xref: /titanic_44/usr/src/uts/common/io/bge/bge_main2.c (revision b44e05abb9e60a162807784ce70b2998c0cbe51e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 #include <sys/sdt.h>
29 #include <sys/mac.h>
30 
31 /*
32  * This is the string displayed by modinfo, etc.
33  * Make sure you keep the version ID up to date!
34  */
35 static char bge_ident[] = "Broadcom Gb Ethernet v0.69";
36 
37 /*
38  * Property names
39  */
40 static char debug_propname[] = "bge-debug-flags";
41 static char clsize_propname[] = "cache-line-size";
42 static char latency_propname[] = "latency-timer";
43 static char localmac_boolname[] = "local-mac-address?";
44 static char localmac_propname[] = "local-mac-address";
45 static char macaddr_propname[] = "mac-address";
46 static char subdev_propname[] = "subsystem-id";
47 static char subven_propname[] = "subsystem-vendor-id";
48 static char rxrings_propname[] = "bge-rx-rings";
49 static char txrings_propname[] = "bge-tx-rings";
50 static char fm_cap[] = "fm-capable";
51 static char default_mtu[] = "default_mtu";
52 
53 static int bge_add_intrs(bge_t *, int);
54 static void bge_rem_intrs(bge_t *);
55 
56 /*
57  * Describes the chip's DMA engine
58  */
59 static ddi_dma_attr_t dma_attr = {
60 	DMA_ATTR_V0,			/* dma_attr version	*/
61 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
62 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_addr_hi	*/
63 	0x00000000FFFFFFFFull,		/* dma_attr_count_max	*/
64 	0x0000000000000001ull,		/* dma_attr_align	*/
65 	0x00000FFF,			/* dma_attr_burstsizes	*/
66 	0x00000001,			/* dma_attr_minxfer	*/
67 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
68 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_seg		*/
69 	1,				/* dma_attr_sgllen 	*/
70 	0x00000001,			/* dma_attr_granular 	*/
71 	DDI_DMA_FLAGERR			/* dma_attr_flags */
72 };
73 
74 /*
75  * PIO access attributes for registers
76  */
77 static ddi_device_acc_attr_t bge_reg_accattr = {
78 	DDI_DEVICE_ATTR_V0,
79 	DDI_NEVERSWAP_ACC,
80 	DDI_STRICTORDER_ACC,
81 	DDI_FLAGERR_ACC
82 };
83 
84 /*
85  * DMA access attributes for descriptors: NOT to be byte swapped.
86  */
87 static ddi_device_acc_attr_t bge_desc_accattr = {
88 	DDI_DEVICE_ATTR_V0,
89 	DDI_NEVERSWAP_ACC,
90 	DDI_STRICTORDER_ACC,
91 	DDI_FLAGERR_ACC
92 };
93 
94 /*
95  * DMA access attributes for data: NOT to be byte swapped.
96  */
97 static ddi_device_acc_attr_t bge_data_accattr = {
98 	DDI_DEVICE_ATTR_V0,
99 	DDI_NEVERSWAP_ACC,
100 	DDI_STRICTORDER_ACC
101 };
102 
103 static int		bge_m_start(void *);
104 static void		bge_m_stop(void *);
105 static int		bge_m_promisc(void *, boolean_t);
106 static int		bge_m_multicst(void *, boolean_t, const uint8_t *);
107 static int		bge_m_unicst(void *, const uint8_t *);
108 static void		bge_m_resources(void *);
109 static void		bge_m_ioctl(void *, queue_t *, mblk_t *);
110 static boolean_t	bge_m_getcapab(void *, mac_capab_t, void *);
111 static int		bge_unicst_set(void *, const uint8_t *,
112     mac_addr_slot_t);
113 static int		bge_m_unicst_add(void *, mac_multi_addr_t *);
114 static int		bge_m_unicst_remove(void *, mac_addr_slot_t);
115 static int		bge_m_unicst_modify(void *, mac_multi_addr_t *);
116 static int		bge_m_unicst_get(void *, mac_multi_addr_t *);
117 static int		bge_m_setprop(void *, const char *, mac_prop_id_t,
118     uint_t, const void *);
119 static int		bge_m_getprop(void *, const char *, mac_prop_id_t,
120     uint_t, uint_t, void *);
121 static int		bge_set_priv_prop(bge_t *, const char *, uint_t,
122     const void *);
123 static int		bge_get_priv_prop(bge_t *, const char *, uint_t,
124     uint_t, void *);
125 
126 #define	BGE_M_CALLBACK_FLAGS\
127 	(MC_RESOURCES | MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
128 
129 static mac_callbacks_t bge_m_callbacks = {
130 	BGE_M_CALLBACK_FLAGS,
131 	bge_m_stat,
132 	bge_m_start,
133 	bge_m_stop,
134 	bge_m_promisc,
135 	bge_m_multicst,
136 	bge_m_unicst,
137 	bge_m_tx,
138 	bge_m_resources,
139 	bge_m_ioctl,
140 	bge_m_getcapab,
141 	NULL,
142 	NULL,
143 	bge_m_setprop,
144 	bge_m_getprop
145 };
146 
147 mac_priv_prop_t bge_priv_prop[] = {
148 	{"_adv_asym_pause_cap", MAC_PROP_PERM_RW},
149 	{"_adv_pause_cap", MAC_PROP_PERM_RW}
150 };
151 
152 #define	BGE_MAX_PRIV_PROPS \
153 	(sizeof (bge_priv_prop) / sizeof (mac_priv_prop_t))
154 
155 /*
156  * ========== Transmit and receive ring reinitialisation ==========
157  */
158 
159 /*
160  * These <reinit> routines each reset the specified ring to an initial
161  * state, assuming that the corresponding <init> routine has already
162  * been called exactly once.
163  */
164 
165 static void
166 bge_reinit_send_ring(send_ring_t *srp)
167 {
168 	bge_queue_t *txbuf_queue;
169 	bge_queue_item_t *txbuf_head;
170 	sw_txbuf_t *txbuf;
171 	sw_sbd_t *ssbdp;
172 	uint32_t slot;
173 
174 	/*
175 	 * Reinitialise control variables ...
176 	 */
177 	srp->tx_flow = 0;
178 	srp->tx_next = 0;
179 	srp->txfill_next = 0;
180 	srp->tx_free = srp->desc.nslots;
181 	ASSERT(mutex_owned(srp->tc_lock));
182 	srp->tc_next = 0;
183 	srp->txpkt_next = 0;
184 	srp->tx_block = 0;
185 	srp->tx_nobd = 0;
186 	srp->tx_nobuf = 0;
187 
188 	/*
189 	 * Initialize the tx buffer push queue
190 	 */
191 	mutex_enter(srp->freetxbuf_lock);
192 	mutex_enter(srp->txbuf_lock);
193 	txbuf_queue = &srp->freetxbuf_queue;
194 	txbuf_queue->head = NULL;
195 	txbuf_queue->count = 0;
196 	txbuf_queue->lock = srp->freetxbuf_lock;
197 	srp->txbuf_push_queue = txbuf_queue;
198 
199 	/*
200 	 * Initialize the tx buffer pop queue
201 	 */
202 	txbuf_queue = &srp->txbuf_queue;
203 	txbuf_queue->head = NULL;
204 	txbuf_queue->count = 0;
205 	txbuf_queue->lock = srp->txbuf_lock;
206 	srp->txbuf_pop_queue = txbuf_queue;
207 	txbuf_head = srp->txbuf_head;
208 	txbuf = srp->txbuf;
209 	for (slot = 0; slot < srp->tx_buffers; ++slot) {
210 		txbuf_head->item = txbuf;
211 		txbuf_head->next = txbuf_queue->head;
212 		txbuf_queue->head = txbuf_head;
213 		txbuf_queue->count++;
214 		txbuf++;
215 		txbuf_head++;
216 	}
217 	mutex_exit(srp->txbuf_lock);
218 	mutex_exit(srp->freetxbuf_lock);
219 
220 	/*
221 	 * Zero and sync all the h/w Send Buffer Descriptors
222 	 */
223 	DMA_ZERO(srp->desc);
224 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
225 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
226 	ssbdp = srp->sw_sbds;
227 	for (slot = 0; slot < srp->desc.nslots; ++ssbdp, ++slot)
228 		ssbdp->pbuf = NULL;
229 }
230 
231 static void
232 bge_reinit_recv_ring(recv_ring_t *rrp)
233 {
234 	/*
235 	 * Reinitialise control variables ...
236 	 */
237 	rrp->rx_next = 0;
238 }
239 
240 static void
241 bge_reinit_buff_ring(buff_ring_t *brp, uint32_t ring)
242 {
243 	bge_rbd_t *hw_rbd_p;
244 	sw_rbd_t *srbdp;
245 	uint32_t bufsize;
246 	uint32_t nslots;
247 	uint32_t slot;
248 
249 	static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = {
250 		RBD_FLAG_STD_RING,
251 		RBD_FLAG_JUMBO_RING,
252 		RBD_FLAG_MINI_RING
253 	};
254 
255 	/*
256 	 * Zero, initialise and sync all the h/w Receive Buffer Descriptors
257 	 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>,
258 	 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>)
259 	 * should be zeroed, and so don't need to be set up specifically
260 	 * once the whole area has been cleared.
261 	 */
262 	DMA_ZERO(brp->desc);
263 
264 	hw_rbd_p = DMA_VPTR(brp->desc);
265 	nslots = brp->desc.nslots;
266 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
267 	bufsize = brp->buf[0].size;
268 	srbdp = brp->sw_rbds;
269 	for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) {
270 		hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress;
271 		hw_rbd_p->index = (uint16_t)slot;
272 		hw_rbd_p->len = (uint16_t)bufsize;
273 		hw_rbd_p->opaque = srbdp->pbuf.token;
274 		hw_rbd_p->flags |= ring_type_flag[ring];
275 	}
276 
277 	DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV);
278 
279 	/*
280 	 * Finally, reinitialise the ring control variables ...
281 	 */
282 	brp->rf_next = (nslots != 0) ? (nslots-1) : 0;
283 }
284 
285 /*
286  * Reinitialize all rings
287  */
288 static void
289 bge_reinit_rings(bge_t *bgep)
290 {
291 	uint32_t ring;
292 
293 	ASSERT(mutex_owned(bgep->genlock));
294 
295 	/*
296 	 * Send Rings ...
297 	 */
298 	for (ring = 0; ring < bgep->chipid.tx_rings; ++ring)
299 		bge_reinit_send_ring(&bgep->send[ring]);
300 
301 	/*
302 	 * Receive Return Rings ...
303 	 */
304 	for (ring = 0; ring < bgep->chipid.rx_rings; ++ring)
305 		bge_reinit_recv_ring(&bgep->recv[ring]);
306 
307 	/*
308 	 * Receive Producer Rings ...
309 	 */
310 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
311 		bge_reinit_buff_ring(&bgep->buff[ring], ring);
312 }
313 
314 /*
315  * ========== Internal state management entry points ==========
316  */
317 
318 #undef	BGE_DBG
319 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
320 
321 /*
322  * These routines provide all the functionality required by the
323  * corresponding GLD entry points, but don't update the GLD state
324  * so they can be called internally without disturbing our record
325  * of what GLD thinks we should be doing ...
326  */
327 
328 /*
329  *	bge_reset() -- reset h/w & rings to initial state
330  */
331 static int
332 #ifdef BGE_IPMI_ASF
333 bge_reset(bge_t *bgep, uint_t asf_mode)
334 #else
335 bge_reset(bge_t *bgep)
336 #endif
337 {
338 	uint32_t	ring;
339 	int retval;
340 
341 	BGE_TRACE(("bge_reset($%p)", (void *)bgep));
342 
343 	ASSERT(mutex_owned(bgep->genlock));
344 
345 	/*
346 	 * Grab all the other mutexes in the world (this should
347 	 * ensure no other threads are manipulating driver state)
348 	 */
349 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
350 		mutex_enter(bgep->recv[ring].rx_lock);
351 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
352 		mutex_enter(bgep->buff[ring].rf_lock);
353 	rw_enter(bgep->errlock, RW_WRITER);
354 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
355 		mutex_enter(bgep->send[ring].tx_lock);
356 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
357 		mutex_enter(bgep->send[ring].tc_lock);
358 
359 #ifdef BGE_IPMI_ASF
360 	retval = bge_chip_reset(bgep, B_TRUE, asf_mode);
361 #else
362 	retval = bge_chip_reset(bgep, B_TRUE);
363 #endif
364 	bge_reinit_rings(bgep);
365 
366 	/*
367 	 * Free the world ...
368 	 */
369 	for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; )
370 		mutex_exit(bgep->send[ring].tc_lock);
371 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
372 		mutex_exit(bgep->send[ring].tx_lock);
373 	rw_exit(bgep->errlock);
374 	for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; )
375 		mutex_exit(bgep->buff[ring].rf_lock);
376 	for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; )
377 		mutex_exit(bgep->recv[ring].rx_lock);
378 
379 	BGE_DEBUG(("bge_reset($%p) done", (void *)bgep));
380 	return (retval);
381 }
382 
383 /*
384  *	bge_stop() -- stop processing, don't reset h/w or rings
385  */
386 static void
387 bge_stop(bge_t *bgep)
388 {
389 	BGE_TRACE(("bge_stop($%p)", (void *)bgep));
390 
391 	ASSERT(mutex_owned(bgep->genlock));
392 
393 #ifdef BGE_IPMI_ASF
394 	if (bgep->asf_enabled) {
395 		bgep->asf_pseudostop = B_TRUE;
396 	} else {
397 #endif
398 		bge_chip_stop(bgep, B_FALSE);
399 #ifdef BGE_IPMI_ASF
400 	}
401 #endif
402 
403 	BGE_DEBUG(("bge_stop($%p) done", (void *)bgep));
404 }
405 
406 /*
407  *	bge_start() -- start transmitting/receiving
408  */
409 static int
410 bge_start(bge_t *bgep, boolean_t reset_phys)
411 {
412 	int retval;
413 
414 	BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys));
415 
416 	ASSERT(mutex_owned(bgep->genlock));
417 
418 	/*
419 	 * Start chip processing, including enabling interrupts
420 	 */
421 	retval = bge_chip_start(bgep, reset_phys);
422 
423 	BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys));
424 	return (retval);
425 }
426 
427 /*
428  * bge_restart - restart transmitting/receiving after error or suspend
429  */
430 int
431 bge_restart(bge_t *bgep, boolean_t reset_phys)
432 {
433 	int retval = DDI_SUCCESS;
434 	ASSERT(mutex_owned(bgep->genlock));
435 
436 #ifdef BGE_IPMI_ASF
437 	if (bgep->asf_enabled) {
438 		if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS)
439 			retval = DDI_FAILURE;
440 	} else
441 		if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS)
442 			retval = DDI_FAILURE;
443 #else
444 	if (bge_reset(bgep) != DDI_SUCCESS)
445 		retval = DDI_FAILURE;
446 #endif
447 	if (bgep->bge_mac_state == BGE_MAC_STARTED) {
448 		if (bge_start(bgep, reset_phys) != DDI_SUCCESS)
449 			retval = DDI_FAILURE;
450 		bgep->watchdog = 0;
451 		ddi_trigger_softintr(bgep->drain_id);
452 	}
453 
454 	BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys));
455 	return (retval);
456 }
457 
458 
459 /*
460  * ========== Nemo-required management entry points ==========
461  */
462 
463 #undef	BGE_DBG
464 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
465 
466 /*
467  *	bge_m_stop() -- stop transmitting/receiving
468  */
469 static void
470 bge_m_stop(void *arg)
471 {
472 	bge_t *bgep = arg;		/* private device info	*/
473 	send_ring_t *srp;
474 	uint32_t ring;
475 
476 	BGE_TRACE(("bge_m_stop($%p)", arg));
477 
478 	/*
479 	 * Just stop processing, then record new GLD state
480 	 */
481 	mutex_enter(bgep->genlock);
482 	if (!(bgep->progress & PROGRESS_INTR)) {
483 		/* can happen during autorecovery */
484 		mutex_exit(bgep->genlock);
485 		return;
486 	}
487 	bge_stop(bgep);
488 
489 	bgep->link_update_timer = 0;
490 	bgep->link_state = LINK_STATE_UNKNOWN;
491 	mac_link_update(bgep->mh, bgep->link_state);
492 
493 	/*
494 	 * Free the possible tx buffers allocated in tx process.
495 	 */
496 #ifdef BGE_IPMI_ASF
497 	if (!bgep->asf_pseudostop)
498 #endif
499 	{
500 		rw_enter(bgep->errlock, RW_WRITER);
501 		for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) {
502 			srp = &bgep->send[ring];
503 			mutex_enter(srp->tx_lock);
504 			if (srp->tx_array > 1)
505 				bge_free_txbuf_arrays(srp);
506 			mutex_exit(srp->tx_lock);
507 		}
508 		rw_exit(bgep->errlock);
509 	}
510 	bgep->bge_mac_state = BGE_MAC_STOPPED;
511 	BGE_DEBUG(("bge_m_stop($%p) done", arg));
512 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
513 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
514 	mutex_exit(bgep->genlock);
515 }
516 
517 /*
518  *	bge_m_start() -- start transmitting/receiving
519  */
520 static int
521 bge_m_start(void *arg)
522 {
523 	bge_t *bgep = arg;		/* private device info	*/
524 
525 	BGE_TRACE(("bge_m_start($%p)", arg));
526 
527 	/*
528 	 * Start processing and record new GLD state
529 	 */
530 	mutex_enter(bgep->genlock);
531 	if (!(bgep->progress & PROGRESS_INTR)) {
532 		/* can happen during autorecovery */
533 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
534 		mutex_exit(bgep->genlock);
535 		return (EIO);
536 	}
537 #ifdef BGE_IPMI_ASF
538 	if (bgep->asf_enabled) {
539 		if ((bgep->asf_status == ASF_STAT_RUN) &&
540 		    (bgep->asf_pseudostop)) {
541 			bgep->bge_mac_state = BGE_MAC_STARTED;
542 			mutex_exit(bgep->genlock);
543 			return (0);
544 		}
545 	}
546 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
547 #else
548 	if (bge_reset(bgep) != DDI_SUCCESS) {
549 #endif
550 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
551 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
552 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
553 		mutex_exit(bgep->genlock);
554 		return (EIO);
555 	}
556 	if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) {
557 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
558 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
559 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
560 		mutex_exit(bgep->genlock);
561 		return (EIO);
562 	}
563 	bgep->bge_mac_state = BGE_MAC_STARTED;
564 	BGE_DEBUG(("bge_m_start($%p) done", arg));
565 
566 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
567 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
568 		mutex_exit(bgep->genlock);
569 		return (EIO);
570 	}
571 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
572 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
573 		mutex_exit(bgep->genlock);
574 		return (EIO);
575 	}
576 #ifdef BGE_IPMI_ASF
577 	if (bgep->asf_enabled) {
578 		if (bgep->asf_status != ASF_STAT_RUN) {
579 			/* start ASF heart beat */
580 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
581 			    (void *)bgep,
582 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
583 			bgep->asf_status = ASF_STAT_RUN;
584 		}
585 	}
586 #endif
587 	mutex_exit(bgep->genlock);
588 
589 	return (0);
590 }
591 
592 /*
593  *	bge_m_unicst() -- set the physical network address
594  */
595 static int
596 bge_m_unicst(void *arg, const uint8_t *macaddr)
597 {
598 	/*
599 	 * Request to set address in
600 	 * address slot 0, i.e., default address
601 	 */
602 	return (bge_unicst_set(arg, macaddr, 0));
603 }
604 
605 /*
606  *	bge_unicst_set() -- set the physical network address
607  */
608 static int
609 bge_unicst_set(void *arg, const uint8_t *macaddr, mac_addr_slot_t slot)
610 {
611 	bge_t *bgep = arg;		/* private device info	*/
612 
613 	BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg,
614 	    ether_sprintf((void *)macaddr)));
615 	/*
616 	 * Remember the new current address in the driver state
617 	 * Sync the chip's idea of the address too ...
618 	 */
619 	mutex_enter(bgep->genlock);
620 	if (!(bgep->progress & PROGRESS_INTR)) {
621 		/* can happen during autorecovery */
622 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
623 		mutex_exit(bgep->genlock);
624 		return (EIO);
625 	}
626 	ethaddr_copy(macaddr, bgep->curr_addr[slot].addr);
627 #ifdef BGE_IPMI_ASF
628 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) {
629 #else
630 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
631 #endif
632 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
633 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
634 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
635 		mutex_exit(bgep->genlock);
636 		return (EIO);
637 	}
638 #ifdef BGE_IPMI_ASF
639 	if (bgep->asf_enabled) {
640 		/*
641 		 * The above bge_chip_sync() function wrote the ethernet MAC
642 		 * addresses registers which destroyed the IPMI/ASF sideband.
643 		 * Here, we have to reset chip to make IPMI/ASF sideband work.
644 		 */
645 		if (bgep->asf_status == ASF_STAT_RUN) {
646 			/*
647 			 * We must stop ASF heart beat before bge_chip_stop(),
648 			 * otherwise some computers (ex. IBM HS20 blade server)
649 			 * may crash.
650 			 */
651 			bge_asf_update_status(bgep);
652 			bge_asf_stop_timer(bgep);
653 			bgep->asf_status = ASF_STAT_STOP;
654 
655 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
656 		}
657 		bge_chip_stop(bgep, B_FALSE);
658 
659 		if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) {
660 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
661 			(void) bge_check_acc_handle(bgep, bgep->io_handle);
662 			ddi_fm_service_impact(bgep->devinfo,
663 			    DDI_SERVICE_DEGRADED);
664 			mutex_exit(bgep->genlock);
665 			return (EIO);
666 		}
667 
668 		/*
669 		 * Start our ASF heartbeat counter as soon as possible.
670 		 */
671 		if (bgep->asf_status != ASF_STAT_RUN) {
672 			/* start ASF heart beat */
673 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
674 			    (void *)bgep,
675 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
676 			bgep->asf_status = ASF_STAT_RUN;
677 		}
678 	}
679 #endif
680 	BGE_DEBUG(("bge_m_unicst_set($%p) done", arg));
681 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
682 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
683 		mutex_exit(bgep->genlock);
684 		return (EIO);
685 	}
686 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
687 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
688 		mutex_exit(bgep->genlock);
689 		return (EIO);
690 	}
691 	mutex_exit(bgep->genlock);
692 
693 	return (0);
694 }
695 
696 /*
697  * The following four routines are used as callbacks for multiple MAC
698  * address support:
699  *    -  bge_m_unicst_add(void *, mac_multi_addr_t *);
700  *    -  bge_m_unicst_remove(void *, mac_addr_slot_t);
701  *    -  bge_m_unicst_modify(void *, mac_multi_addr_t *);
702  *    -  bge_m_unicst_get(void *, mac_multi_addr_t *);
703  */
704 
705 /*
706  * bge_m_unicst_add() - will find an unused address slot, set the
707  * address value to the one specified, reserve that slot and enable
708  * the NIC to start filtering on the new MAC address.
709  * address slot. Returns 0 on success.
710  */
711 static int
712 bge_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
713 {
714 	bge_t *bgep = arg;		/* private device info	*/
715 	mac_addr_slot_t slot;
716 	int err;
717 
718 	if (mac_unicst_verify(bgep->mh,
719 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
720 		return (EINVAL);
721 
722 	mutex_enter(bgep->genlock);
723 	if (bgep->unicst_addr_avail == 0) {
724 		/* no slots available */
725 		mutex_exit(bgep->genlock);
726 		return (ENOSPC);
727 	}
728 
729 	/*
730 	 * Primary/default address is in slot 0. The next three
731 	 * addresses are the multiple MAC addresses. So multiple
732 	 * MAC address 0 is in slot 1, 1 in slot 2, and so on.
733 	 * So the first multiple MAC address resides in slot 1.
734 	 */
735 	for (slot = 1; slot < bgep->unicst_addr_total; slot++) {
736 		if (bgep->curr_addr[slot].set == B_FALSE) {
737 			bgep->curr_addr[slot].set = B_TRUE;
738 			break;
739 		}
740 	}
741 
742 	ASSERT(slot < bgep->unicst_addr_total);
743 	bgep->unicst_addr_avail--;
744 	mutex_exit(bgep->genlock);
745 	maddr->mma_slot = slot;
746 
747 	if ((err = bge_unicst_set(bgep, maddr->mma_addr, slot)) != 0) {
748 		mutex_enter(bgep->genlock);
749 		bgep->curr_addr[slot].set = B_FALSE;
750 		bgep->unicst_addr_avail++;
751 		mutex_exit(bgep->genlock);
752 	}
753 	return (err);
754 }
755 
756 /*
757  * bge_m_unicst_remove() - removes a MAC address that was added by a
758  * call to bge_m_unicst_add(). The slot number that was returned in
759  * add() is passed in the call to remove the address.
760  * Returns 0 on success.
761  */
762 static int
763 bge_m_unicst_remove(void *arg, mac_addr_slot_t slot)
764 {
765 	bge_t *bgep = arg;		/* private device info	*/
766 
767 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
768 		return (EINVAL);
769 
770 	mutex_enter(bgep->genlock);
771 	if (bgep->curr_addr[slot].set == B_TRUE) {
772 		bgep->curr_addr[slot].set = B_FALSE;
773 		bgep->unicst_addr_avail++;
774 		mutex_exit(bgep->genlock);
775 		/*
776 		 * Copy the default address to the passed slot
777 		 */
778 		return (bge_unicst_set(bgep, bgep->curr_addr[0].addr, slot));
779 	}
780 	mutex_exit(bgep->genlock);
781 	return (EINVAL);
782 }
783 
784 /*
785  * bge_m_unicst_modify() - modifies the value of an address that
786  * has been added by bge_m_unicst_add(). The new address, address
787  * length and the slot number that was returned in the call to add
788  * should be passed to bge_m_unicst_modify(). mma_flags should be
789  * set to 0. Returns 0 on success.
790  */
791 static int
792 bge_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
793 {
794 	bge_t *bgep = arg;		/* private device info	*/
795 	mac_addr_slot_t slot;
796 
797 	if (mac_unicst_verify(bgep->mh,
798 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
799 		return (EINVAL);
800 
801 	slot = maddr->mma_slot;
802 
803 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
804 		return (EINVAL);
805 
806 	mutex_enter(bgep->genlock);
807 	if (bgep->curr_addr[slot].set == B_TRUE) {
808 		mutex_exit(bgep->genlock);
809 		return (bge_unicst_set(bgep, maddr->mma_addr, slot));
810 	}
811 	mutex_exit(bgep->genlock);
812 
813 	return (EINVAL);
814 }
815 
816 /*
817  * bge_m_unicst_get() - will get the MAC address and all other
818  * information related to the address slot passed in mac_multi_addr_t.
819  * mma_flags should be set to 0 in the call.
820  * On return, mma_flags can take the following values:
821  * 1) MMAC_SLOT_UNUSED
822  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
823  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
824  * 4) MMAC_SLOT_USED
825  */
826 static int
827 bge_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
828 {
829 	bge_t *bgep = arg;		/* private device info	*/
830 	mac_addr_slot_t slot;
831 
832 	slot = maddr->mma_slot;
833 
834 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
835 		return (EINVAL);
836 
837 	mutex_enter(bgep->genlock);
838 	if (bgep->curr_addr[slot].set == B_TRUE) {
839 		ethaddr_copy(bgep->curr_addr[slot].addr,
840 		    maddr->mma_addr);
841 		maddr->mma_flags = MMAC_SLOT_USED;
842 	} else {
843 		maddr->mma_flags = MMAC_SLOT_UNUSED;
844 	}
845 	mutex_exit(bgep->genlock);
846 
847 	return (0);
848 }
849 
850 extern void bge_wake_factotum(bge_t *);
851 
852 static boolean_t
853 bge_param_locked(mac_prop_id_t pr_num)
854 {
855 	/*
856 	 * All adv_* parameters are locked (read-only) while
857 	 * the device is in any sort of loopback mode ...
858 	 */
859 	switch (pr_num) {
860 		case MAC_PROP_ADV_1000FDX_CAP:
861 		case MAC_PROP_EN_1000FDX_CAP:
862 		case MAC_PROP_ADV_1000HDX_CAP:
863 		case MAC_PROP_EN_1000HDX_CAP:
864 		case MAC_PROP_ADV_100FDX_CAP:
865 		case MAC_PROP_EN_100FDX_CAP:
866 		case MAC_PROP_ADV_100HDX_CAP:
867 		case MAC_PROP_EN_100HDX_CAP:
868 		case MAC_PROP_ADV_10FDX_CAP:
869 		case MAC_PROP_EN_10FDX_CAP:
870 		case MAC_PROP_ADV_10HDX_CAP:
871 		case MAC_PROP_EN_10HDX_CAP:
872 		case MAC_PROP_AUTONEG:
873 		case MAC_PROP_FLOWCTRL:
874 			return (B_TRUE);
875 	}
876 	return (B_FALSE);
877 }
878 /*
879  * callback functions for set/get of properties
880  */
881 static int
882 bge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
883     uint_t pr_valsize, const void *pr_val)
884 {
885 	bge_t *bgep = barg;
886 	int err = 0;
887 	uint32_t cur_mtu, new_mtu;
888 	uint_t	maxsdu;
889 	link_flowctrl_t fl;
890 
891 	mutex_enter(bgep->genlock);
892 	if (bgep->param_loop_mode != BGE_LOOP_NONE &&
893 	    bge_param_locked(pr_num)) {
894 		/*
895 		 * All adv_* parameters are locked (read-only)
896 		 * while the device is in any sort of loopback mode.
897 		 */
898 		mutex_exit(bgep->genlock);
899 		return (EBUSY);
900 	}
901 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
902 	    ((pr_num == MAC_PROP_EN_100FDX_CAP) ||
903 	    (pr_num == MAC_PROP_EN_100FDX_CAP) ||
904 	    (pr_num == MAC_PROP_EN_10FDX_CAP) ||
905 	    (pr_num == MAC_PROP_EN_10HDX_CAP))) {
906 		/*
907 		 * these properties are read/write on copper,
908 		 * read-only and 0 on serdes
909 		 */
910 		mutex_exit(bgep->genlock);
911 		return (ENOTSUP);
912 	}
913 
914 	switch (pr_num) {
915 		case MAC_PROP_EN_1000FDX_CAP:
916 			bgep->param_en_1000fdx = *(uint8_t *)pr_val;
917 			bgep->param_adv_1000fdx = *(uint8_t *)pr_val;
918 			goto reprogram;
919 		case MAC_PROP_EN_1000HDX_CAP:
920 			bgep->param_en_1000hdx = *(uint8_t *)pr_val;
921 			bgep->param_adv_1000hdx = *(uint8_t *)pr_val;
922 			goto reprogram;
923 		case MAC_PROP_EN_100FDX_CAP:
924 			bgep->param_en_100fdx = *(uint8_t *)pr_val;
925 			bgep->param_adv_100fdx = *(uint8_t *)pr_val;
926 			goto reprogram;
927 		case MAC_PROP_EN_100HDX_CAP:
928 			bgep->param_en_100hdx = *(uint8_t *)pr_val;
929 			bgep->param_adv_100hdx = *(uint8_t *)pr_val;
930 			goto reprogram;
931 		case MAC_PROP_EN_10FDX_CAP:
932 			bgep->param_en_10fdx = *(uint8_t *)pr_val;
933 			bgep->param_adv_10fdx = *(uint8_t *)pr_val;
934 			goto reprogram;
935 		case MAC_PROP_EN_10HDX_CAP:
936 			bgep->param_en_10hdx = *(uint8_t *)pr_val;
937 			bgep->param_adv_10hdx = *(uint8_t *)pr_val;
938 reprogram:
939 			if (err == 0 && bge_reprogram(bgep) == IOC_INVAL)
940 				err = EINVAL;
941 			break;
942 		case MAC_PROP_ADV_1000FDX_CAP:
943 		case MAC_PROP_ADV_1000HDX_CAP:
944 		case MAC_PROP_ADV_100FDX_CAP:
945 		case MAC_PROP_ADV_100HDX_CAP:
946 		case MAC_PROP_ADV_10FDX_CAP:
947 		case MAC_PROP_ADV_10HDX_CAP:
948 		case MAC_PROP_STATUS:
949 		case MAC_PROP_SPEED:
950 		case MAC_PROP_DUPLEX:
951 			err = ENOTSUP; /* read-only prop. Can't set this */
952 			break;
953 		case MAC_PROP_AUTONEG:
954 			bgep->param_adv_autoneg = *(uint8_t *)pr_val;
955 			if (bge_reprogram(bgep) == IOC_INVAL)
956 				err = EINVAL;
957 			break;
958 		case MAC_PROP_MTU:
959 			cur_mtu = bgep->chipid.default_mtu;
960 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
961 
962 			if (new_mtu == cur_mtu) {
963 				err = 0;
964 				break;
965 			}
966 			if (new_mtu < BGE_DEFAULT_MTU ||
967 			    new_mtu > BGE_MAXIMUM_MTU) {
968 				err = EINVAL;
969 				break;
970 			}
971 			if ((new_mtu > BGE_DEFAULT_MTU) &&
972 			    (bgep->chipid.flags & CHIP_FLAG_NO_JUMBO)) {
973 				err = EINVAL;
974 				break;
975 			}
976 			if (bgep->bge_mac_state == BGE_MAC_STARTED) {
977 				err = EBUSY;
978 				break;
979 			}
980 			bgep->chipid.default_mtu = new_mtu;
981 			if (bge_chip_id_init(bgep)) {
982 				err = EINVAL;
983 				break;
984 			}
985 			maxsdu = bgep->chipid.ethmax_size -
986 			    sizeof (struct ether_header);
987 			err = mac_maxsdu_update(bgep->mh, maxsdu);
988 			if (err == 0) {
989 				bgep->bge_dma_error = B_TRUE;
990 				bgep->manual_reset = B_TRUE;
991 				bge_chip_stop(bgep, B_TRUE);
992 				bge_wake_factotum(bgep);
993 				err = 0;
994 			}
995 			break;
996 		case MAC_PROP_FLOWCTRL:
997 			bcopy(pr_val, &fl, sizeof (fl));
998 			switch (fl) {
999 			default:
1000 				err = ENOTSUP;
1001 				break;
1002 			case LINK_FLOWCTRL_NONE:
1003 				bgep->param_adv_pause = 0;
1004 				bgep->param_adv_asym_pause = 0;
1005 
1006 				bgep->param_link_rx_pause = B_FALSE;
1007 				bgep->param_link_tx_pause = B_FALSE;
1008 				break;
1009 			case LINK_FLOWCTRL_RX:
1010 				if (!((bgep->param_lp_pause == 0) &&
1011 				    (bgep->param_lp_asym_pause == 1))) {
1012 					err = EINVAL;
1013 					break;
1014 				}
1015 				bgep->param_adv_pause = 1;
1016 				bgep->param_adv_asym_pause = 1;
1017 
1018 				bgep->param_link_rx_pause = B_TRUE;
1019 				bgep->param_link_tx_pause = B_FALSE;
1020 				break;
1021 			case LINK_FLOWCTRL_TX:
1022 				if (!((bgep->param_lp_pause == 1) &&
1023 				    (bgep->param_lp_asym_pause == 1))) {
1024 					err = EINVAL;
1025 					break;
1026 				}
1027 				bgep->param_adv_pause = 0;
1028 				bgep->param_adv_asym_pause = 1;
1029 
1030 				bgep->param_link_rx_pause = B_FALSE;
1031 				bgep->param_link_tx_pause = B_TRUE;
1032 				break;
1033 			case LINK_FLOWCTRL_BI:
1034 				if (bgep->param_lp_pause != 1) {
1035 					err = EINVAL;
1036 					break;
1037 				}
1038 				bgep->param_adv_pause = 1;
1039 
1040 				bgep->param_link_rx_pause = B_TRUE;
1041 				bgep->param_link_tx_pause = B_TRUE;
1042 				break;
1043 			}
1044 
1045 			if (err == 0) {
1046 				if (bge_reprogram(bgep) == IOC_INVAL)
1047 					err = EINVAL;
1048 			}
1049 
1050 			break;
1051 		case MAC_PROP_PRIVATE:
1052 			err = bge_set_priv_prop(bgep, pr_name, pr_valsize,
1053 			    pr_val);
1054 			break;
1055 		default:
1056 			err = ENOTSUP;
1057 			break;
1058 	}
1059 	mutex_exit(bgep->genlock);
1060 	return (err);
1061 }
1062 
1063 static int
1064 bge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1065     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
1066 {
1067 	bge_t *bgep = barg;
1068 	int err = 0;
1069 	link_flowctrl_t fl;
1070 	uint64_t speed;
1071 	int flags = bgep->chipid.flags;
1072 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
1073 
1074 	if (pr_valsize == 0)
1075 		return (EINVAL);
1076 	bzero(pr_val, pr_valsize);
1077 	switch (pr_num) {
1078 		case MAC_PROP_DUPLEX:
1079 			if (pr_valsize < sizeof (link_duplex_t))
1080 				return (EINVAL);
1081 			bcopy(&bgep->param_link_duplex, pr_val,
1082 			    sizeof (link_duplex_t));
1083 			break;
1084 		case MAC_PROP_SPEED:
1085 			if (pr_valsize < sizeof (speed))
1086 				return (EINVAL);
1087 			speed = bgep->param_link_speed * 1000000ull;
1088 			bcopy(&speed, pr_val, sizeof (speed));
1089 			break;
1090 		case MAC_PROP_STATUS:
1091 			if (pr_valsize < sizeof (link_state_t))
1092 				return (EINVAL);
1093 			bcopy(&bgep->link_state, pr_val,
1094 			    sizeof (link_state_t));
1095 			break;
1096 		case MAC_PROP_AUTONEG:
1097 			if (is_default)
1098 				*(uint8_t *)pr_val = 1;
1099 			else
1100 				*(uint8_t *)pr_val = bgep->param_adv_autoneg;
1101 			break;
1102 		case MAC_PROP_FLOWCTRL:
1103 			if (pr_valsize < sizeof (fl))
1104 				return (EINVAL);
1105 			if (is_default) {
1106 				fl = LINK_FLOWCTRL_BI;
1107 				bcopy(&fl, pr_val, sizeof (fl));
1108 				break;
1109 			}
1110 
1111 			if (bgep->param_link_rx_pause &&
1112 			    !bgep->param_link_tx_pause)
1113 				fl = LINK_FLOWCTRL_RX;
1114 
1115 			if (!bgep->param_link_rx_pause &&
1116 			    !bgep->param_link_tx_pause)
1117 				fl = LINK_FLOWCTRL_NONE;
1118 
1119 			if (!bgep->param_link_rx_pause &&
1120 			    bgep->param_link_tx_pause)
1121 				fl = LINK_FLOWCTRL_TX;
1122 
1123 			if (bgep->param_link_rx_pause &&
1124 			    bgep->param_link_tx_pause)
1125 				fl = LINK_FLOWCTRL_BI;
1126 			bcopy(&fl, pr_val, sizeof (fl));
1127 			break;
1128 		case MAC_PROP_ADV_1000FDX_CAP:
1129 			if (is_default)
1130 				*(uint8_t *)pr_val = 1;
1131 			else
1132 				*(uint8_t *)pr_val = bgep->param_adv_1000fdx;
1133 			break;
1134 		case MAC_PROP_EN_1000FDX_CAP:
1135 			if (is_default)
1136 				*(uint8_t *)pr_val = 1;
1137 			else
1138 				*(uint8_t *)pr_val = bgep->param_en_1000fdx;
1139 			break;
1140 		case MAC_PROP_ADV_1000HDX_CAP:
1141 			if (is_default)
1142 				*(uint8_t *)pr_val = 1;
1143 			else
1144 				*(uint8_t *)pr_val = bgep->param_adv_1000hdx;
1145 			break;
1146 		case MAC_PROP_EN_1000HDX_CAP:
1147 			if (is_default)
1148 				*(uint8_t *)pr_val = 1;
1149 			else
1150 				*(uint8_t *)pr_val = bgep->param_en_1000hdx;
1151 			break;
1152 		case MAC_PROP_ADV_100FDX_CAP:
1153 			if (is_default) {
1154 				*(uint8_t *)pr_val =
1155 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1156 			} else {
1157 				*(uint8_t *)pr_val = bgep->param_adv_100fdx;
1158 			}
1159 			break;
1160 		case MAC_PROP_EN_100FDX_CAP:
1161 			if (is_default) {
1162 				*(uint8_t *)pr_val =
1163 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1164 			} else {
1165 				*(uint8_t *)pr_val = bgep->param_en_100fdx;
1166 			}
1167 			break;
1168 		case MAC_PROP_ADV_100HDX_CAP:
1169 			if (is_default) {
1170 				*(uint8_t *)pr_val =
1171 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1172 			} else {
1173 				*(uint8_t *)pr_val = bgep->param_adv_100hdx;
1174 			}
1175 			break;
1176 		case MAC_PROP_EN_100HDX_CAP:
1177 			if (is_default) {
1178 				*(uint8_t *)pr_val =
1179 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1180 			} else {
1181 				*(uint8_t *)pr_val = bgep->param_en_100hdx;
1182 			}
1183 			break;
1184 		case MAC_PROP_ADV_10FDX_CAP:
1185 			if (is_default) {
1186 				*(uint8_t *)pr_val =
1187 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1188 			} else {
1189 				*(uint8_t *)pr_val = bgep->param_adv_10fdx;
1190 			}
1191 			break;
1192 		case MAC_PROP_EN_10FDX_CAP:
1193 			if (is_default) {
1194 				*(uint8_t *)pr_val =
1195 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1196 			} else {
1197 				*(uint8_t *)pr_val = bgep->param_en_10fdx;
1198 			}
1199 			break;
1200 		case MAC_PROP_ADV_10HDX_CAP:
1201 			if (is_default) {
1202 				*(uint8_t *)pr_val =
1203 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1204 			} else {
1205 				*(uint8_t *)pr_val = bgep->param_adv_10hdx;
1206 			}
1207 			break;
1208 		case MAC_PROP_EN_10HDX_CAP:
1209 			if (is_default) {
1210 				*(uint8_t *)pr_val =
1211 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1212 			} else {
1213 				*(uint8_t *)pr_val = bgep->param_en_10hdx;
1214 			}
1215 			break;
1216 		case MAC_PROP_ADV_100T4_CAP:
1217 		case MAC_PROP_EN_100T4_CAP:
1218 			*(uint8_t *)pr_val = 0;
1219 			break;
1220 		case MAC_PROP_PRIVATE:
1221 			err = bge_get_priv_prop(bgep, pr_name, pr_flags,
1222 			    pr_valsize, pr_val);
1223 			return (err);
1224 		default:
1225 			return (ENOTSUP);
1226 	}
1227 	return (0);
1228 }
1229 
1230 /* ARGSUSED */
1231 static int
1232 bge_set_priv_prop(bge_t *bgep, const char *pr_name, uint_t pr_valsize,
1233     const void *pr_val)
1234 {
1235 	int err = 0;
1236 	long result;
1237 
1238 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
1239 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1240 		if (result > 1 || result < 0) {
1241 			err = EINVAL;
1242 		} else {
1243 			bgep->param_adv_pause = (uint32_t)result;
1244 			if (bge_reprogram(bgep) == IOC_INVAL)
1245 				err = EINVAL;
1246 		}
1247 		return (err);
1248 	}
1249 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
1250 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1251 		if (result > 1 || result < 0) {
1252 			err = EINVAL;
1253 		} else {
1254 			bgep->param_adv_asym_pause = (uint32_t)result;
1255 			if (bge_reprogram(bgep) == IOC_INVAL)
1256 				err = EINVAL;
1257 		}
1258 		return (err);
1259 	}
1260 	if (strcmp(pr_name, "_drain_max") == 0) {
1261 
1262 		/*
1263 		 * on the Tx side, we need to update the h/w register for
1264 		 * real packet transmission per packet. The drain_max parameter
1265 		 * is used to reduce the register access. This parameter
1266 		 * controls the max number of packets that we will hold before
1267 		 * updating the bge h/w to trigger h/w transmit. The bge
1268 		 * chipset usually has a max of 512 Tx descriptors, thus
1269 		 * the upper bound on drain_max is 512.
1270 		 */
1271 		if (pr_val == NULL) {
1272 			err = EINVAL;
1273 			return (err);
1274 		}
1275 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1276 		if (result > 512 || result < 1)
1277 			err = EINVAL;
1278 		else {
1279 			bgep->param_drain_max = (uint32_t)result;
1280 			if (bge_reprogram(bgep) == IOC_INVAL)
1281 				err = EINVAL;
1282 		}
1283 		return (err);
1284 	}
1285 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1286 
1287 		if (pr_val == NULL) {
1288 			err = EINVAL;
1289 			return (err);
1290 		}
1291 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1292 		if (result > 7 || result < 0)
1293 			err = EINVAL;
1294 		else {
1295 			bgep->param_msi_cnt = (uint32_t)result;
1296 			if (bge_reprogram(bgep) == IOC_INVAL)
1297 				err = EINVAL;
1298 		}
1299 		return (err);
1300 	}
1301 	if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) {
1302 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1303 			return (EINVAL);
1304 
1305 		bgep->chipid.rx_ticks_norm = (uint32_t)result;
1306 		return (0);
1307 	}
1308 
1309 	if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) {
1310 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1311 			return (EINVAL);
1312 
1313 		bgep->chipid.rx_count_norm = (uint32_t)result;
1314 		return (0);
1315 	}
1316 	return (ENOTSUP);
1317 }
1318 
1319 static int
1320 bge_get_priv_prop(bge_t *bge, const char *pr_name, uint_t pr_flags,
1321     uint_t pr_valsize, void *pr_val)
1322 {
1323 	int err = ENOTSUP;
1324 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
1325 	int value;
1326 
1327 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
1328 		value = (is_default? 1 : bge->param_adv_pause);
1329 		err = 0;
1330 		goto done;
1331 	}
1332 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
1333 		value = (is_default? 1 : bge->param_adv_asym_pause);
1334 		err = 0;
1335 		goto done;
1336 	}
1337 	if (strcmp(pr_name, "_drain_max") == 0) {
1338 		value = (is_default? 64 : bge->param_drain_max);
1339 		err = 0;
1340 		goto done;
1341 	}
1342 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1343 		value = (is_default? 0 : bge->param_msi_cnt);
1344 		err = 0;
1345 		goto done;
1346 	}
1347 
1348 	if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) {
1349 		value = (is_default? bge_rx_ticks_norm :
1350 		    bge->chipid.rx_ticks_norm);
1351 		err = 0;
1352 		goto done;
1353 	}
1354 
1355 	if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) {
1356 		value = (is_default? bge_rx_count_norm :
1357 		    bge->chipid.rx_count_norm);
1358 		err = 0;
1359 		goto done;
1360 	}
1361 
1362 done:
1363 	if (err == 0) {
1364 		(void) snprintf(pr_val, pr_valsize, "%d", value);
1365 	}
1366 	return (err);
1367 }
1368 
1369 /*
1370  * Compute the index of the required bit in the multicast hash map.
1371  * This must mirror the way the hardware actually does it!
1372  * See Broadcom document 570X-PG102-R page 125.
1373  */
1374 static uint32_t
1375 bge_hash_index(const uint8_t *mca)
1376 {
1377 	uint32_t hash;
1378 
1379 	CRC32(hash, mca, ETHERADDRL, -1U, crc32_table);
1380 
1381 	return (hash);
1382 }
1383 
1384 /*
1385  *	bge_m_multicst_add() -- enable/disable a multicast address
1386  */
1387 static int
1388 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1389 {
1390 	bge_t *bgep = arg;		/* private device info	*/
1391 	uint32_t hash;
1392 	uint32_t index;
1393 	uint32_t word;
1394 	uint32_t bit;
1395 	uint8_t *refp;
1396 
1397 	BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg,
1398 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1399 
1400 	/*
1401 	 * Precalculate all required masks, pointers etc ...
1402 	 */
1403 	hash = bge_hash_index(mca);
1404 	index = hash % BGE_HASH_TABLE_SIZE;
1405 	word = index/32u;
1406 	bit = 1 << (index % 32u);
1407 	refp = &bgep->mcast_refs[index];
1408 
1409 	BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d",
1410 	    hash, index, word, bit, *refp));
1411 
1412 	/*
1413 	 * We must set the appropriate bit in the hash map (and the
1414 	 * corresponding h/w register) when the refcount goes from 0
1415 	 * to >0, and clear it when the last ref goes away (refcount
1416 	 * goes from >0 back to 0).  If we change the hash map, we
1417 	 * must also update the chip's hardware map registers.
1418 	 */
1419 	mutex_enter(bgep->genlock);
1420 	if (!(bgep->progress & PROGRESS_INTR)) {
1421 		/* can happen during autorecovery */
1422 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1423 		mutex_exit(bgep->genlock);
1424 		return (EIO);
1425 	}
1426 	if (add) {
1427 		if ((*refp)++ == 0) {
1428 			bgep->mcast_hash[word] |= bit;
1429 #ifdef BGE_IPMI_ASF
1430 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1431 #else
1432 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1433 #endif
1434 				(void) bge_check_acc_handle(bgep,
1435 				    bgep->cfg_handle);
1436 				(void) bge_check_acc_handle(bgep,
1437 				    bgep->io_handle);
1438 				ddi_fm_service_impact(bgep->devinfo,
1439 				    DDI_SERVICE_DEGRADED);
1440 				mutex_exit(bgep->genlock);
1441 				return (EIO);
1442 			}
1443 		}
1444 	} else {
1445 		if (--(*refp) == 0) {
1446 			bgep->mcast_hash[word] &= ~bit;
1447 #ifdef BGE_IPMI_ASF
1448 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1449 #else
1450 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1451 #endif
1452 				(void) bge_check_acc_handle(bgep,
1453 				    bgep->cfg_handle);
1454 				(void) bge_check_acc_handle(bgep,
1455 				    bgep->io_handle);
1456 				ddi_fm_service_impact(bgep->devinfo,
1457 				    DDI_SERVICE_DEGRADED);
1458 				mutex_exit(bgep->genlock);
1459 				return (EIO);
1460 			}
1461 		}
1462 	}
1463 	BGE_DEBUG(("bge_m_multicst($%p) done", arg));
1464 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1465 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1466 		mutex_exit(bgep->genlock);
1467 		return (EIO);
1468 	}
1469 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1470 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1471 		mutex_exit(bgep->genlock);
1472 		return (EIO);
1473 	}
1474 	mutex_exit(bgep->genlock);
1475 
1476 	return (0);
1477 }
1478 
1479 /*
1480  * bge_m_promisc() -- set or reset promiscuous mode on the board
1481  *
1482  *	Program the hardware to enable/disable promiscuous and/or
1483  *	receive-all-multicast modes.
1484  */
1485 static int
1486 bge_m_promisc(void *arg, boolean_t on)
1487 {
1488 	bge_t *bgep = arg;
1489 
1490 	BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on));
1491 
1492 	/*
1493 	 * Store MAC layer specified mode and pass to chip layer to update h/w
1494 	 */
1495 	mutex_enter(bgep->genlock);
1496 	if (!(bgep->progress & PROGRESS_INTR)) {
1497 		/* can happen during autorecovery */
1498 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1499 		mutex_exit(bgep->genlock);
1500 		return (EIO);
1501 	}
1502 	bgep->promisc = on;
1503 #ifdef BGE_IPMI_ASF
1504 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1505 #else
1506 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
1507 #endif
1508 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
1509 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
1510 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1511 		mutex_exit(bgep->genlock);
1512 		return (EIO);
1513 	}
1514 	BGE_DEBUG(("bge_m_promisc_set($%p) done", arg));
1515 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1516 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1517 		mutex_exit(bgep->genlock);
1518 		return (EIO);
1519 	}
1520 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1521 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1522 		mutex_exit(bgep->genlock);
1523 		return (EIO);
1524 	}
1525 	mutex_exit(bgep->genlock);
1526 	return (0);
1527 }
1528 
1529 /*ARGSUSED*/
1530 static boolean_t
1531 bge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1532 {
1533 	bge_t *bgep = arg;
1534 
1535 	switch (cap) {
1536 	case MAC_CAPAB_HCKSUM: {
1537 		uint32_t *txflags = cap_data;
1538 
1539 		*txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM;
1540 		break;
1541 	}
1542 
1543 	case MAC_CAPAB_POLL:
1544 		/*
1545 		 * There's nothing for us to fill in, simply returning
1546 		 * B_TRUE stating that we support polling is sufficient.
1547 		 */
1548 		break;
1549 
1550 	case MAC_CAPAB_MULTIADDRESS: {
1551 		multiaddress_capab_t	*mmacp = cap_data;
1552 
1553 		mutex_enter(bgep->genlock);
1554 		/*
1555 		 * The number of MAC addresses made available by
1556 		 * this capability is one less than the total as
1557 		 * the primary address in slot 0 is counted in
1558 		 * the total.
1559 		 */
1560 		mmacp->maddr_naddr = bgep->unicst_addr_total - 1;
1561 		mmacp->maddr_naddrfree = bgep->unicst_addr_avail;
1562 		/* No multiple factory addresses, set mma_flag to 0 */
1563 		mmacp->maddr_flag = 0;
1564 		mmacp->maddr_handle = bgep;
1565 		mmacp->maddr_add = bge_m_unicst_add;
1566 		mmacp->maddr_remove = bge_m_unicst_remove;
1567 		mmacp->maddr_modify = bge_m_unicst_modify;
1568 		mmacp->maddr_get = bge_m_unicst_get;
1569 		mmacp->maddr_reserve = NULL;
1570 		mutex_exit(bgep->genlock);
1571 		break;
1572 	}
1573 
1574 	default:
1575 		return (B_FALSE);
1576 	}
1577 	return (B_TRUE);
1578 }
1579 
1580 /*
1581  * Loopback ioctl code
1582  */
1583 
1584 static lb_property_t loopmodes[] = {
1585 	{ normal,	"normal",	BGE_LOOP_NONE		},
1586 	{ external,	"1000Mbps",	BGE_LOOP_EXTERNAL_1000	},
1587 	{ external,	"100Mbps",	BGE_LOOP_EXTERNAL_100	},
1588 	{ external,	"10Mbps",	BGE_LOOP_EXTERNAL_10	},
1589 	{ internal,	"PHY",		BGE_LOOP_INTERNAL_PHY	},
1590 	{ internal,	"MAC",		BGE_LOOP_INTERNAL_MAC	}
1591 };
1592 
1593 static enum ioc_reply
1594 bge_set_loop_mode(bge_t *bgep, uint32_t mode)
1595 {
1596 	/*
1597 	 * If the mode isn't being changed, there's nothing to do ...
1598 	 */
1599 	if (mode == bgep->param_loop_mode)
1600 		return (IOC_ACK);
1601 
1602 	/*
1603 	 * Validate the requested mode and prepare a suitable message
1604 	 * to explain the link down/up cycle that the change will
1605 	 * probably induce ...
1606 	 */
1607 	switch (mode) {
1608 	default:
1609 		return (IOC_INVAL);
1610 
1611 	case BGE_LOOP_NONE:
1612 	case BGE_LOOP_EXTERNAL_1000:
1613 	case BGE_LOOP_EXTERNAL_100:
1614 	case BGE_LOOP_EXTERNAL_10:
1615 	case BGE_LOOP_INTERNAL_PHY:
1616 	case BGE_LOOP_INTERNAL_MAC:
1617 		break;
1618 	}
1619 
1620 	/*
1621 	 * All OK; tell the caller to reprogram
1622 	 * the PHY and/or MAC for the new mode ...
1623 	 */
1624 	bgep->param_loop_mode = mode;
1625 	return (IOC_RESTART_ACK);
1626 }
1627 
1628 static enum ioc_reply
1629 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
1630 {
1631 	lb_info_sz_t *lbsp;
1632 	lb_property_t *lbpp;
1633 	uint32_t *lbmp;
1634 	int cmd;
1635 
1636 	_NOTE(ARGUNUSED(wq))
1637 
1638 	/*
1639 	 * Validate format of ioctl
1640 	 */
1641 	if (mp->b_cont == NULL)
1642 		return (IOC_INVAL);
1643 
1644 	cmd = iocp->ioc_cmd;
1645 	switch (cmd) {
1646 	default:
1647 		/* NOTREACHED */
1648 		bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd);
1649 		return (IOC_INVAL);
1650 
1651 	case LB_GET_INFO_SIZE:
1652 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
1653 			return (IOC_INVAL);
1654 		lbsp = (void *)mp->b_cont->b_rptr;
1655 		*lbsp = sizeof (loopmodes);
1656 		return (IOC_REPLY);
1657 
1658 	case LB_GET_INFO:
1659 		if (iocp->ioc_count != sizeof (loopmodes))
1660 			return (IOC_INVAL);
1661 		lbpp = (void *)mp->b_cont->b_rptr;
1662 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
1663 		return (IOC_REPLY);
1664 
1665 	case LB_GET_MODE:
1666 		if (iocp->ioc_count != sizeof (uint32_t))
1667 			return (IOC_INVAL);
1668 		lbmp = (void *)mp->b_cont->b_rptr;
1669 		*lbmp = bgep->param_loop_mode;
1670 		return (IOC_REPLY);
1671 
1672 	case LB_SET_MODE:
1673 		if (iocp->ioc_count != sizeof (uint32_t))
1674 			return (IOC_INVAL);
1675 		lbmp = (void *)mp->b_cont->b_rptr;
1676 		return (bge_set_loop_mode(bgep, *lbmp));
1677 	}
1678 }
1679 
1680 /*
1681  * Specific bge IOCTLs, the gld module handles the generic ones.
1682  */
1683 static void
1684 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1685 {
1686 	bge_t *bgep = arg;
1687 	struct iocblk *iocp;
1688 	enum ioc_reply status;
1689 	boolean_t need_privilege;
1690 	int err;
1691 	int cmd;
1692 
1693 	/*
1694 	 * Validate the command before bothering with the mutex ...
1695 	 */
1696 	iocp = (void *)mp->b_rptr;
1697 	iocp->ioc_error = 0;
1698 	need_privilege = B_TRUE;
1699 	cmd = iocp->ioc_cmd;
1700 	switch (cmd) {
1701 	default:
1702 		miocnak(wq, mp, 0, EINVAL);
1703 		return;
1704 
1705 	case BGE_MII_READ:
1706 	case BGE_MII_WRITE:
1707 	case BGE_SEE_READ:
1708 	case BGE_SEE_WRITE:
1709 	case BGE_FLASH_READ:
1710 	case BGE_FLASH_WRITE:
1711 	case BGE_DIAG:
1712 	case BGE_PEEK:
1713 	case BGE_POKE:
1714 	case BGE_PHY_RESET:
1715 	case BGE_SOFT_RESET:
1716 	case BGE_HARD_RESET:
1717 		break;
1718 
1719 	case LB_GET_INFO_SIZE:
1720 	case LB_GET_INFO:
1721 	case LB_GET_MODE:
1722 		need_privilege = B_FALSE;
1723 		/* FALLTHRU */
1724 	case LB_SET_MODE:
1725 		break;
1726 
1727 	}
1728 
1729 	if (need_privilege) {
1730 		/*
1731 		 * Check for specific net_config privilege on Solaris 10+.
1732 		 */
1733 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1734 		if (err != 0) {
1735 			miocnak(wq, mp, 0, err);
1736 			return;
1737 		}
1738 	}
1739 
1740 	mutex_enter(bgep->genlock);
1741 	if (!(bgep->progress & PROGRESS_INTR)) {
1742 		/* can happen during autorecovery */
1743 		mutex_exit(bgep->genlock);
1744 		miocnak(wq, mp, 0, EIO);
1745 		return;
1746 	}
1747 
1748 	switch (cmd) {
1749 	default:
1750 		_NOTE(NOTREACHED)
1751 		status = IOC_INVAL;
1752 		break;
1753 
1754 	case BGE_MII_READ:
1755 	case BGE_MII_WRITE:
1756 	case BGE_SEE_READ:
1757 	case BGE_SEE_WRITE:
1758 	case BGE_FLASH_READ:
1759 	case BGE_FLASH_WRITE:
1760 	case BGE_DIAG:
1761 	case BGE_PEEK:
1762 	case BGE_POKE:
1763 	case BGE_PHY_RESET:
1764 	case BGE_SOFT_RESET:
1765 	case BGE_HARD_RESET:
1766 		status = bge_chip_ioctl(bgep, wq, mp, iocp);
1767 		break;
1768 
1769 	case LB_GET_INFO_SIZE:
1770 	case LB_GET_INFO:
1771 	case LB_GET_MODE:
1772 	case LB_SET_MODE:
1773 		status = bge_loop_ioctl(bgep, wq, mp, iocp);
1774 		break;
1775 
1776 	}
1777 
1778 	/*
1779 	 * Do we need to reprogram the PHY and/or the MAC?
1780 	 * Do it now, while we still have the mutex.
1781 	 *
1782 	 * Note: update the PHY first, 'cos it controls the
1783 	 * speed/duplex parameters that the MAC code uses.
1784 	 */
1785 	switch (status) {
1786 	case IOC_RESTART_REPLY:
1787 	case IOC_RESTART_ACK:
1788 		if (bge_reprogram(bgep) == IOC_INVAL)
1789 			status = IOC_INVAL;
1790 		break;
1791 	}
1792 
1793 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1794 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1795 		status = IOC_INVAL;
1796 	}
1797 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1798 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1799 		status = IOC_INVAL;
1800 	}
1801 	mutex_exit(bgep->genlock);
1802 
1803 	/*
1804 	 * Finally, decide how to reply
1805 	 */
1806 	switch (status) {
1807 	default:
1808 	case IOC_INVAL:
1809 		/*
1810 		 * Error, reply with a NAK and EINVAL or the specified error
1811 		 */
1812 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1813 		    EINVAL : iocp->ioc_error);
1814 		break;
1815 
1816 	case IOC_DONE:
1817 		/*
1818 		 * OK, reply already sent
1819 		 */
1820 		break;
1821 
1822 	case IOC_RESTART_ACK:
1823 	case IOC_ACK:
1824 		/*
1825 		 * OK, reply with an ACK
1826 		 */
1827 		miocack(wq, mp, 0, 0);
1828 		break;
1829 
1830 	case IOC_RESTART_REPLY:
1831 	case IOC_REPLY:
1832 		/*
1833 		 * OK, send prepared reply as ACK or NAK
1834 		 */
1835 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1836 		    M_IOCACK : M_IOCNAK;
1837 		qreply(wq, mp);
1838 		break;
1839 	}
1840 }
1841 
1842 static void
1843 bge_resources_add(bge_t *bgep, time_t time, uint_t pkt_cnt)
1844 {
1845 
1846 	recv_ring_t *rrp;
1847 	mac_rx_fifo_t mrf;
1848 	int ring;
1849 
1850 	/*
1851 	 * Register Rx rings as resources and save mac
1852 	 * resource id for future reference
1853 	 */
1854 	mrf.mrf_type = MAC_RX_FIFO;
1855 	mrf.mrf_blank = bge_chip_blank;
1856 	mrf.mrf_arg = (void *)bgep;
1857 	mrf.mrf_normal_blank_time = time;
1858 	mrf.mrf_normal_pkt_count = pkt_cnt;
1859 
1860 	for (ring = 0; ring < bgep->chipid.rx_rings; ring++) {
1861 		rrp = &bgep->recv[ring];
1862 		rrp->handle = mac_resource_add(bgep->mh,
1863 		    (mac_resource_t *)&mrf);
1864 	}
1865 }
1866 
1867 static void
1868 bge_m_resources(void *arg)
1869 {
1870 	bge_t *bgep = arg;
1871 
1872 	mutex_enter(bgep->genlock);
1873 
1874 	bge_resources_add(bgep, bgep->chipid.rx_ticks_norm,
1875 	    bgep->chipid.rx_count_norm);
1876 	mutex_exit(bgep->genlock);
1877 }
1878 
1879 /*
1880  * ========== Per-instance setup/teardown code ==========
1881  */
1882 
1883 #undef	BGE_DBG
1884 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
1885 /*
1886  * Allocate an area of memory and a DMA handle for accessing it
1887  */
1888 static int
1889 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p,
1890 	uint_t dma_flags, dma_area_t *dma_p)
1891 {
1892 	caddr_t va;
1893 	int err;
1894 
1895 	BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
1896 	    (void *)bgep, memsize, attr_p, dma_flags, dma_p));
1897 
1898 	/*
1899 	 * Allocate handle
1900 	 */
1901 	err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr,
1902 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
1903 	if (err != DDI_SUCCESS)
1904 		return (DDI_FAILURE);
1905 
1906 	/*
1907 	 * Allocate memory
1908 	 */
1909 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
1910 	    dma_flags, DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength,
1911 	    &dma_p->acc_hdl);
1912 	if (err != DDI_SUCCESS)
1913 		return (DDI_FAILURE);
1914 
1915 	/*
1916 	 * Bind the two together
1917 	 */
1918 	dma_p->mem_va = va;
1919 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
1920 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
1921 	    &dma_p->cookie, &dma_p->ncookies);
1922 
1923 	BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies",
1924 	    dma_p->alength, err, dma_p->ncookies));
1925 
1926 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
1927 		return (DDI_FAILURE);
1928 
1929 	dma_p->nslots = ~0U;
1930 	dma_p->size = ~0U;
1931 	dma_p->token = ~0U;
1932 	dma_p->offset = 0;
1933 	return (DDI_SUCCESS);
1934 }
1935 
1936 /*
1937  * Free one allocated area of DMAable memory
1938  */
1939 static void
1940 bge_free_dma_mem(dma_area_t *dma_p)
1941 {
1942 	if (dma_p->dma_hdl != NULL) {
1943 		if (dma_p->ncookies) {
1944 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
1945 			dma_p->ncookies = 0;
1946 		}
1947 		ddi_dma_free_handle(&dma_p->dma_hdl);
1948 		dma_p->dma_hdl = NULL;
1949 	}
1950 
1951 	if (dma_p->acc_hdl != NULL) {
1952 		ddi_dma_mem_free(&dma_p->acc_hdl);
1953 		dma_p->acc_hdl = NULL;
1954 	}
1955 }
1956 /*
1957  * Utility routine to carve a slice off a chunk of allocated memory,
1958  * updating the chunk descriptor accordingly.  The size of the slice
1959  * is given by the product of the <qty> and <size> parameters.
1960  */
1961 static void
1962 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
1963 	uint32_t qty, uint32_t size)
1964 {
1965 	static uint32_t sequence = 0xbcd5704a;
1966 	size_t totsize;
1967 
1968 	totsize = qty*size;
1969 	ASSERT(totsize <= chunk->alength);
1970 
1971 	*slice = *chunk;
1972 	slice->nslots = qty;
1973 	slice->size = size;
1974 	slice->alength = totsize;
1975 	slice->token = ++sequence;
1976 
1977 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
1978 	chunk->alength -= totsize;
1979 	chunk->offset += totsize;
1980 	chunk->cookie.dmac_laddress += totsize;
1981 	chunk->cookie.dmac_size -= totsize;
1982 }
1983 
1984 /*
1985  * Initialise the specified Receive Producer (Buffer) Ring, using
1986  * the information in the <dma_area> descriptors that it contains
1987  * to set up all the other fields. This routine should be called
1988  * only once for each ring.
1989  */
1990 static void
1991 bge_init_buff_ring(bge_t *bgep, uint64_t ring)
1992 {
1993 	buff_ring_t *brp;
1994 	bge_status_t *bsp;
1995 	sw_rbd_t *srbdp;
1996 	dma_area_t pbuf;
1997 	uint32_t bufsize;
1998 	uint32_t nslots;
1999 	uint32_t slot;
2000 	uint32_t split;
2001 
2002 	static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = {
2003 		NIC_MEM_SHADOW_BUFF_STD,
2004 		NIC_MEM_SHADOW_BUFF_JUMBO,
2005 		NIC_MEM_SHADOW_BUFF_MINI
2006 	};
2007 	static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = {
2008 		RECV_STD_PROD_INDEX_REG,
2009 		RECV_JUMBO_PROD_INDEX_REG,
2010 		RECV_MINI_PROD_INDEX_REG
2011 	};
2012 	static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = {
2013 		STATUS_STD_BUFF_CONS_INDEX,
2014 		STATUS_JUMBO_BUFF_CONS_INDEX,
2015 		STATUS_MINI_BUFF_CONS_INDEX
2016 	};
2017 
2018 	BGE_TRACE(("bge_init_buff_ring($%p, %d)",
2019 	    (void *)bgep, ring));
2020 
2021 	brp = &bgep->buff[ring];
2022 	nslots = brp->desc.nslots;
2023 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
2024 	bufsize = brp->buf[0].size;
2025 
2026 	/*
2027 	 * Set up the copy of the h/w RCB
2028 	 *
2029 	 * Note: unlike Send & Receive Return Rings, (where the max_len
2030 	 * field holds the number of slots), in a Receive Buffer Ring
2031 	 * this field indicates the size of each buffer in the ring.
2032 	 */
2033 	brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress;
2034 	brp->hw_rcb.max_len = (uint16_t)bufsize;
2035 	brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2036 	brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring];
2037 
2038 	/*
2039 	 * Other one-off initialisation of per-ring data
2040 	 */
2041 	brp->bgep = bgep;
2042 	bsp = DMA_VPTR(bgep->status_block);
2043 	brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]];
2044 	brp->chip_mbx_reg = mailbox_regs[ring];
2045 	mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER,
2046 	    DDI_INTR_PRI(bgep->intr_pri));
2047 
2048 	/*
2049 	 * Allocate the array of s/w Receive Buffer Descriptors
2050 	 */
2051 	srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP);
2052 	brp->sw_rbds = srbdp;
2053 
2054 	/*
2055 	 * Now initialise each array element once and for all
2056 	 */
2057 	for (split = 0; split < BGE_SPLIT; ++split) {
2058 		pbuf = brp->buf[split];
2059 		for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot)
2060 			bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize);
2061 		ASSERT(pbuf.alength == 0);
2062 	}
2063 }
2064 
2065 /*
2066  * Clean up initialisation done above before the memory is freed
2067  */
2068 static void
2069 bge_fini_buff_ring(bge_t *bgep, uint64_t ring)
2070 {
2071 	buff_ring_t *brp;
2072 	sw_rbd_t *srbdp;
2073 
2074 	BGE_TRACE(("bge_fini_buff_ring($%p, %d)",
2075 	    (void *)bgep, ring));
2076 
2077 	brp = &bgep->buff[ring];
2078 	srbdp = brp->sw_rbds;
2079 	kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp));
2080 
2081 	mutex_destroy(brp->rf_lock);
2082 }
2083 
2084 /*
2085  * Initialise the specified Receive (Return) Ring, using the
2086  * information in the <dma_area> descriptors that it contains
2087  * to set up all the other fields. This routine should be called
2088  * only once for each ring.
2089  */
2090 static void
2091 bge_init_recv_ring(bge_t *bgep, uint64_t ring)
2092 {
2093 	recv_ring_t *rrp;
2094 	bge_status_t *bsp;
2095 	uint32_t nslots;
2096 
2097 	BGE_TRACE(("bge_init_recv_ring($%p, %d)",
2098 	    (void *)bgep, ring));
2099 
2100 	/*
2101 	 * The chip architecture requires that receive return rings have
2102 	 * 512 or 1024 or 2048 elements per ring.  See 570X-PG108-R page 103.
2103 	 */
2104 	rrp = &bgep->recv[ring];
2105 	nslots = rrp->desc.nslots;
2106 	ASSERT(nslots == 0 || nslots == 512 ||
2107 	    nslots == 1024 || nslots == 2048);
2108 
2109 	/*
2110 	 * Set up the copy of the h/w RCB
2111 	 */
2112 	rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress;
2113 	rrp->hw_rcb.max_len = (uint16_t)nslots;
2114 	rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2115 	rrp->hw_rcb.nic_ring_addr = 0;
2116 
2117 	/*
2118 	 * Other one-off initialisation of per-ring data
2119 	 */
2120 	rrp->bgep = bgep;
2121 	bsp = DMA_VPTR(bgep->status_block);
2122 	rrp->prod_index_p = RECV_INDEX_P(bsp, ring);
2123 	rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring);
2124 	mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER,
2125 	    DDI_INTR_PRI(bgep->intr_pri));
2126 }
2127 
2128 
2129 /*
2130  * Clean up initialisation done above before the memory is freed
2131  */
2132 static void
2133 bge_fini_recv_ring(bge_t *bgep, uint64_t ring)
2134 {
2135 	recv_ring_t *rrp;
2136 
2137 	BGE_TRACE(("bge_fini_recv_ring($%p, %d)",
2138 	    (void *)bgep, ring));
2139 
2140 	rrp = &bgep->recv[ring];
2141 	if (rrp->rx_softint)
2142 		ddi_remove_softintr(rrp->rx_softint);
2143 	mutex_destroy(rrp->rx_lock);
2144 }
2145 
2146 /*
2147  * Initialise the specified Send Ring, using the information in the
2148  * <dma_area> descriptors that it contains to set up all the other
2149  * fields. This routine should be called only once for each ring.
2150  */
2151 static void
2152 bge_init_send_ring(bge_t *bgep, uint64_t ring)
2153 {
2154 	send_ring_t *srp;
2155 	bge_status_t *bsp;
2156 	sw_sbd_t *ssbdp;
2157 	dma_area_t desc;
2158 	dma_area_t pbuf;
2159 	uint32_t nslots;
2160 	uint32_t slot;
2161 	uint32_t split;
2162 	sw_txbuf_t *txbuf;
2163 
2164 	BGE_TRACE(("bge_init_send_ring($%p, %d)",
2165 	    (void *)bgep, ring));
2166 
2167 	/*
2168 	 * The chip architecture requires that host-based send rings
2169 	 * have 512 elements per ring.  See 570X-PG102-R page 56.
2170 	 */
2171 	srp = &bgep->send[ring];
2172 	nslots = srp->desc.nslots;
2173 	ASSERT(nslots == 0 || nslots == 512);
2174 
2175 	/*
2176 	 * Set up the copy of the h/w RCB
2177 	 */
2178 	srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress;
2179 	srp->hw_rcb.max_len = (uint16_t)nslots;
2180 	srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2181 	srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots);
2182 
2183 	/*
2184 	 * Other one-off initialisation of per-ring data
2185 	 */
2186 	srp->bgep = bgep;
2187 	bsp = DMA_VPTR(bgep->status_block);
2188 	srp->cons_index_p = SEND_INDEX_P(bsp, ring);
2189 	srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring);
2190 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
2191 	    DDI_INTR_PRI(bgep->intr_pri));
2192 	mutex_init(srp->txbuf_lock, NULL, MUTEX_DRIVER,
2193 	    DDI_INTR_PRI(bgep->intr_pri));
2194 	mutex_init(srp->freetxbuf_lock, NULL, MUTEX_DRIVER,
2195 	    DDI_INTR_PRI(bgep->intr_pri));
2196 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
2197 	    DDI_INTR_PRI(bgep->intr_pri));
2198 	if (nslots == 0)
2199 		return;
2200 
2201 	/*
2202 	 * Allocate the array of s/w Send Buffer Descriptors
2203 	 */
2204 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
2205 	txbuf = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (*txbuf), KM_SLEEP);
2206 	srp->txbuf_head =
2207 	    kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (bge_queue_item_t), KM_SLEEP);
2208 	srp->pktp = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (send_pkt_t), KM_SLEEP);
2209 	srp->sw_sbds = ssbdp;
2210 	srp->txbuf = txbuf;
2211 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2212 	srp->tx_buffers_low = srp->tx_buffers / 4;
2213 	if (bgep->chipid.snd_buff_size > BGE_SEND_BUFF_SIZE_DEFAULT)
2214 		srp->tx_array_max = BGE_SEND_BUF_ARRAY_JUMBO;
2215 	else
2216 		srp->tx_array_max = BGE_SEND_BUF_ARRAY;
2217 	srp->tx_array = 1;
2218 
2219 	/*
2220 	 * Chunk tx desc area
2221 	 */
2222 	desc = srp->desc;
2223 	for (slot = 0; slot < nslots; ++ssbdp, ++slot) {
2224 		bge_slice_chunk(&ssbdp->desc, &desc, 1,
2225 		    sizeof (bge_sbd_t));
2226 	}
2227 	ASSERT(desc.alength == 0);
2228 
2229 	/*
2230 	 * Chunk tx buffer area
2231 	 */
2232 	for (split = 0; split < BGE_SPLIT; ++split) {
2233 		pbuf = srp->buf[0][split];
2234 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2235 			bge_slice_chunk(&txbuf->buf, &pbuf, 1,
2236 			    bgep->chipid.snd_buff_size);
2237 			txbuf++;
2238 		}
2239 		ASSERT(pbuf.alength == 0);
2240 	}
2241 }
2242 
2243 /*
2244  * Clean up initialisation done above before the memory is freed
2245  */
2246 static void
2247 bge_fini_send_ring(bge_t *bgep, uint64_t ring)
2248 {
2249 	send_ring_t *srp;
2250 	uint32_t array;
2251 	uint32_t split;
2252 	uint32_t nslots;
2253 
2254 	BGE_TRACE(("bge_fini_send_ring($%p, %d)",
2255 	    (void *)bgep, ring));
2256 
2257 	srp = &bgep->send[ring];
2258 	mutex_destroy(srp->tc_lock);
2259 	mutex_destroy(srp->freetxbuf_lock);
2260 	mutex_destroy(srp->txbuf_lock);
2261 	mutex_destroy(srp->tx_lock);
2262 	nslots = srp->desc.nslots;
2263 	if (nslots == 0)
2264 		return;
2265 
2266 	for (array = 1; array < srp->tx_array; ++array)
2267 		for (split = 0; split < BGE_SPLIT; ++split)
2268 			bge_free_dma_mem(&srp->buf[array][split]);
2269 	kmem_free(srp->sw_sbds, nslots*sizeof (*srp->sw_sbds));
2270 	kmem_free(srp->txbuf_head, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf_head));
2271 	kmem_free(srp->txbuf, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf));
2272 	kmem_free(srp->pktp, BGE_SEND_BUF_MAX*sizeof (*srp->pktp));
2273 	srp->sw_sbds = NULL;
2274 	srp->txbuf_head = NULL;
2275 	srp->txbuf = NULL;
2276 	srp->pktp = NULL;
2277 }
2278 
2279 /*
2280  * Initialise all transmit, receive, and buffer rings.
2281  */
2282 void
2283 bge_init_rings(bge_t *bgep)
2284 {
2285 	uint32_t ring;
2286 
2287 	BGE_TRACE(("bge_init_rings($%p)", (void *)bgep));
2288 
2289 	/*
2290 	 * Perform one-off initialisation of each ring ...
2291 	 */
2292 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2293 		bge_init_send_ring(bgep, ring);
2294 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2295 		bge_init_recv_ring(bgep, ring);
2296 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2297 		bge_init_buff_ring(bgep, ring);
2298 }
2299 
2300 /*
2301  * Undo the work of bge_init_rings() above before the memory is freed
2302  */
2303 void
2304 bge_fini_rings(bge_t *bgep)
2305 {
2306 	uint32_t ring;
2307 
2308 	BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep));
2309 
2310 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2311 		bge_fini_buff_ring(bgep, ring);
2312 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2313 		bge_fini_recv_ring(bgep, ring);
2314 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2315 		bge_fini_send_ring(bgep, ring);
2316 }
2317 
2318 /*
2319  * Called from the bge_m_stop() to free the tx buffers which are
2320  * allocated from the tx process.
2321  */
2322 void
2323 bge_free_txbuf_arrays(send_ring_t *srp)
2324 {
2325 	uint32_t array;
2326 	uint32_t split;
2327 
2328 	ASSERT(mutex_owned(srp->tx_lock));
2329 
2330 	/*
2331 	 * Free the extra tx buffer DMA area
2332 	 */
2333 	for (array = 1; array < srp->tx_array; ++array)
2334 		for (split = 0; split < BGE_SPLIT; ++split)
2335 			bge_free_dma_mem(&srp->buf[array][split]);
2336 
2337 	/*
2338 	 * Restore initial tx buffer numbers
2339 	 */
2340 	srp->tx_array = 1;
2341 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2342 	srp->tx_buffers_low = srp->tx_buffers / 4;
2343 	srp->tx_flow = 0;
2344 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
2345 }
2346 
2347 /*
2348  * Called from tx process to allocate more tx buffers
2349  */
2350 bge_queue_item_t *
2351 bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp)
2352 {
2353 	bge_queue_t *txbuf_queue;
2354 	bge_queue_item_t *txbuf_item_last;
2355 	bge_queue_item_t *txbuf_item;
2356 	bge_queue_item_t *txbuf_item_rtn;
2357 	sw_txbuf_t *txbuf;
2358 	dma_area_t area;
2359 	size_t txbuffsize;
2360 	uint32_t slot;
2361 	uint32_t array;
2362 	uint32_t split;
2363 	uint32_t err;
2364 
2365 	ASSERT(mutex_owned(srp->tx_lock));
2366 
2367 	array = srp->tx_array;
2368 	if (array >= srp->tx_array_max)
2369 		return (NULL);
2370 
2371 	/*
2372 	 * Allocate memory & handles for TX buffers
2373 	 */
2374 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2375 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2376 	for (split = 0; split < BGE_SPLIT; ++split) {
2377 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2378 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2379 		    &srp->buf[array][split]);
2380 		if (err != DDI_SUCCESS) {
2381 			/* Free the last already allocated OK chunks */
2382 			for (slot = 0; slot <= split; ++slot)
2383 				bge_free_dma_mem(&srp->buf[array][slot]);
2384 			srp->tx_alloc_fail++;
2385 			return (NULL);
2386 		}
2387 	}
2388 
2389 	/*
2390 	 * Chunk tx buffer area
2391 	 */
2392 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2393 	for (split = 0; split < BGE_SPLIT; ++split) {
2394 		area = srp->buf[array][split];
2395 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2396 			bge_slice_chunk(&txbuf->buf, &area, 1,
2397 			    bgep->chipid.snd_buff_size);
2398 			txbuf++;
2399 		}
2400 	}
2401 
2402 	/*
2403 	 * Add above buffers to the tx buffer pop queue
2404 	 */
2405 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2406 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2407 	txbuf_item_last = NULL;
2408 	for (slot = 0; slot < BGE_SEND_BUF_NUM; ++slot) {
2409 		txbuf_item->item = txbuf;
2410 		txbuf_item->next = txbuf_item_last;
2411 		txbuf_item_last = txbuf_item;
2412 		txbuf++;
2413 		txbuf_item++;
2414 	}
2415 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2416 	txbuf_item_rtn = txbuf_item;
2417 	txbuf_item++;
2418 	txbuf_queue = srp->txbuf_pop_queue;
2419 	mutex_enter(txbuf_queue->lock);
2420 	txbuf_item->next = txbuf_queue->head;
2421 	txbuf_queue->head = txbuf_item_last;
2422 	txbuf_queue->count += BGE_SEND_BUF_NUM - 1;
2423 	mutex_exit(txbuf_queue->lock);
2424 
2425 	srp->tx_array++;
2426 	srp->tx_buffers += BGE_SEND_BUF_NUM;
2427 	srp->tx_buffers_low = srp->tx_buffers / 4;
2428 
2429 	return (txbuf_item_rtn);
2430 }
2431 
2432 /*
2433  * This function allocates all the transmit and receive buffers
2434  * and descriptors, in four chunks.
2435  */
2436 int
2437 bge_alloc_bufs(bge_t *bgep)
2438 {
2439 	dma_area_t area;
2440 	size_t rxbuffsize;
2441 	size_t txbuffsize;
2442 	size_t rxbuffdescsize;
2443 	size_t rxdescsize;
2444 	size_t txdescsize;
2445 	uint32_t ring;
2446 	uint32_t rx_rings = bgep->chipid.rx_rings;
2447 	uint32_t tx_rings = bgep->chipid.tx_rings;
2448 	int split;
2449 	int err;
2450 
2451 	BGE_TRACE(("bge_alloc_bufs($%p)",
2452 	    (void *)bgep));
2453 
2454 	rxbuffsize = BGE_STD_SLOTS_USED*bgep->chipid.std_buf_size;
2455 	rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size;
2456 	rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE;
2457 
2458 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2459 	txbuffsize *= tx_rings;
2460 
2461 	rxdescsize = rx_rings*bgep->chipid.recv_slots;
2462 	rxdescsize *= sizeof (bge_rbd_t);
2463 
2464 	rxbuffdescsize = BGE_STD_SLOTS_USED;
2465 	rxbuffdescsize += bgep->chipid.jumbo_slots;
2466 	rxbuffdescsize += BGE_MINI_SLOTS_USED;
2467 	rxbuffdescsize *= sizeof (bge_rbd_t);
2468 
2469 	txdescsize = tx_rings*BGE_SEND_SLOTS_USED;
2470 	txdescsize *= sizeof (bge_sbd_t);
2471 	txdescsize += sizeof (bge_statistics_t);
2472 	txdescsize += sizeof (bge_status_t);
2473 	txdescsize += BGE_STATUS_PADDING;
2474 
2475 	/*
2476 	 * Enable PCI relaxed ordering only for RX/TX data buffers
2477 	 */
2478 	if (bge_relaxed_ordering)
2479 		dma_attr.dma_attr_flags |= DDI_DMA_RELAXED_ORDERING;
2480 
2481 	/*
2482 	 * Allocate memory & handles for RX buffers
2483 	 */
2484 	ASSERT((rxbuffsize % BGE_SPLIT) == 0);
2485 	for (split = 0; split < BGE_SPLIT; ++split) {
2486 		err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT,
2487 		    &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE,
2488 		    &bgep->rx_buff[split]);
2489 		if (err != DDI_SUCCESS)
2490 			return (DDI_FAILURE);
2491 	}
2492 
2493 	/*
2494 	 * Allocate memory & handles for TX buffers
2495 	 */
2496 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2497 	for (split = 0; split < BGE_SPLIT; ++split) {
2498 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2499 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2500 		    &bgep->tx_buff[split]);
2501 		if (err != DDI_SUCCESS)
2502 			return (DDI_FAILURE);
2503 	}
2504 
2505 	dma_attr.dma_attr_flags &= ~DDI_DMA_RELAXED_ORDERING;
2506 
2507 	/*
2508 	 * Allocate memory & handles for receive return rings
2509 	 */
2510 	ASSERT((rxdescsize % rx_rings) == 0);
2511 	for (split = 0; split < rx_rings; ++split) {
2512 		err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings,
2513 		    &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2514 		    &bgep->rx_desc[split]);
2515 		if (err != DDI_SUCCESS)
2516 			return (DDI_FAILURE);
2517 	}
2518 
2519 	/*
2520 	 * Allocate memory & handles for buffer (producer) descriptor rings
2521 	 */
2522 	err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr,
2523 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]);
2524 	if (err != DDI_SUCCESS)
2525 		return (DDI_FAILURE);
2526 
2527 	/*
2528 	 * Allocate memory & handles for TX descriptor rings,
2529 	 * status block, and statistics area
2530 	 */
2531 	err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr,
2532 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc);
2533 	if (err != DDI_SUCCESS)
2534 		return (DDI_FAILURE);
2535 
2536 	/*
2537 	 * Now carve up each of the allocated areas ...
2538 	 */
2539 	for (split = 0; split < BGE_SPLIT; ++split) {
2540 		area = bgep->rx_buff[split];
2541 		bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split],
2542 		    &area, BGE_STD_SLOTS_USED/BGE_SPLIT,
2543 		    bgep->chipid.std_buf_size);
2544 		bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split],
2545 		    &area, bgep->chipid.jumbo_slots/BGE_SPLIT,
2546 		    bgep->chipid.recv_jumbo_size);
2547 		bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split],
2548 		    &area, BGE_MINI_SLOTS_USED/BGE_SPLIT,
2549 		    BGE_MINI_BUFF_SIZE);
2550 	}
2551 
2552 	for (split = 0; split < BGE_SPLIT; ++split) {
2553 		area = bgep->tx_buff[split];
2554 		for (ring = 0; ring < tx_rings; ++ring)
2555 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2556 			    &area, BGE_SEND_BUF_NUM/BGE_SPLIT,
2557 			    bgep->chipid.snd_buff_size);
2558 		for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2559 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2560 			    &area, 0, bgep->chipid.snd_buff_size);
2561 	}
2562 
2563 	for (ring = 0; ring < rx_rings; ++ring)
2564 		bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring],
2565 		    bgep->chipid.recv_slots, sizeof (bge_rbd_t));
2566 
2567 	area = bgep->rx_desc[rx_rings];
2568 	for (; ring < BGE_RECV_RINGS_MAX; ++ring)
2569 		bge_slice_chunk(&bgep->recv[ring].desc, &area,
2570 		    0, sizeof (bge_rbd_t));
2571 	bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area,
2572 	    BGE_STD_SLOTS_USED, sizeof (bge_rbd_t));
2573 	bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area,
2574 	    bgep->chipid.jumbo_slots, sizeof (bge_rbd_t));
2575 	bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area,
2576 	    BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t));
2577 	ASSERT(area.alength == 0);
2578 
2579 	area = bgep->tx_desc;
2580 	for (ring = 0; ring < tx_rings; ++ring)
2581 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2582 		    BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t));
2583 	for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2584 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2585 		    0, sizeof (bge_sbd_t));
2586 	bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t));
2587 	bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t));
2588 	ASSERT(area.alength == BGE_STATUS_PADDING);
2589 	DMA_ZERO(bgep->status_block);
2590 
2591 	return (DDI_SUCCESS);
2592 }
2593 
2594 /*
2595  * This routine frees the transmit and receive buffers and descriptors.
2596  * Make sure the chip is stopped before calling it!
2597  */
2598 void
2599 bge_free_bufs(bge_t *bgep)
2600 {
2601 	int split;
2602 
2603 	BGE_TRACE(("bge_free_bufs($%p)",
2604 	    (void *)bgep));
2605 
2606 	bge_free_dma_mem(&bgep->tx_desc);
2607 	for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split)
2608 		bge_free_dma_mem(&bgep->rx_desc[split]);
2609 	for (split = 0; split < BGE_SPLIT; ++split)
2610 		bge_free_dma_mem(&bgep->tx_buff[split]);
2611 	for (split = 0; split < BGE_SPLIT; ++split)
2612 		bge_free_dma_mem(&bgep->rx_buff[split]);
2613 }
2614 
2615 /*
2616  * Determine (initial) MAC address ("BIA") to use for this interface
2617  */
2618 
2619 static void
2620 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp)
2621 {
2622 	struct ether_addr sysaddr;
2623 	char propbuf[8];		/* "true" or "false", plus NUL	*/
2624 	uchar_t *bytes;
2625 	int *ints;
2626 	uint_t nelts;
2627 	int err;
2628 
2629 	BGE_TRACE(("bge_find_mac_address($%p)",
2630 	    (void *)bgep));
2631 
2632 	BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)",
2633 	    cidp->hw_mac_addr,
2634 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2635 	    cidp->vendor_addr.set ? "" : "not "));
2636 
2637 	/*
2638 	 * The "vendor's factory-set address" may already have
2639 	 * been extracted from the chip, but if the property
2640 	 * "local-mac-address" is set we use that instead.  It
2641 	 * will normally be set by OBP, but it could also be
2642 	 * specified in a .conf file(!)
2643 	 *
2644 	 * There doesn't seem to be a way to define byte-array
2645 	 * properties in a .conf, so we check whether it looks
2646 	 * like an array of 6 ints instead.
2647 	 *
2648 	 * Then, we check whether it looks like an array of 6
2649 	 * bytes (which it should, if OBP set it).  If we can't
2650 	 * make sense of it either way, we'll ignore it.
2651 	 */
2652 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2653 	    DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts);
2654 	if (err == DDI_PROP_SUCCESS) {
2655 		if (nelts == ETHERADDRL) {
2656 			while (nelts--)
2657 				cidp->vendor_addr.addr[nelts] = ints[nelts];
2658 			cidp->vendor_addr.set = B_TRUE;
2659 		}
2660 		ddi_prop_free(ints);
2661 	}
2662 
2663 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2664 	    DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts);
2665 	if (err == DDI_PROP_SUCCESS) {
2666 		if (nelts == ETHERADDRL) {
2667 			while (nelts--)
2668 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2669 			cidp->vendor_addr.set = B_TRUE;
2670 		}
2671 		ddi_prop_free(bytes);
2672 	}
2673 
2674 	BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)",
2675 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2676 	    cidp->vendor_addr.set ? "" : "not "));
2677 
2678 	/*
2679 	 * Look up the OBP property "local-mac-address?".  Note that even
2680 	 * though its value is a string (which should be "true" or "false"),
2681 	 * it can't be decoded by ddi_prop_lookup_string(9F).  So, we zero
2682 	 * the buffer first and then fetch the property as an untyped array;
2683 	 * this may or may not include a final NUL, but since there will
2684 	 * always be one left at the end of the buffer we can now treat it
2685 	 * as a string anyway.
2686 	 */
2687 	nelts = sizeof (propbuf);
2688 	bzero(propbuf, nelts--);
2689 	err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo,
2690 	    DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts);
2691 
2692 	/*
2693 	 * Now, if the address still isn't set from the hardware (SEEPROM)
2694 	 * or the OBP or .conf property, OR if the user has foolishly set
2695 	 * 'local-mac-address? = false', use "the system address" instead
2696 	 * (but only if it's non-null i.e. has been set from the IDPROM).
2697 	 */
2698 	if (cidp->vendor_addr.set == B_FALSE || strcmp(propbuf, "false") == 0)
2699 		if (localetheraddr(NULL, &sysaddr) != 0) {
2700 			ethaddr_copy(&sysaddr, cidp->vendor_addr.addr);
2701 			cidp->vendor_addr.set = B_TRUE;
2702 		}
2703 
2704 	BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)",
2705 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2706 	    cidp->vendor_addr.set ? "" : "not "));
2707 
2708 	/*
2709 	 * Finally(!), if there's a valid "mac-address" property (created
2710 	 * if we netbooted from this interface), we must use this instead
2711 	 * of any of the above to ensure that the NFS/install server doesn't
2712 	 * get confused by the address changing as Solaris takes over!
2713 	 */
2714 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2715 	    DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts);
2716 	if (err == DDI_PROP_SUCCESS) {
2717 		if (nelts == ETHERADDRL) {
2718 			while (nelts--)
2719 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2720 			cidp->vendor_addr.set = B_TRUE;
2721 		}
2722 		ddi_prop_free(bytes);
2723 	}
2724 
2725 	BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)",
2726 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2727 	    cidp->vendor_addr.set ? "" : "not "));
2728 }
2729 
2730 
2731 /*ARGSUSED*/
2732 int
2733 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle)
2734 {
2735 	ddi_fm_error_t de;
2736 
2737 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
2738 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
2739 	return (de.fme_status);
2740 }
2741 
2742 /*ARGSUSED*/
2743 int
2744 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle)
2745 {
2746 	ddi_fm_error_t de;
2747 
2748 	ASSERT(bgep->progress & PROGRESS_BUFS);
2749 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
2750 	return (de.fme_status);
2751 }
2752 
2753 /*
2754  * The IO fault service error handling callback function
2755  */
2756 /*ARGSUSED*/
2757 static int
2758 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
2759 {
2760 	/*
2761 	 * as the driver can always deal with an error in any dma or
2762 	 * access handle, we can just return the fme_status value.
2763 	 */
2764 	pci_ereport_post(dip, err, NULL);
2765 	return (err->fme_status);
2766 }
2767 
2768 static void
2769 bge_fm_init(bge_t *bgep)
2770 {
2771 	ddi_iblock_cookie_t iblk;
2772 
2773 	/* Only register with IO Fault Services if we have some capability */
2774 	if (bgep->fm_capabilities) {
2775 		bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2776 		bge_desc_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2777 		dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
2778 
2779 		/* Register capabilities with IO Fault Services */
2780 		ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk);
2781 
2782 		/*
2783 		 * Initialize pci ereport capabilities if ereport capable
2784 		 */
2785 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2786 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2787 			pci_ereport_setup(bgep->devinfo);
2788 
2789 		/*
2790 		 * Register error callback if error callback capable
2791 		 */
2792 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2793 			ddi_fm_handler_register(bgep->devinfo,
2794 			    bge_fm_error_cb, (void*) bgep);
2795 	} else {
2796 		/*
2797 		 * These fields have to be cleared of FMA if there are no
2798 		 * FMA capabilities at runtime.
2799 		 */
2800 		bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2801 		bge_desc_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2802 		dma_attr.dma_attr_flags = 0;
2803 	}
2804 }
2805 
2806 static void
2807 bge_fm_fini(bge_t *bgep)
2808 {
2809 	/* Only unregister FMA capabilities if we registered some */
2810 	if (bgep->fm_capabilities) {
2811 
2812 		/*
2813 		 * Release any resources allocated by pci_ereport_setup()
2814 		 */
2815 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2816 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2817 			pci_ereport_teardown(bgep->devinfo);
2818 
2819 		/*
2820 		 * Un-register error callback if error callback capable
2821 		 */
2822 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2823 			ddi_fm_handler_unregister(bgep->devinfo);
2824 
2825 		/* Unregister from IO Fault Services */
2826 		ddi_fm_fini(bgep->devinfo);
2827 	}
2828 }
2829 
2830 static void
2831 #ifdef BGE_IPMI_ASF
2832 bge_unattach(bge_t *bgep, uint_t asf_mode)
2833 #else
2834 bge_unattach(bge_t *bgep)
2835 #endif
2836 {
2837 	BGE_TRACE(("bge_unattach($%p)",
2838 		(void *)bgep));
2839 
2840 	/*
2841 	 * Flag that no more activity may be initiated
2842 	 */
2843 	bgep->progress &= ~PROGRESS_READY;
2844 
2845 	/*
2846 	 * Quiesce the PHY and MAC (leave it reset but still powered).
2847 	 * Clean up and free all BGE data structures
2848 	 */
2849 	if (bgep->periodic_id != NULL) {
2850 		ddi_periodic_delete(bgep->periodic_id);
2851 		bgep->periodic_id = NULL;
2852 	}
2853 	if (bgep->progress & PROGRESS_KSTATS)
2854 		bge_fini_kstats(bgep);
2855 	if (bgep->progress & PROGRESS_PHY)
2856 		bge_phys_reset(bgep);
2857 	if (bgep->progress & PROGRESS_HWINT) {
2858 		mutex_enter(bgep->genlock);
2859 #ifdef BGE_IPMI_ASF
2860 		if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS)
2861 #else
2862 		if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS)
2863 #endif
2864 			ddi_fm_service_impact(bgep->devinfo,
2865 			    DDI_SERVICE_UNAFFECTED);
2866 #ifdef BGE_IPMI_ASF
2867 		if (bgep->asf_enabled) {
2868 			/*
2869 			 * This register has been overlaid. We restore its
2870 			 * initial value here.
2871 			 */
2872 			bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR,
2873 			    BGE_NIC_DATA_SIG);
2874 		}
2875 #endif
2876 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
2877 			ddi_fm_service_impact(bgep->devinfo,
2878 			    DDI_SERVICE_UNAFFECTED);
2879 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2880 			ddi_fm_service_impact(bgep->devinfo,
2881 			    DDI_SERVICE_UNAFFECTED);
2882 		mutex_exit(bgep->genlock);
2883 	}
2884 	if (bgep->progress & PROGRESS_INTR) {
2885 		bge_intr_disable(bgep);
2886 		bge_fini_rings(bgep);
2887 	}
2888 	if (bgep->progress & PROGRESS_HWINT) {
2889 		bge_rem_intrs(bgep);
2890 		rw_destroy(bgep->errlock);
2891 		mutex_destroy(bgep->softintrlock);
2892 		mutex_destroy(bgep->genlock);
2893 	}
2894 	if (bgep->progress & PROGRESS_FACTOTUM)
2895 		ddi_remove_softintr(bgep->factotum_id);
2896 	if (bgep->progress & PROGRESS_RESCHED)
2897 		ddi_remove_softintr(bgep->drain_id);
2898 	if (bgep->progress & PROGRESS_BUFS)
2899 		bge_free_bufs(bgep);
2900 	if (bgep->progress & PROGRESS_REGS)
2901 		ddi_regs_map_free(&bgep->io_handle);
2902 	if (bgep->progress & PROGRESS_CFG)
2903 		pci_config_teardown(&bgep->cfg_handle);
2904 
2905 	bge_fm_fini(bgep);
2906 
2907 	ddi_remove_minor_node(bgep->devinfo, NULL);
2908 	kmem_free(bgep->pstats, sizeof (bge_statistics_reg_t));
2909 	kmem_free(bgep, sizeof (*bgep));
2910 }
2911 
2912 static int
2913 bge_resume(dev_info_t *devinfo)
2914 {
2915 	bge_t *bgep;				/* Our private data	*/
2916 	chip_id_t *cidp;
2917 	chip_id_t chipid;
2918 
2919 	bgep = ddi_get_driver_private(devinfo);
2920 	if (bgep == NULL)
2921 		return (DDI_FAILURE);
2922 
2923 	/*
2924 	 * Refuse to resume if the data structures aren't consistent
2925 	 */
2926 	if (bgep->devinfo != devinfo)
2927 		return (DDI_FAILURE);
2928 
2929 #ifdef BGE_IPMI_ASF
2930 	/*
2931 	 * Power management hasn't been supported in BGE now. If you
2932 	 * want to implement it, please add the ASF/IPMI related
2933 	 * code here.
2934 	 */
2935 
2936 #endif
2937 
2938 	/*
2939 	 * Read chip ID & set up config space command register(s)
2940 	 * Refuse to resume if the chip has changed its identity!
2941 	 */
2942 	cidp = &bgep->chipid;
2943 	mutex_enter(bgep->genlock);
2944 	bge_chip_cfg_init(bgep, &chipid, B_FALSE);
2945 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2946 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2947 		mutex_exit(bgep->genlock);
2948 		return (DDI_FAILURE);
2949 	}
2950 	mutex_exit(bgep->genlock);
2951 	if (chipid.vendor != cidp->vendor)
2952 		return (DDI_FAILURE);
2953 	if (chipid.device != cidp->device)
2954 		return (DDI_FAILURE);
2955 	if (chipid.revision != cidp->revision)
2956 		return (DDI_FAILURE);
2957 	if (chipid.asic_rev != cidp->asic_rev)
2958 		return (DDI_FAILURE);
2959 
2960 	/*
2961 	 * All OK, reinitialise h/w & kick off GLD scheduling
2962 	 */
2963 	mutex_enter(bgep->genlock);
2964 	if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) {
2965 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
2966 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
2967 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2968 		mutex_exit(bgep->genlock);
2969 		return (DDI_FAILURE);
2970 	}
2971 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2972 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2973 		mutex_exit(bgep->genlock);
2974 		return (DDI_FAILURE);
2975 	}
2976 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
2977 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2978 		mutex_exit(bgep->genlock);
2979 		return (DDI_FAILURE);
2980 	}
2981 	mutex_exit(bgep->genlock);
2982 	return (DDI_SUCCESS);
2983 }
2984 
2985 /*
2986  * attach(9E) -- Attach a device to the system
2987  *
2988  * Called once for each board successfully probed.
2989  */
2990 static int
2991 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2992 {
2993 	bge_t *bgep;				/* Our private data	*/
2994 	mac_register_t *macp;
2995 	chip_id_t *cidp;
2996 	caddr_t regs;
2997 	int instance;
2998 	int err;
2999 	int intr_types;
3000 #ifdef BGE_IPMI_ASF
3001 	uint32_t mhcrValue;
3002 #ifdef __sparc
3003 	uint16_t value16;
3004 #endif
3005 #ifdef BGE_NETCONSOLE
3006 	int retval;
3007 #endif
3008 #endif
3009 
3010 	instance = ddi_get_instance(devinfo);
3011 
3012 	BGE_GTRACE(("bge_attach($%p, %d) instance %d",
3013 	    (void *)devinfo, cmd, instance));
3014 	BGE_BRKPT(NULL, "bge_attach");
3015 
3016 	switch (cmd) {
3017 	default:
3018 		return (DDI_FAILURE);
3019 
3020 	case DDI_RESUME:
3021 		return (bge_resume(devinfo));
3022 
3023 	case DDI_ATTACH:
3024 		break;
3025 	}
3026 
3027 	bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP);
3028 	bgep->pstats = kmem_zalloc(sizeof (bge_statistics_reg_t), KM_SLEEP);
3029 	ddi_set_driver_private(devinfo, bgep);
3030 	bgep->bge_guard = BGE_GUARD;
3031 	bgep->devinfo = devinfo;
3032 	bgep->param_drain_max = 64;
3033 	bgep->param_msi_cnt = 0;
3034 	bgep->param_loop_mode = 0;
3035 
3036 	/*
3037 	 * Initialize more fields in BGE private data
3038 	 */
3039 	bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3040 	    DDI_PROP_DONTPASS, debug_propname, bge_debug);
3041 	(void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d",
3042 	    BGE_DRIVER_NAME, instance);
3043 
3044 	/*
3045 	 * Initialize for fma support
3046 	 */
3047 	bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3048 	    DDI_PROP_DONTPASS, fm_cap,
3049 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3050 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3051 	BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities));
3052 	bge_fm_init(bgep);
3053 
3054 	/*
3055 	 * Look up the IOMMU's page size for DVMA mappings (must be
3056 	 * a power of 2) and convert to a mask.  This can be used to
3057 	 * determine whether a message buffer crosses a page boundary.
3058 	 * Note: in 2s complement binary notation, if X is a power of
3059 	 * 2, then -X has the representation "11...1100...00".
3060 	 */
3061 	bgep->pagemask = dvma_pagesize(devinfo);
3062 	ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask));
3063 	bgep->pagemask = -bgep->pagemask;
3064 
3065 	/*
3066 	 * Map config space registers
3067 	 * Read chip ID & set up config space command register(s)
3068 	 *
3069 	 * Note: this leaves the chip accessible by Memory Space
3070 	 * accesses, but with interrupts and Bus Mastering off.
3071 	 * This should ensure that nothing untoward will happen
3072 	 * if it has been left active by the (net-)bootloader.
3073 	 * We'll re-enable Bus Mastering once we've reset the chip,
3074 	 * and allow interrupts only when everything else is set up.
3075 	 */
3076 	err = pci_config_setup(devinfo, &bgep->cfg_handle);
3077 #ifdef BGE_IPMI_ASF
3078 #ifdef __sparc
3079 	value16 = pci_config_get16(bgep->cfg_handle, PCI_CONF_COMM);
3080 	value16 = value16 | (PCI_COMM_MAE | PCI_COMM_ME);
3081 	pci_config_put16(bgep->cfg_handle, PCI_CONF_COMM, value16);
3082 	mhcrValue = MHCR_ENABLE_INDIRECT_ACCESS |
3083 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3084 	    MHCR_MASK_INTERRUPT_MODE |
3085 	    MHCR_MASK_PCI_INT_OUTPUT |
3086 	    MHCR_CLEAR_INTERRUPT_INTA |
3087 	    MHCR_ENABLE_ENDIAN_WORD_SWAP |
3088 	    MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3089 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcrValue);
3090 	bge_ind_put32(bgep, MEMORY_ARBITER_MODE_REG,
3091 	    bge_ind_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3092 	    MEMORY_ARBITER_ENABLE);
3093 #else
3094 	mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3095 #endif
3096 	if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) {
3097 		bgep->asf_wordswapped = B_TRUE;
3098 	} else {
3099 		bgep->asf_wordswapped = B_FALSE;
3100 	}
3101 	bge_asf_get_config(bgep);
3102 #endif
3103 	if (err != DDI_SUCCESS) {
3104 		bge_problem(bgep, "pci_config_setup() failed");
3105 		goto attach_fail;
3106 	}
3107 	bgep->progress |= PROGRESS_CFG;
3108 	cidp = &bgep->chipid;
3109 	bzero(cidp, sizeof (*cidp));
3110 	bge_chip_cfg_init(bgep, cidp, B_FALSE);
3111 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3112 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3113 		goto attach_fail;
3114 	}
3115 
3116 #ifdef BGE_IPMI_ASF
3117 	if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3118 	    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
3119 		bgep->asf_newhandshake = B_TRUE;
3120 	} else {
3121 		bgep->asf_newhandshake = B_FALSE;
3122 	}
3123 #endif
3124 
3125 	/*
3126 	 * Update those parts of the chip ID derived from volatile
3127 	 * registers with the values seen by OBP (in case the chip
3128 	 * has been reset externally and therefore lost them).
3129 	 */
3130 	cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3131 	    DDI_PROP_DONTPASS, subven_propname, cidp->subven);
3132 	cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3133 	    DDI_PROP_DONTPASS, subdev_propname, cidp->subdev);
3134 	cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3135 	    DDI_PROP_DONTPASS, clsize_propname, cidp->clsize);
3136 	cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3137 	    DDI_PROP_DONTPASS, latency_propname, cidp->latency);
3138 	cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3139 	    DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings);
3140 	cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3141 	    DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings);
3142 
3143 	if (bge_jumbo_enable == B_TRUE) {
3144 		cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3145 		    DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU);
3146 		if ((cidp->default_mtu < BGE_DEFAULT_MTU)||
3147 		    (cidp->default_mtu > BGE_MAXIMUM_MTU)) {
3148 			cidp->default_mtu = BGE_DEFAULT_MTU;
3149 		}
3150 	}
3151 	/*
3152 	 * Map operating registers
3153 	 */
3154 	err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER,
3155 	    &regs, 0, 0, &bge_reg_accattr, &bgep->io_handle);
3156 	if (err != DDI_SUCCESS) {
3157 		bge_problem(bgep, "ddi_regs_map_setup() failed");
3158 		goto attach_fail;
3159 	}
3160 	bgep->io_regs = regs;
3161 	bgep->progress |= PROGRESS_REGS;
3162 
3163 	/*
3164 	 * Characterise the device, so we know its requirements.
3165 	 * Then allocate the appropriate TX and RX descriptors & buffers.
3166 	 */
3167 	if (bge_chip_id_init(bgep) == EIO) {
3168 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3169 		goto attach_fail;
3170 	}
3171 
3172 
3173 	err = bge_alloc_bufs(bgep);
3174 	if (err != DDI_SUCCESS) {
3175 		bge_problem(bgep, "DMA buffer allocation failed");
3176 		goto attach_fail;
3177 	}
3178 	bgep->progress |= PROGRESS_BUFS;
3179 
3180 	/*
3181 	 * Add the softint handlers:
3182 	 *
3183 	 * Both of these handlers are used to avoid restrictions on the
3184 	 * context and/or mutexes required for some operations.  In
3185 	 * particular, the hardware interrupt handler and its subfunctions
3186 	 * can detect a number of conditions that we don't want to handle
3187 	 * in that context or with that set of mutexes held.  So, these
3188 	 * softints are triggered instead:
3189 	 *
3190 	 * the <resched> softint is triggered if we have previously
3191 	 * had to refuse to send a packet because of resource shortage
3192 	 * (we've run out of transmit buffers), but the send completion
3193 	 * interrupt handler has now detected that more buffers have
3194 	 * become available.
3195 	 *
3196 	 * the <factotum> is triggered if the h/w interrupt handler
3197 	 * sees the <link state changed> or <error> bits in the status
3198 	 * block.  It's also triggered periodically to poll the link
3199 	 * state, just in case we aren't getting link status change
3200 	 * interrupts ...
3201 	 */
3202 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->drain_id,
3203 	    NULL, NULL, bge_send_drain, (caddr_t)bgep);
3204 	if (err != DDI_SUCCESS) {
3205 		bge_problem(bgep, "ddi_add_softintr() failed");
3206 		goto attach_fail;
3207 	}
3208 	bgep->progress |= PROGRESS_RESCHED;
3209 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id,
3210 	    NULL, NULL, bge_chip_factotum, (caddr_t)bgep);
3211 	if (err != DDI_SUCCESS) {
3212 		bge_problem(bgep, "ddi_add_softintr() failed");
3213 		goto attach_fail;
3214 	}
3215 	bgep->progress |= PROGRESS_FACTOTUM;
3216 
3217 	/* Get supported interrupt types */
3218 	if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) {
3219 		bge_error(bgep, "ddi_intr_get_supported_types failed\n");
3220 
3221 		goto attach_fail;
3222 	}
3223 
3224 	BGE_DEBUG(("%s: ddi_intr_get_supported_types() returned: %x",
3225 	    bgep->ifname, intr_types));
3226 
3227 	if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) {
3228 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
3229 			bge_error(bgep, "MSI registration failed, "
3230 			    "trying FIXED interrupt type\n");
3231 		} else {
3232 			BGE_DEBUG(("%s: Using MSI interrupt type",
3233 			    bgep->ifname));
3234 			bgep->intr_type = DDI_INTR_TYPE_MSI;
3235 			bgep->progress |= PROGRESS_HWINT;
3236 		}
3237 	}
3238 
3239 	if (!(bgep->progress & PROGRESS_HWINT) &&
3240 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
3241 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
3242 			bge_error(bgep, "FIXED interrupt "
3243 			    "registration failed\n");
3244 			goto attach_fail;
3245 		}
3246 
3247 		BGE_DEBUG(("%s: Using FIXED interrupt type", bgep->ifname));
3248 
3249 		bgep->intr_type = DDI_INTR_TYPE_FIXED;
3250 		bgep->progress |= PROGRESS_HWINT;
3251 	}
3252 
3253 	if (!(bgep->progress & PROGRESS_HWINT)) {
3254 		bge_error(bgep, "No interrupts registered\n");
3255 		goto attach_fail;
3256 	}
3257 
3258 	/*
3259 	 * Note that interrupts are not enabled yet as
3260 	 * mutex locks are not initialized. Initialize mutex locks.
3261 	 */
3262 	mutex_init(bgep->genlock, NULL, MUTEX_DRIVER,
3263 	    DDI_INTR_PRI(bgep->intr_pri));
3264 	mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER,
3265 	    DDI_INTR_PRI(bgep->intr_pri));
3266 	rw_init(bgep->errlock, NULL, RW_DRIVER,
3267 	    DDI_INTR_PRI(bgep->intr_pri));
3268 
3269 	/*
3270 	 * Initialize rings.
3271 	 */
3272 	bge_init_rings(bgep);
3273 
3274 	/*
3275 	 * Now that mutex locks are initialized, enable interrupts.
3276 	 */
3277 	bge_intr_enable(bgep);
3278 	bgep->progress |= PROGRESS_INTR;
3279 
3280 	/*
3281 	 * Initialise link state variables
3282 	 * Stop, reset & reinitialise the chip.
3283 	 * Initialise the (internal) PHY.
3284 	 */
3285 	bgep->link_state = LINK_STATE_UNKNOWN;
3286 
3287 	mutex_enter(bgep->genlock);
3288 
3289 	/*
3290 	 * Reset chip & rings to initial state; also reset address
3291 	 * filtering, promiscuity, loopback mode.
3292 	 */
3293 #ifdef BGE_IPMI_ASF
3294 #ifdef BGE_NETCONSOLE
3295 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
3296 #else
3297 	if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) {
3298 #endif
3299 #else
3300 	if (bge_reset(bgep) != DDI_SUCCESS) {
3301 #endif
3302 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3303 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3304 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3305 		mutex_exit(bgep->genlock);
3306 		goto attach_fail;
3307 	}
3308 
3309 #ifdef BGE_IPMI_ASF
3310 	if (bgep->asf_enabled) {
3311 		bgep->asf_status = ASF_STAT_RUN_INIT;
3312 	}
3313 #endif
3314 
3315 	bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash));
3316 	bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs));
3317 	bgep->promisc = B_FALSE;
3318 	bgep->param_loop_mode = BGE_LOOP_NONE;
3319 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3320 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3321 		mutex_exit(bgep->genlock);
3322 		goto attach_fail;
3323 	}
3324 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3325 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3326 		mutex_exit(bgep->genlock);
3327 		goto attach_fail;
3328 	}
3329 
3330 	mutex_exit(bgep->genlock);
3331 
3332 	if (bge_phys_init(bgep) == EIO) {
3333 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3334 		goto attach_fail;
3335 	}
3336 	bgep->progress |= PROGRESS_PHY;
3337 
3338 	/*
3339 	 * initialize NDD-tweakable parameters
3340 	 */
3341 	if (bge_nd_init(bgep)) {
3342 		bge_problem(bgep, "bge_nd_init() failed");
3343 		goto attach_fail;
3344 	}
3345 	bgep->progress |= PROGRESS_NDD;
3346 
3347 	/*
3348 	 * Create & initialise named kstats
3349 	 */
3350 	bge_init_kstats(bgep, instance);
3351 	bgep->progress |= PROGRESS_KSTATS;
3352 
3353 	/*
3354 	 * Determine whether to override the chip's own MAC address
3355 	 */
3356 	bge_find_mac_address(bgep, cidp);
3357 	ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr[0].addr);
3358 	bgep->curr_addr[0].set = B_TRUE;
3359 
3360 	bgep->unicst_addr_total = MAC_ADDRESS_REGS_MAX;
3361 	/*
3362 	 * Address available is one less than MAX
3363 	 * as primary address is not advertised
3364 	 * as a multiple MAC address.
3365 	 */
3366 	bgep->unicst_addr_avail = MAC_ADDRESS_REGS_MAX - 1;
3367 
3368 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
3369 		goto attach_fail;
3370 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
3371 	macp->m_driver = bgep;
3372 	macp->m_dip = devinfo;
3373 	macp->m_src_addr = bgep->curr_addr[0].addr;
3374 	macp->m_callbacks = &bge_m_callbacks;
3375 	macp->m_min_sdu = 0;
3376 	macp->m_max_sdu = cidp->ethmax_size - sizeof (struct ether_header);
3377 	macp->m_margin = VLAN_TAGSZ;
3378 	macp->m_priv_props = bge_priv_prop;
3379 	macp->m_priv_prop_count = BGE_MAX_PRIV_PROPS;
3380 
3381 	/*
3382 	 * Finally, we're ready to register ourselves with the MAC layer
3383 	 * interface; if this succeeds, we're all ready to start()
3384 	 */
3385 	err = mac_register(macp, &bgep->mh);
3386 	mac_free(macp);
3387 	if (err != 0)
3388 		goto attach_fail;
3389 
3390 	/*
3391 	 * Register a periodical handler.
3392 	 * bge_chip_cyclic() is invoked in kernel context.
3393 	 */
3394 	bgep->periodic_id = ddi_periodic_add(bge_chip_cyclic, bgep,
3395 	    BGE_CYCLIC_PERIOD, DDI_IPL_0);
3396 
3397 	bgep->progress |= PROGRESS_READY;
3398 	ASSERT(bgep->bge_guard == BGE_GUARD);
3399 #ifdef BGE_IPMI_ASF
3400 #ifdef BGE_NETCONSOLE
3401 	if (bgep->asf_enabled) {
3402 		mutex_enter(bgep->genlock);
3403 		retval = bge_chip_start(bgep, B_TRUE);
3404 		mutex_exit(bgep->genlock);
3405 		if (retval != DDI_SUCCESS)
3406 			goto attach_fail;
3407 	}
3408 #endif
3409 #endif
3410 	return (DDI_SUCCESS);
3411 
3412 attach_fail:
3413 #ifdef BGE_IPMI_ASF
3414 	bge_unattach(bgep, ASF_MODE_SHUTDOWN);
3415 #else
3416 	bge_unattach(bgep);
3417 #endif
3418 	return (DDI_FAILURE);
3419 }
3420 
3421 /*
3422  *	bge_suspend() -- suspend transmit/receive for powerdown
3423  */
3424 static int
3425 bge_suspend(bge_t *bgep)
3426 {
3427 	/*
3428 	 * Stop processing and idle (powerdown) the PHY ...
3429 	 */
3430 	mutex_enter(bgep->genlock);
3431 #ifdef BGE_IPMI_ASF
3432 	/*
3433 	 * Power management hasn't been supported in BGE now. If you
3434 	 * want to implement it, please add the ASF/IPMI related
3435 	 * code here.
3436 	 */
3437 #endif
3438 	bge_stop(bgep);
3439 	if (bge_phys_idle(bgep) != DDI_SUCCESS) {
3440 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3441 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3442 		mutex_exit(bgep->genlock);
3443 		return (DDI_FAILURE);
3444 	}
3445 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3446 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3447 		mutex_exit(bgep->genlock);
3448 		return (DDI_FAILURE);
3449 	}
3450 	mutex_exit(bgep->genlock);
3451 
3452 	return (DDI_SUCCESS);
3453 }
3454 
3455 /*
3456  * detach(9E) -- Detach a device from the system
3457  */
3458 static int
3459 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3460 {
3461 	bge_t *bgep;
3462 #ifdef BGE_IPMI_ASF
3463 	uint_t asf_mode;
3464 	asf_mode = ASF_MODE_NONE;
3465 #endif
3466 
3467 	BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd));
3468 
3469 	bgep = ddi_get_driver_private(devinfo);
3470 
3471 	switch (cmd) {
3472 	default:
3473 		return (DDI_FAILURE);
3474 
3475 	case DDI_SUSPEND:
3476 		return (bge_suspend(bgep));
3477 
3478 	case DDI_DETACH:
3479 		break;
3480 	}
3481 
3482 #ifdef BGE_IPMI_ASF
3483 	mutex_enter(bgep->genlock);
3484 	if (bgep->asf_enabled && ((bgep->asf_status == ASF_STAT_RUN) ||
3485 	    (bgep->asf_status == ASF_STAT_RUN_INIT))) {
3486 
3487 		bge_asf_update_status(bgep);
3488 		if (bgep->asf_status == ASF_STAT_RUN) {
3489 			bge_asf_stop_timer(bgep);
3490 		}
3491 		bgep->asf_status = ASF_STAT_STOP;
3492 
3493 		bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3494 
3495 		if (bgep->asf_pseudostop) {
3496 			bge_chip_stop(bgep, B_FALSE);
3497 			bgep->bge_mac_state = BGE_MAC_STOPPED;
3498 			bgep->asf_pseudostop = B_FALSE;
3499 		}
3500 
3501 		asf_mode = ASF_MODE_POST_SHUTDOWN;
3502 
3503 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
3504 			ddi_fm_service_impact(bgep->devinfo,
3505 			    DDI_SERVICE_UNAFFECTED);
3506 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3507 			ddi_fm_service_impact(bgep->devinfo,
3508 			    DDI_SERVICE_UNAFFECTED);
3509 	}
3510 	mutex_exit(bgep->genlock);
3511 #endif
3512 
3513 	/*
3514 	 * Unregister from the GLD subsystem.  This can fail, in
3515 	 * particular if there are DLPI style-2 streams still open -
3516 	 * in which case we just return failure without shutting
3517 	 * down chip operations.
3518 	 */
3519 	if (mac_unregister(bgep->mh) != 0)
3520 		return (DDI_FAILURE);
3521 
3522 	/*
3523 	 * All activity stopped, so we can clean up & exit
3524 	 */
3525 #ifdef BGE_IPMI_ASF
3526 	bge_unattach(bgep, asf_mode);
3527 #else
3528 	bge_unattach(bgep);
3529 #endif
3530 	return (DDI_SUCCESS);
3531 }
3532 
3533 
3534 /*
3535  * ========== Module Loading Data & Entry Points ==========
3536  */
3537 
3538 #undef	BGE_DBG
3539 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
3540 
3541 DDI_DEFINE_STREAM_OPS(bge_dev_ops, nulldev, nulldev, bge_attach, bge_detach,
3542     nodev, NULL, D_MP, NULL);
3543 
3544 static struct modldrv bge_modldrv = {
3545 	&mod_driverops,		/* Type of module.  This one is a driver */
3546 	bge_ident,		/* short description */
3547 	&bge_dev_ops		/* driver specific ops */
3548 };
3549 
3550 static struct modlinkage modlinkage = {
3551 	MODREV_1, (void *)&bge_modldrv, NULL
3552 };
3553 
3554 
3555 int
3556 _info(struct modinfo *modinfop)
3557 {
3558 	return (mod_info(&modlinkage, modinfop));
3559 }
3560 
3561 int
3562 _init(void)
3563 {
3564 	int status;
3565 
3566 	mac_init_ops(&bge_dev_ops, "bge");
3567 	status = mod_install(&modlinkage);
3568 	if (status == DDI_SUCCESS)
3569 		mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL);
3570 	else
3571 		mac_fini_ops(&bge_dev_ops);
3572 	return (status);
3573 }
3574 
3575 int
3576 _fini(void)
3577 {
3578 	int status;
3579 
3580 	status = mod_remove(&modlinkage);
3581 	if (status == DDI_SUCCESS) {
3582 		mac_fini_ops(&bge_dev_ops);
3583 		mutex_destroy(bge_log_mutex);
3584 	}
3585 	return (status);
3586 }
3587 
3588 
3589 /*
3590  * bge_add_intrs:
3591  *
3592  * Register FIXED or MSI interrupts.
3593  */
3594 static int
3595 bge_add_intrs(bge_t *bgep, int	intr_type)
3596 {
3597 	dev_info_t	*dip = bgep->devinfo;
3598 	int		avail, actual, intr_size, count = 0;
3599 	int		i, flag, ret;
3600 
3601 	BGE_DEBUG(("bge_add_intrs($%p, 0x%x)", (void *)bgep, intr_type));
3602 
3603 	/* Get number of interrupts */
3604 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
3605 	if ((ret != DDI_SUCCESS) || (count == 0)) {
3606 		bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, "
3607 		    "count: %d", ret, count);
3608 
3609 		return (DDI_FAILURE);
3610 	}
3611 
3612 	/* Get number of available interrupts */
3613 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
3614 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
3615 		bge_error(bgep, "ddi_intr_get_navail() failure, "
3616 		    "ret: %d, avail: %d\n", ret, avail);
3617 
3618 		return (DDI_FAILURE);
3619 	}
3620 
3621 	if (avail < count) {
3622 		BGE_DEBUG(("%s: nintrs() returned %d, navail returned %d",
3623 		    bgep->ifname, count, avail));
3624 	}
3625 
3626 	/*
3627 	 * BGE hardware generates only single MSI even though it claims
3628 	 * to support multiple MSIs. So, hard code MSI count value to 1.
3629 	 */
3630 	if (intr_type == DDI_INTR_TYPE_MSI) {
3631 		count = 1;
3632 		flag = DDI_INTR_ALLOC_STRICT;
3633 	} else {
3634 		flag = DDI_INTR_ALLOC_NORMAL;
3635 	}
3636 
3637 	/* Allocate an array of interrupt handles */
3638 	intr_size = count * sizeof (ddi_intr_handle_t);
3639 	bgep->htable = kmem_alloc(intr_size, KM_SLEEP);
3640 
3641 	/* Call ddi_intr_alloc() */
3642 	ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0,
3643 	    count, &actual, flag);
3644 
3645 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
3646 		bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret);
3647 
3648 		kmem_free(bgep->htable, intr_size);
3649 		return (DDI_FAILURE);
3650 	}
3651 
3652 	if (actual < count) {
3653 		BGE_DEBUG(("%s: Requested: %d, Received: %d",
3654 		    bgep->ifname, count, actual));
3655 	}
3656 
3657 	bgep->intr_cnt = actual;
3658 
3659 	/*
3660 	 * Get priority for first msi, assume remaining are all the same
3661 	 */
3662 	if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) !=
3663 	    DDI_SUCCESS) {
3664 		bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret);
3665 
3666 		/* Free already allocated intr */
3667 		for (i = 0; i < actual; i++) {
3668 			(void) ddi_intr_free(bgep->htable[i]);
3669 		}
3670 
3671 		kmem_free(bgep->htable, intr_size);
3672 		return (DDI_FAILURE);
3673 	}
3674 
3675 	/* Call ddi_intr_add_handler() */
3676 	for (i = 0; i < actual; i++) {
3677 		if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr,
3678 		    (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
3679 			bge_error(bgep, "ddi_intr_add_handler() "
3680 			    "failed %d\n", ret);
3681 
3682 			/* Free already allocated intr */
3683 			for (i = 0; i < actual; i++) {
3684 				(void) ddi_intr_free(bgep->htable[i]);
3685 			}
3686 
3687 			kmem_free(bgep->htable, intr_size);
3688 			return (DDI_FAILURE);
3689 		}
3690 	}
3691 
3692 	if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap))
3693 	    != DDI_SUCCESS) {
3694 		bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret);
3695 
3696 		for (i = 0; i < actual; i++) {
3697 			(void) ddi_intr_remove_handler(bgep->htable[i]);
3698 			(void) ddi_intr_free(bgep->htable[i]);
3699 		}
3700 
3701 		kmem_free(bgep->htable, intr_size);
3702 		return (DDI_FAILURE);
3703 	}
3704 
3705 	return (DDI_SUCCESS);
3706 }
3707 
3708 /*
3709  * bge_rem_intrs:
3710  *
3711  * Unregister FIXED or MSI interrupts
3712  */
3713 static void
3714 bge_rem_intrs(bge_t *bgep)
3715 {
3716 	int	i;
3717 
3718 	BGE_DEBUG(("bge_rem_intrs($%p)", (void *)bgep));
3719 
3720 	/* Call ddi_intr_remove_handler() */
3721 	for (i = 0; i < bgep->intr_cnt; i++) {
3722 		(void) ddi_intr_remove_handler(bgep->htable[i]);
3723 		(void) ddi_intr_free(bgep->htable[i]);
3724 	}
3725 
3726 	kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t));
3727 }
3728 
3729 
3730 void
3731 bge_intr_enable(bge_t *bgep)
3732 {
3733 	int i;
3734 
3735 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3736 		/* Call ddi_intr_block_enable() for MSI interrupts */
3737 		(void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt);
3738 	} else {
3739 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
3740 		for (i = 0; i < bgep->intr_cnt; i++) {
3741 			(void) ddi_intr_enable(bgep->htable[i]);
3742 		}
3743 	}
3744 }
3745 
3746 
3747 void
3748 bge_intr_disable(bge_t *bgep)
3749 {
3750 	int i;
3751 
3752 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3753 		/* Call ddi_intr_block_disable() */
3754 		(void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt);
3755 	} else {
3756 		for (i = 0; i < bgep->intr_cnt; i++) {
3757 			(void) ddi_intr_disable(bgep->htable[i]);
3758 		}
3759 	}
3760 }
3761 
3762 int
3763 bge_reprogram(bge_t *bgep)
3764 {
3765 	int status = 0;
3766 
3767 	ASSERT(mutex_owned(bgep->genlock));
3768 
3769 	if (bge_phys_update(bgep) != DDI_SUCCESS) {
3770 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3771 		status = IOC_INVAL;
3772 	}
3773 #ifdef BGE_IPMI_ASF
3774 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
3775 #else
3776 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
3777 #endif
3778 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3779 		status = IOC_INVAL;
3780 	}
3781 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3782 		bge_chip_msi_trig(bgep);
3783 	return (status);
3784 }
3785