xref: /titanic_44/usr/src/uts/common/io/idm/idm_so.c (revision 245ac945f472de75ea45784c1ab006a14fc8723b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2013 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/conf.h>
30 #include <sys/stat.h>
31 #include <sys/file.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/modctl.h>
35 #include <sys/priv.h>
36 #include <sys/cpuvar.h>
37 #include <sys/socket.h>
38 #include <sys/strsubr.h>
39 #include <sys/sysmacros.h>
40 #include <sys/sdt.h>
41 #include <netinet/tcp.h>
42 #include <inet/tcp.h>
43 #include <sys/socketvar.h>
44 #include <sys/pathname.h>
45 #include <sys/fs/snode.h>
46 #include <sys/fs/dv_node.h>
47 #include <sys/vnode.h>
48 #include <netinet/in.h>
49 #include <net/if.h>
50 #include <sys/sockio.h>
51 #include <sys/ksocket.h>
52 #include <sys/filio.h>		/* FIONBIO */
53 #include <sys/iscsi_protocol.h>
54 #include <sys/idm/idm.h>
55 #include <sys/idm/idm_so.h>
56 #include <sys/idm/idm_text.h>
57 
58 #define	IN_PROGRESS_DELAY	1
59 
60 /*
61  * in6addr_any is currently all zeroes, but use the macro in case this
62  * ever changes.
63  */
64 static const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
65 
66 static void idm_sorx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status);
67 static void idm_sorx_addl_pdu_cb(idm_pdu_t *pdu, idm_status_t status);
68 static void idm_sotx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status);
69 
70 static idm_status_t idm_so_conn_create_common(idm_conn_t *ic, ksocket_t new_so);
71 static void idm_so_conn_destroy_common(idm_conn_t *ic);
72 static void idm_so_conn_connect_common(idm_conn_t *ic);
73 
74 static void idm_set_ini_preconnect_options(idm_so_conn_t *sc,
75     boolean_t boot_conn);
76 static void idm_set_postconnect_options(ksocket_t so);
77 static idm_status_t idm_i_so_tx(idm_pdu_t *pdu);
78 
79 static idm_status_t idm_sorecvdata(idm_conn_t *ic, idm_pdu_t *pdu);
80 static void idm_so_send_rtt_data(idm_conn_t *ic, idm_task_t *idt,
81     idm_buf_t *idb, uint32_t offset, uint32_t length);
82 static void idm_so_send_rtt_data_done(idm_task_t *idt, idm_buf_t *idb);
83 static idm_status_t idm_so_send_buf_region(idm_task_t *idt,
84     idm_buf_t *idb, uint32_t buf_region_offset, uint32_t buf_region_length);
85 
86 static uint32_t idm_fill_iov(idm_pdu_t *pdu, idm_buf_t *idb,
87     uint32_t ro, uint32_t dlength);
88 
89 static idm_status_t idm_so_handle_digest(idm_conn_t *it,
90     nvpair_t *digest_choice, const idm_kv_xlate_t *ikvx);
91 
92 static void idm_so_socket_set_nonblock(struct sonode *node);
93 static void idm_so_socket_set_block(struct sonode *node);
94 
95 /*
96  * Transport ops prototypes
97  */
98 static void idm_so_tx(idm_conn_t *ic, idm_pdu_t *pdu);
99 static idm_status_t idm_so_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb);
100 static idm_status_t idm_so_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb);
101 static void idm_so_rx_datain(idm_conn_t *ic, idm_pdu_t *pdu);
102 static void idm_so_rx_rtt(idm_conn_t *ic, idm_pdu_t *pdu);
103 static void idm_so_rx_dataout(idm_conn_t *ic, idm_pdu_t *pdu);
104 static idm_status_t idm_so_free_task_rsrc(idm_task_t *idt);
105 static kv_status_t idm_so_negotiate_key_values(idm_conn_t *it,
106     nvlist_t *request_nvl, nvlist_t *response_nvl, nvlist_t *negotiated_nvl);
107 static void idm_so_notice_key_values(idm_conn_t *it,
108     nvlist_t *negotiated_nvl);
109 static kv_status_t idm_so_declare_key_values(idm_conn_t *it,
110     nvlist_t *config_nvl, nvlist_t *outgoing_nvl);
111 static boolean_t idm_so_conn_is_capable(idm_conn_req_t *ic,
112     idm_transport_caps_t *caps);
113 static idm_status_t idm_so_buf_alloc(idm_buf_t *idb, uint64_t buflen);
114 static void idm_so_buf_free(idm_buf_t *idb);
115 static idm_status_t idm_so_buf_setup(idm_buf_t *idb);
116 static void idm_so_buf_teardown(idm_buf_t *idb);
117 static idm_status_t idm_so_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t *is);
118 static void idm_so_tgt_svc_destroy(idm_svc_t *is);
119 static idm_status_t idm_so_tgt_svc_online(idm_svc_t *is);
120 static void idm_so_tgt_svc_offline(idm_svc_t *is);
121 static void idm_so_tgt_conn_destroy(idm_conn_t *ic);
122 static idm_status_t idm_so_tgt_conn_connect(idm_conn_t *ic);
123 static void idm_so_conn_disconnect(idm_conn_t *ic);
124 static idm_status_t idm_so_ini_conn_create(idm_conn_req_t *cr, idm_conn_t *ic);
125 static void idm_so_ini_conn_destroy(idm_conn_t *ic);
126 static idm_status_t idm_so_ini_conn_connect(idm_conn_t *ic);
127 
128 /*
129  * IDM Native Sockets transport operations
130  */
131 static
132 idm_transport_ops_t idm_so_transport_ops = {
133 	idm_so_tx,			/* it_tx_pdu */
134 	idm_so_buf_tx_to_ini,		/* it_buf_tx_to_ini */
135 	idm_so_buf_rx_from_ini,		/* it_buf_rx_from_ini */
136 	idm_so_rx_datain,		/* it_rx_datain */
137 	idm_so_rx_rtt,			/* it_rx_rtt */
138 	idm_so_rx_dataout,		/* it_rx_dataout */
139 	NULL,				/* it_alloc_conn_rsrc */
140 	NULL,				/* it_free_conn_rsrc */
141 	NULL,				/* it_tgt_enable_datamover */
142 	NULL,				/* it_ini_enable_datamover */
143 	NULL,				/* it_conn_terminate */
144 	idm_so_free_task_rsrc,		/* it_free_task_rsrc */
145 	idm_so_negotiate_key_values,	/* it_negotiate_key_values */
146 	idm_so_notice_key_values,	/* it_notice_key_values */
147 	idm_so_conn_is_capable,		/* it_conn_is_capable */
148 	idm_so_buf_alloc,		/* it_buf_alloc */
149 	idm_so_buf_free,		/* it_buf_free */
150 	idm_so_buf_setup,		/* it_buf_setup */
151 	idm_so_buf_teardown,		/* it_buf_teardown */
152 	idm_so_tgt_svc_create,		/* it_tgt_svc_create */
153 	idm_so_tgt_svc_destroy,		/* it_tgt_svc_destroy */
154 	idm_so_tgt_svc_online,		/* it_tgt_svc_online */
155 	idm_so_tgt_svc_offline,		/* it_tgt_svc_offline */
156 	idm_so_tgt_conn_destroy,	/* it_tgt_conn_destroy */
157 	idm_so_tgt_conn_connect,	/* it_tgt_conn_connect */
158 	idm_so_conn_disconnect,		/* it_tgt_conn_disconnect */
159 	idm_so_ini_conn_create,		/* it_ini_conn_create */
160 	idm_so_ini_conn_destroy,	/* it_ini_conn_destroy */
161 	idm_so_ini_conn_connect,	/* it_ini_conn_connect */
162 	idm_so_conn_disconnect,		/* it_ini_conn_disconnect */
163 	idm_so_declare_key_values	/* it_declare_key_values */
164 };
165 
166 kmutex_t	idm_so_timed_socket_mutex;
167 
168 int32_t idm_so_sndbuf = IDM_SNDBUF_SIZE;
169 int32_t idm_so_rcvbuf = IDM_RCVBUF_SIZE;
170 
171 /*
172  * idm_so_init()
173  * Sockets transport initialization
174  */
175 void
176 idm_so_init(idm_transport_t *it)
177 {
178 	/* Cache for IDM Data and R2T Transmit PDU's */
179 	idm.idm_sotx_pdu_cache = kmem_cache_create("idm_tx_pdu_cache",
180 	    sizeof (idm_pdu_t) + sizeof (iscsi_hdr_t), 8,
181 	    &idm_sotx_pdu_constructor, NULL, NULL, NULL, NULL, KM_SLEEP);
182 
183 	/* Cache for IDM Receive PDU's */
184 	idm.idm_sorx_pdu_cache = kmem_cache_create("idm_rx_pdu_cache",
185 	    sizeof (idm_pdu_t) + IDM_SORX_CACHE_HDRLEN, 8,
186 	    &idm_sorx_pdu_constructor, NULL, NULL, NULL, NULL, KM_SLEEP);
187 
188 	/* 128k buffer cache */
189 	idm.idm_so_128k_buf_cache = kmem_cache_create("idm_128k_buf_cache",
190 	    IDM_SO_BUF_CACHE_UB, 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP);
191 
192 	/* Set the sockets transport ops */
193 	it->it_ops = &idm_so_transport_ops;
194 
195 	mutex_init(&idm_so_timed_socket_mutex, NULL, MUTEX_DEFAULT, NULL);
196 
197 }
198 
199 /*
200  * idm_so_fini()
201  * Sockets transport teardown
202  */
203 void
204 idm_so_fini(void)
205 {
206 	kmem_cache_destroy(idm.idm_so_128k_buf_cache);
207 	kmem_cache_destroy(idm.idm_sotx_pdu_cache);
208 	kmem_cache_destroy(idm.idm_sorx_pdu_cache);
209 	mutex_destroy(&idm_so_timed_socket_mutex);
210 }
211 
212 ksocket_t
213 idm_socreate(int domain, int type, int protocol)
214 {
215 	ksocket_t ks;
216 
217 	if (!ksocket_socket(&ks, domain, type, protocol, KSOCKET_NOSLEEP,
218 	    CRED())) {
219 		return (ks);
220 	} else {
221 		return (NULL);
222 	}
223 }
224 
225 /*
226  * idm_soshutdown will disconnect the socket and prevent subsequent PDU
227  * reception and transmission.  The sonode still exists but its state
228  * gets modified to indicate it is no longer connected.  Calls to
229  * idm_sorecv/idm_iov_sorecv will return so idm_soshutdown can be used
230  * regain control of a thread stuck in idm_sorecv.
231  */
232 void
233 idm_soshutdown(ksocket_t so)
234 {
235 	(void) ksocket_shutdown(so, SHUT_RDWR, CRED());
236 }
237 
238 /*
239  * idm_sodestroy releases all resources associated with a socket previously
240  * created with idm_socreate.  The socket must be shutdown using
241  * idm_soshutdown before the socket is destroyed with idm_sodestroy,
242  * otherwise undefined behavior will result.
243  */
244 void
245 idm_sodestroy(ksocket_t ks)
246 {
247 	(void) ksocket_close(ks, CRED());
248 }
249 
250 /*
251  * Function to compare two addresses in sockaddr_storage format
252  */
253 
254 int
255 idm_ss_compare(const struct sockaddr_storage *cmp_ss1,
256     const struct sockaddr_storage *cmp_ss2,
257     boolean_t v4_mapped_as_v4,
258     boolean_t compare_ports)
259 {
260 	struct sockaddr_storage			mapped_v4_ss1, mapped_v4_ss2;
261 	const struct sockaddr_storage		*ss1, *ss2;
262 	struct in_addr				*in1, *in2;
263 	struct in6_addr				*in61, *in62;
264 	int i;
265 
266 	/*
267 	 * Normalize V4-mapped IPv6 addresses into V4 format if
268 	 * v4_mapped_as_v4 is B_TRUE.
269 	 */
270 	ss1 = cmp_ss1;
271 	ss2 = cmp_ss2;
272 	if (v4_mapped_as_v4 && (ss1->ss_family == AF_INET6)) {
273 		in61 = &((struct sockaddr_in6 *)ss1)->sin6_addr;
274 		if (IN6_IS_ADDR_V4MAPPED(in61)) {
275 			bzero(&mapped_v4_ss1, sizeof (mapped_v4_ss1));
276 			mapped_v4_ss1.ss_family = AF_INET;
277 			((struct sockaddr_in *)&mapped_v4_ss1)->sin_port =
278 			    ((struct sockaddr_in *)ss1)->sin_port;
279 			IN6_V4MAPPED_TO_INADDR(in61,
280 			    &((struct sockaddr_in *)&mapped_v4_ss1)->sin_addr);
281 			ss1 = &mapped_v4_ss1;
282 		}
283 	}
284 	ss2 = cmp_ss2;
285 	if (v4_mapped_as_v4 && (ss2->ss_family == AF_INET6)) {
286 		in62 = &((struct sockaddr_in6 *)ss2)->sin6_addr;
287 		if (IN6_IS_ADDR_V4MAPPED(in62)) {
288 			bzero(&mapped_v4_ss2, sizeof (mapped_v4_ss2));
289 			mapped_v4_ss2.ss_family = AF_INET;
290 			((struct sockaddr_in *)&mapped_v4_ss2)->sin_port =
291 			    ((struct sockaddr_in *)ss2)->sin_port;
292 			IN6_V4MAPPED_TO_INADDR(in62,
293 			    &((struct sockaddr_in *)&mapped_v4_ss2)->sin_addr);
294 			ss2 = &mapped_v4_ss2;
295 		}
296 	}
297 
298 	/*
299 	 * Compare ports, then address family, then ip address
300 	 */
301 	if (compare_ports &&
302 	    (((struct sockaddr_in *)ss1)->sin_port !=
303 	    ((struct sockaddr_in *)ss2)->sin_port)) {
304 		if (((struct sockaddr_in *)ss1)->sin_port >
305 		    ((struct sockaddr_in *)ss2)->sin_port)
306 			return (1);
307 		else
308 			return (-1);
309 	}
310 
311 	/*
312 	 * ports are the same
313 	 */
314 	if (ss1->ss_family != ss2->ss_family) {
315 		if (ss1->ss_family == AF_INET)
316 			return (1);
317 		else
318 			return (-1);
319 	}
320 
321 	/*
322 	 * address families are the same
323 	 */
324 	if (ss1->ss_family == AF_INET) {
325 		in1 = &((struct sockaddr_in *)ss1)->sin_addr;
326 		in2 = &((struct sockaddr_in *)ss2)->sin_addr;
327 
328 		if (in1->s_addr > in2->s_addr)
329 			return (1);
330 		else if (in1->s_addr < in2->s_addr)
331 			return (-1);
332 		else
333 			return (0);
334 	} else if (ss1->ss_family == AF_INET6) {
335 		in61 = &((struct sockaddr_in6 *)ss1)->sin6_addr;
336 		in62 = &((struct sockaddr_in6 *)ss2)->sin6_addr;
337 
338 		for (i = 0; i < 4; i++) {
339 			if (in61->s6_addr32[i] > in62->s6_addr32[i])
340 				return (1);
341 			else if (in61->s6_addr32[i] < in62->s6_addr32[i])
342 				return (-1);
343 		}
344 		return (0);
345 	}
346 
347 	return (1);
348 }
349 
350 /*
351  * IP address filter functions to flag addresses that should not
352  * go out to initiators through discovery.
353  */
354 static boolean_t
355 idm_v4_addr_okay(struct in_addr *in_addr)
356 {
357 	in_addr_t addr = ntohl(in_addr->s_addr);
358 
359 	if ((INADDR_NONE == addr) ||
360 	    (IN_MULTICAST(addr)) ||
361 	    ((addr >> IN_CLASSA_NSHIFT) == 0) ||
362 	    ((addr >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) {
363 		return (B_FALSE);
364 	}
365 	return (B_TRUE);
366 }
367 
368 static boolean_t
369 idm_v6_addr_okay(struct in6_addr *addr6)
370 {
371 
372 	if ((IN6_IS_ADDR_UNSPECIFIED(addr6)) ||
373 	    (IN6_IS_ADDR_LOOPBACK(addr6)) ||
374 	    (IN6_IS_ADDR_MULTICAST(addr6)) ||
375 	    (IN6_IS_ADDR_V4MAPPED(addr6)) ||
376 	    (IN6_IS_ADDR_V4COMPAT(addr6)) ||
377 	    (IN6_IS_ADDR_LINKLOCAL(addr6))) {
378 		return (B_FALSE);
379 	}
380 	return (B_TRUE);
381 }
382 
383 /*
384  * idm_get_ipaddr will retrieve a list of IP Addresses which the host is
385  * configured with by sending down a sequence of kernel ioctl to IP STREAMS.
386  */
387 int
388 idm_get_ipaddr(idm_addr_list_t **ipaddr_p)
389 {
390 	ksocket_t 		so4, so6;
391 	struct lifnum		lifn;
392 	struct lifconf		lifc;
393 	struct lifreq		*lp;
394 	int			rval;
395 	int			numifs;
396 	int			bufsize;
397 	void			*buf;
398 	int			i, j, n, rc;
399 	struct sockaddr_storage	ss;
400 	struct sockaddr_in	*sin;
401 	struct sockaddr_in6	*sin6;
402 	idm_addr_t		*ip;
403 	idm_addr_list_t		*ipaddr = NULL;
404 	int			size_ipaddr;
405 
406 	*ipaddr_p = NULL;
407 	size_ipaddr = 0;
408 	buf = NULL;
409 
410 	/* create an ipv4 and ipv6 UDP socket */
411 	if ((so6 = idm_socreate(PF_INET6, SOCK_DGRAM, 0)) == NULL)
412 		return (0);
413 	if ((so4 = idm_socreate(PF_INET, SOCK_DGRAM, 0)) == NULL) {
414 		idm_sodestroy(so6);
415 		return (0);
416 	}
417 
418 
419 retry_count:
420 	/* snapshot the current number of interfaces */
421 	lifn.lifn_family = PF_UNSPEC;
422 	lifn.lifn_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES;
423 	lifn.lifn_count = 0;
424 	/* use vp6 for ioctls with unspecified families by default */
425 	if (ksocket_ioctl(so6, SIOCGLIFNUM, (intptr_t)&lifn, &rval, CRED())
426 	    != 0) {
427 		goto cleanup;
428 	}
429 
430 	numifs = lifn.lifn_count;
431 	if (numifs <= 0) {
432 		goto cleanup;
433 	}
434 
435 	/* allocate extra room in case more interfaces appear */
436 	numifs += 10;
437 
438 	/* get the interface names and ip addresses */
439 	bufsize = numifs * sizeof (struct lifreq);
440 	buf = kmem_alloc(bufsize, KM_SLEEP);
441 
442 	lifc.lifc_family = AF_UNSPEC;
443 	lifc.lifc_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES;
444 	lifc.lifc_len = bufsize;
445 	lifc.lifc_buf = buf;
446 	rc = ksocket_ioctl(so6, SIOCGLIFCONF, (intptr_t)&lifc, &rval, CRED());
447 	if (rc != 0) {
448 		goto cleanup;
449 	}
450 	/* if our extra room is used up, try again */
451 	if (bufsize <= lifc.lifc_len) {
452 		kmem_free(buf, bufsize);
453 		buf = NULL;
454 		goto retry_count;
455 	}
456 	/* calc actual number of ifconfs */
457 	n = lifc.lifc_len / sizeof (struct lifreq);
458 
459 	/* get ip address */
460 	if (n > 0) {
461 		size_ipaddr = sizeof (idm_addr_list_t) +
462 		    (n - 1) * sizeof (idm_addr_t);
463 		ipaddr = kmem_zalloc(size_ipaddr, KM_SLEEP);
464 	} else {
465 		goto cleanup;
466 	}
467 
468 	/*
469 	 * Examine the array of interfaces and filter uninteresting ones
470 	 */
471 	for (i = 0, j = 0, lp = lifc.lifc_req; i < n; i++, lp++) {
472 
473 		/*
474 		 * Copy the address as the SIOCGLIFFLAGS ioctl is destructive
475 		 */
476 		ss = lp->lifr_addr;
477 		/*
478 		 * fetch the flags using the socket of the correct family
479 		 */
480 		switch (ss.ss_family) {
481 		case AF_INET:
482 			rc = ksocket_ioctl(so4, SIOCGLIFFLAGS, (intptr_t)lp,
483 			    &rval, CRED());
484 			break;
485 		case AF_INET6:
486 			rc = ksocket_ioctl(so6, SIOCGLIFFLAGS, (intptr_t)lp,
487 			    &rval, CRED());
488 			break;
489 		default:
490 			continue;
491 		}
492 		if (rc == 0) {
493 			/*
494 			 * If we got the flags, skip uninteresting
495 			 * interfaces based on flags
496 			 */
497 			if ((lp->lifr_flags & IFF_UP) != IFF_UP)
498 				continue;
499 			if (lp->lifr_flags &
500 			    (IFF_ANYCAST|IFF_NOLOCAL|IFF_DEPRECATED))
501 				continue;
502 		}
503 
504 		/* save ip address */
505 		ip = &ipaddr->al_addrs[j];
506 		switch (ss.ss_family) {
507 		case AF_INET:
508 			sin = (struct sockaddr_in *)&ss;
509 			if (!idm_v4_addr_okay(&sin->sin_addr))
510 				continue;
511 			ip->a_addr.i_addr.in4 = sin->sin_addr;
512 			ip->a_addr.i_insize = sizeof (struct in_addr);
513 			break;
514 		case AF_INET6:
515 			sin6 = (struct sockaddr_in6 *)&ss;
516 			if (!idm_v6_addr_okay(&sin6->sin6_addr))
517 				continue;
518 			ip->a_addr.i_addr.in6 = sin6->sin6_addr;
519 			ip->a_addr.i_insize = sizeof (struct in6_addr);
520 			break;
521 		default:
522 			continue;
523 		}
524 		j++;
525 	}
526 
527 	if (j == 0) {
528 		/* no valid ifaddr */
529 		kmem_free(ipaddr, size_ipaddr);
530 		size_ipaddr = 0;
531 		ipaddr = NULL;
532 	} else {
533 		ipaddr->al_out_cnt = j;
534 	}
535 
536 
537 cleanup:
538 	idm_sodestroy(so6);
539 	idm_sodestroy(so4);
540 
541 	if (buf != NULL)
542 		kmem_free(buf, bufsize);
543 
544 	*ipaddr_p = ipaddr;
545 	return (size_ipaddr);
546 }
547 
548 int
549 idm_sorecv(ksocket_t so, void *msg, size_t len)
550 {
551 	iovec_t iov;
552 
553 	ASSERT(so != NULL);
554 	ASSERT(len != 0);
555 
556 	/*
557 	 * Fill in iovec and receive data
558 	 */
559 	iov.iov_base = msg;
560 	iov.iov_len = len;
561 
562 	return (idm_iov_sorecv(so, &iov, 1, len));
563 }
564 
565 /*
566  * idm_sosendto - Sends a buffered data on a non-connected socket.
567  *
568  * This function puts the data provided on the wire by calling sosendmsg.
569  * It will return only when all the data has been sent or if an error
570  * occurs.
571  *
572  * Returns 0 for success, the socket errno value if sosendmsg fails, and
573  * -1 if sosendmsg returns success but uio_resid != 0
574  */
575 int
576 idm_sosendto(ksocket_t so, void *buff, size_t len,
577     struct sockaddr *name, socklen_t namelen)
578 {
579 	struct msghdr		msg;
580 	struct iovec		iov[1];
581 	int			error;
582 	size_t			sent = 0;
583 
584 	iov[0].iov_base	= buff;
585 	iov[0].iov_len	= len;
586 
587 	/* Initialization of the message header. */
588 	bzero(&msg, sizeof (msg));
589 	msg.msg_iov	= iov;
590 	msg.msg_iovlen	= 1;
591 	msg.msg_name	= name;
592 	msg.msg_namelen	= namelen;
593 
594 	if ((error = ksocket_sendmsg(so, &msg, 0, &sent, CRED())) == 0) {
595 		/* Data sent */
596 		if (sent == len) {
597 			/* All data sent.  Success. */
598 			return (0);
599 		} else {
600 			/* Not all data was sent.  Failure */
601 			return (-1);
602 		}
603 	}
604 
605 	/* Send failed */
606 	return (error);
607 }
608 
609 /*
610  * idm_iov_sosend - Sends an iovec on a connection.
611  *
612  * This function puts the data provided on the wire by calling sosendmsg.
613  * It will return only when all the data has been sent or if an error
614  * occurs.
615  *
616  * Returns 0 for success, the socket errno value if sosendmsg fails, and
617  * -1 if sosendmsg returns success but uio_resid != 0
618  */
619 int
620 idm_iov_sosend(ksocket_t so, iovec_t *iop, int iovlen, size_t total_len)
621 {
622 	struct msghdr		msg;
623 	int			error;
624 	size_t 			sent = 0;
625 
626 	ASSERT(iop != NULL);
627 
628 	/* Initialization of the message header. */
629 	bzero(&msg, sizeof (msg));
630 	msg.msg_iov	= iop;
631 	msg.msg_iovlen	= iovlen;
632 
633 	if ((error = ksocket_sendmsg(so, &msg, 0, &sent, CRED()))
634 	    == 0) {
635 		/* Data sent */
636 		if (sent == total_len) {
637 			/* All data sent.  Success. */
638 			return (0);
639 		} else {
640 			/* Not all data was sent.  Failure */
641 			return (-1);
642 		}
643 	}
644 
645 	/* Send failed */
646 	return (error);
647 }
648 
649 /*
650  * idm_iov_sorecv - Receives an iovec from a connection
651  *
652  * This function gets the data asked for from the socket.  It will return
653  * only when all the requested data has been retrieved or if an error
654  * occurs.
655  *
656  * Returns 0 for success, the socket errno value if sorecvmsg fails, and
657  * -1 if sorecvmsg returns success but uio_resid != 0
658  */
659 int
660 idm_iov_sorecv(ksocket_t so, iovec_t *iop, int iovlen, size_t total_len)
661 {
662 	struct msghdr		msg;
663 	int			error;
664 	size_t			recv;
665 	int 			flags;
666 
667 	ASSERT(iop != NULL);
668 
669 	/* Initialization of the message header. */
670 	bzero(&msg, sizeof (msg));
671 	msg.msg_iov	= iop;
672 	msg.msg_iovlen	= iovlen;
673 	flags		= MSG_WAITALL;
674 
675 	if ((error = ksocket_recvmsg(so, &msg, flags, &recv, CRED()))
676 	    == 0) {
677 		/* Received data */
678 		if (recv == total_len) {
679 			/* All requested data received.  Success */
680 			return (0);
681 		} else {
682 			/*
683 			 * Not all data was received.  The connection has
684 			 * probably failed.
685 			 */
686 			return (-1);
687 		}
688 	}
689 
690 	/* Receive failed */
691 	return (error);
692 }
693 
694 static void
695 idm_set_ini_preconnect_options(idm_so_conn_t *sc, boolean_t boot_conn)
696 {
697 	int	conn_abort = 10000;
698 	int	conn_notify = 2000;
699 	int	abort = 30000;
700 
701 	/* Pre-connect socket options */
702 	(void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP,
703 	    TCP_CONN_NOTIFY_THRESHOLD, (char *)&conn_notify, sizeof (int),
704 	    CRED());
705 	if (boot_conn == B_FALSE) {
706 		(void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP,
707 		    TCP_CONN_ABORT_THRESHOLD, (char *)&conn_abort, sizeof (int),
708 		    CRED());
709 		(void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP,
710 		    TCP_ABORT_THRESHOLD,
711 		    (char *)&abort, sizeof (int), CRED());
712 	}
713 }
714 
715 static void
716 idm_set_postconnect_options(ksocket_t ks)
717 {
718 	const int	on = 1;
719 
720 	/* Set connect options */
721 	(void) ksocket_setsockopt(ks, SOL_SOCKET, SO_RCVBUF,
722 	    (char *)&idm_so_rcvbuf, sizeof (idm_so_rcvbuf), CRED());
723 	(void) ksocket_setsockopt(ks, SOL_SOCKET, SO_SNDBUF,
724 	    (char *)&idm_so_sndbuf, sizeof (idm_so_sndbuf), CRED());
725 	(void) ksocket_setsockopt(ks, IPPROTO_TCP, TCP_NODELAY,
726 	    (char *)&on, sizeof (on), CRED());
727 }
728 
729 static uint32_t
730 n2h24(const uchar_t *ptr)
731 {
732 	return ((ptr[0] << 16) | (ptr[1] << 8) | ptr[2]);
733 }
734 
735 
736 static idm_status_t
737 idm_sorecvhdr(idm_conn_t *ic, idm_pdu_t *pdu)
738 {
739 	iscsi_hdr_t	*bhs;
740 	uint32_t	hdr_digest_crc;
741 	uint32_t	crc_calculated;
742 	void		*new_hdr;
743 	int		ahslen = 0;
744 	int		total_len = 0;
745 	int		iovlen = 0;
746 	struct iovec	iov[2];
747 	idm_so_conn_t	*so_conn;
748 	int		rc;
749 
750 	so_conn = ic->ic_transport_private;
751 
752 	/*
753 	 * Read BHS
754 	 */
755 	bhs = pdu->isp_hdr;
756 	rc = idm_sorecv(so_conn->ic_so, pdu->isp_hdr, sizeof (iscsi_hdr_t));
757 	if (rc != IDM_STATUS_SUCCESS) {
758 		return (IDM_STATUS_FAIL);
759 	}
760 
761 	/*
762 	 * Check actual AHS length against the amount available in the buffer
763 	 */
764 	pdu->isp_hdrlen = sizeof (iscsi_hdr_t) +
765 	    (bhs->hlength * sizeof (uint32_t));
766 	pdu->isp_datalen = n2h24(bhs->dlength);
767 	if (ic->ic_conn_type == CONN_TYPE_TGT &&
768 	    pdu->isp_datalen > ic->ic_conn_params.max_recv_dataseglen) {
769 		IDM_CONN_LOG(CE_WARN,
770 		    "idm_sorecvhdr: exceeded the max data segment length");
771 		return (IDM_STATUS_FAIL);
772 	}
773 	if (bhs->hlength > IDM_SORX_CACHE_AHSLEN) {
774 		/* Allocate a new header segment and change the callback */
775 		new_hdr = kmem_alloc(pdu->isp_hdrlen, KM_SLEEP);
776 		bcopy(pdu->isp_hdr, new_hdr, sizeof (iscsi_hdr_t));
777 		pdu->isp_hdr = new_hdr;
778 		pdu->isp_flags |= IDM_PDU_ADDL_HDR;
779 
780 		/*
781 		 * This callback will restore the expected values after
782 		 * the RX PDU has been processed.
783 		 */
784 		pdu->isp_callback = idm_sorx_addl_pdu_cb;
785 	}
786 
787 	/*
788 	 * Setup receipt of additional header and header digest (if enabled).
789 	 */
790 	if (bhs->hlength > 0) {
791 		iov[iovlen].iov_base = (caddr_t)(pdu->isp_hdr + 1);
792 		ahslen = pdu->isp_hdrlen - sizeof (iscsi_hdr_t);
793 		iov[iovlen].iov_len = ahslen;
794 		total_len += iov[iovlen].iov_len;
795 		iovlen++;
796 	}
797 
798 	if (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST) {
799 		iov[iovlen].iov_base = (caddr_t)&hdr_digest_crc;
800 		iov[iovlen].iov_len = sizeof (hdr_digest_crc);
801 		total_len += iov[iovlen].iov_len;
802 		iovlen++;
803 	}
804 
805 	if ((iovlen != 0) &&
806 	    (idm_iov_sorecv(so_conn->ic_so, &iov[0], iovlen,
807 	    total_len) != 0)) {
808 		return (IDM_STATUS_FAIL);
809 	}
810 
811 	/*
812 	 * Validate header digest if enabled
813 	 */
814 	if (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST) {
815 		crc_calculated = idm_crc32c(pdu->isp_hdr,
816 		    sizeof (iscsi_hdr_t) + ahslen);
817 		if (crc_calculated != hdr_digest_crc) {
818 			/* Invalid Header Digest */
819 			return (IDM_STATUS_HEADER_DIGEST);
820 		}
821 	}
822 
823 	return (0);
824 }
825 
826 /*
827  * idm_so_ini_conn_create()
828  * Allocate the sockets transport connection resources.
829  */
830 static idm_status_t
831 idm_so_ini_conn_create(idm_conn_req_t *cr, idm_conn_t *ic)
832 {
833 	ksocket_t	so;
834 	idm_so_conn_t	*so_conn;
835 	idm_status_t	idmrc;
836 
837 	so = idm_socreate(cr->cr_domain, cr->cr_type,
838 	    cr->cr_protocol);
839 	if (so == NULL) {
840 		return (IDM_STATUS_FAIL);
841 	}
842 
843 	/* Bind the socket if configured to do so */
844 	if (cr->cr_bound) {
845 		if (ksocket_bind(so, &cr->cr_bound_addr.sin,
846 		    SIZEOF_SOCKADDR(&cr->cr_bound_addr.sin), CRED()) != 0) {
847 			idm_sodestroy(so);
848 			return (IDM_STATUS_FAIL);
849 		}
850 	}
851 
852 	idmrc = idm_so_conn_create_common(ic, so);
853 	if (idmrc != IDM_STATUS_SUCCESS) {
854 		idm_soshutdown(so);
855 		idm_sodestroy(so);
856 		return (IDM_STATUS_FAIL);
857 	}
858 
859 	so_conn = ic->ic_transport_private;
860 	/* Set up socket options */
861 	idm_set_ini_preconnect_options(so_conn, cr->cr_boot_conn);
862 
863 	return (IDM_STATUS_SUCCESS);
864 }
865 
866 /*
867  * idm_so_ini_conn_destroy()
868  * Tear down the sockets transport connection resources.
869  */
870 static void
871 idm_so_ini_conn_destroy(idm_conn_t *ic)
872 {
873 	idm_so_conn_destroy_common(ic);
874 }
875 
876 /*
877  * idm_so_ini_conn_connect()
878  * Establish the connection referred to by the handle previously allocated via
879  * idm_so_ini_conn_create().
880  */
881 static idm_status_t
882 idm_so_ini_conn_connect(idm_conn_t *ic)
883 {
884 	idm_so_conn_t	*so_conn;
885 	struct sonode	*node = NULL;
886 	int 		rc;
887 	clock_t		lbolt, conn_login_max, conn_login_interval;
888 	boolean_t	nonblock;
889 
890 	so_conn = ic->ic_transport_private;
891 	nonblock = ic->ic_conn_params.nonblock_socket;
892 	conn_login_max = ic->ic_conn_params.conn_login_max;
893 	conn_login_interval = ddi_get_lbolt() +
894 	    SEC_TO_TICK(ic->ic_conn_params.conn_login_interval);
895 
896 	if (nonblock == B_TRUE) {
897 		node = ((struct sonode *)(so_conn->ic_so));
898 		/* Set to none block socket mode */
899 		idm_so_socket_set_nonblock(node);
900 		do {
901 			rc = ksocket_connect(so_conn->ic_so,
902 			    &ic->ic_ini_dst_addr.sin,
903 			    (SIZEOF_SOCKADDR(&ic->ic_ini_dst_addr.sin)),
904 			    CRED());
905 			if (rc == 0 || rc == EISCONN) {
906 				/* socket success or already success */
907 				rc = IDM_STATUS_SUCCESS;
908 				break;
909 			}
910 			if ((rc == ETIMEDOUT) || (rc == ECONNREFUSED) ||
911 			    (rc == ECONNRESET)) {
912 				/* socket connection timeout or refuse */
913 				break;
914 			}
915 			lbolt = ddi_get_lbolt();
916 			if (lbolt > conn_login_max) {
917 				/*
918 				 * Connection retry timeout,
919 				 * failed connect to target.
920 				 */
921 				break;
922 			}
923 			if (lbolt < conn_login_interval) {
924 				if ((rc == EINPROGRESS) || (rc == EALREADY)) {
925 					/* TCP connect still in progress */
926 					delay(SEC_TO_TICK(IN_PROGRESS_DELAY));
927 					continue;
928 				} else {
929 					delay(conn_login_interval - lbolt);
930 				}
931 			}
932 			conn_login_interval = ddi_get_lbolt() +
933 			    SEC_TO_TICK(ic->ic_conn_params.conn_login_interval);
934 		} while (rc != 0);
935 		/* resume to nonblock mode */
936 		if (rc == IDM_STATUS_SUCCESS) {
937 			idm_so_socket_set_block(node);
938 		}
939 	} else {
940 		rc = ksocket_connect(so_conn->ic_so, &ic->ic_ini_dst_addr.sin,
941 		    (SIZEOF_SOCKADDR(&ic->ic_ini_dst_addr.sin)), CRED());
942 	}
943 
944 	if (rc != 0) {
945 		idm_soshutdown(so_conn->ic_so);
946 		return (IDM_STATUS_FAIL);
947 	}
948 
949 	idm_so_conn_connect_common(ic);
950 
951 	idm_set_postconnect_options(so_conn->ic_so);
952 
953 	return (IDM_STATUS_SUCCESS);
954 }
955 
956 idm_status_t
957 idm_so_tgt_conn_create(idm_conn_t *ic, ksocket_t new_so)
958 {
959 	idm_status_t	idmrc;
960 
961 	idm_set_postconnect_options(new_so);
962 	idmrc = idm_so_conn_create_common(ic, new_so);
963 
964 	return (idmrc);
965 }
966 
967 static void
968 idm_so_tgt_conn_destroy(idm_conn_t *ic)
969 {
970 	idm_so_conn_destroy_common(ic);
971 }
972 
973 /*
974  * idm_so_tgt_conn_connect()
975  * Establish the connection in ic, passed from idm_tgt_conn_finish(), which
976  * is invoked from the SM as a result of an inbound connection request.
977  */
978 static idm_status_t
979 idm_so_tgt_conn_connect(idm_conn_t *ic)
980 {
981 	idm_so_conn_connect_common(ic);
982 
983 	return (IDM_STATUS_SUCCESS);
984 }
985 
986 static idm_status_t
987 idm_so_conn_create_common(idm_conn_t *ic, ksocket_t new_so)
988 {
989 	idm_so_conn_t	*so_conn;
990 
991 	so_conn = kmem_zalloc(sizeof (idm_so_conn_t), KM_SLEEP);
992 	so_conn->ic_so = new_so;
993 
994 	ic->ic_transport_private = so_conn;
995 	ic->ic_transport_hdrlen = 0;
996 
997 	/* Set the scoreboarding flag on this connection */
998 	ic->ic_conn_flags |= IDM_CONN_USE_SCOREBOARD;
999 	ic->ic_conn_params.max_recv_dataseglen =
1000 	    ISCSI_DEFAULT_MAX_RECV_SEG_LEN;
1001 	ic->ic_conn_params.max_xmit_dataseglen =
1002 	    ISCSI_DEFAULT_MAX_XMIT_SEG_LEN;
1003 
1004 	/*
1005 	 * Initialize tx thread mutex and list
1006 	 */
1007 	mutex_init(&so_conn->ic_tx_mutex, NULL, MUTEX_DEFAULT, NULL);
1008 	cv_init(&so_conn->ic_tx_cv, NULL, CV_DEFAULT, NULL);
1009 	list_create(&so_conn->ic_tx_list, sizeof (idm_pdu_t),
1010 	    offsetof(idm_pdu_t, idm_tx_link));
1011 
1012 	return (IDM_STATUS_SUCCESS);
1013 }
1014 
1015 static void
1016 idm_so_conn_destroy_common(idm_conn_t *ic)
1017 {
1018 	idm_so_conn_t	*so_conn = ic->ic_transport_private;
1019 
1020 	ic->ic_transport_private = NULL;
1021 	idm_sodestroy(so_conn->ic_so);
1022 	list_destroy(&so_conn->ic_tx_list);
1023 	mutex_destroy(&so_conn->ic_tx_mutex);
1024 	cv_destroy(&so_conn->ic_tx_cv);
1025 
1026 	kmem_free(so_conn, sizeof (idm_so_conn_t));
1027 }
1028 
1029 static void
1030 idm_so_conn_connect_common(idm_conn_t *ic)
1031 {
1032 	idm_so_conn_t	*so_conn;
1033 	struct sockaddr_in6	t_addr;
1034 	socklen_t	t_addrlen = 0;
1035 
1036 	so_conn = ic->ic_transport_private;
1037 	bzero(&t_addr, sizeof (struct sockaddr_in6));
1038 	t_addrlen = sizeof (struct sockaddr_in6);
1039 
1040 	/* Set the local and remote addresses in the idm conn handle */
1041 	(void) ksocket_getsockname(so_conn->ic_so, (struct sockaddr *)&t_addr,
1042 	    &t_addrlen, CRED());
1043 	bcopy(&t_addr, &ic->ic_laddr, t_addrlen);
1044 	(void) ksocket_getpeername(so_conn->ic_so, (struct sockaddr *)&t_addr,
1045 	    &t_addrlen, CRED());
1046 	bcopy(&t_addr, &ic->ic_raddr, t_addrlen);
1047 
1048 	mutex_enter(&ic->ic_mutex);
1049 	so_conn->ic_tx_thread = thread_create(NULL, 0, idm_sotx_thread, ic, 0,
1050 	    &p0, TS_RUN, minclsyspri);
1051 	so_conn->ic_rx_thread = thread_create(NULL, 0, idm_sorx_thread, ic, 0,
1052 	    &p0, TS_RUN, minclsyspri);
1053 
1054 	while (so_conn->ic_rx_thread_did == 0 ||
1055 	    so_conn->ic_tx_thread_did == 0)
1056 		cv_wait(&ic->ic_cv, &ic->ic_mutex);
1057 	mutex_exit(&ic->ic_mutex);
1058 }
1059 
1060 /*
1061  * idm_so_conn_disconnect()
1062  * Shutdown the socket connection and stop the thread
1063  */
1064 static void
1065 idm_so_conn_disconnect(idm_conn_t *ic)
1066 {
1067 	idm_so_conn_t	*so_conn;
1068 
1069 	so_conn = ic->ic_transport_private;
1070 
1071 	mutex_enter(&ic->ic_mutex);
1072 	so_conn->ic_rx_thread_running = B_FALSE;
1073 	so_conn->ic_tx_thread_running = B_FALSE;
1074 	/* We need to wakeup the TX thread */
1075 	mutex_enter(&so_conn->ic_tx_mutex);
1076 	cv_signal(&so_conn->ic_tx_cv);
1077 	mutex_exit(&so_conn->ic_tx_mutex);
1078 	mutex_exit(&ic->ic_mutex);
1079 
1080 	/* This should wakeup the RX thread if it is sleeping */
1081 	idm_soshutdown(so_conn->ic_so);
1082 
1083 	thread_join(so_conn->ic_tx_thread_did);
1084 	thread_join(so_conn->ic_rx_thread_did);
1085 }
1086 
1087 /*
1088  * idm_so_tgt_svc_create()
1089  * Establish a service on an IP address and port.  idm_svc_req_t contains
1090  * the service parameters.
1091  */
1092 /*ARGSUSED*/
1093 static idm_status_t
1094 idm_so_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t *is)
1095 {
1096 	idm_so_svc_t		*so_svc;
1097 
1098 	so_svc = kmem_zalloc(sizeof (idm_so_svc_t), KM_SLEEP);
1099 
1100 	/* Set the new sockets service in svc handle */
1101 	is->is_so_svc = (void *)so_svc;
1102 
1103 	return (IDM_STATUS_SUCCESS);
1104 }
1105 
1106 /*
1107  * idm_so_tgt_svc_destroy()
1108  * Teardown sockets resources allocated in idm_so_tgt_svc_create()
1109  */
1110 static void
1111 idm_so_tgt_svc_destroy(idm_svc_t *is)
1112 {
1113 	/* the socket will have been torn down; free the service */
1114 	kmem_free(is->is_so_svc, sizeof (idm_so_svc_t));
1115 }
1116 
1117 /*
1118  * idm_so_tgt_svc_online()
1119  * Launch a watch thread on the svc allocated in idm_so_tgt_svc_create()
1120  */
1121 
1122 static idm_status_t
1123 idm_so_tgt_svc_online(idm_svc_t *is)
1124 {
1125 	idm_so_svc_t		*so_svc;
1126 	idm_svc_req_t		*sr = &is->is_svc_req;
1127 	struct sockaddr_in6	sin6_ip;
1128 	const uint32_t		on = 1;
1129 	const uint32_t		off = 0;
1130 
1131 	mutex_enter(&is->is_mutex);
1132 	so_svc = (idm_so_svc_t *)is->is_so_svc;
1133 
1134 	/*
1135 	 * Try creating an IPv6 socket first
1136 	 */
1137 	if ((so_svc->is_so = idm_socreate(PF_INET6, SOCK_STREAM, 0)) == NULL) {
1138 		mutex_exit(&is->is_mutex);
1139 		return (IDM_STATUS_FAIL);
1140 	} else {
1141 		bzero(&sin6_ip, sizeof (sin6_ip));
1142 		sin6_ip.sin6_family = AF_INET6;
1143 		sin6_ip.sin6_port = htons(sr->sr_port);
1144 		sin6_ip.sin6_addr = in6addr_any;
1145 
1146 		(void) ksocket_setsockopt(so_svc->is_so, SOL_SOCKET,
1147 		    SO_REUSEADDR, (char *)&on, sizeof (on), CRED());
1148 		/*
1149 		 * Turn off SO_MAC_EXEMPT so future sobinds succeed
1150 		 */
1151 		(void) ksocket_setsockopt(so_svc->is_so, SOL_SOCKET,
1152 		    SO_MAC_EXEMPT, (char *)&off, sizeof (off), CRED());
1153 
1154 		if (ksocket_bind(so_svc->is_so, (struct sockaddr *)&sin6_ip,
1155 		    sizeof (sin6_ip), CRED()) != 0) {
1156 			mutex_exit(&is->is_mutex);
1157 			idm_sodestroy(so_svc->is_so);
1158 			return (IDM_STATUS_FAIL);
1159 		}
1160 	}
1161 
1162 	idm_set_postconnect_options(so_svc->is_so);
1163 
1164 	if (ksocket_listen(so_svc->is_so, 5, CRED()) != 0) {
1165 		mutex_exit(&is->is_mutex);
1166 		idm_soshutdown(so_svc->is_so);
1167 		idm_sodestroy(so_svc->is_so);
1168 		return (IDM_STATUS_FAIL);
1169 	}
1170 
1171 	/* Launch a watch thread */
1172 	so_svc->is_thread = thread_create(NULL, 0, idm_so_svc_port_watcher,
1173 	    is, 0, &p0, TS_RUN, minclsyspri);
1174 
1175 	if (so_svc->is_thread == NULL) {
1176 		/* Failure to launch; teardown the socket */
1177 		mutex_exit(&is->is_mutex);
1178 		idm_soshutdown(so_svc->is_so);
1179 		idm_sodestroy(so_svc->is_so);
1180 		return (IDM_STATUS_FAIL);
1181 	}
1182 	ksocket_hold(so_svc->is_so);
1183 	/* Wait for the port watcher thread to start */
1184 	while (!so_svc->is_thread_running)
1185 		cv_wait(&is->is_cv, &is->is_mutex);
1186 	mutex_exit(&is->is_mutex);
1187 
1188 	return (IDM_STATUS_SUCCESS);
1189 }
1190 
1191 /*
1192  * idm_so_tgt_svc_offline
1193  *
1194  * Stop listening on the IP address and port identified by idm_svc_t.
1195  */
1196 static void
1197 idm_so_tgt_svc_offline(idm_svc_t *is)
1198 {
1199 	idm_so_svc_t		*so_svc;
1200 	mutex_enter(&is->is_mutex);
1201 	so_svc = (idm_so_svc_t *)is->is_so_svc;
1202 	so_svc->is_thread_running = B_FALSE;
1203 	mutex_exit(&is->is_mutex);
1204 
1205 	/*
1206 	 * Teardown socket
1207 	 */
1208 	idm_sodestroy(so_svc->is_so);
1209 
1210 	/*
1211 	 * Now we expect the port watcher thread to terminate
1212 	 */
1213 	thread_join(so_svc->is_thread_did);
1214 }
1215 
1216 /*
1217  * Watch thread for target service connection establishment.
1218  */
1219 void
1220 idm_so_svc_port_watcher(void *arg)
1221 {
1222 	idm_svc_t		*svc = arg;
1223 	ksocket_t		new_so;
1224 	idm_conn_t		*ic;
1225 	idm_status_t		idmrc;
1226 	idm_so_svc_t		*so_svc;
1227 	int			rc;
1228 	const uint32_t		off = 0;
1229 	struct sockaddr_in6 	t_addr;
1230 	socklen_t		t_addrlen;
1231 
1232 	bzero(&t_addr, sizeof (struct sockaddr_in6));
1233 	t_addrlen = sizeof (struct sockaddr_in6);
1234 	mutex_enter(&svc->is_mutex);
1235 
1236 	so_svc = svc->is_so_svc;
1237 	so_svc->is_thread_running = B_TRUE;
1238 	so_svc->is_thread_did = so_svc->is_thread->t_did;
1239 
1240 	cv_signal(&svc->is_cv);
1241 
1242 	IDM_SVC_LOG(CE_NOTE, "iSCSI service (%p/%d) online", (void *)svc,
1243 	    svc->is_svc_req.sr_port);
1244 
1245 	while (so_svc->is_thread_running) {
1246 		mutex_exit(&svc->is_mutex);
1247 
1248 		if ((rc = ksocket_accept(so_svc->is_so,
1249 		    (struct sockaddr *)&t_addr, &t_addrlen,
1250 		    &new_so, CRED())) != 0) {
1251 			mutex_enter(&svc->is_mutex);
1252 			if (rc != ECONNABORTED && rc != EINTR) {
1253 				IDM_SVC_LOG(CE_NOTE, "idm_so_svc_port_watcher:"
1254 				    " ksocket_accept failed %d", rc);
1255 			}
1256 			/*
1257 			 * Unclean shutdown of this thread is not handled
1258 			 * wait for !is_thread_running.
1259 			 */
1260 			continue;
1261 		}
1262 		/*
1263 		 * Turn off SO_MAC_EXEMPT so future sobinds succeed
1264 		 */
1265 		(void) ksocket_setsockopt(new_so, SOL_SOCKET, SO_MAC_EXEMPT,
1266 		    (char *)&off, sizeof (off), CRED());
1267 
1268 		idmrc = idm_svc_conn_create(svc, IDM_TRANSPORT_TYPE_SOCKETS,
1269 		    &ic);
1270 		if (idmrc != IDM_STATUS_SUCCESS) {
1271 			/* Drop connection */
1272 			idm_soshutdown(new_so);
1273 			idm_sodestroy(new_so);
1274 			mutex_enter(&svc->is_mutex);
1275 			continue;
1276 		}
1277 
1278 		idmrc = idm_so_tgt_conn_create(ic, new_so);
1279 		if (idmrc != IDM_STATUS_SUCCESS) {
1280 			idm_svc_conn_destroy(ic);
1281 			idm_soshutdown(new_so);
1282 			idm_sodestroy(new_so);
1283 			mutex_enter(&svc->is_mutex);
1284 			continue;
1285 		}
1286 
1287 		/*
1288 		 * Kick the state machine.  At CS_S3_XPT_UP the state machine
1289 		 * will notify the client (target) about the new connection.
1290 		 */
1291 		idm_conn_event(ic, CE_CONNECT_ACCEPT, NULL);
1292 
1293 		mutex_enter(&svc->is_mutex);
1294 	}
1295 	ksocket_rele(so_svc->is_so);
1296 	so_svc->is_thread_running = B_FALSE;
1297 	mutex_exit(&svc->is_mutex);
1298 
1299 	IDM_SVC_LOG(CE_NOTE, "iSCSI service (%p/%d) offline", (void *)svc,
1300 	    svc->is_svc_req.sr_port);
1301 
1302 	thread_exit();
1303 }
1304 
1305 /*
1306  * idm_so_free_task_rsrc() stops any ongoing processing of the task and
1307  * frees resources associated with the task.
1308  *
1309  * It's not clear that this should return idm_status_t.  What do we do
1310  * if it fails?
1311  */
1312 static idm_status_t
1313 idm_so_free_task_rsrc(idm_task_t *idt)
1314 {
1315 	idm_buf_t	*idb, *next_idb;
1316 
1317 	/*
1318 	 * There is nothing to cleanup on initiator connections
1319 	 */
1320 	if (IDM_CONN_ISINI(idt->idt_ic))
1321 		return (IDM_STATUS_SUCCESS);
1322 
1323 	/*
1324 	 * If this is a target connection, call idm_buf_rx_from_ini_done for
1325 	 * any buffer on the "outbufv" list with idb->idb_in_transport==B_TRUE.
1326 	 *
1327 	 * In addition, remove any buffers associated with this task from
1328 	 * the ic_tx_list.  We'll do this by walking the idt_inbufv list, but
1329 	 * items don't actually get removed from that list (and completion
1330 	 * routines called) until idm_task_cleanup.
1331 	 */
1332 	mutex_enter(&idt->idt_mutex);
1333 
1334 	for (idb = list_head(&idt->idt_outbufv); idb != NULL; idb = next_idb) {
1335 		next_idb = list_next(&idt->idt_outbufv, idb);
1336 		if (idb->idb_in_transport) {
1337 			/*
1338 			 * idm_buf_rx_from_ini_done releases idt->idt_mutex
1339 			 */
1340 			DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic,
1341 			    uintptr_t, idb->idb_buf,
1342 			    uint32_t, idb->idb_bufoffset,
1343 			    uint64_t, 0, uint32_t, 0, uint32_t, 0,
1344 			    uint32_t, idb->idb_xfer_len,
1345 			    int, XFER_BUF_RX_FROM_INI);
1346 			idm_buf_rx_from_ini_done(idt, idb, IDM_STATUS_ABORTED);
1347 			mutex_enter(&idt->idt_mutex);
1348 		}
1349 	}
1350 
1351 	for (idb = list_head(&idt->idt_inbufv); idb != NULL; idb = next_idb) {
1352 		next_idb = list_next(&idt->idt_inbufv, idb);
1353 		/*
1354 		 * We want to remove these items from the tx_list as well,
1355 		 * but knowing it's in the idt_inbufv list is not a guarantee
1356 		 * that it's in the tx_list.  If it's on the tx list then
1357 		 * let idm_sotx_thread() clean it up.
1358 		 */
1359 		if (idb->idb_in_transport && !idb->idb_tx_thread) {
1360 			/*
1361 			 * idm_buf_tx_to_ini_done releases idt->idt_mutex
1362 			 */
1363 			DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic,
1364 			    uintptr_t, idb->idb_buf,
1365 			    uint32_t, idb->idb_bufoffset,
1366 			    uint64_t, 0, uint32_t, 0, uint32_t, 0,
1367 			    uint32_t, idb->idb_xfer_len,
1368 			    int, XFER_BUF_TX_TO_INI);
1369 			idm_buf_tx_to_ini_done(idt, idb, IDM_STATUS_ABORTED);
1370 			mutex_enter(&idt->idt_mutex);
1371 		}
1372 	}
1373 
1374 	mutex_exit(&idt->idt_mutex);
1375 
1376 	return (IDM_STATUS_SUCCESS);
1377 }
1378 
1379 /*
1380  * idm_so_negotiate_key_values() validates the key values for this connection
1381  */
1382 /* ARGSUSED */
1383 static kv_status_t
1384 idm_so_negotiate_key_values(idm_conn_t *it, nvlist_t *request_nvl,
1385     nvlist_t *response_nvl, nvlist_t *negotiated_nvl)
1386 {
1387 	/* All parameters are negotiated at the iscsit level */
1388 	return (KV_HANDLED);
1389 }
1390 
1391 /*
1392  * idm_so_notice_key_values() activates the negotiated key values for
1393  * this connection.
1394  */
1395 static void
1396 idm_so_notice_key_values(idm_conn_t *it, nvlist_t *negotiated_nvl)
1397 {
1398 	char			*nvp_name;
1399 	nvpair_t		*nvp;
1400 	nvpair_t		*next_nvp;
1401 	int			nvrc;
1402 	idm_status_t		idm_status;
1403 	const idm_kv_xlate_t	*ikvx;
1404 	uint64_t		num_val;
1405 
1406 	for (nvp = nvlist_next_nvpair(negotiated_nvl, NULL);
1407 	    nvp != NULL; nvp = next_nvp) {
1408 		next_nvp = nvlist_next_nvpair(negotiated_nvl, nvp);
1409 		nvp_name = nvpair_name(nvp);
1410 
1411 		ikvx = idm_lookup_kv_xlate(nvp_name, strlen(nvp_name));
1412 		switch (ikvx->ik_key_id) {
1413 		case KI_HEADER_DIGEST:
1414 		case KI_DATA_DIGEST:
1415 			idm_status = idm_so_handle_digest(it, nvp, ikvx);
1416 			ASSERT(idm_status == 0);
1417 
1418 			/* Remove processed item from negotiated_nvl list */
1419 			nvrc = nvlist_remove_all(
1420 			    negotiated_nvl, ikvx->ik_key_name);
1421 			ASSERT(nvrc == 0);
1422 			break;
1423 		case KI_MAX_RECV_DATA_SEGMENT_LENGTH:
1424 			/*
1425 			 * Just pass the value down to idm layer.
1426 			 * No need to remove it from negotiated_nvl list here.
1427 			 */
1428 			nvrc = nvpair_value_uint64(nvp, &num_val);
1429 			ASSERT(nvrc == 0);
1430 			it->ic_conn_params.max_xmit_dataseglen =
1431 			    (uint32_t)num_val;
1432 			break;
1433 		default:
1434 			break;
1435 		}
1436 	}
1437 }
1438 
1439 /*
1440  * idm_so_declare_key_values() declares the key values for this connection
1441  */
1442 /* ARGSUSED */
1443 static kv_status_t
1444 idm_so_declare_key_values(idm_conn_t *it, nvlist_t *config_nvl,
1445     nvlist_t *outgoing_nvl)
1446 {
1447 	char			*nvp_name;
1448 	nvpair_t		*nvp;
1449 	nvpair_t		*next_nvp;
1450 	kv_status_t		kvrc;
1451 	int			nvrc = 0;
1452 	const idm_kv_xlate_t	*ikvx;
1453 	uint64_t		num_val;
1454 
1455 	for (nvp = nvlist_next_nvpair(config_nvl, NULL);
1456 	    nvp != NULL && nvrc == 0; nvp = next_nvp) {
1457 		next_nvp = nvlist_next_nvpair(config_nvl, nvp);
1458 		nvp_name = nvpair_name(nvp);
1459 
1460 		ikvx = idm_lookup_kv_xlate(nvp_name, strlen(nvp_name));
1461 		switch (ikvx->ik_key_id) {
1462 		case KI_MAX_RECV_DATA_SEGMENT_LENGTH:
1463 			if ((nvrc = nvpair_value_uint64(nvp, &num_val)) != 0) {
1464 				break;
1465 			}
1466 			if (outgoing_nvl &&
1467 			    (nvrc = nvlist_add_uint64(outgoing_nvl,
1468 			    nvp_name, num_val)) != 0) {
1469 				break;
1470 			}
1471 			it->ic_conn_params.max_recv_dataseglen =
1472 			    (uint32_t)num_val;
1473 			break;
1474 		default:
1475 			break;
1476 		}
1477 	}
1478 	kvrc = idm_nvstat_to_kvstat(nvrc);
1479 	return (kvrc);
1480 }
1481 
1482 static idm_status_t
1483 idm_so_handle_digest(idm_conn_t *it, nvpair_t *digest_choice,
1484     const idm_kv_xlate_t *ikvx)
1485 {
1486 	int			nvrc;
1487 	char			*digest_choice_string;
1488 
1489 	nvrc = nvpair_value_string(digest_choice,
1490 	    &digest_choice_string);
1491 	ASSERT(nvrc == 0);
1492 	if (strcasecmp(digest_choice_string, "crc32c") == 0) {
1493 		switch (ikvx->ik_key_id) {
1494 		case KI_HEADER_DIGEST:
1495 			it->ic_conn_flags |= IDM_CONN_HEADER_DIGEST;
1496 			break;
1497 		case KI_DATA_DIGEST:
1498 			it->ic_conn_flags |= IDM_CONN_DATA_DIGEST;
1499 			break;
1500 		default:
1501 			ASSERT(0);
1502 			break;
1503 		}
1504 	} else if (strcasecmp(digest_choice_string, "none") == 0) {
1505 		switch (ikvx->ik_key_id) {
1506 		case KI_HEADER_DIGEST:
1507 			it->ic_conn_flags &= ~IDM_CONN_HEADER_DIGEST;
1508 			break;
1509 		case KI_DATA_DIGEST:
1510 			it->ic_conn_flags &= ~IDM_CONN_DATA_DIGEST;
1511 			break;
1512 		default:
1513 			ASSERT(0);
1514 			break;
1515 		}
1516 	} else {
1517 		ASSERT(0);
1518 	}
1519 
1520 	return (IDM_STATUS_SUCCESS);
1521 }
1522 
1523 
1524 /*
1525  * idm_so_conn_is_capable() verifies that the passed connection is provided
1526  * for by the sockets interface.
1527  */
1528 /* ARGSUSED */
1529 static boolean_t
1530 idm_so_conn_is_capable(idm_conn_req_t *ic, idm_transport_caps_t *caps)
1531 {
1532 	return (B_TRUE);
1533 }
1534 
1535 /*
1536  * idm_so_rx_datain() validates the Data Sequence number of the PDU. The
1537  * idm_sorecv_scsidata() function invoked earlier actually reads the data
1538  * off the socket into the appropriate buffers.
1539  */
1540 static void
1541 idm_so_rx_datain(idm_conn_t *ic, idm_pdu_t *pdu)
1542 {
1543 	iscsi_data_hdr_t	*bhs;
1544 	idm_task_t		*idt;
1545 	idm_buf_t		*idb;
1546 	uint32_t		datasn;
1547 	size_t			offset;
1548 	iscsi_hdr_t		*ihp = (iscsi_hdr_t *)pdu->isp_hdr;
1549 	iscsi_data_rsp_hdr_t    *idrhp = (iscsi_data_rsp_hdr_t *)ihp;
1550 
1551 	ASSERT(ic != NULL);
1552 	ASSERT(pdu != NULL);
1553 
1554 	bhs	= (iscsi_data_hdr_t *)pdu->isp_hdr;
1555 	datasn	= ntohl(bhs->datasn);
1556 	offset	= ntohl(bhs->offset);
1557 
1558 	ASSERT(bhs->opcode == ISCSI_OP_SCSI_DATA_RSP);
1559 
1560 	/*
1561 	 * Look up the task corresponding to the initiator task tag
1562 	 * to get the buffers affiliated with the task.
1563 	 */
1564 	idt = idm_task_find(ic, bhs->itt, bhs->ttt);
1565 	if (idt == NULL) {
1566 		IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: failed to find task");
1567 		idm_pdu_rx_protocol_error(ic, pdu);
1568 		return;
1569 	}
1570 
1571 	idb = pdu->isp_sorx_buf;
1572 	if (idb == NULL) {
1573 		IDM_CONN_LOG(CE_WARN,
1574 		    "idm_so_rx_datain: failed to find buffer");
1575 		idm_task_rele(idt);
1576 		idm_pdu_rx_protocol_error(ic, pdu);
1577 		return;
1578 	}
1579 
1580 	/*
1581 	 * DataSN values should be sequential and should not have any gaps or
1582 	 * repetitions. Check the DataSN with the one stored in the task.
1583 	 */
1584 	if (datasn == idt->idt_exp_datasn) {
1585 		idt->idt_exp_datasn++; /* keep track of DataSN received */
1586 	} else {
1587 		IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: datasn out of order");
1588 		idm_task_rele(idt);
1589 		idm_pdu_rx_protocol_error(ic, pdu);
1590 		return;
1591 	}
1592 
1593 	/*
1594 	 * PDUs in a sequence should be in continuously increasing
1595 	 * address offset
1596 	 */
1597 	if (offset != idb->idb_exp_offset) {
1598 		IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: unexpected offset");
1599 		idm_task_rele(idt);
1600 		idm_pdu_rx_protocol_error(ic, pdu);
1601 		return;
1602 	}
1603 	/* Expected next relative buffer offset */
1604 	idb->idb_exp_offset += n2h24(bhs->dlength);
1605 	idt->idt_rx_bytes += n2h24(bhs->dlength);
1606 
1607 	idm_task_rele(idt);
1608 
1609 	/*
1610 	 * For now call scsi_rsp which will process the data rsp
1611 	 * Revisit, need to provide an explicit client entry point for
1612 	 * phase collapse completions.
1613 	 */
1614 	if (((ihp->opcode & ISCSI_OPCODE_MASK) == ISCSI_OP_SCSI_DATA_RSP) &&
1615 	    (idrhp->flags & ISCSI_FLAG_DATA_STATUS)) {
1616 		(*ic->ic_conn_ops.icb_rx_scsi_rsp)(ic, pdu);
1617 	}
1618 
1619 	idm_pdu_complete(pdu, IDM_STATUS_SUCCESS);
1620 }
1621 
1622 /*
1623  * The idm_so_rx_dataout() function is used by the iSCSI target to read
1624  * data from the Data-Out PDU sent by the iSCSI initiator.
1625  *
1626  * This function gets the Initiator Task Tag from the PDU BHS and looks up the
1627  * task to get the buffers associated with the PDU. A PDU might span buffers.
1628  * The data is then read into the respective buffer.
1629  */
1630 static void
1631 idm_so_rx_dataout(idm_conn_t *ic, idm_pdu_t *pdu)
1632 {
1633 
1634 	iscsi_data_hdr_t	*bhs;
1635 	idm_task_t		*idt;
1636 	idm_buf_t		*idb;
1637 	size_t			offset;
1638 
1639 	ASSERT(ic != NULL);
1640 	ASSERT(pdu != NULL);
1641 
1642 	bhs = (iscsi_data_hdr_t *)pdu->isp_hdr;
1643 	offset = ntohl(bhs->offset);
1644 	ASSERT(bhs->opcode == ISCSI_OP_SCSI_DATA);
1645 
1646 	/*
1647 	 * Look up the task corresponding to the initiator task tag
1648 	 * to get the buffers affiliated with the task.
1649 	 */
1650 	idt = idm_task_find(ic, bhs->itt, bhs->ttt);
1651 	if (idt == NULL) {
1652 		IDM_CONN_LOG(CE_WARN,
1653 		    "idm_so_rx_dataout: failed to find task");
1654 		idm_pdu_rx_protocol_error(ic, pdu);
1655 		return;
1656 	}
1657 
1658 	idb = pdu->isp_sorx_buf;
1659 	if (idb == NULL) {
1660 		IDM_CONN_LOG(CE_WARN,
1661 		    "idm_so_rx_dataout: failed to find buffer");
1662 		idm_task_rele(idt);
1663 		idm_pdu_rx_protocol_error(ic, pdu);
1664 		return;
1665 	}
1666 
1667 	/* Keep track of data transferred - check data offsets */
1668 	if (offset != idb->idb_exp_offset) {
1669 		IDM_CONN_LOG(CE_NOTE, "idm_so_rx_dataout: offset out of seq: "
1670 		    "%ld, %d", offset, idb->idb_exp_offset);
1671 		idm_task_rele(idt);
1672 		idm_pdu_rx_protocol_error(ic, pdu);
1673 		return;
1674 	}
1675 	/* Expected next relative offset */
1676 	idb->idb_exp_offset += ntoh24(bhs->dlength);
1677 	idt->idt_rx_bytes += n2h24(bhs->dlength);
1678 
1679 	/*
1680 	 * Call the buffer callback when the transfer is complete
1681 	 *
1682 	 * The connection state machine should only abort tasks after
1683 	 * shutting down the connection so we are assured that there
1684 	 * won't be a simultaneous attempt to abort this task at the
1685 	 * same time as we are processing this PDU (due to a connection
1686 	 * state change).
1687 	 */
1688 	if (bhs->flags & ISCSI_FLAG_FINAL) {
1689 		/*
1690 		 * We only want to call idm_buf_rx_from_ini_done once
1691 		 * per transfer.  It's possible that this task has
1692 		 * already been aborted in which case
1693 		 * idm_so_free_task_rsrc will call idm_buf_rx_from_ini_done
1694 		 * for each buffer with idb_in_transport==B_TRUE.  To
1695 		 * close this window and ensure that this doesn't happen,
1696 		 * we'll clear idb->idb_in_transport now while holding
1697 		 * the task mutex.   This is only really an issue for
1698 		 * SCSI task abort -- if tasks were being aborted because
1699 		 * of a connection state change the state machine would
1700 		 * have already stopped the receive thread.
1701 		 */
1702 		mutex_enter(&idt->idt_mutex);
1703 
1704 		/*
1705 		 * Release the task hold here (obtained in idm_task_find)
1706 		 * because the task may complete synchronously during
1707 		 * idm_buf_rx_from_ini_done.  Since we still have an active
1708 		 * buffer we know there is at least one additional hold on idt.
1709 		 */
1710 		idm_task_rele(idt);
1711 
1712 		/*
1713 		 * idm_buf_rx_from_ini_done releases idt->idt_mutex
1714 		 */
1715 		DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic,
1716 		    uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset,
1717 		    uint64_t, 0, uint32_t, 0, uint32_t, 0,
1718 		    uint32_t, idb->idb_xfer_len,
1719 		    int, XFER_BUF_RX_FROM_INI);
1720 		idm_buf_rx_from_ini_done(idt, idb, IDM_STATUS_SUCCESS);
1721 		idm_pdu_complete(pdu, IDM_STATUS_SUCCESS);
1722 		return;
1723 	}
1724 
1725 	idm_task_rele(idt);
1726 	idm_pdu_complete(pdu, IDM_STATUS_SUCCESS);
1727 }
1728 
1729 /*
1730  * The idm_so_rx_rtt() function is used by the iSCSI initiator to handle
1731  * the R2T PDU sent by the iSCSI target indicating that it is ready to
1732  * accept data. This gets the Initiator Task Tag (itt) from the PDU BHS
1733  * and looks up the task in the task tree using the itt to get the output
1734  * buffers associated the task. The R2T PDU contains the offset of the
1735  * requested data and the data length. This function then constructs a
1736  * sequence of iSCSI PDUs and outputs the requested data. Each Data-Out
1737  * PDU is associated with the R2T by the Target Transfer Tag  (ttt).
1738  */
1739 
1740 static void
1741 idm_so_rx_rtt(idm_conn_t *ic, idm_pdu_t *pdu)
1742 {
1743 	idm_task_t		*idt;
1744 	idm_buf_t		*idb;
1745 	iscsi_rtt_hdr_t		*rtt_hdr;
1746 	uint32_t		data_offset;
1747 	uint32_t		data_length;
1748 
1749 	ASSERT(ic != NULL);
1750 	ASSERT(pdu != NULL);
1751 
1752 	rtt_hdr	= (iscsi_rtt_hdr_t *)pdu->isp_hdr;
1753 	data_offset = ntohl(rtt_hdr->data_offset);
1754 	data_length = ntohl(rtt_hdr->data_length);
1755 	idt	= idm_task_find(ic, rtt_hdr->itt, rtt_hdr->ttt);
1756 
1757 	if (idt == NULL) {
1758 		IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: could not find task");
1759 		idm_pdu_rx_protocol_error(ic, pdu);
1760 		return;
1761 	}
1762 
1763 	/* Find the buffer bound to the task by the iSCSI initiator */
1764 	mutex_enter(&idt->idt_mutex);
1765 	idb = idm_buf_find(&idt->idt_outbufv, data_offset);
1766 	if (idb == NULL) {
1767 		mutex_exit(&idt->idt_mutex);
1768 		idm_task_rele(idt);
1769 		IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: could not find buffer");
1770 		idm_pdu_rx_protocol_error(ic, pdu);
1771 		return;
1772 	}
1773 
1774 	/* return buffer contains this data */
1775 	if (data_offset + data_length > idb->idb_buflen) {
1776 		/* Overflow */
1777 		mutex_exit(&idt->idt_mutex);
1778 		idm_task_rele(idt);
1779 		IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: read from outside "
1780 		    "buffer");
1781 		idm_pdu_rx_protocol_error(ic, pdu);
1782 		return;
1783 	}
1784 
1785 	idt->idt_r2t_ttt = rtt_hdr->ttt;
1786 	idt->idt_exp_datasn = 0;
1787 
1788 	idm_so_send_rtt_data(ic, idt, idb, data_offset,
1789 	    ntohl(rtt_hdr->data_length));
1790 	/*
1791 	 * the idt_mutex is released in idm_so_send_rtt_data
1792 	 */
1793 
1794 	idm_pdu_complete(pdu, IDM_STATUS_SUCCESS);
1795 	idm_task_rele(idt);
1796 
1797 }
1798 
1799 idm_status_t
1800 idm_sorecvdata(idm_conn_t *ic, idm_pdu_t *pdu)
1801 {
1802 	uint8_t		pad[ISCSI_PAD_WORD_LEN];
1803 	int		pad_len;
1804 	uint32_t	data_digest_crc;
1805 	uint32_t	crc_calculated;
1806 	int		total_len;
1807 	idm_so_conn_t	*so_conn;
1808 
1809 	so_conn = ic->ic_transport_private;
1810 
1811 	pad_len = ((ISCSI_PAD_WORD_LEN -
1812 	    (pdu->isp_datalen & (ISCSI_PAD_WORD_LEN - 1))) &
1813 	    (ISCSI_PAD_WORD_LEN - 1));
1814 
1815 	ASSERT(pdu->isp_iovlen < (PDU_MAX_IOVLEN - 2)); /* pad + data digest */
1816 
1817 	total_len = pdu->isp_datalen;
1818 
1819 	if (pad_len) {
1820 		pdu->isp_iov[pdu->isp_iovlen].iov_base	= (char *)&pad;
1821 		pdu->isp_iov[pdu->isp_iovlen].iov_len	= pad_len;
1822 		total_len		+= pad_len;
1823 		pdu->isp_iovlen++;
1824 	}
1825 
1826 	/* setup data digest */
1827 	if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) != 0) {
1828 		pdu->isp_iov[pdu->isp_iovlen].iov_base =
1829 		    (char *)&data_digest_crc;
1830 		pdu->isp_iov[pdu->isp_iovlen].iov_len =
1831 		    sizeof (data_digest_crc);
1832 		total_len		+= sizeof (data_digest_crc);
1833 		pdu->isp_iovlen++;
1834 	}
1835 
1836 	pdu->isp_data = (uint8_t *)(uintptr_t)pdu->isp_iov[0].iov_base;
1837 
1838 	if (idm_iov_sorecv(so_conn->ic_so, &pdu->isp_iov[0],
1839 	    pdu->isp_iovlen, total_len) != 0) {
1840 		return (IDM_STATUS_IO);
1841 	}
1842 
1843 	if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) != 0) {
1844 		crc_calculated = idm_crc32c(pdu->isp_data,
1845 		    pdu->isp_datalen);
1846 		if (pad_len) {
1847 			crc_calculated = idm_crc32c_continued((char *)&pad,
1848 			    pad_len, crc_calculated);
1849 		}
1850 		if (crc_calculated != data_digest_crc) {
1851 			IDM_CONN_LOG(CE_WARN,
1852 			    "idm_sorecvdata: "
1853 			    "CRC error: actual 0x%x, calc 0x%x",
1854 			    data_digest_crc, crc_calculated);
1855 
1856 			/* Invalid Data Digest */
1857 			return (IDM_STATUS_DATA_DIGEST);
1858 		}
1859 	}
1860 
1861 	return (IDM_STATUS_SUCCESS);
1862 }
1863 
1864 /*
1865  * idm_sorecv_scsidata() is used to receive scsi data from the socket. The
1866  * Data-type PDU header must be read into the idm_pdu_t structure prior to
1867  * calling this function.
1868  */
1869 idm_status_t
1870 idm_sorecv_scsidata(idm_conn_t *ic, idm_pdu_t *pdu)
1871 {
1872 	iscsi_data_hdr_t	*bhs;
1873 	idm_task_t		*task;
1874 	uint32_t		offset;
1875 	uint8_t			opcode;
1876 	uint32_t		dlength;
1877 	list_t			*buflst;
1878 	uint32_t		xfer_bytes;
1879 	idm_status_t		status;
1880 
1881 	ASSERT(ic != NULL);
1882 	ASSERT(pdu != NULL);
1883 
1884 	bhs	= (iscsi_data_hdr_t *)pdu->isp_hdr;
1885 
1886 	offset	= ntohl(bhs->offset);
1887 	opcode	= bhs->opcode;
1888 	dlength = n2h24(bhs->dlength);
1889 
1890 	ASSERT((opcode == ISCSI_OP_SCSI_DATA_RSP) ||
1891 	    (opcode == ISCSI_OP_SCSI_DATA));
1892 
1893 	/*
1894 	 * Successful lookup implicitly gets a "hold" on the task.  This
1895 	 * hold must be released before leaving this function.  At one
1896 	 * point we were caching this task context and retaining the hold
1897 	 * but it turned out to be very difficult to release the hold properly.
1898 	 * The task can be aborted and the connection shutdown between this
1899 	 * call and the subsequent expected call to idm_so_rx_datain/
1900 	 * idm_so_rx_dataout (in which case those functions are not called).
1901 	 * Releasing the hold in the PDU callback doesn't work well either
1902 	 * because the whole task may be completed by then at which point
1903 	 * it is too late to release the hold -- for better or worse this
1904 	 * code doesn't wait on the refcnts during normal operation.
1905 	 * idm_task_find() is very fast and it is not a huge burden if we
1906 	 * have to do it twice.
1907 	 */
1908 	task = idm_task_find(ic, bhs->itt, bhs->ttt);
1909 	if (task == NULL) {
1910 		IDM_CONN_LOG(CE_WARN,
1911 		    "idm_sorecv_scsidata: could not find task");
1912 		return (IDM_STATUS_FAIL);
1913 	}
1914 
1915 	mutex_enter(&task->idt_mutex);
1916 	buflst	= (opcode == ISCSI_OP_SCSI_DATA_RSP) ?
1917 	    &task->idt_inbufv : &task->idt_outbufv;
1918 	pdu->isp_sorx_buf = idm_buf_find(buflst, offset);
1919 	mutex_exit(&task->idt_mutex);
1920 
1921 	if (pdu->isp_sorx_buf == NULL) {
1922 		idm_task_rele(task);
1923 		IDM_CONN_LOG(CE_WARN, "idm_sorecv_scsidata: could not find "
1924 		    "buffer for offset %x opcode=%x",
1925 		    offset, opcode);
1926 		return (IDM_STATUS_FAIL);
1927 	}
1928 
1929 	xfer_bytes = idm_fill_iov(pdu, pdu->isp_sorx_buf, offset, dlength);
1930 	ASSERT(xfer_bytes != 0);
1931 	if (xfer_bytes != dlength) {
1932 		idm_task_rele(task);
1933 		/*
1934 		 * Buffer overflow, connection error.  The PDU data is still
1935 		 * sitting in the socket so we can't use the connection
1936 		 * again until that data is drained.
1937 		 */
1938 		return (IDM_STATUS_FAIL);
1939 	}
1940 
1941 	status = idm_sorecvdata(ic, pdu);
1942 
1943 	idm_task_rele(task);
1944 
1945 	return (status);
1946 }
1947 
1948 static uint32_t
1949 idm_fill_iov(idm_pdu_t *pdu, idm_buf_t *idb, uint32_t ro, uint32_t dlength)
1950 {
1951 	uint32_t	buf_ro = ro - idb->idb_bufoffset;
1952 	uint32_t	xfer_len = min(dlength, idb->idb_buflen - buf_ro);
1953 
1954 	ASSERT(ro >= idb->idb_bufoffset);
1955 
1956 	pdu->isp_iov[pdu->isp_iovlen].iov_base	=
1957 	    (caddr_t)idb->idb_buf + buf_ro;
1958 	pdu->isp_iov[pdu->isp_iovlen].iov_len	= xfer_len;
1959 	pdu->isp_iovlen++;
1960 
1961 	return (xfer_len);
1962 }
1963 
1964 int
1965 idm_sorecv_nonscsidata(idm_conn_t *ic, idm_pdu_t *pdu)
1966 {
1967 	pdu->isp_data = kmem_alloc(pdu->isp_datalen, KM_SLEEP);
1968 	ASSERT(pdu->isp_data != NULL);
1969 
1970 	pdu->isp_databuflen = pdu->isp_datalen;
1971 	pdu->isp_iov[0].iov_base = (caddr_t)pdu->isp_data;
1972 	pdu->isp_iov[0].iov_len = pdu->isp_datalen;
1973 	pdu->isp_iovlen = 1;
1974 	/*
1975 	 * Since we are associating a new data buffer with this received
1976 	 * PDU we need to set a specific callback to free the data
1977 	 * after the PDU is processed.
1978 	 */
1979 	pdu->isp_flags |= IDM_PDU_ADDL_DATA;
1980 	pdu->isp_callback = idm_sorx_addl_pdu_cb;
1981 
1982 	return (idm_sorecvdata(ic, pdu));
1983 }
1984 
1985 void
1986 idm_sorx_thread(void *arg)
1987 {
1988 	boolean_t	conn_failure = B_FALSE;
1989 	idm_conn_t	*ic = (idm_conn_t *)arg;
1990 	idm_so_conn_t	*so_conn;
1991 	idm_pdu_t	*pdu;
1992 	idm_status_t	rc;
1993 
1994 	idm_conn_hold(ic);
1995 
1996 	mutex_enter(&ic->ic_mutex);
1997 
1998 	so_conn = ic->ic_transport_private;
1999 	so_conn->ic_rx_thread_running = B_TRUE;
2000 	so_conn->ic_rx_thread_did = so_conn->ic_rx_thread->t_did;
2001 	cv_signal(&ic->ic_cv);
2002 
2003 	while (so_conn->ic_rx_thread_running) {
2004 		mutex_exit(&ic->ic_mutex);
2005 
2006 		/*
2007 		 * Get PDU with default header size (large enough for
2008 		 * BHS plus any anticipated AHS).  PDU from
2009 		 * the cache will have all values set correctly
2010 		 * for sockets RX including callback.
2011 		 */
2012 		pdu = kmem_cache_alloc(idm.idm_sorx_pdu_cache, KM_SLEEP);
2013 		pdu->isp_ic = ic;
2014 		pdu->isp_flags = 0;
2015 		pdu->isp_transport_hdrlen = 0;
2016 
2017 		if ((rc = idm_sorecvhdr(ic, pdu)) != 0) {
2018 			/*
2019 			 * Call idm_pdu_complete so that we call the callback
2020 			 * and ensure any memory allocated in idm_sorecvhdr
2021 			 * gets freed up.
2022 			 */
2023 			idm_pdu_complete(pdu, IDM_STATUS_FAIL);
2024 
2025 			/*
2026 			 * If ic_rx_thread_running is still set then
2027 			 * this is some kind of connection problem
2028 			 * on the socket.  In this case we want to
2029 			 * generate an event.  Otherwise some other
2030 			 * thread closed the socket due to another
2031 			 * issue in which case we don't need to
2032 			 * generate an event.
2033 			 */
2034 			mutex_enter(&ic->ic_mutex);
2035 			if (so_conn->ic_rx_thread_running) {
2036 				conn_failure = B_TRUE;
2037 				so_conn->ic_rx_thread_running = B_FALSE;
2038 			}
2039 
2040 			continue;
2041 		}
2042 
2043 		/*
2044 		 * Header has been read and validated.  Now we need
2045 		 * to read the PDU data payload (if present).  SCSI data
2046 		 * need to be transferred from the socket directly into
2047 		 * the associated transfer buffer for the SCSI task.
2048 		 */
2049 		if (pdu->isp_datalen != 0) {
2050 			if ((IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA) ||
2051 			    (IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA_RSP)) {
2052 				rc = idm_sorecv_scsidata(ic, pdu);
2053 				/*
2054 				 * All SCSI errors are fatal to the
2055 				 * connection right now since we have no
2056 				 * place to put the data.  What we need
2057 				 * is some kind of sink to dispose of unwanted
2058 				 * SCSI data.  For example an invalid task tag
2059 				 * should not kill the connection (although
2060 				 * we may want to drop the connection).
2061 				 */
2062 			} else {
2063 				/*
2064 				 * Not data PDUs so allocate a buffer for the
2065 				 * data segment and read the remaining data.
2066 				 */
2067 				rc = idm_sorecv_nonscsidata(ic, pdu);
2068 			}
2069 			if (rc != 0) {
2070 				/*
2071 				 * Call idm_pdu_complete so that we call the
2072 				 * callback and ensure any memory allocated
2073 				 * in idm_sorecvhdr gets freed up.
2074 				 */
2075 				idm_pdu_complete(pdu, IDM_STATUS_FAIL);
2076 
2077 				/*
2078 				 * If ic_rx_thread_running is still set then
2079 				 * this is some kind of connection problem
2080 				 * on the socket.  In this case we want to
2081 				 * generate an event.  Otherwise some other
2082 				 * thread closed the socket due to another
2083 				 * issue in which case we don't need to
2084 				 * generate an event.
2085 				 */
2086 				mutex_enter(&ic->ic_mutex);
2087 				if (so_conn->ic_rx_thread_running) {
2088 					conn_failure = B_TRUE;
2089 					so_conn->ic_rx_thread_running = B_FALSE;
2090 				}
2091 				continue;
2092 			}
2093 		}
2094 
2095 		/*
2096 		 * Process RX PDU
2097 		 */
2098 		idm_pdu_rx(ic, pdu);
2099 
2100 		mutex_enter(&ic->ic_mutex);
2101 	}
2102 
2103 	mutex_exit(&ic->ic_mutex);
2104 
2105 	/*
2106 	 * If we dropped out of the RX processing loop because of
2107 	 * a socket problem or other connection failure (including
2108 	 * digest errors) then we need to generate a state machine
2109 	 * event to shut the connection down.
2110 	 * If the state machine is already in, for example, INIT_ERROR, this
2111 	 * event will get dropped, and the TX thread will never be notified
2112 	 * to shut down.  To be safe, we'll just notify it here.
2113 	 */
2114 	if (conn_failure) {
2115 		if (so_conn->ic_tx_thread_running) {
2116 			so_conn->ic_tx_thread_running = B_FALSE;
2117 			mutex_enter(&so_conn->ic_tx_mutex);
2118 			cv_signal(&so_conn->ic_tx_cv);
2119 			mutex_exit(&so_conn->ic_tx_mutex);
2120 		}
2121 
2122 		idm_conn_event(ic, CE_TRANSPORT_FAIL, rc);
2123 	}
2124 
2125 	idm_conn_rele(ic);
2126 
2127 	thread_exit();
2128 }
2129 
2130 /*
2131  * idm_so_tx
2132  *
2133  * This is the implementation of idm_transport_ops_t's it_tx_pdu entry
2134  * point.  By definition, it is supposed to be fast.  So, simply queue
2135  * the entry and return.  The real work is done by idm_i_so_tx() via
2136  * idm_sotx_thread().
2137  */
2138 
2139 static void
2140 idm_so_tx(idm_conn_t *ic, idm_pdu_t *pdu)
2141 {
2142 	idm_so_conn_t *so_conn = ic->ic_transport_private;
2143 
2144 	ASSERT(pdu->isp_ic == ic);
2145 	mutex_enter(&so_conn->ic_tx_mutex);
2146 
2147 	if (!so_conn->ic_tx_thread_running) {
2148 		mutex_exit(&so_conn->ic_tx_mutex);
2149 		idm_pdu_complete(pdu, IDM_STATUS_ABORTED);
2150 		return;
2151 	}
2152 
2153 	list_insert_tail(&so_conn->ic_tx_list, (void *)pdu);
2154 	cv_signal(&so_conn->ic_tx_cv);
2155 	mutex_exit(&so_conn->ic_tx_mutex);
2156 }
2157 
2158 static idm_status_t
2159 idm_i_so_tx(idm_pdu_t *pdu)
2160 {
2161 	idm_conn_t	*ic = pdu->isp_ic;
2162 	idm_status_t	status = IDM_STATUS_SUCCESS;
2163 	uint8_t		pad[ISCSI_PAD_WORD_LEN];
2164 	int		pad_len;
2165 	uint32_t	hdr_digest_crc;
2166 	uint32_t	data_digest_crc = 0;
2167 	int		total_len = 0;
2168 	int		iovlen = 0;
2169 	struct iovec	iov[6];
2170 	idm_so_conn_t	*so_conn;
2171 
2172 	so_conn = ic->ic_transport_private;
2173 
2174 	/* Setup BHS */
2175 	iov[iovlen].iov_base	= (caddr_t)pdu->isp_hdr;
2176 	iov[iovlen].iov_len	= pdu->isp_hdrlen;
2177 	total_len		+= iov[iovlen].iov_len;
2178 	iovlen++;
2179 
2180 	/* Setup header digest */
2181 	if (((pdu->isp_flags & IDM_PDU_LOGIN_TX) == 0) &&
2182 	    (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST)) {
2183 		hdr_digest_crc = idm_crc32c(pdu->isp_hdr, pdu->isp_hdrlen);
2184 
2185 		iov[iovlen].iov_base	= (caddr_t)&hdr_digest_crc;
2186 		iov[iovlen].iov_len	= sizeof (hdr_digest_crc);
2187 		total_len		+= iov[iovlen].iov_len;
2188 		iovlen++;
2189 	}
2190 
2191 	/* Setup the data */
2192 	if (pdu->isp_datalen) {
2193 		idm_task_t		*idt;
2194 		idm_buf_t		*idb;
2195 		iscsi_data_hdr_t	*ihp;
2196 		ihp = (iscsi_data_hdr_t *)pdu->isp_hdr;
2197 		/* Write of immediate data */
2198 		if (ic->ic_ffp &&
2199 		    (ihp->opcode == ISCSI_OP_SCSI_CMD ||
2200 		    ihp->opcode == ISCSI_OP_SCSI_DATA)) {
2201 			idt = idm_task_find(ic, ihp->itt, ihp->ttt);
2202 			if (idt) {
2203 				mutex_enter(&idt->idt_mutex);
2204 				idb = idm_buf_find(&idt->idt_outbufv, 0);
2205 				mutex_exit(&idt->idt_mutex);
2206 				/*
2207 				 * If the initiator call to idm_buf_alloc
2208 				 * failed then we can get to this point
2209 				 * without a bound buffer.  The associated
2210 				 * connection failure will clean things up
2211 				 * later.  It would be nice to come up with
2212 				 * a cleaner way to handle this.  In
2213 				 * particular it seems absurd to look up
2214 				 * the task and the buffer just to update
2215 				 * this counter.
2216 				 */
2217 				if (idb)
2218 					idb->idb_xfer_len += pdu->isp_datalen;
2219 				idm_task_rele(idt);
2220 			}
2221 		}
2222 
2223 		iov[iovlen].iov_base = (caddr_t)pdu->isp_data;
2224 		iov[iovlen].iov_len  = pdu->isp_datalen;
2225 		total_len += iov[iovlen].iov_len;
2226 		iovlen++;
2227 	}
2228 
2229 	/* Setup the data pad if necessary */
2230 	pad_len = ((ISCSI_PAD_WORD_LEN -
2231 	    (pdu->isp_datalen & (ISCSI_PAD_WORD_LEN - 1))) &
2232 	    (ISCSI_PAD_WORD_LEN - 1));
2233 
2234 	if (pad_len) {
2235 		bzero(pad, sizeof (pad));
2236 		iov[iovlen].iov_base = (void *)&pad;
2237 		iov[iovlen].iov_len  = pad_len;
2238 		total_len		+= iov[iovlen].iov_len;
2239 		iovlen++;
2240 	}
2241 
2242 	/*
2243 	 * Setup the data digest if enabled.  Data-digest is not sent
2244 	 * for login-phase PDUs.
2245 	 */
2246 	if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) &&
2247 	    ((pdu->isp_flags & IDM_PDU_LOGIN_TX) == 0) &&
2248 	    (pdu->isp_datalen || pad_len)) {
2249 		/*
2250 		 * RFC3720/10.2.3: A zero-length Data Segment also
2251 		 * implies a zero-length data digest.
2252 		 */
2253 		if (pdu->isp_datalen) {
2254 			data_digest_crc = idm_crc32c(pdu->isp_data,
2255 			    pdu->isp_datalen);
2256 		}
2257 		if (pad_len) {
2258 			data_digest_crc = idm_crc32c_continued(&pad,
2259 			    pad_len, data_digest_crc);
2260 		}
2261 
2262 		iov[iovlen].iov_base	= (caddr_t)&data_digest_crc;
2263 		iov[iovlen].iov_len	= sizeof (data_digest_crc);
2264 		total_len		+= iov[iovlen].iov_len;
2265 		iovlen++;
2266 	}
2267 
2268 	/* Transmit the PDU */
2269 	if (idm_iov_sosend(so_conn->ic_so, &iov[0], iovlen,
2270 	    total_len) != 0) {
2271 		/* Set error status */
2272 		IDM_CONN_LOG(CE_WARN,
2273 		    "idm_so_tx: failed to transmit the PDU, so: %p ic: %p "
2274 		    "data: %p", (void *) so_conn->ic_so, (void *) ic,
2275 		    (void *) pdu->isp_data);
2276 		status = IDM_STATUS_IO;
2277 	}
2278 
2279 	/*
2280 	 * Success does not mean that the PDU actually reached the
2281 	 * remote node since it could get dropped along the way.
2282 	 */
2283 	idm_pdu_complete(pdu, status);
2284 
2285 	return (status);
2286 }
2287 
2288 /*
2289  * The idm_so_buf_tx_to_ini() is used by the target iSCSI layer to transmit the
2290  * Data-In PDUs using sockets. Based on the negotiated MaxRecvDataSegmentLength,
2291  * the buffer is segmented into a sequence of Data-In PDUs, ordered by DataSN.
2292  * A target can invoke this function multiple times for a single read command
2293  * (identified by the same ITT) to split the input into several sequences.
2294  *
2295  * DataSN starts with 0 for the first data PDU of an input command and advances
2296  * by 1 for each subsequent data PDU. Each sequence will have its own F bit,
2297  * which is set to 1 for the last data PDU of a sequence.
2298  * If the initiator supports phase collapse, the status bit must be set along
2299  * with the F bit to indicate that the status is shipped together with the last
2300  * Data-In PDU.
2301  *
2302  * The data PDUs within a sequence will be sent in order with the buffer offset
2303  * in increasing order. i.e. initiator and target must have negotiated the
2304  * "DataPDUInOrder" to "Yes". The order between sequences is not enforced.
2305  *
2306  * Caller holds idt->idt_mutex
2307  */
2308 static idm_status_t
2309 idm_so_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb)
2310 {
2311 	idm_so_conn_t	*so_conn = idb->idb_ic->ic_transport_private;
2312 	idm_pdu_t	tmppdu;
2313 
2314 	ASSERT(mutex_owned(&idt->idt_mutex));
2315 
2316 	/*
2317 	 * Put the idm_buf_t on the tx queue.  It will be transmitted by
2318 	 * idm_sotx_thread.
2319 	 */
2320 	mutex_enter(&so_conn->ic_tx_mutex);
2321 
2322 	DTRACE_ISCSI_8(xfer__start, idm_conn_t *, idt->idt_ic,
2323 	    uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset,
2324 	    uint64_t, 0, uint32_t, 0, uint32_t, 0,
2325 	    uint32_t, idb->idb_xfer_len, int, XFER_BUF_TX_TO_INI);
2326 
2327 	if (!so_conn->ic_tx_thread_running) {
2328 		mutex_exit(&so_conn->ic_tx_mutex);
2329 		/*
2330 		 * Don't release idt->idt_mutex since we're supposed to hold
2331 		 * in when calling idm_buf_tx_to_ini_done
2332 		 */
2333 		DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic,
2334 		    uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset,
2335 		    uint64_t, 0, uint32_t, 0, uint32_t, 0,
2336 		    uint32_t, idb->idb_xfer_len,
2337 		    int, XFER_BUF_TX_TO_INI);
2338 		idm_buf_tx_to_ini_done(idt, idb, IDM_STATUS_ABORTED);
2339 		return (IDM_STATUS_FAIL);
2340 	}
2341 
2342 	/*
2343 	 * Build a template for the data PDU headers we will use so that
2344 	 * the SN values will stay consistent with other PDU's we are
2345 	 * transmitting like R2T and SCSI status.
2346 	 */
2347 	bzero(&idb->idb_data_hdr_tmpl, sizeof (iscsi_hdr_t));
2348 	tmppdu.isp_hdr = &idb->idb_data_hdr_tmpl;
2349 	(*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, &tmppdu,
2350 	    ISCSI_OP_SCSI_DATA_RSP);
2351 	idb->idb_tx_thread = B_TRUE;
2352 	list_insert_tail(&so_conn->ic_tx_list, (void *)idb);
2353 	cv_signal(&so_conn->ic_tx_cv);
2354 	mutex_exit(&so_conn->ic_tx_mutex);
2355 	mutex_exit(&idt->idt_mutex);
2356 
2357 	/*
2358 	 * Returning success here indicates the transfer was successfully
2359 	 * dispatched -- it does not mean that the transfer completed
2360 	 * successfully.
2361 	 */
2362 	return (IDM_STATUS_SUCCESS);
2363 }
2364 
2365 /*
2366  * The idm_so_buf_rx_from_ini() is used by the target iSCSI layer to specify the
2367  * data blocks it is ready to receive from the initiator in response to a WRITE
2368  * SCSI command. The target iSCSI layer passes the information about the desired
2369  * data blocks to the initiator in one R2T PDU. The receiving buffer, the buffer
2370  * offset and datalen are passed via the 'idb' argument.
2371  *
2372  * Scope for Prototype build:
2373  * R2Ts are required for any Data-Out PDU, i.e. initiator and target must have
2374  * negotiated the "InitialR2T" to "Yes".
2375  *
2376  * Caller holds idt->idt_mutex
2377  */
2378 static idm_status_t
2379 idm_so_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb)
2380 {
2381 	idm_pdu_t		*pdu;
2382 	iscsi_rtt_hdr_t		*rtt;
2383 
2384 	ASSERT(mutex_owned(&idt->idt_mutex));
2385 
2386 	DTRACE_ISCSI_8(xfer__start, idm_conn_t *, idt->idt_ic,
2387 	    uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset,
2388 	    uint64_t, 0, uint32_t, 0, uint32_t, 0,
2389 	    uint32_t, idb->idb_xfer_len, int, XFER_BUF_RX_FROM_INI);
2390 
2391 	pdu = kmem_cache_alloc(idm.idm_sotx_pdu_cache, KM_SLEEP);
2392 	pdu->isp_ic = idt->idt_ic;
2393 	pdu->isp_flags = IDM_PDU_SET_STATSN;
2394 	bzero(pdu->isp_hdr, sizeof (iscsi_rtt_hdr_t));
2395 
2396 	/* iSCSI layer fills the TTT, ITT, ExpCmdSN, MaxCmdSN */
2397 	(*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, pdu, ISCSI_OP_RTT_RSP);
2398 
2399 	/* set the rttsn, rtt.flags, rtt.data_offset and rtt.data_length */
2400 	rtt = (iscsi_rtt_hdr_t *)(pdu->isp_hdr);
2401 
2402 	rtt->opcode		= ISCSI_OP_RTT_RSP;
2403 	rtt->flags		= ISCSI_FLAG_FINAL;
2404 	rtt->data_offset	= htonl(idb->idb_bufoffset);
2405 	rtt->data_length	= htonl(idb->idb_xfer_len);
2406 	rtt->rttsn		= htonl(idt->idt_exp_rttsn++);
2407 
2408 	/* Keep track of buffer offsets */
2409 	idb->idb_exp_offset	= idb->idb_bufoffset;
2410 	mutex_exit(&idt->idt_mutex);
2411 
2412 	/*
2413 	 * Transmit the PDU.
2414 	 */
2415 	idm_pdu_tx(pdu);
2416 
2417 	return (IDM_STATUS_SUCCESS);
2418 }
2419 
2420 static idm_status_t
2421 idm_so_buf_alloc(idm_buf_t *idb, uint64_t buflen)
2422 {
2423 	if ((buflen > IDM_SO_BUF_CACHE_LB) && (buflen <= IDM_SO_BUF_CACHE_UB)) {
2424 		idb->idb_buf = kmem_cache_alloc(idm.idm_so_128k_buf_cache,
2425 		    KM_NOSLEEP);
2426 		idb->idb_buf_private = idm.idm_so_128k_buf_cache;
2427 	} else {
2428 		idb->idb_buf = kmem_alloc(buflen, KM_NOSLEEP);
2429 		idb->idb_buf_private = NULL;
2430 	}
2431 
2432 	if (idb->idb_buf == NULL) {
2433 		IDM_CONN_LOG(CE_NOTE,
2434 		    "idm_so_buf_alloc: failed buffer allocation");
2435 		return (IDM_STATUS_FAIL);
2436 	}
2437 
2438 	return (IDM_STATUS_SUCCESS);
2439 }
2440 
2441 /* ARGSUSED */
2442 static idm_status_t
2443 idm_so_buf_setup(idm_buf_t *idb)
2444 {
2445 	/* Ensure bufalloc'd flag is unset */
2446 	idb->idb_bufalloc = B_FALSE;
2447 
2448 	return (IDM_STATUS_SUCCESS);
2449 }
2450 
2451 /* ARGSUSED */
2452 static void
2453 idm_so_buf_teardown(idm_buf_t *idb)
2454 {
2455 	/* nothing to do here */
2456 }
2457 
2458 static void
2459 idm_so_buf_free(idm_buf_t *idb)
2460 {
2461 	if (idb->idb_buf_private == NULL) {
2462 		kmem_free(idb->idb_buf, idb->idb_buflen);
2463 	} else {
2464 		kmem_cache_free(idb->idb_buf_private, idb->idb_buf);
2465 	}
2466 }
2467 
2468 static void
2469 idm_so_send_rtt_data(idm_conn_t *ic, idm_task_t *idt, idm_buf_t *idb,
2470     uint32_t offset, uint32_t length)
2471 {
2472 	idm_so_conn_t	*so_conn = ic->ic_transport_private;
2473 	idm_pdu_t	tmppdu;
2474 	idm_buf_t	*rtt_buf;
2475 
2476 	ASSERT(mutex_owned(&idt->idt_mutex));
2477 
2478 	/*
2479 	 * Allocate a buffer to represent the RTT transfer.  We could further
2480 	 * optimize this by allocating the buffers internally from an rtt
2481 	 * specific buffer cache since this is socket-specific code but for
2482 	 * now we will keep it simple.
2483 	 */
2484 	rtt_buf = idm_buf_alloc(ic, (uint8_t *)idb->idb_buf + offset, length);
2485 	if (rtt_buf == NULL) {
2486 		/*
2487 		 * If we're in FFP then the failure was likely a resource
2488 		 * allocation issue and we should close the connection by
2489 		 * sending a CE_TRANSPORT_FAIL event.
2490 		 *
2491 		 * If we're not in FFP then idm_buf_alloc will always
2492 		 * fail and the state is transitioning to "complete" anyway
2493 		 * so we won't bother to send an event.
2494 		 */
2495 		mutex_enter(&ic->ic_state_mutex);
2496 		if (ic->ic_ffp)
2497 			idm_conn_event_locked(ic, CE_TRANSPORT_FAIL,
2498 			    NULL, CT_NONE);
2499 		mutex_exit(&ic->ic_state_mutex);
2500 		mutex_exit(&idt->idt_mutex);
2501 		return;
2502 	}
2503 
2504 	rtt_buf->idb_buf_cb = NULL;
2505 	rtt_buf->idb_cb_arg = NULL;
2506 	rtt_buf->idb_bufoffset = offset;
2507 	rtt_buf->idb_xfer_len = length;
2508 	rtt_buf->idb_ic = idt->idt_ic;
2509 	rtt_buf->idb_task_binding = idt;
2510 
2511 	/*
2512 	 * The new buffer (if any) represents an additional
2513 	 * reference on the task
2514 	 */
2515 	idm_task_hold(idt);
2516 	mutex_exit(&idt->idt_mutex);
2517 
2518 	/*
2519 	 * Put the idm_buf_t on the tx queue.  It will be transmitted by
2520 	 * idm_sotx_thread.
2521 	 */
2522 	mutex_enter(&so_conn->ic_tx_mutex);
2523 
2524 	if (!so_conn->ic_tx_thread_running) {
2525 		idm_buf_free(rtt_buf);
2526 		mutex_exit(&so_conn->ic_tx_mutex);
2527 		idm_task_rele(idt);
2528 		return;
2529 	}
2530 
2531 	/*
2532 	 * Build a template for the data PDU headers we will use so that
2533 	 * the SN values will stay consistent with other PDU's we are
2534 	 * transmitting like R2T and SCSI status.
2535 	 */
2536 	bzero(&rtt_buf->idb_data_hdr_tmpl, sizeof (iscsi_hdr_t));
2537 	tmppdu.isp_hdr = &rtt_buf->idb_data_hdr_tmpl;
2538 	(*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, &tmppdu,
2539 	    ISCSI_OP_SCSI_DATA);
2540 	rtt_buf->idb_tx_thread = B_TRUE;
2541 	rtt_buf->idb_in_transport = B_TRUE;
2542 	list_insert_tail(&so_conn->ic_tx_list, (void *)rtt_buf);
2543 	cv_signal(&so_conn->ic_tx_cv);
2544 	mutex_exit(&so_conn->ic_tx_mutex);
2545 }
2546 
2547 static void
2548 idm_so_send_rtt_data_done(idm_task_t *idt, idm_buf_t *idb)
2549 {
2550 	/*
2551 	 * Don't worry about status -- we assume any error handling
2552 	 * is performed by the caller (idm_sotx_thread).
2553 	 */
2554 	idb->idb_in_transport = B_FALSE;
2555 	idm_task_rele(idt);
2556 	idm_buf_free(idb);
2557 }
2558 
2559 static idm_status_t
2560 idm_so_send_buf_region(idm_task_t *idt, idm_buf_t *idb,
2561     uint32_t buf_region_offset, uint32_t buf_region_length)
2562 {
2563 	idm_conn_t		*ic;
2564 	uint32_t		max_dataseglen;
2565 	size_t			remainder, chunk;
2566 	uint32_t		data_offset = buf_region_offset;
2567 	iscsi_data_hdr_t	*bhs;
2568 	idm_pdu_t		*pdu;
2569 	idm_status_t		tx_status;
2570 
2571 	ASSERT(mutex_owned(&idt->idt_mutex));
2572 
2573 	ic = idt->idt_ic;
2574 
2575 	max_dataseglen = ic->ic_conn_params.max_xmit_dataseglen;
2576 	remainder = buf_region_length;
2577 
2578 	while (remainder) {
2579 		if (idt->idt_state != TASK_ACTIVE) {
2580 			ASSERT((idt->idt_state != TASK_IDLE) &&
2581 			    (idt->idt_state != TASK_COMPLETE));
2582 			return (IDM_STATUS_ABORTED);
2583 		}
2584 
2585 		/* check to see if we need to chunk the data */
2586 		if (remainder > max_dataseglen) {
2587 			chunk = max_dataseglen;
2588 		} else {
2589 			chunk = remainder;
2590 		}
2591 
2592 		/* Data PDU headers will always be sizeof (iscsi_hdr_t) */
2593 		pdu = kmem_cache_alloc(idm.idm_sotx_pdu_cache, KM_SLEEP);
2594 		pdu->isp_ic = ic;
2595 		pdu->isp_flags = 0;	/* initialize isp_flags */
2596 
2597 		/*
2598 		 * We've already built a build a header template
2599 		 * to use during the transfer.  Use this template so that
2600 		 * the SN values stay consistent with any unrelated PDU's
2601 		 * being transmitted.
2602 		 */
2603 		bcopy(&idb->idb_data_hdr_tmpl, pdu->isp_hdr,
2604 		    sizeof (iscsi_hdr_t));
2605 
2606 		/*
2607 		 * Set DataSN, data offset, and flags in BHS
2608 		 * For the prototype build, A = 0, S = 0, U = 0
2609 		 */
2610 		bhs = (iscsi_data_hdr_t *)(pdu->isp_hdr);
2611 
2612 		bhs->datasn		= htonl(idt->idt_exp_datasn++);
2613 
2614 		hton24(bhs->dlength, chunk);
2615 		bhs->offset = htonl(idb->idb_bufoffset + data_offset);
2616 
2617 		/* setup data */
2618 		pdu->isp_data	=  (uint8_t *)idb->idb_buf + data_offset;
2619 		pdu->isp_datalen = (uint_t)chunk;
2620 
2621 		if (chunk == remainder) {
2622 			bhs->flags = ISCSI_FLAG_FINAL; /* F bit set to 1 */
2623 			/* Piggyback the status with the last data PDU */
2624 			if (idt->idt_flags & IDM_TASK_PHASECOLLAPSE_REQ) {
2625 				pdu->isp_flags |= IDM_PDU_SET_STATSN |
2626 				    IDM_PDU_ADVANCE_STATSN;
2627 				(*idt->idt_ic->ic_conn_ops.icb_update_statsn)
2628 				    (idt, pdu);
2629 				idt->idt_flags |=
2630 				    IDM_TASK_PHASECOLLAPSE_SUCCESS;
2631 
2632 			}
2633 		}
2634 
2635 		remainder	-= chunk;
2636 		data_offset	+= chunk;
2637 
2638 		/* Instrument the data-send DTrace probe. */
2639 		if (IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA_RSP) {
2640 			DTRACE_ISCSI_2(data__send,
2641 			    idm_conn_t *, idt->idt_ic,
2642 			    iscsi_data_rsp_hdr_t *,
2643 			    (iscsi_data_rsp_hdr_t *)pdu->isp_hdr);
2644 		}
2645 
2646 		/*
2647 		 * Now that we're done working with idt_exp_datasn,
2648 		 * idt->idt_state and idb->idb_bufoffset we can release
2649 		 * the task lock -- don't want to hold it across the
2650 		 * call to idm_i_so_tx since we could block.
2651 		 */
2652 		mutex_exit(&idt->idt_mutex);
2653 
2654 		/*
2655 		 * Transmit the PDU.  Call the internal routine directly
2656 		 * as there is already implicit ordering.
2657 		 */
2658 		if ((tx_status = idm_i_so_tx(pdu)) != IDM_STATUS_SUCCESS) {
2659 			mutex_enter(&idt->idt_mutex);
2660 			return (tx_status);
2661 		}
2662 
2663 		mutex_enter(&idt->idt_mutex);
2664 		idt->idt_tx_bytes += chunk;
2665 	}
2666 
2667 	return (IDM_STATUS_SUCCESS);
2668 }
2669 
2670 /*
2671  * TX PDU cache
2672  */
2673 /* ARGSUSED */
2674 int
2675 idm_sotx_pdu_constructor(void *hdl, void *arg, int flags)
2676 {
2677 	idm_pdu_t	*pdu = hdl;
2678 
2679 	bzero(pdu, sizeof (idm_pdu_t));
2680 	pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); /* Ptr arithmetic */
2681 	pdu->isp_hdrlen = sizeof (iscsi_hdr_t);
2682 	pdu->isp_callback = idm_sotx_cache_pdu_cb;
2683 	pdu->isp_magic = IDM_PDU_MAGIC;
2684 	bzero(pdu->isp_hdr, sizeof (iscsi_hdr_t));
2685 
2686 	return (0);
2687 }
2688 
2689 /* ARGSUSED */
2690 void
2691 idm_sotx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status)
2692 {
2693 	/* reset values between use */
2694 	pdu->isp_datalen = 0;
2695 
2696 	kmem_cache_free(idm.idm_sotx_pdu_cache, pdu);
2697 }
2698 
2699 /*
2700  * RX PDU cache
2701  */
2702 /* ARGSUSED */
2703 int
2704 idm_sorx_pdu_constructor(void *hdl, void *arg, int flags)
2705 {
2706 	idm_pdu_t	*pdu = hdl;
2707 
2708 	bzero(pdu, sizeof (idm_pdu_t));
2709 	pdu->isp_magic = IDM_PDU_MAGIC;
2710 	pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); /* Ptr arithmetic */
2711 	pdu->isp_callback = idm_sorx_cache_pdu_cb;
2712 
2713 	return (0);
2714 }
2715 
2716 /* ARGSUSED */
2717 static void
2718 idm_sorx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status)
2719 {
2720 	pdu->isp_iovlen = 0;
2721 	pdu->isp_sorx_buf = 0;
2722 	kmem_cache_free(idm.idm_sorx_pdu_cache, pdu);
2723 }
2724 
2725 static void
2726 idm_sorx_addl_pdu_cb(idm_pdu_t *pdu, idm_status_t status)
2727 {
2728 	/*
2729 	 * We had to modify our cached RX PDU with a longer header buffer
2730 	 * and/or a longer data buffer.  Release the new buffers and fix
2731 	 * the fields back to what we would expect for a cached RX PDU.
2732 	 */
2733 	if (pdu->isp_flags & IDM_PDU_ADDL_HDR) {
2734 		kmem_free(pdu->isp_hdr, pdu->isp_hdrlen);
2735 	}
2736 	if (pdu->isp_flags & IDM_PDU_ADDL_DATA) {
2737 		kmem_free(pdu->isp_data, pdu->isp_datalen);
2738 	}
2739 	pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1);
2740 	pdu->isp_hdrlen = sizeof (iscsi_hdr_t);
2741 	pdu->isp_data = NULL;
2742 	pdu->isp_datalen = 0;
2743 	pdu->isp_sorx_buf = 0;
2744 	pdu->isp_callback = idm_sorx_cache_pdu_cb;
2745 	idm_sorx_cache_pdu_cb(pdu, status);
2746 }
2747 
2748 /*
2749  * This thread is only active when I/O is queued for transmit
2750  * because the socket is busy.
2751  */
2752 void
2753 idm_sotx_thread(void *arg)
2754 {
2755 	idm_conn_t	*ic = arg;
2756 	idm_tx_obj_t	*object, *next;
2757 	idm_so_conn_t	*so_conn;
2758 	idm_status_t	status = IDM_STATUS_SUCCESS;
2759 
2760 	idm_conn_hold(ic);
2761 
2762 	mutex_enter(&ic->ic_mutex);
2763 	so_conn = ic->ic_transport_private;
2764 	so_conn->ic_tx_thread_running = B_TRUE;
2765 	so_conn->ic_tx_thread_did = so_conn->ic_tx_thread->t_did;
2766 	cv_signal(&ic->ic_cv);
2767 	mutex_exit(&ic->ic_mutex);
2768 
2769 	mutex_enter(&so_conn->ic_tx_mutex);
2770 
2771 	while (so_conn->ic_tx_thread_running) {
2772 		while (list_is_empty(&so_conn->ic_tx_list)) {
2773 			DTRACE_PROBE1(soconn__tx__sleep, idm_conn_t *, ic);
2774 			cv_wait(&so_conn->ic_tx_cv, &so_conn->ic_tx_mutex);
2775 			DTRACE_PROBE1(soconn__tx__wakeup, idm_conn_t *, ic);
2776 
2777 			if (!so_conn->ic_tx_thread_running) {
2778 				goto tx_bail;
2779 			}
2780 		}
2781 
2782 		object = (idm_tx_obj_t *)list_head(&so_conn->ic_tx_list);
2783 		list_remove(&so_conn->ic_tx_list, object);
2784 		mutex_exit(&so_conn->ic_tx_mutex);
2785 
2786 		switch (object->idm_tx_obj_magic) {
2787 		case IDM_PDU_MAGIC: {
2788 			idm_pdu_t *pdu = (idm_pdu_t *)object;
2789 			DTRACE_PROBE2(soconn__tx__pdu, idm_conn_t *, ic,
2790 			    idm_pdu_t *, (idm_pdu_t *)object);
2791 
2792 			if (pdu->isp_flags & IDM_PDU_SET_STATSN) {
2793 				/* No IDM task */
2794 				(ic->ic_conn_ops.icb_update_statsn)(NULL, pdu);
2795 			}
2796 			status = idm_i_so_tx((idm_pdu_t *)object);
2797 			break;
2798 		}
2799 		case IDM_BUF_MAGIC: {
2800 			idm_buf_t *idb = (idm_buf_t *)object;
2801 			idm_task_t *idt = idb->idb_task_binding;
2802 
2803 			DTRACE_PROBE2(soconn__tx__buf, idm_conn_t *, ic,
2804 			    idm_buf_t *, idb);
2805 
2806 			mutex_enter(&idt->idt_mutex);
2807 			status = idm_so_send_buf_region(idt,
2808 			    idb, 0, idb->idb_xfer_len);
2809 
2810 			/*
2811 			 * TX thread owns the buffer so we expect it to
2812 			 * be "in transport"
2813 			 */
2814 			ASSERT(idb->idb_in_transport);
2815 			if (IDM_CONN_ISTGT(ic)) {
2816 				/*
2817 				 * idm_buf_tx_to_ini_done releases
2818 				 * idt->idt_mutex
2819 				 */
2820 				DTRACE_ISCSI_8(xfer__done,
2821 				    idm_conn_t *, idt->idt_ic,
2822 				    uintptr_t, idb->idb_buf,
2823 				    uint32_t, idb->idb_bufoffset,
2824 				    uint64_t, 0, uint32_t, 0, uint32_t, 0,
2825 				    uint32_t, idb->idb_xfer_len,
2826 				    int, XFER_BUF_TX_TO_INI);
2827 				idm_buf_tx_to_ini_done(idt, idb, status);
2828 			} else {
2829 				idm_so_send_rtt_data_done(idt, idb);
2830 				mutex_exit(&idt->idt_mutex);
2831 			}
2832 			break;
2833 		}
2834 
2835 		default:
2836 			IDM_CONN_LOG(CE_WARN, "idm_sotx_thread: Unknown magic "
2837 			    "(0x%08x)", object->idm_tx_obj_magic);
2838 			status = IDM_STATUS_FAIL;
2839 		}
2840 
2841 		mutex_enter(&so_conn->ic_tx_mutex);
2842 
2843 		if (status != IDM_STATUS_SUCCESS) {
2844 			so_conn->ic_tx_thread_running = B_FALSE;
2845 			idm_conn_event(ic, CE_TRANSPORT_FAIL, status);
2846 		}
2847 	}
2848 
2849 	/*
2850 	 * Before we leave, we need to abort every item remaining in the
2851 	 * TX list.
2852 	 */
2853 
2854 tx_bail:
2855 	object = (idm_tx_obj_t *)list_head(&so_conn->ic_tx_list);
2856 
2857 	while (object != NULL) {
2858 		next = list_next(&so_conn->ic_tx_list, object);
2859 
2860 		list_remove(&so_conn->ic_tx_list, object);
2861 		switch (object->idm_tx_obj_magic) {
2862 		case IDM_PDU_MAGIC:
2863 			idm_pdu_complete((idm_pdu_t *)object,
2864 			    IDM_STATUS_ABORTED);
2865 			break;
2866 
2867 		case IDM_BUF_MAGIC: {
2868 			idm_buf_t *idb = (idm_buf_t *)object;
2869 			idm_task_t *idt = idb->idb_task_binding;
2870 			mutex_exit(&so_conn->ic_tx_mutex);
2871 			mutex_enter(&idt->idt_mutex);
2872 			/*
2873 			 * TX thread owns the buffer so we expect it to
2874 			 * be "in transport"
2875 			 */
2876 			ASSERT(idb->idb_in_transport);
2877 			if (IDM_CONN_ISTGT(ic)) {
2878 				/*
2879 				 * idm_buf_tx_to_ini_done releases
2880 				 * idt->idt_mutex
2881 				 */
2882 				DTRACE_ISCSI_8(xfer__done,
2883 				    idm_conn_t *, idt->idt_ic,
2884 				    uintptr_t, idb->idb_buf,
2885 				    uint32_t, idb->idb_bufoffset,
2886 				    uint64_t, 0, uint32_t, 0, uint32_t, 0,
2887 				    uint32_t, idb->idb_xfer_len,
2888 				    int, XFER_BUF_TX_TO_INI);
2889 				idm_buf_tx_to_ini_done(idt, idb,
2890 				    IDM_STATUS_ABORTED);
2891 			} else {
2892 				idm_so_send_rtt_data_done(idt, idb);
2893 				mutex_exit(&idt->idt_mutex);
2894 			}
2895 			mutex_enter(&so_conn->ic_tx_mutex);
2896 			break;
2897 		}
2898 		default:
2899 			IDM_CONN_LOG(CE_WARN,
2900 			    "idm_sotx_thread: Unexpected magic "
2901 			    "(0x%08x)", object->idm_tx_obj_magic);
2902 		}
2903 
2904 		object = next;
2905 	}
2906 
2907 	mutex_exit(&so_conn->ic_tx_mutex);
2908 	idm_conn_rele(ic);
2909 	thread_exit();
2910 	/*NOTREACHED*/
2911 }
2912 
2913 static void
2914 idm_so_socket_set_nonblock(struct sonode *node)
2915 {
2916 	(void) VOP_SETFL(node->so_vnode, node->so_flag,
2917 	    (node->so_state | FNONBLOCK), CRED(), NULL);
2918 }
2919 
2920 static void
2921 idm_so_socket_set_block(struct sonode *node)
2922 {
2923 	(void) VOP_SETFL(node->so_vnode, node->so_flag,
2924 	    (node->so_state & (~FNONBLOCK)), CRED(), NULL);
2925 }
2926 
2927 
2928 /*
2929  * Called by kernel sockets when the connection has been accepted or
2930  * rejected. In early volo, a "disconnect" callback was sent instead of
2931  * "connectfailed", so we check for both.
2932  */
2933 /* ARGSUSED */
2934 void
2935 idm_so_timed_socket_connect_cb(ksocket_t ks,
2936     ksocket_callback_event_t ev, void *arg, uintptr_t info)
2937 {
2938 	idm_so_timed_socket_t	*itp = arg;
2939 	ASSERT(itp != NULL);
2940 	ASSERT(ev == KSOCKET_EV_CONNECTED ||
2941 	    ev == KSOCKET_EV_CONNECTFAILED ||
2942 	    ev == KSOCKET_EV_DISCONNECTED);
2943 
2944 	mutex_enter(&idm_so_timed_socket_mutex);
2945 	itp->it_callback_called = B_TRUE;
2946 	if (ev == KSOCKET_EV_CONNECTED) {
2947 		itp->it_socket_error_code = 0;
2948 	} else {
2949 		/* Make sure the error code is non-zero on error */
2950 		if (info == 0)
2951 			info = ECONNRESET;
2952 		itp->it_socket_error_code = (int)info;
2953 	}
2954 	cv_signal(&itp->it_cv);
2955 	mutex_exit(&idm_so_timed_socket_mutex);
2956 }
2957 
2958 int
2959 idm_so_timed_socket_connect(ksocket_t ks,
2960     struct sockaddr_storage *sa, int sa_sz, int login_max_usec)
2961 {
2962 	clock_t			conn_login_max;
2963 	int			rc, nonblocking, rval;
2964 	idm_so_timed_socket_t	it;
2965 	ksocket_callbacks_t	ks_cb;
2966 
2967 	conn_login_max = ddi_get_lbolt() + drv_usectohz(login_max_usec);
2968 
2969 	/*
2970 	 * Set to non-block socket mode, with callback on connect
2971 	 * Early volo used "disconnected" instead of "connectfailed",
2972 	 * so set callback to look for both.
2973 	 */
2974 	bzero(&it, sizeof (it));
2975 	ks_cb.ksock_cb_flags = KSOCKET_CB_CONNECTED |
2976 	    KSOCKET_CB_CONNECTFAILED | KSOCKET_CB_DISCONNECTED;
2977 	ks_cb.ksock_cb_connected = idm_so_timed_socket_connect_cb;
2978 	ks_cb.ksock_cb_connectfailed = idm_so_timed_socket_connect_cb;
2979 	ks_cb.ksock_cb_disconnected = idm_so_timed_socket_connect_cb;
2980 	cv_init(&it.it_cv, NULL, CV_DEFAULT, NULL);
2981 	rc = ksocket_setcallbacks(ks, &ks_cb, &it, CRED());
2982 	if (rc != 0)
2983 		return (rc);
2984 
2985 	/* Set to non-blocking mode */
2986 	nonblocking = 1;
2987 	rc = ksocket_ioctl(ks, FIONBIO, (intptr_t)&nonblocking, &rval,
2988 	    CRED());
2989 	if (rc != 0)
2990 		goto cleanup;
2991 
2992 	bzero(&it, sizeof (it));
2993 	for (;;) {
2994 		/*
2995 		 * Warning -- in a loopback scenario, the call to
2996 		 * the connect_cb can occur inside the call to
2997 		 * ksocket_connect. Do not hold the mutex around the
2998 		 * call to ksocket_connect.
2999 		 */
3000 		rc = ksocket_connect(ks, (struct sockaddr *)sa, sa_sz, CRED());
3001 		if (rc == 0 || rc == EISCONN) {
3002 			/* socket success or already success */
3003 			rc = 0;
3004 			break;
3005 		}
3006 		if ((rc != EINPROGRESS) && (rc != EALREADY)) {
3007 			break;
3008 		}
3009 
3010 		/* TCP connect still in progress. See if out of time. */
3011 		if (ddi_get_lbolt() > conn_login_max) {
3012 			/*
3013 			 * Connection retry timeout,
3014 			 * failed connect to target.
3015 			 */
3016 			rc = ETIMEDOUT;
3017 			break;
3018 		}
3019 
3020 		/*
3021 		 * TCP connect still in progress.  Sleep until callback.
3022 		 * Do NOT go to sleep if the callback already occurred!
3023 		 */
3024 		mutex_enter(&idm_so_timed_socket_mutex);
3025 		if (!it.it_callback_called) {
3026 			(void) cv_timedwait(&it.it_cv,
3027 			    &idm_so_timed_socket_mutex, conn_login_max);
3028 		}
3029 		if (it.it_callback_called) {
3030 			rc = it.it_socket_error_code;
3031 			mutex_exit(&idm_so_timed_socket_mutex);
3032 			break;
3033 		}
3034 		/* If timer expires, go call ksocket_connect one last time. */
3035 		mutex_exit(&idm_so_timed_socket_mutex);
3036 	}
3037 
3038 	/* resume blocking mode */
3039 	nonblocking = 0;
3040 	(void) ksocket_ioctl(ks, FIONBIO, (intptr_t)&nonblocking, &rval,
3041 	    CRED());
3042 cleanup:
3043 	(void) ksocket_setcallbacks(ks, NULL, NULL, CRED());
3044 	cv_destroy(&it.it_cv);
3045 	if (rc != 0) {
3046 		idm_soshutdown(ks);
3047 	}
3048 	return (rc);
3049 }
3050 
3051 
3052 void
3053 idm_addr_to_sa(idm_addr_t *dportal, struct sockaddr_storage *sa)
3054 {
3055 	int			dp_addr_size;
3056 	struct sockaddr_in	*sin;
3057 	struct sockaddr_in6	*sin6;
3058 
3059 	/* Build sockaddr_storage for this portal (idm_addr_t) */
3060 	bzero(sa, sizeof (*sa));
3061 	dp_addr_size = dportal->a_addr.i_insize;
3062 	if (dp_addr_size == sizeof (struct in_addr)) {
3063 		/* IPv4 */
3064 		sa->ss_family = AF_INET;
3065 		sin = (struct sockaddr_in *)sa;
3066 		sin->sin_port = htons(dportal->a_port);
3067 		bcopy(&dportal->a_addr.i_addr.in4,
3068 		    &sin->sin_addr, sizeof (struct in_addr));
3069 	} else if (dp_addr_size == sizeof (struct in6_addr)) {
3070 		/* IPv6 */
3071 		sa->ss_family = AF_INET6;
3072 		sin6 = (struct sockaddr_in6 *)sa;
3073 		sin6->sin6_port = htons(dportal->a_port);
3074 		bcopy(&dportal->a_addr.i_addr.in6,
3075 		    &sin6->sin6_addr, sizeof (struct in6_addr));
3076 	} else {
3077 		ASSERT(0);
3078 	}
3079 }
3080 
3081 
3082 /*
3083  * return a human-readable form of a sockaddr_storage, in the form
3084  * [ip-address]:port.  This is used in calls to logging functions.
3085  * If several calls to idm_sa_ntop are made within the same invocation
3086  * of a logging function, then each one needs its own buf.
3087  */
3088 const char *
3089 idm_sa_ntop(const struct sockaddr_storage *sa,
3090     char *buf, size_t size)
3091 {
3092 	static const char bogus_ip[] = "[0].-1";
3093 	char tmp[INET6_ADDRSTRLEN];
3094 
3095 	switch (sa->ss_family) {
3096 	case AF_INET6:
3097 		{
3098 			const struct sockaddr_in6 *in6 =
3099 			    (const struct sockaddr_in6 *) sa;
3100 
3101 			if (inet_ntop(in6->sin6_family,
3102 			    &in6->sin6_addr, tmp, sizeof (tmp)) == NULL) {
3103 				goto err;
3104 			}
3105 			if (strlen(tmp) + sizeof ("[].65535") > size) {
3106 				goto err;
3107 			}
3108 			/* struct sockaddr_storage gets port info from v4 loc */
3109 			(void) snprintf(buf, size, "[%s].%u", tmp,
3110 			    ntohs(in6->sin6_port));
3111 			return (buf);
3112 		}
3113 	case AF_INET:
3114 		{
3115 			const struct sockaddr_in *in =
3116 			    (const struct sockaddr_in *) sa;
3117 
3118 			if (inet_ntop(in->sin_family, &in->sin_addr,
3119 			    tmp, sizeof (tmp)) == NULL) {
3120 				goto err;
3121 			}
3122 			if (strlen(tmp) + sizeof ("[].65535") > size) {
3123 				goto err;
3124 			}
3125 			(void) snprintf(buf, size,  "[%s].%u", tmp,
3126 			    ntohs(in->sin_port));
3127 			return (buf);
3128 		}
3129 	default:
3130 		break;
3131 	}
3132 err:
3133 	(void) snprintf(buf, size, "%s", bogus_ip);
3134 	return (buf);
3135 }
3136