xref: /titanic_44/usr/src/uts/common/io/bge/bge_chip2.c (revision 5e1c24c3b8bea565f7bfcd11a154db168c5d2643)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "sys/bge_impl2.h"
30 
31 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
32 
33 /*
34  * Future features ... ?
35  */
36 #define	BGE_CFG_IO8	0	/* 8/16-bit cfg space BIS/BIC	*/
37 #define	BGE_IND_IO32	0	/* indirect access code		*/
38 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
39 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
40 
41 /*
42  * BGE MSI tunable:
43  *
44  * By default MSI is enabled on all supported platforms but it is disabled
45  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
46  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
47  */
48 #if defined(__sparc)
49 boolean_t bge_enable_msi = B_TRUE;
50 #else
51 boolean_t bge_enable_msi = B_FALSE;
52 #endif
53 
54 /*
55  * Property names
56  */
57 static char knownids_propname[] = "bge-known-subsystems";
58 
59 /*
60  * Patchable globals:
61  *
62  *	bge_autorecover
63  *		Enables/disables automatic recovery after fault detection
64  *
65  *	bge_mlcr_default
66  *		Value to program into the MLCR; controls the chip's GPIO pins
67  *
68  *	bge_dma_{rd,wr}prio
69  *		Relative priorities of DMA reads & DMA writes respectively.
70  *		These may each be patched to any value 0-3.  Equal values
71  *		will give "fair" (round-robin) arbitration for PCI access.
72  *		Unequal values will give one or the other function priority.
73  *
74  *	bge_dma_rwctrl
75  *		Value to put in the Read/Write DMA control register.  See
76  *	        the Broadcom PRM for things you can fiddle with in this
77  *		register ...
78  *
79  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
80  *		Send/receive interrupt coalescing parameters.  Counts are
81  *		#s of descriptors, ticks are in microseconds.  *norm* values
82  *		apply between status updates/interrupts; the *intr* values
83  *		refer to the 'during-interrupt' versions - see the PRM.
84  *
85  *		NOTE: these values have been determined by measurement. They
86  *		differ significantly from the values recommended in the PRM.
87  */
88 static uint32_t bge_autorecover = 1;
89 static uint32_t bge_mlcr_default = MLCR_DEFAULT;
90 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
91 
92 static uint32_t bge_dma_rdprio = 1;
93 static uint32_t bge_dma_wrprio = 0;
94 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
95 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
96 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
97 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
98 
99 uint32_t bge_rx_ticks_norm = 128;
100 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
101 uint32_t bge_rx_count_norm = 8;
102 uint32_t bge_tx_count_norm = 128;
103 
104 static uint32_t bge_rx_ticks_intr = 128;
105 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
106 static uint32_t bge_rx_count_intr = 2;
107 static uint32_t bge_tx_count_intr = 0;
108 
109 /*
110  * Memory pool configuration parameters.
111  *
112  * These are generally specific to each member of the chip family, since
113  * each one may have a different memory size/configuration.
114  *
115  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
116  * the driver from programming the various registers; instead they are left
117  * at their hardware defaults.  This is the preferred option for later chips
118  * (5705+), whereas the older chips *required* these registers to be set,
119  * since the h/w default was 0 ;-(
120  */
121 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
122 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
123 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
124 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
125 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
126 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
127 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
128 static uint32_t bge_mbuf_pool_len_5721	= 0;
129 
130 /*
131  * Various high and low water marks, thresholds, etc ...
132  *
133  * Note: these are taken from revision 7 of the PRM, and some are different
134  * from both the values in earlier PRMs *and* those determined experimentally
135  * and used in earlier versions of this driver ...
136  */
137 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
138 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
139 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
140 
141 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
142 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
143 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
144 
145 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
146 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
147 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
148 
149 static uint32_t	bge_watchdog_count	= 1 << 16;
150 static uint16_t bge_dma_miss_limit	= 20;
151 
152 static uint32_t bge_stop_start_on_sync	= 0;
153 
154 boolean_t bge_jumbo_enable		= B_TRUE;
155 static uint32_t bge_default_jumbo_size	= BGE_JUMBO_BUFF_SIZE;
156 
157 /*
158  * ========== Low-level chip & ring buffer manipulation ==========
159  */
160 
161 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
162 
163 
164 /*
165  * Config space read-modify-write routines
166  */
167 
168 #if	BGE_CFG_IO8
169 
170 /*
171  * 8- and 16-bit set/clr operations are not used; all the config registers
172  * that we need to do bit-twiddling on are 32 bits wide.  I'll leave the
173  * code here, though, in case we ever find that we do want it after all ...
174  */
175 
176 static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
177 #pragma	inline(bge_cfg_set8)
178 
179 static void
180 bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
181 {
182 	uint8_t regval;
183 
184 	BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)",
185 		(void *)bgep, regno, bits));
186 
187 	regval = pci_config_get8(bgep->cfg_handle, regno);
188 
189 	BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 		(void *)bgep, regno, bits, regval, regval | bits));
191 
192 	regval |= bits;
193 	pci_config_put8(bgep->cfg_handle, regno, regval);
194 }
195 
196 static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
197 #pragma	inline(bge_cfg_clr8)
198 
199 static void
200 bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
201 {
202 	uint8_t regval;
203 
204 	BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)",
205 		(void *)bgep, regno, bits));
206 
207 	regval = pci_config_get8(bgep->cfg_handle, regno);
208 
209 	BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
210 		(void *)bgep, regno, bits, regval, regval & ~bits));
211 
212 	regval &= ~bits;
213 	pci_config_put8(bgep->cfg_handle, regno, regval);
214 }
215 
216 static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
217 #pragma	inline(bge_cfg_set16)
218 
219 static void
220 bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
221 {
222 	uint16_t regval;
223 
224 	BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)",
225 		(void *)bgep, regno, bits));
226 
227 	regval = pci_config_get16(bgep->cfg_handle, regno);
228 
229 	BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
230 		(void *)bgep, regno, bits, regval, regval | bits));
231 
232 	regval |= bits;
233 	pci_config_put16(bgep->cfg_handle, regno, regval);
234 }
235 
236 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
237 #pragma	inline(bge_cfg_clr16)
238 
239 static void
240 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
241 {
242 	uint16_t regval;
243 
244 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
245 		(void *)bgep, regno, bits));
246 
247 	regval = pci_config_get16(bgep->cfg_handle, regno);
248 
249 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
250 		(void *)bgep, regno, bits, regval, regval & ~bits));
251 
252 	regval &= ~bits;
253 	pci_config_put16(bgep->cfg_handle, regno, regval);
254 }
255 
256 #endif	/* BGE_CFG_IO8 */
257 
258 static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
259 #pragma	inline(bge_cfg_set32)
260 
261 static void
262 bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
263 {
264 	uint32_t regval;
265 
266 	BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)",
267 		(void *)bgep, regno, bits));
268 
269 	regval = pci_config_get32(bgep->cfg_handle, regno);
270 
271 	BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
272 		(void *)bgep, regno, bits, regval, regval | bits));
273 
274 	regval |= bits;
275 	pci_config_put32(bgep->cfg_handle, regno, regval);
276 }
277 
278 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
279 #pragma	inline(bge_cfg_clr32)
280 
281 static void
282 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
283 {
284 	uint32_t regval;
285 
286 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
287 		(void *)bgep, regno, bits));
288 
289 	regval = pci_config_get32(bgep->cfg_handle, regno);
290 
291 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
292 		(void *)bgep, regno, bits, regval, regval & ~bits));
293 
294 	regval &= ~bits;
295 	pci_config_put32(bgep->cfg_handle, regno, regval);
296 }
297 
298 #if	BGE_IND_IO32
299 
300 /*
301  * Indirect access to registers & RISC scratchpads, using config space
302  * accesses only.
303  *
304  * This isn't currently used, but someday we might want to use it for
305  * restoring the Subsystem Device/Vendor registers (which aren't directly
306  * writable in Config Space), or for downloading firmware into the RISCs
307  *
308  * In any case there are endian issues to be resolved before this code is
309  * enabled; the bizarre way that bytes get twisted by this chip AND by
310  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
311  * it's been thoroughly tested for all access sizes on all supported
312  * architectures (SPARC *and* x86!).
313  */
314 static uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
315 #pragma	inline(bge_ind_get32)
316 
317 static uint32_t
318 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
319 {
320 	uint32_t val;
321 
322 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
323 
324 	ASSERT(mutex_owned(bgep->genlock));
325 
326 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
327 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
328 
329 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
330 		(void *)bgep, regno, val));
331 
332 	return (val);
333 }
334 
335 static void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
336 #pragma	inline(bge_ind_put32)
337 
338 static void
339 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
340 {
341 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
342 		(void *)bgep, regno, val));
343 
344 	ASSERT(mutex_owned(bgep->genlock));
345 
346 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
347 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
348 }
349 
350 #endif	/* BGE_IND_IO32 */
351 
352 #if	BGE_DEBUGGING
353 
354 static void bge_pci_check(bge_t *bgep);
355 #pragma	no_inline(bge_pci_check)
356 
357 static void
358 bge_pci_check(bge_t *bgep)
359 {
360 	uint16_t pcistatus;
361 
362 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
363 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
364 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
365 			(void *)bgep, pcistatus));
366 }
367 
368 #endif	/* BGE_DEBUGGING */
369 
370 /*
371  * Perform first-stage chip (re-)initialisation, using only config-space
372  * accesses:
373  *
374  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
375  *   returning the data in the structure pointed to by <idp>.
376  * + Configure the target-mode endianness (swap) options.
377  * + Disable interrupts and enable Memory Space accesses.
378  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
379  *
380  * This sequence is adapted from Broadcom document 570X-PG102-R,
381  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
382  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
383  *
384  * This function MUST be called before any non-config-space accesses
385  * are made; on this first call <enable_dma> is B_FALSE, and it
386  * effectively performs steps 3-1(!) of the initialisation sequence
387  * (the rest are not required but should be harmless).
388  *
389  * It MUST also be called also after a chip reset, as this disables
390  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
391  * it is effectively performing steps 6-8.
392  */
393 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
394 #pragma	no_inline(bge_chip_cfg_init)
395 
396 void
397 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
398 {
399 	ddi_acc_handle_t handle;
400 	uint16_t command;
401 	uint32_t mhcr;
402 	uint16_t value16;
403 	int i;
404 
405 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
406 		(void *)bgep, (void *)cidp, enable_dma));
407 
408 	/*
409 	 * Step 3: save PCI cache line size and subsystem vendor ID
410 	 *
411 	 * Read all the config-space registers that characterise the
412 	 * chip, specifically vendor/device/revision/subsystem vendor
413 	 * and subsystem device id.  We expect (but don't check) that
414 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
415 	 *
416 	 * Also save all bus-transation related registers (cache-line
417 	 * size, bus-grant/latency parameters, etc).  Some of these are
418 	 * cleared by reset, so we'll have to restore them later.  This
419 	 * comes from the Broadcom document 570X-PG102-R ...
420 	 *
421 	 * Note: Broadcom document 570X-PG102-R seems to be in error
422 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
423 	 * Subsystem (Device) ID registers, which are the opposite way
424 	 * round according to the PCI standard.  For good measure, we
425 	 * save/restore both anyway.
426 	 */
427 	handle = bgep->cfg_handle;
428 
429 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
430 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
431 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
432 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
433 
434 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
435 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
436 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
437 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
438 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
439 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
440 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
441 
442 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
443 		cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
444 		cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
445 		cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
446 		cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
447 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
448 		cidp->vendor, cidp->device, cidp->revision));
449 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
450 		cidp->subven, cidp->subdev, cidp->asic_rev));
451 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
452 		cidp->clsize, cidp->latency, cidp->command));
453 
454 	/*
455 	 * Step 2 (also step 6): disable and clear interrupts.
456 	 * Steps 11-13: configure PIO endianness options, and enable
457 	 * indirect register access.  We'll also select any other
458 	 * options controlled by the MHCR (eg tagged status, mask
459 	 * interrupt mode) at this stage ...
460 	 *
461 	 * Note: internally, the chip is 64-bit and BIG-endian, but
462 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
463 	 * it normally swaps bytes around at the PCI interface.
464 	 * However, the PCI host bridge on SPARC systems normally
465 	 * swaps the byte lanes around too, since SPARCs are also
466 	 * BIG-endian.  So it turns out that on SPARC, the right
467 	 * option is to tell the chip to swap (and the host bridge
468 	 * will swap back again), whereas on x86 we ask the chip
469 	 * NOT to swap, so the natural little-endianness of the
470 	 * PCI bus is assumed.  Then the only thing that doesn't
471 	 * automatically work right is access to an 8-byte register
472 	 * by a little-endian host; but we don't want to set the
473 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
474 	 * accesses don't go where expected ;-(  So we live with
475 	 * that, and perform word-swaps in software in the few cases
476 	 * where a chip register is defined as an 8-byte value --
477 	 * see the code below for details ...
478 	 *
479 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
480 	 * very clear in the register description in the PRM, but
481 	 * Broadcom document 570X-PG104-R page 248 explains a little
482 	 * more (under "Broadcom Mask Mode").  The bit changes the way
483 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
484 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
485 	 * way as the 5700 did, which isn't very convenient.  Setting
486 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
487 	 * bit do just what its name says -- MASK the PCI #INTA output
488 	 * (i.e. deassert the signal at the pin) leaving all internal
489 	 * state unchanged.  This is much more convenient for our
490 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
491 	 *
492 	 * Note: the inconvenient semantics of the interrupt mailbox
493 	 * (nonzero disables and acknowledges/clears the interrupt,
494 	 * zero enables AND CLEARS it) would make race conditions
495 	 * likely in the interrupt handler:
496 	 *
497 	 * (1)	acknowledge & disable interrupts
498 	 * (2)	while (more to do)
499 	 * 		process packets
500 	 * (3)	enable interrupts -- also clears pending
501 	 *
502 	 * If the chip received more packets and internally generated
503 	 * an interrupt between the check at (2) and the mbox write
504 	 * at (3), this interrupt would be lost :-(
505 	 *
506 	 * The best way to avoid this is to use TAGGED STATUS mode,
507 	 * where the chip includes a unique tag in each status block
508 	 * update, and the host, when re-enabling interrupts, passes
509 	 * the last tag it saw back to the chip; then the chip can
510 	 * see whether the host is truly up to date, and regenerate
511 	 * its interrupt if not.
512 	 */
513 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
514 		MHCR_ENABLE_TAGGED_STATUS_MODE |
515 		MHCR_MASK_INTERRUPT_MODE |
516 		MHCR_CLEAR_INTERRUPT_INTA;
517 
518 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
519 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
520 
521 #ifdef	_BIG_ENDIAN
522 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
523 #endif	/* _BIG_ENDIAN */
524 
525 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
526 
527 #ifdef BGE_IPMI_ASF
528 	bgep->asf_wordswapped = B_FALSE;
529 #endif
530 	/*
531 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
532 	 *			 Disable Memory Write/Invalidate
533 	 *			 Enable or disable Bus Mastering
534 	 *
535 	 * Note that all other bits are taken from the original value saved
536 	 * the first time through here, rather than from the current register
537 	 * value, 'cos that will have been cleared by a soft RESET since.
538 	 * In this way we preserve the OBP/nexus-parent's preferred settings
539 	 * of the parity-error and system-error enable bits across multiple
540 	 * chip RESETs.
541 	 *
542 	 * Step 8: Disable PCI-X Relaxed Ordering -- doesn't apply
543 	 */
544 	command = bgep->chipid.command | PCI_COMM_MAE;
545 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
546 	if (enable_dma)
547 		command |= PCI_COMM_ME;
548 	/*
549 	 * on BCM5714 revision A0, false parity error gets generated
550 	 * due to a logic bug. Provide a workaround by disabling parrity
551 	 * error.
552 	 */
553 	if (((cidp->device == DEVICE_ID_5714C) ||
554 	    (cidp->device == DEVICE_ID_5714S)) &&
555 	    (cidp->revision == REVISION_ID_5714_A0)) {
556 		command &= ~PCI_COMM_PARITY_DETECT;
557 	}
558 	pci_config_put16(handle, PCI_CONF_COMM, command);
559 
560 	/*
561 	 * On some PCI-E device, there were instances when
562 	 * the device was still link training.
563 	 */
564 	if (bgep->chipid.pci_type == BGE_PCI_E) {
565 		i = 0;
566 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
567 		while ((value16 != command) && (i < 100)) {
568 			drv_usecwait(200);
569 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
570 			++i;
571 		}
572 	}
573 
574 	/*
575 	 * Clear any remaining error status bits
576 	 */
577 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
578 
579 	/*
580 	 * Make sure these indirect-access registers are sane
581 	 * rather than random after power-up or reset
582 	 *
583 	 * For BCM5714C A3 silicon to avoid resource deadlocking
584 	 */
585 	if ((cidp->device == DEVICE_ID_5714C) &&
586 		(cidp->revision == REVISION_ID_5714_A3)) {
587 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0x4900);
588 		pci_config_put32(handle, PCI_CONF_BGE_RIADR, 1);
589 	} else {
590 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
591 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
592 	}
593 }
594 
595 #ifdef __amd64
596 /*
597  * Distinguish CPU types
598  *
599  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
600  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
601  * for PCI-Express based network interface card. This is the work-around
602  * for those nics.
603  */
604 static boolean_t bge_get_em64t_type(void);
605 #pragma	inline(bge_get_em64t_type)
606 
607 static boolean_t
608 bge_get_em64t_type(void)
609 {
610 
611 	return (x86_vendor == X86_VENDOR_Intel);
612 }
613 #endif
614 
615 /*
616  * Operating register get/set access routines
617  */
618 
619 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
620 #pragma	inline(bge_reg_get32)
621 
622 uint32_t
623 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
624 {
625 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
626 		(void *)bgep, regno));
627 
628 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
629 }
630 
631 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
632 #pragma	inline(bge_reg_put32)
633 
634 void
635 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
636 {
637 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
638 		(void *)bgep, regno, data));
639 
640 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
641 	BGE_PCICHK(bgep);
642 }
643 
644 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
645 #pragma	inline(bge_reg_set32)
646 
647 void
648 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
649 {
650 	uint32_t regval;
651 
652 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
653 		(void *)bgep, regno, bits));
654 
655 	regval = bge_reg_get32(bgep, regno);
656 	regval |= bits;
657 	bge_reg_put32(bgep, regno, regval);
658 }
659 
660 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
661 #pragma	inline(bge_reg_clr32)
662 
663 void
664 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
665 {
666 	uint32_t regval;
667 
668 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
669 		(void *)bgep, regno, bits));
670 
671 	regval = bge_reg_get32(bgep, regno);
672 	regval &= ~bits;
673 	bge_reg_put32(bgep, regno, regval);
674 }
675 
676 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
677 #pragma	inline(bge_reg_get64)
678 
679 static uint64_t
680 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
681 {
682 	uint64_t regval;
683 
684 #ifdef	__amd64
685 	if (bge_get_em64t_type()) {
686 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
687 		regval <<= 32;
688 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
689 	} else {
690 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
691 	}
692 #else
693 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
694 #endif
695 
696 #ifdef	_LITTLE_ENDIAN
697 	regval = (regval >> 32) | (regval << 32);
698 #endif	/* _LITTLE_ENDIAN */
699 
700 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
701 		(void *)bgep, regno, regval));
702 
703 	return (regval);
704 }
705 
706 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
707 #pragma	inline(bge_reg_put64)
708 
709 static void
710 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
711 {
712 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
713 		(void *)bgep, regno, data));
714 
715 #ifdef	_LITTLE_ENDIAN
716 	data = ((data >> 32) | (data << 32));
717 #endif	/* _LITTLE_ENDIAN */
718 
719 #ifdef	__amd64
720 	if (bge_get_em64t_type()) {
721 		ddi_put32(bgep->io_handle,
722 			PIO_ADDR(bgep, regno), (uint32_t)data);
723 		BGE_PCICHK(bgep);
724 		ddi_put32(bgep->io_handle,
725 			PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
726 
727 	} else {
728 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
729 	}
730 #else
731 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
732 #endif
733 
734 	BGE_PCICHK(bgep);
735 }
736 
737 /*
738  * The DDI doesn't provide get/put functions for 128 bit data
739  * so we put RCBs out as two 64-bit chunks instead.
740  */
741 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
742 #pragma	inline(bge_reg_putrcb)
743 
744 static void
745 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
746 {
747 	uint64_t *p;
748 
749 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
750 		(void *)bgep, addr, rcbp->host_ring_addr,
751 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
752 
753 	ASSERT((addr % sizeof (*rcbp)) == 0);
754 
755 	p = (void *)rcbp;
756 	bge_reg_put64(bgep, addr, *p++);
757 	bge_reg_put64(bgep, addr+8, *p);
758 }
759 
760 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
761 #pragma	inline(bge_mbx_put)
762 
763 void
764 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
765 {
766 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
767 		(void *)bgep, regno, data));
768 
769 	/*
770 	 * Mailbox registers are nominally 64 bits on the 5701, but
771 	 * the MSW isn't used.  On the 5703, they're only 32 bits
772 	 * anyway.  So here we just write the lower(!) 32 bits -
773 	 * remembering that the chip is big-endian, even though the
774 	 * PCI bus is little-endian ...
775 	 */
776 #ifdef	_BIG_ENDIAN
777 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
778 #else
779 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
780 #endif	/* _BIG_ENDIAN */
781 	BGE_PCICHK(bgep);
782 }
783 
784 #if	BGE_DEBUGGING
785 
786 void bge_led_mark(bge_t *bgep);
787 #pragma	no_inline(bge_led_mark)
788 
789 void
790 bge_led_mark(bge_t *bgep)
791 {
792 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
793 			    LED_CONTROL_1000MBPS_LED |
794 			    LED_CONTROL_100MBPS_LED |
795 			    LED_CONTROL_10MBPS_LED;
796 
797 	/*
798 	 * Blink all three LINK LEDs on simultaneously, then all off,
799 	 * then restore to automatic hardware control.  This is used
800 	 * in laboratory testing to trigger a logic analyser or scope.
801 	 */
802 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
803 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
804 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
805 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
806 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
807 }
808 
809 #endif	/* BGE_DEBUGGING */
810 
811 /*
812  * NIC on-chip memory access routines
813  *
814  * Only 32K of NIC memory is visible at a time, controlled by the
815  * Memory Window Base Address Register (in PCI config space).  Once
816  * this is set, the 32K region of NIC-local memory that it refers
817  * to can be directly addressed in the upper 32K of the 64K of PCI
818  * memory space used for the device.
819  */
820 
821 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
822 #pragma	inline(bge_nic_setwin)
823 
824 static void
825 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
826 {
827 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
828 		(void *)bgep, base));
829 
830 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
831 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
832 }
833 
834 
835 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
836 #pragma	inline(bge_nic_get32)
837 
838 static uint32_t
839 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
840 {
841 	uint32_t data;
842 
843 #ifdef BGE_IPMI_ASF
844 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
845 		/* workaround for word swap error */
846 		if (addr & 4)
847 			addr = addr - 4;
848 		else
849 			addr = addr + 4;
850 	}
851 #endif
852 
853 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
854 	addr &= MWBAR_GRANULE_MASK;
855 	addr += NIC_MEM_WINDOW_OFFSET;
856 
857 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
858 
859 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
860 		(void *)bgep, addr, data));
861 
862 	return (data);
863 }
864 
865 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
866 #pragma inline(bge_nic_put32)
867 
868 void
869 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
870 {
871 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
872 		(void *)bgep, addr, data));
873 
874 #ifdef BGE_IPMI_ASF
875 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
876 		/* workaround for word swap error */
877 		if (addr & 4)
878 			addr = addr - 4;
879 		else
880 			addr = addr + 4;
881 	}
882 #endif
883 
884 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
885 	addr &= MWBAR_GRANULE_MASK;
886 	addr += NIC_MEM_WINDOW_OFFSET;
887 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
888 	BGE_PCICHK(bgep);
889 }
890 
891 
892 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
893 #pragma	inline(bge_nic_get64)
894 
895 static uint64_t
896 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
897 {
898 	uint64_t data;
899 
900 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
901 	addr &= MWBAR_GRANULE_MASK;
902 	addr += NIC_MEM_WINDOW_OFFSET;
903 
904 #ifdef	__amd64
905 		if (bge_get_em64t_type()) {
906 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
907 			data <<= 32;
908 			data |= ddi_get32(bgep->io_handle,
909 				PIO_ADDR(bgep, addr + 4));
910 		} else {
911 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
912 		}
913 #else
914 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
915 #endif
916 
917 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
918 		(void *)bgep, addr, data));
919 
920 	return (data);
921 }
922 
923 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
924 #pragma	inline(bge_nic_put64)
925 
926 static void
927 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
928 {
929 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
930 		(void *)bgep, addr, data));
931 
932 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
933 	addr &= MWBAR_GRANULE_MASK;
934 	addr += NIC_MEM_WINDOW_OFFSET;
935 
936 #ifdef	__amd64
937 	if (bge_get_em64t_type()) {
938 		ddi_put32(bgep->io_handle,
939 			PIO_ADDR(bgep, addr), (uint32_t)data);
940 		BGE_PCICHK(bgep);
941 		ddi_put32(bgep->io_handle,
942 			PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
943 	} else {
944 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
945 	}
946 #else
947 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
948 #endif
949 
950 	BGE_PCICHK(bgep);
951 }
952 
953 /*
954  * The DDI doesn't provide get/put functions for 128 bit data
955  * so we put RCBs out as two 64-bit chunks instead.
956  */
957 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
958 #pragma	inline(bge_nic_putrcb)
959 
960 static void
961 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
962 {
963 	uint64_t *p;
964 
965 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
966 		(void *)bgep, addr, rcbp->host_ring_addr,
967 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
968 
969 	ASSERT((addr % sizeof (*rcbp)) == 0);
970 
971 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
972 	addr &= MWBAR_GRANULE_MASK;
973 	addr += NIC_MEM_WINDOW_OFFSET;
974 
975 	p = (void *)rcbp;
976 #ifdef	__amd64
977 	if (bge_get_em64t_type()) {
978 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
979 			(uint32_t)(*p));
980 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
981 			(uint32_t)(*p >> 32));
982 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
983 			(uint32_t)(*(p + 1)));
984 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
985 			(uint32_t)(*p >> 32));
986 
987 	} else {
988 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
989 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
990 	}
991 #else
992 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
993 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
994 #endif
995 
996 	BGE_PCICHK(bgep);
997 }
998 
999 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1000 #pragma	inline(bge_nic_zero)
1001 
1002 static void
1003 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1004 {
1005 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1006 		(void *)bgep, addr, nbytes));
1007 
1008 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1009 		((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1010 
1011 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1012 	addr &= MWBAR_GRANULE_MASK;
1013 	addr += NIC_MEM_WINDOW_OFFSET;
1014 
1015 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1016 		nbytes, 1, DDI_DATA_SZ08_ACC);
1017 	BGE_PCICHK(bgep);
1018 }
1019 
1020 /*
1021  * MII (PHY) register get/set access routines
1022  *
1023  * These use the chip's MII auto-access method, controlled by the
1024  * MII Communication register at 0x044c, so the CPU doesn't have
1025  * to fiddle with the individual bits.
1026  */
1027 
1028 #undef	BGE_DBG
1029 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1030 
1031 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1032 				uint16_t data, uint32_t cmd);
1033 #pragma	no_inline(bge_mii_access)
1034 
1035 static uint16_t
1036 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1037 {
1038 	uint32_t timeout;
1039 	uint32_t regval1;
1040 	uint32_t regval2;
1041 
1042 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1043 		(void *)bgep, regno, data, cmd));
1044 
1045 	ASSERT(mutex_owned(bgep->genlock));
1046 
1047 	/*
1048 	 * Assemble the command ...
1049 	 */
1050 	cmd |= data << MI_COMMS_DATA_SHIFT;
1051 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1052 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1053 	cmd |= MI_COMMS_START;
1054 
1055 	/*
1056 	 * Wait for any command already in progress ...
1057 	 *
1058 	 * Note: this *shouldn't* ever find that there is a command
1059 	 * in progress, because we already hold the <genlock> mutex.
1060 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1061 	 * bit set here -- it seems that the chip can initiate MII
1062 	 * accesses internally, even with polling OFF.
1063 	 */
1064 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1065 	for (timeout = 100; ; ) {
1066 		if ((regval2 & MI_COMMS_START) == 0) {
1067 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1068 			break;
1069 		}
1070 		if (--timeout == 0)
1071 			break;
1072 		drv_usecwait(10);
1073 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1074 	}
1075 
1076 	if (timeout == 0)
1077 		return ((uint16_t)~0u);
1078 
1079 	if (timeout != 100)
1080 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1081 			"MI_COMMS_START set for %d us; 0x%x->0x%x",
1082 			cmd, 10*(100-timeout), regval1, regval2));
1083 
1084 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1085 	for (timeout = 1000; ; ) {
1086 		if ((regval1 & MI_COMMS_START) == 0)
1087 			break;
1088 		if (--timeout == 0)
1089 			break;
1090 		drv_usecwait(10);
1091 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1092 	}
1093 
1094 	/*
1095 	 * Drop out early if the READ FAILED bit is set -- this chip
1096 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1097 	 */
1098 	if (regval2 & MI_COMMS_READ_FAILED)
1099 		return ((uint16_t)~0u);
1100 
1101 	if (timeout == 0)
1102 		return ((uint16_t)~0u);
1103 
1104 	/*
1105 	 * The PRM says to wait 5us after seeing the START bit clear
1106 	 * and then re-read the register to get the final value of the
1107 	 * data field, in order to avoid a race condition where the
1108 	 * START bit is clear but the data field isn't yet valid.
1109 	 *
1110 	 * Note: we don't actually seem to be encounter this race;
1111 	 * except when the START bit is seen set again (see below),
1112 	 * the data field doesn't change during this 5us interval.
1113 	 */
1114 	drv_usecwait(5);
1115 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1116 
1117 	/*
1118 	 * Unfortunately, when following the PRMs instructions above,
1119 	 * we have occasionally seen the START bit set again(!) in the
1120 	 * value read after the 5us delay. This seems to be due to the
1121 	 * chip autonomously starting another MII access internally.
1122 	 * In such cases, the command/data/etc fields relate to the
1123 	 * internal command, rather than the one that we thought had
1124 	 * just finished.  So in this case, we fall back to returning
1125 	 * the data from the original read that showed START clear.
1126 	 */
1127 	if (regval2 & MI_COMMS_START) {
1128 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1129 			"MI_COMMS_START set after transaction; 0x%x->0x%x",
1130 			cmd, regval1, regval2));
1131 		regval2 = regval1;
1132 	}
1133 
1134 	if (regval2 & MI_COMMS_START)
1135 		return ((uint16_t)~0u);
1136 
1137 	if (regval2 & MI_COMMS_READ_FAILED)
1138 		return ((uint16_t)~0u);
1139 
1140 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1141 }
1142 
1143 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1144 #pragma	no_inline(bge_mii_get16)
1145 
1146 uint16_t
1147 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1148 {
1149 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1150 		(void *)bgep, regno));
1151 
1152 	ASSERT(mutex_owned(bgep->genlock));
1153 
1154 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1155 }
1156 
1157 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1158 #pragma	no_inline(bge_mii_put16)
1159 
1160 void
1161 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1162 {
1163 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1164 		(void *)bgep, regno, data));
1165 
1166 	ASSERT(mutex_owned(bgep->genlock));
1167 
1168 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1169 }
1170 
1171 #undef	BGE_DBG
1172 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1173 
1174 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1175 
1176 /*
1177  * Basic SEEPROM get/set access routine
1178  *
1179  * This uses the chip's SEEPROM auto-access method, controlled by the
1180  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1181  * doesn't have to fiddle with the individual bits.
1182  *
1183  * The caller should hold <genlock> and *also* have already acquired
1184  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1185  *
1186  * Return value:
1187  *	0 on success,
1188  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1189  *	EPROTO on other h/w or s/w errors.
1190  *
1191  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1192  * from a (successful) SEEPROM_ACCESS_READ.
1193  */
1194 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1195 				uint32_t *dp);
1196 #pragma	no_inline(bge_seeprom_access)
1197 
1198 static int
1199 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1200 {
1201 	uint32_t tries;
1202 	uint32_t regval;
1203 
1204 	ASSERT(mutex_owned(bgep->genlock));
1205 
1206 	/*
1207 	 * On the newer chips that support both SEEPROM & Flash, we need
1208 	 * to specifically enable SEEPROM access (Flash is the default).
1209 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1210 	 * and the NVM control registers don't exist ...
1211 	 */
1212 	switch (bgep->chipid.nvtype) {
1213 	case BGE_NVTYPE_NONE:
1214 	case BGE_NVTYPE_UNKNOWN:
1215 		_NOTE(NOTREACHED)
1216 	case BGE_NVTYPE_SEEPROM:
1217 		break;
1218 
1219 	case BGE_NVTYPE_LEGACY_SEEPROM:
1220 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1221 	case BGE_NVTYPE_BUFFERED_FLASH:
1222 	default:
1223 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1224 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1225 		break;
1226 	}
1227 
1228 	/*
1229 	 * Check there's no command in progress.
1230 	 *
1231 	 * Note: this *shouldn't* ever find that there is a command
1232 	 * in progress, because we already hold the <genlock> mutex.
1233 	 * Also, to ensure we don't have a conflict with the chip's
1234 	 * internal firmware or a process accessing the same (shared)
1235 	 * SEEPROM through the other port of a 5704, we've already
1236 	 * been through the "software arbitration" protocol.
1237 	 * So this is just a final consistency check: we shouldn't
1238 	 * see EITHER the START bit (command started but not complete)
1239 	 * OR the COMPLETE bit (command completed but not cleared).
1240 	 */
1241 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1242 	if (regval & SEEPROM_ACCESS_START)
1243 		return (EPROTO);
1244 	if (regval & SEEPROM_ACCESS_COMPLETE)
1245 		return (EPROTO);
1246 
1247 	/*
1248 	 * Assemble the command ...
1249 	 */
1250 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1251 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1252 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1253 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1254 	cmd |= SEEPROM_ACCESS_START;
1255 	cmd |= SEEPROM_ACCESS_COMPLETE;
1256 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1257 
1258 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1259 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1260 
1261 	/*
1262 	 * By observation, a successful access takes ~20us on a 5703/4,
1263 	 * but apparently much longer (up to 1000us) on the obsolescent
1264 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1265 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1266 	 * out interrupts for longer than necessary. So we'll allow up
1267 	 * to 1000us ...
1268 	 */
1269 	for (tries = 0; tries < 1000; ++tries) {
1270 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1271 		if (regval & SEEPROM_ACCESS_COMPLETE)
1272 			break;
1273 		drv_usecwait(1);
1274 	}
1275 
1276 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1277 		/*
1278 		 * All OK; read the SEEPROM data register, then write back
1279 		 * the value read from the address register in order to
1280 		 * clear the <complete> bit and leave the SEEPROM access
1281 		 * state machine idle, ready for the next access ...
1282 		 */
1283 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1284 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1285 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1286 		return (0);
1287 	}
1288 
1289 	/*
1290 	 * Hmm ... what happened here?
1291 	 *
1292 	 * Most likely, the user addressed an non-existent SEEPROM. Or
1293 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1294 	 * and didn't respond to being addressed. Either way, it's left
1295 	 * the SEEPROM access state machine wedged. So we'll reset it
1296 	 * before we leave, so it's ready for next time ...
1297 	 */
1298 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1299 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1300 	return (ENODATA);
1301 }
1302 
1303 /*
1304  * Basic Flash get/set access routine
1305  *
1306  * These use the chip's Flash auto-access method, controlled by the
1307  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1308  * fiddle with the individual bits.
1309  *
1310  * The caller should hold <genlock> and *also* have already acquired
1311  * the right to access the Flash, via bge_nvmem_acquire() above.
1312  *
1313  * Return value:
1314  *	0 on success,
1315  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1316  *	ENODEV if the NVmem device is missing or otherwise unusable
1317  *
1318  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1319  * from a (successful) NVM_FLASH_CMD_RD.
1320  */
1321 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1322 				uint32_t *dp);
1323 #pragma	no_inline(bge_flash_access)
1324 
1325 static int
1326 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1327 {
1328 	uint32_t tries;
1329 	uint32_t regval;
1330 
1331 	ASSERT(mutex_owned(bgep->genlock));
1332 
1333 	/*
1334 	 * On the newer chips that support both SEEPROM & Flash, we need
1335 	 * to specifically disable SEEPROM access while accessing Flash.
1336 	 * The older chips don't support Flash, and the NVM registers don't
1337 	 * exist, so we shouldn't be here at all!
1338 	 */
1339 	switch (bgep->chipid.nvtype) {
1340 	case BGE_NVTYPE_NONE:
1341 	case BGE_NVTYPE_UNKNOWN:
1342 		_NOTE(NOTREACHED)
1343 	case BGE_NVTYPE_SEEPROM:
1344 		return (ENODEV);
1345 
1346 	case BGE_NVTYPE_LEGACY_SEEPROM:
1347 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1348 	case BGE_NVTYPE_BUFFERED_FLASH:
1349 	default:
1350 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1351 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1352 		break;
1353 	}
1354 
1355 	/*
1356 	 * Assemble the command ...
1357 	 */
1358 	addr &= NVM_FLASH_ADDR_MASK;
1359 	cmd |= NVM_FLASH_CMD_DOIT;
1360 	cmd |= NVM_FLASH_CMD_FIRST;
1361 	cmd |= NVM_FLASH_CMD_LAST;
1362 	cmd |= NVM_FLASH_CMD_DONE;
1363 
1364 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1365 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1366 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1367 
1368 	/*
1369 	 * Allow up to 1000ms ...
1370 	 */
1371 	for (tries = 0; tries < 1000; ++tries) {
1372 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1373 		if (regval & NVM_FLASH_CMD_DONE)
1374 			break;
1375 		drv_usecwait(1);
1376 	}
1377 
1378 	if (regval & NVM_FLASH_CMD_DONE) {
1379 		/*
1380 		 * All OK; read the data from the Flash read register
1381 		 */
1382 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1383 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1384 		return (0);
1385 	}
1386 
1387 	/*
1388 	 * Hmm ... what happened here?
1389 	 *
1390 	 * Most likely, the user addressed an non-existent Flash. Or
1391 	 * maybe the Flash was busy internally (e.g. processing a write)
1392 	 * and didn't respond to being addressed. Either way, there's
1393 	 * nothing we can here ...
1394 	 */
1395 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1396 	return (ENODATA);
1397 }
1398 
1399 /*
1400  * The next two functions regulate access to the NVram (if fitted).
1401  *
1402  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1403  * (SPI) interface, but they can be accessed through either port. These
1404  * are managed by different instance of this driver and have no software
1405  * state in common.
1406  *
1407  * In addition (and even on a single core chip) the chip's internal
1408  * firmware can access the SEEPROM/Flash, most notably after a RESET
1409  * when it may download code to run internally.
1410  *
1411  * So we need to arbitrate between these various software agents.  For
1412  * this purpose, the chip provides the Software Arbitration Register,
1413  * which implements hardware(!) arbitration.
1414  *
1415  * This functionality didn't exist on older (5700/5701) chips, so there's
1416  * nothing we can do by way of arbitration on those; also, if there's no
1417  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1418  * nothing to do.
1419  *
1420  * The internal firmware appears to use Request 0, which is the highest
1421  * priority.  So we'd like to use Request 2, leaving one higher and one
1422  * lower for any future developments ... but apparently this doesn't
1423  * always work.  So for now, the code uses Request 1 ;-(
1424  */
1425 
1426 #define	NVM_READ_REQ	NVM_READ_REQ1
1427 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1428 #define	NVM_SET_REQ	NVM_SET_REQ1
1429 
1430 static void bge_nvmem_relinquish(bge_t *bgep);
1431 #pragma	no_inline(bge_nvmem_relinquish)
1432 
1433 static void
1434 bge_nvmem_relinquish(bge_t *bgep)
1435 {
1436 	ASSERT(mutex_owned(bgep->genlock));
1437 
1438 	switch (bgep->chipid.nvtype) {
1439 	case BGE_NVTYPE_NONE:
1440 	case BGE_NVTYPE_UNKNOWN:
1441 		_NOTE(NOTREACHED)
1442 		return;
1443 
1444 	case BGE_NVTYPE_SEEPROM:
1445 		/*
1446 		 * No arbitration performed, no release needed
1447 		 */
1448 		return;
1449 
1450 	case BGE_NVTYPE_LEGACY_SEEPROM:
1451 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1452 	case BGE_NVTYPE_BUFFERED_FLASH:
1453 	default:
1454 		break;
1455 	}
1456 
1457 	/*
1458 	 * Our own request should be present (whether or not granted) ...
1459 	 */
1460 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1461 
1462 	/*
1463 	 * ... this will make it go away.
1464 	 */
1465 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1466 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1467 }
1468 
1469 /*
1470  * Arbitrate for access to the NVmem, if necessary
1471  *
1472  * Return value:
1473  *	0 on success
1474  *	EAGAIN if the device is in use (retryable)
1475  *	ENODEV if the NVmem device is missing or otherwise unusable
1476  */
1477 static int bge_nvmem_acquire(bge_t *bgep);
1478 #pragma	no_inline(bge_nvmem_acquire)
1479 
1480 static int
1481 bge_nvmem_acquire(bge_t *bgep)
1482 {
1483 	uint32_t regval;
1484 	uint32_t tries;
1485 
1486 	ASSERT(mutex_owned(bgep->genlock));
1487 
1488 	switch (bgep->chipid.nvtype) {
1489 	case BGE_NVTYPE_NONE:
1490 	case BGE_NVTYPE_UNKNOWN:
1491 		/*
1492 		 * Access denied: no (recognisable) device fitted
1493 		 */
1494 		return (ENODEV);
1495 
1496 	case BGE_NVTYPE_SEEPROM:
1497 		/*
1498 		 * Access granted: no arbitration needed (or possible)
1499 		 */
1500 		return (0);
1501 
1502 	case BGE_NVTYPE_LEGACY_SEEPROM:
1503 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1504 	case BGE_NVTYPE_BUFFERED_FLASH:
1505 	default:
1506 		/*
1507 		 * Access conditional: conduct arbitration protocol
1508 		 */
1509 		break;
1510 	}
1511 
1512 	/*
1513 	 * We're holding the per-port mutex <genlock>, so no-one other
1514 	 * threads can be attempting to access the NVmem through *this*
1515 	 * port. But it could be in use by the *other* port (of a 5704),
1516 	 * or by the chip's internal firmware, so we have to go through
1517 	 * the full (hardware) arbitration protocol ...
1518 	 *
1519 	 * Note that *because* we're holding <genlock>, the interrupt handler
1520 	 * won't be able to progress.  So we're only willing to spin for a
1521 	 * fairly short time.  Specifically:
1522 	 *
1523 	 *	We *must* wait long enough for the hardware to resolve all
1524 	 *	requests and determine the winner.  Fortunately, this is
1525 	 *	"almost instantaneous", even as observed by GHz CPUs.
1526 	 *
1527 	 *	A successful access by another Solaris thread (via either
1528 	 *	port) typically takes ~20us.  So waiting a bit longer than
1529 	 *	that will give a good chance of success, if the other user
1530 	 *	*is* another thread on the other port.
1531 	 *
1532 	 *	However, the internal firmware can hold on to the NVmem
1533 	 *	for *much* longer: at least 10 milliseconds just after a
1534 	 *	RESET, and maybe even longer if the NVmem actually contains
1535 	 *	code to download and run on the internal CPUs.
1536 	 *
1537 	 * So, we'll allow 50us; if that's not enough then it's up to the
1538 	 * caller to retry later (hence the choice of return code EAGAIN).
1539 	 */
1540 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1541 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1542 
1543 	for (tries = 0; tries < 50; ++tries) {
1544 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1545 		if (regval & NVM_WON_REQ1)
1546 			break;
1547 		drv_usecwait(1);
1548 	}
1549 
1550 	if (regval & NVM_WON_REQ1) {
1551 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1552 		return (0);
1553 	}
1554 
1555 	/*
1556 	 * Somebody else must be accessing the NVmem, so abandon our
1557 	 * attempt take control of it.  The caller can try again later ...
1558 	 */
1559 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1560 	bge_nvmem_relinquish(bgep);
1561 	return (EAGAIN);
1562 }
1563 
1564 /*
1565  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1566  * write protect line in such a way that the NVmem is protected when
1567  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1568  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1569  *
1570  * Note: there's only one set of GPIO pins on a 5704, even though they
1571  * can be accessed through either port.  So the chip has to resolve what
1572  * happens if the two ports program a single pin differently ... the rule
1573  * it uses is that if the ports disagree about the *direction* of a pin,
1574  * "output" wins over "input", but if they disagree about its *value* as
1575  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1576  * wins, and the external signal does whatever the external circuitry
1577  * defines as the default -- which we've assumed is the PROTECTED state.
1578  * So, we always change GPIO1 back to being an *input* whenever we're not
1579  * specifically using it to unprotect the NVmem. This allows either port
1580  * to update the NVmem, although obviously only one at a a time!
1581  *
1582  * The caller should hold <genlock> and *also* have already acquired the
1583  * right to access the NVmem, via bge_nvmem_acquire() above.
1584  */
1585 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1586 #pragma	inline(bge_nvmem_protect)
1587 
1588 static void
1589 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1590 {
1591 	uint32_t regval;
1592 
1593 	ASSERT(mutex_owned(bgep->genlock));
1594 
1595 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1596 	if (protect) {
1597 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1598 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1599 	} else {
1600 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1601 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1602 	}
1603 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1604 }
1605 
1606 /*
1607  * Now put it all together ...
1608  *
1609  * Try to acquire control of the NVmem; if successful, then:
1610  *	unprotect it (if we want to write to it)
1611  *	perform the requested access
1612  *	reprotect it (after a write)
1613  *	relinquish control
1614  *
1615  * Return value:
1616  *	0 on success,
1617  *	EAGAIN if the device is in use (retryable)
1618  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1619  *	ENODEV if the NVmem device is missing or otherwise unusable
1620  *	EPROTO on other h/w or s/w errors.
1621  */
1622 static int
1623 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1624 {
1625 	int err;
1626 
1627 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1628 		switch (cmd) {
1629 		case BGE_SEE_READ:
1630 			err = bge_seeprom_access(bgep,
1631 			    SEEPROM_ACCESS_READ, addr, dp);
1632 			break;
1633 
1634 		case BGE_SEE_WRITE:
1635 			bge_nvmem_protect(bgep, B_FALSE);
1636 			err = bge_seeprom_access(bgep,
1637 			    SEEPROM_ACCESS_WRITE, addr, dp);
1638 			bge_nvmem_protect(bgep, B_TRUE);
1639 			break;
1640 
1641 		case BGE_FLASH_READ:
1642 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1643 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1644 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1645 				    NVM_ACCESS_ENABLE);
1646 			}
1647 			err = bge_flash_access(bgep,
1648 			    NVM_FLASH_CMD_RD, addr, dp);
1649 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1650 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1651 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1652 				    NVM_ACCESS_ENABLE);
1653 			}
1654 			break;
1655 
1656 		case BGE_FLASH_WRITE:
1657 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1658 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1659 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1660 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1661 			}
1662 			bge_nvmem_protect(bgep, B_FALSE);
1663 			err = bge_flash_access(bgep,
1664 			    NVM_FLASH_CMD_WR, addr, dp);
1665 			bge_nvmem_protect(bgep, B_TRUE);
1666 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1667 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1668 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1669 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1670 			}
1671 
1672 			break;
1673 
1674 		default:
1675 			_NOTE(NOTREACHED)
1676 			break;
1677 		}
1678 		bge_nvmem_relinquish(bgep);
1679 	}
1680 
1681 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1682 	return (err);
1683 }
1684 
1685 /*
1686  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1687  */
1688 static uint64_t bge_get_nvmac(bge_t *bgep);
1689 #pragma no_inline(bge_get_nvmac)
1690 
1691 static uint64_t
1692 bge_get_nvmac(bge_t *bgep)
1693 {
1694 	uint32_t mac_high;
1695 	uint32_t mac_low;
1696 	uint32_t addr;
1697 	uint32_t cmd;
1698 	uint64_t mac;
1699 
1700 	BGE_TRACE(("bge_get_nvmac($%p)",
1701 		(void *)bgep));
1702 
1703 	switch (bgep->chipid.nvtype) {
1704 	case BGE_NVTYPE_NONE:
1705 	case BGE_NVTYPE_UNKNOWN:
1706 	default:
1707 		return (0ULL);
1708 
1709 	case BGE_NVTYPE_SEEPROM:
1710 	case BGE_NVTYPE_LEGACY_SEEPROM:
1711 		cmd = BGE_SEE_READ;
1712 		break;
1713 
1714 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1715 	case BGE_NVTYPE_BUFFERED_FLASH:
1716 		cmd = BGE_FLASH_READ;
1717 		break;
1718 	}
1719 
1720 	addr = NVMEM_DATA_MAC_ADDRESS;
1721 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1722 		return (0ULL);
1723 	addr += 4;
1724 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1725 		return (0ULL);
1726 
1727 	/*
1728 	 * The Broadcom chip is natively BIG-endian, so that's how the
1729 	 * MAC address is represented in NVmem.  We may need to swap it
1730 	 * around on a little-endian host ...
1731 	 */
1732 #ifdef	_BIG_ENDIAN
1733 	mac = mac_high;
1734 	mac = mac << 32;
1735 	mac |= mac_low;
1736 #else
1737 	mac = BGE_BSWAP_32(mac_high);
1738 	mac = mac << 32;
1739 	mac |= BGE_BSWAP_32(mac_low);
1740 #endif	/* _BIG_ENDIAN */
1741 
1742 	return (mac);
1743 }
1744 
1745 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1746 
1747 /*
1748  * Dummy version for when we're not supporting NVmem access
1749  */
1750 static uint64_t bge_get_nvmac(bge_t *bgep);
1751 #pragma inline(bge_get_nvmac)
1752 
1753 static uint64_t
1754 bge_get_nvmac(bge_t *bgep)
1755 {
1756 	_NOTE(ARGUNUSED(bgep))
1757 	return (0ULL);
1758 }
1759 
1760 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1761 
1762 /*
1763  * Determine the type of NVmem that is (or may be) attached to this chip,
1764  */
1765 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1766 #pragma no_inline(bge_nvmem_id)
1767 
1768 static enum bge_nvmem_type
1769 bge_nvmem_id(bge_t *bgep)
1770 {
1771 	enum bge_nvmem_type nvtype;
1772 	uint32_t config1;
1773 
1774 	BGE_TRACE(("bge_nvmem_id($%p)",
1775 		(void *)bgep));
1776 
1777 	switch (bgep->chipid.device) {
1778 	default:
1779 		/*
1780 		 * We shouldn't get here; it means we don't recognise
1781 		 * the chip, which means we don't know how to determine
1782 		 * what sort of NVmem (if any) it has.  So we'll say
1783 		 * NONE, to disable the NVmem access code ...
1784 		 */
1785 		nvtype = BGE_NVTYPE_NONE;
1786 		break;
1787 
1788 	case DEVICE_ID_5700:
1789 	case DEVICE_ID_5700x:
1790 	case DEVICE_ID_5701:
1791 		/*
1792 		 * These devices support *only* SEEPROMs
1793 		 */
1794 		nvtype = BGE_NVTYPE_SEEPROM;
1795 		break;
1796 
1797 	case DEVICE_ID_5702:
1798 	case DEVICE_ID_5702fe:
1799 	case DEVICE_ID_5703C:
1800 	case DEVICE_ID_5703S:
1801 	case DEVICE_ID_5704C:
1802 	case DEVICE_ID_5704S:
1803 	case DEVICE_ID_5704:
1804 	case DEVICE_ID_5705M:
1805 	case DEVICE_ID_5705C:
1806 	case DEVICE_ID_5706:
1807 	case DEVICE_ID_5782:
1808 	case DEVICE_ID_5788:
1809 	case DEVICE_ID_5751:
1810 	case DEVICE_ID_5751M:
1811 	case DEVICE_ID_5721:
1812 	case DEVICE_ID_5714C:
1813 	case DEVICE_ID_5714S:
1814 	case DEVICE_ID_5715C:
1815 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1816 		if (config1 & NVM_CFG1_FLASH_MODE)
1817 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1818 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1819 			else
1820 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1821 		else
1822 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1823 		break;
1824 	}
1825 
1826 	return (nvtype);
1827 }
1828 
1829 #undef	BGE_DBG
1830 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1831 
1832 static void
1833 bge_init_recv_rule(bge_t *bgep)
1834 {
1835 	bge_recv_rule_t *rulep;
1836 	uint32_t i;
1837 
1838 	/*
1839 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1840 	 * 1. to direct UDP traffic, set:
1841 	 * 	rulep->control = RULE_PROTO_CONTROL;
1842 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1843 	 * 2. to direct ICMP traffic, set:
1844 	 * 	rulep->control = RULE_PROTO_CONTROL;
1845 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1846 	 * 3. to direct traffic by source ip, set:
1847 	 * 	rulep->control = RULE_SIP_CONTROL;
1848 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1849 	 */
1850 	rulep = bgep->recv_rules;
1851 	rulep->control = RULE_PROTO_CONTROL;
1852 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1853 
1854 	/*
1855 	 * set receive rule registers
1856 	 */
1857 	rulep = bgep->recv_rules;
1858 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1859 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1860 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1861 	}
1862 }
1863 
1864 /*
1865  * Using the values captured by bge_chip_cfg_init(), and additional probes
1866  * as required, characterise the chip fully: determine the label by which
1867  * to refer to this chip, the correct settings for various registers, and
1868  * of course whether the device and/or subsystem are supported!
1869  */
1870 int bge_chip_id_init(bge_t *bgep);
1871 #pragma	no_inline(bge_chip_id_init)
1872 
1873 int
1874 bge_chip_id_init(bge_t *bgep)
1875 {
1876 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1877 	boolean_t sys_ok;
1878 	boolean_t dev_ok;
1879 	chip_id_t *cidp;
1880 	uint32_t subid;
1881 	char *devname;
1882 	char *sysname;
1883 	int *ids;
1884 	int err;
1885 	uint_t i;
1886 
1887 	ASSERT(bgep->bge_chip_state == BGE_CHIP_INITIAL);
1888 
1889 	sys_ok = dev_ok = B_FALSE;
1890 	cidp = &bgep->chipid;
1891 
1892 	/*
1893 	 * Check the PCI device ID to determine the generic chip type and
1894 	 * select parameters that depend on this.
1895 	 *
1896 	 * Note: because the SPARC platforms in general don't fit the
1897 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1898 	 * as zero - which is why we use <asic_rev> rather than <revision>
1899 	 * below ...
1900 	 *
1901 	 * Note: in general we can't distinguish between the Copper/SerDes
1902 	 * versions by ID alone, as some Copper devices (e.g. some but not
1903 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1904 	 * treat them the same here, and the MII code works out the media
1905 	 * type later on ...
1906 	 */
1907 	cidp->mbuf_base = bge_mbuf_pool_base;
1908 	cidp->mbuf_length = bge_mbuf_pool_len;
1909 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1910 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1911 	cidp->pci_type = BGE_PCI_X;
1912 	cidp->statistic_type = BGE_STAT_BLK;
1913 
1914 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1915 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1916 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1917 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1918 
1919 	cidp->msi_enabled = B_FALSE;
1920 
1921 	switch (cidp->device) {
1922 	case DEVICE_ID_5700:
1923 	case DEVICE_ID_5700x:
1924 		cidp->chip_label = 5700;
1925 		cidp->flags |= CHIP_FLAG_NO_CSUM;
1926 		break;
1927 
1928 	case DEVICE_ID_5701:
1929 		cidp->chip_label = 5701;
1930 		dev_ok = B_TRUE;
1931 		cidp->flags |= CHIP_FLAG_NO_CSUM;
1932 		break;
1933 
1934 	case DEVICE_ID_5702:
1935 	case DEVICE_ID_5702fe:
1936 		cidp->chip_label = 5702;
1937 		dev_ok = B_TRUE;
1938 		cidp->flags |= CHIP_FLAG_NO_CSUM;	/* for now	*/
1939 		break;
1940 
1941 	case DEVICE_ID_5703C:
1942 	case DEVICE_ID_5703S:
1943 	case DEVICE_ID_5703:
1944 		/*
1945 		 * Revision A0 of the 5703/5793 had various errata
1946 		 * that we can't or don't work around, so it's not
1947 		 * supported, but all later versions are
1948 		 */
1949 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
1950 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
1951 			dev_ok = B_TRUE;
1952 		break;
1953 
1954 	case DEVICE_ID_5704C:
1955 	case DEVICE_ID_5704S:
1956 	case DEVICE_ID_5704:
1957 		/*
1958 		 * Revision A0 of the 5704/5794 had various errata
1959 		 * but we have workarounds, so it *is* supported.
1960 		 */
1961 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
1962 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
1963 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
1964 		dev_ok = B_TRUE;
1965 		break;
1966 
1967 	case DEVICE_ID_5705C:
1968 	case DEVICE_ID_5705M:
1969 	case DEVICE_ID_5705MA3:
1970 	case DEVICE_ID_5705F:
1971 		cidp->chip_label = 5705;
1972 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
1973 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
1974 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
1975 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
1976 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
1977 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
1978 		cidp->statistic_type = BGE_STAT_REG;
1979 		dev_ok = B_TRUE;
1980 		break;
1981 
1982 	case DEVICE_ID_5706:
1983 		cidp->chip_label = 5706;
1984 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
1985 		cidp->flags |= CHIP_FLAG_NO_CSUM;	/* for now	*/
1986 		break;
1987 
1988 	case DEVICE_ID_5782:
1989 		/*
1990 		 * Apart from the label, we treat this as a 5705(?)
1991 		 */
1992 		cidp->chip_label = 5782;
1993 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
1994 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
1995 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
1996 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
1997 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
1998 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
1999 		cidp->statistic_type = BGE_STAT_REG;
2000 		dev_ok = B_TRUE;
2001 		break;
2002 
2003 	case DEVICE_ID_5788:
2004 		/*
2005 		 * Apart from the label, we treat this as a 5705(?)
2006 		 */
2007 		cidp->chip_label = 5788;
2008 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2009 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2010 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2011 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2012 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2013 		cidp->statistic_type = BGE_STAT_REG;
2014 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2015 		dev_ok = B_TRUE;
2016 		break;
2017 
2018 	case DEVICE_ID_5714C:
2019 		if (cidp->revision >= REVISION_ID_5714_A2)
2020 			cidp->msi_enabled = bge_enable_msi;
2021 		/* FALLTHRU */
2022 	case DEVICE_ID_5714S:
2023 		cidp->chip_label = 5714;
2024 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2025 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2026 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2027 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2028 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2029 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2030 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2031 		cidp->pci_type = BGE_PCI_E;
2032 		cidp->statistic_type = BGE_STAT_REG;
2033 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2034 		dev_ok = B_TRUE;
2035 		break;
2036 
2037 	case DEVICE_ID_5715C:
2038 		cidp->chip_label = 5715;
2039 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2040 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2041 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2042 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2043 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2044 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2045 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2046 		cidp->pci_type = BGE_PCI_E;
2047 		cidp->statistic_type = BGE_STAT_REG;
2048 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2049 		dev_ok = B_TRUE;
2050 		break;
2051 
2052 	case DEVICE_ID_5721:
2053 		cidp->chip_label = 5721;
2054 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2055 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2056 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2057 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2058 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2059 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2060 		cidp->pci_type = BGE_PCI_E;
2061 		cidp->statistic_type = BGE_STAT_REG;
2062 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2063 		dev_ok = B_TRUE;
2064 		break;
2065 
2066 	case DEVICE_ID_5751:
2067 	case DEVICE_ID_5751M:
2068 		cidp->chip_label = 5751;
2069 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2070 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2071 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2072 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2073 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2074 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2075 		cidp->pci_type = BGE_PCI_E;
2076 		cidp->statistic_type = BGE_STAT_REG;
2077 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2078 		dev_ok = B_TRUE;
2079 		break;
2080 
2081 	}
2082 
2083 	/*
2084 	 * Setup the default jumbo parameter.
2085 	 */
2086 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
2087 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
2088 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
2089 	cidp->ethmax_size = ETHERMAX;
2090 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2091 
2092 	/*
2093 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2094 	 * setup below jumbo specific parameters.
2095 	 */
2096 	if (bge_jumbo_enable &&
2097 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2098 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2099 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2100 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_JUMBO;
2101 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_JUMBO;
2102 		cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2103 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2104 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2105 		cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2106 		cidp->ethmax_size = cidp->default_mtu +
2107 		    sizeof (struct ether_header);
2108 	}
2109 
2110 	/*
2111 	 * Identify the NV memory type: SEEPROM or Flash?
2112 	 */
2113 	cidp->nvtype = bge_nvmem_id(bgep);
2114 
2115 	/*
2116 	 * Now, we want to check whether this device is part of a
2117 	 * supported subsystem (e.g., on the motherboard of a Sun
2118 	 * branded platform).
2119 	 *
2120 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2121 	 */
2122 	if (cidp->subven == VENDOR_ID_SUN)
2123 		sys_ok = B_TRUE;
2124 
2125 	/*
2126 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2127 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2128 	 * doesn't enforce that.
2129 	 */
2130 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2131 		DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2132 	if (err == DDI_PROP_SUCCESS) {
2133 		/*
2134 		 * Got the list; scan for a matching subsystem vendor/device
2135 		 */
2136 		subid = (cidp->subven << 16) | cidp->subdev;
2137 		while (i--)
2138 			if (ids[i] == subid)
2139 				sys_ok = B_TRUE;
2140 		ddi_prop_free(ids);
2141 	}
2142 
2143 	/*
2144 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2145 	 *
2146 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2147 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2148 	 * we have to check specially for the exact device paths to the
2149 	 * motherboard devices on those platforms ;-(
2150 	 *
2151 	 * Note: we can't just use the "supported-subsystems" mechanism
2152 	 * above, because the entry would have to be 0x14e41647 -- which
2153 	 * would then accept *any* plugin card that *didn't* contain a
2154 	 * (valid) SEEPROM ;-(
2155 	 */
2156 	sysname = ddi_node_name(ddi_root_node());
2157 	devname = ddi_pathname(bgep->devinfo, buf);
2158 	ASSERT(strlen(devname) > 0);
2159 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2160 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2161 			sys_ok = B_TRUE;
2162 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2163 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2164 			sys_ok = B_TRUE;
2165 
2166 	/*
2167 	 * Now check what we've discovered: is this truly a supported
2168 	 * chip on (the motherboard of) a supported platform?
2169 	 *
2170 	 * Possible problems here:
2171 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2172 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2173 	 * 3)	it's a chip we would support if it were on the motherboard
2174 	 *	of a Sun platform, but this one isn't ;-(
2175 	 */
2176 	if (cidp->chip_label == 0)
2177 		bge_problem(bgep,
2178 			"Device 'pci%04x,%04x' not recognized (%d?)",
2179 			cidp->vendor, cidp->device, cidp->device);
2180 	else if (!dev_ok)
2181 		bge_problem(bgep,
2182 			"Device 'pci%04x,%04x' (%d) revision %d not supported",
2183 			cidp->vendor, cidp->device, cidp->chip_label,
2184 			cidp->revision);
2185 #if	BGE_DEBUGGING
2186 	else if (!sys_ok)
2187 		bge_problem(bgep,
2188 			"%d-based subsystem 'pci%04x,%04x' not validated",
2189 			cidp->chip_label, cidp->subven, cidp->subdev);
2190 #endif
2191 	else
2192 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2193 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2194 		return (EIO);
2195 	return (0);
2196 }
2197 
2198 void
2199 bge_chip_msi_trig(bge_t *bgep)
2200 {
2201 	uint32_t	regval;
2202 
2203 	regval = bgep->param_msi_cnt<<4;
2204 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2205 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2206 }
2207 
2208 /*
2209  * Various registers that control the chip's internal engines (state
2210  * machines) have a <reset> and <enable> bits (fortunately, in the
2211  * same place in each such register :-).
2212  *
2213  * To reset the state machine, the <reset> bit must be written with 1;
2214  * it will then read back as 1 while the reset is in progress, but
2215  * self-clear to 0 when the reset completes.
2216  *
2217  * To enable a state machine, one must set the <enable> bit, which
2218  * will continue to read back as 0 until the state machine is running.
2219  *
2220  * To disable a state machine, the <enable> bit must be cleared, but
2221  * it will continue to read back as 1 until the state machine actually
2222  * stops.
2223  *
2224  * This routine implements polling for completion of a reset, enable
2225  * or disable operation, returning B_TRUE on success (bit reached the
2226  * required state) or B_FALSE on timeout (200*100us == 20ms).
2227  */
2228 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2229 					uint32_t mask, uint32_t val);
2230 #pragma	no_inline(bge_chip_poll_engine)
2231 
2232 static boolean_t
2233 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2234 	uint32_t mask, uint32_t val)
2235 {
2236 	uint32_t regval;
2237 	uint32_t n;
2238 
2239 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2240 		(void *)bgep, regno, mask, val));
2241 
2242 	for (n = 200; n; --n) {
2243 		regval = bge_reg_get32(bgep, regno);
2244 		if ((regval & mask) == val)
2245 			return (B_TRUE);
2246 		drv_usecwait(100);
2247 	}
2248 
2249 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2250 	return (B_FALSE);
2251 }
2252 
2253 /*
2254  * Various registers that control the chip's internal engines (state
2255  * machines) have a <reset> bit (fortunately, in the same place in
2256  * each such register :-).  To reset the state machine, this bit must
2257  * be written with 1; it will then read back as 1 while the reset is
2258  * in progress, but self-clear to 0 when the reset completes.
2259  *
2260  * This code sets the bit, then polls for it to read back as zero.
2261  * The return value is B_TRUE on success (reset bit cleared itself),
2262  * or B_FALSE if the state machine didn't recover :(
2263  *
2264  * NOTE: the Core reset is similar to other resets, except that we
2265  * can't poll for completion, since the Core reset disables memory
2266  * access!  So we just have to assume that it will all complete in
2267  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2268  */
2269 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2270 #pragma	no_inline(bge_chip_reset_engine)
2271 
2272 static boolean_t
2273 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2274 {
2275 	uint32_t regval;
2276 	uint32_t val32;
2277 
2278 	regval = bge_reg_get32(bgep, regno);
2279 
2280 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2281 		(void *)bgep, regno));
2282 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2283 		regno, regval));
2284 
2285 	regval |= STATE_MACHINE_RESET_BIT;
2286 
2287 	switch (regno) {
2288 	case MISC_CONFIG_REG:
2289 		/*
2290 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2291 		 * resetting PCIE block and bringing PCIE link down, bit 29
2292 		 * in the register needs to be set first, and then set it again
2293 		 * while the reset bit is written.
2294 		 * See:P500 of 57xx-PG102-RDS.pdf.
2295 		 */
2296 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2297 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2298 		    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2299 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2300 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2301 				if (bgep->chipid.asic_rev ==
2302 				    MHCR_CHIP_REV_5751_A0 ||
2303 				    bgep->chipid.asic_rev ==
2304 				    MHCR_CHIP_REV_5721_A0) {
2305 					val32 = bge_reg_get32(bgep,
2306 					    PHY_TEST_CTRL_REG);
2307 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2308 					    PHY_PCIE_LTASS_MODE))
2309 						bge_reg_put32(bgep,
2310 						    PHY_TEST_CTRL_REG,
2311 						    PHY_PCIE_SCRAM_MODE);
2312 					val32 = pci_config_get32
2313 					    (bgep->cfg_handle,
2314 					    PCI_CONF_BGE_CLKCTL);
2315 					val32 |= CLKCTL_PCIE_A0_FIX;
2316 					pci_config_put32(bgep->cfg_handle,
2317 					    PCI_CONF_BGE_CLKCTL, val32);
2318 				}
2319 				bge_reg_set32(bgep, regno,
2320 					MISC_CONFIG_GRC_RESET_DISABLE);
2321 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2322 			}
2323 		}
2324 
2325 		/*
2326 		 * Special case - causes Core reset
2327 		 *
2328 		 * On SPARC v9 we want to ensure that we don't start
2329 		 * timing until the I/O access has actually reached
2330 		 * the chip, otherwise we might make the next access
2331 		 * too early.  And we can't just force the write out
2332 		 * by following it with a read (even to config space)
2333 		 * because that would cause the fault we're trying
2334 		 * to avoid.  Hence the need for membar_sync() here.
2335 		 */
2336 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2337 #ifdef	__sparcv9
2338 		membar_sync();
2339 #endif	/* __sparcv9 */
2340 		/*
2341 		 * On some platforms,system need about 300us for
2342 		 * link setup.
2343 		 */
2344 		drv_usecwait(300);
2345 
2346 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2347 			/* PCI-E device need more reset time */
2348 			drv_usecwait(120000);
2349 
2350 			/* Set PCIE max payload size and clear error status. */
2351 			if (bgep->chipid.chip_label == 5721 ||
2352 			    bgep->chipid.chip_label == 5751) {
2353 				pci_config_put16(bgep->cfg_handle,
2354 					PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2355 				pci_config_put16(bgep->cfg_handle,
2356 					PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2357 			}
2358 		}
2359 
2360 		BGE_PCICHK(bgep);
2361 		return (B_TRUE);
2362 
2363 	default:
2364 		bge_reg_put32(bgep, regno, regval);
2365 		return (bge_chip_poll_engine(bgep, regno,
2366 		    STATE_MACHINE_RESET_BIT, 0));
2367 	}
2368 }
2369 
2370 /*
2371  * Various registers that control the chip's internal engines (state
2372  * machines) have an <enable> bit (fortunately, in the same place in
2373  * each such register :-).  To stop the state machine, this bit must
2374  * be written with 0, then polled to see when the state machine has
2375  * actually stopped.
2376  *
2377  * The return value is B_TRUE on success (enable bit cleared), or
2378  * B_FALSE if the state machine didn't stop :(
2379  */
2380 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2381 						uint32_t morebits);
2382 #pragma	no_inline(bge_chip_disable_engine)
2383 
2384 static boolean_t
2385 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2386 {
2387 	uint32_t regval;
2388 
2389 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2390 		(void *)bgep, regno, morebits));
2391 
2392 	switch (regno) {
2393 	case FTQ_RESET_REG:
2394 		/*
2395 		 * Not quite like the others; it doesn't
2396 		 * have an <enable> bit, but instead we
2397 		 * have to set and then clear all the bits
2398 		 */
2399 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2400 		drv_usecwait(100);
2401 		bge_reg_put32(bgep, regno, 0);
2402 		return (B_TRUE);
2403 
2404 	default:
2405 		regval = bge_reg_get32(bgep, regno);
2406 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2407 		regval &= ~morebits;
2408 		bge_reg_put32(bgep, regno, regval);
2409 		return (bge_chip_poll_engine(bgep, regno,
2410 		    STATE_MACHINE_ENABLE_BIT, 0));
2411 	}
2412 }
2413 
2414 /*
2415  * Various registers that control the chip's internal engines (state
2416  * machines) have an <enable> bit (fortunately, in the same place in
2417  * each such register :-).  To start the state machine, this bit must
2418  * be written with 1, then polled to see when the state machine has
2419  * actually started.
2420  *
2421  * The return value is B_TRUE on success (enable bit set), or
2422  * B_FALSE if the state machine didn't start :(
2423  */
2424 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2425 					uint32_t morebits);
2426 #pragma	no_inline(bge_chip_enable_engine)
2427 
2428 static boolean_t
2429 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2430 {
2431 	uint32_t regval;
2432 
2433 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2434 		(void *)bgep, regno, morebits));
2435 
2436 	switch (regno) {
2437 	case FTQ_RESET_REG:
2438 		/*
2439 		 * Not quite like the others; it doesn't
2440 		 * have an <enable> bit, but instead we
2441 		 * have to set and then clear all the bits
2442 		 */
2443 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2444 		drv_usecwait(100);
2445 		bge_reg_put32(bgep, regno, 0);
2446 		return (B_TRUE);
2447 
2448 	default:
2449 		regval = bge_reg_get32(bgep, regno);
2450 		regval |= STATE_MACHINE_ENABLE_BIT;
2451 		regval |= morebits;
2452 		bge_reg_put32(bgep, regno, regval);
2453 		return (bge_chip_poll_engine(bgep, regno,
2454 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2455 	}
2456 }
2457 
2458 /*
2459  * Reprogram the Ethernet, Transmit, and Receive MAC
2460  * modes to match the param_* variables
2461  */
2462 static void bge_sync_mac_modes(bge_t *bgep);
2463 #pragma	no_inline(bge_sync_mac_modes)
2464 
2465 static void
2466 bge_sync_mac_modes(bge_t *bgep)
2467 {
2468 	uint32_t macmode;
2469 	uint32_t regval;
2470 
2471 	ASSERT(mutex_owned(bgep->genlock));
2472 
2473 	/*
2474 	 * Reprogram the Ethernet MAC mode ...
2475 	 */
2476 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2477 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2478 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2479 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2480 	else
2481 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2482 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2483 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2484 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2485 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
2486 	else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100)
2487 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2488 	else
2489 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2490 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2491 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2492 	else
2493 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2494 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2495 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2496 	else
2497 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2498 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2499 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2500 		(void *)bgep, regval, macmode));
2501 
2502 	/*
2503 	 * ... the Transmit MAC mode ...
2504 	 */
2505 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2506 	if (bgep->param_link_tx_pause)
2507 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2508 	else
2509 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2510 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2511 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2512 		(void *)bgep, regval, macmode));
2513 
2514 	/*
2515 	 * ... and the Receive MAC mode
2516 	 */
2517 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2518 	if (bgep->param_link_rx_pause)
2519 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2520 	else
2521 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2522 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2523 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2524 		(void *)bgep, regval, macmode));
2525 }
2526 
2527 /*
2528  * bge_chip_sync() -- program the chip with the unicast MAC address,
2529  * the multicast hash table, the required level of promiscuity, and
2530  * the current loopback mode ...
2531  */
2532 #ifdef BGE_IPMI_ASF
2533 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2534 #else
2535 int bge_chip_sync(bge_t *bgep);
2536 #endif
2537 #pragma	no_inline(bge_chip_sync)
2538 
2539 int
2540 #ifdef BGE_IPMI_ASF
2541 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2542 #else
2543 bge_chip_sync(bge_t *bgep)
2544 #endif
2545 {
2546 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2547 	boolean_t promisc;
2548 	uint64_t macaddr;
2549 	uint32_t fill;
2550 	int i;
2551 	int retval = DDI_SUCCESS;
2552 
2553 	BGE_TRACE(("bge_chip_sync($%p)",
2554 		(void *)bgep));
2555 
2556 	ASSERT(mutex_owned(bgep->genlock));
2557 
2558 	promisc = B_FALSE;
2559 	fill = ~(uint32_t)0;
2560 
2561 	if (bgep->promisc)
2562 		promisc = B_TRUE;
2563 	else
2564 		fill = (uint32_t)0;
2565 
2566 	/*
2567 	 * If the TX/RX MAC engines are already running, we should stop
2568 	 * them (and reset the RX engine) before changing the parameters.
2569 	 * If they're not running, this will have no effect ...
2570 	 *
2571 	 * NOTE: this is currently disabled by default because stopping
2572 	 * and restarting the Tx engine may cause an outgoing packet in
2573 	 * transit to be truncated.  Also, stopping and restarting the
2574 	 * Rx engine seems to not work correctly on the 5705.  Testing
2575 	 * has not (yet!) revealed any problems with NOT stopping and
2576 	 * restarting these engines (and Broadcom say their drivers don't
2577 	 * do this), but if it is found to cause problems, this variable
2578 	 * can be patched to re-enable the old behaviour ...
2579 	 */
2580 	if (bge_stop_start_on_sync) {
2581 #ifdef BGE_IPMI_ASF
2582 		if (!bgep->asf_enabled) {
2583 			if (!bge_chip_disable_engine(bgep,
2584 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2585 				retval = DDI_FAILURE;
2586 		} else {
2587 			if (!bge_chip_disable_engine(bgep,
2588 			    RECEIVE_MAC_MODE_REG, 0))
2589 				retval = DDI_FAILURE;
2590 		}
2591 #else
2592 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2593 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2594 			retval = DDI_FAILURE;
2595 #endif
2596 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2597 			retval = DDI_FAILURE;
2598 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2599 			retval = DDI_FAILURE;
2600 	}
2601 
2602 	/*
2603 	 * Reprogram the hashed multicast address table ...
2604 	 */
2605 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2606 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2607 			bgep->mcast_hash[i] | fill);
2608 
2609 #ifdef BGE_IPMI_ASF
2610 	if (!bgep->asf_enabled || !asf_keeplive) {
2611 #endif
2612 		/*
2613 		 * Transform the MAC address from host to chip format, then
2614 		 * reprogram the transmit random backoff seed and the unicast
2615 		 * MAC address(es) ...
2616 		 */
2617 		for (i = 0, fill = 0, macaddr = 0ull; i < ETHERADDRL; ++i) {
2618 			macaddr <<= 8;
2619 			macaddr |= bgep->curr_addr.addr[i];
2620 			fill += bgep->curr_addr.addr[i];
2621 		}
2622 		bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2623 		for (i = 0; i < MAC_ADDRESS_REGS_MAX; ++i)
2624 			bge_reg_put64(bgep, MAC_ADDRESS_REG(i), macaddr);
2625 
2626 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2627 			(void *)bgep, macaddr));
2628 #ifdef BGE_IPMI_ASF
2629 	}
2630 #endif
2631 
2632 	/*
2633 	 * Set or clear the PROMISCUOUS mode bit
2634 	 */
2635 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2636 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2637 
2638 	/*
2639 	 * Sync the rest of the MAC modes too ...
2640 	 */
2641 	bge_sync_mac_modes(bgep);
2642 
2643 	/*
2644 	 * Restart RX/TX MAC engines if required ...
2645 	 */
2646 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2647 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2648 			retval = DDI_FAILURE;
2649 #ifdef BGE_IPMI_ASF
2650 		if (!bgep->asf_enabled) {
2651 			if (!bge_chip_enable_engine(bgep,
2652 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2653 				retval = DDI_FAILURE;
2654 		} else {
2655 			if (!bge_chip_enable_engine(bgep,
2656 			    RECEIVE_MAC_MODE_REG, 0))
2657 				retval = DDI_FAILURE;
2658 		}
2659 #else
2660 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2661 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2662 			retval = DDI_FAILURE;
2663 #endif
2664 	}
2665 	return (retval);
2666 }
2667 
2668 /*
2669  * This array defines the sequence of state machine control registers
2670  * in which the <enable> bit must be cleared to bring the chip to a
2671  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2672  */
2673 static bge_regno_t shutdown_engine_regs[] = {
2674 	RECEIVE_MAC_MODE_REG,
2675 	RCV_BD_INITIATOR_MODE_REG,
2676 	RCV_LIST_PLACEMENT_MODE_REG,
2677 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2678 	RCV_DATA_BD_INITIATOR_MODE_REG,
2679 	RCV_DATA_COMPLETION_MODE_REG,
2680 	RCV_BD_COMPLETION_MODE_REG,
2681 
2682 	SEND_BD_SELECTOR_MODE_REG,
2683 	SEND_BD_INITIATOR_MODE_REG,
2684 	SEND_DATA_INITIATOR_MODE_REG,
2685 	READ_DMA_MODE_REG,
2686 	SEND_DATA_COMPLETION_MODE_REG,
2687 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2688 	SEND_BD_COMPLETION_MODE_REG,
2689 	TRANSMIT_MAC_MODE_REG,
2690 
2691 	HOST_COALESCE_MODE_REG,
2692 	WRITE_DMA_MODE_REG,
2693 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2694 	FTQ_RESET_REG,		/* special - see code	*/
2695 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2696 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2697 	BGE_REGNO_NONE		/* terminator		*/
2698 };
2699 
2700 /*
2701  * bge_chip_stop() -- stop all chip processing
2702  *
2703  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2704  * we've detected a problem internally; otherwise, this is a normal
2705  * (clean) stop (at user request i.e. the last STREAM has been closed).
2706  */
2707 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2708 #pragma	no_inline(bge_chip_stop)
2709 
2710 void
2711 bge_chip_stop(bge_t *bgep, boolean_t fault)
2712 {
2713 	bge_regno_t regno;
2714 	bge_regno_t *rbp;
2715 	boolean_t ok;
2716 
2717 	BGE_TRACE(("bge_chip_stop($%p)",
2718 		(void *)bgep));
2719 
2720 	ASSERT(mutex_owned(bgep->genlock));
2721 
2722 	rbp = shutdown_engine_regs;
2723 	/*
2724 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
2725 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
2726 	 * -ory arbiter should not be disabled.
2727 	 */
2728 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
2729 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
2730 			    ok &= bge_chip_disable_engine(bgep, regno, 0);
2731 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
2732 				    (regno != DMA_COMPLETION_MODE_REG) &&
2733 				    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
2734 				    (regno != BUFFER_MANAGER_MODE_REG) &&
2735 				    (regno != MEMORY_ARBITER_MODE_REG))
2736 					ok &= bge_chip_disable_engine(bgep,
2737 					    regno, 0);
2738 	}
2739 
2740 	if (!ok && !fault)
2741 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
2742 
2743 	/*
2744 	 * Finally, disable (all) MAC events & clear the MAC status
2745 	 */
2746 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
2747 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
2748 
2749 	/*
2750 	 * if we're stopping the chip because of a detected fault then do
2751 	 * appropriate actions
2752 	 */
2753 	if (fault) {
2754 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
2755 			bgep->bge_chip_state = BGE_CHIP_FAULT;
2756 			ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2757 			if (bgep->bge_dma_error) {
2758 				/*
2759 				 * need to free buffers in case the fault was
2760 				 * due to a memory error in a buffer - got to
2761 				 * do a fair bit of tidying first
2762 				 */
2763 				if (bgep->progress & PROGRESS_KSTATS) {
2764 					bge_fini_kstats(bgep);
2765 					bgep->progress &= ~PROGRESS_KSTATS;
2766 				}
2767 				if (bgep->progress & PROGRESS_INTR) {
2768 					bge_intr_disable(bgep);
2769 					rw_enter(bgep->errlock, RW_WRITER);
2770 					bge_fini_rings(bgep);
2771 					rw_exit(bgep->errlock);
2772 					bgep->progress &= ~PROGRESS_INTR;
2773 				}
2774 				if (bgep->progress & PROGRESS_BUFS) {
2775 					bge_free_bufs(bgep);
2776 					bgep->progress &= ~PROGRESS_BUFS;
2777 				}
2778 				bgep->bge_dma_error = B_FALSE;
2779 			}
2780 		}
2781 	} else
2782 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
2783 }
2784 
2785 /*
2786  * Poll for completion of chip's ROM firmware; also, at least on the
2787  * first time through, find and return the hardware MAC address, if any.
2788  */
2789 static uint64_t bge_poll_firmware(bge_t *bgep);
2790 #pragma	no_inline(bge_poll_firmware)
2791 
2792 static uint64_t
2793 bge_poll_firmware(bge_t *bgep)
2794 {
2795 	uint64_t magic;
2796 	uint64_t mac;
2797 	uint32_t gen;
2798 	uint32_t i;
2799 
2800 	/*
2801 	 * Step 18: put the T3_MAGIC_NUMBER into the GENCOMM port
2802 	 *
2803 	 * Step 19: poll for firmware completion (GENCOMM port set
2804 	 * to the ones complement of T3_MAGIC_NUMBER).
2805 	 *
2806 	 * While we're at it, we also read the MAC address register;
2807 	 * at some stage the the firmware will load this with the
2808 	 * factory-set value.
2809 	 *
2810 	 * When both the magic number and the MAC address are set,
2811 	 * we're done; but we impose a time limit of one second
2812 	 * (1000*1000us) in case the firmware fails in some fashion
2813 	 * or the SEEPROM that provides that MAC address isn't fitted.
2814 	 *
2815 	 * After the first time through (chip state != INITIAL), we
2816 	 * don't need the MAC address to be set (we've already got it
2817 	 * or not, from the first time), so we don't wait for it, but
2818 	 * we still have to wait for the T3_MAGIC_NUMBER.
2819 	 *
2820 	 * Note: the magic number is only a 32-bit quantity, but the NIC
2821 	 * memory is 64-bit (and big-endian) internally.  Addressing the
2822 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
2823 	 * it work correctly on both big- and little-endian hosts.
2824 	 */
2825 #ifdef BGE_IPMI_ASF
2826 	if (!bgep->asf_enabled) {
2827 #endif
2828 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
2829 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
2830 		BGE_DEBUG(("bge_poll_firmware: put T3 magic 0x%llx in GENCOMM"
2831 			" 0x%lx", magic, NIC_MEM_GENCOMM));
2832 #ifdef BGE_IPMI_ASF
2833 	}
2834 #endif
2835 
2836 	for (i = 0; i < 1000; ++i) {
2837 		drv_usecwait(1000);
2838 		gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
2839 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
2840 #ifdef BGE_IPMI_ASF
2841 		if (!bgep->asf_enabled) {
2842 #endif
2843 			if (gen != ~T3_MAGIC_NUMBER)
2844 				continue;
2845 #ifdef BGE_IPMI_ASF
2846 		}
2847 #endif
2848 		if (mac != 0ULL)
2849 			break;
2850 		if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
2851 			break;
2852 	}
2853 
2854 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
2855 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
2856 		(void *)bgep, gen, i));
2857 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
2858 		mac, magic));
2859 
2860 	return (mac);
2861 }
2862 
2863 #ifdef BGE_IPMI_ASF
2864 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
2865 #else
2866 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
2867 #endif
2868 #pragma	no_inline(bge_chip_reset)
2869 
2870 int
2871 #ifdef BGE_IPMI_ASF
2872 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
2873 #else
2874 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
2875 #endif
2876 {
2877 	chip_id_t chipid;
2878 	uint64_t mac;
2879 	uint32_t modeflags;
2880 	uint32_t mhcr;
2881 	uint32_t sx0;
2882 	uint32_t i;
2883 #ifdef BGE_IPMI_ASF
2884 	uint32_t mailbox;
2885 #endif
2886 	int retval = DDI_SUCCESS;
2887 
2888 	BGE_TRACE(("bge_chip_reset($%p, %d)",
2889 		(void *)bgep, enable_dma));
2890 
2891 	ASSERT(mutex_owned(bgep->genlock));
2892 
2893 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
2894 		(void *)bgep, enable_dma, bgep->bge_chip_state));
2895 
2896 	/*
2897 	 * Do we need to stop the chip cleanly before resetting?
2898 	 */
2899 	switch (bgep->bge_chip_state) {
2900 	default:
2901 		_NOTE(NOTREACHED)
2902 		return (DDI_FAILURE);
2903 
2904 	case BGE_CHIP_INITIAL:
2905 	case BGE_CHIP_STOPPED:
2906 	case BGE_CHIP_RESET:
2907 		break;
2908 
2909 	case BGE_CHIP_RUNNING:
2910 	case BGE_CHIP_ERROR:
2911 	case BGE_CHIP_FAULT:
2912 		bge_chip_stop(bgep, B_FALSE);
2913 		break;
2914 	}
2915 
2916 #ifdef BGE_IPMI_ASF
2917 	if (bgep->asf_enabled) {
2918 		if (asf_mode == ASF_MODE_INIT) {
2919 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
2920 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
2921 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
2922 		}
2923 	}
2924 #endif
2925 	/*
2926 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
2927 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
2928 	 *
2929 	 * Before reset Core clock,it is
2930 	 * also required to initialize the Memory Arbiter as specified in step9
2931 	 * and Misc Host Control Register as specified in step-13
2932 	 * Step 4-5: reset Core clock & wait for completion
2933 	 * Steps 6-8: are done by bge_chip_cfg_init()
2934 	 */
2935 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
2936 		retval = DDI_FAILURE;
2937 
2938 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
2939 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
2940 	    MHCR_MASK_INTERRUPT_MODE |
2941 	    MHCR_MASK_PCI_INT_OUTPUT |
2942 	    MHCR_CLEAR_INTERRUPT_INTA;
2943 #ifdef  _BIG_ENDIAN
2944 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
2945 #endif  /* _BIG_ENDIAN */
2946 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
2947 #ifdef BGE_IPMI_ASF
2948 	if (bgep->asf_enabled)
2949 		bgep->asf_wordswapped = B_FALSE;
2950 #endif
2951 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
2952 		retval = DDI_FAILURE;
2953 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
2954 
2955 	/*
2956 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
2957 	 * a bit set to avoid a fifo overflow/underflow bug.
2958 	 */
2959 	if (bgep->chipid.chip_label == 5721 || bgep->chipid.chip_label == 5751)
2960 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
2961 
2962 
2963 	/*
2964 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
2965 	 * not be changed.
2966 	 */
2967 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
2968 		retval = DDI_FAILURE;
2969 
2970 	/*
2971 	 * Steps 10-11: configure PIO endianness options and
2972 	 * enable indirect register access -- already done
2973 	 * Steps 12-13: enable writing to the PCI state & clock
2974 	 * control registers -- not required; we aren't going to
2975 	 * use those features.
2976 	 * Steps 14-15: Configure DMA endianness options.  See
2977 	 * the comments on the setting of the MHCR above.
2978 	 */
2979 #ifdef	_BIG_ENDIAN
2980 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
2981 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
2982 #else
2983 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
2984 #endif	/* _BIG_ENDIAN */
2985 #ifdef BGE_IPMI_ASF
2986 	if (bgep->asf_enabled)
2987 		modeflags |= MODE_HOST_STACK_UP;
2988 #endif
2989 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
2990 
2991 #ifdef BGE_IPMI_ASF
2992 	if (bgep->asf_enabled) {
2993 		if (asf_mode != ASF_MODE_NONE) {
2994 			/* Wait for NVRAM init */
2995 			i = 0;
2996 			drv_usecwait(5000);
2997 			mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
2998 			while ((mailbox != (uint32_t)
2999 				~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3000 				(i < 10000)) {
3001 				drv_usecwait(100);
3002 				mailbox = bge_nic_get32(bgep,
3003 					BGE_FIRMWARE_MAILBOX);
3004 				i++;
3005 			}
3006 			if (!bgep->asf_newhandshake) {
3007 				if ((asf_mode == ASF_MODE_INIT) ||
3008 					(asf_mode == ASF_MODE_POST_INIT)) {
3009 
3010 					bge_asf_post_reset_old_mode(bgep,
3011 						BGE_INIT_RESET);
3012 				} else {
3013 					bge_asf_post_reset_old_mode(bgep,
3014 						BGE_SHUTDOWN_RESET);
3015 				}
3016 			}
3017 		}
3018 	}
3019 #endif
3020 	/*
3021 	 * Steps 16-17: poll for firmware completion
3022 	 */
3023 	mac = bge_poll_firmware(bgep);
3024 
3025 	/*
3026 	 * Step 18: enable external memory -- doesn't apply.
3027 	 *
3028 	 * However we take the opportunity to set the MLCR anyway, as
3029 	 * this register also controls the SEEPROM auto-access method
3030 	 * which we may want to use later ...
3031 	 *
3032 	 * The proper value here depends on the way the chip is wired
3033 	 * into the circuit board, as this register *also* controls which
3034 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3035 	 * values driven onto those pins!
3036 	 *
3037 	 * See also step 74 in the PRM ...
3038 	 */
3039 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3040 	    bgep->chipid.bge_mlcr_default);
3041 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3042 
3043 	/*
3044 	 * Step 20: clear the Ethernet MAC mode register
3045 	 */
3046 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3047 
3048 	/*
3049 	 * Step 21: restore cache-line-size, latency timer, and
3050 	 * subsystem ID registers to their original values (not
3051 	 * those read into the local structure <chipid>, 'cos
3052 	 * that was after they were cleared by the RESET).
3053 	 *
3054 	 * Note: the Subsystem Vendor/Device ID registers are not
3055 	 * directly writable in config space, so we use the shadow
3056 	 * copy in "Page Zero" of register space to restore them
3057 	 * both in one go ...
3058 	 */
3059 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3060 		bgep->chipid.clsize);
3061 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3062 		bgep->chipid.latency);
3063 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3064 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3065 
3066 	/*
3067 	 * The SEND INDEX registers should be reset to zero by the
3068 	 * global chip reset; if they're not, there'll be trouble
3069 	 * later on.
3070 	 */
3071 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3072 	if (sx0 != 0) {
3073 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3074 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3075 		return (DDI_FAILURE);
3076 	}
3077 
3078 	/* Enable MSI code */
3079 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3080 		bge_reg_set32(bgep, MSI_MODE_REG,
3081 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE);
3082 
3083 	/*
3084 	 * On the first time through, save the factory-set MAC address
3085 	 * (if any).  If bge_poll_firmware() above didn't return one
3086 	 * (from a chip register) consider looking in the attached NV
3087 	 * memory device, if any.  Once we have it, we save it in both
3088 	 * register-image (64-bit) and byte-array forms.  All-zero and
3089 	 * all-one addresses are not valid, and we refuse to stash those.
3090 	 */
3091 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3092 		if (mac == 0ULL)
3093 			mac = bge_get_nvmac(bgep);
3094 		if (mac != 0ULL && mac != ~0ULL) {
3095 			bgep->chipid.hw_mac_addr = mac;
3096 			for (i = ETHERADDRL; i-- != 0; ) {
3097 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3098 				mac >>= 8;
3099 			}
3100 			bgep->chipid.vendor_addr.set = 1;
3101 		}
3102 	}
3103 
3104 #ifdef BGE_IPMI_ASF
3105 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3106 		if (asf_mode != ASF_MODE_NONE) {
3107 			if ((asf_mode == ASF_MODE_INIT) ||
3108 				(asf_mode == ASF_MODE_POST_INIT)) {
3109 
3110 				bge_asf_post_reset_new_mode(bgep,
3111 					BGE_INIT_RESET);
3112 			} else {
3113 				bge_asf_post_reset_new_mode(bgep,
3114 					BGE_SHUTDOWN_RESET);
3115 			}
3116 		}
3117 	}
3118 #endif
3119 
3120 	/*
3121 	 * Record the new state
3122 	 */
3123 	bgep->chip_resets += 1;
3124 	bgep->bge_chip_state = BGE_CHIP_RESET;
3125 	return (retval);
3126 }
3127 
3128 /*
3129  * bge_chip_start() -- start the chip transmitting and/or receiving,
3130  * including enabling interrupts
3131  */
3132 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3133 #pragma	no_inline(bge_chip_start)
3134 
3135 int
3136 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3137 {
3138 	uint32_t coalmode;
3139 	uint32_t ledctl;
3140 	uint32_t mtu;
3141 	uint32_t maxring;
3142 	uint64_t ring;
3143 	int retval = DDI_SUCCESS;
3144 
3145 	BGE_TRACE(("bge_chip_start($%p)",
3146 		(void *)bgep));
3147 
3148 	ASSERT(mutex_owned(bgep->genlock));
3149 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3150 
3151 	/*
3152 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3153 	 * The document specifies 95 separate steps to fully
3154 	 * initialise the chip!!!!
3155 	 *
3156 	 * The reset code above has already got us as far as step
3157 	 * 21, so we continue with ...
3158 	 *
3159 	 * Step 22: clear the MAC statistics block
3160 	 * (0x0300-0x0aff in NIC-local memory)
3161 	 */
3162 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3163 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3164 		    NIC_MEM_STATISTICS_SIZE);
3165 
3166 	/*
3167 	 * Step 23: clear the status block (in host memory)
3168 	 */
3169 	DMA_ZERO(bgep->status_block);
3170 
3171 	/*
3172 	 * Step 24: set DMA read/write control register
3173 	 */
3174 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3175 		bgep->chipid.bge_dma_rwctrl);
3176 
3177 	/*
3178 	 * Step 25: Configure DMA endianness -- already done (16/17)
3179 	 * Step 26: Configure Host-Based Send Rings
3180 	 * Step 27: Indicate Host Stack Up
3181 	 */
3182 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3183 		MODE_HOST_SEND_BDS |
3184 		MODE_HOST_STACK_UP);
3185 
3186 	/*
3187 	 * Step 28: Configure checksum options:
3188 	 *	Solaris supports the hardware default checksum options.
3189 	 *
3190 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3191 	 */
3192 	if (bgep->macp->m_info.mi_cksum & HCKSUM_INET_PARTIAL)
3193 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3194 			MODE_SEND_NO_PSEUDO_HDR_CSUM);
3195 
3196 	/*
3197 	 * Step 29: configure Timer Prescaler.  The value is always the
3198 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3199 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3200 	 * for the whole chip!
3201 	 */
3202 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3203 
3204 	/*
3205 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3206 	 *
3207 	 * If the mbuf_length is specified as 0, we just leave these at
3208 	 * their hardware defaults, rather than explicitly setting them.
3209 	 * As the Broadcom HRM,driver better not change the parameters
3210 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3211 	 */
3212 	if ((bgep->chipid.mbuf_length != 0) &&
3213 		(DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3214 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3215 				bgep->chipid.mbuf_base);
3216 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3217 				bgep->chipid.mbuf_length);
3218 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3219 				DMAD_POOL_BASE_DEFAULT);
3220 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3221 				DMAD_POOL_LENGTH_DEFAULT);
3222 	}
3223 
3224 	/*
3225 	 * Step 32: configure MAC memory pool watermarks
3226 	 */
3227 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3228 		bgep->chipid.mbuf_lo_water_rdma);
3229 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3230 		bgep->chipid.mbuf_lo_water_rmac);
3231 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3232 		bgep->chipid.mbuf_hi_water);
3233 
3234 	/*
3235 	 * Step 33: configure DMA resource watermarks
3236 	 */
3237 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3238 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3239 		    bge_dmad_lo_water);
3240 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3241 		    bge_dmad_hi_water);
3242 	}
3243 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3244 
3245 	/*
3246 	 * Steps 34-36: enable buffer manager & internal h/w queues
3247 	 */
3248 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3249 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3250 		retval = DDI_FAILURE;
3251 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3252 		retval = DDI_FAILURE;
3253 
3254 	/*
3255 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3256 	 */
3257 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3258 		&bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3259 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3260 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3261 			&bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3262 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3263 			&bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3264 	}
3265 
3266 	/*
3267 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3268 	 */
3269 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3270 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3271 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3272 		    bge_replenish_jumbo);
3273 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3274 		    bge_replenish_mini);
3275 	}
3276 
3277 	/*
3278 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3279 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3280 	 */
3281 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3282 		maxring = BGE_SEND_RINGS_MAX;
3283 	else
3284 		maxring = BGE_SEND_RINGS_MAX_5705;
3285 	for (ring = 0; ring < maxring; ++ring) {
3286 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3287 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3288 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3289 			&bgep->send[ring].hw_rcb);
3290 	}
3291 
3292 	/*
3293 	 * Steps 44-45: initialise Receive Return Rings
3294 	 * (0x0200-0x02ff in NIC-local memory)
3295 	 */
3296 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3297 		maxring = BGE_RECV_RINGS_MAX;
3298 	else
3299 		maxring = BGE_RECV_RINGS_MAX_5705;
3300 	for (ring = 0; ring < maxring; ++ring)
3301 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3302 			&bgep->recv[ring].hw_rcb);
3303 
3304 	/*
3305 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3306 	 */
3307 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3308 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3309 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3310 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3311 	}
3312 	/*
3313 	 * Step 47: configure the MAC unicast address
3314 	 * Step 48: configure the random backoff seed
3315 	 * Step 96: set up multicast filters
3316 	 */
3317 #ifdef BGE_IPMI_ASF
3318 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3319 #else
3320 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3321 #endif
3322 		retval = DDI_FAILURE;
3323 
3324 	/*
3325 	 * Step 49: configure the MTU
3326 	 */
3327 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3328 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3329 
3330 	/*
3331 	 * Step 50: configure the IPG et al
3332 	 */
3333 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3334 
3335 	/*
3336 	 * Step 51: configure the default Rx Return Ring
3337 	 */
3338 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3339 
3340 	/*
3341 	 * Steps 52-54: configure Receive List Placement,
3342 	 * and enable Receive List Placement Statistics
3343 	 */
3344 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3345 		RCV_LP_CONFIG(bgep->chipid.rx_rings));
3346 	bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3347 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3348 
3349 	if (bgep->chipid.rx_rings > 1)
3350 		bge_init_recv_rule(bgep);
3351 
3352 	/*
3353 	 * Steps 55-56: enable Send Data Initiator Statistics
3354 	 */
3355 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3356 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3357 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3358 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3359 	} else {
3360 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3361 		    SEND_INIT_STATS_ENABLE);
3362 	}
3363 	/*
3364 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3365 	 */
3366 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3367 		retval = DDI_FAILURE;
3368 
3369 	/*
3370 	 * Steps 59-62: initialise Host Coalescing parameters
3371 	 */
3372 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3373 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3374 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3375 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3376 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3377 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3378 		    bge_tx_count_intr);
3379 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3380 		    bge_tx_ticks_intr);
3381 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3382 		    bge_rx_count_intr);
3383 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3384 		    bge_rx_ticks_intr);
3385 	}
3386 
3387 	/*
3388 	 * Steps 63-64: initialise status block & statistics
3389 	 * host memory addresses
3390 	 * The statistic block does not exist in some chipsets
3391 	 * Step 65: initialise Statistics Coalescing Tick Counter
3392 	 */
3393 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3394 		bgep->status_block.cookie.dmac_laddress);
3395 
3396 	/*
3397 	 * Steps 66-67: initialise status block & statistics
3398 	 * NIC-local memory addresses
3399 	 */
3400 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3401 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3402 		    bgep->statistics.cookie.dmac_laddress);
3403 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3404 		    STATISTICS_TICKS_DEFAULT);
3405 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3406 		    NIC_MEM_STATUS_BLOCK);
3407 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3408 		    NIC_MEM_STATISTICS);
3409 	}
3410 
3411 	/*
3412 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3413 	 * Completion Engine, the Receive List Placement Engine, and the
3414 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3415 	 * and BCM5715.
3416 	 */
3417 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3418 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3419 		coalmode = COALESCE_64_BYTE_STATUS;
3420 	else
3421 		coalmode = 0;
3422 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3423 		retval = DDI_FAILURE;
3424 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3425 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3426 		retval = DDI_FAILURE;
3427 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3428 		retval = DDI_FAILURE;
3429 
3430 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3431 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3432 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3433 			retval = DDI_FAILURE;
3434 
3435 	/*
3436 	 * Step 72: Enable MAC DMA engines
3437 	 * Step 73: Clear & enable MAC statistics
3438 	 */
3439 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3440 		ETHERNET_MODE_ENABLE_FHDE |
3441 		ETHERNET_MODE_ENABLE_RDE |
3442 		ETHERNET_MODE_ENABLE_TDE);
3443 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3444 		ETHERNET_MODE_ENABLE_TX_STATS |
3445 		ETHERNET_MODE_ENABLE_RX_STATS |
3446 		ETHERNET_MODE_CLEAR_TX_STATS |
3447 		ETHERNET_MODE_CLEAR_RX_STATS);
3448 
3449 	/*
3450 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3451 	 * Register); not required, as we set up the MLCR in step 10
3452 	 * (part of the reset code) above.
3453 	 *
3454 	 * Step 75: clear Interrupt Mailbox 0
3455 	 */
3456 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3457 
3458 	/*
3459 	 * Steps 76-87: Gentlemen, start your engines ...
3460 	 *
3461 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3462 	 * the Read DMA Engine, Receive Data Completion Engine,
3463 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3464 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3465 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3466 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3467 	 *
3468 	 * Beware exhaust fumes?
3469 	 */
3470 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3471 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3472 			retval = DDI_FAILURE;
3473 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3474 	    (bge_dma_wrprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3475 		retval = DDI_FAILURE;
3476 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3477 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3478 		retval = DDI_FAILURE;
3479 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3480 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3481 		retval = DDI_FAILURE;
3482 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3483 		if (!bge_chip_enable_engine(bgep,
3484 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3485 			retval = DDI_FAILURE;
3486 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3487 		retval = DDI_FAILURE;
3488 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3489 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3490 		retval = DDI_FAILURE;
3491 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3492 	    RCV_BD_DISABLED_RING_ATTN))
3493 		retval = DDI_FAILURE;
3494 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3495 	    RCV_DATA_BD_ILL_RING_ATTN))
3496 		retval = DDI_FAILURE;
3497 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3498 		retval = DDI_FAILURE;
3499 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3500 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3501 		retval = DDI_FAILURE;
3502 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3503 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3504 		retval = DDI_FAILURE;
3505 
3506 	/*
3507 	 * Step 88: download firmware -- doesn't apply
3508 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3509 	 */
3510 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3511 		retval = DDI_FAILURE;
3512 #ifdef BGE_IPMI_ASF
3513 	if (!bgep->asf_enabled) {
3514 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3515 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3516 			retval = DDI_FAILURE;
3517 	} else {
3518 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3519 			retval = DDI_FAILURE;
3520 	}
3521 #else
3522 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3523 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3524 		retval = DDI_FAILURE;
3525 #endif
3526 
3527 	/*
3528 	 * Step 91: disable auto-polling of PHY status
3529 	 */
3530 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3531 
3532 	/*
3533 	 * Step 92: configure D0 power state (not required)
3534 	 * Step 93: initialise LED control register ()
3535 	 */
3536 	ledctl = LED_CONTROL_DEFAULT;
3537 	switch (bgep->chipid.device) {
3538 	case DEVICE_ID_5700:
3539 	case DEVICE_ID_5700x:
3540 	case DEVICE_ID_5701:
3541 		/*
3542 		 * Switch to 5700 (MAC) mode on these older chips
3543 		 */
3544 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3545 		ledctl |= LED_CONTROL_LED_MODE_5700;
3546 		break;
3547 
3548 	default:
3549 		break;
3550 	}
3551 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3552 
3553 	/*
3554 	 * Step 94: activate link
3555 	 */
3556 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3557 
3558 	/*
3559 	 * Step 95: set up physical layer (PHY/SerDes)
3560 	 * restart autoneg (if required)
3561 	 */
3562 	if (reset_phys)
3563 		if (bge_phys_update(bgep) == DDI_FAILURE)
3564 			retval = DDI_FAILURE;
3565 
3566 	/*
3567 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3568 	 */
3569 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3570 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3571 			bgep->buff[ring].rf_next);
3572 
3573 	/*
3574 	 * MSI bits:The least significant MSI 16-bit word.
3575 	 * ISR will be triggered different.
3576 	 */
3577 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3578 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3579 
3580 	/*
3581 	 * Extra step (DSG): select which interrupts are enabled
3582 	 *
3583 	 * Program the Ethernet MAC engine to signal attention on
3584 	 * Link Change events, then enable interrupts on MAC, DMA,
3585 	 * and FLOW attention signals.
3586 	 */
3587 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3588 		ETHERNET_EVENT_LINK_INT |
3589 		ETHERNET_STATUS_PCS_ERROR_INT);
3590 #ifdef BGE_IPMI_ASF
3591 	if (bgep->asf_enabled) {
3592 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3593 			MODE_INT_ON_FLOW_ATTN |
3594 			MODE_INT_ON_DMA_ATTN |
3595 			MODE_HOST_STACK_UP|
3596 			MODE_INT_ON_MAC_ATTN);
3597 	} else {
3598 #endif
3599 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3600 			MODE_INT_ON_FLOW_ATTN |
3601 			MODE_INT_ON_DMA_ATTN |
3602 			MODE_INT_ON_MAC_ATTN);
3603 #ifdef BGE_IPMI_ASF
3604 	}
3605 #endif
3606 
3607 	/*
3608 	 * Step 97: enable PCI interrupts!!!
3609 	 */
3610 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3611 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3612 		    MHCR_MASK_PCI_INT_OUTPUT);
3613 
3614 	/*
3615 	 * All done!
3616 	 */
3617 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
3618 	return (retval);
3619 }
3620 
3621 
3622 /*
3623  * ========== Hardware interrupt handler ==========
3624  */
3625 
3626 #undef	BGE_DBG
3627 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
3628 
3629 /*
3630  * Sync the status block, then atomically clear the specified bits in
3631  * the <flags-and-tag> field of the status block.
3632  * the <flags> word of the status block, returning the value of the
3633  * <tag> and the <flags> before the bits were cleared.
3634  */
3635 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
3636 #pragma	inline(bge_status_sync)
3637 
3638 static int
3639 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
3640 {
3641 	bge_status_t *bsp;
3642 	int retval;
3643 
3644 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
3645 		(void *)bgep, bits));
3646 
3647 	ASSERT(bgep->bge_guard == BGE_GUARD);
3648 
3649 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
3650 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
3651 	if (retval != DDI_FM_OK)
3652 		return (retval);
3653 
3654 	bsp = DMA_VPTR(bgep->status_block);
3655 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
3656 
3657 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
3658 		(void *)bgep, bits, *flags));
3659 
3660 	return (retval);
3661 }
3662 
3663 static void bge_wake_factotum(bge_t *bgep);
3664 #pragma	inline(bge_wake_factotum)
3665 
3666 static void
3667 bge_wake_factotum(bge_t *bgep)
3668 {
3669 	mutex_enter(bgep->softintrlock);
3670 	if (bgep->factotum_flag == 0) {
3671 		bgep->factotum_flag = 1;
3672 		ddi_trigger_softintr(bgep->factotum_id);
3673 	}
3674 	mutex_exit(bgep->softintrlock);
3675 }
3676 
3677 /*
3678  *	bge_intr() -- handle chip interrupts
3679  */
3680 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
3681 #pragma	no_inline(bge_intr)
3682 
3683 uint_t
3684 bge_intr(caddr_t arg1, caddr_t arg2)
3685 {
3686 	bge_t *bgep = (bge_t *)arg1;		/* private device info	*/
3687 	bge_status_t *bsp;
3688 	uint64_t flags;
3689 	uint32_t mlcr = 0;
3690 	uint_t result;
3691 	int retval;
3692 
3693 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
3694 
3695 	/*
3696 	 * GLD v2 checks that s/w setup is complete before passing
3697 	 * interrupts to this routine, thus eliminating the old
3698 	 * (and well-known) race condition around ddi_add_intr()
3699 	 */
3700 	ASSERT(bgep->progress & PROGRESS_HWINT);
3701 
3702 	/*
3703 	 * Check whether chip's says it's asserting #INTA;
3704 	 * if not, don't process or claim the interrupt.
3705 	 *
3706 	 * Note that the PCI signal is active low, so the
3707 	 * bit is *zero* when the interrupt is asserted.
3708 	 */
3709 	result = DDI_INTR_UNCLAIMED;
3710 	mutex_enter(bgep->genlock);
3711 
3712 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3713 		mlcr = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
3714 
3715 	BGE_DEBUG(("bge_intr($%p) ($%p) mlcr 0x%08x", arg1, arg2, mlcr));
3716 
3717 	if ((mlcr & MLCR_INTA_STATE) == 0) {
3718 		/*
3719 		 * Block further PCI interrupts ...
3720 		 */
3721 		result = DDI_INTR_CLAIMED;
3722 
3723 		if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3724 			bge_cfg_set32(bgep, PCI_CONF_BGE_MHCR,
3725 				MHCR_MASK_PCI_INT_OUTPUT);
3726 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
3727 			    DDI_FM_OK)
3728 				goto chip_stop;
3729 		}
3730 
3731 		/*
3732 		 * Sync the status block and grab the flags-n-tag from it.
3733 		 * We count the number of interrupts where there doesn't
3734 		 * seem to have been a DMA update of the status block; if
3735 		 * it *has* been updated, the counter will be cleared in
3736 		 * the while() loop below ...
3737 		 */
3738 		bgep->missed_dmas += 1;
3739 		bsp = DMA_VPTR(bgep->status_block);
3740 		for (;;) {
3741 			if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
3742 				/*
3743 				 * bge_chip_stop() may have freed dma area etc
3744 				 * while we were in this interrupt handler -
3745 				 * better not call bge_status_sync()
3746 				 */
3747 				(void) bge_check_acc_handle(bgep,
3748 				    bgep->io_handle);
3749 				mutex_exit(bgep->genlock);
3750 				return (DDI_INTR_CLAIMED);
3751 			}
3752 			retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
3753 			    &flags);
3754 			if (retval != DDI_FM_OK) {
3755 				bgep->bge_dma_error = B_TRUE;
3756 				goto chip_stop;
3757 			}
3758 
3759 			if (!(flags & STATUS_FLAG_UPDATED))
3760 				break;
3761 
3762 			/*
3763 			 * Tell the chip that we're processing the interrupt
3764 			 */
3765 			bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
3766 				INTERRUPT_MBOX_DISABLE(flags));
3767 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
3768 			    DDI_FM_OK)
3769 				goto chip_stop;
3770 
3771 			/*
3772 			 * Drop the mutex while we:
3773 			 * 	Receive any newly-arrived packets
3774 			 *	Recycle any newly-finished send buffers
3775 			 */
3776 			bgep->bge_intr_running = B_TRUE;
3777 			mutex_exit(bgep->genlock);
3778 			bge_receive(bgep, bsp);
3779 			bge_recycle(bgep, bsp);
3780 			mutex_enter(bgep->genlock);
3781 			bgep->bge_intr_running = B_FALSE;
3782 
3783 			/*
3784 			 * Tell the chip we've finished processing, and
3785 			 * give it the tag that we got from the status
3786 			 * block earlier, so that it knows just how far
3787 			 * we've gone.  If it's got more for us to do,
3788 			 * it will now update the status block and try
3789 			 * to assert an interrupt (but we've got the
3790 			 * #INTA blocked at present).  If we see the
3791 			 * update, we'll loop around to do some more.
3792 			 * Eventually we'll get out of here ...
3793 			 */
3794 			bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
3795 				INTERRUPT_MBOX_ENABLE(flags));
3796 			bgep->missed_dmas = 0;
3797 		}
3798 
3799 		/*
3800 		 * Check for exceptional conditions that we need to handle
3801 		 *
3802 		 * Link status changed
3803 		 * Status block not updated
3804 		 */
3805 		if (flags & STATUS_FLAG_LINK_CHANGED)
3806 			bge_wake_factotum(bgep);
3807 
3808 		if (bgep->missed_dmas) {
3809 			/*
3810 			 * Probably due to the internal status tag not
3811 			 * being reset.  Force a status block update now;
3812 			 * this should ensure that we get an update and
3813 			 * a new interrupt.  After that, we should be in
3814 			 * sync again ...
3815 			 */
3816 			BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
3817 				"not updated?", flags));
3818 			bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
3819 				COALESCE_NOW);
3820 
3821 			if (bgep->missed_dmas >= bge_dma_miss_limit) {
3822 				/*
3823 				 * If this happens multiple times in a row,
3824 				 * it means DMA is just not working.  Maybe
3825 				 * the chip's failed, or maybe there's a
3826 				 * problem on the PCI bus or in the host-PCI
3827 				 * bridge (Tomatillo).
3828 				 *
3829 				 * At all events, we want to stop further
3830 				 * interrupts and let the recovery code take
3831 				 * over to see whether anything can be done
3832 				 * about it ...
3833 				 */
3834 				bge_fm_ereport(bgep,
3835 				    DDI_FM_DEVICE_BADINT_LIMIT);
3836 				goto chip_stop;
3837 			}
3838 		}
3839 
3840 		/*
3841 		 * Reenable assertion of #INTA, unless there's a DMA fault
3842 		 */
3843 		if (result == DDI_INTR_CLAIMED) {
3844 			if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3845 				bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3846 					MHCR_MASK_PCI_INT_OUTPUT);
3847 				if (bge_check_acc_handle(bgep,
3848 				    bgep->cfg_handle) != DDI_FM_OK)
3849 					goto chip_stop;
3850 			}
3851 		}
3852 	}
3853 
3854 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3855 		goto chip_stop;
3856 
3857 	mutex_exit(bgep->genlock);
3858 	return (result);
3859 
3860 chip_stop:
3861 #ifdef BGE_IPMI_ASF
3862 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
3863 		/*
3864 		 * We must stop ASF heart beat before
3865 		 * bge_chip_stop(), otherwise some
3866 		 * computers (ex. IBM HS20 blade
3867 		 * server) may crash.
3868 		 */
3869 		bge_asf_update_status(bgep);
3870 		bge_asf_stop_timer(bgep);
3871 		bgep->asf_status = ASF_STAT_STOP;
3872 
3873 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3874 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3875 	}
3876 #endif
3877 	bge_chip_stop(bgep, B_TRUE);
3878 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
3879 	mutex_exit(bgep->genlock);
3880 	return (result);
3881 }
3882 
3883 /*
3884  * ========== Factotum, implemented as a softint handler ==========
3885  */
3886 
3887 #undef	BGE_DBG
3888 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
3889 
3890 static void bge_factotum_error_handler(bge_t *bgep);
3891 #pragma	no_inline(bge_factotum_error_handler)
3892 
3893 static void
3894 bge_factotum_error_handler(bge_t *bgep)
3895 {
3896 	uint32_t flow;
3897 	uint32_t rdma;
3898 	uint32_t wdma;
3899 	uint32_t tmac;
3900 	uint32_t rmac;
3901 	uint32_t rxrs;
3902 	uint32_t txrs = 0;
3903 
3904 	ASSERT(mutex_owned(bgep->genlock));
3905 
3906 	/*
3907 	 * Read all the registers that show the possible
3908 	 * reasons for the ERROR bit to be asserted
3909 	 */
3910 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
3911 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
3912 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
3913 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
3914 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
3915 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
3916 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3917 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
3918 
3919 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
3920 		(void *)bgep, flow, rdma, wdma));
3921 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
3922 		(void *)bgep, tmac, rmac, rxrs, txrs));
3923 
3924 	/*
3925 	 * For now, just clear all the errors ...
3926 	 */
3927 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3928 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
3929 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
3930 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
3931 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
3932 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
3933 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
3934 }
3935 
3936 /*
3937  * Handler for hardware link state change.
3938  *
3939  * When this routine is called, the hardware link state has changed
3940  * and the new state is reflected in the param_* variables.  Here
3941  * we must update the softstate, reprogram the MAC to match, and
3942  * record the change in the log and/or on the console.
3943  */
3944 static void bge_factotum_link_handler(bge_t *bgep);
3945 #pragma	no_inline(bge_factotum_link_handler)
3946 
3947 static void
3948 bge_factotum_link_handler(bge_t *bgep)
3949 {
3950 	void (*logfn)(bge_t *bgep, const char *fmt, ...);
3951 	const char *msg;
3952 	hrtime_t deltat;
3953 
3954 	ASSERT(mutex_owned(bgep->genlock));
3955 
3956 	/*
3957 	 * Update the s/w link_state
3958 	 */
3959 	if (bgep->param_link_up)
3960 		bgep->link_state = LINK_STATE_UP;
3961 	else
3962 		bgep->link_state = LINK_STATE_DOWN;
3963 
3964 	/*
3965 	 * Reprogram the MAC modes to match
3966 	 */
3967 	bge_sync_mac_modes(bgep);
3968 
3969 	/*
3970 	 * Finally, we have to decide whether to write a message
3971 	 * on the console or only in the log.  If the PHY has
3972 	 * been reprogrammed (at user request) "recently", then
3973 	 * the message only goes in the log.  Otherwise it's an
3974 	 * "unexpected" event, and it goes on the console as well.
3975 	 */
3976 	deltat = bgep->phys_event_time - bgep->phys_write_time;
3977 	if (deltat > BGE_LINK_SETTLE_TIME)
3978 		msg = "";
3979 	else if (bgep->param_link_up)
3980 		msg = bgep->link_up_msg;
3981 	else
3982 		msg = bgep->link_down_msg;
3983 
3984 	logfn = (msg == NULL || *msg == '\0') ? bge_notice : bge_log;
3985 	(*logfn)(bgep, "link %s%s", bgep->link_mode_msg, msg);
3986 }
3987 
3988 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
3989 #pragma	no_inline(bge_factotum_link_check)
3990 
3991 static boolean_t
3992 bge_factotum_link_check(bge_t *bgep, int *dma_state)
3993 {
3994 	boolean_t check;
3995 	uint64_t flags;
3996 	uint32_t tmac_status;
3997 
3998 	ASSERT(mutex_owned(bgep->genlock));
3999 
4000 	/*
4001 	 * Get & clear the writable status bits in the Tx status register
4002 	 * (some bits are write-1-to-clear, others are just readonly).
4003 	 */
4004 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4005 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4006 
4007 	/*
4008 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4009 	 */
4010 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4011 	    STATUS_FLAG_LINK_CHANGED, &flags);
4012 	if (*dma_state != DDI_FM_OK)
4013 		return (B_FALSE);
4014 
4015 	/*
4016 	 * Clear any errors flagged in the status block ...
4017 	 */
4018 	if (flags & STATUS_FLAG_ERROR)
4019 		bge_factotum_error_handler(bgep);
4020 
4021 	/*
4022 	 * We need to check the link status if:
4023 	 *	the status block says there's been a link change
4024 	 *	or there's any discrepancy between the various
4025 	 *	flags indicating the link state (link_state,
4026 	 *	param_link_up, and the LINK STATE bit in the
4027 	 *	Transmit MAC status register).
4028 	 */
4029 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4030 	switch (bgep->link_state) {
4031 	case LINK_STATE_UP:
4032 		check |= (bgep->param_link_up == B_FALSE);
4033 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4034 		break;
4035 
4036 	case LINK_STATE_DOWN:
4037 		check |= (bgep->param_link_up != B_FALSE);
4038 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4039 		break;
4040 
4041 	default:
4042 		check = B_TRUE;
4043 		break;
4044 	}
4045 
4046 	/*
4047 	 * If <check> is false, we're sure the link hasn't changed.
4048 	 * If true, however, it's not yet definitive; we have to call
4049 	 * bge_phys_check() to determine whether the link has settled
4050 	 * into a new state yet ... and if it has, then call the link
4051 	 * state change handler.But when the chip is 5700 in Dell 6650
4052 	 * ,even if check is false, the link may have changed.So we
4053 	 * have to call bge_phys_check() to determine the link state.
4054 	 */
4055 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4056 		check = bge_phys_check(bgep);
4057 		if (check)
4058 			bge_factotum_link_handler(bgep);
4059 	}
4060 
4061 	return (check);
4062 }
4063 
4064 /*
4065  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4066  */
4067 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4068 #pragma	no_inline(bge_factotum_stall_check)
4069 
4070 static boolean_t
4071 bge_factotum_stall_check(bge_t *bgep)
4072 {
4073 	uint32_t dogval;
4074 
4075 	ASSERT(mutex_owned(bgep->genlock));
4076 
4077 	/*
4078 	 * Specific check for Tx stall ...
4079 	 *
4080 	 * The 'watchdog' counter is incremented whenever a packet
4081 	 * is queued, reset to 1 when some (but not all) buffers
4082 	 * are reclaimed, reset to 0 (disabled) when all buffers
4083 	 * are reclaimed, and shifted left here.  If it exceeds the
4084 	 * threshold value, the chip is assumed to have stalled and
4085 	 * is put into the ERROR state.  The factotum will then reset
4086 	 * it on the next pass.
4087 	 *
4088 	 * All of which should ensure that we don't get into a state
4089 	 * where packets are left pending indefinitely!
4090 	 */
4091 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4092 	if (dogval < bge_watchdog_count)
4093 		return (B_FALSE);
4094 
4095 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4096 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4097 	return (B_TRUE);
4098 }
4099 
4100 /*
4101  * The factotum is woken up when there's something to do that we'd rather
4102  * not do from inside a hardware interrupt handler or high-level cyclic.
4103  * Its two main tasks are:
4104  *	reset & restart the chip after an error
4105  *	check the link status whenever necessary
4106  */
4107 uint_t bge_chip_factotum(caddr_t arg);
4108 #pragma	no_inline(bge_chip_factotum)
4109 
4110 uint_t
4111 bge_chip_factotum(caddr_t arg)
4112 {
4113 	bge_t *bgep;
4114 	uint_t result;
4115 	boolean_t error;
4116 	boolean_t linkchg;
4117 	int dma_state;
4118 
4119 	bgep = (bge_t *)arg;
4120 
4121 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4122 
4123 	mutex_enter(bgep->softintrlock);
4124 	if (bgep->factotum_flag == 0) {
4125 		mutex_exit(bgep->softintrlock);
4126 		return (DDI_INTR_UNCLAIMED);
4127 	}
4128 	bgep->factotum_flag = 0;
4129 	mutex_exit(bgep->softintrlock);
4130 
4131 	result = DDI_INTR_CLAIMED;
4132 	error = B_FALSE;
4133 	linkchg = B_FALSE;
4134 
4135 	mutex_enter(bgep->genlock);
4136 	switch (bgep->bge_chip_state) {
4137 	default:
4138 		break;
4139 
4140 	case BGE_CHIP_RUNNING:
4141 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4142 		error = bge_factotum_stall_check(bgep);
4143 		if (dma_state != DDI_FM_OK) {
4144 			bgep->bge_dma_error = B_TRUE;
4145 			error = B_TRUE;
4146 		}
4147 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4148 			error = B_TRUE;
4149 		if (error)
4150 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4151 		break;
4152 
4153 	case BGE_CHIP_ERROR:
4154 		error = B_TRUE;
4155 		break;
4156 
4157 	case BGE_CHIP_FAULT:
4158 		/*
4159 		 * Fault detected, time to reset ...
4160 		 */
4161 		if (bge_autorecover) {
4162 			if (!(bgep->progress & PROGRESS_BUFS)) {
4163 				/*
4164 				 * if we can't allocate the ring buffers,
4165 				 * try later
4166 				 */
4167 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4168 					mutex_exit(bgep->genlock);
4169 					return (result);
4170 				}
4171 				bgep->progress |= PROGRESS_BUFS;
4172 			}
4173 			if (!(bgep->progress & PROGRESS_INTR)) {
4174 				bge_init_rings(bgep);
4175 				bge_intr_enable(bgep);
4176 				bgep->progress |= PROGRESS_INTR;
4177 			}
4178 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4179 				bge_init_kstats(bgep,
4180 				    ddi_get_instance(bgep->devinfo));
4181 				bgep->progress |= PROGRESS_KSTATS;
4182 			}
4183 
4184 			BGE_REPORT((bgep, "automatic recovery activated"));
4185 
4186 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4187 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4188 				error = B_TRUE;
4189 			}
4190 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4191 			    DDI_FM_OK) {
4192 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4193 				error = B_TRUE;
4194 			}
4195 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4196 			    DDI_FM_OK) {
4197 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4198 				error = B_TRUE;
4199 			}
4200 			if (error == B_FALSE) {
4201 #ifdef BGE_IPMI_ASF
4202 				if (bgep->asf_enabled &&
4203 				    bgep->asf_status != ASF_STAT_RUN) {
4204 					bgep->asf_timeout_id = timeout(
4205 					    bge_asf_heartbeat, (void *)bgep,
4206 					    drv_usectohz(
4207 					    BGE_ASF_HEARTBEAT_INTERVAL));
4208 					bgep->asf_status = ASF_STAT_RUN;
4209 				}
4210 #endif
4211 				ddi_fm_service_impact(bgep->devinfo,
4212 				    DDI_SERVICE_RESTORED);
4213 			}
4214 		}
4215 		break;
4216 	}
4217 
4218 
4219 	/*
4220 	 * If an error is detected, stop the chip now, marking it as
4221 	 * faulty, so that it will be reset next time through ...
4222 	 *
4223 	 * Note that if intr_running is set, then bge_intr() has dropped
4224 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4225 	 * this point so have to wait until the next time the factotum runs.
4226 	 */
4227 	if (error && !bgep->bge_intr_running) {
4228 #ifdef BGE_IPMI_ASF
4229 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4230 			/*
4231 			 * We must stop ASF heart beat before bge_chip_stop(),
4232 			 * otherwise some computers (ex. IBM HS20 blade server)
4233 			 * may crash.
4234 			 */
4235 			bge_asf_update_status(bgep);
4236 			bge_asf_stop_timer(bgep);
4237 			bgep->asf_status = ASF_STAT_STOP;
4238 
4239 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4240 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4241 		}
4242 #endif
4243 		bge_chip_stop(bgep, B_TRUE);
4244 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4245 	}
4246 	mutex_exit(bgep->genlock);
4247 
4248 	/*
4249 	 * If the link state changed, tell the world about it.
4250 	 * Note: can't do this while still holding the mutex.
4251 	 */
4252 	if (linkchg)
4253 		mac_link_update(bgep->macp, bgep->link_state);
4254 
4255 	return (result);
4256 }
4257 
4258 /*
4259  * High-level cyclic handler
4260  *
4261  * This routine schedules a (low-level) softint callback to the
4262  * factotum, and prods the chip to update the status block (which
4263  * will cause a hardware interrupt when complete).
4264  */
4265 void bge_chip_cyclic(void *arg);
4266 #pragma	no_inline(bge_chip_cyclic)
4267 
4268 void
4269 bge_chip_cyclic(void *arg)
4270 {
4271 	bge_t *bgep;
4272 
4273 	bgep = arg;
4274 
4275 	switch (bgep->bge_chip_state) {
4276 	default:
4277 		return;
4278 
4279 	case BGE_CHIP_RUNNING:
4280 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4281 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4282 			ddi_fm_service_impact(bgep->devinfo,
4283 			    DDI_SERVICE_UNAFFECTED);
4284 		break;
4285 
4286 	case BGE_CHIP_FAULT:
4287 	case BGE_CHIP_ERROR:
4288 		break;
4289 	}
4290 
4291 	bge_wake_factotum(bgep);
4292 }
4293 
4294 
4295 /*
4296  * ========== Ioctl subfunctions ==========
4297  */
4298 
4299 #undef	BGE_DBG
4300 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4301 
4302 #if	BGE_DEBUGGING || BGE_DO_PPIO
4303 
4304 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4305 #pragma	no_inline(bge_chip_peek_cfg)
4306 
4307 static void
4308 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4309 {
4310 	uint64_t regval;
4311 	uint64_t regno;
4312 
4313 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4314 		(void *)bgep, (void *)ppd));
4315 
4316 	regno = ppd->pp_acc_offset;
4317 
4318 	switch (ppd->pp_acc_size) {
4319 	case 1:
4320 		regval = pci_config_get8(bgep->cfg_handle, regno);
4321 		break;
4322 
4323 	case 2:
4324 		regval = pci_config_get16(bgep->cfg_handle, regno);
4325 		break;
4326 
4327 	case 4:
4328 		regval = pci_config_get32(bgep->cfg_handle, regno);
4329 		break;
4330 
4331 	case 8:
4332 		regval = pci_config_get64(bgep->cfg_handle, regno);
4333 		break;
4334 	}
4335 
4336 	ppd->pp_acc_data = regval;
4337 }
4338 
4339 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4340 #pragma	no_inline(bge_chip_poke_cfg)
4341 
4342 static void
4343 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4344 {
4345 	uint64_t regval;
4346 	uint64_t regno;
4347 
4348 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4349 		(void *)bgep, (void *)ppd));
4350 
4351 	regno = ppd->pp_acc_offset;
4352 	regval = ppd->pp_acc_data;
4353 
4354 	switch (ppd->pp_acc_size) {
4355 	case 1:
4356 		pci_config_put8(bgep->cfg_handle, regno, regval);
4357 		break;
4358 
4359 	case 2:
4360 		pci_config_put16(bgep->cfg_handle, regno, regval);
4361 		break;
4362 
4363 	case 4:
4364 		pci_config_put32(bgep->cfg_handle, regno, regval);
4365 		break;
4366 
4367 	case 8:
4368 		pci_config_put64(bgep->cfg_handle, regno, regval);
4369 		break;
4370 	}
4371 }
4372 
4373 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4374 #pragma	no_inline(bge_chip_peek_reg)
4375 
4376 static void
4377 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4378 {
4379 	uint64_t regval;
4380 	void *regaddr;
4381 
4382 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4383 		(void *)bgep, (void *)ppd));
4384 
4385 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4386 
4387 	switch (ppd->pp_acc_size) {
4388 	case 1:
4389 		regval = ddi_get8(bgep->io_handle, regaddr);
4390 		break;
4391 
4392 	case 2:
4393 		regval = ddi_get16(bgep->io_handle, regaddr);
4394 		break;
4395 
4396 	case 4:
4397 		regval = ddi_get32(bgep->io_handle, regaddr);
4398 		break;
4399 
4400 	case 8:
4401 		regval = ddi_get64(bgep->io_handle, regaddr);
4402 		break;
4403 	}
4404 
4405 	ppd->pp_acc_data = regval;
4406 }
4407 
4408 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4409 #pragma	no_inline(bge_chip_peek_reg)
4410 
4411 static void
4412 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4413 {
4414 	uint64_t regval;
4415 	void *regaddr;
4416 
4417 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4418 		(void *)bgep, (void *)ppd));
4419 
4420 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4421 	regval = ppd->pp_acc_data;
4422 
4423 	switch (ppd->pp_acc_size) {
4424 	case 1:
4425 		ddi_put8(bgep->io_handle, regaddr, regval);
4426 		break;
4427 
4428 	case 2:
4429 		ddi_put16(bgep->io_handle, regaddr, regval);
4430 		break;
4431 
4432 	case 4:
4433 		ddi_put32(bgep->io_handle, regaddr, regval);
4434 		break;
4435 
4436 	case 8:
4437 		ddi_put64(bgep->io_handle, regaddr, regval);
4438 		break;
4439 	}
4440 	BGE_PCICHK(bgep);
4441 }
4442 
4443 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4444 #pragma	no_inline(bge_chip_peek_nic)
4445 
4446 static void
4447 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4448 {
4449 	uint64_t regoff;
4450 	uint64_t regval;
4451 	void *regaddr;
4452 
4453 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4454 		(void *)bgep, (void *)ppd));
4455 
4456 	regoff = ppd->pp_acc_offset;
4457 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4458 	regoff &= MWBAR_GRANULE_MASK;
4459 	regoff += NIC_MEM_WINDOW_OFFSET;
4460 	regaddr = PIO_ADDR(bgep, regoff);
4461 
4462 	switch (ppd->pp_acc_size) {
4463 	case 1:
4464 		regval = ddi_get8(bgep->io_handle, regaddr);
4465 		break;
4466 
4467 	case 2:
4468 		regval = ddi_get16(bgep->io_handle, regaddr);
4469 		break;
4470 
4471 	case 4:
4472 		regval = ddi_get32(bgep->io_handle, regaddr);
4473 		break;
4474 
4475 	case 8:
4476 		regval = ddi_get64(bgep->io_handle, regaddr);
4477 		break;
4478 	}
4479 
4480 	ppd->pp_acc_data = regval;
4481 }
4482 
4483 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4484 #pragma	no_inline(bge_chip_poke_nic)
4485 
4486 static void
4487 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4488 {
4489 	uint64_t regoff;
4490 	uint64_t regval;
4491 	void *regaddr;
4492 
4493 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4494 		(void *)bgep, (void *)ppd));
4495 
4496 	regoff = ppd->pp_acc_offset;
4497 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4498 	regoff &= MWBAR_GRANULE_MASK;
4499 	regoff += NIC_MEM_WINDOW_OFFSET;
4500 	regaddr = PIO_ADDR(bgep, regoff);
4501 	regval = ppd->pp_acc_data;
4502 
4503 	switch (ppd->pp_acc_size) {
4504 	case 1:
4505 		ddi_put8(bgep->io_handle, regaddr, regval);
4506 		break;
4507 
4508 	case 2:
4509 		ddi_put16(bgep->io_handle, regaddr, regval);
4510 		break;
4511 
4512 	case 4:
4513 		ddi_put32(bgep->io_handle, regaddr, regval);
4514 		break;
4515 
4516 	case 8:
4517 		ddi_put64(bgep->io_handle, regaddr, regval);
4518 		break;
4519 	}
4520 	BGE_PCICHK(bgep);
4521 }
4522 
4523 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4524 #pragma	no_inline(bge_chip_peek_mii)
4525 
4526 static void
4527 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4528 {
4529 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4530 		(void *)bgep, (void *)ppd));
4531 
4532 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4533 }
4534 
4535 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4536 #pragma	no_inline(bge_chip_poke_mii)
4537 
4538 static void
4539 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4540 {
4541 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4542 		(void *)bgep, (void *)ppd));
4543 
4544 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4545 }
4546 
4547 #if	BGE_SEE_IO32
4548 
4549 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4550 #pragma	no_inline(bge_chip_peek_seeprom)
4551 
4552 static void
4553 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4554 {
4555 	uint32_t data;
4556 	int err;
4557 
4558 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4559 		(void *)bgep, (void *)ppd));
4560 
4561 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4562 	ppd->pp_acc_data = err ? ~0ull : data;
4563 }
4564 
4565 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4566 #pragma	no_inline(bge_chip_poke_seeprom)
4567 
4568 static void
4569 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4570 {
4571 	uint32_t data;
4572 
4573 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4574 		(void *)bgep, (void *)ppd));
4575 
4576 	data = ppd->pp_acc_data;
4577 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4578 }
4579 #endif	/* BGE_SEE_IO32 */
4580 
4581 #if	BGE_FLASH_IO32
4582 
4583 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4584 #pragma	no_inline(bge_chip_peek_flash)
4585 
4586 static void
4587 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4588 {
4589 	uint32_t data;
4590 	int err;
4591 
4592 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4593 		(void *)bgep, (void *)ppd));
4594 
4595 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4596 	ppd->pp_acc_data = err ? ~0ull : data;
4597 }
4598 
4599 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4600 #pragma	no_inline(bge_chip_poke_flash)
4601 
4602 static void
4603 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4604 {
4605 	uint32_t data;
4606 
4607 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
4608 		(void *)bgep, (void *)ppd));
4609 
4610 	data = ppd->pp_acc_data;
4611 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
4612 	    ppd->pp_acc_offset, &data);
4613 }
4614 #endif	/* BGE_FLASH_IO32 */
4615 
4616 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4617 #pragma	no_inline(bge_chip_peek_mem)
4618 
4619 static void
4620 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4621 {
4622 	uint64_t regval;
4623 	void *vaddr;
4624 
4625 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
4626 		(void *)bgep, (void *)ppd));
4627 
4628 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4629 
4630 	switch (ppd->pp_acc_size) {
4631 	case 1:
4632 		regval = *(uint8_t *)vaddr;
4633 		break;
4634 
4635 	case 2:
4636 		regval = *(uint16_t *)vaddr;
4637 		break;
4638 
4639 	case 4:
4640 		regval = *(uint32_t *)vaddr;
4641 		break;
4642 
4643 	case 8:
4644 		regval = *(uint64_t *)vaddr;
4645 		break;
4646 	}
4647 
4648 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
4649 		(void *)bgep, (void *)ppd, regval, vaddr));
4650 
4651 	ppd->pp_acc_data = regval;
4652 }
4653 
4654 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4655 #pragma	no_inline(bge_chip_poke_mem)
4656 
4657 static void
4658 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4659 {
4660 	uint64_t regval;
4661 	void *vaddr;
4662 
4663 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
4664 		(void *)bgep, (void *)ppd));
4665 
4666 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4667 	regval = ppd->pp_acc_data;
4668 
4669 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
4670 		(void *)bgep, (void *)ppd, regval, vaddr));
4671 
4672 	switch (ppd->pp_acc_size) {
4673 	case 1:
4674 		*(uint8_t *)vaddr = (uint8_t)regval;
4675 		break;
4676 
4677 	case 2:
4678 		*(uint16_t *)vaddr = (uint16_t)regval;
4679 		break;
4680 
4681 	case 4:
4682 		*(uint32_t *)vaddr = (uint32_t)regval;
4683 		break;
4684 
4685 	case 8:
4686 		*(uint64_t *)vaddr = (uint64_t)regval;
4687 		break;
4688 	}
4689 }
4690 
4691 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4692 					struct iocblk *iocp);
4693 #pragma	no_inline(bge_pp_ioctl)
4694 
4695 static enum ioc_reply
4696 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4697 {
4698 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
4699 	bge_peekpoke_t *ppd;
4700 	dma_area_t *areap;
4701 	uint64_t sizemask;
4702 	uint64_t mem_va;
4703 	uint64_t maxoff;
4704 	boolean_t peek;
4705 
4706 	switch (cmd) {
4707 	default:
4708 		/* NOTREACHED */
4709 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
4710 		return (IOC_INVAL);
4711 
4712 	case BGE_PEEK:
4713 		peek = B_TRUE;
4714 		break;
4715 
4716 	case BGE_POKE:
4717 		peek = B_FALSE;
4718 		break;
4719 	}
4720 
4721 	/*
4722 	 * Validate format of ioctl
4723 	 */
4724 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
4725 		return (IOC_INVAL);
4726 	if (mp->b_cont == NULL)
4727 		return (IOC_INVAL);
4728 	ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr;
4729 
4730 	/*
4731 	 * Validate request parameters
4732 	 */
4733 	switch (ppd->pp_acc_space) {
4734 	default:
4735 		return (IOC_INVAL);
4736 
4737 	case BGE_PP_SPACE_CFG:
4738 		/*
4739 		 * Config space
4740 		 */
4741 		sizemask = 8|4|2|1;
4742 		mem_va = 0;
4743 		maxoff = PCI_CONF_HDR_SIZE;
4744 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
4745 		break;
4746 
4747 	case BGE_PP_SPACE_REG:
4748 		/*
4749 		 * Memory-mapped I/O space
4750 		 */
4751 		sizemask = 8|4|2|1;
4752 		mem_va = 0;
4753 		maxoff = RIAAR_REGISTER_MAX;
4754 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
4755 		break;
4756 
4757 	case BGE_PP_SPACE_NIC:
4758 		/*
4759 		 * NIC on-chip memory
4760 		 */
4761 		sizemask = 8|4|2|1;
4762 		mem_va = 0;
4763 		maxoff = MWBAR_ONCHIP_MAX;
4764 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
4765 		break;
4766 
4767 	case BGE_PP_SPACE_MII:
4768 		/*
4769 		 * PHY's MII registers
4770 		 * NB: all PHY registers are two bytes, but the
4771 		 * addresses increment in ones (word addressing).
4772 		 * So we scale the address here, then undo the
4773 		 * transformation inside the peek/poke functions.
4774 		 */
4775 		ppd->pp_acc_offset *= 2;
4776 		sizemask = 2;
4777 		mem_va = 0;
4778 		maxoff = (MII_MAXREG+1)*2;
4779 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
4780 		break;
4781 
4782 #if	BGE_SEE_IO32
4783 	case BGE_PP_SPACE_SEEPROM:
4784 		/*
4785 		 * Attached SEEPROM(s), if any.
4786 		 * NB: we use the high-order bits of the 'address' as
4787 		 * a device select to accommodate multiple SEEPROMS,
4788 		 * If each one is the maximum size (64kbytes), this
4789 		 * makes them appear contiguous.  Otherwise, there may
4790 		 * be holes in the mapping.  ENxS doesn't have any
4791 		 * SEEPROMs anyway ...
4792 		 */
4793 		sizemask = 4;
4794 		mem_va = 0;
4795 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
4796 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
4797 		break;
4798 #endif	/* BGE_SEE_IO32 */
4799 
4800 #if	BGE_FLASH_IO32
4801 	case BGE_PP_SPACE_FLASH:
4802 		/*
4803 		 * Attached Flash device (if any); a maximum of one device
4804 		 * is currently supported.  But it can be up to 1MB (unlike
4805 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
4806 		 */
4807 		sizemask = 4;
4808 		mem_va = 0;
4809 		maxoff = NVM_FLASH_ADDR_MASK;
4810 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
4811 		break;
4812 #endif	/* BGE_FLASH_IO32 */
4813 
4814 	case BGE_PP_SPACE_BGE:
4815 		/*
4816 		 * BGE data structure!
4817 		 */
4818 		sizemask = 8|4|2|1;
4819 		mem_va = (uintptr_t)bgep;
4820 		maxoff = sizeof (*bgep);
4821 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
4822 		break;
4823 
4824 	case BGE_PP_SPACE_STATUS:
4825 	case BGE_PP_SPACE_STATISTICS:
4826 	case BGE_PP_SPACE_TXDESC:
4827 	case BGE_PP_SPACE_TXBUFF:
4828 	case BGE_PP_SPACE_RXDESC:
4829 	case BGE_PP_SPACE_RXBUFF:
4830 		/*
4831 		 * Various DMA_AREAs
4832 		 */
4833 		switch (ppd->pp_acc_space) {
4834 		case BGE_PP_SPACE_TXDESC:
4835 			areap = &bgep->tx_desc;
4836 			break;
4837 		case BGE_PP_SPACE_TXBUFF:
4838 			areap = &bgep->tx_buff[0];
4839 			break;
4840 		case BGE_PP_SPACE_RXDESC:
4841 			areap = &bgep->rx_desc[0];
4842 			break;
4843 		case BGE_PP_SPACE_RXBUFF:
4844 			areap = &bgep->rx_buff[0];
4845 			break;
4846 		case BGE_PP_SPACE_STATUS:
4847 			areap = &bgep->status_block;
4848 			break;
4849 		case BGE_PP_SPACE_STATISTICS:
4850 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
4851 				areap = &bgep->statistics;
4852 			break;
4853 		}
4854 
4855 		sizemask = 8|4|2|1;
4856 		mem_va = (uintptr_t)areap->mem_va;
4857 		maxoff = areap->alength;
4858 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
4859 		break;
4860 	}
4861 
4862 	switch (ppd->pp_acc_size) {
4863 	default:
4864 		return (IOC_INVAL);
4865 
4866 	case 8:
4867 	case 4:
4868 	case 2:
4869 	case 1:
4870 		if ((ppd->pp_acc_size & sizemask) == 0)
4871 			return (IOC_INVAL);
4872 		break;
4873 	}
4874 
4875 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4876 		return (IOC_INVAL);
4877 
4878 	if (ppd->pp_acc_offset >= maxoff)
4879 		return (IOC_INVAL);
4880 
4881 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
4882 		return (IOC_INVAL);
4883 
4884 	/*
4885 	 * All OK - go do it!
4886 	 */
4887 	ppd->pp_acc_offset += mem_va;
4888 	(*ppfn)(bgep, ppd);
4889 	return (peek ? IOC_REPLY : IOC_ACK);
4890 }
4891 
4892 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4893 					struct iocblk *iocp);
4894 #pragma	no_inline(bge_diag_ioctl)
4895 
4896 static enum ioc_reply
4897 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4898 {
4899 	ASSERT(mutex_owned(bgep->genlock));
4900 
4901 	switch (cmd) {
4902 	default:
4903 		/* NOTREACHED */
4904 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
4905 		return (IOC_INVAL);
4906 
4907 	case BGE_DIAG:
4908 		/*
4909 		 * Currently a no-op
4910 		 */
4911 		return (IOC_ACK);
4912 
4913 	case BGE_PEEK:
4914 	case BGE_POKE:
4915 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
4916 
4917 	case BGE_PHY_RESET:
4918 		return (IOC_RESTART_ACK);
4919 
4920 	case BGE_SOFT_RESET:
4921 	case BGE_HARD_RESET:
4922 		/*
4923 		 * Reset and reinitialise the 570x hardware
4924 		 */
4925 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
4926 		return (IOC_ACK);
4927 	}
4928 
4929 	/* NOTREACHED */
4930 }
4931 
4932 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
4933 
4934 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4935 				    struct iocblk *iocp);
4936 #pragma	no_inline(bge_mii_ioctl)
4937 
4938 static enum ioc_reply
4939 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4940 {
4941 	struct bge_mii_rw *miirwp;
4942 
4943 	/*
4944 	 * Validate format of ioctl
4945 	 */
4946 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
4947 		return (IOC_INVAL);
4948 	if (mp->b_cont == NULL)
4949 		return (IOC_INVAL);
4950 	miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr;
4951 
4952 	/*
4953 	 * Validate request parameters ...
4954 	 */
4955 	if (miirwp->mii_reg > MII_MAXREG)
4956 		return (IOC_INVAL);
4957 
4958 	switch (cmd) {
4959 	default:
4960 		/* NOTREACHED */
4961 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
4962 		return (IOC_INVAL);
4963 
4964 	case BGE_MII_READ:
4965 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
4966 		return (IOC_REPLY);
4967 
4968 	case BGE_MII_WRITE:
4969 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
4970 		return (IOC_ACK);
4971 	}
4972 
4973 	/* NOTREACHED */
4974 }
4975 
4976 #if	BGE_SEE_IO32
4977 
4978 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4979 				    struct iocblk *iocp);
4980 #pragma	no_inline(bge_see_ioctl)
4981 
4982 static enum ioc_reply
4983 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4984 {
4985 	struct bge_see_rw *seerwp;
4986 
4987 	/*
4988 	 * Validate format of ioctl
4989 	 */
4990 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
4991 		return (IOC_INVAL);
4992 	if (mp->b_cont == NULL)
4993 		return (IOC_INVAL);
4994 	seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr;
4995 
4996 	/*
4997 	 * Validate request parameters ...
4998 	 */
4999 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5000 		return (IOC_INVAL);
5001 
5002 	switch (cmd) {
5003 	default:
5004 		/* NOTREACHED */
5005 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5006 		return (IOC_INVAL);
5007 
5008 	case BGE_SEE_READ:
5009 	case BGE_SEE_WRITE:
5010 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5011 		    seerwp->see_addr, &seerwp->see_data);
5012 		return (IOC_REPLY);
5013 	}
5014 
5015 	/* NOTREACHED */
5016 }
5017 
5018 #endif	/* BGE_SEE_IO32 */
5019 
5020 #if	BGE_FLASH_IO32
5021 
5022 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5023 				    struct iocblk *iocp);
5024 #pragma	no_inline(bge_flash_ioctl)
5025 
5026 static enum ioc_reply
5027 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5028 {
5029 	struct bge_flash_rw *flashrwp;
5030 
5031 	/*
5032 	 * Validate format of ioctl
5033 	 */
5034 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5035 		return (IOC_INVAL);
5036 	if (mp->b_cont == NULL)
5037 		return (IOC_INVAL);
5038 	flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr;
5039 
5040 	/*
5041 	 * Validate request parameters ...
5042 	 */
5043 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5044 		return (IOC_INVAL);
5045 
5046 	switch (cmd) {
5047 	default:
5048 		/* NOTREACHED */
5049 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5050 		return (IOC_INVAL);
5051 
5052 	case BGE_FLASH_READ:
5053 	case BGE_FLASH_WRITE:
5054 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5055 		    flashrwp->flash_addr, &flashrwp->flash_data);
5056 		return (IOC_REPLY);
5057 	}
5058 
5059 	/* NOTREACHED */
5060 }
5061 
5062 #endif	/* BGE_FLASH_IO32 */
5063 
5064 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5065 				struct iocblk *iocp);
5066 #pragma	no_inline(bge_chip_ioctl)
5067 
5068 enum ioc_reply
5069 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5070 {
5071 	int cmd;
5072 
5073 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5074 		(void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5075 
5076 	ASSERT(mutex_owned(bgep->genlock));
5077 
5078 	cmd = iocp->ioc_cmd;
5079 	switch (cmd) {
5080 	default:
5081 		/* NOTREACHED */
5082 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5083 		return (IOC_INVAL);
5084 
5085 	case BGE_DIAG:
5086 	case BGE_PEEK:
5087 	case BGE_POKE:
5088 	case BGE_PHY_RESET:
5089 	case BGE_SOFT_RESET:
5090 	case BGE_HARD_RESET:
5091 #if	BGE_DEBUGGING || BGE_DO_PPIO
5092 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5093 #else
5094 		return (IOC_INVAL);
5095 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5096 
5097 	case BGE_MII_READ:
5098 	case BGE_MII_WRITE:
5099 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5100 
5101 #if	BGE_SEE_IO32
5102 	case BGE_SEE_READ:
5103 	case BGE_SEE_WRITE:
5104 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5105 #endif	/* BGE_SEE_IO32 */
5106 
5107 #if	BGE_FLASH_IO32
5108 	case BGE_FLASH_READ:
5109 	case BGE_FLASH_WRITE:
5110 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5111 #endif	/* BGE_FLASH_IO32 */
5112 	}
5113 
5114 	/* NOTREACHED */
5115 }
5116 
5117 void
5118 bge_chip_blank(void *arg, time_t ticks, uint_t count)
5119 {
5120 	bge_t *bgep = arg;
5121 
5122 	mutex_enter(bgep->genlock);
5123 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5124 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5125 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5126 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5127 	mutex_exit(bgep->genlock);
5128 }
5129 
5130 #ifdef BGE_IPMI_ASF
5131 
5132 uint32_t
5133 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5134 {
5135 	uint32_t data;
5136 
5137 	if (!bgep->asf_wordswapped) {
5138 		/* a workaround word swap error */
5139 		if (addr & 4)
5140 			addr = addr - 4;
5141 		else
5142 			addr = addr + 4;
5143 	}
5144 
5145 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5146 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5147 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5148 
5149 	return (data);
5150 }
5151 
5152 
5153 void
5154 bge_asf_update_status(bge_t *bgep)
5155 {
5156 	uint32_t event;
5157 
5158 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5159 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5160 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5161 
5162 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5163 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5164 }
5165 
5166 
5167 /*
5168  * The driver is supposed to notify ASF that the OS is still running
5169  * every three seconds, otherwise the management server may attempt
5170  * to reboot the machine.  If it hasn't actually failed, this is
5171  * not a desireable result.  However, this isn't running as a real-time
5172  * thread, and even if it were, it might not be able to generate the
5173  * heartbeat in a timely manner due to system load.  As it isn't a
5174  * significant strain on the machine, we will set the interval to half
5175  * of the required value.
5176  */
5177 void
5178 bge_asf_heartbeat(void *arg)
5179 {
5180 	bge_t *bgep = (bge_t *)arg;
5181 
5182 	mutex_enter(bgep->genlock);
5183 	bge_asf_update_status((bge_t *)bgep);
5184 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5185 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5186 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5187 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5188 	mutex_exit(bgep->genlock);
5189 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5190 		drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5191 }
5192 
5193 
5194 void
5195 bge_asf_stop_timer(bge_t *bgep)
5196 {
5197 	timeout_id_t tmp_id = 0;
5198 
5199 	while ((bgep->asf_timeout_id != 0) &&
5200 		(tmp_id != bgep->asf_timeout_id)) {
5201 		tmp_id = bgep->asf_timeout_id;
5202 		(void) untimeout(tmp_id);
5203 	}
5204 	bgep->asf_timeout_id = 0;
5205 }
5206 
5207 
5208 
5209 /*
5210  * This function should be placed at the earliest postion of bge_attach().
5211  */
5212 void
5213 bge_asf_get_config(bge_t *bgep)
5214 {
5215 	uint32_t nicsig;
5216 	uint32_t niccfg;
5217 
5218 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5219 	if (nicsig == BGE_NIC_DATA_SIG) {
5220 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5221 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5222 			/*
5223 			 * Here, we don't consider BAXTER, because BGE haven't
5224 			 * supported BAXTER (that is 5752). Also, as I know,
5225 			 * BAXTER doesn't support ASF feature.
5226 			 */
5227 			bgep->asf_enabled = B_TRUE;
5228 		else
5229 			bgep->asf_enabled = B_FALSE;
5230 	} else
5231 		bgep->asf_enabled = B_FALSE;
5232 }
5233 
5234 
5235 void
5236 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5237 {
5238 	uint32_t tries;
5239 	uint32_t event;
5240 
5241 	ASSERT(bgep->asf_enabled);
5242 
5243 	/* Issues "pause firmware" command and wait for ACK */
5244 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5245 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5246 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5247 
5248 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5249 	tries = 0;
5250 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5251 		drv_usecwait(1);
5252 		tries ++;
5253 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5254 	}
5255 
5256 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5257 		BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5258 
5259 	if (bgep->asf_newhandshake) {
5260 		switch (mode) {
5261 		case BGE_INIT_RESET:
5262 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5263 				BGE_DRV_STATE_START);
5264 			break;
5265 		case BGE_SHUTDOWN_RESET:
5266 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5267 				BGE_DRV_STATE_UNLOAD);
5268 			break;
5269 		case BGE_SUSPEND_RESET:
5270 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5271 				BGE_DRV_STATE_SUSPEND);
5272 			break;
5273 		default:
5274 			break;
5275 		}
5276 	}
5277 }
5278 
5279 
5280 void
5281 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5282 {
5283 	switch (mode) {
5284 	case BGE_INIT_RESET:
5285 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5286 			BGE_DRV_STATE_START);
5287 		break;
5288 	case BGE_SHUTDOWN_RESET:
5289 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5290 			BGE_DRV_STATE_UNLOAD);
5291 		break;
5292 	case BGE_SUSPEND_RESET:
5293 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5294 			BGE_DRV_STATE_SUSPEND);
5295 		break;
5296 	default:
5297 		break;
5298 	}
5299 }
5300 
5301 
5302 void
5303 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5304 {
5305 	switch (mode) {
5306 	case BGE_INIT_RESET:
5307 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5308 			BGE_DRV_STATE_START_DONE);
5309 		break;
5310 	case BGE_SHUTDOWN_RESET:
5311 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5312 			BGE_DRV_STATE_UNLOAD_DONE);
5313 		break;
5314 	default:
5315 		break;
5316 	}
5317 }
5318 
5319 #endif /* BGE_IPMI_ASF */
5320