xref: /titanic_44/usr/src/uts/common/io/bge/bge_chip2.c (revision ea8dc4b6d2251b437950c0056bc626b311c73c27)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "sys/bge_impl2.h"
30 
31 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
32 
33 /*
34  * Future features ... ?
35  */
36 #define	BGE_CFG_IO8	0	/* 8/16-bit cfg space BIS/BIC	*/
37 #define	BGE_IND_IO32	0	/* indirect access code		*/
38 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
39 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
40 
41 /*
42  * BGE MSI tunable:
43  *
44  * By default MSI is enabled on all supported platforms but it is disabled
45  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
46  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
47  */
48 #if defined(__sparc)
49 boolean_t bge_enable_msi = B_TRUE;
50 #else
51 boolean_t bge_enable_msi = B_FALSE;
52 #endif
53 
54 /*
55  * Property names
56  */
57 static char knownids_propname[] = "bge-known-subsystems";
58 
59 /*
60  * Patchable globals:
61  *
62  *	bge_autorecover
63  *		Enables/disables automatic recovery after fault detection
64  *
65  *	bge_mlcr_default
66  *		Value to program into the MLCR; controls the chip's GPIO pins
67  *
68  *	bge_dma_{rd,wr}prio
69  *		Relative priorities of DMA reads & DMA writes respectively.
70  *		These may each be patched to any value 0-3.  Equal values
71  *		will give "fair" (round-robin) arbitration for PCI access.
72  *		Unequal values will give one or the other function priority.
73  *
74  *	bge_dma_rwctrl
75  *		Value to put in the Read/Write DMA control register.  See
76  *	        the Broadcom PRM for things you can fiddle with in this
77  *		register ...
78  *
79  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
80  *		Send/receive interrupt coalescing parameters.  Counts are
81  *		#s of descriptors, ticks are in microseconds.  *norm* values
82  *		apply between status updates/interrupts; the *intr* values
83  *		refer to the 'during-interrupt' versions - see the PRM.
84  *
85  *		NOTE: these values have been determined by measurement. They
86  *		differ significantly from the values recommended in the PRM.
87  */
88 static uint32_t bge_autorecover = 1;
89 static uint32_t bge_mlcr_default = MLCR_DEFAULT;
90 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
91 
92 static uint32_t bge_dma_rdprio = 1;
93 static uint32_t bge_dma_wrprio = 0;
94 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
95 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
96 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
97 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
98 
99 uint32_t bge_rx_ticks_norm = 128;
100 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
101 uint32_t bge_rx_count_norm = 8;
102 uint32_t bge_tx_count_norm = 128;
103 
104 static uint32_t bge_rx_ticks_intr = 128;
105 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
106 static uint32_t bge_rx_count_intr = 2;
107 static uint32_t bge_tx_count_intr = 0;
108 
109 /*
110  * Memory pool configuration parameters.
111  *
112  * These are generally specific to each member of the chip family, since
113  * each one may have a different memory size/configuration.
114  *
115  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
116  * the driver from programming the various registers; instead they are left
117  * at their hardware defaults.  This is the preferred option for later chips
118  * (5705+), whereas the older chips *required* these registers to be set,
119  * since the h/w default was 0 ;-(
120  */
121 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
122 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
123 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
124 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
125 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
126 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
127 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
128 static uint32_t bge_mbuf_pool_len_5721	= 0;
129 
130 /*
131  * Various high and low water marks, thresholds, etc ...
132  *
133  * Note: these are taken from revision 7 of the PRM, and some are different
134  * from both the values in earlier PRMs *and* those determined experimentally
135  * and used in earlier versions of this driver ...
136  */
137 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
138 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
139 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
140 
141 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
142 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
143 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
144 
145 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
146 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
147 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
148 
149 static uint32_t	bge_watchdog_count	= 1 << 16;
150 static uint16_t bge_dma_miss_limit	= 20;
151 
152 static uint32_t bge_stop_start_on_sync	= 0;
153 
154 boolean_t bge_jumbo_enable		= B_TRUE;
155 static uint32_t bge_default_jumbo_size	= BGE_JUMBO_BUFF_SIZE;
156 
157 /*
158  * ========== Low-level chip & ring buffer manipulation ==========
159  */
160 
161 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
162 
163 
164 /*
165  * Config space read-modify-write routines
166  */
167 
168 #if	BGE_CFG_IO8
169 
170 /*
171  * 8- and 16-bit set/clr operations are not used; all the config registers
172  * that we need to do bit-twiddling on are 32 bits wide.  I'll leave the
173  * code here, though, in case we ever find that we do want it after all ...
174  */
175 
176 static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
177 #pragma	inline(bge_cfg_set8)
178 
179 static void
180 bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
181 {
182 	uint8_t regval;
183 
184 	BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)",
185 		(void *)bgep, regno, bits));
186 
187 	regval = pci_config_get8(bgep->cfg_handle, regno);
188 
189 	BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 		(void *)bgep, regno, bits, regval, regval | bits));
191 
192 	regval |= bits;
193 	pci_config_put8(bgep->cfg_handle, regno, regval);
194 }
195 
196 static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
197 #pragma	inline(bge_cfg_clr8)
198 
199 static void
200 bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
201 {
202 	uint8_t regval;
203 
204 	BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)",
205 		(void *)bgep, regno, bits));
206 
207 	regval = pci_config_get8(bgep->cfg_handle, regno);
208 
209 	BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
210 		(void *)bgep, regno, bits, regval, regval & ~bits));
211 
212 	regval &= ~bits;
213 	pci_config_put8(bgep->cfg_handle, regno, regval);
214 }
215 
216 static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
217 #pragma	inline(bge_cfg_set16)
218 
219 static void
220 bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
221 {
222 	uint16_t regval;
223 
224 	BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)",
225 		(void *)bgep, regno, bits));
226 
227 	regval = pci_config_get16(bgep->cfg_handle, regno);
228 
229 	BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
230 		(void *)bgep, regno, bits, regval, regval | bits));
231 
232 	regval |= bits;
233 	pci_config_put16(bgep->cfg_handle, regno, regval);
234 }
235 
236 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
237 #pragma	inline(bge_cfg_clr16)
238 
239 static void
240 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
241 {
242 	uint16_t regval;
243 
244 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
245 		(void *)bgep, regno, bits));
246 
247 	regval = pci_config_get16(bgep->cfg_handle, regno);
248 
249 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
250 		(void *)bgep, regno, bits, regval, regval & ~bits));
251 
252 	regval &= ~bits;
253 	pci_config_put16(bgep->cfg_handle, regno, regval);
254 }
255 
256 #endif	/* BGE_CFG_IO8 */
257 
258 static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
259 #pragma	inline(bge_cfg_set32)
260 
261 static void
262 bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
263 {
264 	uint32_t regval;
265 
266 	BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)",
267 		(void *)bgep, regno, bits));
268 
269 	regval = pci_config_get32(bgep->cfg_handle, regno);
270 
271 	BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
272 		(void *)bgep, regno, bits, regval, regval | bits));
273 
274 	regval |= bits;
275 	pci_config_put32(bgep->cfg_handle, regno, regval);
276 }
277 
278 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
279 #pragma	inline(bge_cfg_clr32)
280 
281 static void
282 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
283 {
284 	uint32_t regval;
285 
286 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
287 		(void *)bgep, regno, bits));
288 
289 	regval = pci_config_get32(bgep->cfg_handle, regno);
290 
291 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
292 		(void *)bgep, regno, bits, regval, regval & ~bits));
293 
294 	regval &= ~bits;
295 	pci_config_put32(bgep->cfg_handle, regno, regval);
296 }
297 
298 #if	BGE_IND_IO32
299 
300 /*
301  * Indirect access to registers & RISC scratchpads, using config space
302  * accesses only.
303  *
304  * This isn't currently used, but someday we might want to use it for
305  * restoring the Subsystem Device/Vendor registers (which aren't directly
306  * writable in Config Space), or for downloading firmware into the RISCs
307  *
308  * In any case there are endian issues to be resolved before this code is
309  * enabled; the bizarre way that bytes get twisted by this chip AND by
310  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
311  * it's been thoroughly tested for all access sizes on all supported
312  * architectures (SPARC *and* x86!).
313  */
314 static uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
315 #pragma	inline(bge_ind_get32)
316 
317 static uint32_t
318 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
319 {
320 	uint32_t val;
321 
322 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
323 
324 	ASSERT(mutex_owned(bgep->genlock));
325 
326 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
327 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
328 
329 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
330 		(void *)bgep, regno, val));
331 
332 	return (val);
333 }
334 
335 static void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
336 #pragma	inline(bge_ind_put32)
337 
338 static void
339 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
340 {
341 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
342 		(void *)bgep, regno, val));
343 
344 	ASSERT(mutex_owned(bgep->genlock));
345 
346 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
347 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
348 }
349 
350 #endif	/* BGE_IND_IO32 */
351 
352 #if	BGE_DEBUGGING
353 
354 static void bge_pci_check(bge_t *bgep);
355 #pragma	no_inline(bge_pci_check)
356 
357 static void
358 bge_pci_check(bge_t *bgep)
359 {
360 	uint16_t pcistatus;
361 
362 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
363 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
364 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
365 			(void *)bgep, pcistatus));
366 }
367 
368 #endif	/* BGE_DEBUGGING */
369 
370 /*
371  * Perform first-stage chip (re-)initialisation, using only config-space
372  * accesses:
373  *
374  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
375  *   returning the data in the structure pointed to by <idp>.
376  * + Configure the target-mode endianness (swap) options.
377  * + Disable interrupts and enable Memory Space accesses.
378  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
379  *
380  * This sequence is adapted from Broadcom document 570X-PG102-R,
381  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
382  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
383  *
384  * This function MUST be called before any non-config-space accesses
385  * are made; on this first call <enable_dma> is B_FALSE, and it
386  * effectively performs steps 3-1(!) of the initialisation sequence
387  * (the rest are not required but should be harmless).
388  *
389  * It MUST also be called also after a chip reset, as this disables
390  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
391  * it is effectively performing steps 6-8.
392  */
393 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
394 #pragma	no_inline(bge_chip_cfg_init)
395 
396 void
397 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
398 {
399 	ddi_acc_handle_t handle;
400 	uint16_t command;
401 	uint32_t mhcr;
402 	uint16_t value16;
403 	int i;
404 
405 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
406 		(void *)bgep, (void *)cidp, enable_dma));
407 
408 	/*
409 	 * Step 3: save PCI cache line size and subsystem vendor ID
410 	 *
411 	 * Read all the config-space registers that characterise the
412 	 * chip, specifically vendor/device/revision/subsystem vendor
413 	 * and subsystem device id.  We expect (but don't check) that
414 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
415 	 *
416 	 * Also save all bus-transation related registers (cache-line
417 	 * size, bus-grant/latency parameters, etc).  Some of these are
418 	 * cleared by reset, so we'll have to restore them later.  This
419 	 * comes from the Broadcom document 570X-PG102-R ...
420 	 *
421 	 * Note: Broadcom document 570X-PG102-R seems to be in error
422 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
423 	 * Subsystem (Device) ID registers, which are the opposite way
424 	 * round according to the PCI standard.  For good measure, we
425 	 * save/restore both anyway.
426 	 */
427 	handle = bgep->cfg_handle;
428 
429 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
430 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
431 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
432 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
433 
434 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
435 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
436 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
437 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
438 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
439 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
440 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
441 
442 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
443 		cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
444 		cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
445 		cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
446 		cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
447 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
448 		cidp->vendor, cidp->device, cidp->revision));
449 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
450 		cidp->subven, cidp->subdev, cidp->asic_rev));
451 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
452 		cidp->clsize, cidp->latency, cidp->command));
453 
454 	/*
455 	 * Step 2 (also step 6): disable and clear interrupts.
456 	 * Steps 11-13: configure PIO endianness options, and enable
457 	 * indirect register access.  We'll also select any other
458 	 * options controlled by the MHCR (eg tagged status, mask
459 	 * interrupt mode) at this stage ...
460 	 *
461 	 * Note: internally, the chip is 64-bit and BIG-endian, but
462 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
463 	 * it normally swaps bytes around at the PCI interface.
464 	 * However, the PCI host bridge on SPARC systems normally
465 	 * swaps the byte lanes around too, since SPARCs are also
466 	 * BIG-endian.  So it turns out that on SPARC, the right
467 	 * option is to tell the chip to swap (and the host bridge
468 	 * will swap back again), whereas on x86 we ask the chip
469 	 * NOT to swap, so the natural little-endianness of the
470 	 * PCI bus is assumed.  Then the only thing that doesn't
471 	 * automatically work right is access to an 8-byte register
472 	 * by a little-endian host; but we don't want to set the
473 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
474 	 * accesses don't go where expected ;-(  So we live with
475 	 * that, and perform word-swaps in software in the few cases
476 	 * where a chip register is defined as an 8-byte value --
477 	 * see the code below for details ...
478 	 *
479 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
480 	 * very clear in the register description in the PRM, but
481 	 * Broadcom document 570X-PG104-R page 248 explains a little
482 	 * more (under "Broadcom Mask Mode").  The bit changes the way
483 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
484 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
485 	 * way as the 5700 did, which isn't very convenient.  Setting
486 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
487 	 * bit do just what its name says -- MASK the PCI #INTA output
488 	 * (i.e. deassert the signal at the pin) leaving all internal
489 	 * state unchanged.  This is much more convenient for our
490 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
491 	 *
492 	 * Note: the inconvenient semantics of the interrupt mailbox
493 	 * (nonzero disables and acknowledges/clears the interrupt,
494 	 * zero enables AND CLEARS it) would make race conditions
495 	 * likely in the interrupt handler:
496 	 *
497 	 * (1)	acknowledge & disable interrupts
498 	 * (2)	while (more to do)
499 	 * 		process packets
500 	 * (3)	enable interrupts -- also clears pending
501 	 *
502 	 * If the chip received more packets and internally generated
503 	 * an interrupt between the check at (2) and the mbox write
504 	 * at (3), this interrupt would be lost :-(
505 	 *
506 	 * The best way to avoid this is to use TAGGED STATUS mode,
507 	 * where the chip includes a unique tag in each status block
508 	 * update, and the host, when re-enabling interrupts, passes
509 	 * the last tag it saw back to the chip; then the chip can
510 	 * see whether the host is truly up to date, and regenerate
511 	 * its interrupt if not.
512 	 */
513 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
514 		MHCR_ENABLE_TAGGED_STATUS_MODE |
515 		MHCR_MASK_INTERRUPT_MODE |
516 		MHCR_CLEAR_INTERRUPT_INTA;
517 
518 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
519 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
520 
521 #ifdef	_BIG_ENDIAN
522 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
523 #endif	/* _BIG_ENDIAN */
524 
525 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
526 
527 #ifdef BGE_IPMI_ASF
528 	bgep->asf_wordswapped = B_FALSE;
529 #endif
530 	/*
531 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
532 	 *			 Disable Memory Write/Invalidate
533 	 *			 Enable or disable Bus Mastering
534 	 *
535 	 * Note that all other bits are taken from the original value saved
536 	 * the first time through here, rather than from the current register
537 	 * value, 'cos that will have been cleared by a soft RESET since.
538 	 * In this way we preserve the OBP/nexus-parent's preferred settings
539 	 * of the parity-error and system-error enable bits across multiple
540 	 * chip RESETs.
541 	 *
542 	 * Step 8: Disable PCI-X Relaxed Ordering -- doesn't apply
543 	 */
544 	command = bgep->chipid.command | PCI_COMM_MAE;
545 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
546 	if (enable_dma)
547 		command |= PCI_COMM_ME;
548 	/*
549 	 * on BCM5714 revision A0, false parity error gets generated
550 	 * due to a logic bug. Provide a workaround by disabling parrity
551 	 * error.
552 	 */
553 	if (((cidp->device == DEVICE_ID_5714C) ||
554 	    (cidp->device == DEVICE_ID_5714S)) &&
555 	    (cidp->revision == REVISION_ID_5714_A0)) {
556 		command &= ~PCI_COMM_PARITY_DETECT;
557 	}
558 	pci_config_put16(handle, PCI_CONF_COMM, command);
559 
560 	/*
561 	 * On some PCI-E device, there were instances when
562 	 * the device was still link training.
563 	 */
564 	if (bgep->chipid.pci_type == BGE_PCI_E) {
565 		i = 0;
566 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
567 		while ((value16 != command) && (i < 100)) {
568 			drv_usecwait(200);
569 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
570 			++i;
571 		}
572 	}
573 
574 	/*
575 	 * Clear any remaining error status bits
576 	 */
577 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
578 
579 	/*
580 	 * Make sure these indirect-access registers are sane
581 	 * rather than random after power-up or reset
582 	 */
583 	pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
584 	pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
585 }
586 
587 #ifdef __amd64
588 /*
589  * Distinguish CPU types
590  *
591  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
592  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
593  * for PCI-Express based network interface card. This is the work-around
594  * for those nics.
595  */
596 static boolean_t bge_get_em64t_type(void);
597 #pragma	inline(bge_get_em64t_type)
598 
599 static boolean_t
600 bge_get_em64t_type(void)
601 {
602 
603 	return (x86_vendor == X86_VENDOR_Intel);
604 }
605 #endif
606 
607 /*
608  * Operating register get/set access routines
609  */
610 
611 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
612 #pragma	inline(bge_reg_get32)
613 
614 uint32_t
615 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
616 {
617 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
618 		(void *)bgep, regno));
619 
620 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
621 }
622 
623 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
624 #pragma	inline(bge_reg_put32)
625 
626 void
627 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
628 {
629 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
630 		(void *)bgep, regno, data));
631 
632 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
633 	BGE_PCICHK(bgep);
634 }
635 
636 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
637 #pragma	inline(bge_reg_set32)
638 
639 void
640 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
641 {
642 	uint32_t regval;
643 
644 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
645 		(void *)bgep, regno, bits));
646 
647 	regval = bge_reg_get32(bgep, regno);
648 	regval |= bits;
649 	bge_reg_put32(bgep, regno, regval);
650 }
651 
652 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
653 #pragma	inline(bge_reg_clr32)
654 
655 void
656 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
657 {
658 	uint32_t regval;
659 
660 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
661 		(void *)bgep, regno, bits));
662 
663 	regval = bge_reg_get32(bgep, regno);
664 	regval &= ~bits;
665 	bge_reg_put32(bgep, regno, regval);
666 }
667 
668 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
669 #pragma	inline(bge_reg_get64)
670 
671 static uint64_t
672 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
673 {
674 	uint64_t regval;
675 
676 #ifdef	__amd64
677 	if (bge_get_em64t_type()) {
678 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
679 		regval <<= 32;
680 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
681 	} else {
682 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
683 	}
684 #else
685 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
686 #endif
687 
688 #ifdef	_LITTLE_ENDIAN
689 	regval = (regval >> 32) | (regval << 32);
690 #endif	/* _LITTLE_ENDIAN */
691 
692 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
693 		(void *)bgep, regno, regval));
694 
695 	return (regval);
696 }
697 
698 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
699 #pragma	inline(bge_reg_put64)
700 
701 static void
702 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
703 {
704 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
705 		(void *)bgep, regno, data));
706 
707 #ifdef	_LITTLE_ENDIAN
708 	data = ((data >> 32) | (data << 32));
709 #endif	/* _LITTLE_ENDIAN */
710 
711 #ifdef	__amd64
712 	if (bge_get_em64t_type()) {
713 		ddi_put32(bgep->io_handle,
714 			PIO_ADDR(bgep, regno), (uint32_t)data);
715 		BGE_PCICHK(bgep);
716 		ddi_put32(bgep->io_handle,
717 			PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
718 
719 	} else {
720 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
721 	}
722 #else
723 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
724 #endif
725 
726 	BGE_PCICHK(bgep);
727 }
728 
729 /*
730  * The DDI doesn't provide get/put functions for 128 bit data
731  * so we put RCBs out as two 64-bit chunks instead.
732  */
733 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
734 #pragma	inline(bge_reg_putrcb)
735 
736 static void
737 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
738 {
739 	uint64_t *p;
740 
741 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
742 		(void *)bgep, addr, rcbp->host_ring_addr,
743 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
744 
745 	ASSERT((addr % sizeof (*rcbp)) == 0);
746 
747 	p = (void *)rcbp;
748 	bge_reg_put64(bgep, addr, *p++);
749 	bge_reg_put64(bgep, addr+8, *p);
750 }
751 
752 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
753 #pragma	inline(bge_mbx_put)
754 
755 void
756 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
757 {
758 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
759 		(void *)bgep, regno, data));
760 
761 	/*
762 	 * Mailbox registers are nominally 64 bits on the 5701, but
763 	 * the MSW isn't used.  On the 5703, they're only 32 bits
764 	 * anyway.  So here we just write the lower(!) 32 bits -
765 	 * remembering that the chip is big-endian, even though the
766 	 * PCI bus is little-endian ...
767 	 */
768 #ifdef	_BIG_ENDIAN
769 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
770 #else
771 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
772 #endif	/* _BIG_ENDIAN */
773 	BGE_PCICHK(bgep);
774 }
775 
776 #if	BGE_DEBUGGING
777 
778 void bge_led_mark(bge_t *bgep);
779 #pragma	no_inline(bge_led_mark)
780 
781 void
782 bge_led_mark(bge_t *bgep)
783 {
784 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
785 			    LED_CONTROL_1000MBPS_LED |
786 			    LED_CONTROL_100MBPS_LED |
787 			    LED_CONTROL_10MBPS_LED;
788 
789 	/*
790 	 * Blink all three LINK LEDs on simultaneously, then all off,
791 	 * then restore to automatic hardware control.  This is used
792 	 * in laboratory testing to trigger a logic analyser or scope.
793 	 */
794 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
795 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
796 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
797 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
798 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
799 }
800 
801 #endif	/* BGE_DEBUGGING */
802 
803 /*
804  * NIC on-chip memory access routines
805  *
806  * Only 32K of NIC memory is visible at a time, controlled by the
807  * Memory Window Base Address Register (in PCI config space).  Once
808  * this is set, the 32K region of NIC-local memory that it refers
809  * to can be directly addressed in the upper 32K of the 64K of PCI
810  * memory space used for the device.
811  */
812 
813 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
814 #pragma	inline(bge_nic_setwin)
815 
816 static void
817 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
818 {
819 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
820 		(void *)bgep, base));
821 
822 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
823 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
824 }
825 
826 
827 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
828 #pragma	inline(bge_nic_get32)
829 
830 static uint32_t
831 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
832 {
833 	uint32_t data;
834 
835 #ifdef BGE_IPMI_ASF
836 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
837 		/* workaround for word swap error */
838 		if (addr & 4)
839 			addr = addr - 4;
840 		else
841 			addr = addr + 4;
842 	}
843 #endif
844 
845 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
846 	addr &= MWBAR_GRANULE_MASK;
847 	addr += NIC_MEM_WINDOW_OFFSET;
848 
849 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
850 
851 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
852 		(void *)bgep, addr, data));
853 
854 	return (data);
855 }
856 
857 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
858 #pragma inline(bge_nic_put32)
859 
860 void
861 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
862 {
863 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
864 		(void *)bgep, addr, data));
865 
866 #ifdef BGE_IPMI_ASF
867 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
868 		/* workaround for word swap error */
869 		if (addr & 4)
870 			addr = addr - 4;
871 		else
872 			addr = addr + 4;
873 	}
874 #endif
875 
876 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
877 	addr &= MWBAR_GRANULE_MASK;
878 	addr += NIC_MEM_WINDOW_OFFSET;
879 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
880 	BGE_PCICHK(bgep);
881 }
882 
883 
884 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
885 #pragma	inline(bge_nic_get64)
886 
887 static uint64_t
888 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
889 {
890 	uint64_t data;
891 
892 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
893 	addr &= MWBAR_GRANULE_MASK;
894 	addr += NIC_MEM_WINDOW_OFFSET;
895 
896 #ifdef	__amd64
897 		if (bge_get_em64t_type()) {
898 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
899 			data <<= 32;
900 			data |= ddi_get32(bgep->io_handle,
901 				PIO_ADDR(bgep, addr + 4));
902 		} else {
903 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
904 		}
905 #else
906 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
907 #endif
908 
909 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
910 		(void *)bgep, addr, data));
911 
912 	return (data);
913 }
914 
915 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
916 #pragma	inline(bge_nic_put64)
917 
918 static void
919 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
920 {
921 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
922 		(void *)bgep, addr, data));
923 
924 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
925 	addr &= MWBAR_GRANULE_MASK;
926 	addr += NIC_MEM_WINDOW_OFFSET;
927 
928 #ifdef	__amd64
929 	if (bge_get_em64t_type()) {
930 		ddi_put32(bgep->io_handle,
931 			PIO_ADDR(bgep, addr), (uint32_t)data);
932 		BGE_PCICHK(bgep);
933 		ddi_put32(bgep->io_handle,
934 			PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
935 	} else {
936 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
937 	}
938 #else
939 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
940 #endif
941 
942 	BGE_PCICHK(bgep);
943 }
944 
945 /*
946  * The DDI doesn't provide get/put functions for 128 bit data
947  * so we put RCBs out as two 64-bit chunks instead.
948  */
949 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
950 #pragma	inline(bge_nic_putrcb)
951 
952 static void
953 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
954 {
955 	uint64_t *p;
956 
957 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
958 		(void *)bgep, addr, rcbp->host_ring_addr,
959 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
960 
961 	ASSERT((addr % sizeof (*rcbp)) == 0);
962 
963 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
964 	addr &= MWBAR_GRANULE_MASK;
965 	addr += NIC_MEM_WINDOW_OFFSET;
966 
967 	p = (void *)rcbp;
968 #ifdef	__amd64
969 	if (bge_get_em64t_type()) {
970 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
971 			(uint32_t)(*p));
972 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
973 			(uint32_t)(*p >> 32));
974 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
975 			(uint32_t)(*(p + 1)));
976 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
977 			(uint32_t)(*p >> 32));
978 
979 	} else {
980 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
981 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
982 	}
983 #else
984 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
985 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
986 #endif
987 
988 	BGE_PCICHK(bgep);
989 }
990 
991 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
992 #pragma	inline(bge_nic_zero)
993 
994 static void
995 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
996 {
997 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
998 		(void *)bgep, addr, nbytes));
999 
1000 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1001 		((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1002 
1003 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1004 	addr &= MWBAR_GRANULE_MASK;
1005 	addr += NIC_MEM_WINDOW_OFFSET;
1006 
1007 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1008 		nbytes, 1, DDI_DATA_SZ08_ACC);
1009 	BGE_PCICHK(bgep);
1010 }
1011 
1012 /*
1013  * MII (PHY) register get/set access routines
1014  *
1015  * These use the chip's MII auto-access method, controlled by the
1016  * MII Communication register at 0x044c, so the CPU doesn't have
1017  * to fiddle with the individual bits.
1018  */
1019 
1020 #undef	BGE_DBG
1021 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1022 
1023 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1024 				uint16_t data, uint32_t cmd);
1025 #pragma	no_inline(bge_mii_access)
1026 
1027 static uint16_t
1028 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1029 {
1030 	uint32_t timeout;
1031 	uint32_t regval1;
1032 	uint32_t regval2;
1033 
1034 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1035 		(void *)bgep, regno, data, cmd));
1036 
1037 	ASSERT(mutex_owned(bgep->genlock));
1038 
1039 	/*
1040 	 * Assemble the command ...
1041 	 */
1042 	cmd |= data << MI_COMMS_DATA_SHIFT;
1043 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1044 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1045 	cmd |= MI_COMMS_START;
1046 
1047 	/*
1048 	 * Wait for any command already in progress ...
1049 	 *
1050 	 * Note: this *shouldn't* ever find that there is a command
1051 	 * in progress, because we already hold the <genlock> mutex.
1052 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1053 	 * bit set here -- it seems that the chip can initiate MII
1054 	 * accesses internally, even with polling OFF.
1055 	 */
1056 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1057 	for (timeout = 1000; ; ) {
1058 		if ((regval2 & MI_COMMS_START) == 0) {
1059 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1060 			break;
1061 		}
1062 		if (--timeout == 0)
1063 			break;
1064 		drv_usecwait(10);
1065 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1066 	}
1067 
1068 	if (timeout != 1000)
1069 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1070 			"MI_COMMS_START set for %d us; 0x%x->0x%x",
1071 			cmd, 10*(1000-timeout), regval1, regval2));
1072 
1073 	ASSERT(timeout != 0);
1074 	if (timeout == 0)
1075 		return ((uint16_t)~0u);
1076 
1077 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1078 	for (timeout = 1000; ; ) {
1079 		if ((regval1 & MI_COMMS_START) == 0)
1080 			break;
1081 		if (--timeout == 0)
1082 			break;
1083 		drv_usecwait(10);
1084 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1085 	}
1086 
1087 	/*
1088 	 * Drop out early if the READ FAILED bit is set -- this chip
1089 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1090 	 */
1091 	if (regval2 & MI_COMMS_READ_FAILED)
1092 		return ((uint16_t)~0u);
1093 
1094 	ASSERT(timeout != 0);
1095 	if (timeout == 0)
1096 		return ((uint16_t)~0u);
1097 
1098 	/*
1099 	 * The PRM says to wait 5us after seeing the START bit clear
1100 	 * and then re-read the register to get the final value of the
1101 	 * data field, in order to avoid a race condition where the
1102 	 * START bit is clear but the data field isn't yet valid.
1103 	 *
1104 	 * Note: we don't actually seem to be encounter this race;
1105 	 * except when the START bit is seen set again (see below),
1106 	 * the data field doesn't change during this 5us interval.
1107 	 */
1108 	drv_usecwait(5);
1109 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1110 
1111 	/*
1112 	 * Unfortunately, when following the PRMs instructions above,
1113 	 * we have occasionally seen the START bit set again(!) in the
1114 	 * value read after the 5us delay. This seems to be due to the
1115 	 * chip autonomously starting another MII access internally.
1116 	 * In such cases, the command/data/etc fields relate to the
1117 	 * internal command, rather than the one that we thought had
1118 	 * just finished.  So in this case, we fall back to returning
1119 	 * the data from the original read that showed START clear.
1120 	 */
1121 	if (regval2 & MI_COMMS_START) {
1122 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1123 			"MI_COMMS_START set after transaction; 0x%x->0x%x",
1124 			cmd, regval1, regval2));
1125 		regval2 = regval1;
1126 	}
1127 
1128 	ASSERT((regval2 & MI_COMMS_START) == 0);
1129 	if (regval2 & MI_COMMS_START)
1130 		return ((uint16_t)~0u);
1131 
1132 	ASSERT((regval2 & MI_COMMS_READ_FAILED) == 0);
1133 	if (regval2 & MI_COMMS_READ_FAILED)
1134 		return ((uint16_t)~0u);
1135 
1136 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1137 }
1138 
1139 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1140 #pragma	no_inline(bge_mii_get16)
1141 
1142 uint16_t
1143 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1144 {
1145 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1146 		(void *)bgep, regno));
1147 
1148 	ASSERT(mutex_owned(bgep->genlock));
1149 
1150 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1151 }
1152 
1153 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1154 #pragma	no_inline(bge_mii_put16)
1155 
1156 void
1157 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1158 {
1159 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1160 		(void *)bgep, regno, data));
1161 
1162 	ASSERT(mutex_owned(bgep->genlock));
1163 
1164 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1165 }
1166 
1167 #undef	BGE_DBG
1168 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1169 
1170 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1171 
1172 /*
1173  * Basic SEEPROM get/set access routine
1174  *
1175  * This uses the chip's SEEPROM auto-access method, controlled by the
1176  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1177  * doesn't have to fiddle with the individual bits.
1178  *
1179  * The caller should hold <genlock> and *also* have already acquired
1180  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1181  *
1182  * Return value:
1183  *	0 on success,
1184  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1185  *	EPROTO on other h/w or s/w errors.
1186  *
1187  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1188  * from a (successful) SEEPROM_ACCESS_READ.
1189  */
1190 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1191 				uint32_t *dp);
1192 #pragma	no_inline(bge_seeprom_access)
1193 
1194 static int
1195 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1196 {
1197 	uint32_t tries;
1198 	uint32_t regval;
1199 
1200 	ASSERT(mutex_owned(bgep->genlock));
1201 
1202 	/*
1203 	 * On the newer chips that support both SEEPROM & Flash, we need
1204 	 * to specifically enable SEEPROM access (Flash is the default).
1205 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1206 	 * and the NVM control registers don't exist ...
1207 	 */
1208 	switch (bgep->chipid.nvtype) {
1209 	case BGE_NVTYPE_NONE:
1210 	case BGE_NVTYPE_UNKNOWN:
1211 		_NOTE(NOTREACHED)
1212 	case BGE_NVTYPE_SEEPROM:
1213 		break;
1214 
1215 	case BGE_NVTYPE_LEGACY_SEEPROM:
1216 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1217 	case BGE_NVTYPE_BUFFERED_FLASH:
1218 	default:
1219 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1220 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1221 		break;
1222 	}
1223 
1224 	/*
1225 	 * Check there's no command in progress.
1226 	 *
1227 	 * Note: this *shouldn't* ever find that there is a command
1228 	 * in progress, because we already hold the <genlock> mutex.
1229 	 * Also, to ensure we don't have a conflict with the chip's
1230 	 * internal firmware or a process accessing the same (shared)
1231 	 * SEEPROM through the other port of a 5704, we've already
1232 	 * been through the "software arbitration" protocol.
1233 	 * So this is just a final consistency check: we shouldn't
1234 	 * see EITHER the START bit (command started but not complete)
1235 	 * OR the COMPLETE bit (command completed but not cleared).
1236 	 */
1237 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1238 	if (regval & SEEPROM_ACCESS_START)
1239 		return (EPROTO);
1240 	if (regval & SEEPROM_ACCESS_COMPLETE)
1241 		return (EPROTO);
1242 
1243 	/*
1244 	 * Assemble the command ...
1245 	 */
1246 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1247 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1248 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1249 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1250 	cmd |= SEEPROM_ACCESS_START;
1251 	cmd |= SEEPROM_ACCESS_COMPLETE;
1252 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1253 
1254 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1255 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1256 
1257 	/*
1258 	 * By observation, a successful access takes ~20us on a 5703/4,
1259 	 * but apparently much longer (up to 1000us) on the obsolescent
1260 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1261 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1262 	 * out interrupts for longer than necessary. So we'll allow up
1263 	 * to 1000us ...
1264 	 */
1265 	for (tries = 0; tries < 1000; ++tries) {
1266 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1267 		if (regval & SEEPROM_ACCESS_COMPLETE)
1268 			break;
1269 		drv_usecwait(1);
1270 	}
1271 
1272 	ASSERT((regval & SEEPROM_ACCESS_START) == 0);
1273 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1274 		/*
1275 		 * All OK; read the SEEPROM data register, then write back
1276 		 * the value read from the address register in order to
1277 		 * clear the <complete> bit and leave the SEEPROM access
1278 		 * state machine idle, ready for the next access ...
1279 		 */
1280 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1281 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1282 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1283 		return (0);
1284 	}
1285 
1286 	/*
1287 	 * Hmm ... what happened here?
1288 	 *
1289 	 * Most likely, the user addressed an non-existent SEEPROM. Or
1290 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1291 	 * and didn't respond to being addressed. Either way, it's left
1292 	 * the SEEPROM access state machine wedged. So we'll reset it
1293 	 * before we leave, so it's ready for next time ...
1294 	 */
1295 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1296 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1297 	return (ENODATA);
1298 }
1299 
1300 /*
1301  * Basic Flash get/set access routine
1302  *
1303  * These use the chip's Flash auto-access method, controlled by the
1304  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1305  * fiddle with the individual bits.
1306  *
1307  * The caller should hold <genlock> and *also* have already acquired
1308  * the right to access the Flash, via bge_nvmem_acquire() above.
1309  *
1310  * Return value:
1311  *	0 on success,
1312  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1313  *	ENODEV if the NVmem device is missing or otherwise unusable
1314  *
1315  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1316  * from a (successful) NVM_FLASH_CMD_RD.
1317  */
1318 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1319 				uint32_t *dp);
1320 #pragma	no_inline(bge_flash_access)
1321 
1322 static int
1323 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1324 {
1325 	uint32_t tries;
1326 	uint32_t regval;
1327 
1328 	ASSERT(mutex_owned(bgep->genlock));
1329 
1330 	/*
1331 	 * On the newer chips that support both SEEPROM & Flash, we need
1332 	 * to specifically disable SEEPROM access while accessing Flash.
1333 	 * The older chips don't support Flash, and the NVM registers don't
1334 	 * exist, so we shouldn't be here at all!
1335 	 */
1336 	switch (bgep->chipid.nvtype) {
1337 	case BGE_NVTYPE_NONE:
1338 	case BGE_NVTYPE_UNKNOWN:
1339 		_NOTE(NOTREACHED)
1340 	case BGE_NVTYPE_SEEPROM:
1341 		return (ENODEV);
1342 
1343 	case BGE_NVTYPE_LEGACY_SEEPROM:
1344 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1345 	case BGE_NVTYPE_BUFFERED_FLASH:
1346 	default:
1347 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1348 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1349 		break;
1350 	}
1351 
1352 	/*
1353 	 * Assemble the command ...
1354 	 */
1355 	addr &= NVM_FLASH_ADDR_MASK;
1356 	cmd |= NVM_FLASH_CMD_DOIT;
1357 	cmd |= NVM_FLASH_CMD_FIRST;
1358 	cmd |= NVM_FLASH_CMD_LAST;
1359 	cmd |= NVM_FLASH_CMD_DONE;
1360 
1361 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1362 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1363 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1364 
1365 	/*
1366 	 * Allow up to 1000ms ...
1367 	 */
1368 	for (tries = 0; tries < 1000; ++tries) {
1369 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1370 		if (regval & NVM_FLASH_CMD_DONE)
1371 			break;
1372 		drv_usecwait(1);
1373 	}
1374 
1375 	if (regval & NVM_FLASH_CMD_DONE) {
1376 		/*
1377 		 * All OK; read the data from the Flash read register
1378 		 */
1379 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1380 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1381 		return (0);
1382 	}
1383 
1384 	/*
1385 	 * Hmm ... what happened here?
1386 	 *
1387 	 * Most likely, the user addressed an non-existent Flash. Or
1388 	 * maybe the Flash was busy internally (e.g. processing a write)
1389 	 * and didn't respond to being addressed. Either way, there's
1390 	 * nothing we can here ...
1391 	 */
1392 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1393 	return (ENODATA);
1394 }
1395 
1396 /*
1397  * The next two functions regulate access to the NVram (if fitted).
1398  *
1399  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1400  * (SPI) interface, but they can be accessed through either port. These
1401  * are managed by different instance of this driver and have no software
1402  * state in common.
1403  *
1404  * In addition (and even on a single core chip) the chip's internal
1405  * firmware can access the SEEPROM/Flash, most notably after a RESET
1406  * when it may download code to run internally.
1407  *
1408  * So we need to arbitrate between these various software agents.  For
1409  * this purpose, the chip provides the Software Arbitration Register,
1410  * which implements hardware(!) arbitration.
1411  *
1412  * This functionality didn't exist on older (5700/5701) chips, so there's
1413  * nothing we can do by way of arbitration on those; also, if there's no
1414  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1415  * nothing to do.
1416  *
1417  * The internal firmware appears to use Request 0, which is the highest
1418  * priority.  So we'd like to use Request 2, leaving one higher and one
1419  * lower for any future developments ... but apparently this doesn't
1420  * always work.  So for now, the code uses Request 1 ;-(
1421  */
1422 
1423 #define	NVM_READ_REQ	NVM_READ_REQ1
1424 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1425 #define	NVM_SET_REQ	NVM_SET_REQ1
1426 
1427 static void bge_nvmem_relinquish(bge_t *bgep);
1428 #pragma	no_inline(bge_nvmem_relinquish)
1429 
1430 static void
1431 bge_nvmem_relinquish(bge_t *bgep)
1432 {
1433 	uint32_t regval;
1434 
1435 	ASSERT(mutex_owned(bgep->genlock));
1436 
1437 	switch (bgep->chipid.nvtype) {
1438 	case BGE_NVTYPE_NONE:
1439 	case BGE_NVTYPE_UNKNOWN:
1440 		_NOTE(NOTREACHED)
1441 		return;
1442 
1443 	case BGE_NVTYPE_SEEPROM:
1444 		/*
1445 		 * No arbitration performed, no release needed
1446 		 */
1447 		return;
1448 
1449 	case BGE_NVTYPE_LEGACY_SEEPROM:
1450 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1451 	case BGE_NVTYPE_BUFFERED_FLASH:
1452 	default:
1453 		break;
1454 	}
1455 
1456 	/*
1457 	 * Our own request should be present (whether or not granted) ...
1458 	 */
1459 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1460 	ASSERT((regval & NVM_READ_REQ) != 0);
1461 
1462 	/*
1463 	 * ... this will make it go away.
1464 	 */
1465 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1466 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1467 	ASSERT((regval & NVM_READ_REQ) == 0);
1468 }
1469 
1470 /*
1471  * Arbitrate for access to the NVmem, if necessary
1472  *
1473  * Return value:
1474  *	0 on success
1475  *	EAGAIN if the device is in use (retryable)
1476  *	ENODEV if the NVmem device is missing or otherwise unusable
1477  */
1478 static int bge_nvmem_acquire(bge_t *bgep);
1479 #pragma	no_inline(bge_nvmem_acquire)
1480 
1481 static int
1482 bge_nvmem_acquire(bge_t *bgep)
1483 {
1484 	uint32_t regval;
1485 	uint32_t tries;
1486 
1487 	ASSERT(mutex_owned(bgep->genlock));
1488 
1489 	switch (bgep->chipid.nvtype) {
1490 	case BGE_NVTYPE_NONE:
1491 	case BGE_NVTYPE_UNKNOWN:
1492 		/*
1493 		 * Access denied: no (recognisable) device fitted
1494 		 */
1495 		return (ENODEV);
1496 
1497 	case BGE_NVTYPE_SEEPROM:
1498 		/*
1499 		 * Access granted: no arbitration needed (or possible)
1500 		 */
1501 		return (0);
1502 
1503 	case BGE_NVTYPE_LEGACY_SEEPROM:
1504 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1505 	case BGE_NVTYPE_BUFFERED_FLASH:
1506 	default:
1507 		/*
1508 		 * Access conditional: conduct arbitration protocol
1509 		 */
1510 		break;
1511 	}
1512 
1513 	/*
1514 	 * We're holding the per-port mutex <genlock>, so no-one other
1515 	 * threads can be attempting to access the NVmem through *this*
1516 	 * port. But it could be in use by the *other* port (of a 5704),
1517 	 * or by the chip's internal firmware, so we have to go through
1518 	 * the full (hardware) arbitration protocol ...
1519 	 *
1520 	 * Note that *because* we're holding <genlock>, the interrupt handler
1521 	 * won't be able to progress.  So we're only willing to spin for a
1522 	 * fairly short time.  Specifically:
1523 	 *
1524 	 *	We *must* wait long enough for the hardware to resolve all
1525 	 *	requests and determine the winner.  Fortunately, this is
1526 	 *	"almost instantaneous", even as observed by GHz CPUs.
1527 	 *
1528 	 *	A successful access by another Solaris thread (via either
1529 	 *	port) typically takes ~20us.  So waiting a bit longer than
1530 	 *	that will give a good chance of success, if the other user
1531 	 *	*is* another thread on the other port.
1532 	 *
1533 	 *	However, the internal firmware can hold on to the NVmem
1534 	 *	for *much* longer: at least 10 milliseconds just after a
1535 	 *	RESET, and maybe even longer if the NVmem actually contains
1536 	 *	code to download and run on the internal CPUs.
1537 	 *
1538 	 * So, we'll allow 50us; if that's not enough then it's up to the
1539 	 * caller to retry later (hence the choice of return code EAGAIN).
1540 	 */
1541 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1542 	ASSERT((regval & NVM_READ_REQ) == 0);
1543 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1544 
1545 	for (tries = 0; tries < 50; ++tries) {
1546 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1547 		ASSERT((regval & NVM_READ_REQ) != 0);
1548 		if (regval & NVM_WON_REQ1)
1549 			break;
1550 		drv_usecwait(1);
1551 	}
1552 
1553 	if (regval & NVM_WON_REQ1) {
1554 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1555 		return (0);
1556 	}
1557 
1558 	/*
1559 	 * Somebody else must be accessing the NVmem, so abandon our
1560 	 * attempt take control of it.  The caller can try again later ...
1561 	 */
1562 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1563 	bge_nvmem_relinquish(bgep);
1564 	return (EAGAIN);
1565 }
1566 
1567 /*
1568  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1569  * write protect line in such a way that the NVmem is protected when
1570  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1571  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1572  *
1573  * Note: there's only one set of GPIO pins on a 5704, even though they
1574  * can be accessed through either port.  So the chip has to resolve what
1575  * happens if the two ports program a single pin differently ... the rule
1576  * it uses is that if the ports disagree about the *direction* of a pin,
1577  * "output" wins over "input", but if they disagree about its *value* as
1578  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1579  * wins, and the external signal does whatever the external circuitry
1580  * defines as the default -- which we've assumed is the PROTECTED state.
1581  * So, we always change GPIO1 back to being an *input* whenever we're not
1582  * specifically using it to unprotect the NVmem. This allows either port
1583  * to update the NVmem, although obviously only one at a a time!
1584  *
1585  * The caller should hold <genlock> and *also* have already acquired the
1586  * right to access the NVmem, via bge_nvmem_acquire() above.
1587  */
1588 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1589 #pragma	inline(bge_nvmem_protect)
1590 
1591 static void
1592 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1593 {
1594 	uint32_t regval;
1595 
1596 	ASSERT(mutex_owned(bgep->genlock));
1597 
1598 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1599 	if (protect) {
1600 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1601 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1602 	} else {
1603 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1604 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1605 	}
1606 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1607 }
1608 
1609 /*
1610  * Now put it all together ...
1611  *
1612  * Try to acquire control of the NVmem; if successful, then:
1613  *	unprotect it (if we want to write to it)
1614  *	perform the requested access
1615  *	reprotect it (after a write)
1616  *	relinquish control
1617  *
1618  * Return value:
1619  *	0 on success,
1620  *	EAGAIN if the device is in use (retryable)
1621  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1622  *	ENODEV if the NVmem device is missing or otherwise unusable
1623  *	EPROTO on other h/w or s/w errors.
1624  */
1625 static int
1626 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1627 {
1628 	int err;
1629 
1630 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1631 		switch (cmd) {
1632 		case BGE_SEE_READ:
1633 			err = bge_seeprom_access(bgep,
1634 			    SEEPROM_ACCESS_READ, addr, dp);
1635 			break;
1636 
1637 		case BGE_SEE_WRITE:
1638 			bge_nvmem_protect(bgep, B_FALSE);
1639 			err = bge_seeprom_access(bgep,
1640 			    SEEPROM_ACCESS_WRITE, addr, dp);
1641 			bge_nvmem_protect(bgep, B_TRUE);
1642 			break;
1643 
1644 		case BGE_FLASH_READ:
1645 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1646 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1647 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1648 				    NVM_ACCESS_ENABLE);
1649 			}
1650 			err = bge_flash_access(bgep,
1651 			    NVM_FLASH_CMD_RD, addr, dp);
1652 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1653 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1654 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1655 				    NVM_ACCESS_ENABLE);
1656 			}
1657 			break;
1658 
1659 		case BGE_FLASH_WRITE:
1660 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1661 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1662 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1663 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1664 			}
1665 			bge_nvmem_protect(bgep, B_FALSE);
1666 			err = bge_flash_access(bgep,
1667 			    NVM_FLASH_CMD_WR, addr, dp);
1668 			bge_nvmem_protect(bgep, B_TRUE);
1669 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1670 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1671 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1672 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1673 			}
1674 
1675 			break;
1676 
1677 		default:
1678 			_NOTE(NOTREACHED)
1679 			break;
1680 		}
1681 		bge_nvmem_relinquish(bgep);
1682 	}
1683 
1684 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1685 	return (err);
1686 }
1687 
1688 /*
1689  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1690  */
1691 static uint64_t bge_get_nvmac(bge_t *bgep);
1692 #pragma no_inline(bge_get_nvmac)
1693 
1694 static uint64_t
1695 bge_get_nvmac(bge_t *bgep)
1696 {
1697 	uint32_t mac_high;
1698 	uint32_t mac_low;
1699 	uint32_t addr;
1700 	uint32_t cmd;
1701 	uint64_t mac;
1702 
1703 	BGE_TRACE(("bge_get_nvmac($%p)",
1704 		(void *)bgep));
1705 
1706 	switch (bgep->chipid.nvtype) {
1707 	case BGE_NVTYPE_NONE:
1708 	case BGE_NVTYPE_UNKNOWN:
1709 	default:
1710 		return (0ULL);
1711 
1712 	case BGE_NVTYPE_SEEPROM:
1713 	case BGE_NVTYPE_LEGACY_SEEPROM:
1714 		cmd = BGE_SEE_READ;
1715 		break;
1716 
1717 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1718 	case BGE_NVTYPE_BUFFERED_FLASH:
1719 		cmd = BGE_FLASH_READ;
1720 		break;
1721 	}
1722 
1723 	addr = NVMEM_DATA_MAC_ADDRESS;
1724 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1725 		return (0ULL);
1726 	addr += 4;
1727 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1728 		return (0ULL);
1729 
1730 	/*
1731 	 * The Broadcom chip is natively BIG-endian, so that's how the
1732 	 * MAC address is represented in NVmem.  We may need to swap it
1733 	 * around on a little-endian host ...
1734 	 */
1735 #ifdef	_BIG_ENDIAN
1736 	mac = mac_high;
1737 	mac = mac << 32;
1738 	mac |= mac_low;
1739 #else
1740 	mac = BGE_BSWAP_32(mac_high);
1741 	mac = mac << 32;
1742 	mac |= BGE_BSWAP_32(mac_low);
1743 #endif	/* _BIG_ENDIAN */
1744 
1745 	return (mac);
1746 }
1747 
1748 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1749 
1750 /*
1751  * Dummy version for when we're not supporting NVmem access
1752  */
1753 static uint64_t bge_get_nvmac(bge_t *bgep);
1754 #pragma inline(bge_get_nvmac)
1755 
1756 static uint64_t
1757 bge_get_nvmac(bge_t *bgep)
1758 {
1759 	_NOTE(ARGUNUSED(bgep))
1760 	return (0ULL);
1761 }
1762 
1763 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1764 
1765 /*
1766  * Determine the type of NVmem that is (or may be) attached to this chip,
1767  */
1768 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1769 #pragma no_inline(bge_nvmem_id)
1770 
1771 static enum bge_nvmem_type
1772 bge_nvmem_id(bge_t *bgep)
1773 {
1774 	enum bge_nvmem_type nvtype;
1775 	uint32_t config1;
1776 
1777 	BGE_TRACE(("bge_nvmem_id($%p)",
1778 		(void *)bgep));
1779 
1780 	switch (bgep->chipid.device) {
1781 	default:
1782 		/*
1783 		 * We shouldn't get here; it means we don't recognise
1784 		 * the chip, which means we don't know how to determine
1785 		 * what sort of NVmem (if any) it has.  So we'll say
1786 		 * NONE, to disable the NVmem access code ...
1787 		 */
1788 		nvtype = BGE_NVTYPE_NONE;
1789 		break;
1790 
1791 	case DEVICE_ID_5700:
1792 	case DEVICE_ID_5700x:
1793 	case DEVICE_ID_5701:
1794 		/*
1795 		 * These devices support *only* SEEPROMs
1796 		 */
1797 		nvtype = BGE_NVTYPE_SEEPROM;
1798 		break;
1799 
1800 	case DEVICE_ID_5702:
1801 	case DEVICE_ID_5702fe:
1802 	case DEVICE_ID_5703C:
1803 	case DEVICE_ID_5703S:
1804 	case DEVICE_ID_5704C:
1805 	case DEVICE_ID_5704S:
1806 	case DEVICE_ID_5704:
1807 	case DEVICE_ID_5705M:
1808 	case DEVICE_ID_5705C:
1809 	case DEVICE_ID_5706:
1810 	case DEVICE_ID_5782:
1811 	case DEVICE_ID_5788:
1812 	case DEVICE_ID_5751:
1813 	case DEVICE_ID_5751M:
1814 	case DEVICE_ID_5721:
1815 	case DEVICE_ID_5714C:
1816 	case DEVICE_ID_5714S:
1817 	case DEVICE_ID_5715C:
1818 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1819 		if (config1 & NVM_CFG1_FLASH_MODE)
1820 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1821 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1822 			else
1823 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1824 		else
1825 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1826 		break;
1827 	}
1828 
1829 	return (nvtype);
1830 }
1831 
1832 #undef	BGE_DBG
1833 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1834 
1835 static void
1836 bge_init_recv_rule(bge_t *bgep)
1837 {
1838 	bge_recv_rule_t *rulep;
1839 	uint32_t i;
1840 
1841 	/*
1842 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1843 	 * 1. to direct UDP traffic, set:
1844 	 * 	rulep->control = RULE_PROTO_CONTROL;
1845 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1846 	 * 2. to direct ICMP traffic, set:
1847 	 * 	rulep->control = RULE_PROTO_CONTROL;
1848 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1849 	 * 3. to direct traffic by source ip, set:
1850 	 * 	rulep->control = RULE_SIP_CONTROL;
1851 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1852 	 */
1853 	rulep = bgep->recv_rules;
1854 	rulep->control = RULE_PROTO_CONTROL;
1855 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1856 
1857 	/*
1858 	 * set receive rule registers
1859 	 */
1860 	rulep = bgep->recv_rules;
1861 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1862 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1863 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1864 	}
1865 }
1866 
1867 /*
1868  * Using the values captured by bge_chip_cfg_init(), and additional probes
1869  * as required, characterise the chip fully: determine the label by which
1870  * to refer to this chip, the correct settings for various registers, and
1871  * of course whether the device and/or subsystem are supported!
1872  */
1873 void bge_chip_id_init(bge_t *bgep);
1874 #pragma	no_inline(bge_chip_id_init)
1875 
1876 void
1877 bge_chip_id_init(bge_t *bgep)
1878 {
1879 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1880 	boolean_t sys_ok;
1881 	boolean_t dev_ok;
1882 	chip_id_t *cidp;
1883 	uint32_t subid;
1884 	char *devname;
1885 	char *sysname;
1886 	int *ids;
1887 	int err;
1888 	uint_t i;
1889 
1890 	ASSERT(bgep->bge_chip_state == BGE_CHIP_INITIAL);
1891 
1892 	sys_ok = dev_ok = B_FALSE;
1893 	cidp = &bgep->chipid;
1894 
1895 	/*
1896 	 * Check the PCI device ID to determine the generic chip type and
1897 	 * select parameters that depend on this.
1898 	 *
1899 	 * Note: because the SPARC platforms in general don't fit the
1900 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1901 	 * as zero - which is why we use <asic_rev> rather than <revision>
1902 	 * below ...
1903 	 *
1904 	 * Note: in general we can't distinguish between the Copper/SerDes
1905 	 * versions by ID alone, as some Copper devices (e.g. some but not
1906 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1907 	 * treat them the same here, and the MII code works out the media
1908 	 * type later on ...
1909 	 */
1910 	cidp->mbuf_base = bge_mbuf_pool_base;
1911 	cidp->mbuf_length = bge_mbuf_pool_len;
1912 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1913 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1914 	cidp->pci_type = BGE_PCI_X;
1915 	cidp->statistic_type = BGE_STAT_BLK;
1916 
1917 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1918 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1919 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1920 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1921 
1922 	cidp->msi_enabled = B_FALSE;
1923 
1924 	switch (cidp->device) {
1925 	case DEVICE_ID_5700:
1926 	case DEVICE_ID_5700x:
1927 		cidp->chip_label = 5700;
1928 		cidp->flags |= CHIP_FLAG_NO_CSUM;
1929 		break;
1930 
1931 	case DEVICE_ID_5701:
1932 		cidp->chip_label = 5701;
1933 		dev_ok = B_TRUE;
1934 		cidp->flags |= CHIP_FLAG_NO_CSUM;
1935 		break;
1936 
1937 	case DEVICE_ID_5702:
1938 	case DEVICE_ID_5702fe:
1939 		cidp->chip_label = 5702;
1940 		dev_ok = B_TRUE;
1941 		cidp->flags |= CHIP_FLAG_NO_CSUM;	/* for now	*/
1942 		break;
1943 
1944 	case DEVICE_ID_5703C:
1945 	case DEVICE_ID_5703S:
1946 	case DEVICE_ID_5703:
1947 		/*
1948 		 * Revision A0 of the 5703/5793 had various errata
1949 		 * that we can't or don't work around, so it's not
1950 		 * supported, but all later versions are
1951 		 */
1952 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
1953 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
1954 			dev_ok = B_TRUE;
1955 		break;
1956 
1957 	case DEVICE_ID_5704C:
1958 	case DEVICE_ID_5704S:
1959 	case DEVICE_ID_5704:
1960 		/*
1961 		 * Revision A0 of the 5704/5794 had various errata
1962 		 * but we have workarounds, so it *is* supported.
1963 		 */
1964 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
1965 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
1966 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
1967 		dev_ok = B_TRUE;
1968 		break;
1969 
1970 	case DEVICE_ID_5705C:
1971 	case DEVICE_ID_5705M:
1972 	case DEVICE_ID_5705MA3:
1973 	case DEVICE_ID_5705F:
1974 		cidp->chip_label = 5705;
1975 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
1976 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
1977 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
1978 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
1979 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
1980 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
1981 		cidp->statistic_type = BGE_STAT_REG;
1982 		dev_ok = B_TRUE;
1983 		break;
1984 
1985 	case DEVICE_ID_5706:
1986 		cidp->chip_label = 5706;
1987 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
1988 		cidp->flags |= CHIP_FLAG_NO_CSUM;	/* for now	*/
1989 		break;
1990 
1991 	case DEVICE_ID_5782:
1992 		/*
1993 		 * Apart from the label, we treat this as a 5705(?)
1994 		 */
1995 		cidp->chip_label = 5782;
1996 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
1997 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
1998 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
1999 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2000 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2001 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2002 		cidp->statistic_type = BGE_STAT_REG;
2003 		dev_ok = B_TRUE;
2004 		break;
2005 
2006 	case DEVICE_ID_5788:
2007 		/*
2008 		 * Apart from the label, we treat this as a 5705(?)
2009 		 */
2010 		cidp->chip_label = 5788;
2011 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2012 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2013 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2014 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2015 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2016 		cidp->statistic_type = BGE_STAT_REG;
2017 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2018 		dev_ok = B_TRUE;
2019 		break;
2020 
2021 	case DEVICE_ID_5714C:
2022 		if (cidp->revision >= REVISION_ID_5714_A2)
2023 			cidp->msi_enabled = bge_enable_msi;
2024 		/* FALLTHRU */
2025 	case DEVICE_ID_5714S:
2026 		cidp->chip_label = 5714;
2027 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2028 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2029 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2030 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2031 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2032 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2033 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2034 		cidp->pci_type = BGE_PCI_E;
2035 		cidp->statistic_type = BGE_STAT_REG;
2036 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2037 		dev_ok = B_TRUE;
2038 		break;
2039 
2040 	case DEVICE_ID_5715C:
2041 		cidp->chip_label = 5715;
2042 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2043 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2044 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2045 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2046 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2047 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2048 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2049 		cidp->pci_type = BGE_PCI_E;
2050 		cidp->statistic_type = BGE_STAT_REG;
2051 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2052 		dev_ok = B_TRUE;
2053 		break;
2054 
2055 	case DEVICE_ID_5721:
2056 		cidp->chip_label = 5721;
2057 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2058 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2059 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2060 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2061 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2062 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2063 		cidp->pci_type = BGE_PCI_E;
2064 		cidp->statistic_type = BGE_STAT_REG;
2065 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2066 		dev_ok = B_TRUE;
2067 		break;
2068 
2069 	case DEVICE_ID_5751:
2070 	case DEVICE_ID_5751M:
2071 		cidp->chip_label = 5751;
2072 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2073 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2074 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2075 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2076 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2077 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2078 		cidp->pci_type = BGE_PCI_E;
2079 		cidp->statistic_type = BGE_STAT_REG;
2080 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2081 		dev_ok = B_TRUE;
2082 		break;
2083 
2084 	}
2085 
2086 	/*
2087 	 * Setup the default jumbo parameter.
2088 	 */
2089 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
2090 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
2091 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
2092 	cidp->ethmax_size = ETHERMAX;
2093 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2094 
2095 	/*
2096 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2097 	 * setup below jumbo specific parameters.
2098 	 */
2099 	if (bge_jumbo_enable &&
2100 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2101 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2102 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2103 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_JUMBO;
2104 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_JUMBO;
2105 		cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2106 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2107 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2108 		cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2109 		cidp->ethmax_size = cidp->default_mtu +
2110 		    sizeof (struct ether_header);
2111 	}
2112 
2113 	/*
2114 	 * Identify the NV memory type: SEEPROM or Flash?
2115 	 */
2116 	cidp->nvtype = bge_nvmem_id(bgep);
2117 
2118 	/*
2119 	 * Now, we want to check whether this device is part of a
2120 	 * supported subsystem (e.g., on the motherboard of a Sun
2121 	 * branded platform).
2122 	 *
2123 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2124 	 */
2125 	if (cidp->subven == VENDOR_ID_SUN)
2126 		sys_ok = B_TRUE;
2127 
2128 	/*
2129 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2130 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2131 	 * doesn't enforce that.
2132 	 */
2133 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2134 		DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2135 	if (err == DDI_PROP_SUCCESS) {
2136 		/*
2137 		 * Got the list; scan for a matching subsystem vendor/device
2138 		 */
2139 		subid = (cidp->subven << 16) | cidp->subdev;
2140 		while (i--)
2141 			if (ids[i] == subid)
2142 				sys_ok = B_TRUE;
2143 		ddi_prop_free(ids);
2144 	}
2145 
2146 	/*
2147 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2148 	 *
2149 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2150 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2151 	 * we have to check specially for the exact device paths to the
2152 	 * motherboard devices on those platforms ;-(
2153 	 *
2154 	 * Note: we can't just use the "supported-subsystems" mechanism
2155 	 * above, because the entry would have to be 0x14e41647 -- which
2156 	 * would then accept *any* plugin card that *didn't* contain a
2157 	 * (valid) SEEPROM ;-(
2158 	 */
2159 	sysname = ddi_node_name(ddi_root_node());
2160 	devname = ddi_pathname(bgep->devinfo, buf);
2161 	ASSERT(strlen(devname) > 0);
2162 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2163 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2164 			sys_ok = B_TRUE;
2165 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2166 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2167 			sys_ok = B_TRUE;
2168 
2169 	/*
2170 	 * Now check what we've discovered: is this truly a supported
2171 	 * chip on (the motherboard of) a supported platform?
2172 	 *
2173 	 * Possible problems here:
2174 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2175 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2176 	 * 3)	it's a chip we would support if it were on the motherboard
2177 	 *	of a Sun platform, but this one isn't ;-(
2178 	 */
2179 	if (cidp->chip_label == 0)
2180 		bge_problem(bgep,
2181 			"Device 'pci%04x,%04x' not recognized (%d?)",
2182 			cidp->vendor, cidp->device, cidp->device);
2183 	else if (!dev_ok)
2184 		bge_problem(bgep,
2185 			"Device 'pci%04x,%04x' (%d) revision %d not supported",
2186 			cidp->vendor, cidp->device, cidp->chip_label,
2187 			cidp->revision);
2188 #if	BGE_DEBUGGING
2189 	else if (!sys_ok)
2190 		bge_problem(bgep,
2191 			"%d-based subsystem 'pci%04x,%04x' not validated",
2192 			cidp->chip_label, cidp->subven, cidp->subdev);
2193 #endif
2194 	else
2195 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2196 }
2197 
2198 void
2199 bge_chip_msi_trig(bge_t *bgep)
2200 {
2201 	uint32_t	regval;
2202 
2203 	regval = bgep->param_msi_cnt<<4;
2204 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2205 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2206 }
2207 
2208 /*
2209  * Various registers that control the chip's internal engines (state
2210  * machines) have a <reset> and <enable> bits (fortunately, in the
2211  * same place in each such register :-).
2212  *
2213  * To reset the state machine, the <reset> bit must be written with 1;
2214  * it will then read back as 1 while the reset is in progress, but
2215  * self-clear to 0 when the reset completes.
2216  *
2217  * To enable a state machine, one must set the <enable> bit, which
2218  * will continue to read back as 0 until the state machine is running.
2219  *
2220  * To disable a state machine, the <enable> bit must be cleared, but
2221  * it will continue to read back as 1 until the state machine actually
2222  * stops.
2223  *
2224  * This routine implements polling for completion of a reset, enable
2225  * or disable operation, returning B_TRUE on success (bit reached the
2226  * required state) or B_FALSE on timeout (200*100us == 20ms).
2227  */
2228 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2229 					uint32_t mask, uint32_t val);
2230 #pragma	no_inline(bge_chip_poll_engine)
2231 
2232 static boolean_t
2233 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2234 	uint32_t mask, uint32_t val)
2235 {
2236 	uint32_t regval;
2237 	uint32_t n;
2238 
2239 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2240 		(void *)bgep, regno, mask, val));
2241 
2242 	for (n = 200; n; --n) {
2243 		regval = bge_reg_get32(bgep, regno);
2244 		if ((regval & mask) == val)
2245 			return (B_TRUE);
2246 		drv_usecwait(100);
2247 	}
2248 
2249 	return (B_FALSE);
2250 }
2251 
2252 /*
2253  * Various registers that control the chip's internal engines (state
2254  * machines) have a <reset> bit (fortunately, in the same place in
2255  * each such register :-).  To reset the state machine, this bit must
2256  * be written with 1; it will then read back as 1 while the reset is
2257  * in progress, but self-clear to 0 when the reset completes.
2258  *
2259  * This code sets the bit, then polls for it to read back as zero.
2260  * The return value is B_TRUE on success (reset bit cleared itself),
2261  * or B_FALSE if the state machine didn't recover :(
2262  *
2263  * NOTE: the Core reset is similar to other resets, except that we
2264  * can't poll for completion, since the Core reset disables memory
2265  * access!  So we just have to assume that it will all complete in
2266  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2267  */
2268 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2269 #pragma	no_inline(bge_chip_reset_engine)
2270 
2271 static boolean_t
2272 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2273 {
2274 	uint32_t regval;
2275 	uint32_t val32;
2276 
2277 	regval = bge_reg_get32(bgep, regno);
2278 
2279 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2280 		(void *)bgep, regno));
2281 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2282 		regno, regval));
2283 
2284 	regval |= STATE_MACHINE_RESET_BIT;
2285 
2286 	switch (regno) {
2287 	case MISC_CONFIG_REG:
2288 		/*
2289 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2290 		 * resetting PCIE block and bringing PCIE link down, bit 29
2291 		 * in the register needs to be set first, and then set it again
2292 		 * while the reset bit is written.
2293 		 * See:P500 of 57xx-PG102-RDS.pdf.
2294 		 */
2295 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2296 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2297 		    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2298 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2299 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2300 				if (bgep->chipid.asic_rev ==
2301 				    MHCR_CHIP_REV_5751_A0 ||
2302 				    bgep->chipid.asic_rev ==
2303 				    MHCR_CHIP_REV_5721_A0) {
2304 					val32 = bge_reg_get32(bgep,
2305 					    PHY_TEST_CTRL_REG);
2306 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2307 					    PHY_PCIE_LTASS_MODE))
2308 						bge_reg_put32(bgep,
2309 						    PHY_TEST_CTRL_REG,
2310 						    PHY_PCIE_SCRAM_MODE);
2311 					val32 = pci_config_get32
2312 					    (bgep->cfg_handle,
2313 					    PCI_CONF_BGE_CLKCTL);
2314 					val32 |= CLKCTL_PCIE_A0_FIX;
2315 					pci_config_put32(bgep->cfg_handle,
2316 					    PCI_CONF_BGE_CLKCTL, val32);
2317 				}
2318 				bge_reg_set32(bgep, regno,
2319 					MISC_CONFIG_GRC_RESET_DISABLE);
2320 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2321 			}
2322 		}
2323 
2324 		/*
2325 		 * Special case - causes Core reset
2326 		 *
2327 		 * On SPARC v9 we want to ensure that we don't start
2328 		 * timing until the I/O access has actually reached
2329 		 * the chip, otherwise we might make the next access
2330 		 * too early.  And we can't just force the write out
2331 		 * by following it with a read (even to config space)
2332 		 * because that would cause the fault we're trying
2333 		 * to avoid.  Hence the need for membar_sync() here.
2334 		 */
2335 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2336 #ifdef	__sparcv9
2337 		membar_sync();
2338 #endif	/* __sparcv9 */
2339 		/*
2340 		 * On some platforms,system need about 300us for
2341 		 * link setup.
2342 		 */
2343 		drv_usecwait(300);
2344 
2345 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2346 			/* PCI-E device need more reset time */
2347 			drv_usecwait(120000);
2348 
2349 			/* Set PCIE max payload size and clear error status. */
2350 			if (bgep->chipid.chip_label == 5721 ||
2351 			    bgep->chipid.chip_label == 5751) {
2352 				pci_config_put16(bgep->cfg_handle,
2353 					PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2354 				pci_config_put16(bgep->cfg_handle,
2355 					PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2356 			}
2357 		}
2358 
2359 		BGE_PCICHK(bgep);
2360 		return (B_TRUE);
2361 
2362 	default:
2363 		bge_reg_put32(bgep, regno, regval);
2364 		return (bge_chip_poll_engine(bgep, regno,
2365 			STATE_MACHINE_RESET_BIT, 0));
2366 	}
2367 }
2368 
2369 /*
2370  * Various registers that control the chip's internal engines (state
2371  * machines) have an <enable> bit (fortunately, in the same place in
2372  * each such register :-).  To stop the state machine, this bit must
2373  * be written with 0, then polled to see when the state machine has
2374  * actually stopped.
2375  *
2376  * The return value is B_TRUE on success (enable bit cleared), or
2377  * B_FALSE if the state machine didn't stop :(
2378  */
2379 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2380 						uint32_t morebits);
2381 #pragma	no_inline(bge_chip_disable_engine)
2382 
2383 static boolean_t
2384 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2385 {
2386 	uint32_t regval;
2387 
2388 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2389 		(void *)bgep, regno, morebits));
2390 
2391 	switch (regno) {
2392 	case FTQ_RESET_REG:
2393 		/*
2394 		 * Not quite like the others; it doesn't
2395 		 * have an <enable> bit, but instead we
2396 		 * have to set and then clear all the bits
2397 		 */
2398 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2399 		drv_usecwait(100);
2400 		bge_reg_put32(bgep, regno, 0);
2401 		return (B_TRUE);
2402 
2403 	default:
2404 		regval = bge_reg_get32(bgep, regno);
2405 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2406 		regval &= ~morebits;
2407 		bge_reg_put32(bgep, regno, regval);
2408 		return (bge_chip_poll_engine(bgep, regno,
2409 			STATE_MACHINE_ENABLE_BIT, 0));
2410 	}
2411 }
2412 
2413 /*
2414  * Various registers that control the chip's internal engines (state
2415  * machines) have an <enable> bit (fortunately, in the same place in
2416  * each such register :-).  To start the state machine, this bit must
2417  * be written with 1, then polled to see when the state machine has
2418  * actually started.
2419  *
2420  * The return value is B_TRUE on success (enable bit set), or
2421  * B_FALSE if the state machine didn't start :(
2422  */
2423 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2424 					uint32_t morebits);
2425 #pragma	no_inline(bge_chip_enable_engine)
2426 
2427 static boolean_t
2428 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2429 {
2430 	uint32_t regval;
2431 
2432 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2433 		(void *)bgep, regno, morebits));
2434 
2435 	switch (regno) {
2436 	case FTQ_RESET_REG:
2437 		/*
2438 		 * Not quite like the others; it doesn't
2439 		 * have an <enable> bit, but instead we
2440 		 * have to set and then clear all the bits
2441 		 */
2442 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2443 		drv_usecwait(100);
2444 		bge_reg_put32(bgep, regno, 0);
2445 		return (B_TRUE);
2446 
2447 	default:
2448 		regval = bge_reg_get32(bgep, regno);
2449 		regval |= STATE_MACHINE_ENABLE_BIT;
2450 		regval |= morebits;
2451 		bge_reg_put32(bgep, regno, regval);
2452 		return (bge_chip_poll_engine(bgep, regno,
2453 			STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2454 	}
2455 }
2456 
2457 /*
2458  * Reprogram the Ethernet, Transmit, and Receive MAC
2459  * modes to match the param_* variables
2460  */
2461 static void bge_sync_mac_modes(bge_t *bgep);
2462 #pragma	no_inline(bge_sync_mac_modes)
2463 
2464 static void
2465 bge_sync_mac_modes(bge_t *bgep)
2466 {
2467 	uint32_t macmode;
2468 	uint32_t regval;
2469 
2470 	ASSERT(mutex_owned(bgep->genlock));
2471 
2472 	/*
2473 	 * Reprogram the Ethernet MAC mode ...
2474 	 */
2475 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2476 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2477 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2478 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2479 	else
2480 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2481 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2482 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2483 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2484 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
2485 	else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100)
2486 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2487 	else
2488 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2489 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2490 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2491 	else
2492 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2493 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2494 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2495 	else
2496 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2497 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2498 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2499 		(void *)bgep, regval, macmode));
2500 
2501 	/*
2502 	 * ... the Transmit MAC mode ...
2503 	 */
2504 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2505 	if (bgep->param_link_tx_pause)
2506 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2507 	else
2508 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2509 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2510 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2511 		(void *)bgep, regval, macmode));
2512 
2513 	/*
2514 	 * ... and the Receive MAC mode
2515 	 */
2516 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2517 	if (bgep->param_link_rx_pause)
2518 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2519 	else
2520 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2521 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2522 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2523 		(void *)bgep, regval, macmode));
2524 }
2525 
2526 /*
2527  * bge_chip_sync() -- program the chip with the unicast MAC address,
2528  * the multicast hash table, the required level of promiscuity, and
2529  * the current loopback mode ...
2530  */
2531 #ifdef BGE_IPMI_ASF
2532 void bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2533 #else
2534 void bge_chip_sync(bge_t *bgep);
2535 #endif
2536 #pragma	no_inline(bge_chip_sync)
2537 
2538 void
2539 #ifdef BGE_IPMI_ASF
2540 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2541 #else
2542 bge_chip_sync(bge_t *bgep)
2543 #endif
2544 {
2545 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2546 	boolean_t promisc;
2547 	uint64_t macaddr;
2548 	uint32_t fill;
2549 	int i;
2550 
2551 	BGE_TRACE(("bge_chip_sync($%p)",
2552 		(void *)bgep));
2553 
2554 	ASSERT(mutex_owned(bgep->genlock));
2555 
2556 	promisc = B_FALSE;
2557 	fill = ~(uint32_t)0;
2558 
2559 	if (bgep->promisc)
2560 		promisc = B_TRUE;
2561 	else
2562 		fill = (uint32_t)0;
2563 
2564 	/*
2565 	 * If the TX/RX MAC engines are already running, we should stop
2566 	 * them (and reset the RX engine) before changing the parameters.
2567 	 * If they're not running, this will have no effect ...
2568 	 *
2569 	 * NOTE: this is currently disabled by default because stopping
2570 	 * and restarting the Tx engine may cause an outgoing packet in
2571 	 * transit to be truncated.  Also, stopping and restarting the
2572 	 * Rx engine seems to not work correctly on the 5705.  Testing
2573 	 * has not (yet!) revealed any problems with NOT stopping and
2574 	 * restarting these engines (and Broadcom say their drivers don't
2575 	 * do this), but if it is found to cause problems, this variable
2576 	 * can be patched to re-enable the old behaviour ...
2577 	 */
2578 	if (bge_stop_start_on_sync) {
2579 #ifdef BGE_IPMI_ASF
2580 		if (bgep->asf_enabled) {
2581 			(void) bge_chip_disable_engine(bgep,
2582 			    RECEIVE_MAC_MODE_REG, 0);
2583 		} else {
2584 			(void) bge_chip_disable_engine(bgep,
2585 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG);
2586 		}
2587 #else
2588 		(void) bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2589 		    RECEIVE_MODE_KEEP_VLAN_TAG);
2590 #endif
2591 		(void) bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0);
2592 		(void) bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG);
2593 	}
2594 
2595 	/*
2596 	 * Reprogram the hashed multicast address table ...
2597 	 */
2598 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2599 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2600 			bgep->mcast_hash[i] | fill);
2601 
2602 #ifdef BGE_IPMI_ASF
2603 	if (!bgep->asf_enabled || !asf_keeplive) {
2604 #endif
2605 		/*
2606 		 * Transform the MAC address from host to chip format, then
2607 		 * reprogram the transmit random backoff seed and the unicast
2608 		 * MAC address(es) ...
2609 		 */
2610 		for (i = 0, fill = 0, macaddr = 0ull; i < ETHERADDRL; ++i) {
2611 			macaddr <<= 8;
2612 			macaddr |= bgep->curr_addr.addr[i];
2613 			fill += bgep->curr_addr.addr[i];
2614 		}
2615 		bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2616 		for (i = 0; i < MAC_ADDRESS_REGS_MAX; ++i)
2617 			bge_reg_put64(bgep, MAC_ADDRESS_REG(i), macaddr);
2618 
2619 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2620 			(void *)bgep, macaddr));
2621 #ifdef BGE_IPMI_ASF
2622 	}
2623 #endif
2624 
2625 	/*
2626 	 * Set or clear the PROMISCUOUS mode bit
2627 	 */
2628 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2629 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2630 
2631 	/*
2632 	 * Sync the rest of the MAC modes too ...
2633 	 */
2634 	bge_sync_mac_modes(bgep);
2635 
2636 	/*
2637 	 * Restart RX/TX MAC engines if required ...
2638 	 */
2639 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2640 		(void) bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0);
2641 #ifdef BGE_IPMI_ASF
2642 		if (bgep->asf_enabled) {
2643 			(void) bge_chip_enable_engine(bgep,
2644 			    RECEIVE_MAC_MODE_REG, 0);
2645 		} else {
2646 			(void) bge_chip_enable_engine(bgep,
2647 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG);
2648 		}
2649 #else
2650 		(void) bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2651 		    RECEIVE_MODE_KEEP_VLAN_TAG);
2652 #endif
2653 	}
2654 }
2655 
2656 /*
2657  * This array defines the sequence of state machine control registers
2658  * in which the <enable> bit must be cleared to bring the chip to a
2659  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2660  */
2661 static bge_regno_t shutdown_engine_regs[] = {
2662 	RECEIVE_MAC_MODE_REG,
2663 	RCV_BD_INITIATOR_MODE_REG,
2664 	RCV_LIST_PLACEMENT_MODE_REG,
2665 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2666 	RCV_DATA_BD_INITIATOR_MODE_REG,
2667 	RCV_DATA_COMPLETION_MODE_REG,
2668 	RCV_BD_COMPLETION_MODE_REG,
2669 
2670 	SEND_BD_SELECTOR_MODE_REG,
2671 	SEND_BD_INITIATOR_MODE_REG,
2672 	SEND_DATA_INITIATOR_MODE_REG,
2673 	READ_DMA_MODE_REG,
2674 	SEND_DATA_COMPLETION_MODE_REG,
2675 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2676 	SEND_BD_COMPLETION_MODE_REG,
2677 	TRANSMIT_MAC_MODE_REG,
2678 
2679 	HOST_COALESCE_MODE_REG,
2680 	WRITE_DMA_MODE_REG,
2681 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2682 	FTQ_RESET_REG,		/* special - see code	*/
2683 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2684 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2685 	BGE_REGNO_NONE		/* terminator		*/
2686 };
2687 
2688 /*
2689  * bge_chip_stop() -- stop all chip processing
2690  *
2691  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2692  * we've detected a problem internally; otherwise, this is a normal
2693  * (clean) stop (at user request i.e. the last STREAM has been closed).
2694  */
2695 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2696 #pragma	no_inline(bge_chip_stop)
2697 
2698 void
2699 bge_chip_stop(bge_t *bgep, boolean_t fault)
2700 {
2701 	bge_regno_t regno;
2702 	bge_regno_t *rbp;
2703 	boolean_t ok;
2704 
2705 	BGE_TRACE(("bge_chip_stop($%p)",
2706 		(void *)bgep));
2707 
2708 	ASSERT(mutex_owned(bgep->genlock));
2709 
2710 	rbp = shutdown_engine_regs;
2711 	/*
2712 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
2713 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
2714 	 * -ory arbiter should not be disabled.
2715 	 */
2716 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
2717 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
2718 			    ok &= bge_chip_disable_engine(bgep, regno, 0);
2719 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
2720 				    (regno != DMA_COMPLETION_MODE_REG) &&
2721 				    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
2722 				    (regno != BUFFER_MANAGER_MODE_REG) &&
2723 				    (regno != MEMORY_ARBITER_MODE_REG))
2724 					ok &= bge_chip_disable_engine(bgep,
2725 					    regno, 0);
2726 	}
2727 
2728 	/*
2729 	 * Finally, disable (all) MAC events & clear the MAC status
2730 	 */
2731 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
2732 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
2733 
2734 	/*
2735 	 * Do we need to check whether everything completed OK?
2736 	 * Probably not ... it always works anyway.
2737 	 */
2738 
2739 	if (fault)
2740 		bgep->bge_chip_state = BGE_CHIP_FAULT;
2741 	else
2742 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
2743 }
2744 
2745 /*
2746  * Poll for completion of chip's ROM firmware; also, at least on the
2747  * first time through, find and return the hardware MAC address, if any.
2748  */
2749 static uint64_t bge_poll_firmware(bge_t *bgep);
2750 #pragma	no_inline(bge_poll_firmware)
2751 
2752 static uint64_t
2753 bge_poll_firmware(bge_t *bgep)
2754 {
2755 	uint64_t magic;
2756 	uint64_t mac;
2757 	uint32_t gen;
2758 	uint32_t i;
2759 
2760 	/*
2761 	 * Step 18: put the T3_MAGIC_NUMBER into the GENCOMM port
2762 	 *
2763 	 * Step 19: poll for firmware completion (GENCOMM port set
2764 	 * to the ones complement of T3_MAGIC_NUMBER).
2765 	 *
2766 	 * While we're at it, we also read the MAC address register;
2767 	 * at some stage the the firmware will load this with the
2768 	 * factory-set value.
2769 	 *
2770 	 * When both the magic number and the MAC address are set,
2771 	 * we're done; but we impose a time limit of one second
2772 	 * (1000*1000us) in case the firmware fails in some fashion
2773 	 * or the SEEPROM that provides that MAC address isn't fitted.
2774 	 *
2775 	 * After the first time through (chip state != INITIAL), we
2776 	 * don't need the MAC address to be set (we've already got it
2777 	 * or not, from the first time), so we don't wait for it, but
2778 	 * we still have to wait for the T3_MAGIC_NUMBER.
2779 	 *
2780 	 * Note: the magic number is only a 32-bit quantity, but the NIC
2781 	 * memory is 64-bit (and big-endian) internally.  Addressing the
2782 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
2783 	 * it work correctly on both big- and little-endian hosts.
2784 	 */
2785 #ifdef BGE_IPMI_ASF
2786 	if (!bgep->asf_enabled) {
2787 #endif
2788 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
2789 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
2790 		BGE_DEBUG(("bge_poll_firmware: put T3 magic 0x%llx in GENCOMM"
2791 			" 0x%lx", magic, NIC_MEM_GENCOMM));
2792 #ifdef BGE_IPMI_ASF
2793 	}
2794 #endif
2795 
2796 	for (i = 0; i < 1000; ++i) {
2797 		drv_usecwait(1000);
2798 		gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
2799 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
2800 #ifdef BGE_IPMI_ASF
2801 		if (!bgep->asf_enabled) {
2802 #endif
2803 			if (gen != ~T3_MAGIC_NUMBER)
2804 				continue;
2805 #ifdef BGE_IPMI_ASF
2806 		}
2807 #endif
2808 		if (mac != 0ULL)
2809 			break;
2810 		if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
2811 			break;
2812 	}
2813 
2814 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
2815 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
2816 		(void *)bgep, gen, i));
2817 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
2818 		mac, magic));
2819 
2820 	return (mac);
2821 }
2822 
2823 #ifdef BGE_IPMI_ASF
2824 void bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
2825 #else
2826 void bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
2827 #endif
2828 #pragma	no_inline(bge_chip_reset)
2829 
2830 void
2831 #ifdef BGE_IPMI_ASF
2832 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
2833 #else
2834 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
2835 #endif
2836 {
2837 	chip_id_t chipid;
2838 	uint64_t mac;
2839 	uint32_t modeflags;
2840 	uint32_t mhcr;
2841 	uint32_t sx0;
2842 	uint32_t i;
2843 #ifdef BGE_IPMI_ASF
2844 	uint32_t mailbox;
2845 #endif
2846 
2847 	BGE_TRACE(("bge_chip_reset($%p, %d)",
2848 		(void *)bgep, enable_dma));
2849 
2850 	ASSERT(mutex_owned(bgep->genlock));
2851 
2852 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
2853 		(void *)bgep, enable_dma, bgep->bge_chip_state));
2854 
2855 	/*
2856 	 * Do we need to stop the chip cleanly before resetting?
2857 	 */
2858 	switch (bgep->bge_chip_state) {
2859 	default:
2860 		ASSERT(!"can't get here");
2861 		_NOTE(NOTREACHED)
2862 		return;
2863 
2864 	case BGE_CHIP_INITIAL:
2865 	case BGE_CHIP_STOPPED:
2866 	case BGE_CHIP_RESET:
2867 		break;
2868 
2869 	case BGE_CHIP_RUNNING:
2870 	case BGE_CHIP_ERROR:
2871 	case BGE_CHIP_FAULT:
2872 		bge_chip_stop(bgep, B_FALSE);
2873 		break;
2874 	}
2875 
2876 #ifdef BGE_IPMI_ASF
2877 	if (bgep->asf_enabled) {
2878 		if (asf_mode == ASF_MODE_INIT) {
2879 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
2880 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
2881 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
2882 		}
2883 	}
2884 #endif
2885 	/*
2886 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
2887 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
2888 	 *
2889 	 * Before reset Core clock,it is
2890 	 * also required to initialize the Memory Arbiter as specified in step9
2891 	 * and Misc Host Control Register as specified in step-13
2892 	 * Step 4-5: reset Core clock & wait for completion
2893 	 * Steps 6-8: are done by bge_chip_cfg_init()
2894 	 */
2895 	(void) bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
2896 
2897 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
2898 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
2899 	    MHCR_MASK_INTERRUPT_MODE |
2900 	    MHCR_MASK_PCI_INT_OUTPUT |
2901 	    MHCR_CLEAR_INTERRUPT_INTA;
2902 #ifdef  _BIG_ENDIAN
2903 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
2904 #endif  /* _BIG_ENDIAN */
2905 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
2906 #ifdef BGE_IPMI_ASF
2907 	if (bgep->asf_enabled)
2908 		bgep->asf_wordswapped = B_FALSE;
2909 #endif
2910 	(void) bge_chip_reset_engine(bgep, MISC_CONFIG_REG);
2911 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
2912 
2913 	/*
2914 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
2915 	 * a bit set to avoid a fifo overflow/underflow bug.
2916 	 */
2917 	if (bgep->chipid.chip_label == 5721 || bgep->chipid.chip_label == 5751)
2918 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
2919 
2920 
2921 	/*
2922 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
2923 	 * not be changed.
2924 	 */
2925 	(void) bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
2926 
2927 	/*
2928 	 * Steps 10-11: configure PIO endianness options and
2929 	 * enable indirect register access -- already done
2930 	 * Steps 12-13: enable writing to the PCI state & clock
2931 	 * control registers -- not required; we aren't going to
2932 	 * use those features.
2933 	 * Steps 14-15: Configure DMA endianness options.  See
2934 	 * the comments on the setting of the MHCR above.
2935 	 */
2936 #ifdef	_BIG_ENDIAN
2937 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
2938 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
2939 #else
2940 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
2941 #endif	/* _BIG_ENDIAN */
2942 #ifdef BGE_IPMI_ASF
2943 	if (bgep->asf_enabled)
2944 		modeflags |= MODE_HOST_STACK_UP;
2945 #endif
2946 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
2947 
2948 #ifdef BGE_IPMI_ASF
2949 	if (bgep->asf_enabled) {
2950 		if (asf_mode != ASF_MODE_NONE) {
2951 			/* Wait for NVRAM init */
2952 			i = 0;
2953 			drv_usecwait(5000);
2954 			mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
2955 			while ((mailbox != (uint32_t)
2956 				~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
2957 				(i < 10000)) {
2958 				drv_usecwait(100);
2959 				mailbox = bge_nic_get32(bgep,
2960 					BGE_FIRMWARE_MAILBOX);
2961 				i++;
2962 			}
2963 			if (!bgep->asf_newhandshake) {
2964 				if ((asf_mode == ASF_MODE_INIT) ||
2965 					(asf_mode == ASF_MODE_POST_INIT)) {
2966 
2967 					bge_asf_post_reset_old_mode(bgep,
2968 						BGE_INIT_RESET);
2969 				} else {
2970 					bge_asf_post_reset_old_mode(bgep,
2971 						BGE_SHUTDOWN_RESET);
2972 				}
2973 			}
2974 		}
2975 	}
2976 #endif
2977 	/*
2978 	 * Steps 16-17: poll for firmware completion
2979 	 */
2980 	mac = bge_poll_firmware(bgep);
2981 
2982 	/*
2983 	 * Step 18: enable external memory -- doesn't apply.
2984 	 *
2985 	 * However we take the opportunity to set the MLCR anyway, as
2986 	 * this register also controls the SEEPROM auto-access method
2987 	 * which we may want to use later ...
2988 	 *
2989 	 * The proper value here depends on the way the chip is wired
2990 	 * into the circuit board, as this register *also* controls which
2991 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
2992 	 * values driven onto those pins!
2993 	 *
2994 	 * See also step 74 in the PRM ...
2995 	 */
2996 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
2997 	    bgep->chipid.bge_mlcr_default);
2998 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
2999 
3000 	/*
3001 	 * Step 20: clear the Ethernet MAC mode register
3002 	 */
3003 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3004 
3005 	/*
3006 	 * Step 21: restore cache-line-size, latency timer, and
3007 	 * subsystem ID registers to their original values (not
3008 	 * those read into the local structure <chipid>, 'cos
3009 	 * that was after they were cleared by the RESET).
3010 	 *
3011 	 * Note: the Subsystem Vendor/Device ID registers are not
3012 	 * directly writable in config space, so we use the shadow
3013 	 * copy in "Page Zero" of register space to restore them
3014 	 * both in one go ...
3015 	 */
3016 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3017 		bgep->chipid.clsize);
3018 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3019 		bgep->chipid.latency);
3020 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3021 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3022 
3023 	/*
3024 	 * The SEND INDEX registers should be reset to zero by the
3025 	 * global chip reset; if they're not, there'll be trouble
3026 	 * later on -- usually in the form of an ASSERTion failure
3027 	 * in bge_send.c.  So let's catch it early ...
3028 	 */
3029 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3030 	if (sx0 != 0)
3031 		bge_problem(bgep, "send index %d: device didn't RESET!", sx0);
3032 	ASSERT(sx0 == 0);
3033 
3034 	/* Enable MSI code */
3035 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3036 		bge_reg_set32(bgep, MSI_MODE_REG,
3037 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE);
3038 
3039 	/*
3040 	 * On the first time through, save the factory-set MAC address
3041 	 * (if any).  If bge_poll_firmware() above didn't return one
3042 	 * (from a chip register) consider looking in the attached NV
3043 	 * memory device, if any.  Once we have it, we save it in both
3044 	 * register-image (64-bit) and byte-array forms.  All-zero and
3045 	 * all-one addresses are not valid, and we refuse to stash those.
3046 	 */
3047 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3048 		if (mac == 0ULL)
3049 			mac = bge_get_nvmac(bgep);
3050 		if (mac != 0ULL && mac != ~0ULL) {
3051 			bgep->chipid.hw_mac_addr = mac;
3052 			for (i = ETHERADDRL; i-- != 0; ) {
3053 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3054 				mac >>= 8;
3055 			}
3056 			bgep->chipid.vendor_addr.set = 1;
3057 		}
3058 	}
3059 
3060 #ifdef BGE_IPMI_ASF
3061 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3062 		if (asf_mode != ASF_MODE_NONE) {
3063 			if ((asf_mode == ASF_MODE_INIT) ||
3064 				(asf_mode == ASF_MODE_POST_INIT)) {
3065 
3066 				bge_asf_post_reset_new_mode(bgep,
3067 					BGE_INIT_RESET);
3068 			} else {
3069 				bge_asf_post_reset_new_mode(bgep,
3070 					BGE_SHUTDOWN_RESET);
3071 			}
3072 		}
3073 	}
3074 #endif
3075 
3076 	/*
3077 	 * Record the new state
3078 	 */
3079 	bgep->chip_resets += 1;
3080 	bgep->bge_chip_state = BGE_CHIP_RESET;
3081 }
3082 
3083 /*
3084  * bge_chip_start() -- start the chip transmitting and/or receiving,
3085  * including enabling interrupts
3086  */
3087 void bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3088 #pragma	no_inline(bge_chip_start)
3089 
3090 void
3091 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3092 {
3093 	uint32_t coalmode;
3094 	uint32_t ledctl;
3095 	uint32_t mtu;
3096 	uint32_t maxring;
3097 	uint64_t ring;
3098 
3099 	BGE_TRACE(("bge_chip_start($%p)",
3100 		(void *)bgep));
3101 
3102 	ASSERT(mutex_owned(bgep->genlock));
3103 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3104 	ASSERT(bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0)) == 0);
3105 
3106 	/*
3107 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3108 	 * The document specifies 95 separate steps to fully
3109 	 * initialise the chip!!!!
3110 	 *
3111 	 * The reset code above has already got us as far as step
3112 	 * 21, so we continue with ...
3113 	 *
3114 	 * Step 22: clear the MAC statistics block
3115 	 * (0x0300-0x0aff in NIC-local memory)
3116 	 */
3117 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3118 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3119 		    NIC_MEM_STATISTICS_SIZE);
3120 
3121 	/*
3122 	 * Step 23: clear the status block (in host memory)
3123 	 */
3124 	DMA_ZERO(bgep->status_block);
3125 
3126 	/*
3127 	 * Step 24: set DMA read/write control register
3128 	 */
3129 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3130 		bgep->chipid.bge_dma_rwctrl);
3131 
3132 	/*
3133 	 * Step 25: Configure DMA endianness -- already done (16/17)
3134 	 * Step 26: Configure Host-Based Send Rings
3135 	 * Step 27: Indicate Host Stack Up
3136 	 */
3137 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3138 		MODE_HOST_SEND_BDS |
3139 		MODE_HOST_STACK_UP);
3140 
3141 	/*
3142 	 * Step 28: Configure checksum options:
3143 	 *	Solaris supports the hardware default checksum options
3144 	 *	so there's nothing to do here.
3145 	 */
3146 
3147 	/*
3148 	 * Step 29: configure Timer Prescaler.  The value is always the
3149 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3150 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3151 	 * for the whole chip!
3152 	 */
3153 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3154 
3155 	/*
3156 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3157 	 *
3158 	 * If the mbuf_length is specified as 0, we just leave these at
3159 	 * their hardware defaults, rather than explicitly setting them.
3160 	 * As the Broadcom HRM,driver better not change the parameters
3161 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3162 	 */
3163 	if ((bgep->chipid.mbuf_length != 0) &&
3164 		(DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3165 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3166 				bgep->chipid.mbuf_base);
3167 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3168 				bgep->chipid.mbuf_length);
3169 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3170 				DMAD_POOL_BASE_DEFAULT);
3171 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3172 				DMAD_POOL_LENGTH_DEFAULT);
3173 	}
3174 
3175 	/*
3176 	 * Step 32: configure MAC memory pool watermarks
3177 	 */
3178 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3179 		bgep->chipid.mbuf_lo_water_rdma);
3180 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3181 		bgep->chipid.mbuf_lo_water_rmac);
3182 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3183 		bgep->chipid.mbuf_hi_water);
3184 
3185 	/*
3186 	 * Step 33: configure DMA resource watermarks
3187 	 */
3188 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3189 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3190 		    bge_dmad_lo_water);
3191 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3192 		    bge_dmad_hi_water);
3193 	}
3194 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3195 
3196 	/*
3197 	 * Steps 34-36: enable buffer manager & internal h/w queues
3198 	 */
3199 	(void) bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3200 		STATE_MACHINE_ATTN_ENABLE_BIT);
3201 	(void) bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0);
3202 
3203 	/*
3204 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3205 	 */
3206 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3207 		&bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3208 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3209 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3210 			&bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3211 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3212 			&bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3213 	}
3214 
3215 	/*
3216 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3217 	 */
3218 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3219 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3220 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3221 		    bge_replenish_jumbo);
3222 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3223 		    bge_replenish_mini);
3224 	}
3225 
3226 	/*
3227 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3228 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3229 	 */
3230 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3231 		maxring = BGE_SEND_RINGS_MAX;
3232 	else
3233 		maxring = BGE_SEND_RINGS_MAX_5705;
3234 	for (ring = 0; ring < maxring; ++ring) {
3235 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3236 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3237 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3238 			&bgep->send[ring].hw_rcb);
3239 	}
3240 
3241 	/*
3242 	 * Steps 44-45: initialise Receive Return Rings
3243 	 * (0x0200-0x02ff in NIC-local memory)
3244 	 */
3245 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3246 		maxring = BGE_RECV_RINGS_MAX;
3247 	else
3248 		maxring = BGE_RECV_RINGS_MAX_5705;
3249 	for (ring = 0; ring < maxring; ++ring)
3250 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3251 			&bgep->recv[ring].hw_rcb);
3252 
3253 	/*
3254 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3255 	 */
3256 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3257 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3258 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3259 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3260 	}
3261 	/*
3262 	 * Step 47: configure the MAC unicast address
3263 	 * Step 48: configure the random backoff seed
3264 	 * Step 96: set up multicast filters
3265 	 */
3266 #ifdef BGE_IPMI_ASF
3267 	bge_chip_sync(bgep, B_FALSE);
3268 #else
3269 	bge_chip_sync(bgep);
3270 #endif
3271 
3272 	/*
3273 	 * Step 49: configure the MTU
3274 	 */
3275 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3276 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3277 
3278 	/*
3279 	 * Step 50: configure the IPG et al
3280 	 */
3281 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3282 
3283 	/*
3284 	 * Step 51: configure the default Rx Return Ring
3285 	 */
3286 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3287 
3288 	/*
3289 	 * Steps 52-54: configure Receive List Placement,
3290 	 * and enable Receive List Placement Statistics
3291 	 */
3292 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3293 		RCV_LP_CONFIG(bgep->chipid.rx_rings));
3294 	bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3295 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3296 
3297 	if (bgep->chipid.rx_rings > 1)
3298 		bge_init_recv_rule(bgep);
3299 
3300 	/*
3301 	 * Steps 55-56: enable Send Data Initiator Statistics
3302 	 */
3303 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3304 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3305 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3306 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3307 	} else {
3308 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3309 		    SEND_INIT_STATS_ENABLE);
3310 	}
3311 	/*
3312 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3313 	 */
3314 	(void) bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0);
3315 
3316 	/*
3317 	 * Steps 59-62: initialise Host Coalescing parameters
3318 	 */
3319 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3320 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3321 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3322 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3323 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3324 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3325 		    bge_tx_count_intr);
3326 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3327 		    bge_tx_ticks_intr);
3328 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3329 		    bge_rx_count_intr);
3330 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3331 		    bge_rx_ticks_intr);
3332 	}
3333 
3334 	/*
3335 	 * Steps 63-64: initialise status block & statistics
3336 	 * host memory addresses
3337 	 * The statistic block does not exist in some chipsets
3338 	 * Step 65: initialise Statistics Coalescing Tick Counter
3339 	 */
3340 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3341 		bgep->status_block.cookie.dmac_laddress);
3342 
3343 	/*
3344 	 * Steps 66-67: initialise status block & statistics
3345 	 * NIC-local memory addresses
3346 	 */
3347 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3348 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3349 		    bgep->statistics.cookie.dmac_laddress);
3350 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3351 		    STATISTICS_TICKS_DEFAULT);
3352 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3353 		    NIC_MEM_STATUS_BLOCK);
3354 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3355 		    NIC_MEM_STATISTICS);
3356 	}
3357 
3358 	/*
3359 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3360 	 * Completion Engine, the Receive List Placement Engine, and the
3361 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3362 	 * and BCM5715.
3363 	 */
3364 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3365 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3366 		coalmode = COALESCE_64_BYTE_STATUS;
3367 	else
3368 		coalmode = 0;
3369 	(void) bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode);
3370 	(void) bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3371 	    STATE_MACHINE_ATTN_ENABLE_BIT);
3372 	(void) bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0);
3373 
3374 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3375 		(void) bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3376 		    STATE_MACHINE_ATTN_ENABLE_BIT);
3377 
3378 	/*
3379 	 * Step 72: Enable MAC DMA engines
3380 	 * Step 73: Clear & enable MAC statistics
3381 	 */
3382 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3383 		ETHERNET_MODE_ENABLE_FHDE |
3384 		ETHERNET_MODE_ENABLE_RDE |
3385 		ETHERNET_MODE_ENABLE_TDE);
3386 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3387 		ETHERNET_MODE_ENABLE_TX_STATS |
3388 		ETHERNET_MODE_ENABLE_RX_STATS |
3389 		ETHERNET_MODE_CLEAR_TX_STATS |
3390 		ETHERNET_MODE_CLEAR_RX_STATS);
3391 
3392 	/*
3393 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3394 	 * Register); not required, as we set up the MLCR in step 10
3395 	 * (part of the reset code) above.
3396 	 *
3397 	 * Step 75: clear Interrupt Mailbox 0
3398 	 */
3399 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3400 
3401 	/*
3402 	 * Steps 76-87: Gentlemen, start your engines ...
3403 	 *
3404 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3405 	 * the Read DMA Engine, Receive Data Completion Engine,
3406 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3407 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3408 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3409 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3410 	 *
3411 	 * Beware exhaust fumes?
3412 	 */
3413 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3414 		(void) bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0);
3415 	(void) bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3416 		(bge_dma_wrprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS);
3417 	(void) bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3418 		(bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS);
3419 	(void) bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3420 		STATE_MACHINE_ATTN_ENABLE_BIT);
3421 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3422 		(void) bge_chip_enable_engine(bgep,
3423 		    MBUF_CLUSTER_FREE_MODE_REG, 0);
3424 	(void) bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0);
3425 	(void) bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3426 		STATE_MACHINE_ATTN_ENABLE_BIT);
3427 	(void) bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3428 		RCV_BD_DISABLED_RING_ATTN);
3429 	(void) bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3430 		RCV_DATA_BD_ILL_RING_ATTN);
3431 	(void) bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0);
3432 	(void) bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3433 		STATE_MACHINE_ATTN_ENABLE_BIT);
3434 	(void) bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3435 		STATE_MACHINE_ATTN_ENABLE_BIT);
3436 
3437 	/*
3438 	 * Step 88: download firmware -- doesn't apply
3439 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3440 	 */
3441 	(void) bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0);
3442 #ifdef BGE_IPMI_ASF
3443 	if (bgep->asf_enabled) {
3444 		(void) bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0);
3445 	} else {
3446 		(void) bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3447 		    RECEIVE_MODE_KEEP_VLAN_TAG);
3448 	}
3449 #else
3450 	(void) bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3451 	    RECEIVE_MODE_KEEP_VLAN_TAG);
3452 #endif
3453 
3454 	/*
3455 	 * Step 91: disable auto-polling of PHY status
3456 	 */
3457 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3458 
3459 	/*
3460 	 * Step 92: configure D0 power state (not required)
3461 	 * Step 93: initialise LED control register ()
3462 	 */
3463 	ledctl = LED_CONTROL_DEFAULT;
3464 	switch (bgep->chipid.device) {
3465 	case DEVICE_ID_5700:
3466 	case DEVICE_ID_5700x:
3467 	case DEVICE_ID_5701:
3468 		/*
3469 		 * Switch to 5700 (MAC) mode on these older chips
3470 		 */
3471 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3472 		ledctl |= LED_CONTROL_LED_MODE_5700;
3473 		break;
3474 
3475 	default:
3476 		break;
3477 	}
3478 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3479 
3480 	/*
3481 	 * Step 94: activate link
3482 	 */
3483 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3484 
3485 	/*
3486 	 * Step 95: set up physical layer (PHY/SerDes)
3487 	 * restart autoneg (if required)
3488 	 */
3489 	if (reset_phys)
3490 		bge_phys_update(bgep);
3491 
3492 	/*
3493 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3494 	 */
3495 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3496 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3497 			bgep->buff[ring].rf_next);
3498 
3499 	/*
3500 	 * MSI bits:The least significant MSI 16-bit word.
3501 	 * ISR will be triggered different.
3502 	 */
3503 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3504 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3505 
3506 	/*
3507 	 * Extra step (DSG): select which interrupts are enabled
3508 	 *
3509 	 * Program the Ethernet MAC engine to signal attention on
3510 	 * Link Change events, then enable interrupts on MAC, DMA,
3511 	 * and FLOW attention signals.
3512 	 */
3513 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3514 		ETHERNET_EVENT_LINK_INT |
3515 		ETHERNET_STATUS_PCS_ERROR_INT);
3516 #ifdef BGE_IPMI_ASF
3517 	if (bgep->asf_enabled) {
3518 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3519 			MODE_INT_ON_FLOW_ATTN |
3520 			MODE_INT_ON_DMA_ATTN |
3521 			MODE_HOST_STACK_UP|
3522 			MODE_INT_ON_MAC_ATTN);
3523 	} else {
3524 #endif
3525 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3526 			MODE_INT_ON_FLOW_ATTN |
3527 			MODE_INT_ON_DMA_ATTN |
3528 			MODE_INT_ON_MAC_ATTN);
3529 #ifdef BGE_IPMI_ASF
3530 	}
3531 #endif
3532 
3533 	/*
3534 	 * Step 97: enable PCI interrupts!!!
3535 	 */
3536 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3537 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3538 		    MHCR_MASK_PCI_INT_OUTPUT);
3539 
3540 	/*
3541 	 * All done!
3542 	 */
3543 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
3544 }
3545 
3546 
3547 /*
3548  * ========== Hardware interrupt handler ==========
3549  */
3550 
3551 #undef	BGE_DBG
3552 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
3553 
3554 /*
3555  * Sync the status block, then atomically clear the specified bits in
3556  * the <flags-and-tag> field of the status block.
3557  * the <flags> word of the status block, returning the value of the
3558  * <tag> and the <flags> before the bits were cleared.
3559  */
3560 static uint64_t bge_status_sync(bge_t *bgep, uint64_t bits);
3561 #pragma	inline(bge_status_sync)
3562 
3563 static uint64_t
3564 bge_status_sync(bge_t *bgep, uint64_t bits)
3565 {
3566 	bge_status_t *bsp;
3567 	uint64_t flags;
3568 
3569 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
3570 		(void *)bgep, bits));
3571 
3572 	ASSERT(bgep->bge_guard == BGE_GUARD);
3573 
3574 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
3575 	bsp = DMA_VPTR(bgep->status_block);
3576 	flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
3577 
3578 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
3579 		(void *)bgep, bits, flags));
3580 
3581 	return (flags);
3582 }
3583 
3584 static void bge_wake_factotum(bge_t *bgep);
3585 #pragma	inline(bge_wake_factotum)
3586 
3587 static void
3588 bge_wake_factotum(bge_t *bgep)
3589 {
3590 	mutex_enter(bgep->softintrlock);
3591 	if (bgep->factotum_flag == 0) {
3592 		bgep->factotum_flag = 1;
3593 		ddi_trigger_softintr(bgep->factotum_id);
3594 	}
3595 	mutex_exit(bgep->softintrlock);
3596 }
3597 
3598 /*
3599  *	bge_intr() -- handle chip interrupts
3600  */
3601 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
3602 #pragma	no_inline(bge_intr)
3603 
3604 uint_t
3605 bge_intr(caddr_t arg1, caddr_t arg2)
3606 {
3607 	bge_t *bgep = (bge_t *)arg1;		/* private device info	*/
3608 	bge_status_t *bsp;
3609 	uint64_t flags;
3610 	uint32_t mlcr = 0;
3611 	uint_t result;
3612 
3613 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
3614 
3615 	/*
3616 	 * GLD v2 checks that s/w setup is complete before passing
3617 	 * interrupts to this routine, thus eliminating the old
3618 	 * (and well-known) race condition around ddi_add_intr()
3619 	 */
3620 	ASSERT(bgep->progress & PROGRESS_HWINT);
3621 
3622 	/*
3623 	 * Check whether chip's says it's asserting #INTA;
3624 	 * if not, don't process or claim the interrupt.
3625 	 *
3626 	 * Note that the PCI signal is active low, so the
3627 	 * bit is *zero* when the interrupt is asserted.
3628 	 */
3629 	result = DDI_INTR_UNCLAIMED;
3630 	mutex_enter(bgep->genlock);
3631 
3632 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3633 		mlcr = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
3634 
3635 	BGE_DEBUG(("bge_intr($%p) ($%p) mlcr 0x%08x", arg1, arg2, mlcr));
3636 
3637 	if ((mlcr & MLCR_INTA_STATE) == 0) {
3638 		/*
3639 		 * Block further PCI interrupts ...
3640 		 */
3641 		result = DDI_INTR_CLAIMED;
3642 
3643 		if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3644 			bge_cfg_set32(bgep, PCI_CONF_BGE_MHCR,
3645 				MHCR_MASK_PCI_INT_OUTPUT);
3646 
3647 		/*
3648 		 * Sync the status block and grab the flags-n-tag from it.
3649 		 * We count the number of interrupts where there doesn't
3650 		 * seem to have been a DMA update of the status block; if
3651 		 * it *has* been updated, the counter will be cleared in
3652 		 * the while() loop below ...
3653 		 */
3654 		bgep->missed_dmas += 1;
3655 		bsp = DMA_VPTR(bgep->status_block);
3656 		flags = bge_status_sync(bgep, STATUS_FLAG_UPDATED);
3657 
3658 		while (flags & STATUS_FLAG_UPDATED) {
3659 			/*
3660 			 * Tell the chip that we're processing the interrupt
3661 			 */
3662 			bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
3663 				INTERRUPT_MBOX_DISABLE(flags));
3664 
3665 			/*
3666 			 * Drop the mutex while we:
3667 			 * 	Receive any newly-arrived packets
3668 			 *	Recycle any newly-finished send buffers
3669 			 */
3670 			mutex_exit(bgep->genlock);
3671 			bge_receive(bgep, bsp);
3672 			bge_recycle(bgep, bsp);
3673 			mutex_enter(bgep->genlock);
3674 
3675 			/*
3676 			 * Tell the chip we've finished processing, and
3677 			 * give it the tag that we got from the status
3678 			 * block earlier, so that it knows just how far
3679 			 * we've gone.  If it's got more for us to do,
3680 			 * it will now update the status block and try
3681 			 * to assert an interrupt (but we've got the
3682 			 * #INTA blocked at present).  If we see the
3683 			 * update, we'll loop around to do some more.
3684 			 * Eventually we'll get out of here ...
3685 			 */
3686 			bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
3687 				INTERRUPT_MBOX_ENABLE(flags));
3688 			bgep->missed_dmas = 0;
3689 			flags = bge_status_sync(bgep, STATUS_FLAG_UPDATED);
3690 		}
3691 
3692 		/*
3693 		 * Check for exceptional conditions that we need to handle
3694 		 *
3695 		 * Link status changed
3696 		 * Status block not updated
3697 		 */
3698 		if (flags & STATUS_FLAG_LINK_CHANGED)
3699 			bge_wake_factotum(bgep);
3700 
3701 		if (bgep->missed_dmas) {
3702 			/*
3703 			 * Probably due to the internal status tag not
3704 			 * being reset.  Force a status block update now;
3705 			 * this should ensure that we get an update and
3706 			 * a new interrupt.  After that, we should be in
3707 			 * sync again ...
3708 			 */
3709 			BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
3710 				"not updated?", flags));
3711 			bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
3712 				COALESCE_NOW);
3713 
3714 			if (bgep->missed_dmas >= bge_dma_miss_limit) {
3715 				/*
3716 				 * If this happens multiple times in a row,
3717 				 * it means DMA is just not working.  Maybe
3718 				 * the chip's failed, or maybe there's a
3719 				 * problem on the PCI bus or in the host-PCI
3720 				 * bridge (Tomatillo).
3721 				 *
3722 				 * At all events, we want to stop further
3723 				 * interrupts and let the recovery code take
3724 				 * over to see whether anything can be done
3725 				 * about it ...
3726 				 */
3727 #ifdef BGE_IPMI_ASF
3728 				if (bgep->asf_enabled &&
3729 					(bgep->asf_status == ASF_STAT_RUN)) {
3730 					/*
3731 					 * We must stop ASF heart beat before
3732 					 * bge_chip_stop(), otherwise some
3733 					 * computers (ex. IBM HS20 blade
3734 					 * server) may crash.
3735 					 */
3736 					bge_asf_update_status(bgep);
3737 					bge_asf_stop_timer(bgep);
3738 					bgep->asf_status = ASF_STAT_STOP;
3739 
3740 					bge_asf_pre_reset_operations(bgep,
3741 						BGE_INIT_RESET);
3742 				}
3743 #endif
3744 				bge_chip_stop(bgep, B_TRUE);
3745 				result = DDI_INTR_UNCLAIMED;
3746 			}
3747 		}
3748 
3749 		/*
3750 		 * Reenable assertion of #INTA, unless there's a DMA fault
3751 		 */
3752 		if (result == DDI_INTR_CLAIMED) {
3753 			if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3754 				bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3755 					MHCR_MASK_PCI_INT_OUTPUT);
3756 		}
3757 	}
3758 
3759 	mutex_exit(bgep->genlock);
3760 	return (result);
3761 }
3762 
3763 /*
3764  * ========== Factotum, implemented as a softint handler ==========
3765  */
3766 
3767 #undef	BGE_DBG
3768 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
3769 
3770 static void bge_factotum_error_handler(bge_t *bgep);
3771 #pragma	no_inline(bge_factotum_error_handler)
3772 
3773 static void
3774 bge_factotum_error_handler(bge_t *bgep)
3775 {
3776 	uint32_t flow;
3777 	uint32_t rdma;
3778 	uint32_t wdma;
3779 	uint32_t tmac;
3780 	uint32_t rmac;
3781 	uint32_t rxrs;
3782 	uint32_t txrs = 0;
3783 
3784 	ASSERT(mutex_owned(bgep->genlock));
3785 
3786 	/*
3787 	 * Read all the registers that show the possible
3788 	 * reasons for the ERROR bit to be asserted
3789 	 */
3790 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
3791 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
3792 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
3793 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
3794 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
3795 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
3796 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3797 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
3798 
3799 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
3800 		(void *)bgep, flow, rdma, wdma));
3801 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
3802 		(void *)bgep, tmac, rmac, rxrs, txrs));
3803 
3804 	/*
3805 	 * For now, just clear all the errors ...
3806 	 */
3807 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3808 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
3809 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
3810 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
3811 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
3812 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
3813 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
3814 }
3815 
3816 /*
3817  * Handler for hardware link state change.
3818  *
3819  * When this routine is called, the hardware link state has changed
3820  * and the new state is reflected in the param_* variables.  Here
3821  * we must update the softstate, reprogram the MAC to match, and
3822  * record the change in the log and/or on the console.
3823  */
3824 static void bge_factotum_link_handler(bge_t *bgep);
3825 #pragma	no_inline(bge_factotum_link_handler)
3826 
3827 static void
3828 bge_factotum_link_handler(bge_t *bgep)
3829 {
3830 	void (*logfn)(bge_t *bgep, const char *fmt, ...);
3831 	const char *msg;
3832 	hrtime_t deltat;
3833 
3834 	ASSERT(mutex_owned(bgep->genlock));
3835 
3836 	/*
3837 	 * Update the s/w link_state
3838 	 */
3839 	if (bgep->param_link_up)
3840 		bgep->link_state = LINK_STATE_UP;
3841 	else
3842 		bgep->link_state = LINK_STATE_DOWN;
3843 
3844 	/*
3845 	 * Reprogram the MAC modes to match
3846 	 */
3847 	bge_sync_mac_modes(bgep);
3848 
3849 	/*
3850 	 * Finally, we have to decide whether to write a message
3851 	 * on the console or only in the log.  If the PHY has
3852 	 * been reprogrammed (at user request) "recently", then
3853 	 * the message only goes in the log.  Otherwise it's an
3854 	 * "unexpected" event, and it goes on the console as well.
3855 	 */
3856 	deltat = bgep->phys_event_time - bgep->phys_write_time;
3857 	if (deltat > BGE_LINK_SETTLE_TIME)
3858 		msg = "";
3859 	else if (bgep->param_link_up)
3860 		msg = bgep->link_up_msg;
3861 	else
3862 		msg = bgep->link_down_msg;
3863 
3864 	logfn = (msg == NULL || *msg == '\0') ? bge_notice : bge_log;
3865 	(*logfn)(bgep, "link %s%s", bgep->link_mode_msg, msg);
3866 }
3867 
3868 static boolean_t bge_factotum_link_check(bge_t *bgep);
3869 #pragma	no_inline(bge_factotum_link_check)
3870 
3871 static boolean_t
3872 bge_factotum_link_check(bge_t *bgep)
3873 {
3874 	boolean_t check;
3875 	uint64_t flags;
3876 	uint32_t tmac_status;
3877 
3878 	ASSERT(mutex_owned(bgep->genlock));
3879 
3880 	/*
3881 	 * Get & clear the writable status bits in the Tx status register
3882 	 * (some bits are write-1-to-clear, others are just readonly).
3883 	 */
3884 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
3885 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
3886 
3887 	/*
3888 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
3889 	 */
3890 	flags = STATUS_FLAG_ERROR | STATUS_FLAG_LINK_CHANGED;
3891 	flags = bge_status_sync(bgep, flags);
3892 
3893 	/*
3894 	 * Clear any errors flagged in the status block ...
3895 	 */
3896 	if (flags & STATUS_FLAG_ERROR)
3897 		bge_factotum_error_handler(bgep);
3898 
3899 	/*
3900 	 * We need to check the link status if:
3901 	 *	the status block says there's been a link change
3902 	 *	or there's any discrepancy between the various
3903 	 *	flags indicating the link state (link_state,
3904 	 *	param_link_up, and the LINK STATE bit in the
3905 	 *	Transmit MAC status register).
3906 	 */
3907 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
3908 	switch (bgep->link_state) {
3909 	case LINK_STATE_UP:
3910 		check |= (bgep->param_link_up == B_FALSE);
3911 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
3912 		break;
3913 
3914 	case LINK_STATE_DOWN:
3915 		check |= (bgep->param_link_up != B_FALSE);
3916 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
3917 		break;
3918 
3919 	default:
3920 		check = B_TRUE;
3921 		break;
3922 	}
3923 
3924 	/*
3925 	 * If <check> is false, we're sure the link hasn't changed.
3926 	 * If true, however, it's not yet definitive; we have to call
3927 	 * bge_phys_check() to determine whether the link has settled
3928 	 * into a new state yet ... and if it has, then call the link
3929 	 * state change handler.But when the chip is 5700 in Dell 6650
3930 	 * ,even if check is false, the link may have changed.So we
3931 	 * have to call bge_phys_check() to determine the link state.
3932 	 */
3933 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
3934 		check = bge_phys_check(bgep);
3935 		if (check)
3936 			bge_factotum_link_handler(bgep);
3937 	}
3938 
3939 	return (check);
3940 }
3941 
3942 /*
3943  * Factotum routine to check for Tx stall, using the 'watchdog' counter
3944  */
3945 static boolean_t bge_factotum_stall_check(bge_t *bgep);
3946 #pragma	no_inline(bge_factotum_stall_check)
3947 
3948 static boolean_t
3949 bge_factotum_stall_check(bge_t *bgep)
3950 {
3951 	uint32_t dogval;
3952 
3953 	ASSERT(mutex_owned(bgep->genlock));
3954 
3955 	/*
3956 	 * Specific check for Tx stall ...
3957 	 *
3958 	 * The 'watchdog' counter is incremented whenever a packet
3959 	 * is queued, reset to 1 when some (but not all) buffers
3960 	 * are reclaimed, reset to 0 (disabled) when all buffers
3961 	 * are reclaimed, and shifted left here.  If it exceeds the
3962 	 * threshold value, the chip is assumed to have stalled and
3963 	 * is put into the ERROR state.  The factotum will then reset
3964 	 * it on the next pass.
3965 	 *
3966 	 * All of which should ensure that we don't get into a state
3967 	 * where packets are left pending indefinitely!
3968 	 */
3969 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
3970 	if (dogval < bge_watchdog_count)
3971 		return (B_FALSE);
3972 
3973 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
3974 	return (B_TRUE);
3975 }
3976 
3977 /*
3978  * The factotum is woken up when there's something to do that we'd rather
3979  * not do from inside a hardware interrupt handler or high-level cyclic.
3980  * Its two main tasks are:
3981  *	reset & restart the chip after an error
3982  *	check the link status whenever necessary
3983  */
3984 uint_t bge_chip_factotum(caddr_t arg);
3985 #pragma	no_inline(bge_chip_factotum)
3986 
3987 uint_t
3988 bge_chip_factotum(caddr_t arg)
3989 {
3990 	bge_t *bgep;
3991 	uint_t result;
3992 	boolean_t error;
3993 	boolean_t linkchg;
3994 
3995 	bgep = (bge_t *)arg;
3996 
3997 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
3998 
3999 	mutex_enter(bgep->softintrlock);
4000 	if (bgep->factotum_flag == 0) {
4001 		mutex_exit(bgep->softintrlock);
4002 		return (DDI_INTR_UNCLAIMED);
4003 	}
4004 	bgep->factotum_flag = 0;
4005 	mutex_exit(bgep->softintrlock);
4006 
4007 	result = DDI_INTR_CLAIMED;
4008 	error = B_FALSE;
4009 	linkchg = B_FALSE;
4010 
4011 	mutex_enter(bgep->genlock);
4012 	switch (bgep->bge_chip_state) {
4013 	default:
4014 		break;
4015 
4016 	case BGE_CHIP_RUNNING:
4017 		linkchg = bge_factotum_link_check(bgep);
4018 		error = bge_factotum_stall_check(bgep);
4019 		break;
4020 
4021 	case BGE_CHIP_ERROR:
4022 		error = B_TRUE;
4023 		break;
4024 
4025 	case BGE_CHIP_FAULT:
4026 		/*
4027 		 * Fault detected, time to reset ...
4028 		 */
4029 		if (bge_autorecover) {
4030 			BGE_REPORT((bgep, "automatic recovery activated"));
4031 			bge_restart(bgep, B_FALSE);
4032 #ifdef BGE_IPMI_ASF
4033 			/*
4034 			 * Start our ASF heartbeat counter as soon as possible.
4035 			 */
4036 			if (bgep->asf_enabled) {
4037 				if (bgep->asf_status != ASF_STAT_RUN) {
4038 					bgep->asf_timeout_id = timeout(
4039 						bge_asf_heartbeat,
4040 						(void *)bgep,
4041 						drv_usectohz(
4042 						BGE_ASF_HEARTBEAT_INTERVAL));
4043 					bgep->asf_status = ASF_STAT_RUN;
4044 				}
4045 			}
4046 #endif
4047 		}
4048 		break;
4049 	}
4050 
4051 	/*
4052 	 * If an error is detected, stop the chip now, marking it as
4053 	 * faulty, so that it will be reset next time through ...
4054 	 */
4055 	if (error) {
4056 #ifdef BGE_IPMI_ASF
4057 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4058 			/*
4059 			 * We must stop ASF heart beat before bge_chip_stop(),
4060 			 * otherwise some computers (ex. IBM HS20 blade server)
4061 			 * may crash.
4062 			 */
4063 			bge_asf_update_status(bgep);
4064 			bge_asf_stop_timer(bgep);
4065 			bgep->asf_status = ASF_STAT_STOP;
4066 
4067 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4068 		}
4069 #endif
4070 		bge_chip_stop(bgep, B_TRUE);
4071 	}
4072 	mutex_exit(bgep->genlock);
4073 
4074 	/*
4075 	 * If the link state changed, tell the world about it.
4076 	 * Note: can't do this while still holding the mutex.
4077 	 */
4078 	if (linkchg)
4079 		mac_link_update(bgep->macp, bgep->link_state);
4080 
4081 	return (result);
4082 }
4083 
4084 /*
4085  * High-level cyclic handler
4086  *
4087  * This routine schedules a (low-level) softint callback to the
4088  * factotum, and prods the chip to update the status block (which
4089  * will cause a hardware interrupt when complete).
4090  */
4091 void bge_chip_cyclic(void *arg);
4092 #pragma	no_inline(bge_chip_cyclic)
4093 
4094 void
4095 bge_chip_cyclic(void *arg)
4096 {
4097 	bge_t *bgep;
4098 
4099 	bgep = arg;
4100 
4101 	switch (bgep->bge_chip_state) {
4102 	default:
4103 		return;
4104 
4105 	case BGE_CHIP_RUNNING:
4106 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4107 		break;
4108 
4109 	case BGE_CHIP_FAULT:
4110 	case BGE_CHIP_ERROR:
4111 		break;
4112 	}
4113 
4114 	bge_wake_factotum(bgep);
4115 }
4116 
4117 
4118 /*
4119  * ========== Ioctl subfunctions ==========
4120  */
4121 
4122 #undef	BGE_DBG
4123 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4124 
4125 #if	BGE_DEBUGGING || BGE_DO_PPIO
4126 
4127 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4128 #pragma	no_inline(bge_chip_peek_cfg)
4129 
4130 static void
4131 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4132 {
4133 	uint64_t regval;
4134 	uint64_t regno;
4135 
4136 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4137 		(void *)bgep, (void *)ppd));
4138 
4139 	regno = ppd->pp_acc_offset;
4140 
4141 	switch (ppd->pp_acc_size) {
4142 	case 1:
4143 		regval = pci_config_get8(bgep->cfg_handle, regno);
4144 		break;
4145 
4146 	case 2:
4147 		regval = pci_config_get16(bgep->cfg_handle, regno);
4148 		break;
4149 
4150 	case 4:
4151 		regval = pci_config_get32(bgep->cfg_handle, regno);
4152 		break;
4153 
4154 	case 8:
4155 		regval = pci_config_get64(bgep->cfg_handle, regno);
4156 		break;
4157 	}
4158 
4159 	ppd->pp_acc_data = regval;
4160 }
4161 
4162 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4163 #pragma	no_inline(bge_chip_poke_cfg)
4164 
4165 static void
4166 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4167 {
4168 	uint64_t regval;
4169 	uint64_t regno;
4170 
4171 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4172 		(void *)bgep, (void *)ppd));
4173 
4174 	regno = ppd->pp_acc_offset;
4175 	regval = ppd->pp_acc_data;
4176 
4177 	switch (ppd->pp_acc_size) {
4178 	case 1:
4179 		pci_config_put8(bgep->cfg_handle, regno, regval);
4180 		break;
4181 
4182 	case 2:
4183 		pci_config_put16(bgep->cfg_handle, regno, regval);
4184 		break;
4185 
4186 	case 4:
4187 		pci_config_put32(bgep->cfg_handle, regno, regval);
4188 		break;
4189 
4190 	case 8:
4191 		pci_config_put64(bgep->cfg_handle, regno, regval);
4192 		break;
4193 	}
4194 }
4195 
4196 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4197 #pragma	no_inline(bge_chip_peek_reg)
4198 
4199 static void
4200 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4201 {
4202 	uint64_t regval;
4203 	void *regaddr;
4204 
4205 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4206 		(void *)bgep, (void *)ppd));
4207 
4208 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4209 
4210 	switch (ppd->pp_acc_size) {
4211 	case 1:
4212 		regval = ddi_get8(bgep->io_handle, regaddr);
4213 		break;
4214 
4215 	case 2:
4216 		regval = ddi_get16(bgep->io_handle, regaddr);
4217 		break;
4218 
4219 	case 4:
4220 		regval = ddi_get32(bgep->io_handle, regaddr);
4221 		break;
4222 
4223 	case 8:
4224 		regval = ddi_get64(bgep->io_handle, regaddr);
4225 		break;
4226 	}
4227 
4228 	ppd->pp_acc_data = regval;
4229 }
4230 
4231 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4232 #pragma	no_inline(bge_chip_peek_reg)
4233 
4234 static void
4235 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4236 {
4237 	uint64_t regval;
4238 	void *regaddr;
4239 
4240 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4241 		(void *)bgep, (void *)ppd));
4242 
4243 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4244 	regval = ppd->pp_acc_data;
4245 
4246 	switch (ppd->pp_acc_size) {
4247 	case 1:
4248 		ddi_put8(bgep->io_handle, regaddr, regval);
4249 		break;
4250 
4251 	case 2:
4252 		ddi_put16(bgep->io_handle, regaddr, regval);
4253 		break;
4254 
4255 	case 4:
4256 		ddi_put32(bgep->io_handle, regaddr, regval);
4257 		break;
4258 
4259 	case 8:
4260 		ddi_put64(bgep->io_handle, regaddr, regval);
4261 		break;
4262 	}
4263 	BGE_PCICHK(bgep);
4264 }
4265 
4266 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4267 #pragma	no_inline(bge_chip_peek_nic)
4268 
4269 static void
4270 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4271 {
4272 	uint64_t regoff;
4273 	uint64_t regval;
4274 	void *regaddr;
4275 
4276 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4277 		(void *)bgep, (void *)ppd));
4278 
4279 	regoff = ppd->pp_acc_offset;
4280 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4281 	regoff &= MWBAR_GRANULE_MASK;
4282 	regoff += NIC_MEM_WINDOW_OFFSET;
4283 	regaddr = PIO_ADDR(bgep, regoff);
4284 
4285 	switch (ppd->pp_acc_size) {
4286 	case 1:
4287 		regval = ddi_get8(bgep->io_handle, regaddr);
4288 		break;
4289 
4290 	case 2:
4291 		regval = ddi_get16(bgep->io_handle, regaddr);
4292 		break;
4293 
4294 	case 4:
4295 		regval = ddi_get32(bgep->io_handle, regaddr);
4296 		break;
4297 
4298 	case 8:
4299 		regval = ddi_get64(bgep->io_handle, regaddr);
4300 		break;
4301 	}
4302 
4303 	ppd->pp_acc_data = regval;
4304 }
4305 
4306 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4307 #pragma	no_inline(bge_chip_poke_nic)
4308 
4309 static void
4310 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4311 {
4312 	uint64_t regoff;
4313 	uint64_t regval;
4314 	void *regaddr;
4315 
4316 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4317 		(void *)bgep, (void *)ppd));
4318 
4319 	regoff = ppd->pp_acc_offset;
4320 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4321 	regoff &= MWBAR_GRANULE_MASK;
4322 	regoff += NIC_MEM_WINDOW_OFFSET;
4323 	regaddr = PIO_ADDR(bgep, regoff);
4324 	regval = ppd->pp_acc_data;
4325 
4326 	switch (ppd->pp_acc_size) {
4327 	case 1:
4328 		ddi_put8(bgep->io_handle, regaddr, regval);
4329 		break;
4330 
4331 	case 2:
4332 		ddi_put16(bgep->io_handle, regaddr, regval);
4333 		break;
4334 
4335 	case 4:
4336 		ddi_put32(bgep->io_handle, regaddr, regval);
4337 		break;
4338 
4339 	case 8:
4340 		ddi_put64(bgep->io_handle, regaddr, regval);
4341 		break;
4342 	}
4343 	BGE_PCICHK(bgep);
4344 }
4345 
4346 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4347 #pragma	no_inline(bge_chip_peek_mii)
4348 
4349 static void
4350 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4351 {
4352 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4353 		(void *)bgep, (void *)ppd));
4354 
4355 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4356 }
4357 
4358 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4359 #pragma	no_inline(bge_chip_poke_mii)
4360 
4361 static void
4362 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4363 {
4364 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4365 		(void *)bgep, (void *)ppd));
4366 
4367 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4368 }
4369 
4370 #if	BGE_SEE_IO32
4371 
4372 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4373 #pragma	no_inline(bge_chip_peek_seeprom)
4374 
4375 static void
4376 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4377 {
4378 	uint32_t data;
4379 	int err;
4380 
4381 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4382 		(void *)bgep, (void *)ppd));
4383 
4384 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4385 	ppd->pp_acc_data = err ? ~0ull : data;
4386 }
4387 
4388 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4389 #pragma	no_inline(bge_chip_poke_seeprom)
4390 
4391 static void
4392 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4393 {
4394 	uint32_t data;
4395 
4396 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4397 		(void *)bgep, (void *)ppd));
4398 
4399 	data = ppd->pp_acc_data;
4400 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4401 }
4402 #endif	/* BGE_SEE_IO32 */
4403 
4404 #if	BGE_FLASH_IO32
4405 
4406 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4407 #pragma	no_inline(bge_chip_peek_flash)
4408 
4409 static void
4410 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4411 {
4412 	uint32_t data;
4413 	int err;
4414 
4415 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4416 		(void *)bgep, (void *)ppd));
4417 
4418 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4419 	ppd->pp_acc_data = err ? ~0ull : data;
4420 }
4421 
4422 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4423 #pragma	no_inline(bge_chip_poke_flash)
4424 
4425 static void
4426 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4427 {
4428 	uint32_t data;
4429 
4430 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
4431 		(void *)bgep, (void *)ppd));
4432 
4433 	data = ppd->pp_acc_data;
4434 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
4435 	    ppd->pp_acc_offset, &data);
4436 }
4437 #endif	/* BGE_FLASH_IO32 */
4438 
4439 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4440 #pragma	no_inline(bge_chip_peek_mem)
4441 
4442 static void
4443 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4444 {
4445 	uint64_t regval;
4446 	void *vaddr;
4447 
4448 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
4449 		(void *)bgep, (void *)ppd));
4450 
4451 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4452 
4453 	switch (ppd->pp_acc_size) {
4454 	case 1:
4455 		regval = *(uint8_t *)vaddr;
4456 		break;
4457 
4458 	case 2:
4459 		regval = *(uint16_t *)vaddr;
4460 		break;
4461 
4462 	case 4:
4463 		regval = *(uint32_t *)vaddr;
4464 		break;
4465 
4466 	case 8:
4467 		regval = *(uint64_t *)vaddr;
4468 		break;
4469 	}
4470 
4471 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
4472 		(void *)bgep, (void *)ppd, regval, vaddr));
4473 
4474 	ppd->pp_acc_data = regval;
4475 }
4476 
4477 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4478 #pragma	no_inline(bge_chip_poke_mem)
4479 
4480 static void
4481 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4482 {
4483 	uint64_t regval;
4484 	void *vaddr;
4485 
4486 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
4487 		(void *)bgep, (void *)ppd));
4488 
4489 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4490 	regval = ppd->pp_acc_data;
4491 
4492 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
4493 		(void *)bgep, (void *)ppd, regval, vaddr));
4494 
4495 	switch (ppd->pp_acc_size) {
4496 	case 1:
4497 		*(uint8_t *)vaddr = (uint8_t)regval;
4498 		break;
4499 
4500 	case 2:
4501 		*(uint16_t *)vaddr = (uint16_t)regval;
4502 		break;
4503 
4504 	case 4:
4505 		*(uint32_t *)vaddr = (uint32_t)regval;
4506 		break;
4507 
4508 	case 8:
4509 		*(uint64_t *)vaddr = (uint64_t)regval;
4510 		break;
4511 	}
4512 }
4513 
4514 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4515 					struct iocblk *iocp);
4516 #pragma	no_inline(bge_pp_ioctl)
4517 
4518 static enum ioc_reply
4519 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4520 {
4521 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
4522 	bge_peekpoke_t *ppd;
4523 	dma_area_t *areap;
4524 	uint64_t sizemask;
4525 	uint64_t mem_va;
4526 	uint64_t maxoff;
4527 	boolean_t peek;
4528 
4529 	switch (cmd) {
4530 	default:
4531 		/* NOTREACHED */
4532 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
4533 		return (IOC_INVAL);
4534 
4535 	case BGE_PEEK:
4536 		peek = B_TRUE;
4537 		break;
4538 
4539 	case BGE_POKE:
4540 		peek = B_FALSE;
4541 		break;
4542 	}
4543 
4544 	/*
4545 	 * Validate format of ioctl
4546 	 */
4547 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
4548 		return (IOC_INVAL);
4549 	if (mp->b_cont == NULL)
4550 		return (IOC_INVAL);
4551 	ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr;
4552 
4553 	/*
4554 	 * Validate request parameters
4555 	 */
4556 	switch (ppd->pp_acc_space) {
4557 	default:
4558 		return (IOC_INVAL);
4559 
4560 	case BGE_PP_SPACE_CFG:
4561 		/*
4562 		 * Config space
4563 		 */
4564 		sizemask = 8|4|2|1;
4565 		mem_va = 0;
4566 		maxoff = PCI_CONF_HDR_SIZE;
4567 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
4568 		break;
4569 
4570 	case BGE_PP_SPACE_REG:
4571 		/*
4572 		 * Memory-mapped I/O space
4573 		 */
4574 		sizemask = 8|4|2|1;
4575 		mem_va = 0;
4576 		maxoff = RIAAR_REGISTER_MAX;
4577 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
4578 		break;
4579 
4580 	case BGE_PP_SPACE_NIC:
4581 		/*
4582 		 * NIC on-chip memory
4583 		 */
4584 		sizemask = 8|4|2|1;
4585 		mem_va = 0;
4586 		maxoff = MWBAR_ONCHIP_MAX;
4587 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
4588 		break;
4589 
4590 	case BGE_PP_SPACE_MII:
4591 		/*
4592 		 * PHY's MII registers
4593 		 * NB: all PHY registers are two bytes, but the
4594 		 * addresses increment in ones (word addressing).
4595 		 * So we scale the address here, then undo the
4596 		 * transformation inside the peek/poke functions.
4597 		 */
4598 		ppd->pp_acc_offset *= 2;
4599 		sizemask = 2;
4600 		mem_va = 0;
4601 		maxoff = (MII_MAXREG+1)*2;
4602 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
4603 		break;
4604 
4605 #if	BGE_SEE_IO32
4606 	case BGE_PP_SPACE_SEEPROM:
4607 		/*
4608 		 * Attached SEEPROM(s), if any.
4609 		 * NB: we use the high-order bits of the 'address' as
4610 		 * a device select to accommodate multiple SEEPROMS,
4611 		 * If each one is the maximum size (64kbytes), this
4612 		 * makes them appear contiguous.  Otherwise, there may
4613 		 * be holes in the mapping.  ENxS doesn't have any
4614 		 * SEEPROMs anyway ...
4615 		 */
4616 		sizemask = 4;
4617 		mem_va = 0;
4618 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
4619 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
4620 		break;
4621 #endif	/* BGE_SEE_IO32 */
4622 
4623 #if	BGE_FLASH_IO32
4624 	case BGE_PP_SPACE_FLASH:
4625 		/*
4626 		 * Attached Flash device (if any); a maximum of one device
4627 		 * is currently supported.  But it can be up to 1MB (unlike
4628 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
4629 		 */
4630 		sizemask = 4;
4631 		mem_va = 0;
4632 		maxoff = NVM_FLASH_ADDR_MASK;
4633 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
4634 		break;
4635 #endif	/* BGE_FLASH_IO32 */
4636 
4637 	case BGE_PP_SPACE_BGE:
4638 		/*
4639 		 * BGE data structure!
4640 		 */
4641 		sizemask = 8|4|2|1;
4642 		mem_va = (uintptr_t)bgep;
4643 		maxoff = sizeof (*bgep);
4644 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
4645 		break;
4646 
4647 	case BGE_PP_SPACE_STATUS:
4648 	case BGE_PP_SPACE_STATISTICS:
4649 	case BGE_PP_SPACE_TXDESC:
4650 	case BGE_PP_SPACE_TXBUFF:
4651 	case BGE_PP_SPACE_RXDESC:
4652 	case BGE_PP_SPACE_RXBUFF:
4653 		/*
4654 		 * Various DMA_AREAs
4655 		 */
4656 		switch (ppd->pp_acc_space) {
4657 		case BGE_PP_SPACE_TXDESC:
4658 			areap = &bgep->tx_desc;
4659 			break;
4660 		case BGE_PP_SPACE_TXBUFF:
4661 			areap = &bgep->tx_buff[0];
4662 			break;
4663 		case BGE_PP_SPACE_RXDESC:
4664 			areap = &bgep->rx_desc[0];
4665 			break;
4666 		case BGE_PP_SPACE_RXBUFF:
4667 			areap = &bgep->rx_buff[0];
4668 			break;
4669 		case BGE_PP_SPACE_STATUS:
4670 			areap = &bgep->status_block;
4671 			break;
4672 		case BGE_PP_SPACE_STATISTICS:
4673 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
4674 				areap = &bgep->statistics;
4675 			break;
4676 		}
4677 
4678 		sizemask = 8|4|2|1;
4679 		mem_va = (uintptr_t)areap->mem_va;
4680 		maxoff = areap->alength;
4681 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
4682 		break;
4683 	}
4684 
4685 	switch (ppd->pp_acc_size) {
4686 	default:
4687 		return (IOC_INVAL);
4688 
4689 	case 8:
4690 	case 4:
4691 	case 2:
4692 	case 1:
4693 		if ((ppd->pp_acc_size & sizemask) == 0)
4694 			return (IOC_INVAL);
4695 		break;
4696 	}
4697 
4698 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4699 		return (IOC_INVAL);
4700 
4701 	if (ppd->pp_acc_offset >= maxoff)
4702 		return (IOC_INVAL);
4703 
4704 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
4705 		return (IOC_INVAL);
4706 
4707 	/*
4708 	 * All OK - go do it!
4709 	 */
4710 	ppd->pp_acc_offset += mem_va;
4711 	(*ppfn)(bgep, ppd);
4712 	return (peek ? IOC_REPLY : IOC_ACK);
4713 }
4714 
4715 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4716 					struct iocblk *iocp);
4717 #pragma	no_inline(bge_diag_ioctl)
4718 
4719 static enum ioc_reply
4720 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4721 {
4722 	ASSERT(mutex_owned(bgep->genlock));
4723 
4724 	switch (cmd) {
4725 	default:
4726 		/* NOTREACHED */
4727 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
4728 		return (IOC_INVAL);
4729 
4730 	case BGE_DIAG:
4731 		/*
4732 		 * Currently a no-op
4733 		 */
4734 		return (IOC_ACK);
4735 
4736 	case BGE_PEEK:
4737 	case BGE_POKE:
4738 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
4739 
4740 	case BGE_PHY_RESET:
4741 		return (IOC_RESTART_ACK);
4742 
4743 	case BGE_SOFT_RESET:
4744 	case BGE_HARD_RESET:
4745 		/*
4746 		 * Reset and reinitialise the 570x hardware
4747 		 */
4748 		bge_restart(bgep, cmd == BGE_HARD_RESET);
4749 		return (IOC_ACK);
4750 	}
4751 
4752 	/* NOTREACHED */
4753 }
4754 
4755 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
4756 
4757 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4758 				    struct iocblk *iocp);
4759 #pragma	no_inline(bge_mii_ioctl)
4760 
4761 static enum ioc_reply
4762 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4763 {
4764 	struct bge_mii_rw *miirwp;
4765 
4766 	/*
4767 	 * Validate format of ioctl
4768 	 */
4769 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
4770 		return (IOC_INVAL);
4771 	if (mp->b_cont == NULL)
4772 		return (IOC_INVAL);
4773 	miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr;
4774 
4775 	/*
4776 	 * Validate request parameters ...
4777 	 */
4778 	if (miirwp->mii_reg > MII_MAXREG)
4779 		return (IOC_INVAL);
4780 
4781 	switch (cmd) {
4782 	default:
4783 		/* NOTREACHED */
4784 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
4785 		return (IOC_INVAL);
4786 
4787 	case BGE_MII_READ:
4788 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
4789 		return (IOC_REPLY);
4790 
4791 	case BGE_MII_WRITE:
4792 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
4793 		return (IOC_ACK);
4794 	}
4795 
4796 	/* NOTREACHED */
4797 }
4798 
4799 #if	BGE_SEE_IO32
4800 
4801 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4802 				    struct iocblk *iocp);
4803 #pragma	no_inline(bge_see_ioctl)
4804 
4805 static enum ioc_reply
4806 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4807 {
4808 	struct bge_see_rw *seerwp;
4809 
4810 	/*
4811 	 * Validate format of ioctl
4812 	 */
4813 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
4814 		return (IOC_INVAL);
4815 	if (mp->b_cont == NULL)
4816 		return (IOC_INVAL);
4817 	seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr;
4818 
4819 	/*
4820 	 * Validate request parameters ...
4821 	 */
4822 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
4823 		return (IOC_INVAL);
4824 
4825 	switch (cmd) {
4826 	default:
4827 		/* NOTREACHED */
4828 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
4829 		return (IOC_INVAL);
4830 
4831 	case BGE_SEE_READ:
4832 	case BGE_SEE_WRITE:
4833 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
4834 		    seerwp->see_addr, &seerwp->see_data);
4835 		return (IOC_REPLY);
4836 	}
4837 
4838 	/* NOTREACHED */
4839 }
4840 
4841 #endif	/* BGE_SEE_IO32 */
4842 
4843 #if	BGE_FLASH_IO32
4844 
4845 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4846 				    struct iocblk *iocp);
4847 #pragma	no_inline(bge_flash_ioctl)
4848 
4849 static enum ioc_reply
4850 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4851 {
4852 	struct bge_flash_rw *flashrwp;
4853 
4854 	/*
4855 	 * Validate format of ioctl
4856 	 */
4857 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
4858 		return (IOC_INVAL);
4859 	if (mp->b_cont == NULL)
4860 		return (IOC_INVAL);
4861 	flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr;
4862 
4863 	/*
4864 	 * Validate request parameters ...
4865 	 */
4866 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
4867 		return (IOC_INVAL);
4868 
4869 	switch (cmd) {
4870 	default:
4871 		/* NOTREACHED */
4872 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
4873 		return (IOC_INVAL);
4874 
4875 	case BGE_FLASH_READ:
4876 	case BGE_FLASH_WRITE:
4877 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
4878 		    flashrwp->flash_addr, &flashrwp->flash_data);
4879 		return (IOC_REPLY);
4880 	}
4881 
4882 	/* NOTREACHED */
4883 }
4884 
4885 #endif	/* BGE_FLASH_IO32 */
4886 
4887 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
4888 				struct iocblk *iocp);
4889 #pragma	no_inline(bge_chip_ioctl)
4890 
4891 enum ioc_reply
4892 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
4893 {
4894 	int cmd;
4895 
4896 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
4897 		(void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
4898 
4899 	ASSERT(mutex_owned(bgep->genlock));
4900 
4901 	cmd = iocp->ioc_cmd;
4902 	switch (cmd) {
4903 	default:
4904 		/* NOTREACHED */
4905 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
4906 		return (IOC_INVAL);
4907 
4908 	case BGE_DIAG:
4909 	case BGE_PEEK:
4910 	case BGE_POKE:
4911 	case BGE_PHY_RESET:
4912 	case BGE_SOFT_RESET:
4913 	case BGE_HARD_RESET:
4914 #if	BGE_DEBUGGING || BGE_DO_PPIO
4915 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
4916 #else
4917 		return (IOC_INVAL);
4918 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
4919 
4920 	case BGE_MII_READ:
4921 	case BGE_MII_WRITE:
4922 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
4923 
4924 #if	BGE_SEE_IO32
4925 	case BGE_SEE_READ:
4926 	case BGE_SEE_WRITE:
4927 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
4928 #endif	/* BGE_SEE_IO32 */
4929 
4930 #if	BGE_FLASH_IO32
4931 	case BGE_FLASH_READ:
4932 	case BGE_FLASH_WRITE:
4933 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
4934 #endif	/* BGE_FLASH_IO32 */
4935 	}
4936 
4937 	/* NOTREACHED */
4938 }
4939 
4940 void
4941 bge_chip_blank(void *arg, time_t ticks, uint_t count)
4942 {
4943 	bge_t *bgep = arg;
4944 
4945 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
4946 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
4947 }
4948 
4949 #ifdef BGE_IPMI_ASF
4950 
4951 uint32_t
4952 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
4953 {
4954 	uint32_t data;
4955 
4956 	if (!bgep->asf_wordswapped) {
4957 		/* a workaround word swap error */
4958 		if (addr & 4)
4959 			addr = addr - 4;
4960 		else
4961 			addr = addr + 4;
4962 	}
4963 
4964 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
4965 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
4966 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
4967 
4968 	return (data);
4969 }
4970 
4971 
4972 void
4973 bge_asf_update_status(bge_t *bgep)
4974 {
4975 	uint32_t event;
4976 
4977 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
4978 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
4979 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
4980 
4981 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
4982 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
4983 }
4984 
4985 
4986 /*
4987  * The driver is supposed to notify ASF that the OS is still running
4988  * every three seconds, otherwise the management server may attempt
4989  * to reboot the machine.  If it hasn't actually failed, this is
4990  * not a desireable result.  However, this isn't running as a real-time
4991  * thread, and even if it were, it might not be able to generate the
4992  * heartbeat in a timely manner due to system load.  As it isn't a
4993  * significant strain on the machine, we will set the interval to half
4994  * of the required value.
4995  */
4996 void
4997 bge_asf_heartbeat(void *bgep)
4998 {
4999 	bge_asf_update_status((bge_t *)bgep);
5000 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5001 		drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5002 }
5003 
5004 
5005 void
5006 bge_asf_stop_timer(bge_t *bgep)
5007 {
5008 	timeout_id_t tmp_id = 0;
5009 
5010 	while ((bgep->asf_timeout_id != 0) &&
5011 		(tmp_id != bgep->asf_timeout_id)) {
5012 		tmp_id = bgep->asf_timeout_id;
5013 		(void) untimeout(tmp_id);
5014 	}
5015 	bgep->asf_timeout_id = 0;
5016 }
5017 
5018 
5019 
5020 /*
5021  * This function should be placed at the earliest postion of bge_attach().
5022  */
5023 void
5024 bge_asf_get_config(bge_t *bgep)
5025 {
5026 	uint32_t nicsig;
5027 	uint32_t niccfg;
5028 
5029 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5030 	if (nicsig == BGE_NIC_DATA_SIG) {
5031 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5032 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5033 			/*
5034 			 * Here, we don't consider BAXTER, because BGE haven't
5035 			 * supported BAXTER (that is 5752). Also, as I know,
5036 			 * BAXTER doesn't support ASF feature.
5037 			 */
5038 			bgep->asf_enabled = B_TRUE;
5039 		else
5040 			bgep->asf_enabled = B_FALSE;
5041 	} else
5042 		bgep->asf_enabled = B_FALSE;
5043 }
5044 
5045 
5046 void
5047 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5048 {
5049 	uint32_t tries;
5050 	uint32_t event;
5051 
5052 	ASSERT(bgep->asf_enabled);
5053 
5054 	/* Issues "pause firmware" command and wait for ACK */
5055 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5056 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5057 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5058 
5059 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5060 	tries = 0;
5061 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5062 		drv_usecwait(1);
5063 		tries ++;
5064 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5065 	}
5066 
5067 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5068 		BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5069 
5070 	if (bgep->asf_newhandshake) {
5071 		switch (mode) {
5072 		case BGE_INIT_RESET:
5073 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5074 				BGE_DRV_STATE_START);
5075 			break;
5076 		case BGE_SHUTDOWN_RESET:
5077 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5078 				BGE_DRV_STATE_UNLOAD);
5079 			break;
5080 		case BGE_SUSPEND_RESET:
5081 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5082 				BGE_DRV_STATE_SUSPEND);
5083 			break;
5084 		default:
5085 			break;
5086 		}
5087 	}
5088 }
5089 
5090 
5091 void
5092 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5093 {
5094 	switch (mode) {
5095 	case BGE_INIT_RESET:
5096 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5097 			BGE_DRV_STATE_START);
5098 		break;
5099 	case BGE_SHUTDOWN_RESET:
5100 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5101 			BGE_DRV_STATE_UNLOAD);
5102 		break;
5103 	case BGE_SUSPEND_RESET:
5104 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5105 			BGE_DRV_STATE_SUSPEND);
5106 		break;
5107 	default:
5108 		break;
5109 	}
5110 }
5111 
5112 
5113 void
5114 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5115 {
5116 	switch (mode) {
5117 	case BGE_INIT_RESET:
5118 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5119 			BGE_DRV_STATE_START_DONE);
5120 		break;
5121 	case BGE_SHUTDOWN_RESET:
5122 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5123 			BGE_DRV_STATE_UNLOAD_DONE);
5124 		break;
5125 	default:
5126 		break;
5127 	}
5128 }
5129 
5130 #endif /* BGE_IPMI_ASF */
5131