_impl_t *mip = (mac_impl_t *)mh; 1199 int rv; 1200 1201 i_mac_perim_enter(mip); 1202 rv = i_mac_promisc_set(mip, on, ptype); 1203 if (rv != 0 && !on) { 1204 cmn_err(CE_WARN, "%s: failed to switch OFF promiscuous mode " 1205 "because of error 0x%x", mip->mi_name, rv); 1206 rv = 0; 1207 } 1208 i_mac_perim_exit(mip); 1209 return (rv); 1210 } 1211 1212 /* 1213 * The promiscuity state can change any time. If the caller needs to take 1214 * actions that are atomic with the promiscuity state, then the caller needs 1215 * to bracket the entire sequence with mac_perim_enter/exit 1216 */ 1217 boolean_t 1218 mac_promisc_get(mac_handle_t mh, mac_promisc_type_t ptype) 1219 { 1220 mac_impl_t *mip = (mac_impl_t *)mh; 1221 1222 ASSERT(ptype == MAC_DEVPROMISC || ptype == MAC_PROMISC); 1223 1224 /* 1225 * Return the current promiscuity. 1226 */ 1227 if (ptype == MAC_DEVPROMISC) 1228 return (mip->mi_devpromisc != 0); 1229 else 1230 return (mip->mi_promisc != 0); 1231 } 1232 1233 /* 1234 * Invoked at MAC instance attach time to initialize the list 1235 * of factory MAC addresses supported by a MAC instance. This function 1236 * builds a local cache in the mac_impl_t for the MAC addresses 1237 * supported by the underlying hardware. The MAC clients themselves 1238 * use the mac_addr_factory*() functions to query and reserve 1239 * factory MAC addresses. 1240 */ 1241 void 1242 mac_addr_factory_init(mac_impl_t *mip) 1243 { 1244 mac_capab_multifactaddr_t capab; 1245 uint8_t *addr; 1246 int i; 1247 1248 /* 1249 * First round to see how many factory MAC addresses are available. 1250 */ 1251 bzero(&capab, sizeof (capab)); 1252 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1253 &capab) || (capab.mcm_naddr == 0)) { 1254 /* 1255 * The MAC instance doesn't support multiple factory 1256 * MAC addresses, we're done here. 1257 */ 1258 return; 1259 } 1260 1261 /* 1262 * Allocate the space and get all the factory addresses. 1263 */ 1264 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1265 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1266 1267 mip->mi_factory_addr_num = capab.mcm_naddr; 1268 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1269 sizeof (mac_factory_addr_t), KM_SLEEP); 1270 1271 for (i = 0; i < capab.mcm_naddr; i++) { 1272 bcopy(addr + i * MAXMACADDRLEN, 1273 mip->mi_factory_addr[i].mfa_addr, 1274 mip->mi_type->mt_addr_length); 1275 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1276 } 1277 1278 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1279 } 1280 1281 void 1282 mac_addr_factory_fini(mac_impl_t *mip) 1283 { 1284 if (mip->mi_factory_addr == NULL) { 1285 ASSERT(mip->mi_factory_addr_num == 0); 1286 return; 1287 } 1288 1289 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1290 sizeof (mac_factory_addr_t)); 1291 1292 mip->mi_factory_addr = NULL; 1293 mip->mi_factory_addr_num = 0; 1294 } 1295 1296 /* 1297 * Reserve a factory MAC address. If *slot is set to -1, the function 1298 * attempts to reserve any of the available factory MAC addresses and 1299 * returns the reserved slot id. If no slots are available, the function 1300 * returns ENOSPC. If *slot is not set to -1, the function reserves 1301 * the specified slot if it is available, or returns EBUSY is the slot 1302 * is already used. Returns ENOTSUP if the underlying MAC does not 1303 * support multiple factory addresses. If the slot number is not -1 but 1304 * is invalid, returns EINVAL. 1305 */ 1306 int 1307 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1308 { 1309 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1310 mac_impl_t *mip = mcip->mci_mip; 1311 int i, ret = 0; 1312 1313 i_mac_perim_enter(mip); 1314 /* 1315 * Protect against concurrent readers that may need a self-consistent 1316 * view of the factory addresses 1317 */ 1318 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1319 1320 if (mip->mi_factory_addr_num == 0) { 1321 ret = ENOTSUP; 1322 goto bail; 1323 } 1324 1325 if (*slot != -1) { 1326 /* check the specified slot */ 1327 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1328 ret = EINVAL; 1329 goto bail; 1330 } 1331 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1332 ret = EBUSY; 1333 goto bail; 1334 } 1335 } else { 1336 /* pick the next available slot */ 1337 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1338 if (!mip->mi_factory_addr[i].mfa_in_use) 1339 break; 1340 } 1341 1342 if (i == mip->mi_factory_addr_num) { 1343 ret = ENOSPC; 1344 goto bail; 1345 } 1346 *slot = i+1; 1347 } 1348 1349 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1350 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1351 1352 bail: 1353 rw_exit(&mip->mi_rw_lock); 1354 i_mac_perim_exit(mip); 1355 return (ret); 1356 } 1357 1358 /* 1359 * Release the specified factory MAC address slot. 1360 */ 1361 void 1362 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1363 { 1364 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1365 mac_impl_t *mip = mcip->mci_mip; 1366 1367 i_mac_perim_enter(mip); 1368 /* 1369 * Protect against concurrent readers that may need a self-consistent 1370 * view of the factory addresses 1371 */ 1372 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1373 1374 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1375 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1376 1377 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1378 1379 rw_exit(&mip->mi_rw_lock); 1380 i_mac_perim_exit(mip); 1381 } 1382 1383 /* 1384 * Stores in mac_addr the value of the specified MAC address. Returns 1385 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1386 * The caller must provide a string of at least MAXNAMELEN bytes. 1387 */ 1388 void 1389 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1390 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1391 { 1392 mac_impl_t *mip = (mac_impl_t *)mh; 1393 boolean_t in_use; 1394 1395 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1396 1397 /* 1398 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1399 * and mi_rw_lock 1400 */ 1401 rw_enter(&mip->mi_rw_lock, RW_READER); 1402 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1403 *addr_len = mip->mi_type->mt_addr_length; 1404 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1405 if (in_use && client_name != NULL) { 1406 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1407 client_name, MAXNAMELEN); 1408 } 1409 if (in_use_arg != NULL) 1410 *in_use_arg = in_use; 1411 rw_exit(&mip->mi_rw_lock); 1412 } 1413 1414 /* 1415 * Returns the number of factory MAC addresses (in addition to the 1416 * primary MAC address), 0 if the underlying MAC doesn't support 1417 * that feature. 1418 */ 1419 uint_t 1420 mac_addr_factory_num(mac_handle_t mh) 1421 { 1422 mac_impl_t *mip = (mac_impl_t *)mh; 1423 1424 return (mip->mi_factory_addr_num); 1425 } 1426 1427 1428 void 1429 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1430 { 1431 mac_ring_t *ring; 1432 1433 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1434 ring->mr_flag &= ~flag; 1435 } 1436 1437 /* 1438 * The following mac_hwrings_xxx() functions are private mac client functions 1439 * used by the aggr driver to access and control the underlying HW Rx group 1440 * and rings. In this case, the aggr driver has exclusive control of the 1441 * underlying HW Rx group/rings, it calls the following functions to 1442 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1443 * addresses, or set up the Rx callback. 1444 */ 1445 /* ARGSUSED */ 1446 static void 1447 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1448 mblk_t *mp_chain, boolean_t loopback) 1449 { 1450 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1451 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1452 mac_direct_rx_t proc; 1453 void *arg1; 1454 mac_resource_handle_t arg2; 1455 1456 proc = srs_rx->sr_func; 1457 arg1 = srs_rx->sr_arg1; 1458 arg2 = mac_srs->srs_mrh; 1459 1460 proc(arg1, arg2, mp_chain, NULL); 1461 } 1462 1463 /* 1464 * This function is called to get the list of HW rings that are reserved by 1465 * an exclusive mac client. 1466 * 1467 * Return value: the number of HW rings. 1468 */ 1469 int 1470 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1471 mac_ring_handle_t *hwrh) 1472 { 1473 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1474 flow_entry_t *flent = mcip->mci_flent; 1475 mac_group_t *grp = flent->fe_rx_ring_group; 1476 mac_ring_t *ring; 1477 int cnt = 0; 1478 1479 /* 1480 * The mac client did not reserve any RX group, return directly. 1481 * This is probably because the underlying MAC does not support 1482 * any RX groups. 1483 */ 1484 *hwgh = NULL; 1485 if (grp == NULL) 1486 return (0); 1487 1488 /* 1489 * This RX group must be reserved by this mac client. 1490 */ 1491 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1492 (mch == (mac_client_handle_t)(MAC_RX_GROUP_ONLY_CLIENT(grp)))); 1493 1494 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) { 1495 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1496 hwrh[cnt++] = (mac_ring_handle_t)ring; 1497 } 1498 *hwgh = (mac_group_handle_t)grp; 1499 return (cnt); 1500 } 1501 1502 /* 1503 * Setup the RX callback of the mac client which exclusively controls HW ring. 1504 */ 1505 void 1506 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh) 1507 { 1508 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1509 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1510 1511 mac_srs->srs_mrh = prh; 1512 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1513 } 1514 1515 void 1516 mac_hwring_teardown(mac_ring_handle_t hwrh) 1517 { 1518 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1519 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1520 1521 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1522 mac_srs->srs_mrh = NULL; 1523 } 1524 1525 int 1526 mac_hwring_disable_intr(mac_ring_handle_t rh) 1527 { 1528 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1529 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1530 1531 return (intr->mi_disable(intr->mi_handle)); 1532 } 1533 1534 int 1535 mac_hwring_enable_intr(mac_ring_handle_t rh) 1536 { 1537 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1538 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1539 1540 return (intr->mi_enable(intr->mi_handle)); 1541 } 1542 1543 int 1544 mac_hwring_start(mac_ring_handle_t rh) 1545 { 1546 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1547 1548 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1549 return (0); 1550 } 1551 1552 void 1553 mac_hwring_stop(mac_ring_handle_t rh) 1554 { 1555 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1556 1557 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1558 } 1559 1560 mblk_t * 1561 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1562 { 1563 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1564 mac_ring_info_t *info = &rr_ring->mr_info; 1565 1566 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1567 } 1568 1569 int 1570 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1571 { 1572 mac_group_t *group = (mac_group_t *)gh; 1573 1574 return (mac_group_addmac(group, addr)); 1575 } 1576 1577 int 1578 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1579 { 1580 mac_group_t *group = (mac_group_t *)gh; 1581 1582 return (mac_group_remmac(group, addr)); 1583 } 1584 1585 /* 1586 * Set the RX group to be shared/reserved. Note that the group must be 1587 * started/stopped outside of this function. 1588 */ 1589 void 1590 mac_set_rx_group_state(mac_group_t *grp, mac_group_state_t state) 1591 { 1592 /* 1593 * If there is no change in the group state, just return. 1594 */ 1595 if (grp->mrg_state == state) 1596 return; 1597 1598 switch (state) { 1599 case MAC_GROUP_STATE_RESERVED: 1600 /* 1601 * Successfully reserved the group. 1602 * 1603 * Given that there is an exclusive client controlling this 1604 * group, we enable the group level polling when available, 1605 * so that SRSs get to turn on/off individual rings they's 1606 * assigned to. 1607 */ 1608 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1609 1610 if (GROUP_INTR_DISABLE_FUNC(grp) != NULL) 1611 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1612 1613 break; 1614 1615 case MAC_GROUP_STATE_SHARED: 1616 /* 1617 * Set all rings of this group to software classified. 1618 * If the group has an overriding interrupt, then re-enable it. 1619 */ 1620 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1621 1622 if (GROUP_INTR_ENABLE_FUNC(grp) != NULL) 1623 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1624 1625 /* The ring is not available for reservations any more */ 1626 break; 1627 1628 case MAC_GROUP_STATE_REGISTERED: 1629 /* Also callable from mac_register, perim is not held */ 1630 break; 1631 1632 default: 1633 ASSERT(B_FALSE); 1634 break; 1635 } 1636 1637 grp->mrg_state = state; 1638 } 1639 1640 /* 1641 * Quiesce future hardware classified packets for the specified Rx ring 1642 */ 1643 static void 1644 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1645 { 1646 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1647 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1648 1649 mutex_enter(&rx_ring->mr_lock); 1650 rx_ring->mr_flag |= ring_flag; 1651 while (rx_ring->mr_refcnt != 0) 1652 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1653 mutex_exit(&rx_ring->mr_lock); 1654 } 1655 1656 /* 1657 * Please see mac_tx for details about the per cpu locking scheme 1658 */ 1659 static void 1660 mac_tx_lock_all(mac_client_impl_t *mcip) 1661 { 1662 int i; 1663 1664 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1665 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1666 } 1667 1668 static void 1669 mac_tx_unlock_all(mac_client_impl_t *mcip) 1670 { 1671 int i; 1672 1673 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1674 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1675 } 1676 1677 static void 1678 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1679 { 1680 int i; 1681 1682 for (i = mac_tx_percpu_cnt; i > 0; i--) 1683 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1684 } 1685 1686 static int 1687 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1688 { 1689 int i; 1690 int refcnt = 0; 1691 1692 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1693 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1694 1695 return (refcnt); 1696 } 1697 1698 /* 1699 * Stop future Tx packets coming down from the client in preparation for 1700 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1701 * of rings between clients 1702 */ 1703 void 1704 mac_tx_client_block(mac_client_impl_t *mcip) 1705 { 1706 mac_tx_lock_all(mcip); 1707 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1708 while (mac_tx_sum_refcnt(mcip) != 0) { 1709 mac_tx_unlock_allbutzero(mcip); 1710 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1711 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1712 mac_tx_lock_all(mcip); 1713 } 1714 mac_tx_unlock_all(mcip); 1715 } 1716 1717 void 1718 mac_tx_client_unblock(mac_client_impl_t *mcip) 1719 { 1720 mac_tx_lock_all(mcip); 1721 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1722 mac_tx_unlock_all(mcip); 1723 /* 1724 * We may fail to disable flow control for the last MAC_NOTE_TX 1725 * notification because the MAC client is quiesced. Send the 1726 * notification again. 1727 */ 1728 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1729 } 1730 1731 /* 1732 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1733 * quiesce is done. 1734 */ 1735 static void 1736 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1737 { 1738 mutex_enter(&srs->srs_lock); 1739 while (!(srs->srs_state & srs_flag)) 1740 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1741 mutex_exit(&srs->srs_lock); 1742 } 1743 1744 /* 1745 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1746 * works bottom up by cutting off packet flow from the bottommost point in the 1747 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1748 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1749 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1750 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1751 * for the SRS and MR flags. In the former case the threads pause waiting for 1752 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1753 * is also mostly similar to the above. 1754 * 1755 * 1. Stop future hardware classified packets at the lowest level in the mac. 1756 * Remove any hardware classification rule (CONDEMNED case) and mark the 1757 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1758 * from increasing. Upcalls from the driver that come through hardware 1759 * classification will be dropped in mac_rx from now on. Then we wait for 1760 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1761 * sure there aren't any upcall threads from the driver through hardware 1762 * classification. In the case of SRS teardown we also remove the 1763 * classification rule in the driver. 1764 * 1765 * 2. Stop future software classified packets by marking the flow entry with 1766 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1767 * increasing. We also remove the flow entry from the table in the latter 1768 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1769 * that indicates there aren't any active threads using that flow entry. 1770 * 1771 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1772 * SRS worker thread, and the soft ring threads are quiesced in sequence 1773 * with the SRS worker thread serving as a master controller. This 1774 * mechansim is explained in mac_srs_worker_quiesce(). 1775 * 1776 * The restart mechanism to reactivate the SRS and softrings is explained 1777 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1778 * restart sequence. 1779 */ 1780 void 1781 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1782 { 1783 flow_entry_t *flent = srs->srs_flent; 1784 uint_t mr_flag, srs_done_flag; 1785 1786 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1787 ASSERT(!(srs->srs_type & SRST_TX)); 1788 1789 if (srs_quiesce_flag == SRS_CONDEMNED) { 1790 mr_flag = MR_CONDEMNED; 1791 srs_done_flag = SRS_CONDEMNED_DONE; 1792 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1793 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1794 } else { 1795 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1796 mr_flag = MR_QUIESCE; 1797 srs_done_flag = SRS_QUIESCE_DONE; 1798 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1799 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1800 } 1801 1802 if (srs->srs_ring != NULL) { 1803 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1804 } else { 1805 /* 1806 * SRS is driven by software classification. In case 1807 * of CONDEMNED, the top level teardown functions will 1808 * deal with flow removal. 1809 */ 1810 if (srs_quiesce_flag != SRS_CONDEMNED) { 1811 FLOW_MARK(flent, FE_QUIESCE); 1812 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1813 } 1814 } 1815 1816 /* 1817 * Signal the SRS to quiesce itself, and then cv_wait for the 1818 * SRS quiesce to complete. The SRS worker thread will wake us 1819 * up when the quiesce is complete 1820 */ 1821 mac_srs_signal(srs, srs_quiesce_flag); 1822 mac_srs_quiesce_wait(srs, srs_done_flag); 1823 } 1824 1825 /* 1826 * Remove an SRS. 1827 */ 1828 void 1829 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1830 { 1831 flow_entry_t *flent = srs->srs_flent; 1832 int i; 1833 1834 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1835 /* 1836 * Locate and remove our entry in the fe_rx_srs[] array, and 1837 * adjust the fe_rx_srs array entries and array count by 1838 * moving the last entry into the vacated spot. 1839 */ 1840 mutex_enter(&flent->fe_lock); 1841 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1842 if (flent->fe_rx_srs[i] == srs) 1843 break; 1844 } 1845 1846 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1847 if (i != flent->fe_rx_srs_cnt - 1) { 1848 flent->fe_rx_srs[i] = 1849 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 1850 i = flent->fe_rx_srs_cnt - 1; 1851 } 1852 1853 flent->fe_rx_srs[i] = NULL; 1854 flent->fe_rx_srs_cnt--; 1855 mutex_exit(&flent->fe_lock); 1856 1857 mac_srs_free(srs); 1858 } 1859 1860 static void 1861 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 1862 { 1863 mutex_enter(&srs->srs_lock); 1864 srs->srs_state &= ~flag; 1865 mutex_exit(&srs->srs_lock); 1866 } 1867 1868 void 1869 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 1870 { 1871 flow_entry_t *flent = srs->srs_flent; 1872 mac_ring_t *mr; 1873 1874 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1875 ASSERT((srs->srs_type & SRST_TX) == 0); 1876 1877 /* 1878 * This handles a change in the number of SRSs between the quiesce and 1879 * and restart operation of a flow. 1880 */ 1881 if (!SRS_QUIESCED(srs)) 1882 return; 1883 1884 /* 1885 * Signal the SRS to restart itself. Wait for the restart to complete 1886 * Note that we only restart the SRS if it is not marked as 1887 * permanently quiesced. 1888 */ 1889 if (!SRS_QUIESCED_PERMANENT(srs)) { 1890 mac_srs_signal(srs, SRS_RESTART); 1891 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 1892 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 1893 1894 mac_srs_client_poll_restart(srs->srs_mcip, srs); 1895 } 1896 1897 /* Finally clear the flags to let the packets in */ 1898 mr = srs->srs_ring; 1899 if (mr != NULL) { 1900 MAC_RING_UNMARK(mr, MR_QUIESCE); 1901 /* In case the ring was stopped, safely restart it */ 1902 (void) mac_start_ring(mr); 1903 } else { 1904 FLOW_UNMARK(flent, FE_QUIESCE); 1905 } 1906 } 1907 1908 /* 1909 * Temporary quiesce of a flow and associated Rx SRS. 1910 * Please see block comment above mac_rx_classify_flow_rem. 1911 */ 1912 /* ARGSUSED */ 1913 int 1914 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 1915 { 1916 int i; 1917 1918 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1919 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 1920 SRS_QUIESCE); 1921 } 1922 return (0); 1923 } 1924 1925 /* 1926 * Restart a flow and associated Rx SRS that has been quiesced temporarily 1927 * Please see block comment above mac_rx_classify_flow_rem 1928 */ 1929 /* ARGSUSED */ 1930 int 1931 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 1932 { 1933 int i; 1934 1935 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 1936 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 1937 1938 return (0); 1939 } 1940 1941 void 1942 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 1943 { 1944 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1945 flow_entry_t *flent = mcip->mci_flent; 1946 mac_impl_t *mip = mcip->mci_mip; 1947 mac_soft_ring_set_t *mac_srs; 1948 int i; 1949 1950 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1951 1952 if (flent == NULL) 1953 return; 1954 1955 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1956 mac_srs = flent->fe_rx_srs[i]; 1957 mutex_enter(&mac_srs->srs_lock); 1958 if (on) 1959 mac_srs->srs_state |= SRS_QUIESCE_PERM; 1960 else 1961 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 1962 mutex_exit(&mac_srs->srs_lock); 1963 } 1964 } 1965 1966 void 1967 mac_rx_client_quiesce(mac_client_handle_t mch) 1968 { 1969 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1970 mac_impl_t *mip = mcip->mci_mip; 1971 1972 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1973 1974 if (MCIP_DATAPATH_SETUP(mcip)) { 1975 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 1976 NULL); 1977 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1978 mac_rx_classify_flow_quiesce, NULL); 1979 } 1980 } 1981 1982 void 1983 mac_rx_client_restart(mac_client_handle_t mch) 1984 { 1985 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1986 mac_impl_t *mip = mcip->mci_mip; 1987 1988 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1989 1990 if (MCIP_DATAPATH_SETUP(mcip)) { 1991 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 1992 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1993 mac_rx_classify_flow_restart, NULL); 1994 } 1995 } 1996 1997 /* 1998 * This function only quiesces the Tx SRS and softring worker threads. Callers 1999 * need to make sure that there aren't any mac client threads doing current or 2000 * future transmits in the mac before calling this function. 2001 */ 2002 void 2003 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2004 { 2005 mac_client_impl_t *mcip = srs->srs_mcip; 2006 2007 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2008 2009 ASSERT(srs->srs_type & SRST_TX); 2010 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2011 srs_quiesce_flag == SRS_QUIESCE); 2012 2013 /* 2014 * Signal the SRS to quiesce itself, and then cv_wait for the 2015 * SRS quiesce to complete. The SRS worker thread will wake us 2016 * up when the quiesce is complete 2017 */ 2018 mac_srs_signal(srs, srs_quiesce_flag); 2019 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2020 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2021 } 2022 2023 void 2024 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2025 { 2026 /* 2027 * Resizing the fanout could result in creation of new SRSs. 2028 * They may not necessarily be in the quiesced state in which 2029 * case it need be restarted 2030 */ 2031 if (!SRS_QUIESCED(srs)) 2032 return; 2033 2034 mac_srs_signal(srs, SRS_RESTART); 2035 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2036 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2037 } 2038 2039 /* 2040 * Temporary quiesce of a flow and associated Rx SRS. 2041 * Please see block comment above mac_rx_srs_quiesce 2042 */ 2043 /* ARGSUSED */ 2044 int 2045 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2046 { 2047 /* 2048 * The fe_tx_srs is null for a subflow on an interface that is 2049 * not plumbed 2050 */ 2051 if (flent->fe_tx_srs != NULL) 2052 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2053 return (0); 2054 } 2055 2056 /* ARGSUSED */ 2057 int 2058 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2059 { 2060 /* 2061 * The fe_tx_srs is null for a subflow on an interface that is 2062 * not plumbed 2063 */ 2064 if (flent->fe_tx_srs != NULL) 2065 mac_tx_srs_restart(flent->fe_tx_srs); 2066 return (0); 2067 } 2068 2069 void 2070 mac_tx_client_quiesce(mac_client_impl_t *mcip, uint_t srs_quiesce_flag) 2071 { 2072 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2073 2074 mac_tx_client_block(mcip); 2075 if (MCIP_TX_SRS(mcip) != NULL) { 2076 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2077 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2078 mac_tx_flow_quiesce, NULL); 2079 } 2080 } 2081 2082 void 2083 mac_tx_client_restart(mac_client_impl_t *mcip) 2084 { 2085 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2086 2087 mac_tx_client_unblock(mcip); 2088 if (MCIP_TX_SRS(mcip) != NULL) { 2089 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2090 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2091 mac_tx_flow_restart, NULL); 2092 } 2093 } 2094 2095 void 2096 mac_tx_client_flush(mac_client_impl_t *mcip) 2097 { 2098 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2099 2100 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2101 mac_tx_client_restart(mcip); 2102 } 2103 2104 void 2105 mac_client_quiesce(mac_client_impl_t *mcip) 2106 { 2107 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2108 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2109 } 2110 2111 void 2112 mac_client_restart(mac_client_impl_t *mcip) 2113 { 2114 mac_rx_client_restart((mac_client_handle_t)mcip); 2115 mac_tx_client_restart(mcip); 2116 } 2117 2118 /* 2119 * Allocate a minor number. 2120 */ 2121 minor_t 2122 mac_minor_hold(boolean_t sleep) 2123 { 2124 minor_t minor; 2125 2126 /* 2127 * Grab a value from the arena. 2128 */ 2129 atomic_add_32(&minor_count, 1); 2130 2131 if (sleep) 2132 minor = (uint_t)id_alloc(minor_ids); 2133 else 2134 minor = (uint_t)id_alloc_nosleep(minor_ids); 2135 2136 if (minor == 0) { 2137 atomic_add_32(&minor_count, -1); 2138 return (0); 2139 } 2140 2141 return (minor); 2142 } 2143 2144 /* 2145 * Release a previously allocated minor number. 2146 */ 2147 void 2148 mac_minor_rele(minor_t minor) 2149 { 2150 /* 2151 * Return the value to the arena. 2152 */ 2153 id_free(minor_ids, minor); 2154 atomic_add_32(&minor_count, -1); 2155 } 2156 2157 uint32_t 2158 mac_no_notification(mac_handle_t mh) 2159 { 2160 mac_impl_t *mip = (mac_impl_t *)mh; 2161 2162 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2163 mip->mi_capab_legacy.ml_unsup_note : 0); 2164 } 2165 2166 /* 2167 * Prevent any new opens of this mac in preparation for unregister 2168 */ 2169 int 2170 i_mac_disable(mac_impl_t *mip) 2171 { 2172 mac_client_impl_t *mcip; 2173 2174 rw_enter(&i_mac_impl_lock, RW_WRITER); 2175 if (mip->mi_state_flags & MIS_DISABLED) { 2176 /* Already disabled, return success */ 2177 rw_exit(&i_mac_impl_lock); 2178 return (0); 2179 } 2180 /* 2181 * See if there are any other references to this mac_t (e.g., VLAN's). 2182 * If so return failure. If all the other checks below pass, then 2183 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2184 * any new VLAN's from being created or new mac client opens of this 2185 * mac end point. 2186 */ 2187 if (mip->mi_ref > 0) { 2188 rw_exit(&i_mac_impl_lock); 2189 return (EBUSY); 2190 } 2191 2192 /* 2193 * mac clients must delete all multicast groups they join before 2194 * closing. bcast groups are reference counted, the last client 2195 * to delete the group will wait till the group is physically 2196 * deleted. Since all clients have closed this mac end point 2197 * mi_bcast_ngrps must be zero at this point 2198 */ 2199 ASSERT(mip->mi_bcast_ngrps == 0); 2200 2201 /* 2202 * Don't let go of this if it has some flows. 2203 * All other code guarantees no flows are added to a disabled 2204 * mac, therefore it is sufficient to check for the flow table 2205 * only here. 2206 */ 2207 mcip = mac_primary_client_handle(mip); 2208 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2209 rw_exit(&i_mac_impl_lock); 2210 return (ENOTEMPTY); 2211 } 2212 2213 mip->mi_state_flags |= MIS_DISABLED; 2214 rw_exit(&i_mac_impl_lock); 2215 return (0); 2216 } 2217 2218 int 2219 mac_disable_nowait(mac_handle_t mh) 2220 { 2221 mac_impl_t *mip = (mac_impl_t *)mh; 2222 int err; 2223 2224 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2225 return (err); 2226 err = i_mac_disable(mip); 2227 i_mac_perim_exit(mip); 2228 return (err); 2229 } 2230 2231 int 2232 mac_disable(mac_handle_t mh) 2233 { 2234 mac_impl_t *mip = (mac_impl_t *)mh; 2235 int err; 2236 2237 i_mac_perim_enter(mip); 2238 err = i_mac_disable(mip); 2239 i_mac_perim_exit(mip); 2240 2241 /* 2242 * Clean up notification thread and wait for it to exit. 2243 */ 2244 if (err == 0) 2245 i_mac_notify_exit(mip); 2246 2247 return (err); 2248 } 2249 2250 /* 2251 * Called when the MAC instance has a non empty flow table, to de-multiplex 2252 * incoming packets to the right flow. 2253 * The MAC's rw lock is assumed held as a READER. 2254 */ 2255 /* ARGSUSED */ 2256 static mblk_t * 2257 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2258 { 2259 flow_entry_t *flent = NULL; 2260 uint_t flags = FLOW_INBOUND; 2261 int err; 2262 2263 /* 2264 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2265 * to mac_flow_lookup() so that the VLAN packets can be successfully 2266 * passed to the non-VLAN aggregation flows. 2267 * 2268 * Note that there is possibly a race between this and 2269 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2270 * classified to non-VLAN flows of non-aggregation mac clients. These 2271 * VLAN packets will be then filtered out by the mac module. 2272 */ 2273 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2274 flags |= FLOW_IGNORE_VLAN; 2275 2276 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2277 if (err != 0) { 2278 /* no registered receive function */ 2279 return (mp); 2280 } else { 2281 mac_client_impl_t *mcip; 2282 2283 /* 2284 * This flent might just be an additional one on the MAC client, 2285 * i.e. for classification purposes (different fdesc), however 2286 * the resources, SRS et. al., are in the mci_flent, so if 2287 * this isn't the mci_flent, we need to get it. 2288 */ 2289 if ((mcip = flent->fe_mcip) != NULL && 2290 mcip->mci_flent != flent) { 2291 FLOW_REFRELE(flent); 2292 flent = mcip->mci_flent; 2293 FLOW_TRY_REFHOLD(flent, err); 2294 if (err != 0) 2295 return (mp); 2296 } 2297 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2298 B_FALSE); 2299 FLOW_REFRELE(flent); 2300 } 2301 return (NULL); 2302 } 2303 2304 mblk_t * 2305 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2306 { 2307 mac_impl_t *mip = (mac_impl_t *)mh; 2308 mblk_t *bp, *bp1, **bpp, *list = NULL; 2309 2310 /* 2311 * We walk the chain and attempt to classify each packet. 2312 * The packets that couldn't be classified will be returned 2313 * back to the caller. 2314 */ 2315 bp = mp_chain; 2316 bpp = &list; 2317 while (bp != NULL) { 2318 bp1 = bp; 2319 bp = bp->b_next; 2320 bp1->b_next = NULL; 2321 2322 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2323 *bpp = bp1; 2324 bpp = &bp1->b_next; 2325 } 2326 } 2327 return (list); 2328 } 2329 2330 static int 2331 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2332 { 2333 mac_ring_handle_t ring = arg; 2334 2335 if (flent->fe_tx_srs) 2336 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2337 return (0); 2338 } 2339 2340 void 2341 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2342 { 2343 mac_client_impl_t *cclient; 2344 mac_soft_ring_set_t *mac_srs; 2345 2346 /* 2347 * After grabbing the mi_rw_lock, the list of clients can't change. 2348 * If there are any clients mi_disabled must be B_FALSE and can't 2349 * get set since there are clients. If there aren't any clients we 2350 * don't do anything. In any case the mip has to be valid. The driver 2351 * must make sure that it goes single threaded (with respect to mac 2352 * calls) and wait for all pending mac calls to finish before calling 2353 * mac_unregister. 2354 */ 2355 rw_enter(&i_mac_impl_lock, RW_READER); 2356 if (mip->mi_state_flags & MIS_DISABLED) { 2357 rw_exit(&i_mac_impl_lock); 2358 return; 2359 } 2360 2361 /* 2362 * Get MAC tx srs from walking mac_client_handle list. 2363 */ 2364 rw_enter(&mip->mi_rw_lock, RW_READER); 2365 for (cclient = mip->mi_clients_list; cclient != NULL; 2366 cclient = cclient->mci_client_next) { 2367 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) 2368 mac_tx_srs_wakeup(mac_srs, ring); 2369 (void) mac_flow_walk(cclient->mci_subflow_tab, 2370 mac_tx_flow_srs_wakeup, ring); 2371 } 2372 rw_exit(&mip->mi_rw_lock); 2373 rw_exit(&i_mac_impl_lock); 2374 } 2375 2376 /* ARGSUSED */ 2377 void 2378 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2379 boolean_t add) 2380 { 2381 mac_impl_t *mip = (mac_impl_t *)mh; 2382 2383 i_mac_perim_enter((mac_impl_t *)mh); 2384 /* 2385 * If no specific refresh function was given then default to the 2386 * driver's m_multicst entry point. 2387 */ 2388 if (refresh == NULL) { 2389 refresh = mip->mi_multicst; 2390 arg = mip->mi_driver; 2391 } 2392 2393 mac_bcast_refresh(mip, refresh, arg, add); 2394 i_mac_perim_exit((mac_impl_t *)mh); 2395 } 2396 2397 void 2398 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2399 { 2400 mac_impl_t *mip = (mac_impl_t *)mh; 2401 2402 /* 2403 * If no specific refresh function was given then default to the 2404 * driver's m_promisc entry point. 2405 */ 2406 if (refresh == NULL) { 2407 refresh = mip->mi_setpromisc; 2408 arg = mip->mi_driver; 2409 } 2410 ASSERT(refresh != NULL); 2411 2412 /* 2413 * Call the refresh function with the current promiscuity. 2414 */ 2415 refresh(arg, (mip->mi_devpromisc != 0)); 2416 } 2417 2418 /* 2419 * The mac client requests that the mac not to change its margin size to 2420 * be less than the specified value. If "current" is B_TRUE, then the client 2421 * requests the mac not to change its margin size to be smaller than the 2422 * current size. Further, return the current margin size value in this case. 2423 * 2424 * We keep every requested size in an ordered list from largest to smallest. 2425 */ 2426 int 2427 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2428 { 2429 mac_impl_t *mip = (mac_impl_t *)mh; 2430 mac_margin_req_t **pp, *p; 2431 int err = 0; 2432 2433 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2434 if (current) 2435 *marginp = mip->mi_margin; 2436 2437 /* 2438 * If the current margin value cannot satisfy the margin requested, 2439 * return ENOTSUP directly. 2440 */ 2441 if (*marginp > mip->mi_margin) { 2442 err = ENOTSUP; 2443 goto done; 2444 } 2445 2446 /* 2447 * Check whether the given margin is already in the list. If so, 2448 * bump the reference count. 2449 */ 2450 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2451 if (p->mmr_margin == *marginp) { 2452 /* 2453 * The margin requested is already in the list, 2454 * so just bump the reference count. 2455 */ 2456 p->mmr_ref++; 2457 goto done; 2458 } 2459 if (p->mmr_margin < *marginp) 2460 break; 2461 } 2462 2463 2464 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2465 p->mmr_margin = *marginp; 2466 p->mmr_ref++; 2467 p->mmr_nextp = *pp; 2468 *pp = p; 2469 2470 done: 2471 rw_exit(&(mip->mi_rw_lock)); 2472 return (err); 2473 } 2474 2475 /* 2476 * The mac client requests to cancel its previous mac_margin_add() request. 2477 * We remove the requested margin size from the list. 2478 */ 2479 int 2480 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2481 { 2482 mac_impl_t *mip = (mac_impl_t *)mh; 2483 mac_margin_req_t **pp, *p; 2484 int err = 0; 2485 2486 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2487 /* 2488 * Find the entry in the list for the given margin. 2489 */ 2490 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2491 if (p->mmr_margin == margin) { 2492 if (--p->mmr_ref == 0) 2493 break; 2494 2495 /* 2496 * There is still a reference to this address so 2497 * there's nothing more to do. 2498 */ 2499 goto done; 2500 } 2501 } 2502 2503 /* 2504 * We did not find an entry for the given margin. 2505 */ 2506 if (p == NULL) { 2507 err = ENOENT; 2508 goto done; 2509 } 2510 2511 ASSERT(p->mmr_ref == 0); 2512 2513 /* 2514 * Remove it from the list. 2515 */ 2516 *pp = p->mmr_nextp; 2517 kmem_free(p, sizeof (mac_margin_req_t)); 2518 done: 2519 rw_exit(&(mip->mi_rw_lock)); 2520 return (err); 2521 } 2522 2523 boolean_t 2524 mac_margin_update(mac_handle_t mh, uint32_t margin) 2525 { 2526 mac_impl_t *mip = (mac_impl_t *)mh; 2527 uint32_t margin_needed = 0; 2528 2529 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2530 2531 if (mip->mi_mmrp != NULL) 2532 margin_needed = mip->mi_mmrp->mmr_margin; 2533 2534 if (margin_needed <= margin) 2535 mip->mi_margin = margin; 2536 2537 rw_exit(&(mip->mi_rw_lock)); 2538 2539 if (margin_needed <= margin) 2540 i_mac_notify(mip, MAC_NOTE_MARGIN); 2541 2542 return (margin_needed <= margin); 2543 } 2544 2545 /* 2546 * MAC Type Plugin functions. 2547 */ 2548 2549 mactype_t * 2550 mactype_getplugin(const char *pname) 2551 { 2552 mactype_t *mtype = NULL; 2553 boolean_t tried_modload = B_FALSE; 2554 2555 mutex_enter(&i_mactype_lock); 2556 2557 find_registered_mactype: 2558 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2559 (mod_hash_val_t *)&mtype) != 0) { 2560 if (!tried_modload) { 2561 /* 2562 * If the plugin has not yet been loaded, then 2563 * attempt to load it now. If modload() succeeds, 2564 * the plugin should have registered using 2565 * mactype_register(), in which case we can go back 2566 * and attempt to find it again. 2567 */ 2568 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2569 tried_modload = B_TRUE; 2570 goto find_registered_mactype; 2571 } 2572 } 2573 } else { 2574 /* 2575 * Note that there's no danger that the plugin we've loaded 2576 * could be unloaded between the modload() step and the 2577 * reference count bump here, as we're holding 2578 * i_mactype_lock, which mactype_unregister() also holds. 2579 */ 2580 atomic_inc_32(&mtype->mt_ref); 2581 } 2582 2583 mutex_exit(&i_mactype_lock); 2584 return (mtype); 2585 } 2586 2587 mactype_register_t * 2588 mactype_alloc(uint_t mactype_version) 2589 { 2590 mactype_register_t *mtrp; 2591 2592 /* 2593 * Make sure there isn't a version mismatch between the plugin and 2594 * the framework. In the future, if multiple versions are 2595 * supported, this check could become more sophisticated. 2596 */ 2597 if (mactype_version != MACTYPE_VERSION) 2598 return (NULL); 2599 2600 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2601 mtrp->mtr_version = mactype_version; 2602 return (mtrp); 2603 } 2604 2605 void 2606 mactype_free(mactype_register_t *mtrp) 2607 { 2608 kmem_free(mtrp, sizeof (mactype_register_t)); 2609 } 2610 2611 int 2612 mactype_register(mactype_register_t *mtrp) 2613 { 2614 mactype_t *mtp; 2615 mactype_ops_t *ops = mtrp->mtr_ops; 2616 2617 /* Do some sanity checking before we register this MAC type. */ 2618 if (mtrp->mtr_ident == NULL || ops == NULL) 2619 return (EINVAL); 2620 2621 /* 2622 * Verify that all mandatory callbacks are set in the ops 2623 * vector. 2624 */ 2625 if (ops->mtops_unicst_verify == NULL || 2626 ops->mtops_multicst_verify == NULL || 2627 ops->mtops_sap_verify == NULL || 2628 ops->mtops_header == NULL || 2629 ops->mtops_header_info == NULL) { 2630 return (EINVAL); 2631 } 2632 2633 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2634 mtp->mt_ident = mtrp->mtr_ident; 2635 mtp->mt_ops = *ops; 2636 mtp->mt_type = mtrp->mtr_mactype; 2637 mtp->mt_nativetype = mtrp->mtr_nativetype; 2638 mtp->mt_addr_length = mtrp->mtr_addrlen; 2639 if (mtrp->mtr_brdcst_addr != NULL) { 2640 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2641 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2642 mtrp->mtr_addrlen); 2643 } 2644 2645 mtp->mt_stats = mtrp->mtr_stats; 2646 mtp->mt_statcount = mtrp->mtr_statcount; 2647 2648 mtp->mt_mapping = mtrp->mtr_mapping; 2649 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2650 2651 if (mod_hash_insert(i_mactype_hash, 2652 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2653 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2654 kmem_free(mtp, sizeof (*mtp)); 2655 return (EEXIST); 2656 } 2657 return (0); 2658 } 2659 2660 int 2661 mactype_unregister(const char *ident) 2662 { 2663 mactype_t *mtp; 2664 mod_hash_val_t val; 2665 int err; 2666 2667 /* 2668 * Let's not allow MAC drivers to use this plugin while we're 2669 * trying to unregister it. Holding i_mactype_lock also prevents a 2670 * plugin from unregistering while a MAC driver is attempting to 2671 * hold a reference to it in i_mactype_getplugin(). 2672 */ 2673 mutex_enter(&i_mactype_lock); 2674 2675 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2676 (mod_hash_val_t *)&mtp)) != 0) { 2677 /* A plugin is trying to unregister, but it never registered. */ 2678 err = ENXIO; 2679 goto done; 2680 } 2681 2682 if (mtp->mt_ref != 0) { 2683 err = EBUSY; 2684 goto done; 2685 } 2686 2687 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2688 ASSERT(err == 0); 2689 if (err != 0) { 2690 /* This should never happen, thus the ASSERT() above. */ 2691 err = EINVAL; 2692 goto done; 2693 } 2694 ASSERT(mtp == (mactype_t *)val); 2695 2696 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2697 kmem_free(mtp, sizeof (mactype_t)); 2698 done: 2699 mutex_exit(&i_mactype_lock); 2700 return (err); 2701 } 2702 2703 /* 2704 * Returns TRUE when the specified property is intended for the MAC framework, 2705 * as opposed to driver defined properties. 2706 */ 2707 static boolean_t 2708 mac_is_macprop(mac_prop_t *macprop) 2709 { 2710 switch (macprop->mp_id) { 2711 case MAC_PROP_MAXBW: 2712 case MAC_PROP_PRIO: 2713 case MAC_PROP_BIND_CPU: 2714 return (B_TRUE); 2715 default: 2716 return (B_FALSE); 2717 } 2718 } 2719 2720 /* 2721 * mac_set_prop() sets mac or hardware driver properties: 2722 * mac properties include maxbw, priority, and cpu binding list. Driver 2723 * properties are private properties to the hardware, such as mtu, speed 2724 * etc. 2725 * If the property is a driver property, mac_set_prop() calls driver's callback 2726 * function to set it. 2727 * If the property is a mac property, mac_set_prop() invokes mac_set_resources() 2728 * which will cache the property value in mac_impl_t and may call 2729 * mac_client_set_resource() to update property value of the primary mac client, 2730 * if it exists. 2731 */ 2732 int 2733 mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize) 2734 { 2735 int err = ENOTSUP; 2736 mac_impl_t *mip = (mac_impl_t *)mh; 2737 2738 ASSERT(MAC_PERIM_HELD(mh)); 2739 2740 /* If it is mac property, call mac_set_resources() */ 2741 if (mac_is_macprop(macprop)) { 2742 mac_resource_props_t mrp; 2743 2744 if (valsize < sizeof (mac_resource_props_t)) 2745 return (EINVAL); 2746 bzero(&mrp, sizeof (mac_resource_props_t)); 2747 bcopy(val, &mrp, sizeof (mrp)); 2748 return (mac_set_resources(mh, &mrp)); 2749 } 2750 switch (macprop->mp_id) { 2751 case MAC_PROP_MTU: { 2752 uint32_t mtu; 2753 2754 if (valsize < sizeof (mtu)) 2755 return (EINVAL); 2756 bcopy(val, &mtu, sizeof (mtu)); 2757 err = mac_set_mtu(mh, mtu, NULL); 2758 break; 2759 } 2760 default: 2761 /* For other driver properties, call driver's callback */ 2762 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 2763 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 2764 macprop->mp_name, macprop->mp_id, valsize, val); 2765 } 2766 } 2767 return (err); 2768 } 2769 2770 /* 2771 * mac_get_prop() gets mac or hardware driver properties. 2772 * 2773 * If the property is a driver property, mac_get_prop() calls driver's callback 2774 * function to get it. 2775 * If the property is a mac property, mac_get_prop() invokes mac_get_resources() 2776 * which returns the cached value in mac_impl_t. 2777 */ 2778 int 2779 mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize, 2780 uint_t *perm) 2781 { 2782 int err = ENOTSUP; 2783 mac_impl_t *mip = (mac_impl_t *)mh; 2784 link_state_t link_state; 2785 boolean_t is_getprop, is_setprop; 2786 2787 is_getprop = (mip->mi_callbacks->mc_callbacks & MC_GETPROP); 2788 is_setprop = (mip->mi_callbacks->mc_callbacks & MC_SETPROP); 2789 2790 /* If mac property, read from cache */ 2791 if (mac_is_macprop(macprop)) { 2792 mac_resource_props_t mrp; 2793 2794 if (valsize < sizeof (mac_resource_props_t)) 2795 return (EINVAL); 2796 bzero(&mrp, sizeof (mac_resource_props_t)); 2797 mac_get_resources(mh, &mrp); 2798 bcopy(&mrp, val, sizeof (mac_resource_props_t)); 2799 return (0); 2800 } 2801 2802 switch (macprop->mp_id) { 2803 case MAC_PROP_MTU: { 2804 uint32_t sdu; 2805 mac_propval_range_t range; 2806 2807 if ((macprop->mp_flags & MAC_PROP_POSSIBLE) != 0) { 2808 if (valsize < sizeof (mac_propval_range_t)) 2809 return (EINVAL); 2810 if (is_getprop) { 2811 err = mip->mi_callbacks->mc_getprop(mip-> 2812 mi_driver, macprop->mp_name, macprop->mp_id, 2813 macprop->mp_flags, valsize, val, perm); 2814 } 2815 /* 2816 * If the driver doesn't have *_m_getprop defined or 2817 * if the driver doesn't support setting MTU then 2818 * return the CURRENT value as POSSIBLE value. 2819 */ 2820 if (!is_getprop || err == ENOTSUP) { 2821 mac_sdu_get(mh, NULL, &sdu); 2822 range.mpr_count = 1; 2823 range.mpr_type = MAC_PROPVAL_UINT32; 2824 range.range_uint32[0].mpur_min = 2825 range.range_uint32[0].mpur_max = sdu; 2826 bcopy(&range, val, sizeof (range)); 2827 err = 0; 2828 } 2829 return (err); 2830 } 2831 if (valsize < sizeof (sdu)) 2832 return (EINVAL); 2833 if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) { 2834 mac_sdu_get(mh, NULL, &sdu); 2835 bcopy(&sdu, val, sizeof (sdu)); 2836 if (is_setprop && (mip->mi_callbacks->mc_setprop(mip-> 2837 mi_driver, macprop->mp_name, macprop->mp_id, 2838 valsize, val) == 0)) { 2839 *perm = MAC_PROP_PERM_RW; 2840 } else { 2841 *perm = MAC_PROP_PERM_READ; 2842 } 2843 return (0); 2844 } else { 2845 if (mip->mi_info.mi_media == DL_ETHER) { 2846 sdu = ETHERMTU; 2847 bcopy(&sdu, val, sizeof (sdu)); 2848 2849 return (0); 2850 } 2851 /* 2852 * ask driver for its default. 2853 */ 2854 break; 2855 } 2856 } 2857 case MAC_PROP_STATUS: 2858 if (valsize < sizeof (link_state)) 2859 return (EINVAL); 2860 *perm = MAC_PROP_PERM_READ; 2861 link_state = mac_link_get(mh); 2862 bcopy(&link_state, val, sizeof (link_state)); 2863 return (0); 2864 default: 2865 break; 2866 2867 } 2868 /* If driver property, request from driver */ 2869 if (is_getprop) { 2870 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, 2871 macprop->mp_name, macprop->mp_id, macprop->mp_flags, 2872 valsize, val, perm); 2873 } 2874 return (err); 2875 } 2876 2877 int 2878 mac_fastpath_disable(mac_handle_t mh) 2879 { 2880 mac_impl_t *mip = (mac_impl_t *)mh; 2881 2882 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 2883 return (0); 2884 2885 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 2886 } 2887 2888 void 2889 mac_fastpath_enable(mac_handle_t mh) 2890 { 2891 mac_impl_t *mip = (mac_impl_t *)mh; 2892 2893 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 2894 return; 2895 2896 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 2897 } 2898 2899 void 2900 mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop) 2901 { 2902 mac_priv_prop_t *mpriv; 2903 2904 if (mpp == NULL) 2905 return; 2906 2907 mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP); 2908 (void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv)); 2909 mip->mi_priv_prop = mpriv; 2910 mip->mi_priv_prop_count = nprop; 2911 } 2912 2913 void 2914 mac_unregister_priv_prop(mac_impl_t *mip) 2915 { 2916 mac_priv_prop_t *mpriv; 2917 2918 mpriv = mip->mi_priv_prop; 2919 if (mpriv != NULL) { 2920 kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv)); 2921 mip->mi_priv_prop = NULL; 2922 } 2923 mip->mi_priv_prop_count = 0; 2924 } 2925 2926 /* 2927 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 2928 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 2929 * cases if MAC free's the ring structure after mac_stop_ring(), any 2930 * illegal access to the ring structure coming from the driver will panic 2931 * the system. In order to protect the system from such inadverent access, 2932 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 2933 * When packets are received on free'd up rings, MAC (through the generation 2934 * count mechanism) will drop such packets. 2935 */ 2936 static mac_ring_t * 2937 mac_ring_alloc(mac_impl_t *mip, mac_capab_rings_t *cap_rings) 2938 { 2939 mac_ring_t *ring; 2940 2941 if (cap_rings->mr_type == MAC_RING_TYPE_RX) { 2942 mutex_enter(&mip->mi_ring_lock); 2943 if (mip->mi_ring_freelist != NULL) { 2944 ring = mip->mi_ring_freelist; 2945 mip->mi_ring_freelist = ring->mr_next; 2946 bzero(ring, sizeof (mac_ring_t)); 2947 } else { 2948 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 2949 } 2950 mutex_exit(&mip->mi_ring_lock); 2951 } else { 2952 ring = kmem_zalloc(sizeof (mac_ring_t), KM_SLEEP); 2953 } 2954 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 2955 return (ring); 2956 } 2957 2958 static void 2959 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 2960 { 2961 if (ring->mr_type == MAC_RING_TYPE_RX) { 2962 mutex_enter(&mip->mi_ring_lock); 2963 ring->mr_state = MR_FREE; 2964 ring->mr_flag = 0; 2965 ring->mr_next = mip->mi_ring_freelist; 2966 mip->mi_ring_freelist = ring; 2967 mutex_exit(&mip->mi_ring_lock); 2968 } else { 2969 kmem_free(ring, sizeof (mac_ring_t)); 2970 } 2971 } 2972 2973 static void 2974 mac_ring_freeall(mac_impl_t *mip) 2975 { 2976 mac_ring_t *ring_next; 2977 mutex_enter(&mip->mi_ring_lock); 2978 mac_ring_t *ring = mip->mi_ring_freelist; 2979 while (ring != NULL) { 2980 ring_next = ring->mr_next; 2981 kmem_cache_free(mac_ring_cache, ring); 2982 ring = ring_next; 2983 } 2984 mip->mi_ring_freelist = NULL; 2985 mutex_exit(&mip->mi_ring_lock); 2986 } 2987 2988 int 2989 mac_start_ring(mac_ring_t *ring) 2990 { 2991 int rv = 0; 2992 2993 if (ring->mr_start != NULL) 2994 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 2995 2996 return (rv); 2997 } 2998 2999 void 3000 mac_stop_ring(mac_ring_t *ring) 3001 { 3002 if (ring->mr_stop != NULL) 3003 ring->mr_stop(ring->mr_driver); 3004 3005 /* 3006 * Increment the ring generation number for this ring. 3007 */ 3008 ring->mr_gen_num++; 3009 } 3010 3011 int 3012 mac_start_group(mac_group_t *group) 3013 { 3014 int rv = 0; 3015 3016 if (group->mrg_start != NULL) 3017 rv = group->mrg_start(group->mrg_driver); 3018 3019 return (rv); 3020 } 3021 3022 void 3023 mac_stop_group(mac_group_t *group) 3024 { 3025 if (group->mrg_stop != NULL) 3026 group->mrg_stop(group->mrg_driver); 3027 } 3028 3029 /* 3030 * Called from mac_start() on the default Rx group. Broadcast and multicast 3031 * packets are received only on the default group. Hence the default group 3032 * needs to be up even if the primary client is not up, for the other groups 3033 * to be functional. We do this by calling this function at mac_start time 3034 * itself. However the broadcast packets that are received can't make their 3035 * way beyond mac_rx until a mac client creates a broadcast flow. 3036 */ 3037 static int 3038 mac_start_group_and_rings(mac_group_t *group) 3039 { 3040 mac_ring_t *ring; 3041 int rv = 0; 3042 3043 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3044 if ((rv = mac_start_group(group)) != 0) 3045 return (rv); 3046 3047 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3048 ASSERT(ring->mr_state == MR_FREE); 3049 if ((rv = mac_start_ring(ring)) != 0) 3050 goto error; 3051 ring->mr_state = MR_INUSE; 3052 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3053 } 3054 return (0); 3055 3056 error: 3057 mac_stop_group_and_rings(group); 3058 return (rv); 3059 } 3060 3061 /* Called from mac_stop on the default Rx group */ 3062 static void 3063 mac_stop_group_and_rings(mac_group_t *group) 3064 { 3065 mac_ring_t *ring; 3066 3067 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3068 if (ring->mr_state != MR_FREE) { 3069 mac_stop_ring(ring); 3070 ring->mr_state = MR_FREE; 3071 ring->mr_flag = 0; 3072 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3073 } 3074 } 3075 mac_stop_group(group); 3076 } 3077 3078 3079 static mac_ring_t * 3080 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3081 mac_capab_rings_t *cap_rings) 3082 { 3083 mac_ring_t *ring; 3084 mac_ring_info_t ring_info; 3085 3086 ring = mac_ring_alloc(mip, cap_rings); 3087 3088 /* Prepare basic information of ring */ 3089 ring->mr_index = index; 3090 ring->mr_type = group->mrg_type; 3091 ring->mr_gh = (mac_group_handle_t)group; 3092 3093 /* Insert the new ring to the list. */ 3094 ring->mr_next = group->mrg_rings; 3095 group->mrg_rings = ring; 3096 3097 /* Zero to reuse the info data structure */ 3098 bzero(&ring_info, sizeof (ring_info)); 3099 3100 /* Query ring information from driver */ 3101 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3102 index, &ring_info, (mac_ring_handle_t)ring); 3103 3104 ring->mr_info = ring_info; 3105 3106 /* Update ring's status */ 3107 ring->mr_state = MR_FREE; 3108 ring->mr_flag = 0; 3109 3110 /* Update the ring count of the group */ 3111 group->mrg_cur_count++; 3112 return (ring); 3113 } 3114 3115 /* 3116 * Rings are chained together for easy regrouping. 3117 */ 3118 static void 3119 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3120 mac_capab_rings_t *cap_rings) 3121 { 3122 int index; 3123 3124 /* 3125 * Initialize all ring members of this group. Size of zero will not 3126 * enter the loop, so it's safe for initializing an empty group. 3127 */ 3128 for (index = size - 1; index >= 0; index--) 3129 (void) mac_init_ring(mip, group, index, cap_rings); 3130 } 3131 3132 int 3133 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3134 { 3135 mac_capab_rings_t *cap_rings; 3136 mac_group_t *group, *groups; 3137 mac_group_info_t group_info; 3138 uint_t group_free = 0; 3139 uint_t ring_left; 3140 mac_ring_t *ring; 3141 int g, err = 0; 3142 3143 switch (rtype) { 3144 case MAC_RING_TYPE_RX: 3145 ASSERT(mip->mi_rx_groups == NULL); 3146 3147 cap_rings = &mip->mi_rx_rings_cap; 3148 cap_rings->mr_type = MAC_RING_TYPE_RX; 3149 break; 3150 case MAC_RING_TYPE_TX: 3151 ASSERT(mip->mi_tx_groups == NULL); 3152 3153 cap_rings = &mip->mi_tx_rings_cap; 3154 cap_rings->mr_type = MAC_RING_TYPE_TX; 3155 break; 3156 default: 3157 ASSERT(B_FALSE); 3158 } 3159 3160 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, 3161 cap_rings)) 3162 return (0); 3163 3164 /* 3165 * Allocate a contiguous buffer for all groups. 3166 */ 3167 groups = kmem_zalloc(sizeof (mac_group_t) * (cap_rings->mr_gnum + 1), 3168 KM_SLEEP); 3169 3170 ring_left = cap_rings->mr_rnum; 3171 3172 /* 3173 * Get all ring groups if any, and get their ring members 3174 * if any. 3175 */ 3176 for (g = 0; g < cap_rings->mr_gnum; g++) { 3177 group = groups + g; 3178 3179 /* Prepare basic information of the group */ 3180 group->mrg_index = g; 3181 group->mrg_type = rtype; 3182 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3183 group->mrg_mh = (mac_handle_t)mip; 3184 group->mrg_next = group + 1; 3185 3186 /* Zero to reuse the info data structure */ 3187 bzero(&group_info, sizeof (group_info)); 3188 3189 /* Query group information from driver */ 3190 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 3191 (mac_group_handle_t)group); 3192 3193 switch (cap_rings->mr_group_type) { 3194 case MAC_GROUP_TYPE_DYNAMIC: 3195 if (cap_rings->mr_gaddring == NULL || 3196 cap_rings->mr_gremring == NULL) { 3197 DTRACE_PROBE3( 3198 mac__init__rings_no_addremring, 3199 char *, mip->mi_name, 3200 mac_group_add_ring_t, 3201 cap_rings->mr_gaddring, 3202 mac_group_add_ring_t, 3203 cap_rings->mr_gremring); 3204 err = EINVAL; 3205 goto bail; 3206 } 3207 3208 switch (rtype) { 3209 case MAC_RING_TYPE_RX: 3210 /* 3211 * The first RX group must have non-zero 3212 * rings, and the following groups must 3213 * have zero rings. 3214 */ 3215 if (g == 0 && group_info.mgi_count == 0) { 3216 DTRACE_PROBE1( 3217 mac__init__rings__rx__def__zero, 3218 char *, mip->mi_name); 3219 err = EINVAL; 3220 goto bail; 3221 } 3222 if (g > 0 && group_info.mgi_count != 0) { 3223 DTRACE_PROBE3( 3224 mac__init__rings__rx__nonzero, 3225 char *, mip->mi_name, 3226 int, g, int, group_info.mgi_count); 3227 err = EINVAL; 3228 goto bail; 3229 } 3230 break; 3231 case MAC_RING_TYPE_TX: 3232 /* 3233 * All TX ring groups must have zero rings. 3234 */ 3235 if (group_info.mgi_count != 0) { 3236 DTRACE_PROBE3( 3237 mac__init__rings__tx__nonzero, 3238 char *, mip->mi_name, 3239 int, g, int, group_info.mgi_count); 3240 err = EINVAL; 3241 goto bail; 3242 } 3243 break; 3244 } 3245 break; 3246 case MAC_GROUP_TYPE_STATIC: 3247 /* 3248 * Note that an empty group is allowed, e.g., an aggr 3249 * would start with an empty group. 3250 */ 3251 break; 3252 default: 3253 /* unknown group type */ 3254 DTRACE_PROBE2(mac__init__rings__unknown__type, 3255 char *, mip->mi_name, 3256 int, cap_rings->mr_group_type); 3257 err = EINVAL; 3258 goto bail; 3259 } 3260 3261 3262 /* 3263 * Driver must register group->mgi_addmac/remmac() for rx groups 3264 * to support multiple MAC addresses. 3265 */ 3266 if (rtype == MAC_RING_TYPE_RX) { 3267 if ((group_info.mgi_addmac == NULL) || 3268 (group_info.mgi_addmac == NULL)) 3269 goto bail; 3270 } 3271 3272 /* Cache driver-supplied information */ 3273 group->mrg_info = group_info; 3274 3275 /* Update the group's status and group count. */ 3276 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3277 group_free++; 3278 3279 group->mrg_rings = NULL; 3280 group->mrg_cur_count = 0; 3281 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 3282 ring_left -= group_info.mgi_count; 3283 3284 /* The current group size should be equal to default value */ 3285 ASSERT(group->mrg_cur_count == group_info.mgi_count); 3286 } 3287 3288 /* Build up a dummy group for free resources as a pool */ 3289 group = groups + cap_rings->mr_gnum; 3290 3291 /* Prepare basic information of the group */ 3292 group->mrg_index = -1; 3293 group->mrg_type = rtype; 3294 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3295 group->mrg_mh = (mac_handle_t)mip; 3296 group->mrg_next = NULL; 3297 3298 /* 3299 * If there are ungrouped rings, allocate a continuous buffer for 3300 * remaining resources. 3301 */ 3302 if (ring_left != 0) { 3303 group->mrg_rings = NULL; 3304 group->mrg_cur_count = 0; 3305 mac_init_group(mip, group, ring_left, cap_rings); 3306 3307 /* The current group size should be equal to ring_left */ 3308 ASSERT(group->mrg_cur_count == ring_left); 3309 3310 ring_left = 0; 3311 3312 /* Update this group's status */ 3313 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3314 } else 3315 group->mrg_rings = NULL; 3316 3317 ASSERT(ring_left == 0); 3318 3319 bail: 3320 /* Cache other important information to finalize the initialization */ 3321 switch (rtype) { 3322 case MAC_RING_TYPE_RX: 3323 mip->mi_rx_group_type = cap_rings->mr_group_type; 3324 mip->mi_rx_group_count = cap_rings->mr_gnum; 3325 mip->mi_rx_groups = groups; 3326 break; 3327 case MAC_RING_TYPE_TX: 3328 mip->mi_tx_group_type = cap_rings->mr_group_type; 3329 mip->mi_tx_group_count = cap_rings->mr_gnum; 3330 mip->mi_tx_group_free = group_free; 3331 mip->mi_tx_groups = groups; 3332 3333 /* 3334 * Ring 0 is used as the default one and it could be assigned 3335 * to a client as well. 3336 */ 3337 group = groups + cap_rings->mr_gnum; 3338 ring = group->mrg_rings; 3339 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 3340 ring = ring->mr_next; 3341 ASSERT(ring->mr_index == 0); 3342 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 3343 break; 3344 default: 3345 ASSERT(B_FALSE); 3346 } 3347 3348 if (err != 0) 3349 mac_free_rings(mip, rtype); 3350 3351 return (err); 3352 } 3353 3354 /* 3355 * Called to free all ring groups with particular type. It's supposed all groups 3356 * have been released by clinet. 3357 */ 3358 void 3359 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3360 { 3361 mac_group_t *group, *groups; 3362 uint_t group_count; 3363 3364 switch (rtype) { 3365 case MAC_RING_TYPE_RX: 3366 if (mip->mi_rx_groups == NULL) 3367 return; 3368 3369 groups = mip->mi_rx_groups; 3370 group_count = mip->mi_rx_group_count; 3371 3372 mip->mi_rx_groups = NULL; 3373 mip->mi_rx_group_count = 0; 3374 break; 3375 case MAC_RING_TYPE_TX: 3376 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 3377 3378 if (mip->mi_tx_groups == NULL) 3379 return; 3380 3381 groups = mip->mi_tx_groups; 3382 group_count = mip->mi_tx_group_count; 3383 3384 mip->mi_tx_groups = NULL; 3385 mip->mi_tx_group_count = 0; 3386 mip->mi_tx_group_free = 0; 3387 mip->mi_default_tx_ring = NULL; 3388 break; 3389 default: 3390 ASSERT(B_FALSE); 3391 } 3392 3393 for (group = groups; group != NULL; group = group->mrg_next) { 3394 mac_ring_t *ring; 3395 3396 if (group->mrg_cur_count == 0) 3397 continue; 3398 3399 ASSERT(group->mrg_rings != NULL); 3400 3401 while ((ring = group->mrg_rings) != NULL) { 3402 group->mrg_rings = ring->mr_next; 3403 mac_ring_free(mip, ring); 3404 } 3405 } 3406 3407 /* Free all the cached rings */ 3408 mac_ring_freeall(mip); 3409 /* Free the block of group data strutures */ 3410 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 3411 } 3412 3413 /* 3414 * Associate a MAC address with a receive group. 3415 * 3416 * The return value of this function should always be checked properly, because 3417 * any type of failure could cause unexpected results. A group can be added 3418 * or removed with a MAC address only after it has been reserved. Ideally, 3419 * a successful reservation always leads to calling mac_group_addmac() to 3420 * steer desired traffic. Failure of adding an unicast MAC address doesn't 3421 * always imply that the group is functioning abnormally. 3422 * 3423 * Currently this function is called everywhere, and it reflects assumptions 3424 * about MAC addresses in the implementation. CR 6735196. 3425 */ 3426 int 3427 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 3428 { 3429 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3430 ASSERT(group->mrg_info.mgi_addmac != NULL); 3431 3432 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 3433 } 3434 3435 /* 3436 * Remove the association between MAC address and receive group. 3437 */ 3438 int 3439 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 3440 { 3441 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3442 ASSERT(group->mrg_info.mgi_remmac != NULL); 3443 3444 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 3445 } 3446 3447 /* 3448 * Release a ring in use by marking it MR_FREE. 3449 * Any other client may reserve it for its use. 3450 */ 3451 void 3452 mac_release_tx_ring(mac_ring_handle_t rh) 3453 { 3454 mac_ring_t *ring = (mac_ring_t *)rh; 3455 mac_group_t *group = (mac_group_t *)ring->mr_gh; 3456 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3457 3458 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3459 ASSERT(ring->mr_state != MR_FREE); 3460 3461 /* 3462 * Default tx ring will be released by mac_stop(). 3463 */ 3464 if (rh == mip->mi_default_tx_ring) 3465 return; 3466 3467 mac_stop_ring(ring); 3468 3469 ring->mr_state = MR_FREE; 3470 ring->mr_flag = 0; 3471 } 3472 3473 /* 3474 * Send packets through a selected tx ring. 3475 */ 3476 mblk_t * 3477 mac_ring_tx(mac_ring_handle_t rh, mblk_t *mp) 3478 { 3479 mac_ring_t *ring = (mac_ring_t *)rh; 3480 mac_ring_info_t *info = &ring->mr_info; 3481 3482 ASSERT(ring->mr_type == MAC_RING_TYPE_TX); 3483 ASSERT(ring->mr_state >= MR_INUSE); 3484 ASSERT(info->mri_tx != NULL); 3485 3486 return (info->mri_tx(info->mri_driver, mp)); 3487 } 3488 3489 /* 3490 * Find a ring from its index. 3491 */ 3492 mac_ring_t * 3493 mac_find_ring(mac_group_t *group, int index) 3494 { 3495 mac_ring_t *ring = group->mrg_rings; 3496 3497 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 3498 if (ring->mr_index == index) 3499 break; 3500 3501 return (ring); 3502 } 3503 /* 3504 * Add a ring to an existing group. 3505 * 3506 * The ring must be either passed directly (for example if the ring 3507 * movement is initiated by the framework), or specified through a driver 3508 * index (for example when the ring is added by the driver. 3509 * 3510 * The caller needs to call mac_perim_enter() before calling this function. 3511 */ 3512 int 3513 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 3514 { 3515 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3516 mac_capab_rings_t *cap_rings; 3517 boolean_t driver_call = (ring == NULL); 3518 mac_group_type_t group_type; 3519 int ret = 0; 3520 3521 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3522 3523 switch (group->mrg_type) { 3524 case MAC_RING_TYPE_RX: 3525 cap_rings = &mip->mi_rx_rings_cap; 3526 group_type = mip->mi_rx_group_type; 3527 break; 3528 case MAC_RING_TYPE_TX: 3529 cap_rings = &mip->mi_tx_rings_cap; 3530 group_type = mip->mi_tx_group_type; 3531 break; 3532 default: 3533 ASSERT(B_FALSE); 3534 } 3535 3536 /* 3537 * There should be no ring with the same ring index in the target 3538 * group. 3539 */ 3540 ASSERT(mac_find_ring(group, driver_call ? index : ring->mr_index) == 3541 NULL); 3542 3543 if (driver_call) { 3544 /* 3545 * The function is called as a result of a request from 3546 * a driver to add a ring to an existing group, for example 3547 * from the aggregation driver. Allocate a new mac_ring_t 3548 * for that ring. 3549 */ 3550 ring = mac_init_ring(mip, group, index, cap_rings); 3551 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 3552 } else { 3553 /* 3554 * The function is called as a result of a MAC layer request 3555 * to add a ring to an existing group. In this case the 3556 * ring is being moved between groups, which requires 3557 * the underlying driver to support dynamic grouping, 3558 * and the mac_ring_t already exists. 3559 */ 3560 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3561 ASSERT(cap_rings->mr_gaddring != NULL); 3562 ASSERT(ring->mr_gh == NULL); 3563 } 3564 3565 /* 3566 * At this point the ring should not be in use, and it should be 3567 * of the right for the target group. 3568 */ 3569 ASSERT(ring->mr_state < MR_INUSE); 3570 ASSERT(ring->mr_srs == NULL); 3571 ASSERT(ring->mr_type == group->mrg_type); 3572 3573 if (!driver_call) { 3574 /* 3575 * Add the driver level hardware ring if the process was not 3576 * initiated by the driver, and the target group is not the 3577 * group. 3578 */ 3579 if (group->mrg_driver != NULL) { 3580 cap_rings->mr_gaddring(group->mrg_driver, 3581 ring->mr_driver, ring->mr_type); 3582 } 3583 3584 /* 3585 * Insert the ring ahead existing rings. 3586 */ 3587 ring->mr_next = group->mrg_rings; 3588 group->mrg_rings = ring; 3589 ring->mr_gh = (mac_group_handle_t)group; 3590 group->mrg_cur_count++; 3591 } 3592 3593 /* 3594 * If the group has not been actively used, we're done. 3595 */ 3596 if (group->mrg_index != -1 && 3597 group->mrg_state < MAC_GROUP_STATE_RESERVED) 3598 return (0); 3599 3600 /* 3601 * Set up SRS/SR according to the ring type. 3602 */ 3603 switch (ring->mr_type) { 3604 case MAC_RING_TYPE_RX: 3605 /* 3606 * Setup SRS on top of the new ring if the group is 3607 * reserved for someones exclusive use. 3608 */ 3609 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 3610 flow_entry_t *flent; 3611 mac_client_impl_t *mcip; 3612 3613 mcip = MAC_RX_GROUP_ONLY_CLIENT(group); 3614 ASSERT(mcip != NULL); 3615 flent = mcip->mci_flent; 3616 ASSERT(flent->fe_rx_srs_cnt > 0); 3617 mac_srs_group_setup(mcip, flent, group, SRST_LINK); 3618 } 3619 break; 3620 case MAC_RING_TYPE_TX: 3621 /* 3622 * For TX this function is only invoked during the 3623 * initial creation of a group when a share is 3624 * associated with a MAC client. So the datapath is not 3625 * yet setup, and will be setup later after the 3626 * group has been reserved and populated. 3627 */ 3628 break; 3629 default: 3630 ASSERT(B_FALSE); 3631 } 3632 3633 /* 3634 * Start the ring if needed. Failure causes to undo the grouping action. 3635 */ 3636 if ((ret = mac_start_ring(ring)) != 0) { 3637 if (ring->mr_type == MAC_RING_TYPE_RX) { 3638 if (ring->mr_srs != NULL) { 3639 mac_rx_srs_remove(ring->mr_srs); 3640 ring->mr_srs = NULL; 3641 } 3642 } 3643 if (!driver_call) { 3644 cap_rings->mr_gremring(group->mrg_driver, 3645 ring->mr_driver, ring->mr_type); 3646 } 3647 group->mrg_cur_count--; 3648 group->mrg_rings = ring->mr_next; 3649 3650 ring->mr_gh = NULL; 3651 3652 if (driver_call) 3653 mac_ring_free(mip, ring); 3654 3655 return (ret); 3656 } 3657 3658 /* 3659 * Update the ring's state. 3660 */ 3661 ring->mr_state = MR_INUSE; 3662 MAC_RING_UNMARK(ring, MR_INCIPIENT); 3663 return (0); 3664 } 3665 3666 /* 3667 * Remove a ring from it's current group. MAC internal function for dynamic 3668 * grouping. 3669 * 3670 * The caller needs to call mac_perim_enter() before calling this function. 3671 */ 3672 void 3673 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 3674 boolean_t driver_call) 3675 { 3676 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3677 mac_capab_rings_t *cap_rings = NULL; 3678 mac_group_type_t group_type; 3679 3680 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3681 3682 ASSERT(mac_find_ring(group, ring->mr_index) == ring); 3683 ASSERT((mac_group_t *)ring->mr_gh == group); 3684 ASSERT(ring->mr_type == group->mrg_type); 3685 3686 switch (ring->mr_type) { 3687 case MAC_RING_TYPE_RX: 3688 group_type = mip->mi_rx_group_type; 3689 cap_rings = &mip->mi_rx_rings_cap; 3690 3691 if (group->mrg_state >= MAC_GROUP_STATE_RESERVED) 3692 mac_stop_ring(ring); 3693 3694 /* 3695 * Only hardware classified packets hold a reference to the 3696 * ring all the way up the Rx path. mac_rx_srs_remove() 3697 * will take care of quiescing the Rx path and removing the 3698 * SRS. The software classified path neither holds a reference 3699 * nor any association with the ring in mac_rx. 3700 */ 3701 if (ring->mr_srs != NULL) { 3702 mac_rx_srs_remove(ring->mr_srs); 3703 ring->mr_srs = NULL; 3704 } 3705 ring->mr_state = MR_FREE; 3706 ring->mr_flag = 0; 3707 3708 break; 3709 case MAC_RING_TYPE_TX: 3710 /* 3711 * For TX this function is only invoked in two 3712 * cases: 3713 * 3714 * 1) In the case of a failure during the 3715 * initial creation of a group when a share is 3716 * associated with a MAC client. So the SRS is not 3717 * yet setup, and will be setup later after the 3718 * group has been reserved and populated. 3719 * 3720 * 2) From mac_release_tx_group() when freeing 3721 * a TX SRS. 3722 * 3723 * In both cases the SRS and its soft rings are 3724 * already quiesced. 3725 */ 3726 ASSERT(!driver_call); 3727 group_type = mip->mi_tx_group_type; 3728 cap_rings = &mip->mi_tx_rings_cap; 3729 break; 3730 default: 3731 ASSERT(B_FALSE); 3732 } 3733 3734 /* 3735 * Remove the ring from the group. 3736 */ 3737 if (ring == group->mrg_rings) 3738 group->mrg_rings = ring->mr_next; 3739 else { 3740 mac_ring_t *pre; 3741 3742 pre = group->mrg_rings; 3743 while (pre->mr_next != ring) 3744 pre = pre->mr_next; 3745 pre->mr_next = ring->mr_next; 3746 } 3747 group->mrg_cur_count--; 3748 3749 if (!driver_call) { 3750 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3751 ASSERT(cap_rings->mr_gremring != NULL); 3752 3753 /* 3754 * Remove the driver level hardware ring. 3755 */ 3756 if (group->mrg_driver != NULL) { 3757 cap_rings->mr_gremring(group->mrg_driver, 3758 ring->mr_driver, ring->mr_type); 3759 } 3760 } 3761 3762 ring->mr_gh = NULL; 3763 if (driver_call) { 3764 mac_ring_free(mip, ring); 3765 } else { 3766 ring->mr_state = MR_FREE; 3767 ring->mr_flag = 0; 3768 } 3769 } 3770 3771 /* 3772 * Move a ring to the target group. If needed, remove the ring from the group 3773 * that it currently belongs to. 3774 * 3775 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 3776 */ 3777 static int 3778 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 3779 { 3780 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 3781 int rv; 3782 3783 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3784 ASSERT(d_group != NULL); 3785 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 3786 3787 if (s_group == d_group) 3788 return (0); 3789 3790 /* 3791 * Remove it from current group first. 3792 */ 3793 if (s_group != NULL) 3794 i_mac_group_rem_ring(s_group, ring, B_FALSE); 3795 3796 /* 3797 * Add it to the new group. 3798 */ 3799 rv = i_mac_group_add_ring(d_group, ring, 0); 3800 if (rv != 0) { 3801 /* 3802 * Failed to add ring back to source group. If 3803 * that fails, the ring is stuck in limbo, log message. 3804 */ 3805 if (i_mac_group_add_ring(s_group, ring, 0)) { 3806 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 3807 mip->mi_name, (void *)ring); 3808 } 3809 } 3810 3811 return (rv); 3812 } 3813 3814 /* 3815 * Find a MAC address according to its value. 3816 */ 3817 mac_address_t * 3818 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 3819 { 3820 mac_address_t *map; 3821 3822 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3823 3824 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 3825 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 3826 break; 3827 } 3828 3829 return (map); 3830 } 3831 3832 /* 3833 * Check whether the MAC address is shared by multiple clients. 3834 */ 3835 boolean_t 3836 mac_check_macaddr_shared(mac_address_t *map) 3837 { 3838 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 3839 3840 return (map->ma_nusers > 1); 3841 } 3842 3843 /* 3844 * Remove the specified MAC address from the MAC address list and free it. 3845 */ 3846 static void 3847 mac_free_macaddr(mac_address_t *map) 3848 { 3849 mac_impl_t *mip = map->ma_mip; 3850 3851 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3852 ASSERT(mip->mi_addresses != NULL); 3853 3854 map = mac_find_macaddr(mip, map->ma_addr); 3855 3856 ASSERT(map != NULL); 3857 ASSERT(map->ma_nusers == 0); 3858 3859 if (map == mip->mi_addresses) { 3860 mip->mi_addresses = map->ma_next; 3861 } else { 3862 mac_address_t *pre; 3863 3864 pre = mip->mi_addresses; 3865 while (pre->ma_next != map) 3866 pre = pre->ma_next; 3867 pre->ma_next = map->ma_next; 3868 } 3869 3870 kmem_free(map, sizeof (mac_address_t)); 3871 } 3872 3873 /* 3874 * Add a MAC address reference for a client. If the desired MAC address 3875 * exists, add a reference to it. Otherwise, add the new address by adding 3876 * it to a reserved group or setting promiscuous mode. Won't try different 3877 * group is the group is non-NULL, so the caller must explictly share 3878 * default group when needed. 3879 * 3880 * Note, the primary MAC address is initialized at registration time, so 3881 * to add it to default group only need to activate it if its reference 3882 * count is still zero. Also, some drivers may not have advertised RINGS 3883 * capability. 3884 */ 3885 int 3886 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 3887 boolean_t use_hw) 3888 { 3889 mac_address_t *map; 3890 int err = 0; 3891 boolean_t allocated_map = B_FALSE; 3892 3893 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3894 3895 map = mac_find_macaddr(mip, mac_addr); 3896 3897 /* 3898 * If the new MAC address has not been added. Allocate a new one 3899 * and set it up. 3900 */ 3901 if (map == NULL) { 3902 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 3903 map->ma_len = mip->mi_type->mt_addr_length; 3904 bcopy(mac_addr, map->ma_addr, map->ma_len); 3905 map->ma_nusers = 0; 3906 map->ma_group = group; 3907 map->ma_mip = mip; 3908 3909 /* add the new MAC address to the head of the address list */ 3910 map->ma_next = mip->mi_addresses; 3911 mip->mi_addresses = map; 3912 3913 allocated_map = B_TRUE; 3914 } 3915 3916 ASSERT(map->ma_group == group); 3917 3918 /* 3919 * If the MAC address is already in use, simply account for the 3920 * new client. 3921 */ 3922 if (map->ma_nusers++ > 0) 3923 return (0); 3924 3925 /* 3926 * Activate this MAC address by adding it to the reserved group. 3927 */ 3928 if (group != NULL) { 3929 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 3930 if (err == 0) { 3931 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3932 return (0); 3933 } 3934 } 3935 3936 /* 3937 * The MAC address addition failed. If the client requires a 3938 * hardware classified MAC address, fail the operation. 3939 */ 3940 if (use_hw) { 3941 err = ENOSPC; 3942 goto bail; 3943 } 3944 3945 /* 3946 * Try promiscuous mode. 3947 * 3948 * For drivers that don't advertise RINGS capability, do 3949 * nothing for the primary address. 3950 */ 3951 if ((group == NULL) && 3952 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 3953 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3954 return (0); 3955 } 3956 3957 /* 3958 * Enable promiscuous mode in order to receive traffic 3959 * to the new MAC address. 3960 */ 3961 if ((err = i_mac_promisc_set(mip, B_TRUE, MAC_DEVPROMISC)) == 0) { 3962 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 3963 return (0); 3964 } 3965 3966 /* 3967 * Free the MAC address that could not be added. Don't free 3968 * a pre-existing address, it could have been the entry 3969 * for the primary MAC address which was pre-allocated by 3970 * mac_init_macaddr(), and which must remain on the list. 3971 */ 3972 bail: 3973 map->ma_nusers--; 3974 if (allocated_map) 3975 mac_free_macaddr(map); 3976 return (err); 3977 } 3978 3979 /* 3980 * Remove a reference to a MAC address. This may cause to remove the MAC 3981 * address from an associated group or to turn off promiscuous mode. 3982 * The caller needs to handle the failure properly. 3983 */ 3984 int 3985 mac_remove_macaddr(mac_address_t *map) 3986 { 3987 mac_impl_t *mip = map->ma_mip; 3988 int err = 0; 3989 3990 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3991 3992 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 3993 3994 /* 3995 * If it's not the last client using this MAC address, only update 3996 * the MAC clients count. 3997 */ 3998 if (--map->ma_nusers > 0) 3999 return (0); 4000 4001 /* 4002 * The MAC address is no longer used by any MAC client, so remove 4003 * it from its associated group, or turn off promiscuous mode 4004 * if it was enabled for the MAC address. 4005 */ 4006 switch (map->ma_type) { 4007 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 4008 /* 4009 * Don't free the preset primary address for drivers that 4010 * don't advertise RINGS capability. 4011 */ 4012 if (map->ma_group == NULL) 4013 return (0); 4014 4015 err = mac_group_remmac(map->ma_group, map->ma_addr); 4016 break; 4017 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4018 err = i_mac_promisc_set(mip, B_FALSE, MAC_DEVPROMISC); 4019 break; 4020 default: 4021 ASSERT(B_FALSE); 4022 } 4023 4024 if (err != 0) 4025 return (err); 4026 4027 /* 4028 * We created MAC address for the primary one at registration, so we 4029 * won't free it here. mac_fini_macaddr() will take care of it. 4030 */ 4031 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 4032 mac_free_macaddr(map); 4033 4034 return (0); 4035 } 4036 4037 /* 4038 * Update an existing MAC address. The caller need to make sure that the new 4039 * value has not been used. 4040 */ 4041 int 4042 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 4043 { 4044 mac_impl_t *mip = map->ma_mip; 4045 int err = 0; 4046 4047 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4048 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4049 4050 switch (map->ma_type) { 4051 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 4052 /* 4053 * Update the primary address for drivers that are not 4054 * RINGS capable. 4055 */ 4056 if (map->ma_group == NULL) { 4057 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 4058 mac_addr); 4059 if (err != 0) 4060 return (err); 4061 break; 4062 } 4063 4064 /* 4065 * If this MAC address is not currently in use, 4066 * simply break out and update the value. 4067 */ 4068 if (map->ma_nusers == 0) 4069 break; 4070 4071 /* 4072 * Need to replace the MAC address associated with a group. 4073 */ 4074 err = mac_group_remmac(map->ma_group, map->ma_addr); 4075 if (err != 0) 4076 return (err); 4077 4078 err = mac_group_addmac(map->ma_group, mac_addr); 4079 4080 /* 4081 * Failure hints hardware error. The MAC layer needs to 4082 * have error notification facility to handle this. 4083 * Now, simply try to restore the value. 4084 */ 4085 if (err != 0) 4086 (void) mac_group_addmac(map->ma_group, map->ma_addr); 4087 4088 break; 4089 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4090 /* 4091 * Need to do nothing more if in promiscuous mode. 4092 */ 4093 break; 4094 default: 4095 ASSERT(B_FALSE); 4096 } 4097 4098 /* 4099 * Successfully replaced the MAC address. 4100 */ 4101 if (err == 0) 4102 bcopy(mac_addr, map->ma_addr, map->ma_len); 4103 4104 return (err); 4105 } 4106 4107 /* 4108 * Freshen the MAC address with new value. Its caller must have updated the 4109 * hardware MAC address before calling this function. 4110 * This funcitons is supposed to be used to handle the MAC address change 4111 * notification from underlying drivers. 4112 */ 4113 void 4114 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 4115 { 4116 mac_impl_t *mip = map->ma_mip; 4117 4118 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4119 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4120 4121 /* 4122 * Freshen the MAC address with new value. 4123 */ 4124 bcopy(mac_addr, map->ma_addr, map->ma_len); 4125 bcopy(mac_addr, mip->mi_addr, map->ma_len); 4126 4127 /* 4128 * Update all MAC clients that share this MAC address. 4129 */ 4130 mac_unicast_update_clients(mip, map); 4131 } 4132 4133 /* 4134 * Set up the primary MAC address. 4135 */ 4136 void 4137 mac_init_macaddr(mac_impl_t *mip) 4138 { 4139 mac_address_t *map; 4140 4141 /* 4142 * The reference count is initialized to zero, until it's really 4143 * activated. 4144 */ 4145 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4146 map->ma_len = mip->mi_type->mt_addr_length; 4147 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 4148 4149 /* 4150 * If driver advertises RINGS capability, it shouldn't have initialized 4151 * its primary MAC address. For other drivers, including VNIC, the 4152 * primary address must work after registration. 4153 */ 4154 if (mip->mi_rx_groups == NULL) 4155 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4156 4157 /* 4158 * The primary MAC address is reserved for default group according 4159 * to current design. 4160 */ 4161 map->ma_group = mip->mi_rx_groups; 4162 map->ma_mip = mip; 4163 4164 mip->mi_addresses = map; 4165 } 4166 4167 /* 4168 * Clean up the primary MAC address. Note, only one primary MAC address 4169 * is allowed. All other MAC addresses must have been freed appropriately. 4170 */ 4171 void 4172 mac_fini_macaddr(mac_impl_t *mip) 4173 { 4174 mac_address_t *map = mip->mi_addresses; 4175 4176 if (map == NULL) 4177 return; 4178 4179 /* 4180 * If mi_addresses is initialized, there should be exactly one 4181 * entry left on the list with no users. 4182 */ 4183 ASSERT(map->ma_nusers == 0); 4184 ASSERT(map->ma_next == NULL); 4185 4186 kmem_free(map, sizeof (mac_address_t)); 4187 mip->mi_addresses = NULL; 4188 } 4189 4190 /* 4191 * Logging related functions. 4192 */ 4193 4194 /* Write the Flow description to the log file */ 4195 int 4196 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 4197 { 4198 flow_desc_t *fdesc; 4199 mac_resource_props_t *mrp; 4200 net_desc_t ndesc; 4201 4202 bzero(&ndesc, sizeof (net_desc_t)); 4203 4204 /* 4205 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4206 * Updates to the fe_flow_desc are done under the fe_lock 4207 */ 4208 mutex_enter(&flent->fe_lock); 4209 fdesc = &flent->fe_flow_desc; 4210 mrp = &flent->fe_resource_props; 4211 4212 ndesc.nd_name = flent->fe_flow_name; 4213 ndesc.nd_devname = mcip->mci_name; 4214 bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4215 bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL); 4216 ndesc.nd_sap = htonl(fdesc->fd_sap); 4217 ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 4218 ndesc.nd_bw_limit = mrp->mrp_maxbw; 4219 if (ndesc.nd_isv4) { 4220 ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 4221 ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 4222 } else { 4223 bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN); 4224 bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN); 4225 } 4226 ndesc.nd_sport = htons(fdesc->fd_local_port); 4227 ndesc.nd_dport = htons(fdesc->fd_remote_port); 4228 ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol; 4229 mutex_exit(&flent->fe_lock); 4230 4231 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC)); 4232 } 4233 4234 /* Write the Flow statistics to the log file */ 4235 int 4236 mac_write_flow_stats(flow_entry_t *flent) 4237 { 4238 flow_stats_t *fl_stats; 4239 net_stat_t nstat; 4240 4241 fl_stats = &flent->fe_flowstats; 4242 nstat.ns_name = flent->fe_flow_name; 4243 nstat.ns_ibytes = fl_stats->fs_rbytes; 4244 nstat.ns_obytes = fl_stats->fs_obytes; 4245 nstat.ns_ipackets = fl_stats->fs_ipackets; 4246 nstat.ns_opackets = fl_stats->fs_opackets; 4247 nstat.ns_ierrors = fl_stats->fs_ierrors; 4248 nstat.ns_oerrors = fl_stats->fs_oerrors; 4249 4250 return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC)); 4251 } 4252 4253 /* Write the Link Description to the log file */ 4254 int 4255 mac_write_link_desc(mac_client_impl_t *mcip) 4256 { 4257 net_desc_t ndesc; 4258 flow_entry_t *flent = mcip->mci_flent; 4259 4260 bzero(&ndesc, sizeof (net_desc_t)); 4261 4262 ndesc.nd_name = mcip->mci_name; 4263 ndesc.nd_devname = mcip->mci_name; 4264 ndesc.nd_isv4 = B_TRUE; 4265 /* 4266 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4267 * Updates to the fe_flow_desc are done under the fe_lock 4268 * after removing the flent from the flow table. 4269 */ 4270 mutex_enter(&flent->fe_lock); 4271 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4272 mutex_exit(&flent->fe_lock); 4273 4274 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC)); 4275 } 4276 4277 /* Write the Link statistics to the log file */ 4278 int 4279 mac_write_link_stats(mac_client_impl_t *mcip) 4280 { 4281 net_stat_t nstat; 4282 4283 nstat.ns_name = mcip->mci_name; 4284 nstat.ns_ibytes = mcip->mci_stat_ibytes; 4285 nstat.ns_obytes = mcip->mci_stat_obytes; 4286 nstat.ns_ipackets = mcip->mci_stat_ipackets; 4287 nstat.ns_opackets = mcip->mci_stat_opackets; 4288 nstat.ns_ierrors = mcip->mci_stat_ierrors; 4289 nstat.ns_oerrors = mcip->mci_stat_oerrors; 4290 4291 return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC)); 4292 } 4293 4294 /* 4295 * For a given flow, if the descrition has not been logged before, do it now. 4296 * If it is a VNIC, then we have collected information about it from the MAC 4297 * table, so skip it. 4298 */ 4299 /*ARGSUSED*/ 4300 static int 4301 mac_log_flowinfo(flow_entry_t *flent, void *args) 4302 { 4303 mac_client_impl_t *mcip = flent->fe_mcip; 4304 4305 if (mcip == NULL) 4306 return (0); 4307 4308 /* 4309 * If the name starts with "vnic", and fe_user_generated is true (to 4310 * exclude the mcast and active flow entries created implicitly for 4311 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 4312 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 4313 */ 4314 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 4315 (flent->fe_type & FLOW_USER) != 0) { 4316 return (0); 4317 } 4318 4319 if (!flent->fe_desc_logged) { 4320 /* 4321 * We don't return error because we want to continu the 4322 * walk in case this is the last walk which means we 4323 * need to reset fe_desc_logged in all the flows. 4324 */ 4325 if (mac_write_flow_desc(flent, mcip) != 0) 4326 return (0); 4327 flent->fe_desc_logged = B_TRUE; 4328 } 4329 4330 /* 4331 * Regardless of the error, we want to proceed in case we have to 4332 * reset fe_desc_logged. 4333 */ 4334 (void) mac_write_flow_stats(flent); 4335 4336 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 4337 flent->fe_desc_logged = B_FALSE; 4338 4339 return (0); 4340 } 4341 4342 typedef struct i_mac_log_state_s { 4343 boolean_t mi_last; 4344 int mi_fenable; 4345 int mi_lenable; 4346 } i_mac_log_state_t; 4347 4348 /* 4349 * Walk the mac_impl_ts and log the description for each mac client of this mac, 4350 * if it hasn't already been done. Additionally, log statistics for the link as 4351 * well. Walk the flow table and log information for each flow as well. 4352 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 4353 * also fe_desc_logged, if flow logging is on) since we want to log the 4354 * description if and when logging is restarted. 4355 */ 4356 /*ARGSUSED*/ 4357 static uint_t 4358 i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4359 { 4360 mac_impl_t *mip = (mac_impl_t *)val; 4361 i_mac_log_state_t *lstate = (i_mac_log_state_t *)arg; 4362 int ret; 4363 mac_client_impl_t *mcip; 4364 4365 /* 4366 * Only walk the client list for NIC and etherstub 4367 */ 4368 if ((mip->mi_state_flags & MIS_DISABLED) || 4369 ((mip->mi_state_flags & MIS_IS_VNIC) && 4370 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) 4371 return (MH_WALK_CONTINUE); 4372 4373 for (mcip = mip->mi_clients_list; mcip != NULL; 4374 mcip = mcip->mci_client_next) { 4375 if (!MCIP_DATAPATH_SETUP(mcip)) 4376 continue; 4377 if (lstate->mi_lenable) { 4378 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 4379 ret = mac_write_link_desc(mcip); 4380 if (ret != 0) { 4381 /* 4382 * We can't terminate it if this is the last 4383 * walk, else there might be some links with 4384 * mi_desc_logged set to true, which means 4385 * their description won't be logged the next 4386 * time logging is started (similarly for the 4387 * flows within such links). We can continue 4388 * without walking the flow table (i.e. to 4389 * set fe_desc_logged to false) because we 4390 * won't have written any flow stuff for this 4391 * link as we haven't logged the link itself. 4392 */ 4393 if (lstate->mi_last) 4394 return (MH_WALK_CONTINUE); 4395 else 4396 return (MH_WALK_TERMINATE); 4397 } 4398 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 4399 } 4400 } 4401 4402 if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last) 4403 return (MH_WALK_TERMINATE); 4404 4405 if (lstate->mi_last) 4406 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 4407 4408 if (lstate->mi_fenable) { 4409 if (mcip->mci_subflow_tab != NULL) { 4410 (void) mac_flow_walk(mcip->mci_subflow_tab, 4411 mac_log_flowinfo, mip); 4412 } 4413 } 4414 } 4415 return (MH_WALK_CONTINUE); 4416 } 4417 4418 /* 4419 * The timer thread that runs every mac_logging_interval seconds and logs 4420 * link and/or flow information. 4421 */ 4422 /* ARGSUSED */ 4423 void 4424 mac_log_linkinfo(void *arg) 4425 { 4426 i_mac_log_state_t lstate; 4427 4428 rw_enter(&i_mac_impl_lock, RW_READER); 4429 if (!mac_flow_log_enable && !mac_link_log_enable) { 4430 rw_exit(&i_mac_impl_lock); 4431 return; 4432 } 4433 lstate.mi_fenable = mac_flow_log_enable; 4434 lstate.mi_lenable = mac_link_log_enable; 4435 lstate.mi_last = B_FALSE; 4436 rw_exit(&i_mac_impl_lock); 4437 4438 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4439 4440 rw_enter(&i_mac_impl_lock, RW_WRITER); 4441 if (mac_flow_log_enable || mac_link_log_enable) { 4442 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 4443 SEC_TO_TICK(mac_logging_interval)); 4444 } 4445 rw_exit(&i_mac_impl_lock); 4446 } 4447 4448 typedef struct i_mac_fastpath_state_s { 4449 boolean_t mf_disable; 4450 int mf_err; 4451 } i_mac_fastpath_state_t; 4452 4453 /*ARGSUSED*/ 4454 static uint_t 4455 i_mac_fastpath_disable_walker(mod_hash_key_t key, mod_hash_val_t *val, 4456 void *arg) 4457 { 4458 i_mac_fastpath_state_t *state = arg; 4459 mac_handle_t mh = (mac_handle_t)val; 4460 4461 if (state->mf_disable) 4462 state->mf_err = mac_fastpath_disable(mh); 4463 else 4464 mac_fastpath_enable(mh); 4465 4466 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 4467 } 4468 4469 /* 4470 * Start the logging timer. 4471 */ 4472 int 4473 mac_start_logusage(mac_logtype_t type, uint_t interval) 4474 { 4475 i_mac_fastpath_state_t state = {B_TRUE, 0}; 4476 int err; 4477 4478 rw_enter(&i_mac_impl_lock, RW_WRITER); 4479 switch (type) { 4480 case MAC_LOGTYPE_FLOW: 4481 if (mac_flow_log_enable) { 4482 rw_exit(&i_mac_impl_lock); 4483 return (0); 4484 } 4485 /* FALLTHRU */ 4486 case MAC_LOGTYPE_LINK: 4487 if (mac_link_log_enable) { 4488 rw_exit(&i_mac_impl_lock); 4489 return (0); 4490 } 4491 break; 4492 default: 4493 ASSERT(0); 4494 } 4495 4496 /* Disable fastpath */ 4497 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); 4498 if ((err = state.mf_err) != 0) { 4499 /* Reenable fastpath */ 4500 state.mf_disable = B_FALSE; 4501 state.mf_err = 0; 4502 mod_hash_walk(i_mac_impl_hash, 4503 i_mac_fastpath_disable_walker, &state); 4504 rw_exit(&i_mac_impl_lock); 4505 return (err); 4506 } 4507 4508 switch (type) { 4509 case MAC_LOGTYPE_FLOW: 4510 mac_flow_log_enable = B_TRUE; 4511 /* FALLTHRU */ 4512 case MAC_LOGTYPE_LINK: 4513 mac_link_log_enable = B_TRUE; 4514 break; 4515 } 4516 4517 mac_logging_interval = interval; 4518 rw_exit(&i_mac_impl_lock); 4519 mac_log_linkinfo(NULL); 4520 return (0); 4521 } 4522 4523 /* 4524 * Stop the logging timer if both Link and Flow logging are turned off. 4525 */ 4526 void 4527 mac_stop_logusage(mac_logtype_t type) 4528 { 4529 i_mac_log_state_t lstate; 4530 i_mac_fastpath_state_t state = {B_FALSE, 0}; 4531 4532 rw_enter(&i_mac_impl_lock, RW_WRITER); 4533 lstate.mi_fenable = mac_flow_log_enable; 4534 lstate.mi_lenable = mac_link_log_enable; 4535 4536 /* Last walk */ 4537 lstate.mi_last = B_TRUE; 4538 4539 switch (type) { 4540 case MAC_LOGTYPE_FLOW: 4541 if (lstate.mi_fenable) { 4542 ASSERT(mac_link_log_enable); 4543 mac_flow_log_enable = B_FALSE; 4544 mac_link_log_enable = B_FALSE; 4545 break; 4546 } 4547 /* FALLTHRU */ 4548 case MAC_LOGTYPE_LINK: 4549 if (!lstate.mi_lenable || mac_flow_log_enable) { 4550 rw_exit(&i_mac_impl_lock); 4551 return; 4552 } 4553 mac_link_log_enable = B_FALSE; 4554 break; 4555 default: 4556 ASSERT(0); 4557 } 4558 4559 /* Reenable fastpath */ 4560 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); 4561 4562 rw_exit(&i_mac_impl_lock); 4563 (void) untimeout(mac_logging_timer); 4564 mac_logging_timer = 0; 4565 4566 /* Last walk */ 4567 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4568 } 4569 4570 /* 4571 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 4572 */ 4573 void 4574 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 4575 { 4576 pri_t pri; 4577 int count; 4578 mac_soft_ring_set_t *mac_srs; 4579 4580 if (flent->fe_rx_srs_cnt <= 0) 4581 return; 4582 4583 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 4584 SRST_FLOW) { 4585 pri = FLOW_PRIORITY(mcip->mci_min_pri, 4586 mcip->mci_max_pri, 4587 flent->fe_resource_props.mrp_priority); 4588 } else { 4589 pri = mcip->mci_max_pri; 4590 } 4591 4592 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 4593 mac_srs = flent->fe_rx_srs[count]; 4594 mac_update_srs_priority(mac_srs, pri); 4595 } 4596 /* 4597 * If we have a Tx SRS, we need to modify all the threads associated 4598 * with it. 4599 */ 4600 if (flent->fe_tx_srs != NULL) 4601 mac_update_srs_priority(flent->fe_tx_srs, pri); 4602 } 4603 4604 /* 4605 * RX and TX rings are reserved according to different semantics depending 4606 * on the requests from the MAC clients and type of rings: 4607 * 4608 * On the Tx side, by default we reserve individual rings, independently from 4609 * the groups. 4610 * 4611 * On the Rx side, the reservation is at the granularity of the group 4612 * of rings, and used for v12n level 1 only. It has a special case for the 4613 * primary client. 4614 * 4615 * If a share is allocated to a MAC client, we allocate a TX group and an 4616 * RX group to the client, and assign TX rings and RX rings to these 4617 * groups according to information gathered from the driver through 4618 * the share capability. 4619 * 4620 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 4621 * to allocate individual rings out of a group and program the hw classifier 4622 * based on IP address or higher level criteria. 4623 */ 4624 4625 /* 4626 * mac_reserve_tx_ring() 4627 * Reserve a unused ring by marking it with MR_INUSE state. 4628 * As reserved, the ring is ready to function. 4629 * 4630 * Notes for Hybrid I/O: 4631 * 4632 * If a specific ring is needed, it is specified through the desired_ring 4633 * argument. Otherwise that argument is set to NULL. 4634 * If the desired ring was previous allocated to another client, this 4635 * function swaps it with a new ring from the group of unassigned rings. 4636 */ 4637 mac_ring_t * 4638 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 4639 { 4640 mac_group_t *group; 4641 mac_ring_t *ring; 4642 4643 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4644 4645 if (mip->mi_tx_groups == NULL) 4646 return (NULL); 4647 4648 /* 4649 * Find an available ring and start it before changing its status. 4650 * The unassigned rings are at the end of the mi_tx_groups 4651 * array. 4652 */ 4653 group = mip->mi_tx_groups + mip->mi_tx_group_count; 4654 4655 for (ring = group->mrg_rings; ring != NULL; 4656 ring = ring->mr_next) { 4657 if (desired_ring == NULL) { 4658 if (ring->mr_state == MR_FREE) 4659 /* wanted any free ring and found one */ 4660 break; 4661 } else { 4662 mac_ring_t *sring; 4663 mac_client_impl_t *client; 4664 mac_soft_ring_set_t *srs; 4665 4666 if (ring != desired_ring) 4667 /* wants a desired ring but this one ain't it */ 4668 continue; 4669 4670 if (ring->mr_state == MR_FREE) 4671 break; 4672 4673 /* 4674 * Found the desired ring but it's already in use. 4675 * Swap it with a new ring. 4676 */ 4677 4678 /* find the client which owns that ring */ 4679 for (client = mip->mi_clients_list; client != NULL; 4680 client = client->mci_client_next) { 4681 srs = MCIP_TX_SRS(client); 4682 if (srs != NULL && mac_tx_srs_ring_present(srs, 4683 desired_ring)) { 4684 /* found our ring */ 4685 break; 4686 } 4687 } 4688 if (client == NULL) { 4689 /* 4690 * The TX ring is in use, but it's not 4691 * associated with any clients, so it 4692 * has to be the default ring. In that 4693 * case we can simply assign a new ring 4694 * as the default ring, and we're done. 4695 */ 4696 ASSERT(mip->mi_default_tx_ring == 4697 (mac_ring_handle_t)desired_ring); 4698 4699 /* 4700 * Quiesce all clients on top of 4701 * the NIC to make sure there are no 4702 * pending threads still relying on 4703 * that default ring, for example 4704 * the multicast path. 4705 */ 4706 for (client = mip->mi_clients_list; 4707 client != NULL; 4708 client = client->mci_client_next) { 4709 mac_tx_client_quiesce(client, 4710 SRS_QUIESCE); 4711 } 4712 4713 mip->mi_default_tx_ring = (mac_ring_handle_t) 4714 mac_reserve_tx_ring(mip, NULL); 4715 4716 /* resume the clients */ 4717 for (client = mip->mi_clients_list; 4718 client != NULL; 4719 client = client->mci_client_next) 4720 mac_tx_client_restart(client); 4721 4722 break; 4723 } 4724 4725 /* 4726 * Note that we cannot simply invoke the group 4727 * add/rem routines since the client doesn't have a 4728 * TX group. So we need to instead add/remove 4729 * the rings from the SRS. 4730 */ 4731 ASSERT(client->mci_share == NULL); 4732 4733 /* first quiece the client */ 4734 mac_tx_client_quiesce(client, SRS_QUIESCE); 4735 4736 /* give a new ring to the client... */ 4737 sring = mac_reserve_tx_ring(mip, NULL); 4738 if (sring != NULL) { 4739 /* 4740 * There are no other available ring 4741 * on that MAC instance. The client 4742 * will fallback to the shared TX 4743 * ring. 4744 */ 4745 mac_tx_srs_add_ring(srs, sring); 4746 } 4747 4748 /* ... in exchange for our desired ring */ 4749 mac_tx_srs_del_ring(srs, desired_ring); 4750 4751 /* restart the client */ 4752 mac_tx_client_restart(client); 4753 4754 if (mip->mi_default_tx_ring == 4755 (mac_ring_handle_t)desired_ring) { 4756 /* 4757 * The desired ring is the default ring, 4758 * and there are one or more clients 4759 * using that default ring directly. 4760 */ 4761 mip->mi_default_tx_ring = 4762 (mac_ring_handle_t)sring; 4763 /* 4764 * Find clients using default ring and 4765 * swap it with the new default ring. 4766 */ 4767 for (client = mip->mi_clients_list; 4768 client != NULL; 4769 client = client->mci_client_next) { 4770 srs = MCIP_TX_SRS(client); 4771 if (srs != NULL && 4772 mac_tx_srs_ring_present(srs, 4773 desired_ring)) { 4774 /* first quiece the client */ 4775 mac_tx_client_quiesce(client, 4776 SRS_QUIESCE); 4777 4778 /* 4779 * Give it the new default 4780 * ring, and remove the old 4781 * one. 4782 */ 4783 if (sring != NULL) { 4784 mac_tx_srs_add_ring(srs, 4785 sring); 4786 } 4787 mac_tx_srs_del_ring(srs, 4788 desired_ring); 4789 4790 /* restart the client */ 4791 mac_tx_client_restart(client); 4792 } 4793 } 4794 } 4795 break; 4796 } 4797 } 4798 4799 if (ring != NULL) { 4800 if (mac_start_ring(ring) != 0) 4801 return (NULL); 4802 ring->mr_state = MR_INUSE; 4803 } 4804 4805 return (ring); 4806 } 4807 4808 /* 4809 * Minimum number of rings to leave in the default TX group when allocating 4810 * rings to new clients. 4811 */ 4812 static uint_t mac_min_rx_default_rings = 1; 4813 4814 /* 4815 * Populate a zero-ring group with rings. If the share is non-NULL, 4816 * the rings are chosen according to that share. 4817 * Invoked after allocating a new RX or TX group through 4818 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 4819 * Returns zero on success, an errno otherwise. 4820 */ 4821 int 4822 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 4823 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share) 4824 { 4825 mac_ring_t **rings, *tmp_ring[1], *ring; 4826 uint_t nrings; 4827 int rv, i, j; 4828 4829 ASSERT(mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC && 4830 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 4831 ASSERT(new_group->mrg_cur_count == 0); 4832 4833 /* 4834 * First find the rings to allocate to the group. 4835 */ 4836 if (share != NULL) { 4837 /* get rings through ms_squery() */ 4838 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 4839 ASSERT(nrings != 0); 4840 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 4841 KM_SLEEP); 4842 mip->mi_share_capab.ms_squery(share, ring_type, 4843 (mac_ring_handle_t *)rings, &nrings); 4844 } else { 4845 /* this function is called for TX only with a share */ 4846 ASSERT(ring_type == MAC_RING_TYPE_RX); 4847 /* 4848 * Pick one ring from default group. 4849 * 4850 * for now pick the second ring which requires the first ring 4851 * at index 0 to stay in the default group, since it is the 4852 * ring which carries the multicast traffic. 4853 * We need a better way for a driver to indicate this, 4854 * for example a per-ring flag. 4855 */ 4856 for (ring = src_group->mrg_rings; ring != NULL; 4857 ring = ring->mr_next) { 4858 if (ring->mr_index != 0) 4859 break; 4860 } 4861 ASSERT(ring != NULL); 4862 nrings = 1; 4863 tmp_ring[0] = ring; 4864 rings = tmp_ring; 4865 } 4866 4867 switch (ring_type) { 4868 case MAC_RING_TYPE_RX: 4869 if (src_group->mrg_cur_count - nrings < 4870 mac_min_rx_default_rings) { 4871 /* we ran out of rings */ 4872 return (ENOSPC); 4873 } 4874 4875 /* move receive rings to new group */ 4876 for (i = 0; i < nrings; i++) { 4877 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4878 if (rv != 0) { 4879 /* move rings back on failure */ 4880 for (j = 0; j < i; j++) { 4881 (void) mac_group_mov_ring(mip, 4882 src_group, rings[j]); 4883 } 4884 return (rv); 4885 } 4886 } 4887 break; 4888 4889 case MAC_RING_TYPE_TX: { 4890 mac_ring_t *tmp_ring; 4891 4892 /* move the TX rings to the new group */ 4893 ASSERT(src_group == NULL); 4894 for (i = 0; i < nrings; i++) { 4895 /* get the desired ring */ 4896 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 4897 ASSERT(tmp_ring == rings[i]); 4898 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4899 if (rv != 0) { 4900 /* cleanup on failure */ 4901 for (j = 0; j < i; j++) { 4902 (void) mac_group_mov_ring(mip, 4903 mip->mi_tx_groups + 4904 mip->mi_tx_group_count, rings[j]); 4905 } 4906 } 4907 } 4908 break; 4909 } 4910 } 4911 4912 if (share != NULL) { 4913 /* add group to share */ 4914 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 4915 /* free temporary array of rings */ 4916 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 4917 } 4918 4919 return (0); 4920 } 4921 4922 void 4923 mac_rx_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 4924 { 4925 mac_grp_client_t *mgcp; 4926 4927 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 4928 if (mgcp->mgc_client == mcip) 4929 break; 4930 } 4931 4932 VERIFY(mgcp == NULL); 4933 4934 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 4935 mgcp->mgc_client = mcip; 4936 mgcp->mgc_next = grp->mrg_clients; 4937 grp->mrg_clients = mgcp; 4938 4939 } 4940 4941 void 4942 mac_rx_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 4943 { 4944 mac_grp_client_t *mgcp, **pprev; 4945 4946 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 4947 pprev = &mgcp->mgc_next, mgcp = *pprev) { 4948 if (mgcp->mgc_client == mcip) 4949 break; 4950 } 4951 4952 ASSERT(mgcp != NULL); 4953 4954 *pprev = mgcp->mgc_next; 4955 kmem_free(mgcp, sizeof (mac_grp_client_t)); 4956 } 4957 4958 /* 4959 * mac_reserve_rx_group() 4960 * 4961 * Finds an available group and exclusively reserves it for a client. 4962 * The group is chosen to suit the flow's resource controls (bandwidth and 4963 * fanout requirements) and the address type. 4964 * If the requestor is the pimary MAC then return the group with the 4965 * largest number of rings, otherwise the default ring when available. 4966 */ 4967 mac_group_t * 4968 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, 4969 mac_rx_group_reserve_type_t rtype) 4970 { 4971 mac_share_handle_t share = mcip->mci_share; 4972 mac_impl_t *mip = mcip->mci_mip; 4973 mac_group_t *grp = NULL; 4974 int i, start, loopcount; 4975 int err; 4976 mac_address_t *map; 4977 4978 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4979 4980 /* Check if a group already has this mac address (case of VLANs) */ 4981 if ((map = mac_find_macaddr(mip, mac_addr)) != NULL) 4982 return (map->ma_group); 4983 4984 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0 || 4985 rtype == MAC_RX_NO_RESERVE) 4986 return (NULL); 4987 4988 /* 4989 * Try to exclusively reserve a RX group. 4990 * 4991 * For flows requires SW_RING it always goes to the default group 4992 * (Until we can explicitely call out default groups (CR 6695600), 4993 * we assume that the default group is always at position zero); 4994 * 4995 * For flows requires HW_DEFAULT_RING (unicast flow of the primary 4996 * client), try to reserve the default RX group only. 4997 * 4998 * For flows requires HW_RING (unicast flow of other clients), try 4999 * to reserve non-default RX group then the default group. 5000 */ 5001 switch (rtype) { 5002 case MAC_RX_RESERVE_DEFAULT: 5003 start = 0; 5004 loopcount = 1; 5005 break; 5006 case MAC_RX_RESERVE_NONDEFAULT: 5007 start = 1; 5008 loopcount = mip->mi_rx_group_count; 5009 } 5010 5011 for (i = start; i < start + loopcount; i++) { 5012 grp = &mip->mi_rx_groups[i % mip->mi_rx_group_count]; 5013 5014 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 5015 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 5016 5017 /* 5018 * Check to see whether this mac client is the only client 5019 * on this RX group. If not, we cannot exclusively reserve 5020 * this RX group. 5021 */ 5022 if (!MAC_RX_GROUP_NO_CLIENT(grp) && 5023 (MAC_RX_GROUP_ONLY_CLIENT(grp) != mcip)) { 5024 continue; 5025 } 5026 5027 /* 5028 * This group could already be SHARED by other multicast 5029 * flows on this client. In that case, the group would 5030 * be shared and has already been started. 5031 */ 5032 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 5033 5034 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 5035 (mac_start_group(grp) != 0)) { 5036 continue; 5037 } 5038 5039 if ((i % mip->mi_rx_group_count) == 0 || 5040 mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 5041 break; 5042 } 5043 5044 ASSERT(grp->mrg_cur_count == 0); 5045 5046 /* 5047 * Populate the group. Rings should be taken 5048 * from the default group at position 0 for now. 5049 */ 5050 5051 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 5052 &mip->mi_rx_groups[0], grp, share); 5053 if (err == 0) 5054 break; 5055 5056 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 5057 mip->mi_name, int, grp->mrg_index, int, err); 5058 5059 /* 5060 * It's a dynamic group but the grouping operation failed. 5061 */ 5062 mac_stop_group(grp); 5063 } 5064 5065 if (i == start + loopcount) 5066 return (NULL); 5067 5068 ASSERT(grp != NULL); 5069 5070 DTRACE_PROBE2(rx__group__reserved, 5071 char *, mip->mi_name, int, grp->mrg_index); 5072 return (grp); 5073 } 5074 5075 /* 5076 * mac_rx_release_group() 5077 * 5078 * This is called when there are no clients left for the group. 5079 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 5080 * and if it is a non default group, the shares are removed and 5081 * all rings are assigned back to default group. 5082 */ 5083 void 5084 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 5085 { 5086 mac_impl_t *mip = mcip->mci_mip; 5087 mac_ring_t *ring; 5088 5089 ASSERT(group != &mip->mi_rx_groups[0]); 5090 5091 /* 5092 * This is the case where there are no clients left. Any 5093 * SRS etc on this group have also be quiesced. 5094 */ 5095 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 5096 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 5097 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 5098 /* 5099 * Remove the SRS associated with the HW ring. 5100 * As a result, polling will be disabled. 5101 */ 5102 ring->mr_srs = NULL; 5103 } 5104 ASSERT(ring->mr_state == MR_INUSE); 5105 mac_stop_ring(ring); 5106 ring->mr_state = MR_FREE; 5107 ring->mr_flag = 0; 5108 } 5109 5110 /* remove group from share */ 5111 if (mcip->mci_share != NULL) { 5112 mip->mi_share_capab.ms_sremove(mcip->mci_share, 5113 group->mrg_driver); 5114 } 5115 5116 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 5117 mac_ring_t *ring; 5118 5119 /* 5120 * Rings were dynamically allocated to group. 5121 * Move rings back to default group. 5122 */ 5123 while ((ring = group->mrg_rings) != NULL) { 5124 (void) mac_group_mov_ring(mip, 5125 &mip->mi_rx_groups[0], ring); 5126 } 5127 } 5128 mac_stop_group(group); 5129 /* 5130 * Possible improvement: See if we can assign the group just released 5131 * to a another client of the mip 5132 */ 5133 } 5134 5135 /* 5136 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 5137 * when a share was allocated to the client. 5138 */ 5139 mac_group_t * 5140 mac_reserve_tx_group(mac_impl_t *mip, mac_share_handle_t share) 5141 { 5142 mac_group_t *grp; 5143 int rv, i; 5144 5145 /* 5146 * TX groups are currently allocated only to MAC clients 5147 * which are associated with a share. Since we have a fixed 5148 * number of share and groups, and we already successfully 5149 * allocated a share, find an available TX group. 5150 */ 5151 ASSERT(share != NULL); 5152 ASSERT(mip->mi_tx_group_free > 0); 5153 5154 for (i = 0; i < mip->mi_tx_group_count; i++) { 5155 grp = &mip->mi_tx_groups[i]; 5156 5157 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 5158 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) 5159 continue; 5160 5161 rv = mac_start_group(grp); 5162 ASSERT(rv == 0); 5163 5164 grp->mrg_state = MAC_GROUP_STATE_RESERVED; 5165 break; 5166 } 5167 5168 ASSERT(grp != NULL); 5169 5170 /* 5171 * Populate the group. Rings should be taken from the group 5172 * of unassigned rings, which is past the array of TX 5173 * groups adversized by the driver. 5174 */ 5175 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, NULL, 5176 grp, share); 5177 if (rv != 0) { 5178 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 5179 char *, mip->mi_name, int, grp->mrg_index, int, rv); 5180 5181 mac_stop_group(grp); 5182 grp->mrg_state = MAC_GROUP_STATE_UNINIT; 5183 5184 return (NULL); 5185 } 5186 5187 mip->mi_tx_group_free--; 5188 5189 return (grp); 5190 } 5191 5192 void 5193 mac_release_tx_group(mac_impl_t *mip, mac_group_t *grp) 5194 { 5195 mac_client_impl_t *mcip = grp->mrg_tx_client; 5196 mac_share_handle_t share = mcip->mci_share; 5197 mac_ring_t *ring; 5198 5199 ASSERT(mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 5200 ASSERT(share != NULL); 5201 ASSERT(grp->mrg_state == MAC_GROUP_STATE_RESERVED); 5202 5203 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 5204 while ((ring = grp->mrg_rings) != NULL) { 5205 /* move the ring back to the pool */ 5206 (void) mac_group_mov_ring(mip, mip->mi_tx_groups + 5207 mip->mi_tx_group_count, ring); 5208 } 5209 mac_stop_group(grp); 5210 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 5211 grp->mrg_tx_client = NULL; 5212 mip->mi_tx_group_free++; 5213 } 5214 5215 /* 5216 * This is a 1-time control path activity initiated by the client (IP). 5217 * The mac perimeter protects against other simultaneous control activities, 5218 * for example an ioctl that attempts to change the degree of fanout and 5219 * increase or decrease the number of softrings associated with this Tx SRS. 5220 */ 5221 static mac_tx_notify_cb_t * 5222 mac_client_tx_notify_add(mac_client_impl_t *mcip, 5223 mac_tx_notify_t notify, void *arg) 5224 { 5225 mac_cb_info_t *mcbi; 5226 mac_tx_notify_cb_t *mtnfp; 5227 5228 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5229 5230 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 5231 mtnfp->mtnf_fn = notify; 5232 mtnfp->mtnf_arg = arg; 5233 mtnfp->mtnf_link.mcb_objp = mtnfp; 5234 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 5235 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 5236 5237 mcbi = &mcip->mci_tx_notify_cb_info; 5238 mutex_enter(mcbi->mcbi_lockp); 5239 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 5240 mutex_exit(mcbi->mcbi_lockp); 5241 return (mtnfp); 5242 } 5243 5244 static void 5245 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 5246 { 5247 mac_cb_info_t *mcbi; 5248 mac_cb_t **cblist; 5249 5250 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5251 5252 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 5253 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 5254 cmn_err(CE_WARN, 5255 "mac_client_tx_notify_remove: callback not " 5256 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 5257 return; 5258 } 5259 5260 mcbi = &mcip->mci_tx_notify_cb_info; 5261 cblist = &mcip->mci_tx_notify_cb_list; 5262 mutex_enter(mcbi->mcbi_lockp); 5263 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 5264 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 5265 else 5266 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 5267 mutex_exit(mcbi->mcbi_lockp); 5268 } 5269 5270 /* 5271 * mac_client_tx_notify(): 5272 * call to add and remove flow control callback routine. 5273 */ 5274 mac_tx_notify_handle_t 5275 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 5276 void *ptr) 5277 { 5278 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5279 mac_tx_notify_cb_t *mtnfp = NULL; 5280 5281 i_mac_perim_enter(mcip->mci_mip); 5282 5283 if (callb_func != NULL) { 5284 /* Add a notify callback */ 5285 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 5286 } else { 5287 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 5288 } 5289 i_mac_perim_exit(mcip->mci_mip); 5290 5291 return ((mac_tx_notify_handle_t)mtnfp); 5292 } 5293