1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* This file contains all TCP input processing functions. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/suntpi.h> 37 #include <sys/xti_inet.h> 38 #include <sys/squeue_impl.h> 39 #include <sys/squeue.h> 40 #include <sys/tsol/tnet.h> 41 42 #include <inet/common.h> 43 #include <inet/ip.h> 44 #include <inet/tcp.h> 45 #include <inet/tcp_impl.h> 46 #include <inet/tcp_cluster.h> 47 #include <inet/proto_set.h> 48 #include <inet/ipsec_impl.h> 49 50 /* 51 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 52 */ 53 54 #ifdef _BIG_ENDIAN 55 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 56 (TCPOPT_TSTAMP << 8) | 10) 57 #else 58 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 59 (TCPOPT_NOP << 8) | TCPOPT_NOP) 60 #endif 61 62 /* 63 * Flags returned from tcp_parse_options. 64 */ 65 #define TCP_OPT_MSS_PRESENT 1 66 #define TCP_OPT_WSCALE_PRESENT 2 67 #define TCP_OPT_TSTAMP_PRESENT 4 68 #define TCP_OPT_SACK_OK_PRESENT 8 69 #define TCP_OPT_SACK_PRESENT 16 70 71 /* 72 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 73 */ 74 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 75 76 /* 77 * Since tcp_listener is not cleared atomically with tcp_detached 78 * being cleared we need this extra bit to tell a detached connection 79 * apart from one that is in the process of being accepted. 80 */ 81 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 82 (TCP_IS_DETACHED(tcp) && \ 83 (!(tcp)->tcp_hard_binding)) 84 85 /* 86 * Steps to do when a tcp_t moves to TIME-WAIT state. 87 * 88 * This connection is done, we don't need to account for it. Decrement 89 * the listener connection counter if needed. 90 * 91 * Decrement the connection counter of the stack. Note that this counter 92 * is per CPU. So the total number of connections in a stack is the sum of all 93 * of them. Since there is no lock for handling all of them exclusively, the 94 * resulting sum is only an approximation. 95 * 96 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 97 * connection won't interfere with new ones. 98 * 99 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 100 * the timer is handled within the context of this tcp_t. When the timer 101 * fires, tcp_clean_death() is called. If upper layer closes the connection 102 * during this period, tcp_time_wait_append() will be called to add this 103 * tcp_t to the global TIME-WAIT list. Note that this means that the 104 * actual wait time in TIME-WAIT state will be longer than the 105 * tcps_time_wait_interval since the period before upper layer closes the 106 * connection is not accounted for when tcp_time_wait_append() is called. 107 * 108 * If uppser layer has closed the connection, call tcp_time_wait_append() 109 * directly. 110 * 111 */ 112 #define SET_TIME_WAIT(tcps, tcp, connp) \ 113 { \ 114 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 115 if ((tcp)->tcp_listen_cnt != NULL) \ 116 TCP_DECR_LISTEN_CNT(tcp); \ 117 atomic_dec_64( \ 118 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \ 119 (connp)->conn_exclbind = 0; \ 120 if (!TCP_IS_DETACHED(tcp)) { \ 121 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 122 } else { \ 123 tcp_time_wait_append(tcp); \ 124 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 125 } \ 126 } 127 128 /* 129 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 130 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 131 * data, TCP will not respond with an ACK. RFC 793 requires that 132 * TCP responds with an ACK for such a bogus ACK. By not following 133 * the RFC, we prevent TCP from getting into an ACK storm if somehow 134 * an attacker successfully spoofs an acceptable segment to our 135 * peer; or when our peer is "confused." 136 */ 137 static uint32_t tcp_drop_ack_unsent_cnt = 10; 138 139 /* 140 * The shift factor applied to tcp_mss to decide if the peer sends us a 141 * valid initial receive window. By default, if the peer receive window 142 * is smaller than 1 MSS (shift factor is 0), it is considered as invalid. 143 */ 144 static uint32_t tcp_init_wnd_shft = 0; 145 146 /* Process ICMP source quench message or not. */ 147 static boolean_t tcp_icmp_source_quench = B_FALSE; 148 149 static boolean_t tcp_outbound_squeue_switch = B_FALSE; 150 151 static mblk_t *tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *, 152 ip_recv_attr_t *); 153 static mblk_t *tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *, 154 ip_recv_attr_t *); 155 static boolean_t tcp_drop_q0(tcp_t *); 156 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 157 static mblk_t *tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *, 158 ip_recv_attr_t *); 159 static void tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *); 160 static int tcp_parse_options(tcpha_t *, tcp_opt_t *); 161 static void tcp_process_options(tcp_t *, tcpha_t *); 162 static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t); 163 static void tcp_reass_elim_overlap(tcp_t *, mblk_t *); 164 static void tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *); 165 static void tcp_set_rto(tcp_t *, time_t); 166 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 167 168 extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); 169 170 /* 171 * Set the MSS associated with a particular tcp based on its current value, 172 * and a new one passed in. Observe minimums and maximums, and reset other 173 * state variables that we want to view as multiples of MSS. 174 * 175 * The value of MSS could be either increased or descreased. 176 */ 177 void 178 tcp_mss_set(tcp_t *tcp, uint32_t mss) 179 { 180 uint32_t mss_max; 181 tcp_stack_t *tcps = tcp->tcp_tcps; 182 conn_t *connp = tcp->tcp_connp; 183 184 if (connp->conn_ipversion == IPV4_VERSION) 185 mss_max = tcps->tcps_mss_max_ipv4; 186 else 187 mss_max = tcps->tcps_mss_max_ipv6; 188 189 if (mss < tcps->tcps_mss_min) 190 mss = tcps->tcps_mss_min; 191 if (mss > mss_max) 192 mss = mss_max; 193 /* 194 * Unless naglim has been set by our client to 195 * a non-mss value, force naglim to track mss. 196 * This can help to aggregate small writes. 197 */ 198 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 199 tcp->tcp_naglim = mss; 200 /* 201 * TCP should be able to buffer at least 4 MSS data for obvious 202 * performance reason. 203 */ 204 if ((mss << 2) > connp->conn_sndbuf) 205 connp->conn_sndbuf = mss << 2; 206 207 /* 208 * Set the send lowater to at least twice of MSS. 209 */ 210 if ((mss << 1) > connp->conn_sndlowat) 211 connp->conn_sndlowat = mss << 1; 212 213 /* 214 * Update tcp_cwnd according to the new value of MSS. Keep the 215 * previous ratio to preserve the transmit rate. 216 */ 217 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 218 tcp->tcp_cwnd_cnt = 0; 219 220 tcp->tcp_mss = mss; 221 (void) tcp_maxpsz_set(tcp, B_TRUE); 222 } 223 224 /* 225 * Extract option values from a tcp header. We put any found values into the 226 * tcpopt struct and return a bitmask saying which options were found. 227 */ 228 static int 229 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 230 { 231 uchar_t *endp; 232 int len; 233 uint32_t mss; 234 uchar_t *up = (uchar_t *)tcpha; 235 int found = 0; 236 int32_t sack_len; 237 tcp_seq sack_begin, sack_end; 238 tcp_t *tcp; 239 240 endp = up + TCP_HDR_LENGTH(tcpha); 241 up += TCP_MIN_HEADER_LENGTH; 242 while (up < endp) { 243 len = endp - up; 244 switch (*up) { 245 case TCPOPT_EOL: 246 break; 247 248 case TCPOPT_NOP: 249 up++; 250 continue; 251 252 case TCPOPT_MAXSEG: 253 if (len < TCPOPT_MAXSEG_LEN || 254 up[1] != TCPOPT_MAXSEG_LEN) 255 break; 256 257 mss = BE16_TO_U16(up+2); 258 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 259 tcpopt->tcp_opt_mss = mss; 260 found |= TCP_OPT_MSS_PRESENT; 261 262 up += TCPOPT_MAXSEG_LEN; 263 continue; 264 265 case TCPOPT_WSCALE: 266 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 267 break; 268 269 if (up[2] > TCP_MAX_WINSHIFT) 270 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 271 else 272 tcpopt->tcp_opt_wscale = up[2]; 273 found |= TCP_OPT_WSCALE_PRESENT; 274 275 up += TCPOPT_WS_LEN; 276 continue; 277 278 case TCPOPT_SACK_PERMITTED: 279 if (len < TCPOPT_SACK_OK_LEN || 280 up[1] != TCPOPT_SACK_OK_LEN) 281 break; 282 found |= TCP_OPT_SACK_OK_PRESENT; 283 up += TCPOPT_SACK_OK_LEN; 284 continue; 285 286 case TCPOPT_SACK: 287 if (len <= 2 || up[1] <= 2 || len < up[1]) 288 break; 289 290 /* If TCP is not interested in SACK blks... */ 291 if ((tcp = tcpopt->tcp) == NULL) { 292 up += up[1]; 293 continue; 294 } 295 sack_len = up[1] - TCPOPT_HEADER_LEN; 296 up += TCPOPT_HEADER_LEN; 297 298 /* 299 * If the list is empty, allocate one and assume 300 * nothing is sack'ed. 301 */ 302 if (tcp->tcp_notsack_list == NULL) { 303 tcp_notsack_update(&(tcp->tcp_notsack_list), 304 tcp->tcp_suna, tcp->tcp_snxt, 305 &(tcp->tcp_num_notsack_blk), 306 &(tcp->tcp_cnt_notsack_list)); 307 308 /* 309 * Make sure tcp_notsack_list is not NULL. 310 * This happens when kmem_alloc(KM_NOSLEEP) 311 * returns NULL. 312 */ 313 if (tcp->tcp_notsack_list == NULL) { 314 up += sack_len; 315 continue; 316 } 317 tcp->tcp_fack = tcp->tcp_suna; 318 } 319 320 while (sack_len > 0) { 321 if (up + 8 > endp) { 322 up = endp; 323 break; 324 } 325 sack_begin = BE32_TO_U32(up); 326 up += 4; 327 sack_end = BE32_TO_U32(up); 328 up += 4; 329 sack_len -= 8; 330 /* 331 * Bounds checking. Make sure the SACK 332 * info is within tcp_suna and tcp_snxt. 333 * If this SACK blk is out of bound, ignore 334 * it but continue to parse the following 335 * blks. 336 */ 337 if (SEQ_LEQ(sack_end, sack_begin) || 338 SEQ_LT(sack_begin, tcp->tcp_suna) || 339 SEQ_GT(sack_end, tcp->tcp_snxt)) { 340 continue; 341 } 342 tcp_notsack_insert(&(tcp->tcp_notsack_list), 343 sack_begin, sack_end, 344 &(tcp->tcp_num_notsack_blk), 345 &(tcp->tcp_cnt_notsack_list)); 346 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 347 tcp->tcp_fack = sack_end; 348 } 349 } 350 found |= TCP_OPT_SACK_PRESENT; 351 continue; 352 353 case TCPOPT_TSTAMP: 354 if (len < TCPOPT_TSTAMP_LEN || 355 up[1] != TCPOPT_TSTAMP_LEN) 356 break; 357 358 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 359 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 360 361 found |= TCP_OPT_TSTAMP_PRESENT; 362 363 up += TCPOPT_TSTAMP_LEN; 364 continue; 365 366 default: 367 if (len <= 1 || len < (int)up[1] || up[1] == 0) 368 break; 369 up += up[1]; 370 continue; 371 } 372 break; 373 } 374 return (found); 375 } 376 377 /* 378 * Process all TCP option in SYN segment. Note that this function should 379 * be called after tcp_set_destination() is called so that the necessary info 380 * from IRE is already set in the tcp structure. 381 * 382 * This function sets up the correct tcp_mss value according to the 383 * MSS option value and our header size. It also sets up the window scale 384 * and timestamp values, and initialize SACK info blocks. But it does not 385 * change receive window size after setting the tcp_mss value. The caller 386 * should do the appropriate change. 387 */ 388 static void 389 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 390 { 391 int options; 392 tcp_opt_t tcpopt; 393 uint32_t mss_max; 394 char *tmp_tcph; 395 tcp_stack_t *tcps = tcp->tcp_tcps; 396 conn_t *connp = tcp->tcp_connp; 397 398 tcpopt.tcp = NULL; 399 options = tcp_parse_options(tcpha, &tcpopt); 400 401 /* 402 * Process MSS option. Note that MSS option value does not account 403 * for IP or TCP options. This means that it is equal to MTU - minimum 404 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 405 * IPv6. 406 */ 407 if (!(options & TCP_OPT_MSS_PRESENT)) { 408 if (connp->conn_ipversion == IPV4_VERSION) 409 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 410 else 411 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 412 } else { 413 if (connp->conn_ipversion == IPV4_VERSION) 414 mss_max = tcps->tcps_mss_max_ipv4; 415 else 416 mss_max = tcps->tcps_mss_max_ipv6; 417 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 418 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 419 else if (tcpopt.tcp_opt_mss > mss_max) 420 tcpopt.tcp_opt_mss = mss_max; 421 } 422 423 /* Process Window Scale option. */ 424 if (options & TCP_OPT_WSCALE_PRESENT) { 425 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 426 tcp->tcp_snd_ws_ok = B_TRUE; 427 } else { 428 tcp->tcp_snd_ws = B_FALSE; 429 tcp->tcp_snd_ws_ok = B_FALSE; 430 tcp->tcp_rcv_ws = B_FALSE; 431 } 432 433 /* Process Timestamp option. */ 434 if ((options & TCP_OPT_TSTAMP_PRESENT) && 435 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 436 tmp_tcph = (char *)tcp->tcp_tcpha; 437 438 tcp->tcp_snd_ts_ok = B_TRUE; 439 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 440 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 441 ASSERT(OK_32PTR(tmp_tcph)); 442 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 443 444 /* Fill in our template header with basic timestamp option. */ 445 tmp_tcph += connp->conn_ht_ulp_len; 446 tmp_tcph[0] = TCPOPT_NOP; 447 tmp_tcph[1] = TCPOPT_NOP; 448 tmp_tcph[2] = TCPOPT_TSTAMP; 449 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 450 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 451 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 452 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 453 } else { 454 tcp->tcp_snd_ts_ok = B_FALSE; 455 } 456 457 /* 458 * Process SACK options. If SACK is enabled for this connection, 459 * then allocate the SACK info structure. Note the following ways 460 * when tcp_snd_sack_ok is set to true. 461 * 462 * For active connection: in tcp_set_destination() called in 463 * tcp_connect(). 464 * 465 * For passive connection: in tcp_set_destination() called in 466 * tcp_input_listener(). 467 * 468 * That's the reason why the extra TCP_IS_DETACHED() check is there. 469 * That check makes sure that if we did not send a SACK OK option, 470 * we will not enable SACK for this connection even though the other 471 * side sends us SACK OK option. For active connection, the SACK 472 * info structure has already been allocated. So we need to free 473 * it if SACK is disabled. 474 */ 475 if ((options & TCP_OPT_SACK_OK_PRESENT) && 476 (tcp->tcp_snd_sack_ok || 477 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 478 ASSERT(tcp->tcp_num_sack_blk == 0); 479 ASSERT(tcp->tcp_notsack_list == NULL); 480 481 tcp->tcp_snd_sack_ok = B_TRUE; 482 if (tcp->tcp_snd_ts_ok) { 483 tcp->tcp_max_sack_blk = 3; 484 } else { 485 tcp->tcp_max_sack_blk = 4; 486 } 487 } else if (tcp->tcp_snd_sack_ok) { 488 /* 489 * Resetting tcp_snd_sack_ok to B_FALSE so that 490 * no SACK info will be used for this 491 * connection. This assumes that SACK usage 492 * permission is negotiated. This may need 493 * to be changed once this is clarified. 494 */ 495 ASSERT(tcp->tcp_num_sack_blk == 0); 496 ASSERT(tcp->tcp_notsack_list == NULL); 497 tcp->tcp_snd_sack_ok = B_FALSE; 498 } 499 500 /* 501 * Now we know the exact TCP/IP header length, subtract 502 * that from tcp_mss to get our side's MSS. 503 */ 504 tcp->tcp_mss -= connp->conn_ht_iphc_len; 505 506 /* 507 * Here we assume that the other side's header size will be equal to 508 * our header size. We calculate the real MSS accordingly. Need to 509 * take into additional stuffs IPsec puts in. 510 * 511 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 512 */ 513 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 514 tcp->tcp_ipsec_overhead - 515 ((connp->conn_ipversion == IPV4_VERSION ? 516 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 517 518 /* 519 * Set MSS to the smaller one of both ends of the connection. 520 * We should not have called tcp_mss_set() before, but our 521 * side of the MSS should have been set to a proper value 522 * by tcp_set_destination(). tcp_mss_set() will also set up the 523 * STREAM head parameters properly. 524 * 525 * If we have a larger-than-16-bit window but the other side 526 * didn't want to do window scale, tcp_rwnd_set() will take 527 * care of that. 528 */ 529 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 530 531 /* 532 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 533 * updated properly. 534 */ 535 TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 536 } 537 538 /* 539 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 540 * is filled, return as much as we can. The message passed in may be 541 * multi-part, chained using b_cont. "start" is the starting sequence 542 * number for this piece. 543 */ 544 static mblk_t * 545 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 546 { 547 uint32_t end; 548 mblk_t *mp1; 549 mblk_t *mp2; 550 mblk_t *next_mp; 551 uint32_t u1; 552 tcp_stack_t *tcps = tcp->tcp_tcps; 553 554 555 /* Walk through all the new pieces. */ 556 do { 557 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 558 (uintptr_t)INT_MAX); 559 end = start + (int)(mp->b_wptr - mp->b_rptr); 560 next_mp = mp->b_cont; 561 if (start == end) { 562 /* Empty. Blast it. */ 563 freeb(mp); 564 continue; 565 } 566 mp->b_cont = NULL; 567 TCP_REASS_SET_SEQ(mp, start); 568 TCP_REASS_SET_END(mp, end); 569 mp1 = tcp->tcp_reass_tail; 570 if (!mp1) { 571 tcp->tcp_reass_tail = mp; 572 tcp->tcp_reass_head = mp; 573 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 574 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, 575 end - start); 576 continue; 577 } 578 /* New stuff completely beyond tail? */ 579 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 580 /* Link it on end. */ 581 mp1->b_cont = mp; 582 tcp->tcp_reass_tail = mp; 583 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 584 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, 585 end - start); 586 continue; 587 } 588 mp1 = tcp->tcp_reass_head; 589 u1 = TCP_REASS_SEQ(mp1); 590 /* New stuff at the front? */ 591 if (SEQ_LT(start, u1)) { 592 /* Yes... Check for overlap. */ 593 mp->b_cont = mp1; 594 tcp->tcp_reass_head = mp; 595 tcp_reass_elim_overlap(tcp, mp); 596 continue; 597 } 598 /* 599 * The new piece fits somewhere between the head and tail. 600 * We find our slot, where mp1 precedes us and mp2 trails. 601 */ 602 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 603 u1 = TCP_REASS_SEQ(mp2); 604 if (SEQ_LEQ(start, u1)) 605 break; 606 } 607 /* Link ourselves in */ 608 mp->b_cont = mp2; 609 mp1->b_cont = mp; 610 611 /* Trim overlap with following mblk(s) first */ 612 tcp_reass_elim_overlap(tcp, mp); 613 614 /* Trim overlap with preceding mblk */ 615 tcp_reass_elim_overlap(tcp, mp1); 616 617 } while (start = end, mp = next_mp); 618 mp1 = tcp->tcp_reass_head; 619 /* Anything ready to go? */ 620 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 621 return (NULL); 622 /* Eat what we can off the queue */ 623 for (;;) { 624 mp = mp1->b_cont; 625 end = TCP_REASS_END(mp1); 626 TCP_REASS_SET_SEQ(mp1, 0); 627 TCP_REASS_SET_END(mp1, 0); 628 if (!mp) { 629 tcp->tcp_reass_tail = NULL; 630 break; 631 } 632 if (end != TCP_REASS_SEQ(mp)) { 633 mp1->b_cont = NULL; 634 break; 635 } 636 mp1 = mp; 637 } 638 mp1 = tcp->tcp_reass_head; 639 tcp->tcp_reass_head = mp; 640 return (mp1); 641 } 642 643 /* Eliminate any overlap that mp may have over later mblks */ 644 static void 645 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 646 { 647 uint32_t end; 648 mblk_t *mp1; 649 uint32_t u1; 650 tcp_stack_t *tcps = tcp->tcp_tcps; 651 652 end = TCP_REASS_END(mp); 653 while ((mp1 = mp->b_cont) != NULL) { 654 u1 = TCP_REASS_SEQ(mp1); 655 if (!SEQ_GT(end, u1)) 656 break; 657 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 658 mp->b_wptr -= end - u1; 659 TCP_REASS_SET_END(mp, u1); 660 TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs); 661 TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes, 662 end - u1); 663 break; 664 } 665 mp->b_cont = mp1->b_cont; 666 TCP_REASS_SET_SEQ(mp1, 0); 667 TCP_REASS_SET_END(mp1, 0); 668 freeb(mp1); 669 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 670 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1); 671 } 672 if (!mp1) 673 tcp->tcp_reass_tail = mp; 674 } 675 676 /* 677 * This function does PAWS protection check. Returns B_TRUE if the 678 * segment passes the PAWS test, else returns B_FALSE. 679 */ 680 boolean_t 681 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 682 { 683 uint8_t flags; 684 int options; 685 uint8_t *up; 686 conn_t *connp = tcp->tcp_connp; 687 688 flags = (unsigned int)tcpha->tha_flags & 0xFF; 689 /* 690 * If timestamp option is aligned nicely, get values inline, 691 * otherwise call general routine to parse. Only do that 692 * if timestamp is the only option. 693 */ 694 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 695 TCPOPT_REAL_TS_LEN && 696 OK_32PTR((up = ((uint8_t *)tcpha) + 697 TCP_MIN_HEADER_LENGTH)) && 698 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 699 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 700 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 701 702 options = TCP_OPT_TSTAMP_PRESENT; 703 } else { 704 if (tcp->tcp_snd_sack_ok) { 705 tcpoptp->tcp = tcp; 706 } else { 707 tcpoptp->tcp = NULL; 708 } 709 options = tcp_parse_options(tcpha, tcpoptp); 710 } 711 712 if (options & TCP_OPT_TSTAMP_PRESENT) { 713 /* 714 * Do PAWS per RFC 1323 section 4.2. Accept RST 715 * regardless of the timestamp, page 18 RFC 1323.bis. 716 */ 717 if ((flags & TH_RST) == 0 && 718 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 719 tcp->tcp_ts_recent)) { 720 if (TSTMP_LT(LBOLT_FASTPATH64, 721 tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 722 /* This segment is not acceptable. */ 723 return (B_FALSE); 724 } else { 725 /* 726 * Connection has been idle for 727 * too long. Reset the timestamp 728 * and assume the segment is valid. 729 */ 730 tcp->tcp_ts_recent = 731 tcpoptp->tcp_opt_ts_val; 732 } 733 } 734 } else { 735 /* 736 * If we don't get a timestamp on every packet, we 737 * figure we can't really trust 'em, so we stop sending 738 * and parsing them. 739 */ 740 tcp->tcp_snd_ts_ok = B_FALSE; 741 742 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 743 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 744 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 745 /* 746 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 747 * doing a slow start here so as to not to lose on the 748 * transfer rate built up so far. 749 */ 750 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 751 if (tcp->tcp_snd_sack_ok) 752 tcp->tcp_max_sack_blk = 4; 753 } 754 return (B_TRUE); 755 } 756 757 /* 758 * Defense for the SYN attack - 759 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 760 * one from the list of droppable eagers. This list is a subset of q0. 761 * see comments before the definition of MAKE_DROPPABLE(). 762 * 2. Don't drop a SYN request before its first timeout. This gives every 763 * request at least til the first timeout to complete its 3-way handshake. 764 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 765 * requests currently on the queue that has timed out. This will be used 766 * as an indicator of whether an attack is under way, so that appropriate 767 * actions can be taken. (It's incremented in tcp_timer() and decremented 768 * either when eager goes into ESTABLISHED, or gets freed up.) 769 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 770 * # of timeout drops back to <= q0len/32 => SYN alert off 771 */ 772 static boolean_t 773 tcp_drop_q0(tcp_t *tcp) 774 { 775 tcp_t *eager; 776 mblk_t *mp; 777 tcp_stack_t *tcps = tcp->tcp_tcps; 778 779 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 780 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 781 782 /* Pick oldest eager from the list of droppable eagers */ 783 eager = tcp->tcp_eager_prev_drop_q0; 784 785 /* If list is empty. return B_FALSE */ 786 if (eager == tcp) { 787 return (B_FALSE); 788 } 789 790 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 791 if ((mp = allocb(0, BPRI_HI)) == NULL) 792 return (B_FALSE); 793 794 /* 795 * Take this eager out from the list of droppable eagers since we are 796 * going to drop it. 797 */ 798 MAKE_UNDROPPABLE(eager); 799 800 if (tcp->tcp_connp->conn_debug) { 801 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 802 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 803 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 804 tcp->tcp_conn_req_cnt_q0, 805 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 806 } 807 808 TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop); 809 810 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 811 CONN_INC_REF(eager->tcp_connp); 812 813 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 814 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 815 SQ_FILL, SQTAG_TCP_DROP_Q0); 816 817 return (B_TRUE); 818 } 819 820 /* 821 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 822 */ 823 static mblk_t * 824 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 825 ip_recv_attr_t *ira) 826 { 827 tcp_t *ltcp = lconnp->conn_tcp; 828 tcp_t *tcp = connp->conn_tcp; 829 mblk_t *tpi_mp; 830 ipha_t *ipha; 831 ip6_t *ip6h; 832 sin6_t sin6; 833 uint_t ifindex = ira->ira_ruifindex; 834 tcp_stack_t *tcps = tcp->tcp_tcps; 835 836 if (ira->ira_flags & IRAF_IS_IPV4) { 837 ipha = (ipha_t *)mp->b_rptr; 838 839 connp->conn_ipversion = IPV4_VERSION; 840 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 841 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 842 connp->conn_saddr_v6 = connp->conn_laddr_v6; 843 844 sin6 = sin6_null; 845 sin6.sin6_addr = connp->conn_faddr_v6; 846 sin6.sin6_port = connp->conn_fport; 847 sin6.sin6_family = AF_INET6; 848 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 849 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 850 851 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 852 sin6_t sin6d; 853 854 sin6d = sin6_null; 855 sin6d.sin6_addr = connp->conn_laddr_v6; 856 sin6d.sin6_port = connp->conn_lport; 857 sin6d.sin6_family = AF_INET; 858 tpi_mp = mi_tpi_extconn_ind(NULL, 859 (char *)&sin6d, sizeof (sin6_t), 860 (char *)&tcp, 861 (t_scalar_t)sizeof (intptr_t), 862 (char *)&sin6d, sizeof (sin6_t), 863 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 864 } else { 865 tpi_mp = mi_tpi_conn_ind(NULL, 866 (char *)&sin6, sizeof (sin6_t), 867 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 868 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 869 } 870 } else { 871 ip6h = (ip6_t *)mp->b_rptr; 872 873 connp->conn_ipversion = IPV6_VERSION; 874 connp->conn_laddr_v6 = ip6h->ip6_dst; 875 connp->conn_faddr_v6 = ip6h->ip6_src; 876 connp->conn_saddr_v6 = connp->conn_laddr_v6; 877 878 sin6 = sin6_null; 879 sin6.sin6_addr = connp->conn_faddr_v6; 880 sin6.sin6_port = connp->conn_fport; 881 sin6.sin6_family = AF_INET6; 882 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 883 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 884 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 885 886 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 887 /* Pass up the scope_id of remote addr */ 888 sin6.sin6_scope_id = ifindex; 889 } else { 890 sin6.sin6_scope_id = 0; 891 } 892 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 893 sin6_t sin6d; 894 895 sin6d = sin6_null; 896 sin6.sin6_addr = connp->conn_laddr_v6; 897 sin6d.sin6_port = connp->conn_lport; 898 sin6d.sin6_family = AF_INET6; 899 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 900 sin6d.sin6_scope_id = ifindex; 901 902 tpi_mp = mi_tpi_extconn_ind(NULL, 903 (char *)&sin6d, sizeof (sin6_t), 904 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 905 (char *)&sin6d, sizeof (sin6_t), 906 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 907 } else { 908 tpi_mp = mi_tpi_conn_ind(NULL, 909 (char *)&sin6, sizeof (sin6_t), 910 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 911 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 912 } 913 } 914 915 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 916 return (tpi_mp); 917 } 918 919 /* Handle a SYN on an AF_INET socket */ 920 static mblk_t * 921 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 922 ip_recv_attr_t *ira) 923 { 924 tcp_t *ltcp = lconnp->conn_tcp; 925 tcp_t *tcp = connp->conn_tcp; 926 sin_t sin; 927 mblk_t *tpi_mp = NULL; 928 tcp_stack_t *tcps = tcp->tcp_tcps; 929 ipha_t *ipha; 930 931 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 932 ipha = (ipha_t *)mp->b_rptr; 933 934 connp->conn_ipversion = IPV4_VERSION; 935 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 936 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 937 connp->conn_saddr_v6 = connp->conn_laddr_v6; 938 939 sin = sin_null; 940 sin.sin_addr.s_addr = connp->conn_faddr_v4; 941 sin.sin_port = connp->conn_fport; 942 sin.sin_family = AF_INET; 943 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 944 sin_t sind; 945 946 sind = sin_null; 947 sind.sin_addr.s_addr = connp->conn_laddr_v4; 948 sind.sin_port = connp->conn_lport; 949 sind.sin_family = AF_INET; 950 tpi_mp = mi_tpi_extconn_ind(NULL, 951 (char *)&sind, sizeof (sin_t), (char *)&tcp, 952 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 953 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 954 } else { 955 tpi_mp = mi_tpi_conn_ind(NULL, 956 (char *)&sin, sizeof (sin_t), 957 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 958 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 959 } 960 961 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 962 return (tpi_mp); 963 } 964 965 /* 966 * Called via squeue to get on to eager's perimeter. It sends a 967 * TH_RST if eager is in the fanout table. The listener wants the 968 * eager to disappear either by means of tcp_eager_blowoff() or 969 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 970 * called (via squeue) if the eager cannot be inserted in the 971 * fanout table in tcp_input_listener(). 972 */ 973 /* ARGSUSED */ 974 void 975 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 976 { 977 conn_t *econnp = (conn_t *)arg; 978 tcp_t *eager = econnp->conn_tcp; 979 tcp_t *listener = eager->tcp_listener; 980 981 /* 982 * We could be called because listener is closing. Since 983 * the eager was using listener's queue's, we avoid 984 * using the listeners queues from now on. 985 */ 986 ASSERT(eager->tcp_detached); 987 econnp->conn_rq = NULL; 988 econnp->conn_wq = NULL; 989 990 /* 991 * An eager's conn_fanout will be NULL if it's a duplicate 992 * for an existing 4-tuples in the conn fanout table. 993 * We don't want to send an RST out in such case. 994 */ 995 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 996 tcp_xmit_ctl("tcp_eager_kill, can't wait", 997 eager, eager->tcp_snxt, 0, TH_RST); 998 } 999 1000 /* We are here because listener wants this eager gone */ 1001 if (listener != NULL) { 1002 mutex_enter(&listener->tcp_eager_lock); 1003 tcp_eager_unlink(eager); 1004 if (eager->tcp_tconnind_started) { 1005 /* 1006 * The eager has sent a conn_ind up to the 1007 * listener but listener decides to close 1008 * instead. We need to drop the extra ref 1009 * placed on eager in tcp_input_data() before 1010 * sending the conn_ind to listener. 1011 */ 1012 CONN_DEC_REF(econnp); 1013 } 1014 mutex_exit(&listener->tcp_eager_lock); 1015 CONN_DEC_REF(listener->tcp_connp); 1016 } 1017 1018 if (eager->tcp_state != TCPS_CLOSED) 1019 tcp_close_detached(eager); 1020 } 1021 1022 /* 1023 * Reset any eager connection hanging off this listener marked 1024 * with 'seqnum' and then reclaim it's resources. 1025 */ 1026 boolean_t 1027 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 1028 { 1029 tcp_t *eager; 1030 mblk_t *mp; 1031 1032 eager = listener; 1033 mutex_enter(&listener->tcp_eager_lock); 1034 do { 1035 eager = eager->tcp_eager_next_q; 1036 if (eager == NULL) { 1037 mutex_exit(&listener->tcp_eager_lock); 1038 return (B_FALSE); 1039 } 1040 } while (eager->tcp_conn_req_seqnum != seqnum); 1041 1042 if (eager->tcp_closemp_used) { 1043 mutex_exit(&listener->tcp_eager_lock); 1044 return (B_TRUE); 1045 } 1046 eager->tcp_closemp_used = B_TRUE; 1047 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1048 CONN_INC_REF(eager->tcp_connp); 1049 mutex_exit(&listener->tcp_eager_lock); 1050 mp = &eager->tcp_closemp; 1051 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 1052 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 1053 return (B_TRUE); 1054 } 1055 1056 /* 1057 * Reset any eager connection hanging off this listener 1058 * and then reclaim it's resources. 1059 */ 1060 void 1061 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 1062 { 1063 tcp_t *eager; 1064 mblk_t *mp; 1065 tcp_stack_t *tcps = listener->tcp_tcps; 1066 1067 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1068 1069 if (!q0_only) { 1070 /* First cleanup q */ 1071 TCP_STAT(tcps, tcp_eager_blowoff_q); 1072 eager = listener->tcp_eager_next_q; 1073 while (eager != NULL) { 1074 if (!eager->tcp_closemp_used) { 1075 eager->tcp_closemp_used = B_TRUE; 1076 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1077 CONN_INC_REF(eager->tcp_connp); 1078 mp = &eager->tcp_closemp; 1079 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1080 tcp_eager_kill, eager->tcp_connp, NULL, 1081 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 1082 } 1083 eager = eager->tcp_eager_next_q; 1084 } 1085 } 1086 /* Then cleanup q0 */ 1087 TCP_STAT(tcps, tcp_eager_blowoff_q0); 1088 eager = listener->tcp_eager_next_q0; 1089 while (eager != listener) { 1090 if (!eager->tcp_closemp_used) { 1091 eager->tcp_closemp_used = B_TRUE; 1092 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1093 CONN_INC_REF(eager->tcp_connp); 1094 mp = &eager->tcp_closemp; 1095 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1096 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 1097 SQTAG_TCP_EAGER_CLEANUP_Q0); 1098 } 1099 eager = eager->tcp_eager_next_q0; 1100 } 1101 } 1102 1103 /* 1104 * If we are an eager connection hanging off a listener that hasn't 1105 * formally accepted the connection yet, get off his list and blow off 1106 * any data that we have accumulated. 1107 */ 1108 void 1109 tcp_eager_unlink(tcp_t *tcp) 1110 { 1111 tcp_t *listener = tcp->tcp_listener; 1112 1113 ASSERT(listener != NULL); 1114 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1115 if (tcp->tcp_eager_next_q0 != NULL) { 1116 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 1117 1118 /* Remove the eager tcp from q0 */ 1119 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 1120 tcp->tcp_eager_prev_q0; 1121 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 1122 tcp->tcp_eager_next_q0; 1123 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 1124 listener->tcp_conn_req_cnt_q0--; 1125 1126 tcp->tcp_eager_next_q0 = NULL; 1127 tcp->tcp_eager_prev_q0 = NULL; 1128 1129 /* 1130 * Take the eager out, if it is in the list of droppable 1131 * eagers. 1132 */ 1133 MAKE_UNDROPPABLE(tcp); 1134 1135 if (tcp->tcp_syn_rcvd_timeout != 0) { 1136 /* we have timed out before */ 1137 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 1138 listener->tcp_syn_rcvd_timeout--; 1139 } 1140 } else { 1141 tcp_t **tcpp = &listener->tcp_eager_next_q; 1142 tcp_t *prev = NULL; 1143 1144 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 1145 if (tcpp[0] == tcp) { 1146 if (listener->tcp_eager_last_q == tcp) { 1147 /* 1148 * If we are unlinking the last 1149 * element on the list, adjust 1150 * tail pointer. Set tail pointer 1151 * to nil when list is empty. 1152 */ 1153 ASSERT(tcp->tcp_eager_next_q == NULL); 1154 if (listener->tcp_eager_last_q == 1155 listener->tcp_eager_next_q) { 1156 listener->tcp_eager_last_q = 1157 NULL; 1158 } else { 1159 /* 1160 * We won't get here if there 1161 * is only one eager in the 1162 * list. 1163 */ 1164 ASSERT(prev != NULL); 1165 listener->tcp_eager_last_q = 1166 prev; 1167 } 1168 } 1169 tcpp[0] = tcp->tcp_eager_next_q; 1170 tcp->tcp_eager_next_q = NULL; 1171 tcp->tcp_eager_last_q = NULL; 1172 ASSERT(listener->tcp_conn_req_cnt_q > 0); 1173 listener->tcp_conn_req_cnt_q--; 1174 break; 1175 } 1176 prev = tcpp[0]; 1177 } 1178 } 1179 tcp->tcp_listener = NULL; 1180 } 1181 1182 /* BEGIN CSTYLED */ 1183 /* 1184 * 1185 * The sockfs ACCEPT path: 1186 * ======================= 1187 * 1188 * The eager is now established in its own perimeter as soon as SYN is 1189 * received in tcp_input_listener(). When sockfs receives conn_ind, it 1190 * completes the accept processing on the acceptor STREAM. The sending 1191 * of conn_ind part is common for both sockfs listener and a TLI/XTI 1192 * listener but a TLI/XTI listener completes the accept processing 1193 * on the listener perimeter. 1194 * 1195 * Common control flow for 3 way handshake: 1196 * ---------------------------------------- 1197 * 1198 * incoming SYN (listener perimeter) -> tcp_input_listener() 1199 * 1200 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 1201 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 1202 * 1203 * Sockfs ACCEPT Path: 1204 * ------------------- 1205 * 1206 * open acceptor stream (tcp_open allocates tcp_tli_accept() 1207 * as STREAM entry point) 1208 * 1209 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 1210 * 1211 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 1212 * association (we are not behind eager's squeue but sockfs is protecting us 1213 * and no one knows about this stream yet. The STREAMS entry point q->q_info 1214 * is changed to point at tcp_wput(). 1215 * 1216 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 1217 * listener (done on listener's perimeter). 1218 * 1219 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 1220 * accept. 1221 * 1222 * TLI/XTI client ACCEPT path: 1223 * --------------------------- 1224 * 1225 * soaccept() sends T_CONN_RES on the listener STREAM. 1226 * 1227 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 1228 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 1229 * 1230 * Locks: 1231 * ====== 1232 * 1233 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 1234 * and listeners->tcp_eager_next_q. 1235 * 1236 * Referencing: 1237 * ============ 1238 * 1239 * 1) We start out in tcp_input_listener by eager placing a ref on 1240 * listener and listener adding eager to listeners->tcp_eager_next_q0. 1241 * 1242 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 1243 * doing so we place a ref on the eager. This ref is finally dropped at the 1244 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 1245 * reference is dropped by the squeue framework. 1246 * 1247 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 1248 * 1249 * The reference must be released by the same entity that added the reference 1250 * In the above scheme, the eager is the entity that adds and releases the 1251 * references. Note that tcp_accept_finish executes in the squeue of the eager 1252 * (albeit after it is attached to the acceptor stream). Though 1. executes 1253 * in the listener's squeue, the eager is nascent at this point and the 1254 * reference can be considered to have been added on behalf of the eager. 1255 * 1256 * Eager getting a Reset or listener closing: 1257 * ========================================== 1258 * 1259 * Once the listener and eager are linked, the listener never does the unlink. 1260 * If the listener needs to close, tcp_eager_cleanup() is called which queues 1261 * a message on all eager perimeter. The eager then does the unlink, clears 1262 * any pointers to the listener's queue and drops the reference to the 1263 * listener. The listener waits in tcp_close outside the squeue until its 1264 * refcount has dropped to 1. This ensures that the listener has waited for 1265 * all eagers to clear their association with the listener. 1266 * 1267 * Similarly, if eager decides to go away, it can unlink itself and close. 1268 * When the T_CONN_RES comes down, we check if eager has closed. Note that 1269 * the reference to eager is still valid because of the extra ref we put 1270 * in tcp_send_conn_ind. 1271 * 1272 * Listener can always locate the eager under the protection 1273 * of the listener->tcp_eager_lock, and then do a refhold 1274 * on the eager during the accept processing. 1275 * 1276 * The acceptor stream accesses the eager in the accept processing 1277 * based on the ref placed on eager before sending T_conn_ind. 1278 * The only entity that can negate this refhold is a listener close 1279 * which is mutually exclusive with an active acceptor stream. 1280 * 1281 * Eager's reference on the listener 1282 * =================================== 1283 * 1284 * If the accept happens (even on a closed eager) the eager drops its 1285 * reference on the listener at the start of tcp_accept_finish. If the 1286 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 1287 * the reference is dropped in tcp_closei_local. If the listener closes, 1288 * the reference is dropped in tcp_eager_kill. In all cases the reference 1289 * is dropped while executing in the eager's context (squeue). 1290 */ 1291 /* END CSTYLED */ 1292 1293 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 1294 1295 /* 1296 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 1297 * tcp_input_data will not see any packets for listeners since the listener 1298 * has conn_recv set to tcp_input_listener. 1299 */ 1300 /* ARGSUSED */ 1301 static void 1302 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1303 { 1304 tcpha_t *tcpha; 1305 uint32_t seg_seq; 1306 tcp_t *eager; 1307 int err; 1308 conn_t *econnp = NULL; 1309 squeue_t *new_sqp; 1310 mblk_t *mp1; 1311 uint_t ip_hdr_len; 1312 conn_t *lconnp = (conn_t *)arg; 1313 tcp_t *listener = lconnp->conn_tcp; 1314 tcp_stack_t *tcps = listener->tcp_tcps; 1315 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1316 uint_t flags; 1317 mblk_t *tpi_mp; 1318 uint_t ifindex = ira->ira_ruifindex; 1319 boolean_t tlc_set = B_FALSE; 1320 1321 ip_hdr_len = ira->ira_ip_hdr_length; 1322 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 1323 flags = (unsigned int)tcpha->tha_flags & 0xFF; 1324 1325 if (!(flags & TH_SYN)) { 1326 if ((flags & TH_RST) || (flags & TH_URG)) { 1327 freemsg(mp); 1328 return; 1329 } 1330 if (flags & TH_ACK) { 1331 /* Note this executes in listener's squeue */ 1332 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 1333 return; 1334 } 1335 1336 freemsg(mp); 1337 return; 1338 } 1339 1340 if (listener->tcp_state != TCPS_LISTEN) 1341 goto error2; 1342 1343 ASSERT(IPCL_IS_BOUND(lconnp)); 1344 1345 mutex_enter(&listener->tcp_eager_lock); 1346 1347 /* 1348 * The system is under memory pressure, so we need to do our part 1349 * to relieve the pressure. So we only accept new request if there 1350 * is nothing waiting to be accepted or waiting to complete the 3-way 1351 * handshake. This means that busy listener will not get too many 1352 * new requests which they cannot handle in time while non-busy 1353 * listener is still functioning properly. 1354 */ 1355 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 1356 listener->tcp_conn_req_cnt_q0 > 0)) { 1357 mutex_exit(&listener->tcp_eager_lock); 1358 TCP_STAT(tcps, tcp_listen_mem_drop); 1359 goto error2; 1360 } 1361 1362 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 1363 mutex_exit(&listener->tcp_eager_lock); 1364 TCP_STAT(tcps, tcp_listendrop); 1365 TCPS_BUMP_MIB(tcps, tcpListenDrop); 1366 if (lconnp->conn_debug) { 1367 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 1368 "tcp_input_listener: listen backlog (max=%d) " 1369 "overflow (%d pending) on %s", 1370 listener->tcp_conn_req_max, 1371 listener->tcp_conn_req_cnt_q, 1372 tcp_display(listener, NULL, DISP_PORT_ONLY)); 1373 } 1374 goto error2; 1375 } 1376 1377 if (listener->tcp_conn_req_cnt_q0 >= 1378 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 1379 /* 1380 * Q0 is full. Drop a pending half-open req from the queue 1381 * to make room for the new SYN req. Also mark the time we 1382 * drop a SYN. 1383 * 1384 * A more aggressive defense against SYN attack will 1385 * be to set the "tcp_syn_defense" flag now. 1386 */ 1387 TCP_STAT(tcps, tcp_listendropq0); 1388 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 1389 if (!tcp_drop_q0(listener)) { 1390 mutex_exit(&listener->tcp_eager_lock); 1391 TCPS_BUMP_MIB(tcps, tcpListenDropQ0); 1392 if (lconnp->conn_debug) { 1393 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 1394 "tcp_input_listener: listen half-open " 1395 "queue (max=%d) full (%d pending) on %s", 1396 tcps->tcps_conn_req_max_q0, 1397 listener->tcp_conn_req_cnt_q0, 1398 tcp_display(listener, NULL, 1399 DISP_PORT_ONLY)); 1400 } 1401 goto error2; 1402 } 1403 } 1404 1405 /* 1406 * Enforce the limit set on the number of connections per listener. 1407 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 1408 * for comparison. 1409 */ 1410 if (listener->tcp_listen_cnt != NULL) { 1411 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 1412 int64_t now; 1413 1414 if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) { 1415 mutex_exit(&listener->tcp_eager_lock); 1416 now = ddi_get_lbolt64(); 1417 atomic_add_32(&tlc->tlc_cnt, -1); 1418 TCP_STAT(tcps, tcp_listen_cnt_drop); 1419 tlc->tlc_drop++; 1420 if (now - tlc->tlc_report_time > 1421 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 1422 zcmn_err(lconnp->conn_zoneid, CE_WARN, 1423 "Listener (port %d) connection max (%u) " 1424 "reached: %u attempts dropped total\n", 1425 ntohs(listener->tcp_connp->conn_lport), 1426 tlc->tlc_max, tlc->tlc_drop); 1427 tlc->tlc_report_time = now; 1428 } 1429 goto error2; 1430 } 1431 tlc_set = B_TRUE; 1432 } 1433 1434 mutex_exit(&listener->tcp_eager_lock); 1435 1436 /* 1437 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1438 * or based on the ring (for packets from GLD). Otherwise it is 1439 * set based on lbolt i.e., a somewhat random number. 1440 */ 1441 ASSERT(ira->ira_sqp != NULL); 1442 new_sqp = ira->ira_sqp; 1443 1444 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 1445 if (econnp == NULL) 1446 goto error2; 1447 1448 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 1449 econnp->conn_sqp = new_sqp; 1450 econnp->conn_initial_sqp = new_sqp; 1451 econnp->conn_ixa->ixa_sqp = new_sqp; 1452 1453 econnp->conn_fport = tcpha->tha_lport; 1454 econnp->conn_lport = tcpha->tha_fport; 1455 1456 err = conn_inherit_parent(lconnp, econnp); 1457 if (err != 0) 1458 goto error3; 1459 1460 /* We already know the laddr of the new connection is ours */ 1461 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 1462 1463 ASSERT(OK_32PTR(mp->b_rptr)); 1464 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 1465 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 1466 1467 if (lconnp->conn_family == AF_INET) { 1468 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 1469 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 1470 } else { 1471 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 1472 } 1473 1474 if (tpi_mp == NULL) 1475 goto error3; 1476 1477 eager = econnp->conn_tcp; 1478 eager->tcp_detached = B_TRUE; 1479 SOCK_CONNID_INIT(eager->tcp_connid); 1480 1481 tcp_init_values(eager); 1482 1483 ASSERT((econnp->conn_ixa->ixa_flags & 1484 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1485 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 1486 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1487 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 1488 1489 if (!tcps->tcps_dev_flow_ctl) 1490 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 1491 1492 /* Prepare for diffing against previous packets */ 1493 eager->tcp_recvifindex = 0; 1494 eager->tcp_recvhops = 0xffffffffU; 1495 1496 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 1497 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 1498 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 1499 econnp->conn_incoming_ifindex = ifindex; 1500 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1501 econnp->conn_ixa->ixa_scopeid = ifindex; 1502 } 1503 } 1504 1505 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 1506 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 1507 tcps->tcps_rev_src_routes) { 1508 ipha_t *ipha = (ipha_t *)mp->b_rptr; 1509 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 1510 1511 /* Source routing option copyover (reverse it) */ 1512 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 1513 if (err != 0) { 1514 freemsg(tpi_mp); 1515 goto error3; 1516 } 1517 ip_pkt_source_route_reverse_v4(ipp); 1518 } 1519 1520 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 1521 ASSERT(!eager->tcp_tconnind_started); 1522 /* 1523 * If the SYN came with a credential, it's a loopback packet or a 1524 * labeled packet; attach the credential to the TPI message. 1525 */ 1526 if (ira->ira_cred != NULL) 1527 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 1528 1529 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 1530 1531 /* Inherit the listener's SSL protection state */ 1532 if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { 1533 kssl_hold_ent(eager->tcp_kssl_ent); 1534 eager->tcp_kssl_pending = B_TRUE; 1535 } 1536 1537 /* Inherit the listener's non-STREAMS flag */ 1538 if (IPCL_IS_NONSTR(lconnp)) { 1539 econnp->conn_flags |= IPCL_NONSTR; 1540 } 1541 1542 ASSERT(eager->tcp_ordrel_mp == NULL); 1543 1544 if (!IPCL_IS_NONSTR(econnp)) { 1545 /* 1546 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 1547 * at close time, we will always have that to send up. 1548 * Otherwise, we need to do special handling in case the 1549 * allocation fails at that time. 1550 */ 1551 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 1552 goto error3; 1553 } 1554 /* 1555 * Now that the IP addresses and ports are setup in econnp we 1556 * can do the IPsec policy work. 1557 */ 1558 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 1559 if (lconnp->conn_policy != NULL) { 1560 /* 1561 * Inherit the policy from the listener; use 1562 * actions from ira 1563 */ 1564 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 1565 CONN_DEC_REF(econnp); 1566 freemsg(mp); 1567 goto error3; 1568 } 1569 } 1570 } 1571 1572 /* Inherit various TCP parameters from the listener */ 1573 eager->tcp_naglim = listener->tcp_naglim; 1574 eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; 1575 eager->tcp_second_timer_threshold = 1576 listener->tcp_second_timer_threshold; 1577 eager->tcp_first_ctimer_threshold = 1578 listener->tcp_first_ctimer_threshold; 1579 eager->tcp_second_ctimer_threshold = 1580 listener->tcp_second_ctimer_threshold; 1581 1582 /* 1583 * tcp_set_destination() may set tcp_rwnd according to the route 1584 * metrics. If it does not, the eager's receive window will be set 1585 * to the listener's receive window later in this function. 1586 */ 1587 eager->tcp_rwnd = 0; 1588 1589 /* 1590 * Inherit listener's tcp_init_cwnd. Need to do this before 1591 * calling tcp_process_options() which set the initial cwnd. 1592 */ 1593 eager->tcp_init_cwnd = listener->tcp_init_cwnd; 1594 1595 if (is_system_labeled()) { 1596 ip_xmit_attr_t *ixa = econnp->conn_ixa; 1597 1598 ASSERT(ira->ira_tsl != NULL); 1599 /* Discard any old label */ 1600 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 1601 ASSERT(ixa->ixa_tsl != NULL); 1602 label_rele(ixa->ixa_tsl); 1603 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 1604 ixa->ixa_tsl = NULL; 1605 } 1606 if ((lconnp->conn_mlp_type != mlptSingle || 1607 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 1608 ira->ira_tsl != NULL) { 1609 /* 1610 * If this is an MLP connection or a MAC-Exempt 1611 * connection with an unlabeled node, packets are to be 1612 * exchanged using the security label of the received 1613 * SYN packet instead of the server application's label. 1614 * tsol_check_dest called from ip_set_destination 1615 * might later update TSF_UNLABELED by replacing 1616 * ixa_tsl with a new label. 1617 */ 1618 label_hold(ira->ira_tsl); 1619 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 1620 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 1621 econnp, ts_label_t *, ixa->ixa_tsl) 1622 } else { 1623 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 1624 DTRACE_PROBE2(syn_accept, conn_t *, 1625 econnp, ts_label_t *, ixa->ixa_tsl) 1626 } 1627 /* 1628 * conn_connect() called from tcp_set_destination will verify 1629 * the destination is allowed to receive packets at the 1630 * security label of the SYN-ACK we are generating. As part of 1631 * that, tsol_check_dest() may create a new effective label for 1632 * this connection. 1633 * Finally conn_connect() will call conn_update_label. 1634 * All that remains for TCP to do is to call 1635 * conn_build_hdr_template which is done as part of 1636 * tcp_set_destination. 1637 */ 1638 } 1639 1640 /* 1641 * Since we will clear tcp_listener before we clear tcp_detached 1642 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 1643 * so we can tell a TCP_DETACHED_NONEAGER apart. 1644 */ 1645 eager->tcp_hard_binding = B_TRUE; 1646 1647 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 1648 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 1649 1650 CL_INET_CONNECT(econnp, B_FALSE, err); 1651 if (err != 0) { 1652 tcp_bind_hash_remove(eager); 1653 goto error3; 1654 } 1655 1656 /* 1657 * No need to check for multicast destination since ip will only pass 1658 * up multicasts to those that have expressed interest 1659 * TODO: what about rejecting broadcasts? 1660 * Also check that source is not a multicast or broadcast address. 1661 */ 1662 eager->tcp_state = TCPS_SYN_RCVD; 1663 SOCK_CONNID_BUMP(eager->tcp_connid); 1664 1665 /* 1666 * Adapt our mss, ttl, ... based on the remote address. 1667 */ 1668 1669 if (tcp_set_destination(eager) != 0) { 1670 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1671 /* Undo the bind_hash_insert */ 1672 tcp_bind_hash_remove(eager); 1673 goto error3; 1674 } 1675 1676 /* Process all TCP options. */ 1677 tcp_process_options(eager, tcpha); 1678 1679 /* Is the other end ECN capable? */ 1680 if (tcps->tcps_ecn_permitted >= 1 && 1681 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 1682 eager->tcp_ecn_ok = B_TRUE; 1683 } 1684 1685 /* 1686 * The listener's conn_rcvbuf should be the default window size or a 1687 * window size changed via SO_RCVBUF option. First round up the 1688 * eager's tcp_rwnd to the nearest MSS. Then find out the window 1689 * scale option value if needed. Call tcp_rwnd_set() to finish the 1690 * setting. 1691 * 1692 * Note if there is a rpipe metric associated with the remote host, 1693 * we should not inherit receive window size from listener. 1694 */ 1695 eager->tcp_rwnd = MSS_ROUNDUP( 1696 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 1697 eager->tcp_rwnd), eager->tcp_mss); 1698 if (eager->tcp_snd_ws_ok) 1699 tcp_set_ws_value(eager); 1700 /* 1701 * Note that this is the only place tcp_rwnd_set() is called for 1702 * accepting a connection. We need to call it here instead of 1703 * after the 3-way handshake because we need to tell the other 1704 * side our rwnd in the SYN-ACK segment. 1705 */ 1706 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 1707 1708 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 1709 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 1710 1711 ASSERT(econnp->conn_rcvbuf != 0 && 1712 econnp->conn_rcvbuf == eager->tcp_rwnd); 1713 1714 /* Put a ref on the listener for the eager. */ 1715 CONN_INC_REF(lconnp); 1716 mutex_enter(&listener->tcp_eager_lock); 1717 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 1718 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 1719 listener->tcp_eager_next_q0 = eager; 1720 eager->tcp_eager_prev_q0 = listener; 1721 1722 /* Set tcp_listener before adding it to tcp_conn_fanout */ 1723 eager->tcp_listener = listener; 1724 eager->tcp_saved_listener = listener; 1725 1726 /* 1727 * Set tcp_listen_cnt so that when the connection is done, the counter 1728 * is decremented. 1729 */ 1730 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 1731 1732 /* 1733 * Tag this detached tcp vector for later retrieval 1734 * by our listener client in tcp_accept(). 1735 */ 1736 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 1737 listener->tcp_conn_req_cnt_q0++; 1738 if (++listener->tcp_conn_req_seqnum == -1) { 1739 /* 1740 * -1 is "special" and defined in TPI as something 1741 * that should never be used in T_CONN_IND 1742 */ 1743 ++listener->tcp_conn_req_seqnum; 1744 } 1745 mutex_exit(&listener->tcp_eager_lock); 1746 1747 if (listener->tcp_syn_defense) { 1748 /* Don't drop the SYN that comes from a good IP source */ 1749 ipaddr_t *addr_cache; 1750 1751 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 1752 if (addr_cache != NULL && econnp->conn_faddr_v4 == 1753 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 1754 eager->tcp_dontdrop = B_TRUE; 1755 } 1756 } 1757 1758 /* 1759 * We need to insert the eager in its own perimeter but as soon 1760 * as we do that, we expose the eager to the classifier and 1761 * should not touch any field outside the eager's perimeter. 1762 * So do all the work necessary before inserting the eager 1763 * in its own perimeter. Be optimistic that conn_connect() 1764 * will succeed but undo everything if it fails. 1765 */ 1766 seg_seq = ntohl(tcpha->tha_seq); 1767 eager->tcp_irs = seg_seq; 1768 eager->tcp_rack = seg_seq; 1769 eager->tcp_rnxt = seg_seq + 1; 1770 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 1771 TCPS_BUMP_MIB(tcps, tcpPassiveOpens); 1772 eager->tcp_state = TCPS_SYN_RCVD; 1773 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 1774 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 1775 if (mp1 == NULL) { 1776 /* 1777 * Increment the ref count as we are going to 1778 * enqueueing an mp in squeue 1779 */ 1780 CONN_INC_REF(econnp); 1781 goto error; 1782 } 1783 1784 /* 1785 * We need to start the rto timer. In normal case, we start 1786 * the timer after sending the packet on the wire (or at 1787 * least believing that packet was sent by waiting for 1788 * conn_ip_output() to return). Since this is the first packet 1789 * being sent on the wire for the eager, our initial tcp_rto 1790 * is at least tcp_rexmit_interval_min which is a fairly 1791 * large value to allow the algorithm to adjust slowly to large 1792 * fluctuations of RTT during first few transmissions. 1793 * 1794 * Starting the timer first and then sending the packet in this 1795 * case shouldn't make much difference since tcp_rexmit_interval_min 1796 * is of the order of several 100ms and starting the timer 1797 * first and then sending the packet will result in difference 1798 * of few micro seconds. 1799 * 1800 * Without this optimization, we are forced to hold the fanout 1801 * lock across the ipcl_bind_insert() and sending the packet 1802 * so that we don't race against an incoming packet (maybe RST) 1803 * for this eager. 1804 * 1805 * It is necessary to acquire an extra reference on the eager 1806 * at this point and hold it until after tcp_send_data() to 1807 * ensure against an eager close race. 1808 */ 1809 1810 CONN_INC_REF(econnp); 1811 1812 TCP_TIMER_RESTART(eager, eager->tcp_rto); 1813 1814 /* 1815 * Insert the eager in its own perimeter now. We are ready to deal 1816 * with any packets on eager. 1817 */ 1818 if (ipcl_conn_insert(econnp) != 0) 1819 goto error; 1820 1821 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 1822 freemsg(mp); 1823 /* 1824 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 1825 * only used by one thread at a time. 1826 */ 1827 if (econnp->conn_sqp == lconnp->conn_sqp) { 1828 (void) conn_ip_output(mp1, econnp->conn_ixa); 1829 CONN_DEC_REF(econnp); 1830 } else { 1831 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 1832 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 1833 } 1834 return; 1835 error: 1836 freemsg(mp1); 1837 eager->tcp_closemp_used = B_TRUE; 1838 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1839 mp1 = &eager->tcp_closemp; 1840 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 1841 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 1842 1843 /* 1844 * If a connection already exists, send the mp to that connections so 1845 * that it can be appropriately dealt with. 1846 */ 1847 ipst = tcps->tcps_netstack->netstack_ip; 1848 1849 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 1850 if (!IPCL_IS_CONNECTED(econnp)) { 1851 /* 1852 * Something bad happened. ipcl_conn_insert() 1853 * failed because a connection already existed 1854 * in connected hash but we can't find it 1855 * anymore (someone blew it away). Just 1856 * free this message and hopefully remote 1857 * will retransmit at which time the SYN can be 1858 * treated as a new connection or dealth with 1859 * a TH_RST if a connection already exists. 1860 */ 1861 CONN_DEC_REF(econnp); 1862 freemsg(mp); 1863 } else { 1864 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 1865 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 1866 } 1867 } else { 1868 /* Nobody wants this packet */ 1869 freemsg(mp); 1870 } 1871 return; 1872 error3: 1873 CONN_DEC_REF(econnp); 1874 error2: 1875 freemsg(mp); 1876 if (tlc_set) 1877 atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1); 1878 } 1879 1880 /* 1881 * In an ideal case of vertical partition in NUMA architecture, its 1882 * beneficial to have the listener and all the incoming connections 1883 * tied to the same squeue. The other constraint is that incoming 1884 * connections should be tied to the squeue attached to interrupted 1885 * CPU for obvious locality reason so this leaves the listener to 1886 * be tied to the same squeue. Our only problem is that when listener 1887 * is binding, the CPU that will get interrupted by the NIC whose 1888 * IP address the listener is binding to is not even known. So 1889 * the code below allows us to change that binding at the time the 1890 * CPU is interrupted by virtue of incoming connection's squeue. 1891 * 1892 * This is usefull only in case of a listener bound to a specific IP 1893 * address. For other kind of listeners, they get bound the 1894 * very first time and there is no attempt to rebind them. 1895 */ 1896 void 1897 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 1898 ip_recv_attr_t *ira) 1899 { 1900 conn_t *connp = (conn_t *)arg; 1901 squeue_t *sqp = (squeue_t *)arg2; 1902 squeue_t *new_sqp; 1903 uint32_t conn_flags; 1904 1905 /* 1906 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1907 * or based on the ring (for packets from GLD). Otherwise it is 1908 * set based on lbolt i.e., a somewhat random number. 1909 */ 1910 ASSERT(ira->ira_sqp != NULL); 1911 new_sqp = ira->ira_sqp; 1912 1913 if (connp->conn_fanout == NULL) 1914 goto done; 1915 1916 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 1917 mutex_enter(&connp->conn_fanout->connf_lock); 1918 mutex_enter(&connp->conn_lock); 1919 /* 1920 * No one from read or write side can access us now 1921 * except for already queued packets on this squeue. 1922 * But since we haven't changed the squeue yet, they 1923 * can't execute. If they are processed after we have 1924 * changed the squeue, they are sent back to the 1925 * correct squeue down below. 1926 * But a listner close can race with processing of 1927 * incoming SYN. If incoming SYN processing changes 1928 * the squeue then the listener close which is waiting 1929 * to enter the squeue would operate on the wrong 1930 * squeue. Hence we don't change the squeue here unless 1931 * the refcount is exactly the minimum refcount. The 1932 * minimum refcount of 4 is counted as - 1 each for 1933 * TCP and IP, 1 for being in the classifier hash, and 1934 * 1 for the mblk being processed. 1935 */ 1936 1937 if (connp->conn_ref != 4 || 1938 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 1939 mutex_exit(&connp->conn_lock); 1940 mutex_exit(&connp->conn_fanout->connf_lock); 1941 goto done; 1942 } 1943 if (connp->conn_sqp != new_sqp) { 1944 while (connp->conn_sqp != new_sqp) 1945 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 1946 /* No special MT issues for outbound ixa_sqp hint */ 1947 connp->conn_ixa->ixa_sqp = new_sqp; 1948 } 1949 1950 do { 1951 conn_flags = connp->conn_flags; 1952 conn_flags |= IPCL_FULLY_BOUND; 1953 (void) cas32(&connp->conn_flags, connp->conn_flags, 1954 conn_flags); 1955 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 1956 1957 mutex_exit(&connp->conn_fanout->connf_lock); 1958 mutex_exit(&connp->conn_lock); 1959 1960 /* 1961 * Assume we have picked a good squeue for the listener. Make 1962 * subsequent SYNs not try to change the squeue. 1963 */ 1964 connp->conn_recv = tcp_input_listener; 1965 } 1966 1967 done: 1968 if (connp->conn_sqp != sqp) { 1969 CONN_INC_REF(connp); 1970 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 1971 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 1972 } else { 1973 tcp_input_listener(connp, mp, sqp, ira); 1974 } 1975 } 1976 1977 /* 1978 * Send up all messages queued on tcp_rcv_list. 1979 */ 1980 uint_t 1981 tcp_rcv_drain(tcp_t *tcp) 1982 { 1983 mblk_t *mp; 1984 uint_t ret = 0; 1985 #ifdef DEBUG 1986 uint_t cnt = 0; 1987 #endif 1988 queue_t *q = tcp->tcp_connp->conn_rq; 1989 1990 /* Can't drain on an eager connection */ 1991 if (tcp->tcp_listener != NULL) 1992 return (ret); 1993 1994 /* Can't be a non-STREAMS connection */ 1995 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1996 1997 /* No need for the push timer now. */ 1998 if (tcp->tcp_push_tid != 0) { 1999 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 2000 tcp->tcp_push_tid = 0; 2001 } 2002 2003 /* 2004 * Handle two cases here: we are currently fused or we were 2005 * previously fused and have some urgent data to be delivered 2006 * upstream. The latter happens because we either ran out of 2007 * memory or were detached and therefore sending the SIGURG was 2008 * deferred until this point. In either case we pass control 2009 * over to tcp_fuse_rcv_drain() since it may need to complete 2010 * some work. 2011 */ 2012 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 2013 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 2014 tcp->tcp_fused_sigurg_mp != NULL); 2015 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 2016 &tcp->tcp_fused_sigurg_mp)) 2017 return (ret); 2018 } 2019 2020 while ((mp = tcp->tcp_rcv_list) != NULL) { 2021 tcp->tcp_rcv_list = mp->b_next; 2022 mp->b_next = NULL; 2023 #ifdef DEBUG 2024 cnt += msgdsize(mp); 2025 #endif 2026 /* Does this need SSL processing first? */ 2027 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 2028 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 2029 mblk_t *, mp); 2030 tcp_kssl_input(tcp, mp, NULL); 2031 continue; 2032 } 2033 putnext(q, mp); 2034 } 2035 #ifdef DEBUG 2036 ASSERT(cnt == tcp->tcp_rcv_cnt); 2037 #endif 2038 tcp->tcp_rcv_last_head = NULL; 2039 tcp->tcp_rcv_last_tail = NULL; 2040 tcp->tcp_rcv_cnt = 0; 2041 2042 if (canputnext(q)) 2043 return (tcp_rwnd_reopen(tcp)); 2044 2045 return (ret); 2046 } 2047 2048 /* 2049 * Queue data on tcp_rcv_list which is a b_next chain. 2050 * tcp_rcv_last_head/tail is the last element of this chain. 2051 * Each element of the chain is a b_cont chain. 2052 * 2053 * M_DATA messages are added to the current element. 2054 * Other messages are added as new (b_next) elements. 2055 */ 2056 void 2057 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 2058 { 2059 ASSERT(seg_len == msgdsize(mp)); 2060 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 2061 2062 if (is_system_labeled()) { 2063 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 2064 /* 2065 * Provide for protocols above TCP such as RPC. NOPID leaves 2066 * db_cpid unchanged. 2067 * The cred could have already been set. 2068 */ 2069 if (cr != NULL) 2070 mblk_setcred(mp, cr, NOPID); 2071 } 2072 2073 if (tcp->tcp_rcv_list == NULL) { 2074 ASSERT(tcp->tcp_rcv_last_head == NULL); 2075 tcp->tcp_rcv_list = mp; 2076 tcp->tcp_rcv_last_head = mp; 2077 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 2078 tcp->tcp_rcv_last_tail->b_cont = mp; 2079 } else { 2080 tcp->tcp_rcv_last_head->b_next = mp; 2081 tcp->tcp_rcv_last_head = mp; 2082 } 2083 2084 while (mp->b_cont) 2085 mp = mp->b_cont; 2086 2087 tcp->tcp_rcv_last_tail = mp; 2088 tcp->tcp_rcv_cnt += seg_len; 2089 tcp->tcp_rwnd -= seg_len; 2090 } 2091 2092 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 2093 mblk_t * 2094 tcp_ack_mp(tcp_t *tcp) 2095 { 2096 uint32_t seq_no; 2097 tcp_stack_t *tcps = tcp->tcp_tcps; 2098 conn_t *connp = tcp->tcp_connp; 2099 2100 /* 2101 * There are a few cases to be considered while setting the sequence no. 2102 * Essentially, we can come here while processing an unacceptable pkt 2103 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 2104 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 2105 * If we are here for a zero window probe, stick with suna. In all 2106 * other cases, we check if suna + swnd encompasses snxt and set 2107 * the sequence number to snxt, if so. If snxt falls outside the 2108 * window (the receiver probably shrunk its window), we will go with 2109 * suna + swnd, otherwise the sequence no will be unacceptable to the 2110 * receiver. 2111 */ 2112 if (tcp->tcp_zero_win_probe) { 2113 seq_no = tcp->tcp_suna; 2114 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 2115 ASSERT(tcp->tcp_swnd == 0); 2116 seq_no = tcp->tcp_snxt; 2117 } else { 2118 seq_no = SEQ_GT(tcp->tcp_snxt, 2119 (tcp->tcp_suna + tcp->tcp_swnd)) ? 2120 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 2121 } 2122 2123 if (tcp->tcp_valid_bits) { 2124 /* 2125 * For the complex case where we have to send some 2126 * controls (FIN or SYN), let tcp_xmit_mp do it. 2127 */ 2128 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 2129 NULL, B_FALSE)); 2130 } else { 2131 /* Generate a simple ACK */ 2132 int data_length; 2133 uchar_t *rptr; 2134 tcpha_t *tcpha; 2135 mblk_t *mp1; 2136 int32_t total_hdr_len; 2137 int32_t tcp_hdr_len; 2138 int32_t num_sack_blk = 0; 2139 int32_t sack_opt_len; 2140 ip_xmit_attr_t *ixa = connp->conn_ixa; 2141 2142 /* 2143 * Allocate space for TCP + IP headers 2144 * and link-level header 2145 */ 2146 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 2147 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 2148 tcp->tcp_num_sack_blk); 2149 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 2150 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 2151 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 2152 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 2153 } else { 2154 total_hdr_len = connp->conn_ht_iphc_len; 2155 tcp_hdr_len = connp->conn_ht_ulp_len; 2156 } 2157 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 2158 if (!mp1) 2159 return (NULL); 2160 2161 /* Update the latest receive window size in TCP header. */ 2162 tcp->tcp_tcpha->tha_win = 2163 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2164 /* copy in prototype TCP + IP header */ 2165 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 2166 mp1->b_rptr = rptr; 2167 mp1->b_wptr = rptr + total_hdr_len; 2168 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 2169 2170 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 2171 2172 /* Set the TCP sequence number. */ 2173 tcpha->tha_seq = htonl(seq_no); 2174 2175 /* Set up the TCP flag field. */ 2176 tcpha->tha_flags = (uchar_t)TH_ACK; 2177 if (tcp->tcp_ecn_echo_on) 2178 tcpha->tha_flags |= TH_ECE; 2179 2180 tcp->tcp_rack = tcp->tcp_rnxt; 2181 tcp->tcp_rack_cnt = 0; 2182 2183 /* fill in timestamp option if in use */ 2184 if (tcp->tcp_snd_ts_ok) { 2185 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 2186 2187 U32_TO_BE32(llbolt, 2188 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 2189 U32_TO_BE32(tcp->tcp_ts_recent, 2190 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 2191 } 2192 2193 /* Fill in SACK options */ 2194 if (num_sack_blk > 0) { 2195 uchar_t *wptr = (uchar_t *)tcpha + 2196 connp->conn_ht_ulp_len; 2197 sack_blk_t *tmp; 2198 int32_t i; 2199 2200 wptr[0] = TCPOPT_NOP; 2201 wptr[1] = TCPOPT_NOP; 2202 wptr[2] = TCPOPT_SACK; 2203 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 2204 sizeof (sack_blk_t); 2205 wptr += TCPOPT_REAL_SACK_LEN; 2206 2207 tmp = tcp->tcp_sack_list; 2208 for (i = 0; i < num_sack_blk; i++) { 2209 U32_TO_BE32(tmp[i].begin, wptr); 2210 wptr += sizeof (tcp_seq); 2211 U32_TO_BE32(tmp[i].end, wptr); 2212 wptr += sizeof (tcp_seq); 2213 } 2214 tcpha->tha_offset_and_reserved += 2215 ((num_sack_blk * 2 + 1) << 4); 2216 } 2217 2218 ixa->ixa_pktlen = total_hdr_len; 2219 2220 if (ixa->ixa_flags & IXAF_IS_IPV4) { 2221 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 2222 } else { 2223 ip6_t *ip6 = (ip6_t *)rptr; 2224 2225 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 2226 } 2227 2228 /* 2229 * Prime pump for checksum calculation in IP. Include the 2230 * adjustment for a source route if any. 2231 */ 2232 data_length = tcp_hdr_len + connp->conn_sum; 2233 data_length = (data_length >> 16) + (data_length & 0xFFFF); 2234 tcpha->tha_sum = htons(data_length); 2235 2236 if (tcp->tcp_ip_forward_progress) { 2237 tcp->tcp_ip_forward_progress = B_FALSE; 2238 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 2239 } else { 2240 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 2241 } 2242 return (mp1); 2243 } 2244 } 2245 2246 /* 2247 * Handle M_DATA messages from IP. Its called directly from IP via 2248 * squeue for received IP packets. 2249 * 2250 * The first argument is always the connp/tcp to which the mp belongs. 2251 * There are no exceptions to this rule. The caller has already put 2252 * a reference on this connp/tcp and once tcp_input_data() returns, 2253 * the squeue will do the refrele. 2254 * 2255 * The TH_SYN for the listener directly go to tcp_input_listener via 2256 * squeue. ICMP errors go directly to tcp_icmp_input(). 2257 * 2258 * sqp: NULL = recursive, sqp != NULL means called from squeue 2259 */ 2260 void 2261 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 2262 { 2263 int32_t bytes_acked; 2264 int32_t gap; 2265 mblk_t *mp1; 2266 uint_t flags; 2267 uint32_t new_swnd = 0; 2268 uchar_t *iphdr; 2269 uchar_t *rptr; 2270 int32_t rgap; 2271 uint32_t seg_ack; 2272 int seg_len; 2273 uint_t ip_hdr_len; 2274 uint32_t seg_seq; 2275 tcpha_t *tcpha; 2276 int urp; 2277 tcp_opt_t tcpopt; 2278 ip_pkt_t ipp; 2279 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 2280 uint32_t cwnd; 2281 uint32_t add; 2282 int npkt; 2283 int mss; 2284 conn_t *connp = (conn_t *)arg; 2285 squeue_t *sqp = (squeue_t *)arg2; 2286 tcp_t *tcp = connp->conn_tcp; 2287 tcp_stack_t *tcps = tcp->tcp_tcps; 2288 2289 /* 2290 * RST from fused tcp loopback peer should trigger an unfuse. 2291 */ 2292 if (tcp->tcp_fused) { 2293 TCP_STAT(tcps, tcp_fusion_aborted); 2294 tcp_unfuse(tcp); 2295 } 2296 2297 iphdr = mp->b_rptr; 2298 rptr = mp->b_rptr; 2299 ASSERT(OK_32PTR(rptr)); 2300 2301 ip_hdr_len = ira->ira_ip_hdr_length; 2302 if (connp->conn_recv_ancillary.crb_all != 0) { 2303 /* 2304 * Record packet information in the ip_pkt_t 2305 */ 2306 ipp.ipp_fields = 0; 2307 if (ira->ira_flags & IRAF_IS_IPV4) { 2308 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 2309 B_FALSE); 2310 } else { 2311 uint8_t nexthdrp; 2312 2313 /* 2314 * IPv6 packets can only be received by applications 2315 * that are prepared to receive IPv6 addresses. 2316 * The IP fanout must ensure this. 2317 */ 2318 ASSERT(connp->conn_family == AF_INET6); 2319 2320 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 2321 &nexthdrp); 2322 ASSERT(nexthdrp == IPPROTO_TCP); 2323 2324 /* Could have caused a pullup? */ 2325 iphdr = mp->b_rptr; 2326 rptr = mp->b_rptr; 2327 } 2328 } 2329 ASSERT(DB_TYPE(mp) == M_DATA); 2330 ASSERT(mp->b_next == NULL); 2331 2332 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2333 seg_seq = ntohl(tcpha->tha_seq); 2334 seg_ack = ntohl(tcpha->tha_ack); 2335 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 2336 seg_len = (int)(mp->b_wptr - rptr) - 2337 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 2338 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 2339 do { 2340 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 2341 (uintptr_t)INT_MAX); 2342 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 2343 } while ((mp1 = mp1->b_cont) != NULL && 2344 mp1->b_datap->db_type == M_DATA); 2345 } 2346 2347 if (tcp->tcp_state == TCPS_TIME_WAIT) { 2348 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 2349 seg_len, tcpha, ira); 2350 return; 2351 } 2352 2353 if (sqp != NULL) { 2354 /* 2355 * This is the correct place to update tcp_last_recv_time. Note 2356 * that it is also updated for tcp structure that belongs to 2357 * global and listener queues which do not really need updating. 2358 * But that should not cause any harm. And it is updated for 2359 * all kinds of incoming segments, not only for data segments. 2360 */ 2361 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 2362 } 2363 2364 flags = (unsigned int)tcpha->tha_flags & 0xFF; 2365 2366 BUMP_LOCAL(tcp->tcp_ibsegs); 2367 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2368 2369 if ((flags & TH_URG) && sqp != NULL) { 2370 /* 2371 * TCP can't handle urgent pointers that arrive before 2372 * the connection has been accept()ed since it can't 2373 * buffer OOB data. Discard segment if this happens. 2374 * 2375 * We can't just rely on a non-null tcp_listener to indicate 2376 * that the accept() has completed since unlinking of the 2377 * eager and completion of the accept are not atomic. 2378 * tcp_detached, when it is not set (B_FALSE) indicates 2379 * that the accept() has completed. 2380 * 2381 * Nor can it reassemble urgent pointers, so discard 2382 * if it's not the next segment expected. 2383 * 2384 * Otherwise, collapse chain into one mblk (discard if 2385 * that fails). This makes sure the headers, retransmitted 2386 * data, and new data all are in the same mblk. 2387 */ 2388 ASSERT(mp != NULL); 2389 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 2390 freemsg(mp); 2391 return; 2392 } 2393 /* Update pointers into message */ 2394 iphdr = rptr = mp->b_rptr; 2395 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2396 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 2397 /* 2398 * Since we can't handle any data with this urgent 2399 * pointer that is out of sequence, we expunge 2400 * the data. This allows us to still register 2401 * the urgent mark and generate the M_PCSIG, 2402 * which we can do. 2403 */ 2404 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2405 seg_len = 0; 2406 } 2407 } 2408 2409 switch (tcp->tcp_state) { 2410 case TCPS_SYN_SENT: 2411 if (connp->conn_final_sqp == NULL && 2412 tcp_outbound_squeue_switch && sqp != NULL) { 2413 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 2414 connp->conn_final_sqp = sqp; 2415 if (connp->conn_final_sqp != connp->conn_sqp) { 2416 DTRACE_PROBE1(conn__final__sqp__switch, 2417 conn_t *, connp); 2418 CONN_INC_REF(connp); 2419 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 2420 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2421 tcp_input_data, connp, ira, ip_squeue_flag, 2422 SQTAG_CONNECT_FINISH); 2423 return; 2424 } 2425 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 2426 } 2427 if (flags & TH_ACK) { 2428 /* 2429 * Note that our stack cannot send data before a 2430 * connection is established, therefore the 2431 * following check is valid. Otherwise, it has 2432 * to be changed. 2433 */ 2434 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 2435 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2436 freemsg(mp); 2437 if (flags & TH_RST) 2438 return; 2439 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 2440 tcp, seg_ack, 0, TH_RST); 2441 return; 2442 } 2443 ASSERT(tcp->tcp_suna + 1 == seg_ack); 2444 } 2445 if (flags & TH_RST) { 2446 freemsg(mp); 2447 if (flags & TH_ACK) 2448 (void) tcp_clean_death(tcp, ECONNREFUSED); 2449 return; 2450 } 2451 if (!(flags & TH_SYN)) { 2452 freemsg(mp); 2453 return; 2454 } 2455 2456 /* Process all TCP options. */ 2457 tcp_process_options(tcp, tcpha); 2458 /* 2459 * The following changes our rwnd to be a multiple of the 2460 * MIN(peer MSS, our MSS) for performance reason. 2461 */ 2462 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 2463 tcp->tcp_mss)); 2464 2465 /* Is the other end ECN capable? */ 2466 if (tcp->tcp_ecn_ok) { 2467 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 2468 tcp->tcp_ecn_ok = B_FALSE; 2469 } 2470 } 2471 /* 2472 * Clear ECN flags because it may interfere with later 2473 * processing. 2474 */ 2475 flags &= ~(TH_ECE|TH_CWR); 2476 2477 tcp->tcp_irs = seg_seq; 2478 tcp->tcp_rack = seg_seq; 2479 tcp->tcp_rnxt = seg_seq + 1; 2480 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 2481 if (!TCP_IS_DETACHED(tcp)) { 2482 /* Allocate room for SACK options if needed. */ 2483 connp->conn_wroff = connp->conn_ht_iphc_len; 2484 if (tcp->tcp_snd_sack_ok) 2485 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 2486 if (!tcp->tcp_loopback) 2487 connp->conn_wroff += tcps->tcps_wroff_xtra; 2488 2489 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2490 connp->conn_wroff); 2491 } 2492 if (flags & TH_ACK) { 2493 /* 2494 * If we can't get the confirmation upstream, pretend 2495 * we didn't even see this one. 2496 * 2497 * XXX: how can we pretend we didn't see it if we 2498 * have updated rnxt et. al. 2499 * 2500 * For loopback we defer sending up the T_CONN_CON 2501 * until after some checks below. 2502 */ 2503 mp1 = NULL; 2504 /* 2505 * tcp_sendmsg() checks tcp_state without entering 2506 * the squeue so tcp_state should be updated before 2507 * sending up connection confirmation 2508 */ 2509 tcp->tcp_state = TCPS_ESTABLISHED; 2510 if (!tcp_conn_con(tcp, iphdr, mp, 2511 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 2512 tcp->tcp_state = TCPS_SYN_SENT; 2513 freemsg(mp); 2514 return; 2515 } 2516 TCPS_CONN_INC(tcps); 2517 /* SYN was acked - making progress */ 2518 tcp->tcp_ip_forward_progress = B_TRUE; 2519 2520 /* One for the SYN */ 2521 tcp->tcp_suna = tcp->tcp_iss + 1; 2522 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 2523 2524 /* 2525 * If SYN was retransmitted, need to reset all 2526 * retransmission info. This is because this 2527 * segment will be treated as a dup ACK. 2528 */ 2529 if (tcp->tcp_rexmit) { 2530 tcp->tcp_rexmit = B_FALSE; 2531 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 2532 tcp->tcp_rexmit_max = tcp->tcp_snxt; 2533 tcp->tcp_snd_burst = tcp->tcp_localnet ? 2534 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 2535 tcp->tcp_ms_we_have_waited = 0; 2536 2537 /* 2538 * Set tcp_cwnd back to 1 MSS, per 2539 * recommendation from 2540 * draft-floyd-incr-init-win-01.txt, 2541 * Increasing TCP's Initial Window. 2542 */ 2543 tcp->tcp_cwnd = tcp->tcp_mss; 2544 } 2545 2546 tcp->tcp_swl1 = seg_seq; 2547 tcp->tcp_swl2 = seg_ack; 2548 2549 new_swnd = ntohs(tcpha->tha_win); 2550 tcp->tcp_swnd = new_swnd; 2551 if (new_swnd > tcp->tcp_max_swnd) 2552 tcp->tcp_max_swnd = new_swnd; 2553 2554 /* 2555 * Always send the three-way handshake ack immediately 2556 * in order to make the connection complete as soon as 2557 * possible on the accepting host. 2558 */ 2559 flags |= TH_ACK_NEEDED; 2560 2561 /* 2562 * Special case for loopback. At this point we have 2563 * received SYN-ACK from the remote endpoint. In 2564 * order to ensure that both endpoints reach the 2565 * fused state prior to any data exchange, the final 2566 * ACK needs to be sent before we indicate T_CONN_CON 2567 * to the module upstream. 2568 */ 2569 if (tcp->tcp_loopback) { 2570 mblk_t *ack_mp; 2571 2572 ASSERT(!tcp->tcp_unfusable); 2573 ASSERT(mp1 != NULL); 2574 /* 2575 * For loopback, we always get a pure SYN-ACK 2576 * and only need to send back the final ACK 2577 * with no data (this is because the other 2578 * tcp is ours and we don't do T/TCP). This 2579 * final ACK triggers the passive side to 2580 * perform fusion in ESTABLISHED state. 2581 */ 2582 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 2583 if (tcp->tcp_ack_tid != 0) { 2584 (void) TCP_TIMER_CANCEL(tcp, 2585 tcp->tcp_ack_tid); 2586 tcp->tcp_ack_tid = 0; 2587 } 2588 tcp_send_data(tcp, ack_mp); 2589 BUMP_LOCAL(tcp->tcp_obsegs); 2590 TCPS_BUMP_MIB(tcps, tcpOutAck); 2591 2592 if (!IPCL_IS_NONSTR(connp)) { 2593 /* Send up T_CONN_CON */ 2594 if (ira->ira_cred != NULL) { 2595 mblk_setcred(mp1, 2596 ira->ira_cred, 2597 ira->ira_cpid); 2598 } 2599 putnext(connp->conn_rq, mp1); 2600 } else { 2601 (*connp->conn_upcalls-> 2602 su_connected) 2603 (connp->conn_upper_handle, 2604 tcp->tcp_connid, 2605 ira->ira_cred, 2606 ira->ira_cpid); 2607 freemsg(mp1); 2608 } 2609 2610 freemsg(mp); 2611 return; 2612 } 2613 /* 2614 * Forget fusion; we need to handle more 2615 * complex cases below. Send the deferred 2616 * T_CONN_CON message upstream and proceed 2617 * as usual. Mark this tcp as not capable 2618 * of fusion. 2619 */ 2620 TCP_STAT(tcps, tcp_fusion_unfusable); 2621 tcp->tcp_unfusable = B_TRUE; 2622 if (!IPCL_IS_NONSTR(connp)) { 2623 if (ira->ira_cred != NULL) { 2624 mblk_setcred(mp1, ira->ira_cred, 2625 ira->ira_cpid); 2626 } 2627 putnext(connp->conn_rq, mp1); 2628 } else { 2629 (*connp->conn_upcalls->su_connected) 2630 (connp->conn_upper_handle, 2631 tcp->tcp_connid, ira->ira_cred, 2632 ira->ira_cpid); 2633 freemsg(mp1); 2634 } 2635 } 2636 2637 /* 2638 * Check to see if there is data to be sent. If 2639 * yes, set the transmit flag. Then check to see 2640 * if received data processing needs to be done. 2641 * If not, go straight to xmit_check. This short 2642 * cut is OK as we don't support T/TCP. 2643 */ 2644 if (tcp->tcp_unsent) 2645 flags |= TH_XMIT_NEEDED; 2646 2647 if (seg_len == 0 && !(flags & TH_URG)) { 2648 freemsg(mp); 2649 goto xmit_check; 2650 } 2651 2652 flags &= ~TH_SYN; 2653 seg_seq++; 2654 break; 2655 } 2656 tcp->tcp_state = TCPS_SYN_RCVD; 2657 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 2658 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 2659 if (mp1 != NULL) { 2660 tcp_send_data(tcp, mp1); 2661 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 2662 } 2663 freemsg(mp); 2664 return; 2665 case TCPS_SYN_RCVD: 2666 if (flags & TH_ACK) { 2667 /* 2668 * In this state, a SYN|ACK packet is either bogus 2669 * because the other side must be ACKing our SYN which 2670 * indicates it has seen the ACK for their SYN and 2671 * shouldn't retransmit it or we're crossing SYNs 2672 * on active open. 2673 */ 2674 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 2675 freemsg(mp); 2676 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 2677 tcp, seg_ack, 0, TH_RST); 2678 return; 2679 } 2680 /* 2681 * NOTE: RFC 793 pg. 72 says this should be 2682 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 2683 * but that would mean we have an ack that ignored 2684 * our SYN. 2685 */ 2686 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 2687 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2688 freemsg(mp); 2689 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 2690 tcp, seg_ack, 0, TH_RST); 2691 return; 2692 } 2693 /* 2694 * No sane TCP stack will send such a small window 2695 * without receiving any data. Just drop this invalid 2696 * ACK. We also shorten the abort timeout in case 2697 * this is an attack. 2698 */ 2699 if ((ntohs(tcpha->tha_win) << tcp->tcp_snd_ws) < 2700 (tcp->tcp_mss >> tcp_init_wnd_shft)) { 2701 freemsg(mp); 2702 TCP_STAT(tcps, tcp_zwin_ack_syn); 2703 tcp->tcp_second_ctimer_threshold = 2704 tcp_early_abort * SECONDS; 2705 return; 2706 } 2707 } 2708 break; 2709 case TCPS_LISTEN: 2710 /* 2711 * Only a TLI listener can come through this path when a 2712 * acceptor is going back to be a listener and a packet 2713 * for the acceptor hits the classifier. For a socket 2714 * listener, this can never happen because a listener 2715 * can never accept connection on itself and hence a 2716 * socket acceptor can not go back to being a listener. 2717 */ 2718 ASSERT(!TCP_IS_SOCKET(tcp)); 2719 /*FALLTHRU*/ 2720 case TCPS_CLOSED: 2721 case TCPS_BOUND: { 2722 conn_t *new_connp; 2723 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2724 2725 /* 2726 * Don't accept any input on a closed tcp as this TCP logically 2727 * does not exist on the system. Don't proceed further with 2728 * this TCP. For instance, this packet could trigger another 2729 * close of this tcp which would be disastrous for tcp_refcnt. 2730 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 2731 * be called at most once on a TCP. In this case we need to 2732 * refeed the packet into the classifier and figure out where 2733 * the packet should go. 2734 */ 2735 new_connp = ipcl_classify(mp, ira, ipst); 2736 if (new_connp != NULL) { 2737 /* Drops ref on new_connp */ 2738 tcp_reinput(new_connp, mp, ira, ipst); 2739 return; 2740 } 2741 /* We failed to classify. For now just drop the packet */ 2742 freemsg(mp); 2743 return; 2744 } 2745 case TCPS_IDLE: 2746 /* 2747 * Handle the case where the tcp_clean_death() has happened 2748 * on a connection (application hasn't closed yet) but a packet 2749 * was already queued on squeue before tcp_clean_death() 2750 * was processed. Calling tcp_clean_death() twice on same 2751 * connection can result in weird behaviour. 2752 */ 2753 freemsg(mp); 2754 return; 2755 default: 2756 break; 2757 } 2758 2759 /* 2760 * Already on the correct queue/perimeter. 2761 * If this is a detached connection and not an eager 2762 * connection hanging off a listener then new data 2763 * (past the FIN) will cause a reset. 2764 * We do a special check here where it 2765 * is out of the main line, rather than check 2766 * if we are detached every time we see new 2767 * data down below. 2768 */ 2769 if (TCP_IS_DETACHED_NONEAGER(tcp) && 2770 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 2771 TCPS_BUMP_MIB(tcps, tcpInClosed); 2772 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2773 2774 freemsg(mp); 2775 /* 2776 * This could be an SSL closure alert. We're detached so just 2777 * acknowledge it this last time. 2778 */ 2779 if (tcp->tcp_kssl_ctx != NULL) { 2780 kssl_release_ctx(tcp->tcp_kssl_ctx); 2781 tcp->tcp_kssl_ctx = NULL; 2782 2783 tcp->tcp_rnxt += seg_len; 2784 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 2785 flags |= TH_ACK_NEEDED; 2786 goto ack_check; 2787 } 2788 2789 tcp_xmit_ctl("new data when detached", tcp, 2790 tcp->tcp_snxt, 0, TH_RST); 2791 (void) tcp_clean_death(tcp, EPROTO); 2792 return; 2793 } 2794 2795 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2796 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 2797 new_swnd = ntohs(tcpha->tha_win) << 2798 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 2799 2800 if (tcp->tcp_snd_ts_ok) { 2801 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 2802 /* 2803 * This segment is not acceptable. 2804 * Drop it and send back an ACK. 2805 */ 2806 freemsg(mp); 2807 flags |= TH_ACK_NEEDED; 2808 goto ack_check; 2809 } 2810 } else if (tcp->tcp_snd_sack_ok) { 2811 tcpopt.tcp = tcp; 2812 /* 2813 * SACK info in already updated in tcp_parse_options. Ignore 2814 * all other TCP options... 2815 */ 2816 (void) tcp_parse_options(tcpha, &tcpopt); 2817 } 2818 try_again:; 2819 mss = tcp->tcp_mss; 2820 gap = seg_seq - tcp->tcp_rnxt; 2821 rgap = tcp->tcp_rwnd - (gap + seg_len); 2822 /* 2823 * gap is the amount of sequence space between what we expect to see 2824 * and what we got for seg_seq. A positive value for gap means 2825 * something got lost. A negative value means we got some old stuff. 2826 */ 2827 if (gap < 0) { 2828 /* Old stuff present. Is the SYN in there? */ 2829 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 2830 (seg_len != 0)) { 2831 flags &= ~TH_SYN; 2832 seg_seq++; 2833 urp--; 2834 /* Recompute the gaps after noting the SYN. */ 2835 goto try_again; 2836 } 2837 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 2838 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, 2839 (seg_len > -gap ? -gap : seg_len)); 2840 /* Remove the old stuff from seg_len. */ 2841 seg_len += gap; 2842 /* 2843 * Anything left? 2844 * Make sure to check for unack'd FIN when rest of data 2845 * has been previously ack'd. 2846 */ 2847 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 2848 /* 2849 * Resets are only valid if they lie within our offered 2850 * window. If the RST bit is set, we just ignore this 2851 * segment. 2852 */ 2853 if (flags & TH_RST) { 2854 freemsg(mp); 2855 return; 2856 } 2857 2858 /* 2859 * The arriving of dup data packets indicate that we 2860 * may have postponed an ack for too long, or the other 2861 * side's RTT estimate is out of shape. Start acking 2862 * more often. 2863 */ 2864 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 2865 tcp->tcp_rack_cnt >= 1 && 2866 tcp->tcp_rack_abs_max > 2) { 2867 tcp->tcp_rack_abs_max--; 2868 } 2869 tcp->tcp_rack_cur_max = 1; 2870 2871 /* 2872 * This segment is "unacceptable". None of its 2873 * sequence space lies within our advertized window. 2874 * 2875 * Adjust seg_len to the original value for tracing. 2876 */ 2877 seg_len -= gap; 2878 if (connp->conn_debug) { 2879 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 2880 "tcp_rput: unacceptable, gap %d, rgap %d, " 2881 "flags 0x%x, seg_seq %u, seg_ack %u, " 2882 "seg_len %d, rnxt %u, snxt %u, %s", 2883 gap, rgap, flags, seg_seq, seg_ack, 2884 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 2885 tcp_display(tcp, NULL, 2886 DISP_ADDR_AND_PORT)); 2887 } 2888 2889 /* 2890 * Arrange to send an ACK in response to the 2891 * unacceptable segment per RFC 793 page 69. There 2892 * is only one small difference between ours and the 2893 * acceptability test in the RFC - we accept ACK-only 2894 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 2895 * will be generated. 2896 * 2897 * Note that we have to ACK an ACK-only packet at least 2898 * for stacks that send 0-length keep-alives with 2899 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 2900 * section 4.2.3.6. As long as we don't ever generate 2901 * an unacceptable packet in response to an incoming 2902 * packet that is unacceptable, it should not cause 2903 * "ACK wars". 2904 */ 2905 flags |= TH_ACK_NEEDED; 2906 2907 /* 2908 * Continue processing this segment in order to use the 2909 * ACK information it contains, but skip all other 2910 * sequence-number processing. Processing the ACK 2911 * information is necessary in order to 2912 * re-synchronize connections that may have lost 2913 * synchronization. 2914 * 2915 * We clear seg_len and flag fields related to 2916 * sequence number processing as they are not 2917 * to be trusted for an unacceptable segment. 2918 */ 2919 seg_len = 0; 2920 flags &= ~(TH_SYN | TH_FIN | TH_URG); 2921 goto process_ack; 2922 } 2923 2924 /* Fix seg_seq, and chew the gap off the front. */ 2925 seg_seq = tcp->tcp_rnxt; 2926 urp += gap; 2927 do { 2928 mblk_t *mp2; 2929 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 2930 (uintptr_t)UINT_MAX); 2931 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 2932 if (gap > 0) { 2933 mp->b_rptr = mp->b_wptr - gap; 2934 break; 2935 } 2936 mp2 = mp; 2937 mp = mp->b_cont; 2938 freeb(mp2); 2939 } while (gap < 0); 2940 /* 2941 * If the urgent data has already been acknowledged, we 2942 * should ignore TH_URG below 2943 */ 2944 if (urp < 0) 2945 flags &= ~TH_URG; 2946 } 2947 /* 2948 * rgap is the amount of stuff received out of window. A negative 2949 * value is the amount out of window. 2950 */ 2951 if (rgap < 0) { 2952 mblk_t *mp2; 2953 2954 if (tcp->tcp_rwnd == 0) { 2955 TCPS_BUMP_MIB(tcps, tcpInWinProbe); 2956 } else { 2957 TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs); 2958 TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap); 2959 } 2960 2961 /* 2962 * seg_len does not include the FIN, so if more than 2963 * just the FIN is out of window, we act like we don't 2964 * see it. (If just the FIN is out of window, rgap 2965 * will be zero and we will go ahead and acknowledge 2966 * the FIN.) 2967 */ 2968 flags &= ~TH_FIN; 2969 2970 /* Fix seg_len and make sure there is something left. */ 2971 seg_len += rgap; 2972 if (seg_len <= 0) { 2973 /* 2974 * Resets are only valid if they lie within our offered 2975 * window. If the RST bit is set, we just ignore this 2976 * segment. 2977 */ 2978 if (flags & TH_RST) { 2979 freemsg(mp); 2980 return; 2981 } 2982 2983 /* Per RFC 793, we need to send back an ACK. */ 2984 flags |= TH_ACK_NEEDED; 2985 2986 /* 2987 * Send SIGURG as soon as possible i.e. even 2988 * if the TH_URG was delivered in a window probe 2989 * packet (which will be unacceptable). 2990 * 2991 * We generate a signal if none has been generated 2992 * for this connection or if this is a new urgent 2993 * byte. Also send a zero-length "unmarked" message 2994 * to inform SIOCATMARK that this is not the mark. 2995 * 2996 * tcp_urp_last_valid is cleared when the T_exdata_ind 2997 * is sent up. This plus the check for old data 2998 * (gap >= 0) handles the wraparound of the sequence 2999 * number space without having to always track the 3000 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 3001 * this max in its rcv_up variable). 3002 * 3003 * This prevents duplicate SIGURGS due to a "late" 3004 * zero-window probe when the T_EXDATA_IND has already 3005 * been sent up. 3006 */ 3007 if ((flags & TH_URG) && 3008 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 3009 tcp->tcp_urp_last))) { 3010 if (IPCL_IS_NONSTR(connp)) { 3011 if (!TCP_IS_DETACHED(tcp)) { 3012 (*connp->conn_upcalls-> 3013 su_signal_oob) 3014 (connp->conn_upper_handle, 3015 urp); 3016 } 3017 } else { 3018 mp1 = allocb(0, BPRI_MED); 3019 if (mp1 == NULL) { 3020 freemsg(mp); 3021 return; 3022 } 3023 if (!TCP_IS_DETACHED(tcp) && 3024 !putnextctl1(connp->conn_rq, 3025 M_PCSIG, SIGURG)) { 3026 /* Try again on the rexmit. */ 3027 freemsg(mp1); 3028 freemsg(mp); 3029 return; 3030 } 3031 /* 3032 * If the next byte would be the mark 3033 * then mark with MARKNEXT else mark 3034 * with NOTMARKNEXT. 3035 */ 3036 if (gap == 0 && urp == 0) 3037 mp1->b_flag |= MSGMARKNEXT; 3038 else 3039 mp1->b_flag |= MSGNOTMARKNEXT; 3040 freemsg(tcp->tcp_urp_mark_mp); 3041 tcp->tcp_urp_mark_mp = mp1; 3042 flags |= TH_SEND_URP_MARK; 3043 } 3044 tcp->tcp_urp_last_valid = B_TRUE; 3045 tcp->tcp_urp_last = urp + seg_seq; 3046 } 3047 /* 3048 * If this is a zero window probe, continue to 3049 * process the ACK part. But we need to set seg_len 3050 * to 0 to avoid data processing. Otherwise just 3051 * drop the segment and send back an ACK. 3052 */ 3053 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 3054 flags &= ~(TH_SYN | TH_URG); 3055 seg_len = 0; 3056 goto process_ack; 3057 } else { 3058 freemsg(mp); 3059 goto ack_check; 3060 } 3061 } 3062 /* Pitch out of window stuff off the end. */ 3063 rgap = seg_len; 3064 mp2 = mp; 3065 do { 3066 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 3067 (uintptr_t)INT_MAX); 3068 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 3069 if (rgap < 0) { 3070 mp2->b_wptr += rgap; 3071 if ((mp1 = mp2->b_cont) != NULL) { 3072 mp2->b_cont = NULL; 3073 freemsg(mp1); 3074 } 3075 break; 3076 } 3077 } while ((mp2 = mp2->b_cont) != NULL); 3078 } 3079 ok:; 3080 /* 3081 * TCP should check ECN info for segments inside the window only. 3082 * Therefore the check should be done here. 3083 */ 3084 if (tcp->tcp_ecn_ok) { 3085 if (flags & TH_CWR) { 3086 tcp->tcp_ecn_echo_on = B_FALSE; 3087 } 3088 /* 3089 * Note that both ECN_CE and CWR can be set in the 3090 * same segment. In this case, we once again turn 3091 * on ECN_ECHO. 3092 */ 3093 if (connp->conn_ipversion == IPV4_VERSION) { 3094 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 3095 3096 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 3097 tcp->tcp_ecn_echo_on = B_TRUE; 3098 } 3099 } else { 3100 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 3101 3102 if ((vcf & htonl(IPH_ECN_CE << 20)) == 3103 htonl(IPH_ECN_CE << 20)) { 3104 tcp->tcp_ecn_echo_on = B_TRUE; 3105 } 3106 } 3107 } 3108 3109 /* 3110 * Check whether we can update tcp_ts_recent. This test is 3111 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 3112 * Extensions for High Performance: An Update", Internet Draft. 3113 */ 3114 if (tcp->tcp_snd_ts_ok && 3115 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 3116 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 3117 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 3118 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 3119 } 3120 3121 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 3122 /* 3123 * FIN in an out of order segment. We record this in 3124 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 3125 * Clear the FIN so that any check on FIN flag will fail. 3126 * Remember that FIN also counts in the sequence number 3127 * space. So we need to ack out of order FIN only segments. 3128 */ 3129 if (flags & TH_FIN) { 3130 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 3131 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 3132 flags &= ~TH_FIN; 3133 flags |= TH_ACK_NEEDED; 3134 } 3135 if (seg_len > 0) { 3136 /* Fill in the SACK blk list. */ 3137 if (tcp->tcp_snd_sack_ok) { 3138 tcp_sack_insert(tcp->tcp_sack_list, 3139 seg_seq, seg_seq + seg_len, 3140 &(tcp->tcp_num_sack_blk)); 3141 } 3142 3143 /* 3144 * Attempt reassembly and see if we have something 3145 * ready to go. 3146 */ 3147 mp = tcp_reass(tcp, mp, seg_seq); 3148 /* Always ack out of order packets */ 3149 flags |= TH_ACK_NEEDED | TH_PUSH; 3150 if (mp) { 3151 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3152 (uintptr_t)INT_MAX); 3153 seg_len = mp->b_cont ? msgdsize(mp) : 3154 (int)(mp->b_wptr - mp->b_rptr); 3155 seg_seq = tcp->tcp_rnxt; 3156 /* 3157 * A gap is filled and the seq num and len 3158 * of the gap match that of a previously 3159 * received FIN, put the FIN flag back in. 3160 */ 3161 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3162 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3163 flags |= TH_FIN; 3164 tcp->tcp_valid_bits &= 3165 ~TCP_OFO_FIN_VALID; 3166 } 3167 if (tcp->tcp_reass_tid != 0) { 3168 (void) TCP_TIMER_CANCEL(tcp, 3169 tcp->tcp_reass_tid); 3170 /* 3171 * Restart the timer if there is still 3172 * data in the reassembly queue. 3173 */ 3174 if (tcp->tcp_reass_head != NULL) { 3175 tcp->tcp_reass_tid = TCP_TIMER( 3176 tcp, tcp_reass_timer, 3177 tcps->tcps_reass_timeout); 3178 } else { 3179 tcp->tcp_reass_tid = 0; 3180 } 3181 } 3182 } else { 3183 /* 3184 * Keep going even with NULL mp. 3185 * There may be a useful ACK or something else 3186 * we don't want to miss. 3187 * 3188 * But TCP should not perform fast retransmit 3189 * because of the ack number. TCP uses 3190 * seg_len == 0 to determine if it is a pure 3191 * ACK. And this is not a pure ACK. 3192 */ 3193 seg_len = 0; 3194 ofo_seg = B_TRUE; 3195 3196 if (tcps->tcps_reass_timeout != 0 && 3197 tcp->tcp_reass_tid == 0) { 3198 tcp->tcp_reass_tid = TCP_TIMER(tcp, 3199 tcp_reass_timer, 3200 tcps->tcps_reass_timeout); 3201 } 3202 } 3203 } 3204 } else if (seg_len > 0) { 3205 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 3206 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len); 3207 /* 3208 * If an out of order FIN was received before, and the seq 3209 * num and len of the new segment match that of the FIN, 3210 * put the FIN flag back in. 3211 */ 3212 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3213 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3214 flags |= TH_FIN; 3215 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 3216 } 3217 } 3218 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 3219 if (flags & TH_RST) { 3220 freemsg(mp); 3221 switch (tcp->tcp_state) { 3222 case TCPS_SYN_RCVD: 3223 (void) tcp_clean_death(tcp, ECONNREFUSED); 3224 break; 3225 case TCPS_ESTABLISHED: 3226 case TCPS_FIN_WAIT_1: 3227 case TCPS_FIN_WAIT_2: 3228 case TCPS_CLOSE_WAIT: 3229 (void) tcp_clean_death(tcp, ECONNRESET); 3230 break; 3231 case TCPS_CLOSING: 3232 case TCPS_LAST_ACK: 3233 (void) tcp_clean_death(tcp, 0); 3234 break; 3235 default: 3236 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3237 (void) tcp_clean_death(tcp, ENXIO); 3238 break; 3239 } 3240 return; 3241 } 3242 if (flags & TH_SYN) { 3243 /* 3244 * See RFC 793, Page 71 3245 * 3246 * The seq number must be in the window as it should 3247 * be "fixed" above. If it is outside window, it should 3248 * be already rejected. Note that we allow seg_seq to be 3249 * rnxt + rwnd because we want to accept 0 window probe. 3250 */ 3251 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 3252 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 3253 freemsg(mp); 3254 /* 3255 * If the ACK flag is not set, just use our snxt as the 3256 * seq number of the RST segment. 3257 */ 3258 if (!(flags & TH_ACK)) { 3259 seg_ack = tcp->tcp_snxt; 3260 } 3261 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 3262 TH_RST|TH_ACK); 3263 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3264 (void) tcp_clean_death(tcp, ECONNRESET); 3265 return; 3266 } 3267 /* 3268 * urp could be -1 when the urp field in the packet is 0 3269 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 3270 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 3271 */ 3272 if (flags & TH_URG && urp >= 0) { 3273 if (!tcp->tcp_urp_last_valid || 3274 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 3275 /* 3276 * Non-STREAMS sockets handle the urgent data a litte 3277 * differently from STREAMS based sockets. There is no 3278 * need to mark any mblks with the MSG{NOT,}MARKNEXT 3279 * flags to keep SIOCATMARK happy. Instead a 3280 * su_signal_oob upcall is made to update the mark. 3281 * Neither is a T_EXDATA_IND mblk needed to be 3282 * prepended to the urgent data. The urgent data is 3283 * delivered using the su_recv upcall, where we set 3284 * the MSG_OOB flag to indicate that it is urg data. 3285 * 3286 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 3287 * are used by non-STREAMS sockets. 3288 */ 3289 if (IPCL_IS_NONSTR(connp)) { 3290 if (!TCP_IS_DETACHED(tcp)) { 3291 (*connp->conn_upcalls->su_signal_oob) 3292 (connp->conn_upper_handle, urp); 3293 } 3294 } else { 3295 /* 3296 * If we haven't generated the signal yet for 3297 * this urgent pointer value, do it now. Also, 3298 * send up a zero-length M_DATA indicating 3299 * whether or not this is the mark. The latter 3300 * is not needed when a T_EXDATA_IND is sent up. 3301 * However, if there are allocation failures 3302 * this code relies on the sender retransmitting 3303 * and the socket code for determining the mark 3304 * should not block waiting for the peer to 3305 * transmit. Thus, for simplicity we always 3306 * send up the mark indication. 3307 */ 3308 mp1 = allocb(0, BPRI_MED); 3309 if (mp1 == NULL) { 3310 freemsg(mp); 3311 return; 3312 } 3313 if (!TCP_IS_DETACHED(tcp) && 3314 !putnextctl1(connp->conn_rq, M_PCSIG, 3315 SIGURG)) { 3316 /* Try again on the rexmit. */ 3317 freemsg(mp1); 3318 freemsg(mp); 3319 return; 3320 } 3321 /* 3322 * Mark with NOTMARKNEXT for now. 3323 * The code below will change this to MARKNEXT 3324 * if we are at the mark. 3325 * 3326 * If there are allocation failures (e.g. in 3327 * dupmsg below) the next time tcp_input_data 3328 * sees the urgent segment it will send up the 3329 * MSGMARKNEXT message. 3330 */ 3331 mp1->b_flag |= MSGNOTMARKNEXT; 3332 freemsg(tcp->tcp_urp_mark_mp); 3333 tcp->tcp_urp_mark_mp = mp1; 3334 flags |= TH_SEND_URP_MARK; 3335 #ifdef DEBUG 3336 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3337 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 3338 "last %x, %s", 3339 seg_seq, urp, tcp->tcp_urp_last, 3340 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3341 #endif /* DEBUG */ 3342 } 3343 tcp->tcp_urp_last_valid = B_TRUE; 3344 tcp->tcp_urp_last = urp + seg_seq; 3345 } else if (tcp->tcp_urp_mark_mp != NULL) { 3346 /* 3347 * An allocation failure prevented the previous 3348 * tcp_input_data from sending up the allocated 3349 * MSG*MARKNEXT message - send it up this time 3350 * around. 3351 */ 3352 flags |= TH_SEND_URP_MARK; 3353 } 3354 3355 /* 3356 * If the urgent byte is in this segment, make sure that it is 3357 * all by itself. This makes it much easier to deal with the 3358 * possibility of an allocation failure on the T_exdata_ind. 3359 * Note that seg_len is the number of bytes in the segment, and 3360 * urp is the offset into the segment of the urgent byte. 3361 * urp < seg_len means that the urgent byte is in this segment. 3362 */ 3363 if (urp < seg_len) { 3364 if (seg_len != 1) { 3365 uint32_t tmp_rnxt; 3366 /* 3367 * Break it up and feed it back in. 3368 * Re-attach the IP header. 3369 */ 3370 mp->b_rptr = iphdr; 3371 if (urp > 0) { 3372 /* 3373 * There is stuff before the urgent 3374 * byte. 3375 */ 3376 mp1 = dupmsg(mp); 3377 if (!mp1) { 3378 /* 3379 * Trim from urgent byte on. 3380 * The rest will come back. 3381 */ 3382 (void) adjmsg(mp, 3383 urp - seg_len); 3384 tcp_input_data(connp, 3385 mp, NULL, ira); 3386 return; 3387 } 3388 (void) adjmsg(mp1, urp - seg_len); 3389 /* Feed this piece back in. */ 3390 tmp_rnxt = tcp->tcp_rnxt; 3391 tcp_input_data(connp, mp1, NULL, ira); 3392 /* 3393 * If the data passed back in was not 3394 * processed (ie: bad ACK) sending 3395 * the remainder back in will cause a 3396 * loop. In this case, drop the 3397 * packet and let the sender try 3398 * sending a good packet. 3399 */ 3400 if (tmp_rnxt == tcp->tcp_rnxt) { 3401 freemsg(mp); 3402 return; 3403 } 3404 } 3405 if (urp != seg_len - 1) { 3406 uint32_t tmp_rnxt; 3407 /* 3408 * There is stuff after the urgent 3409 * byte. 3410 */ 3411 mp1 = dupmsg(mp); 3412 if (!mp1) { 3413 /* 3414 * Trim everything beyond the 3415 * urgent byte. The rest will 3416 * come back. 3417 */ 3418 (void) adjmsg(mp, 3419 urp + 1 - seg_len); 3420 tcp_input_data(connp, 3421 mp, NULL, ira); 3422 return; 3423 } 3424 (void) adjmsg(mp1, urp + 1 - seg_len); 3425 tmp_rnxt = tcp->tcp_rnxt; 3426 tcp_input_data(connp, mp1, NULL, ira); 3427 /* 3428 * If the data passed back in was not 3429 * processed (ie: bad ACK) sending 3430 * the remainder back in will cause a 3431 * loop. In this case, drop the 3432 * packet and let the sender try 3433 * sending a good packet. 3434 */ 3435 if (tmp_rnxt == tcp->tcp_rnxt) { 3436 freemsg(mp); 3437 return; 3438 } 3439 } 3440 tcp_input_data(connp, mp, NULL, ira); 3441 return; 3442 } 3443 /* 3444 * This segment contains only the urgent byte. We 3445 * have to allocate the T_exdata_ind, if we can. 3446 */ 3447 if (IPCL_IS_NONSTR(connp)) { 3448 int error; 3449 3450 (*connp->conn_upcalls->su_recv) 3451 (connp->conn_upper_handle, mp, seg_len, 3452 MSG_OOB, &error, NULL); 3453 /* 3454 * We should never be in middle of a 3455 * fallback, the squeue guarantees that. 3456 */ 3457 ASSERT(error != EOPNOTSUPP); 3458 mp = NULL; 3459 goto update_ack; 3460 } else if (!tcp->tcp_urp_mp) { 3461 struct T_exdata_ind *tei; 3462 mp1 = allocb(sizeof (struct T_exdata_ind), 3463 BPRI_MED); 3464 if (!mp1) { 3465 /* 3466 * Sigh... It'll be back. 3467 * Generate any MSG*MARK message now. 3468 */ 3469 freemsg(mp); 3470 seg_len = 0; 3471 if (flags & TH_SEND_URP_MARK) { 3472 3473 3474 ASSERT(tcp->tcp_urp_mark_mp); 3475 tcp->tcp_urp_mark_mp->b_flag &= 3476 ~MSGNOTMARKNEXT; 3477 tcp->tcp_urp_mark_mp->b_flag |= 3478 MSGMARKNEXT; 3479 } 3480 goto ack_check; 3481 } 3482 mp1->b_datap->db_type = M_PROTO; 3483 tei = (struct T_exdata_ind *)mp1->b_rptr; 3484 tei->PRIM_type = T_EXDATA_IND; 3485 tei->MORE_flag = 0; 3486 mp1->b_wptr = (uchar_t *)&tei[1]; 3487 tcp->tcp_urp_mp = mp1; 3488 #ifdef DEBUG 3489 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3490 "tcp_rput: allocated exdata_ind %s", 3491 tcp_display(tcp, NULL, 3492 DISP_PORT_ONLY)); 3493 #endif /* DEBUG */ 3494 /* 3495 * There is no need to send a separate MSG*MARK 3496 * message since the T_EXDATA_IND will be sent 3497 * now. 3498 */ 3499 flags &= ~TH_SEND_URP_MARK; 3500 freemsg(tcp->tcp_urp_mark_mp); 3501 tcp->tcp_urp_mark_mp = NULL; 3502 } 3503 /* 3504 * Now we are all set. On the next putnext upstream, 3505 * tcp_urp_mp will be non-NULL and will get prepended 3506 * to what has to be this piece containing the urgent 3507 * byte. If for any reason we abort this segment below, 3508 * if it comes back, we will have this ready, or it 3509 * will get blown off in close. 3510 */ 3511 } else if (urp == seg_len) { 3512 /* 3513 * The urgent byte is the next byte after this sequence 3514 * number. If this endpoint is non-STREAMS, then there 3515 * is nothing to do here since the socket has already 3516 * been notified about the urg pointer by the 3517 * su_signal_oob call above. 3518 * 3519 * In case of STREAMS, some more work might be needed. 3520 * If there is data it is marked with MSGMARKNEXT and 3521 * and any tcp_urp_mark_mp is discarded since it is not 3522 * needed. Otherwise, if the code above just allocated 3523 * a zero-length tcp_urp_mark_mp message, that message 3524 * is tagged with MSGMARKNEXT. Sending up these 3525 * MSGMARKNEXT messages makes SIOCATMARK work correctly 3526 * even though the T_EXDATA_IND will not be sent up 3527 * until the urgent byte arrives. 3528 */ 3529 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 3530 if (seg_len != 0) { 3531 flags |= TH_MARKNEXT_NEEDED; 3532 freemsg(tcp->tcp_urp_mark_mp); 3533 tcp->tcp_urp_mark_mp = NULL; 3534 flags &= ~TH_SEND_URP_MARK; 3535 } else if (tcp->tcp_urp_mark_mp != NULL) { 3536 flags |= TH_SEND_URP_MARK; 3537 tcp->tcp_urp_mark_mp->b_flag &= 3538 ~MSGNOTMARKNEXT; 3539 tcp->tcp_urp_mark_mp->b_flag |= 3540 MSGMARKNEXT; 3541 } 3542 } 3543 #ifdef DEBUG 3544 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3545 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 3546 seg_len, flags, 3547 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3548 #endif /* DEBUG */ 3549 } 3550 #ifdef DEBUG 3551 else { 3552 /* Data left until we hit mark */ 3553 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3554 "tcp_rput: URP %d bytes left, %s", 3555 urp - seg_len, tcp_display(tcp, NULL, 3556 DISP_PORT_ONLY)); 3557 } 3558 #endif /* DEBUG */ 3559 } 3560 3561 process_ack: 3562 if (!(flags & TH_ACK)) { 3563 freemsg(mp); 3564 goto xmit_check; 3565 } 3566 } 3567 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 3568 3569 if (bytes_acked > 0) 3570 tcp->tcp_ip_forward_progress = B_TRUE; 3571 if (tcp->tcp_state == TCPS_SYN_RCVD) { 3572 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 3573 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 3574 /* 3-way handshake complete - pass up the T_CONN_IND */ 3575 tcp_t *listener = tcp->tcp_listener; 3576 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 3577 3578 tcp->tcp_tconnind_started = B_TRUE; 3579 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3580 /* 3581 * We are here means eager is fine but it can 3582 * get a TH_RST at any point between now and till 3583 * accept completes and disappear. We need to 3584 * ensure that reference to eager is valid after 3585 * we get out of eager's perimeter. So we do 3586 * an extra refhold. 3587 */ 3588 CONN_INC_REF(connp); 3589 3590 /* 3591 * The listener also exists because of the refhold 3592 * done in tcp_input_listener. Its possible that it 3593 * might have closed. We will check that once we 3594 * get inside listeners context. 3595 */ 3596 CONN_INC_REF(listener->tcp_connp); 3597 if (listener->tcp_connp->conn_sqp == 3598 connp->conn_sqp) { 3599 /* 3600 * We optimize by not calling an SQUEUE_ENTER 3601 * on the listener since we know that the 3602 * listener and eager squeues are the same. 3603 * We are able to make this check safely only 3604 * because neither the eager nor the listener 3605 * can change its squeue. Only an active connect 3606 * can change its squeue 3607 */ 3608 tcp_send_conn_ind(listener->tcp_connp, mp, 3609 listener->tcp_connp->conn_sqp); 3610 CONN_DEC_REF(listener->tcp_connp); 3611 } else if (!tcp->tcp_loopback) { 3612 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3613 mp, tcp_send_conn_ind, 3614 listener->tcp_connp, NULL, SQ_FILL, 3615 SQTAG_TCP_CONN_IND); 3616 } else { 3617 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3618 mp, tcp_send_conn_ind, 3619 listener->tcp_connp, NULL, SQ_NODRAIN, 3620 SQTAG_TCP_CONN_IND); 3621 } 3622 } 3623 3624 /* 3625 * We are seeing the final ack in the three way 3626 * hand shake of a active open'ed connection 3627 * so we must send up a T_CONN_CON 3628 * 3629 * tcp_sendmsg() checks tcp_state without entering 3630 * the squeue so tcp_state should be updated before 3631 * sending up connection confirmation. 3632 */ 3633 tcp->tcp_state = TCPS_ESTABLISHED; 3634 3635 if (tcp->tcp_active_open) { 3636 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 3637 freemsg(mp); 3638 tcp->tcp_state = TCPS_SYN_RCVD; 3639 return; 3640 } 3641 /* 3642 * Don't fuse the loopback endpoints for 3643 * simultaneous active opens. 3644 */ 3645 if (tcp->tcp_loopback) { 3646 TCP_STAT(tcps, tcp_fusion_unfusable); 3647 tcp->tcp_unfusable = B_TRUE; 3648 } 3649 } 3650 TCPS_CONN_INC(tcps); 3651 3652 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 3653 bytes_acked--; 3654 /* SYN was acked - making progress */ 3655 tcp->tcp_ip_forward_progress = B_TRUE; 3656 3657 /* 3658 * If SYN was retransmitted, need to reset all 3659 * retransmission info as this segment will be 3660 * treated as a dup ACK. 3661 */ 3662 if (tcp->tcp_rexmit) { 3663 tcp->tcp_rexmit = B_FALSE; 3664 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3665 tcp->tcp_rexmit_max = tcp->tcp_snxt; 3666 tcp->tcp_snd_burst = tcp->tcp_localnet ? 3667 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 3668 tcp->tcp_ms_we_have_waited = 0; 3669 tcp->tcp_cwnd = mss; 3670 } 3671 3672 /* 3673 * We set the send window to zero here. 3674 * This is needed if there is data to be 3675 * processed already on the queue. 3676 * Later (at swnd_update label), the 3677 * "new_swnd > tcp_swnd" condition is satisfied 3678 * the XMIT_NEEDED flag is set in the current 3679 * (SYN_RCVD) state. This ensures tcp_wput_data() is 3680 * called if there is already data on queue in 3681 * this state. 3682 */ 3683 tcp->tcp_swnd = 0; 3684 3685 if (new_swnd > tcp->tcp_max_swnd) 3686 tcp->tcp_max_swnd = new_swnd; 3687 tcp->tcp_swl1 = seg_seq; 3688 tcp->tcp_swl2 = seg_ack; 3689 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 3690 3691 /* Fuse when both sides are in ESTABLISHED state */ 3692 if (tcp->tcp_loopback && do_tcp_fusion) 3693 tcp_fuse(tcp, iphdr, tcpha); 3694 3695 } 3696 /* This code follows 4.4BSD-Lite2 mostly. */ 3697 if (bytes_acked < 0) 3698 goto est; 3699 3700 /* 3701 * If TCP is ECN capable and the congestion experience bit is 3702 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 3703 * done once per window (or more loosely, per RTT). 3704 */ 3705 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 3706 tcp->tcp_cwr = B_FALSE; 3707 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 3708 if (!tcp->tcp_cwr) { 3709 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 3710 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 3711 tcp->tcp_cwnd = npkt * mss; 3712 /* 3713 * If the cwnd is 0, use the timer to clock out 3714 * new segments. This is required by the ECN spec. 3715 */ 3716 if (npkt == 0) { 3717 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 3718 /* 3719 * This makes sure that when the ACK comes 3720 * back, we will increase tcp_cwnd by 1 MSS. 3721 */ 3722 tcp->tcp_cwnd_cnt = 0; 3723 } 3724 tcp->tcp_cwr = B_TRUE; 3725 /* 3726 * This marks the end of the current window of in 3727 * flight data. That is why we don't use 3728 * tcp_suna + tcp_swnd. Only data in flight can 3729 * provide ECN info. 3730 */ 3731 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 3732 tcp->tcp_ecn_cwr_sent = B_FALSE; 3733 } 3734 } 3735 3736 mp1 = tcp->tcp_xmit_head; 3737 if (bytes_acked == 0) { 3738 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 3739 int dupack_cnt; 3740 3741 TCPS_BUMP_MIB(tcps, tcpInDupAck); 3742 /* 3743 * Fast retransmit. When we have seen exactly three 3744 * identical ACKs while we have unacked data 3745 * outstanding we take it as a hint that our peer 3746 * dropped something. 3747 * 3748 * If TCP is retransmitting, don't do fast retransmit. 3749 */ 3750 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 3751 ! tcp->tcp_rexmit) { 3752 /* Do Limited Transmit */ 3753 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 3754 tcps->tcps_dupack_fast_retransmit) { 3755 /* 3756 * RFC 3042 3757 * 3758 * What we need to do is temporarily 3759 * increase tcp_cwnd so that new 3760 * data can be sent if it is allowed 3761 * by the receive window (tcp_rwnd). 3762 * tcp_wput_data() will take care of 3763 * the rest. 3764 * 3765 * If the connection is SACK capable, 3766 * only do limited xmit when there 3767 * is SACK info. 3768 * 3769 * Note how tcp_cwnd is incremented. 3770 * The first dup ACK will increase 3771 * it by 1 MSS. The second dup ACK 3772 * will increase it by 2 MSS. This 3773 * means that only 1 new segment will 3774 * be sent for each dup ACK. 3775 */ 3776 if (tcp->tcp_unsent > 0 && 3777 (!tcp->tcp_snd_sack_ok || 3778 (tcp->tcp_snd_sack_ok && 3779 tcp->tcp_notsack_list != NULL))) { 3780 tcp->tcp_cwnd += mss << 3781 (tcp->tcp_dupack_cnt - 1); 3782 flags |= TH_LIMIT_XMIT; 3783 } 3784 } else if (dupack_cnt == 3785 tcps->tcps_dupack_fast_retransmit) { 3786 3787 /* 3788 * If we have reduced tcp_ssthresh 3789 * because of ECN, do not reduce it again 3790 * unless it is already one window of data 3791 * away. After one window of data, tcp_cwr 3792 * should then be cleared. Note that 3793 * for non ECN capable connection, tcp_cwr 3794 * should always be false. 3795 * 3796 * Adjust cwnd since the duplicate 3797 * ack indicates that a packet was 3798 * dropped (due to congestion.) 3799 */ 3800 if (!tcp->tcp_cwr) { 3801 npkt = ((tcp->tcp_snxt - 3802 tcp->tcp_suna) >> 1) / mss; 3803 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 3804 mss; 3805 tcp->tcp_cwnd = (npkt + 3806 tcp->tcp_dupack_cnt) * mss; 3807 } 3808 if (tcp->tcp_ecn_ok) { 3809 tcp->tcp_cwr = B_TRUE; 3810 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 3811 tcp->tcp_ecn_cwr_sent = B_FALSE; 3812 } 3813 3814 /* 3815 * We do Hoe's algorithm. Refer to her 3816 * paper "Improving the Start-up Behavior 3817 * of a Congestion Control Scheme for TCP," 3818 * appeared in SIGCOMM'96. 3819 * 3820 * Save highest seq no we have sent so far. 3821 * Be careful about the invisible FIN byte. 3822 */ 3823 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 3824 (tcp->tcp_unsent == 0)) { 3825 tcp->tcp_rexmit_max = tcp->tcp_fss; 3826 } else { 3827 tcp->tcp_rexmit_max = tcp->tcp_snxt; 3828 } 3829 3830 /* 3831 * Do not allow bursty traffic during. 3832 * fast recovery. Refer to Fall and Floyd's 3833 * paper "Simulation-based Comparisons of 3834 * Tahoe, Reno and SACK TCP" (in CCR?) 3835 * This is a best current practise. 3836 */ 3837 tcp->tcp_snd_burst = TCP_CWND_SS; 3838 3839 /* 3840 * For SACK: 3841 * Calculate tcp_pipe, which is the 3842 * estimated number of bytes in 3843 * network. 3844 * 3845 * tcp_fack is the highest sack'ed seq num 3846 * TCP has received. 3847 * 3848 * tcp_pipe is explained in the above quoted 3849 * Fall and Floyd's paper. tcp_fack is 3850 * explained in Mathis and Mahdavi's 3851 * "Forward Acknowledgment: Refining TCP 3852 * Congestion Control" in SIGCOMM '96. 3853 */ 3854 if (tcp->tcp_snd_sack_ok) { 3855 if (tcp->tcp_notsack_list != NULL) { 3856 tcp->tcp_pipe = tcp->tcp_snxt - 3857 tcp->tcp_fack; 3858 tcp->tcp_sack_snxt = seg_ack; 3859 flags |= TH_NEED_SACK_REXMIT; 3860 } else { 3861 /* 3862 * Always initialize tcp_pipe 3863 * even though we don't have 3864 * any SACK info. If later 3865 * we get SACK info and 3866 * tcp_pipe is not initialized, 3867 * funny things will happen. 3868 */ 3869 tcp->tcp_pipe = 3870 tcp->tcp_cwnd_ssthresh; 3871 } 3872 } else { 3873 flags |= TH_REXMIT_NEEDED; 3874 } /* tcp_snd_sack_ok */ 3875 3876 } else { 3877 /* 3878 * Here we perform congestion 3879 * avoidance, but NOT slow start. 3880 * This is known as the Fast 3881 * Recovery Algorithm. 3882 */ 3883 if (tcp->tcp_snd_sack_ok && 3884 tcp->tcp_notsack_list != NULL) { 3885 flags |= TH_NEED_SACK_REXMIT; 3886 tcp->tcp_pipe -= mss; 3887 if (tcp->tcp_pipe < 0) 3888 tcp->tcp_pipe = 0; 3889 } else { 3890 /* 3891 * We know that one more packet has 3892 * left the pipe thus we can update 3893 * cwnd. 3894 */ 3895 cwnd = tcp->tcp_cwnd + mss; 3896 if (cwnd > tcp->tcp_cwnd_max) 3897 cwnd = tcp->tcp_cwnd_max; 3898 tcp->tcp_cwnd = cwnd; 3899 if (tcp->tcp_unsent > 0) 3900 flags |= TH_XMIT_NEEDED; 3901 } 3902 } 3903 } 3904 } else if (tcp->tcp_zero_win_probe) { 3905 /* 3906 * If the window has opened, need to arrange 3907 * to send additional data. 3908 */ 3909 if (new_swnd != 0) { 3910 /* tcp_suna != tcp_snxt */ 3911 /* Packet contains a window update */ 3912 TCPS_BUMP_MIB(tcps, tcpInWinUpdate); 3913 tcp->tcp_zero_win_probe = 0; 3914 tcp->tcp_timer_backoff = 0; 3915 tcp->tcp_ms_we_have_waited = 0; 3916 3917 /* 3918 * Transmit starting with tcp_suna since 3919 * the one byte probe is not ack'ed. 3920 * If TCP has sent more than one identical 3921 * probe, tcp_rexmit will be set. That means 3922 * tcp_ss_rexmit() will send out the one 3923 * byte along with new data. Otherwise, 3924 * fake the retransmission. 3925 */ 3926 flags |= TH_XMIT_NEEDED; 3927 if (!tcp->tcp_rexmit) { 3928 tcp->tcp_rexmit = B_TRUE; 3929 tcp->tcp_dupack_cnt = 0; 3930 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 3931 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 3932 } 3933 } 3934 } 3935 goto swnd_update; 3936 } 3937 3938 /* 3939 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 3940 * If the ACK value acks something that we have not yet sent, it might 3941 * be an old duplicate segment. Send an ACK to re-synchronize the 3942 * other side. 3943 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 3944 * state is handled above, so we can always just drop the segment and 3945 * send an ACK here. 3946 * 3947 * In the case where the peer shrinks the window, we see the new window 3948 * update, but all the data sent previously is queued up by the peer. 3949 * To account for this, in tcp_process_shrunk_swnd(), the sequence 3950 * number, which was already sent, and within window, is recorded. 3951 * tcp_snxt is then updated. 3952 * 3953 * If the window has previously shrunk, and an ACK for data not yet 3954 * sent, according to tcp_snxt is recieved, it may still be valid. If 3955 * the ACK is for data within the window at the time the window was 3956 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 3957 * the sequence number ACK'ed. 3958 * 3959 * If the ACK covers all the data sent at the time the window was 3960 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 3961 * 3962 * Should we send ACKs in response to ACK only segments? 3963 */ 3964 3965 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 3966 if ((tcp->tcp_is_wnd_shrnk) && 3967 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 3968 uint32_t data_acked_ahead_snxt; 3969 3970 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 3971 tcp_update_xmit_tail(tcp, seg_ack); 3972 tcp->tcp_unsent -= data_acked_ahead_snxt; 3973 } else { 3974 TCPS_BUMP_MIB(tcps, tcpInAckUnsent); 3975 /* drop the received segment */ 3976 freemsg(mp); 3977 3978 /* 3979 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 3980 * greater than 0, check if the number of such 3981 * bogus ACks is greater than that count. If yes, 3982 * don't send back any ACK. This prevents TCP from 3983 * getting into an ACK storm if somehow an attacker 3984 * successfully spoofs an acceptable segment to our 3985 * peer. If this continues (count > 2 X threshold), 3986 * we should abort this connection. 3987 */ 3988 if (tcp_drop_ack_unsent_cnt > 0 && 3989 ++tcp->tcp_in_ack_unsent > 3990 tcp_drop_ack_unsent_cnt) { 3991 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 3992 if (tcp->tcp_in_ack_unsent > 2 * 3993 tcp_drop_ack_unsent_cnt) { 3994 (void) tcp_clean_death(tcp, EPROTO); 3995 } 3996 return; 3997 } 3998 mp = tcp_ack_mp(tcp); 3999 if (mp != NULL) { 4000 BUMP_LOCAL(tcp->tcp_obsegs); 4001 TCPS_BUMP_MIB(tcps, tcpOutAck); 4002 tcp_send_data(tcp, mp); 4003 } 4004 return; 4005 } 4006 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 4007 tcp->tcp_snxt_shrunk)) { 4008 tcp->tcp_is_wnd_shrnk = B_FALSE; 4009 } 4010 4011 /* 4012 * TCP gets a new ACK, update the notsack'ed list to delete those 4013 * blocks that are covered by this ACK. 4014 */ 4015 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 4016 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 4017 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 4018 } 4019 4020 /* 4021 * If we got an ACK after fast retransmit, check to see 4022 * if it is a partial ACK. If it is not and the congestion 4023 * window was inflated to account for the other side's 4024 * cached packets, retract it. If it is, do Hoe's algorithm. 4025 */ 4026 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 4027 ASSERT(tcp->tcp_rexmit == B_FALSE); 4028 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 4029 tcp->tcp_dupack_cnt = 0; 4030 /* 4031 * Restore the orig tcp_cwnd_ssthresh after 4032 * fast retransmit phase. 4033 */ 4034 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 4035 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 4036 } 4037 tcp->tcp_rexmit_max = seg_ack; 4038 tcp->tcp_cwnd_cnt = 0; 4039 tcp->tcp_snd_burst = tcp->tcp_localnet ? 4040 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 4041 4042 /* 4043 * Remove all notsack info to avoid confusion with 4044 * the next fast retrasnmit/recovery phase. 4045 */ 4046 if (tcp->tcp_snd_sack_ok) { 4047 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4048 tcp); 4049 } 4050 } else { 4051 if (tcp->tcp_snd_sack_ok && 4052 tcp->tcp_notsack_list != NULL) { 4053 flags |= TH_NEED_SACK_REXMIT; 4054 tcp->tcp_pipe -= mss; 4055 if (tcp->tcp_pipe < 0) 4056 tcp->tcp_pipe = 0; 4057 } else { 4058 /* 4059 * Hoe's algorithm: 4060 * 4061 * Retransmit the unack'ed segment and 4062 * restart fast recovery. Note that we 4063 * need to scale back tcp_cwnd to the 4064 * original value when we started fast 4065 * recovery. This is to prevent overly 4066 * aggressive behaviour in sending new 4067 * segments. 4068 */ 4069 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 4070 tcps->tcps_dupack_fast_retransmit * mss; 4071 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 4072 flags |= TH_REXMIT_NEEDED; 4073 } 4074 } 4075 } else { 4076 tcp->tcp_dupack_cnt = 0; 4077 if (tcp->tcp_rexmit) { 4078 /* 4079 * TCP is retranmitting. If the ACK ack's all 4080 * outstanding data, update tcp_rexmit_max and 4081 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 4082 * to the correct value. 4083 * 4084 * Note that SEQ_LEQ() is used. This is to avoid 4085 * unnecessary fast retransmit caused by dup ACKs 4086 * received when TCP does slow start retransmission 4087 * after a time out. During this phase, TCP may 4088 * send out segments which are already received. 4089 * This causes dup ACKs to be sent back. 4090 */ 4091 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 4092 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 4093 tcp->tcp_rexmit_nxt = seg_ack; 4094 } 4095 if (seg_ack != tcp->tcp_rexmit_max) { 4096 flags |= TH_XMIT_NEEDED; 4097 } 4098 } else { 4099 tcp->tcp_rexmit = B_FALSE; 4100 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4101 tcp->tcp_snd_burst = tcp->tcp_localnet ? 4102 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 4103 } 4104 tcp->tcp_ms_we_have_waited = 0; 4105 } 4106 } 4107 4108 TCPS_BUMP_MIB(tcps, tcpInAckSegs); 4109 TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked); 4110 tcp->tcp_suna = seg_ack; 4111 if (tcp->tcp_zero_win_probe != 0) { 4112 tcp->tcp_zero_win_probe = 0; 4113 tcp->tcp_timer_backoff = 0; 4114 } 4115 4116 /* 4117 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 4118 * Note that it cannot be the SYN being ack'ed. The code flow 4119 * will not reach here. 4120 */ 4121 if (mp1 == NULL) { 4122 goto fin_acked; 4123 } 4124 4125 /* 4126 * Update the congestion window. 4127 * 4128 * If TCP is not ECN capable or TCP is ECN capable but the 4129 * congestion experience bit is not set, increase the tcp_cwnd as 4130 * usual. 4131 */ 4132 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 4133 cwnd = tcp->tcp_cwnd; 4134 add = mss; 4135 4136 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 4137 /* 4138 * This is to prevent an increase of less than 1 MSS of 4139 * tcp_cwnd. With partial increase, tcp_wput_data() 4140 * may send out tinygrams in order to preserve mblk 4141 * boundaries. 4142 * 4143 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 4144 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 4145 * increased by 1 MSS for every RTTs. 4146 */ 4147 if (tcp->tcp_cwnd_cnt <= 0) { 4148 tcp->tcp_cwnd_cnt = cwnd + add; 4149 } else { 4150 tcp->tcp_cwnd_cnt -= add; 4151 add = 0; 4152 } 4153 } 4154 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 4155 } 4156 4157 /* See if the latest urgent data has been acknowledged */ 4158 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 4159 SEQ_GT(seg_ack, tcp->tcp_urg)) 4160 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 4161 4162 /* Can we update the RTT estimates? */ 4163 if (tcp->tcp_snd_ts_ok) { 4164 /* Ignore zero timestamp echo-reply. */ 4165 if (tcpopt.tcp_opt_ts_ecr != 0) { 4166 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 4167 (int32_t)tcpopt.tcp_opt_ts_ecr); 4168 } 4169 4170 /* If needed, restart the timer. */ 4171 if (tcp->tcp_set_timer == 1) { 4172 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4173 tcp->tcp_set_timer = 0; 4174 } 4175 /* 4176 * Update tcp_csuna in case the other side stops sending 4177 * us timestamps. 4178 */ 4179 tcp->tcp_csuna = tcp->tcp_snxt; 4180 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 4181 /* 4182 * An ACK sequence we haven't seen before, so get the RTT 4183 * and update the RTO. But first check if the timestamp is 4184 * valid to use. 4185 */ 4186 if ((mp1->b_next != NULL) && 4187 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 4188 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 4189 (int32_t)(intptr_t)mp1->b_prev); 4190 else 4191 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4192 4193 /* Remeber the last sequence to be ACKed */ 4194 tcp->tcp_csuna = seg_ack; 4195 if (tcp->tcp_set_timer == 1) { 4196 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4197 tcp->tcp_set_timer = 0; 4198 } 4199 } else { 4200 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4201 } 4202 4203 /* Eat acknowledged bytes off the xmit queue. */ 4204 for (;;) { 4205 mblk_t *mp2; 4206 uchar_t *wptr; 4207 4208 wptr = mp1->b_wptr; 4209 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 4210 bytes_acked -= (int)(wptr - mp1->b_rptr); 4211 if (bytes_acked < 0) { 4212 mp1->b_rptr = wptr + bytes_acked; 4213 /* 4214 * Set a new timestamp if all the bytes timed by the 4215 * old timestamp have been ack'ed. 4216 */ 4217 if (SEQ_GT(seg_ack, 4218 (uint32_t)(uintptr_t)(mp1->b_next))) { 4219 mp1->b_prev = 4220 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 4221 mp1->b_next = NULL; 4222 } 4223 break; 4224 } 4225 mp1->b_next = NULL; 4226 mp1->b_prev = NULL; 4227 mp2 = mp1; 4228 mp1 = mp1->b_cont; 4229 4230 /* 4231 * This notification is required for some zero-copy 4232 * clients to maintain a copy semantic. After the data 4233 * is ack'ed, client is safe to modify or reuse the buffer. 4234 */ 4235 if (tcp->tcp_snd_zcopy_aware && 4236 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 4237 tcp_zcopy_notify(tcp); 4238 freeb(mp2); 4239 if (bytes_acked == 0) { 4240 if (mp1 == NULL) { 4241 /* Everything is ack'ed, clear the tail. */ 4242 tcp->tcp_xmit_tail = NULL; 4243 /* 4244 * Cancel the timer unless we are still 4245 * waiting for an ACK for the FIN packet. 4246 */ 4247 if (tcp->tcp_timer_tid != 0 && 4248 tcp->tcp_snxt == tcp->tcp_suna) { 4249 (void) TCP_TIMER_CANCEL(tcp, 4250 tcp->tcp_timer_tid); 4251 tcp->tcp_timer_tid = 0; 4252 } 4253 goto pre_swnd_update; 4254 } 4255 if (mp2 != tcp->tcp_xmit_tail) 4256 break; 4257 tcp->tcp_xmit_tail = mp1; 4258 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 4259 (uintptr_t)INT_MAX); 4260 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 4261 mp1->b_rptr); 4262 break; 4263 } 4264 if (mp1 == NULL) { 4265 /* 4266 * More was acked but there is nothing more 4267 * outstanding. This means that the FIN was 4268 * just acked or that we're talking to a clown. 4269 */ 4270 fin_acked: 4271 ASSERT(tcp->tcp_fin_sent); 4272 tcp->tcp_xmit_tail = NULL; 4273 if (tcp->tcp_fin_sent) { 4274 /* FIN was acked - making progress */ 4275 if (!tcp->tcp_fin_acked) 4276 tcp->tcp_ip_forward_progress = B_TRUE; 4277 tcp->tcp_fin_acked = B_TRUE; 4278 if (tcp->tcp_linger_tid != 0 && 4279 TCP_TIMER_CANCEL(tcp, 4280 tcp->tcp_linger_tid) >= 0) { 4281 tcp_stop_lingering(tcp); 4282 freemsg(mp); 4283 mp = NULL; 4284 } 4285 } else { 4286 /* 4287 * We should never get here because 4288 * we have already checked that the 4289 * number of bytes ack'ed should be 4290 * smaller than or equal to what we 4291 * have sent so far (it is the 4292 * acceptability check of the ACK). 4293 * We can only get here if the send 4294 * queue is corrupted. 4295 * 4296 * Terminate the connection and 4297 * panic the system. It is better 4298 * for us to panic instead of 4299 * continuing to avoid other disaster. 4300 */ 4301 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 4302 tcp->tcp_rnxt, TH_RST|TH_ACK); 4303 panic("Memory corruption " 4304 "detected for connection %s.", 4305 tcp_display(tcp, NULL, 4306 DISP_ADDR_AND_PORT)); 4307 /*NOTREACHED*/ 4308 } 4309 goto pre_swnd_update; 4310 } 4311 ASSERT(mp2 != tcp->tcp_xmit_tail); 4312 } 4313 if (tcp->tcp_unsent) { 4314 flags |= TH_XMIT_NEEDED; 4315 } 4316 pre_swnd_update: 4317 tcp->tcp_xmit_head = mp1; 4318 swnd_update: 4319 /* 4320 * The following check is different from most other implementations. 4321 * For bi-directional transfer, when segments are dropped, the 4322 * "normal" check will not accept a window update in those 4323 * retransmitted segemnts. Failing to do that, TCP may send out 4324 * segments which are outside receiver's window. As TCP accepts 4325 * the ack in those retransmitted segments, if the window update in 4326 * the same segment is not accepted, TCP will incorrectly calculates 4327 * that it can send more segments. This can create a deadlock 4328 * with the receiver if its window becomes zero. 4329 */ 4330 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 4331 SEQ_LT(tcp->tcp_swl1, seg_seq) || 4332 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 4333 /* 4334 * The criteria for update is: 4335 * 4336 * 1. the segment acknowledges some data. Or 4337 * 2. the segment is new, i.e. it has a higher seq num. Or 4338 * 3. the segment is not old and the advertised window is 4339 * larger than the previous advertised window. 4340 */ 4341 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 4342 flags |= TH_XMIT_NEEDED; 4343 tcp->tcp_swnd = new_swnd; 4344 if (new_swnd > tcp->tcp_max_swnd) 4345 tcp->tcp_max_swnd = new_swnd; 4346 tcp->tcp_swl1 = seg_seq; 4347 tcp->tcp_swl2 = seg_ack; 4348 } 4349 est: 4350 if (tcp->tcp_state > TCPS_ESTABLISHED) { 4351 4352 switch (tcp->tcp_state) { 4353 case TCPS_FIN_WAIT_1: 4354 if (tcp->tcp_fin_acked) { 4355 tcp->tcp_state = TCPS_FIN_WAIT_2; 4356 /* 4357 * We implement the non-standard BSD/SunOS 4358 * FIN_WAIT_2 flushing algorithm. 4359 * If there is no user attached to this 4360 * TCP endpoint, then this TCP struct 4361 * could hang around forever in FIN_WAIT_2 4362 * state if the peer forgets to send us 4363 * a FIN. To prevent this, we wait only 4364 * 2*MSL (a convenient time value) for 4365 * the FIN to arrive. If it doesn't show up, 4366 * we flush the TCP endpoint. This algorithm, 4367 * though a violation of RFC-793, has worked 4368 * for over 10 years in BSD systems. 4369 * Note: SunOS 4.x waits 675 seconds before 4370 * flushing the FIN_WAIT_2 connection. 4371 */ 4372 TCP_TIMER_RESTART(tcp, 4373 tcps->tcps_fin_wait_2_flush_interval); 4374 } 4375 break; 4376 case TCPS_FIN_WAIT_2: 4377 break; /* Shutdown hook? */ 4378 case TCPS_LAST_ACK: 4379 freemsg(mp); 4380 if (tcp->tcp_fin_acked) { 4381 (void) tcp_clean_death(tcp, 0); 4382 return; 4383 } 4384 goto xmit_check; 4385 case TCPS_CLOSING: 4386 if (tcp->tcp_fin_acked) 4387 SET_TIME_WAIT(tcps, tcp, connp); 4388 /*FALLTHRU*/ 4389 case TCPS_CLOSE_WAIT: 4390 freemsg(mp); 4391 goto xmit_check; 4392 default: 4393 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 4394 break; 4395 } 4396 } 4397 if (flags & TH_FIN) { 4398 /* Make sure we ack the fin */ 4399 flags |= TH_ACK_NEEDED; 4400 if (!tcp->tcp_fin_rcvd) { 4401 tcp->tcp_fin_rcvd = B_TRUE; 4402 tcp->tcp_rnxt++; 4403 tcpha = tcp->tcp_tcpha; 4404 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4405 4406 /* 4407 * Generate the ordrel_ind at the end unless we 4408 * are an eager guy. 4409 * In the eager case tcp_rsrv will do this when run 4410 * after tcp_accept is done. 4411 */ 4412 if (tcp->tcp_listener == NULL && 4413 !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) 4414 flags |= TH_ORDREL_NEEDED; 4415 switch (tcp->tcp_state) { 4416 case TCPS_SYN_RCVD: 4417 case TCPS_ESTABLISHED: 4418 tcp->tcp_state = TCPS_CLOSE_WAIT; 4419 /* Keepalive? */ 4420 break; 4421 case TCPS_FIN_WAIT_1: 4422 if (!tcp->tcp_fin_acked) { 4423 tcp->tcp_state = TCPS_CLOSING; 4424 break; 4425 } 4426 /* FALLTHRU */ 4427 case TCPS_FIN_WAIT_2: 4428 SET_TIME_WAIT(tcps, tcp, connp); 4429 if (seg_len) { 4430 /* 4431 * implies data piggybacked on FIN. 4432 * break to handle data. 4433 */ 4434 break; 4435 } 4436 freemsg(mp); 4437 goto ack_check; 4438 } 4439 } 4440 } 4441 if (mp == NULL) 4442 goto xmit_check; 4443 if (seg_len == 0) { 4444 freemsg(mp); 4445 goto xmit_check; 4446 } 4447 if (mp->b_rptr == mp->b_wptr) { 4448 /* 4449 * The header has been consumed, so we remove the 4450 * zero-length mblk here. 4451 */ 4452 mp1 = mp; 4453 mp = mp->b_cont; 4454 freeb(mp1); 4455 } 4456 update_ack: 4457 tcpha = tcp->tcp_tcpha; 4458 tcp->tcp_rack_cnt++; 4459 { 4460 uint32_t cur_max; 4461 4462 cur_max = tcp->tcp_rack_cur_max; 4463 if (tcp->tcp_rack_cnt >= cur_max) { 4464 /* 4465 * We have more unacked data than we should - send 4466 * an ACK now. 4467 */ 4468 flags |= TH_ACK_NEEDED; 4469 cur_max++; 4470 if (cur_max > tcp->tcp_rack_abs_max) 4471 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 4472 else 4473 tcp->tcp_rack_cur_max = cur_max; 4474 } else if (TCP_IS_DETACHED(tcp)) { 4475 /* We don't have an ACK timer for detached TCP. */ 4476 flags |= TH_ACK_NEEDED; 4477 } else if (seg_len < mss) { 4478 /* 4479 * If we get a segment that is less than an mss, and we 4480 * already have unacknowledged data, and the amount 4481 * unacknowledged is not a multiple of mss, then we 4482 * better generate an ACK now. Otherwise, this may be 4483 * the tail piece of a transaction, and we would rather 4484 * wait for the response. 4485 */ 4486 uint32_t udif; 4487 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 4488 (uintptr_t)INT_MAX); 4489 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 4490 if (udif && (udif % mss)) 4491 flags |= TH_ACK_NEEDED; 4492 else 4493 flags |= TH_ACK_TIMER_NEEDED; 4494 } else { 4495 /* Start delayed ack timer */ 4496 flags |= TH_ACK_TIMER_NEEDED; 4497 } 4498 } 4499 tcp->tcp_rnxt += seg_len; 4500 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4501 4502 if (mp == NULL) 4503 goto xmit_check; 4504 4505 /* Update SACK list */ 4506 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 4507 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 4508 &(tcp->tcp_num_sack_blk)); 4509 } 4510 4511 if (tcp->tcp_urp_mp) { 4512 tcp->tcp_urp_mp->b_cont = mp; 4513 mp = tcp->tcp_urp_mp; 4514 tcp->tcp_urp_mp = NULL; 4515 /* Ready for a new signal. */ 4516 tcp->tcp_urp_last_valid = B_FALSE; 4517 #ifdef DEBUG 4518 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4519 "tcp_rput: sending exdata_ind %s", 4520 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4521 #endif /* DEBUG */ 4522 } 4523 4524 /* 4525 * Check for ancillary data changes compared to last segment. 4526 */ 4527 if (connp->conn_recv_ancillary.crb_all != 0) { 4528 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 4529 if (mp == NULL) 4530 return; 4531 } 4532 4533 if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 4534 /* 4535 * Side queue inbound data until the accept happens. 4536 * tcp_accept/tcp_rput drains this when the accept happens. 4537 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 4538 * T_EXDATA_IND) it is queued on b_next. 4539 * XXX Make urgent data use this. Requires: 4540 * Removing tcp_listener check for TH_URG 4541 * Making M_PCPROTO and MARK messages skip the eager case 4542 */ 4543 4544 if (tcp->tcp_kssl_pending) { 4545 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 4546 mblk_t *, mp); 4547 tcp_kssl_input(tcp, mp, ira->ira_cred); 4548 } else { 4549 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4550 } 4551 } else if (IPCL_IS_NONSTR(connp)) { 4552 /* 4553 * Non-STREAMS socket 4554 * 4555 * Note that no KSSL processing is done here, because 4556 * KSSL is not supported for non-STREAMS sockets. 4557 */ 4558 boolean_t push = flags & (TH_PUSH|TH_FIN); 4559 int error; 4560 4561 if ((*connp->conn_upcalls->su_recv)( 4562 connp->conn_upper_handle, 4563 mp, seg_len, 0, &error, &push) <= 0) { 4564 /* 4565 * We should never be in middle of a 4566 * fallback, the squeue guarantees that. 4567 */ 4568 ASSERT(error != EOPNOTSUPP); 4569 if (error == ENOSPC) 4570 tcp->tcp_rwnd -= seg_len; 4571 } else if (push) { 4572 /* PUSH bit set and sockfs is not flow controlled */ 4573 flags |= tcp_rwnd_reopen(tcp); 4574 } 4575 } else { 4576 /* STREAMS socket */ 4577 if (mp->b_datap->db_type != M_DATA || 4578 (flags & TH_MARKNEXT_NEEDED)) { 4579 if (tcp->tcp_rcv_list != NULL) { 4580 flags |= tcp_rcv_drain(tcp); 4581 } 4582 ASSERT(tcp->tcp_rcv_list == NULL || 4583 tcp->tcp_fused_sigurg); 4584 4585 if (flags & TH_MARKNEXT_NEEDED) { 4586 #ifdef DEBUG 4587 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4588 "tcp_rput: sending MSGMARKNEXT %s", 4589 tcp_display(tcp, NULL, 4590 DISP_PORT_ONLY)); 4591 #endif /* DEBUG */ 4592 mp->b_flag |= MSGMARKNEXT; 4593 flags &= ~TH_MARKNEXT_NEEDED; 4594 } 4595 4596 /* Does this need SSL processing first? */ 4597 if ((tcp->tcp_kssl_ctx != NULL) && 4598 (DB_TYPE(mp) == M_DATA)) { 4599 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 4600 mblk_t *, mp); 4601 tcp_kssl_input(tcp, mp, ira->ira_cred); 4602 } else { 4603 if (is_system_labeled()) 4604 tcp_setcred_data(mp, ira); 4605 4606 putnext(connp->conn_rq, mp); 4607 if (!canputnext(connp->conn_rq)) 4608 tcp->tcp_rwnd -= seg_len; 4609 } 4610 } else if ((tcp->tcp_kssl_ctx != NULL) && 4611 (DB_TYPE(mp) == M_DATA)) { 4612 /* Does this need SSL processing first? */ 4613 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 4614 tcp_kssl_input(tcp, mp, ira->ira_cred); 4615 } else if ((flags & (TH_PUSH|TH_FIN)) || 4616 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 4617 if (tcp->tcp_rcv_list != NULL) { 4618 /* 4619 * Enqueue the new segment first and then 4620 * call tcp_rcv_drain() to send all data 4621 * up. The other way to do this is to 4622 * send all queued data up and then call 4623 * putnext() to send the new segment up. 4624 * This way can remove the else part later 4625 * on. 4626 * 4627 * We don't do this to avoid one more call to 4628 * canputnext() as tcp_rcv_drain() needs to 4629 * call canputnext(). 4630 */ 4631 tcp_rcv_enqueue(tcp, mp, seg_len, 4632 ira->ira_cred); 4633 flags |= tcp_rcv_drain(tcp); 4634 } else { 4635 if (is_system_labeled()) 4636 tcp_setcred_data(mp, ira); 4637 4638 putnext(connp->conn_rq, mp); 4639 if (!canputnext(connp->conn_rq)) 4640 tcp->tcp_rwnd -= seg_len; 4641 } 4642 } else { 4643 /* 4644 * Enqueue all packets when processing an mblk 4645 * from the co queue and also enqueue normal packets. 4646 */ 4647 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4648 } 4649 /* 4650 * Make sure the timer is running if we have data waiting 4651 * for a push bit. This provides resiliency against 4652 * implementations that do not correctly generate push bits. 4653 */ 4654 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 4655 /* 4656 * The connection may be closed at this point, so don't 4657 * do anything for a detached tcp. 4658 */ 4659 if (!TCP_IS_DETACHED(tcp)) 4660 tcp->tcp_push_tid = TCP_TIMER(tcp, 4661 tcp_push_timer, 4662 tcps->tcps_push_timer_interval); 4663 } 4664 } 4665 4666 xmit_check: 4667 /* Is there anything left to do? */ 4668 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 4669 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 4670 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 4671 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4672 goto done; 4673 4674 /* Any transmit work to do and a non-zero window? */ 4675 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 4676 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 4677 if (flags & TH_REXMIT_NEEDED) { 4678 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 4679 4680 TCPS_BUMP_MIB(tcps, tcpOutFastRetrans); 4681 if (snd_size > mss) 4682 snd_size = mss; 4683 if (snd_size > tcp->tcp_swnd) 4684 snd_size = tcp->tcp_swnd; 4685 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 4686 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 4687 B_TRUE); 4688 4689 if (mp1 != NULL) { 4690 tcp->tcp_xmit_head->b_prev = 4691 (mblk_t *)LBOLT_FASTPATH; 4692 tcp->tcp_csuna = tcp->tcp_snxt; 4693 TCPS_BUMP_MIB(tcps, tcpRetransSegs); 4694 TCPS_UPDATE_MIB(tcps, tcpRetransBytes, 4695 snd_size); 4696 tcp_send_data(tcp, mp1); 4697 } 4698 } 4699 if (flags & TH_NEED_SACK_REXMIT) { 4700 tcp_sack_rexmit(tcp, &flags); 4701 } 4702 /* 4703 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 4704 * out new segment. Note that tcp_rexmit should not be 4705 * set, otherwise TH_LIMIT_XMIT should not be set. 4706 */ 4707 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 4708 if (!tcp->tcp_rexmit) { 4709 tcp_wput_data(tcp, NULL, B_FALSE); 4710 } else { 4711 tcp_ss_rexmit(tcp); 4712 } 4713 } 4714 /* 4715 * Adjust tcp_cwnd back to normal value after sending 4716 * new data segments. 4717 */ 4718 if (flags & TH_LIMIT_XMIT) { 4719 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 4720 /* 4721 * This will restart the timer. Restarting the 4722 * timer is used to avoid a timeout before the 4723 * limited transmitted segment's ACK gets back. 4724 */ 4725 if (tcp->tcp_xmit_head != NULL) 4726 tcp->tcp_xmit_head->b_prev = 4727 (mblk_t *)LBOLT_FASTPATH; 4728 } 4729 4730 /* Anything more to do? */ 4731 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 4732 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4733 goto done; 4734 } 4735 ack_check: 4736 if (flags & TH_SEND_URP_MARK) { 4737 ASSERT(tcp->tcp_urp_mark_mp); 4738 ASSERT(!IPCL_IS_NONSTR(connp)); 4739 /* 4740 * Send up any queued data and then send the mark message 4741 */ 4742 if (tcp->tcp_rcv_list != NULL) { 4743 flags |= tcp_rcv_drain(tcp); 4744 4745 } 4746 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 4747 mp1 = tcp->tcp_urp_mark_mp; 4748 tcp->tcp_urp_mark_mp = NULL; 4749 if (is_system_labeled()) 4750 tcp_setcred_data(mp1, ira); 4751 4752 putnext(connp->conn_rq, mp1); 4753 #ifdef DEBUG 4754 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4755 "tcp_rput: sending zero-length %s %s", 4756 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 4757 "MSGNOTMARKNEXT"), 4758 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4759 #endif /* DEBUG */ 4760 flags &= ~TH_SEND_URP_MARK; 4761 } 4762 if (flags & TH_ACK_NEEDED) { 4763 /* 4764 * Time to send an ack for some reason. 4765 */ 4766 mp1 = tcp_ack_mp(tcp); 4767 4768 if (mp1 != NULL) { 4769 tcp_send_data(tcp, mp1); 4770 BUMP_LOCAL(tcp->tcp_obsegs); 4771 TCPS_BUMP_MIB(tcps, tcpOutAck); 4772 } 4773 if (tcp->tcp_ack_tid != 0) { 4774 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4775 tcp->tcp_ack_tid = 0; 4776 } 4777 } 4778 if (flags & TH_ACK_TIMER_NEEDED) { 4779 /* 4780 * Arrange for deferred ACK or push wait timeout. 4781 * Start timer if it is not already running. 4782 */ 4783 if (tcp->tcp_ack_tid == 0) { 4784 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 4785 tcp->tcp_localnet ? 4786 tcps->tcps_local_dack_interval : 4787 tcps->tcps_deferred_ack_interval); 4788 } 4789 } 4790 if (flags & TH_ORDREL_NEEDED) { 4791 /* 4792 * Send up the ordrel_ind unless we are an eager guy. 4793 * In the eager case tcp_rsrv will do this when run 4794 * after tcp_accept is done. 4795 */ 4796 ASSERT(tcp->tcp_listener == NULL); 4797 ASSERT(!tcp->tcp_detached); 4798 4799 if (IPCL_IS_NONSTR(connp)) { 4800 ASSERT(tcp->tcp_ordrel_mp == NULL); 4801 tcp->tcp_ordrel_done = B_TRUE; 4802 (*connp->conn_upcalls->su_opctl) 4803 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 4804 goto done; 4805 } 4806 4807 if (tcp->tcp_rcv_list != NULL) { 4808 /* 4809 * Push any mblk(s) enqueued from co processing. 4810 */ 4811 flags |= tcp_rcv_drain(tcp); 4812 } 4813 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 4814 4815 mp1 = tcp->tcp_ordrel_mp; 4816 tcp->tcp_ordrel_mp = NULL; 4817 tcp->tcp_ordrel_done = B_TRUE; 4818 putnext(connp->conn_rq, mp1); 4819 } 4820 done: 4821 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 4822 } 4823 4824 /* 4825 * Attach ancillary data to a received TCP segments for the 4826 * ancillary pieces requested by the application that are 4827 * different than they were in the previous data segment. 4828 * 4829 * Save the "current" values once memory allocation is ok so that 4830 * when memory allocation fails we can just wait for the next data segment. 4831 */ 4832 static mblk_t * 4833 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 4834 ip_recv_attr_t *ira) 4835 { 4836 struct T_optdata_ind *todi; 4837 int optlen; 4838 uchar_t *optptr; 4839 struct T_opthdr *toh; 4840 crb_t addflag; /* Which pieces to add */ 4841 mblk_t *mp1; 4842 conn_t *connp = tcp->tcp_connp; 4843 4844 optlen = 0; 4845 addflag.crb_all = 0; 4846 /* If app asked for pktinfo and the index has changed ... */ 4847 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 4848 ira->ira_ruifindex != tcp->tcp_recvifindex) { 4849 optlen += sizeof (struct T_opthdr) + 4850 sizeof (struct in6_pktinfo); 4851 addflag.crb_ip_recvpktinfo = 1; 4852 } 4853 /* If app asked for hoplimit and it has changed ... */ 4854 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 4855 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 4856 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 4857 addflag.crb_ipv6_recvhoplimit = 1; 4858 } 4859 /* If app asked for tclass and it has changed ... */ 4860 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 4861 ipp->ipp_tclass != tcp->tcp_recvtclass) { 4862 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 4863 addflag.crb_ipv6_recvtclass = 1; 4864 } 4865 /* 4866 * If app asked for hopbyhop headers and it has changed ... 4867 * For security labels, note that (1) security labels can't change on 4868 * a connected socket at all, (2) we're connected to at most one peer, 4869 * (3) if anything changes, then it must be some other extra option. 4870 */ 4871 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 4872 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 4873 (ipp->ipp_fields & IPPF_HOPOPTS), 4874 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 4875 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 4876 addflag.crb_ipv6_recvhopopts = 1; 4877 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 4878 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 4879 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 4880 return (mp); 4881 } 4882 /* If app asked for dst headers before routing headers ... */ 4883 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 4884 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 4885 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 4886 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 4887 optlen += sizeof (struct T_opthdr) + 4888 ipp->ipp_rthdrdstoptslen; 4889 addflag.crb_ipv6_recvrthdrdstopts = 1; 4890 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 4891 &tcp->tcp_rthdrdstoptslen, 4892 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 4893 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 4894 return (mp); 4895 } 4896 /* If app asked for routing headers and it has changed ... */ 4897 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 4898 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 4899 (ipp->ipp_fields & IPPF_RTHDR), 4900 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 4901 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 4902 addflag.crb_ipv6_recvrthdr = 1; 4903 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 4904 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 4905 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 4906 return (mp); 4907 } 4908 /* If app asked for dest headers and it has changed ... */ 4909 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 4910 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 4911 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 4912 (ipp->ipp_fields & IPPF_DSTOPTS), 4913 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 4914 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 4915 addflag.crb_ipv6_recvdstopts = 1; 4916 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 4917 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 4918 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 4919 return (mp); 4920 } 4921 4922 if (optlen == 0) { 4923 /* Nothing to add */ 4924 return (mp); 4925 } 4926 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 4927 if (mp1 == NULL) { 4928 /* 4929 * Defer sending ancillary data until the next TCP segment 4930 * arrives. 4931 */ 4932 return (mp); 4933 } 4934 mp1->b_cont = mp; 4935 mp = mp1; 4936 mp->b_wptr += sizeof (*todi) + optlen; 4937 mp->b_datap->db_type = M_PROTO; 4938 todi = (struct T_optdata_ind *)mp->b_rptr; 4939 todi->PRIM_type = T_OPTDATA_IND; 4940 todi->DATA_flag = 1; /* MORE data */ 4941 todi->OPT_length = optlen; 4942 todi->OPT_offset = sizeof (*todi); 4943 optptr = (uchar_t *)&todi[1]; 4944 /* 4945 * If app asked for pktinfo and the index has changed ... 4946 * Note that the local address never changes for the connection. 4947 */ 4948 if (addflag.crb_ip_recvpktinfo) { 4949 struct in6_pktinfo *pkti; 4950 uint_t ifindex; 4951 4952 ifindex = ira->ira_ruifindex; 4953 toh = (struct T_opthdr *)optptr; 4954 toh->level = IPPROTO_IPV6; 4955 toh->name = IPV6_PKTINFO; 4956 toh->len = sizeof (*toh) + sizeof (*pkti); 4957 toh->status = 0; 4958 optptr += sizeof (*toh); 4959 pkti = (struct in6_pktinfo *)optptr; 4960 pkti->ipi6_addr = connp->conn_laddr_v6; 4961 pkti->ipi6_ifindex = ifindex; 4962 optptr += sizeof (*pkti); 4963 ASSERT(OK_32PTR(optptr)); 4964 /* Save as "last" value */ 4965 tcp->tcp_recvifindex = ifindex; 4966 } 4967 /* If app asked for hoplimit and it has changed ... */ 4968 if (addflag.crb_ipv6_recvhoplimit) { 4969 toh = (struct T_opthdr *)optptr; 4970 toh->level = IPPROTO_IPV6; 4971 toh->name = IPV6_HOPLIMIT; 4972 toh->len = sizeof (*toh) + sizeof (uint_t); 4973 toh->status = 0; 4974 optptr += sizeof (*toh); 4975 *(uint_t *)optptr = ipp->ipp_hoplimit; 4976 optptr += sizeof (uint_t); 4977 ASSERT(OK_32PTR(optptr)); 4978 /* Save as "last" value */ 4979 tcp->tcp_recvhops = ipp->ipp_hoplimit; 4980 } 4981 /* If app asked for tclass and it has changed ... */ 4982 if (addflag.crb_ipv6_recvtclass) { 4983 toh = (struct T_opthdr *)optptr; 4984 toh->level = IPPROTO_IPV6; 4985 toh->name = IPV6_TCLASS; 4986 toh->len = sizeof (*toh) + sizeof (uint_t); 4987 toh->status = 0; 4988 optptr += sizeof (*toh); 4989 *(uint_t *)optptr = ipp->ipp_tclass; 4990 optptr += sizeof (uint_t); 4991 ASSERT(OK_32PTR(optptr)); 4992 /* Save as "last" value */ 4993 tcp->tcp_recvtclass = ipp->ipp_tclass; 4994 } 4995 if (addflag.crb_ipv6_recvhopopts) { 4996 toh = (struct T_opthdr *)optptr; 4997 toh->level = IPPROTO_IPV6; 4998 toh->name = IPV6_HOPOPTS; 4999 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 5000 toh->status = 0; 5001 optptr += sizeof (*toh); 5002 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 5003 optptr += ipp->ipp_hopoptslen; 5004 ASSERT(OK_32PTR(optptr)); 5005 /* Save as last value */ 5006 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 5007 (ipp->ipp_fields & IPPF_HOPOPTS), 5008 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 5009 } 5010 if (addflag.crb_ipv6_recvrthdrdstopts) { 5011 toh = (struct T_opthdr *)optptr; 5012 toh->level = IPPROTO_IPV6; 5013 toh->name = IPV6_RTHDRDSTOPTS; 5014 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 5015 toh->status = 0; 5016 optptr += sizeof (*toh); 5017 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 5018 optptr += ipp->ipp_rthdrdstoptslen; 5019 ASSERT(OK_32PTR(optptr)); 5020 /* Save as last value */ 5021 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 5022 &tcp->tcp_rthdrdstoptslen, 5023 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5024 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 5025 } 5026 if (addflag.crb_ipv6_recvrthdr) { 5027 toh = (struct T_opthdr *)optptr; 5028 toh->level = IPPROTO_IPV6; 5029 toh->name = IPV6_RTHDR; 5030 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 5031 toh->status = 0; 5032 optptr += sizeof (*toh); 5033 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 5034 optptr += ipp->ipp_rthdrlen; 5035 ASSERT(OK_32PTR(optptr)); 5036 /* Save as last value */ 5037 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 5038 (ipp->ipp_fields & IPPF_RTHDR), 5039 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 5040 } 5041 if (addflag.crb_ipv6_recvdstopts) { 5042 toh = (struct T_opthdr *)optptr; 5043 toh->level = IPPROTO_IPV6; 5044 toh->name = IPV6_DSTOPTS; 5045 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 5046 toh->status = 0; 5047 optptr += sizeof (*toh); 5048 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 5049 optptr += ipp->ipp_dstoptslen; 5050 ASSERT(OK_32PTR(optptr)); 5051 /* Save as last value */ 5052 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 5053 (ipp->ipp_fields & IPPF_DSTOPTS), 5054 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 5055 } 5056 ASSERT(optptr == mp->b_wptr); 5057 return (mp); 5058 } 5059 5060 /* The minimum of smoothed mean deviation in RTO calculation. */ 5061 #define TCP_SD_MIN 400 5062 5063 /* 5064 * Set RTO for this connection. The formula is from Jacobson and Karels' 5065 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 5066 * are the same as those in Appendix A.2 of that paper. 5067 * 5068 * m = new measurement 5069 * sa = smoothed RTT average (8 * average estimates). 5070 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 5071 */ 5072 static void 5073 tcp_set_rto(tcp_t *tcp, clock_t rtt) 5074 { 5075 long m = TICK_TO_MSEC(rtt); 5076 clock_t sa = tcp->tcp_rtt_sa; 5077 clock_t sv = tcp->tcp_rtt_sd; 5078 clock_t rto; 5079 tcp_stack_t *tcps = tcp->tcp_tcps; 5080 5081 TCPS_BUMP_MIB(tcps, tcpRttUpdate); 5082 tcp->tcp_rtt_update++; 5083 5084 /* tcp_rtt_sa is not 0 means this is a new sample. */ 5085 if (sa != 0) { 5086 /* 5087 * Update average estimator: 5088 * new rtt = 7/8 old rtt + 1/8 Error 5089 */ 5090 5091 /* m is now Error in estimate. */ 5092 m -= sa >> 3; 5093 if ((sa += m) <= 0) { 5094 /* 5095 * Don't allow the smoothed average to be negative. 5096 * We use 0 to denote reinitialization of the 5097 * variables. 5098 */ 5099 sa = 1; 5100 } 5101 5102 /* 5103 * Update deviation estimator: 5104 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 5105 */ 5106 if (m < 0) 5107 m = -m; 5108 m -= sv >> 2; 5109 sv += m; 5110 } else { 5111 /* 5112 * This follows BSD's implementation. So the reinitialized 5113 * RTO is 3 * m. We cannot go less than 2 because if the 5114 * link is bandwidth dominated, doubling the window size 5115 * during slow start means doubling the RTT. We want to be 5116 * more conservative when we reinitialize our estimates. 3 5117 * is just a convenient number. 5118 */ 5119 sa = m << 3; 5120 sv = m << 1; 5121 } 5122 if (sv < TCP_SD_MIN) { 5123 /* 5124 * We do not know that if sa captures the delay ACK 5125 * effect as in a long train of segments, a receiver 5126 * does not delay its ACKs. So set the minimum of sv 5127 * to be TCP_SD_MIN, which is default to 400 ms, twice 5128 * of BSD DATO. That means the minimum of mean 5129 * deviation is 100 ms. 5130 * 5131 */ 5132 sv = TCP_SD_MIN; 5133 } 5134 tcp->tcp_rtt_sa = sa; 5135 tcp->tcp_rtt_sd = sv; 5136 /* 5137 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 5138 * 5139 * Add tcp_rexmit_interval extra in case of extreme environment 5140 * where the algorithm fails to work. The default value of 5141 * tcp_rexmit_interval_extra should be 0. 5142 * 5143 * As we use a finer grained clock than BSD and update 5144 * RTO for every ACKs, add in another .25 of RTT to the 5145 * deviation of RTO to accomodate burstiness of 1/4 of 5146 * window size. 5147 */ 5148 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 5149 5150 if (rto > tcps->tcps_rexmit_interval_max) { 5151 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 5152 } else if (rto < tcps->tcps_rexmit_interval_min) { 5153 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 5154 } else { 5155 tcp->tcp_rto = rto; 5156 } 5157 5158 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 5159 tcp->tcp_timer_backoff = 0; 5160 } 5161 5162 /* 5163 * On a labeled system we have some protocols above TCP, such as RPC, which 5164 * appear to assume that every mblk in a chain has a db_credp. 5165 */ 5166 static void 5167 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 5168 { 5169 ASSERT(is_system_labeled()); 5170 ASSERT(ira->ira_cred != NULL); 5171 5172 while (mp != NULL) { 5173 mblk_setcred(mp, ira->ira_cred, NOPID); 5174 mp = mp->b_cont; 5175 } 5176 } 5177 5178 uint_t 5179 tcp_rwnd_reopen(tcp_t *tcp) 5180 { 5181 uint_t ret = 0; 5182 uint_t thwin; 5183 conn_t *connp = tcp->tcp_connp; 5184 5185 /* Learn the latest rwnd information that we sent to the other side. */ 5186 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 5187 << tcp->tcp_rcv_ws; 5188 /* This is peer's calculated send window (our receive window). */ 5189 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 5190 /* 5191 * Increase the receive window to max. But we need to do receiver 5192 * SWS avoidance. This means that we need to check the increase of 5193 * of receive window is at least 1 MSS. 5194 */ 5195 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 5196 /* 5197 * If the window that the other side knows is less than max 5198 * deferred acks segments, send an update immediately. 5199 */ 5200 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 5201 TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate); 5202 ret = TH_ACK_NEEDED; 5203 } 5204 tcp->tcp_rwnd = connp->conn_rcvbuf; 5205 } 5206 return (ret); 5207 } 5208 5209 /* 5210 * Handle a packet that has been reclassified by TCP. 5211 * This function drops the ref on connp that the caller had. 5212 */ 5213 void 5214 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 5215 { 5216 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5217 5218 if (connp->conn_incoming_ifindex != 0 && 5219 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 5220 freemsg(mp); 5221 CONN_DEC_REF(connp); 5222 return; 5223 } 5224 5225 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 5226 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 5227 ip6_t *ip6h; 5228 ipha_t *ipha; 5229 5230 if (ira->ira_flags & IRAF_IS_IPV4) { 5231 ipha = (ipha_t *)mp->b_rptr; 5232 ip6h = NULL; 5233 } else { 5234 ipha = NULL; 5235 ip6h = (ip6_t *)mp->b_rptr; 5236 } 5237 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 5238 if (mp == NULL) { 5239 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 5240 /* Note that mp is NULL */ 5241 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 5242 CONN_DEC_REF(connp); 5243 return; 5244 } 5245 } 5246 5247 if (IPCL_IS_TCP(connp)) { 5248 /* 5249 * do not drain, certain use cases can blow 5250 * the stack 5251 */ 5252 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 5253 connp->conn_recv, connp, ira, 5254 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 5255 } else { 5256 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 5257 (connp->conn_recv)(connp, mp, NULL, 5258 ira); 5259 CONN_DEC_REF(connp); 5260 } 5261 5262 } 5263 5264 /* ARGSUSED */ 5265 static void 5266 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5267 { 5268 conn_t *connp = (conn_t *)arg; 5269 tcp_t *tcp = connp->conn_tcp; 5270 queue_t *q = connp->conn_rq; 5271 5272 ASSERT(!IPCL_IS_NONSTR(connp)); 5273 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5274 tcp->tcp_rsrv_mp = mp; 5275 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5276 5277 if (TCP_IS_DETACHED(tcp) || q == NULL) { 5278 return; 5279 } 5280 5281 if (tcp->tcp_fused) { 5282 tcp_fuse_backenable(tcp); 5283 return; 5284 } 5285 5286 if (canputnext(q)) { 5287 /* Not flow-controlled, open rwnd */ 5288 tcp->tcp_rwnd = connp->conn_rcvbuf; 5289 5290 /* 5291 * Send back a window update immediately if TCP is above 5292 * ESTABLISHED state and the increase of the rcv window 5293 * that the other side knows is at least 1 MSS after flow 5294 * control is lifted. 5295 */ 5296 if (tcp->tcp_state >= TCPS_ESTABLISHED && 5297 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 5298 tcp_xmit_ctl(NULL, tcp, 5299 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 5300 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 5301 } 5302 } 5303 } 5304 5305 /* 5306 * The read side service routine is called mostly when we get back-enabled as a 5307 * result of flow control relief. Since we don't actually queue anything in 5308 * TCP, we have no data to send out of here. What we do is clear the receive 5309 * window, and send out a window update. 5310 */ 5311 void 5312 tcp_rsrv(queue_t *q) 5313 { 5314 conn_t *connp = Q_TO_CONN(q); 5315 tcp_t *tcp = connp->conn_tcp; 5316 mblk_t *mp; 5317 5318 /* No code does a putq on the read side */ 5319 ASSERT(q->q_first == NULL); 5320 5321 /* 5322 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 5323 * been run. So just return. 5324 */ 5325 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5326 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 5327 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5328 return; 5329 } 5330 tcp->tcp_rsrv_mp = NULL; 5331 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5332 5333 CONN_INC_REF(connp); 5334 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 5335 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 5336 } 5337 5338 /* At minimum we need 8 bytes in the TCP header for the lookup */ 5339 #define ICMP_MIN_TCP_HDR 8 5340 5341 /* 5342 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 5343 * passed up by IP. The message is always received on the correct tcp_t. 5344 * Assumes that IP has pulled up everything up to and including the ICMP header. 5345 */ 5346 /* ARGSUSED2 */ 5347 void 5348 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 5349 { 5350 conn_t *connp = (conn_t *)arg1; 5351 icmph_t *icmph; 5352 ipha_t *ipha; 5353 int iph_hdr_length; 5354 tcpha_t *tcpha; 5355 uint32_t seg_seq; 5356 tcp_t *tcp = connp->conn_tcp; 5357 5358 /* Assume IP provides aligned packets */ 5359 ASSERT(OK_32PTR(mp->b_rptr)); 5360 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 5361 5362 /* 5363 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 5364 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 5365 */ 5366 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 5367 tcp_icmp_error_ipv6(tcp, mp, ira); 5368 return; 5369 } 5370 5371 /* Skip past the outer IP and ICMP headers */ 5372 iph_hdr_length = ira->ira_ip_hdr_length; 5373 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 5374 /* 5375 * If we don't have the correct outer IP header length 5376 * or if we don't have a complete inner IP header 5377 * drop it. 5378 */ 5379 if (iph_hdr_length < sizeof (ipha_t) || 5380 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 5381 noticmpv4: 5382 freemsg(mp); 5383 return; 5384 } 5385 ipha = (ipha_t *)&icmph[1]; 5386 5387 /* Skip past the inner IP and find the ULP header */ 5388 iph_hdr_length = IPH_HDR_LENGTH(ipha); 5389 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 5390 /* 5391 * If we don't have the correct inner IP header length or if the ULP 5392 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 5393 * bytes of TCP header, drop it. 5394 */ 5395 if (iph_hdr_length < sizeof (ipha_t) || 5396 ipha->ipha_protocol != IPPROTO_TCP || 5397 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 5398 goto noticmpv4; 5399 } 5400 5401 seg_seq = ntohl(tcpha->tha_seq); 5402 switch (icmph->icmph_type) { 5403 case ICMP_DEST_UNREACHABLE: 5404 switch (icmph->icmph_code) { 5405 case ICMP_FRAGMENTATION_NEEDED: 5406 /* 5407 * Update Path MTU, then try to send something out. 5408 */ 5409 tcp_update_pmtu(tcp, B_TRUE); 5410 tcp_rexmit_after_error(tcp); 5411 break; 5412 case ICMP_PORT_UNREACHABLE: 5413 case ICMP_PROTOCOL_UNREACHABLE: 5414 switch (tcp->tcp_state) { 5415 case TCPS_SYN_SENT: 5416 case TCPS_SYN_RCVD: 5417 /* 5418 * ICMP can snipe away incipient 5419 * TCP connections as long as 5420 * seq number is same as initial 5421 * send seq number. 5422 */ 5423 if (seg_seq == tcp->tcp_iss) { 5424 (void) tcp_clean_death(tcp, 5425 ECONNREFUSED); 5426 } 5427 break; 5428 } 5429 break; 5430 case ICMP_HOST_UNREACHABLE: 5431 case ICMP_NET_UNREACHABLE: 5432 /* Record the error in case we finally time out. */ 5433 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 5434 tcp->tcp_client_errno = EHOSTUNREACH; 5435 else 5436 tcp->tcp_client_errno = ENETUNREACH; 5437 if (tcp->tcp_state == TCPS_SYN_RCVD) { 5438 if (tcp->tcp_listener != NULL && 5439 tcp->tcp_listener->tcp_syn_defense) { 5440 /* 5441 * Ditch the half-open connection if we 5442 * suspect a SYN attack is under way. 5443 */ 5444 (void) tcp_clean_death(tcp, 5445 tcp->tcp_client_errno); 5446 } 5447 } 5448 break; 5449 default: 5450 break; 5451 } 5452 break; 5453 case ICMP_SOURCE_QUENCH: { 5454 /* 5455 * use a global boolean to control 5456 * whether TCP should respond to ICMP_SOURCE_QUENCH. 5457 * The default is false. 5458 */ 5459 if (tcp_icmp_source_quench) { 5460 /* 5461 * Reduce the sending rate as if we got a 5462 * retransmit timeout 5463 */ 5464 uint32_t npkt; 5465 5466 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 5467 tcp->tcp_mss; 5468 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 5469 tcp->tcp_cwnd = tcp->tcp_mss; 5470 tcp->tcp_cwnd_cnt = 0; 5471 } 5472 break; 5473 } 5474 } 5475 freemsg(mp); 5476 } 5477 5478 /* 5479 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 5480 * error messages passed up by IP. 5481 * Assumes that IP has pulled up all the extension headers as well 5482 * as the ICMPv6 header. 5483 */ 5484 static void 5485 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 5486 { 5487 icmp6_t *icmp6; 5488 ip6_t *ip6h; 5489 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 5490 tcpha_t *tcpha; 5491 uint8_t *nexthdrp; 5492 uint32_t seg_seq; 5493 5494 /* 5495 * Verify that we have a complete IP header. 5496 */ 5497 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 5498 5499 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 5500 ip6h = (ip6_t *)&icmp6[1]; 5501 /* 5502 * Verify if we have a complete ICMP and inner IP header. 5503 */ 5504 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 5505 noticmpv6: 5506 freemsg(mp); 5507 return; 5508 } 5509 5510 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 5511 goto noticmpv6; 5512 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 5513 /* 5514 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 5515 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 5516 * packet. 5517 */ 5518 if ((*nexthdrp != IPPROTO_TCP) || 5519 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 5520 goto noticmpv6; 5521 } 5522 5523 seg_seq = ntohl(tcpha->tha_seq); 5524 switch (icmp6->icmp6_type) { 5525 case ICMP6_PACKET_TOO_BIG: 5526 /* 5527 * Update Path MTU, then try to send something out. 5528 */ 5529 tcp_update_pmtu(tcp, B_TRUE); 5530 tcp_rexmit_after_error(tcp); 5531 break; 5532 case ICMP6_DST_UNREACH: 5533 switch (icmp6->icmp6_code) { 5534 case ICMP6_DST_UNREACH_NOPORT: 5535 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5536 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5537 (seg_seq == tcp->tcp_iss)) { 5538 (void) tcp_clean_death(tcp, ECONNREFUSED); 5539 } 5540 break; 5541 case ICMP6_DST_UNREACH_ADMIN: 5542 case ICMP6_DST_UNREACH_NOROUTE: 5543 case ICMP6_DST_UNREACH_BEYONDSCOPE: 5544 case ICMP6_DST_UNREACH_ADDR: 5545 /* Record the error in case we finally time out. */ 5546 tcp->tcp_client_errno = EHOSTUNREACH; 5547 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5548 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5549 (seg_seq == tcp->tcp_iss)) { 5550 if (tcp->tcp_listener != NULL && 5551 tcp->tcp_listener->tcp_syn_defense) { 5552 /* 5553 * Ditch the half-open connection if we 5554 * suspect a SYN attack is under way. 5555 */ 5556 (void) tcp_clean_death(tcp, 5557 tcp->tcp_client_errno); 5558 } 5559 } 5560 5561 5562 break; 5563 default: 5564 break; 5565 } 5566 break; 5567 case ICMP6_PARAM_PROB: 5568 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 5569 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 5570 (uchar_t *)ip6h + icmp6->icmp6_pptr == 5571 (uchar_t *)nexthdrp) { 5572 if (tcp->tcp_state == TCPS_SYN_SENT || 5573 tcp->tcp_state == TCPS_SYN_RCVD) { 5574 (void) tcp_clean_death(tcp, ECONNREFUSED); 5575 } 5576 break; 5577 } 5578 break; 5579 5580 case ICMP6_TIME_EXCEEDED: 5581 default: 5582 break; 5583 } 5584 freemsg(mp); 5585 } 5586 5587 /* 5588 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 5589 * change. But it can refer to fields like tcp_suna and tcp_snxt. 5590 * 5591 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 5592 * error messages received by IP. The message is always received on the correct 5593 * tcp_t. 5594 */ 5595 /* ARGSUSED */ 5596 boolean_t 5597 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 5598 ip_recv_attr_t *ira) 5599 { 5600 tcpha_t *tcpha = (tcpha_t *)arg2; 5601 uint32_t seq = ntohl(tcpha->tha_seq); 5602 tcp_t *tcp = connp->conn_tcp; 5603 5604 /* 5605 * TCP sequence number contained in payload of the ICMP error message 5606 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 5607 * the message is either a stale ICMP error, or an attack from the 5608 * network. Fail the verification. 5609 */ 5610 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 5611 return (B_FALSE); 5612 5613 /* For "too big" we also check the ignore flag */ 5614 if (ira->ira_flags & IRAF_IS_IPV4) { 5615 ASSERT(icmph != NULL); 5616 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 5617 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 5618 tcp->tcp_tcps->tcps_ignore_path_mtu) 5619 return (B_FALSE); 5620 } else { 5621 ASSERT(icmp6 != NULL); 5622 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 5623 tcp->tcp_tcps->tcps_ignore_path_mtu) 5624 return (B_FALSE); 5625 } 5626 return (B_TRUE); 5627 } 5628