xref: /titanic_44/usr/src/uts/common/inet/udp/udp.c (revision d9638e547d8811f2c689977f8dd2a353938b61fd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 const char udp_version[] = "%Z%%M%	%I%	%E% SMI";
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/dlpi.h>
35 #include <sys/pattr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/tiuser.h>
43 #include <sys/ddi.h>
44 #include <sys/sunddi.h>
45 #include <sys/strsubr.h>
46 #include <sys/suntpi.h>
47 #include <sys/xti_inet.h>
48 #include <sys/cmn_err.h>
49 #include <sys/kmem.h>
50 #include <sys/policy.h>
51 #include <sys/ucred.h>
52 #include <sys/zone.h>
53 
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/vtrace.h>
57 #include <sys/debug.h>
58 #include <sys/isa_defs.h>
59 #include <sys/random.h>
60 #include <netinet/in.h>
61 #include <netinet/ip6.h>
62 #include <netinet/icmp6.h>
63 #include <netinet/udp.h>
64 #include <net/if.h>
65 #include <net/route.h>
66 
67 #include <inet/common.h>
68 #include <inet/ip.h>
69 #include <inet/ip_impl.h>
70 #include <inet/ip6.h>
71 #include <inet/ip_ire.h>
72 #include <inet/ip_if.h>
73 #include <inet/ip_multi.h>
74 #include <inet/mi.h>
75 #include <inet/mib2.h>
76 #include <inet/nd.h>
77 #include <inet/optcom.h>
78 #include <inet/snmpcom.h>
79 #include <inet/kstatcom.h>
80 #include <inet/udp_impl.h>
81 #include <inet/ipclassifier.h>
82 #include <inet/ipsec_impl.h>
83 #include <inet/ipp_common.h>
84 
85 /*
86  * The ipsec_info.h header file is here since it has the definition for the
87  * M_CTL message types used by IP to convey information to the ULP. The
88  * ipsec_info.h needs the pfkeyv2.h, hence the latters presence.
89  */
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 
93 /*
94  * Synchronization notes:
95  *
96  * UDP uses a combination of its internal perimeter, a global lock and
97  * a set of bind hash locks to protect its data structures.  Please see
98  * the note above udp_mode_assertions for details about the internal
99  * perimeter.
100  *
101  * When a UDP endpoint is bound to a local port, it is inserted into
102  * a bind hash list.  The list consists of an array of udp_fanout_t buckets.
103  * The size of the array is controlled by the udp_bind_fanout_size variable.
104  * This variable can be changed in /etc/system if the default value is
105  * not large enough.  Each bind hash bucket is protected by a per bucket
106  * lock.  It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
107  * structure.  An UDP endpoint is removed from the bind hash list only
108  * when it is being unbound or being closed.  The per bucket lock also
109  * protects a UDP endpoint's state changes.
110  *
111  * Plumbing notes:
112  *
113  * Both udp and ip are merged, but the streams plumbing is kept unchanged
114  * in that udp is always pushed atop /dev/ip.  This is done to preserve
115  * backwards compatibility for certain applications which rely on such
116  * plumbing geometry to do things such as issuing I_POP on the stream
117  * in order to obtain direct access to /dev/ip, etc.
118  *
119  * All UDP processings happen in the /dev/ip instance; the udp module
120  * instance does not possess any state about the endpoint, and merely
121  * acts as a dummy module whose presence is to keep the streams plumbing
122  * appearance unchanged.  At open time /dev/ip allocates a conn_t that
123  * happens to embed a udp_t.  This stays dormant until the time udp is
124  * pushed, which indicates to /dev/ip that it must convert itself from
125  * an IP to a UDP endpoint.
126  *
127  * We only allow for the following plumbing cases:
128  *
129  * Normal:
130  *	/dev/ip is first opened and later udp is pushed directly on top.
131  *	This is the default action that happens when a udp socket or
132  *	/dev/udp is opened.  The conn_t created by /dev/ip instance is
133  *	now shared and is marked with IPCL_UDP.
134  *
135  * SNMP-only:
136  *	udp is pushed on top of a module other than /dev/ip.  When this
137  *	happens it will support only SNMP semantics.  A new conn_t is
138  *	allocated and marked with IPCL_UDPMOD.
139  *
140  * The above cases imply that we don't support any intermediate module to
141  * reside in between /dev/ip and udp -- in fact, we never supported such
142  * scenario in the past as the inter-layer communication semantics have
143  * always been private.  Also note that the normal case allows for SNMP
144  * requests to be processed in addition to the rest of UDP operations.
145  *
146  * The normal case plumbing is depicted by the following diagram:
147  *
148  *	+---------------+---------------+
149  *	|		|		| udp
150  *	|     udp_wq	|    udp_rq	|
151  *	|		|    UDP_RD	|
152  *	|		|		|
153  *	+---------------+---------------+
154  *		|		^
155  *		v		|
156  *	+---------------+---------------+
157  *	|		|		| /dev/ip
158  *	|     ip_wq	|     ip_rq	| conn_t
159  *	|     UDP_WR	|		|
160  *	|		|		|
161  *	+---------------+---------------+
162  *
163  * Messages arriving at udp_wq from above will end up in ip_wq before
164  * it gets processed, i.e. udp write entry points will advance udp_wq
165  * and use its q_next value as ip_wq in order to use the conn_t that
166  * is stored in its q_ptr.  Likewise, messages generated by ip to the
167  * module above udp will appear as if they are originated from udp_rq,
168  * i.e. putnext() calls to the module above udp is done using the
169  * udp_rq instead of ip_rq in order to avoid udp_rput() which does
170  * nothing more than calling putnext().
171  *
172  * The above implies the following rule of thumb:
173  *
174  *   1. udp_t is obtained from conn_t, which is created by the /dev/ip
175  *	instance and is stored in q_ptr of both ip_wq and ip_rq.  There
176  *	is no direct reference to conn_t from either udp_wq or udp_rq.
177  *
178  *   2. Write-side entry points of udp can obtain the conn_t via the
179  *	Q_TO_CONN() macro, using the queue value obtain from UDP_WR().
180  *
181  *   3. While in /dev/ip context, putnext() to the module above udp can
182  *	be done by supplying the queue value obtained from UDP_RD().
183  *
184  */
185 
186 static queue_t *UDP_WR(queue_t *);
187 static queue_t *UDP_RD(queue_t *);
188 
189 udp_stat_t udp_statistics = {
190 	{ "udp_ip_send",		KSTAT_DATA_UINT64 },
191 	{ "udp_ip_ire_send",		KSTAT_DATA_UINT64 },
192 	{ "udp_ire_null",		KSTAT_DATA_UINT64 },
193 	{ "udp_drain",			KSTAT_DATA_UINT64 },
194 	{ "udp_sock_fallback",		KSTAT_DATA_UINT64 },
195 	{ "udp_rrw_busy",		KSTAT_DATA_UINT64 },
196 	{ "udp_rrw_msgcnt",		KSTAT_DATA_UINT64 },
197 	{ "udp_out_sw_cksum",		KSTAT_DATA_UINT64 },
198 	{ "udp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
199 	{ "udp_out_opt",		KSTAT_DATA_UINT64 },
200 	{ "udp_out_err_notconn",	KSTAT_DATA_UINT64 },
201 	{ "udp_out_err_output",		KSTAT_DATA_UINT64 },
202 	{ "udp_out_err_tudr",		KSTAT_DATA_UINT64 },
203 	{ "udp_in_pktinfo",		KSTAT_DATA_UINT64 },
204 	{ "udp_in_recvdstaddr",		KSTAT_DATA_UINT64 },
205 	{ "udp_in_recvopts",		KSTAT_DATA_UINT64 },
206 	{ "udp_in_recvif",		KSTAT_DATA_UINT64 },
207 	{ "udp_in_recvslla",		KSTAT_DATA_UINT64 },
208 	{ "udp_in_recvucred",		KSTAT_DATA_UINT64 },
209 	{ "udp_in_recvttl",		KSTAT_DATA_UINT64 },
210 	{ "udp_in_recvhopopts",		KSTAT_DATA_UINT64 },
211 	{ "udp_in_recvhoplimit",	KSTAT_DATA_UINT64 },
212 	{ "udp_in_recvdstopts",		KSTAT_DATA_UINT64 },
213 	{ "udp_in_recvrtdstopts",	KSTAT_DATA_UINT64 },
214 	{ "udp_in_recvrthdr",		KSTAT_DATA_UINT64 },
215 	{ "udp_in_recvpktinfo",		KSTAT_DATA_UINT64 },
216 	{ "udp_in_recvtclass",		KSTAT_DATA_UINT64 },
217 #ifdef DEBUG
218 	{ "udp_data_conn",		KSTAT_DATA_UINT64 },
219 	{ "udp_data_notconn",		KSTAT_DATA_UINT64 },
220 #endif
221 };
222 
223 static kstat_t *udp_ksp;
224 struct kmem_cache *udp_cache;
225 
226 /*
227  * Bind hash list size and hash function.  It has to be a power of 2 for
228  * hashing.
229  */
230 #define	UDP_BIND_FANOUT_SIZE	512
231 #define	UDP_BIND_HASH(lport) \
232 	((ntohs((uint16_t)lport)) & (udp_bind_fanout_size - 1))
233 
234 /* UDP bind fanout hash structure. */
235 typedef struct udp_fanout_s {
236 	udp_t *uf_udp;
237 	kmutex_t uf_lock;
238 #if defined(_LP64) || defined(_I32LPx)
239 	char	uf_pad[48];
240 #else
241 	char	uf_pad[56];
242 #endif
243 } udp_fanout_t;
244 
245 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
246 /* udp_fanout_t *udp_bind_fanout. */
247 static udp_fanout_t *udp_bind_fanout;
248 
249 /*
250  * This controls the rate some ndd info report functions can be used
251  * by non-priviledged users.  It stores the last time such info is
252  * requested.  When those report functions are called again, this
253  * is checked with the current time and compare with the ndd param
254  * udp_ndd_get_info_interval.
255  */
256 static clock_t udp_last_ndd_get_info_time;
257 #define	NDD_TOO_QUICK_MSG \
258 	"ndd get info rate too high for non-priviledged users, try again " \
259 	"later.\n"
260 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
261 
262 static void	udp_addr_req(queue_t *q, mblk_t *mp);
263 static void	udp_bind(queue_t *q, mblk_t *mp);
264 static void	udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
265 static void	udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
266 static int	udp_build_hdrs(queue_t *q, udp_t *udp);
267 static void	udp_capability_req(queue_t *q, mblk_t *mp);
268 static int	udp_close(queue_t *q);
269 static void	udp_connect(queue_t *q, mblk_t *mp);
270 static void	udp_disconnect(queue_t *q, mblk_t *mp);
271 static void	udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
272 		    int sys_error);
273 static void	udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
274 		    t_scalar_t tlierr, int unixerr);
275 static int	udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
276 		    cred_t *cr);
277 static int	udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
278 		    char *value, caddr_t cp, cred_t *cr);
279 static int	udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
280 		    char *value, caddr_t cp, cred_t *cr);
281 static void	udp_icmp_error(queue_t *q, mblk_t *mp);
282 static void	udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
283 static void	udp_info_req(queue_t *q, mblk_t *mp);
284 static mblk_t	*udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
285 		    t_scalar_t addr_length);
286 static int	udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
287 		    cred_t *credp);
288 static  int	udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
289 		    int *errorp, void *thisdg_attrs);
290 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
291 static int	udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
292 static boolean_t udp_param_register(udpparam_t *udppa, int cnt);
293 static int	udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
294 		    cred_t *cr);
295 static int	udp_pkt_set(uchar_t *invalp, uint_t inlen, boolean_t sticky,
296 		    uchar_t **optbufp, uint_t *optlenp);
297 static void	udp_report_item(mblk_t *mp, udp_t *udp);
298 static void	udp_rput(queue_t *q, mblk_t *mp);
299 static void	udp_rput_other(queue_t *, mblk_t *);
300 static int	udp_rinfop(queue_t *q, infod_t *dp);
301 static int	udp_rrw(queue_t *q, struiod_t *dp);
302 static	void	udp_rput_bind_ack(queue_t *q, mblk_t *mp);
303 static int	udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
304 		    cred_t *cr);
305 static void	udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha);
306 static void	udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
307 		    t_scalar_t destlen, t_scalar_t err);
308 static void	udp_unbind(queue_t *q, mblk_t *mp);
309 static in_port_t udp_update_next_port(in_port_t port, boolean_t random);
310 static void	udp_wput(queue_t *q, mblk_t *mp);
311 static mblk_t	*udp_output_v4(conn_t *, mblk_t *mp, ipaddr_t v4dst,
312 		    uint16_t port, uint_t srcid, int *error);
313 static mblk_t	*udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
314 		    t_scalar_t tudr_optlen, int *error);
315 static void	udp_wput_other(queue_t *q, mblk_t *mp);
316 static void	udp_wput_iocdata(queue_t *q, mblk_t *mp);
317 static void	udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr,
318 		    socklen_t addrlen);
319 static size_t	udp_set_rcv_hiwat(udp_t *udp, size_t size);
320 
321 static void	udp_kstat_init(void);
322 static void	udp_kstat_fini(void);
323 static int	udp_kstat_update(kstat_t *kp, int rw);
324 static void	udp_input_wrapper(void *arg, mblk_t *mp, void *arg2);
325 static void	udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
326 static void	udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
327 static void	udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2);
328 
329 static void	udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
330 		    uint_t pkt_len);
331 static void	udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
332 static void	udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t);
333 static void	udp_exit(conn_t *);
334 static void	udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t);
335 #ifdef DEBUG
336 static void	udp_mode_assertions(udp_t *, int);
337 #endif /* DEBUG */
338 
339 major_t UDP6_MAJ;
340 #define	UDP6 "udp6"
341 
342 #define	UDP_RECV_HIWATER	(56 * 1024)
343 #define	UDP_RECV_LOWATER	128
344 #define	UDP_XMIT_HIWATER	(56 * 1024)
345 #define	UDP_XMIT_LOWATER	1024
346 
347 static struct module_info udp_info =  {
348 	UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
349 };
350 
351 static struct qinit udp_rinit = {
352 	(pfi_t)udp_rput, NULL, udp_open, udp_close, NULL,
353 	&udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
354 };
355 
356 static struct qinit udp_winit = {
357 	(pfi_t)udp_wput, NULL, NULL, NULL, NULL,
358 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
359 };
360 
361 /* Support for just SNMP if UDP is not pushed directly over device IP */
362 struct qinit udp_snmp_rinit = {
363 	(pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL,
364 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
365 };
366 
367 struct qinit udp_snmp_winit = {
368 	(pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL,
369 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
370 };
371 
372 struct streamtab udpinfo = {
373 	&udp_rinit, &udp_winit
374 };
375 
376 static	sin_t	sin_null;	/* Zero address for quick clears */
377 static	sin6_t	sin6_null;	/* Zero address for quick clears */
378 
379 /* Hint not protected by any lock */
380 static in_port_t	udp_g_next_port_to_try;
381 
382 /*
383  * Extra privileged ports. In host byte order.
384  */
385 #define	UDP_NUM_EPRIV_PORTS	64
386 static int	udp_g_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
387 static in_port_t udp_g_epriv_ports[UDP_NUM_EPRIV_PORTS] = { 2049, 4045 };
388 
389 /* Only modified during _init and _fini thus no locking is needed. */
390 static IDP	udp_g_nd;	/* Points to table of UDP ND variables. */
391 
392 /* MIB-2 stuff for SNMP */
393 static mib2_udp_t	udp_mib;	/* SNMP fixed size info */
394 static kstat_t		*udp_mibkp;	/* kstat exporting udp_mib data */
395 
396 #define	UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
397 
398 /* Default structure copied into T_INFO_ACK messages */
399 static struct T_info_ack udp_g_t_info_ack_ipv4 = {
400 	T_INFO_ACK,
401 	UDP_MAXPACKET_IPV4,	/* TSDU_size. Excl. headers */
402 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
403 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
404 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
405 	sizeof (sin_t),	/* ADDR_size. */
406 	0,		/* OPT_size - not initialized here */
407 	UDP_MAXPACKET_IPV4,	/* TIDU_size.  Excl. headers */
408 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
409 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
410 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
411 };
412 
413 #define	UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
414 
415 static	struct T_info_ack udp_g_t_info_ack_ipv6 = {
416 	T_INFO_ACK,
417 	UDP_MAXPACKET_IPV6,	/* TSDU_size.  Excl. headers */
418 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
419 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
420 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
421 	sizeof (sin6_t), /* ADDR_size. */
422 	0,		/* OPT_size - not initialized here */
423 	UDP_MAXPACKET_IPV6,	/* TIDU_size. Excl. headers */
424 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
425 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
426 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
427 };
428 
429 /* largest UDP port number */
430 #define	UDP_MAX_PORT	65535
431 
432 /*
433  * Table of ND variables supported by udp.  These are loaded into udp_g_nd
434  * in udp_open.
435  * All of these are alterable, within the min/max values given, at run time.
436  */
437 /* BEGIN CSTYLED */
438 udpparam_t udp_param_arr[] = {
439  /*min		max		value		name */
440  { 0L,		256,		32,		"udp_wroff_extra" },
441  { 1L,		255,		255,		"udp_ipv4_ttl" },
442  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
443  { 1024,	(32 * 1024),	1024,		"udp_smallest_nonpriv_port" },
444  { 0,		1,		1,		"udp_do_checksum" },
445  { 1024,	UDP_MAX_PORT,	(32 * 1024),	"udp_smallest_anon_port" },
446  { 1024,	UDP_MAX_PORT,	UDP_MAX_PORT,	"udp_largest_anon_port" },
447  { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER,	"udp_xmit_hiwat"},
448  { 0,		     (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
449  { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER,	"udp_recv_hiwat"},
450  { 65536,	(1<<30),	2*1024*1024,	"udp_max_buf"},
451  { 100,		60000,		1000,		"udp_ndd_get_info_interval"},
452 };
453 /* END CSTYLED */
454 
455 /*
456  * The smallest anonymous port in the priviledged port range which UDP
457  * looks for free port.  Use in the option UDP_ANONPRIVBIND.
458  */
459 static in_port_t udp_min_anonpriv_port = 512;
460 
461 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
462 uint32_t udp_random_anon_port = 1;
463 
464 /*
465  * Hook functions to enable cluster networking.
466  * On non-clustered systems these vectors must always be NULL
467  */
468 
469 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
470     uint8_t *laddrp, in_port_t lport) = NULL;
471 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
472     uint8_t *laddrp, in_port_t lport) = NULL;
473 
474 typedef union T_primitives *t_primp_t;
475 
476 #define	UDP_ENQUEUE_MP(udp, mp, proc, tag) {			\
477 	ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL);	\
478 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
479 	(mp)->b_queue = (queue_t *)((uintptr_t)tag);		\
480 	(mp)->b_prev = (mblk_t *)proc;				\
481 	if ((udp)->udp_mphead == NULL)				\
482 		(udp)->udp_mphead = (mp);			\
483 	else							\
484 		(udp)->udp_mptail->b_next = (mp);		\
485 	(udp)->udp_mptail = (mp);				\
486 	(udp)->udp_mpcount++;					\
487 }
488 
489 #define	UDP_READERS_INCREF(udp) {				\
490 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
491 	(udp)->udp_reader_count++;				\
492 }
493 
494 #define	UDP_READERS_DECREF(udp) {				\
495 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
496 	(udp)->udp_reader_count--;				\
497 	if ((udp)->udp_reader_count == 0)			\
498 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
499 }
500 
501 #define	UDP_SQUEUE_DECREF(udp) {				\
502 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
503 	(udp)->udp_squeue_count--;				\
504 	if ((udp)->udp_squeue_count == 0)			\
505 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
506 }
507 
508 /*
509  * Notes on UDP endpoint synchronization:
510  *
511  * UDP needs exclusive operation on a per endpoint basis, when executing
512  * functions that modify the endpoint state.  udp_rput_other() deals with
513  * packets with IP options, and processing these packets end up having
514  * to update the endpoint's option related state.  udp_wput_other() deals
515  * with control operations from the top, e.g. connect() that needs to
516  * update the endpoint state.  These could be synchronized using locks,
517  * but the current version uses squeues for this purpose.  squeues may
518  * give performance improvement for certain cases such as connected UDP
519  * sockets; thus the framework allows for using squeues.
520  *
521  * The perimeter routines are described as follows:
522  *
523  * udp_enter():
524  *	Enter the UDP endpoint perimeter.
525  *
526  * udp_become_writer():
527  *	Become exclusive on the UDP endpoint.  Specifies a function
528  *	that will be called exclusively either immediately or later
529  *	when the perimeter is available exclusively.
530  *
531  * udp_exit():
532  *	Exit the UDP perimeter.
533  *
534  * Entering UDP from the top or from the bottom must be done using
535  * udp_enter().  No lock must be held while attempting to enter the UDP
536  * perimeter.  When finished, udp_exit() must be called to get out of
537  * the perimeter.
538  *
539  * UDP operates in either MT_HOT mode or in SQUEUE mode.  In MT_HOT mode,
540  * multiple threads may enter a UDP endpoint concurrently.  This is used
541  * for sending and/or receiving normal data.  Control operations and other
542  * special cases call udp_become_writer() to become exclusive on a per
543  * endpoint basis and this results in transitioning to SQUEUE mode.  squeue
544  * by definition serializes access to the conn_t.  When there are no more
545  * pending messages on the squeue for the UDP connection, the endpoint
546  * reverts to MT_HOT mode.  During the interregnum when not all MT threads
547  * of an endpoint have finished, messages are queued in the UDP endpoint
548  * and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode.
549  *
550  * These modes have the following analogs:
551  *
552  *	UDP_MT_HOT/udp_reader_count==0		none
553  *	UDP_MT_HOT/udp_reader_count>0		RW_READ_LOCK
554  *	UDP_MT_QUEUED				RW_WRITE_WANTED
555  *	UDP_SQUEUE or UDP_QUEUED_SQUEUE		RW_WRITE_LOCKED
556  *
557  * Stable modes:	UDP_MT_HOT, UDP_SQUEUE
558  * Transient modes:	UDP_MT_QUEUED, UDP_QUEUED_SQUEUE
559  *
560  * While in stable modes, UDP keeps track of the number of threads
561  * operating on the endpoint.  The udp_reader_count variable represents
562  * the number of threads entering the endpoint as readers while it is
563  * in UDP_MT_HOT mode.  Transitioning to UDP_SQUEUE happens when there
564  * is only a single reader, i.e. when this counter drops to 1.  Likewise,
565  * udp_squeue_count represents the number of threads operating on the
566  * endpoint's squeue while it is in UDP_SQUEUE mode.  The mode transition
567  * to UDP_MT_HOT happens after the last thread exits the endpoint, i.e.
568  * when this counter drops to 0.
569  *
570  * The default mode is set to UDP_MT_HOT and UDP alternates between
571  * UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below.
572  *
573  * Mode transition:
574  * ----------------------------------------------------------------
575  * old mode		Event				New mode
576  * ----------------------------------------------------------------
577  * UDP_MT_HOT		Call to udp_become_writer()	UDP_SQUEUE
578  *			and udp_reader_count == 1
579  *
580  * UDP_MT_HOT		Call to udp_become_writer()	UDP_MT_QUEUED
581  *			and udp_reader_count > 1
582  *
583  * UDP_MT_QUEUED	udp_reader_count drops to zero	UDP_QUEUED_SQUEUE
584  *
585  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_SQUEUE
586  *			internal UDP queue successfully
587  *			moved to squeue AND udp_squeue_count != 0
588  *
589  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_MT_HOT
590  *			internal UDP queue successfully
591  *			moved to squeue AND udp_squeue_count
592  *			drops to zero
593  *
594  * UDP_SQUEUE		udp_squeue_count drops to zero	UDP_MT_HOT
595  * ----------------------------------------------------------------
596  */
597 
598 static queue_t *
599 UDP_WR(queue_t *q)
600 {
601 	ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL);
602 	ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL);
603 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next)));
604 
605 	return (_WR(q)->q_next);
606 }
607 
608 static queue_t *
609 UDP_RD(queue_t *q)
610 {
611 	ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL);
612 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(q)));
613 	ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL);
614 
615 	return (_RD(q)->q_next);
616 }
617 
618 #ifdef DEBUG
619 #define	UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller)
620 #else
621 #define	UDP_MODE_ASSERTIONS(udp, caller)
622 #endif
623 
624 /* Invariants */
625 #ifdef DEBUG
626 
627 uint32_t udp_count[4];
628 
629 /* Context of udp_mode_assertions */
630 #define	UDP_ENTER		1
631 #define	UDP_BECOME_WRITER	2
632 #define	UDP_EXIT		3
633 
634 static void
635 udp_mode_assertions(udp_t *udp, int caller)
636 {
637 	ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock));
638 
639 	switch (udp->udp_mode) {
640 	case UDP_MT_HOT:
641 		/*
642 		 * Messages have not yet been enqueued on the internal queue,
643 		 * otherwise we would have switched to UDP_MT_QUEUED. Likewise
644 		 * by definition, there can't be any messages enqueued on the
645 		 * squeue. The UDP could be quiescent, so udp_reader_count
646 		 * could be zero at entry.
647 		 */
648 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 &&
649 		    udp->udp_squeue_count == 0);
650 		ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0);
651 		udp_count[0]++;
652 		break;
653 
654 	case UDP_MT_QUEUED:
655 		/*
656 		 * The last MT thread to exit the udp perimeter empties the
657 		 * internal queue and then switches the UDP to
658 		 * UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED
659 		 * mode, it means there must be at least 1 MT thread still in
660 		 * the perimeter and at least 1 message on the internal queue.
661 		 */
662 		ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL &&
663 		    udp->udp_mpcount != 0 && udp->udp_squeue_count == 0);
664 		udp_count[1]++;
665 		break;
666 
667 	case UDP_QUEUED_SQUEUE:
668 		/*
669 		 * The switch has happened from MT to SQUEUE. So there can't
670 		 * any MT threads. Messages could still pile up on the internal
671 		 * queue until the transition is complete and we move to
672 		 * UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count
673 		 * since the squeue could drain any time.
674 		 */
675 		ASSERT(udp->udp_reader_count == 0);
676 		udp_count[2]++;
677 		break;
678 
679 	case UDP_SQUEUE:
680 		/*
681 		 * The transition is complete. Thre can't be any messages on
682 		 * the internal queue. The udp could be quiescent or the squeue
683 		 * could drain any time, so we can't assert on nonzero
684 		 * udp_squeue_count during entry. Nor can we assert that
685 		 * udp_reader_count is zero, since, a reader thread could have
686 		 * directly become writer in line by calling udp_become_writer
687 		 * without going through the queued states.
688 		 */
689 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0);
690 		ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0);
691 		udp_count[3]++;
692 		break;
693 	}
694 }
695 #endif
696 
697 #define	_UDP_ENTER(connp, mp, proc, tag) {				\
698 	udp_t *_udp = (connp)->conn_udp;				\
699 									\
700 	mutex_enter(&(connp)->conn_lock);				\
701 	if ((connp)->conn_state_flags & CONN_CLOSING) {			\
702 		mutex_exit(&(connp)->conn_lock);			\
703 		freemsg(mp);						\
704 	} else {							\
705 		UDP_MODE_ASSERTIONS(_udp, UDP_ENTER);			\
706 									\
707 		switch (_udp->udp_mode) {				\
708 		case UDP_MT_HOT:					\
709 			/* We can execute as reader right away. */	\
710 			UDP_READERS_INCREF(_udp);			\
711 			mutex_exit(&(connp)->conn_lock);		\
712 			(*(proc))(connp, mp, (connp)->conn_sqp);	\
713 			break;						\
714 									\
715 		case UDP_SQUEUE:					\
716 			/*						\
717 			 * We are in squeue mode, send the		\
718 			 * packet to the squeue				\
719 			 */						\
720 			_udp->udp_squeue_count++;			\
721 			CONN_INC_REF_LOCKED(connp);			\
722 			mutex_exit(&(connp)->conn_lock);		\
723 			squeue_enter((connp)->conn_sqp, mp, proc,	\
724 			    connp, tag);				\
725 			break;						\
726 									\
727 		case UDP_MT_QUEUED:					\
728 		case UDP_QUEUED_SQUEUE:					\
729 			/*						\
730 			 * Some messages may have been enqueued		\
731 			 * ahead of us.  Enqueue the new message	\
732 			 * at the tail of the internal queue to		\
733 			 * preserve message ordering.			\
734 			 */						\
735 			UDP_ENQUEUE_MP(_udp, mp, proc, tag);		\
736 			mutex_exit(&(connp)->conn_lock);		\
737 			break;						\
738 		}							\
739 	}								\
740 }
741 
742 static void
743 udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
744 {
745 	_UDP_ENTER(connp, mp, proc, tag);
746 }
747 
748 static void
749 udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
750 {
751 	udp_t	*udp;
752 
753 	udp = connp->conn_udp;
754 
755 	mutex_enter(&connp->conn_lock);
756 
757 	UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER);
758 
759 	switch (udp->udp_mode) {
760 	case UDP_MT_HOT:
761 		if (udp->udp_reader_count == 1) {
762 			/*
763 			 * We are the only MT thread. Switch to squeue mode
764 			 * immediately.
765 			 */
766 			udp->udp_mode = UDP_SQUEUE;
767 			udp->udp_squeue_count = 1;
768 			CONN_INC_REF_LOCKED(connp);
769 			mutex_exit(&connp->conn_lock);
770 			squeue_enter(connp->conn_sqp, mp, proc, connp, tag);
771 			return;
772 		}
773 		/* FALLTHRU */
774 
775 	case UDP_MT_QUEUED:
776 		/* Enqueue the packet internally in UDP */
777 		udp->udp_mode = UDP_MT_QUEUED;
778 		UDP_ENQUEUE_MP(udp, mp, proc, tag);
779 		mutex_exit(&connp->conn_lock);
780 		return;
781 
782 	case UDP_SQUEUE:
783 	case UDP_QUEUED_SQUEUE:
784 		/*
785 		 * We are already exclusive. i.e. we are already
786 		 * writer. Simply call the desired function.
787 		 */
788 		udp->udp_squeue_count++;
789 		mutex_exit(&connp->conn_lock);
790 		(*proc)(connp, mp, connp->conn_sqp);
791 		return;
792 	}
793 }
794 
795 /*
796  * Transition from MT mode to SQUEUE mode, when the last MT thread
797  * is exiting the UDP perimeter. Move all messages from the internal
798  * udp queue to the squeue. A better way would be to move all the
799  * messages in one shot, this needs more support from the squeue framework
800  */
801 static void
802 udp_switch_to_squeue(udp_t *udp)
803 {
804 	mblk_t *mp;
805 	mblk_t	*mp_next;
806 	sqproc_t proc;
807 	uint8_t	tag;
808 	conn_t	*connp = udp->udp_connp;
809 
810 	ASSERT(MUTEX_HELD(&connp->conn_lock));
811 	ASSERT(udp->udp_mode == UDP_MT_QUEUED);
812 	while (udp->udp_mphead != NULL) {
813 		mp = udp->udp_mphead;
814 		udp->udp_mphead = NULL;
815 		udp->udp_mptail = NULL;
816 		udp->udp_mpcount = 0;
817 		udp->udp_mode = UDP_QUEUED_SQUEUE;
818 		mutex_exit(&connp->conn_lock);
819 		/*
820 		 * It is best not to hold any locks across the calls
821 		 * to squeue functions. Since we drop the lock we
822 		 * need to go back and check the udp_mphead once again
823 		 * after the squeue_fill and hence the while loop at
824 		 * the top of this function
825 		 */
826 		for (; mp != NULL; mp = mp_next) {
827 			mp_next = mp->b_next;
828 			proc = (sqproc_t)mp->b_prev;
829 			tag = (uint8_t)((uintptr_t)mp->b_queue);
830 			mp->b_next = NULL;
831 			mp->b_prev = NULL;
832 			mp->b_queue = NULL;
833 			CONN_INC_REF(connp);
834 			udp->udp_squeue_count++;
835 			squeue_fill(connp->conn_sqp, mp, proc, connp,
836 			    tag);
837 		}
838 		mutex_enter(&connp->conn_lock);
839 	}
840 	/*
841 	 * udp_squeue_count of zero implies that the squeue has drained
842 	 * even before we arrived here (i.e. after the squeue_fill above)
843 	 */
844 	udp->udp_mode = (udp->udp_squeue_count != 0) ?
845 	    UDP_SQUEUE : UDP_MT_HOT;
846 }
847 
848 #define	_UDP_EXIT(connp) {						\
849 	udp_t *_udp = (connp)->conn_udp;				\
850 									\
851 	mutex_enter(&(connp)->conn_lock);				\
852 	UDP_MODE_ASSERTIONS(_udp, UDP_EXIT);				\
853 									\
854 	switch (_udp->udp_mode) {					\
855 	case UDP_MT_HOT:						\
856 		UDP_READERS_DECREF(_udp);				\
857 		mutex_exit(&(connp)->conn_lock);			\
858 		break;							\
859 									\
860 	case UDP_SQUEUE:						\
861 		UDP_SQUEUE_DECREF(_udp);				\
862 		if (_udp->udp_squeue_count == 0)			\
863 		    _udp->udp_mode = UDP_MT_HOT;			\
864 		mutex_exit(&(connp)->conn_lock);			\
865 		break;							\
866 									\
867 	case UDP_MT_QUEUED:						\
868 		/*							\
869 		 * If this is the last MT thread, we need to		\
870 		 * switch to squeue mode				\
871 		 */							\
872 		UDP_READERS_DECREF(_udp);				\
873 		if (_udp->udp_reader_count == 0)			\
874 			udp_switch_to_squeue(_udp);			\
875 		mutex_exit(&(connp)->conn_lock);			\
876 		break;							\
877 									\
878 	case UDP_QUEUED_SQUEUE:						\
879 		UDP_SQUEUE_DECREF(_udp);				\
880 		/*							\
881 		 * Even if the udp_squeue_count drops to zero, we	\
882 		 * don't want to change udp_mode to UDP_MT_HOT here.	\
883 		 * The thread in udp_switch_to_squeue will take care	\
884 		 * of the transition to UDP_MT_HOT, after emptying	\
885 		 * any more new messages that have been enqueued in	\
886 		 * udp_mphead.						\
887 		 */							\
888 		mutex_exit(&(connp)->conn_lock);			\
889 		break;							\
890 	}								\
891 }
892 
893 static void
894 udp_exit(conn_t *connp)
895 {
896 	_UDP_EXIT(connp);
897 }
898 
899 /*
900  * Return the next anonymous port in the priviledged port range for
901  * bind checking.
902  */
903 static in_port_t
904 udp_get_next_priv_port(void)
905 {
906 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
907 
908 	if (next_priv_port < udp_min_anonpriv_port) {
909 		next_priv_port = IPPORT_RESERVED - 1;
910 	}
911 	return (next_priv_port--);
912 }
913 
914 /* UDP bind hash report triggered via the Named Dispatch mechanism. */
915 /* ARGSUSED */
916 static int
917 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
918 {
919 	udp_fanout_t	*udpf;
920 	int		i;
921 	zoneid_t	zoneid;
922 	conn_t		*connp;
923 	udp_t		*udp;
924 
925 	connp = Q_TO_CONN(q);
926 	udp = connp->conn_udp;
927 
928 	/* Refer to comments in udp_status_report(). */
929 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
930 		if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
931 		    drv_usectohz(udp_ndd_get_info_interval * 1000)) {
932 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
933 			return (0);
934 		}
935 	}
936 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
937 		/* The following may work even if we cannot get a large buf. */
938 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
939 		return (0);
940 	}
941 
942 	(void) mi_mpprintf(mp,
943 	    "UDP     " MI_COL_HDRPAD_STR
944 	/*   12345678[89ABCDEF] */
945 	    " zone lport src addr        dest addr       port  state");
946 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
947 
948 	zoneid = connp->conn_zoneid;
949 
950 	for (i = 0; i < udp_bind_fanout_size; i++) {
951 		udpf = &udp_bind_fanout[i];
952 		mutex_enter(&udpf->uf_lock);
953 
954 		/* Print the hash index. */
955 		udp = udpf->uf_udp;
956 		if (zoneid != GLOBAL_ZONEID) {
957 			/* skip to first entry in this zone; might be none */
958 			while (udp != NULL &&
959 			    udp->udp_connp->conn_zoneid != zoneid)
960 				udp = udp->udp_bind_hash;
961 		}
962 		if (udp != NULL) {
963 			uint_t print_len, buf_len;
964 
965 			buf_len = mp->b_cont->b_datap->db_lim -
966 			    mp->b_cont->b_wptr;
967 			print_len = snprintf((char *)mp->b_cont->b_wptr,
968 			    buf_len, "%d\n", i);
969 			if (print_len < buf_len) {
970 				mp->b_cont->b_wptr += print_len;
971 			} else {
972 				mp->b_cont->b_wptr += buf_len;
973 			}
974 			for (; udp != NULL; udp = udp->udp_bind_hash) {
975 				if (zoneid == GLOBAL_ZONEID ||
976 				    zoneid == udp->udp_connp->conn_zoneid)
977 					udp_report_item(mp->b_cont, udp);
978 			}
979 		}
980 		mutex_exit(&udpf->uf_lock);
981 	}
982 	udp_last_ndd_get_info_time = ddi_get_lbolt();
983 	return (0);
984 }
985 
986 /*
987  * Hash list removal routine for udp_t structures.
988  */
989 static void
990 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
991 {
992 	udp_t	*udpnext;
993 	kmutex_t *lockp;
994 
995 	if (udp->udp_ptpbhn == NULL)
996 		return;
997 
998 	/*
999 	 * Extract the lock pointer in case there are concurrent
1000 	 * hash_remove's for this instance.
1001 	 */
1002 	ASSERT(udp->udp_port != 0);
1003 	if (!caller_holds_lock) {
1004 		lockp = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)].uf_lock;
1005 		ASSERT(lockp != NULL);
1006 		mutex_enter(lockp);
1007 	}
1008 	if (udp->udp_ptpbhn != NULL) {
1009 		udpnext = udp->udp_bind_hash;
1010 		if (udpnext != NULL) {
1011 			udpnext->udp_ptpbhn = udp->udp_ptpbhn;
1012 			udp->udp_bind_hash = NULL;
1013 		}
1014 		*udp->udp_ptpbhn = udpnext;
1015 		udp->udp_ptpbhn = NULL;
1016 	}
1017 	if (!caller_holds_lock) {
1018 		mutex_exit(lockp);
1019 	}
1020 }
1021 
1022 static void
1023 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
1024 {
1025 	udp_t	**udpp;
1026 	udp_t	*udpnext;
1027 
1028 	ASSERT(MUTEX_HELD(&uf->uf_lock));
1029 	if (udp->udp_ptpbhn != NULL) {
1030 		udp_bind_hash_remove(udp, B_TRUE);
1031 	}
1032 	udpp = &uf->uf_udp;
1033 	udpnext = udpp[0];
1034 	if (udpnext != NULL) {
1035 		/*
1036 		 * If the new udp bound to the INADDR_ANY address
1037 		 * and the first one in the list is not bound to
1038 		 * INADDR_ANY we skip all entries until we find the
1039 		 * first one bound to INADDR_ANY.
1040 		 * This makes sure that applications binding to a
1041 		 * specific address get preference over those binding to
1042 		 * INADDR_ANY.
1043 		 */
1044 		if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
1045 		    !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
1046 			while ((udpnext = udpp[0]) != NULL &&
1047 			    !V6_OR_V4_INADDR_ANY(
1048 			    udpnext->udp_bound_v6src)) {
1049 				udpp = &(udpnext->udp_bind_hash);
1050 			}
1051 			if (udpnext != NULL)
1052 				udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1053 		} else {
1054 			udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1055 		}
1056 	}
1057 	udp->udp_bind_hash = udpnext;
1058 	udp->udp_ptpbhn = udpp;
1059 	udpp[0] = udp;
1060 }
1061 
1062 /*
1063  * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
1064  * passed to udp_wput.
1065  * It associates a port number and local address with the stream.
1066  * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
1067  * protocol type (IPPROTO_UDP) placed in the message following the address.
1068  * A T_BIND_ACK message is passed upstream when ip acknowledges the request.
1069  * (Called as writer.)
1070  *
1071  * Note that UDP over IPv4 and IPv6 sockets can use the same port number
1072  * without setting SO_REUSEADDR. This is needed so that they
1073  * can be viewed as two independent transport protocols.
1074  * However, anonymouns ports are allocated from the same range to avoid
1075  * duplicating the udp_g_next_port_to_try.
1076  */
1077 static void
1078 udp_bind(queue_t *q, mblk_t *mp)
1079 {
1080 	sin_t		*sin;
1081 	sin6_t		*sin6;
1082 	mblk_t		*mp1;
1083 	in_port_t	port;		/* Host byte order */
1084 	in_port_t	requested_port;	/* Host byte order */
1085 	struct T_bind_req *tbr;
1086 	int		count;
1087 	in6_addr_t	v6src;
1088 	boolean_t	bind_to_req_port_only;
1089 	int		loopmax;
1090 	udp_fanout_t	*udpf;
1091 	in_port_t	lport;		/* Network byte order */
1092 	zoneid_t	zoneid;
1093 	conn_t		*connp;
1094 	udp_t		*udp;
1095 
1096 	connp = Q_TO_CONN(q);
1097 	udp = connp->conn_udp;
1098 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
1099 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1100 		    "udp_bind: bad req, len %u",
1101 		    (uint_t)(mp->b_wptr - mp->b_rptr));
1102 		udp_err_ack(q, mp, TPROTO, 0);
1103 		return;
1104 	}
1105 
1106 	if (udp->udp_state != TS_UNBND) {
1107 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1108 		    "udp_bind: bad state, %u", udp->udp_state);
1109 		udp_err_ack(q, mp, TOUTSTATE, 0);
1110 		return;
1111 	}
1112 	/*
1113 	 * Reallocate the message to make sure we have enough room for an
1114 	 * address and the protocol type.
1115 	 */
1116 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
1117 	if (!mp1) {
1118 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1119 		return;
1120 	}
1121 
1122 	mp = mp1;
1123 	tbr = (struct T_bind_req *)mp->b_rptr;
1124 	switch (tbr->ADDR_length) {
1125 	case 0:			/* Request for a generic port */
1126 		tbr->ADDR_offset = sizeof (struct T_bind_req);
1127 		if (udp->udp_family == AF_INET) {
1128 			tbr->ADDR_length = sizeof (sin_t);
1129 			sin = (sin_t *)&tbr[1];
1130 			*sin = sin_null;
1131 			sin->sin_family = AF_INET;
1132 			mp->b_wptr = (uchar_t *)&sin[1];
1133 		} else {
1134 			ASSERT(udp->udp_family == AF_INET6);
1135 			tbr->ADDR_length = sizeof (sin6_t);
1136 			sin6 = (sin6_t *)&tbr[1];
1137 			*sin6 = sin6_null;
1138 			sin6->sin6_family = AF_INET6;
1139 			mp->b_wptr = (uchar_t *)&sin6[1];
1140 		}
1141 		port = 0;
1142 		break;
1143 
1144 	case sizeof (sin_t):	/* Complete IPv4 address */
1145 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
1146 		    sizeof (sin_t));
1147 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1148 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1149 			return;
1150 		}
1151 		if (udp->udp_family != AF_INET ||
1152 		    sin->sin_family != AF_INET) {
1153 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1154 			return;
1155 		}
1156 		port = ntohs(sin->sin_port);
1157 		break;
1158 
1159 	case sizeof (sin6_t):	/* complete IPv6 address */
1160 		sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
1161 		    sizeof (sin6_t));
1162 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1163 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1164 			return;
1165 		}
1166 		if (udp->udp_family != AF_INET6 ||
1167 		    sin6->sin6_family != AF_INET6) {
1168 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1169 			return;
1170 		}
1171 		port = ntohs(sin6->sin6_port);
1172 		break;
1173 
1174 	default:		/* Invalid request */
1175 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1176 		    "udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
1177 		udp_err_ack(q, mp, TBADADDR, 0);
1178 		return;
1179 	}
1180 
1181 	requested_port = port;
1182 
1183 	if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
1184 		bind_to_req_port_only = B_FALSE;
1185 	else			/* T_BIND_REQ and requested_port != 0 */
1186 		bind_to_req_port_only = B_TRUE;
1187 
1188 	if (requested_port == 0) {
1189 		/*
1190 		 * If the application passed in zero for the port number, it
1191 		 * doesn't care which port number we bind to. Get one in the
1192 		 * valid range.
1193 		 */
1194 		if (udp->udp_anon_priv_bind) {
1195 			port = udp_get_next_priv_port();
1196 		} else {
1197 			port = udp_update_next_port(udp_g_next_port_to_try,
1198 			    B_TRUE);
1199 		}
1200 	} else {
1201 		/*
1202 		 * If the port is in the well-known privileged range,
1203 		 * make sure the caller was privileged.
1204 		 */
1205 		int i;
1206 		boolean_t priv = B_FALSE;
1207 
1208 		if (port < udp_smallest_nonpriv_port) {
1209 			priv = B_TRUE;
1210 		} else {
1211 			for (i = 0; i < udp_g_num_epriv_ports; i++) {
1212 				if (port == udp_g_epriv_ports[i]) {
1213 					priv = B_TRUE;
1214 					break;
1215 				}
1216 			}
1217 		}
1218 
1219 		if (priv) {
1220 			cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
1221 
1222 			if (secpolicy_net_privaddr(cr, port) != 0) {
1223 				udp_err_ack(q, mp, TACCES, 0);
1224 				return;
1225 			}
1226 		}
1227 	}
1228 
1229 	/*
1230 	 * Copy the source address into our udp structure. This address
1231 	 * may still be zero; if so, IP will fill in the correct address
1232 	 * each time an outbound packet is passed to it.
1233 	 */
1234 	if (udp->udp_family == AF_INET) {
1235 		ASSERT(sin != NULL);
1236 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1237 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1238 		    udp->udp_ip_snd_options_len;
1239 		IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
1240 	} else {
1241 		ASSERT(sin6 != NULL);
1242 		v6src = sin6->sin6_addr;
1243 		if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
1244 			udp->udp_ipversion = IPV4_VERSION;
1245 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1246 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1247 		} else {
1248 			udp->udp_ipversion = IPV6_VERSION;
1249 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1250 		}
1251 	}
1252 
1253 	/*
1254 	 * If udp_reuseaddr is not set, then we have to make sure that
1255 	 * the IP address and port number the application requested
1256 	 * (or we selected for the application) is not being used by
1257 	 * another stream.  If another stream is already using the
1258 	 * requested IP address and port, the behavior depends on
1259 	 * "bind_to_req_port_only". If set the bind fails; otherwise we
1260 	 * search for any an unused port to bind to the the stream.
1261 	 *
1262 	 * As per the BSD semantics, as modified by the Deering multicast
1263 	 * changes, if udp_reuseaddr is set, then we allow multiple binds
1264 	 * to the same port independent of the local IP address.
1265 	 *
1266 	 * This is slightly different than in SunOS 4.X which did not
1267 	 * support IP multicast. Note that the change implemented by the
1268 	 * Deering multicast code effects all binds - not only binding
1269 	 * to IP multicast addresses.
1270 	 *
1271 	 * Note that when binding to port zero we ignore SO_REUSEADDR in
1272 	 * order to guarantee a unique port.
1273 	 */
1274 
1275 	count = 0;
1276 	if (udp->udp_anon_priv_bind) {
1277 		/* loopmax = (IPPORT_RESERVED-1) - udp_min_anonpriv_port + 1 */
1278 		loopmax = IPPORT_RESERVED - udp_min_anonpriv_port;
1279 	} else {
1280 		loopmax = udp_largest_anon_port - udp_smallest_anon_port + 1;
1281 	}
1282 
1283 	zoneid = connp->conn_zoneid;
1284 	for (;;) {
1285 		udp_t		*udp1;
1286 		boolean_t	is_inaddr_any;
1287 		boolean_t	found_exclbind = B_FALSE;
1288 
1289 		is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
1290 		/*
1291 		 * Walk through the list of udp streams bound to
1292 		 * requested port with the same IP address.
1293 		 */
1294 		lport = htons(port);
1295 		udpf = &udp_bind_fanout[UDP_BIND_HASH(lport)];
1296 		mutex_enter(&udpf->uf_lock);
1297 		for (udp1 = udpf->uf_udp; udp1 != NULL;
1298 		    udp1 = udp1->udp_bind_hash) {
1299 			if (lport != udp1->udp_port ||
1300 			    zoneid != udp1->udp_connp->conn_zoneid)
1301 				continue;
1302 
1303 			/*
1304 			 * If UDP_EXCLBIND is set for either the bound or
1305 			 * binding endpoint, the semantics of bind
1306 			 * is changed according to the following chart.
1307 			 *
1308 			 * spec = specified address (v4 or v6)
1309 			 * unspec = unspecified address (v4 or v6)
1310 			 * A = specified addresses are different for endpoints
1311 			 *
1312 			 * bound	bind to		allowed?
1313 			 * -------------------------------------
1314 			 * unspec	unspec		no
1315 			 * unspec	spec		no
1316 			 * spec		unspec		no
1317 			 * spec		spec		yes if A
1318 			 */
1319 			if (udp1->udp_exclbind || udp->udp_exclbind) {
1320 				if (V6_OR_V4_INADDR_ANY(
1321 				    udp1->udp_bound_v6src) ||
1322 				    is_inaddr_any ||
1323 				    IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1324 				    &v6src)) {
1325 					found_exclbind = B_TRUE;
1326 					break;
1327 				}
1328 				continue;
1329 			}
1330 
1331 			/*
1332 			 * Check ipversion to allow IPv4 and IPv6 sockets to
1333 			 * have disjoint port number spaces.
1334 			 */
1335 			if (udp->udp_ipversion != udp1->udp_ipversion)
1336 				continue;
1337 
1338 			/*
1339 			 * No difference depending on SO_REUSEADDR.
1340 			 *
1341 			 * If existing port is bound to a
1342 			 * non-wildcard IP address and
1343 			 * the requesting stream is bound to
1344 			 * a distinct different IP addresses
1345 			 * (non-wildcard, also), keep going.
1346 			 */
1347 			if (!is_inaddr_any &&
1348 			    !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
1349 			    !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1350 			    &v6src)) {
1351 				continue;
1352 			}
1353 			break;
1354 		}
1355 
1356 		if (!found_exclbind &&
1357 		    (udp->udp_reuseaddr && requested_port != 0)) {
1358 			break;
1359 		}
1360 
1361 		if (udp1 == NULL) {
1362 			/*
1363 			 * No other stream has this IP address
1364 			 * and port number. We can use it.
1365 			 */
1366 			break;
1367 		}
1368 		mutex_exit(&udpf->uf_lock);
1369 		if (bind_to_req_port_only) {
1370 			/*
1371 			 * We get here only when requested port
1372 			 * is bound (and only first  of the for()
1373 			 * loop iteration).
1374 			 *
1375 			 * The semantics of this bind request
1376 			 * require it to fail so we return from
1377 			 * the routine (and exit the loop).
1378 			 *
1379 			 */
1380 			udp_err_ack(q, mp, TADDRBUSY, 0);
1381 			return;
1382 		}
1383 
1384 		if (udp->udp_anon_priv_bind) {
1385 			port = udp_get_next_priv_port();
1386 		} else {
1387 			if ((count == 0) && (requested_port != 0)) {
1388 				/*
1389 				 * If the application wants us to find
1390 				 * a port, get one to start with. Set
1391 				 * requested_port to 0, so that we will
1392 				 * update udp_g_next_port_to_try below.
1393 				 */
1394 				port = udp_update_next_port(
1395 				    udp_g_next_port_to_try, B_TRUE);
1396 				requested_port = 0;
1397 			} else {
1398 				port = udp_update_next_port(port + 1, B_FALSE);
1399 			}
1400 		}
1401 
1402 		if (++count >= loopmax) {
1403 			/*
1404 			 * We've tried every possible port number and
1405 			 * there are none available, so send an error
1406 			 * to the user.
1407 			 */
1408 			udp_err_ack(q, mp, TNOADDR, 0);
1409 			return;
1410 		}
1411 	}
1412 
1413 	/*
1414 	 * Copy the source address into our udp structure.  This address
1415 	 * may still be zero; if so, ip will fill in the correct address
1416 	 * each time an outbound packet is passed to it.
1417 	 * If we are binding to a broadcast or multicast address udp_rput
1418 	 * will clear the source address when it receives the T_BIND_ACK.
1419 	 */
1420 	udp->udp_v6src = udp->udp_bound_v6src = v6src;
1421 	udp->udp_port = lport;
1422 	/*
1423 	 * Now reset the the next anonymous port if the application requested
1424 	 * an anonymous port, or we handed out the next anonymous port.
1425 	 */
1426 	if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
1427 		udp_g_next_port_to_try = port + 1;
1428 	}
1429 
1430 	/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
1431 	if (udp->udp_family == AF_INET) {
1432 		sin->sin_port = udp->udp_port;
1433 	} else {
1434 		int error;
1435 
1436 		sin6->sin6_port = udp->udp_port;
1437 		/* Rebuild the header template */
1438 		error = udp_build_hdrs(q, udp);
1439 		if (error != 0) {
1440 			mutex_exit(&udpf->uf_lock);
1441 			udp_err_ack(q, mp, TSYSERR, error);
1442 			return;
1443 		}
1444 	}
1445 	udp->udp_state = TS_IDLE;
1446 	udp_bind_hash_insert(udpf, udp);
1447 	mutex_exit(&udpf->uf_lock);
1448 
1449 	if (cl_inet_bind) {
1450 		/*
1451 		 * Running in cluster mode - register bind information
1452 		 */
1453 		if (udp->udp_ipversion == IPV4_VERSION) {
1454 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
1455 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
1456 			    (in_port_t)udp->udp_port);
1457 		} else {
1458 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
1459 			    (uint8_t *)&(udp->udp_v6src),
1460 			    (in_port_t)udp->udp_port);
1461 		}
1462 
1463 	}
1464 
1465 	/* Pass the protocol number in the message following the address. */
1466 	*mp->b_wptr++ = IPPROTO_UDP;
1467 	if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
1468 		/*
1469 		 * Append a request for an IRE if udp_v6src not
1470 		 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
1471 		 */
1472 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
1473 		if (!mp->b_cont) {
1474 			udp_err_ack(q, mp, TSYSERR, ENOMEM);
1475 			return;
1476 		}
1477 		mp->b_cont->b_wptr += sizeof (ire_t);
1478 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
1479 	}
1480 	if (udp->udp_family == AF_INET6)
1481 		mp = ip_bind_v6(q, mp, connp, NULL);
1482 	else
1483 		mp = ip_bind_v4(q, mp, connp);
1484 
1485 	if (mp != NULL)
1486 		udp_rput_other(_RD(q), mp);
1487 	else
1488 		CONN_INC_REF(connp);
1489 }
1490 
1491 
1492 void
1493 udp_resume_bind(conn_t *connp, mblk_t *mp)
1494 {
1495 	udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY);
1496 }
1497 
1498 /*
1499  * This is called from ip_wput_nondata to resume a deferred UDP bind.
1500  */
1501 /* ARGSUSED */
1502 static void
1503 udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2)
1504 {
1505 	conn_t *connp = arg;
1506 
1507 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1508 
1509 	udp_rput_other(connp->conn_rq, mp);
1510 
1511 	CONN_OPER_PENDING_DONE(connp);
1512 	udp_exit(connp);
1513 }
1514 
1515 /*
1516  * This routine handles each T_CONN_REQ message passed to udp.  It
1517  * associates a default destination address with the stream.
1518  *
1519  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1520  *	T_BIND_REQ	- specifying local and remote address/port
1521  *	IRE_DB_REQ_TYPE	- to get an IRE back containing ire_type and src
1522  *	T_OK_ACK	- for the T_CONN_REQ
1523  *	T_CONN_CON	- to keep the TPI user happy
1524  *
1525  * The connect completes in udp_rput.
1526  * When a T_BIND_ACK is received information is extracted from the IRE
1527  * and the two appended messages are sent to the TPI user.
1528  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
1529  * it to an error ack for the appropriate primitive.
1530  */
1531 static void
1532 udp_connect(queue_t *q, mblk_t *mp)
1533 {
1534 	sin6_t	*sin6;
1535 	sin_t	*sin;
1536 	struct T_conn_req	*tcr;
1537 	in6_addr_t v6dst;
1538 	ipaddr_t v4dst;
1539 	uint16_t dstport;
1540 	uint32_t flowinfo;
1541 	mblk_t	*mp1, *mp2;
1542 	udp_fanout_t	*udpf;
1543 	udp_t	*udp, *udp1;
1544 
1545 	udp = Q_TO_UDP(q);
1546 
1547 	tcr = (struct T_conn_req *)mp->b_rptr;
1548 
1549 	/* A bit of sanity checking */
1550 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
1551 		udp_err_ack(q, mp, TPROTO, 0);
1552 		return;
1553 	}
1554 	/*
1555 	 * This UDP must have bound to a port already before doing
1556 	 * a connect.
1557 	 */
1558 	if (udp->udp_state == TS_UNBND) {
1559 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1560 		    "udp_connect: bad state, %u", udp->udp_state);
1561 		udp_err_ack(q, mp, TOUTSTATE, 0);
1562 		return;
1563 	}
1564 	ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
1565 
1566 	udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
1567 
1568 	if (udp->udp_state == TS_DATA_XFER) {
1569 		/* Already connected - clear out state */
1570 		mutex_enter(&udpf->uf_lock);
1571 		udp->udp_v6src = udp->udp_bound_v6src;
1572 		udp->udp_state = TS_IDLE;
1573 		mutex_exit(&udpf->uf_lock);
1574 	}
1575 
1576 	if (tcr->OPT_length != 0) {
1577 		udp_err_ack(q, mp, TBADOPT, 0);
1578 		return;
1579 	}
1580 
1581 	/*
1582 	 * Determine packet type based on type of address passed in
1583 	 * the request should contain an IPv4 or IPv6 address.
1584 	 * Make sure that address family matches the type of
1585 	 * family of the the address passed down
1586 	 */
1587 	switch (tcr->DEST_length) {
1588 	default:
1589 		udp_err_ack(q, mp, TBADADDR, 0);
1590 		return;
1591 
1592 	case sizeof (sin_t):
1593 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
1594 		    sizeof (sin_t));
1595 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1596 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1597 			return;
1598 		}
1599 		if (udp->udp_family != AF_INET ||
1600 		    sin->sin_family != AF_INET) {
1601 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1602 			return;
1603 		}
1604 		v4dst = sin->sin_addr.s_addr;
1605 		dstport = sin->sin_port;
1606 		IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1607 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1608 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1609 		    udp->udp_ip_snd_options_len;
1610 		break;
1611 
1612 	case sizeof (sin6_t):
1613 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
1614 		    sizeof (sin6_t));
1615 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1616 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1617 			return;
1618 		}
1619 		if (udp->udp_family != AF_INET6 ||
1620 		    sin6->sin6_family != AF_INET6) {
1621 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1622 			return;
1623 		}
1624 		v6dst = sin6->sin6_addr;
1625 		if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
1626 			IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
1627 			udp->udp_ipversion = IPV4_VERSION;
1628 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1629 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1630 			flowinfo = 0;
1631 		} else {
1632 			udp->udp_ipversion = IPV6_VERSION;
1633 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1634 			flowinfo = sin6->sin6_flowinfo;
1635 		}
1636 		dstport = sin6->sin6_port;
1637 		break;
1638 	}
1639 	if (dstport == 0) {
1640 		udp_err_ack(q, mp, TBADADDR, 0);
1641 		return;
1642 	}
1643 
1644 	/*
1645 	 * Create a default IP header with no IP options.
1646 	 */
1647 	udp->udp_dstport = dstport;
1648 	if (udp->udp_ipversion == IPV4_VERSION) {
1649 		/*
1650 		 * Interpret a zero destination to mean loopback.
1651 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1652 		 * generate the T_CONN_CON.
1653 		 */
1654 		if (v4dst == INADDR_ANY) {
1655 			v4dst = htonl(INADDR_LOOPBACK);
1656 			IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1657 			if (udp->udp_family == AF_INET) {
1658 				sin->sin_addr.s_addr = v4dst;
1659 			} else {
1660 				sin6->sin6_addr = v6dst;
1661 			}
1662 		}
1663 		udp->udp_v6dst = v6dst;
1664 		udp->udp_flowinfo = 0;
1665 
1666 		/*
1667 		 * If the destination address is multicast and
1668 		 * an outgoing multicast interface has been set,
1669 		 * use the address of that interface as our
1670 		 * source address if no source address has been set.
1671 		 */
1672 		if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
1673 		    CLASSD(v4dst) &&
1674 		    udp->udp_multicast_if_addr != INADDR_ANY) {
1675 			IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
1676 			    &udp->udp_v6src);
1677 		}
1678 	} else {
1679 		ASSERT(udp->udp_ipversion == IPV6_VERSION);
1680 		/*
1681 		 * Interpret a zero destination to mean loopback.
1682 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1683 		 * generate the T_CONN_CON.
1684 		 */
1685 		if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
1686 			v6dst = ipv6_loopback;
1687 			sin6->sin6_addr = v6dst;
1688 		}
1689 		udp->udp_v6dst = v6dst;
1690 		udp->udp_flowinfo = flowinfo;
1691 		/*
1692 		 * If the destination address is multicast and
1693 		 * an outgoing multicast interface has been set,
1694 		 * then the ip bind logic will pick the correct source
1695 		 * address (i.e. matching the outgoing multicast interface).
1696 		 */
1697 	}
1698 
1699 	/*
1700 	 * Verify that the src/port/dst/port is unique for all
1701 	 * connections in TS_DATA_XFER
1702 	 */
1703 	mutex_enter(&udpf->uf_lock);
1704 	for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
1705 		if (udp1->udp_state != TS_DATA_XFER)
1706 			continue;
1707 		if (udp->udp_port != udp1->udp_port ||
1708 		    udp->udp_ipversion != udp1->udp_ipversion ||
1709 		    dstport != udp1->udp_dstport ||
1710 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
1711 		    !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst))
1712 			continue;
1713 		mutex_exit(&udpf->uf_lock);
1714 		udp_err_ack(q, mp, TBADADDR, 0);
1715 		return;
1716 	}
1717 	udp->udp_state = TS_DATA_XFER;
1718 	mutex_exit(&udpf->uf_lock);
1719 
1720 	/*
1721 	 * Send down bind to IP to verify that there is a route
1722 	 * and to determine the source address.
1723 	 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
1724 	 */
1725 	if (udp->udp_family == AF_INET)
1726 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
1727 	else
1728 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
1729 	if (mp1 == NULL) {
1730 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1731 bind_failed:
1732 		mutex_enter(&udpf->uf_lock);
1733 		udp->udp_state = TS_IDLE;
1734 		mutex_exit(&udpf->uf_lock);
1735 		return;
1736 	}
1737 
1738 	/*
1739 	 * We also have to send a connection confirmation to
1740 	 * keep TLI happy. Prepare it for udp_rput.
1741 	 */
1742 	if (udp->udp_family == AF_INET)
1743 		mp2 = mi_tpi_conn_con(NULL, (char *)sin,
1744 		    sizeof (*sin), NULL, 0);
1745 	else
1746 		mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
1747 		    sizeof (*sin6), NULL, 0);
1748 	if (mp2 == NULL) {
1749 		freemsg(mp1);
1750 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1751 		goto bind_failed;
1752 	}
1753 
1754 	mp = mi_tpi_ok_ack_alloc(mp);
1755 	if (mp == NULL) {
1756 		/* Unable to reuse the T_CONN_REQ for the ack. */
1757 		freemsg(mp2);
1758 		udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
1759 		goto bind_failed;
1760 	}
1761 
1762 	/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
1763 	linkb(mp1, mp);
1764 	linkb(mp1, mp2);
1765 
1766 	if (udp->udp_family == AF_INET)
1767 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
1768 	else
1769 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
1770 
1771 	if (mp1 != NULL)
1772 		udp_rput_other(_RD(q), mp1);
1773 	else
1774 		CONN_INC_REF(udp->udp_connp);
1775 }
1776 
1777 static int
1778 udp_close(queue_t *q)
1779 {
1780 	conn_t	*connp = Q_TO_CONN(UDP_WR(q));
1781 	udp_t	*udp;
1782 	queue_t	*ip_rq = RD(UDP_WR(q));
1783 
1784 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1785 	udp = connp->conn_udp;
1786 
1787 	ip_quiesce_conn(connp);
1788 	/*
1789 	 * Disable read-side synchronous stream
1790 	 * interface and drain any queued data.
1791 	 */
1792 	udp_rcv_drain(q, udp, B_TRUE);
1793 	ASSERT(!udp->udp_direct_sockfs);
1794 
1795 	qprocsoff(q);
1796 
1797 	/* restore IP module's high and low water marks to default values */
1798 	ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat;
1799 	WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat;
1800 	WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat;
1801 
1802 	ASSERT(udp->udp_rcv_cnt == 0);
1803 	ASSERT(udp->udp_rcv_msgcnt == 0);
1804 	ASSERT(udp->udp_rcv_list_head == NULL);
1805 	ASSERT(udp->udp_rcv_list_tail == NULL);
1806 
1807 	/* connp is now single threaded. */
1808 	udp_close_free(connp);
1809 	/*
1810 	 * Restore connp as an IP endpoint.  We don't need
1811 	 * any locks since we are now single threaded
1812 	 */
1813 	connp->conn_flags &= ~IPCL_UDP;
1814 	connp->conn_state_flags &=
1815 	    ~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED);
1816 	return (0);
1817 }
1818 
1819 /*
1820  * Called in the close path from IP (ip_quiesce_conn) to quiesce the conn
1821  */
1822 void
1823 udp_quiesce_conn(conn_t *connp)
1824 {
1825 	udp_t	*udp = connp->conn_udp;
1826 
1827 	if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
1828 		/*
1829 		 * Running in cluster mode - register unbind information
1830 		 */
1831 		if (udp->udp_ipversion == IPV4_VERSION) {
1832 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
1833 			    (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
1834 			    (in_port_t)udp->udp_port);
1835 		} else {
1836 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
1837 			    (uint8_t *)(&(udp->udp_v6src)),
1838 			    (in_port_t)udp->udp_port);
1839 		}
1840 	}
1841 
1842 	udp_bind_hash_remove(udp, B_FALSE);
1843 
1844 	mutex_enter(&connp->conn_lock);
1845 	while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 ||
1846 	    udp->udp_mode != UDP_MT_HOT) {
1847 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1848 	}
1849 	mutex_exit(&connp->conn_lock);
1850 }
1851 
1852 void
1853 udp_close_free(conn_t *connp)
1854 {
1855 	udp_t *udp = connp->conn_udp;
1856 
1857 	/* If there are any options associated with the stream, free them. */
1858 	if (udp->udp_ip_snd_options) {
1859 		mi_free((char *)udp->udp_ip_snd_options);
1860 		udp->udp_ip_snd_options = NULL;
1861 	}
1862 
1863 	if (udp->udp_ip_rcv_options) {
1864 		mi_free((char *)udp->udp_ip_rcv_options);
1865 		udp->udp_ip_rcv_options = NULL;
1866 	}
1867 
1868 	/* Free memory associated with sticky options */
1869 	if (udp->udp_sticky_hdrs_len != 0) {
1870 		kmem_free(udp->udp_sticky_hdrs,
1871 		    udp->udp_sticky_hdrs_len);
1872 		udp->udp_sticky_hdrs = NULL;
1873 		udp->udp_sticky_hdrs_len = 0;
1874 	}
1875 
1876 	if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
1877 		kmem_free(udp->udp_sticky_ipp.ipp_hopopts,
1878 		    udp->udp_sticky_ipp.ipp_hopoptslen);
1879 		udp->udp_sticky_ipp.ipp_hopopts = NULL;
1880 	}
1881 	if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
1882 		kmem_free(udp->udp_sticky_ipp.ipp_rtdstopts,
1883 		    udp->udp_sticky_ipp.ipp_rtdstoptslen);
1884 		udp->udp_sticky_ipp.ipp_rtdstopts = NULL;
1885 	}
1886 	if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
1887 		kmem_free(udp->udp_sticky_ipp.ipp_rthdr,
1888 		    udp->udp_sticky_ipp.ipp_rthdrlen);
1889 		udp->udp_sticky_ipp.ipp_rthdr = NULL;
1890 	}
1891 	if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
1892 		kmem_free(udp->udp_sticky_ipp.ipp_dstopts,
1893 		    udp->udp_sticky_ipp.ipp_dstoptslen);
1894 		udp->udp_sticky_ipp.ipp_dstopts = NULL;
1895 	}
1896 	udp->udp_sticky_ipp.ipp_fields &=
1897 	    ~(IPPF_HOPOPTS|IPPF_RTDSTOPTS|IPPF_RTHDR|IPPF_DSTOPTS);
1898 
1899 	udp->udp_connp = NULL;
1900 	connp->conn_udp = NULL;
1901 	kmem_cache_free(udp_cache, udp);
1902 }
1903 
1904 /*
1905  * This routine handles each T_DISCON_REQ message passed to udp
1906  * as an indicating that UDP is no longer connected. This results
1907  * in sending a T_BIND_REQ to IP to restore the binding to just
1908  * the local address/port.
1909  *
1910  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1911  *	T_BIND_REQ	- specifying just the local address/port
1912  *	T_OK_ACK	- for the T_DISCON_REQ
1913  *
1914  * The disconnect completes in udp_rput.
1915  * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
1916  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
1917  * it to an error ack for the appropriate primitive.
1918  */
1919 static void
1920 udp_disconnect(queue_t *q, mblk_t *mp)
1921 {
1922 	udp_t	*udp = Q_TO_UDP(q);
1923 	mblk_t	*mp1;
1924 	udp_fanout_t *udpf;
1925 
1926 	if (udp->udp_state != TS_DATA_XFER) {
1927 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1928 		    "udp_disconnect: bad state, %u", udp->udp_state);
1929 		udp_err_ack(q, mp, TOUTSTATE, 0);
1930 		return;
1931 	}
1932 	udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
1933 	mutex_enter(&udpf->uf_lock);
1934 	udp->udp_v6src = udp->udp_bound_v6src;
1935 	udp->udp_state = TS_IDLE;
1936 	mutex_exit(&udpf->uf_lock);
1937 
1938 	/*
1939 	 * Send down bind to IP to remove the full binding and revert
1940 	 * to the local address binding.
1941 	 */
1942 	if (udp->udp_family == AF_INET)
1943 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
1944 	else
1945 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
1946 	if (mp1 == NULL) {
1947 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1948 		return;
1949 	}
1950 	mp = mi_tpi_ok_ack_alloc(mp);
1951 	if (mp == NULL) {
1952 		/* Unable to reuse the T_DISCON_REQ for the ack. */
1953 		udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
1954 		return;
1955 	}
1956 
1957 	if (udp->udp_family == AF_INET6) {
1958 		int error;
1959 
1960 		/* Rebuild the header template */
1961 		error = udp_build_hdrs(q, udp);
1962 		if (error != 0) {
1963 			udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
1964 			freemsg(mp1);
1965 			return;
1966 		}
1967 	}
1968 	mutex_enter(&udpf->uf_lock);
1969 	udp->udp_discon_pending = 1;
1970 	mutex_exit(&udpf->uf_lock);
1971 
1972 	/* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */
1973 	linkb(mp1, mp);
1974 
1975 	if (udp->udp_family == AF_INET6)
1976 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
1977 	else
1978 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
1979 
1980 	if (mp1 != NULL)
1981 		udp_rput_other(_RD(q), mp1);
1982 	else
1983 		CONN_INC_REF(udp->udp_connp);
1984 }
1985 
1986 /* This routine creates a T_ERROR_ACK message and passes it upstream. */
1987 static void
1988 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
1989 {
1990 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
1991 		putnext(UDP_RD(q), mp);
1992 }
1993 
1994 /* Shorthand to generate and send TPI error acks to our client */
1995 static void
1996 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
1997     int sys_error)
1998 {
1999 	struct T_error_ack	*teackp;
2000 
2001 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
2002 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
2003 		teackp = (struct T_error_ack *)mp->b_rptr;
2004 		teackp->ERROR_prim = primitive;
2005 		teackp->TLI_error = t_error;
2006 		teackp->UNIX_error = sys_error;
2007 		putnext(UDP_RD(q), mp);
2008 	}
2009 }
2010 
2011 /*ARGSUSED*/
2012 static int
2013 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
2014 {
2015 	int i;
2016 
2017 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2018 		if (udp_g_epriv_ports[i] != 0)
2019 			(void) mi_mpprintf(mp, "%d ", udp_g_epriv_ports[i]);
2020 	}
2021 	return (0);
2022 }
2023 
2024 /* ARGSUSED */
2025 static int
2026 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2027     cred_t *cr)
2028 {
2029 	long	new_value;
2030 	int	i;
2031 
2032 	/*
2033 	 * Fail the request if the new value does not lie within the
2034 	 * port number limits.
2035 	 */
2036 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2037 	    new_value <= 0 || new_value >= 65536) {
2038 		return (EINVAL);
2039 	}
2040 
2041 	/* Check if the value is already in the list */
2042 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2043 		if (new_value == udp_g_epriv_ports[i]) {
2044 			return (EEXIST);
2045 		}
2046 	}
2047 	/* Find an empty slot */
2048 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2049 		if (udp_g_epriv_ports[i] == 0)
2050 			break;
2051 	}
2052 	if (i == udp_g_num_epriv_ports) {
2053 		return (EOVERFLOW);
2054 	}
2055 
2056 	/* Set the new value */
2057 	udp_g_epriv_ports[i] = (in_port_t)new_value;
2058 	return (0);
2059 }
2060 
2061 /* ARGSUSED */
2062 static int
2063 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2064     cred_t *cr)
2065 {
2066 	long	new_value;
2067 	int	i;
2068 
2069 	/*
2070 	 * Fail the request if the new value does not lie within the
2071 	 * port number limits.
2072 	 */
2073 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2074 	    new_value <= 0 || new_value >= 65536) {
2075 		return (EINVAL);
2076 	}
2077 
2078 	/* Check that the value is already in the list */
2079 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2080 		if (udp_g_epriv_ports[i] == new_value)
2081 			break;
2082 	}
2083 	if (i == udp_g_num_epriv_ports) {
2084 		return (ESRCH);
2085 	}
2086 
2087 	/* Clear the value */
2088 	udp_g_epriv_ports[i] = 0;
2089 	return (0);
2090 }
2091 
2092 /* At minimum we need 4 bytes of UDP header */
2093 #define	ICMP_MIN_UDP_HDR	4
2094 
2095 /*
2096  * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP.
2097  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2098  * Assumes that IP has pulled up everything up to and including the ICMP header.
2099  * An M_CTL could potentially come here from some other module (i.e. if UDP
2100  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2101  * does not have enough ICMP information , following STREAMS conventions,
2102  * we send it upstream assuming it is an M_CTL we don't understand.
2103  */
2104 static void
2105 udp_icmp_error(queue_t *q, mblk_t *mp)
2106 {
2107 	icmph_t *icmph;
2108 	ipha_t	*ipha;
2109 	int	iph_hdr_length;
2110 	udpha_t	*udpha;
2111 	sin_t	sin;
2112 	sin6_t	sin6;
2113 	mblk_t	*mp1;
2114 	int	error = 0;
2115 	size_t	mp_size = MBLKL(mp);
2116 	udp_t	*udp = Q_TO_UDP(q);
2117 
2118 	/*
2119 	 * Assume IP provides aligned packets - otherwise toss
2120 	 */
2121 	if (!OK_32PTR(mp->b_rptr)) {
2122 		freemsg(mp);
2123 		return;
2124 	}
2125 
2126 	/*
2127 	 * Verify that we have a complete IP header and the application has
2128 	 * asked for errors. If not, send it upstream.
2129 	 */
2130 	if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) {
2131 noticmpv4:
2132 		putnext(UDP_RD(q), mp);
2133 		return;
2134 	}
2135 
2136 	ipha = (ipha_t *)mp->b_rptr;
2137 	/*
2138 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
2139 	 * upstream. ICMPv6  is handled in udp_icmp_error_ipv6.
2140 	 */
2141 	switch (IPH_HDR_VERSION(ipha)) {
2142 	case IPV6_VERSION:
2143 		udp_icmp_error_ipv6(q, mp);
2144 		return;
2145 	case IPV4_VERSION:
2146 		break;
2147 	default:
2148 		goto noticmpv4;
2149 	}
2150 
2151 	/* Skip past the outer IP and ICMP headers */
2152 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2153 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2154 	/*
2155 	 * If we don't have the correct outer IP header length or if the ULP
2156 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
2157 	 * send the packet upstream.
2158 	 */
2159 	if (iph_hdr_length < sizeof (ipha_t) ||
2160 	    ipha->ipha_protocol != IPPROTO_ICMP ||
2161 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
2162 		goto noticmpv4;
2163 	}
2164 	ipha = (ipha_t *)&icmph[1];
2165 
2166 	/* Skip past the inner IP and find the ULP header */
2167 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2168 	udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
2169 	/*
2170 	 * If we don't have the correct inner IP header length or if the ULP
2171 	 * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR
2172 	 * bytes of UDP header, send it upstream.
2173 	 */
2174 	if (iph_hdr_length < sizeof (ipha_t) ||
2175 	    ipha->ipha_protocol != IPPROTO_UDP ||
2176 	    (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) {
2177 		goto noticmpv4;
2178 	}
2179 
2180 	switch (icmph->icmph_type) {
2181 	case ICMP_DEST_UNREACHABLE:
2182 		switch (icmph->icmph_code) {
2183 		case ICMP_FRAGMENTATION_NEEDED:
2184 			/*
2185 			 * IP has already adjusted the path MTU.
2186 			 * XXX Somehow pass MTU indication to application?
2187 			 */
2188 			break;
2189 		case ICMP_PORT_UNREACHABLE:
2190 		case ICMP_PROTOCOL_UNREACHABLE:
2191 			error = ECONNREFUSED;
2192 			break;
2193 		default:
2194 			/* Transient errors */
2195 			break;
2196 		}
2197 		break;
2198 	default:
2199 		/* Transient errors */
2200 		break;
2201 	}
2202 	if (error == 0) {
2203 		freemsg(mp);
2204 		return;
2205 	}
2206 
2207 	switch (udp->udp_family) {
2208 	case AF_INET:
2209 		sin = sin_null;
2210 		sin.sin_family = AF_INET;
2211 		sin.sin_addr.s_addr = ipha->ipha_dst;
2212 		sin.sin_port = udpha->uha_dst_port;
2213 		mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
2214 		    error);
2215 		break;
2216 	case AF_INET6:
2217 		sin6 = sin6_null;
2218 		sin6.sin6_family = AF_INET6;
2219 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
2220 		sin6.sin6_port = udpha->uha_dst_port;
2221 
2222 		mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
2223 		    NULL, 0, error);
2224 		break;
2225 	}
2226 	if (mp1)
2227 		putnext(UDP_RD(q), mp1);
2228 	freemsg(mp);
2229 }
2230 
2231 /*
2232  * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
2233  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2234  * Assumes that IP has pulled up all the extension headers as well as the
2235  * ICMPv6 header.
2236  * An M_CTL could potentially come here from some other module (i.e. if UDP
2237  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2238  * does not have enough ICMP information , following STREAMS conventions,
2239  * we send it upstream assuming it is an M_CTL we don't understand. The reason
2240  * it might get here is if the non-ICMP M_CTL accidently has 6 in the version
2241  * field (when cast to ipha_t in udp_icmp_error).
2242  */
2243 static void
2244 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
2245 {
2246 	icmp6_t		*icmp6;
2247 	ip6_t		*ip6h, *outer_ip6h;
2248 	uint16_t	hdr_length;
2249 	uint8_t		*nexthdrp;
2250 	udpha_t		*udpha;
2251 	sin6_t		sin6;
2252 	mblk_t		*mp1;
2253 	int		error = 0;
2254 	size_t		mp_size = MBLKL(mp);
2255 	udp_t		*udp = Q_TO_UDP(q);
2256 
2257 	/*
2258 	 * Verify that we have a complete IP header. If not, send it upstream.
2259 	 */
2260 	if (mp_size < sizeof (ip6_t)) {
2261 noticmpv6:
2262 		putnext(UDP_RD(q), mp);
2263 		return;
2264 	}
2265 
2266 	outer_ip6h = (ip6_t *)mp->b_rptr;
2267 	/*
2268 	 * Verify this is an ICMPV6 packet, else send it upstream
2269 	 */
2270 	if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) {
2271 		hdr_length = IPV6_HDR_LEN;
2272 	} else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length,
2273 	    &nexthdrp) ||
2274 	    *nexthdrp != IPPROTO_ICMPV6) {
2275 		goto noticmpv6;
2276 	}
2277 	icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length];
2278 	ip6h = (ip6_t *)&icmp6[1];
2279 	/*
2280 	 * Verify we have a complete ICMP and inner IP header.
2281 	 */
2282 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
2283 		goto noticmpv6;
2284 
2285 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp))
2286 		goto noticmpv6;
2287 	udpha = (udpha_t *)((char *)ip6h + hdr_length);
2288 	/*
2289 	 * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't
2290 	 * have at least ICMP_MIN_UDP_HDR bytes of  UDP header send the
2291 	 * packet upstream.
2292 	 */
2293 	if ((*nexthdrp != IPPROTO_UDP) ||
2294 	    ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) {
2295 		goto noticmpv6;
2296 	}
2297 
2298 	switch (icmp6->icmp6_type) {
2299 	case ICMP6_DST_UNREACH:
2300 		switch (icmp6->icmp6_code) {
2301 		case ICMP6_DST_UNREACH_NOPORT:
2302 			error = ECONNREFUSED;
2303 			break;
2304 		case ICMP6_DST_UNREACH_ADMIN:
2305 		case ICMP6_DST_UNREACH_NOROUTE:
2306 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
2307 		case ICMP6_DST_UNREACH_ADDR:
2308 			/* Transient errors */
2309 			break;
2310 		default:
2311 			break;
2312 		}
2313 		break;
2314 	case ICMP6_PACKET_TOO_BIG: {
2315 		struct T_unitdata_ind	*tudi;
2316 		struct T_opthdr		*toh;
2317 		size_t			udi_size;
2318 		mblk_t			*newmp;
2319 		t_scalar_t		opt_length = sizeof (struct T_opthdr) +
2320 		    sizeof (struct ip6_mtuinfo);
2321 		sin6_t			*sin6;
2322 		struct ip6_mtuinfo	*mtuinfo;
2323 
2324 		/*
2325 		 * If the application has requested to receive path mtu
2326 		 * information, send up an empty message containing an
2327 		 * IPV6_PATHMTU ancillary data item.
2328 		 */
2329 		if (!udp->udp_ipv6_recvpathmtu)
2330 			break;
2331 
2332 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
2333 		    opt_length;
2334 		if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
2335 			BUMP_MIB(&udp_mib, udpInErrors);
2336 			break;
2337 		}
2338 
2339 		/*
2340 		 * newmp->b_cont is left to NULL on purpose.  This is an
2341 		 * empty message containing only ancillary data.
2342 		 */
2343 		newmp->b_datap->db_type = M_PROTO;
2344 		tudi = (struct T_unitdata_ind *)newmp->b_rptr;
2345 		newmp->b_wptr = (uchar_t *)tudi + udi_size;
2346 		tudi->PRIM_type = T_UNITDATA_IND;
2347 		tudi->SRC_length = sizeof (sin6_t);
2348 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
2349 		tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
2350 		tudi->OPT_length = opt_length;
2351 
2352 		sin6 = (sin6_t *)&tudi[1];
2353 		bzero(sin6, sizeof (sin6_t));
2354 		sin6->sin6_family = AF_INET6;
2355 		sin6->sin6_addr = udp->udp_v6dst;
2356 
2357 		toh = (struct T_opthdr *)&sin6[1];
2358 		toh->level = IPPROTO_IPV6;
2359 		toh->name = IPV6_PATHMTU;
2360 		toh->len = opt_length;
2361 		toh->status = 0;
2362 
2363 		mtuinfo = (struct ip6_mtuinfo *)&toh[1];
2364 		bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
2365 		mtuinfo->ip6m_addr.sin6_family = AF_INET6;
2366 		mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
2367 		mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
2368 		/*
2369 		 * We've consumed everything we need from the original
2370 		 * message.  Free it, then send our empty message.
2371 		 */
2372 		freemsg(mp);
2373 		putnext(UDP_RD(q), newmp);
2374 		return;
2375 	}
2376 	case ICMP6_TIME_EXCEEDED:
2377 		/* Transient errors */
2378 		break;
2379 	case ICMP6_PARAM_PROB:
2380 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
2381 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
2382 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
2383 		    (uchar_t *)nexthdrp) {
2384 			error = ECONNREFUSED;
2385 			break;
2386 		}
2387 		break;
2388 	}
2389 	if (error == 0) {
2390 		freemsg(mp);
2391 		return;
2392 	}
2393 
2394 	sin6 = sin6_null;
2395 	sin6.sin6_family = AF_INET6;
2396 	sin6.sin6_addr = ip6h->ip6_dst;
2397 	sin6.sin6_port = udpha->uha_dst_port;
2398 	sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
2399 
2400 	mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
2401 	    error);
2402 	if (mp1)
2403 		putnext(UDP_RD(q), mp1);
2404 	freemsg(mp);
2405 }
2406 
2407 /*
2408  * This routine responds to T_ADDR_REQ messages.  It is called by udp_wput.
2409  * The local address is filled in if endpoint is bound. The remote address
2410  * is filled in if remote address has been precified ("connected endpoint")
2411  * (The concept of connected CLTS sockets is alien to published TPI
2412  *  but we support it anyway).
2413  */
2414 static void
2415 udp_addr_req(queue_t *q, mblk_t *mp)
2416 {
2417 	sin_t	*sin;
2418 	sin6_t	*sin6;
2419 	mblk_t	*ackmp;
2420 	struct T_addr_ack *taa;
2421 	udp_t	*udp = Q_TO_UDP(q);
2422 
2423 	/* Make it large enough for worst case */
2424 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2425 	    2 * sizeof (sin6_t), 1);
2426 	if (ackmp == NULL) {
2427 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2428 		return;
2429 	}
2430 	taa = (struct T_addr_ack *)ackmp->b_rptr;
2431 
2432 	bzero(taa, sizeof (struct T_addr_ack));
2433 	ackmp->b_wptr = (uchar_t *)&taa[1];
2434 
2435 	taa->PRIM_type = T_ADDR_ACK;
2436 	ackmp->b_datap->db_type = M_PCPROTO;
2437 	/*
2438 	 * Note: Following code assumes 32 bit alignment of basic
2439 	 * data structures like sin_t and struct T_addr_ack.
2440 	 */
2441 	if (udp->udp_state != TS_UNBND) {
2442 		/*
2443 		 * Fill in local address first
2444 		 */
2445 		taa->LOCADDR_offset = sizeof (*taa);
2446 		if (udp->udp_family == AF_INET) {
2447 			taa->LOCADDR_length = sizeof (sin_t);
2448 			sin = (sin_t *)&taa[1];
2449 			/* Fill zeroes and then initialize non-zero fields */
2450 			*sin = sin_null;
2451 			sin->sin_family = AF_INET;
2452 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
2453 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2454 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
2455 				    sin->sin_addr.s_addr);
2456 			} else {
2457 				/*
2458 				 * INADDR_ANY
2459 				 * udp_v6src is not set, we might be bound to
2460 				 * broadcast/multicast. Use udp_bound_v6src as
2461 				 * local address instead (that could
2462 				 * also still be INADDR_ANY)
2463 				 */
2464 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
2465 				    sin->sin_addr.s_addr);
2466 			}
2467 			sin->sin_port = udp->udp_port;
2468 			ackmp->b_wptr = (uchar_t *)&sin[1];
2469 			if (udp->udp_state == TS_DATA_XFER) {
2470 				/*
2471 				 * connected, fill remote address too
2472 				 */
2473 				taa->REMADDR_length = sizeof (sin_t);
2474 				/* assumed 32-bit alignment */
2475 				taa->REMADDR_offset = taa->LOCADDR_offset +
2476 				    taa->LOCADDR_length;
2477 
2478 				sin = (sin_t *)(ackmp->b_rptr +
2479 				    taa->REMADDR_offset);
2480 				/* initialize */
2481 				*sin = sin_null;
2482 				sin->sin_family = AF_INET;
2483 				sin->sin_addr.s_addr =
2484 				    V4_PART_OF_V6(udp->udp_v6dst);
2485 				sin->sin_port = udp->udp_dstport;
2486 				ackmp->b_wptr = (uchar_t *)&sin[1];
2487 			}
2488 		} else {
2489 			taa->LOCADDR_length = sizeof (sin6_t);
2490 			sin6 = (sin6_t *)&taa[1];
2491 			/* Fill zeroes and then initialize non-zero fields */
2492 			*sin6 = sin6_null;
2493 			sin6->sin6_family = AF_INET6;
2494 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2495 				sin6->sin6_addr = udp->udp_v6src;
2496 			} else {
2497 				/*
2498 				 * UNSPECIFIED
2499 				 * udp_v6src is not set, we might be bound to
2500 				 * broadcast/multicast. Use udp_bound_v6src as
2501 				 * local address instead (that could
2502 				 * also still be UNSPECIFIED)
2503 				 */
2504 				sin6->sin6_addr =
2505 				    udp->udp_bound_v6src;
2506 			}
2507 			sin6->sin6_port = udp->udp_port;
2508 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2509 			if (udp->udp_state == TS_DATA_XFER) {
2510 				/*
2511 				 * connected, fill remote address too
2512 				 */
2513 				taa->REMADDR_length = sizeof (sin6_t);
2514 				/* assumed 32-bit alignment */
2515 				taa->REMADDR_offset = taa->LOCADDR_offset +
2516 				    taa->LOCADDR_length;
2517 
2518 				sin6 = (sin6_t *)(ackmp->b_rptr +
2519 				    taa->REMADDR_offset);
2520 				/* initialize */
2521 				*sin6 = sin6_null;
2522 				sin6->sin6_family = AF_INET6;
2523 				sin6->sin6_addr = udp->udp_v6dst;
2524 				sin6->sin6_port =  udp->udp_dstport;
2525 				ackmp->b_wptr = (uchar_t *)&sin6[1];
2526 			}
2527 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2528 		}
2529 	}
2530 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
2531 	putnext(UDP_RD(q), ackmp);
2532 }
2533 
2534 static void
2535 udp_copy_info(struct T_info_ack *tap, udp_t *udp)
2536 {
2537 	if (udp->udp_family == AF_INET) {
2538 		*tap = udp_g_t_info_ack_ipv4;
2539 	} else {
2540 		*tap = udp_g_t_info_ack_ipv6;
2541 	}
2542 	tap->CURRENT_state = udp->udp_state;
2543 	tap->OPT_size = udp_max_optsize;
2544 }
2545 
2546 /*
2547  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
2548  * udp_wput.  Much of the T_CAPABILITY_ACK information is copied from
2549  * udp_g_t_info_ack.  The current state of the stream is copied from
2550  * udp_state.
2551  */
2552 static void
2553 udp_capability_req(queue_t *q, mblk_t *mp)
2554 {
2555 	t_uscalar_t		cap_bits1;
2556 	struct T_capability_ack	*tcap;
2557 	udp_t	*udp = Q_TO_UDP(q);
2558 
2559 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
2560 
2561 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
2562 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
2563 	if (!mp)
2564 		return;
2565 
2566 	tcap = (struct T_capability_ack *)mp->b_rptr;
2567 	tcap->CAP_bits1 = 0;
2568 
2569 	if (cap_bits1 & TC1_INFO) {
2570 		udp_copy_info(&tcap->INFO_ack, udp);
2571 		tcap->CAP_bits1 |= TC1_INFO;
2572 	}
2573 
2574 	putnext(UDP_RD(q), mp);
2575 }
2576 
2577 /*
2578  * This routine responds to T_INFO_REQ messages.  It is called by udp_wput.
2579  * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
2580  * The current state of the stream is copied from udp_state.
2581  */
2582 static void
2583 udp_info_req(queue_t *q, mblk_t *mp)
2584 {
2585 	udp_t *udp = Q_TO_UDP(q);
2586 
2587 	/* Create a T_INFO_ACK message. */
2588 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
2589 	    T_INFO_ACK);
2590 	if (!mp)
2591 		return;
2592 	udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
2593 	putnext(UDP_RD(q), mp);
2594 }
2595 
2596 /*
2597  * IP recognizes seven kinds of bind requests:
2598  *
2599  * - A zero-length address binds only to the protocol number.
2600  *
2601  * - A 4-byte address is treated as a request to
2602  * validate that the address is a valid local IPv4
2603  * address, appropriate for an application to bind to.
2604  * IP does the verification, but does not make any note
2605  * of the address at this time.
2606  *
2607  * - A 16-byte address contains is treated as a request
2608  * to validate a local IPv6 address, as the 4-byte
2609  * address case above.
2610  *
2611  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
2612  * use it for the inbound fanout of packets.
2613  *
2614  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
2615  * use it for the inbound fanout of packets.
2616  *
2617  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
2618  * information consisting of local and remote addresses
2619  * and ports.  In this case, the addresses are both
2620  * validated as appropriate for this operation, and, if
2621  * so, the information is retained for use in the
2622  * inbound fanout.
2623  *
2624  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
2625  * fanout information, like the 12-byte case above.
2626  *
2627  * IP will also fill in the IRE request mblk with information
2628  * regarding our peer.  In all cases, we notify IP of our protocol
2629  * type by appending a single protocol byte to the bind request.
2630  */
2631 static mblk_t *
2632 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
2633 {
2634 	char	*cp;
2635 	mblk_t	*mp;
2636 	struct T_bind_req *tbr;
2637 	ipa_conn_t	*ac;
2638 	ipa6_conn_t	*ac6;
2639 	sin_t		*sin;
2640 	sin6_t		*sin6;
2641 
2642 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
2643 
2644 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
2645 	if (!mp)
2646 		return (mp);
2647 	mp->b_datap->db_type = M_PROTO;
2648 	tbr = (struct T_bind_req *)mp->b_rptr;
2649 	tbr->PRIM_type = bind_prim;
2650 	tbr->ADDR_offset = sizeof (*tbr);
2651 	tbr->CONIND_number = 0;
2652 	tbr->ADDR_length = addr_length;
2653 	cp = (char *)&tbr[1];
2654 	switch (addr_length) {
2655 	case sizeof (ipa_conn_t):
2656 		ASSERT(udp->udp_family == AF_INET);
2657 		/* Append a request for an IRE */
2658 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2659 		if (!mp->b_cont) {
2660 			freemsg(mp);
2661 			return (NULL);
2662 		}
2663 		mp->b_cont->b_wptr += sizeof (ire_t);
2664 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2665 
2666 		/* cp known to be 32 bit aligned */
2667 		ac = (ipa_conn_t *)cp;
2668 		ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
2669 		ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
2670 		ac->ac_fport = udp->udp_dstport;
2671 		ac->ac_lport = udp->udp_port;
2672 		break;
2673 
2674 	case sizeof (ipa6_conn_t):
2675 		ASSERT(udp->udp_family == AF_INET6);
2676 		/* Append a request for an IRE */
2677 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2678 		if (!mp->b_cont) {
2679 			freemsg(mp);
2680 			return (NULL);
2681 		}
2682 		mp->b_cont->b_wptr += sizeof (ire_t);
2683 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2684 
2685 		/* cp known to be 32 bit aligned */
2686 		ac6 = (ipa6_conn_t *)cp;
2687 		ac6->ac6_laddr = udp->udp_v6src;
2688 		ac6->ac6_faddr = udp->udp_v6dst;
2689 		ac6->ac6_fport = udp->udp_dstport;
2690 		ac6->ac6_lport = udp->udp_port;
2691 		break;
2692 
2693 	case sizeof (sin_t):
2694 		ASSERT(udp->udp_family == AF_INET);
2695 		/* Append a request for an IRE */
2696 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2697 		if (!mp->b_cont) {
2698 			freemsg(mp);
2699 			return (NULL);
2700 		}
2701 		mp->b_cont->b_wptr += sizeof (ire_t);
2702 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2703 
2704 		sin = (sin_t *)cp;
2705 		*sin = sin_null;
2706 		sin->sin_family = AF_INET;
2707 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
2708 		sin->sin_port = udp->udp_port;
2709 		break;
2710 
2711 	case sizeof (sin6_t):
2712 		ASSERT(udp->udp_family == AF_INET6);
2713 		/* Append a request for an IRE */
2714 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2715 		if (!mp->b_cont) {
2716 			freemsg(mp);
2717 			return (NULL);
2718 		}
2719 		mp->b_cont->b_wptr += sizeof (ire_t);
2720 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2721 
2722 		sin6 = (sin6_t *)cp;
2723 		*sin6 = sin6_null;
2724 		sin6->sin6_family = AF_INET6;
2725 		sin6->sin6_addr = udp->udp_bound_v6src;
2726 		sin6->sin6_port = udp->udp_port;
2727 		break;
2728 	}
2729 	/* Add protocol number to end */
2730 	cp[addr_length] = (char)IPPROTO_UDP;
2731 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
2732 	return (mp);
2733 }
2734 
2735 /*
2736  * This is the open routine for udp.  It allocates a udp_t structure for
2737  * the stream and, on the first open of the module, creates an ND table.
2738  */
2739 /* ARGSUSED */
2740 static int
2741 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2742 {
2743 	int	err;
2744 	udp_t	*udp;
2745 	conn_t *connp;
2746 	zoneid_t zoneid = getzoneid();
2747 	queue_t	*ip_wq;
2748 	char	*name;
2749 
2750 	TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
2751 
2752 	/* If the stream is already open, return immediately. */
2753 	if (q->q_ptr != NULL)
2754 		return (0);
2755 
2756 	/* If this is not a push of udp as a module, fail. */
2757 	if (sflag != MODOPEN)
2758 		return (EINVAL);
2759 
2760 	q->q_hiwat = udp_recv_hiwat;
2761 	WR(q)->q_hiwat = udp_xmit_hiwat;
2762 	WR(q)->q_lowat = udp_xmit_lowat;
2763 
2764 	/* Insert ourselves in the stream since we're about to walk q_next */
2765 	qprocson(q);
2766 
2767 	udp = kmem_cache_alloc(udp_cache, KM_SLEEP);
2768 	bzero(udp, sizeof (*udp));
2769 
2770 	/*
2771 	 * UDP is supported only as a module and it has to be pushed directly
2772 	 * above the device instance of IP. If UDP is pushed anywhere else
2773 	 * on a stream, it will support just T_SVR4_OPTMGMT_REQ for the
2774 	 * sake of MIB browsers and fail everything else.
2775 	 */
2776 	ip_wq = WR(q)->q_next;
2777 	if (ip_wq->q_next != NULL ||
2778 	    (name = ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL ||
2779 	    strcmp(name, IP_MOD_NAME) != 0 ||
2780 	    ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) {
2781 		/* Support just SNMP for MIB browsers */
2782 		connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP);
2783 		connp->conn_rq = q;
2784 		connp->conn_wq = WR(q);
2785 		connp->conn_flags |= IPCL_UDPMOD;
2786 		connp->conn_cred = credp;
2787 		connp->conn_zoneid = zoneid;
2788 		connp->conn_udp = udp;
2789 		udp->udp_connp = connp;
2790 		q->q_ptr = WR(q)->q_ptr = connp;
2791 		crhold(credp);
2792 		q->q_qinfo = &udp_snmp_rinit;
2793 		WR(q)->q_qinfo = &udp_snmp_winit;
2794 		return (0);
2795 	}
2796 
2797 	/*
2798 	 * Initialize the udp_t structure for this stream.
2799 	 */
2800 	q = RD(ip_wq);
2801 	connp = Q_TO_CONN(q);
2802 	mutex_enter(&connp->conn_lock);
2803 	connp->conn_proto = IPPROTO_UDP;
2804 	connp->conn_flags |= IPCL_UDP;
2805 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
2806 	connp->conn_udp = udp;
2807 
2808 	/* Set the initial state of the stream and the privilege status. */
2809 	udp->udp_connp = connp;
2810 	udp->udp_state = TS_UNBND;
2811 	udp->udp_mode = UDP_MT_HOT;
2812 	if (getmajor(*devp) == (major_t)UDP6_MAJ) {
2813 		udp->udp_family = AF_INET6;
2814 		udp->udp_ipversion = IPV6_VERSION;
2815 		udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
2816 		udp->udp_ttl = udp_ipv6_hoplimit;
2817 		connp->conn_af_isv6 = B_TRUE;
2818 		connp->conn_flags |= IPCL_ISV6;
2819 	} else {
2820 		udp->udp_family = AF_INET;
2821 		udp->udp_ipversion = IPV4_VERSION;
2822 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
2823 		udp->udp_ttl = udp_ipv4_ttl;
2824 		connp->conn_af_isv6 = B_FALSE;
2825 		connp->conn_flags &= ~IPCL_ISV6;
2826 	}
2827 
2828 	udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2829 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
2830 	connp->conn_zoneid = zoneid;
2831 
2832 	if (connp->conn_flags & IPCL_SOCKET) {
2833 		udp->udp_issocket = B_TRUE;
2834 		udp->udp_direct_sockfs = B_TRUE;
2835 	}
2836 	mutex_exit(&connp->conn_lock);
2837 
2838 	/*
2839 	 * The transmit hiwat/lowat is only looked at on IP's queue.
2840 	 * Store in q_hiwat in order to return on SO_SNDBUF/SO_RCVBUF
2841 	 * getsockopts.
2842 	 */
2843 	q->q_hiwat = udp_recv_hiwat;
2844 	WR(q)->q_hiwat = udp_xmit_hiwat;
2845 	WR(q)->q_lowat = udp_xmit_lowat;
2846 
2847 	if (udp->udp_family == AF_INET6) {
2848 		/* Build initial header template for transmit */
2849 		if ((err = udp_build_hdrs(q, udp)) != 0) {
2850 			qprocsoff(UDP_RD(q));
2851 			udp->udp_connp = NULL;
2852 			connp->conn_udp = NULL;
2853 			kmem_cache_free(udp_cache, udp);
2854 			return (err);
2855 		}
2856 	}
2857 
2858 	/* Set the Stream head write offset and high watermark. */
2859 	(void) mi_set_sth_wroff(UDP_RD(q),
2860 	    udp->udp_max_hdr_len + udp_wroff_extra);
2861 	(void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, q->q_hiwat));
2862 
2863 	return (0);
2864 }
2865 
2866 /*
2867  * Which UDP options OK to set through T_UNITDATA_REQ...
2868  */
2869 /* ARGSUSED */
2870 static boolean_t
2871 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
2872 {
2873 	return (B_TRUE);
2874 }
2875 
2876 /*
2877  * This routine gets default values of certain options whose default
2878  * values are maintained by protcol specific code
2879  */
2880 /* ARGSUSED */
2881 int
2882 udp_opt_default(queue_t	*q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2883 {
2884 	int *i1 = (int *)ptr;
2885 
2886 	switch (level) {
2887 	case IPPROTO_IP:
2888 		switch (name) {
2889 		case IP_MULTICAST_TTL:
2890 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
2891 			return (sizeof (uchar_t));
2892 		case IP_MULTICAST_LOOP:
2893 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
2894 			return (sizeof (uchar_t));
2895 		}
2896 		break;
2897 	case IPPROTO_IPV6:
2898 		switch (name) {
2899 		case IPV6_MULTICAST_HOPS:
2900 			*i1 = IP_DEFAULT_MULTICAST_TTL;
2901 			return (sizeof (int));
2902 		case IPV6_MULTICAST_LOOP:
2903 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
2904 			return (sizeof (int));
2905 		case IPV6_UNICAST_HOPS:
2906 			*i1 = udp_ipv6_hoplimit;
2907 			return (sizeof (int));
2908 		}
2909 		break;
2910 	}
2911 	return (-1);
2912 }
2913 
2914 /*
2915  * This routine retrieves the current status of socket options
2916  * and expects the caller to pass in the queue pointer of the
2917  * upper instance.  It returns the size of the option retrieved.
2918  */
2919 int
2920 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2921 {
2922 	int	*i1 = (int *)ptr;
2923 	conn_t	*connp;
2924 	udp_t	*udp;
2925 	ip6_pkt_t *ipp;
2926 
2927 	q = UDP_WR(q);
2928 	connp = Q_TO_CONN(q);
2929 	udp = connp->conn_udp;
2930 	ipp = &udp->udp_sticky_ipp;
2931 
2932 	switch (level) {
2933 	case SOL_SOCKET:
2934 		switch (name) {
2935 		case SO_DEBUG:
2936 			*i1 = udp->udp_debug;
2937 			break;	/* goto sizeof (int) option return */
2938 		case SO_REUSEADDR:
2939 			*i1 = udp->udp_reuseaddr;
2940 			break;	/* goto sizeof (int) option return */
2941 		case SO_TYPE:
2942 			*i1 = SOCK_DGRAM;
2943 			break;	/* goto sizeof (int) option return */
2944 
2945 		/*
2946 		 * The following three items are available here,
2947 		 * but are only meaningful to IP.
2948 		 */
2949 		case SO_DONTROUTE:
2950 			*i1 = udp->udp_dontroute;
2951 			break;	/* goto sizeof (int) option return */
2952 		case SO_USELOOPBACK:
2953 			*i1 = udp->udp_useloopback;
2954 			break;	/* goto sizeof (int) option return */
2955 		case SO_BROADCAST:
2956 			*i1 = udp->udp_broadcast;
2957 			break;	/* goto sizeof (int) option return */
2958 
2959 		case SO_SNDBUF:
2960 			*i1 = q->q_hiwat;
2961 			break;	/* goto sizeof (int) option return */
2962 		case SO_RCVBUF:
2963 			*i1 = RD(q)->q_hiwat;
2964 			break;	/* goto sizeof (int) option return */
2965 		case SO_DGRAM_ERRIND:
2966 			*i1 = udp->udp_dgram_errind;
2967 			break;	/* goto sizeof (int) option return */
2968 		case SO_RECVUCRED:
2969 			*i1 = udp->udp_recvucred;
2970 			break;	/* goto sizeof (int) option return */
2971 		default:
2972 			return (-1);
2973 		}
2974 		break;
2975 	case IPPROTO_IP:
2976 		if (udp->udp_family != AF_INET)
2977 			return (-1);
2978 		switch (name) {
2979 		case IP_OPTIONS:
2980 		case T_IP_OPTIONS:
2981 			if (udp->udp_ip_rcv_options_len)
2982 				bcopy(udp->udp_ip_rcv_options, ptr,
2983 				    udp->udp_ip_rcv_options_len);
2984 			return (udp->udp_ip_rcv_options_len);
2985 		case IP_TOS:
2986 		case T_IP_TOS:
2987 			*i1 = (int)udp->udp_type_of_service;
2988 			break;	/* goto sizeof (int) option return */
2989 		case IP_TTL:
2990 			*i1 = (int)udp->udp_ttl;
2991 			break;	/* goto sizeof (int) option return */
2992 		case IP_NEXTHOP:
2993 			/* Handled at IP level */
2994 			return (-EINVAL);
2995 		case IP_MULTICAST_IF:
2996 			/* 0 address if not set */
2997 			*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
2998 			return (sizeof (ipaddr_t));
2999 		case IP_MULTICAST_TTL:
3000 			*(uchar_t *)ptr = udp->udp_multicast_ttl;
3001 			return (sizeof (uchar_t));
3002 		case IP_MULTICAST_LOOP:
3003 			*ptr = connp->conn_multicast_loop;
3004 			return (sizeof (uint8_t));
3005 		case IP_RECVOPTS:
3006 			*i1 = udp->udp_recvopts;
3007 			break;	/* goto sizeof (int) option return */
3008 		case IP_RECVDSTADDR:
3009 			*i1 = udp->udp_recvdstaddr;
3010 			break;	/* goto sizeof (int) option return */
3011 		case IP_RECVIF:
3012 			*i1 = udp->udp_recvif;
3013 			break;	/* goto sizeof (int) option return */
3014 		case IP_RECVSLLA:
3015 			*i1 = udp->udp_recvslla;
3016 			break;	/* goto sizeof (int) option return */
3017 		case IP_RECVTTL:
3018 			*i1 = udp->udp_recvttl;
3019 			break;	/* goto sizeof (int) option return */
3020 		case IP_ADD_MEMBERSHIP:
3021 		case IP_DROP_MEMBERSHIP:
3022 		case IP_BLOCK_SOURCE:
3023 		case IP_UNBLOCK_SOURCE:
3024 		case IP_ADD_SOURCE_MEMBERSHIP:
3025 		case IP_DROP_SOURCE_MEMBERSHIP:
3026 		case MCAST_JOIN_GROUP:
3027 		case MCAST_LEAVE_GROUP:
3028 		case MCAST_BLOCK_SOURCE:
3029 		case MCAST_UNBLOCK_SOURCE:
3030 		case MCAST_JOIN_SOURCE_GROUP:
3031 		case MCAST_LEAVE_SOURCE_GROUP:
3032 		case IP_DONTFAILOVER_IF:
3033 			/* cannot "get" the value for these */
3034 			return (-1);
3035 		case IP_BOUND_IF:
3036 			/* Zero if not set */
3037 			*i1 = udp->udp_bound_if;
3038 			break;	/* goto sizeof (int) option return */
3039 		case IP_UNSPEC_SRC:
3040 			*i1 = udp->udp_unspec_source;
3041 			break;	/* goto sizeof (int) option return */
3042 		case IP_XMIT_IF:
3043 			*i1 = udp->udp_xmit_if;
3044 			break; /* goto sizeof (int) option return */
3045 		default:
3046 			return (-1);
3047 		}
3048 		break;
3049 	case IPPROTO_IPV6:
3050 		if (udp->udp_family != AF_INET6)
3051 			return (-1);
3052 		switch (name) {
3053 		case IPV6_UNICAST_HOPS:
3054 			*i1 = (unsigned int)udp->udp_ttl;
3055 			break;	/* goto sizeof (int) option return */
3056 		case IPV6_MULTICAST_IF:
3057 			/* 0 index if not set */
3058 			*i1 = udp->udp_multicast_if_index;
3059 			break;	/* goto sizeof (int) option return */
3060 		case IPV6_MULTICAST_HOPS:
3061 			*i1 = udp->udp_multicast_ttl;
3062 			break;	/* goto sizeof (int) option return */
3063 		case IPV6_MULTICAST_LOOP:
3064 			*i1 = connp->conn_multicast_loop;
3065 			break;	/* goto sizeof (int) option return */
3066 		case IPV6_JOIN_GROUP:
3067 		case IPV6_LEAVE_GROUP:
3068 		case MCAST_JOIN_GROUP:
3069 		case MCAST_LEAVE_GROUP:
3070 		case MCAST_BLOCK_SOURCE:
3071 		case MCAST_UNBLOCK_SOURCE:
3072 		case MCAST_JOIN_SOURCE_GROUP:
3073 		case MCAST_LEAVE_SOURCE_GROUP:
3074 			/* cannot "get" the value for these */
3075 			return (-1);
3076 		case IPV6_BOUND_IF:
3077 			/* Zero if not set */
3078 			*i1 = udp->udp_bound_if;
3079 			break;	/* goto sizeof (int) option return */
3080 		case IPV6_UNSPEC_SRC:
3081 			*i1 = udp->udp_unspec_source;
3082 			break;	/* goto sizeof (int) option return */
3083 		case IPV6_RECVPKTINFO:
3084 			*i1 = udp->udp_ipv6_recvpktinfo;
3085 			break;	/* goto sizeof (int) option return */
3086 		case IPV6_RECVTCLASS:
3087 			*i1 = udp->udp_ipv6_recvtclass;
3088 			break;	/* goto sizeof (int) option return */
3089 		case IPV6_RECVPATHMTU:
3090 			*i1 = udp->udp_ipv6_recvpathmtu;
3091 			break;	/* goto sizeof (int) option return */
3092 		case IPV6_RECVHOPLIMIT:
3093 			*i1 = udp->udp_ipv6_recvhoplimit;
3094 			break;	/* goto sizeof (int) option return */
3095 		case IPV6_RECVHOPOPTS:
3096 			*i1 = udp->udp_ipv6_recvhopopts;
3097 			break;	/* goto sizeof (int) option return */
3098 		case IPV6_RECVDSTOPTS:
3099 			*i1 = udp->udp_ipv6_recvdstopts;
3100 			break;	/* goto sizeof (int) option return */
3101 		case _OLD_IPV6_RECVDSTOPTS:
3102 			*i1 = udp->udp_old_ipv6_recvdstopts;
3103 			break;	/* goto sizeof (int) option return */
3104 		case IPV6_RECVRTHDRDSTOPTS:
3105 			*i1 = udp->udp_ipv6_recvrthdrdstopts;
3106 			break;	/* goto sizeof (int) option return */
3107 		case IPV6_RECVRTHDR:
3108 			*i1 = udp->udp_ipv6_recvrthdr;
3109 			break;	/* goto sizeof (int) option return */
3110 		case IPV6_PKTINFO: {
3111 			/* XXX assumes that caller has room for max size! */
3112 			struct in6_pktinfo *pkti;
3113 
3114 			pkti = (struct in6_pktinfo *)ptr;
3115 			if (ipp->ipp_fields & IPPF_IFINDEX)
3116 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
3117 			else
3118 				pkti->ipi6_ifindex = 0;
3119 			if (ipp->ipp_fields & IPPF_ADDR)
3120 				pkti->ipi6_addr = ipp->ipp_addr;
3121 			else
3122 				pkti->ipi6_addr = ipv6_all_zeros;
3123 			return (sizeof (struct in6_pktinfo));
3124 		}
3125 		case IPV6_TCLASS:
3126 			if (ipp->ipp_fields & IPPF_TCLASS)
3127 				*i1 = ipp->ipp_tclass;
3128 			else
3129 				*i1 = IPV6_FLOW_TCLASS(
3130 				    IPV6_DEFAULT_VERS_AND_FLOW);
3131 			break;	/* goto sizeof (int) option return */
3132 		case IPV6_NEXTHOP: {
3133 			sin6_t *sin6 = (sin6_t *)ptr;
3134 
3135 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
3136 				return (0);
3137 			*sin6 = sin6_null;
3138 			sin6->sin6_family = AF_INET6;
3139 			sin6->sin6_addr = ipp->ipp_nexthop;
3140 			return (sizeof (sin6_t));
3141 		}
3142 		case IPV6_HOPOPTS:
3143 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
3144 				return (0);
3145 			bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen);
3146 			return (ipp->ipp_hopoptslen);
3147 		case IPV6_RTHDRDSTOPTS:
3148 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
3149 				return (0);
3150 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
3151 			return (ipp->ipp_rtdstoptslen);
3152 		case IPV6_RTHDR:
3153 			if (!(ipp->ipp_fields & IPPF_RTHDR))
3154 				return (0);
3155 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
3156 			return (ipp->ipp_rthdrlen);
3157 		case IPV6_DSTOPTS:
3158 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
3159 				return (0);
3160 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
3161 			return (ipp->ipp_dstoptslen);
3162 		case IPV6_PATHMTU:
3163 			return (ip_fill_mtuinfo(&udp->udp_v6dst,
3164 				udp->udp_dstport, (struct ip6_mtuinfo *)ptr));
3165 		default:
3166 			return (-1);
3167 		}
3168 		break;
3169 	case IPPROTO_UDP:
3170 		switch (name) {
3171 		case UDP_ANONPRIVBIND:
3172 			*i1 = udp->udp_anon_priv_bind;
3173 			break;
3174 		case UDP_EXCLBIND:
3175 			*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
3176 			break;
3177 		case UDP_RCVHDR:
3178 			*i1 = udp->udp_rcvhdr ? 1 : 0;
3179 			break;
3180 		default:
3181 			return (-1);
3182 		}
3183 		break;
3184 	default:
3185 		return (-1);
3186 	}
3187 	return (sizeof (int));
3188 }
3189 
3190 /*
3191  * This routine sets socket options; it expects the caller
3192  * to pass in the queue pointer of the upper instance.
3193  */
3194 /* ARGSUSED */
3195 int
3196 udp_opt_set(queue_t *q, uint_t optset_context, int level,
3197     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
3198     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
3199 {
3200 	int	*i1 = (int *)invalp;
3201 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
3202 	boolean_t checkonly;
3203 	int	error;
3204 	conn_t	*connp;
3205 	udp_t	*udp;
3206 
3207 	q = UDP_WR(q);
3208 	connp = Q_TO_CONN(q);
3209 	udp = connp->conn_udp;
3210 
3211 	switch (optset_context) {
3212 	case SETFN_OPTCOM_CHECKONLY:
3213 		checkonly = B_TRUE;
3214 		/*
3215 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
3216 		 * inlen != 0 implies value supplied and
3217 		 * 	we have to "pretend" to set it.
3218 		 * inlen == 0 implies that there is no
3219 		 * 	value part in T_CHECK request and just validation
3220 		 * done elsewhere should be enough, we just return here.
3221 		 */
3222 		if (inlen == 0) {
3223 			*outlenp = 0;
3224 			return (0);
3225 		}
3226 		break;
3227 	case SETFN_OPTCOM_NEGOTIATE:
3228 		checkonly = B_FALSE;
3229 		break;
3230 	case SETFN_UD_NEGOTIATE:
3231 	case SETFN_CONN_NEGOTIATE:
3232 		checkonly = B_FALSE;
3233 		/*
3234 		 * Negotiating local and "association-related" options
3235 		 * through T_UNITDATA_REQ.
3236 		 *
3237 		 * Following routine can filter out ones we do not
3238 		 * want to be "set" this way.
3239 		 */
3240 		if (!udp_opt_allow_udr_set(level, name)) {
3241 			*outlenp = 0;
3242 			return (EINVAL);
3243 		}
3244 		break;
3245 	default:
3246 		/*
3247 		 * We should never get here
3248 		 */
3249 		*outlenp = 0;
3250 		return (EINVAL);
3251 	}
3252 
3253 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
3254 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
3255 
3256 	/*
3257 	 * For fixed length options, no sanity check
3258 	 * of passed in length is done. It is assumed *_optcom_req()
3259 	 * routines do the right thing.
3260 	 */
3261 
3262 	switch (level) {
3263 	case SOL_SOCKET:
3264 		switch (name) {
3265 		case SO_REUSEADDR:
3266 			if (!checkonly)
3267 				udp->udp_reuseaddr = onoff;
3268 			break;
3269 		case SO_DEBUG:
3270 			if (!checkonly)
3271 				udp->udp_debug = onoff;
3272 			break;
3273 		/*
3274 		 * The following three items are available here,
3275 		 * but are only meaningful to IP.
3276 		 */
3277 		case SO_DONTROUTE:
3278 			if (!checkonly)
3279 				udp->udp_dontroute = onoff;
3280 			break;
3281 		case SO_USELOOPBACK:
3282 			if (!checkonly)
3283 				udp->udp_useloopback = onoff;
3284 			break;
3285 		case SO_BROADCAST:
3286 			if (!checkonly)
3287 				udp->udp_broadcast = onoff;
3288 			break;
3289 
3290 		case SO_SNDBUF:
3291 			if (*i1 > udp_max_buf) {
3292 				*outlenp = 0;
3293 				return (ENOBUFS);
3294 			}
3295 			if (!checkonly) {
3296 				q->q_hiwat = *i1;
3297 				WR(UDP_RD(q))->q_hiwat = *i1;
3298 			}
3299 			break;
3300 		case SO_RCVBUF:
3301 			if (*i1 > udp_max_buf) {
3302 				*outlenp = 0;
3303 				return (ENOBUFS);
3304 			}
3305 			if (!checkonly) {
3306 				RD(q)->q_hiwat = *i1;
3307 				UDP_RD(q)->q_hiwat = *i1;
3308 				(void) mi_set_sth_hiwat(UDP_RD(q),
3309 				    udp_set_rcv_hiwat(udp, *i1));
3310 			}
3311 			break;
3312 		case SO_DGRAM_ERRIND:
3313 			if (!checkonly)
3314 				udp->udp_dgram_errind = onoff;
3315 			break;
3316 		case SO_RECVUCRED:
3317 			if (!checkonly)
3318 				udp->udp_recvucred = onoff;
3319 			break;
3320 		default:
3321 			*outlenp = 0;
3322 			return (EINVAL);
3323 		}
3324 		break;
3325 	case IPPROTO_IP:
3326 		if (udp->udp_family != AF_INET) {
3327 			*outlenp = 0;
3328 			return (ENOPROTOOPT);
3329 		}
3330 		switch (name) {
3331 		case IP_OPTIONS:
3332 		case T_IP_OPTIONS:
3333 			/* Save options for use by IP. */
3334 			if (inlen & 0x3) {
3335 				*outlenp = 0;
3336 				return (EINVAL);
3337 			}
3338 			if (checkonly)
3339 				break;
3340 
3341 			if (udp->udp_ip_snd_options) {
3342 				mi_free((char *)udp->udp_ip_snd_options);
3343 				udp->udp_ip_snd_options_len = 0;
3344 				udp->udp_ip_snd_options = NULL;
3345 			}
3346 			if (inlen) {
3347 				udp->udp_ip_snd_options =
3348 					(uchar_t *)mi_alloc(inlen, BPRI_HI);
3349 				if (udp->udp_ip_snd_options) {
3350 					bcopy(invalp, udp->udp_ip_snd_options,
3351 					    inlen);
3352 					udp->udp_ip_snd_options_len = inlen;
3353 				}
3354 			}
3355 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3356 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
3357 			(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
3358 			    udp_wroff_extra);
3359 			break;
3360 		case IP_TTL:
3361 			if (!checkonly) {
3362 				udp->udp_ttl = (uchar_t)*i1;
3363 			}
3364 			break;
3365 		case IP_TOS:
3366 		case T_IP_TOS:
3367 			if (!checkonly) {
3368 				udp->udp_type_of_service = (uchar_t)*i1;
3369 			}
3370 			break;
3371 		case IP_MULTICAST_IF: {
3372 			/*
3373 			 * TODO should check OPTMGMT reply and undo this if
3374 			 * there is an error.
3375 			 */
3376 			struct in_addr *inap = (struct in_addr *)invalp;
3377 			if (!checkonly) {
3378 				udp->udp_multicast_if_addr =
3379 				    inap->s_addr;
3380 			}
3381 			break;
3382 		}
3383 		case IP_MULTICAST_TTL:
3384 			if (!checkonly)
3385 				udp->udp_multicast_ttl = *invalp;
3386 			break;
3387 		case IP_MULTICAST_LOOP:
3388 			if (!checkonly)
3389 				connp->conn_multicast_loop = *invalp;
3390 			break;
3391 		case IP_RECVOPTS:
3392 			if (!checkonly)
3393 				udp->udp_recvopts = onoff;
3394 			break;
3395 		case IP_RECVDSTADDR:
3396 			if (!checkonly)
3397 				udp->udp_recvdstaddr = onoff;
3398 			break;
3399 		case IP_RECVIF:
3400 			if (!checkonly)
3401 				udp->udp_recvif = onoff;
3402 			break;
3403 		case IP_RECVSLLA:
3404 			if (!checkonly)
3405 				udp->udp_recvslla = onoff;
3406 			break;
3407 		case IP_RECVTTL:
3408 			if (!checkonly)
3409 				udp->udp_recvttl = onoff;
3410 			break;
3411 		case IP_ADD_MEMBERSHIP:
3412 		case IP_DROP_MEMBERSHIP:
3413 		case IP_BLOCK_SOURCE:
3414 		case IP_UNBLOCK_SOURCE:
3415 		case IP_ADD_SOURCE_MEMBERSHIP:
3416 		case IP_DROP_SOURCE_MEMBERSHIP:
3417 		case MCAST_JOIN_GROUP:
3418 		case MCAST_LEAVE_GROUP:
3419 		case MCAST_BLOCK_SOURCE:
3420 		case MCAST_UNBLOCK_SOURCE:
3421 		case MCAST_JOIN_SOURCE_GROUP:
3422 		case MCAST_LEAVE_SOURCE_GROUP:
3423 		case IP_SEC_OPT:
3424 		case IP_NEXTHOP:
3425 			/*
3426 			 * "soft" error (negative)
3427 			 * option not handled at this level
3428 			 * Do not modify *outlenp.
3429 			 */
3430 			return (-EINVAL);
3431 		case IP_BOUND_IF:
3432 			if (!checkonly)
3433 				udp->udp_bound_if = *i1;
3434 			break;
3435 		case IP_UNSPEC_SRC:
3436 			if (!checkonly)
3437 				udp->udp_unspec_source = onoff;
3438 			break;
3439 		case IP_XMIT_IF:
3440 			if (!checkonly)
3441 				udp->udp_xmit_if = *i1;
3442 			break;
3443 		default:
3444 			*outlenp = 0;
3445 			return (EINVAL);
3446 		}
3447 		break;
3448 	case IPPROTO_IPV6: {
3449 		ip6_pkt_t		*ipp;
3450 		boolean_t		sticky;
3451 
3452 		if (udp->udp_family != AF_INET6) {
3453 			*outlenp = 0;
3454 			return (ENOPROTOOPT);
3455 		}
3456 		/*
3457 		 * Deal with both sticky options and ancillary data
3458 		 */
3459 		if (thisdg_attrs == NULL) {
3460 			/* sticky options, or none */
3461 			ipp = &udp->udp_sticky_ipp;
3462 			sticky = B_TRUE;
3463 		} else {
3464 			/* ancillary data */
3465 			ipp = (ip6_pkt_t *)thisdg_attrs;
3466 			sticky = B_FALSE;
3467 		}
3468 
3469 		switch (name) {
3470 		case IPV6_MULTICAST_IF:
3471 			if (!checkonly)
3472 				udp->udp_multicast_if_index = *i1;
3473 			break;
3474 		case IPV6_UNICAST_HOPS:
3475 			/* -1 means use default */
3476 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3477 				*outlenp = 0;
3478 				return (EINVAL);
3479 			}
3480 			if (!checkonly) {
3481 				if (*i1 == -1) {
3482 					udp->udp_ttl = ipp->ipp_unicast_hops =
3483 					    udp_ipv6_hoplimit;
3484 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
3485 					/* Pass modified value to IP. */
3486 					*i1 = udp->udp_ttl;
3487 				} else {
3488 					udp->udp_ttl = ipp->ipp_unicast_hops =
3489 					    (uint8_t)*i1;
3490 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
3491 				}
3492 				/* Rebuild the header template */
3493 				error = udp_build_hdrs(q, udp);
3494 				if (error != 0) {
3495 					*outlenp = 0;
3496 					return (error);
3497 				}
3498 			}
3499 			break;
3500 		case IPV6_MULTICAST_HOPS:
3501 			/* -1 means use default */
3502 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3503 				*outlenp = 0;
3504 				return (EINVAL);
3505 			}
3506 			if (!checkonly) {
3507 				if (*i1 == -1) {
3508 					udp->udp_multicast_ttl =
3509 					    ipp->ipp_multicast_hops =
3510 					    IP_DEFAULT_MULTICAST_TTL;
3511 					ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
3512 					/* Pass modified value to IP. */
3513 					*i1 = udp->udp_multicast_ttl;
3514 				} else {
3515 					udp->udp_multicast_ttl =
3516 					    ipp->ipp_multicast_hops =
3517 					    (uint8_t)*i1;
3518 					ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
3519 				}
3520 			}
3521 			break;
3522 		case IPV6_MULTICAST_LOOP:
3523 			if (*i1 != 0 && *i1 != 1) {
3524 				*outlenp = 0;
3525 				return (EINVAL);
3526 			}
3527 			if (!checkonly)
3528 				connp->conn_multicast_loop = *i1;
3529 			break;
3530 		case IPV6_JOIN_GROUP:
3531 		case IPV6_LEAVE_GROUP:
3532 		case MCAST_JOIN_GROUP:
3533 		case MCAST_LEAVE_GROUP:
3534 		case MCAST_BLOCK_SOURCE:
3535 		case MCAST_UNBLOCK_SOURCE:
3536 		case MCAST_JOIN_SOURCE_GROUP:
3537 		case MCAST_LEAVE_SOURCE_GROUP:
3538 			/*
3539 			 * "soft" error (negative)
3540 			 * option not handled at this level
3541 			 * Note: Do not modify *outlenp
3542 			 */
3543 			return (-EINVAL);
3544 		case IPV6_BOUND_IF:
3545 			if (!checkonly)
3546 				udp->udp_bound_if = *i1;
3547 			break;
3548 		case IPV6_UNSPEC_SRC:
3549 			if (!checkonly)
3550 				udp->udp_unspec_source = onoff;
3551 			break;
3552 		/*
3553 		 * Set boolean switches for ancillary data delivery
3554 		 */
3555 		case IPV6_RECVPKTINFO:
3556 			if (!checkonly)
3557 				udp->udp_ipv6_recvpktinfo = onoff;
3558 			break;
3559 		case IPV6_RECVTCLASS:
3560 			if (!checkonly) {
3561 				udp->udp_ipv6_recvtclass = onoff;
3562 			}
3563 			break;
3564 		case IPV6_RECVPATHMTU:
3565 			if (!checkonly) {
3566 				udp->udp_ipv6_recvpathmtu = onoff;
3567 			}
3568 			break;
3569 		case IPV6_RECVHOPLIMIT:
3570 			if (!checkonly)
3571 				udp->udp_ipv6_recvhoplimit = onoff;
3572 			break;
3573 		case IPV6_RECVHOPOPTS:
3574 			if (!checkonly)
3575 				udp->udp_ipv6_recvhopopts = onoff;
3576 			break;
3577 		case IPV6_RECVDSTOPTS:
3578 			if (!checkonly)
3579 				udp->udp_ipv6_recvdstopts = onoff;
3580 			break;
3581 		case _OLD_IPV6_RECVDSTOPTS:
3582 			if (!checkonly)
3583 				udp->udp_old_ipv6_recvdstopts = onoff;
3584 			break;
3585 		case IPV6_RECVRTHDRDSTOPTS:
3586 			if (!checkonly)
3587 				udp->udp_ipv6_recvrthdrdstopts = onoff;
3588 			break;
3589 		case IPV6_RECVRTHDR:
3590 			if (!checkonly)
3591 				udp->udp_ipv6_recvrthdr = onoff;
3592 			break;
3593 		/*
3594 		 * Set sticky options or ancillary data.
3595 		 * If sticky options, (re)build any extension headers
3596 		 * that might be needed as a result.
3597 		 */
3598 		case IPV6_PKTINFO:
3599 			/*
3600 			 * The source address and ifindex are verified
3601 			 * in ip_opt_set(). For ancillary data the
3602 			 * source address is checked in ip_wput_v6.
3603 			 */
3604 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
3605 				return (EINVAL);
3606 			if (checkonly)
3607 				break;
3608 
3609 			if (inlen == 0) {
3610 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
3611 				ipp->ipp_sticky_ignored |=
3612 				    (IPPF_IFINDEX|IPPF_ADDR);
3613 			} else {
3614 				struct in6_pktinfo *pkti;
3615 
3616 				pkti = (struct in6_pktinfo *)invalp;
3617 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
3618 				ipp->ipp_addr = pkti->ipi6_addr;
3619 				if (ipp->ipp_ifindex != 0)
3620 					ipp->ipp_fields |= IPPF_IFINDEX;
3621 				else
3622 					ipp->ipp_fields &= ~IPPF_IFINDEX;
3623 				if (!IN6_IS_ADDR_UNSPECIFIED(
3624 				    &ipp->ipp_addr))
3625 					ipp->ipp_fields |= IPPF_ADDR;
3626 				else
3627 					ipp->ipp_fields &= ~IPPF_ADDR;
3628 			}
3629 			if (sticky) {
3630 				error = udp_build_hdrs(q, udp);
3631 				if (error != 0)
3632 					return (error);
3633 			}
3634 			break;
3635 		case IPV6_HOPLIMIT:
3636 			if (sticky)
3637 				return (EINVAL);
3638 			if (inlen != 0 && inlen != sizeof (int))
3639 				return (EINVAL);
3640 			if (checkonly)
3641 				break;
3642 
3643 			if (inlen == 0) {
3644 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
3645 				ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
3646 			} else {
3647 				if (*i1 > 255 || *i1 < -1)
3648 					return (EINVAL);
3649 				if (*i1 == -1)
3650 					ipp->ipp_hoplimit = udp_ipv6_hoplimit;
3651 				else
3652 					ipp->ipp_hoplimit = *i1;
3653 				ipp->ipp_fields |= IPPF_HOPLIMIT;
3654 			}
3655 			break;
3656 		case IPV6_TCLASS:
3657 			if (inlen != 0 && inlen != sizeof (int))
3658 				return (EINVAL);
3659 			if (checkonly)
3660 				break;
3661 
3662 			if (inlen == 0) {
3663 				ipp->ipp_fields &= ~IPPF_TCLASS;
3664 				ipp->ipp_sticky_ignored |= IPPF_TCLASS;
3665 			} else {
3666 				if (*i1 > 255 || *i1 < -1)
3667 					return (EINVAL);
3668 				if (*i1 == -1)
3669 					ipp->ipp_tclass = 0;
3670 				else
3671 					ipp->ipp_tclass = *i1;
3672 				ipp->ipp_fields |= IPPF_TCLASS;
3673 			}
3674 			if (sticky) {
3675 				error = udp_build_hdrs(q, udp);
3676 				if (error != 0)
3677 					return (error);
3678 			}
3679 			break;
3680 		case IPV6_NEXTHOP:
3681 			/*
3682 			 * IP will verify that the nexthop is reachable
3683 			 * and fail for sticky options.
3684 			 */
3685 			if (inlen != 0 && inlen != sizeof (sin6_t))
3686 				return (EINVAL);
3687 			if (checkonly)
3688 				break;
3689 
3690 			if (inlen == 0) {
3691 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
3692 				ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
3693 			} else {
3694 				sin6_t *sin6 = (sin6_t *)invalp;
3695 
3696 				if (sin6->sin6_family != AF_INET6)
3697 					return (EAFNOSUPPORT);
3698 				if (IN6_IS_ADDR_V4MAPPED(
3699 				    &sin6->sin6_addr))
3700 					return (EADDRNOTAVAIL);
3701 				ipp->ipp_nexthop = sin6->sin6_addr;
3702 				if (!IN6_IS_ADDR_UNSPECIFIED(
3703 				    &ipp->ipp_nexthop))
3704 					ipp->ipp_fields |= IPPF_NEXTHOP;
3705 				else
3706 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
3707 			}
3708 			if (sticky) {
3709 				error = udp_build_hdrs(q, udp);
3710 				if (error != 0)
3711 					return (error);
3712 			}
3713 			break;
3714 		case IPV6_HOPOPTS: {
3715 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
3716 			/*
3717 			 * Sanity checks - minimum size, size a multiple of
3718 			 * eight bytes, and matching size passed in.
3719 			 */
3720 			if (inlen != 0 &&
3721 			    inlen != (8 * (hopts->ip6h_len + 1)))
3722 				return (EINVAL);
3723 
3724 			if (checkonly)
3725 				break;
3726 
3727 			if (inlen == 0) {
3728 				if (sticky &&
3729 				    (ipp->ipp_fields & IPPF_HOPOPTS) != 0) {
3730 					kmem_free(ipp->ipp_hopopts,
3731 					    ipp->ipp_hopoptslen);
3732 					ipp->ipp_hopopts = NULL;
3733 					ipp->ipp_hopoptslen = 0;
3734 				}
3735 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
3736 				ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
3737 			} else {
3738 				error = udp_pkt_set(invalp, inlen, sticky,
3739 				    (uchar_t **)&ipp->ipp_hopopts,
3740 				    &ipp->ipp_hopoptslen);
3741 				if (error != 0)
3742 					return (error);
3743 				ipp->ipp_fields |= IPPF_HOPOPTS;
3744 			}
3745 			if (sticky) {
3746 				error = udp_build_hdrs(q, udp);
3747 				if (error != 0)
3748 					return (error);
3749 			}
3750 			break;
3751 		}
3752 		case IPV6_RTHDRDSTOPTS: {
3753 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3754 
3755 			/*
3756 			 * Sanity checks - minimum size, size a multiple of
3757 			 * eight bytes, and matching size passed in.
3758 			 */
3759 			if (inlen != 0 &&
3760 			    inlen != (8 * (dopts->ip6d_len + 1)))
3761 				return (EINVAL);
3762 
3763 			if (checkonly)
3764 				break;
3765 
3766 			if (inlen == 0) {
3767 				if (sticky &&
3768 				    (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
3769 					kmem_free(ipp->ipp_rtdstopts,
3770 					    ipp->ipp_rtdstoptslen);
3771 					ipp->ipp_rtdstopts = NULL;
3772 					ipp->ipp_rtdstoptslen = 0;
3773 				}
3774 
3775 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
3776 				ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
3777 			} else {
3778 				error = udp_pkt_set(invalp, inlen, sticky,
3779 				    (uchar_t **)&ipp->ipp_rtdstopts,
3780 				    &ipp->ipp_rtdstoptslen);
3781 				if (error != 0)
3782 					return (error);
3783 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
3784 			}
3785 			if (sticky) {
3786 				error = udp_build_hdrs(q, udp);
3787 				if (error != 0)
3788 					return (error);
3789 			}
3790 			break;
3791 		}
3792 		case IPV6_DSTOPTS: {
3793 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3794 
3795 			/*
3796 			 * Sanity checks - minimum size, size a multiple of
3797 			 * eight bytes, and matching size passed in.
3798 			 */
3799 			if (inlen != 0 &&
3800 			    inlen != (8 * (dopts->ip6d_len + 1)))
3801 				return (EINVAL);
3802 
3803 			if (checkonly)
3804 				break;
3805 
3806 			if (inlen == 0) {
3807 				if (sticky &&
3808 				    (ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
3809 					kmem_free(ipp->ipp_dstopts,
3810 					    ipp->ipp_dstoptslen);
3811 					ipp->ipp_dstopts = NULL;
3812 					ipp->ipp_dstoptslen = 0;
3813 				}
3814 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
3815 				ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
3816 			} else {
3817 				error = udp_pkt_set(invalp, inlen, sticky,
3818 				    (uchar_t **)&ipp->ipp_dstopts,
3819 				    &ipp->ipp_dstoptslen);
3820 				if (error != 0)
3821 					return (error);
3822 				ipp->ipp_fields |= IPPF_DSTOPTS;
3823 			}
3824 			if (sticky) {
3825 				error = udp_build_hdrs(q, udp);
3826 				if (error != 0)
3827 					return (error);
3828 			}
3829 			break;
3830 		}
3831 		case IPV6_RTHDR: {
3832 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
3833 
3834 			/*
3835 			 * Sanity checks - minimum size, size a multiple of
3836 			 * eight bytes, and matching size passed in.
3837 			 */
3838 			if (inlen != 0 &&
3839 			    inlen != (8 * (rt->ip6r_len + 1)))
3840 				return (EINVAL);
3841 
3842 			if (checkonly)
3843 				break;
3844 
3845 			if (inlen == 0) {
3846 				if (sticky &&
3847 				    (ipp->ipp_fields & IPPF_RTHDR) != 0) {
3848 					kmem_free(ipp->ipp_rthdr,
3849 					    ipp->ipp_rthdrlen);
3850 					ipp->ipp_rthdr = NULL;
3851 					ipp->ipp_rthdrlen = 0;
3852 				}
3853 				ipp->ipp_fields &= ~IPPF_RTHDR;
3854 				ipp->ipp_sticky_ignored |= IPPF_RTHDR;
3855 			} else {
3856 				error = udp_pkt_set(invalp, inlen, sticky,
3857 				    (uchar_t **)&ipp->ipp_rthdr,
3858 				    &ipp->ipp_rthdrlen);
3859 				if (error != 0)
3860 					return (error);
3861 				ipp->ipp_fields |= IPPF_RTHDR;
3862 			}
3863 			if (sticky) {
3864 				error = udp_build_hdrs(q, udp);
3865 				if (error != 0)
3866 					return (error);
3867 			}
3868 			break;
3869 		}
3870 
3871 		case IPV6_DONTFRAG:
3872 			if (checkonly)
3873 				break;
3874 
3875 			if (onoff) {
3876 				ipp->ipp_fields |= IPPF_DONTFRAG;
3877 			} else {
3878 				ipp->ipp_fields &= ~IPPF_DONTFRAG;
3879 			}
3880 			break;
3881 
3882 		case IPV6_USE_MIN_MTU:
3883 			if (inlen != sizeof (int))
3884 				return (EINVAL);
3885 
3886 			if (*i1 < -1 || *i1 > 1)
3887 				return (EINVAL);
3888 
3889 			if (checkonly)
3890 				break;
3891 
3892 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
3893 			ipp->ipp_use_min_mtu = *i1;
3894 			break;
3895 
3896 		case IPV6_BOUND_PIF:
3897 		case IPV6_SEC_OPT:
3898 		case IPV6_DONTFAILOVER_IF:
3899 		case IPV6_SRC_PREFERENCES:
3900 		case IPV6_V6ONLY:
3901 			/* Handled at the IP level */
3902 			return (-EINVAL);
3903 		default:
3904 			*outlenp = 0;
3905 			return (EINVAL);
3906 		}
3907 		break;
3908 		}		/* end IPPROTO_IPV6 */
3909 	case IPPROTO_UDP:
3910 		switch (name) {
3911 		case UDP_ANONPRIVBIND:
3912 			if ((error = secpolicy_net_privaddr(cr, 0)) != 0) {
3913 				*outlenp = 0;
3914 				return (error);
3915 			}
3916 			if (!checkonly) {
3917 				udp->udp_anon_priv_bind = onoff;
3918 			}
3919 			break;
3920 		case UDP_EXCLBIND:
3921 			if (!checkonly)
3922 				udp->udp_exclbind = onoff;
3923 			break;
3924 		case UDP_RCVHDR:
3925 			if (!checkonly)
3926 				udp->udp_rcvhdr = onoff;
3927 			break;
3928 		default:
3929 			*outlenp = 0;
3930 			return (EINVAL);
3931 		}
3932 		break;
3933 	default:
3934 		*outlenp = 0;
3935 		return (EINVAL);
3936 	}
3937 	/*
3938 	 * Common case of OK return with outval same as inval.
3939 	 */
3940 	if (invalp != outvalp) {
3941 		/* don't trust bcopy for identical src/dst */
3942 		(void) bcopy(invalp, outvalp, inlen);
3943 	}
3944 	*outlenp = inlen;
3945 	return (0);
3946 }
3947 
3948 /*
3949  * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
3950  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
3951  * headers, and the udp header.
3952  * Returns failure if can't allocate memory.
3953  */
3954 static int
3955 udp_build_hdrs(queue_t *q, udp_t *udp)
3956 {
3957 	uchar_t	*hdrs;
3958 	uint_t	hdrs_len;
3959 	ip6_t	*ip6h;
3960 	ip6i_t	*ip6i;
3961 	udpha_t	*udpha;
3962 	ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
3963 
3964 	hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
3965 	ASSERT(hdrs_len != 0);
3966 	if (hdrs_len != udp->udp_sticky_hdrs_len) {
3967 		/* Need to reallocate */
3968 		hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
3969 		if (hdrs == NULL)
3970 			return (ENOMEM);
3971 
3972 		if (udp->udp_sticky_hdrs_len != 0) {
3973 			kmem_free(udp->udp_sticky_hdrs,
3974 			    udp->udp_sticky_hdrs_len);
3975 		}
3976 		udp->udp_sticky_hdrs = hdrs;
3977 		udp->udp_sticky_hdrs_len = hdrs_len;
3978 	}
3979 	ip_build_hdrs_v6(udp->udp_sticky_hdrs,
3980 	    udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
3981 
3982 	/* Set header fields not in ipp */
3983 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
3984 		ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
3985 		ip6h = (ip6_t *)&ip6i[1];
3986 	} else {
3987 		ip6h = (ip6_t *)udp->udp_sticky_hdrs;
3988 	}
3989 
3990 	if (!(ipp->ipp_fields & IPPF_ADDR))
3991 		ip6h->ip6_src = udp->udp_v6src;
3992 
3993 	udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
3994 	udpha->uha_src_port = udp->udp_port;
3995 
3996 	/* Try to get everything in a single mblk */
3997 	if (hdrs_len > udp->udp_max_hdr_len) {
3998 		udp->udp_max_hdr_len = hdrs_len;
3999 		(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
4000 		    udp_wroff_extra);
4001 	}
4002 	return (0);
4003 }
4004 
4005 /*
4006  * Set optbuf and optlen for the option.
4007  * If sticky is set allocate memory (if not already present).
4008  * Otherwise just point optbuf and optlen at invalp and inlen.
4009  * Returns failure if memory can not be allocated.
4010  */
4011 static int
4012 udp_pkt_set(uchar_t *invalp, uint_t inlen, boolean_t sticky,
4013     uchar_t **optbufp, uint_t *optlenp)
4014 {
4015 	uchar_t *optbuf;
4016 
4017 	if (!sticky) {
4018 		*optbufp = invalp;
4019 		*optlenp = inlen;
4020 		return (0);
4021 	}
4022 	if (inlen == *optlenp) {
4023 		/* Unchanged length - no need to realocate */
4024 		bcopy(invalp, *optbufp, inlen);
4025 		return (0);
4026 	}
4027 	if (inlen != 0) {
4028 		/* Allocate new buffer before free */
4029 		optbuf = kmem_alloc(inlen, KM_NOSLEEP);
4030 		if (optbuf == NULL)
4031 			return (ENOMEM);
4032 	} else {
4033 		optbuf = NULL;
4034 	}
4035 	/* Free old buffer */
4036 	if (*optlenp != 0)
4037 		kmem_free(*optbufp, *optlenp);
4038 
4039 	bcopy(invalp, optbuf, inlen);
4040 	*optbufp = optbuf;
4041 	*optlenp = inlen;
4042 	return (0);
4043 }
4044 
4045 /*
4046  * This routine retrieves the value of an ND variable in a udpparam_t
4047  * structure.  It is called through nd_getset when a user reads the
4048  * variable.
4049  */
4050 /* ARGSUSED */
4051 static int
4052 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
4053 {
4054 	udpparam_t *udppa = (udpparam_t *)cp;
4055 
4056 	(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
4057 	return (0);
4058 }
4059 
4060 /*
4061  * Walk through the param array specified registering each element with the
4062  * named dispatch (ND) handler.
4063  */
4064 static boolean_t
4065 udp_param_register(udpparam_t *udppa, int cnt)
4066 {
4067 	for (; cnt-- > 0; udppa++) {
4068 		if (udppa->udp_param_name && udppa->udp_param_name[0]) {
4069 			if (!nd_load(&udp_g_nd, udppa->udp_param_name,
4070 			    udp_param_get, udp_param_set,
4071 			    (caddr_t)udppa)) {
4072 				nd_free(&udp_g_nd);
4073 				return (B_FALSE);
4074 			}
4075 		}
4076 	}
4077 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports",
4078 	    udp_extra_priv_ports_get, NULL, NULL)) {
4079 		nd_free(&udp_g_nd);
4080 		return (B_FALSE);
4081 	}
4082 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_add",
4083 	    NULL, udp_extra_priv_ports_add, NULL)) {
4084 		nd_free(&udp_g_nd);
4085 		return (B_FALSE);
4086 	}
4087 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_del",
4088 	    NULL, udp_extra_priv_ports_del, NULL)) {
4089 		nd_free(&udp_g_nd);
4090 		return (B_FALSE);
4091 	}
4092 	if (!nd_load(&udp_g_nd, "udp_status", udp_status_report, NULL,
4093 	    NULL)) {
4094 		nd_free(&udp_g_nd);
4095 		return (B_FALSE);
4096 	}
4097 	if (!nd_load(&udp_g_nd, "udp_bind_hash", udp_bind_hash_report, NULL,
4098 	    NULL)) {
4099 		nd_free(&udp_g_nd);
4100 		return (B_FALSE);
4101 	}
4102 	return (B_TRUE);
4103 }
4104 
4105 /* This routine sets an ND variable in a udpparam_t structure. */
4106 /* ARGSUSED */
4107 static int
4108 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
4109 {
4110 	long		new_value;
4111 	udpparam_t	*udppa = (udpparam_t *)cp;
4112 
4113 	/*
4114 	 * Fail the request if the new value does not lie within the
4115 	 * required bounds.
4116 	 */
4117 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
4118 	    new_value < udppa->udp_param_min ||
4119 	    new_value > udppa->udp_param_max) {
4120 		return (EINVAL);
4121 	}
4122 
4123 	/* Set the new value */
4124 	udppa->udp_param_value = new_value;
4125 	return (0);
4126 }
4127 
4128 static void
4129 udp_input(conn_t *connp, mblk_t *mp)
4130 {
4131 	struct T_unitdata_ind	*tudi;
4132 	uchar_t			*rptr;		/* Pointer to IP header */
4133 	int			hdr_length;	/* Length of IP+UDP headers */
4134 	int			udi_size;	/* Size of T_unitdata_ind */
4135 	int			mp_len;
4136 	udp_t			*udp;
4137 	udpha_t			*udpha;
4138 	int			ipversion;
4139 	ip6_pkt_t		ipp;
4140 	ip6_t			*ip6h;
4141 	ip6i_t			*ip6i;
4142 	mblk_t			*mp1;
4143 	mblk_t			*options_mp = NULL;
4144 	in_pktinfo_t		*pinfo = NULL;
4145 	cred_t			*cr = NULL;
4146 	queue_t			*q = connp->conn_rq;
4147 	pid_t			cpid;
4148 
4149 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
4150 	    "udp_rput_start: q %p mp %p", q, mp);
4151 
4152 	udp = connp->conn_udp;
4153 	rptr = mp->b_rptr;
4154 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
4155 	ASSERT(OK_32PTR(rptr));
4156 
4157 	/*
4158 	 * IP should have prepended the options data in an M_CTL
4159 	 * Check M_CTL "type" to make sure are not here bcos of
4160 	 * a valid ICMP message
4161 	 */
4162 	if (DB_TYPE(mp) == M_CTL) {
4163 		if (MBLKL(mp) == sizeof (in_pktinfo_t) &&
4164 		    ((in_pktinfo_t *)mp->b_rptr)->in_pkt_ulp_type ==
4165 		    IN_PKTINFO) {
4166 			/*
4167 			 * IP_RECVIF or IP_RECVSLLA information has been
4168 			 * appended to the packet by IP. We need to
4169 			 * extract the mblk and adjust the rptr
4170 			 */
4171 			pinfo = (in_pktinfo_t *)mp->b_rptr;
4172 			options_mp = mp;
4173 			mp = mp->b_cont;
4174 			rptr = mp->b_rptr;
4175 			UDP_STAT(udp_in_pktinfo);
4176 		} else {
4177 			/*
4178 			 * ICMP messages.
4179 			 */
4180 			udp_icmp_error(q, mp);
4181 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4182 				"udp_rput_end: q %p (%S)", q, "m_ctl");
4183 			return;
4184 		}
4185 	}
4186 
4187 	mp_len = msgdsize(mp);
4188 	/*
4189 	 * This is the inbound data path.
4190 	 * First, we check to make sure the IP version number is correct,
4191 	 * and then pull the IP and UDP headers into the first mblk.
4192 	 * Assume IP provides aligned packets - otherwise toss.
4193 	 * Also, check if we have a complete IP header.
4194 	 */
4195 
4196 	/* Initialize regardless if ipversion is IPv4 or IPv6 */
4197 	ipp.ipp_fields = 0;
4198 
4199 	ipversion = IPH_HDR_VERSION(rptr);
4200 	switch (ipversion) {
4201 	case IPV4_VERSION:
4202 		ASSERT(MBLKL(mp) >= sizeof (ipha_t));
4203 		ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
4204 		hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4205 		if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) ||
4206 		    (udp->udp_ip_rcv_options_len)) {
4207 			/*
4208 			 * Handle IPv4 packets with options outside of the
4209 			 * main data path. Not needed for AF_INET6 sockets
4210 			 * since they don't support a getsockopt of IP_OPTIONS.
4211 			 */
4212 			if (udp->udp_family == AF_INET6)
4213 				break;
4214 			/*
4215 			 * UDP length check performed for IPv4 packets with
4216 			 * options to check whether UDP length specified in
4217 			 * the header is the same as the physical length of
4218 			 * the packet.
4219 			 */
4220 			udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4221 			if (mp_len != (ntohs(udpha->uha_length) +
4222 			    hdr_length - UDPH_SIZE)) {
4223 				goto tossit;
4224 			}
4225 			/*
4226 			 * Handle the case where the packet has IP options
4227 			 * and the IP_RECVSLLA & IP_RECVIF are set
4228 			 */
4229 			if (pinfo != NULL)
4230 				mp = options_mp;
4231 			udp_become_writer(connp, mp, udp_rput_other_wrapper,
4232 			    SQTAG_UDP_INPUT);
4233 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4234 				"udp_rput_end: q %p (%S)", q, "end");
4235 			return;
4236 		}
4237 
4238 		/* Handle IPV6_RECVHOPLIMIT. */
4239 		if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
4240 		    udp->udp_ipv6_recvpktinfo) {
4241 			if (pinfo->in_pkt_flags & IPF_RECVIF) {
4242 				ipp.ipp_fields |= IPPF_IFINDEX;
4243 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
4244 			}
4245 		}
4246 		break;
4247 	case IPV6_VERSION:
4248 		/*
4249 		 * IPv6 packets can only be received by applications
4250 		 * that are prepared to receive IPv6 addresses.
4251 		 * The IP fanout must ensure this.
4252 		 */
4253 		ASSERT(udp->udp_family == AF_INET6);
4254 
4255 		ip6h = (ip6_t *)rptr;
4256 		ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
4257 
4258 		if (ip6h->ip6_nxt != IPPROTO_UDP) {
4259 			uint8_t nexthdrp;
4260 			/* Look for ifindex information */
4261 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
4262 				ip6i = (ip6i_t *)ip6h;
4263 				if ((uchar_t *)&ip6i[1] > mp->b_wptr)
4264 					goto tossit;
4265 
4266 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
4267 					ASSERT(ip6i->ip6i_ifindex != 0);
4268 					ipp.ipp_fields |= IPPF_IFINDEX;
4269 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
4270 				}
4271 				rptr = (uchar_t *)&ip6i[1];
4272 				mp->b_rptr = rptr;
4273 				if (rptr == mp->b_wptr) {
4274 					mp1 = mp->b_cont;
4275 					freeb(mp);
4276 					mp = mp1;
4277 					rptr = mp->b_rptr;
4278 				}
4279 				if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
4280 					goto tossit;
4281 				ip6h = (ip6_t *)rptr;
4282 				mp_len = msgdsize(mp);
4283 			}
4284 			/*
4285 			 * Find any potentially interesting extension headers
4286 			 * as well as the length of the IPv6 + extension
4287 			 * headers.
4288 			 */
4289 			hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
4290 			    UDPH_SIZE;
4291 			ASSERT(nexthdrp == IPPROTO_UDP);
4292 		} else {
4293 			hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
4294 			ip6i = NULL;
4295 		}
4296 		break;
4297 	default:
4298 		ASSERT(0);
4299 	}
4300 
4301 	/*
4302 	 * IP inspected the UDP header thus all of it must be in the mblk.
4303 	 * UDP length check is performed for IPv6 packets and IPv4 packets
4304 	 * without options to check if the size of the packet as specified
4305 	 * by the header is the same as the physical size of the packet.
4306 	 */
4307 	udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4308 	if ((MBLKL(mp) < hdr_length) ||
4309 	    (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
4310 		goto tossit;
4311 	}
4312 
4313 	/* Walk past the headers. */
4314 	if (!udp->udp_rcvhdr) {
4315 		mp->b_rptr = rptr + hdr_length;
4316 		mp_len -= hdr_length;
4317 	}
4318 
4319 	/*
4320 	 * This is the inbound data path.  Packets are passed upstream as
4321 	 * T_UNITDATA_IND messages with full IP headers still attached.
4322 	 */
4323 	if (udp->udp_family == AF_INET) {
4324 		sin_t *sin;
4325 
4326 		ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4327 
4328 		/*
4329 		 * Normally only send up the address.
4330 		 * If IP_RECVDSTADDR is set we include the destination IP
4331 		 * address as an option. With IP_RECVOPTS we include all
4332 		 * the IP options. Only ip_rput_other() handles packets
4333 		 * that contain IP options.
4334 		 */
4335 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
4336 		if (udp->udp_recvdstaddr) {
4337 			udi_size += sizeof (struct T_opthdr) +
4338 			    sizeof (struct in_addr);
4339 			UDP_STAT(udp_in_recvdstaddr);
4340 		}
4341 
4342 		/*
4343 		 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
4344 		 * space accordingly
4345 		 */
4346 		if (udp->udp_recvif && (pinfo != NULL) &&
4347 		    (pinfo->in_pkt_flags & IPF_RECVIF)) {
4348 			udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
4349 			UDP_STAT(udp_in_recvif);
4350 		}
4351 
4352 		if (udp->udp_recvslla && (pinfo != NULL) &&
4353 		    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
4354 			udi_size += sizeof (struct T_opthdr) +
4355 			    sizeof (struct sockaddr_dl);
4356 			UDP_STAT(udp_in_recvslla);
4357 		}
4358 
4359 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
4360 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4361 			cpid = DB_CPID(mp);
4362 			UDP_STAT(udp_in_recvucred);
4363 		}
4364 		/*
4365 		 * If IP_RECVTTL is set allocate the appropriate sized buffer
4366 		 */
4367 		if (udp->udp_recvttl) {
4368 			udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
4369 			UDP_STAT(udp_in_recvttl);
4370 		}
4371 
4372 		ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH);
4373 
4374 		/* Allocate a message block for the T_UNITDATA_IND structure. */
4375 		mp1 = allocb(udi_size, BPRI_MED);
4376 		if (mp1 == NULL) {
4377 			freemsg(mp);
4378 			if (options_mp != NULL)
4379 				freeb(options_mp);
4380 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4381 				"udp_rput_end: q %p (%S)", q, "allocbfail");
4382 			BUMP_MIB(&udp_mib, udpInErrors);
4383 			return;
4384 		}
4385 		mp1->b_cont = mp;
4386 		mp = mp1;
4387 		mp->b_datap->db_type = M_PROTO;
4388 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4389 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4390 		tudi->PRIM_type = T_UNITDATA_IND;
4391 		tudi->SRC_length = sizeof (sin_t);
4392 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4393 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4394 		    sizeof (sin_t);
4395 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
4396 		tudi->OPT_length = udi_size;
4397 		sin = (sin_t *)&tudi[1];
4398 		sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
4399 		sin->sin_port =	udpha->uha_src_port;
4400 		sin->sin_family = udp->udp_family;
4401 		*(uint32_t *)&sin->sin_zero[0] = 0;
4402 		*(uint32_t *)&sin->sin_zero[4] = 0;
4403 
4404 		/*
4405 		 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
4406 		 * IP_RECVTTL has been set.
4407 		 */
4408 		if (udi_size != 0) {
4409 			/*
4410 			 * Copy in destination address before options to avoid
4411 			 * any padding issues.
4412 			 */
4413 			char *dstopt;
4414 
4415 			dstopt = (char *)&sin[1];
4416 			if (udp->udp_recvdstaddr) {
4417 				struct T_opthdr *toh;
4418 				ipaddr_t *dstptr;
4419 
4420 				toh = (struct T_opthdr *)dstopt;
4421 				toh->level = IPPROTO_IP;
4422 				toh->name = IP_RECVDSTADDR;
4423 				toh->len = sizeof (struct T_opthdr) +
4424 				    sizeof (ipaddr_t);
4425 				toh->status = 0;
4426 				dstopt += sizeof (struct T_opthdr);
4427 				dstptr = (ipaddr_t *)dstopt;
4428 				*dstptr = ((ipha_t *)rptr)->ipha_dst;
4429 				dstopt += sizeof (ipaddr_t);
4430 				udi_size -= toh->len;
4431 			}
4432 
4433 			if (udp->udp_recvslla && (pinfo != NULL) &&
4434 			    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
4435 
4436 				struct T_opthdr *toh;
4437 				struct sockaddr_dl	*dstptr;
4438 
4439 				toh = (struct T_opthdr *)dstopt;
4440 				toh->level = IPPROTO_IP;
4441 				toh->name = IP_RECVSLLA;
4442 				toh->len = sizeof (struct T_opthdr) +
4443 					sizeof (struct sockaddr_dl);
4444 				toh->status = 0;
4445 				dstopt += sizeof (struct T_opthdr);
4446 				dstptr = (struct sockaddr_dl *)dstopt;
4447 				bcopy(&pinfo->in_pkt_slla, dstptr,
4448 				    sizeof (struct sockaddr_dl));
4449 				dstopt += sizeof (struct sockaddr_dl);
4450 				udi_size -= toh->len;
4451 			}
4452 
4453 			if (udp->udp_recvif && (pinfo != NULL) &&
4454 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
4455 
4456 				struct T_opthdr *toh;
4457 				uint_t		*dstptr;
4458 
4459 				toh = (struct T_opthdr *)dstopt;
4460 				toh->level = IPPROTO_IP;
4461 				toh->name = IP_RECVIF;
4462 				toh->len = sizeof (struct T_opthdr) +
4463 					sizeof (uint_t);
4464 				toh->status = 0;
4465 				dstopt += sizeof (struct T_opthdr);
4466 				dstptr = (uint_t *)dstopt;
4467 				*dstptr = pinfo->in_pkt_ifindex;
4468 				dstopt += sizeof (uint_t);
4469 				udi_size -= toh->len;
4470 			}
4471 
4472 			if (cr != NULL) {
4473 				struct T_opthdr *toh;
4474 
4475 				toh = (struct T_opthdr *)dstopt;
4476 				toh->level = SOL_SOCKET;
4477 				toh->name = SCM_UCRED;
4478 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4479 				toh->status = 0;
4480 				(void) cred2ucred(cr, cpid, &toh[1]);
4481 				dstopt += toh->len;
4482 				udi_size -= toh->len;
4483 			}
4484 
4485 			if (udp->udp_recvttl) {
4486 				struct	T_opthdr *toh;
4487 				uint8_t	*dstptr;
4488 
4489 				toh = (struct T_opthdr *)dstopt;
4490 				toh->level = IPPROTO_IP;
4491 				toh->name = IP_RECVTTL;
4492 				toh->len = sizeof (struct T_opthdr) +
4493 				    sizeof (uint8_t);
4494 				toh->status = 0;
4495 				dstopt += sizeof (struct T_opthdr);
4496 				dstptr = (uint8_t *)dstopt;
4497 				*dstptr = ((ipha_t *)rptr)->ipha_ttl;
4498 				dstopt += sizeof (uint8_t);
4499 				udi_size -= toh->len;
4500 			}
4501 
4502 			/* Consumed all of allocated space */
4503 			ASSERT(udi_size == 0);
4504 		}
4505 	} else {
4506 		sin6_t *sin6;
4507 
4508 		/*
4509 		 * Handle both IPv4 and IPv6 packets for IPv6 sockets.
4510 		 *
4511 		 * Normally we only send up the address. If receiving of any
4512 		 * optional receive side information is enabled, we also send
4513 		 * that up as options.
4514 		 * [ Only udp_rput_other() handles packets that contain IP
4515 		 * options so code to account for does not appear immediately
4516 		 * below but elsewhere ]
4517 		 */
4518 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
4519 
4520 		if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
4521 		    IPPF_RTHDR|IPPF_IFINDEX)) {
4522 			if (udp->udp_ipv6_recvhopopts &&
4523 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4524 				udi_size += sizeof (struct T_opthdr) +
4525 				    ipp.ipp_hopoptslen;
4526 				UDP_STAT(udp_in_recvhopopts);
4527 			}
4528 			if ((udp->udp_ipv6_recvdstopts ||
4529 				udp->udp_old_ipv6_recvdstopts) &&
4530 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4531 				udi_size += sizeof (struct T_opthdr) +
4532 				    ipp.ipp_dstoptslen;
4533 				UDP_STAT(udp_in_recvdstopts);
4534 			}
4535 			if (((udp->udp_ipv6_recvdstopts &&
4536 			    udp->udp_ipv6_recvrthdr &&
4537 			    (ipp.ipp_fields & IPPF_RTHDR)) ||
4538 			    udp->udp_ipv6_recvrthdrdstopts) &&
4539 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4540 				udi_size += sizeof (struct T_opthdr) +
4541 				    ipp.ipp_rtdstoptslen;
4542 				UDP_STAT(udp_in_recvrtdstopts);
4543 			}
4544 			if (udp->udp_ipv6_recvrthdr &&
4545 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4546 				udi_size += sizeof (struct T_opthdr) +
4547 				    ipp.ipp_rthdrlen;
4548 				UDP_STAT(udp_in_recvrthdr);
4549 			}
4550 			if (udp->udp_ipv6_recvpktinfo &&
4551 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4552 				udi_size += sizeof (struct T_opthdr) +
4553 				    sizeof (struct in6_pktinfo);
4554 				UDP_STAT(udp_in_recvpktinfo);
4555 			}
4556 
4557 		}
4558 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
4559 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4560 			cpid = DB_CPID(mp);
4561 			UDP_STAT(udp_in_recvucred);
4562 		}
4563 
4564 		if (udp->udp_ipv6_recvhoplimit) {
4565 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4566 			UDP_STAT(udp_in_recvhoplimit);
4567 		}
4568 
4569 		if (udp->udp_ipv6_recvtclass) {
4570 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4571 			UDP_STAT(udp_in_recvtclass);
4572 		}
4573 
4574 		mp1 = allocb(udi_size, BPRI_MED);
4575 		if (mp1 == NULL) {
4576 			freemsg(mp);
4577 			if (options_mp != NULL)
4578 				freeb(options_mp);
4579 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4580 				"udp_rput_end: q %p (%S)", q, "allocbfail");
4581 			BUMP_MIB(&udp_mib, udpInErrors);
4582 			return;
4583 		}
4584 		mp1->b_cont = mp;
4585 		mp = mp1;
4586 		mp->b_datap->db_type = M_PROTO;
4587 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4588 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4589 		tudi->PRIM_type = T_UNITDATA_IND;
4590 		tudi->SRC_length = sizeof (sin6_t);
4591 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4592 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4593 		    sizeof (sin6_t);
4594 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
4595 		tudi->OPT_length = udi_size;
4596 		sin6 = (sin6_t *)&tudi[1];
4597 		if (ipversion == IPV4_VERSION) {
4598 			in6_addr_t v6dst;
4599 
4600 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
4601 			    &sin6->sin6_addr);
4602 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
4603 			    &v6dst);
4604 			sin6->sin6_flowinfo = 0;
4605 			sin6->sin6_scope_id = 0;
4606 			sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
4607 			    connp->conn_zoneid);
4608 		} else {
4609 			sin6->sin6_addr = ip6h->ip6_src;
4610 			/* No sin6_flowinfo per API */
4611 			sin6->sin6_flowinfo = 0;
4612 			/* For link-scope source pass up scope id */
4613 			if ((ipp.ipp_fields & IPPF_IFINDEX) &&
4614 			    IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4615 				sin6->sin6_scope_id = ipp.ipp_ifindex;
4616 			else
4617 				sin6->sin6_scope_id = 0;
4618 			sin6->__sin6_src_id = ip_srcid_find_addr(
4619 			    &ip6h->ip6_dst, connp->conn_zoneid);
4620 		}
4621 		sin6->sin6_port = udpha->uha_src_port;
4622 		sin6->sin6_family = udp->udp_family;
4623 
4624 		if (udi_size != 0) {
4625 			uchar_t *dstopt;
4626 
4627 			dstopt = (uchar_t *)&sin6[1];
4628 			if (udp->udp_ipv6_recvpktinfo &&
4629 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4630 				struct T_opthdr *toh;
4631 				struct in6_pktinfo *pkti;
4632 
4633 				toh = (struct T_opthdr *)dstopt;
4634 				toh->level = IPPROTO_IPV6;
4635 				toh->name = IPV6_PKTINFO;
4636 				toh->len = sizeof (struct T_opthdr) +
4637 				    sizeof (*pkti);
4638 				toh->status = 0;
4639 				dstopt += sizeof (struct T_opthdr);
4640 				pkti = (struct in6_pktinfo *)dstopt;
4641 				if (ipversion == IPV6_VERSION)
4642 					pkti->ipi6_addr = ip6h->ip6_dst;
4643 				else
4644 					IN6_IPADDR_TO_V4MAPPED(
4645 						((ipha_t *)rptr)->ipha_dst,
4646 						    &pkti->ipi6_addr);
4647 				pkti->ipi6_ifindex = ipp.ipp_ifindex;
4648 				dstopt += sizeof (*pkti);
4649 				udi_size -= toh->len;
4650 			}
4651 			if (udp->udp_ipv6_recvhoplimit) {
4652 				struct T_opthdr *toh;
4653 
4654 				toh = (struct T_opthdr *)dstopt;
4655 				toh->level = IPPROTO_IPV6;
4656 				toh->name = IPV6_HOPLIMIT;
4657 				toh->len = sizeof (struct T_opthdr) +
4658 				    sizeof (uint_t);
4659 				toh->status = 0;
4660 				dstopt += sizeof (struct T_opthdr);
4661 				if (ipversion == IPV6_VERSION)
4662 					*(uint_t *)dstopt = ip6h->ip6_hops;
4663 				else
4664 					*(uint_t *)dstopt =
4665 					    ((ipha_t *)rptr)->ipha_ttl;
4666 				dstopt += sizeof (uint_t);
4667 				udi_size -= toh->len;
4668 			}
4669 			if (udp->udp_ipv6_recvtclass) {
4670 				struct T_opthdr *toh;
4671 
4672 				toh = (struct T_opthdr *)dstopt;
4673 				toh->level = IPPROTO_IPV6;
4674 				toh->name = IPV6_TCLASS;
4675 				toh->len = sizeof (struct T_opthdr) +
4676 				    sizeof (uint_t);
4677 				toh->status = 0;
4678 				dstopt += sizeof (struct T_opthdr);
4679 				if (ipversion == IPV6_VERSION) {
4680 					*(uint_t *)dstopt =
4681 					IPV6_FLOW_TCLASS(ip6h->ip6_flow);
4682 				} else {
4683 					ipha_t *ipha = (ipha_t *)rptr;
4684 					*(uint_t *)dstopt =
4685 					    ipha->ipha_type_of_service;
4686 				}
4687 				dstopt += sizeof (uint_t);
4688 				udi_size -= toh->len;
4689 			}
4690 			if (udp->udp_ipv6_recvhopopts &&
4691 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4692 				struct T_opthdr *toh;
4693 
4694 				toh = (struct T_opthdr *)dstopt;
4695 				toh->level = IPPROTO_IPV6;
4696 				toh->name = IPV6_HOPOPTS;
4697 				toh->len = sizeof (struct T_opthdr) +
4698 				    ipp.ipp_hopoptslen;
4699 				toh->status = 0;
4700 				dstopt += sizeof (struct T_opthdr);
4701 				bcopy(ipp.ipp_hopopts, dstopt,
4702 				    ipp.ipp_hopoptslen);
4703 				dstopt += ipp.ipp_hopoptslen;
4704 				udi_size -= toh->len;
4705 			}
4706 			if (udp->udp_ipv6_recvdstopts &&
4707 			    udp->udp_ipv6_recvrthdr &&
4708 			    (ipp.ipp_fields & IPPF_RTHDR) &&
4709 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4710 				struct T_opthdr *toh;
4711 
4712 				toh = (struct T_opthdr *)dstopt;
4713 				toh->level = IPPROTO_IPV6;
4714 				toh->name = IPV6_DSTOPTS;
4715 				toh->len = sizeof (struct T_opthdr) +
4716 				    ipp.ipp_rtdstoptslen;
4717 				toh->status = 0;
4718 				dstopt += sizeof (struct T_opthdr);
4719 				bcopy(ipp.ipp_rtdstopts, dstopt,
4720 				    ipp.ipp_rtdstoptslen);
4721 				dstopt += ipp.ipp_rtdstoptslen;
4722 				udi_size -= toh->len;
4723 			}
4724 			if (udp->udp_ipv6_recvrthdr &&
4725 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4726 				struct T_opthdr *toh;
4727 
4728 				toh = (struct T_opthdr *)dstopt;
4729 				toh->level = IPPROTO_IPV6;
4730 				toh->name = IPV6_RTHDR;
4731 				toh->len = sizeof (struct T_opthdr) +
4732 				    ipp.ipp_rthdrlen;
4733 				toh->status = 0;
4734 				dstopt += sizeof (struct T_opthdr);
4735 				bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
4736 				dstopt += ipp.ipp_rthdrlen;
4737 				udi_size -= toh->len;
4738 			}
4739 			if (udp->udp_ipv6_recvdstopts &&
4740 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4741 				struct T_opthdr *toh;
4742 
4743 				toh = (struct T_opthdr *)dstopt;
4744 				toh->level = IPPROTO_IPV6;
4745 				toh->name = IPV6_DSTOPTS;
4746 				toh->len = sizeof (struct T_opthdr) +
4747 				    ipp.ipp_dstoptslen;
4748 				toh->status = 0;
4749 				dstopt += sizeof (struct T_opthdr);
4750 				bcopy(ipp.ipp_dstopts, dstopt,
4751 				    ipp.ipp_dstoptslen);
4752 				dstopt += ipp.ipp_dstoptslen;
4753 				udi_size -= toh->len;
4754 			}
4755 
4756 			if (cr != NULL) {
4757 				struct T_opthdr *toh;
4758 
4759 				toh = (struct T_opthdr *)dstopt;
4760 				toh->level = SOL_SOCKET;
4761 				toh->name = SCM_UCRED;
4762 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4763 				toh->status = 0;
4764 				(void) cred2ucred(cr, cpid, &toh[1]);
4765 				dstopt += toh->len;
4766 				udi_size -= toh->len;
4767 			}
4768 			/* Consumed all of allocated space */
4769 			ASSERT(udi_size == 0);
4770 		}
4771 #undef	sin6
4772 		/* No IP_RECVDSTADDR for IPv6. */
4773 	}
4774 
4775 	BUMP_MIB(&udp_mib, udpInDatagrams);
4776 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4777 		"udp_rput_end: q %p (%S)", q, "end");
4778 	if (options_mp != NULL)
4779 		freeb(options_mp);
4780 
4781 	if (udp->udp_direct_sockfs) {
4782 		/*
4783 		 * There is nothing above us except for the stream head;
4784 		 * use the read-side synchronous stream interface in
4785 		 * order to reduce the time spent in interrupt thread.
4786 		 */
4787 		ASSERT(udp->udp_issocket);
4788 		udp_rcv_enqueue(UDP_RD(q), udp, mp, mp_len);
4789 	} else {
4790 		/*
4791 		 * Use regular STREAMS interface to pass data upstream
4792 		 * if this is not a socket endpoint, or if we have
4793 		 * switched over to the slow mode due to sockmod being
4794 		 * popped or a module being pushed on top of us.
4795 		 */
4796 		putnext(UDP_RD(q), mp);
4797 	}
4798 	return;
4799 
4800 tossit:
4801 	freemsg(mp);
4802 	if (options_mp != NULL)
4803 		freeb(options_mp);
4804 	BUMP_MIB(&udp_mib, udpInErrors);
4805 }
4806 
4807 void
4808 udp_conn_recv(conn_t *connp, mblk_t *mp)
4809 {
4810 	_UDP_ENTER(connp, mp, udp_input_wrapper, SQTAG_UDP_FANOUT);
4811 }
4812 
4813 /* ARGSUSED */
4814 static void
4815 udp_input_wrapper(void *arg, mblk_t *mp, void *arg2)
4816 {
4817 	udp_input((conn_t *)arg, mp);
4818 	_UDP_EXIT((conn_t *)arg);
4819 }
4820 
4821 /*
4822  * Process non-M_DATA messages as well as M_DATA messages that requires
4823  * modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options.
4824  */
4825 static void
4826 udp_rput_other(queue_t *q, mblk_t *mp)
4827 {
4828 	struct T_unitdata_ind	*tudi;
4829 	mblk_t			*mp1;
4830 	uchar_t			*rptr;
4831 	uchar_t			*new_rptr;
4832 	int			hdr_length;
4833 	int			udi_size;	/* Size of T_unitdata_ind */
4834 	int			opt_len;	/* Length of IP options */
4835 	sin_t			*sin;
4836 	struct T_error_ack	*tea;
4837 	mblk_t			*options_mp = NULL;
4838 	in_pktinfo_t		*pinfo;
4839 	boolean_t		recv_on = B_FALSE;
4840 	cred_t			*cr = NULL;
4841 	udp_t			*udp = Q_TO_UDP(q);
4842 	pid_t			cpid;
4843 
4844 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
4845 	    "udp_rput_other: q %p mp %p", q, mp);
4846 
4847 	ASSERT(OK_32PTR(mp->b_rptr));
4848 	rptr = mp->b_rptr;
4849 
4850 	switch (mp->b_datap->db_type) {
4851 	case M_CTL:
4852 		/*
4853 		 * We are here only if IP_RECVSLLA and/or IP_RECVIF are set
4854 		 */
4855 		recv_on = B_TRUE;
4856 		options_mp = mp;
4857 		pinfo = (in_pktinfo_t *)options_mp->b_rptr;
4858 
4859 		/*
4860 		 * The actual data is in mp->b_cont
4861 		 */
4862 		mp = mp->b_cont;
4863 		ASSERT(OK_32PTR(mp->b_rptr));
4864 		rptr = mp->b_rptr;
4865 		break;
4866 	case M_DATA:
4867 		/*
4868 		 * M_DATA messages contain IPv4 datagrams.  They are handled
4869 		 * after this switch.
4870 		 */
4871 		break;
4872 	case M_PROTO:
4873 	case M_PCPROTO:
4874 		/* M_PROTO messages contain some type of TPI message. */
4875 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
4876 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
4877 			freemsg(mp);
4878 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4879 			    "udp_rput_other_end: q %p (%S)", q, "protoshort");
4880 			return;
4881 		}
4882 		tea = (struct T_error_ack *)rptr;
4883 
4884 		switch (tea->PRIM_type) {
4885 		case T_ERROR_ACK:
4886 			switch (tea->ERROR_prim) {
4887 			case O_T_BIND_REQ:
4888 			case T_BIND_REQ: {
4889 				/*
4890 				 * If our O_T_BIND_REQ/T_BIND_REQ fails,
4891 				 * clear out the associated port and source
4892 				 * address before passing the message
4893 				 * upstream. If this was caused by a T_CONN_REQ
4894 				 * revert back to bound state.
4895 				 */
4896 				udp_fanout_t	*udpf;
4897 
4898 				udpf = &udp_bind_fanout[
4899 				    UDP_BIND_HASH(udp->udp_port)];
4900 				mutex_enter(&udpf->uf_lock);
4901 				if (udp->udp_state == TS_DATA_XFER) {
4902 					/* Connect failed */
4903 					tea->ERROR_prim = T_CONN_REQ;
4904 					/* Revert back to the bound source */
4905 					udp->udp_v6src = udp->udp_bound_v6src;
4906 					udp->udp_state = TS_IDLE;
4907 					mutex_exit(&udpf->uf_lock);
4908 					if (udp->udp_family == AF_INET6)
4909 						(void) udp_build_hdrs(q, udp);
4910 					break;
4911 				}
4912 
4913 				if (udp->udp_discon_pending) {
4914 					tea->ERROR_prim = T_DISCON_REQ;
4915 					udp->udp_discon_pending = 0;
4916 				}
4917 				V6_SET_ZERO(udp->udp_v6src);
4918 				V6_SET_ZERO(udp->udp_bound_v6src);
4919 				udp->udp_state = TS_UNBND;
4920 				udp_bind_hash_remove(udp, B_TRUE);
4921 				udp->udp_port = 0;
4922 				mutex_exit(&udpf->uf_lock);
4923 				if (udp->udp_family == AF_INET6)
4924 					(void) udp_build_hdrs(q, udp);
4925 				break;
4926 			}
4927 			default:
4928 				break;
4929 			}
4930 			break;
4931 		case T_BIND_ACK:
4932 			udp_rput_bind_ack(q, mp);
4933 			return;
4934 
4935 		case T_OPTMGMT_ACK:
4936 		case T_OK_ACK:
4937 			break;
4938 		default:
4939 			freemsg(mp);
4940 			return;
4941 		}
4942 		putnext(UDP_RD(q), mp);
4943 		return;
4944 	}
4945 
4946 	/*
4947 	 * This is the inbound data path.
4948 	 * First, we make sure the data contains both IP and UDP headers.
4949 	 *
4950 	 * This handle IPv4 packets for only AF_INET sockets.
4951 	 * AF_INET6 sockets can never access udp_ip_rcv_options thus there
4952 	 * is no need saving the options.
4953 	 */
4954 	ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4955 	hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4956 	if (mp->b_wptr - rptr < hdr_length) {
4957 		if (!pullupmsg(mp, hdr_length)) {
4958 			freemsg(mp);
4959 			if (options_mp != NULL)
4960 				freeb(options_mp);
4961 			BUMP_MIB(&udp_mib, udpInErrors);
4962 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4963 			    "udp_rput_other_end: q %p (%S)", q, "hdrshort");
4964 			BUMP_MIB(&udp_mib, udpInErrors);
4965 			return;
4966 		}
4967 		rptr = mp->b_rptr;
4968 	}
4969 	/* Walk past the headers. */
4970 	new_rptr = rptr + hdr_length;
4971 	if (!udp->udp_rcvhdr)
4972 		mp->b_rptr = new_rptr;
4973 
4974 	/* Save the options if any */
4975 	opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
4976 	if (opt_len > 0) {
4977 		if (opt_len > udp->udp_ip_rcv_options_len) {
4978 			if (udp->udp_ip_rcv_options_len)
4979 				mi_free((char *)udp->udp_ip_rcv_options);
4980 			udp->udp_ip_rcv_options_len = 0;
4981 			udp->udp_ip_rcv_options =
4982 			    (uchar_t *)mi_alloc(opt_len, BPRI_HI);
4983 			if (udp->udp_ip_rcv_options)
4984 				udp->udp_ip_rcv_options_len = opt_len;
4985 		}
4986 		if (udp->udp_ip_rcv_options_len) {
4987 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH,
4988 			    udp->udp_ip_rcv_options, opt_len);
4989 			/* Adjust length if we are resusing the space */
4990 			udp->udp_ip_rcv_options_len = opt_len;
4991 		}
4992 	} else if (udp->udp_ip_rcv_options_len) {
4993 		mi_free((char *)udp->udp_ip_rcv_options);
4994 		udp->udp_ip_rcv_options = NULL;
4995 		udp->udp_ip_rcv_options_len = 0;
4996 	}
4997 
4998 	/*
4999 	 * Normally only send up the address.
5000 	 * If IP_RECVDSTADDR is set we include the destination IP
5001 	 * address as an option. With IP_RECVOPTS we include all
5002 	 * the IP options.
5003 	 */
5004 	udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5005 	if (udp->udp_recvdstaddr) {
5006 		udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr);
5007 		UDP_STAT(udp_in_recvdstaddr);
5008 	}
5009 	if (udp->udp_recvopts && opt_len > 0) {
5010 		udi_size += sizeof (struct T_opthdr) + opt_len;
5011 		UDP_STAT(udp_in_recvopts);
5012 	}
5013 
5014 	/*
5015 	 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
5016 	 * space accordingly
5017 	 */
5018 	if (udp->udp_recvif && recv_on &&
5019 	    (pinfo->in_pkt_flags & IPF_RECVIF)) {
5020 		udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
5021 		UDP_STAT(udp_in_recvif);
5022 	}
5023 
5024 	if (udp->udp_recvslla && recv_on &&
5025 	    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
5026 		udi_size += sizeof (struct T_opthdr) +
5027 		    sizeof (struct sockaddr_dl);
5028 		UDP_STAT(udp_in_recvslla);
5029 	}
5030 
5031 	if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
5032 		udi_size += sizeof (struct T_opthdr) + ucredsize;
5033 		cpid = DB_CPID(mp);
5034 		UDP_STAT(udp_in_recvucred);
5035 	}
5036 	/*
5037 	 * If IP_RECVTTL is set allocate the appropriate sized buffer
5038 	 */
5039 	if (udp->udp_recvttl) {
5040 		udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
5041 		UDP_STAT(udp_in_recvttl);
5042 	}
5043 
5044 	/* Allocate a message block for the T_UNITDATA_IND structure. */
5045 	mp1 = allocb(udi_size, BPRI_MED);
5046 	if (mp1 == NULL) {
5047 		freemsg(mp);
5048 		if (options_mp != NULL)
5049 			freeb(options_mp);
5050 		TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5051 			"udp_rput_other_end: q %p (%S)", q, "allocbfail");
5052 		BUMP_MIB(&udp_mib, udpInErrors);
5053 		return;
5054 	}
5055 	mp1->b_cont = mp;
5056 	mp = mp1;
5057 	mp->b_datap->db_type = M_PROTO;
5058 	tudi = (struct T_unitdata_ind *)mp->b_rptr;
5059 	mp->b_wptr = (uchar_t *)tudi + udi_size;
5060 	tudi->PRIM_type = T_UNITDATA_IND;
5061 	tudi->SRC_length = sizeof (sin_t);
5062 	tudi->SRC_offset = sizeof (struct T_unitdata_ind);
5063 	tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5064 	udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
5065 	tudi->OPT_length = udi_size;
5066 
5067 	sin = (sin_t *)&tudi[1];
5068 	sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
5069 	sin->sin_port =	((in_port_t *)
5070 	    new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))];
5071 	sin->sin_family = AF_INET;
5072 	*(uint32_t *)&sin->sin_zero[0] = 0;
5073 	*(uint32_t *)&sin->sin_zero[4] = 0;
5074 
5075 	/*
5076 	 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
5077 	 * IP_RECVTTL has been set.
5078 	 */
5079 	if (udi_size != 0) {
5080 		/*
5081 		 * Copy in destination address before options to avoid any
5082 		 * padding issues.
5083 		 */
5084 		char *dstopt;
5085 
5086 		dstopt = (char *)&sin[1];
5087 		if (udp->udp_recvdstaddr) {
5088 			struct T_opthdr *toh;
5089 			ipaddr_t *dstptr;
5090 
5091 			toh = (struct T_opthdr *)dstopt;
5092 			toh->level = IPPROTO_IP;
5093 			toh->name = IP_RECVDSTADDR;
5094 			toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t);
5095 			toh->status = 0;
5096 			dstopt += sizeof (struct T_opthdr);
5097 			dstptr = (ipaddr_t *)dstopt;
5098 			*dstptr = (((ipaddr_t *)rptr)[4]);
5099 			dstopt += sizeof (ipaddr_t);
5100 			udi_size -= toh->len;
5101 		}
5102 		if (udp->udp_recvopts && udi_size != 0) {
5103 			struct T_opthdr *toh;
5104 
5105 			toh = (struct T_opthdr *)dstopt;
5106 			toh->level = IPPROTO_IP;
5107 			toh->name = IP_RECVOPTS;
5108 			toh->len = sizeof (struct T_opthdr) + opt_len;
5109 			toh->status = 0;
5110 			dstopt += sizeof (struct T_opthdr);
5111 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len);
5112 			dstopt += opt_len;
5113 			udi_size -= toh->len;
5114 		}
5115 
5116 		if (udp->udp_recvslla && recv_on &&
5117 		    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
5118 
5119 			struct T_opthdr *toh;
5120 			struct sockaddr_dl	*dstptr;
5121 
5122 			toh = (struct T_opthdr *)dstopt;
5123 			toh->level = IPPROTO_IP;
5124 			toh->name = IP_RECVSLLA;
5125 			toh->len = sizeof (struct T_opthdr) +
5126 			    sizeof (struct sockaddr_dl);
5127 			toh->status = 0;
5128 			dstopt += sizeof (struct T_opthdr);
5129 			dstptr = (struct sockaddr_dl *)dstopt;
5130 			bcopy(&pinfo->in_pkt_slla, dstptr,
5131 			    sizeof (struct sockaddr_dl));
5132 			dstopt += sizeof (struct sockaddr_dl);
5133 			udi_size -= toh->len;
5134 		}
5135 
5136 		if (udp->udp_recvif && recv_on &&
5137 		    (pinfo->in_pkt_flags & IPF_RECVIF)) {
5138 
5139 			struct T_opthdr *toh;
5140 			uint_t		*dstptr;
5141 
5142 			toh = (struct T_opthdr *)dstopt;
5143 			toh->level = IPPROTO_IP;
5144 			toh->name = IP_RECVIF;
5145 			toh->len = sizeof (struct T_opthdr) +
5146 			    sizeof (uint_t);
5147 			toh->status = 0;
5148 			dstopt += sizeof (struct T_opthdr);
5149 			dstptr = (uint_t *)dstopt;
5150 			*dstptr = pinfo->in_pkt_ifindex;
5151 			dstopt += sizeof (uint_t);
5152 			udi_size -= toh->len;
5153 		}
5154 
5155 		if (cr != NULL) {
5156 			struct T_opthdr *toh;
5157 
5158 			toh = (struct T_opthdr *)dstopt;
5159 			toh->level = SOL_SOCKET;
5160 			toh->name = SCM_UCRED;
5161 			toh->len = sizeof (struct T_opthdr) + ucredsize;
5162 			toh->status = 0;
5163 			(void) cred2ucred(cr, cpid, &toh[1]);
5164 			dstopt += toh->len;
5165 			udi_size -= toh->len;
5166 		}
5167 
5168 		if (udp->udp_recvttl) {
5169 			struct	T_opthdr *toh;
5170 			uint8_t	*dstptr;
5171 
5172 			toh = (struct T_opthdr *)dstopt;
5173 			toh->level = IPPROTO_IP;
5174 			toh->name = IP_RECVTTL;
5175 			toh->len = sizeof (struct T_opthdr) +
5176 			    sizeof (uint8_t);
5177 			toh->status = 0;
5178 			dstopt += sizeof (struct T_opthdr);
5179 			dstptr = (uint8_t *)dstopt;
5180 			*dstptr = ((ipha_t *)rptr)->ipha_ttl;
5181 			dstopt += sizeof (uint8_t);
5182 			udi_size -= toh->len;
5183 		}
5184 
5185 		ASSERT(udi_size == 0);	/* "Consumed" all of allocated space */
5186 	}
5187 	BUMP_MIB(&udp_mib, udpInDatagrams);
5188 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5189 	    "udp_rput_other_end: q %p (%S)", q, "end");
5190 	if (options_mp != NULL)
5191 		freeb(options_mp);
5192 
5193 	if (udp->udp_direct_sockfs) {
5194 		/*
5195 		 * There is nothing above us except for the stream head;
5196 		 * use the read-side synchronous stream interface in
5197 		 * order to reduce the time spent in interrupt thread.
5198 		 */
5199 		ASSERT(udp->udp_issocket);
5200 		udp_rcv_enqueue(UDP_RD(q), udp, mp, msgdsize(mp));
5201 	} else {
5202 		/*
5203 		 * Use regular STREAMS interface to pass data upstream
5204 		 * if this is not a socket endpoint, or if we have
5205 		 * switched over to the slow mode due to sockmod being
5206 		 * popped or a module being pushed on top of us.
5207 		 */
5208 		putnext(UDP_RD(q), mp);
5209 	}
5210 }
5211 
5212 /* ARGSUSED */
5213 static void
5214 udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
5215 {
5216 	conn_t *connp = arg;
5217 
5218 	udp_rput_other(connp->conn_rq, mp);
5219 	udp_exit(connp);
5220 }
5221 
5222 /*
5223  * Process a T_BIND_ACK
5224  */
5225 static void
5226 udp_rput_bind_ack(queue_t *q, mblk_t *mp)
5227 {
5228 	udp_t	*udp = Q_TO_UDP(q);
5229 	mblk_t	*mp1;
5230 	ire_t	*ire;
5231 	struct T_bind_ack *tba;
5232 	uchar_t *addrp;
5233 	ipa_conn_t	*ac;
5234 	ipa6_conn_t	*ac6;
5235 
5236 	if (udp->udp_discon_pending)
5237 		udp->udp_discon_pending = 0;
5238 
5239 	/*
5240 	 * If a broadcast/multicast address was bound set
5241 	 * the source address to 0.
5242 	 * This ensures no datagrams with broadcast address
5243 	 * as source address are emitted (which would violate
5244 	 * RFC1122 - Hosts requirements)
5245 	 *
5246 	 * Note that when connecting the returned IRE is
5247 	 * for the destination address and we only perform
5248 	 * the broadcast check for the source address (it
5249 	 * is OK to connect to a broadcast/multicast address.)
5250 	 */
5251 	mp1 = mp->b_cont;
5252 	if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
5253 		ire = (ire_t *)mp1->b_rptr;
5254 
5255 		/*
5256 		 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
5257 		 * local address.
5258 		 */
5259 		if (ire->ire_type == IRE_BROADCAST &&
5260 		    udp->udp_state != TS_DATA_XFER) {
5261 			/* This was just a local bind to a broadcast addr */
5262 			V6_SET_ZERO(udp->udp_v6src);
5263 			if (udp->udp_family == AF_INET6)
5264 				(void) udp_build_hdrs(q, udp);
5265 		} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
5266 			/*
5267 			 * Local address not yet set - pick it from the
5268 			 * T_bind_ack
5269 			 */
5270 			tba = (struct T_bind_ack *)mp->b_rptr;
5271 			addrp = &mp->b_rptr[tba->ADDR_offset];
5272 			switch (udp->udp_family) {
5273 			case AF_INET:
5274 				if (tba->ADDR_length == sizeof (ipa_conn_t)) {
5275 					ac = (ipa_conn_t *)addrp;
5276 				} else {
5277 					ASSERT(tba->ADDR_length ==
5278 					    sizeof (ipa_conn_x_t));
5279 					ac = &((ipa_conn_x_t *)addrp)->acx_conn;
5280 				}
5281 				IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
5282 				    &udp->udp_v6src);
5283 				break;
5284 			case AF_INET6:
5285 				if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
5286 					ac6 = (ipa6_conn_t *)addrp;
5287 				} else {
5288 					ASSERT(tba->ADDR_length ==
5289 					    sizeof (ipa6_conn_x_t));
5290 					ac6 = &((ipa6_conn_x_t *)
5291 					    addrp)->ac6x_conn;
5292 				}
5293 				udp->udp_v6src = ac6->ac6_laddr;
5294 				(void) udp_build_hdrs(q, udp);
5295 				break;
5296 			}
5297 		}
5298 		mp1 = mp1->b_cont;
5299 	}
5300 	/*
5301 	 * Look for one or more appended ACK message added by
5302 	 * udp_connect or udp_disconnect.
5303 	 * If none found just send up the T_BIND_ACK.
5304 	 * udp_connect has appended a T_OK_ACK and a T_CONN_CON.
5305 	 * udp_disconnect has appended a T_OK_ACK.
5306 	 */
5307 	if (mp1 != NULL) {
5308 		if (mp->b_cont == mp1)
5309 			mp->b_cont = NULL;
5310 		else {
5311 			ASSERT(mp->b_cont->b_cont == mp1);
5312 			mp->b_cont->b_cont = NULL;
5313 		}
5314 		freemsg(mp);
5315 		mp = mp1;
5316 		while (mp != NULL) {
5317 			mp1 = mp->b_cont;
5318 			mp->b_cont = NULL;
5319 			putnext(UDP_RD(q), mp);
5320 			mp = mp1;
5321 		}
5322 		return;
5323 	}
5324 	freemsg(mp->b_cont);
5325 	mp->b_cont = NULL;
5326 	putnext(UDP_RD(q), mp);
5327 }
5328 
5329 /*
5330  * return SNMP stuff in buffer in mpdata
5331  */
5332 int
5333 udp_snmp_get(queue_t *q, mblk_t *mpctl)
5334 {
5335 	mblk_t			*mpdata;
5336 	mblk_t			*mp_conn_ctl;
5337 	mblk_t			*mp6_conn_ctl;
5338 	mblk_t			*mp_conn_data;
5339 	mblk_t			*mp6_conn_data;
5340 	mblk_t			*mp_conn_tail = NULL;
5341 	mblk_t			*mp6_conn_tail = NULL;
5342 	struct opthdr		*optp;
5343 	mib2_udpEntry_t		ude;
5344 	mib2_udp6Entry_t	ude6;
5345 	int			state;
5346 	zoneid_t		zoneid;
5347 	int			i;
5348 	connf_t			*connfp;
5349 	conn_t			*connp = Q_TO_CONN(q);
5350 	udp_t			*udp = connp->conn_udp;
5351 
5352 	if (mpctl == NULL ||
5353 	    (mpdata = mpctl->b_cont) == NULL ||
5354 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
5355 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL) {
5356 		freemsg(mp_conn_ctl);
5357 		return (0);
5358 	}
5359 
5360 	mp_conn_data = mp_conn_ctl->b_cont;
5361 	mp6_conn_data = mp6_conn_ctl->b_cont;
5362 
5363 	zoneid = connp->conn_zoneid;
5364 
5365 	/* fixed length structure for IPv4 and IPv6 counters */
5366 	SET_MIB(udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
5367 	SET_MIB(udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
5368 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
5369 	optp->level = MIB2_UDP;
5370 	optp->name = 0;
5371 	(void) snmp_append_data(mpdata, (char *)&udp_mib, sizeof (udp_mib));
5372 	optp->len = msgdsize(mpdata);
5373 	qreply(q, mpctl);
5374 
5375 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5376 		connfp = &ipcl_globalhash_fanout[i];
5377 		connp = NULL;
5378 
5379 		while ((connp = ipcl_get_next_conn(connfp, connp,
5380 		    IPCL_UDP))) {
5381 			udp = connp->conn_udp;
5382 			if (zoneid != connp->conn_zoneid)
5383 				continue;
5384 
5385 			/*
5386 			 * Note that the port numbers are sent in
5387 			 * host byte order
5388 			 */
5389 
5390 			if (udp->udp_state == TS_UNBND)
5391 				state = MIB2_UDP_unbound;
5392 			else if (udp->udp_state == TS_IDLE)
5393 				state = MIB2_UDP_idle;
5394 			else if (udp->udp_state == TS_DATA_XFER)
5395 				state = MIB2_UDP_connected;
5396 			else
5397 				state = MIB2_UDP_unknown;
5398 
5399 			/*
5400 			 * Create an IPv4 table entry for IPv4 entries and also
5401 			 * any IPv6 entries which are bound to in6addr_any
5402 			 * (i.e. anything a IPv4 peer could connect/send to).
5403 			 */
5404 			if (udp->udp_ipversion == IPV4_VERSION ||
5405 			    (udp->udp_state <= TS_IDLE &&
5406 			    IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
5407 				ude.udpEntryInfo.ue_state = state;
5408 				/*
5409 				 * If in6addr_any this will set it to
5410 				 * INADDR_ANY
5411 				 */
5412 				ude.udpLocalAddress =
5413 				    V4_PART_OF_V6(udp->udp_v6src);
5414 				ude.udpLocalPort = ntohs(udp->udp_port);
5415 				if (udp->udp_state == TS_DATA_XFER) {
5416 					/*
5417 					 * Can potentially get here for
5418 					 * v6 socket if another process
5419 					 * (say, ping) has just done a
5420 					 * sendto(), changing the state
5421 					 * from the TS_IDLE above to
5422 					 * TS_DATA_XFER by the time we hit
5423 					 * this part of the code.
5424 					 */
5425 					ude.udpEntryInfo.ue_RemoteAddress =
5426 					    V4_PART_OF_V6(udp->udp_v6dst);
5427 					ude.udpEntryInfo.ue_RemotePort =
5428 					    ntohs(udp->udp_dstport);
5429 				} else {
5430 					ude.udpEntryInfo.ue_RemoteAddress = 0;
5431 					ude.udpEntryInfo.ue_RemotePort = 0;
5432 				}
5433 				(void) snmp_append_data2(mp_conn_data,
5434 				    &mp_conn_tail, (char *)&ude, sizeof (ude));
5435 			}
5436 			if (udp->udp_ipversion == IPV6_VERSION) {
5437 				ude6.udp6EntryInfo.ue_state  = state;
5438 				ude6.udp6LocalAddress = udp->udp_v6src;
5439 				ude6.udp6LocalPort = ntohs(udp->udp_port);
5440 				ude6.udp6IfIndex = udp->udp_bound_if;
5441 				if (udp->udp_state == TS_DATA_XFER) {
5442 					ude6.udp6EntryInfo.ue_RemoteAddress =
5443 					    udp->udp_v6dst;
5444 					ude6.udp6EntryInfo.ue_RemotePort =
5445 					    ntohs(udp->udp_dstport);
5446 				} else {
5447 					ude6.udp6EntryInfo.ue_RemoteAddress =
5448 					    sin6_null.sin6_addr;
5449 					ude6.udp6EntryInfo.ue_RemotePort = 0;
5450 				}
5451 				(void) snmp_append_data2(mp6_conn_data,
5452 				    &mp6_conn_tail, (char *)&ude6,
5453 				    sizeof (ude6));
5454 			}
5455 		}
5456 	}
5457 
5458 	/* IPv4 UDP endpoints */
5459 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
5460 	    sizeof (struct T_optmgmt_ack)];
5461 	optp->level = MIB2_UDP;
5462 	optp->name = MIB2_UDP_ENTRY;
5463 	optp->len = msgdsize(mp_conn_data);
5464 	qreply(q, mp_conn_ctl);
5465 
5466 	/* IPv6 UDP endpoints */
5467 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
5468 	    sizeof (struct T_optmgmt_ack)];
5469 	optp->level = MIB2_UDP6;
5470 	optp->name = MIB2_UDP6_ENTRY;
5471 	optp->len = msgdsize(mp6_conn_data);
5472 	qreply(q, mp6_conn_ctl);
5473 
5474 	return (1);
5475 }
5476 
5477 /*
5478  * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
5479  * NOTE: Per MIB-II, UDP has no writable data.
5480  * TODO:  If this ever actually tries to set anything, it needs to be
5481  * to do the appropriate locking.
5482  */
5483 /* ARGSUSED */
5484 int
5485 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
5486     uchar_t *ptr, int len)
5487 {
5488 	switch (level) {
5489 	case MIB2_UDP:
5490 		return (0);
5491 	default:
5492 		return (1);
5493 	}
5494 }
5495 
5496 static void
5497 udp_report_item(mblk_t *mp, udp_t *udp)
5498 {
5499 	char *state;
5500 	char addrbuf1[INET6_ADDRSTRLEN];
5501 	char addrbuf2[INET6_ADDRSTRLEN];
5502 	uint_t print_len, buf_len;
5503 
5504 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
5505 	ASSERT(buf_len >= 0);
5506 	if (buf_len == 0)
5507 		return;
5508 
5509 	if (udp->udp_state == TS_UNBND)
5510 		state = "UNBOUND";
5511 	else if (udp->udp_state == TS_IDLE)
5512 		state = "IDLE";
5513 	else if (udp->udp_state == TS_DATA_XFER)
5514 		state = "CONNECTED";
5515 	else
5516 		state = "UnkState";
5517 	print_len = snprintf((char *)mp->b_wptr, buf_len,
5518 	    MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
5519 	    (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
5520 	    inet_ntop(AF_INET6, &udp->udp_v6src,
5521 		addrbuf1, sizeof (addrbuf1)),
5522 	    inet_ntop(AF_INET6, &udp->udp_v6dst,
5523 		addrbuf2, sizeof (addrbuf2)),
5524 	    ntohs(udp->udp_dstport), state);
5525 	if (print_len < buf_len) {
5526 		mp->b_wptr += print_len;
5527 	} else {
5528 		mp->b_wptr += buf_len;
5529 	}
5530 }
5531 
5532 /* Report for ndd "udp_status" */
5533 /* ARGSUSED */
5534 static int
5535 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5536 {
5537 	zoneid_t zoneid;
5538 	connf_t	*connfp;
5539 	conn_t	*connp = Q_TO_CONN(q);
5540 	udp_t	*udp = connp->conn_udp;
5541 	int	i;
5542 
5543 	/*
5544 	 * Because of the ndd constraint, at most we can have 64K buffer
5545 	 * to put in all UDP info.  So to be more efficient, just
5546 	 * allocate a 64K buffer here, assuming we need that large buffer.
5547 	 * This may be a problem as any user can read udp_status.  Therefore
5548 	 * we limit the rate of doing this using udp_ndd_get_info_interval.
5549 	 * This should be OK as normal users should not do this too often.
5550 	 */
5551 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
5552 		if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
5553 		    drv_usectohz(udp_ndd_get_info_interval * 1000)) {
5554 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
5555 			return (0);
5556 		}
5557 	}
5558 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
5559 		/* The following may work even if we cannot get a large buf. */
5560 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
5561 		return (0);
5562 	}
5563 	(void) mi_mpprintf(mp,
5564 	    "UDP     " MI_COL_HDRPAD_STR
5565 	/*   12345678[89ABCDEF] */
5566 	    " zone lport src addr        dest addr       port  state");
5567 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
5568 
5569 	zoneid = connp->conn_zoneid;
5570 
5571 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5572 		connfp = &ipcl_globalhash_fanout[i];
5573 		connp = NULL;
5574 
5575 		while ((connp = ipcl_get_next_conn(connfp, connp,
5576 		    IPCL_UDP))) {
5577 			udp = connp->conn_udp;
5578 			if (zoneid != GLOBAL_ZONEID &&
5579 			    zoneid != connp->conn_zoneid)
5580 				continue;
5581 
5582 			udp_report_item(mp->b_cont, udp);
5583 		}
5584 	}
5585 	udp_last_ndd_get_info_time = ddi_get_lbolt();
5586 	return (0);
5587 }
5588 
5589 /*
5590  * This routine creates a T_UDERROR_IND message and passes it upstream.
5591  * The address and options are copied from the T_UNITDATA_REQ message
5592  * passed in mp.  This message is freed.
5593  */
5594 static void
5595 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
5596     t_scalar_t err)
5597 {
5598 	struct T_unitdata_req *tudr;
5599 	mblk_t	*mp1;
5600 	uchar_t	*optaddr;
5601 	t_scalar_t optlen;
5602 
5603 	if (DB_TYPE(mp) == M_DATA) {
5604 		ASSERT(destaddr != NULL && destlen != 0);
5605 		optaddr = NULL;
5606 		optlen = 0;
5607 	} else {
5608 		if ((mp->b_wptr < mp->b_rptr) ||
5609 		    (MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
5610 			goto done;
5611 		}
5612 		tudr = (struct T_unitdata_req *)mp->b_rptr;
5613 		destaddr = mp->b_rptr + tudr->DEST_offset;
5614 		if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
5615 		    destaddr + tudr->DEST_length < mp->b_rptr ||
5616 		    destaddr + tudr->DEST_length > mp->b_wptr) {
5617 			goto done;
5618 		}
5619 		optaddr = mp->b_rptr + tudr->OPT_offset;
5620 		if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
5621 		    optaddr + tudr->OPT_length < mp->b_rptr ||
5622 		    optaddr + tudr->OPT_length > mp->b_wptr) {
5623 			goto done;
5624 		}
5625 		destlen = tudr->DEST_length;
5626 		optlen = tudr->OPT_length;
5627 	}
5628 
5629 	mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
5630 	    (char *)optaddr, optlen, err);
5631 	if (mp1 != NULL)
5632 		putnext(UDP_RD(q), mp1);
5633 
5634 done:
5635 	freemsg(mp);
5636 }
5637 
5638 /*
5639  * This routine removes a port number association from a stream.  It
5640  * is called by udp_wput to handle T_UNBIND_REQ messages.
5641  */
5642 static void
5643 udp_unbind(queue_t *q, mblk_t *mp)
5644 {
5645 	udp_t *udp = Q_TO_UDP(q);
5646 
5647 	/* If a bind has not been done, we can't unbind. */
5648 	if (udp->udp_state == TS_UNBND) {
5649 		udp_err_ack(q, mp, TOUTSTATE, 0);
5650 		return;
5651 	}
5652 	if (cl_inet_unbind != NULL) {
5653 		/*
5654 		 * Running in cluster mode - register unbind information
5655 		 */
5656 		if (udp->udp_ipversion == IPV4_VERSION) {
5657 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
5658 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
5659 			    (in_port_t)udp->udp_port);
5660 		} else {
5661 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
5662 			    (uint8_t *)&(udp->udp_v6src),
5663 			    (in_port_t)udp->udp_port);
5664 		}
5665 	}
5666 
5667 	udp_bind_hash_remove(udp, B_FALSE);
5668 	V6_SET_ZERO(udp->udp_v6src);
5669 	V6_SET_ZERO(udp->udp_bound_v6src);
5670 	udp->udp_port = 0;
5671 	udp->udp_state = TS_UNBND;
5672 
5673 	if (udp->udp_family == AF_INET6) {
5674 		int error;
5675 
5676 		/* Rebuild the header template */
5677 		error = udp_build_hdrs(q, udp);
5678 		if (error != 0) {
5679 			udp_err_ack(q, mp, TSYSERR, error);
5680 			return;
5681 		}
5682 	}
5683 	/*
5684 	 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
5685 	 * and therefore ip_unbind must never return NULL.
5686 	 */
5687 	mp = ip_unbind(q, mp);
5688 	ASSERT(mp != NULL);
5689 	putnext(UDP_RD(q), mp);
5690 }
5691 
5692 /*
5693  * Don't let port fall into the privileged range.
5694  * Since the extra priviledged ports can be arbitrary we also
5695  * ensure that we exclude those from consideration.
5696  * udp_g_epriv_ports is not sorted thus we loop over it until
5697  * there are no changes.
5698  */
5699 static in_port_t
5700 udp_update_next_port(in_port_t port, boolean_t random)
5701 {
5702 	int i;
5703 
5704 	if (random && udp_random_anon_port != 0) {
5705 		(void) random_get_pseudo_bytes((uint8_t *)&port,
5706 		    sizeof (in_port_t));
5707 		/*
5708 		 * Unless changed by a sys admin, the smallest anon port
5709 		 * is 32768 and the largest anon port is 65535.  It is
5710 		 * very likely (50%) for the random port to be smaller
5711 		 * than the smallest anon port.  When that happens,
5712 		 * add port % (anon port range) to the smallest anon
5713 		 * port to get the random port.  It should fall into the
5714 		 * valid anon port range.
5715 		 */
5716 		if (port < udp_smallest_anon_port) {
5717 			port = udp_smallest_anon_port +
5718 			    port % (udp_largest_anon_port -
5719 			    udp_smallest_anon_port);
5720 		}
5721 	}
5722 
5723 retry:
5724 	if (port < udp_smallest_anon_port || port > udp_largest_anon_port)
5725 		port = udp_smallest_anon_port;
5726 
5727 	if (port < udp_smallest_nonpriv_port)
5728 		port = udp_smallest_nonpriv_port;
5729 
5730 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
5731 		if (port == udp_g_epriv_ports[i]) {
5732 			port++;
5733 			/*
5734 			 * Make sure that the port is in the
5735 			 * valid range.
5736 			 */
5737 			goto retry;
5738 		}
5739 	}
5740 	return (port);
5741 }
5742 
5743 static mblk_t *
5744 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
5745     uint_t srcid, int *error)
5746 {
5747 	udp_t	*udp = connp->conn_udp;
5748 	queue_t	*q = connp->conn_wq;
5749 	mblk_t	*mp1 = (DB_TYPE(mp) == M_DATA ? mp : mp->b_cont);
5750 	mblk_t	*mp2;
5751 	ipha_t	*ipha;
5752 	int	ip_hdr_length;
5753 	uint32_t ip_len;
5754 	udpha_t	*udpha;
5755 
5756 	*error = 0;
5757 
5758 	/* mp1 points to the M_DATA mblk carrying the packet */
5759 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
5760 
5761 	/* Add an IP header */
5762 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
5763 	    udp->udp_ip_snd_options_len;
5764 	ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
5765 	if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
5766 	    !OK_32PTR(ipha)) {
5767 		mp2 = allocb(ip_hdr_length + udp_wroff_extra, BPRI_LO);
5768 		if (mp2 == NULL) {
5769 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5770 			    "udp_wput_end: q %p (%S)", q, "allocbfail2");
5771 			*error = ENOMEM;
5772 			goto done;
5773 		}
5774 		mp2->b_wptr = DB_LIM(mp2);
5775 		mp2->b_cont = mp1;
5776 		mp1 = mp2;
5777 		if (DB_TYPE(mp) != M_DATA)
5778 			mp->b_cont = mp1;
5779 		else
5780 			mp = mp1;
5781 
5782 		ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
5783 	}
5784 	ip_hdr_length -= UDPH_SIZE;
5785 #ifdef	_BIG_ENDIAN
5786 	/* Set version, header length, and tos */
5787 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5788 	    ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
5789 		udp->udp_type_of_service);
5790 	/* Set ttl and protocol */
5791 	*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
5792 #else
5793 	/* Set version, header length, and tos */
5794 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5795 		((udp->udp_type_of_service << 8) |
5796 		    ((IP_VERSION << 4) | (ip_hdr_length>>2)));
5797 	/* Set ttl and protocol */
5798 	*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
5799 #endif
5800 	/*
5801 	 * Copy our address into the packet.  If this is zero,
5802 	 * first look at __sin6_src_id for a hint. If we leave the source
5803 	 * as INADDR_ANY then ip will fill in the real source address.
5804 	 */
5805 	IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
5806 	if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
5807 		in6_addr_t v6src;
5808 
5809 		ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid);
5810 		IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
5811 	}
5812 
5813 	ipha->ipha_fragment_offset_and_flags = 0;
5814 	ipha->ipha_ident = 0;
5815 
5816 	mp1->b_rptr = (uchar_t *)ipha;
5817 
5818 	ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
5819 	    (uintptr_t)UINT_MAX);
5820 
5821 	/* Determine length of packet */
5822 	ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
5823 	if ((mp2 = mp1->b_cont) != NULL) {
5824 		do {
5825 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
5826 			ip_len += (uint32_t)MBLKL(mp2);
5827 		} while ((mp2 = mp2->b_cont) != NULL);
5828 	}
5829 	/*
5830 	 * If the size of the packet is greater than the maximum allowed by
5831 	 * ip, return an error. Passing this down could cause panics because
5832 	 * the size will have wrapped and be inconsistent with the msg size.
5833 	 */
5834 	if (ip_len > IP_MAXPACKET) {
5835 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5836 		    "udp_wput_end: q %p (%S)", q, "IP length exceeded");
5837 		*error = EMSGSIZE;
5838 		goto done;
5839 	}
5840 	ipha->ipha_length = htons((uint16_t)ip_len);
5841 	ip_len -= ip_hdr_length;
5842 	ip_len = htons((uint16_t)ip_len);
5843 	udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
5844 
5845 	/*
5846 	 * Copy in the destination address
5847 	 */
5848 	if (v4dst == INADDR_ANY)
5849 		ipha->ipha_dst = htonl(INADDR_LOOPBACK);
5850 	else
5851 		ipha->ipha_dst = v4dst;
5852 
5853 	/*
5854 	 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
5855 	 */
5856 	if (CLASSD(v4dst))
5857 		ipha->ipha_ttl = udp->udp_multicast_ttl;
5858 
5859 	udpha->uha_dst_port = port;
5860 	udpha->uha_src_port = udp->udp_port;
5861 
5862 	if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) {
5863 		uint32_t	cksum;
5864 
5865 		bcopy(udp->udp_ip_snd_options, &ipha[1],
5866 		    udp->udp_ip_snd_options_len);
5867 		/*
5868 		 * Massage source route putting first source route in ipha_dst.
5869 		 * Ignore the destination in T_unitdata_req.
5870 		 * Create a checksum adjustment for a source route, if any.
5871 		 */
5872 		cksum = ip_massage_options(ipha);
5873 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5874 		cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
5875 		    (ipha->ipha_dst & 0xFFFF);
5876 		if ((int)cksum < 0)
5877 			cksum--;
5878 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5879 		/*
5880 		 * IP does the checksum if uha_checksum is non-zero,
5881 		 * We make it easy for IP to include our pseudo header
5882 		 * by putting our length in uha_checksum.
5883 		 */
5884 		cksum += ip_len;
5885 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5886 		/* There might be a carry. */
5887 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5888 #ifdef _LITTLE_ENDIAN
5889 		if (udp_do_checksum)
5890 			ip_len = (cksum << 16) | ip_len;
5891 #else
5892 		if (udp_do_checksum)
5893 			ip_len = (ip_len << 16) | cksum;
5894 		else
5895 			ip_len <<= 16;
5896 #endif
5897 	} else {
5898 		/*
5899 		 * IP does the checksum if uha_checksum is non-zero,
5900 		 * We make it easy for IP to include our pseudo header
5901 		 * by putting our length in uha_checksum.
5902 		 */
5903 		if (udp_do_checksum)
5904 			ip_len |= (ip_len << 16);
5905 #ifndef _LITTLE_ENDIAN
5906 		else
5907 			ip_len <<= 16;
5908 #endif
5909 	}
5910 	/* Set UDP length and checksum */
5911 	*((uint32_t *)&udpha->uha_length) = ip_len;
5912 
5913 	if (DB_TYPE(mp) != M_DATA) {
5914 		ASSERT(mp != mp1);
5915 		freeb(mp);
5916 	}
5917 
5918 	/* mp has been consumed and we'll return success */
5919 	ASSERT(*error == 0);
5920 	mp = NULL;
5921 
5922 	/* We're done.  Pass the packet to ip. */
5923 	BUMP_MIB(&udp_mib, udpOutDatagrams);
5924 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5925 		"udp_wput_end: q %p (%S)", q, "end");
5926 
5927 	if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
5928 	    CONN_OUTBOUND_POLICY_PRESENT(connp) ||
5929 	    connp->conn_dontroute || connp->conn_xmit_if_ill != NULL ||
5930 	    connp->conn_nofailover_ill != NULL ||
5931 	    connp->conn_outgoing_ill != NULL ||
5932 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
5933 	    IPP_ENABLED(IPP_LOCAL_OUT) || ip_g_mrouter != NULL) {
5934 		UDP_STAT(udp_ip_send);
5935 		ip_output(connp, mp1, connp->conn_wq, IP_WPUT);
5936 	} else {
5937 		udp_send_data(udp, connp->conn_wq, mp1, ipha);
5938 	}
5939 
5940 done:
5941 	if (*error != 0) {
5942 		ASSERT(mp != NULL);
5943 		BUMP_MIB(&udp_mib, udpOutErrors);
5944 	}
5945 	return (mp);
5946 }
5947 
5948 static void
5949 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
5950 {
5951 	conn_t	*connp = udp->udp_connp;
5952 	ipaddr_t src, dst;
5953 	ill_t	*ill;
5954 	ire_t	*ire;
5955 	ipif_t	*ipif = NULL;
5956 	mblk_t	*ire_fp_mp;
5957 	uint_t	ire_fp_mp_len;
5958 	uint16_t *up;
5959 	uint32_t cksum, hcksum_txflags;
5960 	queue_t	*dev_q;
5961 	boolean_t retry_caching;
5962 
5963 	dst = ipha->ipha_dst;
5964 	src = ipha->ipha_src;
5965 	ASSERT(ipha->ipha_ident == 0);
5966 
5967 	if (CLASSD(dst)) {
5968 		int err;
5969 
5970 		ipif = conn_get_held_ipif(connp,
5971 		    &connp->conn_multicast_ipif, &err);
5972 
5973 		if (ipif == NULL || ipif->ipif_isv6 ||
5974 		    (ipif->ipif_ill->ill_phyint->phyint_flags &
5975 		    PHYI_LOOPBACK)) {
5976 			if (ipif != NULL)
5977 				ipif_refrele(ipif);
5978 			UDP_STAT(udp_ip_send);
5979 			ip_output(connp, mp, q, IP_WPUT);
5980 			return;
5981 		}
5982 	}
5983 
5984 	retry_caching = B_FALSE;
5985 	mutex_enter(&connp->conn_lock);
5986 	ire = connp->conn_ire_cache;
5987 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
5988 
5989 	if (ire == NULL || ire->ire_addr != dst ||
5990 	    (ire->ire_marks & IRE_MARK_CONDEMNED)) {
5991 		retry_caching = B_TRUE;
5992 	} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
5993 		ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
5994 
5995 		ASSERT(ipif != NULL);
5996 		if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
5997 		    stq_ill->ill_group != ipif->ipif_ill->ill_group))
5998 			retry_caching = B_TRUE;
5999 	}
6000 
6001 	if (!retry_caching) {
6002 		ASSERT(ire != NULL);
6003 		IRE_REFHOLD(ire);
6004 		mutex_exit(&connp->conn_lock);
6005 	} else {
6006 		boolean_t cached = B_FALSE;
6007 
6008 		connp->conn_ire_cache = NULL;
6009 		mutex_exit(&connp->conn_lock);
6010 
6011 		/* Release the old ire */
6012 		if (ire != NULL) {
6013 			IRE_REFRELE_NOTR(ire);
6014 			ire = NULL;
6015 		}
6016 
6017 		if (CLASSD(dst)) {
6018 			ASSERT(ipif != NULL);
6019 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
6020 			    connp->conn_zoneid, MATCH_IRE_ILL_GROUP);
6021 		} else {
6022 			ASSERT(ipif == NULL);
6023 			ire = ire_cache_lookup(dst, connp->conn_zoneid);
6024 		}
6025 
6026 		if (ire == NULL) {
6027 			if (ipif != NULL)
6028 				ipif_refrele(ipif);
6029 			UDP_STAT(udp_ire_null);
6030 			ip_output(connp, mp, q, IP_WPUT);
6031 			return;
6032 		}
6033 		IRE_REFHOLD_NOTR(ire);
6034 
6035 		mutex_enter(&connp->conn_lock);
6036 		if (!(connp->conn_state_flags & CONN_CLOSING) &&
6037 		    connp->conn_ire_cache == NULL) {
6038 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
6039 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
6040 				connp->conn_ire_cache = ire;
6041 				cached = B_TRUE;
6042 			}
6043 			rw_exit(&ire->ire_bucket->irb_lock);
6044 		}
6045 		mutex_exit(&connp->conn_lock);
6046 
6047 		/*
6048 		 * We can continue to use the ire but since it was not
6049 		 * cached, we should drop the extra reference.
6050 		 */
6051 		if (!cached)
6052 			IRE_REFRELE_NOTR(ire);
6053 	}
6054 	ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
6055 	ASSERT(!CLASSD(dst) || ipif != NULL);
6056 
6057 	if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
6058 	    (ire->ire_flags & RTF_MULTIRT) || ire->ire_stq == NULL ||
6059 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
6060 	    (ire_fp_mp = ire->ire_fp_mp) == NULL ||
6061 	    (connp->conn_nexthop_set) ||
6062 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
6063 		if (ipif != NULL)
6064 			ipif_refrele(ipif);
6065 		UDP_STAT(udp_ip_ire_send);
6066 		IRE_REFRELE(ire);
6067 		ip_output(connp, mp, q, IP_WPUT);
6068 		return;
6069 	}
6070 
6071 	BUMP_MIB(&ip_mib, ipOutRequests);
6072 
6073 	ill = ire_to_ill(ire);
6074 	ASSERT(ill != NULL);
6075 
6076 	dev_q = ire->ire_stq->q_next;
6077 	ASSERT(dev_q != NULL);
6078 	/*
6079 	 * If the service thread is already running, or if the driver
6080 	 * queue is currently flow-controlled, queue this packet.
6081 	 */
6082 	if ((q->q_first != NULL || connp->conn_draining) ||
6083 	    ((dev_q->q_next || dev_q->q_first) && !canput(dev_q))) {
6084 		if (ip_output_queue) {
6085 			(void) putq(q, mp);
6086 		} else {
6087 			BUMP_MIB(&ip_mib, ipOutDiscards);
6088 			freemsg(mp);
6089 		}
6090 		if (ipif != NULL)
6091 			ipif_refrele(ipif);
6092 		IRE_REFRELE(ire);
6093 		return;
6094 	}
6095 
6096 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
6097 #ifndef _BIG_ENDIAN
6098 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
6099 #endif
6100 
6101 	if (src == INADDR_ANY && !connp->conn_unspec_src) {
6102 		if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
6103 			src = ipha->ipha_src = ipif->ipif_src_addr;
6104 		else
6105 			src = ipha->ipha_src = ire->ire_src_addr;
6106 	}
6107 
6108 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
6109 		ASSERT(ill->ill_hcksum_capab != NULL);
6110 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
6111 	} else {
6112 		hcksum_txflags = 0;
6113 	}
6114 
6115 	/* pseudo-header checksum (do it in parts for IP header checksum) */
6116 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
6117 
6118 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
6119 	up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
6120 	if (*up != 0) {
6121 		IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
6122 		    mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
6123 		    ntohs(ipha->ipha_length), cksum);
6124 
6125 		/* Software checksum? */
6126 		if (DB_CKSUMFLAGS(mp) == 0) {
6127 			UDP_STAT(udp_out_sw_cksum);
6128 			UDP_STAT_UPDATE(udp_out_sw_cksum_bytes,
6129 			    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
6130 		}
6131 	}
6132 
6133 	ipha->ipha_fragment_offset_and_flags |=
6134 	    (uint32_t)htons(ire->ire_frag_flag);
6135 
6136 	/* Calculate IP header checksum if hardware isn't capable */
6137 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
6138 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
6139 		    ((uint16_t *)ipha)[4]);
6140 	}
6141 
6142 	if (CLASSD(dst)) {
6143 		ilm_t *ilm;
6144 
6145 		ILM_WALKER_HOLD(ill);
6146 		ilm = ilm_lookup_ill(ill, dst, ALL_ZONES);
6147 		ILM_WALKER_RELE(ill);
6148 		if (ilm != NULL) {
6149 			ip_multicast_loopback(q, ill, mp,
6150 			    connp->conn_multicast_loop ? 0 :
6151 			    IP_FF_NO_MCAST_LOOP, connp->conn_zoneid);
6152 		}
6153 
6154 		/* If multicast TTL is 0 then we are done */
6155 		if (ipha->ipha_ttl == 0) {
6156 			if (ipif != NULL)
6157 				ipif_refrele(ipif);
6158 			freemsg(mp);
6159 			IRE_REFRELE(ire);
6160 			return;
6161 		}
6162 	}
6163 
6164 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
6165 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
6166 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
6167 
6168 	UPDATE_OB_PKT_COUNT(ire);
6169 	ire->ire_last_used_time = lbolt;
6170 
6171 	if (ILL_DLS_CAPABLE(ill)) {
6172 		/*
6173 		 * Send the packet directly to DLD, where it may be queued
6174 		 * depending on the availability of transmit resources at
6175 		 * the media layer.
6176 		 */
6177 		IP_DLS_ILL_TX(ill, mp);
6178 	} else {
6179 		putnext(ire->ire_stq, mp);
6180 	}
6181 
6182 	if (ipif != NULL)
6183 		ipif_refrele(ipif);
6184 	IRE_REFRELE(ire);
6185 }
6186 
6187 /*
6188  * This routine handles all messages passed downstream.  It either
6189  * consumes the message or passes it downstream; it never queues a
6190  * a message.
6191  */
6192 static void
6193 udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
6194 {
6195 	sin6_t		*sin6;
6196 	sin_t		*sin;
6197 	ipaddr_t	v4dst;
6198 	uint16_t	port;
6199 	uint_t		srcid;
6200 	queue_t		*q = connp->conn_wq;
6201 	udp_t		*udp = connp->conn_udp;
6202 	t_scalar_t	optlen;
6203 	int		error = 0;
6204 	struct sockaddr_storage ss;
6205 
6206 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
6207 	    "udp_wput_start: connp %p mp %p", connp, mp);
6208 
6209 	/*
6210 	 * We directly handle several cases here: T_UNITDATA_REQ message
6211 	 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for both
6212 	 * connected and non-connected socket.  The latter carries the
6213 	 * address structure along when this routine gets called.
6214 	 */
6215 	switch (DB_TYPE(mp)) {
6216 	case M_DATA:
6217 		if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
6218 			if (!udp->udp_direct_sockfs ||
6219 			    addr == NULL || addrlen == 0) {
6220 				/* Not connected; address is required */
6221 				BUMP_MIB(&udp_mib, udpOutErrors);
6222 				UDP_STAT(udp_out_err_notconn);
6223 				freemsg(mp);
6224 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6225 				    "udp_wput_end: connp %p (%S)", connp,
6226 				    "not-connected; address required");
6227 				return;
6228 			}
6229 			ASSERT(udp->udp_issocket);
6230 			UDP_DBGSTAT(udp_data_notconn);
6231 			/* Not connected; do some more checks below */
6232 			optlen = 0;
6233 			break;
6234 		}
6235 		/* M_DATA for connected socket */
6236 		UDP_DBGSTAT(udp_data_conn);
6237 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
6238 
6239 		/* Initialize addr and addrlen as if they're passed in */
6240 		if (udp->udp_family == AF_INET) {
6241 			sin = (sin_t *)&ss;
6242 			sin->sin_family = AF_INET;
6243 			sin->sin_port = udp->udp_dstport;
6244 			sin->sin_addr.s_addr = v4dst;
6245 			addr = (struct sockaddr *)sin;
6246 			addrlen = sizeof (*sin);
6247 		} else {
6248 			sin6 = (sin6_t *)&ss;
6249 			sin6->sin6_family = AF_INET6;
6250 			sin6->sin6_port = udp->udp_dstport;
6251 			sin6->sin6_flowinfo = udp->udp_flowinfo;
6252 			sin6->sin6_addr = udp->udp_v6dst;
6253 			sin6->sin6_scope_id = 0;
6254 			sin6->__sin6_src_id = 0;
6255 			addr = (struct sockaddr *)sin6;
6256 			addrlen = sizeof (*sin6);
6257 		}
6258 
6259 		if (udp->udp_family == AF_INET ||
6260 		    IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst)) {
6261 			/*
6262 			 * Handle both AF_INET and AF_INET6; the latter
6263 			 * for IPV4 mapped destination addresses.  Note
6264 			 * here that both addr and addrlen point to the
6265 			 * corresponding struct depending on the address
6266 			 * family of the socket.
6267 			 */
6268 			mp = udp_output_v4(connp, mp, v4dst,
6269 			    udp->udp_dstport, 0, &error);
6270 		} else {
6271 			mp = udp_output_v6(connp, mp, sin6, 0, &error);
6272 		}
6273 		if (error != 0) {
6274 			ASSERT(addr != NULL && addrlen != 0);
6275 			goto ud_error;
6276 		}
6277 		return;
6278 	case M_PROTO:
6279 	case M_PCPROTO: {
6280 		struct T_unitdata_req *tudr;
6281 
6282 		ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
6283 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6284 
6285 		/* Handle valid T_UNITDATA_REQ here */
6286 		if (MBLKL(mp) >= sizeof (*tudr) &&
6287 		    ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
6288 			if (mp->b_cont == NULL) {
6289 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6290 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6291 				error = EPROTO;
6292 				goto ud_error;
6293 			}
6294 
6295 			if (!MBLKIN(mp, 0, tudr->DEST_offset +
6296 			    tudr->DEST_length)) {
6297 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6298 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6299 				error = EADDRNOTAVAIL;
6300 				goto ud_error;
6301 			}
6302 			/*
6303 			 * If a port has not been bound to the stream, fail.
6304 			 * This is not a problem when sockfs is directly
6305 			 * above us, because it will ensure that the socket
6306 			 * is first bound before allowing data to be sent.
6307 			 */
6308 			if (udp->udp_state == TS_UNBND) {
6309 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6310 				    "udp_wput_end: q %p (%S)", q, "outstate");
6311 				error = EPROTO;
6312 				goto ud_error;
6313 			}
6314 			addr = (struct sockaddr *)
6315 			    &mp->b_rptr[tudr->DEST_offset];
6316 			addrlen = tudr->DEST_length;
6317 			optlen = tudr->OPT_length;
6318 			if (optlen != 0)
6319 				UDP_STAT(udp_out_opt);
6320 			break;
6321 		}
6322 		/* FALLTHRU */
6323 	}
6324 	default:
6325 		udp_become_writer(connp, mp, udp_wput_other_wrapper,
6326 		    SQTAG_UDP_OUTPUT);
6327 		return;
6328 	}
6329 	ASSERT(addr != NULL);
6330 
6331 	switch (udp->udp_family) {
6332 	case AF_INET6:
6333 		sin6 = (sin6_t *)addr;
6334 		if (!OK_32PTR((char *)sin6) || addrlen != sizeof (sin6_t) ||
6335 		    sin6->sin6_family != AF_INET6) {
6336 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6337 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6338 			error = EADDRNOTAVAIL;
6339 			goto ud_error;
6340 		}
6341 
6342 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6343 			/*
6344 			 * Destination is a non-IPv4-compatible IPv6 address.
6345 			 * Send out an IPv6 format packet.
6346 			 */
6347 			mp = udp_output_v6(connp, mp, sin6, optlen, &error);
6348 			if (error != 0)
6349 				goto ud_error;
6350 
6351 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6352 			    "udp_wput_end: q %p (%S)", q, "udp_output_v6");
6353 			return;
6354 		}
6355 		/*
6356 		 * If the local address is not zero or a mapped address
6357 		 * return an error.  It would be possible to send an IPv4
6358 		 * packet but the response would never make it back to the
6359 		 * application since it is bound to a non-mapped address.
6360 		 */
6361 		if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
6362 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
6363 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6364 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6365 			error = EADDRNOTAVAIL;
6366 			goto ud_error;
6367 		}
6368 		/* Send IPv4 packet without modifying udp_ipversion */
6369 		/* Extract port and ipaddr */
6370 		port = sin6->sin6_port;
6371 		IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
6372 		srcid = sin6->__sin6_src_id;
6373 		break;
6374 
6375 	case AF_INET:
6376 		sin = (sin_t *)addr;
6377 		if (!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t) ||
6378 		    sin->sin_family != AF_INET) {
6379 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6380 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6381 			error = EADDRNOTAVAIL;
6382 			goto ud_error;
6383 		}
6384 		/* Extract port and ipaddr */
6385 		port = sin->sin_port;
6386 		v4dst = sin->sin_addr.s_addr;
6387 		srcid = 0;
6388 		break;
6389 	}
6390 
6391 	/*
6392 	 * If options passed in, feed it for verification and handling
6393 	 */
6394 	if (optlen != 0) {
6395 		ASSERT(DB_TYPE(mp) != M_DATA);
6396 		if (udp_unitdata_opt_process(q, mp, &error, NULL) < 0) {
6397 			/* failure */
6398 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6399 			    "udp_wput_end: q %p (%S)", q,
6400 			    "udp_unitdata_opt_process");
6401 			goto ud_error;
6402 		}
6403 		/*
6404 		 * Note: success in processing options.
6405 		 * mp option buffer represented by
6406 		 * OPT_length/offset now potentially modified
6407 		 * and contain option setting results
6408 		 */
6409 	}
6410 	ASSERT(error == 0);
6411 	mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error);
6412 	if (error != 0) {
6413 ud_error:
6414 		UDP_STAT(udp_out_err_output);
6415 		ASSERT(mp != NULL);
6416 		/* mp is freed by the following routine */
6417 		udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6418 		    (t_scalar_t)error);
6419 	}
6420 }
6421 
6422 /* ARGSUSED */
6423 static void
6424 udp_output_wrapper(void *arg, mblk_t *mp, void *arg2)
6425 {
6426 	udp_output((conn_t *)arg, mp, NULL, 0);
6427 	_UDP_EXIT((conn_t *)arg);
6428 }
6429 
6430 static void
6431 udp_wput(queue_t *q, mblk_t *mp)
6432 {
6433 	_UDP_ENTER(Q_TO_CONN(UDP_WR(q)), mp, udp_output_wrapper,
6434 	    SQTAG_UDP_WPUT);
6435 }
6436 
6437 /*
6438  * Allocate and prepare a T_UNITDATA_REQ message.
6439  */
6440 static mblk_t *
6441 udp_tudr_alloc(struct sockaddr *addr, socklen_t addrlen)
6442 {
6443 	struct T_unitdata_req *tudr;
6444 	mblk_t *mp;
6445 
6446 	mp = allocb(sizeof (*tudr) + addrlen, BPRI_MED);
6447 	if (mp != NULL) {
6448 		mp->b_wptr += sizeof (*tudr) + addrlen;
6449 		DB_TYPE(mp) = M_PROTO;
6450 
6451 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6452 		tudr->PRIM_type = T_UNITDATA_REQ;
6453 		tudr->DEST_length = addrlen;
6454 		tudr->DEST_offset = (t_scalar_t)sizeof (*tudr);
6455 		tudr->OPT_length = 0;
6456 		tudr->OPT_offset = 0;
6457 		bcopy(addr, tudr+1, addrlen);
6458 	}
6459 	return (mp);
6460 }
6461 
6462 /*
6463  * Entry point for sockfs when udp is in "direct sockfs" mode.  This mode
6464  * is valid when we are directly beneath the stream head, and thus sockfs
6465  * is able to bypass STREAMS and directly call us, passing along the sockaddr
6466  * structure without the cumbersome T_UNITDATA_REQ interface.  Note that
6467  * this is done for both connected and non-connected endpoint.
6468  */
6469 void
6470 udp_wput_data(queue_t *q, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
6471 {
6472 	conn_t	*connp;
6473 	udp_t	*udp;
6474 
6475 	q = UDP_WR(q);
6476 	connp = Q_TO_CONN(q);
6477 	udp = connp->conn_udp;
6478 
6479 	/* udpsockfs should only send down M_DATA for this entry point */
6480 	ASSERT(DB_TYPE(mp) == M_DATA);
6481 
6482 	mutex_enter(&connp->conn_lock);
6483 	UDP_MODE_ASSERTIONS(udp, UDP_ENTER);
6484 
6485 	if (udp->udp_mode != UDP_MT_HOT) {
6486 		/*
6487 		 * We can't enter this conn right away because another
6488 		 * thread is currently executing as writer; therefore we
6489 		 * need to deposit the message into the squeue to be
6490 		 * drained later.  If a socket address is present, we
6491 		 * need to create a T_UNITDATA_REQ message as placeholder.
6492 		 */
6493 		if (addr != NULL && addrlen != 0) {
6494 			mblk_t *tudr_mp = udp_tudr_alloc(addr, addrlen);
6495 
6496 			if (tudr_mp == NULL) {
6497 				mutex_exit(&connp->conn_lock);
6498 				BUMP_MIB(&udp_mib, udpOutErrors);
6499 				UDP_STAT(udp_out_err_tudr);
6500 				freemsg(mp);
6501 				return;
6502 			}
6503 			/* Tag the packet with T_UNITDATA_REQ */
6504 			tudr_mp->b_cont = mp;
6505 			mp = tudr_mp;
6506 		}
6507 		mutex_exit(&connp->conn_lock);
6508 		udp_enter(connp, mp, udp_output_wrapper, SQTAG_UDP_WPUT);
6509 		return;
6510 	}
6511 
6512 	/* We can execute as reader right away. */
6513 	UDP_READERS_INCREF(udp);
6514 	mutex_exit(&connp->conn_lock);
6515 
6516 	udp_output(connp, mp, addr, addrlen);
6517 
6518 	mutex_enter(&connp->conn_lock);
6519 	UDP_MODE_ASSERTIONS(udp, UDP_EXIT);
6520 	UDP_READERS_DECREF(udp);
6521 	mutex_exit(&connp->conn_lock);
6522 }
6523 
6524 /*
6525  * udp_output_v6():
6526  * Assumes that udp_wput did some sanity checking on the destination
6527  * address.
6528  */
6529 static mblk_t *
6530 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, t_scalar_t tudr_optlen,
6531     int *error)
6532 {
6533 	ip6_t		*ip6h;
6534 	ip6i_t		*ip6i;	/* mp1->b_rptr even if no ip6i_t */
6535 	mblk_t		*mp1 = (DB_TYPE(mp) == M_DATA ? mp : mp->b_cont);
6536 	mblk_t		*mp2;
6537 	int		udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
6538 	size_t		ip_len;
6539 	udpha_t		*udph;
6540 	udp_t		*udp = connp->conn_udp;
6541 	queue_t		*q = connp->conn_wq;
6542 	ip6_pkt_t	ipp_s;	/* For ancillary data options */
6543 	ip6_pkt_t	*ipp = &ipp_s;
6544 	ip6_pkt_t	*tipp;	/* temporary ipp */
6545 	uint32_t	csum = 0;
6546 	uint_t		ignore = 0;
6547 	uint_t		option_exists = 0, is_sticky = 0;
6548 	uint8_t		*cp;
6549 	uint8_t		*nxthdr_ptr;
6550 
6551 	*error = 0;
6552 
6553 	/* mp1 points to the M_DATA mblk carrying the packet */
6554 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
6555 	ASSERT(tudr_optlen == 0 || DB_TYPE(mp) != M_DATA);
6556 
6557 	/*
6558 	 * If the local address is a mapped address return
6559 	 * an error.
6560 	 * It would be possible to send an IPv6 packet but the
6561 	 * response would never make it back to the application
6562 	 * since it is bound to a mapped address.
6563 	 */
6564 	if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
6565 		*error = EADDRNOTAVAIL;
6566 		goto done;
6567 	}
6568 
6569 	ipp->ipp_fields = 0;
6570 	ipp->ipp_sticky_ignored = 0;
6571 
6572 	/*
6573 	 * If TPI options passed in, feed it for verification and handling
6574 	 */
6575 	if (tudr_optlen != 0) {
6576 		if (udp_unitdata_opt_process(q, mp, error, (void *)ipp) < 0) {
6577 			/* failure */
6578 			goto done;
6579 		}
6580 		ignore = ipp->ipp_sticky_ignored;
6581 		ASSERT(*error == 0);
6582 	}
6583 
6584 	if (sin6->sin6_scope_id != 0 &&
6585 	    IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
6586 		/*
6587 		 * IPPF_SCOPE_ID is special.  It's neither a sticky
6588 		 * option nor ancillary data.  It needs to be
6589 		 * explicitly set in options_exists.
6590 		 */
6591 		option_exists |= IPPF_SCOPE_ID;
6592 	}
6593 
6594 	if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
6595 		/* No sticky options nor ancillary data. */
6596 		goto no_options;
6597 	}
6598 
6599 	/*
6600 	 * Go through the options figuring out where each is going to
6601 	 * come from and build two masks.  The first mask indicates if
6602 	 * the option exists at all.  The second mask indicates if the
6603 	 * option is sticky or ancillary.
6604 	 */
6605 	if (!(ignore & IPPF_HOPOPTS)) {
6606 		if (ipp->ipp_fields & IPPF_HOPOPTS) {
6607 			option_exists |= IPPF_HOPOPTS;
6608 			udp_ip_hdr_len += ipp->ipp_hopoptslen;
6609 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
6610 			option_exists |= IPPF_HOPOPTS;
6611 			is_sticky |= IPPF_HOPOPTS;
6612 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_hopoptslen;
6613 		}
6614 	}
6615 
6616 	if (!(ignore & IPPF_RTHDR)) {
6617 		if (ipp->ipp_fields & IPPF_RTHDR) {
6618 			option_exists |= IPPF_RTHDR;
6619 			udp_ip_hdr_len += ipp->ipp_rthdrlen;
6620 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
6621 			option_exists |= IPPF_RTHDR;
6622 			is_sticky |= IPPF_RTHDR;
6623 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
6624 		}
6625 	}
6626 
6627 	if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
6628 		if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
6629 			option_exists |= IPPF_RTDSTOPTS;
6630 			udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
6631 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
6632 			option_exists |= IPPF_RTDSTOPTS;
6633 			is_sticky |= IPPF_RTDSTOPTS;
6634 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
6635 		}
6636 	}
6637 
6638 	if (!(ignore & IPPF_DSTOPTS)) {
6639 		if (ipp->ipp_fields & IPPF_DSTOPTS) {
6640 			option_exists |= IPPF_DSTOPTS;
6641 			udp_ip_hdr_len += ipp->ipp_dstoptslen;
6642 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
6643 			option_exists |= IPPF_DSTOPTS;
6644 			is_sticky |= IPPF_DSTOPTS;
6645 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
6646 		}
6647 	}
6648 
6649 	if (!(ignore & IPPF_IFINDEX)) {
6650 		if (ipp->ipp_fields & IPPF_IFINDEX) {
6651 			option_exists |= IPPF_IFINDEX;
6652 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
6653 			option_exists |= IPPF_IFINDEX;
6654 			is_sticky |= IPPF_IFINDEX;
6655 		}
6656 	}
6657 
6658 	if (!(ignore & IPPF_ADDR)) {
6659 		if (ipp->ipp_fields & IPPF_ADDR) {
6660 			option_exists |= IPPF_ADDR;
6661 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
6662 			option_exists |= IPPF_ADDR;
6663 			is_sticky |= IPPF_ADDR;
6664 		}
6665 	}
6666 
6667 	if (!(ignore & IPPF_DONTFRAG)) {
6668 		if (ipp->ipp_fields & IPPF_DONTFRAG) {
6669 			option_exists |= IPPF_DONTFRAG;
6670 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
6671 			option_exists |= IPPF_DONTFRAG;
6672 			is_sticky |= IPPF_DONTFRAG;
6673 		}
6674 	}
6675 
6676 	if (!(ignore & IPPF_USE_MIN_MTU)) {
6677 		if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
6678 			option_exists |= IPPF_USE_MIN_MTU;
6679 		} else if (udp->udp_sticky_ipp.ipp_fields &
6680 		    IPPF_USE_MIN_MTU) {
6681 			option_exists |= IPPF_USE_MIN_MTU;
6682 			is_sticky |= IPPF_USE_MIN_MTU;
6683 		}
6684 	}
6685 
6686 	if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
6687 		option_exists |= IPPF_HOPLIMIT;
6688 	/* IPV6_HOPLIMIT can never be sticky */
6689 	ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
6690 
6691 	if (!(ignore & IPPF_UNICAST_HOPS) &&
6692 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
6693 		option_exists |= IPPF_UNICAST_HOPS;
6694 		is_sticky |= IPPF_UNICAST_HOPS;
6695 	}
6696 
6697 	if (!(ignore & IPPF_MULTICAST_HOPS) &&
6698 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
6699 		option_exists |= IPPF_MULTICAST_HOPS;
6700 		is_sticky |= IPPF_MULTICAST_HOPS;
6701 	}
6702 
6703 	if (!(ignore & IPPF_TCLASS)) {
6704 		if (ipp->ipp_fields & IPPF_TCLASS) {
6705 			option_exists |= IPPF_TCLASS;
6706 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
6707 			option_exists |= IPPF_TCLASS;
6708 			is_sticky |= IPPF_TCLASS;
6709 		}
6710 	}
6711 
6712 no_options:
6713 
6714 	/*
6715 	 * If any options carried in the ip6i_t were specified, we
6716 	 * need to account for the ip6i_t in the data we'll be sending
6717 	 * down.
6718 	 */
6719 	if (option_exists & IPPF_HAS_IP6I)
6720 		udp_ip_hdr_len += sizeof (ip6i_t);
6721 
6722 	/* check/fix buffer config, setup pointers into it */
6723 	ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
6724 	if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
6725 	    !OK_32PTR(ip6h)) {
6726 		/* Try to get everything in a single mblk next time */
6727 		if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
6728 			udp->udp_max_hdr_len = udp_ip_hdr_len;
6729 			(void) mi_set_sth_wroff(UDP_RD(q),
6730 			    udp->udp_max_hdr_len + udp_wroff_extra);
6731 		}
6732 		mp2 = allocb(udp_ip_hdr_len + udp_wroff_extra, BPRI_LO);
6733 		if (mp2 == NULL) {
6734 			*error = ENOMEM;
6735 			goto done;
6736 		}
6737 		mp2->b_wptr = DB_LIM(mp2);
6738 		mp2->b_cont = mp1;
6739 		mp1 = mp2;
6740 		if (DB_TYPE(mp) != M_DATA)
6741 			mp->b_cont = mp1;
6742 		else
6743 			mp = mp1;
6744 
6745 		ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
6746 	}
6747 	mp1->b_rptr = (unsigned char *)ip6h;
6748 	ip6i = (ip6i_t *)ip6h;
6749 
6750 #define	ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
6751 	if (option_exists & IPPF_HAS_IP6I) {
6752 		ip6h = (ip6_t *)&ip6i[1];
6753 		ip6i->ip6i_flags = 0;
6754 		ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
6755 
6756 		/* sin6_scope_id takes precendence over IPPF_IFINDEX */
6757 		if (option_exists & IPPF_SCOPE_ID) {
6758 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6759 			ip6i->ip6i_ifindex = sin6->sin6_scope_id;
6760 		} else if (option_exists & IPPF_IFINDEX) {
6761 			tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
6762 			ASSERT(tipp->ipp_ifindex != 0);
6763 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6764 			ip6i->ip6i_ifindex = tipp->ipp_ifindex;
6765 		}
6766 
6767 		if (option_exists & IPPF_ADDR) {
6768 			/*
6769 			 * Enable per-packet source address verification if
6770 			 * IPV6_PKTINFO specified the source address.
6771 			 * ip6_src is set in the transport's _wput function.
6772 			 */
6773 			ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
6774 		}
6775 
6776 		if (option_exists & IPPF_DONTFRAG) {
6777 			ip6i->ip6i_flags |= IP6I_DONTFRAG;
6778 		}
6779 
6780 		if (option_exists & IPPF_USE_MIN_MTU) {
6781 			ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
6782 			    ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
6783 		}
6784 
6785 		if (option_exists & IPPF_NEXTHOP) {
6786 			tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
6787 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
6788 			ip6i->ip6i_flags |= IP6I_NEXTHOP;
6789 			ip6i->ip6i_nexthop = tipp->ipp_nexthop;
6790 		}
6791 
6792 		/*
6793 		 * tell IP this is an ip6i_t private header
6794 		 */
6795 		ip6i->ip6i_nxt = IPPROTO_RAW;
6796 	}
6797 
6798 	/* Initialize IPv6 header */
6799 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
6800 	bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
6801 
6802 	/* Set the hoplimit of the outgoing packet. */
6803 	if (option_exists & IPPF_HOPLIMIT) {
6804 		/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
6805 		ip6h->ip6_hops = ipp->ipp_hoplimit;
6806 		ip6i->ip6i_flags |= IP6I_HOPLIMIT;
6807 	} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
6808 		ip6h->ip6_hops = udp->udp_multicast_ttl;
6809 		if (option_exists & IPPF_MULTICAST_HOPS)
6810 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
6811 	} else {
6812 		ip6h->ip6_hops = udp->udp_ttl;
6813 		if (option_exists & IPPF_UNICAST_HOPS)
6814 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
6815 	}
6816 
6817 	if (option_exists & IPPF_ADDR) {
6818 		tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
6819 		ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
6820 		ip6h->ip6_src = tipp->ipp_addr;
6821 	} else {
6822 		/*
6823 		 * The source address was not set using IPV6_PKTINFO.
6824 		 * First look at the bound source.
6825 		 * If unspecified fallback to __sin6_src_id.
6826 		 */
6827 		ip6h->ip6_src = udp->udp_v6src;
6828 		if (sin6->__sin6_src_id != 0 &&
6829 		    IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
6830 			ip_srcid_find_id(sin6->__sin6_src_id,
6831 			    &ip6h->ip6_src, connp->conn_zoneid);
6832 		}
6833 	}
6834 
6835 	nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
6836 	cp = (uint8_t *)&ip6h[1];
6837 
6838 	/*
6839 	 * Here's where we have to start stringing together
6840 	 * any extension headers in the right order:
6841 	 * Hop-by-hop, destination, routing, and final destination opts.
6842 	 */
6843 	if (option_exists & IPPF_HOPOPTS) {
6844 		/* Hop-by-hop options */
6845 		ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
6846 		tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
6847 
6848 		*nxthdr_ptr = IPPROTO_HOPOPTS;
6849 		nxthdr_ptr = &hbh->ip6h_nxt;
6850 
6851 		bcopy(tipp->ipp_hopopts, cp, tipp->ipp_hopoptslen);
6852 		cp += tipp->ipp_hopoptslen;
6853 	}
6854 	/*
6855 	 * En-route destination options
6856 	 * Only do them if there's a routing header as well
6857 	 */
6858 	if (option_exists & IPPF_RTDSTOPTS) {
6859 		ip6_dest_t *dst = (ip6_dest_t *)cp;
6860 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
6861 
6862 		*nxthdr_ptr = IPPROTO_DSTOPTS;
6863 		nxthdr_ptr = &dst->ip6d_nxt;
6864 
6865 		bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
6866 		cp += tipp->ipp_rtdstoptslen;
6867 	}
6868 	/*
6869 	 * Routing header next
6870 	 */
6871 	if (option_exists & IPPF_RTHDR) {
6872 		ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
6873 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
6874 
6875 		*nxthdr_ptr = IPPROTO_ROUTING;
6876 		nxthdr_ptr = &rt->ip6r_nxt;
6877 
6878 		bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
6879 		cp += tipp->ipp_rthdrlen;
6880 	}
6881 	/*
6882 	 * Do ultimate destination options
6883 	 */
6884 	if (option_exists & IPPF_DSTOPTS) {
6885 		ip6_dest_t *dest = (ip6_dest_t *)cp;
6886 		tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
6887 
6888 		*nxthdr_ptr = IPPROTO_DSTOPTS;
6889 		nxthdr_ptr = &dest->ip6d_nxt;
6890 
6891 		bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
6892 		cp += tipp->ipp_dstoptslen;
6893 	}
6894 	/*
6895 	 * Now set the last header pointer to the proto passed in
6896 	 */
6897 	ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
6898 	*nxthdr_ptr = IPPROTO_UDP;
6899 
6900 	/* Update UDP header */
6901 	udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
6902 	udph->uha_dst_port = sin6->sin6_port;
6903 	udph->uha_src_port = udp->udp_port;
6904 
6905 	/*
6906 	 * Copy in the destination address
6907 	 */
6908 	if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
6909 		ip6h->ip6_dst = ipv6_loopback;
6910 	else
6911 		ip6h->ip6_dst = sin6->sin6_addr;
6912 
6913 	ip6h->ip6_vcf =
6914 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6915 	    (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6916 
6917 	if (option_exists & IPPF_TCLASS) {
6918 		tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
6919 		ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
6920 		    tipp->ipp_tclass);
6921 	}
6922 
6923 	if (option_exists & IPPF_RTHDR) {
6924 		ip6_rthdr_t	*rth;
6925 
6926 		/*
6927 		 * Perform any processing needed for source routing.
6928 		 * We know that all extension headers will be in the same mblk
6929 		 * as the IPv6 header.
6930 		 */
6931 		rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
6932 		if (rth != NULL && rth->ip6r_segleft != 0) {
6933 			if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
6934 				/*
6935 				 * Drop packet - only support Type 0 routing.
6936 				 * Notify the application as well.
6937 				 */
6938 				*error = EPROTO;
6939 				goto done;
6940 			}
6941 
6942 			/*
6943 			 * rth->ip6r_len is twice the number of
6944 			 * addresses in the header. Thus it must be even.
6945 			 */
6946 			if (rth->ip6r_len & 0x1) {
6947 				*error = EPROTO;
6948 				goto done;
6949 			}
6950 			/*
6951 			 * Shuffle the routing header and ip6_dst
6952 			 * addresses, and get the checksum difference
6953 			 * between the first hop (in ip6_dst) and
6954 			 * the destination (in the last routing hdr entry).
6955 			 */
6956 			csum = ip_massage_options_v6(ip6h, rth);
6957 			/*
6958 			 * Verify that the first hop isn't a mapped address.
6959 			 * Routers along the path need to do this verification
6960 			 * for subsequent hops.
6961 			 */
6962 			if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
6963 				*error = EADDRNOTAVAIL;
6964 				goto done;
6965 			}
6966 
6967 			cp += (rth->ip6r_len + 1)*8;
6968 		}
6969 	}
6970 
6971 	/* count up length of UDP packet */
6972 	ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
6973 	if ((mp2 = mp1->b_cont) != NULL) {
6974 		do {
6975 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
6976 			ip_len += (uint32_t)MBLKL(mp2);
6977 		} while ((mp2 = mp2->b_cont) != NULL);
6978 	}
6979 
6980 	/*
6981 	 * If the size of the packet is greater than the maximum allowed by
6982 	 * ip, return an error. Passing this down could cause panics because
6983 	 * the size will have wrapped and be inconsistent with the msg size.
6984 	 */
6985 	if (ip_len > IP_MAXPACKET) {
6986 		*error = EMSGSIZE;
6987 		goto done;
6988 	}
6989 
6990 	/* Store the UDP length. Subtract length of extension hdrs */
6991 	udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
6992 	    (int)((uchar_t *)udph - (uchar_t *)ip6h));
6993 
6994 	/*
6995 	 * We make it easy for IP to include our pseudo header
6996 	 * by putting our length in uh_checksum, modified (if
6997 	 * we have a routing header) by the checksum difference
6998 	 * between the ultimate destination and first hop addresses.
6999 	 * Note: UDP over IPv6 must always checksum the packet.
7000 	 */
7001 	csum += udph->uha_length;
7002 	csum = (csum & 0xFFFF) + (csum >> 16);
7003 	udph->uha_checksum = (uint16_t)csum;
7004 
7005 #ifdef _LITTLE_ENDIAN
7006 	ip_len = htons(ip_len);
7007 #endif
7008 	ip6h->ip6_plen = ip_len;
7009 
7010 	if (DB_TYPE(mp) != M_DATA) {
7011 		ASSERT(mp != mp1);
7012 		freeb(mp);
7013 	}
7014 
7015 	/* mp has been consumed and we'll return success */
7016 	ASSERT(*error == 0);
7017 	mp = NULL;
7018 
7019 	/* We're done. Pass the packet to IP */
7020 	BUMP_MIB(&udp_mib, udpOutDatagrams);
7021 	ip_output_v6(connp, mp1, q, IP_WPUT);
7022 
7023 done:
7024 	if (*error != 0) {
7025 		ASSERT(mp != NULL);
7026 		BUMP_MIB(&udp_mib, udpOutErrors);
7027 	}
7028 	return (mp);
7029 }
7030 
7031 static void
7032 udp_wput_other(queue_t *q, mblk_t *mp)
7033 {
7034 	uchar_t	*rptr = mp->b_rptr;
7035 	struct datab *db;
7036 	struct iocblk *iocp;
7037 	cred_t	*cr;
7038 	conn_t	*connp = Q_TO_CONN(q);
7039 	udp_t	*udp = connp->conn_udp;
7040 
7041 	TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
7042 		"udp_wput_other_start: q %p", q);
7043 
7044 	db = mp->b_datap;
7045 
7046 	cr = DB_CREDDEF(mp, connp->conn_cred);
7047 
7048 	switch (db->db_type) {
7049 	case M_PROTO:
7050 	case M_PCPROTO:
7051 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
7052 			freemsg(mp);
7053 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7054 				"udp_wput_other_end: q %p (%S)",
7055 				q, "protoshort");
7056 			return;
7057 		}
7058 		switch (((t_primp_t)rptr)->type) {
7059 		case T_ADDR_REQ:
7060 			udp_addr_req(q, mp);
7061 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7062 				"udp_wput_other_end: q %p (%S)", q, "addrreq");
7063 			return;
7064 		case O_T_BIND_REQ:
7065 		case T_BIND_REQ:
7066 			udp_bind(q, mp);
7067 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7068 				"udp_wput_other_end: q %p (%S)", q, "bindreq");
7069 			return;
7070 		case T_CONN_REQ:
7071 			udp_connect(q, mp);
7072 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7073 				"udp_wput_other_end: q %p (%S)", q, "connreq");
7074 			return;
7075 		case T_CAPABILITY_REQ:
7076 			udp_capability_req(q, mp);
7077 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7078 				"udp_wput_other_end: q %p (%S)", q, "capabreq");
7079 			return;
7080 		case T_INFO_REQ:
7081 			udp_info_req(q, mp);
7082 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7083 				"udp_wput_other_end: q %p (%S)", q, "inforeq");
7084 			return;
7085 		case T_UNITDATA_REQ:
7086 			/*
7087 			 * If a T_UNITDATA_REQ gets here, the address must
7088 			 * be bad.  Valid T_UNITDATA_REQs are handled
7089 			 * in udp_wput.
7090 			 */
7091 			udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
7092 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7093 				"udp_wput_other_end: q %p (%S)",
7094 				q, "unitdatareq");
7095 			return;
7096 		case T_UNBIND_REQ:
7097 			udp_unbind(q, mp);
7098 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7099 			    "udp_wput_other_end: q %p (%S)", q, "unbindreq");
7100 			return;
7101 		case T_SVR4_OPTMGMT_REQ:
7102 			if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr))
7103 				/*
7104 				 * Use upper queue for option processing in
7105 				 * case the request is not handled at this
7106 				 * level and needs to be passed down to IP.
7107 				 */
7108 				(void) svr4_optcom_req(_WR(UDP_RD(q)),
7109 				    mp, cr, &udp_opt_obj);
7110 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7111 			    "udp_wput_other_end: q %p (%S)",
7112 			    q, "optmgmtreq");
7113 			return;
7114 
7115 		case T_OPTMGMT_REQ:
7116 			/*
7117 			 * Use upper queue for option processing in
7118 			 * case the request is not handled at this
7119 			 * level and needs to be passed down to IP.
7120 			 */
7121 			(void) tpi_optcom_req(_WR(UDP_RD(q)),
7122 			    mp, cr, &udp_opt_obj);
7123 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7124 				"udp_wput_other_end: q %p (%S)",
7125 				q, "optmgmtreq");
7126 			return;
7127 
7128 		case T_DISCON_REQ:
7129 			udp_disconnect(q, mp);
7130 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7131 				"udp_wput_other_end: q %p (%S)",
7132 				q, "disconreq");
7133 			return;
7134 
7135 		/* The following TPI message is not supported by udp. */
7136 		case O_T_CONN_RES:
7137 		case T_CONN_RES:
7138 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7139 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7140 				"udp_wput_other_end: q %p (%S)",
7141 				q, "connres/disconreq");
7142 			return;
7143 
7144 		/* The following 3 TPI messages are illegal for udp. */
7145 		case T_DATA_REQ:
7146 		case T_EXDATA_REQ:
7147 		case T_ORDREL_REQ:
7148 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7149 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7150 				"udp_wput_other_end: q %p (%S)",
7151 				q, "data/exdata/ordrel");
7152 			return;
7153 		default:
7154 			break;
7155 		}
7156 		break;
7157 	case M_FLUSH:
7158 		if (*rptr & FLUSHW)
7159 			flushq(q, FLUSHDATA);
7160 		break;
7161 	case M_IOCTL:
7162 		iocp = (struct iocblk *)mp->b_rptr;
7163 		switch (iocp->ioc_cmd) {
7164 		case TI_GETPEERNAME:
7165 			if (udp->udp_state != TS_DATA_XFER) {
7166 				/*
7167 				 * If a default destination address has not
7168 				 * been associated with the stream, then we
7169 				 * don't know the peer's name.
7170 				 */
7171 				iocp->ioc_error = ENOTCONN;
7172 				iocp->ioc_count = 0;
7173 				mp->b_datap->db_type = M_IOCACK;
7174 				putnext(UDP_RD(q), mp);
7175 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7176 					"udp_wput_other_end: q %p (%S)",
7177 					q, "getpeername");
7178 				return;
7179 			}
7180 			/* FALLTHRU */
7181 		case TI_GETMYNAME: {
7182 			/*
7183 			 * For TI_GETPEERNAME and TI_GETMYNAME, we first
7184 			 * need to copyin the user's strbuf structure.
7185 			 * Processing will continue in the M_IOCDATA case
7186 			 * below.
7187 			 */
7188 			mi_copyin(q, mp, NULL,
7189 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
7190 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7191 				"udp_wput_other_end: q %p (%S)",
7192 				q, "getmyname");
7193 			return;
7194 			}
7195 		case ND_SET:
7196 			/* nd_getset performs the necessary checking */
7197 		case ND_GET:
7198 			if (nd_getset(q, udp_g_nd, mp)) {
7199 				putnext(UDP_RD(q), mp);
7200 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7201 					"udp_wput_other_end: q %p (%S)",
7202 					q, "get");
7203 				return;
7204 			}
7205 			break;
7206 		case _SIOCSOCKFALLBACK:
7207 			/*
7208 			 * Either sockmod is about to be popped and the
7209 			 * socket would now be treated as a plain stream,
7210 			 * or a module is about to be pushed so we could
7211 			 * no longer use read-side synchronous stream.
7212 			 * Drain any queued data and disable direct sockfs
7213 			 * interface from now on.
7214 			 */
7215 			if (!udp->udp_issocket) {
7216 				DB_TYPE(mp) = M_IOCNAK;
7217 				iocp->ioc_error = EINVAL;
7218 			} else {
7219 				udp->udp_issocket = B_FALSE;
7220 				if (udp->udp_direct_sockfs) {
7221 					/*
7222 					 * Disable read-side synchronous
7223 					 * stream interface and drain any
7224 					 * queued data.
7225 					 */
7226 					udp_rcv_drain(UDP_RD(q), udp,
7227 					    B_FALSE);
7228 					ASSERT(!udp->udp_direct_sockfs);
7229 					UDP_STAT(udp_sock_fallback);
7230 				}
7231 				DB_TYPE(mp) = M_IOCACK;
7232 				iocp->ioc_error = 0;
7233 			}
7234 			iocp->ioc_count = 0;
7235 			iocp->ioc_rval = 0;
7236 			putnext(UDP_RD(q), mp);
7237 			return;
7238 		default:
7239 			break;
7240 		}
7241 		break;
7242 	case M_IOCDATA:
7243 		udp_wput_iocdata(q, mp);
7244 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7245 			"udp_wput_other_end: q %p (%S)", q, "iocdata");
7246 		return;
7247 	default:
7248 		/* Unrecognized messages are passed through without change. */
7249 		break;
7250 	}
7251 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7252 		"udp_wput_other_end: q %p (%S)", q, "end");
7253 	ip_output(connp, mp, q, IP_WPUT);
7254 }
7255 
7256 /* ARGSUSED */
7257 static void
7258 udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
7259 {
7260 	udp_wput_other(((conn_t *)arg)->conn_wq, mp);
7261 	udp_exit((conn_t *)arg);
7262 }
7263 
7264 /*
7265  * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
7266  * messages.
7267  */
7268 static void
7269 udp_wput_iocdata(queue_t *q, mblk_t *mp)
7270 {
7271 	mblk_t	*mp1;
7272 	STRUCT_HANDLE(strbuf, sb);
7273 	uint16_t port;
7274 	in6_addr_t	v6addr;
7275 	ipaddr_t	v4addr;
7276 	uint32_t	flowinfo = 0;
7277 	int		addrlen;
7278 	udp_t		*udp = Q_TO_UDP(q);
7279 
7280 	/* Make sure it is one of ours. */
7281 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7282 	case TI_GETMYNAME:
7283 	case TI_GETPEERNAME:
7284 		break;
7285 	default:
7286 		ip_output(Q_TO_CONN(q), mp, q, IP_WPUT);
7287 		return;
7288 	}
7289 
7290 	q = WR(UDP_RD(q));
7291 	switch (mi_copy_state(q, mp, &mp1)) {
7292 	case -1:
7293 		return;
7294 	case MI_COPY_CASE(MI_COPY_IN, 1):
7295 		break;
7296 	case MI_COPY_CASE(MI_COPY_OUT, 1):
7297 		/*
7298 		 * The address has been copied out, so now
7299 		 * copyout the strbuf.
7300 		 */
7301 		mi_copyout(q, mp);
7302 		return;
7303 	case MI_COPY_CASE(MI_COPY_OUT, 2):
7304 		/*
7305 		 * The address and strbuf have been copied out.
7306 		 * We're done, so just acknowledge the original
7307 		 * M_IOCTL.
7308 		 */
7309 		mi_copy_done(q, mp, 0);
7310 		return;
7311 	default:
7312 		/*
7313 		 * Something strange has happened, so acknowledge
7314 		 * the original M_IOCTL with an EPROTO error.
7315 		 */
7316 		mi_copy_done(q, mp, EPROTO);
7317 		return;
7318 	}
7319 
7320 	/*
7321 	 * Now we have the strbuf structure for TI_GETMYNAME
7322 	 * and TI_GETPEERNAME.  Next we copyout the requested
7323 	 * address and then we'll copyout the strbuf.
7324 	 */
7325 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
7326 	    (void *)mp1->b_rptr);
7327 	if (udp->udp_family == AF_INET)
7328 		addrlen = sizeof (sin_t);
7329 	else
7330 		addrlen = sizeof (sin6_t);
7331 
7332 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
7333 		mi_copy_done(q, mp, EINVAL);
7334 		return;
7335 	}
7336 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7337 	case TI_GETMYNAME:
7338 		if (udp->udp_family == AF_INET) {
7339 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7340 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
7341 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7342 				v4addr = V4_PART_OF_V6(udp->udp_v6src);
7343 			} else {
7344 				/*
7345 				 * INADDR_ANY
7346 				 * udp_v6src is not set, we might be bound to
7347 				 * broadcast/multicast. Use udp_bound_v6src as
7348 				 * local address instead (that could
7349 				 * also still be INADDR_ANY)
7350 				 */
7351 				v4addr = V4_PART_OF_V6(udp->udp_bound_v6src);
7352 			}
7353 		} else {
7354 			/* udp->udp_family == AF_INET6 */
7355 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7356 				v6addr = udp->udp_v6src;
7357 			} else {
7358 				/*
7359 				 * UNSPECIFIED
7360 				 * udp_v6src is not set, we might be bound to
7361 				 * broadcast/multicast. Use udp_bound_v6src as
7362 				 * local address instead (that could
7363 				 * also still be UNSPECIFIED)
7364 				 */
7365 				v6addr = udp->udp_bound_v6src;
7366 			}
7367 		}
7368 		port = udp->udp_port;
7369 		break;
7370 	case TI_GETPEERNAME:
7371 		if (udp->udp_state != TS_DATA_XFER) {
7372 			mi_copy_done(q, mp, ENOTCONN);
7373 			return;
7374 		}
7375 		if (udp->udp_family == AF_INET) {
7376 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7377 			v4addr = V4_PART_OF_V6(udp->udp_v6dst);
7378 		} else {
7379 			/* udp->udp_family == AF_INET6) */
7380 			v6addr = udp->udp_v6dst;
7381 			flowinfo = udp->udp_flowinfo;
7382 		}
7383 		port = udp->udp_dstport;
7384 		break;
7385 	default:
7386 		mi_copy_done(q, mp, EPROTO);
7387 		return;
7388 	}
7389 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
7390 	if (!mp1)
7391 		return;
7392 
7393 	if (udp->udp_family == AF_INET) {
7394 		sin_t *sin;
7395 
7396 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
7397 		sin = (sin_t *)mp1->b_rptr;
7398 		mp1->b_wptr = (uchar_t *)&sin[1];
7399 		*sin = sin_null;
7400 		sin->sin_family = AF_INET;
7401 		sin->sin_addr.s_addr = v4addr;
7402 		sin->sin_port = port;
7403 	} else {
7404 		/* udp->udp_family == AF_INET6 */
7405 		sin6_t *sin6;
7406 
7407 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
7408 		sin6 = (sin6_t *)mp1->b_rptr;
7409 		mp1->b_wptr = (uchar_t *)&sin6[1];
7410 		*sin6 = sin6_null;
7411 		sin6->sin6_family = AF_INET6;
7412 		sin6->sin6_flowinfo = flowinfo;
7413 		sin6->sin6_addr = v6addr;
7414 		sin6->sin6_port = port;
7415 	}
7416 	/* Copy out the address */
7417 	mi_copyout(q, mp);
7418 }
7419 
7420 
7421 static int
7422 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
7423     void *thisdg_attrs)
7424 {
7425 	struct T_unitdata_req *udreqp;
7426 	int is_absreq_failure;
7427 	cred_t *cr;
7428 	conn_t	*connp = Q_TO_CONN(q);
7429 
7430 	ASSERT(((t_primp_t)mp->b_rptr)->type);
7431 
7432 	cr = DB_CREDDEF(mp, connp->conn_cred);
7433 
7434 	udreqp = (struct T_unitdata_req *)mp->b_rptr;
7435 	*errorp = 0;
7436 
7437 	/*
7438 	 * Use upper queue for option processing since the callback
7439 	 * routines expect to be called in UDP instance instead of IP.
7440 	 */
7441 	*errorp = tpi_optcom_buf(_WR(UDP_RD(q)), mp, &udreqp->OPT_length,
7442 	    udreqp->OPT_offset, cr, &udp_opt_obj,
7443 	    thisdg_attrs, &is_absreq_failure);
7444 
7445 	if (*errorp != 0) {
7446 		/*
7447 		 * Note: No special action needed in this
7448 		 * module for "is_absreq_failure"
7449 		 */
7450 		return (-1);		/* failure */
7451 	}
7452 	ASSERT(is_absreq_failure == 0);
7453 	return (0);	/* success */
7454 }
7455 
7456 void
7457 udp_ddi_init(void)
7458 {
7459 	int i;
7460 
7461 	UDP6_MAJ = ddi_name_to_major(UDP6);
7462 
7463 	udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
7464 	    udp_opt_obj.odb_opt_arr_cnt);
7465 
7466 	if (udp_bind_fanout_size & (udp_bind_fanout_size - 1)) {
7467 		/* Not a power of two. Round up to nearest power of two */
7468 		for (i = 0; i < 31; i++) {
7469 			if (udp_bind_fanout_size < (1 << i))
7470 				break;
7471 		}
7472 		udp_bind_fanout_size = 1 << i;
7473 	}
7474 	udp_bind_fanout = kmem_zalloc(udp_bind_fanout_size *
7475 	    sizeof (udp_fanout_t), KM_SLEEP);
7476 	for (i = 0; i < udp_bind_fanout_size; i++) {
7477 		mutex_init(&udp_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
7478 		    NULL);
7479 	}
7480 	(void) udp_param_register(udp_param_arr, A_CNT(udp_param_arr));
7481 
7482 	udp_kstat_init();
7483 
7484 	udp_cache = kmem_cache_create("udp_cache", sizeof (udp_t),
7485 	    CACHE_ALIGN_SIZE, NULL, NULL, NULL, NULL, NULL, 0);
7486 }
7487 
7488 void
7489 udp_ddi_destroy(void)
7490 {
7491 	int i;
7492 
7493 	nd_free(&udp_g_nd);
7494 
7495 	for (i = 0; i < udp_bind_fanout_size; i++) {
7496 		mutex_destroy(&udp_bind_fanout[i].uf_lock);
7497 	}
7498 
7499 	kmem_free(udp_bind_fanout, udp_bind_fanout_size *
7500 	    sizeof (udp_fanout_t));
7501 
7502 	udp_kstat_fini();
7503 
7504 	kmem_cache_destroy(udp_cache);
7505 }
7506 
7507 static void
7508 udp_kstat_init(void)
7509 {
7510 	udp_named_kstat_t template = {
7511 		{ "inDatagrams",	KSTAT_DATA_UINT32, 0 },
7512 		{ "inErrors",		KSTAT_DATA_UINT32, 0 },
7513 		{ "outDatagrams",	KSTAT_DATA_UINT32, 0 },
7514 		{ "entrySize",		KSTAT_DATA_INT32, 0 },
7515 		{ "entry6Size",		KSTAT_DATA_INT32, 0 },
7516 		{ "outErrors",		KSTAT_DATA_UINT32, 0 },
7517 	};
7518 
7519 	udp_mibkp = kstat_create(UDP_MOD_NAME, 0, UDP_MOD_NAME,
7520 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(udp_named_kstat_t), 0);
7521 
7522 	if (udp_mibkp == NULL)
7523 		return;
7524 
7525 	template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
7526 	template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
7527 
7528 	bcopy(&template, udp_mibkp->ks_data, sizeof (template));
7529 
7530 	udp_mibkp->ks_update = udp_kstat_update;
7531 
7532 	kstat_install(udp_mibkp);
7533 
7534 	if ((udp_ksp = kstat_create(UDP_MOD_NAME, 0, "udpstat",
7535 	    "net", KSTAT_TYPE_NAMED,
7536 	    sizeof (udp_statistics) / sizeof (kstat_named_t),
7537 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
7538 		udp_ksp->ks_data = &udp_statistics;
7539 		kstat_install(udp_ksp);
7540 	}
7541 }
7542 
7543 static void
7544 udp_kstat_fini(void)
7545 {
7546 	if (udp_ksp != NULL) {
7547 		kstat_delete(udp_ksp);
7548 		udp_ksp = NULL;
7549 	}
7550 	if (udp_mibkp != NULL) {
7551 		kstat_delete(udp_mibkp);
7552 		udp_mibkp = NULL;
7553 	}
7554 }
7555 
7556 static int
7557 udp_kstat_update(kstat_t *kp, int rw)
7558 {
7559 	udp_named_kstat_t *udpkp;
7560 
7561 	if ((kp == NULL) || (kp->ks_data == NULL))
7562 		return (EIO);
7563 
7564 	if (rw == KSTAT_WRITE)
7565 		return (EACCES);
7566 
7567 	udpkp = (udp_named_kstat_t *)kp->ks_data;
7568 
7569 	udpkp->inDatagrams.value.ui32 =	udp_mib.udpInDatagrams;
7570 	udpkp->inErrors.value.ui32 =	udp_mib.udpInErrors;
7571 	udpkp->outDatagrams.value.ui32 = udp_mib.udpOutDatagrams;
7572 	udpkp->outErrors.value.ui32 =	udp_mib.udpOutErrors;
7573 
7574 	return (0);
7575 }
7576 
7577 /* ARGSUSED */
7578 static void
7579 udp_rput(queue_t *q, mblk_t *mp)
7580 {
7581 	/*
7582 	 * We get here whenever we do qreply() from IP,
7583 	 * i.e as part of handlings ioctls, etc.
7584 	 */
7585 	putnext(q, mp);
7586 }
7587 
7588 /*
7589  * Read-side synchronous stream info entry point, called as a
7590  * result of handling certain STREAMS ioctl operations.
7591  */
7592 static int
7593 udp_rinfop(queue_t *q, infod_t *dp)
7594 {
7595 	mblk_t	*mp;
7596 	uint_t	cmd = dp->d_cmd;
7597 	int	res = 0;
7598 	int	error = 0;
7599 	udp_t	*udp = Q_TO_UDP(RD(UDP_WR(q)));
7600 	struct stdata *stp = STREAM(q);
7601 
7602 	mutex_enter(&udp->udp_drain_lock);
7603 	/* If shutdown on read has happened, return nothing */
7604 	mutex_enter(&stp->sd_lock);
7605 	if (stp->sd_flag & STREOF) {
7606 		mutex_exit(&stp->sd_lock);
7607 		goto done;
7608 	}
7609 	mutex_exit(&stp->sd_lock);
7610 
7611 	if ((mp = udp->udp_rcv_list_head) == NULL)
7612 		goto done;
7613 
7614 	ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
7615 
7616 	if (cmd & INFOD_COUNT) {
7617 		/*
7618 		 * Return the number of messages.
7619 		 */
7620 		dp->d_count += udp->udp_rcv_msgcnt;
7621 		res |= INFOD_COUNT;
7622 	}
7623 	if (cmd & INFOD_BYTES) {
7624 		/*
7625 		 * Return size of all data messages.
7626 		 */
7627 		dp->d_bytes += udp->udp_rcv_cnt;
7628 		res |= INFOD_BYTES;
7629 	}
7630 	if (cmd & INFOD_FIRSTBYTES) {
7631 		/*
7632 		 * Return size of first data message.
7633 		 */
7634 		dp->d_bytes = msgdsize(mp);
7635 		res |= INFOD_FIRSTBYTES;
7636 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
7637 	}
7638 	if (cmd & INFOD_COPYOUT) {
7639 		mblk_t *mp1 = mp->b_cont;
7640 		int n;
7641 		/*
7642 		 * Return data contents of first message.
7643 		 */
7644 		ASSERT(DB_TYPE(mp1) == M_DATA);
7645 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
7646 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
7647 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
7648 			    UIO_READ, dp->d_uiop)) != 0) {
7649 				goto done;
7650 			}
7651 			mp1 = mp1->b_cont;
7652 		}
7653 		res |= INFOD_COPYOUT;
7654 		dp->d_cmd &= ~INFOD_COPYOUT;
7655 	}
7656 done:
7657 	mutex_exit(&udp->udp_drain_lock);
7658 
7659 	dp->d_res |= res;
7660 
7661 	return (error);
7662 }
7663 
7664 /*
7665  * Read-side synchronous stream entry point.  This is called as a result
7666  * of recv/read operation done at sockfs, and is guaranteed to execute
7667  * outside of the interrupt thread context.  It returns a single datagram
7668  * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
7669  */
7670 static int
7671 udp_rrw(queue_t *q, struiod_t *dp)
7672 {
7673 	mblk_t	*mp;
7674 	udp_t	*udp = Q_TO_UDP(_RD(UDP_WR(q)));
7675 
7676 	/* We should never get here when we're in SNMP mode */
7677 	ASSERT(!(udp->udp_connp->conn_flags & IPCL_UDPMOD));
7678 
7679 	/*
7680 	 * Dequeue datagram from the head of the list and return
7681 	 * it to caller; also ensure that RSLEEP sd_wakeq flag is
7682 	 * set/cleared depending on whether or not there's data
7683 	 * remaining in the list.
7684 	 */
7685 	mutex_enter(&udp->udp_drain_lock);
7686 	if (!udp->udp_direct_sockfs) {
7687 		mutex_exit(&udp->udp_drain_lock);
7688 		UDP_STAT(udp_rrw_busy);
7689 		return (EBUSY);
7690 	}
7691 	if ((mp = udp->udp_rcv_list_head) != NULL) {
7692 		uint_t size = msgdsize(mp);
7693 
7694 		/* Last datagram in the list? */
7695 		if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
7696 			udp->udp_rcv_list_tail = NULL;
7697 		mp->b_next = NULL;
7698 
7699 		udp->udp_rcv_cnt -= size;
7700 		udp->udp_rcv_msgcnt--;
7701 		UDP_STAT(udp_rrw_msgcnt);
7702 
7703 		/* No longer flow-controlling? */
7704 		if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
7705 		    udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
7706 			udp->udp_drain_qfull = B_FALSE;
7707 	}
7708 	if (udp->udp_rcv_list_head == NULL) {
7709 		/*
7710 		 * Either we just dequeued the last datagram or
7711 		 * we get here from sockfs and have nothing to
7712 		 * return; in this case clear RSLEEP.
7713 		 */
7714 		ASSERT(udp->udp_rcv_cnt == 0);
7715 		ASSERT(udp->udp_rcv_msgcnt == 0);
7716 		ASSERT(udp->udp_rcv_list_tail == NULL);
7717 		STR_WAKEUP_CLEAR(STREAM(q));
7718 	} else {
7719 		/*
7720 		 * More data follows; we need udp_rrw() to be
7721 		 * called in future to pick up the rest.
7722 		 */
7723 		STR_WAKEUP_SET(STREAM(q));
7724 	}
7725 	mutex_exit(&udp->udp_drain_lock);
7726 	dp->d_mp = mp;
7727 	return (0);
7728 }
7729 
7730 /*
7731  * Enqueue a completely-built T_UNITDATA_IND message into the receive
7732  * list; this is typically executed within the interrupt thread context
7733  * and so we do things as quickly as possible.
7734  */
7735 static void
7736 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
7737 {
7738 	ASSERT(q == RD(q));
7739 	ASSERT(pkt_len == msgdsize(mp));
7740 	ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
7741 	ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
7742 	ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
7743 
7744 	mutex_enter(&udp->udp_drain_lock);
7745 	/*
7746 	 * Wake up and signal the receiving app; it is okay to do this
7747 	 * before enqueueing the mp because we are holding the drain lock.
7748 	 * One of the advantages of synchronous stream is the ability for
7749 	 * us to find out when the application performs a read on the
7750 	 * socket by way of udp_rrw() entry point being called.  We need
7751 	 * to generate SIGPOLL/SIGIO for each received data in the case
7752 	 * of asynchronous socket just as in the strrput() case.  However,
7753 	 * we only wake the application up when necessary, i.e. during the
7754 	 * first enqueue.  When udp_rrw() is called, we send up a single
7755 	 * datagram upstream and call STR_WAKEUP_SET() again when there
7756 	 * are still data remaining in our receive queue.
7757 	 */
7758 	if (udp->udp_rcv_list_head == NULL) {
7759 		STR_WAKEUP_SET(STREAM(q));
7760 		udp->udp_rcv_list_head = mp;
7761 	} else {
7762 		udp->udp_rcv_list_tail->b_next = mp;
7763 	}
7764 	udp->udp_rcv_list_tail = mp;
7765 	udp->udp_rcv_cnt += pkt_len;
7766 	udp->udp_rcv_msgcnt++;
7767 
7768 	/* Need to flow-control? */
7769 	if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
7770 	    udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
7771 		udp->udp_drain_qfull = B_TRUE;
7772 
7773 	/* Update poll events and send SIGPOLL/SIGIO if necessary */
7774 	STR_SENDSIG(STREAM(q));
7775 	mutex_exit(&udp->udp_drain_lock);
7776 }
7777 
7778 /*
7779  * Drain the contents of receive list to the module upstream; we do
7780  * this during close or when we fallback to the slow mode due to
7781  * sockmod being popped or a module being pushed on top of us.
7782  */
7783 static void
7784 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
7785 {
7786 	mblk_t *mp;
7787 
7788 	ASSERT(q == RD(q));
7789 
7790 	mutex_enter(&udp->udp_drain_lock);
7791 	/*
7792 	 * There is no race with a concurrent udp_input() sending
7793 	 * up packets using putnext() after we have cleared the
7794 	 * udp_direct_sockfs flag but before we have completed
7795 	 * sending up the packets in udp_rcv_list, since we are
7796 	 * either a writer or we have quiesced the conn.
7797 	 */
7798 	udp->udp_direct_sockfs = B_FALSE;
7799 	mutex_exit(&udp->udp_drain_lock);
7800 
7801 	if (udp->udp_rcv_list_head != NULL)
7802 		UDP_STAT(udp_drain);
7803 
7804 	/*
7805 	 * Send up everything via putnext(); note here that we
7806 	 * don't need the udp_drain_lock to protect us since
7807 	 * nothing can enter udp_rrw() and that we currently
7808 	 * have exclusive access to this udp.
7809 	 */
7810 	while ((mp = udp->udp_rcv_list_head) != NULL) {
7811 		udp->udp_rcv_list_head = mp->b_next;
7812 		mp->b_next = NULL;
7813 		udp->udp_rcv_cnt -= msgdsize(mp);
7814 		udp->udp_rcv_msgcnt--;
7815 		if (closing) {
7816 			freemsg(mp);
7817 		} else {
7818 			putnext(q, mp);
7819 		}
7820 	}
7821 	ASSERT(udp->udp_rcv_cnt == 0);
7822 	ASSERT(udp->udp_rcv_msgcnt == 0);
7823 	ASSERT(udp->udp_rcv_list_head == NULL);
7824 	udp->udp_rcv_list_tail = NULL;
7825 	udp->udp_drain_qfull = B_FALSE;
7826 }
7827 
7828 static size_t
7829 udp_set_rcv_hiwat(udp_t *udp, size_t size)
7830 {
7831 	/* We add a bit of extra buffering */
7832 	size += size >> 1;
7833 	if (size > udp_max_buf)
7834 		size = udp_max_buf;
7835 
7836 	udp->udp_rcv_hiwat = size;
7837 	return (size);
7838 }
7839 
7840 /*
7841  * Little helper for IPsec's NAT-T processing.
7842  */
7843 boolean_t
7844 udp_compute_checksum(void)
7845 {
7846 	return (udp_do_checksum);
7847 }
7848