xref: /titanic_44/usr/src/uts/common/io/bge/bge_chip2.c (revision d2afb7a9bb42dc1844db2269e127f1f63707091b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 
31 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
32 
33 /*
34  * Future features ... ?
35  */
36 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
37 #define	BGE_IND_IO32	1	/* indirect access code		*/
38 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
39 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
40 
41 /*
42  * BGE MSI tunable:
43  *
44  * By default MSI is enabled on all supported platforms but it is disabled
45  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
46  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
47  */
48 #if defined(__sparc)
49 boolean_t bge_enable_msi = B_TRUE;
50 #else
51 boolean_t bge_enable_msi = B_FALSE;
52 #endif
53 
54 /*
55  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
56  */
57 boolean_t bge_relaxed_ordering = B_TRUE;
58 
59 /*
60  * Property names
61  */
62 static char knownids_propname[] = "bge-known-subsystems";
63 
64 /*
65  * Patchable globals:
66  *
67  *	bge_autorecover
68  *		Enables/disables automatic recovery after fault detection
69  *
70  *	bge_mlcr_default
71  *		Value to program into the MLCR; controls the chip's GPIO pins
72  *
73  *	bge_dma_{rd,wr}prio
74  *		Relative priorities of DMA reads & DMA writes respectively.
75  *		These may each be patched to any value 0-3.  Equal values
76  *		will give "fair" (round-robin) arbitration for PCI access.
77  *		Unequal values will give one or the other function priority.
78  *
79  *	bge_dma_rwctrl
80  *		Value to put in the Read/Write DMA control register.  See
81  *	        the Broadcom PRM for things you can fiddle with in this
82  *		register ...
83  *
84  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
85  *		Send/receive interrupt coalescing parameters.  Counts are
86  *		#s of descriptors, ticks are in microseconds.  *norm* values
87  *		apply between status updates/interrupts; the *intr* values
88  *		refer to the 'during-interrupt' versions - see the PRM.
89  *
90  *		NOTE: these values have been determined by measurement. They
91  *		differ significantly from the values recommended in the PRM.
92  */
93 static uint32_t bge_autorecover = 1;
94 static uint32_t bge_mlcr_default = MLCR_DEFAULT;
95 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
96 
97 static uint32_t bge_dma_rdprio = 1;
98 static uint32_t bge_dma_wrprio = 0;
99 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
100 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
101 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
102 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
103 
104 uint32_t bge_rx_ticks_norm = 128;
105 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
106 uint32_t bge_rx_count_norm = 8;
107 uint32_t bge_tx_count_norm = 128;
108 
109 static uint32_t bge_rx_ticks_intr = 128;
110 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
111 static uint32_t bge_rx_count_intr = 2;
112 static uint32_t bge_tx_count_intr = 0;
113 
114 /*
115  * Memory pool configuration parameters.
116  *
117  * These are generally specific to each member of the chip family, since
118  * each one may have a different memory size/configuration.
119  *
120  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
121  * the driver from programming the various registers; instead they are left
122  * at their hardware defaults.  This is the preferred option for later chips
123  * (5705+), whereas the older chips *required* these registers to be set,
124  * since the h/w default was 0 ;-(
125  */
126 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
127 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
128 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
129 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
130 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
131 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
132 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
133 static uint32_t bge_mbuf_pool_len_5721	= 0;
134 
135 /*
136  * Various high and low water marks, thresholds, etc ...
137  *
138  * Note: these are taken from revision 7 of the PRM, and some are different
139  * from both the values in earlier PRMs *and* those determined experimentally
140  * and used in earlier versions of this driver ...
141  */
142 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
143 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
144 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
145 
146 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
147 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
148 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
149 
150 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
151 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
152 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
153 
154 static uint32_t	bge_watchdog_count	= 1 << 16;
155 static uint16_t bge_dma_miss_limit	= 20;
156 
157 static uint32_t bge_stop_start_on_sync	= 0;
158 
159 boolean_t bge_jumbo_enable		= B_TRUE;
160 static uint32_t bge_default_jumbo_size	= BGE_JUMBO_BUFF_SIZE;
161 
162 /*
163  * bge_intr_max_loop controls the maximum loop number within bge_intr.
164  * When loading NIC with heavy network traffic, it is useful.
165  * Increasing this value could have positive effect to throughput,
166  * but it might also increase ticks of a bge ISR stick on CPU, which might
167  * lead to bad UI interactive experience. So tune this with caution.
168  */
169 static int bge_intr_max_loop = 1;
170 
171 /*
172  * ========== Low-level chip & ring buffer manipulation ==========
173  */
174 
175 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
176 
177 
178 /*
179  * Config space read-modify-write routines
180  */
181 
182 #if	BGE_CFG_IO8
183 
184 /*
185  * 8- and 16-bit set/clr operations are not used; all the config registers
186  * that we need to do bit-twiddling on are 32 bits wide.  I'll leave the
187  * code here, though, in case we ever find that we do want it after all ...
188  */
189 
190 static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
191 #pragma	inline(bge_cfg_set8)
192 
193 static void
194 bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
195 {
196 	uint8_t regval;
197 
198 	BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)",
199 	    (void *)bgep, regno, bits));
200 
201 	regval = pci_config_get8(bgep->cfg_handle, regno);
202 
203 	BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
204 	    (void *)bgep, regno, bits, regval, regval | bits));
205 
206 	regval |= bits;
207 	pci_config_put8(bgep->cfg_handle, regno, regval);
208 }
209 
210 static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
211 #pragma	inline(bge_cfg_clr8)
212 
213 static void
214 bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
215 {
216 	uint8_t regval;
217 
218 	BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)",
219 	    (void *)bgep, regno, bits));
220 
221 	regval = pci_config_get8(bgep->cfg_handle, regno);
222 
223 	BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
224 	    (void *)bgep, regno, bits, regval, regval & ~bits));
225 
226 	regval &= ~bits;
227 	pci_config_put8(bgep->cfg_handle, regno, regval);
228 }
229 
230 static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
231 #pragma	inline(bge_cfg_set16)
232 
233 static void
234 bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
235 {
236 	uint16_t regval;
237 
238 	BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)",
239 	    (void *)bgep, regno, bits));
240 
241 	regval = pci_config_get16(bgep->cfg_handle, regno);
242 
243 	BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
244 	    (void *)bgep, regno, bits, regval, regval | bits));
245 
246 	regval |= bits;
247 	pci_config_put16(bgep->cfg_handle, regno, regval);
248 }
249 
250 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
251 #pragma	inline(bge_cfg_clr16)
252 
253 static void
254 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
255 {
256 	uint16_t regval;
257 
258 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
259 	    (void *)bgep, regno, bits));
260 
261 	regval = pci_config_get16(bgep->cfg_handle, regno);
262 
263 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
264 	    (void *)bgep, regno, bits, regval, regval & ~bits));
265 
266 	regval &= ~bits;
267 	pci_config_put16(bgep->cfg_handle, regno, regval);
268 }
269 
270 #endif	/* BGE_CFG_IO8 */
271 
272 static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
273 #pragma	inline(bge_cfg_set32)
274 
275 static void
276 bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
277 {
278 	uint32_t regval;
279 
280 	BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)",
281 	    (void *)bgep, regno, bits));
282 
283 	regval = pci_config_get32(bgep->cfg_handle, regno);
284 
285 	BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
286 	    (void *)bgep, regno, bits, regval, regval | bits));
287 
288 	regval |= bits;
289 	pci_config_put32(bgep->cfg_handle, regno, regval);
290 }
291 
292 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
293 #pragma	inline(bge_cfg_clr32)
294 
295 static void
296 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
297 {
298 	uint32_t regval;
299 
300 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
301 	    (void *)bgep, regno, bits));
302 
303 	regval = pci_config_get32(bgep->cfg_handle, regno);
304 
305 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
306 	    (void *)bgep, regno, bits, regval, regval & ~bits));
307 
308 	regval &= ~bits;
309 	pci_config_put32(bgep->cfg_handle, regno, regval);
310 }
311 
312 #if	BGE_IND_IO32
313 
314 /*
315  * Indirect access to registers & RISC scratchpads, using config space
316  * accesses only.
317  *
318  * This isn't currently used, but someday we might want to use it for
319  * restoring the Subsystem Device/Vendor registers (which aren't directly
320  * writable in Config Space), or for downloading firmware into the RISCs
321  *
322  * In any case there are endian issues to be resolved before this code is
323  * enabled; the bizarre way that bytes get twisted by this chip AND by
324  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
325  * it's been thoroughly tested for all access sizes on all supported
326  * architectures (SPARC *and* x86!).
327  */
328 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
329 #pragma	inline(bge_ind_get32)
330 
331 uint32_t
332 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
333 {
334 	uint32_t val;
335 
336 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
337 
338 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
339 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
340 
341 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
342 	    (void *)bgep, regno, val));
343 
344 	val = LE_32(val);
345 
346 	return (val);
347 }
348 
349 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
350 #pragma	inline(bge_ind_put32)
351 
352 void
353 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
354 {
355 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
356 	    (void *)bgep, regno, val));
357 
358 	val = LE_32(val);
359 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
360 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
361 }
362 
363 #endif	/* BGE_IND_IO32 */
364 
365 #if	BGE_DEBUGGING
366 
367 static void bge_pci_check(bge_t *bgep);
368 #pragma	no_inline(bge_pci_check)
369 
370 static void
371 bge_pci_check(bge_t *bgep)
372 {
373 	uint16_t pcistatus;
374 
375 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
376 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
377 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
378 		    (void *)bgep, pcistatus));
379 }
380 
381 #endif	/* BGE_DEBUGGING */
382 
383 /*
384  * Perform first-stage chip (re-)initialisation, using only config-space
385  * accesses:
386  *
387  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
388  *   returning the data in the structure pointed to by <idp>.
389  * + Configure the target-mode endianness (swap) options.
390  * + Disable interrupts and enable Memory Space accesses.
391  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
392  *
393  * This sequence is adapted from Broadcom document 570X-PG102-R,
394  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
395  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
396  *
397  * This function MUST be called before any non-config-space accesses
398  * are made; on this first call <enable_dma> is B_FALSE, and it
399  * effectively performs steps 3-1(!) of the initialisation sequence
400  * (the rest are not required but should be harmless).
401  *
402  * It MUST also be called after a chip reset, as this disables
403  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
404  * it is effectively performing steps 6-8.
405  */
406 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
407 #pragma	no_inline(bge_chip_cfg_init)
408 
409 void
410 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
411 {
412 	ddi_acc_handle_t handle;
413 	uint16_t command;
414 	uint32_t mhcr;
415 	uint16_t value16;
416 	int i;
417 
418 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
419 	    (void *)bgep, (void *)cidp, enable_dma));
420 
421 	/*
422 	 * Step 3: save PCI cache line size and subsystem vendor ID
423 	 *
424 	 * Read all the config-space registers that characterise the
425 	 * chip, specifically vendor/device/revision/subsystem vendor
426 	 * and subsystem device id.  We expect (but don't check) that
427 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
428 	 *
429 	 * Also save all bus-transaction related registers (cache-line
430 	 * size, bus-grant/latency parameters, etc).  Some of these are
431 	 * cleared by reset, so we'll have to restore them later.  This
432 	 * comes from the Broadcom document 570X-PG102-R ...
433 	 *
434 	 * Note: Broadcom document 570X-PG102-R seems to be in error
435 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
436 	 * Subsystem (Device) ID registers, which are the opposite way
437 	 * round according to the PCI standard.  For good measure, we
438 	 * save/restore both anyway.
439 	 */
440 	handle = bgep->cfg_handle;
441 
442 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
443 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
444 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
445 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
446 
447 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
448 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
449 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
450 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
451 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
452 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
453 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
454 
455 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
456 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
457 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
458 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
459 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
460 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
461 	    cidp->vendor, cidp->device, cidp->revision));
462 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
463 	    cidp->subven, cidp->subdev, cidp->asic_rev));
464 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
465 	    cidp->clsize, cidp->latency, cidp->command));
466 
467 	/*
468 	 * Step 2 (also step 6): disable and clear interrupts.
469 	 * Steps 11-13: configure PIO endianness options, and enable
470 	 * indirect register access.  We'll also select any other
471 	 * options controlled by the MHCR (e.g. tagged status, mask
472 	 * interrupt mode) at this stage ...
473 	 *
474 	 * Note: internally, the chip is 64-bit and BIG-endian, but
475 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
476 	 * it normally swaps bytes around at the PCI interface.
477 	 * However, the PCI host bridge on SPARC systems normally
478 	 * swaps the byte lanes around too, since SPARCs are also
479 	 * BIG-endian.  So it turns out that on SPARC, the right
480 	 * option is to tell the chip to swap (and the host bridge
481 	 * will swap back again), whereas on x86 we ask the chip
482 	 * NOT to swap, so the natural little-endianness of the
483 	 * PCI bus is assumed.  Then the only thing that doesn't
484 	 * automatically work right is access to an 8-byte register
485 	 * by a little-endian host; but we don't want to set the
486 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
487 	 * accesses don't go where expected ;-(  So we live with
488 	 * that, and perform word-swaps in software in the few cases
489 	 * where a chip register is defined as an 8-byte value --
490 	 * see the code below for details ...
491 	 *
492 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
493 	 * very clear in the register description in the PRM, but
494 	 * Broadcom document 570X-PG104-R page 248 explains a little
495 	 * more (under "Broadcom Mask Mode").  The bit changes the way
496 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
497 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
498 	 * way as the 5700 did, which isn't very convenient.  Setting
499 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
500 	 * bit do just what its name says -- MASK the PCI #INTA output
501 	 * (i.e. deassert the signal at the pin) leaving all internal
502 	 * state unchanged.  This is much more convenient for our
503 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
504 	 *
505 	 * Note: the inconvenient semantics of the interrupt mailbox
506 	 * (nonzero disables and acknowledges/clears the interrupt,
507 	 * zero enables AND CLEARS it) would make race conditions
508 	 * likely in the interrupt handler:
509 	 *
510 	 * (1)	acknowledge & disable interrupts
511 	 * (2)	while (more to do)
512 	 * 		process packets
513 	 * (3)	enable interrupts -- also clears pending
514 	 *
515 	 * If the chip received more packets and internally generated
516 	 * an interrupt between the check at (2) and the mbox write
517 	 * at (3), this interrupt would be lost :-(
518 	 *
519 	 * The best way to avoid this is to use TAGGED STATUS mode,
520 	 * where the chip includes a unique tag in each status block
521 	 * update, and the host, when re-enabling interrupts, passes
522 	 * the last tag it saw back to the chip; then the chip can
523 	 * see whether the host is truly up to date, and regenerate
524 	 * its interrupt if not.
525 	 */
526 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
527 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
528 	    MHCR_MASK_INTERRUPT_MODE |
529 	    MHCR_CLEAR_INTERRUPT_INTA;
530 
531 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
532 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
533 
534 #ifdef	_BIG_ENDIAN
535 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
536 #endif	/* _BIG_ENDIAN */
537 
538 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
539 
540 #ifdef BGE_IPMI_ASF
541 	bgep->asf_wordswapped = B_FALSE;
542 #endif
543 	/*
544 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
545 	 *			 Disable Memory Write/Invalidate
546 	 *			 Enable or disable Bus Mastering
547 	 *
548 	 * Note that all other bits are taken from the original value saved
549 	 * the first time through here, rather than from the current register
550 	 * value, 'cos that will have been cleared by a soft RESET since.
551 	 * In this way we preserve the OBP/nexus-parent's preferred settings
552 	 * of the parity-error and system-error enable bits across multiple
553 	 * chip RESETs.
554 	 */
555 	command = bgep->chipid.command | PCI_COMM_MAE;
556 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
557 	if (enable_dma)
558 		command |= PCI_COMM_ME;
559 	/*
560 	 * on BCM5714 revision A0, false parity error gets generated
561 	 * due to a logic bug. Provide a workaround by disabling parity
562 	 * error.
563 	 */
564 	if (((cidp->device == DEVICE_ID_5714C) ||
565 	    (cidp->device == DEVICE_ID_5714S)) &&
566 	    (cidp->revision == REVISION_ID_5714_A0)) {
567 		command &= ~PCI_COMM_PARITY_DETECT;
568 	}
569 	pci_config_put16(handle, PCI_CONF_COMM, command);
570 
571 	/*
572 	 * On some PCI-E device, there were instances when
573 	 * the device was still link training.
574 	 */
575 	if (bgep->chipid.pci_type == BGE_PCI_E) {
576 		i = 0;
577 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
578 		while ((value16 != command) && (i < 100)) {
579 			drv_usecwait(200);
580 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
581 			++i;
582 		}
583 	}
584 
585 	/*
586 	 * Clear any remaining error status bits
587 	 */
588 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
589 
590 	/*
591 	 * Do following if and only if the device is NOT BCM5714C OR
592 	 * BCM5715C
593 	 */
594 	if (!((cidp->device == DEVICE_ID_5714C) ||
595 	    (cidp->device == DEVICE_ID_5715C))) {
596 		/*
597 		 * Make sure these indirect-access registers are sane
598 		 * rather than random after power-up or reset
599 		 */
600 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
601 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
602 	}
603 	/*
604 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
605 	 */
606 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
607 
608 	if (cidp->pci_type == BGE_PCI_E)
609 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
610 		    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
611 }
612 
613 #ifdef __amd64
614 /*
615  * Distinguish CPU types
616  *
617  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
618  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
619  * for PCI-Express based network interface card. This is the work-around
620  * for those nics.
621  */
622 static boolean_t bge_get_em64t_type(void);
623 #pragma	inline(bge_get_em64t_type)
624 
625 static boolean_t
626 bge_get_em64t_type(void)
627 {
628 
629 	return (x86_vendor == X86_VENDOR_Intel);
630 }
631 #endif
632 
633 /*
634  * Operating register get/set access routines
635  */
636 
637 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
638 #pragma	inline(bge_reg_get32)
639 
640 uint32_t
641 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
642 {
643 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
644 	    (void *)bgep, regno));
645 
646 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
647 }
648 
649 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
650 #pragma	inline(bge_reg_put32)
651 
652 void
653 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
654 {
655 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
656 	    (void *)bgep, regno, data));
657 
658 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
659 	BGE_PCICHK(bgep);
660 }
661 
662 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
663 #pragma	inline(bge_reg_set32)
664 
665 void
666 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
667 {
668 	uint32_t regval;
669 
670 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
671 	    (void *)bgep, regno, bits));
672 
673 	regval = bge_reg_get32(bgep, regno);
674 	regval |= bits;
675 	bge_reg_put32(bgep, regno, regval);
676 }
677 
678 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
679 #pragma	inline(bge_reg_clr32)
680 
681 void
682 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
683 {
684 	uint32_t regval;
685 
686 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
687 	    (void *)bgep, regno, bits));
688 
689 	regval = bge_reg_get32(bgep, regno);
690 	regval &= ~bits;
691 	bge_reg_put32(bgep, regno, regval);
692 }
693 
694 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
695 #pragma	inline(bge_reg_get64)
696 
697 static uint64_t
698 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
699 {
700 	uint64_t regval;
701 
702 #ifdef	__amd64
703 	if (bge_get_em64t_type()) {
704 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
705 		regval <<= 32;
706 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
707 	} else {
708 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
709 	}
710 #else
711 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
712 #endif
713 
714 #ifdef	_LITTLE_ENDIAN
715 	regval = (regval >> 32) | (regval << 32);
716 #endif	/* _LITTLE_ENDIAN */
717 
718 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
719 	    (void *)bgep, regno, regval));
720 
721 	return (regval);
722 }
723 
724 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
725 #pragma	inline(bge_reg_put64)
726 
727 static void
728 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
729 {
730 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
731 	    (void *)bgep, regno, data));
732 
733 #ifdef	_LITTLE_ENDIAN
734 	data = ((data >> 32) | (data << 32));
735 #endif	/* _LITTLE_ENDIAN */
736 
737 #ifdef	__amd64
738 	if (bge_get_em64t_type()) {
739 		ddi_put32(bgep->io_handle,
740 		    PIO_ADDR(bgep, regno), (uint32_t)data);
741 		BGE_PCICHK(bgep);
742 		ddi_put32(bgep->io_handle,
743 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
744 
745 	} else {
746 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
747 	}
748 #else
749 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
750 #endif
751 
752 	BGE_PCICHK(bgep);
753 }
754 
755 /*
756  * The DDI doesn't provide get/put functions for 128 bit data
757  * so we put RCBs out as two 64-bit chunks instead.
758  */
759 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
760 #pragma	inline(bge_reg_putrcb)
761 
762 static void
763 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
764 {
765 	uint64_t *p;
766 
767 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
768 	    (void *)bgep, addr, rcbp->host_ring_addr,
769 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
770 
771 	ASSERT((addr % sizeof (*rcbp)) == 0);
772 
773 	p = (void *)rcbp;
774 	bge_reg_put64(bgep, addr, *p++);
775 	bge_reg_put64(bgep, addr+8, *p);
776 }
777 
778 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
779 #pragma	inline(bge_mbx_put)
780 
781 void
782 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
783 {
784 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
785 	    (void *)bgep, regno, data));
786 
787 	/*
788 	 * Mailbox registers are nominally 64 bits on the 5701, but
789 	 * the MSW isn't used.  On the 5703, they're only 32 bits
790 	 * anyway.  So here we just write the lower(!) 32 bits -
791 	 * remembering that the chip is big-endian, even though the
792 	 * PCI bus is little-endian ...
793 	 */
794 #ifdef	_BIG_ENDIAN
795 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
796 #else
797 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
798 #endif	/* _BIG_ENDIAN */
799 	BGE_PCICHK(bgep);
800 }
801 
802 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
803 #pragma inline(bge_mbx_get)
804 
805 uint32_t
806 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
807 {
808 	uint32_t val32;
809 
810 	BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
811 	    (void *)bgep, regno));
812 
813 #ifdef	_BIG_ENDIAN
814 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
815 #else
816 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
817 #endif	/* _BIG_ENDIAN */
818 	BGE_PCICHK(bgep);
819 
820 	return (val32);
821 }
822 
823 
824 #if	BGE_DEBUGGING
825 
826 void bge_led_mark(bge_t *bgep);
827 #pragma	no_inline(bge_led_mark)
828 
829 void
830 bge_led_mark(bge_t *bgep)
831 {
832 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
833 	    LED_CONTROL_1000MBPS_LED |
834 	    LED_CONTROL_100MBPS_LED |
835 	    LED_CONTROL_10MBPS_LED;
836 
837 	/*
838 	 * Blink all three LINK LEDs on simultaneously, then all off,
839 	 * then restore to automatic hardware control.  This is used
840 	 * in laboratory testing to trigger a logic analyser or scope.
841 	 */
842 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
843 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
844 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
845 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
846 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
847 }
848 
849 #endif	/* BGE_DEBUGGING */
850 
851 /*
852  * NIC on-chip memory access routines
853  *
854  * Only 32K of NIC memory is visible at a time, controlled by the
855  * Memory Window Base Address Register (in PCI config space).  Once
856  * this is set, the 32K region of NIC-local memory that it refers
857  * to can be directly addressed in the upper 32K of the 64K of PCI
858  * memory space used for the device.
859  */
860 
861 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
862 #pragma	inline(bge_nic_setwin)
863 
864 static void
865 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
866 {
867 	chip_id_t *cidp;
868 
869 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
870 	    (void *)bgep, base));
871 
872 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
873 
874 	/*
875 	 * Don't do repeated zero data writes,
876 	 * if the device is BCM5714C/15C.
877 	 */
878 	cidp = &bgep->chipid;
879 	if ((cidp->device == DEVICE_ID_5714C) ||
880 	    (cidp->device == DEVICE_ID_5715C)) {
881 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
882 			return;
883 		/* Adjust lastWriteZeroData */
884 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
885 		    B_TRUE : B_FALSE);
886 	}
887 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
888 }
889 
890 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
891 #pragma	inline(bge_nic_get32)
892 
893 static uint32_t
894 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
895 {
896 	uint32_t data;
897 
898 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
899 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
900 		/* workaround for word swap error */
901 		if (addr & 4)
902 			addr = addr - 4;
903 		else
904 			addr = addr + 4;
905 	}
906 #endif
907 
908 #ifdef __sparc
909 	data = bge_nic_read32(bgep, addr);
910 #else
911 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
912 	addr &= MWBAR_GRANULE_MASK;
913 	addr += NIC_MEM_WINDOW_OFFSET;
914 
915 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
916 #endif
917 
918 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
919 	    (void *)bgep, addr, data));
920 
921 	return (data);
922 }
923 
924 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
925 #pragma inline(bge_nic_put32)
926 
927 void
928 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
929 {
930 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
931 	    (void *)bgep, addr, data));
932 
933 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
934 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
935 		/* workaround for word swap error */
936 		if (addr & 4)
937 			addr = addr - 4;
938 		else
939 			addr = addr + 4;
940 	}
941 #endif
942 
943 #ifdef __sparc
944 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
945 	data = LE_32(data);
946 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
947 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
948 #else
949 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
950 	addr &= MWBAR_GRANULE_MASK;
951 	addr += NIC_MEM_WINDOW_OFFSET;
952 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
953 	BGE_PCICHK(bgep);
954 #endif
955 }
956 
957 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
958 #pragma	inline(bge_nic_get64)
959 
960 static uint64_t
961 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
962 {
963 	uint64_t data;
964 
965 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
966 	addr &= MWBAR_GRANULE_MASK;
967 	addr += NIC_MEM_WINDOW_OFFSET;
968 
969 #ifdef	__amd64
970 		if (bge_get_em64t_type()) {
971 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
972 			data <<= 32;
973 			data |= ddi_get32(bgep->io_handle,
974 			    PIO_ADDR(bgep, addr + 4));
975 		} else {
976 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
977 		}
978 #else
979 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
980 #endif
981 
982 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
983 	    (void *)bgep, addr, data));
984 
985 	return (data);
986 }
987 
988 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
989 #pragma	inline(bge_nic_put64)
990 
991 static void
992 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
993 {
994 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
995 	    (void *)bgep, addr, data));
996 
997 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
998 	addr &= MWBAR_GRANULE_MASK;
999 	addr += NIC_MEM_WINDOW_OFFSET;
1000 
1001 #ifdef	__amd64
1002 	if (bge_get_em64t_type()) {
1003 		ddi_put32(bgep->io_handle,
1004 		    PIO_ADDR(bgep, addr), (uint32_t)data);
1005 		BGE_PCICHK(bgep);
1006 		ddi_put32(bgep->io_handle,
1007 		    PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
1008 	} else {
1009 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1010 	}
1011 #else
1012 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1013 #endif
1014 
1015 	BGE_PCICHK(bgep);
1016 }
1017 
1018 /*
1019  * The DDI doesn't provide get/put functions for 128 bit data
1020  * so we put RCBs out as two 64-bit chunks instead.
1021  */
1022 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
1023 #pragma	inline(bge_nic_putrcb)
1024 
1025 static void
1026 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1027 {
1028 	uint64_t *p;
1029 
1030 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1031 	    (void *)bgep, addr, rcbp->host_ring_addr,
1032 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1033 
1034 	ASSERT((addr % sizeof (*rcbp)) == 0);
1035 
1036 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1037 	addr &= MWBAR_GRANULE_MASK;
1038 	addr += NIC_MEM_WINDOW_OFFSET;
1039 
1040 	p = (void *)rcbp;
1041 #ifdef	__amd64
1042 	if (bge_get_em64t_type()) {
1043 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1044 		    (uint32_t)(*p));
1045 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1046 		    (uint32_t)(*p >> 32));
1047 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1048 		    (uint32_t)(*(p + 1)));
1049 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1050 		    (uint32_t)(*p >> 32));
1051 
1052 	} else {
1053 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1054 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1055 	}
1056 #else
1057 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1058 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1059 #endif
1060 
1061 	BGE_PCICHK(bgep);
1062 }
1063 
1064 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1065 #pragma	inline(bge_nic_zero)
1066 
1067 static void
1068 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1069 {
1070 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1071 	    (void *)bgep, addr, nbytes));
1072 
1073 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1074 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1075 
1076 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1077 	addr &= MWBAR_GRANULE_MASK;
1078 	addr += NIC_MEM_WINDOW_OFFSET;
1079 
1080 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1081 	    nbytes, 1, DDI_DATA_SZ08_ACC);
1082 	BGE_PCICHK(bgep);
1083 }
1084 
1085 /*
1086  * MII (PHY) register get/set access routines
1087  *
1088  * These use the chip's MII auto-access method, controlled by the
1089  * MII Communication register at 0x044c, so the CPU doesn't have
1090  * to fiddle with the individual bits.
1091  */
1092 
1093 #undef	BGE_DBG
1094 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1095 
1096 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1097 				uint16_t data, uint32_t cmd);
1098 #pragma	no_inline(bge_mii_access)
1099 
1100 static uint16_t
1101 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1102 {
1103 	uint32_t timeout;
1104 	uint32_t regval1;
1105 	uint32_t regval2;
1106 
1107 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1108 	    (void *)bgep, regno, data, cmd));
1109 
1110 	ASSERT(mutex_owned(bgep->genlock));
1111 
1112 	/*
1113 	 * Assemble the command ...
1114 	 */
1115 	cmd |= data << MI_COMMS_DATA_SHIFT;
1116 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1117 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1118 	cmd |= MI_COMMS_START;
1119 
1120 	/*
1121 	 * Wait for any command already in progress ...
1122 	 *
1123 	 * Note: this *shouldn't* ever find that there is a command
1124 	 * in progress, because we already hold the <genlock> mutex.
1125 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1126 	 * bit set here -- it seems that the chip can initiate MII
1127 	 * accesses internally, even with polling OFF.
1128 	 */
1129 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1130 	for (timeout = 100; ; ) {
1131 		if ((regval2 & MI_COMMS_START) == 0) {
1132 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1133 			break;
1134 		}
1135 		if (--timeout == 0)
1136 			break;
1137 		drv_usecwait(10);
1138 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1139 	}
1140 
1141 	if (timeout == 0)
1142 		return ((uint16_t)~0u);
1143 
1144 	if (timeout != 100)
1145 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1146 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1147 		    cmd, 10*(100-timeout), regval1, regval2));
1148 
1149 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1150 	for (timeout = 1000; ; ) {
1151 		if ((regval1 & MI_COMMS_START) == 0)
1152 			break;
1153 		if (--timeout == 0)
1154 			break;
1155 		drv_usecwait(10);
1156 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1157 	}
1158 
1159 	/*
1160 	 * Drop out early if the READ FAILED bit is set -- this chip
1161 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1162 	 */
1163 	if (regval2 & MI_COMMS_READ_FAILED)
1164 		return ((uint16_t)~0u);
1165 
1166 	if (timeout == 0)
1167 		return ((uint16_t)~0u);
1168 
1169 	/*
1170 	 * The PRM says to wait 5us after seeing the START bit clear
1171 	 * and then re-read the register to get the final value of the
1172 	 * data field, in order to avoid a race condition where the
1173 	 * START bit is clear but the data field isn't yet valid.
1174 	 *
1175 	 * Note: we don't actually seem to be encounter this race;
1176 	 * except when the START bit is seen set again (see below),
1177 	 * the data field doesn't change during this 5us interval.
1178 	 */
1179 	drv_usecwait(5);
1180 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1181 
1182 	/*
1183 	 * Unfortunately, when following the PRMs instructions above,
1184 	 * we have occasionally seen the START bit set again(!) in the
1185 	 * value read after the 5us delay. This seems to be due to the
1186 	 * chip autonomously starting another MII access internally.
1187 	 * In such cases, the command/data/etc fields relate to the
1188 	 * internal command, rather than the one that we thought had
1189 	 * just finished.  So in this case, we fall back to returning
1190 	 * the data from the original read that showed START clear.
1191 	 */
1192 	if (regval2 & MI_COMMS_START) {
1193 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1194 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1195 		    cmd, regval1, regval2));
1196 		regval2 = regval1;
1197 	}
1198 
1199 	if (regval2 & MI_COMMS_START)
1200 		return ((uint16_t)~0u);
1201 
1202 	if (regval2 & MI_COMMS_READ_FAILED)
1203 		return ((uint16_t)~0u);
1204 
1205 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1206 }
1207 
1208 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1209 #pragma	no_inline(bge_mii_get16)
1210 
1211 uint16_t
1212 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1213 {
1214 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1215 	    (void *)bgep, regno));
1216 
1217 	ASSERT(mutex_owned(bgep->genlock));
1218 
1219 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1220 }
1221 
1222 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1223 #pragma	no_inline(bge_mii_put16)
1224 
1225 void
1226 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1227 {
1228 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1229 	    (void *)bgep, regno, data));
1230 
1231 	ASSERT(mutex_owned(bgep->genlock));
1232 
1233 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1234 }
1235 
1236 #undef	BGE_DBG
1237 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1238 
1239 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1240 
1241 /*
1242  * Basic SEEPROM get/set access routine
1243  *
1244  * This uses the chip's SEEPROM auto-access method, controlled by the
1245  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1246  * doesn't have to fiddle with the individual bits.
1247  *
1248  * The caller should hold <genlock> and *also* have already acquired
1249  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1250  *
1251  * Return value:
1252  *	0 on success,
1253  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1254  *	EPROTO on other h/w or s/w errors.
1255  *
1256  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1257  * from a (successful) SEEPROM_ACCESS_READ.
1258  */
1259 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1260 				uint32_t *dp);
1261 #pragma	no_inline(bge_seeprom_access)
1262 
1263 static int
1264 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1265 {
1266 	uint32_t tries;
1267 	uint32_t regval;
1268 
1269 	ASSERT(mutex_owned(bgep->genlock));
1270 
1271 	/*
1272 	 * On the newer chips that support both SEEPROM & Flash, we need
1273 	 * to specifically enable SEEPROM access (Flash is the default).
1274 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1275 	 * and the NVM control registers don't exist ...
1276 	 */
1277 	switch (bgep->chipid.nvtype) {
1278 	case BGE_NVTYPE_NONE:
1279 	case BGE_NVTYPE_UNKNOWN:
1280 		_NOTE(NOTREACHED)
1281 	case BGE_NVTYPE_SEEPROM:
1282 		break;
1283 
1284 	case BGE_NVTYPE_LEGACY_SEEPROM:
1285 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1286 	case BGE_NVTYPE_BUFFERED_FLASH:
1287 	default:
1288 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1289 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1290 		break;
1291 	}
1292 
1293 	/*
1294 	 * Check there's no command in progress.
1295 	 *
1296 	 * Note: this *shouldn't* ever find that there is a command
1297 	 * in progress, because we already hold the <genlock> mutex.
1298 	 * Also, to ensure we don't have a conflict with the chip's
1299 	 * internal firmware or a process accessing the same (shared)
1300 	 * SEEPROM through the other port of a 5704, we've already
1301 	 * been through the "software arbitration" protocol.
1302 	 * So this is just a final consistency check: we shouldn't
1303 	 * see EITHER the START bit (command started but not complete)
1304 	 * OR the COMPLETE bit (command completed but not cleared).
1305 	 */
1306 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1307 	if (regval & SEEPROM_ACCESS_START)
1308 		return (EPROTO);
1309 	if (regval & SEEPROM_ACCESS_COMPLETE)
1310 		return (EPROTO);
1311 
1312 	/*
1313 	 * Assemble the command ...
1314 	 */
1315 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1316 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1317 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1318 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1319 	cmd |= SEEPROM_ACCESS_START;
1320 	cmd |= SEEPROM_ACCESS_COMPLETE;
1321 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1322 
1323 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1324 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1325 
1326 	/*
1327 	 * By observation, a successful access takes ~20us on a 5703/4,
1328 	 * but apparently much longer (up to 1000us) on the obsolescent
1329 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1330 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1331 	 * out interrupts for longer than necessary. So we'll allow up
1332 	 * to 1000us ...
1333 	 */
1334 	for (tries = 0; tries < 1000; ++tries) {
1335 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1336 		if (regval & SEEPROM_ACCESS_COMPLETE)
1337 			break;
1338 		drv_usecwait(1);
1339 	}
1340 
1341 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1342 		/*
1343 		 * All OK; read the SEEPROM data register, then write back
1344 		 * the value read from the address register in order to
1345 		 * clear the <complete> bit and leave the SEEPROM access
1346 		 * state machine idle, ready for the next access ...
1347 		 */
1348 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1349 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1350 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1351 		return (0);
1352 	}
1353 
1354 	/*
1355 	 * Hmm ... what happened here?
1356 	 *
1357 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1358 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1359 	 * and didn't respond to being addressed. Either way, it's left
1360 	 * the SEEPROM access state machine wedged. So we'll reset it
1361 	 * before we leave, so it's ready for next time ...
1362 	 */
1363 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1364 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1365 	return (ENODATA);
1366 }
1367 
1368 /*
1369  * Basic Flash get/set access routine
1370  *
1371  * These use the chip's Flash auto-access method, controlled by the
1372  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1373  * fiddle with the individual bits.
1374  *
1375  * The caller should hold <genlock> and *also* have already acquired
1376  * the right to access the Flash, via bge_nvmem_acquire() above.
1377  *
1378  * Return value:
1379  *	0 on success,
1380  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1381  *	ENODEV if the NVmem device is missing or otherwise unusable
1382  *
1383  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1384  * from a (successful) NVM_FLASH_CMD_RD.
1385  */
1386 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1387 				uint32_t *dp);
1388 #pragma	no_inline(bge_flash_access)
1389 
1390 static int
1391 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1392 {
1393 	uint32_t tries;
1394 	uint32_t regval;
1395 
1396 	ASSERT(mutex_owned(bgep->genlock));
1397 
1398 	/*
1399 	 * On the newer chips that support both SEEPROM & Flash, we need
1400 	 * to specifically disable SEEPROM access while accessing Flash.
1401 	 * The older chips don't support Flash, and the NVM registers don't
1402 	 * exist, so we shouldn't be here at all!
1403 	 */
1404 	switch (bgep->chipid.nvtype) {
1405 	case BGE_NVTYPE_NONE:
1406 	case BGE_NVTYPE_UNKNOWN:
1407 		_NOTE(NOTREACHED)
1408 	case BGE_NVTYPE_SEEPROM:
1409 		return (ENODEV);
1410 
1411 	case BGE_NVTYPE_LEGACY_SEEPROM:
1412 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1413 	case BGE_NVTYPE_BUFFERED_FLASH:
1414 	default:
1415 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1416 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1417 		break;
1418 	}
1419 
1420 	/*
1421 	 * Assemble the command ...
1422 	 */
1423 	addr &= NVM_FLASH_ADDR_MASK;
1424 	cmd |= NVM_FLASH_CMD_DOIT;
1425 	cmd |= NVM_FLASH_CMD_FIRST;
1426 	cmd |= NVM_FLASH_CMD_LAST;
1427 	cmd |= NVM_FLASH_CMD_DONE;
1428 
1429 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1430 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1431 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1432 
1433 	/*
1434 	 * Allow up to 1000ms ...
1435 	 */
1436 	for (tries = 0; tries < 1000; ++tries) {
1437 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1438 		if (regval & NVM_FLASH_CMD_DONE)
1439 			break;
1440 		drv_usecwait(1);
1441 	}
1442 
1443 	if (regval & NVM_FLASH_CMD_DONE) {
1444 		/*
1445 		 * All OK; read the data from the Flash read register
1446 		 */
1447 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1448 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1449 		return (0);
1450 	}
1451 
1452 	/*
1453 	 * Hmm ... what happened here?
1454 	 *
1455 	 * Most likely, the user addressed a non-existent Flash. Or
1456 	 * maybe the Flash was busy internally (e.g. processing a write)
1457 	 * and didn't respond to being addressed. Either way, there's
1458 	 * nothing we can here ...
1459 	 */
1460 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1461 	return (ENODATA);
1462 }
1463 
1464 /*
1465  * The next two functions regulate access to the NVram (if fitted).
1466  *
1467  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1468  * (SPI) interface, but they can be accessed through either port. These
1469  * are managed by different instance of this driver and have no software
1470  * state in common.
1471  *
1472  * In addition (and even on a single core chip) the chip's internal
1473  * firmware can access the SEEPROM/Flash, most notably after a RESET
1474  * when it may download code to run internally.
1475  *
1476  * So we need to arbitrate between these various software agents.  For
1477  * this purpose, the chip provides the Software Arbitration Register,
1478  * which implements hardware(!) arbitration.
1479  *
1480  * This functionality didn't exist on older (5700/5701) chips, so there's
1481  * nothing we can do by way of arbitration on those; also, if there's no
1482  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1483  * nothing to do.
1484  *
1485  * The internal firmware appears to use Request 0, which is the highest
1486  * priority.  So we'd like to use Request 2, leaving one higher and one
1487  * lower for any future developments ... but apparently this doesn't
1488  * always work.  So for now, the code uses Request 1 ;-(
1489  */
1490 
1491 #define	NVM_READ_REQ	NVM_READ_REQ1
1492 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1493 #define	NVM_SET_REQ	NVM_SET_REQ1
1494 
1495 static void bge_nvmem_relinquish(bge_t *bgep);
1496 #pragma	no_inline(bge_nvmem_relinquish)
1497 
1498 static void
1499 bge_nvmem_relinquish(bge_t *bgep)
1500 {
1501 	ASSERT(mutex_owned(bgep->genlock));
1502 
1503 	switch (bgep->chipid.nvtype) {
1504 	case BGE_NVTYPE_NONE:
1505 	case BGE_NVTYPE_UNKNOWN:
1506 		_NOTE(NOTREACHED)
1507 		return;
1508 
1509 	case BGE_NVTYPE_SEEPROM:
1510 		/*
1511 		 * No arbitration performed, no release needed
1512 		 */
1513 		return;
1514 
1515 	case BGE_NVTYPE_LEGACY_SEEPROM:
1516 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1517 	case BGE_NVTYPE_BUFFERED_FLASH:
1518 	default:
1519 		break;
1520 	}
1521 
1522 	/*
1523 	 * Our own request should be present (whether or not granted) ...
1524 	 */
1525 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1526 
1527 	/*
1528 	 * ... this will make it go away.
1529 	 */
1530 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1531 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1532 }
1533 
1534 /*
1535  * Arbitrate for access to the NVmem, if necessary
1536  *
1537  * Return value:
1538  *	0 on success
1539  *	EAGAIN if the device is in use (retryable)
1540  *	ENODEV if the NVmem device is missing or otherwise unusable
1541  */
1542 static int bge_nvmem_acquire(bge_t *bgep);
1543 #pragma	no_inline(bge_nvmem_acquire)
1544 
1545 static int
1546 bge_nvmem_acquire(bge_t *bgep)
1547 {
1548 	uint32_t regval;
1549 	uint32_t tries;
1550 
1551 	ASSERT(mutex_owned(bgep->genlock));
1552 
1553 	switch (bgep->chipid.nvtype) {
1554 	case BGE_NVTYPE_NONE:
1555 	case BGE_NVTYPE_UNKNOWN:
1556 		/*
1557 		 * Access denied: no (recognisable) device fitted
1558 		 */
1559 		return (ENODEV);
1560 
1561 	case BGE_NVTYPE_SEEPROM:
1562 		/*
1563 		 * Access granted: no arbitration needed (or possible)
1564 		 */
1565 		return (0);
1566 
1567 	case BGE_NVTYPE_LEGACY_SEEPROM:
1568 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1569 	case BGE_NVTYPE_BUFFERED_FLASH:
1570 	default:
1571 		/*
1572 		 * Access conditional: conduct arbitration protocol
1573 		 */
1574 		break;
1575 	}
1576 
1577 	/*
1578 	 * We're holding the per-port mutex <genlock>, so no-one other
1579 	 * thread can be attempting to access the NVmem through *this*
1580 	 * port. But it could be in use by the *other* port (of a 5704),
1581 	 * or by the chip's internal firmware, so we have to go through
1582 	 * the full (hardware) arbitration protocol ...
1583 	 *
1584 	 * Note that *because* we're holding <genlock>, the interrupt handler
1585 	 * won't be able to progress.  So we're only willing to spin for a
1586 	 * fairly short time.  Specifically:
1587 	 *
1588 	 *	We *must* wait long enough for the hardware to resolve all
1589 	 *	requests and determine the winner.  Fortunately, this is
1590 	 *	"almost instantaneous", even as observed by GHz CPUs.
1591 	 *
1592 	 *	A successful access by another Solaris thread (via either
1593 	 *	port) typically takes ~20us.  So waiting a bit longer than
1594 	 *	that will give a good chance of success, if the other user
1595 	 *	*is* another thread on the other port.
1596 	 *
1597 	 *	However, the internal firmware can hold on to the NVmem
1598 	 *	for *much* longer: at least 10 milliseconds just after a
1599 	 *	RESET, and maybe even longer if the NVmem actually contains
1600 	 *	code to download and run on the internal CPUs.
1601 	 *
1602 	 * So, we'll allow 50us; if that's not enough then it's up to the
1603 	 * caller to retry later (hence the choice of return code EAGAIN).
1604 	 */
1605 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1606 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1607 
1608 	for (tries = 0; tries < 50; ++tries) {
1609 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1610 		if (regval & NVM_WON_REQ1)
1611 			break;
1612 		drv_usecwait(1);
1613 	}
1614 
1615 	if (regval & NVM_WON_REQ1) {
1616 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1617 		return (0);
1618 	}
1619 
1620 	/*
1621 	 * Somebody else must be accessing the NVmem, so abandon our
1622 	 * attempt take control of it.  The caller can try again later ...
1623 	 */
1624 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1625 	bge_nvmem_relinquish(bgep);
1626 	return (EAGAIN);
1627 }
1628 
1629 /*
1630  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1631  * write protect line in such a way that the NVmem is protected when
1632  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1633  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1634  *
1635  * Note: there's only one set of GPIO pins on a 5704, even though they
1636  * can be accessed through either port.  So the chip has to resolve what
1637  * happens if the two ports program a single pin differently ... the rule
1638  * it uses is that if the ports disagree about the *direction* of a pin,
1639  * "output" wins over "input", but if they disagree about its *value* as
1640  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1641  * wins, and the external signal does whatever the external circuitry
1642  * defines as the default -- which we've assumed is the PROTECTED state.
1643  * So, we always change GPIO1 back to being an *input* whenever we're not
1644  * specifically using it to unprotect the NVmem. This allows either port
1645  * to update the NVmem, although obviously only one at a time!
1646  *
1647  * The caller should hold <genlock> and *also* have already acquired the
1648  * right to access the NVmem, via bge_nvmem_acquire() above.
1649  */
1650 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1651 #pragma	inline(bge_nvmem_protect)
1652 
1653 static void
1654 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1655 {
1656 	uint32_t regval;
1657 
1658 	ASSERT(mutex_owned(bgep->genlock));
1659 
1660 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1661 	if (protect) {
1662 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1663 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1664 	} else {
1665 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1666 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1667 	}
1668 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1669 }
1670 
1671 /*
1672  * Now put it all together ...
1673  *
1674  * Try to acquire control of the NVmem; if successful, then:
1675  *	unprotect it (if we want to write to it)
1676  *	perform the requested access
1677  *	reprotect it (after a write)
1678  *	relinquish control
1679  *
1680  * Return value:
1681  *	0 on success,
1682  *	EAGAIN if the device is in use (retryable)
1683  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1684  *	ENODEV if the NVmem device is missing or otherwise unusable
1685  *	EPROTO on other h/w or s/w errors.
1686  */
1687 static int
1688 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1689 {
1690 	int err;
1691 
1692 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1693 		switch (cmd) {
1694 		case BGE_SEE_READ:
1695 			err = bge_seeprom_access(bgep,
1696 			    SEEPROM_ACCESS_READ, addr, dp);
1697 			break;
1698 
1699 		case BGE_SEE_WRITE:
1700 			bge_nvmem_protect(bgep, B_FALSE);
1701 			err = bge_seeprom_access(bgep,
1702 			    SEEPROM_ACCESS_WRITE, addr, dp);
1703 			bge_nvmem_protect(bgep, B_TRUE);
1704 			break;
1705 
1706 		case BGE_FLASH_READ:
1707 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1708 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1709 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1710 				    NVM_ACCESS_ENABLE);
1711 			}
1712 			err = bge_flash_access(bgep,
1713 			    NVM_FLASH_CMD_RD, addr, dp);
1714 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1715 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1716 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1717 				    NVM_ACCESS_ENABLE);
1718 			}
1719 			break;
1720 
1721 		case BGE_FLASH_WRITE:
1722 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1723 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1724 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1725 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1726 			}
1727 			bge_nvmem_protect(bgep, B_FALSE);
1728 			err = bge_flash_access(bgep,
1729 			    NVM_FLASH_CMD_WR, addr, dp);
1730 			bge_nvmem_protect(bgep, B_TRUE);
1731 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1732 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1733 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1734 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1735 			}
1736 
1737 			break;
1738 
1739 		default:
1740 			_NOTE(NOTREACHED)
1741 			break;
1742 		}
1743 		bge_nvmem_relinquish(bgep);
1744 	}
1745 
1746 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1747 	return (err);
1748 }
1749 
1750 /*
1751  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1752  */
1753 static uint64_t bge_get_nvmac(bge_t *bgep);
1754 #pragma no_inline(bge_get_nvmac)
1755 
1756 static uint64_t
1757 bge_get_nvmac(bge_t *bgep)
1758 {
1759 	uint32_t mac_high;
1760 	uint32_t mac_low;
1761 	uint32_t addr;
1762 	uint32_t cmd;
1763 	uint64_t mac;
1764 
1765 	BGE_TRACE(("bge_get_nvmac($%p)",
1766 	    (void *)bgep));
1767 
1768 	switch (bgep->chipid.nvtype) {
1769 	case BGE_NVTYPE_NONE:
1770 	case BGE_NVTYPE_UNKNOWN:
1771 	default:
1772 		return (0ULL);
1773 
1774 	case BGE_NVTYPE_SEEPROM:
1775 	case BGE_NVTYPE_LEGACY_SEEPROM:
1776 		cmd = BGE_SEE_READ;
1777 		break;
1778 
1779 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1780 	case BGE_NVTYPE_BUFFERED_FLASH:
1781 		cmd = BGE_FLASH_READ;
1782 		break;
1783 	}
1784 
1785 	addr = NVMEM_DATA_MAC_ADDRESS;
1786 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1787 		return (0ULL);
1788 	addr += 4;
1789 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1790 		return (0ULL);
1791 
1792 	/*
1793 	 * The Broadcom chip is natively BIG-endian, so that's how the
1794 	 * MAC address is represented in NVmem.  We may need to swap it
1795 	 * around on a little-endian host ...
1796 	 */
1797 #ifdef	_BIG_ENDIAN
1798 	mac = mac_high;
1799 	mac = mac << 32;
1800 	mac |= mac_low;
1801 #else
1802 	mac = BGE_BSWAP_32(mac_high);
1803 	mac = mac << 32;
1804 	mac |= BGE_BSWAP_32(mac_low);
1805 #endif	/* _BIG_ENDIAN */
1806 
1807 	return (mac);
1808 }
1809 
1810 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1811 
1812 /*
1813  * Dummy version for when we're not supporting NVmem access
1814  */
1815 static uint64_t bge_get_nvmac(bge_t *bgep);
1816 #pragma inline(bge_get_nvmac)
1817 
1818 static uint64_t
1819 bge_get_nvmac(bge_t *bgep)
1820 {
1821 	_NOTE(ARGUNUSED(bgep))
1822 	return (0ULL);
1823 }
1824 
1825 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1826 
1827 /*
1828  * Determine the type of NVmem that is (or may be) attached to this chip,
1829  */
1830 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1831 #pragma no_inline(bge_nvmem_id)
1832 
1833 static enum bge_nvmem_type
1834 bge_nvmem_id(bge_t *bgep)
1835 {
1836 	enum bge_nvmem_type nvtype;
1837 	uint32_t config1;
1838 
1839 	BGE_TRACE(("bge_nvmem_id($%p)",
1840 	    (void *)bgep));
1841 
1842 	switch (bgep->chipid.device) {
1843 	default:
1844 		/*
1845 		 * We shouldn't get here; it means we don't recognise
1846 		 * the chip, which means we don't know how to determine
1847 		 * what sort of NVmem (if any) it has.  So we'll say
1848 		 * NONE, to disable the NVmem access code ...
1849 		 */
1850 		nvtype = BGE_NVTYPE_NONE;
1851 		break;
1852 
1853 	case DEVICE_ID_5700:
1854 	case DEVICE_ID_5700x:
1855 	case DEVICE_ID_5701:
1856 		/*
1857 		 * These devices support *only* SEEPROMs
1858 		 */
1859 		nvtype = BGE_NVTYPE_SEEPROM;
1860 		break;
1861 
1862 	case DEVICE_ID_5702:
1863 	case DEVICE_ID_5702fe:
1864 	case DEVICE_ID_5703C:
1865 	case DEVICE_ID_5703S:
1866 	case DEVICE_ID_5704C:
1867 	case DEVICE_ID_5704S:
1868 	case DEVICE_ID_5704:
1869 	case DEVICE_ID_5705M:
1870 	case DEVICE_ID_5705C:
1871 	case DEVICE_ID_5705_2:
1872 	case DEVICE_ID_5706:
1873 	case DEVICE_ID_5782:
1874 	case DEVICE_ID_5788:
1875 	case DEVICE_ID_5789:
1876 	case DEVICE_ID_5751:
1877 	case DEVICE_ID_5751M:
1878 	case DEVICE_ID_5752:
1879 	case DEVICE_ID_5752M:
1880 	case DEVICE_ID_5754:
1881 	case DEVICE_ID_5755:
1882 	case DEVICE_ID_5755M:
1883 	case DEVICE_ID_5721:
1884 	case DEVICE_ID_5714C:
1885 	case DEVICE_ID_5714S:
1886 	case DEVICE_ID_5715C:
1887 	case DEVICE_ID_5715S:
1888 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1889 		if (config1 & NVM_CFG1_FLASH_MODE)
1890 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1891 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1892 			else
1893 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1894 		else
1895 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1896 		break;
1897 	}
1898 
1899 	return (nvtype);
1900 }
1901 
1902 #undef	BGE_DBG
1903 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1904 
1905 static void
1906 bge_init_recv_rule(bge_t *bgep)
1907 {
1908 	bge_recv_rule_t *rulep;
1909 	uint32_t i;
1910 
1911 	/*
1912 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1913 	 * 1. to direct UDP traffic, set:
1914 	 * 	rulep->control = RULE_PROTO_CONTROL;
1915 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1916 	 * 2. to direct ICMP traffic, set:
1917 	 * 	rulep->control = RULE_PROTO_CONTROL;
1918 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1919 	 * 3. to direct traffic by source ip, set:
1920 	 * 	rulep->control = RULE_SIP_CONTROL;
1921 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1922 	 */
1923 	rulep = bgep->recv_rules;
1924 	rulep->control = RULE_PROTO_CONTROL;
1925 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1926 
1927 	/*
1928 	 * set receive rule registers
1929 	 */
1930 	rulep = bgep->recv_rules;
1931 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1932 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1933 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1934 	}
1935 }
1936 
1937 /*
1938  * Using the values captured by bge_chip_cfg_init(), and additional probes
1939  * as required, characterise the chip fully: determine the label by which
1940  * to refer to this chip, the correct settings for various registers, and
1941  * of course whether the device and/or subsystem are supported!
1942  */
1943 int bge_chip_id_init(bge_t *bgep);
1944 #pragma	no_inline(bge_chip_id_init)
1945 
1946 int
1947 bge_chip_id_init(bge_t *bgep)
1948 {
1949 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1950 	boolean_t sys_ok;
1951 	boolean_t dev_ok;
1952 	chip_id_t *cidp;
1953 	uint32_t subid;
1954 	char *devname;
1955 	char *sysname;
1956 	int *ids;
1957 	int err;
1958 	uint_t i;
1959 
1960 	sys_ok = dev_ok = B_FALSE;
1961 	cidp = &bgep->chipid;
1962 
1963 	/*
1964 	 * Check the PCI device ID to determine the generic chip type and
1965 	 * select parameters that depend on this.
1966 	 *
1967 	 * Note: because the SPARC platforms in general don't fit the
1968 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1969 	 * as zero - which is why we use <asic_rev> rather than <revision>
1970 	 * below ...
1971 	 *
1972 	 * Note: in general we can't distinguish between the Copper/SerDes
1973 	 * versions by ID alone, as some Copper devices (e.g. some but not
1974 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1975 	 * treat them the same here, and the MII code works out the media
1976 	 * type later on ...
1977 	 */
1978 	cidp->mbuf_base = bge_mbuf_pool_base;
1979 	cidp->mbuf_length = bge_mbuf_pool_len;
1980 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1981 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1982 	cidp->pci_type = BGE_PCI_X;
1983 	cidp->statistic_type = BGE_STAT_BLK;
1984 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1985 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1986 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1987 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
1988 	cidp->rx_count_norm = bge_rx_count_norm;
1989 
1990 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1991 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1992 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1993 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1994 
1995 	cidp->msi_enabled = B_FALSE;
1996 
1997 	switch (cidp->device) {
1998 	case DEVICE_ID_5700:
1999 	case DEVICE_ID_5700x:
2000 		cidp->chip_label = 5700;
2001 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2002 		break;
2003 
2004 	case DEVICE_ID_5701:
2005 		cidp->chip_label = 5701;
2006 		dev_ok = B_TRUE;
2007 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2008 		break;
2009 
2010 	case DEVICE_ID_5702:
2011 	case DEVICE_ID_5702fe:
2012 		cidp->chip_label = 5702;
2013 		dev_ok = B_TRUE;
2014 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2015 		cidp->pci_type = BGE_PCI;
2016 		break;
2017 
2018 	case DEVICE_ID_5703C:
2019 	case DEVICE_ID_5703S:
2020 	case DEVICE_ID_5703:
2021 		/*
2022 		 * Revision A0 of the 5703/5793 had various errata
2023 		 * that we can't or don't work around, so it's not
2024 		 * supported, but all later versions are
2025 		 */
2026 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2027 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2028 			dev_ok = B_TRUE;
2029 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2030 		break;
2031 
2032 	case DEVICE_ID_5704C:
2033 	case DEVICE_ID_5704S:
2034 	case DEVICE_ID_5704:
2035 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2036 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
2037 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
2038 		dev_ok = B_TRUE;
2039 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2040 		break;
2041 
2042 	case DEVICE_ID_5705C:
2043 	case DEVICE_ID_5705M:
2044 	case DEVICE_ID_5705MA3:
2045 	case DEVICE_ID_5705F:
2046 	case DEVICE_ID_5705_2:
2047 	case DEVICE_ID_5754:
2048 		if (cidp->device == DEVICE_ID_5754) {
2049 			cidp->chip_label = 5754;
2050 			cidp->pci_type = BGE_PCI_E;
2051 		} else {
2052 			cidp->chip_label = 5705;
2053 			cidp->pci_type = BGE_PCI;
2054 		}
2055 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2056 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2057 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2058 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2059 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2060 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2061 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2062 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2063 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2064 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2065 		cidp->statistic_type = BGE_STAT_REG;
2066 		dev_ok = B_TRUE;
2067 		break;
2068 
2069 	case DEVICE_ID_5753:
2070 		cidp->chip_label = 5753;
2071 		cidp->pci_type = BGE_PCI_E;
2072 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2073 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2074 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2075 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2076 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2077 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2078 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2079 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2080 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2081 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2082 		cidp->statistic_type = BGE_STAT_REG;
2083 		dev_ok = B_TRUE;
2084 		break;
2085 
2086 	case DEVICE_ID_5755:
2087 	case DEVICE_ID_5755M:
2088 		cidp->chip_label = 5755;
2089 		cidp->pci_type = BGE_PCI_E;
2090 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2091 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2092 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2093 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2094 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2095 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2096 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2097 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2098 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2099 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2100 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2101 		cidp->statistic_type = BGE_STAT_REG;
2102 		dev_ok = B_TRUE;
2103 		break;
2104 
2105 	case DEVICE_ID_5706:
2106 		cidp->chip_label = 5706;
2107 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2108 		break;
2109 
2110 	case DEVICE_ID_5782:
2111 		/*
2112 		 * Apart from the label, we treat this as a 5705(?)
2113 		 */
2114 		cidp->chip_label = 5782;
2115 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2116 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2117 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2118 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2119 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2120 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2121 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2122 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2123 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2124 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2125 		cidp->statistic_type = BGE_STAT_REG;
2126 		dev_ok = B_TRUE;
2127 		break;
2128 
2129 	case DEVICE_ID_5788:
2130 		/*
2131 		 * Apart from the label, we treat this as a 5705(?)
2132 		 */
2133 		cidp->chip_label = 5788;
2134 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2135 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2136 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2137 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2138 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2139 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2140 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2141 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2142 		cidp->statistic_type = BGE_STAT_REG;
2143 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2144 		dev_ok = B_TRUE;
2145 		break;
2146 
2147 	case DEVICE_ID_5714C:
2148 		if (cidp->revision >= REVISION_ID_5714_A2)
2149 			cidp->msi_enabled = bge_enable_msi;
2150 		/* FALLTHRU */
2151 	case DEVICE_ID_5714S:
2152 		cidp->chip_label = 5714;
2153 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2154 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2155 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2156 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2157 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2158 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2159 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2160 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2161 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2162 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2163 		cidp->pci_type = BGE_PCI_E;
2164 		cidp->statistic_type = BGE_STAT_REG;
2165 		dev_ok = B_TRUE;
2166 		break;
2167 
2168 	case DEVICE_ID_5715C:
2169 	case DEVICE_ID_5715S:
2170 		cidp->chip_label = 5715;
2171 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2172 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2173 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2174 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2175 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2176 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2177 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2178 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2179 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2180 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2181 		cidp->pci_type = BGE_PCI_E;
2182 		cidp->statistic_type = BGE_STAT_REG;
2183 		if (cidp->revision >= REVISION_ID_5715_A2)
2184 			cidp->msi_enabled = bge_enable_msi;
2185 		dev_ok = B_TRUE;
2186 		break;
2187 
2188 	case DEVICE_ID_5721:
2189 		cidp->chip_label = 5721;
2190 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2191 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2192 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2193 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2194 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2195 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2196 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2197 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2198 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2199 		cidp->pci_type = BGE_PCI_E;
2200 		cidp->statistic_type = BGE_STAT_REG;
2201 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2202 		dev_ok = B_TRUE;
2203 		break;
2204 
2205 	case DEVICE_ID_5751:
2206 	case DEVICE_ID_5751M:
2207 		cidp->chip_label = 5751;
2208 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2209 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2210 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2211 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2212 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2213 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2214 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2215 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2216 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2217 		cidp->pci_type = BGE_PCI_E;
2218 		cidp->statistic_type = BGE_STAT_REG;
2219 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2220 		dev_ok = B_TRUE;
2221 		break;
2222 
2223 	case DEVICE_ID_5752:
2224 	case DEVICE_ID_5752M:
2225 		cidp->chip_label = 5752;
2226 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2227 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2228 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2229 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2230 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2231 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2232 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2233 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2234 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2235 		cidp->pci_type = BGE_PCI_E;
2236 		cidp->statistic_type = BGE_STAT_REG;
2237 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2238 		dev_ok = B_TRUE;
2239 		break;
2240 
2241 	case DEVICE_ID_5789:
2242 		cidp->chip_label = 5789;
2243 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2244 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2245 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2246 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2247 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2248 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2249 		cidp->pci_type = BGE_PCI_E;
2250 		cidp->statistic_type = BGE_STAT_REG;
2251 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2252 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2253 		cidp->msi_enabled = B_TRUE;
2254 		dev_ok = B_TRUE;
2255 		break;
2256 
2257 	}
2258 
2259 	/*
2260 	 * Setup the default jumbo parameter.
2261 	 */
2262 	cidp->ethmax_size = ETHERMAX;
2263 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2264 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2265 
2266 	/*
2267 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2268 	 * setup below jumbo specific parameters.
2269 	 *
2270 	 * For BCM5714/5715, there is only one standard receive ring. So the
2271 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2272 	 * feature is enabled.
2273 	 */
2274 	if (bge_jumbo_enable &&
2275 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2276 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2277 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2278 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2279 			cidp->mbuf_lo_water_rdma =
2280 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2281 			cidp->mbuf_lo_water_rmac =
2282 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2283 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2284 			cidp->jumbo_slots = 0;
2285 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2286 		} else {
2287 			cidp->mbuf_lo_water_rdma =
2288 			    RDMA_MBUF_LOWAT_JUMBO;
2289 			cidp->mbuf_lo_water_rmac =
2290 			    MAC_RX_MBUF_LOWAT_JUMBO;
2291 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2292 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2293 		}
2294 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2295 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2296 		cidp->ethmax_size = cidp->default_mtu +
2297 		    sizeof (struct ether_header);
2298 	}
2299 
2300 	/*
2301 	 * Identify the NV memory type: SEEPROM or Flash?
2302 	 */
2303 	cidp->nvtype = bge_nvmem_id(bgep);
2304 
2305 	/*
2306 	 * Now, we want to check whether this device is part of a
2307 	 * supported subsystem (e.g., on the motherboard of a Sun
2308 	 * branded platform).
2309 	 *
2310 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2311 	 */
2312 	if (cidp->subven == VENDOR_ID_SUN)
2313 		sys_ok = B_TRUE;
2314 
2315 	/*
2316 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2317 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2318 	 * doesn't enforce that.
2319 	 */
2320 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2321 	    DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2322 	if (err == DDI_PROP_SUCCESS) {
2323 		/*
2324 		 * Got the list; scan for a matching subsystem vendor/device
2325 		 */
2326 		subid = (cidp->subven << 16) | cidp->subdev;
2327 		while (i--)
2328 			if (ids[i] == subid)
2329 				sys_ok = B_TRUE;
2330 		ddi_prop_free(ids);
2331 	}
2332 
2333 	/*
2334 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2335 	 *
2336 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2337 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2338 	 * we have to check specially for the exact device paths to the
2339 	 * motherboard devices on those platforms ;-(
2340 	 *
2341 	 * Note: we can't just use the "supported-subsystems" mechanism
2342 	 * above, because the entry would have to be 0x14e41647 -- which
2343 	 * would then accept *any* plugin card that *didn't* contain a
2344 	 * (valid) SEEPROM ;-(
2345 	 */
2346 	sysname = ddi_node_name(ddi_root_node());
2347 	devname = ddi_pathname(bgep->devinfo, buf);
2348 	ASSERT(strlen(devname) > 0);
2349 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2350 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2351 			sys_ok = B_TRUE;
2352 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2353 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2354 			sys_ok = B_TRUE;
2355 
2356 	/*
2357 	 * Now check what we've discovered: is this truly a supported
2358 	 * chip on (the motherboard of) a supported platform?
2359 	 *
2360 	 * Possible problems here:
2361 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2362 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2363 	 * 3)	it's a chip we would support if it were on the motherboard
2364 	 *	of a Sun platform, but this one isn't ;-(
2365 	 */
2366 	if (cidp->chip_label == 0)
2367 		bge_problem(bgep,
2368 		    "Device 'pci%04x,%04x' not recognized (%d?)",
2369 		    cidp->vendor, cidp->device, cidp->device);
2370 	else if (!dev_ok)
2371 		bge_problem(bgep,
2372 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
2373 		    cidp->vendor, cidp->device, cidp->chip_label,
2374 		    cidp->revision);
2375 #if	BGE_DEBUGGING
2376 	else if (!sys_ok)
2377 		bge_problem(bgep,
2378 		    "%d-based subsystem 'pci%04x,%04x' not validated",
2379 		    cidp->chip_label, cidp->subven, cidp->subdev);
2380 #endif
2381 	else
2382 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2383 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2384 		return (EIO);
2385 	return (0);
2386 }
2387 
2388 void
2389 bge_chip_msi_trig(bge_t *bgep)
2390 {
2391 	uint32_t	regval;
2392 
2393 	regval = bgep->param_msi_cnt<<4;
2394 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2395 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2396 }
2397 
2398 /*
2399  * Various registers that control the chip's internal engines (state
2400  * machines) have a <reset> and <enable> bits (fortunately, in the
2401  * same place in each such register :-).
2402  *
2403  * To reset the state machine, the <reset> bit must be written with 1;
2404  * it will then read back as 1 while the reset is in progress, but
2405  * self-clear to 0 when the reset completes.
2406  *
2407  * To enable a state machine, one must set the <enable> bit, which
2408  * will continue to read back as 0 until the state machine is running.
2409  *
2410  * To disable a state machine, the <enable> bit must be cleared, but
2411  * it will continue to read back as 1 until the state machine actually
2412  * stops.
2413  *
2414  * This routine implements polling for completion of a reset, enable
2415  * or disable operation, returning B_TRUE on success (bit reached the
2416  * required state) or B_FALSE on timeout (200*100us == 20ms).
2417  */
2418 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2419 					uint32_t mask, uint32_t val);
2420 #pragma	no_inline(bge_chip_poll_engine)
2421 
2422 static boolean_t
2423 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2424 	uint32_t mask, uint32_t val)
2425 {
2426 	uint32_t regval;
2427 	uint32_t n;
2428 
2429 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2430 	    (void *)bgep, regno, mask, val));
2431 
2432 	for (n = 200; n; --n) {
2433 		regval = bge_reg_get32(bgep, regno);
2434 		if ((regval & mask) == val)
2435 			return (B_TRUE);
2436 		drv_usecwait(100);
2437 	}
2438 
2439 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2440 	return (B_FALSE);
2441 }
2442 
2443 /*
2444  * Various registers that control the chip's internal engines (state
2445  * machines) have a <reset> bit (fortunately, in the same place in
2446  * each such register :-).  To reset the state machine, this bit must
2447  * be written with 1; it will then read back as 1 while the reset is
2448  * in progress, but self-clear to 0 when the reset completes.
2449  *
2450  * This code sets the bit, then polls for it to read back as zero.
2451  * The return value is B_TRUE on success (reset bit cleared itself),
2452  * or B_FALSE if the state machine didn't recover :(
2453  *
2454  * NOTE: the Core reset is similar to other resets, except that we
2455  * can't poll for completion, since the Core reset disables memory
2456  * access!  So we just have to assume that it will all complete in
2457  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2458  */
2459 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2460 #pragma	no_inline(bge_chip_reset_engine)
2461 
2462 static boolean_t
2463 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2464 {
2465 	uint32_t regval;
2466 	uint32_t val32;
2467 
2468 	regval = bge_reg_get32(bgep, regno);
2469 
2470 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2471 	    (void *)bgep, regno));
2472 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2473 	    regno, regval));
2474 
2475 	regval |= STATE_MACHINE_RESET_BIT;
2476 
2477 	switch (regno) {
2478 	case MISC_CONFIG_REG:
2479 		/*
2480 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2481 		 * resetting PCIE block and bringing PCIE link down, bit 29
2482 		 * in the register needs to be set first, and then set it again
2483 		 * while the reset bit is written.
2484 		 * See:P500 of 57xx-PG102-RDS.pdf.
2485 		 */
2486 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2487 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2488 		    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2489 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2490 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2491 				if (bgep->chipid.asic_rev ==
2492 				    MHCR_CHIP_REV_5751_A0 ||
2493 				    bgep->chipid.asic_rev ==
2494 				    MHCR_CHIP_REV_5721_A0 ||
2495 				    bgep->chipid.asic_rev ==
2496 				    MHCR_CHIP_REV_5755_A0) {
2497 					val32 = bge_reg_get32(bgep,
2498 					    PHY_TEST_CTRL_REG);
2499 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2500 					    PHY_PCIE_LTASS_MODE))
2501 						bge_reg_put32(bgep,
2502 						    PHY_TEST_CTRL_REG,
2503 						    PHY_PCIE_SCRAM_MODE);
2504 					val32 = pci_config_get32
2505 					    (bgep->cfg_handle,
2506 					    PCI_CONF_BGE_CLKCTL);
2507 					val32 |= CLKCTL_PCIE_A0_FIX;
2508 					pci_config_put32(bgep->cfg_handle,
2509 					    PCI_CONF_BGE_CLKCTL, val32);
2510 				}
2511 				bge_reg_set32(bgep, regno,
2512 				    MISC_CONFIG_GRC_RESET_DISABLE);
2513 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2514 			}
2515 		}
2516 
2517 		/*
2518 		 * Special case - causes Core reset
2519 		 *
2520 		 * On SPARC v9 we want to ensure that we don't start
2521 		 * timing until the I/O access has actually reached
2522 		 * the chip, otherwise we might make the next access
2523 		 * too early.  And we can't just force the write out
2524 		 * by following it with a read (even to config space)
2525 		 * because that would cause the fault we're trying
2526 		 * to avoid.  Hence the need for membar_sync() here.
2527 		 */
2528 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2529 #ifdef	__sparcv9
2530 		membar_sync();
2531 #endif	/* __sparcv9 */
2532 		/*
2533 		 * On some platforms,system need about 300us for
2534 		 * link setup.
2535 		 */
2536 		drv_usecwait(300);
2537 
2538 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2539 			/* PCI-E device need more reset time */
2540 			drv_usecwait(120000);
2541 
2542 			/* Set PCIE max payload size and clear error status. */
2543 			if ((bgep->chipid.chip_label == 5721) ||
2544 			    (bgep->chipid.chip_label == 5751) ||
2545 			    (bgep->chipid.chip_label == 5752) ||
2546 			    (bgep->chipid.chip_label == 5789)) {
2547 				pci_config_put16(bgep->cfg_handle,
2548 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2549 				pci_config_put16(bgep->cfg_handle,
2550 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2551 			}
2552 		}
2553 
2554 		BGE_PCICHK(bgep);
2555 		return (B_TRUE);
2556 
2557 	default:
2558 		bge_reg_put32(bgep, regno, regval);
2559 		return (bge_chip_poll_engine(bgep, regno,
2560 		    STATE_MACHINE_RESET_BIT, 0));
2561 	}
2562 }
2563 
2564 /*
2565  * Various registers that control the chip's internal engines (state
2566  * machines) have an <enable> bit (fortunately, in the same place in
2567  * each such register :-).  To stop the state machine, this bit must
2568  * be written with 0, then polled to see when the state machine has
2569  * actually stopped.
2570  *
2571  * The return value is B_TRUE on success (enable bit cleared), or
2572  * B_FALSE if the state machine didn't stop :(
2573  */
2574 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2575 						uint32_t morebits);
2576 #pragma	no_inline(bge_chip_disable_engine)
2577 
2578 static boolean_t
2579 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2580 {
2581 	uint32_t regval;
2582 
2583 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2584 	    (void *)bgep, regno, morebits));
2585 
2586 	switch (regno) {
2587 	case FTQ_RESET_REG:
2588 		/*
2589 		 * For Schumacher's bugfix CR6490108
2590 		 */
2591 #ifdef BGE_IPMI_ASF
2592 #ifdef BGE_NETCONSOLE
2593 		if (bgep->asf_enabled)
2594 			return (B_TRUE);
2595 #endif
2596 #endif
2597 		/*
2598 		 * Not quite like the others; it doesn't
2599 		 * have an <enable> bit, but instead we
2600 		 * have to set and then clear all the bits
2601 		 */
2602 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2603 		drv_usecwait(100);
2604 		bge_reg_put32(bgep, regno, 0);
2605 		return (B_TRUE);
2606 
2607 	default:
2608 		regval = bge_reg_get32(bgep, regno);
2609 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2610 		regval &= ~morebits;
2611 		bge_reg_put32(bgep, regno, regval);
2612 		return (bge_chip_poll_engine(bgep, regno,
2613 		    STATE_MACHINE_ENABLE_BIT, 0));
2614 	}
2615 }
2616 
2617 /*
2618  * Various registers that control the chip's internal engines (state
2619  * machines) have an <enable> bit (fortunately, in the same place in
2620  * each such register :-).  To start the state machine, this bit must
2621  * be written with 1, then polled to see when the state machine has
2622  * actually started.
2623  *
2624  * The return value is B_TRUE on success (enable bit set), or
2625  * B_FALSE if the state machine didn't start :(
2626  */
2627 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2628 					uint32_t morebits);
2629 #pragma	no_inline(bge_chip_enable_engine)
2630 
2631 static boolean_t
2632 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2633 {
2634 	uint32_t regval;
2635 
2636 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2637 	    (void *)bgep, regno, morebits));
2638 
2639 	switch (regno) {
2640 	case FTQ_RESET_REG:
2641 #ifdef BGE_IPMI_ASF
2642 #ifdef BGE_NETCONSOLE
2643 		if (bgep->asf_enabled)
2644 			return (B_TRUE);
2645 #endif
2646 #endif
2647 		/*
2648 		 * Not quite like the others; it doesn't
2649 		 * have an <enable> bit, but instead we
2650 		 * have to set and then clear all the bits
2651 		 */
2652 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2653 		drv_usecwait(100);
2654 		bge_reg_put32(bgep, regno, 0);
2655 		return (B_TRUE);
2656 
2657 	default:
2658 		regval = bge_reg_get32(bgep, regno);
2659 		regval |= STATE_MACHINE_ENABLE_BIT;
2660 		regval |= morebits;
2661 		bge_reg_put32(bgep, regno, regval);
2662 		return (bge_chip_poll_engine(bgep, regno,
2663 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2664 	}
2665 }
2666 
2667 /*
2668  * Reprogram the Ethernet, Transmit, and Receive MAC
2669  * modes to match the param_* variables
2670  */
2671 void bge_sync_mac_modes(bge_t *bgep);
2672 #pragma	no_inline(bge_sync_mac_modes)
2673 
2674 void
2675 bge_sync_mac_modes(bge_t *bgep)
2676 {
2677 	uint32_t macmode;
2678 	uint32_t regval;
2679 
2680 	ASSERT(mutex_owned(bgep->genlock));
2681 
2682 	/*
2683 	 * Reprogram the Ethernet MAC mode ...
2684 	 */
2685 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2686 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2687 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2688 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2689 	else
2690 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2691 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2692 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2693 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2694 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
2695 	else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100)
2696 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2697 	else
2698 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2699 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2700 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2701 	else
2702 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2703 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2704 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2705 	else
2706 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2707 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2708 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2709 	    (void *)bgep, regval, macmode));
2710 
2711 	/*
2712 	 * ... the Transmit MAC mode ...
2713 	 */
2714 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2715 	if (bgep->param_link_tx_pause)
2716 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2717 	else
2718 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2719 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2720 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2721 	    (void *)bgep, regval, macmode));
2722 
2723 	/*
2724 	 * ... and the Receive MAC mode
2725 	 */
2726 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2727 	if (bgep->param_link_rx_pause)
2728 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2729 	else
2730 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2731 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2732 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2733 	    (void *)bgep, regval, macmode));
2734 }
2735 
2736 /*
2737  * bge_chip_sync() -- program the chip with the unicast MAC address,
2738  * the multicast hash table, the required level of promiscuity, and
2739  * the current loopback mode ...
2740  */
2741 #ifdef BGE_IPMI_ASF
2742 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2743 #else
2744 int bge_chip_sync(bge_t *bgep);
2745 #endif
2746 #pragma	no_inline(bge_chip_sync)
2747 
2748 int
2749 #ifdef BGE_IPMI_ASF
2750 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2751 #else
2752 bge_chip_sync(bge_t *bgep)
2753 #endif
2754 {
2755 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2756 	boolean_t promisc;
2757 	uint64_t macaddr;
2758 	uint32_t fill;
2759 	int i, j;
2760 	int retval = DDI_SUCCESS;
2761 
2762 	BGE_TRACE(("bge_chip_sync($%p)",
2763 	    (void *)bgep));
2764 
2765 	ASSERT(mutex_owned(bgep->genlock));
2766 
2767 	promisc = B_FALSE;
2768 	fill = ~(uint32_t)0;
2769 
2770 	if (bgep->promisc)
2771 		promisc = B_TRUE;
2772 	else
2773 		fill = (uint32_t)0;
2774 
2775 	/*
2776 	 * If the TX/RX MAC engines are already running, we should stop
2777 	 * them (and reset the RX engine) before changing the parameters.
2778 	 * If they're not running, this will have no effect ...
2779 	 *
2780 	 * NOTE: this is currently disabled by default because stopping
2781 	 * and restarting the Tx engine may cause an outgoing packet in
2782 	 * transit to be truncated.  Also, stopping and restarting the
2783 	 * Rx engine seems to not work correctly on the 5705.  Testing
2784 	 * has not (yet!) revealed any problems with NOT stopping and
2785 	 * restarting these engines (and Broadcom say their drivers don't
2786 	 * do this), but if it is found to cause problems, this variable
2787 	 * can be patched to re-enable the old behaviour ...
2788 	 */
2789 	if (bge_stop_start_on_sync) {
2790 #ifdef BGE_IPMI_ASF
2791 		if (!bgep->asf_enabled) {
2792 			if (!bge_chip_disable_engine(bgep,
2793 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2794 				retval = DDI_FAILURE;
2795 		} else {
2796 			if (!bge_chip_disable_engine(bgep,
2797 			    RECEIVE_MAC_MODE_REG, 0))
2798 				retval = DDI_FAILURE;
2799 		}
2800 #else
2801 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2802 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2803 			retval = DDI_FAILURE;
2804 #endif
2805 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2806 			retval = DDI_FAILURE;
2807 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2808 			retval = DDI_FAILURE;
2809 	}
2810 
2811 	/*
2812 	 * Reprogram the hashed multicast address table ...
2813 	 */
2814 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2815 		bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
2816 
2817 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2818 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2819 			bgep->mcast_hash[i] | fill);
2820 
2821 #ifdef BGE_IPMI_ASF
2822 	if (!bgep->asf_enabled || !asf_keeplive) {
2823 #endif
2824 		/*
2825 		 * Transform the MAC address(es) from host to chip format, then
2826 		 * reprogram the transmit random backoff seed and the unicast
2827 		 * MAC address(es) ...
2828 		 */
2829 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2830 			for (i = 0, fill = 0, macaddr = 0ull;
2831 			    i < ETHERADDRL; ++i) {
2832 				macaddr <<= 8;
2833 				macaddr |= bgep->curr_addr[j].addr[i];
2834 				fill += bgep->curr_addr[j].addr[i];
2835 			}
2836 			bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2837 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2838 		}
2839 
2840 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2841 			(void *)bgep, macaddr));
2842 #ifdef BGE_IPMI_ASF
2843 	}
2844 #endif
2845 
2846 	/*
2847 	 * Set or clear the PROMISCUOUS mode bit
2848 	 */
2849 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2850 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2851 
2852 	/*
2853 	 * Sync the rest of the MAC modes too ...
2854 	 */
2855 	bge_sync_mac_modes(bgep);
2856 
2857 	/*
2858 	 * Restart RX/TX MAC engines if required ...
2859 	 */
2860 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2861 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2862 			retval = DDI_FAILURE;
2863 #ifdef BGE_IPMI_ASF
2864 		if (!bgep->asf_enabled) {
2865 			if (!bge_chip_enable_engine(bgep,
2866 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2867 				retval = DDI_FAILURE;
2868 		} else {
2869 			if (!bge_chip_enable_engine(bgep,
2870 			    RECEIVE_MAC_MODE_REG, 0))
2871 				retval = DDI_FAILURE;
2872 		}
2873 #else
2874 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2875 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2876 			retval = DDI_FAILURE;
2877 #endif
2878 	}
2879 	return (retval);
2880 }
2881 
2882 /*
2883  * This array defines the sequence of state machine control registers
2884  * in which the <enable> bit must be cleared to bring the chip to a
2885  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2886  */
2887 static bge_regno_t shutdown_engine_regs[] = {
2888 	RECEIVE_MAC_MODE_REG,
2889 	RCV_BD_INITIATOR_MODE_REG,
2890 	RCV_LIST_PLACEMENT_MODE_REG,
2891 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2892 	RCV_DATA_BD_INITIATOR_MODE_REG,
2893 	RCV_DATA_COMPLETION_MODE_REG,
2894 	RCV_BD_COMPLETION_MODE_REG,
2895 
2896 	SEND_BD_SELECTOR_MODE_REG,
2897 	SEND_BD_INITIATOR_MODE_REG,
2898 	SEND_DATA_INITIATOR_MODE_REG,
2899 	READ_DMA_MODE_REG,
2900 	SEND_DATA_COMPLETION_MODE_REG,
2901 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2902 	SEND_BD_COMPLETION_MODE_REG,
2903 	TRANSMIT_MAC_MODE_REG,
2904 
2905 	HOST_COALESCE_MODE_REG,
2906 	WRITE_DMA_MODE_REG,
2907 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2908 	FTQ_RESET_REG,		/* special - see code	*/
2909 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2910 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2911 	BGE_REGNO_NONE		/* terminator		*/
2912 };
2913 
2914 /*
2915  * bge_chip_stop() -- stop all chip processing
2916  *
2917  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2918  * we've detected a problem internally; otherwise, this is a normal
2919  * (clean) stop (at user request i.e. the last STREAM has been closed).
2920  */
2921 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2922 #pragma	no_inline(bge_chip_stop)
2923 
2924 void
2925 bge_chip_stop(bge_t *bgep, boolean_t fault)
2926 {
2927 	bge_regno_t regno;
2928 	bge_regno_t *rbp;
2929 	boolean_t ok;
2930 
2931 	BGE_TRACE(("bge_chip_stop($%p)",
2932 	    (void *)bgep));
2933 
2934 	ASSERT(mutex_owned(bgep->genlock));
2935 
2936 	rbp = shutdown_engine_regs;
2937 	/*
2938 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
2939 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
2940 	 * -ory arbiter should not be disabled.
2941 	 */
2942 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
2943 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
2944 				ok &= bge_chip_disable_engine(bgep, regno, 0);
2945 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
2946 			    (regno != DMA_COMPLETION_MODE_REG) &&
2947 			    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
2948 			    (regno != BUFFER_MANAGER_MODE_REG) &&
2949 			    (regno != MEMORY_ARBITER_MODE_REG))
2950 				ok &= bge_chip_disable_engine(bgep,
2951 				    regno, 0);
2952 	}
2953 
2954 	if (!ok && !fault)
2955 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
2956 
2957 	/*
2958 	 * Finally, disable (all) MAC events & clear the MAC status
2959 	 */
2960 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
2961 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
2962 
2963 	/*
2964 	 * if we're stopping the chip because of a detected fault then do
2965 	 * appropriate actions
2966 	 */
2967 	if (fault) {
2968 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
2969 			bgep->bge_chip_state = BGE_CHIP_FAULT;
2970 			if (!bgep->manual_reset)
2971 				ddi_fm_service_impact(bgep->devinfo,
2972 				    DDI_SERVICE_LOST);
2973 			if (bgep->bge_dma_error) {
2974 				/*
2975 				 * need to free buffers in case the fault was
2976 				 * due to a memory error in a buffer - got to
2977 				 * do a fair bit of tidying first
2978 				 */
2979 				if (bgep->progress & PROGRESS_KSTATS) {
2980 					bge_fini_kstats(bgep);
2981 					bgep->progress &= ~PROGRESS_KSTATS;
2982 				}
2983 				if (bgep->progress & PROGRESS_INTR) {
2984 					bge_intr_disable(bgep);
2985 					rw_enter(bgep->errlock, RW_WRITER);
2986 					bge_fini_rings(bgep);
2987 					rw_exit(bgep->errlock);
2988 					bgep->progress &= ~PROGRESS_INTR;
2989 				}
2990 				if (bgep->progress & PROGRESS_BUFS) {
2991 					bge_free_bufs(bgep);
2992 					bgep->progress &= ~PROGRESS_BUFS;
2993 				}
2994 				bgep->bge_dma_error = B_FALSE;
2995 			}
2996 		}
2997 	} else
2998 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
2999 }
3000 
3001 /*
3002  * Poll for completion of chip's ROM firmware; also, at least on the
3003  * first time through, find and return the hardware MAC address, if any.
3004  */
3005 static uint64_t bge_poll_firmware(bge_t *bgep);
3006 #pragma	no_inline(bge_poll_firmware)
3007 
3008 static uint64_t
3009 bge_poll_firmware(bge_t *bgep)
3010 {
3011 	uint64_t magic;
3012 	uint64_t mac;
3013 	uint32_t gen;
3014 	uint32_t i;
3015 
3016 	/*
3017 	 * Step 19: poll for firmware completion (GENCOMM port set
3018 	 * to the ones complement of T3_MAGIC_NUMBER).
3019 	 *
3020 	 * While we're at it, we also read the MAC address register;
3021 	 * at some stage the firmware will load this with the
3022 	 * factory-set value.
3023 	 *
3024 	 * When both the magic number and the MAC address are set,
3025 	 * we're done; but we impose a time limit of one second
3026 	 * (1000*1000us) in case the firmware fails in some fashion
3027 	 * or the SEEPROM that provides that MAC address isn't fitted.
3028 	 *
3029 	 * After the first time through (chip state != INITIAL), we
3030 	 * don't need the MAC address to be set (we've already got it
3031 	 * or not, from the first time), so we don't wait for it, but
3032 	 * we still have to wait for the T3_MAGIC_NUMBER.
3033 	 *
3034 	 * Note: the magic number is only a 32-bit quantity, but the NIC
3035 	 * memory is 64-bit (and big-endian) internally.  Addressing the
3036 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3037 	 * it work correctly on both big- and little-endian hosts.
3038 	 */
3039 	for (i = 0; i < 1000; ++i) {
3040 		drv_usecwait(1000);
3041 		gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3042 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3043 #ifdef BGE_IPMI_ASF
3044 		if (!bgep->asf_enabled) {
3045 #endif
3046 			if (gen != ~T3_MAGIC_NUMBER)
3047 				continue;
3048 #ifdef BGE_IPMI_ASF
3049 		}
3050 #endif
3051 		if (mac != 0ULL)
3052 			break;
3053 		if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3054 			break;
3055 	}
3056 
3057 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3058 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3059 	    (void *)bgep, gen, i));
3060 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3061 	    mac, magic));
3062 
3063 	return (mac);
3064 }
3065 
3066 /*
3067  * Maximum times of trying to get the NVRAM access lock
3068  * by calling bge_nvmem_acquire()
3069  */
3070 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3071 
3072 #ifdef BGE_IPMI_ASF
3073 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3074 #else
3075 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3076 #endif
3077 #pragma	no_inline(bge_chip_reset)
3078 
3079 int
3080 #ifdef BGE_IPMI_ASF
3081 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3082 #else
3083 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3084 #endif
3085 {
3086 	chip_id_t chipid;
3087 	uint64_t mac;
3088 	uint64_t magic;
3089 	uint32_t modeflags;
3090 	uint32_t mhcr;
3091 	uint32_t sx0;
3092 	uint32_t i, tries;
3093 #ifdef BGE_IPMI_ASF
3094 	uint32_t mailbox;
3095 #endif
3096 	int retval = DDI_SUCCESS;
3097 
3098 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3099 		(void *)bgep, enable_dma));
3100 
3101 	ASSERT(mutex_owned(bgep->genlock));
3102 
3103 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3104 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3105 
3106 	/*
3107 	 * Do we need to stop the chip cleanly before resetting?
3108 	 */
3109 	switch (bgep->bge_chip_state) {
3110 	default:
3111 		_NOTE(NOTREACHED)
3112 		return (DDI_FAILURE);
3113 
3114 	case BGE_CHIP_INITIAL:
3115 	case BGE_CHIP_STOPPED:
3116 	case BGE_CHIP_RESET:
3117 		break;
3118 
3119 	case BGE_CHIP_RUNNING:
3120 	case BGE_CHIP_ERROR:
3121 	case BGE_CHIP_FAULT:
3122 		bge_chip_stop(bgep, B_FALSE);
3123 		break;
3124 	}
3125 
3126 #ifdef BGE_IPMI_ASF
3127 	if (bgep->asf_enabled) {
3128 #ifdef __sparc
3129 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3130 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3131 			MHCR_MASK_INTERRUPT_MODE |
3132 			MHCR_MASK_PCI_INT_OUTPUT |
3133 			MHCR_CLEAR_INTERRUPT_INTA |
3134 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3135 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3136 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3137 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3138 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3139 			MEMORY_ARBITER_ENABLE);
3140 #endif
3141 		if (asf_mode == ASF_MODE_INIT) {
3142 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3143 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3144 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3145 		}
3146 	}
3147 #endif
3148 	/*
3149 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3150 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3151 	 *
3152 	 * Before reset Core clock,it is
3153 	 * also required to initialize the Memory Arbiter as specified in step9
3154 	 * and Misc Host Control Register as specified in step-13
3155 	 * Step 4-5: reset Core clock & wait for completion
3156 	 * Steps 6-8: are done by bge_chip_cfg_init()
3157 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3158 	 */
3159 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3160 		retval = DDI_FAILURE;
3161 
3162 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3163 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3164 	    MHCR_MASK_INTERRUPT_MODE |
3165 	    MHCR_MASK_PCI_INT_OUTPUT |
3166 	    MHCR_CLEAR_INTERRUPT_INTA;
3167 #ifdef  _BIG_ENDIAN
3168 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3169 #endif  /* _BIG_ENDIAN */
3170 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3171 #ifdef BGE_IPMI_ASF
3172 	if (bgep->asf_enabled)
3173 		bgep->asf_wordswapped = B_FALSE;
3174 #endif
3175 	/*
3176 	 * NVRAM Corruption Workaround
3177 	 */
3178 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3179 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3180 			break;
3181 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3182 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3183 			bgep->ifname));
3184 
3185 #ifdef BGE_IPMI_ASF
3186 	if (!bgep->asf_enabled) {
3187 #endif
3188 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3189 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3190 #ifdef BGE_IPMI_ASF
3191 	}
3192 #endif
3193 
3194 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3195 		retval = DDI_FAILURE;
3196 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3197 
3198 	/*
3199 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3200 	 * a bit set to avoid a fifo overflow/underflow bug.
3201 	 */
3202 	if ((bgep->chipid.chip_label == 5721) ||
3203 		(bgep->chipid.chip_label == 5751) ||
3204 		(bgep->chipid.chip_label == 5752) ||
3205 		(bgep->chipid.chip_label == 5755) ||
3206 		(bgep->chipid.chip_label == 5789))
3207 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3208 
3209 
3210 	/*
3211 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3212 	 * not be changed.
3213 	 */
3214 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3215 		retval = DDI_FAILURE;
3216 
3217 	/*
3218 	 * Steps 10-11: configure PIO endianness options and
3219 	 * enable indirect register access -- already done
3220 	 * Steps 12-13: enable writing to the PCI state & clock
3221 	 * control registers -- not required; we aren't going to
3222 	 * use those features.
3223 	 * Steps 14-15: Configure DMA endianness options.  See
3224 	 * the comments on the setting of the MHCR above.
3225 	 */
3226 #ifdef	_BIG_ENDIAN
3227 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3228 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3229 #else
3230 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3231 #endif	/* _BIG_ENDIAN */
3232 #ifdef BGE_IPMI_ASF
3233 	if (bgep->asf_enabled)
3234 		modeflags |= MODE_HOST_STACK_UP;
3235 #endif
3236 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3237 
3238 #ifdef BGE_IPMI_ASF
3239 	if (bgep->asf_enabled) {
3240 #ifdef __sparc
3241 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3242 			MEMORY_ARBITER_ENABLE |
3243 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3244 #endif
3245 
3246 #ifdef  BGE_NETCONSOLE
3247 		if (!bgep->asf_newhandshake) {
3248 			if ((asf_mode == ASF_MODE_INIT) ||
3249 			(asf_mode == ASF_MODE_POST_INIT)) {
3250 				bge_asf_post_reset_old_mode(bgep,
3251 					BGE_INIT_RESET);
3252 			} else {
3253 				bge_asf_post_reset_old_mode(bgep,
3254 					BGE_SHUTDOWN_RESET);
3255 			}
3256 		}
3257 #endif
3258 
3259 		/* Wait for NVRAM init */
3260 		i = 0;
3261 		drv_usecwait(5000);
3262 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3263 
3264 		while ((mailbox != (uint32_t)
3265 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3266 			(i < 10000)) {
3267 			drv_usecwait(100);
3268 			mailbox = bge_nic_get32(bgep,
3269 				BGE_FIRMWARE_MAILBOX);
3270 			i++;
3271 		}
3272 
3273 #ifndef BGE_NETCONSOLE
3274 		if (!bgep->asf_newhandshake) {
3275 			if ((asf_mode == ASF_MODE_INIT) ||
3276 				(asf_mode == ASF_MODE_POST_INIT)) {
3277 
3278 				bge_asf_post_reset_old_mode(bgep,
3279 					BGE_INIT_RESET);
3280 			} else {
3281 				bge_asf_post_reset_old_mode(bgep,
3282 					BGE_SHUTDOWN_RESET);
3283 			}
3284 		}
3285 #endif
3286 	}
3287 #endif
3288 	/*
3289 	 * Steps 16-17: poll for firmware completion
3290 	 */
3291 	mac = bge_poll_firmware(bgep);
3292 
3293 	/*
3294 	 * Step 18: enable external memory -- doesn't apply.
3295 	 *
3296 	 * However we take the opportunity to set the MLCR anyway, as
3297 	 * this register also controls the SEEPROM auto-access method
3298 	 * which we may want to use later ...
3299 	 *
3300 	 * The proper value here depends on the way the chip is wired
3301 	 * into the circuit board, as this register *also* controls which
3302 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3303 	 * values driven onto those pins!
3304 	 *
3305 	 * See also step 74 in the PRM ...
3306 	 */
3307 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3308 	    bgep->chipid.bge_mlcr_default);
3309 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3310 
3311 	/*
3312 	 * Step 20: clear the Ethernet MAC mode register
3313 	 */
3314 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3315 
3316 	/*
3317 	 * Step 21: restore cache-line-size, latency timer, and
3318 	 * subsystem ID registers to their original values (not
3319 	 * those read into the local structure <chipid>, 'cos
3320 	 * that was after they were cleared by the RESET).
3321 	 *
3322 	 * Note: the Subsystem Vendor/Device ID registers are not
3323 	 * directly writable in config space, so we use the shadow
3324 	 * copy in "Page Zero" of register space to restore them
3325 	 * both in one go ...
3326 	 */
3327 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3328 		bgep->chipid.clsize);
3329 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3330 		bgep->chipid.latency);
3331 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3332 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3333 
3334 	/*
3335 	 * The SEND INDEX registers should be reset to zero by the
3336 	 * global chip reset; if they're not, there'll be trouble
3337 	 * later on.
3338 	 */
3339 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3340 	if (sx0 != 0) {
3341 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3342 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3343 		retval = DDI_FAILURE;
3344 	}
3345 
3346 	/* Enable MSI code */
3347 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3348 		bge_reg_set32(bgep, MSI_MODE_REG,
3349 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3350 
3351 	/*
3352 	 * On the first time through, save the factory-set MAC address
3353 	 * (if any).  If bge_poll_firmware() above didn't return one
3354 	 * (from a chip register) consider looking in the attached NV
3355 	 * memory device, if any.  Once we have it, we save it in both
3356 	 * register-image (64-bit) and byte-array forms.  All-zero and
3357 	 * all-one addresses are not valid, and we refuse to stash those.
3358 	 */
3359 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3360 		if (mac == 0ULL)
3361 			mac = bge_get_nvmac(bgep);
3362 		if (mac != 0ULL && mac != ~0ULL) {
3363 			bgep->chipid.hw_mac_addr = mac;
3364 			for (i = ETHERADDRL; i-- != 0; ) {
3365 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3366 				mac >>= 8;
3367 			}
3368 			bgep->chipid.vendor_addr.set = B_TRUE;
3369 		}
3370 	}
3371 
3372 #ifdef BGE_IPMI_ASF
3373 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3374 		if (asf_mode != ASF_MODE_NONE) {
3375 			if ((asf_mode == ASF_MODE_INIT) ||
3376 				(asf_mode == ASF_MODE_POST_INIT)) {
3377 
3378 				bge_asf_post_reset_new_mode(bgep,
3379 					BGE_INIT_RESET);
3380 			} else {
3381 				bge_asf_post_reset_new_mode(bgep,
3382 					BGE_SHUTDOWN_RESET);
3383 			}
3384 		}
3385 	}
3386 #endif
3387 
3388 	/*
3389 	 * Record the new state
3390 	 */
3391 	bgep->chip_resets += 1;
3392 	bgep->bge_chip_state = BGE_CHIP_RESET;
3393 	return (retval);
3394 }
3395 
3396 /*
3397  * bge_chip_start() -- start the chip transmitting and/or receiving,
3398  * including enabling interrupts
3399  */
3400 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3401 #pragma	no_inline(bge_chip_start)
3402 
3403 int
3404 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3405 {
3406 	uint32_t coalmode;
3407 	uint32_t ledctl;
3408 	uint32_t mtu;
3409 	uint32_t maxring;
3410 	uint32_t stats_mask;
3411 	uint32_t dma_wrprio;
3412 	uint64_t ring;
3413 	int retval = DDI_SUCCESS;
3414 
3415 	BGE_TRACE(("bge_chip_start($%p)",
3416 	    (void *)bgep));
3417 
3418 	ASSERT(mutex_owned(bgep->genlock));
3419 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3420 
3421 	/*
3422 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3423 	 * The document specifies 95 separate steps to fully
3424 	 * initialise the chip!!!!
3425 	 *
3426 	 * The reset code above has already got us as far as step
3427 	 * 21, so we continue with ...
3428 	 *
3429 	 * Step 22: clear the MAC statistics block
3430 	 * (0x0300-0x0aff in NIC-local memory)
3431 	 */
3432 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3433 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3434 		    NIC_MEM_STATISTICS_SIZE);
3435 
3436 	/*
3437 	 * Step 23: clear the status block (in host memory)
3438 	 */
3439 	DMA_ZERO(bgep->status_block);
3440 
3441 	/*
3442 	 * Step 24: set DMA read/write control register
3443 	 */
3444 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3445 	    bgep->chipid.bge_dma_rwctrl);
3446 
3447 	/*
3448 	 * Step 25: Configure DMA endianness -- already done (16/17)
3449 	 * Step 26: Configure Host-Based Send Rings
3450 	 * Step 27: Indicate Host Stack Up
3451 	 */
3452 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3453 	    MODE_HOST_SEND_BDS |
3454 	    MODE_HOST_STACK_UP);
3455 
3456 	/*
3457 	 * Step 28: Configure checksum options:
3458 	 *	Solaris supports the hardware default checksum options.
3459 	 *
3460 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3461 	 */
3462 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3463 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3464 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3465 
3466 	/*
3467 	 * Step 29: configure Timer Prescaler.  The value is always the
3468 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3469 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3470 	 * for the whole chip!
3471 	 */
3472 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3473 
3474 	/*
3475 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3476 	 *
3477 	 * If the mbuf_length is specified as 0, we just leave these at
3478 	 * their hardware defaults, rather than explicitly setting them.
3479 	 * As the Broadcom HRM,driver better not change the parameters
3480 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3481 	 */
3482 	if ((bgep->chipid.mbuf_length != 0) &&
3483 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3484 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3485 			    bgep->chipid.mbuf_base);
3486 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3487 			    bgep->chipid.mbuf_length);
3488 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3489 			    DMAD_POOL_BASE_DEFAULT);
3490 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3491 			    DMAD_POOL_LENGTH_DEFAULT);
3492 	}
3493 
3494 	/*
3495 	 * Step 32: configure MAC memory pool watermarks
3496 	 */
3497 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3498 	    bgep->chipid.mbuf_lo_water_rdma);
3499 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3500 	    bgep->chipid.mbuf_lo_water_rmac);
3501 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3502 	    bgep->chipid.mbuf_hi_water);
3503 
3504 	/*
3505 	 * Step 33: configure DMA resource watermarks
3506 	 */
3507 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3508 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3509 		    bge_dmad_lo_water);
3510 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3511 		    bge_dmad_hi_water);
3512 	}
3513 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3514 
3515 	/*
3516 	 * Steps 34-36: enable buffer manager & internal h/w queues
3517 	 */
3518 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3519 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3520 		retval = DDI_FAILURE;
3521 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3522 		retval = DDI_FAILURE;
3523 
3524 	/*
3525 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3526 	 */
3527 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3528 	    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3529 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3530 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3531 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3532 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3533 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3534 	}
3535 
3536 	/*
3537 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3538 	 */
3539 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3540 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3541 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3542 		    bge_replenish_jumbo);
3543 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3544 		    bge_replenish_mini);
3545 	}
3546 
3547 	/*
3548 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3549 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3550 	 */
3551 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3552 		maxring = BGE_SEND_RINGS_MAX;
3553 	else
3554 		maxring = BGE_SEND_RINGS_MAX_5705;
3555 	for (ring = 0; ring < maxring; ++ring) {
3556 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3557 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3558 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3559 		    &bgep->send[ring].hw_rcb);
3560 	}
3561 
3562 	/*
3563 	 * Steps 44-45: initialise Receive Return Rings
3564 	 * (0x0200-0x02ff in NIC-local memory)
3565 	 */
3566 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3567 		maxring = BGE_RECV_RINGS_MAX;
3568 	else
3569 		maxring = BGE_RECV_RINGS_MAX_5705;
3570 	for (ring = 0; ring < maxring; ++ring)
3571 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3572 		    &bgep->recv[ring].hw_rcb);
3573 
3574 	/*
3575 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3576 	 */
3577 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3578 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3579 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3580 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3581 	}
3582 	/*
3583 	 * Step 47: configure the MAC unicast address
3584 	 * Step 48: configure the random backoff seed
3585 	 * Step 96: set up multicast filters
3586 	 */
3587 #ifdef BGE_IPMI_ASF
3588 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3589 #else
3590 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3591 #endif
3592 		retval = DDI_FAILURE;
3593 
3594 	/*
3595 	 * Step 49: configure the MTU
3596 	 */
3597 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3598 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3599 
3600 	/*
3601 	 * Step 50: configure the IPG et al
3602 	 */
3603 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3604 
3605 	/*
3606 	 * Step 51: configure the default Rx Return Ring
3607 	 */
3608 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3609 
3610 	/*
3611 	 * Steps 52-54: configure Receive List Placement,
3612 	 * and enable Receive List Placement Statistics
3613 	 */
3614 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3615 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
3616 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3617 	case MHCR_CHIP_ASIC_REV_5700:
3618 	case MHCR_CHIP_ASIC_REV_5701:
3619 	case MHCR_CHIP_ASIC_REV_5703:
3620 	case MHCR_CHIP_ASIC_REV_5704:
3621 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3622 		break;
3623 	case MHCR_CHIP_ASIC_REV_5705:
3624 		break;
3625 	default:
3626 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3627 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3628 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3629 		break;
3630 	}
3631 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3632 
3633 	if (bgep->chipid.rx_rings > 1)
3634 		bge_init_recv_rule(bgep);
3635 
3636 	/*
3637 	 * Steps 55-56: enable Send Data Initiator Statistics
3638 	 */
3639 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3640 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3641 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3642 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3643 	} else {
3644 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3645 		    SEND_INIT_STATS_ENABLE);
3646 	}
3647 	/*
3648 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3649 	 */
3650 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3651 		retval = DDI_FAILURE;
3652 
3653 	/*
3654 	 * Steps 59-62: initialise Host Coalescing parameters
3655 	 */
3656 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3657 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3658 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3659 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3660 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3661 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3662 		    bge_tx_count_intr);
3663 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3664 		    bge_tx_ticks_intr);
3665 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3666 		    bge_rx_count_intr);
3667 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3668 		    bge_rx_ticks_intr);
3669 	}
3670 
3671 	/*
3672 	 * Steps 63-64: initialise status block & statistics
3673 	 * host memory addresses
3674 	 * The statistic block does not exist in some chipsets
3675 	 * Step 65: initialise Statistics Coalescing Tick Counter
3676 	 */
3677 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3678 	    bgep->status_block.cookie.dmac_laddress);
3679 
3680 	/*
3681 	 * Steps 66-67: initialise status block & statistics
3682 	 * NIC-local memory addresses
3683 	 */
3684 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3685 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3686 		    bgep->statistics.cookie.dmac_laddress);
3687 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3688 		    STATISTICS_TICKS_DEFAULT);
3689 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3690 		    NIC_MEM_STATUS_BLOCK);
3691 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3692 		    NIC_MEM_STATISTICS);
3693 	}
3694 
3695 	/*
3696 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3697 	 * Completion Engine, the Receive List Placement Engine, and the
3698 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3699 	 * and BCM5715.
3700 	 */
3701 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3702 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3703 		coalmode = COALESCE_64_BYTE_STATUS;
3704 	else
3705 		coalmode = 0;
3706 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3707 		retval = DDI_FAILURE;
3708 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3709 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3710 		retval = DDI_FAILURE;
3711 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3712 		retval = DDI_FAILURE;
3713 
3714 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3715 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3716 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3717 			retval = DDI_FAILURE;
3718 
3719 	/*
3720 	 * Step 72: Enable MAC DMA engines
3721 	 * Step 73: Clear & enable MAC statistics
3722 	 */
3723 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3724 	    ETHERNET_MODE_ENABLE_FHDE |
3725 	    ETHERNET_MODE_ENABLE_RDE |
3726 	    ETHERNET_MODE_ENABLE_TDE);
3727 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3728 	    ETHERNET_MODE_ENABLE_TX_STATS |
3729 	    ETHERNET_MODE_ENABLE_RX_STATS |
3730 	    ETHERNET_MODE_CLEAR_TX_STATS |
3731 	    ETHERNET_MODE_CLEAR_RX_STATS);
3732 
3733 	/*
3734 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3735 	 * Register); not required, as we set up the MLCR in step 10
3736 	 * (part of the reset code) above.
3737 	 *
3738 	 * Step 75: clear Interrupt Mailbox 0
3739 	 */
3740 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3741 
3742 	/*
3743 	 * Steps 76-87: Gentlemen, start your engines ...
3744 	 *
3745 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3746 	 * the Read DMA Engine, Receive Data Completion Engine,
3747 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3748 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3749 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3750 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3751 	 *
3752 	 * Beware exhaust fumes?
3753 	 */
3754 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3755 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3756 			retval = DDI_FAILURE;
3757 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
3758 	    ALL_DMA_ATTN_BITS;
3759 	if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3760 	    MHCR_CHIP_ASIC_REV_5755) {
3761 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
3762 	}
3763 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3764 	    dma_wrprio))
3765 		retval = DDI_FAILURE;
3766 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3767 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3768 		retval = DDI_FAILURE;
3769 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3770 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3771 		retval = DDI_FAILURE;
3772 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3773 		if (!bge_chip_enable_engine(bgep,
3774 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3775 			retval = DDI_FAILURE;
3776 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3777 		retval = DDI_FAILURE;
3778 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3779 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3780 		retval = DDI_FAILURE;
3781 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3782 	    RCV_BD_DISABLED_RING_ATTN))
3783 		retval = DDI_FAILURE;
3784 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3785 	    RCV_DATA_BD_ILL_RING_ATTN))
3786 		retval = DDI_FAILURE;
3787 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3788 		retval = DDI_FAILURE;
3789 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3790 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3791 		retval = DDI_FAILURE;
3792 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3793 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3794 		retval = DDI_FAILURE;
3795 
3796 	/*
3797 	 * Step 88: download firmware -- doesn't apply
3798 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3799 	 */
3800 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3801 		retval = DDI_FAILURE;
3802 #ifdef BGE_IPMI_ASF
3803 	if (!bgep->asf_enabled) {
3804 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3805 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3806 			retval = DDI_FAILURE;
3807 	} else {
3808 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3809 			retval = DDI_FAILURE;
3810 	}
3811 #else
3812 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3813 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3814 		retval = DDI_FAILURE;
3815 #endif
3816 
3817 	/*
3818 	 * Step 91: disable auto-polling of PHY status
3819 	 */
3820 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3821 
3822 	/*
3823 	 * Step 92: configure D0 power state (not required)
3824 	 * Step 93: initialise LED control register ()
3825 	 */
3826 	ledctl = LED_CONTROL_DEFAULT;
3827 	switch (bgep->chipid.device) {
3828 	case DEVICE_ID_5700:
3829 	case DEVICE_ID_5700x:
3830 	case DEVICE_ID_5701:
3831 		/*
3832 		 * Switch to 5700 (MAC) mode on these older chips
3833 		 */
3834 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3835 		ledctl |= LED_CONTROL_LED_MODE_5700;
3836 		break;
3837 
3838 	default:
3839 		break;
3840 	}
3841 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3842 
3843 	/*
3844 	 * Step 94: activate link
3845 	 */
3846 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3847 
3848 	/*
3849 	 * Step 95: set up physical layer (PHY/SerDes)
3850 	 * restart autoneg (if required)
3851 	 */
3852 	if (reset_phys)
3853 		if (bge_phys_update(bgep) == DDI_FAILURE)
3854 			retval = DDI_FAILURE;
3855 
3856 	/*
3857 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3858 	 */
3859 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3860 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3861 		    bgep->buff[ring].rf_next);
3862 
3863 	/*
3864 	 * MSI bits:The least significant MSI 16-bit word.
3865 	 * ISR will be triggered different.
3866 	 */
3867 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3868 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3869 
3870 	/*
3871 	 * Extra step (DSG): select which interrupts are enabled
3872 	 *
3873 	 * Program the Ethernet MAC engine to signal attention on
3874 	 * Link Change events, then enable interrupts on MAC, DMA,
3875 	 * and FLOW attention signals.
3876 	 */
3877 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3878 	    ETHERNET_EVENT_LINK_INT |
3879 	    ETHERNET_STATUS_PCS_ERROR_INT);
3880 #ifdef BGE_IPMI_ASF
3881 	if (bgep->asf_enabled) {
3882 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3883 		    MODE_INT_ON_FLOW_ATTN |
3884 		    MODE_INT_ON_DMA_ATTN |
3885 		    MODE_HOST_STACK_UP|
3886 		    MODE_INT_ON_MAC_ATTN);
3887 	} else {
3888 #endif
3889 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3890 		    MODE_INT_ON_FLOW_ATTN |
3891 		    MODE_INT_ON_DMA_ATTN |
3892 		    MODE_INT_ON_MAC_ATTN);
3893 #ifdef BGE_IPMI_ASF
3894 	}
3895 #endif
3896 
3897 	/*
3898 	 * Step 97: enable PCI interrupts!!!
3899 	 */
3900 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3901 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3902 		    MHCR_MASK_PCI_INT_OUTPUT);
3903 
3904 	/*
3905 	 * All done!
3906 	 */
3907 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
3908 	return (retval);
3909 }
3910 
3911 
3912 /*
3913  * ========== Hardware interrupt handler ==========
3914  */
3915 
3916 #undef	BGE_DBG
3917 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
3918 
3919 /*
3920  * Sync the status block, then atomically clear the specified bits in
3921  * the <flags-and-tag> field of the status block.
3922  * the <flags> word of the status block, returning the value of the
3923  * <tag> and the <flags> before the bits were cleared.
3924  */
3925 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
3926 #pragma	inline(bge_status_sync)
3927 
3928 static int
3929 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
3930 {
3931 	bge_status_t *bsp;
3932 	int retval;
3933 
3934 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
3935 	    (void *)bgep, bits));
3936 
3937 	ASSERT(bgep->bge_guard == BGE_GUARD);
3938 
3939 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
3940 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
3941 	if (retval != DDI_FM_OK)
3942 		return (retval);
3943 
3944 	bsp = DMA_VPTR(bgep->status_block);
3945 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
3946 
3947 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
3948 	    (void *)bgep, bits, *flags));
3949 
3950 	return (retval);
3951 }
3952 
3953 void bge_wake_factotum(bge_t *bgep);
3954 #pragma	inline(bge_wake_factotum)
3955 
3956 void
3957 bge_wake_factotum(bge_t *bgep)
3958 {
3959 	mutex_enter(bgep->softintrlock);
3960 	if (bgep->factotum_flag == 0) {
3961 		bgep->factotum_flag = 1;
3962 		ddi_trigger_softintr(bgep->factotum_id);
3963 	}
3964 	mutex_exit(bgep->softintrlock);
3965 }
3966 
3967 /*
3968  *	bge_intr() -- handle chip interrupts
3969  */
3970 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
3971 #pragma	no_inline(bge_intr)
3972 
3973 uint_t
3974 bge_intr(caddr_t arg1, caddr_t arg2)
3975 {
3976 	bge_t *bgep = (bge_t *)arg1;		/* private device info	*/
3977 	bge_status_t *bsp;
3978 	uint64_t flags;
3979 	uint32_t regval;
3980 	uint_t result;
3981 	int retval, loop_cnt = 0;
3982 
3983 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
3984 
3985 	/*
3986 	 * GLD v2 checks that s/w setup is complete before passing
3987 	 * interrupts to this routine, thus eliminating the old
3988 	 * (and well-known) race condition around ddi_add_intr()
3989 	 */
3990 	ASSERT(bgep->progress & PROGRESS_HWINT);
3991 
3992 	result = DDI_INTR_UNCLAIMED;
3993 	mutex_enter(bgep->genlock);
3994 
3995 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3996 		/*
3997 		 * Check whether chip's says it's asserting #INTA;
3998 		 * if not, don't process or claim the interrupt.
3999 		 *
4000 		 * Note that the PCI signal is active low, so the
4001 		 * bit is *zero* when the interrupt is asserted.
4002 		 */
4003 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
4004 		if (regval & MLCR_INTA_STATE) {
4005 			if (bge_check_acc_handle(bgep, bgep->io_handle)
4006 			    != DDI_FM_OK)
4007 				goto chip_stop;
4008 			mutex_exit(bgep->genlock);
4009 			return (result);
4010 		}
4011 
4012 		/*
4013 		 * Block further PCI interrupts ...
4014 		 */
4015 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
4016 		    MHCR_MASK_PCI_INT_OUTPUT);
4017 
4018 	} else {
4019 		/*
4020 		 * Check MSI status
4021 		 */
4022 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
4023 		if (regval & MSI_ERROR_ATTENTION) {
4024 			BGE_REPORT((bgep, "msi error attention,"
4025 			    " status=0x%x", regval));
4026 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
4027 		}
4028 	}
4029 
4030 	result = DDI_INTR_CLAIMED;
4031 
4032 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
4033 
4034 	/*
4035 	 * Sync the status block and grab the flags-n-tag from it.
4036 	 * We count the number of interrupts where there doesn't
4037 	 * seem to have been a DMA update of the status block; if
4038 	 * it *has* been updated, the counter will be cleared in
4039 	 * the while() loop below ...
4040 	 */
4041 	bgep->missed_dmas += 1;
4042 	bsp = DMA_VPTR(bgep->status_block);
4043 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
4044 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
4045 			/*
4046 			 * bge_chip_stop() may have freed dma area etc
4047 			 * while we were in this interrupt handler -
4048 			 * better not call bge_status_sync()
4049 			 */
4050 			(void) bge_check_acc_handle(bgep,
4051 			    bgep->io_handle);
4052 			mutex_exit(bgep->genlock);
4053 			return (DDI_INTR_CLAIMED);
4054 		}
4055 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
4056 		    &flags);
4057 		if (retval != DDI_FM_OK) {
4058 			bgep->bge_dma_error = B_TRUE;
4059 			goto chip_stop;
4060 		}
4061 
4062 		if (!(flags & STATUS_FLAG_UPDATED))
4063 			break;
4064 
4065 		/*
4066 		 * Tell the chip that we're processing the interrupt
4067 		 */
4068 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4069 		    INTERRUPT_MBOX_DISABLE(flags));
4070 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4071 		    DDI_FM_OK)
4072 			goto chip_stop;
4073 
4074 		/*
4075 		 * Drop the mutex while we:
4076 		 * 	Receive any newly-arrived packets
4077 		 *	Recycle any newly-finished send buffers
4078 		 */
4079 		bgep->bge_intr_running = B_TRUE;
4080 		mutex_exit(bgep->genlock);
4081 		bge_receive(bgep, bsp);
4082 		bge_recycle(bgep, bsp);
4083 		mutex_enter(bgep->genlock);
4084 		bgep->bge_intr_running = B_FALSE;
4085 
4086 		/*
4087 		 * Tell the chip we've finished processing, and
4088 		 * give it the tag that we got from the status
4089 		 * block earlier, so that it knows just how far
4090 		 * we've gone.  If it's got more for us to do,
4091 		 * it will now update the status block and try
4092 		 * to assert an interrupt (but we've got the
4093 		 * #INTA blocked at present).  If we see the
4094 		 * update, we'll loop around to do some more.
4095 		 * Eventually we'll get out of here ...
4096 		 */
4097 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4098 		    INTERRUPT_MBOX_ENABLE(flags));
4099 		if (bgep->chipid.pci_type == BGE_PCI_E)
4100 			(void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
4101 		bgep->missed_dmas = 0;
4102 	}
4103 
4104 	/*
4105 	 * Check for exceptional conditions that we need to handle
4106 	 *
4107 	 * Link status changed
4108 	 * Status block not updated
4109 	 */
4110 	if (flags & STATUS_FLAG_LINK_CHANGED)
4111 		bge_wake_factotum(bgep);
4112 
4113 	if (bgep->missed_dmas) {
4114 		/*
4115 		 * Probably due to the internal status tag not
4116 		 * being reset.  Force a status block update now;
4117 		 * this should ensure that we get an update and
4118 		 * a new interrupt.  After that, we should be in
4119 		 * sync again ...
4120 		 */
4121 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4122 		    "not updated?", flags));
4123 		bgep->missed_updates++;
4124 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4125 		    COALESCE_NOW);
4126 
4127 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4128 			/*
4129 			 * If this happens multiple times in a row,
4130 			 * it means DMA is just not working.  Maybe
4131 			 * the chip's failed, or maybe there's a
4132 			 * problem on the PCI bus or in the host-PCI
4133 			 * bridge (Tomatillo).
4134 			 *
4135 			 * At all events, we want to stop further
4136 			 * interrupts and let the recovery code take
4137 			 * over to see whether anything can be done
4138 			 * about it ...
4139 			 */
4140 			bge_fm_ereport(bgep,
4141 			    DDI_FM_DEVICE_BADINT_LIMIT);
4142 			goto chip_stop;
4143 		}
4144 	}
4145 
4146 	/*
4147 	 * Reenable assertion of #INTA, unless there's a DMA fault
4148 	 */
4149 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4150 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4151 		    MHCR_MASK_PCI_INT_OUTPUT);
4152 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4153 		    DDI_FM_OK)
4154 			goto chip_stop;
4155 	}
4156 
4157 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4158 		goto chip_stop;
4159 
4160 	mutex_exit(bgep->genlock);
4161 	return (result);
4162 
4163 chip_stop:
4164 #ifdef BGE_IPMI_ASF
4165 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4166 		/*
4167 		 * We must stop ASF heart beat before
4168 		 * bge_chip_stop(), otherwise some
4169 		 * computers (ex. IBM HS20 blade
4170 		 * server) may crash.
4171 		 */
4172 		bge_asf_update_status(bgep);
4173 		bge_asf_stop_timer(bgep);
4174 		bgep->asf_status = ASF_STAT_STOP;
4175 
4176 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4177 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4178 	}
4179 #endif
4180 	bge_chip_stop(bgep, B_TRUE);
4181 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4182 	mutex_exit(bgep->genlock);
4183 	return (result);
4184 }
4185 
4186 /*
4187  * ========== Factotum, implemented as a softint handler ==========
4188  */
4189 
4190 #undef	BGE_DBG
4191 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4192 
4193 static void bge_factotum_error_handler(bge_t *bgep);
4194 #pragma	no_inline(bge_factotum_error_handler)
4195 
4196 static void
4197 bge_factotum_error_handler(bge_t *bgep)
4198 {
4199 	uint32_t flow;
4200 	uint32_t rdma;
4201 	uint32_t wdma;
4202 	uint32_t tmac;
4203 	uint32_t rmac;
4204 	uint32_t rxrs;
4205 	uint32_t txrs = 0;
4206 
4207 	ASSERT(mutex_owned(bgep->genlock));
4208 
4209 	/*
4210 	 * Read all the registers that show the possible
4211 	 * reasons for the ERROR bit to be asserted
4212 	 */
4213 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4214 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4215 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4216 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4217 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4218 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4219 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4220 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4221 
4222 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4223 	    (void *)bgep, flow, rdma, wdma));
4224 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4225 	    (void *)bgep, tmac, rmac, rxrs, txrs));
4226 
4227 	/*
4228 	 * For now, just clear all the errors ...
4229 	 */
4230 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4231 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4232 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4233 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4234 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4235 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4236 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4237 }
4238 
4239 /*
4240  * Handler for hardware link state change.
4241  *
4242  * When this routine is called, the hardware link state has changed
4243  * and the new state is reflected in the param_* variables.  Here
4244  * we must update the softstate and reprogram the MAC to match.
4245  */
4246 static void bge_factotum_link_handler(bge_t *bgep);
4247 #pragma	no_inline(bge_factotum_link_handler)
4248 
4249 static void
4250 bge_factotum_link_handler(bge_t *bgep)
4251 {
4252 	ASSERT(mutex_owned(bgep->genlock));
4253 
4254 	/*
4255 	 * Update the s/w link_state
4256 	 */
4257 	if (bgep->param_link_up)
4258 		bgep->link_state = LINK_STATE_UP;
4259 	else
4260 		bgep->link_state = LINK_STATE_DOWN;
4261 
4262 	/*
4263 	 * Reprogram the MAC modes to match
4264 	 */
4265 	bge_sync_mac_modes(bgep);
4266 }
4267 
4268 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4269 #pragma	no_inline(bge_factotum_link_check)
4270 
4271 static boolean_t
4272 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4273 {
4274 	boolean_t check;
4275 	uint64_t flags;
4276 	uint32_t tmac_status;
4277 
4278 	ASSERT(mutex_owned(bgep->genlock));
4279 
4280 	/*
4281 	 * Get & clear the writable status bits in the Tx status register
4282 	 * (some bits are write-1-to-clear, others are just readonly).
4283 	 */
4284 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4285 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4286 
4287 	/*
4288 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4289 	 */
4290 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4291 	    STATUS_FLAG_LINK_CHANGED, &flags);
4292 	if (*dma_state != DDI_FM_OK)
4293 		return (B_FALSE);
4294 
4295 	/*
4296 	 * Clear any errors flagged in the status block ...
4297 	 */
4298 	if (flags & STATUS_FLAG_ERROR)
4299 		bge_factotum_error_handler(bgep);
4300 
4301 	/*
4302 	 * We need to check the link status if:
4303 	 *	the status block says there's been a link change
4304 	 *	or there's any discrepancy between the various
4305 	 *	flags indicating the link state (link_state,
4306 	 *	param_link_up, and the LINK STATE bit in the
4307 	 *	Transmit MAC status register).
4308 	 */
4309 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4310 	switch (bgep->link_state) {
4311 	case LINK_STATE_UP:
4312 		check |= (bgep->param_link_up == B_FALSE);
4313 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4314 		break;
4315 
4316 	case LINK_STATE_DOWN:
4317 		check |= (bgep->param_link_up != B_FALSE);
4318 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4319 		break;
4320 
4321 	default:
4322 		check = B_TRUE;
4323 		break;
4324 	}
4325 
4326 	/*
4327 	 * If <check> is false, we're sure the link hasn't changed.
4328 	 * If true, however, it's not yet definitive; we have to call
4329 	 * bge_phys_check() to determine whether the link has settled
4330 	 * into a new state yet ... and if it has, then call the link
4331 	 * state change handler.But when the chip is 5700 in Dell 6650
4332 	 * ,even if check is false, the link may have changed.So we
4333 	 * have to call bge_phys_check() to determine the link state.
4334 	 */
4335 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4336 		check = bge_phys_check(bgep);
4337 		if (check)
4338 			bge_factotum_link_handler(bgep);
4339 	}
4340 
4341 	return (check);
4342 }
4343 
4344 /*
4345  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4346  */
4347 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4348 #pragma	no_inline(bge_factotum_stall_check)
4349 
4350 static boolean_t
4351 bge_factotum_stall_check(bge_t *bgep)
4352 {
4353 	uint32_t dogval;
4354 
4355 	ASSERT(mutex_owned(bgep->genlock));
4356 
4357 	/*
4358 	 * Specific check for Tx stall ...
4359 	 *
4360 	 * The 'watchdog' counter is incremented whenever a packet
4361 	 * is queued, reset to 1 when some (but not all) buffers
4362 	 * are reclaimed, reset to 0 (disabled) when all buffers
4363 	 * are reclaimed, and shifted left here.  If it exceeds the
4364 	 * threshold value, the chip is assumed to have stalled and
4365 	 * is put into the ERROR state.  The factotum will then reset
4366 	 * it on the next pass.
4367 	 *
4368 	 * All of which should ensure that we don't get into a state
4369 	 * where packets are left pending indefinitely!
4370 	 */
4371 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4372 	if (dogval < bge_watchdog_count)
4373 		return (B_FALSE);
4374 
4375 #if !defined(BGE_NETCONSOLE)
4376 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4377 #endif
4378 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4379 	return (B_TRUE);
4380 }
4381 
4382 /*
4383  * The factotum is woken up when there's something to do that we'd rather
4384  * not do from inside a hardware interrupt handler or high-level cyclic.
4385  * Its two main tasks are:
4386  *	reset & restart the chip after an error
4387  *	check the link status whenever necessary
4388  */
4389 uint_t bge_chip_factotum(caddr_t arg);
4390 #pragma	no_inline(bge_chip_factotum)
4391 
4392 uint_t
4393 bge_chip_factotum(caddr_t arg)
4394 {
4395 	bge_t *bgep;
4396 	uint_t result;
4397 	boolean_t error;
4398 	boolean_t linkchg;
4399 	int dma_state;
4400 
4401 	bgep = (bge_t *)arg;
4402 
4403 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4404 
4405 	mutex_enter(bgep->softintrlock);
4406 	if (bgep->factotum_flag == 0) {
4407 		mutex_exit(bgep->softintrlock);
4408 		return (DDI_INTR_UNCLAIMED);
4409 	}
4410 	bgep->factotum_flag = 0;
4411 	mutex_exit(bgep->softintrlock);
4412 
4413 	result = DDI_INTR_CLAIMED;
4414 	error = B_FALSE;
4415 	linkchg = B_FALSE;
4416 
4417 	mutex_enter(bgep->genlock);
4418 	switch (bgep->bge_chip_state) {
4419 	default:
4420 		break;
4421 
4422 	case BGE_CHIP_RUNNING:
4423 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4424 		error = bge_factotum_stall_check(bgep);
4425 		if (dma_state != DDI_FM_OK) {
4426 			bgep->bge_dma_error = B_TRUE;
4427 			error = B_TRUE;
4428 		}
4429 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4430 			error = B_TRUE;
4431 		if (error)
4432 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4433 		break;
4434 
4435 	case BGE_CHIP_ERROR:
4436 		error = B_TRUE;
4437 		break;
4438 
4439 	case BGE_CHIP_FAULT:
4440 		/*
4441 		 * Fault detected, time to reset ...
4442 		 */
4443 		if (bge_autorecover) {
4444 			if (!(bgep->progress & PROGRESS_BUFS)) {
4445 				/*
4446 				 * if we can't allocate the ring buffers,
4447 				 * try later
4448 				 */
4449 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4450 					mutex_exit(bgep->genlock);
4451 					return (result);
4452 				}
4453 				bgep->progress |= PROGRESS_BUFS;
4454 			}
4455 			if (!(bgep->progress & PROGRESS_INTR)) {
4456 				bge_init_rings(bgep);
4457 				bge_intr_enable(bgep);
4458 				bgep->progress |= PROGRESS_INTR;
4459 			}
4460 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4461 				bge_init_kstats(bgep,
4462 				    ddi_get_instance(bgep->devinfo));
4463 				bgep->progress |= PROGRESS_KSTATS;
4464 			}
4465 
4466 			BGE_REPORT((bgep, "automatic recovery activated"));
4467 
4468 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4469 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4470 				error = B_TRUE;
4471 			}
4472 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4473 			    DDI_FM_OK) {
4474 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4475 				error = B_TRUE;
4476 			}
4477 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4478 			    DDI_FM_OK) {
4479 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4480 				error = B_TRUE;
4481 			}
4482 			if (error == B_FALSE) {
4483 #ifdef BGE_IPMI_ASF
4484 				if (bgep->asf_enabled &&
4485 				    bgep->asf_status != ASF_STAT_RUN) {
4486 					bgep->asf_timeout_id = timeout(
4487 					    bge_asf_heartbeat, (void *)bgep,
4488 					    drv_usectohz(
4489 					    BGE_ASF_HEARTBEAT_INTERVAL));
4490 					bgep->asf_status = ASF_STAT_RUN;
4491 				}
4492 #endif
4493 				if (!bgep->manual_reset) {
4494 					ddi_fm_service_impact(bgep->devinfo,
4495 					    DDI_SERVICE_RESTORED);
4496 				}
4497 			}
4498 		}
4499 		break;
4500 	}
4501 
4502 
4503 	/*
4504 	 * If an error is detected, stop the chip now, marking it as
4505 	 * faulty, so that it will be reset next time through ...
4506 	 *
4507 	 * Note that if intr_running is set, then bge_intr() has dropped
4508 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4509 	 * this point so have to wait until the next time the factotum runs.
4510 	 */
4511 	if (error && !bgep->bge_intr_running) {
4512 #ifdef BGE_IPMI_ASF
4513 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4514 			/*
4515 			 * We must stop ASF heart beat before bge_chip_stop(),
4516 			 * otherwise some computers (ex. IBM HS20 blade server)
4517 			 * may crash.
4518 			 */
4519 			bge_asf_update_status(bgep);
4520 			bge_asf_stop_timer(bgep);
4521 			bgep->asf_status = ASF_STAT_STOP;
4522 
4523 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4524 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4525 		}
4526 #endif
4527 		bge_chip_stop(bgep, B_TRUE);
4528 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4529 	}
4530 	mutex_exit(bgep->genlock);
4531 
4532 	/*
4533 	 * If the link state changed, tell the world about it.
4534 	 * Note: can't do this while still holding the mutex.
4535 	 */
4536 	if (bgep->link_update_timer == BGE_LINK_UPDATE_TIMEOUT &&
4537 	    bgep->link_state != LINK_STATE_UNKNOWN)
4538 		linkchg = B_TRUE;
4539 	else if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT &&
4540 	    bgep->link_state == LINK_STATE_DOWN)
4541 		linkchg = B_FALSE;
4542 
4543 	if (linkchg) {
4544 		mac_link_update(bgep->mh, bgep->link_state);
4545 		bgep->link_update_timer = BGE_LINK_UPDATE_DONE;
4546 	}
4547 	if (bgep->manual_reset) {
4548 		bgep->manual_reset = B_FALSE;
4549 	}
4550 
4551 	return (result);
4552 }
4553 
4554 /*
4555  * High-level cyclic handler
4556  *
4557  * This routine schedules a (low-level) softint callback to the
4558  * factotum, and prods the chip to update the status block (which
4559  * will cause a hardware interrupt when complete).
4560  */
4561 void bge_chip_cyclic(void *arg);
4562 #pragma	no_inline(bge_chip_cyclic)
4563 
4564 void
4565 bge_chip_cyclic(void *arg)
4566 {
4567 	bge_t *bgep;
4568 
4569 	bgep = arg;
4570 
4571 	switch (bgep->bge_chip_state) {
4572 	default:
4573 		return;
4574 
4575 	case BGE_CHIP_RUNNING:
4576 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4577 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4578 			ddi_fm_service_impact(bgep->devinfo,
4579 			    DDI_SERVICE_UNAFFECTED);
4580 
4581 		if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT)
4582 			bgep->link_update_timer++;
4583 
4584 		break;
4585 
4586 	case BGE_CHIP_FAULT:
4587 	case BGE_CHIP_ERROR:
4588 		break;
4589 	}
4590 
4591 	bge_wake_factotum(bgep);
4592 }
4593 
4594 
4595 /*
4596  * ========== Ioctl subfunctions ==========
4597  */
4598 
4599 #undef	BGE_DBG
4600 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4601 
4602 #if	BGE_DEBUGGING || BGE_DO_PPIO
4603 
4604 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4605 #pragma	no_inline(bge_chip_peek_cfg)
4606 
4607 static void
4608 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4609 {
4610 	uint64_t regval;
4611 	uint64_t regno;
4612 
4613 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4614 	    (void *)bgep, (void *)ppd));
4615 
4616 	regno = ppd->pp_acc_offset;
4617 
4618 	switch (ppd->pp_acc_size) {
4619 	case 1:
4620 		regval = pci_config_get8(bgep->cfg_handle, regno);
4621 		break;
4622 
4623 	case 2:
4624 		regval = pci_config_get16(bgep->cfg_handle, regno);
4625 		break;
4626 
4627 	case 4:
4628 		regval = pci_config_get32(bgep->cfg_handle, regno);
4629 		break;
4630 
4631 	case 8:
4632 		regval = pci_config_get64(bgep->cfg_handle, regno);
4633 		break;
4634 	}
4635 
4636 	ppd->pp_acc_data = regval;
4637 }
4638 
4639 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4640 #pragma	no_inline(bge_chip_poke_cfg)
4641 
4642 static void
4643 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4644 {
4645 	uint64_t regval;
4646 	uint64_t regno;
4647 
4648 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4649 	    (void *)bgep, (void *)ppd));
4650 
4651 	regno = ppd->pp_acc_offset;
4652 	regval = ppd->pp_acc_data;
4653 
4654 	switch (ppd->pp_acc_size) {
4655 	case 1:
4656 		pci_config_put8(bgep->cfg_handle, regno, regval);
4657 		break;
4658 
4659 	case 2:
4660 		pci_config_put16(bgep->cfg_handle, regno, regval);
4661 		break;
4662 
4663 	case 4:
4664 		pci_config_put32(bgep->cfg_handle, regno, regval);
4665 		break;
4666 
4667 	case 8:
4668 		pci_config_put64(bgep->cfg_handle, regno, regval);
4669 		break;
4670 	}
4671 }
4672 
4673 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4674 #pragma	no_inline(bge_chip_peek_reg)
4675 
4676 static void
4677 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4678 {
4679 	uint64_t regval;
4680 	void *regaddr;
4681 
4682 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4683 	    (void *)bgep, (void *)ppd));
4684 
4685 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4686 
4687 	switch (ppd->pp_acc_size) {
4688 	case 1:
4689 		regval = ddi_get8(bgep->io_handle, regaddr);
4690 		break;
4691 
4692 	case 2:
4693 		regval = ddi_get16(bgep->io_handle, regaddr);
4694 		break;
4695 
4696 	case 4:
4697 		regval = ddi_get32(bgep->io_handle, regaddr);
4698 		break;
4699 
4700 	case 8:
4701 		regval = ddi_get64(bgep->io_handle, regaddr);
4702 		break;
4703 	}
4704 
4705 	ppd->pp_acc_data = regval;
4706 }
4707 
4708 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4709 #pragma	no_inline(bge_chip_peek_reg)
4710 
4711 static void
4712 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4713 {
4714 	uint64_t regval;
4715 	void *regaddr;
4716 
4717 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4718 	    (void *)bgep, (void *)ppd));
4719 
4720 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4721 	regval = ppd->pp_acc_data;
4722 
4723 	switch (ppd->pp_acc_size) {
4724 	case 1:
4725 		ddi_put8(bgep->io_handle, regaddr, regval);
4726 		break;
4727 
4728 	case 2:
4729 		ddi_put16(bgep->io_handle, regaddr, regval);
4730 		break;
4731 
4732 	case 4:
4733 		ddi_put32(bgep->io_handle, regaddr, regval);
4734 		break;
4735 
4736 	case 8:
4737 		ddi_put64(bgep->io_handle, regaddr, regval);
4738 		break;
4739 	}
4740 	BGE_PCICHK(bgep);
4741 }
4742 
4743 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4744 #pragma	no_inline(bge_chip_peek_nic)
4745 
4746 static void
4747 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4748 {
4749 	uint64_t regoff;
4750 	uint64_t regval;
4751 	void *regaddr;
4752 
4753 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4754 	    (void *)bgep, (void *)ppd));
4755 
4756 	regoff = ppd->pp_acc_offset;
4757 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4758 	regoff &= MWBAR_GRANULE_MASK;
4759 	regoff += NIC_MEM_WINDOW_OFFSET;
4760 	regaddr = PIO_ADDR(bgep, regoff);
4761 
4762 	switch (ppd->pp_acc_size) {
4763 	case 1:
4764 		regval = ddi_get8(bgep->io_handle, regaddr);
4765 		break;
4766 
4767 	case 2:
4768 		regval = ddi_get16(bgep->io_handle, regaddr);
4769 		break;
4770 
4771 	case 4:
4772 		regval = ddi_get32(bgep->io_handle, regaddr);
4773 		break;
4774 
4775 	case 8:
4776 		regval = ddi_get64(bgep->io_handle, regaddr);
4777 		break;
4778 	}
4779 
4780 	ppd->pp_acc_data = regval;
4781 }
4782 
4783 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4784 #pragma	no_inline(bge_chip_poke_nic)
4785 
4786 static void
4787 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4788 {
4789 	uint64_t regoff;
4790 	uint64_t regval;
4791 	void *regaddr;
4792 
4793 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4794 	    (void *)bgep, (void *)ppd));
4795 
4796 	regoff = ppd->pp_acc_offset;
4797 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4798 	regoff &= MWBAR_GRANULE_MASK;
4799 	regoff += NIC_MEM_WINDOW_OFFSET;
4800 	regaddr = PIO_ADDR(bgep, regoff);
4801 	regval = ppd->pp_acc_data;
4802 
4803 	switch (ppd->pp_acc_size) {
4804 	case 1:
4805 		ddi_put8(bgep->io_handle, regaddr, regval);
4806 		break;
4807 
4808 	case 2:
4809 		ddi_put16(bgep->io_handle, regaddr, regval);
4810 		break;
4811 
4812 	case 4:
4813 		ddi_put32(bgep->io_handle, regaddr, regval);
4814 		break;
4815 
4816 	case 8:
4817 		ddi_put64(bgep->io_handle, regaddr, regval);
4818 		break;
4819 	}
4820 	BGE_PCICHK(bgep);
4821 }
4822 
4823 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4824 #pragma	no_inline(bge_chip_peek_mii)
4825 
4826 static void
4827 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4828 {
4829 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4830 	    (void *)bgep, (void *)ppd));
4831 
4832 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4833 }
4834 
4835 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4836 #pragma	no_inline(bge_chip_poke_mii)
4837 
4838 static void
4839 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4840 {
4841 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4842 	    (void *)bgep, (void *)ppd));
4843 
4844 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4845 }
4846 
4847 #if	BGE_SEE_IO32
4848 
4849 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4850 #pragma	no_inline(bge_chip_peek_seeprom)
4851 
4852 static void
4853 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4854 {
4855 	uint32_t data;
4856 	int err;
4857 
4858 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4859 	    (void *)bgep, (void *)ppd));
4860 
4861 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4862 	ppd->pp_acc_data = err ? ~0ull : data;
4863 }
4864 
4865 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4866 #pragma	no_inline(bge_chip_poke_seeprom)
4867 
4868 static void
4869 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4870 {
4871 	uint32_t data;
4872 
4873 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4874 	    (void *)bgep, (void *)ppd));
4875 
4876 	data = ppd->pp_acc_data;
4877 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4878 }
4879 #endif	/* BGE_SEE_IO32 */
4880 
4881 #if	BGE_FLASH_IO32
4882 
4883 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4884 #pragma	no_inline(bge_chip_peek_flash)
4885 
4886 static void
4887 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4888 {
4889 	uint32_t data;
4890 	int err;
4891 
4892 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4893 	    (void *)bgep, (void *)ppd));
4894 
4895 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4896 	ppd->pp_acc_data = err ? ~0ull : data;
4897 }
4898 
4899 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4900 #pragma	no_inline(bge_chip_poke_flash)
4901 
4902 static void
4903 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4904 {
4905 	uint32_t data;
4906 
4907 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
4908 	    (void *)bgep, (void *)ppd));
4909 
4910 	data = ppd->pp_acc_data;
4911 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
4912 	    ppd->pp_acc_offset, &data);
4913 }
4914 #endif	/* BGE_FLASH_IO32 */
4915 
4916 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4917 #pragma	no_inline(bge_chip_peek_mem)
4918 
4919 static void
4920 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4921 {
4922 	uint64_t regval;
4923 	void *vaddr;
4924 
4925 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
4926 	    (void *)bgep, (void *)ppd));
4927 
4928 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4929 
4930 	switch (ppd->pp_acc_size) {
4931 	case 1:
4932 		regval = *(uint8_t *)vaddr;
4933 		break;
4934 
4935 	case 2:
4936 		regval = *(uint16_t *)vaddr;
4937 		break;
4938 
4939 	case 4:
4940 		regval = *(uint32_t *)vaddr;
4941 		break;
4942 
4943 	case 8:
4944 		regval = *(uint64_t *)vaddr;
4945 		break;
4946 	}
4947 
4948 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
4949 	    (void *)bgep, (void *)ppd, regval, vaddr));
4950 
4951 	ppd->pp_acc_data = regval;
4952 }
4953 
4954 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4955 #pragma	no_inline(bge_chip_poke_mem)
4956 
4957 static void
4958 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4959 {
4960 	uint64_t regval;
4961 	void *vaddr;
4962 
4963 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
4964 	    (void *)bgep, (void *)ppd));
4965 
4966 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4967 	regval = ppd->pp_acc_data;
4968 
4969 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
4970 	    (void *)bgep, (void *)ppd, regval, vaddr));
4971 
4972 	switch (ppd->pp_acc_size) {
4973 	case 1:
4974 		*(uint8_t *)vaddr = (uint8_t)regval;
4975 		break;
4976 
4977 	case 2:
4978 		*(uint16_t *)vaddr = (uint16_t)regval;
4979 		break;
4980 
4981 	case 4:
4982 		*(uint32_t *)vaddr = (uint32_t)regval;
4983 		break;
4984 
4985 	case 8:
4986 		*(uint64_t *)vaddr = (uint64_t)regval;
4987 		break;
4988 	}
4989 }
4990 
4991 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4992 					struct iocblk *iocp);
4993 #pragma	no_inline(bge_pp_ioctl)
4994 
4995 static enum ioc_reply
4996 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4997 {
4998 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
4999 	bge_peekpoke_t *ppd;
5000 	dma_area_t *areap;
5001 	uint64_t sizemask;
5002 	uint64_t mem_va;
5003 	uint64_t maxoff;
5004 	boolean_t peek;
5005 
5006 	switch (cmd) {
5007 	default:
5008 		/* NOTREACHED */
5009 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
5010 		return (IOC_INVAL);
5011 
5012 	case BGE_PEEK:
5013 		peek = B_TRUE;
5014 		break;
5015 
5016 	case BGE_POKE:
5017 		peek = B_FALSE;
5018 		break;
5019 	}
5020 
5021 	/*
5022 	 * Validate format of ioctl
5023 	 */
5024 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
5025 		return (IOC_INVAL);
5026 	if (mp->b_cont == NULL)
5027 		return (IOC_INVAL);
5028 	ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr;
5029 
5030 	/*
5031 	 * Validate request parameters
5032 	 */
5033 	switch (ppd->pp_acc_space) {
5034 	default:
5035 		return (IOC_INVAL);
5036 
5037 	case BGE_PP_SPACE_CFG:
5038 		/*
5039 		 * Config space
5040 		 */
5041 		sizemask = 8|4|2|1;
5042 		mem_va = 0;
5043 		maxoff = PCI_CONF_HDR_SIZE;
5044 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5045 		break;
5046 
5047 	case BGE_PP_SPACE_REG:
5048 		/*
5049 		 * Memory-mapped I/O space
5050 		 */
5051 		sizemask = 8|4|2|1;
5052 		mem_va = 0;
5053 		maxoff = RIAAR_REGISTER_MAX;
5054 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
5055 		break;
5056 
5057 	case BGE_PP_SPACE_NIC:
5058 		/*
5059 		 * NIC on-chip memory
5060 		 */
5061 		sizemask = 8|4|2|1;
5062 		mem_va = 0;
5063 		maxoff = MWBAR_ONCHIP_MAX;
5064 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5065 		break;
5066 
5067 	case BGE_PP_SPACE_MII:
5068 		/*
5069 		 * PHY's MII registers
5070 		 * NB: all PHY registers are two bytes, but the
5071 		 * addresses increment in ones (word addressing).
5072 		 * So we scale the address here, then undo the
5073 		 * transformation inside the peek/poke functions.
5074 		 */
5075 		ppd->pp_acc_offset *= 2;
5076 		sizemask = 2;
5077 		mem_va = 0;
5078 		maxoff = (MII_MAXREG+1)*2;
5079 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5080 		break;
5081 
5082 #if	BGE_SEE_IO32
5083 	case BGE_PP_SPACE_SEEPROM:
5084 		/*
5085 		 * Attached SEEPROM(s), if any.
5086 		 * NB: we use the high-order bits of the 'address' as
5087 		 * a device select to accommodate multiple SEEPROMS,
5088 		 * If each one is the maximum size (64kbytes), this
5089 		 * makes them appear contiguous.  Otherwise, there may
5090 		 * be holes in the mapping.  ENxS doesn't have any
5091 		 * SEEPROMs anyway ...
5092 		 */
5093 		sizemask = 4;
5094 		mem_va = 0;
5095 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5096 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5097 		break;
5098 #endif	/* BGE_SEE_IO32 */
5099 
5100 #if	BGE_FLASH_IO32
5101 	case BGE_PP_SPACE_FLASH:
5102 		/*
5103 		 * Attached Flash device (if any); a maximum of one device
5104 		 * is currently supported.  But it can be up to 1MB (unlike
5105 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5106 		 */
5107 		sizemask = 4;
5108 		mem_va = 0;
5109 		maxoff = NVM_FLASH_ADDR_MASK;
5110 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5111 		break;
5112 #endif	/* BGE_FLASH_IO32 */
5113 
5114 	case BGE_PP_SPACE_BGE:
5115 		/*
5116 		 * BGE data structure!
5117 		 */
5118 		sizemask = 8|4|2|1;
5119 		mem_va = (uintptr_t)bgep;
5120 		maxoff = sizeof (*bgep);
5121 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5122 		break;
5123 
5124 	case BGE_PP_SPACE_STATUS:
5125 	case BGE_PP_SPACE_STATISTICS:
5126 	case BGE_PP_SPACE_TXDESC:
5127 	case BGE_PP_SPACE_TXBUFF:
5128 	case BGE_PP_SPACE_RXDESC:
5129 	case BGE_PP_SPACE_RXBUFF:
5130 		/*
5131 		 * Various DMA_AREAs
5132 		 */
5133 		switch (ppd->pp_acc_space) {
5134 		case BGE_PP_SPACE_TXDESC:
5135 			areap = &bgep->tx_desc;
5136 			break;
5137 		case BGE_PP_SPACE_TXBUFF:
5138 			areap = &bgep->tx_buff[0];
5139 			break;
5140 		case BGE_PP_SPACE_RXDESC:
5141 			areap = &bgep->rx_desc[0];
5142 			break;
5143 		case BGE_PP_SPACE_RXBUFF:
5144 			areap = &bgep->rx_buff[0];
5145 			break;
5146 		case BGE_PP_SPACE_STATUS:
5147 			areap = &bgep->status_block;
5148 			break;
5149 		case BGE_PP_SPACE_STATISTICS:
5150 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5151 				areap = &bgep->statistics;
5152 			break;
5153 		}
5154 
5155 		sizemask = 8|4|2|1;
5156 		mem_va = (uintptr_t)areap->mem_va;
5157 		maxoff = areap->alength;
5158 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5159 		break;
5160 	}
5161 
5162 	switch (ppd->pp_acc_size) {
5163 	default:
5164 		return (IOC_INVAL);
5165 
5166 	case 8:
5167 	case 4:
5168 	case 2:
5169 	case 1:
5170 		if ((ppd->pp_acc_size & sizemask) == 0)
5171 			return (IOC_INVAL);
5172 		break;
5173 	}
5174 
5175 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5176 		return (IOC_INVAL);
5177 
5178 	if (ppd->pp_acc_offset >= maxoff)
5179 		return (IOC_INVAL);
5180 
5181 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5182 		return (IOC_INVAL);
5183 
5184 	/*
5185 	 * All OK - go do it!
5186 	 */
5187 	ppd->pp_acc_offset += mem_va;
5188 	(*ppfn)(bgep, ppd);
5189 	return (peek ? IOC_REPLY : IOC_ACK);
5190 }
5191 
5192 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5193 					struct iocblk *iocp);
5194 #pragma	no_inline(bge_diag_ioctl)
5195 
5196 static enum ioc_reply
5197 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5198 {
5199 	ASSERT(mutex_owned(bgep->genlock));
5200 
5201 	switch (cmd) {
5202 	default:
5203 		/* NOTREACHED */
5204 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5205 		return (IOC_INVAL);
5206 
5207 	case BGE_DIAG:
5208 		/*
5209 		 * Currently a no-op
5210 		 */
5211 		return (IOC_ACK);
5212 
5213 	case BGE_PEEK:
5214 	case BGE_POKE:
5215 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5216 
5217 	case BGE_PHY_RESET:
5218 		return (IOC_RESTART_ACK);
5219 
5220 	case BGE_SOFT_RESET:
5221 	case BGE_HARD_RESET:
5222 		/*
5223 		 * Reset and reinitialise the 570x hardware
5224 		 */
5225 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5226 		ddi_trigger_softintr(bgep->factotum_id);
5227 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5228 		return (IOC_ACK);
5229 	}
5230 
5231 	/* NOTREACHED */
5232 }
5233 
5234 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5235 
5236 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5237 				    struct iocblk *iocp);
5238 #pragma	no_inline(bge_mii_ioctl)
5239 
5240 static enum ioc_reply
5241 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5242 {
5243 	struct bge_mii_rw *miirwp;
5244 
5245 	/*
5246 	 * Validate format of ioctl
5247 	 */
5248 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5249 		return (IOC_INVAL);
5250 	if (mp->b_cont == NULL)
5251 		return (IOC_INVAL);
5252 	miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr;
5253 
5254 	/*
5255 	 * Validate request parameters ...
5256 	 */
5257 	if (miirwp->mii_reg > MII_MAXREG)
5258 		return (IOC_INVAL);
5259 
5260 	switch (cmd) {
5261 	default:
5262 		/* NOTREACHED */
5263 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5264 		return (IOC_INVAL);
5265 
5266 	case BGE_MII_READ:
5267 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5268 		return (IOC_REPLY);
5269 
5270 	case BGE_MII_WRITE:
5271 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5272 		return (IOC_ACK);
5273 	}
5274 
5275 	/* NOTREACHED */
5276 }
5277 
5278 #if	BGE_SEE_IO32
5279 
5280 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5281 				    struct iocblk *iocp);
5282 #pragma	no_inline(bge_see_ioctl)
5283 
5284 static enum ioc_reply
5285 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5286 {
5287 	struct bge_see_rw *seerwp;
5288 
5289 	/*
5290 	 * Validate format of ioctl
5291 	 */
5292 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5293 		return (IOC_INVAL);
5294 	if (mp->b_cont == NULL)
5295 		return (IOC_INVAL);
5296 	seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr;
5297 
5298 	/*
5299 	 * Validate request parameters ...
5300 	 */
5301 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5302 		return (IOC_INVAL);
5303 
5304 	switch (cmd) {
5305 	default:
5306 		/* NOTREACHED */
5307 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5308 		return (IOC_INVAL);
5309 
5310 	case BGE_SEE_READ:
5311 	case BGE_SEE_WRITE:
5312 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5313 		    seerwp->see_addr, &seerwp->see_data);
5314 		return (IOC_REPLY);
5315 	}
5316 
5317 	/* NOTREACHED */
5318 }
5319 
5320 #endif	/* BGE_SEE_IO32 */
5321 
5322 #if	BGE_FLASH_IO32
5323 
5324 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5325 				    struct iocblk *iocp);
5326 #pragma	no_inline(bge_flash_ioctl)
5327 
5328 static enum ioc_reply
5329 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5330 {
5331 	struct bge_flash_rw *flashrwp;
5332 
5333 	/*
5334 	 * Validate format of ioctl
5335 	 */
5336 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5337 		return (IOC_INVAL);
5338 	if (mp->b_cont == NULL)
5339 		return (IOC_INVAL);
5340 	flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr;
5341 
5342 	/*
5343 	 * Validate request parameters ...
5344 	 */
5345 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5346 		return (IOC_INVAL);
5347 
5348 	switch (cmd) {
5349 	default:
5350 		/* NOTREACHED */
5351 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5352 		return (IOC_INVAL);
5353 
5354 	case BGE_FLASH_READ:
5355 	case BGE_FLASH_WRITE:
5356 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5357 		    flashrwp->flash_addr, &flashrwp->flash_data);
5358 		return (IOC_REPLY);
5359 	}
5360 
5361 	/* NOTREACHED */
5362 }
5363 
5364 #endif	/* BGE_FLASH_IO32 */
5365 
5366 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5367 				struct iocblk *iocp);
5368 #pragma	no_inline(bge_chip_ioctl)
5369 
5370 enum ioc_reply
5371 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5372 {
5373 	int cmd;
5374 
5375 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5376 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5377 
5378 	ASSERT(mutex_owned(bgep->genlock));
5379 
5380 	cmd = iocp->ioc_cmd;
5381 	switch (cmd) {
5382 	default:
5383 		/* NOTREACHED */
5384 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5385 		return (IOC_INVAL);
5386 
5387 	case BGE_DIAG:
5388 	case BGE_PEEK:
5389 	case BGE_POKE:
5390 	case BGE_PHY_RESET:
5391 	case BGE_SOFT_RESET:
5392 	case BGE_HARD_RESET:
5393 #if	BGE_DEBUGGING || BGE_DO_PPIO
5394 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5395 #else
5396 		return (IOC_INVAL);
5397 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5398 
5399 	case BGE_MII_READ:
5400 	case BGE_MII_WRITE:
5401 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5402 
5403 #if	BGE_SEE_IO32
5404 	case BGE_SEE_READ:
5405 	case BGE_SEE_WRITE:
5406 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5407 #endif	/* BGE_SEE_IO32 */
5408 
5409 #if	BGE_FLASH_IO32
5410 	case BGE_FLASH_READ:
5411 	case BGE_FLASH_WRITE:
5412 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5413 #endif	/* BGE_FLASH_IO32 */
5414 	}
5415 
5416 	/* NOTREACHED */
5417 }
5418 
5419 void
5420 bge_chip_blank(void *arg, time_t ticks, uint_t count)
5421 {
5422 	bge_t *bgep = arg;
5423 
5424 	mutex_enter(bgep->genlock);
5425 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5426 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5427 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5428 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5429 	mutex_exit(bgep->genlock);
5430 }
5431 
5432 #ifdef BGE_IPMI_ASF
5433 
5434 uint32_t
5435 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5436 {
5437 	uint32_t data;
5438 
5439 #ifndef __sparc
5440 	if (!bgep->asf_wordswapped) {
5441 		/* a workaround word swap error */
5442 		if (addr & 4)
5443 			addr = addr - 4;
5444 		else
5445 			addr = addr + 4;
5446 	}
5447 #endif
5448 
5449 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5450 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5451 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5452 
5453 	data = LE_32(data);
5454 	return (data);
5455 }
5456 
5457 void
5458 bge_asf_update_status(bge_t *bgep)
5459 {
5460 	uint32_t event;
5461 
5462 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5463 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5464 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5465 
5466 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5467 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5468 }
5469 
5470 
5471 /*
5472  * The driver is supposed to notify ASF that the OS is still running
5473  * every three seconds, otherwise the management server may attempt
5474  * to reboot the machine.  If it hasn't actually failed, this is
5475  * not a desirable result.  However, this isn't running as a real-time
5476  * thread, and even if it were, it might not be able to generate the
5477  * heartbeat in a timely manner due to system load.  As it isn't a
5478  * significant strain on the machine, we will set the interval to half
5479  * of the required value.
5480  */
5481 void
5482 bge_asf_heartbeat(void *arg)
5483 {
5484 	bge_t *bgep = (bge_t *)arg;
5485 
5486 	mutex_enter(bgep->genlock);
5487 	bge_asf_update_status((bge_t *)bgep);
5488 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5489 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5490 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5491 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5492 	mutex_exit(bgep->genlock);
5493 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5494 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5495 }
5496 
5497 
5498 void
5499 bge_asf_stop_timer(bge_t *bgep)
5500 {
5501 	timeout_id_t tmp_id = 0;
5502 
5503 	while ((bgep->asf_timeout_id != 0) &&
5504 	    (tmp_id != bgep->asf_timeout_id)) {
5505 		tmp_id = bgep->asf_timeout_id;
5506 		(void) untimeout(tmp_id);
5507 	}
5508 	bgep->asf_timeout_id = 0;
5509 }
5510 
5511 
5512 
5513 /*
5514  * This function should be placed at the earliest position of bge_attach().
5515  */
5516 void
5517 bge_asf_get_config(bge_t *bgep)
5518 {
5519 	uint32_t nicsig;
5520 	uint32_t niccfg;
5521 
5522 	bgep->asf_enabled = B_FALSE;
5523 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5524 	if (nicsig == BGE_NIC_DATA_SIG) {
5525 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5526 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5527 			/*
5528 			 * Here, we don't consider BAXTER, because BGE haven't
5529 			 * supported BAXTER (that is 5752). Also, as I know,
5530 			 * BAXTER doesn't support ASF feature.
5531 			 */
5532 			bgep->asf_enabled = B_TRUE;
5533 		else
5534 			bgep->asf_enabled = B_FALSE;
5535 	} else
5536 		bgep->asf_enabled = B_FALSE;
5537 }
5538 
5539 
5540 void
5541 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5542 {
5543 	uint32_t tries;
5544 	uint32_t event;
5545 
5546 	ASSERT(bgep->asf_enabled);
5547 
5548 	/* Issues "pause firmware" command and wait for ACK */
5549 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5550 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5551 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5552 
5553 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5554 	tries = 0;
5555 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5556 		drv_usecwait(1);
5557 		tries ++;
5558 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5559 	}
5560 
5561 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5562 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5563 
5564 	if (bgep->asf_newhandshake) {
5565 		switch (mode) {
5566 		case BGE_INIT_RESET:
5567 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5568 			    BGE_DRV_STATE_START);
5569 			break;
5570 		case BGE_SHUTDOWN_RESET:
5571 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5572 			    BGE_DRV_STATE_UNLOAD);
5573 			break;
5574 		case BGE_SUSPEND_RESET:
5575 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5576 			    BGE_DRV_STATE_SUSPEND);
5577 			break;
5578 		default:
5579 			break;
5580 		}
5581 	}
5582 }
5583 
5584 
5585 void
5586 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5587 {
5588 	switch (mode) {
5589 	case BGE_INIT_RESET:
5590 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5591 		    BGE_DRV_STATE_START);
5592 		break;
5593 	case BGE_SHUTDOWN_RESET:
5594 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5595 		    BGE_DRV_STATE_UNLOAD);
5596 		break;
5597 	case BGE_SUSPEND_RESET:
5598 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5599 		    BGE_DRV_STATE_SUSPEND);
5600 		break;
5601 	default:
5602 		break;
5603 	}
5604 }
5605 
5606 
5607 void
5608 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5609 {
5610 	switch (mode) {
5611 	case BGE_INIT_RESET:
5612 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5613 		    BGE_DRV_STATE_START_DONE);
5614 		break;
5615 	case BGE_SHUTDOWN_RESET:
5616 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5617 		    BGE_DRV_STATE_UNLOAD_DONE);
5618 		break;
5619 	default:
5620 		break;
5621 	}
5622 }
5623 
5624 #endif /* BGE_IPMI_ASF */
5625