xref: /titanic_44/usr/src/uts/common/io/e1000g/e1000g_main.c (revision cf8dcc9bbabedca41ecfee13dec8172104e99968)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_main.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains the interface routines for the solaris OS.	*
34  *   It has all DDI entry point routines and GLD entry point routines.	*
35  *									*
36  *   This file also contains routines that take care of initialization	*
37  *   uninit routine and interrupt routine.				*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include <sys/dlpi.h>
43 #include <sys/mac.h>
44 #include "e1000g_sw.h"
45 #include "e1000g_debug.h"
46 
47 static char ident[] = "Intel PRO/1000 Ethernet";
48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
49 static char e1000g_version[] = "Driver Ver. 5.3.19";
50 
51 /*
52  * Proto types for DDI entry points
53  */
54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
56 static int e1000g_quiesce(dev_info_t *);
57 
58 /*
59  * init and intr routines prototype
60  */
61 static int e1000g_resume(dev_info_t *);
62 static int e1000g_suspend(dev_info_t *);
63 static uint_t e1000g_intr_pciexpress(caddr_t);
64 static uint_t e1000g_intr(caddr_t);
65 static void e1000g_intr_work(struct e1000g *, uint32_t);
66 #pragma inline(e1000g_intr_work)
67 static int e1000g_init(struct e1000g *);
68 static int e1000g_start(struct e1000g *, boolean_t);
69 static void e1000g_stop(struct e1000g *, boolean_t);
70 static int e1000g_m_start(void *);
71 static void e1000g_m_stop(void *);
72 static int e1000g_m_promisc(void *, boolean_t);
73 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
74 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
75 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
76 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
77     uint_t, const void *);
78 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
79     uint_t, uint_t, void *, uint_t *);
80 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
81     const void *);
82 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
83     uint_t, void *, uint_t *);
84 static void e1000g_init_locks(struct e1000g *);
85 static void e1000g_destroy_locks(struct e1000g *);
86 static int e1000g_identify_hardware(struct e1000g *);
87 static int e1000g_regs_map(struct e1000g *);
88 static int e1000g_set_driver_params(struct e1000g *);
89 static void e1000g_set_bufsize(struct e1000g *);
90 static int e1000g_register_mac(struct e1000g *);
91 static boolean_t e1000g_rx_drain(struct e1000g *);
92 static boolean_t e1000g_tx_drain(struct e1000g *);
93 static void e1000g_init_unicst(struct e1000g *);
94 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
95 static int e1000g_alloc_rx_data(struct e1000g *);
96 static void e1000g_release_multicast(struct e1000g *);
97 static void e1000g_pch_limits(struct e1000g *);
98 static uint32_t e1000g_mtu2maxframe(uint32_t);
99 
100 /*
101  * Local routines
102  */
103 static boolean_t e1000g_reset_adapter(struct e1000g *);
104 static void e1000g_tx_clean(struct e1000g *);
105 static void e1000g_rx_clean(struct e1000g *);
106 static void e1000g_link_timer(void *);
107 static void e1000g_local_timer(void *);
108 static boolean_t e1000g_link_check(struct e1000g *);
109 static boolean_t e1000g_stall_check(struct e1000g *);
110 static void e1000g_smartspeed(struct e1000g *);
111 static void e1000g_get_conf(struct e1000g *);
112 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
113     int *);
114 static void enable_watchdog_timer(struct e1000g *);
115 static void disable_watchdog_timer(struct e1000g *);
116 static void start_watchdog_timer(struct e1000g *);
117 static void restart_watchdog_timer(struct e1000g *);
118 static void stop_watchdog_timer(struct e1000g *);
119 static void stop_link_timer(struct e1000g *);
120 static void stop_82547_timer(e1000g_tx_ring_t *);
121 static void e1000g_force_speed_duplex(struct e1000g *);
122 static void e1000g_setup_max_mtu(struct e1000g *);
123 static void e1000g_get_max_frame_size(struct e1000g *);
124 static boolean_t is_valid_mac_addr(uint8_t *);
125 static void e1000g_unattach(dev_info_t *, struct e1000g *);
126 #ifdef E1000G_DEBUG
127 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
128 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
129 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
130 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
131 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
132     struct iocblk *, mblk_t *);
133 #endif
134 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
135     struct iocblk *, mblk_t *);
136 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
137 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
138 static void e1000g_set_internal_loopback(struct e1000g *);
139 static void e1000g_set_external_loopback_1000(struct e1000g *);
140 static void e1000g_set_external_loopback_100(struct e1000g *);
141 static void e1000g_set_external_loopback_10(struct e1000g *);
142 static int e1000g_add_intrs(struct e1000g *);
143 static int e1000g_intr_add(struct e1000g *, int);
144 static int e1000g_rem_intrs(struct e1000g *);
145 static int e1000g_enable_intrs(struct e1000g *);
146 static int e1000g_disable_intrs(struct e1000g *);
147 static boolean_t e1000g_link_up(struct e1000g *);
148 #ifdef __sparc
149 static boolean_t e1000g_find_mac_address(struct e1000g *);
150 #endif
151 static void e1000g_get_phy_state(struct e1000g *);
152 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
153     const void *impl_data);
154 static void e1000g_fm_init(struct e1000g *Adapter);
155 static void e1000g_fm_fini(struct e1000g *Adapter);
156 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
157 static void e1000g_param_sync(struct e1000g *);
158 static void e1000g_get_driver_control(struct e1000_hw *);
159 static void e1000g_release_driver_control(struct e1000_hw *);
160 static void e1000g_restore_promisc(struct e1000g *Adapter);
161 
162 mac_priv_prop_t e1000g_priv_props[] = {
163 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
164 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
165 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
166 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
167 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
168 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
169 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
170 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
171 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
172 	{"_intr_adaptive", MAC_PROP_PERM_RW},
173 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
174 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
175 };
176 #define	E1000G_MAX_PRIV_PROPS	\
177 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
178 
179 
180 static struct cb_ops cb_ws_ops = {
181 	nulldev,		/* cb_open */
182 	nulldev,		/* cb_close */
183 	nodev,			/* cb_strategy */
184 	nodev,			/* cb_print */
185 	nodev,			/* cb_dump */
186 	nodev,			/* cb_read */
187 	nodev,			/* cb_write */
188 	nodev,			/* cb_ioctl */
189 	nodev,			/* cb_devmap */
190 	nodev,			/* cb_mmap */
191 	nodev,			/* cb_segmap */
192 	nochpoll,		/* cb_chpoll */
193 	ddi_prop_op,		/* cb_prop_op */
194 	NULL,			/* cb_stream */
195 	D_MP | D_HOTPLUG,	/* cb_flag */
196 	CB_REV,			/* cb_rev */
197 	nodev,			/* cb_aread */
198 	nodev			/* cb_awrite */
199 };
200 
201 static struct dev_ops ws_ops = {
202 	DEVO_REV,		/* devo_rev */
203 	0,			/* devo_refcnt */
204 	NULL,			/* devo_getinfo */
205 	nulldev,		/* devo_identify */
206 	nulldev,		/* devo_probe */
207 	e1000g_attach,		/* devo_attach */
208 	e1000g_detach,		/* devo_detach */
209 	nodev,			/* devo_reset */
210 	&cb_ws_ops,		/* devo_cb_ops */
211 	NULL,			/* devo_bus_ops */
212 	ddi_power,		/* devo_power */
213 	e1000g_quiesce		/* devo_quiesce */
214 };
215 
216 static struct modldrv modldrv = {
217 	&mod_driverops,		/* Type of module.  This one is a driver */
218 	ident,			/* Discription string */
219 	&ws_ops,		/* driver ops */
220 };
221 
222 static struct modlinkage modlinkage = {
223 	MODREV_1, &modldrv, NULL
224 };
225 
226 /* Access attributes for register mapping */
227 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
228 	DDI_DEVICE_ATTR_V1,
229 	DDI_STRUCTURE_LE_ACC,
230 	DDI_STRICTORDER_ACC,
231 	DDI_FLAGERR_ACC
232 };
233 
234 #define	E1000G_M_CALLBACK_FLAGS \
235 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
236 
237 static mac_callbacks_t e1000g_m_callbacks = {
238 	E1000G_M_CALLBACK_FLAGS,
239 	e1000g_m_stat,
240 	e1000g_m_start,
241 	e1000g_m_stop,
242 	e1000g_m_promisc,
243 	e1000g_m_multicst,
244 	NULL,
245 	e1000g_m_tx,
246 	e1000g_m_ioctl,
247 	e1000g_m_getcapab,
248 	NULL,
249 	NULL,
250 	e1000g_m_setprop,
251 	e1000g_m_getprop
252 };
253 
254 /*
255  * Global variables
256  */
257 uint32_t e1000g_mblks_pending = 0;
258 /*
259  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
260  * Here we maintain a private dev_info list if e1000g_force_detach is
261  * enabled. If we force the driver to detach while there are still some
262  * rx buffers retained in the upper layer, we have to keep a copy of the
263  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
264  * structure will be freed after the driver is detached. However when we
265  * finally free those rx buffers released by the upper layer, we need to
266  * refer to the dev_info to free the dma buffers. So we save a copy of
267  * the dev_info for this purpose. On x86 platform, we assume this copy
268  * of dev_info is always valid, but on SPARC platform, it could be invalid
269  * after the system board level DR operation. For this reason, the global
270  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
271  */
272 #ifdef __sparc
273 boolean_t e1000g_force_detach = B_FALSE;
274 #else
275 boolean_t e1000g_force_detach = B_TRUE;
276 #endif
277 private_devi_list_t *e1000g_private_devi_list = NULL;
278 
279 /*
280  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
281  * the private dev_info list, and to serialize the processing of rx buffer
282  * freeing and rx buffer recycling.
283  */
284 kmutex_t e1000g_rx_detach_lock;
285 /*
286  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
287  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
288  * If there are many e1000g instances, the system may run out of DVMA
289  * resources during the initialization of the instances, then the flag will
290  * be changed to "USE_DMA". Because different e1000g instances are initialized
291  * in parallel, we need to use this lock to protect the flag.
292  */
293 krwlock_t e1000g_dma_type_lock;
294 
295 /*
296  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
297  * Based on the information from Intel, the 82546 chipset has some hardware
298  * problem. When one port is being reset and the other port is trying to
299  * access the eeprom, it could cause system hang or panic. To workaround this
300  * hardware problem, we use a global mutex to prevent such operations from
301  * happening simultaneously on different instances. This workaround is applied
302  * to all the devices supported by this driver.
303  */
304 kmutex_t e1000g_nvm_lock;
305 
306 /*
307  * Loadable module configuration entry points for the driver
308  */
309 
310 /*
311  * _init - module initialization
312  */
313 int
314 _init(void)
315 {
316 	int status;
317 
318 	mac_init_ops(&ws_ops, WSNAME);
319 	status = mod_install(&modlinkage);
320 	if (status != DDI_SUCCESS)
321 		mac_fini_ops(&ws_ops);
322 	else {
323 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
324 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
325 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
326 	}
327 
328 	return (status);
329 }
330 
331 /*
332  * _fini - module finalization
333  */
334 int
335 _fini(void)
336 {
337 	int status;
338 
339 	if (e1000g_mblks_pending != 0)
340 		return (EBUSY);
341 
342 	status = mod_remove(&modlinkage);
343 	if (status == DDI_SUCCESS) {
344 		mac_fini_ops(&ws_ops);
345 
346 		if (e1000g_force_detach) {
347 			private_devi_list_t *devi_node;
348 
349 			mutex_enter(&e1000g_rx_detach_lock);
350 			while (e1000g_private_devi_list != NULL) {
351 				devi_node = e1000g_private_devi_list;
352 				e1000g_private_devi_list =
353 				    e1000g_private_devi_list->next;
354 
355 				kmem_free(devi_node->priv_dip,
356 				    sizeof (struct dev_info));
357 				kmem_free(devi_node,
358 				    sizeof (private_devi_list_t));
359 			}
360 			mutex_exit(&e1000g_rx_detach_lock);
361 		}
362 
363 		mutex_destroy(&e1000g_rx_detach_lock);
364 		rw_destroy(&e1000g_dma_type_lock);
365 		mutex_destroy(&e1000g_nvm_lock);
366 	}
367 
368 	return (status);
369 }
370 
371 /*
372  * _info - module information
373  */
374 int
375 _info(struct modinfo *modinfop)
376 {
377 	return (mod_info(&modlinkage, modinfop));
378 }
379 
380 /*
381  * e1000g_attach - driver attach
382  *
383  * This function is the device-specific initialization entry
384  * point. This entry point is required and must be written.
385  * The DDI_ATTACH command must be provided in the attach entry
386  * point. When attach() is called with cmd set to DDI_ATTACH,
387  * all normal kernel services (such as kmem_alloc(9F)) are
388  * available for use by the driver.
389  *
390  * The attach() function will be called once for each instance
391  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
392  * Until attach() succeeds, the only driver entry points which
393  * may be called are open(9E) and getinfo(9E).
394  */
395 static int
396 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
397 {
398 	struct e1000g *Adapter;
399 	struct e1000_hw *hw;
400 	struct e1000g_osdep *osdep;
401 	int instance;
402 
403 	switch (cmd) {
404 	default:
405 		e1000g_log(NULL, CE_WARN,
406 		    "Unsupported command send to e1000g_attach... ");
407 		return (DDI_FAILURE);
408 
409 	case DDI_RESUME:
410 		return (e1000g_resume(devinfo));
411 
412 	case DDI_ATTACH:
413 		break;
414 	}
415 
416 	/*
417 	 * get device instance number
418 	 */
419 	instance = ddi_get_instance(devinfo);
420 
421 	/*
422 	 * Allocate soft data structure
423 	 */
424 	Adapter =
425 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
426 
427 	Adapter->dip = devinfo;
428 	Adapter->instance = instance;
429 	Adapter->tx_ring->adapter = Adapter;
430 	Adapter->rx_ring->adapter = Adapter;
431 
432 	hw = &Adapter->shared;
433 	osdep = &Adapter->osdep;
434 	hw->back = osdep;
435 	osdep->adapter = Adapter;
436 
437 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
438 
439 	/*
440 	 * Initialize for fma support
441 	 */
442 	(void) e1000g_get_prop(Adapter, "fm-capable",
443 	    0, 0x0f,
444 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
445 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
446 	    &Adapter->fm_capabilities);
447 	e1000g_fm_init(Adapter);
448 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
449 
450 	/*
451 	 * PCI Configure
452 	 */
453 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
454 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
455 		goto attach_fail;
456 	}
457 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
458 
459 	/*
460 	 * Setup hardware
461 	 */
462 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
463 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
464 		goto attach_fail;
465 	}
466 
467 	/*
468 	 * Map in the device registers.
469 	 */
470 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
471 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
472 		goto attach_fail;
473 	}
474 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
475 
476 	/*
477 	 * Initialize driver parameters
478 	 */
479 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
480 		goto attach_fail;
481 	}
482 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
483 
484 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
485 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
486 		goto attach_fail;
487 	}
488 
489 	/*
490 	 * Initialize interrupts
491 	 */
492 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
493 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
494 		goto attach_fail;
495 	}
496 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
497 
498 	/*
499 	 * Initialize mutex's for this device.
500 	 * Do this before enabling the interrupt handler and
501 	 * register the softint to avoid the condition where
502 	 * interrupt handler can try using uninitialized mutex
503 	 */
504 	e1000g_init_locks(Adapter);
505 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
506 
507 	/*
508 	 * Initialize Driver Counters
509 	 */
510 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
511 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
512 		goto attach_fail;
513 	}
514 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
515 
516 	/*
517 	 * Initialize chip hardware and software structures
518 	 */
519 	rw_enter(&Adapter->chip_lock, RW_WRITER);
520 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
521 		rw_exit(&Adapter->chip_lock);
522 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
523 		goto attach_fail;
524 	}
525 	rw_exit(&Adapter->chip_lock);
526 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
527 
528 	/*
529 	 * Register the driver to the MAC
530 	 */
531 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
532 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
533 		goto attach_fail;
534 	}
535 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
536 
537 	/*
538 	 * Now that mutex locks are initialized, and the chip is also
539 	 * initialized, enable interrupts.
540 	 */
541 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
542 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
543 		goto attach_fail;
544 	}
545 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
546 
547 	/*
548 	 * If e1000g_force_detach is enabled, in global private dip list,
549 	 * we will create a new entry, which maintains the priv_dip for DR
550 	 * supports after driver detached.
551 	 */
552 	if (e1000g_force_detach) {
553 		private_devi_list_t *devi_node;
554 
555 		Adapter->priv_dip =
556 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
557 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
558 		    sizeof (struct dev_info));
559 
560 		devi_node =
561 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
562 
563 		mutex_enter(&e1000g_rx_detach_lock);
564 		devi_node->priv_dip = Adapter->priv_dip;
565 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
566 		devi_node->pending_rx_count = 0;
567 
568 		Adapter->priv_devi_node = devi_node;
569 
570 		if (e1000g_private_devi_list == NULL) {
571 			devi_node->prev = NULL;
572 			devi_node->next = NULL;
573 			e1000g_private_devi_list = devi_node;
574 		} else {
575 			devi_node->prev = NULL;
576 			devi_node->next = e1000g_private_devi_list;
577 			e1000g_private_devi_list->prev = devi_node;
578 			e1000g_private_devi_list = devi_node;
579 		}
580 		mutex_exit(&e1000g_rx_detach_lock);
581 	}
582 
583 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
584 	Adapter->e1000g_state = E1000G_INITIALIZED;
585 
586 	return (DDI_SUCCESS);
587 
588 attach_fail:
589 	e1000g_unattach(devinfo, Adapter);
590 	return (DDI_FAILURE);
591 }
592 
593 static int
594 e1000g_register_mac(struct e1000g *Adapter)
595 {
596 	struct e1000_hw *hw = &Adapter->shared;
597 	mac_register_t *mac;
598 	int err;
599 
600 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
601 		return (DDI_FAILURE);
602 
603 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
604 	mac->m_driver = Adapter;
605 	mac->m_dip = Adapter->dip;
606 	mac->m_src_addr = hw->mac.addr;
607 	mac->m_callbacks = &e1000g_m_callbacks;
608 	mac->m_min_sdu = 0;
609 	mac->m_max_sdu = Adapter->default_mtu;
610 	mac->m_margin = VLAN_TAGSZ;
611 	mac->m_priv_props = e1000g_priv_props;
612 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
613 	mac->m_v12n = MAC_VIRT_LEVEL1;
614 
615 	err = mac_register(mac, &Adapter->mh);
616 	mac_free(mac);
617 
618 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
619 }
620 
621 static int
622 e1000g_identify_hardware(struct e1000g *Adapter)
623 {
624 	struct e1000_hw *hw = &Adapter->shared;
625 	struct e1000g_osdep *osdep = &Adapter->osdep;
626 
627 	/* Get the device id */
628 	hw->vendor_id =
629 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
630 	hw->device_id =
631 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
632 	hw->revision_id =
633 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
634 	hw->subsystem_device_id =
635 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
636 	hw->subsystem_vendor_id =
637 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
638 
639 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
640 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
641 		    "MAC type could not be set properly.");
642 		return (DDI_FAILURE);
643 	}
644 
645 	return (DDI_SUCCESS);
646 }
647 
648 static int
649 e1000g_regs_map(struct e1000g *Adapter)
650 {
651 	dev_info_t *devinfo = Adapter->dip;
652 	struct e1000_hw *hw = &Adapter->shared;
653 	struct e1000g_osdep *osdep = &Adapter->osdep;
654 	off_t mem_size;
655 
656 	/* Get size of adapter register memory */
657 	if (ddi_dev_regsize(devinfo, ADAPTER_REG_SET, &mem_size) !=
658 	    DDI_SUCCESS) {
659 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
660 		    "ddi_dev_regsize for registers failed");
661 		return (DDI_FAILURE);
662 	}
663 
664 	/* Map adapter register memory */
665 	if ((ddi_regs_map_setup(devinfo, ADAPTER_REG_SET,
666 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
667 	    &osdep->reg_handle)) != DDI_SUCCESS) {
668 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
669 		    "ddi_regs_map_setup for registers failed");
670 		goto regs_map_fail;
671 	}
672 
673 	/* ICH needs to map flash memory */
674 	if (hw->mac.type == e1000_ich8lan ||
675 	    hw->mac.type == e1000_ich9lan ||
676 	    hw->mac.type == e1000_ich10lan ||
677 	    hw->mac.type == e1000_pchlan) {
678 		/* get flash size */
679 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
680 		    &mem_size) != DDI_SUCCESS) {
681 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
682 			    "ddi_dev_regsize for ICH flash failed");
683 			goto regs_map_fail;
684 		}
685 
686 		/* map flash in */
687 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
688 		    (caddr_t *)&hw->flash_address, 0,
689 		    mem_size, &e1000g_regs_acc_attr,
690 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
691 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
692 			    "ddi_regs_map_setup for ICH flash failed");
693 			goto regs_map_fail;
694 		}
695 	}
696 
697 	return (DDI_SUCCESS);
698 
699 regs_map_fail:
700 	if (osdep->reg_handle != NULL)
701 		ddi_regs_map_free(&osdep->reg_handle);
702 
703 	return (DDI_FAILURE);
704 }
705 
706 static int
707 e1000g_set_driver_params(struct e1000g *Adapter)
708 {
709 	struct e1000_hw *hw;
710 	uint32_t mem_bar, io_bar, bar64;
711 
712 	hw = &Adapter->shared;
713 
714 	/* Set MAC type and initialize hardware functions */
715 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
716 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
717 		    "Could not setup hardware functions");
718 		return (DDI_FAILURE);
719 	}
720 
721 	/* Get bus information */
722 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
723 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
724 		    "Could not get bus information");
725 		return (DDI_FAILURE);
726 	}
727 
728 	/* get mem_base addr */
729 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
730 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
731 
732 	/* get io_base addr */
733 	if (hw->mac.type >= e1000_82544) {
734 		if (bar64) {
735 			/* IO BAR is different for 64 bit BAR mode */
736 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
737 			    PCI_CONF_BASE4);
738 		} else {
739 			/* normal 32-bit BAR mode */
740 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
741 			    PCI_CONF_BASE2);
742 		}
743 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
744 	} else {
745 		/* no I/O access for adapters prior to 82544 */
746 		hw->io_base = 0x0;
747 	}
748 
749 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
750 
751 	hw->mac.autoneg_failed = B_TRUE;
752 
753 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
754 	hw->phy.autoneg_wait_to_complete = B_FALSE;
755 
756 	/* Adaptive IFS related changes */
757 	hw->mac.adaptive_ifs = B_TRUE;
758 
759 	/* Enable phy init script for IGP phy of 82541/82547 */
760 	if ((hw->mac.type == e1000_82547) ||
761 	    (hw->mac.type == e1000_82541) ||
762 	    (hw->mac.type == e1000_82547_rev_2) ||
763 	    (hw->mac.type == e1000_82541_rev_2))
764 		e1000_init_script_state_82541(hw, B_TRUE);
765 
766 	/* Enable the TTL workaround for 82541/82547 */
767 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
768 
769 #ifdef __sparc
770 	Adapter->strip_crc = B_TRUE;
771 #else
772 	Adapter->strip_crc = B_FALSE;
773 #endif
774 
775 	/* setup the maximum MTU size of the chip */
776 	e1000g_setup_max_mtu(Adapter);
777 
778 	/* Get speed/duplex settings in conf file */
779 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
780 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
781 	e1000g_force_speed_duplex(Adapter);
782 
783 	/* Get Jumbo Frames settings in conf file */
784 	e1000g_get_max_frame_size(Adapter);
785 
786 	/* Get conf file properties */
787 	e1000g_get_conf(Adapter);
788 
789 	/* enforce PCH limits */
790 	e1000g_pch_limits(Adapter);
791 
792 	/* Set Rx/Tx buffer size */
793 	e1000g_set_bufsize(Adapter);
794 
795 	/* Master Latency Timer */
796 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
797 
798 	/* copper options */
799 	if (hw->phy.media_type == e1000_media_type_copper) {
800 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
801 		hw->phy.disable_polarity_correction = B_FALSE;
802 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
803 	}
804 
805 	/* The initial link state should be "unknown" */
806 	Adapter->link_state = LINK_STATE_UNKNOWN;
807 
808 	/* Initialize rx parameters */
809 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
810 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
811 
812 	/* Initialize tx parameters */
813 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
814 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
815 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
816 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
817 
818 	/* Initialize rx parameters */
819 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
820 
821 	return (DDI_SUCCESS);
822 }
823 
824 static void
825 e1000g_setup_max_mtu(struct e1000g *Adapter)
826 {
827 	struct e1000_mac_info *mac = &Adapter->shared.mac;
828 	struct e1000_phy_info *phy = &Adapter->shared.phy;
829 
830 	switch (mac->type) {
831 	/* types that do not support jumbo frames */
832 	case e1000_ich8lan:
833 	case e1000_82573:
834 	case e1000_82583:
835 		Adapter->max_mtu = ETHERMTU;
836 		break;
837 	/* ich9 supports jumbo frames except on one phy type */
838 	case e1000_ich9lan:
839 		if (phy->type == e1000_phy_ife)
840 			Adapter->max_mtu = ETHERMTU;
841 		else
842 			Adapter->max_mtu = MAXIMUM_MTU_9K;
843 		break;
844 	/* pch can do jumbo frames up to 4K */
845 	case e1000_pchlan:
846 		Adapter->max_mtu = MAXIMUM_MTU_4K;
847 		break;
848 	/* types with a special limit */
849 	case e1000_82571:
850 	case e1000_82572:
851 	case e1000_82574:
852 	case e1000_80003es2lan:
853 	case e1000_ich10lan:
854 		Adapter->max_mtu = MAXIMUM_MTU_9K;
855 		break;
856 	/* default limit is 16K */
857 	default:
858 		Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
859 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
860 		    E1000G_IPALIGNPRESERVEROOM;
861 		break;
862 	}
863 }
864 
865 static void
866 e1000g_set_bufsize(struct e1000g *Adapter)
867 {
868 	struct e1000_mac_info *mac = &Adapter->shared.mac;
869 	uint64_t rx_size;
870 	uint64_t tx_size;
871 
872 	dev_info_t *devinfo = Adapter->dip;
873 #ifdef __sparc
874 	ulong_t iommu_pagesize;
875 #endif
876 	/* Get the system page size */
877 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
878 
879 #ifdef __sparc
880 	iommu_pagesize = dvma_pagesize(devinfo);
881 	if (iommu_pagesize != 0) {
882 		if (Adapter->sys_page_sz == iommu_pagesize) {
883 			if (iommu_pagesize > 0x4000)
884 				Adapter->sys_page_sz = 0x4000;
885 		} else {
886 			if (Adapter->sys_page_sz > iommu_pagesize)
887 				Adapter->sys_page_sz = iommu_pagesize;
888 		}
889 	}
890 	if (Adapter->lso_enable) {
891 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
892 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
893 	} else {
894 		Adapter->dvma_page_num = Adapter->max_frame_size /
895 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
896 	}
897 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
898 #endif
899 
900 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
901 
902 	if (Adapter->mem_workaround_82546 &&
903 	    ((mac->type == e1000_82545) ||
904 	    (mac->type == e1000_82546) ||
905 	    (mac->type == e1000_82546_rev_3))) {
906 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
907 	} else {
908 		rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
909 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
910 		    (rx_size <= FRAME_SIZE_UPTO_4K))
911 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
912 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
913 		    (rx_size <= FRAME_SIZE_UPTO_8K))
914 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
915 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
916 		    (rx_size <= FRAME_SIZE_UPTO_16K))
917 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
918 		else
919 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
920 	}
921 
922 	tx_size = Adapter->max_frame_size;
923 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
924 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
925 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
926 	    (tx_size <= FRAME_SIZE_UPTO_8K))
927 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
928 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
929 	    (tx_size <= FRAME_SIZE_UPTO_16K))
930 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
931 	else
932 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
933 
934 	/*
935 	 * For Wiseman adapters we have an requirement of having receive
936 	 * buffers aligned at 256 byte boundary. Since Livengood does not
937 	 * require this and forcing it for all hardwares will have
938 	 * performance implications, I am making it applicable only for
939 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
940 	 * it is okay to have normal frames...but it does involve a
941 	 * potential risk where we may loose data if buffer is not
942 	 * aligned...so all wiseman boards to have 256 byte aligned
943 	 * buffers
944 	 */
945 	if (mac->type < e1000_82543)
946 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
947 	else
948 		Adapter->rx_buf_align = 1;
949 }
950 
951 /*
952  * e1000g_detach - driver detach
953  *
954  * The detach() function is the complement of the attach routine.
955  * If cmd is set to DDI_DETACH, detach() is used to remove  the
956  * state  associated  with  a  given  instance of a device node
957  * prior to the removal of that instance from the system.
958  *
959  * The detach() function will be called once for each  instance
960  * of the device for which there has been a successful attach()
961  * once there are no longer  any  opens  on  the  device.
962  *
963  * Interrupts routine are disabled, All memory allocated by this
964  * driver are freed.
965  */
966 static int
967 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
968 {
969 	struct e1000g *Adapter;
970 	boolean_t rx_drain;
971 
972 	switch (cmd) {
973 	default:
974 		return (DDI_FAILURE);
975 
976 	case DDI_SUSPEND:
977 		return (e1000g_suspend(devinfo));
978 
979 	case DDI_DETACH:
980 		break;
981 	}
982 
983 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
984 	if (Adapter == NULL)
985 		return (DDI_FAILURE);
986 
987 	rx_drain = e1000g_rx_drain(Adapter);
988 	if (!rx_drain && !e1000g_force_detach)
989 		return (DDI_FAILURE);
990 
991 	if (mac_unregister(Adapter->mh) != 0) {
992 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
993 		return (DDI_FAILURE);
994 	}
995 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
996 
997 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
998 
999 	if (!e1000g_force_detach && !rx_drain)
1000 		return (DDI_FAILURE);
1001 
1002 	e1000g_unattach(devinfo, Adapter);
1003 
1004 	return (DDI_SUCCESS);
1005 }
1006 
1007 /*
1008  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1009  */
1010 void
1011 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1012 {
1013 	ASSERT(e1000g_private_devi_list != NULL);
1014 	ASSERT(devi_node != NULL);
1015 
1016 	if (devi_node->prev != NULL)
1017 		devi_node->prev->next = devi_node->next;
1018 	if (devi_node->next != NULL)
1019 		devi_node->next->prev = devi_node->prev;
1020 	if (devi_node == e1000g_private_devi_list)
1021 		e1000g_private_devi_list = devi_node->next;
1022 
1023 	kmem_free(devi_node->priv_dip,
1024 	    sizeof (struct dev_info));
1025 	kmem_free(devi_node,
1026 	    sizeof (private_devi_list_t));
1027 }
1028 
1029 static void
1030 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1031 {
1032 	private_devi_list_t *devi_node;
1033 	int result;
1034 
1035 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1036 		(void) e1000g_disable_intrs(Adapter);
1037 	}
1038 
1039 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1040 		(void) mac_unregister(Adapter->mh);
1041 	}
1042 
1043 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1044 		(void) e1000g_rem_intrs(Adapter);
1045 	}
1046 
1047 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1048 		(void) ddi_prop_remove_all(devinfo);
1049 	}
1050 
1051 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1052 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1053 	}
1054 
1055 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1056 		stop_link_timer(Adapter);
1057 
1058 		mutex_enter(&e1000g_nvm_lock);
1059 		result = e1000_reset_hw(&Adapter->shared);
1060 		mutex_exit(&e1000g_nvm_lock);
1061 
1062 		if (result != E1000_SUCCESS) {
1063 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1064 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1065 		}
1066 	}
1067 
1068 	e1000g_release_multicast(Adapter);
1069 
1070 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1071 		if (Adapter->osdep.reg_handle != NULL)
1072 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1073 		if (Adapter->osdep.ich_flash_handle != NULL)
1074 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1075 	}
1076 
1077 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1078 		if (Adapter->osdep.cfg_handle != NULL)
1079 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1080 	}
1081 
1082 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1083 		e1000g_destroy_locks(Adapter);
1084 	}
1085 
1086 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1087 		e1000g_fm_fini(Adapter);
1088 	}
1089 
1090 	mutex_enter(&e1000g_rx_detach_lock);
1091 	if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1092 		devi_node = Adapter->priv_devi_node;
1093 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1094 
1095 		if (devi_node->pending_rx_count == 0) {
1096 			e1000g_free_priv_devi_node(devi_node);
1097 		}
1098 	}
1099 	mutex_exit(&e1000g_rx_detach_lock);
1100 
1101 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1102 
1103 	/*
1104 	 * Another hotplug spec requirement,
1105 	 * run ddi_set_driver_private(devinfo, null);
1106 	 */
1107 	ddi_set_driver_private(devinfo, NULL);
1108 }
1109 
1110 static void
1111 e1000g_init_locks(struct e1000g *Adapter)
1112 {
1113 	e1000g_tx_ring_t *tx_ring;
1114 	e1000g_rx_ring_t *rx_ring;
1115 
1116 	rw_init(&Adapter->chip_lock, NULL,
1117 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1118 	mutex_init(&Adapter->link_lock, NULL,
1119 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1120 	mutex_init(&Adapter->watchdog_lock, NULL,
1121 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1122 
1123 	tx_ring = Adapter->tx_ring;
1124 
1125 	mutex_init(&tx_ring->tx_lock, NULL,
1126 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1127 	mutex_init(&tx_ring->usedlist_lock, NULL,
1128 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1129 	mutex_init(&tx_ring->freelist_lock, NULL,
1130 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1131 
1132 	rx_ring = Adapter->rx_ring;
1133 
1134 	mutex_init(&rx_ring->rx_lock, NULL,
1135 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1136 }
1137 
1138 static void
1139 e1000g_destroy_locks(struct e1000g *Adapter)
1140 {
1141 	e1000g_tx_ring_t *tx_ring;
1142 	e1000g_rx_ring_t *rx_ring;
1143 
1144 	tx_ring = Adapter->tx_ring;
1145 	mutex_destroy(&tx_ring->tx_lock);
1146 	mutex_destroy(&tx_ring->usedlist_lock);
1147 	mutex_destroy(&tx_ring->freelist_lock);
1148 
1149 	rx_ring = Adapter->rx_ring;
1150 	mutex_destroy(&rx_ring->rx_lock);
1151 
1152 	mutex_destroy(&Adapter->link_lock);
1153 	mutex_destroy(&Adapter->watchdog_lock);
1154 	rw_destroy(&Adapter->chip_lock);
1155 
1156 	/* destory mutex initialized in shared code */
1157 	e1000_destroy_hw_mutex(&Adapter->shared);
1158 }
1159 
1160 static int
1161 e1000g_resume(dev_info_t *devinfo)
1162 {
1163 	struct e1000g *Adapter;
1164 
1165 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1166 	if (Adapter == NULL)
1167 		e1000g_log(Adapter, CE_PANIC,
1168 		    "Instance pointer is null\n");
1169 
1170 	if (Adapter->dip != devinfo)
1171 		e1000g_log(Adapter, CE_PANIC,
1172 		    "Devinfo is not the same as saved devinfo\n");
1173 
1174 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1175 
1176 	if (Adapter->e1000g_state & E1000G_STARTED) {
1177 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1178 			rw_exit(&Adapter->chip_lock);
1179 			/*
1180 			 * We note the failure, but return success, as the
1181 			 * system is still usable without this controller.
1182 			 */
1183 			e1000g_log(Adapter, CE_WARN,
1184 			    "e1000g_resume: failed to restart controller\n");
1185 			return (DDI_SUCCESS);
1186 		}
1187 		/* Enable and start the watchdog timer */
1188 		enable_watchdog_timer(Adapter);
1189 	}
1190 
1191 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1192 
1193 	rw_exit(&Adapter->chip_lock);
1194 
1195 	return (DDI_SUCCESS);
1196 }
1197 
1198 static int
1199 e1000g_suspend(dev_info_t *devinfo)
1200 {
1201 	struct e1000g *Adapter;
1202 
1203 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1204 	if (Adapter == NULL)
1205 		return (DDI_FAILURE);
1206 
1207 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1208 
1209 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1210 
1211 	/* if the port isn't plumbed, we can simply return */
1212 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1213 		rw_exit(&Adapter->chip_lock);
1214 		return (DDI_SUCCESS);
1215 	}
1216 
1217 	e1000g_stop(Adapter, B_FALSE);
1218 
1219 	rw_exit(&Adapter->chip_lock);
1220 
1221 	/* Disable and stop all the timers */
1222 	disable_watchdog_timer(Adapter);
1223 	stop_link_timer(Adapter);
1224 	stop_82547_timer(Adapter->tx_ring);
1225 
1226 	return (DDI_SUCCESS);
1227 }
1228 
1229 static int
1230 e1000g_init(struct e1000g *Adapter)
1231 {
1232 	uint32_t pba;
1233 	uint32_t high_water;
1234 	struct e1000_hw *hw;
1235 	clock_t link_timeout;
1236 	int result;
1237 
1238 	hw = &Adapter->shared;
1239 
1240 	/*
1241 	 * reset to put the hardware in a known state
1242 	 * before we try to do anything with the eeprom
1243 	 */
1244 	mutex_enter(&e1000g_nvm_lock);
1245 	result = e1000_reset_hw(hw);
1246 	mutex_exit(&e1000g_nvm_lock);
1247 
1248 	if (result != E1000_SUCCESS) {
1249 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1250 		goto init_fail;
1251 	}
1252 
1253 	mutex_enter(&e1000g_nvm_lock);
1254 	result = e1000_validate_nvm_checksum(hw);
1255 	if (result < E1000_SUCCESS) {
1256 		/*
1257 		 * Some PCI-E parts fail the first check due to
1258 		 * the link being in sleep state.  Call it again,
1259 		 * if it fails a second time its a real issue.
1260 		 */
1261 		result = e1000_validate_nvm_checksum(hw);
1262 	}
1263 	mutex_exit(&e1000g_nvm_lock);
1264 
1265 	if (result < E1000_SUCCESS) {
1266 		e1000g_log(Adapter, CE_WARN,
1267 		    "Invalid NVM checksum. Please contact "
1268 		    "the vendor to update the NVM.");
1269 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1270 		goto init_fail;
1271 	}
1272 
1273 	result = 0;
1274 #ifdef __sparc
1275 	/*
1276 	 * First, we try to get the local ethernet address from OBP. If
1277 	 * failed, then we get it from the EEPROM of NIC card.
1278 	 */
1279 	result = e1000g_find_mac_address(Adapter);
1280 #endif
1281 	/* Get the local ethernet address. */
1282 	if (!result) {
1283 		mutex_enter(&e1000g_nvm_lock);
1284 		result = e1000_read_mac_addr(hw);
1285 		mutex_exit(&e1000g_nvm_lock);
1286 	}
1287 
1288 	if (result < E1000_SUCCESS) {
1289 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1290 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1291 		goto init_fail;
1292 	}
1293 
1294 	/* check for valid mac address */
1295 	if (!is_valid_mac_addr(hw->mac.addr)) {
1296 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1297 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1298 		goto init_fail;
1299 	}
1300 
1301 	/* Set LAA state for 82571 chipset */
1302 	e1000_set_laa_state_82571(hw, B_TRUE);
1303 
1304 	/* Master Latency Timer implementation */
1305 	if (Adapter->master_latency_timer) {
1306 		pci_config_put8(Adapter->osdep.cfg_handle,
1307 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1308 	}
1309 
1310 	if (hw->mac.type < e1000_82547) {
1311 		/*
1312 		 * Total FIFO is 64K
1313 		 */
1314 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1315 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1316 		else
1317 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1318 	} else if ((hw->mac.type == e1000_82571) ||
1319 	    (hw->mac.type == e1000_82572) ||
1320 	    (hw->mac.type == e1000_80003es2lan)) {
1321 		/*
1322 		 * Total FIFO is 48K
1323 		 */
1324 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1325 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1326 		else
1327 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1328 	} else if (hw->mac.type == e1000_82573) {
1329 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1330 	} else if (hw->mac.type == e1000_82574) {
1331 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1332 		pba = E1000_READ_REG(hw, E1000_PBA);
1333 	} else if (hw->mac.type == e1000_ich8lan) {
1334 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1335 	} else if (hw->mac.type == e1000_ich9lan) {
1336 		pba = E1000_PBA_10K;
1337 	} else if (hw->mac.type == e1000_ich10lan) {
1338 		pba = E1000_PBA_10K;
1339 	} else if (hw->mac.type == e1000_pchlan) {
1340 		pba = E1000_PBA_26K;
1341 	} else {
1342 		/*
1343 		 * Total FIFO is 40K
1344 		 */
1345 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1346 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1347 		else
1348 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1349 	}
1350 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1351 
1352 	/*
1353 	 * These parameters set thresholds for the adapter's generation(Tx)
1354 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1355 	 * settings.  Flow control is enabled or disabled in the configuration
1356 	 * file.
1357 	 * High-water mark is set down from the top of the rx fifo (not
1358 	 * sensitive to max_frame_size) and low-water is set just below
1359 	 * high-water mark.
1360 	 * The high water mark must be low enough to fit one full frame above
1361 	 * it in the rx FIFO.  Should be the lower of:
1362 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1363 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1364 	 * Rx FIFO size minus one full frame.
1365 	 */
1366 	high_water = min(((pba << 10) * 9 / 10),
1367 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1368 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1369 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1370 	    ((pba << 10) - Adapter->max_frame_size)));
1371 
1372 	hw->fc.high_water = high_water & 0xFFF8;
1373 	hw->fc.low_water = hw->fc.high_water - 8;
1374 
1375 	if (hw->mac.type == e1000_80003es2lan)
1376 		hw->fc.pause_time = 0xFFFF;
1377 	else
1378 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1379 	hw->fc.send_xon = B_TRUE;
1380 
1381 	/*
1382 	 * Reset the adapter hardware the second time.
1383 	 */
1384 	mutex_enter(&e1000g_nvm_lock);
1385 	result = e1000_reset_hw(hw);
1386 	mutex_exit(&e1000g_nvm_lock);
1387 
1388 	if (result != E1000_SUCCESS) {
1389 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1390 		goto init_fail;
1391 	}
1392 
1393 	/* disable wakeup control by default */
1394 	if (hw->mac.type >= e1000_82544)
1395 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1396 
1397 	/*
1398 	 * MWI should be disabled on 82546.
1399 	 */
1400 	if (hw->mac.type == e1000_82546)
1401 		e1000_pci_clear_mwi(hw);
1402 	else
1403 		e1000_pci_set_mwi(hw);
1404 
1405 	/*
1406 	 * Configure/Initialize hardware
1407 	 */
1408 	mutex_enter(&e1000g_nvm_lock);
1409 	result = e1000_init_hw(hw);
1410 	mutex_exit(&e1000g_nvm_lock);
1411 
1412 	if (result < E1000_SUCCESS) {
1413 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1414 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1415 		goto init_fail;
1416 	}
1417 
1418 	/*
1419 	 * Restore LED settings to the default from EEPROM
1420 	 * to meet the standard for Sun platforms.
1421 	 */
1422 	(void) e1000_cleanup_led(hw);
1423 
1424 	/* Disable Smart Power Down */
1425 	phy_spd_state(hw, B_FALSE);
1426 
1427 	/* Make sure driver has control */
1428 	e1000g_get_driver_control(hw);
1429 
1430 	/*
1431 	 * Initialize unicast addresses.
1432 	 */
1433 	e1000g_init_unicst(Adapter);
1434 
1435 	/*
1436 	 * Setup and initialize the mctable structures.  After this routine
1437 	 * completes  Multicast table will be set
1438 	 */
1439 	e1000_update_mc_addr_list(hw,
1440 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1441 	msec_delay(5);
1442 
1443 	/*
1444 	 * Implement Adaptive IFS
1445 	 */
1446 	e1000_reset_adaptive(hw);
1447 
1448 	/* Setup Interrupt Throttling Register */
1449 	if (hw->mac.type >= e1000_82540) {
1450 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1451 	} else
1452 		Adapter->intr_adaptive = B_FALSE;
1453 
1454 	/* Start the timer for link setup */
1455 	if (hw->mac.autoneg)
1456 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1457 	else
1458 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1459 
1460 	mutex_enter(&Adapter->link_lock);
1461 	if (hw->phy.autoneg_wait_to_complete) {
1462 		Adapter->link_complete = B_TRUE;
1463 	} else {
1464 		Adapter->link_complete = B_FALSE;
1465 		Adapter->link_tid = timeout(e1000g_link_timer,
1466 		    (void *)Adapter, link_timeout);
1467 	}
1468 	mutex_exit(&Adapter->link_lock);
1469 
1470 	/* Save the state of the phy */
1471 	e1000g_get_phy_state(Adapter);
1472 
1473 	e1000g_param_sync(Adapter);
1474 
1475 	Adapter->init_count++;
1476 
1477 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1478 		goto init_fail;
1479 	}
1480 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1481 		goto init_fail;
1482 	}
1483 
1484 	Adapter->poll_mode = e1000g_poll_mode;
1485 
1486 	return (DDI_SUCCESS);
1487 
1488 init_fail:
1489 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1490 	return (DDI_FAILURE);
1491 }
1492 
1493 static int
1494 e1000g_alloc_rx_data(struct e1000g *Adapter)
1495 {
1496 	e1000g_rx_ring_t *rx_ring;
1497 	e1000g_rx_data_t *rx_data;
1498 
1499 	rx_ring = Adapter->rx_ring;
1500 
1501 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1502 
1503 	if (rx_data == NULL)
1504 		return (DDI_FAILURE);
1505 
1506 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1507 	rx_data->rx_ring = rx_ring;
1508 
1509 	mutex_init(&rx_data->freelist_lock, NULL,
1510 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1511 	mutex_init(&rx_data->recycle_lock, NULL,
1512 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1513 
1514 	rx_ring->rx_data = rx_data;
1515 
1516 	return (DDI_SUCCESS);
1517 }
1518 
1519 void
1520 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1521 {
1522 	rx_sw_packet_t *packet, *next_packet;
1523 
1524 	if (rx_data == NULL)
1525 		return;
1526 
1527 	packet = rx_data->packet_area;
1528 	while (packet != NULL) {
1529 		next_packet = packet->next;
1530 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1531 		packet = next_packet;
1532 	}
1533 	rx_data->packet_area = NULL;
1534 }
1535 
1536 void
1537 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1538 {
1539 	if (rx_data == NULL)
1540 		return;
1541 
1542 	mutex_destroy(&rx_data->freelist_lock);
1543 	mutex_destroy(&rx_data->recycle_lock);
1544 
1545 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1546 }
1547 
1548 /*
1549  * Check if the link is up
1550  */
1551 static boolean_t
1552 e1000g_link_up(struct e1000g *Adapter)
1553 {
1554 	struct e1000_hw *hw = &Adapter->shared;
1555 	boolean_t link_up = B_FALSE;
1556 
1557 	/*
1558 	 * get_link_status is set in the interrupt handler on link-status-change
1559 	 * or rx sequence error interrupt.  get_link_status will stay
1560 	 * false until the e1000_check_for_link establishes link only
1561 	 * for copper adapters.
1562 	 */
1563 	switch (hw->phy.media_type) {
1564 	case e1000_media_type_copper:
1565 		if (hw->mac.get_link_status) {
1566 			(void) e1000_check_for_link(hw);
1567 			link_up = !hw->mac.get_link_status;
1568 		} else {
1569 			link_up = B_TRUE;
1570 		}
1571 		break;
1572 	case e1000_media_type_fiber:
1573 		(void) e1000_check_for_link(hw);
1574 		link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1575 		    E1000_STATUS_LU);
1576 		break;
1577 	case e1000_media_type_internal_serdes:
1578 		(void) e1000_check_for_link(hw);
1579 		link_up = hw->mac.serdes_has_link;
1580 		break;
1581 	}
1582 
1583 	return (link_up);
1584 }
1585 
1586 static void
1587 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1588 {
1589 	struct iocblk *iocp;
1590 	struct e1000g *e1000gp;
1591 	enum ioc_reply status;
1592 
1593 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1594 	iocp->ioc_error = 0;
1595 	e1000gp = (struct e1000g *)arg;
1596 
1597 	ASSERT(e1000gp);
1598 	if (e1000gp == NULL) {
1599 		miocnak(q, mp, 0, EINVAL);
1600 		return;
1601 	}
1602 
1603 	rw_enter(&e1000gp->chip_lock, RW_READER);
1604 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1605 		rw_exit(&e1000gp->chip_lock);
1606 		miocnak(q, mp, 0, EINVAL);
1607 		return;
1608 	}
1609 	rw_exit(&e1000gp->chip_lock);
1610 
1611 	switch (iocp->ioc_cmd) {
1612 
1613 	case LB_GET_INFO_SIZE:
1614 	case LB_GET_INFO:
1615 	case LB_GET_MODE:
1616 	case LB_SET_MODE:
1617 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1618 		break;
1619 
1620 
1621 #ifdef E1000G_DEBUG
1622 	case E1000G_IOC_REG_PEEK:
1623 	case E1000G_IOC_REG_POKE:
1624 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1625 		break;
1626 	case E1000G_IOC_CHIP_RESET:
1627 		e1000gp->reset_count++;
1628 		if (e1000g_reset_adapter(e1000gp))
1629 			status = IOC_ACK;
1630 		else
1631 			status = IOC_INVAL;
1632 		break;
1633 #endif
1634 	default:
1635 		status = IOC_INVAL;
1636 		break;
1637 	}
1638 
1639 	/*
1640 	 * Decide how to reply
1641 	 */
1642 	switch (status) {
1643 	default:
1644 	case IOC_INVAL:
1645 		/*
1646 		 * Error, reply with a NAK and EINVAL or the specified error
1647 		 */
1648 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1649 		    EINVAL : iocp->ioc_error);
1650 		break;
1651 
1652 	case IOC_DONE:
1653 		/*
1654 		 * OK, reply already sent
1655 		 */
1656 		break;
1657 
1658 	case IOC_ACK:
1659 		/*
1660 		 * OK, reply with an ACK
1661 		 */
1662 		miocack(q, mp, 0, 0);
1663 		break;
1664 
1665 	case IOC_REPLY:
1666 		/*
1667 		 * OK, send prepared reply as ACK or NAK
1668 		 */
1669 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1670 		    M_IOCACK : M_IOCNAK;
1671 		qreply(q, mp);
1672 		break;
1673 	}
1674 }
1675 
1676 /*
1677  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1678  * capable of supporting only one interrupt and we shouldn't disable
1679  * the physical interrupt. In this case we let the interrupt come and
1680  * we queue the packets in the rx ring itself in case we are in polling
1681  * mode (better latency but slightly lower performance and a very
1682  * high intrrupt count in mpstat which is harmless).
1683  *
1684  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1685  * which can be disabled in poll mode. This gives better overall
1686  * throughput (compared to the mode above), shows very low interrupt
1687  * count but has slightly higher latency since we pick the packets when
1688  * the poll thread does polling.
1689  *
1690  * Currently, this flag should be enabled only while doing performance
1691  * measurement or when it can be guaranteed that entire NIC going
1692  * in poll mode will not harm any traffic like cluster heartbeat etc.
1693  */
1694 int e1000g_poll_mode = 0;
1695 
1696 /*
1697  * Called from the upper layers when driver is in polling mode to
1698  * pick up any queued packets. Care should be taken to not block
1699  * this thread.
1700  */
1701 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1702 {
1703 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1704 	mblk_t			*mp = NULL;
1705 	mblk_t			*tail;
1706 	struct e1000g 		*adapter;
1707 
1708 	adapter = rx_ring->adapter;
1709 
1710 	rw_enter(&adapter->chip_lock, RW_READER);
1711 
1712 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1713 		rw_exit(&adapter->chip_lock);
1714 		return (NULL);
1715 	}
1716 
1717 	mutex_enter(&rx_ring->rx_lock);
1718 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1719 	mutex_exit(&rx_ring->rx_lock);
1720 	rw_exit(&adapter->chip_lock);
1721 	return (mp);
1722 }
1723 
1724 static int
1725 e1000g_m_start(void *arg)
1726 {
1727 	struct e1000g *Adapter = (struct e1000g *)arg;
1728 
1729 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1730 
1731 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1732 		rw_exit(&Adapter->chip_lock);
1733 		return (ECANCELED);
1734 	}
1735 
1736 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1737 		rw_exit(&Adapter->chip_lock);
1738 		return (ENOTACTIVE);
1739 	}
1740 
1741 	Adapter->e1000g_state |= E1000G_STARTED;
1742 
1743 	rw_exit(&Adapter->chip_lock);
1744 
1745 	/* Enable and start the watchdog timer */
1746 	enable_watchdog_timer(Adapter);
1747 
1748 	return (0);
1749 }
1750 
1751 static int
1752 e1000g_start(struct e1000g *Adapter, boolean_t global)
1753 {
1754 	e1000g_rx_data_t *rx_data;
1755 
1756 	if (global) {
1757 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1758 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1759 			goto start_fail;
1760 		}
1761 
1762 		/* Allocate dma resources for descriptors and buffers */
1763 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1764 			e1000g_log(Adapter, CE_WARN,
1765 			    "Alloc DMA resources failed");
1766 			goto start_fail;
1767 		}
1768 		Adapter->rx_buffer_setup = B_FALSE;
1769 	}
1770 
1771 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1772 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1773 			e1000g_log(Adapter, CE_WARN,
1774 			    "Adapter initialization failed");
1775 			goto start_fail;
1776 		}
1777 	}
1778 
1779 	/* Setup and initialize the transmit structures */
1780 	e1000g_tx_setup(Adapter);
1781 	msec_delay(5);
1782 
1783 	/* Setup and initialize the receive structures */
1784 	e1000g_rx_setup(Adapter);
1785 	msec_delay(5);
1786 
1787 	/* Restore the e1000g promiscuous mode */
1788 	e1000g_restore_promisc(Adapter);
1789 
1790 	e1000g_mask_interrupt(Adapter);
1791 
1792 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1793 
1794 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1795 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1796 		goto start_fail;
1797 	}
1798 
1799 	return (DDI_SUCCESS);
1800 
1801 start_fail:
1802 	rx_data = Adapter->rx_ring->rx_data;
1803 
1804 	if (global) {
1805 		e1000g_release_dma_resources(Adapter);
1806 		e1000g_free_rx_pending_buffers(rx_data);
1807 		e1000g_free_rx_data(rx_data);
1808 	}
1809 
1810 	mutex_enter(&e1000g_nvm_lock);
1811 	(void) e1000_reset_hw(&Adapter->shared);
1812 	mutex_exit(&e1000g_nvm_lock);
1813 
1814 	return (DDI_FAILURE);
1815 }
1816 
1817 static void
1818 e1000g_m_stop(void *arg)
1819 {
1820 	struct e1000g *Adapter = (struct e1000g *)arg;
1821 
1822 	/* Drain tx sessions */
1823 	(void) e1000g_tx_drain(Adapter);
1824 
1825 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1826 
1827 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1828 		rw_exit(&Adapter->chip_lock);
1829 		return;
1830 	}
1831 	Adapter->e1000g_state &= ~E1000G_STARTED;
1832 	e1000g_stop(Adapter, B_TRUE);
1833 
1834 	rw_exit(&Adapter->chip_lock);
1835 
1836 	/* Disable and stop all the timers */
1837 	disable_watchdog_timer(Adapter);
1838 	stop_link_timer(Adapter);
1839 	stop_82547_timer(Adapter->tx_ring);
1840 }
1841 
1842 static void
1843 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1844 {
1845 	private_devi_list_t *devi_node;
1846 	e1000g_rx_data_t *rx_data;
1847 	int result;
1848 
1849 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1850 
1851 	/* Stop the chip and release pending resources */
1852 
1853 	/* Tell firmware driver is no longer in control */
1854 	e1000g_release_driver_control(&Adapter->shared);
1855 
1856 	e1000g_clear_all_interrupts(Adapter);
1857 
1858 	mutex_enter(&e1000g_nvm_lock);
1859 	result = e1000_reset_hw(&Adapter->shared);
1860 	mutex_exit(&e1000g_nvm_lock);
1861 
1862 	if (result != E1000_SUCCESS) {
1863 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1864 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1865 	}
1866 
1867 	/* Release resources still held by the TX descriptors */
1868 	e1000g_tx_clean(Adapter);
1869 
1870 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1871 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1872 
1873 	/* Clean the pending rx jumbo packet fragment */
1874 	e1000g_rx_clean(Adapter);
1875 
1876 	if (global) {
1877 		e1000g_release_dma_resources(Adapter);
1878 
1879 		mutex_enter(&e1000g_rx_detach_lock);
1880 		rx_data = Adapter->rx_ring->rx_data;
1881 		rx_data->flag |= E1000G_RX_STOPPED;
1882 
1883 		if (rx_data->pending_count == 0) {
1884 			e1000g_free_rx_pending_buffers(rx_data);
1885 			e1000g_free_rx_data(rx_data);
1886 		} else {
1887 			devi_node = rx_data->priv_devi_node;
1888 			if (devi_node != NULL)
1889 				atomic_inc_32(&devi_node->pending_rx_count);
1890 			else
1891 				atomic_inc_32(&Adapter->pending_rx_count);
1892 		}
1893 		mutex_exit(&e1000g_rx_detach_lock);
1894 	}
1895 
1896 	if (Adapter->link_state == LINK_STATE_UP) {
1897 		Adapter->link_state = LINK_STATE_UNKNOWN;
1898 		mac_link_update(Adapter->mh, Adapter->link_state);
1899 	}
1900 }
1901 
1902 static void
1903 e1000g_rx_clean(struct e1000g *Adapter)
1904 {
1905 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
1906 
1907 	if (rx_data == NULL)
1908 		return;
1909 
1910 	if (rx_data->rx_mblk != NULL) {
1911 		freemsg(rx_data->rx_mblk);
1912 		rx_data->rx_mblk = NULL;
1913 		rx_data->rx_mblk_tail = NULL;
1914 		rx_data->rx_mblk_len = 0;
1915 	}
1916 }
1917 
1918 static void
1919 e1000g_tx_clean(struct e1000g *Adapter)
1920 {
1921 	e1000g_tx_ring_t *tx_ring;
1922 	p_tx_sw_packet_t packet;
1923 	mblk_t *mp;
1924 	mblk_t *nmp;
1925 	uint32_t packet_count;
1926 
1927 	tx_ring = Adapter->tx_ring;
1928 
1929 	/*
1930 	 * Here we don't need to protect the lists using
1931 	 * the usedlist_lock and freelist_lock, for they
1932 	 * have been protected by the chip_lock.
1933 	 */
1934 	mp = NULL;
1935 	nmp = NULL;
1936 	packet_count = 0;
1937 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1938 	while (packet != NULL) {
1939 		if (packet->mp != NULL) {
1940 			/* Assemble the message chain */
1941 			if (mp == NULL) {
1942 				mp = packet->mp;
1943 				nmp = packet->mp;
1944 			} else {
1945 				nmp->b_next = packet->mp;
1946 				nmp = packet->mp;
1947 			}
1948 			/* Disconnect the message from the sw packet */
1949 			packet->mp = NULL;
1950 		}
1951 
1952 		e1000g_free_tx_swpkt(packet);
1953 		packet_count++;
1954 
1955 		packet = (p_tx_sw_packet_t)
1956 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1957 	}
1958 
1959 	if (mp != NULL)
1960 		freemsgchain(mp);
1961 
1962 	if (packet_count > 0) {
1963 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1964 		QUEUE_INIT_LIST(&tx_ring->used_list);
1965 
1966 		/* Setup TX descriptor pointers */
1967 		tx_ring->tbd_next = tx_ring->tbd_first;
1968 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1969 
1970 		/* Setup our HW Tx Head & Tail descriptor pointers */
1971 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1972 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1973 	}
1974 }
1975 
1976 static boolean_t
1977 e1000g_tx_drain(struct e1000g *Adapter)
1978 {
1979 	int i;
1980 	boolean_t done;
1981 	e1000g_tx_ring_t *tx_ring;
1982 
1983 	tx_ring = Adapter->tx_ring;
1984 
1985 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1986 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1987 		mutex_enter(&tx_ring->usedlist_lock);
1988 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1989 		mutex_exit(&tx_ring->usedlist_lock);
1990 
1991 		if (done)
1992 			break;
1993 
1994 		msec_delay(1);
1995 	}
1996 
1997 	return (done);
1998 }
1999 
2000 static boolean_t
2001 e1000g_rx_drain(struct e1000g *Adapter)
2002 {
2003 	int i;
2004 	boolean_t done;
2005 
2006 	/*
2007 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2008 	 */
2009 	for (i = 0; i < RX_DRAIN_TIME; i++) {
2010 		done = (Adapter->pending_rx_count == 0);
2011 
2012 		if (done)
2013 			break;
2014 
2015 		msec_delay(1);
2016 	}
2017 
2018 	return (done);
2019 }
2020 
2021 static boolean_t
2022 e1000g_reset_adapter(struct e1000g *Adapter)
2023 {
2024 	/* Disable and stop all the timers */
2025 	disable_watchdog_timer(Adapter);
2026 	stop_link_timer(Adapter);
2027 	stop_82547_timer(Adapter->tx_ring);
2028 
2029 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2030 
2031 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2032 		rw_exit(&Adapter->chip_lock);
2033 		return (B_TRUE);
2034 	}
2035 
2036 	e1000g_stop(Adapter, B_FALSE);
2037 
2038 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2039 		rw_exit(&Adapter->chip_lock);
2040 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2041 			return (B_FALSE);
2042 	}
2043 
2044 	rw_exit(&Adapter->chip_lock);
2045 
2046 	/* Enable and start the watchdog timer */
2047 	enable_watchdog_timer(Adapter);
2048 
2049 	return (B_TRUE);
2050 }
2051 
2052 boolean_t
2053 e1000g_global_reset(struct e1000g *Adapter)
2054 {
2055 	/* Disable and stop all the timers */
2056 	disable_watchdog_timer(Adapter);
2057 	stop_link_timer(Adapter);
2058 	stop_82547_timer(Adapter->tx_ring);
2059 
2060 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2061 
2062 	e1000g_stop(Adapter, B_TRUE);
2063 
2064 	Adapter->init_count = 0;
2065 
2066 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2067 		rw_exit(&Adapter->chip_lock);
2068 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2069 		return (B_FALSE);
2070 	}
2071 
2072 	rw_exit(&Adapter->chip_lock);
2073 
2074 	/* Enable and start the watchdog timer */
2075 	enable_watchdog_timer(Adapter);
2076 
2077 	return (B_TRUE);
2078 }
2079 
2080 /*
2081  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2082  *
2083  * This interrupt service routine is for PCI-Express adapters.
2084  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2085  * bit is set.
2086  */
2087 static uint_t
2088 e1000g_intr_pciexpress(caddr_t arg)
2089 {
2090 	struct e1000g *Adapter;
2091 	uint32_t icr;
2092 
2093 	Adapter = (struct e1000g *)(uintptr_t)arg;
2094 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2095 
2096 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2097 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2098 		return (DDI_INTR_CLAIMED);
2099 	}
2100 
2101 	if (icr & E1000_ICR_INT_ASSERTED) {
2102 		/*
2103 		 * E1000_ICR_INT_ASSERTED bit was set:
2104 		 * Read(Clear) the ICR, claim this interrupt,
2105 		 * look for work to do.
2106 		 */
2107 		e1000g_intr_work(Adapter, icr);
2108 		return (DDI_INTR_CLAIMED);
2109 	} else {
2110 		/*
2111 		 * E1000_ICR_INT_ASSERTED bit was not set:
2112 		 * Don't claim this interrupt, return immediately.
2113 		 */
2114 		return (DDI_INTR_UNCLAIMED);
2115 	}
2116 }
2117 
2118 /*
2119  * e1000g_intr - ISR for PCI/PCI-X chipsets
2120  *
2121  * This interrupt service routine is for PCI/PCI-X adapters.
2122  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2123  * bit is set or not.
2124  */
2125 static uint_t
2126 e1000g_intr(caddr_t arg)
2127 {
2128 	struct e1000g *Adapter;
2129 	uint32_t icr;
2130 
2131 	Adapter = (struct e1000g *)(uintptr_t)arg;
2132 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2133 
2134 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2135 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2136 		return (DDI_INTR_CLAIMED);
2137 	}
2138 
2139 	if (icr) {
2140 		/*
2141 		 * Any bit was set in ICR:
2142 		 * Read(Clear) the ICR, claim this interrupt,
2143 		 * look for work to do.
2144 		 */
2145 		e1000g_intr_work(Adapter, icr);
2146 		return (DDI_INTR_CLAIMED);
2147 	} else {
2148 		/*
2149 		 * No bit was set in ICR:
2150 		 * Don't claim this interrupt, return immediately.
2151 		 */
2152 		return (DDI_INTR_UNCLAIMED);
2153 	}
2154 }
2155 
2156 /*
2157  * e1000g_intr_work - actual processing of ISR
2158  *
2159  * Read(clear) the ICR contents and call appropriate interrupt
2160  * processing routines.
2161  */
2162 static void
2163 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2164 {
2165 	struct e1000_hw *hw;
2166 	hw = &Adapter->shared;
2167 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2168 
2169 	Adapter->rx_pkt_cnt = 0;
2170 	Adapter->tx_pkt_cnt = 0;
2171 
2172 	rw_enter(&Adapter->chip_lock, RW_READER);
2173 
2174 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2175 		rw_exit(&Adapter->chip_lock);
2176 		return;
2177 	}
2178 	/*
2179 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2180 	 * ensure the receive routine will not execute when the adapter is
2181 	 * being reset.
2182 	 */
2183 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2184 		rw_exit(&Adapter->chip_lock);
2185 		return;
2186 	}
2187 
2188 	if (icr & E1000_ICR_RXT0) {
2189 		mblk_t			*mp = NULL;
2190 		mblk_t			*tail = NULL;
2191 		e1000g_rx_ring_t	*rx_ring;
2192 
2193 		rx_ring = Adapter->rx_ring;
2194 		mutex_enter(&rx_ring->rx_lock);
2195 		/*
2196 		 * Sometimes with legacy interrupts, it possible that
2197 		 * there is a single interrupt for Rx/Tx. In which
2198 		 * case, if poll flag is set, we shouldn't really
2199 		 * be doing Rx processing.
2200 		 */
2201 		if (!rx_ring->poll_flag)
2202 			mp = e1000g_receive(rx_ring, &tail,
2203 			    E1000G_CHAIN_NO_LIMIT);
2204 		mutex_exit(&rx_ring->rx_lock);
2205 		rw_exit(&Adapter->chip_lock);
2206 		if (mp != NULL)
2207 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2208 			    mp, rx_ring->ring_gen_num);
2209 	} else
2210 		rw_exit(&Adapter->chip_lock);
2211 
2212 	if (icr & E1000_ICR_TXDW) {
2213 		if (!Adapter->tx_intr_enable)
2214 			e1000g_clear_tx_interrupt(Adapter);
2215 
2216 		/* Recycle the tx descriptors */
2217 		rw_enter(&Adapter->chip_lock, RW_READER);
2218 		(void) e1000g_recycle(tx_ring);
2219 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2220 		rw_exit(&Adapter->chip_lock);
2221 
2222 		if (tx_ring->resched_needed &&
2223 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2224 			tx_ring->resched_needed = B_FALSE;
2225 			mac_tx_update(Adapter->mh);
2226 			E1000G_STAT(tx_ring->stat_reschedule);
2227 		}
2228 	}
2229 
2230 	/*
2231 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2232 	 * are checked to detect that the cable has been pulled out. For
2233 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2234 	 * are an indication that cable is not connected.
2235 	 */
2236 	if ((icr & E1000_ICR_RXSEQ) ||
2237 	    (icr & E1000_ICR_LSC) ||
2238 	    (icr & E1000_ICR_GPI_EN1)) {
2239 		boolean_t link_changed;
2240 		timeout_id_t tid = 0;
2241 
2242 		stop_watchdog_timer(Adapter);
2243 
2244 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2245 
2246 		/*
2247 		 * Because we got a link-status-change interrupt, force
2248 		 * e1000_check_for_link() to look at phy
2249 		 */
2250 		Adapter->shared.mac.get_link_status = B_TRUE;
2251 
2252 		/* e1000g_link_check takes care of link status change */
2253 		link_changed = e1000g_link_check(Adapter);
2254 
2255 		/* Get new phy state */
2256 		e1000g_get_phy_state(Adapter);
2257 
2258 		/*
2259 		 * If the link timer has not timed out, we'll not notify
2260 		 * the upper layer with any link state until the link is up.
2261 		 */
2262 		if (link_changed && !Adapter->link_complete) {
2263 			if (Adapter->link_state == LINK_STATE_UP) {
2264 				mutex_enter(&Adapter->link_lock);
2265 				Adapter->link_complete = B_TRUE;
2266 				tid = Adapter->link_tid;
2267 				Adapter->link_tid = 0;
2268 				mutex_exit(&Adapter->link_lock);
2269 			} else {
2270 				link_changed = B_FALSE;
2271 			}
2272 		}
2273 		rw_exit(&Adapter->chip_lock);
2274 
2275 		if (link_changed) {
2276 			if (tid != 0)
2277 				(void) untimeout(tid);
2278 
2279 			/*
2280 			 * Workaround for esb2. Data stuck in fifo on a link
2281 			 * down event. Stop receiver here and reset in watchdog.
2282 			 */
2283 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2284 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2285 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2286 				E1000_WRITE_REG(hw, E1000_RCTL,
2287 				    rctl & ~E1000_RCTL_EN);
2288 				e1000g_log(Adapter, CE_WARN,
2289 				    "ESB2 receiver disabled");
2290 				Adapter->esb2_workaround = B_TRUE;
2291 			}
2292 			if (!Adapter->reset_flag)
2293 				mac_link_update(Adapter->mh,
2294 				    Adapter->link_state);
2295 			if (Adapter->link_state == LINK_STATE_UP)
2296 				Adapter->reset_flag = B_FALSE;
2297 		}
2298 
2299 		start_watchdog_timer(Adapter);
2300 	}
2301 }
2302 
2303 static void
2304 e1000g_init_unicst(struct e1000g *Adapter)
2305 {
2306 	struct e1000_hw *hw;
2307 	int slot;
2308 
2309 	hw = &Adapter->shared;
2310 
2311 	if (Adapter->init_count == 0) {
2312 		/* Initialize the multiple unicast addresses */
2313 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2314 
2315 		/* Workaround for an erratum of 82571 chipst */
2316 		if ((hw->mac.type == e1000_82571) &&
2317 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2318 			Adapter->unicst_total--;
2319 
2320 		Adapter->unicst_avail = Adapter->unicst_total;
2321 
2322 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2323 			/* Clear both the flag and MAC address */
2324 			Adapter->unicst_addr[slot].reg.high = 0;
2325 			Adapter->unicst_addr[slot].reg.low = 0;
2326 		}
2327 	} else {
2328 		/* Workaround for an erratum of 82571 chipst */
2329 		if ((hw->mac.type == e1000_82571) &&
2330 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2331 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2332 
2333 		/* Re-configure the RAR registers */
2334 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2335 			if (Adapter->unicst_addr[slot].mac.set == 1)
2336 				e1000_rar_set(hw,
2337 				    Adapter->unicst_addr[slot].mac.addr, slot);
2338 	}
2339 
2340 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2341 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2342 }
2343 
2344 static int
2345 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2346     int slot)
2347 {
2348 	struct e1000_hw *hw;
2349 
2350 	hw = &Adapter->shared;
2351 
2352 	/*
2353 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2354 	 * that requires the receiver to be in reset when any of the
2355 	 * receive address registers (RAR regs) are accessed.  The first
2356 	 * rev of Wiseman silicon also requires MWI to be disabled when
2357 	 * a global reset or a receive reset is issued.  So before we
2358 	 * initialize the RARs, we check the rev of the Wiseman controller
2359 	 * and work around any necessary HW errata.
2360 	 */
2361 	if ((hw->mac.type == e1000_82542) &&
2362 	    (hw->revision_id == E1000_REVISION_2)) {
2363 		e1000_pci_clear_mwi(hw);
2364 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2365 		msec_delay(5);
2366 	}
2367 	if (mac_addr == NULL) {
2368 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2369 		E1000_WRITE_FLUSH(hw);
2370 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2371 		E1000_WRITE_FLUSH(hw);
2372 		/* Clear both the flag and MAC address */
2373 		Adapter->unicst_addr[slot].reg.high = 0;
2374 		Adapter->unicst_addr[slot].reg.low = 0;
2375 	} else {
2376 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2377 		    ETHERADDRL);
2378 		e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2379 		Adapter->unicst_addr[slot].mac.set = 1;
2380 	}
2381 
2382 	/* Workaround for an erratum of 82571 chipst */
2383 	if (slot == 0) {
2384 		if ((hw->mac.type == e1000_82571) &&
2385 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2386 			if (mac_addr == NULL) {
2387 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2388 				    slot << 1, 0);
2389 				E1000_WRITE_FLUSH(hw);
2390 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2391 				    (slot << 1) + 1, 0);
2392 				E1000_WRITE_FLUSH(hw);
2393 			} else {
2394 				e1000_rar_set(hw, (uint8_t *)mac_addr,
2395 				    LAST_RAR_ENTRY);
2396 			}
2397 	}
2398 
2399 	/*
2400 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2401 	 * put the receive in reset, and disabled MWI, to work around some
2402 	 * HW errata.  Now we should take the receiver out of reset, and
2403 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2404 	 */
2405 	if ((hw->mac.type == e1000_82542) &&
2406 	    (hw->revision_id == E1000_REVISION_2)) {
2407 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2408 		msec_delay(1);
2409 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2410 			e1000_pci_set_mwi(hw);
2411 		e1000g_rx_setup(Adapter);
2412 	}
2413 
2414 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2415 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2416 		return (EIO);
2417 	}
2418 
2419 	return (0);
2420 }
2421 
2422 static int
2423 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2424 {
2425 	struct e1000_hw *hw = &Adapter->shared;
2426 	struct ether_addr *newtable;
2427 	size_t new_len;
2428 	size_t old_len;
2429 	int res = 0;
2430 
2431 	if ((multiaddr[0] & 01) == 0) {
2432 		res = EINVAL;
2433 		e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2434 		goto done;
2435 	}
2436 
2437 	if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2438 		res = ENOENT;
2439 		e1000g_log(Adapter, CE_WARN,
2440 		    "Adapter requested more than %d mcast addresses",
2441 		    Adapter->mcast_max_num);
2442 		goto done;
2443 	}
2444 
2445 
2446 	if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2447 		old_len = Adapter->mcast_alloc_count *
2448 		    sizeof (struct ether_addr);
2449 		new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2450 		    sizeof (struct ether_addr);
2451 
2452 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2453 		if (newtable == NULL) {
2454 			res = ENOMEM;
2455 			e1000g_log(Adapter, CE_WARN,
2456 			    "Not enough memory to alloc mcast table");
2457 			goto done;
2458 		}
2459 
2460 		if (Adapter->mcast_table != NULL) {
2461 			bcopy(Adapter->mcast_table, newtable, old_len);
2462 			kmem_free(Adapter->mcast_table, old_len);
2463 		}
2464 		Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2465 		Adapter->mcast_table = newtable;
2466 	}
2467 
2468 	bcopy(multiaddr,
2469 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2470 	Adapter->mcast_count++;
2471 
2472 	/*
2473 	 * Update the MC table in the hardware
2474 	 */
2475 	e1000g_clear_interrupt(Adapter);
2476 
2477 	e1000_update_mc_addr_list(hw,
2478 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2479 
2480 	e1000g_mask_interrupt(Adapter);
2481 
2482 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2483 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2484 		res = EIO;
2485 	}
2486 
2487 done:
2488 	return (res);
2489 }
2490 
2491 static int
2492 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2493 {
2494 	struct e1000_hw *hw = &Adapter->shared;
2495 	struct ether_addr *newtable;
2496 	size_t new_len;
2497 	size_t old_len;
2498 	unsigned i;
2499 
2500 	for (i = 0; i < Adapter->mcast_count; i++) {
2501 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2502 		    ETHERADDRL) == 0) {
2503 			for (i++; i < Adapter->mcast_count; i++) {
2504 				Adapter->mcast_table[i - 1] =
2505 				    Adapter->mcast_table[i];
2506 			}
2507 			Adapter->mcast_count--;
2508 			break;
2509 		}
2510 	}
2511 
2512 	if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2513 	    MCAST_ALLOC_SIZE) {
2514 		old_len = Adapter->mcast_alloc_count *
2515 		    sizeof (struct ether_addr);
2516 		new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2517 		    sizeof (struct ether_addr);
2518 
2519 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2520 		if (newtable != NULL) {
2521 			bcopy(Adapter->mcast_table, newtable, new_len);
2522 			kmem_free(Adapter->mcast_table, old_len);
2523 
2524 			Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2525 			Adapter->mcast_table = newtable;
2526 		}
2527 	}
2528 
2529 	/*
2530 	 * Update the MC table in the hardware
2531 	 */
2532 	e1000g_clear_interrupt(Adapter);
2533 
2534 	e1000_update_mc_addr_list(hw,
2535 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2536 
2537 	e1000g_mask_interrupt(Adapter);
2538 
2539 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2540 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2541 		return (EIO);
2542 	}
2543 
2544 	return (0);
2545 }
2546 
2547 static void
2548 e1000g_release_multicast(struct e1000g *Adapter)
2549 {
2550 	if (Adapter->mcast_table != NULL) {
2551 		kmem_free(Adapter->mcast_table,
2552 		    Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2553 		Adapter->mcast_table = NULL;
2554 	}
2555 }
2556 
2557 int
2558 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2559 {
2560 	struct e1000g *Adapter = (struct e1000g *)arg;
2561 	int result;
2562 
2563 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2564 
2565 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2566 		result = ECANCELED;
2567 		goto done;
2568 	}
2569 
2570 	result = (add) ? multicst_add(Adapter, addr)
2571 	    : multicst_remove(Adapter, addr);
2572 
2573 done:
2574 	rw_exit(&Adapter->chip_lock);
2575 	return (result);
2576 
2577 }
2578 
2579 int
2580 e1000g_m_promisc(void *arg, boolean_t on)
2581 {
2582 	struct e1000g *Adapter = (struct e1000g *)arg;
2583 	uint32_t rctl;
2584 
2585 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2586 
2587 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2588 		rw_exit(&Adapter->chip_lock);
2589 		return (ECANCELED);
2590 	}
2591 
2592 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2593 
2594 	if (on)
2595 		rctl |=
2596 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2597 	else
2598 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2599 
2600 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2601 
2602 	Adapter->e1000g_promisc = on;
2603 
2604 	rw_exit(&Adapter->chip_lock);
2605 
2606 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2607 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2608 		return (EIO);
2609 	}
2610 
2611 	return (0);
2612 }
2613 
2614 /*
2615  * Entry points to enable and disable interrupts at the granularity of
2616  * a group.
2617  * Turns the poll_mode for the whole adapter on and off to enable or
2618  * override the ring level polling control over the hardware interrupts.
2619  */
2620 static int
2621 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2622 {
2623 	struct e1000g		*adapter = (struct e1000g *)arg;
2624 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2625 
2626 	/*
2627 	 * Later interrupts at the granularity of the this ring will
2628 	 * invoke mac_rx() with NULL, indicating the need for another
2629 	 * software classification.
2630 	 * We have a single ring usable per adapter now, so we only need to
2631 	 * reset the rx handle for that one.
2632 	 * When more RX rings can be used, we should update each one of them.
2633 	 */
2634 	mutex_enter(&rx_ring->rx_lock);
2635 	rx_ring->mrh = NULL;
2636 	adapter->poll_mode = B_FALSE;
2637 	mutex_exit(&rx_ring->rx_lock);
2638 	return (0);
2639 }
2640 
2641 static int
2642 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2643 {
2644 	struct e1000g *adapter = (struct e1000g *)arg;
2645 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2646 
2647 	mutex_enter(&rx_ring->rx_lock);
2648 
2649 	/*
2650 	 * Later interrupts at the granularity of the this ring will
2651 	 * invoke mac_rx() with the handle for this ring;
2652 	 */
2653 	adapter->poll_mode = B_TRUE;
2654 	rx_ring->mrh = rx_ring->mrh_init;
2655 	mutex_exit(&rx_ring->rx_lock);
2656 	return (0);
2657 }
2658 
2659 /*
2660  * Entry points to enable and disable interrupts at the granularity of
2661  * a ring.
2662  * adapter poll_mode controls whether we actually proceed with hardware
2663  * interrupt toggling.
2664  */
2665 static int
2666 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2667 {
2668 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2669 	struct e1000g 		*adapter = rx_ring->adapter;
2670 	struct e1000_hw 	*hw = &adapter->shared;
2671 	uint32_t		intr_mask;
2672 
2673 	rw_enter(&adapter->chip_lock, RW_READER);
2674 
2675 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2676 		rw_exit(&adapter->chip_lock);
2677 		return (0);
2678 	}
2679 
2680 	mutex_enter(&rx_ring->rx_lock);
2681 	rx_ring->poll_flag = 0;
2682 	mutex_exit(&rx_ring->rx_lock);
2683 
2684 	/* Rx interrupt enabling for MSI and legacy */
2685 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2686 	intr_mask |= E1000_IMS_RXT0;
2687 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2688 	E1000_WRITE_FLUSH(hw);
2689 
2690 	/* Trigger a Rx interrupt to check Rx ring */
2691 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2692 	E1000_WRITE_FLUSH(hw);
2693 
2694 	rw_exit(&adapter->chip_lock);
2695 	return (0);
2696 }
2697 
2698 static int
2699 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2700 {
2701 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2702 	struct e1000g 		*adapter = rx_ring->adapter;
2703 	struct e1000_hw 	*hw = &adapter->shared;
2704 
2705 	rw_enter(&adapter->chip_lock, RW_READER);
2706 
2707 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2708 		rw_exit(&adapter->chip_lock);
2709 		return (0);
2710 	}
2711 	mutex_enter(&rx_ring->rx_lock);
2712 	rx_ring->poll_flag = 1;
2713 	mutex_exit(&rx_ring->rx_lock);
2714 
2715 	/* Rx interrupt disabling for MSI and legacy */
2716 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2717 	E1000_WRITE_FLUSH(hw);
2718 
2719 	rw_exit(&adapter->chip_lock);
2720 	return (0);
2721 }
2722 
2723 /*
2724  * e1000g_unicst_find - Find the slot for the specified unicast address
2725  */
2726 static int
2727 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2728 {
2729 	int slot;
2730 
2731 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2732 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2733 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2734 		    mac_addr, ETHERADDRL) == 0))
2735 				return (slot);
2736 	}
2737 
2738 	return (-1);
2739 }
2740 
2741 /*
2742  * Entry points to add and remove a MAC address to a ring group.
2743  * The caller takes care of adding and removing the MAC addresses
2744  * to the filter via these two routines.
2745  */
2746 
2747 static int
2748 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2749 {
2750 	struct e1000g *Adapter = (struct e1000g *)arg;
2751 	int slot, err;
2752 
2753 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2754 
2755 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2756 		rw_exit(&Adapter->chip_lock);
2757 		return (ECANCELED);
2758 	}
2759 
2760 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
2761 		/* The same address is already in slot */
2762 		rw_exit(&Adapter->chip_lock);
2763 		return (0);
2764 	}
2765 
2766 	if (Adapter->unicst_avail == 0) {
2767 		/* no slots available */
2768 		rw_exit(&Adapter->chip_lock);
2769 		return (ENOSPC);
2770 	}
2771 
2772 	/* Search for a free slot */
2773 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2774 		if (Adapter->unicst_addr[slot].mac.set == 0)
2775 			break;
2776 	}
2777 	ASSERT(slot < Adapter->unicst_total);
2778 
2779 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
2780 	if (err == 0)
2781 		Adapter->unicst_avail--;
2782 
2783 	rw_exit(&Adapter->chip_lock);
2784 
2785 	return (err);
2786 }
2787 
2788 static int
2789 e1000g_remmac(void *arg, const uint8_t *mac_addr)
2790 {
2791 	struct e1000g *Adapter = (struct e1000g *)arg;
2792 	int slot, err;
2793 
2794 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2795 
2796 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2797 		rw_exit(&Adapter->chip_lock);
2798 		return (ECANCELED);
2799 	}
2800 
2801 	slot = e1000g_unicst_find(Adapter, mac_addr);
2802 	if (slot == -1) {
2803 		rw_exit(&Adapter->chip_lock);
2804 		return (EINVAL);
2805 	}
2806 
2807 	ASSERT(Adapter->unicst_addr[slot].mac.set);
2808 
2809 	/* Clear this slot */
2810 	err = e1000g_unicst_set(Adapter, NULL, slot);
2811 	if (err == 0)
2812 		Adapter->unicst_avail++;
2813 
2814 	rw_exit(&Adapter->chip_lock);
2815 
2816 	return (err);
2817 }
2818 
2819 static int
2820 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
2821 {
2822 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
2823 
2824 	mutex_enter(&rx_ring->rx_lock);
2825 	rx_ring->ring_gen_num = mr_gen_num;
2826 	mutex_exit(&rx_ring->rx_lock);
2827 	return (0);
2828 }
2829 
2830 /*
2831  * Callback funtion for MAC layer to register all rings.
2832  *
2833  * The hardware supports a single group with currently only one ring
2834  * available.
2835  * Though not offering virtualization ability per se, exposing the
2836  * group/ring still enables the polling and interrupt toggling.
2837  */
2838 /* ARGSUSED */
2839 void
2840 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
2841     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
2842 {
2843 	struct e1000g *Adapter = (struct e1000g *)arg;
2844 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
2845 	mac_intr_t *mintr;
2846 
2847 	/*
2848 	 * We advertised only RX group/rings, so the MAC framework shouldn't
2849 	 * ask for any thing else.
2850 	 */
2851 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
2852 
2853 	rx_ring->mrh = rx_ring->mrh_init = rh;
2854 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
2855 	infop->mri_start = e1000g_ring_start;
2856 	infop->mri_stop = NULL;
2857 	infop->mri_poll = e1000g_poll_ring;
2858 
2859 	/* Ring level interrupts */
2860 	mintr = &infop->mri_intr;
2861 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
2862 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
2863 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
2864 }
2865 
2866 /* ARGSUSED */
2867 static void
2868 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
2869     mac_group_info_t *infop, mac_group_handle_t gh)
2870 {
2871 	struct e1000g *Adapter = (struct e1000g *)arg;
2872 	mac_intr_t *mintr;
2873 
2874 	/*
2875 	 * We advertised a single RX ring. Getting a request for anything else
2876 	 * signifies a bug in the MAC framework.
2877 	 */
2878 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
2879 
2880 	Adapter->rx_group = gh;
2881 
2882 	infop->mgi_driver = (mac_group_driver_t)Adapter;
2883 	infop->mgi_start = NULL;
2884 	infop->mgi_stop = NULL;
2885 	infop->mgi_addmac = e1000g_addmac;
2886 	infop->mgi_remmac = e1000g_remmac;
2887 	infop->mgi_count = 1;
2888 
2889 	/* Group level interrupts */
2890 	mintr = &infop->mgi_intr;
2891 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
2892 	mintr->mi_enable = e1000g_rx_group_intr_enable;
2893 	mintr->mi_disable = e1000g_rx_group_intr_disable;
2894 }
2895 
2896 static boolean_t
2897 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2898 {
2899 	struct e1000g *Adapter = (struct e1000g *)arg;
2900 
2901 	switch (cap) {
2902 	case MAC_CAPAB_HCKSUM: {
2903 		uint32_t *txflags = cap_data;
2904 
2905 		if (Adapter->tx_hcksum_enable)
2906 			*txflags = HCKSUM_IPHDRCKSUM |
2907 			    HCKSUM_INET_PARTIAL;
2908 		else
2909 			return (B_FALSE);
2910 		break;
2911 	}
2912 
2913 	case MAC_CAPAB_LSO: {
2914 		mac_capab_lso_t *cap_lso = cap_data;
2915 
2916 		if (Adapter->lso_enable) {
2917 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2918 			cap_lso->lso_basic_tcp_ipv4.lso_max =
2919 			    E1000_LSO_MAXLEN;
2920 		} else
2921 			return (B_FALSE);
2922 		break;
2923 	}
2924 	case MAC_CAPAB_RINGS: {
2925 		mac_capab_rings_t *cap_rings = cap_data;
2926 
2927 		/* No TX rings exposed yet */
2928 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
2929 			return (B_FALSE);
2930 
2931 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
2932 		cap_rings->mr_rnum = 1;
2933 		cap_rings->mr_gnum = 1;
2934 		cap_rings->mr_rget = e1000g_fill_ring;
2935 		cap_rings->mr_gget = e1000g_fill_group;
2936 		break;
2937 	}
2938 	default:
2939 		return (B_FALSE);
2940 	}
2941 	return (B_TRUE);
2942 }
2943 
2944 static boolean_t
2945 e1000g_param_locked(mac_prop_id_t pr_num)
2946 {
2947 	/*
2948 	 * All en_* parameters are locked (read-only) while
2949 	 * the device is in any sort of loopback mode ...
2950 	 */
2951 	switch (pr_num) {
2952 		case MAC_PROP_EN_1000FDX_CAP:
2953 		case MAC_PROP_EN_1000HDX_CAP:
2954 		case MAC_PROP_EN_100FDX_CAP:
2955 		case MAC_PROP_EN_100HDX_CAP:
2956 		case MAC_PROP_EN_10FDX_CAP:
2957 		case MAC_PROP_EN_10HDX_CAP:
2958 		case MAC_PROP_AUTONEG:
2959 		case MAC_PROP_FLOWCTRL:
2960 			return (B_TRUE);
2961 	}
2962 	return (B_FALSE);
2963 }
2964 
2965 /*
2966  * callback function for set/get of properties
2967  */
2968 static int
2969 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2970     uint_t pr_valsize, const void *pr_val)
2971 {
2972 	struct e1000g *Adapter = arg;
2973 	struct e1000_hw *hw = &Adapter->shared;
2974 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2975 	int err = 0;
2976 	link_flowctrl_t flowctrl;
2977 	uint32_t cur_mtu, new_mtu;
2978 
2979 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2980 
2981 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2982 		rw_exit(&Adapter->chip_lock);
2983 		return (ECANCELED);
2984 	}
2985 
2986 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2987 	    e1000g_param_locked(pr_num)) {
2988 		/*
2989 		 * All en_* parameters are locked (read-only)
2990 		 * while the device is in any sort of loopback mode.
2991 		 */
2992 		rw_exit(&Adapter->chip_lock);
2993 		return (EBUSY);
2994 	}
2995 
2996 	switch (pr_num) {
2997 		case MAC_PROP_EN_1000FDX_CAP:
2998 			if (hw->phy.media_type != e1000_media_type_copper) {
2999 				err = ENOTSUP;
3000 				break;
3001 			}
3002 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3003 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3004 			goto reset;
3005 		case MAC_PROP_EN_100FDX_CAP:
3006 			if (hw->phy.media_type != e1000_media_type_copper) {
3007 				err = ENOTSUP;
3008 				break;
3009 			}
3010 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3011 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3012 			goto reset;
3013 		case MAC_PROP_EN_100HDX_CAP:
3014 			if (hw->phy.media_type != e1000_media_type_copper) {
3015 				err = ENOTSUP;
3016 				break;
3017 			}
3018 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3019 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3020 			goto reset;
3021 		case MAC_PROP_EN_10FDX_CAP:
3022 			if (hw->phy.media_type != e1000_media_type_copper) {
3023 				err = ENOTSUP;
3024 				break;
3025 			}
3026 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3027 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3028 			goto reset;
3029 		case MAC_PROP_EN_10HDX_CAP:
3030 			if (hw->phy.media_type != e1000_media_type_copper) {
3031 				err = ENOTSUP;
3032 				break;
3033 			}
3034 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3035 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3036 			goto reset;
3037 		case MAC_PROP_AUTONEG:
3038 			if (hw->phy.media_type != e1000_media_type_copper) {
3039 				err = ENOTSUP;
3040 				break;
3041 			}
3042 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3043 			goto reset;
3044 		case MAC_PROP_FLOWCTRL:
3045 			fc->send_xon = B_TRUE;
3046 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3047 
3048 			switch (flowctrl) {
3049 			default:
3050 				err = EINVAL;
3051 				break;
3052 			case LINK_FLOWCTRL_NONE:
3053 				fc->requested_mode = e1000_fc_none;
3054 				break;
3055 			case LINK_FLOWCTRL_RX:
3056 				fc->requested_mode = e1000_fc_rx_pause;
3057 				break;
3058 			case LINK_FLOWCTRL_TX:
3059 				fc->requested_mode = e1000_fc_tx_pause;
3060 				break;
3061 			case LINK_FLOWCTRL_BI:
3062 				fc->requested_mode = e1000_fc_full;
3063 				break;
3064 			}
3065 reset:
3066 			if (err == 0) {
3067 				/* check PCH limits & reset the link */
3068 				e1000g_pch_limits(Adapter);
3069 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3070 					err = EINVAL;
3071 			}
3072 			break;
3073 		case MAC_PROP_ADV_1000FDX_CAP:
3074 		case MAC_PROP_ADV_1000HDX_CAP:
3075 		case MAC_PROP_ADV_100FDX_CAP:
3076 		case MAC_PROP_ADV_100HDX_CAP:
3077 		case MAC_PROP_ADV_10FDX_CAP:
3078 		case MAC_PROP_ADV_10HDX_CAP:
3079 		case MAC_PROP_EN_1000HDX_CAP:
3080 		case MAC_PROP_STATUS:
3081 		case MAC_PROP_SPEED:
3082 		case MAC_PROP_DUPLEX:
3083 			err = ENOTSUP; /* read-only prop. Can't set this. */
3084 			break;
3085 		case MAC_PROP_MTU:
3086 			/* adapter must be stopped for an MTU change */
3087 			if (Adapter->e1000g_state & E1000G_STARTED) {
3088 				err = EBUSY;
3089 				break;
3090 			}
3091 
3092 			cur_mtu = Adapter->default_mtu;
3093 
3094 			/* get new requested MTU */
3095 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3096 			if (new_mtu == cur_mtu) {
3097 				err = 0;
3098 				break;
3099 			}
3100 
3101 			if ((new_mtu < DEFAULT_MTU) ||
3102 			    (new_mtu > Adapter->max_mtu)) {
3103 				err = EINVAL;
3104 				break;
3105 			}
3106 
3107 			/* inform MAC framework of new MTU */
3108 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3109 
3110 			if (err == 0) {
3111 				Adapter->default_mtu = new_mtu;
3112 				Adapter->max_frame_size =
3113 				    e1000g_mtu2maxframe(new_mtu);
3114 
3115 				/*
3116 				 * check PCH limits & set buffer sizes to
3117 				 * match new MTU
3118 				 */
3119 				e1000g_pch_limits(Adapter);
3120 				e1000g_set_bufsize(Adapter);
3121 
3122 				/*
3123 				 * decrease the number of descriptors and free
3124 				 * packets for jumbo frames to reduce tx/rx
3125 				 * resource consumption
3126 				 */
3127 				if (Adapter->max_frame_size >=
3128 				    (FRAME_SIZE_UPTO_4K -
3129 				    E1000G_IPALIGNPRESERVEROOM)) {
3130 
3131 					if (Adapter->tx_desc_num_flag == 0)
3132 						Adapter->tx_desc_num =
3133 						    DEFAULT_JUMBO_NUM_TX_DESC;
3134 
3135 					if (Adapter->rx_desc_num_flag == 0)
3136 						Adapter->rx_desc_num =
3137 						    DEFAULT_JUMBO_NUM_RX_DESC;
3138 
3139 					if (Adapter->tx_buf_num_flag == 0)
3140 						Adapter->tx_freelist_num =
3141 						    DEFAULT_JUMBO_NUM_TX_BUF;
3142 
3143 					if (Adapter->rx_buf_num_flag == 0)
3144 						Adapter->rx_freelist_num =
3145 						    DEFAULT_JUMBO_NUM_RX_BUF;
3146 				} else {
3147 					if (Adapter->tx_desc_num_flag == 0)
3148 						Adapter->tx_desc_num =
3149 						    DEFAULT_NUM_TX_DESCRIPTOR;
3150 
3151 					if (Adapter->rx_desc_num_flag == 0)
3152 						Adapter->rx_desc_num =
3153 						    DEFAULT_NUM_RX_DESCRIPTOR;
3154 
3155 					if (Adapter->tx_buf_num_flag == 0)
3156 						Adapter->tx_freelist_num =
3157 						    DEFAULT_NUM_TX_FREELIST;
3158 
3159 					if (Adapter->rx_buf_num_flag == 0)
3160 						Adapter->rx_freelist_num =
3161 						    DEFAULT_NUM_RX_FREELIST;
3162 				}
3163 			}
3164 			break;
3165 		case MAC_PROP_PRIVATE:
3166 			err = e1000g_set_priv_prop(Adapter, pr_name,
3167 			    pr_valsize, pr_val);
3168 			break;
3169 		default:
3170 			err = ENOTSUP;
3171 			break;
3172 	}
3173 	rw_exit(&Adapter->chip_lock);
3174 	return (err);
3175 }
3176 
3177 static int
3178 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3179     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3180 {
3181 	struct e1000g *Adapter = arg;
3182 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3183 	struct e1000_hw *hw = &Adapter->shared;
3184 	int err = 0;
3185 	link_flowctrl_t flowctrl;
3186 	uint64_t tmp = 0;
3187 
3188 	if (pr_valsize == 0)
3189 		return (EINVAL);
3190 
3191 	*perm = MAC_PROP_PERM_RW;
3192 
3193 	bzero(pr_val, pr_valsize);
3194 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
3195 		return (e1000g_get_def_val(Adapter, pr_num,
3196 		    pr_valsize, pr_val));
3197 	}
3198 
3199 	switch (pr_num) {
3200 		case MAC_PROP_DUPLEX:
3201 			*perm = MAC_PROP_PERM_READ;
3202 			if (pr_valsize >= sizeof (link_duplex_t)) {
3203 				bcopy(&Adapter->link_duplex, pr_val,
3204 				    sizeof (link_duplex_t));
3205 			} else
3206 				err = EINVAL;
3207 			break;
3208 		case MAC_PROP_SPEED:
3209 			*perm = MAC_PROP_PERM_READ;
3210 			if (pr_valsize >= sizeof (uint64_t)) {
3211 				tmp = Adapter->link_speed * 1000000ull;
3212 				bcopy(&tmp, pr_val, sizeof (tmp));
3213 			} else
3214 				err = EINVAL;
3215 			break;
3216 		case MAC_PROP_AUTONEG:
3217 			if (hw->phy.media_type != e1000_media_type_copper)
3218 				*perm = MAC_PROP_PERM_READ;
3219 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3220 			break;
3221 		case MAC_PROP_FLOWCTRL:
3222 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
3223 				switch (fc->current_mode) {
3224 					case e1000_fc_none:
3225 						flowctrl = LINK_FLOWCTRL_NONE;
3226 						break;
3227 					case e1000_fc_rx_pause:
3228 						flowctrl = LINK_FLOWCTRL_RX;
3229 						break;
3230 					case e1000_fc_tx_pause:
3231 						flowctrl = LINK_FLOWCTRL_TX;
3232 						break;
3233 					case e1000_fc_full:
3234 						flowctrl = LINK_FLOWCTRL_BI;
3235 						break;
3236 				}
3237 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3238 			} else
3239 				err = EINVAL;
3240 			break;
3241 		case MAC_PROP_ADV_1000FDX_CAP:
3242 			*perm = MAC_PROP_PERM_READ;
3243 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3244 			break;
3245 		case MAC_PROP_EN_1000FDX_CAP:
3246 			if (hw->phy.media_type != e1000_media_type_copper)
3247 				*perm = MAC_PROP_PERM_READ;
3248 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3249 			break;
3250 		case MAC_PROP_ADV_1000HDX_CAP:
3251 			*perm = MAC_PROP_PERM_READ;
3252 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3253 			break;
3254 		case MAC_PROP_EN_1000HDX_CAP:
3255 			*perm = MAC_PROP_PERM_READ;
3256 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3257 			break;
3258 		case MAC_PROP_ADV_100FDX_CAP:
3259 			*perm = MAC_PROP_PERM_READ;
3260 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3261 			break;
3262 		case MAC_PROP_EN_100FDX_CAP:
3263 			if (hw->phy.media_type != e1000_media_type_copper)
3264 				*perm = MAC_PROP_PERM_READ;
3265 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3266 			break;
3267 		case MAC_PROP_ADV_100HDX_CAP:
3268 			*perm = MAC_PROP_PERM_READ;
3269 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3270 			break;
3271 		case MAC_PROP_EN_100HDX_CAP:
3272 			if (hw->phy.media_type != e1000_media_type_copper)
3273 				*perm = MAC_PROP_PERM_READ;
3274 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3275 			break;
3276 		case MAC_PROP_ADV_10FDX_CAP:
3277 			*perm = MAC_PROP_PERM_READ;
3278 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3279 			break;
3280 		case MAC_PROP_EN_10FDX_CAP:
3281 			if (hw->phy.media_type != e1000_media_type_copper)
3282 				*perm = MAC_PROP_PERM_READ;
3283 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3284 			break;
3285 		case MAC_PROP_ADV_10HDX_CAP:
3286 			*perm = MAC_PROP_PERM_READ;
3287 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3288 			break;
3289 		case MAC_PROP_EN_10HDX_CAP:
3290 			if (hw->phy.media_type != e1000_media_type_copper)
3291 				*perm = MAC_PROP_PERM_READ;
3292 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3293 			break;
3294 		case MAC_PROP_ADV_100T4_CAP:
3295 		case MAC_PROP_EN_100T4_CAP:
3296 			*perm = MAC_PROP_PERM_READ;
3297 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3298 			break;
3299 		case MAC_PROP_PRIVATE:
3300 			err = e1000g_get_priv_prop(Adapter, pr_name,
3301 			    pr_flags, pr_valsize, pr_val, perm);
3302 			break;
3303 		case MAC_PROP_MTU: {
3304 			struct e1000_mac_info *mac = &Adapter->shared.mac;
3305 			struct e1000_phy_info *phy = &Adapter->shared.phy;
3306 			mac_propval_range_t range;
3307 
3308 			if (!(pr_flags & MAC_PROP_POSSIBLE))
3309 				return (ENOTSUP);
3310 			if (pr_valsize < sizeof (mac_propval_range_t))
3311 				return (EINVAL);
3312 			range.mpr_count = 1;
3313 			range.mpr_type = MAC_PROPVAL_UINT32;
3314 			range.range_uint32[0].mpur_min = DEFAULT_MTU;
3315 			range.range_uint32[0].mpur_max = Adapter->max_mtu;
3316 			/* following MAC type do not support jumbo frames */
3317 			if ((mac->type == e1000_ich8lan) ||
3318 			    ((mac->type == e1000_ich9lan) && (phy->type ==
3319 			    e1000_phy_ife))) {
3320 				range.range_uint32[0].mpur_max = DEFAULT_MTU;
3321 			}
3322 			bcopy(&range, pr_val, sizeof (range));
3323 			break;
3324 		}
3325 		default:
3326 			err = ENOTSUP;
3327 			break;
3328 	}
3329 	return (err);
3330 }
3331 
3332 /* ARGSUSED2 */
3333 static int
3334 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3335     uint_t pr_valsize, const void *pr_val)
3336 {
3337 	int err = 0;
3338 	long result;
3339 	struct e1000_hw *hw = &Adapter->shared;
3340 
3341 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3342 		if (pr_val == NULL) {
3343 			err = EINVAL;
3344 			return (err);
3345 		}
3346 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3347 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3348 		    result > MAX_TX_BCOPY_THRESHOLD)
3349 			err = EINVAL;
3350 		else {
3351 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3352 		}
3353 		return (err);
3354 	}
3355 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3356 		if (pr_val == NULL) {
3357 			err = EINVAL;
3358 			return (err);
3359 		}
3360 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3361 		if (result < 0 || result > 1)
3362 			err = EINVAL;
3363 		else {
3364 			Adapter->tx_intr_enable = (result == 1) ?
3365 			    B_TRUE: B_FALSE;
3366 			if (Adapter->tx_intr_enable)
3367 				e1000g_mask_tx_interrupt(Adapter);
3368 			else
3369 				e1000g_clear_tx_interrupt(Adapter);
3370 			if (e1000g_check_acc_handle(
3371 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3372 				ddi_fm_service_impact(Adapter->dip,
3373 				    DDI_SERVICE_DEGRADED);
3374 				err = EIO;
3375 			}
3376 		}
3377 		return (err);
3378 	}
3379 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3380 		if (pr_val == NULL) {
3381 			err = EINVAL;
3382 			return (err);
3383 		}
3384 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3385 		if (result < MIN_TX_INTR_DELAY ||
3386 		    result > MAX_TX_INTR_DELAY)
3387 			err = EINVAL;
3388 		else {
3389 			Adapter->tx_intr_delay = (uint32_t)result;
3390 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3391 			if (e1000g_check_acc_handle(
3392 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3393 				ddi_fm_service_impact(Adapter->dip,
3394 				    DDI_SERVICE_DEGRADED);
3395 				err = EIO;
3396 			}
3397 		}
3398 		return (err);
3399 	}
3400 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3401 		if (pr_val == NULL) {
3402 			err = EINVAL;
3403 			return (err);
3404 		}
3405 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3406 		if (result < MIN_TX_INTR_ABS_DELAY ||
3407 		    result > MAX_TX_INTR_ABS_DELAY)
3408 			err = EINVAL;
3409 		else {
3410 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3411 			E1000_WRITE_REG(hw, E1000_TADV,
3412 			    Adapter->tx_intr_abs_delay);
3413 			if (e1000g_check_acc_handle(
3414 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3415 				ddi_fm_service_impact(Adapter->dip,
3416 				    DDI_SERVICE_DEGRADED);
3417 				err = EIO;
3418 			}
3419 		}
3420 		return (err);
3421 	}
3422 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3423 		if (pr_val == NULL) {
3424 			err = EINVAL;
3425 			return (err);
3426 		}
3427 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3428 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3429 		    result > MAX_RX_BCOPY_THRESHOLD)
3430 			err = EINVAL;
3431 		else
3432 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3433 		return (err);
3434 	}
3435 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3436 		if (pr_val == NULL) {
3437 			err = EINVAL;
3438 			return (err);
3439 		}
3440 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3441 		if (result < MIN_RX_LIMIT_ON_INTR ||
3442 		    result > MAX_RX_LIMIT_ON_INTR)
3443 			err = EINVAL;
3444 		else
3445 			Adapter->rx_limit_onintr = (uint32_t)result;
3446 		return (err);
3447 	}
3448 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3449 		if (pr_val == NULL) {
3450 			err = EINVAL;
3451 			return (err);
3452 		}
3453 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3454 		if (result < MIN_RX_INTR_DELAY ||
3455 		    result > MAX_RX_INTR_DELAY)
3456 			err = EINVAL;
3457 		else {
3458 			Adapter->rx_intr_delay = (uint32_t)result;
3459 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3460 			if (e1000g_check_acc_handle(
3461 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3462 				ddi_fm_service_impact(Adapter->dip,
3463 				    DDI_SERVICE_DEGRADED);
3464 				err = EIO;
3465 			}
3466 		}
3467 		return (err);
3468 	}
3469 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3470 		if (pr_val == NULL) {
3471 			err = EINVAL;
3472 			return (err);
3473 		}
3474 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3475 		if (result < MIN_RX_INTR_ABS_DELAY ||
3476 		    result > MAX_RX_INTR_ABS_DELAY)
3477 			err = EINVAL;
3478 		else {
3479 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3480 			E1000_WRITE_REG(hw, E1000_RADV,
3481 			    Adapter->rx_intr_abs_delay);
3482 			if (e1000g_check_acc_handle(
3483 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3484 				ddi_fm_service_impact(Adapter->dip,
3485 				    DDI_SERVICE_DEGRADED);
3486 				err = EIO;
3487 			}
3488 		}
3489 		return (err);
3490 	}
3491 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3492 		if (pr_val == NULL) {
3493 			err = EINVAL;
3494 			return (err);
3495 		}
3496 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3497 		if (result < MIN_INTR_THROTTLING ||
3498 		    result > MAX_INTR_THROTTLING)
3499 			err = EINVAL;
3500 		else {
3501 			if (hw->mac.type >= e1000_82540) {
3502 				Adapter->intr_throttling_rate =
3503 				    (uint32_t)result;
3504 				E1000_WRITE_REG(hw, E1000_ITR,
3505 				    Adapter->intr_throttling_rate);
3506 				if (e1000g_check_acc_handle(
3507 				    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3508 					ddi_fm_service_impact(Adapter->dip,
3509 					    DDI_SERVICE_DEGRADED);
3510 					err = EIO;
3511 				}
3512 			} else
3513 				err = EINVAL;
3514 		}
3515 		return (err);
3516 	}
3517 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3518 		if (pr_val == NULL) {
3519 			err = EINVAL;
3520 			return (err);
3521 		}
3522 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3523 		if (result < 0 || result > 1)
3524 			err = EINVAL;
3525 		else {
3526 			if (hw->mac.type >= e1000_82540) {
3527 				Adapter->intr_adaptive = (result == 1) ?
3528 				    B_TRUE : B_FALSE;
3529 			} else {
3530 				err = EINVAL;
3531 			}
3532 		}
3533 		return (err);
3534 	}
3535 	return (ENOTSUP);
3536 }
3537 
3538 static int
3539 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3540     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3541 {
3542 	int err = ENOTSUP;
3543 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3544 	int value;
3545 
3546 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3547 		*perm = MAC_PROP_PERM_READ;
3548 		if (is_default)
3549 			goto done;
3550 		value = Adapter->param_adv_pause;
3551 		err = 0;
3552 		goto done;
3553 	}
3554 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3555 		*perm = MAC_PROP_PERM_READ;
3556 		if (is_default)
3557 			goto done;
3558 		value = Adapter->param_adv_asym_pause;
3559 		err = 0;
3560 		goto done;
3561 	}
3562 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3563 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3564 		    Adapter->tx_bcopy_thresh);
3565 		err = 0;
3566 		goto done;
3567 	}
3568 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3569 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3570 		    Adapter->tx_intr_enable);
3571 		err = 0;
3572 		goto done;
3573 	}
3574 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3575 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3576 		    Adapter->tx_intr_delay);
3577 		err = 0;
3578 		goto done;
3579 	}
3580 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3581 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3582 		    Adapter->tx_intr_abs_delay);
3583 		err = 0;
3584 		goto done;
3585 	}
3586 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3587 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3588 		    Adapter->rx_bcopy_thresh);
3589 		err = 0;
3590 		goto done;
3591 	}
3592 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3593 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3594 		    Adapter->rx_limit_onintr);
3595 		err = 0;
3596 		goto done;
3597 	}
3598 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3599 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3600 		    Adapter->rx_intr_delay);
3601 		err = 0;
3602 		goto done;
3603 	}
3604 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3605 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3606 		    Adapter->rx_intr_abs_delay);
3607 		err = 0;
3608 		goto done;
3609 	}
3610 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3611 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3612 		    Adapter->intr_throttling_rate);
3613 		err = 0;
3614 		goto done;
3615 	}
3616 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3617 		value = (is_default ? 1 : Adapter->intr_adaptive);
3618 		err = 0;
3619 		goto done;
3620 	}
3621 done:
3622 	if (err == 0) {
3623 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3624 	}
3625 	return (err);
3626 }
3627 
3628 /*
3629  * e1000g_get_conf - get configurations set in e1000g.conf
3630  * This routine gets user-configured values out of the configuration
3631  * file e1000g.conf.
3632  *
3633  * For each configurable value, there is a minimum, a maximum, and a
3634  * default.
3635  * If user does not configure a value, use the default.
3636  * If user configures below the minimum, use the minumum.
3637  * If user configures above the maximum, use the maxumum.
3638  */
3639 static void
3640 e1000g_get_conf(struct e1000g *Adapter)
3641 {
3642 	struct e1000_hw *hw = &Adapter->shared;
3643 	boolean_t tbi_compatibility = B_FALSE;
3644 	boolean_t is_jumbo = B_FALSE;
3645 	int propval;
3646 	/*
3647 	 * decrease the number of descriptors and free packets
3648 	 * for jumbo frames to reduce tx/rx resource consumption
3649 	 */
3650 	if (Adapter->max_frame_size >=
3651 	    (FRAME_SIZE_UPTO_4K -
3652 	    E1000G_IPALIGNPRESERVEROOM)) {
3653 		is_jumbo = B_TRUE;
3654 	}
3655 
3656 	/*
3657 	 * get each configurable property from e1000g.conf
3658 	 */
3659 
3660 	/*
3661 	 * NumTxDescriptors
3662 	 */
3663 	Adapter->tx_desc_num_flag =
3664 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3665 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3666 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
3667 	    : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
3668 	Adapter->tx_desc_num = propval;
3669 
3670 	/*
3671 	 * NumRxDescriptors
3672 	 */
3673 	Adapter->rx_desc_num_flag =
3674 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3675 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3676 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
3677 	    : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
3678 	Adapter->rx_desc_num = propval;
3679 
3680 	/*
3681 	 * NumRxFreeList
3682 	 */
3683 	Adapter->rx_buf_num_flag =
3684 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3685 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3686 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
3687 	    : DEFAULT_NUM_RX_FREELIST, &propval);
3688 	Adapter->rx_freelist_num = propval;
3689 
3690 	/*
3691 	 * NumTxPacketList
3692 	 */
3693 	Adapter->tx_buf_num_flag =
3694 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3695 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3696 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
3697 	    : DEFAULT_NUM_TX_FREELIST, &propval);
3698 	Adapter->tx_freelist_num = propval;
3699 
3700 	/*
3701 	 * FlowControl
3702 	 */
3703 	hw->fc.send_xon = B_TRUE;
3704 	(void) e1000g_get_prop(Adapter, "FlowControl",
3705 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
3706 	hw->fc.requested_mode = propval;
3707 	/* 4 is the setting that says "let the eeprom decide" */
3708 	if (hw->fc.requested_mode == 4)
3709 		hw->fc.requested_mode = e1000_fc_default;
3710 
3711 	/*
3712 	 * Max Num Receive Packets on Interrupt
3713 	 */
3714 	(void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3715 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3716 	    DEFAULT_RX_LIMIT_ON_INTR, &propval);
3717 	Adapter->rx_limit_onintr = propval;
3718 
3719 	/*
3720 	 * PHY master slave setting
3721 	 */
3722 	(void) e1000g_get_prop(Adapter, "SetMasterSlave",
3723 	    e1000_ms_hw_default, e1000_ms_auto,
3724 	    e1000_ms_hw_default, &propval);
3725 	hw->phy.ms_type = propval;
3726 
3727 	/*
3728 	 * Parameter which controls TBI mode workaround, which is only
3729 	 * needed on certain switches such as Cisco 6500/Foundry
3730 	 */
3731 	(void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3732 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
3733 	tbi_compatibility = (propval == 1);
3734 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3735 
3736 	/*
3737 	 * MSI Enable
3738 	 */
3739 	(void) e1000g_get_prop(Adapter, "MSIEnable",
3740 	    0, 1, DEFAULT_MSI_ENABLE, &propval);
3741 	Adapter->msi_enable = (propval == 1);
3742 
3743 	/*
3744 	 * Interrupt Throttling Rate
3745 	 */
3746 	(void) e1000g_get_prop(Adapter, "intr_throttling_rate",
3747 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3748 	    DEFAULT_INTR_THROTTLING, &propval);
3749 	Adapter->intr_throttling_rate = propval;
3750 
3751 	/*
3752 	 * Adaptive Interrupt Blanking Enable/Disable
3753 	 * It is enabled by default
3754 	 */
3755 	(void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
3756 	    &propval);
3757 	Adapter->intr_adaptive = (propval == 1);
3758 
3759 	/*
3760 	 * Hardware checksum enable/disable parameter
3761 	 */
3762 	(void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
3763 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
3764 	Adapter->tx_hcksum_enable = (propval == 1);
3765 	/*
3766 	 * Checksum on/off selection via global parameters.
3767 	 *
3768 	 * If the chip is flagged as not capable of (correctly)
3769 	 * handling checksumming, we don't enable it on either
3770 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3771 	 * from the patchable global defaults.
3772 	 *
3773 	 * We advertise our capabilities only if TX offload is
3774 	 * enabled.  On receive, the stack will accept checksummed
3775 	 * packets anyway, even if we haven't said we can deliver
3776 	 * them.
3777 	 */
3778 	switch (hw->mac.type) {
3779 		case e1000_82540:
3780 		case e1000_82544:
3781 		case e1000_82545:
3782 		case e1000_82545_rev_3:
3783 		case e1000_82546:
3784 		case e1000_82546_rev_3:
3785 		case e1000_82571:
3786 		case e1000_82572:
3787 		case e1000_82573:
3788 		case e1000_80003es2lan:
3789 			break;
3790 		/*
3791 		 * For the following Intel PRO/1000 chipsets, we have not
3792 		 * tested the hardware checksum offload capability, so we
3793 		 * disable the capability for them.
3794 		 *	e1000_82542,
3795 		 *	e1000_82543,
3796 		 *	e1000_82541,
3797 		 *	e1000_82541_rev_2,
3798 		 *	e1000_82547,
3799 		 *	e1000_82547_rev_2,
3800 		 */
3801 		default:
3802 			Adapter->tx_hcksum_enable = B_FALSE;
3803 	}
3804 
3805 	/*
3806 	 * Large Send Offloading(LSO) Enable/Disable
3807 	 * If the tx hardware checksum is not enabled, LSO should be
3808 	 * disabled.
3809 	 */
3810 	(void) e1000g_get_prop(Adapter, "lso_enable",
3811 	    0, 1, DEFAULT_LSO_ENABLE, &propval);
3812 	Adapter->lso_enable = (propval == 1);
3813 
3814 	switch (hw->mac.type) {
3815 		case e1000_82546:
3816 		case e1000_82546_rev_3:
3817 			if (Adapter->lso_enable)
3818 				Adapter->lso_premature_issue = B_TRUE;
3819 			/* FALLTHRU */
3820 		case e1000_82571:
3821 		case e1000_82572:
3822 		case e1000_82573:
3823 		case e1000_80003es2lan:
3824 			break;
3825 		default:
3826 			Adapter->lso_enable = B_FALSE;
3827 	}
3828 
3829 	if (!Adapter->tx_hcksum_enable) {
3830 		Adapter->lso_premature_issue = B_FALSE;
3831 		Adapter->lso_enable = B_FALSE;
3832 	}
3833 
3834 	/*
3835 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
3836 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
3837 	 * will not cross 64k boundary.
3838 	 */
3839 	(void) e1000g_get_prop(Adapter, "mem_workaround_82546",
3840 	    0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
3841 	Adapter->mem_workaround_82546 = (propval == 1);
3842 
3843 	/*
3844 	 * Max number of multicast addresses
3845 	 */
3846 	(void) e1000g_get_prop(Adapter, "mcast_max_num",
3847 	    MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
3848 	    &propval);
3849 	Adapter->mcast_max_num = propval;
3850 }
3851 
3852 /*
3853  * e1000g_get_prop - routine to read properties
3854  *
3855  * Get a user-configure property value out of the configuration
3856  * file e1000g.conf.
3857  *
3858  * Caller provides name of the property, a default value, a minimum
3859  * value, a maximum value and a pointer to the returned property
3860  * value.
3861  *
3862  * Return B_TRUE if the configured value of the property is not a default
3863  * value, otherwise return B_FALSE.
3864  */
3865 static boolean_t
3866 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3867     char *propname,		/* name of the property */
3868     int minval,			/* minimum acceptable value */
3869     int maxval,			/* maximim acceptable value */
3870     int defval,			/* default value */
3871     int *propvalue)		/* property value return to caller */
3872 {
3873 	int propval;		/* value returned for requested property */
3874 	int *props;		/* point to array of properties returned */
3875 	uint_t nprops;		/* number of property value returned */
3876 	boolean_t ret = B_TRUE;
3877 
3878 	/*
3879 	 * get the array of properties from the config file
3880 	 */
3881 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3882 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3883 		/* got some properties, test if we got enough */
3884 		if (Adapter->instance < nprops) {
3885 			propval = props[Adapter->instance];
3886 		} else {
3887 			/* not enough properties configured */
3888 			propval = defval;
3889 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3890 			    "Not Enough %s values found in e1000g.conf"
3891 			    " - set to %d\n",
3892 			    propname, propval);
3893 			ret = B_FALSE;
3894 		}
3895 
3896 		/* free memory allocated for properties */
3897 		ddi_prop_free(props);
3898 
3899 	} else {
3900 		propval = defval;
3901 		ret = B_FALSE;
3902 	}
3903 
3904 	/*
3905 	 * enforce limits
3906 	 */
3907 	if (propval > maxval) {
3908 		propval = maxval;
3909 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3910 		    "Too High %s value in e1000g.conf - set to %d\n",
3911 		    propname, propval);
3912 	}
3913 
3914 	if (propval < minval) {
3915 		propval = minval;
3916 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3917 		    "Too Low %s value in e1000g.conf - set to %d\n",
3918 		    propname, propval);
3919 	}
3920 
3921 	*propvalue = propval;
3922 	return (ret);
3923 }
3924 
3925 static boolean_t
3926 e1000g_link_check(struct e1000g *Adapter)
3927 {
3928 	uint16_t speed, duplex, phydata;
3929 	boolean_t link_changed = B_FALSE;
3930 	struct e1000_hw *hw;
3931 	uint32_t reg_tarc;
3932 
3933 	hw = &Adapter->shared;
3934 
3935 	if (e1000g_link_up(Adapter)) {
3936 		/*
3937 		 * The Link is up, check whether it was marked as down earlier
3938 		 */
3939 		if (Adapter->link_state != LINK_STATE_UP) {
3940 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3941 			Adapter->link_speed = speed;
3942 			Adapter->link_duplex = duplex;
3943 			Adapter->link_state = LINK_STATE_UP;
3944 			link_changed = B_TRUE;
3945 
3946 			if (Adapter->link_speed == SPEED_1000)
3947 				Adapter->stall_threshold = TX_STALL_TIME_2S;
3948 			else
3949 				Adapter->stall_threshold = TX_STALL_TIME_8S;
3950 
3951 			Adapter->tx_link_down_timeout = 0;
3952 
3953 			if ((hw->mac.type == e1000_82571) ||
3954 			    (hw->mac.type == e1000_82572)) {
3955 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3956 				if (speed == SPEED_1000)
3957 					reg_tarc |= (1 << 21);
3958 				else
3959 					reg_tarc &= ~(1 << 21);
3960 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3961 			}
3962 		}
3963 		Adapter->smartspeed = 0;
3964 	} else {
3965 		if (Adapter->link_state != LINK_STATE_DOWN) {
3966 			Adapter->link_speed = 0;
3967 			Adapter->link_duplex = 0;
3968 			Adapter->link_state = LINK_STATE_DOWN;
3969 			link_changed = B_TRUE;
3970 
3971 			/*
3972 			 * SmartSpeed workaround for Tabor/TanaX, When the
3973 			 * driver loses link disable auto master/slave
3974 			 * resolution.
3975 			 */
3976 			if (hw->phy.type == e1000_phy_igp) {
3977 				(void) e1000_read_phy_reg(hw,
3978 				    PHY_1000T_CTRL, &phydata);
3979 				phydata |= CR_1000T_MS_ENABLE;
3980 				(void) e1000_write_phy_reg(hw,
3981 				    PHY_1000T_CTRL, phydata);
3982 			}
3983 		} else {
3984 			e1000g_smartspeed(Adapter);
3985 		}
3986 
3987 		if (Adapter->e1000g_state & E1000G_STARTED) {
3988 			if (Adapter->tx_link_down_timeout <
3989 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3990 				Adapter->tx_link_down_timeout++;
3991 			} else if (Adapter->tx_link_down_timeout ==
3992 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3993 				e1000g_tx_clean(Adapter);
3994 				Adapter->tx_link_down_timeout++;
3995 			}
3996 		}
3997 	}
3998 
3999 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4000 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4001 
4002 	return (link_changed);
4003 }
4004 
4005 /*
4006  * e1000g_reset_link - Using the link properties to setup the link
4007  */
4008 int
4009 e1000g_reset_link(struct e1000g *Adapter)
4010 {
4011 	struct e1000_mac_info *mac;
4012 	struct e1000_phy_info *phy;
4013 	struct e1000_hw *hw;
4014 	boolean_t invalid;
4015 
4016 	mac = &Adapter->shared.mac;
4017 	phy = &Adapter->shared.phy;
4018 	hw = &Adapter->shared;
4019 	invalid = B_FALSE;
4020 
4021 	if (hw->phy.media_type != e1000_media_type_copper)
4022 		goto out;
4023 
4024 	if (Adapter->param_adv_autoneg == 1) {
4025 		mac->autoneg = B_TRUE;
4026 		phy->autoneg_advertised = 0;
4027 
4028 		/*
4029 		 * 1000hdx is not supported for autonegotiation
4030 		 */
4031 		if (Adapter->param_adv_1000fdx == 1)
4032 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4033 
4034 		if (Adapter->param_adv_100fdx == 1)
4035 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
4036 
4037 		if (Adapter->param_adv_100hdx == 1)
4038 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
4039 
4040 		if (Adapter->param_adv_10fdx == 1)
4041 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
4042 
4043 		if (Adapter->param_adv_10hdx == 1)
4044 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
4045 
4046 		if (phy->autoneg_advertised == 0)
4047 			invalid = B_TRUE;
4048 	} else {
4049 		mac->autoneg = B_FALSE;
4050 
4051 		/*
4052 		 * For Intel copper cards, 1000fdx and 1000hdx are not
4053 		 * supported for forced link
4054 		 */
4055 		if (Adapter->param_adv_100fdx == 1)
4056 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
4057 		else if (Adapter->param_adv_100hdx == 1)
4058 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
4059 		else if (Adapter->param_adv_10fdx == 1)
4060 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
4061 		else if (Adapter->param_adv_10hdx == 1)
4062 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
4063 		else
4064 			invalid = B_TRUE;
4065 
4066 	}
4067 
4068 	if (invalid) {
4069 		e1000g_log(Adapter, CE_WARN,
4070 		    "Invalid link settings. Setup link to "
4071 		    "support autonegotiation with all link capabilities.");
4072 		mac->autoneg = B_TRUE;
4073 		phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4074 	}
4075 
4076 out:
4077 	return (e1000_setup_link(&Adapter->shared));
4078 }
4079 
4080 static void
4081 e1000g_timer_tx_resched(struct e1000g *Adapter)
4082 {
4083 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4084 
4085 	rw_enter(&Adapter->chip_lock, RW_READER);
4086 
4087 	if (tx_ring->resched_needed &&
4088 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4089 	    drv_usectohz(1000000)) &&
4090 	    (Adapter->e1000g_state & E1000G_STARTED) &&
4091 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4092 		tx_ring->resched_needed = B_FALSE;
4093 		mac_tx_update(Adapter->mh);
4094 		E1000G_STAT(tx_ring->stat_reschedule);
4095 		E1000G_STAT(tx_ring->stat_timer_reschedule);
4096 	}
4097 
4098 	rw_exit(&Adapter->chip_lock);
4099 }
4100 
4101 static void
4102 e1000g_local_timer(void *ws)
4103 {
4104 	struct e1000g *Adapter = (struct e1000g *)ws;
4105 	struct e1000_hw *hw;
4106 	e1000g_ether_addr_t ether_addr;
4107 	boolean_t link_changed;
4108 
4109 	hw = &Adapter->shared;
4110 
4111 	if (Adapter->e1000g_state & E1000G_ERROR) {
4112 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4113 		Adapter->e1000g_state &= ~E1000G_ERROR;
4114 		rw_exit(&Adapter->chip_lock);
4115 
4116 		Adapter->reset_count++;
4117 		if (e1000g_global_reset(Adapter)) {
4118 			ddi_fm_service_impact(Adapter->dip,
4119 			    DDI_SERVICE_RESTORED);
4120 			e1000g_timer_tx_resched(Adapter);
4121 		} else
4122 			ddi_fm_service_impact(Adapter->dip,
4123 			    DDI_SERVICE_LOST);
4124 		return;
4125 	}
4126 
4127 	if (e1000g_stall_check(Adapter)) {
4128 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4129 		    "Tx stall detected. Activate automatic recovery.\n");
4130 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4131 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4132 		Adapter->reset_count++;
4133 		if (e1000g_reset_adapter(Adapter)) {
4134 			ddi_fm_service_impact(Adapter->dip,
4135 			    DDI_SERVICE_RESTORED);
4136 			e1000g_timer_tx_resched(Adapter);
4137 		}
4138 		return;
4139 	}
4140 
4141 	link_changed = B_FALSE;
4142 	rw_enter(&Adapter->chip_lock, RW_READER);
4143 	if (Adapter->link_complete)
4144 		link_changed = e1000g_link_check(Adapter);
4145 	rw_exit(&Adapter->chip_lock);
4146 
4147 	if (link_changed) {
4148 		if (!Adapter->reset_flag)
4149 			mac_link_update(Adapter->mh, Adapter->link_state);
4150 		if (Adapter->link_state == LINK_STATE_UP)
4151 			Adapter->reset_flag = B_FALSE;
4152 	}
4153 	/*
4154 	 * Workaround for esb2. Data stuck in fifo on a link
4155 	 * down event. Reset the adapter to recover it.
4156 	 */
4157 	if (Adapter->esb2_workaround) {
4158 		Adapter->esb2_workaround = B_FALSE;
4159 		(void) e1000g_reset_adapter(Adapter);
4160 		return;
4161 	}
4162 
4163 	/*
4164 	 * With 82571 controllers, any locally administered address will
4165 	 * be overwritten when there is a reset on the other port.
4166 	 * Detect this circumstance and correct it.
4167 	 */
4168 	if ((hw->mac.type == e1000_82571) &&
4169 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4170 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4171 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4172 
4173 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4174 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4175 
4176 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4177 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4178 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4179 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4180 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4181 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4182 			e1000_rar_set(hw, hw->mac.addr, 0);
4183 		}
4184 	}
4185 
4186 	/*
4187 	 * Long TTL workaround for 82541/82547
4188 	 */
4189 	(void) e1000_igp_ttl_workaround_82547(hw);
4190 
4191 	/*
4192 	 * Check for Adaptive IFS settings If there are lots of collisions
4193 	 * change the value in steps...
4194 	 * These properties should only be set for 10/100
4195 	 */
4196 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4197 	    ((Adapter->link_speed == SPEED_100) ||
4198 	    (Adapter->link_speed == SPEED_10))) {
4199 		e1000_update_adaptive(hw);
4200 	}
4201 	/*
4202 	 * Set Timer Interrupts
4203 	 */
4204 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4205 
4206 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4207 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4208 	else
4209 		e1000g_timer_tx_resched(Adapter);
4210 
4211 	restart_watchdog_timer(Adapter);
4212 }
4213 
4214 /*
4215  * The function e1000g_link_timer() is called when the timer for link setup
4216  * is expired, which indicates the completion of the link setup. The link
4217  * state will not be updated until the link setup is completed. And the
4218  * link state will not be sent to the upper layer through mac_link_update()
4219  * in this function. It will be updated in the local timer routine or the
4220  * interrupt service routine after the interface is started (plumbed).
4221  */
4222 static void
4223 e1000g_link_timer(void *arg)
4224 {
4225 	struct e1000g *Adapter = (struct e1000g *)arg;
4226 
4227 	mutex_enter(&Adapter->link_lock);
4228 	Adapter->link_complete = B_TRUE;
4229 	Adapter->link_tid = 0;
4230 	mutex_exit(&Adapter->link_lock);
4231 }
4232 
4233 /*
4234  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4235  *
4236  * This function read the forced speed and duplex for 10/100 Mbps speeds
4237  * and also for 1000 Mbps speeds from the e1000g.conf file
4238  */
4239 static void
4240 e1000g_force_speed_duplex(struct e1000g *Adapter)
4241 {
4242 	int forced;
4243 	int propval;
4244 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4245 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4246 
4247 	/*
4248 	 * get value out of config file
4249 	 */
4250 	(void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4251 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4252 
4253 	switch (forced) {
4254 	case GDIAG_10_HALF:
4255 		/*
4256 		 * Disable Auto Negotiation
4257 		 */
4258 		mac->autoneg = B_FALSE;
4259 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4260 		break;
4261 	case GDIAG_10_FULL:
4262 		/*
4263 		 * Disable Auto Negotiation
4264 		 */
4265 		mac->autoneg = B_FALSE;
4266 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4267 		break;
4268 	case GDIAG_100_HALF:
4269 		/*
4270 		 * Disable Auto Negotiation
4271 		 */
4272 		mac->autoneg = B_FALSE;
4273 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4274 		break;
4275 	case GDIAG_100_FULL:
4276 		/*
4277 		 * Disable Auto Negotiation
4278 		 */
4279 		mac->autoneg = B_FALSE;
4280 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4281 		break;
4282 	case GDIAG_1000_FULL:
4283 		/*
4284 		 * The gigabit spec requires autonegotiation.  Therefore,
4285 		 * when the user wants to force the speed to 1000Mbps, we
4286 		 * enable AutoNeg, but only allow the harware to advertise
4287 		 * 1000Mbps.  This is different from 10/100 operation, where
4288 		 * we are allowed to link without any negotiation.
4289 		 */
4290 		mac->autoneg = B_TRUE;
4291 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4292 		break;
4293 	default:	/* obey the setting of AutoNegAdvertised */
4294 		mac->autoneg = B_TRUE;
4295 		(void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4296 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4297 		    AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4298 		phy->autoneg_advertised = (uint16_t)propval;
4299 		break;
4300 	}	/* switch */
4301 }
4302 
4303 /*
4304  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4305  *
4306  * This function reads MaxFrameSize from e1000g.conf
4307  */
4308 static void
4309 e1000g_get_max_frame_size(struct e1000g *Adapter)
4310 {
4311 	int max_frame;
4312 
4313 	/*
4314 	 * get value out of config file
4315 	 */
4316 	(void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4317 	    &max_frame);
4318 
4319 	switch (max_frame) {
4320 	case 0:
4321 		Adapter->default_mtu = ETHERMTU;
4322 		break;
4323 	/*
4324 	 * To avoid excessive memory allocation for rx buffers,
4325 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
4326 	 */
4327 	case 1:
4328 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4329 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4330 		    E1000G_IPALIGNPRESERVEROOM;
4331 		break;
4332 	case 2:
4333 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4334 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4335 		    E1000G_IPALIGNPRESERVEROOM;
4336 		break;
4337 	case 3:
4338 		Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4339 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4340 		    E1000G_IPALIGNPRESERVEROOM;
4341 		break;
4342 	default:
4343 		Adapter->default_mtu = ETHERMTU;
4344 		break;
4345 	}	/* switch */
4346 
4347 	/*
4348 	 * If the user configed MTU is larger than the deivce's maximum MTU,
4349 	 * the MTU is set to the deivce's maximum value.
4350 	 */
4351 	if (Adapter->default_mtu > Adapter->max_mtu)
4352 		Adapter->default_mtu = Adapter->max_mtu;
4353 
4354 	Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4355 }
4356 
4357 /*
4358  * e1000g_pch_limits - Apply limits of the PCH silicon type
4359  *
4360  * At any frame size larger than the ethernet default,
4361  * prevent linking at 10/100 speeds.
4362  */
4363 static void
4364 e1000g_pch_limits(struct e1000g *Adapter)
4365 {
4366 	struct e1000_hw *hw = &Adapter->shared;
4367 
4368 	/* only applies to PCH silicon type */
4369 	if (hw->mac.type != e1000_pchlan)
4370 		return;
4371 
4372 	/* only applies to frames larger than ethernet default */
4373 	if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4374 		hw->mac.autoneg = B_TRUE;
4375 		hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4376 
4377 		Adapter->param_adv_autoneg = 1;
4378 		Adapter->param_adv_1000fdx = 1;
4379 
4380 		Adapter->param_adv_100fdx = 0;
4381 		Adapter->param_adv_100hdx = 0;
4382 		Adapter->param_adv_10fdx = 0;
4383 		Adapter->param_adv_10hdx = 0;
4384 
4385 		e1000g_param_sync(Adapter);
4386 	}
4387 }
4388 
4389 /*
4390  * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4391  */
4392 static uint32_t
4393 e1000g_mtu2maxframe(uint32_t mtu)
4394 {
4395 	uint32_t maxframe;
4396 
4397 	maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4398 
4399 	return (maxframe);
4400 }
4401 
4402 static void
4403 arm_watchdog_timer(struct e1000g *Adapter)
4404 {
4405 	Adapter->watchdog_tid =
4406 	    timeout(e1000g_local_timer,
4407 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4408 }
4409 #pragma inline(arm_watchdog_timer)
4410 
4411 static void
4412 enable_watchdog_timer(struct e1000g *Adapter)
4413 {
4414 	mutex_enter(&Adapter->watchdog_lock);
4415 
4416 	if (!Adapter->watchdog_timer_enabled) {
4417 		Adapter->watchdog_timer_enabled = B_TRUE;
4418 		Adapter->watchdog_timer_started = B_TRUE;
4419 		arm_watchdog_timer(Adapter);
4420 	}
4421 
4422 	mutex_exit(&Adapter->watchdog_lock);
4423 }
4424 
4425 static void
4426 disable_watchdog_timer(struct e1000g *Adapter)
4427 {
4428 	timeout_id_t tid;
4429 
4430 	mutex_enter(&Adapter->watchdog_lock);
4431 
4432 	Adapter->watchdog_timer_enabled = B_FALSE;
4433 	Adapter->watchdog_timer_started = B_FALSE;
4434 	tid = Adapter->watchdog_tid;
4435 	Adapter->watchdog_tid = 0;
4436 
4437 	mutex_exit(&Adapter->watchdog_lock);
4438 
4439 	if (tid != 0)
4440 		(void) untimeout(tid);
4441 }
4442 
4443 static void
4444 start_watchdog_timer(struct e1000g *Adapter)
4445 {
4446 	mutex_enter(&Adapter->watchdog_lock);
4447 
4448 	if (Adapter->watchdog_timer_enabled) {
4449 		if (!Adapter->watchdog_timer_started) {
4450 			Adapter->watchdog_timer_started = B_TRUE;
4451 			arm_watchdog_timer(Adapter);
4452 		}
4453 	}
4454 
4455 	mutex_exit(&Adapter->watchdog_lock);
4456 }
4457 
4458 static void
4459 restart_watchdog_timer(struct e1000g *Adapter)
4460 {
4461 	mutex_enter(&Adapter->watchdog_lock);
4462 
4463 	if (Adapter->watchdog_timer_started)
4464 		arm_watchdog_timer(Adapter);
4465 
4466 	mutex_exit(&Adapter->watchdog_lock);
4467 }
4468 
4469 static void
4470 stop_watchdog_timer(struct e1000g *Adapter)
4471 {
4472 	timeout_id_t tid;
4473 
4474 	mutex_enter(&Adapter->watchdog_lock);
4475 
4476 	Adapter->watchdog_timer_started = B_FALSE;
4477 	tid = Adapter->watchdog_tid;
4478 	Adapter->watchdog_tid = 0;
4479 
4480 	mutex_exit(&Adapter->watchdog_lock);
4481 
4482 	if (tid != 0)
4483 		(void) untimeout(tid);
4484 }
4485 
4486 static void
4487 stop_link_timer(struct e1000g *Adapter)
4488 {
4489 	timeout_id_t tid;
4490 
4491 	/* Disable the link timer */
4492 	mutex_enter(&Adapter->link_lock);
4493 
4494 	tid = Adapter->link_tid;
4495 	Adapter->link_tid = 0;
4496 
4497 	mutex_exit(&Adapter->link_lock);
4498 
4499 	if (tid != 0)
4500 		(void) untimeout(tid);
4501 }
4502 
4503 static void
4504 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4505 {
4506 	timeout_id_t tid;
4507 
4508 	/* Disable the tx timer for 82547 chipset */
4509 	mutex_enter(&tx_ring->tx_lock);
4510 
4511 	tx_ring->timer_enable_82547 = B_FALSE;
4512 	tid = tx_ring->timer_id_82547;
4513 	tx_ring->timer_id_82547 = 0;
4514 
4515 	mutex_exit(&tx_ring->tx_lock);
4516 
4517 	if (tid != 0)
4518 		(void) untimeout(tid);
4519 }
4520 
4521 void
4522 e1000g_clear_interrupt(struct e1000g *Adapter)
4523 {
4524 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4525 	    0xffffffff & ~E1000_IMS_RXSEQ);
4526 }
4527 
4528 void
4529 e1000g_mask_interrupt(struct e1000g *Adapter)
4530 {
4531 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4532 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4533 
4534 	if (Adapter->tx_intr_enable)
4535 		e1000g_mask_tx_interrupt(Adapter);
4536 }
4537 
4538 /*
4539  * This routine is called by e1000g_quiesce(), therefore must not block.
4540  */
4541 void
4542 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4543 {
4544 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4545 }
4546 
4547 void
4548 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4549 {
4550 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4551 }
4552 
4553 void
4554 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4555 {
4556 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4557 }
4558 
4559 static void
4560 e1000g_smartspeed(struct e1000g *Adapter)
4561 {
4562 	struct e1000_hw *hw = &Adapter->shared;
4563 	uint16_t phy_status;
4564 	uint16_t phy_ctrl;
4565 
4566 	/*
4567 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4568 	 * advertising 1000Full, we don't even use the workaround
4569 	 */
4570 	if ((hw->phy.type != e1000_phy_igp) ||
4571 	    !hw->mac.autoneg ||
4572 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4573 		return;
4574 
4575 	/*
4576 	 * True if this is the first call of this function or after every
4577 	 * 30 seconds of not having link
4578 	 */
4579 	if (Adapter->smartspeed == 0) {
4580 		/*
4581 		 * If Master/Slave config fault is asserted twice, we
4582 		 * assume back-to-back
4583 		 */
4584 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4585 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4586 			return;
4587 
4588 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4589 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4590 			return;
4591 		/*
4592 		 * We're assuming back-2-back because our status register
4593 		 * insists! there's a fault in the master/slave
4594 		 * relationship that was "negotiated"
4595 		 */
4596 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4597 		/*
4598 		 * Is the phy configured for manual configuration of
4599 		 * master/slave?
4600 		 */
4601 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4602 			/*
4603 			 * Yes.  Then disable manual configuration (enable
4604 			 * auto configuration) of master/slave
4605 			 */
4606 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4607 			(void) e1000_write_phy_reg(hw,
4608 			    PHY_1000T_CTRL, phy_ctrl);
4609 			/*
4610 			 * Effectively starting the clock
4611 			 */
4612 			Adapter->smartspeed++;
4613 			/*
4614 			 * Restart autonegotiation
4615 			 */
4616 			if (!e1000_phy_setup_autoneg(hw) &&
4617 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4618 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4619 				    MII_CR_RESTART_AUTO_NEG);
4620 				(void) e1000_write_phy_reg(hw,
4621 				    PHY_CONTROL, phy_ctrl);
4622 			}
4623 		}
4624 		return;
4625 		/*
4626 		 * Has 6 seconds transpired still without link? Remember,
4627 		 * you should reset the smartspeed counter once you obtain
4628 		 * link
4629 		 */
4630 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4631 		/*
4632 		 * Yes.  Remember, we did at the start determine that
4633 		 * there's a master/slave configuration fault, so we're
4634 		 * still assuming there's someone on the other end, but we
4635 		 * just haven't yet been able to talk to it. We then
4636 		 * re-enable auto configuration of master/slave to see if
4637 		 * we're running 2/3 pair cables.
4638 		 */
4639 		/*
4640 		 * If still no link, perhaps using 2/3 pair cable
4641 		 */
4642 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4643 		phy_ctrl |= CR_1000T_MS_ENABLE;
4644 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4645 		/*
4646 		 * Restart autoneg with phy enabled for manual
4647 		 * configuration of master/slave
4648 		 */
4649 		if (!e1000_phy_setup_autoneg(hw) &&
4650 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4651 			phy_ctrl |=
4652 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4653 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4654 		}
4655 		/*
4656 		 * Hopefully, there are no more faults and we've obtained
4657 		 * link as a result.
4658 		 */
4659 	}
4660 	/*
4661 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4662 	 * seconds)
4663 	 */
4664 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4665 		Adapter->smartspeed = 0;
4666 }
4667 
4668 static boolean_t
4669 is_valid_mac_addr(uint8_t *mac_addr)
4670 {
4671 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4672 	const uint8_t addr_test2[6] =
4673 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4674 
4675 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4676 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4677 		return (B_FALSE);
4678 
4679 	return (B_TRUE);
4680 }
4681 
4682 /*
4683  * e1000g_stall_check - check for tx stall
4684  *
4685  * This function checks if the adapter is stalled (in transmit).
4686  *
4687  * It is called each time the watchdog timeout is invoked.
4688  * If the transmit descriptor reclaim continuously fails,
4689  * the watchdog value will increment by 1. If the watchdog
4690  * value exceeds the threshold, the adapter is assumed to
4691  * have stalled and need to be reset.
4692  */
4693 static boolean_t
4694 e1000g_stall_check(struct e1000g *Adapter)
4695 {
4696 	e1000g_tx_ring_t *tx_ring;
4697 
4698 	tx_ring = Adapter->tx_ring;
4699 
4700 	if (Adapter->link_state != LINK_STATE_UP)
4701 		return (B_FALSE);
4702 
4703 	(void) e1000g_recycle(tx_ring);
4704 
4705 	if (Adapter->stall_flag) {
4706 		Adapter->stall_flag = B_FALSE;
4707 		Adapter->reset_flag = B_TRUE;
4708 		return (B_TRUE);
4709 	}
4710 
4711 	return (B_FALSE);
4712 }
4713 
4714 #ifdef E1000G_DEBUG
4715 static enum ioc_reply
4716 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4717 {
4718 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4719 	e1000g_peekpoke_t *ppd;
4720 	uint64_t mem_va;
4721 	uint64_t maxoff;
4722 	boolean_t peek;
4723 
4724 	switch (iocp->ioc_cmd) {
4725 
4726 	case E1000G_IOC_REG_PEEK:
4727 		peek = B_TRUE;
4728 		break;
4729 
4730 	case E1000G_IOC_REG_POKE:
4731 		peek = B_FALSE;
4732 		break;
4733 
4734 	deault:
4735 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4736 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4737 		    iocp->ioc_cmd);
4738 		return (IOC_INVAL);
4739 	}
4740 
4741 	/*
4742 	 * Validate format of ioctl
4743 	 */
4744 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4745 		return (IOC_INVAL);
4746 	if (mp->b_cont == NULL)
4747 		return (IOC_INVAL);
4748 
4749 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4750 
4751 	/*
4752 	 * Validate request parameters
4753 	 */
4754 	switch (ppd->pp_acc_space) {
4755 
4756 	default:
4757 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4758 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4759 		    ppd->pp_acc_space);
4760 		return (IOC_INVAL);
4761 
4762 	case E1000G_PP_SPACE_REG:
4763 		/*
4764 		 * Memory-mapped I/O space
4765 		 */
4766 		ASSERT(ppd->pp_acc_size == 4);
4767 		if (ppd->pp_acc_size != 4)
4768 			return (IOC_INVAL);
4769 
4770 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4771 			return (IOC_INVAL);
4772 
4773 		mem_va = 0;
4774 		maxoff = 0x10000;
4775 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4776 		break;
4777 
4778 	case E1000G_PP_SPACE_E1000G:
4779 		/*
4780 		 * E1000g data structure!
4781 		 */
4782 		mem_va = (uintptr_t)e1000gp;
4783 		maxoff = sizeof (struct e1000g);
4784 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4785 		break;
4786 
4787 	}
4788 
4789 	if (ppd->pp_acc_offset >= maxoff)
4790 		return (IOC_INVAL);
4791 
4792 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4793 		return (IOC_INVAL);
4794 
4795 	/*
4796 	 * All OK - go!
4797 	 */
4798 	ppd->pp_acc_offset += mem_va;
4799 	(*ppfn)(e1000gp, ppd);
4800 	return (peek ? IOC_REPLY : IOC_ACK);
4801 }
4802 
4803 static void
4804 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4805 {
4806 	ddi_acc_handle_t handle;
4807 	uint32_t *regaddr;
4808 
4809 	handle = e1000gp->osdep.reg_handle;
4810 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4811 	    (uintptr_t)ppd->pp_acc_offset);
4812 
4813 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4814 }
4815 
4816 static void
4817 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4818 {
4819 	ddi_acc_handle_t handle;
4820 	uint32_t *regaddr;
4821 	uint32_t value;
4822 
4823 	handle = e1000gp->osdep.reg_handle;
4824 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4825 	    (uintptr_t)ppd->pp_acc_offset);
4826 	value = (uint32_t)ppd->pp_acc_data;
4827 
4828 	ddi_put32(handle, regaddr, value);
4829 }
4830 
4831 static void
4832 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4833 {
4834 	uint64_t value;
4835 	void *vaddr;
4836 
4837 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4838 
4839 	switch (ppd->pp_acc_size) {
4840 	case 1:
4841 		value = *(uint8_t *)vaddr;
4842 		break;
4843 
4844 	case 2:
4845 		value = *(uint16_t *)vaddr;
4846 		break;
4847 
4848 	case 4:
4849 		value = *(uint32_t *)vaddr;
4850 		break;
4851 
4852 	case 8:
4853 		value = *(uint64_t *)vaddr;
4854 		break;
4855 	}
4856 
4857 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4858 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4859 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4860 
4861 	ppd->pp_acc_data = value;
4862 }
4863 
4864 static void
4865 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4866 {
4867 	uint64_t value;
4868 	void *vaddr;
4869 
4870 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4871 	value = ppd->pp_acc_data;
4872 
4873 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4874 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4875 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4876 
4877 	switch (ppd->pp_acc_size) {
4878 	case 1:
4879 		*(uint8_t *)vaddr = (uint8_t)value;
4880 		break;
4881 
4882 	case 2:
4883 		*(uint16_t *)vaddr = (uint16_t)value;
4884 		break;
4885 
4886 	case 4:
4887 		*(uint32_t *)vaddr = (uint32_t)value;
4888 		break;
4889 
4890 	case 8:
4891 		*(uint64_t *)vaddr = (uint64_t)value;
4892 		break;
4893 	}
4894 }
4895 #endif
4896 
4897 /*
4898  * Loopback Support
4899  */
4900 static lb_property_t lb_normal =
4901 	{ normal,	"normal",	E1000G_LB_NONE		};
4902 static lb_property_t lb_external1000 =
4903 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4904 static lb_property_t lb_external100 =
4905 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4906 static lb_property_t lb_external10 =
4907 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4908 static lb_property_t lb_phy =
4909 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4910 
4911 static enum ioc_reply
4912 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4913 {
4914 	lb_info_sz_t *lbsp;
4915 	lb_property_t *lbpp;
4916 	struct e1000_hw *hw;
4917 	uint32_t *lbmp;
4918 	uint32_t size;
4919 	uint32_t value;
4920 
4921 	hw = &Adapter->shared;
4922 
4923 	if (mp->b_cont == NULL)
4924 		return (IOC_INVAL);
4925 
4926 	if (!e1000g_check_loopback_support(hw)) {
4927 		e1000g_log(NULL, CE_WARN,
4928 		    "Loopback is not supported on e1000g%d", Adapter->instance);
4929 		return (IOC_INVAL);
4930 	}
4931 
4932 	switch (iocp->ioc_cmd) {
4933 	default:
4934 		return (IOC_INVAL);
4935 
4936 	case LB_GET_INFO_SIZE:
4937 		size = sizeof (lb_info_sz_t);
4938 		if (iocp->ioc_count != size)
4939 			return (IOC_INVAL);
4940 
4941 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4942 		e1000g_get_phy_state(Adapter);
4943 
4944 		/*
4945 		 * Workaround for hardware faults. In order to get a stable
4946 		 * state of phy, we will wait for a specific interval and
4947 		 * try again. The time delay is an experiential value based
4948 		 * on our testing.
4949 		 */
4950 		msec_delay(100);
4951 		e1000g_get_phy_state(Adapter);
4952 		rw_exit(&Adapter->chip_lock);
4953 
4954 		value = sizeof (lb_normal);
4955 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4956 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4957 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4958 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4959 			value += sizeof (lb_phy);
4960 			switch (hw->mac.type) {
4961 			case e1000_82571:
4962 			case e1000_82572:
4963 			case e1000_80003es2lan:
4964 				value += sizeof (lb_external1000);
4965 				break;
4966 			}
4967 		}
4968 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4969 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4970 			value += sizeof (lb_external100);
4971 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4972 			value += sizeof (lb_external10);
4973 
4974 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
4975 		*lbsp = value;
4976 		break;
4977 
4978 	case LB_GET_INFO:
4979 		value = sizeof (lb_normal);
4980 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4981 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4982 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4983 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4984 			value += sizeof (lb_phy);
4985 			switch (hw->mac.type) {
4986 			case e1000_82571:
4987 			case e1000_82572:
4988 			case e1000_80003es2lan:
4989 				value += sizeof (lb_external1000);
4990 				break;
4991 			}
4992 		}
4993 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4994 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4995 			value += sizeof (lb_external100);
4996 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4997 			value += sizeof (lb_external10);
4998 
4999 		size = value;
5000 		if (iocp->ioc_count != size)
5001 			return (IOC_INVAL);
5002 
5003 		value = 0;
5004 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5005 		lbpp[value++] = lb_normal;
5006 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5007 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5008 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5009 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5010 			lbpp[value++] = lb_phy;
5011 			switch (hw->mac.type) {
5012 			case e1000_82571:
5013 			case e1000_82572:
5014 			case e1000_80003es2lan:
5015 				lbpp[value++] = lb_external1000;
5016 				break;
5017 			}
5018 		}
5019 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5020 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5021 			lbpp[value++] = lb_external100;
5022 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5023 			lbpp[value++] = lb_external10;
5024 		break;
5025 
5026 	case LB_GET_MODE:
5027 		size = sizeof (uint32_t);
5028 		if (iocp->ioc_count != size)
5029 			return (IOC_INVAL);
5030 
5031 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5032 		*lbmp = Adapter->loopback_mode;
5033 		break;
5034 
5035 	case LB_SET_MODE:
5036 		size = 0;
5037 		if (iocp->ioc_count != sizeof (uint32_t))
5038 			return (IOC_INVAL);
5039 
5040 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5041 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5042 			return (IOC_INVAL);
5043 		break;
5044 	}
5045 
5046 	iocp->ioc_count = size;
5047 	iocp->ioc_error = 0;
5048 
5049 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5050 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5051 		return (IOC_INVAL);
5052 	}
5053 
5054 	return (IOC_REPLY);
5055 }
5056 
5057 static boolean_t
5058 e1000g_check_loopback_support(struct e1000_hw *hw)
5059 {
5060 	switch (hw->mac.type) {
5061 	case e1000_82540:
5062 	case e1000_82545:
5063 	case e1000_82545_rev_3:
5064 	case e1000_82546:
5065 	case e1000_82546_rev_3:
5066 	case e1000_82541:
5067 	case e1000_82541_rev_2:
5068 	case e1000_82547:
5069 	case e1000_82547_rev_2:
5070 	case e1000_82571:
5071 	case e1000_82572:
5072 	case e1000_82573:
5073 	case e1000_82574:
5074 	case e1000_80003es2lan:
5075 	case e1000_ich9lan:
5076 	case e1000_ich10lan:
5077 		return (B_TRUE);
5078 	}
5079 	return (B_FALSE);
5080 }
5081 
5082 static boolean_t
5083 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5084 {
5085 	struct e1000_hw *hw;
5086 	int i, times;
5087 	boolean_t link_up;
5088 
5089 	if (mode == Adapter->loopback_mode)
5090 		return (B_TRUE);
5091 
5092 	hw = &Adapter->shared;
5093 	times = 0;
5094 
5095 	Adapter->loopback_mode = mode;
5096 
5097 	if (mode == E1000G_LB_NONE) {
5098 		/* Reset the chip */
5099 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5100 		(void) e1000g_reset_adapter(Adapter);
5101 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5102 		return (B_TRUE);
5103 	}
5104 
5105 again:
5106 
5107 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5108 
5109 	switch (mode) {
5110 	default:
5111 		rw_exit(&Adapter->chip_lock);
5112 		return (B_FALSE);
5113 
5114 	case E1000G_LB_EXTERNAL_1000:
5115 		e1000g_set_external_loopback_1000(Adapter);
5116 		break;
5117 
5118 	case E1000G_LB_EXTERNAL_100:
5119 		e1000g_set_external_loopback_100(Adapter);
5120 		break;
5121 
5122 	case E1000G_LB_EXTERNAL_10:
5123 		e1000g_set_external_loopback_10(Adapter);
5124 		break;
5125 
5126 	case E1000G_LB_INTERNAL_PHY:
5127 		e1000g_set_internal_loopback(Adapter);
5128 		break;
5129 	}
5130 
5131 	times++;
5132 
5133 	rw_exit(&Adapter->chip_lock);
5134 
5135 	/* Wait for link up */
5136 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5137 		msec_delay(100);
5138 
5139 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5140 
5141 	link_up = e1000g_link_up(Adapter);
5142 
5143 	rw_exit(&Adapter->chip_lock);
5144 
5145 	if (!link_up) {
5146 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5147 		    "Failed to get the link up");
5148 		if (times < 2) {
5149 			/* Reset the link */
5150 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5151 			    "Reset the link ...");
5152 			(void) e1000g_reset_adapter(Adapter);
5153 			goto again;
5154 		}
5155 	}
5156 
5157 	return (B_TRUE);
5158 }
5159 
5160 /*
5161  * The following loopback settings are from Intel's technical
5162  * document - "How To Loopback". All the register settings and
5163  * time delay values are directly inherited from the document
5164  * without more explanations available.
5165  */
5166 static void
5167 e1000g_set_internal_loopback(struct e1000g *Adapter)
5168 {
5169 	struct e1000_hw *hw;
5170 	uint32_t ctrl;
5171 	uint32_t status;
5172 	uint16_t phy_ctrl;
5173 	uint16_t phy_reg;
5174 	uint32_t txcw;
5175 
5176 	hw = &Adapter->shared;
5177 
5178 	/* Disable Smart Power Down */
5179 	phy_spd_state(hw, B_FALSE);
5180 
5181 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5182 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5183 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5184 
5185 	switch (hw->mac.type) {
5186 	case e1000_82540:
5187 	case e1000_82545:
5188 	case e1000_82545_rev_3:
5189 	case e1000_82546:
5190 	case e1000_82546_rev_3:
5191 	case e1000_82573:
5192 		/* Auto-MDI/MDIX off */
5193 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5194 		/* Reset PHY to update Auto-MDI/MDIX */
5195 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5196 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5197 		/* Reset PHY to auto-neg off and force 1000 */
5198 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5199 		    phy_ctrl | MII_CR_RESET);
5200 		/*
5201 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5202 		 * See comments above e1000g_set_internal_loopback() for the
5203 		 * background.
5204 		 */
5205 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5206 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5207 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5208 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5209 		break;
5210 	case e1000_80003es2lan:
5211 		/* Force Link Up */
5212 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5213 		    0x1CC);
5214 		/* Sets PCS loopback at 1Gbs */
5215 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5216 		    0x1046);
5217 		break;
5218 	}
5219 
5220 	/*
5221 	 * The following registers should be set for e1000_phy_bm phy type.
5222 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5223 	 * For others, we do not need to set these registers.
5224 	 */
5225 	if (hw->phy.type == e1000_phy_bm) {
5226 		/* Set Default MAC Interface speed to 1GB */
5227 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5228 		phy_reg &= ~0x0007;
5229 		phy_reg |= 0x006;
5230 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5231 		/* Assert SW reset for above settings to take effect */
5232 		(void) e1000_phy_commit(hw);
5233 		msec_delay(1);
5234 		/* Force Full Duplex */
5235 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5236 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5237 		    phy_reg | 0x000C);
5238 		/* Set Link Up (in force link) */
5239 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5240 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5241 		    phy_reg | 0x0040);
5242 		/* Force Link */
5243 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5244 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5245 		    phy_reg | 0x0040);
5246 		/* Set Early Link Enable */
5247 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5248 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5249 		    phy_reg | 0x0400);
5250 	}
5251 
5252 	/* Set loopback */
5253 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5254 
5255 	msec_delay(250);
5256 
5257 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5258 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5259 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5260 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5261 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5262 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5263 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5264 
5265 	switch (hw->mac.type) {
5266 	case e1000_82540:
5267 	case e1000_82545:
5268 	case e1000_82545_rev_3:
5269 	case e1000_82546:
5270 	case e1000_82546_rev_3:
5271 		/*
5272 		 * For some serdes we'll need to commit the writes now
5273 		 * so that the status is updated on link
5274 		 */
5275 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5276 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5277 			msec_delay(100);
5278 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5279 		}
5280 
5281 		if (hw->phy.media_type == e1000_media_type_copper) {
5282 			/* Invert Loss of Signal */
5283 			ctrl |= E1000_CTRL_ILOS;
5284 		} else {
5285 			/* Set ILOS on fiber nic if half duplex is detected */
5286 			status = E1000_READ_REG(hw, E1000_STATUS);
5287 			if ((status & E1000_STATUS_FD) == 0)
5288 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5289 		}
5290 		break;
5291 
5292 	case e1000_82571:
5293 	case e1000_82572:
5294 		/*
5295 		 * The fiber/SerDes versions of this adapter do not contain an
5296 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5297 		 * using SerDes analog loopback.
5298 		 */
5299 		if (hw->phy.media_type != e1000_media_type_copper) {
5300 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5301 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5302 			txcw &= ~((uint32_t)1 << 31);
5303 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5304 
5305 			/*
5306 			 * Write 0x410 to Serdes Control register
5307 			 * to enable Serdes analog loopback
5308 			 */
5309 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5310 			msec_delay(10);
5311 		}
5312 
5313 		status = E1000_READ_REG(hw, E1000_STATUS);
5314 		/* Set ILOS on fiber nic if half duplex is detected */
5315 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5316 		    ((status & E1000_STATUS_FD) == 0 ||
5317 		    (status & E1000_STATUS_LU) == 0))
5318 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5319 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5320 			ctrl |= E1000_CTRL_SLU;
5321 		break;
5322 
5323 	case e1000_82573:
5324 		ctrl |= E1000_CTRL_ILOS;
5325 		break;
5326 	case e1000_ich9lan:
5327 	case e1000_ich10lan:
5328 		ctrl |= E1000_CTRL_SLU;
5329 		break;
5330 	}
5331 	if (hw->phy.type == e1000_phy_bm)
5332 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5333 
5334 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5335 }
5336 
5337 static void
5338 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5339 {
5340 	struct e1000_hw *hw;
5341 	uint32_t rctl;
5342 	uint32_t ctrl_ext;
5343 	uint32_t ctrl;
5344 	uint32_t status;
5345 	uint32_t txcw;
5346 	uint16_t phydata;
5347 
5348 	hw = &Adapter->shared;
5349 
5350 	/* Disable Smart Power Down */
5351 	phy_spd_state(hw, B_FALSE);
5352 
5353 	switch (hw->mac.type) {
5354 	case e1000_82571:
5355 	case e1000_82572:
5356 		switch (hw->phy.media_type) {
5357 		case e1000_media_type_copper:
5358 			/* Force link up (Must be done before the PHY writes) */
5359 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5360 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5361 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5362 
5363 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5364 			rctl |= (E1000_RCTL_EN |
5365 			    E1000_RCTL_SBP |
5366 			    E1000_RCTL_UPE |
5367 			    E1000_RCTL_MPE |
5368 			    E1000_RCTL_LPE |
5369 			    E1000_RCTL_BAM);		/* 0x803E */
5370 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5371 
5372 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5373 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5374 			    E1000_CTRL_EXT_SDP6_DATA |
5375 			    E1000_CTRL_EXT_SDP3_DATA |
5376 			    E1000_CTRL_EXT_SDP4_DIR |
5377 			    E1000_CTRL_EXT_SDP6_DIR |
5378 			    E1000_CTRL_EXT_SDP3_DIR);	/* 0x0DD0 */
5379 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5380 
5381 			/*
5382 			 * This sequence tunes the PHY's SDP and no customer
5383 			 * settable values. For background, see comments above
5384 			 * e1000g_set_internal_loopback().
5385 			 */
5386 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5387 			msec_delay(10);
5388 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5389 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5390 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5391 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5392 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5393 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5394 
5395 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5396 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5397 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5398 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5399 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5400 
5401 			msec_delay(50);
5402 			break;
5403 		case e1000_media_type_fiber:
5404 		case e1000_media_type_internal_serdes:
5405 			status = E1000_READ_REG(hw, E1000_STATUS);
5406 			if (((status & E1000_STATUS_LU) == 0) ||
5407 			    (hw->phy.media_type ==
5408 			    e1000_media_type_internal_serdes)) {
5409 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5410 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5411 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5412 			}
5413 
5414 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5415 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5416 			txcw &= ~((uint32_t)1 << 31);
5417 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5418 
5419 			/*
5420 			 * Write 0x410 to Serdes Control register
5421 			 * to enable Serdes analog loopback
5422 			 */
5423 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5424 			msec_delay(10);
5425 			break;
5426 		default:
5427 			break;
5428 		}
5429 		break;
5430 	case e1000_82574:
5431 	case e1000_80003es2lan:
5432 	case e1000_ich9lan:
5433 	case e1000_ich10lan:
5434 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5435 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5436 		    phydata | (1 << 5));
5437 		Adapter->param_adv_autoneg = 1;
5438 		Adapter->param_adv_1000fdx = 1;
5439 		(void) e1000g_reset_link(Adapter);
5440 		break;
5441 	}
5442 }
5443 
5444 static void
5445 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5446 {
5447 	struct e1000_hw *hw;
5448 	uint32_t ctrl;
5449 	uint16_t phy_ctrl;
5450 
5451 	hw = &Adapter->shared;
5452 
5453 	/* Disable Smart Power Down */
5454 	phy_spd_state(hw, B_FALSE);
5455 
5456 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5457 	    MII_CR_SPEED_100);
5458 
5459 	/* Force 100/FD, reset PHY */
5460 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5461 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5462 	msec_delay(10);
5463 
5464 	/* Force 100/FD */
5465 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5466 	    phy_ctrl);			/* 0x2100 */
5467 	msec_delay(10);
5468 
5469 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5470 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5471 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5472 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5473 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5474 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5475 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5476 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5477 
5478 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5479 }
5480 
5481 static void
5482 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5483 {
5484 	struct e1000_hw *hw;
5485 	uint32_t ctrl;
5486 	uint16_t phy_ctrl;
5487 
5488 	hw = &Adapter->shared;
5489 
5490 	/* Disable Smart Power Down */
5491 	phy_spd_state(hw, B_FALSE);
5492 
5493 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5494 	    MII_CR_SPEED_10);
5495 
5496 	/* Force 10/FD, reset PHY */
5497 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5498 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5499 	msec_delay(10);
5500 
5501 	/* Force 10/FD */
5502 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5503 	    phy_ctrl);			/* 0x0100 */
5504 	msec_delay(10);
5505 
5506 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5507 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5508 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5509 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5510 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5511 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5512 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5513 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5514 
5515 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5516 }
5517 
5518 #ifdef __sparc
5519 static boolean_t
5520 e1000g_find_mac_address(struct e1000g *Adapter)
5521 {
5522 	struct e1000_hw *hw = &Adapter->shared;
5523 	uchar_t *bytes;
5524 	struct ether_addr sysaddr;
5525 	uint_t nelts;
5526 	int err;
5527 	boolean_t found = B_FALSE;
5528 
5529 	/*
5530 	 * The "vendor's factory-set address" may already have
5531 	 * been extracted from the chip, but if the property
5532 	 * "local-mac-address" is set we use that instead.
5533 	 *
5534 	 * We check whether it looks like an array of 6
5535 	 * bytes (which it should, if OBP set it).  If we can't
5536 	 * make sense of it this way, we'll ignore it.
5537 	 */
5538 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5539 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5540 	if (err == DDI_PROP_SUCCESS) {
5541 		if (nelts == ETHERADDRL) {
5542 			while (nelts--)
5543 				hw->mac.addr[nelts] = bytes[nelts];
5544 			found = B_TRUE;
5545 		}
5546 		ddi_prop_free(bytes);
5547 	}
5548 
5549 	/*
5550 	 * Look up the OBP property "local-mac-address?". If the user has set
5551 	 * 'local-mac-address? = false', use "the system address" instead.
5552 	 */
5553 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5554 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5555 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5556 			if (localetheraddr(NULL, &sysaddr) != 0) {
5557 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5558 				found = B_TRUE;
5559 			}
5560 		}
5561 		ddi_prop_free(bytes);
5562 	}
5563 
5564 	/*
5565 	 * Finally(!), if there's a valid "mac-address" property (created
5566 	 * if we netbooted from this interface), we must use this instead
5567 	 * of any of the above to ensure that the NFS/install server doesn't
5568 	 * get confused by the address changing as Solaris takes over!
5569 	 */
5570 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5571 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5572 	if (err == DDI_PROP_SUCCESS) {
5573 		if (nelts == ETHERADDRL) {
5574 			while (nelts--)
5575 				hw->mac.addr[nelts] = bytes[nelts];
5576 			found = B_TRUE;
5577 		}
5578 		ddi_prop_free(bytes);
5579 	}
5580 
5581 	if (found) {
5582 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5583 		    ETHERADDRL);
5584 	}
5585 
5586 	return (found);
5587 }
5588 #endif
5589 
5590 static int
5591 e1000g_add_intrs(struct e1000g *Adapter)
5592 {
5593 	dev_info_t *devinfo;
5594 	int intr_types;
5595 	int rc;
5596 
5597 	devinfo = Adapter->dip;
5598 
5599 	/* Get supported interrupt types */
5600 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5601 
5602 	if (rc != DDI_SUCCESS) {
5603 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5604 		    "Get supported interrupt types failed: %d\n", rc);
5605 		return (DDI_FAILURE);
5606 	}
5607 
5608 	/*
5609 	 * Based on Intel Technical Advisory document (TA-160), there are some
5610 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5611 	 * that it supports MSI, but in fact has problems.
5612 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5613 	 * PCI/PCI-X NICs.
5614 	 */
5615 	if (Adapter->shared.mac.type < e1000_82571)
5616 		Adapter->msi_enable = B_FALSE;
5617 
5618 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5619 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5620 
5621 		if (rc != DDI_SUCCESS) {
5622 			/* EMPTY */
5623 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5624 			    "Add MSI failed, trying Legacy interrupts\n");
5625 		} else {
5626 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5627 		}
5628 	}
5629 
5630 	if ((Adapter->intr_type == 0) &&
5631 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5632 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5633 
5634 		if (rc != DDI_SUCCESS) {
5635 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5636 			    "Add Legacy interrupts failed\n");
5637 			return (DDI_FAILURE);
5638 		}
5639 
5640 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5641 	}
5642 
5643 	if (Adapter->intr_type == 0) {
5644 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5645 		    "No interrupts registered\n");
5646 		return (DDI_FAILURE);
5647 	}
5648 
5649 	return (DDI_SUCCESS);
5650 }
5651 
5652 /*
5653  * e1000g_intr_add() handles MSI/Legacy interrupts
5654  */
5655 static int
5656 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5657 {
5658 	dev_info_t *devinfo;
5659 	int count, avail, actual;
5660 	int x, y, rc, inum = 0;
5661 	int flag;
5662 	ddi_intr_handler_t *intr_handler;
5663 
5664 	devinfo = Adapter->dip;
5665 
5666 	/* get number of interrupts */
5667 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5668 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5669 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5670 		    "Get interrupt number failed. Return: %d, count: %d\n",
5671 		    rc, count);
5672 		return (DDI_FAILURE);
5673 	}
5674 
5675 	/* get number of available interrupts */
5676 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5677 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5678 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5679 		    "Get interrupt available number failed. "
5680 		    "Return: %d, available: %d\n", rc, avail);
5681 		return (DDI_FAILURE);
5682 	}
5683 
5684 	if (avail < count) {
5685 		/* EMPTY */
5686 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5687 		    "Interrupts count: %d, available: %d\n",
5688 		    count, avail);
5689 	}
5690 
5691 	/* Allocate an array of interrupt handles */
5692 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5693 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5694 
5695 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5696 	flag = DDI_INTR_ALLOC_NORMAL;
5697 
5698 	/* call ddi_intr_alloc() */
5699 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5700 	    count, &actual, flag);
5701 
5702 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5703 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5704 		    "Allocate interrupts failed: %d\n", rc);
5705 
5706 		kmem_free(Adapter->htable, Adapter->intr_size);
5707 		return (DDI_FAILURE);
5708 	}
5709 
5710 	if (actual < count) {
5711 		/* EMPTY */
5712 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5713 		    "Interrupts requested: %d, received: %d\n",
5714 		    count, actual);
5715 	}
5716 
5717 	Adapter->intr_cnt = actual;
5718 
5719 	/* Get priority for first msi, assume remaining are all the same */
5720 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5721 
5722 	if (rc != DDI_SUCCESS) {
5723 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5724 		    "Get interrupt priority failed: %d\n", rc);
5725 
5726 		/* Free already allocated intr */
5727 		for (y = 0; y < actual; y++)
5728 			(void) ddi_intr_free(Adapter->htable[y]);
5729 
5730 		kmem_free(Adapter->htable, Adapter->intr_size);
5731 		return (DDI_FAILURE);
5732 	}
5733 
5734 	/*
5735 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5736 	 * use the interrupt service routine e1000g_intr_pciexpress()
5737 	 * to avoid interrupt stealing when sharing interrupt with other
5738 	 * devices.
5739 	 */
5740 	if (Adapter->shared.mac.type < e1000_82571)
5741 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5742 	else
5743 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5744 
5745 	/* Call ddi_intr_add_handler() */
5746 	for (x = 0; x < actual; x++) {
5747 		rc = ddi_intr_add_handler(Adapter->htable[x],
5748 		    intr_handler, (caddr_t)Adapter, NULL);
5749 
5750 		if (rc != DDI_SUCCESS) {
5751 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5752 			    "Add interrupt handler failed: %d\n", rc);
5753 
5754 			/* Remove already added handler */
5755 			for (y = 0; y < x; y++)
5756 				(void) ddi_intr_remove_handler(
5757 				    Adapter->htable[y]);
5758 
5759 			/* Free already allocated intr */
5760 			for (y = 0; y < actual; y++)
5761 				(void) ddi_intr_free(Adapter->htable[y]);
5762 
5763 			kmem_free(Adapter->htable, Adapter->intr_size);
5764 			return (DDI_FAILURE);
5765 		}
5766 	}
5767 
5768 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5769 
5770 	if (rc != DDI_SUCCESS) {
5771 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5772 		    "Get interrupt cap failed: %d\n", rc);
5773 
5774 		/* Free already allocated intr */
5775 		for (y = 0; y < actual; y++) {
5776 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5777 			(void) ddi_intr_free(Adapter->htable[y]);
5778 		}
5779 
5780 		kmem_free(Adapter->htable, Adapter->intr_size);
5781 		return (DDI_FAILURE);
5782 	}
5783 
5784 	return (DDI_SUCCESS);
5785 }
5786 
5787 static int
5788 e1000g_rem_intrs(struct e1000g *Adapter)
5789 {
5790 	int x;
5791 	int rc;
5792 
5793 	for (x = 0; x < Adapter->intr_cnt; x++) {
5794 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5795 		if (rc != DDI_SUCCESS) {
5796 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5797 			    "Remove intr handler failed: %d\n", rc);
5798 			return (DDI_FAILURE);
5799 		}
5800 
5801 		rc = ddi_intr_free(Adapter->htable[x]);
5802 		if (rc != DDI_SUCCESS) {
5803 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5804 			    "Free intr failed: %d\n", rc);
5805 			return (DDI_FAILURE);
5806 		}
5807 	}
5808 
5809 	kmem_free(Adapter->htable, Adapter->intr_size);
5810 
5811 	return (DDI_SUCCESS);
5812 }
5813 
5814 static int
5815 e1000g_enable_intrs(struct e1000g *Adapter)
5816 {
5817 	int x;
5818 	int rc;
5819 
5820 	/* Enable interrupts */
5821 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5822 		/* Call ddi_intr_block_enable() for MSI */
5823 		rc = ddi_intr_block_enable(Adapter->htable,
5824 		    Adapter->intr_cnt);
5825 		if (rc != DDI_SUCCESS) {
5826 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5827 			    "Enable block intr failed: %d\n", rc);
5828 			return (DDI_FAILURE);
5829 		}
5830 	} else {
5831 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5832 		for (x = 0; x < Adapter->intr_cnt; x++) {
5833 			rc = ddi_intr_enable(Adapter->htable[x]);
5834 			if (rc != DDI_SUCCESS) {
5835 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5836 				    "Enable intr failed: %d\n", rc);
5837 				return (DDI_FAILURE);
5838 			}
5839 		}
5840 	}
5841 
5842 	return (DDI_SUCCESS);
5843 }
5844 
5845 static int
5846 e1000g_disable_intrs(struct e1000g *Adapter)
5847 {
5848 	int x;
5849 	int rc;
5850 
5851 	/* Disable all interrupts */
5852 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5853 		rc = ddi_intr_block_disable(Adapter->htable,
5854 		    Adapter->intr_cnt);
5855 		if (rc != DDI_SUCCESS) {
5856 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5857 			    "Disable block intr failed: %d\n", rc);
5858 			return (DDI_FAILURE);
5859 		}
5860 	} else {
5861 		for (x = 0; x < Adapter->intr_cnt; x++) {
5862 			rc = ddi_intr_disable(Adapter->htable[x]);
5863 			if (rc != DDI_SUCCESS) {
5864 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5865 				    "Disable intr failed: %d\n", rc);
5866 				return (DDI_FAILURE);
5867 			}
5868 		}
5869 	}
5870 
5871 	return (DDI_SUCCESS);
5872 }
5873 
5874 /*
5875  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5876  */
5877 static void
5878 e1000g_get_phy_state(struct e1000g *Adapter)
5879 {
5880 	struct e1000_hw *hw = &Adapter->shared;
5881 
5882 	if (hw->phy.media_type == e1000_media_type_copper) {
5883 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5884 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5885 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
5886 		    &Adapter->phy_an_adv);
5887 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
5888 		    &Adapter->phy_an_exp);
5889 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
5890 		    &Adapter->phy_ext_status);
5891 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
5892 		    &Adapter->phy_1000t_ctrl);
5893 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5894 		    &Adapter->phy_1000t_status);
5895 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
5896 		    &Adapter->phy_lp_able);
5897 
5898 		Adapter->param_autoneg_cap =
5899 		    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5900 		Adapter->param_pause_cap =
5901 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5902 		Adapter->param_asym_pause_cap =
5903 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5904 		Adapter->param_1000fdx_cap =
5905 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5906 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5907 		Adapter->param_1000hdx_cap =
5908 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5909 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5910 		Adapter->param_100t4_cap =
5911 		    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5912 		Adapter->param_100fdx_cap =
5913 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5914 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5915 		Adapter->param_100hdx_cap =
5916 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5917 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5918 		Adapter->param_10fdx_cap =
5919 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5920 		Adapter->param_10hdx_cap =
5921 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5922 
5923 		Adapter->param_adv_autoneg = hw->mac.autoneg;
5924 		Adapter->param_adv_pause =
5925 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5926 		Adapter->param_adv_asym_pause =
5927 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5928 		Adapter->param_adv_1000hdx =
5929 		    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5930 		Adapter->param_adv_100t4 =
5931 		    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5932 		if (Adapter->param_adv_autoneg == 1) {
5933 			Adapter->param_adv_1000fdx =
5934 			    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
5935 			    ? 1 : 0;
5936 			Adapter->param_adv_100fdx =
5937 			    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
5938 			    ? 1 : 0;
5939 			Adapter->param_adv_100hdx =
5940 			    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
5941 			    ? 1 : 0;
5942 			Adapter->param_adv_10fdx =
5943 			    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5944 			Adapter->param_adv_10hdx =
5945 			    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5946 		}
5947 
5948 		Adapter->param_lp_autoneg =
5949 		    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5950 		Adapter->param_lp_pause =
5951 		    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5952 		Adapter->param_lp_asym_pause =
5953 		    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5954 		Adapter->param_lp_1000fdx =
5955 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5956 		Adapter->param_lp_1000hdx =
5957 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5958 		Adapter->param_lp_100t4 =
5959 		    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5960 		Adapter->param_lp_100fdx =
5961 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5962 		Adapter->param_lp_100hdx =
5963 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5964 		Adapter->param_lp_10fdx =
5965 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5966 		Adapter->param_lp_10hdx =
5967 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5968 	} else {
5969 		/*
5970 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
5971 		 * it can only work with 1Gig Full Duplex Link Partner.
5972 		 */
5973 		Adapter->param_autoneg_cap = 0;
5974 		Adapter->param_pause_cap = 1;
5975 		Adapter->param_asym_pause_cap = 1;
5976 		Adapter->param_1000fdx_cap = 1;
5977 		Adapter->param_1000hdx_cap = 0;
5978 		Adapter->param_100t4_cap = 0;
5979 		Adapter->param_100fdx_cap = 0;
5980 		Adapter->param_100hdx_cap = 0;
5981 		Adapter->param_10fdx_cap = 0;
5982 		Adapter->param_10hdx_cap = 0;
5983 
5984 		Adapter->param_adv_autoneg = 0;
5985 		Adapter->param_adv_pause = 1;
5986 		Adapter->param_adv_asym_pause = 1;
5987 		Adapter->param_adv_1000fdx = 1;
5988 		Adapter->param_adv_1000hdx = 0;
5989 		Adapter->param_adv_100t4 = 0;
5990 		Adapter->param_adv_100fdx = 0;
5991 		Adapter->param_adv_100hdx = 0;
5992 		Adapter->param_adv_10fdx = 0;
5993 		Adapter->param_adv_10hdx = 0;
5994 
5995 		Adapter->param_lp_autoneg = 0;
5996 		Adapter->param_lp_pause = 0;
5997 		Adapter->param_lp_asym_pause = 0;
5998 		Adapter->param_lp_1000fdx = 0;
5999 		Adapter->param_lp_1000hdx = 0;
6000 		Adapter->param_lp_100t4 = 0;
6001 		Adapter->param_lp_100fdx = 0;
6002 		Adapter->param_lp_100hdx = 0;
6003 		Adapter->param_lp_10fdx = 0;
6004 		Adapter->param_lp_10hdx = 0;
6005 	}
6006 }
6007 
6008 /*
6009  * FMA support
6010  */
6011 
6012 int
6013 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6014 {
6015 	ddi_fm_error_t de;
6016 
6017 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6018 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6019 	return (de.fme_status);
6020 }
6021 
6022 int
6023 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6024 {
6025 	ddi_fm_error_t de;
6026 
6027 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6028 	return (de.fme_status);
6029 }
6030 
6031 /*
6032  * The IO fault service error handling callback function
6033  */
6034 /* ARGSUSED2 */
6035 static int
6036 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6037 {
6038 	/*
6039 	 * as the driver can always deal with an error in any dma or
6040 	 * access handle, we can just return the fme_status value.
6041 	 */
6042 	pci_ereport_post(dip, err, NULL);
6043 	return (err->fme_status);
6044 }
6045 
6046 static void
6047 e1000g_fm_init(struct e1000g *Adapter)
6048 {
6049 	ddi_iblock_cookie_t iblk;
6050 	int fma_dma_flag;
6051 
6052 	/* Only register with IO Fault Services if we have some capability */
6053 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6054 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6055 	} else {
6056 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6057 	}
6058 
6059 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6060 		fma_dma_flag = 1;
6061 	} else {
6062 		fma_dma_flag = 0;
6063 	}
6064 
6065 	(void) e1000g_set_fma_flags(fma_dma_flag);
6066 
6067 	if (Adapter->fm_capabilities) {
6068 
6069 		/* Register capabilities with IO Fault Services */
6070 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6071 
6072 		/*
6073 		 * Initialize pci ereport capabilities if ereport capable
6074 		 */
6075 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6076 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6077 			pci_ereport_setup(Adapter->dip);
6078 
6079 		/*
6080 		 * Register error callback if error callback capable
6081 		 */
6082 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6083 			ddi_fm_handler_register(Adapter->dip,
6084 			    e1000g_fm_error_cb, (void*) Adapter);
6085 	}
6086 }
6087 
6088 static void
6089 e1000g_fm_fini(struct e1000g *Adapter)
6090 {
6091 	/* Only unregister FMA capabilities if we registered some */
6092 	if (Adapter->fm_capabilities) {
6093 
6094 		/*
6095 		 * Release any resources allocated by pci_ereport_setup()
6096 		 */
6097 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6098 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6099 			pci_ereport_teardown(Adapter->dip);
6100 
6101 		/*
6102 		 * Un-register error callback if error callback capable
6103 		 */
6104 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6105 			ddi_fm_handler_unregister(Adapter->dip);
6106 
6107 		/* Unregister from IO Fault Services */
6108 		mutex_enter(&e1000g_rx_detach_lock);
6109 		ddi_fm_fini(Adapter->dip);
6110 		if (Adapter->priv_dip != NULL) {
6111 			DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6112 		}
6113 		mutex_exit(&e1000g_rx_detach_lock);
6114 	}
6115 }
6116 
6117 void
6118 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6119 {
6120 	uint64_t ena;
6121 	char buf[FM_MAX_CLASS];
6122 
6123 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6124 	ena = fm_ena_generate(0, FM_ENA_FMT1);
6125 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6126 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6127 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6128 	}
6129 }
6130 
6131 /*
6132  * quiesce(9E) entry point.
6133  *
6134  * This function is called when the system is single-threaded at high
6135  * PIL with preemption disabled. Therefore, this function must not be
6136  * blocked.
6137  *
6138  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6139  * DDI_FAILURE indicates an error condition and should almost never happen.
6140  */
6141 static int
6142 e1000g_quiesce(dev_info_t *devinfo)
6143 {
6144 	struct e1000g *Adapter;
6145 
6146 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6147 
6148 	if (Adapter == NULL)
6149 		return (DDI_FAILURE);
6150 
6151 	e1000g_clear_all_interrupts(Adapter);
6152 
6153 	(void) e1000_reset_hw(&Adapter->shared);
6154 
6155 	/* Setup our HW Tx Head & Tail descriptor pointers */
6156 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6157 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6158 
6159 	/* Setup our HW Rx Head & Tail descriptor pointers */
6160 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6161 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6162 
6163 	return (DDI_SUCCESS);
6164 }
6165 
6166 static int
6167 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
6168     uint_t pr_valsize, void *pr_val)
6169 {
6170 	link_flowctrl_t fl;
6171 	struct e1000_hw *hw = &Adapter->shared;
6172 	int err = 0;
6173 
6174 	ASSERT(pr_valsize > 0);
6175 	switch (pr_num) {
6176 	case MAC_PROP_AUTONEG:
6177 		if (hw->phy.media_type != e1000_media_type_copper)
6178 			*(uint8_t *)pr_val = 0;
6179 		else
6180 			*(uint8_t *)pr_val =
6181 			    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS)
6182 			    ? 1 : 0);
6183 		break;
6184 	case MAC_PROP_FLOWCTRL:
6185 		if (pr_valsize < sizeof (link_flowctrl_t))
6186 			return (EINVAL);
6187 		fl = LINK_FLOWCTRL_BI;
6188 		bcopy(&fl, pr_val, sizeof (fl));
6189 		break;
6190 	case MAC_PROP_ADV_1000FDX_CAP:
6191 	case MAC_PROP_EN_1000FDX_CAP:
6192 		if (hw->phy.media_type != e1000_media_type_copper)
6193 			*(uint8_t *)pr_val = 1;
6194 		else
6195 			*(uint8_t *)pr_val =
6196 			    ((Adapter->phy_ext_status &
6197 			    IEEE_ESR_1000T_FD_CAPS) ||
6198 			    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS))
6199 			    ? 1 : 0;
6200 		break;
6201 	case MAC_PROP_ADV_1000HDX_CAP:
6202 	case MAC_PROP_EN_1000HDX_CAP:
6203 		*(uint8_t *)pr_val = 0;
6204 		break;
6205 	case MAC_PROP_ADV_100FDX_CAP:
6206 	case MAC_PROP_EN_100FDX_CAP:
6207 		if (hw->phy.media_type != e1000_media_type_copper)
6208 			*(uint8_t *)pr_val = 0;
6209 		else
6210 			*(uint8_t *)pr_val =
6211 			    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6212 			    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
6213 			    ? 1 : 0;
6214 		break;
6215 	case MAC_PROP_ADV_100HDX_CAP:
6216 	case MAC_PROP_EN_100HDX_CAP:
6217 		if (hw->phy.media_type != e1000_media_type_copper)
6218 			*(uint8_t *)pr_val = 0;
6219 		else
6220 			*(uint8_t *)pr_val =
6221 			    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6222 			    (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
6223 			    ? 1 : 0;
6224 		break;
6225 	case MAC_PROP_ADV_10FDX_CAP:
6226 	case MAC_PROP_EN_10FDX_CAP:
6227 		if (hw->phy.media_type != e1000_media_type_copper)
6228 			*(uint8_t *)pr_val = 0;
6229 		else
6230 			*(uint8_t *)pr_val =
6231 			    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6232 		break;
6233 	case MAC_PROP_ADV_10HDX_CAP:
6234 	case MAC_PROP_EN_10HDX_CAP:
6235 		if (hw->phy.media_type != e1000_media_type_copper)
6236 			*(uint8_t *)pr_val = 0;
6237 		else
6238 			*(uint8_t *)pr_val =
6239 			    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6240 		break;
6241 	default:
6242 		err = ENOTSUP;
6243 		break;
6244 	}
6245 	return (err);
6246 }
6247 
6248 /*
6249  * synchronize the adv* and en* parameters.
6250  *
6251  * See comments in <sys/dld.h> for details of the *_en_*
6252  * parameters. The usage of ndd for setting adv parameters will
6253  * synchronize all the en parameters with the e1000g parameters,
6254  * implicitly disabling any settings made via dladm.
6255  */
6256 static void
6257 e1000g_param_sync(struct e1000g *Adapter)
6258 {
6259 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6260 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6261 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6262 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6263 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6264 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6265 }
6266 
6267 /*
6268  * e1000g_get_driver_control - tell manageability firmware that the driver
6269  * has control.
6270  */
6271 static void
6272 e1000g_get_driver_control(struct e1000_hw *hw)
6273 {
6274 	uint32_t ctrl_ext;
6275 	uint32_t swsm;
6276 
6277 	/* tell manageability firmware the driver has taken over */
6278 	switch (hw->mac.type) {
6279 	case e1000_82573:
6280 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6281 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6282 		break;
6283 	case e1000_82571:
6284 	case e1000_82572:
6285 	case e1000_82574:
6286 	case e1000_80003es2lan:
6287 	case e1000_ich8lan:
6288 	case e1000_ich9lan:
6289 	case e1000_ich10lan:
6290 	case e1000_pchlan:
6291 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6292 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6293 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6294 		break;
6295 	default:
6296 		/* no manageability firmware: do nothing */
6297 		break;
6298 	}
6299 }
6300 
6301 /*
6302  * e1000g_release_driver_control - tell manageability firmware that the driver
6303  * has released control.
6304  */
6305 static void
6306 e1000g_release_driver_control(struct e1000_hw *hw)
6307 {
6308 	uint32_t ctrl_ext;
6309 	uint32_t swsm;
6310 
6311 	/* tell manageability firmware the driver has released control */
6312 	switch (hw->mac.type) {
6313 	case e1000_82573:
6314 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6315 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6316 		break;
6317 	case e1000_82571:
6318 	case e1000_82572:
6319 	case e1000_82574:
6320 	case e1000_80003es2lan:
6321 	case e1000_ich8lan:
6322 	case e1000_ich9lan:
6323 	case e1000_ich10lan:
6324 	case e1000_pchlan:
6325 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6326 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6327 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6328 		break;
6329 	default:
6330 		/* no manageability firmware: do nothing */
6331 		break;
6332 	}
6333 }
6334 
6335 /*
6336  * Restore e1000g promiscuous mode.
6337  */
6338 static void
6339 e1000g_restore_promisc(struct e1000g *Adapter)
6340 {
6341 	if (Adapter->e1000g_promisc) {
6342 		uint32_t rctl;
6343 
6344 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6345 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6346 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6347 	}
6348 }
6349