xref: /titanic_44/usr/src/uts/common/io/e1000api/e1000_82575.c (revision 22ca5eba2a84a9612aa439c234327fda99608f01)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 /*
36  * 82575EB Gigabit Network Connection
37  * 82575EB Gigabit Backplane Connection
38  * 82575GB Gigabit Network Connection
39  * 82576 Gigabit Network Connection
40  * 82576 Quad Port Gigabit Mezzanine Adapter
41  * 82580 Gigabit Network Connection
42  * I350 Gigabit Network Connection
43  */
44 
45 #include "e1000_api.h"
46 #include "e1000_i210.h"
47 
48 static s32  e1000_init_phy_params_82575(struct e1000_hw *hw);
49 static s32  e1000_init_mac_params_82575(struct e1000_hw *hw);
50 static s32  e1000_acquire_phy_82575(struct e1000_hw *hw);
51 static void e1000_release_phy_82575(struct e1000_hw *hw);
52 static s32  e1000_acquire_nvm_82575(struct e1000_hw *hw);
53 static void e1000_release_nvm_82575(struct e1000_hw *hw);
54 static s32  e1000_check_for_link_82575(struct e1000_hw *hw);
55 static s32  e1000_check_for_link_media_swap(struct e1000_hw *hw);
56 static s32  e1000_get_cfg_done_82575(struct e1000_hw *hw);
57 static s32  e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
58 					 u16 *duplex);
59 static s32  e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
60 static s32  e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
61 					   u16 *data);
62 static s32  e1000_reset_hw_82575(struct e1000_hw *hw);
63 static s32  e1000_reset_hw_82580(struct e1000_hw *hw);
64 static s32  e1000_read_phy_reg_82580(struct e1000_hw *hw,
65 				     u32 offset, u16 *data);
66 static s32  e1000_write_phy_reg_82580(struct e1000_hw *hw,
67 				      u32 offset, u16 data);
68 static s32  e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
69 					  bool active);
70 static s32  e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
71 					  bool active);
72 static s32  e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
73 					  bool active);
74 static s32  e1000_setup_copper_link_82575(struct e1000_hw *hw);
75 static s32  e1000_setup_serdes_link_82575(struct e1000_hw *hw);
76 static s32  e1000_get_media_type_82575(struct e1000_hw *hw);
77 static s32  e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
78 static s32  e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
79 static s32  e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
80 					    u32 offset, u16 data);
81 static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
82 static s32  e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
83 static s32  e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
84 						 u16 *speed, u16 *duplex);
85 static s32  e1000_get_phy_id_82575(struct e1000_hw *hw);
86 static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
87 static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
88 static s32  e1000_reset_init_script_82575(struct e1000_hw *hw);
89 static s32  e1000_read_mac_addr_82575(struct e1000_hw *hw);
90 static void e1000_config_collision_dist_82575(struct e1000_hw *hw);
91 static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
92 static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
93 static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
94 static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
95 static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
96 static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
97 static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
98 static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
99 						 u16 offset);
100 static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
101 						   u16 offset);
102 static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
103 static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
104 static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
105 static void e1000_clear_vfta_i350(struct e1000_hw *hw);
106 
107 static void e1000_i2c_start(struct e1000_hw *hw);
108 static void e1000_i2c_stop(struct e1000_hw *hw);
109 static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
110 static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
111 static s32 e1000_get_i2c_ack(struct e1000_hw *hw);
112 static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
113 static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
114 static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
115 static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
116 static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
117 static bool e1000_get_i2c_data(u32 *i2cctl);
118 
119 static const u16 e1000_82580_rxpbs_table[] = {
120 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
121 #define E1000_82580_RXPBS_TABLE_SIZE \
122 	(sizeof(e1000_82580_rxpbs_table) / \
123 	 sizeof(e1000_82580_rxpbs_table[0]))
124 
125 
126 /**
127  *  e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
128  *  @hw: pointer to the HW structure
129  *
130  *  Called to determine if the I2C pins are being used for I2C or as an
131  *  external MDIO interface since the two options are mutually exclusive.
132  **/
133 static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
134 {
135 	u32 reg = 0;
136 	bool ext_mdio = FALSE;
137 
138 	DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
139 
140 	switch (hw->mac.type) {
141 	case e1000_82575:
142 	case e1000_82576:
143 		reg = E1000_READ_REG(hw, E1000_MDIC);
144 		ext_mdio = !!(reg & E1000_MDIC_DEST);
145 		break;
146 	case e1000_82580:
147 	case e1000_i350:
148 	case e1000_i354:
149 	case e1000_i210:
150 	case e1000_i211:
151 		reg = E1000_READ_REG(hw, E1000_MDICNFG);
152 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
153 		break;
154 	default:
155 		break;
156 	}
157 	return ext_mdio;
158 }
159 
160 /**
161  *  e1000_init_phy_params_82575 - Init PHY func ptrs.
162  *  @hw: pointer to the HW structure
163  **/
164 static s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
165 {
166 	struct e1000_phy_info *phy = &hw->phy;
167 	s32 ret_val = E1000_SUCCESS;
168 	u32 ctrl_ext;
169 
170 	DEBUGFUNC("e1000_init_phy_params_82575");
171 
172 	phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
173 	phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
174 
175 	if (hw->phy.media_type != e1000_media_type_copper) {
176 		phy->type = e1000_phy_none;
177 		goto out;
178 	}
179 
180 	phy->ops.power_up   = e1000_power_up_phy_copper;
181 	phy->ops.power_down = e1000_power_down_phy_copper_82575;
182 
183 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
184 	phy->reset_delay_us	= 100;
185 
186 	phy->ops.acquire	= e1000_acquire_phy_82575;
187 	phy->ops.check_reset_block = e1000_check_reset_block_generic;
188 	phy->ops.commit		= e1000_phy_sw_reset_generic;
189 	phy->ops.get_cfg_done	= e1000_get_cfg_done_82575;
190 	phy->ops.release	= e1000_release_phy_82575;
191 
192 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
193 
194 	if (e1000_sgmii_active_82575(hw)) {
195 		phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
196 		ctrl_ext |= E1000_CTRL_I2C_ENA;
197 	} else {
198 		phy->ops.reset = e1000_phy_hw_reset_generic;
199 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
200 	}
201 
202 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
203 	e1000_reset_mdicnfg_82580(hw);
204 
205 	if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
206 		phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
207 		phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
208 	} else {
209 		switch (hw->mac.type) {
210 		case e1000_82580:
211 		case e1000_i350:
212 		case e1000_i354:
213 			phy->ops.read_reg = e1000_read_phy_reg_82580;
214 			phy->ops.write_reg = e1000_write_phy_reg_82580;
215 			break;
216 		case e1000_i210:
217 		case e1000_i211:
218 			phy->ops.read_reg = e1000_read_phy_reg_gs40g;
219 			phy->ops.write_reg = e1000_write_phy_reg_gs40g;
220 			break;
221 		default:
222 			phy->ops.read_reg = e1000_read_phy_reg_igp;
223 			phy->ops.write_reg = e1000_write_phy_reg_igp;
224 		}
225 	}
226 
227 	/* Set phy->phy_addr and phy->id. */
228 	ret_val = e1000_get_phy_id_82575(hw);
229 
230 	/* Verify phy id and set remaining function pointers */
231 	switch (phy->id) {
232 	case M88E1543_E_PHY_ID:
233 	case M88E1512_E_PHY_ID:
234 	case I347AT4_E_PHY_ID:
235 	case M88E1112_E_PHY_ID:
236 	case M88E1340M_E_PHY_ID:
237 	case M88E1111_I_PHY_ID:
238 		phy->type		= e1000_phy_m88;
239 		phy->ops.check_polarity	= e1000_check_polarity_m88;
240 		phy->ops.get_info	= e1000_get_phy_info_m88;
241 		if (phy->id == I347AT4_E_PHY_ID ||
242 		    phy->id == M88E1112_E_PHY_ID ||
243 		    phy->id == M88E1340M_E_PHY_ID)
244 			phy->ops.get_cable_length =
245 					 e1000_get_cable_length_m88_gen2;
246 		else if (phy->id == M88E1543_E_PHY_ID ||
247 			 phy->id == M88E1512_E_PHY_ID)
248 			phy->ops.get_cable_length =
249 					 e1000_get_cable_length_m88_gen2;
250 		else
251 			phy->ops.get_cable_length = e1000_get_cable_length_m88;
252 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
253 		/* Check if this PHY is confgured for media swap. */
254 		if (phy->id == M88E1112_E_PHY_ID) {
255 			u16 data;
256 
257 			ret_val = phy->ops.write_reg(hw,
258 						     E1000_M88E1112_PAGE_ADDR,
259 						     2);
260 			if (ret_val)
261 				goto out;
262 
263 			ret_val = phy->ops.read_reg(hw,
264 						    E1000_M88E1112_MAC_CTRL_1,
265 						    &data);
266 			if (ret_val)
267 				goto out;
268 
269 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
270 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
271 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
272 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
273 				hw->mac.ops.check_for_link =
274 						e1000_check_for_link_media_swap;
275 		}
276 		if (phy->id == M88E1512_E_PHY_ID) {
277 			ret_val = e1000_initialize_M88E1512_phy(hw);
278 			if (ret_val)
279 				goto out;
280 		}
281 		if (phy->id == M88E1543_E_PHY_ID) {
282 			ret_val = e1000_initialize_M88E1543_phy(hw);
283 			if (ret_val)
284 				goto out;
285 		}
286 		break;
287 	case IGP03E1000_E_PHY_ID:
288 	case IGP04E1000_E_PHY_ID:
289 		phy->type = e1000_phy_igp_3;
290 		phy->ops.check_polarity = e1000_check_polarity_igp;
291 		phy->ops.get_info = e1000_get_phy_info_igp;
292 		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
293 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
294 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
295 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
296 		break;
297 	case I82580_I_PHY_ID:
298 	case I350_I_PHY_ID:
299 		phy->type = e1000_phy_82580;
300 		phy->ops.check_polarity = e1000_check_polarity_82577;
301 		phy->ops.force_speed_duplex =
302 					 e1000_phy_force_speed_duplex_82577;
303 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
304 		phy->ops.get_info = e1000_get_phy_info_82577;
305 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
306 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
307 		break;
308 	case I210_I_PHY_ID:
309 		phy->type		= e1000_phy_i210;
310 		phy->ops.check_polarity	= e1000_check_polarity_m88;
311 		phy->ops.get_info	= e1000_get_phy_info_m88;
312 		phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
313 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
314 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
315 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
316 		break;
317 	default:
318 		ret_val = -E1000_ERR_PHY;
319 		goto out;
320 	}
321 
322 out:
323 	return ret_val;
324 }
325 
326 /**
327  *  e1000_init_nvm_params_82575 - Init NVM func ptrs.
328  *  @hw: pointer to the HW structure
329  **/
330 s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
331 {
332 	struct e1000_nvm_info *nvm = &hw->nvm;
333 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
334 	u16 size;
335 
336 	DEBUGFUNC("e1000_init_nvm_params_82575");
337 
338 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
339 		     E1000_EECD_SIZE_EX_SHIFT);
340 	/*
341 	 * Added to a constant, "size" becomes the left-shift value
342 	 * for setting word_size.
343 	 */
344 	size += NVM_WORD_SIZE_BASE_SHIFT;
345 
346 	/* Just in case size is out of range, cap it to the largest
347 	 * EEPROM size supported
348 	 */
349 	if (size > 15)
350 		size = 15;
351 
352 	nvm->word_size = 1 << size;
353 	if (hw->mac.type < e1000_i210) {
354 		nvm->opcode_bits = 8;
355 		nvm->delay_usec = 1;
356 
357 		switch (nvm->override) {
358 		case e1000_nvm_override_spi_large:
359 			nvm->page_size = 32;
360 			nvm->address_bits = 16;
361 			break;
362 		case e1000_nvm_override_spi_small:
363 			nvm->page_size = 8;
364 			nvm->address_bits = 8;
365 			break;
366 		default:
367 			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
368 			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
369 					    16 : 8;
370 			break;
371 		}
372 		if (nvm->word_size == (1 << 15))
373 			nvm->page_size = 128;
374 
375 		nvm->type = e1000_nvm_eeprom_spi;
376 	} else {
377 		nvm->type = e1000_nvm_flash_hw;
378 	}
379 
380 	/* Function Pointers */
381 	nvm->ops.acquire = e1000_acquire_nvm_82575;
382 	nvm->ops.release = e1000_release_nvm_82575;
383 	if (nvm->word_size < (1 << 15))
384 		nvm->ops.read = e1000_read_nvm_eerd;
385 	else
386 		nvm->ops.read = e1000_read_nvm_spi;
387 
388 	nvm->ops.write = e1000_write_nvm_spi;
389 	nvm->ops.validate = e1000_validate_nvm_checksum_generic;
390 	nvm->ops.update = e1000_update_nvm_checksum_generic;
391 	nvm->ops.valid_led_default = e1000_valid_led_default_82575;
392 
393 	/* override generic family function pointers for specific descendants */
394 	switch (hw->mac.type) {
395 	case e1000_82580:
396 		nvm->ops.validate = e1000_validate_nvm_checksum_82580;
397 		nvm->ops.update = e1000_update_nvm_checksum_82580;
398 		break;
399 	case e1000_i350:
400 	case e1000_i354:
401 		nvm->ops.validate = e1000_validate_nvm_checksum_i350;
402 		nvm->ops.update = e1000_update_nvm_checksum_i350;
403 		break;
404 	default:
405 		break;
406 	}
407 
408 	return E1000_SUCCESS;
409 }
410 
411 /**
412  *  e1000_init_mac_params_82575 - Init MAC func ptrs.
413  *  @hw: pointer to the HW structure
414  **/
415 static s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
416 {
417 	struct e1000_mac_info *mac = &hw->mac;
418 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
419 
420 	DEBUGFUNC("e1000_init_mac_params_82575");
421 
422 	/* Derives media type */
423 	e1000_get_media_type_82575(hw);
424 	/* Set mta register count */
425 	mac->mta_reg_count = 128;
426 	/* Set uta register count */
427 	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
428 	/* Set rar entry count */
429 	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
430 	if (mac->type == e1000_82576)
431 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
432 	if (mac->type == e1000_82580)
433 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
434 	if (mac->type == e1000_i350 || mac->type == e1000_i354)
435 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
436 
437 	/* Disable EEE default settings for EEE supported devices */
438 	if (mac->type >= e1000_i350)
439 		dev_spec->eee_disable = TRUE;
440 
441 	/* Allow a single clear of the SW semaphore on I210 and newer */
442 	if (mac->type >= e1000_i210)
443 		dev_spec->clear_semaphore_once = TRUE;
444 
445 	/* Set if part includes ASF firmware */
446 	mac->asf_firmware_present = TRUE;
447 	/* FWSM register */
448 	mac->has_fwsm = TRUE;
449 	/* ARC supported; valid only if manageability features are enabled. */
450 	mac->arc_subsystem_valid =
451 		!!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
452 
453 	/* Function pointers */
454 
455 	/* bus type/speed/width */
456 	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
457 	/* reset */
458 	if (mac->type >= e1000_82580)
459 		mac->ops.reset_hw = e1000_reset_hw_82580;
460 	else
461 	mac->ops.reset_hw = e1000_reset_hw_82575;
462 	/* hw initialization */
463 	if ((mac->type == e1000_i210) || (mac->type == e1000_i211))
464 		mac->ops.init_hw = e1000_init_hw_i210;
465 	else
466 	mac->ops.init_hw = e1000_init_hw_82575;
467 	/* link setup */
468 	mac->ops.setup_link = e1000_setup_link_generic;
469 	/* physical interface link setup */
470 	mac->ops.setup_physical_interface =
471 		(hw->phy.media_type == e1000_media_type_copper)
472 		? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
473 	/* physical interface shutdown */
474 	mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
475 	/* physical interface power up */
476 	mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
477 	/* check for link */
478 	mac->ops.check_for_link = e1000_check_for_link_82575;
479 	/* read mac address */
480 	mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
481 	/* configure collision distance */
482 	mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
483 	/* multicast address update */
484 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
485 	if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
486 		/* writing VFTA */
487 		mac->ops.write_vfta = e1000_write_vfta_i350;
488 		/* clearing VFTA */
489 		mac->ops.clear_vfta = e1000_clear_vfta_i350;
490 	} else {
491 		/* writing VFTA */
492 		mac->ops.write_vfta = e1000_write_vfta_generic;
493 		/* clearing VFTA */
494 		mac->ops.clear_vfta = e1000_clear_vfta_generic;
495 	}
496 	if (hw->mac.type >= e1000_82580)
497 		mac->ops.validate_mdi_setting =
498 				e1000_validate_mdi_setting_crossover_generic;
499 	/* ID LED init */
500 	mac->ops.id_led_init = e1000_id_led_init_generic;
501 	/* blink LED */
502 	mac->ops.blink_led = e1000_blink_led_generic;
503 	/* setup LED */
504 	mac->ops.setup_led = e1000_setup_led_generic;
505 	/* cleanup LED */
506 	mac->ops.cleanup_led = e1000_cleanup_led_generic;
507 	/* turn on/off LED */
508 	mac->ops.led_on = e1000_led_on_generic;
509 	mac->ops.led_off = e1000_led_off_generic;
510 	/* clear hardware counters */
511 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
512 	/* link info */
513 	mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
514 	/* acquire SW_FW sync */
515 	mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
516 	mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
517 	if (mac->type >= e1000_i210) {
518 		mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
519 		mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
520 	}
521 
522 	/* set lan id for port to determine which phy lock to use */
523 	hw->mac.ops.set_lan_id(hw);
524 
525 	return E1000_SUCCESS;
526 }
527 
528 /**
529  *  e1000_init_function_pointers_82575 - Init func ptrs.
530  *  @hw: pointer to the HW structure
531  *
532  *  Called to initialize all function pointers and parameters.
533  **/
534 void e1000_init_function_pointers_82575(struct e1000_hw *hw)
535 {
536 	DEBUGFUNC("e1000_init_function_pointers_82575");
537 
538 	hw->mac.ops.init_params = e1000_init_mac_params_82575;
539 	hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
540 	hw->phy.ops.init_params = e1000_init_phy_params_82575;
541 	hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
542 }
543 
544 /**
545  *  e1000_acquire_phy_82575 - Acquire rights to access PHY
546  *  @hw: pointer to the HW structure
547  *
548  *  Acquire access rights to the correct PHY.
549  **/
550 static s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
551 {
552 	u16 mask = E1000_SWFW_PHY0_SM;
553 
554 	DEBUGFUNC("e1000_acquire_phy_82575");
555 
556 	if (hw->bus.func == E1000_FUNC_1)
557 		mask = E1000_SWFW_PHY1_SM;
558 	else if (hw->bus.func == E1000_FUNC_2)
559 		mask = E1000_SWFW_PHY2_SM;
560 	else if (hw->bus.func == E1000_FUNC_3)
561 		mask = E1000_SWFW_PHY3_SM;
562 
563 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
564 }
565 
566 /**
567  *  e1000_release_phy_82575 - Release rights to access PHY
568  *  @hw: pointer to the HW structure
569  *
570  *  A wrapper to release access rights to the correct PHY.
571  **/
572 static void e1000_release_phy_82575(struct e1000_hw *hw)
573 {
574 	u16 mask = E1000_SWFW_PHY0_SM;
575 
576 	DEBUGFUNC("e1000_release_phy_82575");
577 
578 	if (hw->bus.func == E1000_FUNC_1)
579 		mask = E1000_SWFW_PHY1_SM;
580 	else if (hw->bus.func == E1000_FUNC_2)
581 		mask = E1000_SWFW_PHY2_SM;
582 	else if (hw->bus.func == E1000_FUNC_3)
583 		mask = E1000_SWFW_PHY3_SM;
584 
585 	hw->mac.ops.release_swfw_sync(hw, mask);
586 }
587 
588 /**
589  *  e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
590  *  @hw: pointer to the HW structure
591  *  @offset: register offset to be read
592  *  @data: pointer to the read data
593  *
594  *  Reads the PHY register at offset using the serial gigabit media independent
595  *  interface and stores the retrieved information in data.
596  **/
597 static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
598 					  u16 *data)
599 {
600 	s32 ret_val = -E1000_ERR_PARAM;
601 
602 	DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
603 
604 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
605 		DEBUGOUT1("PHY Address %u is out of range\n", offset);
606 		goto out;
607 	}
608 
609 	ret_val = hw->phy.ops.acquire(hw);
610 	if (ret_val)
611 		goto out;
612 
613 	ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
614 
615 	hw->phy.ops.release(hw);
616 
617 out:
618 	return ret_val;
619 }
620 
621 /**
622  *  e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
623  *  @hw: pointer to the HW structure
624  *  @offset: register offset to write to
625  *  @data: data to write at register offset
626  *
627  *  Writes the data to PHY register at the offset using the serial gigabit
628  *  media independent interface.
629  **/
630 static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
631 					   u16 data)
632 {
633 	s32 ret_val = -E1000_ERR_PARAM;
634 
635 	DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
636 
637 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
638 		DEBUGOUT1("PHY Address %d is out of range\n", offset);
639 		goto out;
640 	}
641 
642 	ret_val = hw->phy.ops.acquire(hw);
643 	if (ret_val)
644 		goto out;
645 
646 	ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
647 
648 	hw->phy.ops.release(hw);
649 
650 out:
651 	return ret_val;
652 }
653 
654 /**
655  *  e1000_get_phy_id_82575 - Retrieve PHY addr and id
656  *  @hw: pointer to the HW structure
657  *
658  *  Retrieves the PHY address and ID for both PHY's which do and do not use
659  *  sgmi interface.
660  **/
661 static s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
662 {
663 	struct e1000_phy_info *phy = &hw->phy;
664 	s32  ret_val = E1000_SUCCESS;
665 	u16 phy_id;
666 	u32 ctrl_ext;
667 	u32 mdic;
668 
669 	DEBUGFUNC("e1000_get_phy_id_82575");
670 
671 	/* some i354 devices need an extra read for phy id */
672 	if (hw->mac.type == e1000_i354)
673 		e1000_get_phy_id(hw);
674 
675 	/*
676 	 * For SGMII PHYs, we try the list of possible addresses until
677 	 * we find one that works.  For non-SGMII PHYs
678 	 * (e.g. integrated copper PHYs), an address of 1 should
679 	 * work.  The result of this function should mean phy->phy_addr
680 	 * and phy->id are set correctly.
681 	 */
682 	if (!e1000_sgmii_active_82575(hw)) {
683 		phy->addr = 1;
684 		ret_val = e1000_get_phy_id(hw);
685 		goto out;
686 	}
687 
688 	if (e1000_sgmii_uses_mdio_82575(hw)) {
689 		switch (hw->mac.type) {
690 		case e1000_82575:
691 		case e1000_82576:
692 			mdic = E1000_READ_REG(hw, E1000_MDIC);
693 			mdic &= E1000_MDIC_PHY_MASK;
694 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
695 			break;
696 		case e1000_82580:
697 		case e1000_i350:
698 		case e1000_i354:
699 		case e1000_i210:
700 		case e1000_i211:
701 			mdic = E1000_READ_REG(hw, E1000_MDICNFG);
702 			mdic &= E1000_MDICNFG_PHY_MASK;
703 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
704 			break;
705 		default:
706 			ret_val = -E1000_ERR_PHY;
707 			goto out;
708 			break;
709 		}
710 		ret_val = e1000_get_phy_id(hw);
711 		goto out;
712 	}
713 
714 	/* Power on sgmii phy if it is disabled */
715 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
716 	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
717 			ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
718 	E1000_WRITE_FLUSH(hw);
719 	msec_delay(300);
720 
721 	/*
722 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
723 	 * Therefore, we need to test 1-7
724 	 */
725 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
726 		ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
727 		if (ret_val == E1000_SUCCESS) {
728 			DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
729 				  phy_id, phy->addr);
730 			/*
731 			 * At the time of this writing, The M88 part is
732 			 * the only supported SGMII PHY product.
733 			 */
734 			if (phy_id == M88_VENDOR)
735 				break;
736 		} else {
737 			DEBUGOUT1("PHY address %u was unreadable\n",
738 				  phy->addr);
739 		}
740 	}
741 
742 	/* A valid PHY type couldn't be found. */
743 	if (phy->addr == 8) {
744 		phy->addr = 0;
745 		ret_val = -E1000_ERR_PHY;
746 	} else {
747 		ret_val = e1000_get_phy_id(hw);
748 	}
749 
750 	/* restore previous sfp cage power state */
751 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
752 
753 out:
754 	return ret_val;
755 }
756 
757 /**
758  *  e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
759  *  @hw: pointer to the HW structure
760  *
761  *  Resets the PHY using the serial gigabit media independent interface.
762  **/
763 static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
764 {
765 	s32 ret_val = E1000_SUCCESS;
766 	struct e1000_phy_info *phy = &hw->phy;
767 
768 	DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
769 
770 	/*
771 	 * This isn't a TRUE "hard" reset, but is the only reset
772 	 * available to us at this time.
773 	 */
774 
775 	DEBUGOUT("Soft resetting SGMII attached PHY...\n");
776 
777 	if (!(hw->phy.ops.write_reg))
778 		goto out;
779 
780 	/*
781 	 * SFP documentation requires the following to configure the SPF module
782 	 * to work on SGMII.  No further documentation is given.
783 	 */
784 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
785 	if (ret_val)
786 		goto out;
787 
788 	ret_val = hw->phy.ops.commit(hw);
789 	if (ret_val)
790 		goto out;
791 
792 	if (phy->id == M88E1512_E_PHY_ID)
793 		ret_val = e1000_initialize_M88E1512_phy(hw);
794 out:
795 	return ret_val;
796 }
797 
798 /**
799  *  e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
800  *  @hw: pointer to the HW structure
801  *  @active: TRUE to enable LPLU, FALSE to disable
802  *
803  *  Sets the LPLU D0 state according to the active flag.  When
804  *  activating LPLU this function also disables smart speed
805  *  and vice versa.  LPLU will not be activated unless the
806  *  device autonegotiation advertisement meets standards of
807  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
808  *  This is a function pointer entry point only called by
809  *  PHY setup routines.
810  **/
811 static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
812 {
813 	struct e1000_phy_info *phy = &hw->phy;
814 	s32 ret_val = E1000_SUCCESS;
815 	u16 data;
816 
817 	DEBUGFUNC("e1000_set_d0_lplu_state_82575");
818 
819 	if (!(hw->phy.ops.read_reg))
820 		goto out;
821 
822 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
823 	if (ret_val)
824 		goto out;
825 
826 	if (active) {
827 		data |= IGP02E1000_PM_D0_LPLU;
828 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
829 					     data);
830 		if (ret_val)
831 			goto out;
832 
833 		/* When LPLU is enabled, we should disable SmartSpeed */
834 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
835 					    &data);
836 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
837 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
838 					     data);
839 		if (ret_val)
840 			goto out;
841 	} else {
842 		data &= ~IGP02E1000_PM_D0_LPLU;
843 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
844 					     data);
845 		/*
846 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
847 		 * during Dx states where the power conservation is most
848 		 * important.  During driver activity we should enable
849 		 * SmartSpeed, so performance is maintained.
850 		 */
851 		if (phy->smart_speed == e1000_smart_speed_on) {
852 			ret_val = phy->ops.read_reg(hw,
853 						    IGP01E1000_PHY_PORT_CONFIG,
854 						    &data);
855 			if (ret_val)
856 				goto out;
857 
858 			data |= IGP01E1000_PSCFR_SMART_SPEED;
859 			ret_val = phy->ops.write_reg(hw,
860 						     IGP01E1000_PHY_PORT_CONFIG,
861 						     data);
862 			if (ret_val)
863 				goto out;
864 		} else if (phy->smart_speed == e1000_smart_speed_off) {
865 			ret_val = phy->ops.read_reg(hw,
866 						    IGP01E1000_PHY_PORT_CONFIG,
867 						    &data);
868 			if (ret_val)
869 				goto out;
870 
871 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
872 			ret_val = phy->ops.write_reg(hw,
873 						     IGP01E1000_PHY_PORT_CONFIG,
874 						     data);
875 			if (ret_val)
876 				goto out;
877 		}
878 	}
879 
880 out:
881 	return ret_val;
882 }
883 
884 /**
885  *  e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
886  *  @hw: pointer to the HW structure
887  *  @active: TRUE to enable LPLU, FALSE to disable
888  *
889  *  Sets the LPLU D0 state according to the active flag.  When
890  *  activating LPLU this function also disables smart speed
891  *  and vice versa.  LPLU will not be activated unless the
892  *  device autonegotiation advertisement meets standards of
893  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
894  *  This is a function pointer entry point only called by
895  *  PHY setup routines.
896  **/
897 static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
898 {
899 	struct e1000_phy_info *phy = &hw->phy;
900 	u32 data;
901 
902 	DEBUGFUNC("e1000_set_d0_lplu_state_82580");
903 
904 	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
905 
906 	if (active) {
907 		data |= E1000_82580_PM_D0_LPLU;
908 
909 		/* When LPLU is enabled, we should disable SmartSpeed */
910 		data &= ~E1000_82580_PM_SPD;
911 	} else {
912 		data &= ~E1000_82580_PM_D0_LPLU;
913 
914 		/*
915 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
916 		 * during Dx states where the power conservation is most
917 		 * important.  During driver activity we should enable
918 		 * SmartSpeed, so performance is maintained.
919 		 */
920 		if (phy->smart_speed == e1000_smart_speed_on)
921 			data |= E1000_82580_PM_SPD;
922 		else if (phy->smart_speed == e1000_smart_speed_off)
923 			data &= ~E1000_82580_PM_SPD;
924 	}
925 
926 	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
927 	return E1000_SUCCESS;
928 }
929 
930 /**
931  *  e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
932  *  @hw: pointer to the HW structure
933  *  @active: boolean used to enable/disable lplu
934  *
935  *  Success returns 0, Failure returns 1
936  *
937  *  The low power link up (lplu) state is set to the power management level D3
938  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
939  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
940  *  is used during Dx states where the power conservation is most important.
941  *  During driver activity, SmartSpeed should be enabled so performance is
942  *  maintained.
943  **/
944 s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
945 {
946 	struct e1000_phy_info *phy = &hw->phy;
947 	u32 data;
948 
949 	DEBUGFUNC("e1000_set_d3_lplu_state_82580");
950 
951 	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
952 
953 	if (!active) {
954 		data &= ~E1000_82580_PM_D3_LPLU;
955 		/*
956 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
957 		 * during Dx states where the power conservation is most
958 		 * important.  During driver activity we should enable
959 		 * SmartSpeed, so performance is maintained.
960 		 */
961 		if (phy->smart_speed == e1000_smart_speed_on)
962 			data |= E1000_82580_PM_SPD;
963 		else if (phy->smart_speed == e1000_smart_speed_off)
964 			data &= ~E1000_82580_PM_SPD;
965 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
966 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
967 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
968 		data |= E1000_82580_PM_D3_LPLU;
969 		/* When LPLU is enabled, we should disable SmartSpeed */
970 		data &= ~E1000_82580_PM_SPD;
971 	}
972 
973 	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
974 	return E1000_SUCCESS;
975 }
976 
977 /**
978  *  e1000_acquire_nvm_82575 - Request for access to EEPROM
979  *  @hw: pointer to the HW structure
980  *
981  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
982  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
983  *  Return successful if access grant bit set, else clear the request for
984  *  EEPROM access and return -E1000_ERR_NVM (-1).
985  **/
986 static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
987 {
988 	s32 ret_val = E1000_SUCCESS;
989 
990 	DEBUGFUNC("e1000_acquire_nvm_82575");
991 
992 	ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
993 	if (ret_val)
994 		goto out;
995 
996 	/*
997 	 * Check if there is some access
998 	 * error this access may hook on
999 	 */
1000 	if (hw->mac.type == e1000_i350) {
1001 		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
1002 		if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
1003 		    E1000_EECD_TIMEOUT)) {
1004 			/* Clear all access error flags */
1005 			E1000_WRITE_REG(hw, E1000_EECD, eecd |
1006 					E1000_EECD_ERROR_CLR);
1007 			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
1008 		}
1009 	}
1010 
1011 	if (hw->mac.type == e1000_82580) {
1012 		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
1013 		if (eecd & E1000_EECD_BLOCKED) {
1014 			/* Clear access error flag */
1015 			E1000_WRITE_REG(hw, E1000_EECD, eecd |
1016 					E1000_EECD_BLOCKED);
1017 			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
1018 		}
1019 	}
1020 
1021 	ret_val = e1000_acquire_nvm_generic(hw);
1022 	if (ret_val)
1023 		e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
1024 
1025 out:
1026 	return ret_val;
1027 }
1028 
1029 /**
1030  *  e1000_release_nvm_82575 - Release exclusive access to EEPROM
1031  *  @hw: pointer to the HW structure
1032  *
1033  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1034  *  then release the semaphores acquired.
1035  **/
1036 static void e1000_release_nvm_82575(struct e1000_hw *hw)
1037 {
1038 	DEBUGFUNC("e1000_release_nvm_82575");
1039 
1040 	e1000_release_nvm_generic(hw);
1041 
1042 	e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
1043 }
1044 
1045 /**
1046  *  e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1047  *  @hw: pointer to the HW structure
1048  *  @mask: specifies which semaphore to acquire
1049  *
1050  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1051  *  will also specify which port we're acquiring the lock for.
1052  **/
1053 static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1054 {
1055 	u32 swfw_sync;
1056 	u32 swmask = mask;
1057 	u32 fwmask = mask << 16;
1058 	s32 ret_val = E1000_SUCCESS;
1059 	s32 i = 0, timeout = 200;
1060 
1061 	DEBUGFUNC("e1000_acquire_swfw_sync_82575");
1062 
1063 	while (i < timeout) {
1064 		if (e1000_get_hw_semaphore_generic(hw)) {
1065 			ret_val = -E1000_ERR_SWFW_SYNC;
1066 			goto out;
1067 		}
1068 
1069 		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
1070 		if (!(swfw_sync & (fwmask | swmask)))
1071 			break;
1072 
1073 		/*
1074 		 * Firmware currently using resource (fwmask)
1075 		 * or other software thread using resource (swmask)
1076 		 */
1077 		e1000_put_hw_semaphore_generic(hw);
1078 		msec_delay_irq(5);
1079 		i++;
1080 	}
1081 
1082 	if (i == timeout) {
1083 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1084 		ret_val = -E1000_ERR_SWFW_SYNC;
1085 		goto out;
1086 	}
1087 
1088 	swfw_sync |= swmask;
1089 	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
1090 
1091 	e1000_put_hw_semaphore_generic(hw);
1092 
1093 out:
1094 	return ret_val;
1095 }
1096 
1097 /**
1098  *  e1000_release_swfw_sync_82575 - Release SW/FW semaphore
1099  *  @hw: pointer to the HW structure
1100  *  @mask: specifies which semaphore to acquire
1101  *
1102  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1103  *  will also specify which port we're releasing the lock for.
1104  **/
1105 static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1106 {
1107 	u32 swfw_sync;
1108 
1109 	DEBUGFUNC("e1000_release_swfw_sync_82575");
1110 
1111 	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
1112 		; /* Empty */
1113 
1114 	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
1115 	swfw_sync &= ~mask;
1116 	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
1117 
1118 	e1000_put_hw_semaphore_generic(hw);
1119 }
1120 
1121 /**
1122  *  e1000_get_cfg_done_82575 - Read config done bit
1123  *  @hw: pointer to the HW structure
1124  *
1125  *  Read the management control register for the config done bit for
1126  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1127  *  to read the config done bit, so an error is *ONLY* logged and returns
1128  *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
1129  *  would not be able to be reset or change link.
1130  **/
1131 static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
1132 {
1133 	s32 timeout = PHY_CFG_TIMEOUT;
1134 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1135 
1136 	DEBUGFUNC("e1000_get_cfg_done_82575");
1137 
1138 	if (hw->bus.func == E1000_FUNC_1)
1139 		mask = E1000_NVM_CFG_DONE_PORT_1;
1140 	else if (hw->bus.func == E1000_FUNC_2)
1141 		mask = E1000_NVM_CFG_DONE_PORT_2;
1142 	else if (hw->bus.func == E1000_FUNC_3)
1143 		mask = E1000_NVM_CFG_DONE_PORT_3;
1144 	while (timeout) {
1145 		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
1146 			break;
1147 		msec_delay(1);
1148 		timeout--;
1149 	}
1150 	if (!timeout)
1151 		DEBUGOUT("MNG configuration cycle has not completed.\n");
1152 
1153 	/* If EEPROM is not marked present, init the PHY manually */
1154 	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
1155 	    (hw->phy.type == e1000_phy_igp_3))
1156 		e1000_phy_init_script_igp3(hw);
1157 
1158 	return E1000_SUCCESS;
1159 }
1160 
1161 /**
1162  *  e1000_get_link_up_info_82575 - Get link speed/duplex info
1163  *  @hw: pointer to the HW structure
1164  *  @speed: stores the current speed
1165  *  @duplex: stores the current duplex
1166  *
1167  *  This is a wrapper function, if using the serial gigabit media independent
1168  *  interface, use PCS to retrieve the link speed and duplex information.
1169  *  Otherwise, use the generic function to get the link speed and duplex info.
1170  **/
1171 static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1172 					u16 *duplex)
1173 {
1174 	s32 ret_val;
1175 
1176 	DEBUGFUNC("e1000_get_link_up_info_82575");
1177 
1178 	if (hw->phy.media_type != e1000_media_type_copper)
1179 		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
1180 							       duplex);
1181 	else
1182 		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
1183 								    duplex);
1184 
1185 	return ret_val;
1186 }
1187 
1188 /**
1189  *  e1000_check_for_link_82575 - Check for link
1190  *  @hw: pointer to the HW structure
1191  *
1192  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1193  *  use the generic interface for determining link.
1194  **/
1195 static s32 e1000_check_for_link_82575(struct e1000_hw *hw)
1196 {
1197 	s32 ret_val;
1198 	u16 speed, duplex;
1199 
1200 	DEBUGFUNC("e1000_check_for_link_82575");
1201 
1202 	if (hw->phy.media_type != e1000_media_type_copper) {
1203 		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
1204 							       &duplex);
1205 		/*
1206 		 * Use this flag to determine if link needs to be checked or
1207 		 * not.  If we have link clear the flag so that we do not
1208 		 * continue to check for link.
1209 		 */
1210 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1211 
1212 		/*
1213 		 * Configure Flow Control now that Auto-Neg has completed.
1214 		 * First, we need to restore the desired flow control
1215 		 * settings because we may have had to re-autoneg with a
1216 		 * different link partner.
1217 		 */
1218 		ret_val = e1000_config_fc_after_link_up_generic(hw);
1219 		if (ret_val)
1220 			DEBUGOUT("Error configuring flow control\n");
1221 	} else {
1222 		ret_val = e1000_check_for_copper_link_generic(hw);
1223 	}
1224 
1225 	return ret_val;
1226 }
1227 
1228 /**
1229  *  e1000_check_for_link_media_swap - Check which M88E1112 interface linked
1230  *  @hw: pointer to the HW structure
1231  *
1232  *  Poll the M88E1112 interfaces to see which interface achieved link.
1233  */
1234 static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
1235 {
1236 	struct e1000_phy_info *phy = &hw->phy;
1237 	s32 ret_val;
1238 	u16 data;
1239 	u8 port = 0;
1240 
1241 	DEBUGFUNC("e1000_check_for_link_media_swap");
1242 
1243 	/* Check for copper. */
1244 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1245 	if (ret_val)
1246 		return ret_val;
1247 
1248 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
1249 	if (ret_val)
1250 		return ret_val;
1251 
1252 	if (data & E1000_M88E1112_STATUS_LINK)
1253 		port = E1000_MEDIA_PORT_COPPER;
1254 
1255 	/* Check for other. */
1256 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
1257 	if (ret_val)
1258 		return ret_val;
1259 
1260 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
1261 	if (ret_val)
1262 		return ret_val;
1263 
1264 	if (data & E1000_M88E1112_STATUS_LINK)
1265 		port = E1000_MEDIA_PORT_OTHER;
1266 
1267 	/* Determine if a swap needs to happen. */
1268 	if (port && (hw->dev_spec._82575.media_port != port)) {
1269 		hw->dev_spec._82575.media_port = port;
1270 		hw->dev_spec._82575.media_changed = TRUE;
1271 	}
1272 
1273 	if (port == E1000_MEDIA_PORT_COPPER) {
1274 		/* reset page to 0 */
1275 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1276 		if (ret_val)
1277 			return ret_val;
1278 		e1000_check_for_link_82575(hw);
1279 	} else {
1280 		e1000_check_for_link_82575(hw);
1281 		/* reset page to 0 */
1282 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
1283 		if (ret_val)
1284 			return ret_val;
1285 	}
1286 
1287 	return E1000_SUCCESS;
1288 }
1289 
1290 /**
1291  *  e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1292  *  @hw: pointer to the HW structure
1293  **/
1294 static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
1295 {
1296 	u32 reg;
1297 
1298 	DEBUGFUNC("e1000_power_up_serdes_link_82575");
1299 
1300 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1301 	    !e1000_sgmii_active_82575(hw))
1302 		return;
1303 
1304 	/* Enable PCS to turn on link */
1305 	reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
1306 	reg |= E1000_PCS_CFG_PCS_EN;
1307 	E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
1308 
1309 	/* Power up the laser */
1310 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1311 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1312 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1313 
1314 	/* flush the write to verify completion */
1315 	E1000_WRITE_FLUSH(hw);
1316 	msec_delay(1);
1317 }
1318 
1319 /**
1320  *  e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1321  *  @hw: pointer to the HW structure
1322  *  @speed: stores the current speed
1323  *  @duplex: stores the current duplex
1324  *
1325  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1326  *  duplex, then store the values in the pointers provided.
1327  **/
1328 static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
1329 						u16 *speed, u16 *duplex)
1330 {
1331 	struct e1000_mac_info *mac = &hw->mac;
1332 	u32 pcs;
1333 	u32 status;
1334 
1335 	DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
1336 
1337 	/*
1338 	 * Read the PCS Status register for link state. For non-copper mode,
1339 	 * the status register is not accurate. The PCS status register is
1340 	 * used instead.
1341 	 */
1342 	pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
1343 
1344 	/*
1345 	 * The link up bit determines when link is up on autoneg.
1346 	 */
1347 	if (pcs & E1000_PCS_LSTS_LINK_OK) {
1348 		mac->serdes_has_link = TRUE;
1349 
1350 		/* Detect and store PCS speed */
1351 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1352 			*speed = SPEED_1000;
1353 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1354 			*speed = SPEED_100;
1355 		else
1356 			*speed = SPEED_10;
1357 
1358 		/* Detect and store PCS duplex */
1359 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1360 			*duplex = FULL_DUPLEX;
1361 		else
1362 			*duplex = HALF_DUPLEX;
1363 
1364 		/* Check if it is an I354 2.5Gb backplane connection. */
1365 		if (mac->type == e1000_i354) {
1366 			status = E1000_READ_REG(hw, E1000_STATUS);
1367 			if ((status & E1000_STATUS_2P5_SKU) &&
1368 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1369 				*speed = SPEED_2500;
1370 				*duplex = FULL_DUPLEX;
1371 				DEBUGOUT("2500 Mbs, ");
1372 				DEBUGOUT("Full Duplex\n");
1373 			}
1374 		}
1375 
1376 	} else {
1377 		mac->serdes_has_link = FALSE;
1378 		*speed = 0;
1379 		*duplex = 0;
1380 	}
1381 
1382 	return E1000_SUCCESS;
1383 }
1384 
1385 /**
1386  *  e1000_shutdown_serdes_link_82575 - Remove link during power down
1387  *  @hw: pointer to the HW structure
1388  *
1389  *  In the case of serdes shut down sfp and PCS on driver unload
1390  *  when management pass thru is not enabled.
1391  **/
1392 void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
1393 {
1394 	u32 reg;
1395 
1396 	DEBUGFUNC("e1000_shutdown_serdes_link_82575");
1397 
1398 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1399 	    !e1000_sgmii_active_82575(hw))
1400 		return;
1401 
1402 	if (!e1000_enable_mng_pass_thru(hw)) {
1403 		/* Disable PCS to turn off link */
1404 		reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
1405 		reg &= ~E1000_PCS_CFG_PCS_EN;
1406 		E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
1407 
1408 		/* shutdown the laser */
1409 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1410 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1411 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1412 
1413 		/* flush the write to verify completion */
1414 		E1000_WRITE_FLUSH(hw);
1415 		msec_delay(1);
1416 	}
1417 
1418 	return;
1419 }
1420 
1421 /**
1422  *  e1000_reset_hw_82575 - Reset hardware
1423  *  @hw: pointer to the HW structure
1424  *
1425  *  This resets the hardware into a known state.
1426  **/
1427 static s32 e1000_reset_hw_82575(struct e1000_hw *hw)
1428 {
1429 	u32 ctrl;
1430 	s32 ret_val;
1431 
1432 	DEBUGFUNC("e1000_reset_hw_82575");
1433 
1434 	/*
1435 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1436 	 * on the last TLP read/write transaction when MAC is reset.
1437 	 */
1438 	ret_val = e1000_disable_pcie_master_generic(hw);
1439 	if (ret_val)
1440 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
1441 
1442 	/* set the completion timeout for interface */
1443 	ret_val = e1000_set_pcie_completion_timeout(hw);
1444 	if (ret_val)
1445 		DEBUGOUT("PCI-E Set completion timeout has failed.\n");
1446 
1447 	DEBUGOUT("Masking off all interrupts\n");
1448 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1449 
1450 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
1451 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
1452 	E1000_WRITE_FLUSH(hw);
1453 
1454 	msec_delay(10);
1455 
1456 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1457 
1458 	DEBUGOUT("Issuing a global reset to MAC\n");
1459 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
1460 
1461 	ret_val = e1000_get_auto_rd_done_generic(hw);
1462 	if (ret_val) {
1463 		/*
1464 		 * When auto config read does not complete, do not
1465 		 * return with an error. This can happen in situations
1466 		 * where there is no eeprom and prevents getting link.
1467 		 */
1468 		DEBUGOUT("Auto Read Done did not complete\n");
1469 	}
1470 
1471 	/* If EEPROM is not present, run manual init scripts */
1472 	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
1473 		e1000_reset_init_script_82575(hw);
1474 
1475 	/* Clear any pending interrupt events. */
1476 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
1477 	E1000_READ_REG(hw, E1000_ICR);
1478 
1479 	/* Install any alternate MAC address into RAR0 */
1480 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1481 
1482 	return ret_val;
1483 }
1484 
1485 /**
1486  *  e1000_init_hw_82575 - Initialize hardware
1487  *  @hw: pointer to the HW structure
1488  *
1489  *  This inits the hardware readying it for operation.
1490  **/
1491 s32 e1000_init_hw_82575(struct e1000_hw *hw)
1492 {
1493 	struct e1000_mac_info *mac = &hw->mac;
1494 	s32 ret_val;
1495 	u16 i, rar_count = mac->rar_entry_count;
1496 
1497 	DEBUGFUNC("e1000_init_hw_82575");
1498 
1499 	/* Initialize identification LED */
1500 	ret_val = mac->ops.id_led_init(hw);
1501 	if (ret_val) {
1502 		DEBUGOUT("Error initializing identification LED\n");
1503 		/* This is not fatal and we should not stop init due to this */
1504 	}
1505 
1506 	/* Disabling VLAN filtering */
1507 	DEBUGOUT("Initializing the IEEE VLAN\n");
1508 	mac->ops.clear_vfta(hw);
1509 
1510 	/* Setup the receive address */
1511 	e1000_init_rx_addrs_generic(hw, rar_count);
1512 
1513 	/* Zero out the Multicast HASH table */
1514 	DEBUGOUT("Zeroing the MTA\n");
1515 	for (i = 0; i < mac->mta_reg_count; i++)
1516 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1517 
1518 	/* Zero out the Unicast HASH table */
1519 	DEBUGOUT("Zeroing the UTA\n");
1520 	for (i = 0; i < mac->uta_reg_count; i++)
1521 		E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
1522 
1523 	/* Setup link and flow control */
1524 	ret_val = mac->ops.setup_link(hw);
1525 
1526 	/* Set the default MTU size */
1527 	hw->dev_spec._82575.mtu = 1500;
1528 
1529 	/*
1530 	 * Clear all of the statistics registers (clear on read).  It is
1531 	 * important that we do this after we have tried to establish link
1532 	 * because the symbol error count will increment wildly if there
1533 	 * is no link.
1534 	 */
1535 	e1000_clear_hw_cntrs_82575(hw);
1536 
1537 	return ret_val;
1538 }
1539 
1540 /**
1541  *  e1000_setup_copper_link_82575 - Configure copper link settings
1542  *  @hw: pointer to the HW structure
1543  *
1544  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1545  *  for link, once link is established calls to configure collision distance
1546  *  and flow control are called.
1547  **/
1548 static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
1549 {
1550 	u32 ctrl;
1551 	s32 ret_val;
1552 	u32 phpm_reg;
1553 
1554 	DEBUGFUNC("e1000_setup_copper_link_82575");
1555 
1556 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1557 	ctrl |= E1000_CTRL_SLU;
1558 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1559 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1560 
1561 	/* Clear Go Link Disconnect bit on supported devices */
1562 	switch (hw->mac.type) {
1563 	case e1000_82580:
1564 	case e1000_i350:
1565 	case e1000_i210:
1566 	case e1000_i211:
1567 		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1568 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1569 		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1570 		break;
1571 	default:
1572 		break;
1573 	}
1574 
1575 	ret_val = e1000_setup_serdes_link_82575(hw);
1576 	if (ret_val)
1577 		goto out;
1578 
1579 	if (e1000_sgmii_active_82575(hw)) {
1580 		/* allow time for SFP cage time to power up phy */
1581 		msec_delay(300);
1582 
1583 		ret_val = hw->phy.ops.reset(hw);
1584 		if (ret_val) {
1585 			DEBUGOUT("Error resetting the PHY.\n");
1586 			goto out;
1587 		}
1588 	}
1589 	switch (hw->phy.type) {
1590 	case e1000_phy_i210:
1591 	case e1000_phy_m88:
1592 		switch (hw->phy.id) {
1593 		case I347AT4_E_PHY_ID:
1594 		case M88E1112_E_PHY_ID:
1595 		case M88E1340M_E_PHY_ID:
1596 		case M88E1543_E_PHY_ID:
1597 		case M88E1512_E_PHY_ID:
1598 		case I210_I_PHY_ID:
1599 			ret_val = e1000_copper_link_setup_m88_gen2(hw);
1600 			break;
1601 		default:
1602 			ret_val = e1000_copper_link_setup_m88(hw);
1603 			break;
1604 		}
1605 		break;
1606 	case e1000_phy_igp_3:
1607 		ret_val = e1000_copper_link_setup_igp(hw);
1608 		break;
1609 	case e1000_phy_82580:
1610 		ret_val = e1000_copper_link_setup_82577(hw);
1611 		break;
1612 	default:
1613 		ret_val = -E1000_ERR_PHY;
1614 		break;
1615 	}
1616 
1617 	if (ret_val)
1618 		goto out;
1619 
1620 	ret_val = e1000_setup_copper_link_generic(hw);
1621 out:
1622 	return ret_val;
1623 }
1624 
1625 /**
1626  *  e1000_setup_serdes_link_82575 - Setup link for serdes
1627  *  @hw: pointer to the HW structure
1628  *
1629  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1630  *  used on copper connections where the serialized gigabit media independent
1631  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1632  *  for auto-negotiation or forces speed/duplex.
1633  **/
1634 static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
1635 {
1636 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1637 	bool pcs_autoneg;
1638 	s32 ret_val = E1000_SUCCESS;
1639 	u16 data;
1640 
1641 	DEBUGFUNC("e1000_setup_serdes_link_82575");
1642 
1643 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1644 	    !e1000_sgmii_active_82575(hw))
1645 		return ret_val;
1646 
1647 	/*
1648 	 * On the 82575, SerDes loopback mode persists until it is
1649 	 * explicitly turned off or a power cycle is performed.  A read to
1650 	 * the register does not indicate its status.  Therefore, we ensure
1651 	 * loopback mode is disabled during initialization.
1652 	 */
1653 	E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1654 
1655 	/* power on the sfp cage if present */
1656 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1657 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1658 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1659 
1660 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
1661 	ctrl_reg |= E1000_CTRL_SLU;
1662 
1663 	/* set both sw defined pins on 82575/82576*/
1664 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
1665 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1666 
1667 	reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
1668 
1669 	/* default pcs_autoneg to the same setting as mac autoneg */
1670 	pcs_autoneg = hw->mac.autoneg;
1671 
1672 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1673 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1674 		/* sgmii mode lets the phy handle forcing speed/duplex */
1675 		pcs_autoneg = TRUE;
1676 		/* autoneg time out should be disabled for SGMII mode */
1677 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1678 		break;
1679 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1680 		/* disable PCS autoneg and support parallel detect only */
1681 		pcs_autoneg = FALSE;
1682 		/* fall through to default case */
1683 	default:
1684 		if (hw->mac.type == e1000_82575 ||
1685 		    hw->mac.type == e1000_82576) {
1686 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1687 			if (ret_val) {
1688 				DEBUGOUT("NVM Read Error\n");
1689 				return ret_val;
1690 			}
1691 
1692 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1693 				pcs_autoneg = FALSE;
1694 		}
1695 
1696 		/*
1697 		 * non-SGMII modes only supports a speed of 1000/Full for the
1698 		 * link so it is best to just force the MAC and let the pcs
1699 		 * link either autoneg or be forced to 1000/Full
1700 		 */
1701 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1702 			    E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1703 
1704 		/* set speed of 1000/Full if speed/duplex is forced */
1705 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1706 		break;
1707 	}
1708 
1709 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
1710 
1711 	/*
1712 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1713 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1714 	 * mode that will be compatible with older link partners and switches.
1715 	 * However, both are supported by the hardware and some drivers/tools.
1716 	 */
1717 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1718 		 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1719 
1720 	if (pcs_autoneg) {
1721 		/* Set PCS register for autoneg */
1722 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1723 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1724 
1725 		/* Disable force flow control for autoneg */
1726 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1727 
1728 		/* Configure flow control advertisement for autoneg */
1729 		anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
1730 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1731 
1732 		switch (hw->fc.requested_mode) {
1733 		case e1000_fc_full:
1734 		case e1000_fc_rx_pause:
1735 			anadv_reg |= E1000_TXCW_ASM_DIR;
1736 			anadv_reg |= E1000_TXCW_PAUSE;
1737 			break;
1738 		case e1000_fc_tx_pause:
1739 			anadv_reg |= E1000_TXCW_ASM_DIR;
1740 			break;
1741 		default:
1742 			break;
1743 		}
1744 
1745 		E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
1746 
1747 		DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1748 	} else {
1749 		/* Set PCS register for forced link */
1750 		reg |= E1000_PCS_LCTL_FSD;	/* Force Speed */
1751 
1752 		/* Force flow control for forced link */
1753 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1754 
1755 		DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1756 	}
1757 
1758 	E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
1759 
1760 	if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
1761 		e1000_force_mac_fc_generic(hw);
1762 
1763 	return ret_val;
1764 }
1765 
1766 /**
1767  *  e1000_get_media_type_82575 - derives current media type.
1768  *  @hw: pointer to the HW structure
1769  *
1770  *  The media type is chosen reflecting few settings.
1771  *  The following are taken into account:
1772  *  - link mode set in the current port Init Control Word #3
1773  *  - current link mode settings in CSR register
1774  *  - MDIO vs. I2C PHY control interface chosen
1775  *  - SFP module media type
1776  **/
1777 static s32 e1000_get_media_type_82575(struct e1000_hw *hw)
1778 {
1779 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1780 	s32 ret_val = E1000_SUCCESS;
1781 	u32 ctrl_ext = 0;
1782 	u32 link_mode = 0;
1783 
1784 	/* Set internal phy as default */
1785 	dev_spec->sgmii_active = FALSE;
1786 	dev_spec->module_plugged = FALSE;
1787 
1788 	/* Get CSR setting */
1789 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1790 
1791 	/* extract link mode setting */
1792 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
1793 
1794 	switch (link_mode) {
1795 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1796 		hw->phy.media_type = e1000_media_type_internal_serdes;
1797 		break;
1798 	case E1000_CTRL_EXT_LINK_MODE_GMII:
1799 		hw->phy.media_type = e1000_media_type_copper;
1800 		break;
1801 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1802 		/* Get phy control interface type set (MDIO vs. I2C)*/
1803 		if (e1000_sgmii_uses_mdio_82575(hw)) {
1804 			hw->phy.media_type = e1000_media_type_copper;
1805 			dev_spec->sgmii_active = TRUE;
1806 			break;
1807 		}
1808 		/* fall through for I2C based SGMII */
1809 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
1810 		/* read media type from SFP EEPROM */
1811 		ret_val = e1000_set_sfp_media_type_82575(hw);
1812 		if ((ret_val != E1000_SUCCESS) ||
1813 		    (hw->phy.media_type == e1000_media_type_unknown)) {
1814 			/*
1815 			 * If media type was not identified then return media
1816 			 * type defined by the CTRL_EXT settings.
1817 			 */
1818 			hw->phy.media_type = e1000_media_type_internal_serdes;
1819 
1820 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
1821 				hw->phy.media_type = e1000_media_type_copper;
1822 				dev_spec->sgmii_active = TRUE;
1823 			}
1824 
1825 			break;
1826 		}
1827 
1828 		/* do not change link mode for 100BaseFX */
1829 		if (dev_spec->eth_flags.e100_base_fx)
1830 			break;
1831 
1832 		/* change current link mode setting */
1833 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
1834 
1835 		if (hw->phy.media_type == e1000_media_type_copper)
1836 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
1837 		else
1838 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1839 
1840 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1841 
1842 		break;
1843 	}
1844 
1845 	return ret_val;
1846 }
1847 
1848 /**
1849  *  e1000_set_sfp_media_type_82575 - derives SFP module media type.
1850  *  @hw: pointer to the HW structure
1851  *
1852  *  The media type is chosen based on SFP module.
1853  *  compatibility flags retrieved from SFP ID EEPROM.
1854  **/
1855 static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
1856 {
1857 	s32 ret_val = E1000_ERR_CONFIG;
1858 	u32 ctrl_ext = 0;
1859 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1860 	struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
1861 	u8 tranceiver_type = 0;
1862 	s32 timeout = 3;
1863 
1864 	/* Turn I2C interface ON and power on sfp cage */
1865 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1866 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1867 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
1868 
1869 	E1000_WRITE_FLUSH(hw);
1870 
1871 	/* Read SFP module data */
1872 	while (timeout) {
1873 		ret_val = e1000_read_sfp_data_byte(hw,
1874 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
1875 			&tranceiver_type);
1876 		if (ret_val == E1000_SUCCESS)
1877 			break;
1878 		msec_delay(100);
1879 		timeout--;
1880 	}
1881 	if (ret_val != E1000_SUCCESS)
1882 		goto out;
1883 
1884 	ret_val = e1000_read_sfp_data_byte(hw,
1885 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
1886 			(u8 *)eth_flags);
1887 	if (ret_val != E1000_SUCCESS)
1888 		goto out;
1889 
1890 	/* Check if there is some SFP module plugged and powered */
1891 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
1892 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
1893 		dev_spec->module_plugged = TRUE;
1894 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
1895 			hw->phy.media_type = e1000_media_type_internal_serdes;
1896 		} else if (eth_flags->e100_base_fx) {
1897 			dev_spec->sgmii_active = TRUE;
1898 			hw->phy.media_type = e1000_media_type_internal_serdes;
1899 		} else if (eth_flags->e1000_base_t) {
1900 			dev_spec->sgmii_active = TRUE;
1901 			hw->phy.media_type = e1000_media_type_copper;
1902 		} else {
1903 			hw->phy.media_type = e1000_media_type_unknown;
1904 			DEBUGOUT("PHY module has not been recognized\n");
1905 			goto out;
1906 		}
1907 	} else {
1908 		hw->phy.media_type = e1000_media_type_unknown;
1909 	}
1910 	ret_val = E1000_SUCCESS;
1911 out:
1912 	/* Restore I2C interface setting */
1913 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1914 	return ret_val;
1915 }
1916 
1917 /**
1918  *  e1000_valid_led_default_82575 - Verify a valid default LED config
1919  *  @hw: pointer to the HW structure
1920  *  @data: pointer to the NVM (EEPROM)
1921  *
1922  *  Read the EEPROM for the current default LED configuration.  If the
1923  *  LED configuration is not valid, set to a valid LED configuration.
1924  **/
1925 static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
1926 {
1927 	s32 ret_val;
1928 
1929 	DEBUGFUNC("e1000_valid_led_default_82575");
1930 
1931 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1932 	if (ret_val) {
1933 		DEBUGOUT("NVM Read Error\n");
1934 		goto out;
1935 	}
1936 
1937 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1938 		switch (hw->phy.media_type) {
1939 		case e1000_media_type_internal_serdes:
1940 			*data = ID_LED_DEFAULT_82575_SERDES;
1941 			break;
1942 		case e1000_media_type_copper:
1943 		default:
1944 			*data = ID_LED_DEFAULT;
1945 			break;
1946 		}
1947 	}
1948 out:
1949 	return ret_val;
1950 }
1951 
1952 /**
1953  *  e1000_sgmii_active_82575 - Return sgmii state
1954  *  @hw: pointer to the HW structure
1955  *
1956  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1957  *  which can be enabled for use in the embedded applications.  Simply
1958  *  return the current state of the sgmii interface.
1959  **/
1960 static bool e1000_sgmii_active_82575(struct e1000_hw *hw)
1961 {
1962 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1963 	return dev_spec->sgmii_active;
1964 }
1965 
1966 /**
1967  *  e1000_reset_init_script_82575 - Inits HW defaults after reset
1968  *  @hw: pointer to the HW structure
1969  *
1970  *  Inits recommended HW defaults after a reset when there is no EEPROM
1971  *  detected. This is only for the 82575.
1972  **/
1973 static s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
1974 {
1975 	DEBUGFUNC("e1000_reset_init_script_82575");
1976 
1977 	if (hw->mac.type == e1000_82575) {
1978 		DEBUGOUT("Running reset init script for 82575\n");
1979 		/* SerDes configuration via SERDESCTRL */
1980 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
1981 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
1982 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
1983 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
1984 
1985 		/* CCM configuration via CCMCTL register */
1986 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
1987 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
1988 
1989 		/* PCIe lanes configuration */
1990 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
1991 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
1992 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
1993 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
1994 
1995 		/* PCIe PLL Configuration */
1996 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
1997 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
1998 		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
1999 	}
2000 
2001 	return E1000_SUCCESS;
2002 }
2003 
2004 /**
2005  *  e1000_read_mac_addr_82575 - Read device MAC address
2006  *  @hw: pointer to the HW structure
2007  **/
2008 static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
2009 {
2010 	s32 ret_val;
2011 
2012 	DEBUGFUNC("e1000_read_mac_addr_82575");
2013 
2014 	/*
2015 	 * If there's an alternate MAC address place it in RAR0
2016 	 * so that it will override the Si installed default perm
2017 	 * address.
2018 	 */
2019 	ret_val = e1000_check_alt_mac_addr_generic(hw);
2020 	if (ret_val)
2021 		goto out;
2022 
2023 	ret_val = e1000_read_mac_addr_generic(hw);
2024 
2025 out:
2026 	return ret_val;
2027 }
2028 
2029 /**
2030  *  e1000_config_collision_dist_82575 - Configure collision distance
2031  *  @hw: pointer to the HW structure
2032  *
2033  *  Configures the collision distance to the default value and is used
2034  *  during link setup.
2035  **/
2036 static void e1000_config_collision_dist_82575(struct e1000_hw *hw)
2037 {
2038 	u32 tctl_ext;
2039 
2040 	DEBUGFUNC("e1000_config_collision_dist_82575");
2041 
2042 	tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
2043 
2044 	tctl_ext &= ~E1000_TCTL_EXT_COLD;
2045 	tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
2046 
2047 	E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
2048 	E1000_WRITE_FLUSH(hw);
2049 }
2050 
2051 /**
2052  * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
2053  * @hw: pointer to the HW structure
2054  *
2055  * In the case of a PHY power down to save power, or to turn off link during a
2056  * driver unload, or wake on lan is not enabled, remove the link.
2057  **/
2058 static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
2059 {
2060 	struct e1000_phy_info *phy = &hw->phy;
2061 
2062 	if (!(phy->ops.check_reset_block))
2063 		return;
2064 
2065 	/* If the management interface is not enabled, then power down */
2066 	if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
2067 		e1000_power_down_phy_copper(hw);
2068 
2069 	return;
2070 }
2071 
2072 /**
2073  *  e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
2074  *  @hw: pointer to the HW structure
2075  *
2076  *  Clears the hardware counters by reading the counter registers.
2077  **/
2078 static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
2079 {
2080 	DEBUGFUNC("e1000_clear_hw_cntrs_82575");
2081 
2082 	e1000_clear_hw_cntrs_base_generic(hw);
2083 
2084 	E1000_READ_REG(hw, E1000_PRC64);
2085 	E1000_READ_REG(hw, E1000_PRC127);
2086 	E1000_READ_REG(hw, E1000_PRC255);
2087 	E1000_READ_REG(hw, E1000_PRC511);
2088 	E1000_READ_REG(hw, E1000_PRC1023);
2089 	E1000_READ_REG(hw, E1000_PRC1522);
2090 	E1000_READ_REG(hw, E1000_PTC64);
2091 	E1000_READ_REG(hw, E1000_PTC127);
2092 	E1000_READ_REG(hw, E1000_PTC255);
2093 	E1000_READ_REG(hw, E1000_PTC511);
2094 	E1000_READ_REG(hw, E1000_PTC1023);
2095 	E1000_READ_REG(hw, E1000_PTC1522);
2096 
2097 	E1000_READ_REG(hw, E1000_ALGNERRC);
2098 	E1000_READ_REG(hw, E1000_RXERRC);
2099 	E1000_READ_REG(hw, E1000_TNCRS);
2100 	E1000_READ_REG(hw, E1000_CEXTERR);
2101 	E1000_READ_REG(hw, E1000_TSCTC);
2102 	E1000_READ_REG(hw, E1000_TSCTFC);
2103 
2104 	E1000_READ_REG(hw, E1000_MGTPRC);
2105 	E1000_READ_REG(hw, E1000_MGTPDC);
2106 	E1000_READ_REG(hw, E1000_MGTPTC);
2107 
2108 	E1000_READ_REG(hw, E1000_IAC);
2109 	E1000_READ_REG(hw, E1000_ICRXOC);
2110 
2111 	E1000_READ_REG(hw, E1000_ICRXPTC);
2112 	E1000_READ_REG(hw, E1000_ICRXATC);
2113 	E1000_READ_REG(hw, E1000_ICTXPTC);
2114 	E1000_READ_REG(hw, E1000_ICTXATC);
2115 	E1000_READ_REG(hw, E1000_ICTXQEC);
2116 	E1000_READ_REG(hw, E1000_ICTXQMTC);
2117 	E1000_READ_REG(hw, E1000_ICRXDMTC);
2118 
2119 	E1000_READ_REG(hw, E1000_CBTMPC);
2120 	E1000_READ_REG(hw, E1000_HTDPMC);
2121 	E1000_READ_REG(hw, E1000_CBRMPC);
2122 	E1000_READ_REG(hw, E1000_RPTHC);
2123 	E1000_READ_REG(hw, E1000_HGPTC);
2124 	E1000_READ_REG(hw, E1000_HTCBDPC);
2125 	E1000_READ_REG(hw, E1000_HGORCL);
2126 	E1000_READ_REG(hw, E1000_HGORCH);
2127 	E1000_READ_REG(hw, E1000_HGOTCL);
2128 	E1000_READ_REG(hw, E1000_HGOTCH);
2129 	E1000_READ_REG(hw, E1000_LENERRS);
2130 
2131 	/* This register should not be read in copper configurations */
2132 	if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
2133 	    e1000_sgmii_active_82575(hw))
2134 		E1000_READ_REG(hw, E1000_SCVPC);
2135 }
2136 
2137 /**
2138  *  e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
2139  *  @hw: pointer to the HW structure
2140  *
2141  *  After Rx enable, if manageability is enabled then there is likely some
2142  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
2143  *  function clears the fifos and flushes any packets that came in as rx was
2144  *  being enabled.
2145  **/
2146 void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
2147 {
2148 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
2149 	int i, ms_wait;
2150 
2151 	DEBUGFUNC("e1000_rx_fifo_flush_82575");
2152 
2153 	/* disable IPv6 options as per hardware errata */
2154 	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
2155 	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
2156 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
2157 
2158 	if (hw->mac.type != e1000_82575 ||
2159 	    !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
2160 		return;
2161 
2162 	/* Disable all Rx queues */
2163 	for (i = 0; i < 4; i++) {
2164 		rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
2165 		E1000_WRITE_REG(hw, E1000_RXDCTL(i),
2166 				rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
2167 	}
2168 	/* Poll all queues to verify they have shut down */
2169 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
2170 		msec_delay(1);
2171 		rx_enabled = 0;
2172 		for (i = 0; i < 4; i++)
2173 			rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
2174 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
2175 			break;
2176 	}
2177 
2178 	if (ms_wait == 10)
2179 		DEBUGOUT("Queue disable timed out after 10ms\n");
2180 
2181 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
2182 	 * incoming packets are rejected.  Set enable and wait 2ms so that
2183 	 * any packet that was coming in as RCTL.EN was set is flushed
2184 	 */
2185 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2186 
2187 	rlpml = E1000_READ_REG(hw, E1000_RLPML);
2188 	E1000_WRITE_REG(hw, E1000_RLPML, 0);
2189 
2190 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2191 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2192 	temp_rctl |= E1000_RCTL_LPE;
2193 
2194 	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
2195 	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2196 	E1000_WRITE_FLUSH(hw);
2197 	msec_delay(2);
2198 
2199 	/* Enable Rx queues that were previously enabled and restore our
2200 	 * previous state
2201 	 */
2202 	for (i = 0; i < 4; i++)
2203 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
2204 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2205 	E1000_WRITE_FLUSH(hw);
2206 
2207 	E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
2208 	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
2209 
2210 	/* Flush receive errors generated by workaround */
2211 	E1000_READ_REG(hw, E1000_ROC);
2212 	E1000_READ_REG(hw, E1000_RNBC);
2213 	E1000_READ_REG(hw, E1000_MPC);
2214 }
2215 
2216 /**
2217  *  e1000_set_pcie_completion_timeout - set pci-e completion timeout
2218  *  @hw: pointer to the HW structure
2219  *
2220  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2221  *  however the hardware default for these parts is 500us to 1ms which is less
2222  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2223  *  increase the value to either 10ms to 200ms for capability version 1 config,
2224  *  or 16ms to 55ms for version 2.
2225  **/
2226 static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
2227 {
2228 	u32 gcr = E1000_READ_REG(hw, E1000_GCR);
2229 	s32 ret_val = E1000_SUCCESS;
2230 	u16 pcie_devctl2;
2231 
2232 	/* only take action if timeout value is defaulted to 0 */
2233 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2234 		goto out;
2235 
2236 	/*
2237 	 * if capababilities version is type 1 we can write the
2238 	 * timeout of 10ms to 200ms through the GCR register
2239 	 */
2240 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2241 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2242 		goto out;
2243 	}
2244 
2245 	/*
2246 	 * for version 2 capabilities we need to write the config space
2247 	 * directly in order to set the completion timeout value for
2248 	 * 16ms to 55ms
2249 	 */
2250 	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2251 					  &pcie_devctl2);
2252 	if (ret_val)
2253 		goto out;
2254 
2255 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2256 
2257 	ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2258 					   &pcie_devctl2);
2259 out:
2260 	/* disable completion timeout resend */
2261 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2262 
2263 	E1000_WRITE_REG(hw, E1000_GCR, gcr);
2264 	return ret_val;
2265 }
2266 
2267 /**
2268  *  e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2269  *  @hw: pointer to the hardware struct
2270  *  @enable: state to enter, either enabled or disabled
2271  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2272  *
2273  *  enables/disables L2 switch anti-spoofing functionality.
2274  **/
2275 void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2276 {
2277 	u32 reg_val, reg_offset;
2278 
2279 	switch (hw->mac.type) {
2280 	case e1000_82576:
2281 		reg_offset = E1000_DTXSWC;
2282 		break;
2283 	case e1000_i350:
2284 	case e1000_i354:
2285 		reg_offset = E1000_TXSWC;
2286 		break;
2287 	default:
2288 		return;
2289 	}
2290 
2291 	reg_val = E1000_READ_REG(hw, reg_offset);
2292 	if (enable) {
2293 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2294 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2295 		/* The PF can spoof - it has to in order to
2296 		 * support emulation mode NICs
2297 		 */
2298 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2299 	} else {
2300 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2301 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2302 	}
2303 	E1000_WRITE_REG(hw, reg_offset, reg_val);
2304 }
2305 
2306 /**
2307  *  e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
2308  *  @hw: pointer to the hardware struct
2309  *  @enable: state to enter, either enabled or disabled
2310  *
2311  *  enables/disables L2 switch loopback functionality.
2312  **/
2313 void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2314 {
2315 	u32 dtxswc;
2316 
2317 	switch (hw->mac.type) {
2318 	case e1000_82576:
2319 		dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
2320 		if (enable)
2321 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2322 		else
2323 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2324 		E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
2325 		break;
2326 	case e1000_i350:
2327 	case e1000_i354:
2328 		dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
2329 		if (enable)
2330 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2331 		else
2332 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2333 		E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
2334 		break;
2335 	default:
2336 		/* Currently no other hardware supports loopback */
2337 		break;
2338 	}
2339 
2340 
2341 }
2342 
2343 /**
2344  *  e1000_vmdq_set_replication_pf - enable or disable vmdq replication
2345  *  @hw: pointer to the hardware struct
2346  *  @enable: state to enter, either enabled or disabled
2347  *
2348  *  enables/disables replication of packets across multiple pools.
2349  **/
2350 void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2351 {
2352 	u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2353 
2354 	if (enable)
2355 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2356 	else
2357 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2358 
2359 	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2360 }
2361 
2362 /**
2363  *  e1000_read_phy_reg_82580 - Read 82580 MDI control register
2364  *  @hw: pointer to the HW structure
2365  *  @offset: register offset to be read
2366  *  @data: pointer to the read data
2367  *
2368  *  Reads the MDI control register in the PHY at offset and stores the
2369  *  information read to data.
2370  **/
2371 static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2372 {
2373 	s32 ret_val;
2374 
2375 	DEBUGFUNC("e1000_read_phy_reg_82580");
2376 
2377 	ret_val = hw->phy.ops.acquire(hw);
2378 	if (ret_val)
2379 		goto out;
2380 
2381 	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
2382 
2383 	hw->phy.ops.release(hw);
2384 
2385 out:
2386 	return ret_val;
2387 }
2388 
2389 /**
2390  *  e1000_write_phy_reg_82580 - Write 82580 MDI control register
2391  *  @hw: pointer to the HW structure
2392  *  @offset: register offset to write to
2393  *  @data: data to write to register at offset
2394  *
2395  *  Writes data to MDI control register in the PHY at offset.
2396  **/
2397 static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2398 {
2399 	s32 ret_val;
2400 
2401 	DEBUGFUNC("e1000_write_phy_reg_82580");
2402 
2403 	ret_val = hw->phy.ops.acquire(hw);
2404 	if (ret_val)
2405 		goto out;
2406 
2407 	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
2408 
2409 	hw->phy.ops.release(hw);
2410 
2411 out:
2412 	return ret_val;
2413 }
2414 
2415 /**
2416  *  e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2417  *  @hw: pointer to the HW structure
2418  *
2419  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2420  *  the values found in the EEPROM.  This addresses an issue in which these
2421  *  bits are not restored from EEPROM after reset.
2422  **/
2423 static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
2424 {
2425 	s32 ret_val = E1000_SUCCESS;
2426 	u32 mdicnfg;
2427 	u16 nvm_data = 0;
2428 
2429 	DEBUGFUNC("e1000_reset_mdicnfg_82580");
2430 
2431 	if (hw->mac.type != e1000_82580)
2432 		goto out;
2433 	if (!e1000_sgmii_active_82575(hw))
2434 		goto out;
2435 
2436 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2437 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2438 				   &nvm_data);
2439 	if (ret_val) {
2440 		DEBUGOUT("NVM Read Error\n");
2441 		goto out;
2442 	}
2443 
2444 	mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
2445 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2446 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2447 	if (nvm_data & NVM_WORD24_COM_MDIO)
2448 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2449 	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
2450 out:
2451 	return ret_val;
2452 }
2453 
2454 /**
2455  *  e1000_reset_hw_82580 - Reset hardware
2456  *  @hw: pointer to the HW structure
2457  *
2458  *  This resets function or entire device (all ports, etc.)
2459  *  to a known state.
2460  **/
2461 static s32 e1000_reset_hw_82580(struct e1000_hw *hw)
2462 {
2463 	s32 ret_val = E1000_SUCCESS;
2464 	/* BH SW mailbox bit in SW_FW_SYNC */
2465 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2466 	u32 ctrl;
2467 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2468 
2469 	DEBUGFUNC("e1000_reset_hw_82580");
2470 
2471 	hw->dev_spec._82575.global_device_reset = FALSE;
2472 
2473 	/* 82580 does not reliably do global_device_reset due to hw errata */
2474 	if (hw->mac.type == e1000_82580)
2475 		global_device_reset = FALSE;
2476 
2477 	/* Get current control state. */
2478 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
2479 
2480 	/*
2481 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
2482 	 * on the last TLP read/write transaction when MAC is reset.
2483 	 */
2484 	ret_val = e1000_disable_pcie_master_generic(hw);
2485 	if (ret_val)
2486 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
2487 
2488 	DEBUGOUT("Masking off all interrupts\n");
2489 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
2490 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
2491 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
2492 	E1000_WRITE_FLUSH(hw);
2493 
2494 	msec_delay(10);
2495 
2496 	/* Determine whether or not a global dev reset is requested */
2497 	if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
2498 	    swmbsw_mask))
2499 			global_device_reset = FALSE;
2500 
2501 	if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
2502 	    E1000_STAT_DEV_RST_SET))
2503 		ctrl |= E1000_CTRL_DEV_RST;
2504 	else
2505 		ctrl |= E1000_CTRL_RST;
2506 
2507 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2508 
2509 	switch (hw->device_id) {
2510 	case E1000_DEV_ID_DH89XXCC_SGMII:
2511 		break;
2512 	default:
2513 		E1000_WRITE_FLUSH(hw);
2514 		break;
2515 	}
2516 
2517 	/* Add delay to insure DEV_RST or RST has time to complete */
2518 	msec_delay(5);
2519 
2520 	ret_val = e1000_get_auto_rd_done_generic(hw);
2521 	if (ret_val) {
2522 		/*
2523 		 * When auto config read does not complete, do not
2524 		 * return with an error. This can happen in situations
2525 		 * where there is no eeprom and prevents getting link.
2526 		 */
2527 		DEBUGOUT("Auto Read Done did not complete\n");
2528 	}
2529 
2530 	/* clear global device reset status bit */
2531 	E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
2532 
2533 	/* Clear any pending interrupt events. */
2534 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
2535 	E1000_READ_REG(hw, E1000_ICR);
2536 
2537 	ret_val = e1000_reset_mdicnfg_82580(hw);
2538 	if (ret_val)
2539 		DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
2540 
2541 	/* Install any alternate MAC address into RAR0 */
2542 	ret_val = e1000_check_alt_mac_addr_generic(hw);
2543 
2544 	/* Release semaphore */
2545 	if (global_device_reset)
2546 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2547 
2548 	return ret_val;
2549 }
2550 
2551 /**
2552  *  e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
2553  *  @data: data received by reading RXPBS register
2554  *
2555  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2556  *  This function converts the retrieved value into the correct table value
2557  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2558  *  0x0 36  72 144   1   2   4   8  16
2559  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2560  */
2561 u16 e1000_rxpbs_adjust_82580(u32 data)
2562 {
2563 	u16 ret_val = 0;
2564 
2565 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2566 		ret_val = e1000_82580_rxpbs_table[data];
2567 
2568 	return ret_val;
2569 }
2570 
2571 /**
2572  *  e1000_validate_nvm_checksum_with_offset - Validate EEPROM
2573  *  checksum
2574  *  @hw: pointer to the HW structure
2575  *  @offset: offset in words of the checksum protected region
2576  *
2577  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2578  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2579  **/
2580 s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2581 {
2582 	s32 ret_val = E1000_SUCCESS;
2583 	u16 checksum = 0;
2584 	u16 i, nvm_data;
2585 
2586 	DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
2587 
2588 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2589 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2590 		if (ret_val) {
2591 			DEBUGOUT("NVM Read Error\n");
2592 			goto out;
2593 		}
2594 		checksum += nvm_data;
2595 	}
2596 
2597 	if (checksum != (u16) NVM_SUM) {
2598 		DEBUGOUT("NVM Checksum Invalid\n");
2599 		ret_val = -E1000_ERR_NVM;
2600 		goto out;
2601 	}
2602 
2603 out:
2604 	return ret_val;
2605 }
2606 
2607 /**
2608  *  e1000_update_nvm_checksum_with_offset - Update EEPROM
2609  *  checksum
2610  *  @hw: pointer to the HW structure
2611  *  @offset: offset in words of the checksum protected region
2612  *
2613  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2614  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2615  *  value to the EEPROM.
2616  **/
2617 s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2618 {
2619 	s32 ret_val;
2620 	u16 checksum = 0;
2621 	u16 i, nvm_data;
2622 
2623 	DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
2624 
2625 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2626 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2627 		if (ret_val) {
2628 			DEBUGOUT("NVM Read Error while updating checksum.\n");
2629 			goto out;
2630 		}
2631 		checksum += nvm_data;
2632 	}
2633 	checksum = (u16) NVM_SUM - checksum;
2634 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2635 				    &checksum);
2636 	if (ret_val)
2637 		DEBUGOUT("NVM Write Error while updating checksum.\n");
2638 
2639 out:
2640 	return ret_val;
2641 }
2642 
2643 /**
2644  *  e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
2645  *  @hw: pointer to the HW structure
2646  *
2647  *  Calculates the EEPROM section checksum by reading/adding each word of
2648  *  the EEPROM and then verifies that the sum of the EEPROM is
2649  *  equal to 0xBABA.
2650  **/
2651 static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
2652 {
2653 	s32 ret_val;
2654 	u16 eeprom_regions_count = 1;
2655 	u16 j, nvm_data;
2656 	u16 nvm_offset;
2657 
2658 	DEBUGFUNC("e1000_validate_nvm_checksum_82580");
2659 
2660 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2661 	if (ret_val) {
2662 		DEBUGOUT("NVM Read Error\n");
2663 		goto out;
2664 	}
2665 
2666 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2667 		/* if chekcsums compatibility bit is set validate checksums
2668 		 * for all 4 ports. */
2669 		eeprom_regions_count = 4;
2670 	}
2671 
2672 	for (j = 0; j < eeprom_regions_count; j++) {
2673 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2674 		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
2675 								  nvm_offset);
2676 		if (ret_val != E1000_SUCCESS)
2677 			goto out;
2678 	}
2679 
2680 out:
2681 	return ret_val;
2682 }
2683 
2684 /**
2685  *  e1000_update_nvm_checksum_82580 - Update EEPROM checksum
2686  *  @hw: pointer to the HW structure
2687  *
2688  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2689  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2690  *  checksum and writes the value to the EEPROM.
2691  **/
2692 static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
2693 {
2694 	s32 ret_val;
2695 	u16 j, nvm_data;
2696 	u16 nvm_offset;
2697 
2698 	DEBUGFUNC("e1000_update_nvm_checksum_82580");
2699 
2700 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2701 	if (ret_val) {
2702 		DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
2703 		goto out;
2704 	}
2705 
2706 	if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
2707 		/* set compatibility bit to validate checksums appropriately */
2708 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2709 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2710 					    &nvm_data);
2711 		if (ret_val) {
2712 			DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
2713 			goto out;
2714 		}
2715 	}
2716 
2717 	for (j = 0; j < 4; j++) {
2718 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2719 		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
2720 		if (ret_val)
2721 			goto out;
2722 	}
2723 
2724 out:
2725 	return ret_val;
2726 }
2727 
2728 /**
2729  *  e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
2730  *  @hw: pointer to the HW structure
2731  *
2732  *  Calculates the EEPROM section checksum by reading/adding each word of
2733  *  the EEPROM and then verifies that the sum of the EEPROM is
2734  *  equal to 0xBABA.
2735  **/
2736 static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
2737 {
2738 	s32 ret_val = E1000_SUCCESS;
2739 	u16 j;
2740 	u16 nvm_offset;
2741 
2742 	DEBUGFUNC("e1000_validate_nvm_checksum_i350");
2743 
2744 	for (j = 0; j < 4; j++) {
2745 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2746 		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
2747 								  nvm_offset);
2748 		if (ret_val != E1000_SUCCESS)
2749 			goto out;
2750 	}
2751 
2752 out:
2753 	return ret_val;
2754 }
2755 
2756 /**
2757  *  e1000_update_nvm_checksum_i350 - Update EEPROM checksum
2758  *  @hw: pointer to the HW structure
2759  *
2760  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2761  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2762  *  checksum and writes the value to the EEPROM.
2763  **/
2764 static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
2765 {
2766 	s32 ret_val = E1000_SUCCESS;
2767 	u16 j;
2768 	u16 nvm_offset;
2769 
2770 	DEBUGFUNC("e1000_update_nvm_checksum_i350");
2771 
2772 	for (j = 0; j < 4; j++) {
2773 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2774 		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
2775 		if (ret_val != E1000_SUCCESS)
2776 			goto out;
2777 	}
2778 
2779 out:
2780 	return ret_val;
2781 }
2782 
2783 /**
2784  *  __e1000_access_emi_reg - Read/write EMI register
2785  *  @hw: pointer to the HW structure
2786  *  @addr: EMI address to program
2787  *  @data: pointer to value to read/write from/to the EMI address
2788  *  @read: boolean flag to indicate read or write
2789  **/
2790 static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
2791 				  u16 *data, bool read)
2792 {
2793 	s32 ret_val;
2794 
2795 	DEBUGFUNC("__e1000_access_emi_reg");
2796 
2797 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2798 	if (ret_val)
2799 		return ret_val;
2800 
2801 	if (read)
2802 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2803 	else
2804 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2805 
2806 	return ret_val;
2807 }
2808 
2809 /**
2810  *  e1000_read_emi_reg - Read Extended Management Interface register
2811  *  @hw: pointer to the HW structure
2812  *  @addr: EMI address to program
2813  *  @data: value to be read from the EMI address
2814  **/
2815 s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2816 {
2817 	DEBUGFUNC("e1000_read_emi_reg");
2818 
2819 	return __e1000_access_emi_reg(hw, addr, data, TRUE);
2820 }
2821 
2822 /**
2823  *  e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY
2824  *  @hw: pointer to the HW structure
2825  *
2826  *  Initialize Marvell 1512 to work correctly with Avoton.
2827  **/
2828 s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw)
2829 {
2830 	struct e1000_phy_info *phy = &hw->phy;
2831 	s32 ret_val = E1000_SUCCESS;
2832 
2833 	DEBUGFUNC("e1000_initialize_M88E1512_phy");
2834 
2835 	/* Check if this is correct PHY. */
2836 	if (phy->id != M88E1512_E_PHY_ID)
2837 		goto out;
2838 
2839 	/* Switch to PHY page 0xFF. */
2840 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2841 	if (ret_val)
2842 		goto out;
2843 
2844 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2845 	if (ret_val)
2846 		goto out;
2847 
2848 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2849 	if (ret_val)
2850 		goto out;
2851 
2852 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2853 	if (ret_val)
2854 		goto out;
2855 
2856 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2857 	if (ret_val)
2858 		goto out;
2859 
2860 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2861 	if (ret_val)
2862 		goto out;
2863 
2864 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2865 	if (ret_val)
2866 		goto out;
2867 
2868 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2869 	if (ret_val)
2870 		goto out;
2871 
2872 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2873 	if (ret_val)
2874 		goto out;
2875 
2876 	/* Switch to PHY page 0xFB. */
2877 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2878 	if (ret_val)
2879 		goto out;
2880 
2881 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2882 	if (ret_val)
2883 		goto out;
2884 
2885 	/* Switch to PHY page 0x12. */
2886 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2887 	if (ret_val)
2888 		goto out;
2889 
2890 	/* Change mode to SGMII-to-Copper */
2891 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2892 	if (ret_val)
2893 		goto out;
2894 
2895 	/* Return the PHY to page 0. */
2896 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2897 	if (ret_val)
2898 		goto out;
2899 
2900 	ret_val = phy->ops.commit(hw);
2901 	if (ret_val) {
2902 		DEBUGOUT("Error committing the PHY changes\n");
2903 		return ret_val;
2904 	}
2905 
2906 	msec_delay(1000);
2907 out:
2908 	return ret_val;
2909 }
2910 
2911 /**
2912  *  e1000_initialize_M88E1543_phy - Initialize M88E1543 PHY
2913  *  @hw: pointer to the HW structure
2914  *
2915  *  Initialize Marvell 1543 to work correctly with Avoton.
2916  **/
2917 s32 e1000_initialize_M88E1543_phy(struct e1000_hw *hw)
2918 {
2919 	struct e1000_phy_info *phy = &hw->phy;
2920 	s32 ret_val = E1000_SUCCESS;
2921 
2922 	DEBUGFUNC("e1000_initialize_M88E1543_phy");
2923 
2924 	/* Check if this is correct PHY. */
2925 	if (phy->id != M88E1543_E_PHY_ID)
2926 		goto out;
2927 
2928 	/* Switch to PHY page 0xFF. */
2929 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2930 	if (ret_val)
2931 		goto out;
2932 
2933 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2934 	if (ret_val)
2935 		goto out;
2936 
2937 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2938 	if (ret_val)
2939 		goto out;
2940 
2941 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2942 	if (ret_val)
2943 		goto out;
2944 
2945 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2946 	if (ret_val)
2947 		goto out;
2948 
2949 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2950 	if (ret_val)
2951 		goto out;
2952 
2953 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2954 	if (ret_val)
2955 		goto out;
2956 
2957 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2958 	if (ret_val)
2959 		goto out;
2960 
2961 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2962 	if (ret_val)
2963 		goto out;
2964 
2965 	/* Switch to PHY page 0xFB. */
2966 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2967 	if (ret_val)
2968 		goto out;
2969 
2970 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0xC00D);
2971 	if (ret_val)
2972 		goto out;
2973 
2974 	/* Switch to PHY page 0x12. */
2975 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2976 	if (ret_val)
2977 		goto out;
2978 
2979 	/* Change mode to SGMII-to-Copper */
2980 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2981 	if (ret_val)
2982 		goto out;
2983 
2984 	/* Switch to PHY page 1. */
2985 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2986 	if (ret_val)
2987 		goto out;
2988 
2989 	/* Change mode to 1000BASE-X/SGMII and autoneg enable; reset */
2990 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2991 	if (ret_val)
2992 		goto out;
2993 
2994 	/* Return the PHY to page 0. */
2995 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2996 	if (ret_val)
2997 		goto out;
2998 
2999 	ret_val = phy->ops.commit(hw);
3000 	if (ret_val) {
3001 		DEBUGOUT("Error committing the PHY changes\n");
3002 		return ret_val;
3003 	}
3004 
3005 	msec_delay(1000);
3006 out:
3007 	return ret_val;
3008 }
3009 
3010 /**
3011  *  e1000_set_eee_i350 - Enable/disable EEE support
3012  *  @hw: pointer to the HW structure
3013  *  @adv1g: boolean flag enabling 1G EEE advertisement
3014  *  @adv100m: boolean flag enabling 100M EEE advertisement
3015  *
3016  *  Enable/disable EEE based on setting in dev_spec structure.
3017  *
3018  **/
3019 s32 e1000_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
3020 {
3021 	u32 ipcnfg, eeer;
3022 
3023 	DEBUGFUNC("e1000_set_eee_i350");
3024 
3025 	if ((hw->mac.type < e1000_i350) ||
3026 	    (hw->phy.media_type != e1000_media_type_copper))
3027 		goto out;
3028 	ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
3029 	eeer = E1000_READ_REG(hw, E1000_EEER);
3030 
3031 	/* enable or disable per user setting */
3032 	if (!(hw->dev_spec._82575.eee_disable)) {
3033 		u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
3034 
3035 		if (adv100M)
3036 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
3037 		else
3038 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
3039 
3040 		if (adv1G)
3041 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
3042 		else
3043 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
3044 
3045 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
3046 			 E1000_EEER_LPI_FC);
3047 
3048 		/* This bit should not be set in normal operation. */
3049 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
3050 			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
3051 	} else {
3052 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
3053 		eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
3054 			  E1000_EEER_LPI_FC);
3055 	}
3056 	E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
3057 	E1000_WRITE_REG(hw, E1000_EEER, eeer);
3058 	E1000_READ_REG(hw, E1000_IPCNFG);
3059 	E1000_READ_REG(hw, E1000_EEER);
3060 out:
3061 
3062 	return E1000_SUCCESS;
3063 }
3064 
3065 /**
3066  *  e1000_set_eee_i354 - Enable/disable EEE support
3067  *  @hw: pointer to the HW structure
3068  *  @adv1g: boolean flag enabling 1G EEE advertisement
3069  *  @adv100m: boolean flag enabling 100M EEE advertisement
3070  *
3071  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
3072  *
3073  **/
3074 s32 e1000_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
3075 {
3076 	struct e1000_phy_info *phy = &hw->phy;
3077 	s32 ret_val = E1000_SUCCESS;
3078 	u16 phy_data;
3079 
3080 	DEBUGFUNC("e1000_set_eee_i354");
3081 
3082 	if ((hw->phy.media_type != e1000_media_type_copper) ||
3083 	    ((phy->id != M88E1543_E_PHY_ID) &&
3084 	    (phy->id != M88E1512_E_PHY_ID)))
3085 		goto out;
3086 
3087 	if (!hw->dev_spec._82575.eee_disable) {
3088 		/* Switch to PHY page 18. */
3089 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
3090 		if (ret_val)
3091 			goto out;
3092 
3093 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
3094 					    &phy_data);
3095 		if (ret_val)
3096 			goto out;
3097 
3098 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
3099 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
3100 					     phy_data);
3101 		if (ret_val)
3102 			goto out;
3103 
3104 		/* Return the PHY to page 0. */
3105 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
3106 		if (ret_val)
3107 			goto out;
3108 
3109 		/* Turn on EEE advertisement. */
3110 		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
3111 					       E1000_EEE_ADV_DEV_I354,
3112 					       &phy_data);
3113 		if (ret_val)
3114 			goto out;
3115 
3116 		if (adv100M)
3117 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
3118 		else
3119 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
3120 
3121 		if (adv1G)
3122 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
3123 		else
3124 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
3125 
3126 		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
3127 						E1000_EEE_ADV_DEV_I354,
3128 						phy_data);
3129 	} else {
3130 		/* Turn off EEE advertisement. */
3131 		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
3132 					       E1000_EEE_ADV_DEV_I354,
3133 					       &phy_data);
3134 		if (ret_val)
3135 			goto out;
3136 
3137 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
3138 			      E1000_EEE_ADV_1000_SUPPORTED);
3139 		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
3140 						E1000_EEE_ADV_DEV_I354,
3141 						phy_data);
3142 	}
3143 
3144 out:
3145 	return ret_val;
3146 }
3147 
3148 /**
3149  *  e1000_get_eee_status_i354 - Get EEE status
3150  *  @hw: pointer to the HW structure
3151  *  @status: EEE status
3152  *
3153  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
3154  *  been received.
3155  **/
3156 s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
3157 {
3158 	struct e1000_phy_info *phy = &hw->phy;
3159 	s32 ret_val = E1000_SUCCESS;
3160 	u16 phy_data;
3161 
3162 	DEBUGFUNC("e1000_get_eee_status_i354");
3163 
3164 	/* Check if EEE is supported on this device. */
3165 	if ((hw->phy.media_type != e1000_media_type_copper) ||
3166 	    ((phy->id != M88E1543_E_PHY_ID) &&
3167 	    (phy->id != M88E1512_E_PHY_ID)))
3168 		goto out;
3169 
3170 	ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
3171 				       E1000_PCS_STATUS_DEV_I354,
3172 				       &phy_data);
3173 	if (ret_val)
3174 		goto out;
3175 
3176 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
3177 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? TRUE : FALSE;
3178 
3179 out:
3180 	return ret_val;
3181 }
3182 
3183 /* Due to a hw errata, if the host tries to  configure the VFTA register
3184  * while performing queries from the BMC or DMA, then the VFTA in some
3185  * cases won't be written.
3186  */
3187 
3188 /**
3189  *  e1000_clear_vfta_i350 - Clear VLAN filter table
3190  *  @hw: pointer to the HW structure
3191  *
3192  *  Clears the register array which contains the VLAN filter table by
3193  *  setting all the values to 0.
3194  **/
3195 void e1000_clear_vfta_i350(struct e1000_hw *hw)
3196 {
3197 	u32 offset;
3198 	int i;
3199 
3200 	DEBUGFUNC("e1000_clear_vfta_350");
3201 
3202 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
3203 		for (i = 0; i < 10; i++)
3204 			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
3205 
3206 		E1000_WRITE_FLUSH(hw);
3207 	}
3208 }
3209 
3210 /**
3211  *  e1000_write_vfta_i350 - Write value to VLAN filter table
3212  *  @hw: pointer to the HW structure
3213  *  @offset: register offset in VLAN filter table
3214  *  @value: register value written to VLAN filter table
3215  *
3216  *  Writes value at the given offset in the register array which stores
3217  *  the VLAN filter table.
3218  **/
3219 void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
3220 {
3221 	int i;
3222 
3223 	DEBUGFUNC("e1000_write_vfta_350");
3224 
3225 	for (i = 0; i < 10; i++)
3226 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
3227 
3228 	E1000_WRITE_FLUSH(hw);
3229 }
3230 
3231 
3232 /**
3233  *  e1000_set_i2c_bb - Enable I2C bit-bang
3234  *  @hw: pointer to the HW structure
3235  *
3236  *  Enable I2C bit-bang interface
3237  *
3238  **/
3239 s32 e1000_set_i2c_bb(struct e1000_hw *hw)
3240 {
3241 	s32 ret_val = E1000_SUCCESS;
3242 	u32 ctrl_ext, i2cparams;
3243 
3244 	DEBUGFUNC("e1000_set_i2c_bb");
3245 
3246 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3247 	ctrl_ext |= E1000_CTRL_I2C_ENA;
3248 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3249 	E1000_WRITE_FLUSH(hw);
3250 
3251 	i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
3252 	i2cparams |= E1000_I2CBB_EN;
3253 	i2cparams |= E1000_I2C_DATA_OE_N;
3254 	i2cparams |= E1000_I2C_CLK_OE_N;
3255 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
3256 	E1000_WRITE_FLUSH(hw);
3257 
3258 	return ret_val;
3259 }
3260 
3261 /**
3262  *  e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
3263  *  @hw: pointer to hardware structure
3264  *  @byte_offset: byte offset to read
3265  *  @dev_addr: device address
3266  *  @data: value read
3267  *
3268  *  Performs byte read operation over I2C interface at
3269  *  a specified device address.
3270  **/
3271 s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
3272 				u8 dev_addr, u8 *data)
3273 {
3274 	s32 status = E1000_SUCCESS;
3275 	u32 max_retry = 10;
3276 	u32 retry = 1;
3277 	u16 swfw_mask = 0;
3278 
3279 	bool nack = TRUE;
3280 
3281 	DEBUGFUNC("e1000_read_i2c_byte_generic");
3282 
3283 	swfw_mask = E1000_SWFW_PHY0_SM;
3284 
3285 	do {
3286 		if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
3287 		    != E1000_SUCCESS) {
3288 			status = E1000_ERR_SWFW_SYNC;
3289 			goto read_byte_out;
3290 		}
3291 
3292 		e1000_i2c_start(hw);
3293 
3294 		/* Device Address and write indication */
3295 		status = e1000_clock_out_i2c_byte(hw, dev_addr);
3296 		if (status != E1000_SUCCESS)
3297 			goto fail;
3298 
3299 		status = e1000_get_i2c_ack(hw);
3300 		if (status != E1000_SUCCESS)
3301 			goto fail;
3302 
3303 		status = e1000_clock_out_i2c_byte(hw, byte_offset);
3304 		if (status != E1000_SUCCESS)
3305 			goto fail;
3306 
3307 		status = e1000_get_i2c_ack(hw);
3308 		if (status != E1000_SUCCESS)
3309 			goto fail;
3310 
3311 		e1000_i2c_start(hw);
3312 
3313 		/* Device Address and read indication */
3314 		status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
3315 		if (status != E1000_SUCCESS)
3316 			goto fail;
3317 
3318 		status = e1000_get_i2c_ack(hw);
3319 		if (status != E1000_SUCCESS)
3320 			goto fail;
3321 
3322 		status = e1000_clock_in_i2c_byte(hw, data);
3323 		if (status != E1000_SUCCESS)
3324 			goto fail;
3325 
3326 		status = e1000_clock_out_i2c_bit(hw, nack);
3327 		if (status != E1000_SUCCESS)
3328 			goto fail;
3329 
3330 		e1000_i2c_stop(hw);
3331 		break;
3332 
3333 fail:
3334 		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3335 		msec_delay(100);
3336 		e1000_i2c_bus_clear(hw);
3337 		retry++;
3338 		if (retry < max_retry)
3339 			DEBUGOUT("I2C byte read error - Retrying.\n");
3340 		else
3341 			DEBUGOUT("I2C byte read error.\n");
3342 
3343 	} while (retry < max_retry);
3344 
3345 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3346 
3347 read_byte_out:
3348 
3349 	return status;
3350 }
3351 
3352 /**
3353  *  e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
3354  *  @hw: pointer to hardware structure
3355  *  @byte_offset: byte offset to write
3356  *  @dev_addr: device address
3357  *  @data: value to write
3358  *
3359  *  Performs byte write operation over I2C interface at
3360  *  a specified device address.
3361  **/
3362 s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
3363 				 u8 dev_addr, u8 data)
3364 {
3365 	s32 status = E1000_SUCCESS;
3366 	u32 max_retry = 1;
3367 	u32 retry = 0;
3368 	u16 swfw_mask = 0;
3369 
3370 	DEBUGFUNC("e1000_write_i2c_byte_generic");
3371 
3372 	swfw_mask = E1000_SWFW_PHY0_SM;
3373 
3374 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
3375 		status = E1000_ERR_SWFW_SYNC;
3376 		goto write_byte_out;
3377 	}
3378 
3379 	do {
3380 		e1000_i2c_start(hw);
3381 
3382 		status = e1000_clock_out_i2c_byte(hw, dev_addr);
3383 		if (status != E1000_SUCCESS)
3384 			goto fail;
3385 
3386 		status = e1000_get_i2c_ack(hw);
3387 		if (status != E1000_SUCCESS)
3388 			goto fail;
3389 
3390 		status = e1000_clock_out_i2c_byte(hw, byte_offset);
3391 		if (status != E1000_SUCCESS)
3392 			goto fail;
3393 
3394 		status = e1000_get_i2c_ack(hw);
3395 		if (status != E1000_SUCCESS)
3396 			goto fail;
3397 
3398 		status = e1000_clock_out_i2c_byte(hw, data);
3399 		if (status != E1000_SUCCESS)
3400 			goto fail;
3401 
3402 		status = e1000_get_i2c_ack(hw);
3403 		if (status != E1000_SUCCESS)
3404 			goto fail;
3405 
3406 		e1000_i2c_stop(hw);
3407 		break;
3408 
3409 fail:
3410 		e1000_i2c_bus_clear(hw);
3411 		retry++;
3412 		if (retry < max_retry)
3413 			DEBUGOUT("I2C byte write error - Retrying.\n");
3414 		else
3415 			DEBUGOUT("I2C byte write error.\n");
3416 	} while (retry < max_retry);
3417 
3418 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3419 
3420 write_byte_out:
3421 
3422 	return status;
3423 }
3424 
3425 /**
3426  *  e1000_i2c_start - Sets I2C start condition
3427  *  @hw: pointer to hardware structure
3428  *
3429  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
3430  **/
3431 static void e1000_i2c_start(struct e1000_hw *hw)
3432 {
3433 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3434 
3435 	DEBUGFUNC("e1000_i2c_start");
3436 
3437 	/* Start condition must begin with data and clock high */
3438 	e1000_set_i2c_data(hw, &i2cctl, 1);
3439 	e1000_raise_i2c_clk(hw, &i2cctl);
3440 
3441 	/* Setup time for start condition (4.7us) */
3442 	usec_delay(E1000_I2C_T_SU_STA);
3443 
3444 	e1000_set_i2c_data(hw, &i2cctl, 0);
3445 
3446 	/* Hold time for start condition (4us) */
3447 	usec_delay(E1000_I2C_T_HD_STA);
3448 
3449 	e1000_lower_i2c_clk(hw, &i2cctl);
3450 
3451 	/* Minimum low period of clock is 4.7 us */
3452 	usec_delay(E1000_I2C_T_LOW);
3453 
3454 }
3455 
3456 /**
3457  *  e1000_i2c_stop - Sets I2C stop condition
3458  *  @hw: pointer to hardware structure
3459  *
3460  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
3461  **/
3462 static void e1000_i2c_stop(struct e1000_hw *hw)
3463 {
3464 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3465 
3466 	DEBUGFUNC("e1000_i2c_stop");
3467 
3468 	/* Stop condition must begin with data low and clock high */
3469 	e1000_set_i2c_data(hw, &i2cctl, 0);
3470 	e1000_raise_i2c_clk(hw, &i2cctl);
3471 
3472 	/* Setup time for stop condition (4us) */
3473 	usec_delay(E1000_I2C_T_SU_STO);
3474 
3475 	e1000_set_i2c_data(hw, &i2cctl, 1);
3476 
3477 	/* bus free time between stop and start (4.7us)*/
3478 	usec_delay(E1000_I2C_T_BUF);
3479 }
3480 
3481 /**
3482  *  e1000_clock_in_i2c_byte - Clocks in one byte via I2C
3483  *  @hw: pointer to hardware structure
3484  *  @data: data byte to clock in
3485  *
3486  *  Clocks in one byte data via I2C data/clock
3487  **/
3488 static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
3489 {
3490 	s32 i;
3491 	bool bit = 0;
3492 
3493 	DEBUGFUNC("e1000_clock_in_i2c_byte");
3494 
3495 	*data = 0;
3496 	for (i = 7; i >= 0; i--) {
3497 		e1000_clock_in_i2c_bit(hw, &bit);
3498 		*data |= bit << i;
3499 	}
3500 
3501 	return E1000_SUCCESS;
3502 }
3503 
3504 /**
3505  *  e1000_clock_out_i2c_byte - Clocks out one byte via I2C
3506  *  @hw: pointer to hardware structure
3507  *  @data: data byte clocked out
3508  *
3509  *  Clocks out one byte data via I2C data/clock
3510  **/
3511 static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
3512 {
3513 	s32 status = E1000_SUCCESS;
3514 	s32 i;
3515 	u32 i2cctl;
3516 	bool bit = 0;
3517 
3518 	DEBUGFUNC("e1000_clock_out_i2c_byte");
3519 
3520 	for (i = 7; i >= 0; i--) {
3521 		bit = (data >> i) & 0x1;
3522 		status = e1000_clock_out_i2c_bit(hw, bit);
3523 
3524 		if (status != E1000_SUCCESS)
3525 			break;
3526 	}
3527 
3528 	/* Release SDA line (set high) */
3529 	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3530 
3531 	i2cctl |= E1000_I2C_DATA_OE_N;
3532 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
3533 	E1000_WRITE_FLUSH(hw);
3534 
3535 	return status;
3536 }
3537 
3538 /**
3539  *  e1000_get_i2c_ack - Polls for I2C ACK
3540  *  @hw: pointer to hardware structure
3541  *
3542  *  Clocks in/out one bit via I2C data/clock
3543  **/
3544 static s32 e1000_get_i2c_ack(struct e1000_hw *hw)
3545 {
3546 	s32 status = E1000_SUCCESS;
3547 	u32 i = 0;
3548 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3549 	u32 timeout = 10;
3550 	bool ack = TRUE;
3551 
3552 	DEBUGFUNC("e1000_get_i2c_ack");
3553 
3554 	e1000_raise_i2c_clk(hw, &i2cctl);
3555 
3556 	/* Minimum high period of clock is 4us */
3557 	usec_delay(E1000_I2C_T_HIGH);
3558 
3559 	/* Wait until SCL returns high */
3560 	for (i = 0; i < timeout; i++) {
3561 		usec_delay(1);
3562 		i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3563 		if (i2cctl & E1000_I2C_CLK_IN)
3564 			break;
3565 	}
3566 	if (!(i2cctl & E1000_I2C_CLK_IN))
3567 		return E1000_ERR_I2C;
3568 
3569 	ack = e1000_get_i2c_data(&i2cctl);
3570 	if (ack) {
3571 		DEBUGOUT("I2C ack was not received.\n");
3572 		status = E1000_ERR_I2C;
3573 	}
3574 
3575 	e1000_lower_i2c_clk(hw, &i2cctl);
3576 
3577 	/* Minimum low period of clock is 4.7 us */
3578 	usec_delay(E1000_I2C_T_LOW);
3579 
3580 	return status;
3581 }
3582 
3583 /**
3584  *  e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
3585  *  @hw: pointer to hardware structure
3586  *  @data: read data value
3587  *
3588  *  Clocks in one bit via I2C data/clock
3589  **/
3590 static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
3591 {
3592 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3593 
3594 	DEBUGFUNC("e1000_clock_in_i2c_bit");
3595 
3596 	e1000_raise_i2c_clk(hw, &i2cctl);
3597 
3598 	/* Minimum high period of clock is 4us */
3599 	usec_delay(E1000_I2C_T_HIGH);
3600 
3601 	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3602 	*data = e1000_get_i2c_data(&i2cctl);
3603 
3604 	e1000_lower_i2c_clk(hw, &i2cctl);
3605 
3606 	/* Minimum low period of clock is 4.7 us */
3607 	usec_delay(E1000_I2C_T_LOW);
3608 
3609 	return E1000_SUCCESS;
3610 }
3611 
3612 /**
3613  *  e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
3614  *  @hw: pointer to hardware structure
3615  *  @data: data value to write
3616  *
3617  *  Clocks out one bit via I2C data/clock
3618  **/
3619 static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
3620 {
3621 	s32 status;
3622 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3623 
3624 	DEBUGFUNC("e1000_clock_out_i2c_bit");
3625 
3626 	status = e1000_set_i2c_data(hw, &i2cctl, data);
3627 	if (status == E1000_SUCCESS) {
3628 		e1000_raise_i2c_clk(hw, &i2cctl);
3629 
3630 		/* Minimum high period of clock is 4us */
3631 		usec_delay(E1000_I2C_T_HIGH);
3632 
3633 		e1000_lower_i2c_clk(hw, &i2cctl);
3634 
3635 		/* Minimum low period of clock is 4.7 us.
3636 		 * This also takes care of the data hold time.
3637 		 */
3638 		usec_delay(E1000_I2C_T_LOW);
3639 	} else {
3640 		status = E1000_ERR_I2C;
3641 		DEBUGOUT1("I2C data was not set to %X\n", data);
3642 	}
3643 
3644 	return status;
3645 }
3646 /**
3647  *  e1000_raise_i2c_clk - Raises the I2C SCL clock
3648  *  @hw: pointer to hardware structure
3649  *  @i2cctl: Current value of I2CCTL register
3650  *
3651  *  Raises the I2C clock line '0'->'1'
3652  **/
3653 static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
3654 {
3655 	DEBUGFUNC("e1000_raise_i2c_clk");
3656 
3657 	*i2cctl |= E1000_I2C_CLK_OUT;
3658 	*i2cctl &= ~E1000_I2C_CLK_OE_N;
3659 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3660 	E1000_WRITE_FLUSH(hw);
3661 
3662 	/* SCL rise time (1000ns) */
3663 	usec_delay(E1000_I2C_T_RISE);
3664 }
3665 
3666 /**
3667  *  e1000_lower_i2c_clk - Lowers the I2C SCL clock
3668  *  @hw: pointer to hardware structure
3669  *  @i2cctl: Current value of I2CCTL register
3670  *
3671  *  Lowers the I2C clock line '1'->'0'
3672  **/
3673 static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
3674 {
3675 
3676 	DEBUGFUNC("e1000_lower_i2c_clk");
3677 
3678 	*i2cctl &= ~E1000_I2C_CLK_OUT;
3679 	*i2cctl &= ~E1000_I2C_CLK_OE_N;
3680 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3681 	E1000_WRITE_FLUSH(hw);
3682 
3683 	/* SCL fall time (300ns) */
3684 	usec_delay(E1000_I2C_T_FALL);
3685 }
3686 
3687 /**
3688  *  e1000_set_i2c_data - Sets the I2C data bit
3689  *  @hw: pointer to hardware structure
3690  *  @i2cctl: Current value of I2CCTL register
3691  *  @data: I2C data value (0 or 1) to set
3692  *
3693  *  Sets the I2C data bit
3694  **/
3695 static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
3696 {
3697 	s32 status = E1000_SUCCESS;
3698 
3699 	DEBUGFUNC("e1000_set_i2c_data");
3700 
3701 	if (data)
3702 		*i2cctl |= E1000_I2C_DATA_OUT;
3703 	else
3704 		*i2cctl &= ~E1000_I2C_DATA_OUT;
3705 
3706 	*i2cctl &= ~E1000_I2C_DATA_OE_N;
3707 	*i2cctl |= E1000_I2C_CLK_OE_N;
3708 	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
3709 	E1000_WRITE_FLUSH(hw);
3710 
3711 	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
3712 	usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
3713 
3714 	*i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3715 	if (data != e1000_get_i2c_data(i2cctl)) {
3716 		status = E1000_ERR_I2C;
3717 		DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
3718 	}
3719 
3720 	return status;
3721 }
3722 
3723 /**
3724  *  e1000_get_i2c_data - Reads the I2C SDA data bit
3725  *  @hw: pointer to hardware structure
3726  *  @i2cctl: Current value of I2CCTL register
3727  *
3728  *  Returns the I2C data bit value
3729  **/
3730 static bool e1000_get_i2c_data(u32 *i2cctl)
3731 {
3732 	bool data;
3733 
3734 	DEBUGFUNC("e1000_get_i2c_data");
3735 
3736 	if (*i2cctl & E1000_I2C_DATA_IN)
3737 		data = 1;
3738 	else
3739 		data = 0;
3740 
3741 	return data;
3742 }
3743 
3744 /**
3745  *  e1000_i2c_bus_clear - Clears the I2C bus
3746  *  @hw: pointer to hardware structure
3747  *
3748  *  Clears the I2C bus by sending nine clock pulses.
3749  *  Used when data line is stuck low.
3750  **/
3751 void e1000_i2c_bus_clear(struct e1000_hw *hw)
3752 {
3753 	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
3754 	u32 i;
3755 
3756 	DEBUGFUNC("e1000_i2c_bus_clear");
3757 
3758 	e1000_i2c_start(hw);
3759 
3760 	e1000_set_i2c_data(hw, &i2cctl, 1);
3761 
3762 	for (i = 0; i < 9; i++) {
3763 		e1000_raise_i2c_clk(hw, &i2cctl);
3764 
3765 		/* Min high period of clock is 4us */
3766 		usec_delay(E1000_I2C_T_HIGH);
3767 
3768 		e1000_lower_i2c_clk(hw, &i2cctl);
3769 
3770 		/* Min low period of clock is 4.7us*/
3771 		usec_delay(E1000_I2C_T_LOW);
3772 	}
3773 
3774 	e1000_i2c_start(hw);
3775 
3776 	/* Put the i2c bus back to default state */
3777 	e1000_i2c_stop(hw);
3778 }
3779 
3780