xref: /titanic_44/usr/src/uts/common/io/bge/bge_send.c (revision a38ddfee9c8c6b6c5a2947ff52fd2338362a4444)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 
31 
32 /*
33  * The transmit-side code uses an allocation process which is similar
34  * to some theme park roller-coaster rides, where riders sit in cars
35  * that can go individually, but work better in a train.
36  *
37  * 1)	RESERVE a place - this doesn't refer to any specific car or
38  *	seat, just that you will get a ride.  The attempt to RESERVE a
39  *	place can fail if all spaces in all cars are already committed.
40  *
41  * 2)	Prepare yourself; this may take an arbitrary (but not unbounded)
42  *	time, and you can back out at this stage, in which case you must
43  *	give up (RENOUNCE) your place.
44  *
45  * 3)	CLAIM your space - a specific car (the next sequentially
46  *	numbered one) is allocated at this stage, and is guaranteed
47  *	to be part of the next train to depart.  Once you've done
48  *	this, you can't back out, nor wait for any external event
49  *	or resource.
50  *
51  * 4)	Occupy your car - when all CLAIMED cars are OCCUPIED, they
52  *	all depart together as a single train!
53  *
54  * 5)	At the end of the ride, you climb out of the car and RENOUNCE
55  *	your right to it, so that it can be recycled for another rider.
56  *
57  * For each rider, these have to occur in this order, but the riders
58  * don't have to stay in the same order at each stage.  In particular,
59  * they may overtake each other between RESERVING a place and CLAIMING
60  * it, or between CLAIMING and OCCUPYING a space.
61  *
62  * Once a car is CLAIMED, the train currently being assembled can't go
63  * without that car (this guarantees that the cars in a single train
64  * make up a consecutively-numbered set).  Therefore, when any train
65  * leaves, we know there can't be any riders in transit between CLAIMING
66  * and OCCUPYING their cars.  There can be some who have RESERVED but
67  * not yet CLAIMED their places.  That's OK, though, because they'll go
68  * into the next train.
69  */
70 
71 #define	BGE_DBG		BGE_DBG_SEND	/* debug flag for this code	*/
72 
73 /*
74  * ========== Send-side recycle routines ==========
75  */
76 
77 /*
78  * Recycle all the completed buffers in the specified send ring up to
79  * (but not including) the consumer index in the status block.
80  *
81  * This function must advance (srp->tc_next) AND adjust (srp->tx_free)
82  * to account for the packets it has recycled.
83  *
84  * This is a trivial version that just does that and nothing more, but
85  * it suffices while there's only one method for sending messages (by
86  * copying) and that method doesn't need any special per-buffer action
87  * for recycling.
88  */
89 static void bge_recycle_ring(bge_t *bgep, send_ring_t *srp);
90 #pragma	inline(bge_recycle_ring)
91 
92 static void
93 bge_recycle_ring(bge_t *bgep, send_ring_t *srp)
94 {
95 	sw_sbd_t *ssbdp;
96 	bge_queue_item_t *buf_item;
97 	bge_queue_item_t *buf_item_head;
98 	bge_queue_item_t *buf_item_tail;
99 	bge_queue_t *txbuf_queue;
100 	uint64_t slot;
101 	uint64_t n;
102 
103 	ASSERT(mutex_owned(srp->tc_lock));
104 
105 	/*
106 	 * We're about to release one or more places :-)
107 	 * These ASSERTions check that our invariants still hold:
108 	 *	there must always be at least one free place
109 	 *	at this point, there must be at least one place NOT free
110 	 *	we're not about to free more places than were claimed!
111 	 */
112 	ASSERT(srp->tx_free > 0);
113 	ASSERT(srp->tx_free < srp->desc.nslots);
114 
115 	buf_item_head = buf_item_tail = NULL;
116 	for (n = 0, slot = srp->tc_next; slot != *srp->cons_index_p;
117 	    slot = NEXT(slot, srp->desc.nslots)) {
118 		ssbdp = &srp->sw_sbds[slot];
119 		ASSERT(ssbdp->pbuf != NULL);
120 		buf_item = ssbdp->pbuf;
121 		if (buf_item_head == NULL)
122 			buf_item_head = buf_item_tail = buf_item;
123 		else {
124 			buf_item_tail->next = buf_item;
125 			buf_item_tail = buf_item;
126 		}
127 		ssbdp->pbuf = NULL;
128 		n++;
129 	}
130 	if (n == 0)
131 		return;
132 
133 	/*
134 	 * Update recycle index and free tx BD number
135 	 */
136 	srp->tc_next = slot;
137 	ASSERT(srp->tx_free + n <= srp->desc.nslots);
138 	bge_atomic_renounce(&srp->tx_free, n);
139 
140 	/*
141 	 * Reset the watchdog count: to 0 if all buffers are
142 	 * now free, or to 1 if some are still outstanding.
143 	 * Note: non-synchonised access here means we may get
144 	 * the "wrong" answer, but only in a harmless fashion
145 	 * (i.e. we deactivate the watchdog because all buffers
146 	 * are apparently free, even though another thread may
147 	 * have claimed one before we leave here; in this case
148 	 * the watchdog will restart on the next send() call).
149 	 */
150 	bgep->watchdog = srp->tx_free == srp->desc.nslots ? 0 : 1;
151 
152 	/*
153 	 * Return tx buffers to buffer push queue
154 	 */
155 	txbuf_queue = srp->txbuf_push_queue;
156 	mutex_enter(txbuf_queue->lock);
157 	buf_item_tail->next = txbuf_queue->head;
158 	txbuf_queue->head = buf_item_head;
159 	txbuf_queue->count += n;
160 	mutex_exit(txbuf_queue->lock);
161 
162 	/*
163 	 * Check if we need exchange the tx buffer push and pop queue
164 	 */
165 	if ((srp->txbuf_pop_queue->count < srp->tx_buffers_low) &&
166 	    (srp->txbuf_pop_queue->count < txbuf_queue->count)) {
167 		srp->txbuf_push_queue = srp->txbuf_pop_queue;
168 		srp->txbuf_pop_queue = txbuf_queue;
169 	}
170 
171 	if (srp->tx_flow != 0 || bgep->tx_resched_needed)
172 		ddi_trigger_softintr(bgep->drain_id);
173 }
174 
175 /*
176  * Recycle all returned slots in all rings.
177  *
178  * To give priority to low-numbered rings, whenever we have recycled any
179  * slots in any ring except 0, we restart scanning again from ring 0.
180  * Thus, for example, if rings 0, 3, and 10 are carrying traffic, the
181  * pattern of recycles might go 0, 3, 10, 3, 0, 10, 0:
182  *
183  *	0	found some - recycle them
184  *	1..2					none found
185  *	3	found some - recycle them	and restart scan
186  *	0..9					none found
187  *	10	found some - recycle them	and restart scan
188  *	0..2					none found
189  *	3	found some more - recycle them	and restart scan
190  *	0	found some more - recycle them
191  *	0..9					none found
192  *	10	found some more - recycle them	and restart scan
193  *	0	found some more - recycle them
194  *	1..15					none found
195  *
196  * The routine returns only when a complete scan has been performed
197  * without finding any slots to recycle.
198  *
199  * Note: the expression (BGE_SEND_RINGS_USED > 1) yields a compile-time
200  * constant and allows the compiler to optimise away the outer do-loop
201  * if only one send ring is being used.
202  */
203 void bge_recycle(bge_t *bgep, bge_status_t *bsp);
204 #pragma	no_inline(bge_recycle)
205 
206 void
207 bge_recycle(bge_t *bgep, bge_status_t *bsp)
208 {
209 	send_ring_t *srp;
210 	uint64_t ring;
211 	uint64_t tx_rings = bgep->chipid.tx_rings;
212 
213 restart:
214 	ring = 0;
215 	srp = &bgep->send[ring];
216 	do {
217 		/*
218 		 * For each ring, (srp->cons_index_p) points to the
219 		 * proper index within the status block (which has
220 		 * already been sync'd by the caller).
221 		 */
222 		ASSERT(srp->cons_index_p == SEND_INDEX_P(bsp, ring));
223 
224 		if (*srp->cons_index_p == srp->tc_next)
225 			continue;		/* no slots to recycle	*/
226 		if (mutex_tryenter(srp->tc_lock) == 0)
227 			continue;		/* already in process	*/
228 		bge_recycle_ring(bgep, srp);
229 		mutex_exit(srp->tc_lock);
230 
231 		/*
232 		 * Restart from ring 0, if we're not on ring 0 already.
233 		 * As H/W selects send BDs totally based on priority and
234 		 * available BDs on the higher priority ring are always
235 		 * selected first, driver should keep consistence with H/W
236 		 * and gives lower-numbered ring with higher priority.
237 		 */
238 		if (tx_rings > 1 && ring > 0)
239 			goto restart;
240 
241 		/*
242 		 * Loop over all rings (if there *are* multiple rings)
243 		 */
244 	} while (++srp, ++ring < tx_rings);
245 }
246 
247 
248 /*
249  * ========== Send-side transmit routines ==========
250  */
251 #define	TCP_CKSUM_OFFSET	16
252 #define	UDP_CKSUM_OFFSET	6
253 
254 static void
255 bge_pseudo_cksum(uint8_t *buf)
256 {
257 	uint32_t cksum;
258 	uint16_t iphl;
259 	uint16_t proto;
260 
261 	/*
262 	 * Point it to the ip header.
263 	 */
264 	buf += sizeof (struct ether_header);
265 
266 	/*
267 	 * Calculate the pseudo-header checksum.
268 	 */
269 	iphl = 4 * (buf[0] & 0xF);
270 	cksum = (((uint16_t)buf[2])<<8) + buf[3] - iphl;
271 	cksum += proto = buf[9];
272 	cksum += (((uint16_t)buf[12])<<8) + buf[13];
273 	cksum += (((uint16_t)buf[14])<<8) + buf[15];
274 	cksum += (((uint16_t)buf[16])<<8) + buf[17];
275 	cksum += (((uint16_t)buf[18])<<8) + buf[19];
276 	cksum = (cksum>>16) + (cksum & 0xFFFF);
277 	cksum = (cksum>>16) + (cksum & 0xFFFF);
278 
279 	/*
280 	 * Point it to the TCP/UDP header, and
281 	 * update the checksum field.
282 	 */
283 	buf += iphl + ((proto == IPPROTO_TCP) ?
284 	    TCP_CKSUM_OFFSET : UDP_CKSUM_OFFSET);
285 
286 	/*
287 	 * A real possibility that pointer cast is a problem.
288 	 * Should be fixed when we know the code better.
289 	 * E_BAD_PTR_CAST_ALIGN is added to make it temporarily clean.
290 	 */
291 	*(uint16_t *)buf = htons((uint16_t)cksum);
292 }
293 
294 static bge_queue_item_t *
295 bge_get_txbuf(bge_t *bgep, send_ring_t *srp)
296 {
297 	bge_queue_item_t *txbuf_item;
298 	bge_queue_t *txbuf_queue;
299 
300 	txbuf_queue = srp->txbuf_pop_queue;
301 	mutex_enter(txbuf_queue->lock);
302 	if (txbuf_queue->count == 0) {
303 		mutex_exit(txbuf_queue->lock);
304 		txbuf_queue = srp->txbuf_push_queue;
305 		mutex_enter(txbuf_queue->lock);
306 		if (txbuf_queue->count == 0) {
307 			mutex_exit(txbuf_queue->lock);
308 			/* Try to allocate more tx buffers */
309 			if (srp->tx_array < srp->tx_array_max) {
310 				mutex_enter(srp->tx_lock);
311 				txbuf_item = bge_alloc_txbuf_array(bgep, srp);
312 				mutex_exit(srp->tx_lock);
313 			} else
314 				txbuf_item = NULL;
315 			return (txbuf_item);
316 		}
317 	}
318 	txbuf_item = txbuf_queue->head;
319 	txbuf_queue->head = (bge_queue_item_t *)txbuf_item->next;
320 	txbuf_queue->count--;
321 	mutex_exit(txbuf_queue->lock);
322 	txbuf_item->next = NULL;
323 
324 	return (txbuf_item);
325 }
326 
327 static void bge_send_fill_txbd(send_ring_t *srp, send_pkt_t *pktp);
328 #pragma	inline(bge_send_fill_txbd)
329 
330 static void
331 bge_send_fill_txbd(send_ring_t *srp, send_pkt_t *pktp)
332 {
333 	bge_sbd_t *hw_sbd_p;
334 	sw_sbd_t *ssbdp;
335 	bge_queue_item_t *txbuf_item;
336 	sw_txbuf_t *txbuf;
337 	uint64_t slot;
338 
339 	ASSERT(mutex_owned(srp->tx_lock));
340 
341 	/*
342 	 * Go straight to claiming our already-reserved places
343 	 * on the train!
344 	 */
345 	ASSERT(pktp->txbuf_item != NULL);
346 	txbuf_item = pktp->txbuf_item;
347 	txbuf = txbuf_item->item;
348 	slot = srp->tx_next;
349 	ssbdp = &srp->sw_sbds[slot];
350 	hw_sbd_p = DMA_VPTR(ssbdp->desc);
351 	hw_sbd_p->flags = 0;
352 	ASSERT(txbuf->copy_len != 0);
353 	(void) ddi_dma_sync(txbuf->buf.dma_hdl,  0,
354 	    txbuf->copy_len, DDI_DMA_SYNC_FORDEV);
355 	ASSERT(ssbdp->pbuf == NULL);
356 	ssbdp->pbuf = txbuf_item;
357 	srp->tx_next = NEXT(slot, srp->desc.nslots);
358 	pktp->txbuf_item = NULL;
359 
360 	/*
361 	 * Setting hardware send buffer descriptor
362 	 */
363 	hw_sbd_p->host_buf_addr = txbuf->buf.cookie.dmac_laddress;
364 	hw_sbd_p->len = txbuf->copy_len;
365 	if (pktp->vlan_tci != 0) {
366 		hw_sbd_p->vlan_tci = pktp->vlan_tci;
367 		hw_sbd_p->host_buf_addr += VLAN_TAGSZ;
368 		hw_sbd_p->flags |= SBD_FLAG_VLAN_TAG;
369 	}
370 	if (pktp->pflags & HCK_IPV4_HDRCKSUM)
371 		hw_sbd_p->flags |= SBD_FLAG_IP_CKSUM;
372 	if (pktp->pflags & HCK_FULLCKSUM)
373 		hw_sbd_p->flags |= SBD_FLAG_TCP_UDP_CKSUM;
374 	hw_sbd_p->flags |= SBD_FLAG_PACKET_END;
375 }
376 
377 /*
378  * Send a message by copying it into a preallocated (and premapped) buffer
379  */
380 static void bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp);
381 #pragma	inline(bge_send_copy)
382 
383 static void
384 bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp)
385 {
386 	mblk_t *bp;
387 	uint32_t mblen;
388 	char *pbuf;
389 
390 	txbuf->copy_len = 0;
391 	pbuf = DMA_VPTR(txbuf->buf);
392 	for (bp = mp; bp != NULL; bp = bp->b_cont) {
393 		if ((mblen = MBLKL(bp)) == 0)
394 			continue;
395 		ASSERT(txbuf->copy_len + mblen <=
396 		    bgep->chipid.snd_buff_size);
397 		bcopy(bp->b_rptr, pbuf, mblen);
398 		pbuf += mblen;
399 		txbuf->copy_len += mblen;
400 	}
401 }
402 
403 /*
404  * Fill the Tx buffer descriptors and trigger the h/w transmission
405  */
406 static void
407 bge_send_serial(bge_t *bgep, send_ring_t *srp)
408 {
409 	send_pkt_t *pktp;
410 	uint64_t txfill_next;
411 	uint32_t count;
412 	uint32_t tx_next;
413 	sw_sbd_t *ssbdp;
414 	bge_status_t *bsp;
415 
416 	/*
417 	 * Try to hold the tx lock:
418 	 *	If we are in an interrupt context, use mutex_enter() to
419 	 *	ensure quick response for tx in interrupt context;
420 	 *	Otherwise, use mutex_tryenter() to serialize this h/w tx
421 	 *	BD filling and transmission triggering task.
422 	 */
423 	if (servicing_interrupt() != 0)
424 		mutex_enter(srp->tx_lock);
425 	else if (mutex_tryenter(srp->tx_lock) == 0)
426 		return;		/* already in process	*/
427 
428 	bsp = DMA_VPTR(bgep->status_block);
429 	txfill_next = srp->txfill_next;
430 start_tx:
431 	tx_next = srp->tx_next;
432 	ssbdp = &srp->sw_sbds[tx_next];
433 	for (count = 0; count < bgep->param_drain_max; ++count) {
434 		pktp = &srp->pktp[txfill_next];
435 		if (!pktp->tx_ready) {
436 			if (count == 0)
437 				srp->tx_block++;
438 			break;
439 		}
440 
441 		/*
442 		 * If there are no enough BDs: try to recycle more
443 		 */
444 		if (srp->tx_free <= 1)
445 			bge_recycle(bgep, bsp);
446 
447 		/*
448 		 * Reserved required BDs: 1 is enough
449 		 */
450 		if (!bge_atomic_reserve(&srp->tx_free, 1)) {
451 			srp->tx_nobd++;
452 			break;
453 		}
454 
455 		/*
456 		 * Filling the tx BD
457 		 */
458 		bge_send_fill_txbd(srp, pktp);
459 		txfill_next = NEXT(txfill_next, BGE_SEND_BUF_MAX);
460 		pktp->tx_ready = B_FALSE;
461 	}
462 
463 	/*
464 	 * Trigger h/w to start transmission.
465 	 */
466 	if (count != 0) {
467 		bge_atomic_sub64(&srp->tx_flow, count);
468 		if (tx_next + count > srp->desc.nslots) {
469 			(void) ddi_dma_sync(ssbdp->desc.dma_hdl,  0,
470 			    (srp->desc.nslots - tx_next) * sizeof (bge_sbd_t),
471 			    DDI_DMA_SYNC_FORDEV);
472 			count -= srp->desc.nslots - tx_next;
473 			ssbdp = &srp->sw_sbds[0];
474 		}
475 		(void) ddi_dma_sync(ssbdp->desc.dma_hdl,  0,
476 		    count*sizeof (bge_sbd_t), DDI_DMA_SYNC_FORDEV);
477 		bge_mbx_put(bgep, srp->chip_mbx_reg, srp->tx_next);
478 		srp->txfill_next = txfill_next;
479 		bgep->watchdog++;
480 		if (srp->tx_flow != 0 && srp->tx_free > 1)
481 			goto start_tx;
482 	}
483 
484 	mutex_exit(srp->tx_lock);
485 }
486 
487 static boolean_t
488 bge_send(bge_t *bgep, mblk_t *mp)
489 {
490 	uint_t ring = 0;	/* use ring 0 */
491 	send_ring_t *srp;
492 	struct ether_vlan_header *ehp;
493 	bge_queue_item_t *txbuf_item;
494 	sw_txbuf_t *txbuf;
495 	send_pkt_t *pktp;
496 	uint64_t pkt_slot;
497 	uint16_t vlan_tci;
498 	uint32_t pflags;
499 	char *pbuf;
500 
501 	ASSERT(mp->b_next == NULL);
502 	srp = &bgep->send[ring];
503 
504 	/*
505 	 * Get a s/w tx buffer first
506 	 */
507 	txbuf_item = bge_get_txbuf(bgep, srp);
508 	if (txbuf_item == NULL) {
509 		/* no tx buffer available */
510 		srp->tx_nobuf++;
511 		bgep->tx_resched_needed = B_TRUE;
512 		bge_send_serial(bgep, srp);
513 		return (B_FALSE);
514 	}
515 
516 	/*
517 	 * Copy all mp fragments to the pkt buffer
518 	 */
519 	txbuf = txbuf_item->item;
520 	bge_send_copy(bgep, txbuf, mp);
521 
522 	/*
523 	 * Determine if the packet is VLAN tagged.
524 	 */
525 	ASSERT(txbuf->copy_len >= sizeof (struct ether_header));
526 	pbuf = DMA_VPTR(txbuf->buf);
527 
528 	ehp = (void *)pbuf;
529 	if (ehp->ether_tpid == htons(ETHERTYPE_VLAN)) {
530 		/* Strip the vlan tag */
531 		vlan_tci = ntohs(ehp->ether_tci);
532 		pbuf = memmove(pbuf + VLAN_TAGSZ, pbuf, 2 * ETHERADDRL);
533 		txbuf->copy_len -= VLAN_TAGSZ;
534 	} else
535 		vlan_tci = 0;
536 
537 	/*
538 	 * Retrieve checksum offloading info.
539 	 */
540 	hcksum_retrieve(mp, NULL, NULL, NULL, NULL, NULL, NULL, &pflags);
541 
542 	/*
543 	 * Calculate pseudo checksum if needed.
544 	 */
545 	if ((pflags & HCK_FULLCKSUM) &&
546 	    (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM))
547 		bge_pseudo_cksum((uint8_t *)pbuf);
548 
549 	/*
550 	 * Packet buffer is ready to send: get and fill pkt info
551 	 */
552 	pkt_slot = bge_atomic_next(&srp->txpkt_next, BGE_SEND_BUF_MAX);
553 	pktp = &srp->pktp[pkt_slot];
554 	ASSERT(pktp->txbuf_item == NULL);
555 	pktp->txbuf_item = txbuf_item;
556 	pktp->vlan_tci = vlan_tci;
557 	pktp->pflags = pflags;
558 	atomic_inc_64(&srp->tx_flow);
559 	ASSERT(pktp->tx_ready == B_FALSE);
560 	pktp->tx_ready = B_TRUE;
561 
562 	/*
563 	 * Filling the h/w bd and trigger the h/w to start transmission
564 	 */
565 	bge_send_serial(bgep, srp);
566 
567 	/*
568 	 * We've copied the contents, the message can be freed right away
569 	 */
570 	freemsg(mp);
571 
572 	return (B_TRUE);
573 }
574 
575 uint_t
576 bge_send_drain(caddr_t arg)
577 {
578 	uint_t ring = 0;	/* use ring 0 */
579 	bge_t *bgep;
580 	send_ring_t *srp;
581 
582 	bgep = (void *)arg;
583 	BGE_TRACE(("bge_send_drain($%p)", (void *)bgep));
584 
585 	srp = &bgep->send[ring];
586 	bge_send_serial(bgep, srp);
587 
588 	if (bgep->tx_resched_needed &&
589 	    (srp->tx_flow < srp->tx_buffers_low) &&
590 	    (bgep->bge_mac_state == BGE_MAC_STARTED)) {
591 		mac_tx_update(bgep->mh);
592 		bgep->tx_resched_needed = B_FALSE;
593 		bgep->tx_resched++;
594 	}
595 
596 	return (DDI_INTR_CLAIMED);
597 }
598 
599 /*
600  * bge_m_tx() - send a chain of packets
601  */
602 mblk_t *
603 bge_m_tx(void *arg, mblk_t *mp)
604 {
605 	bge_t *bgep = arg;		/* private device info	*/
606 	mblk_t *next;
607 
608 	BGE_TRACE(("bge_m_tx($%p, $%p)", arg, (void *)mp));
609 
610 	ASSERT(mp != NULL);
611 	ASSERT(bgep->bge_mac_state == BGE_MAC_STARTED);
612 
613 	rw_enter(bgep->errlock, RW_READER);
614 	if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
615 		BGE_DEBUG(("bge_m_tx: chip not running"));
616 		freemsgchain(mp);
617 		mp = NULL;
618 	}
619 
620 	while (mp != NULL) {
621 		next = mp->b_next;
622 		mp->b_next = NULL;
623 
624 		if (!bge_send(bgep, mp)) {
625 			mp->b_next = next;
626 			break;
627 		}
628 
629 		mp = next;
630 	}
631 	rw_exit(bgep->errlock);
632 
633 	return (mp);
634 }
635