xref: /titanic_44/usr/src/uts/common/io/e1000api/e1000_api.c (revision 8622ec4569457733001d4982ef7f5b44427069be)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2014, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 		mac->type = e1000_ich10lan;
281 		break;
282 	case E1000_DEV_ID_PCH_D_HV_DM:
283 	case E1000_DEV_ID_PCH_D_HV_DC:
284 	case E1000_DEV_ID_PCH_M_HV_LM:
285 	case E1000_DEV_ID_PCH_M_HV_LC:
286 		mac->type = e1000_pchlan;
287 		break;
288 	case E1000_DEV_ID_PCH2_LV_LM:
289 	case E1000_DEV_ID_PCH2_LV_V:
290 		mac->type = e1000_pch2lan;
291 		break;
292 	case E1000_DEV_ID_PCH_LPT_I217_LM:
293 	case E1000_DEV_ID_PCH_LPT_I217_V:
294 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 	case E1000_DEV_ID_PCH_I218_LM2:
297 	case E1000_DEV_ID_PCH_I218_V2:
298 	case E1000_DEV_ID_PCH_I218_LM3:
299 	case E1000_DEV_ID_PCH_I218_V3:
300 		mac->type = e1000_pch_lpt;
301 		break;
302 	case E1000_DEV_ID_82575EB_COPPER:
303 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
304 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
305 		mac->type = e1000_82575;
306 		break;
307 	case E1000_DEV_ID_82576:
308 	case E1000_DEV_ID_82576_FIBER:
309 	case E1000_DEV_ID_82576_SERDES:
310 	case E1000_DEV_ID_82576_QUAD_COPPER:
311 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
312 	case E1000_DEV_ID_82576_NS:
313 	case E1000_DEV_ID_82576_NS_SERDES:
314 	case E1000_DEV_ID_82576_SERDES_QUAD:
315 		mac->type = e1000_82576;
316 		break;
317 	case E1000_DEV_ID_82580_COPPER:
318 	case E1000_DEV_ID_82580_FIBER:
319 	case E1000_DEV_ID_82580_SERDES:
320 	case E1000_DEV_ID_82580_SGMII:
321 	case E1000_DEV_ID_82580_COPPER_DUAL:
322 	case E1000_DEV_ID_82580_QUAD_FIBER:
323 	case E1000_DEV_ID_DH89XXCC_SGMII:
324 	case E1000_DEV_ID_DH89XXCC_SERDES:
325 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
326 	case E1000_DEV_ID_DH89XXCC_SFP:
327 		mac->type = e1000_82580;
328 		break;
329 	case E1000_DEV_ID_I350_COPPER:
330 	case E1000_DEV_ID_I350_FIBER:
331 	case E1000_DEV_ID_I350_SERDES:
332 	case E1000_DEV_ID_I350_SGMII:
333 	case E1000_DEV_ID_I350_DA4:
334 		mac->type = e1000_i350;
335 		break;
336 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
337 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
338 	case E1000_DEV_ID_I210_COPPER:
339 	case E1000_DEV_ID_I210_COPPER_OEM1:
340 	case E1000_DEV_ID_I210_COPPER_IT:
341 	case E1000_DEV_ID_I210_FIBER:
342 	case E1000_DEV_ID_I210_SERDES:
343 	case E1000_DEV_ID_I210_SGMII:
344 		mac->type = e1000_i210;
345 		break;
346 	case E1000_DEV_ID_I211_COPPER:
347 		mac->type = e1000_i211;
348 		break;
349 	case E1000_DEV_ID_82576_VF:
350 	case E1000_DEV_ID_82576_VF_HV:
351 		mac->type = e1000_vfadapt;
352 		break;
353 	case E1000_DEV_ID_I350_VF:
354 	case E1000_DEV_ID_I350_VF_HV:
355 		mac->type = e1000_vfadapt_i350;
356 		break;
357 
358 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
359 	case E1000_DEV_ID_I354_SGMII:
360 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
361 		mac->type = e1000_i354;
362 		break;
363 	default:
364 		/* Should never have loaded on this device */
365 		ret_val = -E1000_ERR_MAC_INIT;
366 		break;
367 	}
368 
369 	return ret_val;
370 }
371 
372 /**
373  *  e1000_setup_init_funcs - Initializes function pointers
374  *  @hw: pointer to the HW structure
375  *  @init_device: TRUE will initialize the rest of the function pointers
376  *		  getting the device ready for use.  FALSE will only set
377  *		  MAC type and the function pointers for the other init
378  *		  functions.  Passing FALSE will not generate any hardware
379  *		  reads or writes.
380  *
381  *  This function must be called by a driver in order to use the rest
382  *  of the 'shared' code files. Called by drivers only.
383  **/
384 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
385 {
386 	s32 ret_val;
387 
388 	/* Can't do much good without knowing the MAC type. */
389 	ret_val = e1000_set_mac_type(hw);
390 	if (ret_val) {
391 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
392 		goto out;
393 	}
394 
395 	if (!hw->hw_addr) {
396 		DEBUGOUT("ERROR: Registers not mapped\n");
397 		ret_val = -E1000_ERR_CONFIG;
398 		goto out;
399 	}
400 
401 	/*
402 	 * Init function pointers to generic implementations. We do this first
403 	 * allowing a driver module to override it afterward.
404 	 */
405 	e1000_init_mac_ops_generic(hw);
406 	e1000_init_phy_ops_generic(hw);
407 	e1000_init_nvm_ops_generic(hw);
408 	e1000_init_mbx_ops_generic(hw);
409 
410 	/*
411 	 * Set up the init function pointers. These are functions within the
412 	 * adapter family file that sets up function pointers for the rest of
413 	 * the functions in that family.
414 	 */
415 	switch (hw->mac.type) {
416 	case e1000_82542:
417 		e1000_init_function_pointers_82542(hw);
418 		break;
419 	case e1000_82543:
420 	case e1000_82544:
421 		e1000_init_function_pointers_82543(hw);
422 		break;
423 	case e1000_82540:
424 	case e1000_82545:
425 	case e1000_82545_rev_3:
426 	case e1000_82546:
427 	case e1000_82546_rev_3:
428 		e1000_init_function_pointers_82540(hw);
429 		break;
430 	case e1000_82541:
431 	case e1000_82541_rev_2:
432 	case e1000_82547:
433 	case e1000_82547_rev_2:
434 		e1000_init_function_pointers_82541(hw);
435 		break;
436 	case e1000_82571:
437 	case e1000_82572:
438 	case e1000_82573:
439 	case e1000_82574:
440 	case e1000_82583:
441 		e1000_init_function_pointers_82571(hw);
442 		break;
443 	case e1000_80003es2lan:
444 		e1000_init_function_pointers_80003es2lan(hw);
445 		break;
446 	case e1000_ich8lan:
447 	case e1000_ich9lan:
448 	case e1000_ich10lan:
449 	case e1000_pchlan:
450 	case e1000_pch2lan:
451 	case e1000_pch_lpt:
452 		e1000_init_function_pointers_ich8lan(hw);
453 		break;
454 	case e1000_82575:
455 	case e1000_82576:
456 	case e1000_82580:
457 	case e1000_i350:
458 	case e1000_i354:
459 		e1000_init_function_pointers_82575(hw);
460 		break;
461 	case e1000_i210:
462 	case e1000_i211:
463 		e1000_init_function_pointers_i210(hw);
464 		break;
465 	case e1000_vfadapt:
466 		e1000_init_function_pointers_vf(hw);
467 		break;
468 	case e1000_vfadapt_i350:
469 		e1000_init_function_pointers_vf(hw);
470 		break;
471 	default:
472 		DEBUGOUT("Hardware not supported\n");
473 		ret_val = -E1000_ERR_CONFIG;
474 		break;
475 	}
476 
477 	/*
478 	 * Initialize the rest of the function pointers. These require some
479 	 * register reads/writes in some cases.
480 	 */
481 	if (!(ret_val) && init_device) {
482 		ret_val = e1000_init_mac_params(hw);
483 		if (ret_val)
484 			goto out;
485 
486 		ret_val = e1000_init_nvm_params(hw);
487 		if (ret_val)
488 			goto out;
489 
490 		ret_val = e1000_init_phy_params(hw);
491 		if (ret_val)
492 			goto out;
493 
494 		ret_val = e1000_init_mbx_params(hw);
495 		if (ret_val)
496 			goto out;
497 	}
498 
499 out:
500 	return ret_val;
501 }
502 
503 /**
504  *  e1000_get_bus_info - Obtain bus information for adapter
505  *  @hw: pointer to the HW structure
506  *
507  *  This will obtain information about the HW bus for which the
508  *  adapter is attached and stores it in the hw structure. This is a
509  *  function pointer entry point called by drivers.
510  **/
511 s32 e1000_get_bus_info(struct e1000_hw *hw)
512 {
513 	if (hw->mac.ops.get_bus_info)
514 		return hw->mac.ops.get_bus_info(hw);
515 
516 	return E1000_SUCCESS;
517 }
518 
519 /**
520  *  e1000_clear_vfta - Clear VLAN filter table
521  *  @hw: pointer to the HW structure
522  *
523  *  This clears the VLAN filter table on the adapter. This is a function
524  *  pointer entry point called by drivers.
525  **/
526 void e1000_clear_vfta(struct e1000_hw *hw)
527 {
528 	if (hw->mac.ops.clear_vfta)
529 		hw->mac.ops.clear_vfta(hw);
530 }
531 
532 /**
533  *  e1000_write_vfta - Write value to VLAN filter table
534  *  @hw: pointer to the HW structure
535  *  @offset: the 32-bit offset in which to write the value to.
536  *  @value: the 32-bit value to write at location offset.
537  *
538  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
539  *  table. This is a function pointer entry point called by drivers.
540  **/
541 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
542 {
543 	if (hw->mac.ops.write_vfta)
544 		hw->mac.ops.write_vfta(hw, offset, value);
545 }
546 
547 /**
548  *  e1000_update_mc_addr_list - Update Multicast addresses
549  *  @hw: pointer to the HW structure
550  *  @mc_addr_list: array of multicast addresses to program
551  *  @mc_addr_count: number of multicast addresses to program
552  *
553  *  Updates the Multicast Table Array.
554  *  The caller must have a packed mc_addr_list of multicast addresses.
555  **/
556 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
557 			       u32 mc_addr_count)
558 {
559 	if (hw->mac.ops.update_mc_addr_list)
560 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
561 						mc_addr_count);
562 }
563 
564 /**
565  *  e1000_force_mac_fc - Force MAC flow control
566  *  @hw: pointer to the HW structure
567  *
568  *  Force the MAC's flow control settings. Currently no func pointer exists
569  *  and all implementations are handled in the generic version of this
570  *  function.
571  **/
572 s32 e1000_force_mac_fc(struct e1000_hw *hw)
573 {
574 	return e1000_force_mac_fc_generic(hw);
575 }
576 
577 /**
578  *  e1000_check_for_link - Check/Store link connection
579  *  @hw: pointer to the HW structure
580  *
581  *  This checks the link condition of the adapter and stores the
582  *  results in the hw->mac structure. This is a function pointer entry
583  *  point called by drivers.
584  **/
585 s32 e1000_check_for_link(struct e1000_hw *hw)
586 {
587 	if (hw->mac.ops.check_for_link)
588 		return hw->mac.ops.check_for_link(hw);
589 
590 	return -E1000_ERR_CONFIG;
591 }
592 
593 /**
594  *  e1000_check_mng_mode - Check management mode
595  *  @hw: pointer to the HW structure
596  *
597  *  This checks if the adapter has manageability enabled.
598  *  This is a function pointer entry point called by drivers.
599  **/
600 bool e1000_check_mng_mode(struct e1000_hw *hw)
601 {
602 	if (hw->mac.ops.check_mng_mode)
603 		return hw->mac.ops.check_mng_mode(hw);
604 
605 	return FALSE;
606 }
607 
608 /**
609  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
610  *  @hw: pointer to the HW structure
611  *  @buffer: pointer to the host interface
612  *  @length: size of the buffer
613  *
614  *  Writes the DHCP information to the host interface.
615  **/
616 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
617 {
618 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
619 }
620 
621 /**
622  *  e1000_reset_hw - Reset hardware
623  *  @hw: pointer to the HW structure
624  *
625  *  This resets the hardware into a known state. This is a function pointer
626  *  entry point called by drivers.
627  **/
628 s32 e1000_reset_hw(struct e1000_hw *hw)
629 {
630 	if (hw->mac.ops.reset_hw)
631 		return hw->mac.ops.reset_hw(hw);
632 
633 	return -E1000_ERR_CONFIG;
634 }
635 
636 /**
637  *  e1000_init_hw - Initialize hardware
638  *  @hw: pointer to the HW structure
639  *
640  *  This inits the hardware readying it for operation. This is a function
641  *  pointer entry point called by drivers.
642  **/
643 s32 e1000_init_hw(struct e1000_hw *hw)
644 {
645 	if (hw->mac.ops.init_hw)
646 		return hw->mac.ops.init_hw(hw);
647 
648 	return -E1000_ERR_CONFIG;
649 }
650 
651 /**
652  *  e1000_setup_link - Configures link and flow control
653  *  @hw: pointer to the HW structure
654  *
655  *  This configures link and flow control settings for the adapter. This
656  *  is a function pointer entry point called by drivers. While modules can
657  *  also call this, they probably call their own version of this function.
658  **/
659 s32 e1000_setup_link(struct e1000_hw *hw)
660 {
661 	if (hw->mac.ops.setup_link)
662 		return hw->mac.ops.setup_link(hw);
663 
664 	return -E1000_ERR_CONFIG;
665 }
666 
667 /**
668  *  e1000_get_speed_and_duplex - Returns current speed and duplex
669  *  @hw: pointer to the HW structure
670  *  @speed: pointer to a 16-bit value to store the speed
671  *  @duplex: pointer to a 16-bit value to store the duplex.
672  *
673  *  This returns the speed and duplex of the adapter in the two 'out'
674  *  variables passed in. This is a function pointer entry point called
675  *  by drivers.
676  **/
677 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
678 {
679 	if (hw->mac.ops.get_link_up_info)
680 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
681 
682 	return -E1000_ERR_CONFIG;
683 }
684 
685 /**
686  *  e1000_setup_led - Configures SW controllable LED
687  *  @hw: pointer to the HW structure
688  *
689  *  This prepares the SW controllable LED for use and saves the current state
690  *  of the LED so it can be later restored. This is a function pointer entry
691  *  point called by drivers.
692  **/
693 s32 e1000_setup_led(struct e1000_hw *hw)
694 {
695 	if (hw->mac.ops.setup_led)
696 		return hw->mac.ops.setup_led(hw);
697 
698 	return E1000_SUCCESS;
699 }
700 
701 /**
702  *  e1000_cleanup_led - Restores SW controllable LED
703  *  @hw: pointer to the HW structure
704  *
705  *  This restores the SW controllable LED to the value saved off by
706  *  e1000_setup_led. This is a function pointer entry point called by drivers.
707  **/
708 s32 e1000_cleanup_led(struct e1000_hw *hw)
709 {
710 	if (hw->mac.ops.cleanup_led)
711 		return hw->mac.ops.cleanup_led(hw);
712 
713 	return E1000_SUCCESS;
714 }
715 
716 /**
717  *  e1000_blink_led - Blink SW controllable LED
718  *  @hw: pointer to the HW structure
719  *
720  *  This starts the adapter LED blinking. Request the LED to be setup first
721  *  and cleaned up after. This is a function pointer entry point called by
722  *  drivers.
723  **/
724 s32 e1000_blink_led(struct e1000_hw *hw)
725 {
726 	if (hw->mac.ops.blink_led)
727 		return hw->mac.ops.blink_led(hw);
728 
729 	return E1000_SUCCESS;
730 }
731 
732 /**
733  *  e1000_id_led_init - store LED configurations in SW
734  *  @hw: pointer to the HW structure
735  *
736  *  Initializes the LED config in SW. This is a function pointer entry point
737  *  called by drivers.
738  **/
739 s32 e1000_id_led_init(struct e1000_hw *hw)
740 {
741 	if (hw->mac.ops.id_led_init)
742 		return hw->mac.ops.id_led_init(hw);
743 
744 	return E1000_SUCCESS;
745 }
746 
747 /**
748  *  e1000_led_on - Turn on SW controllable LED
749  *  @hw: pointer to the HW structure
750  *
751  *  Turns the SW defined LED on. This is a function pointer entry point
752  *  called by drivers.
753  **/
754 s32 e1000_led_on(struct e1000_hw *hw)
755 {
756 	if (hw->mac.ops.led_on)
757 		return hw->mac.ops.led_on(hw);
758 
759 	return E1000_SUCCESS;
760 }
761 
762 /**
763  *  e1000_led_off - Turn off SW controllable LED
764  *  @hw: pointer to the HW structure
765  *
766  *  Turns the SW defined LED off. This is a function pointer entry point
767  *  called by drivers.
768  **/
769 s32 e1000_led_off(struct e1000_hw *hw)
770 {
771 	if (hw->mac.ops.led_off)
772 		return hw->mac.ops.led_off(hw);
773 
774 	return E1000_SUCCESS;
775 }
776 
777 /**
778  *  e1000_reset_adaptive - Reset adaptive IFS
779  *  @hw: pointer to the HW structure
780  *
781  *  Resets the adaptive IFS. Currently no func pointer exists and all
782  *  implementations are handled in the generic version of this function.
783  **/
784 void e1000_reset_adaptive(struct e1000_hw *hw)
785 {
786 	e1000_reset_adaptive_generic(hw);
787 }
788 
789 /**
790  *  e1000_update_adaptive - Update adaptive IFS
791  *  @hw: pointer to the HW structure
792  *
793  *  Updates adapter IFS. Currently no func pointer exists and all
794  *  implementations are handled in the generic version of this function.
795  **/
796 void e1000_update_adaptive(struct e1000_hw *hw)
797 {
798 	e1000_update_adaptive_generic(hw);
799 }
800 
801 /**
802  *  e1000_disable_pcie_master - Disable PCI-Express master access
803  *  @hw: pointer to the HW structure
804  *
805  *  Disables PCI-Express master access and verifies there are no pending
806  *  requests. Currently no func pointer exists and all implementations are
807  *  handled in the generic version of this function.
808  **/
809 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
810 {
811 	return e1000_disable_pcie_master_generic(hw);
812 }
813 
814 /**
815  *  e1000_config_collision_dist - Configure collision distance
816  *  @hw: pointer to the HW structure
817  *
818  *  Configures the collision distance to the default value and is used
819  *  during link setup.
820  **/
821 void e1000_config_collision_dist(struct e1000_hw *hw)
822 {
823 	if (hw->mac.ops.config_collision_dist)
824 		hw->mac.ops.config_collision_dist(hw);
825 }
826 
827 /**
828  *  e1000_rar_set - Sets a receive address register
829  *  @hw: pointer to the HW structure
830  *  @addr: address to set the RAR to
831  *  @index: the RAR to set
832  *
833  *  Sets a Receive Address Register (RAR) to the specified address.
834  **/
835 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
836 {
837 	if (hw->mac.ops.rar_set)
838 		return hw->mac.ops.rar_set(hw, addr, index);
839 
840 	return E1000_SUCCESS;
841 }
842 
843 /**
844  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
845  *  @hw: pointer to the HW structure
846  *
847  *  Ensures that the MDI/MDIX SW state is valid.
848  **/
849 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
850 {
851 	if (hw->mac.ops.validate_mdi_setting)
852 		return hw->mac.ops.validate_mdi_setting(hw);
853 
854 	return E1000_SUCCESS;
855 }
856 
857 /**
858  *  e1000_hash_mc_addr - Determines address location in multicast table
859  *  @hw: pointer to the HW structure
860  *  @mc_addr: Multicast address to hash.
861  *
862  *  This hashes an address to determine its location in the multicast
863  *  table. Currently no func pointer exists and all implementations
864  *  are handled in the generic version of this function.
865  **/
866 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
867 {
868 	return e1000_hash_mc_addr_generic(hw, mc_addr);
869 }
870 
871 /**
872  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
873  *  @hw: pointer to the HW structure
874  *
875  *  Enables packet filtering on transmit packets if manageability is enabled
876  *  and host interface is enabled.
877  *  Currently no func pointer exists and all implementations are handled in the
878  *  generic version of this function.
879  **/
880 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
881 {
882 	return e1000_enable_tx_pkt_filtering_generic(hw);
883 }
884 
885 /**
886  *  e1000_mng_host_if_write - Writes to the manageability host interface
887  *  @hw: pointer to the HW structure
888  *  @buffer: pointer to the host interface buffer
889  *  @length: size of the buffer
890  *  @offset: location in the buffer to write to
891  *  @sum: sum of the data (not checksum)
892  *
893  *  This function writes the buffer content at the offset given on the host if.
894  *  It also does alignment considerations to do the writes in most efficient
895  *  way.  Also fills up the sum of the buffer in *buffer parameter.
896  **/
897 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
898 			    u16 offset, u8 *sum)
899 {
900 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
901 }
902 
903 /**
904  *  e1000_mng_write_cmd_header - Writes manageability command header
905  *  @hw: pointer to the HW structure
906  *  @hdr: pointer to the host interface command header
907  *
908  *  Writes the command header after does the checksum calculation.
909  **/
910 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
911 			       struct e1000_host_mng_command_header *hdr)
912 {
913 	return e1000_mng_write_cmd_header_generic(hw, hdr);
914 }
915 
916 /**
917  *  e1000_mng_enable_host_if - Checks host interface is enabled
918  *  @hw: pointer to the HW structure
919  *
920  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
921  *
922  *  This function checks whether the HOST IF is enabled for command operation
923  *  and also checks whether the previous command is completed.  It busy waits
924  *  in case of previous command is not completed.
925  **/
926 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
927 {
928 	return e1000_mng_enable_host_if_generic(hw);
929 }
930 
931 /**
932  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
933  *  @hw: pointer to the HW structure
934  *  @itr: u32 indicating itr value
935  *
936  *  Set the OBFF timer based on the given interrupt rate.
937  **/
938 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
939 {
940 	if (hw->mac.ops.set_obff_timer)
941 		return hw->mac.ops.set_obff_timer(hw, itr);
942 
943 	return E1000_SUCCESS;
944 }
945 
946 /**
947  *  e1000_check_reset_block - Verifies PHY can be reset
948  *  @hw: pointer to the HW structure
949  *
950  *  Checks if the PHY is in a state that can be reset or if manageability
951  *  has it tied up. This is a function pointer entry point called by drivers.
952  **/
953 s32 e1000_check_reset_block(struct e1000_hw *hw)
954 {
955 	if (hw->phy.ops.check_reset_block)
956 		return hw->phy.ops.check_reset_block(hw);
957 
958 	return E1000_SUCCESS;
959 }
960 
961 /**
962  *  e1000_read_phy_reg - Reads PHY register
963  *  @hw: pointer to the HW structure
964  *  @offset: the register to read
965  *  @data: the buffer to store the 16-bit read.
966  *
967  *  Reads the PHY register and returns the value in data.
968  *  This is a function pointer entry point called by drivers.
969  **/
970 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
971 {
972 	if (hw->phy.ops.read_reg)
973 		return hw->phy.ops.read_reg(hw, offset, data);
974 
975 	return E1000_SUCCESS;
976 }
977 
978 /**
979  *  e1000_write_phy_reg - Writes PHY register
980  *  @hw: pointer to the HW structure
981  *  @offset: the register to write
982  *  @data: the value to write.
983  *
984  *  Writes the PHY register at offset with the value in data.
985  *  This is a function pointer entry point called by drivers.
986  **/
987 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
988 {
989 	if (hw->phy.ops.write_reg)
990 		return hw->phy.ops.write_reg(hw, offset, data);
991 
992 	return E1000_SUCCESS;
993 }
994 
995 /**
996  *  e1000_release_phy - Generic release PHY
997  *  @hw: pointer to the HW structure
998  *
999  *  Return if silicon family does not require a semaphore when accessing the
1000  *  PHY.
1001  **/
1002 void e1000_release_phy(struct e1000_hw *hw)
1003 {
1004 	if (hw->phy.ops.release)
1005 		hw->phy.ops.release(hw);
1006 }
1007 
1008 /**
1009  *  e1000_acquire_phy - Generic acquire PHY
1010  *  @hw: pointer to the HW structure
1011  *
1012  *  Return success if silicon family does not require a semaphore when
1013  *  accessing the PHY.
1014  **/
1015 s32 e1000_acquire_phy(struct e1000_hw *hw)
1016 {
1017 	if (hw->phy.ops.acquire)
1018 		return hw->phy.ops.acquire(hw);
1019 
1020 	return E1000_SUCCESS;
1021 }
1022 
1023 /**
1024  *  e1000_cfg_on_link_up - Configure PHY upon link up
1025  *  @hw: pointer to the HW structure
1026  **/
1027 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1028 {
1029 	if (hw->phy.ops.cfg_on_link_up)
1030 		return hw->phy.ops.cfg_on_link_up(hw);
1031 
1032 	return E1000_SUCCESS;
1033 }
1034 
1035 /**
1036  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1037  *  @hw: pointer to the HW structure
1038  *  @offset: the register to read
1039  *  @data: the location to store the 16-bit value read.
1040  *
1041  *  Reads a register out of the Kumeran interface. Currently no func pointer
1042  *  exists and all implementations are handled in the generic version of
1043  *  this function.
1044  **/
1045 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1046 {
1047 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1048 }
1049 
1050 /**
1051  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1052  *  @hw: pointer to the HW structure
1053  *  @offset: the register to write
1054  *  @data: the value to write.
1055  *
1056  *  Writes a register to the Kumeran interface. Currently no func pointer
1057  *  exists and all implementations are handled in the generic version of
1058  *  this function.
1059  **/
1060 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1061 {
1062 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1063 }
1064 
1065 /**
1066  *  e1000_get_cable_length - Retrieves cable length estimation
1067  *  @hw: pointer to the HW structure
1068  *
1069  *  This function estimates the cable length and stores them in
1070  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1071  *  entry point called by drivers.
1072  **/
1073 s32 e1000_get_cable_length(struct e1000_hw *hw)
1074 {
1075 	if (hw->phy.ops.get_cable_length)
1076 		return hw->phy.ops.get_cable_length(hw);
1077 
1078 	return E1000_SUCCESS;
1079 }
1080 
1081 /**
1082  *  e1000_get_phy_info - Retrieves PHY information from registers
1083  *  @hw: pointer to the HW structure
1084  *
1085  *  This function gets some information from various PHY registers and
1086  *  populates hw->phy values with it. This is a function pointer entry
1087  *  point called by drivers.
1088  **/
1089 s32 e1000_get_phy_info(struct e1000_hw *hw)
1090 {
1091 	if (hw->phy.ops.get_info)
1092 		return hw->phy.ops.get_info(hw);
1093 
1094 	return E1000_SUCCESS;
1095 }
1096 
1097 /**
1098  *  e1000_phy_hw_reset - Hard PHY reset
1099  *  @hw: pointer to the HW structure
1100  *
1101  *  Performs a hard PHY reset. This is a function pointer entry point called
1102  *  by drivers.
1103  **/
1104 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1105 {
1106 	if (hw->phy.ops.reset)
1107 		return hw->phy.ops.reset(hw);
1108 
1109 	return E1000_SUCCESS;
1110 }
1111 
1112 /**
1113  *  e1000_phy_commit - Soft PHY reset
1114  *  @hw: pointer to the HW structure
1115  *
1116  *  Performs a soft PHY reset on those that apply. This is a function pointer
1117  *  entry point called by drivers.
1118  **/
1119 s32 e1000_phy_commit(struct e1000_hw *hw)
1120 {
1121 	if (hw->phy.ops.commit)
1122 		return hw->phy.ops.commit(hw);
1123 
1124 	return E1000_SUCCESS;
1125 }
1126 
1127 /**
1128  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1129  *  @hw: pointer to the HW structure
1130  *  @active: boolean used to enable/disable lplu
1131  *
1132  *  Success returns 0, Failure returns 1
1133  *
1134  *  The low power link up (lplu) state is set to the power management level D0
1135  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1136  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1137  *  is used during Dx states where the power conservation is most important.
1138  *  During driver activity, SmartSpeed should be enabled so performance is
1139  *  maintained.  This is a function pointer entry point called by drivers.
1140  **/
1141 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1142 {
1143 	if (hw->phy.ops.set_d0_lplu_state)
1144 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1145 
1146 	return E1000_SUCCESS;
1147 }
1148 
1149 /**
1150  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1151  *  @hw: pointer to the HW structure
1152  *  @active: boolean used to enable/disable lplu
1153  *
1154  *  Success returns 0, Failure returns 1
1155  *
1156  *  The low power link up (lplu) state is set to the power management level D3
1157  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1158  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1159  *  is used during Dx states where the power conservation is most important.
1160  *  During driver activity, SmartSpeed should be enabled so performance is
1161  *  maintained.  This is a function pointer entry point called by drivers.
1162  **/
1163 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1164 {
1165 	if (hw->phy.ops.set_d3_lplu_state)
1166 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1167 
1168 	return E1000_SUCCESS;
1169 }
1170 
1171 /**
1172  *  e1000_read_mac_addr - Reads MAC address
1173  *  @hw: pointer to the HW structure
1174  *
1175  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1176  *  Currently no func pointer exists and all implementations are handled in the
1177  *  generic version of this function.
1178  **/
1179 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1180 {
1181 	if (hw->mac.ops.read_mac_addr)
1182 		return hw->mac.ops.read_mac_addr(hw);
1183 
1184 	return e1000_read_mac_addr_generic(hw);
1185 }
1186 
1187 /**
1188  *  e1000_read_pba_string - Read device part number string
1189  *  @hw: pointer to the HW structure
1190  *  @pba_num: pointer to device part number
1191  *  @pba_num_size: size of part number buffer
1192  *
1193  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1194  *  the value in pba_num.
1195  *  Currently no func pointer exists and all implementations are handled in the
1196  *  generic version of this function.
1197  **/
1198 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1199 {
1200 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1201 }
1202 
1203 /**
1204  *  e1000_read_pba_length - Read device part number string length
1205  *  @hw: pointer to the HW structure
1206  *  @pba_num_size: size of part number buffer
1207  *
1208  *  Reads the product board assembly (PBA) number length from the EEPROM and
1209  *  stores the value in pba_num.
1210  *  Currently no func pointer exists and all implementations are handled in the
1211  *  generic version of this function.
1212  **/
1213 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1214 {
1215 	return e1000_read_pba_length_generic(hw, pba_num_size);
1216 }
1217 
1218 /**
1219  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1220  *  @hw: pointer to the HW structure
1221  *
1222  *  Validates the NVM checksum is correct. This is a function pointer entry
1223  *  point called by drivers.
1224  **/
1225 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1226 {
1227 	if (hw->nvm.ops.validate)
1228 		return hw->nvm.ops.validate(hw);
1229 
1230 	return -E1000_ERR_CONFIG;
1231 }
1232 
1233 /**
1234  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1235  *  @hw: pointer to the HW structure
1236  *
1237  *  Updates the NVM checksum. Currently no func pointer exists and all
1238  *  implementations are handled in the generic version of this function.
1239  **/
1240 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1241 {
1242 	if (hw->nvm.ops.update)
1243 		return hw->nvm.ops.update(hw);
1244 
1245 	return -E1000_ERR_CONFIG;
1246 }
1247 
1248 /**
1249  *  e1000_reload_nvm - Reloads EEPROM
1250  *  @hw: pointer to the HW structure
1251  *
1252  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1253  *  extended control register.
1254  **/
1255 void e1000_reload_nvm(struct e1000_hw *hw)
1256 {
1257 	if (hw->nvm.ops.reload)
1258 		hw->nvm.ops.reload(hw);
1259 }
1260 
1261 /**
1262  *  e1000_read_nvm - Reads NVM (EEPROM)
1263  *  @hw: pointer to the HW structure
1264  *  @offset: the word offset to read
1265  *  @words: number of 16-bit words to read
1266  *  @data: pointer to the properly sized buffer for the data.
1267  *
1268  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1269  *  pointer entry point called by drivers.
1270  **/
1271 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1272 {
1273 	if (hw->nvm.ops.read)
1274 		return hw->nvm.ops.read(hw, offset, words, data);
1275 
1276 	return -E1000_ERR_CONFIG;
1277 }
1278 
1279 /**
1280  *  e1000_write_nvm - Writes to NVM (EEPROM)
1281  *  @hw: pointer to the HW structure
1282  *  @offset: the word offset to read
1283  *  @words: number of 16-bit words to write
1284  *  @data: pointer to the properly sized buffer for the data.
1285  *
1286  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1287  *  pointer entry point called by drivers.
1288  **/
1289 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1290 {
1291 	if (hw->nvm.ops.write)
1292 		return hw->nvm.ops.write(hw, offset, words, data);
1293 
1294 	return E1000_SUCCESS;
1295 }
1296 
1297 /**
1298  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1299  *  @hw: pointer to the HW structure
1300  *  @reg: 32bit register offset
1301  *  @offset: the register to write
1302  *  @data: the value to write.
1303  *
1304  *  Writes the PHY register at offset with the value in data.
1305  *  This is a function pointer entry point called by drivers.
1306  **/
1307 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1308 			      u8 data)
1309 {
1310 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1311 }
1312 
1313 /**
1314  * e1000_power_up_phy - Restores link in case of PHY power down
1315  * @hw: pointer to the HW structure
1316  *
1317  * The phy may be powered down to save power, to turn off link when the
1318  * driver is unloaded, or wake on lan is not enabled (among others).
1319  **/
1320 void e1000_power_up_phy(struct e1000_hw *hw)
1321 {
1322 	if (hw->phy.ops.power_up)
1323 		hw->phy.ops.power_up(hw);
1324 
1325 	e1000_setup_link(hw);
1326 }
1327 
1328 /**
1329  * e1000_power_down_phy - Power down PHY
1330  * @hw: pointer to the HW structure
1331  *
1332  * The phy may be powered down to save power, to turn off link when the
1333  * driver is unloaded, or wake on lan is not enabled (among others).
1334  **/
1335 void e1000_power_down_phy(struct e1000_hw *hw)
1336 {
1337 	if (hw->phy.ops.power_down)
1338 		hw->phy.ops.power_down(hw);
1339 }
1340 
1341 /**
1342  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1343  *  @hw: pointer to the HW structure
1344  *
1345  *  Power on the optics and PCS.
1346  **/
1347 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1348 {
1349 	if (hw->mac.ops.power_up_serdes)
1350 		hw->mac.ops.power_up_serdes(hw);
1351 }
1352 
1353 /**
1354  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1355  *  @hw: pointer to the HW structure
1356  *
1357  *  Shutdown the optics and PCS on driver unload.
1358  **/
1359 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1360 {
1361 	if (hw->mac.ops.shutdown_serdes)
1362 		hw->mac.ops.shutdown_serdes(hw);
1363 }
1364 
1365