1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 const char udp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/pattr.h> 35 #include <sys/stropts.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/time.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/strsubr.h> 45 #include <sys/suntpi.h> 46 #include <sys/xti_inet.h> 47 #include <sys/cmn_err.h> 48 #include <sys/kmem.h> 49 #include <sys/policy.h> 50 #include <sys/ucred.h> 51 #include <sys/zone.h> 52 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/vtrace.h> 56 #include <sys/sdt.h> 57 #include <sys/debug.h> 58 #include <sys/isa_defs.h> 59 #include <sys/random.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/udp.h> 64 #include <net/if.h> 65 #include <net/route.h> 66 67 #include <inet/common.h> 68 #include <inet/ip.h> 69 #include <inet/ip_impl.h> 70 #include <inet/ip6.h> 71 #include <inet/ip_ire.h> 72 #include <inet/ip_if.h> 73 #include <inet/ip_multi.h> 74 #include <inet/ip_ndp.h> 75 #include <inet/mi.h> 76 #include <inet/mib2.h> 77 #include <inet/nd.h> 78 #include <inet/optcom.h> 79 #include <inet/snmpcom.h> 80 #include <inet/kstatcom.h> 81 #include <inet/udp_impl.h> 82 #include <inet/ipclassifier.h> 83 #include <inet/ipsec_impl.h> 84 #include <inet/ipp_common.h> 85 86 /* 87 * The ipsec_info.h header file is here since it has the definition for the 88 * M_CTL message types used by IP to convey information to the ULP. The 89 * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence. 90 */ 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 94 #include <sys/tsol/label.h> 95 #include <sys/tsol/tnet.h> 96 #include <rpc/pmap_prot.h> 97 98 /* 99 * Synchronization notes: 100 * 101 * UDP uses a combination of its internal perimeter, a global lock and 102 * a set of bind hash locks to protect its data structures. Please see 103 * the note above udp_mode_assertions for details about the internal 104 * perimeter. 105 * 106 * When a UDP endpoint is bound to a local port, it is inserted into 107 * a bind hash list. The list consists of an array of udp_fanout_t buckets. 108 * The size of the array is controlled by the udp_bind_fanout_size variable. 109 * This variable can be changed in /etc/system if the default value is 110 * not large enough. Each bind hash bucket is protected by a per bucket 111 * lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t 112 * structure. An UDP endpoint is removed from the bind hash list only 113 * when it is being unbound or being closed. The per bucket lock also 114 * protects a UDP endpoint's state changes. 115 * 116 * Plumbing notes: 117 * 118 * Both udp and ip are merged, but the streams plumbing is kept unchanged 119 * in that udp is always pushed atop /dev/ip. This is done to preserve 120 * backwards compatibility for certain applications which rely on such 121 * plumbing geometry to do things such as issuing I_POP on the stream 122 * in order to obtain direct access to /dev/ip, etc. 123 * 124 * All UDP processings happen in the /dev/ip instance; the udp module 125 * instance does not possess any state about the endpoint, and merely 126 * acts as a dummy module whose presence is to keep the streams plumbing 127 * appearance unchanged. At open time /dev/ip allocates a conn_t that 128 * happens to embed a udp_t. This stays dormant until the time udp is 129 * pushed, which indicates to /dev/ip that it must convert itself from 130 * an IP to a UDP endpoint. 131 * 132 * We only allow for the following plumbing cases: 133 * 134 * Normal: 135 * /dev/ip is first opened and later udp is pushed directly on top. 136 * This is the default action that happens when a udp socket or 137 * /dev/udp is opened. The conn_t created by /dev/ip instance is 138 * now shared and is marked with IPCL_UDP. 139 * 140 * SNMP-only: 141 * udp is pushed on top of a module other than /dev/ip. When this 142 * happens it will support only SNMP semantics. A new conn_t is 143 * allocated and marked with IPCL_UDPMOD. 144 * 145 * The above cases imply that we don't support any intermediate module to 146 * reside in between /dev/ip and udp -- in fact, we never supported such 147 * scenario in the past as the inter-layer communication semantics have 148 * always been private. Also note that the normal case allows for SNMP 149 * requests to be processed in addition to the rest of UDP operations. 150 * 151 * The normal case plumbing is depicted by the following diagram: 152 * 153 * +---------------+---------------+ 154 * | | | udp 155 * | udp_wq | udp_rq | 156 * | | UDP_RD | 157 * | | | 158 * +---------------+---------------+ 159 * | ^ 160 * v | 161 * +---------------+---------------+ 162 * | | | /dev/ip 163 * | ip_wq | ip_rq | conn_t 164 * | UDP_WR | | 165 * | | | 166 * +---------------+---------------+ 167 * 168 * Messages arriving at udp_wq from above will end up in ip_wq before 169 * it gets processed, i.e. udp write entry points will advance udp_wq 170 * and use its q_next value as ip_wq in order to use the conn_t that 171 * is stored in its q_ptr. Likewise, messages generated by ip to the 172 * module above udp will appear as if they are originated from udp_rq, 173 * i.e. putnext() calls to the module above udp is done using the 174 * udp_rq instead of ip_rq in order to avoid udp_rput() which does 175 * nothing more than calling putnext(). 176 * 177 * The above implies the following rule of thumb: 178 * 179 * 1. udp_t is obtained from conn_t, which is created by the /dev/ip 180 * instance and is stored in q_ptr of both ip_wq and ip_rq. There 181 * is no direct reference to conn_t from either udp_wq or udp_rq. 182 * 183 * 2. Write-side entry points of udp can obtain the conn_t via the 184 * Q_TO_CONN() macro, using the queue value obtain from UDP_WR(). 185 * 186 * 3. While in /dev/ip context, putnext() to the module above udp can 187 * be done by supplying the queue value obtained from UDP_RD(). 188 * 189 */ 190 191 static queue_t *UDP_WR(queue_t *); 192 static queue_t *UDP_RD(queue_t *); 193 194 udp_stat_t udp_statistics = { 195 { "udp_ip_send", KSTAT_DATA_UINT64 }, 196 { "udp_ip_ire_send", KSTAT_DATA_UINT64 }, 197 { "udp_ire_null", KSTAT_DATA_UINT64 }, 198 { "udp_drain", KSTAT_DATA_UINT64 }, 199 { "udp_sock_fallback", KSTAT_DATA_UINT64 }, 200 { "udp_rrw_busy", KSTAT_DATA_UINT64 }, 201 { "udp_rrw_msgcnt", KSTAT_DATA_UINT64 }, 202 { "udp_out_sw_cksum", KSTAT_DATA_UINT64 }, 203 { "udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 204 { "udp_out_opt", KSTAT_DATA_UINT64 }, 205 { "udp_out_err_notconn", KSTAT_DATA_UINT64 }, 206 { "udp_out_err_output", KSTAT_DATA_UINT64 }, 207 { "udp_out_err_tudr", KSTAT_DATA_UINT64 }, 208 { "udp_in_pktinfo", KSTAT_DATA_UINT64 }, 209 { "udp_in_recvdstaddr", KSTAT_DATA_UINT64 }, 210 { "udp_in_recvopts", KSTAT_DATA_UINT64 }, 211 { "udp_in_recvif", KSTAT_DATA_UINT64 }, 212 { "udp_in_recvslla", KSTAT_DATA_UINT64 }, 213 { "udp_in_recvucred", KSTAT_DATA_UINT64 }, 214 { "udp_in_recvttl", KSTAT_DATA_UINT64 }, 215 { "udp_in_recvhopopts", KSTAT_DATA_UINT64 }, 216 { "udp_in_recvhoplimit", KSTAT_DATA_UINT64 }, 217 { "udp_in_recvdstopts", KSTAT_DATA_UINT64 }, 218 { "udp_in_recvrtdstopts", KSTAT_DATA_UINT64 }, 219 { "udp_in_recvrthdr", KSTAT_DATA_UINT64 }, 220 { "udp_in_recvpktinfo", KSTAT_DATA_UINT64 }, 221 { "udp_in_recvtclass", KSTAT_DATA_UINT64 }, 222 { "udp_in_timestamp", KSTAT_DATA_UINT64 }, 223 #ifdef DEBUG 224 { "udp_data_conn", KSTAT_DATA_UINT64 }, 225 { "udp_data_notconn", KSTAT_DATA_UINT64 }, 226 #endif 227 }; 228 229 static kstat_t *udp_ksp; 230 struct kmem_cache *udp_cache; 231 232 /* 233 * Bind hash list size and hash function. It has to be a power of 2 for 234 * hashing. 235 */ 236 #define UDP_BIND_FANOUT_SIZE 512 237 #define UDP_BIND_HASH(lport) \ 238 ((ntohs((uint16_t)lport)) & (udp_bind_fanout_size - 1)) 239 240 /* UDP bind fanout hash structure. */ 241 typedef struct udp_fanout_s { 242 udp_t *uf_udp; 243 kmutex_t uf_lock; 244 #if defined(_LP64) || defined(_I32LPx) 245 char uf_pad[48]; 246 #else 247 char uf_pad[56]; 248 #endif 249 } udp_fanout_t; 250 251 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE; 252 /* udp_fanout_t *udp_bind_fanout. */ 253 static udp_fanout_t *udp_bind_fanout; 254 255 /* 256 * This controls the rate some ndd info report functions can be used 257 * by non-privileged users. It stores the last time such info is 258 * requested. When those report functions are called again, this 259 * is checked with the current time and compare with the ndd param 260 * udp_ndd_get_info_interval. 261 */ 262 static clock_t udp_last_ndd_get_info_time; 263 #define NDD_TOO_QUICK_MSG \ 264 "ndd get info rate too high for non-privileged users, try again " \ 265 "later.\n" 266 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 267 268 /* Option processing attrs */ 269 typedef struct udpattrs_s { 270 union { 271 ip6_pkt_t *udpattr_ipp6; /* For V6 */ 272 ip4_pkt_t *udpattr_ipp4; /* For V4 */ 273 } udpattr_ippu; 274 #define udpattr_ipp6 udpattr_ippu.udpattr_ipp6 275 #define udpattr_ipp4 udpattr_ippu.udpattr_ipp4 276 mblk_t *udpattr_mb; 277 boolean_t udpattr_credset; 278 } udpattrs_t; 279 280 static void udp_addr_req(queue_t *q, mblk_t *mp); 281 static void udp_bind(queue_t *q, mblk_t *mp); 282 static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp); 283 static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock); 284 static int udp_build_hdrs(queue_t *q, udp_t *udp); 285 static void udp_capability_req(queue_t *q, mblk_t *mp); 286 static int udp_close(queue_t *q); 287 static void udp_connect(queue_t *q, mblk_t *mp); 288 static void udp_disconnect(queue_t *q, mblk_t *mp); 289 static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, 290 int sys_error); 291 static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, 292 t_scalar_t tlierr, int unixerr); 293 static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 294 cred_t *cr); 295 static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 296 char *value, caddr_t cp, cred_t *cr); 297 static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 298 char *value, caddr_t cp, cred_t *cr); 299 static void udp_icmp_error(queue_t *q, mblk_t *mp); 300 static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp); 301 static void udp_info_req(queue_t *q, mblk_t *mp); 302 static mblk_t *udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, 303 t_scalar_t addr_length); 304 static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, 305 cred_t *credp); 306 static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp, 307 int *errorp, udpattrs_t *udpattrs); 308 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name); 309 static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 310 static boolean_t udp_param_register(udpparam_t *udppa, int cnt); 311 static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 312 cred_t *cr); 313 static void udp_report_item(mblk_t *mp, udp_t *udp); 314 static void udp_rput(queue_t *q, mblk_t *mp); 315 static void udp_rput_other(queue_t *, mblk_t *); 316 static int udp_rinfop(queue_t *q, infod_t *dp); 317 static int udp_rrw(queue_t *q, struiod_t *dp); 318 static void udp_rput_bind_ack(queue_t *q, mblk_t *mp); 319 static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 320 cred_t *cr); 321 static void udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha); 322 static void udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, 323 t_scalar_t destlen, t_scalar_t err); 324 static void udp_unbind(queue_t *q, mblk_t *mp); 325 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port, 326 boolean_t random); 327 static void udp_wput(queue_t *q, mblk_t *mp); 328 static mblk_t *udp_output_v4(conn_t *, mblk_t *mp, ipaddr_t v4dst, 329 uint16_t port, uint_t srcid, int *error); 330 static mblk_t *udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, 331 int *error); 332 static void udp_wput_other(queue_t *q, mblk_t *mp); 333 static void udp_wput_iocdata(queue_t *q, mblk_t *mp); 334 static void udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, 335 socklen_t addrlen); 336 static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size); 337 338 static void udp_kstat_init(void); 339 static void udp_kstat_fini(void); 340 static int udp_kstat_update(kstat_t *kp, int rw); 341 static void udp_input_wrapper(void *arg, mblk_t *mp, void *arg2); 342 static void udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2); 343 static void udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2); 344 static void udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2); 345 346 static void udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, 347 uint_t pkt_len); 348 static void udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing); 349 static void udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t); 350 static void udp_exit(conn_t *); 351 static void udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t); 352 #ifdef DEBUG 353 static void udp_mode_assertions(udp_t *, int); 354 #endif /* DEBUG */ 355 356 major_t UDP6_MAJ; 357 #define UDP6 "udp6" 358 359 #define UDP_RECV_HIWATER (56 * 1024) 360 #define UDP_RECV_LOWATER 128 361 #define UDP_XMIT_HIWATER (56 * 1024) 362 #define UDP_XMIT_LOWATER 1024 363 364 static struct module_info udp_info = { 365 UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER 366 }; 367 368 static struct qinit udp_rinit = { 369 (pfi_t)udp_rput, NULL, udp_open, udp_close, NULL, 370 &udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD 371 }; 372 373 static struct qinit udp_winit = { 374 (pfi_t)udp_wput, NULL, NULL, NULL, NULL, 375 &udp_info, NULL, NULL, NULL, STRUIOT_NONE 376 }; 377 378 static struct qinit winit = { 379 (pfi_t)putnext, NULL, NULL, NULL, NULL, 380 &udp_info, NULL, NULL, NULL, STRUIOT_NONE 381 }; 382 383 /* Support for just SNMP if UDP is not pushed directly over device IP */ 384 struct qinit udp_snmp_rinit = { 385 (pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL, 386 &udp_info, NULL, NULL, NULL, STRUIOT_NONE 387 }; 388 389 struct qinit udp_snmp_winit = { 390 (pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL, 391 &udp_info, NULL, NULL, NULL, STRUIOT_NONE 392 }; 393 394 struct streamtab udpinfo = { 395 &udp_rinit, &winit 396 }; 397 398 static sin_t sin_null; /* Zero address for quick clears */ 399 static sin6_t sin6_null; /* Zero address for quick clears */ 400 401 /* Hint not protected by any lock */ 402 static in_port_t udp_g_next_port_to_try; 403 404 /* 405 * Extra privileged ports. In host byte order. 406 */ 407 #define UDP_NUM_EPRIV_PORTS 64 408 static int udp_g_num_epriv_ports = UDP_NUM_EPRIV_PORTS; 409 static in_port_t udp_g_epriv_ports[UDP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 410 411 /* Only modified during _init and _fini thus no locking is needed. */ 412 static IDP udp_g_nd; /* Points to table of UDP ND variables. */ 413 414 /* MIB-2 stuff for SNMP */ 415 static mib2_udp_t udp_mib; /* SNMP fixed size info */ 416 static kstat_t *udp_mibkp; /* kstat exporting udp_mib data */ 417 418 #define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH) 419 420 /* Default structure copied into T_INFO_ACK messages */ 421 static struct T_info_ack udp_g_t_info_ack_ipv4 = { 422 T_INFO_ACK, 423 UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */ 424 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 425 T_INVALID, /* CDATA_size. udp does not support connect data. */ 426 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 427 sizeof (sin_t), /* ADDR_size. */ 428 0, /* OPT_size - not initialized here */ 429 UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */ 430 T_CLTS, /* SERV_type. udp supports connection-less. */ 431 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 432 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 433 }; 434 435 #define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN) 436 437 static struct T_info_ack udp_g_t_info_ack_ipv6 = { 438 T_INFO_ACK, 439 UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */ 440 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 441 T_INVALID, /* CDATA_size. udp does not support connect data. */ 442 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 443 sizeof (sin6_t), /* ADDR_size. */ 444 0, /* OPT_size - not initialized here */ 445 UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */ 446 T_CLTS, /* SERV_type. udp supports connection-less. */ 447 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 448 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 449 }; 450 451 /* largest UDP port number */ 452 #define UDP_MAX_PORT 65535 453 454 /* 455 * Table of ND variables supported by udp. These are loaded into udp_g_nd 456 * in udp_open. 457 * All of these are alterable, within the min/max values given, at run time. 458 */ 459 /* BEGIN CSTYLED */ 460 udpparam_t udp_param_arr[] = { 461 /*min max value name */ 462 { 0L, 256, 32, "udp_wroff_extra" }, 463 { 1L, 255, 255, "udp_ipv4_ttl" }, 464 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"}, 465 { 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" }, 466 { 0, 1, 1, "udp_do_checksum" }, 467 { 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" }, 468 { 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" }, 469 { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER, "udp_xmit_hiwat"}, 470 { 0, (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"}, 471 { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER, "udp_recv_hiwat"}, 472 { 65536, (1<<30), 2*1024*1024, "udp_max_buf"}, 473 { 100, 60000, 1000, "udp_ndd_get_info_interval"}, 474 }; 475 /* END CSTYLED */ 476 477 /* 478 * The smallest anonymous port in the privileged port range which UDP 479 * looks for free port. Use in the option UDP_ANONPRIVBIND. 480 */ 481 static in_port_t udp_min_anonpriv_port = 512; 482 483 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 484 uint32_t udp_random_anon_port = 1; 485 486 /* 487 * Hook functions to enable cluster networking. 488 * On non-clustered systems these vectors must always be NULL 489 */ 490 491 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family, 492 uint8_t *laddrp, in_port_t lport) = NULL; 493 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family, 494 uint8_t *laddrp, in_port_t lport) = NULL; 495 496 typedef union T_primitives *t_primp_t; 497 498 #define UDP_ENQUEUE_MP(udp, mp, proc, tag) { \ 499 ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL); \ 500 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 501 (mp)->b_queue = (queue_t *)((uintptr_t)tag); \ 502 (mp)->b_prev = (mblk_t *)proc; \ 503 if ((udp)->udp_mphead == NULL) \ 504 (udp)->udp_mphead = (mp); \ 505 else \ 506 (udp)->udp_mptail->b_next = (mp); \ 507 (udp)->udp_mptail = (mp); \ 508 (udp)->udp_mpcount++; \ 509 } 510 511 #define UDP_READERS_INCREF(udp) { \ 512 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 513 (udp)->udp_reader_count++; \ 514 } 515 516 #define UDP_READERS_DECREF(udp) { \ 517 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 518 (udp)->udp_reader_count--; \ 519 if ((udp)->udp_reader_count == 0) \ 520 cv_broadcast(&(udp)->udp_connp->conn_cv); \ 521 } 522 523 #define UDP_SQUEUE_DECREF(udp) { \ 524 ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock)); \ 525 (udp)->udp_squeue_count--; \ 526 if ((udp)->udp_squeue_count == 0) \ 527 cv_broadcast(&(udp)->udp_connp->conn_cv); \ 528 } 529 530 /* 531 * Notes on UDP endpoint synchronization: 532 * 533 * UDP needs exclusive operation on a per endpoint basis, when executing 534 * functions that modify the endpoint state. udp_rput_other() deals with 535 * packets with IP options, and processing these packets end up having 536 * to update the endpoint's option related state. udp_wput_other() deals 537 * with control operations from the top, e.g. connect() that needs to 538 * update the endpoint state. These could be synchronized using locks, 539 * but the current version uses squeues for this purpose. squeues may 540 * give performance improvement for certain cases such as connected UDP 541 * sockets; thus the framework allows for using squeues. 542 * 543 * The perimeter routines are described as follows: 544 * 545 * udp_enter(): 546 * Enter the UDP endpoint perimeter. 547 * 548 * udp_become_writer(): 549 * Become exclusive on the UDP endpoint. Specifies a function 550 * that will be called exclusively either immediately or later 551 * when the perimeter is available exclusively. 552 * 553 * udp_exit(): 554 * Exit the UDP perimeter. 555 * 556 * Entering UDP from the top or from the bottom must be done using 557 * udp_enter(). No lock must be held while attempting to enter the UDP 558 * perimeter. When finished, udp_exit() must be called to get out of 559 * the perimeter. 560 * 561 * UDP operates in either MT_HOT mode or in SQUEUE mode. In MT_HOT mode, 562 * multiple threads may enter a UDP endpoint concurrently. This is used 563 * for sending and/or receiving normal data. Control operations and other 564 * special cases call udp_become_writer() to become exclusive on a per 565 * endpoint basis and this results in transitioning to SQUEUE mode. squeue 566 * by definition serializes access to the conn_t. When there are no more 567 * pending messages on the squeue for the UDP connection, the endpoint 568 * reverts to MT_HOT mode. During the interregnum when not all MT threads 569 * of an endpoint have finished, messages are queued in the UDP endpoint 570 * and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode. 571 * 572 * These modes have the following analogs: 573 * 574 * UDP_MT_HOT/udp_reader_count==0 none 575 * UDP_MT_HOT/udp_reader_count>0 RW_READ_LOCK 576 * UDP_MT_QUEUED RW_WRITE_WANTED 577 * UDP_SQUEUE or UDP_QUEUED_SQUEUE RW_WRITE_LOCKED 578 * 579 * Stable modes: UDP_MT_HOT, UDP_SQUEUE 580 * Transient modes: UDP_MT_QUEUED, UDP_QUEUED_SQUEUE 581 * 582 * While in stable modes, UDP keeps track of the number of threads 583 * operating on the endpoint. The udp_reader_count variable represents 584 * the number of threads entering the endpoint as readers while it is 585 * in UDP_MT_HOT mode. Transitioning to UDP_SQUEUE happens when there 586 * is only a single reader, i.e. when this counter drops to 1. Likewise, 587 * udp_squeue_count represents the number of threads operating on the 588 * endpoint's squeue while it is in UDP_SQUEUE mode. The mode transition 589 * to UDP_MT_HOT happens after the last thread exits the endpoint, i.e. 590 * when this counter drops to 0. 591 * 592 * The default mode is set to UDP_MT_HOT and UDP alternates between 593 * UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below. 594 * 595 * Mode transition: 596 * ---------------------------------------------------------------- 597 * old mode Event New mode 598 * ---------------------------------------------------------------- 599 * UDP_MT_HOT Call to udp_become_writer() UDP_SQUEUE 600 * and udp_reader_count == 1 601 * 602 * UDP_MT_HOT Call to udp_become_writer() UDP_MT_QUEUED 603 * and udp_reader_count > 1 604 * 605 * UDP_MT_QUEUED udp_reader_count drops to zero UDP_QUEUED_SQUEUE 606 * 607 * UDP_QUEUED_SQUEUE All messages enqueued on the UDP_SQUEUE 608 * internal UDP queue successfully 609 * moved to squeue AND udp_squeue_count != 0 610 * 611 * UDP_QUEUED_SQUEUE All messages enqueued on the UDP_MT_HOT 612 * internal UDP queue successfully 613 * moved to squeue AND udp_squeue_count 614 * drops to zero 615 * 616 * UDP_SQUEUE udp_squeue_count drops to zero UDP_MT_HOT 617 * ---------------------------------------------------------------- 618 */ 619 620 static queue_t * 621 UDP_WR(queue_t *q) 622 { 623 ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL); 624 ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL); 625 ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next))); 626 627 return (_WR(q)->q_next); 628 } 629 630 static queue_t * 631 UDP_RD(queue_t *q) 632 { 633 ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL); 634 ASSERT(IPCL_IS_UDP(Q_TO_CONN(q))); 635 ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL); 636 637 return (_RD(q)->q_next); 638 } 639 640 #ifdef DEBUG 641 #define UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller) 642 #else 643 #define UDP_MODE_ASSERTIONS(udp, caller) 644 #endif 645 646 /* Invariants */ 647 #ifdef DEBUG 648 649 uint32_t udp_count[4]; 650 651 /* Context of udp_mode_assertions */ 652 #define UDP_ENTER 1 653 #define UDP_BECOME_WRITER 2 654 #define UDP_EXIT 3 655 656 static void 657 udp_mode_assertions(udp_t *udp, int caller) 658 { 659 ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock)); 660 661 switch (udp->udp_mode) { 662 case UDP_MT_HOT: 663 /* 664 * Messages have not yet been enqueued on the internal queue, 665 * otherwise we would have switched to UDP_MT_QUEUED. Likewise 666 * by definition, there can't be any messages enqueued on the 667 * squeue. The UDP could be quiescent, so udp_reader_count 668 * could be zero at entry. 669 */ 670 ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 && 671 udp->udp_squeue_count == 0); 672 ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0); 673 udp_count[0]++; 674 break; 675 676 case UDP_MT_QUEUED: 677 /* 678 * The last MT thread to exit the udp perimeter empties the 679 * internal queue and then switches the UDP to 680 * UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED 681 * mode, it means there must be at least 1 MT thread still in 682 * the perimeter and at least 1 message on the internal queue. 683 */ 684 ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL && 685 udp->udp_mpcount != 0 && udp->udp_squeue_count == 0); 686 udp_count[1]++; 687 break; 688 689 case UDP_QUEUED_SQUEUE: 690 /* 691 * The switch has happened from MT to SQUEUE. So there can't 692 * any MT threads. Messages could still pile up on the internal 693 * queue until the transition is complete and we move to 694 * UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count 695 * since the squeue could drain any time. 696 */ 697 ASSERT(udp->udp_reader_count == 0); 698 udp_count[2]++; 699 break; 700 701 case UDP_SQUEUE: 702 /* 703 * The transition is complete. Thre can't be any messages on 704 * the internal queue. The udp could be quiescent or the squeue 705 * could drain any time, so we can't assert on nonzero 706 * udp_squeue_count during entry. Nor can we assert that 707 * udp_reader_count is zero, since, a reader thread could have 708 * directly become writer in line by calling udp_become_writer 709 * without going through the queued states. 710 */ 711 ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0); 712 ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0); 713 udp_count[3]++; 714 break; 715 } 716 } 717 #endif 718 719 #define _UDP_ENTER(connp, mp, proc, tag) { \ 720 udp_t *_udp = (connp)->conn_udp; \ 721 \ 722 mutex_enter(&(connp)->conn_lock); \ 723 if ((connp)->conn_state_flags & CONN_CLOSING) { \ 724 mutex_exit(&(connp)->conn_lock); \ 725 freemsg(mp); \ 726 } else { \ 727 UDP_MODE_ASSERTIONS(_udp, UDP_ENTER); \ 728 \ 729 switch (_udp->udp_mode) { \ 730 case UDP_MT_HOT: \ 731 /* We can execute as reader right away. */ \ 732 UDP_READERS_INCREF(_udp); \ 733 mutex_exit(&(connp)->conn_lock); \ 734 (*(proc))(connp, mp, (connp)->conn_sqp); \ 735 break; \ 736 \ 737 case UDP_SQUEUE: \ 738 /* \ 739 * We are in squeue mode, send the \ 740 * packet to the squeue \ 741 */ \ 742 _udp->udp_squeue_count++; \ 743 CONN_INC_REF_LOCKED(connp); \ 744 mutex_exit(&(connp)->conn_lock); \ 745 squeue_enter((connp)->conn_sqp, mp, proc, \ 746 connp, tag); \ 747 break; \ 748 \ 749 case UDP_MT_QUEUED: \ 750 case UDP_QUEUED_SQUEUE: \ 751 /* \ 752 * Some messages may have been enqueued \ 753 * ahead of us. Enqueue the new message \ 754 * at the tail of the internal queue to \ 755 * preserve message ordering. \ 756 */ \ 757 UDP_ENQUEUE_MP(_udp, mp, proc, tag); \ 758 mutex_exit(&(connp)->conn_lock); \ 759 break; \ 760 } \ 761 } \ 762 } 763 764 static void 765 udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag) 766 { 767 _UDP_ENTER(connp, mp, proc, tag); 768 } 769 770 static void 771 udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag) 772 { 773 udp_t *udp; 774 775 udp = connp->conn_udp; 776 777 mutex_enter(&connp->conn_lock); 778 779 UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER); 780 781 switch (udp->udp_mode) { 782 case UDP_MT_HOT: 783 if (udp->udp_reader_count == 1) { 784 /* 785 * We are the only MT thread. Switch to squeue mode 786 * immediately. 787 */ 788 udp->udp_mode = UDP_SQUEUE; 789 udp->udp_squeue_count = 1; 790 CONN_INC_REF_LOCKED(connp); 791 mutex_exit(&connp->conn_lock); 792 squeue_enter(connp->conn_sqp, mp, proc, connp, tag); 793 return; 794 } 795 /* FALLTHRU */ 796 797 case UDP_MT_QUEUED: 798 /* Enqueue the packet internally in UDP */ 799 udp->udp_mode = UDP_MT_QUEUED; 800 UDP_ENQUEUE_MP(udp, mp, proc, tag); 801 mutex_exit(&connp->conn_lock); 802 return; 803 804 case UDP_SQUEUE: 805 case UDP_QUEUED_SQUEUE: 806 /* 807 * We are already exclusive. i.e. we are already 808 * writer. Simply call the desired function. 809 */ 810 udp->udp_squeue_count++; 811 mutex_exit(&connp->conn_lock); 812 (*proc)(connp, mp, connp->conn_sqp); 813 return; 814 } 815 } 816 817 /* 818 * Transition from MT mode to SQUEUE mode, when the last MT thread 819 * is exiting the UDP perimeter. Move all messages from the internal 820 * udp queue to the squeue. A better way would be to move all the 821 * messages in one shot, this needs more support from the squeue framework 822 */ 823 static void 824 udp_switch_to_squeue(udp_t *udp) 825 { 826 mblk_t *mp; 827 mblk_t *mp_next; 828 sqproc_t proc; 829 uint8_t tag; 830 conn_t *connp = udp->udp_connp; 831 832 ASSERT(MUTEX_HELD(&connp->conn_lock)); 833 ASSERT(udp->udp_mode == UDP_MT_QUEUED); 834 while (udp->udp_mphead != NULL) { 835 mp = udp->udp_mphead; 836 udp->udp_mphead = NULL; 837 udp->udp_mptail = NULL; 838 udp->udp_mpcount = 0; 839 udp->udp_mode = UDP_QUEUED_SQUEUE; 840 mutex_exit(&connp->conn_lock); 841 /* 842 * It is best not to hold any locks across the calls 843 * to squeue functions. Since we drop the lock we 844 * need to go back and check the udp_mphead once again 845 * after the squeue_fill and hence the while loop at 846 * the top of this function 847 */ 848 for (; mp != NULL; mp = mp_next) { 849 mp_next = mp->b_next; 850 proc = (sqproc_t)mp->b_prev; 851 tag = (uint8_t)((uintptr_t)mp->b_queue); 852 mp->b_next = NULL; 853 mp->b_prev = NULL; 854 mp->b_queue = NULL; 855 CONN_INC_REF(connp); 856 udp->udp_squeue_count++; 857 squeue_fill(connp->conn_sqp, mp, proc, connp, 858 tag); 859 } 860 mutex_enter(&connp->conn_lock); 861 } 862 /* 863 * udp_squeue_count of zero implies that the squeue has drained 864 * even before we arrived here (i.e. after the squeue_fill above) 865 */ 866 udp->udp_mode = (udp->udp_squeue_count != 0) ? 867 UDP_SQUEUE : UDP_MT_HOT; 868 } 869 870 #define _UDP_EXIT(connp) { \ 871 udp_t *_udp = (connp)->conn_udp; \ 872 \ 873 mutex_enter(&(connp)->conn_lock); \ 874 UDP_MODE_ASSERTIONS(_udp, UDP_EXIT); \ 875 \ 876 switch (_udp->udp_mode) { \ 877 case UDP_MT_HOT: \ 878 UDP_READERS_DECREF(_udp); \ 879 mutex_exit(&(connp)->conn_lock); \ 880 break; \ 881 \ 882 case UDP_SQUEUE: \ 883 UDP_SQUEUE_DECREF(_udp); \ 884 if (_udp->udp_squeue_count == 0) \ 885 _udp->udp_mode = UDP_MT_HOT; \ 886 mutex_exit(&(connp)->conn_lock); \ 887 break; \ 888 \ 889 case UDP_MT_QUEUED: \ 890 /* \ 891 * If this is the last MT thread, we need to \ 892 * switch to squeue mode \ 893 */ \ 894 UDP_READERS_DECREF(_udp); \ 895 if (_udp->udp_reader_count == 0) \ 896 udp_switch_to_squeue(_udp); \ 897 mutex_exit(&(connp)->conn_lock); \ 898 break; \ 899 \ 900 case UDP_QUEUED_SQUEUE: \ 901 UDP_SQUEUE_DECREF(_udp); \ 902 /* \ 903 * Even if the udp_squeue_count drops to zero, we \ 904 * don't want to change udp_mode to UDP_MT_HOT here. \ 905 * The thread in udp_switch_to_squeue will take care \ 906 * of the transition to UDP_MT_HOT, after emptying \ 907 * any more new messages that have been enqueued in \ 908 * udp_mphead. \ 909 */ \ 910 mutex_exit(&(connp)->conn_lock); \ 911 break; \ 912 } \ 913 } 914 915 static void 916 udp_exit(conn_t *connp) 917 { 918 _UDP_EXIT(connp); 919 } 920 921 /* 922 * Return the next anonymous port in the privileged port range for 923 * bind checking. 924 * 925 * Trusted Extension (TX) notes: TX allows administrator to mark or 926 * reserve ports as Multilevel ports (MLP). MLP has special function 927 * on TX systems. Once a port is made MLP, it's not available as 928 * ordinary port. This creates "holes" in the port name space. It 929 * may be necessary to skip the "holes" find a suitable anon port. 930 */ 931 static in_port_t 932 udp_get_next_priv_port(udp_t *udp) 933 { 934 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 935 in_port_t nextport; 936 boolean_t restart = B_FALSE; 937 938 retry: 939 if (next_priv_port < udp_min_anonpriv_port || 940 next_priv_port >= IPPORT_RESERVED) { 941 next_priv_port = IPPORT_RESERVED - 1; 942 if (restart) 943 return (0); 944 restart = B_TRUE; 945 } 946 947 if (is_system_labeled() && 948 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 949 next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) { 950 next_priv_port = nextport; 951 goto retry; 952 } 953 954 return (next_priv_port--); 955 } 956 957 /* UDP bind hash report triggered via the Named Dispatch mechanism. */ 958 /* ARGSUSED */ 959 static int 960 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 961 { 962 udp_fanout_t *udpf; 963 int i; 964 zoneid_t zoneid; 965 conn_t *connp; 966 udp_t *udp; 967 968 connp = Q_TO_CONN(q); 969 udp = connp->conn_udp; 970 971 /* Refer to comments in udp_status_report(). */ 972 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 973 if (ddi_get_lbolt() - udp_last_ndd_get_info_time < 974 drv_usectohz(udp_ndd_get_info_interval * 1000)) { 975 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 976 return (0); 977 } 978 } 979 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 980 /* The following may work even if we cannot get a large buf. */ 981 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 982 return (0); 983 } 984 985 (void) mi_mpprintf(mp, 986 "UDP " MI_COL_HDRPAD_STR 987 /* 12345678[89ABCDEF] */ 988 " zone lport src addr dest addr port state"); 989 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 990 991 zoneid = connp->conn_zoneid; 992 993 for (i = 0; i < udp_bind_fanout_size; i++) { 994 udpf = &udp_bind_fanout[i]; 995 mutex_enter(&udpf->uf_lock); 996 997 /* Print the hash index. */ 998 udp = udpf->uf_udp; 999 if (zoneid != GLOBAL_ZONEID) { 1000 /* skip to first entry in this zone; might be none */ 1001 while (udp != NULL && 1002 udp->udp_connp->conn_zoneid != zoneid) 1003 udp = udp->udp_bind_hash; 1004 } 1005 if (udp != NULL) { 1006 uint_t print_len, buf_len; 1007 1008 buf_len = mp->b_cont->b_datap->db_lim - 1009 mp->b_cont->b_wptr; 1010 print_len = snprintf((char *)mp->b_cont->b_wptr, 1011 buf_len, "%d\n", i); 1012 if (print_len < buf_len) { 1013 mp->b_cont->b_wptr += print_len; 1014 } else { 1015 mp->b_cont->b_wptr += buf_len; 1016 } 1017 for (; udp != NULL; udp = udp->udp_bind_hash) { 1018 if (zoneid == GLOBAL_ZONEID || 1019 zoneid == udp->udp_connp->conn_zoneid) 1020 udp_report_item(mp->b_cont, udp); 1021 } 1022 } 1023 mutex_exit(&udpf->uf_lock); 1024 } 1025 udp_last_ndd_get_info_time = ddi_get_lbolt(); 1026 return (0); 1027 } 1028 1029 /* 1030 * Hash list removal routine for udp_t structures. 1031 */ 1032 static void 1033 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock) 1034 { 1035 udp_t *udpnext; 1036 kmutex_t *lockp; 1037 1038 if (udp->udp_ptpbhn == NULL) 1039 return; 1040 1041 /* 1042 * Extract the lock pointer in case there are concurrent 1043 * hash_remove's for this instance. 1044 */ 1045 ASSERT(udp->udp_port != 0); 1046 if (!caller_holds_lock) { 1047 lockp = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)].uf_lock; 1048 ASSERT(lockp != NULL); 1049 mutex_enter(lockp); 1050 } 1051 if (udp->udp_ptpbhn != NULL) { 1052 udpnext = udp->udp_bind_hash; 1053 if (udpnext != NULL) { 1054 udpnext->udp_ptpbhn = udp->udp_ptpbhn; 1055 udp->udp_bind_hash = NULL; 1056 } 1057 *udp->udp_ptpbhn = udpnext; 1058 udp->udp_ptpbhn = NULL; 1059 } 1060 if (!caller_holds_lock) { 1061 mutex_exit(lockp); 1062 } 1063 } 1064 1065 static void 1066 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp) 1067 { 1068 udp_t **udpp; 1069 udp_t *udpnext; 1070 1071 ASSERT(MUTEX_HELD(&uf->uf_lock)); 1072 if (udp->udp_ptpbhn != NULL) { 1073 udp_bind_hash_remove(udp, B_TRUE); 1074 } 1075 udpp = &uf->uf_udp; 1076 udpnext = udpp[0]; 1077 if (udpnext != NULL) { 1078 /* 1079 * If the new udp bound to the INADDR_ANY address 1080 * and the first one in the list is not bound to 1081 * INADDR_ANY we skip all entries until we find the 1082 * first one bound to INADDR_ANY. 1083 * This makes sure that applications binding to a 1084 * specific address get preference over those binding to 1085 * INADDR_ANY. 1086 */ 1087 if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) && 1088 !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) { 1089 while ((udpnext = udpp[0]) != NULL && 1090 !V6_OR_V4_INADDR_ANY( 1091 udpnext->udp_bound_v6src)) { 1092 udpp = &(udpnext->udp_bind_hash); 1093 } 1094 if (udpnext != NULL) 1095 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 1096 } else { 1097 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 1098 } 1099 } 1100 udp->udp_bind_hash = udpnext; 1101 udp->udp_ptpbhn = udpp; 1102 udpp[0] = udp; 1103 } 1104 1105 /* 1106 * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message 1107 * passed to udp_wput. 1108 * It associates a port number and local address with the stream. 1109 * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP 1110 * protocol type (IPPROTO_UDP) placed in the message following the address. 1111 * A T_BIND_ACK message is passed upstream when ip acknowledges the request. 1112 * (Called as writer.) 1113 * 1114 * Note that UDP over IPv4 and IPv6 sockets can use the same port number 1115 * without setting SO_REUSEADDR. This is needed so that they 1116 * can be viewed as two independent transport protocols. 1117 * However, anonymouns ports are allocated from the same range to avoid 1118 * duplicating the udp_g_next_port_to_try. 1119 */ 1120 static void 1121 udp_bind(queue_t *q, mblk_t *mp) 1122 { 1123 sin_t *sin; 1124 sin6_t *sin6; 1125 mblk_t *mp1; 1126 in_port_t port; /* Host byte order */ 1127 in_port_t requested_port; /* Host byte order */ 1128 struct T_bind_req *tbr; 1129 int count; 1130 in6_addr_t v6src; 1131 boolean_t bind_to_req_port_only; 1132 int loopmax; 1133 udp_fanout_t *udpf; 1134 in_port_t lport; /* Network byte order */ 1135 zoneid_t zoneid; 1136 conn_t *connp; 1137 udp_t *udp; 1138 boolean_t is_inaddr_any; 1139 mlp_type_t addrtype, mlptype; 1140 1141 connp = Q_TO_CONN(q); 1142 udp = connp->conn_udp; 1143 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 1144 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1145 "udp_bind: bad req, len %u", 1146 (uint_t)(mp->b_wptr - mp->b_rptr)); 1147 udp_err_ack(q, mp, TPROTO, 0); 1148 return; 1149 } 1150 1151 if (udp->udp_state != TS_UNBND) { 1152 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1153 "udp_bind: bad state, %u", udp->udp_state); 1154 udp_err_ack(q, mp, TOUTSTATE, 0); 1155 return; 1156 } 1157 /* 1158 * Reallocate the message to make sure we have enough room for an 1159 * address and the protocol type. 1160 */ 1161 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 1162 if (!mp1) { 1163 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1164 return; 1165 } 1166 1167 mp = mp1; 1168 tbr = (struct T_bind_req *)mp->b_rptr; 1169 switch (tbr->ADDR_length) { 1170 case 0: /* Request for a generic port */ 1171 tbr->ADDR_offset = sizeof (struct T_bind_req); 1172 if (udp->udp_family == AF_INET) { 1173 tbr->ADDR_length = sizeof (sin_t); 1174 sin = (sin_t *)&tbr[1]; 1175 *sin = sin_null; 1176 sin->sin_family = AF_INET; 1177 mp->b_wptr = (uchar_t *)&sin[1]; 1178 } else { 1179 ASSERT(udp->udp_family == AF_INET6); 1180 tbr->ADDR_length = sizeof (sin6_t); 1181 sin6 = (sin6_t *)&tbr[1]; 1182 *sin6 = sin6_null; 1183 sin6->sin6_family = AF_INET6; 1184 mp->b_wptr = (uchar_t *)&sin6[1]; 1185 } 1186 port = 0; 1187 break; 1188 1189 case sizeof (sin_t): /* Complete IPv4 address */ 1190 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 1191 sizeof (sin_t)); 1192 if (sin == NULL || !OK_32PTR((char *)sin)) { 1193 udp_err_ack(q, mp, TSYSERR, EINVAL); 1194 return; 1195 } 1196 if (udp->udp_family != AF_INET || 1197 sin->sin_family != AF_INET) { 1198 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1199 return; 1200 } 1201 port = ntohs(sin->sin_port); 1202 break; 1203 1204 case sizeof (sin6_t): /* complete IPv6 address */ 1205 sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset, 1206 sizeof (sin6_t)); 1207 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 1208 udp_err_ack(q, mp, TSYSERR, EINVAL); 1209 return; 1210 } 1211 if (udp->udp_family != AF_INET6 || 1212 sin6->sin6_family != AF_INET6) { 1213 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1214 return; 1215 } 1216 port = ntohs(sin6->sin6_port); 1217 break; 1218 1219 default: /* Invalid request */ 1220 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1221 "udp_bind: bad ADDR_length length %u", tbr->ADDR_length); 1222 udp_err_ack(q, mp, TBADADDR, 0); 1223 return; 1224 } 1225 1226 requested_port = port; 1227 1228 if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ) 1229 bind_to_req_port_only = B_FALSE; 1230 else /* T_BIND_REQ and requested_port != 0 */ 1231 bind_to_req_port_only = B_TRUE; 1232 1233 if (requested_port == 0) { 1234 /* 1235 * If the application passed in zero for the port number, it 1236 * doesn't care which port number we bind to. Get one in the 1237 * valid range. 1238 */ 1239 if (udp->udp_anon_priv_bind) { 1240 port = udp_get_next_priv_port(udp); 1241 } else { 1242 port = udp_update_next_port(udp, 1243 udp_g_next_port_to_try, B_TRUE); 1244 } 1245 } else { 1246 /* 1247 * If the port is in the well-known privileged range, 1248 * make sure the caller was privileged. 1249 */ 1250 int i; 1251 boolean_t priv = B_FALSE; 1252 1253 if (port < udp_smallest_nonpriv_port) { 1254 priv = B_TRUE; 1255 } else { 1256 for (i = 0; i < udp_g_num_epriv_ports; i++) { 1257 if (port == udp_g_epriv_ports[i]) { 1258 priv = B_TRUE; 1259 break; 1260 } 1261 } 1262 } 1263 1264 if (priv) { 1265 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 1266 1267 if (secpolicy_net_privaddr(cr, port) != 0) { 1268 udp_err_ack(q, mp, TACCES, 0); 1269 return; 1270 } 1271 } 1272 } 1273 1274 if (port == 0) { 1275 udp_err_ack(q, mp, TNOADDR, 0); 1276 return; 1277 } 1278 1279 /* 1280 * Copy the source address into our udp structure. This address 1281 * may still be zero; if so, IP will fill in the correct address 1282 * each time an outbound packet is passed to it. 1283 */ 1284 if (udp->udp_family == AF_INET) { 1285 ASSERT(sin != NULL); 1286 ASSERT(udp->udp_ipversion == IPV4_VERSION); 1287 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 1288 udp->udp_ip_snd_options_len; 1289 IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src); 1290 } else { 1291 ASSERT(sin6 != NULL); 1292 v6src = sin6->sin6_addr; 1293 if (IN6_IS_ADDR_V4MAPPED(&v6src)) { 1294 udp->udp_ipversion = IPV4_VERSION; 1295 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 1296 UDPH_SIZE + udp->udp_ip_snd_options_len; 1297 } else { 1298 udp->udp_ipversion = IPV6_VERSION; 1299 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 1300 } 1301 } 1302 1303 /* 1304 * If udp_reuseaddr is not set, then we have to make sure that 1305 * the IP address and port number the application requested 1306 * (or we selected for the application) is not being used by 1307 * another stream. If another stream is already using the 1308 * requested IP address and port, the behavior depends on 1309 * "bind_to_req_port_only". If set the bind fails; otherwise we 1310 * search for any an unused port to bind to the the stream. 1311 * 1312 * As per the BSD semantics, as modified by the Deering multicast 1313 * changes, if udp_reuseaddr is set, then we allow multiple binds 1314 * to the same port independent of the local IP address. 1315 * 1316 * This is slightly different than in SunOS 4.X which did not 1317 * support IP multicast. Note that the change implemented by the 1318 * Deering multicast code effects all binds - not only binding 1319 * to IP multicast addresses. 1320 * 1321 * Note that when binding to port zero we ignore SO_REUSEADDR in 1322 * order to guarantee a unique port. 1323 */ 1324 1325 count = 0; 1326 if (udp->udp_anon_priv_bind) { 1327 /* loopmax = (IPPORT_RESERVED-1) - udp_min_anonpriv_port + 1 */ 1328 loopmax = IPPORT_RESERVED - udp_min_anonpriv_port; 1329 } else { 1330 loopmax = udp_largest_anon_port - udp_smallest_anon_port + 1; 1331 } 1332 1333 is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src); 1334 zoneid = connp->conn_zoneid; 1335 1336 for (;;) { 1337 udp_t *udp1; 1338 boolean_t found_exclbind = B_FALSE; 1339 1340 /* 1341 * Walk through the list of udp streams bound to 1342 * requested port with the same IP address. 1343 */ 1344 lport = htons(port); 1345 udpf = &udp_bind_fanout[UDP_BIND_HASH(lport)]; 1346 mutex_enter(&udpf->uf_lock); 1347 for (udp1 = udpf->uf_udp; udp1 != NULL; 1348 udp1 = udp1->udp_bind_hash) { 1349 if (lport != udp1->udp_port) 1350 continue; 1351 1352 /* 1353 * On a labeled system, we must treat bindings to ports 1354 * on shared IP addresses by sockets with MAC exemption 1355 * privilege as being in all zones, as there's 1356 * otherwise no way to identify the right receiver. 1357 */ 1358 if (zoneid != udp1->udp_connp->conn_zoneid && 1359 !udp->udp_mac_exempt && !udp1->udp_mac_exempt) 1360 continue; 1361 1362 /* 1363 * If UDP_EXCLBIND is set for either the bound or 1364 * binding endpoint, the semantics of bind 1365 * is changed according to the following chart. 1366 * 1367 * spec = specified address (v4 or v6) 1368 * unspec = unspecified address (v4 or v6) 1369 * A = specified addresses are different for endpoints 1370 * 1371 * bound bind to allowed? 1372 * ------------------------------------- 1373 * unspec unspec no 1374 * unspec spec no 1375 * spec unspec no 1376 * spec spec yes if A 1377 * 1378 * For labeled systems, SO_MAC_EXEMPT behaves the same 1379 * as UDP_EXCLBIND, except that zoneid is ignored. 1380 */ 1381 if (udp1->udp_exclbind || udp->udp_exclbind || 1382 udp1->udp_mac_exempt || udp->udp_mac_exempt) { 1383 if (V6_OR_V4_INADDR_ANY( 1384 udp1->udp_bound_v6src) || 1385 is_inaddr_any || 1386 IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 1387 &v6src)) { 1388 found_exclbind = B_TRUE; 1389 break; 1390 } 1391 continue; 1392 } 1393 1394 /* 1395 * Check ipversion to allow IPv4 and IPv6 sockets to 1396 * have disjoint port number spaces. 1397 */ 1398 if (udp->udp_ipversion != udp1->udp_ipversion) { 1399 1400 /* 1401 * On the first time through the loop, if the 1402 * the user intentionally specified a 1403 * particular port number, then ignore any 1404 * bindings of the other protocol that may 1405 * conflict. This allows the user to bind IPv6 1406 * alone and get both v4 and v6, or bind both 1407 * both and get each seperately. On subsequent 1408 * times through the loop, we're checking a 1409 * port that we chose (not the user) and thus 1410 * we do not allow casual duplicate bindings. 1411 */ 1412 if (count == 0 && requested_port != 0) 1413 continue; 1414 } 1415 1416 /* 1417 * No difference depending on SO_REUSEADDR. 1418 * 1419 * If existing port is bound to a 1420 * non-wildcard IP address and 1421 * the requesting stream is bound to 1422 * a distinct different IP addresses 1423 * (non-wildcard, also), keep going. 1424 */ 1425 if (!is_inaddr_any && 1426 !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) && 1427 !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 1428 &v6src)) { 1429 continue; 1430 } 1431 break; 1432 } 1433 1434 if (!found_exclbind && 1435 (udp->udp_reuseaddr && requested_port != 0)) { 1436 break; 1437 } 1438 1439 if (udp1 == NULL) { 1440 /* 1441 * No other stream has this IP address 1442 * and port number. We can use it. 1443 */ 1444 break; 1445 } 1446 mutex_exit(&udpf->uf_lock); 1447 if (bind_to_req_port_only) { 1448 /* 1449 * We get here only when requested port 1450 * is bound (and only first of the for() 1451 * loop iteration). 1452 * 1453 * The semantics of this bind request 1454 * require it to fail so we return from 1455 * the routine (and exit the loop). 1456 * 1457 */ 1458 udp_err_ack(q, mp, TADDRBUSY, 0); 1459 return; 1460 } 1461 1462 if (udp->udp_anon_priv_bind) { 1463 port = udp_get_next_priv_port(udp); 1464 } else { 1465 if ((count == 0) && (requested_port != 0)) { 1466 /* 1467 * If the application wants us to find 1468 * a port, get one to start with. Set 1469 * requested_port to 0, so that we will 1470 * update udp_g_next_port_to_try below. 1471 */ 1472 port = udp_update_next_port(udp, 1473 udp_g_next_port_to_try, B_TRUE); 1474 requested_port = 0; 1475 } else { 1476 port = udp_update_next_port(udp, port + 1, 1477 B_FALSE); 1478 } 1479 } 1480 1481 if (port == 0 || ++count >= loopmax) { 1482 /* 1483 * We've tried every possible port number and 1484 * there are none available, so send an error 1485 * to the user. 1486 */ 1487 udp_err_ack(q, mp, TNOADDR, 0); 1488 return; 1489 } 1490 } 1491 1492 /* 1493 * Copy the source address into our udp structure. This address 1494 * may still be zero; if so, ip will fill in the correct address 1495 * each time an outbound packet is passed to it. 1496 * If we are binding to a broadcast or multicast address udp_rput 1497 * will clear the source address when it receives the T_BIND_ACK. 1498 */ 1499 udp->udp_v6src = udp->udp_bound_v6src = v6src; 1500 udp->udp_port = lport; 1501 /* 1502 * Now reset the the next anonymous port if the application requested 1503 * an anonymous port, or we handed out the next anonymous port. 1504 */ 1505 if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) { 1506 udp_g_next_port_to_try = port + 1; 1507 } 1508 1509 /* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */ 1510 if (udp->udp_family == AF_INET) { 1511 sin->sin_port = udp->udp_port; 1512 } else { 1513 int error; 1514 1515 sin6->sin6_port = udp->udp_port; 1516 /* Rebuild the header template */ 1517 error = udp_build_hdrs(q, udp); 1518 if (error != 0) { 1519 mutex_exit(&udpf->uf_lock); 1520 udp_err_ack(q, mp, TSYSERR, error); 1521 return; 1522 } 1523 } 1524 udp->udp_state = TS_IDLE; 1525 udp_bind_hash_insert(udpf, udp); 1526 mutex_exit(&udpf->uf_lock); 1527 1528 if (cl_inet_bind) { 1529 /* 1530 * Running in cluster mode - register bind information 1531 */ 1532 if (udp->udp_ipversion == IPV4_VERSION) { 1533 (*cl_inet_bind)(IPPROTO_UDP, AF_INET, 1534 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 1535 (in_port_t)udp->udp_port); 1536 } else { 1537 (*cl_inet_bind)(IPPROTO_UDP, AF_INET6, 1538 (uint8_t *)&(udp->udp_v6src), 1539 (in_port_t)udp->udp_port); 1540 } 1541 1542 } 1543 1544 connp->conn_anon_port = (is_system_labeled() && requested_port == 0); 1545 if (is_system_labeled() && (!connp->conn_anon_port || 1546 connp->conn_anon_mlp)) { 1547 uint16_t mlpport; 1548 cred_t *cr = connp->conn_cred; 1549 zone_t *zone; 1550 1551 connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth : 1552 mlptSingle; 1553 addrtype = tsol_mlp_addr_type(zoneid, IPV6_VERSION, &v6src); 1554 if (addrtype == mlptSingle) { 1555 udp_err_ack(q, mp, TNOADDR, 0); 1556 connp->conn_anon_port = B_FALSE; 1557 connp->conn_mlp_type = mlptSingle; 1558 return; 1559 } 1560 mlpport = connp->conn_anon_port ? PMAPPORT : port; 1561 zone = crgetzone(cr); 1562 mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport, 1563 addrtype); 1564 if (mlptype != mlptSingle && 1565 (connp->conn_mlp_type == mlptSingle || 1566 secpolicy_net_bindmlp(cr) != 0)) { 1567 if (udp->udp_debug) { 1568 (void) strlog(UDP_MOD_ID, 0, 1, 1569 SL_ERROR|SL_TRACE, 1570 "udp_bind: no priv for multilevel port %d", 1571 mlpport); 1572 } 1573 udp_err_ack(q, mp, TACCES, 0); 1574 connp->conn_anon_port = B_FALSE; 1575 connp->conn_mlp_type = mlptSingle; 1576 return; 1577 } 1578 1579 /* 1580 * If we're specifically binding a shared IP address and the 1581 * port is MLP on shared addresses, then check to see if this 1582 * zone actually owns the MLP. Reject if not. 1583 */ 1584 if (mlptype == mlptShared && addrtype == mlptShared) { 1585 zoneid_t mlpzone; 1586 1587 mlpzone = tsol_mlp_findzone(IPPROTO_UDP, 1588 htons(mlpport)); 1589 if (connp->conn_zoneid != mlpzone) { 1590 if (udp->udp_debug) { 1591 (void) strlog(UDP_MOD_ID, 0, 1, 1592 SL_ERROR|SL_TRACE, 1593 "udp_bind: attempt to bind port " 1594 "%d on shared addr in zone %d " 1595 "(should be %d)", 1596 mlpport, connp->conn_zoneid, 1597 mlpzone); 1598 } 1599 udp_err_ack(q, mp, TACCES, 0); 1600 connp->conn_anon_port = B_FALSE; 1601 connp->conn_mlp_type = mlptSingle; 1602 return; 1603 } 1604 } 1605 if (connp->conn_anon_port) { 1606 int error; 1607 1608 error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 1609 port, B_TRUE); 1610 if (error != 0) { 1611 if (udp->udp_debug) { 1612 (void) strlog(UDP_MOD_ID, 0, 1, 1613 SL_ERROR|SL_TRACE, 1614 "udp_bind: cannot establish anon " 1615 "MLP for port %d", port); 1616 } 1617 udp_err_ack(q, mp, TACCES, 0); 1618 connp->conn_anon_port = B_FALSE; 1619 connp->conn_mlp_type = mlptSingle; 1620 return; 1621 } 1622 } 1623 connp->conn_mlp_type = mlptype; 1624 } 1625 1626 /* Pass the protocol number in the message following the address. */ 1627 *mp->b_wptr++ = IPPROTO_UDP; 1628 if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 1629 /* 1630 * Append a request for an IRE if udp_v6src not 1631 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address). 1632 */ 1633 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 1634 if (!mp->b_cont) { 1635 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1636 return; 1637 } 1638 mp->b_cont->b_wptr += sizeof (ire_t); 1639 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 1640 } 1641 if (udp->udp_family == AF_INET6) 1642 mp = ip_bind_v6(q, mp, connp, NULL); 1643 else 1644 mp = ip_bind_v4(q, mp, connp); 1645 1646 if (mp != NULL) 1647 udp_rput_other(_RD(q), mp); 1648 else 1649 CONN_INC_REF(connp); 1650 } 1651 1652 1653 void 1654 udp_resume_bind(conn_t *connp, mblk_t *mp) 1655 { 1656 udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY); 1657 } 1658 1659 /* 1660 * This is called from ip_wput_nondata to resume a deferred UDP bind. 1661 */ 1662 /* ARGSUSED */ 1663 static void 1664 udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2) 1665 { 1666 conn_t *connp = arg; 1667 1668 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1669 1670 udp_rput_other(connp->conn_rq, mp); 1671 1672 CONN_OPER_PENDING_DONE(connp); 1673 udp_exit(connp); 1674 } 1675 1676 /* 1677 * This routine handles each T_CONN_REQ message passed to udp. It 1678 * associates a default destination address with the stream. 1679 * 1680 * This routine sends down a T_BIND_REQ to IP with the following mblks: 1681 * T_BIND_REQ - specifying local and remote address/port 1682 * IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src 1683 * T_OK_ACK - for the T_CONN_REQ 1684 * T_CONN_CON - to keep the TPI user happy 1685 * 1686 * The connect completes in udp_rput. 1687 * When a T_BIND_ACK is received information is extracted from the IRE 1688 * and the two appended messages are sent to the TPI user. 1689 * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert 1690 * it to an error ack for the appropriate primitive. 1691 */ 1692 static void 1693 udp_connect(queue_t *q, mblk_t *mp) 1694 { 1695 sin6_t *sin6; 1696 sin_t *sin; 1697 struct T_conn_req *tcr; 1698 in6_addr_t v6dst; 1699 ipaddr_t v4dst; 1700 uint16_t dstport; 1701 uint32_t flowinfo; 1702 mblk_t *mp1, *mp2; 1703 udp_fanout_t *udpf; 1704 udp_t *udp, *udp1; 1705 1706 udp = Q_TO_UDP(q); 1707 1708 tcr = (struct T_conn_req *)mp->b_rptr; 1709 1710 /* A bit of sanity checking */ 1711 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) { 1712 udp_err_ack(q, mp, TPROTO, 0); 1713 return; 1714 } 1715 /* 1716 * This UDP must have bound to a port already before doing 1717 * a connect. 1718 */ 1719 if (udp->udp_state == TS_UNBND) { 1720 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1721 "udp_connect: bad state, %u", udp->udp_state); 1722 udp_err_ack(q, mp, TOUTSTATE, 0); 1723 return; 1724 } 1725 ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL); 1726 1727 udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)]; 1728 1729 if (udp->udp_state == TS_DATA_XFER) { 1730 /* Already connected - clear out state */ 1731 mutex_enter(&udpf->uf_lock); 1732 udp->udp_v6src = udp->udp_bound_v6src; 1733 udp->udp_state = TS_IDLE; 1734 mutex_exit(&udpf->uf_lock); 1735 } 1736 1737 if (tcr->OPT_length != 0) { 1738 udp_err_ack(q, mp, TBADOPT, 0); 1739 return; 1740 } 1741 1742 /* 1743 * Determine packet type based on type of address passed in 1744 * the request should contain an IPv4 or IPv6 address. 1745 * Make sure that address family matches the type of 1746 * family of the the address passed down 1747 */ 1748 switch (tcr->DEST_length) { 1749 default: 1750 udp_err_ack(q, mp, TBADADDR, 0); 1751 return; 1752 1753 case sizeof (sin_t): 1754 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 1755 sizeof (sin_t)); 1756 if (sin == NULL || !OK_32PTR((char *)sin)) { 1757 udp_err_ack(q, mp, TSYSERR, EINVAL); 1758 return; 1759 } 1760 if (udp->udp_family != AF_INET || 1761 sin->sin_family != AF_INET) { 1762 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1763 return; 1764 } 1765 v4dst = sin->sin_addr.s_addr; 1766 dstport = sin->sin_port; 1767 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1768 ASSERT(udp->udp_ipversion == IPV4_VERSION); 1769 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 1770 udp->udp_ip_snd_options_len; 1771 break; 1772 1773 case sizeof (sin6_t): 1774 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 1775 sizeof (sin6_t)); 1776 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 1777 udp_err_ack(q, mp, TSYSERR, EINVAL); 1778 return; 1779 } 1780 if (udp->udp_family != AF_INET6 || 1781 sin6->sin6_family != AF_INET6) { 1782 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1783 return; 1784 } 1785 v6dst = sin6->sin6_addr; 1786 if (IN6_IS_ADDR_V4MAPPED(&v6dst)) { 1787 IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst); 1788 udp->udp_ipversion = IPV4_VERSION; 1789 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 1790 UDPH_SIZE + udp->udp_ip_snd_options_len; 1791 flowinfo = 0; 1792 } else { 1793 udp->udp_ipversion = IPV6_VERSION; 1794 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 1795 flowinfo = sin6->sin6_flowinfo; 1796 } 1797 dstport = sin6->sin6_port; 1798 break; 1799 } 1800 if (dstport == 0) { 1801 udp_err_ack(q, mp, TBADADDR, 0); 1802 return; 1803 } 1804 1805 /* 1806 * Create a default IP header with no IP options. 1807 */ 1808 udp->udp_dstport = dstport; 1809 if (udp->udp_ipversion == IPV4_VERSION) { 1810 /* 1811 * Interpret a zero destination to mean loopback. 1812 * Update the T_CONN_REQ (sin/sin6) since it is used to 1813 * generate the T_CONN_CON. 1814 */ 1815 if (v4dst == INADDR_ANY) { 1816 v4dst = htonl(INADDR_LOOPBACK); 1817 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1818 if (udp->udp_family == AF_INET) { 1819 sin->sin_addr.s_addr = v4dst; 1820 } else { 1821 sin6->sin6_addr = v6dst; 1822 } 1823 } 1824 udp->udp_v6dst = v6dst; 1825 udp->udp_flowinfo = 0; 1826 1827 /* 1828 * If the destination address is multicast and 1829 * an outgoing multicast interface has been set, 1830 * use the address of that interface as our 1831 * source address if no source address has been set. 1832 */ 1833 if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY && 1834 CLASSD(v4dst) && 1835 udp->udp_multicast_if_addr != INADDR_ANY) { 1836 IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr, 1837 &udp->udp_v6src); 1838 } 1839 } else { 1840 ASSERT(udp->udp_ipversion == IPV6_VERSION); 1841 /* 1842 * Interpret a zero destination to mean loopback. 1843 * Update the T_CONN_REQ (sin/sin6) since it is used to 1844 * generate the T_CONN_CON. 1845 */ 1846 if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) { 1847 v6dst = ipv6_loopback; 1848 sin6->sin6_addr = v6dst; 1849 } 1850 udp->udp_v6dst = v6dst; 1851 udp->udp_flowinfo = flowinfo; 1852 /* 1853 * If the destination address is multicast and 1854 * an outgoing multicast interface has been set, 1855 * then the ip bind logic will pick the correct source 1856 * address (i.e. matching the outgoing multicast interface). 1857 */ 1858 } 1859 1860 /* 1861 * Verify that the src/port/dst/port is unique for all 1862 * connections in TS_DATA_XFER 1863 */ 1864 mutex_enter(&udpf->uf_lock); 1865 for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { 1866 if (udp1->udp_state != TS_DATA_XFER) 1867 continue; 1868 if (udp->udp_port != udp1->udp_port || 1869 udp->udp_ipversion != udp1->udp_ipversion || 1870 dstport != udp1->udp_dstport || 1871 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) || 1872 !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst)) 1873 continue; 1874 mutex_exit(&udpf->uf_lock); 1875 udp_err_ack(q, mp, TBADADDR, 0); 1876 return; 1877 } 1878 udp->udp_state = TS_DATA_XFER; 1879 mutex_exit(&udpf->uf_lock); 1880 1881 /* 1882 * Send down bind to IP to verify that there is a route 1883 * and to determine the source address. 1884 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput. 1885 */ 1886 if (udp->udp_family == AF_INET) 1887 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t)); 1888 else 1889 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 1890 if (mp1 == NULL) { 1891 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1892 bind_failed: 1893 mutex_enter(&udpf->uf_lock); 1894 udp->udp_state = TS_IDLE; 1895 mutex_exit(&udpf->uf_lock); 1896 return; 1897 } 1898 1899 /* 1900 * We also have to send a connection confirmation to 1901 * keep TLI happy. Prepare it for udp_rput. 1902 */ 1903 if (udp->udp_family == AF_INET) 1904 mp2 = mi_tpi_conn_con(NULL, (char *)sin, 1905 sizeof (*sin), NULL, 0); 1906 else 1907 mp2 = mi_tpi_conn_con(NULL, (char *)sin6, 1908 sizeof (*sin6), NULL, 0); 1909 if (mp2 == NULL) { 1910 freemsg(mp1); 1911 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1912 goto bind_failed; 1913 } 1914 1915 mp = mi_tpi_ok_ack_alloc(mp); 1916 if (mp == NULL) { 1917 /* Unable to reuse the T_CONN_REQ for the ack. */ 1918 freemsg(mp2); 1919 udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM); 1920 goto bind_failed; 1921 } 1922 1923 /* Hang onto the T_OK_ACK and T_CONN_CON for later. */ 1924 linkb(mp1, mp); 1925 linkb(mp1, mp2); 1926 1927 mblk_setcred(mp1, udp->udp_connp->conn_cred); 1928 if (udp->udp_family == AF_INET) 1929 mp1 = ip_bind_v4(q, mp1, udp->udp_connp); 1930 else 1931 mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL); 1932 1933 if (mp1 != NULL) 1934 udp_rput_other(_RD(q), mp1); 1935 else 1936 CONN_INC_REF(udp->udp_connp); 1937 } 1938 1939 static int 1940 udp_close(queue_t *q) 1941 { 1942 conn_t *connp = Q_TO_CONN(UDP_WR(q)); 1943 udp_t *udp; 1944 queue_t *ip_rq = RD(UDP_WR(q)); 1945 1946 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1947 udp = connp->conn_udp; 1948 1949 ip_quiesce_conn(connp); 1950 /* 1951 * Disable read-side synchronous stream 1952 * interface and drain any queued data. 1953 */ 1954 udp_rcv_drain(q, udp, B_TRUE); 1955 ASSERT(!udp->udp_direct_sockfs); 1956 1957 qprocsoff(q); 1958 1959 /* restore IP module's high and low water marks to default values */ 1960 ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat; 1961 WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat; 1962 WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat; 1963 1964 ASSERT(udp->udp_rcv_cnt == 0); 1965 ASSERT(udp->udp_rcv_msgcnt == 0); 1966 ASSERT(udp->udp_rcv_list_head == NULL); 1967 ASSERT(udp->udp_rcv_list_tail == NULL); 1968 1969 udp_close_free(connp); 1970 1971 /* 1972 * Restore connp as an IP endpoint. 1973 * Locking required to prevent a race with udp_snmp_get()/ 1974 * ipcl_get_next_conn(), which selects conn_t which are 1975 * IPCL_UDP and not CONN_CONDEMNED. 1976 */ 1977 mutex_enter(&connp->conn_lock); 1978 connp->conn_flags &= ~IPCL_UDP; 1979 connp->conn_state_flags &= 1980 ~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED); 1981 connp->conn_ulp_labeled = B_FALSE; 1982 mutex_exit(&connp->conn_lock); 1983 1984 return (0); 1985 } 1986 1987 /* 1988 * Called in the close path from IP (ip_quiesce_conn) to quiesce the conn 1989 */ 1990 void 1991 udp_quiesce_conn(conn_t *connp) 1992 { 1993 udp_t *udp = connp->conn_udp; 1994 1995 if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) { 1996 /* 1997 * Running in cluster mode - register unbind information 1998 */ 1999 if (udp->udp_ipversion == IPV4_VERSION) { 2000 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 2001 (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))), 2002 (in_port_t)udp->udp_port); 2003 } else { 2004 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 2005 (uint8_t *)(&(udp->udp_v6src)), 2006 (in_port_t)udp->udp_port); 2007 } 2008 } 2009 2010 udp_bind_hash_remove(udp, B_FALSE); 2011 2012 mutex_enter(&connp->conn_lock); 2013 while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 || 2014 udp->udp_mode != UDP_MT_HOT) { 2015 cv_wait(&connp->conn_cv, &connp->conn_lock); 2016 } 2017 mutex_exit(&connp->conn_lock); 2018 } 2019 2020 void 2021 udp_close_free(conn_t *connp) 2022 { 2023 udp_t *udp = connp->conn_udp; 2024 2025 /* If there are any options associated with the stream, free them. */ 2026 if (udp->udp_ip_snd_options) { 2027 mi_free((char *)udp->udp_ip_snd_options); 2028 udp->udp_ip_snd_options = NULL; 2029 } 2030 2031 if (udp->udp_ip_rcv_options) { 2032 mi_free((char *)udp->udp_ip_rcv_options); 2033 udp->udp_ip_rcv_options = NULL; 2034 } 2035 2036 /* Free memory associated with sticky options */ 2037 if (udp->udp_sticky_hdrs_len != 0) { 2038 kmem_free(udp->udp_sticky_hdrs, 2039 udp->udp_sticky_hdrs_len); 2040 udp->udp_sticky_hdrs = NULL; 2041 udp->udp_sticky_hdrs_len = 0; 2042 } 2043 2044 ip6_pkt_free(&udp->udp_sticky_ipp); 2045 2046 udp->udp_connp = NULL; 2047 connp->conn_udp = NULL; 2048 kmem_cache_free(udp_cache, udp); 2049 } 2050 2051 /* 2052 * This routine handles each T_DISCON_REQ message passed to udp 2053 * as an indicating that UDP is no longer connected. This results 2054 * in sending a T_BIND_REQ to IP to restore the binding to just 2055 * the local address/port. 2056 * 2057 * This routine sends down a T_BIND_REQ to IP with the following mblks: 2058 * T_BIND_REQ - specifying just the local address/port 2059 * T_OK_ACK - for the T_DISCON_REQ 2060 * 2061 * The disconnect completes in udp_rput. 2062 * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user. 2063 * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert 2064 * it to an error ack for the appropriate primitive. 2065 */ 2066 static void 2067 udp_disconnect(queue_t *q, mblk_t *mp) 2068 { 2069 udp_t *udp = Q_TO_UDP(q); 2070 mblk_t *mp1; 2071 udp_fanout_t *udpf; 2072 2073 if (udp->udp_state != TS_DATA_XFER) { 2074 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 2075 "udp_disconnect: bad state, %u", udp->udp_state); 2076 udp_err_ack(q, mp, TOUTSTATE, 0); 2077 return; 2078 } 2079 udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)]; 2080 mutex_enter(&udpf->uf_lock); 2081 udp->udp_v6src = udp->udp_bound_v6src; 2082 udp->udp_state = TS_IDLE; 2083 mutex_exit(&udpf->uf_lock); 2084 2085 /* 2086 * Send down bind to IP to remove the full binding and revert 2087 * to the local address binding. 2088 */ 2089 if (udp->udp_family == AF_INET) 2090 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t)); 2091 else 2092 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t)); 2093 if (mp1 == NULL) { 2094 udp_err_ack(q, mp, TSYSERR, ENOMEM); 2095 return; 2096 } 2097 mp = mi_tpi_ok_ack_alloc(mp); 2098 if (mp == NULL) { 2099 /* Unable to reuse the T_DISCON_REQ for the ack. */ 2100 udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM); 2101 return; 2102 } 2103 2104 if (udp->udp_family == AF_INET6) { 2105 int error; 2106 2107 /* Rebuild the header template */ 2108 error = udp_build_hdrs(q, udp); 2109 if (error != 0) { 2110 udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error); 2111 freemsg(mp1); 2112 return; 2113 } 2114 } 2115 mutex_enter(&udpf->uf_lock); 2116 udp->udp_discon_pending = 1; 2117 mutex_exit(&udpf->uf_lock); 2118 2119 /* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */ 2120 linkb(mp1, mp); 2121 2122 if (udp->udp_family == AF_INET6) 2123 mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL); 2124 else 2125 mp1 = ip_bind_v4(q, mp1, udp->udp_connp); 2126 2127 if (mp1 != NULL) 2128 udp_rput_other(_RD(q), mp1); 2129 else 2130 CONN_INC_REF(udp->udp_connp); 2131 } 2132 2133 /* This routine creates a T_ERROR_ACK message and passes it upstream. */ 2134 static void 2135 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) 2136 { 2137 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 2138 putnext(UDP_RD(q), mp); 2139 } 2140 2141 /* Shorthand to generate and send TPI error acks to our client */ 2142 static void 2143 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error, 2144 int sys_error) 2145 { 2146 struct T_error_ack *teackp; 2147 2148 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 2149 M_PCPROTO, T_ERROR_ACK)) != NULL) { 2150 teackp = (struct T_error_ack *)mp->b_rptr; 2151 teackp->ERROR_prim = primitive; 2152 teackp->TLI_error = t_error; 2153 teackp->UNIX_error = sys_error; 2154 putnext(UDP_RD(q), mp); 2155 } 2156 } 2157 2158 /*ARGSUSED*/ 2159 static int 2160 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 2161 { 2162 int i; 2163 2164 for (i = 0; i < udp_g_num_epriv_ports; i++) { 2165 if (udp_g_epriv_ports[i] != 0) 2166 (void) mi_mpprintf(mp, "%d ", udp_g_epriv_ports[i]); 2167 } 2168 return (0); 2169 } 2170 2171 /* ARGSUSED */ 2172 static int 2173 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 2174 cred_t *cr) 2175 { 2176 long new_value; 2177 int i; 2178 2179 /* 2180 * Fail the request if the new value does not lie within the 2181 * port number limits. 2182 */ 2183 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 2184 new_value <= 0 || new_value >= 65536) { 2185 return (EINVAL); 2186 } 2187 2188 /* Check if the value is already in the list */ 2189 for (i = 0; i < udp_g_num_epriv_ports; i++) { 2190 if (new_value == udp_g_epriv_ports[i]) { 2191 return (EEXIST); 2192 } 2193 } 2194 /* Find an empty slot */ 2195 for (i = 0; i < udp_g_num_epriv_ports; i++) { 2196 if (udp_g_epriv_ports[i] == 0) 2197 break; 2198 } 2199 if (i == udp_g_num_epriv_ports) { 2200 return (EOVERFLOW); 2201 } 2202 2203 /* Set the new value */ 2204 udp_g_epriv_ports[i] = (in_port_t)new_value; 2205 return (0); 2206 } 2207 2208 /* ARGSUSED */ 2209 static int 2210 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 2211 cred_t *cr) 2212 { 2213 long new_value; 2214 int i; 2215 2216 /* 2217 * Fail the request if the new value does not lie within the 2218 * port number limits. 2219 */ 2220 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 2221 new_value <= 0 || new_value >= 65536) { 2222 return (EINVAL); 2223 } 2224 2225 /* Check that the value is already in the list */ 2226 for (i = 0; i < udp_g_num_epriv_ports; i++) { 2227 if (udp_g_epriv_ports[i] == new_value) 2228 break; 2229 } 2230 if (i == udp_g_num_epriv_ports) { 2231 return (ESRCH); 2232 } 2233 2234 /* Clear the value */ 2235 udp_g_epriv_ports[i] = 0; 2236 return (0); 2237 } 2238 2239 /* At minimum we need 4 bytes of UDP header */ 2240 #define ICMP_MIN_UDP_HDR 4 2241 2242 /* 2243 * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP. 2244 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 2245 * Assumes that IP has pulled up everything up to and including the ICMP header. 2246 * An M_CTL could potentially come here from some other module (i.e. if UDP 2247 * is pushed on some module other than IP). Thus, if we find that the M_CTL 2248 * does not have enough ICMP information , following STREAMS conventions, 2249 * we send it upstream assuming it is an M_CTL we don't understand. 2250 */ 2251 static void 2252 udp_icmp_error(queue_t *q, mblk_t *mp) 2253 { 2254 icmph_t *icmph; 2255 ipha_t *ipha; 2256 int iph_hdr_length; 2257 udpha_t *udpha; 2258 sin_t sin; 2259 sin6_t sin6; 2260 mblk_t *mp1; 2261 int error = 0; 2262 size_t mp_size = MBLKL(mp); 2263 udp_t *udp = Q_TO_UDP(q); 2264 2265 /* 2266 * Assume IP provides aligned packets - otherwise toss 2267 */ 2268 if (!OK_32PTR(mp->b_rptr)) { 2269 freemsg(mp); 2270 return; 2271 } 2272 2273 /* 2274 * Verify that we have a complete IP header and the application has 2275 * asked for errors. If not, send it upstream. 2276 */ 2277 if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) { 2278 noticmpv4: 2279 putnext(UDP_RD(q), mp); 2280 return; 2281 } 2282 2283 ipha = (ipha_t *)mp->b_rptr; 2284 /* 2285 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 2286 * upstream. ICMPv6 is handled in udp_icmp_error_ipv6. 2287 */ 2288 switch (IPH_HDR_VERSION(ipha)) { 2289 case IPV6_VERSION: 2290 udp_icmp_error_ipv6(q, mp); 2291 return; 2292 case IPV4_VERSION: 2293 break; 2294 default: 2295 goto noticmpv4; 2296 } 2297 2298 /* Skip past the outer IP and ICMP headers */ 2299 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2300 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2301 /* 2302 * If we don't have the correct outer IP header length or if the ULP 2303 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 2304 * send the packet upstream. 2305 */ 2306 if (iph_hdr_length < sizeof (ipha_t) || 2307 ipha->ipha_protocol != IPPROTO_ICMP || 2308 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 2309 goto noticmpv4; 2310 } 2311 ipha = (ipha_t *)&icmph[1]; 2312 2313 /* Skip past the inner IP and find the ULP header */ 2314 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2315 udpha = (udpha_t *)((char *)ipha + iph_hdr_length); 2316 /* 2317 * If we don't have the correct inner IP header length or if the ULP 2318 * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR 2319 * bytes of UDP header, send it upstream. 2320 */ 2321 if (iph_hdr_length < sizeof (ipha_t) || 2322 ipha->ipha_protocol != IPPROTO_UDP || 2323 (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) { 2324 goto noticmpv4; 2325 } 2326 2327 switch (icmph->icmph_type) { 2328 case ICMP_DEST_UNREACHABLE: 2329 switch (icmph->icmph_code) { 2330 case ICMP_FRAGMENTATION_NEEDED: 2331 /* 2332 * IP has already adjusted the path MTU. 2333 * XXX Somehow pass MTU indication to application? 2334 */ 2335 break; 2336 case ICMP_PORT_UNREACHABLE: 2337 case ICMP_PROTOCOL_UNREACHABLE: 2338 error = ECONNREFUSED; 2339 break; 2340 default: 2341 /* Transient errors */ 2342 break; 2343 } 2344 break; 2345 default: 2346 /* Transient errors */ 2347 break; 2348 } 2349 if (error == 0) { 2350 freemsg(mp); 2351 return; 2352 } 2353 2354 switch (udp->udp_family) { 2355 case AF_INET: 2356 sin = sin_null; 2357 sin.sin_family = AF_INET; 2358 sin.sin_addr.s_addr = ipha->ipha_dst; 2359 sin.sin_port = udpha->uha_dst_port; 2360 mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0, 2361 error); 2362 break; 2363 case AF_INET6: 2364 sin6 = sin6_null; 2365 sin6.sin6_family = AF_INET6; 2366 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr); 2367 sin6.sin6_port = udpha->uha_dst_port; 2368 2369 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), 2370 NULL, 0, error); 2371 break; 2372 } 2373 if (mp1) 2374 putnext(UDP_RD(q), mp1); 2375 freemsg(mp); 2376 } 2377 2378 /* 2379 * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6. 2380 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 2381 * Assumes that IP has pulled up all the extension headers as well as the 2382 * ICMPv6 header. 2383 * An M_CTL could potentially come here from some other module (i.e. if UDP 2384 * is pushed on some module other than IP). Thus, if we find that the M_CTL 2385 * does not have enough ICMP information , following STREAMS conventions, 2386 * we send it upstream assuming it is an M_CTL we don't understand. The reason 2387 * it might get here is if the non-ICMP M_CTL accidently has 6 in the version 2388 * field (when cast to ipha_t in udp_icmp_error). 2389 */ 2390 static void 2391 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp) 2392 { 2393 icmp6_t *icmp6; 2394 ip6_t *ip6h, *outer_ip6h; 2395 uint16_t hdr_length; 2396 uint8_t *nexthdrp; 2397 udpha_t *udpha; 2398 sin6_t sin6; 2399 mblk_t *mp1; 2400 int error = 0; 2401 size_t mp_size = MBLKL(mp); 2402 udp_t *udp = Q_TO_UDP(q); 2403 2404 /* 2405 * Verify that we have a complete IP header. If not, send it upstream. 2406 */ 2407 if (mp_size < sizeof (ip6_t)) { 2408 noticmpv6: 2409 putnext(UDP_RD(q), mp); 2410 return; 2411 } 2412 2413 outer_ip6h = (ip6_t *)mp->b_rptr; 2414 /* 2415 * Verify this is an ICMPV6 packet, else send it upstream 2416 */ 2417 if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) { 2418 hdr_length = IPV6_HDR_LEN; 2419 } else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length, 2420 &nexthdrp) || 2421 *nexthdrp != IPPROTO_ICMPV6) { 2422 goto noticmpv6; 2423 } 2424 icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length]; 2425 ip6h = (ip6_t *)&icmp6[1]; 2426 /* 2427 * Verify we have a complete ICMP and inner IP header. 2428 */ 2429 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 2430 goto noticmpv6; 2431 2432 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp)) 2433 goto noticmpv6; 2434 udpha = (udpha_t *)((char *)ip6h + hdr_length); 2435 /* 2436 * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't 2437 * have at least ICMP_MIN_UDP_HDR bytes of UDP header send the 2438 * packet upstream. 2439 */ 2440 if ((*nexthdrp != IPPROTO_UDP) || 2441 ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) { 2442 goto noticmpv6; 2443 } 2444 2445 switch (icmp6->icmp6_type) { 2446 case ICMP6_DST_UNREACH: 2447 switch (icmp6->icmp6_code) { 2448 case ICMP6_DST_UNREACH_NOPORT: 2449 error = ECONNREFUSED; 2450 break; 2451 case ICMP6_DST_UNREACH_ADMIN: 2452 case ICMP6_DST_UNREACH_NOROUTE: 2453 case ICMP6_DST_UNREACH_BEYONDSCOPE: 2454 case ICMP6_DST_UNREACH_ADDR: 2455 /* Transient errors */ 2456 break; 2457 default: 2458 break; 2459 } 2460 break; 2461 case ICMP6_PACKET_TOO_BIG: { 2462 struct T_unitdata_ind *tudi; 2463 struct T_opthdr *toh; 2464 size_t udi_size; 2465 mblk_t *newmp; 2466 t_scalar_t opt_length = sizeof (struct T_opthdr) + 2467 sizeof (struct ip6_mtuinfo); 2468 sin6_t *sin6; 2469 struct ip6_mtuinfo *mtuinfo; 2470 2471 /* 2472 * If the application has requested to receive path mtu 2473 * information, send up an empty message containing an 2474 * IPV6_PATHMTU ancillary data item. 2475 */ 2476 if (!udp->udp_ipv6_recvpathmtu) 2477 break; 2478 2479 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) + 2480 opt_length; 2481 if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) { 2482 BUMP_MIB(&udp_mib, udpInErrors); 2483 break; 2484 } 2485 2486 /* 2487 * newmp->b_cont is left to NULL on purpose. This is an 2488 * empty message containing only ancillary data. 2489 */ 2490 newmp->b_datap->db_type = M_PROTO; 2491 tudi = (struct T_unitdata_ind *)newmp->b_rptr; 2492 newmp->b_wptr = (uchar_t *)tudi + udi_size; 2493 tudi->PRIM_type = T_UNITDATA_IND; 2494 tudi->SRC_length = sizeof (sin6_t); 2495 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 2496 tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t); 2497 tudi->OPT_length = opt_length; 2498 2499 sin6 = (sin6_t *)&tudi[1]; 2500 bzero(sin6, sizeof (sin6_t)); 2501 sin6->sin6_family = AF_INET6; 2502 sin6->sin6_addr = udp->udp_v6dst; 2503 2504 toh = (struct T_opthdr *)&sin6[1]; 2505 toh->level = IPPROTO_IPV6; 2506 toh->name = IPV6_PATHMTU; 2507 toh->len = opt_length; 2508 toh->status = 0; 2509 2510 mtuinfo = (struct ip6_mtuinfo *)&toh[1]; 2511 bzero(mtuinfo, sizeof (struct ip6_mtuinfo)); 2512 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 2513 mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst; 2514 mtuinfo->ip6m_mtu = icmp6->icmp6_mtu; 2515 /* 2516 * We've consumed everything we need from the original 2517 * message. Free it, then send our empty message. 2518 */ 2519 freemsg(mp); 2520 putnext(UDP_RD(q), newmp); 2521 return; 2522 } 2523 case ICMP6_TIME_EXCEEDED: 2524 /* Transient errors */ 2525 break; 2526 case ICMP6_PARAM_PROB: 2527 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 2528 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 2529 (uchar_t *)ip6h + icmp6->icmp6_pptr == 2530 (uchar_t *)nexthdrp) { 2531 error = ECONNREFUSED; 2532 break; 2533 } 2534 break; 2535 } 2536 if (error == 0) { 2537 freemsg(mp); 2538 return; 2539 } 2540 2541 sin6 = sin6_null; 2542 sin6.sin6_family = AF_INET6; 2543 sin6.sin6_addr = ip6h->ip6_dst; 2544 sin6.sin6_port = udpha->uha_dst_port; 2545 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 2546 2547 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, 2548 error); 2549 if (mp1) 2550 putnext(UDP_RD(q), mp1); 2551 freemsg(mp); 2552 } 2553 2554 /* 2555 * This routine responds to T_ADDR_REQ messages. It is called by udp_wput. 2556 * The local address is filled in if endpoint is bound. The remote address 2557 * is filled in if remote address has been precified ("connected endpoint") 2558 * (The concept of connected CLTS sockets is alien to published TPI 2559 * but we support it anyway). 2560 */ 2561 static void 2562 udp_addr_req(queue_t *q, mblk_t *mp) 2563 { 2564 sin_t *sin; 2565 sin6_t *sin6; 2566 mblk_t *ackmp; 2567 struct T_addr_ack *taa; 2568 udp_t *udp = Q_TO_UDP(q); 2569 2570 /* Make it large enough for worst case */ 2571 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 2572 2 * sizeof (sin6_t), 1); 2573 if (ackmp == NULL) { 2574 udp_err_ack(q, mp, TSYSERR, ENOMEM); 2575 return; 2576 } 2577 taa = (struct T_addr_ack *)ackmp->b_rptr; 2578 2579 bzero(taa, sizeof (struct T_addr_ack)); 2580 ackmp->b_wptr = (uchar_t *)&taa[1]; 2581 2582 taa->PRIM_type = T_ADDR_ACK; 2583 ackmp->b_datap->db_type = M_PCPROTO; 2584 /* 2585 * Note: Following code assumes 32 bit alignment of basic 2586 * data structures like sin_t and struct T_addr_ack. 2587 */ 2588 if (udp->udp_state != TS_UNBND) { 2589 /* 2590 * Fill in local address first 2591 */ 2592 taa->LOCADDR_offset = sizeof (*taa); 2593 if (udp->udp_family == AF_INET) { 2594 taa->LOCADDR_length = sizeof (sin_t); 2595 sin = (sin_t *)&taa[1]; 2596 /* Fill zeroes and then initialize non-zero fields */ 2597 *sin = sin_null; 2598 sin->sin_family = AF_INET; 2599 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 2600 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2601 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, 2602 sin->sin_addr.s_addr); 2603 } else { 2604 /* 2605 * INADDR_ANY 2606 * udp_v6src is not set, we might be bound to 2607 * broadcast/multicast. Use udp_bound_v6src as 2608 * local address instead (that could 2609 * also still be INADDR_ANY) 2610 */ 2611 IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src, 2612 sin->sin_addr.s_addr); 2613 } 2614 sin->sin_port = udp->udp_port; 2615 ackmp->b_wptr = (uchar_t *)&sin[1]; 2616 if (udp->udp_state == TS_DATA_XFER) { 2617 /* 2618 * connected, fill remote address too 2619 */ 2620 taa->REMADDR_length = sizeof (sin_t); 2621 /* assumed 32-bit alignment */ 2622 taa->REMADDR_offset = taa->LOCADDR_offset + 2623 taa->LOCADDR_length; 2624 2625 sin = (sin_t *)(ackmp->b_rptr + 2626 taa->REMADDR_offset); 2627 /* initialize */ 2628 *sin = sin_null; 2629 sin->sin_family = AF_INET; 2630 sin->sin_addr.s_addr = 2631 V4_PART_OF_V6(udp->udp_v6dst); 2632 sin->sin_port = udp->udp_dstport; 2633 ackmp->b_wptr = (uchar_t *)&sin[1]; 2634 } 2635 } else { 2636 taa->LOCADDR_length = sizeof (sin6_t); 2637 sin6 = (sin6_t *)&taa[1]; 2638 /* Fill zeroes and then initialize non-zero fields */ 2639 *sin6 = sin6_null; 2640 sin6->sin6_family = AF_INET6; 2641 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2642 sin6->sin6_addr = udp->udp_v6src; 2643 } else { 2644 /* 2645 * UNSPECIFIED 2646 * udp_v6src is not set, we might be bound to 2647 * broadcast/multicast. Use udp_bound_v6src as 2648 * local address instead (that could 2649 * also still be UNSPECIFIED) 2650 */ 2651 sin6->sin6_addr = 2652 udp->udp_bound_v6src; 2653 } 2654 sin6->sin6_port = udp->udp_port; 2655 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2656 if (udp->udp_state == TS_DATA_XFER) { 2657 /* 2658 * connected, fill remote address too 2659 */ 2660 taa->REMADDR_length = sizeof (sin6_t); 2661 /* assumed 32-bit alignment */ 2662 taa->REMADDR_offset = taa->LOCADDR_offset + 2663 taa->LOCADDR_length; 2664 2665 sin6 = (sin6_t *)(ackmp->b_rptr + 2666 taa->REMADDR_offset); 2667 /* initialize */ 2668 *sin6 = sin6_null; 2669 sin6->sin6_family = AF_INET6; 2670 sin6->sin6_addr = udp->udp_v6dst; 2671 sin6->sin6_port = udp->udp_dstport; 2672 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2673 } 2674 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2675 } 2676 } 2677 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 2678 putnext(UDP_RD(q), ackmp); 2679 } 2680 2681 static void 2682 udp_copy_info(struct T_info_ack *tap, udp_t *udp) 2683 { 2684 if (udp->udp_family == AF_INET) { 2685 *tap = udp_g_t_info_ack_ipv4; 2686 } else { 2687 *tap = udp_g_t_info_ack_ipv6; 2688 } 2689 tap->CURRENT_state = udp->udp_state; 2690 tap->OPT_size = udp_max_optsize; 2691 } 2692 2693 /* 2694 * This routine responds to T_CAPABILITY_REQ messages. It is called by 2695 * udp_wput. Much of the T_CAPABILITY_ACK information is copied from 2696 * udp_g_t_info_ack. The current state of the stream is copied from 2697 * udp_state. 2698 */ 2699 static void 2700 udp_capability_req(queue_t *q, mblk_t *mp) 2701 { 2702 t_uscalar_t cap_bits1; 2703 struct T_capability_ack *tcap; 2704 udp_t *udp = Q_TO_UDP(q); 2705 2706 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 2707 2708 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 2709 mp->b_datap->db_type, T_CAPABILITY_ACK); 2710 if (!mp) 2711 return; 2712 2713 tcap = (struct T_capability_ack *)mp->b_rptr; 2714 tcap->CAP_bits1 = 0; 2715 2716 if (cap_bits1 & TC1_INFO) { 2717 udp_copy_info(&tcap->INFO_ack, udp); 2718 tcap->CAP_bits1 |= TC1_INFO; 2719 } 2720 2721 putnext(UDP_RD(q), mp); 2722 } 2723 2724 /* 2725 * This routine responds to T_INFO_REQ messages. It is called by udp_wput. 2726 * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack. 2727 * The current state of the stream is copied from udp_state. 2728 */ 2729 static void 2730 udp_info_req(queue_t *q, mblk_t *mp) 2731 { 2732 udp_t *udp = Q_TO_UDP(q); 2733 2734 /* Create a T_INFO_ACK message. */ 2735 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 2736 T_INFO_ACK); 2737 if (!mp) 2738 return; 2739 udp_copy_info((struct T_info_ack *)mp->b_rptr, udp); 2740 putnext(UDP_RD(q), mp); 2741 } 2742 2743 /* 2744 * IP recognizes seven kinds of bind requests: 2745 * 2746 * - A zero-length address binds only to the protocol number. 2747 * 2748 * - A 4-byte address is treated as a request to 2749 * validate that the address is a valid local IPv4 2750 * address, appropriate for an application to bind to. 2751 * IP does the verification, but does not make any note 2752 * of the address at this time. 2753 * 2754 * - A 16-byte address contains is treated as a request 2755 * to validate a local IPv6 address, as the 4-byte 2756 * address case above. 2757 * 2758 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 2759 * use it for the inbound fanout of packets. 2760 * 2761 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 2762 * use it for the inbound fanout of packets. 2763 * 2764 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 2765 * information consisting of local and remote addresses 2766 * and ports. In this case, the addresses are both 2767 * validated as appropriate for this operation, and, if 2768 * so, the information is retained for use in the 2769 * inbound fanout. 2770 * 2771 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 2772 * fanout information, like the 12-byte case above. 2773 * 2774 * IP will also fill in the IRE request mblk with information 2775 * regarding our peer. In all cases, we notify IP of our protocol 2776 * type by appending a single protocol byte to the bind request. 2777 */ 2778 static mblk_t * 2779 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length) 2780 { 2781 char *cp; 2782 mblk_t *mp; 2783 struct T_bind_req *tbr; 2784 ipa_conn_t *ac; 2785 ipa6_conn_t *ac6; 2786 sin_t *sin; 2787 sin6_t *sin6; 2788 2789 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 2790 2791 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 2792 if (!mp) 2793 return (mp); 2794 mp->b_datap->db_type = M_PROTO; 2795 tbr = (struct T_bind_req *)mp->b_rptr; 2796 tbr->PRIM_type = bind_prim; 2797 tbr->ADDR_offset = sizeof (*tbr); 2798 tbr->CONIND_number = 0; 2799 tbr->ADDR_length = addr_length; 2800 cp = (char *)&tbr[1]; 2801 switch (addr_length) { 2802 case sizeof (ipa_conn_t): 2803 ASSERT(udp->udp_family == AF_INET); 2804 /* Append a request for an IRE */ 2805 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2806 if (!mp->b_cont) { 2807 freemsg(mp); 2808 return (NULL); 2809 } 2810 mp->b_cont->b_wptr += sizeof (ire_t); 2811 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2812 2813 /* cp known to be 32 bit aligned */ 2814 ac = (ipa_conn_t *)cp; 2815 ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src); 2816 ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst); 2817 ac->ac_fport = udp->udp_dstport; 2818 ac->ac_lport = udp->udp_port; 2819 break; 2820 2821 case sizeof (ipa6_conn_t): 2822 ASSERT(udp->udp_family == AF_INET6); 2823 /* Append a request for an IRE */ 2824 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2825 if (!mp->b_cont) { 2826 freemsg(mp); 2827 return (NULL); 2828 } 2829 mp->b_cont->b_wptr += sizeof (ire_t); 2830 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2831 2832 /* cp known to be 32 bit aligned */ 2833 ac6 = (ipa6_conn_t *)cp; 2834 ac6->ac6_laddr = udp->udp_v6src; 2835 ac6->ac6_faddr = udp->udp_v6dst; 2836 ac6->ac6_fport = udp->udp_dstport; 2837 ac6->ac6_lport = udp->udp_port; 2838 break; 2839 2840 case sizeof (sin_t): 2841 ASSERT(udp->udp_family == AF_INET); 2842 /* Append a request for an IRE */ 2843 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2844 if (!mp->b_cont) { 2845 freemsg(mp); 2846 return (NULL); 2847 } 2848 mp->b_cont->b_wptr += sizeof (ire_t); 2849 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2850 2851 sin = (sin_t *)cp; 2852 *sin = sin_null; 2853 sin->sin_family = AF_INET; 2854 sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src); 2855 sin->sin_port = udp->udp_port; 2856 break; 2857 2858 case sizeof (sin6_t): 2859 ASSERT(udp->udp_family == AF_INET6); 2860 /* Append a request for an IRE */ 2861 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2862 if (!mp->b_cont) { 2863 freemsg(mp); 2864 return (NULL); 2865 } 2866 mp->b_cont->b_wptr += sizeof (ire_t); 2867 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2868 2869 sin6 = (sin6_t *)cp; 2870 *sin6 = sin6_null; 2871 sin6->sin6_family = AF_INET6; 2872 sin6->sin6_addr = udp->udp_bound_v6src; 2873 sin6->sin6_port = udp->udp_port; 2874 break; 2875 } 2876 /* Add protocol number to end */ 2877 cp[addr_length] = (char)IPPROTO_UDP; 2878 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 2879 return (mp); 2880 } 2881 2882 /* 2883 * This is the open routine for udp. It allocates a udp_t structure for 2884 * the stream and, on the first open of the module, creates an ND table. 2885 */ 2886 /* ARGSUSED */ 2887 static int 2888 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2889 { 2890 int err; 2891 udp_t *udp; 2892 conn_t *connp; 2893 zoneid_t zoneid = getzoneid(); 2894 queue_t *ip_wq; 2895 2896 TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q); 2897 2898 /* If the stream is already open, return immediately. */ 2899 if (q->q_ptr != NULL) 2900 return (0); 2901 2902 /* If this is not a push of udp as a module, fail. */ 2903 if (sflag != MODOPEN) 2904 return (EINVAL); 2905 2906 q->q_hiwat = udp_recv_hiwat; 2907 WR(q)->q_hiwat = udp_xmit_hiwat; 2908 WR(q)->q_lowat = udp_xmit_lowat; 2909 2910 /* Insert ourselves in the stream since we're about to walk q_next */ 2911 qprocson(q); 2912 2913 udp = kmem_cache_alloc(udp_cache, KM_SLEEP); 2914 bzero(udp, sizeof (*udp)); 2915 2916 /* 2917 * UDP is supported only as a module and it has to be pushed directly 2918 * above the device instance of IP. If UDP is pushed anywhere else 2919 * on a stream, it will support just T_SVR4_OPTMGMT_REQ for the 2920 * sake of MIB browsers and fail everything else. 2921 */ 2922 ip_wq = WR(q)->q_next; 2923 if (NOT_OVER_IP(ip_wq)) { 2924 /* Support just SNMP for MIB browsers */ 2925 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 2926 connp->conn_rq = q; 2927 connp->conn_wq = WR(q); 2928 connp->conn_flags |= IPCL_UDPMOD; 2929 connp->conn_cred = credp; 2930 connp->conn_zoneid = zoneid; 2931 connp->conn_udp = udp; 2932 udp->udp_connp = connp; 2933 q->q_ptr = WR(q)->q_ptr = connp; 2934 crhold(credp); 2935 q->q_qinfo = &udp_snmp_rinit; 2936 WR(q)->q_qinfo = &udp_snmp_winit; 2937 return (0); 2938 } 2939 2940 /* 2941 * Initialize the udp_t structure for this stream. 2942 */ 2943 q = RD(ip_wq); 2944 connp = Q_TO_CONN(q); 2945 mutex_enter(&connp->conn_lock); 2946 connp->conn_proto = IPPROTO_UDP; 2947 connp->conn_flags |= IPCL_UDP; 2948 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 2949 connp->conn_udp = udp; 2950 2951 /* Set the initial state of the stream and the privilege status. */ 2952 udp->udp_connp = connp; 2953 udp->udp_state = TS_UNBND; 2954 udp->udp_mode = UDP_MT_HOT; 2955 if (getmajor(*devp) == (major_t)UDP6_MAJ) { 2956 udp->udp_family = AF_INET6; 2957 udp->udp_ipversion = IPV6_VERSION; 2958 udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 2959 udp->udp_ttl = udp_ipv6_hoplimit; 2960 connp->conn_af_isv6 = B_TRUE; 2961 connp->conn_flags |= IPCL_ISV6; 2962 } else { 2963 udp->udp_family = AF_INET; 2964 udp->udp_ipversion = IPV4_VERSION; 2965 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE; 2966 udp->udp_ttl = udp_ipv4_ttl; 2967 connp->conn_af_isv6 = B_FALSE; 2968 connp->conn_flags &= ~IPCL_ISV6; 2969 } 2970 2971 udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2972 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 2973 connp->conn_zoneid = zoneid; 2974 2975 udp->udp_open_time = lbolt64; 2976 udp->udp_open_pid = curproc->p_pid; 2977 2978 /* 2979 * If the caller has the process-wide flag set, then default to MAC 2980 * exempt mode. This allows read-down to unlabeled hosts. 2981 */ 2982 if (getpflags(NET_MAC_AWARE, credp) != 0) 2983 udp->udp_mac_exempt = B_TRUE; 2984 2985 if (connp->conn_flags & IPCL_SOCKET) { 2986 udp->udp_issocket = B_TRUE; 2987 udp->udp_direct_sockfs = B_TRUE; 2988 } 2989 2990 connp->conn_ulp_labeled = is_system_labeled(); 2991 2992 mutex_exit(&connp->conn_lock); 2993 2994 /* 2995 * The transmit hiwat/lowat is only looked at on IP's queue. 2996 * Store in q_hiwat in order to return on SO_SNDBUF/SO_RCVBUF 2997 * getsockopts. 2998 */ 2999 q->q_hiwat = udp_recv_hiwat; 3000 WR(q)->q_hiwat = udp_xmit_hiwat; 3001 WR(q)->q_lowat = udp_xmit_lowat; 3002 3003 if (udp->udp_family == AF_INET6) { 3004 /* Build initial header template for transmit */ 3005 if ((err = udp_build_hdrs(q, udp)) != 0) { 3006 error: 3007 qprocsoff(UDP_RD(q)); 3008 udp->udp_connp = NULL; 3009 connp->conn_udp = NULL; 3010 kmem_cache_free(udp_cache, udp); 3011 return (err); 3012 } 3013 } 3014 3015 /* Set the Stream head write offset and high watermark. */ 3016 (void) mi_set_sth_wroff(UDP_RD(q), 3017 udp->udp_max_hdr_len + udp_wroff_extra); 3018 (void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, q->q_hiwat)); 3019 3020 WR(UDP_RD(q))->q_qinfo = &udp_winit; 3021 3022 return (0); 3023 } 3024 3025 /* 3026 * Which UDP options OK to set through T_UNITDATA_REQ... 3027 */ 3028 /* ARGSUSED */ 3029 static boolean_t 3030 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name) 3031 { 3032 return (B_TRUE); 3033 } 3034 3035 /* 3036 * This routine gets default values of certain options whose default 3037 * values are maintained by protcol specific code 3038 */ 3039 /* ARGSUSED */ 3040 int 3041 udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 3042 { 3043 int *i1 = (int *)ptr; 3044 3045 switch (level) { 3046 case IPPROTO_IP: 3047 switch (name) { 3048 case IP_MULTICAST_TTL: 3049 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 3050 return (sizeof (uchar_t)); 3051 case IP_MULTICAST_LOOP: 3052 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 3053 return (sizeof (uchar_t)); 3054 } 3055 break; 3056 case IPPROTO_IPV6: 3057 switch (name) { 3058 case IPV6_MULTICAST_HOPS: 3059 *i1 = IP_DEFAULT_MULTICAST_TTL; 3060 return (sizeof (int)); 3061 case IPV6_MULTICAST_LOOP: 3062 *i1 = IP_DEFAULT_MULTICAST_LOOP; 3063 return (sizeof (int)); 3064 case IPV6_UNICAST_HOPS: 3065 *i1 = udp_ipv6_hoplimit; 3066 return (sizeof (int)); 3067 } 3068 break; 3069 } 3070 return (-1); 3071 } 3072 3073 /* 3074 * This routine retrieves the current status of socket options 3075 * and expects the caller to pass in the queue pointer of the 3076 * upper instance. It returns the size of the option retrieved. 3077 */ 3078 int 3079 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 3080 { 3081 int *i1 = (int *)ptr; 3082 conn_t *connp; 3083 udp_t *udp; 3084 ip6_pkt_t *ipp; 3085 int len; 3086 3087 q = UDP_WR(q); 3088 connp = Q_TO_CONN(q); 3089 udp = connp->conn_udp; 3090 ipp = &udp->udp_sticky_ipp; 3091 3092 switch (level) { 3093 case SOL_SOCKET: 3094 switch (name) { 3095 case SO_DEBUG: 3096 *i1 = udp->udp_debug; 3097 break; /* goto sizeof (int) option return */ 3098 case SO_REUSEADDR: 3099 *i1 = udp->udp_reuseaddr; 3100 break; /* goto sizeof (int) option return */ 3101 case SO_TYPE: 3102 *i1 = SOCK_DGRAM; 3103 break; /* goto sizeof (int) option return */ 3104 3105 /* 3106 * The following three items are available here, 3107 * but are only meaningful to IP. 3108 */ 3109 case SO_DONTROUTE: 3110 *i1 = udp->udp_dontroute; 3111 break; /* goto sizeof (int) option return */ 3112 case SO_USELOOPBACK: 3113 *i1 = udp->udp_useloopback; 3114 break; /* goto sizeof (int) option return */ 3115 case SO_BROADCAST: 3116 *i1 = udp->udp_broadcast; 3117 break; /* goto sizeof (int) option return */ 3118 3119 case SO_SNDBUF: 3120 *i1 = q->q_hiwat; 3121 break; /* goto sizeof (int) option return */ 3122 case SO_RCVBUF: 3123 *i1 = RD(q)->q_hiwat; 3124 break; /* goto sizeof (int) option return */ 3125 case SO_DGRAM_ERRIND: 3126 *i1 = udp->udp_dgram_errind; 3127 break; /* goto sizeof (int) option return */ 3128 case SO_RECVUCRED: 3129 *i1 = udp->udp_recvucred; 3130 break; /* goto sizeof (int) option return */ 3131 case SO_TIMESTAMP: 3132 *i1 = udp->udp_timestamp; 3133 break; /* goto sizeof (int) option return */ 3134 case SO_ANON_MLP: 3135 *i1 = udp->udp_anon_mlp; 3136 break; /* goto sizeof (int) option return */ 3137 case SO_MAC_EXEMPT: 3138 *i1 = udp->udp_mac_exempt; 3139 break; /* goto sizeof (int) option return */ 3140 case SO_ALLZONES: 3141 *i1 = connp->conn_allzones; 3142 break; /* goto sizeof (int) option return */ 3143 case SO_EXCLBIND: 3144 *i1 = udp->udp_exclbind ? SO_EXCLBIND : 0; 3145 break; 3146 default: 3147 return (-1); 3148 } 3149 break; 3150 case IPPROTO_IP: 3151 if (udp->udp_family != AF_INET) 3152 return (-1); 3153 switch (name) { 3154 case IP_OPTIONS: 3155 case T_IP_OPTIONS: 3156 len = udp->udp_ip_rcv_options_len - udp->udp_label_len; 3157 if (len > 0) { 3158 bcopy(udp->udp_ip_rcv_options + 3159 udp->udp_label_len, ptr, len); 3160 } 3161 return (len); 3162 case IP_TOS: 3163 case T_IP_TOS: 3164 *i1 = (int)udp->udp_type_of_service; 3165 break; /* goto sizeof (int) option return */ 3166 case IP_TTL: 3167 *i1 = (int)udp->udp_ttl; 3168 break; /* goto sizeof (int) option return */ 3169 case IP_NEXTHOP: 3170 case IP_RECVPKTINFO: 3171 /* 3172 * This also handles IP_PKTINFO. 3173 * IP_PKTINFO and IP_RECVPKTINFO have the same value. 3174 * Differentiation is based on the size of the argument 3175 * passed in. 3176 * This option is handled in IP which will return an 3177 * error for IP_PKTINFO as it's not supported as a 3178 * sticky option. 3179 */ 3180 return (-EINVAL); 3181 case IP_MULTICAST_IF: 3182 /* 0 address if not set */ 3183 *(ipaddr_t *)ptr = udp->udp_multicast_if_addr; 3184 return (sizeof (ipaddr_t)); 3185 case IP_MULTICAST_TTL: 3186 *(uchar_t *)ptr = udp->udp_multicast_ttl; 3187 return (sizeof (uchar_t)); 3188 case IP_MULTICAST_LOOP: 3189 *ptr = connp->conn_multicast_loop; 3190 return (sizeof (uint8_t)); 3191 case IP_RECVOPTS: 3192 *i1 = udp->udp_recvopts; 3193 break; /* goto sizeof (int) option return */ 3194 case IP_RECVDSTADDR: 3195 *i1 = udp->udp_recvdstaddr; 3196 break; /* goto sizeof (int) option return */ 3197 case IP_RECVIF: 3198 *i1 = udp->udp_recvif; 3199 break; /* goto sizeof (int) option return */ 3200 case IP_RECVSLLA: 3201 *i1 = udp->udp_recvslla; 3202 break; /* goto sizeof (int) option return */ 3203 case IP_RECVTTL: 3204 *i1 = udp->udp_recvttl; 3205 break; /* goto sizeof (int) option return */ 3206 case IP_ADD_MEMBERSHIP: 3207 case IP_DROP_MEMBERSHIP: 3208 case IP_BLOCK_SOURCE: 3209 case IP_UNBLOCK_SOURCE: 3210 case IP_ADD_SOURCE_MEMBERSHIP: 3211 case IP_DROP_SOURCE_MEMBERSHIP: 3212 case MCAST_JOIN_GROUP: 3213 case MCAST_LEAVE_GROUP: 3214 case MCAST_BLOCK_SOURCE: 3215 case MCAST_UNBLOCK_SOURCE: 3216 case MCAST_JOIN_SOURCE_GROUP: 3217 case MCAST_LEAVE_SOURCE_GROUP: 3218 case IP_DONTFAILOVER_IF: 3219 /* cannot "get" the value for these */ 3220 return (-1); 3221 case IP_BOUND_IF: 3222 /* Zero if not set */ 3223 *i1 = udp->udp_bound_if; 3224 break; /* goto sizeof (int) option return */ 3225 case IP_UNSPEC_SRC: 3226 *i1 = udp->udp_unspec_source; 3227 break; /* goto sizeof (int) option return */ 3228 case IP_XMIT_IF: 3229 *i1 = udp->udp_xmit_if; 3230 break; /* goto sizeof (int) option return */ 3231 default: 3232 return (-1); 3233 } 3234 break; 3235 case IPPROTO_IPV6: 3236 if (udp->udp_family != AF_INET6) 3237 return (-1); 3238 switch (name) { 3239 case IPV6_UNICAST_HOPS: 3240 *i1 = (unsigned int)udp->udp_ttl; 3241 break; /* goto sizeof (int) option return */ 3242 case IPV6_MULTICAST_IF: 3243 /* 0 index if not set */ 3244 *i1 = udp->udp_multicast_if_index; 3245 break; /* goto sizeof (int) option return */ 3246 case IPV6_MULTICAST_HOPS: 3247 *i1 = udp->udp_multicast_ttl; 3248 break; /* goto sizeof (int) option return */ 3249 case IPV6_MULTICAST_LOOP: 3250 *i1 = connp->conn_multicast_loop; 3251 break; /* goto sizeof (int) option return */ 3252 case IPV6_JOIN_GROUP: 3253 case IPV6_LEAVE_GROUP: 3254 case MCAST_JOIN_GROUP: 3255 case MCAST_LEAVE_GROUP: 3256 case MCAST_BLOCK_SOURCE: 3257 case MCAST_UNBLOCK_SOURCE: 3258 case MCAST_JOIN_SOURCE_GROUP: 3259 case MCAST_LEAVE_SOURCE_GROUP: 3260 /* cannot "get" the value for these */ 3261 return (-1); 3262 case IPV6_BOUND_IF: 3263 /* Zero if not set */ 3264 *i1 = udp->udp_bound_if; 3265 break; /* goto sizeof (int) option return */ 3266 case IPV6_UNSPEC_SRC: 3267 *i1 = udp->udp_unspec_source; 3268 break; /* goto sizeof (int) option return */ 3269 case IPV6_RECVPKTINFO: 3270 *i1 = udp->udp_ip_recvpktinfo; 3271 break; /* goto sizeof (int) option return */ 3272 case IPV6_RECVTCLASS: 3273 *i1 = udp->udp_ipv6_recvtclass; 3274 break; /* goto sizeof (int) option return */ 3275 case IPV6_RECVPATHMTU: 3276 *i1 = udp->udp_ipv6_recvpathmtu; 3277 break; /* goto sizeof (int) option return */ 3278 case IPV6_RECVHOPLIMIT: 3279 *i1 = udp->udp_ipv6_recvhoplimit; 3280 break; /* goto sizeof (int) option return */ 3281 case IPV6_RECVHOPOPTS: 3282 *i1 = udp->udp_ipv6_recvhopopts; 3283 break; /* goto sizeof (int) option return */ 3284 case IPV6_RECVDSTOPTS: 3285 *i1 = udp->udp_ipv6_recvdstopts; 3286 break; /* goto sizeof (int) option return */ 3287 case _OLD_IPV6_RECVDSTOPTS: 3288 *i1 = udp->udp_old_ipv6_recvdstopts; 3289 break; /* goto sizeof (int) option return */ 3290 case IPV6_RECVRTHDRDSTOPTS: 3291 *i1 = udp->udp_ipv6_recvrthdrdstopts; 3292 break; /* goto sizeof (int) option return */ 3293 case IPV6_RECVRTHDR: 3294 *i1 = udp->udp_ipv6_recvrthdr; 3295 break; /* goto sizeof (int) option return */ 3296 case IPV6_PKTINFO: { 3297 /* XXX assumes that caller has room for max size! */ 3298 struct in6_pktinfo *pkti; 3299 3300 pkti = (struct in6_pktinfo *)ptr; 3301 if (ipp->ipp_fields & IPPF_IFINDEX) 3302 pkti->ipi6_ifindex = ipp->ipp_ifindex; 3303 else 3304 pkti->ipi6_ifindex = 0; 3305 if (ipp->ipp_fields & IPPF_ADDR) 3306 pkti->ipi6_addr = ipp->ipp_addr; 3307 else 3308 pkti->ipi6_addr = ipv6_all_zeros; 3309 return (sizeof (struct in6_pktinfo)); 3310 } 3311 case IPV6_TCLASS: 3312 if (ipp->ipp_fields & IPPF_TCLASS) 3313 *i1 = ipp->ipp_tclass; 3314 else 3315 *i1 = IPV6_FLOW_TCLASS( 3316 IPV6_DEFAULT_VERS_AND_FLOW); 3317 break; /* goto sizeof (int) option return */ 3318 case IPV6_NEXTHOP: { 3319 sin6_t *sin6 = (sin6_t *)ptr; 3320 3321 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 3322 return (0); 3323 *sin6 = sin6_null; 3324 sin6->sin6_family = AF_INET6; 3325 sin6->sin6_addr = ipp->ipp_nexthop; 3326 return (sizeof (sin6_t)); 3327 } 3328 case IPV6_HOPOPTS: 3329 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 3330 return (0); 3331 if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6) 3332 return (0); 3333 /* 3334 * The cipso/label option is added by kernel. 3335 * User is not usually aware of this option. 3336 * We copy out the hbh opt after the label option. 3337 */ 3338 bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6, 3339 ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6); 3340 if (udp->udp_label_len_v6 > 0) { 3341 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 3342 ptr[1] = (ipp->ipp_hopoptslen - 3343 udp->udp_label_len_v6 + 7) / 8 - 1; 3344 } 3345 return (ipp->ipp_hopoptslen - udp->udp_label_len_v6); 3346 case IPV6_RTHDRDSTOPTS: 3347 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 3348 return (0); 3349 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 3350 return (ipp->ipp_rtdstoptslen); 3351 case IPV6_RTHDR: 3352 if (!(ipp->ipp_fields & IPPF_RTHDR)) 3353 return (0); 3354 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 3355 return (ipp->ipp_rthdrlen); 3356 case IPV6_DSTOPTS: 3357 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 3358 return (0); 3359 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 3360 return (ipp->ipp_dstoptslen); 3361 case IPV6_PATHMTU: 3362 return (ip_fill_mtuinfo(&udp->udp_v6dst, 3363 udp->udp_dstport, (struct ip6_mtuinfo *)ptr)); 3364 default: 3365 return (-1); 3366 } 3367 break; 3368 case IPPROTO_UDP: 3369 switch (name) { 3370 case UDP_ANONPRIVBIND: 3371 *i1 = udp->udp_anon_priv_bind; 3372 break; 3373 case UDP_EXCLBIND: 3374 *i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0; 3375 break; 3376 case UDP_RCVHDR: 3377 *i1 = udp->udp_rcvhdr ? 1 : 0; 3378 break; 3379 default: 3380 return (-1); 3381 } 3382 break; 3383 default: 3384 return (-1); 3385 } 3386 return (sizeof (int)); 3387 } 3388 3389 /* 3390 * This routine sets socket options; it expects the caller 3391 * to pass in the queue pointer of the upper instance. 3392 */ 3393 /* ARGSUSED */ 3394 int 3395 udp_opt_set(queue_t *q, uint_t optset_context, int level, 3396 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 3397 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 3398 { 3399 udpattrs_t *attrs = thisdg_attrs; 3400 int *i1 = (int *)invalp; 3401 boolean_t onoff = (*i1 == 0) ? 0 : 1; 3402 boolean_t checkonly; 3403 int error; 3404 conn_t *connp; 3405 udp_t *udp; 3406 uint_t newlen; 3407 3408 q = UDP_WR(q); 3409 connp = Q_TO_CONN(q); 3410 udp = connp->conn_udp; 3411 3412 switch (optset_context) { 3413 case SETFN_OPTCOM_CHECKONLY: 3414 checkonly = B_TRUE; 3415 /* 3416 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 3417 * inlen != 0 implies value supplied and 3418 * we have to "pretend" to set it. 3419 * inlen == 0 implies that there is no 3420 * value part in T_CHECK request and just validation 3421 * done elsewhere should be enough, we just return here. 3422 */ 3423 if (inlen == 0) { 3424 *outlenp = 0; 3425 return (0); 3426 } 3427 break; 3428 case SETFN_OPTCOM_NEGOTIATE: 3429 checkonly = B_FALSE; 3430 break; 3431 case SETFN_UD_NEGOTIATE: 3432 case SETFN_CONN_NEGOTIATE: 3433 checkonly = B_FALSE; 3434 /* 3435 * Negotiating local and "association-related" options 3436 * through T_UNITDATA_REQ. 3437 * 3438 * Following routine can filter out ones we do not 3439 * want to be "set" this way. 3440 */ 3441 if (!udp_opt_allow_udr_set(level, name)) { 3442 *outlenp = 0; 3443 return (EINVAL); 3444 } 3445 break; 3446 default: 3447 /* 3448 * We should never get here 3449 */ 3450 *outlenp = 0; 3451 return (EINVAL); 3452 } 3453 3454 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 3455 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 3456 3457 /* 3458 * For fixed length options, no sanity check 3459 * of passed in length is done. It is assumed *_optcom_req() 3460 * routines do the right thing. 3461 */ 3462 3463 switch (level) { 3464 case SOL_SOCKET: 3465 switch (name) { 3466 case SO_REUSEADDR: 3467 if (!checkonly) 3468 udp->udp_reuseaddr = onoff; 3469 break; 3470 case SO_DEBUG: 3471 if (!checkonly) 3472 udp->udp_debug = onoff; 3473 break; 3474 /* 3475 * The following three items are available here, 3476 * but are only meaningful to IP. 3477 */ 3478 case SO_DONTROUTE: 3479 if (!checkonly) 3480 udp->udp_dontroute = onoff; 3481 break; 3482 case SO_USELOOPBACK: 3483 if (!checkonly) 3484 udp->udp_useloopback = onoff; 3485 break; 3486 case SO_BROADCAST: 3487 if (!checkonly) 3488 udp->udp_broadcast = onoff; 3489 break; 3490 3491 case SO_SNDBUF: 3492 if (*i1 > udp_max_buf) { 3493 *outlenp = 0; 3494 return (ENOBUFS); 3495 } 3496 if (!checkonly) { 3497 q->q_hiwat = *i1; 3498 WR(UDP_RD(q))->q_hiwat = *i1; 3499 } 3500 break; 3501 case SO_RCVBUF: 3502 if (*i1 > udp_max_buf) { 3503 *outlenp = 0; 3504 return (ENOBUFS); 3505 } 3506 if (!checkonly) { 3507 RD(q)->q_hiwat = *i1; 3508 UDP_RD(q)->q_hiwat = *i1; 3509 (void) mi_set_sth_hiwat(UDP_RD(q), 3510 udp_set_rcv_hiwat(udp, *i1)); 3511 } 3512 break; 3513 case SO_DGRAM_ERRIND: 3514 if (!checkonly) 3515 udp->udp_dgram_errind = onoff; 3516 break; 3517 case SO_RECVUCRED: 3518 if (!checkonly) 3519 udp->udp_recvucred = onoff; 3520 break; 3521 case SO_ALLZONES: 3522 /* 3523 * "soft" error (negative) 3524 * option not handled at this level 3525 * Do not modify *outlenp. 3526 */ 3527 return (-EINVAL); 3528 case SO_TIMESTAMP: 3529 if (!checkonly) 3530 udp->udp_timestamp = onoff; 3531 break; 3532 case SO_ANON_MLP: 3533 if (!checkonly) 3534 udp->udp_anon_mlp = onoff; 3535 break; 3536 case SO_MAC_EXEMPT: 3537 if (secpolicy_net_mac_aware(cr) != 0 || 3538 udp->udp_state != TS_UNBND) 3539 return (EACCES); 3540 if (!checkonly) 3541 udp->udp_mac_exempt = onoff; 3542 break; 3543 case SCM_UCRED: { 3544 struct ucred_s *ucr; 3545 cred_t *cr, *newcr; 3546 ts_label_t *tsl; 3547 3548 /* 3549 * Only sockets that have proper privileges and are 3550 * bound to MLPs will have any other value here, so 3551 * this implicitly tests for privilege to set label. 3552 */ 3553 if (connp->conn_mlp_type == mlptSingle) 3554 break; 3555 ucr = (struct ucred_s *)invalp; 3556 if (inlen != ucredsize || 3557 ucr->uc_labeloff < sizeof (*ucr) || 3558 ucr->uc_labeloff + sizeof (bslabel_t) > inlen) 3559 return (EINVAL); 3560 if (!checkonly) { 3561 mblk_t *mb; 3562 3563 if (attrs == NULL || 3564 (mb = attrs->udpattr_mb) == NULL) 3565 return (EINVAL); 3566 if ((cr = DB_CRED(mb)) == NULL) 3567 cr = udp->udp_connp->conn_cred; 3568 ASSERT(cr != NULL); 3569 if ((tsl = crgetlabel(cr)) == NULL) 3570 return (EINVAL); 3571 newcr = copycred_from_bslabel(cr, UCLABEL(ucr), 3572 tsl->tsl_doi, KM_NOSLEEP); 3573 if (newcr == NULL) 3574 return (ENOSR); 3575 mblk_setcred(mb, newcr); 3576 attrs->udpattr_credset = B_TRUE; 3577 crfree(newcr); 3578 } 3579 break; 3580 } 3581 case SO_EXCLBIND: 3582 if (!checkonly) 3583 udp->udp_exclbind = onoff; 3584 break; 3585 default: 3586 *outlenp = 0; 3587 return (EINVAL); 3588 } 3589 break; 3590 case IPPROTO_IP: 3591 if (udp->udp_family != AF_INET) { 3592 *outlenp = 0; 3593 return (ENOPROTOOPT); 3594 } 3595 switch (name) { 3596 case IP_OPTIONS: 3597 case T_IP_OPTIONS: 3598 /* Save options for use by IP. */ 3599 newlen = inlen + udp->udp_label_len; 3600 if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) { 3601 *outlenp = 0; 3602 return (EINVAL); 3603 } 3604 if (checkonly) 3605 break; 3606 3607 if (!tsol_option_set(&udp->udp_ip_snd_options, 3608 &udp->udp_ip_snd_options_len, 3609 udp->udp_label_len, invalp, inlen)) { 3610 *outlenp = 0; 3611 return (ENOMEM); 3612 } 3613 3614 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 3615 UDPH_SIZE + udp->udp_ip_snd_options_len; 3616 (void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len + 3617 udp_wroff_extra); 3618 break; 3619 3620 case IP_TTL: 3621 if (!checkonly) { 3622 udp->udp_ttl = (uchar_t)*i1; 3623 } 3624 break; 3625 case IP_TOS: 3626 case T_IP_TOS: 3627 if (!checkonly) { 3628 udp->udp_type_of_service = (uchar_t)*i1; 3629 } 3630 break; 3631 case IP_MULTICAST_IF: { 3632 /* 3633 * TODO should check OPTMGMT reply and undo this if 3634 * there is an error. 3635 */ 3636 struct in_addr *inap = (struct in_addr *)invalp; 3637 if (!checkonly) { 3638 udp->udp_multicast_if_addr = 3639 inap->s_addr; 3640 } 3641 break; 3642 } 3643 case IP_MULTICAST_TTL: 3644 if (!checkonly) 3645 udp->udp_multicast_ttl = *invalp; 3646 break; 3647 case IP_MULTICAST_LOOP: 3648 if (!checkonly) 3649 connp->conn_multicast_loop = *invalp; 3650 break; 3651 case IP_RECVOPTS: 3652 if (!checkonly) 3653 udp->udp_recvopts = onoff; 3654 break; 3655 case IP_RECVDSTADDR: 3656 if (!checkonly) 3657 udp->udp_recvdstaddr = onoff; 3658 break; 3659 case IP_RECVIF: 3660 if (!checkonly) 3661 udp->udp_recvif = onoff; 3662 break; 3663 case IP_RECVSLLA: 3664 if (!checkonly) 3665 udp->udp_recvslla = onoff; 3666 break; 3667 case IP_RECVTTL: 3668 if (!checkonly) 3669 udp->udp_recvttl = onoff; 3670 break; 3671 case IP_PKTINFO: { 3672 /* 3673 * This also handles IP_RECVPKTINFO. 3674 * IP_PKTINFO and IP_RECVPKTINFO have same value. 3675 * Differentiation is based on the size of the 3676 * argument passed in. 3677 */ 3678 struct in_pktinfo *pktinfop; 3679 ip4_pkt_t *attr_pktinfop; 3680 3681 if (checkonly) 3682 break; 3683 3684 if (inlen == sizeof (int)) { 3685 /* 3686 * This is IP_RECVPKTINFO option. 3687 * Keep a local copy of whether this option is 3688 * set or not and pass it down to IP for 3689 * processing. 3690 */ 3691 3692 udp->udp_ip_recvpktinfo = onoff; 3693 return (-EINVAL); 3694 } 3695 3696 if (attrs == NULL || 3697 (attr_pktinfop = attrs->udpattr_ipp4) == NULL) { 3698 /* 3699 * sticky option or no buffer to return 3700 * the results. 3701 */ 3702 return (EINVAL); 3703 } 3704 3705 if (inlen != sizeof (struct in_pktinfo)) 3706 return (EINVAL); 3707 3708 pktinfop = (struct in_pktinfo *)invalp; 3709 3710 /* 3711 * At least one of the values should be specified 3712 */ 3713 if (pktinfop->ipi_ifindex == 0 && 3714 pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) { 3715 return (EINVAL); 3716 } 3717 3718 attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr; 3719 attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex; 3720 3721 break; 3722 } 3723 case IP_ADD_MEMBERSHIP: 3724 case IP_DROP_MEMBERSHIP: 3725 case IP_BLOCK_SOURCE: 3726 case IP_UNBLOCK_SOURCE: 3727 case IP_ADD_SOURCE_MEMBERSHIP: 3728 case IP_DROP_SOURCE_MEMBERSHIP: 3729 case MCAST_JOIN_GROUP: 3730 case MCAST_LEAVE_GROUP: 3731 case MCAST_BLOCK_SOURCE: 3732 case MCAST_UNBLOCK_SOURCE: 3733 case MCAST_JOIN_SOURCE_GROUP: 3734 case MCAST_LEAVE_SOURCE_GROUP: 3735 case IP_SEC_OPT: 3736 case IP_NEXTHOP: 3737 /* 3738 * "soft" error (negative) 3739 * option not handled at this level 3740 * Do not modify *outlenp. 3741 */ 3742 return (-EINVAL); 3743 case IP_BOUND_IF: 3744 if (!checkonly) 3745 udp->udp_bound_if = *i1; 3746 break; 3747 case IP_UNSPEC_SRC: 3748 if (!checkonly) 3749 udp->udp_unspec_source = onoff; 3750 break; 3751 case IP_XMIT_IF: 3752 if (!checkonly) 3753 udp->udp_xmit_if = *i1; 3754 break; 3755 default: 3756 *outlenp = 0; 3757 return (EINVAL); 3758 } 3759 break; 3760 case IPPROTO_IPV6: { 3761 ip6_pkt_t *ipp; 3762 boolean_t sticky; 3763 3764 if (udp->udp_family != AF_INET6) { 3765 *outlenp = 0; 3766 return (ENOPROTOOPT); 3767 } 3768 /* 3769 * Deal with both sticky options and ancillary data 3770 */ 3771 sticky = B_FALSE; 3772 if (attrs == NULL || (ipp = attrs->udpattr_ipp6) == 3773 NULL) { 3774 /* sticky options, or none */ 3775 ipp = &udp->udp_sticky_ipp; 3776 sticky = B_TRUE; 3777 } 3778 3779 switch (name) { 3780 case IPV6_MULTICAST_IF: 3781 if (!checkonly) 3782 udp->udp_multicast_if_index = *i1; 3783 break; 3784 case IPV6_UNICAST_HOPS: 3785 /* -1 means use default */ 3786 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3787 *outlenp = 0; 3788 return (EINVAL); 3789 } 3790 if (!checkonly) { 3791 if (*i1 == -1) { 3792 udp->udp_ttl = ipp->ipp_unicast_hops = 3793 udp_ipv6_hoplimit; 3794 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 3795 /* Pass modified value to IP. */ 3796 *i1 = udp->udp_ttl; 3797 } else { 3798 udp->udp_ttl = ipp->ipp_unicast_hops = 3799 (uint8_t)*i1; 3800 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 3801 } 3802 /* Rebuild the header template */ 3803 error = udp_build_hdrs(q, udp); 3804 if (error != 0) { 3805 *outlenp = 0; 3806 return (error); 3807 } 3808 } 3809 break; 3810 case IPV6_MULTICAST_HOPS: 3811 /* -1 means use default */ 3812 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3813 *outlenp = 0; 3814 return (EINVAL); 3815 } 3816 if (!checkonly) { 3817 if (*i1 == -1) { 3818 udp->udp_multicast_ttl = 3819 ipp->ipp_multicast_hops = 3820 IP_DEFAULT_MULTICAST_TTL; 3821 ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS; 3822 /* Pass modified value to IP. */ 3823 *i1 = udp->udp_multicast_ttl; 3824 } else { 3825 udp->udp_multicast_ttl = 3826 ipp->ipp_multicast_hops = 3827 (uint8_t)*i1; 3828 ipp->ipp_fields |= IPPF_MULTICAST_HOPS; 3829 } 3830 } 3831 break; 3832 case IPV6_MULTICAST_LOOP: 3833 if (*i1 != 0 && *i1 != 1) { 3834 *outlenp = 0; 3835 return (EINVAL); 3836 } 3837 if (!checkonly) 3838 connp->conn_multicast_loop = *i1; 3839 break; 3840 case IPV6_JOIN_GROUP: 3841 case IPV6_LEAVE_GROUP: 3842 case MCAST_JOIN_GROUP: 3843 case MCAST_LEAVE_GROUP: 3844 case MCAST_BLOCK_SOURCE: 3845 case MCAST_UNBLOCK_SOURCE: 3846 case MCAST_JOIN_SOURCE_GROUP: 3847 case MCAST_LEAVE_SOURCE_GROUP: 3848 /* 3849 * "soft" error (negative) 3850 * option not handled at this level 3851 * Note: Do not modify *outlenp 3852 */ 3853 return (-EINVAL); 3854 case IPV6_BOUND_IF: 3855 if (!checkonly) 3856 udp->udp_bound_if = *i1; 3857 break; 3858 case IPV6_UNSPEC_SRC: 3859 if (!checkonly) 3860 udp->udp_unspec_source = onoff; 3861 break; 3862 /* 3863 * Set boolean switches for ancillary data delivery 3864 */ 3865 case IPV6_RECVPKTINFO: 3866 if (!checkonly) 3867 udp->udp_ip_recvpktinfo = onoff; 3868 break; 3869 case IPV6_RECVTCLASS: 3870 if (!checkonly) { 3871 udp->udp_ipv6_recvtclass = onoff; 3872 } 3873 break; 3874 case IPV6_RECVPATHMTU: 3875 if (!checkonly) { 3876 udp->udp_ipv6_recvpathmtu = onoff; 3877 } 3878 break; 3879 case IPV6_RECVHOPLIMIT: 3880 if (!checkonly) 3881 udp->udp_ipv6_recvhoplimit = onoff; 3882 break; 3883 case IPV6_RECVHOPOPTS: 3884 if (!checkonly) 3885 udp->udp_ipv6_recvhopopts = onoff; 3886 break; 3887 case IPV6_RECVDSTOPTS: 3888 if (!checkonly) 3889 udp->udp_ipv6_recvdstopts = onoff; 3890 break; 3891 case _OLD_IPV6_RECVDSTOPTS: 3892 if (!checkonly) 3893 udp->udp_old_ipv6_recvdstopts = onoff; 3894 break; 3895 case IPV6_RECVRTHDRDSTOPTS: 3896 if (!checkonly) 3897 udp->udp_ipv6_recvrthdrdstopts = onoff; 3898 break; 3899 case IPV6_RECVRTHDR: 3900 if (!checkonly) 3901 udp->udp_ipv6_recvrthdr = onoff; 3902 break; 3903 /* 3904 * Set sticky options or ancillary data. 3905 * If sticky options, (re)build any extension headers 3906 * that might be needed as a result. 3907 */ 3908 case IPV6_PKTINFO: 3909 /* 3910 * The source address and ifindex are verified 3911 * in ip_opt_set(). For ancillary data the 3912 * source address is checked in ip_wput_v6. 3913 */ 3914 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 3915 return (EINVAL); 3916 if (checkonly) 3917 break; 3918 3919 if (inlen == 0) { 3920 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 3921 ipp->ipp_sticky_ignored |= 3922 (IPPF_IFINDEX|IPPF_ADDR); 3923 } else { 3924 struct in6_pktinfo *pkti; 3925 3926 pkti = (struct in6_pktinfo *)invalp; 3927 ipp->ipp_ifindex = pkti->ipi6_ifindex; 3928 ipp->ipp_addr = pkti->ipi6_addr; 3929 if (ipp->ipp_ifindex != 0) 3930 ipp->ipp_fields |= IPPF_IFINDEX; 3931 else 3932 ipp->ipp_fields &= ~IPPF_IFINDEX; 3933 if (!IN6_IS_ADDR_UNSPECIFIED( 3934 &ipp->ipp_addr)) 3935 ipp->ipp_fields |= IPPF_ADDR; 3936 else 3937 ipp->ipp_fields &= ~IPPF_ADDR; 3938 } 3939 if (sticky) { 3940 error = udp_build_hdrs(q, udp); 3941 if (error != 0) 3942 return (error); 3943 } 3944 break; 3945 case IPV6_HOPLIMIT: 3946 if (sticky) 3947 return (EINVAL); 3948 if (inlen != 0 && inlen != sizeof (int)) 3949 return (EINVAL); 3950 if (checkonly) 3951 break; 3952 3953 if (inlen == 0) { 3954 ipp->ipp_fields &= ~IPPF_HOPLIMIT; 3955 ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT; 3956 } else { 3957 if (*i1 > 255 || *i1 < -1) 3958 return (EINVAL); 3959 if (*i1 == -1) 3960 ipp->ipp_hoplimit = udp_ipv6_hoplimit; 3961 else 3962 ipp->ipp_hoplimit = *i1; 3963 ipp->ipp_fields |= IPPF_HOPLIMIT; 3964 } 3965 break; 3966 case IPV6_TCLASS: 3967 if (inlen != 0 && inlen != sizeof (int)) 3968 return (EINVAL); 3969 if (checkonly) 3970 break; 3971 3972 if (inlen == 0) { 3973 ipp->ipp_fields &= ~IPPF_TCLASS; 3974 ipp->ipp_sticky_ignored |= IPPF_TCLASS; 3975 } else { 3976 if (*i1 > 255 || *i1 < -1) 3977 return (EINVAL); 3978 if (*i1 == -1) 3979 ipp->ipp_tclass = 0; 3980 else 3981 ipp->ipp_tclass = *i1; 3982 ipp->ipp_fields |= IPPF_TCLASS; 3983 } 3984 if (sticky) { 3985 error = udp_build_hdrs(q, udp); 3986 if (error != 0) 3987 return (error); 3988 } 3989 break; 3990 case IPV6_NEXTHOP: 3991 /* 3992 * IP will verify that the nexthop is reachable 3993 * and fail for sticky options. 3994 */ 3995 if (inlen != 0 && inlen != sizeof (sin6_t)) 3996 return (EINVAL); 3997 if (checkonly) 3998 break; 3999 4000 if (inlen == 0) { 4001 ipp->ipp_fields &= ~IPPF_NEXTHOP; 4002 ipp->ipp_sticky_ignored |= IPPF_NEXTHOP; 4003 } else { 4004 sin6_t *sin6 = (sin6_t *)invalp; 4005 4006 if (sin6->sin6_family != AF_INET6) 4007 return (EAFNOSUPPORT); 4008 if (IN6_IS_ADDR_V4MAPPED( 4009 &sin6->sin6_addr)) 4010 return (EADDRNOTAVAIL); 4011 ipp->ipp_nexthop = sin6->sin6_addr; 4012 if (!IN6_IS_ADDR_UNSPECIFIED( 4013 &ipp->ipp_nexthop)) 4014 ipp->ipp_fields |= IPPF_NEXTHOP; 4015 else 4016 ipp->ipp_fields &= ~IPPF_NEXTHOP; 4017 } 4018 if (sticky) { 4019 error = udp_build_hdrs(q, udp); 4020 if (error != 0) 4021 return (error); 4022 } 4023 break; 4024 case IPV6_HOPOPTS: { 4025 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 4026 /* 4027 * Sanity checks - minimum size, size a multiple of 4028 * eight bytes, and matching size passed in. 4029 */ 4030 if (inlen != 0 && 4031 inlen != (8 * (hopts->ip6h_len + 1))) 4032 return (EINVAL); 4033 4034 if (checkonly) 4035 break; 4036 4037 error = optcom_pkt_set(invalp, inlen, sticky, 4038 (uchar_t **)&ipp->ipp_hopopts, 4039 &ipp->ipp_hopoptslen, 4040 sticky ? udp->udp_label_len_v6 : 0); 4041 if (error != 0) 4042 return (error); 4043 if (ipp->ipp_hopoptslen == 0) { 4044 ipp->ipp_fields &= ~IPPF_HOPOPTS; 4045 ipp->ipp_sticky_ignored |= IPPF_HOPOPTS; 4046 } else { 4047 ipp->ipp_fields |= IPPF_HOPOPTS; 4048 } 4049 if (sticky) { 4050 error = udp_build_hdrs(q, udp); 4051 if (error != 0) 4052 return (error); 4053 } 4054 break; 4055 } 4056 case IPV6_RTHDRDSTOPTS: { 4057 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 4058 4059 /* 4060 * Sanity checks - minimum size, size a multiple of 4061 * eight bytes, and matching size passed in. 4062 */ 4063 if (inlen != 0 && 4064 inlen != (8 * (dopts->ip6d_len + 1))) 4065 return (EINVAL); 4066 4067 if (checkonly) 4068 break; 4069 4070 if (inlen == 0) { 4071 if (sticky && 4072 (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 4073 kmem_free(ipp->ipp_rtdstopts, 4074 ipp->ipp_rtdstoptslen); 4075 ipp->ipp_rtdstopts = NULL; 4076 ipp->ipp_rtdstoptslen = 0; 4077 } 4078 4079 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 4080 ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS; 4081 } else { 4082 error = optcom_pkt_set(invalp, inlen, sticky, 4083 (uchar_t **)&ipp->ipp_rtdstopts, 4084 &ipp->ipp_rtdstoptslen, 0); 4085 if (error != 0) 4086 return (error); 4087 ipp->ipp_fields |= IPPF_RTDSTOPTS; 4088 } 4089 if (sticky) { 4090 error = udp_build_hdrs(q, udp); 4091 if (error != 0) 4092 return (error); 4093 } 4094 break; 4095 } 4096 case IPV6_DSTOPTS: { 4097 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 4098 4099 /* 4100 * Sanity checks - minimum size, size a multiple of 4101 * eight bytes, and matching size passed in. 4102 */ 4103 if (inlen != 0 && 4104 inlen != (8 * (dopts->ip6d_len + 1))) 4105 return (EINVAL); 4106 4107 if (checkonly) 4108 break; 4109 4110 if (inlen == 0) { 4111 if (sticky && 4112 (ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 4113 kmem_free(ipp->ipp_dstopts, 4114 ipp->ipp_dstoptslen); 4115 ipp->ipp_dstopts = NULL; 4116 ipp->ipp_dstoptslen = 0; 4117 } 4118 ipp->ipp_fields &= ~IPPF_DSTOPTS; 4119 ipp->ipp_sticky_ignored |= IPPF_DSTOPTS; 4120 } else { 4121 error = optcom_pkt_set(invalp, inlen, sticky, 4122 (uchar_t **)&ipp->ipp_dstopts, 4123 &ipp->ipp_dstoptslen, 0); 4124 if (error != 0) 4125 return (error); 4126 ipp->ipp_fields |= IPPF_DSTOPTS; 4127 } 4128 if (sticky) { 4129 error = udp_build_hdrs(q, udp); 4130 if (error != 0) 4131 return (error); 4132 } 4133 break; 4134 } 4135 case IPV6_RTHDR: { 4136 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 4137 4138 /* 4139 * Sanity checks - minimum size, size a multiple of 4140 * eight bytes, and matching size passed in. 4141 */ 4142 if (inlen != 0 && 4143 inlen != (8 * (rt->ip6r_len + 1))) 4144 return (EINVAL); 4145 4146 if (checkonly) 4147 break; 4148 4149 if (inlen == 0) { 4150 if (sticky && 4151 (ipp->ipp_fields & IPPF_RTHDR) != 0) { 4152 kmem_free(ipp->ipp_rthdr, 4153 ipp->ipp_rthdrlen); 4154 ipp->ipp_rthdr = NULL; 4155 ipp->ipp_rthdrlen = 0; 4156 } 4157 ipp->ipp_fields &= ~IPPF_RTHDR; 4158 ipp->ipp_sticky_ignored |= IPPF_RTHDR; 4159 } else { 4160 error = optcom_pkt_set(invalp, inlen, sticky, 4161 (uchar_t **)&ipp->ipp_rthdr, 4162 &ipp->ipp_rthdrlen, 0); 4163 if (error != 0) 4164 return (error); 4165 ipp->ipp_fields |= IPPF_RTHDR; 4166 } 4167 if (sticky) { 4168 error = udp_build_hdrs(q, udp); 4169 if (error != 0) 4170 return (error); 4171 } 4172 break; 4173 } 4174 4175 case IPV6_DONTFRAG: 4176 if (checkonly) 4177 break; 4178 4179 if (onoff) { 4180 ipp->ipp_fields |= IPPF_DONTFRAG; 4181 } else { 4182 ipp->ipp_fields &= ~IPPF_DONTFRAG; 4183 } 4184 break; 4185 4186 case IPV6_USE_MIN_MTU: 4187 if (inlen != sizeof (int)) 4188 return (EINVAL); 4189 4190 if (*i1 < -1 || *i1 > 1) 4191 return (EINVAL); 4192 4193 if (checkonly) 4194 break; 4195 4196 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 4197 ipp->ipp_use_min_mtu = *i1; 4198 break; 4199 4200 case IPV6_BOUND_PIF: 4201 case IPV6_SEC_OPT: 4202 case IPV6_DONTFAILOVER_IF: 4203 case IPV6_SRC_PREFERENCES: 4204 case IPV6_V6ONLY: 4205 /* Handled at the IP level */ 4206 return (-EINVAL); 4207 default: 4208 *outlenp = 0; 4209 return (EINVAL); 4210 } 4211 break; 4212 } /* end IPPROTO_IPV6 */ 4213 case IPPROTO_UDP: 4214 switch (name) { 4215 case UDP_ANONPRIVBIND: 4216 if ((error = secpolicy_net_privaddr(cr, 0)) != 0) { 4217 *outlenp = 0; 4218 return (error); 4219 } 4220 if (!checkonly) { 4221 udp->udp_anon_priv_bind = onoff; 4222 } 4223 break; 4224 case UDP_EXCLBIND: 4225 if (!checkonly) 4226 udp->udp_exclbind = onoff; 4227 break; 4228 case UDP_RCVHDR: 4229 if (!checkonly) 4230 udp->udp_rcvhdr = onoff; 4231 break; 4232 default: 4233 *outlenp = 0; 4234 return (EINVAL); 4235 } 4236 break; 4237 default: 4238 *outlenp = 0; 4239 return (EINVAL); 4240 } 4241 /* 4242 * Common case of OK return with outval same as inval. 4243 */ 4244 if (invalp != outvalp) { 4245 /* don't trust bcopy for identical src/dst */ 4246 (void) bcopy(invalp, outvalp, inlen); 4247 } 4248 *outlenp = inlen; 4249 return (0); 4250 } 4251 4252 /* 4253 * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl. 4254 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 4255 * headers, and the udp header. 4256 * Returns failure if can't allocate memory. 4257 */ 4258 static int 4259 udp_build_hdrs(queue_t *q, udp_t *udp) 4260 { 4261 uchar_t *hdrs; 4262 uint_t hdrs_len; 4263 ip6_t *ip6h; 4264 ip6i_t *ip6i; 4265 udpha_t *udpha; 4266 ip6_pkt_t *ipp = &udp->udp_sticky_ipp; 4267 4268 hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE; 4269 ASSERT(hdrs_len != 0); 4270 if (hdrs_len != udp->udp_sticky_hdrs_len) { 4271 /* Need to reallocate */ 4272 hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP); 4273 if (hdrs == NULL) 4274 return (ENOMEM); 4275 4276 if (udp->udp_sticky_hdrs_len != 0) { 4277 kmem_free(udp->udp_sticky_hdrs, 4278 udp->udp_sticky_hdrs_len); 4279 } 4280 udp->udp_sticky_hdrs = hdrs; 4281 udp->udp_sticky_hdrs_len = hdrs_len; 4282 } 4283 ip_build_hdrs_v6(udp->udp_sticky_hdrs, 4284 udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP); 4285 4286 /* Set header fields not in ipp */ 4287 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 4288 ip6i = (ip6i_t *)udp->udp_sticky_hdrs; 4289 ip6h = (ip6_t *)&ip6i[1]; 4290 } else { 4291 ip6h = (ip6_t *)udp->udp_sticky_hdrs; 4292 } 4293 4294 if (!(ipp->ipp_fields & IPPF_ADDR)) 4295 ip6h->ip6_src = udp->udp_v6src; 4296 4297 udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE); 4298 udpha->uha_src_port = udp->udp_port; 4299 4300 /* Try to get everything in a single mblk */ 4301 if (hdrs_len > udp->udp_max_hdr_len) { 4302 udp->udp_max_hdr_len = hdrs_len; 4303 (void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len + 4304 udp_wroff_extra); 4305 } 4306 return (0); 4307 } 4308 4309 /* 4310 * This routine retrieves the value of an ND variable in a udpparam_t 4311 * structure. It is called through nd_getset when a user reads the 4312 * variable. 4313 */ 4314 /* ARGSUSED */ 4315 static int 4316 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 4317 { 4318 udpparam_t *udppa = (udpparam_t *)cp; 4319 4320 (void) mi_mpprintf(mp, "%d", udppa->udp_param_value); 4321 return (0); 4322 } 4323 4324 /* 4325 * Walk through the param array specified registering each element with the 4326 * named dispatch (ND) handler. 4327 */ 4328 static boolean_t 4329 udp_param_register(udpparam_t *udppa, int cnt) 4330 { 4331 for (; cnt-- > 0; udppa++) { 4332 if (udppa->udp_param_name && udppa->udp_param_name[0]) { 4333 if (!nd_load(&udp_g_nd, udppa->udp_param_name, 4334 udp_param_get, udp_param_set, 4335 (caddr_t)udppa)) { 4336 nd_free(&udp_g_nd); 4337 return (B_FALSE); 4338 } 4339 } 4340 } 4341 if (!nd_load(&udp_g_nd, "udp_extra_priv_ports", 4342 udp_extra_priv_ports_get, NULL, NULL)) { 4343 nd_free(&udp_g_nd); 4344 return (B_FALSE); 4345 } 4346 if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_add", 4347 NULL, udp_extra_priv_ports_add, NULL)) { 4348 nd_free(&udp_g_nd); 4349 return (B_FALSE); 4350 } 4351 if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_del", 4352 NULL, udp_extra_priv_ports_del, NULL)) { 4353 nd_free(&udp_g_nd); 4354 return (B_FALSE); 4355 } 4356 if (!nd_load(&udp_g_nd, "udp_status", udp_status_report, NULL, 4357 NULL)) { 4358 nd_free(&udp_g_nd); 4359 return (B_FALSE); 4360 } 4361 if (!nd_load(&udp_g_nd, "udp_bind_hash", udp_bind_hash_report, NULL, 4362 NULL)) { 4363 nd_free(&udp_g_nd); 4364 return (B_FALSE); 4365 } 4366 return (B_TRUE); 4367 } 4368 4369 /* This routine sets an ND variable in a udpparam_t structure. */ 4370 /* ARGSUSED */ 4371 static int 4372 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 4373 { 4374 long new_value; 4375 udpparam_t *udppa = (udpparam_t *)cp; 4376 4377 /* 4378 * Fail the request if the new value does not lie within the 4379 * required bounds. 4380 */ 4381 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 4382 new_value < udppa->udp_param_min || 4383 new_value > udppa->udp_param_max) { 4384 return (EINVAL); 4385 } 4386 4387 /* Set the new value */ 4388 udppa->udp_param_value = new_value; 4389 return (0); 4390 } 4391 4392 /* 4393 * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with 4394 * T_opthdr) and return the number of bytes copied. 'dbuf' may be NULL to 4395 * just count the length needed for allocation. If 'dbuf' is non-NULL, 4396 * then it's assumed to be allocated to be large enough. 4397 * 4398 * Returns zero if trimming of the security option causes all options to go 4399 * away. 4400 */ 4401 static size_t 4402 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf) 4403 { 4404 struct T_opthdr *toh; 4405 size_t hol = ipp->ipp_hopoptslen; 4406 ip6_hbh_t *dstopt = NULL; 4407 const ip6_hbh_t *srcopt = ipp->ipp_hopopts; 4408 size_t tlen, olen, plen; 4409 boolean_t deleting; 4410 const struct ip6_opt *sopt, *lastpad; 4411 struct ip6_opt *dopt; 4412 4413 if ((toh = (struct T_opthdr *)dbuf) != NULL) { 4414 toh->level = IPPROTO_IPV6; 4415 toh->name = IPV6_HOPOPTS; 4416 toh->status = 0; 4417 dstopt = (ip6_hbh_t *)(toh + 1); 4418 } 4419 4420 /* 4421 * If labeling is enabled, then skip the label option 4422 * but get other options if there are any. 4423 */ 4424 if (is_system_labeled()) { 4425 dopt = NULL; 4426 if (dstopt != NULL) { 4427 /* will fill in ip6h_len later */ 4428 dstopt->ip6h_nxt = srcopt->ip6h_nxt; 4429 dopt = (struct ip6_opt *)(dstopt + 1); 4430 } 4431 sopt = (const struct ip6_opt *)(srcopt + 1); 4432 hol -= sizeof (*srcopt); 4433 tlen = sizeof (*dstopt); 4434 lastpad = NULL; 4435 deleting = B_FALSE; 4436 /* 4437 * This loop finds the first (lastpad pointer) of any number of 4438 * pads that preceeds the security option, then treats the 4439 * security option as though it were a pad, and then finds the 4440 * next non-pad option (or end of list). 4441 * 4442 * It then treats the entire block as one big pad. To preserve 4443 * alignment of any options that follow, or just the end of the 4444 * list, it computes a minimal new padding size that keeps the 4445 * same alignment for the next option. 4446 * 4447 * If it encounters just a sequence of pads with no security 4448 * option, those are copied as-is rather than collapsed. 4449 * 4450 * Note that to handle the end of list case, the code makes one 4451 * loop with 'hol' set to zero. 4452 */ 4453 for (;;) { 4454 if (hol > 0) { 4455 if (sopt->ip6o_type == IP6OPT_PAD1) { 4456 if (lastpad == NULL) 4457 lastpad = sopt; 4458 sopt = (const struct ip6_opt *) 4459 &sopt->ip6o_len; 4460 hol--; 4461 continue; 4462 } 4463 olen = sopt->ip6o_len + sizeof (*sopt); 4464 if (olen > hol) 4465 olen = hol; 4466 if (sopt->ip6o_type == IP6OPT_PADN || 4467 sopt->ip6o_type == ip6opt_ls) { 4468 if (sopt->ip6o_type == ip6opt_ls) 4469 deleting = B_TRUE; 4470 if (lastpad == NULL) 4471 lastpad = sopt; 4472 sopt = (const struct ip6_opt *) 4473 ((const char *)sopt + olen); 4474 hol -= olen; 4475 continue; 4476 } 4477 } else { 4478 /* if nothing was copied at all, then delete */ 4479 if (tlen == sizeof (*dstopt)) 4480 return (0); 4481 /* last pass; pick up any trailing padding */ 4482 olen = 0; 4483 } 4484 if (deleting) { 4485 /* 4486 * compute aligning effect of deleted material 4487 * to reproduce with pad. 4488 */ 4489 plen = ((const char *)sopt - 4490 (const char *)lastpad) & 7; 4491 tlen += plen; 4492 if (dopt != NULL) { 4493 if (plen == 1) { 4494 dopt->ip6o_type = IP6OPT_PAD1; 4495 } else if (plen > 1) { 4496 plen -= sizeof (*dopt); 4497 dopt->ip6o_type = IP6OPT_PADN; 4498 dopt->ip6o_len = plen; 4499 if (plen > 0) 4500 bzero(dopt + 1, plen); 4501 } 4502 dopt = (struct ip6_opt *) 4503 ((char *)dopt + plen); 4504 } 4505 deleting = B_FALSE; 4506 lastpad = NULL; 4507 } 4508 /* if there's uncopied padding, then copy that now */ 4509 if (lastpad != NULL) { 4510 olen += (const char *)sopt - 4511 (const char *)lastpad; 4512 sopt = lastpad; 4513 lastpad = NULL; 4514 } 4515 if (dopt != NULL && olen > 0) { 4516 bcopy(sopt, dopt, olen); 4517 dopt = (struct ip6_opt *)((char *)dopt + olen); 4518 } 4519 if (hol == 0) 4520 break; 4521 tlen += olen; 4522 sopt = (const struct ip6_opt *) 4523 ((const char *)sopt + olen); 4524 hol -= olen; 4525 } 4526 /* go back and patch up the length value, rounded upward */ 4527 if (dstopt != NULL) 4528 dstopt->ip6h_len = (tlen - 1) >> 3; 4529 } else { 4530 tlen = hol; 4531 if (dstopt != NULL) 4532 bcopy(srcopt, dstopt, hol); 4533 } 4534 4535 tlen += sizeof (*toh); 4536 if (toh != NULL) 4537 toh->len = tlen; 4538 4539 return (tlen); 4540 } 4541 4542 static void 4543 udp_input(conn_t *connp, mblk_t *mp) 4544 { 4545 struct T_unitdata_ind *tudi; 4546 uchar_t *rptr; /* Pointer to IP header */ 4547 int hdr_length; /* Length of IP+UDP headers */ 4548 int udi_size; /* Size of T_unitdata_ind */ 4549 int mp_len; 4550 udp_t *udp; 4551 udpha_t *udpha; 4552 int ipversion; 4553 ip6_pkt_t ipp; 4554 ip6_t *ip6h; 4555 ip6i_t *ip6i; 4556 mblk_t *mp1; 4557 mblk_t *options_mp = NULL; 4558 ip_pktinfo_t *pinfo = NULL; 4559 cred_t *cr = NULL; 4560 queue_t *q = connp->conn_rq; 4561 pid_t cpid; 4562 cred_t *rcr = connp->conn_cred; 4563 4564 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START, 4565 "udp_rput_start: q %p mp %p", q, mp); 4566 4567 udp = connp->conn_udp; 4568 rptr = mp->b_rptr; 4569 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL); 4570 ASSERT(OK_32PTR(rptr)); 4571 4572 /* 4573 * IP should have prepended the options data in an M_CTL 4574 * Check M_CTL "type" to make sure are not here bcos of 4575 * a valid ICMP message 4576 */ 4577 if (DB_TYPE(mp) == M_CTL) { 4578 if (MBLKL(mp) == sizeof (ip_pktinfo_t) && 4579 ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type == 4580 IN_PKTINFO) { 4581 /* 4582 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information 4583 * has been appended to the packet by IP. We need to 4584 * extract the mblk and adjust the rptr 4585 */ 4586 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4587 options_mp = mp; 4588 mp = mp->b_cont; 4589 rptr = mp->b_rptr; 4590 UDP_STAT(udp_in_pktinfo); 4591 } else { 4592 /* 4593 * ICMP messages. 4594 */ 4595 udp_icmp_error(q, mp); 4596 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 4597 "udp_rput_end: q %p (%S)", q, "m_ctl"); 4598 return; 4599 } 4600 } 4601 4602 mp_len = msgdsize(mp); 4603 /* 4604 * This is the inbound data path. 4605 * First, we check to make sure the IP version number is correct, 4606 * and then pull the IP and UDP headers into the first mblk. 4607 * Assume IP provides aligned packets - otherwise toss. 4608 * Also, check if we have a complete IP header. 4609 */ 4610 4611 /* Initialize regardless if ipversion is IPv4 or IPv6 */ 4612 ipp.ipp_fields = 0; 4613 4614 ipversion = IPH_HDR_VERSION(rptr); 4615 switch (ipversion) { 4616 case IPV4_VERSION: 4617 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 4618 ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP); 4619 hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE; 4620 if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) || 4621 (udp->udp_ip_rcv_options_len)) { 4622 /* 4623 * Handle IPv4 packets with options outside of the 4624 * main data path. Not needed for AF_INET6 sockets 4625 * since they don't support a getsockopt of IP_OPTIONS. 4626 */ 4627 if (udp->udp_family == AF_INET6) 4628 break; 4629 /* 4630 * UDP length check performed for IPv4 packets with 4631 * options to check whether UDP length specified in 4632 * the header is the same as the physical length of 4633 * the packet. 4634 */ 4635 udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE)); 4636 if (mp_len != (ntohs(udpha->uha_length) + 4637 hdr_length - UDPH_SIZE)) { 4638 goto tossit; 4639 } 4640 /* 4641 * Handle the case where the packet has IP options 4642 * and the IP_RECVSLLA & IP_RECVIF are set 4643 */ 4644 if (pinfo != NULL) 4645 mp = options_mp; 4646 udp_become_writer(connp, mp, udp_rput_other_wrapper, 4647 SQTAG_UDP_INPUT); 4648 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 4649 "udp_rput_end: q %p (%S)", q, "end"); 4650 return; 4651 } 4652 4653 /* Handle IPV6_RECVHOPLIMIT. */ 4654 if ((udp->udp_family == AF_INET6) && (pinfo != NULL) && 4655 udp->udp_ip_recvpktinfo) { 4656 if (pinfo->ip_pkt_flags & IPF_RECVIF) { 4657 ipp.ipp_fields |= IPPF_IFINDEX; 4658 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 4659 } 4660 } 4661 break; 4662 case IPV6_VERSION: 4663 /* 4664 * IPv6 packets can only be received by applications 4665 * that are prepared to receive IPv6 addresses. 4666 * The IP fanout must ensure this. 4667 */ 4668 ASSERT(udp->udp_family == AF_INET6); 4669 4670 ip6h = (ip6_t *)rptr; 4671 ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr); 4672 4673 if (ip6h->ip6_nxt != IPPROTO_UDP) { 4674 uint8_t nexthdrp; 4675 /* Look for ifindex information */ 4676 if (ip6h->ip6_nxt == IPPROTO_RAW) { 4677 ip6i = (ip6i_t *)ip6h; 4678 if ((uchar_t *)&ip6i[1] > mp->b_wptr) 4679 goto tossit; 4680 4681 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 4682 ASSERT(ip6i->ip6i_ifindex != 0); 4683 ipp.ipp_fields |= IPPF_IFINDEX; 4684 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 4685 } 4686 rptr = (uchar_t *)&ip6i[1]; 4687 mp->b_rptr = rptr; 4688 if (rptr == mp->b_wptr) { 4689 mp1 = mp->b_cont; 4690 freeb(mp); 4691 mp = mp1; 4692 rptr = mp->b_rptr; 4693 } 4694 if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE)) 4695 goto tossit; 4696 ip6h = (ip6_t *)rptr; 4697 mp_len = msgdsize(mp); 4698 } 4699 /* 4700 * Find any potentially interesting extension headers 4701 * as well as the length of the IPv6 + extension 4702 * headers. 4703 */ 4704 hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) + 4705 UDPH_SIZE; 4706 ASSERT(nexthdrp == IPPROTO_UDP); 4707 } else { 4708 hdr_length = IPV6_HDR_LEN + UDPH_SIZE; 4709 ip6i = NULL; 4710 } 4711 break; 4712 default: 4713 ASSERT(0); 4714 } 4715 4716 /* 4717 * IP inspected the UDP header thus all of it must be in the mblk. 4718 * UDP length check is performed for IPv6 packets and IPv4 packets 4719 * without options to check if the size of the packet as specified 4720 * by the header is the same as the physical size of the packet. 4721 */ 4722 udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE)); 4723 if ((MBLKL(mp) < hdr_length) || 4724 (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) { 4725 goto tossit; 4726 } 4727 4728 /* Walk past the headers. */ 4729 if (!udp->udp_rcvhdr) { 4730 mp->b_rptr = rptr + hdr_length; 4731 mp_len -= hdr_length; 4732 } 4733 4734 /* 4735 * This is the inbound data path. Packets are passed upstream as 4736 * T_UNITDATA_IND messages with full IP headers still attached. 4737 */ 4738 if (udp->udp_family == AF_INET) { 4739 sin_t *sin; 4740 4741 ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); 4742 4743 /* 4744 * Normally only send up the address. 4745 * If IP_RECVDSTADDR is set we include the destination IP 4746 * address as an option. With IP_RECVOPTS we include all 4747 * the IP options. Only ip_rput_other() handles packets 4748 * that contain IP options. 4749 */ 4750 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 4751 if (udp->udp_recvdstaddr) { 4752 udi_size += sizeof (struct T_opthdr) + 4753 sizeof (struct in_addr); 4754 UDP_STAT(udp_in_recvdstaddr); 4755 } 4756 4757 if (udp->udp_ip_recvpktinfo && (pinfo != NULL) && 4758 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 4759 udi_size += sizeof (struct T_opthdr) + 4760 sizeof (struct in_pktinfo); 4761 UDP_STAT(udp_ip_recvpktinfo); 4762 } 4763 4764 /* 4765 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate 4766 * space accordingly 4767 */ 4768 if (udp->udp_recvif && (pinfo != NULL) && 4769 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 4770 udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); 4771 UDP_STAT(udp_in_recvif); 4772 } 4773 4774 if (udp->udp_recvslla && (pinfo != NULL) && 4775 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 4776 udi_size += sizeof (struct T_opthdr) + 4777 sizeof (struct sockaddr_dl); 4778 UDP_STAT(udp_in_recvslla); 4779 } 4780 4781 if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { 4782 udi_size += sizeof (struct T_opthdr) + ucredsize; 4783 cpid = DB_CPID(mp); 4784 UDP_STAT(udp_in_recvucred); 4785 } 4786 4787 /* 4788 * If SO_TIMESTAMP is set allocate the appropriate sized 4789 * buffer. Since gethrestime() expects a pointer aligned 4790 * argument, we allocate space necessary for extra 4791 * alignment (even though it might not be used). 4792 */ 4793 if (udp->udp_timestamp) { 4794 udi_size += sizeof (struct T_opthdr) + 4795 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4796 UDP_STAT(udp_in_timestamp); 4797 } 4798 4799 /* 4800 * If IP_RECVTTL is set allocate the appropriate sized buffer 4801 */ 4802 if (udp->udp_recvttl) { 4803 udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t); 4804 UDP_STAT(udp_in_recvttl); 4805 } 4806 ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH); 4807 4808 /* Allocate a message block for the T_UNITDATA_IND structure. */ 4809 mp1 = allocb(udi_size, BPRI_MED); 4810 if (mp1 == NULL) { 4811 freemsg(mp); 4812 if (options_mp != NULL) 4813 freeb(options_mp); 4814 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 4815 "udp_rput_end: q %p (%S)", q, "allocbfail"); 4816 BUMP_MIB(&udp_mib, udpInErrors); 4817 return; 4818 } 4819 mp1->b_cont = mp; 4820 mp = mp1; 4821 mp->b_datap->db_type = M_PROTO; 4822 tudi = (struct T_unitdata_ind *)mp->b_rptr; 4823 mp->b_wptr = (uchar_t *)tudi + udi_size; 4824 tudi->PRIM_type = T_UNITDATA_IND; 4825 tudi->SRC_length = sizeof (sin_t); 4826 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 4827 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 4828 sizeof (sin_t); 4829 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); 4830 tudi->OPT_length = udi_size; 4831 sin = (sin_t *)&tudi[1]; 4832 sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; 4833 sin->sin_port = udpha->uha_src_port; 4834 sin->sin_family = udp->udp_family; 4835 *(uint32_t *)&sin->sin_zero[0] = 0; 4836 *(uint32_t *)&sin->sin_zero[4] = 0; 4837 4838 /* 4839 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or 4840 * IP_RECVTTL has been set. 4841 */ 4842 if (udi_size != 0) { 4843 /* 4844 * Copy in destination address before options to avoid 4845 * any padding issues. 4846 */ 4847 char *dstopt; 4848 4849 dstopt = (char *)&sin[1]; 4850 if (udp->udp_recvdstaddr) { 4851 struct T_opthdr *toh; 4852 ipaddr_t *dstptr; 4853 4854 toh = (struct T_opthdr *)dstopt; 4855 toh->level = IPPROTO_IP; 4856 toh->name = IP_RECVDSTADDR; 4857 toh->len = sizeof (struct T_opthdr) + 4858 sizeof (ipaddr_t); 4859 toh->status = 0; 4860 dstopt += sizeof (struct T_opthdr); 4861 dstptr = (ipaddr_t *)dstopt; 4862 *dstptr = ((ipha_t *)rptr)->ipha_dst; 4863 dstopt = (char *)toh + toh->len; 4864 udi_size -= toh->len; 4865 } 4866 4867 if (udp->udp_ip_recvpktinfo && (pinfo != NULL) && 4868 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 4869 struct T_opthdr *toh; 4870 struct in_pktinfo *pktinfop; 4871 4872 toh = (struct T_opthdr *)dstopt; 4873 toh->level = IPPROTO_IP; 4874 toh->name = IP_PKTINFO; 4875 toh->len = sizeof (struct T_opthdr) + 4876 sizeof (*pktinfop); 4877 toh->status = 0; 4878 dstopt += sizeof (struct T_opthdr); 4879 pktinfop = (struct in_pktinfo *)dstopt; 4880 pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex; 4881 pktinfop->ipi_spec_dst = 4882 pinfo->ip_pkt_match_addr; 4883 pktinfop->ipi_addr.s_addr = 4884 ((ipha_t *)rptr)->ipha_dst; 4885 4886 dstopt += sizeof (struct in_pktinfo); 4887 udi_size -= toh->len; 4888 } 4889 4890 if (udp->udp_recvslla && (pinfo != NULL) && 4891 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 4892 4893 struct T_opthdr *toh; 4894 struct sockaddr_dl *dstptr; 4895 4896 toh = (struct T_opthdr *)dstopt; 4897 toh->level = IPPROTO_IP; 4898 toh->name = IP_RECVSLLA; 4899 toh->len = sizeof (struct T_opthdr) + 4900 sizeof (struct sockaddr_dl); 4901 toh->status = 0; 4902 dstopt += sizeof (struct T_opthdr); 4903 dstptr = (struct sockaddr_dl *)dstopt; 4904 bcopy(&pinfo->ip_pkt_slla, dstptr, 4905 sizeof (struct sockaddr_dl)); 4906 dstopt = (char *)toh + toh->len; 4907 udi_size -= toh->len; 4908 } 4909 4910 if (udp->udp_recvif && (pinfo != NULL) && 4911 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 4912 4913 struct T_opthdr *toh; 4914 uint_t *dstptr; 4915 4916 toh = (struct T_opthdr *)dstopt; 4917 toh->level = IPPROTO_IP; 4918 toh->name = IP_RECVIF; 4919 toh->len = sizeof (struct T_opthdr) + 4920 sizeof (uint_t); 4921 toh->status = 0; 4922 dstopt += sizeof (struct T_opthdr); 4923 dstptr = (uint_t *)dstopt; 4924 *dstptr = pinfo->ip_pkt_ifindex; 4925 dstopt = (char *)toh + toh->len; 4926 udi_size -= toh->len; 4927 } 4928 4929 if (cr != NULL) { 4930 struct T_opthdr *toh; 4931 4932 toh = (struct T_opthdr *)dstopt; 4933 toh->level = SOL_SOCKET; 4934 toh->name = SCM_UCRED; 4935 toh->len = sizeof (struct T_opthdr) + ucredsize; 4936 toh->status = 0; 4937 (void) cred2ucred(cr, cpid, &toh[1], rcr); 4938 dstopt = (char *)toh + toh->len; 4939 udi_size -= toh->len; 4940 } 4941 4942 if (udp->udp_timestamp) { 4943 struct T_opthdr *toh; 4944 4945 toh = (struct T_opthdr *)dstopt; 4946 toh->level = SOL_SOCKET; 4947 toh->name = SCM_TIMESTAMP; 4948 toh->len = sizeof (struct T_opthdr) + 4949 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4950 toh->status = 0; 4951 dstopt += sizeof (struct T_opthdr); 4952 /* Align for gethrestime() */ 4953 dstopt = (char *)P2ROUNDUP((intptr_t)dstopt, 4954 sizeof (intptr_t)); 4955 gethrestime((timestruc_t *)dstopt); 4956 dstopt = (char *)toh + toh->len; 4957 udi_size -= toh->len; 4958 } 4959 4960 /* 4961 * CAUTION: 4962 * Due to aligment issues 4963 * Processing of IP_RECVTTL option 4964 * should always be the last. Adding 4965 * any option processing after this will 4966 * cause alignment panic. 4967 */ 4968 if (udp->udp_recvttl) { 4969 struct T_opthdr *toh; 4970 uint8_t *dstptr; 4971 4972 toh = (struct T_opthdr *)dstopt; 4973 toh->level = IPPROTO_IP; 4974 toh->name = IP_RECVTTL; 4975 toh->len = sizeof (struct T_opthdr) + 4976 sizeof (uint8_t); 4977 toh->status = 0; 4978 dstopt += sizeof (struct T_opthdr); 4979 dstptr = (uint8_t *)dstopt; 4980 *dstptr = ((ipha_t *)rptr)->ipha_ttl; 4981 dstopt = (char *)toh + toh->len; 4982 udi_size -= toh->len; 4983 } 4984 4985 /* Consumed all of allocated space */ 4986 ASSERT(udi_size == 0); 4987 } 4988 } else { 4989 sin6_t *sin6; 4990 4991 /* 4992 * Handle both IPv4 and IPv6 packets for IPv6 sockets. 4993 * 4994 * Normally we only send up the address. If receiving of any 4995 * optional receive side information is enabled, we also send 4996 * that up as options. 4997 * [ Only udp_rput_other() handles packets that contain IP 4998 * options so code to account for does not appear immediately 4999 * below but elsewhere ] 5000 */ 5001 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); 5002 5003 if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS| 5004 IPPF_RTHDR|IPPF_IFINDEX)) { 5005 if (udp->udp_ipv6_recvhopopts && 5006 (ipp.ipp_fields & IPPF_HOPOPTS)) { 5007 size_t hlen; 5008 5009 UDP_STAT(udp_in_recvhopopts); 5010 hlen = copy_hop_opts(&ipp, NULL); 5011 if (hlen == 0) 5012 ipp.ipp_fields &= ~IPPF_HOPOPTS; 5013 udi_size += hlen; 5014 } 5015 if ((udp->udp_ipv6_recvdstopts || 5016 udp->udp_old_ipv6_recvdstopts) && 5017 (ipp.ipp_fields & IPPF_DSTOPTS)) { 5018 udi_size += sizeof (struct T_opthdr) + 5019 ipp.ipp_dstoptslen; 5020 UDP_STAT(udp_in_recvdstopts); 5021 } 5022 if (((udp->udp_ipv6_recvdstopts && 5023 udp->udp_ipv6_recvrthdr && 5024 (ipp.ipp_fields & IPPF_RTHDR)) || 5025 udp->udp_ipv6_recvrthdrdstopts) && 5026 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 5027 udi_size += sizeof (struct T_opthdr) + 5028 ipp.ipp_rtdstoptslen; 5029 UDP_STAT(udp_in_recvrtdstopts); 5030 } 5031 if (udp->udp_ipv6_recvrthdr && 5032 (ipp.ipp_fields & IPPF_RTHDR)) { 5033 udi_size += sizeof (struct T_opthdr) + 5034 ipp.ipp_rthdrlen; 5035 UDP_STAT(udp_in_recvrthdr); 5036 } 5037 if (udp->udp_ip_recvpktinfo && 5038 (ipp.ipp_fields & IPPF_IFINDEX)) { 5039 udi_size += sizeof (struct T_opthdr) + 5040 sizeof (struct in6_pktinfo); 5041 UDP_STAT(udp_in_recvpktinfo); 5042 } 5043 5044 } 5045 if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { 5046 udi_size += sizeof (struct T_opthdr) + ucredsize; 5047 cpid = DB_CPID(mp); 5048 UDP_STAT(udp_in_recvucred); 5049 } 5050 5051 if (udp->udp_ipv6_recvhoplimit) { 5052 udi_size += sizeof (struct T_opthdr) + sizeof (int); 5053 UDP_STAT(udp_in_recvhoplimit); 5054 } 5055 5056 if (udp->udp_ipv6_recvtclass) { 5057 udi_size += sizeof (struct T_opthdr) + sizeof (int); 5058 UDP_STAT(udp_in_recvtclass); 5059 } 5060 5061 mp1 = allocb(udi_size, BPRI_MED); 5062 if (mp1 == NULL) { 5063 freemsg(mp); 5064 if (options_mp != NULL) 5065 freeb(options_mp); 5066 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5067 "udp_rput_end: q %p (%S)", q, "allocbfail"); 5068 BUMP_MIB(&udp_mib, udpInErrors); 5069 return; 5070 } 5071 mp1->b_cont = mp; 5072 mp = mp1; 5073 mp->b_datap->db_type = M_PROTO; 5074 tudi = (struct T_unitdata_ind *)mp->b_rptr; 5075 mp->b_wptr = (uchar_t *)tudi + udi_size; 5076 tudi->PRIM_type = T_UNITDATA_IND; 5077 tudi->SRC_length = sizeof (sin6_t); 5078 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 5079 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 5080 sizeof (sin6_t); 5081 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t)); 5082 tudi->OPT_length = udi_size; 5083 sin6 = (sin6_t *)&tudi[1]; 5084 if (ipversion == IPV4_VERSION) { 5085 in6_addr_t v6dst; 5086 5087 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src, 5088 &sin6->sin6_addr); 5089 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst, 5090 &v6dst); 5091 sin6->sin6_flowinfo = 0; 5092 sin6->sin6_scope_id = 0; 5093 sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst, 5094 connp->conn_zoneid); 5095 } else { 5096 sin6->sin6_addr = ip6h->ip6_src; 5097 /* No sin6_flowinfo per API */ 5098 sin6->sin6_flowinfo = 0; 5099 /* For link-scope source pass up scope id */ 5100 if ((ipp.ipp_fields & IPPF_IFINDEX) && 5101 IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 5102 sin6->sin6_scope_id = ipp.ipp_ifindex; 5103 else 5104 sin6->sin6_scope_id = 0; 5105 sin6->__sin6_src_id = ip_srcid_find_addr( 5106 &ip6h->ip6_dst, connp->conn_zoneid); 5107 } 5108 sin6->sin6_port = udpha->uha_src_port; 5109 sin6->sin6_family = udp->udp_family; 5110 5111 if (udi_size != 0) { 5112 uchar_t *dstopt; 5113 5114 dstopt = (uchar_t *)&sin6[1]; 5115 if (udp->udp_ip_recvpktinfo && 5116 (ipp.ipp_fields & IPPF_IFINDEX)) { 5117 struct T_opthdr *toh; 5118 struct in6_pktinfo *pkti; 5119 5120 toh = (struct T_opthdr *)dstopt; 5121 toh->level = IPPROTO_IPV6; 5122 toh->name = IPV6_PKTINFO; 5123 toh->len = sizeof (struct T_opthdr) + 5124 sizeof (*pkti); 5125 toh->status = 0; 5126 dstopt += sizeof (struct T_opthdr); 5127 pkti = (struct in6_pktinfo *)dstopt; 5128 if (ipversion == IPV6_VERSION) 5129 pkti->ipi6_addr = ip6h->ip6_dst; 5130 else 5131 IN6_IPADDR_TO_V4MAPPED( 5132 ((ipha_t *)rptr)->ipha_dst, 5133 &pkti->ipi6_addr); 5134 pkti->ipi6_ifindex = ipp.ipp_ifindex; 5135 dstopt += sizeof (*pkti); 5136 udi_size -= toh->len; 5137 } 5138 if (udp->udp_ipv6_recvhoplimit) { 5139 struct T_opthdr *toh; 5140 5141 toh = (struct T_opthdr *)dstopt; 5142 toh->level = IPPROTO_IPV6; 5143 toh->name = IPV6_HOPLIMIT; 5144 toh->len = sizeof (struct T_opthdr) + 5145 sizeof (uint_t); 5146 toh->status = 0; 5147 dstopt += sizeof (struct T_opthdr); 5148 if (ipversion == IPV6_VERSION) 5149 *(uint_t *)dstopt = ip6h->ip6_hops; 5150 else 5151 *(uint_t *)dstopt = 5152 ((ipha_t *)rptr)->ipha_ttl; 5153 dstopt += sizeof (uint_t); 5154 udi_size -= toh->len; 5155 } 5156 if (udp->udp_ipv6_recvtclass) { 5157 struct T_opthdr *toh; 5158 5159 toh = (struct T_opthdr *)dstopt; 5160 toh->level = IPPROTO_IPV6; 5161 toh->name = IPV6_TCLASS; 5162 toh->len = sizeof (struct T_opthdr) + 5163 sizeof (uint_t); 5164 toh->status = 0; 5165 dstopt += sizeof (struct T_opthdr); 5166 if (ipversion == IPV6_VERSION) { 5167 *(uint_t *)dstopt = 5168 IPV6_FLOW_TCLASS(ip6h->ip6_flow); 5169 } else { 5170 ipha_t *ipha = (ipha_t *)rptr; 5171 *(uint_t *)dstopt = 5172 ipha->ipha_type_of_service; 5173 } 5174 dstopt += sizeof (uint_t); 5175 udi_size -= toh->len; 5176 } 5177 if (udp->udp_ipv6_recvhopopts && 5178 (ipp.ipp_fields & IPPF_HOPOPTS)) { 5179 size_t hlen; 5180 5181 hlen = copy_hop_opts(&ipp, dstopt); 5182 dstopt += hlen; 5183 udi_size -= hlen; 5184 } 5185 if (udp->udp_ipv6_recvdstopts && 5186 udp->udp_ipv6_recvrthdr && 5187 (ipp.ipp_fields & IPPF_RTHDR) && 5188 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 5189 struct T_opthdr *toh; 5190 5191 toh = (struct T_opthdr *)dstopt; 5192 toh->level = IPPROTO_IPV6; 5193 toh->name = IPV6_DSTOPTS; 5194 toh->len = sizeof (struct T_opthdr) + 5195 ipp.ipp_rtdstoptslen; 5196 toh->status = 0; 5197 dstopt += sizeof (struct T_opthdr); 5198 bcopy(ipp.ipp_rtdstopts, dstopt, 5199 ipp.ipp_rtdstoptslen); 5200 dstopt += ipp.ipp_rtdstoptslen; 5201 udi_size -= toh->len; 5202 } 5203 if (udp->udp_ipv6_recvrthdr && 5204 (ipp.ipp_fields & IPPF_RTHDR)) { 5205 struct T_opthdr *toh; 5206 5207 toh = (struct T_opthdr *)dstopt; 5208 toh->level = IPPROTO_IPV6; 5209 toh->name = IPV6_RTHDR; 5210 toh->len = sizeof (struct T_opthdr) + 5211 ipp.ipp_rthdrlen; 5212 toh->status = 0; 5213 dstopt += sizeof (struct T_opthdr); 5214 bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen); 5215 dstopt += ipp.ipp_rthdrlen; 5216 udi_size -= toh->len; 5217 } 5218 if (udp->udp_ipv6_recvdstopts && 5219 (ipp.ipp_fields & IPPF_DSTOPTS)) { 5220 struct T_opthdr *toh; 5221 5222 toh = (struct T_opthdr *)dstopt; 5223 toh->level = IPPROTO_IPV6; 5224 toh->name = IPV6_DSTOPTS; 5225 toh->len = sizeof (struct T_opthdr) + 5226 ipp.ipp_dstoptslen; 5227 toh->status = 0; 5228 dstopt += sizeof (struct T_opthdr); 5229 bcopy(ipp.ipp_dstopts, dstopt, 5230 ipp.ipp_dstoptslen); 5231 dstopt += ipp.ipp_dstoptslen; 5232 udi_size -= toh->len; 5233 } 5234 5235 if (cr != NULL) { 5236 struct T_opthdr *toh; 5237 5238 toh = (struct T_opthdr *)dstopt; 5239 toh->level = SOL_SOCKET; 5240 toh->name = SCM_UCRED; 5241 toh->len = sizeof (struct T_opthdr) + ucredsize; 5242 toh->status = 0; 5243 (void) cred2ucred(cr, cpid, &toh[1], rcr); 5244 dstopt += toh->len; 5245 udi_size -= toh->len; 5246 } 5247 /* Consumed all of allocated space */ 5248 ASSERT(udi_size == 0); 5249 } 5250 #undef sin6 5251 /* No IP_RECVDSTADDR for IPv6. */ 5252 } 5253 5254 BUMP_MIB(&udp_mib, udpHCInDatagrams); 5255 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5256 "udp_rput_end: q %p (%S)", q, "end"); 5257 if (options_mp != NULL) 5258 freeb(options_mp); 5259 5260 if (udp->udp_direct_sockfs) { 5261 /* 5262 * There is nothing above us except for the stream head; 5263 * use the read-side synchronous stream interface in 5264 * order to reduce the time spent in interrupt thread. 5265 */ 5266 ASSERT(udp->udp_issocket); 5267 udp_rcv_enqueue(UDP_RD(q), udp, mp, mp_len); 5268 } else { 5269 /* 5270 * Use regular STREAMS interface to pass data upstream 5271 * if this is not a socket endpoint, or if we have 5272 * switched over to the slow mode due to sockmod being 5273 * popped or a module being pushed on top of us. 5274 */ 5275 putnext(UDP_RD(q), mp); 5276 } 5277 return; 5278 5279 tossit: 5280 freemsg(mp); 5281 if (options_mp != NULL) 5282 freeb(options_mp); 5283 BUMP_MIB(&udp_mib, udpInErrors); 5284 } 5285 5286 void 5287 udp_conn_recv(conn_t *connp, mblk_t *mp) 5288 { 5289 _UDP_ENTER(connp, mp, udp_input_wrapper, SQTAG_UDP_FANOUT); 5290 } 5291 5292 /* ARGSUSED */ 5293 static void 5294 udp_input_wrapper(void *arg, mblk_t *mp, void *arg2) 5295 { 5296 udp_input((conn_t *)arg, mp); 5297 _UDP_EXIT((conn_t *)arg); 5298 } 5299 5300 /* 5301 * Process non-M_DATA messages as well as M_DATA messages that requires 5302 * modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options. 5303 */ 5304 static void 5305 udp_rput_other(queue_t *q, mblk_t *mp) 5306 { 5307 struct T_unitdata_ind *tudi; 5308 mblk_t *mp1; 5309 uchar_t *rptr; 5310 uchar_t *new_rptr; 5311 int hdr_length; 5312 int udi_size; /* Size of T_unitdata_ind */ 5313 int opt_len; /* Length of IP options */ 5314 sin_t *sin; 5315 struct T_error_ack *tea; 5316 mblk_t *options_mp = NULL; 5317 ip_pktinfo_t *pinfo; 5318 boolean_t recv_on = B_FALSE; 5319 cred_t *cr = NULL; 5320 udp_t *udp = Q_TO_UDP(q); 5321 pid_t cpid; 5322 cred_t *rcr = udp->udp_connp->conn_cred; 5323 5324 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START, 5325 "udp_rput_other: q %p mp %p", q, mp); 5326 5327 ASSERT(OK_32PTR(mp->b_rptr)); 5328 rptr = mp->b_rptr; 5329 5330 switch (mp->b_datap->db_type) { 5331 case M_CTL: 5332 /* 5333 * We are here only if IP_RECVSLLA and/or IP_RECVIF are set 5334 */ 5335 recv_on = B_TRUE; 5336 options_mp = mp; 5337 pinfo = (ip_pktinfo_t *)options_mp->b_rptr; 5338 5339 /* 5340 * The actual data is in mp->b_cont 5341 */ 5342 mp = mp->b_cont; 5343 ASSERT(OK_32PTR(mp->b_rptr)); 5344 rptr = mp->b_rptr; 5345 break; 5346 case M_DATA: 5347 /* 5348 * M_DATA messages contain IPv4 datagrams. They are handled 5349 * after this switch. 5350 */ 5351 break; 5352 case M_PROTO: 5353 case M_PCPROTO: 5354 /* M_PROTO messages contain some type of TPI message. */ 5355 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 5356 if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { 5357 freemsg(mp); 5358 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5359 "udp_rput_other_end: q %p (%S)", q, "protoshort"); 5360 return; 5361 } 5362 tea = (struct T_error_ack *)rptr; 5363 5364 switch (tea->PRIM_type) { 5365 case T_ERROR_ACK: 5366 switch (tea->ERROR_prim) { 5367 case O_T_BIND_REQ: 5368 case T_BIND_REQ: { 5369 /* 5370 * If our O_T_BIND_REQ/T_BIND_REQ fails, 5371 * clear out the associated port and source 5372 * address before passing the message 5373 * upstream. If this was caused by a T_CONN_REQ 5374 * revert back to bound state. 5375 */ 5376 udp_fanout_t *udpf; 5377 5378 udpf = &udp_bind_fanout[ 5379 UDP_BIND_HASH(udp->udp_port)]; 5380 mutex_enter(&udpf->uf_lock); 5381 if (udp->udp_state == TS_DATA_XFER) { 5382 /* Connect failed */ 5383 tea->ERROR_prim = T_CONN_REQ; 5384 /* Revert back to the bound source */ 5385 udp->udp_v6src = udp->udp_bound_v6src; 5386 udp->udp_state = TS_IDLE; 5387 mutex_exit(&udpf->uf_lock); 5388 if (udp->udp_family == AF_INET6) 5389 (void) udp_build_hdrs(q, udp); 5390 break; 5391 } 5392 5393 if (udp->udp_discon_pending) { 5394 tea->ERROR_prim = T_DISCON_REQ; 5395 udp->udp_discon_pending = 0; 5396 } 5397 V6_SET_ZERO(udp->udp_v6src); 5398 V6_SET_ZERO(udp->udp_bound_v6src); 5399 udp->udp_state = TS_UNBND; 5400 udp_bind_hash_remove(udp, B_TRUE); 5401 udp->udp_port = 0; 5402 mutex_exit(&udpf->uf_lock); 5403 if (udp->udp_family == AF_INET6) 5404 (void) udp_build_hdrs(q, udp); 5405 break; 5406 } 5407 default: 5408 break; 5409 } 5410 break; 5411 case T_BIND_ACK: 5412 udp_rput_bind_ack(q, mp); 5413 return; 5414 5415 case T_OPTMGMT_ACK: 5416 case T_OK_ACK: 5417 break; 5418 default: 5419 freemsg(mp); 5420 return; 5421 } 5422 putnext(UDP_RD(q), mp); 5423 return; 5424 } 5425 5426 /* 5427 * This is the inbound data path. 5428 * First, we make sure the data contains both IP and UDP headers. 5429 * 5430 * This handle IPv4 packets for only AF_INET sockets. 5431 * AF_INET6 sockets can never access udp_ip_rcv_options thus there 5432 * is no need saving the options. 5433 */ 5434 ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); 5435 hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE; 5436 if (mp->b_wptr - rptr < hdr_length) { 5437 if (!pullupmsg(mp, hdr_length)) { 5438 freemsg(mp); 5439 if (options_mp != NULL) 5440 freeb(options_mp); 5441 BUMP_MIB(&udp_mib, udpInErrors); 5442 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5443 "udp_rput_other_end: q %p (%S)", q, "hdrshort"); 5444 BUMP_MIB(&udp_mib, udpInErrors); 5445 return; 5446 } 5447 rptr = mp->b_rptr; 5448 } 5449 /* Walk past the headers. */ 5450 new_rptr = rptr + hdr_length; 5451 if (!udp->udp_rcvhdr) 5452 mp->b_rptr = new_rptr; 5453 5454 /* Save the options if any */ 5455 opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE); 5456 if (opt_len > 0) { 5457 if (opt_len > udp->udp_ip_rcv_options_len) { 5458 if (udp->udp_ip_rcv_options_len) 5459 mi_free((char *)udp->udp_ip_rcv_options); 5460 udp->udp_ip_rcv_options_len = 0; 5461 udp->udp_ip_rcv_options = 5462 (uchar_t *)mi_alloc(opt_len, BPRI_HI); 5463 if (udp->udp_ip_rcv_options) 5464 udp->udp_ip_rcv_options_len = opt_len; 5465 } 5466 if (udp->udp_ip_rcv_options_len) { 5467 bcopy(rptr + IP_SIMPLE_HDR_LENGTH, 5468 udp->udp_ip_rcv_options, opt_len); 5469 /* Adjust length if we are resusing the space */ 5470 udp->udp_ip_rcv_options_len = opt_len; 5471 } 5472 } else if (udp->udp_ip_rcv_options_len) { 5473 mi_free((char *)udp->udp_ip_rcv_options); 5474 udp->udp_ip_rcv_options = NULL; 5475 udp->udp_ip_rcv_options_len = 0; 5476 } 5477 5478 /* 5479 * Normally only send up the address. 5480 * If IP_RECVDSTADDR is set we include the destination IP 5481 * address as an option. With IP_RECVOPTS we include all 5482 * the IP options. 5483 */ 5484 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 5485 if (udp->udp_recvdstaddr) { 5486 udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr); 5487 UDP_STAT(udp_in_recvdstaddr); 5488 } 5489 5490 if (udp->udp_ip_recvpktinfo && recv_on && 5491 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 5492 udi_size += sizeof (struct T_opthdr) + 5493 sizeof (struct in_pktinfo); 5494 UDP_STAT(udp_ip_recvpktinfo); 5495 } 5496 5497 if (udp->udp_recvopts && opt_len > 0) { 5498 udi_size += sizeof (struct T_opthdr) + opt_len; 5499 UDP_STAT(udp_in_recvopts); 5500 } 5501 5502 /* 5503 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate 5504 * space accordingly 5505 */ 5506 if (udp->udp_recvif && recv_on && 5507 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 5508 udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); 5509 UDP_STAT(udp_in_recvif); 5510 } 5511 5512 if (udp->udp_recvslla && recv_on && 5513 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 5514 udi_size += sizeof (struct T_opthdr) + 5515 sizeof (struct sockaddr_dl); 5516 UDP_STAT(udp_in_recvslla); 5517 } 5518 5519 if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) { 5520 udi_size += sizeof (struct T_opthdr) + ucredsize; 5521 cpid = DB_CPID(mp); 5522 UDP_STAT(udp_in_recvucred); 5523 } 5524 /* 5525 * If IP_RECVTTL is set allocate the appropriate sized buffer 5526 */ 5527 if (udp->udp_recvttl) { 5528 udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t); 5529 UDP_STAT(udp_in_recvttl); 5530 } 5531 5532 /* Allocate a message block for the T_UNITDATA_IND structure. */ 5533 mp1 = allocb(udi_size, BPRI_MED); 5534 if (mp1 == NULL) { 5535 freemsg(mp); 5536 if (options_mp != NULL) 5537 freeb(options_mp); 5538 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5539 "udp_rput_other_end: q %p (%S)", q, "allocbfail"); 5540 BUMP_MIB(&udp_mib, udpInErrors); 5541 return; 5542 } 5543 mp1->b_cont = mp; 5544 mp = mp1; 5545 mp->b_datap->db_type = M_PROTO; 5546 tudi = (struct T_unitdata_ind *)mp->b_rptr; 5547 mp->b_wptr = (uchar_t *)tudi + udi_size; 5548 tudi->PRIM_type = T_UNITDATA_IND; 5549 tudi->SRC_length = sizeof (sin_t); 5550 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 5551 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 5552 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); 5553 tudi->OPT_length = udi_size; 5554 5555 sin = (sin_t *)&tudi[1]; 5556 sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; 5557 sin->sin_port = ((in_port_t *) 5558 new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))]; 5559 sin->sin_family = AF_INET; 5560 *(uint32_t *)&sin->sin_zero[0] = 0; 5561 *(uint32_t *)&sin->sin_zero[4] = 0; 5562 5563 /* 5564 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or 5565 * IP_RECVTTL has been set. 5566 */ 5567 if (udi_size != 0) { 5568 /* 5569 * Copy in destination address before options to avoid any 5570 * padding issues. 5571 */ 5572 char *dstopt; 5573 5574 dstopt = (char *)&sin[1]; 5575 if (udp->udp_recvdstaddr) { 5576 struct T_opthdr *toh; 5577 ipaddr_t *dstptr; 5578 5579 toh = (struct T_opthdr *)dstopt; 5580 toh->level = IPPROTO_IP; 5581 toh->name = IP_RECVDSTADDR; 5582 toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t); 5583 toh->status = 0; 5584 dstopt += sizeof (struct T_opthdr); 5585 dstptr = (ipaddr_t *)dstopt; 5586 *dstptr = (((ipaddr_t *)rptr)[4]); 5587 dstopt += sizeof (ipaddr_t); 5588 udi_size -= toh->len; 5589 } 5590 if (udp->udp_recvopts && udi_size != 0) { 5591 struct T_opthdr *toh; 5592 5593 toh = (struct T_opthdr *)dstopt; 5594 toh->level = IPPROTO_IP; 5595 toh->name = IP_RECVOPTS; 5596 toh->len = sizeof (struct T_opthdr) + opt_len; 5597 toh->status = 0; 5598 dstopt += sizeof (struct T_opthdr); 5599 bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len); 5600 dstopt += opt_len; 5601 udi_size -= toh->len; 5602 } 5603 if (udp->udp_ip_recvpktinfo && recv_on && 5604 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 5605 5606 struct T_opthdr *toh; 5607 struct in_pktinfo *pktinfop; 5608 5609 toh = (struct T_opthdr *)dstopt; 5610 toh->level = IPPROTO_IP; 5611 toh->name = IP_PKTINFO; 5612 toh->len = sizeof (struct T_opthdr) + 5613 sizeof (*pktinfop); 5614 toh->status = 0; 5615 dstopt += sizeof (struct T_opthdr); 5616 pktinfop = (struct in_pktinfo *)dstopt; 5617 pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex; 5618 pktinfop->ipi_spec_dst = pinfo->ip_pkt_match_addr; 5619 5620 pktinfop->ipi_addr.s_addr = ((ipha_t *)rptr)->ipha_dst; 5621 5622 dstopt += sizeof (struct in_pktinfo); 5623 udi_size -= toh->len; 5624 } 5625 5626 if (udp->udp_recvslla && recv_on && 5627 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 5628 5629 struct T_opthdr *toh; 5630 struct sockaddr_dl *dstptr; 5631 5632 toh = (struct T_opthdr *)dstopt; 5633 toh->level = IPPROTO_IP; 5634 toh->name = IP_RECVSLLA; 5635 toh->len = sizeof (struct T_opthdr) + 5636 sizeof (struct sockaddr_dl); 5637 toh->status = 0; 5638 dstopt += sizeof (struct T_opthdr); 5639 dstptr = (struct sockaddr_dl *)dstopt; 5640 bcopy(&pinfo->ip_pkt_slla, dstptr, 5641 sizeof (struct sockaddr_dl)); 5642 dstopt += sizeof (struct sockaddr_dl); 5643 udi_size -= toh->len; 5644 } 5645 5646 if (udp->udp_recvif && recv_on && 5647 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 5648 5649 struct T_opthdr *toh; 5650 uint_t *dstptr; 5651 5652 toh = (struct T_opthdr *)dstopt; 5653 toh->level = IPPROTO_IP; 5654 toh->name = IP_RECVIF; 5655 toh->len = sizeof (struct T_opthdr) + 5656 sizeof (uint_t); 5657 toh->status = 0; 5658 dstopt += sizeof (struct T_opthdr); 5659 dstptr = (uint_t *)dstopt; 5660 *dstptr = pinfo->ip_pkt_ifindex; 5661 dstopt += sizeof (uint_t); 5662 udi_size -= toh->len; 5663 } 5664 5665 if (cr != NULL) { 5666 struct T_opthdr *toh; 5667 5668 toh = (struct T_opthdr *)dstopt; 5669 toh->level = SOL_SOCKET; 5670 toh->name = SCM_UCRED; 5671 toh->len = sizeof (struct T_opthdr) + ucredsize; 5672 toh->status = 0; 5673 (void) cred2ucred(cr, cpid, &toh[1], rcr); 5674 dstopt += toh->len; 5675 udi_size -= toh->len; 5676 } 5677 5678 if (udp->udp_recvttl) { 5679 struct T_opthdr *toh; 5680 uint8_t *dstptr; 5681 5682 toh = (struct T_opthdr *)dstopt; 5683 toh->level = IPPROTO_IP; 5684 toh->name = IP_RECVTTL; 5685 toh->len = sizeof (struct T_opthdr) + 5686 sizeof (uint8_t); 5687 toh->status = 0; 5688 dstopt += sizeof (struct T_opthdr); 5689 dstptr = (uint8_t *)dstopt; 5690 *dstptr = ((ipha_t *)rptr)->ipha_ttl; 5691 dstopt += sizeof (uint8_t); 5692 udi_size -= toh->len; 5693 } 5694 5695 ASSERT(udi_size == 0); /* "Consumed" all of allocated space */ 5696 } 5697 BUMP_MIB(&udp_mib, udpHCInDatagrams); 5698 TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END, 5699 "udp_rput_other_end: q %p (%S)", q, "end"); 5700 if (options_mp != NULL) 5701 freeb(options_mp); 5702 5703 if (udp->udp_direct_sockfs) { 5704 /* 5705 * There is nothing above us except for the stream head; 5706 * use the read-side synchronous stream interface in 5707 * order to reduce the time spent in interrupt thread. 5708 */ 5709 ASSERT(udp->udp_issocket); 5710 udp_rcv_enqueue(UDP_RD(q), udp, mp, msgdsize(mp)); 5711 } else { 5712 /* 5713 * Use regular STREAMS interface to pass data upstream 5714 * if this is not a socket endpoint, or if we have 5715 * switched over to the slow mode due to sockmod being 5716 * popped or a module being pushed on top of us. 5717 */ 5718 putnext(UDP_RD(q), mp); 5719 } 5720 } 5721 5722 /* ARGSUSED */ 5723 static void 5724 udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2) 5725 { 5726 conn_t *connp = arg; 5727 5728 udp_rput_other(connp->conn_rq, mp); 5729 udp_exit(connp); 5730 } 5731 5732 /* 5733 * Process a T_BIND_ACK 5734 */ 5735 static void 5736 udp_rput_bind_ack(queue_t *q, mblk_t *mp) 5737 { 5738 udp_t *udp = Q_TO_UDP(q); 5739 mblk_t *mp1; 5740 ire_t *ire; 5741 struct T_bind_ack *tba; 5742 uchar_t *addrp; 5743 ipa_conn_t *ac; 5744 ipa6_conn_t *ac6; 5745 5746 if (udp->udp_discon_pending) 5747 udp->udp_discon_pending = 0; 5748 5749 /* 5750 * If a broadcast/multicast address was bound set 5751 * the source address to 0. 5752 * This ensures no datagrams with broadcast address 5753 * as source address are emitted (which would violate 5754 * RFC1122 - Hosts requirements) 5755 * 5756 * Note that when connecting the returned IRE is 5757 * for the destination address and we only perform 5758 * the broadcast check for the source address (it 5759 * is OK to connect to a broadcast/multicast address.) 5760 */ 5761 mp1 = mp->b_cont; 5762 if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) { 5763 ire = (ire_t *)mp1->b_rptr; 5764 5765 /* 5766 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast 5767 * local address. 5768 */ 5769 if (ire->ire_type == IRE_BROADCAST && 5770 udp->udp_state != TS_DATA_XFER) { 5771 /* This was just a local bind to a broadcast addr */ 5772 V6_SET_ZERO(udp->udp_v6src); 5773 if (udp->udp_family == AF_INET6) 5774 (void) udp_build_hdrs(q, udp); 5775 } else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 5776 /* 5777 * Local address not yet set - pick it from the 5778 * T_bind_ack 5779 */ 5780 tba = (struct T_bind_ack *)mp->b_rptr; 5781 addrp = &mp->b_rptr[tba->ADDR_offset]; 5782 switch (udp->udp_family) { 5783 case AF_INET: 5784 if (tba->ADDR_length == sizeof (ipa_conn_t)) { 5785 ac = (ipa_conn_t *)addrp; 5786 } else { 5787 ASSERT(tba->ADDR_length == 5788 sizeof (ipa_conn_x_t)); 5789 ac = &((ipa_conn_x_t *)addrp)->acx_conn; 5790 } 5791 IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr, 5792 &udp->udp_v6src); 5793 break; 5794 case AF_INET6: 5795 if (tba->ADDR_length == sizeof (ipa6_conn_t)) { 5796 ac6 = (ipa6_conn_t *)addrp; 5797 } else { 5798 ASSERT(tba->ADDR_length == 5799 sizeof (ipa6_conn_x_t)); 5800 ac6 = &((ipa6_conn_x_t *) 5801 addrp)->ac6x_conn; 5802 } 5803 udp->udp_v6src = ac6->ac6_laddr; 5804 (void) udp_build_hdrs(q, udp); 5805 break; 5806 } 5807 } 5808 mp1 = mp1->b_cont; 5809 } 5810 /* 5811 * Look for one or more appended ACK message added by 5812 * udp_connect or udp_disconnect. 5813 * If none found just send up the T_BIND_ACK. 5814 * udp_connect has appended a T_OK_ACK and a T_CONN_CON. 5815 * udp_disconnect has appended a T_OK_ACK. 5816 */ 5817 if (mp1 != NULL) { 5818 if (mp->b_cont == mp1) 5819 mp->b_cont = NULL; 5820 else { 5821 ASSERT(mp->b_cont->b_cont == mp1); 5822 mp->b_cont->b_cont = NULL; 5823 } 5824 freemsg(mp); 5825 mp = mp1; 5826 while (mp != NULL) { 5827 mp1 = mp->b_cont; 5828 mp->b_cont = NULL; 5829 putnext(UDP_RD(q), mp); 5830 mp = mp1; 5831 } 5832 return; 5833 } 5834 freemsg(mp->b_cont); 5835 mp->b_cont = NULL; 5836 putnext(UDP_RD(q), mp); 5837 } 5838 5839 /* 5840 * return SNMP stuff in buffer in mpdata 5841 */ 5842 int 5843 udp_snmp_get(queue_t *q, mblk_t *mpctl) 5844 { 5845 mblk_t *mpdata; 5846 mblk_t *mp_conn_ctl; 5847 mblk_t *mp_attr_ctl; 5848 mblk_t *mp6_conn_ctl; 5849 mblk_t *mp6_attr_ctl; 5850 mblk_t *mp_conn_tail; 5851 mblk_t *mp_attr_tail; 5852 mblk_t *mp6_conn_tail; 5853 mblk_t *mp6_attr_tail; 5854 struct opthdr *optp; 5855 mib2_udpEntry_t ude; 5856 mib2_udp6Entry_t ude6; 5857 mib2_transportMLPEntry_t mlp; 5858 int state; 5859 zoneid_t zoneid; 5860 int i; 5861 connf_t *connfp; 5862 conn_t *connp = Q_TO_CONN(q); 5863 udp_t *udp = connp->conn_udp; 5864 int v4_conn_idx; 5865 int v6_conn_idx; 5866 boolean_t needattr; 5867 5868 mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL; 5869 if (mpctl == NULL || 5870 (mpdata = mpctl->b_cont) == NULL || 5871 (mp_conn_ctl = copymsg(mpctl)) == NULL || 5872 (mp_attr_ctl = copymsg(mpctl)) == NULL || 5873 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 5874 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 5875 freemsg(mp_conn_ctl); 5876 freemsg(mp_attr_ctl); 5877 freemsg(mp6_conn_ctl); 5878 return (0); 5879 } 5880 5881 zoneid = connp->conn_zoneid; 5882 5883 /* fixed length structure for IPv4 and IPv6 counters */ 5884 SET_MIB(udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t)); 5885 SET_MIB(udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t)); 5886 /* synchronize 64- and 32-bit counters */ 5887 SYNC32_MIB(&udp_mib, udpInDatagrams, udpHCInDatagrams); 5888 SYNC32_MIB(&udp_mib, udpOutDatagrams, udpHCOutDatagrams); 5889 5890 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 5891 optp->level = MIB2_UDP; 5892 optp->name = 0; 5893 (void) snmp_append_data(mpdata, (char *)&udp_mib, sizeof (udp_mib)); 5894 optp->len = msgdsize(mpdata); 5895 qreply(q, mpctl); 5896 5897 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 5898 v4_conn_idx = v6_conn_idx = 0; 5899 5900 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 5901 connfp = &ipcl_globalhash_fanout[i]; 5902 connp = NULL; 5903 5904 while ((connp = ipcl_get_next_conn(connfp, connp, 5905 IPCL_UDP))) { 5906 udp = connp->conn_udp; 5907 if (zoneid != connp->conn_zoneid) 5908 continue; 5909 5910 /* 5911 * Note that the port numbers are sent in 5912 * host byte order 5913 */ 5914 5915 if (udp->udp_state == TS_UNBND) 5916 state = MIB2_UDP_unbound; 5917 else if (udp->udp_state == TS_IDLE) 5918 state = MIB2_UDP_idle; 5919 else if (udp->udp_state == TS_DATA_XFER) 5920 state = MIB2_UDP_connected; 5921 else 5922 state = MIB2_UDP_unknown; 5923 5924 needattr = B_FALSE; 5925 bzero(&mlp, sizeof (mlp)); 5926 if (connp->conn_mlp_type != mlptSingle) { 5927 if (connp->conn_mlp_type == mlptShared || 5928 connp->conn_mlp_type == mlptBoth) 5929 mlp.tme_flags |= MIB2_TMEF_SHARED; 5930 if (connp->conn_mlp_type == mlptPrivate || 5931 connp->conn_mlp_type == mlptBoth) 5932 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 5933 needattr = B_TRUE; 5934 } 5935 5936 /* 5937 * Create an IPv4 table entry for IPv4 entries and also 5938 * any IPv6 entries which are bound to in6addr_any 5939 * (i.e. anything a IPv4 peer could connect/send to). 5940 */ 5941 if (udp->udp_ipversion == IPV4_VERSION || 5942 (udp->udp_state <= TS_IDLE && 5943 IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) { 5944 ude.udpEntryInfo.ue_state = state; 5945 /* 5946 * If in6addr_any this will set it to 5947 * INADDR_ANY 5948 */ 5949 ude.udpLocalAddress = 5950 V4_PART_OF_V6(udp->udp_v6src); 5951 ude.udpLocalPort = ntohs(udp->udp_port); 5952 if (udp->udp_state == TS_DATA_XFER) { 5953 /* 5954 * Can potentially get here for 5955 * v6 socket if another process 5956 * (say, ping) has just done a 5957 * sendto(), changing the state 5958 * from the TS_IDLE above to 5959 * TS_DATA_XFER by the time we hit 5960 * this part of the code. 5961 */ 5962 ude.udpEntryInfo.ue_RemoteAddress = 5963 V4_PART_OF_V6(udp->udp_v6dst); 5964 ude.udpEntryInfo.ue_RemotePort = 5965 ntohs(udp->udp_dstport); 5966 } else { 5967 ude.udpEntryInfo.ue_RemoteAddress = 0; 5968 ude.udpEntryInfo.ue_RemotePort = 0; 5969 } 5970 5971 /* 5972 * We make the assumption that all udp_t 5973 * structs will be created within an address 5974 * region no larger than 32-bits. 5975 */ 5976 ude.udpInstance = (uint32_t)(uintptr_t)udp; 5977 ude.udpCreationProcess = 5978 (udp->udp_open_pid < 0) ? 5979 MIB2_UNKNOWN_PROCESS : 5980 udp->udp_open_pid; 5981 ude.udpCreationTime = udp->udp_open_time; 5982 5983 (void) snmp_append_data2(mp_conn_ctl->b_cont, 5984 &mp_conn_tail, (char *)&ude, sizeof (ude)); 5985 mlp.tme_connidx = v4_conn_idx++; 5986 if (needattr) 5987 (void) snmp_append_data2( 5988 mp_attr_ctl->b_cont, &mp_attr_tail, 5989 (char *)&mlp, sizeof (mlp)); 5990 } 5991 if (udp->udp_ipversion == IPV6_VERSION) { 5992 ude6.udp6EntryInfo.ue_state = state; 5993 ude6.udp6LocalAddress = udp->udp_v6src; 5994 ude6.udp6LocalPort = ntohs(udp->udp_port); 5995 ude6.udp6IfIndex = udp->udp_bound_if; 5996 if (udp->udp_state == TS_DATA_XFER) { 5997 ude6.udp6EntryInfo.ue_RemoteAddress = 5998 udp->udp_v6dst; 5999 ude6.udp6EntryInfo.ue_RemotePort = 6000 ntohs(udp->udp_dstport); 6001 } else { 6002 ude6.udp6EntryInfo.ue_RemoteAddress = 6003 sin6_null.sin6_addr; 6004 ude6.udp6EntryInfo.ue_RemotePort = 0; 6005 } 6006 /* 6007 * We make the assumption that all udp_t 6008 * structs will be created within an address 6009 * region no larger than 32-bits. 6010 */ 6011 ude6.udp6Instance = (uint32_t)(uintptr_t)udp; 6012 ude6.udp6CreationProcess = 6013 (udp->udp_open_pid < 0) ? 6014 MIB2_UNKNOWN_PROCESS : 6015 udp->udp_open_pid; 6016 ude6.udp6CreationTime = udp->udp_open_time; 6017 6018 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 6019 &mp6_conn_tail, (char *)&ude6, 6020 sizeof (ude6)); 6021 mlp.tme_connidx = v6_conn_idx++; 6022 if (needattr) 6023 (void) snmp_append_data2( 6024 mp6_attr_ctl->b_cont, 6025 &mp6_attr_tail, (char *)&mlp, 6026 sizeof (mlp)); 6027 } 6028 } 6029 } 6030 6031 /* IPv4 UDP endpoints */ 6032 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 6033 sizeof (struct T_optmgmt_ack)]; 6034 optp->level = MIB2_UDP; 6035 optp->name = MIB2_UDP_ENTRY; 6036 optp->len = msgdsize(mp_conn_ctl->b_cont); 6037 qreply(q, mp_conn_ctl); 6038 6039 /* table of MLP attributes... */ 6040 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 6041 sizeof (struct T_optmgmt_ack)]; 6042 optp->level = MIB2_UDP; 6043 optp->name = EXPER_XPORT_MLP; 6044 optp->len = msgdsize(mp_attr_ctl->b_cont); 6045 if (optp->len == 0) 6046 freemsg(mp_attr_ctl); 6047 else 6048 qreply(q, mp_attr_ctl); 6049 6050 /* IPv6 UDP endpoints */ 6051 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 6052 sizeof (struct T_optmgmt_ack)]; 6053 optp->level = MIB2_UDP6; 6054 optp->name = MIB2_UDP6_ENTRY; 6055 optp->len = msgdsize(mp6_conn_ctl->b_cont); 6056 qreply(q, mp6_conn_ctl); 6057 6058 /* table of MLP attributes... */ 6059 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 6060 sizeof (struct T_optmgmt_ack)]; 6061 optp->level = MIB2_UDP6; 6062 optp->name = EXPER_XPORT_MLP; 6063 optp->len = msgdsize(mp6_attr_ctl->b_cont); 6064 if (optp->len == 0) 6065 freemsg(mp6_attr_ctl); 6066 else 6067 qreply(q, mp6_attr_ctl); 6068 6069 return (1); 6070 } 6071 6072 /* 6073 * Return 0 if invalid set request, 1 otherwise, including non-udp requests. 6074 * NOTE: Per MIB-II, UDP has no writable data. 6075 * TODO: If this ever actually tries to set anything, it needs to be 6076 * to do the appropriate locking. 6077 */ 6078 /* ARGSUSED */ 6079 int 6080 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name, 6081 uchar_t *ptr, int len) 6082 { 6083 switch (level) { 6084 case MIB2_UDP: 6085 return (0); 6086 default: 6087 return (1); 6088 } 6089 } 6090 6091 static void 6092 udp_report_item(mblk_t *mp, udp_t *udp) 6093 { 6094 char *state; 6095 char addrbuf1[INET6_ADDRSTRLEN]; 6096 char addrbuf2[INET6_ADDRSTRLEN]; 6097 uint_t print_len, buf_len; 6098 6099 buf_len = mp->b_datap->db_lim - mp->b_wptr; 6100 ASSERT(buf_len >= 0); 6101 if (buf_len == 0) 6102 return; 6103 6104 if (udp->udp_state == TS_UNBND) 6105 state = "UNBOUND"; 6106 else if (udp->udp_state == TS_IDLE) 6107 state = "IDLE"; 6108 else if (udp->udp_state == TS_DATA_XFER) 6109 state = "CONNECTED"; 6110 else 6111 state = "UnkState"; 6112 print_len = snprintf((char *)mp->b_wptr, buf_len, 6113 MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n", 6114 (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port), 6115 inet_ntop(AF_INET6, &udp->udp_v6src, 6116 addrbuf1, sizeof (addrbuf1)), 6117 inet_ntop(AF_INET6, &udp->udp_v6dst, 6118 addrbuf2, sizeof (addrbuf2)), 6119 ntohs(udp->udp_dstport), state); 6120 if (print_len < buf_len) { 6121 mp->b_wptr += print_len; 6122 } else { 6123 mp->b_wptr += buf_len; 6124 } 6125 } 6126 6127 /* Report for ndd "udp_status" */ 6128 /* ARGSUSED */ 6129 static int 6130 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6131 { 6132 zoneid_t zoneid; 6133 connf_t *connfp; 6134 conn_t *connp = Q_TO_CONN(q); 6135 udp_t *udp = connp->conn_udp; 6136 int i; 6137 6138 /* 6139 * Because of the ndd constraint, at most we can have 64K buffer 6140 * to put in all UDP info. So to be more efficient, just 6141 * allocate a 64K buffer here, assuming we need that large buffer. 6142 * This may be a problem as any user can read udp_status. Therefore 6143 * we limit the rate of doing this using udp_ndd_get_info_interval. 6144 * This should be OK as normal users should not do this too often. 6145 */ 6146 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 6147 if (ddi_get_lbolt() - udp_last_ndd_get_info_time < 6148 drv_usectohz(udp_ndd_get_info_interval * 1000)) { 6149 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 6150 return (0); 6151 } 6152 } 6153 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 6154 /* The following may work even if we cannot get a large buf. */ 6155 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 6156 return (0); 6157 } 6158 (void) mi_mpprintf(mp, 6159 "UDP " MI_COL_HDRPAD_STR 6160 /* 12345678[89ABCDEF] */ 6161 " zone lport src addr dest addr port state"); 6162 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 6163 6164 zoneid = connp->conn_zoneid; 6165 6166 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 6167 connfp = &ipcl_globalhash_fanout[i]; 6168 connp = NULL; 6169 6170 while ((connp = ipcl_get_next_conn(connfp, connp, 6171 IPCL_UDP))) { 6172 udp = connp->conn_udp; 6173 if (zoneid != GLOBAL_ZONEID && 6174 zoneid != connp->conn_zoneid) 6175 continue; 6176 6177 udp_report_item(mp->b_cont, udp); 6178 } 6179 } 6180 udp_last_ndd_get_info_time = ddi_get_lbolt(); 6181 return (0); 6182 } 6183 6184 /* 6185 * This routine creates a T_UDERROR_IND message and passes it upstream. 6186 * The address and options are copied from the T_UNITDATA_REQ message 6187 * passed in mp. This message is freed. 6188 */ 6189 static void 6190 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen, 6191 t_scalar_t err) 6192 { 6193 struct T_unitdata_req *tudr; 6194 mblk_t *mp1; 6195 uchar_t *optaddr; 6196 t_scalar_t optlen; 6197 6198 if (DB_TYPE(mp) == M_DATA) { 6199 ASSERT(destaddr != NULL && destlen != 0); 6200 optaddr = NULL; 6201 optlen = 0; 6202 } else { 6203 if ((mp->b_wptr < mp->b_rptr) || 6204 (MBLKL(mp)) < sizeof (struct T_unitdata_req)) { 6205 goto done; 6206 } 6207 tudr = (struct T_unitdata_req *)mp->b_rptr; 6208 destaddr = mp->b_rptr + tudr->DEST_offset; 6209 if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr || 6210 destaddr + tudr->DEST_length < mp->b_rptr || 6211 destaddr + tudr->DEST_length > mp->b_wptr) { 6212 goto done; 6213 } 6214 optaddr = mp->b_rptr + tudr->OPT_offset; 6215 if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr || 6216 optaddr + tudr->OPT_length < mp->b_rptr || 6217 optaddr + tudr->OPT_length > mp->b_wptr) { 6218 goto done; 6219 } 6220 destlen = tudr->DEST_length; 6221 optlen = tudr->OPT_length; 6222 } 6223 6224 mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen, 6225 (char *)optaddr, optlen, err); 6226 if (mp1 != NULL) 6227 putnext(UDP_RD(q), mp1); 6228 6229 done: 6230 freemsg(mp); 6231 } 6232 6233 /* 6234 * This routine removes a port number association from a stream. It 6235 * is called by udp_wput to handle T_UNBIND_REQ messages. 6236 */ 6237 static void 6238 udp_unbind(queue_t *q, mblk_t *mp) 6239 { 6240 udp_t *udp = Q_TO_UDP(q); 6241 6242 /* If a bind has not been done, we can't unbind. */ 6243 if (udp->udp_state == TS_UNBND) { 6244 udp_err_ack(q, mp, TOUTSTATE, 0); 6245 return; 6246 } 6247 if (cl_inet_unbind != NULL) { 6248 /* 6249 * Running in cluster mode - register unbind information 6250 */ 6251 if (udp->udp_ipversion == IPV4_VERSION) { 6252 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 6253 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 6254 (in_port_t)udp->udp_port); 6255 } else { 6256 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 6257 (uint8_t *)&(udp->udp_v6src), 6258 (in_port_t)udp->udp_port); 6259 } 6260 } 6261 6262 udp_bind_hash_remove(udp, B_FALSE); 6263 V6_SET_ZERO(udp->udp_v6src); 6264 V6_SET_ZERO(udp->udp_bound_v6src); 6265 udp->udp_port = 0; 6266 udp->udp_state = TS_UNBND; 6267 6268 if (udp->udp_family == AF_INET6) { 6269 int error; 6270 6271 /* Rebuild the header template */ 6272 error = udp_build_hdrs(q, udp); 6273 if (error != 0) { 6274 udp_err_ack(q, mp, TSYSERR, error); 6275 return; 6276 } 6277 } 6278 /* 6279 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK 6280 * and therefore ip_unbind must never return NULL. 6281 */ 6282 mp = ip_unbind(q, mp); 6283 ASSERT(mp != NULL); 6284 putnext(UDP_RD(q), mp); 6285 } 6286 6287 /* 6288 * Don't let port fall into the privileged range. 6289 * Since the extra privileged ports can be arbitrary we also 6290 * ensure that we exclude those from consideration. 6291 * udp_g_epriv_ports is not sorted thus we loop over it until 6292 * there are no changes. 6293 */ 6294 static in_port_t 6295 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random) 6296 { 6297 int i; 6298 in_port_t nextport; 6299 boolean_t restart = B_FALSE; 6300 6301 if (random && udp_random_anon_port != 0) { 6302 (void) random_get_pseudo_bytes((uint8_t *)&port, 6303 sizeof (in_port_t)); 6304 /* 6305 * Unless changed by a sys admin, the smallest anon port 6306 * is 32768 and the largest anon port is 65535. It is 6307 * very likely (50%) for the random port to be smaller 6308 * than the smallest anon port. When that happens, 6309 * add port % (anon port range) to the smallest anon 6310 * port to get the random port. It should fall into the 6311 * valid anon port range. 6312 */ 6313 if (port < udp_smallest_anon_port) { 6314 port = udp_smallest_anon_port + 6315 port % (udp_largest_anon_port - 6316 udp_smallest_anon_port); 6317 } 6318 } 6319 6320 retry: 6321 if (port < udp_smallest_anon_port) 6322 port = udp_smallest_anon_port; 6323 6324 if (port > udp_largest_anon_port) { 6325 port = udp_smallest_anon_port; 6326 if (restart) 6327 return (0); 6328 restart = B_TRUE; 6329 } 6330 6331 if (port < udp_smallest_nonpriv_port) 6332 port = udp_smallest_nonpriv_port; 6333 6334 for (i = 0; i < udp_g_num_epriv_ports; i++) { 6335 if (port == udp_g_epriv_ports[i]) { 6336 port++; 6337 /* 6338 * Make sure that the port is in the 6339 * valid range. 6340 */ 6341 goto retry; 6342 } 6343 } 6344 6345 if (is_system_labeled() && 6346 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 6347 port, IPPROTO_UDP, B_TRUE)) != 0) { 6348 port = nextport; 6349 goto retry; 6350 } 6351 6352 return (port); 6353 } 6354 6355 static int 6356 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst) 6357 { 6358 int err; 6359 uchar_t opt_storage[IP_MAX_OPT_LENGTH]; 6360 udp_t *udp = Q_TO_UDP(wq); 6361 6362 err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst, 6363 opt_storage, udp->udp_mac_exempt); 6364 if (err == 0) { 6365 err = tsol_update_options(&udp->udp_ip_snd_options, 6366 &udp->udp_ip_snd_options_len, &udp->udp_label_len, 6367 opt_storage); 6368 } 6369 if (err != 0) { 6370 DTRACE_PROBE4( 6371 tx__ip__log__info__updatelabel__udp, 6372 char *, "queue(1) failed to update options(2) on mp(3)", 6373 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 6374 } else { 6375 IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst); 6376 } 6377 return (err); 6378 } 6379 6380 static mblk_t * 6381 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port, 6382 uint_t srcid, int *error) 6383 { 6384 udp_t *udp = connp->conn_udp; 6385 queue_t *q = connp->conn_wq; 6386 mblk_t *mp1 = mp; 6387 mblk_t *mp2; 6388 ipha_t *ipha; 6389 int ip_hdr_length; 6390 uint32_t ip_len; 6391 udpha_t *udpha; 6392 udpattrs_t attrs; 6393 uchar_t ip_snd_opt[IP_MAX_OPT_LENGTH]; 6394 uint32_t ip_snd_opt_len = 0; 6395 ip4_pkt_t pktinfo; 6396 ip4_pkt_t *pktinfop = &pktinfo; 6397 ip_opt_info_t optinfo; 6398 6399 6400 *error = 0; 6401 pktinfop->ip4_ill_index = 0; 6402 pktinfop->ip4_addr = INADDR_ANY; 6403 optinfo.ip_opt_flags = 0; 6404 optinfo.ip_opt_ill_index = 0; 6405 6406 if (v4dst == INADDR_ANY) 6407 v4dst = htonl(INADDR_LOOPBACK); 6408 6409 /* 6410 * If options passed in, feed it for verification and handling 6411 */ 6412 attrs.udpattr_credset = B_FALSE; 6413 if (DB_TYPE(mp) != M_DATA) { 6414 mp1 = mp->b_cont; 6415 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 6416 attrs.udpattr_ipp4 = pktinfop; 6417 attrs.udpattr_mb = mp; 6418 if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0) 6419 goto done; 6420 /* 6421 * Note: success in processing options. 6422 * mp option buffer represented by 6423 * OPT_length/offset now potentially modified 6424 * and contain option setting results 6425 */ 6426 ASSERT(*error == 0); 6427 } 6428 } 6429 6430 /* mp1 points to the M_DATA mblk carrying the packet */ 6431 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 6432 6433 /* 6434 * Check if our saved options are valid; update if not 6435 * TSOL Note: Since we are not in WRITER mode, UDP packets 6436 * to different destination may require different labels. 6437 * We use conn_lock to ensure that lastdst, ip_snd_options, 6438 * and ip_snd_options_len are consistent for the current 6439 * destination and are updated atomically. 6440 */ 6441 mutex_enter(&connp->conn_lock); 6442 if (is_system_labeled()) { 6443 /* Using UDP MLP requires SCM_UCRED from user */ 6444 if (connp->conn_mlp_type != mlptSingle && 6445 !attrs.udpattr_credset) { 6446 mutex_exit(&connp->conn_lock); 6447 DTRACE_PROBE4( 6448 tx__ip__log__info__output__udp, 6449 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 6450 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 6451 *error = ECONNREFUSED; 6452 goto done; 6453 } 6454 if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) || 6455 V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst) && 6456 (*error = udp_update_label(q, mp, v4dst)) != 0) { 6457 mutex_exit(&connp->conn_lock); 6458 goto done; 6459 } 6460 } 6461 if (udp->udp_ip_snd_options_len > 0) { 6462 ip_snd_opt_len = udp->udp_ip_snd_options_len; 6463 bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len); 6464 } 6465 mutex_exit(&connp->conn_lock); 6466 6467 /* Add an IP header */ 6468 ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len; 6469 ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length]; 6470 if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) || 6471 !OK_32PTR(ipha)) { 6472 mp2 = allocb(ip_hdr_length + udp_wroff_extra, BPRI_LO); 6473 if (mp2 == NULL) { 6474 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6475 "udp_wput_end: q %p (%S)", q, "allocbfail2"); 6476 *error = ENOMEM; 6477 goto done; 6478 } 6479 mp2->b_wptr = DB_LIM(mp2); 6480 mp2->b_cont = mp1; 6481 mp1 = mp2; 6482 if (DB_TYPE(mp) != M_DATA) 6483 mp->b_cont = mp1; 6484 else 6485 mp = mp1; 6486 6487 ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length); 6488 } 6489 ip_hdr_length -= UDPH_SIZE; 6490 #ifdef _BIG_ENDIAN 6491 /* Set version, header length, and tos */ 6492 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 6493 ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) | 6494 udp->udp_type_of_service); 6495 /* Set ttl and protocol */ 6496 *(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP; 6497 #else 6498 /* Set version, header length, and tos */ 6499 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 6500 ((udp->udp_type_of_service << 8) | 6501 ((IP_VERSION << 4) | (ip_hdr_length>>2))); 6502 /* Set ttl and protocol */ 6503 *(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl; 6504 #endif 6505 if (pktinfop->ip4_addr != INADDR_ANY) { 6506 ipha->ipha_src = pktinfop->ip4_addr; 6507 optinfo.ip_opt_flags = IP_VERIFY_SRC; 6508 } else { 6509 /* 6510 * Copy our address into the packet. If this is zero, 6511 * first look at __sin6_src_id for a hint. If we leave the 6512 * source as INADDR_ANY then ip will fill in the real source 6513 * address. 6514 */ 6515 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src); 6516 if (srcid != 0 && ipha->ipha_src == INADDR_ANY) { 6517 in6_addr_t v6src; 6518 6519 ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid); 6520 IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src); 6521 } 6522 } 6523 6524 if (pktinfop->ip4_ill_index != 0) { 6525 optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index; 6526 } 6527 6528 ipha->ipha_fragment_offset_and_flags = 0; 6529 ipha->ipha_ident = 0; 6530 6531 mp1->b_rptr = (uchar_t *)ipha; 6532 6533 ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <= 6534 (uintptr_t)UINT_MAX); 6535 6536 /* Determine length of packet */ 6537 ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha); 6538 if ((mp2 = mp1->b_cont) != NULL) { 6539 do { 6540 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 6541 ip_len += (uint32_t)MBLKL(mp2); 6542 } while ((mp2 = mp2->b_cont) != NULL); 6543 } 6544 /* 6545 * If the size of the packet is greater than the maximum allowed by 6546 * ip, return an error. Passing this down could cause panics because 6547 * the size will have wrapped and be inconsistent with the msg size. 6548 */ 6549 if (ip_len > IP_MAXPACKET) { 6550 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6551 "udp_wput_end: q %p (%S)", q, "IP length exceeded"); 6552 *error = EMSGSIZE; 6553 goto done; 6554 } 6555 ipha->ipha_length = htons((uint16_t)ip_len); 6556 ip_len -= ip_hdr_length; 6557 ip_len = htons((uint16_t)ip_len); 6558 udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length); 6559 6560 /* 6561 * Copy in the destination address 6562 */ 6563 ipha->ipha_dst = v4dst; 6564 6565 /* 6566 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic. 6567 */ 6568 if (CLASSD(v4dst)) 6569 ipha->ipha_ttl = udp->udp_multicast_ttl; 6570 6571 udpha->uha_dst_port = port; 6572 udpha->uha_src_port = udp->udp_port; 6573 6574 if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) { 6575 uint32_t cksum; 6576 6577 bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len); 6578 /* 6579 * Massage source route putting first source route in ipha_dst. 6580 * Ignore the destination in T_unitdata_req. 6581 * Create a checksum adjustment for a source route, if any. 6582 */ 6583 cksum = ip_massage_options(ipha); 6584 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6585 cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) + 6586 (ipha->ipha_dst & 0xFFFF); 6587 if ((int)cksum < 0) 6588 cksum--; 6589 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6590 /* 6591 * IP does the checksum if uha_checksum is non-zero, 6592 * We make it easy for IP to include our pseudo header 6593 * by putting our length in uha_checksum. 6594 */ 6595 cksum += ip_len; 6596 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6597 /* There might be a carry. */ 6598 cksum = (cksum & 0xFFFF) + (cksum >> 16); 6599 #ifdef _LITTLE_ENDIAN 6600 if (udp_do_checksum) 6601 ip_len = (cksum << 16) | ip_len; 6602 #else 6603 if (udp_do_checksum) 6604 ip_len = (ip_len << 16) | cksum; 6605 else 6606 ip_len <<= 16; 6607 #endif 6608 } else { 6609 /* 6610 * IP does the checksum if uha_checksum is non-zero, 6611 * We make it easy for IP to include our pseudo header 6612 * by putting our length in uha_checksum. 6613 */ 6614 if (udp_do_checksum) 6615 ip_len |= (ip_len << 16); 6616 #ifndef _LITTLE_ENDIAN 6617 else 6618 ip_len <<= 16; 6619 #endif 6620 } 6621 6622 /* Set UDP length and checksum */ 6623 *((uint32_t *)&udpha->uha_length) = ip_len; 6624 if (DB_CRED(mp) != NULL) 6625 mblk_setcred(mp1, DB_CRED(mp)); 6626 6627 if (DB_TYPE(mp) != M_DATA) { 6628 ASSERT(mp != mp1); 6629 freeb(mp); 6630 } 6631 6632 /* mp has been consumed and we'll return success */ 6633 ASSERT(*error == 0); 6634 mp = NULL; 6635 6636 /* We're done. Pass the packet to ip. */ 6637 BUMP_MIB(&udp_mib, udpHCOutDatagrams); 6638 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6639 "udp_wput_end: q %p (%S)", q, "end"); 6640 6641 if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 6642 CONN_OUTBOUND_POLICY_PRESENT(connp) || 6643 connp->conn_dontroute || connp->conn_xmit_if_ill != NULL || 6644 connp->conn_nofailover_ill != NULL || 6645 connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 || 6646 optinfo.ip_opt_ill_index != 0 || 6647 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 6648 IPP_ENABLED(IPP_LOCAL_OUT) || ip_g_mrouter != NULL) { 6649 UDP_STAT(udp_ip_send); 6650 ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT, 6651 &optinfo); 6652 } else { 6653 udp_send_data(udp, connp->conn_wq, mp1, ipha); 6654 } 6655 6656 done: 6657 if (*error != 0) { 6658 ASSERT(mp != NULL); 6659 BUMP_MIB(&udp_mib, udpOutErrors); 6660 } 6661 return (mp); 6662 } 6663 6664 static void 6665 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha) 6666 { 6667 conn_t *connp = udp->udp_connp; 6668 ipaddr_t src, dst; 6669 ill_t *ill; 6670 ire_t *ire; 6671 ipif_t *ipif = NULL; 6672 mblk_t *ire_fp_mp; 6673 uint_t ire_fp_mp_len; 6674 uint16_t *up; 6675 uint32_t cksum, hcksum_txflags; 6676 queue_t *dev_q; 6677 boolean_t retry_caching; 6678 6679 dst = ipha->ipha_dst; 6680 src = ipha->ipha_src; 6681 ASSERT(ipha->ipha_ident == 0); 6682 6683 if (CLASSD(dst)) { 6684 int err; 6685 6686 ipif = conn_get_held_ipif(connp, 6687 &connp->conn_multicast_ipif, &err); 6688 6689 if (ipif == NULL || ipif->ipif_isv6 || 6690 (ipif->ipif_ill->ill_phyint->phyint_flags & 6691 PHYI_LOOPBACK)) { 6692 if (ipif != NULL) 6693 ipif_refrele(ipif); 6694 UDP_STAT(udp_ip_send); 6695 ip_output(connp, mp, q, IP_WPUT); 6696 return; 6697 } 6698 } 6699 6700 retry_caching = B_FALSE; 6701 mutex_enter(&connp->conn_lock); 6702 ire = connp->conn_ire_cache; 6703 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 6704 6705 if (ire == NULL || ire->ire_addr != dst || 6706 (ire->ire_marks & IRE_MARK_CONDEMNED)) { 6707 retry_caching = B_TRUE; 6708 } else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) { 6709 ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr; 6710 6711 ASSERT(ipif != NULL); 6712 if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL || 6713 stq_ill->ill_group != ipif->ipif_ill->ill_group)) 6714 retry_caching = B_TRUE; 6715 } 6716 6717 if (!retry_caching) { 6718 ASSERT(ire != NULL); 6719 IRE_REFHOLD(ire); 6720 mutex_exit(&connp->conn_lock); 6721 } else { 6722 boolean_t cached = B_FALSE; 6723 6724 connp->conn_ire_cache = NULL; 6725 mutex_exit(&connp->conn_lock); 6726 6727 /* Release the old ire */ 6728 if (ire != NULL) { 6729 IRE_REFRELE_NOTR(ire); 6730 ire = NULL; 6731 } 6732 6733 if (CLASSD(dst)) { 6734 ASSERT(ipif != NULL); 6735 ire = ire_ctable_lookup(dst, 0, 0, ipif, 6736 connp->conn_zoneid, MBLK_GETLABEL(mp), 6737 MATCH_IRE_ILL_GROUP); 6738 } else { 6739 ASSERT(ipif == NULL); 6740 ire = ire_cache_lookup(dst, connp->conn_zoneid, 6741 MBLK_GETLABEL(mp)); 6742 } 6743 6744 if (ire == NULL) { 6745 if (ipif != NULL) 6746 ipif_refrele(ipif); 6747 UDP_STAT(udp_ire_null); 6748 ip_output(connp, mp, q, IP_WPUT); 6749 return; 6750 } 6751 IRE_REFHOLD_NOTR(ire); 6752 6753 mutex_enter(&connp->conn_lock); 6754 if (!(connp->conn_state_flags & CONN_CLOSING) && 6755 connp->conn_ire_cache == NULL) { 6756 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 6757 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 6758 connp->conn_ire_cache = ire; 6759 cached = B_TRUE; 6760 } 6761 rw_exit(&ire->ire_bucket->irb_lock); 6762 } 6763 mutex_exit(&connp->conn_lock); 6764 6765 /* 6766 * We can continue to use the ire but since it was not 6767 * cached, we should drop the extra reference. 6768 */ 6769 if (!cached) 6770 IRE_REFRELE_NOTR(ire); 6771 } 6772 ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION); 6773 ASSERT(!CLASSD(dst) || ipif != NULL); 6774 6775 /* 6776 * Check if we can take the fast-path. 6777 * Note that "incomplete" ire's (where the link-layer for next hop 6778 * is not resolved, or where the fast-path header in nce_fp_mp is not 6779 * available yet) are sent down the legacy (slow) path 6780 */ 6781 if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) || 6782 (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) || 6783 (ire->ire_max_frag < ntohs(ipha->ipha_length)) || 6784 (connp->conn_nexthop_set) || 6785 (ire->ire_nce == NULL) || 6786 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 6787 ((ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp))) { 6788 if (ipif != NULL) 6789 ipif_refrele(ipif); 6790 UDP_STAT(udp_ip_ire_send); 6791 IRE_REFRELE(ire); 6792 ip_output(connp, mp, q, IP_WPUT); 6793 return; 6794 } 6795 6796 ill = ire_to_ill(ire); 6797 ASSERT(ill != NULL); 6798 6799 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 6800 6801 dev_q = ire->ire_stq->q_next; 6802 ASSERT(dev_q != NULL); 6803 /* 6804 * If the service thread is already running, or if the driver 6805 * queue is currently flow-controlled, queue this packet. 6806 */ 6807 if ((q->q_first != NULL || connp->conn_draining) || 6808 ((dev_q->q_next || dev_q->q_first) && !canput(dev_q))) { 6809 if (ip_output_queue) { 6810 (void) putq(q, mp); 6811 } else { 6812 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 6813 freemsg(mp); 6814 } 6815 if (ipif != NULL) 6816 ipif_refrele(ipif); 6817 IRE_REFRELE(ire); 6818 return; 6819 } 6820 6821 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 6822 #ifndef _BIG_ENDIAN 6823 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 6824 #endif 6825 6826 if (src == INADDR_ANY && !connp->conn_unspec_src) { 6827 if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC)) 6828 src = ipha->ipha_src = ipif->ipif_src_addr; 6829 else 6830 src = ipha->ipha_src = ire->ire_src_addr; 6831 } 6832 6833 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 6834 ASSERT(ill->ill_hcksum_capab != NULL); 6835 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 6836 } else { 6837 hcksum_txflags = 0; 6838 } 6839 6840 /* pseudo-header checksum (do it in parts for IP header checksum) */ 6841 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 6842 6843 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 6844 up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 6845 if (*up != 0) { 6846 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, 6847 mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 6848 ntohs(ipha->ipha_length), cksum); 6849 6850 /* Software checksum? */ 6851 if (DB_CKSUMFLAGS(mp) == 0) { 6852 UDP_STAT(udp_out_sw_cksum); 6853 UDP_STAT_UPDATE(udp_out_sw_cksum_bytes, 6854 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 6855 } 6856 } 6857 6858 ipha->ipha_fragment_offset_and_flags |= 6859 (uint32_t)htons(ire->ire_frag_flag); 6860 6861 /* Calculate IP header checksum if hardware isn't capable */ 6862 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 6863 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 6864 ((uint16_t *)ipha)[4]); 6865 } 6866 6867 if (CLASSD(dst)) { 6868 ilm_t *ilm; 6869 6870 ILM_WALKER_HOLD(ill); 6871 ilm = ilm_lookup_ill(ill, dst, ALL_ZONES); 6872 ILM_WALKER_RELE(ill); 6873 if (ilm != NULL) { 6874 ip_multicast_loopback(q, ill, mp, 6875 connp->conn_multicast_loop ? 0 : 6876 IP_FF_NO_MCAST_LOOP, connp->conn_zoneid); 6877 } 6878 6879 /* If multicast TTL is 0 then we are done */ 6880 if (ipha->ipha_ttl == 0) { 6881 if (ipif != NULL) 6882 ipif_refrele(ipif); 6883 freemsg(mp); 6884 IRE_REFRELE(ire); 6885 return; 6886 } 6887 } 6888 6889 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 6890 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 6891 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 6892 6893 UPDATE_OB_PKT_COUNT(ire); 6894 ire->ire_last_used_time = lbolt; 6895 6896 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 6897 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 6898 ntohs(ipha->ipha_length)); 6899 6900 if (ILL_DLS_CAPABLE(ill)) { 6901 /* 6902 * Send the packet directly to DLD, where it may be queued 6903 * depending on the availability of transmit resources at 6904 * the media layer. 6905 */ 6906 IP_DLS_ILL_TX(ill, ipha, mp); 6907 } else { 6908 DTRACE_PROBE4(ip4__physical__out__start, 6909 ill_t *, NULL, ill_t *, ill, 6910 ipha_t *, ipha, mblk_t *, mp); 6911 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 6912 NULL, ill, ipha, mp, mp); 6913 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 6914 if (mp != NULL) 6915 putnext(ire->ire_stq, mp); 6916 } 6917 6918 if (ipif != NULL) 6919 ipif_refrele(ipif); 6920 IRE_REFRELE(ire); 6921 } 6922 6923 static boolean_t 6924 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst) 6925 { 6926 udp_t *udp = Q_TO_UDP(wq); 6927 int err; 6928 uchar_t opt_storage[TSOL_MAX_IPV6_OPTION]; 6929 6930 err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred), 6931 dst, opt_storage, udp->udp_mac_exempt); 6932 if (err == 0) { 6933 err = tsol_update_sticky(&udp->udp_sticky_ipp, 6934 &udp->udp_label_len_v6, opt_storage); 6935 } 6936 if (err != 0) { 6937 DTRACE_PROBE4( 6938 tx__ip__log__drop__updatelabel__udp6, 6939 char *, "queue(1) failed to update options(2) on mp(3)", 6940 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 6941 } else { 6942 udp->udp_v6lastdst = *dst; 6943 } 6944 return (err); 6945 } 6946 6947 /* 6948 * This routine handles all messages passed downstream. It either 6949 * consumes the message or passes it downstream; it never queues a 6950 * a message. 6951 */ 6952 static void 6953 udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen) 6954 { 6955 sin6_t *sin6; 6956 sin_t *sin; 6957 ipaddr_t v4dst; 6958 uint16_t port; 6959 uint_t srcid; 6960 queue_t *q = connp->conn_wq; 6961 udp_t *udp = connp->conn_udp; 6962 int error = 0; 6963 struct sockaddr_storage ss; 6964 6965 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START, 6966 "udp_wput_start: connp %p mp %p", connp, mp); 6967 6968 /* 6969 * We directly handle several cases here: T_UNITDATA_REQ message 6970 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for both 6971 * connected and non-connected socket. The latter carries the 6972 * address structure along when this routine gets called. 6973 */ 6974 switch (DB_TYPE(mp)) { 6975 case M_DATA: 6976 if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) { 6977 if (!udp->udp_direct_sockfs || 6978 addr == NULL || addrlen == 0) { 6979 /* Not connected; address is required */ 6980 BUMP_MIB(&udp_mib, udpOutErrors); 6981 UDP_STAT(udp_out_err_notconn); 6982 freemsg(mp); 6983 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6984 "udp_wput_end: connp %p (%S)", connp, 6985 "not-connected; address required"); 6986 return; 6987 } 6988 ASSERT(udp->udp_issocket); 6989 UDP_DBGSTAT(udp_data_notconn); 6990 /* Not connected; do some more checks below */ 6991 break; 6992 } 6993 /* M_DATA for connected socket */ 6994 UDP_DBGSTAT(udp_data_conn); 6995 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst); 6996 6997 /* Initialize addr and addrlen as if they're passed in */ 6998 if (udp->udp_family == AF_INET) { 6999 sin = (sin_t *)&ss; 7000 sin->sin_family = AF_INET; 7001 sin->sin_port = udp->udp_dstport; 7002 sin->sin_addr.s_addr = v4dst; 7003 addr = (struct sockaddr *)sin; 7004 addrlen = sizeof (*sin); 7005 } else { 7006 sin6 = (sin6_t *)&ss; 7007 sin6->sin6_family = AF_INET6; 7008 sin6->sin6_port = udp->udp_dstport; 7009 sin6->sin6_flowinfo = udp->udp_flowinfo; 7010 sin6->sin6_addr = udp->udp_v6dst; 7011 sin6->sin6_scope_id = 0; 7012 sin6->__sin6_src_id = 0; 7013 addr = (struct sockaddr *)sin6; 7014 addrlen = sizeof (*sin6); 7015 } 7016 7017 if (udp->udp_family == AF_INET || 7018 IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst)) { 7019 /* 7020 * Handle both AF_INET and AF_INET6; the latter 7021 * for IPV4 mapped destination addresses. Note 7022 * here that both addr and addrlen point to the 7023 * corresponding struct depending on the address 7024 * family of the socket. 7025 */ 7026 mp = udp_output_v4(connp, mp, v4dst, 7027 udp->udp_dstport, 0, &error); 7028 } else { 7029 mp = udp_output_v6(connp, mp, sin6, &error); 7030 } 7031 if (error != 0) { 7032 ASSERT(addr != NULL && addrlen != 0); 7033 goto ud_error; 7034 } 7035 return; 7036 case M_PROTO: 7037 case M_PCPROTO: { 7038 struct T_unitdata_req *tudr; 7039 7040 ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX); 7041 tudr = (struct T_unitdata_req *)mp->b_rptr; 7042 7043 /* Handle valid T_UNITDATA_REQ here */ 7044 if (MBLKL(mp) >= sizeof (*tudr) && 7045 ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) { 7046 if (mp->b_cont == NULL) { 7047 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7048 "udp_wput_end: q %p (%S)", q, "badaddr"); 7049 error = EPROTO; 7050 goto ud_error; 7051 } 7052 7053 if (!MBLKIN(mp, 0, tudr->DEST_offset + 7054 tudr->DEST_length)) { 7055 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7056 "udp_wput_end: q %p (%S)", q, "badaddr"); 7057 error = EADDRNOTAVAIL; 7058 goto ud_error; 7059 } 7060 /* 7061 * If a port has not been bound to the stream, fail. 7062 * This is not a problem when sockfs is directly 7063 * above us, because it will ensure that the socket 7064 * is first bound before allowing data to be sent. 7065 */ 7066 if (udp->udp_state == TS_UNBND) { 7067 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7068 "udp_wput_end: q %p (%S)", q, "outstate"); 7069 error = EPROTO; 7070 goto ud_error; 7071 } 7072 addr = (struct sockaddr *) 7073 &mp->b_rptr[tudr->DEST_offset]; 7074 addrlen = tudr->DEST_length; 7075 if (tudr->OPT_length != 0) 7076 UDP_STAT(udp_out_opt); 7077 break; 7078 } 7079 /* FALLTHRU */ 7080 } 7081 default: 7082 udp_become_writer(connp, mp, udp_wput_other_wrapper, 7083 SQTAG_UDP_OUTPUT); 7084 return; 7085 } 7086 ASSERT(addr != NULL); 7087 7088 switch (udp->udp_family) { 7089 case AF_INET6: 7090 sin6 = (sin6_t *)addr; 7091 if (!OK_32PTR((char *)sin6) || addrlen != sizeof (sin6_t) || 7092 sin6->sin6_family != AF_INET6) { 7093 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7094 "udp_wput_end: q %p (%S)", q, "badaddr"); 7095 error = EADDRNOTAVAIL; 7096 goto ud_error; 7097 } 7098 7099 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 7100 /* 7101 * Destination is a non-IPv4-compatible IPv6 address. 7102 * Send out an IPv6 format packet. 7103 */ 7104 mp = udp_output_v6(connp, mp, sin6, &error); 7105 if (error != 0) 7106 goto ud_error; 7107 7108 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7109 "udp_wput_end: q %p (%S)", q, "udp_output_v6"); 7110 return; 7111 } 7112 /* 7113 * If the local address is not zero or a mapped address 7114 * return an error. It would be possible to send an IPv4 7115 * packet but the response would never make it back to the 7116 * application since it is bound to a non-mapped address. 7117 */ 7118 if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) && 7119 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 7120 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7121 "udp_wput_end: q %p (%S)", q, "badaddr"); 7122 error = EADDRNOTAVAIL; 7123 goto ud_error; 7124 } 7125 /* Send IPv4 packet without modifying udp_ipversion */ 7126 /* Extract port and ipaddr */ 7127 port = sin6->sin6_port; 7128 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst); 7129 srcid = sin6->__sin6_src_id; 7130 break; 7131 7132 case AF_INET: 7133 sin = (sin_t *)addr; 7134 if (!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t) || 7135 sin->sin_family != AF_INET) { 7136 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 7137 "udp_wput_end: q %p (%S)", q, "badaddr"); 7138 error = EADDRNOTAVAIL; 7139 goto ud_error; 7140 } 7141 /* Extract port and ipaddr */ 7142 port = sin->sin_port; 7143 v4dst = sin->sin_addr.s_addr; 7144 srcid = 0; 7145 break; 7146 } 7147 7148 mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error); 7149 if (error != 0) { 7150 ud_error: 7151 UDP_STAT(udp_out_err_output); 7152 ASSERT(mp != NULL); 7153 /* mp is freed by the following routine */ 7154 udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen, 7155 (t_scalar_t)error); 7156 } 7157 } 7158 7159 /* ARGSUSED */ 7160 static void 7161 udp_output_wrapper(void *arg, mblk_t *mp, void *arg2) 7162 { 7163 udp_output((conn_t *)arg, mp, NULL, 0); 7164 _UDP_EXIT((conn_t *)arg); 7165 } 7166 7167 static void 7168 udp_wput(queue_t *q, mblk_t *mp) 7169 { 7170 _UDP_ENTER(Q_TO_CONN(UDP_WR(q)), mp, udp_output_wrapper, 7171 SQTAG_UDP_WPUT); 7172 } 7173 7174 /* 7175 * Allocate and prepare a T_UNITDATA_REQ message. 7176 */ 7177 static mblk_t * 7178 udp_tudr_alloc(struct sockaddr *addr, socklen_t addrlen) 7179 { 7180 struct T_unitdata_req *tudr; 7181 mblk_t *mp; 7182 7183 mp = allocb(sizeof (*tudr) + addrlen, BPRI_MED); 7184 if (mp != NULL) { 7185 mp->b_wptr += sizeof (*tudr) + addrlen; 7186 DB_TYPE(mp) = M_PROTO; 7187 7188 tudr = (struct T_unitdata_req *)mp->b_rptr; 7189 tudr->PRIM_type = T_UNITDATA_REQ; 7190 tudr->DEST_length = addrlen; 7191 tudr->DEST_offset = (t_scalar_t)sizeof (*tudr); 7192 tudr->OPT_length = 0; 7193 tudr->OPT_offset = 0; 7194 bcopy(addr, tudr+1, addrlen); 7195 } 7196 return (mp); 7197 } 7198 7199 /* 7200 * Entry point for sockfs when udp is in "direct sockfs" mode. This mode 7201 * is valid when we are directly beneath the stream head, and thus sockfs 7202 * is able to bypass STREAMS and directly call us, passing along the sockaddr 7203 * structure without the cumbersome T_UNITDATA_REQ interface. Note that 7204 * this is done for both connected and non-connected endpoint. 7205 */ 7206 void 7207 udp_wput_data(queue_t *q, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen) 7208 { 7209 conn_t *connp; 7210 udp_t *udp; 7211 7212 q = UDP_WR(q); 7213 connp = Q_TO_CONN(q); 7214 udp = connp->conn_udp; 7215 7216 /* udpsockfs should only send down M_DATA for this entry point */ 7217 ASSERT(DB_TYPE(mp) == M_DATA); 7218 7219 mutex_enter(&connp->conn_lock); 7220 UDP_MODE_ASSERTIONS(udp, UDP_ENTER); 7221 7222 if (udp->udp_mode != UDP_MT_HOT) { 7223 /* 7224 * We can't enter this conn right away because another 7225 * thread is currently executing as writer; therefore we 7226 * need to deposit the message into the squeue to be 7227 * drained later. If a socket address is present, we 7228 * need to create a T_UNITDATA_REQ message as placeholder. 7229 */ 7230 if (addr != NULL && addrlen != 0) { 7231 mblk_t *tudr_mp = udp_tudr_alloc(addr, addrlen); 7232 7233 if (tudr_mp == NULL) { 7234 mutex_exit(&connp->conn_lock); 7235 BUMP_MIB(&udp_mib, udpOutErrors); 7236 UDP_STAT(udp_out_err_tudr); 7237 freemsg(mp); 7238 return; 7239 } 7240 /* Tag the packet with T_UNITDATA_REQ */ 7241 tudr_mp->b_cont = mp; 7242 mp = tudr_mp; 7243 } 7244 mutex_exit(&connp->conn_lock); 7245 udp_enter(connp, mp, udp_output_wrapper, SQTAG_UDP_WPUT); 7246 return; 7247 } 7248 7249 /* We can execute as reader right away. */ 7250 UDP_READERS_INCREF(udp); 7251 mutex_exit(&connp->conn_lock); 7252 7253 udp_output(connp, mp, addr, addrlen); 7254 7255 udp_exit(connp); 7256 } 7257 7258 /* 7259 * udp_output_v6(): 7260 * Assumes that udp_wput did some sanity checking on the destination 7261 * address. 7262 */ 7263 static mblk_t * 7264 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error) 7265 { 7266 ip6_t *ip6h; 7267 ip6i_t *ip6i; /* mp1->b_rptr even if no ip6i_t */ 7268 mblk_t *mp1 = mp; 7269 mblk_t *mp2; 7270 int udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 7271 size_t ip_len; 7272 udpha_t *udph; 7273 udp_t *udp = connp->conn_udp; 7274 queue_t *q = connp->conn_wq; 7275 ip6_pkt_t ipp_s; /* For ancillary data options */ 7276 ip6_pkt_t *ipp = &ipp_s; 7277 ip6_pkt_t *tipp; /* temporary ipp */ 7278 uint32_t csum = 0; 7279 uint_t ignore = 0; 7280 uint_t option_exists = 0, is_sticky = 0; 7281 uint8_t *cp; 7282 uint8_t *nxthdr_ptr; 7283 in6_addr_t ip6_dst; 7284 udpattrs_t attrs; 7285 boolean_t opt_present; 7286 ip6_hbh_t *hopoptsptr = NULL; 7287 uint_t hopoptslen = 0; 7288 boolean_t is_ancillary = B_FALSE; 7289 7290 *error = 0; 7291 7292 /* 7293 * If the local address is a mapped address return 7294 * an error. 7295 * It would be possible to send an IPv6 packet but the 7296 * response would never make it back to the application 7297 * since it is bound to a mapped address. 7298 */ 7299 if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) { 7300 *error = EADDRNOTAVAIL; 7301 goto done; 7302 } 7303 7304 ipp->ipp_fields = 0; 7305 ipp->ipp_sticky_ignored = 0; 7306 7307 /* 7308 * If TPI options passed in, feed it for verification and handling 7309 */ 7310 attrs.udpattr_credset = B_FALSE; 7311 opt_present = B_FALSE; 7312 if (DB_TYPE(mp) != M_DATA) { 7313 mp1 = mp->b_cont; 7314 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 7315 attrs.udpattr_ipp6 = ipp; 7316 attrs.udpattr_mb = mp; 7317 if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0) 7318 goto done; 7319 ASSERT(*error == 0); 7320 opt_present = B_TRUE; 7321 } 7322 } 7323 ignore = ipp->ipp_sticky_ignored; 7324 7325 /* mp1 points to the M_DATA mblk carrying the packet */ 7326 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 7327 7328 if (sin6->sin6_scope_id != 0 && 7329 IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 7330 /* 7331 * IPPF_SCOPE_ID is special. It's neither a sticky 7332 * option nor ancillary data. It needs to be 7333 * explicitly set in options_exists. 7334 */ 7335 option_exists |= IPPF_SCOPE_ID; 7336 } 7337 7338 /* 7339 * Compute the destination address 7340 */ 7341 ip6_dst = sin6->sin6_addr; 7342 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 7343 ip6_dst = ipv6_loopback; 7344 7345 /* 7346 * If we're not going to the same destination as last time, then 7347 * recompute the label required. This is done in a separate routine to 7348 * avoid blowing up our stack here. 7349 * 7350 * TSOL Note: Since we are not in WRITER mode, UDP packets 7351 * to different destination may require different labels. 7352 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts, 7353 * and sticky ipp_hopoptslen are consistent for the current 7354 * destination and are updated atomically. 7355 */ 7356 mutex_enter(&connp->conn_lock); 7357 if (is_system_labeled()) { 7358 /* Using UDP MLP requires SCM_UCRED from user */ 7359 if (connp->conn_mlp_type != mlptSingle && 7360 !attrs.udpattr_credset) { 7361 DTRACE_PROBE4( 7362 tx__ip__log__info__output__udp6, 7363 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 7364 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 7365 *error = ECONNREFUSED; 7366 mutex_exit(&connp->conn_lock); 7367 goto done; 7368 } 7369 if ((opt_present || 7370 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst)) && 7371 (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) { 7372 mutex_exit(&connp->conn_lock); 7373 goto done; 7374 } 7375 } 7376 7377 /* 7378 * If there's a security label here, then we ignore any options the 7379 * user may try to set. We keep the peer's label as a hidden sticky 7380 * option. We make a private copy of this label before releasing the 7381 * lock so that label is kept consistent with the destination addr. 7382 */ 7383 if (udp->udp_label_len_v6 > 0) { 7384 ignore &= ~IPPF_HOPOPTS; 7385 ipp->ipp_fields &= ~IPPF_HOPOPTS; 7386 } 7387 7388 if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) { 7389 /* No sticky options nor ancillary data. */ 7390 mutex_exit(&connp->conn_lock); 7391 goto no_options; 7392 } 7393 7394 /* 7395 * Go through the options figuring out where each is going to 7396 * come from and build two masks. The first mask indicates if 7397 * the option exists at all. The second mask indicates if the 7398 * option is sticky or ancillary. 7399 */ 7400 if (!(ignore & IPPF_HOPOPTS)) { 7401 if (ipp->ipp_fields & IPPF_HOPOPTS) { 7402 option_exists |= IPPF_HOPOPTS; 7403 udp_ip_hdr_len += ipp->ipp_hopoptslen; 7404 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) { 7405 option_exists |= IPPF_HOPOPTS; 7406 is_sticky |= IPPF_HOPOPTS; 7407 ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0); 7408 hopoptsptr = kmem_alloc( 7409 udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP); 7410 if (hopoptsptr == NULL) { 7411 *error = ENOMEM; 7412 mutex_exit(&connp->conn_lock); 7413 goto done; 7414 } 7415 hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen; 7416 bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr, 7417 hopoptslen); 7418 udp_ip_hdr_len += hopoptslen; 7419 } 7420 } 7421 mutex_exit(&connp->conn_lock); 7422 7423 if (!(ignore & IPPF_RTHDR)) { 7424 if (ipp->ipp_fields & IPPF_RTHDR) { 7425 option_exists |= IPPF_RTHDR; 7426 udp_ip_hdr_len += ipp->ipp_rthdrlen; 7427 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) { 7428 option_exists |= IPPF_RTHDR; 7429 is_sticky |= IPPF_RTHDR; 7430 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen; 7431 } 7432 } 7433 7434 if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) { 7435 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 7436 option_exists |= IPPF_RTDSTOPTS; 7437 udp_ip_hdr_len += ipp->ipp_rtdstoptslen; 7438 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) { 7439 option_exists |= IPPF_RTDSTOPTS; 7440 is_sticky |= IPPF_RTDSTOPTS; 7441 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen; 7442 } 7443 } 7444 7445 if (!(ignore & IPPF_DSTOPTS)) { 7446 if (ipp->ipp_fields & IPPF_DSTOPTS) { 7447 option_exists |= IPPF_DSTOPTS; 7448 udp_ip_hdr_len += ipp->ipp_dstoptslen; 7449 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) { 7450 option_exists |= IPPF_DSTOPTS; 7451 is_sticky |= IPPF_DSTOPTS; 7452 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen; 7453 } 7454 } 7455 7456 if (!(ignore & IPPF_IFINDEX)) { 7457 if (ipp->ipp_fields & IPPF_IFINDEX) { 7458 option_exists |= IPPF_IFINDEX; 7459 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) { 7460 option_exists |= IPPF_IFINDEX; 7461 is_sticky |= IPPF_IFINDEX; 7462 } 7463 } 7464 7465 if (!(ignore & IPPF_ADDR)) { 7466 if (ipp->ipp_fields & IPPF_ADDR) { 7467 option_exists |= IPPF_ADDR; 7468 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) { 7469 option_exists |= IPPF_ADDR; 7470 is_sticky |= IPPF_ADDR; 7471 } 7472 } 7473 7474 if (!(ignore & IPPF_DONTFRAG)) { 7475 if (ipp->ipp_fields & IPPF_DONTFRAG) { 7476 option_exists |= IPPF_DONTFRAG; 7477 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) { 7478 option_exists |= IPPF_DONTFRAG; 7479 is_sticky |= IPPF_DONTFRAG; 7480 } 7481 } 7482 7483 if (!(ignore & IPPF_USE_MIN_MTU)) { 7484 if (ipp->ipp_fields & IPPF_USE_MIN_MTU) { 7485 option_exists |= IPPF_USE_MIN_MTU; 7486 } else if (udp->udp_sticky_ipp.ipp_fields & 7487 IPPF_USE_MIN_MTU) { 7488 option_exists |= IPPF_USE_MIN_MTU; 7489 is_sticky |= IPPF_USE_MIN_MTU; 7490 } 7491 } 7492 7493 if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT)) 7494 option_exists |= IPPF_HOPLIMIT; 7495 /* IPV6_HOPLIMIT can never be sticky */ 7496 ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT)); 7497 7498 if (!(ignore & IPPF_UNICAST_HOPS) && 7499 (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) { 7500 option_exists |= IPPF_UNICAST_HOPS; 7501 is_sticky |= IPPF_UNICAST_HOPS; 7502 } 7503 7504 if (!(ignore & IPPF_MULTICAST_HOPS) && 7505 (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) { 7506 option_exists |= IPPF_MULTICAST_HOPS; 7507 is_sticky |= IPPF_MULTICAST_HOPS; 7508 } 7509 7510 if (!(ignore & IPPF_TCLASS)) { 7511 if (ipp->ipp_fields & IPPF_TCLASS) { 7512 option_exists |= IPPF_TCLASS; 7513 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) { 7514 option_exists |= IPPF_TCLASS; 7515 is_sticky |= IPPF_TCLASS; 7516 } 7517 } 7518 7519 if (!(ignore & IPPF_NEXTHOP) && 7520 (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) { 7521 option_exists |= IPPF_NEXTHOP; 7522 is_sticky |= IPPF_NEXTHOP; 7523 } 7524 7525 no_options: 7526 7527 /* 7528 * If any options carried in the ip6i_t were specified, we 7529 * need to account for the ip6i_t in the data we'll be sending 7530 * down. 7531 */ 7532 if (option_exists & IPPF_HAS_IP6I) 7533 udp_ip_hdr_len += sizeof (ip6i_t); 7534 7535 /* check/fix buffer config, setup pointers into it */ 7536 ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len]; 7537 if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) || 7538 !OK_32PTR(ip6h)) { 7539 /* Try to get everything in a single mblk next time */ 7540 if (udp_ip_hdr_len > udp->udp_max_hdr_len) { 7541 udp->udp_max_hdr_len = udp_ip_hdr_len; 7542 (void) mi_set_sth_wroff(UDP_RD(q), 7543 udp->udp_max_hdr_len + udp_wroff_extra); 7544 } 7545 mp2 = allocb(udp_ip_hdr_len + udp_wroff_extra, BPRI_LO); 7546 if (mp2 == NULL) { 7547 *error = ENOMEM; 7548 goto done; 7549 } 7550 mp2->b_wptr = DB_LIM(mp2); 7551 mp2->b_cont = mp1; 7552 mp1 = mp2; 7553 if (DB_TYPE(mp) != M_DATA) 7554 mp->b_cont = mp1; 7555 else 7556 mp = mp1; 7557 7558 ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len); 7559 } 7560 mp1->b_rptr = (unsigned char *)ip6h; 7561 ip6i = (ip6i_t *)ip6h; 7562 7563 #define ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp) 7564 if (option_exists & IPPF_HAS_IP6I) { 7565 ip6h = (ip6_t *)&ip6i[1]; 7566 ip6i->ip6i_flags = 0; 7567 ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7568 7569 /* sin6_scope_id takes precendence over IPPF_IFINDEX */ 7570 if (option_exists & IPPF_SCOPE_ID) { 7571 ip6i->ip6i_flags |= IP6I_IFINDEX; 7572 ip6i->ip6i_ifindex = sin6->sin6_scope_id; 7573 } else if (option_exists & IPPF_IFINDEX) { 7574 tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX); 7575 ASSERT(tipp->ipp_ifindex != 0); 7576 ip6i->ip6i_flags |= IP6I_IFINDEX; 7577 ip6i->ip6i_ifindex = tipp->ipp_ifindex; 7578 } 7579 7580 if (option_exists & IPPF_ADDR) { 7581 /* 7582 * Enable per-packet source address verification if 7583 * IPV6_PKTINFO specified the source address. 7584 * ip6_src is set in the transport's _wput function. 7585 */ 7586 ip6i->ip6i_flags |= IP6I_VERIFY_SRC; 7587 } 7588 7589 if (option_exists & IPPF_DONTFRAG) { 7590 ip6i->ip6i_flags |= IP6I_DONTFRAG; 7591 } 7592 7593 if (option_exists & IPPF_USE_MIN_MTU) { 7594 ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU( 7595 ip6i->ip6i_flags, ipp->ipp_use_min_mtu); 7596 } 7597 7598 if (option_exists & IPPF_NEXTHOP) { 7599 tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP); 7600 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop)); 7601 ip6i->ip6i_flags |= IP6I_NEXTHOP; 7602 ip6i->ip6i_nexthop = tipp->ipp_nexthop; 7603 } 7604 7605 /* 7606 * tell IP this is an ip6i_t private header 7607 */ 7608 ip6i->ip6i_nxt = IPPROTO_RAW; 7609 } 7610 7611 /* Initialize IPv6 header */ 7612 ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7613 bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src)); 7614 7615 /* Set the hoplimit of the outgoing packet. */ 7616 if (option_exists & IPPF_HOPLIMIT) { 7617 /* IPV6_HOPLIMIT ancillary data overrides all other settings. */ 7618 ip6h->ip6_hops = ipp->ipp_hoplimit; 7619 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7620 } else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { 7621 ip6h->ip6_hops = udp->udp_multicast_ttl; 7622 if (option_exists & IPPF_MULTICAST_HOPS) 7623 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7624 } else { 7625 ip6h->ip6_hops = udp->udp_ttl; 7626 if (option_exists & IPPF_UNICAST_HOPS) 7627 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7628 } 7629 7630 if (option_exists & IPPF_ADDR) { 7631 tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR); 7632 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr)); 7633 ip6h->ip6_src = tipp->ipp_addr; 7634 } else { 7635 /* 7636 * The source address was not set using IPV6_PKTINFO. 7637 * First look at the bound source. 7638 * If unspecified fallback to __sin6_src_id. 7639 */ 7640 ip6h->ip6_src = udp->udp_v6src; 7641 if (sin6->__sin6_src_id != 0 && 7642 IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) { 7643 ip_srcid_find_id(sin6->__sin6_src_id, 7644 &ip6h->ip6_src, connp->conn_zoneid); 7645 } 7646 } 7647 7648 nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt; 7649 cp = (uint8_t *)&ip6h[1]; 7650 7651 /* 7652 * Here's where we have to start stringing together 7653 * any extension headers in the right order: 7654 * Hop-by-hop, destination, routing, and final destination opts. 7655 */ 7656 if (option_exists & IPPF_HOPOPTS) { 7657 /* Hop-by-hop options */ 7658 ip6_hbh_t *hbh = (ip6_hbh_t *)cp; 7659 tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS); 7660 if (hopoptslen == 0) { 7661 hopoptsptr = tipp->ipp_hopopts; 7662 hopoptslen = tipp->ipp_hopoptslen; 7663 is_ancillary = B_TRUE; 7664 } 7665 7666 *nxthdr_ptr = IPPROTO_HOPOPTS; 7667 nxthdr_ptr = &hbh->ip6h_nxt; 7668 7669 bcopy(hopoptsptr, cp, hopoptslen); 7670 cp += hopoptslen; 7671 7672 if (hopoptsptr != NULL && !is_ancillary) { 7673 kmem_free(hopoptsptr, hopoptslen); 7674 hopoptsptr = NULL; 7675 hopoptslen = 0; 7676 } 7677 } 7678 /* 7679 * En-route destination options 7680 * Only do them if there's a routing header as well 7681 */ 7682 if (option_exists & IPPF_RTDSTOPTS) { 7683 ip6_dest_t *dst = (ip6_dest_t *)cp; 7684 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS); 7685 7686 *nxthdr_ptr = IPPROTO_DSTOPTS; 7687 nxthdr_ptr = &dst->ip6d_nxt; 7688 7689 bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen); 7690 cp += tipp->ipp_rtdstoptslen; 7691 } 7692 /* 7693 * Routing header next 7694 */ 7695 if (option_exists & IPPF_RTHDR) { 7696 ip6_rthdr_t *rt = (ip6_rthdr_t *)cp; 7697 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR); 7698 7699 *nxthdr_ptr = IPPROTO_ROUTING; 7700 nxthdr_ptr = &rt->ip6r_nxt; 7701 7702 bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen); 7703 cp += tipp->ipp_rthdrlen; 7704 } 7705 /* 7706 * Do ultimate destination options 7707 */ 7708 if (option_exists & IPPF_DSTOPTS) { 7709 ip6_dest_t *dest = (ip6_dest_t *)cp; 7710 tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS); 7711 7712 *nxthdr_ptr = IPPROTO_DSTOPTS; 7713 nxthdr_ptr = &dest->ip6d_nxt; 7714 7715 bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen); 7716 cp += tipp->ipp_dstoptslen; 7717 } 7718 /* 7719 * Now set the last header pointer to the proto passed in 7720 */ 7721 ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE)); 7722 *nxthdr_ptr = IPPROTO_UDP; 7723 7724 /* Update UDP header */ 7725 udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE); 7726 udph->uha_dst_port = sin6->sin6_port; 7727 udph->uha_src_port = udp->udp_port; 7728 7729 /* 7730 * Copy in the destination address 7731 */ 7732 ip6h->ip6_dst = ip6_dst; 7733 7734 ip6h->ip6_vcf = 7735 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 7736 (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 7737 7738 if (option_exists & IPPF_TCLASS) { 7739 tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS); 7740 ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf, 7741 tipp->ipp_tclass); 7742 } 7743 7744 if (option_exists & IPPF_RTHDR) { 7745 ip6_rthdr_t *rth; 7746 7747 /* 7748 * Perform any processing needed for source routing. 7749 * We know that all extension headers will be in the same mblk 7750 * as the IPv6 header. 7751 */ 7752 rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr); 7753 if (rth != NULL && rth->ip6r_segleft != 0) { 7754 if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) { 7755 /* 7756 * Drop packet - only support Type 0 routing. 7757 * Notify the application as well. 7758 */ 7759 *error = EPROTO; 7760 goto done; 7761 } 7762 7763 /* 7764 * rth->ip6r_len is twice the number of 7765 * addresses in the header. Thus it must be even. 7766 */ 7767 if (rth->ip6r_len & 0x1) { 7768 *error = EPROTO; 7769 goto done; 7770 } 7771 /* 7772 * Shuffle the routing header and ip6_dst 7773 * addresses, and get the checksum difference 7774 * between the first hop (in ip6_dst) and 7775 * the destination (in the last routing hdr entry). 7776 */ 7777 csum = ip_massage_options_v6(ip6h, rth); 7778 /* 7779 * Verify that the first hop isn't a mapped address. 7780 * Routers along the path need to do this verification 7781 * for subsequent hops. 7782 */ 7783 if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) { 7784 *error = EADDRNOTAVAIL; 7785 goto done; 7786 } 7787 7788 cp += (rth->ip6r_len + 1)*8; 7789 } 7790 } 7791 7792 /* count up length of UDP packet */ 7793 ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN; 7794 if ((mp2 = mp1->b_cont) != NULL) { 7795 do { 7796 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 7797 ip_len += (uint32_t)MBLKL(mp2); 7798 } while ((mp2 = mp2->b_cont) != NULL); 7799 } 7800 7801 /* 7802 * If the size of the packet is greater than the maximum allowed by 7803 * ip, return an error. Passing this down could cause panics because 7804 * the size will have wrapped and be inconsistent with the msg size. 7805 */ 7806 if (ip_len > IP_MAXPACKET) { 7807 *error = EMSGSIZE; 7808 goto done; 7809 } 7810 7811 /* Store the UDP length. Subtract length of extension hdrs */ 7812 udph->uha_length = htons(ip_len + IPV6_HDR_LEN - 7813 (int)((uchar_t *)udph - (uchar_t *)ip6h)); 7814 7815 /* 7816 * We make it easy for IP to include our pseudo header 7817 * by putting our length in uh_checksum, modified (if 7818 * we have a routing header) by the checksum difference 7819 * between the ultimate destination and first hop addresses. 7820 * Note: UDP over IPv6 must always checksum the packet. 7821 */ 7822 csum += udph->uha_length; 7823 csum = (csum & 0xFFFF) + (csum >> 16); 7824 udph->uha_checksum = (uint16_t)csum; 7825 7826 #ifdef _LITTLE_ENDIAN 7827 ip_len = htons(ip_len); 7828 #endif 7829 ip6h->ip6_plen = ip_len; 7830 if (DB_CRED(mp) != NULL) 7831 mblk_setcred(mp1, DB_CRED(mp)); 7832 7833 if (DB_TYPE(mp) != M_DATA) { 7834 ASSERT(mp != mp1); 7835 freeb(mp); 7836 } 7837 7838 /* mp has been consumed and we'll return success */ 7839 ASSERT(*error == 0); 7840 mp = NULL; 7841 7842 /* We're done. Pass the packet to IP */ 7843 BUMP_MIB(&udp_mib, udpHCOutDatagrams); 7844 ip_output_v6(connp, mp1, q, IP_WPUT); 7845 7846 done: 7847 if (hopoptsptr != NULL && !is_ancillary) { 7848 kmem_free(hopoptsptr, hopoptslen); 7849 hopoptsptr = NULL; 7850 } 7851 if (*error != 0) { 7852 ASSERT(mp != NULL); 7853 BUMP_MIB(&udp_mib, udpOutErrors); 7854 } 7855 return (mp); 7856 } 7857 7858 static void 7859 udp_wput_other(queue_t *q, mblk_t *mp) 7860 { 7861 uchar_t *rptr = mp->b_rptr; 7862 struct datab *db; 7863 struct iocblk *iocp; 7864 cred_t *cr; 7865 conn_t *connp = Q_TO_CONN(q); 7866 udp_t *udp = connp->conn_udp; 7867 7868 TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START, 7869 "udp_wput_other_start: q %p", q); 7870 7871 db = mp->b_datap; 7872 7873 cr = DB_CREDDEF(mp, connp->conn_cred); 7874 7875 switch (db->db_type) { 7876 case M_PROTO: 7877 case M_PCPROTO: 7878 if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { 7879 freemsg(mp); 7880 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7881 "udp_wput_other_end: q %p (%S)", 7882 q, "protoshort"); 7883 return; 7884 } 7885 switch (((t_primp_t)rptr)->type) { 7886 case T_ADDR_REQ: 7887 udp_addr_req(q, mp); 7888 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7889 "udp_wput_other_end: q %p (%S)", q, "addrreq"); 7890 return; 7891 case O_T_BIND_REQ: 7892 case T_BIND_REQ: 7893 udp_bind(q, mp); 7894 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7895 "udp_wput_other_end: q %p (%S)", q, "bindreq"); 7896 return; 7897 case T_CONN_REQ: 7898 udp_connect(q, mp); 7899 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7900 "udp_wput_other_end: q %p (%S)", q, "connreq"); 7901 return; 7902 case T_CAPABILITY_REQ: 7903 udp_capability_req(q, mp); 7904 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7905 "udp_wput_other_end: q %p (%S)", q, "capabreq"); 7906 return; 7907 case T_INFO_REQ: 7908 udp_info_req(q, mp); 7909 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7910 "udp_wput_other_end: q %p (%S)", q, "inforeq"); 7911 return; 7912 case T_UNITDATA_REQ: 7913 /* 7914 * If a T_UNITDATA_REQ gets here, the address must 7915 * be bad. Valid T_UNITDATA_REQs are handled 7916 * in udp_wput. 7917 */ 7918 udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL); 7919 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7920 "udp_wput_other_end: q %p (%S)", 7921 q, "unitdatareq"); 7922 return; 7923 case T_UNBIND_REQ: 7924 udp_unbind(q, mp); 7925 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7926 "udp_wput_other_end: q %p (%S)", q, "unbindreq"); 7927 return; 7928 case T_SVR4_OPTMGMT_REQ: 7929 if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr)) 7930 /* 7931 * Use upper queue for option processing in 7932 * case the request is not handled at this 7933 * level and needs to be passed down to IP. 7934 */ 7935 (void) svr4_optcom_req(_WR(UDP_RD(q)), 7936 mp, cr, &udp_opt_obj); 7937 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7938 "udp_wput_other_end: q %p (%S)", 7939 q, "optmgmtreq"); 7940 return; 7941 7942 case T_OPTMGMT_REQ: 7943 /* 7944 * Use upper queue for option processing in 7945 * case the request is not handled at this 7946 * level and needs to be passed down to IP. 7947 */ 7948 (void) tpi_optcom_req(_WR(UDP_RD(q)), 7949 mp, cr, &udp_opt_obj); 7950 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7951 "udp_wput_other_end: q %p (%S)", 7952 q, "optmgmtreq"); 7953 return; 7954 7955 case T_DISCON_REQ: 7956 udp_disconnect(q, mp); 7957 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7958 "udp_wput_other_end: q %p (%S)", 7959 q, "disconreq"); 7960 return; 7961 7962 /* The following TPI message is not supported by udp. */ 7963 case O_T_CONN_RES: 7964 case T_CONN_RES: 7965 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7966 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7967 "udp_wput_other_end: q %p (%S)", 7968 q, "connres/disconreq"); 7969 return; 7970 7971 /* The following 3 TPI messages are illegal for udp. */ 7972 case T_DATA_REQ: 7973 case T_EXDATA_REQ: 7974 case T_ORDREL_REQ: 7975 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7976 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7977 "udp_wput_other_end: q %p (%S)", 7978 q, "data/exdata/ordrel"); 7979 return; 7980 default: 7981 break; 7982 } 7983 break; 7984 case M_FLUSH: 7985 if (*rptr & FLUSHW) 7986 flushq(q, FLUSHDATA); 7987 break; 7988 case M_IOCTL: 7989 iocp = (struct iocblk *)mp->b_rptr; 7990 switch (iocp->ioc_cmd) { 7991 case TI_GETPEERNAME: 7992 if (udp->udp_state != TS_DATA_XFER) { 7993 /* 7994 * If a default destination address has not 7995 * been associated with the stream, then we 7996 * don't know the peer's name. 7997 */ 7998 iocp->ioc_error = ENOTCONN; 7999 iocp->ioc_count = 0; 8000 mp->b_datap->db_type = M_IOCACK; 8001 putnext(UDP_RD(q), mp); 8002 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 8003 "udp_wput_other_end: q %p (%S)", 8004 q, "getpeername"); 8005 return; 8006 } 8007 /* FALLTHRU */ 8008 case TI_GETMYNAME: { 8009 /* 8010 * For TI_GETPEERNAME and TI_GETMYNAME, we first 8011 * need to copyin the user's strbuf structure. 8012 * Processing will continue in the M_IOCDATA case 8013 * below. 8014 */ 8015 mi_copyin(q, mp, NULL, 8016 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 8017 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 8018 "udp_wput_other_end: q %p (%S)", 8019 q, "getmyname"); 8020 return; 8021 } 8022 case ND_SET: 8023 /* nd_getset performs the necessary checking */ 8024 case ND_GET: 8025 if (nd_getset(q, udp_g_nd, mp)) { 8026 putnext(UDP_RD(q), mp); 8027 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 8028 "udp_wput_other_end: q %p (%S)", 8029 q, "get"); 8030 return; 8031 } 8032 break; 8033 case _SIOCSOCKFALLBACK: 8034 /* 8035 * Either sockmod is about to be popped and the 8036 * socket would now be treated as a plain stream, 8037 * or a module is about to be pushed so we could 8038 * no longer use read-side synchronous stream. 8039 * Drain any queued data and disable direct sockfs 8040 * interface from now on. 8041 */ 8042 if (!udp->udp_issocket) { 8043 DB_TYPE(mp) = M_IOCNAK; 8044 iocp->ioc_error = EINVAL; 8045 } else { 8046 udp->udp_issocket = B_FALSE; 8047 if (udp->udp_direct_sockfs) { 8048 /* 8049 * Disable read-side synchronous 8050 * stream interface and drain any 8051 * queued data. 8052 */ 8053 udp_rcv_drain(UDP_RD(q), udp, 8054 B_FALSE); 8055 ASSERT(!udp->udp_direct_sockfs); 8056 UDP_STAT(udp_sock_fallback); 8057 } 8058 DB_TYPE(mp) = M_IOCACK; 8059 iocp->ioc_error = 0; 8060 } 8061 iocp->ioc_count = 0; 8062 iocp->ioc_rval = 0; 8063 putnext(UDP_RD(q), mp); 8064 return; 8065 default: 8066 break; 8067 } 8068 break; 8069 case M_IOCDATA: 8070 udp_wput_iocdata(q, mp); 8071 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 8072 "udp_wput_other_end: q %p (%S)", q, "iocdata"); 8073 return; 8074 default: 8075 /* Unrecognized messages are passed through without change. */ 8076 break; 8077 } 8078 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 8079 "udp_wput_other_end: q %p (%S)", q, "end"); 8080 ip_output(connp, mp, q, IP_WPUT); 8081 } 8082 8083 /* ARGSUSED */ 8084 static void 8085 udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2) 8086 { 8087 udp_wput_other(((conn_t *)arg)->conn_wq, mp); 8088 udp_exit((conn_t *)arg); 8089 } 8090 8091 /* 8092 * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA 8093 * messages. 8094 */ 8095 static void 8096 udp_wput_iocdata(queue_t *q, mblk_t *mp) 8097 { 8098 mblk_t *mp1; 8099 STRUCT_HANDLE(strbuf, sb); 8100 uint16_t port; 8101 in6_addr_t v6addr; 8102 ipaddr_t v4addr; 8103 uint32_t flowinfo = 0; 8104 int addrlen; 8105 udp_t *udp = Q_TO_UDP(q); 8106 8107 /* Make sure it is one of ours. */ 8108 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 8109 case TI_GETMYNAME: 8110 case TI_GETPEERNAME: 8111 break; 8112 default: 8113 ip_output(udp->udp_connp, mp, q, IP_WPUT); 8114 return; 8115 } 8116 8117 q = WR(UDP_RD(q)); 8118 switch (mi_copy_state(q, mp, &mp1)) { 8119 case -1: 8120 return; 8121 case MI_COPY_CASE(MI_COPY_IN, 1): 8122 break; 8123 case MI_COPY_CASE(MI_COPY_OUT, 1): 8124 /* 8125 * The address has been copied out, so now 8126 * copyout the strbuf. 8127 */ 8128 mi_copyout(q, mp); 8129 return; 8130 case MI_COPY_CASE(MI_COPY_OUT, 2): 8131 /* 8132 * The address and strbuf have been copied out. 8133 * We're done, so just acknowledge the original 8134 * M_IOCTL. 8135 */ 8136 mi_copy_done(q, mp, 0); 8137 return; 8138 default: 8139 /* 8140 * Something strange has happened, so acknowledge 8141 * the original M_IOCTL with an EPROTO error. 8142 */ 8143 mi_copy_done(q, mp, EPROTO); 8144 return; 8145 } 8146 8147 /* 8148 * Now we have the strbuf structure for TI_GETMYNAME 8149 * and TI_GETPEERNAME. Next we copyout the requested 8150 * address and then we'll copyout the strbuf. 8151 */ 8152 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 8153 (void *)mp1->b_rptr); 8154 if (udp->udp_family == AF_INET) 8155 addrlen = sizeof (sin_t); 8156 else 8157 addrlen = sizeof (sin6_t); 8158 8159 if (STRUCT_FGET(sb, maxlen) < addrlen) { 8160 mi_copy_done(q, mp, EINVAL); 8161 return; 8162 } 8163 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 8164 case TI_GETMYNAME: 8165 if (udp->udp_family == AF_INET) { 8166 ASSERT(udp->udp_ipversion == IPV4_VERSION); 8167 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 8168 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 8169 v4addr = V4_PART_OF_V6(udp->udp_v6src); 8170 } else { 8171 /* 8172 * INADDR_ANY 8173 * udp_v6src is not set, we might be bound to 8174 * broadcast/multicast. Use udp_bound_v6src as 8175 * local address instead (that could 8176 * also still be INADDR_ANY) 8177 */ 8178 v4addr = V4_PART_OF_V6(udp->udp_bound_v6src); 8179 } 8180 } else { 8181 /* udp->udp_family == AF_INET6 */ 8182 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 8183 v6addr = udp->udp_v6src; 8184 } else { 8185 /* 8186 * UNSPECIFIED 8187 * udp_v6src is not set, we might be bound to 8188 * broadcast/multicast. Use udp_bound_v6src as 8189 * local address instead (that could 8190 * also still be UNSPECIFIED) 8191 */ 8192 v6addr = udp->udp_bound_v6src; 8193 } 8194 } 8195 port = udp->udp_port; 8196 break; 8197 case TI_GETPEERNAME: 8198 if (udp->udp_state != TS_DATA_XFER) { 8199 mi_copy_done(q, mp, ENOTCONN); 8200 return; 8201 } 8202 if (udp->udp_family == AF_INET) { 8203 ASSERT(udp->udp_ipversion == IPV4_VERSION); 8204 v4addr = V4_PART_OF_V6(udp->udp_v6dst); 8205 } else { 8206 /* udp->udp_family == AF_INET6) */ 8207 v6addr = udp->udp_v6dst; 8208 flowinfo = udp->udp_flowinfo; 8209 } 8210 port = udp->udp_dstport; 8211 break; 8212 default: 8213 mi_copy_done(q, mp, EPROTO); 8214 return; 8215 } 8216 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 8217 if (!mp1) 8218 return; 8219 8220 if (udp->udp_family == AF_INET) { 8221 sin_t *sin; 8222 8223 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 8224 sin = (sin_t *)mp1->b_rptr; 8225 mp1->b_wptr = (uchar_t *)&sin[1]; 8226 *sin = sin_null; 8227 sin->sin_family = AF_INET; 8228 sin->sin_addr.s_addr = v4addr; 8229 sin->sin_port = port; 8230 } else { 8231 /* udp->udp_family == AF_INET6 */ 8232 sin6_t *sin6; 8233 8234 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 8235 sin6 = (sin6_t *)mp1->b_rptr; 8236 mp1->b_wptr = (uchar_t *)&sin6[1]; 8237 *sin6 = sin6_null; 8238 sin6->sin6_family = AF_INET6; 8239 sin6->sin6_flowinfo = flowinfo; 8240 sin6->sin6_addr = v6addr; 8241 sin6->sin6_port = port; 8242 } 8243 /* Copy out the address */ 8244 mi_copyout(q, mp); 8245 } 8246 8247 8248 static int 8249 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp, 8250 udpattrs_t *udpattrs) 8251 { 8252 struct T_unitdata_req *udreqp; 8253 int is_absreq_failure; 8254 cred_t *cr; 8255 conn_t *connp = Q_TO_CONN(q); 8256 8257 ASSERT(((t_primp_t)mp->b_rptr)->type); 8258 8259 cr = DB_CREDDEF(mp, connp->conn_cred); 8260 8261 udreqp = (struct T_unitdata_req *)mp->b_rptr; 8262 8263 /* 8264 * Use upper queue for option processing since the callback 8265 * routines expect to be called in UDP instance instead of IP. 8266 */ 8267 *errorp = tpi_optcom_buf(_WR(UDP_RD(q)), mp, &udreqp->OPT_length, 8268 udreqp->OPT_offset, cr, &udp_opt_obj, 8269 udpattrs, &is_absreq_failure); 8270 8271 if (*errorp != 0) { 8272 /* 8273 * Note: No special action needed in this 8274 * module for "is_absreq_failure" 8275 */ 8276 return (-1); /* failure */ 8277 } 8278 ASSERT(is_absreq_failure == 0); 8279 return (0); /* success */ 8280 } 8281 8282 void 8283 udp_ddi_init(void) 8284 { 8285 int i; 8286 8287 UDP6_MAJ = ddi_name_to_major(UDP6); 8288 8289 udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr, 8290 udp_opt_obj.odb_opt_arr_cnt); 8291 8292 if (udp_bind_fanout_size & (udp_bind_fanout_size - 1)) { 8293 /* Not a power of two. Round up to nearest power of two */ 8294 for (i = 0; i < 31; i++) { 8295 if (udp_bind_fanout_size < (1 << i)) 8296 break; 8297 } 8298 udp_bind_fanout_size = 1 << i; 8299 } 8300 udp_bind_fanout = kmem_zalloc(udp_bind_fanout_size * 8301 sizeof (udp_fanout_t), KM_SLEEP); 8302 for (i = 0; i < udp_bind_fanout_size; i++) { 8303 mutex_init(&udp_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT, 8304 NULL); 8305 } 8306 (void) udp_param_register(udp_param_arr, A_CNT(udp_param_arr)); 8307 8308 udp_kstat_init(); 8309 8310 udp_cache = kmem_cache_create("udp_cache", sizeof (udp_t), 8311 CACHE_ALIGN_SIZE, NULL, NULL, NULL, NULL, NULL, 0); 8312 } 8313 8314 void 8315 udp_ddi_destroy(void) 8316 { 8317 int i; 8318 8319 nd_free(&udp_g_nd); 8320 8321 for (i = 0; i < udp_bind_fanout_size; i++) { 8322 mutex_destroy(&udp_bind_fanout[i].uf_lock); 8323 } 8324 8325 kmem_free(udp_bind_fanout, udp_bind_fanout_size * 8326 sizeof (udp_fanout_t)); 8327 8328 udp_kstat_fini(); 8329 8330 kmem_cache_destroy(udp_cache); 8331 } 8332 8333 static void 8334 udp_kstat_init(void) 8335 { 8336 udp_named_kstat_t template = { 8337 { "inDatagrams", KSTAT_DATA_UINT64, 0 }, 8338 { "inErrors", KSTAT_DATA_UINT32, 0 }, 8339 { "outDatagrams", KSTAT_DATA_UINT64, 0 }, 8340 { "entrySize", KSTAT_DATA_INT32, 0 }, 8341 { "entry6Size", KSTAT_DATA_INT32, 0 }, 8342 { "outErrors", KSTAT_DATA_UINT32, 0 }, 8343 }; 8344 8345 udp_mibkp = kstat_create(UDP_MOD_NAME, 0, UDP_MOD_NAME, 8346 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(udp_named_kstat_t), 0); 8347 8348 if (udp_mibkp == NULL) 8349 return; 8350 8351 template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t); 8352 template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t); 8353 8354 bcopy(&template, udp_mibkp->ks_data, sizeof (template)); 8355 8356 udp_mibkp->ks_update = udp_kstat_update; 8357 8358 kstat_install(udp_mibkp); 8359 8360 if ((udp_ksp = kstat_create(UDP_MOD_NAME, 0, "udpstat", 8361 "net", KSTAT_TYPE_NAMED, 8362 sizeof (udp_statistics) / sizeof (kstat_named_t), 8363 KSTAT_FLAG_VIRTUAL)) != NULL) { 8364 udp_ksp->ks_data = &udp_statistics; 8365 kstat_install(udp_ksp); 8366 } 8367 } 8368 8369 static void 8370 udp_kstat_fini(void) 8371 { 8372 if (udp_ksp != NULL) { 8373 kstat_delete(udp_ksp); 8374 udp_ksp = NULL; 8375 } 8376 if (udp_mibkp != NULL) { 8377 kstat_delete(udp_mibkp); 8378 udp_mibkp = NULL; 8379 } 8380 } 8381 8382 static int 8383 udp_kstat_update(kstat_t *kp, int rw) 8384 { 8385 udp_named_kstat_t *udpkp; 8386 8387 if ((kp == NULL) || (kp->ks_data == NULL)) 8388 return (EIO); 8389 8390 if (rw == KSTAT_WRITE) 8391 return (EACCES); 8392 8393 udpkp = (udp_named_kstat_t *)kp->ks_data; 8394 8395 udpkp->inDatagrams.value.ui64 = udp_mib.udpHCInDatagrams; 8396 udpkp->inErrors.value.ui32 = udp_mib.udpInErrors; 8397 udpkp->outDatagrams.value.ui64 = udp_mib.udpHCOutDatagrams; 8398 udpkp->outErrors.value.ui32 = udp_mib.udpOutErrors; 8399 8400 return (0); 8401 } 8402 8403 /* ARGSUSED */ 8404 static void 8405 udp_rput(queue_t *q, mblk_t *mp) 8406 { 8407 /* 8408 * We get here whenever we do qreply() from IP, 8409 * i.e as part of handlings ioctls, etc. 8410 */ 8411 putnext(q, mp); 8412 } 8413 8414 /* 8415 * Read-side synchronous stream info entry point, called as a 8416 * result of handling certain STREAMS ioctl operations. 8417 */ 8418 static int 8419 udp_rinfop(queue_t *q, infod_t *dp) 8420 { 8421 mblk_t *mp; 8422 uint_t cmd = dp->d_cmd; 8423 int res = 0; 8424 int error = 0; 8425 udp_t *udp = Q_TO_UDP(RD(UDP_WR(q))); 8426 struct stdata *stp = STREAM(q); 8427 8428 mutex_enter(&udp->udp_drain_lock); 8429 /* If shutdown on read has happened, return nothing */ 8430 mutex_enter(&stp->sd_lock); 8431 if (stp->sd_flag & STREOF) { 8432 mutex_exit(&stp->sd_lock); 8433 goto done; 8434 } 8435 mutex_exit(&stp->sd_lock); 8436 8437 if ((mp = udp->udp_rcv_list_head) == NULL) 8438 goto done; 8439 8440 ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL); 8441 8442 if (cmd & INFOD_COUNT) { 8443 /* 8444 * Return the number of messages. 8445 */ 8446 dp->d_count += udp->udp_rcv_msgcnt; 8447 res |= INFOD_COUNT; 8448 } 8449 if (cmd & INFOD_BYTES) { 8450 /* 8451 * Return size of all data messages. 8452 */ 8453 dp->d_bytes += udp->udp_rcv_cnt; 8454 res |= INFOD_BYTES; 8455 } 8456 if (cmd & INFOD_FIRSTBYTES) { 8457 /* 8458 * Return size of first data message. 8459 */ 8460 dp->d_bytes = msgdsize(mp); 8461 res |= INFOD_FIRSTBYTES; 8462 dp->d_cmd &= ~INFOD_FIRSTBYTES; 8463 } 8464 if (cmd & INFOD_COPYOUT) { 8465 mblk_t *mp1 = mp->b_cont; 8466 int n; 8467 /* 8468 * Return data contents of first message. 8469 */ 8470 ASSERT(DB_TYPE(mp1) == M_DATA); 8471 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 8472 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 8473 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 8474 UIO_READ, dp->d_uiop)) != 0) { 8475 goto done; 8476 } 8477 mp1 = mp1->b_cont; 8478 } 8479 res |= INFOD_COPYOUT; 8480 dp->d_cmd &= ~INFOD_COPYOUT; 8481 } 8482 done: 8483 mutex_exit(&udp->udp_drain_lock); 8484 8485 dp->d_res |= res; 8486 8487 return (error); 8488 } 8489 8490 /* 8491 * Read-side synchronous stream entry point. This is called as a result 8492 * of recv/read operation done at sockfs, and is guaranteed to execute 8493 * outside of the interrupt thread context. It returns a single datagram 8494 * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer. 8495 */ 8496 static int 8497 udp_rrw(queue_t *q, struiod_t *dp) 8498 { 8499 mblk_t *mp; 8500 udp_t *udp = Q_TO_UDP(_RD(UDP_WR(q))); 8501 8502 /* We should never get here when we're in SNMP mode */ 8503 ASSERT(!(udp->udp_connp->conn_flags & IPCL_UDPMOD)); 8504 8505 /* 8506 * Dequeue datagram from the head of the list and return 8507 * it to caller; also ensure that RSLEEP sd_wakeq flag is 8508 * set/cleared depending on whether or not there's data 8509 * remaining in the list. 8510 */ 8511 mutex_enter(&udp->udp_drain_lock); 8512 if (!udp->udp_direct_sockfs) { 8513 mutex_exit(&udp->udp_drain_lock); 8514 UDP_STAT(udp_rrw_busy); 8515 return (EBUSY); 8516 } 8517 if ((mp = udp->udp_rcv_list_head) != NULL) { 8518 uint_t size = msgdsize(mp); 8519 8520 /* Last datagram in the list? */ 8521 if ((udp->udp_rcv_list_head = mp->b_next) == NULL) 8522 udp->udp_rcv_list_tail = NULL; 8523 mp->b_next = NULL; 8524 8525 udp->udp_rcv_cnt -= size; 8526 udp->udp_rcv_msgcnt--; 8527 UDP_STAT(udp_rrw_msgcnt); 8528 8529 /* No longer flow-controlling? */ 8530 if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat && 8531 udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat) 8532 udp->udp_drain_qfull = B_FALSE; 8533 } 8534 if (udp->udp_rcv_list_head == NULL) { 8535 /* 8536 * Either we just dequeued the last datagram or 8537 * we get here from sockfs and have nothing to 8538 * return; in this case clear RSLEEP. 8539 */ 8540 ASSERT(udp->udp_rcv_cnt == 0); 8541 ASSERT(udp->udp_rcv_msgcnt == 0); 8542 ASSERT(udp->udp_rcv_list_tail == NULL); 8543 STR_WAKEUP_CLEAR(STREAM(q)); 8544 } else { 8545 /* 8546 * More data follows; we need udp_rrw() to be 8547 * called in future to pick up the rest. 8548 */ 8549 STR_WAKEUP_SET(STREAM(q)); 8550 } 8551 mutex_exit(&udp->udp_drain_lock); 8552 dp->d_mp = mp; 8553 return (0); 8554 } 8555 8556 /* 8557 * Enqueue a completely-built T_UNITDATA_IND message into the receive 8558 * list; this is typically executed within the interrupt thread context 8559 * and so we do things as quickly as possible. 8560 */ 8561 static void 8562 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len) 8563 { 8564 ASSERT(q == RD(q)); 8565 ASSERT(pkt_len == msgdsize(mp)); 8566 ASSERT(mp->b_next == NULL && mp->b_cont != NULL); 8567 ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA); 8568 ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind)); 8569 8570 mutex_enter(&udp->udp_drain_lock); 8571 /* 8572 * Wake up and signal the receiving app; it is okay to do this 8573 * before enqueueing the mp because we are holding the drain lock. 8574 * One of the advantages of synchronous stream is the ability for 8575 * us to find out when the application performs a read on the 8576 * socket by way of udp_rrw() entry point being called. We need 8577 * to generate SIGPOLL/SIGIO for each received data in the case 8578 * of asynchronous socket just as in the strrput() case. However, 8579 * we only wake the application up when necessary, i.e. during the 8580 * first enqueue. When udp_rrw() is called, we send up a single 8581 * datagram upstream and call STR_WAKEUP_SET() again when there 8582 * are still data remaining in our receive queue. 8583 */ 8584 if (udp->udp_rcv_list_head == NULL) { 8585 STR_WAKEUP_SET(STREAM(q)); 8586 udp->udp_rcv_list_head = mp; 8587 } else { 8588 udp->udp_rcv_list_tail->b_next = mp; 8589 } 8590 udp->udp_rcv_list_tail = mp; 8591 udp->udp_rcv_cnt += pkt_len; 8592 udp->udp_rcv_msgcnt++; 8593 8594 /* Need to flow-control? */ 8595 if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat || 8596 udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat) 8597 udp->udp_drain_qfull = B_TRUE; 8598 8599 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 8600 STR_SENDSIG(STREAM(q)); 8601 mutex_exit(&udp->udp_drain_lock); 8602 } 8603 8604 /* 8605 * Drain the contents of receive list to the module upstream; we do 8606 * this during close or when we fallback to the slow mode due to 8607 * sockmod being popped or a module being pushed on top of us. 8608 */ 8609 static void 8610 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing) 8611 { 8612 mblk_t *mp; 8613 8614 ASSERT(q == RD(q)); 8615 8616 mutex_enter(&udp->udp_drain_lock); 8617 /* 8618 * There is no race with a concurrent udp_input() sending 8619 * up packets using putnext() after we have cleared the 8620 * udp_direct_sockfs flag but before we have completed 8621 * sending up the packets in udp_rcv_list, since we are 8622 * either a writer or we have quiesced the conn. 8623 */ 8624 udp->udp_direct_sockfs = B_FALSE; 8625 mutex_exit(&udp->udp_drain_lock); 8626 8627 if (udp->udp_rcv_list_head != NULL) 8628 UDP_STAT(udp_drain); 8629 8630 /* 8631 * Send up everything via putnext(); note here that we 8632 * don't need the udp_drain_lock to protect us since 8633 * nothing can enter udp_rrw() and that we currently 8634 * have exclusive access to this udp. 8635 */ 8636 while ((mp = udp->udp_rcv_list_head) != NULL) { 8637 udp->udp_rcv_list_head = mp->b_next; 8638 mp->b_next = NULL; 8639 udp->udp_rcv_cnt -= msgdsize(mp); 8640 udp->udp_rcv_msgcnt--; 8641 if (closing) { 8642 freemsg(mp); 8643 } else { 8644 putnext(q, mp); 8645 } 8646 } 8647 ASSERT(udp->udp_rcv_cnt == 0); 8648 ASSERT(udp->udp_rcv_msgcnt == 0); 8649 ASSERT(udp->udp_rcv_list_head == NULL); 8650 udp->udp_rcv_list_tail = NULL; 8651 udp->udp_drain_qfull = B_FALSE; 8652 } 8653 8654 static size_t 8655 udp_set_rcv_hiwat(udp_t *udp, size_t size) 8656 { 8657 /* We add a bit of extra buffering */ 8658 size += size >> 1; 8659 if (size > udp_max_buf) 8660 size = udp_max_buf; 8661 8662 udp->udp_rcv_hiwat = size; 8663 return (size); 8664 } 8665 8666 /* 8667 * Little helper for IPsec's NAT-T processing. 8668 */ 8669 boolean_t 8670 udp_compute_checksum(void) 8671 { 8672 return (udp_do_checksum); 8673 } 8674