1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/strlog.h> 29 #include <sys/strsun.h> 30 #include <sys/squeue_impl.h> 31 #include <sys/squeue.h> 32 #include <sys/callo.h> 33 #include <sys/strsubr.h> 34 35 #include <inet/common.h> 36 #include <inet/ip.h> 37 #include <inet/ip_ire.h> 38 #include <inet/ip_rts.h> 39 #include <inet/tcp.h> 40 #include <inet/tcp_impl.h> 41 42 /* 43 * Implementation of TCP Timers. 44 * ============================= 45 * 46 * INTERFACE: 47 * 48 * There are two basic functions dealing with tcp timers: 49 * 50 * timeout_id_t tcp_timeout(connp, func, time) 51 * clock_t tcp_timeout_cancel(connp, timeout_id) 52 * TCP_TIMER_RESTART(tcp, intvl) 53 * 54 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 55 * after 'time' ticks passed. The function called by timeout() must adhere to 56 * the same restrictions as a driver soft interrupt handler - it must not sleep 57 * or call other functions that might sleep. The value returned is the opaque 58 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 59 * cancel the request. The call to tcp_timeout() may fail in which case it 60 * returns zero. This is different from the timeout(9F) function which never 61 * fails. 62 * 63 * The call-back function 'func' always receives 'connp' as its single 64 * argument. It is always executed in the squeue corresponding to the tcp 65 * structure. The tcp structure is guaranteed to be present at the time the 66 * call-back is called. 67 * 68 * NOTE: The call-back function 'func' is never called if tcp is in 69 * the TCPS_CLOSED state. 70 * 71 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 72 * request. locks acquired by the call-back routine should not be held across 73 * the call to tcp_timeout_cancel() or a deadlock may result. 74 * 75 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 76 * Otherwise, it returns an integer value greater than or equal to 0. In 77 * particular, if the call-back function is already placed on the squeue, it can 78 * not be canceled. 79 * 80 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 81 * within squeue context corresponding to the tcp instance. Since the 82 * call-back is also called via the same squeue, there are no race 83 * conditions described in untimeout(9F) manual page since all calls are 84 * strictly serialized. 85 * 86 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 87 * stored in tcp_timer_tid and starts a new one using 88 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 89 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 90 * field. 91 * 92 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 93 * call-back may still be called, so it is possible tcp_timer() will be 94 * called several times. This should not be a problem since tcp_timer() 95 * should always check the tcp instance state. 96 * 97 * 98 * IMPLEMENTATION: 99 * 100 * TCP timers are implemented using three-stage process. The call to 101 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 102 * when the timer expires. The tcp_timer_callback() arranges the call of the 103 * tcp_timer_handler() function via squeue corresponding to the tcp 104 * instance. The tcp_timer_handler() calls actual requested timeout call-back 105 * and passes tcp instance as an argument to it. Information is passed between 106 * stages using the tcp_timer_t structure which contains the connp pointer, the 107 * tcp call-back to call and the timeout id returned by the timeout(9F). 108 * 109 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 110 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 111 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 112 * returns the pointer to this mblk. 113 * 114 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 115 * looks like a normal mblk without actual dblk attached to it. 116 * 117 * To optimize performance each tcp instance holds a small cache of timer 118 * mblocks. In the current implementation it caches up to two timer mblocks per 119 * tcp instance. The cache is preserved over tcp frees and is only freed when 120 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 121 * timer processing happens on a corresponding squeue, the cache manipulation 122 * does not require any locks. Experiments show that majority of timer mblocks 123 * allocations are satisfied from the tcp cache and do not involve kmem calls. 124 * 125 * The tcp_timeout() places a refhold on the connp instance which guarantees 126 * that it will be present at the time the call-back function fires. The 127 * tcp_timer_handler() drops the reference after calling the call-back, so the 128 * call-back function does not need to manipulate the references explicitly. 129 */ 130 131 kmem_cache_t *tcp_timercache; 132 133 static void tcp_ip_notify(tcp_t *); 134 static void tcp_timer_callback(void *); 135 static void tcp_timer_free(tcp_t *, mblk_t *); 136 static void tcp_timer_handler(void *, mblk_t *, void *, ip_recv_attr_t *); 137 138 timeout_id_t 139 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 140 { 141 mblk_t *mp; 142 tcp_timer_t *tcpt; 143 tcp_t *tcp = connp->conn_tcp; 144 145 ASSERT(connp->conn_sqp != NULL); 146 147 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 148 149 if (tcp->tcp_timercache == NULL) { 150 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 151 } else { 152 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 153 mp = tcp->tcp_timercache; 154 tcp->tcp_timercache = mp->b_next; 155 mp->b_next = NULL; 156 ASSERT(mp->b_wptr == NULL); 157 } 158 159 CONN_INC_REF(connp); 160 tcpt = (tcp_timer_t *)mp->b_rptr; 161 tcpt->connp = connp; 162 tcpt->tcpt_proc = f; 163 /* 164 * TCP timers are normal timeouts. Plus, they do not require more than 165 * a 10 millisecond resolution. By choosing a coarser resolution and by 166 * rounding up the expiration to the next resolution boundary, we can 167 * batch timers in the callout subsystem to make TCP timers more 168 * efficient. The roundup also protects short timers from expiring too 169 * early before they have a chance to be cancelled. 170 */ 171 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 172 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 173 174 return ((timeout_id_t)mp); 175 } 176 177 static void 178 tcp_timer_callback(void *arg) 179 { 180 mblk_t *mp = (mblk_t *)arg; 181 tcp_timer_t *tcpt; 182 conn_t *connp; 183 184 tcpt = (tcp_timer_t *)mp->b_rptr; 185 connp = tcpt->connp; 186 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 187 NULL, SQ_FILL, SQTAG_TCP_TIMER); 188 } 189 190 /* ARGSUSED */ 191 static void 192 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 193 { 194 tcp_timer_t *tcpt; 195 conn_t *connp = (conn_t *)arg; 196 tcp_t *tcp = connp->conn_tcp; 197 198 tcpt = (tcp_timer_t *)mp->b_rptr; 199 ASSERT(connp == tcpt->connp); 200 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 201 202 /* 203 * If the TCP has reached the closed state, don't proceed any 204 * further. This TCP logically does not exist on the system. 205 * tcpt_proc could for example access queues, that have already 206 * been qprocoff'ed off. 207 */ 208 if (tcp->tcp_state != TCPS_CLOSED) { 209 (*tcpt->tcpt_proc)(connp); 210 } else { 211 tcp->tcp_timer_tid = 0; 212 } 213 tcp_timer_free(connp->conn_tcp, mp); 214 } 215 216 /* 217 * There is potential race with untimeout and the handler firing at the same 218 * time. The mblock may be freed by the handler while we are trying to use 219 * it. But since both should execute on the same squeue, this race should not 220 * occur. 221 */ 222 clock_t 223 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 224 { 225 mblk_t *mp = (mblk_t *)id; 226 tcp_timer_t *tcpt; 227 clock_t delta; 228 229 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 230 231 if (mp == NULL) 232 return (-1); 233 234 tcpt = (tcp_timer_t *)mp->b_rptr; 235 ASSERT(tcpt->connp == connp); 236 237 delta = untimeout_default(tcpt->tcpt_tid, 0); 238 239 if (delta >= 0) { 240 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 241 tcp_timer_free(connp->conn_tcp, mp); 242 CONN_DEC_REF(connp); 243 } 244 245 return (delta); 246 } 247 248 /* 249 * Allocate space for the timer event. The allocation looks like mblk, but it is 250 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 251 * 252 * Dealing with failures: If we can't allocate from the timer cache we try 253 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 254 * points to b_rptr. 255 * If we can't allocate anything using allocb_tryhard(), we perform a last 256 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 257 * save the actual allocation size in b_datap. 258 */ 259 mblk_t * 260 tcp_timermp_alloc(int kmflags) 261 { 262 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 263 kmflags & ~KM_PANIC); 264 265 if (mp != NULL) { 266 mp->b_next = mp->b_prev = NULL; 267 mp->b_rptr = (uchar_t *)(&mp[1]); 268 mp->b_wptr = NULL; 269 mp->b_datap = NULL; 270 mp->b_queue = NULL; 271 mp->b_cont = NULL; 272 } else if (kmflags & KM_PANIC) { 273 /* 274 * Failed to allocate memory for the timer. Try allocating from 275 * dblock caches. 276 */ 277 /* ipclassifier calls this from a constructor - hence no tcps */ 278 TCP_G_STAT(tcp_timermp_allocfail); 279 mp = allocb_tryhard(sizeof (tcp_timer_t)); 280 if (mp == NULL) { 281 size_t size = 0; 282 /* 283 * Memory is really low. Try tryhard allocation. 284 * 285 * ipclassifier calls this from a constructor - 286 * hence no tcps 287 */ 288 TCP_G_STAT(tcp_timermp_allocdblfail); 289 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 290 sizeof (tcp_timer_t), &size, kmflags); 291 mp->b_rptr = (uchar_t *)(&mp[1]); 292 mp->b_next = mp->b_prev = NULL; 293 mp->b_wptr = (uchar_t *)-1; 294 mp->b_datap = (dblk_t *)size; 295 mp->b_queue = NULL; 296 mp->b_cont = NULL; 297 } 298 ASSERT(mp->b_wptr != NULL); 299 } 300 /* ipclassifier calls this from a constructor - hence no tcps */ 301 TCP_G_DBGSTAT(tcp_timermp_alloced); 302 303 return (mp); 304 } 305 306 /* 307 * Free per-tcp timer cache. 308 * It can only contain entries from tcp_timercache. 309 */ 310 void 311 tcp_timermp_free(tcp_t *tcp) 312 { 313 mblk_t *mp; 314 315 while ((mp = tcp->tcp_timercache) != NULL) { 316 ASSERT(mp->b_wptr == NULL); 317 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 318 kmem_cache_free(tcp_timercache, mp); 319 } 320 } 321 322 /* 323 * Free timer event. Put it on the per-tcp timer cache if there is not too many 324 * events there already (currently at most two events are cached). 325 * If the event is not allocated from the timer cache, free it right away. 326 */ 327 static void 328 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 329 { 330 mblk_t *mp1 = tcp->tcp_timercache; 331 332 if (mp->b_wptr != NULL) { 333 /* 334 * This allocation is not from a timer cache, free it right 335 * away. 336 */ 337 if (mp->b_wptr != (uchar_t *)-1) 338 freeb(mp); 339 else 340 kmem_free(mp, (size_t)mp->b_datap); 341 } else if (mp1 == NULL || mp1->b_next == NULL) { 342 /* Cache this timer block for future allocations */ 343 mp->b_rptr = (uchar_t *)(&mp[1]); 344 mp->b_next = mp1; 345 tcp->tcp_timercache = mp; 346 } else { 347 kmem_cache_free(tcp_timercache, mp); 348 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 349 } 350 } 351 352 /* 353 * Stop all TCP timers. 354 */ 355 void 356 tcp_timers_stop(tcp_t *tcp) 357 { 358 if (tcp->tcp_timer_tid != 0) { 359 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 360 tcp->tcp_timer_tid = 0; 361 } 362 if (tcp->tcp_ka_tid != 0) { 363 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 364 tcp->tcp_ka_tid = 0; 365 } 366 if (tcp->tcp_ack_tid != 0) { 367 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 368 tcp->tcp_ack_tid = 0; 369 } 370 if (tcp->tcp_push_tid != 0) { 371 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 372 tcp->tcp_push_tid = 0; 373 } 374 if (tcp->tcp_reass_tid != 0) { 375 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_reass_tid); 376 tcp->tcp_reass_tid = 0; 377 } 378 } 379 380 /* 381 * Timer callback routine for keepalive probe. We do a fake resend of 382 * last ACKed byte. Then set a timer using RTO. When the timer expires, 383 * check to see if we have heard anything from the other end for the last 384 * RTO period. If we have, set the timer to expire for another 385 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 386 * RTO << 1 and check again when it expires. Keep exponentially increasing 387 * the timeout if we have not heard from the other side. If for more than 388 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 389 * kill the connection unless the keepalive abort threshold is 0. In 390 * that case, we will probe "forever." 391 */ 392 void 393 tcp_keepalive_timer(void *arg) 394 { 395 mblk_t *mp; 396 conn_t *connp = (conn_t *)arg; 397 tcp_t *tcp = connp->conn_tcp; 398 int32_t firetime; 399 int32_t idletime; 400 int32_t ka_intrvl; 401 tcp_stack_t *tcps = tcp->tcp_tcps; 402 403 tcp->tcp_ka_tid = 0; 404 405 if (tcp->tcp_fused) 406 return; 407 408 TCPS_BUMP_MIB(tcps, tcpTimKeepalive); 409 ka_intrvl = tcp->tcp_ka_interval; 410 411 /* 412 * Keepalive probe should only be sent if the application has not 413 * done a close on the connection. 414 */ 415 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 416 return; 417 } 418 /* Timer fired too early, restart it. */ 419 if (tcp->tcp_state < TCPS_ESTABLISHED) { 420 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_timer, 421 MSEC_TO_TICK(ka_intrvl)); 422 return; 423 } 424 425 idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time); 426 /* 427 * If we have not heard from the other side for a long 428 * time, kill the connection unless the keepalive abort 429 * threshold is 0. In that case, we will probe "forever." 430 */ 431 if (tcp->tcp_ka_abort_thres != 0 && 432 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 433 TCPS_BUMP_MIB(tcps, tcpTimKeepaliveDrop); 434 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 435 tcp->tcp_client_errno : ETIMEDOUT); 436 return; 437 } 438 439 if (tcp->tcp_snxt == tcp->tcp_suna && 440 idletime >= ka_intrvl) { 441 /* Fake resend of last ACKed byte. */ 442 mblk_t *mp1 = allocb(1, BPRI_LO); 443 444 if (mp1 != NULL) { 445 *mp1->b_wptr++ = '\0'; 446 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 447 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 448 freeb(mp1); 449 /* 450 * if allocation failed, fall through to start the 451 * timer back. 452 */ 453 if (mp != NULL) { 454 tcp_send_data(tcp, mp); 455 TCPS_BUMP_MIB(tcps, tcpTimKeepaliveProbe); 456 if (tcp->tcp_ka_last_intrvl != 0) { 457 int max; 458 /* 459 * We should probe again at least 460 * in ka_intrvl, but not more than 461 * tcp_rexmit_interval_max. 462 */ 463 max = tcps->tcps_rexmit_interval_max; 464 firetime = MIN(ka_intrvl - 1, 465 tcp->tcp_ka_last_intrvl << 1); 466 if (firetime > max) 467 firetime = max; 468 } else { 469 firetime = tcp->tcp_rto; 470 } 471 tcp->tcp_ka_tid = TCP_TIMER(tcp, 472 tcp_keepalive_timer, 473 MSEC_TO_TICK(firetime)); 474 tcp->tcp_ka_last_intrvl = firetime; 475 return; 476 } 477 } 478 } else { 479 tcp->tcp_ka_last_intrvl = 0; 480 } 481 482 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 483 if ((firetime = ka_intrvl - idletime) < 0) { 484 firetime = ka_intrvl; 485 } 486 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_timer, 487 MSEC_TO_TICK(firetime)); 488 } 489 490 void 491 tcp_reass_timer(void *arg) 492 { 493 conn_t *connp = (conn_t *)arg; 494 tcp_t *tcp = connp->conn_tcp; 495 496 tcp->tcp_reass_tid = 0; 497 if (tcp->tcp_reass_head == NULL) 498 return; 499 ASSERT(tcp->tcp_reass_tail != NULL); 500 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 501 tcp_sack_remove(tcp->tcp_sack_list, 502 TCP_REASS_END(tcp->tcp_reass_tail), &tcp->tcp_num_sack_blk); 503 } 504 tcp_close_mpp(&tcp->tcp_reass_head); 505 tcp->tcp_reass_tail = NULL; 506 TCP_STAT(tcp->tcp_tcps, tcp_reass_timeout); 507 } 508 509 /* This function handles the push timeout. */ 510 void 511 tcp_push_timer(void *arg) 512 { 513 conn_t *connp = (conn_t *)arg; 514 tcp_t *tcp = connp->conn_tcp; 515 516 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 517 518 ASSERT(tcp->tcp_listener == NULL); 519 520 ASSERT(!IPCL_IS_NONSTR(connp)); 521 522 tcp->tcp_push_tid = 0; 523 524 if (tcp->tcp_rcv_list != NULL && 525 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 526 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 527 } 528 529 /* 530 * This function handles delayed ACK timeout. 531 */ 532 void 533 tcp_ack_timer(void *arg) 534 { 535 conn_t *connp = (conn_t *)arg; 536 tcp_t *tcp = connp->conn_tcp; 537 mblk_t *mp; 538 tcp_stack_t *tcps = tcp->tcp_tcps; 539 540 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 541 542 tcp->tcp_ack_tid = 0; 543 544 if (tcp->tcp_fused) 545 return; 546 547 /* 548 * Do not send ACK if there is no outstanding unack'ed data. 549 */ 550 if (tcp->tcp_rnxt == tcp->tcp_rack) { 551 return; 552 } 553 554 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 555 /* 556 * Make sure we don't allow deferred ACKs to result in 557 * timer-based ACKing. If we have held off an ACK 558 * when there was more than an mss here, and the timer 559 * goes off, we have to worry about the possibility 560 * that the sender isn't doing slow-start, or is out 561 * of step with us for some other reason. We fall 562 * permanently back in the direction of 563 * ACK-every-other-packet as suggested in RFC 1122. 564 */ 565 if (tcp->tcp_rack_abs_max > 2) 566 tcp->tcp_rack_abs_max--; 567 tcp->tcp_rack_cur_max = 2; 568 } 569 mp = tcp_ack_mp(tcp); 570 571 if (mp != NULL) { 572 BUMP_LOCAL(tcp->tcp_obsegs); 573 TCPS_BUMP_MIB(tcps, tcpOutAck); 574 TCPS_BUMP_MIB(tcps, tcpOutAckDelayed); 575 tcp_send_data(tcp, mp); 576 } 577 } 578 579 /* 580 * Notify IP that we are having trouble with this connection. IP should 581 * make note so it can potentially use a different IRE. 582 */ 583 static void 584 tcp_ip_notify(tcp_t *tcp) 585 { 586 conn_t *connp = tcp->tcp_connp; 587 ire_t *ire; 588 589 /* 590 * Note: in the case of source routing we want to blow away the 591 * route to the first source route hop. 592 */ 593 ire = connp->conn_ixa->ixa_ire; 594 if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 595 if (ire->ire_ipversion == IPV4_VERSION) { 596 /* 597 * As per RFC 1122, we send an RTM_LOSING to inform 598 * routing protocols. 599 */ 600 ip_rts_change(RTM_LOSING, ire->ire_addr, 601 ire->ire_gateway_addr, ire->ire_mask, 602 connp->conn_laddr_v4, 0, 0, 0, 603 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 604 ire->ire_ipst); 605 } 606 (void) ire_no_good(ire); 607 } 608 } 609 610 /* 611 * tcp_timer is the timer service routine. It handles the retransmission, 612 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 613 * from the state of the tcp instance what kind of action needs to be done 614 * at the time it is called. 615 */ 616 void 617 tcp_timer(void *arg) 618 { 619 mblk_t *mp; 620 clock_t first_threshold; 621 clock_t second_threshold; 622 clock_t ms; 623 uint32_t mss; 624 conn_t *connp = (conn_t *)arg; 625 tcp_t *tcp = connp->conn_tcp; 626 tcp_stack_t *tcps = tcp->tcp_tcps; 627 628 tcp->tcp_timer_tid = 0; 629 630 if (tcp->tcp_fused) 631 return; 632 633 first_threshold = tcp->tcp_first_timer_threshold; 634 second_threshold = tcp->tcp_second_timer_threshold; 635 switch (tcp->tcp_state) { 636 case TCPS_IDLE: 637 case TCPS_BOUND: 638 case TCPS_LISTEN: 639 return; 640 case TCPS_SYN_RCVD: { 641 tcp_t *listener = tcp->tcp_listener; 642 643 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 644 /* it's our first timeout */ 645 tcp->tcp_syn_rcvd_timeout = 1; 646 mutex_enter(&listener->tcp_eager_lock); 647 listener->tcp_syn_rcvd_timeout++; 648 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 649 /* 650 * Make this eager available for drop if we 651 * need to drop one to accomodate a new 652 * incoming SYN request. 653 */ 654 MAKE_DROPPABLE(listener, tcp); 655 } 656 if (!listener->tcp_syn_defense && 657 (listener->tcp_syn_rcvd_timeout > 658 (tcps->tcps_conn_req_max_q0 >> 2)) && 659 (tcps->tcps_conn_req_max_q0 > 200)) { 660 /* We may be under attack. Put on a defense. */ 661 listener->tcp_syn_defense = B_TRUE; 662 cmn_err(CE_WARN, "High TCP connect timeout " 663 "rate! System (port %d) may be under a " 664 "SYN flood attack!", 665 ntohs(listener->tcp_connp->conn_lport)); 666 667 listener->tcp_ip_addr_cache = kmem_zalloc( 668 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 669 KM_NOSLEEP); 670 } 671 mutex_exit(&listener->tcp_eager_lock); 672 } else if (listener != NULL) { 673 mutex_enter(&listener->tcp_eager_lock); 674 tcp->tcp_syn_rcvd_timeout++; 675 if (tcp->tcp_syn_rcvd_timeout > 1 && 676 !tcp->tcp_closemp_used) { 677 /* 678 * This is our second timeout. Put the tcp in 679 * the list of droppable eagers to allow it to 680 * be dropped, if needed. We don't check 681 * whether tcp_dontdrop is set or not to 682 * protect ourselve from a SYN attack where a 683 * remote host can spoof itself as one of the 684 * good IP source and continue to hold 685 * resources too long. 686 */ 687 MAKE_DROPPABLE(listener, tcp); 688 } 689 mutex_exit(&listener->tcp_eager_lock); 690 } 691 } 692 /* FALLTHRU */ 693 case TCPS_SYN_SENT: 694 first_threshold = tcp->tcp_first_ctimer_threshold; 695 second_threshold = tcp->tcp_second_ctimer_threshold; 696 break; 697 case TCPS_ESTABLISHED: 698 case TCPS_FIN_WAIT_1: 699 case TCPS_CLOSING: 700 case TCPS_CLOSE_WAIT: 701 case TCPS_LAST_ACK: 702 /* If we have data to rexmit */ 703 if (tcp->tcp_suna != tcp->tcp_snxt) { 704 clock_t time_to_wait; 705 706 TCPS_BUMP_MIB(tcps, tcpTimRetrans); 707 if (!tcp->tcp_xmit_head) 708 break; 709 time_to_wait = ddi_get_lbolt() - 710 (clock_t)tcp->tcp_xmit_head->b_prev; 711 time_to_wait = tcp->tcp_rto - 712 TICK_TO_MSEC(time_to_wait); 713 /* 714 * If the timer fires too early, 1 clock tick earlier, 715 * restart the timer. 716 */ 717 if (time_to_wait > msec_per_tick) { 718 TCP_STAT(tcps, tcp_timer_fire_early); 719 TCP_TIMER_RESTART(tcp, time_to_wait); 720 return; 721 } 722 /* 723 * When we probe zero windows, we force the swnd open. 724 * If our peer acks with a closed window swnd will be 725 * set to zero by tcp_rput(). As long as we are 726 * receiving acks tcp_rput will 727 * reset 'tcp_ms_we_have_waited' so as not to trip the 728 * first and second interval actions. NOTE: the timer 729 * interval is allowed to continue its exponential 730 * backoff. 731 */ 732 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 733 if (connp->conn_debug) { 734 (void) strlog(TCP_MOD_ID, 0, 1, 735 SL_TRACE, "tcp_timer: zero win"); 736 } 737 } else { 738 /* 739 * After retransmission, we need to do 740 * slow start. Set the ssthresh to one 741 * half of current effective window and 742 * cwnd to one MSS. Also reset 743 * tcp_cwnd_cnt. 744 * 745 * Note that if tcp_ssthresh is reduced because 746 * of ECN, do not reduce it again unless it is 747 * already one window of data away (tcp_cwr 748 * should then be cleared) or this is a 749 * timeout for a retransmitted segment. 750 */ 751 uint32_t npkt; 752 753 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 754 npkt = ((tcp->tcp_timer_backoff ? 755 tcp->tcp_cwnd_ssthresh : 756 tcp->tcp_snxt - 757 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 758 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 759 tcp->tcp_mss; 760 } 761 tcp->tcp_cwnd = tcp->tcp_mss; 762 tcp->tcp_cwnd_cnt = 0; 763 if (tcp->tcp_ecn_ok) { 764 tcp->tcp_cwr = B_TRUE; 765 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 766 tcp->tcp_ecn_cwr_sent = B_FALSE; 767 } 768 } 769 break; 770 } 771 /* 772 * We have something to send yet we cannot send. The 773 * reason can be: 774 * 775 * 1. Zero send window: we need to do zero window probe. 776 * 2. Zero cwnd: because of ECN, we need to "clock out 777 * segments. 778 * 3. SWS avoidance: receiver may have shrunk window, 779 * reset our knowledge. 780 * 781 * Note that condition 2 can happen with either 1 or 782 * 3. But 1 and 3 are exclusive. 783 */ 784 if (tcp->tcp_unsent != 0) { 785 /* 786 * Should not hold the zero-copy messages for too long. 787 */ 788 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 789 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 790 tcp->tcp_xmit_head, B_TRUE); 791 792 if (tcp->tcp_cwnd == 0) { 793 /* 794 * Set tcp_cwnd to 1 MSS so that a 795 * new segment can be sent out. We 796 * are "clocking out" new data when 797 * the network is really congested. 798 */ 799 ASSERT(tcp->tcp_ecn_ok); 800 tcp->tcp_cwnd = tcp->tcp_mss; 801 } 802 if (tcp->tcp_swnd == 0) { 803 /* Extend window for zero window probe */ 804 tcp->tcp_swnd++; 805 tcp->tcp_zero_win_probe = B_TRUE; 806 TCPS_BUMP_MIB(tcps, tcpOutWinProbe); 807 } else { 808 /* 809 * Handle timeout from sender SWS avoidance. 810 * Reset our knowledge of the max send window 811 * since the receiver might have reduced its 812 * receive buffer. Avoid setting tcp_max_swnd 813 * to one since that will essentially disable 814 * the SWS checks. 815 * 816 * Note that since we don't have a SWS 817 * state variable, if the timeout is set 818 * for ECN but not for SWS, this 819 * code will also be executed. This is 820 * fine as tcp_max_swnd is updated 821 * constantly and it will not affect 822 * anything. 823 */ 824 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 825 } 826 tcp_wput_data(tcp, NULL, B_FALSE); 827 return; 828 } 829 /* Is there a FIN that needs to be to re retransmitted? */ 830 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 831 !tcp->tcp_fin_acked) 832 break; 833 /* Nothing to do, return without restarting timer. */ 834 TCP_STAT(tcps, tcp_timer_fire_miss); 835 return; 836 case TCPS_FIN_WAIT_2: 837 /* 838 * User closed the TCP endpoint and peer ACK'ed our FIN. 839 * We waited some time for for peer's FIN, but it hasn't 840 * arrived. We flush the connection now to avoid 841 * case where the peer has rebooted. 842 */ 843 if (TCP_IS_DETACHED(tcp)) { 844 (void) tcp_clean_death(tcp, 0); 845 } else { 846 TCP_TIMER_RESTART(tcp, 847 tcps->tcps_fin_wait_2_flush_interval); 848 } 849 return; 850 case TCPS_TIME_WAIT: 851 (void) tcp_clean_death(tcp, 0); 852 return; 853 default: 854 if (connp->conn_debug) { 855 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 856 "tcp_timer: strange state (%d) %s", 857 tcp->tcp_state, tcp_display(tcp, NULL, 858 DISP_PORT_ONLY)); 859 } 860 return; 861 } 862 863 /* 864 * If the system is under memory pressure or the max number of 865 * connections have been established for the listener, be more 866 * aggressive in aborting connections. 867 */ 868 if (tcps->tcps_reclaim || (tcp->tcp_listen_cnt != NULL && 869 tcp->tcp_listen_cnt->tlc_cnt > tcp->tcp_listen_cnt->tlc_max)) { 870 second_threshold = tcp_early_abort * SECONDS; 871 } 872 873 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 874 /* 875 * Should not hold the zero-copy messages for too long. 876 */ 877 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 878 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 879 tcp->tcp_xmit_head, B_TRUE); 880 881 /* 882 * For zero window probe, we need to send indefinitely, 883 * unless we have not heard from the other side for some 884 * time... 885 */ 886 if ((tcp->tcp_zero_win_probe == 0) || 887 (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) > 888 second_threshold)) { 889 TCPS_BUMP_MIB(tcps, tcpTimRetransDrop); 890 /* 891 * If TCP is in SYN_RCVD state, send back a 892 * RST|ACK as BSD does. Note that tcp_zero_win_probe 893 * should be zero in TCPS_SYN_RCVD state. 894 */ 895 if (tcp->tcp_state == TCPS_SYN_RCVD) { 896 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 897 "in SYN_RCVD", 898 tcp, tcp->tcp_snxt, 899 tcp->tcp_rnxt, TH_RST | TH_ACK); 900 } 901 (void) tcp_clean_death(tcp, 902 tcp->tcp_client_errno ? 903 tcp->tcp_client_errno : ETIMEDOUT); 904 return; 905 } else { 906 /* 907 * If the system is under memory pressure, we also 908 * abort connection in zero window probing. 909 */ 910 if (tcps->tcps_reclaim) { 911 (void) tcp_clean_death(tcp, 912 tcp->tcp_client_errno ? 913 tcp->tcp_client_errno : ETIMEDOUT); 914 TCP_STAT(tcps, tcp_zwin_mem_drop); 915 return; 916 } 917 /* 918 * Set tcp_ms_we_have_waited to second_threshold 919 * so that in next timeout, we will do the above 920 * check (ddi_get_lbolt() - tcp_last_recv_time). 921 * This is also to avoid overflow. 922 * 923 * We don't need to decrement tcp_timer_backoff 924 * to avoid overflow because it will be decremented 925 * later if new timeout value is greater than 926 * tcp_rexmit_interval_max. In the case when 927 * tcp_rexmit_interval_max is greater than 928 * second_threshold, it means that we will wait 929 * longer than second_threshold to send the next 930 * window probe. 931 */ 932 tcp->tcp_ms_we_have_waited = second_threshold; 933 } 934 } else if (ms > first_threshold) { 935 /* 936 * Should not hold the zero-copy messages for too long. 937 */ 938 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 939 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 940 tcp->tcp_xmit_head, B_TRUE); 941 942 /* 943 * We have been retransmitting for too long... The RTT 944 * we calculated is probably incorrect. Reinitialize it. 945 * Need to compensate for 0 tcp_rtt_sa. Reset 946 * tcp_rtt_update so that we won't accidentally cache a 947 * bad value. But only do this if this is not a zero 948 * window probe. 949 */ 950 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 951 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 952 (tcp->tcp_rtt_sa >> 5); 953 tcp->tcp_rtt_sa = 0; 954 tcp_ip_notify(tcp); 955 tcp->tcp_rtt_update = 0; 956 } 957 } 958 tcp->tcp_timer_backoff++; 959 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 960 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 961 tcps->tcps_rexmit_interval_min) { 962 /* 963 * This means the original RTO is tcp_rexmit_interval_min. 964 * So we will use tcp_rexmit_interval_min as the RTO value 965 * and do the backoff. 966 */ 967 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 968 } else { 969 ms <<= tcp->tcp_timer_backoff; 970 } 971 if (ms > tcps->tcps_rexmit_interval_max) { 972 ms = tcps->tcps_rexmit_interval_max; 973 /* 974 * ms is at max, decrement tcp_timer_backoff to avoid 975 * overflow. 976 */ 977 tcp->tcp_timer_backoff--; 978 } 979 tcp->tcp_ms_we_have_waited += ms; 980 if (tcp->tcp_zero_win_probe == 0) { 981 tcp->tcp_rto = ms; 982 } 983 TCP_TIMER_RESTART(tcp, ms); 984 /* 985 * This is after a timeout and tcp_rto is backed off. Set 986 * tcp_set_timer to 1 so that next time RTO is updated, we will 987 * restart the timer with a correct value. 988 */ 989 tcp->tcp_set_timer = 1; 990 mss = tcp->tcp_snxt - tcp->tcp_suna; 991 if (mss > tcp->tcp_mss) 992 mss = tcp->tcp_mss; 993 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 994 mss = tcp->tcp_swnd; 995 996 if ((mp = tcp->tcp_xmit_head) != NULL) 997 mp->b_prev = (mblk_t *)ddi_get_lbolt(); 998 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 999 B_TRUE); 1000 1001 /* 1002 * When slow start after retransmission begins, start with 1003 * this seq no. tcp_rexmit_max marks the end of special slow 1004 * start phase. tcp_snd_burst controls how many segments 1005 * can be sent because of an ack. 1006 */ 1007 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 1008 tcp->tcp_snd_burst = TCP_CWND_SS; 1009 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 1010 (tcp->tcp_unsent == 0)) { 1011 tcp->tcp_rexmit_max = tcp->tcp_fss; 1012 } else { 1013 tcp->tcp_rexmit_max = tcp->tcp_snxt; 1014 } 1015 tcp->tcp_rexmit = B_TRUE; 1016 tcp->tcp_dupack_cnt = 0; 1017 1018 /* 1019 * Remove all rexmit SACK blk to start from fresh. 1020 */ 1021 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 1022 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1023 if (mp == NULL) { 1024 return; 1025 } 1026 1027 tcp->tcp_csuna = tcp->tcp_snxt; 1028 TCPS_BUMP_MIB(tcps, tcpRetransSegs); 1029 TCPS_UPDATE_MIB(tcps, tcpRetransBytes, mss); 1030 tcp_send_data(tcp, mp); 1031 1032 } 1033 1034 /* 1035 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 1036 * expires. 1037 */ 1038 void 1039 tcp_close_linger_timeout(void *arg) 1040 { 1041 conn_t *connp = (conn_t *)arg; 1042 tcp_t *tcp = connp->conn_tcp; 1043 1044 tcp->tcp_client_errno = ETIMEDOUT; 1045 tcp_stop_lingering(tcp); 1046 } 1047