1 /******************************************************************************
2
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD$*/
34
35 #include "e1000_api.h"
36
37 /**
38 * e1000_init_mac_params - Initialize MAC function pointers
39 * @hw: pointer to the HW structure
40 *
41 * This function initializes the function pointers for the MAC
42 * set of functions. Called by drivers or by e1000_setup_init_funcs.
43 **/
e1000_init_mac_params(struct e1000_hw * hw)44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 s32 ret_val = E1000_SUCCESS;
47
48 if (hw->mac.ops.init_params) {
49 ret_val = hw->mac.ops.init_params(hw);
50 if (ret_val) {
51 DEBUGOUT("MAC Initialization Error\n");
52 goto out;
53 }
54 } else {
55 DEBUGOUT("mac.init_mac_params was NULL\n");
56 ret_val = -E1000_ERR_CONFIG;
57 }
58
59 out:
60 return ret_val;
61 }
62
63 /**
64 * e1000_init_nvm_params - Initialize NVM function pointers
65 * @hw: pointer to the HW structure
66 *
67 * This function initializes the function pointers for the NVM
68 * set of functions. Called by drivers or by e1000_setup_init_funcs.
69 **/
e1000_init_nvm_params(struct e1000_hw * hw)70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 s32 ret_val = E1000_SUCCESS;
73
74 if (hw->nvm.ops.init_params) {
75 ret_val = hw->nvm.ops.init_params(hw);
76 if (ret_val) {
77 DEBUGOUT("NVM Initialization Error\n");
78 goto out;
79 }
80 } else {
81 DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 ret_val = -E1000_ERR_CONFIG;
83 }
84
85 out:
86 return ret_val;
87 }
88
89 /**
90 * e1000_init_phy_params - Initialize PHY function pointers
91 * @hw: pointer to the HW structure
92 *
93 * This function initializes the function pointers for the PHY
94 * set of functions. Called by drivers or by e1000_setup_init_funcs.
95 **/
e1000_init_phy_params(struct e1000_hw * hw)96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 s32 ret_val = E1000_SUCCESS;
99
100 if (hw->phy.ops.init_params) {
101 ret_val = hw->phy.ops.init_params(hw);
102 if (ret_val) {
103 DEBUGOUT("PHY Initialization Error\n");
104 goto out;
105 }
106 } else {
107 DEBUGOUT("phy.init_phy_params was NULL\n");
108 ret_val = -E1000_ERR_CONFIG;
109 }
110
111 out:
112 return ret_val;
113 }
114
115 /**
116 * e1000_init_mbx_params - Initialize mailbox function pointers
117 * @hw: pointer to the HW structure
118 *
119 * This function initializes the function pointers for the PHY
120 * set of functions. Called by drivers or by e1000_setup_init_funcs.
121 **/
e1000_init_mbx_params(struct e1000_hw * hw)122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 s32 ret_val = E1000_SUCCESS;
125
126 if (hw->mbx.ops.init_params) {
127 ret_val = hw->mbx.ops.init_params(hw);
128 if (ret_val) {
129 DEBUGOUT("Mailbox Initialization Error\n");
130 goto out;
131 }
132 } else {
133 DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 ret_val = -E1000_ERR_CONFIG;
135 }
136
137 out:
138 return ret_val;
139 }
140
141 /**
142 * e1000_set_mac_type - Sets MAC type
143 * @hw: pointer to the HW structure
144 *
145 * This function sets the mac type of the adapter based on the
146 * device ID stored in the hw structure.
147 * MUST BE FIRST FUNCTION CALLED (explicitly or through
148 * e1000_setup_init_funcs()).
149 **/
e1000_set_mac_type(struct e1000_hw * hw)150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 struct e1000_mac_info *mac = &hw->mac;
153 s32 ret_val = E1000_SUCCESS;
154
155 DEBUGFUNC("e1000_set_mac_type");
156
157 switch (hw->device_id) {
158 case E1000_DEV_ID_82542:
159 mac->type = e1000_82542;
160 break;
161 case E1000_DEV_ID_82543GC_FIBER:
162 case E1000_DEV_ID_82543GC_COPPER:
163 mac->type = e1000_82543;
164 break;
165 case E1000_DEV_ID_82544EI_COPPER:
166 case E1000_DEV_ID_82544EI_FIBER:
167 case E1000_DEV_ID_82544GC_COPPER:
168 case E1000_DEV_ID_82544GC_LOM:
169 mac->type = e1000_82544;
170 break;
171 case E1000_DEV_ID_82540EM:
172 case E1000_DEV_ID_82540EM_LOM:
173 case E1000_DEV_ID_82540EP:
174 case E1000_DEV_ID_82540EP_LOM:
175 case E1000_DEV_ID_82540EP_LP:
176 mac->type = e1000_82540;
177 break;
178 case E1000_DEV_ID_82545EM_COPPER:
179 case E1000_DEV_ID_82545EM_FIBER:
180 mac->type = e1000_82545;
181 break;
182 case E1000_DEV_ID_82545GM_COPPER:
183 case E1000_DEV_ID_82545GM_FIBER:
184 case E1000_DEV_ID_82545GM_SERDES:
185 mac->type = e1000_82545_rev_3;
186 break;
187 case E1000_DEV_ID_82546EB_COPPER:
188 case E1000_DEV_ID_82546EB_FIBER:
189 case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 mac->type = e1000_82546;
191 break;
192 case E1000_DEV_ID_82546GB_COPPER:
193 case E1000_DEV_ID_82546GB_FIBER:
194 case E1000_DEV_ID_82546GB_SERDES:
195 case E1000_DEV_ID_82546GB_PCIE:
196 case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 mac->type = e1000_82546_rev_3;
199 break;
200 case E1000_DEV_ID_82541EI:
201 case E1000_DEV_ID_82541EI_MOBILE:
202 case E1000_DEV_ID_82541ER_LOM:
203 mac->type = e1000_82541;
204 break;
205 case E1000_DEV_ID_82541ER:
206 case E1000_DEV_ID_82541GI:
207 case E1000_DEV_ID_82541GI_LF:
208 case E1000_DEV_ID_82541GI_MOBILE:
209 mac->type = e1000_82541_rev_2;
210 break;
211 case E1000_DEV_ID_82547EI:
212 case E1000_DEV_ID_82547EI_MOBILE:
213 mac->type = e1000_82547;
214 break;
215 case E1000_DEV_ID_82547GI:
216 mac->type = e1000_82547_rev_2;
217 break;
218 case E1000_DEV_ID_82571EB_COPPER:
219 case E1000_DEV_ID_82571EB_FIBER:
220 case E1000_DEV_ID_82571EB_SERDES:
221 case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 mac->type = e1000_82571;
228 break;
229 case E1000_DEV_ID_82572EI:
230 case E1000_DEV_ID_82572EI_COPPER:
231 case E1000_DEV_ID_82572EI_FIBER:
232 case E1000_DEV_ID_82572EI_SERDES:
233 mac->type = e1000_82572;
234 break;
235 case E1000_DEV_ID_82573E:
236 case E1000_DEV_ID_82573E_IAMT:
237 case E1000_DEV_ID_82573L:
238 mac->type = e1000_82573;
239 break;
240 case E1000_DEV_ID_82574L:
241 case E1000_DEV_ID_82574LA:
242 mac->type = e1000_82574;
243 break;
244 case E1000_DEV_ID_82583V:
245 mac->type = e1000_82583;
246 break;
247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 mac->type = e1000_80003es2lan;
252 break;
253 case E1000_DEV_ID_ICH8_IFE:
254 case E1000_DEV_ID_ICH8_IFE_GT:
255 case E1000_DEV_ID_ICH8_IFE_G:
256 case E1000_DEV_ID_ICH8_IGP_M:
257 case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 case E1000_DEV_ID_ICH8_IGP_AMT:
259 case E1000_DEV_ID_ICH8_IGP_C:
260 case E1000_DEV_ID_ICH8_82567V_3:
261 mac->type = e1000_ich8lan;
262 break;
263 case E1000_DEV_ID_ICH9_IFE:
264 case E1000_DEV_ID_ICH9_IFE_GT:
265 case E1000_DEV_ID_ICH9_IFE_G:
266 case E1000_DEV_ID_ICH9_IGP_M:
267 case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 case E1000_DEV_ID_ICH9_IGP_M_V:
269 case E1000_DEV_ID_ICH9_IGP_AMT:
270 case E1000_DEV_ID_ICH9_BM:
271 case E1000_DEV_ID_ICH9_IGP_C:
272 case E1000_DEV_ID_ICH10_R_BM_LM:
273 case E1000_DEV_ID_ICH10_R_BM_LF:
274 case E1000_DEV_ID_ICH10_R_BM_V:
275 mac->type = e1000_ich9lan;
276 break;
277 case E1000_DEV_ID_ICH10_D_BM_LM:
278 case E1000_DEV_ID_ICH10_D_BM_LF:
279 case E1000_DEV_ID_ICH10_D_BM_V:
280 mac->type = e1000_ich10lan;
281 break;
282 case E1000_DEV_ID_PCH_D_HV_DM:
283 case E1000_DEV_ID_PCH_D_HV_DC:
284 case E1000_DEV_ID_PCH_M_HV_LM:
285 case E1000_DEV_ID_PCH_M_HV_LC:
286 mac->type = e1000_pchlan;
287 break;
288 case E1000_DEV_ID_PCH2_LV_LM:
289 case E1000_DEV_ID_PCH2_LV_V:
290 mac->type = e1000_pch2lan;
291 break;
292 case E1000_DEV_ID_PCH_LPT_I217_LM:
293 case E1000_DEV_ID_PCH_LPT_I217_V:
294 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 case E1000_DEV_ID_PCH_I218_LM2:
297 case E1000_DEV_ID_PCH_I218_V2:
298 case E1000_DEV_ID_PCH_I218_LM3:
299 case E1000_DEV_ID_PCH_I218_V3:
300 mac->type = e1000_pch_lpt;
301 break;
302 case E1000_DEV_ID_PCH_SPT_I219_LM:
303 case E1000_DEV_ID_PCH_SPT_I219_V:
304 case E1000_DEV_ID_PCH_SPT_I219_LM2:
305 case E1000_DEV_ID_PCH_SPT_I219_V2:
306 case E1000_DEV_ID_PCH_LBG_I219_LM3:
307 mac->type = e1000_pch_spt;
308 break;
309 case E1000_DEV_ID_82575EB_COPPER:
310 case E1000_DEV_ID_82575EB_FIBER_SERDES:
311 case E1000_DEV_ID_82575GB_QUAD_COPPER:
312 mac->type = e1000_82575;
313 break;
314 case E1000_DEV_ID_82576:
315 case E1000_DEV_ID_82576_FIBER:
316 case E1000_DEV_ID_82576_SERDES:
317 case E1000_DEV_ID_82576_QUAD_COPPER:
318 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
319 case E1000_DEV_ID_82576_NS:
320 case E1000_DEV_ID_82576_NS_SERDES:
321 case E1000_DEV_ID_82576_SERDES_QUAD:
322 mac->type = e1000_82576;
323 break;
324 case E1000_DEV_ID_82580_COPPER:
325 case E1000_DEV_ID_82580_FIBER:
326 case E1000_DEV_ID_82580_SERDES:
327 case E1000_DEV_ID_82580_SGMII:
328 case E1000_DEV_ID_82580_COPPER_DUAL:
329 case E1000_DEV_ID_82580_QUAD_FIBER:
330 case E1000_DEV_ID_DH89XXCC_SGMII:
331 case E1000_DEV_ID_DH89XXCC_SERDES:
332 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
333 case E1000_DEV_ID_DH89XXCC_SFP:
334 mac->type = e1000_82580;
335 break;
336 case E1000_DEV_ID_I350_COPPER:
337 case E1000_DEV_ID_I350_FIBER:
338 case E1000_DEV_ID_I350_SERDES:
339 case E1000_DEV_ID_I350_SGMII:
340 case E1000_DEV_ID_I350_DA4:
341 mac->type = e1000_i350;
342 break;
343 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
344 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
345 case E1000_DEV_ID_I210_COPPER:
346 case E1000_DEV_ID_I210_COPPER_OEM1:
347 case E1000_DEV_ID_I210_COPPER_IT:
348 case E1000_DEV_ID_I210_FIBER:
349 case E1000_DEV_ID_I210_SERDES:
350 case E1000_DEV_ID_I210_SGMII:
351 mac->type = e1000_i210;
352 break;
353 case E1000_DEV_ID_I211_COPPER:
354 mac->type = e1000_i211;
355 break;
356 case E1000_DEV_ID_82576_VF:
357 case E1000_DEV_ID_82576_VF_HV:
358 mac->type = e1000_vfadapt;
359 break;
360 case E1000_DEV_ID_I350_VF:
361 case E1000_DEV_ID_I350_VF_HV:
362 mac->type = e1000_vfadapt_i350;
363 break;
364
365 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
366 case E1000_DEV_ID_I354_SGMII:
367 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
368 mac->type = e1000_i354;
369 break;
370 default:
371 /* Should never have loaded on this device */
372 ret_val = -E1000_ERR_MAC_INIT;
373 break;
374 }
375
376 return ret_val;
377 }
378
379 /**
380 * e1000_setup_init_funcs - Initializes function pointers
381 * @hw: pointer to the HW structure
382 * @init_device: TRUE will initialize the rest of the function pointers
383 * getting the device ready for use. FALSE will only set
384 * MAC type and the function pointers for the other init
385 * functions. Passing FALSE will not generate any hardware
386 * reads or writes.
387 *
388 * This function must be called by a driver in order to use the rest
389 * of the 'shared' code files. Called by drivers only.
390 **/
e1000_setup_init_funcs(struct e1000_hw * hw,bool init_device)391 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
392 {
393 s32 ret_val;
394
395 /* Can't do much good without knowing the MAC type. */
396 ret_val = e1000_set_mac_type(hw);
397 if (ret_val) {
398 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
399 goto out;
400 }
401
402 if (!hw->hw_addr) {
403 DEBUGOUT("ERROR: Registers not mapped\n");
404 ret_val = -E1000_ERR_CONFIG;
405 goto out;
406 }
407
408 /*
409 * Init function pointers to generic implementations. We do this first
410 * allowing a driver module to override it afterward.
411 */
412 e1000_init_mac_ops_generic(hw);
413 e1000_init_phy_ops_generic(hw);
414 e1000_init_nvm_ops_generic(hw);
415 e1000_init_mbx_ops_generic(hw);
416
417 /*
418 * Set up the init function pointers. These are functions within the
419 * adapter family file that sets up function pointers for the rest of
420 * the functions in that family.
421 */
422 switch (hw->mac.type) {
423 case e1000_82542:
424 e1000_init_function_pointers_82542(hw);
425 break;
426 case e1000_82543:
427 case e1000_82544:
428 e1000_init_function_pointers_82543(hw);
429 break;
430 case e1000_82540:
431 case e1000_82545:
432 case e1000_82545_rev_3:
433 case e1000_82546:
434 case e1000_82546_rev_3:
435 e1000_init_function_pointers_82540(hw);
436 break;
437 case e1000_82541:
438 case e1000_82541_rev_2:
439 case e1000_82547:
440 case e1000_82547_rev_2:
441 e1000_init_function_pointers_82541(hw);
442 break;
443 case e1000_82571:
444 case e1000_82572:
445 case e1000_82573:
446 case e1000_82574:
447 case e1000_82583:
448 e1000_init_function_pointers_82571(hw);
449 break;
450 case e1000_80003es2lan:
451 e1000_init_function_pointers_80003es2lan(hw);
452 break;
453 case e1000_ich8lan:
454 case e1000_ich9lan:
455 case e1000_ich10lan:
456 case e1000_pchlan:
457 case e1000_pch2lan:
458 case e1000_pch_lpt:
459 case e1000_pch_spt:
460 e1000_init_function_pointers_ich8lan(hw);
461 break;
462 case e1000_82575:
463 case e1000_82576:
464 case e1000_82580:
465 case e1000_i350:
466 case e1000_i354:
467 e1000_init_function_pointers_82575(hw);
468 break;
469 case e1000_i210:
470 case e1000_i211:
471 e1000_init_function_pointers_i210(hw);
472 break;
473 case e1000_vfadapt:
474 e1000_init_function_pointers_vf(hw);
475 break;
476 case e1000_vfadapt_i350:
477 e1000_init_function_pointers_vf(hw);
478 break;
479 default:
480 DEBUGOUT("Hardware not supported\n");
481 ret_val = -E1000_ERR_CONFIG;
482 break;
483 }
484
485 /*
486 * Initialize the rest of the function pointers. These require some
487 * register reads/writes in some cases.
488 */
489 if (!(ret_val) && init_device) {
490 ret_val = e1000_init_mac_params(hw);
491 if (ret_val)
492 goto out;
493
494 ret_val = e1000_init_nvm_params(hw);
495 if (ret_val)
496 goto out;
497
498 ret_val = e1000_init_phy_params(hw);
499 if (ret_val)
500 goto out;
501
502 ret_val = e1000_init_mbx_params(hw);
503 if (ret_val)
504 goto out;
505 }
506
507 out:
508 return ret_val;
509 }
510
511 /**
512 * e1000_get_bus_info - Obtain bus information for adapter
513 * @hw: pointer to the HW structure
514 *
515 * This will obtain information about the HW bus for which the
516 * adapter is attached and stores it in the hw structure. This is a
517 * function pointer entry point called by drivers.
518 **/
e1000_get_bus_info(struct e1000_hw * hw)519 s32 e1000_get_bus_info(struct e1000_hw *hw)
520 {
521 if (hw->mac.ops.get_bus_info)
522 return hw->mac.ops.get_bus_info(hw);
523
524 return E1000_SUCCESS;
525 }
526
527 /**
528 * e1000_clear_vfta - Clear VLAN filter table
529 * @hw: pointer to the HW structure
530 *
531 * This clears the VLAN filter table on the adapter. This is a function
532 * pointer entry point called by drivers.
533 **/
e1000_clear_vfta(struct e1000_hw * hw)534 void e1000_clear_vfta(struct e1000_hw *hw)
535 {
536 if (hw->mac.ops.clear_vfta)
537 hw->mac.ops.clear_vfta(hw);
538 }
539
540 /**
541 * e1000_write_vfta - Write value to VLAN filter table
542 * @hw: pointer to the HW structure
543 * @offset: the 32-bit offset in which to write the value to.
544 * @value: the 32-bit value to write at location offset.
545 *
546 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
547 * table. This is a function pointer entry point called by drivers.
548 **/
e1000_write_vfta(struct e1000_hw * hw,u32 offset,u32 value)549 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
550 {
551 if (hw->mac.ops.write_vfta)
552 hw->mac.ops.write_vfta(hw, offset, value);
553 }
554
555 /**
556 * e1000_update_mc_addr_list - Update Multicast addresses
557 * @hw: pointer to the HW structure
558 * @mc_addr_list: array of multicast addresses to program
559 * @mc_addr_count: number of multicast addresses to program
560 *
561 * Updates the Multicast Table Array.
562 * The caller must have a packed mc_addr_list of multicast addresses.
563 **/
e1000_update_mc_addr_list(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)564 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
565 u32 mc_addr_count)
566 {
567 if (hw->mac.ops.update_mc_addr_list)
568 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
569 mc_addr_count);
570 }
571
572 /**
573 * e1000_force_mac_fc - Force MAC flow control
574 * @hw: pointer to the HW structure
575 *
576 * Force the MAC's flow control settings. Currently no func pointer exists
577 * and all implementations are handled in the generic version of this
578 * function.
579 **/
e1000_force_mac_fc(struct e1000_hw * hw)580 s32 e1000_force_mac_fc(struct e1000_hw *hw)
581 {
582 return e1000_force_mac_fc_generic(hw);
583 }
584
585 /**
586 * e1000_check_for_link - Check/Store link connection
587 * @hw: pointer to the HW structure
588 *
589 * This checks the link condition of the adapter and stores the
590 * results in the hw->mac structure. This is a function pointer entry
591 * point called by drivers.
592 **/
e1000_check_for_link(struct e1000_hw * hw)593 s32 e1000_check_for_link(struct e1000_hw *hw)
594 {
595 if (hw->mac.ops.check_for_link)
596 return hw->mac.ops.check_for_link(hw);
597
598 return -E1000_ERR_CONFIG;
599 }
600
601 /**
602 * e1000_check_mng_mode - Check management mode
603 * @hw: pointer to the HW structure
604 *
605 * This checks if the adapter has manageability enabled.
606 * This is a function pointer entry point called by drivers.
607 **/
e1000_check_mng_mode(struct e1000_hw * hw)608 bool e1000_check_mng_mode(struct e1000_hw *hw)
609 {
610 if (hw->mac.ops.check_mng_mode)
611 return hw->mac.ops.check_mng_mode(hw);
612
613 return FALSE;
614 }
615
616 /**
617 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
618 * @hw: pointer to the HW structure
619 * @buffer: pointer to the host interface
620 * @length: size of the buffer
621 *
622 * Writes the DHCP information to the host interface.
623 **/
e1000_mng_write_dhcp_info(struct e1000_hw * hw,u8 * buffer,u16 length)624 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
625 {
626 return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
627 }
628
629 /**
630 * e1000_reset_hw - Reset hardware
631 * @hw: pointer to the HW structure
632 *
633 * This resets the hardware into a known state. This is a function pointer
634 * entry point called by drivers.
635 **/
e1000_reset_hw(struct e1000_hw * hw)636 s32 e1000_reset_hw(struct e1000_hw *hw)
637 {
638 if (hw->mac.ops.reset_hw)
639 return hw->mac.ops.reset_hw(hw);
640
641 return -E1000_ERR_CONFIG;
642 }
643
644 /**
645 * e1000_init_hw - Initialize hardware
646 * @hw: pointer to the HW structure
647 *
648 * This inits the hardware readying it for operation. This is a function
649 * pointer entry point called by drivers.
650 **/
e1000_init_hw(struct e1000_hw * hw)651 s32 e1000_init_hw(struct e1000_hw *hw)
652 {
653 if (hw->mac.ops.init_hw)
654 return hw->mac.ops.init_hw(hw);
655
656 return -E1000_ERR_CONFIG;
657 }
658
659 /**
660 * e1000_setup_link - Configures link and flow control
661 * @hw: pointer to the HW structure
662 *
663 * This configures link and flow control settings for the adapter. This
664 * is a function pointer entry point called by drivers. While modules can
665 * also call this, they probably call their own version of this function.
666 **/
e1000_setup_link(struct e1000_hw * hw)667 s32 e1000_setup_link(struct e1000_hw *hw)
668 {
669 if (hw->mac.ops.setup_link)
670 return hw->mac.ops.setup_link(hw);
671
672 return -E1000_ERR_CONFIG;
673 }
674
675 /**
676 * e1000_get_speed_and_duplex - Returns current speed and duplex
677 * @hw: pointer to the HW structure
678 * @speed: pointer to a 16-bit value to store the speed
679 * @duplex: pointer to a 16-bit value to store the duplex.
680 *
681 * This returns the speed and duplex of the adapter in the two 'out'
682 * variables passed in. This is a function pointer entry point called
683 * by drivers.
684 **/
e1000_get_speed_and_duplex(struct e1000_hw * hw,u16 * speed,u16 * duplex)685 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
686 {
687 if (hw->mac.ops.get_link_up_info)
688 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
689
690 return -E1000_ERR_CONFIG;
691 }
692
693 /**
694 * e1000_setup_led - Configures SW controllable LED
695 * @hw: pointer to the HW structure
696 *
697 * This prepares the SW controllable LED for use and saves the current state
698 * of the LED so it can be later restored. This is a function pointer entry
699 * point called by drivers.
700 **/
e1000_setup_led(struct e1000_hw * hw)701 s32 e1000_setup_led(struct e1000_hw *hw)
702 {
703 if (hw->mac.ops.setup_led)
704 return hw->mac.ops.setup_led(hw);
705
706 return E1000_SUCCESS;
707 }
708
709 /**
710 * e1000_cleanup_led - Restores SW controllable LED
711 * @hw: pointer to the HW structure
712 *
713 * This restores the SW controllable LED to the value saved off by
714 * e1000_setup_led. This is a function pointer entry point called by drivers.
715 **/
e1000_cleanup_led(struct e1000_hw * hw)716 s32 e1000_cleanup_led(struct e1000_hw *hw)
717 {
718 if (hw->mac.ops.cleanup_led)
719 return hw->mac.ops.cleanup_led(hw);
720
721 return E1000_SUCCESS;
722 }
723
724 /**
725 * e1000_blink_led - Blink SW controllable LED
726 * @hw: pointer to the HW structure
727 *
728 * This starts the adapter LED blinking. Request the LED to be setup first
729 * and cleaned up after. This is a function pointer entry point called by
730 * drivers.
731 **/
e1000_blink_led(struct e1000_hw * hw)732 s32 e1000_blink_led(struct e1000_hw *hw)
733 {
734 if (hw->mac.ops.blink_led)
735 return hw->mac.ops.blink_led(hw);
736
737 return E1000_SUCCESS;
738 }
739
740 /**
741 * e1000_id_led_init - store LED configurations in SW
742 * @hw: pointer to the HW structure
743 *
744 * Initializes the LED config in SW. This is a function pointer entry point
745 * called by drivers.
746 **/
e1000_id_led_init(struct e1000_hw * hw)747 s32 e1000_id_led_init(struct e1000_hw *hw)
748 {
749 if (hw->mac.ops.id_led_init)
750 return hw->mac.ops.id_led_init(hw);
751
752 return E1000_SUCCESS;
753 }
754
755 /**
756 * e1000_led_on - Turn on SW controllable LED
757 * @hw: pointer to the HW structure
758 *
759 * Turns the SW defined LED on. This is a function pointer entry point
760 * called by drivers.
761 **/
e1000_led_on(struct e1000_hw * hw)762 s32 e1000_led_on(struct e1000_hw *hw)
763 {
764 if (hw->mac.ops.led_on)
765 return hw->mac.ops.led_on(hw);
766
767 return E1000_SUCCESS;
768 }
769
770 /**
771 * e1000_led_off - Turn off SW controllable LED
772 * @hw: pointer to the HW structure
773 *
774 * Turns the SW defined LED off. This is a function pointer entry point
775 * called by drivers.
776 **/
e1000_led_off(struct e1000_hw * hw)777 s32 e1000_led_off(struct e1000_hw *hw)
778 {
779 if (hw->mac.ops.led_off)
780 return hw->mac.ops.led_off(hw);
781
782 return E1000_SUCCESS;
783 }
784
785 /**
786 * e1000_reset_adaptive - Reset adaptive IFS
787 * @hw: pointer to the HW structure
788 *
789 * Resets the adaptive IFS. Currently no func pointer exists and all
790 * implementations are handled in the generic version of this function.
791 **/
e1000_reset_adaptive(struct e1000_hw * hw)792 void e1000_reset_adaptive(struct e1000_hw *hw)
793 {
794 e1000_reset_adaptive_generic(hw);
795 }
796
797 /**
798 * e1000_update_adaptive - Update adaptive IFS
799 * @hw: pointer to the HW structure
800 *
801 * Updates adapter IFS. Currently no func pointer exists and all
802 * implementations are handled in the generic version of this function.
803 **/
e1000_update_adaptive(struct e1000_hw * hw)804 void e1000_update_adaptive(struct e1000_hw *hw)
805 {
806 e1000_update_adaptive_generic(hw);
807 }
808
809 /**
810 * e1000_disable_pcie_master - Disable PCI-Express master access
811 * @hw: pointer to the HW structure
812 *
813 * Disables PCI-Express master access and verifies there are no pending
814 * requests. Currently no func pointer exists and all implementations are
815 * handled in the generic version of this function.
816 **/
e1000_disable_pcie_master(struct e1000_hw * hw)817 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
818 {
819 return e1000_disable_pcie_master_generic(hw);
820 }
821
822 /**
823 * e1000_config_collision_dist - Configure collision distance
824 * @hw: pointer to the HW structure
825 *
826 * Configures the collision distance to the default value and is used
827 * during link setup.
828 **/
e1000_config_collision_dist(struct e1000_hw * hw)829 void e1000_config_collision_dist(struct e1000_hw *hw)
830 {
831 if (hw->mac.ops.config_collision_dist)
832 hw->mac.ops.config_collision_dist(hw);
833 }
834
835 /**
836 * e1000_rar_set - Sets a receive address register
837 * @hw: pointer to the HW structure
838 * @addr: address to set the RAR to
839 * @index: the RAR to set
840 *
841 * Sets a Receive Address Register (RAR) to the specified address.
842 **/
e1000_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)843 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
844 {
845 if (hw->mac.ops.rar_set)
846 return hw->mac.ops.rar_set(hw, addr, index);
847
848 return E1000_SUCCESS;
849 }
850
851 /**
852 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
853 * @hw: pointer to the HW structure
854 *
855 * Ensures that the MDI/MDIX SW state is valid.
856 **/
e1000_validate_mdi_setting(struct e1000_hw * hw)857 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
858 {
859 if (hw->mac.ops.validate_mdi_setting)
860 return hw->mac.ops.validate_mdi_setting(hw);
861
862 return E1000_SUCCESS;
863 }
864
865 /**
866 * e1000_hash_mc_addr - Determines address location in multicast table
867 * @hw: pointer to the HW structure
868 * @mc_addr: Multicast address to hash.
869 *
870 * This hashes an address to determine its location in the multicast
871 * table. Currently no func pointer exists and all implementations
872 * are handled in the generic version of this function.
873 **/
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)874 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
875 {
876 return e1000_hash_mc_addr_generic(hw, mc_addr);
877 }
878
879 /**
880 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
881 * @hw: pointer to the HW structure
882 *
883 * Enables packet filtering on transmit packets if manageability is enabled
884 * and host interface is enabled.
885 * Currently no func pointer exists and all implementations are handled in the
886 * generic version of this function.
887 **/
e1000_enable_tx_pkt_filtering(struct e1000_hw * hw)888 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
889 {
890 return e1000_enable_tx_pkt_filtering_generic(hw);
891 }
892
893 /**
894 * e1000_mng_host_if_write - Writes to the manageability host interface
895 * @hw: pointer to the HW structure
896 * @buffer: pointer to the host interface buffer
897 * @length: size of the buffer
898 * @offset: location in the buffer to write to
899 * @sum: sum of the data (not checksum)
900 *
901 * This function writes the buffer content at the offset given on the host if.
902 * It also does alignment considerations to do the writes in most efficient
903 * way. Also fills up the sum of the buffer in *buffer parameter.
904 **/
e1000_mng_host_if_write(struct e1000_hw * hw,u8 * buffer,u16 length,u16 offset,u8 * sum)905 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
906 u16 offset, u8 *sum)
907 {
908 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
909 }
910
911 /**
912 * e1000_mng_write_cmd_header - Writes manageability command header
913 * @hw: pointer to the HW structure
914 * @hdr: pointer to the host interface command header
915 *
916 * Writes the command header after does the checksum calculation.
917 **/
e1000_mng_write_cmd_header(struct e1000_hw * hw,struct e1000_host_mng_command_header * hdr)918 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
919 struct e1000_host_mng_command_header *hdr)
920 {
921 return e1000_mng_write_cmd_header_generic(hw, hdr);
922 }
923
924 /**
925 * e1000_mng_enable_host_if - Checks host interface is enabled
926 * @hw: pointer to the HW structure
927 *
928 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
929 *
930 * This function checks whether the HOST IF is enabled for command operation
931 * and also checks whether the previous command is completed. It busy waits
932 * in case of previous command is not completed.
933 **/
e1000_mng_enable_host_if(struct e1000_hw * hw)934 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
935 {
936 return e1000_mng_enable_host_if_generic(hw);
937 }
938
939 /**
940 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
941 * @hw: pointer to the HW structure
942 * @itr: u32 indicating itr value
943 *
944 * Set the OBFF timer based on the given interrupt rate.
945 **/
e1000_set_obff_timer(struct e1000_hw * hw,u32 itr)946 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
947 {
948 if (hw->mac.ops.set_obff_timer)
949 return hw->mac.ops.set_obff_timer(hw, itr);
950
951 return E1000_SUCCESS;
952 }
953
954 /**
955 * e1000_check_reset_block - Verifies PHY can be reset
956 * @hw: pointer to the HW structure
957 *
958 * Checks if the PHY is in a state that can be reset or if manageability
959 * has it tied up. This is a function pointer entry point called by drivers.
960 **/
e1000_check_reset_block(struct e1000_hw * hw)961 s32 e1000_check_reset_block(struct e1000_hw *hw)
962 {
963 if (hw->phy.ops.check_reset_block)
964 return hw->phy.ops.check_reset_block(hw);
965
966 return E1000_SUCCESS;
967 }
968
969 /**
970 * e1000_read_phy_reg - Reads PHY register
971 * @hw: pointer to the HW structure
972 * @offset: the register to read
973 * @data: the buffer to store the 16-bit read.
974 *
975 * Reads the PHY register and returns the value in data.
976 * This is a function pointer entry point called by drivers.
977 **/
e1000_read_phy_reg(struct e1000_hw * hw,u32 offset,u16 * data)978 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
979 {
980 if (hw->phy.ops.read_reg)
981 return hw->phy.ops.read_reg(hw, offset, data);
982
983 return E1000_SUCCESS;
984 }
985
986 /**
987 * e1000_write_phy_reg - Writes PHY register
988 * @hw: pointer to the HW structure
989 * @offset: the register to write
990 * @data: the value to write.
991 *
992 * Writes the PHY register at offset with the value in data.
993 * This is a function pointer entry point called by drivers.
994 **/
e1000_write_phy_reg(struct e1000_hw * hw,u32 offset,u16 data)995 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
996 {
997 if (hw->phy.ops.write_reg)
998 return hw->phy.ops.write_reg(hw, offset, data);
999
1000 return E1000_SUCCESS;
1001 }
1002
1003 /**
1004 * e1000_release_phy - Generic release PHY
1005 * @hw: pointer to the HW structure
1006 *
1007 * Return if silicon family does not require a semaphore when accessing the
1008 * PHY.
1009 **/
e1000_release_phy(struct e1000_hw * hw)1010 void e1000_release_phy(struct e1000_hw *hw)
1011 {
1012 if (hw->phy.ops.release)
1013 hw->phy.ops.release(hw);
1014 }
1015
1016 /**
1017 * e1000_acquire_phy - Generic acquire PHY
1018 * @hw: pointer to the HW structure
1019 *
1020 * Return success if silicon family does not require a semaphore when
1021 * accessing the PHY.
1022 **/
e1000_acquire_phy(struct e1000_hw * hw)1023 s32 e1000_acquire_phy(struct e1000_hw *hw)
1024 {
1025 if (hw->phy.ops.acquire)
1026 return hw->phy.ops.acquire(hw);
1027
1028 return E1000_SUCCESS;
1029 }
1030
1031 /**
1032 * e1000_cfg_on_link_up - Configure PHY upon link up
1033 * @hw: pointer to the HW structure
1034 **/
e1000_cfg_on_link_up(struct e1000_hw * hw)1035 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1036 {
1037 if (hw->phy.ops.cfg_on_link_up)
1038 return hw->phy.ops.cfg_on_link_up(hw);
1039
1040 return E1000_SUCCESS;
1041 }
1042
1043 /**
1044 * e1000_read_kmrn_reg - Reads register using Kumeran interface
1045 * @hw: pointer to the HW structure
1046 * @offset: the register to read
1047 * @data: the location to store the 16-bit value read.
1048 *
1049 * Reads a register out of the Kumeran interface. Currently no func pointer
1050 * exists and all implementations are handled in the generic version of
1051 * this function.
1052 **/
e1000_read_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 * data)1053 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1054 {
1055 return e1000_read_kmrn_reg_generic(hw, offset, data);
1056 }
1057
1058 /**
1059 * e1000_write_kmrn_reg - Writes register using Kumeran interface
1060 * @hw: pointer to the HW structure
1061 * @offset: the register to write
1062 * @data: the value to write.
1063 *
1064 * Writes a register to the Kumeran interface. Currently no func pointer
1065 * exists and all implementations are handled in the generic version of
1066 * this function.
1067 **/
e1000_write_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 data)1068 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1069 {
1070 return e1000_write_kmrn_reg_generic(hw, offset, data);
1071 }
1072
1073 /**
1074 * e1000_get_cable_length - Retrieves cable length estimation
1075 * @hw: pointer to the HW structure
1076 *
1077 * This function estimates the cable length and stores them in
1078 * hw->phy.min_length and hw->phy.max_length. This is a function pointer
1079 * entry point called by drivers.
1080 **/
e1000_get_cable_length(struct e1000_hw * hw)1081 s32 e1000_get_cable_length(struct e1000_hw *hw)
1082 {
1083 if (hw->phy.ops.get_cable_length)
1084 return hw->phy.ops.get_cable_length(hw);
1085
1086 return E1000_SUCCESS;
1087 }
1088
1089 /**
1090 * e1000_get_phy_info - Retrieves PHY information from registers
1091 * @hw: pointer to the HW structure
1092 *
1093 * This function gets some information from various PHY registers and
1094 * populates hw->phy values with it. This is a function pointer entry
1095 * point called by drivers.
1096 **/
e1000_get_phy_info(struct e1000_hw * hw)1097 s32 e1000_get_phy_info(struct e1000_hw *hw)
1098 {
1099 if (hw->phy.ops.get_info)
1100 return hw->phy.ops.get_info(hw);
1101
1102 return E1000_SUCCESS;
1103 }
1104
1105 /**
1106 * e1000_phy_hw_reset - Hard PHY reset
1107 * @hw: pointer to the HW structure
1108 *
1109 * Performs a hard PHY reset. This is a function pointer entry point called
1110 * by drivers.
1111 **/
e1000_phy_hw_reset(struct e1000_hw * hw)1112 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1113 {
1114 if (hw->phy.ops.reset)
1115 return hw->phy.ops.reset(hw);
1116
1117 return E1000_SUCCESS;
1118 }
1119
1120 /**
1121 * e1000_phy_commit - Soft PHY reset
1122 * @hw: pointer to the HW structure
1123 *
1124 * Performs a soft PHY reset on those that apply. This is a function pointer
1125 * entry point called by drivers.
1126 **/
e1000_phy_commit(struct e1000_hw * hw)1127 s32 e1000_phy_commit(struct e1000_hw *hw)
1128 {
1129 if (hw->phy.ops.commit)
1130 return hw->phy.ops.commit(hw);
1131
1132 return E1000_SUCCESS;
1133 }
1134
1135 /**
1136 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1137 * @hw: pointer to the HW structure
1138 * @active: boolean used to enable/disable lplu
1139 *
1140 * Success returns 0, Failure returns 1
1141 *
1142 * The low power link up (lplu) state is set to the power management level D0
1143 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1144 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1145 * is used during Dx states where the power conservation is most important.
1146 * During driver activity, SmartSpeed should be enabled so performance is
1147 * maintained. This is a function pointer entry point called by drivers.
1148 **/
e1000_set_d0_lplu_state(struct e1000_hw * hw,bool active)1149 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1150 {
1151 if (hw->phy.ops.set_d0_lplu_state)
1152 return hw->phy.ops.set_d0_lplu_state(hw, active);
1153
1154 return E1000_SUCCESS;
1155 }
1156
1157 /**
1158 * e1000_set_d3_lplu_state - Sets low power link up state for D3
1159 * @hw: pointer to the HW structure
1160 * @active: boolean used to enable/disable lplu
1161 *
1162 * Success returns 0, Failure returns 1
1163 *
1164 * The low power link up (lplu) state is set to the power management level D3
1165 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1166 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1167 * is used during Dx states where the power conservation is most important.
1168 * During driver activity, SmartSpeed should be enabled so performance is
1169 * maintained. This is a function pointer entry point called by drivers.
1170 **/
e1000_set_d3_lplu_state(struct e1000_hw * hw,bool active)1171 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1172 {
1173 if (hw->phy.ops.set_d3_lplu_state)
1174 return hw->phy.ops.set_d3_lplu_state(hw, active);
1175
1176 return E1000_SUCCESS;
1177 }
1178
1179 /**
1180 * e1000_read_mac_addr - Reads MAC address
1181 * @hw: pointer to the HW structure
1182 *
1183 * Reads the MAC address out of the adapter and stores it in the HW structure.
1184 * Currently no func pointer exists and all implementations are handled in the
1185 * generic version of this function.
1186 **/
e1000_read_mac_addr(struct e1000_hw * hw)1187 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1188 {
1189 if (hw->mac.ops.read_mac_addr)
1190 return hw->mac.ops.read_mac_addr(hw);
1191
1192 return e1000_read_mac_addr_generic(hw);
1193 }
1194
1195 /**
1196 * e1000_read_pba_string - Read device part number string
1197 * @hw: pointer to the HW structure
1198 * @pba_num: pointer to device part number
1199 * @pba_num_size: size of part number buffer
1200 *
1201 * Reads the product board assembly (PBA) number from the EEPROM and stores
1202 * the value in pba_num.
1203 * Currently no func pointer exists and all implementations are handled in the
1204 * generic version of this function.
1205 **/
e1000_read_pba_string(struct e1000_hw * hw,u8 * pba_num,u32 pba_num_size)1206 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1207 {
1208 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1209 }
1210
1211 /**
1212 * e1000_read_pba_length - Read device part number string length
1213 * @hw: pointer to the HW structure
1214 * @pba_num_size: size of part number buffer
1215 *
1216 * Reads the product board assembly (PBA) number length from the EEPROM and
1217 * stores the value in pba_num.
1218 * Currently no func pointer exists and all implementations are handled in the
1219 * generic version of this function.
1220 **/
e1000_read_pba_length(struct e1000_hw * hw,u32 * pba_num_size)1221 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1222 {
1223 return e1000_read_pba_length_generic(hw, pba_num_size);
1224 }
1225
1226 /**
1227 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1228 * @hw: pointer to the HW structure
1229 *
1230 * Validates the NVM checksum is correct. This is a function pointer entry
1231 * point called by drivers.
1232 **/
e1000_validate_nvm_checksum(struct e1000_hw * hw)1233 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1234 {
1235 if (hw->nvm.ops.validate)
1236 return hw->nvm.ops.validate(hw);
1237
1238 return -E1000_ERR_CONFIG;
1239 }
1240
1241 /**
1242 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1243 * @hw: pointer to the HW structure
1244 *
1245 * Updates the NVM checksum. Currently no func pointer exists and all
1246 * implementations are handled in the generic version of this function.
1247 **/
e1000_update_nvm_checksum(struct e1000_hw * hw)1248 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1249 {
1250 if (hw->nvm.ops.update)
1251 return hw->nvm.ops.update(hw);
1252
1253 return -E1000_ERR_CONFIG;
1254 }
1255
1256 /**
1257 * e1000_reload_nvm - Reloads EEPROM
1258 * @hw: pointer to the HW structure
1259 *
1260 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1261 * extended control register.
1262 **/
e1000_reload_nvm(struct e1000_hw * hw)1263 void e1000_reload_nvm(struct e1000_hw *hw)
1264 {
1265 if (hw->nvm.ops.reload)
1266 hw->nvm.ops.reload(hw);
1267 }
1268
1269 /**
1270 * e1000_read_nvm - Reads NVM (EEPROM)
1271 * @hw: pointer to the HW structure
1272 * @offset: the word offset to read
1273 * @words: number of 16-bit words to read
1274 * @data: pointer to the properly sized buffer for the data.
1275 *
1276 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1277 * pointer entry point called by drivers.
1278 **/
e1000_read_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)1279 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1280 {
1281 if (hw->nvm.ops.read)
1282 return hw->nvm.ops.read(hw, offset, words, data);
1283
1284 return -E1000_ERR_CONFIG;
1285 }
1286
1287 /**
1288 * e1000_write_nvm - Writes to NVM (EEPROM)
1289 * @hw: pointer to the HW structure
1290 * @offset: the word offset to read
1291 * @words: number of 16-bit words to write
1292 * @data: pointer to the properly sized buffer for the data.
1293 *
1294 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1295 * pointer entry point called by drivers.
1296 **/
e1000_write_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)1297 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1298 {
1299 if (hw->nvm.ops.write)
1300 return hw->nvm.ops.write(hw, offset, words, data);
1301
1302 return E1000_SUCCESS;
1303 }
1304
1305 /**
1306 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1307 * @hw: pointer to the HW structure
1308 * @reg: 32bit register offset
1309 * @offset: the register to write
1310 * @data: the value to write.
1311 *
1312 * Writes the PHY register at offset with the value in data.
1313 * This is a function pointer entry point called by drivers.
1314 **/
e1000_write_8bit_ctrl_reg(struct e1000_hw * hw,u32 reg,u32 offset,u8 data)1315 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1316 u8 data)
1317 {
1318 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1319 }
1320
1321 /**
1322 * e1000_power_up_phy - Restores link in case of PHY power down
1323 * @hw: pointer to the HW structure
1324 *
1325 * The phy may be powered down to save power, to turn off link when the
1326 * driver is unloaded, or wake on lan is not enabled (among others).
1327 **/
e1000_power_up_phy(struct e1000_hw * hw)1328 void e1000_power_up_phy(struct e1000_hw *hw)
1329 {
1330 if (hw->phy.ops.power_up)
1331 hw->phy.ops.power_up(hw);
1332
1333 e1000_setup_link(hw);
1334 }
1335
1336 /**
1337 * e1000_power_down_phy - Power down PHY
1338 * @hw: pointer to the HW structure
1339 *
1340 * The phy may be powered down to save power, to turn off link when the
1341 * driver is unloaded, or wake on lan is not enabled (among others).
1342 **/
e1000_power_down_phy(struct e1000_hw * hw)1343 void e1000_power_down_phy(struct e1000_hw *hw)
1344 {
1345 if (hw->phy.ops.power_down)
1346 hw->phy.ops.power_down(hw);
1347 }
1348
1349 /**
1350 * e1000_power_up_fiber_serdes_link - Power up serdes link
1351 * @hw: pointer to the HW structure
1352 *
1353 * Power on the optics and PCS.
1354 **/
e1000_power_up_fiber_serdes_link(struct e1000_hw * hw)1355 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1356 {
1357 if (hw->mac.ops.power_up_serdes)
1358 hw->mac.ops.power_up_serdes(hw);
1359 }
1360
1361 /**
1362 * e1000_shutdown_fiber_serdes_link - Remove link during power down
1363 * @hw: pointer to the HW structure
1364 *
1365 * Shutdown the optics and PCS on driver unload.
1366 **/
e1000_shutdown_fiber_serdes_link(struct e1000_hw * hw)1367 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1368 {
1369 if (hw->mac.ops.shutdown_serdes)
1370 hw->mac.ops.shutdown_serdes(hw);
1371 }
1372
1373