xref: /titanic_44/usr/src/uts/common/inet/udp/udp.c (revision 0523b0a4ec1f5ec136a264130012c7bb0ede01f2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 const char udp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/pattr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #define	_SUN_TPI_VERSION 2
39 #include <sys/tihdr.h>
40 #include <sys/timod.h>
41 #include <sys/tiuser.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/strsubr.h>
45 #include <sys/suntpi.h>
46 #include <sys/xti_inet.h>
47 #include <sys/cmn_err.h>
48 #include <sys/kmem.h>
49 #include <sys/policy.h>
50 #include <sys/ucred.h>
51 #include <sys/zone.h>
52 
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/vtrace.h>
56 #include <sys/debug.h>
57 #include <sys/isa_defs.h>
58 #include <sys/random.h>
59 #include <netinet/in.h>
60 #include <netinet/ip6.h>
61 #include <netinet/icmp6.h>
62 #include <netinet/udp.h>
63 #include <net/if.h>
64 #include <net/route.h>
65 
66 #include <inet/common.h>
67 #include <inet/ip.h>
68 #include <inet/ip_impl.h>
69 #include <inet/ip6.h>
70 #include <inet/ip_ire.h>
71 #include <inet/ip_if.h>
72 #include <inet/ip_multi.h>
73 #include <inet/mi.h>
74 #include <inet/mib2.h>
75 #include <inet/nd.h>
76 #include <inet/optcom.h>
77 #include <inet/snmpcom.h>
78 #include <inet/kstatcom.h>
79 #include <inet/udp_impl.h>
80 #include <inet/ipclassifier.h>
81 #include <inet/ipsec_impl.h>
82 #include <inet/ipp_common.h>
83 
84 /*
85  * The ipsec_info.h header file is here since it has the definition for the
86  * M_CTL message types used by IP to convey information to the ULP. The
87  * ipsec_info.h needs the pfkeyv2.h, hence the latters presence.
88  */
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 
92 /*
93  * Synchronization notes:
94  *
95  * UDP uses a combination of its internal perimeter, a global lock and
96  * a set of bind hash locks to protect its data structures.  Please see
97  * the note above udp_mode_assertions for details about the internal
98  * perimeter.
99  *
100  * When a UDP endpoint is bound to a local port, it is inserted into
101  * a bind hash list.  The list consists of an array of udp_fanout_t buckets.
102  * The size of the array is controlled by the udp_bind_fanout_size variable.
103  * This variable can be changed in /etc/system if the default value is
104  * not large enough.  Each bind hash bucket is protected by a per bucket
105  * lock.  It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
106  * structure.  An UDP endpoint is removed from the bind hash list only
107  * when it is being unbound or being closed.  The per bucket lock also
108  * protects a UDP endpoint's state changes.
109  *
110  * Plumbing notes:
111  *
112  * Both udp and ip are merged, but the streams plumbing is kept unchanged
113  * in that udp is always pushed atop /dev/ip.  This is done to preserve
114  * backwards compatibility for certain applications which rely on such
115  * plumbing geometry to do things such as issuing I_POP on the stream
116  * in order to obtain direct access to /dev/ip, etc.
117  *
118  * All UDP processings happen in the /dev/ip instance; the udp module
119  * instance does not possess any state about the endpoint, and merely
120  * acts as a dummy module whose presence is to keep the streams plumbing
121  * appearance unchanged.  At open time /dev/ip allocates a conn_t that
122  * happens to embed a udp_t.  This stays dormant until the time udp is
123  * pushed, which indicates to /dev/ip that it must convert itself from
124  * an IP to a UDP endpoint.
125  *
126  * We only allow for the following plumbing cases:
127  *
128  * Normal:
129  *	/dev/ip is first opened and later udp is pushed directly on top.
130  *	This is the default action that happens when a udp socket or
131  *	/dev/udp is opened.  The conn_t created by /dev/ip instance is
132  *	now shared and is marked with IPCL_UDP.
133  *
134  * SNMP-only:
135  *	udp is pushed on top of a module other than /dev/ip.  When this
136  *	happens it will support only SNMP semantics.  A new conn_t is
137  *	allocated and marked with IPCL_UDPMOD.
138  *
139  * The above cases imply that we don't support any intermediate module to
140  * reside in between /dev/ip and udp -- in fact, we never supported such
141  * scenario in the past as the inter-layer communication semantics have
142  * always been private.  Also note that the normal case allows for SNMP
143  * requests to be processed in addition to the rest of UDP operations.
144  *
145  * The normal case plumbing is depicted by the following diagram:
146  *
147  *	+---------------+---------------+
148  *	|		|		| udp
149  *	|     udp_wq	|    udp_rq	|
150  *	|		|    UDP_RD	|
151  *	|		|		|
152  *	+---------------+---------------+
153  *		|		^
154  *		v		|
155  *	+---------------+---------------+
156  *	|		|		| /dev/ip
157  *	|     ip_wq	|     ip_rq	| conn_t
158  *	|     UDP_WR	|		|
159  *	|		|		|
160  *	+---------------+---------------+
161  *
162  * Messages arriving at udp_wq from above will end up in ip_wq before
163  * it gets processed, i.e. udp write entry points will advance udp_wq
164  * and use its q_next value as ip_wq in order to use the conn_t that
165  * is stored in its q_ptr.  Likewise, messages generated by ip to the
166  * module above udp will appear as if they are originated from udp_rq,
167  * i.e. putnext() calls to the module above udp is done using the
168  * udp_rq instead of ip_rq in order to avoid udp_rput() which does
169  * nothing more than calling putnext().
170  *
171  * The above implies the following rule of thumb:
172  *
173  *   1. udp_t is obtained from conn_t, which is created by the /dev/ip
174  *	instance and is stored in q_ptr of both ip_wq and ip_rq.  There
175  *	is no direct reference to conn_t from either udp_wq or udp_rq.
176  *
177  *   2. Write-side entry points of udp can obtain the conn_t via the
178  *	Q_TO_CONN() macro, using the queue value obtain from UDP_WR().
179  *
180  *   3. While in /dev/ip context, putnext() to the module above udp can
181  *	be done by supplying the queue value obtained from UDP_RD().
182  *
183  */
184 
185 static queue_t *UDP_WR(queue_t *);
186 static queue_t *UDP_RD(queue_t *);
187 
188 udp_stat_t udp_statistics = {
189 	{ "udp_ip_send",		KSTAT_DATA_UINT64 },
190 	{ "udp_ip_ire_send",		KSTAT_DATA_UINT64 },
191 	{ "udp_ire_null",		KSTAT_DATA_UINT64 },
192 	{ "udp_drain",			KSTAT_DATA_UINT64 },
193 	{ "udp_sock_fallback",		KSTAT_DATA_UINT64 },
194 	{ "udp_rrw_busy",		KSTAT_DATA_UINT64 },
195 	{ "udp_rrw_msgcnt",		KSTAT_DATA_UINT64 },
196 	{ "udp_out_sw_cksum",		KSTAT_DATA_UINT64 },
197 	{ "udp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
198 	{ "udp_out_opt",		KSTAT_DATA_UINT64 },
199 	{ "udp_out_err_notconn",	KSTAT_DATA_UINT64 },
200 	{ "udp_out_err_output",		KSTAT_DATA_UINT64 },
201 	{ "udp_out_err_tudr",		KSTAT_DATA_UINT64 },
202 	{ "udp_in_pktinfo",		KSTAT_DATA_UINT64 },
203 	{ "udp_in_recvdstaddr",		KSTAT_DATA_UINT64 },
204 	{ "udp_in_recvopts",		KSTAT_DATA_UINT64 },
205 	{ "udp_in_recvif",		KSTAT_DATA_UINT64 },
206 	{ "udp_in_recvslla",		KSTAT_DATA_UINT64 },
207 	{ "udp_in_recvucred",		KSTAT_DATA_UINT64 },
208 	{ "udp_in_recvttl",		KSTAT_DATA_UINT64 },
209 	{ "udp_in_recvhopopts",		KSTAT_DATA_UINT64 },
210 	{ "udp_in_recvhoplimit",	KSTAT_DATA_UINT64 },
211 	{ "udp_in_recvdstopts",		KSTAT_DATA_UINT64 },
212 	{ "udp_in_recvrtdstopts",	KSTAT_DATA_UINT64 },
213 	{ "udp_in_recvrthdr",		KSTAT_DATA_UINT64 },
214 	{ "udp_in_recvpktinfo",		KSTAT_DATA_UINT64 },
215 	{ "udp_in_recvtclass",		KSTAT_DATA_UINT64 },
216 #ifdef DEBUG
217 	{ "udp_data_conn",		KSTAT_DATA_UINT64 },
218 	{ "udp_data_notconn",		KSTAT_DATA_UINT64 },
219 #endif
220 };
221 
222 static kstat_t *udp_ksp;
223 struct kmem_cache *udp_cache;
224 
225 /*
226  * Bind hash list size and hash function.  It has to be a power of 2 for
227  * hashing.
228  */
229 #define	UDP_BIND_FANOUT_SIZE	512
230 #define	UDP_BIND_HASH(lport) \
231 	((ntohs((uint16_t)lport)) & (udp_bind_fanout_size - 1))
232 
233 /* UDP bind fanout hash structure. */
234 typedef struct udp_fanout_s {
235 	udp_t *uf_udp;
236 	kmutex_t uf_lock;
237 #if defined(_LP64) || defined(_I32LPx)
238 	char	uf_pad[48];
239 #else
240 	char	uf_pad[56];
241 #endif
242 } udp_fanout_t;
243 
244 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
245 /* udp_fanout_t *udp_bind_fanout. */
246 static udp_fanout_t *udp_bind_fanout;
247 
248 /*
249  * This controls the rate some ndd info report functions can be used
250  * by non-priviledged users.  It stores the last time such info is
251  * requested.  When those report functions are called again, this
252  * is checked with the current time and compare with the ndd param
253  * udp_ndd_get_info_interval.
254  */
255 static clock_t udp_last_ndd_get_info_time;
256 #define	NDD_TOO_QUICK_MSG \
257 	"ndd get info rate too high for non-priviledged users, try again " \
258 	"later.\n"
259 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
260 
261 static void	udp_addr_req(queue_t *q, mblk_t *mp);
262 static void	udp_bind(queue_t *q, mblk_t *mp);
263 static void	udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
264 static void	udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
265 static int	udp_build_hdrs(queue_t *q, udp_t *udp);
266 static void	udp_capability_req(queue_t *q, mblk_t *mp);
267 static int	udp_close(queue_t *q);
268 static void	udp_connect(queue_t *q, mblk_t *mp);
269 static void	udp_disconnect(queue_t *q, mblk_t *mp);
270 static void	udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
271 		    int sys_error);
272 static void	udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
273 		    t_scalar_t tlierr, int unixerr);
274 static int	udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
275 		    cred_t *cr);
276 static int	udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
277 		    char *value, caddr_t cp, cred_t *cr);
278 static int	udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
279 		    char *value, caddr_t cp, cred_t *cr);
280 static void	udp_icmp_error(queue_t *q, mblk_t *mp);
281 static void	udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
282 static void	udp_info_req(queue_t *q, mblk_t *mp);
283 static mblk_t	*udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
284 		    t_scalar_t addr_length);
285 static int	udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
286 		    cred_t *credp);
287 static  int	udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
288 		    int *errorp, void *thisdg_attrs);
289 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
290 static int	udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
291 static boolean_t udp_param_register(udpparam_t *udppa, int cnt);
292 static int	udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
293 		    cred_t *cr);
294 static int	udp_pkt_set(uchar_t *invalp, uint_t inlen, boolean_t sticky,
295 		    uchar_t **optbufp, uint_t *optlenp);
296 static void	udp_report_item(mblk_t *mp, udp_t *udp);
297 static void	udp_rput(queue_t *q, mblk_t *mp);
298 static void	udp_rput_other(queue_t *, mblk_t *);
299 static int	udp_rinfop(queue_t *q, infod_t *dp);
300 static int	udp_rrw(queue_t *q, struiod_t *dp);
301 static	void	udp_rput_bind_ack(queue_t *q, mblk_t *mp);
302 static int	udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
303 		    cred_t *cr);
304 static void	udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha);
305 static void	udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
306 		    t_scalar_t destlen, t_scalar_t err);
307 static void	udp_unbind(queue_t *q, mblk_t *mp);
308 static in_port_t udp_update_next_port(in_port_t port, boolean_t random);
309 static void	udp_wput(queue_t *q, mblk_t *mp);
310 static mblk_t	*udp_output_v4(conn_t *, mblk_t *mp, ipaddr_t v4dst,
311 		    uint16_t port, uint_t srcid, int *error);
312 static mblk_t	*udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
313 		    t_scalar_t tudr_optlen, int *error);
314 static void	udp_wput_other(queue_t *q, mblk_t *mp);
315 static void	udp_wput_iocdata(queue_t *q, mblk_t *mp);
316 static void	udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr,
317 		    socklen_t addrlen);
318 static size_t	udp_set_rcv_hiwat(udp_t *udp, size_t size);
319 
320 static void	udp_kstat_init(void);
321 static void	udp_kstat_fini(void);
322 static int	udp_kstat_update(kstat_t *kp, int rw);
323 static void	udp_input_wrapper(void *arg, mblk_t *mp, void *arg2);
324 static void	udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
325 static void	udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
326 static void	udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2);
327 
328 static void	udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
329 		    uint_t pkt_len);
330 static void	udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
331 static void	udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t);
332 static void	udp_exit(conn_t *);
333 static void	udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t);
334 #ifdef DEBUG
335 static void	udp_mode_assertions(udp_t *, int);
336 #endif /* DEBUG */
337 
338 major_t UDP6_MAJ;
339 #define	UDP6 "udp6"
340 
341 #define	UDP_RECV_HIWATER	(56 * 1024)
342 #define	UDP_RECV_LOWATER	128
343 #define	UDP_XMIT_HIWATER	(56 * 1024)
344 #define	UDP_XMIT_LOWATER	1024
345 
346 static struct module_info udp_info =  {
347 	UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
348 };
349 
350 static struct qinit udp_rinit = {
351 	(pfi_t)udp_rput, NULL, udp_open, udp_close, NULL,
352 	&udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
353 };
354 
355 static struct qinit udp_winit = {
356 	(pfi_t)udp_wput, NULL, NULL, NULL, NULL,
357 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
358 };
359 
360 static struct qinit winit = {
361 	(pfi_t)putnext, NULL, NULL, NULL, NULL,
362 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
363 };
364 
365 /* Support for just SNMP if UDP is not pushed directly over device IP */
366 struct qinit udp_snmp_rinit = {
367 	(pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL,
368 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
369 };
370 
371 struct qinit udp_snmp_winit = {
372 	(pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL,
373 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
374 };
375 
376 struct streamtab udpinfo = {
377 	&udp_rinit, &winit
378 };
379 
380 static	sin_t	sin_null;	/* Zero address for quick clears */
381 static	sin6_t	sin6_null;	/* Zero address for quick clears */
382 
383 /* Hint not protected by any lock */
384 static in_port_t	udp_g_next_port_to_try;
385 
386 /*
387  * Extra privileged ports. In host byte order.
388  */
389 #define	UDP_NUM_EPRIV_PORTS	64
390 static int	udp_g_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
391 static in_port_t udp_g_epriv_ports[UDP_NUM_EPRIV_PORTS] = { 2049, 4045 };
392 
393 /* Only modified during _init and _fini thus no locking is needed. */
394 static IDP	udp_g_nd;	/* Points to table of UDP ND variables. */
395 
396 /* MIB-2 stuff for SNMP */
397 static mib2_udp_t	udp_mib;	/* SNMP fixed size info */
398 static kstat_t		*udp_mibkp;	/* kstat exporting udp_mib data */
399 
400 #define	UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
401 
402 /* Default structure copied into T_INFO_ACK messages */
403 static struct T_info_ack udp_g_t_info_ack_ipv4 = {
404 	T_INFO_ACK,
405 	UDP_MAXPACKET_IPV4,	/* TSDU_size. Excl. headers */
406 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
407 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
408 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
409 	sizeof (sin_t),	/* ADDR_size. */
410 	0,		/* OPT_size - not initialized here */
411 	UDP_MAXPACKET_IPV4,	/* TIDU_size.  Excl. headers */
412 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
413 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
414 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
415 };
416 
417 #define	UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
418 
419 static	struct T_info_ack udp_g_t_info_ack_ipv6 = {
420 	T_INFO_ACK,
421 	UDP_MAXPACKET_IPV6,	/* TSDU_size.  Excl. headers */
422 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
423 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
424 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
425 	sizeof (sin6_t), /* ADDR_size. */
426 	0,		/* OPT_size - not initialized here */
427 	UDP_MAXPACKET_IPV6,	/* TIDU_size. Excl. headers */
428 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
429 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
430 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
431 };
432 
433 /* largest UDP port number */
434 #define	UDP_MAX_PORT	65535
435 
436 /*
437  * Table of ND variables supported by udp.  These are loaded into udp_g_nd
438  * in udp_open.
439  * All of these are alterable, within the min/max values given, at run time.
440  */
441 /* BEGIN CSTYLED */
442 udpparam_t udp_param_arr[] = {
443  /*min		max		value		name */
444  { 0L,		256,		32,		"udp_wroff_extra" },
445  { 1L,		255,		255,		"udp_ipv4_ttl" },
446  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
447  { 1024,	(32 * 1024),	1024,		"udp_smallest_nonpriv_port" },
448  { 0,		1,		1,		"udp_do_checksum" },
449  { 1024,	UDP_MAX_PORT,	(32 * 1024),	"udp_smallest_anon_port" },
450  { 1024,	UDP_MAX_PORT,	UDP_MAX_PORT,	"udp_largest_anon_port" },
451  { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER,	"udp_xmit_hiwat"},
452  { 0,		     (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
453  { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER,	"udp_recv_hiwat"},
454  { 65536,	(1<<30),	2*1024*1024,	"udp_max_buf"},
455  { 100,		60000,		1000,		"udp_ndd_get_info_interval"},
456 };
457 /* END CSTYLED */
458 
459 /*
460  * The smallest anonymous port in the priviledged port range which UDP
461  * looks for free port.  Use in the option UDP_ANONPRIVBIND.
462  */
463 static in_port_t udp_min_anonpriv_port = 512;
464 
465 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
466 uint32_t udp_random_anon_port = 1;
467 
468 /*
469  * Hook functions to enable cluster networking.
470  * On non-clustered systems these vectors must always be NULL
471  */
472 
473 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
474     uint8_t *laddrp, in_port_t lport) = NULL;
475 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
476     uint8_t *laddrp, in_port_t lport) = NULL;
477 
478 typedef union T_primitives *t_primp_t;
479 
480 #define	UDP_ENQUEUE_MP(udp, mp, proc, tag) {			\
481 	ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL);	\
482 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
483 	(mp)->b_queue = (queue_t *)((uintptr_t)tag);		\
484 	(mp)->b_prev = (mblk_t *)proc;				\
485 	if ((udp)->udp_mphead == NULL)				\
486 		(udp)->udp_mphead = (mp);			\
487 	else							\
488 		(udp)->udp_mptail->b_next = (mp);		\
489 	(udp)->udp_mptail = (mp);				\
490 	(udp)->udp_mpcount++;					\
491 }
492 
493 #define	UDP_READERS_INCREF(udp) {				\
494 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
495 	(udp)->udp_reader_count++;				\
496 }
497 
498 #define	UDP_READERS_DECREF(udp) {				\
499 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
500 	(udp)->udp_reader_count--;				\
501 	if ((udp)->udp_reader_count == 0)			\
502 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
503 }
504 
505 #define	UDP_SQUEUE_DECREF(udp) {				\
506 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
507 	(udp)->udp_squeue_count--;				\
508 	if ((udp)->udp_squeue_count == 0)			\
509 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
510 }
511 
512 /*
513  * Notes on UDP endpoint synchronization:
514  *
515  * UDP needs exclusive operation on a per endpoint basis, when executing
516  * functions that modify the endpoint state.  udp_rput_other() deals with
517  * packets with IP options, and processing these packets end up having
518  * to update the endpoint's option related state.  udp_wput_other() deals
519  * with control operations from the top, e.g. connect() that needs to
520  * update the endpoint state.  These could be synchronized using locks,
521  * but the current version uses squeues for this purpose.  squeues may
522  * give performance improvement for certain cases such as connected UDP
523  * sockets; thus the framework allows for using squeues.
524  *
525  * The perimeter routines are described as follows:
526  *
527  * udp_enter():
528  *	Enter the UDP endpoint perimeter.
529  *
530  * udp_become_writer():
531  *	Become exclusive on the UDP endpoint.  Specifies a function
532  *	that will be called exclusively either immediately or later
533  *	when the perimeter is available exclusively.
534  *
535  * udp_exit():
536  *	Exit the UDP perimeter.
537  *
538  * Entering UDP from the top or from the bottom must be done using
539  * udp_enter().  No lock must be held while attempting to enter the UDP
540  * perimeter.  When finished, udp_exit() must be called to get out of
541  * the perimeter.
542  *
543  * UDP operates in either MT_HOT mode or in SQUEUE mode.  In MT_HOT mode,
544  * multiple threads may enter a UDP endpoint concurrently.  This is used
545  * for sending and/or receiving normal data.  Control operations and other
546  * special cases call udp_become_writer() to become exclusive on a per
547  * endpoint basis and this results in transitioning to SQUEUE mode.  squeue
548  * by definition serializes access to the conn_t.  When there are no more
549  * pending messages on the squeue for the UDP connection, the endpoint
550  * reverts to MT_HOT mode.  During the interregnum when not all MT threads
551  * of an endpoint have finished, messages are queued in the UDP endpoint
552  * and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode.
553  *
554  * These modes have the following analogs:
555  *
556  *	UDP_MT_HOT/udp_reader_count==0		none
557  *	UDP_MT_HOT/udp_reader_count>0		RW_READ_LOCK
558  *	UDP_MT_QUEUED				RW_WRITE_WANTED
559  *	UDP_SQUEUE or UDP_QUEUED_SQUEUE		RW_WRITE_LOCKED
560  *
561  * Stable modes:	UDP_MT_HOT, UDP_SQUEUE
562  * Transient modes:	UDP_MT_QUEUED, UDP_QUEUED_SQUEUE
563  *
564  * While in stable modes, UDP keeps track of the number of threads
565  * operating on the endpoint.  The udp_reader_count variable represents
566  * the number of threads entering the endpoint as readers while it is
567  * in UDP_MT_HOT mode.  Transitioning to UDP_SQUEUE happens when there
568  * is only a single reader, i.e. when this counter drops to 1.  Likewise,
569  * udp_squeue_count represents the number of threads operating on the
570  * endpoint's squeue while it is in UDP_SQUEUE mode.  The mode transition
571  * to UDP_MT_HOT happens after the last thread exits the endpoint, i.e.
572  * when this counter drops to 0.
573  *
574  * The default mode is set to UDP_MT_HOT and UDP alternates between
575  * UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below.
576  *
577  * Mode transition:
578  * ----------------------------------------------------------------
579  * old mode		Event				New mode
580  * ----------------------------------------------------------------
581  * UDP_MT_HOT		Call to udp_become_writer()	UDP_SQUEUE
582  *			and udp_reader_count == 1
583  *
584  * UDP_MT_HOT		Call to udp_become_writer()	UDP_MT_QUEUED
585  *			and udp_reader_count > 1
586  *
587  * UDP_MT_QUEUED	udp_reader_count drops to zero	UDP_QUEUED_SQUEUE
588  *
589  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_SQUEUE
590  *			internal UDP queue successfully
591  *			moved to squeue AND udp_squeue_count != 0
592  *
593  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_MT_HOT
594  *			internal UDP queue successfully
595  *			moved to squeue AND udp_squeue_count
596  *			drops to zero
597  *
598  * UDP_SQUEUE		udp_squeue_count drops to zero	UDP_MT_HOT
599  * ----------------------------------------------------------------
600  */
601 
602 static queue_t *
603 UDP_WR(queue_t *q)
604 {
605 	ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL);
606 	ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL);
607 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next)));
608 
609 	return (_WR(q)->q_next);
610 }
611 
612 static queue_t *
613 UDP_RD(queue_t *q)
614 {
615 	ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL);
616 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(q)));
617 	ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL);
618 
619 	return (_RD(q)->q_next);
620 }
621 
622 #ifdef DEBUG
623 #define	UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller)
624 #else
625 #define	UDP_MODE_ASSERTIONS(udp, caller)
626 #endif
627 
628 /* Invariants */
629 #ifdef DEBUG
630 
631 uint32_t udp_count[4];
632 
633 /* Context of udp_mode_assertions */
634 #define	UDP_ENTER		1
635 #define	UDP_BECOME_WRITER	2
636 #define	UDP_EXIT		3
637 
638 static void
639 udp_mode_assertions(udp_t *udp, int caller)
640 {
641 	ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock));
642 
643 	switch (udp->udp_mode) {
644 	case UDP_MT_HOT:
645 		/*
646 		 * Messages have not yet been enqueued on the internal queue,
647 		 * otherwise we would have switched to UDP_MT_QUEUED. Likewise
648 		 * by definition, there can't be any messages enqueued on the
649 		 * squeue. The UDP could be quiescent, so udp_reader_count
650 		 * could be zero at entry.
651 		 */
652 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 &&
653 		    udp->udp_squeue_count == 0);
654 		ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0);
655 		udp_count[0]++;
656 		break;
657 
658 	case UDP_MT_QUEUED:
659 		/*
660 		 * The last MT thread to exit the udp perimeter empties the
661 		 * internal queue and then switches the UDP to
662 		 * UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED
663 		 * mode, it means there must be at least 1 MT thread still in
664 		 * the perimeter and at least 1 message on the internal queue.
665 		 */
666 		ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL &&
667 		    udp->udp_mpcount != 0 && udp->udp_squeue_count == 0);
668 		udp_count[1]++;
669 		break;
670 
671 	case UDP_QUEUED_SQUEUE:
672 		/*
673 		 * The switch has happened from MT to SQUEUE. So there can't
674 		 * any MT threads. Messages could still pile up on the internal
675 		 * queue until the transition is complete and we move to
676 		 * UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count
677 		 * since the squeue could drain any time.
678 		 */
679 		ASSERT(udp->udp_reader_count == 0);
680 		udp_count[2]++;
681 		break;
682 
683 	case UDP_SQUEUE:
684 		/*
685 		 * The transition is complete. Thre can't be any messages on
686 		 * the internal queue. The udp could be quiescent or the squeue
687 		 * could drain any time, so we can't assert on nonzero
688 		 * udp_squeue_count during entry. Nor can we assert that
689 		 * udp_reader_count is zero, since, a reader thread could have
690 		 * directly become writer in line by calling udp_become_writer
691 		 * without going through the queued states.
692 		 */
693 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0);
694 		ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0);
695 		udp_count[3]++;
696 		break;
697 	}
698 }
699 #endif
700 
701 #define	_UDP_ENTER(connp, mp, proc, tag) {				\
702 	udp_t *_udp = (connp)->conn_udp;				\
703 									\
704 	mutex_enter(&(connp)->conn_lock);				\
705 	if ((connp)->conn_state_flags & CONN_CLOSING) {			\
706 		mutex_exit(&(connp)->conn_lock);			\
707 		freemsg(mp);						\
708 	} else {							\
709 		UDP_MODE_ASSERTIONS(_udp, UDP_ENTER);			\
710 									\
711 		switch (_udp->udp_mode) {				\
712 		case UDP_MT_HOT:					\
713 			/* We can execute as reader right away. */	\
714 			UDP_READERS_INCREF(_udp);			\
715 			mutex_exit(&(connp)->conn_lock);		\
716 			(*(proc))(connp, mp, (connp)->conn_sqp);	\
717 			break;						\
718 									\
719 		case UDP_SQUEUE:					\
720 			/*						\
721 			 * We are in squeue mode, send the		\
722 			 * packet to the squeue				\
723 			 */						\
724 			_udp->udp_squeue_count++;			\
725 			CONN_INC_REF_LOCKED(connp);			\
726 			mutex_exit(&(connp)->conn_lock);		\
727 			squeue_enter((connp)->conn_sqp, mp, proc,	\
728 			    connp, tag);				\
729 			break;						\
730 									\
731 		case UDP_MT_QUEUED:					\
732 		case UDP_QUEUED_SQUEUE:					\
733 			/*						\
734 			 * Some messages may have been enqueued		\
735 			 * ahead of us.  Enqueue the new message	\
736 			 * at the tail of the internal queue to		\
737 			 * preserve message ordering.			\
738 			 */						\
739 			UDP_ENQUEUE_MP(_udp, mp, proc, tag);		\
740 			mutex_exit(&(connp)->conn_lock);		\
741 			break;						\
742 		}							\
743 	}								\
744 }
745 
746 static void
747 udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
748 {
749 	_UDP_ENTER(connp, mp, proc, tag);
750 }
751 
752 static void
753 udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
754 {
755 	udp_t	*udp;
756 
757 	udp = connp->conn_udp;
758 
759 	mutex_enter(&connp->conn_lock);
760 
761 	UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER);
762 
763 	switch (udp->udp_mode) {
764 	case UDP_MT_HOT:
765 		if (udp->udp_reader_count == 1) {
766 			/*
767 			 * We are the only MT thread. Switch to squeue mode
768 			 * immediately.
769 			 */
770 			udp->udp_mode = UDP_SQUEUE;
771 			udp->udp_squeue_count = 1;
772 			CONN_INC_REF_LOCKED(connp);
773 			mutex_exit(&connp->conn_lock);
774 			squeue_enter(connp->conn_sqp, mp, proc, connp, tag);
775 			return;
776 		}
777 		/* FALLTHRU */
778 
779 	case UDP_MT_QUEUED:
780 		/* Enqueue the packet internally in UDP */
781 		udp->udp_mode = UDP_MT_QUEUED;
782 		UDP_ENQUEUE_MP(udp, mp, proc, tag);
783 		mutex_exit(&connp->conn_lock);
784 		return;
785 
786 	case UDP_SQUEUE:
787 	case UDP_QUEUED_SQUEUE:
788 		/*
789 		 * We are already exclusive. i.e. we are already
790 		 * writer. Simply call the desired function.
791 		 */
792 		udp->udp_squeue_count++;
793 		mutex_exit(&connp->conn_lock);
794 		(*proc)(connp, mp, connp->conn_sqp);
795 		return;
796 	}
797 }
798 
799 /*
800  * Transition from MT mode to SQUEUE mode, when the last MT thread
801  * is exiting the UDP perimeter. Move all messages from the internal
802  * udp queue to the squeue. A better way would be to move all the
803  * messages in one shot, this needs more support from the squeue framework
804  */
805 static void
806 udp_switch_to_squeue(udp_t *udp)
807 {
808 	mblk_t *mp;
809 	mblk_t	*mp_next;
810 	sqproc_t proc;
811 	uint8_t	tag;
812 	conn_t	*connp = udp->udp_connp;
813 
814 	ASSERT(MUTEX_HELD(&connp->conn_lock));
815 	ASSERT(udp->udp_mode == UDP_MT_QUEUED);
816 	while (udp->udp_mphead != NULL) {
817 		mp = udp->udp_mphead;
818 		udp->udp_mphead = NULL;
819 		udp->udp_mptail = NULL;
820 		udp->udp_mpcount = 0;
821 		udp->udp_mode = UDP_QUEUED_SQUEUE;
822 		mutex_exit(&connp->conn_lock);
823 		/*
824 		 * It is best not to hold any locks across the calls
825 		 * to squeue functions. Since we drop the lock we
826 		 * need to go back and check the udp_mphead once again
827 		 * after the squeue_fill and hence the while loop at
828 		 * the top of this function
829 		 */
830 		for (; mp != NULL; mp = mp_next) {
831 			mp_next = mp->b_next;
832 			proc = (sqproc_t)mp->b_prev;
833 			tag = (uint8_t)((uintptr_t)mp->b_queue);
834 			mp->b_next = NULL;
835 			mp->b_prev = NULL;
836 			mp->b_queue = NULL;
837 			CONN_INC_REF(connp);
838 			udp->udp_squeue_count++;
839 			squeue_fill(connp->conn_sqp, mp, proc, connp,
840 			    tag);
841 		}
842 		mutex_enter(&connp->conn_lock);
843 	}
844 	/*
845 	 * udp_squeue_count of zero implies that the squeue has drained
846 	 * even before we arrived here (i.e. after the squeue_fill above)
847 	 */
848 	udp->udp_mode = (udp->udp_squeue_count != 0) ?
849 	    UDP_SQUEUE : UDP_MT_HOT;
850 }
851 
852 #define	_UDP_EXIT(connp) {						\
853 	udp_t *_udp = (connp)->conn_udp;				\
854 									\
855 	mutex_enter(&(connp)->conn_lock);				\
856 	UDP_MODE_ASSERTIONS(_udp, UDP_EXIT);				\
857 									\
858 	switch (_udp->udp_mode) {					\
859 	case UDP_MT_HOT:						\
860 		UDP_READERS_DECREF(_udp);				\
861 		mutex_exit(&(connp)->conn_lock);			\
862 		break;							\
863 									\
864 	case UDP_SQUEUE:						\
865 		UDP_SQUEUE_DECREF(_udp);				\
866 		if (_udp->udp_squeue_count == 0)			\
867 		    _udp->udp_mode = UDP_MT_HOT;			\
868 		mutex_exit(&(connp)->conn_lock);			\
869 		break;							\
870 									\
871 	case UDP_MT_QUEUED:						\
872 		/*							\
873 		 * If this is the last MT thread, we need to		\
874 		 * switch to squeue mode				\
875 		 */							\
876 		UDP_READERS_DECREF(_udp);				\
877 		if (_udp->udp_reader_count == 0)			\
878 			udp_switch_to_squeue(_udp);			\
879 		mutex_exit(&(connp)->conn_lock);			\
880 		break;							\
881 									\
882 	case UDP_QUEUED_SQUEUE:						\
883 		UDP_SQUEUE_DECREF(_udp);				\
884 		/*							\
885 		 * Even if the udp_squeue_count drops to zero, we	\
886 		 * don't want to change udp_mode to UDP_MT_HOT here.	\
887 		 * The thread in udp_switch_to_squeue will take care	\
888 		 * of the transition to UDP_MT_HOT, after emptying	\
889 		 * any more new messages that have been enqueued in	\
890 		 * udp_mphead.						\
891 		 */							\
892 		mutex_exit(&(connp)->conn_lock);			\
893 		break;							\
894 	}								\
895 }
896 
897 static void
898 udp_exit(conn_t *connp)
899 {
900 	_UDP_EXIT(connp);
901 }
902 
903 /*
904  * Return the next anonymous port in the priviledged port range for
905  * bind checking.
906  */
907 static in_port_t
908 udp_get_next_priv_port(void)
909 {
910 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
911 
912 	if (next_priv_port < udp_min_anonpriv_port) {
913 		next_priv_port = IPPORT_RESERVED - 1;
914 	}
915 	return (next_priv_port--);
916 }
917 
918 /* UDP bind hash report triggered via the Named Dispatch mechanism. */
919 /* ARGSUSED */
920 static int
921 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
922 {
923 	udp_fanout_t	*udpf;
924 	int		i;
925 	zoneid_t	zoneid;
926 	conn_t		*connp;
927 	udp_t		*udp;
928 
929 	connp = Q_TO_CONN(q);
930 	udp = connp->conn_udp;
931 
932 	/* Refer to comments in udp_status_report(). */
933 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
934 		if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
935 		    drv_usectohz(udp_ndd_get_info_interval * 1000)) {
936 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
937 			return (0);
938 		}
939 	}
940 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
941 		/* The following may work even if we cannot get a large buf. */
942 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
943 		return (0);
944 	}
945 
946 	(void) mi_mpprintf(mp,
947 	    "UDP     " MI_COL_HDRPAD_STR
948 	/*   12345678[89ABCDEF] */
949 	    " zone lport src addr        dest addr       port  state");
950 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
951 
952 	zoneid = connp->conn_zoneid;
953 
954 	for (i = 0; i < udp_bind_fanout_size; i++) {
955 		udpf = &udp_bind_fanout[i];
956 		mutex_enter(&udpf->uf_lock);
957 
958 		/* Print the hash index. */
959 		udp = udpf->uf_udp;
960 		if (zoneid != GLOBAL_ZONEID) {
961 			/* skip to first entry in this zone; might be none */
962 			while (udp != NULL &&
963 			    udp->udp_connp->conn_zoneid != zoneid)
964 				udp = udp->udp_bind_hash;
965 		}
966 		if (udp != NULL) {
967 			uint_t print_len, buf_len;
968 
969 			buf_len = mp->b_cont->b_datap->db_lim -
970 			    mp->b_cont->b_wptr;
971 			print_len = snprintf((char *)mp->b_cont->b_wptr,
972 			    buf_len, "%d\n", i);
973 			if (print_len < buf_len) {
974 				mp->b_cont->b_wptr += print_len;
975 			} else {
976 				mp->b_cont->b_wptr += buf_len;
977 			}
978 			for (; udp != NULL; udp = udp->udp_bind_hash) {
979 				if (zoneid == GLOBAL_ZONEID ||
980 				    zoneid == udp->udp_connp->conn_zoneid)
981 					udp_report_item(mp->b_cont, udp);
982 			}
983 		}
984 		mutex_exit(&udpf->uf_lock);
985 	}
986 	udp_last_ndd_get_info_time = ddi_get_lbolt();
987 	return (0);
988 }
989 
990 /*
991  * Hash list removal routine for udp_t structures.
992  */
993 static void
994 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
995 {
996 	udp_t	*udpnext;
997 	kmutex_t *lockp;
998 
999 	if (udp->udp_ptpbhn == NULL)
1000 		return;
1001 
1002 	/*
1003 	 * Extract the lock pointer in case there are concurrent
1004 	 * hash_remove's for this instance.
1005 	 */
1006 	ASSERT(udp->udp_port != 0);
1007 	if (!caller_holds_lock) {
1008 		lockp = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)].uf_lock;
1009 		ASSERT(lockp != NULL);
1010 		mutex_enter(lockp);
1011 	}
1012 	if (udp->udp_ptpbhn != NULL) {
1013 		udpnext = udp->udp_bind_hash;
1014 		if (udpnext != NULL) {
1015 			udpnext->udp_ptpbhn = udp->udp_ptpbhn;
1016 			udp->udp_bind_hash = NULL;
1017 		}
1018 		*udp->udp_ptpbhn = udpnext;
1019 		udp->udp_ptpbhn = NULL;
1020 	}
1021 	if (!caller_holds_lock) {
1022 		mutex_exit(lockp);
1023 	}
1024 }
1025 
1026 static void
1027 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
1028 {
1029 	udp_t	**udpp;
1030 	udp_t	*udpnext;
1031 
1032 	ASSERT(MUTEX_HELD(&uf->uf_lock));
1033 	if (udp->udp_ptpbhn != NULL) {
1034 		udp_bind_hash_remove(udp, B_TRUE);
1035 	}
1036 	udpp = &uf->uf_udp;
1037 	udpnext = udpp[0];
1038 	if (udpnext != NULL) {
1039 		/*
1040 		 * If the new udp bound to the INADDR_ANY address
1041 		 * and the first one in the list is not bound to
1042 		 * INADDR_ANY we skip all entries until we find the
1043 		 * first one bound to INADDR_ANY.
1044 		 * This makes sure that applications binding to a
1045 		 * specific address get preference over those binding to
1046 		 * INADDR_ANY.
1047 		 */
1048 		if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
1049 		    !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
1050 			while ((udpnext = udpp[0]) != NULL &&
1051 			    !V6_OR_V4_INADDR_ANY(
1052 			    udpnext->udp_bound_v6src)) {
1053 				udpp = &(udpnext->udp_bind_hash);
1054 			}
1055 			if (udpnext != NULL)
1056 				udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1057 		} else {
1058 			udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1059 		}
1060 	}
1061 	udp->udp_bind_hash = udpnext;
1062 	udp->udp_ptpbhn = udpp;
1063 	udpp[0] = udp;
1064 }
1065 
1066 /*
1067  * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
1068  * passed to udp_wput.
1069  * It associates a port number and local address with the stream.
1070  * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
1071  * protocol type (IPPROTO_UDP) placed in the message following the address.
1072  * A T_BIND_ACK message is passed upstream when ip acknowledges the request.
1073  * (Called as writer.)
1074  *
1075  * Note that UDP over IPv4 and IPv6 sockets can use the same port number
1076  * without setting SO_REUSEADDR. This is needed so that they
1077  * can be viewed as two independent transport protocols.
1078  * However, anonymouns ports are allocated from the same range to avoid
1079  * duplicating the udp_g_next_port_to_try.
1080  */
1081 static void
1082 udp_bind(queue_t *q, mblk_t *mp)
1083 {
1084 	sin_t		*sin;
1085 	sin6_t		*sin6;
1086 	mblk_t		*mp1;
1087 	in_port_t	port;		/* Host byte order */
1088 	in_port_t	requested_port;	/* Host byte order */
1089 	struct T_bind_req *tbr;
1090 	int		count;
1091 	in6_addr_t	v6src;
1092 	boolean_t	bind_to_req_port_only;
1093 	int		loopmax;
1094 	udp_fanout_t	*udpf;
1095 	in_port_t	lport;		/* Network byte order */
1096 	zoneid_t	zoneid;
1097 	conn_t		*connp;
1098 	udp_t		*udp;
1099 
1100 	connp = Q_TO_CONN(q);
1101 	udp = connp->conn_udp;
1102 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
1103 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1104 		    "udp_bind: bad req, len %u",
1105 		    (uint_t)(mp->b_wptr - mp->b_rptr));
1106 		udp_err_ack(q, mp, TPROTO, 0);
1107 		return;
1108 	}
1109 
1110 	if (udp->udp_state != TS_UNBND) {
1111 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1112 		    "udp_bind: bad state, %u", udp->udp_state);
1113 		udp_err_ack(q, mp, TOUTSTATE, 0);
1114 		return;
1115 	}
1116 	/*
1117 	 * Reallocate the message to make sure we have enough room for an
1118 	 * address and the protocol type.
1119 	 */
1120 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
1121 	if (!mp1) {
1122 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1123 		return;
1124 	}
1125 
1126 	mp = mp1;
1127 	tbr = (struct T_bind_req *)mp->b_rptr;
1128 	switch (tbr->ADDR_length) {
1129 	case 0:			/* Request for a generic port */
1130 		tbr->ADDR_offset = sizeof (struct T_bind_req);
1131 		if (udp->udp_family == AF_INET) {
1132 			tbr->ADDR_length = sizeof (sin_t);
1133 			sin = (sin_t *)&tbr[1];
1134 			*sin = sin_null;
1135 			sin->sin_family = AF_INET;
1136 			mp->b_wptr = (uchar_t *)&sin[1];
1137 		} else {
1138 			ASSERT(udp->udp_family == AF_INET6);
1139 			tbr->ADDR_length = sizeof (sin6_t);
1140 			sin6 = (sin6_t *)&tbr[1];
1141 			*sin6 = sin6_null;
1142 			sin6->sin6_family = AF_INET6;
1143 			mp->b_wptr = (uchar_t *)&sin6[1];
1144 		}
1145 		port = 0;
1146 		break;
1147 
1148 	case sizeof (sin_t):	/* Complete IPv4 address */
1149 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
1150 		    sizeof (sin_t));
1151 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1152 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1153 			return;
1154 		}
1155 		if (udp->udp_family != AF_INET ||
1156 		    sin->sin_family != AF_INET) {
1157 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1158 			return;
1159 		}
1160 		port = ntohs(sin->sin_port);
1161 		break;
1162 
1163 	case sizeof (sin6_t):	/* complete IPv6 address */
1164 		sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
1165 		    sizeof (sin6_t));
1166 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1167 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1168 			return;
1169 		}
1170 		if (udp->udp_family != AF_INET6 ||
1171 		    sin6->sin6_family != AF_INET6) {
1172 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1173 			return;
1174 		}
1175 		port = ntohs(sin6->sin6_port);
1176 		break;
1177 
1178 	default:		/* Invalid request */
1179 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1180 		    "udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
1181 		udp_err_ack(q, mp, TBADADDR, 0);
1182 		return;
1183 	}
1184 
1185 	requested_port = port;
1186 
1187 	if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
1188 		bind_to_req_port_only = B_FALSE;
1189 	else			/* T_BIND_REQ and requested_port != 0 */
1190 		bind_to_req_port_only = B_TRUE;
1191 
1192 	if (requested_port == 0) {
1193 		/*
1194 		 * If the application passed in zero for the port number, it
1195 		 * doesn't care which port number we bind to. Get one in the
1196 		 * valid range.
1197 		 */
1198 		if (udp->udp_anon_priv_bind) {
1199 			port = udp_get_next_priv_port();
1200 		} else {
1201 			port = udp_update_next_port(udp_g_next_port_to_try,
1202 			    B_TRUE);
1203 		}
1204 	} else {
1205 		/*
1206 		 * If the port is in the well-known privileged range,
1207 		 * make sure the caller was privileged.
1208 		 */
1209 		int i;
1210 		boolean_t priv = B_FALSE;
1211 
1212 		if (port < udp_smallest_nonpriv_port) {
1213 			priv = B_TRUE;
1214 		} else {
1215 			for (i = 0; i < udp_g_num_epriv_ports; i++) {
1216 				if (port == udp_g_epriv_ports[i]) {
1217 					priv = B_TRUE;
1218 					break;
1219 				}
1220 			}
1221 		}
1222 
1223 		if (priv) {
1224 			cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
1225 
1226 			if (secpolicy_net_privaddr(cr, port) != 0) {
1227 				udp_err_ack(q, mp, TACCES, 0);
1228 				return;
1229 			}
1230 		}
1231 	}
1232 
1233 	/*
1234 	 * Copy the source address into our udp structure. This address
1235 	 * may still be zero; if so, IP will fill in the correct address
1236 	 * each time an outbound packet is passed to it.
1237 	 */
1238 	if (udp->udp_family == AF_INET) {
1239 		ASSERT(sin != NULL);
1240 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1241 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1242 		    udp->udp_ip_snd_options_len;
1243 		IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
1244 	} else {
1245 		ASSERT(sin6 != NULL);
1246 		v6src = sin6->sin6_addr;
1247 		if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
1248 			udp->udp_ipversion = IPV4_VERSION;
1249 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1250 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1251 		} else {
1252 			udp->udp_ipversion = IPV6_VERSION;
1253 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1254 		}
1255 	}
1256 
1257 	/*
1258 	 * If udp_reuseaddr is not set, then we have to make sure that
1259 	 * the IP address and port number the application requested
1260 	 * (or we selected for the application) is not being used by
1261 	 * another stream.  If another stream is already using the
1262 	 * requested IP address and port, the behavior depends on
1263 	 * "bind_to_req_port_only". If set the bind fails; otherwise we
1264 	 * search for any an unused port to bind to the the stream.
1265 	 *
1266 	 * As per the BSD semantics, as modified by the Deering multicast
1267 	 * changes, if udp_reuseaddr is set, then we allow multiple binds
1268 	 * to the same port independent of the local IP address.
1269 	 *
1270 	 * This is slightly different than in SunOS 4.X which did not
1271 	 * support IP multicast. Note that the change implemented by the
1272 	 * Deering multicast code effects all binds - not only binding
1273 	 * to IP multicast addresses.
1274 	 *
1275 	 * Note that when binding to port zero we ignore SO_REUSEADDR in
1276 	 * order to guarantee a unique port.
1277 	 */
1278 
1279 	count = 0;
1280 	if (udp->udp_anon_priv_bind) {
1281 		/* loopmax = (IPPORT_RESERVED-1) - udp_min_anonpriv_port + 1 */
1282 		loopmax = IPPORT_RESERVED - udp_min_anonpriv_port;
1283 	} else {
1284 		loopmax = udp_largest_anon_port - udp_smallest_anon_port + 1;
1285 	}
1286 
1287 	zoneid = connp->conn_zoneid;
1288 	for (;;) {
1289 		udp_t		*udp1;
1290 		boolean_t	is_inaddr_any;
1291 		boolean_t	found_exclbind = B_FALSE;
1292 
1293 		is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
1294 		/*
1295 		 * Walk through the list of udp streams bound to
1296 		 * requested port with the same IP address.
1297 		 */
1298 		lport = htons(port);
1299 		udpf = &udp_bind_fanout[UDP_BIND_HASH(lport)];
1300 		mutex_enter(&udpf->uf_lock);
1301 		for (udp1 = udpf->uf_udp; udp1 != NULL;
1302 		    udp1 = udp1->udp_bind_hash) {
1303 			if (lport != udp1->udp_port ||
1304 			    zoneid != udp1->udp_connp->conn_zoneid)
1305 				continue;
1306 
1307 			/*
1308 			 * If UDP_EXCLBIND is set for either the bound or
1309 			 * binding endpoint, the semantics of bind
1310 			 * is changed according to the following chart.
1311 			 *
1312 			 * spec = specified address (v4 or v6)
1313 			 * unspec = unspecified address (v4 or v6)
1314 			 * A = specified addresses are different for endpoints
1315 			 *
1316 			 * bound	bind to		allowed?
1317 			 * -------------------------------------
1318 			 * unspec	unspec		no
1319 			 * unspec	spec		no
1320 			 * spec		unspec		no
1321 			 * spec		spec		yes if A
1322 			 */
1323 			if (udp1->udp_exclbind || udp->udp_exclbind) {
1324 				if (V6_OR_V4_INADDR_ANY(
1325 				    udp1->udp_bound_v6src) ||
1326 				    is_inaddr_any ||
1327 				    IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1328 				    &v6src)) {
1329 					found_exclbind = B_TRUE;
1330 					break;
1331 				}
1332 				continue;
1333 			}
1334 
1335 			/*
1336 			 * Check ipversion to allow IPv4 and IPv6 sockets to
1337 			 * have disjoint port number spaces.
1338 			 */
1339 			if (udp->udp_ipversion != udp1->udp_ipversion)
1340 				continue;
1341 
1342 			/*
1343 			 * No difference depending on SO_REUSEADDR.
1344 			 *
1345 			 * If existing port is bound to a
1346 			 * non-wildcard IP address and
1347 			 * the requesting stream is bound to
1348 			 * a distinct different IP addresses
1349 			 * (non-wildcard, also), keep going.
1350 			 */
1351 			if (!is_inaddr_any &&
1352 			    !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
1353 			    !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1354 			    &v6src)) {
1355 				continue;
1356 			}
1357 			break;
1358 		}
1359 
1360 		if (!found_exclbind &&
1361 		    (udp->udp_reuseaddr && requested_port != 0)) {
1362 			break;
1363 		}
1364 
1365 		if (udp1 == NULL) {
1366 			/*
1367 			 * No other stream has this IP address
1368 			 * and port number. We can use it.
1369 			 */
1370 			break;
1371 		}
1372 		mutex_exit(&udpf->uf_lock);
1373 		if (bind_to_req_port_only) {
1374 			/*
1375 			 * We get here only when requested port
1376 			 * is bound (and only first  of the for()
1377 			 * loop iteration).
1378 			 *
1379 			 * The semantics of this bind request
1380 			 * require it to fail so we return from
1381 			 * the routine (and exit the loop).
1382 			 *
1383 			 */
1384 			udp_err_ack(q, mp, TADDRBUSY, 0);
1385 			return;
1386 		}
1387 
1388 		if (udp->udp_anon_priv_bind) {
1389 			port = udp_get_next_priv_port();
1390 		} else {
1391 			if ((count == 0) && (requested_port != 0)) {
1392 				/*
1393 				 * If the application wants us to find
1394 				 * a port, get one to start with. Set
1395 				 * requested_port to 0, so that we will
1396 				 * update udp_g_next_port_to_try below.
1397 				 */
1398 				port = udp_update_next_port(
1399 				    udp_g_next_port_to_try, B_TRUE);
1400 				requested_port = 0;
1401 			} else {
1402 				port = udp_update_next_port(port + 1, B_FALSE);
1403 			}
1404 		}
1405 
1406 		if (++count >= loopmax) {
1407 			/*
1408 			 * We've tried every possible port number and
1409 			 * there are none available, so send an error
1410 			 * to the user.
1411 			 */
1412 			udp_err_ack(q, mp, TNOADDR, 0);
1413 			return;
1414 		}
1415 	}
1416 
1417 	/*
1418 	 * Copy the source address into our udp structure.  This address
1419 	 * may still be zero; if so, ip will fill in the correct address
1420 	 * each time an outbound packet is passed to it.
1421 	 * If we are binding to a broadcast or multicast address udp_rput
1422 	 * will clear the source address when it receives the T_BIND_ACK.
1423 	 */
1424 	udp->udp_v6src = udp->udp_bound_v6src = v6src;
1425 	udp->udp_port = lport;
1426 	/*
1427 	 * Now reset the the next anonymous port if the application requested
1428 	 * an anonymous port, or we handed out the next anonymous port.
1429 	 */
1430 	if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
1431 		udp_g_next_port_to_try = port + 1;
1432 	}
1433 
1434 	/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
1435 	if (udp->udp_family == AF_INET) {
1436 		sin->sin_port = udp->udp_port;
1437 	} else {
1438 		int error;
1439 
1440 		sin6->sin6_port = udp->udp_port;
1441 		/* Rebuild the header template */
1442 		error = udp_build_hdrs(q, udp);
1443 		if (error != 0) {
1444 			mutex_exit(&udpf->uf_lock);
1445 			udp_err_ack(q, mp, TSYSERR, error);
1446 			return;
1447 		}
1448 	}
1449 	udp->udp_state = TS_IDLE;
1450 	udp_bind_hash_insert(udpf, udp);
1451 	mutex_exit(&udpf->uf_lock);
1452 
1453 	if (cl_inet_bind) {
1454 		/*
1455 		 * Running in cluster mode - register bind information
1456 		 */
1457 		if (udp->udp_ipversion == IPV4_VERSION) {
1458 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
1459 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
1460 			    (in_port_t)udp->udp_port);
1461 		} else {
1462 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
1463 			    (uint8_t *)&(udp->udp_v6src),
1464 			    (in_port_t)udp->udp_port);
1465 		}
1466 
1467 	}
1468 
1469 	/* Pass the protocol number in the message following the address. */
1470 	*mp->b_wptr++ = IPPROTO_UDP;
1471 	if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
1472 		/*
1473 		 * Append a request for an IRE if udp_v6src not
1474 		 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
1475 		 */
1476 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
1477 		if (!mp->b_cont) {
1478 			udp_err_ack(q, mp, TSYSERR, ENOMEM);
1479 			return;
1480 		}
1481 		mp->b_cont->b_wptr += sizeof (ire_t);
1482 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
1483 	}
1484 	if (udp->udp_family == AF_INET6)
1485 		mp = ip_bind_v6(q, mp, connp, NULL);
1486 	else
1487 		mp = ip_bind_v4(q, mp, connp);
1488 
1489 	if (mp != NULL)
1490 		udp_rput_other(_RD(q), mp);
1491 	else
1492 		CONN_INC_REF(connp);
1493 }
1494 
1495 
1496 void
1497 udp_resume_bind(conn_t *connp, mblk_t *mp)
1498 {
1499 	udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY);
1500 }
1501 
1502 /*
1503  * This is called from ip_wput_nondata to resume a deferred UDP bind.
1504  */
1505 /* ARGSUSED */
1506 static void
1507 udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2)
1508 {
1509 	conn_t *connp = arg;
1510 
1511 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1512 
1513 	udp_rput_other(connp->conn_rq, mp);
1514 
1515 	CONN_OPER_PENDING_DONE(connp);
1516 	udp_exit(connp);
1517 }
1518 
1519 /*
1520  * This routine handles each T_CONN_REQ message passed to udp.  It
1521  * associates a default destination address with the stream.
1522  *
1523  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1524  *	T_BIND_REQ	- specifying local and remote address/port
1525  *	IRE_DB_REQ_TYPE	- to get an IRE back containing ire_type and src
1526  *	T_OK_ACK	- for the T_CONN_REQ
1527  *	T_CONN_CON	- to keep the TPI user happy
1528  *
1529  * The connect completes in udp_rput.
1530  * When a T_BIND_ACK is received information is extracted from the IRE
1531  * and the two appended messages are sent to the TPI user.
1532  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
1533  * it to an error ack for the appropriate primitive.
1534  */
1535 static void
1536 udp_connect(queue_t *q, mblk_t *mp)
1537 {
1538 	sin6_t	*sin6;
1539 	sin_t	*sin;
1540 	struct T_conn_req	*tcr;
1541 	in6_addr_t v6dst;
1542 	ipaddr_t v4dst;
1543 	uint16_t dstport;
1544 	uint32_t flowinfo;
1545 	mblk_t	*mp1, *mp2;
1546 	udp_fanout_t	*udpf;
1547 	udp_t	*udp, *udp1;
1548 
1549 	udp = Q_TO_UDP(q);
1550 
1551 	tcr = (struct T_conn_req *)mp->b_rptr;
1552 
1553 	/* A bit of sanity checking */
1554 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
1555 		udp_err_ack(q, mp, TPROTO, 0);
1556 		return;
1557 	}
1558 	/*
1559 	 * This UDP must have bound to a port already before doing
1560 	 * a connect.
1561 	 */
1562 	if (udp->udp_state == TS_UNBND) {
1563 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1564 		    "udp_connect: bad state, %u", udp->udp_state);
1565 		udp_err_ack(q, mp, TOUTSTATE, 0);
1566 		return;
1567 	}
1568 	ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
1569 
1570 	udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
1571 
1572 	if (udp->udp_state == TS_DATA_XFER) {
1573 		/* Already connected - clear out state */
1574 		mutex_enter(&udpf->uf_lock);
1575 		udp->udp_v6src = udp->udp_bound_v6src;
1576 		udp->udp_state = TS_IDLE;
1577 		mutex_exit(&udpf->uf_lock);
1578 	}
1579 
1580 	if (tcr->OPT_length != 0) {
1581 		udp_err_ack(q, mp, TBADOPT, 0);
1582 		return;
1583 	}
1584 
1585 	/*
1586 	 * Determine packet type based on type of address passed in
1587 	 * the request should contain an IPv4 or IPv6 address.
1588 	 * Make sure that address family matches the type of
1589 	 * family of the the address passed down
1590 	 */
1591 	switch (tcr->DEST_length) {
1592 	default:
1593 		udp_err_ack(q, mp, TBADADDR, 0);
1594 		return;
1595 
1596 	case sizeof (sin_t):
1597 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
1598 		    sizeof (sin_t));
1599 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1600 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1601 			return;
1602 		}
1603 		if (udp->udp_family != AF_INET ||
1604 		    sin->sin_family != AF_INET) {
1605 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1606 			return;
1607 		}
1608 		v4dst = sin->sin_addr.s_addr;
1609 		dstport = sin->sin_port;
1610 		IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1611 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1612 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1613 		    udp->udp_ip_snd_options_len;
1614 		break;
1615 
1616 	case sizeof (sin6_t):
1617 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
1618 		    sizeof (sin6_t));
1619 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1620 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1621 			return;
1622 		}
1623 		if (udp->udp_family != AF_INET6 ||
1624 		    sin6->sin6_family != AF_INET6) {
1625 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1626 			return;
1627 		}
1628 		v6dst = sin6->sin6_addr;
1629 		if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
1630 			IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
1631 			udp->udp_ipversion = IPV4_VERSION;
1632 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1633 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1634 			flowinfo = 0;
1635 		} else {
1636 			udp->udp_ipversion = IPV6_VERSION;
1637 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1638 			flowinfo = sin6->sin6_flowinfo;
1639 		}
1640 		dstport = sin6->sin6_port;
1641 		break;
1642 	}
1643 	if (dstport == 0) {
1644 		udp_err_ack(q, mp, TBADADDR, 0);
1645 		return;
1646 	}
1647 
1648 	/*
1649 	 * Create a default IP header with no IP options.
1650 	 */
1651 	udp->udp_dstport = dstport;
1652 	if (udp->udp_ipversion == IPV4_VERSION) {
1653 		/*
1654 		 * Interpret a zero destination to mean loopback.
1655 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1656 		 * generate the T_CONN_CON.
1657 		 */
1658 		if (v4dst == INADDR_ANY) {
1659 			v4dst = htonl(INADDR_LOOPBACK);
1660 			IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1661 			if (udp->udp_family == AF_INET) {
1662 				sin->sin_addr.s_addr = v4dst;
1663 			} else {
1664 				sin6->sin6_addr = v6dst;
1665 			}
1666 		}
1667 		udp->udp_v6dst = v6dst;
1668 		udp->udp_flowinfo = 0;
1669 
1670 		/*
1671 		 * If the destination address is multicast and
1672 		 * an outgoing multicast interface has been set,
1673 		 * use the address of that interface as our
1674 		 * source address if no source address has been set.
1675 		 */
1676 		if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
1677 		    CLASSD(v4dst) &&
1678 		    udp->udp_multicast_if_addr != INADDR_ANY) {
1679 			IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
1680 			    &udp->udp_v6src);
1681 		}
1682 	} else {
1683 		ASSERT(udp->udp_ipversion == IPV6_VERSION);
1684 		/*
1685 		 * Interpret a zero destination to mean loopback.
1686 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1687 		 * generate the T_CONN_CON.
1688 		 */
1689 		if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
1690 			v6dst = ipv6_loopback;
1691 			sin6->sin6_addr = v6dst;
1692 		}
1693 		udp->udp_v6dst = v6dst;
1694 		udp->udp_flowinfo = flowinfo;
1695 		/*
1696 		 * If the destination address is multicast and
1697 		 * an outgoing multicast interface has been set,
1698 		 * then the ip bind logic will pick the correct source
1699 		 * address (i.e. matching the outgoing multicast interface).
1700 		 */
1701 	}
1702 
1703 	/*
1704 	 * Verify that the src/port/dst/port is unique for all
1705 	 * connections in TS_DATA_XFER
1706 	 */
1707 	mutex_enter(&udpf->uf_lock);
1708 	for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
1709 		if (udp1->udp_state != TS_DATA_XFER)
1710 			continue;
1711 		if (udp->udp_port != udp1->udp_port ||
1712 		    udp->udp_ipversion != udp1->udp_ipversion ||
1713 		    dstport != udp1->udp_dstport ||
1714 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
1715 		    !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst))
1716 			continue;
1717 		mutex_exit(&udpf->uf_lock);
1718 		udp_err_ack(q, mp, TBADADDR, 0);
1719 		return;
1720 	}
1721 	udp->udp_state = TS_DATA_XFER;
1722 	mutex_exit(&udpf->uf_lock);
1723 
1724 	/*
1725 	 * Send down bind to IP to verify that there is a route
1726 	 * and to determine the source address.
1727 	 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
1728 	 */
1729 	if (udp->udp_family == AF_INET)
1730 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
1731 	else
1732 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
1733 	if (mp1 == NULL) {
1734 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1735 bind_failed:
1736 		mutex_enter(&udpf->uf_lock);
1737 		udp->udp_state = TS_IDLE;
1738 		mutex_exit(&udpf->uf_lock);
1739 		return;
1740 	}
1741 
1742 	/*
1743 	 * We also have to send a connection confirmation to
1744 	 * keep TLI happy. Prepare it for udp_rput.
1745 	 */
1746 	if (udp->udp_family == AF_INET)
1747 		mp2 = mi_tpi_conn_con(NULL, (char *)sin,
1748 		    sizeof (*sin), NULL, 0);
1749 	else
1750 		mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
1751 		    sizeof (*sin6), NULL, 0);
1752 	if (mp2 == NULL) {
1753 		freemsg(mp1);
1754 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1755 		goto bind_failed;
1756 	}
1757 
1758 	mp = mi_tpi_ok_ack_alloc(mp);
1759 	if (mp == NULL) {
1760 		/* Unable to reuse the T_CONN_REQ for the ack. */
1761 		freemsg(mp2);
1762 		udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
1763 		goto bind_failed;
1764 	}
1765 
1766 	/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
1767 	linkb(mp1, mp);
1768 	linkb(mp1, mp2);
1769 
1770 	if (udp->udp_family == AF_INET)
1771 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
1772 	else
1773 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
1774 
1775 	if (mp1 != NULL)
1776 		udp_rput_other(_RD(q), mp1);
1777 	else
1778 		CONN_INC_REF(udp->udp_connp);
1779 }
1780 
1781 static int
1782 udp_close(queue_t *q)
1783 {
1784 	conn_t	*connp = Q_TO_CONN(UDP_WR(q));
1785 	udp_t	*udp;
1786 	queue_t	*ip_rq = RD(UDP_WR(q));
1787 
1788 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1789 	udp = connp->conn_udp;
1790 
1791 	ip_quiesce_conn(connp);
1792 	/*
1793 	 * Disable read-side synchronous stream
1794 	 * interface and drain any queued data.
1795 	 */
1796 	udp_rcv_drain(q, udp, B_TRUE);
1797 	ASSERT(!udp->udp_direct_sockfs);
1798 
1799 	qprocsoff(q);
1800 
1801 	/* restore IP module's high and low water marks to default values */
1802 	ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat;
1803 	WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat;
1804 	WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat;
1805 
1806 	ASSERT(udp->udp_rcv_cnt == 0);
1807 	ASSERT(udp->udp_rcv_msgcnt == 0);
1808 	ASSERT(udp->udp_rcv_list_head == NULL);
1809 	ASSERT(udp->udp_rcv_list_tail == NULL);
1810 
1811 	/* connp is now single threaded. */
1812 	udp_close_free(connp);
1813 	/*
1814 	 * Restore connp as an IP endpoint.  We don't need
1815 	 * any locks since we are now single threaded
1816 	 */
1817 	connp->conn_flags &= ~IPCL_UDP;
1818 	connp->conn_state_flags &=
1819 	    ~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED);
1820 	return (0);
1821 }
1822 
1823 /*
1824  * Called in the close path from IP (ip_quiesce_conn) to quiesce the conn
1825  */
1826 void
1827 udp_quiesce_conn(conn_t *connp)
1828 {
1829 	udp_t	*udp = connp->conn_udp;
1830 
1831 	if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
1832 		/*
1833 		 * Running in cluster mode - register unbind information
1834 		 */
1835 		if (udp->udp_ipversion == IPV4_VERSION) {
1836 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
1837 			    (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
1838 			    (in_port_t)udp->udp_port);
1839 		} else {
1840 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
1841 			    (uint8_t *)(&(udp->udp_v6src)),
1842 			    (in_port_t)udp->udp_port);
1843 		}
1844 	}
1845 
1846 	udp_bind_hash_remove(udp, B_FALSE);
1847 
1848 	mutex_enter(&connp->conn_lock);
1849 	while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 ||
1850 	    udp->udp_mode != UDP_MT_HOT) {
1851 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1852 	}
1853 	mutex_exit(&connp->conn_lock);
1854 }
1855 
1856 void
1857 udp_close_free(conn_t *connp)
1858 {
1859 	udp_t *udp = connp->conn_udp;
1860 
1861 	/* If there are any options associated with the stream, free them. */
1862 	if (udp->udp_ip_snd_options) {
1863 		mi_free((char *)udp->udp_ip_snd_options);
1864 		udp->udp_ip_snd_options = NULL;
1865 	}
1866 
1867 	if (udp->udp_ip_rcv_options) {
1868 		mi_free((char *)udp->udp_ip_rcv_options);
1869 		udp->udp_ip_rcv_options = NULL;
1870 	}
1871 
1872 	/* Free memory associated with sticky options */
1873 	if (udp->udp_sticky_hdrs_len != 0) {
1874 		kmem_free(udp->udp_sticky_hdrs,
1875 		    udp->udp_sticky_hdrs_len);
1876 		udp->udp_sticky_hdrs = NULL;
1877 		udp->udp_sticky_hdrs_len = 0;
1878 	}
1879 
1880 	if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
1881 		kmem_free(udp->udp_sticky_ipp.ipp_hopopts,
1882 		    udp->udp_sticky_ipp.ipp_hopoptslen);
1883 		udp->udp_sticky_ipp.ipp_hopopts = NULL;
1884 	}
1885 	if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
1886 		kmem_free(udp->udp_sticky_ipp.ipp_rtdstopts,
1887 		    udp->udp_sticky_ipp.ipp_rtdstoptslen);
1888 		udp->udp_sticky_ipp.ipp_rtdstopts = NULL;
1889 	}
1890 	if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
1891 		kmem_free(udp->udp_sticky_ipp.ipp_rthdr,
1892 		    udp->udp_sticky_ipp.ipp_rthdrlen);
1893 		udp->udp_sticky_ipp.ipp_rthdr = NULL;
1894 	}
1895 	if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
1896 		kmem_free(udp->udp_sticky_ipp.ipp_dstopts,
1897 		    udp->udp_sticky_ipp.ipp_dstoptslen);
1898 		udp->udp_sticky_ipp.ipp_dstopts = NULL;
1899 	}
1900 	udp->udp_sticky_ipp.ipp_fields &=
1901 	    ~(IPPF_HOPOPTS|IPPF_RTDSTOPTS|IPPF_RTHDR|IPPF_DSTOPTS);
1902 
1903 	udp->udp_connp = NULL;
1904 	connp->conn_udp = NULL;
1905 	kmem_cache_free(udp_cache, udp);
1906 }
1907 
1908 /*
1909  * This routine handles each T_DISCON_REQ message passed to udp
1910  * as an indicating that UDP is no longer connected. This results
1911  * in sending a T_BIND_REQ to IP to restore the binding to just
1912  * the local address/port.
1913  *
1914  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1915  *	T_BIND_REQ	- specifying just the local address/port
1916  *	T_OK_ACK	- for the T_DISCON_REQ
1917  *
1918  * The disconnect completes in udp_rput.
1919  * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
1920  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
1921  * it to an error ack for the appropriate primitive.
1922  */
1923 static void
1924 udp_disconnect(queue_t *q, mblk_t *mp)
1925 {
1926 	udp_t	*udp = Q_TO_UDP(q);
1927 	mblk_t	*mp1;
1928 	udp_fanout_t *udpf;
1929 
1930 	if (udp->udp_state != TS_DATA_XFER) {
1931 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1932 		    "udp_disconnect: bad state, %u", udp->udp_state);
1933 		udp_err_ack(q, mp, TOUTSTATE, 0);
1934 		return;
1935 	}
1936 	udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
1937 	mutex_enter(&udpf->uf_lock);
1938 	udp->udp_v6src = udp->udp_bound_v6src;
1939 	udp->udp_state = TS_IDLE;
1940 	mutex_exit(&udpf->uf_lock);
1941 
1942 	/*
1943 	 * Send down bind to IP to remove the full binding and revert
1944 	 * to the local address binding.
1945 	 */
1946 	if (udp->udp_family == AF_INET)
1947 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
1948 	else
1949 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
1950 	if (mp1 == NULL) {
1951 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1952 		return;
1953 	}
1954 	mp = mi_tpi_ok_ack_alloc(mp);
1955 	if (mp == NULL) {
1956 		/* Unable to reuse the T_DISCON_REQ for the ack. */
1957 		udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
1958 		return;
1959 	}
1960 
1961 	if (udp->udp_family == AF_INET6) {
1962 		int error;
1963 
1964 		/* Rebuild the header template */
1965 		error = udp_build_hdrs(q, udp);
1966 		if (error != 0) {
1967 			udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
1968 			freemsg(mp1);
1969 			return;
1970 		}
1971 	}
1972 	mutex_enter(&udpf->uf_lock);
1973 	udp->udp_discon_pending = 1;
1974 	mutex_exit(&udpf->uf_lock);
1975 
1976 	/* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */
1977 	linkb(mp1, mp);
1978 
1979 	if (udp->udp_family == AF_INET6)
1980 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
1981 	else
1982 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
1983 
1984 	if (mp1 != NULL)
1985 		udp_rput_other(_RD(q), mp1);
1986 	else
1987 		CONN_INC_REF(udp->udp_connp);
1988 }
1989 
1990 /* This routine creates a T_ERROR_ACK message and passes it upstream. */
1991 static void
1992 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
1993 {
1994 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
1995 		putnext(UDP_RD(q), mp);
1996 }
1997 
1998 /* Shorthand to generate and send TPI error acks to our client */
1999 static void
2000 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
2001     int sys_error)
2002 {
2003 	struct T_error_ack	*teackp;
2004 
2005 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
2006 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
2007 		teackp = (struct T_error_ack *)mp->b_rptr;
2008 		teackp->ERROR_prim = primitive;
2009 		teackp->TLI_error = t_error;
2010 		teackp->UNIX_error = sys_error;
2011 		putnext(UDP_RD(q), mp);
2012 	}
2013 }
2014 
2015 /*ARGSUSED*/
2016 static int
2017 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
2018 {
2019 	int i;
2020 
2021 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2022 		if (udp_g_epriv_ports[i] != 0)
2023 			(void) mi_mpprintf(mp, "%d ", udp_g_epriv_ports[i]);
2024 	}
2025 	return (0);
2026 }
2027 
2028 /* ARGSUSED */
2029 static int
2030 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2031     cred_t *cr)
2032 {
2033 	long	new_value;
2034 	int	i;
2035 
2036 	/*
2037 	 * Fail the request if the new value does not lie within the
2038 	 * port number limits.
2039 	 */
2040 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2041 	    new_value <= 0 || new_value >= 65536) {
2042 		return (EINVAL);
2043 	}
2044 
2045 	/* Check if the value is already in the list */
2046 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2047 		if (new_value == udp_g_epriv_ports[i]) {
2048 			return (EEXIST);
2049 		}
2050 	}
2051 	/* Find an empty slot */
2052 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2053 		if (udp_g_epriv_ports[i] == 0)
2054 			break;
2055 	}
2056 	if (i == udp_g_num_epriv_ports) {
2057 		return (EOVERFLOW);
2058 	}
2059 
2060 	/* Set the new value */
2061 	udp_g_epriv_ports[i] = (in_port_t)new_value;
2062 	return (0);
2063 }
2064 
2065 /* ARGSUSED */
2066 static int
2067 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2068     cred_t *cr)
2069 {
2070 	long	new_value;
2071 	int	i;
2072 
2073 	/*
2074 	 * Fail the request if the new value does not lie within the
2075 	 * port number limits.
2076 	 */
2077 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2078 	    new_value <= 0 || new_value >= 65536) {
2079 		return (EINVAL);
2080 	}
2081 
2082 	/* Check that the value is already in the list */
2083 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2084 		if (udp_g_epriv_ports[i] == new_value)
2085 			break;
2086 	}
2087 	if (i == udp_g_num_epriv_ports) {
2088 		return (ESRCH);
2089 	}
2090 
2091 	/* Clear the value */
2092 	udp_g_epriv_ports[i] = 0;
2093 	return (0);
2094 }
2095 
2096 /* At minimum we need 4 bytes of UDP header */
2097 #define	ICMP_MIN_UDP_HDR	4
2098 
2099 /*
2100  * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP.
2101  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2102  * Assumes that IP has pulled up everything up to and including the ICMP header.
2103  * An M_CTL could potentially come here from some other module (i.e. if UDP
2104  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2105  * does not have enough ICMP information , following STREAMS conventions,
2106  * we send it upstream assuming it is an M_CTL we don't understand.
2107  */
2108 static void
2109 udp_icmp_error(queue_t *q, mblk_t *mp)
2110 {
2111 	icmph_t *icmph;
2112 	ipha_t	*ipha;
2113 	int	iph_hdr_length;
2114 	udpha_t	*udpha;
2115 	sin_t	sin;
2116 	sin6_t	sin6;
2117 	mblk_t	*mp1;
2118 	int	error = 0;
2119 	size_t	mp_size = MBLKL(mp);
2120 	udp_t	*udp = Q_TO_UDP(q);
2121 
2122 	/*
2123 	 * Assume IP provides aligned packets - otherwise toss
2124 	 */
2125 	if (!OK_32PTR(mp->b_rptr)) {
2126 		freemsg(mp);
2127 		return;
2128 	}
2129 
2130 	/*
2131 	 * Verify that we have a complete IP header and the application has
2132 	 * asked for errors. If not, send it upstream.
2133 	 */
2134 	if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) {
2135 noticmpv4:
2136 		putnext(UDP_RD(q), mp);
2137 		return;
2138 	}
2139 
2140 	ipha = (ipha_t *)mp->b_rptr;
2141 	/*
2142 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
2143 	 * upstream. ICMPv6  is handled in udp_icmp_error_ipv6.
2144 	 */
2145 	switch (IPH_HDR_VERSION(ipha)) {
2146 	case IPV6_VERSION:
2147 		udp_icmp_error_ipv6(q, mp);
2148 		return;
2149 	case IPV4_VERSION:
2150 		break;
2151 	default:
2152 		goto noticmpv4;
2153 	}
2154 
2155 	/* Skip past the outer IP and ICMP headers */
2156 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2157 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2158 	/*
2159 	 * If we don't have the correct outer IP header length or if the ULP
2160 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
2161 	 * send the packet upstream.
2162 	 */
2163 	if (iph_hdr_length < sizeof (ipha_t) ||
2164 	    ipha->ipha_protocol != IPPROTO_ICMP ||
2165 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
2166 		goto noticmpv4;
2167 	}
2168 	ipha = (ipha_t *)&icmph[1];
2169 
2170 	/* Skip past the inner IP and find the ULP header */
2171 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2172 	udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
2173 	/*
2174 	 * If we don't have the correct inner IP header length or if the ULP
2175 	 * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR
2176 	 * bytes of UDP header, send it upstream.
2177 	 */
2178 	if (iph_hdr_length < sizeof (ipha_t) ||
2179 	    ipha->ipha_protocol != IPPROTO_UDP ||
2180 	    (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) {
2181 		goto noticmpv4;
2182 	}
2183 
2184 	switch (icmph->icmph_type) {
2185 	case ICMP_DEST_UNREACHABLE:
2186 		switch (icmph->icmph_code) {
2187 		case ICMP_FRAGMENTATION_NEEDED:
2188 			/*
2189 			 * IP has already adjusted the path MTU.
2190 			 * XXX Somehow pass MTU indication to application?
2191 			 */
2192 			break;
2193 		case ICMP_PORT_UNREACHABLE:
2194 		case ICMP_PROTOCOL_UNREACHABLE:
2195 			error = ECONNREFUSED;
2196 			break;
2197 		default:
2198 			/* Transient errors */
2199 			break;
2200 		}
2201 		break;
2202 	default:
2203 		/* Transient errors */
2204 		break;
2205 	}
2206 	if (error == 0) {
2207 		freemsg(mp);
2208 		return;
2209 	}
2210 
2211 	switch (udp->udp_family) {
2212 	case AF_INET:
2213 		sin = sin_null;
2214 		sin.sin_family = AF_INET;
2215 		sin.sin_addr.s_addr = ipha->ipha_dst;
2216 		sin.sin_port = udpha->uha_dst_port;
2217 		mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
2218 		    error);
2219 		break;
2220 	case AF_INET6:
2221 		sin6 = sin6_null;
2222 		sin6.sin6_family = AF_INET6;
2223 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
2224 		sin6.sin6_port = udpha->uha_dst_port;
2225 
2226 		mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
2227 		    NULL, 0, error);
2228 		break;
2229 	}
2230 	if (mp1)
2231 		putnext(UDP_RD(q), mp1);
2232 	freemsg(mp);
2233 }
2234 
2235 /*
2236  * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
2237  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2238  * Assumes that IP has pulled up all the extension headers as well as the
2239  * ICMPv6 header.
2240  * An M_CTL could potentially come here from some other module (i.e. if UDP
2241  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2242  * does not have enough ICMP information , following STREAMS conventions,
2243  * we send it upstream assuming it is an M_CTL we don't understand. The reason
2244  * it might get here is if the non-ICMP M_CTL accidently has 6 in the version
2245  * field (when cast to ipha_t in udp_icmp_error).
2246  */
2247 static void
2248 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
2249 {
2250 	icmp6_t		*icmp6;
2251 	ip6_t		*ip6h, *outer_ip6h;
2252 	uint16_t	hdr_length;
2253 	uint8_t		*nexthdrp;
2254 	udpha_t		*udpha;
2255 	sin6_t		sin6;
2256 	mblk_t		*mp1;
2257 	int		error = 0;
2258 	size_t		mp_size = MBLKL(mp);
2259 	udp_t		*udp = Q_TO_UDP(q);
2260 
2261 	/*
2262 	 * Verify that we have a complete IP header. If not, send it upstream.
2263 	 */
2264 	if (mp_size < sizeof (ip6_t)) {
2265 noticmpv6:
2266 		putnext(UDP_RD(q), mp);
2267 		return;
2268 	}
2269 
2270 	outer_ip6h = (ip6_t *)mp->b_rptr;
2271 	/*
2272 	 * Verify this is an ICMPV6 packet, else send it upstream
2273 	 */
2274 	if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) {
2275 		hdr_length = IPV6_HDR_LEN;
2276 	} else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length,
2277 	    &nexthdrp) ||
2278 	    *nexthdrp != IPPROTO_ICMPV6) {
2279 		goto noticmpv6;
2280 	}
2281 	icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length];
2282 	ip6h = (ip6_t *)&icmp6[1];
2283 	/*
2284 	 * Verify we have a complete ICMP and inner IP header.
2285 	 */
2286 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
2287 		goto noticmpv6;
2288 
2289 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp))
2290 		goto noticmpv6;
2291 	udpha = (udpha_t *)((char *)ip6h + hdr_length);
2292 	/*
2293 	 * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't
2294 	 * have at least ICMP_MIN_UDP_HDR bytes of  UDP header send the
2295 	 * packet upstream.
2296 	 */
2297 	if ((*nexthdrp != IPPROTO_UDP) ||
2298 	    ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) {
2299 		goto noticmpv6;
2300 	}
2301 
2302 	switch (icmp6->icmp6_type) {
2303 	case ICMP6_DST_UNREACH:
2304 		switch (icmp6->icmp6_code) {
2305 		case ICMP6_DST_UNREACH_NOPORT:
2306 			error = ECONNREFUSED;
2307 			break;
2308 		case ICMP6_DST_UNREACH_ADMIN:
2309 		case ICMP6_DST_UNREACH_NOROUTE:
2310 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
2311 		case ICMP6_DST_UNREACH_ADDR:
2312 			/* Transient errors */
2313 			break;
2314 		default:
2315 			break;
2316 		}
2317 		break;
2318 	case ICMP6_PACKET_TOO_BIG: {
2319 		struct T_unitdata_ind	*tudi;
2320 		struct T_opthdr		*toh;
2321 		size_t			udi_size;
2322 		mblk_t			*newmp;
2323 		t_scalar_t		opt_length = sizeof (struct T_opthdr) +
2324 		    sizeof (struct ip6_mtuinfo);
2325 		sin6_t			*sin6;
2326 		struct ip6_mtuinfo	*mtuinfo;
2327 
2328 		/*
2329 		 * If the application has requested to receive path mtu
2330 		 * information, send up an empty message containing an
2331 		 * IPV6_PATHMTU ancillary data item.
2332 		 */
2333 		if (!udp->udp_ipv6_recvpathmtu)
2334 			break;
2335 
2336 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
2337 		    opt_length;
2338 		if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
2339 			BUMP_MIB(&udp_mib, udpInErrors);
2340 			break;
2341 		}
2342 
2343 		/*
2344 		 * newmp->b_cont is left to NULL on purpose.  This is an
2345 		 * empty message containing only ancillary data.
2346 		 */
2347 		newmp->b_datap->db_type = M_PROTO;
2348 		tudi = (struct T_unitdata_ind *)newmp->b_rptr;
2349 		newmp->b_wptr = (uchar_t *)tudi + udi_size;
2350 		tudi->PRIM_type = T_UNITDATA_IND;
2351 		tudi->SRC_length = sizeof (sin6_t);
2352 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
2353 		tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
2354 		tudi->OPT_length = opt_length;
2355 
2356 		sin6 = (sin6_t *)&tudi[1];
2357 		bzero(sin6, sizeof (sin6_t));
2358 		sin6->sin6_family = AF_INET6;
2359 		sin6->sin6_addr = udp->udp_v6dst;
2360 
2361 		toh = (struct T_opthdr *)&sin6[1];
2362 		toh->level = IPPROTO_IPV6;
2363 		toh->name = IPV6_PATHMTU;
2364 		toh->len = opt_length;
2365 		toh->status = 0;
2366 
2367 		mtuinfo = (struct ip6_mtuinfo *)&toh[1];
2368 		bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
2369 		mtuinfo->ip6m_addr.sin6_family = AF_INET6;
2370 		mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
2371 		mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
2372 		/*
2373 		 * We've consumed everything we need from the original
2374 		 * message.  Free it, then send our empty message.
2375 		 */
2376 		freemsg(mp);
2377 		putnext(UDP_RD(q), newmp);
2378 		return;
2379 	}
2380 	case ICMP6_TIME_EXCEEDED:
2381 		/* Transient errors */
2382 		break;
2383 	case ICMP6_PARAM_PROB:
2384 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
2385 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
2386 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
2387 		    (uchar_t *)nexthdrp) {
2388 			error = ECONNREFUSED;
2389 			break;
2390 		}
2391 		break;
2392 	}
2393 	if (error == 0) {
2394 		freemsg(mp);
2395 		return;
2396 	}
2397 
2398 	sin6 = sin6_null;
2399 	sin6.sin6_family = AF_INET6;
2400 	sin6.sin6_addr = ip6h->ip6_dst;
2401 	sin6.sin6_port = udpha->uha_dst_port;
2402 	sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
2403 
2404 	mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
2405 	    error);
2406 	if (mp1)
2407 		putnext(UDP_RD(q), mp1);
2408 	freemsg(mp);
2409 }
2410 
2411 /*
2412  * This routine responds to T_ADDR_REQ messages.  It is called by udp_wput.
2413  * The local address is filled in if endpoint is bound. The remote address
2414  * is filled in if remote address has been precified ("connected endpoint")
2415  * (The concept of connected CLTS sockets is alien to published TPI
2416  *  but we support it anyway).
2417  */
2418 static void
2419 udp_addr_req(queue_t *q, mblk_t *mp)
2420 {
2421 	sin_t	*sin;
2422 	sin6_t	*sin6;
2423 	mblk_t	*ackmp;
2424 	struct T_addr_ack *taa;
2425 	udp_t	*udp = Q_TO_UDP(q);
2426 
2427 	/* Make it large enough for worst case */
2428 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2429 	    2 * sizeof (sin6_t), 1);
2430 	if (ackmp == NULL) {
2431 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2432 		return;
2433 	}
2434 	taa = (struct T_addr_ack *)ackmp->b_rptr;
2435 
2436 	bzero(taa, sizeof (struct T_addr_ack));
2437 	ackmp->b_wptr = (uchar_t *)&taa[1];
2438 
2439 	taa->PRIM_type = T_ADDR_ACK;
2440 	ackmp->b_datap->db_type = M_PCPROTO;
2441 	/*
2442 	 * Note: Following code assumes 32 bit alignment of basic
2443 	 * data structures like sin_t and struct T_addr_ack.
2444 	 */
2445 	if (udp->udp_state != TS_UNBND) {
2446 		/*
2447 		 * Fill in local address first
2448 		 */
2449 		taa->LOCADDR_offset = sizeof (*taa);
2450 		if (udp->udp_family == AF_INET) {
2451 			taa->LOCADDR_length = sizeof (sin_t);
2452 			sin = (sin_t *)&taa[1];
2453 			/* Fill zeroes and then initialize non-zero fields */
2454 			*sin = sin_null;
2455 			sin->sin_family = AF_INET;
2456 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
2457 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2458 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
2459 				    sin->sin_addr.s_addr);
2460 			} else {
2461 				/*
2462 				 * INADDR_ANY
2463 				 * udp_v6src is not set, we might be bound to
2464 				 * broadcast/multicast. Use udp_bound_v6src as
2465 				 * local address instead (that could
2466 				 * also still be INADDR_ANY)
2467 				 */
2468 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
2469 				    sin->sin_addr.s_addr);
2470 			}
2471 			sin->sin_port = udp->udp_port;
2472 			ackmp->b_wptr = (uchar_t *)&sin[1];
2473 			if (udp->udp_state == TS_DATA_XFER) {
2474 				/*
2475 				 * connected, fill remote address too
2476 				 */
2477 				taa->REMADDR_length = sizeof (sin_t);
2478 				/* assumed 32-bit alignment */
2479 				taa->REMADDR_offset = taa->LOCADDR_offset +
2480 				    taa->LOCADDR_length;
2481 
2482 				sin = (sin_t *)(ackmp->b_rptr +
2483 				    taa->REMADDR_offset);
2484 				/* initialize */
2485 				*sin = sin_null;
2486 				sin->sin_family = AF_INET;
2487 				sin->sin_addr.s_addr =
2488 				    V4_PART_OF_V6(udp->udp_v6dst);
2489 				sin->sin_port = udp->udp_dstport;
2490 				ackmp->b_wptr = (uchar_t *)&sin[1];
2491 			}
2492 		} else {
2493 			taa->LOCADDR_length = sizeof (sin6_t);
2494 			sin6 = (sin6_t *)&taa[1];
2495 			/* Fill zeroes and then initialize non-zero fields */
2496 			*sin6 = sin6_null;
2497 			sin6->sin6_family = AF_INET6;
2498 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2499 				sin6->sin6_addr = udp->udp_v6src;
2500 			} else {
2501 				/*
2502 				 * UNSPECIFIED
2503 				 * udp_v6src is not set, we might be bound to
2504 				 * broadcast/multicast. Use udp_bound_v6src as
2505 				 * local address instead (that could
2506 				 * also still be UNSPECIFIED)
2507 				 */
2508 				sin6->sin6_addr =
2509 				    udp->udp_bound_v6src;
2510 			}
2511 			sin6->sin6_port = udp->udp_port;
2512 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2513 			if (udp->udp_state == TS_DATA_XFER) {
2514 				/*
2515 				 * connected, fill remote address too
2516 				 */
2517 				taa->REMADDR_length = sizeof (sin6_t);
2518 				/* assumed 32-bit alignment */
2519 				taa->REMADDR_offset = taa->LOCADDR_offset +
2520 				    taa->LOCADDR_length;
2521 
2522 				sin6 = (sin6_t *)(ackmp->b_rptr +
2523 				    taa->REMADDR_offset);
2524 				/* initialize */
2525 				*sin6 = sin6_null;
2526 				sin6->sin6_family = AF_INET6;
2527 				sin6->sin6_addr = udp->udp_v6dst;
2528 				sin6->sin6_port =  udp->udp_dstport;
2529 				ackmp->b_wptr = (uchar_t *)&sin6[1];
2530 			}
2531 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2532 		}
2533 	}
2534 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
2535 	putnext(UDP_RD(q), ackmp);
2536 }
2537 
2538 static void
2539 udp_copy_info(struct T_info_ack *tap, udp_t *udp)
2540 {
2541 	if (udp->udp_family == AF_INET) {
2542 		*tap = udp_g_t_info_ack_ipv4;
2543 	} else {
2544 		*tap = udp_g_t_info_ack_ipv6;
2545 	}
2546 	tap->CURRENT_state = udp->udp_state;
2547 	tap->OPT_size = udp_max_optsize;
2548 }
2549 
2550 /*
2551  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
2552  * udp_wput.  Much of the T_CAPABILITY_ACK information is copied from
2553  * udp_g_t_info_ack.  The current state of the stream is copied from
2554  * udp_state.
2555  */
2556 static void
2557 udp_capability_req(queue_t *q, mblk_t *mp)
2558 {
2559 	t_uscalar_t		cap_bits1;
2560 	struct T_capability_ack	*tcap;
2561 	udp_t	*udp = Q_TO_UDP(q);
2562 
2563 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
2564 
2565 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
2566 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
2567 	if (!mp)
2568 		return;
2569 
2570 	tcap = (struct T_capability_ack *)mp->b_rptr;
2571 	tcap->CAP_bits1 = 0;
2572 
2573 	if (cap_bits1 & TC1_INFO) {
2574 		udp_copy_info(&tcap->INFO_ack, udp);
2575 		tcap->CAP_bits1 |= TC1_INFO;
2576 	}
2577 
2578 	putnext(UDP_RD(q), mp);
2579 }
2580 
2581 /*
2582  * This routine responds to T_INFO_REQ messages.  It is called by udp_wput.
2583  * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
2584  * The current state of the stream is copied from udp_state.
2585  */
2586 static void
2587 udp_info_req(queue_t *q, mblk_t *mp)
2588 {
2589 	udp_t *udp = Q_TO_UDP(q);
2590 
2591 	/* Create a T_INFO_ACK message. */
2592 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
2593 	    T_INFO_ACK);
2594 	if (!mp)
2595 		return;
2596 	udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
2597 	putnext(UDP_RD(q), mp);
2598 }
2599 
2600 /*
2601  * IP recognizes seven kinds of bind requests:
2602  *
2603  * - A zero-length address binds only to the protocol number.
2604  *
2605  * - A 4-byte address is treated as a request to
2606  * validate that the address is a valid local IPv4
2607  * address, appropriate for an application to bind to.
2608  * IP does the verification, but does not make any note
2609  * of the address at this time.
2610  *
2611  * - A 16-byte address contains is treated as a request
2612  * to validate a local IPv6 address, as the 4-byte
2613  * address case above.
2614  *
2615  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
2616  * use it for the inbound fanout of packets.
2617  *
2618  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
2619  * use it for the inbound fanout of packets.
2620  *
2621  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
2622  * information consisting of local and remote addresses
2623  * and ports.  In this case, the addresses are both
2624  * validated as appropriate for this operation, and, if
2625  * so, the information is retained for use in the
2626  * inbound fanout.
2627  *
2628  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
2629  * fanout information, like the 12-byte case above.
2630  *
2631  * IP will also fill in the IRE request mblk with information
2632  * regarding our peer.  In all cases, we notify IP of our protocol
2633  * type by appending a single protocol byte to the bind request.
2634  */
2635 static mblk_t *
2636 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
2637 {
2638 	char	*cp;
2639 	mblk_t	*mp;
2640 	struct T_bind_req *tbr;
2641 	ipa_conn_t	*ac;
2642 	ipa6_conn_t	*ac6;
2643 	sin_t		*sin;
2644 	sin6_t		*sin6;
2645 
2646 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
2647 
2648 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
2649 	if (!mp)
2650 		return (mp);
2651 	mp->b_datap->db_type = M_PROTO;
2652 	tbr = (struct T_bind_req *)mp->b_rptr;
2653 	tbr->PRIM_type = bind_prim;
2654 	tbr->ADDR_offset = sizeof (*tbr);
2655 	tbr->CONIND_number = 0;
2656 	tbr->ADDR_length = addr_length;
2657 	cp = (char *)&tbr[1];
2658 	switch (addr_length) {
2659 	case sizeof (ipa_conn_t):
2660 		ASSERT(udp->udp_family == AF_INET);
2661 		/* Append a request for an IRE */
2662 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2663 		if (!mp->b_cont) {
2664 			freemsg(mp);
2665 			return (NULL);
2666 		}
2667 		mp->b_cont->b_wptr += sizeof (ire_t);
2668 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2669 
2670 		/* cp known to be 32 bit aligned */
2671 		ac = (ipa_conn_t *)cp;
2672 		ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
2673 		ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
2674 		ac->ac_fport = udp->udp_dstport;
2675 		ac->ac_lport = udp->udp_port;
2676 		break;
2677 
2678 	case sizeof (ipa6_conn_t):
2679 		ASSERT(udp->udp_family == AF_INET6);
2680 		/* Append a request for an IRE */
2681 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2682 		if (!mp->b_cont) {
2683 			freemsg(mp);
2684 			return (NULL);
2685 		}
2686 		mp->b_cont->b_wptr += sizeof (ire_t);
2687 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2688 
2689 		/* cp known to be 32 bit aligned */
2690 		ac6 = (ipa6_conn_t *)cp;
2691 		ac6->ac6_laddr = udp->udp_v6src;
2692 		ac6->ac6_faddr = udp->udp_v6dst;
2693 		ac6->ac6_fport = udp->udp_dstport;
2694 		ac6->ac6_lport = udp->udp_port;
2695 		break;
2696 
2697 	case sizeof (sin_t):
2698 		ASSERT(udp->udp_family == AF_INET);
2699 		/* Append a request for an IRE */
2700 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2701 		if (!mp->b_cont) {
2702 			freemsg(mp);
2703 			return (NULL);
2704 		}
2705 		mp->b_cont->b_wptr += sizeof (ire_t);
2706 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2707 
2708 		sin = (sin_t *)cp;
2709 		*sin = sin_null;
2710 		sin->sin_family = AF_INET;
2711 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
2712 		sin->sin_port = udp->udp_port;
2713 		break;
2714 
2715 	case sizeof (sin6_t):
2716 		ASSERT(udp->udp_family == AF_INET6);
2717 		/* Append a request for an IRE */
2718 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2719 		if (!mp->b_cont) {
2720 			freemsg(mp);
2721 			return (NULL);
2722 		}
2723 		mp->b_cont->b_wptr += sizeof (ire_t);
2724 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2725 
2726 		sin6 = (sin6_t *)cp;
2727 		*sin6 = sin6_null;
2728 		sin6->sin6_family = AF_INET6;
2729 		sin6->sin6_addr = udp->udp_bound_v6src;
2730 		sin6->sin6_port = udp->udp_port;
2731 		break;
2732 	}
2733 	/* Add protocol number to end */
2734 	cp[addr_length] = (char)IPPROTO_UDP;
2735 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
2736 	return (mp);
2737 }
2738 
2739 /*
2740  * This is the open routine for udp.  It allocates a udp_t structure for
2741  * the stream and, on the first open of the module, creates an ND table.
2742  */
2743 /* ARGSUSED */
2744 static int
2745 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2746 {
2747 	int	err;
2748 	udp_t	*udp;
2749 	conn_t *connp;
2750 	zoneid_t zoneid = getzoneid();
2751 	queue_t	*ip_wq;
2752 	char	*name;
2753 
2754 	TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
2755 
2756 	/* If the stream is already open, return immediately. */
2757 	if (q->q_ptr != NULL)
2758 		return (0);
2759 
2760 	/* If this is not a push of udp as a module, fail. */
2761 	if (sflag != MODOPEN)
2762 		return (EINVAL);
2763 
2764 	q->q_hiwat = udp_recv_hiwat;
2765 	WR(q)->q_hiwat = udp_xmit_hiwat;
2766 	WR(q)->q_lowat = udp_xmit_lowat;
2767 
2768 	/* Insert ourselves in the stream since we're about to walk q_next */
2769 	qprocson(q);
2770 
2771 	udp = kmem_cache_alloc(udp_cache, KM_SLEEP);
2772 	bzero(udp, sizeof (*udp));
2773 
2774 	/*
2775 	 * UDP is supported only as a module and it has to be pushed directly
2776 	 * above the device instance of IP. If UDP is pushed anywhere else
2777 	 * on a stream, it will support just T_SVR4_OPTMGMT_REQ for the
2778 	 * sake of MIB browsers and fail everything else.
2779 	 */
2780 	ip_wq = WR(q)->q_next;
2781 	if (ip_wq->q_next != NULL ||
2782 	    (name = ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL ||
2783 	    strcmp(name, IP_MOD_NAME) != 0 ||
2784 	    ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) {
2785 		/* Support just SNMP for MIB browsers */
2786 		connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP);
2787 		connp->conn_rq = q;
2788 		connp->conn_wq = WR(q);
2789 		connp->conn_flags |= IPCL_UDPMOD;
2790 		connp->conn_cred = credp;
2791 		connp->conn_zoneid = zoneid;
2792 		connp->conn_udp = udp;
2793 		udp->udp_connp = connp;
2794 		q->q_ptr = WR(q)->q_ptr = connp;
2795 		crhold(credp);
2796 		q->q_qinfo = &udp_snmp_rinit;
2797 		WR(q)->q_qinfo = &udp_snmp_winit;
2798 		return (0);
2799 	}
2800 
2801 	/*
2802 	 * Initialize the udp_t structure for this stream.
2803 	 */
2804 	q = RD(ip_wq);
2805 	connp = Q_TO_CONN(q);
2806 	mutex_enter(&connp->conn_lock);
2807 	connp->conn_proto = IPPROTO_UDP;
2808 	connp->conn_flags |= IPCL_UDP;
2809 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
2810 	connp->conn_udp = udp;
2811 
2812 	/* Set the initial state of the stream and the privilege status. */
2813 	udp->udp_connp = connp;
2814 	udp->udp_state = TS_UNBND;
2815 	udp->udp_mode = UDP_MT_HOT;
2816 	if (getmajor(*devp) == (major_t)UDP6_MAJ) {
2817 		udp->udp_family = AF_INET6;
2818 		udp->udp_ipversion = IPV6_VERSION;
2819 		udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
2820 		udp->udp_ttl = udp_ipv6_hoplimit;
2821 		connp->conn_af_isv6 = B_TRUE;
2822 		connp->conn_flags |= IPCL_ISV6;
2823 	} else {
2824 		udp->udp_family = AF_INET;
2825 		udp->udp_ipversion = IPV4_VERSION;
2826 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
2827 		udp->udp_ttl = udp_ipv4_ttl;
2828 		connp->conn_af_isv6 = B_FALSE;
2829 		connp->conn_flags &= ~IPCL_ISV6;
2830 	}
2831 
2832 	udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2833 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
2834 	connp->conn_zoneid = zoneid;
2835 
2836 	if (connp->conn_flags & IPCL_SOCKET) {
2837 		udp->udp_issocket = B_TRUE;
2838 		udp->udp_direct_sockfs = B_TRUE;
2839 	}
2840 	mutex_exit(&connp->conn_lock);
2841 
2842 	/*
2843 	 * The transmit hiwat/lowat is only looked at on IP's queue.
2844 	 * Store in q_hiwat in order to return on SO_SNDBUF/SO_RCVBUF
2845 	 * getsockopts.
2846 	 */
2847 	q->q_hiwat = udp_recv_hiwat;
2848 	WR(q)->q_hiwat = udp_xmit_hiwat;
2849 	WR(q)->q_lowat = udp_xmit_lowat;
2850 
2851 	if (udp->udp_family == AF_INET6) {
2852 		/* Build initial header template for transmit */
2853 		if ((err = udp_build_hdrs(q, udp)) != 0) {
2854 			qprocsoff(UDP_RD(q));
2855 			udp->udp_connp = NULL;
2856 			connp->conn_udp = NULL;
2857 			kmem_cache_free(udp_cache, udp);
2858 			return (err);
2859 		}
2860 	}
2861 
2862 	/* Set the Stream head write offset and high watermark. */
2863 	(void) mi_set_sth_wroff(UDP_RD(q),
2864 	    udp->udp_max_hdr_len + udp_wroff_extra);
2865 	(void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, q->q_hiwat));
2866 
2867 	WR(UDP_RD(q))->q_qinfo = &udp_winit;
2868 
2869 	return (0);
2870 }
2871 
2872 /*
2873  * Which UDP options OK to set through T_UNITDATA_REQ...
2874  */
2875 /* ARGSUSED */
2876 static boolean_t
2877 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
2878 {
2879 	return (B_TRUE);
2880 }
2881 
2882 /*
2883  * This routine gets default values of certain options whose default
2884  * values are maintained by protcol specific code
2885  */
2886 /* ARGSUSED */
2887 int
2888 udp_opt_default(queue_t	*q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2889 {
2890 	int *i1 = (int *)ptr;
2891 
2892 	switch (level) {
2893 	case IPPROTO_IP:
2894 		switch (name) {
2895 		case IP_MULTICAST_TTL:
2896 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
2897 			return (sizeof (uchar_t));
2898 		case IP_MULTICAST_LOOP:
2899 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
2900 			return (sizeof (uchar_t));
2901 		}
2902 		break;
2903 	case IPPROTO_IPV6:
2904 		switch (name) {
2905 		case IPV6_MULTICAST_HOPS:
2906 			*i1 = IP_DEFAULT_MULTICAST_TTL;
2907 			return (sizeof (int));
2908 		case IPV6_MULTICAST_LOOP:
2909 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
2910 			return (sizeof (int));
2911 		case IPV6_UNICAST_HOPS:
2912 			*i1 = udp_ipv6_hoplimit;
2913 			return (sizeof (int));
2914 		}
2915 		break;
2916 	}
2917 	return (-1);
2918 }
2919 
2920 /*
2921  * This routine retrieves the current status of socket options
2922  * and expects the caller to pass in the queue pointer of the
2923  * upper instance.  It returns the size of the option retrieved.
2924  */
2925 int
2926 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2927 {
2928 	int	*i1 = (int *)ptr;
2929 	conn_t	*connp;
2930 	udp_t	*udp;
2931 	ip6_pkt_t *ipp;
2932 
2933 	q = UDP_WR(q);
2934 	connp = Q_TO_CONN(q);
2935 	udp = connp->conn_udp;
2936 	ipp = &udp->udp_sticky_ipp;
2937 
2938 	switch (level) {
2939 	case SOL_SOCKET:
2940 		switch (name) {
2941 		case SO_DEBUG:
2942 			*i1 = udp->udp_debug;
2943 			break;	/* goto sizeof (int) option return */
2944 		case SO_REUSEADDR:
2945 			*i1 = udp->udp_reuseaddr;
2946 			break;	/* goto sizeof (int) option return */
2947 		case SO_TYPE:
2948 			*i1 = SOCK_DGRAM;
2949 			break;	/* goto sizeof (int) option return */
2950 
2951 		/*
2952 		 * The following three items are available here,
2953 		 * but are only meaningful to IP.
2954 		 */
2955 		case SO_DONTROUTE:
2956 			*i1 = udp->udp_dontroute;
2957 			break;	/* goto sizeof (int) option return */
2958 		case SO_USELOOPBACK:
2959 			*i1 = udp->udp_useloopback;
2960 			break;	/* goto sizeof (int) option return */
2961 		case SO_BROADCAST:
2962 			*i1 = udp->udp_broadcast;
2963 			break;	/* goto sizeof (int) option return */
2964 
2965 		case SO_SNDBUF:
2966 			*i1 = q->q_hiwat;
2967 			break;	/* goto sizeof (int) option return */
2968 		case SO_RCVBUF:
2969 			*i1 = RD(q)->q_hiwat;
2970 			break;	/* goto sizeof (int) option return */
2971 		case SO_DGRAM_ERRIND:
2972 			*i1 = udp->udp_dgram_errind;
2973 			break;	/* goto sizeof (int) option return */
2974 		case SO_RECVUCRED:
2975 			*i1 = udp->udp_recvucred;
2976 			break;	/* goto sizeof (int) option return */
2977 		default:
2978 			return (-1);
2979 		}
2980 		break;
2981 	case IPPROTO_IP:
2982 		if (udp->udp_family != AF_INET)
2983 			return (-1);
2984 		switch (name) {
2985 		case IP_OPTIONS:
2986 		case T_IP_OPTIONS:
2987 			if (udp->udp_ip_rcv_options_len)
2988 				bcopy(udp->udp_ip_rcv_options, ptr,
2989 				    udp->udp_ip_rcv_options_len);
2990 			return (udp->udp_ip_rcv_options_len);
2991 		case IP_TOS:
2992 		case T_IP_TOS:
2993 			*i1 = (int)udp->udp_type_of_service;
2994 			break;	/* goto sizeof (int) option return */
2995 		case IP_TTL:
2996 			*i1 = (int)udp->udp_ttl;
2997 			break;	/* goto sizeof (int) option return */
2998 		case IP_NEXTHOP:
2999 			/* Handled at IP level */
3000 			return (-EINVAL);
3001 		case IP_MULTICAST_IF:
3002 			/* 0 address if not set */
3003 			*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
3004 			return (sizeof (ipaddr_t));
3005 		case IP_MULTICAST_TTL:
3006 			*(uchar_t *)ptr = udp->udp_multicast_ttl;
3007 			return (sizeof (uchar_t));
3008 		case IP_MULTICAST_LOOP:
3009 			*ptr = connp->conn_multicast_loop;
3010 			return (sizeof (uint8_t));
3011 		case IP_RECVOPTS:
3012 			*i1 = udp->udp_recvopts;
3013 			break;	/* goto sizeof (int) option return */
3014 		case IP_RECVDSTADDR:
3015 			*i1 = udp->udp_recvdstaddr;
3016 			break;	/* goto sizeof (int) option return */
3017 		case IP_RECVIF:
3018 			*i1 = udp->udp_recvif;
3019 			break;	/* goto sizeof (int) option return */
3020 		case IP_RECVSLLA:
3021 			*i1 = udp->udp_recvslla;
3022 			break;	/* goto sizeof (int) option return */
3023 		case IP_RECVTTL:
3024 			*i1 = udp->udp_recvttl;
3025 			break;	/* goto sizeof (int) option return */
3026 		case IP_ADD_MEMBERSHIP:
3027 		case IP_DROP_MEMBERSHIP:
3028 		case IP_BLOCK_SOURCE:
3029 		case IP_UNBLOCK_SOURCE:
3030 		case IP_ADD_SOURCE_MEMBERSHIP:
3031 		case IP_DROP_SOURCE_MEMBERSHIP:
3032 		case MCAST_JOIN_GROUP:
3033 		case MCAST_LEAVE_GROUP:
3034 		case MCAST_BLOCK_SOURCE:
3035 		case MCAST_UNBLOCK_SOURCE:
3036 		case MCAST_JOIN_SOURCE_GROUP:
3037 		case MCAST_LEAVE_SOURCE_GROUP:
3038 		case IP_DONTFAILOVER_IF:
3039 			/* cannot "get" the value for these */
3040 			return (-1);
3041 		case IP_BOUND_IF:
3042 			/* Zero if not set */
3043 			*i1 = udp->udp_bound_if;
3044 			break;	/* goto sizeof (int) option return */
3045 		case IP_UNSPEC_SRC:
3046 			*i1 = udp->udp_unspec_source;
3047 			break;	/* goto sizeof (int) option return */
3048 		case IP_XMIT_IF:
3049 			*i1 = udp->udp_xmit_if;
3050 			break; /* goto sizeof (int) option return */
3051 		default:
3052 			return (-1);
3053 		}
3054 		break;
3055 	case IPPROTO_IPV6:
3056 		if (udp->udp_family != AF_INET6)
3057 			return (-1);
3058 		switch (name) {
3059 		case IPV6_UNICAST_HOPS:
3060 			*i1 = (unsigned int)udp->udp_ttl;
3061 			break;	/* goto sizeof (int) option return */
3062 		case IPV6_MULTICAST_IF:
3063 			/* 0 index if not set */
3064 			*i1 = udp->udp_multicast_if_index;
3065 			break;	/* goto sizeof (int) option return */
3066 		case IPV6_MULTICAST_HOPS:
3067 			*i1 = udp->udp_multicast_ttl;
3068 			break;	/* goto sizeof (int) option return */
3069 		case IPV6_MULTICAST_LOOP:
3070 			*i1 = connp->conn_multicast_loop;
3071 			break;	/* goto sizeof (int) option return */
3072 		case IPV6_JOIN_GROUP:
3073 		case IPV6_LEAVE_GROUP:
3074 		case MCAST_JOIN_GROUP:
3075 		case MCAST_LEAVE_GROUP:
3076 		case MCAST_BLOCK_SOURCE:
3077 		case MCAST_UNBLOCK_SOURCE:
3078 		case MCAST_JOIN_SOURCE_GROUP:
3079 		case MCAST_LEAVE_SOURCE_GROUP:
3080 			/* cannot "get" the value for these */
3081 			return (-1);
3082 		case IPV6_BOUND_IF:
3083 			/* Zero if not set */
3084 			*i1 = udp->udp_bound_if;
3085 			break;	/* goto sizeof (int) option return */
3086 		case IPV6_UNSPEC_SRC:
3087 			*i1 = udp->udp_unspec_source;
3088 			break;	/* goto sizeof (int) option return */
3089 		case IPV6_RECVPKTINFO:
3090 			*i1 = udp->udp_ipv6_recvpktinfo;
3091 			break;	/* goto sizeof (int) option return */
3092 		case IPV6_RECVTCLASS:
3093 			*i1 = udp->udp_ipv6_recvtclass;
3094 			break;	/* goto sizeof (int) option return */
3095 		case IPV6_RECVPATHMTU:
3096 			*i1 = udp->udp_ipv6_recvpathmtu;
3097 			break;	/* goto sizeof (int) option return */
3098 		case IPV6_RECVHOPLIMIT:
3099 			*i1 = udp->udp_ipv6_recvhoplimit;
3100 			break;	/* goto sizeof (int) option return */
3101 		case IPV6_RECVHOPOPTS:
3102 			*i1 = udp->udp_ipv6_recvhopopts;
3103 			break;	/* goto sizeof (int) option return */
3104 		case IPV6_RECVDSTOPTS:
3105 			*i1 = udp->udp_ipv6_recvdstopts;
3106 			break;	/* goto sizeof (int) option return */
3107 		case _OLD_IPV6_RECVDSTOPTS:
3108 			*i1 = udp->udp_old_ipv6_recvdstopts;
3109 			break;	/* goto sizeof (int) option return */
3110 		case IPV6_RECVRTHDRDSTOPTS:
3111 			*i1 = udp->udp_ipv6_recvrthdrdstopts;
3112 			break;	/* goto sizeof (int) option return */
3113 		case IPV6_RECVRTHDR:
3114 			*i1 = udp->udp_ipv6_recvrthdr;
3115 			break;	/* goto sizeof (int) option return */
3116 		case IPV6_PKTINFO: {
3117 			/* XXX assumes that caller has room for max size! */
3118 			struct in6_pktinfo *pkti;
3119 
3120 			pkti = (struct in6_pktinfo *)ptr;
3121 			if (ipp->ipp_fields & IPPF_IFINDEX)
3122 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
3123 			else
3124 				pkti->ipi6_ifindex = 0;
3125 			if (ipp->ipp_fields & IPPF_ADDR)
3126 				pkti->ipi6_addr = ipp->ipp_addr;
3127 			else
3128 				pkti->ipi6_addr = ipv6_all_zeros;
3129 			return (sizeof (struct in6_pktinfo));
3130 		}
3131 		case IPV6_TCLASS:
3132 			if (ipp->ipp_fields & IPPF_TCLASS)
3133 				*i1 = ipp->ipp_tclass;
3134 			else
3135 				*i1 = IPV6_FLOW_TCLASS(
3136 				    IPV6_DEFAULT_VERS_AND_FLOW);
3137 			break;	/* goto sizeof (int) option return */
3138 		case IPV6_NEXTHOP: {
3139 			sin6_t *sin6 = (sin6_t *)ptr;
3140 
3141 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
3142 				return (0);
3143 			*sin6 = sin6_null;
3144 			sin6->sin6_family = AF_INET6;
3145 			sin6->sin6_addr = ipp->ipp_nexthop;
3146 			return (sizeof (sin6_t));
3147 		}
3148 		case IPV6_HOPOPTS:
3149 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
3150 				return (0);
3151 			bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen);
3152 			return (ipp->ipp_hopoptslen);
3153 		case IPV6_RTHDRDSTOPTS:
3154 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
3155 				return (0);
3156 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
3157 			return (ipp->ipp_rtdstoptslen);
3158 		case IPV6_RTHDR:
3159 			if (!(ipp->ipp_fields & IPPF_RTHDR))
3160 				return (0);
3161 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
3162 			return (ipp->ipp_rthdrlen);
3163 		case IPV6_DSTOPTS:
3164 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
3165 				return (0);
3166 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
3167 			return (ipp->ipp_dstoptslen);
3168 		case IPV6_PATHMTU:
3169 			return (ip_fill_mtuinfo(&udp->udp_v6dst,
3170 				udp->udp_dstport, (struct ip6_mtuinfo *)ptr));
3171 		default:
3172 			return (-1);
3173 		}
3174 		break;
3175 	case IPPROTO_UDP:
3176 		switch (name) {
3177 		case UDP_ANONPRIVBIND:
3178 			*i1 = udp->udp_anon_priv_bind;
3179 			break;
3180 		case UDP_EXCLBIND:
3181 			*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
3182 			break;
3183 		case UDP_RCVHDR:
3184 			*i1 = udp->udp_rcvhdr ? 1 : 0;
3185 			break;
3186 		default:
3187 			return (-1);
3188 		}
3189 		break;
3190 	default:
3191 		return (-1);
3192 	}
3193 	return (sizeof (int));
3194 }
3195 
3196 /*
3197  * This routine sets socket options; it expects the caller
3198  * to pass in the queue pointer of the upper instance.
3199  */
3200 /* ARGSUSED */
3201 int
3202 udp_opt_set(queue_t *q, uint_t optset_context, int level,
3203     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
3204     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
3205 {
3206 	int	*i1 = (int *)invalp;
3207 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
3208 	boolean_t checkonly;
3209 	int	error;
3210 	conn_t	*connp;
3211 	udp_t	*udp;
3212 
3213 	q = UDP_WR(q);
3214 	connp = Q_TO_CONN(q);
3215 	udp = connp->conn_udp;
3216 
3217 	switch (optset_context) {
3218 	case SETFN_OPTCOM_CHECKONLY:
3219 		checkonly = B_TRUE;
3220 		/*
3221 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
3222 		 * inlen != 0 implies value supplied and
3223 		 * 	we have to "pretend" to set it.
3224 		 * inlen == 0 implies that there is no
3225 		 * 	value part in T_CHECK request and just validation
3226 		 * done elsewhere should be enough, we just return here.
3227 		 */
3228 		if (inlen == 0) {
3229 			*outlenp = 0;
3230 			return (0);
3231 		}
3232 		break;
3233 	case SETFN_OPTCOM_NEGOTIATE:
3234 		checkonly = B_FALSE;
3235 		break;
3236 	case SETFN_UD_NEGOTIATE:
3237 	case SETFN_CONN_NEGOTIATE:
3238 		checkonly = B_FALSE;
3239 		/*
3240 		 * Negotiating local and "association-related" options
3241 		 * through T_UNITDATA_REQ.
3242 		 *
3243 		 * Following routine can filter out ones we do not
3244 		 * want to be "set" this way.
3245 		 */
3246 		if (!udp_opt_allow_udr_set(level, name)) {
3247 			*outlenp = 0;
3248 			return (EINVAL);
3249 		}
3250 		break;
3251 	default:
3252 		/*
3253 		 * We should never get here
3254 		 */
3255 		*outlenp = 0;
3256 		return (EINVAL);
3257 	}
3258 
3259 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
3260 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
3261 
3262 	/*
3263 	 * For fixed length options, no sanity check
3264 	 * of passed in length is done. It is assumed *_optcom_req()
3265 	 * routines do the right thing.
3266 	 */
3267 
3268 	switch (level) {
3269 	case SOL_SOCKET:
3270 		switch (name) {
3271 		case SO_REUSEADDR:
3272 			if (!checkonly)
3273 				udp->udp_reuseaddr = onoff;
3274 			break;
3275 		case SO_DEBUG:
3276 			if (!checkonly)
3277 				udp->udp_debug = onoff;
3278 			break;
3279 		/*
3280 		 * The following three items are available here,
3281 		 * but are only meaningful to IP.
3282 		 */
3283 		case SO_DONTROUTE:
3284 			if (!checkonly)
3285 				udp->udp_dontroute = onoff;
3286 			break;
3287 		case SO_USELOOPBACK:
3288 			if (!checkonly)
3289 				udp->udp_useloopback = onoff;
3290 			break;
3291 		case SO_BROADCAST:
3292 			if (!checkonly)
3293 				udp->udp_broadcast = onoff;
3294 			break;
3295 
3296 		case SO_SNDBUF:
3297 			if (*i1 > udp_max_buf) {
3298 				*outlenp = 0;
3299 				return (ENOBUFS);
3300 			}
3301 			if (!checkonly) {
3302 				q->q_hiwat = *i1;
3303 				WR(UDP_RD(q))->q_hiwat = *i1;
3304 			}
3305 			break;
3306 		case SO_RCVBUF:
3307 			if (*i1 > udp_max_buf) {
3308 				*outlenp = 0;
3309 				return (ENOBUFS);
3310 			}
3311 			if (!checkonly) {
3312 				RD(q)->q_hiwat = *i1;
3313 				UDP_RD(q)->q_hiwat = *i1;
3314 				(void) mi_set_sth_hiwat(UDP_RD(q),
3315 				    udp_set_rcv_hiwat(udp, *i1));
3316 			}
3317 			break;
3318 		case SO_DGRAM_ERRIND:
3319 			if (!checkonly)
3320 				udp->udp_dgram_errind = onoff;
3321 			break;
3322 		case SO_RECVUCRED:
3323 			if (!checkonly)
3324 				udp->udp_recvucred = onoff;
3325 			break;
3326 		default:
3327 			*outlenp = 0;
3328 			return (EINVAL);
3329 		}
3330 		break;
3331 	case IPPROTO_IP:
3332 		if (udp->udp_family != AF_INET) {
3333 			*outlenp = 0;
3334 			return (ENOPROTOOPT);
3335 		}
3336 		switch (name) {
3337 		case IP_OPTIONS:
3338 		case T_IP_OPTIONS:
3339 			/* Save options for use by IP. */
3340 			if (inlen & 0x3) {
3341 				*outlenp = 0;
3342 				return (EINVAL);
3343 			}
3344 			if (checkonly)
3345 				break;
3346 
3347 			if (udp->udp_ip_snd_options) {
3348 				mi_free((char *)udp->udp_ip_snd_options);
3349 				udp->udp_ip_snd_options_len = 0;
3350 				udp->udp_ip_snd_options = NULL;
3351 			}
3352 			if (inlen) {
3353 				udp->udp_ip_snd_options =
3354 					(uchar_t *)mi_alloc(inlen, BPRI_HI);
3355 				if (udp->udp_ip_snd_options) {
3356 					bcopy(invalp, udp->udp_ip_snd_options,
3357 					    inlen);
3358 					udp->udp_ip_snd_options_len = inlen;
3359 				}
3360 			}
3361 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3362 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
3363 			(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
3364 			    udp_wroff_extra);
3365 			break;
3366 		case IP_TTL:
3367 			if (!checkonly) {
3368 				udp->udp_ttl = (uchar_t)*i1;
3369 			}
3370 			break;
3371 		case IP_TOS:
3372 		case T_IP_TOS:
3373 			if (!checkonly) {
3374 				udp->udp_type_of_service = (uchar_t)*i1;
3375 			}
3376 			break;
3377 		case IP_MULTICAST_IF: {
3378 			/*
3379 			 * TODO should check OPTMGMT reply and undo this if
3380 			 * there is an error.
3381 			 */
3382 			struct in_addr *inap = (struct in_addr *)invalp;
3383 			if (!checkonly) {
3384 				udp->udp_multicast_if_addr =
3385 				    inap->s_addr;
3386 			}
3387 			break;
3388 		}
3389 		case IP_MULTICAST_TTL:
3390 			if (!checkonly)
3391 				udp->udp_multicast_ttl = *invalp;
3392 			break;
3393 		case IP_MULTICAST_LOOP:
3394 			if (!checkonly)
3395 				connp->conn_multicast_loop = *invalp;
3396 			break;
3397 		case IP_RECVOPTS:
3398 			if (!checkonly)
3399 				udp->udp_recvopts = onoff;
3400 			break;
3401 		case IP_RECVDSTADDR:
3402 			if (!checkonly)
3403 				udp->udp_recvdstaddr = onoff;
3404 			break;
3405 		case IP_RECVIF:
3406 			if (!checkonly)
3407 				udp->udp_recvif = onoff;
3408 			break;
3409 		case IP_RECVSLLA:
3410 			if (!checkonly)
3411 				udp->udp_recvslla = onoff;
3412 			break;
3413 		case IP_RECVTTL:
3414 			if (!checkonly)
3415 				udp->udp_recvttl = onoff;
3416 			break;
3417 		case IP_ADD_MEMBERSHIP:
3418 		case IP_DROP_MEMBERSHIP:
3419 		case IP_BLOCK_SOURCE:
3420 		case IP_UNBLOCK_SOURCE:
3421 		case IP_ADD_SOURCE_MEMBERSHIP:
3422 		case IP_DROP_SOURCE_MEMBERSHIP:
3423 		case MCAST_JOIN_GROUP:
3424 		case MCAST_LEAVE_GROUP:
3425 		case MCAST_BLOCK_SOURCE:
3426 		case MCAST_UNBLOCK_SOURCE:
3427 		case MCAST_JOIN_SOURCE_GROUP:
3428 		case MCAST_LEAVE_SOURCE_GROUP:
3429 		case IP_SEC_OPT:
3430 		case IP_NEXTHOP:
3431 			/*
3432 			 * "soft" error (negative)
3433 			 * option not handled at this level
3434 			 * Do not modify *outlenp.
3435 			 */
3436 			return (-EINVAL);
3437 		case IP_BOUND_IF:
3438 			if (!checkonly)
3439 				udp->udp_bound_if = *i1;
3440 			break;
3441 		case IP_UNSPEC_SRC:
3442 			if (!checkonly)
3443 				udp->udp_unspec_source = onoff;
3444 			break;
3445 		case IP_XMIT_IF:
3446 			if (!checkonly)
3447 				udp->udp_xmit_if = *i1;
3448 			break;
3449 		default:
3450 			*outlenp = 0;
3451 			return (EINVAL);
3452 		}
3453 		break;
3454 	case IPPROTO_IPV6: {
3455 		ip6_pkt_t		*ipp;
3456 		boolean_t		sticky;
3457 
3458 		if (udp->udp_family != AF_INET6) {
3459 			*outlenp = 0;
3460 			return (ENOPROTOOPT);
3461 		}
3462 		/*
3463 		 * Deal with both sticky options and ancillary data
3464 		 */
3465 		if (thisdg_attrs == NULL) {
3466 			/* sticky options, or none */
3467 			ipp = &udp->udp_sticky_ipp;
3468 			sticky = B_TRUE;
3469 		} else {
3470 			/* ancillary data */
3471 			ipp = (ip6_pkt_t *)thisdg_attrs;
3472 			sticky = B_FALSE;
3473 		}
3474 
3475 		switch (name) {
3476 		case IPV6_MULTICAST_IF:
3477 			if (!checkonly)
3478 				udp->udp_multicast_if_index = *i1;
3479 			break;
3480 		case IPV6_UNICAST_HOPS:
3481 			/* -1 means use default */
3482 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3483 				*outlenp = 0;
3484 				return (EINVAL);
3485 			}
3486 			if (!checkonly) {
3487 				if (*i1 == -1) {
3488 					udp->udp_ttl = ipp->ipp_unicast_hops =
3489 					    udp_ipv6_hoplimit;
3490 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
3491 					/* Pass modified value to IP. */
3492 					*i1 = udp->udp_ttl;
3493 				} else {
3494 					udp->udp_ttl = ipp->ipp_unicast_hops =
3495 					    (uint8_t)*i1;
3496 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
3497 				}
3498 				/* Rebuild the header template */
3499 				error = udp_build_hdrs(q, udp);
3500 				if (error != 0) {
3501 					*outlenp = 0;
3502 					return (error);
3503 				}
3504 			}
3505 			break;
3506 		case IPV6_MULTICAST_HOPS:
3507 			/* -1 means use default */
3508 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3509 				*outlenp = 0;
3510 				return (EINVAL);
3511 			}
3512 			if (!checkonly) {
3513 				if (*i1 == -1) {
3514 					udp->udp_multicast_ttl =
3515 					    ipp->ipp_multicast_hops =
3516 					    IP_DEFAULT_MULTICAST_TTL;
3517 					ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
3518 					/* Pass modified value to IP. */
3519 					*i1 = udp->udp_multicast_ttl;
3520 				} else {
3521 					udp->udp_multicast_ttl =
3522 					    ipp->ipp_multicast_hops =
3523 					    (uint8_t)*i1;
3524 					ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
3525 				}
3526 			}
3527 			break;
3528 		case IPV6_MULTICAST_LOOP:
3529 			if (*i1 != 0 && *i1 != 1) {
3530 				*outlenp = 0;
3531 				return (EINVAL);
3532 			}
3533 			if (!checkonly)
3534 				connp->conn_multicast_loop = *i1;
3535 			break;
3536 		case IPV6_JOIN_GROUP:
3537 		case IPV6_LEAVE_GROUP:
3538 		case MCAST_JOIN_GROUP:
3539 		case MCAST_LEAVE_GROUP:
3540 		case MCAST_BLOCK_SOURCE:
3541 		case MCAST_UNBLOCK_SOURCE:
3542 		case MCAST_JOIN_SOURCE_GROUP:
3543 		case MCAST_LEAVE_SOURCE_GROUP:
3544 			/*
3545 			 * "soft" error (negative)
3546 			 * option not handled at this level
3547 			 * Note: Do not modify *outlenp
3548 			 */
3549 			return (-EINVAL);
3550 		case IPV6_BOUND_IF:
3551 			if (!checkonly)
3552 				udp->udp_bound_if = *i1;
3553 			break;
3554 		case IPV6_UNSPEC_SRC:
3555 			if (!checkonly)
3556 				udp->udp_unspec_source = onoff;
3557 			break;
3558 		/*
3559 		 * Set boolean switches for ancillary data delivery
3560 		 */
3561 		case IPV6_RECVPKTINFO:
3562 			if (!checkonly)
3563 				udp->udp_ipv6_recvpktinfo = onoff;
3564 			break;
3565 		case IPV6_RECVTCLASS:
3566 			if (!checkonly) {
3567 				udp->udp_ipv6_recvtclass = onoff;
3568 			}
3569 			break;
3570 		case IPV6_RECVPATHMTU:
3571 			if (!checkonly) {
3572 				udp->udp_ipv6_recvpathmtu = onoff;
3573 			}
3574 			break;
3575 		case IPV6_RECVHOPLIMIT:
3576 			if (!checkonly)
3577 				udp->udp_ipv6_recvhoplimit = onoff;
3578 			break;
3579 		case IPV6_RECVHOPOPTS:
3580 			if (!checkonly)
3581 				udp->udp_ipv6_recvhopopts = onoff;
3582 			break;
3583 		case IPV6_RECVDSTOPTS:
3584 			if (!checkonly)
3585 				udp->udp_ipv6_recvdstopts = onoff;
3586 			break;
3587 		case _OLD_IPV6_RECVDSTOPTS:
3588 			if (!checkonly)
3589 				udp->udp_old_ipv6_recvdstopts = onoff;
3590 			break;
3591 		case IPV6_RECVRTHDRDSTOPTS:
3592 			if (!checkonly)
3593 				udp->udp_ipv6_recvrthdrdstopts = onoff;
3594 			break;
3595 		case IPV6_RECVRTHDR:
3596 			if (!checkonly)
3597 				udp->udp_ipv6_recvrthdr = onoff;
3598 			break;
3599 		/*
3600 		 * Set sticky options or ancillary data.
3601 		 * If sticky options, (re)build any extension headers
3602 		 * that might be needed as a result.
3603 		 */
3604 		case IPV6_PKTINFO:
3605 			/*
3606 			 * The source address and ifindex are verified
3607 			 * in ip_opt_set(). For ancillary data the
3608 			 * source address is checked in ip_wput_v6.
3609 			 */
3610 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
3611 				return (EINVAL);
3612 			if (checkonly)
3613 				break;
3614 
3615 			if (inlen == 0) {
3616 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
3617 				ipp->ipp_sticky_ignored |=
3618 				    (IPPF_IFINDEX|IPPF_ADDR);
3619 			} else {
3620 				struct in6_pktinfo *pkti;
3621 
3622 				pkti = (struct in6_pktinfo *)invalp;
3623 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
3624 				ipp->ipp_addr = pkti->ipi6_addr;
3625 				if (ipp->ipp_ifindex != 0)
3626 					ipp->ipp_fields |= IPPF_IFINDEX;
3627 				else
3628 					ipp->ipp_fields &= ~IPPF_IFINDEX;
3629 				if (!IN6_IS_ADDR_UNSPECIFIED(
3630 				    &ipp->ipp_addr))
3631 					ipp->ipp_fields |= IPPF_ADDR;
3632 				else
3633 					ipp->ipp_fields &= ~IPPF_ADDR;
3634 			}
3635 			if (sticky) {
3636 				error = udp_build_hdrs(q, udp);
3637 				if (error != 0)
3638 					return (error);
3639 			}
3640 			break;
3641 		case IPV6_HOPLIMIT:
3642 			if (sticky)
3643 				return (EINVAL);
3644 			if (inlen != 0 && inlen != sizeof (int))
3645 				return (EINVAL);
3646 			if (checkonly)
3647 				break;
3648 
3649 			if (inlen == 0) {
3650 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
3651 				ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
3652 			} else {
3653 				if (*i1 > 255 || *i1 < -1)
3654 					return (EINVAL);
3655 				if (*i1 == -1)
3656 					ipp->ipp_hoplimit = udp_ipv6_hoplimit;
3657 				else
3658 					ipp->ipp_hoplimit = *i1;
3659 				ipp->ipp_fields |= IPPF_HOPLIMIT;
3660 			}
3661 			break;
3662 		case IPV6_TCLASS:
3663 			if (inlen != 0 && inlen != sizeof (int))
3664 				return (EINVAL);
3665 			if (checkonly)
3666 				break;
3667 
3668 			if (inlen == 0) {
3669 				ipp->ipp_fields &= ~IPPF_TCLASS;
3670 				ipp->ipp_sticky_ignored |= IPPF_TCLASS;
3671 			} else {
3672 				if (*i1 > 255 || *i1 < -1)
3673 					return (EINVAL);
3674 				if (*i1 == -1)
3675 					ipp->ipp_tclass = 0;
3676 				else
3677 					ipp->ipp_tclass = *i1;
3678 				ipp->ipp_fields |= IPPF_TCLASS;
3679 			}
3680 			if (sticky) {
3681 				error = udp_build_hdrs(q, udp);
3682 				if (error != 0)
3683 					return (error);
3684 			}
3685 			break;
3686 		case IPV6_NEXTHOP:
3687 			/*
3688 			 * IP will verify that the nexthop is reachable
3689 			 * and fail for sticky options.
3690 			 */
3691 			if (inlen != 0 && inlen != sizeof (sin6_t))
3692 				return (EINVAL);
3693 			if (checkonly)
3694 				break;
3695 
3696 			if (inlen == 0) {
3697 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
3698 				ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
3699 			} else {
3700 				sin6_t *sin6 = (sin6_t *)invalp;
3701 
3702 				if (sin6->sin6_family != AF_INET6)
3703 					return (EAFNOSUPPORT);
3704 				if (IN6_IS_ADDR_V4MAPPED(
3705 				    &sin6->sin6_addr))
3706 					return (EADDRNOTAVAIL);
3707 				ipp->ipp_nexthop = sin6->sin6_addr;
3708 				if (!IN6_IS_ADDR_UNSPECIFIED(
3709 				    &ipp->ipp_nexthop))
3710 					ipp->ipp_fields |= IPPF_NEXTHOP;
3711 				else
3712 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
3713 			}
3714 			if (sticky) {
3715 				error = udp_build_hdrs(q, udp);
3716 				if (error != 0)
3717 					return (error);
3718 			}
3719 			break;
3720 		case IPV6_HOPOPTS: {
3721 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
3722 			/*
3723 			 * Sanity checks - minimum size, size a multiple of
3724 			 * eight bytes, and matching size passed in.
3725 			 */
3726 			if (inlen != 0 &&
3727 			    inlen != (8 * (hopts->ip6h_len + 1)))
3728 				return (EINVAL);
3729 
3730 			if (checkonly)
3731 				break;
3732 
3733 			if (inlen == 0) {
3734 				if (sticky &&
3735 				    (ipp->ipp_fields & IPPF_HOPOPTS) != 0) {
3736 					kmem_free(ipp->ipp_hopopts,
3737 					    ipp->ipp_hopoptslen);
3738 					ipp->ipp_hopopts = NULL;
3739 					ipp->ipp_hopoptslen = 0;
3740 				}
3741 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
3742 				ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
3743 			} else {
3744 				error = udp_pkt_set(invalp, inlen, sticky,
3745 				    (uchar_t **)&ipp->ipp_hopopts,
3746 				    &ipp->ipp_hopoptslen);
3747 				if (error != 0)
3748 					return (error);
3749 				ipp->ipp_fields |= IPPF_HOPOPTS;
3750 			}
3751 			if (sticky) {
3752 				error = udp_build_hdrs(q, udp);
3753 				if (error != 0)
3754 					return (error);
3755 			}
3756 			break;
3757 		}
3758 		case IPV6_RTHDRDSTOPTS: {
3759 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3760 
3761 			/*
3762 			 * Sanity checks - minimum size, size a multiple of
3763 			 * eight bytes, and matching size passed in.
3764 			 */
3765 			if (inlen != 0 &&
3766 			    inlen != (8 * (dopts->ip6d_len + 1)))
3767 				return (EINVAL);
3768 
3769 			if (checkonly)
3770 				break;
3771 
3772 			if (inlen == 0) {
3773 				if (sticky &&
3774 				    (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
3775 					kmem_free(ipp->ipp_rtdstopts,
3776 					    ipp->ipp_rtdstoptslen);
3777 					ipp->ipp_rtdstopts = NULL;
3778 					ipp->ipp_rtdstoptslen = 0;
3779 				}
3780 
3781 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
3782 				ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
3783 			} else {
3784 				error = udp_pkt_set(invalp, inlen, sticky,
3785 				    (uchar_t **)&ipp->ipp_rtdstopts,
3786 				    &ipp->ipp_rtdstoptslen);
3787 				if (error != 0)
3788 					return (error);
3789 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
3790 			}
3791 			if (sticky) {
3792 				error = udp_build_hdrs(q, udp);
3793 				if (error != 0)
3794 					return (error);
3795 			}
3796 			break;
3797 		}
3798 		case IPV6_DSTOPTS: {
3799 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3800 
3801 			/*
3802 			 * Sanity checks - minimum size, size a multiple of
3803 			 * eight bytes, and matching size passed in.
3804 			 */
3805 			if (inlen != 0 &&
3806 			    inlen != (8 * (dopts->ip6d_len + 1)))
3807 				return (EINVAL);
3808 
3809 			if (checkonly)
3810 				break;
3811 
3812 			if (inlen == 0) {
3813 				if (sticky &&
3814 				    (ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
3815 					kmem_free(ipp->ipp_dstopts,
3816 					    ipp->ipp_dstoptslen);
3817 					ipp->ipp_dstopts = NULL;
3818 					ipp->ipp_dstoptslen = 0;
3819 				}
3820 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
3821 				ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
3822 			} else {
3823 				error = udp_pkt_set(invalp, inlen, sticky,
3824 				    (uchar_t **)&ipp->ipp_dstopts,
3825 				    &ipp->ipp_dstoptslen);
3826 				if (error != 0)
3827 					return (error);
3828 				ipp->ipp_fields |= IPPF_DSTOPTS;
3829 			}
3830 			if (sticky) {
3831 				error = udp_build_hdrs(q, udp);
3832 				if (error != 0)
3833 					return (error);
3834 			}
3835 			break;
3836 		}
3837 		case IPV6_RTHDR: {
3838 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
3839 
3840 			/*
3841 			 * Sanity checks - minimum size, size a multiple of
3842 			 * eight bytes, and matching size passed in.
3843 			 */
3844 			if (inlen != 0 &&
3845 			    inlen != (8 * (rt->ip6r_len + 1)))
3846 				return (EINVAL);
3847 
3848 			if (checkonly)
3849 				break;
3850 
3851 			if (inlen == 0) {
3852 				if (sticky &&
3853 				    (ipp->ipp_fields & IPPF_RTHDR) != 0) {
3854 					kmem_free(ipp->ipp_rthdr,
3855 					    ipp->ipp_rthdrlen);
3856 					ipp->ipp_rthdr = NULL;
3857 					ipp->ipp_rthdrlen = 0;
3858 				}
3859 				ipp->ipp_fields &= ~IPPF_RTHDR;
3860 				ipp->ipp_sticky_ignored |= IPPF_RTHDR;
3861 			} else {
3862 				error = udp_pkt_set(invalp, inlen, sticky,
3863 				    (uchar_t **)&ipp->ipp_rthdr,
3864 				    &ipp->ipp_rthdrlen);
3865 				if (error != 0)
3866 					return (error);
3867 				ipp->ipp_fields |= IPPF_RTHDR;
3868 			}
3869 			if (sticky) {
3870 				error = udp_build_hdrs(q, udp);
3871 				if (error != 0)
3872 					return (error);
3873 			}
3874 			break;
3875 		}
3876 
3877 		case IPV6_DONTFRAG:
3878 			if (checkonly)
3879 				break;
3880 
3881 			if (onoff) {
3882 				ipp->ipp_fields |= IPPF_DONTFRAG;
3883 			} else {
3884 				ipp->ipp_fields &= ~IPPF_DONTFRAG;
3885 			}
3886 			break;
3887 
3888 		case IPV6_USE_MIN_MTU:
3889 			if (inlen != sizeof (int))
3890 				return (EINVAL);
3891 
3892 			if (*i1 < -1 || *i1 > 1)
3893 				return (EINVAL);
3894 
3895 			if (checkonly)
3896 				break;
3897 
3898 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
3899 			ipp->ipp_use_min_mtu = *i1;
3900 			break;
3901 
3902 		case IPV6_BOUND_PIF:
3903 		case IPV6_SEC_OPT:
3904 		case IPV6_DONTFAILOVER_IF:
3905 		case IPV6_SRC_PREFERENCES:
3906 		case IPV6_V6ONLY:
3907 			/* Handled at the IP level */
3908 			return (-EINVAL);
3909 		default:
3910 			*outlenp = 0;
3911 			return (EINVAL);
3912 		}
3913 		break;
3914 		}		/* end IPPROTO_IPV6 */
3915 	case IPPROTO_UDP:
3916 		switch (name) {
3917 		case UDP_ANONPRIVBIND:
3918 			if ((error = secpolicy_net_privaddr(cr, 0)) != 0) {
3919 				*outlenp = 0;
3920 				return (error);
3921 			}
3922 			if (!checkonly) {
3923 				udp->udp_anon_priv_bind = onoff;
3924 			}
3925 			break;
3926 		case UDP_EXCLBIND:
3927 			if (!checkonly)
3928 				udp->udp_exclbind = onoff;
3929 			break;
3930 		case UDP_RCVHDR:
3931 			if (!checkonly)
3932 				udp->udp_rcvhdr = onoff;
3933 			break;
3934 		default:
3935 			*outlenp = 0;
3936 			return (EINVAL);
3937 		}
3938 		break;
3939 	default:
3940 		*outlenp = 0;
3941 		return (EINVAL);
3942 	}
3943 	/*
3944 	 * Common case of OK return with outval same as inval.
3945 	 */
3946 	if (invalp != outvalp) {
3947 		/* don't trust bcopy for identical src/dst */
3948 		(void) bcopy(invalp, outvalp, inlen);
3949 	}
3950 	*outlenp = inlen;
3951 	return (0);
3952 }
3953 
3954 /*
3955  * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
3956  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
3957  * headers, and the udp header.
3958  * Returns failure if can't allocate memory.
3959  */
3960 static int
3961 udp_build_hdrs(queue_t *q, udp_t *udp)
3962 {
3963 	uchar_t	*hdrs;
3964 	uint_t	hdrs_len;
3965 	ip6_t	*ip6h;
3966 	ip6i_t	*ip6i;
3967 	udpha_t	*udpha;
3968 	ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
3969 
3970 	hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
3971 	ASSERT(hdrs_len != 0);
3972 	if (hdrs_len != udp->udp_sticky_hdrs_len) {
3973 		/* Need to reallocate */
3974 		hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
3975 		if (hdrs == NULL)
3976 			return (ENOMEM);
3977 
3978 		if (udp->udp_sticky_hdrs_len != 0) {
3979 			kmem_free(udp->udp_sticky_hdrs,
3980 			    udp->udp_sticky_hdrs_len);
3981 		}
3982 		udp->udp_sticky_hdrs = hdrs;
3983 		udp->udp_sticky_hdrs_len = hdrs_len;
3984 	}
3985 	ip_build_hdrs_v6(udp->udp_sticky_hdrs,
3986 	    udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
3987 
3988 	/* Set header fields not in ipp */
3989 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
3990 		ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
3991 		ip6h = (ip6_t *)&ip6i[1];
3992 	} else {
3993 		ip6h = (ip6_t *)udp->udp_sticky_hdrs;
3994 	}
3995 
3996 	if (!(ipp->ipp_fields & IPPF_ADDR))
3997 		ip6h->ip6_src = udp->udp_v6src;
3998 
3999 	udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
4000 	udpha->uha_src_port = udp->udp_port;
4001 
4002 	/* Try to get everything in a single mblk */
4003 	if (hdrs_len > udp->udp_max_hdr_len) {
4004 		udp->udp_max_hdr_len = hdrs_len;
4005 		(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
4006 		    udp_wroff_extra);
4007 	}
4008 	return (0);
4009 }
4010 
4011 /*
4012  * Set optbuf and optlen for the option.
4013  * If sticky is set allocate memory (if not already present).
4014  * Otherwise just point optbuf and optlen at invalp and inlen.
4015  * Returns failure if memory can not be allocated.
4016  */
4017 static int
4018 udp_pkt_set(uchar_t *invalp, uint_t inlen, boolean_t sticky,
4019     uchar_t **optbufp, uint_t *optlenp)
4020 {
4021 	uchar_t *optbuf;
4022 
4023 	if (!sticky) {
4024 		*optbufp = invalp;
4025 		*optlenp = inlen;
4026 		return (0);
4027 	}
4028 	if (inlen == *optlenp) {
4029 		/* Unchanged length - no need to realocate */
4030 		bcopy(invalp, *optbufp, inlen);
4031 		return (0);
4032 	}
4033 	if (inlen != 0) {
4034 		/* Allocate new buffer before free */
4035 		optbuf = kmem_alloc(inlen, KM_NOSLEEP);
4036 		if (optbuf == NULL)
4037 			return (ENOMEM);
4038 	} else {
4039 		optbuf = NULL;
4040 	}
4041 	/* Free old buffer */
4042 	if (*optlenp != 0)
4043 		kmem_free(*optbufp, *optlenp);
4044 
4045 	bcopy(invalp, optbuf, inlen);
4046 	*optbufp = optbuf;
4047 	*optlenp = inlen;
4048 	return (0);
4049 }
4050 
4051 /*
4052  * This routine retrieves the value of an ND variable in a udpparam_t
4053  * structure.  It is called through nd_getset when a user reads the
4054  * variable.
4055  */
4056 /* ARGSUSED */
4057 static int
4058 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
4059 {
4060 	udpparam_t *udppa = (udpparam_t *)cp;
4061 
4062 	(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
4063 	return (0);
4064 }
4065 
4066 /*
4067  * Walk through the param array specified registering each element with the
4068  * named dispatch (ND) handler.
4069  */
4070 static boolean_t
4071 udp_param_register(udpparam_t *udppa, int cnt)
4072 {
4073 	for (; cnt-- > 0; udppa++) {
4074 		if (udppa->udp_param_name && udppa->udp_param_name[0]) {
4075 			if (!nd_load(&udp_g_nd, udppa->udp_param_name,
4076 			    udp_param_get, udp_param_set,
4077 			    (caddr_t)udppa)) {
4078 				nd_free(&udp_g_nd);
4079 				return (B_FALSE);
4080 			}
4081 		}
4082 	}
4083 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports",
4084 	    udp_extra_priv_ports_get, NULL, NULL)) {
4085 		nd_free(&udp_g_nd);
4086 		return (B_FALSE);
4087 	}
4088 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_add",
4089 	    NULL, udp_extra_priv_ports_add, NULL)) {
4090 		nd_free(&udp_g_nd);
4091 		return (B_FALSE);
4092 	}
4093 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_del",
4094 	    NULL, udp_extra_priv_ports_del, NULL)) {
4095 		nd_free(&udp_g_nd);
4096 		return (B_FALSE);
4097 	}
4098 	if (!nd_load(&udp_g_nd, "udp_status", udp_status_report, NULL,
4099 	    NULL)) {
4100 		nd_free(&udp_g_nd);
4101 		return (B_FALSE);
4102 	}
4103 	if (!nd_load(&udp_g_nd, "udp_bind_hash", udp_bind_hash_report, NULL,
4104 	    NULL)) {
4105 		nd_free(&udp_g_nd);
4106 		return (B_FALSE);
4107 	}
4108 	return (B_TRUE);
4109 }
4110 
4111 /* This routine sets an ND variable in a udpparam_t structure. */
4112 /* ARGSUSED */
4113 static int
4114 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
4115 {
4116 	long		new_value;
4117 	udpparam_t	*udppa = (udpparam_t *)cp;
4118 
4119 	/*
4120 	 * Fail the request if the new value does not lie within the
4121 	 * required bounds.
4122 	 */
4123 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
4124 	    new_value < udppa->udp_param_min ||
4125 	    new_value > udppa->udp_param_max) {
4126 		return (EINVAL);
4127 	}
4128 
4129 	/* Set the new value */
4130 	udppa->udp_param_value = new_value;
4131 	return (0);
4132 }
4133 
4134 static void
4135 udp_input(conn_t *connp, mblk_t *mp)
4136 {
4137 	struct T_unitdata_ind	*tudi;
4138 	uchar_t			*rptr;		/* Pointer to IP header */
4139 	int			hdr_length;	/* Length of IP+UDP headers */
4140 	int			udi_size;	/* Size of T_unitdata_ind */
4141 	int			mp_len;
4142 	udp_t			*udp;
4143 	udpha_t			*udpha;
4144 	int			ipversion;
4145 	ip6_pkt_t		ipp;
4146 	ip6_t			*ip6h;
4147 	ip6i_t			*ip6i;
4148 	mblk_t			*mp1;
4149 	mblk_t			*options_mp = NULL;
4150 	in_pktinfo_t		*pinfo = NULL;
4151 	cred_t			*cr = NULL;
4152 	queue_t			*q = connp->conn_rq;
4153 	pid_t			cpid;
4154 
4155 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
4156 	    "udp_rput_start: q %p mp %p", q, mp);
4157 
4158 	udp = connp->conn_udp;
4159 	rptr = mp->b_rptr;
4160 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
4161 	ASSERT(OK_32PTR(rptr));
4162 
4163 	/*
4164 	 * IP should have prepended the options data in an M_CTL
4165 	 * Check M_CTL "type" to make sure are not here bcos of
4166 	 * a valid ICMP message
4167 	 */
4168 	if (DB_TYPE(mp) == M_CTL) {
4169 		if (MBLKL(mp) == sizeof (in_pktinfo_t) &&
4170 		    ((in_pktinfo_t *)mp->b_rptr)->in_pkt_ulp_type ==
4171 		    IN_PKTINFO) {
4172 			/*
4173 			 * IP_RECVIF or IP_RECVSLLA information has been
4174 			 * appended to the packet by IP. We need to
4175 			 * extract the mblk and adjust the rptr
4176 			 */
4177 			pinfo = (in_pktinfo_t *)mp->b_rptr;
4178 			options_mp = mp;
4179 			mp = mp->b_cont;
4180 			rptr = mp->b_rptr;
4181 			UDP_STAT(udp_in_pktinfo);
4182 		} else {
4183 			/*
4184 			 * ICMP messages.
4185 			 */
4186 			udp_icmp_error(q, mp);
4187 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4188 				"udp_rput_end: q %p (%S)", q, "m_ctl");
4189 			return;
4190 		}
4191 	}
4192 
4193 	mp_len = msgdsize(mp);
4194 	/*
4195 	 * This is the inbound data path.
4196 	 * First, we check to make sure the IP version number is correct,
4197 	 * and then pull the IP and UDP headers into the first mblk.
4198 	 * Assume IP provides aligned packets - otherwise toss.
4199 	 * Also, check if we have a complete IP header.
4200 	 */
4201 
4202 	/* Initialize regardless if ipversion is IPv4 or IPv6 */
4203 	ipp.ipp_fields = 0;
4204 
4205 	ipversion = IPH_HDR_VERSION(rptr);
4206 	switch (ipversion) {
4207 	case IPV4_VERSION:
4208 		ASSERT(MBLKL(mp) >= sizeof (ipha_t));
4209 		ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
4210 		hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4211 		if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) ||
4212 		    (udp->udp_ip_rcv_options_len)) {
4213 			/*
4214 			 * Handle IPv4 packets with options outside of the
4215 			 * main data path. Not needed for AF_INET6 sockets
4216 			 * since they don't support a getsockopt of IP_OPTIONS.
4217 			 */
4218 			if (udp->udp_family == AF_INET6)
4219 				break;
4220 			/*
4221 			 * UDP length check performed for IPv4 packets with
4222 			 * options to check whether UDP length specified in
4223 			 * the header is the same as the physical length of
4224 			 * the packet.
4225 			 */
4226 			udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4227 			if (mp_len != (ntohs(udpha->uha_length) +
4228 			    hdr_length - UDPH_SIZE)) {
4229 				goto tossit;
4230 			}
4231 			/*
4232 			 * Handle the case where the packet has IP options
4233 			 * and the IP_RECVSLLA & IP_RECVIF are set
4234 			 */
4235 			if (pinfo != NULL)
4236 				mp = options_mp;
4237 			udp_become_writer(connp, mp, udp_rput_other_wrapper,
4238 			    SQTAG_UDP_INPUT);
4239 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4240 				"udp_rput_end: q %p (%S)", q, "end");
4241 			return;
4242 		}
4243 
4244 		/* Handle IPV6_RECVHOPLIMIT. */
4245 		if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
4246 		    udp->udp_ipv6_recvpktinfo) {
4247 			if (pinfo->in_pkt_flags & IPF_RECVIF) {
4248 				ipp.ipp_fields |= IPPF_IFINDEX;
4249 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
4250 			}
4251 		}
4252 		break;
4253 	case IPV6_VERSION:
4254 		/*
4255 		 * IPv6 packets can only be received by applications
4256 		 * that are prepared to receive IPv6 addresses.
4257 		 * The IP fanout must ensure this.
4258 		 */
4259 		ASSERT(udp->udp_family == AF_INET6);
4260 
4261 		ip6h = (ip6_t *)rptr;
4262 		ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
4263 
4264 		if (ip6h->ip6_nxt != IPPROTO_UDP) {
4265 			uint8_t nexthdrp;
4266 			/* Look for ifindex information */
4267 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
4268 				ip6i = (ip6i_t *)ip6h;
4269 				if ((uchar_t *)&ip6i[1] > mp->b_wptr)
4270 					goto tossit;
4271 
4272 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
4273 					ASSERT(ip6i->ip6i_ifindex != 0);
4274 					ipp.ipp_fields |= IPPF_IFINDEX;
4275 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
4276 				}
4277 				rptr = (uchar_t *)&ip6i[1];
4278 				mp->b_rptr = rptr;
4279 				if (rptr == mp->b_wptr) {
4280 					mp1 = mp->b_cont;
4281 					freeb(mp);
4282 					mp = mp1;
4283 					rptr = mp->b_rptr;
4284 				}
4285 				if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
4286 					goto tossit;
4287 				ip6h = (ip6_t *)rptr;
4288 				mp_len = msgdsize(mp);
4289 			}
4290 			/*
4291 			 * Find any potentially interesting extension headers
4292 			 * as well as the length of the IPv6 + extension
4293 			 * headers.
4294 			 */
4295 			hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
4296 			    UDPH_SIZE;
4297 			ASSERT(nexthdrp == IPPROTO_UDP);
4298 		} else {
4299 			hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
4300 			ip6i = NULL;
4301 		}
4302 		break;
4303 	default:
4304 		ASSERT(0);
4305 	}
4306 
4307 	/*
4308 	 * IP inspected the UDP header thus all of it must be in the mblk.
4309 	 * UDP length check is performed for IPv6 packets and IPv4 packets
4310 	 * without options to check if the size of the packet as specified
4311 	 * by the header is the same as the physical size of the packet.
4312 	 */
4313 	udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4314 	if ((MBLKL(mp) < hdr_length) ||
4315 	    (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
4316 		goto tossit;
4317 	}
4318 
4319 	/* Walk past the headers. */
4320 	if (!udp->udp_rcvhdr) {
4321 		mp->b_rptr = rptr + hdr_length;
4322 		mp_len -= hdr_length;
4323 	}
4324 
4325 	/*
4326 	 * This is the inbound data path.  Packets are passed upstream as
4327 	 * T_UNITDATA_IND messages with full IP headers still attached.
4328 	 */
4329 	if (udp->udp_family == AF_INET) {
4330 		sin_t *sin;
4331 
4332 		ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4333 
4334 		/*
4335 		 * Normally only send up the address.
4336 		 * If IP_RECVDSTADDR is set we include the destination IP
4337 		 * address as an option. With IP_RECVOPTS we include all
4338 		 * the IP options. Only ip_rput_other() handles packets
4339 		 * that contain IP options.
4340 		 */
4341 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
4342 		if (udp->udp_recvdstaddr) {
4343 			udi_size += sizeof (struct T_opthdr) +
4344 			    sizeof (struct in_addr);
4345 			UDP_STAT(udp_in_recvdstaddr);
4346 		}
4347 
4348 		/*
4349 		 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
4350 		 * space accordingly
4351 		 */
4352 		if (udp->udp_recvif && (pinfo != NULL) &&
4353 		    (pinfo->in_pkt_flags & IPF_RECVIF)) {
4354 			udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
4355 			UDP_STAT(udp_in_recvif);
4356 		}
4357 
4358 		if (udp->udp_recvslla && (pinfo != NULL) &&
4359 		    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
4360 			udi_size += sizeof (struct T_opthdr) +
4361 			    sizeof (struct sockaddr_dl);
4362 			UDP_STAT(udp_in_recvslla);
4363 		}
4364 
4365 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
4366 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4367 			cpid = DB_CPID(mp);
4368 			UDP_STAT(udp_in_recvucred);
4369 		}
4370 		/*
4371 		 * If IP_RECVTTL is set allocate the appropriate sized buffer
4372 		 */
4373 		if (udp->udp_recvttl) {
4374 			udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
4375 			UDP_STAT(udp_in_recvttl);
4376 		}
4377 
4378 		ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH);
4379 
4380 		/* Allocate a message block for the T_UNITDATA_IND structure. */
4381 		mp1 = allocb(udi_size, BPRI_MED);
4382 		if (mp1 == NULL) {
4383 			freemsg(mp);
4384 			if (options_mp != NULL)
4385 				freeb(options_mp);
4386 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4387 				"udp_rput_end: q %p (%S)", q, "allocbfail");
4388 			BUMP_MIB(&udp_mib, udpInErrors);
4389 			return;
4390 		}
4391 		mp1->b_cont = mp;
4392 		mp = mp1;
4393 		mp->b_datap->db_type = M_PROTO;
4394 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4395 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4396 		tudi->PRIM_type = T_UNITDATA_IND;
4397 		tudi->SRC_length = sizeof (sin_t);
4398 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4399 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4400 		    sizeof (sin_t);
4401 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
4402 		tudi->OPT_length = udi_size;
4403 		sin = (sin_t *)&tudi[1];
4404 		sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
4405 		sin->sin_port =	udpha->uha_src_port;
4406 		sin->sin_family = udp->udp_family;
4407 		*(uint32_t *)&sin->sin_zero[0] = 0;
4408 		*(uint32_t *)&sin->sin_zero[4] = 0;
4409 
4410 		/*
4411 		 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
4412 		 * IP_RECVTTL has been set.
4413 		 */
4414 		if (udi_size != 0) {
4415 			/*
4416 			 * Copy in destination address before options to avoid
4417 			 * any padding issues.
4418 			 */
4419 			char *dstopt;
4420 
4421 			dstopt = (char *)&sin[1];
4422 			if (udp->udp_recvdstaddr) {
4423 				struct T_opthdr *toh;
4424 				ipaddr_t *dstptr;
4425 
4426 				toh = (struct T_opthdr *)dstopt;
4427 				toh->level = IPPROTO_IP;
4428 				toh->name = IP_RECVDSTADDR;
4429 				toh->len = sizeof (struct T_opthdr) +
4430 				    sizeof (ipaddr_t);
4431 				toh->status = 0;
4432 				dstopt += sizeof (struct T_opthdr);
4433 				dstptr = (ipaddr_t *)dstopt;
4434 				*dstptr = ((ipha_t *)rptr)->ipha_dst;
4435 				dstopt += sizeof (ipaddr_t);
4436 				udi_size -= toh->len;
4437 			}
4438 
4439 			if (udp->udp_recvslla && (pinfo != NULL) &&
4440 			    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
4441 
4442 				struct T_opthdr *toh;
4443 				struct sockaddr_dl	*dstptr;
4444 
4445 				toh = (struct T_opthdr *)dstopt;
4446 				toh->level = IPPROTO_IP;
4447 				toh->name = IP_RECVSLLA;
4448 				toh->len = sizeof (struct T_opthdr) +
4449 					sizeof (struct sockaddr_dl);
4450 				toh->status = 0;
4451 				dstopt += sizeof (struct T_opthdr);
4452 				dstptr = (struct sockaddr_dl *)dstopt;
4453 				bcopy(&pinfo->in_pkt_slla, dstptr,
4454 				    sizeof (struct sockaddr_dl));
4455 				dstopt += sizeof (struct sockaddr_dl);
4456 				udi_size -= toh->len;
4457 			}
4458 
4459 			if (udp->udp_recvif && (pinfo != NULL) &&
4460 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
4461 
4462 				struct T_opthdr *toh;
4463 				uint_t		*dstptr;
4464 
4465 				toh = (struct T_opthdr *)dstopt;
4466 				toh->level = IPPROTO_IP;
4467 				toh->name = IP_RECVIF;
4468 				toh->len = sizeof (struct T_opthdr) +
4469 					sizeof (uint_t);
4470 				toh->status = 0;
4471 				dstopt += sizeof (struct T_opthdr);
4472 				dstptr = (uint_t *)dstopt;
4473 				*dstptr = pinfo->in_pkt_ifindex;
4474 				dstopt += sizeof (uint_t);
4475 				udi_size -= toh->len;
4476 			}
4477 
4478 			if (cr != NULL) {
4479 				struct T_opthdr *toh;
4480 
4481 				toh = (struct T_opthdr *)dstopt;
4482 				toh->level = SOL_SOCKET;
4483 				toh->name = SCM_UCRED;
4484 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4485 				toh->status = 0;
4486 				(void) cred2ucred(cr, cpid, &toh[1]);
4487 				dstopt += toh->len;
4488 				udi_size -= toh->len;
4489 			}
4490 
4491 			if (udp->udp_recvttl) {
4492 				struct	T_opthdr *toh;
4493 				uint8_t	*dstptr;
4494 
4495 				toh = (struct T_opthdr *)dstopt;
4496 				toh->level = IPPROTO_IP;
4497 				toh->name = IP_RECVTTL;
4498 				toh->len = sizeof (struct T_opthdr) +
4499 				    sizeof (uint8_t);
4500 				toh->status = 0;
4501 				dstopt += sizeof (struct T_opthdr);
4502 				dstptr = (uint8_t *)dstopt;
4503 				*dstptr = ((ipha_t *)rptr)->ipha_ttl;
4504 				dstopt += sizeof (uint8_t);
4505 				udi_size -= toh->len;
4506 			}
4507 
4508 			/* Consumed all of allocated space */
4509 			ASSERT(udi_size == 0);
4510 		}
4511 	} else {
4512 		sin6_t *sin6;
4513 
4514 		/*
4515 		 * Handle both IPv4 and IPv6 packets for IPv6 sockets.
4516 		 *
4517 		 * Normally we only send up the address. If receiving of any
4518 		 * optional receive side information is enabled, we also send
4519 		 * that up as options.
4520 		 * [ Only udp_rput_other() handles packets that contain IP
4521 		 * options so code to account for does not appear immediately
4522 		 * below but elsewhere ]
4523 		 */
4524 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
4525 
4526 		if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
4527 		    IPPF_RTHDR|IPPF_IFINDEX)) {
4528 			if (udp->udp_ipv6_recvhopopts &&
4529 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4530 				udi_size += sizeof (struct T_opthdr) +
4531 				    ipp.ipp_hopoptslen;
4532 				UDP_STAT(udp_in_recvhopopts);
4533 			}
4534 			if ((udp->udp_ipv6_recvdstopts ||
4535 				udp->udp_old_ipv6_recvdstopts) &&
4536 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4537 				udi_size += sizeof (struct T_opthdr) +
4538 				    ipp.ipp_dstoptslen;
4539 				UDP_STAT(udp_in_recvdstopts);
4540 			}
4541 			if (((udp->udp_ipv6_recvdstopts &&
4542 			    udp->udp_ipv6_recvrthdr &&
4543 			    (ipp.ipp_fields & IPPF_RTHDR)) ||
4544 			    udp->udp_ipv6_recvrthdrdstopts) &&
4545 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4546 				udi_size += sizeof (struct T_opthdr) +
4547 				    ipp.ipp_rtdstoptslen;
4548 				UDP_STAT(udp_in_recvrtdstopts);
4549 			}
4550 			if (udp->udp_ipv6_recvrthdr &&
4551 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4552 				udi_size += sizeof (struct T_opthdr) +
4553 				    ipp.ipp_rthdrlen;
4554 				UDP_STAT(udp_in_recvrthdr);
4555 			}
4556 			if (udp->udp_ipv6_recvpktinfo &&
4557 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4558 				udi_size += sizeof (struct T_opthdr) +
4559 				    sizeof (struct in6_pktinfo);
4560 				UDP_STAT(udp_in_recvpktinfo);
4561 			}
4562 
4563 		}
4564 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
4565 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4566 			cpid = DB_CPID(mp);
4567 			UDP_STAT(udp_in_recvucred);
4568 		}
4569 
4570 		if (udp->udp_ipv6_recvhoplimit) {
4571 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4572 			UDP_STAT(udp_in_recvhoplimit);
4573 		}
4574 
4575 		if (udp->udp_ipv6_recvtclass) {
4576 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4577 			UDP_STAT(udp_in_recvtclass);
4578 		}
4579 
4580 		mp1 = allocb(udi_size, BPRI_MED);
4581 		if (mp1 == NULL) {
4582 			freemsg(mp);
4583 			if (options_mp != NULL)
4584 				freeb(options_mp);
4585 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4586 				"udp_rput_end: q %p (%S)", q, "allocbfail");
4587 			BUMP_MIB(&udp_mib, udpInErrors);
4588 			return;
4589 		}
4590 		mp1->b_cont = mp;
4591 		mp = mp1;
4592 		mp->b_datap->db_type = M_PROTO;
4593 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4594 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4595 		tudi->PRIM_type = T_UNITDATA_IND;
4596 		tudi->SRC_length = sizeof (sin6_t);
4597 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4598 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4599 		    sizeof (sin6_t);
4600 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
4601 		tudi->OPT_length = udi_size;
4602 		sin6 = (sin6_t *)&tudi[1];
4603 		if (ipversion == IPV4_VERSION) {
4604 			in6_addr_t v6dst;
4605 
4606 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
4607 			    &sin6->sin6_addr);
4608 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
4609 			    &v6dst);
4610 			sin6->sin6_flowinfo = 0;
4611 			sin6->sin6_scope_id = 0;
4612 			sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
4613 			    connp->conn_zoneid);
4614 		} else {
4615 			sin6->sin6_addr = ip6h->ip6_src;
4616 			/* No sin6_flowinfo per API */
4617 			sin6->sin6_flowinfo = 0;
4618 			/* For link-scope source pass up scope id */
4619 			if ((ipp.ipp_fields & IPPF_IFINDEX) &&
4620 			    IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4621 				sin6->sin6_scope_id = ipp.ipp_ifindex;
4622 			else
4623 				sin6->sin6_scope_id = 0;
4624 			sin6->__sin6_src_id = ip_srcid_find_addr(
4625 			    &ip6h->ip6_dst, connp->conn_zoneid);
4626 		}
4627 		sin6->sin6_port = udpha->uha_src_port;
4628 		sin6->sin6_family = udp->udp_family;
4629 
4630 		if (udi_size != 0) {
4631 			uchar_t *dstopt;
4632 
4633 			dstopt = (uchar_t *)&sin6[1];
4634 			if (udp->udp_ipv6_recvpktinfo &&
4635 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4636 				struct T_opthdr *toh;
4637 				struct in6_pktinfo *pkti;
4638 
4639 				toh = (struct T_opthdr *)dstopt;
4640 				toh->level = IPPROTO_IPV6;
4641 				toh->name = IPV6_PKTINFO;
4642 				toh->len = sizeof (struct T_opthdr) +
4643 				    sizeof (*pkti);
4644 				toh->status = 0;
4645 				dstopt += sizeof (struct T_opthdr);
4646 				pkti = (struct in6_pktinfo *)dstopt;
4647 				if (ipversion == IPV6_VERSION)
4648 					pkti->ipi6_addr = ip6h->ip6_dst;
4649 				else
4650 					IN6_IPADDR_TO_V4MAPPED(
4651 						((ipha_t *)rptr)->ipha_dst,
4652 						    &pkti->ipi6_addr);
4653 				pkti->ipi6_ifindex = ipp.ipp_ifindex;
4654 				dstopt += sizeof (*pkti);
4655 				udi_size -= toh->len;
4656 			}
4657 			if (udp->udp_ipv6_recvhoplimit) {
4658 				struct T_opthdr *toh;
4659 
4660 				toh = (struct T_opthdr *)dstopt;
4661 				toh->level = IPPROTO_IPV6;
4662 				toh->name = IPV6_HOPLIMIT;
4663 				toh->len = sizeof (struct T_opthdr) +
4664 				    sizeof (uint_t);
4665 				toh->status = 0;
4666 				dstopt += sizeof (struct T_opthdr);
4667 				if (ipversion == IPV6_VERSION)
4668 					*(uint_t *)dstopt = ip6h->ip6_hops;
4669 				else
4670 					*(uint_t *)dstopt =
4671 					    ((ipha_t *)rptr)->ipha_ttl;
4672 				dstopt += sizeof (uint_t);
4673 				udi_size -= toh->len;
4674 			}
4675 			if (udp->udp_ipv6_recvtclass) {
4676 				struct T_opthdr *toh;
4677 
4678 				toh = (struct T_opthdr *)dstopt;
4679 				toh->level = IPPROTO_IPV6;
4680 				toh->name = IPV6_TCLASS;
4681 				toh->len = sizeof (struct T_opthdr) +
4682 				    sizeof (uint_t);
4683 				toh->status = 0;
4684 				dstopt += sizeof (struct T_opthdr);
4685 				if (ipversion == IPV6_VERSION) {
4686 					*(uint_t *)dstopt =
4687 					IPV6_FLOW_TCLASS(ip6h->ip6_flow);
4688 				} else {
4689 					ipha_t *ipha = (ipha_t *)rptr;
4690 					*(uint_t *)dstopt =
4691 					    ipha->ipha_type_of_service;
4692 				}
4693 				dstopt += sizeof (uint_t);
4694 				udi_size -= toh->len;
4695 			}
4696 			if (udp->udp_ipv6_recvhopopts &&
4697 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4698 				struct T_opthdr *toh;
4699 
4700 				toh = (struct T_opthdr *)dstopt;
4701 				toh->level = IPPROTO_IPV6;
4702 				toh->name = IPV6_HOPOPTS;
4703 				toh->len = sizeof (struct T_opthdr) +
4704 				    ipp.ipp_hopoptslen;
4705 				toh->status = 0;
4706 				dstopt += sizeof (struct T_opthdr);
4707 				bcopy(ipp.ipp_hopopts, dstopt,
4708 				    ipp.ipp_hopoptslen);
4709 				dstopt += ipp.ipp_hopoptslen;
4710 				udi_size -= toh->len;
4711 			}
4712 			if (udp->udp_ipv6_recvdstopts &&
4713 			    udp->udp_ipv6_recvrthdr &&
4714 			    (ipp.ipp_fields & IPPF_RTHDR) &&
4715 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4716 				struct T_opthdr *toh;
4717 
4718 				toh = (struct T_opthdr *)dstopt;
4719 				toh->level = IPPROTO_IPV6;
4720 				toh->name = IPV6_DSTOPTS;
4721 				toh->len = sizeof (struct T_opthdr) +
4722 				    ipp.ipp_rtdstoptslen;
4723 				toh->status = 0;
4724 				dstopt += sizeof (struct T_opthdr);
4725 				bcopy(ipp.ipp_rtdstopts, dstopt,
4726 				    ipp.ipp_rtdstoptslen);
4727 				dstopt += ipp.ipp_rtdstoptslen;
4728 				udi_size -= toh->len;
4729 			}
4730 			if (udp->udp_ipv6_recvrthdr &&
4731 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4732 				struct T_opthdr *toh;
4733 
4734 				toh = (struct T_opthdr *)dstopt;
4735 				toh->level = IPPROTO_IPV6;
4736 				toh->name = IPV6_RTHDR;
4737 				toh->len = sizeof (struct T_opthdr) +
4738 				    ipp.ipp_rthdrlen;
4739 				toh->status = 0;
4740 				dstopt += sizeof (struct T_opthdr);
4741 				bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
4742 				dstopt += ipp.ipp_rthdrlen;
4743 				udi_size -= toh->len;
4744 			}
4745 			if (udp->udp_ipv6_recvdstopts &&
4746 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4747 				struct T_opthdr *toh;
4748 
4749 				toh = (struct T_opthdr *)dstopt;
4750 				toh->level = IPPROTO_IPV6;
4751 				toh->name = IPV6_DSTOPTS;
4752 				toh->len = sizeof (struct T_opthdr) +
4753 				    ipp.ipp_dstoptslen;
4754 				toh->status = 0;
4755 				dstopt += sizeof (struct T_opthdr);
4756 				bcopy(ipp.ipp_dstopts, dstopt,
4757 				    ipp.ipp_dstoptslen);
4758 				dstopt += ipp.ipp_dstoptslen;
4759 				udi_size -= toh->len;
4760 			}
4761 
4762 			if (cr != NULL) {
4763 				struct T_opthdr *toh;
4764 
4765 				toh = (struct T_opthdr *)dstopt;
4766 				toh->level = SOL_SOCKET;
4767 				toh->name = SCM_UCRED;
4768 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4769 				toh->status = 0;
4770 				(void) cred2ucred(cr, cpid, &toh[1]);
4771 				dstopt += toh->len;
4772 				udi_size -= toh->len;
4773 			}
4774 			/* Consumed all of allocated space */
4775 			ASSERT(udi_size == 0);
4776 		}
4777 #undef	sin6
4778 		/* No IP_RECVDSTADDR for IPv6. */
4779 	}
4780 
4781 	BUMP_MIB(&udp_mib, udpInDatagrams);
4782 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4783 		"udp_rput_end: q %p (%S)", q, "end");
4784 	if (options_mp != NULL)
4785 		freeb(options_mp);
4786 
4787 	if (udp->udp_direct_sockfs) {
4788 		/*
4789 		 * There is nothing above us except for the stream head;
4790 		 * use the read-side synchronous stream interface in
4791 		 * order to reduce the time spent in interrupt thread.
4792 		 */
4793 		ASSERT(udp->udp_issocket);
4794 		udp_rcv_enqueue(UDP_RD(q), udp, mp, mp_len);
4795 	} else {
4796 		/*
4797 		 * Use regular STREAMS interface to pass data upstream
4798 		 * if this is not a socket endpoint, or if we have
4799 		 * switched over to the slow mode due to sockmod being
4800 		 * popped or a module being pushed on top of us.
4801 		 */
4802 		putnext(UDP_RD(q), mp);
4803 	}
4804 	return;
4805 
4806 tossit:
4807 	freemsg(mp);
4808 	if (options_mp != NULL)
4809 		freeb(options_mp);
4810 	BUMP_MIB(&udp_mib, udpInErrors);
4811 }
4812 
4813 void
4814 udp_conn_recv(conn_t *connp, mblk_t *mp)
4815 {
4816 	_UDP_ENTER(connp, mp, udp_input_wrapper, SQTAG_UDP_FANOUT);
4817 }
4818 
4819 /* ARGSUSED */
4820 static void
4821 udp_input_wrapper(void *arg, mblk_t *mp, void *arg2)
4822 {
4823 	udp_input((conn_t *)arg, mp);
4824 	_UDP_EXIT((conn_t *)arg);
4825 }
4826 
4827 /*
4828  * Process non-M_DATA messages as well as M_DATA messages that requires
4829  * modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options.
4830  */
4831 static void
4832 udp_rput_other(queue_t *q, mblk_t *mp)
4833 {
4834 	struct T_unitdata_ind	*tudi;
4835 	mblk_t			*mp1;
4836 	uchar_t			*rptr;
4837 	uchar_t			*new_rptr;
4838 	int			hdr_length;
4839 	int			udi_size;	/* Size of T_unitdata_ind */
4840 	int			opt_len;	/* Length of IP options */
4841 	sin_t			*sin;
4842 	struct T_error_ack	*tea;
4843 	mblk_t			*options_mp = NULL;
4844 	in_pktinfo_t		*pinfo;
4845 	boolean_t		recv_on = B_FALSE;
4846 	cred_t			*cr = NULL;
4847 	udp_t			*udp = Q_TO_UDP(q);
4848 	pid_t			cpid;
4849 
4850 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
4851 	    "udp_rput_other: q %p mp %p", q, mp);
4852 
4853 	ASSERT(OK_32PTR(mp->b_rptr));
4854 	rptr = mp->b_rptr;
4855 
4856 	switch (mp->b_datap->db_type) {
4857 	case M_CTL:
4858 		/*
4859 		 * We are here only if IP_RECVSLLA and/or IP_RECVIF are set
4860 		 */
4861 		recv_on = B_TRUE;
4862 		options_mp = mp;
4863 		pinfo = (in_pktinfo_t *)options_mp->b_rptr;
4864 
4865 		/*
4866 		 * The actual data is in mp->b_cont
4867 		 */
4868 		mp = mp->b_cont;
4869 		ASSERT(OK_32PTR(mp->b_rptr));
4870 		rptr = mp->b_rptr;
4871 		break;
4872 	case M_DATA:
4873 		/*
4874 		 * M_DATA messages contain IPv4 datagrams.  They are handled
4875 		 * after this switch.
4876 		 */
4877 		break;
4878 	case M_PROTO:
4879 	case M_PCPROTO:
4880 		/* M_PROTO messages contain some type of TPI message. */
4881 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
4882 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
4883 			freemsg(mp);
4884 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4885 			    "udp_rput_other_end: q %p (%S)", q, "protoshort");
4886 			return;
4887 		}
4888 		tea = (struct T_error_ack *)rptr;
4889 
4890 		switch (tea->PRIM_type) {
4891 		case T_ERROR_ACK:
4892 			switch (tea->ERROR_prim) {
4893 			case O_T_BIND_REQ:
4894 			case T_BIND_REQ: {
4895 				/*
4896 				 * If our O_T_BIND_REQ/T_BIND_REQ fails,
4897 				 * clear out the associated port and source
4898 				 * address before passing the message
4899 				 * upstream. If this was caused by a T_CONN_REQ
4900 				 * revert back to bound state.
4901 				 */
4902 				udp_fanout_t	*udpf;
4903 
4904 				udpf = &udp_bind_fanout[
4905 				    UDP_BIND_HASH(udp->udp_port)];
4906 				mutex_enter(&udpf->uf_lock);
4907 				if (udp->udp_state == TS_DATA_XFER) {
4908 					/* Connect failed */
4909 					tea->ERROR_prim = T_CONN_REQ;
4910 					/* Revert back to the bound source */
4911 					udp->udp_v6src = udp->udp_bound_v6src;
4912 					udp->udp_state = TS_IDLE;
4913 					mutex_exit(&udpf->uf_lock);
4914 					if (udp->udp_family == AF_INET6)
4915 						(void) udp_build_hdrs(q, udp);
4916 					break;
4917 				}
4918 
4919 				if (udp->udp_discon_pending) {
4920 					tea->ERROR_prim = T_DISCON_REQ;
4921 					udp->udp_discon_pending = 0;
4922 				}
4923 				V6_SET_ZERO(udp->udp_v6src);
4924 				V6_SET_ZERO(udp->udp_bound_v6src);
4925 				udp->udp_state = TS_UNBND;
4926 				udp_bind_hash_remove(udp, B_TRUE);
4927 				udp->udp_port = 0;
4928 				mutex_exit(&udpf->uf_lock);
4929 				if (udp->udp_family == AF_INET6)
4930 					(void) udp_build_hdrs(q, udp);
4931 				break;
4932 			}
4933 			default:
4934 				break;
4935 			}
4936 			break;
4937 		case T_BIND_ACK:
4938 			udp_rput_bind_ack(q, mp);
4939 			return;
4940 
4941 		case T_OPTMGMT_ACK:
4942 		case T_OK_ACK:
4943 			break;
4944 		default:
4945 			freemsg(mp);
4946 			return;
4947 		}
4948 		putnext(UDP_RD(q), mp);
4949 		return;
4950 	}
4951 
4952 	/*
4953 	 * This is the inbound data path.
4954 	 * First, we make sure the data contains both IP and UDP headers.
4955 	 *
4956 	 * This handle IPv4 packets for only AF_INET sockets.
4957 	 * AF_INET6 sockets can never access udp_ip_rcv_options thus there
4958 	 * is no need saving the options.
4959 	 */
4960 	ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4961 	hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4962 	if (mp->b_wptr - rptr < hdr_length) {
4963 		if (!pullupmsg(mp, hdr_length)) {
4964 			freemsg(mp);
4965 			if (options_mp != NULL)
4966 				freeb(options_mp);
4967 			BUMP_MIB(&udp_mib, udpInErrors);
4968 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4969 			    "udp_rput_other_end: q %p (%S)", q, "hdrshort");
4970 			BUMP_MIB(&udp_mib, udpInErrors);
4971 			return;
4972 		}
4973 		rptr = mp->b_rptr;
4974 	}
4975 	/* Walk past the headers. */
4976 	new_rptr = rptr + hdr_length;
4977 	if (!udp->udp_rcvhdr)
4978 		mp->b_rptr = new_rptr;
4979 
4980 	/* Save the options if any */
4981 	opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
4982 	if (opt_len > 0) {
4983 		if (opt_len > udp->udp_ip_rcv_options_len) {
4984 			if (udp->udp_ip_rcv_options_len)
4985 				mi_free((char *)udp->udp_ip_rcv_options);
4986 			udp->udp_ip_rcv_options_len = 0;
4987 			udp->udp_ip_rcv_options =
4988 			    (uchar_t *)mi_alloc(opt_len, BPRI_HI);
4989 			if (udp->udp_ip_rcv_options)
4990 				udp->udp_ip_rcv_options_len = opt_len;
4991 		}
4992 		if (udp->udp_ip_rcv_options_len) {
4993 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH,
4994 			    udp->udp_ip_rcv_options, opt_len);
4995 			/* Adjust length if we are resusing the space */
4996 			udp->udp_ip_rcv_options_len = opt_len;
4997 		}
4998 	} else if (udp->udp_ip_rcv_options_len) {
4999 		mi_free((char *)udp->udp_ip_rcv_options);
5000 		udp->udp_ip_rcv_options = NULL;
5001 		udp->udp_ip_rcv_options_len = 0;
5002 	}
5003 
5004 	/*
5005 	 * Normally only send up the address.
5006 	 * If IP_RECVDSTADDR is set we include the destination IP
5007 	 * address as an option. With IP_RECVOPTS we include all
5008 	 * the IP options.
5009 	 */
5010 	udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5011 	if (udp->udp_recvdstaddr) {
5012 		udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr);
5013 		UDP_STAT(udp_in_recvdstaddr);
5014 	}
5015 	if (udp->udp_recvopts && opt_len > 0) {
5016 		udi_size += sizeof (struct T_opthdr) + opt_len;
5017 		UDP_STAT(udp_in_recvopts);
5018 	}
5019 
5020 	/*
5021 	 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
5022 	 * space accordingly
5023 	 */
5024 	if (udp->udp_recvif && recv_on &&
5025 	    (pinfo->in_pkt_flags & IPF_RECVIF)) {
5026 		udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
5027 		UDP_STAT(udp_in_recvif);
5028 	}
5029 
5030 	if (udp->udp_recvslla && recv_on &&
5031 	    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
5032 		udi_size += sizeof (struct T_opthdr) +
5033 		    sizeof (struct sockaddr_dl);
5034 		UDP_STAT(udp_in_recvslla);
5035 	}
5036 
5037 	if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
5038 		udi_size += sizeof (struct T_opthdr) + ucredsize;
5039 		cpid = DB_CPID(mp);
5040 		UDP_STAT(udp_in_recvucred);
5041 	}
5042 	/*
5043 	 * If IP_RECVTTL is set allocate the appropriate sized buffer
5044 	 */
5045 	if (udp->udp_recvttl) {
5046 		udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
5047 		UDP_STAT(udp_in_recvttl);
5048 	}
5049 
5050 	/* Allocate a message block for the T_UNITDATA_IND structure. */
5051 	mp1 = allocb(udi_size, BPRI_MED);
5052 	if (mp1 == NULL) {
5053 		freemsg(mp);
5054 		if (options_mp != NULL)
5055 			freeb(options_mp);
5056 		TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5057 			"udp_rput_other_end: q %p (%S)", q, "allocbfail");
5058 		BUMP_MIB(&udp_mib, udpInErrors);
5059 		return;
5060 	}
5061 	mp1->b_cont = mp;
5062 	mp = mp1;
5063 	mp->b_datap->db_type = M_PROTO;
5064 	tudi = (struct T_unitdata_ind *)mp->b_rptr;
5065 	mp->b_wptr = (uchar_t *)tudi + udi_size;
5066 	tudi->PRIM_type = T_UNITDATA_IND;
5067 	tudi->SRC_length = sizeof (sin_t);
5068 	tudi->SRC_offset = sizeof (struct T_unitdata_ind);
5069 	tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5070 	udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
5071 	tudi->OPT_length = udi_size;
5072 
5073 	sin = (sin_t *)&tudi[1];
5074 	sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
5075 	sin->sin_port =	((in_port_t *)
5076 	    new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))];
5077 	sin->sin_family = AF_INET;
5078 	*(uint32_t *)&sin->sin_zero[0] = 0;
5079 	*(uint32_t *)&sin->sin_zero[4] = 0;
5080 
5081 	/*
5082 	 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
5083 	 * IP_RECVTTL has been set.
5084 	 */
5085 	if (udi_size != 0) {
5086 		/*
5087 		 * Copy in destination address before options to avoid any
5088 		 * padding issues.
5089 		 */
5090 		char *dstopt;
5091 
5092 		dstopt = (char *)&sin[1];
5093 		if (udp->udp_recvdstaddr) {
5094 			struct T_opthdr *toh;
5095 			ipaddr_t *dstptr;
5096 
5097 			toh = (struct T_opthdr *)dstopt;
5098 			toh->level = IPPROTO_IP;
5099 			toh->name = IP_RECVDSTADDR;
5100 			toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t);
5101 			toh->status = 0;
5102 			dstopt += sizeof (struct T_opthdr);
5103 			dstptr = (ipaddr_t *)dstopt;
5104 			*dstptr = (((ipaddr_t *)rptr)[4]);
5105 			dstopt += sizeof (ipaddr_t);
5106 			udi_size -= toh->len;
5107 		}
5108 		if (udp->udp_recvopts && udi_size != 0) {
5109 			struct T_opthdr *toh;
5110 
5111 			toh = (struct T_opthdr *)dstopt;
5112 			toh->level = IPPROTO_IP;
5113 			toh->name = IP_RECVOPTS;
5114 			toh->len = sizeof (struct T_opthdr) + opt_len;
5115 			toh->status = 0;
5116 			dstopt += sizeof (struct T_opthdr);
5117 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len);
5118 			dstopt += opt_len;
5119 			udi_size -= toh->len;
5120 		}
5121 
5122 		if (udp->udp_recvslla && recv_on &&
5123 		    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
5124 
5125 			struct T_opthdr *toh;
5126 			struct sockaddr_dl	*dstptr;
5127 
5128 			toh = (struct T_opthdr *)dstopt;
5129 			toh->level = IPPROTO_IP;
5130 			toh->name = IP_RECVSLLA;
5131 			toh->len = sizeof (struct T_opthdr) +
5132 			    sizeof (struct sockaddr_dl);
5133 			toh->status = 0;
5134 			dstopt += sizeof (struct T_opthdr);
5135 			dstptr = (struct sockaddr_dl *)dstopt;
5136 			bcopy(&pinfo->in_pkt_slla, dstptr,
5137 			    sizeof (struct sockaddr_dl));
5138 			dstopt += sizeof (struct sockaddr_dl);
5139 			udi_size -= toh->len;
5140 		}
5141 
5142 		if (udp->udp_recvif && recv_on &&
5143 		    (pinfo->in_pkt_flags & IPF_RECVIF)) {
5144 
5145 			struct T_opthdr *toh;
5146 			uint_t		*dstptr;
5147 
5148 			toh = (struct T_opthdr *)dstopt;
5149 			toh->level = IPPROTO_IP;
5150 			toh->name = IP_RECVIF;
5151 			toh->len = sizeof (struct T_opthdr) +
5152 			    sizeof (uint_t);
5153 			toh->status = 0;
5154 			dstopt += sizeof (struct T_opthdr);
5155 			dstptr = (uint_t *)dstopt;
5156 			*dstptr = pinfo->in_pkt_ifindex;
5157 			dstopt += sizeof (uint_t);
5158 			udi_size -= toh->len;
5159 		}
5160 
5161 		if (cr != NULL) {
5162 			struct T_opthdr *toh;
5163 
5164 			toh = (struct T_opthdr *)dstopt;
5165 			toh->level = SOL_SOCKET;
5166 			toh->name = SCM_UCRED;
5167 			toh->len = sizeof (struct T_opthdr) + ucredsize;
5168 			toh->status = 0;
5169 			(void) cred2ucred(cr, cpid, &toh[1]);
5170 			dstopt += toh->len;
5171 			udi_size -= toh->len;
5172 		}
5173 
5174 		if (udp->udp_recvttl) {
5175 			struct	T_opthdr *toh;
5176 			uint8_t	*dstptr;
5177 
5178 			toh = (struct T_opthdr *)dstopt;
5179 			toh->level = IPPROTO_IP;
5180 			toh->name = IP_RECVTTL;
5181 			toh->len = sizeof (struct T_opthdr) +
5182 			    sizeof (uint8_t);
5183 			toh->status = 0;
5184 			dstopt += sizeof (struct T_opthdr);
5185 			dstptr = (uint8_t *)dstopt;
5186 			*dstptr = ((ipha_t *)rptr)->ipha_ttl;
5187 			dstopt += sizeof (uint8_t);
5188 			udi_size -= toh->len;
5189 		}
5190 
5191 		ASSERT(udi_size == 0);	/* "Consumed" all of allocated space */
5192 	}
5193 	BUMP_MIB(&udp_mib, udpInDatagrams);
5194 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5195 	    "udp_rput_other_end: q %p (%S)", q, "end");
5196 	if (options_mp != NULL)
5197 		freeb(options_mp);
5198 
5199 	if (udp->udp_direct_sockfs) {
5200 		/*
5201 		 * There is nothing above us except for the stream head;
5202 		 * use the read-side synchronous stream interface in
5203 		 * order to reduce the time spent in interrupt thread.
5204 		 */
5205 		ASSERT(udp->udp_issocket);
5206 		udp_rcv_enqueue(UDP_RD(q), udp, mp, msgdsize(mp));
5207 	} else {
5208 		/*
5209 		 * Use regular STREAMS interface to pass data upstream
5210 		 * if this is not a socket endpoint, or if we have
5211 		 * switched over to the slow mode due to sockmod being
5212 		 * popped or a module being pushed on top of us.
5213 		 */
5214 		putnext(UDP_RD(q), mp);
5215 	}
5216 }
5217 
5218 /* ARGSUSED */
5219 static void
5220 udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
5221 {
5222 	conn_t *connp = arg;
5223 
5224 	udp_rput_other(connp->conn_rq, mp);
5225 	udp_exit(connp);
5226 }
5227 
5228 /*
5229  * Process a T_BIND_ACK
5230  */
5231 static void
5232 udp_rput_bind_ack(queue_t *q, mblk_t *mp)
5233 {
5234 	udp_t	*udp = Q_TO_UDP(q);
5235 	mblk_t	*mp1;
5236 	ire_t	*ire;
5237 	struct T_bind_ack *tba;
5238 	uchar_t *addrp;
5239 	ipa_conn_t	*ac;
5240 	ipa6_conn_t	*ac6;
5241 
5242 	if (udp->udp_discon_pending)
5243 		udp->udp_discon_pending = 0;
5244 
5245 	/*
5246 	 * If a broadcast/multicast address was bound set
5247 	 * the source address to 0.
5248 	 * This ensures no datagrams with broadcast address
5249 	 * as source address are emitted (which would violate
5250 	 * RFC1122 - Hosts requirements)
5251 	 *
5252 	 * Note that when connecting the returned IRE is
5253 	 * for the destination address and we only perform
5254 	 * the broadcast check for the source address (it
5255 	 * is OK to connect to a broadcast/multicast address.)
5256 	 */
5257 	mp1 = mp->b_cont;
5258 	if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
5259 		ire = (ire_t *)mp1->b_rptr;
5260 
5261 		/*
5262 		 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
5263 		 * local address.
5264 		 */
5265 		if (ire->ire_type == IRE_BROADCAST &&
5266 		    udp->udp_state != TS_DATA_XFER) {
5267 			/* This was just a local bind to a broadcast addr */
5268 			V6_SET_ZERO(udp->udp_v6src);
5269 			if (udp->udp_family == AF_INET6)
5270 				(void) udp_build_hdrs(q, udp);
5271 		} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
5272 			/*
5273 			 * Local address not yet set - pick it from the
5274 			 * T_bind_ack
5275 			 */
5276 			tba = (struct T_bind_ack *)mp->b_rptr;
5277 			addrp = &mp->b_rptr[tba->ADDR_offset];
5278 			switch (udp->udp_family) {
5279 			case AF_INET:
5280 				if (tba->ADDR_length == sizeof (ipa_conn_t)) {
5281 					ac = (ipa_conn_t *)addrp;
5282 				} else {
5283 					ASSERT(tba->ADDR_length ==
5284 					    sizeof (ipa_conn_x_t));
5285 					ac = &((ipa_conn_x_t *)addrp)->acx_conn;
5286 				}
5287 				IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
5288 				    &udp->udp_v6src);
5289 				break;
5290 			case AF_INET6:
5291 				if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
5292 					ac6 = (ipa6_conn_t *)addrp;
5293 				} else {
5294 					ASSERT(tba->ADDR_length ==
5295 					    sizeof (ipa6_conn_x_t));
5296 					ac6 = &((ipa6_conn_x_t *)
5297 					    addrp)->ac6x_conn;
5298 				}
5299 				udp->udp_v6src = ac6->ac6_laddr;
5300 				(void) udp_build_hdrs(q, udp);
5301 				break;
5302 			}
5303 		}
5304 		mp1 = mp1->b_cont;
5305 	}
5306 	/*
5307 	 * Look for one or more appended ACK message added by
5308 	 * udp_connect or udp_disconnect.
5309 	 * If none found just send up the T_BIND_ACK.
5310 	 * udp_connect has appended a T_OK_ACK and a T_CONN_CON.
5311 	 * udp_disconnect has appended a T_OK_ACK.
5312 	 */
5313 	if (mp1 != NULL) {
5314 		if (mp->b_cont == mp1)
5315 			mp->b_cont = NULL;
5316 		else {
5317 			ASSERT(mp->b_cont->b_cont == mp1);
5318 			mp->b_cont->b_cont = NULL;
5319 		}
5320 		freemsg(mp);
5321 		mp = mp1;
5322 		while (mp != NULL) {
5323 			mp1 = mp->b_cont;
5324 			mp->b_cont = NULL;
5325 			putnext(UDP_RD(q), mp);
5326 			mp = mp1;
5327 		}
5328 		return;
5329 	}
5330 	freemsg(mp->b_cont);
5331 	mp->b_cont = NULL;
5332 	putnext(UDP_RD(q), mp);
5333 }
5334 
5335 /*
5336  * return SNMP stuff in buffer in mpdata
5337  */
5338 int
5339 udp_snmp_get(queue_t *q, mblk_t *mpctl)
5340 {
5341 	mblk_t			*mpdata;
5342 	mblk_t			*mp_conn_ctl;
5343 	mblk_t			*mp6_conn_ctl;
5344 	mblk_t			*mp_conn_data;
5345 	mblk_t			*mp6_conn_data;
5346 	mblk_t			*mp_conn_tail = NULL;
5347 	mblk_t			*mp6_conn_tail = NULL;
5348 	struct opthdr		*optp;
5349 	mib2_udpEntry_t		ude;
5350 	mib2_udp6Entry_t	ude6;
5351 	int			state;
5352 	zoneid_t		zoneid;
5353 	int			i;
5354 	connf_t			*connfp;
5355 	conn_t			*connp = Q_TO_CONN(q);
5356 	udp_t			*udp = connp->conn_udp;
5357 
5358 	if (mpctl == NULL ||
5359 	    (mpdata = mpctl->b_cont) == NULL ||
5360 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
5361 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL) {
5362 		freemsg(mp_conn_ctl);
5363 		return (0);
5364 	}
5365 
5366 	mp_conn_data = mp_conn_ctl->b_cont;
5367 	mp6_conn_data = mp6_conn_ctl->b_cont;
5368 
5369 	zoneid = connp->conn_zoneid;
5370 
5371 	/* fixed length structure for IPv4 and IPv6 counters */
5372 	SET_MIB(udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
5373 	SET_MIB(udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
5374 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
5375 	optp->level = MIB2_UDP;
5376 	optp->name = 0;
5377 	(void) snmp_append_data(mpdata, (char *)&udp_mib, sizeof (udp_mib));
5378 	optp->len = msgdsize(mpdata);
5379 	qreply(q, mpctl);
5380 
5381 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5382 		connfp = &ipcl_globalhash_fanout[i];
5383 		connp = NULL;
5384 
5385 		while ((connp = ipcl_get_next_conn(connfp, connp,
5386 		    IPCL_UDP))) {
5387 			udp = connp->conn_udp;
5388 			if (zoneid != connp->conn_zoneid)
5389 				continue;
5390 
5391 			/*
5392 			 * Note that the port numbers are sent in
5393 			 * host byte order
5394 			 */
5395 
5396 			if (udp->udp_state == TS_UNBND)
5397 				state = MIB2_UDP_unbound;
5398 			else if (udp->udp_state == TS_IDLE)
5399 				state = MIB2_UDP_idle;
5400 			else if (udp->udp_state == TS_DATA_XFER)
5401 				state = MIB2_UDP_connected;
5402 			else
5403 				state = MIB2_UDP_unknown;
5404 
5405 			/*
5406 			 * Create an IPv4 table entry for IPv4 entries and also
5407 			 * any IPv6 entries which are bound to in6addr_any
5408 			 * (i.e. anything a IPv4 peer could connect/send to).
5409 			 */
5410 			if (udp->udp_ipversion == IPV4_VERSION ||
5411 			    (udp->udp_state <= TS_IDLE &&
5412 			    IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
5413 				ude.udpEntryInfo.ue_state = state;
5414 				/*
5415 				 * If in6addr_any this will set it to
5416 				 * INADDR_ANY
5417 				 */
5418 				ude.udpLocalAddress =
5419 				    V4_PART_OF_V6(udp->udp_v6src);
5420 				ude.udpLocalPort = ntohs(udp->udp_port);
5421 				if (udp->udp_state == TS_DATA_XFER) {
5422 					/*
5423 					 * Can potentially get here for
5424 					 * v6 socket if another process
5425 					 * (say, ping) has just done a
5426 					 * sendto(), changing the state
5427 					 * from the TS_IDLE above to
5428 					 * TS_DATA_XFER by the time we hit
5429 					 * this part of the code.
5430 					 */
5431 					ude.udpEntryInfo.ue_RemoteAddress =
5432 					    V4_PART_OF_V6(udp->udp_v6dst);
5433 					ude.udpEntryInfo.ue_RemotePort =
5434 					    ntohs(udp->udp_dstport);
5435 				} else {
5436 					ude.udpEntryInfo.ue_RemoteAddress = 0;
5437 					ude.udpEntryInfo.ue_RemotePort = 0;
5438 				}
5439 				(void) snmp_append_data2(mp_conn_data,
5440 				    &mp_conn_tail, (char *)&ude, sizeof (ude));
5441 			}
5442 			if (udp->udp_ipversion == IPV6_VERSION) {
5443 				ude6.udp6EntryInfo.ue_state  = state;
5444 				ude6.udp6LocalAddress = udp->udp_v6src;
5445 				ude6.udp6LocalPort = ntohs(udp->udp_port);
5446 				ude6.udp6IfIndex = udp->udp_bound_if;
5447 				if (udp->udp_state == TS_DATA_XFER) {
5448 					ude6.udp6EntryInfo.ue_RemoteAddress =
5449 					    udp->udp_v6dst;
5450 					ude6.udp6EntryInfo.ue_RemotePort =
5451 					    ntohs(udp->udp_dstport);
5452 				} else {
5453 					ude6.udp6EntryInfo.ue_RemoteAddress =
5454 					    sin6_null.sin6_addr;
5455 					ude6.udp6EntryInfo.ue_RemotePort = 0;
5456 				}
5457 				(void) snmp_append_data2(mp6_conn_data,
5458 				    &mp6_conn_tail, (char *)&ude6,
5459 				    sizeof (ude6));
5460 			}
5461 		}
5462 	}
5463 
5464 	/* IPv4 UDP endpoints */
5465 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
5466 	    sizeof (struct T_optmgmt_ack)];
5467 	optp->level = MIB2_UDP;
5468 	optp->name = MIB2_UDP_ENTRY;
5469 	optp->len = msgdsize(mp_conn_data);
5470 	qreply(q, mp_conn_ctl);
5471 
5472 	/* IPv6 UDP endpoints */
5473 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
5474 	    sizeof (struct T_optmgmt_ack)];
5475 	optp->level = MIB2_UDP6;
5476 	optp->name = MIB2_UDP6_ENTRY;
5477 	optp->len = msgdsize(mp6_conn_data);
5478 	qreply(q, mp6_conn_ctl);
5479 
5480 	return (1);
5481 }
5482 
5483 /*
5484  * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
5485  * NOTE: Per MIB-II, UDP has no writable data.
5486  * TODO:  If this ever actually tries to set anything, it needs to be
5487  * to do the appropriate locking.
5488  */
5489 /* ARGSUSED */
5490 int
5491 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
5492     uchar_t *ptr, int len)
5493 {
5494 	switch (level) {
5495 	case MIB2_UDP:
5496 		return (0);
5497 	default:
5498 		return (1);
5499 	}
5500 }
5501 
5502 static void
5503 udp_report_item(mblk_t *mp, udp_t *udp)
5504 {
5505 	char *state;
5506 	char addrbuf1[INET6_ADDRSTRLEN];
5507 	char addrbuf2[INET6_ADDRSTRLEN];
5508 	uint_t print_len, buf_len;
5509 
5510 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
5511 	ASSERT(buf_len >= 0);
5512 	if (buf_len == 0)
5513 		return;
5514 
5515 	if (udp->udp_state == TS_UNBND)
5516 		state = "UNBOUND";
5517 	else if (udp->udp_state == TS_IDLE)
5518 		state = "IDLE";
5519 	else if (udp->udp_state == TS_DATA_XFER)
5520 		state = "CONNECTED";
5521 	else
5522 		state = "UnkState";
5523 	print_len = snprintf((char *)mp->b_wptr, buf_len,
5524 	    MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
5525 	    (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
5526 	    inet_ntop(AF_INET6, &udp->udp_v6src,
5527 		addrbuf1, sizeof (addrbuf1)),
5528 	    inet_ntop(AF_INET6, &udp->udp_v6dst,
5529 		addrbuf2, sizeof (addrbuf2)),
5530 	    ntohs(udp->udp_dstport), state);
5531 	if (print_len < buf_len) {
5532 		mp->b_wptr += print_len;
5533 	} else {
5534 		mp->b_wptr += buf_len;
5535 	}
5536 }
5537 
5538 /* Report for ndd "udp_status" */
5539 /* ARGSUSED */
5540 static int
5541 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5542 {
5543 	zoneid_t zoneid;
5544 	connf_t	*connfp;
5545 	conn_t	*connp = Q_TO_CONN(q);
5546 	udp_t	*udp = connp->conn_udp;
5547 	int	i;
5548 
5549 	/*
5550 	 * Because of the ndd constraint, at most we can have 64K buffer
5551 	 * to put in all UDP info.  So to be more efficient, just
5552 	 * allocate a 64K buffer here, assuming we need that large buffer.
5553 	 * This may be a problem as any user can read udp_status.  Therefore
5554 	 * we limit the rate of doing this using udp_ndd_get_info_interval.
5555 	 * This should be OK as normal users should not do this too often.
5556 	 */
5557 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
5558 		if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
5559 		    drv_usectohz(udp_ndd_get_info_interval * 1000)) {
5560 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
5561 			return (0);
5562 		}
5563 	}
5564 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
5565 		/* The following may work even if we cannot get a large buf. */
5566 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
5567 		return (0);
5568 	}
5569 	(void) mi_mpprintf(mp,
5570 	    "UDP     " MI_COL_HDRPAD_STR
5571 	/*   12345678[89ABCDEF] */
5572 	    " zone lport src addr        dest addr       port  state");
5573 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
5574 
5575 	zoneid = connp->conn_zoneid;
5576 
5577 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5578 		connfp = &ipcl_globalhash_fanout[i];
5579 		connp = NULL;
5580 
5581 		while ((connp = ipcl_get_next_conn(connfp, connp,
5582 		    IPCL_UDP))) {
5583 			udp = connp->conn_udp;
5584 			if (zoneid != GLOBAL_ZONEID &&
5585 			    zoneid != connp->conn_zoneid)
5586 				continue;
5587 
5588 			udp_report_item(mp->b_cont, udp);
5589 		}
5590 	}
5591 	udp_last_ndd_get_info_time = ddi_get_lbolt();
5592 	return (0);
5593 }
5594 
5595 /*
5596  * This routine creates a T_UDERROR_IND message and passes it upstream.
5597  * The address and options are copied from the T_UNITDATA_REQ message
5598  * passed in mp.  This message is freed.
5599  */
5600 static void
5601 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
5602     t_scalar_t err)
5603 {
5604 	struct T_unitdata_req *tudr;
5605 	mblk_t	*mp1;
5606 	uchar_t	*optaddr;
5607 	t_scalar_t optlen;
5608 
5609 	if (DB_TYPE(mp) == M_DATA) {
5610 		ASSERT(destaddr != NULL && destlen != 0);
5611 		optaddr = NULL;
5612 		optlen = 0;
5613 	} else {
5614 		if ((mp->b_wptr < mp->b_rptr) ||
5615 		    (MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
5616 			goto done;
5617 		}
5618 		tudr = (struct T_unitdata_req *)mp->b_rptr;
5619 		destaddr = mp->b_rptr + tudr->DEST_offset;
5620 		if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
5621 		    destaddr + tudr->DEST_length < mp->b_rptr ||
5622 		    destaddr + tudr->DEST_length > mp->b_wptr) {
5623 			goto done;
5624 		}
5625 		optaddr = mp->b_rptr + tudr->OPT_offset;
5626 		if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
5627 		    optaddr + tudr->OPT_length < mp->b_rptr ||
5628 		    optaddr + tudr->OPT_length > mp->b_wptr) {
5629 			goto done;
5630 		}
5631 		destlen = tudr->DEST_length;
5632 		optlen = tudr->OPT_length;
5633 	}
5634 
5635 	mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
5636 	    (char *)optaddr, optlen, err);
5637 	if (mp1 != NULL)
5638 		putnext(UDP_RD(q), mp1);
5639 
5640 done:
5641 	freemsg(mp);
5642 }
5643 
5644 /*
5645  * This routine removes a port number association from a stream.  It
5646  * is called by udp_wput to handle T_UNBIND_REQ messages.
5647  */
5648 static void
5649 udp_unbind(queue_t *q, mblk_t *mp)
5650 {
5651 	udp_t *udp = Q_TO_UDP(q);
5652 
5653 	/* If a bind has not been done, we can't unbind. */
5654 	if (udp->udp_state == TS_UNBND) {
5655 		udp_err_ack(q, mp, TOUTSTATE, 0);
5656 		return;
5657 	}
5658 	if (cl_inet_unbind != NULL) {
5659 		/*
5660 		 * Running in cluster mode - register unbind information
5661 		 */
5662 		if (udp->udp_ipversion == IPV4_VERSION) {
5663 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
5664 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
5665 			    (in_port_t)udp->udp_port);
5666 		} else {
5667 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
5668 			    (uint8_t *)&(udp->udp_v6src),
5669 			    (in_port_t)udp->udp_port);
5670 		}
5671 	}
5672 
5673 	udp_bind_hash_remove(udp, B_FALSE);
5674 	V6_SET_ZERO(udp->udp_v6src);
5675 	V6_SET_ZERO(udp->udp_bound_v6src);
5676 	udp->udp_port = 0;
5677 	udp->udp_state = TS_UNBND;
5678 
5679 	if (udp->udp_family == AF_INET6) {
5680 		int error;
5681 
5682 		/* Rebuild the header template */
5683 		error = udp_build_hdrs(q, udp);
5684 		if (error != 0) {
5685 			udp_err_ack(q, mp, TSYSERR, error);
5686 			return;
5687 		}
5688 	}
5689 	/*
5690 	 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
5691 	 * and therefore ip_unbind must never return NULL.
5692 	 */
5693 	mp = ip_unbind(q, mp);
5694 	ASSERT(mp != NULL);
5695 	putnext(UDP_RD(q), mp);
5696 }
5697 
5698 /*
5699  * Don't let port fall into the privileged range.
5700  * Since the extra priviledged ports can be arbitrary we also
5701  * ensure that we exclude those from consideration.
5702  * udp_g_epriv_ports is not sorted thus we loop over it until
5703  * there are no changes.
5704  */
5705 static in_port_t
5706 udp_update_next_port(in_port_t port, boolean_t random)
5707 {
5708 	int i;
5709 
5710 	if (random && udp_random_anon_port != 0) {
5711 		(void) random_get_pseudo_bytes((uint8_t *)&port,
5712 		    sizeof (in_port_t));
5713 		/*
5714 		 * Unless changed by a sys admin, the smallest anon port
5715 		 * is 32768 and the largest anon port is 65535.  It is
5716 		 * very likely (50%) for the random port to be smaller
5717 		 * than the smallest anon port.  When that happens,
5718 		 * add port % (anon port range) to the smallest anon
5719 		 * port to get the random port.  It should fall into the
5720 		 * valid anon port range.
5721 		 */
5722 		if (port < udp_smallest_anon_port) {
5723 			port = udp_smallest_anon_port +
5724 			    port % (udp_largest_anon_port -
5725 			    udp_smallest_anon_port);
5726 		}
5727 	}
5728 
5729 retry:
5730 	if (port < udp_smallest_anon_port || port > udp_largest_anon_port)
5731 		port = udp_smallest_anon_port;
5732 
5733 	if (port < udp_smallest_nonpriv_port)
5734 		port = udp_smallest_nonpriv_port;
5735 
5736 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
5737 		if (port == udp_g_epriv_ports[i]) {
5738 			port++;
5739 			/*
5740 			 * Make sure that the port is in the
5741 			 * valid range.
5742 			 */
5743 			goto retry;
5744 		}
5745 	}
5746 	return (port);
5747 }
5748 
5749 static mblk_t *
5750 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
5751     uint_t srcid, int *error)
5752 {
5753 	udp_t	*udp = connp->conn_udp;
5754 	queue_t	*q = connp->conn_wq;
5755 	mblk_t	*mp1 = (DB_TYPE(mp) == M_DATA ? mp : mp->b_cont);
5756 	mblk_t	*mp2;
5757 	ipha_t	*ipha;
5758 	int	ip_hdr_length;
5759 	uint32_t ip_len;
5760 	udpha_t	*udpha;
5761 
5762 	*error = 0;
5763 
5764 	/* mp1 points to the M_DATA mblk carrying the packet */
5765 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
5766 
5767 	/* Add an IP header */
5768 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
5769 	    udp->udp_ip_snd_options_len;
5770 	ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
5771 	if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
5772 	    !OK_32PTR(ipha)) {
5773 		mp2 = allocb(ip_hdr_length + udp_wroff_extra, BPRI_LO);
5774 		if (mp2 == NULL) {
5775 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5776 			    "udp_wput_end: q %p (%S)", q, "allocbfail2");
5777 			*error = ENOMEM;
5778 			goto done;
5779 		}
5780 		mp2->b_wptr = DB_LIM(mp2);
5781 		mp2->b_cont = mp1;
5782 		mp1 = mp2;
5783 		if (DB_TYPE(mp) != M_DATA)
5784 			mp->b_cont = mp1;
5785 		else
5786 			mp = mp1;
5787 
5788 		ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
5789 	}
5790 	ip_hdr_length -= UDPH_SIZE;
5791 #ifdef	_BIG_ENDIAN
5792 	/* Set version, header length, and tos */
5793 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5794 	    ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
5795 		udp->udp_type_of_service);
5796 	/* Set ttl and protocol */
5797 	*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
5798 #else
5799 	/* Set version, header length, and tos */
5800 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5801 		((udp->udp_type_of_service << 8) |
5802 		    ((IP_VERSION << 4) | (ip_hdr_length>>2)));
5803 	/* Set ttl and protocol */
5804 	*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
5805 #endif
5806 	/*
5807 	 * Copy our address into the packet.  If this is zero,
5808 	 * first look at __sin6_src_id for a hint. If we leave the source
5809 	 * as INADDR_ANY then ip will fill in the real source address.
5810 	 */
5811 	IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
5812 	if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
5813 		in6_addr_t v6src;
5814 
5815 		ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid);
5816 		IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
5817 	}
5818 
5819 	ipha->ipha_fragment_offset_and_flags = 0;
5820 	ipha->ipha_ident = 0;
5821 
5822 	mp1->b_rptr = (uchar_t *)ipha;
5823 
5824 	ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
5825 	    (uintptr_t)UINT_MAX);
5826 
5827 	/* Determine length of packet */
5828 	ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
5829 	if ((mp2 = mp1->b_cont) != NULL) {
5830 		do {
5831 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
5832 			ip_len += (uint32_t)MBLKL(mp2);
5833 		} while ((mp2 = mp2->b_cont) != NULL);
5834 	}
5835 	/*
5836 	 * If the size of the packet is greater than the maximum allowed by
5837 	 * ip, return an error. Passing this down could cause panics because
5838 	 * the size will have wrapped and be inconsistent with the msg size.
5839 	 */
5840 	if (ip_len > IP_MAXPACKET) {
5841 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5842 		    "udp_wput_end: q %p (%S)", q, "IP length exceeded");
5843 		*error = EMSGSIZE;
5844 		goto done;
5845 	}
5846 	ipha->ipha_length = htons((uint16_t)ip_len);
5847 	ip_len -= ip_hdr_length;
5848 	ip_len = htons((uint16_t)ip_len);
5849 	udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
5850 
5851 	/*
5852 	 * Copy in the destination address
5853 	 */
5854 	if (v4dst == INADDR_ANY)
5855 		ipha->ipha_dst = htonl(INADDR_LOOPBACK);
5856 	else
5857 		ipha->ipha_dst = v4dst;
5858 
5859 	/*
5860 	 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
5861 	 */
5862 	if (CLASSD(v4dst))
5863 		ipha->ipha_ttl = udp->udp_multicast_ttl;
5864 
5865 	udpha->uha_dst_port = port;
5866 	udpha->uha_src_port = udp->udp_port;
5867 
5868 	if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) {
5869 		uint32_t	cksum;
5870 
5871 		bcopy(udp->udp_ip_snd_options, &ipha[1],
5872 		    udp->udp_ip_snd_options_len);
5873 		/*
5874 		 * Massage source route putting first source route in ipha_dst.
5875 		 * Ignore the destination in T_unitdata_req.
5876 		 * Create a checksum adjustment for a source route, if any.
5877 		 */
5878 		cksum = ip_massage_options(ipha);
5879 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5880 		cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
5881 		    (ipha->ipha_dst & 0xFFFF);
5882 		if ((int)cksum < 0)
5883 			cksum--;
5884 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5885 		/*
5886 		 * IP does the checksum if uha_checksum is non-zero,
5887 		 * We make it easy for IP to include our pseudo header
5888 		 * by putting our length in uha_checksum.
5889 		 */
5890 		cksum += ip_len;
5891 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5892 		/* There might be a carry. */
5893 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5894 #ifdef _LITTLE_ENDIAN
5895 		if (udp_do_checksum)
5896 			ip_len = (cksum << 16) | ip_len;
5897 #else
5898 		if (udp_do_checksum)
5899 			ip_len = (ip_len << 16) | cksum;
5900 		else
5901 			ip_len <<= 16;
5902 #endif
5903 	} else {
5904 		/*
5905 		 * IP does the checksum if uha_checksum is non-zero,
5906 		 * We make it easy for IP to include our pseudo header
5907 		 * by putting our length in uha_checksum.
5908 		 */
5909 		if (udp_do_checksum)
5910 			ip_len |= (ip_len << 16);
5911 #ifndef _LITTLE_ENDIAN
5912 		else
5913 			ip_len <<= 16;
5914 #endif
5915 	}
5916 	/* Set UDP length and checksum */
5917 	*((uint32_t *)&udpha->uha_length) = ip_len;
5918 
5919 	if (DB_TYPE(mp) != M_DATA) {
5920 		ASSERT(mp != mp1);
5921 		freeb(mp);
5922 	}
5923 
5924 	/* mp has been consumed and we'll return success */
5925 	ASSERT(*error == 0);
5926 	mp = NULL;
5927 
5928 	/* We're done.  Pass the packet to ip. */
5929 	BUMP_MIB(&udp_mib, udpOutDatagrams);
5930 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5931 		"udp_wput_end: q %p (%S)", q, "end");
5932 
5933 	if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
5934 	    CONN_OUTBOUND_POLICY_PRESENT(connp) ||
5935 	    connp->conn_dontroute || connp->conn_xmit_if_ill != NULL ||
5936 	    connp->conn_nofailover_ill != NULL ||
5937 	    connp->conn_outgoing_ill != NULL ||
5938 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
5939 	    IPP_ENABLED(IPP_LOCAL_OUT) || ip_g_mrouter != NULL) {
5940 		UDP_STAT(udp_ip_send);
5941 		ip_output(connp, mp1, connp->conn_wq, IP_WPUT);
5942 	} else {
5943 		udp_send_data(udp, connp->conn_wq, mp1, ipha);
5944 	}
5945 
5946 done:
5947 	if (*error != 0) {
5948 		ASSERT(mp != NULL);
5949 		BUMP_MIB(&udp_mib, udpOutErrors);
5950 	}
5951 	return (mp);
5952 }
5953 
5954 static void
5955 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
5956 {
5957 	conn_t	*connp = udp->udp_connp;
5958 	ipaddr_t src, dst;
5959 	ill_t	*ill;
5960 	ire_t	*ire;
5961 	ipif_t	*ipif = NULL;
5962 	mblk_t	*ire_fp_mp;
5963 	uint_t	ire_fp_mp_len;
5964 	uint16_t *up;
5965 	uint32_t cksum, hcksum_txflags;
5966 	queue_t	*dev_q;
5967 	boolean_t retry_caching;
5968 
5969 	dst = ipha->ipha_dst;
5970 	src = ipha->ipha_src;
5971 	ASSERT(ipha->ipha_ident == 0);
5972 
5973 	if (CLASSD(dst)) {
5974 		int err;
5975 
5976 		ipif = conn_get_held_ipif(connp,
5977 		    &connp->conn_multicast_ipif, &err);
5978 
5979 		if (ipif == NULL || ipif->ipif_isv6 ||
5980 		    (ipif->ipif_ill->ill_phyint->phyint_flags &
5981 		    PHYI_LOOPBACK)) {
5982 			if (ipif != NULL)
5983 				ipif_refrele(ipif);
5984 			UDP_STAT(udp_ip_send);
5985 			ip_output(connp, mp, q, IP_WPUT);
5986 			return;
5987 		}
5988 	}
5989 
5990 	retry_caching = B_FALSE;
5991 	mutex_enter(&connp->conn_lock);
5992 	ire = connp->conn_ire_cache;
5993 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
5994 
5995 	if (ire == NULL || ire->ire_addr != dst ||
5996 	    (ire->ire_marks & IRE_MARK_CONDEMNED)) {
5997 		retry_caching = B_TRUE;
5998 	} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
5999 		ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
6000 
6001 		ASSERT(ipif != NULL);
6002 		if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
6003 		    stq_ill->ill_group != ipif->ipif_ill->ill_group))
6004 			retry_caching = B_TRUE;
6005 	}
6006 
6007 	if (!retry_caching) {
6008 		ASSERT(ire != NULL);
6009 		IRE_REFHOLD(ire);
6010 		mutex_exit(&connp->conn_lock);
6011 	} else {
6012 		boolean_t cached = B_FALSE;
6013 
6014 		connp->conn_ire_cache = NULL;
6015 		mutex_exit(&connp->conn_lock);
6016 
6017 		/* Release the old ire */
6018 		if (ire != NULL) {
6019 			IRE_REFRELE_NOTR(ire);
6020 			ire = NULL;
6021 		}
6022 
6023 		if (CLASSD(dst)) {
6024 			ASSERT(ipif != NULL);
6025 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
6026 			    connp->conn_zoneid, MATCH_IRE_ILL_GROUP);
6027 		} else {
6028 			ASSERT(ipif == NULL);
6029 			ire = ire_cache_lookup(dst, connp->conn_zoneid);
6030 		}
6031 
6032 		if (ire == NULL) {
6033 			if (ipif != NULL)
6034 				ipif_refrele(ipif);
6035 			UDP_STAT(udp_ire_null);
6036 			ip_output(connp, mp, q, IP_WPUT);
6037 			return;
6038 		}
6039 		IRE_REFHOLD_NOTR(ire);
6040 
6041 		mutex_enter(&connp->conn_lock);
6042 		if (!(connp->conn_state_flags & CONN_CLOSING) &&
6043 		    connp->conn_ire_cache == NULL) {
6044 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
6045 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
6046 				connp->conn_ire_cache = ire;
6047 				cached = B_TRUE;
6048 			}
6049 			rw_exit(&ire->ire_bucket->irb_lock);
6050 		}
6051 		mutex_exit(&connp->conn_lock);
6052 
6053 		/*
6054 		 * We can continue to use the ire but since it was not
6055 		 * cached, we should drop the extra reference.
6056 		 */
6057 		if (!cached)
6058 			IRE_REFRELE_NOTR(ire);
6059 	}
6060 	ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
6061 	ASSERT(!CLASSD(dst) || ipif != NULL);
6062 
6063 	if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
6064 	    (ire->ire_flags & RTF_MULTIRT) || ire->ire_stq == NULL ||
6065 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
6066 	    (ire_fp_mp = ire->ire_fp_mp) == NULL ||
6067 	    (connp->conn_nexthop_set) ||
6068 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
6069 		if (ipif != NULL)
6070 			ipif_refrele(ipif);
6071 		UDP_STAT(udp_ip_ire_send);
6072 		IRE_REFRELE(ire);
6073 		ip_output(connp, mp, q, IP_WPUT);
6074 		return;
6075 	}
6076 
6077 	BUMP_MIB(&ip_mib, ipOutRequests);
6078 
6079 	ill = ire_to_ill(ire);
6080 	ASSERT(ill != NULL);
6081 
6082 	dev_q = ire->ire_stq->q_next;
6083 	ASSERT(dev_q != NULL);
6084 	/*
6085 	 * If the service thread is already running, or if the driver
6086 	 * queue is currently flow-controlled, queue this packet.
6087 	 */
6088 	if ((q->q_first != NULL || connp->conn_draining) ||
6089 	    ((dev_q->q_next || dev_q->q_first) && !canput(dev_q))) {
6090 		if (ip_output_queue) {
6091 			(void) putq(q, mp);
6092 		} else {
6093 			BUMP_MIB(&ip_mib, ipOutDiscards);
6094 			freemsg(mp);
6095 		}
6096 		if (ipif != NULL)
6097 			ipif_refrele(ipif);
6098 		IRE_REFRELE(ire);
6099 		return;
6100 	}
6101 
6102 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
6103 #ifndef _BIG_ENDIAN
6104 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
6105 #endif
6106 
6107 	if (src == INADDR_ANY && !connp->conn_unspec_src) {
6108 		if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
6109 			src = ipha->ipha_src = ipif->ipif_src_addr;
6110 		else
6111 			src = ipha->ipha_src = ire->ire_src_addr;
6112 	}
6113 
6114 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
6115 		ASSERT(ill->ill_hcksum_capab != NULL);
6116 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
6117 	} else {
6118 		hcksum_txflags = 0;
6119 	}
6120 
6121 	/* pseudo-header checksum (do it in parts for IP header checksum) */
6122 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
6123 
6124 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
6125 	up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
6126 	if (*up != 0) {
6127 		IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
6128 		    mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
6129 		    ntohs(ipha->ipha_length), cksum);
6130 
6131 		/* Software checksum? */
6132 		if (DB_CKSUMFLAGS(mp) == 0) {
6133 			UDP_STAT(udp_out_sw_cksum);
6134 			UDP_STAT_UPDATE(udp_out_sw_cksum_bytes,
6135 			    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
6136 		}
6137 	}
6138 
6139 	ipha->ipha_fragment_offset_and_flags |=
6140 	    (uint32_t)htons(ire->ire_frag_flag);
6141 
6142 	/* Calculate IP header checksum if hardware isn't capable */
6143 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
6144 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
6145 		    ((uint16_t *)ipha)[4]);
6146 	}
6147 
6148 	if (CLASSD(dst)) {
6149 		ilm_t *ilm;
6150 
6151 		ILM_WALKER_HOLD(ill);
6152 		ilm = ilm_lookup_ill(ill, dst, ALL_ZONES);
6153 		ILM_WALKER_RELE(ill);
6154 		if (ilm != NULL) {
6155 			ip_multicast_loopback(q, ill, mp,
6156 			    connp->conn_multicast_loop ? 0 :
6157 			    IP_FF_NO_MCAST_LOOP, connp->conn_zoneid);
6158 		}
6159 
6160 		/* If multicast TTL is 0 then we are done */
6161 		if (ipha->ipha_ttl == 0) {
6162 			if (ipif != NULL)
6163 				ipif_refrele(ipif);
6164 			freemsg(mp);
6165 			IRE_REFRELE(ire);
6166 			return;
6167 		}
6168 	}
6169 
6170 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
6171 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
6172 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
6173 
6174 	UPDATE_OB_PKT_COUNT(ire);
6175 	ire->ire_last_used_time = lbolt;
6176 
6177 	if (ILL_DLS_CAPABLE(ill)) {
6178 		/*
6179 		 * Send the packet directly to DLD, where it may be queued
6180 		 * depending on the availability of transmit resources at
6181 		 * the media layer.
6182 		 */
6183 		IP_DLS_ILL_TX(ill, mp);
6184 	} else {
6185 		putnext(ire->ire_stq, mp);
6186 	}
6187 
6188 	if (ipif != NULL)
6189 		ipif_refrele(ipif);
6190 	IRE_REFRELE(ire);
6191 }
6192 
6193 /*
6194  * This routine handles all messages passed downstream.  It either
6195  * consumes the message or passes it downstream; it never queues a
6196  * a message.
6197  */
6198 static void
6199 udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
6200 {
6201 	sin6_t		*sin6;
6202 	sin_t		*sin;
6203 	ipaddr_t	v4dst;
6204 	uint16_t	port;
6205 	uint_t		srcid;
6206 	queue_t		*q = connp->conn_wq;
6207 	udp_t		*udp = connp->conn_udp;
6208 	t_scalar_t	optlen;
6209 	int		error = 0;
6210 	struct sockaddr_storage ss;
6211 
6212 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
6213 	    "udp_wput_start: connp %p mp %p", connp, mp);
6214 
6215 	/*
6216 	 * We directly handle several cases here: T_UNITDATA_REQ message
6217 	 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for both
6218 	 * connected and non-connected socket.  The latter carries the
6219 	 * address structure along when this routine gets called.
6220 	 */
6221 	switch (DB_TYPE(mp)) {
6222 	case M_DATA:
6223 		if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
6224 			if (!udp->udp_direct_sockfs ||
6225 			    addr == NULL || addrlen == 0) {
6226 				/* Not connected; address is required */
6227 				BUMP_MIB(&udp_mib, udpOutErrors);
6228 				UDP_STAT(udp_out_err_notconn);
6229 				freemsg(mp);
6230 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6231 				    "udp_wput_end: connp %p (%S)", connp,
6232 				    "not-connected; address required");
6233 				return;
6234 			}
6235 			ASSERT(udp->udp_issocket);
6236 			UDP_DBGSTAT(udp_data_notconn);
6237 			/* Not connected; do some more checks below */
6238 			optlen = 0;
6239 			break;
6240 		}
6241 		/* M_DATA for connected socket */
6242 		UDP_DBGSTAT(udp_data_conn);
6243 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
6244 
6245 		/* Initialize addr and addrlen as if they're passed in */
6246 		if (udp->udp_family == AF_INET) {
6247 			sin = (sin_t *)&ss;
6248 			sin->sin_family = AF_INET;
6249 			sin->sin_port = udp->udp_dstport;
6250 			sin->sin_addr.s_addr = v4dst;
6251 			addr = (struct sockaddr *)sin;
6252 			addrlen = sizeof (*sin);
6253 		} else {
6254 			sin6 = (sin6_t *)&ss;
6255 			sin6->sin6_family = AF_INET6;
6256 			sin6->sin6_port = udp->udp_dstport;
6257 			sin6->sin6_flowinfo = udp->udp_flowinfo;
6258 			sin6->sin6_addr = udp->udp_v6dst;
6259 			sin6->sin6_scope_id = 0;
6260 			sin6->__sin6_src_id = 0;
6261 			addr = (struct sockaddr *)sin6;
6262 			addrlen = sizeof (*sin6);
6263 		}
6264 
6265 		if (udp->udp_family == AF_INET ||
6266 		    IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst)) {
6267 			/*
6268 			 * Handle both AF_INET and AF_INET6; the latter
6269 			 * for IPV4 mapped destination addresses.  Note
6270 			 * here that both addr and addrlen point to the
6271 			 * corresponding struct depending on the address
6272 			 * family of the socket.
6273 			 */
6274 			mp = udp_output_v4(connp, mp, v4dst,
6275 			    udp->udp_dstport, 0, &error);
6276 		} else {
6277 			mp = udp_output_v6(connp, mp, sin6, 0, &error);
6278 		}
6279 		if (error != 0) {
6280 			ASSERT(addr != NULL && addrlen != 0);
6281 			goto ud_error;
6282 		}
6283 		return;
6284 	case M_PROTO:
6285 	case M_PCPROTO: {
6286 		struct T_unitdata_req *tudr;
6287 
6288 		ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
6289 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6290 
6291 		/* Handle valid T_UNITDATA_REQ here */
6292 		if (MBLKL(mp) >= sizeof (*tudr) &&
6293 		    ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
6294 			if (mp->b_cont == NULL) {
6295 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6296 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6297 				error = EPROTO;
6298 				goto ud_error;
6299 			}
6300 
6301 			if (!MBLKIN(mp, 0, tudr->DEST_offset +
6302 			    tudr->DEST_length)) {
6303 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6304 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6305 				error = EADDRNOTAVAIL;
6306 				goto ud_error;
6307 			}
6308 			/*
6309 			 * If a port has not been bound to the stream, fail.
6310 			 * This is not a problem when sockfs is directly
6311 			 * above us, because it will ensure that the socket
6312 			 * is first bound before allowing data to be sent.
6313 			 */
6314 			if (udp->udp_state == TS_UNBND) {
6315 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6316 				    "udp_wput_end: q %p (%S)", q, "outstate");
6317 				error = EPROTO;
6318 				goto ud_error;
6319 			}
6320 			addr = (struct sockaddr *)
6321 			    &mp->b_rptr[tudr->DEST_offset];
6322 			addrlen = tudr->DEST_length;
6323 			optlen = tudr->OPT_length;
6324 			if (optlen != 0)
6325 				UDP_STAT(udp_out_opt);
6326 			break;
6327 		}
6328 		/* FALLTHRU */
6329 	}
6330 	default:
6331 		udp_become_writer(connp, mp, udp_wput_other_wrapper,
6332 		    SQTAG_UDP_OUTPUT);
6333 		return;
6334 	}
6335 	ASSERT(addr != NULL);
6336 
6337 	switch (udp->udp_family) {
6338 	case AF_INET6:
6339 		sin6 = (sin6_t *)addr;
6340 		if (!OK_32PTR((char *)sin6) || addrlen != sizeof (sin6_t) ||
6341 		    sin6->sin6_family != AF_INET6) {
6342 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6343 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6344 			error = EADDRNOTAVAIL;
6345 			goto ud_error;
6346 		}
6347 
6348 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6349 			/*
6350 			 * Destination is a non-IPv4-compatible IPv6 address.
6351 			 * Send out an IPv6 format packet.
6352 			 */
6353 			mp = udp_output_v6(connp, mp, sin6, optlen, &error);
6354 			if (error != 0)
6355 				goto ud_error;
6356 
6357 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6358 			    "udp_wput_end: q %p (%S)", q, "udp_output_v6");
6359 			return;
6360 		}
6361 		/*
6362 		 * If the local address is not zero or a mapped address
6363 		 * return an error.  It would be possible to send an IPv4
6364 		 * packet but the response would never make it back to the
6365 		 * application since it is bound to a non-mapped address.
6366 		 */
6367 		if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
6368 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
6369 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6370 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6371 			error = EADDRNOTAVAIL;
6372 			goto ud_error;
6373 		}
6374 		/* Send IPv4 packet without modifying udp_ipversion */
6375 		/* Extract port and ipaddr */
6376 		port = sin6->sin6_port;
6377 		IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
6378 		srcid = sin6->__sin6_src_id;
6379 		break;
6380 
6381 	case AF_INET:
6382 		sin = (sin_t *)addr;
6383 		if (!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t) ||
6384 		    sin->sin_family != AF_INET) {
6385 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6386 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6387 			error = EADDRNOTAVAIL;
6388 			goto ud_error;
6389 		}
6390 		/* Extract port and ipaddr */
6391 		port = sin->sin_port;
6392 		v4dst = sin->sin_addr.s_addr;
6393 		srcid = 0;
6394 		break;
6395 	}
6396 
6397 	/*
6398 	 * If options passed in, feed it for verification and handling
6399 	 */
6400 	if (optlen != 0) {
6401 		ASSERT(DB_TYPE(mp) != M_DATA);
6402 		if (udp_unitdata_opt_process(q, mp, &error, NULL) < 0) {
6403 			/* failure */
6404 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6405 			    "udp_wput_end: q %p (%S)", q,
6406 			    "udp_unitdata_opt_process");
6407 			goto ud_error;
6408 		}
6409 		/*
6410 		 * Note: success in processing options.
6411 		 * mp option buffer represented by
6412 		 * OPT_length/offset now potentially modified
6413 		 * and contain option setting results
6414 		 */
6415 	}
6416 	ASSERT(error == 0);
6417 	mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error);
6418 	if (error != 0) {
6419 ud_error:
6420 		UDP_STAT(udp_out_err_output);
6421 		ASSERT(mp != NULL);
6422 		/* mp is freed by the following routine */
6423 		udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6424 		    (t_scalar_t)error);
6425 	}
6426 }
6427 
6428 /* ARGSUSED */
6429 static void
6430 udp_output_wrapper(void *arg, mblk_t *mp, void *arg2)
6431 {
6432 	udp_output((conn_t *)arg, mp, NULL, 0);
6433 	_UDP_EXIT((conn_t *)arg);
6434 }
6435 
6436 static void
6437 udp_wput(queue_t *q, mblk_t *mp)
6438 {
6439 	_UDP_ENTER(Q_TO_CONN(UDP_WR(q)), mp, udp_output_wrapper,
6440 	    SQTAG_UDP_WPUT);
6441 }
6442 
6443 /*
6444  * Allocate and prepare a T_UNITDATA_REQ message.
6445  */
6446 static mblk_t *
6447 udp_tudr_alloc(struct sockaddr *addr, socklen_t addrlen)
6448 {
6449 	struct T_unitdata_req *tudr;
6450 	mblk_t *mp;
6451 
6452 	mp = allocb(sizeof (*tudr) + addrlen, BPRI_MED);
6453 	if (mp != NULL) {
6454 		mp->b_wptr += sizeof (*tudr) + addrlen;
6455 		DB_TYPE(mp) = M_PROTO;
6456 
6457 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6458 		tudr->PRIM_type = T_UNITDATA_REQ;
6459 		tudr->DEST_length = addrlen;
6460 		tudr->DEST_offset = (t_scalar_t)sizeof (*tudr);
6461 		tudr->OPT_length = 0;
6462 		tudr->OPT_offset = 0;
6463 		bcopy(addr, tudr+1, addrlen);
6464 	}
6465 	return (mp);
6466 }
6467 
6468 /*
6469  * Entry point for sockfs when udp is in "direct sockfs" mode.  This mode
6470  * is valid when we are directly beneath the stream head, and thus sockfs
6471  * is able to bypass STREAMS and directly call us, passing along the sockaddr
6472  * structure without the cumbersome T_UNITDATA_REQ interface.  Note that
6473  * this is done for both connected and non-connected endpoint.
6474  */
6475 void
6476 udp_wput_data(queue_t *q, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
6477 {
6478 	conn_t	*connp;
6479 	udp_t	*udp;
6480 
6481 	q = UDP_WR(q);
6482 	connp = Q_TO_CONN(q);
6483 	udp = connp->conn_udp;
6484 
6485 	/* udpsockfs should only send down M_DATA for this entry point */
6486 	ASSERT(DB_TYPE(mp) == M_DATA);
6487 
6488 	mutex_enter(&connp->conn_lock);
6489 	UDP_MODE_ASSERTIONS(udp, UDP_ENTER);
6490 
6491 	if (udp->udp_mode != UDP_MT_HOT) {
6492 		/*
6493 		 * We can't enter this conn right away because another
6494 		 * thread is currently executing as writer; therefore we
6495 		 * need to deposit the message into the squeue to be
6496 		 * drained later.  If a socket address is present, we
6497 		 * need to create a T_UNITDATA_REQ message as placeholder.
6498 		 */
6499 		if (addr != NULL && addrlen != 0) {
6500 			mblk_t *tudr_mp = udp_tudr_alloc(addr, addrlen);
6501 
6502 			if (tudr_mp == NULL) {
6503 				mutex_exit(&connp->conn_lock);
6504 				BUMP_MIB(&udp_mib, udpOutErrors);
6505 				UDP_STAT(udp_out_err_tudr);
6506 				freemsg(mp);
6507 				return;
6508 			}
6509 			/* Tag the packet with T_UNITDATA_REQ */
6510 			tudr_mp->b_cont = mp;
6511 			mp = tudr_mp;
6512 		}
6513 		mutex_exit(&connp->conn_lock);
6514 		udp_enter(connp, mp, udp_output_wrapper, SQTAG_UDP_WPUT);
6515 		return;
6516 	}
6517 
6518 	/* We can execute as reader right away. */
6519 	UDP_READERS_INCREF(udp);
6520 	mutex_exit(&connp->conn_lock);
6521 
6522 	udp_output(connp, mp, addr, addrlen);
6523 
6524 	udp_exit(connp);
6525 }
6526 
6527 /*
6528  * udp_output_v6():
6529  * Assumes that udp_wput did some sanity checking on the destination
6530  * address.
6531  */
6532 static mblk_t *
6533 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, t_scalar_t tudr_optlen,
6534     int *error)
6535 {
6536 	ip6_t		*ip6h;
6537 	ip6i_t		*ip6i;	/* mp1->b_rptr even if no ip6i_t */
6538 	mblk_t		*mp1 = (DB_TYPE(mp) == M_DATA ? mp : mp->b_cont);
6539 	mblk_t		*mp2;
6540 	int		udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
6541 	size_t		ip_len;
6542 	udpha_t		*udph;
6543 	udp_t		*udp = connp->conn_udp;
6544 	queue_t		*q = connp->conn_wq;
6545 	ip6_pkt_t	ipp_s;	/* For ancillary data options */
6546 	ip6_pkt_t	*ipp = &ipp_s;
6547 	ip6_pkt_t	*tipp;	/* temporary ipp */
6548 	uint32_t	csum = 0;
6549 	uint_t		ignore = 0;
6550 	uint_t		option_exists = 0, is_sticky = 0;
6551 	uint8_t		*cp;
6552 	uint8_t		*nxthdr_ptr;
6553 
6554 	*error = 0;
6555 
6556 	/* mp1 points to the M_DATA mblk carrying the packet */
6557 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
6558 	ASSERT(tudr_optlen == 0 || DB_TYPE(mp) != M_DATA);
6559 
6560 	/*
6561 	 * If the local address is a mapped address return
6562 	 * an error.
6563 	 * It would be possible to send an IPv6 packet but the
6564 	 * response would never make it back to the application
6565 	 * since it is bound to a mapped address.
6566 	 */
6567 	if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
6568 		*error = EADDRNOTAVAIL;
6569 		goto done;
6570 	}
6571 
6572 	ipp->ipp_fields = 0;
6573 	ipp->ipp_sticky_ignored = 0;
6574 
6575 	/*
6576 	 * If TPI options passed in, feed it for verification and handling
6577 	 */
6578 	if (tudr_optlen != 0) {
6579 		if (udp_unitdata_opt_process(q, mp, error, (void *)ipp) < 0) {
6580 			/* failure */
6581 			goto done;
6582 		}
6583 		ignore = ipp->ipp_sticky_ignored;
6584 		ASSERT(*error == 0);
6585 	}
6586 
6587 	if (sin6->sin6_scope_id != 0 &&
6588 	    IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
6589 		/*
6590 		 * IPPF_SCOPE_ID is special.  It's neither a sticky
6591 		 * option nor ancillary data.  It needs to be
6592 		 * explicitly set in options_exists.
6593 		 */
6594 		option_exists |= IPPF_SCOPE_ID;
6595 	}
6596 
6597 	if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
6598 		/* No sticky options nor ancillary data. */
6599 		goto no_options;
6600 	}
6601 
6602 	/*
6603 	 * Go through the options figuring out where each is going to
6604 	 * come from and build two masks.  The first mask indicates if
6605 	 * the option exists at all.  The second mask indicates if the
6606 	 * option is sticky or ancillary.
6607 	 */
6608 	if (!(ignore & IPPF_HOPOPTS)) {
6609 		if (ipp->ipp_fields & IPPF_HOPOPTS) {
6610 			option_exists |= IPPF_HOPOPTS;
6611 			udp_ip_hdr_len += ipp->ipp_hopoptslen;
6612 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
6613 			option_exists |= IPPF_HOPOPTS;
6614 			is_sticky |= IPPF_HOPOPTS;
6615 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_hopoptslen;
6616 		}
6617 	}
6618 
6619 	if (!(ignore & IPPF_RTHDR)) {
6620 		if (ipp->ipp_fields & IPPF_RTHDR) {
6621 			option_exists |= IPPF_RTHDR;
6622 			udp_ip_hdr_len += ipp->ipp_rthdrlen;
6623 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
6624 			option_exists |= IPPF_RTHDR;
6625 			is_sticky |= IPPF_RTHDR;
6626 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
6627 		}
6628 	}
6629 
6630 	if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
6631 		if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
6632 			option_exists |= IPPF_RTDSTOPTS;
6633 			udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
6634 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
6635 			option_exists |= IPPF_RTDSTOPTS;
6636 			is_sticky |= IPPF_RTDSTOPTS;
6637 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
6638 		}
6639 	}
6640 
6641 	if (!(ignore & IPPF_DSTOPTS)) {
6642 		if (ipp->ipp_fields & IPPF_DSTOPTS) {
6643 			option_exists |= IPPF_DSTOPTS;
6644 			udp_ip_hdr_len += ipp->ipp_dstoptslen;
6645 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
6646 			option_exists |= IPPF_DSTOPTS;
6647 			is_sticky |= IPPF_DSTOPTS;
6648 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
6649 		}
6650 	}
6651 
6652 	if (!(ignore & IPPF_IFINDEX)) {
6653 		if (ipp->ipp_fields & IPPF_IFINDEX) {
6654 			option_exists |= IPPF_IFINDEX;
6655 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
6656 			option_exists |= IPPF_IFINDEX;
6657 			is_sticky |= IPPF_IFINDEX;
6658 		}
6659 	}
6660 
6661 	if (!(ignore & IPPF_ADDR)) {
6662 		if (ipp->ipp_fields & IPPF_ADDR) {
6663 			option_exists |= IPPF_ADDR;
6664 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
6665 			option_exists |= IPPF_ADDR;
6666 			is_sticky |= IPPF_ADDR;
6667 		}
6668 	}
6669 
6670 	if (!(ignore & IPPF_DONTFRAG)) {
6671 		if (ipp->ipp_fields & IPPF_DONTFRAG) {
6672 			option_exists |= IPPF_DONTFRAG;
6673 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
6674 			option_exists |= IPPF_DONTFRAG;
6675 			is_sticky |= IPPF_DONTFRAG;
6676 		}
6677 	}
6678 
6679 	if (!(ignore & IPPF_USE_MIN_MTU)) {
6680 		if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
6681 			option_exists |= IPPF_USE_MIN_MTU;
6682 		} else if (udp->udp_sticky_ipp.ipp_fields &
6683 		    IPPF_USE_MIN_MTU) {
6684 			option_exists |= IPPF_USE_MIN_MTU;
6685 			is_sticky |= IPPF_USE_MIN_MTU;
6686 		}
6687 	}
6688 
6689 	if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
6690 		option_exists |= IPPF_HOPLIMIT;
6691 	/* IPV6_HOPLIMIT can never be sticky */
6692 	ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
6693 
6694 	if (!(ignore & IPPF_UNICAST_HOPS) &&
6695 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
6696 		option_exists |= IPPF_UNICAST_HOPS;
6697 		is_sticky |= IPPF_UNICAST_HOPS;
6698 	}
6699 
6700 	if (!(ignore & IPPF_MULTICAST_HOPS) &&
6701 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
6702 		option_exists |= IPPF_MULTICAST_HOPS;
6703 		is_sticky |= IPPF_MULTICAST_HOPS;
6704 	}
6705 
6706 	if (!(ignore & IPPF_TCLASS)) {
6707 		if (ipp->ipp_fields & IPPF_TCLASS) {
6708 			option_exists |= IPPF_TCLASS;
6709 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
6710 			option_exists |= IPPF_TCLASS;
6711 			is_sticky |= IPPF_TCLASS;
6712 		}
6713 	}
6714 
6715 no_options:
6716 
6717 	/*
6718 	 * If any options carried in the ip6i_t were specified, we
6719 	 * need to account for the ip6i_t in the data we'll be sending
6720 	 * down.
6721 	 */
6722 	if (option_exists & IPPF_HAS_IP6I)
6723 		udp_ip_hdr_len += sizeof (ip6i_t);
6724 
6725 	/* check/fix buffer config, setup pointers into it */
6726 	ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
6727 	if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
6728 	    !OK_32PTR(ip6h)) {
6729 		/* Try to get everything in a single mblk next time */
6730 		if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
6731 			udp->udp_max_hdr_len = udp_ip_hdr_len;
6732 			(void) mi_set_sth_wroff(UDP_RD(q),
6733 			    udp->udp_max_hdr_len + udp_wroff_extra);
6734 		}
6735 		mp2 = allocb(udp_ip_hdr_len + udp_wroff_extra, BPRI_LO);
6736 		if (mp2 == NULL) {
6737 			*error = ENOMEM;
6738 			goto done;
6739 		}
6740 		mp2->b_wptr = DB_LIM(mp2);
6741 		mp2->b_cont = mp1;
6742 		mp1 = mp2;
6743 		if (DB_TYPE(mp) != M_DATA)
6744 			mp->b_cont = mp1;
6745 		else
6746 			mp = mp1;
6747 
6748 		ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
6749 	}
6750 	mp1->b_rptr = (unsigned char *)ip6h;
6751 	ip6i = (ip6i_t *)ip6h;
6752 
6753 #define	ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
6754 	if (option_exists & IPPF_HAS_IP6I) {
6755 		ip6h = (ip6_t *)&ip6i[1];
6756 		ip6i->ip6i_flags = 0;
6757 		ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
6758 
6759 		/* sin6_scope_id takes precendence over IPPF_IFINDEX */
6760 		if (option_exists & IPPF_SCOPE_ID) {
6761 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6762 			ip6i->ip6i_ifindex = sin6->sin6_scope_id;
6763 		} else if (option_exists & IPPF_IFINDEX) {
6764 			tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
6765 			ASSERT(tipp->ipp_ifindex != 0);
6766 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6767 			ip6i->ip6i_ifindex = tipp->ipp_ifindex;
6768 		}
6769 
6770 		if (option_exists & IPPF_ADDR) {
6771 			/*
6772 			 * Enable per-packet source address verification if
6773 			 * IPV6_PKTINFO specified the source address.
6774 			 * ip6_src is set in the transport's _wput function.
6775 			 */
6776 			ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
6777 		}
6778 
6779 		if (option_exists & IPPF_DONTFRAG) {
6780 			ip6i->ip6i_flags |= IP6I_DONTFRAG;
6781 		}
6782 
6783 		if (option_exists & IPPF_USE_MIN_MTU) {
6784 			ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
6785 			    ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
6786 		}
6787 
6788 		if (option_exists & IPPF_NEXTHOP) {
6789 			tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
6790 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
6791 			ip6i->ip6i_flags |= IP6I_NEXTHOP;
6792 			ip6i->ip6i_nexthop = tipp->ipp_nexthop;
6793 		}
6794 
6795 		/*
6796 		 * tell IP this is an ip6i_t private header
6797 		 */
6798 		ip6i->ip6i_nxt = IPPROTO_RAW;
6799 	}
6800 
6801 	/* Initialize IPv6 header */
6802 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
6803 	bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
6804 
6805 	/* Set the hoplimit of the outgoing packet. */
6806 	if (option_exists & IPPF_HOPLIMIT) {
6807 		/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
6808 		ip6h->ip6_hops = ipp->ipp_hoplimit;
6809 		ip6i->ip6i_flags |= IP6I_HOPLIMIT;
6810 	} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
6811 		ip6h->ip6_hops = udp->udp_multicast_ttl;
6812 		if (option_exists & IPPF_MULTICAST_HOPS)
6813 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
6814 	} else {
6815 		ip6h->ip6_hops = udp->udp_ttl;
6816 		if (option_exists & IPPF_UNICAST_HOPS)
6817 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
6818 	}
6819 
6820 	if (option_exists & IPPF_ADDR) {
6821 		tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
6822 		ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
6823 		ip6h->ip6_src = tipp->ipp_addr;
6824 	} else {
6825 		/*
6826 		 * The source address was not set using IPV6_PKTINFO.
6827 		 * First look at the bound source.
6828 		 * If unspecified fallback to __sin6_src_id.
6829 		 */
6830 		ip6h->ip6_src = udp->udp_v6src;
6831 		if (sin6->__sin6_src_id != 0 &&
6832 		    IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
6833 			ip_srcid_find_id(sin6->__sin6_src_id,
6834 			    &ip6h->ip6_src, connp->conn_zoneid);
6835 		}
6836 	}
6837 
6838 	nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
6839 	cp = (uint8_t *)&ip6h[1];
6840 
6841 	/*
6842 	 * Here's where we have to start stringing together
6843 	 * any extension headers in the right order:
6844 	 * Hop-by-hop, destination, routing, and final destination opts.
6845 	 */
6846 	if (option_exists & IPPF_HOPOPTS) {
6847 		/* Hop-by-hop options */
6848 		ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
6849 		tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
6850 
6851 		*nxthdr_ptr = IPPROTO_HOPOPTS;
6852 		nxthdr_ptr = &hbh->ip6h_nxt;
6853 
6854 		bcopy(tipp->ipp_hopopts, cp, tipp->ipp_hopoptslen);
6855 		cp += tipp->ipp_hopoptslen;
6856 	}
6857 	/*
6858 	 * En-route destination options
6859 	 * Only do them if there's a routing header as well
6860 	 */
6861 	if (option_exists & IPPF_RTDSTOPTS) {
6862 		ip6_dest_t *dst = (ip6_dest_t *)cp;
6863 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
6864 
6865 		*nxthdr_ptr = IPPROTO_DSTOPTS;
6866 		nxthdr_ptr = &dst->ip6d_nxt;
6867 
6868 		bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
6869 		cp += tipp->ipp_rtdstoptslen;
6870 	}
6871 	/*
6872 	 * Routing header next
6873 	 */
6874 	if (option_exists & IPPF_RTHDR) {
6875 		ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
6876 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
6877 
6878 		*nxthdr_ptr = IPPROTO_ROUTING;
6879 		nxthdr_ptr = &rt->ip6r_nxt;
6880 
6881 		bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
6882 		cp += tipp->ipp_rthdrlen;
6883 	}
6884 	/*
6885 	 * Do ultimate destination options
6886 	 */
6887 	if (option_exists & IPPF_DSTOPTS) {
6888 		ip6_dest_t *dest = (ip6_dest_t *)cp;
6889 		tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
6890 
6891 		*nxthdr_ptr = IPPROTO_DSTOPTS;
6892 		nxthdr_ptr = &dest->ip6d_nxt;
6893 
6894 		bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
6895 		cp += tipp->ipp_dstoptslen;
6896 	}
6897 	/*
6898 	 * Now set the last header pointer to the proto passed in
6899 	 */
6900 	ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
6901 	*nxthdr_ptr = IPPROTO_UDP;
6902 
6903 	/* Update UDP header */
6904 	udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
6905 	udph->uha_dst_port = sin6->sin6_port;
6906 	udph->uha_src_port = udp->udp_port;
6907 
6908 	/*
6909 	 * Copy in the destination address
6910 	 */
6911 	if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
6912 		ip6h->ip6_dst = ipv6_loopback;
6913 	else
6914 		ip6h->ip6_dst = sin6->sin6_addr;
6915 
6916 	ip6h->ip6_vcf =
6917 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6918 	    (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6919 
6920 	if (option_exists & IPPF_TCLASS) {
6921 		tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
6922 		ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
6923 		    tipp->ipp_tclass);
6924 	}
6925 
6926 	if (option_exists & IPPF_RTHDR) {
6927 		ip6_rthdr_t	*rth;
6928 
6929 		/*
6930 		 * Perform any processing needed for source routing.
6931 		 * We know that all extension headers will be in the same mblk
6932 		 * as the IPv6 header.
6933 		 */
6934 		rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
6935 		if (rth != NULL && rth->ip6r_segleft != 0) {
6936 			if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
6937 				/*
6938 				 * Drop packet - only support Type 0 routing.
6939 				 * Notify the application as well.
6940 				 */
6941 				*error = EPROTO;
6942 				goto done;
6943 			}
6944 
6945 			/*
6946 			 * rth->ip6r_len is twice the number of
6947 			 * addresses in the header. Thus it must be even.
6948 			 */
6949 			if (rth->ip6r_len & 0x1) {
6950 				*error = EPROTO;
6951 				goto done;
6952 			}
6953 			/*
6954 			 * Shuffle the routing header and ip6_dst
6955 			 * addresses, and get the checksum difference
6956 			 * between the first hop (in ip6_dst) and
6957 			 * the destination (in the last routing hdr entry).
6958 			 */
6959 			csum = ip_massage_options_v6(ip6h, rth);
6960 			/*
6961 			 * Verify that the first hop isn't a mapped address.
6962 			 * Routers along the path need to do this verification
6963 			 * for subsequent hops.
6964 			 */
6965 			if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
6966 				*error = EADDRNOTAVAIL;
6967 				goto done;
6968 			}
6969 
6970 			cp += (rth->ip6r_len + 1)*8;
6971 		}
6972 	}
6973 
6974 	/* count up length of UDP packet */
6975 	ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
6976 	if ((mp2 = mp1->b_cont) != NULL) {
6977 		do {
6978 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
6979 			ip_len += (uint32_t)MBLKL(mp2);
6980 		} while ((mp2 = mp2->b_cont) != NULL);
6981 	}
6982 
6983 	/*
6984 	 * If the size of the packet is greater than the maximum allowed by
6985 	 * ip, return an error. Passing this down could cause panics because
6986 	 * the size will have wrapped and be inconsistent with the msg size.
6987 	 */
6988 	if (ip_len > IP_MAXPACKET) {
6989 		*error = EMSGSIZE;
6990 		goto done;
6991 	}
6992 
6993 	/* Store the UDP length. Subtract length of extension hdrs */
6994 	udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
6995 	    (int)((uchar_t *)udph - (uchar_t *)ip6h));
6996 
6997 	/*
6998 	 * We make it easy for IP to include our pseudo header
6999 	 * by putting our length in uh_checksum, modified (if
7000 	 * we have a routing header) by the checksum difference
7001 	 * between the ultimate destination and first hop addresses.
7002 	 * Note: UDP over IPv6 must always checksum the packet.
7003 	 */
7004 	csum += udph->uha_length;
7005 	csum = (csum & 0xFFFF) + (csum >> 16);
7006 	udph->uha_checksum = (uint16_t)csum;
7007 
7008 #ifdef _LITTLE_ENDIAN
7009 	ip_len = htons(ip_len);
7010 #endif
7011 	ip6h->ip6_plen = ip_len;
7012 
7013 	if (DB_TYPE(mp) != M_DATA) {
7014 		ASSERT(mp != mp1);
7015 		freeb(mp);
7016 	}
7017 
7018 	/* mp has been consumed and we'll return success */
7019 	ASSERT(*error == 0);
7020 	mp = NULL;
7021 
7022 	/* We're done. Pass the packet to IP */
7023 	BUMP_MIB(&udp_mib, udpOutDatagrams);
7024 	ip_output_v6(connp, mp1, q, IP_WPUT);
7025 
7026 done:
7027 	if (*error != 0) {
7028 		ASSERT(mp != NULL);
7029 		BUMP_MIB(&udp_mib, udpOutErrors);
7030 	}
7031 	return (mp);
7032 }
7033 
7034 static void
7035 udp_wput_other(queue_t *q, mblk_t *mp)
7036 {
7037 	uchar_t	*rptr = mp->b_rptr;
7038 	struct datab *db;
7039 	struct iocblk *iocp;
7040 	cred_t	*cr;
7041 	conn_t	*connp = Q_TO_CONN(q);
7042 	udp_t	*udp = connp->conn_udp;
7043 
7044 	TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
7045 		"udp_wput_other_start: q %p", q);
7046 
7047 	db = mp->b_datap;
7048 
7049 	cr = DB_CREDDEF(mp, connp->conn_cred);
7050 
7051 	switch (db->db_type) {
7052 	case M_PROTO:
7053 	case M_PCPROTO:
7054 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
7055 			freemsg(mp);
7056 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7057 				"udp_wput_other_end: q %p (%S)",
7058 				q, "protoshort");
7059 			return;
7060 		}
7061 		switch (((t_primp_t)rptr)->type) {
7062 		case T_ADDR_REQ:
7063 			udp_addr_req(q, mp);
7064 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7065 				"udp_wput_other_end: q %p (%S)", q, "addrreq");
7066 			return;
7067 		case O_T_BIND_REQ:
7068 		case T_BIND_REQ:
7069 			udp_bind(q, mp);
7070 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7071 				"udp_wput_other_end: q %p (%S)", q, "bindreq");
7072 			return;
7073 		case T_CONN_REQ:
7074 			udp_connect(q, mp);
7075 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7076 				"udp_wput_other_end: q %p (%S)", q, "connreq");
7077 			return;
7078 		case T_CAPABILITY_REQ:
7079 			udp_capability_req(q, mp);
7080 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7081 				"udp_wput_other_end: q %p (%S)", q, "capabreq");
7082 			return;
7083 		case T_INFO_REQ:
7084 			udp_info_req(q, mp);
7085 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7086 				"udp_wput_other_end: q %p (%S)", q, "inforeq");
7087 			return;
7088 		case T_UNITDATA_REQ:
7089 			/*
7090 			 * If a T_UNITDATA_REQ gets here, the address must
7091 			 * be bad.  Valid T_UNITDATA_REQs are handled
7092 			 * in udp_wput.
7093 			 */
7094 			udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
7095 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7096 				"udp_wput_other_end: q %p (%S)",
7097 				q, "unitdatareq");
7098 			return;
7099 		case T_UNBIND_REQ:
7100 			udp_unbind(q, mp);
7101 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7102 			    "udp_wput_other_end: q %p (%S)", q, "unbindreq");
7103 			return;
7104 		case T_SVR4_OPTMGMT_REQ:
7105 			if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr))
7106 				/*
7107 				 * Use upper queue for option processing in
7108 				 * case the request is not handled at this
7109 				 * level and needs to be passed down to IP.
7110 				 */
7111 				(void) svr4_optcom_req(_WR(UDP_RD(q)),
7112 				    mp, cr, &udp_opt_obj);
7113 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7114 			    "udp_wput_other_end: q %p (%S)",
7115 			    q, "optmgmtreq");
7116 			return;
7117 
7118 		case T_OPTMGMT_REQ:
7119 			/*
7120 			 * Use upper queue for option processing in
7121 			 * case the request is not handled at this
7122 			 * level and needs to be passed down to IP.
7123 			 */
7124 			(void) tpi_optcom_req(_WR(UDP_RD(q)),
7125 			    mp, cr, &udp_opt_obj);
7126 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7127 				"udp_wput_other_end: q %p (%S)",
7128 				q, "optmgmtreq");
7129 			return;
7130 
7131 		case T_DISCON_REQ:
7132 			udp_disconnect(q, mp);
7133 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7134 				"udp_wput_other_end: q %p (%S)",
7135 				q, "disconreq");
7136 			return;
7137 
7138 		/* The following TPI message is not supported by udp. */
7139 		case O_T_CONN_RES:
7140 		case T_CONN_RES:
7141 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7142 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7143 				"udp_wput_other_end: q %p (%S)",
7144 				q, "connres/disconreq");
7145 			return;
7146 
7147 		/* The following 3 TPI messages are illegal for udp. */
7148 		case T_DATA_REQ:
7149 		case T_EXDATA_REQ:
7150 		case T_ORDREL_REQ:
7151 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7152 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7153 				"udp_wput_other_end: q %p (%S)",
7154 				q, "data/exdata/ordrel");
7155 			return;
7156 		default:
7157 			break;
7158 		}
7159 		break;
7160 	case M_FLUSH:
7161 		if (*rptr & FLUSHW)
7162 			flushq(q, FLUSHDATA);
7163 		break;
7164 	case M_IOCTL:
7165 		iocp = (struct iocblk *)mp->b_rptr;
7166 		switch (iocp->ioc_cmd) {
7167 		case TI_GETPEERNAME:
7168 			if (udp->udp_state != TS_DATA_XFER) {
7169 				/*
7170 				 * If a default destination address has not
7171 				 * been associated with the stream, then we
7172 				 * don't know the peer's name.
7173 				 */
7174 				iocp->ioc_error = ENOTCONN;
7175 				iocp->ioc_count = 0;
7176 				mp->b_datap->db_type = M_IOCACK;
7177 				putnext(UDP_RD(q), mp);
7178 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7179 					"udp_wput_other_end: q %p (%S)",
7180 					q, "getpeername");
7181 				return;
7182 			}
7183 			/* FALLTHRU */
7184 		case TI_GETMYNAME: {
7185 			/*
7186 			 * For TI_GETPEERNAME and TI_GETMYNAME, we first
7187 			 * need to copyin the user's strbuf structure.
7188 			 * Processing will continue in the M_IOCDATA case
7189 			 * below.
7190 			 */
7191 			mi_copyin(q, mp, NULL,
7192 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
7193 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7194 				"udp_wput_other_end: q %p (%S)",
7195 				q, "getmyname");
7196 			return;
7197 			}
7198 		case ND_SET:
7199 			/* nd_getset performs the necessary checking */
7200 		case ND_GET:
7201 			if (nd_getset(q, udp_g_nd, mp)) {
7202 				putnext(UDP_RD(q), mp);
7203 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7204 					"udp_wput_other_end: q %p (%S)",
7205 					q, "get");
7206 				return;
7207 			}
7208 			break;
7209 		case _SIOCSOCKFALLBACK:
7210 			/*
7211 			 * Either sockmod is about to be popped and the
7212 			 * socket would now be treated as a plain stream,
7213 			 * or a module is about to be pushed so we could
7214 			 * no longer use read-side synchronous stream.
7215 			 * Drain any queued data and disable direct sockfs
7216 			 * interface from now on.
7217 			 */
7218 			if (!udp->udp_issocket) {
7219 				DB_TYPE(mp) = M_IOCNAK;
7220 				iocp->ioc_error = EINVAL;
7221 			} else {
7222 				udp->udp_issocket = B_FALSE;
7223 				if (udp->udp_direct_sockfs) {
7224 					/*
7225 					 * Disable read-side synchronous
7226 					 * stream interface and drain any
7227 					 * queued data.
7228 					 */
7229 					udp_rcv_drain(UDP_RD(q), udp,
7230 					    B_FALSE);
7231 					ASSERT(!udp->udp_direct_sockfs);
7232 					UDP_STAT(udp_sock_fallback);
7233 				}
7234 				DB_TYPE(mp) = M_IOCACK;
7235 				iocp->ioc_error = 0;
7236 			}
7237 			iocp->ioc_count = 0;
7238 			iocp->ioc_rval = 0;
7239 			putnext(UDP_RD(q), mp);
7240 			return;
7241 		default:
7242 			break;
7243 		}
7244 		break;
7245 	case M_IOCDATA:
7246 		udp_wput_iocdata(q, mp);
7247 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7248 			"udp_wput_other_end: q %p (%S)", q, "iocdata");
7249 		return;
7250 	default:
7251 		/* Unrecognized messages are passed through without change. */
7252 		break;
7253 	}
7254 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7255 		"udp_wput_other_end: q %p (%S)", q, "end");
7256 	ip_output(connp, mp, q, IP_WPUT);
7257 }
7258 
7259 /* ARGSUSED */
7260 static void
7261 udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
7262 {
7263 	udp_wput_other(((conn_t *)arg)->conn_wq, mp);
7264 	udp_exit((conn_t *)arg);
7265 }
7266 
7267 /*
7268  * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
7269  * messages.
7270  */
7271 static void
7272 udp_wput_iocdata(queue_t *q, mblk_t *mp)
7273 {
7274 	mblk_t	*mp1;
7275 	STRUCT_HANDLE(strbuf, sb);
7276 	uint16_t port;
7277 	in6_addr_t	v6addr;
7278 	ipaddr_t	v4addr;
7279 	uint32_t	flowinfo = 0;
7280 	int		addrlen;
7281 	udp_t		*udp = Q_TO_UDP(q);
7282 
7283 	/* Make sure it is one of ours. */
7284 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7285 	case TI_GETMYNAME:
7286 	case TI_GETPEERNAME:
7287 		break;
7288 	default:
7289 		ip_output(Q_TO_CONN(q), mp, q, IP_WPUT);
7290 		return;
7291 	}
7292 
7293 	q = WR(UDP_RD(q));
7294 	switch (mi_copy_state(q, mp, &mp1)) {
7295 	case -1:
7296 		return;
7297 	case MI_COPY_CASE(MI_COPY_IN, 1):
7298 		break;
7299 	case MI_COPY_CASE(MI_COPY_OUT, 1):
7300 		/*
7301 		 * The address has been copied out, so now
7302 		 * copyout the strbuf.
7303 		 */
7304 		mi_copyout(q, mp);
7305 		return;
7306 	case MI_COPY_CASE(MI_COPY_OUT, 2):
7307 		/*
7308 		 * The address and strbuf have been copied out.
7309 		 * We're done, so just acknowledge the original
7310 		 * M_IOCTL.
7311 		 */
7312 		mi_copy_done(q, mp, 0);
7313 		return;
7314 	default:
7315 		/*
7316 		 * Something strange has happened, so acknowledge
7317 		 * the original M_IOCTL with an EPROTO error.
7318 		 */
7319 		mi_copy_done(q, mp, EPROTO);
7320 		return;
7321 	}
7322 
7323 	/*
7324 	 * Now we have the strbuf structure for TI_GETMYNAME
7325 	 * and TI_GETPEERNAME.  Next we copyout the requested
7326 	 * address and then we'll copyout the strbuf.
7327 	 */
7328 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
7329 	    (void *)mp1->b_rptr);
7330 	if (udp->udp_family == AF_INET)
7331 		addrlen = sizeof (sin_t);
7332 	else
7333 		addrlen = sizeof (sin6_t);
7334 
7335 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
7336 		mi_copy_done(q, mp, EINVAL);
7337 		return;
7338 	}
7339 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7340 	case TI_GETMYNAME:
7341 		if (udp->udp_family == AF_INET) {
7342 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7343 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
7344 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7345 				v4addr = V4_PART_OF_V6(udp->udp_v6src);
7346 			} else {
7347 				/*
7348 				 * INADDR_ANY
7349 				 * udp_v6src is not set, we might be bound to
7350 				 * broadcast/multicast. Use udp_bound_v6src as
7351 				 * local address instead (that could
7352 				 * also still be INADDR_ANY)
7353 				 */
7354 				v4addr = V4_PART_OF_V6(udp->udp_bound_v6src);
7355 			}
7356 		} else {
7357 			/* udp->udp_family == AF_INET6 */
7358 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7359 				v6addr = udp->udp_v6src;
7360 			} else {
7361 				/*
7362 				 * UNSPECIFIED
7363 				 * udp_v6src is not set, we might be bound to
7364 				 * broadcast/multicast. Use udp_bound_v6src as
7365 				 * local address instead (that could
7366 				 * also still be UNSPECIFIED)
7367 				 */
7368 				v6addr = udp->udp_bound_v6src;
7369 			}
7370 		}
7371 		port = udp->udp_port;
7372 		break;
7373 	case TI_GETPEERNAME:
7374 		if (udp->udp_state != TS_DATA_XFER) {
7375 			mi_copy_done(q, mp, ENOTCONN);
7376 			return;
7377 		}
7378 		if (udp->udp_family == AF_INET) {
7379 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7380 			v4addr = V4_PART_OF_V6(udp->udp_v6dst);
7381 		} else {
7382 			/* udp->udp_family == AF_INET6) */
7383 			v6addr = udp->udp_v6dst;
7384 			flowinfo = udp->udp_flowinfo;
7385 		}
7386 		port = udp->udp_dstport;
7387 		break;
7388 	default:
7389 		mi_copy_done(q, mp, EPROTO);
7390 		return;
7391 	}
7392 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
7393 	if (!mp1)
7394 		return;
7395 
7396 	if (udp->udp_family == AF_INET) {
7397 		sin_t *sin;
7398 
7399 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
7400 		sin = (sin_t *)mp1->b_rptr;
7401 		mp1->b_wptr = (uchar_t *)&sin[1];
7402 		*sin = sin_null;
7403 		sin->sin_family = AF_INET;
7404 		sin->sin_addr.s_addr = v4addr;
7405 		sin->sin_port = port;
7406 	} else {
7407 		/* udp->udp_family == AF_INET6 */
7408 		sin6_t *sin6;
7409 
7410 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
7411 		sin6 = (sin6_t *)mp1->b_rptr;
7412 		mp1->b_wptr = (uchar_t *)&sin6[1];
7413 		*sin6 = sin6_null;
7414 		sin6->sin6_family = AF_INET6;
7415 		sin6->sin6_flowinfo = flowinfo;
7416 		sin6->sin6_addr = v6addr;
7417 		sin6->sin6_port = port;
7418 	}
7419 	/* Copy out the address */
7420 	mi_copyout(q, mp);
7421 }
7422 
7423 
7424 static int
7425 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
7426     void *thisdg_attrs)
7427 {
7428 	struct T_unitdata_req *udreqp;
7429 	int is_absreq_failure;
7430 	cred_t *cr;
7431 	conn_t	*connp = Q_TO_CONN(q);
7432 
7433 	ASSERT(((t_primp_t)mp->b_rptr)->type);
7434 
7435 	cr = DB_CREDDEF(mp, connp->conn_cred);
7436 
7437 	udreqp = (struct T_unitdata_req *)mp->b_rptr;
7438 	*errorp = 0;
7439 
7440 	/*
7441 	 * Use upper queue for option processing since the callback
7442 	 * routines expect to be called in UDP instance instead of IP.
7443 	 */
7444 	*errorp = tpi_optcom_buf(_WR(UDP_RD(q)), mp, &udreqp->OPT_length,
7445 	    udreqp->OPT_offset, cr, &udp_opt_obj,
7446 	    thisdg_attrs, &is_absreq_failure);
7447 
7448 	if (*errorp != 0) {
7449 		/*
7450 		 * Note: No special action needed in this
7451 		 * module for "is_absreq_failure"
7452 		 */
7453 		return (-1);		/* failure */
7454 	}
7455 	ASSERT(is_absreq_failure == 0);
7456 	return (0);	/* success */
7457 }
7458 
7459 void
7460 udp_ddi_init(void)
7461 {
7462 	int i;
7463 
7464 	UDP6_MAJ = ddi_name_to_major(UDP6);
7465 
7466 	udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
7467 	    udp_opt_obj.odb_opt_arr_cnt);
7468 
7469 	if (udp_bind_fanout_size & (udp_bind_fanout_size - 1)) {
7470 		/* Not a power of two. Round up to nearest power of two */
7471 		for (i = 0; i < 31; i++) {
7472 			if (udp_bind_fanout_size < (1 << i))
7473 				break;
7474 		}
7475 		udp_bind_fanout_size = 1 << i;
7476 	}
7477 	udp_bind_fanout = kmem_zalloc(udp_bind_fanout_size *
7478 	    sizeof (udp_fanout_t), KM_SLEEP);
7479 	for (i = 0; i < udp_bind_fanout_size; i++) {
7480 		mutex_init(&udp_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
7481 		    NULL);
7482 	}
7483 	(void) udp_param_register(udp_param_arr, A_CNT(udp_param_arr));
7484 
7485 	udp_kstat_init();
7486 
7487 	udp_cache = kmem_cache_create("udp_cache", sizeof (udp_t),
7488 	    CACHE_ALIGN_SIZE, NULL, NULL, NULL, NULL, NULL, 0);
7489 }
7490 
7491 void
7492 udp_ddi_destroy(void)
7493 {
7494 	int i;
7495 
7496 	nd_free(&udp_g_nd);
7497 
7498 	for (i = 0; i < udp_bind_fanout_size; i++) {
7499 		mutex_destroy(&udp_bind_fanout[i].uf_lock);
7500 	}
7501 
7502 	kmem_free(udp_bind_fanout, udp_bind_fanout_size *
7503 	    sizeof (udp_fanout_t));
7504 
7505 	udp_kstat_fini();
7506 
7507 	kmem_cache_destroy(udp_cache);
7508 }
7509 
7510 static void
7511 udp_kstat_init(void)
7512 {
7513 	udp_named_kstat_t template = {
7514 		{ "inDatagrams",	KSTAT_DATA_UINT32, 0 },
7515 		{ "inErrors",		KSTAT_DATA_UINT32, 0 },
7516 		{ "outDatagrams",	KSTAT_DATA_UINT32, 0 },
7517 		{ "entrySize",		KSTAT_DATA_INT32, 0 },
7518 		{ "entry6Size",		KSTAT_DATA_INT32, 0 },
7519 		{ "outErrors",		KSTAT_DATA_UINT32, 0 },
7520 	};
7521 
7522 	udp_mibkp = kstat_create(UDP_MOD_NAME, 0, UDP_MOD_NAME,
7523 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(udp_named_kstat_t), 0);
7524 
7525 	if (udp_mibkp == NULL)
7526 		return;
7527 
7528 	template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
7529 	template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
7530 
7531 	bcopy(&template, udp_mibkp->ks_data, sizeof (template));
7532 
7533 	udp_mibkp->ks_update = udp_kstat_update;
7534 
7535 	kstat_install(udp_mibkp);
7536 
7537 	if ((udp_ksp = kstat_create(UDP_MOD_NAME, 0, "udpstat",
7538 	    "net", KSTAT_TYPE_NAMED,
7539 	    sizeof (udp_statistics) / sizeof (kstat_named_t),
7540 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
7541 		udp_ksp->ks_data = &udp_statistics;
7542 		kstat_install(udp_ksp);
7543 	}
7544 }
7545 
7546 static void
7547 udp_kstat_fini(void)
7548 {
7549 	if (udp_ksp != NULL) {
7550 		kstat_delete(udp_ksp);
7551 		udp_ksp = NULL;
7552 	}
7553 	if (udp_mibkp != NULL) {
7554 		kstat_delete(udp_mibkp);
7555 		udp_mibkp = NULL;
7556 	}
7557 }
7558 
7559 static int
7560 udp_kstat_update(kstat_t *kp, int rw)
7561 {
7562 	udp_named_kstat_t *udpkp;
7563 
7564 	if ((kp == NULL) || (kp->ks_data == NULL))
7565 		return (EIO);
7566 
7567 	if (rw == KSTAT_WRITE)
7568 		return (EACCES);
7569 
7570 	udpkp = (udp_named_kstat_t *)kp->ks_data;
7571 
7572 	udpkp->inDatagrams.value.ui32 =	udp_mib.udpInDatagrams;
7573 	udpkp->inErrors.value.ui32 =	udp_mib.udpInErrors;
7574 	udpkp->outDatagrams.value.ui32 = udp_mib.udpOutDatagrams;
7575 	udpkp->outErrors.value.ui32 =	udp_mib.udpOutErrors;
7576 
7577 	return (0);
7578 }
7579 
7580 /* ARGSUSED */
7581 static void
7582 udp_rput(queue_t *q, mblk_t *mp)
7583 {
7584 	/*
7585 	 * We get here whenever we do qreply() from IP,
7586 	 * i.e as part of handlings ioctls, etc.
7587 	 */
7588 	putnext(q, mp);
7589 }
7590 
7591 /*
7592  * Read-side synchronous stream info entry point, called as a
7593  * result of handling certain STREAMS ioctl operations.
7594  */
7595 static int
7596 udp_rinfop(queue_t *q, infod_t *dp)
7597 {
7598 	mblk_t	*mp;
7599 	uint_t	cmd = dp->d_cmd;
7600 	int	res = 0;
7601 	int	error = 0;
7602 	udp_t	*udp = Q_TO_UDP(RD(UDP_WR(q)));
7603 	struct stdata *stp = STREAM(q);
7604 
7605 	mutex_enter(&udp->udp_drain_lock);
7606 	/* If shutdown on read has happened, return nothing */
7607 	mutex_enter(&stp->sd_lock);
7608 	if (stp->sd_flag & STREOF) {
7609 		mutex_exit(&stp->sd_lock);
7610 		goto done;
7611 	}
7612 	mutex_exit(&stp->sd_lock);
7613 
7614 	if ((mp = udp->udp_rcv_list_head) == NULL)
7615 		goto done;
7616 
7617 	ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
7618 
7619 	if (cmd & INFOD_COUNT) {
7620 		/*
7621 		 * Return the number of messages.
7622 		 */
7623 		dp->d_count += udp->udp_rcv_msgcnt;
7624 		res |= INFOD_COUNT;
7625 	}
7626 	if (cmd & INFOD_BYTES) {
7627 		/*
7628 		 * Return size of all data messages.
7629 		 */
7630 		dp->d_bytes += udp->udp_rcv_cnt;
7631 		res |= INFOD_BYTES;
7632 	}
7633 	if (cmd & INFOD_FIRSTBYTES) {
7634 		/*
7635 		 * Return size of first data message.
7636 		 */
7637 		dp->d_bytes = msgdsize(mp);
7638 		res |= INFOD_FIRSTBYTES;
7639 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
7640 	}
7641 	if (cmd & INFOD_COPYOUT) {
7642 		mblk_t *mp1 = mp->b_cont;
7643 		int n;
7644 		/*
7645 		 * Return data contents of first message.
7646 		 */
7647 		ASSERT(DB_TYPE(mp1) == M_DATA);
7648 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
7649 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
7650 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
7651 			    UIO_READ, dp->d_uiop)) != 0) {
7652 				goto done;
7653 			}
7654 			mp1 = mp1->b_cont;
7655 		}
7656 		res |= INFOD_COPYOUT;
7657 		dp->d_cmd &= ~INFOD_COPYOUT;
7658 	}
7659 done:
7660 	mutex_exit(&udp->udp_drain_lock);
7661 
7662 	dp->d_res |= res;
7663 
7664 	return (error);
7665 }
7666 
7667 /*
7668  * Read-side synchronous stream entry point.  This is called as a result
7669  * of recv/read operation done at sockfs, and is guaranteed to execute
7670  * outside of the interrupt thread context.  It returns a single datagram
7671  * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
7672  */
7673 static int
7674 udp_rrw(queue_t *q, struiod_t *dp)
7675 {
7676 	mblk_t	*mp;
7677 	udp_t	*udp = Q_TO_UDP(_RD(UDP_WR(q)));
7678 
7679 	/* We should never get here when we're in SNMP mode */
7680 	ASSERT(!(udp->udp_connp->conn_flags & IPCL_UDPMOD));
7681 
7682 	/*
7683 	 * Dequeue datagram from the head of the list and return
7684 	 * it to caller; also ensure that RSLEEP sd_wakeq flag is
7685 	 * set/cleared depending on whether or not there's data
7686 	 * remaining in the list.
7687 	 */
7688 	mutex_enter(&udp->udp_drain_lock);
7689 	if (!udp->udp_direct_sockfs) {
7690 		mutex_exit(&udp->udp_drain_lock);
7691 		UDP_STAT(udp_rrw_busy);
7692 		return (EBUSY);
7693 	}
7694 	if ((mp = udp->udp_rcv_list_head) != NULL) {
7695 		uint_t size = msgdsize(mp);
7696 
7697 		/* Last datagram in the list? */
7698 		if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
7699 			udp->udp_rcv_list_tail = NULL;
7700 		mp->b_next = NULL;
7701 
7702 		udp->udp_rcv_cnt -= size;
7703 		udp->udp_rcv_msgcnt--;
7704 		UDP_STAT(udp_rrw_msgcnt);
7705 
7706 		/* No longer flow-controlling? */
7707 		if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
7708 		    udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
7709 			udp->udp_drain_qfull = B_FALSE;
7710 	}
7711 	if (udp->udp_rcv_list_head == NULL) {
7712 		/*
7713 		 * Either we just dequeued the last datagram or
7714 		 * we get here from sockfs and have nothing to
7715 		 * return; in this case clear RSLEEP.
7716 		 */
7717 		ASSERT(udp->udp_rcv_cnt == 0);
7718 		ASSERT(udp->udp_rcv_msgcnt == 0);
7719 		ASSERT(udp->udp_rcv_list_tail == NULL);
7720 		STR_WAKEUP_CLEAR(STREAM(q));
7721 	} else {
7722 		/*
7723 		 * More data follows; we need udp_rrw() to be
7724 		 * called in future to pick up the rest.
7725 		 */
7726 		STR_WAKEUP_SET(STREAM(q));
7727 	}
7728 	mutex_exit(&udp->udp_drain_lock);
7729 	dp->d_mp = mp;
7730 	return (0);
7731 }
7732 
7733 /*
7734  * Enqueue a completely-built T_UNITDATA_IND message into the receive
7735  * list; this is typically executed within the interrupt thread context
7736  * and so we do things as quickly as possible.
7737  */
7738 static void
7739 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
7740 {
7741 	ASSERT(q == RD(q));
7742 	ASSERT(pkt_len == msgdsize(mp));
7743 	ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
7744 	ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
7745 	ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
7746 
7747 	mutex_enter(&udp->udp_drain_lock);
7748 	/*
7749 	 * Wake up and signal the receiving app; it is okay to do this
7750 	 * before enqueueing the mp because we are holding the drain lock.
7751 	 * One of the advantages of synchronous stream is the ability for
7752 	 * us to find out when the application performs a read on the
7753 	 * socket by way of udp_rrw() entry point being called.  We need
7754 	 * to generate SIGPOLL/SIGIO for each received data in the case
7755 	 * of asynchronous socket just as in the strrput() case.  However,
7756 	 * we only wake the application up when necessary, i.e. during the
7757 	 * first enqueue.  When udp_rrw() is called, we send up a single
7758 	 * datagram upstream and call STR_WAKEUP_SET() again when there
7759 	 * are still data remaining in our receive queue.
7760 	 */
7761 	if (udp->udp_rcv_list_head == NULL) {
7762 		STR_WAKEUP_SET(STREAM(q));
7763 		udp->udp_rcv_list_head = mp;
7764 	} else {
7765 		udp->udp_rcv_list_tail->b_next = mp;
7766 	}
7767 	udp->udp_rcv_list_tail = mp;
7768 	udp->udp_rcv_cnt += pkt_len;
7769 	udp->udp_rcv_msgcnt++;
7770 
7771 	/* Need to flow-control? */
7772 	if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
7773 	    udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
7774 		udp->udp_drain_qfull = B_TRUE;
7775 
7776 	/* Update poll events and send SIGPOLL/SIGIO if necessary */
7777 	STR_SENDSIG(STREAM(q));
7778 	mutex_exit(&udp->udp_drain_lock);
7779 }
7780 
7781 /*
7782  * Drain the contents of receive list to the module upstream; we do
7783  * this during close or when we fallback to the slow mode due to
7784  * sockmod being popped or a module being pushed on top of us.
7785  */
7786 static void
7787 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
7788 {
7789 	mblk_t *mp;
7790 
7791 	ASSERT(q == RD(q));
7792 
7793 	mutex_enter(&udp->udp_drain_lock);
7794 	/*
7795 	 * There is no race with a concurrent udp_input() sending
7796 	 * up packets using putnext() after we have cleared the
7797 	 * udp_direct_sockfs flag but before we have completed
7798 	 * sending up the packets in udp_rcv_list, since we are
7799 	 * either a writer or we have quiesced the conn.
7800 	 */
7801 	udp->udp_direct_sockfs = B_FALSE;
7802 	mutex_exit(&udp->udp_drain_lock);
7803 
7804 	if (udp->udp_rcv_list_head != NULL)
7805 		UDP_STAT(udp_drain);
7806 
7807 	/*
7808 	 * Send up everything via putnext(); note here that we
7809 	 * don't need the udp_drain_lock to protect us since
7810 	 * nothing can enter udp_rrw() and that we currently
7811 	 * have exclusive access to this udp.
7812 	 */
7813 	while ((mp = udp->udp_rcv_list_head) != NULL) {
7814 		udp->udp_rcv_list_head = mp->b_next;
7815 		mp->b_next = NULL;
7816 		udp->udp_rcv_cnt -= msgdsize(mp);
7817 		udp->udp_rcv_msgcnt--;
7818 		if (closing) {
7819 			freemsg(mp);
7820 		} else {
7821 			putnext(q, mp);
7822 		}
7823 	}
7824 	ASSERT(udp->udp_rcv_cnt == 0);
7825 	ASSERT(udp->udp_rcv_msgcnt == 0);
7826 	ASSERT(udp->udp_rcv_list_head == NULL);
7827 	udp->udp_rcv_list_tail = NULL;
7828 	udp->udp_drain_qfull = B_FALSE;
7829 }
7830 
7831 static size_t
7832 udp_set_rcv_hiwat(udp_t *udp, size_t size)
7833 {
7834 	/* We add a bit of extra buffering */
7835 	size += size >> 1;
7836 	if (size > udp_max_buf)
7837 		size = udp_max_buf;
7838 
7839 	udp->udp_rcv_hiwat = size;
7840 	return (size);
7841 }
7842 
7843 /*
7844  * Little helper for IPsec's NAT-T processing.
7845  */
7846 boolean_t
7847 udp_compute_checksum(void)
7848 {
7849 	return (udp_do_checksum);
7850 }
7851