xref: /titanic_44/usr/src/uts/common/io/cpudrv.c (revision ad09f8b827db90c9a0093f0b6382803fa64a5fd1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2009,  Intel Corporation.
27  * All Rights Reserved.
28  */
29 
30 /*
31  * CPU Device driver. The driver is not DDI-compliant.
32  *
33  * The driver supports following features:
34  *	- Power management.
35  */
36 
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/errno.h>
40 #include <sys/modctl.h>
41 #include <sys/kmem.h>
42 #include <sys/conf.h>
43 #include <sys/cmn_err.h>
44 #include <sys/stat.h>
45 #include <sys/debug.h>
46 #include <sys/systm.h>
47 #include <sys/ddi.h>
48 #include <sys/sunddi.h>
49 #include <sys/sdt.h>
50 #include <sys/epm.h>
51 #include <sys/machsystm.h>
52 #include <sys/x_call.h>
53 #include <sys/cpudrv_mach.h>
54 #include <sys/msacct.h>
55 
56 /*
57  * CPU power management
58  *
59  * The supported power saving model is to slow down the CPU (on SPARC by
60  * dividing the CPU clock and on x86 by dropping down a P-state).
61  * Periodically we determine the amount of time the CPU is running
62  * idle thread and threads in user mode during the last quantum.  If the idle
63  * thread was running less than its low water mark for current speed for
64  * number of consecutive sampling periods, or number of running threads in
65  * user mode are above its high water mark, we arrange to go to the higher
66  * speed.  If the idle thread was running more than its high water mark without
67  * dropping a number of consecutive times below the mark, and number of threads
68  * running in user mode are below its low water mark, we arrange to go to the
69  * next lower speed.  While going down, we go through all the speeds.  While
70  * going up we go to the maximum speed to minimize impact on the user, but have
71  * provisions in the driver to go to other speeds.
72  *
73  * The driver does not have knowledge of a particular implementation of this
74  * scheme and will work with all CPUs supporting this model. On SPARC, the
75  * driver determines supported speeds by looking at 'clock-divisors' property
76  * created by OBP. On x86, the driver retrieves the supported speeds from
77  * ACPI.
78  */
79 
80 /*
81  * Configuration function prototypes and data structures
82  */
83 static int cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
84 static int cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
85 static int cpudrv_power(dev_info_t *dip, int comp, int level);
86 
87 struct dev_ops cpudrv_ops = {
88 	DEVO_REV,		/* rev */
89 	0,			/* refcnt */
90 	nodev,			/* getinfo */
91 	nulldev,		/* identify */
92 	nulldev,		/* probe */
93 	cpudrv_attach,		/* attach */
94 	cpudrv_detach,		/* detach */
95 	nodev,			/* reset */
96 	(struct cb_ops *)NULL,	/* cb_ops */
97 	(struct bus_ops *)NULL,	/* bus_ops */
98 	cpudrv_power,		/* power */
99 	ddi_quiesce_not_needed,		/* quiesce */
100 };
101 
102 static struct modldrv modldrv = {
103 	&mod_driverops,			/* modops */
104 	"CPU Driver",			/* linkinfo */
105 	&cpudrv_ops,			/* dev_ops */
106 };
107 
108 static struct modlinkage modlinkage = {
109 	MODREV_1,		/* rev */
110 	&modldrv,		/* linkage */
111 	NULL
112 };
113 
114 /*
115  * Function prototypes
116  */
117 static int cpudrv_init(cpudrv_devstate_t *cpudsp);
118 static void cpudrv_free(cpudrv_devstate_t *cpudsp);
119 static int cpudrv_comp_create(cpudrv_devstate_t *cpudsp);
120 static void cpudrv_monitor_disp(void *arg);
121 static void cpudrv_monitor(void *arg);
122 
123 /*
124  * Driver global variables
125  */
126 uint_t cpudrv_debug = 0;
127 void *cpudrv_state;
128 static uint_t cpudrv_idle_hwm = CPUDRV_IDLE_HWM;
129 static uint_t cpudrv_idle_lwm = CPUDRV_IDLE_LWM;
130 static uint_t cpudrv_idle_buf_zone = CPUDRV_IDLE_BUF_ZONE;
131 static uint_t cpudrv_idle_bhwm_cnt_max = CPUDRV_IDLE_BHWM_CNT_MAX;
132 static uint_t cpudrv_idle_blwm_cnt_max = CPUDRV_IDLE_BLWM_CNT_MAX;
133 static uint_t cpudrv_user_hwm = CPUDRV_USER_HWM;
134 
135 boolean_t cpudrv_enabled = B_TRUE;
136 
137 /*
138  * cpudrv_direct_pm allows user applications to directly control the
139  * power state transitions (direct pm) without following the normal
140  * direct pm protocol. This is needed because the normal protocol
141  * requires that a device only be lowered when it is idle, and be
142  * brought up when it request to do so by calling pm_raise_power().
143  * Ignoring this protocol is harmless for CPU (other than speed).
144  * Moreover it might be the case that CPU is never idle or wants
145  * to be at higher speed because of the addition CPU cycles required
146  * to run the user application.
147  *
148  * The driver will still report idle/busy status to the framework. Although
149  * framework will ignore this information for direct pm devices and not
150  * try to bring them down when idle, user applications can still use this
151  * information if they wants.
152  *
153  * In the future, provide an ioctl to control setting of this mode. In
154  * that case, this variable should move to the state structure and
155  * be protected by the lock in the state structure.
156  */
157 int cpudrv_direct_pm = 0;
158 
159 /*
160  * Arranges for the handler function to be called at the interval suitable
161  * for current speed.
162  */
163 #define	CPUDRV_MONITOR_INIT(cpudsp) { \
164     if (cpudrv_is_enabled(cpudsp)) {	      \
165 		ASSERT(mutex_owned(&(cpudsp)->lock)); \
166 		(cpudsp)->cpudrv_pm.timeout_id = \
167 		    timeout(cpudrv_monitor_disp, \
168 		    (cpudsp), (((cpudsp)->cpudrv_pm.cur_spd == NULL) ? \
169 		    CPUDRV_QUANT_CNT_OTHR : \
170 		    (cpudsp)->cpudrv_pm.cur_spd->quant_cnt)); \
171 	} \
172 }
173 
174 /*
175  * Arranges for the handler function not to be called back.
176  */
177 #define	CPUDRV_MONITOR_FINI(cpudsp) { \
178 	timeout_id_t tmp_tid; \
179 	ASSERT(mutex_owned(&(cpudsp)->lock)); \
180 	tmp_tid = (cpudsp)->cpudrv_pm.timeout_id; \
181 	(cpudsp)->cpudrv_pm.timeout_id = 0; \
182 	mutex_exit(&(cpudsp)->lock); \
183 	if (tmp_tid != 0) { \
184 		(void) untimeout(tmp_tid); \
185 		mutex_enter(&(cpudsp)->cpudrv_pm.timeout_lock); \
186 		while ((cpudsp)->cpudrv_pm.timeout_count != 0) \
187 			cv_wait(&(cpudsp)->cpudrv_pm.timeout_cv, \
188 			    &(cpudsp)->cpudrv_pm.timeout_lock); \
189 		mutex_exit(&(cpudsp)->cpudrv_pm.timeout_lock); \
190 	} \
191 	mutex_enter(&(cpudsp)->lock); \
192 }
193 
194 int
195 _init(void)
196 {
197 	int	error;
198 
199 	DPRINTF(D_INIT, (" _init: function called\n"));
200 	if ((error = ddi_soft_state_init(&cpudrv_state,
201 	    sizeof (cpudrv_devstate_t), 0)) != 0) {
202 		return (error);
203 	}
204 
205 	if ((error = mod_install(&modlinkage)) != 0)  {
206 		ddi_soft_state_fini(&cpudrv_state);
207 	}
208 
209 	/*
210 	 * Callbacks used by the PPM driver.
211 	 */
212 	CPUDRV_SET_PPM_CALLBACKS();
213 	return (error);
214 }
215 
216 int
217 _fini(void)
218 {
219 	int	error;
220 
221 	DPRINTF(D_FINI, (" _fini: function called\n"));
222 	if ((error = mod_remove(&modlinkage)) == 0) {
223 		ddi_soft_state_fini(&cpudrv_state);
224 	}
225 
226 	return (error);
227 }
228 
229 int
230 _info(struct modinfo *modinfop)
231 {
232 	return (mod_info(&modlinkage, modinfop));
233 }
234 
235 /*
236  * Driver attach(9e) entry point.
237  */
238 static int
239 cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
240 {
241 	int			instance;
242 	cpudrv_devstate_t	*cpudsp;
243 
244 	instance = ddi_get_instance(dip);
245 
246 	switch (cmd) {
247 	case DDI_ATTACH:
248 		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
249 		    "DDI_ATTACH called\n", instance));
250 		if (!cpudrv_is_enabled(NULL))
251 			return (DDI_FAILURE);
252 		if (ddi_soft_state_zalloc(cpudrv_state, instance) !=
253 		    DDI_SUCCESS) {
254 			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
255 			    "can't allocate state", instance);
256 			cpudrv_enabled = B_FALSE;
257 			return (DDI_FAILURE);
258 		}
259 		if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) ==
260 		    NULL) {
261 			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
262 			    "can't get state", instance);
263 			ddi_soft_state_free(cpudrv_state, instance);
264 			cpudrv_enabled = B_FALSE;
265 			return (DDI_FAILURE);
266 		}
267 		cpudsp->dip = dip;
268 
269 		/*
270 		 * Find CPU number for this dev_info node.
271 		 */
272 		if (!cpudrv_get_cpu_id(dip, &(cpudsp->cpu_id))) {
273 			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
274 			    "can't convert dip to cpu_id", instance);
275 			ddi_soft_state_free(cpudrv_state, instance);
276 			cpudrv_enabled = B_FALSE;
277 			return (DDI_FAILURE);
278 		}
279 
280 		mutex_init(&cpudsp->lock, NULL, MUTEX_DRIVER, NULL);
281 		if (cpudrv_is_enabled(cpudsp)) {
282 			if (cpudrv_init(cpudsp) != DDI_SUCCESS) {
283 				cpudrv_enabled = B_FALSE;
284 				cpudrv_free(cpudsp);
285 				ddi_soft_state_free(cpudrv_state, instance);
286 				return (DDI_FAILURE);
287 			}
288 			if (cpudrv_comp_create(cpudsp) != DDI_SUCCESS) {
289 				cpudrv_enabled = B_FALSE;
290 				cpudrv_free(cpudsp);
291 				ddi_soft_state_free(cpudrv_state, instance);
292 				return (DDI_FAILURE);
293 			}
294 			if (ddi_prop_update_string(DDI_DEV_T_NONE,
295 			    dip, "pm-class", "CPU") != DDI_PROP_SUCCESS) {
296 				cpudrv_enabled = B_FALSE;
297 				cpudrv_free(cpudsp);
298 				ddi_soft_state_free(cpudrv_state, instance);
299 				return (DDI_FAILURE);
300 			}
301 
302 			/*
303 			 * Taskq is used to dispatch routine to monitor CPU
304 			 * activities.
305 			 */
306 			cpudsp->cpudrv_pm.tq = ddi_taskq_create(dip,
307 			    "cpudrv_monitor", CPUDRV_TASKQ_THREADS,
308 			    TASKQ_DEFAULTPRI, 0);
309 
310 			mutex_init(&cpudsp->cpudrv_pm.timeout_lock, NULL,
311 			    MUTEX_DRIVER, NULL);
312 			cv_init(&cpudsp->cpudrv_pm.timeout_cv, NULL,
313 			    CV_DEFAULT, NULL);
314 
315 			/*
316 			 * Driver needs to assume that CPU is running at
317 			 * unknown speed at DDI_ATTACH and switch it to the
318 			 * needed speed. We assume that initial needed speed
319 			 * is full speed for us.
320 			 */
321 			/*
322 			 * We need to take the lock because cpudrv_monitor()
323 			 * will start running in parallel with attach().
324 			 */
325 			mutex_enter(&cpudsp->lock);
326 			cpudsp->cpudrv_pm.cur_spd = NULL;
327 			cpudsp->cpudrv_pm.pm_started = B_FALSE;
328 			/*
329 			 * We don't call pm_raise_power() directly from attach
330 			 * because driver attach for a slave CPU node can
331 			 * happen before the CPU is even initialized. We just
332 			 * start the monitoring system which understands
333 			 * unknown speed and moves CPU to top speed when it
334 			 * has been initialized.
335 			 */
336 			CPUDRV_MONITOR_INIT(cpudsp);
337 			mutex_exit(&cpudsp->lock);
338 
339 		}
340 
341 		if (!cpudrv_mach_init(cpudsp)) {
342 			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
343 			    "cpudrv_mach_init failed", instance);
344 			cpudrv_enabled = B_FALSE;
345 			cpudrv_free(cpudsp);
346 			ddi_soft_state_free(cpudrv_state, instance);
347 			return (DDI_FAILURE);
348 		}
349 
350 		CPUDRV_INSTALL_MAX_CHANGE_HANDLER(cpudsp);
351 
352 		(void) ddi_prop_update_int(DDI_DEV_T_NONE, dip,
353 		    DDI_NO_AUTODETACH, 1);
354 		ddi_report_dev(dip);
355 		return (DDI_SUCCESS);
356 
357 	case DDI_RESUME:
358 		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
359 		    "DDI_RESUME called\n", instance));
360 
361 		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
362 		ASSERT(cpudsp != NULL);
363 
364 		/*
365 		 * Nothing to do for resume, if not doing active PM.
366 		 */
367 		if (!cpudrv_is_enabled(cpudsp))
368 			return (DDI_SUCCESS);
369 
370 		mutex_enter(&cpudsp->lock);
371 		/*
372 		 * Driver needs to assume that CPU is running at unknown speed
373 		 * at DDI_RESUME and switch it to the needed speed. We assume
374 		 * that the needed speed is full speed for us.
375 		 */
376 		cpudsp->cpudrv_pm.cur_spd = NULL;
377 		CPUDRV_MONITOR_INIT(cpudsp);
378 		mutex_exit(&cpudsp->lock);
379 		CPUDRV_REDEFINE_TOPSPEED(dip);
380 		return (DDI_SUCCESS);
381 
382 	default:
383 		return (DDI_FAILURE);
384 	}
385 }
386 
387 /*
388  * Driver detach(9e) entry point.
389  */
390 static int
391 cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
392 {
393 	int			instance;
394 	cpudrv_devstate_t	*cpudsp;
395 	cpudrv_pm_t		*cpupm;
396 
397 	instance = ddi_get_instance(dip);
398 
399 	switch (cmd) {
400 	case DDI_DETACH:
401 		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
402 		    "DDI_DETACH called\n", instance));
403 
404 #if defined(__x86)
405 		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
406 		ASSERT(cpudsp != NULL);
407 
408 		/*
409 		 * Nothing to do for detach, if no doing active PM.
410 		 */
411 		if (!cpudrv_is_enabled(cpudsp))
412 			return (DDI_SUCCESS);
413 
414 		/*
415 		 * uninstall PPC/_TPC change notification handler
416 		 */
417 		CPUDRV_UNINSTALL_MAX_CHANGE_HANDLER(cpudsp);
418 
419 		/*
420 		 * destruct platform specific resource
421 		 */
422 		if (!cpudrv_mach_fini(cpudsp))
423 			return (DDI_FAILURE);
424 
425 		mutex_enter(&cpudsp->lock);
426 		CPUDRV_MONITOR_FINI(cpudsp);
427 		cv_destroy(&cpudsp->cpudrv_pm.timeout_cv);
428 		mutex_destroy(&cpudsp->cpudrv_pm.timeout_lock);
429 		ddi_taskq_destroy(cpudsp->cpudrv_pm.tq);
430 		cpudrv_free(cpudsp);
431 		mutex_exit(&cpudsp->lock);
432 		mutex_destroy(&cpudsp->lock);
433 		ddi_soft_state_free(cpudrv_state, instance);
434 		(void) ddi_prop_update_int(DDI_DEV_T_NONE, dip,
435 		    DDI_NO_AUTODETACH, 0);
436 		return (DDI_SUCCESS);
437 
438 #else
439 		/*
440 		 * If the only thing supported by the driver is power
441 		 * management, we can in future enhance the driver and
442 		 * framework that loads it to unload the driver when
443 		 * user has disabled CPU power management.
444 		 */
445 		return (DDI_FAILURE);
446 #endif
447 
448 	case DDI_SUSPEND:
449 		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
450 		    "DDI_SUSPEND called\n", instance));
451 
452 		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
453 		ASSERT(cpudsp != NULL);
454 
455 		/*
456 		 * Nothing to do for suspend, if not doing active PM.
457 		 */
458 		if (!cpudrv_is_enabled(cpudsp))
459 			return (DDI_SUCCESS);
460 
461 		/*
462 		 * During a checkpoint-resume sequence, framework will
463 		 * stop interrupts to quiesce kernel activity. This will
464 		 * leave our monitoring system ineffective. Handle this
465 		 * by stopping our monitoring system and bringing CPU
466 		 * to full speed. In case we are in special direct pm
467 		 * mode, we leave the CPU at whatever speed it is. This
468 		 * is harmless other than speed.
469 		 */
470 		mutex_enter(&cpudsp->lock);
471 		cpupm = &(cpudsp->cpudrv_pm);
472 
473 		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: DDI_SUSPEND - "
474 		    "cur_spd %d, topspeed %d\n", instance,
475 		    cpupm->cur_spd->pm_level,
476 		    CPUDRV_TOPSPEED(cpupm)->pm_level));
477 
478 		CPUDRV_MONITOR_FINI(cpudsp);
479 
480 		if (!cpudrv_direct_pm && (cpupm->cur_spd !=
481 		    CPUDRV_TOPSPEED(cpupm))) {
482 			if (cpupm->pm_busycnt < 1) {
483 				if ((pm_busy_component(dip, CPUDRV_COMP_NUM)
484 				    == DDI_SUCCESS)) {
485 					cpupm->pm_busycnt++;
486 				} else {
487 					CPUDRV_MONITOR_INIT(cpudsp);
488 					mutex_exit(&cpudsp->lock);
489 					cmn_err(CE_WARN, "cpudrv_detach: "
490 					    "instance %d: can't busy CPU "
491 					    "component", instance);
492 					return (DDI_FAILURE);
493 				}
494 			}
495 			mutex_exit(&cpudsp->lock);
496 			if (pm_raise_power(dip, CPUDRV_COMP_NUM,
497 			    CPUDRV_TOPSPEED(cpupm)->pm_level) !=
498 			    DDI_SUCCESS) {
499 				mutex_enter(&cpudsp->lock);
500 				CPUDRV_MONITOR_INIT(cpudsp);
501 				mutex_exit(&cpudsp->lock);
502 				cmn_err(CE_WARN, "cpudrv_detach: instance %d: "
503 				    "can't raise CPU power level to %d",
504 				    instance,
505 				    CPUDRV_TOPSPEED(cpupm)->pm_level);
506 				return (DDI_FAILURE);
507 			} else {
508 				return (DDI_SUCCESS);
509 			}
510 		} else {
511 			mutex_exit(&cpudsp->lock);
512 			return (DDI_SUCCESS);
513 		}
514 
515 	default:
516 		return (DDI_FAILURE);
517 	}
518 }
519 
520 /*
521  * Driver power(9e) entry point.
522  *
523  * Driver's notion of current power is set *only* in power(9e) entry point
524  * after actual power change operation has been successfully completed.
525  */
526 /* ARGSUSED */
527 static int
528 cpudrv_power(dev_info_t *dip, int comp, int level)
529 {
530 	int			instance;
531 	cpudrv_devstate_t	*cpudsp;
532 	cpudrv_pm_t 		*cpudrvpm;
533 	cpudrv_pm_spd_t		*new_spd;
534 	boolean_t		is_ready;
535 	int			ret;
536 
537 	instance = ddi_get_instance(dip);
538 
539 	DPRINTF(D_POWER, ("cpudrv_power: instance %d: level %d\n",
540 	    instance, level));
541 
542 	if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == NULL) {
543 		cmn_err(CE_WARN, "cpudrv_power: instance %d: can't "
544 		    "get state", instance);
545 		return (DDI_FAILURE);
546 	}
547 
548 	/*
549 	 * We're not ready until we can  get a cpu_t
550 	 */
551 	is_ready = (cpudrv_get_cpu(cpudsp) == DDI_SUCCESS);
552 
553 	mutex_enter(&cpudsp->lock);
554 	cpudrvpm = &(cpudsp->cpudrv_pm);
555 
556 	/*
557 	 * In normal operation, we fail if we are busy and request is
558 	 * to lower the power level. We let this go through if the driver
559 	 * is in special direct pm mode. On x86, we also let this through
560 	 * if the change is due to a request to govern the max speed.
561 	 */
562 	if (!cpudrv_direct_pm && (cpudrvpm->pm_busycnt >= 1) &&
563 	    !cpudrv_is_governor_thread(cpudrvpm)) {
564 		if ((cpudrvpm->cur_spd != NULL) &&
565 		    (level < cpudrvpm->cur_spd->pm_level)) {
566 			mutex_exit(&cpudsp->lock);
567 			return (DDI_FAILURE);
568 		}
569 	}
570 
571 	for (new_spd = cpudrvpm->head_spd; new_spd; new_spd =
572 	    new_spd->down_spd) {
573 		if (new_spd->pm_level == level)
574 			break;
575 	}
576 	if (!new_spd) {
577 		CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
578 		mutex_exit(&cpudsp->lock);
579 		cmn_err(CE_WARN, "cpudrv_power: instance %d: "
580 		    "can't locate new CPU speed", instance);
581 		return (DDI_FAILURE);
582 	}
583 
584 	/*
585 	 * We currently refuse to power manage if the CPU is not ready to
586 	 * take cross calls (cross calls fail silently if CPU is not ready
587 	 * for it).
588 	 *
589 	 * Additionally, for x86 platforms we cannot power manage an instance,
590 	 * until it has been initialized.
591 	 */
592 	if (is_ready) {
593 		is_ready = CPUDRV_XCALL_IS_READY(cpudsp->cpu_id);
594 		if (!is_ready) {
595 			DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
596 			    "CPU not ready for x-calls\n", instance));
597 		} else if (!(is_ready = cpudrv_power_ready(cpudsp->cp))) {
598 			DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
599 			    "waiting for all CPUs to be power manageable\n",
600 			    instance));
601 		}
602 	}
603 	if (!is_ready) {
604 		CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
605 		mutex_exit(&cpudsp->lock);
606 		return (DDI_FAILURE);
607 	}
608 
609 	/*
610 	 * Execute CPU specific routine on the requested CPU to
611 	 * change its speed to normal-speed/divisor.
612 	 */
613 	if ((ret = cpudrv_change_speed(cpudsp, new_spd)) != DDI_SUCCESS) {
614 		cmn_err(CE_WARN, "cpudrv_power: "
615 		    "cpudrv_change_speed() return = %d", ret);
616 		mutex_exit(&cpudsp->lock);
617 		return (DDI_FAILURE);
618 	}
619 
620 	/*
621 	 * Reset idle threshold time for the new power level.
622 	 */
623 	if ((cpudrvpm->cur_spd != NULL) && (level <
624 	    cpudrvpm->cur_spd->pm_level)) {
625 		if (pm_idle_component(dip, CPUDRV_COMP_NUM) ==
626 		    DDI_SUCCESS) {
627 			if (cpudrvpm->pm_busycnt >= 1)
628 				cpudrvpm->pm_busycnt--;
629 		} else {
630 			cmn_err(CE_WARN, "cpudrv_power: instance %d: "
631 			    "can't idle CPU component",
632 			    ddi_get_instance(dip));
633 		}
634 	}
635 	/*
636 	 * Reset various parameters because we are now running at new speed.
637 	 */
638 	cpudrvpm->lastquan_mstate[CMS_IDLE] = 0;
639 	cpudrvpm->lastquan_mstate[CMS_SYSTEM] = 0;
640 	cpudrvpm->lastquan_mstate[CMS_USER] = 0;
641 	cpudrvpm->lastquan_ticks = 0;
642 	cpudrvpm->cur_spd = new_spd;
643 	CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
644 	mutex_exit(&cpudsp->lock);
645 
646 	return (DDI_SUCCESS);
647 }
648 
649 /*
650  * Initialize power management data.
651  */
652 static int
653 cpudrv_init(cpudrv_devstate_t *cpudsp)
654 {
655 	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
656 	cpudrv_pm_spd_t	*cur_spd;
657 	cpudrv_pm_spd_t	*prev_spd = NULL;
658 	int		*speeds;
659 	uint_t		nspeeds;
660 	int		idle_cnt_percent;
661 	int		user_cnt_percent;
662 	int		i;
663 
664 	CPUDRV_GET_SPEEDS(cpudsp, speeds, nspeeds);
665 	if (nspeeds < 2) {
666 		/* Need at least two speeds to power manage */
667 		CPUDRV_FREE_SPEEDS(speeds, nspeeds);
668 		return (DDI_FAILURE);
669 	}
670 	cpupm->num_spd = nspeeds;
671 
672 	/*
673 	 * Calculate the watermarks and other parameters based on the
674 	 * supplied speeds.
675 	 *
676 	 * One of the basic assumption is that for X amount of CPU work,
677 	 * if CPU is slowed down by a factor of N, the time it takes to
678 	 * do the same work will be N * X.
679 	 *
680 	 * The driver declares that a CPU is idle and ready for slowed down,
681 	 * if amount of idle thread is more than the current speed idle_hwm
682 	 * without dropping below idle_hwm a number of consecutive sampling
683 	 * intervals and number of running threads in user mode are below
684 	 * user_lwm.  We want to set the current user_lwm such that if we
685 	 * just switched to the next slower speed with no change in real work
686 	 * load, the amount of user threads at the slower speed will be such
687 	 * that it falls below the slower speed's user_hwm.  If we didn't do
688 	 * that then we will just come back to the higher speed as soon as we
689 	 * go down even with no change in work load.
690 	 * The user_hwm is a fixed precentage and not calculated dynamically.
691 	 *
692 	 * We bring the CPU up if idle thread at current speed is less than
693 	 * the current speed idle_lwm for a number of consecutive sampling
694 	 * intervals or user threads are above the user_hwm for the current
695 	 * speed.
696 	 */
697 	for (i = 0; i < nspeeds; i++) {
698 		cur_spd = kmem_zalloc(sizeof (cpudrv_pm_spd_t), KM_SLEEP);
699 		cur_spd->speed = speeds[i];
700 		if (i == 0) {	/* normal speed */
701 			cpupm->head_spd = cur_spd;
702 			CPUDRV_TOPSPEED(cpupm) = cur_spd;
703 			cur_spd->quant_cnt = CPUDRV_QUANT_CNT_NORMAL;
704 			cur_spd->idle_hwm =
705 			    (cpudrv_idle_hwm * cur_spd->quant_cnt) / 100;
706 			/* can't speed anymore */
707 			cur_spd->idle_lwm = 0;
708 			cur_spd->user_hwm = UINT_MAX;
709 		} else {
710 			cur_spd->quant_cnt = CPUDRV_QUANT_CNT_OTHR;
711 			ASSERT(prev_spd != NULL);
712 			prev_spd->down_spd = cur_spd;
713 			cur_spd->up_spd = cpupm->head_spd;
714 
715 			/*
716 			 * Let's assume CPU is considered idle at full speed
717 			 * when it is spending I% of time in running the idle
718 			 * thread.  At full speed, CPU will be busy (100 - I) %
719 			 * of times.  This % of busyness increases by factor of
720 			 * N as CPU slows down.  CPU that is idle I% of times
721 			 * in full speed, it is idle (100 - ((100 - I) * N)) %
722 			 * of times in N speed.  The idle_lwm is a fixed
723 			 * percentage.  A large value of N may result in
724 			 * idle_hwm to go below idle_lwm.  We need to make sure
725 			 * that there is at least a buffer zone seperation
726 			 * between the idle_lwm and idle_hwm values.
727 			 */
728 			idle_cnt_percent = CPUDRV_IDLE_CNT_PERCENT(
729 			    cpudrv_idle_hwm, speeds, i);
730 			idle_cnt_percent = max(idle_cnt_percent,
731 			    (cpudrv_idle_lwm + cpudrv_idle_buf_zone));
732 			cur_spd->idle_hwm =
733 			    (idle_cnt_percent * cur_spd->quant_cnt) / 100;
734 			cur_spd->idle_lwm =
735 			    (cpudrv_idle_lwm * cur_spd->quant_cnt) / 100;
736 
737 			/*
738 			 * The lwm for user threads are determined such that
739 			 * if CPU slows down, the load of work in the
740 			 * new speed would still keep the CPU at or below the
741 			 * user_hwm in the new speed.  This is to prevent
742 			 * the quick jump back up to higher speed.
743 			 */
744 			cur_spd->user_hwm = (cpudrv_user_hwm *
745 			    cur_spd->quant_cnt) / 100;
746 			user_cnt_percent = CPUDRV_USER_CNT_PERCENT(
747 			    cpudrv_user_hwm, speeds, i);
748 			prev_spd->user_lwm =
749 			    (user_cnt_percent * prev_spd->quant_cnt) / 100;
750 		}
751 		prev_spd = cur_spd;
752 	}
753 	/* Slowest speed. Can't slow down anymore */
754 	cur_spd->idle_hwm = UINT_MAX;
755 	cur_spd->user_lwm = -1;
756 #ifdef	DEBUG
757 	DPRINTF(D_PM_INIT, ("cpudrv_init: instance %d: head_spd spd %d, "
758 	    "num_spd %d\n", ddi_get_instance(cpudsp->dip),
759 	    cpupm->head_spd->speed, cpupm->num_spd));
760 	for (cur_spd = cpupm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) {
761 		DPRINTF(D_PM_INIT, ("cpudrv_init: instance %d: speed %d, "
762 		    "down_spd spd %d, idle_hwm %d, user_lwm %d, "
763 		    "up_spd spd %d, idle_lwm %d, user_hwm %d, "
764 		    "quant_cnt %d\n", ddi_get_instance(cpudsp->dip),
765 		    cur_spd->speed,
766 		    (cur_spd->down_spd ? cur_spd->down_spd->speed : 0),
767 		    cur_spd->idle_hwm, cur_spd->user_lwm,
768 		    (cur_spd->up_spd ? cur_spd->up_spd->speed : 0),
769 		    cur_spd->idle_lwm, cur_spd->user_hwm,
770 		    cur_spd->quant_cnt));
771 	}
772 #endif	/* DEBUG */
773 	CPUDRV_FREE_SPEEDS(speeds, nspeeds);
774 	return (DDI_SUCCESS);
775 }
776 
777 /*
778  * Free CPU power management data.
779  */
780 static void
781 cpudrv_free(cpudrv_devstate_t *cpudsp)
782 {
783 	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
784 	cpudrv_pm_spd_t	*cur_spd, *next_spd;
785 
786 	cur_spd = cpupm->head_spd;
787 	while (cur_spd) {
788 		next_spd = cur_spd->down_spd;
789 		kmem_free(cur_spd, sizeof (cpudrv_pm_spd_t));
790 		cur_spd = next_spd;
791 	}
792 	bzero(cpupm, sizeof (cpudrv_pm_t));
793 }
794 
795 /*
796  * Create pm-components property.
797  */
798 static int
799 cpudrv_comp_create(cpudrv_devstate_t *cpudsp)
800 {
801 	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
802 	cpudrv_pm_spd_t	*cur_spd;
803 	char		**pmc;
804 	int		size;
805 	char		name[] = "NAME=CPU Speed";
806 	int		i, j;
807 	uint_t		comp_spd;
808 	int		result = DDI_FAILURE;
809 
810 	pmc = kmem_zalloc((cpupm->num_spd + 1) * sizeof (char *), KM_SLEEP);
811 	size = CPUDRV_COMP_SIZE();
812 	if (cpupm->num_spd > CPUDRV_COMP_MAX_VAL) {
813 		cmn_err(CE_WARN, "cpudrv_comp_create: instance %d: "
814 		    "number of speeds exceeded limits",
815 		    ddi_get_instance(cpudsp->dip));
816 		kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
817 		return (result);
818 	}
819 
820 	for (i = cpupm->num_spd, cur_spd = cpupm->head_spd; i > 0;
821 	    i--, cur_spd = cur_spd->down_spd) {
822 		cur_spd->pm_level = i;
823 		pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP);
824 		comp_spd = CPUDRV_COMP_SPEED(cpupm, cur_spd);
825 		if (comp_spd > CPUDRV_COMP_MAX_VAL) {
826 			cmn_err(CE_WARN, "cpudrv_comp_create: "
827 			    "instance %d: speed exceeded limits",
828 			    ddi_get_instance(cpudsp->dip));
829 			for (j = cpupm->num_spd; j >= i; j--) {
830 				kmem_free(pmc[j], size * sizeof (char));
831 			}
832 			kmem_free(pmc, (cpupm->num_spd + 1) *
833 			    sizeof (char *));
834 			return (result);
835 		}
836 		CPUDRV_COMP_SPRINT(pmc[i], cpupm, cur_spd, comp_spd)
837 		DPRINTF(D_PM_COMP_CREATE, ("cpudrv_comp_create: "
838 		    "instance %d: pm-components power level %d string '%s'\n",
839 		    ddi_get_instance(cpudsp->dip), i, pmc[i]));
840 	}
841 	pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP);
842 	(void) strcat(pmc[0], name);
843 	DPRINTF(D_PM_COMP_CREATE, ("cpudrv_comp_create: instance %d: "
844 	    "pm-components component name '%s'\n",
845 	    ddi_get_instance(cpudsp->dip), pmc[0]));
846 
847 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, cpudsp->dip,
848 	    "pm-components", pmc, cpupm->num_spd + 1) == DDI_PROP_SUCCESS) {
849 		result = DDI_SUCCESS;
850 	} else {
851 		cmn_err(CE_WARN, "cpudrv_comp_create: instance %d: "
852 		    "can't create pm-components property",
853 		    ddi_get_instance(cpudsp->dip));
854 	}
855 
856 	for (i = cpupm->num_spd; i > 0; i--) {
857 		kmem_free(pmc[i], size * sizeof (char));
858 	}
859 	kmem_free(pmc[0], sizeof (name));
860 	kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
861 	return (result);
862 }
863 
864 /*
865  * Mark a component idle.
866  */
867 #define	CPUDRV_MONITOR_PM_IDLE_COMP(dip, cpupm) { \
868 	if ((cpupm)->pm_busycnt >= 1) { \
869 		if (pm_idle_component((dip), CPUDRV_COMP_NUM) == \
870 		    DDI_SUCCESS) { \
871 			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: " \
872 			    "instance %d: pm_idle_component called\n", \
873 			    ddi_get_instance((dip)))); \
874 			(cpupm)->pm_busycnt--; \
875 		} else { \
876 			cmn_err(CE_WARN, "cpudrv_monitor: instance %d: " \
877 			    "can't idle CPU component", \
878 			    ddi_get_instance((dip))); \
879 		} \
880 	} \
881 }
882 
883 /*
884  * Marks a component busy in both PM framework and driver state structure.
885  */
886 #define	CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm) { \
887 	if ((cpupm)->pm_busycnt < 1) { \
888 		if (pm_busy_component((dip), CPUDRV_COMP_NUM) == \
889 		    DDI_SUCCESS) { \
890 			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: " \
891 			    "instance %d: pm_busy_component called\n", \
892 			    ddi_get_instance((dip)))); \
893 			(cpupm)->pm_busycnt++; \
894 		} else { \
895 			cmn_err(CE_WARN, "cpudrv_monitor: instance %d: " \
896 			    "can't busy CPU component", \
897 			    ddi_get_instance((dip))); \
898 		} \
899 	} \
900 }
901 
902 /*
903  * Marks a component busy and calls pm_raise_power().
904  */
905 #define	CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, new_spd) { \
906 	int ret; \
907 	/* \
908 	 * Mark driver and PM framework busy first so framework doesn't try \
909 	 * to bring CPU to lower speed when we need to be at higher speed. \
910 	 */ \
911 	CPUDRV_MONITOR_PM_BUSY_COMP((dip), (cpupm)); \
912 	mutex_exit(&(cpudsp)->lock); \
913 	DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: " \
914 	    "pm_raise_power called to %d\n", ddi_get_instance((dip)), \
915 		(new_spd->pm_level))); \
916 	ret = pm_raise_power((dip), CPUDRV_COMP_NUM, (new_spd->pm_level)); \
917 	if (ret != DDI_SUCCESS) { \
918 		cmn_err(CE_WARN, "cpudrv_monitor: instance %d: can't " \
919 		    "raise CPU power level", ddi_get_instance((dip))); \
920 	} \
921 	mutex_enter(&(cpudsp)->lock); \
922 	if (ret == DDI_SUCCESS && cpudsp->cpudrv_pm.cur_spd == NULL) { \
923 		cpudsp->cpudrv_pm.cur_spd = new_spd; \
924 	} \
925 }
926 
927 /*
928  * In order to monitor a CPU, we need to hold cpu_lock to access CPU
929  * statistics. Holding cpu_lock is not allowed from a callout routine.
930  * We dispatch a taskq to do that job.
931  */
932 static void
933 cpudrv_monitor_disp(void *arg)
934 {
935 	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;
936 
937 	/*
938 	 * We are here because the last task has scheduled a timeout.
939 	 * The queue should be empty at this time.
940 	 */
941 	mutex_enter(&cpudsp->cpudrv_pm.timeout_lock);
942 	if ((ddi_taskq_dispatch(cpudsp->cpudrv_pm.tq, cpudrv_monitor, arg,
943 	    DDI_NOSLEEP)) != DDI_SUCCESS) {
944 		mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
945 		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor_disp: failed to "
946 		    "dispatch the cpudrv_monitor taskq\n"));
947 		mutex_enter(&cpudsp->lock);
948 		CPUDRV_MONITOR_INIT(cpudsp);
949 		mutex_exit(&cpudsp->lock);
950 		return;
951 	}
952 	cpudsp->cpudrv_pm.timeout_count++;
953 	mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
954 }
955 
956 /*
957  * Monitors each CPU for the amount of time idle thread was running in the
958  * last quantum and arranges for the CPU to go to the lower or higher speed.
959  * Called at the time interval appropriate for the current speed. The
960  * time interval for normal speed is CPUDRV_QUANT_CNT_NORMAL. The time
961  * interval for other speeds (including unknown speed) is
962  * CPUDRV_QUANT_CNT_OTHR.
963  */
964 static void
965 cpudrv_monitor(void *arg)
966 {
967 	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;
968 	cpudrv_pm_t		*cpupm;
969 	cpudrv_pm_spd_t		*cur_spd, *new_spd;
970 	dev_info_t		*dip;
971 	uint_t			idle_cnt, user_cnt, system_cnt;
972 	clock_t			ticks;
973 	uint_t			tick_cnt;
974 	hrtime_t		msnsecs[NCMSTATES];
975 	boolean_t		is_ready;
976 
977 #define	GET_CPU_MSTATE_CNT(state, cnt) \
978 	msnsecs[state] = NSEC_TO_TICK(msnsecs[state]); \
979 	if (cpupm->lastquan_mstate[state] > msnsecs[state]) \
980 		msnsecs[state] = cpupm->lastquan_mstate[state]; \
981 	cnt = msnsecs[state] - cpupm->lastquan_mstate[state]; \
982 	cpupm->lastquan_mstate[state] = msnsecs[state]
983 
984 	/*
985 	 * We're not ready until we can  get a cpu_t
986 	 */
987 	is_ready = (cpudrv_get_cpu(cpudsp) == DDI_SUCCESS);
988 
989 	mutex_enter(&cpudsp->lock);
990 	cpupm = &(cpudsp->cpudrv_pm);
991 	if (cpupm->timeout_id == 0) {
992 		mutex_exit(&cpudsp->lock);
993 		goto do_return;
994 	}
995 	cur_spd = cpupm->cur_spd;
996 	dip = cpudsp->dip;
997 
998 	/*
999 	 * We assume that a CPU is initialized and has a valid cpu_t
1000 	 * structure, if it is ready for cross calls. If this changes,
1001 	 * additional checks might be needed.
1002 	 *
1003 	 * Additionally, for x86 platforms we cannot power manage an
1004 	 * instance, until it has been initialized.
1005 	 */
1006 	if (is_ready) {
1007 		is_ready = CPUDRV_XCALL_IS_READY(cpudsp->cpu_id);
1008 		if (!is_ready) {
1009 			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
1010 			    "CPU not ready for x-calls\n",
1011 			    ddi_get_instance(dip)));
1012 		} else if (!(is_ready = cpudrv_power_ready(cpudsp->cp))) {
1013 			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
1014 			    "waiting for all CPUs to be power manageable\n",
1015 			    ddi_get_instance(dip)));
1016 		}
1017 	}
1018 	if (!is_ready) {
1019 		/*
1020 		 * Make sure that we are busy so that framework doesn't
1021 		 * try to bring us down in this situation.
1022 		 */
1023 		CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
1024 		CPUDRV_MONITOR_INIT(cpudsp);
1025 		mutex_exit(&cpudsp->lock);
1026 		goto do_return;
1027 	}
1028 
1029 	/*
1030 	 * Make sure that we are still not at unknown power level.
1031 	 */
1032 	if (cur_spd == NULL) {
1033 		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
1034 		    "cur_spd is unknown\n", ddi_get_instance(dip)));
1035 		CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
1036 		    CPUDRV_TOPSPEED(cpupm));
1037 		/*
1038 		 * We just changed the speed. Wait till at least next
1039 		 * call to this routine before proceeding ahead.
1040 		 */
1041 		CPUDRV_MONITOR_INIT(cpudsp);
1042 		mutex_exit(&cpudsp->lock);
1043 		goto do_return;
1044 	}
1045 
1046 	if (!cpupm->pm_started) {
1047 		cpupm->pm_started = B_TRUE;
1048 		cpudrv_set_supp_freqs(cpudsp);
1049 	}
1050 
1051 	get_cpu_mstate(cpudsp->cp, msnsecs);
1052 	GET_CPU_MSTATE_CNT(CMS_IDLE, idle_cnt);
1053 	GET_CPU_MSTATE_CNT(CMS_USER, user_cnt);
1054 	GET_CPU_MSTATE_CNT(CMS_SYSTEM, system_cnt);
1055 
1056 	/*
1057 	 * We can't do anything when we have just switched to a state
1058 	 * because there is no valid timestamp.
1059 	 */
1060 	if (cpupm->lastquan_ticks == 0) {
1061 		cpupm->lastquan_ticks = NSEC_TO_TICK(gethrtime());
1062 		CPUDRV_MONITOR_INIT(cpudsp);
1063 		mutex_exit(&cpudsp->lock);
1064 		goto do_return;
1065 	}
1066 
1067 	/*
1068 	 * Various watermarks are based on this routine being called back
1069 	 * exactly at the requested period. This is not guaranteed
1070 	 * because this routine is called from a taskq that is dispatched
1071 	 * from a timeout routine.  Handle this by finding out how many
1072 	 * ticks have elapsed since the last call and adjusting
1073 	 * the idle_cnt based on the delay added to the requested period
1074 	 * by timeout and taskq.
1075 	 */
1076 	ticks = NSEC_TO_TICK(gethrtime());
1077 	tick_cnt = ticks - cpupm->lastquan_ticks;
1078 	ASSERT(tick_cnt != 0);
1079 	cpupm->lastquan_ticks = ticks;
1080 
1081 	/*
1082 	 * Time taken between recording the current counts and
1083 	 * arranging the next call of this routine is an error in our
1084 	 * calculation. We minimize the error by calling
1085 	 * CPUDRV_MONITOR_INIT() here instead of end of this routine.
1086 	 */
1087 	CPUDRV_MONITOR_INIT(cpudsp);
1088 	DPRINTF(D_PM_MONITOR_VERBOSE, ("cpudrv_monitor: instance %d: "
1089 	    "idle count %d, user count %d, system count %d, pm_level %d, "
1090 	    "pm_busycnt %d\n", ddi_get_instance(dip), idle_cnt, user_cnt,
1091 	    system_cnt, cur_spd->pm_level, cpupm->pm_busycnt));
1092 
1093 #ifdef	DEBUG
1094 	/*
1095 	 * Notify that timeout and taskq has caused delays and we need to
1096 	 * scale our parameters accordingly.
1097 	 *
1098 	 * To get accurate result, don't turn on other DPRINTFs with
1099 	 * the following DPRINTF. PROM calls generated by other
1100 	 * DPRINTFs changes the timing.
1101 	 */
1102 	if (tick_cnt > cur_spd->quant_cnt) {
1103 		DPRINTF(D_PM_MONITOR_DELAY, ("cpudrv_monitor: instance %d: "
1104 		    "tick count %d > quantum_count %u\n",
1105 		    ddi_get_instance(dip), tick_cnt, cur_spd->quant_cnt));
1106 	}
1107 #endif	/* DEBUG */
1108 
1109 	/*
1110 	 * Adjust counts based on the delay added by timeout and taskq.
1111 	 */
1112 	idle_cnt = (idle_cnt * cur_spd->quant_cnt) / tick_cnt;
1113 	user_cnt = (user_cnt * cur_spd->quant_cnt) / tick_cnt;
1114 
1115 	if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm &&
1116 	    cur_spd->idle_blwm_cnt >= cpudrv_idle_blwm_cnt_max)) {
1117 		cur_spd->idle_blwm_cnt = 0;
1118 		cur_spd->idle_bhwm_cnt = 0;
1119 		/*
1120 		 * In normal situation, arrange to go to next higher speed.
1121 		 * If we are running in special direct pm mode, we just stay
1122 		 * at the current speed.
1123 		 */
1124 		if (cur_spd == cur_spd->up_spd || cpudrv_direct_pm) {
1125 			CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
1126 		} else {
1127 			new_spd = cur_spd->up_spd;
1128 			CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
1129 			    new_spd);
1130 		}
1131 	} else if ((user_cnt <= cur_spd->user_lwm) &&
1132 	    (idle_cnt >= cur_spd->idle_hwm) || !CPU_ACTIVE(cpudsp->cp)) {
1133 		cur_spd->idle_blwm_cnt = 0;
1134 		cur_spd->idle_bhwm_cnt = 0;
1135 		/*
1136 		 * Arrange to go to next lower speed by informing our idle
1137 		 * status to the power management framework.
1138 		 */
1139 		CPUDRV_MONITOR_PM_IDLE_COMP(dip, cpupm);
1140 	} else {
1141 		/*
1142 		 * If we are between the idle water marks and have not
1143 		 * been here enough consecutive times to be considered
1144 		 * busy, just increment the count and return.
1145 		 */
1146 		if ((idle_cnt < cur_spd->idle_hwm) &&
1147 		    (idle_cnt >= cur_spd->idle_lwm) &&
1148 		    (cur_spd->idle_bhwm_cnt < cpudrv_idle_bhwm_cnt_max)) {
1149 			cur_spd->idle_blwm_cnt = 0;
1150 			cur_spd->idle_bhwm_cnt++;
1151 			mutex_exit(&cpudsp->lock);
1152 			goto do_return;
1153 		}
1154 		if (idle_cnt < cur_spd->idle_lwm) {
1155 			cur_spd->idle_blwm_cnt++;
1156 			cur_spd->idle_bhwm_cnt = 0;
1157 		}
1158 		/*
1159 		 * Arranges to stay at the current speed.
1160 		 */
1161 		CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
1162 	}
1163 	mutex_exit(&cpudsp->lock);
1164 do_return:
1165 	mutex_enter(&cpupm->timeout_lock);
1166 	ASSERT(cpupm->timeout_count > 0);
1167 	cpupm->timeout_count--;
1168 	cv_signal(&cpupm->timeout_cv);
1169 	mutex_exit(&cpupm->timeout_lock);
1170 }
1171 
1172 /*
1173  * get cpu_t structure for cpudrv_devstate_t
1174  */
1175 int
1176 cpudrv_get_cpu(cpudrv_devstate_t *cpudsp)
1177 {
1178 	ASSERT(cpudsp != NULL);
1179 
1180 	/*
1181 	 * return DDI_SUCCESS if cpudrv_devstate_t
1182 	 * already contains cpu_t structure
1183 	 */
1184 	if (cpudsp->cp != NULL)
1185 		return (DDI_SUCCESS);
1186 
1187 	if (MUTEX_HELD(&cpu_lock)) {
1188 		cpudsp->cp = cpu_get(cpudsp->cpu_id);
1189 	} else {
1190 		mutex_enter(&cpu_lock);
1191 		cpudsp->cp = cpu_get(cpudsp->cpu_id);
1192 		mutex_exit(&cpu_lock);
1193 	}
1194 
1195 	if (cpudsp->cp == NULL)
1196 		return (DDI_FAILURE);
1197 
1198 	return (DDI_SUCCESS);
1199 }
1200