xref: /titanic_44/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 87c5f7b3eef6309c168257f261ac6ace4581d234)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * **********************************************************************
30  *									*
31  * Module Name:								*
32  *   e1000g_main.c							*
33  *									*
34  * Abstract:								*
35  *   This file contains the interface routines for the solaris OS.	*
36  *   It has all DDI entry point routines and GLD entry point routines.	*
37  *									*
38  *   This file also contains routines that take care of initialization	*
39  *   uninit routine and interrupt routine.				*
40  *									*
41  * **********************************************************************
42  */
43 
44 #include <sys/dlpi.h>
45 #include <sys/mac.h>
46 #include "e1000g_sw.h"
47 #include "e1000g_debug.h"
48 
49 static char ident[] = "Intel PRO/1000 Ethernet 5.2.11";
50 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
51 static char e1000g_version[] = "Driver Ver. 5.2.11";
52 
53 /*
54  * Proto types for DDI entry points
55  */
56 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
57 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
58 
59 /*
60  * init and intr routines prototype
61  */
62 static int e1000g_resume(dev_info_t *);
63 static int e1000g_suspend(dev_info_t *);
64 static uint_t e1000g_intr_pciexpress(caddr_t);
65 static uint_t e1000g_intr(caddr_t);
66 static void e1000g_intr_work(struct e1000g *, uint32_t);
67 #pragma inline(e1000g_intr_work)
68 static uint32_t e1000g_get_itr(uint32_t, uint32_t, uint32_t);
69 #pragma inline(e1000g_get_itr)
70 static int e1000g_init(struct e1000g *);
71 static int e1000g_start(struct e1000g *, boolean_t);
72 static void e1000g_stop(struct e1000g *, boolean_t);
73 static int e1000g_m_start(void *);
74 static void e1000g_m_stop(void *);
75 static int e1000g_m_promisc(void *, boolean_t);
76 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
77 static int e1000g_m_unicst(void *, const uint8_t *);
78 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
79 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
80 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
81 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
82 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
83 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
84 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
85     uint_t, const void *);
86 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
87     uint_t, uint_t, void *);
88 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
89     const void *);
90 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
91     uint_t, void *);
92 static void e1000g_init_locks(struct e1000g *);
93 static void e1000g_destroy_locks(struct e1000g *);
94 static int e1000g_identify_hardware(struct e1000g *);
95 static int e1000g_regs_map(struct e1000g *);
96 static int e1000g_set_driver_params(struct e1000g *);
97 static void e1000g_set_bufsize(struct e1000g *);
98 static int e1000g_register_mac(struct e1000g *);
99 static boolean_t e1000g_rx_drain(struct e1000g *);
100 static boolean_t e1000g_tx_drain(struct e1000g *);
101 static void e1000g_init_unicst(struct e1000g *);
102 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
103 
104 /*
105  * Local routines
106  */
107 static void e1000g_tx_clean(struct e1000g *);
108 static void e1000g_rx_clean(struct e1000g *);
109 static void e1000g_link_timer(void *);
110 static void e1000g_local_timer(void *);
111 static boolean_t e1000g_link_check(struct e1000g *);
112 static boolean_t e1000g_stall_check(struct e1000g *);
113 static void e1000g_smartspeed(struct e1000g *);
114 static void e1000g_get_conf(struct e1000g *);
115 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
116 static void enable_watchdog_timer(struct e1000g *);
117 static void disable_watchdog_timer(struct e1000g *);
118 static void start_watchdog_timer(struct e1000g *);
119 static void restart_watchdog_timer(struct e1000g *);
120 static void stop_watchdog_timer(struct e1000g *);
121 static void stop_link_timer(struct e1000g *);
122 static void stop_82547_timer(e1000g_tx_ring_t *);
123 static void e1000g_force_speed_duplex(struct e1000g *);
124 static void e1000g_get_max_frame_size(struct e1000g *);
125 static boolean_t is_valid_mac_addr(uint8_t *);
126 static void e1000g_unattach(dev_info_t *, struct e1000g *);
127 #ifdef E1000G_DEBUG
128 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
129 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
130 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
131 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
132 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
133     struct iocblk *, mblk_t *);
134 #endif
135 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
136     struct iocblk *, mblk_t *);
137 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
138 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
139 static void e1000g_set_internal_loopback(struct e1000g *);
140 static void e1000g_set_external_loopback_1000(struct e1000g *);
141 static void e1000g_set_external_loopback_100(struct e1000g *);
142 static void e1000g_set_external_loopback_10(struct e1000g *);
143 static int e1000g_add_intrs(struct e1000g *);
144 static int e1000g_intr_add(struct e1000g *, int);
145 static int e1000g_rem_intrs(struct e1000g *);
146 static int e1000g_enable_intrs(struct e1000g *);
147 static int e1000g_disable_intrs(struct e1000g *);
148 static boolean_t e1000g_link_up(struct e1000g *);
149 #ifdef __sparc
150 static boolean_t e1000g_find_mac_address(struct e1000g *);
151 #endif
152 static void e1000g_get_phy_state(struct e1000g *);
153 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
154 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
155     const void *impl_data);
156 static void e1000g_fm_init(struct e1000g *Adapter);
157 static void e1000g_fm_fini(struct e1000g *Adapter);
158 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
159 static void e1000g_param_sync(struct e1000g *);
160 
161 mac_priv_prop_t e1000g_priv_props[] = {
162 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
163 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
164 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
165 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
166 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
167 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
168 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
169 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
170 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
171 	{"_intr_adaptive", MAC_PROP_PERM_RW},
172 	{"_tx_recycle_thresh", MAC_PROP_PERM_RW},
173 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
174 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
175 	{"_tx_recycle_num", MAC_PROP_PERM_RW}
176 };
177 #define	E1000G_MAX_PRIV_PROPS	\
178 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
179 
180 
181 static struct cb_ops cb_ws_ops = {
182 	nulldev,		/* cb_open */
183 	nulldev,		/* cb_close */
184 	nodev,			/* cb_strategy */
185 	nodev,			/* cb_print */
186 	nodev,			/* cb_dump */
187 	nodev,			/* cb_read */
188 	nodev,			/* cb_write */
189 	nodev,			/* cb_ioctl */
190 	nodev,			/* cb_devmap */
191 	nodev,			/* cb_mmap */
192 	nodev,			/* cb_segmap */
193 	nochpoll,		/* cb_chpoll */
194 	ddi_prop_op,		/* cb_prop_op */
195 	NULL,			/* cb_stream */
196 	D_MP | D_HOTPLUG,	/* cb_flag */
197 	CB_REV,			/* cb_rev */
198 	nodev,			/* cb_aread */
199 	nodev			/* cb_awrite */
200 };
201 
202 static struct dev_ops ws_ops = {
203 	DEVO_REV,		/* devo_rev */
204 	0,			/* devo_refcnt */
205 	NULL,			/* devo_getinfo */
206 	nulldev,		/* devo_identify */
207 	nulldev,		/* devo_probe */
208 	e1000g_attach,		/* devo_attach */
209 	e1000g_detach,		/* devo_detach */
210 	nodev,			/* devo_reset */
211 	&cb_ws_ops,		/* devo_cb_ops */
212 	NULL,			/* devo_bus_ops */
213 	ddi_power		/* devo_power */
214 };
215 
216 static struct modldrv modldrv = {
217 	&mod_driverops,		/* Type of module.  This one is a driver */
218 	ident,			/* Discription string */
219 	&ws_ops,		/* driver ops */
220 };
221 
222 static struct modlinkage modlinkage = {
223 	MODREV_1, &modldrv, NULL
224 };
225 
226 /* Access attributes for register mapping */
227 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
228 	DDI_DEVICE_ATTR_V0,
229 	DDI_STRUCTURE_LE_ACC,
230 	DDI_STRICTORDER_ACC,
231 	DDI_FLAGERR_ACC
232 };
233 
234 #define	E1000G_M_CALLBACK_FLAGS \
235 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
236 
237 static mac_callbacks_t e1000g_m_callbacks = {
238 	E1000G_M_CALLBACK_FLAGS,
239 	e1000g_m_stat,
240 	e1000g_m_start,
241 	e1000g_m_stop,
242 	e1000g_m_promisc,
243 	e1000g_m_multicst,
244 	e1000g_m_unicst,
245 	e1000g_m_tx,
246 	NULL,
247 	e1000g_m_ioctl,
248 	e1000g_m_getcapab,
249 	NULL,
250 	NULL,
251 	e1000g_m_setprop,
252 	e1000g_m_getprop
253 };
254 
255 /*
256  * Global variables
257  */
258 uint32_t e1000g_mblks_pending = 0;
259 /*
260  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
261  * Here we maintain a private dev_info list if e1000g_force_detach is
262  * enabled. If we force the driver to detach while there are still some
263  * rx buffers retained in the upper layer, we have to keep a copy of the
264  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
265  * structure will be freed after the driver is detached. However when we
266  * finally free those rx buffers released by the upper layer, we need to
267  * refer to the dev_info to free the dma buffers. So we save a copy of
268  * the dev_info for this purpose. On x86 platform, we assume this copy
269  * of dev_info is always valid, but on SPARC platform, it could be invalid
270  * after the system board level DR operation. For this reason, the global
271  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
272  */
273 #ifdef __sparc
274 boolean_t e1000g_force_detach = B_FALSE;
275 #else
276 boolean_t e1000g_force_detach = B_TRUE;
277 #endif
278 private_devi_list_t *e1000g_private_devi_list = NULL;
279 
280 /*
281  * The rwlock is defined to protect the whole processing of rx recycling
282  * and the rx packets release in detach processing to make them mutually
283  * exclusive.
284  * The rx recycling processes different rx packets in different threads,
285  * so it will be protected with RW_READER and it won't block any other rx
286  * recycling threads.
287  * While the detach processing will be protected with RW_WRITER to make
288  * it mutually exclusive with the rx recycling.
289  */
290 krwlock_t e1000g_rx_detach_lock;
291 /*
292  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
293  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
294  * If there are many e1000g instances, the system may run out of DVMA
295  * resources during the initialization of the instances, then the flag will
296  * be changed to "USE_DMA". Because different e1000g instances are initialized
297  * in parallel, we need to use this lock to protect the flag.
298  */
299 krwlock_t e1000g_dma_type_lock;
300 
301 /*
302  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
303  * Based on the information from Intel, the 82546 chipset has some hardware
304  * problem. When one port is being reset and the other port is trying to
305  * access the eeprom, it could cause system hang or panic. To workaround this
306  * hardware problem, we use a global mutex to prevent such operations from
307  * happening simultaneously on different instances. This workaround is applied
308  * to all the devices supported by this driver.
309  */
310 kmutex_t e1000g_nvm_lock;
311 
312 /*
313  * Loadable module configuration entry points for the driver
314  */
315 
316 /*
317  * _init - module initialization
318  */
319 int
320 _init(void)
321 {
322 	int status;
323 
324 	mac_init_ops(&ws_ops, WSNAME);
325 	status = mod_install(&modlinkage);
326 	if (status != DDI_SUCCESS)
327 		mac_fini_ops(&ws_ops);
328 	else {
329 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
330 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
331 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
332 	}
333 
334 	return (status);
335 }
336 
337 /*
338  * _fini - module finalization
339  */
340 int
341 _fini(void)
342 {
343 	int status;
344 
345 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
346 	if (e1000g_mblks_pending != 0) {
347 		rw_exit(&e1000g_rx_detach_lock);
348 		return (EBUSY);
349 	}
350 	rw_exit(&e1000g_rx_detach_lock);
351 
352 	status = mod_remove(&modlinkage);
353 	if (status == DDI_SUCCESS) {
354 		mac_fini_ops(&ws_ops);
355 
356 		if (e1000g_force_detach) {
357 			private_devi_list_t *devi_node;
358 
359 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
360 			while (e1000g_private_devi_list != NULL) {
361 				devi_node = e1000g_private_devi_list;
362 				e1000g_private_devi_list =
363 				    e1000g_private_devi_list->next;
364 
365 				kmem_free(devi_node->priv_dip,
366 				    sizeof (struct dev_info));
367 				kmem_free(devi_node,
368 				    sizeof (private_devi_list_t));
369 			}
370 			rw_exit(&e1000g_rx_detach_lock);
371 		}
372 
373 		rw_destroy(&e1000g_rx_detach_lock);
374 		rw_destroy(&e1000g_dma_type_lock);
375 		mutex_destroy(&e1000g_nvm_lock);
376 	}
377 
378 	return (status);
379 }
380 
381 /*
382  * _info - module information
383  */
384 int
385 _info(struct modinfo *modinfop)
386 {
387 	return (mod_info(&modlinkage, modinfop));
388 }
389 
390 /*
391  * e1000g_attach - driver attach
392  *
393  * This function is the device-specific initialization entry
394  * point. This entry point is required and must be written.
395  * The DDI_ATTACH command must be provided in the attach entry
396  * point. When attach() is called with cmd set to DDI_ATTACH,
397  * all normal kernel services (such as kmem_alloc(9F)) are
398  * available for use by the driver.
399  *
400  * The attach() function will be called once for each instance
401  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
402  * Until attach() succeeds, the only driver entry points which
403  * may be called are open(9E) and getinfo(9E).
404  */
405 static int
406 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
407 {
408 	struct e1000g *Adapter;
409 	struct e1000_hw *hw;
410 	struct e1000g_osdep *osdep;
411 	int instance;
412 
413 	switch (cmd) {
414 	default:
415 		e1000g_log(NULL, CE_WARN,
416 		    "Unsupported command send to e1000g_attach... ");
417 		return (DDI_FAILURE);
418 
419 	case DDI_RESUME:
420 		return (e1000g_resume(devinfo));
421 
422 	case DDI_ATTACH:
423 		break;
424 	}
425 
426 	/*
427 	 * get device instance number
428 	 */
429 	instance = ddi_get_instance(devinfo);
430 
431 	/*
432 	 * Allocate soft data structure
433 	 */
434 	Adapter =
435 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
436 
437 	Adapter->dip = devinfo;
438 	Adapter->instance = instance;
439 	Adapter->tx_ring->adapter = Adapter;
440 	Adapter->rx_ring->adapter = Adapter;
441 
442 	hw = &Adapter->shared;
443 	osdep = &Adapter->osdep;
444 	hw->back = osdep;
445 	osdep->adapter = Adapter;
446 
447 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
448 
449 	/*
450 	 * Initialize for fma support
451 	 */
452 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
453 	    0, 0x0f,
454 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
455 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
456 	e1000g_fm_init(Adapter);
457 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
458 
459 	/*
460 	 * PCI Configure
461 	 */
462 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
463 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
464 		goto attach_fail;
465 	}
466 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
467 
468 	/*
469 	 * Setup hardware
470 	 */
471 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
472 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
473 		goto attach_fail;
474 	}
475 
476 	/*
477 	 * Map in the device registers.
478 	 */
479 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
480 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
481 		goto attach_fail;
482 	}
483 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
484 
485 	/*
486 	 * Initialize driver parameters
487 	 */
488 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
489 		goto attach_fail;
490 	}
491 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
492 
493 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
494 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
495 		goto attach_fail;
496 	}
497 
498 	/*
499 	 * Initialize interrupts
500 	 */
501 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
502 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
503 		goto attach_fail;
504 	}
505 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
506 
507 	/*
508 	 * Initialize mutex's for this device.
509 	 * Do this before enabling the interrupt handler and
510 	 * register the softint to avoid the condition where
511 	 * interrupt handler can try using uninitialized mutex
512 	 */
513 	e1000g_init_locks(Adapter);
514 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
515 
516 	/*
517 	 * Initialize Driver Counters
518 	 */
519 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
520 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
521 		goto attach_fail;
522 	}
523 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
524 
525 	/*
526 	 * Initialize chip hardware and software structures
527 	 */
528 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
529 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
530 		goto attach_fail;
531 	}
532 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
533 
534 	/*
535 	 * Register the driver to the MAC
536 	 */
537 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
538 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
539 		goto attach_fail;
540 	}
541 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
542 
543 	/*
544 	 * Now that mutex locks are initialized, and the chip is also
545 	 * initialized, enable interrupts.
546 	 */
547 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
548 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
549 		goto attach_fail;
550 	}
551 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
552 
553 	/*
554 	 * If e1000g_force_detach is enabled, in global private dip list,
555 	 * we will create a new entry, which maintains the priv_dip for DR
556 	 * supports after driver detached.
557 	 */
558 	if (e1000g_force_detach) {
559 		private_devi_list_t *devi_node;
560 
561 		Adapter->priv_dip =
562 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
563 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
564 		    sizeof (struct dev_info));
565 
566 		devi_node =
567 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
568 
569 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
570 		devi_node->priv_dip = Adapter->priv_dip;
571 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
572 		devi_node->next = e1000g_private_devi_list;
573 		e1000g_private_devi_list = devi_node;
574 		rw_exit(&e1000g_rx_detach_lock);
575 	}
576 
577 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
578 
579 	return (DDI_SUCCESS);
580 
581 attach_fail:
582 	e1000g_unattach(devinfo, Adapter);
583 	return (DDI_FAILURE);
584 }
585 
586 static int
587 e1000g_register_mac(struct e1000g *Adapter)
588 {
589 	struct e1000_hw *hw = &Adapter->shared;
590 	mac_register_t *mac;
591 	int err;
592 
593 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
594 		return (DDI_FAILURE);
595 
596 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
597 	mac->m_driver = Adapter;
598 	mac->m_dip = Adapter->dip;
599 	mac->m_src_addr = hw->mac.addr;
600 	mac->m_callbacks = &e1000g_m_callbacks;
601 	mac->m_min_sdu = 0;
602 	mac->m_max_sdu = Adapter->default_mtu;
603 	mac->m_margin = VLAN_TAGSZ;
604 	mac->m_priv_props = e1000g_priv_props;
605 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
606 
607 	err = mac_register(mac, &Adapter->mh);
608 	mac_free(mac);
609 
610 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
611 }
612 
613 static int
614 e1000g_identify_hardware(struct e1000g *Adapter)
615 {
616 	struct e1000_hw *hw = &Adapter->shared;
617 	struct e1000g_osdep *osdep = &Adapter->osdep;
618 
619 	/* Get the device id */
620 	hw->vendor_id =
621 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
622 	hw->device_id =
623 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
624 	hw->revision_id =
625 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
626 	hw->subsystem_device_id =
627 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
628 	hw->subsystem_vendor_id =
629 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
630 
631 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
632 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
633 		    "MAC type could not be set properly.");
634 		return (DDI_FAILURE);
635 	}
636 
637 	return (DDI_SUCCESS);
638 }
639 
640 static int
641 e1000g_regs_map(struct e1000g *Adapter)
642 {
643 	dev_info_t *devinfo = Adapter->dip;
644 	struct e1000_hw *hw = &Adapter->shared;
645 	struct e1000g_osdep *osdep = &Adapter->osdep;
646 	off_t mem_size;
647 
648 	/*
649 	 * first get the size of device register to be mapped. The
650 	 * second parameter is the register we are interested. I our
651 	 * wiseman 0 is for config registers and 1 is for memory mapped
652 	 * registers Mem size should have memory mapped region size
653 	 */
654 	if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) {
655 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
656 		    "ddi_dev_regsize for registers failed");
657 		return (DDI_FAILURE);
658 	}
659 
660 	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
661 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
662 	    &osdep->reg_handle)) != DDI_SUCCESS) {
663 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
664 		    "ddi_regs_map_setup for registers failed");
665 		goto regs_map_fail;
666 	}
667 
668 	/* ICH needs to map flash memory */
669 	if (hw->mac.type == e1000_ich8lan || hw->mac.type == e1000_ich9lan) {
670 		/* get flash size */
671 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
672 		    &mem_size) != DDI_SUCCESS) {
673 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
674 			    "ddi_dev_regsize for ICH flash failed");
675 			goto regs_map_fail;
676 		}
677 
678 		/* map flash in */
679 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
680 		    (caddr_t *)&hw->flash_address, 0,
681 		    mem_size, &e1000g_regs_acc_attr,
682 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
683 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
684 			    "ddi_regs_map_setup for ICH flash failed");
685 			goto regs_map_fail;
686 		}
687 	}
688 
689 	return (DDI_SUCCESS);
690 
691 regs_map_fail:
692 	if (osdep->reg_handle != NULL)
693 		ddi_regs_map_free(&osdep->reg_handle);
694 
695 	return (DDI_FAILURE);
696 }
697 
698 static int
699 e1000g_set_driver_params(struct e1000g *Adapter)
700 {
701 	struct e1000_hw *hw;
702 	uint32_t mem_bar, io_bar, bar64;
703 
704 	hw = &Adapter->shared;
705 
706 	/* Set MAC type and initialize hardware functions */
707 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
708 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
709 		    "Could not setup hardware functions");
710 		return (DDI_FAILURE);
711 	}
712 
713 	/* Get bus information */
714 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
715 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
716 		    "Could not get bus information");
717 		return (DDI_FAILURE);
718 	}
719 
720 	/* get mem_base addr */
721 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
722 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
723 
724 	/* get io_base addr */
725 	if (hw->mac.type >= e1000_82544) {
726 		if (bar64) {
727 			/* IO BAR is different for 64 bit BAR mode */
728 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
729 			    PCI_CONF_BASE4);
730 		} else {
731 			/* normal 32-bit BAR mode */
732 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
733 			    PCI_CONF_BASE2);
734 		}
735 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
736 	} else {
737 		/* no I/O access for adapters prior to 82544 */
738 		hw->io_base = 0x0;
739 	}
740 
741 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
742 
743 	hw->mac.autoneg_failed = B_TRUE;
744 
745 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
746 	hw->phy.autoneg_wait_to_complete = B_FALSE;
747 
748 	/* Adaptive IFS related changes */
749 	hw->mac.adaptive_ifs = B_TRUE;
750 
751 	/* Enable phy init script for IGP phy of 82541/82547 */
752 	if ((hw->mac.type == e1000_82547) ||
753 	    (hw->mac.type == e1000_82541) ||
754 	    (hw->mac.type == e1000_82547_rev_2) ||
755 	    (hw->mac.type == e1000_82541_rev_2))
756 		e1000_init_script_state_82541(hw, B_TRUE);
757 
758 	/* Enable the TTL workaround for 82541/82547 */
759 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
760 
761 #ifdef __sparc
762 	Adapter->strip_crc = B_TRUE;
763 #else
764 	Adapter->strip_crc = B_FALSE;
765 #endif
766 
767 	/* Get conf file properties */
768 	e1000g_get_conf(Adapter);
769 
770 	/* Get speed/duplex settings in conf file */
771 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
772 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
773 	e1000g_force_speed_duplex(Adapter);
774 
775 	/* Get Jumbo Frames settings in conf file */
776 	e1000g_get_max_frame_size(Adapter);
777 
778 	/* Set Rx/Tx buffer size */
779 	e1000g_set_bufsize(Adapter);
780 
781 	/* Master Latency Timer */
782 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
783 
784 	/* copper options */
785 	if (hw->phy.media_type == e1000_media_type_copper) {
786 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
787 		hw->phy.disable_polarity_correction = B_FALSE;
788 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
789 	}
790 
791 	/* The initial link state should be "unknown" */
792 	Adapter->link_state = LINK_STATE_UNKNOWN;
793 
794 	/* Initialize rx parameters */
795 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
796 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
797 
798 	/* Initialize tx parameters */
799 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
800 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
801 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
802 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
803 
804 	/* Initialize rx parameters */
805 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
806 
807 	return (DDI_SUCCESS);
808 }
809 
810 static void
811 e1000g_set_bufsize(struct e1000g *Adapter)
812 {
813 	struct e1000_mac_info *mac = &Adapter->shared.mac;
814 	uint64_t rx_size;
815 	uint64_t tx_size;
816 
817 #ifdef __sparc
818 	dev_info_t *devinfo = Adapter->dip;
819 	ulong_t iommu_pagesize;
820 
821 	/* Get the system page size */
822 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
823 	iommu_pagesize = dvma_pagesize(devinfo);
824 	if (iommu_pagesize != 0) {
825 		if (Adapter->sys_page_sz == iommu_pagesize) {
826 			if (iommu_pagesize > 0x4000)
827 				Adapter->sys_page_sz = 0x4000;
828 		} else {
829 			if (Adapter->sys_page_sz > iommu_pagesize)
830 				Adapter->sys_page_sz = iommu_pagesize;
831 		}
832 	}
833 	if (Adapter->lso_enable) {
834 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
835 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
836 	} else {
837 		Adapter->dvma_page_num = Adapter->max_frame_size /
838 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
839 	}
840 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
841 #endif
842 
843 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
844 
845 	rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
846 	if ((rx_size > FRAME_SIZE_UPTO_2K) && (rx_size <= FRAME_SIZE_UPTO_4K))
847 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
848 	else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
849 	    (rx_size <= FRAME_SIZE_UPTO_8K))
850 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
851 	else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
852 	    (rx_size <= FRAME_SIZE_UPTO_16K))
853 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
854 	else
855 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
856 
857 	tx_size = Adapter->max_frame_size;
858 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
859 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
860 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
861 	    (tx_size <= FRAME_SIZE_UPTO_8K))
862 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
863 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
864 	    (tx_size <= FRAME_SIZE_UPTO_16K))
865 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
866 	else
867 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
868 
869 	/*
870 	 * For Wiseman adapters we have an requirement of having receive
871 	 * buffers aligned at 256 byte boundary. Since Livengood does not
872 	 * require this and forcing it for all hardwares will have
873 	 * performance implications, I am making it applicable only for
874 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
875 	 * it is okay to have normal frames...but it does involve a
876 	 * potential risk where we may loose data if buffer is not
877 	 * aligned...so all wiseman boards to have 256 byte aligned
878 	 * buffers
879 	 */
880 	if (mac->type < e1000_82543)
881 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
882 	else
883 		Adapter->rx_buf_align = 1;
884 }
885 
886 /*
887  * e1000g_detach - driver detach
888  *
889  * The detach() function is the complement of the attach routine.
890  * If cmd is set to DDI_DETACH, detach() is used to remove  the
891  * state  associated  with  a  given  instance of a device node
892  * prior to the removal of that instance from the system.
893  *
894  * The detach() function will be called once for each  instance
895  * of the device for which there has been a successful attach()
896  * once there are no longer  any  opens  on  the  device.
897  *
898  * Interrupts routine are disabled, All memory allocated by this
899  * driver are freed.
900  */
901 static int
902 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
903 {
904 	struct e1000g *Adapter;
905 	boolean_t rx_drain;
906 
907 	switch (cmd) {
908 	default:
909 		return (DDI_FAILURE);
910 
911 	case DDI_SUSPEND:
912 		return (e1000g_suspend(devinfo));
913 
914 	case DDI_DETACH:
915 		break;
916 	}
917 
918 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
919 	if (Adapter == NULL)
920 		return (DDI_FAILURE);
921 
922 	if (mac_unregister(Adapter->mh) != 0) {
923 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
924 		return (DDI_FAILURE);
925 	}
926 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
927 
928 
929 	if (Adapter->chip_state != E1000G_STOP)
930 		e1000g_stop(Adapter, B_TRUE);
931 
932 	rx_drain = e1000g_rx_drain(Adapter);
933 
934 	/*
935 	 * If e1000g_force_detach is enabled, driver detach is safe.
936 	 * We will let e1000g_free_priv_devi_node routine determine
937 	 * whether we need to free the priv_dip entry for current
938 	 * driver instance.
939 	 */
940 	if (e1000g_force_detach) {
941 		e1000g_free_priv_devi_node(Adapter, rx_drain);
942 	} else {
943 		if (!rx_drain)
944 			return (DDI_FAILURE);
945 	}
946 
947 	e1000g_unattach(devinfo, Adapter);
948 
949 	return (DDI_SUCCESS);
950 }
951 
952 /*
953  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
954  *
955  * If free_flag is true, that indicates the upper layer is not holding
956  * the rx buffers, we could free the priv_dip entry safely.
957  *
958  * Otherwise, we have to keep this entry even after driver detached,
959  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
960  * so that driver could free it while all of rx buffers are returned
961  * by upper layer later.
962  */
963 static void
964 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
965 {
966 	private_devi_list_t *devi_node, *devi_del;
967 
968 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
969 	ASSERT(e1000g_private_devi_list != NULL);
970 	ASSERT(Adapter->priv_dip != NULL);
971 
972 	devi_node = e1000g_private_devi_list;
973 	if (devi_node->priv_dip == Adapter->priv_dip) {
974 		if (free_flag) {
975 			e1000g_private_devi_list =
976 			    devi_node->next;
977 			kmem_free(devi_node->priv_dip,
978 			    sizeof (struct dev_info));
979 			kmem_free(devi_node,
980 			    sizeof (private_devi_list_t));
981 		} else {
982 			ASSERT(e1000g_mblks_pending != 0);
983 			devi_node->flag =
984 			    E1000G_PRIV_DEVI_DETACH;
985 		}
986 		rw_exit(&e1000g_rx_detach_lock);
987 		return;
988 	}
989 
990 	devi_node = e1000g_private_devi_list;
991 	while (devi_node->next != NULL) {
992 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
993 			if (free_flag) {
994 				devi_del = devi_node->next;
995 				devi_node->next = devi_del->next;
996 				kmem_free(devi_del->priv_dip,
997 				    sizeof (struct dev_info));
998 				kmem_free(devi_del,
999 				    sizeof (private_devi_list_t));
1000 			} else {
1001 				ASSERT(e1000g_mblks_pending != 0);
1002 				devi_node->next->flag =
1003 				    E1000G_PRIV_DEVI_DETACH;
1004 			}
1005 			break;
1006 		}
1007 		devi_node = devi_node->next;
1008 	}
1009 	rw_exit(&e1000g_rx_detach_lock);
1010 }
1011 
1012 static void
1013 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1014 {
1015 	int result;
1016 
1017 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1018 		(void) e1000g_disable_intrs(Adapter);
1019 	}
1020 
1021 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1022 		(void) mac_unregister(Adapter->mh);
1023 	}
1024 
1025 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1026 		(void) e1000g_rem_intrs(Adapter);
1027 	}
1028 
1029 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1030 		(void) ddi_prop_remove_all(devinfo);
1031 	}
1032 
1033 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1034 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1035 	}
1036 
1037 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1038 		stop_link_timer(Adapter);
1039 
1040 		mutex_enter(&e1000g_nvm_lock);
1041 		result = e1000_reset_hw(&Adapter->shared);
1042 		mutex_exit(&e1000g_nvm_lock);
1043 
1044 		if (result != E1000_SUCCESS) {
1045 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1046 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1047 		}
1048 	}
1049 
1050 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1051 		if (Adapter->osdep.reg_handle != NULL)
1052 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1053 		if (Adapter->osdep.ich_flash_handle != NULL)
1054 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1055 	}
1056 
1057 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1058 		if (Adapter->osdep.cfg_handle != NULL)
1059 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1060 	}
1061 
1062 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1063 		e1000g_destroy_locks(Adapter);
1064 	}
1065 
1066 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1067 		e1000g_fm_fini(Adapter);
1068 	}
1069 
1070 	e1000_remove_device(&Adapter->shared);
1071 
1072 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1073 
1074 	/*
1075 	 * Another hotplug spec requirement,
1076 	 * run ddi_set_driver_private(devinfo, null);
1077 	 */
1078 	ddi_set_driver_private(devinfo, NULL);
1079 }
1080 
1081 static void
1082 e1000g_init_locks(struct e1000g *Adapter)
1083 {
1084 	e1000g_tx_ring_t *tx_ring;
1085 	e1000g_rx_ring_t *rx_ring;
1086 
1087 	rw_init(&Adapter->chip_lock, NULL,
1088 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1089 	mutex_init(&Adapter->link_lock, NULL,
1090 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1091 	mutex_init(&Adapter->watchdog_lock, NULL,
1092 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1093 
1094 	tx_ring = Adapter->tx_ring;
1095 
1096 	mutex_init(&tx_ring->tx_lock, NULL,
1097 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1098 	mutex_init(&tx_ring->usedlist_lock, NULL,
1099 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1100 	mutex_init(&tx_ring->freelist_lock, NULL,
1101 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1102 
1103 	rx_ring = Adapter->rx_ring;
1104 
1105 	mutex_init(&rx_ring->freelist_lock, NULL,
1106 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1107 }
1108 
1109 static void
1110 e1000g_destroy_locks(struct e1000g *Adapter)
1111 {
1112 	e1000g_tx_ring_t *tx_ring;
1113 	e1000g_rx_ring_t *rx_ring;
1114 
1115 	tx_ring = Adapter->tx_ring;
1116 	mutex_destroy(&tx_ring->tx_lock);
1117 	mutex_destroy(&tx_ring->usedlist_lock);
1118 	mutex_destroy(&tx_ring->freelist_lock);
1119 
1120 	rx_ring = Adapter->rx_ring;
1121 	mutex_destroy(&rx_ring->freelist_lock);
1122 
1123 	mutex_destroy(&Adapter->link_lock);
1124 	mutex_destroy(&Adapter->watchdog_lock);
1125 	rw_destroy(&Adapter->chip_lock);
1126 }
1127 
1128 static int
1129 e1000g_resume(dev_info_t *devinfo)
1130 {
1131 	struct e1000g *Adapter;
1132 
1133 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1134 	if (Adapter == NULL)
1135 		return (DDI_FAILURE);
1136 
1137 	if (e1000g_start(Adapter, B_TRUE))
1138 		return (DDI_FAILURE);
1139 
1140 	return (DDI_SUCCESS);
1141 }
1142 
1143 static int
1144 e1000g_suspend(dev_info_t *devinfo)
1145 {
1146 	struct e1000g *Adapter;
1147 
1148 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1149 	if (Adapter == NULL)
1150 		return (DDI_FAILURE);
1151 
1152 	e1000g_stop(Adapter, B_TRUE);
1153 
1154 	return (DDI_SUCCESS);
1155 }
1156 
1157 static int
1158 e1000g_init(struct e1000g *Adapter)
1159 {
1160 	uint32_t pba;
1161 	uint32_t high_water;
1162 	struct e1000_hw *hw;
1163 	clock_t link_timeout;
1164 	int result;
1165 
1166 	hw = &Adapter->shared;
1167 
1168 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1169 
1170 	/*
1171 	 * reset to put the hardware in a known state
1172 	 * before we try to do anything with the eeprom
1173 	 */
1174 	mutex_enter(&e1000g_nvm_lock);
1175 	result = e1000_reset_hw(hw);
1176 	mutex_exit(&e1000g_nvm_lock);
1177 
1178 	if (result != E1000_SUCCESS) {
1179 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1180 		goto init_fail;
1181 	}
1182 
1183 	mutex_enter(&e1000g_nvm_lock);
1184 	result = e1000_validate_nvm_checksum(hw);
1185 	if (result < E1000_SUCCESS) {
1186 		/*
1187 		 * Some PCI-E parts fail the first check due to
1188 		 * the link being in sleep state.  Call it again,
1189 		 * if it fails a second time its a real issue.
1190 		 */
1191 		result = e1000_validate_nvm_checksum(hw);
1192 	}
1193 	mutex_exit(&e1000g_nvm_lock);
1194 
1195 	if (result < E1000_SUCCESS) {
1196 		e1000g_log(Adapter, CE_WARN,
1197 		    "Invalid NVM checksum. Please contact "
1198 		    "the vendor to update the NVM.");
1199 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1200 		goto init_fail;
1201 	}
1202 
1203 	result = 0;
1204 #ifdef __sparc
1205 	/*
1206 	 * Firstly, we try to get the local ethernet address from OBP. If
1207 	 * failed, then we get it from the EEPROM of NIC card.
1208 	 */
1209 	result = e1000g_find_mac_address(Adapter);
1210 #endif
1211 	/* Get the local ethernet address. */
1212 	if (!result) {
1213 		mutex_enter(&e1000g_nvm_lock);
1214 		result = e1000_read_mac_addr(hw);
1215 		mutex_exit(&e1000g_nvm_lock);
1216 	}
1217 
1218 	if (result < E1000_SUCCESS) {
1219 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1220 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1221 		goto init_fail;
1222 	}
1223 
1224 	/* check for valid mac address */
1225 	if (!is_valid_mac_addr(hw->mac.addr)) {
1226 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1227 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1228 		goto init_fail;
1229 	}
1230 
1231 	/* Set LAA state for 82571 chipset */
1232 	e1000_set_laa_state_82571(hw, B_TRUE);
1233 
1234 	/* Master Latency Timer implementation */
1235 	if (Adapter->master_latency_timer) {
1236 		pci_config_put8(Adapter->osdep.cfg_handle,
1237 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1238 	}
1239 
1240 	if (hw->mac.type < e1000_82547) {
1241 		/*
1242 		 * Total FIFO is 64K
1243 		 */
1244 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1245 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1246 		else
1247 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1248 	} else if ((hw->mac.type == e1000_82571) ||
1249 	    (hw->mac.type == e1000_82572) ||
1250 	    (hw->mac.type == e1000_80003es2lan)) {
1251 		/*
1252 		 * Total FIFO is 48K
1253 		 */
1254 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1255 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1256 		else
1257 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1258 	} else if (hw->mac.type == e1000_ich8lan) {
1259 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1260 	} else if (hw->mac.type == e1000_ich9lan) {
1261 		pba = E1000_PBA_12K;
1262 	} else {
1263 		/*
1264 		 * Total FIFO is 40K
1265 		 */
1266 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1267 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1268 		else
1269 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1270 	}
1271 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1272 
1273 	/*
1274 	 * These parameters set thresholds for the adapter's generation(Tx)
1275 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1276 	 * settings.  Flow control is enabled or disabled in the configuration
1277 	 * file.
1278 	 * High-water mark is set down from the top of the rx fifo (not
1279 	 * sensitive to max_frame_size) and low-water is set just below
1280 	 * high-water mark.
1281 	 * The high water mark must be low enough to fit one full frame above
1282 	 * it in the rx FIFO.  Should be the lower of:
1283 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1284 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1285 	 * Rx FIFO size minus one full frame.
1286 	 */
1287 	high_water = min(((pba << 10) * 9 / 10),
1288 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan) ?
1289 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1290 	    ((pba << 10) - Adapter->max_frame_size)));
1291 
1292 	hw->fc.high_water = high_water & 0xFFF8;
1293 	hw->fc.low_water = hw->fc.high_water - 8;
1294 
1295 	if (hw->mac.type == e1000_80003es2lan)
1296 		hw->fc.pause_time = 0xFFFF;
1297 	else
1298 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1299 	hw->fc.send_xon = B_TRUE;
1300 
1301 	/*
1302 	 * Reset the adapter hardware the second time.
1303 	 */
1304 	mutex_enter(&e1000g_nvm_lock);
1305 	result = e1000_reset_hw(hw);
1306 	mutex_exit(&e1000g_nvm_lock);
1307 
1308 	if (result != E1000_SUCCESS) {
1309 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1310 		goto init_fail;
1311 	}
1312 
1313 	/* disable wakeup control by default */
1314 	if (hw->mac.type >= e1000_82544)
1315 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1316 
1317 	/* MWI setup */
1318 	e1000_pci_set_mwi(hw);
1319 
1320 	/*
1321 	 * Configure/Initialize hardware
1322 	 */
1323 	mutex_enter(&e1000g_nvm_lock);
1324 	result = e1000_init_hw(hw);
1325 	mutex_exit(&e1000g_nvm_lock);
1326 
1327 	if (result < E1000_SUCCESS) {
1328 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1329 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1330 		goto init_fail;
1331 	}
1332 
1333 	/* Disable Smart Power Down */
1334 	phy_spd_state(hw, B_FALSE);
1335 
1336 	/* Make sure driver has control */
1337 	e1000g_get_driver_control(hw);
1338 
1339 	/*
1340 	 * Initialize unicast addresses.
1341 	 */
1342 	e1000g_init_unicst(Adapter);
1343 
1344 	/*
1345 	 * Setup and initialize the mctable structures.  After this routine
1346 	 * completes  Multicast table will be set
1347 	 */
1348 	e1000g_setup_multicast(Adapter);
1349 	msec_delay(5);
1350 
1351 	/*
1352 	 * Implement Adaptive IFS
1353 	 */
1354 	e1000_reset_adaptive(hw);
1355 
1356 	/* Setup Interrupt Throttling Register */
1357 	if (hw->mac.type >= e1000_82540) {
1358 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1359 	} else
1360 		Adapter->intr_adaptive = B_FALSE;
1361 
1362 	/* Start the timer for link setup */
1363 	if (hw->mac.autoneg)
1364 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1365 	else
1366 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1367 
1368 	mutex_enter(&Adapter->link_lock);
1369 	if (hw->phy.autoneg_wait_to_complete) {
1370 		Adapter->link_complete = B_TRUE;
1371 	} else {
1372 		Adapter->link_complete = B_FALSE;
1373 		Adapter->link_tid = timeout(e1000g_link_timer,
1374 		    (void *)Adapter, link_timeout);
1375 	}
1376 	mutex_exit(&Adapter->link_lock);
1377 
1378 	/* Enable PCI-Ex master */
1379 	if (hw->bus.type == e1000_bus_type_pci_express) {
1380 		e1000_enable_pciex_master(hw);
1381 	}
1382 
1383 	/* Save the state of the phy */
1384 	e1000g_get_phy_state(Adapter);
1385 
1386 	e1000g_param_sync(Adapter);
1387 
1388 	Adapter->init_count++;
1389 
1390 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1391 		goto init_fail;
1392 	}
1393 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1394 		goto init_fail;
1395 	}
1396 
1397 	rw_exit(&Adapter->chip_lock);
1398 
1399 	return (DDI_SUCCESS);
1400 
1401 init_fail:
1402 	rw_exit(&Adapter->chip_lock);
1403 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1404 	return (DDI_FAILURE);
1405 }
1406 
1407 /*
1408  * Check if the link is up
1409  */
1410 static boolean_t
1411 e1000g_link_up(struct e1000g *Adapter)
1412 {
1413 	struct e1000_hw *hw;
1414 	boolean_t link_up;
1415 
1416 	hw = &Adapter->shared;
1417 
1418 	e1000_check_for_link(hw);
1419 
1420 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1421 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1422 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1423 	    (hw->mac.serdes_has_link))) {
1424 		link_up = B_TRUE;
1425 	} else {
1426 		link_up = B_FALSE;
1427 	}
1428 
1429 	return (link_up);
1430 }
1431 
1432 static void
1433 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1434 {
1435 	struct iocblk *iocp;
1436 	struct e1000g *e1000gp;
1437 	enum ioc_reply status;
1438 	int err;
1439 
1440 	iocp = (struct iocblk *)mp->b_rptr;
1441 	iocp->ioc_error = 0;
1442 	e1000gp = (struct e1000g *)arg;
1443 
1444 	ASSERT(e1000gp);
1445 	if (e1000gp == NULL) {
1446 		miocnak(q, mp, 0, EINVAL);
1447 		return;
1448 	}
1449 
1450 	switch (iocp->ioc_cmd) {
1451 
1452 	case LB_GET_INFO_SIZE:
1453 	case LB_GET_INFO:
1454 	case LB_GET_MODE:
1455 	case LB_SET_MODE:
1456 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1457 		break;
1458 
1459 
1460 #ifdef E1000G_DEBUG
1461 	case E1000G_IOC_REG_PEEK:
1462 	case E1000G_IOC_REG_POKE:
1463 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1464 		break;
1465 	case E1000G_IOC_CHIP_RESET:
1466 		e1000gp->reset_count++;
1467 		if (e1000g_reset(e1000gp))
1468 			status = IOC_ACK;
1469 		else
1470 			status = IOC_INVAL;
1471 		break;
1472 #endif
1473 	default:
1474 		status = IOC_INVAL;
1475 		break;
1476 	}
1477 
1478 	/*
1479 	 * Decide how to reply
1480 	 */
1481 	switch (status) {
1482 	default:
1483 	case IOC_INVAL:
1484 		/*
1485 		 * Error, reply with a NAK and EINVAL or the specified error
1486 		 */
1487 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1488 		    EINVAL : iocp->ioc_error);
1489 		break;
1490 
1491 	case IOC_DONE:
1492 		/*
1493 		 * OK, reply already sent
1494 		 */
1495 		break;
1496 
1497 	case IOC_ACK:
1498 		/*
1499 		 * OK, reply with an ACK
1500 		 */
1501 		miocack(q, mp, 0, 0);
1502 		break;
1503 
1504 	case IOC_REPLY:
1505 		/*
1506 		 * OK, send prepared reply as ACK or NAK
1507 		 */
1508 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1509 		    M_IOCACK : M_IOCNAK;
1510 		qreply(q, mp);
1511 		break;
1512 	}
1513 }
1514 
1515 static int
1516 e1000g_m_start(void *arg)
1517 {
1518 	struct e1000g *Adapter = (struct e1000g *)arg;
1519 
1520 	return (e1000g_start(Adapter, B_TRUE));
1521 }
1522 
1523 static int
1524 e1000g_start(struct e1000g *Adapter, boolean_t global)
1525 {
1526 	if (global) {
1527 		/* Allocate dma resources for descriptors and buffers */
1528 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1529 			e1000g_log(Adapter, CE_WARN,
1530 			    "Alloc DMA resources failed");
1531 			return (ENOTACTIVE);
1532 		}
1533 		Adapter->rx_buffer_setup = B_FALSE;
1534 	}
1535 
1536 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1537 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1538 			e1000g_log(Adapter, CE_WARN,
1539 			    "Adapter initialization failed");
1540 			if (global)
1541 				e1000g_release_dma_resources(Adapter);
1542 			return (ENOTACTIVE);
1543 		}
1544 	}
1545 
1546 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1547 
1548 	/* Setup and initialize the transmit structures */
1549 	e1000g_tx_setup(Adapter);
1550 	msec_delay(5);
1551 
1552 	/* Setup and initialize the receive structures */
1553 	e1000g_rx_setup(Adapter);
1554 	msec_delay(5);
1555 
1556 	e1000g_mask_interrupt(Adapter);
1557 
1558 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1559 		rw_exit(&Adapter->chip_lock);
1560 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1561 		return (ENOTACTIVE);
1562 	}
1563 
1564 	Adapter->chip_state = E1000G_START;
1565 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1566 
1567 	rw_exit(&Adapter->chip_lock);
1568 
1569 	/* Enable and start the watchdog timer */
1570 	enable_watchdog_timer(Adapter);
1571 
1572 	return (0);
1573 }
1574 
1575 static void
1576 e1000g_m_stop(void *arg)
1577 {
1578 	struct e1000g *Adapter = (struct e1000g *)arg;
1579 
1580 	e1000g_stop(Adapter, B_TRUE);
1581 }
1582 
1583 static void
1584 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1585 {
1586 	int result;
1587 
1588 	/* Set stop flags */
1589 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1590 
1591 	Adapter->chip_state = E1000G_STOP;
1592 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1593 
1594 	rw_exit(&Adapter->chip_lock);
1595 
1596 	/* Drain tx sessions */
1597 	(void) e1000g_tx_drain(Adapter);
1598 
1599 	/* Disable and stop all the timers */
1600 	disable_watchdog_timer(Adapter);
1601 	stop_link_timer(Adapter);
1602 	stop_82547_timer(Adapter->tx_ring);
1603 
1604 	/* Stop the chip and release pending resources */
1605 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1606 
1607 	e1000g_clear_all_interrupts(Adapter);
1608 
1609 	mutex_enter(&e1000g_nvm_lock);
1610 	result = e1000_reset_hw(&Adapter->shared);
1611 	mutex_exit(&e1000g_nvm_lock);
1612 
1613 	if (result != E1000_SUCCESS) {
1614 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1615 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1616 	}
1617 
1618 	/* Release resources still held by the TX descriptors */
1619 	e1000g_tx_clean(Adapter);
1620 
1621 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1622 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1623 
1624 	/* Clean the pending rx jumbo packet fragment */
1625 	e1000g_rx_clean(Adapter);
1626 
1627 	rw_exit(&Adapter->chip_lock);
1628 
1629 	if (global)
1630 		e1000g_release_dma_resources(Adapter);
1631 }
1632 
1633 static void
1634 e1000g_rx_clean(struct e1000g *Adapter)
1635 {
1636 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1637 
1638 	if (rx_ring->rx_mblk != NULL) {
1639 		freemsg(rx_ring->rx_mblk);
1640 		rx_ring->rx_mblk = NULL;
1641 		rx_ring->rx_mblk_tail = NULL;
1642 		rx_ring->rx_mblk_len = 0;
1643 	}
1644 }
1645 
1646 static void
1647 e1000g_tx_clean(struct e1000g *Adapter)
1648 {
1649 	e1000g_tx_ring_t *tx_ring;
1650 	p_tx_sw_packet_t packet;
1651 	mblk_t *mp;
1652 	mblk_t *nmp;
1653 	uint32_t packet_count;
1654 
1655 	tx_ring = Adapter->tx_ring;
1656 
1657 	/*
1658 	 * Here we don't need to protect the lists using
1659 	 * the usedlist_lock and freelist_lock, for they
1660 	 * have been protected by the chip_lock.
1661 	 */
1662 	mp = NULL;
1663 	nmp = NULL;
1664 	packet_count = 0;
1665 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1666 	while (packet != NULL) {
1667 		if (packet->mp != NULL) {
1668 			/* Assemble the message chain */
1669 			if (mp == NULL) {
1670 				mp = packet->mp;
1671 				nmp = packet->mp;
1672 			} else {
1673 				nmp->b_next = packet->mp;
1674 				nmp = packet->mp;
1675 			}
1676 			/* Disconnect the message from the sw packet */
1677 			packet->mp = NULL;
1678 		}
1679 
1680 		e1000g_free_tx_swpkt(packet);
1681 		packet_count++;
1682 
1683 		packet = (p_tx_sw_packet_t)
1684 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1685 	}
1686 
1687 	if (mp != NULL)
1688 		freemsgchain(mp);
1689 
1690 	if (packet_count > 0) {
1691 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1692 		QUEUE_INIT_LIST(&tx_ring->used_list);
1693 
1694 		/* Setup TX descriptor pointers */
1695 		tx_ring->tbd_next = tx_ring->tbd_first;
1696 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1697 
1698 		/* Setup our HW Tx Head & Tail descriptor pointers */
1699 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1700 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1701 	}
1702 }
1703 
1704 static boolean_t
1705 e1000g_tx_drain(struct e1000g *Adapter)
1706 {
1707 	int i;
1708 	boolean_t done;
1709 	e1000g_tx_ring_t *tx_ring;
1710 
1711 	tx_ring = Adapter->tx_ring;
1712 
1713 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1714 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1715 		mutex_enter(&tx_ring->usedlist_lock);
1716 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1717 		mutex_exit(&tx_ring->usedlist_lock);
1718 
1719 		if (done)
1720 			break;
1721 
1722 		msec_delay(1);
1723 	}
1724 
1725 	return (done);
1726 }
1727 
1728 static boolean_t
1729 e1000g_rx_drain(struct e1000g *Adapter)
1730 {
1731 	e1000g_rx_ring_t *rx_ring;
1732 	p_rx_sw_packet_t packet;
1733 	boolean_t done;
1734 
1735 	rx_ring = Adapter->rx_ring;
1736 	done = B_TRUE;
1737 
1738 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1739 
1740 	while (rx_ring->pending_list != NULL) {
1741 		packet = rx_ring->pending_list;
1742 		rx_ring->pending_list =
1743 		    rx_ring->pending_list->next;
1744 
1745 		if (packet->flag == E1000G_RX_SW_STOP) {
1746 			packet->flag = E1000G_RX_SW_DETACH;
1747 			done = B_FALSE;
1748 		} else {
1749 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1750 			ASSERT(packet->mp == NULL);
1751 			e1000g_free_rx_sw_packet(packet);
1752 		}
1753 	}
1754 
1755 	rw_exit(&e1000g_rx_detach_lock);
1756 
1757 	return (done);
1758 }
1759 
1760 boolean_t
1761 e1000g_reset(struct e1000g *Adapter)
1762 {
1763 	e1000g_stop(Adapter, B_FALSE);
1764 
1765 	if (e1000g_start(Adapter, B_FALSE)) {
1766 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1767 		return (B_FALSE);
1768 	}
1769 
1770 	return (B_TRUE);
1771 }
1772 
1773 boolean_t
1774 e1000g_global_reset(struct e1000g *Adapter)
1775 {
1776 	e1000g_stop(Adapter, B_TRUE);
1777 
1778 	Adapter->init_count = 0;
1779 
1780 	if (e1000g_start(Adapter, B_TRUE)) {
1781 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1782 		return (B_FALSE);
1783 	}
1784 
1785 	return (B_TRUE);
1786 }
1787 
1788 /*
1789  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1790  *
1791  * This interrupt service routine is for PCI-Express adapters.
1792  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1793  * bit is set.
1794  */
1795 static uint_t
1796 e1000g_intr_pciexpress(caddr_t arg)
1797 {
1798 	struct e1000g *Adapter;
1799 	uint32_t icr;
1800 
1801 	Adapter = (struct e1000g *)arg;
1802 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1803 
1804 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1805 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1806 
1807 	if (icr & E1000_ICR_INT_ASSERTED) {
1808 		/*
1809 		 * E1000_ICR_INT_ASSERTED bit was set:
1810 		 * Read(Clear) the ICR, claim this interrupt,
1811 		 * look for work to do.
1812 		 */
1813 		e1000g_intr_work(Adapter, icr);
1814 		return (DDI_INTR_CLAIMED);
1815 	} else {
1816 		/*
1817 		 * E1000_ICR_INT_ASSERTED bit was not set:
1818 		 * Don't claim this interrupt, return immediately.
1819 		 */
1820 		return (DDI_INTR_UNCLAIMED);
1821 	}
1822 }
1823 
1824 /*
1825  * e1000g_intr - ISR for PCI/PCI-X chipsets
1826  *
1827  * This interrupt service routine is for PCI/PCI-X adapters.
1828  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1829  * bit is set or not.
1830  */
1831 static uint_t
1832 e1000g_intr(caddr_t arg)
1833 {
1834 	struct e1000g *Adapter;
1835 	uint32_t icr;
1836 
1837 	Adapter = (struct e1000g *)arg;
1838 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1839 
1840 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1841 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1842 
1843 	if (icr) {
1844 		/*
1845 		 * Any bit was set in ICR:
1846 		 * Read(Clear) the ICR, claim this interrupt,
1847 		 * look for work to do.
1848 		 */
1849 		e1000g_intr_work(Adapter, icr);
1850 		return (DDI_INTR_CLAIMED);
1851 	} else {
1852 		/*
1853 		 * No bit was set in ICR:
1854 		 * Don't claim this interrupt, return immediately.
1855 		 */
1856 		return (DDI_INTR_UNCLAIMED);
1857 	}
1858 }
1859 
1860 /*
1861  * e1000g_intr_work - actual processing of ISR
1862  *
1863  * Read(clear) the ICR contents and call appropriate interrupt
1864  * processing routines.
1865  */
1866 static void
1867 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1868 {
1869 	struct e1000_hw *hw;
1870 	hw = &Adapter->shared;
1871 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1872 	uint32_t itr;
1873 
1874 	Adapter->rx_pkt_cnt = 0;
1875 	Adapter->tx_pkt_cnt = 0;
1876 
1877 	rw_enter(&Adapter->chip_lock, RW_READER);
1878 	/*
1879 	 * Here we need to check the "chip_state" flag within the chip_lock to
1880 	 * ensure the receive routine will not execute when the adapter is
1881 	 * being reset.
1882 	 */
1883 	if (Adapter->chip_state != E1000G_START) {
1884 		rw_exit(&Adapter->chip_lock);
1885 		return;
1886 	}
1887 
1888 	if (icr & E1000_ICR_RXT0) {
1889 		mblk_t *mp;
1890 
1891 		mutex_enter(&Adapter->rx_ring->rx_lock);
1892 		mp = e1000g_receive(Adapter);
1893 		mutex_exit(&Adapter->rx_ring->rx_lock);
1894 
1895 		rw_exit(&Adapter->chip_lock);
1896 
1897 		if (mp != NULL)
1898 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1899 	} else
1900 		rw_exit(&Adapter->chip_lock);
1901 
1902 	if (icr & E1000_ICR_TXDW) {
1903 		if (!Adapter->tx_intr_enable)
1904 			e1000g_clear_tx_interrupt(Adapter);
1905 
1906 		/* Recycle the tx descriptors */
1907 		rw_enter(&Adapter->chip_lock, RW_READER);
1908 		e1000g_recycle(tx_ring);
1909 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1910 		rw_exit(&Adapter->chip_lock);
1911 
1912 		/* Schedule the re-transmit */
1913 		if (tx_ring->resched_needed &&
1914 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
1915 			tx_ring->resched_needed = B_FALSE;
1916 			mac_tx_update(Adapter->mh);
1917 			E1000G_STAT(tx_ring->stat_reschedule);
1918 		}
1919 	}
1920 
1921 	if (Adapter->intr_adaptive) {
1922 		itr = e1000g_get_itr(Adapter->rx_pkt_cnt, Adapter->tx_pkt_cnt,
1923 		    Adapter->intr_throttling_rate);
1924 		if (itr) {
1925 			E1000_WRITE_REG(hw, E1000_ITR, itr);
1926 			Adapter->intr_throttling_rate = itr;
1927 		}
1928 	}
1929 
1930 	/*
1931 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1932 	 * are checked to detect that the cable has been pulled out. For
1933 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1934 	 * are an indication that cable is not connected.
1935 	 */
1936 	if ((icr & E1000_ICR_RXSEQ) ||
1937 	    (icr & E1000_ICR_LSC) ||
1938 	    (icr & E1000_ICR_GPI_EN1)) {
1939 		boolean_t link_changed;
1940 		timeout_id_t tid = 0;
1941 
1942 		stop_watchdog_timer(Adapter);
1943 
1944 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1945 
1946 		/*
1947 		 * Because we got a link-status-change interrupt, force
1948 		 * e1000_check_for_link() to look at phy
1949 		 */
1950 		Adapter->shared.mac.get_link_status = B_TRUE;
1951 
1952 		/* e1000g_link_check takes care of link status change */
1953 		link_changed = e1000g_link_check(Adapter);
1954 
1955 		/* Get new phy state */
1956 		e1000g_get_phy_state(Adapter);
1957 
1958 		/*
1959 		 * If the link timer has not timed out, we'll not notify
1960 		 * the upper layer with any link state until the link is up.
1961 		 */
1962 		if (link_changed && !Adapter->link_complete) {
1963 			if (Adapter->link_state == LINK_STATE_UP) {
1964 				mutex_enter(&Adapter->link_lock);
1965 				Adapter->link_complete = B_TRUE;
1966 				tid = Adapter->link_tid;
1967 				Adapter->link_tid = 0;
1968 				mutex_exit(&Adapter->link_lock);
1969 			} else {
1970 				link_changed = B_FALSE;
1971 			}
1972 		}
1973 		rw_exit(&Adapter->chip_lock);
1974 
1975 		if (link_changed) {
1976 			if (tid != 0)
1977 				(void) untimeout(tid);
1978 
1979 			/*
1980 			 * Workaround for esb2. Data stuck in fifo on a link
1981 			 * down event. Stop receiver here and reset in watchdog.
1982 			 */
1983 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
1984 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
1985 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1986 				E1000_WRITE_REG(hw, E1000_RCTL,
1987 				    rctl & ~E1000_RCTL_EN);
1988 				e1000g_log(Adapter, CE_WARN,
1989 				    "ESB2 receiver disabled");
1990 				Adapter->esb2_workaround = B_TRUE;
1991 			}
1992 
1993 			mac_link_update(Adapter->mh, Adapter->link_state);
1994 		}
1995 
1996 		start_watchdog_timer(Adapter);
1997 	}
1998 }
1999 
2000 static uint32_t
2001 e1000g_get_itr(uint32_t rx_packet, uint32_t tx_packet, uint32_t cur_itr)
2002 {
2003 	uint32_t new_itr;
2004 
2005 	/*
2006 	 * Determine a propper itr according to rx/tx packet count
2007 	 * per interrupt, the value of itr are based on document
2008 	 * and testing.
2009 	 */
2010 	if ((rx_packet < DEFAULT_INTR_PACKET_LOW) ||
2011 	    (tx_packet < DEFAULT_INTR_PACKET_LOW)) {
2012 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2013 		goto itr_done;
2014 	}
2015 	if ((rx_packet > DEFAULT_INTR_PACKET_HIGH) ||
2016 	    (tx_packet > DEFAULT_INTR_PACKET_HIGH)) {
2017 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2018 		goto itr_done;
2019 	}
2020 	if (cur_itr < DEFAULT_INTR_THROTTLING_HIGH) {
2021 		new_itr = cur_itr + (DEFAULT_INTR_THROTTLING_HIGH >> 2);
2022 		if (new_itr > DEFAULT_INTR_THROTTLING_HIGH)
2023 			new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2024 	} else
2025 		new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2026 
2027 itr_done:
2028 	if (cur_itr == new_itr)
2029 		return (0);
2030 	else
2031 		return (new_itr);
2032 }
2033 
2034 static void
2035 e1000g_init_unicst(struct e1000g *Adapter)
2036 {
2037 	struct e1000_hw *hw;
2038 	int slot;
2039 
2040 	hw = &Adapter->shared;
2041 
2042 	if (!Adapter->unicst_init) {
2043 		/* Initialize the multiple unicast addresses */
2044 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2045 
2046 		if ((hw->mac.type == e1000_82571) &&
2047 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2048 			Adapter->unicst_total--;
2049 
2050 		Adapter->unicst_avail = Adapter->unicst_total - 1;
2051 
2052 		/* Store the default mac address */
2053 		e1000_rar_set(hw, hw->mac.addr, 0);
2054 		if ((hw->mac.type == e1000_82571) &&
2055 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2056 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2057 
2058 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
2059 		    ETHERADDRL);
2060 		Adapter->unicst_addr[0].mac.set = 1;
2061 
2062 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2063 			Adapter->unicst_addr[slot].mac.set = 0;
2064 
2065 		Adapter->unicst_init = B_TRUE;
2066 	} else {
2067 		/* Recover the default mac address */
2068 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
2069 		    ETHERADDRL);
2070 
2071 		/* Store the default mac address */
2072 		e1000_rar_set(hw, hw->mac.addr, 0);
2073 		if ((hw->mac.type == e1000_82571) &&
2074 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2075 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2076 
2077 		/* Re-configure the RAR registers */
2078 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2079 			e1000_rar_set(hw,
2080 			    Adapter->unicst_addr[slot].mac.addr, slot);
2081 	}
2082 
2083 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2084 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2085 }
2086 
2087 static int
2088 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
2089 {
2090 	struct e1000g *Adapter;
2091 
2092 	Adapter = (struct e1000g *)arg;
2093 
2094 	/* Store the default MAC address */
2095 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
2096 
2097 	/* Set MAC address in address slot 0, which is the default address */
2098 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
2099 }
2100 
2101 static int
2102 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2103     mac_addr_slot_t slot)
2104 {
2105 	struct e1000_hw *hw;
2106 
2107 	hw = &Adapter->shared;
2108 
2109 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2110 
2111 	/*
2112 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2113 	 * that requires the receiver to be in reset when any of the
2114 	 * receive address registers (RAR regs) are accessed.  The first
2115 	 * rev of Wiseman silicon also requires MWI to be disabled when
2116 	 * a global reset or a receive reset is issued.  So before we
2117 	 * initialize the RARs, we check the rev of the Wiseman controller
2118 	 * and work around any necessary HW errata.
2119 	 */
2120 	if ((hw->mac.type == e1000_82542) &&
2121 	    (hw->revision_id == E1000_REVISION_2)) {
2122 		e1000_pci_clear_mwi(hw);
2123 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2124 		msec_delay(5);
2125 	}
2126 
2127 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
2128 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2129 
2130 	if (slot == 0) {
2131 		if ((hw->mac.type == e1000_82571) &&
2132 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2133 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
2134 	}
2135 
2136 	/*
2137 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2138 	 * put the receive in reset, and disabled MWI, to work around some
2139 	 * HW errata.  Now we should take the receiver out of reset, and
2140 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2141 	 */
2142 	if ((hw->mac.type == e1000_82542) &&
2143 	    (hw->revision_id == E1000_REVISION_2)) {
2144 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2145 		msec_delay(1);
2146 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2147 			e1000_pci_set_mwi(hw);
2148 		e1000g_rx_setup(Adapter);
2149 	}
2150 
2151 	rw_exit(&Adapter->chip_lock);
2152 
2153 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2154 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2155 		return (EIO);
2156 	}
2157 
2158 	return (0);
2159 }
2160 
2161 /*
2162  * e1000g_m_unicst_add() - will find an unused address slot, set the
2163  * address value to the one specified, reserve that slot and enable
2164  * the NIC to start filtering on the new MAC address.
2165  * Returns 0 on success.
2166  */
2167 static int
2168 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
2169 {
2170 	struct e1000g *Adapter = (struct e1000g *)arg;
2171 	mac_addr_slot_t slot;
2172 	int err;
2173 
2174 	if (mac_unicst_verify(Adapter->mh,
2175 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2176 		return (EINVAL);
2177 
2178 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2179 	if (Adapter->unicst_avail == 0) {
2180 		/* no slots available */
2181 		rw_exit(&Adapter->chip_lock);
2182 		return (ENOSPC);
2183 	}
2184 
2185 	/*
2186 	 * Primary/default address is in slot 0. The next addresses
2187 	 * are the multiple MAC addresses. So multiple MAC address 0
2188 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
2189 	 * MAC address resides in slot 1.
2190 	 */
2191 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
2192 		if (Adapter->unicst_addr[slot].mac.set == 0) {
2193 			Adapter->unicst_addr[slot].mac.set = 1;
2194 			break;
2195 		}
2196 	}
2197 
2198 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
2199 
2200 	Adapter->unicst_avail--;
2201 	rw_exit(&Adapter->chip_lock);
2202 
2203 	maddr->mma_slot = slot;
2204 
2205 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
2206 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2207 		Adapter->unicst_addr[slot].mac.set = 0;
2208 		Adapter->unicst_avail++;
2209 		rw_exit(&Adapter->chip_lock);
2210 	}
2211 
2212 	return (err);
2213 }
2214 
2215 /*
2216  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
2217  * call to e1000g_m_unicst_add(). The slot number that was returned in
2218  * e1000g_m_unicst_add() is passed in the call to remove the address.
2219  * Returns 0 on success.
2220  */
2221 static int
2222 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
2223 {
2224 	struct e1000g *Adapter = (struct e1000g *)arg;
2225 	int err;
2226 
2227 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2228 		return (EINVAL);
2229 
2230 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2231 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2232 		Adapter->unicst_addr[slot].mac.set = 0;
2233 		Adapter->unicst_avail++;
2234 		rw_exit(&Adapter->chip_lock);
2235 
2236 		/* Copy the default address to the passed slot */
2237 		if (err = e1000g_unicst_set(Adapter,
2238 		    Adapter->unicst_addr[0].mac.addr, slot) != 0) {
2239 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2240 			Adapter->unicst_addr[slot].mac.set = 1;
2241 			Adapter->unicst_avail--;
2242 			rw_exit(&Adapter->chip_lock);
2243 		}
2244 		return (err);
2245 	}
2246 	rw_exit(&Adapter->chip_lock);
2247 
2248 	return (EINVAL);
2249 }
2250 
2251 /*
2252  * e1000g_m_unicst_modify() - modifies the value of an address that
2253  * has been added by e1000g_m_unicst_add(). The new address, address
2254  * length and the slot number that was returned in the call to add
2255  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2256  * set to 0. Returns 0 on success.
2257  */
2258 static int
2259 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2260 {
2261 	struct e1000g *Adapter = (struct e1000g *)arg;
2262 	mac_addr_slot_t slot;
2263 
2264 	if (mac_unicst_verify(Adapter->mh,
2265 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2266 		return (EINVAL);
2267 
2268 	slot = maddr->mma_slot;
2269 
2270 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2271 		return (EINVAL);
2272 
2273 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2274 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2275 		rw_exit(&Adapter->chip_lock);
2276 
2277 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2278 	}
2279 	rw_exit(&Adapter->chip_lock);
2280 
2281 	return (EINVAL);
2282 }
2283 
2284 /*
2285  * e1000g_m_unicst_get() - will get the MAC address and all other
2286  * information related to the address slot passed in mac_multi_addr_t.
2287  * mma_flags should be set to 0 in the call.
2288  * On return, mma_flags can take the following values:
2289  * 1) MMAC_SLOT_UNUSED
2290  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2291  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2292  * 4) MMAC_SLOT_USED
2293  */
2294 static int
2295 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2296 {
2297 	struct e1000g *Adapter = (struct e1000g *)arg;
2298 	mac_addr_slot_t slot;
2299 
2300 	slot = maddr->mma_slot;
2301 
2302 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2303 		return (EINVAL);
2304 
2305 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2306 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2307 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2308 		    maddr->mma_addr, ETHERADDRL);
2309 		maddr->mma_flags = MMAC_SLOT_USED;
2310 	} else {
2311 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2312 	}
2313 	rw_exit(&Adapter->chip_lock);
2314 
2315 	return (0);
2316 }
2317 
2318 static int
2319 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2320 {
2321 	struct e1000_hw *hw = &Adapter->shared;
2322 	unsigned i;
2323 	int res = 0;
2324 
2325 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2326 
2327 	if ((multiaddr[0] & 01) == 0) {
2328 		res = EINVAL;
2329 		goto done;
2330 	}
2331 
2332 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2333 		res = ENOENT;
2334 		goto done;
2335 	}
2336 
2337 	bcopy(multiaddr,
2338 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2339 	Adapter->mcast_count++;
2340 
2341 	/*
2342 	 * Update the MC table in the hardware
2343 	 */
2344 	e1000g_clear_interrupt(Adapter);
2345 
2346 	e1000g_setup_multicast(Adapter);
2347 
2348 	if ((hw->mac.type == e1000_82542) &&
2349 	    (hw->revision_id == E1000_REVISION_2))
2350 		e1000g_rx_setup(Adapter);
2351 
2352 	e1000g_mask_interrupt(Adapter);
2353 
2354 done:
2355 	rw_exit(&Adapter->chip_lock);
2356 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2357 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2358 		res = EIO;
2359 	}
2360 
2361 	return (res);
2362 }
2363 
2364 static int
2365 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2366 {
2367 	struct e1000_hw *hw = &Adapter->shared;
2368 	unsigned i;
2369 
2370 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2371 
2372 	for (i = 0; i < Adapter->mcast_count; i++) {
2373 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2374 		    ETHERADDRL) == 0) {
2375 			for (i++; i < Adapter->mcast_count; i++) {
2376 				Adapter->mcast_table[i - 1] =
2377 				    Adapter->mcast_table[i];
2378 			}
2379 			Adapter->mcast_count--;
2380 			break;
2381 		}
2382 	}
2383 
2384 	/*
2385 	 * Update the MC table in the hardware
2386 	 */
2387 	e1000g_clear_interrupt(Adapter);
2388 
2389 	e1000g_setup_multicast(Adapter);
2390 
2391 	if ((hw->mac.type == e1000_82542) &&
2392 	    (hw->revision_id == E1000_REVISION_2))
2393 		e1000g_rx_setup(Adapter);
2394 
2395 	e1000g_mask_interrupt(Adapter);
2396 
2397 done:
2398 	rw_exit(&Adapter->chip_lock);
2399 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2400 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2401 		return (EIO);
2402 	}
2403 
2404 	return (0);
2405 }
2406 
2407 /*
2408  * e1000g_setup_multicast - setup multicast data structures
2409  *
2410  * This routine initializes all of the multicast related structures.
2411  */
2412 void
2413 e1000g_setup_multicast(struct e1000g *Adapter)
2414 {
2415 	uint8_t *mc_addr_list;
2416 	uint32_t mc_addr_count;
2417 	uint32_t rctl;
2418 	struct e1000_hw *hw;
2419 
2420 	hw = &Adapter->shared;
2421 
2422 	/*
2423 	 * The e1000g has the ability to do perfect filtering of 16
2424 	 * addresses. The driver uses one of the e1000g's 16 receive
2425 	 * address registers for its node/network/mac/individual address.
2426 	 * So, we have room for up to 15 multicast addresses in the CAM,
2427 	 * additional MC addresses are handled by the MTA (Multicast Table
2428 	 * Array)
2429 	 */
2430 
2431 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2432 
2433 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2434 
2435 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2436 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2437 		    "Adapter requested more than %d MC Addresses.\n",
2438 		    MAX_NUM_MULTICAST_ADDRESSES);
2439 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2440 	} else {
2441 		/*
2442 		 * Set the number of MC addresses that we are being
2443 		 * requested to use
2444 		 */
2445 		mc_addr_count = Adapter->mcast_count;
2446 	}
2447 	/*
2448 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2449 	 * hang  while writing to the receive address registers if the receiver
2450 	 * is not in reset before writing to the registers. Updating the RAR
2451 	 * is done during the setting up of the multicast table, hence the
2452 	 * receiver has to be put in reset before updating the multicast table
2453 	 * and then taken out of reset at the end
2454 	 */
2455 	/*
2456 	 * if WMI was enabled then dis able it before issueing the global
2457 	 * reset to the hardware.
2458 	 */
2459 	/*
2460 	 * Only required for WISEMAN_2_0
2461 	 */
2462 	if ((hw->mac.type == e1000_82542) &&
2463 	    (hw->revision_id == E1000_REVISION_2)) {
2464 		e1000_pci_clear_mwi(hw);
2465 		/*
2466 		 * The e1000g must be in reset before changing any RA
2467 		 * registers. Reset receive unit.  The chip will remain in
2468 		 * the reset state until software explicitly restarts it.
2469 		 */
2470 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2471 		/* Allow receiver time to go in to reset */
2472 		msec_delay(5);
2473 	}
2474 
2475 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2476 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2477 
2478 	/*
2479 	 * Only for Wiseman_2_0
2480 	 * If MWI was enabled then re-enable it after issueing (as we
2481 	 * disabled it up there) the receive reset command.
2482 	 * Wainwright does not have a receive reset command and only thing
2483 	 * close to it is global reset which will require tx setup also
2484 	 */
2485 	if ((hw->mac.type == e1000_82542) &&
2486 	    (hw->revision_id == E1000_REVISION_2)) {
2487 		/*
2488 		 * if WMI was enabled then reenable it after issueing the
2489 		 * global or receive reset to the hardware.
2490 		 */
2491 
2492 		/*
2493 		 * Take receiver out of reset
2494 		 * clear E1000_RCTL_RST bit (and all others)
2495 		 */
2496 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2497 		msec_delay(5);
2498 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2499 			e1000_pci_set_mwi(hw);
2500 	}
2501 
2502 	/*
2503 	 * Restore original value
2504 	 */
2505 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2506 }
2507 
2508 int
2509 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2510 {
2511 	struct e1000g *Adapter = (struct e1000g *)arg;
2512 
2513 	return ((add) ? multicst_add(Adapter, addr)
2514 	    : multicst_remove(Adapter, addr));
2515 }
2516 
2517 int
2518 e1000g_m_promisc(void *arg, boolean_t on)
2519 {
2520 	struct e1000g *Adapter = (struct e1000g *)arg;
2521 	uint32_t rctl;
2522 
2523 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2524 
2525 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2526 
2527 	if (on)
2528 		rctl |=
2529 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2530 	else
2531 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2532 
2533 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2534 
2535 	Adapter->e1000g_promisc = on;
2536 
2537 	rw_exit(&Adapter->chip_lock);
2538 
2539 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2540 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2541 		return (EIO);
2542 	}
2543 
2544 	return (0);
2545 }
2546 
2547 static boolean_t
2548 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2549 {
2550 	struct e1000g *Adapter = (struct e1000g *)arg;
2551 	struct e1000_hw *hw = &Adapter->shared;
2552 
2553 	switch (cap) {
2554 	case MAC_CAPAB_HCKSUM: {
2555 		uint32_t *txflags = cap_data;
2556 
2557 		if (Adapter->tx_hcksum_enable)
2558 			*txflags = HCKSUM_IPHDRCKSUM |
2559 			    HCKSUM_INET_PARTIAL;
2560 		else
2561 			return (B_FALSE);
2562 		break;
2563 	}
2564 	case MAC_CAPAB_POLL:
2565 		/*
2566 		 * There's nothing for us to fill in, simply returning
2567 		 * B_TRUE stating that we support polling is sufficient.
2568 		 */
2569 		break;
2570 
2571 	case MAC_CAPAB_MULTIADDRESS: {
2572 		multiaddress_capab_t *mmacp = cap_data;
2573 
2574 		/*
2575 		 * The number of MAC addresses made available by
2576 		 * this capability is one less than the total as
2577 		 * the primary address in slot 0 is counted in
2578 		 * the total.
2579 		 */
2580 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2581 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2582 		/* No multiple factory addresses, set mma_flag to 0 */
2583 		mmacp->maddr_flag = 0;
2584 		mmacp->maddr_handle = Adapter;
2585 		mmacp->maddr_add = e1000g_m_unicst_add;
2586 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2587 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2588 		mmacp->maddr_get = e1000g_m_unicst_get;
2589 		mmacp->maddr_reserve = NULL;
2590 		break;
2591 	}
2592 
2593 	case MAC_CAPAB_LSO: {
2594 		mac_capab_lso_t *cap_lso = cap_data;
2595 
2596 		if (Adapter->lso_enable) {
2597 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2598 			cap_lso->lso_basic_tcp_ipv4.lso_max =
2599 			    E1000_LSO_MAXLEN;
2600 		} else
2601 			return (B_FALSE);
2602 		break;
2603 	}
2604 
2605 	default:
2606 		return (B_FALSE);
2607 	}
2608 	return (B_TRUE);
2609 }
2610 
2611 static boolean_t
2612 e1000g_param_locked(mac_prop_id_t pr_num)
2613 {
2614 	/*
2615 	 * All en_* parameters are locked (read-only) while
2616 	 * the device is in any sort of loopback mode ...
2617 	 */
2618 	switch (pr_num) {
2619 		case MAC_PROP_EN_1000FDX_CAP:
2620 		case MAC_PROP_EN_1000HDX_CAP:
2621 		case MAC_PROP_EN_100FDX_CAP:
2622 		case MAC_PROP_EN_100HDX_CAP:
2623 		case MAC_PROP_EN_10FDX_CAP:
2624 		case MAC_PROP_EN_10HDX_CAP:
2625 		case MAC_PROP_AUTONEG:
2626 		case MAC_PROP_FLOWCTRL:
2627 			return (B_TRUE);
2628 	}
2629 	return (B_FALSE);
2630 }
2631 
2632 /*
2633  * callback function for set/get of properties
2634  */
2635 static int
2636 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2637     uint_t pr_valsize, const void *pr_val)
2638 {
2639 	struct e1000g *Adapter = arg;
2640 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2641 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2642 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2643 	int err = 0;
2644 	link_flowctrl_t flowctrl;
2645 	uint32_t cur_mtu, new_mtu;
2646 	uint64_t tmp = 0;
2647 
2648 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2649 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2650 	    e1000g_param_locked(pr_num)) {
2651 		/*
2652 		 * All en_* parameters are locked (read-only)
2653 		 * while the device is in any sort of loopback mode.
2654 		 */
2655 		rw_exit(&Adapter->chip_lock);
2656 		return (EBUSY);
2657 	}
2658 
2659 	switch (pr_num) {
2660 		case MAC_PROP_EN_1000FDX_CAP:
2661 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2662 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
2663 			goto reset;
2664 		case MAC_PROP_EN_1000HDX_CAP:
2665 			Adapter->param_en_1000hdx = *(uint8_t *)pr_val;
2666 			Adapter->param_adv_1000hdx = *(uint8_t *)pr_val;
2667 			goto reset;
2668 		case MAC_PROP_EN_100FDX_CAP:
2669 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
2670 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
2671 			goto reset;
2672 		case MAC_PROP_EN_100HDX_CAP:
2673 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
2674 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
2675 			goto reset;
2676 		case MAC_PROP_EN_10FDX_CAP:
2677 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
2678 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
2679 			goto reset;
2680 		case MAC_PROP_EN_10HDX_CAP:
2681 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
2682 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
2683 			goto reset;
2684 		case MAC_PROP_AUTONEG:
2685 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
2686 			goto reset;
2687 		case MAC_PROP_FLOWCTRL:
2688 			fc->send_xon = B_TRUE;
2689 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
2690 
2691 			switch (flowctrl) {
2692 			default:
2693 				err = EINVAL;
2694 				break;
2695 			case LINK_FLOWCTRL_NONE:
2696 				fc->type = e1000_fc_none;
2697 				break;
2698 			case LINK_FLOWCTRL_RX:
2699 				fc->type = e1000_fc_rx_pause;
2700 				break;
2701 			case LINK_FLOWCTRL_TX:
2702 				fc->type = e1000_fc_tx_pause;
2703 				break;
2704 			case LINK_FLOWCTRL_BI:
2705 				fc->type = e1000_fc_full;
2706 				break;
2707 			}
2708 reset:
2709 			if (err == 0) {
2710 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
2711 					err = EINVAL;
2712 			}
2713 			break;
2714 		case MAC_PROP_ADV_1000FDX_CAP:
2715 		case MAC_PROP_ADV_1000HDX_CAP:
2716 		case MAC_PROP_ADV_100FDX_CAP:
2717 		case MAC_PROP_ADV_100HDX_CAP:
2718 		case MAC_PROP_ADV_10FDX_CAP:
2719 		case MAC_PROP_ADV_10HDX_CAP:
2720 		case MAC_PROP_STATUS:
2721 		case MAC_PROP_SPEED:
2722 		case MAC_PROP_DUPLEX:
2723 			err = ENOTSUP; /* read-only prop. Can't set this. */
2724 			break;
2725 		case MAC_PROP_MTU:
2726 			cur_mtu = Adapter->default_mtu;
2727 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
2728 			if (new_mtu == cur_mtu) {
2729 				err = 0;
2730 				break;
2731 			}
2732 
2733 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
2734 			    ETHERFCSL;
2735 			if ((tmp < DEFAULT_FRAME_SIZE) ||
2736 			    (tmp > MAXIMUM_FRAME_SIZE)) {
2737 				err = EINVAL;
2738 				break;
2739 			}
2740 
2741 			/* ich8 doed not support jumbo frames */
2742 			if ((mac->type == e1000_ich8lan) &&
2743 			    (tmp > DEFAULT_FRAME_SIZE)) {
2744 				err = EINVAL;
2745 				break;
2746 			}
2747 			/* ich9 does not do jumbo frames on one phy type */
2748 			if ((mac->type == e1000_ich9lan) &&
2749 			    (phy->type == e1000_phy_ife) &&
2750 			    (tmp > DEFAULT_FRAME_SIZE)) {
2751 				err = EINVAL;
2752 				break;
2753 			}
2754 			if (Adapter->chip_state != E1000G_STOP) {
2755 				err = EBUSY;
2756 				break;
2757 			}
2758 
2759 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
2760 			if (err == 0) {
2761 				Adapter->max_frame_size = tmp;
2762 				Adapter->default_mtu = new_mtu;
2763 				e1000g_set_bufsize(Adapter);
2764 			}
2765 			break;
2766 		case MAC_PROP_PRIVATE:
2767 			err = e1000g_set_priv_prop(Adapter, pr_name,
2768 			    pr_valsize, pr_val);
2769 			break;
2770 		default:
2771 			err = ENOTSUP;
2772 			break;
2773 	}
2774 	rw_exit(&Adapter->chip_lock);
2775 	return (err);
2776 }
2777 
2778 static int
2779 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2780     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
2781 {
2782 	struct e1000g *Adapter = arg;
2783 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2784 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2785 	int err = 0;
2786 	link_flowctrl_t flowctrl;
2787 	uint64_t tmp = 0;
2788 
2789 	if (pr_valsize == 0)
2790 		return (EINVAL);
2791 
2792 	bzero(pr_val, pr_valsize);
2793 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
2794 		return (e1000g_get_def_val(Adapter, pr_num,
2795 		    pr_valsize, pr_val));
2796 	}
2797 
2798 	switch (pr_num) {
2799 		case MAC_PROP_DUPLEX:
2800 			if (pr_valsize >= sizeof (link_duplex_t)) {
2801 				bcopy(&Adapter->link_duplex, pr_val,
2802 				    sizeof (link_duplex_t));
2803 			} else
2804 				err = EINVAL;
2805 			break;
2806 		case MAC_PROP_SPEED:
2807 			if (pr_valsize >= sizeof (uint64_t)) {
2808 				tmp = Adapter->link_speed * 1000000ull;
2809 				bcopy(&tmp, pr_val, sizeof (tmp));
2810 			} else
2811 				err = EINVAL;
2812 			break;
2813 		case MAC_PROP_AUTONEG:
2814 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
2815 			break;
2816 		case MAC_PROP_FLOWCTRL:
2817 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
2818 				switch (fc->type) {
2819 					case e1000_fc_none:
2820 						flowctrl = LINK_FLOWCTRL_NONE;
2821 						break;
2822 					case e1000_fc_rx_pause:
2823 						flowctrl = LINK_FLOWCTRL_RX;
2824 						break;
2825 					case e1000_fc_tx_pause:
2826 						flowctrl = LINK_FLOWCTRL_TX;
2827 						break;
2828 					case e1000_fc_full:
2829 						flowctrl = LINK_FLOWCTRL_BI;
2830 						break;
2831 				}
2832 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
2833 			} else
2834 				err = EINVAL;
2835 			break;
2836 		case MAC_PROP_ADV_1000FDX_CAP:
2837 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
2838 			break;
2839 		case MAC_PROP_EN_1000FDX_CAP:
2840 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
2841 			break;
2842 		case MAC_PROP_ADV_1000HDX_CAP:
2843 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
2844 			break;
2845 		case MAC_PROP_EN_1000HDX_CAP:
2846 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
2847 			break;
2848 		case MAC_PROP_ADV_100FDX_CAP:
2849 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
2850 			break;
2851 		case MAC_PROP_EN_100FDX_CAP:
2852 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
2853 			break;
2854 		case MAC_PROP_ADV_100HDX_CAP:
2855 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
2856 			break;
2857 		case MAC_PROP_EN_100HDX_CAP:
2858 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
2859 			break;
2860 		case MAC_PROP_ADV_10FDX_CAP:
2861 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
2862 			break;
2863 		case MAC_PROP_EN_10FDX_CAP:
2864 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
2865 			break;
2866 		case MAC_PROP_ADV_10HDX_CAP:
2867 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
2868 			break;
2869 		case MAC_PROP_EN_10HDX_CAP:
2870 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
2871 			break;
2872 		case MAC_PROP_ADV_100T4_CAP:
2873 		case MAC_PROP_EN_100T4_CAP:
2874 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
2875 			break;
2876 		case MAC_PROP_PRIVATE:
2877 			err = e1000g_get_priv_prop(Adapter, pr_name,
2878 			    pr_flags, pr_valsize, pr_val);
2879 			break;
2880 		default:
2881 			err = ENOTSUP;
2882 			break;
2883 	}
2884 	return (err);
2885 }
2886 
2887 /* ARGUSED */
2888 static int
2889 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
2890     uint_t pr_valsize, const void *pr_val)
2891 {
2892 	int err = 0;
2893 	long result;
2894 	struct e1000_hw *hw = &Adapter->shared;
2895 
2896 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2897 		if (pr_val == NULL) {
2898 			err = EINVAL;
2899 			return (err);
2900 		}
2901 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2902 		if (result < MIN_TX_BCOPY_THRESHOLD ||
2903 		    result > MAX_TX_BCOPY_THRESHOLD)
2904 			err = EINVAL;
2905 		else {
2906 			Adapter->tx_bcopy_thresh = (uint32_t)result;
2907 		}
2908 		return (err);
2909 	}
2910 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
2911 		if (pr_val == NULL) {
2912 			err = EINVAL;
2913 			return (err);
2914 		}
2915 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2916 		if (result < 0 || result > 1)
2917 			err = EINVAL;
2918 		else {
2919 			Adapter->tx_intr_enable = (result == 1) ?
2920 			    B_TRUE: B_FALSE;
2921 			if (Adapter->tx_intr_enable)
2922 				e1000g_mask_tx_interrupt(Adapter);
2923 			else
2924 				e1000g_clear_tx_interrupt(Adapter);
2925 			if (e1000g_check_acc_handle(
2926 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2927 				ddi_fm_service_impact(Adapter->dip,
2928 				    DDI_SERVICE_DEGRADED);
2929 		}
2930 		return (err);
2931 	}
2932 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
2933 		if (pr_val == NULL) {
2934 			err = EINVAL;
2935 			return (err);
2936 		}
2937 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2938 		if (result < MIN_TX_INTR_DELAY ||
2939 		    result > MAX_TX_INTR_DELAY)
2940 			err = EINVAL;
2941 		else {
2942 			Adapter->tx_intr_delay = (uint32_t)result;
2943 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
2944 			if (e1000g_check_acc_handle(
2945 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2946 				ddi_fm_service_impact(Adapter->dip,
2947 				    DDI_SERVICE_DEGRADED);
2948 		}
2949 		return (err);
2950 	}
2951 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
2952 		if (pr_val == NULL) {
2953 			err = EINVAL;
2954 			return (err);
2955 		}
2956 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2957 		if (result < MIN_TX_INTR_ABS_DELAY ||
2958 		    result > MAX_TX_INTR_ABS_DELAY)
2959 			err = EINVAL;
2960 		else {
2961 			Adapter->tx_intr_abs_delay = (uint32_t)result;
2962 			E1000_WRITE_REG(hw, E1000_TADV,
2963 			    Adapter->tx_intr_abs_delay);
2964 			if (e1000g_check_acc_handle(
2965 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2966 				ddi_fm_service_impact(Adapter->dip,
2967 				    DDI_SERVICE_DEGRADED);
2968 		}
2969 		return (err);
2970 	}
2971 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
2972 		if (pr_val == NULL) {
2973 			err = EINVAL;
2974 			return (err);
2975 		}
2976 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2977 		if (result < MIN_RX_BCOPY_THRESHOLD ||
2978 		    result > MAX_RX_BCOPY_THRESHOLD)
2979 			err = EINVAL;
2980 		else
2981 			Adapter->rx_bcopy_thresh = (uint32_t)result;
2982 		return (err);
2983 	}
2984 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
2985 		if (pr_val == NULL) {
2986 			err = EINVAL;
2987 			return (err);
2988 		}
2989 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2990 		if (result < MIN_RX_LIMIT_ON_INTR ||
2991 		    result > MAX_RX_LIMIT_ON_INTR)
2992 			err = EINVAL;
2993 		else
2994 			Adapter->rx_limit_onintr = (uint32_t)result;
2995 		return (err);
2996 	}
2997 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
2998 		if (pr_val == NULL) {
2999 			err = EINVAL;
3000 			return (err);
3001 		}
3002 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3003 		if (result < MIN_RX_INTR_DELAY ||
3004 		    result > MAX_RX_INTR_DELAY)
3005 			err = EINVAL;
3006 		else {
3007 			Adapter->rx_intr_delay = (uint32_t)result;
3008 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3009 			if (e1000g_check_acc_handle(
3010 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3011 				ddi_fm_service_impact(Adapter->dip,
3012 				    DDI_SERVICE_DEGRADED);
3013 		}
3014 		return (err);
3015 	}
3016 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3017 		if (pr_val == NULL) {
3018 			err = EINVAL;
3019 			return (err);
3020 		}
3021 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3022 		if (result < MIN_RX_INTR_ABS_DELAY ||
3023 		    result > MAX_RX_INTR_ABS_DELAY)
3024 			err = EINVAL;
3025 		else {
3026 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3027 			E1000_WRITE_REG(hw, E1000_RADV,
3028 			    Adapter->rx_intr_abs_delay);
3029 			if (e1000g_check_acc_handle(
3030 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3031 				ddi_fm_service_impact(Adapter->dip,
3032 				    DDI_SERVICE_DEGRADED);
3033 		}
3034 		return (err);
3035 	}
3036 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3037 		if (pr_val == NULL) {
3038 			err = EINVAL;
3039 			return (err);
3040 		}
3041 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3042 		if (result < MIN_INTR_THROTTLING ||
3043 		    result > MAX_INTR_THROTTLING)
3044 			err = EINVAL;
3045 		else {
3046 			if (hw->mac.type >= e1000_82540) {
3047 				Adapter->intr_throttling_rate =
3048 				    (uint32_t)result;
3049 				E1000_WRITE_REG(hw, E1000_ITR,
3050 				    Adapter->intr_throttling_rate);
3051 				if (e1000g_check_acc_handle(
3052 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3053 					ddi_fm_service_impact(Adapter->dip,
3054 					    DDI_SERVICE_DEGRADED);
3055 			} else
3056 				err = EINVAL;
3057 		}
3058 		return (err);
3059 	}
3060 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3061 		if (pr_val == NULL) {
3062 			err = EINVAL;
3063 			return (err);
3064 		}
3065 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3066 		if (result < 0 || result > 1)
3067 			err = EINVAL;
3068 		else {
3069 			if (hw->mac.type >= e1000_82540) {
3070 				Adapter->intr_adaptive = (result == 1) ?
3071 				    B_TRUE : B_FALSE;
3072 			} else {
3073 				err = EINVAL;
3074 			}
3075 		}
3076 		return (err);
3077 	}
3078 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3079 		if (pr_val == NULL) {
3080 			err = EINVAL;
3081 			return (err);
3082 		}
3083 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3084 		if (result < MIN_TX_RECYCLE_THRESHOLD ||
3085 		    result > MAX_TX_RECYCLE_THRESHOLD)
3086 			err = EINVAL;
3087 		else
3088 			Adapter->tx_recycle_thresh = (uint32_t)result;
3089 		return (err);
3090 	}
3091 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3092 		if (pr_val == NULL) {
3093 			err = EINVAL;
3094 			return (err);
3095 		}
3096 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3097 		if (result < MIN_TX_RECYCLE_NUM ||
3098 		    result > MAX_TX_RECYCLE_NUM)
3099 			err = EINVAL;
3100 		else
3101 			Adapter->tx_recycle_num = (uint32_t)result;
3102 		return (err);
3103 	}
3104 	return (ENOTSUP);
3105 }
3106 
3107 static int
3108 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3109     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
3110 {
3111 	char valstr[MAXNAMELEN];
3112 	int err = ENOTSUP;
3113 	uint_t strsize;
3114 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3115 	int value;
3116 
3117 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3118 		if (is_default)
3119 			goto done;
3120 		value = Adapter->param_adv_pause;
3121 		err = 0;
3122 		goto done;
3123 	}
3124 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3125 		if (is_default)
3126 			goto done;
3127 		value = Adapter->param_adv_asym_pause;
3128 		err = 0;
3129 		goto done;
3130 	}
3131 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3132 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3133 		    Adapter->tx_bcopy_thresh);
3134 		err = 0;
3135 		goto done;
3136 	}
3137 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3138 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3139 		    Adapter->tx_intr_enable);
3140 		err = 0;
3141 		goto done;
3142 	}
3143 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3144 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3145 		    Adapter->tx_intr_delay);
3146 		err = 0;
3147 		goto done;
3148 	}
3149 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3150 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3151 		    Adapter->tx_intr_abs_delay);
3152 		err = 0;
3153 		goto done;
3154 	}
3155 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3156 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3157 		    Adapter->rx_bcopy_thresh);
3158 		err = 0;
3159 		goto done;
3160 	}
3161 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3162 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3163 		    Adapter->rx_limit_onintr);
3164 		err = 0;
3165 		goto done;
3166 	}
3167 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3168 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3169 		    Adapter->rx_intr_delay);
3170 		err = 0;
3171 		goto done;
3172 	}
3173 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3174 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3175 		    Adapter->rx_intr_abs_delay);
3176 		err = 0;
3177 		goto done;
3178 	}
3179 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3180 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3181 		    Adapter->intr_throttling_rate);
3182 		err = 0;
3183 		goto done;
3184 	}
3185 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3186 		value = (is_default ? 1 : Adapter->intr_adaptive);
3187 		err = 0;
3188 		goto done;
3189 	}
3190 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3191 		value = (is_default ? DEFAULT_TX_RECYCLE_THRESHOLD :
3192 		    Adapter->tx_recycle_thresh);
3193 		err = 0;
3194 		goto done;
3195 	}
3196 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3197 		value = (is_default ? DEFAULT_TX_RECYCLE_NUM :
3198 		    Adapter->tx_recycle_num);
3199 		err = 0;
3200 		goto done;
3201 	}
3202 done:
3203 	if (err == 0) {
3204 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3205 	}
3206 	return (err);
3207 }
3208 
3209 /*
3210  * e1000g_get_conf - get configurations set in e1000g.conf
3211  * This routine gets user-configured values out of the configuration
3212  * file e1000g.conf.
3213  *
3214  * For each configurable value, there is a minimum, a maximum, and a
3215  * default.
3216  * If user does not configure a value, use the default.
3217  * If user configures below the minimum, use the minumum.
3218  * If user configures above the maximum, use the maxumum.
3219  */
3220 static void
3221 e1000g_get_conf(struct e1000g *Adapter)
3222 {
3223 	struct e1000_hw *hw = &Adapter->shared;
3224 	boolean_t tbi_compatibility = B_FALSE;
3225 
3226 	/*
3227 	 * get each configurable property from e1000g.conf
3228 	 */
3229 
3230 	/*
3231 	 * NumTxDescriptors
3232 	 */
3233 	Adapter->tx_desc_num =
3234 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3235 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3236 	    DEFAULT_NUM_TX_DESCRIPTOR);
3237 
3238 	/*
3239 	 * NumRxDescriptors
3240 	 */
3241 	Adapter->rx_desc_num =
3242 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3243 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3244 	    DEFAULT_NUM_RX_DESCRIPTOR);
3245 
3246 	/*
3247 	 * NumRxFreeList
3248 	 */
3249 	Adapter->rx_freelist_num =
3250 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3251 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3252 	    DEFAULT_NUM_RX_FREELIST);
3253 
3254 	/*
3255 	 * NumTxPacketList
3256 	 */
3257 	Adapter->tx_freelist_num =
3258 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3259 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3260 	    DEFAULT_NUM_TX_FREELIST);
3261 
3262 	/*
3263 	 * FlowControl
3264 	 */
3265 	hw->fc.send_xon = B_TRUE;
3266 	hw->fc.type =
3267 	    e1000g_get_prop(Adapter, "FlowControl",
3268 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3269 	/* 4 is the setting that says "let the eeprom decide" */
3270 	if (hw->fc.type == 4)
3271 		hw->fc.type = e1000_fc_default;
3272 
3273 	/*
3274 	 * Max Num Receive Packets on Interrupt
3275 	 */
3276 	Adapter->rx_limit_onintr =
3277 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3278 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3279 	    DEFAULT_RX_LIMIT_ON_INTR);
3280 
3281 	/*
3282 	 * PHY master slave setting
3283 	 */
3284 	hw->phy.ms_type =
3285 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3286 	    e1000_ms_hw_default, e1000_ms_auto,
3287 	    e1000_ms_hw_default);
3288 
3289 	/*
3290 	 * Parameter which controls TBI mode workaround, which is only
3291 	 * needed on certain switches such as Cisco 6500/Foundry
3292 	 */
3293 	tbi_compatibility =
3294 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3295 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3296 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3297 
3298 	/*
3299 	 * MSI Enable
3300 	 */
3301 	Adapter->msi_enable =
3302 	    e1000g_get_prop(Adapter, "MSIEnable",
3303 	    0, 1, DEFAULT_MSI_ENABLE);
3304 
3305 	/*
3306 	 * Interrupt Throttling Rate
3307 	 */
3308 	Adapter->intr_throttling_rate =
3309 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3310 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3311 	    DEFAULT_INTR_THROTTLING);
3312 
3313 	/*
3314 	 * Adaptive Interrupt Blanking Enable/Disable
3315 	 * It is enabled by default
3316 	 */
3317 	Adapter->intr_adaptive =
3318 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3319 	    B_TRUE : B_FALSE;
3320 
3321 	/*
3322 	 * Tx recycle threshold
3323 	 */
3324 	Adapter->tx_recycle_thresh =
3325 	    e1000g_get_prop(Adapter, "tx_recycle_thresh",
3326 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3327 	    DEFAULT_TX_RECYCLE_THRESHOLD);
3328 
3329 	/*
3330 	 * Tx recycle descriptor number
3331 	 */
3332 	Adapter->tx_recycle_num =
3333 	    e1000g_get_prop(Adapter, "tx_recycle_num",
3334 	    MIN_TX_RECYCLE_NUM, MAX_TX_RECYCLE_NUM,
3335 	    DEFAULT_TX_RECYCLE_NUM);
3336 
3337 	/*
3338 	 * Hardware checksum enable/disable parameter
3339 	 */
3340 	Adapter->tx_hcksum_enable =
3341 	    e1000g_get_prop(Adapter, "tx_hcksum_enable",
3342 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3343 	/*
3344 	 * Checksum on/off selection via global parameters.
3345 	 *
3346 	 * If the chip is flagged as not capable of (correctly)
3347 	 * handling checksumming, we don't enable it on either
3348 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3349 	 * from the patchable global defaults.
3350 	 *
3351 	 * We advertise our capabilities only if TX offload is
3352 	 * enabled.  On receive, the stack will accept checksummed
3353 	 * packets anyway, even if we haven't said we can deliver
3354 	 * them.
3355 	 */
3356 	switch (hw->mac.type) {
3357 		case e1000_82540:
3358 		case e1000_82544:
3359 		case e1000_82545:
3360 		case e1000_82545_rev_3:
3361 		case e1000_82546:
3362 		case e1000_82546_rev_3:
3363 		case e1000_82571:
3364 		case e1000_82572:
3365 		case e1000_82573:
3366 		case e1000_80003es2lan:
3367 			break;
3368 		/*
3369 		 * For the following Intel PRO/1000 chipsets, we have not
3370 		 * tested the hardware checksum offload capability, so we
3371 		 * disable the capability for them.
3372 		 *	e1000_82542,
3373 		 *	e1000_82543,
3374 		 *	e1000_82541,
3375 		 *	e1000_82541_rev_2,
3376 		 *	e1000_82547,
3377 		 *	e1000_82547_rev_2,
3378 		 */
3379 		default:
3380 			Adapter->tx_hcksum_enable = B_FALSE;
3381 	}
3382 
3383 	/*
3384 	 * Large Send Offloading(LSO) Enable/Disable
3385 	 * If the tx hardware checksum is not enabled, LSO should be
3386 	 * disabled.
3387 	 */
3388 	Adapter->lso_enable =
3389 	    e1000g_get_prop(Adapter, "lso_enable",
3390 	    0, 1, DEFAULT_LSO_ENABLE);
3391 
3392 	switch (hw->mac.type) {
3393 		case e1000_82546:
3394 		case e1000_82546_rev_3:
3395 			if (Adapter->lso_enable)
3396 				Adapter->lso_premature_issue = B_TRUE;
3397 		case e1000_82571:
3398 		case e1000_82572:
3399 		case e1000_82573:
3400 			break;
3401 		default:
3402 			Adapter->lso_enable = B_FALSE;
3403 	}
3404 
3405 	if (!Adapter->tx_hcksum_enable) {
3406 		Adapter->lso_premature_issue = B_FALSE;
3407 		Adapter->lso_enable = B_FALSE;
3408 	}
3409 }
3410 
3411 /*
3412  * e1000g_get_prop - routine to read properties
3413  *
3414  * Get a user-configure property value out of the configuration
3415  * file e1000g.conf.
3416  *
3417  * Caller provides name of the property, a default value, a minimum
3418  * value, and a maximum value.
3419  *
3420  * Return configured value of the property, with default, minimum and
3421  * maximum properly applied.
3422  */
3423 static int
3424 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3425     char *propname,		/* name of the property */
3426     int minval,			/* minimum acceptable value */
3427     int maxval,			/* maximim acceptable value */
3428     int defval)			/* default value */
3429 {
3430 	int propval;		/* value returned for requested property */
3431 	int *props;		/* point to array of properties returned */
3432 	uint_t nprops;		/* number of property value returned */
3433 
3434 	/*
3435 	 * get the array of properties from the config file
3436 	 */
3437 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3438 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3439 		/* got some properties, test if we got enough */
3440 		if (Adapter->instance < nprops) {
3441 			propval = props[Adapter->instance];
3442 		} else {
3443 			/* not enough properties configured */
3444 			propval = defval;
3445 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3446 			    "Not Enough %s values found in e1000g.conf"
3447 			    " - set to %d\n",
3448 			    propname, propval);
3449 		}
3450 
3451 		/* free memory allocated for properties */
3452 		ddi_prop_free(props);
3453 
3454 	} else {
3455 		propval = defval;
3456 	}
3457 
3458 	/*
3459 	 * enforce limits
3460 	 */
3461 	if (propval > maxval) {
3462 		propval = maxval;
3463 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3464 		    "Too High %s value in e1000g.conf - set to %d\n",
3465 		    propname, propval);
3466 	}
3467 
3468 	if (propval < minval) {
3469 		propval = minval;
3470 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3471 		    "Too Low %s value in e1000g.conf - set to %d\n",
3472 		    propname, propval);
3473 	}
3474 
3475 	return (propval);
3476 }
3477 
3478 static boolean_t
3479 e1000g_link_check(struct e1000g *Adapter)
3480 {
3481 	uint16_t speed, duplex, phydata;
3482 	boolean_t link_changed = B_FALSE;
3483 	struct e1000_hw *hw;
3484 	uint32_t reg_tarc;
3485 
3486 	hw = &Adapter->shared;
3487 
3488 	if (e1000g_link_up(Adapter)) {
3489 		/*
3490 		 * The Link is up, check whether it was marked as down earlier
3491 		 */
3492 		if (Adapter->link_state != LINK_STATE_UP) {
3493 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
3494 			Adapter->link_speed = speed;
3495 			Adapter->link_duplex = duplex;
3496 			Adapter->link_state = LINK_STATE_UP;
3497 			link_changed = B_TRUE;
3498 
3499 			Adapter->tx_link_down_timeout = 0;
3500 
3501 			if ((hw->mac.type == e1000_82571) ||
3502 			    (hw->mac.type == e1000_82572)) {
3503 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3504 				if (speed == SPEED_1000)
3505 					reg_tarc |= (1 << 21);
3506 				else
3507 					reg_tarc &= ~(1 << 21);
3508 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3509 			}
3510 		}
3511 		Adapter->smartspeed = 0;
3512 	} else {
3513 		if (Adapter->link_state != LINK_STATE_DOWN) {
3514 			Adapter->link_speed = 0;
3515 			Adapter->link_duplex = 0;
3516 			Adapter->link_state = LINK_STATE_DOWN;
3517 			link_changed = B_TRUE;
3518 
3519 			/*
3520 			 * SmartSpeed workaround for Tabor/TanaX, When the
3521 			 * driver loses link disable auto master/slave
3522 			 * resolution.
3523 			 */
3524 			if (hw->phy.type == e1000_phy_igp) {
3525 				e1000_read_phy_reg(hw,
3526 				    PHY_1000T_CTRL, &phydata);
3527 				phydata |= CR_1000T_MS_ENABLE;
3528 				e1000_write_phy_reg(hw,
3529 				    PHY_1000T_CTRL, phydata);
3530 			}
3531 		} else {
3532 			e1000g_smartspeed(Adapter);
3533 		}
3534 
3535 		if (Adapter->chip_state == E1000G_START) {
3536 			if (Adapter->tx_link_down_timeout <
3537 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3538 				Adapter->tx_link_down_timeout++;
3539 			} else if (Adapter->tx_link_down_timeout ==
3540 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3541 				e1000g_tx_clean(Adapter);
3542 				Adapter->tx_link_down_timeout++;
3543 			}
3544 		}
3545 	}
3546 
3547 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3548 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3549 
3550 	return (link_changed);
3551 }
3552 
3553 /*
3554  * e1000g_reset_link - Using the link properties to setup the link
3555  */
3556 int
3557 e1000g_reset_link(struct e1000g *Adapter)
3558 {
3559 	struct e1000_mac_info *mac;
3560 	struct e1000_phy_info *phy;
3561 	boolean_t invalid;
3562 
3563 	mac = &Adapter->shared.mac;
3564 	phy = &Adapter->shared.phy;
3565 	invalid = B_FALSE;
3566 
3567 	if (Adapter->param_adv_autoneg == 1) {
3568 		mac->autoneg = B_TRUE;
3569 		phy->autoneg_advertised = 0;
3570 
3571 		/*
3572 		 * 1000hdx is not supported for autonegotiation
3573 		 */
3574 		if (Adapter->param_adv_1000fdx == 1)
3575 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3576 
3577 		if (Adapter->param_adv_100fdx == 1)
3578 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3579 
3580 		if (Adapter->param_adv_100hdx == 1)
3581 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3582 
3583 		if (Adapter->param_adv_10fdx == 1)
3584 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3585 
3586 		if (Adapter->param_adv_10hdx == 1)
3587 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3588 
3589 		if (phy->autoneg_advertised == 0)
3590 			invalid = B_TRUE;
3591 	} else {
3592 		mac->autoneg = B_FALSE;
3593 
3594 		/*
3595 		 * 1000fdx and 1000hdx are not supported for forced link
3596 		 */
3597 		if (Adapter->param_adv_100fdx == 1)
3598 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3599 		else if (Adapter->param_adv_100hdx == 1)
3600 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3601 		else if (Adapter->param_adv_10fdx == 1)
3602 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3603 		else if (Adapter->param_adv_10hdx == 1)
3604 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3605 		else
3606 			invalid = B_TRUE;
3607 
3608 	}
3609 
3610 	if (invalid) {
3611 		e1000g_log(Adapter, CE_WARN,
3612 		    "Invalid link sets. Setup link to"
3613 		    "support autonegotiation with all link capabilities.");
3614 		mac->autoneg = B_TRUE;
3615 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3616 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3617 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3618 	}
3619 
3620 	return (e1000_setup_link(&Adapter->shared));
3621 }
3622 
3623 static void
3624 e1000g_local_timer(void *ws)
3625 {
3626 	struct e1000g *Adapter = (struct e1000g *)ws;
3627 	struct e1000_hw *hw;
3628 	e1000g_ether_addr_t ether_addr;
3629 	boolean_t link_changed;
3630 
3631 	hw = &Adapter->shared;
3632 
3633 	if (Adapter->chip_state == E1000G_ERROR) {
3634 		Adapter->reset_count++;
3635 		if (e1000g_global_reset(Adapter))
3636 			ddi_fm_service_impact(Adapter->dip,
3637 			    DDI_SERVICE_RESTORED);
3638 		else
3639 			ddi_fm_service_impact(Adapter->dip,
3640 			    DDI_SERVICE_LOST);
3641 		return;
3642 	}
3643 
3644 	if (e1000g_stall_check(Adapter)) {
3645 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3646 		    "Tx stall detected. Activate automatic recovery.\n");
3647 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
3648 		Adapter->reset_count++;
3649 		if (e1000g_reset(Adapter))
3650 			ddi_fm_service_impact(Adapter->dip,
3651 			    DDI_SERVICE_RESTORED);
3652 		else
3653 			ddi_fm_service_impact(Adapter->dip,
3654 			    DDI_SERVICE_LOST);
3655 		return;
3656 	}
3657 
3658 	link_changed = B_FALSE;
3659 	rw_enter(&Adapter->chip_lock, RW_READER);
3660 	if (Adapter->link_complete)
3661 		link_changed = e1000g_link_check(Adapter);
3662 	rw_exit(&Adapter->chip_lock);
3663 
3664 	if (link_changed)
3665 		mac_link_update(Adapter->mh, Adapter->link_state);
3666 
3667 	/*
3668 	 * Workaround for esb2. Data stuck in fifo on a link
3669 	 * down event. Reset the adapter to recover it.
3670 	 */
3671 	if (Adapter->esb2_workaround) {
3672 		Adapter->esb2_workaround = B_FALSE;
3673 		(void) e1000g_reset(Adapter);
3674 	}
3675 
3676 	/*
3677 	 * With 82571 controllers, any locally administered address will
3678 	 * be overwritten when there is a reset on the other port.
3679 	 * Detect this circumstance and correct it.
3680 	 */
3681 	if ((hw->mac.type == e1000_82571) &&
3682 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
3683 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
3684 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
3685 
3686 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
3687 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
3688 
3689 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
3690 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
3691 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
3692 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
3693 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
3694 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
3695 			e1000_rar_set(hw, hw->mac.addr, 0);
3696 		}
3697 	}
3698 
3699 	/*
3700 	 * Long TTL workaround for 82541/82547
3701 	 */
3702 	e1000_igp_ttl_workaround_82547(hw);
3703 
3704 	/*
3705 	 * Check for Adaptive IFS settings If there are lots of collisions
3706 	 * change the value in steps...
3707 	 * These properties should only be set for 10/100
3708 	 */
3709 	if ((hw->phy.media_type == e1000_media_type_copper) &&
3710 	    ((Adapter->link_speed == SPEED_100) ||
3711 	    (Adapter->link_speed == SPEED_10))) {
3712 		e1000_update_adaptive(hw);
3713 	}
3714 	/*
3715 	 * Set Timer Interrupts
3716 	 */
3717 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
3718 
3719 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3720 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3721 
3722 	restart_watchdog_timer(Adapter);
3723 }
3724 
3725 /*
3726  * The function e1000g_link_timer() is called when the timer for link setup
3727  * is expired, which indicates the completion of the link setup. The link
3728  * state will not be updated until the link setup is completed. And the
3729  * link state will not be sent to the upper layer through mac_link_update()
3730  * in this function. It will be updated in the local timer routine or the
3731  * interrupt service routine after the interface is started (plumbed).
3732  */
3733 static void
3734 e1000g_link_timer(void *arg)
3735 {
3736 	struct e1000g *Adapter = (struct e1000g *)arg;
3737 
3738 	mutex_enter(&Adapter->link_lock);
3739 	Adapter->link_complete = B_TRUE;
3740 	Adapter->link_tid = 0;
3741 	mutex_exit(&Adapter->link_lock);
3742 }
3743 
3744 /*
3745  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
3746  *
3747  * This function read the forced speed and duplex for 10/100 Mbps speeds
3748  * and also for 1000 Mbps speeds from the e1000g.conf file
3749  */
3750 static void
3751 e1000g_force_speed_duplex(struct e1000g *Adapter)
3752 {
3753 	int forced;
3754 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3755 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3756 
3757 	/*
3758 	 * get value out of config file
3759 	 */
3760 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
3761 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
3762 
3763 	switch (forced) {
3764 	case GDIAG_10_HALF:
3765 		/*
3766 		 * Disable Auto Negotiation
3767 		 */
3768 		mac->autoneg = B_FALSE;
3769 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3770 		break;
3771 	case GDIAG_10_FULL:
3772 		/*
3773 		 * Disable Auto Negotiation
3774 		 */
3775 		mac->autoneg = B_FALSE;
3776 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3777 		break;
3778 	case GDIAG_100_HALF:
3779 		/*
3780 		 * Disable Auto Negotiation
3781 		 */
3782 		mac->autoneg = B_FALSE;
3783 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3784 		break;
3785 	case GDIAG_100_FULL:
3786 		/*
3787 		 * Disable Auto Negotiation
3788 		 */
3789 		mac->autoneg = B_FALSE;
3790 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3791 		break;
3792 	case GDIAG_1000_FULL:
3793 		/*
3794 		 * The gigabit spec requires autonegotiation.  Therefore,
3795 		 * when the user wants to force the speed to 1000Mbps, we
3796 		 * enable AutoNeg, but only allow the harware to advertise
3797 		 * 1000Mbps.  This is different from 10/100 operation, where
3798 		 * we are allowed to link without any negotiation.
3799 		 */
3800 		mac->autoneg = B_TRUE;
3801 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
3802 		break;
3803 	default:	/* obey the setting of AutoNegAdvertised */
3804 		mac->autoneg = B_TRUE;
3805 		phy->autoneg_advertised =
3806 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
3807 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
3808 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
3809 		break;
3810 	}	/* switch */
3811 }
3812 
3813 /*
3814  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
3815  *
3816  * This function reads MaxFrameSize from e1000g.conf
3817  */
3818 static void
3819 e1000g_get_max_frame_size(struct e1000g *Adapter)
3820 {
3821 	int max_frame;
3822 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3823 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3824 
3825 	/*
3826 	 * get value out of config file
3827 	 */
3828 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
3829 
3830 	switch (max_frame) {
3831 	case 0:
3832 		Adapter->default_mtu = ETHERMTU;
3833 		break;
3834 	/*
3835 	 * To avoid excessive memory allocation for rx buffers,
3836 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
3837 	 */
3838 	case 1:
3839 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
3840 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3841 		    E1000G_IPALIGNPRESERVEROOM;
3842 		break;
3843 	case 2:
3844 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
3845 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3846 		    E1000G_IPALIGNPRESERVEROOM;
3847 		break;
3848 	case 3:
3849 		if (mac->type >= e1000_82571)
3850 			Adapter->default_mtu = MAXIMUM_MTU;
3851 		else
3852 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
3853 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
3854 			    E1000G_IPALIGNPRESERVEROOM;
3855 		break;
3856 	default:
3857 		Adapter->default_mtu = ETHERMTU;
3858 		break;
3859 	}	/* switch */
3860 
3861 	Adapter->max_frame_size = Adapter->default_mtu +
3862 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
3863 
3864 	/* ich8 does not do jumbo frames */
3865 	if (mac->type == e1000_ich8lan) {
3866 		Adapter->max_frame_size = ETHERMTU +
3867 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3868 	}
3869 
3870 	/* ich9 does not do jumbo frames on one phy type */
3871 	if ((mac->type == e1000_ich9lan) &&
3872 	    (phy->type == e1000_phy_ife)) {
3873 		Adapter->max_frame_size = ETHERMTU +
3874 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3875 	}
3876 }
3877 
3878 static void
3879 arm_watchdog_timer(struct e1000g *Adapter)
3880 {
3881 	Adapter->watchdog_tid =
3882 	    timeout(e1000g_local_timer,
3883 	    (void *)Adapter, 1 * drv_usectohz(1000000));
3884 }
3885 #pragma inline(arm_watchdog_timer)
3886 
3887 static void
3888 enable_watchdog_timer(struct e1000g *Adapter)
3889 {
3890 	mutex_enter(&Adapter->watchdog_lock);
3891 
3892 	if (!Adapter->watchdog_timer_enabled) {
3893 		Adapter->watchdog_timer_enabled = B_TRUE;
3894 		Adapter->watchdog_timer_started = B_TRUE;
3895 		arm_watchdog_timer(Adapter);
3896 	}
3897 
3898 	mutex_exit(&Adapter->watchdog_lock);
3899 }
3900 
3901 static void
3902 disable_watchdog_timer(struct e1000g *Adapter)
3903 {
3904 	timeout_id_t tid;
3905 
3906 	mutex_enter(&Adapter->watchdog_lock);
3907 
3908 	Adapter->watchdog_timer_enabled = B_FALSE;
3909 	Adapter->watchdog_timer_started = B_FALSE;
3910 	tid = Adapter->watchdog_tid;
3911 	Adapter->watchdog_tid = 0;
3912 
3913 	mutex_exit(&Adapter->watchdog_lock);
3914 
3915 	if (tid != 0)
3916 		(void) untimeout(tid);
3917 }
3918 
3919 static void
3920 start_watchdog_timer(struct e1000g *Adapter)
3921 {
3922 	mutex_enter(&Adapter->watchdog_lock);
3923 
3924 	if (Adapter->watchdog_timer_enabled) {
3925 		if (!Adapter->watchdog_timer_started) {
3926 			Adapter->watchdog_timer_started = B_TRUE;
3927 			arm_watchdog_timer(Adapter);
3928 		}
3929 	}
3930 
3931 	mutex_exit(&Adapter->watchdog_lock);
3932 }
3933 
3934 static void
3935 restart_watchdog_timer(struct e1000g *Adapter)
3936 {
3937 	mutex_enter(&Adapter->watchdog_lock);
3938 
3939 	if (Adapter->watchdog_timer_started)
3940 		arm_watchdog_timer(Adapter);
3941 
3942 	mutex_exit(&Adapter->watchdog_lock);
3943 }
3944 
3945 static void
3946 stop_watchdog_timer(struct e1000g *Adapter)
3947 {
3948 	timeout_id_t tid;
3949 
3950 	mutex_enter(&Adapter->watchdog_lock);
3951 
3952 	Adapter->watchdog_timer_started = B_FALSE;
3953 	tid = Adapter->watchdog_tid;
3954 	Adapter->watchdog_tid = 0;
3955 
3956 	mutex_exit(&Adapter->watchdog_lock);
3957 
3958 	if (tid != 0)
3959 		(void) untimeout(tid);
3960 }
3961 
3962 static void
3963 stop_link_timer(struct e1000g *Adapter)
3964 {
3965 	timeout_id_t tid;
3966 
3967 	/* Disable the link timer */
3968 	mutex_enter(&Adapter->link_lock);
3969 
3970 	tid = Adapter->link_tid;
3971 	Adapter->link_tid = 0;
3972 
3973 	mutex_exit(&Adapter->link_lock);
3974 
3975 	if (tid != 0)
3976 		(void) untimeout(tid);
3977 }
3978 
3979 static void
3980 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
3981 {
3982 	timeout_id_t tid;
3983 
3984 	/* Disable the tx timer for 82547 chipset */
3985 	mutex_enter(&tx_ring->tx_lock);
3986 
3987 	tx_ring->timer_enable_82547 = B_FALSE;
3988 	tid = tx_ring->timer_id_82547;
3989 	tx_ring->timer_id_82547 = 0;
3990 
3991 	mutex_exit(&tx_ring->tx_lock);
3992 
3993 	if (tid != 0)
3994 		(void) untimeout(tid);
3995 }
3996 
3997 void
3998 e1000g_clear_interrupt(struct e1000g *Adapter)
3999 {
4000 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4001 	    0xffffffff & ~E1000_IMS_RXSEQ);
4002 }
4003 
4004 void
4005 e1000g_mask_interrupt(struct e1000g *Adapter)
4006 {
4007 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4008 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4009 
4010 	if (Adapter->tx_intr_enable)
4011 		e1000g_mask_tx_interrupt(Adapter);
4012 }
4013 
4014 void
4015 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4016 {
4017 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4018 }
4019 
4020 void
4021 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4022 {
4023 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4024 }
4025 
4026 void
4027 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4028 {
4029 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4030 }
4031 
4032 static void
4033 e1000g_smartspeed(struct e1000g *Adapter)
4034 {
4035 	struct e1000_hw *hw = &Adapter->shared;
4036 	uint16_t phy_status;
4037 	uint16_t phy_ctrl;
4038 
4039 	/*
4040 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4041 	 * advertising 1000Full, we don't even use the workaround
4042 	 */
4043 	if ((hw->phy.type != e1000_phy_igp) ||
4044 	    !hw->mac.autoneg ||
4045 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4046 		return;
4047 
4048 	/*
4049 	 * True if this is the first call of this function or after every
4050 	 * 30 seconds of not having link
4051 	 */
4052 	if (Adapter->smartspeed == 0) {
4053 		/*
4054 		 * If Master/Slave config fault is asserted twice, we
4055 		 * assume back-to-back
4056 		 */
4057 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4058 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4059 			return;
4060 
4061 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4062 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4063 			return;
4064 		/*
4065 		 * We're assuming back-2-back because our status register
4066 		 * insists! there's a fault in the master/slave
4067 		 * relationship that was "negotiated"
4068 		 */
4069 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4070 		/*
4071 		 * Is the phy configured for manual configuration of
4072 		 * master/slave?
4073 		 */
4074 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4075 			/*
4076 			 * Yes.  Then disable manual configuration (enable
4077 			 * auto configuration) of master/slave
4078 			 */
4079 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4080 			e1000_write_phy_reg(hw,
4081 			    PHY_1000T_CTRL, phy_ctrl);
4082 			/*
4083 			 * Effectively starting the clock
4084 			 */
4085 			Adapter->smartspeed++;
4086 			/*
4087 			 * Restart autonegotiation
4088 			 */
4089 			if (!e1000_phy_setup_autoneg(hw) &&
4090 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4091 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4092 				    MII_CR_RESTART_AUTO_NEG);
4093 				e1000_write_phy_reg(hw,
4094 				    PHY_CONTROL, phy_ctrl);
4095 			}
4096 		}
4097 		return;
4098 		/*
4099 		 * Has 6 seconds transpired still without link? Remember,
4100 		 * you should reset the smartspeed counter once you obtain
4101 		 * link
4102 		 */
4103 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4104 		/*
4105 		 * Yes.  Remember, we did at the start determine that
4106 		 * there's a master/slave configuration fault, so we're
4107 		 * still assuming there's someone on the other end, but we
4108 		 * just haven't yet been able to talk to it. We then
4109 		 * re-enable auto configuration of master/slave to see if
4110 		 * we're running 2/3 pair cables.
4111 		 */
4112 		/*
4113 		 * If still no link, perhaps using 2/3 pair cable
4114 		 */
4115 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4116 		phy_ctrl |= CR_1000T_MS_ENABLE;
4117 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4118 		/*
4119 		 * Restart autoneg with phy enabled for manual
4120 		 * configuration of master/slave
4121 		 */
4122 		if (!e1000_phy_setup_autoneg(hw) &&
4123 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4124 			phy_ctrl |=
4125 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4126 			e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4127 		}
4128 		/*
4129 		 * Hopefully, there are no more faults and we've obtained
4130 		 * link as a result.
4131 		 */
4132 	}
4133 	/*
4134 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4135 	 * seconds)
4136 	 */
4137 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4138 		Adapter->smartspeed = 0;
4139 }
4140 
4141 static boolean_t
4142 is_valid_mac_addr(uint8_t *mac_addr)
4143 {
4144 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4145 	const uint8_t addr_test2[6] =
4146 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4147 
4148 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4149 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4150 		return (B_FALSE);
4151 
4152 	return (B_TRUE);
4153 }
4154 
4155 /*
4156  * e1000g_stall_check - check for tx stall
4157  *
4158  * This function checks if the adapter is stalled (in transmit).
4159  *
4160  * It is called each time the watchdog timeout is invoked.
4161  * If the transmit descriptor reclaim continuously fails,
4162  * the watchdog value will increment by 1. If the watchdog
4163  * value exceeds the threshold, the adapter is assumed to
4164  * have stalled and need to be reset.
4165  */
4166 static boolean_t
4167 e1000g_stall_check(struct e1000g *Adapter)
4168 {
4169 	e1000g_tx_ring_t *tx_ring;
4170 
4171 	tx_ring = Adapter->tx_ring;
4172 
4173 	if (Adapter->link_state != LINK_STATE_UP)
4174 		return (B_FALSE);
4175 
4176 	if (tx_ring->recycle_fail > 0)
4177 		tx_ring->stall_watchdog++;
4178 	else
4179 		tx_ring->stall_watchdog = 0;
4180 
4181 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
4182 		return (B_FALSE);
4183 
4184 	tx_ring->stall_watchdog = 0;
4185 	tx_ring->recycle_fail = 0;
4186 
4187 	return (B_TRUE);
4188 }
4189 
4190 #ifdef E1000G_DEBUG
4191 static enum ioc_reply
4192 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4193 {
4194 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4195 	e1000g_peekpoke_t *ppd;
4196 	uint64_t mem_va;
4197 	uint64_t maxoff;
4198 	boolean_t peek;
4199 
4200 	switch (iocp->ioc_cmd) {
4201 
4202 	case E1000G_IOC_REG_PEEK:
4203 		peek = B_TRUE;
4204 		break;
4205 
4206 	case E1000G_IOC_REG_POKE:
4207 		peek = B_FALSE;
4208 		break;
4209 
4210 	deault:
4211 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4212 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4213 		    iocp->ioc_cmd);
4214 		return (IOC_INVAL);
4215 	}
4216 
4217 	/*
4218 	 * Validate format of ioctl
4219 	 */
4220 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4221 		return (IOC_INVAL);
4222 	if (mp->b_cont == NULL)
4223 		return (IOC_INVAL);
4224 
4225 	ppd = (e1000g_peekpoke_t *)mp->b_cont->b_rptr;
4226 
4227 	/*
4228 	 * Validate request parameters
4229 	 */
4230 	switch (ppd->pp_acc_space) {
4231 
4232 	default:
4233 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4234 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4235 		    ppd->pp_acc_space);
4236 		return (IOC_INVAL);
4237 
4238 	case E1000G_PP_SPACE_REG:
4239 		/*
4240 		 * Memory-mapped I/O space
4241 		 */
4242 		ASSERT(ppd->pp_acc_size == 4);
4243 		if (ppd->pp_acc_size != 4)
4244 			return (IOC_INVAL);
4245 
4246 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4247 			return (IOC_INVAL);
4248 
4249 		mem_va = 0;
4250 		maxoff = 0x10000;
4251 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4252 		break;
4253 
4254 	case E1000G_PP_SPACE_E1000G:
4255 		/*
4256 		 * E1000g data structure!
4257 		 */
4258 		mem_va = (uintptr_t)e1000gp;
4259 		maxoff = sizeof (struct e1000g);
4260 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4261 		break;
4262 
4263 	}
4264 
4265 	if (ppd->pp_acc_offset >= maxoff)
4266 		return (IOC_INVAL);
4267 
4268 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4269 		return (IOC_INVAL);
4270 
4271 	/*
4272 	 * All OK - go!
4273 	 */
4274 	ppd->pp_acc_offset += mem_va;
4275 	(*ppfn)(e1000gp, ppd);
4276 	return (peek ? IOC_REPLY : IOC_ACK);
4277 }
4278 
4279 static void
4280 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4281 {
4282 	ddi_acc_handle_t handle;
4283 	uint32_t *regaddr;
4284 
4285 	handle = e1000gp->osdep.reg_handle;
4286 	regaddr =
4287 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
4288 
4289 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4290 }
4291 
4292 static void
4293 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4294 {
4295 	ddi_acc_handle_t handle;
4296 	uint32_t *regaddr;
4297 	uint32_t value;
4298 
4299 	handle = e1000gp->osdep.reg_handle;
4300 	regaddr =
4301 	    (uint32_t *)(e1000gp->shared.hw_addr + ppd->pp_acc_offset);
4302 	value = (uint32_t)ppd->pp_acc_data;
4303 
4304 	ddi_put32(handle, regaddr, value);
4305 }
4306 
4307 static void
4308 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4309 {
4310 	uint64_t value;
4311 	void *vaddr;
4312 
4313 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4314 
4315 	switch (ppd->pp_acc_size) {
4316 	case 1:
4317 		value = *(uint8_t *)vaddr;
4318 		break;
4319 
4320 	case 2:
4321 		value = *(uint16_t *)vaddr;
4322 		break;
4323 
4324 	case 4:
4325 		value = *(uint32_t *)vaddr;
4326 		break;
4327 
4328 	case 8:
4329 		value = *(uint64_t *)vaddr;
4330 		break;
4331 	}
4332 
4333 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4334 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4335 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4336 
4337 	ppd->pp_acc_data = value;
4338 }
4339 
4340 static void
4341 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4342 {
4343 	uint64_t value;
4344 	void *vaddr;
4345 
4346 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4347 	value = ppd->pp_acc_data;
4348 
4349 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4350 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4351 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4352 
4353 	switch (ppd->pp_acc_size) {
4354 	case 1:
4355 		*(uint8_t *)vaddr = (uint8_t)value;
4356 		break;
4357 
4358 	case 2:
4359 		*(uint16_t *)vaddr = (uint16_t)value;
4360 		break;
4361 
4362 	case 4:
4363 		*(uint32_t *)vaddr = (uint32_t)value;
4364 		break;
4365 
4366 	case 8:
4367 		*(uint64_t *)vaddr = (uint64_t)value;
4368 		break;
4369 	}
4370 }
4371 #endif
4372 
4373 /*
4374  * Loopback Support
4375  */
4376 static lb_property_t lb_normal =
4377 	{ normal,	"normal",	E1000G_LB_NONE		};
4378 static lb_property_t lb_external1000 =
4379 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4380 static lb_property_t lb_external100 =
4381 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4382 static lb_property_t lb_external10 =
4383 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4384 static lb_property_t lb_phy =
4385 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4386 
4387 static enum ioc_reply
4388 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4389 {
4390 	lb_info_sz_t *lbsp;
4391 	lb_property_t *lbpp;
4392 	struct e1000_hw *hw;
4393 	uint32_t *lbmp;
4394 	uint32_t size;
4395 	uint32_t value;
4396 
4397 	hw = &Adapter->shared;
4398 
4399 	if (mp->b_cont == NULL)
4400 		return (IOC_INVAL);
4401 
4402 	if (!e1000g_check_loopback_support(hw)) {
4403 		e1000g_log(NULL, CE_WARN,
4404 		    "Loopback is not supported on e1000g%d", Adapter->instance);
4405 		return (IOC_INVAL);
4406 	}
4407 
4408 	switch (iocp->ioc_cmd) {
4409 	default:
4410 		return (IOC_INVAL);
4411 
4412 	case LB_GET_INFO_SIZE:
4413 		size = sizeof (lb_info_sz_t);
4414 		if (iocp->ioc_count != size)
4415 			return (IOC_INVAL);
4416 
4417 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4418 		e1000g_get_phy_state(Adapter);
4419 
4420 		/*
4421 		 * Workaround for hardware faults. In order to get a stable
4422 		 * state of phy, we will wait for a specific interval and
4423 		 * try again. The time delay is an experiential value based
4424 		 * on our testing.
4425 		 */
4426 		msec_delay(100);
4427 		e1000g_get_phy_state(Adapter);
4428 		rw_exit(&Adapter->chip_lock);
4429 
4430 		value = sizeof (lb_normal);
4431 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4432 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4433 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4434 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4435 			value += sizeof (lb_phy);
4436 			switch (hw->mac.type) {
4437 			case e1000_82571:
4438 			case e1000_82572:
4439 			case e1000_80003es2lan:
4440 				value += sizeof (lb_external1000);
4441 				break;
4442 			}
4443 		}
4444 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4445 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4446 			value += sizeof (lb_external100);
4447 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4448 			value += sizeof (lb_external10);
4449 
4450 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
4451 		*lbsp = value;
4452 		break;
4453 
4454 	case LB_GET_INFO:
4455 		value = sizeof (lb_normal);
4456 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4457 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4458 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4459 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4460 			value += sizeof (lb_phy);
4461 			switch (hw->mac.type) {
4462 			case e1000_82571:
4463 			case e1000_82572:
4464 			case e1000_80003es2lan:
4465 				value += sizeof (lb_external1000);
4466 				break;
4467 			}
4468 		}
4469 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4470 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4471 			value += sizeof (lb_external100);
4472 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4473 			value += sizeof (lb_external10);
4474 
4475 		size = value;
4476 		if (iocp->ioc_count != size)
4477 			return (IOC_INVAL);
4478 
4479 		value = 0;
4480 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
4481 		lbpp[value++] = lb_normal;
4482 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4483 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4484 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4485 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4486 			lbpp[value++] = lb_phy;
4487 			switch (hw->mac.type) {
4488 			case e1000_82571:
4489 			case e1000_82572:
4490 			case e1000_80003es2lan:
4491 				lbpp[value++] = lb_external1000;
4492 				break;
4493 			}
4494 		}
4495 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4496 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4497 			lbpp[value++] = lb_external100;
4498 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4499 			lbpp[value++] = lb_external10;
4500 		break;
4501 
4502 	case LB_GET_MODE:
4503 		size = sizeof (uint32_t);
4504 		if (iocp->ioc_count != size)
4505 			return (IOC_INVAL);
4506 
4507 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
4508 		*lbmp = Adapter->loopback_mode;
4509 		break;
4510 
4511 	case LB_SET_MODE:
4512 		size = 0;
4513 		if (iocp->ioc_count != sizeof (uint32_t))
4514 			return (IOC_INVAL);
4515 
4516 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
4517 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4518 			return (IOC_INVAL);
4519 		break;
4520 	}
4521 
4522 	iocp->ioc_count = size;
4523 	iocp->ioc_error = 0;
4524 
4525 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4526 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4527 		return (IOC_INVAL);
4528 	}
4529 
4530 	return (IOC_REPLY);
4531 }
4532 
4533 static boolean_t
4534 e1000g_check_loopback_support(struct e1000_hw *hw)
4535 {
4536 	switch (hw->mac.type) {
4537 	case e1000_82540:
4538 	case e1000_82545:
4539 	case e1000_82545_rev_3:
4540 	case e1000_82546:
4541 	case e1000_82546_rev_3:
4542 	case e1000_82541:
4543 	case e1000_82541_rev_2:
4544 	case e1000_82547:
4545 	case e1000_82547_rev_2:
4546 	case e1000_82571:
4547 	case e1000_82572:
4548 	case e1000_82573:
4549 	case e1000_80003es2lan:
4550 		return (B_TRUE);
4551 	}
4552 	return (B_FALSE);
4553 }
4554 
4555 static boolean_t
4556 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4557 {
4558 	struct e1000_hw *hw;
4559 	int i, times;
4560 	boolean_t link_up;
4561 
4562 	if (mode == Adapter->loopback_mode)
4563 		return (B_TRUE);
4564 
4565 	hw = &Adapter->shared;
4566 	times = 0;
4567 
4568 	Adapter->loopback_mode = mode;
4569 
4570 	if (mode == E1000G_LB_NONE) {
4571 		/* Reset the chip */
4572 		hw->phy.autoneg_wait_to_complete = B_TRUE;
4573 		(void) e1000g_reset(Adapter);
4574 		hw->phy.autoneg_wait_to_complete = B_FALSE;
4575 		return (B_TRUE);
4576 	}
4577 
4578 again:
4579 
4580 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4581 
4582 	switch (mode) {
4583 	default:
4584 		rw_exit(&Adapter->chip_lock);
4585 		return (B_FALSE);
4586 
4587 	case E1000G_LB_EXTERNAL_1000:
4588 		e1000g_set_external_loopback_1000(Adapter);
4589 		break;
4590 
4591 	case E1000G_LB_EXTERNAL_100:
4592 		e1000g_set_external_loopback_100(Adapter);
4593 		break;
4594 
4595 	case E1000G_LB_EXTERNAL_10:
4596 		e1000g_set_external_loopback_10(Adapter);
4597 		break;
4598 
4599 	case E1000G_LB_INTERNAL_PHY:
4600 		e1000g_set_internal_loopback(Adapter);
4601 		break;
4602 	}
4603 
4604 	times++;
4605 
4606 	rw_exit(&Adapter->chip_lock);
4607 
4608 	/* Wait for link up */
4609 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4610 		msec_delay(100);
4611 
4612 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4613 
4614 	link_up = e1000g_link_up(Adapter);
4615 
4616 	rw_exit(&Adapter->chip_lock);
4617 
4618 	if (!link_up) {
4619 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4620 		    "Failed to get the link up");
4621 		if (times < 2) {
4622 			/* Reset the link */
4623 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4624 			    "Reset the link ...");
4625 			(void) e1000g_reset(Adapter);
4626 			goto again;
4627 		}
4628 	}
4629 
4630 	return (B_TRUE);
4631 }
4632 
4633 /*
4634  * The following loopback settings are from Intel's technical
4635  * document - "How To Loopback". All the register settings and
4636  * time delay values are directly inherited from the document
4637  * without more explanations available.
4638  */
4639 static void
4640 e1000g_set_internal_loopback(struct e1000g *Adapter)
4641 {
4642 	struct e1000_hw *hw;
4643 	uint32_t ctrl;
4644 	uint32_t status;
4645 	uint16_t phy_ctrl;
4646 	uint32_t txcw;
4647 
4648 	hw = &Adapter->shared;
4649 
4650 	/* Disable Smart Power Down */
4651 	phy_spd_state(hw, B_FALSE);
4652 
4653 	e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4654 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
4655 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
4656 
4657 	switch (hw->mac.type) {
4658 	case e1000_82540:
4659 	case e1000_82545:
4660 	case e1000_82545_rev_3:
4661 	case e1000_82546:
4662 	case e1000_82546_rev_3:
4663 	case e1000_82573:
4664 		/* Auto-MDI/MDIX off */
4665 		e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
4666 		/* Reset PHY to update Auto-MDI/MDIX */
4667 		e1000_write_phy_reg(hw, PHY_CONTROL,
4668 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
4669 		/* Reset PHY to auto-neg off and force 1000 */
4670 		e1000_write_phy_reg(hw, PHY_CONTROL,
4671 		    phy_ctrl | MII_CR_RESET);
4672 		/*
4673 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
4674 		 * See comments above e1000g_set_internal_loopback() for the
4675 		 * background.
4676 		 */
4677 		e1000_write_phy_reg(hw, 29, 0x001F);
4678 		e1000_write_phy_reg(hw, 30, 0x8FFC);
4679 		e1000_write_phy_reg(hw, 29, 0x001A);
4680 		e1000_write_phy_reg(hw, 30, 0x8FF0);
4681 		break;
4682 	case e1000_80003es2lan:
4683 		/* Force Link Up */
4684 		e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
4685 		/* Sets PCS loopback at 1Gbs */
4686 		e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, 0x1046);
4687 		break;
4688 	}
4689 
4690 	/* Set loopback */
4691 	e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
4692 
4693 	msec_delay(250);
4694 
4695 	/* Now set up the MAC to the same speed/duplex as the PHY. */
4696 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4697 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4698 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
4699 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4700 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
4701 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4702 
4703 	switch (hw->mac.type) {
4704 	case e1000_82540:
4705 	case e1000_82545:
4706 	case e1000_82545_rev_3:
4707 	case e1000_82546:
4708 	case e1000_82546_rev_3:
4709 		/*
4710 		 * For some serdes we'll need to commit the writes now
4711 		 * so that the status is updated on link
4712 		 */
4713 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
4714 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4715 			msec_delay(100);
4716 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4717 		}
4718 
4719 		if (hw->phy.media_type == e1000_media_type_copper) {
4720 			/* Invert Loss of Signal */
4721 			ctrl |= E1000_CTRL_ILOS;
4722 		} else {
4723 			/* Set ILOS on fiber nic if half duplex is detected */
4724 			status = E1000_READ_REG(hw, E1000_STATUS);
4725 			if ((status & E1000_STATUS_FD) == 0)
4726 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4727 		}
4728 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4729 		break;
4730 
4731 	case e1000_82571:
4732 	case e1000_82572:
4733 		/*
4734 		 * The fiber/SerDes versions of this adapter do not contain an
4735 		 * accessible PHY. Therefore, loopback beyond MAC must be done
4736 		 * using SerDes analog loopback.
4737 		 */
4738 		if (hw->phy.media_type != e1000_media_type_copper) {
4739 			status = E1000_READ_REG(hw, E1000_STATUS);
4740 			/* Set ILOS on fiber nic if half duplex is detected */
4741 			if (((status & E1000_STATUS_LU) == 0) ||
4742 			    ((status & E1000_STATUS_FD) == 0) ||
4743 			    (hw->phy.media_type ==
4744 			    e1000_media_type_internal_serdes))
4745 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4746 
4747 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4748 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4749 			txcw &= ~((uint32_t)1 << 31);
4750 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4751 
4752 			/*
4753 			 * Write 0x410 to Serdes Control register
4754 			 * to enable Serdes analog loopback
4755 			 */
4756 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4757 			msec_delay(10);
4758 		}
4759 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4760 		break;
4761 
4762 	case e1000_82573:
4763 		ctrl |= E1000_CTRL_ILOS;
4764 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4765 		break;
4766 	}
4767 }
4768 
4769 static void
4770 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
4771 {
4772 	struct e1000_hw *hw;
4773 	uint32_t rctl;
4774 	uint32_t ctrl_ext;
4775 	uint32_t ctrl;
4776 	uint32_t status;
4777 	uint32_t txcw;
4778 	uint16_t phydata;
4779 
4780 	hw = &Adapter->shared;
4781 
4782 	/* Disable Smart Power Down */
4783 	phy_spd_state(hw, B_FALSE);
4784 
4785 	switch (hw->mac.type) {
4786 	case e1000_82571:
4787 	case e1000_82572:
4788 		switch (hw->phy.media_type) {
4789 		case e1000_media_type_copper:
4790 			/* Force link up (Must be done before the PHY writes) */
4791 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4792 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
4793 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4794 
4795 			rctl = E1000_READ_REG(hw, E1000_RCTL);
4796 			rctl |= (E1000_RCTL_EN |
4797 			    E1000_RCTL_SBP |
4798 			    E1000_RCTL_UPE |
4799 			    E1000_RCTL_MPE |
4800 			    E1000_RCTL_LPE |
4801 			    E1000_RCTL_BAM);		/* 0x803E */
4802 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4803 
4804 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4805 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
4806 			    E1000_CTRL_EXT_SDP6_DATA |
4807 			    E1000_CTRL_EXT_SDP7_DATA |
4808 			    E1000_CTRL_EXT_SDP4_DIR |
4809 			    E1000_CTRL_EXT_SDP6_DIR |
4810 			    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
4811 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4812 
4813 			/*
4814 			 * This sequence tunes the PHY's SDP and no customer
4815 			 * settable values. For background, see comments above
4816 			 * e1000g_set_internal_loopback().
4817 			 */
4818 			e1000_write_phy_reg(hw, 0x0, 0x140);
4819 			msec_delay(10);
4820 			e1000_write_phy_reg(hw, 0x9, 0x1A00);
4821 			e1000_write_phy_reg(hw, 0x12, 0xC10);
4822 			e1000_write_phy_reg(hw, 0x12, 0x1C10);
4823 			e1000_write_phy_reg(hw, 0x1F37, 0x76);
4824 			e1000_write_phy_reg(hw, 0x1F33, 0x1);
4825 			e1000_write_phy_reg(hw, 0x1F33, 0x0);
4826 
4827 			e1000_write_phy_reg(hw, 0x1F35, 0x65);
4828 			e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
4829 			e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
4830 			e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
4831 			e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
4832 
4833 			msec_delay(50);
4834 			break;
4835 		case e1000_media_type_fiber:
4836 		case e1000_media_type_internal_serdes:
4837 			status = E1000_READ_REG(hw, E1000_STATUS);
4838 			if (((status & E1000_STATUS_LU) == 0) ||
4839 			    (hw->phy.media_type ==
4840 			    e1000_media_type_internal_serdes)) {
4841 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
4842 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4843 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4844 			}
4845 
4846 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4847 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4848 			txcw &= ~((uint32_t)1 << 31);
4849 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4850 
4851 			/*
4852 			 * Write 0x410 to Serdes Control register
4853 			 * to enable Serdes analog loopback
4854 			 */
4855 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4856 			msec_delay(10);
4857 			break;
4858 		default:
4859 			break;
4860 		}
4861 		break;
4862 	case e1000_80003es2lan:
4863 		e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
4864 		e1000_write_phy_reg(hw, GG82563_REG(6, 16), phydata | (1 << 5));
4865 		Adapter->param_adv_autoneg = 1;
4866 		Adapter->param_adv_1000fdx = 1;
4867 		e1000g_reset_link(Adapter);
4868 		break;
4869 	}
4870 }
4871 
4872 static void
4873 e1000g_set_external_loopback_100(struct e1000g *Adapter)
4874 {
4875 	struct e1000_hw *hw;
4876 	uint32_t ctrl;
4877 	uint16_t phy_ctrl;
4878 
4879 	hw = &Adapter->shared;
4880 
4881 	/* Disable Smart Power Down */
4882 	phy_spd_state(hw, B_FALSE);
4883 
4884 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4885 	    MII_CR_SPEED_100);
4886 
4887 	/* Force 100/FD, reset PHY */
4888 	e1000_write_phy_reg(hw, PHY_CONTROL,
4889 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
4890 	msec_delay(10);
4891 
4892 	/* Force 100/FD */
4893 	e1000_write_phy_reg(hw, PHY_CONTROL,
4894 	    phy_ctrl);			/* 0x2100 */
4895 	msec_delay(10);
4896 
4897 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4898 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4899 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4900 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4901 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4902 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4903 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
4904 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4905 
4906 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4907 }
4908 
4909 static void
4910 e1000g_set_external_loopback_10(struct e1000g *Adapter)
4911 {
4912 	struct e1000_hw *hw;
4913 	uint32_t ctrl;
4914 	uint16_t phy_ctrl;
4915 
4916 	hw = &Adapter->shared;
4917 
4918 	/* Disable Smart Power Down */
4919 	phy_spd_state(hw, B_FALSE);
4920 
4921 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4922 	    MII_CR_SPEED_10);
4923 
4924 	/* Force 10/FD, reset PHY */
4925 	e1000_write_phy_reg(hw, PHY_CONTROL,
4926 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
4927 	msec_delay(10);
4928 
4929 	/* Force 10/FD */
4930 	e1000_write_phy_reg(hw, PHY_CONTROL,
4931 	    phy_ctrl);			/* 0x0100 */
4932 	msec_delay(10);
4933 
4934 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4935 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4936 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4937 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4938 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4939 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4940 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
4941 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4942 
4943 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4944 }
4945 
4946 #ifdef __sparc
4947 static boolean_t
4948 e1000g_find_mac_address(struct e1000g *Adapter)
4949 {
4950 	struct e1000_hw *hw = &Adapter->shared;
4951 	uchar_t *bytes;
4952 	struct ether_addr sysaddr;
4953 	uint_t nelts;
4954 	int err;
4955 	boolean_t found = B_FALSE;
4956 
4957 	/*
4958 	 * The "vendor's factory-set address" may already have
4959 	 * been extracted from the chip, but if the property
4960 	 * "local-mac-address" is set we use that instead.
4961 	 *
4962 	 * We check whether it looks like an array of 6
4963 	 * bytes (which it should, if OBP set it).  If we can't
4964 	 * make sense of it this way, we'll ignore it.
4965 	 */
4966 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4967 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
4968 	if (err == DDI_PROP_SUCCESS) {
4969 		if (nelts == ETHERADDRL) {
4970 			while (nelts--)
4971 				hw->mac.addr[nelts] = bytes[nelts];
4972 			found = B_TRUE;
4973 		}
4974 		ddi_prop_free(bytes);
4975 	}
4976 
4977 	/*
4978 	 * Look up the OBP property "local-mac-address?". If the user has set
4979 	 * 'local-mac-address? = false', use "the system address" instead.
4980 	 */
4981 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
4982 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
4983 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
4984 			if (localetheraddr(NULL, &sysaddr) != 0) {
4985 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
4986 				found = B_TRUE;
4987 			}
4988 		}
4989 		ddi_prop_free(bytes);
4990 	}
4991 
4992 	/*
4993 	 * Finally(!), if there's a valid "mac-address" property (created
4994 	 * if we netbooted from this interface), we must use this instead
4995 	 * of any of the above to ensure that the NFS/install server doesn't
4996 	 * get confused by the address changing as Solaris takes over!
4997 	 */
4998 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4999 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5000 	if (err == DDI_PROP_SUCCESS) {
5001 		if (nelts == ETHERADDRL) {
5002 			while (nelts--)
5003 				hw->mac.addr[nelts] = bytes[nelts];
5004 			found = B_TRUE;
5005 		}
5006 		ddi_prop_free(bytes);
5007 	}
5008 
5009 	if (found) {
5010 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5011 		    ETHERADDRL);
5012 	}
5013 
5014 	return (found);
5015 }
5016 #endif
5017 
5018 static int
5019 e1000g_add_intrs(struct e1000g *Adapter)
5020 {
5021 	dev_info_t *devinfo;
5022 	int intr_types;
5023 	int rc;
5024 
5025 	devinfo = Adapter->dip;
5026 
5027 	/* Get supported interrupt types */
5028 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5029 
5030 	if (rc != DDI_SUCCESS) {
5031 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5032 		    "Get supported interrupt types failed: %d\n", rc);
5033 		return (DDI_FAILURE);
5034 	}
5035 
5036 	/*
5037 	 * Based on Intel Technical Advisory document (TA-160), there are some
5038 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5039 	 * that it supports MSI, but in fact has problems.
5040 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5041 	 * PCI/PCI-X NICs.
5042 	 */
5043 	if (Adapter->shared.mac.type < e1000_82571)
5044 		Adapter->msi_enable = B_FALSE;
5045 
5046 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5047 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5048 
5049 		if (rc != DDI_SUCCESS) {
5050 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5051 			    "Add MSI failed, trying Legacy interrupts\n");
5052 		} else {
5053 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5054 		}
5055 	}
5056 
5057 	if ((Adapter->intr_type == 0) &&
5058 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5059 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5060 
5061 		if (rc != DDI_SUCCESS) {
5062 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5063 			    "Add Legacy interrupts failed\n");
5064 			return (DDI_FAILURE);
5065 		}
5066 
5067 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5068 	}
5069 
5070 	if (Adapter->intr_type == 0) {
5071 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5072 		    "No interrupts registered\n");
5073 		return (DDI_FAILURE);
5074 	}
5075 
5076 	return (DDI_SUCCESS);
5077 }
5078 
5079 /*
5080  * e1000g_intr_add() handles MSI/Legacy interrupts
5081  */
5082 static int
5083 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5084 {
5085 	dev_info_t *devinfo;
5086 	int count, avail, actual;
5087 	int x, y, rc, inum = 0;
5088 	int flag;
5089 	ddi_intr_handler_t *intr_handler;
5090 
5091 	devinfo = Adapter->dip;
5092 
5093 	/* get number of interrupts */
5094 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5095 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5096 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5097 		    "Get interrupt number failed. Return: %d, count: %d\n",
5098 		    rc, count);
5099 		return (DDI_FAILURE);
5100 	}
5101 
5102 	/* get number of available interrupts */
5103 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5104 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5105 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5106 		    "Get interrupt available number failed. "
5107 		    "Return: %d, available: %d\n", rc, avail);
5108 		return (DDI_FAILURE);
5109 	}
5110 
5111 	if (avail < count) {
5112 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5113 		    "Interrupts count: %d, available: %d\n",
5114 		    count, avail);
5115 	}
5116 
5117 	/* Allocate an array of interrupt handles */
5118 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5119 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5120 
5121 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5122 	flag = DDI_INTR_ALLOC_NORMAL;
5123 
5124 	/* call ddi_intr_alloc() */
5125 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5126 	    count, &actual, flag);
5127 
5128 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5129 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5130 		    "Allocate interrupts failed: %d\n", rc);
5131 
5132 		kmem_free(Adapter->htable, Adapter->intr_size);
5133 		return (DDI_FAILURE);
5134 	}
5135 
5136 	if (actual < count) {
5137 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5138 		    "Interrupts requested: %d, received: %d\n",
5139 		    count, actual);
5140 	}
5141 
5142 	Adapter->intr_cnt = actual;
5143 
5144 	/* Get priority for first msi, assume remaining are all the same */
5145 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5146 
5147 	if (rc != DDI_SUCCESS) {
5148 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5149 		    "Get interrupt priority failed: %d\n", rc);
5150 
5151 		/* Free already allocated intr */
5152 		for (y = 0; y < actual; y++)
5153 			(void) ddi_intr_free(Adapter->htable[y]);
5154 
5155 		kmem_free(Adapter->htable, Adapter->intr_size);
5156 		return (DDI_FAILURE);
5157 	}
5158 
5159 	/*
5160 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5161 	 * use the interrupt service routine e1000g_intr_pciexpress()
5162 	 * to avoid interrupt stealing when sharing interrupt with other
5163 	 * devices.
5164 	 */
5165 	if (Adapter->shared.mac.type < e1000_82571)
5166 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5167 	else
5168 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5169 
5170 	/* Call ddi_intr_add_handler() */
5171 	for (x = 0; x < actual; x++) {
5172 		rc = ddi_intr_add_handler(Adapter->htable[x],
5173 		    intr_handler, (caddr_t)Adapter, NULL);
5174 
5175 		if (rc != DDI_SUCCESS) {
5176 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5177 			    "Add interrupt handler failed: %d\n", rc);
5178 
5179 			/* Remove already added handler */
5180 			for (y = 0; y < x; y++)
5181 				(void) ddi_intr_remove_handler(
5182 				    Adapter->htable[y]);
5183 
5184 			/* Free already allocated intr */
5185 			for (y = 0; y < actual; y++)
5186 				(void) ddi_intr_free(Adapter->htable[y]);
5187 
5188 			kmem_free(Adapter->htable, Adapter->intr_size);
5189 			return (DDI_FAILURE);
5190 		}
5191 	}
5192 
5193 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5194 
5195 	if (rc != DDI_SUCCESS) {
5196 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5197 		    "Get interrupt cap failed: %d\n", rc);
5198 
5199 		/* Free already allocated intr */
5200 		for (y = 0; y < actual; y++) {
5201 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5202 			(void) ddi_intr_free(Adapter->htable[y]);
5203 		}
5204 
5205 		kmem_free(Adapter->htable, Adapter->intr_size);
5206 		return (DDI_FAILURE);
5207 	}
5208 
5209 	return (DDI_SUCCESS);
5210 }
5211 
5212 static int
5213 e1000g_rem_intrs(struct e1000g *Adapter)
5214 {
5215 	int x;
5216 	int rc;
5217 
5218 	for (x = 0; x < Adapter->intr_cnt; x++) {
5219 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5220 		if (rc != DDI_SUCCESS) {
5221 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5222 			    "Remove intr handler failed: %d\n", rc);
5223 			return (DDI_FAILURE);
5224 		}
5225 
5226 		rc = ddi_intr_free(Adapter->htable[x]);
5227 		if (rc != DDI_SUCCESS) {
5228 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5229 			    "Free intr failed: %d\n", rc);
5230 			return (DDI_FAILURE);
5231 		}
5232 	}
5233 
5234 	kmem_free(Adapter->htable, Adapter->intr_size);
5235 
5236 	return (DDI_SUCCESS);
5237 }
5238 
5239 static int
5240 e1000g_enable_intrs(struct e1000g *Adapter)
5241 {
5242 	int x;
5243 	int rc;
5244 
5245 	/* Enable interrupts */
5246 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5247 		/* Call ddi_intr_block_enable() for MSI */
5248 		rc = ddi_intr_block_enable(Adapter->htable,
5249 		    Adapter->intr_cnt);
5250 		if (rc != DDI_SUCCESS) {
5251 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5252 			    "Enable block intr failed: %d\n", rc);
5253 			return (DDI_FAILURE);
5254 		}
5255 	} else {
5256 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5257 		for (x = 0; x < Adapter->intr_cnt; x++) {
5258 			rc = ddi_intr_enable(Adapter->htable[x]);
5259 			if (rc != DDI_SUCCESS) {
5260 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5261 				    "Enable intr failed: %d\n", rc);
5262 				return (DDI_FAILURE);
5263 			}
5264 		}
5265 	}
5266 
5267 	return (DDI_SUCCESS);
5268 }
5269 
5270 static int
5271 e1000g_disable_intrs(struct e1000g *Adapter)
5272 {
5273 	int x;
5274 	int rc;
5275 
5276 	/* Disable all interrupts */
5277 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5278 		rc = ddi_intr_block_disable(Adapter->htable,
5279 		    Adapter->intr_cnt);
5280 		if (rc != DDI_SUCCESS) {
5281 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5282 			    "Disable block intr failed: %d\n", rc);
5283 			return (DDI_FAILURE);
5284 		}
5285 	} else {
5286 		for (x = 0; x < Adapter->intr_cnt; x++) {
5287 			rc = ddi_intr_disable(Adapter->htable[x]);
5288 			if (rc != DDI_SUCCESS) {
5289 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5290 				    "Disable intr failed: %d\n", rc);
5291 				return (DDI_FAILURE);
5292 			}
5293 		}
5294 	}
5295 
5296 	return (DDI_SUCCESS);
5297 }
5298 
5299 /*
5300  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5301  */
5302 static void
5303 e1000g_get_phy_state(struct e1000g *Adapter)
5304 {
5305 	struct e1000_hw *hw = &Adapter->shared;
5306 
5307 	e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5308 	e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5309 	e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5310 	e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5311 	e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5312 	e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5313 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &Adapter->phy_1000t_status);
5314 	e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5315 
5316 	Adapter->param_autoneg_cap =
5317 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5318 	Adapter->param_pause_cap =
5319 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5320 	Adapter->param_asym_pause_cap =
5321 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5322 	Adapter->param_1000fdx_cap =
5323 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5324 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5325 	Adapter->param_1000hdx_cap =
5326 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5327 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5328 	Adapter->param_100t4_cap =
5329 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5330 	Adapter->param_100fdx_cap =
5331 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5332 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5333 	Adapter->param_100hdx_cap =
5334 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5335 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5336 	Adapter->param_10fdx_cap =
5337 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5338 	Adapter->param_10hdx_cap =
5339 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5340 
5341 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5342 	Adapter->param_adv_pause =
5343 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5344 	Adapter->param_adv_asym_pause =
5345 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5346 	Adapter->param_adv_1000hdx =
5347 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5348 	Adapter->param_adv_100t4 =
5349 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5350 	if (Adapter->param_adv_autoneg == 1) {
5351 		Adapter->param_adv_1000fdx =
5352 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5353 		Adapter->param_adv_100fdx =
5354 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5355 		Adapter->param_adv_100hdx =
5356 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5357 		Adapter->param_adv_10fdx =
5358 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5359 		Adapter->param_adv_10hdx =
5360 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5361 	}
5362 
5363 	Adapter->param_lp_autoneg =
5364 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5365 	Adapter->param_lp_pause =
5366 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5367 	Adapter->param_lp_asym_pause =
5368 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5369 	Adapter->param_lp_1000fdx =
5370 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5371 	Adapter->param_lp_1000hdx =
5372 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5373 	Adapter->param_lp_100t4 =
5374 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5375 	Adapter->param_lp_100fdx =
5376 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5377 	Adapter->param_lp_100hdx =
5378 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5379 	Adapter->param_lp_10fdx =
5380 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5381 	Adapter->param_lp_10hdx =
5382 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5383 }
5384 
5385 /*
5386  * FMA support
5387  */
5388 
5389 int
5390 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5391 {
5392 	ddi_fm_error_t de;
5393 
5394 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5395 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5396 	return (de.fme_status);
5397 }
5398 
5399 int
5400 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5401 {
5402 	ddi_fm_error_t de;
5403 
5404 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5405 	return (de.fme_status);
5406 }
5407 
5408 /*
5409  * The IO fault service error handling callback function
5410  */
5411 static int
5412 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5413 {
5414 	/*
5415 	 * as the driver can always deal with an error in any dma or
5416 	 * access handle, we can just return the fme_status value.
5417 	 */
5418 	pci_ereport_post(dip, err, NULL);
5419 	return (err->fme_status);
5420 }
5421 
5422 static void
5423 e1000g_fm_init(struct e1000g *Adapter)
5424 {
5425 	ddi_iblock_cookie_t iblk;
5426 	int fma_acc_flag, fma_dma_flag;
5427 
5428 	/* Only register with IO Fault Services if we have some capability */
5429 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5430 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5431 		fma_acc_flag = 1;
5432 	} else {
5433 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5434 		fma_acc_flag = 0;
5435 	}
5436 
5437 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5438 		fma_dma_flag = 1;
5439 	} else {
5440 		fma_dma_flag = 0;
5441 	}
5442 
5443 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5444 
5445 	if (Adapter->fm_capabilities) {
5446 
5447 		/* Register capabilities with IO Fault Services */
5448 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5449 
5450 		/*
5451 		 * Initialize pci ereport capabilities if ereport capable
5452 		 */
5453 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5454 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5455 			pci_ereport_setup(Adapter->dip);
5456 
5457 		/*
5458 		 * Register error callback if error callback capable
5459 		 */
5460 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5461 			ddi_fm_handler_register(Adapter->dip,
5462 			    e1000g_fm_error_cb, (void*) Adapter);
5463 	}
5464 }
5465 
5466 static void
5467 e1000g_fm_fini(struct e1000g *Adapter)
5468 {
5469 	/* Only unregister FMA capabilities if we registered some */
5470 	if (Adapter->fm_capabilities) {
5471 
5472 		/*
5473 		 * Release any resources allocated by pci_ereport_setup()
5474 		 */
5475 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5476 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5477 			pci_ereport_teardown(Adapter->dip);
5478 
5479 		/*
5480 		 * Un-register error callback if error callback capable
5481 		 */
5482 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5483 			ddi_fm_handler_unregister(Adapter->dip);
5484 
5485 		/* Unregister from IO Fault Services */
5486 		ddi_fm_fini(Adapter->dip);
5487 	}
5488 }
5489 
5490 void
5491 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5492 {
5493 	uint64_t ena;
5494 	char buf[FM_MAX_CLASS];
5495 
5496 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5497 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5498 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5499 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5500 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5501 	}
5502 }
5503 
5504 static int
5505 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5506     uint_t pr_valsize, void *pr_val)
5507 {
5508 	link_flowctrl_t fl;
5509 	uint32_t fc;
5510 	int err = 0;
5511 
5512 	ASSERT(pr_valsize > 0);
5513 	switch (pr_num) {
5514 	case MAC_PROP_AUTONEG:
5515 		*(uint8_t *)pr_val =
5516 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5517 		break;
5518 	case MAC_PROP_FLOWCTRL:
5519 		if (pr_valsize < sizeof (link_flowctrl_t))
5520 			return (EINVAL);
5521 		fl = LINK_FLOWCTRL_BI;
5522 		bcopy(&fl, pr_val, sizeof (fl));
5523 		break;
5524 	case MAC_PROP_ADV_1000FDX_CAP:
5525 	case MAC_PROP_EN_1000FDX_CAP:
5526 		*(uint8_t *)pr_val =
5527 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5528 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5529 		break;
5530 	case MAC_PROP_ADV_1000HDX_CAP:
5531 	case MAC_PROP_EN_1000HDX_CAP:
5532 		*(uint8_t *)pr_val =
5533 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5534 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5535 		break;
5536 	case MAC_PROP_ADV_100FDX_CAP:
5537 	case MAC_PROP_EN_100FDX_CAP:
5538 		*(uint8_t *)pr_val =
5539 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5540 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5541 	case MAC_PROP_ADV_100HDX_CAP:
5542 	case MAC_PROP_EN_100HDX_CAP:
5543 		*(uint8_t *)pr_val =
5544 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5545 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5546 		break;
5547 	case MAC_PROP_ADV_10FDX_CAP:
5548 	case MAC_PROP_EN_10FDX_CAP:
5549 		*(uint8_t *)pr_val =
5550 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5551 		break;
5552 	case MAC_PROP_ADV_10HDX_CAP:
5553 	case MAC_PROP_EN_10HDX_CAP:
5554 		*(uint8_t *)pr_val =
5555 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5556 		break;
5557 	default:
5558 		err = ENOTSUP;
5559 		break;
5560 	}
5561 	return (err);
5562 }
5563 
5564 /*
5565  * synchronize the adv* and en* parameters.
5566  *
5567  * See comments in <sys/dld.h> for details of the *_en_*
5568  * parameters. The usage of ndd for setting adv parameters will
5569  * synchronize all the en parameters with the e1000g parameters,
5570  * implicity disalbing any settings made via dladm.
5571  */
5572 static void
5573 e1000g_param_sync(struct e1000g *Adapter)
5574 {
5575 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
5576 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
5577 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
5578 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
5579 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
5580 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
5581 }
5582