xref: /titanic_44/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 77b65ce69d04f1ba0eceb747081964672b718796)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
28  * Copyright (c) 2015, Joyent, Inc.
29  */
30 
31 /*
32  * **********************************************************************
33  *									*
34  * Module Name:								*
35  *   e1000g_main.c							*
36  *									*
37  * Abstract:								*
38  *   This file contains the interface routines for the solaris OS.	*
39  *   It has all DDI entry point routines and GLD entry point routines.	*
40  *									*
41  *   This file also contains routines that take care of initialization	*
42  *   uninit routine and interrupt routine.				*
43  *									*
44  * **********************************************************************
45  */
46 
47 #include <sys/dlpi.h>
48 #include <sys/mac.h>
49 #include "e1000g_sw.h"
50 #include "e1000g_debug.h"
51 
52 static char ident[] = "Intel PRO/1000 Ethernet";
53 /* LINTED E_STATIC_UNUSED */
54 static char e1000g_version[] = "Driver Ver. 5.3.24";
55 
56 /*
57  * Proto types for DDI entry points
58  */
59 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
60 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
61 static int e1000g_quiesce(dev_info_t *);
62 
63 /*
64  * init and intr routines prototype
65  */
66 static int e1000g_resume(dev_info_t *);
67 static int e1000g_suspend(dev_info_t *);
68 static uint_t e1000g_intr_pciexpress(caddr_t);
69 static uint_t e1000g_intr(caddr_t);
70 static void e1000g_intr_work(struct e1000g *, uint32_t);
71 #pragma inline(e1000g_intr_work)
72 static int e1000g_init(struct e1000g *);
73 static int e1000g_start(struct e1000g *, boolean_t);
74 static void e1000g_stop(struct e1000g *, boolean_t);
75 static int e1000g_m_start(void *);
76 static void e1000g_m_stop(void *);
77 static int e1000g_m_promisc(void *, boolean_t);
78 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
79 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
80 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
81 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
82     uint_t, const void *);
83 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
84 			    uint_t, void *);
85 static void e1000g_m_propinfo(void *, const char *, mac_prop_id_t,
86     mac_prop_info_handle_t);
87 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
88     const void *);
89 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t, void *);
90 static void e1000g_init_locks(struct e1000g *);
91 static void e1000g_destroy_locks(struct e1000g *);
92 static int e1000g_identify_hardware(struct e1000g *);
93 static int e1000g_regs_map(struct e1000g *);
94 static int e1000g_set_driver_params(struct e1000g *);
95 static void e1000g_set_bufsize(struct e1000g *);
96 static int e1000g_register_mac(struct e1000g *);
97 static boolean_t e1000g_rx_drain(struct e1000g *);
98 static boolean_t e1000g_tx_drain(struct e1000g *);
99 static void e1000g_init_unicst(struct e1000g *);
100 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
101 static int e1000g_alloc_rx_data(struct e1000g *);
102 static void e1000g_release_multicast(struct e1000g *);
103 static void e1000g_pch_limits(struct e1000g *);
104 static uint32_t e1000g_mtu2maxframe(uint32_t);
105 
106 /*
107  * Local routines
108  */
109 static boolean_t e1000g_reset_adapter(struct e1000g *);
110 static void e1000g_tx_clean(struct e1000g *);
111 static void e1000g_rx_clean(struct e1000g *);
112 static void e1000g_link_timer(void *);
113 static void e1000g_local_timer(void *);
114 static boolean_t e1000g_link_check(struct e1000g *);
115 static boolean_t e1000g_stall_check(struct e1000g *);
116 static void e1000g_smartspeed(struct e1000g *);
117 static void e1000g_get_conf(struct e1000g *);
118 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
119     int *);
120 static void enable_watchdog_timer(struct e1000g *);
121 static void disable_watchdog_timer(struct e1000g *);
122 static void start_watchdog_timer(struct e1000g *);
123 static void restart_watchdog_timer(struct e1000g *);
124 static void stop_watchdog_timer(struct e1000g *);
125 static void stop_link_timer(struct e1000g *);
126 static void stop_82547_timer(e1000g_tx_ring_t *);
127 static void e1000g_force_speed_duplex(struct e1000g *);
128 static void e1000g_setup_max_mtu(struct e1000g *);
129 static void e1000g_get_max_frame_size(struct e1000g *);
130 static boolean_t is_valid_mac_addr(uint8_t *);
131 static void e1000g_unattach(dev_info_t *, struct e1000g *);
132 static int e1000g_get_bar_info(dev_info_t *, int, bar_info_t *);
133 #ifdef E1000G_DEBUG
134 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
135 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
136 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
137 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
138 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
139     struct iocblk *, mblk_t *);
140 #endif
141 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
142     struct iocblk *, mblk_t *);
143 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
144 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
145 static void e1000g_set_internal_loopback(struct e1000g *);
146 static void e1000g_set_external_loopback_1000(struct e1000g *);
147 static void e1000g_set_external_loopback_100(struct e1000g *);
148 static void e1000g_set_external_loopback_10(struct e1000g *);
149 static int e1000g_add_intrs(struct e1000g *);
150 static int e1000g_intr_add(struct e1000g *, int);
151 static int e1000g_rem_intrs(struct e1000g *);
152 static int e1000g_enable_intrs(struct e1000g *);
153 static int e1000g_disable_intrs(struct e1000g *);
154 static boolean_t e1000g_link_up(struct e1000g *);
155 #ifdef __sparc
156 static boolean_t e1000g_find_mac_address(struct e1000g *);
157 #endif
158 static void e1000g_get_phy_state(struct e1000g *);
159 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
160     const void *impl_data);
161 static void e1000g_fm_init(struct e1000g *Adapter);
162 static void e1000g_fm_fini(struct e1000g *Adapter);
163 static void e1000g_param_sync(struct e1000g *);
164 static void e1000g_get_driver_control(struct e1000_hw *);
165 static void e1000g_release_driver_control(struct e1000_hw *);
166 static void e1000g_restore_promisc(struct e1000g *Adapter);
167 
168 char *e1000g_priv_props[] = {
169 	"_tx_bcopy_threshold",
170 	"_tx_interrupt_enable",
171 	"_tx_intr_delay",
172 	"_tx_intr_abs_delay",
173 	"_rx_bcopy_threshold",
174 	"_max_num_rcv_packets",
175 	"_rx_intr_delay",
176 	"_rx_intr_abs_delay",
177 	"_intr_throttling_rate",
178 	"_intr_adaptive",
179 	"_adv_pause_cap",
180 	"_adv_asym_pause_cap",
181 	NULL
182 };
183 
184 static struct cb_ops cb_ws_ops = {
185 	nulldev,		/* cb_open */
186 	nulldev,		/* cb_close */
187 	nodev,			/* cb_strategy */
188 	nodev,			/* cb_print */
189 	nodev,			/* cb_dump */
190 	nodev,			/* cb_read */
191 	nodev,			/* cb_write */
192 	nodev,			/* cb_ioctl */
193 	nodev,			/* cb_devmap */
194 	nodev,			/* cb_mmap */
195 	nodev,			/* cb_segmap */
196 	nochpoll,		/* cb_chpoll */
197 	ddi_prop_op,		/* cb_prop_op */
198 	NULL,			/* cb_stream */
199 	D_MP | D_HOTPLUG,	/* cb_flag */
200 	CB_REV,			/* cb_rev */
201 	nodev,			/* cb_aread */
202 	nodev			/* cb_awrite */
203 };
204 
205 static struct dev_ops ws_ops = {
206 	DEVO_REV,		/* devo_rev */
207 	0,			/* devo_refcnt */
208 	NULL,			/* devo_getinfo */
209 	nulldev,		/* devo_identify */
210 	nulldev,		/* devo_probe */
211 	e1000g_attach,		/* devo_attach */
212 	e1000g_detach,		/* devo_detach */
213 	nodev,			/* devo_reset */
214 	&cb_ws_ops,		/* devo_cb_ops */
215 	NULL,			/* devo_bus_ops */
216 	ddi_power,		/* devo_power */
217 	e1000g_quiesce		/* devo_quiesce */
218 };
219 
220 static struct modldrv modldrv = {
221 	&mod_driverops,		/* Type of module.  This one is a driver */
222 	ident,			/* Discription string */
223 	&ws_ops,		/* driver ops */
224 };
225 
226 static struct modlinkage modlinkage = {
227 	MODREV_1, &modldrv, NULL
228 };
229 
230 /* Access attributes for register mapping */
231 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
232 	DDI_DEVICE_ATTR_V1,
233 	DDI_STRUCTURE_LE_ACC,
234 	DDI_STRICTORDER_ACC,
235 	DDI_FLAGERR_ACC
236 };
237 
238 #define	E1000G_M_CALLBACK_FLAGS \
239 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
240 
241 static mac_callbacks_t e1000g_m_callbacks = {
242 	E1000G_M_CALLBACK_FLAGS,
243 	e1000g_m_stat,
244 	e1000g_m_start,
245 	e1000g_m_stop,
246 	e1000g_m_promisc,
247 	e1000g_m_multicst,
248 	NULL,
249 	e1000g_m_tx,
250 	NULL,
251 	e1000g_m_ioctl,
252 	e1000g_m_getcapab,
253 	NULL,
254 	NULL,
255 	e1000g_m_setprop,
256 	e1000g_m_getprop,
257 	e1000g_m_propinfo
258 };
259 
260 /*
261  * Global variables
262  */
263 uint32_t e1000g_jumbo_mtu = MAXIMUM_MTU_9K;
264 uint32_t e1000g_mblks_pending = 0;
265 /*
266  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
267  * Here we maintain a private dev_info list if e1000g_force_detach is
268  * enabled. If we force the driver to detach while there are still some
269  * rx buffers retained in the upper layer, we have to keep a copy of the
270  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
271  * structure will be freed after the driver is detached. However when we
272  * finally free those rx buffers released by the upper layer, we need to
273  * refer to the dev_info to free the dma buffers. So we save a copy of
274  * the dev_info for this purpose. On x86 platform, we assume this copy
275  * of dev_info is always valid, but on SPARC platform, it could be invalid
276  * after the system board level DR operation. For this reason, the global
277  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
278  */
279 #ifdef __sparc
280 boolean_t e1000g_force_detach = B_FALSE;
281 #else
282 boolean_t e1000g_force_detach = B_TRUE;
283 #endif
284 private_devi_list_t *e1000g_private_devi_list = NULL;
285 
286 /*
287  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
288  * the private dev_info list, and to serialize the processing of rx buffer
289  * freeing and rx buffer recycling.
290  */
291 kmutex_t e1000g_rx_detach_lock;
292 /*
293  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
294  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
295  * If there are many e1000g instances, the system may run out of DVMA
296  * resources during the initialization of the instances, then the flag will
297  * be changed to "USE_DMA". Because different e1000g instances are initialized
298  * in parallel, we need to use this lock to protect the flag.
299  */
300 krwlock_t e1000g_dma_type_lock;
301 
302 /*
303  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
304  * Based on the information from Intel, the 82546 chipset has some hardware
305  * problem. When one port is being reset and the other port is trying to
306  * access the eeprom, it could cause system hang or panic. To workaround this
307  * hardware problem, we use a global mutex to prevent such operations from
308  * happening simultaneously on different instances. This workaround is applied
309  * to all the devices supported by this driver.
310  */
311 kmutex_t e1000g_nvm_lock;
312 
313 /*
314  * Loadable module configuration entry points for the driver
315  */
316 
317 /*
318  * _init - module initialization
319  */
320 int
321 _init(void)
322 {
323 	int status;
324 
325 	mac_init_ops(&ws_ops, WSNAME);
326 	status = mod_install(&modlinkage);
327 	if (status != DDI_SUCCESS)
328 		mac_fini_ops(&ws_ops);
329 	else {
330 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
331 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
332 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
333 	}
334 
335 	return (status);
336 }
337 
338 /*
339  * _fini - module finalization
340  */
341 int
342 _fini(void)
343 {
344 	int status;
345 
346 	if (e1000g_mblks_pending != 0)
347 		return (EBUSY);
348 
349 	status = mod_remove(&modlinkage);
350 	if (status == DDI_SUCCESS) {
351 		mac_fini_ops(&ws_ops);
352 
353 		if (e1000g_force_detach) {
354 			private_devi_list_t *devi_node;
355 
356 			mutex_enter(&e1000g_rx_detach_lock);
357 			while (e1000g_private_devi_list != NULL) {
358 				devi_node = e1000g_private_devi_list;
359 				e1000g_private_devi_list =
360 				    e1000g_private_devi_list->next;
361 
362 				kmem_free(devi_node->priv_dip,
363 				    sizeof (struct dev_info));
364 				kmem_free(devi_node,
365 				    sizeof (private_devi_list_t));
366 			}
367 			mutex_exit(&e1000g_rx_detach_lock);
368 		}
369 
370 		mutex_destroy(&e1000g_rx_detach_lock);
371 		rw_destroy(&e1000g_dma_type_lock);
372 		mutex_destroy(&e1000g_nvm_lock);
373 	}
374 
375 	return (status);
376 }
377 
378 /*
379  * _info - module information
380  */
381 int
382 _info(struct modinfo *modinfop)
383 {
384 	return (mod_info(&modlinkage, modinfop));
385 }
386 
387 /*
388  * e1000g_attach - driver attach
389  *
390  * This function is the device-specific initialization entry
391  * point. This entry point is required and must be written.
392  * The DDI_ATTACH command must be provided in the attach entry
393  * point. When attach() is called with cmd set to DDI_ATTACH,
394  * all normal kernel services (such as kmem_alloc(9F)) are
395  * available for use by the driver.
396  *
397  * The attach() function will be called once for each instance
398  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
399  * Until attach() succeeds, the only driver entry points which
400  * may be called are open(9E) and getinfo(9E).
401  */
402 static int
403 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
404 {
405 	struct e1000g *Adapter;
406 	struct e1000_hw *hw;
407 	struct e1000g_osdep *osdep;
408 	int instance;
409 
410 	switch (cmd) {
411 	default:
412 		e1000g_log(NULL, CE_WARN,
413 		    "Unsupported command send to e1000g_attach... ");
414 		return (DDI_FAILURE);
415 
416 	case DDI_RESUME:
417 		return (e1000g_resume(devinfo));
418 
419 	case DDI_ATTACH:
420 		break;
421 	}
422 
423 	/*
424 	 * get device instance number
425 	 */
426 	instance = ddi_get_instance(devinfo);
427 
428 	/*
429 	 * Allocate soft data structure
430 	 */
431 	Adapter =
432 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
433 
434 	Adapter->dip = devinfo;
435 	Adapter->instance = instance;
436 	Adapter->tx_ring->adapter = Adapter;
437 	Adapter->rx_ring->adapter = Adapter;
438 
439 	hw = &Adapter->shared;
440 	osdep = &Adapter->osdep;
441 	hw->back = osdep;
442 	osdep->adapter = Adapter;
443 
444 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
445 
446 	/*
447 	 * Initialize for fma support
448 	 */
449 	(void) e1000g_get_prop(Adapter, "fm-capable",
450 	    0, 0x0f,
451 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
452 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
453 	    &Adapter->fm_capabilities);
454 	e1000g_fm_init(Adapter);
455 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
456 
457 	/*
458 	 * PCI Configure
459 	 */
460 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
461 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
462 		goto attach_fail;
463 	}
464 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
465 
466 	/*
467 	 * Setup hardware
468 	 */
469 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
470 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
471 		goto attach_fail;
472 	}
473 
474 	/*
475 	 * Map in the device registers.
476 	 */
477 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
478 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
479 		goto attach_fail;
480 	}
481 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
482 
483 	/*
484 	 * Initialize driver parameters
485 	 */
486 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
487 		goto attach_fail;
488 	}
489 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
490 
491 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
492 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
493 		goto attach_fail;
494 	}
495 
496 	/*
497 	 * Disable ULP support
498 	 */
499 	(void) e1000_disable_ulp_lpt_lp(hw, TRUE);
500 
501 	/*
502 	 * Initialize interrupts
503 	 */
504 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
505 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
506 		goto attach_fail;
507 	}
508 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
509 
510 	/*
511 	 * Initialize mutex's for this device.
512 	 * Do this before enabling the interrupt handler and
513 	 * register the softint to avoid the condition where
514 	 * interrupt handler can try using uninitialized mutex
515 	 */
516 	e1000g_init_locks(Adapter);
517 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
518 
519 	/*
520 	 * Initialize Driver Counters
521 	 */
522 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
523 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
524 		goto attach_fail;
525 	}
526 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
527 
528 	/*
529 	 * Initialize chip hardware and software structures
530 	 */
531 	rw_enter(&Adapter->chip_lock, RW_WRITER);
532 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
533 		rw_exit(&Adapter->chip_lock);
534 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
535 		goto attach_fail;
536 	}
537 	rw_exit(&Adapter->chip_lock);
538 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
539 
540 	/*
541 	 * Register the driver to the MAC
542 	 */
543 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
544 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
545 		goto attach_fail;
546 	}
547 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
548 
549 	/*
550 	 * Now that mutex locks are initialized, and the chip is also
551 	 * initialized, enable interrupts.
552 	 */
553 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
554 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
555 		goto attach_fail;
556 	}
557 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
558 
559 	/*
560 	 * If e1000g_force_detach is enabled, in global private dip list,
561 	 * we will create a new entry, which maintains the priv_dip for DR
562 	 * supports after driver detached.
563 	 */
564 	if (e1000g_force_detach) {
565 		private_devi_list_t *devi_node;
566 
567 		Adapter->priv_dip =
568 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
569 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
570 		    sizeof (struct dev_info));
571 
572 		devi_node =
573 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
574 
575 		mutex_enter(&e1000g_rx_detach_lock);
576 		devi_node->priv_dip = Adapter->priv_dip;
577 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
578 		devi_node->pending_rx_count = 0;
579 
580 		Adapter->priv_devi_node = devi_node;
581 
582 		if (e1000g_private_devi_list == NULL) {
583 			devi_node->prev = NULL;
584 			devi_node->next = NULL;
585 			e1000g_private_devi_list = devi_node;
586 		} else {
587 			devi_node->prev = NULL;
588 			devi_node->next = e1000g_private_devi_list;
589 			e1000g_private_devi_list->prev = devi_node;
590 			e1000g_private_devi_list = devi_node;
591 		}
592 		mutex_exit(&e1000g_rx_detach_lock);
593 	}
594 
595 	Adapter->e1000g_state = E1000G_INITIALIZED;
596 	return (DDI_SUCCESS);
597 
598 attach_fail:
599 	e1000g_unattach(devinfo, Adapter);
600 	return (DDI_FAILURE);
601 }
602 
603 static int
604 e1000g_register_mac(struct e1000g *Adapter)
605 {
606 	struct e1000_hw *hw = &Adapter->shared;
607 	mac_register_t *mac;
608 	int err;
609 
610 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
611 		return (DDI_FAILURE);
612 
613 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
614 	mac->m_driver = Adapter;
615 	mac->m_dip = Adapter->dip;
616 	mac->m_src_addr = hw->mac.addr;
617 	mac->m_callbacks = &e1000g_m_callbacks;
618 	mac->m_min_sdu = 0;
619 	mac->m_max_sdu = Adapter->default_mtu;
620 	mac->m_margin = VLAN_TAGSZ;
621 	mac->m_priv_props = e1000g_priv_props;
622 	mac->m_v12n = MAC_VIRT_LEVEL1;
623 
624 	err = mac_register(mac, &Adapter->mh);
625 	mac_free(mac);
626 
627 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
628 }
629 
630 static int
631 e1000g_identify_hardware(struct e1000g *Adapter)
632 {
633 	struct e1000_hw *hw = &Adapter->shared;
634 	struct e1000g_osdep *osdep = &Adapter->osdep;
635 
636 	/* Get the device id */
637 	hw->vendor_id =
638 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
639 	hw->device_id =
640 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
641 	hw->revision_id =
642 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
643 	hw->subsystem_device_id =
644 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
645 	hw->subsystem_vendor_id =
646 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
647 
648 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
649 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
650 		    "MAC type could not be set properly.");
651 		return (DDI_FAILURE);
652 	}
653 
654 	return (DDI_SUCCESS);
655 }
656 
657 static int
658 e1000g_regs_map(struct e1000g *Adapter)
659 {
660 	dev_info_t *devinfo = Adapter->dip;
661 	struct e1000_hw *hw = &Adapter->shared;
662 	struct e1000g_osdep *osdep = &Adapter->osdep;
663 	off_t mem_size;
664 	bar_info_t bar_info;
665 	int offset, rnumber;
666 
667 	rnumber = ADAPTER_REG_SET;
668 	/* Get size of adapter register memory */
669 	if (ddi_dev_regsize(devinfo, rnumber, &mem_size) !=
670 	    DDI_SUCCESS) {
671 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
672 		    "ddi_dev_regsize for registers failed");
673 		return (DDI_FAILURE);
674 	}
675 
676 	/* Map adapter register memory */
677 	if ((ddi_regs_map_setup(devinfo, rnumber,
678 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
679 	    &osdep->reg_handle)) != DDI_SUCCESS) {
680 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
681 		    "ddi_regs_map_setup for registers failed");
682 		goto regs_map_fail;
683 	}
684 
685 	/* ICH needs to map flash memory */
686 	switch (hw->mac.type) {
687 	case e1000_ich8lan:
688 	case e1000_ich9lan:
689 	case e1000_ich10lan:
690 	case e1000_pchlan:
691 	case e1000_pch2lan:
692 	case e1000_pch_lpt:
693 		rnumber = ICH_FLASH_REG_SET;
694 
695 		/* get flash size */
696 		if (ddi_dev_regsize(devinfo, rnumber,
697 		    &mem_size) != DDI_SUCCESS) {
698 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
699 			    "ddi_dev_regsize for ICH flash failed");
700 			goto regs_map_fail;
701 		}
702 
703 		/* map flash in */
704 		if (ddi_regs_map_setup(devinfo, rnumber,
705 		    (caddr_t *)&hw->flash_address, 0,
706 		    mem_size, &e1000g_regs_acc_attr,
707 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
708 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
709 			    "ddi_regs_map_setup for ICH flash failed");
710 			goto regs_map_fail;
711 		}
712 		break;
713 	default:
714 		break;
715 	}
716 
717 	/* map io space */
718 	switch (hw->mac.type) {
719 	case e1000_82544:
720 	case e1000_82540:
721 	case e1000_82545:
722 	case e1000_82546:
723 	case e1000_82541:
724 	case e1000_82541_rev_2:
725 		/* find the IO bar */
726 		rnumber = -1;
727 		for (offset = PCI_CONF_BASE1;
728 		    offset <= PCI_CONF_BASE5; offset += 4) {
729 			if (e1000g_get_bar_info(devinfo, offset, &bar_info)
730 			    != DDI_SUCCESS)
731 				continue;
732 			if (bar_info.type == E1000G_BAR_IO) {
733 				rnumber = bar_info.rnumber;
734 				break;
735 			}
736 		}
737 
738 		if (rnumber < 0) {
739 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
740 			    "No io space is found");
741 			goto regs_map_fail;
742 		}
743 
744 		/* get io space size */
745 		if (ddi_dev_regsize(devinfo, rnumber,
746 		    &mem_size) != DDI_SUCCESS) {
747 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
748 			    "ddi_dev_regsize for io space failed");
749 			goto regs_map_fail;
750 		}
751 
752 		/* map io space */
753 		if ((ddi_regs_map_setup(devinfo, rnumber,
754 		    (caddr_t *)&hw->io_base, 0, mem_size,
755 		    &e1000g_regs_acc_attr,
756 		    &osdep->io_reg_handle)) != DDI_SUCCESS) {
757 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
758 			    "ddi_regs_map_setup for io space failed");
759 			goto regs_map_fail;
760 		}
761 		break;
762 	default:
763 		hw->io_base = 0;
764 		break;
765 	}
766 
767 	return (DDI_SUCCESS);
768 
769 regs_map_fail:
770 	if (osdep->reg_handle != NULL)
771 		ddi_regs_map_free(&osdep->reg_handle);
772 	if (osdep->ich_flash_handle != NULL)
773 		ddi_regs_map_free(&osdep->ich_flash_handle);
774 	return (DDI_FAILURE);
775 }
776 
777 static int
778 e1000g_set_driver_params(struct e1000g *Adapter)
779 {
780 	struct e1000_hw *hw;
781 
782 	hw = &Adapter->shared;
783 
784 	/* Set MAC type and initialize hardware functions */
785 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
786 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
787 		    "Could not setup hardware functions");
788 		return (DDI_FAILURE);
789 	}
790 
791 	/* Get bus information */
792 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
793 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
794 		    "Could not get bus information");
795 		return (DDI_FAILURE);
796 	}
797 
798 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
799 
800 	hw->mac.autoneg_failed = B_TRUE;
801 
802 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
803 	hw->phy.autoneg_wait_to_complete = B_FALSE;
804 
805 	/* Adaptive IFS related changes */
806 	hw->mac.adaptive_ifs = B_TRUE;
807 
808 	/* Enable phy init script for IGP phy of 82541/82547 */
809 	if ((hw->mac.type == e1000_82547) ||
810 	    (hw->mac.type == e1000_82541) ||
811 	    (hw->mac.type == e1000_82547_rev_2) ||
812 	    (hw->mac.type == e1000_82541_rev_2))
813 		e1000_init_script_state_82541(hw, B_TRUE);
814 
815 	/* Enable the TTL workaround for 82541/82547 */
816 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
817 
818 #ifdef __sparc
819 	Adapter->strip_crc = B_TRUE;
820 #else
821 	Adapter->strip_crc = B_FALSE;
822 #endif
823 
824 	/* setup the maximum MTU size of the chip */
825 	e1000g_setup_max_mtu(Adapter);
826 
827 	/* Get speed/duplex settings in conf file */
828 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
829 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
830 	e1000g_force_speed_duplex(Adapter);
831 
832 	/* Get Jumbo Frames settings in conf file */
833 	e1000g_get_max_frame_size(Adapter);
834 
835 	/* Get conf file properties */
836 	e1000g_get_conf(Adapter);
837 
838 	/* enforce PCH limits */
839 	e1000g_pch_limits(Adapter);
840 
841 	/* Set Rx/Tx buffer size */
842 	e1000g_set_bufsize(Adapter);
843 
844 	/* Master Latency Timer */
845 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
846 
847 	/* copper options */
848 	if (hw->phy.media_type == e1000_media_type_copper) {
849 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
850 		hw->phy.disable_polarity_correction = B_FALSE;
851 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
852 	}
853 
854 	/* The initial link state should be "unknown" */
855 	Adapter->link_state = LINK_STATE_UNKNOWN;
856 
857 	/* Initialize rx parameters */
858 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
859 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
860 
861 	/* Initialize tx parameters */
862 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
863 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
864 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
865 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
866 
867 	/* Initialize rx parameters */
868 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
869 
870 	return (DDI_SUCCESS);
871 }
872 
873 static void
874 e1000g_setup_max_mtu(struct e1000g *Adapter)
875 {
876 	struct e1000_mac_info *mac = &Adapter->shared.mac;
877 	struct e1000_phy_info *phy = &Adapter->shared.phy;
878 
879 	switch (mac->type) {
880 	/* types that do not support jumbo frames */
881 	case e1000_ich8lan:
882 	case e1000_82573:
883 	case e1000_82583:
884 		Adapter->max_mtu = ETHERMTU;
885 		break;
886 	/* ich9 supports jumbo frames except on one phy type */
887 	case e1000_ich9lan:
888 		if (phy->type == e1000_phy_ife)
889 			Adapter->max_mtu = ETHERMTU;
890 		else
891 			Adapter->max_mtu = MAXIMUM_MTU_9K;
892 		break;
893 	/* pch can do jumbo frames up to 4K */
894 	case e1000_pchlan:
895 		Adapter->max_mtu = MAXIMUM_MTU_4K;
896 		break;
897 	/* pch2 can do jumbo frames up to 9K */
898 	case e1000_pch2lan:
899 	case e1000_pch_lpt:
900 		Adapter->max_mtu = MAXIMUM_MTU_9K;
901 		break;
902 	/* types with a special limit */
903 	case e1000_82571:
904 	case e1000_82572:
905 	case e1000_82574:
906 	case e1000_80003es2lan:
907 	case e1000_ich10lan:
908 		if (e1000g_jumbo_mtu >= ETHERMTU &&
909 		    e1000g_jumbo_mtu <= MAXIMUM_MTU_9K) {
910 			Adapter->max_mtu = e1000g_jumbo_mtu;
911 		} else {
912 			Adapter->max_mtu = MAXIMUM_MTU_9K;
913 		}
914 		break;
915 	/* default limit is 16K */
916 	default:
917 		Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
918 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
919 		break;
920 	}
921 }
922 
923 static void
924 e1000g_set_bufsize(struct e1000g *Adapter)
925 {
926 	struct e1000_mac_info *mac = &Adapter->shared.mac;
927 	uint64_t rx_size;
928 	uint64_t tx_size;
929 
930 	dev_info_t *devinfo = Adapter->dip;
931 #ifdef __sparc
932 	ulong_t iommu_pagesize;
933 #endif
934 	/* Get the system page size */
935 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
936 
937 #ifdef __sparc
938 	iommu_pagesize = dvma_pagesize(devinfo);
939 	if (iommu_pagesize != 0) {
940 		if (Adapter->sys_page_sz == iommu_pagesize) {
941 			if (iommu_pagesize > 0x4000)
942 				Adapter->sys_page_sz = 0x4000;
943 		} else {
944 			if (Adapter->sys_page_sz > iommu_pagesize)
945 				Adapter->sys_page_sz = iommu_pagesize;
946 		}
947 	}
948 	if (Adapter->lso_enable) {
949 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
950 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
951 	} else {
952 		Adapter->dvma_page_num = Adapter->max_frame_size /
953 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
954 	}
955 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
956 #endif
957 
958 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
959 
960 	if (Adapter->mem_workaround_82546 &&
961 	    ((mac->type == e1000_82545) ||
962 	    (mac->type == e1000_82546) ||
963 	    (mac->type == e1000_82546_rev_3))) {
964 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
965 	} else {
966 		rx_size = Adapter->max_frame_size;
967 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
968 		    (rx_size <= FRAME_SIZE_UPTO_4K))
969 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
970 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
971 		    (rx_size <= FRAME_SIZE_UPTO_8K))
972 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
973 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
974 		    (rx_size <= FRAME_SIZE_UPTO_16K))
975 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
976 		else
977 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
978 	}
979 	Adapter->rx_buffer_size += E1000G_IPALIGNROOM;
980 
981 	tx_size = Adapter->max_frame_size;
982 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
983 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
984 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
985 	    (tx_size <= FRAME_SIZE_UPTO_8K))
986 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
987 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
988 	    (tx_size <= FRAME_SIZE_UPTO_16K))
989 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
990 	else
991 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
992 
993 	/*
994 	 * For Wiseman adapters we have an requirement of having receive
995 	 * buffers aligned at 256 byte boundary. Since Livengood does not
996 	 * require this and forcing it for all hardwares will have
997 	 * performance implications, I am making it applicable only for
998 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
999 	 * it is okay to have normal frames...but it does involve a
1000 	 * potential risk where we may loose data if buffer is not
1001 	 * aligned...so all wiseman boards to have 256 byte aligned
1002 	 * buffers
1003 	 */
1004 	if (mac->type < e1000_82543)
1005 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
1006 	else
1007 		Adapter->rx_buf_align = 1;
1008 }
1009 
1010 /*
1011  * e1000g_detach - driver detach
1012  *
1013  * The detach() function is the complement of the attach routine.
1014  * If cmd is set to DDI_DETACH, detach() is used to remove  the
1015  * state  associated  with  a  given  instance of a device node
1016  * prior to the removal of that instance from the system.
1017  *
1018  * The detach() function will be called once for each  instance
1019  * of the device for which there has been a successful attach()
1020  * once there are no longer  any  opens  on  the  device.
1021  *
1022  * Interrupts routine are disabled, All memory allocated by this
1023  * driver are freed.
1024  */
1025 static int
1026 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1027 {
1028 	struct e1000g *Adapter;
1029 	boolean_t rx_drain;
1030 
1031 	switch (cmd) {
1032 	default:
1033 		return (DDI_FAILURE);
1034 
1035 	case DDI_SUSPEND:
1036 		return (e1000g_suspend(devinfo));
1037 
1038 	case DDI_DETACH:
1039 		break;
1040 	}
1041 
1042 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1043 	if (Adapter == NULL)
1044 		return (DDI_FAILURE);
1045 
1046 	rx_drain = e1000g_rx_drain(Adapter);
1047 	if (!rx_drain && !e1000g_force_detach)
1048 		return (DDI_FAILURE);
1049 
1050 	if (mac_unregister(Adapter->mh) != 0) {
1051 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
1052 		return (DDI_FAILURE);
1053 	}
1054 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
1055 
1056 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
1057 
1058 	if (!e1000g_force_detach && !rx_drain)
1059 		return (DDI_FAILURE);
1060 
1061 	e1000g_unattach(devinfo, Adapter);
1062 
1063 	return (DDI_SUCCESS);
1064 }
1065 
1066 /*
1067  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1068  */
1069 void
1070 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1071 {
1072 	ASSERT(e1000g_private_devi_list != NULL);
1073 	ASSERT(devi_node != NULL);
1074 
1075 	if (devi_node->prev != NULL)
1076 		devi_node->prev->next = devi_node->next;
1077 	if (devi_node->next != NULL)
1078 		devi_node->next->prev = devi_node->prev;
1079 	if (devi_node == e1000g_private_devi_list)
1080 		e1000g_private_devi_list = devi_node->next;
1081 
1082 	kmem_free(devi_node->priv_dip,
1083 	    sizeof (struct dev_info));
1084 	kmem_free(devi_node,
1085 	    sizeof (private_devi_list_t));
1086 }
1087 
1088 static void
1089 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1090 {
1091 	private_devi_list_t *devi_node;
1092 	int result;
1093 
1094 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1095 		(void) e1000g_disable_intrs(Adapter);
1096 	}
1097 
1098 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1099 		(void) mac_unregister(Adapter->mh);
1100 	}
1101 
1102 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1103 		(void) e1000g_rem_intrs(Adapter);
1104 	}
1105 
1106 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1107 		(void) ddi_prop_remove_all(devinfo);
1108 	}
1109 
1110 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1111 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1112 	}
1113 
1114 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1115 		stop_link_timer(Adapter);
1116 
1117 		mutex_enter(&e1000g_nvm_lock);
1118 		result = e1000_reset_hw(&Adapter->shared);
1119 		mutex_exit(&e1000g_nvm_lock);
1120 
1121 		if (result != E1000_SUCCESS) {
1122 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1123 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1124 		}
1125 	}
1126 
1127 	e1000g_release_multicast(Adapter);
1128 
1129 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1130 		if (Adapter->osdep.reg_handle != NULL)
1131 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1132 		if (Adapter->osdep.ich_flash_handle != NULL)
1133 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1134 		if (Adapter->osdep.io_reg_handle != NULL)
1135 			ddi_regs_map_free(&Adapter->osdep.io_reg_handle);
1136 	}
1137 
1138 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1139 		if (Adapter->osdep.cfg_handle != NULL)
1140 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1141 	}
1142 
1143 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1144 		e1000g_destroy_locks(Adapter);
1145 	}
1146 
1147 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1148 		e1000g_fm_fini(Adapter);
1149 	}
1150 
1151 	mutex_enter(&e1000g_rx_detach_lock);
1152 	if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1153 		devi_node = Adapter->priv_devi_node;
1154 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1155 
1156 		if (devi_node->pending_rx_count == 0) {
1157 			e1000g_free_priv_devi_node(devi_node);
1158 		}
1159 	}
1160 	mutex_exit(&e1000g_rx_detach_lock);
1161 
1162 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1163 
1164 	/*
1165 	 * Another hotplug spec requirement,
1166 	 * run ddi_set_driver_private(devinfo, null);
1167 	 */
1168 	ddi_set_driver_private(devinfo, NULL);
1169 }
1170 
1171 /*
1172  * Get the BAR type and rnumber for a given PCI BAR offset
1173  */
1174 static int
1175 e1000g_get_bar_info(dev_info_t *dip, int bar_offset, bar_info_t *bar_info)
1176 {
1177 	pci_regspec_t *regs;
1178 	uint_t regs_length;
1179 	int type, rnumber, rcount;
1180 
1181 	ASSERT((bar_offset >= PCI_CONF_BASE0) &&
1182 	    (bar_offset <= PCI_CONF_BASE5));
1183 
1184 	/*
1185 	 * Get the DDI "reg" property
1186 	 */
1187 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
1188 	    DDI_PROP_DONTPASS, "reg", (int **)&regs,
1189 	    &regs_length) != DDI_PROP_SUCCESS) {
1190 		return (DDI_FAILURE);
1191 	}
1192 
1193 	rcount = regs_length * sizeof (int) / sizeof (pci_regspec_t);
1194 	/*
1195 	 * Check the BAR offset
1196 	 */
1197 	for (rnumber = 0; rnumber < rcount; ++rnumber) {
1198 		if (PCI_REG_REG_G(regs[rnumber].pci_phys_hi) == bar_offset) {
1199 			type = regs[rnumber].pci_phys_hi & PCI_ADDR_MASK;
1200 			break;
1201 		}
1202 	}
1203 
1204 	ddi_prop_free(regs);
1205 
1206 	if (rnumber >= rcount)
1207 		return (DDI_FAILURE);
1208 
1209 	switch (type) {
1210 	case PCI_ADDR_CONFIG:
1211 		bar_info->type = E1000G_BAR_CONFIG;
1212 		break;
1213 	case PCI_ADDR_IO:
1214 		bar_info->type = E1000G_BAR_IO;
1215 		break;
1216 	case PCI_ADDR_MEM32:
1217 		bar_info->type = E1000G_BAR_MEM32;
1218 		break;
1219 	case PCI_ADDR_MEM64:
1220 		bar_info->type = E1000G_BAR_MEM64;
1221 		break;
1222 	default:
1223 		return (DDI_FAILURE);
1224 	}
1225 	bar_info->rnumber = rnumber;
1226 	return (DDI_SUCCESS);
1227 }
1228 
1229 static void
1230 e1000g_init_locks(struct e1000g *Adapter)
1231 {
1232 	e1000g_tx_ring_t *tx_ring;
1233 	e1000g_rx_ring_t *rx_ring;
1234 
1235 	rw_init(&Adapter->chip_lock, NULL,
1236 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1237 	mutex_init(&Adapter->link_lock, NULL,
1238 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1239 	mutex_init(&Adapter->watchdog_lock, NULL,
1240 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1241 
1242 	tx_ring = Adapter->tx_ring;
1243 
1244 	mutex_init(&tx_ring->tx_lock, NULL,
1245 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1246 	mutex_init(&tx_ring->usedlist_lock, NULL,
1247 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1248 	mutex_init(&tx_ring->freelist_lock, NULL,
1249 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1250 
1251 	rx_ring = Adapter->rx_ring;
1252 
1253 	mutex_init(&rx_ring->rx_lock, NULL,
1254 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1255 }
1256 
1257 static void
1258 e1000g_destroy_locks(struct e1000g *Adapter)
1259 {
1260 	e1000g_tx_ring_t *tx_ring;
1261 	e1000g_rx_ring_t *rx_ring;
1262 
1263 	tx_ring = Adapter->tx_ring;
1264 	mutex_destroy(&tx_ring->tx_lock);
1265 	mutex_destroy(&tx_ring->usedlist_lock);
1266 	mutex_destroy(&tx_ring->freelist_lock);
1267 
1268 	rx_ring = Adapter->rx_ring;
1269 	mutex_destroy(&rx_ring->rx_lock);
1270 
1271 	mutex_destroy(&Adapter->link_lock);
1272 	mutex_destroy(&Adapter->watchdog_lock);
1273 	rw_destroy(&Adapter->chip_lock);
1274 
1275 	/* destory mutex initialized in shared code */
1276 	e1000_destroy_hw_mutex(&Adapter->shared);
1277 }
1278 
1279 static int
1280 e1000g_resume(dev_info_t *devinfo)
1281 {
1282 	struct e1000g *Adapter;
1283 
1284 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1285 	if (Adapter == NULL)
1286 		e1000g_log(Adapter, CE_PANIC,
1287 		    "Instance pointer is null\n");
1288 
1289 	if (Adapter->dip != devinfo)
1290 		e1000g_log(Adapter, CE_PANIC,
1291 		    "Devinfo is not the same as saved devinfo\n");
1292 
1293 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1294 
1295 	if (Adapter->e1000g_state & E1000G_STARTED) {
1296 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1297 			rw_exit(&Adapter->chip_lock);
1298 			/*
1299 			 * We note the failure, but return success, as the
1300 			 * system is still usable without this controller.
1301 			 */
1302 			e1000g_log(Adapter, CE_WARN,
1303 			    "e1000g_resume: failed to restart controller\n");
1304 			return (DDI_SUCCESS);
1305 		}
1306 		/* Enable and start the watchdog timer */
1307 		enable_watchdog_timer(Adapter);
1308 	}
1309 
1310 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1311 
1312 	rw_exit(&Adapter->chip_lock);
1313 
1314 	return (DDI_SUCCESS);
1315 }
1316 
1317 static int
1318 e1000g_suspend(dev_info_t *devinfo)
1319 {
1320 	struct e1000g *Adapter;
1321 
1322 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1323 	if (Adapter == NULL)
1324 		return (DDI_FAILURE);
1325 
1326 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1327 
1328 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1329 
1330 	/* if the port isn't plumbed, we can simply return */
1331 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1332 		rw_exit(&Adapter->chip_lock);
1333 		return (DDI_SUCCESS);
1334 	}
1335 
1336 	e1000g_stop(Adapter, B_FALSE);
1337 
1338 	rw_exit(&Adapter->chip_lock);
1339 
1340 	/* Disable and stop all the timers */
1341 	disable_watchdog_timer(Adapter);
1342 	stop_link_timer(Adapter);
1343 	stop_82547_timer(Adapter->tx_ring);
1344 
1345 	return (DDI_SUCCESS);
1346 }
1347 
1348 static int
1349 e1000g_init(struct e1000g *Adapter)
1350 {
1351 	uint32_t pba;
1352 	uint32_t high_water;
1353 	struct e1000_hw *hw;
1354 	clock_t link_timeout;
1355 	int result;
1356 
1357 	hw = &Adapter->shared;
1358 
1359 	/*
1360 	 * reset to put the hardware in a known state
1361 	 * before we try to do anything with the eeprom
1362 	 */
1363 	mutex_enter(&e1000g_nvm_lock);
1364 	result = e1000_reset_hw(hw);
1365 	mutex_exit(&e1000g_nvm_lock);
1366 
1367 	if (result != E1000_SUCCESS) {
1368 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1369 		goto init_fail;
1370 	}
1371 
1372 	mutex_enter(&e1000g_nvm_lock);
1373 	result = e1000_validate_nvm_checksum(hw);
1374 	if (result < E1000_SUCCESS) {
1375 		/*
1376 		 * Some PCI-E parts fail the first check due to
1377 		 * the link being in sleep state.  Call it again,
1378 		 * if it fails a second time its a real issue.
1379 		 */
1380 		result = e1000_validate_nvm_checksum(hw);
1381 	}
1382 	mutex_exit(&e1000g_nvm_lock);
1383 
1384 	if (result < E1000_SUCCESS) {
1385 		e1000g_log(Adapter, CE_WARN,
1386 		    "Invalid NVM checksum. Please contact "
1387 		    "the vendor to update the NVM.");
1388 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1389 		goto init_fail;
1390 	}
1391 
1392 	result = 0;
1393 #ifdef __sparc
1394 	/*
1395 	 * First, we try to get the local ethernet address from OBP. If
1396 	 * failed, then we get it from the EEPROM of NIC card.
1397 	 */
1398 	result = e1000g_find_mac_address(Adapter);
1399 #endif
1400 	/* Get the local ethernet address. */
1401 	if (!result) {
1402 		mutex_enter(&e1000g_nvm_lock);
1403 		result = e1000_read_mac_addr(hw);
1404 		mutex_exit(&e1000g_nvm_lock);
1405 	}
1406 
1407 	if (result < E1000_SUCCESS) {
1408 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1409 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1410 		goto init_fail;
1411 	}
1412 
1413 	/* check for valid mac address */
1414 	if (!is_valid_mac_addr(hw->mac.addr)) {
1415 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1416 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1417 		goto init_fail;
1418 	}
1419 
1420 	/* Set LAA state for 82571 chipset */
1421 	e1000_set_laa_state_82571(hw, B_TRUE);
1422 
1423 	/* Master Latency Timer implementation */
1424 	if (Adapter->master_latency_timer) {
1425 		pci_config_put8(Adapter->osdep.cfg_handle,
1426 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1427 	}
1428 
1429 	if (hw->mac.type < e1000_82547) {
1430 		/*
1431 		 * Total FIFO is 64K
1432 		 */
1433 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1434 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1435 		else
1436 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1437 	} else if ((hw->mac.type == e1000_82571) ||
1438 	    (hw->mac.type == e1000_82572) ||
1439 	    (hw->mac.type == e1000_80003es2lan)) {
1440 		/*
1441 		 * Total FIFO is 48K
1442 		 */
1443 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1444 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1445 		else
1446 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1447 	} else if (hw->mac.type == e1000_82573) {
1448 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1449 	} else if (hw->mac.type == e1000_82574) {
1450 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1451 		pba = E1000_READ_REG(hw, E1000_PBA);
1452 	} else if (hw->mac.type == e1000_ich8lan) {
1453 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1454 	} else if (hw->mac.type == e1000_ich9lan) {
1455 		pba = E1000_PBA_10K;
1456 	} else if (hw->mac.type == e1000_ich10lan) {
1457 		pba = E1000_PBA_10K;
1458 	} else if (hw->mac.type == e1000_pchlan) {
1459 		pba = E1000_PBA_26K;
1460 	} else if (hw->mac.type == e1000_pch2lan) {
1461 		pba = E1000_PBA_26K;
1462 	} else if (hw->mac.type == e1000_pch_lpt) {
1463 		pba = E1000_PBA_26K;
1464 	} else {
1465 		/*
1466 		 * Total FIFO is 40K
1467 		 */
1468 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1469 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1470 		else
1471 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1472 	}
1473 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1474 
1475 	/*
1476 	 * These parameters set thresholds for the adapter's generation(Tx)
1477 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1478 	 * settings.  Flow control is enabled or disabled in the configuration
1479 	 * file.
1480 	 * High-water mark is set down from the top of the rx fifo (not
1481 	 * sensitive to max_frame_size) and low-water is set just below
1482 	 * high-water mark.
1483 	 * The high water mark must be low enough to fit one full frame above
1484 	 * it in the rx FIFO.  Should be the lower of:
1485 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1486 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1487 	 * Rx FIFO size minus one full frame.
1488 	 */
1489 	high_water = min(((pba << 10) * 9 / 10),
1490 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1491 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1492 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1493 	    ((pba << 10) - Adapter->max_frame_size)));
1494 
1495 	hw->fc.high_water = high_water & 0xFFF8;
1496 	hw->fc.low_water = hw->fc.high_water - 8;
1497 
1498 	if (hw->mac.type == e1000_80003es2lan)
1499 		hw->fc.pause_time = 0xFFFF;
1500 	else
1501 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1502 	hw->fc.send_xon = B_TRUE;
1503 
1504 	/*
1505 	 * Reset the adapter hardware the second time.
1506 	 */
1507 	mutex_enter(&e1000g_nvm_lock);
1508 	result = e1000_reset_hw(hw);
1509 	mutex_exit(&e1000g_nvm_lock);
1510 
1511 	if (result != E1000_SUCCESS) {
1512 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1513 		goto init_fail;
1514 	}
1515 
1516 	/* disable wakeup control by default */
1517 	if (hw->mac.type >= e1000_82544)
1518 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1519 
1520 	/*
1521 	 * MWI should be disabled on 82546.
1522 	 */
1523 	if (hw->mac.type == e1000_82546)
1524 		e1000_pci_clear_mwi(hw);
1525 	else
1526 		e1000_pci_set_mwi(hw);
1527 
1528 	/*
1529 	 * Configure/Initialize hardware
1530 	 */
1531 	mutex_enter(&e1000g_nvm_lock);
1532 	result = e1000_init_hw(hw);
1533 	mutex_exit(&e1000g_nvm_lock);
1534 
1535 	if (result < E1000_SUCCESS) {
1536 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1537 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1538 		goto init_fail;
1539 	}
1540 
1541 	/*
1542 	 * Restore LED settings to the default from EEPROM
1543 	 * to meet the standard for Sun platforms.
1544 	 */
1545 	(void) e1000_cleanup_led(hw);
1546 
1547 	/* Disable Smart Power Down */
1548 	phy_spd_state(hw, B_FALSE);
1549 
1550 	/* Make sure driver has control */
1551 	e1000g_get_driver_control(hw);
1552 
1553 	/*
1554 	 * Initialize unicast addresses.
1555 	 */
1556 	e1000g_init_unicst(Adapter);
1557 
1558 	/*
1559 	 * Setup and initialize the mctable structures.  After this routine
1560 	 * completes  Multicast table will be set
1561 	 */
1562 	e1000_update_mc_addr_list(hw,
1563 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1564 	msec_delay(5);
1565 
1566 	/*
1567 	 * Implement Adaptive IFS
1568 	 */
1569 	e1000_reset_adaptive(hw);
1570 
1571 	/* Setup Interrupt Throttling Register */
1572 	if (hw->mac.type >= e1000_82540) {
1573 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1574 	} else
1575 		Adapter->intr_adaptive = B_FALSE;
1576 
1577 	/* Start the timer for link setup */
1578 	if (hw->mac.autoneg)
1579 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1580 	else
1581 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1582 
1583 	mutex_enter(&Adapter->link_lock);
1584 	if (hw->phy.autoneg_wait_to_complete) {
1585 		Adapter->link_complete = B_TRUE;
1586 	} else {
1587 		Adapter->link_complete = B_FALSE;
1588 		Adapter->link_tid = timeout(e1000g_link_timer,
1589 		    (void *)Adapter, link_timeout);
1590 	}
1591 	mutex_exit(&Adapter->link_lock);
1592 
1593 	/* Save the state of the phy */
1594 	e1000g_get_phy_state(Adapter);
1595 
1596 	e1000g_param_sync(Adapter);
1597 
1598 	Adapter->init_count++;
1599 
1600 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1601 		goto init_fail;
1602 	}
1603 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1604 		goto init_fail;
1605 	}
1606 
1607 	Adapter->poll_mode = e1000g_poll_mode;
1608 
1609 	return (DDI_SUCCESS);
1610 
1611 init_fail:
1612 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1613 	return (DDI_FAILURE);
1614 }
1615 
1616 static int
1617 e1000g_alloc_rx_data(struct e1000g *Adapter)
1618 {
1619 	e1000g_rx_ring_t *rx_ring;
1620 	e1000g_rx_data_t *rx_data;
1621 
1622 	rx_ring = Adapter->rx_ring;
1623 
1624 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1625 
1626 	if (rx_data == NULL)
1627 		return (DDI_FAILURE);
1628 
1629 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1630 	rx_data->rx_ring = rx_ring;
1631 
1632 	mutex_init(&rx_data->freelist_lock, NULL,
1633 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1634 	mutex_init(&rx_data->recycle_lock, NULL,
1635 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1636 
1637 	rx_ring->rx_data = rx_data;
1638 
1639 	return (DDI_SUCCESS);
1640 }
1641 
1642 void
1643 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1644 {
1645 	rx_sw_packet_t *packet, *next_packet;
1646 
1647 	if (rx_data == NULL)
1648 		return;
1649 
1650 	packet = rx_data->packet_area;
1651 	while (packet != NULL) {
1652 		next_packet = packet->next;
1653 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1654 		packet = next_packet;
1655 	}
1656 	rx_data->packet_area = NULL;
1657 }
1658 
1659 void
1660 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1661 {
1662 	if (rx_data == NULL)
1663 		return;
1664 
1665 	mutex_destroy(&rx_data->freelist_lock);
1666 	mutex_destroy(&rx_data->recycle_lock);
1667 
1668 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1669 }
1670 
1671 /*
1672  * Check if the link is up
1673  */
1674 static boolean_t
1675 e1000g_link_up(struct e1000g *Adapter)
1676 {
1677 	struct e1000_hw *hw = &Adapter->shared;
1678 	boolean_t link_up = B_FALSE;
1679 
1680 	/*
1681 	 * get_link_status is set in the interrupt handler on link-status-change
1682 	 * or rx sequence error interrupt.  get_link_status will stay
1683 	 * false until the e1000_check_for_link establishes link only
1684 	 * for copper adapters.
1685 	 */
1686 	switch (hw->phy.media_type) {
1687 	case e1000_media_type_copper:
1688 		if (hw->mac.get_link_status) {
1689 			(void) e1000_check_for_link(hw);
1690 			if ((E1000_READ_REG(hw, E1000_STATUS) &
1691 			    E1000_STATUS_LU)) {
1692 				link_up = B_TRUE;
1693 			} else {
1694 				link_up = !hw->mac.get_link_status;
1695 			}
1696 		} else {
1697 			link_up = B_TRUE;
1698 		}
1699 		break;
1700 	case e1000_media_type_fiber:
1701 		(void) e1000_check_for_link(hw);
1702 		link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1703 		    E1000_STATUS_LU);
1704 		break;
1705 	case e1000_media_type_internal_serdes:
1706 		(void) e1000_check_for_link(hw);
1707 		link_up = hw->mac.serdes_has_link;
1708 		break;
1709 	}
1710 
1711 	return (link_up);
1712 }
1713 
1714 static void
1715 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1716 {
1717 	struct iocblk *iocp;
1718 	struct e1000g *e1000gp;
1719 	enum ioc_reply status;
1720 
1721 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1722 	iocp->ioc_error = 0;
1723 	e1000gp = (struct e1000g *)arg;
1724 
1725 	ASSERT(e1000gp);
1726 	if (e1000gp == NULL) {
1727 		miocnak(q, mp, 0, EINVAL);
1728 		return;
1729 	}
1730 
1731 	rw_enter(&e1000gp->chip_lock, RW_READER);
1732 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1733 		rw_exit(&e1000gp->chip_lock);
1734 		miocnak(q, mp, 0, EINVAL);
1735 		return;
1736 	}
1737 	rw_exit(&e1000gp->chip_lock);
1738 
1739 	switch (iocp->ioc_cmd) {
1740 
1741 	case LB_GET_INFO_SIZE:
1742 	case LB_GET_INFO:
1743 	case LB_GET_MODE:
1744 	case LB_SET_MODE:
1745 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1746 		break;
1747 
1748 
1749 #ifdef E1000G_DEBUG
1750 	case E1000G_IOC_REG_PEEK:
1751 	case E1000G_IOC_REG_POKE:
1752 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1753 		break;
1754 	case E1000G_IOC_CHIP_RESET:
1755 		e1000gp->reset_count++;
1756 		if (e1000g_reset_adapter(e1000gp))
1757 			status = IOC_ACK;
1758 		else
1759 			status = IOC_INVAL;
1760 		break;
1761 #endif
1762 	default:
1763 		status = IOC_INVAL;
1764 		break;
1765 	}
1766 
1767 	/*
1768 	 * Decide how to reply
1769 	 */
1770 	switch (status) {
1771 	default:
1772 	case IOC_INVAL:
1773 		/*
1774 		 * Error, reply with a NAK and EINVAL or the specified error
1775 		 */
1776 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1777 		    EINVAL : iocp->ioc_error);
1778 		break;
1779 
1780 	case IOC_DONE:
1781 		/*
1782 		 * OK, reply already sent
1783 		 */
1784 		break;
1785 
1786 	case IOC_ACK:
1787 		/*
1788 		 * OK, reply with an ACK
1789 		 */
1790 		miocack(q, mp, 0, 0);
1791 		break;
1792 
1793 	case IOC_REPLY:
1794 		/*
1795 		 * OK, send prepared reply as ACK or NAK
1796 		 */
1797 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1798 		    M_IOCACK : M_IOCNAK;
1799 		qreply(q, mp);
1800 		break;
1801 	}
1802 }
1803 
1804 /*
1805  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1806  * capable of supporting only one interrupt and we shouldn't disable
1807  * the physical interrupt. In this case we let the interrupt come and
1808  * we queue the packets in the rx ring itself in case we are in polling
1809  * mode (better latency but slightly lower performance and a very
1810  * high intrrupt count in mpstat which is harmless).
1811  *
1812  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1813  * which can be disabled in poll mode. This gives better overall
1814  * throughput (compared to the mode above), shows very low interrupt
1815  * count but has slightly higher latency since we pick the packets when
1816  * the poll thread does polling.
1817  *
1818  * Currently, this flag should be enabled only while doing performance
1819  * measurement or when it can be guaranteed that entire NIC going
1820  * in poll mode will not harm any traffic like cluster heartbeat etc.
1821  */
1822 int e1000g_poll_mode = 0;
1823 
1824 /*
1825  * Called from the upper layers when driver is in polling mode to
1826  * pick up any queued packets. Care should be taken to not block
1827  * this thread.
1828  */
1829 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1830 {
1831 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1832 	mblk_t			*mp = NULL;
1833 	mblk_t			*tail;
1834 	struct e1000g 		*adapter;
1835 
1836 	adapter = rx_ring->adapter;
1837 
1838 	rw_enter(&adapter->chip_lock, RW_READER);
1839 
1840 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1841 		rw_exit(&adapter->chip_lock);
1842 		return (NULL);
1843 	}
1844 
1845 	mutex_enter(&rx_ring->rx_lock);
1846 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1847 	mutex_exit(&rx_ring->rx_lock);
1848 	rw_exit(&adapter->chip_lock);
1849 	return (mp);
1850 }
1851 
1852 static int
1853 e1000g_m_start(void *arg)
1854 {
1855 	struct e1000g *Adapter = (struct e1000g *)arg;
1856 
1857 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1858 
1859 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1860 		rw_exit(&Adapter->chip_lock);
1861 		return (ECANCELED);
1862 	}
1863 
1864 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1865 		rw_exit(&Adapter->chip_lock);
1866 		return (ENOTACTIVE);
1867 	}
1868 
1869 	Adapter->e1000g_state |= E1000G_STARTED;
1870 
1871 	rw_exit(&Adapter->chip_lock);
1872 
1873 	/* Enable and start the watchdog timer */
1874 	enable_watchdog_timer(Adapter);
1875 
1876 	return (0);
1877 }
1878 
1879 static int
1880 e1000g_start(struct e1000g *Adapter, boolean_t global)
1881 {
1882 	e1000g_rx_data_t *rx_data;
1883 
1884 	if (global) {
1885 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1886 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1887 			goto start_fail;
1888 		}
1889 
1890 		/* Allocate dma resources for descriptors and buffers */
1891 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1892 			e1000g_log(Adapter, CE_WARN,
1893 			    "Alloc DMA resources failed");
1894 			goto start_fail;
1895 		}
1896 		Adapter->rx_buffer_setup = B_FALSE;
1897 	}
1898 
1899 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1900 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1901 			e1000g_log(Adapter, CE_WARN,
1902 			    "Adapter initialization failed");
1903 			goto start_fail;
1904 		}
1905 	}
1906 
1907 	/* Setup and initialize the transmit structures */
1908 	e1000g_tx_setup(Adapter);
1909 	msec_delay(5);
1910 
1911 	/* Setup and initialize the receive structures */
1912 	e1000g_rx_setup(Adapter);
1913 	msec_delay(5);
1914 
1915 	/* Restore the e1000g promiscuous mode */
1916 	e1000g_restore_promisc(Adapter);
1917 
1918 	e1000g_mask_interrupt(Adapter);
1919 
1920 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1921 
1922 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1923 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1924 		goto start_fail;
1925 	}
1926 
1927 	return (DDI_SUCCESS);
1928 
1929 start_fail:
1930 	rx_data = Adapter->rx_ring->rx_data;
1931 
1932 	if (global) {
1933 		e1000g_release_dma_resources(Adapter);
1934 		e1000g_free_rx_pending_buffers(rx_data);
1935 		e1000g_free_rx_data(rx_data);
1936 	}
1937 
1938 	mutex_enter(&e1000g_nvm_lock);
1939 	(void) e1000_reset_hw(&Adapter->shared);
1940 	mutex_exit(&e1000g_nvm_lock);
1941 
1942 	return (DDI_FAILURE);
1943 }
1944 
1945 static void
1946 e1000g_m_stop(void *arg)
1947 {
1948 	struct e1000g *Adapter = (struct e1000g *)arg;
1949 
1950 	/* Drain tx sessions */
1951 	(void) e1000g_tx_drain(Adapter);
1952 
1953 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1954 
1955 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1956 		rw_exit(&Adapter->chip_lock);
1957 		return;
1958 	}
1959 	Adapter->e1000g_state &= ~E1000G_STARTED;
1960 	e1000g_stop(Adapter, B_TRUE);
1961 
1962 	rw_exit(&Adapter->chip_lock);
1963 
1964 	/* Disable and stop all the timers */
1965 	disable_watchdog_timer(Adapter);
1966 	stop_link_timer(Adapter);
1967 	stop_82547_timer(Adapter->tx_ring);
1968 }
1969 
1970 static void
1971 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1972 {
1973 	private_devi_list_t *devi_node;
1974 	e1000g_rx_data_t *rx_data;
1975 	int result;
1976 
1977 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1978 
1979 	/* Stop the chip and release pending resources */
1980 
1981 	/* Tell firmware driver is no longer in control */
1982 	e1000g_release_driver_control(&Adapter->shared);
1983 
1984 	e1000g_clear_all_interrupts(Adapter);
1985 
1986 	mutex_enter(&e1000g_nvm_lock);
1987 	result = e1000_reset_hw(&Adapter->shared);
1988 	mutex_exit(&e1000g_nvm_lock);
1989 
1990 	if (result != E1000_SUCCESS) {
1991 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1992 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1993 	}
1994 
1995 	mutex_enter(&Adapter->link_lock);
1996 	Adapter->link_complete = B_FALSE;
1997 	mutex_exit(&Adapter->link_lock);
1998 
1999 	/* Release resources still held by the TX descriptors */
2000 	e1000g_tx_clean(Adapter);
2001 
2002 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2003 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2004 
2005 	/* Clean the pending rx jumbo packet fragment */
2006 	e1000g_rx_clean(Adapter);
2007 
2008 	if (global) {
2009 		e1000g_release_dma_resources(Adapter);
2010 
2011 		mutex_enter(&e1000g_rx_detach_lock);
2012 		rx_data = Adapter->rx_ring->rx_data;
2013 		rx_data->flag |= E1000G_RX_STOPPED;
2014 
2015 		if (rx_data->pending_count == 0) {
2016 			e1000g_free_rx_pending_buffers(rx_data);
2017 			e1000g_free_rx_data(rx_data);
2018 		} else {
2019 			devi_node = rx_data->priv_devi_node;
2020 			if (devi_node != NULL)
2021 				atomic_inc_32(&devi_node->pending_rx_count);
2022 			else
2023 				atomic_inc_32(&Adapter->pending_rx_count);
2024 		}
2025 		mutex_exit(&e1000g_rx_detach_lock);
2026 	}
2027 
2028 	if (Adapter->link_state != LINK_STATE_UNKNOWN) {
2029 		Adapter->link_state = LINK_STATE_UNKNOWN;
2030 		if (!Adapter->reset_flag)
2031 			mac_link_update(Adapter->mh, Adapter->link_state);
2032 	}
2033 }
2034 
2035 static void
2036 e1000g_rx_clean(struct e1000g *Adapter)
2037 {
2038 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
2039 
2040 	if (rx_data == NULL)
2041 		return;
2042 
2043 	if (rx_data->rx_mblk != NULL) {
2044 		freemsg(rx_data->rx_mblk);
2045 		rx_data->rx_mblk = NULL;
2046 		rx_data->rx_mblk_tail = NULL;
2047 		rx_data->rx_mblk_len = 0;
2048 	}
2049 }
2050 
2051 static void
2052 e1000g_tx_clean(struct e1000g *Adapter)
2053 {
2054 	e1000g_tx_ring_t *tx_ring;
2055 	p_tx_sw_packet_t packet;
2056 	mblk_t *mp;
2057 	mblk_t *nmp;
2058 	uint32_t packet_count;
2059 
2060 	tx_ring = Adapter->tx_ring;
2061 
2062 	/*
2063 	 * Here we don't need to protect the lists using
2064 	 * the usedlist_lock and freelist_lock, for they
2065 	 * have been protected by the chip_lock.
2066 	 */
2067 	mp = NULL;
2068 	nmp = NULL;
2069 	packet_count = 0;
2070 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
2071 	while (packet != NULL) {
2072 		if (packet->mp != NULL) {
2073 			/* Assemble the message chain */
2074 			if (mp == NULL) {
2075 				mp = packet->mp;
2076 				nmp = packet->mp;
2077 			} else {
2078 				nmp->b_next = packet->mp;
2079 				nmp = packet->mp;
2080 			}
2081 			/* Disconnect the message from the sw packet */
2082 			packet->mp = NULL;
2083 		}
2084 
2085 		e1000g_free_tx_swpkt(packet);
2086 		packet_count++;
2087 
2088 		packet = (p_tx_sw_packet_t)
2089 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
2090 	}
2091 
2092 	if (mp != NULL)
2093 		freemsgchain(mp);
2094 
2095 	if (packet_count > 0) {
2096 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
2097 		QUEUE_INIT_LIST(&tx_ring->used_list);
2098 
2099 		/* Setup TX descriptor pointers */
2100 		tx_ring->tbd_next = tx_ring->tbd_first;
2101 		tx_ring->tbd_oldest = tx_ring->tbd_first;
2102 
2103 		/* Setup our HW Tx Head & Tail descriptor pointers */
2104 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
2105 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
2106 	}
2107 }
2108 
2109 static boolean_t
2110 e1000g_tx_drain(struct e1000g *Adapter)
2111 {
2112 	int i;
2113 	boolean_t done;
2114 	e1000g_tx_ring_t *tx_ring;
2115 
2116 	tx_ring = Adapter->tx_ring;
2117 
2118 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
2119 	for (i = 0; i < TX_DRAIN_TIME; i++) {
2120 		mutex_enter(&tx_ring->usedlist_lock);
2121 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
2122 		mutex_exit(&tx_ring->usedlist_lock);
2123 
2124 		if (done)
2125 			break;
2126 
2127 		msec_delay(1);
2128 	}
2129 
2130 	return (done);
2131 }
2132 
2133 static boolean_t
2134 e1000g_rx_drain(struct e1000g *Adapter)
2135 {
2136 	int i;
2137 	boolean_t done;
2138 
2139 	/*
2140 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2141 	 */
2142 	for (i = 0; i < RX_DRAIN_TIME; i++) {
2143 		done = (Adapter->pending_rx_count == 0);
2144 
2145 		if (done)
2146 			break;
2147 
2148 		msec_delay(1);
2149 	}
2150 
2151 	return (done);
2152 }
2153 
2154 static boolean_t
2155 e1000g_reset_adapter(struct e1000g *Adapter)
2156 {
2157 	/* Disable and stop all the timers */
2158 	disable_watchdog_timer(Adapter);
2159 	stop_link_timer(Adapter);
2160 	stop_82547_timer(Adapter->tx_ring);
2161 
2162 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2163 
2164 	if (Adapter->stall_flag) {
2165 		Adapter->stall_flag = B_FALSE;
2166 		Adapter->reset_flag = B_TRUE;
2167 	}
2168 
2169 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2170 		rw_exit(&Adapter->chip_lock);
2171 		return (B_TRUE);
2172 	}
2173 
2174 	e1000g_stop(Adapter, B_FALSE);
2175 
2176 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2177 		rw_exit(&Adapter->chip_lock);
2178 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2179 			return (B_FALSE);
2180 	}
2181 
2182 	rw_exit(&Adapter->chip_lock);
2183 
2184 	/* Enable and start the watchdog timer */
2185 	enable_watchdog_timer(Adapter);
2186 
2187 	return (B_TRUE);
2188 }
2189 
2190 boolean_t
2191 e1000g_global_reset(struct e1000g *Adapter)
2192 {
2193 	/* Disable and stop all the timers */
2194 	disable_watchdog_timer(Adapter);
2195 	stop_link_timer(Adapter);
2196 	stop_82547_timer(Adapter->tx_ring);
2197 
2198 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2199 
2200 	e1000g_stop(Adapter, B_TRUE);
2201 
2202 	Adapter->init_count = 0;
2203 
2204 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2205 		rw_exit(&Adapter->chip_lock);
2206 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2207 		return (B_FALSE);
2208 	}
2209 
2210 	rw_exit(&Adapter->chip_lock);
2211 
2212 	/* Enable and start the watchdog timer */
2213 	enable_watchdog_timer(Adapter);
2214 
2215 	return (B_TRUE);
2216 }
2217 
2218 /*
2219  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2220  *
2221  * This interrupt service routine is for PCI-Express adapters.
2222  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2223  * bit is set.
2224  */
2225 static uint_t
2226 e1000g_intr_pciexpress(caddr_t arg)
2227 {
2228 	struct e1000g *Adapter;
2229 	uint32_t icr;
2230 
2231 	Adapter = (struct e1000g *)(uintptr_t)arg;
2232 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2233 
2234 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2235 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2236 		return (DDI_INTR_CLAIMED);
2237 	}
2238 
2239 	if (icr & E1000_ICR_INT_ASSERTED) {
2240 		/*
2241 		 * E1000_ICR_INT_ASSERTED bit was set:
2242 		 * Read(Clear) the ICR, claim this interrupt,
2243 		 * look for work to do.
2244 		 */
2245 		e1000g_intr_work(Adapter, icr);
2246 		return (DDI_INTR_CLAIMED);
2247 	} else {
2248 		/*
2249 		 * E1000_ICR_INT_ASSERTED bit was not set:
2250 		 * Don't claim this interrupt, return immediately.
2251 		 */
2252 		return (DDI_INTR_UNCLAIMED);
2253 	}
2254 }
2255 
2256 /*
2257  * e1000g_intr - ISR for PCI/PCI-X chipsets
2258  *
2259  * This interrupt service routine is for PCI/PCI-X adapters.
2260  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2261  * bit is set or not.
2262  */
2263 static uint_t
2264 e1000g_intr(caddr_t arg)
2265 {
2266 	struct e1000g *Adapter;
2267 	uint32_t icr;
2268 
2269 	Adapter = (struct e1000g *)(uintptr_t)arg;
2270 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2271 
2272 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2273 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2274 		return (DDI_INTR_CLAIMED);
2275 	}
2276 
2277 	if (icr) {
2278 		/*
2279 		 * Any bit was set in ICR:
2280 		 * Read(Clear) the ICR, claim this interrupt,
2281 		 * look for work to do.
2282 		 */
2283 		e1000g_intr_work(Adapter, icr);
2284 		return (DDI_INTR_CLAIMED);
2285 	} else {
2286 		/*
2287 		 * No bit was set in ICR:
2288 		 * Don't claim this interrupt, return immediately.
2289 		 */
2290 		return (DDI_INTR_UNCLAIMED);
2291 	}
2292 }
2293 
2294 /*
2295  * e1000g_intr_work - actual processing of ISR
2296  *
2297  * Read(clear) the ICR contents and call appropriate interrupt
2298  * processing routines.
2299  */
2300 static void
2301 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2302 {
2303 	struct e1000_hw *hw;
2304 	hw = &Adapter->shared;
2305 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2306 
2307 	Adapter->rx_pkt_cnt = 0;
2308 	Adapter->tx_pkt_cnt = 0;
2309 
2310 	rw_enter(&Adapter->chip_lock, RW_READER);
2311 
2312 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2313 		rw_exit(&Adapter->chip_lock);
2314 		return;
2315 	}
2316 	/*
2317 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2318 	 * ensure the receive routine will not execute when the adapter is
2319 	 * being reset.
2320 	 */
2321 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2322 		rw_exit(&Adapter->chip_lock);
2323 		return;
2324 	}
2325 
2326 	if (icr & E1000_ICR_RXT0) {
2327 		mblk_t			*mp = NULL;
2328 		mblk_t			*tail = NULL;
2329 		e1000g_rx_ring_t	*rx_ring;
2330 
2331 		rx_ring = Adapter->rx_ring;
2332 		mutex_enter(&rx_ring->rx_lock);
2333 		/*
2334 		 * Sometimes with legacy interrupts, it possible that
2335 		 * there is a single interrupt for Rx/Tx. In which
2336 		 * case, if poll flag is set, we shouldn't really
2337 		 * be doing Rx processing.
2338 		 */
2339 		if (!rx_ring->poll_flag)
2340 			mp = e1000g_receive(rx_ring, &tail,
2341 			    E1000G_CHAIN_NO_LIMIT);
2342 		mutex_exit(&rx_ring->rx_lock);
2343 		rw_exit(&Adapter->chip_lock);
2344 		if (mp != NULL)
2345 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2346 			    mp, rx_ring->ring_gen_num);
2347 	} else
2348 		rw_exit(&Adapter->chip_lock);
2349 
2350 	if (icr & E1000_ICR_TXDW) {
2351 		if (!Adapter->tx_intr_enable)
2352 			e1000g_clear_tx_interrupt(Adapter);
2353 
2354 		/* Recycle the tx descriptors */
2355 		rw_enter(&Adapter->chip_lock, RW_READER);
2356 		(void) e1000g_recycle(tx_ring);
2357 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2358 		rw_exit(&Adapter->chip_lock);
2359 
2360 		if (tx_ring->resched_needed &&
2361 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2362 			tx_ring->resched_needed = B_FALSE;
2363 			mac_tx_update(Adapter->mh);
2364 			E1000G_STAT(tx_ring->stat_reschedule);
2365 		}
2366 	}
2367 
2368 	/*
2369 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2370 	 * are checked to detect that the cable has been pulled out. For
2371 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2372 	 * are an indication that cable is not connected.
2373 	 */
2374 	if ((icr & E1000_ICR_RXSEQ) ||
2375 	    (icr & E1000_ICR_LSC) ||
2376 	    (icr & E1000_ICR_GPI_EN1)) {
2377 		boolean_t link_changed;
2378 		timeout_id_t tid = 0;
2379 
2380 		stop_watchdog_timer(Adapter);
2381 
2382 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2383 
2384 		/*
2385 		 * Because we got a link-status-change interrupt, force
2386 		 * e1000_check_for_link() to look at phy
2387 		 */
2388 		Adapter->shared.mac.get_link_status = B_TRUE;
2389 
2390 		/* e1000g_link_check takes care of link status change */
2391 		link_changed = e1000g_link_check(Adapter);
2392 
2393 		/* Get new phy state */
2394 		e1000g_get_phy_state(Adapter);
2395 
2396 		/*
2397 		 * If the link timer has not timed out, we'll not notify
2398 		 * the upper layer with any link state until the link is up.
2399 		 */
2400 		if (link_changed && !Adapter->link_complete) {
2401 			if (Adapter->link_state == LINK_STATE_UP) {
2402 				mutex_enter(&Adapter->link_lock);
2403 				Adapter->link_complete = B_TRUE;
2404 				tid = Adapter->link_tid;
2405 				Adapter->link_tid = 0;
2406 				mutex_exit(&Adapter->link_lock);
2407 			} else {
2408 				link_changed = B_FALSE;
2409 			}
2410 		}
2411 		rw_exit(&Adapter->chip_lock);
2412 
2413 		if (link_changed) {
2414 			if (tid != 0)
2415 				(void) untimeout(tid);
2416 
2417 			/*
2418 			 * Workaround for esb2. Data stuck in fifo on a link
2419 			 * down event. Stop receiver here and reset in watchdog.
2420 			 */
2421 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2422 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2423 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2424 				E1000_WRITE_REG(hw, E1000_RCTL,
2425 				    rctl & ~E1000_RCTL_EN);
2426 				e1000g_log(Adapter, CE_WARN,
2427 				    "ESB2 receiver disabled");
2428 				Adapter->esb2_workaround = B_TRUE;
2429 			}
2430 			if (!Adapter->reset_flag)
2431 				mac_link_update(Adapter->mh,
2432 				    Adapter->link_state);
2433 			if (Adapter->link_state == LINK_STATE_UP)
2434 				Adapter->reset_flag = B_FALSE;
2435 		}
2436 
2437 		start_watchdog_timer(Adapter);
2438 	}
2439 }
2440 
2441 static void
2442 e1000g_init_unicst(struct e1000g *Adapter)
2443 {
2444 	struct e1000_hw *hw;
2445 	int slot;
2446 
2447 	hw = &Adapter->shared;
2448 
2449 	if (Adapter->init_count == 0) {
2450 		/* Initialize the multiple unicast addresses */
2451 		Adapter->unicst_total = min(hw->mac.rar_entry_count,
2452 		    MAX_NUM_UNICAST_ADDRESSES);
2453 
2454 		/*
2455 		 * The common code does not correctly calculate the number of
2456 		 * rar's that could be reserved by firmware for the pch_lpt
2457 		 * macs. The interface has one primary rar, and 11 additional
2458 		 * ones. Those 11 additional ones are not always available.
2459 		 * According to the datasheet, we need to check a few of the
2460 		 * bits set in the FWSM register. If the value is zero,
2461 		 * everything is available. If the value is 1, none of the
2462 		 * additional registers are available. If the value is 2-7, only
2463 		 * that number are available.
2464 		 */
2465 		if (hw->mac.type == e1000_pch_lpt) {
2466 			uint32_t locked, rar;
2467 
2468 			locked = E1000_READ_REG(hw, E1000_FWSM) &
2469 			    E1000_FWSM_WLOCK_MAC_MASK;
2470 			locked >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2471 			rar = 1;
2472 			if (locked == 0)
2473 				rar += 11;
2474 			else if (locked == 1)
2475 				rar += 0;
2476 			else
2477 				rar += locked;
2478 			Adapter->unicst_total = min(rar,
2479 			    MAX_NUM_UNICAST_ADDRESSES);
2480 		}
2481 
2482 		/* Workaround for an erratum of 82571 chipst */
2483 		if ((hw->mac.type == e1000_82571) &&
2484 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2485 			Adapter->unicst_total--;
2486 
2487 		/* VMware doesn't support multiple mac addresses properly */
2488 		if (hw->subsystem_vendor_id == 0x15ad)
2489 			Adapter->unicst_total = 1;
2490 
2491 		Adapter->unicst_avail = Adapter->unicst_total;
2492 
2493 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2494 			/* Clear both the flag and MAC address */
2495 			Adapter->unicst_addr[slot].reg.high = 0;
2496 			Adapter->unicst_addr[slot].reg.low = 0;
2497 		}
2498 	} else {
2499 		/* Workaround for an erratum of 82571 chipst */
2500 		if ((hw->mac.type == e1000_82571) &&
2501 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2502 			(void) e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2503 
2504 		/* Re-configure the RAR registers */
2505 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2506 			if (Adapter->unicst_addr[slot].mac.set == 1)
2507 				(void) e1000_rar_set(hw,
2508 				    Adapter->unicst_addr[slot].mac.addr, slot);
2509 	}
2510 
2511 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2512 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2513 }
2514 
2515 static int
2516 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2517     int slot)
2518 {
2519 	struct e1000_hw *hw;
2520 
2521 	hw = &Adapter->shared;
2522 
2523 	/*
2524 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2525 	 * that requires the receiver to be in reset when any of the
2526 	 * receive address registers (RAR regs) are accessed.  The first
2527 	 * rev of Wiseman silicon also requires MWI to be disabled when
2528 	 * a global reset or a receive reset is issued.  So before we
2529 	 * initialize the RARs, we check the rev of the Wiseman controller
2530 	 * and work around any necessary HW errata.
2531 	 */
2532 	if ((hw->mac.type == e1000_82542) &&
2533 	    (hw->revision_id == E1000_REVISION_2)) {
2534 		e1000_pci_clear_mwi(hw);
2535 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2536 		msec_delay(5);
2537 	}
2538 	if (mac_addr == NULL) {
2539 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2540 		E1000_WRITE_FLUSH(hw);
2541 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2542 		E1000_WRITE_FLUSH(hw);
2543 		/* Clear both the flag and MAC address */
2544 		Adapter->unicst_addr[slot].reg.high = 0;
2545 		Adapter->unicst_addr[slot].reg.low = 0;
2546 	} else {
2547 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2548 		    ETHERADDRL);
2549 		(void) e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2550 		Adapter->unicst_addr[slot].mac.set = 1;
2551 	}
2552 
2553 	/* Workaround for an erratum of 82571 chipst */
2554 	if (slot == 0) {
2555 		if ((hw->mac.type == e1000_82571) &&
2556 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2557 			if (mac_addr == NULL) {
2558 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2559 				    slot << 1, 0);
2560 				E1000_WRITE_FLUSH(hw);
2561 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2562 				    (slot << 1) + 1, 0);
2563 				E1000_WRITE_FLUSH(hw);
2564 			} else {
2565 				(void) e1000_rar_set(hw, (uint8_t *)mac_addr,
2566 				    LAST_RAR_ENTRY);
2567 			}
2568 	}
2569 
2570 	/*
2571 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2572 	 * put the receive in reset, and disabled MWI, to work around some
2573 	 * HW errata.  Now we should take the receiver out of reset, and
2574 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2575 	 */
2576 	if ((hw->mac.type == e1000_82542) &&
2577 	    (hw->revision_id == E1000_REVISION_2)) {
2578 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2579 		msec_delay(1);
2580 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2581 			e1000_pci_set_mwi(hw);
2582 		e1000g_rx_setup(Adapter);
2583 	}
2584 
2585 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2586 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2587 		return (EIO);
2588 	}
2589 
2590 	return (0);
2591 }
2592 
2593 static int
2594 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2595 {
2596 	struct e1000_hw *hw = &Adapter->shared;
2597 	struct ether_addr *newtable;
2598 	size_t new_len;
2599 	size_t old_len;
2600 	int res = 0;
2601 
2602 	if ((multiaddr[0] & 01) == 0) {
2603 		res = EINVAL;
2604 		e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2605 		goto done;
2606 	}
2607 
2608 	if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2609 		res = ENOENT;
2610 		e1000g_log(Adapter, CE_WARN,
2611 		    "Adapter requested more than %d mcast addresses",
2612 		    Adapter->mcast_max_num);
2613 		goto done;
2614 	}
2615 
2616 
2617 	if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2618 		old_len = Adapter->mcast_alloc_count *
2619 		    sizeof (struct ether_addr);
2620 		new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2621 		    sizeof (struct ether_addr);
2622 
2623 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2624 		if (newtable == NULL) {
2625 			res = ENOMEM;
2626 			e1000g_log(Adapter, CE_WARN,
2627 			    "Not enough memory to alloc mcast table");
2628 			goto done;
2629 		}
2630 
2631 		if (Adapter->mcast_table != NULL) {
2632 			bcopy(Adapter->mcast_table, newtable, old_len);
2633 			kmem_free(Adapter->mcast_table, old_len);
2634 		}
2635 		Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2636 		Adapter->mcast_table = newtable;
2637 	}
2638 
2639 	bcopy(multiaddr,
2640 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2641 	Adapter->mcast_count++;
2642 
2643 	/*
2644 	 * Update the MC table in the hardware
2645 	 */
2646 	e1000g_clear_interrupt(Adapter);
2647 
2648 	e1000_update_mc_addr_list(hw,
2649 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2650 
2651 	e1000g_mask_interrupt(Adapter);
2652 
2653 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2654 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2655 		res = EIO;
2656 	}
2657 
2658 done:
2659 	return (res);
2660 }
2661 
2662 static int
2663 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2664 {
2665 	struct e1000_hw *hw = &Adapter->shared;
2666 	struct ether_addr *newtable;
2667 	size_t new_len;
2668 	size_t old_len;
2669 	unsigned i;
2670 
2671 	for (i = 0; i < Adapter->mcast_count; i++) {
2672 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2673 		    ETHERADDRL) == 0) {
2674 			for (i++; i < Adapter->mcast_count; i++) {
2675 				Adapter->mcast_table[i - 1] =
2676 				    Adapter->mcast_table[i];
2677 			}
2678 			Adapter->mcast_count--;
2679 			break;
2680 		}
2681 	}
2682 
2683 	if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2684 	    MCAST_ALLOC_SIZE) {
2685 		old_len = Adapter->mcast_alloc_count *
2686 		    sizeof (struct ether_addr);
2687 		new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2688 		    sizeof (struct ether_addr);
2689 
2690 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2691 		if (newtable != NULL) {
2692 			bcopy(Adapter->mcast_table, newtable, new_len);
2693 			kmem_free(Adapter->mcast_table, old_len);
2694 
2695 			Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2696 			Adapter->mcast_table = newtable;
2697 		}
2698 	}
2699 
2700 	/*
2701 	 * Update the MC table in the hardware
2702 	 */
2703 	e1000g_clear_interrupt(Adapter);
2704 
2705 	e1000_update_mc_addr_list(hw,
2706 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2707 
2708 	e1000g_mask_interrupt(Adapter);
2709 
2710 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2711 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2712 		return (EIO);
2713 	}
2714 
2715 	return (0);
2716 }
2717 
2718 static void
2719 e1000g_release_multicast(struct e1000g *Adapter)
2720 {
2721 	if (Adapter->mcast_table != NULL) {
2722 		kmem_free(Adapter->mcast_table,
2723 		    Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2724 		Adapter->mcast_table = NULL;
2725 	}
2726 }
2727 
2728 int
2729 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2730 {
2731 	struct e1000g *Adapter = (struct e1000g *)arg;
2732 	int result;
2733 
2734 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2735 
2736 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2737 		result = ECANCELED;
2738 		goto done;
2739 	}
2740 
2741 	result = (add) ? multicst_add(Adapter, addr)
2742 	    : multicst_remove(Adapter, addr);
2743 
2744 done:
2745 	rw_exit(&Adapter->chip_lock);
2746 	return (result);
2747 
2748 }
2749 
2750 int
2751 e1000g_m_promisc(void *arg, boolean_t on)
2752 {
2753 	struct e1000g *Adapter = (struct e1000g *)arg;
2754 	uint32_t rctl;
2755 
2756 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2757 
2758 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2759 		rw_exit(&Adapter->chip_lock);
2760 		return (ECANCELED);
2761 	}
2762 
2763 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2764 
2765 	if (on)
2766 		rctl |=
2767 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2768 	else
2769 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2770 
2771 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2772 
2773 	Adapter->e1000g_promisc = on;
2774 
2775 	rw_exit(&Adapter->chip_lock);
2776 
2777 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2778 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2779 		return (EIO);
2780 	}
2781 
2782 	return (0);
2783 }
2784 
2785 /*
2786  * Entry points to enable and disable interrupts at the granularity of
2787  * a group.
2788  * Turns the poll_mode for the whole adapter on and off to enable or
2789  * override the ring level polling control over the hardware interrupts.
2790  */
2791 static int
2792 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2793 {
2794 	struct e1000g		*adapter = (struct e1000g *)arg;
2795 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2796 
2797 	/*
2798 	 * Later interrupts at the granularity of the this ring will
2799 	 * invoke mac_rx() with NULL, indicating the need for another
2800 	 * software classification.
2801 	 * We have a single ring usable per adapter now, so we only need to
2802 	 * reset the rx handle for that one.
2803 	 * When more RX rings can be used, we should update each one of them.
2804 	 */
2805 	mutex_enter(&rx_ring->rx_lock);
2806 	rx_ring->mrh = NULL;
2807 	adapter->poll_mode = B_FALSE;
2808 	mutex_exit(&rx_ring->rx_lock);
2809 	return (0);
2810 }
2811 
2812 static int
2813 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2814 {
2815 	struct e1000g *adapter = (struct e1000g *)arg;
2816 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2817 
2818 	mutex_enter(&rx_ring->rx_lock);
2819 
2820 	/*
2821 	 * Later interrupts at the granularity of the this ring will
2822 	 * invoke mac_rx() with the handle for this ring;
2823 	 */
2824 	adapter->poll_mode = B_TRUE;
2825 	rx_ring->mrh = rx_ring->mrh_init;
2826 	mutex_exit(&rx_ring->rx_lock);
2827 	return (0);
2828 }
2829 
2830 /*
2831  * Entry points to enable and disable interrupts at the granularity of
2832  * a ring.
2833  * adapter poll_mode controls whether we actually proceed with hardware
2834  * interrupt toggling.
2835  */
2836 static int
2837 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2838 {
2839 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2840 	struct e1000g 		*adapter = rx_ring->adapter;
2841 	struct e1000_hw 	*hw = &adapter->shared;
2842 	uint32_t		intr_mask;
2843 
2844 	rw_enter(&adapter->chip_lock, RW_READER);
2845 
2846 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2847 		rw_exit(&adapter->chip_lock);
2848 		return (0);
2849 	}
2850 
2851 	mutex_enter(&rx_ring->rx_lock);
2852 	rx_ring->poll_flag = 0;
2853 	mutex_exit(&rx_ring->rx_lock);
2854 
2855 	/* Rx interrupt enabling for MSI and legacy */
2856 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2857 	intr_mask |= E1000_IMS_RXT0;
2858 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2859 	E1000_WRITE_FLUSH(hw);
2860 
2861 	/* Trigger a Rx interrupt to check Rx ring */
2862 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2863 	E1000_WRITE_FLUSH(hw);
2864 
2865 	rw_exit(&adapter->chip_lock);
2866 	return (0);
2867 }
2868 
2869 static int
2870 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2871 {
2872 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2873 	struct e1000g 		*adapter = rx_ring->adapter;
2874 	struct e1000_hw 	*hw = &adapter->shared;
2875 
2876 	rw_enter(&adapter->chip_lock, RW_READER);
2877 
2878 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2879 		rw_exit(&adapter->chip_lock);
2880 		return (0);
2881 	}
2882 	mutex_enter(&rx_ring->rx_lock);
2883 	rx_ring->poll_flag = 1;
2884 	mutex_exit(&rx_ring->rx_lock);
2885 
2886 	/* Rx interrupt disabling for MSI and legacy */
2887 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2888 	E1000_WRITE_FLUSH(hw);
2889 
2890 	rw_exit(&adapter->chip_lock);
2891 	return (0);
2892 }
2893 
2894 /*
2895  * e1000g_unicst_find - Find the slot for the specified unicast address
2896  */
2897 static int
2898 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2899 {
2900 	int slot;
2901 
2902 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2903 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2904 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2905 		    mac_addr, ETHERADDRL) == 0))
2906 				return (slot);
2907 	}
2908 
2909 	return (-1);
2910 }
2911 
2912 /*
2913  * Entry points to add and remove a MAC address to a ring group.
2914  * The caller takes care of adding and removing the MAC addresses
2915  * to the filter via these two routines.
2916  */
2917 
2918 static int
2919 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2920 {
2921 	struct e1000g *Adapter = (struct e1000g *)arg;
2922 	int slot, err;
2923 
2924 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2925 
2926 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2927 		rw_exit(&Adapter->chip_lock);
2928 		return (ECANCELED);
2929 	}
2930 
2931 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
2932 		/* The same address is already in slot */
2933 		rw_exit(&Adapter->chip_lock);
2934 		return (0);
2935 	}
2936 
2937 	if (Adapter->unicst_avail == 0) {
2938 		/* no slots available */
2939 		rw_exit(&Adapter->chip_lock);
2940 		return (ENOSPC);
2941 	}
2942 
2943 	/* Search for a free slot */
2944 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2945 		if (Adapter->unicst_addr[slot].mac.set == 0)
2946 			break;
2947 	}
2948 	ASSERT(slot < Adapter->unicst_total);
2949 
2950 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
2951 	if (err == 0)
2952 		Adapter->unicst_avail--;
2953 
2954 	rw_exit(&Adapter->chip_lock);
2955 
2956 	return (err);
2957 }
2958 
2959 static int
2960 e1000g_remmac(void *arg, const uint8_t *mac_addr)
2961 {
2962 	struct e1000g *Adapter = (struct e1000g *)arg;
2963 	int slot, err;
2964 
2965 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2966 
2967 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2968 		rw_exit(&Adapter->chip_lock);
2969 		return (ECANCELED);
2970 	}
2971 
2972 	slot = e1000g_unicst_find(Adapter, mac_addr);
2973 	if (slot == -1) {
2974 		rw_exit(&Adapter->chip_lock);
2975 		return (EINVAL);
2976 	}
2977 
2978 	ASSERT(Adapter->unicst_addr[slot].mac.set);
2979 
2980 	/* Clear this slot */
2981 	err = e1000g_unicst_set(Adapter, NULL, slot);
2982 	if (err == 0)
2983 		Adapter->unicst_avail++;
2984 
2985 	rw_exit(&Adapter->chip_lock);
2986 
2987 	return (err);
2988 }
2989 
2990 static int
2991 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
2992 {
2993 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
2994 
2995 	mutex_enter(&rx_ring->rx_lock);
2996 	rx_ring->ring_gen_num = mr_gen_num;
2997 	mutex_exit(&rx_ring->rx_lock);
2998 	return (0);
2999 }
3000 
3001 /*
3002  * Callback funtion for MAC layer to register all rings.
3003  *
3004  * The hardware supports a single group with currently only one ring
3005  * available.
3006  * Though not offering virtualization ability per se, exposing the
3007  * group/ring still enables the polling and interrupt toggling.
3008  */
3009 /* ARGSUSED */
3010 void
3011 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
3012     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
3013 {
3014 	struct e1000g *Adapter = (struct e1000g *)arg;
3015 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
3016 	mac_intr_t *mintr;
3017 
3018 	/*
3019 	 * We advertised only RX group/rings, so the MAC framework shouldn't
3020 	 * ask for any thing else.
3021 	 */
3022 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
3023 
3024 	rx_ring->mrh = rx_ring->mrh_init = rh;
3025 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
3026 	infop->mri_start = e1000g_ring_start;
3027 	infop->mri_stop = NULL;
3028 	infop->mri_poll = e1000g_poll_ring;
3029 	infop->mri_stat = e1000g_rx_ring_stat;
3030 
3031 	/* Ring level interrupts */
3032 	mintr = &infop->mri_intr;
3033 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
3034 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
3035 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
3036 	if (Adapter->msi_enable)
3037 		mintr->mi_ddi_handle = Adapter->htable[0];
3038 }
3039 
3040 /* ARGSUSED */
3041 static void
3042 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
3043     mac_group_info_t *infop, mac_group_handle_t gh)
3044 {
3045 	struct e1000g *Adapter = (struct e1000g *)arg;
3046 	mac_intr_t *mintr;
3047 
3048 	/*
3049 	 * We advertised a single RX ring. Getting a request for anything else
3050 	 * signifies a bug in the MAC framework.
3051 	 */
3052 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
3053 
3054 	Adapter->rx_group = gh;
3055 
3056 	infop->mgi_driver = (mac_group_driver_t)Adapter;
3057 	infop->mgi_start = NULL;
3058 	infop->mgi_stop = NULL;
3059 	infop->mgi_addmac = e1000g_addmac;
3060 	infop->mgi_remmac = e1000g_remmac;
3061 	infop->mgi_count = 1;
3062 
3063 	/* Group level interrupts */
3064 	mintr = &infop->mgi_intr;
3065 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
3066 	mintr->mi_enable = e1000g_rx_group_intr_enable;
3067 	mintr->mi_disable = e1000g_rx_group_intr_disable;
3068 }
3069 
3070 static boolean_t
3071 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
3072 {
3073 	struct e1000g *Adapter = (struct e1000g *)arg;
3074 
3075 	switch (cap) {
3076 	case MAC_CAPAB_HCKSUM: {
3077 		uint32_t *txflags = cap_data;
3078 
3079 		if (Adapter->tx_hcksum_enable)
3080 			*txflags = HCKSUM_IPHDRCKSUM |
3081 			    HCKSUM_INET_PARTIAL;
3082 		else
3083 			return (B_FALSE);
3084 		break;
3085 	}
3086 
3087 	case MAC_CAPAB_LSO: {
3088 		mac_capab_lso_t *cap_lso = cap_data;
3089 
3090 		if (Adapter->lso_enable) {
3091 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
3092 			cap_lso->lso_basic_tcp_ipv4.lso_max =
3093 			    E1000_LSO_MAXLEN;
3094 		} else
3095 			return (B_FALSE);
3096 		break;
3097 	}
3098 	case MAC_CAPAB_RINGS: {
3099 		mac_capab_rings_t *cap_rings = cap_data;
3100 
3101 		/* No TX rings exposed yet */
3102 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
3103 			return (B_FALSE);
3104 
3105 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
3106 		cap_rings->mr_rnum = 1;
3107 		cap_rings->mr_gnum = 1;
3108 		cap_rings->mr_rget = e1000g_fill_ring;
3109 		cap_rings->mr_gget = e1000g_fill_group;
3110 		break;
3111 	}
3112 	default:
3113 		return (B_FALSE);
3114 	}
3115 	return (B_TRUE);
3116 }
3117 
3118 static boolean_t
3119 e1000g_param_locked(mac_prop_id_t pr_num)
3120 {
3121 	/*
3122 	 * All en_* parameters are locked (read-only) while
3123 	 * the device is in any sort of loopback mode ...
3124 	 */
3125 	switch (pr_num) {
3126 		case MAC_PROP_EN_1000FDX_CAP:
3127 		case MAC_PROP_EN_1000HDX_CAP:
3128 		case MAC_PROP_EN_100FDX_CAP:
3129 		case MAC_PROP_EN_100HDX_CAP:
3130 		case MAC_PROP_EN_10FDX_CAP:
3131 		case MAC_PROP_EN_10HDX_CAP:
3132 		case MAC_PROP_AUTONEG:
3133 		case MAC_PROP_FLOWCTRL:
3134 			return (B_TRUE);
3135 	}
3136 	return (B_FALSE);
3137 }
3138 
3139 /*
3140  * callback function for set/get of properties
3141  */
3142 static int
3143 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3144     uint_t pr_valsize, const void *pr_val)
3145 {
3146 	struct e1000g *Adapter = arg;
3147 	struct e1000_hw *hw = &Adapter->shared;
3148 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3149 	int err = 0;
3150 	link_flowctrl_t flowctrl;
3151 	uint32_t cur_mtu, new_mtu;
3152 
3153 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3154 
3155 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3156 		rw_exit(&Adapter->chip_lock);
3157 		return (ECANCELED);
3158 	}
3159 
3160 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
3161 	    e1000g_param_locked(pr_num)) {
3162 		/*
3163 		 * All en_* parameters are locked (read-only)
3164 		 * while the device is in any sort of loopback mode.
3165 		 */
3166 		rw_exit(&Adapter->chip_lock);
3167 		return (EBUSY);
3168 	}
3169 
3170 	switch (pr_num) {
3171 		case MAC_PROP_EN_1000FDX_CAP:
3172 			if (hw->phy.media_type != e1000_media_type_copper) {
3173 				err = ENOTSUP;
3174 				break;
3175 			}
3176 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3177 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3178 			goto reset;
3179 		case MAC_PROP_EN_100FDX_CAP:
3180 			if (hw->phy.media_type != e1000_media_type_copper) {
3181 				err = ENOTSUP;
3182 				break;
3183 			}
3184 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3185 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3186 			goto reset;
3187 		case MAC_PROP_EN_100HDX_CAP:
3188 			if (hw->phy.media_type != e1000_media_type_copper) {
3189 				err = ENOTSUP;
3190 				break;
3191 			}
3192 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3193 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3194 			goto reset;
3195 		case MAC_PROP_EN_10FDX_CAP:
3196 			if (hw->phy.media_type != e1000_media_type_copper) {
3197 				err = ENOTSUP;
3198 				break;
3199 			}
3200 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3201 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3202 			goto reset;
3203 		case MAC_PROP_EN_10HDX_CAP:
3204 			if (hw->phy.media_type != e1000_media_type_copper) {
3205 				err = ENOTSUP;
3206 				break;
3207 			}
3208 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3209 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3210 			goto reset;
3211 		case MAC_PROP_AUTONEG:
3212 			if (hw->phy.media_type != e1000_media_type_copper) {
3213 				err = ENOTSUP;
3214 				break;
3215 			}
3216 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3217 			goto reset;
3218 		case MAC_PROP_FLOWCTRL:
3219 			fc->send_xon = B_TRUE;
3220 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3221 
3222 			switch (flowctrl) {
3223 			default:
3224 				err = EINVAL;
3225 				break;
3226 			case LINK_FLOWCTRL_NONE:
3227 				fc->requested_mode = e1000_fc_none;
3228 				break;
3229 			case LINK_FLOWCTRL_RX:
3230 				fc->requested_mode = e1000_fc_rx_pause;
3231 				break;
3232 			case LINK_FLOWCTRL_TX:
3233 				fc->requested_mode = e1000_fc_tx_pause;
3234 				break;
3235 			case LINK_FLOWCTRL_BI:
3236 				fc->requested_mode = e1000_fc_full;
3237 				break;
3238 			}
3239 reset:
3240 			if (err == 0) {
3241 				/* check PCH limits & reset the link */
3242 				e1000g_pch_limits(Adapter);
3243 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3244 					err = EINVAL;
3245 			}
3246 			break;
3247 		case MAC_PROP_ADV_1000FDX_CAP:
3248 		case MAC_PROP_ADV_1000HDX_CAP:
3249 		case MAC_PROP_ADV_100FDX_CAP:
3250 		case MAC_PROP_ADV_100HDX_CAP:
3251 		case MAC_PROP_ADV_10FDX_CAP:
3252 		case MAC_PROP_ADV_10HDX_CAP:
3253 		case MAC_PROP_EN_1000HDX_CAP:
3254 		case MAC_PROP_STATUS:
3255 		case MAC_PROP_SPEED:
3256 		case MAC_PROP_DUPLEX:
3257 			err = ENOTSUP; /* read-only prop. Can't set this. */
3258 			break;
3259 		case MAC_PROP_MTU:
3260 			/* adapter must be stopped for an MTU change */
3261 			if (Adapter->e1000g_state & E1000G_STARTED) {
3262 				err = EBUSY;
3263 				break;
3264 			}
3265 
3266 			cur_mtu = Adapter->default_mtu;
3267 
3268 			/* get new requested MTU */
3269 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3270 			if (new_mtu == cur_mtu) {
3271 				err = 0;
3272 				break;
3273 			}
3274 
3275 			if ((new_mtu < DEFAULT_MTU) ||
3276 			    (new_mtu > Adapter->max_mtu)) {
3277 				err = EINVAL;
3278 				break;
3279 			}
3280 
3281 			/* inform MAC framework of new MTU */
3282 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3283 
3284 			if (err == 0) {
3285 				Adapter->default_mtu = new_mtu;
3286 				Adapter->max_frame_size =
3287 				    e1000g_mtu2maxframe(new_mtu);
3288 
3289 				/*
3290 				 * check PCH limits & set buffer sizes to
3291 				 * match new MTU
3292 				 */
3293 				e1000g_pch_limits(Adapter);
3294 				e1000g_set_bufsize(Adapter);
3295 
3296 				/*
3297 				 * decrease the number of descriptors and free
3298 				 * packets for jumbo frames to reduce tx/rx
3299 				 * resource consumption
3300 				 */
3301 				if (Adapter->max_frame_size >=
3302 				    (FRAME_SIZE_UPTO_4K)) {
3303 					if (Adapter->tx_desc_num_flag == 0)
3304 						Adapter->tx_desc_num =
3305 						    DEFAULT_JUMBO_NUM_TX_DESC;
3306 
3307 					if (Adapter->rx_desc_num_flag == 0)
3308 						Adapter->rx_desc_num =
3309 						    DEFAULT_JUMBO_NUM_RX_DESC;
3310 
3311 					if (Adapter->tx_buf_num_flag == 0)
3312 						Adapter->tx_freelist_num =
3313 						    DEFAULT_JUMBO_NUM_TX_BUF;
3314 
3315 					if (Adapter->rx_buf_num_flag == 0)
3316 						Adapter->rx_freelist_limit =
3317 						    DEFAULT_JUMBO_NUM_RX_BUF;
3318 				} else {
3319 					if (Adapter->tx_desc_num_flag == 0)
3320 						Adapter->tx_desc_num =
3321 						    DEFAULT_NUM_TX_DESCRIPTOR;
3322 
3323 					if (Adapter->rx_desc_num_flag == 0)
3324 						Adapter->rx_desc_num =
3325 						    DEFAULT_NUM_RX_DESCRIPTOR;
3326 
3327 					if (Adapter->tx_buf_num_flag == 0)
3328 						Adapter->tx_freelist_num =
3329 						    DEFAULT_NUM_TX_FREELIST;
3330 
3331 					if (Adapter->rx_buf_num_flag == 0)
3332 						Adapter->rx_freelist_limit =
3333 						    DEFAULT_NUM_RX_FREELIST;
3334 				}
3335 			}
3336 			break;
3337 		case MAC_PROP_PRIVATE:
3338 			err = e1000g_set_priv_prop(Adapter, pr_name,
3339 			    pr_valsize, pr_val);
3340 			break;
3341 		default:
3342 			err = ENOTSUP;
3343 			break;
3344 	}
3345 	rw_exit(&Adapter->chip_lock);
3346 	return (err);
3347 }
3348 
3349 static int
3350 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3351     uint_t pr_valsize, void *pr_val)
3352 {
3353 	struct e1000g *Adapter = arg;
3354 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3355 	int err = 0;
3356 	link_flowctrl_t flowctrl;
3357 	uint64_t tmp = 0;
3358 
3359 	switch (pr_num) {
3360 		case MAC_PROP_DUPLEX:
3361 			ASSERT(pr_valsize >= sizeof (link_duplex_t));
3362 			bcopy(&Adapter->link_duplex, pr_val,
3363 			    sizeof (link_duplex_t));
3364 			break;
3365 		case MAC_PROP_SPEED:
3366 			ASSERT(pr_valsize >= sizeof (uint64_t));
3367 			tmp = Adapter->link_speed * 1000000ull;
3368 			bcopy(&tmp, pr_val, sizeof (tmp));
3369 			break;
3370 		case MAC_PROP_AUTONEG:
3371 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3372 			break;
3373 		case MAC_PROP_FLOWCTRL:
3374 			ASSERT(pr_valsize >= sizeof (link_flowctrl_t));
3375 			switch (fc->current_mode) {
3376 				case e1000_fc_none:
3377 					flowctrl = LINK_FLOWCTRL_NONE;
3378 					break;
3379 				case e1000_fc_rx_pause:
3380 					flowctrl = LINK_FLOWCTRL_RX;
3381 					break;
3382 				case e1000_fc_tx_pause:
3383 					flowctrl = LINK_FLOWCTRL_TX;
3384 					break;
3385 				case e1000_fc_full:
3386 					flowctrl = LINK_FLOWCTRL_BI;
3387 					break;
3388 			}
3389 			bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3390 			break;
3391 		case MAC_PROP_ADV_1000FDX_CAP:
3392 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3393 			break;
3394 		case MAC_PROP_EN_1000FDX_CAP:
3395 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3396 			break;
3397 		case MAC_PROP_ADV_1000HDX_CAP:
3398 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3399 			break;
3400 		case MAC_PROP_EN_1000HDX_CAP:
3401 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3402 			break;
3403 		case MAC_PROP_ADV_100FDX_CAP:
3404 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3405 			break;
3406 		case MAC_PROP_EN_100FDX_CAP:
3407 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3408 			break;
3409 		case MAC_PROP_ADV_100HDX_CAP:
3410 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3411 			break;
3412 		case MAC_PROP_EN_100HDX_CAP:
3413 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3414 			break;
3415 		case MAC_PROP_ADV_10FDX_CAP:
3416 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3417 			break;
3418 		case MAC_PROP_EN_10FDX_CAP:
3419 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3420 			break;
3421 		case MAC_PROP_ADV_10HDX_CAP:
3422 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3423 			break;
3424 		case MAC_PROP_EN_10HDX_CAP:
3425 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3426 			break;
3427 		case MAC_PROP_ADV_100T4_CAP:
3428 		case MAC_PROP_EN_100T4_CAP:
3429 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3430 			break;
3431 		case MAC_PROP_PRIVATE:
3432 			err = e1000g_get_priv_prop(Adapter, pr_name,
3433 			    pr_valsize, pr_val);
3434 			break;
3435 		default:
3436 			err = ENOTSUP;
3437 			break;
3438 	}
3439 
3440 	return (err);
3441 }
3442 
3443 static void
3444 e1000g_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3445     mac_prop_info_handle_t prh)
3446 {
3447 	struct e1000g *Adapter = arg;
3448 	struct e1000_hw *hw = &Adapter->shared;
3449 
3450 	switch (pr_num) {
3451 	case MAC_PROP_DUPLEX:
3452 	case MAC_PROP_SPEED:
3453 	case MAC_PROP_ADV_1000FDX_CAP:
3454 	case MAC_PROP_ADV_1000HDX_CAP:
3455 	case MAC_PROP_ADV_100FDX_CAP:
3456 	case MAC_PROP_ADV_100HDX_CAP:
3457 	case MAC_PROP_ADV_10FDX_CAP:
3458 	case MAC_PROP_ADV_10HDX_CAP:
3459 	case MAC_PROP_ADV_100T4_CAP:
3460 	case MAC_PROP_EN_100T4_CAP:
3461 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3462 		break;
3463 
3464 	case MAC_PROP_EN_1000FDX_CAP:
3465 		if (hw->phy.media_type != e1000_media_type_copper) {
3466 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3467 		} else {
3468 			mac_prop_info_set_default_uint8(prh,
3469 			    ((Adapter->phy_ext_status &
3470 			    IEEE_ESR_1000T_FD_CAPS) ||
3471 			    (Adapter->phy_ext_status &
3472 			    IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0);
3473 		}
3474 		break;
3475 
3476 	case MAC_PROP_EN_100FDX_CAP:
3477 		if (hw->phy.media_type != e1000_media_type_copper) {
3478 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3479 		} else {
3480 			mac_prop_info_set_default_uint8(prh,
3481 			    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3482 			    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3483 			    ? 1 : 0);
3484 		}
3485 		break;
3486 
3487 	case MAC_PROP_EN_100HDX_CAP:
3488 		if (hw->phy.media_type != e1000_media_type_copper) {
3489 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3490 		} else {
3491 			mac_prop_info_set_default_uint8(prh,
3492 			    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
3493 			    (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
3494 			    ? 1 : 0);
3495 		}
3496 		break;
3497 
3498 	case MAC_PROP_EN_10FDX_CAP:
3499 		if (hw->phy.media_type != e1000_media_type_copper) {
3500 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3501 		} else {
3502 			mac_prop_info_set_default_uint8(prh,
3503 			    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0);
3504 		}
3505 		break;
3506 
3507 	case MAC_PROP_EN_10HDX_CAP:
3508 		if (hw->phy.media_type != e1000_media_type_copper) {
3509 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3510 		} else {
3511 			mac_prop_info_set_default_uint8(prh,
3512 			    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0);
3513 		}
3514 		break;
3515 
3516 	case MAC_PROP_EN_1000HDX_CAP:
3517 		if (hw->phy.media_type != e1000_media_type_copper)
3518 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3519 		break;
3520 
3521 	case MAC_PROP_AUTONEG:
3522 		if (hw->phy.media_type != e1000_media_type_copper) {
3523 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3524 		} else {
3525 			mac_prop_info_set_default_uint8(prh,
3526 			    (Adapter->phy_status & MII_SR_AUTONEG_CAPS)
3527 			    ? 1 : 0);
3528 		}
3529 		break;
3530 
3531 	case MAC_PROP_FLOWCTRL:
3532 		mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_BI);
3533 		break;
3534 
3535 	case MAC_PROP_MTU: {
3536 		struct e1000_mac_info *mac = &Adapter->shared.mac;
3537 		struct e1000_phy_info *phy = &Adapter->shared.phy;
3538 		uint32_t max;
3539 
3540 		/* some MAC types do not support jumbo frames */
3541 		if ((mac->type == e1000_ich8lan) ||
3542 		    ((mac->type == e1000_ich9lan) && (phy->type ==
3543 		    e1000_phy_ife))) {
3544 			max = DEFAULT_MTU;
3545 		} else {
3546 			max = Adapter->max_mtu;
3547 		}
3548 
3549 		mac_prop_info_set_range_uint32(prh, DEFAULT_MTU, max);
3550 		break;
3551 	}
3552 	case MAC_PROP_PRIVATE: {
3553 		char valstr[64];
3554 		int value;
3555 
3556 		if (strcmp(pr_name, "_adv_pause_cap") == 0 ||
3557 		    strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3558 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3559 			return;
3560 		} else if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3561 			value = DEFAULT_TX_BCOPY_THRESHOLD;
3562 		} else if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3563 			value = DEFAULT_TX_INTR_ENABLE;
3564 		} else if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3565 			value = DEFAULT_TX_INTR_DELAY;
3566 		} else if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3567 			value = DEFAULT_TX_INTR_ABS_DELAY;
3568 		} else if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3569 			value = DEFAULT_RX_BCOPY_THRESHOLD;
3570 		} else if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3571 			value = DEFAULT_RX_LIMIT_ON_INTR;
3572 		} else if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3573 			value = DEFAULT_RX_INTR_DELAY;
3574 		} else if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3575 			value = DEFAULT_RX_INTR_ABS_DELAY;
3576 		} else if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3577 			value = DEFAULT_INTR_THROTTLING;
3578 		} else if (strcmp(pr_name, "_intr_adaptive") == 0) {
3579 			value = 1;
3580 		} else {
3581 			return;
3582 		}
3583 
3584 		(void) snprintf(valstr, sizeof (valstr), "%d", value);
3585 		mac_prop_info_set_default_str(prh, valstr);
3586 		break;
3587 	}
3588 	}
3589 }
3590 
3591 /* ARGSUSED2 */
3592 static int
3593 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3594     uint_t pr_valsize, const void *pr_val)
3595 {
3596 	int err = 0;
3597 	long result;
3598 	struct e1000_hw *hw = &Adapter->shared;
3599 
3600 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3601 		if (pr_val == NULL) {
3602 			err = EINVAL;
3603 			return (err);
3604 		}
3605 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3606 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3607 		    result > MAX_TX_BCOPY_THRESHOLD)
3608 			err = EINVAL;
3609 		else {
3610 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3611 		}
3612 		return (err);
3613 	}
3614 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3615 		if (pr_val == NULL) {
3616 			err = EINVAL;
3617 			return (err);
3618 		}
3619 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3620 		if (result < 0 || result > 1)
3621 			err = EINVAL;
3622 		else {
3623 			Adapter->tx_intr_enable = (result == 1) ?
3624 			    B_TRUE: B_FALSE;
3625 			if (Adapter->tx_intr_enable)
3626 				e1000g_mask_tx_interrupt(Adapter);
3627 			else
3628 				e1000g_clear_tx_interrupt(Adapter);
3629 			if (e1000g_check_acc_handle(
3630 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3631 				ddi_fm_service_impact(Adapter->dip,
3632 				    DDI_SERVICE_DEGRADED);
3633 				err = EIO;
3634 			}
3635 		}
3636 		return (err);
3637 	}
3638 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3639 		if (pr_val == NULL) {
3640 			err = EINVAL;
3641 			return (err);
3642 		}
3643 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3644 		if (result < MIN_TX_INTR_DELAY ||
3645 		    result > MAX_TX_INTR_DELAY)
3646 			err = EINVAL;
3647 		else {
3648 			Adapter->tx_intr_delay = (uint32_t)result;
3649 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3650 			if (e1000g_check_acc_handle(
3651 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3652 				ddi_fm_service_impact(Adapter->dip,
3653 				    DDI_SERVICE_DEGRADED);
3654 				err = EIO;
3655 			}
3656 		}
3657 		return (err);
3658 	}
3659 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3660 		if (pr_val == NULL) {
3661 			err = EINVAL;
3662 			return (err);
3663 		}
3664 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3665 		if (result < MIN_TX_INTR_ABS_DELAY ||
3666 		    result > MAX_TX_INTR_ABS_DELAY)
3667 			err = EINVAL;
3668 		else {
3669 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3670 			E1000_WRITE_REG(hw, E1000_TADV,
3671 			    Adapter->tx_intr_abs_delay);
3672 			if (e1000g_check_acc_handle(
3673 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3674 				ddi_fm_service_impact(Adapter->dip,
3675 				    DDI_SERVICE_DEGRADED);
3676 				err = EIO;
3677 			}
3678 		}
3679 		return (err);
3680 	}
3681 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3682 		if (pr_val == NULL) {
3683 			err = EINVAL;
3684 			return (err);
3685 		}
3686 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3687 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3688 		    result > MAX_RX_BCOPY_THRESHOLD)
3689 			err = EINVAL;
3690 		else
3691 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3692 		return (err);
3693 	}
3694 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3695 		if (pr_val == NULL) {
3696 			err = EINVAL;
3697 			return (err);
3698 		}
3699 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3700 		if (result < MIN_RX_LIMIT_ON_INTR ||
3701 		    result > MAX_RX_LIMIT_ON_INTR)
3702 			err = EINVAL;
3703 		else
3704 			Adapter->rx_limit_onintr = (uint32_t)result;
3705 		return (err);
3706 	}
3707 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3708 		if (pr_val == NULL) {
3709 			err = EINVAL;
3710 			return (err);
3711 		}
3712 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3713 		if (result < MIN_RX_INTR_DELAY ||
3714 		    result > MAX_RX_INTR_DELAY)
3715 			err = EINVAL;
3716 		else {
3717 			Adapter->rx_intr_delay = (uint32_t)result;
3718 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3719 			if (e1000g_check_acc_handle(
3720 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3721 				ddi_fm_service_impact(Adapter->dip,
3722 				    DDI_SERVICE_DEGRADED);
3723 				err = EIO;
3724 			}
3725 		}
3726 		return (err);
3727 	}
3728 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3729 		if (pr_val == NULL) {
3730 			err = EINVAL;
3731 			return (err);
3732 		}
3733 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3734 		if (result < MIN_RX_INTR_ABS_DELAY ||
3735 		    result > MAX_RX_INTR_ABS_DELAY)
3736 			err = EINVAL;
3737 		else {
3738 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3739 			E1000_WRITE_REG(hw, E1000_RADV,
3740 			    Adapter->rx_intr_abs_delay);
3741 			if (e1000g_check_acc_handle(
3742 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3743 				ddi_fm_service_impact(Adapter->dip,
3744 				    DDI_SERVICE_DEGRADED);
3745 				err = EIO;
3746 			}
3747 		}
3748 		return (err);
3749 	}
3750 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3751 		if (pr_val == NULL) {
3752 			err = EINVAL;
3753 			return (err);
3754 		}
3755 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3756 		if (result < MIN_INTR_THROTTLING ||
3757 		    result > MAX_INTR_THROTTLING)
3758 			err = EINVAL;
3759 		else {
3760 			if (hw->mac.type >= e1000_82540) {
3761 				Adapter->intr_throttling_rate =
3762 				    (uint32_t)result;
3763 				E1000_WRITE_REG(hw, E1000_ITR,
3764 				    Adapter->intr_throttling_rate);
3765 				if (e1000g_check_acc_handle(
3766 				    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3767 					ddi_fm_service_impact(Adapter->dip,
3768 					    DDI_SERVICE_DEGRADED);
3769 					err = EIO;
3770 				}
3771 			} else
3772 				err = EINVAL;
3773 		}
3774 		return (err);
3775 	}
3776 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3777 		if (pr_val == NULL) {
3778 			err = EINVAL;
3779 			return (err);
3780 		}
3781 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3782 		if (result < 0 || result > 1)
3783 			err = EINVAL;
3784 		else {
3785 			if (hw->mac.type >= e1000_82540) {
3786 				Adapter->intr_adaptive = (result == 1) ?
3787 				    B_TRUE : B_FALSE;
3788 			} else {
3789 				err = EINVAL;
3790 			}
3791 		}
3792 		return (err);
3793 	}
3794 	return (ENOTSUP);
3795 }
3796 
3797 static int
3798 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3799     uint_t pr_valsize, void *pr_val)
3800 {
3801 	int err = ENOTSUP;
3802 	int value;
3803 
3804 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3805 		value = Adapter->param_adv_pause;
3806 		err = 0;
3807 		goto done;
3808 	}
3809 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3810 		value = Adapter->param_adv_asym_pause;
3811 		err = 0;
3812 		goto done;
3813 	}
3814 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3815 		value = Adapter->tx_bcopy_thresh;
3816 		err = 0;
3817 		goto done;
3818 	}
3819 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3820 		value = Adapter->tx_intr_enable;
3821 		err = 0;
3822 		goto done;
3823 	}
3824 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3825 		value = Adapter->tx_intr_delay;
3826 		err = 0;
3827 		goto done;
3828 	}
3829 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3830 		value = Adapter->tx_intr_abs_delay;
3831 		err = 0;
3832 		goto done;
3833 	}
3834 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3835 		value = Adapter->rx_bcopy_thresh;
3836 		err = 0;
3837 		goto done;
3838 	}
3839 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3840 		value = Adapter->rx_limit_onintr;
3841 		err = 0;
3842 		goto done;
3843 	}
3844 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3845 		value = Adapter->rx_intr_delay;
3846 		err = 0;
3847 		goto done;
3848 	}
3849 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3850 		value = Adapter->rx_intr_abs_delay;
3851 		err = 0;
3852 		goto done;
3853 	}
3854 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3855 		value = Adapter->intr_throttling_rate;
3856 		err = 0;
3857 		goto done;
3858 	}
3859 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3860 		value = Adapter->intr_adaptive;
3861 		err = 0;
3862 		goto done;
3863 	}
3864 done:
3865 	if (err == 0) {
3866 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3867 	}
3868 	return (err);
3869 }
3870 
3871 /*
3872  * e1000g_get_conf - get configurations set in e1000g.conf
3873  * This routine gets user-configured values out of the configuration
3874  * file e1000g.conf.
3875  *
3876  * For each configurable value, there is a minimum, a maximum, and a
3877  * default.
3878  * If user does not configure a value, use the default.
3879  * If user configures below the minimum, use the minumum.
3880  * If user configures above the maximum, use the maxumum.
3881  */
3882 static void
3883 e1000g_get_conf(struct e1000g *Adapter)
3884 {
3885 	struct e1000_hw *hw = &Adapter->shared;
3886 	boolean_t tbi_compatibility = B_FALSE;
3887 	boolean_t is_jumbo = B_FALSE;
3888 	int propval;
3889 	/*
3890 	 * decrease the number of descriptors and free packets
3891 	 * for jumbo frames to reduce tx/rx resource consumption
3892 	 */
3893 	if (Adapter->max_frame_size >= FRAME_SIZE_UPTO_4K) {
3894 		is_jumbo = B_TRUE;
3895 	}
3896 
3897 	/*
3898 	 * get each configurable property from e1000g.conf
3899 	 */
3900 
3901 	/*
3902 	 * NumTxDescriptors
3903 	 */
3904 	Adapter->tx_desc_num_flag =
3905 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3906 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3907 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
3908 	    : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
3909 	Adapter->tx_desc_num = propval;
3910 
3911 	/*
3912 	 * NumRxDescriptors
3913 	 */
3914 	Adapter->rx_desc_num_flag =
3915 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3916 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3917 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
3918 	    : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
3919 	Adapter->rx_desc_num = propval;
3920 
3921 	/*
3922 	 * NumRxFreeList
3923 	 */
3924 	Adapter->rx_buf_num_flag =
3925 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3926 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3927 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
3928 	    : DEFAULT_NUM_RX_FREELIST, &propval);
3929 	Adapter->rx_freelist_limit = propval;
3930 
3931 	/*
3932 	 * NumTxPacketList
3933 	 */
3934 	Adapter->tx_buf_num_flag =
3935 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3936 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3937 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
3938 	    : DEFAULT_NUM_TX_FREELIST, &propval);
3939 	Adapter->tx_freelist_num = propval;
3940 
3941 	/*
3942 	 * FlowControl
3943 	 */
3944 	hw->fc.send_xon = B_TRUE;
3945 	(void) e1000g_get_prop(Adapter, "FlowControl",
3946 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
3947 	hw->fc.requested_mode = propval;
3948 	/* 4 is the setting that says "let the eeprom decide" */
3949 	if (hw->fc.requested_mode == 4)
3950 		hw->fc.requested_mode = e1000_fc_default;
3951 
3952 	/*
3953 	 * Max Num Receive Packets on Interrupt
3954 	 */
3955 	(void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3956 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3957 	    DEFAULT_RX_LIMIT_ON_INTR, &propval);
3958 	Adapter->rx_limit_onintr = propval;
3959 
3960 	/*
3961 	 * PHY master slave setting
3962 	 */
3963 	(void) e1000g_get_prop(Adapter, "SetMasterSlave",
3964 	    e1000_ms_hw_default, e1000_ms_auto,
3965 	    e1000_ms_hw_default, &propval);
3966 	hw->phy.ms_type = propval;
3967 
3968 	/*
3969 	 * Parameter which controls TBI mode workaround, which is only
3970 	 * needed on certain switches such as Cisco 6500/Foundry
3971 	 */
3972 	(void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3973 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
3974 	tbi_compatibility = (propval == 1);
3975 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3976 
3977 	/*
3978 	 * MSI Enable
3979 	 */
3980 	(void) e1000g_get_prop(Adapter, "MSIEnable",
3981 	    0, 1, DEFAULT_MSI_ENABLE, &propval);
3982 	Adapter->msi_enable = (propval == 1);
3983 
3984 	/*
3985 	 * Interrupt Throttling Rate
3986 	 */
3987 	(void) e1000g_get_prop(Adapter, "intr_throttling_rate",
3988 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3989 	    DEFAULT_INTR_THROTTLING, &propval);
3990 	Adapter->intr_throttling_rate = propval;
3991 
3992 	/*
3993 	 * Adaptive Interrupt Blanking Enable/Disable
3994 	 * It is enabled by default
3995 	 */
3996 	(void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
3997 	    &propval);
3998 	Adapter->intr_adaptive = (propval == 1);
3999 
4000 	/*
4001 	 * Hardware checksum enable/disable parameter
4002 	 */
4003 	(void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
4004 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
4005 	Adapter->tx_hcksum_enable = (propval == 1);
4006 	/*
4007 	 * Checksum on/off selection via global parameters.
4008 	 *
4009 	 * If the chip is flagged as not capable of (correctly)
4010 	 * handling checksumming, we don't enable it on either
4011 	 * Rx or Tx side.  Otherwise, we take this chip's settings
4012 	 * from the patchable global defaults.
4013 	 *
4014 	 * We advertise our capabilities only if TX offload is
4015 	 * enabled.  On receive, the stack will accept checksummed
4016 	 * packets anyway, even if we haven't said we can deliver
4017 	 * them.
4018 	 */
4019 	switch (hw->mac.type) {
4020 		case e1000_82540:
4021 		case e1000_82544:
4022 		case e1000_82545:
4023 		case e1000_82545_rev_3:
4024 		case e1000_82546:
4025 		case e1000_82546_rev_3:
4026 		case e1000_82571:
4027 		case e1000_82572:
4028 		case e1000_82573:
4029 		case e1000_80003es2lan:
4030 			break;
4031 		/*
4032 		 * For the following Intel PRO/1000 chipsets, we have not
4033 		 * tested the hardware checksum offload capability, so we
4034 		 * disable the capability for them.
4035 		 *	e1000_82542,
4036 		 *	e1000_82543,
4037 		 *	e1000_82541,
4038 		 *	e1000_82541_rev_2,
4039 		 *	e1000_82547,
4040 		 *	e1000_82547_rev_2,
4041 		 */
4042 		default:
4043 			Adapter->tx_hcksum_enable = B_FALSE;
4044 	}
4045 
4046 	/*
4047 	 * Large Send Offloading(LSO) Enable/Disable
4048 	 * If the tx hardware checksum is not enabled, LSO should be
4049 	 * disabled.
4050 	 */
4051 	(void) e1000g_get_prop(Adapter, "lso_enable",
4052 	    0, 1, DEFAULT_LSO_ENABLE, &propval);
4053 	Adapter->lso_enable = (propval == 1);
4054 
4055 	switch (hw->mac.type) {
4056 		case e1000_82546:
4057 		case e1000_82546_rev_3:
4058 			if (Adapter->lso_enable)
4059 				Adapter->lso_premature_issue = B_TRUE;
4060 			/* FALLTHRU */
4061 		case e1000_82571:
4062 		case e1000_82572:
4063 		case e1000_82573:
4064 		case e1000_80003es2lan:
4065 			break;
4066 		default:
4067 			Adapter->lso_enable = B_FALSE;
4068 	}
4069 
4070 	if (!Adapter->tx_hcksum_enable) {
4071 		Adapter->lso_premature_issue = B_FALSE;
4072 		Adapter->lso_enable = B_FALSE;
4073 	}
4074 
4075 	/*
4076 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
4077 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
4078 	 * will not cross 64k boundary.
4079 	 */
4080 	(void) e1000g_get_prop(Adapter, "mem_workaround_82546",
4081 	    0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
4082 	Adapter->mem_workaround_82546 = (propval == 1);
4083 
4084 	/*
4085 	 * Max number of multicast addresses
4086 	 */
4087 	(void) e1000g_get_prop(Adapter, "mcast_max_num",
4088 	    MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
4089 	    &propval);
4090 	Adapter->mcast_max_num = propval;
4091 }
4092 
4093 /*
4094  * e1000g_get_prop - routine to read properties
4095  *
4096  * Get a user-configure property value out of the configuration
4097  * file e1000g.conf.
4098  *
4099  * Caller provides name of the property, a default value, a minimum
4100  * value, a maximum value and a pointer to the returned property
4101  * value.
4102  *
4103  * Return B_TRUE if the configured value of the property is not a default
4104  * value, otherwise return B_FALSE.
4105  */
4106 static boolean_t
4107 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
4108     char *propname,		/* name of the property */
4109     int minval,			/* minimum acceptable value */
4110     int maxval,			/* maximim acceptable value */
4111     int defval,			/* default value */
4112     int *propvalue)		/* property value return to caller */
4113 {
4114 	int propval;		/* value returned for requested property */
4115 	int *props;		/* point to array of properties returned */
4116 	uint_t nprops;		/* number of property value returned */
4117 	boolean_t ret = B_TRUE;
4118 
4119 	/*
4120 	 * get the array of properties from the config file
4121 	 */
4122 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
4123 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
4124 		/* got some properties, test if we got enough */
4125 		if (Adapter->instance < nprops) {
4126 			propval = props[Adapter->instance];
4127 		} else {
4128 			/* not enough properties configured */
4129 			propval = defval;
4130 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4131 			    "Not Enough %s values found in e1000g.conf"
4132 			    " - set to %d\n",
4133 			    propname, propval);
4134 			ret = B_FALSE;
4135 		}
4136 
4137 		/* free memory allocated for properties */
4138 		ddi_prop_free(props);
4139 
4140 	} else {
4141 		propval = defval;
4142 		ret = B_FALSE;
4143 	}
4144 
4145 	/*
4146 	 * enforce limits
4147 	 */
4148 	if (propval > maxval) {
4149 		propval = maxval;
4150 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4151 		    "Too High %s value in e1000g.conf - set to %d\n",
4152 		    propname, propval);
4153 	}
4154 
4155 	if (propval < minval) {
4156 		propval = minval;
4157 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4158 		    "Too Low %s value in e1000g.conf - set to %d\n",
4159 		    propname, propval);
4160 	}
4161 
4162 	*propvalue = propval;
4163 	return (ret);
4164 }
4165 
4166 static boolean_t
4167 e1000g_link_check(struct e1000g *Adapter)
4168 {
4169 	uint16_t speed, duplex, phydata;
4170 	boolean_t link_changed = B_FALSE;
4171 	struct e1000_hw *hw;
4172 	uint32_t reg_tarc;
4173 
4174 	hw = &Adapter->shared;
4175 
4176 	if (e1000g_link_up(Adapter)) {
4177 		/*
4178 		 * The Link is up, check whether it was marked as down earlier
4179 		 */
4180 		if (Adapter->link_state != LINK_STATE_UP) {
4181 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
4182 			Adapter->link_speed = speed;
4183 			Adapter->link_duplex = duplex;
4184 			Adapter->link_state = LINK_STATE_UP;
4185 			link_changed = B_TRUE;
4186 
4187 			if (Adapter->link_speed == SPEED_1000)
4188 				Adapter->stall_threshold = TX_STALL_TIME_2S;
4189 			else
4190 				Adapter->stall_threshold = TX_STALL_TIME_8S;
4191 
4192 			Adapter->tx_link_down_timeout = 0;
4193 
4194 			if ((hw->mac.type == e1000_82571) ||
4195 			    (hw->mac.type == e1000_82572)) {
4196 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
4197 				if (speed == SPEED_1000)
4198 					reg_tarc |= (1 << 21);
4199 				else
4200 					reg_tarc &= ~(1 << 21);
4201 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
4202 			}
4203 		}
4204 		Adapter->smartspeed = 0;
4205 	} else {
4206 		if (Adapter->link_state != LINK_STATE_DOWN) {
4207 			Adapter->link_speed = 0;
4208 			Adapter->link_duplex = 0;
4209 			Adapter->link_state = LINK_STATE_DOWN;
4210 			link_changed = B_TRUE;
4211 
4212 			/*
4213 			 * SmartSpeed workaround for Tabor/TanaX, When the
4214 			 * driver loses link disable auto master/slave
4215 			 * resolution.
4216 			 */
4217 			if (hw->phy.type == e1000_phy_igp) {
4218 				(void) e1000_read_phy_reg(hw,
4219 				    PHY_1000T_CTRL, &phydata);
4220 				phydata |= CR_1000T_MS_ENABLE;
4221 				(void) e1000_write_phy_reg(hw,
4222 				    PHY_1000T_CTRL, phydata);
4223 			}
4224 		} else {
4225 			e1000g_smartspeed(Adapter);
4226 		}
4227 
4228 		if (Adapter->e1000g_state & E1000G_STARTED) {
4229 			if (Adapter->tx_link_down_timeout <
4230 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4231 				Adapter->tx_link_down_timeout++;
4232 			} else if (Adapter->tx_link_down_timeout ==
4233 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4234 				e1000g_tx_clean(Adapter);
4235 				Adapter->tx_link_down_timeout++;
4236 			}
4237 		}
4238 	}
4239 
4240 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4241 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4242 
4243 	return (link_changed);
4244 }
4245 
4246 /*
4247  * e1000g_reset_link - Using the link properties to setup the link
4248  */
4249 int
4250 e1000g_reset_link(struct e1000g *Adapter)
4251 {
4252 	struct e1000_mac_info *mac;
4253 	struct e1000_phy_info *phy;
4254 	struct e1000_hw *hw;
4255 	boolean_t invalid;
4256 
4257 	mac = &Adapter->shared.mac;
4258 	phy = &Adapter->shared.phy;
4259 	hw = &Adapter->shared;
4260 	invalid = B_FALSE;
4261 
4262 	if (hw->phy.media_type != e1000_media_type_copper)
4263 		goto out;
4264 
4265 	if (Adapter->param_adv_autoneg == 1) {
4266 		mac->autoneg = B_TRUE;
4267 		phy->autoneg_advertised = 0;
4268 
4269 		/*
4270 		 * 1000hdx is not supported for autonegotiation
4271 		 */
4272 		if (Adapter->param_adv_1000fdx == 1)
4273 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4274 
4275 		if (Adapter->param_adv_100fdx == 1)
4276 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
4277 
4278 		if (Adapter->param_adv_100hdx == 1)
4279 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
4280 
4281 		if (Adapter->param_adv_10fdx == 1)
4282 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
4283 
4284 		if (Adapter->param_adv_10hdx == 1)
4285 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
4286 
4287 		if (phy->autoneg_advertised == 0)
4288 			invalid = B_TRUE;
4289 	} else {
4290 		mac->autoneg = B_FALSE;
4291 
4292 		/*
4293 		 * For Intel copper cards, 1000fdx and 1000hdx are not
4294 		 * supported for forced link
4295 		 */
4296 		if (Adapter->param_adv_100fdx == 1)
4297 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
4298 		else if (Adapter->param_adv_100hdx == 1)
4299 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
4300 		else if (Adapter->param_adv_10fdx == 1)
4301 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
4302 		else if (Adapter->param_adv_10hdx == 1)
4303 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
4304 		else
4305 			invalid = B_TRUE;
4306 
4307 	}
4308 
4309 	if (invalid) {
4310 		e1000g_log(Adapter, CE_WARN,
4311 		    "Invalid link settings. Setup link to "
4312 		    "support autonegotiation with all link capabilities.");
4313 		mac->autoneg = B_TRUE;
4314 		phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4315 	}
4316 
4317 out:
4318 	return (e1000_setup_link(&Adapter->shared));
4319 }
4320 
4321 static void
4322 e1000g_timer_tx_resched(struct e1000g *Adapter)
4323 {
4324 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4325 
4326 	rw_enter(&Adapter->chip_lock, RW_READER);
4327 
4328 	if (tx_ring->resched_needed &&
4329 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4330 	    drv_usectohz(1000000)) &&
4331 	    (Adapter->e1000g_state & E1000G_STARTED) &&
4332 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4333 		tx_ring->resched_needed = B_FALSE;
4334 		mac_tx_update(Adapter->mh);
4335 		E1000G_STAT(tx_ring->stat_reschedule);
4336 		E1000G_STAT(tx_ring->stat_timer_reschedule);
4337 	}
4338 
4339 	rw_exit(&Adapter->chip_lock);
4340 }
4341 
4342 static void
4343 e1000g_local_timer(void *ws)
4344 {
4345 	struct e1000g *Adapter = (struct e1000g *)ws;
4346 	struct e1000_hw *hw;
4347 	e1000g_ether_addr_t ether_addr;
4348 	boolean_t link_changed;
4349 
4350 	hw = &Adapter->shared;
4351 
4352 	if (Adapter->e1000g_state & E1000G_ERROR) {
4353 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4354 		Adapter->e1000g_state &= ~E1000G_ERROR;
4355 		rw_exit(&Adapter->chip_lock);
4356 
4357 		Adapter->reset_count++;
4358 		if (e1000g_global_reset(Adapter)) {
4359 			ddi_fm_service_impact(Adapter->dip,
4360 			    DDI_SERVICE_RESTORED);
4361 			e1000g_timer_tx_resched(Adapter);
4362 		} else
4363 			ddi_fm_service_impact(Adapter->dip,
4364 			    DDI_SERVICE_LOST);
4365 		return;
4366 	}
4367 
4368 	if (e1000g_stall_check(Adapter)) {
4369 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4370 		    "Tx stall detected. Activate automatic recovery.\n");
4371 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4372 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4373 		Adapter->reset_count++;
4374 		if (e1000g_reset_adapter(Adapter)) {
4375 			ddi_fm_service_impact(Adapter->dip,
4376 			    DDI_SERVICE_RESTORED);
4377 			e1000g_timer_tx_resched(Adapter);
4378 		}
4379 		return;
4380 	}
4381 
4382 	link_changed = B_FALSE;
4383 	rw_enter(&Adapter->chip_lock, RW_READER);
4384 	if (Adapter->link_complete)
4385 		link_changed = e1000g_link_check(Adapter);
4386 	rw_exit(&Adapter->chip_lock);
4387 
4388 	if (link_changed) {
4389 		if (!Adapter->reset_flag &&
4390 		    (Adapter->e1000g_state & E1000G_STARTED) &&
4391 		    !(Adapter->e1000g_state & E1000G_SUSPENDED))
4392 			mac_link_update(Adapter->mh, Adapter->link_state);
4393 		if (Adapter->link_state == LINK_STATE_UP)
4394 			Adapter->reset_flag = B_FALSE;
4395 	}
4396 	/*
4397 	 * Workaround for esb2. Data stuck in fifo on a link
4398 	 * down event. Reset the adapter to recover it.
4399 	 */
4400 	if (Adapter->esb2_workaround) {
4401 		Adapter->esb2_workaround = B_FALSE;
4402 		(void) e1000g_reset_adapter(Adapter);
4403 		return;
4404 	}
4405 
4406 	/*
4407 	 * With 82571 controllers, any locally administered address will
4408 	 * be overwritten when there is a reset on the other port.
4409 	 * Detect this circumstance and correct it.
4410 	 */
4411 	if ((hw->mac.type == e1000_82571) &&
4412 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4413 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4414 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4415 
4416 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4417 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4418 
4419 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4420 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4421 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4422 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4423 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4424 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4425 			(void) e1000_rar_set(hw, hw->mac.addr, 0);
4426 		}
4427 	}
4428 
4429 	/*
4430 	 * Long TTL workaround for 82541/82547
4431 	 */
4432 	(void) e1000_igp_ttl_workaround_82547(hw);
4433 
4434 	/*
4435 	 * Check for Adaptive IFS settings If there are lots of collisions
4436 	 * change the value in steps...
4437 	 * These properties should only be set for 10/100
4438 	 */
4439 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4440 	    ((Adapter->link_speed == SPEED_100) ||
4441 	    (Adapter->link_speed == SPEED_10))) {
4442 		e1000_update_adaptive(hw);
4443 	}
4444 	/*
4445 	 * Set Timer Interrupts
4446 	 */
4447 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4448 
4449 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4450 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4451 	else
4452 		e1000g_timer_tx_resched(Adapter);
4453 
4454 	restart_watchdog_timer(Adapter);
4455 }
4456 
4457 /*
4458  * The function e1000g_link_timer() is called when the timer for link setup
4459  * is expired, which indicates the completion of the link setup. The link
4460  * state will not be updated until the link setup is completed. And the
4461  * link state will not be sent to the upper layer through mac_link_update()
4462  * in this function. It will be updated in the local timer routine or the
4463  * interrupt service routine after the interface is started (plumbed).
4464  */
4465 static void
4466 e1000g_link_timer(void *arg)
4467 {
4468 	struct e1000g *Adapter = (struct e1000g *)arg;
4469 
4470 	mutex_enter(&Adapter->link_lock);
4471 	Adapter->link_complete = B_TRUE;
4472 	Adapter->link_tid = 0;
4473 	mutex_exit(&Adapter->link_lock);
4474 }
4475 
4476 /*
4477  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4478  *
4479  * This function read the forced speed and duplex for 10/100 Mbps speeds
4480  * and also for 1000 Mbps speeds from the e1000g.conf file
4481  */
4482 static void
4483 e1000g_force_speed_duplex(struct e1000g *Adapter)
4484 {
4485 	int forced;
4486 	int propval;
4487 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4488 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4489 
4490 	/*
4491 	 * get value out of config file
4492 	 */
4493 	(void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4494 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4495 
4496 	switch (forced) {
4497 	case GDIAG_10_HALF:
4498 		/*
4499 		 * Disable Auto Negotiation
4500 		 */
4501 		mac->autoneg = B_FALSE;
4502 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4503 		break;
4504 	case GDIAG_10_FULL:
4505 		/*
4506 		 * Disable Auto Negotiation
4507 		 */
4508 		mac->autoneg = B_FALSE;
4509 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4510 		break;
4511 	case GDIAG_100_HALF:
4512 		/*
4513 		 * Disable Auto Negotiation
4514 		 */
4515 		mac->autoneg = B_FALSE;
4516 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4517 		break;
4518 	case GDIAG_100_FULL:
4519 		/*
4520 		 * Disable Auto Negotiation
4521 		 */
4522 		mac->autoneg = B_FALSE;
4523 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4524 		break;
4525 	case GDIAG_1000_FULL:
4526 		/*
4527 		 * The gigabit spec requires autonegotiation.  Therefore,
4528 		 * when the user wants to force the speed to 1000Mbps, we
4529 		 * enable AutoNeg, but only allow the harware to advertise
4530 		 * 1000Mbps.  This is different from 10/100 operation, where
4531 		 * we are allowed to link without any negotiation.
4532 		 */
4533 		mac->autoneg = B_TRUE;
4534 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4535 		break;
4536 	default:	/* obey the setting of AutoNegAdvertised */
4537 		mac->autoneg = B_TRUE;
4538 		(void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4539 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4540 		    AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4541 		phy->autoneg_advertised = (uint16_t)propval;
4542 		break;
4543 	}	/* switch */
4544 }
4545 
4546 /*
4547  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4548  *
4549  * This function reads MaxFrameSize from e1000g.conf
4550  */
4551 static void
4552 e1000g_get_max_frame_size(struct e1000g *Adapter)
4553 {
4554 	int max_frame;
4555 
4556 	/*
4557 	 * get value out of config file
4558 	 */
4559 	(void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4560 	    &max_frame);
4561 
4562 	switch (max_frame) {
4563 	case 0:
4564 		Adapter->default_mtu = ETHERMTU;
4565 		break;
4566 	case 1:
4567 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4568 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4569 		break;
4570 	case 2:
4571 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4572 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4573 		break;
4574 	case 3:
4575 		Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4576 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4577 		break;
4578 	default:
4579 		Adapter->default_mtu = ETHERMTU;
4580 		break;
4581 	}	/* switch */
4582 
4583 	/*
4584 	 * If the user configed MTU is larger than the deivce's maximum MTU,
4585 	 * the MTU is set to the deivce's maximum value.
4586 	 */
4587 	if (Adapter->default_mtu > Adapter->max_mtu)
4588 		Adapter->default_mtu = Adapter->max_mtu;
4589 
4590 	Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4591 }
4592 
4593 /*
4594  * e1000g_pch_limits - Apply limits of the PCH silicon type
4595  *
4596  * At any frame size larger than the ethernet default,
4597  * prevent linking at 10/100 speeds.
4598  */
4599 static void
4600 e1000g_pch_limits(struct e1000g *Adapter)
4601 {
4602 	struct e1000_hw *hw = &Adapter->shared;
4603 
4604 	/* only applies to PCH silicon type */
4605 	if (hw->mac.type != e1000_pchlan && hw->mac.type != e1000_pch2lan)
4606 		return;
4607 
4608 	/* only applies to frames larger than ethernet default */
4609 	if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4610 		hw->mac.autoneg = B_TRUE;
4611 		hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4612 
4613 		Adapter->param_adv_autoneg = 1;
4614 		Adapter->param_adv_1000fdx = 1;
4615 
4616 		Adapter->param_adv_100fdx = 0;
4617 		Adapter->param_adv_100hdx = 0;
4618 		Adapter->param_adv_10fdx = 0;
4619 		Adapter->param_adv_10hdx = 0;
4620 
4621 		e1000g_param_sync(Adapter);
4622 	}
4623 }
4624 
4625 /*
4626  * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4627  */
4628 static uint32_t
4629 e1000g_mtu2maxframe(uint32_t mtu)
4630 {
4631 	uint32_t maxframe;
4632 
4633 	maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4634 
4635 	return (maxframe);
4636 }
4637 
4638 static void
4639 arm_watchdog_timer(struct e1000g *Adapter)
4640 {
4641 	Adapter->watchdog_tid =
4642 	    timeout(e1000g_local_timer,
4643 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4644 }
4645 #pragma inline(arm_watchdog_timer)
4646 
4647 static void
4648 enable_watchdog_timer(struct e1000g *Adapter)
4649 {
4650 	mutex_enter(&Adapter->watchdog_lock);
4651 
4652 	if (!Adapter->watchdog_timer_enabled) {
4653 		Adapter->watchdog_timer_enabled = B_TRUE;
4654 		Adapter->watchdog_timer_started = B_TRUE;
4655 		arm_watchdog_timer(Adapter);
4656 	}
4657 
4658 	mutex_exit(&Adapter->watchdog_lock);
4659 }
4660 
4661 static void
4662 disable_watchdog_timer(struct e1000g *Adapter)
4663 {
4664 	timeout_id_t tid;
4665 
4666 	mutex_enter(&Adapter->watchdog_lock);
4667 
4668 	Adapter->watchdog_timer_enabled = B_FALSE;
4669 	Adapter->watchdog_timer_started = B_FALSE;
4670 	tid = Adapter->watchdog_tid;
4671 	Adapter->watchdog_tid = 0;
4672 
4673 	mutex_exit(&Adapter->watchdog_lock);
4674 
4675 	if (tid != 0)
4676 		(void) untimeout(tid);
4677 }
4678 
4679 static void
4680 start_watchdog_timer(struct e1000g *Adapter)
4681 {
4682 	mutex_enter(&Adapter->watchdog_lock);
4683 
4684 	if (Adapter->watchdog_timer_enabled) {
4685 		if (!Adapter->watchdog_timer_started) {
4686 			Adapter->watchdog_timer_started = B_TRUE;
4687 			arm_watchdog_timer(Adapter);
4688 		}
4689 	}
4690 
4691 	mutex_exit(&Adapter->watchdog_lock);
4692 }
4693 
4694 static void
4695 restart_watchdog_timer(struct e1000g *Adapter)
4696 {
4697 	mutex_enter(&Adapter->watchdog_lock);
4698 
4699 	if (Adapter->watchdog_timer_started)
4700 		arm_watchdog_timer(Adapter);
4701 
4702 	mutex_exit(&Adapter->watchdog_lock);
4703 }
4704 
4705 static void
4706 stop_watchdog_timer(struct e1000g *Adapter)
4707 {
4708 	timeout_id_t tid;
4709 
4710 	mutex_enter(&Adapter->watchdog_lock);
4711 
4712 	Adapter->watchdog_timer_started = B_FALSE;
4713 	tid = Adapter->watchdog_tid;
4714 	Adapter->watchdog_tid = 0;
4715 
4716 	mutex_exit(&Adapter->watchdog_lock);
4717 
4718 	if (tid != 0)
4719 		(void) untimeout(tid);
4720 }
4721 
4722 static void
4723 stop_link_timer(struct e1000g *Adapter)
4724 {
4725 	timeout_id_t tid;
4726 
4727 	/* Disable the link timer */
4728 	mutex_enter(&Adapter->link_lock);
4729 
4730 	tid = Adapter->link_tid;
4731 	Adapter->link_tid = 0;
4732 
4733 	mutex_exit(&Adapter->link_lock);
4734 
4735 	if (tid != 0)
4736 		(void) untimeout(tid);
4737 }
4738 
4739 static void
4740 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4741 {
4742 	timeout_id_t tid;
4743 
4744 	/* Disable the tx timer for 82547 chipset */
4745 	mutex_enter(&tx_ring->tx_lock);
4746 
4747 	tx_ring->timer_enable_82547 = B_FALSE;
4748 	tid = tx_ring->timer_id_82547;
4749 	tx_ring->timer_id_82547 = 0;
4750 
4751 	mutex_exit(&tx_ring->tx_lock);
4752 
4753 	if (tid != 0)
4754 		(void) untimeout(tid);
4755 }
4756 
4757 void
4758 e1000g_clear_interrupt(struct e1000g *Adapter)
4759 {
4760 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4761 	    0xffffffff & ~E1000_IMS_RXSEQ);
4762 }
4763 
4764 void
4765 e1000g_mask_interrupt(struct e1000g *Adapter)
4766 {
4767 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4768 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4769 
4770 	if (Adapter->tx_intr_enable)
4771 		e1000g_mask_tx_interrupt(Adapter);
4772 }
4773 
4774 /*
4775  * This routine is called by e1000g_quiesce(), therefore must not block.
4776  */
4777 void
4778 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4779 {
4780 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4781 }
4782 
4783 void
4784 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4785 {
4786 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4787 }
4788 
4789 void
4790 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4791 {
4792 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4793 }
4794 
4795 static void
4796 e1000g_smartspeed(struct e1000g *Adapter)
4797 {
4798 	struct e1000_hw *hw = &Adapter->shared;
4799 	uint16_t phy_status;
4800 	uint16_t phy_ctrl;
4801 
4802 	/*
4803 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4804 	 * advertising 1000Full, we don't even use the workaround
4805 	 */
4806 	if ((hw->phy.type != e1000_phy_igp) ||
4807 	    !hw->mac.autoneg ||
4808 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4809 		return;
4810 
4811 	/*
4812 	 * True if this is the first call of this function or after every
4813 	 * 30 seconds of not having link
4814 	 */
4815 	if (Adapter->smartspeed == 0) {
4816 		/*
4817 		 * If Master/Slave config fault is asserted twice, we
4818 		 * assume back-to-back
4819 		 */
4820 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4821 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4822 			return;
4823 
4824 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4825 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4826 			return;
4827 		/*
4828 		 * We're assuming back-2-back because our status register
4829 		 * insists! there's a fault in the master/slave
4830 		 * relationship that was "negotiated"
4831 		 */
4832 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4833 		/*
4834 		 * Is the phy configured for manual configuration of
4835 		 * master/slave?
4836 		 */
4837 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4838 			/*
4839 			 * Yes.  Then disable manual configuration (enable
4840 			 * auto configuration) of master/slave
4841 			 */
4842 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4843 			(void) e1000_write_phy_reg(hw,
4844 			    PHY_1000T_CTRL, phy_ctrl);
4845 			/*
4846 			 * Effectively starting the clock
4847 			 */
4848 			Adapter->smartspeed++;
4849 			/*
4850 			 * Restart autonegotiation
4851 			 */
4852 			if (!e1000_phy_setup_autoneg(hw) &&
4853 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4854 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4855 				    MII_CR_RESTART_AUTO_NEG);
4856 				(void) e1000_write_phy_reg(hw,
4857 				    PHY_CONTROL, phy_ctrl);
4858 			}
4859 		}
4860 		return;
4861 		/*
4862 		 * Has 6 seconds transpired still without link? Remember,
4863 		 * you should reset the smartspeed counter once you obtain
4864 		 * link
4865 		 */
4866 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4867 		/*
4868 		 * Yes.  Remember, we did at the start determine that
4869 		 * there's a master/slave configuration fault, so we're
4870 		 * still assuming there's someone on the other end, but we
4871 		 * just haven't yet been able to talk to it. We then
4872 		 * re-enable auto configuration of master/slave to see if
4873 		 * we're running 2/3 pair cables.
4874 		 */
4875 		/*
4876 		 * If still no link, perhaps using 2/3 pair cable
4877 		 */
4878 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4879 		phy_ctrl |= CR_1000T_MS_ENABLE;
4880 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4881 		/*
4882 		 * Restart autoneg with phy enabled for manual
4883 		 * configuration of master/slave
4884 		 */
4885 		if (!e1000_phy_setup_autoneg(hw) &&
4886 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4887 			phy_ctrl |=
4888 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4889 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4890 		}
4891 		/*
4892 		 * Hopefully, there are no more faults and we've obtained
4893 		 * link as a result.
4894 		 */
4895 	}
4896 	/*
4897 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4898 	 * seconds)
4899 	 */
4900 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4901 		Adapter->smartspeed = 0;
4902 }
4903 
4904 static boolean_t
4905 is_valid_mac_addr(uint8_t *mac_addr)
4906 {
4907 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4908 	const uint8_t addr_test2[6] =
4909 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4910 
4911 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4912 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4913 		return (B_FALSE);
4914 
4915 	return (B_TRUE);
4916 }
4917 
4918 /*
4919  * e1000g_stall_check - check for tx stall
4920  *
4921  * This function checks if the adapter is stalled (in transmit).
4922  *
4923  * It is called each time the watchdog timeout is invoked.
4924  * If the transmit descriptor reclaim continuously fails,
4925  * the watchdog value will increment by 1. If the watchdog
4926  * value exceeds the threshold, the adapter is assumed to
4927  * have stalled and need to be reset.
4928  */
4929 static boolean_t
4930 e1000g_stall_check(struct e1000g *Adapter)
4931 {
4932 	e1000g_tx_ring_t *tx_ring;
4933 
4934 	tx_ring = Adapter->tx_ring;
4935 
4936 	if (Adapter->link_state != LINK_STATE_UP)
4937 		return (B_FALSE);
4938 
4939 	(void) e1000g_recycle(tx_ring);
4940 
4941 	if (Adapter->stall_flag)
4942 		return (B_TRUE);
4943 
4944 	return (B_FALSE);
4945 }
4946 
4947 #ifdef E1000G_DEBUG
4948 static enum ioc_reply
4949 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4950 {
4951 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4952 	e1000g_peekpoke_t *ppd;
4953 	uint64_t mem_va;
4954 	uint64_t maxoff;
4955 	boolean_t peek;
4956 
4957 	switch (iocp->ioc_cmd) {
4958 
4959 	case E1000G_IOC_REG_PEEK:
4960 		peek = B_TRUE;
4961 		break;
4962 
4963 	case E1000G_IOC_REG_POKE:
4964 		peek = B_FALSE;
4965 		break;
4966 
4967 	deault:
4968 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4969 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4970 		    iocp->ioc_cmd);
4971 		return (IOC_INVAL);
4972 	}
4973 
4974 	/*
4975 	 * Validate format of ioctl
4976 	 */
4977 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4978 		return (IOC_INVAL);
4979 	if (mp->b_cont == NULL)
4980 		return (IOC_INVAL);
4981 
4982 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4983 
4984 	/*
4985 	 * Validate request parameters
4986 	 */
4987 	switch (ppd->pp_acc_space) {
4988 
4989 	default:
4990 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4991 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4992 		    ppd->pp_acc_space);
4993 		return (IOC_INVAL);
4994 
4995 	case E1000G_PP_SPACE_REG:
4996 		/*
4997 		 * Memory-mapped I/O space
4998 		 */
4999 		ASSERT(ppd->pp_acc_size == 4);
5000 		if (ppd->pp_acc_size != 4)
5001 			return (IOC_INVAL);
5002 
5003 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5004 			return (IOC_INVAL);
5005 
5006 		mem_va = 0;
5007 		maxoff = 0x10000;
5008 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
5009 		break;
5010 
5011 	case E1000G_PP_SPACE_E1000G:
5012 		/*
5013 		 * E1000g data structure!
5014 		 */
5015 		mem_va = (uintptr_t)e1000gp;
5016 		maxoff = sizeof (struct e1000g);
5017 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
5018 		break;
5019 
5020 	}
5021 
5022 	if (ppd->pp_acc_offset >= maxoff)
5023 		return (IOC_INVAL);
5024 
5025 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
5026 		return (IOC_INVAL);
5027 
5028 	/*
5029 	 * All OK - go!
5030 	 */
5031 	ppd->pp_acc_offset += mem_va;
5032 	(*ppfn)(e1000gp, ppd);
5033 	return (peek ? IOC_REPLY : IOC_ACK);
5034 }
5035 
5036 static void
5037 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5038 {
5039 	ddi_acc_handle_t handle;
5040 	uint32_t *regaddr;
5041 
5042 	handle = e1000gp->osdep.reg_handle;
5043 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5044 	    (uintptr_t)ppd->pp_acc_offset);
5045 
5046 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
5047 }
5048 
5049 static void
5050 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5051 {
5052 	ddi_acc_handle_t handle;
5053 	uint32_t *regaddr;
5054 	uint32_t value;
5055 
5056 	handle = e1000gp->osdep.reg_handle;
5057 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5058 	    (uintptr_t)ppd->pp_acc_offset);
5059 	value = (uint32_t)ppd->pp_acc_data;
5060 
5061 	ddi_put32(handle, regaddr, value);
5062 }
5063 
5064 static void
5065 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5066 {
5067 	uint64_t value;
5068 	void *vaddr;
5069 
5070 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5071 
5072 	switch (ppd->pp_acc_size) {
5073 	case 1:
5074 		value = *(uint8_t *)vaddr;
5075 		break;
5076 
5077 	case 2:
5078 		value = *(uint16_t *)vaddr;
5079 		break;
5080 
5081 	case 4:
5082 		value = *(uint32_t *)vaddr;
5083 		break;
5084 
5085 	case 8:
5086 		value = *(uint64_t *)vaddr;
5087 		break;
5088 	}
5089 
5090 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5091 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
5092 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5093 
5094 	ppd->pp_acc_data = value;
5095 }
5096 
5097 static void
5098 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5099 {
5100 	uint64_t value;
5101 	void *vaddr;
5102 
5103 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5104 	value = ppd->pp_acc_data;
5105 
5106 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5107 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
5108 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5109 
5110 	switch (ppd->pp_acc_size) {
5111 	case 1:
5112 		*(uint8_t *)vaddr = (uint8_t)value;
5113 		break;
5114 
5115 	case 2:
5116 		*(uint16_t *)vaddr = (uint16_t)value;
5117 		break;
5118 
5119 	case 4:
5120 		*(uint32_t *)vaddr = (uint32_t)value;
5121 		break;
5122 
5123 	case 8:
5124 		*(uint64_t *)vaddr = (uint64_t)value;
5125 		break;
5126 	}
5127 }
5128 #endif
5129 
5130 /*
5131  * Loopback Support
5132  */
5133 static lb_property_t lb_normal =
5134 	{ normal,	"normal",	E1000G_LB_NONE		};
5135 static lb_property_t lb_external1000 =
5136 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
5137 static lb_property_t lb_external100 =
5138 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
5139 static lb_property_t lb_external10 =
5140 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
5141 static lb_property_t lb_phy =
5142 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
5143 
5144 static enum ioc_reply
5145 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
5146 {
5147 	lb_info_sz_t *lbsp;
5148 	lb_property_t *lbpp;
5149 	struct e1000_hw *hw;
5150 	uint32_t *lbmp;
5151 	uint32_t size;
5152 	uint32_t value;
5153 
5154 	hw = &Adapter->shared;
5155 
5156 	if (mp->b_cont == NULL)
5157 		return (IOC_INVAL);
5158 
5159 	if (!e1000g_check_loopback_support(hw)) {
5160 		e1000g_log(NULL, CE_WARN,
5161 		    "Loopback is not supported on e1000g%d", Adapter->instance);
5162 		return (IOC_INVAL);
5163 	}
5164 
5165 	switch (iocp->ioc_cmd) {
5166 	default:
5167 		return (IOC_INVAL);
5168 
5169 	case LB_GET_INFO_SIZE:
5170 		size = sizeof (lb_info_sz_t);
5171 		if (iocp->ioc_count != size)
5172 			return (IOC_INVAL);
5173 
5174 		rw_enter(&Adapter->chip_lock, RW_WRITER);
5175 		e1000g_get_phy_state(Adapter);
5176 
5177 		/*
5178 		 * Workaround for hardware faults. In order to get a stable
5179 		 * state of phy, we will wait for a specific interval and
5180 		 * try again. The time delay is an experiential value based
5181 		 * on our testing.
5182 		 */
5183 		msec_delay(100);
5184 		e1000g_get_phy_state(Adapter);
5185 		rw_exit(&Adapter->chip_lock);
5186 
5187 		value = sizeof (lb_normal);
5188 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5189 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5190 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5191 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5192 			value += sizeof (lb_phy);
5193 			switch (hw->mac.type) {
5194 			case e1000_82571:
5195 			case e1000_82572:
5196 			case e1000_80003es2lan:
5197 				value += sizeof (lb_external1000);
5198 				break;
5199 			}
5200 		}
5201 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5202 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5203 			value += sizeof (lb_external100);
5204 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5205 			value += sizeof (lb_external10);
5206 
5207 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
5208 		*lbsp = value;
5209 		break;
5210 
5211 	case LB_GET_INFO:
5212 		value = sizeof (lb_normal);
5213 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5214 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5215 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5216 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5217 			value += sizeof (lb_phy);
5218 			switch (hw->mac.type) {
5219 			case e1000_82571:
5220 			case e1000_82572:
5221 			case e1000_80003es2lan:
5222 				value += sizeof (lb_external1000);
5223 				break;
5224 			}
5225 		}
5226 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5227 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5228 			value += sizeof (lb_external100);
5229 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5230 			value += sizeof (lb_external10);
5231 
5232 		size = value;
5233 		if (iocp->ioc_count != size)
5234 			return (IOC_INVAL);
5235 
5236 		value = 0;
5237 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5238 		lbpp[value++] = lb_normal;
5239 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5240 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5241 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5242 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5243 			lbpp[value++] = lb_phy;
5244 			switch (hw->mac.type) {
5245 			case e1000_82571:
5246 			case e1000_82572:
5247 			case e1000_80003es2lan:
5248 				lbpp[value++] = lb_external1000;
5249 				break;
5250 			}
5251 		}
5252 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5253 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5254 			lbpp[value++] = lb_external100;
5255 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5256 			lbpp[value++] = lb_external10;
5257 		break;
5258 
5259 	case LB_GET_MODE:
5260 		size = sizeof (uint32_t);
5261 		if (iocp->ioc_count != size)
5262 			return (IOC_INVAL);
5263 
5264 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5265 		*lbmp = Adapter->loopback_mode;
5266 		break;
5267 
5268 	case LB_SET_MODE:
5269 		size = 0;
5270 		if (iocp->ioc_count != sizeof (uint32_t))
5271 			return (IOC_INVAL);
5272 
5273 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5274 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5275 			return (IOC_INVAL);
5276 		break;
5277 	}
5278 
5279 	iocp->ioc_count = size;
5280 	iocp->ioc_error = 0;
5281 
5282 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5283 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5284 		return (IOC_INVAL);
5285 	}
5286 
5287 	return (IOC_REPLY);
5288 }
5289 
5290 static boolean_t
5291 e1000g_check_loopback_support(struct e1000_hw *hw)
5292 {
5293 	switch (hw->mac.type) {
5294 	case e1000_82540:
5295 	case e1000_82545:
5296 	case e1000_82545_rev_3:
5297 	case e1000_82546:
5298 	case e1000_82546_rev_3:
5299 	case e1000_82541:
5300 	case e1000_82541_rev_2:
5301 	case e1000_82547:
5302 	case e1000_82547_rev_2:
5303 	case e1000_82571:
5304 	case e1000_82572:
5305 	case e1000_82573:
5306 	case e1000_82574:
5307 	case e1000_80003es2lan:
5308 	case e1000_ich9lan:
5309 	case e1000_ich10lan:
5310 		return (B_TRUE);
5311 	}
5312 	return (B_FALSE);
5313 }
5314 
5315 static boolean_t
5316 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5317 {
5318 	struct e1000_hw *hw;
5319 	int i, times;
5320 	boolean_t link_up;
5321 
5322 	if (mode == Adapter->loopback_mode)
5323 		return (B_TRUE);
5324 
5325 	hw = &Adapter->shared;
5326 	times = 0;
5327 
5328 	Adapter->loopback_mode = mode;
5329 
5330 	if (mode == E1000G_LB_NONE) {
5331 		/* Reset the chip */
5332 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5333 		(void) e1000g_reset_adapter(Adapter);
5334 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5335 		return (B_TRUE);
5336 	}
5337 
5338 again:
5339 
5340 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5341 
5342 	switch (mode) {
5343 	default:
5344 		rw_exit(&Adapter->chip_lock);
5345 		return (B_FALSE);
5346 
5347 	case E1000G_LB_EXTERNAL_1000:
5348 		e1000g_set_external_loopback_1000(Adapter);
5349 		break;
5350 
5351 	case E1000G_LB_EXTERNAL_100:
5352 		e1000g_set_external_loopback_100(Adapter);
5353 		break;
5354 
5355 	case E1000G_LB_EXTERNAL_10:
5356 		e1000g_set_external_loopback_10(Adapter);
5357 		break;
5358 
5359 	case E1000G_LB_INTERNAL_PHY:
5360 		e1000g_set_internal_loopback(Adapter);
5361 		break;
5362 	}
5363 
5364 	times++;
5365 
5366 	rw_exit(&Adapter->chip_lock);
5367 
5368 	/* Wait for link up */
5369 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5370 		msec_delay(100);
5371 
5372 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5373 
5374 	link_up = e1000g_link_up(Adapter);
5375 
5376 	rw_exit(&Adapter->chip_lock);
5377 
5378 	if (!link_up) {
5379 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5380 		    "Failed to get the link up");
5381 		if (times < 2) {
5382 			/* Reset the link */
5383 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5384 			    "Reset the link ...");
5385 			(void) e1000g_reset_adapter(Adapter);
5386 			goto again;
5387 		}
5388 
5389 		/*
5390 		 * Reset driver to loopback none when set loopback failed
5391 		 * for the second time.
5392 		 */
5393 		Adapter->loopback_mode = E1000G_LB_NONE;
5394 
5395 		/* Reset the chip */
5396 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5397 		(void) e1000g_reset_adapter(Adapter);
5398 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5399 
5400 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5401 		    "Set loopback mode failed, reset to loopback none");
5402 
5403 		return (B_FALSE);
5404 	}
5405 
5406 	return (B_TRUE);
5407 }
5408 
5409 /*
5410  * The following loopback settings are from Intel's technical
5411  * document - "How To Loopback". All the register settings and
5412  * time delay values are directly inherited from the document
5413  * without more explanations available.
5414  */
5415 static void
5416 e1000g_set_internal_loopback(struct e1000g *Adapter)
5417 {
5418 	struct e1000_hw *hw;
5419 	uint32_t ctrl;
5420 	uint32_t status;
5421 	uint16_t phy_ctrl;
5422 	uint16_t phy_reg;
5423 	uint32_t txcw;
5424 
5425 	hw = &Adapter->shared;
5426 
5427 	/* Disable Smart Power Down */
5428 	phy_spd_state(hw, B_FALSE);
5429 
5430 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5431 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5432 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5433 
5434 	switch (hw->mac.type) {
5435 	case e1000_82540:
5436 	case e1000_82545:
5437 	case e1000_82545_rev_3:
5438 	case e1000_82546:
5439 	case e1000_82546_rev_3:
5440 	case e1000_82573:
5441 		/* Auto-MDI/MDIX off */
5442 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5443 		/* Reset PHY to update Auto-MDI/MDIX */
5444 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5445 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5446 		/* Reset PHY to auto-neg off and force 1000 */
5447 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5448 		    phy_ctrl | MII_CR_RESET);
5449 		/*
5450 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5451 		 * See comments above e1000g_set_internal_loopback() for the
5452 		 * background.
5453 		 */
5454 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5455 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5456 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5457 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5458 		break;
5459 	case e1000_80003es2lan:
5460 		/* Force Link Up */
5461 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5462 		    0x1CC);
5463 		/* Sets PCS loopback at 1Gbs */
5464 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5465 		    0x1046);
5466 		break;
5467 	}
5468 
5469 	/*
5470 	 * The following registers should be set for e1000_phy_bm phy type.
5471 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5472 	 * For others, we do not need to set these registers.
5473 	 */
5474 	if (hw->phy.type == e1000_phy_bm) {
5475 		/* Set Default MAC Interface speed to 1GB */
5476 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5477 		phy_reg &= ~0x0007;
5478 		phy_reg |= 0x006;
5479 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5480 		/* Assert SW reset for above settings to take effect */
5481 		(void) e1000_phy_commit(hw);
5482 		msec_delay(1);
5483 		/* Force Full Duplex */
5484 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5485 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5486 		    phy_reg | 0x000C);
5487 		/* Set Link Up (in force link) */
5488 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5489 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5490 		    phy_reg | 0x0040);
5491 		/* Force Link */
5492 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5493 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5494 		    phy_reg | 0x0040);
5495 		/* Set Early Link Enable */
5496 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5497 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5498 		    phy_reg | 0x0400);
5499 	}
5500 
5501 	/* Set loopback */
5502 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5503 
5504 	msec_delay(250);
5505 
5506 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5507 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5508 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5509 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5510 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5511 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5512 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5513 
5514 	switch (hw->mac.type) {
5515 	case e1000_82540:
5516 	case e1000_82545:
5517 	case e1000_82545_rev_3:
5518 	case e1000_82546:
5519 	case e1000_82546_rev_3:
5520 		/*
5521 		 * For some serdes we'll need to commit the writes now
5522 		 * so that the status is updated on link
5523 		 */
5524 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5525 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5526 			msec_delay(100);
5527 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5528 		}
5529 
5530 		if (hw->phy.media_type == e1000_media_type_copper) {
5531 			/* Invert Loss of Signal */
5532 			ctrl |= E1000_CTRL_ILOS;
5533 		} else {
5534 			/* Set ILOS on fiber nic if half duplex is detected */
5535 			status = E1000_READ_REG(hw, E1000_STATUS);
5536 			if ((status & E1000_STATUS_FD) == 0)
5537 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5538 		}
5539 		break;
5540 
5541 	case e1000_82571:
5542 	case e1000_82572:
5543 		/*
5544 		 * The fiber/SerDes versions of this adapter do not contain an
5545 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5546 		 * using SerDes analog loopback.
5547 		 */
5548 		if (hw->phy.media_type != e1000_media_type_copper) {
5549 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5550 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5551 			txcw &= ~((uint32_t)1 << 31);
5552 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5553 
5554 			/*
5555 			 * Write 0x410 to Serdes Control register
5556 			 * to enable Serdes analog loopback
5557 			 */
5558 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5559 			msec_delay(10);
5560 		}
5561 
5562 		status = E1000_READ_REG(hw, E1000_STATUS);
5563 		/* Set ILOS on fiber nic if half duplex is detected */
5564 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5565 		    ((status & E1000_STATUS_FD) == 0 ||
5566 		    (status & E1000_STATUS_LU) == 0))
5567 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5568 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5569 			ctrl |= E1000_CTRL_SLU;
5570 		break;
5571 
5572 	case e1000_82573:
5573 		ctrl |= E1000_CTRL_ILOS;
5574 		break;
5575 	case e1000_ich9lan:
5576 	case e1000_ich10lan:
5577 		ctrl |= E1000_CTRL_SLU;
5578 		break;
5579 	}
5580 	if (hw->phy.type == e1000_phy_bm)
5581 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5582 
5583 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5584 }
5585 
5586 static void
5587 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5588 {
5589 	struct e1000_hw *hw;
5590 	uint32_t rctl;
5591 	uint32_t ctrl_ext;
5592 	uint32_t ctrl;
5593 	uint32_t status;
5594 	uint32_t txcw;
5595 	uint16_t phydata;
5596 
5597 	hw = &Adapter->shared;
5598 
5599 	/* Disable Smart Power Down */
5600 	phy_spd_state(hw, B_FALSE);
5601 
5602 	switch (hw->mac.type) {
5603 	case e1000_82571:
5604 	case e1000_82572:
5605 		switch (hw->phy.media_type) {
5606 		case e1000_media_type_copper:
5607 			/* Force link up (Must be done before the PHY writes) */
5608 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5609 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5610 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5611 
5612 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5613 			rctl |= (E1000_RCTL_EN |
5614 			    E1000_RCTL_SBP |
5615 			    E1000_RCTL_UPE |
5616 			    E1000_RCTL_MPE |
5617 			    E1000_RCTL_LPE |
5618 			    E1000_RCTL_BAM);		/* 0x803E */
5619 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5620 
5621 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5622 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5623 			    E1000_CTRL_EXT_SDP6_DATA |
5624 			    E1000_CTRL_EXT_SDP3_DATA |
5625 			    E1000_CTRL_EXT_SDP4_DIR |
5626 			    E1000_CTRL_EXT_SDP6_DIR |
5627 			    E1000_CTRL_EXT_SDP3_DIR);	/* 0x0DD0 */
5628 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5629 
5630 			/*
5631 			 * This sequence tunes the PHY's SDP and no customer
5632 			 * settable values. For background, see comments above
5633 			 * e1000g_set_internal_loopback().
5634 			 */
5635 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5636 			msec_delay(10);
5637 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5638 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5639 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5640 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5641 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5642 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5643 
5644 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5645 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5646 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5647 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5648 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5649 
5650 			msec_delay(50);
5651 			break;
5652 		case e1000_media_type_fiber:
5653 		case e1000_media_type_internal_serdes:
5654 			status = E1000_READ_REG(hw, E1000_STATUS);
5655 			if (((status & E1000_STATUS_LU) == 0) ||
5656 			    (hw->phy.media_type ==
5657 			    e1000_media_type_internal_serdes)) {
5658 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5659 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5660 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5661 			}
5662 
5663 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5664 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5665 			txcw &= ~((uint32_t)1 << 31);
5666 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5667 
5668 			/*
5669 			 * Write 0x410 to Serdes Control register
5670 			 * to enable Serdes analog loopback
5671 			 */
5672 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5673 			msec_delay(10);
5674 			break;
5675 		default:
5676 			break;
5677 		}
5678 		break;
5679 	case e1000_82574:
5680 	case e1000_80003es2lan:
5681 	case e1000_ich9lan:
5682 	case e1000_ich10lan:
5683 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5684 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5685 		    phydata | (1 << 5));
5686 		Adapter->param_adv_autoneg = 1;
5687 		Adapter->param_adv_1000fdx = 1;
5688 		(void) e1000g_reset_link(Adapter);
5689 		break;
5690 	}
5691 }
5692 
5693 static void
5694 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5695 {
5696 	struct e1000_hw *hw;
5697 	uint32_t ctrl;
5698 	uint16_t phy_ctrl;
5699 
5700 	hw = &Adapter->shared;
5701 
5702 	/* Disable Smart Power Down */
5703 	phy_spd_state(hw, B_FALSE);
5704 
5705 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5706 	    MII_CR_SPEED_100);
5707 
5708 	/* Force 100/FD, reset PHY */
5709 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5710 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5711 	msec_delay(10);
5712 
5713 	/* Force 100/FD */
5714 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5715 	    phy_ctrl);			/* 0x2100 */
5716 	msec_delay(10);
5717 
5718 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5719 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5720 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5721 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5722 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5723 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5724 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5725 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5726 
5727 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5728 }
5729 
5730 static void
5731 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5732 {
5733 	struct e1000_hw *hw;
5734 	uint32_t ctrl;
5735 	uint16_t phy_ctrl;
5736 
5737 	hw = &Adapter->shared;
5738 
5739 	/* Disable Smart Power Down */
5740 	phy_spd_state(hw, B_FALSE);
5741 
5742 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5743 	    MII_CR_SPEED_10);
5744 
5745 	/* Force 10/FD, reset PHY */
5746 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5747 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5748 	msec_delay(10);
5749 
5750 	/* Force 10/FD */
5751 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5752 	    phy_ctrl);			/* 0x0100 */
5753 	msec_delay(10);
5754 
5755 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5756 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5757 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5758 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5759 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5760 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5761 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5762 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5763 
5764 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5765 }
5766 
5767 #ifdef __sparc
5768 static boolean_t
5769 e1000g_find_mac_address(struct e1000g *Adapter)
5770 {
5771 	struct e1000_hw *hw = &Adapter->shared;
5772 	uchar_t *bytes;
5773 	struct ether_addr sysaddr;
5774 	uint_t nelts;
5775 	int err;
5776 	boolean_t found = B_FALSE;
5777 
5778 	/*
5779 	 * The "vendor's factory-set address" may already have
5780 	 * been extracted from the chip, but if the property
5781 	 * "local-mac-address" is set we use that instead.
5782 	 *
5783 	 * We check whether it looks like an array of 6
5784 	 * bytes (which it should, if OBP set it).  If we can't
5785 	 * make sense of it this way, we'll ignore it.
5786 	 */
5787 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5788 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5789 	if (err == DDI_PROP_SUCCESS) {
5790 		if (nelts == ETHERADDRL) {
5791 			while (nelts--)
5792 				hw->mac.addr[nelts] = bytes[nelts];
5793 			found = B_TRUE;
5794 		}
5795 		ddi_prop_free(bytes);
5796 	}
5797 
5798 	/*
5799 	 * Look up the OBP property "local-mac-address?". If the user has set
5800 	 * 'local-mac-address? = false', use "the system address" instead.
5801 	 */
5802 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5803 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5804 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5805 			if (localetheraddr(NULL, &sysaddr) != 0) {
5806 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5807 				found = B_TRUE;
5808 			}
5809 		}
5810 		ddi_prop_free(bytes);
5811 	}
5812 
5813 	/*
5814 	 * Finally(!), if there's a valid "mac-address" property (created
5815 	 * if we netbooted from this interface), we must use this instead
5816 	 * of any of the above to ensure that the NFS/install server doesn't
5817 	 * get confused by the address changing as Solaris takes over!
5818 	 */
5819 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5820 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5821 	if (err == DDI_PROP_SUCCESS) {
5822 		if (nelts == ETHERADDRL) {
5823 			while (nelts--)
5824 				hw->mac.addr[nelts] = bytes[nelts];
5825 			found = B_TRUE;
5826 		}
5827 		ddi_prop_free(bytes);
5828 	}
5829 
5830 	if (found) {
5831 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5832 		    ETHERADDRL);
5833 	}
5834 
5835 	return (found);
5836 }
5837 #endif
5838 
5839 static int
5840 e1000g_add_intrs(struct e1000g *Adapter)
5841 {
5842 	dev_info_t *devinfo;
5843 	int intr_types;
5844 	int rc;
5845 
5846 	devinfo = Adapter->dip;
5847 
5848 	/* Get supported interrupt types */
5849 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5850 
5851 	if (rc != DDI_SUCCESS) {
5852 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5853 		    "Get supported interrupt types failed: %d\n", rc);
5854 		return (DDI_FAILURE);
5855 	}
5856 
5857 	/*
5858 	 * Based on Intel Technical Advisory document (TA-160), there are some
5859 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5860 	 * that it supports MSI, but in fact has problems.
5861 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5862 	 * PCI/PCI-X NICs.
5863 	 */
5864 	if (Adapter->shared.mac.type < e1000_82571)
5865 		Adapter->msi_enable = B_FALSE;
5866 
5867 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5868 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5869 
5870 		if (rc != DDI_SUCCESS) {
5871 			/* EMPTY */
5872 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5873 			    "Add MSI failed, trying Legacy interrupts\n");
5874 		} else {
5875 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5876 		}
5877 	}
5878 
5879 	if ((Adapter->intr_type == 0) &&
5880 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5881 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5882 
5883 		if (rc != DDI_SUCCESS) {
5884 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5885 			    "Add Legacy interrupts failed\n");
5886 			return (DDI_FAILURE);
5887 		}
5888 
5889 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5890 	}
5891 
5892 	if (Adapter->intr_type == 0) {
5893 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5894 		    "No interrupts registered\n");
5895 		return (DDI_FAILURE);
5896 	}
5897 
5898 	return (DDI_SUCCESS);
5899 }
5900 
5901 /*
5902  * e1000g_intr_add() handles MSI/Legacy interrupts
5903  */
5904 static int
5905 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5906 {
5907 	dev_info_t *devinfo;
5908 	int count, avail, actual;
5909 	int x, y, rc, inum = 0;
5910 	int flag;
5911 	ddi_intr_handler_t *intr_handler;
5912 
5913 	devinfo = Adapter->dip;
5914 
5915 	/* get number of interrupts */
5916 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5917 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5918 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5919 		    "Get interrupt number failed. Return: %d, count: %d\n",
5920 		    rc, count);
5921 		return (DDI_FAILURE);
5922 	}
5923 
5924 	/* get number of available interrupts */
5925 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5926 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5927 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5928 		    "Get interrupt available number failed. "
5929 		    "Return: %d, available: %d\n", rc, avail);
5930 		return (DDI_FAILURE);
5931 	}
5932 
5933 	if (avail < count) {
5934 		/* EMPTY */
5935 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5936 		    "Interrupts count: %d, available: %d\n",
5937 		    count, avail);
5938 	}
5939 
5940 	/* Allocate an array of interrupt handles */
5941 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5942 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5943 
5944 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5945 	flag = DDI_INTR_ALLOC_NORMAL;
5946 
5947 	/* call ddi_intr_alloc() */
5948 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5949 	    count, &actual, flag);
5950 
5951 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5952 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5953 		    "Allocate interrupts failed: %d\n", rc);
5954 
5955 		kmem_free(Adapter->htable, Adapter->intr_size);
5956 		return (DDI_FAILURE);
5957 	}
5958 
5959 	if (actual < count) {
5960 		/* EMPTY */
5961 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5962 		    "Interrupts requested: %d, received: %d\n",
5963 		    count, actual);
5964 	}
5965 
5966 	Adapter->intr_cnt = actual;
5967 
5968 	/* Get priority for first msi, assume remaining are all the same */
5969 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5970 
5971 	if (rc != DDI_SUCCESS) {
5972 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5973 		    "Get interrupt priority failed: %d\n", rc);
5974 
5975 		/* Free already allocated intr */
5976 		for (y = 0; y < actual; y++)
5977 			(void) ddi_intr_free(Adapter->htable[y]);
5978 
5979 		kmem_free(Adapter->htable, Adapter->intr_size);
5980 		return (DDI_FAILURE);
5981 	}
5982 
5983 	/*
5984 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5985 	 * use the interrupt service routine e1000g_intr_pciexpress()
5986 	 * to avoid interrupt stealing when sharing interrupt with other
5987 	 * devices.
5988 	 */
5989 	if (Adapter->shared.mac.type < e1000_82571)
5990 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5991 	else
5992 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5993 
5994 	/* Call ddi_intr_add_handler() */
5995 	for (x = 0; x < actual; x++) {
5996 		rc = ddi_intr_add_handler(Adapter->htable[x],
5997 		    intr_handler, (caddr_t)Adapter, NULL);
5998 
5999 		if (rc != DDI_SUCCESS) {
6000 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6001 			    "Add interrupt handler failed: %d\n", rc);
6002 
6003 			/* Remove already added handler */
6004 			for (y = 0; y < x; y++)
6005 				(void) ddi_intr_remove_handler(
6006 				    Adapter->htable[y]);
6007 
6008 			/* Free already allocated intr */
6009 			for (y = 0; y < actual; y++)
6010 				(void) ddi_intr_free(Adapter->htable[y]);
6011 
6012 			kmem_free(Adapter->htable, Adapter->intr_size);
6013 			return (DDI_FAILURE);
6014 		}
6015 	}
6016 
6017 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
6018 
6019 	if (rc != DDI_SUCCESS) {
6020 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6021 		    "Get interrupt cap failed: %d\n", rc);
6022 
6023 		/* Free already allocated intr */
6024 		for (y = 0; y < actual; y++) {
6025 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
6026 			(void) ddi_intr_free(Adapter->htable[y]);
6027 		}
6028 
6029 		kmem_free(Adapter->htable, Adapter->intr_size);
6030 		return (DDI_FAILURE);
6031 	}
6032 
6033 	return (DDI_SUCCESS);
6034 }
6035 
6036 static int
6037 e1000g_rem_intrs(struct e1000g *Adapter)
6038 {
6039 	int x;
6040 	int rc;
6041 
6042 	for (x = 0; x < Adapter->intr_cnt; x++) {
6043 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
6044 		if (rc != DDI_SUCCESS) {
6045 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6046 			    "Remove intr handler failed: %d\n", rc);
6047 			return (DDI_FAILURE);
6048 		}
6049 
6050 		rc = ddi_intr_free(Adapter->htable[x]);
6051 		if (rc != DDI_SUCCESS) {
6052 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6053 			    "Free intr failed: %d\n", rc);
6054 			return (DDI_FAILURE);
6055 		}
6056 	}
6057 
6058 	kmem_free(Adapter->htable, Adapter->intr_size);
6059 
6060 	return (DDI_SUCCESS);
6061 }
6062 
6063 static int
6064 e1000g_enable_intrs(struct e1000g *Adapter)
6065 {
6066 	int x;
6067 	int rc;
6068 
6069 	/* Enable interrupts */
6070 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6071 		/* Call ddi_intr_block_enable() for MSI */
6072 		rc = ddi_intr_block_enable(Adapter->htable,
6073 		    Adapter->intr_cnt);
6074 		if (rc != DDI_SUCCESS) {
6075 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6076 			    "Enable block intr failed: %d\n", rc);
6077 			return (DDI_FAILURE);
6078 		}
6079 	} else {
6080 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
6081 		for (x = 0; x < Adapter->intr_cnt; x++) {
6082 			rc = ddi_intr_enable(Adapter->htable[x]);
6083 			if (rc != DDI_SUCCESS) {
6084 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6085 				    "Enable intr failed: %d\n", rc);
6086 				return (DDI_FAILURE);
6087 			}
6088 		}
6089 	}
6090 
6091 	return (DDI_SUCCESS);
6092 }
6093 
6094 static int
6095 e1000g_disable_intrs(struct e1000g *Adapter)
6096 {
6097 	int x;
6098 	int rc;
6099 
6100 	/* Disable all interrupts */
6101 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6102 		rc = ddi_intr_block_disable(Adapter->htable,
6103 		    Adapter->intr_cnt);
6104 		if (rc != DDI_SUCCESS) {
6105 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6106 			    "Disable block intr failed: %d\n", rc);
6107 			return (DDI_FAILURE);
6108 		}
6109 	} else {
6110 		for (x = 0; x < Adapter->intr_cnt; x++) {
6111 			rc = ddi_intr_disable(Adapter->htable[x]);
6112 			if (rc != DDI_SUCCESS) {
6113 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6114 				    "Disable intr failed: %d\n", rc);
6115 				return (DDI_FAILURE);
6116 			}
6117 		}
6118 	}
6119 
6120 	return (DDI_SUCCESS);
6121 }
6122 
6123 /*
6124  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
6125  */
6126 static void
6127 e1000g_get_phy_state(struct e1000g *Adapter)
6128 {
6129 	struct e1000_hw *hw = &Adapter->shared;
6130 
6131 	if (hw->phy.media_type == e1000_media_type_copper) {
6132 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
6133 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
6134 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
6135 		    &Adapter->phy_an_adv);
6136 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
6137 		    &Adapter->phy_an_exp);
6138 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
6139 		    &Adapter->phy_ext_status);
6140 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
6141 		    &Adapter->phy_1000t_ctrl);
6142 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6143 		    &Adapter->phy_1000t_status);
6144 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
6145 		    &Adapter->phy_lp_able);
6146 
6147 		Adapter->param_autoneg_cap =
6148 		    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
6149 		Adapter->param_pause_cap =
6150 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6151 		Adapter->param_asym_pause_cap =
6152 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6153 		Adapter->param_1000fdx_cap =
6154 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
6155 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
6156 		Adapter->param_1000hdx_cap =
6157 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
6158 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
6159 		Adapter->param_100t4_cap =
6160 		    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
6161 		Adapter->param_100fdx_cap =
6162 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6163 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
6164 		Adapter->param_100hdx_cap =
6165 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6166 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6167 		Adapter->param_10fdx_cap =
6168 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6169 		Adapter->param_10hdx_cap =
6170 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6171 
6172 		Adapter->param_adv_autoneg = hw->mac.autoneg;
6173 		Adapter->param_adv_pause =
6174 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6175 		Adapter->param_adv_asym_pause =
6176 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6177 		Adapter->param_adv_1000hdx =
6178 		    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
6179 		Adapter->param_adv_100t4 =
6180 		    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
6181 		if (Adapter->param_adv_autoneg == 1) {
6182 			Adapter->param_adv_1000fdx =
6183 			    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
6184 			    ? 1 : 0;
6185 			Adapter->param_adv_100fdx =
6186 			    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
6187 			    ? 1 : 0;
6188 			Adapter->param_adv_100hdx =
6189 			    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
6190 			    ? 1 : 0;
6191 			Adapter->param_adv_10fdx =
6192 			    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
6193 			Adapter->param_adv_10hdx =
6194 			    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
6195 		}
6196 
6197 		Adapter->param_lp_autoneg =
6198 		    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
6199 		Adapter->param_lp_pause =
6200 		    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
6201 		Adapter->param_lp_asym_pause =
6202 		    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
6203 		Adapter->param_lp_1000fdx =
6204 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
6205 		Adapter->param_lp_1000hdx =
6206 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
6207 		Adapter->param_lp_100t4 =
6208 		    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
6209 		Adapter->param_lp_100fdx =
6210 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
6211 		Adapter->param_lp_100hdx =
6212 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
6213 		Adapter->param_lp_10fdx =
6214 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
6215 		Adapter->param_lp_10hdx =
6216 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
6217 	} else {
6218 		/*
6219 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
6220 		 * it can only work with 1Gig Full Duplex Link Partner.
6221 		 */
6222 		Adapter->param_autoneg_cap = 0;
6223 		Adapter->param_pause_cap = 1;
6224 		Adapter->param_asym_pause_cap = 1;
6225 		Adapter->param_1000fdx_cap = 1;
6226 		Adapter->param_1000hdx_cap = 0;
6227 		Adapter->param_100t4_cap = 0;
6228 		Adapter->param_100fdx_cap = 0;
6229 		Adapter->param_100hdx_cap = 0;
6230 		Adapter->param_10fdx_cap = 0;
6231 		Adapter->param_10hdx_cap = 0;
6232 
6233 		Adapter->param_adv_autoneg = 0;
6234 		Adapter->param_adv_pause = 1;
6235 		Adapter->param_adv_asym_pause = 1;
6236 		Adapter->param_adv_1000fdx = 1;
6237 		Adapter->param_adv_1000hdx = 0;
6238 		Adapter->param_adv_100t4 = 0;
6239 		Adapter->param_adv_100fdx = 0;
6240 		Adapter->param_adv_100hdx = 0;
6241 		Adapter->param_adv_10fdx = 0;
6242 		Adapter->param_adv_10hdx = 0;
6243 
6244 		Adapter->param_lp_autoneg = 0;
6245 		Adapter->param_lp_pause = 0;
6246 		Adapter->param_lp_asym_pause = 0;
6247 		Adapter->param_lp_1000fdx = 0;
6248 		Adapter->param_lp_1000hdx = 0;
6249 		Adapter->param_lp_100t4 = 0;
6250 		Adapter->param_lp_100fdx = 0;
6251 		Adapter->param_lp_100hdx = 0;
6252 		Adapter->param_lp_10fdx = 0;
6253 		Adapter->param_lp_10hdx = 0;
6254 	}
6255 }
6256 
6257 /*
6258  * FMA support
6259  */
6260 
6261 int
6262 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6263 {
6264 	ddi_fm_error_t de;
6265 
6266 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6267 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6268 	return (de.fme_status);
6269 }
6270 
6271 int
6272 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6273 {
6274 	ddi_fm_error_t de;
6275 
6276 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6277 	return (de.fme_status);
6278 }
6279 
6280 /*
6281  * The IO fault service error handling callback function
6282  */
6283 /* ARGSUSED2 */
6284 static int
6285 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6286 {
6287 	/*
6288 	 * as the driver can always deal with an error in any dma or
6289 	 * access handle, we can just return the fme_status value.
6290 	 */
6291 	pci_ereport_post(dip, err, NULL);
6292 	return (err->fme_status);
6293 }
6294 
6295 static void
6296 e1000g_fm_init(struct e1000g *Adapter)
6297 {
6298 	ddi_iblock_cookie_t iblk;
6299 	int fma_dma_flag;
6300 
6301 	/* Only register with IO Fault Services if we have some capability */
6302 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6303 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6304 	} else {
6305 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6306 	}
6307 
6308 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6309 		fma_dma_flag = 1;
6310 	} else {
6311 		fma_dma_flag = 0;
6312 	}
6313 
6314 	(void) e1000g_set_fma_flags(fma_dma_flag);
6315 
6316 	if (Adapter->fm_capabilities) {
6317 
6318 		/* Register capabilities with IO Fault Services */
6319 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6320 
6321 		/*
6322 		 * Initialize pci ereport capabilities if ereport capable
6323 		 */
6324 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6325 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6326 			pci_ereport_setup(Adapter->dip);
6327 
6328 		/*
6329 		 * Register error callback if error callback capable
6330 		 */
6331 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6332 			ddi_fm_handler_register(Adapter->dip,
6333 			    e1000g_fm_error_cb, (void*) Adapter);
6334 	}
6335 }
6336 
6337 static void
6338 e1000g_fm_fini(struct e1000g *Adapter)
6339 {
6340 	/* Only unregister FMA capabilities if we registered some */
6341 	if (Adapter->fm_capabilities) {
6342 
6343 		/*
6344 		 * Release any resources allocated by pci_ereport_setup()
6345 		 */
6346 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6347 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6348 			pci_ereport_teardown(Adapter->dip);
6349 
6350 		/*
6351 		 * Un-register error callback if error callback capable
6352 		 */
6353 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6354 			ddi_fm_handler_unregister(Adapter->dip);
6355 
6356 		/* Unregister from IO Fault Services */
6357 		mutex_enter(&e1000g_rx_detach_lock);
6358 		ddi_fm_fini(Adapter->dip);
6359 		if (Adapter->priv_dip != NULL) {
6360 			DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6361 		}
6362 		mutex_exit(&e1000g_rx_detach_lock);
6363 	}
6364 }
6365 
6366 void
6367 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6368 {
6369 	uint64_t ena;
6370 	char buf[FM_MAX_CLASS];
6371 
6372 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6373 	ena = fm_ena_generate(0, FM_ENA_FMT1);
6374 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6375 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6376 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6377 	}
6378 }
6379 
6380 /*
6381  * quiesce(9E) entry point.
6382  *
6383  * This function is called when the system is single-threaded at high
6384  * PIL with preemption disabled. Therefore, this function must not be
6385  * blocked.
6386  *
6387  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6388  * DDI_FAILURE indicates an error condition and should almost never happen.
6389  */
6390 static int
6391 e1000g_quiesce(dev_info_t *devinfo)
6392 {
6393 	struct e1000g *Adapter;
6394 
6395 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6396 
6397 	if (Adapter == NULL)
6398 		return (DDI_FAILURE);
6399 
6400 	e1000g_clear_all_interrupts(Adapter);
6401 
6402 	(void) e1000_reset_hw(&Adapter->shared);
6403 
6404 	/* Setup our HW Tx Head & Tail descriptor pointers */
6405 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6406 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6407 
6408 	/* Setup our HW Rx Head & Tail descriptor pointers */
6409 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6410 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6411 
6412 	return (DDI_SUCCESS);
6413 }
6414 
6415 /*
6416  * synchronize the adv* and en* parameters.
6417  *
6418  * See comments in <sys/dld.h> for details of the *_en_*
6419  * parameters. The usage of ndd for setting adv parameters will
6420  * synchronize all the en parameters with the e1000g parameters,
6421  * implicitly disabling any settings made via dladm.
6422  */
6423 static void
6424 e1000g_param_sync(struct e1000g *Adapter)
6425 {
6426 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6427 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6428 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6429 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6430 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6431 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6432 }
6433 
6434 /*
6435  * e1000g_get_driver_control - tell manageability firmware that the driver
6436  * has control.
6437  */
6438 static void
6439 e1000g_get_driver_control(struct e1000_hw *hw)
6440 {
6441 	uint32_t ctrl_ext;
6442 	uint32_t swsm;
6443 
6444 	/* tell manageability firmware the driver has taken over */
6445 	switch (hw->mac.type) {
6446 	case e1000_82573:
6447 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6448 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6449 		break;
6450 	case e1000_82571:
6451 	case e1000_82572:
6452 	case e1000_82574:
6453 	case e1000_80003es2lan:
6454 	case e1000_ich8lan:
6455 	case e1000_ich9lan:
6456 	case e1000_ich10lan:
6457 	case e1000_pchlan:
6458 	case e1000_pch2lan:
6459 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6460 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6461 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6462 		break;
6463 	default:
6464 		/* no manageability firmware: do nothing */
6465 		break;
6466 	}
6467 }
6468 
6469 /*
6470  * e1000g_release_driver_control - tell manageability firmware that the driver
6471  * has released control.
6472  */
6473 static void
6474 e1000g_release_driver_control(struct e1000_hw *hw)
6475 {
6476 	uint32_t ctrl_ext;
6477 	uint32_t swsm;
6478 
6479 	/* tell manageability firmware the driver has released control */
6480 	switch (hw->mac.type) {
6481 	case e1000_82573:
6482 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6483 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6484 		break;
6485 	case e1000_82571:
6486 	case e1000_82572:
6487 	case e1000_82574:
6488 	case e1000_80003es2lan:
6489 	case e1000_ich8lan:
6490 	case e1000_ich9lan:
6491 	case e1000_ich10lan:
6492 	case e1000_pchlan:
6493 	case e1000_pch2lan:
6494 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6495 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6496 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6497 		break;
6498 	default:
6499 		/* no manageability firmware: do nothing */
6500 		break;
6501 	}
6502 }
6503 
6504 /*
6505  * Restore e1000g promiscuous mode.
6506  */
6507 static void
6508 e1000g_restore_promisc(struct e1000g *Adapter)
6509 {
6510 	if (Adapter->e1000g_promisc) {
6511 		uint32_t rctl;
6512 
6513 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6514 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6515 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6516 	}
6517 }
6518