xref: /titanic_44/usr/src/uts/common/inet/tcp/tcp_input.c (revision 81a990d5435fe81e68c90bcd35697365a7f718db)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 /* This file contains all TCP input processing functions. */
28 
29 #include <sys/types.h>
30 #include <sys/stream.h>
31 #include <sys/strsun.h>
32 #include <sys/strsubr.h>
33 #include <sys/stropts.h>
34 #include <sys/strlog.h>
35 #define	_SUN_TPI_VERSION 2
36 #include <sys/tihdr.h>
37 #include <sys/suntpi.h>
38 #include <sys/xti_inet.h>
39 #include <sys/squeue_impl.h>
40 #include <sys/squeue.h>
41 #include <sys/tsol/tnet.h>
42 
43 #include <inet/common.h>
44 #include <inet/ip.h>
45 #include <inet/tcp.h>
46 #include <inet/tcp_impl.h>
47 #include <inet/tcp_cluster.h>
48 #include <inet/proto_set.h>
49 #include <inet/ipsec_impl.h>
50 
51 /*
52  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
53  */
54 
55 #ifdef _BIG_ENDIAN
56 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
57 	(TCPOPT_TSTAMP << 8) | 10)
58 #else
59 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
60 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
61 #endif
62 
63 /*
64  * Flags returned from tcp_parse_options.
65  */
66 #define	TCP_OPT_MSS_PRESENT	1
67 #define	TCP_OPT_WSCALE_PRESENT	2
68 #define	TCP_OPT_TSTAMP_PRESENT	4
69 #define	TCP_OPT_SACK_OK_PRESENT	8
70 #define	TCP_OPT_SACK_PRESENT	16
71 
72 /*
73  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
74  */
75 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
76 
77 /*
78  * Since tcp_listener is not cleared atomically with tcp_detached
79  * being cleared we need this extra bit to tell a detached connection
80  * apart from one that is in the process of being accepted.
81  */
82 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
83 	(TCP_IS_DETACHED(tcp) &&	\
84 	    (!(tcp)->tcp_hard_binding))
85 
86 /*
87  * Steps to do when a tcp_t moves to TIME-WAIT state.
88  *
89  * This connection is done, we don't need to account for it.  Decrement
90  * the listener connection counter if needed.
91  *
92  * Decrement the connection counter of the stack.  Note that this counter
93  * is per CPU.  So the total number of connections in a stack is the sum of all
94  * of them.  Since there is no lock for handling all of them exclusively, the
95  * resulting sum is only an approximation.
96  *
97  * Unconditionally clear the exclusive binding bit so this TIME-WAIT
98  * connection won't interfere with new ones.
99  *
100  * Start the TIME-WAIT timer.  If upper layer has not closed the connection,
101  * the timer is handled within the context of this tcp_t.  When the timer
102  * fires, tcp_clean_death() is called.  If upper layer closes the connection
103  * during this period, tcp_time_wait_append() will be called to add this
104  * tcp_t to the global TIME-WAIT list.  Note that this means that the
105  * actual wait time in TIME-WAIT state will be longer than the
106  * tcps_time_wait_interval since the period before upper layer closes the
107  * connection is not accounted for when tcp_time_wait_append() is called.
108  *
109  * If uppser layer has closed the connection, call tcp_time_wait_append()
110  * directly.
111  *
112  */
113 #define	SET_TIME_WAIT(tcps, tcp, connp)				\
114 {								\
115 	(tcp)->tcp_state = TCPS_TIME_WAIT;			\
116 	if ((tcp)->tcp_listen_cnt != NULL)			\
117 		TCP_DECR_LISTEN_CNT(tcp);			\
118 	atomic_dec_64(						\
119 	    (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \
120 	(connp)->conn_exclbind = 0;				\
121 	if (!TCP_IS_DETACHED(tcp)) {				\
122 		TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \
123 	} else {						\
124 		tcp_time_wait_append(tcp);			\
125 		TCP_DBGSTAT(tcps, tcp_rput_time_wait);		\
126 	}							\
127 }
128 
129 /*
130  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
131  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
132  * data, TCP will not respond with an ACK.  RFC 793 requires that
133  * TCP responds with an ACK for such a bogus ACK.  By not following
134  * the RFC, we prevent TCP from getting into an ACK storm if somehow
135  * an attacker successfully spoofs an acceptable segment to our
136  * peer; or when our peer is "confused."
137  */
138 static uint32_t tcp_drop_ack_unsent_cnt = 10;
139 
140 /*
141  * To protect TCP against attacker using a small window and requesting
142  * large amount of data (DoS attack by conuming memory), TCP checks the
143  * window advertised in the last ACK of the 3-way handshake.  TCP uses
144  * the tcp_mss (the size of one packet) value for comparion.  The window
145  * should be larger than tcp_mss.  But while a sane TCP should advertise
146  * a receive window larger than or equal to 4*MSS to avoid stop and go
147  * tarrfic, not all TCP stacks do that.  This is especially true when
148  * tcp_mss is a big value.
149  *
150  * To work around this issue, an additional fixed value for comparison
151  * is also used.  If the advertised window is smaller than both tcp_mss
152  * and tcp_init_wnd_chk, the ACK is considered as invalid.  So for large
153  * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but
154  * smaller than 8K is considered to be OK.
155  */
156 static uint32_t tcp_init_wnd_chk = 4096;
157 
158 /* Process ICMP source quench message or not. */
159 static boolean_t tcp_icmp_source_quench = B_FALSE;
160 
161 static boolean_t tcp_outbound_squeue_switch = B_FALSE;
162 
163 static mblk_t	*tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *,
164 		    ip_recv_attr_t *);
165 static mblk_t	*tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *,
166 		    ip_recv_attr_t *);
167 static boolean_t	tcp_drop_q0(tcp_t *);
168 static void	tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
169 static mblk_t	*tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *,
170 		    ip_recv_attr_t *);
171 static void	tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *);
172 static int	tcp_parse_options(tcpha_t *, tcp_opt_t *);
173 static void	tcp_process_options(tcp_t *, tcpha_t *);
174 static mblk_t	*tcp_reass(tcp_t *, mblk_t *, uint32_t);
175 static void	tcp_reass_elim_overlap(tcp_t *, mblk_t *);
176 static void	tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *);
177 static void	tcp_set_rto(tcp_t *, time_t);
178 static void	tcp_setcred_data(mblk_t *, ip_recv_attr_t *);
179 
180 /*
181  * Set the MSS associated with a particular tcp based on its current value,
182  * and a new one passed in. Observe minimums and maximums, and reset other
183  * state variables that we want to view as multiples of MSS.
184  *
185  * The value of MSS could be either increased or descreased.
186  */
187 void
188 tcp_mss_set(tcp_t *tcp, uint32_t mss)
189 {
190 	uint32_t	mss_max;
191 	tcp_stack_t	*tcps = tcp->tcp_tcps;
192 	conn_t		*connp = tcp->tcp_connp;
193 
194 	if (connp->conn_ipversion == IPV4_VERSION)
195 		mss_max = tcps->tcps_mss_max_ipv4;
196 	else
197 		mss_max = tcps->tcps_mss_max_ipv6;
198 
199 	if (mss < tcps->tcps_mss_min)
200 		mss = tcps->tcps_mss_min;
201 	if (mss > mss_max)
202 		mss = mss_max;
203 	/*
204 	 * Unless naglim has been set by our client to
205 	 * a non-mss value, force naglim to track mss.
206 	 * This can help to aggregate small writes.
207 	 */
208 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
209 		tcp->tcp_naglim = mss;
210 	/*
211 	 * TCP should be able to buffer at least 4 MSS data for obvious
212 	 * performance reason.
213 	 */
214 	if ((mss << 2) > connp->conn_sndbuf)
215 		connp->conn_sndbuf = mss << 2;
216 
217 	/*
218 	 * Set the send lowater to at least twice of MSS.
219 	 */
220 	if ((mss << 1) > connp->conn_sndlowat)
221 		connp->conn_sndlowat = mss << 1;
222 
223 	/*
224 	 * Update tcp_cwnd according to the new value of MSS. Keep the
225 	 * previous ratio to preserve the transmit rate.
226 	 */
227 	tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
228 	tcp->tcp_cwnd_cnt = 0;
229 
230 	tcp->tcp_mss = mss;
231 	(void) tcp_maxpsz_set(tcp, B_TRUE);
232 }
233 
234 /*
235  * Extract option values from a tcp header.  We put any found values into the
236  * tcpopt struct and return a bitmask saying which options were found.
237  */
238 static int
239 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
240 {
241 	uchar_t		*endp;
242 	int		len;
243 	uint32_t	mss;
244 	uchar_t		*up = (uchar_t *)tcpha;
245 	int		found = 0;
246 	int32_t		sack_len;
247 	tcp_seq		sack_begin, sack_end;
248 	tcp_t		*tcp;
249 
250 	endp = up + TCP_HDR_LENGTH(tcpha);
251 	up += TCP_MIN_HEADER_LENGTH;
252 	while (up < endp) {
253 		len = endp - up;
254 		switch (*up) {
255 		case TCPOPT_EOL:
256 			break;
257 
258 		case TCPOPT_NOP:
259 			up++;
260 			continue;
261 
262 		case TCPOPT_MAXSEG:
263 			if (len < TCPOPT_MAXSEG_LEN ||
264 			    up[1] != TCPOPT_MAXSEG_LEN)
265 				break;
266 
267 			mss = BE16_TO_U16(up+2);
268 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
269 			tcpopt->tcp_opt_mss = mss;
270 			found |= TCP_OPT_MSS_PRESENT;
271 
272 			up += TCPOPT_MAXSEG_LEN;
273 			continue;
274 
275 		case TCPOPT_WSCALE:
276 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
277 				break;
278 
279 			if (up[2] > TCP_MAX_WINSHIFT)
280 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
281 			else
282 				tcpopt->tcp_opt_wscale = up[2];
283 			found |= TCP_OPT_WSCALE_PRESENT;
284 
285 			up += TCPOPT_WS_LEN;
286 			continue;
287 
288 		case TCPOPT_SACK_PERMITTED:
289 			if (len < TCPOPT_SACK_OK_LEN ||
290 			    up[1] != TCPOPT_SACK_OK_LEN)
291 				break;
292 			found |= TCP_OPT_SACK_OK_PRESENT;
293 			up += TCPOPT_SACK_OK_LEN;
294 			continue;
295 
296 		case TCPOPT_SACK:
297 			if (len <= 2 || up[1] <= 2 || len < up[1])
298 				break;
299 
300 			/* If TCP is not interested in SACK blks... */
301 			if ((tcp = tcpopt->tcp) == NULL) {
302 				up += up[1];
303 				continue;
304 			}
305 			sack_len = up[1] - TCPOPT_HEADER_LEN;
306 			up += TCPOPT_HEADER_LEN;
307 
308 			/*
309 			 * If the list is empty, allocate one and assume
310 			 * nothing is sack'ed.
311 			 */
312 			if (tcp->tcp_notsack_list == NULL) {
313 				tcp_notsack_update(&(tcp->tcp_notsack_list),
314 				    tcp->tcp_suna, tcp->tcp_snxt,
315 				    &(tcp->tcp_num_notsack_blk),
316 				    &(tcp->tcp_cnt_notsack_list));
317 
318 				/*
319 				 * Make sure tcp_notsack_list is not NULL.
320 				 * This happens when kmem_alloc(KM_NOSLEEP)
321 				 * returns NULL.
322 				 */
323 				if (tcp->tcp_notsack_list == NULL) {
324 					up += sack_len;
325 					continue;
326 				}
327 				tcp->tcp_fack = tcp->tcp_suna;
328 			}
329 
330 			while (sack_len > 0) {
331 				if (up + 8 > endp) {
332 					up = endp;
333 					break;
334 				}
335 				sack_begin = BE32_TO_U32(up);
336 				up += 4;
337 				sack_end = BE32_TO_U32(up);
338 				up += 4;
339 				sack_len -= 8;
340 				/*
341 				 * Bounds checking.  Make sure the SACK
342 				 * info is within tcp_suna and tcp_snxt.
343 				 * If this SACK blk is out of bound, ignore
344 				 * it but continue to parse the following
345 				 * blks.
346 				 */
347 				if (SEQ_LEQ(sack_end, sack_begin) ||
348 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
349 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
350 					continue;
351 				}
352 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
353 				    sack_begin, sack_end,
354 				    &(tcp->tcp_num_notsack_blk),
355 				    &(tcp->tcp_cnt_notsack_list));
356 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
357 					tcp->tcp_fack = sack_end;
358 				}
359 			}
360 			found |= TCP_OPT_SACK_PRESENT;
361 			continue;
362 
363 		case TCPOPT_TSTAMP:
364 			if (len < TCPOPT_TSTAMP_LEN ||
365 			    up[1] != TCPOPT_TSTAMP_LEN)
366 				break;
367 
368 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
369 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
370 
371 			found |= TCP_OPT_TSTAMP_PRESENT;
372 
373 			up += TCPOPT_TSTAMP_LEN;
374 			continue;
375 
376 		default:
377 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
378 				break;
379 			up += up[1];
380 			continue;
381 		}
382 		break;
383 	}
384 	return (found);
385 }
386 
387 /*
388  * Process all TCP option in SYN segment.  Note that this function should
389  * be called after tcp_set_destination() is called so that the necessary info
390  * from IRE is already set in the tcp structure.
391  *
392  * This function sets up the correct tcp_mss value according to the
393  * MSS option value and our header size.  It also sets up the window scale
394  * and timestamp values, and initialize SACK info blocks.  But it does not
395  * change receive window size after setting the tcp_mss value.  The caller
396  * should do the appropriate change.
397  */
398 static void
399 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha)
400 {
401 	int options;
402 	tcp_opt_t tcpopt;
403 	uint32_t mss_max;
404 	char *tmp_tcph;
405 	tcp_stack_t	*tcps = tcp->tcp_tcps;
406 	conn_t		*connp = tcp->tcp_connp;
407 
408 	tcpopt.tcp = NULL;
409 	options = tcp_parse_options(tcpha, &tcpopt);
410 
411 	/*
412 	 * Process MSS option.  Note that MSS option value does not account
413 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
414 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
415 	 * IPv6.
416 	 */
417 	if (!(options & TCP_OPT_MSS_PRESENT)) {
418 		if (connp->conn_ipversion == IPV4_VERSION)
419 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
420 		else
421 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
422 	} else {
423 		if (connp->conn_ipversion == IPV4_VERSION)
424 			mss_max = tcps->tcps_mss_max_ipv4;
425 		else
426 			mss_max = tcps->tcps_mss_max_ipv6;
427 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
428 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
429 		else if (tcpopt.tcp_opt_mss > mss_max)
430 			tcpopt.tcp_opt_mss = mss_max;
431 	}
432 
433 	/* Process Window Scale option. */
434 	if (options & TCP_OPT_WSCALE_PRESENT) {
435 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
436 		tcp->tcp_snd_ws_ok = B_TRUE;
437 	} else {
438 		tcp->tcp_snd_ws = B_FALSE;
439 		tcp->tcp_snd_ws_ok = B_FALSE;
440 		tcp->tcp_rcv_ws = B_FALSE;
441 	}
442 
443 	/* Process Timestamp option. */
444 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
445 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
446 		tmp_tcph = (char *)tcp->tcp_tcpha;
447 
448 		tcp->tcp_snd_ts_ok = B_TRUE;
449 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
450 		tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
451 		ASSERT(OK_32PTR(tmp_tcph));
452 		ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
453 
454 		/* Fill in our template header with basic timestamp option. */
455 		tmp_tcph += connp->conn_ht_ulp_len;
456 		tmp_tcph[0] = TCPOPT_NOP;
457 		tmp_tcph[1] = TCPOPT_NOP;
458 		tmp_tcph[2] = TCPOPT_TSTAMP;
459 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
460 		connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
461 		connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
462 		tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
463 	} else {
464 		tcp->tcp_snd_ts_ok = B_FALSE;
465 	}
466 
467 	/*
468 	 * Process SACK options.  If SACK is enabled for this connection,
469 	 * then allocate the SACK info structure.  Note the following ways
470 	 * when tcp_snd_sack_ok is set to true.
471 	 *
472 	 * For active connection: in tcp_set_destination() called in
473 	 * tcp_connect().
474 	 *
475 	 * For passive connection: in tcp_set_destination() called in
476 	 * tcp_input_listener().
477 	 *
478 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
479 	 * That check makes sure that if we did not send a SACK OK option,
480 	 * we will not enable SACK for this connection even though the other
481 	 * side sends us SACK OK option.  For active connection, the SACK
482 	 * info structure has already been allocated.  So we need to free
483 	 * it if SACK is disabled.
484 	 */
485 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
486 	    (tcp->tcp_snd_sack_ok ||
487 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
488 		ASSERT(tcp->tcp_num_sack_blk == 0);
489 		ASSERT(tcp->tcp_notsack_list == NULL);
490 
491 		tcp->tcp_snd_sack_ok = B_TRUE;
492 		if (tcp->tcp_snd_ts_ok) {
493 			tcp->tcp_max_sack_blk = 3;
494 		} else {
495 			tcp->tcp_max_sack_blk = 4;
496 		}
497 	} else if (tcp->tcp_snd_sack_ok) {
498 		/*
499 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
500 		 * no SACK info will be used for this
501 		 * connection.  This assumes that SACK usage
502 		 * permission is negotiated.  This may need
503 		 * to be changed once this is clarified.
504 		 */
505 		ASSERT(tcp->tcp_num_sack_blk == 0);
506 		ASSERT(tcp->tcp_notsack_list == NULL);
507 		tcp->tcp_snd_sack_ok = B_FALSE;
508 	}
509 
510 	/*
511 	 * Now we know the exact TCP/IP header length, subtract
512 	 * that from tcp_mss to get our side's MSS.
513 	 */
514 	tcp->tcp_mss -= connp->conn_ht_iphc_len;
515 
516 	/*
517 	 * Here we assume that the other side's header size will be equal to
518 	 * our header size.  We calculate the real MSS accordingly.  Need to
519 	 * take into additional stuffs IPsec puts in.
520 	 *
521 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
522 	 */
523 	tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
524 	    tcp->tcp_ipsec_overhead -
525 	    ((connp->conn_ipversion == IPV4_VERSION ?
526 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
527 
528 	/*
529 	 * Set MSS to the smaller one of both ends of the connection.
530 	 * We should not have called tcp_mss_set() before, but our
531 	 * side of the MSS should have been set to a proper value
532 	 * by tcp_set_destination().  tcp_mss_set() will also set up the
533 	 * STREAM head parameters properly.
534 	 *
535 	 * If we have a larger-than-16-bit window but the other side
536 	 * didn't want to do window scale, tcp_rwnd_set() will take
537 	 * care of that.
538 	 */
539 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
540 
541 	/*
542 	 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
543 	 * updated properly.
544 	 */
545 	TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
546 }
547 
548 /*
549  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
550  * is filled, return as much as we can.  The message passed in may be
551  * multi-part, chained using b_cont.  "start" is the starting sequence
552  * number for this piece.
553  */
554 static mblk_t *
555 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
556 {
557 	uint32_t	end;
558 	mblk_t		*mp1;
559 	mblk_t		*mp2;
560 	mblk_t		*next_mp;
561 	uint32_t	u1;
562 	tcp_stack_t	*tcps = tcp->tcp_tcps;
563 
564 
565 	/* Walk through all the new pieces. */
566 	do {
567 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
568 		    (uintptr_t)INT_MAX);
569 		end = start + (int)(mp->b_wptr - mp->b_rptr);
570 		next_mp = mp->b_cont;
571 		if (start == end) {
572 			/* Empty.  Blast it. */
573 			freeb(mp);
574 			continue;
575 		}
576 		mp->b_cont = NULL;
577 		TCP_REASS_SET_SEQ(mp, start);
578 		TCP_REASS_SET_END(mp, end);
579 		mp1 = tcp->tcp_reass_tail;
580 		if (!mp1) {
581 			tcp->tcp_reass_tail = mp;
582 			tcp->tcp_reass_head = mp;
583 			TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
584 			TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes,
585 			    end - start);
586 			continue;
587 		}
588 		/* New stuff completely beyond tail? */
589 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
590 			/* Link it on end. */
591 			mp1->b_cont = mp;
592 			tcp->tcp_reass_tail = mp;
593 			TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
594 			TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes,
595 			    end - start);
596 			continue;
597 		}
598 		mp1 = tcp->tcp_reass_head;
599 		u1 = TCP_REASS_SEQ(mp1);
600 		/* New stuff at the front? */
601 		if (SEQ_LT(start, u1)) {
602 			/* Yes... Check for overlap. */
603 			mp->b_cont = mp1;
604 			tcp->tcp_reass_head = mp;
605 			tcp_reass_elim_overlap(tcp, mp);
606 			continue;
607 		}
608 		/*
609 		 * The new piece fits somewhere between the head and tail.
610 		 * We find our slot, where mp1 precedes us and mp2 trails.
611 		 */
612 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
613 			u1 = TCP_REASS_SEQ(mp2);
614 			if (SEQ_LEQ(start, u1))
615 				break;
616 		}
617 		/* Link ourselves in */
618 		mp->b_cont = mp2;
619 		mp1->b_cont = mp;
620 
621 		/* Trim overlap with following mblk(s) first */
622 		tcp_reass_elim_overlap(tcp, mp);
623 
624 		/* Trim overlap with preceding mblk */
625 		tcp_reass_elim_overlap(tcp, mp1);
626 
627 	} while (start = end, mp = next_mp);
628 	mp1 = tcp->tcp_reass_head;
629 	/* Anything ready to go? */
630 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
631 		return (NULL);
632 	/* Eat what we can off the queue */
633 	for (;;) {
634 		mp = mp1->b_cont;
635 		end = TCP_REASS_END(mp1);
636 		TCP_REASS_SET_SEQ(mp1, 0);
637 		TCP_REASS_SET_END(mp1, 0);
638 		if (!mp) {
639 			tcp->tcp_reass_tail = NULL;
640 			break;
641 		}
642 		if (end != TCP_REASS_SEQ(mp)) {
643 			mp1->b_cont = NULL;
644 			break;
645 		}
646 		mp1 = mp;
647 	}
648 	mp1 = tcp->tcp_reass_head;
649 	tcp->tcp_reass_head = mp;
650 	return (mp1);
651 }
652 
653 /* Eliminate any overlap that mp may have over later mblks */
654 static void
655 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
656 {
657 	uint32_t	end;
658 	mblk_t		*mp1;
659 	uint32_t	u1;
660 	tcp_stack_t	*tcps = tcp->tcp_tcps;
661 
662 	end = TCP_REASS_END(mp);
663 	while ((mp1 = mp->b_cont) != NULL) {
664 		u1 = TCP_REASS_SEQ(mp1);
665 		if (!SEQ_GT(end, u1))
666 			break;
667 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
668 			mp->b_wptr -= end - u1;
669 			TCP_REASS_SET_END(mp, u1);
670 			TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs);
671 			TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes,
672 			    end - u1);
673 			break;
674 		}
675 		mp->b_cont = mp1->b_cont;
676 		TCP_REASS_SET_SEQ(mp1, 0);
677 		TCP_REASS_SET_END(mp1, 0);
678 		freeb(mp1);
679 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
680 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1);
681 	}
682 	if (!mp1)
683 		tcp->tcp_reass_tail = mp;
684 }
685 
686 /*
687  * This function does PAWS protection check. Returns B_TRUE if the
688  * segment passes the PAWS test, else returns B_FALSE.
689  */
690 boolean_t
691 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp)
692 {
693 	uint8_t	flags;
694 	int	options;
695 	uint8_t *up;
696 	conn_t	*connp = tcp->tcp_connp;
697 
698 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
699 	/*
700 	 * If timestamp option is aligned nicely, get values inline,
701 	 * otherwise call general routine to parse.  Only do that
702 	 * if timestamp is the only option.
703 	 */
704 	if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
705 	    TCPOPT_REAL_TS_LEN &&
706 	    OK_32PTR((up = ((uint8_t *)tcpha) +
707 	    TCP_MIN_HEADER_LENGTH)) &&
708 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
709 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
710 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
711 
712 		options = TCP_OPT_TSTAMP_PRESENT;
713 	} else {
714 		if (tcp->tcp_snd_sack_ok) {
715 			tcpoptp->tcp = tcp;
716 		} else {
717 			tcpoptp->tcp = NULL;
718 		}
719 		options = tcp_parse_options(tcpha, tcpoptp);
720 	}
721 
722 	if (options & TCP_OPT_TSTAMP_PRESENT) {
723 		/*
724 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
725 		 * regardless of the timestamp, page 18 RFC 1323.bis.
726 		 */
727 		if ((flags & TH_RST) == 0 &&
728 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
729 		    tcp->tcp_ts_recent)) {
730 			if (LBOLT_FASTPATH64 <
731 			    (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
732 				/* This segment is not acceptable. */
733 				return (B_FALSE);
734 			} else {
735 				/*
736 				 * Connection has been idle for
737 				 * too long.  Reset the timestamp
738 				 * and assume the segment is valid.
739 				 */
740 				tcp->tcp_ts_recent =
741 				    tcpoptp->tcp_opt_ts_val;
742 			}
743 		}
744 	} else {
745 		/*
746 		 * If we don't get a timestamp on every packet, we
747 		 * figure we can't really trust 'em, so we stop sending
748 		 * and parsing them.
749 		 */
750 		tcp->tcp_snd_ts_ok = B_FALSE;
751 
752 		connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN;
753 		connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN;
754 		tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4);
755 		/*
756 		 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid
757 		 * doing a slow start here so as to not to lose on the
758 		 * transfer rate built up so far.
759 		 */
760 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
761 		if (tcp->tcp_snd_sack_ok)
762 			tcp->tcp_max_sack_blk = 4;
763 	}
764 	return (B_TRUE);
765 }
766 
767 /*
768  * Defense for the SYN attack -
769  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
770  *    one from the list of droppable eagers. This list is a subset of q0.
771  *    see comments before the definition of MAKE_DROPPABLE().
772  * 2. Don't drop a SYN request before its first timeout. This gives every
773  *    request at least til the first timeout to complete its 3-way handshake.
774  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
775  *    requests currently on the queue that has timed out. This will be used
776  *    as an indicator of whether an attack is under way, so that appropriate
777  *    actions can be taken. (It's incremented in tcp_timer() and decremented
778  *    either when eager goes into ESTABLISHED, or gets freed up.)
779  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
780  *    # of timeout drops back to <= q0len/32 => SYN alert off
781  */
782 static boolean_t
783 tcp_drop_q0(tcp_t *tcp)
784 {
785 	tcp_t	*eager;
786 	mblk_t	*mp;
787 	tcp_stack_t	*tcps = tcp->tcp_tcps;
788 
789 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
790 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
791 
792 	/* Pick oldest eager from the list of droppable eagers */
793 	eager = tcp->tcp_eager_prev_drop_q0;
794 
795 	/* If list is empty. return B_FALSE */
796 	if (eager == tcp) {
797 		return (B_FALSE);
798 	}
799 
800 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
801 	if ((mp = allocb(0, BPRI_HI)) == NULL)
802 		return (B_FALSE);
803 
804 	/*
805 	 * Take this eager out from the list of droppable eagers since we are
806 	 * going to drop it.
807 	 */
808 	MAKE_UNDROPPABLE(eager);
809 
810 	if (tcp->tcp_connp->conn_debug) {
811 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
812 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
813 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
814 		    tcp->tcp_conn_req_cnt_q0,
815 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
816 	}
817 
818 	TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop);
819 
820 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
821 	CONN_INC_REF(eager->tcp_connp);
822 
823 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
824 	    tcp_clean_death_wrapper, eager->tcp_connp, NULL,
825 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
826 
827 	return (B_TRUE);
828 }
829 
830 /*
831  * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
832  */
833 static mblk_t *
834 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
835     ip_recv_attr_t *ira)
836 {
837 	tcp_t 		*ltcp = lconnp->conn_tcp;
838 	tcp_t		*tcp = connp->conn_tcp;
839 	mblk_t		*tpi_mp;
840 	ipha_t		*ipha;
841 	ip6_t		*ip6h;
842 	sin6_t 		sin6;
843 	uint_t		ifindex = ira->ira_ruifindex;
844 	tcp_stack_t	*tcps = tcp->tcp_tcps;
845 
846 	if (ira->ira_flags & IRAF_IS_IPV4) {
847 		ipha = (ipha_t *)mp->b_rptr;
848 
849 		connp->conn_ipversion = IPV4_VERSION;
850 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
851 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
852 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
853 
854 		sin6 = sin6_null;
855 		sin6.sin6_addr = connp->conn_faddr_v6;
856 		sin6.sin6_port = connp->conn_fport;
857 		sin6.sin6_family = AF_INET6;
858 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
859 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
860 
861 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
862 			sin6_t	sin6d;
863 
864 			sin6d = sin6_null;
865 			sin6d.sin6_addr = connp->conn_laddr_v6;
866 			sin6d.sin6_port = connp->conn_lport;
867 			sin6d.sin6_family = AF_INET;
868 			tpi_mp = mi_tpi_extconn_ind(NULL,
869 			    (char *)&sin6d, sizeof (sin6_t),
870 			    (char *)&tcp,
871 			    (t_scalar_t)sizeof (intptr_t),
872 			    (char *)&sin6d, sizeof (sin6_t),
873 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
874 		} else {
875 			tpi_mp = mi_tpi_conn_ind(NULL,
876 			    (char *)&sin6, sizeof (sin6_t),
877 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
878 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
879 		}
880 	} else {
881 		ip6h = (ip6_t *)mp->b_rptr;
882 
883 		connp->conn_ipversion = IPV6_VERSION;
884 		connp->conn_laddr_v6 = ip6h->ip6_dst;
885 		connp->conn_faddr_v6 = ip6h->ip6_src;
886 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
887 
888 		sin6 = sin6_null;
889 		sin6.sin6_addr = connp->conn_faddr_v6;
890 		sin6.sin6_port = connp->conn_fport;
891 		sin6.sin6_family = AF_INET6;
892 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
893 		sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
894 		    IPCL_ZONEID(lconnp), tcps->tcps_netstack);
895 
896 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
897 			/* Pass up the scope_id of remote addr */
898 			sin6.sin6_scope_id = ifindex;
899 		} else {
900 			sin6.sin6_scope_id = 0;
901 		}
902 		if (connp->conn_recv_ancillary.crb_recvdstaddr) {
903 			sin6_t	sin6d;
904 
905 			sin6d = sin6_null;
906 			sin6.sin6_addr = connp->conn_laddr_v6;
907 			sin6d.sin6_port = connp->conn_lport;
908 			sin6d.sin6_family = AF_INET6;
909 			if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
910 				sin6d.sin6_scope_id = ifindex;
911 
912 			tpi_mp = mi_tpi_extconn_ind(NULL,
913 			    (char *)&sin6d, sizeof (sin6_t),
914 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
915 			    (char *)&sin6d, sizeof (sin6_t),
916 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
917 		} else {
918 			tpi_mp = mi_tpi_conn_ind(NULL,
919 			    (char *)&sin6, sizeof (sin6_t),
920 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
921 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
922 		}
923 	}
924 
925 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
926 	return (tpi_mp);
927 }
928 
929 /* Handle a SYN on an AF_INET socket */
930 static mblk_t *
931 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
932     ip_recv_attr_t *ira)
933 {
934 	tcp_t 		*ltcp = lconnp->conn_tcp;
935 	tcp_t		*tcp = connp->conn_tcp;
936 	sin_t		sin;
937 	mblk_t		*tpi_mp = NULL;
938 	tcp_stack_t	*tcps = tcp->tcp_tcps;
939 	ipha_t		*ipha;
940 
941 	ASSERT(ira->ira_flags & IRAF_IS_IPV4);
942 	ipha = (ipha_t *)mp->b_rptr;
943 
944 	connp->conn_ipversion = IPV4_VERSION;
945 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
946 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
947 	connp->conn_saddr_v6 = connp->conn_laddr_v6;
948 
949 	sin = sin_null;
950 	sin.sin_addr.s_addr = connp->conn_faddr_v4;
951 	sin.sin_port = connp->conn_fport;
952 	sin.sin_family = AF_INET;
953 	if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
954 		sin_t	sind;
955 
956 		sind = sin_null;
957 		sind.sin_addr.s_addr = connp->conn_laddr_v4;
958 		sind.sin_port = connp->conn_lport;
959 		sind.sin_family = AF_INET;
960 		tpi_mp = mi_tpi_extconn_ind(NULL,
961 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
962 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
963 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
964 	} else {
965 		tpi_mp = mi_tpi_conn_ind(NULL,
966 		    (char *)&sin, sizeof (sin_t),
967 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
968 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
969 	}
970 
971 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
972 	return (tpi_mp);
973 }
974 
975 /*
976  * Called via squeue to get on to eager's perimeter. It sends a
977  * TH_RST if eager is in the fanout table. The listener wants the
978  * eager to disappear either by means of tcp_eager_blowoff() or
979  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
980  * called (via squeue) if the eager cannot be inserted in the
981  * fanout table in tcp_input_listener().
982  */
983 /* ARGSUSED */
984 void
985 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
986 {
987 	conn_t	*econnp = (conn_t *)arg;
988 	tcp_t	*eager = econnp->conn_tcp;
989 	tcp_t	*listener = eager->tcp_listener;
990 
991 	/*
992 	 * We could be called because listener is closing. Since
993 	 * the eager was using listener's queue's, we avoid
994 	 * using the listeners queues from now on.
995 	 */
996 	ASSERT(eager->tcp_detached);
997 	econnp->conn_rq = NULL;
998 	econnp->conn_wq = NULL;
999 
1000 	/*
1001 	 * An eager's conn_fanout will be NULL if it's a duplicate
1002 	 * for an existing 4-tuples in the conn fanout table.
1003 	 * We don't want to send an RST out in such case.
1004 	 */
1005 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
1006 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
1007 		    eager, eager->tcp_snxt, 0, TH_RST);
1008 	}
1009 
1010 	/* We are here because listener wants this eager gone */
1011 	if (listener != NULL) {
1012 		mutex_enter(&listener->tcp_eager_lock);
1013 		tcp_eager_unlink(eager);
1014 		if (eager->tcp_tconnind_started) {
1015 			/*
1016 			 * The eager has sent a conn_ind up to the
1017 			 * listener but listener decides to close
1018 			 * instead. We need to drop the extra ref
1019 			 * placed on eager in tcp_input_data() before
1020 			 * sending the conn_ind to listener.
1021 			 */
1022 			CONN_DEC_REF(econnp);
1023 		}
1024 		mutex_exit(&listener->tcp_eager_lock);
1025 		CONN_DEC_REF(listener->tcp_connp);
1026 	}
1027 
1028 	if (eager->tcp_state != TCPS_CLOSED)
1029 		tcp_close_detached(eager);
1030 }
1031 
1032 /*
1033  * Reset any eager connection hanging off this listener marked
1034  * with 'seqnum' and then reclaim it's resources.
1035  */
1036 boolean_t
1037 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
1038 {
1039 	tcp_t	*eager;
1040 	mblk_t 	*mp;
1041 
1042 	eager = listener;
1043 	mutex_enter(&listener->tcp_eager_lock);
1044 	do {
1045 		eager = eager->tcp_eager_next_q;
1046 		if (eager == NULL) {
1047 			mutex_exit(&listener->tcp_eager_lock);
1048 			return (B_FALSE);
1049 		}
1050 	} while (eager->tcp_conn_req_seqnum != seqnum);
1051 
1052 	if (eager->tcp_closemp_used) {
1053 		mutex_exit(&listener->tcp_eager_lock);
1054 		return (B_TRUE);
1055 	}
1056 	eager->tcp_closemp_used = B_TRUE;
1057 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1058 	CONN_INC_REF(eager->tcp_connp);
1059 	mutex_exit(&listener->tcp_eager_lock);
1060 	mp = &eager->tcp_closemp;
1061 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
1062 	    eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
1063 	return (B_TRUE);
1064 }
1065 
1066 /*
1067  * Reset any eager connection hanging off this listener
1068  * and then reclaim it's resources.
1069  */
1070 void
1071 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
1072 {
1073 	tcp_t	*eager;
1074 	mblk_t	*mp;
1075 	tcp_stack_t	*tcps = listener->tcp_tcps;
1076 
1077 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1078 
1079 	if (!q0_only) {
1080 		/* First cleanup q */
1081 		TCP_STAT(tcps, tcp_eager_blowoff_q);
1082 		eager = listener->tcp_eager_next_q;
1083 		while (eager != NULL) {
1084 			if (!eager->tcp_closemp_used) {
1085 				eager->tcp_closemp_used = B_TRUE;
1086 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1087 				CONN_INC_REF(eager->tcp_connp);
1088 				mp = &eager->tcp_closemp;
1089 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1090 				    tcp_eager_kill, eager->tcp_connp, NULL,
1091 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
1092 			}
1093 			eager = eager->tcp_eager_next_q;
1094 		}
1095 	}
1096 	/* Then cleanup q0 */
1097 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
1098 	eager = listener->tcp_eager_next_q0;
1099 	while (eager != listener) {
1100 		if (!eager->tcp_closemp_used) {
1101 			eager->tcp_closemp_used = B_TRUE;
1102 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1103 			CONN_INC_REF(eager->tcp_connp);
1104 			mp = &eager->tcp_closemp;
1105 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1106 			    tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
1107 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
1108 		}
1109 		eager = eager->tcp_eager_next_q0;
1110 	}
1111 }
1112 
1113 /*
1114  * If we are an eager connection hanging off a listener that hasn't
1115  * formally accepted the connection yet, get off his list and blow off
1116  * any data that we have accumulated.
1117  */
1118 void
1119 tcp_eager_unlink(tcp_t *tcp)
1120 {
1121 	tcp_t	*listener = tcp->tcp_listener;
1122 
1123 	ASSERT(listener != NULL);
1124 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1125 	if (tcp->tcp_eager_next_q0 != NULL) {
1126 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
1127 
1128 		/* Remove the eager tcp from q0 */
1129 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
1130 		    tcp->tcp_eager_prev_q0;
1131 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
1132 		    tcp->tcp_eager_next_q0;
1133 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
1134 		listener->tcp_conn_req_cnt_q0--;
1135 
1136 		tcp->tcp_eager_next_q0 = NULL;
1137 		tcp->tcp_eager_prev_q0 = NULL;
1138 
1139 		/*
1140 		 * Take the eager out, if it is in the list of droppable
1141 		 * eagers.
1142 		 */
1143 		MAKE_UNDROPPABLE(tcp);
1144 
1145 		if (tcp->tcp_syn_rcvd_timeout != 0) {
1146 			/* we have timed out before */
1147 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
1148 			listener->tcp_syn_rcvd_timeout--;
1149 		}
1150 	} else {
1151 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
1152 		tcp_t	*prev = NULL;
1153 
1154 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
1155 			if (tcpp[0] == tcp) {
1156 				if (listener->tcp_eager_last_q == tcp) {
1157 					/*
1158 					 * If we are unlinking the last
1159 					 * element on the list, adjust
1160 					 * tail pointer. Set tail pointer
1161 					 * to nil when list is empty.
1162 					 */
1163 					ASSERT(tcp->tcp_eager_next_q == NULL);
1164 					if (listener->tcp_eager_last_q ==
1165 					    listener->tcp_eager_next_q) {
1166 						listener->tcp_eager_last_q =
1167 						    NULL;
1168 					} else {
1169 						/*
1170 						 * We won't get here if there
1171 						 * is only one eager in the
1172 						 * list.
1173 						 */
1174 						ASSERT(prev != NULL);
1175 						listener->tcp_eager_last_q =
1176 						    prev;
1177 					}
1178 				}
1179 				tcpp[0] = tcp->tcp_eager_next_q;
1180 				tcp->tcp_eager_next_q = NULL;
1181 				tcp->tcp_eager_last_q = NULL;
1182 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
1183 				listener->tcp_conn_req_cnt_q--;
1184 				break;
1185 			}
1186 			prev = tcpp[0];
1187 		}
1188 	}
1189 	tcp->tcp_listener = NULL;
1190 }
1191 
1192 /* BEGIN CSTYLED */
1193 /*
1194  *
1195  * The sockfs ACCEPT path:
1196  * =======================
1197  *
1198  * The eager is now established in its own perimeter as soon as SYN is
1199  * received in tcp_input_listener(). When sockfs receives conn_ind, it
1200  * completes the accept processing on the acceptor STREAM. The sending
1201  * of conn_ind part is common for both sockfs listener and a TLI/XTI
1202  * listener but a TLI/XTI listener completes the accept processing
1203  * on the listener perimeter.
1204  *
1205  * Common control flow for 3 way handshake:
1206  * ----------------------------------------
1207  *
1208  * incoming SYN (listener perimeter)	-> tcp_input_listener()
1209  *
1210  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_input_data()
1211  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
1212  *
1213  * Sockfs ACCEPT Path:
1214  * -------------------
1215  *
1216  * open acceptor stream (tcp_open allocates tcp_tli_accept()
1217  * as STREAM entry point)
1218  *
1219  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
1220  *
1221  * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
1222  * association (we are not behind eager's squeue but sockfs is protecting us
1223  * and no one knows about this stream yet. The STREAMS entry point q->q_info
1224  * is changed to point at tcp_wput().
1225  *
1226  * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
1227  * listener (done on listener's perimeter).
1228  *
1229  * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
1230  * accept.
1231  *
1232  * TLI/XTI client ACCEPT path:
1233  * ---------------------------
1234  *
1235  * soaccept() sends T_CONN_RES on the listener STREAM.
1236  *
1237  * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
1238  * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
1239  *
1240  * Locks:
1241  * ======
1242  *
1243  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
1244  * and listeners->tcp_eager_next_q.
1245  *
1246  * Referencing:
1247  * ============
1248  *
1249  * 1) We start out in tcp_input_listener by eager placing a ref on
1250  * listener and listener adding eager to listeners->tcp_eager_next_q0.
1251  *
1252  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
1253  * doing so we place a ref on the eager. This ref is finally dropped at the
1254  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
1255  * reference is dropped by the squeue framework.
1256  *
1257  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
1258  *
1259  * The reference must be released by the same entity that added the reference
1260  * In the above scheme, the eager is the entity that adds and releases the
1261  * references. Note that tcp_accept_finish executes in the squeue of the eager
1262  * (albeit after it is attached to the acceptor stream). Though 1. executes
1263  * in the listener's squeue, the eager is nascent at this point and the
1264  * reference can be considered to have been added on behalf of the eager.
1265  *
1266  * Eager getting a Reset or listener closing:
1267  * ==========================================
1268  *
1269  * Once the listener and eager are linked, the listener never does the unlink.
1270  * If the listener needs to close, tcp_eager_cleanup() is called which queues
1271  * a message on all eager perimeter. The eager then does the unlink, clears
1272  * any pointers to the listener's queue and drops the reference to the
1273  * listener. The listener waits in tcp_close outside the squeue until its
1274  * refcount has dropped to 1. This ensures that the listener has waited for
1275  * all eagers to clear their association with the listener.
1276  *
1277  * Similarly, if eager decides to go away, it can unlink itself and close.
1278  * When the T_CONN_RES comes down, we check if eager has closed. Note that
1279  * the reference to eager is still valid because of the extra ref we put
1280  * in tcp_send_conn_ind.
1281  *
1282  * Listener can always locate the eager under the protection
1283  * of the listener->tcp_eager_lock, and then do a refhold
1284  * on the eager during the accept processing.
1285  *
1286  * The acceptor stream accesses the eager in the accept processing
1287  * based on the ref placed on eager before sending T_conn_ind.
1288  * The only entity that can negate this refhold is a listener close
1289  * which is mutually exclusive with an active acceptor stream.
1290  *
1291  * Eager's reference on the listener
1292  * ===================================
1293  *
1294  * If the accept happens (even on a closed eager) the eager drops its
1295  * reference on the listener at the start of tcp_accept_finish. If the
1296  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
1297  * the reference is dropped in tcp_closei_local. If the listener closes,
1298  * the reference is dropped in tcp_eager_kill. In all cases the reference
1299  * is dropped while executing in the eager's context (squeue).
1300  */
1301 /* END CSTYLED */
1302 
1303 /* Process the SYN packet, mp, directed at the listener 'tcp' */
1304 
1305 /*
1306  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
1307  * tcp_input_data will not see any packets for listeners since the listener
1308  * has conn_recv set to tcp_input_listener.
1309  */
1310 /* ARGSUSED */
1311 static void
1312 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1313 {
1314 	tcpha_t		*tcpha;
1315 	uint32_t	seg_seq;
1316 	tcp_t		*eager;
1317 	int		err;
1318 	conn_t		*econnp = NULL;
1319 	squeue_t	*new_sqp;
1320 	mblk_t		*mp1;
1321 	uint_t 		ip_hdr_len;
1322 	conn_t		*lconnp = (conn_t *)arg;
1323 	tcp_t		*listener = lconnp->conn_tcp;
1324 	tcp_stack_t	*tcps = listener->tcp_tcps;
1325 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
1326 	uint_t		flags;
1327 	mblk_t		*tpi_mp;
1328 	uint_t		ifindex = ira->ira_ruifindex;
1329 	boolean_t	tlc_set = B_FALSE;
1330 
1331 	ip_hdr_len = ira->ira_ip_hdr_length;
1332 	tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
1333 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
1334 
1335 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa,
1336 	    __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener,
1337 	    __dtrace_tcp_tcph_t *, tcpha);
1338 
1339 	if (!(flags & TH_SYN)) {
1340 		if ((flags & TH_RST) || (flags & TH_URG)) {
1341 			freemsg(mp);
1342 			return;
1343 		}
1344 		if (flags & TH_ACK) {
1345 			/* Note this executes in listener's squeue */
1346 			tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
1347 			return;
1348 		}
1349 
1350 		freemsg(mp);
1351 		return;
1352 	}
1353 
1354 	if (listener->tcp_state != TCPS_LISTEN)
1355 		goto error2;
1356 
1357 	ASSERT(IPCL_IS_BOUND(lconnp));
1358 
1359 	mutex_enter(&listener->tcp_eager_lock);
1360 
1361 	/*
1362 	 * The system is under memory pressure, so we need to do our part
1363 	 * to relieve the pressure.  So we only accept new request if there
1364 	 * is nothing waiting to be accepted or waiting to complete the 3-way
1365 	 * handshake.  This means that busy listener will not get too many
1366 	 * new requests which they cannot handle in time while non-busy
1367 	 * listener is still functioning properly.
1368 	 */
1369 	if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 ||
1370 	    listener->tcp_conn_req_cnt_q0 > 0)) {
1371 		mutex_exit(&listener->tcp_eager_lock);
1372 		TCP_STAT(tcps, tcp_listen_mem_drop);
1373 		goto error2;
1374 	}
1375 
1376 	if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
1377 		mutex_exit(&listener->tcp_eager_lock);
1378 		TCP_STAT(tcps, tcp_listendrop);
1379 		TCPS_BUMP_MIB(tcps, tcpListenDrop);
1380 		if (lconnp->conn_debug) {
1381 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
1382 			    "tcp_input_listener: listen backlog (max=%d) "
1383 			    "overflow (%d pending) on %s",
1384 			    listener->tcp_conn_req_max,
1385 			    listener->tcp_conn_req_cnt_q,
1386 			    tcp_display(listener, NULL, DISP_PORT_ONLY));
1387 		}
1388 		goto error2;
1389 	}
1390 
1391 	if (listener->tcp_conn_req_cnt_q0 >=
1392 	    listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
1393 		/*
1394 		 * Q0 is full. Drop a pending half-open req from the queue
1395 		 * to make room for the new SYN req. Also mark the time we
1396 		 * drop a SYN.
1397 		 *
1398 		 * A more aggressive defense against SYN attack will
1399 		 * be to set the "tcp_syn_defense" flag now.
1400 		 */
1401 		TCP_STAT(tcps, tcp_listendropq0);
1402 		listener->tcp_last_rcv_lbolt = ddi_get_lbolt64();
1403 		if (!tcp_drop_q0(listener)) {
1404 			mutex_exit(&listener->tcp_eager_lock);
1405 			TCPS_BUMP_MIB(tcps, tcpListenDropQ0);
1406 			if (lconnp->conn_debug) {
1407 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
1408 				    "tcp_input_listener: listen half-open "
1409 				    "queue (max=%d) full (%d pending) on %s",
1410 				    tcps->tcps_conn_req_max_q0,
1411 				    listener->tcp_conn_req_cnt_q0,
1412 				    tcp_display(listener, NULL,
1413 				    DISP_PORT_ONLY));
1414 			}
1415 			goto error2;
1416 		}
1417 	}
1418 
1419 	/*
1420 	 * Enforce the limit set on the number of connections per listener.
1421 	 * Note that tlc_cnt starts with 1.  So need to add 1 to tlc_max
1422 	 * for comparison.
1423 	 */
1424 	if (listener->tcp_listen_cnt != NULL) {
1425 		tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt;
1426 		int64_t now;
1427 
1428 		if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) {
1429 			mutex_exit(&listener->tcp_eager_lock);
1430 			now = ddi_get_lbolt64();
1431 			atomic_add_32(&tlc->tlc_cnt, -1);
1432 			TCP_STAT(tcps, tcp_listen_cnt_drop);
1433 			tlc->tlc_drop++;
1434 			if (now - tlc->tlc_report_time >
1435 			    MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) {
1436 				zcmn_err(lconnp->conn_zoneid, CE_WARN,
1437 				    "Listener (port %d) connection max (%u) "
1438 				    "reached: %u attempts dropped total\n",
1439 				    ntohs(listener->tcp_connp->conn_lport),
1440 				    tlc->tlc_max, tlc->tlc_drop);
1441 				tlc->tlc_report_time = now;
1442 			}
1443 			goto error2;
1444 		}
1445 		tlc_set = B_TRUE;
1446 	}
1447 
1448 	mutex_exit(&listener->tcp_eager_lock);
1449 
1450 	/*
1451 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1452 	 * or based on the ring (for packets from GLD). Otherwise it is
1453 	 * set based on lbolt i.e., a somewhat random number.
1454 	 */
1455 	ASSERT(ira->ira_sqp != NULL);
1456 	new_sqp = ira->ira_sqp;
1457 
1458 	econnp = (conn_t *)tcp_get_conn(arg2, tcps);
1459 	if (econnp == NULL)
1460 		goto error2;
1461 
1462 	ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
1463 	econnp->conn_sqp = new_sqp;
1464 	econnp->conn_initial_sqp = new_sqp;
1465 	econnp->conn_ixa->ixa_sqp = new_sqp;
1466 
1467 	econnp->conn_fport = tcpha->tha_lport;
1468 	econnp->conn_lport = tcpha->tha_fport;
1469 
1470 	err = conn_inherit_parent(lconnp, econnp);
1471 	if (err != 0)
1472 		goto error3;
1473 
1474 	/* We already know the laddr of the new connection is ours */
1475 	econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation;
1476 
1477 	ASSERT(OK_32PTR(mp->b_rptr));
1478 	ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
1479 	    IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
1480 
1481 	if (lconnp->conn_family == AF_INET) {
1482 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
1483 		tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
1484 	} else {
1485 		tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
1486 	}
1487 
1488 	if (tpi_mp == NULL)
1489 		goto error3;
1490 
1491 	eager = econnp->conn_tcp;
1492 	eager->tcp_detached = B_TRUE;
1493 	SOCK_CONNID_INIT(eager->tcp_connid);
1494 
1495 	/*
1496 	 * Initialize the eager's tcp_t and inherit some parameters from
1497 	 * the listener.
1498 	 */
1499 	tcp_init_values(eager, listener);
1500 
1501 	ASSERT((econnp->conn_ixa->ixa_flags &
1502 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1503 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
1504 	    (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1505 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
1506 
1507 	if (!tcps->tcps_dev_flow_ctl)
1508 		econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
1509 
1510 	/* Prepare for diffing against previous packets */
1511 	eager->tcp_recvifindex = 0;
1512 	eager->tcp_recvhops = 0xffffffffU;
1513 
1514 	if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
1515 		if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
1516 		    IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
1517 			econnp->conn_incoming_ifindex = ifindex;
1518 			econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1519 			econnp->conn_ixa->ixa_scopeid = ifindex;
1520 		}
1521 	}
1522 
1523 	if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
1524 	    (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
1525 	    tcps->tcps_rev_src_routes) {
1526 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
1527 		ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
1528 
1529 		/* Source routing option copyover (reverse it) */
1530 		err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
1531 		if (err != 0) {
1532 			freemsg(tpi_mp);
1533 			goto error3;
1534 		}
1535 		ip_pkt_source_route_reverse_v4(ipp);
1536 	}
1537 
1538 	ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
1539 	ASSERT(!eager->tcp_tconnind_started);
1540 	/*
1541 	 * If the SYN came with a credential, it's a loopback packet or a
1542 	 * labeled packet; attach the credential to the TPI message.
1543 	 */
1544 	if (ira->ira_cred != NULL)
1545 		mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
1546 
1547 	eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
1548 	ASSERT(eager->tcp_ordrel_mp == NULL);
1549 
1550 	/* Inherit the listener's non-STREAMS flag */
1551 	if (IPCL_IS_NONSTR(lconnp)) {
1552 		econnp->conn_flags |= IPCL_NONSTR;
1553 		/* All non-STREAMS tcp_ts are sockets */
1554 		eager->tcp_issocket = B_TRUE;
1555 	} else {
1556 		/*
1557 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
1558 		 * at close time, we will always have that to send up.
1559 		 * Otherwise, we need to do special handling in case the
1560 		 * allocation fails at that time.
1561 		 */
1562 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
1563 			goto error3;
1564 	}
1565 	/*
1566 	 * Now that the IP addresses and ports are setup in econnp we
1567 	 * can do the IPsec policy work.
1568 	 */
1569 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
1570 		if (lconnp->conn_policy != NULL) {
1571 			/*
1572 			 * Inherit the policy from the listener; use
1573 			 * actions from ira
1574 			 */
1575 			if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
1576 				CONN_DEC_REF(econnp);
1577 				freemsg(mp);
1578 				goto error3;
1579 			}
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * tcp_set_destination() may set tcp_rwnd according to the route
1585 	 * metrics. If it does not, the eager's receive window will be set
1586 	 * to the listener's receive window later in this function.
1587 	 */
1588 	eager->tcp_rwnd = 0;
1589 
1590 	if (is_system_labeled()) {
1591 		ip_xmit_attr_t *ixa = econnp->conn_ixa;
1592 
1593 		ASSERT(ira->ira_tsl != NULL);
1594 		/* Discard any old label */
1595 		if (ixa->ixa_free_flags & IXA_FREE_TSL) {
1596 			ASSERT(ixa->ixa_tsl != NULL);
1597 			label_rele(ixa->ixa_tsl);
1598 			ixa->ixa_free_flags &= ~IXA_FREE_TSL;
1599 			ixa->ixa_tsl = NULL;
1600 		}
1601 		if ((lconnp->conn_mlp_type != mlptSingle ||
1602 		    lconnp->conn_mac_mode != CONN_MAC_DEFAULT) &&
1603 		    ira->ira_tsl != NULL) {
1604 			/*
1605 			 * If this is an MLP connection or a MAC-Exempt
1606 			 * connection with an unlabeled node, packets are to be
1607 			 * exchanged using the security label of the received
1608 			 * SYN packet instead of the server application's label.
1609 			 * tsol_check_dest called from ip_set_destination
1610 			 * might later update TSF_UNLABELED by replacing
1611 			 * ixa_tsl with a new label.
1612 			 */
1613 			label_hold(ira->ira_tsl);
1614 			ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl);
1615 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
1616 			    econnp, ts_label_t *, ixa->ixa_tsl)
1617 		} else {
1618 			ixa->ixa_tsl = crgetlabel(econnp->conn_cred);
1619 			DTRACE_PROBE2(syn_accept, conn_t *,
1620 			    econnp, ts_label_t *, ixa->ixa_tsl)
1621 		}
1622 		/*
1623 		 * conn_connect() called from tcp_set_destination will verify
1624 		 * the destination is allowed to receive packets at the
1625 		 * security label of the SYN-ACK we are generating. As part of
1626 		 * that, tsol_check_dest() may create a new effective label for
1627 		 * this connection.
1628 		 * Finally conn_connect() will call conn_update_label.
1629 		 * All that remains for TCP to do is to call
1630 		 * conn_build_hdr_template which is done as part of
1631 		 * tcp_set_destination.
1632 		 */
1633 	}
1634 
1635 	/*
1636 	 * Since we will clear tcp_listener before we clear tcp_detached
1637 	 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
1638 	 * so we can tell a TCP_IS_DETACHED_NONEAGER apart.
1639 	 */
1640 	eager->tcp_hard_binding = B_TRUE;
1641 
1642 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
1643 	    TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
1644 
1645 	CL_INET_CONNECT(econnp, B_FALSE, err);
1646 	if (err != 0) {
1647 		tcp_bind_hash_remove(eager);
1648 		goto error3;
1649 	}
1650 
1651 	SOCK_CONNID_BUMP(eager->tcp_connid);
1652 
1653 	/*
1654 	 * Adapt our mss, ttl, ... based on the remote address.
1655 	 */
1656 
1657 	if (tcp_set_destination(eager) != 0) {
1658 		TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1659 		/* Undo the bind_hash_insert */
1660 		tcp_bind_hash_remove(eager);
1661 		goto error3;
1662 	}
1663 
1664 	/* Process all TCP options. */
1665 	tcp_process_options(eager, tcpha);
1666 
1667 	/* Is the other end ECN capable? */
1668 	if (tcps->tcps_ecn_permitted >= 1 &&
1669 	    (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1670 		eager->tcp_ecn_ok = B_TRUE;
1671 	}
1672 
1673 	/*
1674 	 * The listener's conn_rcvbuf should be the default window size or a
1675 	 * window size changed via SO_RCVBUF option. First round up the
1676 	 * eager's tcp_rwnd to the nearest MSS. Then find out the window
1677 	 * scale option value if needed. Call tcp_rwnd_set() to finish the
1678 	 * setting.
1679 	 *
1680 	 * Note if there is a rpipe metric associated with the remote host,
1681 	 * we should not inherit receive window size from listener.
1682 	 */
1683 	eager->tcp_rwnd = MSS_ROUNDUP(
1684 	    (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
1685 	    eager->tcp_rwnd), eager->tcp_mss);
1686 	if (eager->tcp_snd_ws_ok)
1687 		tcp_set_ws_value(eager);
1688 	/*
1689 	 * Note that this is the only place tcp_rwnd_set() is called for
1690 	 * accepting a connection.  We need to call it here instead of
1691 	 * after the 3-way handshake because we need to tell the other
1692 	 * side our rwnd in the SYN-ACK segment.
1693 	 */
1694 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
1695 
1696 	ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
1697 	    eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
1698 
1699 	ASSERT(econnp->conn_rcvbuf != 0 &&
1700 	    econnp->conn_rcvbuf == eager->tcp_rwnd);
1701 
1702 	/* Put a ref on the listener for the eager. */
1703 	CONN_INC_REF(lconnp);
1704 	mutex_enter(&listener->tcp_eager_lock);
1705 	listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
1706 	eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
1707 	listener->tcp_eager_next_q0 = eager;
1708 	eager->tcp_eager_prev_q0 = listener;
1709 
1710 	/* Set tcp_listener before adding it to tcp_conn_fanout */
1711 	eager->tcp_listener = listener;
1712 	eager->tcp_saved_listener = listener;
1713 
1714 	/*
1715 	 * Set tcp_listen_cnt so that when the connection is done, the counter
1716 	 * is decremented.
1717 	 */
1718 	eager->tcp_listen_cnt = listener->tcp_listen_cnt;
1719 
1720 	/*
1721 	 * Tag this detached tcp vector for later retrieval
1722 	 * by our listener client in tcp_accept().
1723 	 */
1724 	eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
1725 	listener->tcp_conn_req_cnt_q0++;
1726 	if (++listener->tcp_conn_req_seqnum == -1) {
1727 		/*
1728 		 * -1 is "special" and defined in TPI as something
1729 		 * that should never be used in T_CONN_IND
1730 		 */
1731 		++listener->tcp_conn_req_seqnum;
1732 	}
1733 	mutex_exit(&listener->tcp_eager_lock);
1734 
1735 	if (listener->tcp_syn_defense) {
1736 		/* Don't drop the SYN that comes from a good IP source */
1737 		ipaddr_t *addr_cache;
1738 
1739 		addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
1740 		if (addr_cache != NULL && econnp->conn_faddr_v4 ==
1741 		    addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
1742 			eager->tcp_dontdrop = B_TRUE;
1743 		}
1744 	}
1745 
1746 	/*
1747 	 * We need to insert the eager in its own perimeter but as soon
1748 	 * as we do that, we expose the eager to the classifier and
1749 	 * should not touch any field outside the eager's perimeter.
1750 	 * So do all the work necessary before inserting the eager
1751 	 * in its own perimeter. Be optimistic that conn_connect()
1752 	 * will succeed but undo everything if it fails.
1753 	 */
1754 	seg_seq = ntohl(tcpha->tha_seq);
1755 	eager->tcp_irs = seg_seq;
1756 	eager->tcp_rack = seg_seq;
1757 	eager->tcp_rnxt = seg_seq + 1;
1758 	eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
1759 	TCPS_BUMP_MIB(tcps, tcpPassiveOpens);
1760 	eager->tcp_state = TCPS_SYN_RCVD;
1761 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1762 	    econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL,
1763 	    int32_t, TCPS_LISTEN);
1764 
1765 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
1766 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
1767 	if (mp1 == NULL) {
1768 		/*
1769 		 * Increment the ref count as we are going to
1770 		 * enqueueing an mp in squeue
1771 		 */
1772 		CONN_INC_REF(econnp);
1773 		goto error;
1774 	}
1775 
1776 	/*
1777 	 * We need to start the rto timer. In normal case, we start
1778 	 * the timer after sending the packet on the wire (or at
1779 	 * least believing that packet was sent by waiting for
1780 	 * conn_ip_output() to return). Since this is the first packet
1781 	 * being sent on the wire for the eager, our initial tcp_rto
1782 	 * is at least tcp_rexmit_interval_min which is a fairly
1783 	 * large value to allow the algorithm to adjust slowly to large
1784 	 * fluctuations of RTT during first few transmissions.
1785 	 *
1786 	 * Starting the timer first and then sending the packet in this
1787 	 * case shouldn't make much difference since tcp_rexmit_interval_min
1788 	 * is of the order of several 100ms and starting the timer
1789 	 * first and then sending the packet will result in difference
1790 	 * of few micro seconds.
1791 	 *
1792 	 * Without this optimization, we are forced to hold the fanout
1793 	 * lock across the ipcl_bind_insert() and sending the packet
1794 	 * so that we don't race against an incoming packet (maybe RST)
1795 	 * for this eager.
1796 	 *
1797 	 * It is necessary to acquire an extra reference on the eager
1798 	 * at this point and hold it until after tcp_send_data() to
1799 	 * ensure against an eager close race.
1800 	 */
1801 
1802 	CONN_INC_REF(econnp);
1803 
1804 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
1805 
1806 	/*
1807 	 * Insert the eager in its own perimeter now. We are ready to deal
1808 	 * with any packets on eager.
1809 	 */
1810 	if (ipcl_conn_insert(econnp) != 0)
1811 		goto error;
1812 
1813 	ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
1814 	freemsg(mp);
1815 	/*
1816 	 * Send the SYN-ACK. Use the right squeue so that conn_ixa is
1817 	 * only used by one thread at a time.
1818 	 */
1819 	if (econnp->conn_sqp == lconnp->conn_sqp) {
1820 		DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *,
1821 		    econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr,
1822 		    tcp_t *, eager, __dtrace_tcp_tcph_t *,
1823 		    &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]);
1824 		(void) conn_ip_output(mp1, econnp->conn_ixa);
1825 		CONN_DEC_REF(econnp);
1826 	} else {
1827 		SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack,
1828 		    econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK);
1829 	}
1830 	return;
1831 error:
1832 	freemsg(mp1);
1833 	eager->tcp_closemp_used = B_TRUE;
1834 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1835 	mp1 = &eager->tcp_closemp;
1836 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
1837 	    econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
1838 
1839 	/*
1840 	 * If a connection already exists, send the mp to that connections so
1841 	 * that it can be appropriately dealt with.
1842 	 */
1843 	ipst = tcps->tcps_netstack->netstack_ip;
1844 
1845 	if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
1846 		if (!IPCL_IS_CONNECTED(econnp)) {
1847 			/*
1848 			 * Something bad happened. ipcl_conn_insert()
1849 			 * failed because a connection already existed
1850 			 * in connected hash but we can't find it
1851 			 * anymore (someone blew it away). Just
1852 			 * free this message and hopefully remote
1853 			 * will retransmit at which time the SYN can be
1854 			 * treated as a new connection or dealth with
1855 			 * a TH_RST if a connection already exists.
1856 			 */
1857 			CONN_DEC_REF(econnp);
1858 			freemsg(mp);
1859 		} else {
1860 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
1861 			    econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
1862 		}
1863 	} else {
1864 		/* Nobody wants this packet */
1865 		freemsg(mp);
1866 	}
1867 	return;
1868 error3:
1869 	CONN_DEC_REF(econnp);
1870 error2:
1871 	freemsg(mp);
1872 	if (tlc_set)
1873 		atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1);
1874 }
1875 
1876 /*
1877  * In an ideal case of vertical partition in NUMA architecture, its
1878  * beneficial to have the listener and all the incoming connections
1879  * tied to the same squeue. The other constraint is that incoming
1880  * connections should be tied to the squeue attached to interrupted
1881  * CPU for obvious locality reason so this leaves the listener to
1882  * be tied to the same squeue. Our only problem is that when listener
1883  * is binding, the CPU that will get interrupted by the NIC whose
1884  * IP address the listener is binding to is not even known. So
1885  * the code below allows us to change that binding at the time the
1886  * CPU is interrupted by virtue of incoming connection's squeue.
1887  *
1888  * This is usefull only in case of a listener bound to a specific IP
1889  * address. For other kind of listeners, they get bound the
1890  * very first time and there is no attempt to rebind them.
1891  */
1892 void
1893 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
1894     ip_recv_attr_t *ira)
1895 {
1896 	conn_t		*connp = (conn_t *)arg;
1897 	squeue_t	*sqp = (squeue_t *)arg2;
1898 	squeue_t	*new_sqp;
1899 	uint32_t	conn_flags;
1900 
1901 	/*
1902 	 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1903 	 * or based on the ring (for packets from GLD). Otherwise it is
1904 	 * set based on lbolt i.e., a somewhat random number.
1905 	 */
1906 	ASSERT(ira->ira_sqp != NULL);
1907 	new_sqp = ira->ira_sqp;
1908 
1909 	if (connp->conn_fanout == NULL)
1910 		goto done;
1911 
1912 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
1913 		mutex_enter(&connp->conn_fanout->connf_lock);
1914 		mutex_enter(&connp->conn_lock);
1915 		/*
1916 		 * No one from read or write side can access us now
1917 		 * except for already queued packets on this squeue.
1918 		 * But since we haven't changed the squeue yet, they
1919 		 * can't execute. If they are processed after we have
1920 		 * changed the squeue, they are sent back to the
1921 		 * correct squeue down below.
1922 		 * But a listner close can race with processing of
1923 		 * incoming SYN. If incoming SYN processing changes
1924 		 * the squeue then the listener close which is waiting
1925 		 * to enter the squeue would operate on the wrong
1926 		 * squeue. Hence we don't change the squeue here unless
1927 		 * the refcount is exactly the minimum refcount. The
1928 		 * minimum refcount of 4 is counted as - 1 each for
1929 		 * TCP and IP, 1 for being in the classifier hash, and
1930 		 * 1 for the mblk being processed.
1931 		 */
1932 
1933 		if (connp->conn_ref != 4 ||
1934 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
1935 			mutex_exit(&connp->conn_lock);
1936 			mutex_exit(&connp->conn_fanout->connf_lock);
1937 			goto done;
1938 		}
1939 		if (connp->conn_sqp != new_sqp) {
1940 			while (connp->conn_sqp != new_sqp)
1941 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
1942 			/* No special MT issues for outbound ixa_sqp hint */
1943 			connp->conn_ixa->ixa_sqp = new_sqp;
1944 		}
1945 
1946 		do {
1947 			conn_flags = connp->conn_flags;
1948 			conn_flags |= IPCL_FULLY_BOUND;
1949 			(void) cas32(&connp->conn_flags, connp->conn_flags,
1950 			    conn_flags);
1951 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
1952 
1953 		mutex_exit(&connp->conn_fanout->connf_lock);
1954 		mutex_exit(&connp->conn_lock);
1955 
1956 		/*
1957 		 * Assume we have picked a good squeue for the listener. Make
1958 		 * subsequent SYNs not try to change the squeue.
1959 		 */
1960 		connp->conn_recv = tcp_input_listener;
1961 	}
1962 
1963 done:
1964 	if (connp->conn_sqp != sqp) {
1965 		CONN_INC_REF(connp);
1966 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
1967 		    ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
1968 	} else {
1969 		tcp_input_listener(connp, mp, sqp, ira);
1970 	}
1971 }
1972 
1973 /*
1974  * Send up all messages queued on tcp_rcv_list.
1975  */
1976 uint_t
1977 tcp_rcv_drain(tcp_t *tcp)
1978 {
1979 	mblk_t *mp;
1980 	uint_t ret = 0;
1981 #ifdef DEBUG
1982 	uint_t cnt = 0;
1983 #endif
1984 	queue_t	*q = tcp->tcp_connp->conn_rq;
1985 
1986 	/* Can't drain on an eager connection */
1987 	if (tcp->tcp_listener != NULL)
1988 		return (ret);
1989 
1990 	/* Can't be a non-STREAMS connection */
1991 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1992 
1993 	/* No need for the push timer now. */
1994 	if (tcp->tcp_push_tid != 0) {
1995 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
1996 		tcp->tcp_push_tid = 0;
1997 	}
1998 
1999 	/*
2000 	 * Handle two cases here: we are currently fused or we were
2001 	 * previously fused and have some urgent data to be delivered
2002 	 * upstream.  The latter happens because we either ran out of
2003 	 * memory or were detached and therefore sending the SIGURG was
2004 	 * deferred until this point.  In either case we pass control
2005 	 * over to tcp_fuse_rcv_drain() since it may need to complete
2006 	 * some work.
2007 	 */
2008 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
2009 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
2010 		    &tcp->tcp_fused_sigurg_mp))
2011 			return (ret);
2012 	}
2013 
2014 	while ((mp = tcp->tcp_rcv_list) != NULL) {
2015 		tcp->tcp_rcv_list = mp->b_next;
2016 		mp->b_next = NULL;
2017 #ifdef DEBUG
2018 		cnt += msgdsize(mp);
2019 #endif
2020 		putnext(q, mp);
2021 	}
2022 #ifdef DEBUG
2023 	ASSERT(cnt == tcp->tcp_rcv_cnt);
2024 #endif
2025 	tcp->tcp_rcv_last_head = NULL;
2026 	tcp->tcp_rcv_last_tail = NULL;
2027 	tcp->tcp_rcv_cnt = 0;
2028 
2029 	if (canputnext(q))
2030 		return (tcp_rwnd_reopen(tcp));
2031 
2032 	return (ret);
2033 }
2034 
2035 /*
2036  * Queue data on tcp_rcv_list which is a b_next chain.
2037  * tcp_rcv_last_head/tail is the last element of this chain.
2038  * Each element of the chain is a b_cont chain.
2039  *
2040  * M_DATA messages are added to the current element.
2041  * Other messages are added as new (b_next) elements.
2042  */
2043 void
2044 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
2045 {
2046 	ASSERT(seg_len == msgdsize(mp));
2047 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
2048 
2049 	if (is_system_labeled()) {
2050 		ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL);
2051 		/*
2052 		 * Provide for protocols above TCP such as RPC. NOPID leaves
2053 		 * db_cpid unchanged.
2054 		 * The cred could have already been set.
2055 		 */
2056 		if (cr != NULL)
2057 			mblk_setcred(mp, cr, NOPID);
2058 	}
2059 
2060 	if (tcp->tcp_rcv_list == NULL) {
2061 		ASSERT(tcp->tcp_rcv_last_head == NULL);
2062 		tcp->tcp_rcv_list = mp;
2063 		tcp->tcp_rcv_last_head = mp;
2064 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
2065 		tcp->tcp_rcv_last_tail->b_cont = mp;
2066 	} else {
2067 		tcp->tcp_rcv_last_head->b_next = mp;
2068 		tcp->tcp_rcv_last_head = mp;
2069 	}
2070 
2071 	while (mp->b_cont)
2072 		mp = mp->b_cont;
2073 
2074 	tcp->tcp_rcv_last_tail = mp;
2075 	tcp->tcp_rcv_cnt += seg_len;
2076 	tcp->tcp_rwnd -= seg_len;
2077 }
2078 
2079 /* Generate an ACK-only (no data) segment for a TCP endpoint */
2080 mblk_t *
2081 tcp_ack_mp(tcp_t *tcp)
2082 {
2083 	uint32_t	seq_no;
2084 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2085 	conn_t		*connp = tcp->tcp_connp;
2086 
2087 	/*
2088 	 * There are a few cases to be considered while setting the sequence no.
2089 	 * Essentially, we can come here while processing an unacceptable pkt
2090 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
2091 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
2092 	 * If we are here for a zero window probe, stick with suna. In all
2093 	 * other cases, we check if suna + swnd encompasses snxt and set
2094 	 * the sequence number to snxt, if so. If snxt falls outside the
2095 	 * window (the receiver probably shrunk its window), we will go with
2096 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
2097 	 * receiver.
2098 	 */
2099 	if (tcp->tcp_zero_win_probe) {
2100 		seq_no = tcp->tcp_suna;
2101 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
2102 		ASSERT(tcp->tcp_swnd == 0);
2103 		seq_no = tcp->tcp_snxt;
2104 	} else {
2105 		seq_no = SEQ_GT(tcp->tcp_snxt,
2106 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
2107 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
2108 	}
2109 
2110 	if (tcp->tcp_valid_bits) {
2111 		/*
2112 		 * For the complex case where we have to send some
2113 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
2114 		 */
2115 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
2116 		    NULL, B_FALSE));
2117 	} else {
2118 		/* Generate a simple ACK */
2119 		int	data_length;
2120 		uchar_t	*rptr;
2121 		tcpha_t	*tcpha;
2122 		mblk_t	*mp1;
2123 		int32_t	total_hdr_len;
2124 		int32_t	tcp_hdr_len;
2125 		int32_t	num_sack_blk = 0;
2126 		int32_t sack_opt_len;
2127 		ip_xmit_attr_t *ixa = connp->conn_ixa;
2128 
2129 		/*
2130 		 * Allocate space for TCP + IP headers
2131 		 * and link-level header
2132 		 */
2133 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
2134 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
2135 			    tcp->tcp_num_sack_blk);
2136 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
2137 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
2138 			total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
2139 			tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
2140 		} else {
2141 			total_hdr_len = connp->conn_ht_iphc_len;
2142 			tcp_hdr_len = connp->conn_ht_ulp_len;
2143 		}
2144 		mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
2145 		if (!mp1)
2146 			return (NULL);
2147 
2148 		/* Update the latest receive window size in TCP header. */
2149 		tcp->tcp_tcpha->tha_win =
2150 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2151 		/* copy in prototype TCP + IP header */
2152 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
2153 		mp1->b_rptr = rptr;
2154 		mp1->b_wptr = rptr + total_hdr_len;
2155 		bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
2156 
2157 		tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
2158 
2159 		/* Set the TCP sequence number. */
2160 		tcpha->tha_seq = htonl(seq_no);
2161 
2162 		/* Set up the TCP flag field. */
2163 		tcpha->tha_flags = (uchar_t)TH_ACK;
2164 		if (tcp->tcp_ecn_echo_on)
2165 			tcpha->tha_flags |= TH_ECE;
2166 
2167 		tcp->tcp_rack = tcp->tcp_rnxt;
2168 		tcp->tcp_rack_cnt = 0;
2169 
2170 		/* fill in timestamp option if in use */
2171 		if (tcp->tcp_snd_ts_ok) {
2172 			uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
2173 
2174 			U32_TO_BE32(llbolt,
2175 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
2176 			U32_TO_BE32(tcp->tcp_ts_recent,
2177 			    (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
2178 		}
2179 
2180 		/* Fill in SACK options */
2181 		if (num_sack_blk > 0) {
2182 			uchar_t *wptr = (uchar_t *)tcpha +
2183 			    connp->conn_ht_ulp_len;
2184 			sack_blk_t *tmp;
2185 			int32_t	i;
2186 
2187 			wptr[0] = TCPOPT_NOP;
2188 			wptr[1] = TCPOPT_NOP;
2189 			wptr[2] = TCPOPT_SACK;
2190 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
2191 			    sizeof (sack_blk_t);
2192 			wptr += TCPOPT_REAL_SACK_LEN;
2193 
2194 			tmp = tcp->tcp_sack_list;
2195 			for (i = 0; i < num_sack_blk; i++) {
2196 				U32_TO_BE32(tmp[i].begin, wptr);
2197 				wptr += sizeof (tcp_seq);
2198 				U32_TO_BE32(tmp[i].end, wptr);
2199 				wptr += sizeof (tcp_seq);
2200 			}
2201 			tcpha->tha_offset_and_reserved +=
2202 			    ((num_sack_blk * 2 + 1) << 4);
2203 		}
2204 
2205 		ixa->ixa_pktlen = total_hdr_len;
2206 
2207 		if (ixa->ixa_flags & IXAF_IS_IPV4) {
2208 			((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
2209 		} else {
2210 			ip6_t *ip6 = (ip6_t *)rptr;
2211 
2212 			ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
2213 		}
2214 
2215 		/*
2216 		 * Prime pump for checksum calculation in IP.  Include the
2217 		 * adjustment for a source route if any.
2218 		 */
2219 		data_length = tcp_hdr_len + connp->conn_sum;
2220 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
2221 		tcpha->tha_sum = htons(data_length);
2222 
2223 		if (tcp->tcp_ip_forward_progress) {
2224 			tcp->tcp_ip_forward_progress = B_FALSE;
2225 			connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
2226 		} else {
2227 			connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
2228 		}
2229 		return (mp1);
2230 	}
2231 }
2232 
2233 /*
2234  * Dummy socket upcalls for if/when the conn_t gets detached from a
2235  * direct-callback sonode via a user-driven close().  Easy to catch with
2236  * DTrace FBT, and should be mostly harmless.
2237  */
2238 
2239 /* ARGSUSED */
2240 static sock_upper_handle_t
2241 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y,
2242     sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored)
2243 {
2244 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2245 	return (NULL);
2246 }
2247 
2248 /* ARGSUSED */
2249 static void
2250 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr,
2251     pid_t pid)
2252 {
2253 	ASSERT(x == NULL);
2254 	/* Normally we'd crhold(cr) and attach it to socket state. */
2255 	/* LINTED */
2256 }
2257 
2258 /* ARGSUSED */
2259 static int
2260 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah)
2261 {
2262 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2263 	return (-1);
2264 }
2265 
2266 /* ARGSUSED */
2267 static void
2268 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah)
2269 {
2270 	ASSERT(x == NULL);
2271 	/* We really want this one to be a harmless NOP for now. */
2272 	/* LINTED */
2273 }
2274 
2275 /* ARGSUSED */
2276 static ssize_t
2277 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags,
2278     int *error, boolean_t *push)
2279 {
2280 	ASSERT(x == NULL);
2281 
2282 	/*
2283 	 * Consume the message, set ESHUTDOWN, and return an error.
2284 	 * Nobody's home!
2285 	 */
2286 	freemsg(mp);
2287 	*error = ESHUTDOWN;
2288 	return (-1);
2289 }
2290 
2291 /* ARGSUSED */
2292 static void
2293 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y)
2294 {
2295 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2296 }
2297 
2298 /* ARGSUSED */
2299 static void
2300 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y)
2301 {
2302 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2303 }
2304 
2305 /* ARGSUSED */
2306 static void
2307 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len)
2308 {
2309 	ASSERT(x == NULL);
2310 	/* Otherwise, this would signal socket state about OOB data. */
2311 }
2312 
2313 /* ARGSUSED */
2314 static void
2315 tcp_dummy_set_error(sock_upper_handle_t x, int err)
2316 {
2317 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2318 }
2319 
2320 /* ARGSUSED */
2321 static void
2322 tcp_dummy_onearg(sock_upper_handle_t x)
2323 {
2324 	ASSERT(0);	/* Panic in debug, otherwise ignore. */
2325 }
2326 
2327 static sock_upcalls_t tcp_dummy_upcalls = {
2328 	tcp_dummy_newconn,
2329 	tcp_dummy_connected,
2330 	tcp_dummy_disconnected,
2331 	tcp_dummy_opctl,
2332 	tcp_dummy_recv,
2333 	tcp_dummy_set_proto_props,
2334 	tcp_dummy_txq_full,
2335 	tcp_dummy_signal_oob,
2336 	tcp_dummy_onearg,
2337 	tcp_dummy_set_error,
2338 	tcp_dummy_onearg
2339 };
2340 
2341 /*
2342  * Handle M_DATA messages from IP. Its called directly from IP via
2343  * squeue for received IP packets.
2344  *
2345  * The first argument is always the connp/tcp to which the mp belongs.
2346  * There are no exceptions to this rule. The caller has already put
2347  * a reference on this connp/tcp and once tcp_input_data() returns,
2348  * the squeue will do the refrele.
2349  *
2350  * The TH_SYN for the listener directly go to tcp_input_listener via
2351  * squeue. ICMP errors go directly to tcp_icmp_input().
2352  *
2353  * sqp: NULL = recursive, sqp != NULL means called from squeue
2354  */
2355 void
2356 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
2357 {
2358 	int32_t		bytes_acked;
2359 	int32_t		gap;
2360 	mblk_t		*mp1;
2361 	uint_t		flags;
2362 	uint32_t	new_swnd = 0;
2363 	uchar_t		*iphdr;
2364 	uchar_t		*rptr;
2365 	int32_t		rgap;
2366 	uint32_t	seg_ack;
2367 	int		seg_len;
2368 	uint_t		ip_hdr_len;
2369 	uint32_t	seg_seq;
2370 	tcpha_t		*tcpha;
2371 	int		urp;
2372 	tcp_opt_t	tcpopt;
2373 	ip_pkt_t	ipp;
2374 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
2375 	uint32_t	cwnd;
2376 	uint32_t	add;
2377 	int		npkt;
2378 	int		mss;
2379 	conn_t		*connp = (conn_t *)arg;
2380 	squeue_t	*sqp = (squeue_t *)arg2;
2381 	tcp_t		*tcp = connp->conn_tcp;
2382 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2383 	sock_upcalls_t	*sockupcalls;
2384 
2385 	/*
2386 	 * RST from fused tcp loopback peer should trigger an unfuse.
2387 	 */
2388 	if (tcp->tcp_fused) {
2389 		TCP_STAT(tcps, tcp_fusion_aborted);
2390 		tcp_unfuse(tcp);
2391 	}
2392 
2393 	iphdr = mp->b_rptr;
2394 	rptr = mp->b_rptr;
2395 	ASSERT(OK_32PTR(rptr));
2396 
2397 	ip_hdr_len = ira->ira_ip_hdr_length;
2398 	if (connp->conn_recv_ancillary.crb_all != 0) {
2399 		/*
2400 		 * Record packet information in the ip_pkt_t
2401 		 */
2402 		ipp.ipp_fields = 0;
2403 		if (ira->ira_flags & IRAF_IS_IPV4) {
2404 			(void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
2405 			    B_FALSE);
2406 		} else {
2407 			uint8_t nexthdrp;
2408 
2409 			/*
2410 			 * IPv6 packets can only be received by applications
2411 			 * that are prepared to receive IPv6 addresses.
2412 			 * The IP fanout must ensure this.
2413 			 */
2414 			ASSERT(connp->conn_family == AF_INET6);
2415 
2416 			(void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp,
2417 			    &nexthdrp);
2418 			ASSERT(nexthdrp == IPPROTO_TCP);
2419 
2420 			/* Could have caused a pullup? */
2421 			iphdr = mp->b_rptr;
2422 			rptr = mp->b_rptr;
2423 		}
2424 	}
2425 	ASSERT(DB_TYPE(mp) == M_DATA);
2426 	ASSERT(mp->b_next == NULL);
2427 
2428 	tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2429 	seg_seq = ntohl(tcpha->tha_seq);
2430 	seg_ack = ntohl(tcpha->tha_ack);
2431 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
2432 	seg_len = (int)(mp->b_wptr - rptr) -
2433 	    (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
2434 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
2435 		do {
2436 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
2437 			    (uintptr_t)INT_MAX);
2438 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
2439 		} while ((mp1 = mp1->b_cont) != NULL &&
2440 		    mp1->b_datap->db_type == M_DATA);
2441 	}
2442 
2443 	DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa,
2444 	    __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp,
2445 	    __dtrace_tcp_tcph_t *, tcpha);
2446 
2447 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
2448 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
2449 		    seg_len, tcpha, ira);
2450 		return;
2451 	}
2452 
2453 	if (sqp != NULL) {
2454 		/*
2455 		 * This is the correct place to update tcp_last_recv_time. Note
2456 		 * that it is also updated for tcp structure that belongs to
2457 		 * global and listener queues which do not really need updating.
2458 		 * But that should not cause any harm.  And it is updated for
2459 		 * all kinds of incoming segments, not only for data segments.
2460 		 */
2461 		tcp->tcp_last_recv_time = LBOLT_FASTPATH;
2462 	}
2463 
2464 	flags = (unsigned int)tcpha->tha_flags & 0xFF;
2465 
2466 	BUMP_LOCAL(tcp->tcp_ibsegs);
2467 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2468 
2469 	if ((flags & TH_URG) && sqp != NULL) {
2470 		/*
2471 		 * TCP can't handle urgent pointers that arrive before
2472 		 * the connection has been accept()ed since it can't
2473 		 * buffer OOB data.  Discard segment if this happens.
2474 		 *
2475 		 * We can't just rely on a non-null tcp_listener to indicate
2476 		 * that the accept() has completed since unlinking of the
2477 		 * eager and completion of the accept are not atomic.
2478 		 * tcp_detached, when it is not set (B_FALSE) indicates
2479 		 * that the accept() has completed.
2480 		 *
2481 		 * Nor can it reassemble urgent pointers, so discard
2482 		 * if it's not the next segment expected.
2483 		 *
2484 		 * Otherwise, collapse chain into one mblk (discard if
2485 		 * that fails).  This makes sure the headers, retransmitted
2486 		 * data, and new data all are in the same mblk.
2487 		 */
2488 		ASSERT(mp != NULL);
2489 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
2490 			freemsg(mp);
2491 			return;
2492 		}
2493 		/* Update pointers into message */
2494 		iphdr = rptr = mp->b_rptr;
2495 		tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2496 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
2497 			/*
2498 			 * Since we can't handle any data with this urgent
2499 			 * pointer that is out of sequence, we expunge
2500 			 * the data.  This allows us to still register
2501 			 * the urgent mark and generate the M_PCSIG,
2502 			 * which we can do.
2503 			 */
2504 			mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2505 			seg_len = 0;
2506 		}
2507 	}
2508 
2509 	sockupcalls = connp->conn_upcalls;
2510 	/* A conn_t may have belonged to a now-closed socket.  Be careful. */
2511 	if (sockupcalls == NULL)
2512 		sockupcalls = &tcp_dummy_upcalls;
2513 
2514 	switch (tcp->tcp_state) {
2515 	case TCPS_SYN_SENT:
2516 		if (connp->conn_final_sqp == NULL &&
2517 		    tcp_outbound_squeue_switch && sqp != NULL) {
2518 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
2519 			connp->conn_final_sqp = sqp;
2520 			if (connp->conn_final_sqp != connp->conn_sqp) {
2521 				DTRACE_PROBE1(conn__final__sqp__switch,
2522 				    conn_t *, connp);
2523 				CONN_INC_REF(connp);
2524 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
2525 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2526 				    tcp_input_data, connp, ira, ip_squeue_flag,
2527 				    SQTAG_CONNECT_FINISH);
2528 				return;
2529 			}
2530 			DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
2531 		}
2532 		if (flags & TH_ACK) {
2533 			/*
2534 			 * Note that our stack cannot send data before a
2535 			 * connection is established, therefore the
2536 			 * following check is valid.  Otherwise, it has
2537 			 * to be changed.
2538 			 */
2539 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
2540 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2541 				freemsg(mp);
2542 				if (flags & TH_RST)
2543 					return;
2544 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
2545 				    tcp, seg_ack, 0, TH_RST);
2546 				return;
2547 			}
2548 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
2549 		}
2550 		if (flags & TH_RST) {
2551 			if (flags & TH_ACK) {
2552 				DTRACE_TCP5(connect__refused, mblk_t *, NULL,
2553 				    ip_xmit_attr_t *, connp->conn_ixa,
2554 				    void_ip_t *, iphdr, tcp_t *, tcp,
2555 				    tcph_t *, tcpha);
2556 				(void) tcp_clean_death(tcp, ECONNREFUSED);
2557 			}
2558 			freemsg(mp);
2559 			return;
2560 		}
2561 		if (!(flags & TH_SYN)) {
2562 			freemsg(mp);
2563 			return;
2564 		}
2565 
2566 		/* Process all TCP options. */
2567 		tcp_process_options(tcp, tcpha);
2568 		/*
2569 		 * The following changes our rwnd to be a multiple of the
2570 		 * MIN(peer MSS, our MSS) for performance reason.
2571 		 */
2572 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
2573 		    tcp->tcp_mss));
2574 
2575 		/* Is the other end ECN capable? */
2576 		if (tcp->tcp_ecn_ok) {
2577 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
2578 				tcp->tcp_ecn_ok = B_FALSE;
2579 			}
2580 		}
2581 		/*
2582 		 * Clear ECN flags because it may interfere with later
2583 		 * processing.
2584 		 */
2585 		flags &= ~(TH_ECE|TH_CWR);
2586 
2587 		tcp->tcp_irs = seg_seq;
2588 		tcp->tcp_rack = seg_seq;
2589 		tcp->tcp_rnxt = seg_seq + 1;
2590 		tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
2591 		if (!TCP_IS_DETACHED(tcp)) {
2592 			/* Allocate room for SACK options if needed. */
2593 			connp->conn_wroff = connp->conn_ht_iphc_len;
2594 			if (tcp->tcp_snd_sack_ok)
2595 				connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
2596 			if (!tcp->tcp_loopback)
2597 				connp->conn_wroff += tcps->tcps_wroff_xtra;
2598 
2599 			(void) proto_set_tx_wroff(connp->conn_rq, connp,
2600 			    connp->conn_wroff);
2601 		}
2602 		if (flags & TH_ACK) {
2603 			/*
2604 			 * If we can't get the confirmation upstream, pretend
2605 			 * we didn't even see this one.
2606 			 *
2607 			 * XXX: how can we pretend we didn't see it if we
2608 			 * have updated rnxt et. al.
2609 			 *
2610 			 * For loopback we defer sending up the T_CONN_CON
2611 			 * until after some checks below.
2612 			 */
2613 			mp1 = NULL;
2614 			/*
2615 			 * tcp_sendmsg() checks tcp_state without entering
2616 			 * the squeue so tcp_state should be updated before
2617 			 * sending up connection confirmation.  Probe the
2618 			 * state change below when we are sure the connection
2619 			 * confirmation has been sent.
2620 			 */
2621 			tcp->tcp_state = TCPS_ESTABLISHED;
2622 			if (!tcp_conn_con(tcp, iphdr, mp,
2623 			    tcp->tcp_loopback ? &mp1 : NULL, ira)) {
2624 				tcp->tcp_state = TCPS_SYN_SENT;
2625 				freemsg(mp);
2626 				return;
2627 			}
2628 			TCPS_CONN_INC(tcps);
2629 			/* SYN was acked - making progress */
2630 			tcp->tcp_ip_forward_progress = B_TRUE;
2631 
2632 			/* One for the SYN */
2633 			tcp->tcp_suna = tcp->tcp_iss + 1;
2634 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
2635 
2636 			/*
2637 			 * If SYN was retransmitted, need to reset all
2638 			 * retransmission info.  This is because this
2639 			 * segment will be treated as a dup ACK.
2640 			 */
2641 			if (tcp->tcp_rexmit) {
2642 				tcp->tcp_rexmit = B_FALSE;
2643 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
2644 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
2645 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
2646 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
2647 				tcp->tcp_ms_we_have_waited = 0;
2648 
2649 				/*
2650 				 * Set tcp_cwnd back to 1 MSS, per
2651 				 * recommendation from
2652 				 * draft-floyd-incr-init-win-01.txt,
2653 				 * Increasing TCP's Initial Window.
2654 				 */
2655 				tcp->tcp_cwnd = tcp->tcp_mss;
2656 			}
2657 
2658 			tcp->tcp_swl1 = seg_seq;
2659 			tcp->tcp_swl2 = seg_ack;
2660 
2661 			new_swnd = ntohs(tcpha->tha_win);
2662 			tcp->tcp_swnd = new_swnd;
2663 			if (new_swnd > tcp->tcp_max_swnd)
2664 				tcp->tcp_max_swnd = new_swnd;
2665 
2666 			/*
2667 			 * Always send the three-way handshake ack immediately
2668 			 * in order to make the connection complete as soon as
2669 			 * possible on the accepting host.
2670 			 */
2671 			flags |= TH_ACK_NEEDED;
2672 
2673 			/*
2674 			 * Trace connect-established here.
2675 			 */
2676 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
2677 			    ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa,
2678 			    void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha);
2679 
2680 			/* Trace change from SYN_SENT -> ESTABLISHED here */
2681 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2682 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
2683 			    void, NULL, int32_t, TCPS_SYN_SENT);
2684 
2685 			/*
2686 			 * Special case for loopback.  At this point we have
2687 			 * received SYN-ACK from the remote endpoint.  In
2688 			 * order to ensure that both endpoints reach the
2689 			 * fused state prior to any data exchange, the final
2690 			 * ACK needs to be sent before we indicate T_CONN_CON
2691 			 * to the module upstream.
2692 			 */
2693 			if (tcp->tcp_loopback) {
2694 				mblk_t *ack_mp;
2695 
2696 				ASSERT(!tcp->tcp_unfusable);
2697 				ASSERT(mp1 != NULL);
2698 				/*
2699 				 * For loopback, we always get a pure SYN-ACK
2700 				 * and only need to send back the final ACK
2701 				 * with no data (this is because the other
2702 				 * tcp is ours and we don't do T/TCP).  This
2703 				 * final ACK triggers the passive side to
2704 				 * perform fusion in ESTABLISHED state.
2705 				 */
2706 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
2707 					if (tcp->tcp_ack_tid != 0) {
2708 						(void) TCP_TIMER_CANCEL(tcp,
2709 						    tcp->tcp_ack_tid);
2710 						tcp->tcp_ack_tid = 0;
2711 					}
2712 					tcp_send_data(tcp, ack_mp);
2713 					BUMP_LOCAL(tcp->tcp_obsegs);
2714 					TCPS_BUMP_MIB(tcps, tcpOutAck);
2715 
2716 					if (!IPCL_IS_NONSTR(connp)) {
2717 						/* Send up T_CONN_CON */
2718 						if (ira->ira_cred != NULL) {
2719 							mblk_setcred(mp1,
2720 							    ira->ira_cred,
2721 							    ira->ira_cpid);
2722 						}
2723 						putnext(connp->conn_rq, mp1);
2724 					} else {
2725 						(*sockupcalls->su_connected)
2726 						    (connp->conn_upper_handle,
2727 						    tcp->tcp_connid,
2728 						    ira->ira_cred,
2729 						    ira->ira_cpid);
2730 						freemsg(mp1);
2731 					}
2732 
2733 					freemsg(mp);
2734 					return;
2735 				}
2736 				/*
2737 				 * Forget fusion; we need to handle more
2738 				 * complex cases below.  Send the deferred
2739 				 * T_CONN_CON message upstream and proceed
2740 				 * as usual.  Mark this tcp as not capable
2741 				 * of fusion.
2742 				 */
2743 				TCP_STAT(tcps, tcp_fusion_unfusable);
2744 				tcp->tcp_unfusable = B_TRUE;
2745 				if (!IPCL_IS_NONSTR(connp)) {
2746 					if (ira->ira_cred != NULL) {
2747 						mblk_setcred(mp1, ira->ira_cred,
2748 						    ira->ira_cpid);
2749 					}
2750 					putnext(connp->conn_rq, mp1);
2751 				} else {
2752 					(*sockupcalls->su_connected)
2753 					    (connp->conn_upper_handle,
2754 					    tcp->tcp_connid, ira->ira_cred,
2755 					    ira->ira_cpid);
2756 					freemsg(mp1);
2757 				}
2758 			}
2759 
2760 			/*
2761 			 * Check to see if there is data to be sent.  If
2762 			 * yes, set the transmit flag.  Then check to see
2763 			 * if received data processing needs to be done.
2764 			 * If not, go straight to xmit_check.  This short
2765 			 * cut is OK as we don't support T/TCP.
2766 			 */
2767 			if (tcp->tcp_unsent)
2768 				flags |= TH_XMIT_NEEDED;
2769 
2770 			if (seg_len == 0 && !(flags & TH_URG)) {
2771 				freemsg(mp);
2772 				goto xmit_check;
2773 			}
2774 
2775 			flags &= ~TH_SYN;
2776 			seg_seq++;
2777 			break;
2778 		}
2779 		tcp->tcp_state = TCPS_SYN_RCVD;
2780 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2781 		    connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp,
2782 		    tcph_t *, NULL, int32_t, TCPS_SYN_SENT);
2783 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
2784 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
2785 		if (mp1 != NULL) {
2786 			tcp_send_data(tcp, mp1);
2787 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
2788 		}
2789 		freemsg(mp);
2790 		return;
2791 	case TCPS_SYN_RCVD:
2792 		if (flags & TH_ACK) {
2793 			uint32_t pinit_wnd;
2794 
2795 			/*
2796 			 * In this state, a SYN|ACK packet is either bogus
2797 			 * because the other side must be ACKing our SYN which
2798 			 * indicates it has seen the ACK for their SYN and
2799 			 * shouldn't retransmit it or we're crossing SYNs
2800 			 * on active open.
2801 			 */
2802 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
2803 				freemsg(mp);
2804 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
2805 				    tcp, seg_ack, 0, TH_RST);
2806 				return;
2807 			}
2808 			/*
2809 			 * NOTE: RFC 793 pg. 72 says this should be
2810 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
2811 			 * but that would mean we have an ack that ignored
2812 			 * our SYN.
2813 			 */
2814 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
2815 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2816 				freemsg(mp);
2817 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
2818 				    tcp, seg_ack, 0, TH_RST);
2819 				return;
2820 			}
2821 			/*
2822 			 * No sane TCP stack will send such a small window
2823 			 * without receiving any data.  Just drop this invalid
2824 			 * ACK.  We also shorten the abort timeout in case
2825 			 * this is an attack.
2826 			 */
2827 			pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws;
2828 			if (pinit_wnd < tcp->tcp_mss &&
2829 			    pinit_wnd < tcp_init_wnd_chk) {
2830 				freemsg(mp);
2831 				TCP_STAT(tcps, tcp_zwin_ack_syn);
2832 				tcp->tcp_second_ctimer_threshold =
2833 				    tcp_early_abort * SECONDS;
2834 				return;
2835 			}
2836 		}
2837 		break;
2838 	case TCPS_LISTEN:
2839 		/*
2840 		 * Only a TLI listener can come through this path when a
2841 		 * acceptor is going back to be a listener and a packet
2842 		 * for the acceptor hits the classifier. For a socket
2843 		 * listener, this can never happen because a listener
2844 		 * can never accept connection on itself and hence a
2845 		 * socket acceptor can not go back to being a listener.
2846 		 */
2847 		ASSERT(!TCP_IS_SOCKET(tcp));
2848 		/*FALLTHRU*/
2849 	case TCPS_CLOSED:
2850 	case TCPS_BOUND: {
2851 		conn_t	*new_connp;
2852 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
2853 
2854 		/*
2855 		 * Don't accept any input on a closed tcp as this TCP logically
2856 		 * does not exist on the system. Don't proceed further with
2857 		 * this TCP. For instance, this packet could trigger another
2858 		 * close of this tcp which would be disastrous for tcp_refcnt.
2859 		 * tcp_close_detached / tcp_clean_death / tcp_closei_local must
2860 		 * be called at most once on a TCP. In this case we need to
2861 		 * refeed the packet into the classifier and figure out where
2862 		 * the packet should go.
2863 		 */
2864 		new_connp = ipcl_classify(mp, ira, ipst);
2865 		if (new_connp != NULL) {
2866 			/* Drops ref on new_connp */
2867 			tcp_reinput(new_connp, mp, ira, ipst);
2868 			return;
2869 		}
2870 		/* We failed to classify. For now just drop the packet */
2871 		freemsg(mp);
2872 		return;
2873 	}
2874 	case TCPS_IDLE:
2875 		/*
2876 		 * Handle the case where the tcp_clean_death() has happened
2877 		 * on a connection (application hasn't closed yet) but a packet
2878 		 * was already queued on squeue before tcp_clean_death()
2879 		 * was processed. Calling tcp_clean_death() twice on same
2880 		 * connection can result in weird behaviour.
2881 		 */
2882 		freemsg(mp);
2883 		return;
2884 	default:
2885 		break;
2886 	}
2887 
2888 	/*
2889 	 * Already on the correct queue/perimeter.
2890 	 * If this is a detached connection and not an eager
2891 	 * connection hanging off a listener then new data
2892 	 * (past the FIN) will cause a reset.
2893 	 * We do a special check here where it
2894 	 * is out of the main line, rather than check
2895 	 * if we are detached every time we see new
2896 	 * data down below.
2897 	 */
2898 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
2899 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
2900 		TCPS_BUMP_MIB(tcps, tcpInClosed);
2901 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2902 		freemsg(mp);
2903 		tcp_xmit_ctl("new data when detached", tcp,
2904 		    tcp->tcp_snxt, 0, TH_RST);
2905 		(void) tcp_clean_death(tcp, EPROTO);
2906 		return;
2907 	}
2908 
2909 	mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2910 	urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
2911 	new_swnd = ntohs(tcpha->tha_win) <<
2912 	    ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
2913 
2914 	if (tcp->tcp_snd_ts_ok) {
2915 		if (!tcp_paws_check(tcp, tcpha, &tcpopt)) {
2916 			/*
2917 			 * This segment is not acceptable.
2918 			 * Drop it and send back an ACK.
2919 			 */
2920 			freemsg(mp);
2921 			flags |= TH_ACK_NEEDED;
2922 			goto ack_check;
2923 		}
2924 	} else if (tcp->tcp_snd_sack_ok) {
2925 		tcpopt.tcp = tcp;
2926 		/*
2927 		 * SACK info in already updated in tcp_parse_options.  Ignore
2928 		 * all other TCP options...
2929 		 */
2930 		(void) tcp_parse_options(tcpha, &tcpopt);
2931 	}
2932 try_again:;
2933 	mss = tcp->tcp_mss;
2934 	gap = seg_seq - tcp->tcp_rnxt;
2935 	rgap = tcp->tcp_rwnd - (gap + seg_len);
2936 	/*
2937 	 * gap is the amount of sequence space between what we expect to see
2938 	 * and what we got for seg_seq.  A positive value for gap means
2939 	 * something got lost.  A negative value means we got some old stuff.
2940 	 */
2941 	if (gap < 0) {
2942 		/* Old stuff present.  Is the SYN in there? */
2943 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
2944 		    (seg_len != 0)) {
2945 			flags &= ~TH_SYN;
2946 			seg_seq++;
2947 			urp--;
2948 			/* Recompute the gaps after noting the SYN. */
2949 			goto try_again;
2950 		}
2951 		TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
2952 		TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes,
2953 		    (seg_len > -gap ? -gap : seg_len));
2954 		/* Remove the old stuff from seg_len. */
2955 		seg_len += gap;
2956 		/*
2957 		 * Anything left?
2958 		 * Make sure to check for unack'd FIN when rest of data
2959 		 * has been previously ack'd.
2960 		 */
2961 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
2962 			/*
2963 			 * Resets are only valid if they lie within our offered
2964 			 * window.  If the RST bit is set, we just ignore this
2965 			 * segment.
2966 			 */
2967 			if (flags & TH_RST) {
2968 				freemsg(mp);
2969 				return;
2970 			}
2971 
2972 			/*
2973 			 * The arriving of dup data packets indicate that we
2974 			 * may have postponed an ack for too long, or the other
2975 			 * side's RTT estimate is out of shape. Start acking
2976 			 * more often.
2977 			 */
2978 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
2979 			    tcp->tcp_rack_cnt >= 1 &&
2980 			    tcp->tcp_rack_abs_max > 2) {
2981 				tcp->tcp_rack_abs_max--;
2982 			}
2983 			tcp->tcp_rack_cur_max = 1;
2984 
2985 			/*
2986 			 * This segment is "unacceptable".  None of its
2987 			 * sequence space lies within our advertized window.
2988 			 *
2989 			 * Adjust seg_len to the original value for tracing.
2990 			 */
2991 			seg_len -= gap;
2992 			if (connp->conn_debug) {
2993 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
2994 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
2995 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
2996 				    "seg_len %d, rnxt %u, snxt %u, %s",
2997 				    gap, rgap, flags, seg_seq, seg_ack,
2998 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
2999 				    tcp_display(tcp, NULL,
3000 				    DISP_ADDR_AND_PORT));
3001 			}
3002 
3003 			/*
3004 			 * Arrange to send an ACK in response to the
3005 			 * unacceptable segment per RFC 793 page 69. There
3006 			 * is only one small difference between ours and the
3007 			 * acceptability test in the RFC - we accept ACK-only
3008 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
3009 			 * will be generated.
3010 			 *
3011 			 * Note that we have to ACK an ACK-only packet at least
3012 			 * for stacks that send 0-length keep-alives with
3013 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
3014 			 * section 4.2.3.6. As long as we don't ever generate
3015 			 * an unacceptable packet in response to an incoming
3016 			 * packet that is unacceptable, it should not cause
3017 			 * "ACK wars".
3018 			 */
3019 			flags |=  TH_ACK_NEEDED;
3020 
3021 			/*
3022 			 * Continue processing this segment in order to use the
3023 			 * ACK information it contains, but skip all other
3024 			 * sequence-number processing.	Processing the ACK
3025 			 * information is necessary in order to
3026 			 * re-synchronize connections that may have lost
3027 			 * synchronization.
3028 			 *
3029 			 * We clear seg_len and flag fields related to
3030 			 * sequence number processing as they are not
3031 			 * to be trusted for an unacceptable segment.
3032 			 */
3033 			seg_len = 0;
3034 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
3035 			goto process_ack;
3036 		}
3037 
3038 		/* Fix seg_seq, and chew the gap off the front. */
3039 		seg_seq = tcp->tcp_rnxt;
3040 		urp += gap;
3041 		do {
3042 			mblk_t	*mp2;
3043 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3044 			    (uintptr_t)UINT_MAX);
3045 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
3046 			if (gap > 0) {
3047 				mp->b_rptr = mp->b_wptr - gap;
3048 				break;
3049 			}
3050 			mp2 = mp;
3051 			mp = mp->b_cont;
3052 			freeb(mp2);
3053 		} while (gap < 0);
3054 		/*
3055 		 * If the urgent data has already been acknowledged, we
3056 		 * should ignore TH_URG below
3057 		 */
3058 		if (urp < 0)
3059 			flags &= ~TH_URG;
3060 	}
3061 	/*
3062 	 * rgap is the amount of stuff received out of window.  A negative
3063 	 * value is the amount out of window.
3064 	 */
3065 	if (rgap < 0) {
3066 		mblk_t	*mp2;
3067 
3068 		if (tcp->tcp_rwnd == 0) {
3069 			TCPS_BUMP_MIB(tcps, tcpInWinProbe);
3070 		} else {
3071 			TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs);
3072 			TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap);
3073 		}
3074 
3075 		/*
3076 		 * seg_len does not include the FIN, so if more than
3077 		 * just the FIN is out of window, we act like we don't
3078 		 * see it.  (If just the FIN is out of window, rgap
3079 		 * will be zero and we will go ahead and acknowledge
3080 		 * the FIN.)
3081 		 */
3082 		flags &= ~TH_FIN;
3083 
3084 		/* Fix seg_len and make sure there is something left. */
3085 		seg_len += rgap;
3086 		if (seg_len <= 0) {
3087 			/*
3088 			 * Resets are only valid if they lie within our offered
3089 			 * window.  If the RST bit is set, we just ignore this
3090 			 * segment.
3091 			 */
3092 			if (flags & TH_RST) {
3093 				freemsg(mp);
3094 				return;
3095 			}
3096 
3097 			/* Per RFC 793, we need to send back an ACK. */
3098 			flags |= TH_ACK_NEEDED;
3099 
3100 			/*
3101 			 * Send SIGURG as soon as possible i.e. even
3102 			 * if the TH_URG was delivered in a window probe
3103 			 * packet (which will be unacceptable).
3104 			 *
3105 			 * We generate a signal if none has been generated
3106 			 * for this connection or if this is a new urgent
3107 			 * byte. Also send a zero-length "unmarked" message
3108 			 * to inform SIOCATMARK that this is not the mark.
3109 			 *
3110 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
3111 			 * is sent up. This plus the check for old data
3112 			 * (gap >= 0) handles the wraparound of the sequence
3113 			 * number space without having to always track the
3114 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
3115 			 * this max in its rcv_up variable).
3116 			 *
3117 			 * This prevents duplicate SIGURGS due to a "late"
3118 			 * zero-window probe when the T_EXDATA_IND has already
3119 			 * been sent up.
3120 			 */
3121 			if ((flags & TH_URG) &&
3122 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
3123 			    tcp->tcp_urp_last))) {
3124 				if (IPCL_IS_NONSTR(connp)) {
3125 					if (!TCP_IS_DETACHED(tcp)) {
3126 						(*sockupcalls->su_signal_oob)
3127 						    (connp->conn_upper_handle,
3128 						    urp);
3129 					}
3130 				} else {
3131 					mp1 = allocb(0, BPRI_MED);
3132 					if (mp1 == NULL) {
3133 						freemsg(mp);
3134 						return;
3135 					}
3136 					if (!TCP_IS_DETACHED(tcp) &&
3137 					    !putnextctl1(connp->conn_rq,
3138 					    M_PCSIG, SIGURG)) {
3139 						/* Try again on the rexmit. */
3140 						freemsg(mp1);
3141 						freemsg(mp);
3142 						return;
3143 					}
3144 					/*
3145 					 * If the next byte would be the mark
3146 					 * then mark with MARKNEXT else mark
3147 					 * with NOTMARKNEXT.
3148 					 */
3149 					if (gap == 0 && urp == 0)
3150 						mp1->b_flag |= MSGMARKNEXT;
3151 					else
3152 						mp1->b_flag |= MSGNOTMARKNEXT;
3153 					freemsg(tcp->tcp_urp_mark_mp);
3154 					tcp->tcp_urp_mark_mp = mp1;
3155 					flags |= TH_SEND_URP_MARK;
3156 				}
3157 				tcp->tcp_urp_last_valid = B_TRUE;
3158 				tcp->tcp_urp_last = urp + seg_seq;
3159 			}
3160 			/*
3161 			 * If this is a zero window probe, continue to
3162 			 * process the ACK part.  But we need to set seg_len
3163 			 * to 0 to avoid data processing.  Otherwise just
3164 			 * drop the segment and send back an ACK.
3165 			 */
3166 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
3167 				flags &= ~(TH_SYN | TH_URG);
3168 				seg_len = 0;
3169 				goto process_ack;
3170 			} else {
3171 				freemsg(mp);
3172 				goto ack_check;
3173 			}
3174 		}
3175 		/* Pitch out of window stuff off the end. */
3176 		rgap = seg_len;
3177 		mp2 = mp;
3178 		do {
3179 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
3180 			    (uintptr_t)INT_MAX);
3181 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
3182 			if (rgap < 0) {
3183 				mp2->b_wptr += rgap;
3184 				if ((mp1 = mp2->b_cont) != NULL) {
3185 					mp2->b_cont = NULL;
3186 					freemsg(mp1);
3187 				}
3188 				break;
3189 			}
3190 		} while ((mp2 = mp2->b_cont) != NULL);
3191 	}
3192 ok:;
3193 	/*
3194 	 * TCP should check ECN info for segments inside the window only.
3195 	 * Therefore the check should be done here.
3196 	 */
3197 	if (tcp->tcp_ecn_ok) {
3198 		if (flags & TH_CWR) {
3199 			tcp->tcp_ecn_echo_on = B_FALSE;
3200 		}
3201 		/*
3202 		 * Note that both ECN_CE and CWR can be set in the
3203 		 * same segment.  In this case, we once again turn
3204 		 * on ECN_ECHO.
3205 		 */
3206 		if (connp->conn_ipversion == IPV4_VERSION) {
3207 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
3208 
3209 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
3210 				tcp->tcp_ecn_echo_on = B_TRUE;
3211 			}
3212 		} else {
3213 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
3214 
3215 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
3216 			    htonl(IPH_ECN_CE << 20)) {
3217 				tcp->tcp_ecn_echo_on = B_TRUE;
3218 			}
3219 		}
3220 	}
3221 
3222 	/*
3223 	 * Check whether we can update tcp_ts_recent.  This test is
3224 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
3225 	 * Extensions for High Performance: An Update", Internet Draft.
3226 	 */
3227 	if (tcp->tcp_snd_ts_ok &&
3228 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
3229 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
3230 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
3231 		tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64;
3232 	}
3233 
3234 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
3235 		/*
3236 		 * FIN in an out of order segment.  We record this in
3237 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
3238 		 * Clear the FIN so that any check on FIN flag will fail.
3239 		 * Remember that FIN also counts in the sequence number
3240 		 * space.  So we need to ack out of order FIN only segments.
3241 		 */
3242 		if (flags & TH_FIN) {
3243 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
3244 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
3245 			flags &= ~TH_FIN;
3246 			flags |= TH_ACK_NEEDED;
3247 		}
3248 		if (seg_len > 0) {
3249 			/* Fill in the SACK blk list. */
3250 			if (tcp->tcp_snd_sack_ok) {
3251 				tcp_sack_insert(tcp->tcp_sack_list,
3252 				    seg_seq, seg_seq + seg_len,
3253 				    &(tcp->tcp_num_sack_blk));
3254 			}
3255 
3256 			/*
3257 			 * Attempt reassembly and see if we have something
3258 			 * ready to go.
3259 			 */
3260 			mp = tcp_reass(tcp, mp, seg_seq);
3261 			/* Always ack out of order packets */
3262 			flags |= TH_ACK_NEEDED | TH_PUSH;
3263 			if (mp) {
3264 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3265 				    (uintptr_t)INT_MAX);
3266 				seg_len = mp->b_cont ? msgdsize(mp) :
3267 				    (int)(mp->b_wptr - mp->b_rptr);
3268 				seg_seq = tcp->tcp_rnxt;
3269 				/*
3270 				 * A gap is filled and the seq num and len
3271 				 * of the gap match that of a previously
3272 				 * received FIN, put the FIN flag back in.
3273 				 */
3274 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3275 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3276 					flags |= TH_FIN;
3277 					tcp->tcp_valid_bits &=
3278 					    ~TCP_OFO_FIN_VALID;
3279 				}
3280 				if (tcp->tcp_reass_tid != 0) {
3281 					(void) TCP_TIMER_CANCEL(tcp,
3282 					    tcp->tcp_reass_tid);
3283 					/*
3284 					 * Restart the timer if there is still
3285 					 * data in the reassembly queue.
3286 					 */
3287 					if (tcp->tcp_reass_head != NULL) {
3288 						tcp->tcp_reass_tid = TCP_TIMER(
3289 						    tcp, tcp_reass_timer,
3290 						    tcps->tcps_reass_timeout);
3291 					} else {
3292 						tcp->tcp_reass_tid = 0;
3293 					}
3294 				}
3295 			} else {
3296 				/*
3297 				 * Keep going even with NULL mp.
3298 				 * There may be a useful ACK or something else
3299 				 * we don't want to miss.
3300 				 *
3301 				 * But TCP should not perform fast retransmit
3302 				 * because of the ack number.  TCP uses
3303 				 * seg_len == 0 to determine if it is a pure
3304 				 * ACK.  And this is not a pure ACK.
3305 				 */
3306 				seg_len = 0;
3307 				ofo_seg = B_TRUE;
3308 
3309 				if (tcps->tcps_reass_timeout != 0 &&
3310 				    tcp->tcp_reass_tid == 0) {
3311 					tcp->tcp_reass_tid = TCP_TIMER(tcp,
3312 					    tcp_reass_timer,
3313 					    tcps->tcps_reass_timeout);
3314 				}
3315 			}
3316 		}
3317 	} else if (seg_len > 0) {
3318 		TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
3319 		TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len);
3320 		/*
3321 		 * If an out of order FIN was received before, and the seq
3322 		 * num and len of the new segment match that of the FIN,
3323 		 * put the FIN flag back in.
3324 		 */
3325 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3326 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3327 			flags |= TH_FIN;
3328 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
3329 		}
3330 	}
3331 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
3332 	if (flags & TH_RST) {
3333 		freemsg(mp);
3334 		switch (tcp->tcp_state) {
3335 		case TCPS_SYN_RCVD:
3336 			(void) tcp_clean_death(tcp, ECONNREFUSED);
3337 			break;
3338 		case TCPS_ESTABLISHED:
3339 		case TCPS_FIN_WAIT_1:
3340 		case TCPS_FIN_WAIT_2:
3341 		case TCPS_CLOSE_WAIT:
3342 			(void) tcp_clean_death(tcp, ECONNRESET);
3343 			break;
3344 		case TCPS_CLOSING:
3345 		case TCPS_LAST_ACK:
3346 			(void) tcp_clean_death(tcp, 0);
3347 			break;
3348 		default:
3349 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3350 			(void) tcp_clean_death(tcp, ENXIO);
3351 			break;
3352 		}
3353 		return;
3354 	}
3355 	if (flags & TH_SYN) {
3356 		/*
3357 		 * See RFC 793, Page 71
3358 		 *
3359 		 * The seq number must be in the window as it should
3360 		 * be "fixed" above.  If it is outside window, it should
3361 		 * be already rejected.  Note that we allow seg_seq to be
3362 		 * rnxt + rwnd because we want to accept 0 window probe.
3363 		 */
3364 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
3365 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
3366 		freemsg(mp);
3367 		/*
3368 		 * If the ACK flag is not set, just use our snxt as the
3369 		 * seq number of the RST segment.
3370 		 */
3371 		if (!(flags & TH_ACK)) {
3372 			seg_ack = tcp->tcp_snxt;
3373 		}
3374 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
3375 		    TH_RST|TH_ACK);
3376 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3377 		(void) tcp_clean_death(tcp, ECONNRESET);
3378 		return;
3379 	}
3380 	/*
3381 	 * urp could be -1 when the urp field in the packet is 0
3382 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
3383 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
3384 	 */
3385 	if (flags & TH_URG && urp >= 0) {
3386 		if (!tcp->tcp_urp_last_valid ||
3387 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
3388 			/*
3389 			 * Non-STREAMS sockets handle the urgent data a litte
3390 			 * differently from STREAMS based sockets. There is no
3391 			 * need to mark any mblks with the MSG{NOT,}MARKNEXT
3392 			 * flags to keep SIOCATMARK happy. Instead a
3393 			 * su_signal_oob upcall is made to update the mark.
3394 			 * Neither is a T_EXDATA_IND mblk needed to be
3395 			 * prepended to the urgent data. The urgent data is
3396 			 * delivered using the su_recv upcall, where we set
3397 			 * the MSG_OOB flag to indicate that it is urg data.
3398 			 *
3399 			 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
3400 			 * are used by non-STREAMS sockets.
3401 			 */
3402 			if (IPCL_IS_NONSTR(connp)) {
3403 				if (!TCP_IS_DETACHED(tcp)) {
3404 					(*sockupcalls->su_signal_oob)
3405 					    (connp->conn_upper_handle, urp);
3406 				}
3407 			} else {
3408 				/*
3409 				 * If we haven't generated the signal yet for
3410 				 * this urgent pointer value, do it now.  Also,
3411 				 * send up a zero-length M_DATA indicating
3412 				 * whether or not this is the mark. The latter
3413 				 * is not needed when a T_EXDATA_IND is sent up.
3414 				 * However, if there are allocation failures
3415 				 * this code relies on the sender retransmitting
3416 				 * and the socket code for determining the mark
3417 				 * should not block waiting for the peer to
3418 				 * transmit. Thus, for simplicity we always
3419 				 * send up the mark indication.
3420 				 */
3421 				mp1 = allocb(0, BPRI_MED);
3422 				if (mp1 == NULL) {
3423 					freemsg(mp);
3424 					return;
3425 				}
3426 				if (!TCP_IS_DETACHED(tcp) &&
3427 				    !putnextctl1(connp->conn_rq, M_PCSIG,
3428 				    SIGURG)) {
3429 					/* Try again on the rexmit. */
3430 					freemsg(mp1);
3431 					freemsg(mp);
3432 					return;
3433 				}
3434 				/*
3435 				 * Mark with NOTMARKNEXT for now.
3436 				 * The code below will change this to MARKNEXT
3437 				 * if we are at the mark.
3438 				 *
3439 				 * If there are allocation failures (e.g. in
3440 				 * dupmsg below) the next time tcp_input_data
3441 				 * sees the urgent segment it will send up the
3442 				 * MSGMARKNEXT message.
3443 				 */
3444 				mp1->b_flag |= MSGNOTMARKNEXT;
3445 				freemsg(tcp->tcp_urp_mark_mp);
3446 				tcp->tcp_urp_mark_mp = mp1;
3447 				flags |= TH_SEND_URP_MARK;
3448 #ifdef DEBUG
3449 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3450 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
3451 				    "last %x, %s",
3452 				    seg_seq, urp, tcp->tcp_urp_last,
3453 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3454 #endif /* DEBUG */
3455 			}
3456 			tcp->tcp_urp_last_valid = B_TRUE;
3457 			tcp->tcp_urp_last = urp + seg_seq;
3458 		} else if (tcp->tcp_urp_mark_mp != NULL) {
3459 			/*
3460 			 * An allocation failure prevented the previous
3461 			 * tcp_input_data from sending up the allocated
3462 			 * MSG*MARKNEXT message - send it up this time
3463 			 * around.
3464 			 */
3465 			flags |= TH_SEND_URP_MARK;
3466 		}
3467 
3468 		/*
3469 		 * If the urgent byte is in this segment, make sure that it is
3470 		 * all by itself.  This makes it much easier to deal with the
3471 		 * possibility of an allocation failure on the T_exdata_ind.
3472 		 * Note that seg_len is the number of bytes in the segment, and
3473 		 * urp is the offset into the segment of the urgent byte.
3474 		 * urp < seg_len means that the urgent byte is in this segment.
3475 		 */
3476 		if (urp < seg_len) {
3477 			if (seg_len != 1) {
3478 				uint32_t  tmp_rnxt;
3479 				/*
3480 				 * Break it up and feed it back in.
3481 				 * Re-attach the IP header.
3482 				 */
3483 				mp->b_rptr = iphdr;
3484 				if (urp > 0) {
3485 					/*
3486 					 * There is stuff before the urgent
3487 					 * byte.
3488 					 */
3489 					mp1 = dupmsg(mp);
3490 					if (!mp1) {
3491 						/*
3492 						 * Trim from urgent byte on.
3493 						 * The rest will come back.
3494 						 */
3495 						(void) adjmsg(mp,
3496 						    urp - seg_len);
3497 						tcp_input_data(connp,
3498 						    mp, NULL, ira);
3499 						return;
3500 					}
3501 					(void) adjmsg(mp1, urp - seg_len);
3502 					/* Feed this piece back in. */
3503 					tmp_rnxt = tcp->tcp_rnxt;
3504 					tcp_input_data(connp, mp1, NULL, ira);
3505 					/*
3506 					 * If the data passed back in was not
3507 					 * processed (ie: bad ACK) sending
3508 					 * the remainder back in will cause a
3509 					 * loop. In this case, drop the
3510 					 * packet and let the sender try
3511 					 * sending a good packet.
3512 					 */
3513 					if (tmp_rnxt == tcp->tcp_rnxt) {
3514 						freemsg(mp);
3515 						return;
3516 					}
3517 				}
3518 				if (urp != seg_len - 1) {
3519 					uint32_t  tmp_rnxt;
3520 					/*
3521 					 * There is stuff after the urgent
3522 					 * byte.
3523 					 */
3524 					mp1 = dupmsg(mp);
3525 					if (!mp1) {
3526 						/*
3527 						 * Trim everything beyond the
3528 						 * urgent byte.  The rest will
3529 						 * come back.
3530 						 */
3531 						(void) adjmsg(mp,
3532 						    urp + 1 - seg_len);
3533 						tcp_input_data(connp,
3534 						    mp, NULL, ira);
3535 						return;
3536 					}
3537 					(void) adjmsg(mp1, urp + 1 - seg_len);
3538 					tmp_rnxt = tcp->tcp_rnxt;
3539 					tcp_input_data(connp, mp1, NULL, ira);
3540 					/*
3541 					 * If the data passed back in was not
3542 					 * processed (ie: bad ACK) sending
3543 					 * the remainder back in will cause a
3544 					 * loop. In this case, drop the
3545 					 * packet and let the sender try
3546 					 * sending a good packet.
3547 					 */
3548 					if (tmp_rnxt == tcp->tcp_rnxt) {
3549 						freemsg(mp);
3550 						return;
3551 					}
3552 				}
3553 				tcp_input_data(connp, mp, NULL, ira);
3554 				return;
3555 			}
3556 			/*
3557 			 * This segment contains only the urgent byte.  We
3558 			 * have to allocate the T_exdata_ind, if we can.
3559 			 */
3560 			if (IPCL_IS_NONSTR(connp)) {
3561 				int error;
3562 
3563 				(*sockupcalls->su_recv)
3564 				    (connp->conn_upper_handle, mp, seg_len,
3565 				    MSG_OOB, &error, NULL);
3566 				/*
3567 				 * We should never be in middle of a
3568 				 * fallback, the squeue guarantees that.
3569 				 */
3570 				ASSERT(error != EOPNOTSUPP);
3571 				mp = NULL;
3572 				goto update_ack;
3573 			} else if (!tcp->tcp_urp_mp) {
3574 				struct T_exdata_ind *tei;
3575 				mp1 = allocb(sizeof (struct T_exdata_ind),
3576 				    BPRI_MED);
3577 				if (!mp1) {
3578 					/*
3579 					 * Sigh... It'll be back.
3580 					 * Generate any MSG*MARK message now.
3581 					 */
3582 					freemsg(mp);
3583 					seg_len = 0;
3584 					if (flags & TH_SEND_URP_MARK) {
3585 
3586 
3587 						ASSERT(tcp->tcp_urp_mark_mp);
3588 						tcp->tcp_urp_mark_mp->b_flag &=
3589 						    ~MSGNOTMARKNEXT;
3590 						tcp->tcp_urp_mark_mp->b_flag |=
3591 						    MSGMARKNEXT;
3592 					}
3593 					goto ack_check;
3594 				}
3595 				mp1->b_datap->db_type = M_PROTO;
3596 				tei = (struct T_exdata_ind *)mp1->b_rptr;
3597 				tei->PRIM_type = T_EXDATA_IND;
3598 				tei->MORE_flag = 0;
3599 				mp1->b_wptr = (uchar_t *)&tei[1];
3600 				tcp->tcp_urp_mp = mp1;
3601 #ifdef DEBUG
3602 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3603 				    "tcp_rput: allocated exdata_ind %s",
3604 				    tcp_display(tcp, NULL,
3605 				    DISP_PORT_ONLY));
3606 #endif /* DEBUG */
3607 				/*
3608 				 * There is no need to send a separate MSG*MARK
3609 				 * message since the T_EXDATA_IND will be sent
3610 				 * now.
3611 				 */
3612 				flags &= ~TH_SEND_URP_MARK;
3613 				freemsg(tcp->tcp_urp_mark_mp);
3614 				tcp->tcp_urp_mark_mp = NULL;
3615 			}
3616 			/*
3617 			 * Now we are all set.  On the next putnext upstream,
3618 			 * tcp_urp_mp will be non-NULL and will get prepended
3619 			 * to what has to be this piece containing the urgent
3620 			 * byte.  If for any reason we abort this segment below,
3621 			 * if it comes back, we will have this ready, or it
3622 			 * will get blown off in close.
3623 			 */
3624 		} else if (urp == seg_len) {
3625 			/*
3626 			 * The urgent byte is the next byte after this sequence
3627 			 * number. If this endpoint is non-STREAMS, then there
3628 			 * is nothing to do here since the socket has already
3629 			 * been notified about the urg pointer by the
3630 			 * su_signal_oob call above.
3631 			 *
3632 			 * In case of STREAMS, some more work might be needed.
3633 			 * If there is data it is marked with MSGMARKNEXT and
3634 			 * and any tcp_urp_mark_mp is discarded since it is not
3635 			 * needed. Otherwise, if the code above just allocated
3636 			 * a zero-length tcp_urp_mark_mp message, that message
3637 			 * is tagged with MSGMARKNEXT. Sending up these
3638 			 * MSGMARKNEXT messages makes SIOCATMARK work correctly
3639 			 * even though the T_EXDATA_IND will not be sent up
3640 			 * until the urgent byte arrives.
3641 			 */
3642 			if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
3643 				if (seg_len != 0) {
3644 					flags |= TH_MARKNEXT_NEEDED;
3645 					freemsg(tcp->tcp_urp_mark_mp);
3646 					tcp->tcp_urp_mark_mp = NULL;
3647 					flags &= ~TH_SEND_URP_MARK;
3648 				} else if (tcp->tcp_urp_mark_mp != NULL) {
3649 					flags |= TH_SEND_URP_MARK;
3650 					tcp->tcp_urp_mark_mp->b_flag &=
3651 					    ~MSGNOTMARKNEXT;
3652 					tcp->tcp_urp_mark_mp->b_flag |=
3653 					    MSGMARKNEXT;
3654 				}
3655 			}
3656 #ifdef DEBUG
3657 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3658 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
3659 			    seg_len, flags,
3660 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
3661 #endif /* DEBUG */
3662 		}
3663 #ifdef DEBUG
3664 		else {
3665 			/* Data left until we hit mark */
3666 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3667 			    "tcp_rput: URP %d bytes left, %s",
3668 			    urp - seg_len, tcp_display(tcp, NULL,
3669 			    DISP_PORT_ONLY));
3670 		}
3671 #endif /* DEBUG */
3672 	}
3673 
3674 process_ack:
3675 	if (!(flags & TH_ACK)) {
3676 		freemsg(mp);
3677 		goto xmit_check;
3678 	}
3679 	}
3680 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
3681 
3682 	if (bytes_acked > 0)
3683 		tcp->tcp_ip_forward_progress = B_TRUE;
3684 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
3685 		/*
3686 		 * tcp_sendmsg() checks tcp_state without entering
3687 		 * the squeue so tcp_state should be updated before
3688 		 * sending up a connection confirmation or a new
3689 		 * connection indication.
3690 		 */
3691 		tcp->tcp_state = TCPS_ESTABLISHED;
3692 
3693 		/*
3694 		 * We are seeing the final ack in the three way
3695 		 * hand shake of a active open'ed connection
3696 		 * so we must send up a T_CONN_CON
3697 		 */
3698 		if (tcp->tcp_active_open) {
3699 			if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
3700 				freemsg(mp);
3701 				tcp->tcp_state = TCPS_SYN_RCVD;
3702 				return;
3703 			}
3704 			/*
3705 			 * Don't fuse the loopback endpoints for
3706 			 * simultaneous active opens.
3707 			 */
3708 			if (tcp->tcp_loopback) {
3709 				TCP_STAT(tcps, tcp_fusion_unfusable);
3710 				tcp->tcp_unfusable = B_TRUE;
3711 			}
3712 			/*
3713 			 * For simultaneous active open, trace receipt of final
3714 			 * ACK as tcp:::connect-established.
3715 			 */
3716 			DTRACE_TCP5(connect__established, mblk_t *, NULL,
3717 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3718 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3719 		} else if (IPCL_IS_NONSTR(connp)) {
3720 			/*
3721 			 * 3-way handshake has completed, so notify socket
3722 			 * of the new connection.
3723 			 *
3724 			 * We are here means eager is fine but it can
3725 			 * get a TH_RST at any point between now and till
3726 			 * accept completes and disappear. We need to
3727 			 * ensure that reference to eager is valid after
3728 			 * we get out of eager's perimeter. So we do
3729 			 * an extra refhold.
3730 			 */
3731 			CONN_INC_REF(connp);
3732 
3733 			if (!tcp_newconn_notify(tcp, ira)) {
3734 				/*
3735 				 * The state-change probe for SYN_RCVD ->
3736 				 * ESTABLISHED has not fired yet. We reset
3737 				 * the state to SYN_RCVD so that future
3738 				 * state-change probes report correct state
3739 				 * transistions.
3740 				 */
3741 				tcp->tcp_state = TCPS_SYN_RCVD;
3742 				freemsg(mp);
3743 				/* notification did not go up, so drop ref */
3744 				CONN_DEC_REF(connp);
3745 				/* ... and close the eager */
3746 				ASSERT(TCP_IS_DETACHED(tcp));
3747 				(void) tcp_close_detached(tcp);
3748 				return;
3749 			}
3750 			/*
3751 			 * For passive open, trace receipt of final ACK as
3752 			 * tcp:::accept-established.
3753 			 */
3754 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3755 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3756 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3757 		} else {
3758 			/*
3759 			 * 3-way handshake complete - this is a STREAMS based
3760 			 * socket, so pass up the T_CONN_IND.
3761 			 */
3762 			tcp_t	*listener = tcp->tcp_listener;
3763 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
3764 
3765 			tcp->tcp_tconnind_started = B_TRUE;
3766 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
3767 			ASSERT(mp != NULL);
3768 			/*
3769 			 * We are here means eager is fine but it can
3770 			 * get a TH_RST at any point between now and till
3771 			 * accept completes and disappear. We need to
3772 			 * ensure that reference to eager is valid after
3773 			 * we get out of eager's perimeter. So we do
3774 			 * an extra refhold.
3775 			 */
3776 			CONN_INC_REF(connp);
3777 
3778 			/*
3779 			 * The listener also exists because of the refhold
3780 			 * done in tcp_input_listener. Its possible that it
3781 			 * might have closed. We will check that once we
3782 			 * get inside listeners context.
3783 			 */
3784 			CONN_INC_REF(listener->tcp_connp);
3785 			if (listener->tcp_connp->conn_sqp ==
3786 			    connp->conn_sqp) {
3787 				/*
3788 				 * We optimize by not calling an SQUEUE_ENTER
3789 				 * on the listener since we know that the
3790 				 * listener and eager squeues are the same.
3791 				 * We are able to make this check safely only
3792 				 * because neither the eager nor the listener
3793 				 * can change its squeue. Only an active connect
3794 				 * can change its squeue
3795 				 */
3796 				tcp_send_conn_ind(listener->tcp_connp, mp,
3797 				    listener->tcp_connp->conn_sqp);
3798 				CONN_DEC_REF(listener->tcp_connp);
3799 			} else if (!tcp->tcp_loopback) {
3800 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3801 				    mp, tcp_send_conn_ind,
3802 				    listener->tcp_connp, NULL, SQ_FILL,
3803 				    SQTAG_TCP_CONN_IND);
3804 			} else {
3805 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3806 				    mp, tcp_send_conn_ind,
3807 				    listener->tcp_connp, NULL, SQ_NODRAIN,
3808 				    SQTAG_TCP_CONN_IND);
3809 			}
3810 			/*
3811 			 * For passive open, trace receipt of final ACK as
3812 			 * tcp:::accept-established.
3813 			 */
3814 			DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3815 			    ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3816 			    iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3817 		}
3818 		TCPS_CONN_INC(tcps);
3819 
3820 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
3821 		bytes_acked--;
3822 		/* SYN was acked - making progress */
3823 		tcp->tcp_ip_forward_progress = B_TRUE;
3824 
3825 		/*
3826 		 * If SYN was retransmitted, need to reset all
3827 		 * retransmission info as this segment will be
3828 		 * treated as a dup ACK.
3829 		 */
3830 		if (tcp->tcp_rexmit) {
3831 			tcp->tcp_rexmit = B_FALSE;
3832 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3833 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
3834 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
3835 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
3836 			tcp->tcp_ms_we_have_waited = 0;
3837 			tcp->tcp_cwnd = mss;
3838 		}
3839 
3840 		/*
3841 		 * We set the send window to zero here.
3842 		 * This is needed if there is data to be
3843 		 * processed already on the queue.
3844 		 * Later (at swnd_update label), the
3845 		 * "new_swnd > tcp_swnd" condition is satisfied
3846 		 * the XMIT_NEEDED flag is set in the current
3847 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
3848 		 * called if there is already data on queue in
3849 		 * this state.
3850 		 */
3851 		tcp->tcp_swnd = 0;
3852 
3853 		if (new_swnd > tcp->tcp_max_swnd)
3854 			tcp->tcp_max_swnd = new_swnd;
3855 		tcp->tcp_swl1 = seg_seq;
3856 		tcp->tcp_swl2 = seg_ack;
3857 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
3858 
3859 		/* Trace change from SYN_RCVD -> ESTABLISHED here */
3860 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3861 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3862 		    int32_t, TCPS_SYN_RCVD);
3863 
3864 		/* Fuse when both sides are in ESTABLISHED state */
3865 		if (tcp->tcp_loopback && do_tcp_fusion)
3866 			tcp_fuse(tcp, iphdr, tcpha);
3867 
3868 	}
3869 	/* This code follows 4.4BSD-Lite2 mostly. */
3870 	if (bytes_acked < 0)
3871 		goto est;
3872 
3873 	/*
3874 	 * If TCP is ECN capable and the congestion experience bit is
3875 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
3876 	 * done once per window (or more loosely, per RTT).
3877 	 */
3878 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
3879 		tcp->tcp_cwr = B_FALSE;
3880 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
3881 		if (!tcp->tcp_cwr) {
3882 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
3883 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
3884 			tcp->tcp_cwnd = npkt * mss;
3885 			/*
3886 			 * If the cwnd is 0, use the timer to clock out
3887 			 * new segments.  This is required by the ECN spec.
3888 			 */
3889 			if (npkt == 0) {
3890 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
3891 				/*
3892 				 * This makes sure that when the ACK comes
3893 				 * back, we will increase tcp_cwnd by 1 MSS.
3894 				 */
3895 				tcp->tcp_cwnd_cnt = 0;
3896 			}
3897 			tcp->tcp_cwr = B_TRUE;
3898 			/*
3899 			 * This marks the end of the current window of in
3900 			 * flight data.  That is why we don't use
3901 			 * tcp_suna + tcp_swnd.  Only data in flight can
3902 			 * provide ECN info.
3903 			 */
3904 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3905 			tcp->tcp_ecn_cwr_sent = B_FALSE;
3906 		}
3907 	}
3908 
3909 	mp1 = tcp->tcp_xmit_head;
3910 	if (bytes_acked == 0) {
3911 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
3912 			int dupack_cnt;
3913 
3914 			TCPS_BUMP_MIB(tcps, tcpInDupAck);
3915 			/*
3916 			 * Fast retransmit.  When we have seen exactly three
3917 			 * identical ACKs while we have unacked data
3918 			 * outstanding we take it as a hint that our peer
3919 			 * dropped something.
3920 			 *
3921 			 * If TCP is retransmitting, don't do fast retransmit.
3922 			 */
3923 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
3924 			    ! tcp->tcp_rexmit) {
3925 				/* Do Limited Transmit */
3926 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
3927 				    tcps->tcps_dupack_fast_retransmit) {
3928 					/*
3929 					 * RFC 3042
3930 					 *
3931 					 * What we need to do is temporarily
3932 					 * increase tcp_cwnd so that new
3933 					 * data can be sent if it is allowed
3934 					 * by the receive window (tcp_rwnd).
3935 					 * tcp_wput_data() will take care of
3936 					 * the rest.
3937 					 *
3938 					 * If the connection is SACK capable,
3939 					 * only do limited xmit when there
3940 					 * is SACK info.
3941 					 *
3942 					 * Note how tcp_cwnd is incremented.
3943 					 * The first dup ACK will increase
3944 					 * it by 1 MSS.  The second dup ACK
3945 					 * will increase it by 2 MSS.  This
3946 					 * means that only 1 new segment will
3947 					 * be sent for each dup ACK.
3948 					 */
3949 					if (tcp->tcp_unsent > 0 &&
3950 					    (!tcp->tcp_snd_sack_ok ||
3951 					    (tcp->tcp_snd_sack_ok &&
3952 					    tcp->tcp_notsack_list != NULL))) {
3953 						tcp->tcp_cwnd += mss <<
3954 						    (tcp->tcp_dupack_cnt - 1);
3955 						flags |= TH_LIMIT_XMIT;
3956 					}
3957 				} else if (dupack_cnt ==
3958 				    tcps->tcps_dupack_fast_retransmit) {
3959 
3960 				/*
3961 				 * If we have reduced tcp_ssthresh
3962 				 * because of ECN, do not reduce it again
3963 				 * unless it is already one window of data
3964 				 * away.  After one window of data, tcp_cwr
3965 				 * should then be cleared.  Note that
3966 				 * for non ECN capable connection, tcp_cwr
3967 				 * should always be false.
3968 				 *
3969 				 * Adjust cwnd since the duplicate
3970 				 * ack indicates that a packet was
3971 				 * dropped (due to congestion.)
3972 				 */
3973 				if (!tcp->tcp_cwr) {
3974 					npkt = ((tcp->tcp_snxt -
3975 					    tcp->tcp_suna) >> 1) / mss;
3976 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
3977 					    mss;
3978 					tcp->tcp_cwnd = (npkt +
3979 					    tcp->tcp_dupack_cnt) * mss;
3980 				}
3981 				if (tcp->tcp_ecn_ok) {
3982 					tcp->tcp_cwr = B_TRUE;
3983 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3984 					tcp->tcp_ecn_cwr_sent = B_FALSE;
3985 				}
3986 
3987 				/*
3988 				 * We do Hoe's algorithm.  Refer to her
3989 				 * paper "Improving the Start-up Behavior
3990 				 * of a Congestion Control Scheme for TCP,"
3991 				 * appeared in SIGCOMM'96.
3992 				 *
3993 				 * Save highest seq no we have sent so far.
3994 				 * Be careful about the invisible FIN byte.
3995 				 */
3996 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
3997 				    (tcp->tcp_unsent == 0)) {
3998 					tcp->tcp_rexmit_max = tcp->tcp_fss;
3999 				} else {
4000 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
4001 				}
4002 
4003 				/*
4004 				 * Do not allow bursty traffic during.
4005 				 * fast recovery.  Refer to Fall and Floyd's
4006 				 * paper "Simulation-based Comparisons of
4007 				 * Tahoe, Reno and SACK TCP" (in CCR?)
4008 				 * This is a best current practise.
4009 				 */
4010 				tcp->tcp_snd_burst = TCP_CWND_SS;
4011 
4012 				/*
4013 				 * For SACK:
4014 				 * Calculate tcp_pipe, which is the
4015 				 * estimated number of bytes in
4016 				 * network.
4017 				 *
4018 				 * tcp_fack is the highest sack'ed seq num
4019 				 * TCP has received.
4020 				 *
4021 				 * tcp_pipe is explained in the above quoted
4022 				 * Fall and Floyd's paper.  tcp_fack is
4023 				 * explained in Mathis and Mahdavi's
4024 				 * "Forward Acknowledgment: Refining TCP
4025 				 * Congestion Control" in SIGCOMM '96.
4026 				 */
4027 				if (tcp->tcp_snd_sack_ok) {
4028 					if (tcp->tcp_notsack_list != NULL) {
4029 						tcp->tcp_pipe = tcp->tcp_snxt -
4030 						    tcp->tcp_fack;
4031 						tcp->tcp_sack_snxt = seg_ack;
4032 						flags |= TH_NEED_SACK_REXMIT;
4033 					} else {
4034 						/*
4035 						 * Always initialize tcp_pipe
4036 						 * even though we don't have
4037 						 * any SACK info.  If later
4038 						 * we get SACK info and
4039 						 * tcp_pipe is not initialized,
4040 						 * funny things will happen.
4041 						 */
4042 						tcp->tcp_pipe =
4043 						    tcp->tcp_cwnd_ssthresh;
4044 					}
4045 				} else {
4046 					flags |= TH_REXMIT_NEEDED;
4047 				} /* tcp_snd_sack_ok */
4048 
4049 				} else {
4050 					/*
4051 					 * Here we perform congestion
4052 					 * avoidance, but NOT slow start.
4053 					 * This is known as the Fast
4054 					 * Recovery Algorithm.
4055 					 */
4056 					if (tcp->tcp_snd_sack_ok &&
4057 					    tcp->tcp_notsack_list != NULL) {
4058 						flags |= TH_NEED_SACK_REXMIT;
4059 						tcp->tcp_pipe -= mss;
4060 						if (tcp->tcp_pipe < 0)
4061 							tcp->tcp_pipe = 0;
4062 					} else {
4063 					/*
4064 					 * We know that one more packet has
4065 					 * left the pipe thus we can update
4066 					 * cwnd.
4067 					 */
4068 					cwnd = tcp->tcp_cwnd + mss;
4069 					if (cwnd > tcp->tcp_cwnd_max)
4070 						cwnd = tcp->tcp_cwnd_max;
4071 					tcp->tcp_cwnd = cwnd;
4072 					if (tcp->tcp_unsent > 0)
4073 						flags |= TH_XMIT_NEEDED;
4074 					}
4075 				}
4076 			}
4077 		} else if (tcp->tcp_zero_win_probe) {
4078 			/*
4079 			 * If the window has opened, need to arrange
4080 			 * to send additional data.
4081 			 */
4082 			if (new_swnd != 0) {
4083 				/* tcp_suna != tcp_snxt */
4084 				/* Packet contains a window update */
4085 				TCPS_BUMP_MIB(tcps, tcpInWinUpdate);
4086 				tcp->tcp_zero_win_probe = 0;
4087 				tcp->tcp_timer_backoff = 0;
4088 				tcp->tcp_ms_we_have_waited = 0;
4089 
4090 				/*
4091 				 * Transmit starting with tcp_suna since
4092 				 * the one byte probe is not ack'ed.
4093 				 * If TCP has sent more than one identical
4094 				 * probe, tcp_rexmit will be set.  That means
4095 				 * tcp_ss_rexmit() will send out the one
4096 				 * byte along with new data.  Otherwise,
4097 				 * fake the retransmission.
4098 				 */
4099 				flags |= TH_XMIT_NEEDED;
4100 				if (!tcp->tcp_rexmit) {
4101 					tcp->tcp_rexmit = B_TRUE;
4102 					tcp->tcp_dupack_cnt = 0;
4103 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
4104 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
4105 				}
4106 			}
4107 		}
4108 		goto swnd_update;
4109 	}
4110 
4111 	/*
4112 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
4113 	 * If the ACK value acks something that we have not yet sent, it might
4114 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
4115 	 * other side.
4116 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
4117 	 * state is handled above, so we can always just drop the segment and
4118 	 * send an ACK here.
4119 	 *
4120 	 * In the case where the peer shrinks the window, we see the new window
4121 	 * update, but all the data sent previously is queued up by the peer.
4122 	 * To account for this, in tcp_process_shrunk_swnd(), the sequence
4123 	 * number, which was already sent, and within window, is recorded.
4124 	 * tcp_snxt is then updated.
4125 	 *
4126 	 * If the window has previously shrunk, and an ACK for data not yet
4127 	 * sent, according to tcp_snxt is recieved, it may still be valid. If
4128 	 * the ACK is for data within the window at the time the window was
4129 	 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
4130 	 * the sequence number ACK'ed.
4131 	 *
4132 	 * If the ACK covers all the data sent at the time the window was
4133 	 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
4134 	 *
4135 	 * Should we send ACKs in response to ACK only segments?
4136 	 */
4137 
4138 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
4139 		if ((tcp->tcp_is_wnd_shrnk) &&
4140 		    (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
4141 			uint32_t data_acked_ahead_snxt;
4142 
4143 			data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
4144 			tcp_update_xmit_tail(tcp, seg_ack);
4145 			tcp->tcp_unsent -= data_acked_ahead_snxt;
4146 		} else {
4147 			TCPS_BUMP_MIB(tcps, tcpInAckUnsent);
4148 			/* drop the received segment */
4149 			freemsg(mp);
4150 
4151 			/*
4152 			 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
4153 			 * greater than 0, check if the number of such
4154 			 * bogus ACks is greater than that count.  If yes,
4155 			 * don't send back any ACK.  This prevents TCP from
4156 			 * getting into an ACK storm if somehow an attacker
4157 			 * successfully spoofs an acceptable segment to our
4158 			 * peer.  If this continues (count > 2 X threshold),
4159 			 * we should abort this connection.
4160 			 */
4161 			if (tcp_drop_ack_unsent_cnt > 0 &&
4162 			    ++tcp->tcp_in_ack_unsent >
4163 			    tcp_drop_ack_unsent_cnt) {
4164 				TCP_STAT(tcps, tcp_in_ack_unsent_drop);
4165 				if (tcp->tcp_in_ack_unsent > 2 *
4166 				    tcp_drop_ack_unsent_cnt) {
4167 					(void) tcp_clean_death(tcp, EPROTO);
4168 				}
4169 				return;
4170 			}
4171 			mp = tcp_ack_mp(tcp);
4172 			if (mp != NULL) {
4173 				BUMP_LOCAL(tcp->tcp_obsegs);
4174 				TCPS_BUMP_MIB(tcps, tcpOutAck);
4175 				tcp_send_data(tcp, mp);
4176 			}
4177 			return;
4178 		}
4179 	} else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
4180 	    tcp->tcp_snxt_shrunk)) {
4181 			tcp->tcp_is_wnd_shrnk = B_FALSE;
4182 	}
4183 
4184 	/*
4185 	 * TCP gets a new ACK, update the notsack'ed list to delete those
4186 	 * blocks that are covered by this ACK.
4187 	 */
4188 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
4189 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
4190 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
4191 	}
4192 
4193 	/*
4194 	 * If we got an ACK after fast retransmit, check to see
4195 	 * if it is a partial ACK.  If it is not and the congestion
4196 	 * window was inflated to account for the other side's
4197 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
4198 	 */
4199 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
4200 		ASSERT(tcp->tcp_rexmit == B_FALSE);
4201 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
4202 			tcp->tcp_dupack_cnt = 0;
4203 			/*
4204 			 * Restore the orig tcp_cwnd_ssthresh after
4205 			 * fast retransmit phase.
4206 			 */
4207 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
4208 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
4209 			}
4210 			tcp->tcp_rexmit_max = seg_ack;
4211 			tcp->tcp_cwnd_cnt = 0;
4212 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
4213 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
4214 
4215 			/*
4216 			 * Remove all notsack info to avoid confusion with
4217 			 * the next fast retrasnmit/recovery phase.
4218 			 */
4219 			if (tcp->tcp_snd_sack_ok) {
4220 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
4221 				    tcp);
4222 			}
4223 		} else {
4224 			if (tcp->tcp_snd_sack_ok &&
4225 			    tcp->tcp_notsack_list != NULL) {
4226 				flags |= TH_NEED_SACK_REXMIT;
4227 				tcp->tcp_pipe -= mss;
4228 				if (tcp->tcp_pipe < 0)
4229 					tcp->tcp_pipe = 0;
4230 			} else {
4231 				/*
4232 				 * Hoe's algorithm:
4233 				 *
4234 				 * Retransmit the unack'ed segment and
4235 				 * restart fast recovery.  Note that we
4236 				 * need to scale back tcp_cwnd to the
4237 				 * original value when we started fast
4238 				 * recovery.  This is to prevent overly
4239 				 * aggressive behaviour in sending new
4240 				 * segments.
4241 				 */
4242 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
4243 				    tcps->tcps_dupack_fast_retransmit * mss;
4244 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
4245 				flags |= TH_REXMIT_NEEDED;
4246 			}
4247 		}
4248 	} else {
4249 		tcp->tcp_dupack_cnt = 0;
4250 		if (tcp->tcp_rexmit) {
4251 			/*
4252 			 * TCP is retranmitting.  If the ACK ack's all
4253 			 * outstanding data, update tcp_rexmit_max and
4254 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
4255 			 * to the correct value.
4256 			 *
4257 			 * Note that SEQ_LEQ() is used.  This is to avoid
4258 			 * unnecessary fast retransmit caused by dup ACKs
4259 			 * received when TCP does slow start retransmission
4260 			 * after a time out.  During this phase, TCP may
4261 			 * send out segments which are already received.
4262 			 * This causes dup ACKs to be sent back.
4263 			 */
4264 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
4265 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
4266 					tcp->tcp_rexmit_nxt = seg_ack;
4267 				}
4268 				if (seg_ack != tcp->tcp_rexmit_max) {
4269 					flags |= TH_XMIT_NEEDED;
4270 				}
4271 			} else {
4272 				tcp->tcp_rexmit = B_FALSE;
4273 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4274 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
4275 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
4276 			}
4277 			tcp->tcp_ms_we_have_waited = 0;
4278 		}
4279 	}
4280 
4281 	TCPS_BUMP_MIB(tcps, tcpInAckSegs);
4282 	TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked);
4283 	tcp->tcp_suna = seg_ack;
4284 	if (tcp->tcp_zero_win_probe != 0) {
4285 		tcp->tcp_zero_win_probe = 0;
4286 		tcp->tcp_timer_backoff = 0;
4287 	}
4288 
4289 	/*
4290 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
4291 	 * Note that it cannot be the SYN being ack'ed.  The code flow
4292 	 * will not reach here.
4293 	 */
4294 	if (mp1 == NULL) {
4295 		goto fin_acked;
4296 	}
4297 
4298 	/*
4299 	 * Update the congestion window.
4300 	 *
4301 	 * If TCP is not ECN capable or TCP is ECN capable but the
4302 	 * congestion experience bit is not set, increase the tcp_cwnd as
4303 	 * usual.
4304 	 */
4305 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
4306 		cwnd = tcp->tcp_cwnd;
4307 		add = mss;
4308 
4309 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
4310 			/*
4311 			 * This is to prevent an increase of less than 1 MSS of
4312 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
4313 			 * may send out tinygrams in order to preserve mblk
4314 			 * boundaries.
4315 			 *
4316 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
4317 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
4318 			 * increased by 1 MSS for every RTTs.
4319 			 */
4320 			if (tcp->tcp_cwnd_cnt <= 0) {
4321 				tcp->tcp_cwnd_cnt = cwnd + add;
4322 			} else {
4323 				tcp->tcp_cwnd_cnt -= add;
4324 				add = 0;
4325 			}
4326 		}
4327 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
4328 	}
4329 
4330 	/* See if the latest urgent data has been acknowledged */
4331 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
4332 	    SEQ_GT(seg_ack, tcp->tcp_urg))
4333 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
4334 
4335 	/* Can we update the RTT estimates? */
4336 	if (tcp->tcp_snd_ts_ok) {
4337 		/* Ignore zero timestamp echo-reply. */
4338 		if (tcpopt.tcp_opt_ts_ecr != 0) {
4339 			tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
4340 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
4341 		}
4342 
4343 		/* If needed, restart the timer. */
4344 		if (tcp->tcp_set_timer == 1) {
4345 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4346 			tcp->tcp_set_timer = 0;
4347 		}
4348 		/*
4349 		 * Update tcp_csuna in case the other side stops sending
4350 		 * us timestamps.
4351 		 */
4352 		tcp->tcp_csuna = tcp->tcp_snxt;
4353 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
4354 		/*
4355 		 * An ACK sequence we haven't seen before, so get the RTT
4356 		 * and update the RTO. But first check if the timestamp is
4357 		 * valid to use.
4358 		 */
4359 		if ((mp1->b_next != NULL) &&
4360 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
4361 			tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
4362 			    (int32_t)(intptr_t)mp1->b_prev);
4363 		else
4364 			TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4365 
4366 		/* Remeber the last sequence to be ACKed */
4367 		tcp->tcp_csuna = seg_ack;
4368 		if (tcp->tcp_set_timer == 1) {
4369 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4370 			tcp->tcp_set_timer = 0;
4371 		}
4372 	} else {
4373 		TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4374 	}
4375 
4376 	/* Eat acknowledged bytes off the xmit queue. */
4377 	for (;;) {
4378 		mblk_t	*mp2;
4379 		uchar_t	*wptr;
4380 
4381 		wptr = mp1->b_wptr;
4382 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
4383 		bytes_acked -= (int)(wptr - mp1->b_rptr);
4384 		if (bytes_acked < 0) {
4385 			mp1->b_rptr = wptr + bytes_acked;
4386 			/*
4387 			 * Set a new timestamp if all the bytes timed by the
4388 			 * old timestamp have been ack'ed.
4389 			 */
4390 			if (SEQ_GT(seg_ack,
4391 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
4392 				mp1->b_prev =
4393 				    (mblk_t *)(uintptr_t)LBOLT_FASTPATH;
4394 				mp1->b_next = NULL;
4395 			}
4396 			break;
4397 		}
4398 		mp1->b_next = NULL;
4399 		mp1->b_prev = NULL;
4400 		mp2 = mp1;
4401 		mp1 = mp1->b_cont;
4402 
4403 		/*
4404 		 * This notification is required for some zero-copy
4405 		 * clients to maintain a copy semantic. After the data
4406 		 * is ack'ed, client is safe to modify or reuse the buffer.
4407 		 */
4408 		if (tcp->tcp_snd_zcopy_aware &&
4409 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
4410 			tcp_zcopy_notify(tcp);
4411 		freeb(mp2);
4412 		if (bytes_acked == 0) {
4413 			if (mp1 == NULL) {
4414 				/* Everything is ack'ed, clear the tail. */
4415 				tcp->tcp_xmit_tail = NULL;
4416 				/*
4417 				 * Cancel the timer unless we are still
4418 				 * waiting for an ACK for the FIN packet.
4419 				 */
4420 				if (tcp->tcp_timer_tid != 0 &&
4421 				    tcp->tcp_snxt == tcp->tcp_suna) {
4422 					(void) TCP_TIMER_CANCEL(tcp,
4423 					    tcp->tcp_timer_tid);
4424 					tcp->tcp_timer_tid = 0;
4425 				}
4426 				goto pre_swnd_update;
4427 			}
4428 			if (mp2 != tcp->tcp_xmit_tail)
4429 				break;
4430 			tcp->tcp_xmit_tail = mp1;
4431 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
4432 			    (uintptr_t)INT_MAX);
4433 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
4434 			    mp1->b_rptr);
4435 			break;
4436 		}
4437 		if (mp1 == NULL) {
4438 			/*
4439 			 * More was acked but there is nothing more
4440 			 * outstanding.  This means that the FIN was
4441 			 * just acked or that we're talking to a clown.
4442 			 */
4443 fin_acked:
4444 			ASSERT(tcp->tcp_fin_sent);
4445 			tcp->tcp_xmit_tail = NULL;
4446 			if (tcp->tcp_fin_sent) {
4447 				/* FIN was acked - making progress */
4448 				if (!tcp->tcp_fin_acked)
4449 					tcp->tcp_ip_forward_progress = B_TRUE;
4450 				tcp->tcp_fin_acked = B_TRUE;
4451 				if (tcp->tcp_linger_tid != 0 &&
4452 				    TCP_TIMER_CANCEL(tcp,
4453 				    tcp->tcp_linger_tid) >= 0) {
4454 					tcp_stop_lingering(tcp);
4455 					freemsg(mp);
4456 					mp = NULL;
4457 				}
4458 			} else {
4459 				/*
4460 				 * We should never get here because
4461 				 * we have already checked that the
4462 				 * number of bytes ack'ed should be
4463 				 * smaller than or equal to what we
4464 				 * have sent so far (it is the
4465 				 * acceptability check of the ACK).
4466 				 * We can only get here if the send
4467 				 * queue is corrupted.
4468 				 *
4469 				 * Terminate the connection and
4470 				 * panic the system.  It is better
4471 				 * for us to panic instead of
4472 				 * continuing to avoid other disaster.
4473 				 */
4474 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
4475 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
4476 				panic("Memory corruption "
4477 				    "detected for connection %s.",
4478 				    tcp_display(tcp, NULL,
4479 				    DISP_ADDR_AND_PORT));
4480 				/*NOTREACHED*/
4481 			}
4482 			goto pre_swnd_update;
4483 		}
4484 		ASSERT(mp2 != tcp->tcp_xmit_tail);
4485 	}
4486 	if (tcp->tcp_unsent) {
4487 		flags |= TH_XMIT_NEEDED;
4488 	}
4489 pre_swnd_update:
4490 	tcp->tcp_xmit_head = mp1;
4491 swnd_update:
4492 	/*
4493 	 * The following check is different from most other implementations.
4494 	 * For bi-directional transfer, when segments are dropped, the
4495 	 * "normal" check will not accept a window update in those
4496 	 * retransmitted segemnts.  Failing to do that, TCP may send out
4497 	 * segments which are outside receiver's window.  As TCP accepts
4498 	 * the ack in those retransmitted segments, if the window update in
4499 	 * the same segment is not accepted, TCP will incorrectly calculates
4500 	 * that it can send more segments.  This can create a deadlock
4501 	 * with the receiver if its window becomes zero.
4502 	 */
4503 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
4504 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
4505 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
4506 		/*
4507 		 * The criteria for update is:
4508 		 *
4509 		 * 1. the segment acknowledges some data.  Or
4510 		 * 2. the segment is new, i.e. it has a higher seq num. Or
4511 		 * 3. the segment is not old and the advertised window is
4512 		 * larger than the previous advertised window.
4513 		 */
4514 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
4515 			flags |= TH_XMIT_NEEDED;
4516 		tcp->tcp_swnd = new_swnd;
4517 		if (new_swnd > tcp->tcp_max_swnd)
4518 			tcp->tcp_max_swnd = new_swnd;
4519 		tcp->tcp_swl1 = seg_seq;
4520 		tcp->tcp_swl2 = seg_ack;
4521 	}
4522 est:
4523 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
4524 
4525 		switch (tcp->tcp_state) {
4526 		case TCPS_FIN_WAIT_1:
4527 			if (tcp->tcp_fin_acked) {
4528 				tcp->tcp_state = TCPS_FIN_WAIT_2;
4529 				DTRACE_TCP6(state__change, void, NULL,
4530 				    ip_xmit_attr_t *, connp->conn_ixa,
4531 				    void, NULL, tcp_t *, tcp, void, NULL,
4532 				    int32_t, TCPS_FIN_WAIT_1);
4533 				/*
4534 				 * We implement the non-standard BSD/SunOS
4535 				 * FIN_WAIT_2 flushing algorithm.
4536 				 * If there is no user attached to this
4537 				 * TCP endpoint, then this TCP struct
4538 				 * could hang around forever in FIN_WAIT_2
4539 				 * state if the peer forgets to send us
4540 				 * a FIN.  To prevent this, we wait only
4541 				 * 2*MSL (a convenient time value) for
4542 				 * the FIN to arrive.  If it doesn't show up,
4543 				 * we flush the TCP endpoint.  This algorithm,
4544 				 * though a violation of RFC-793, has worked
4545 				 * for over 10 years in BSD systems.
4546 				 * Note: SunOS 4.x waits 675 seconds before
4547 				 * flushing the FIN_WAIT_2 connection.
4548 				 */
4549 				TCP_TIMER_RESTART(tcp,
4550 				    tcp->tcp_fin_wait_2_flush_interval);
4551 			}
4552 			break;
4553 		case TCPS_FIN_WAIT_2:
4554 			break;	/* Shutdown hook? */
4555 		case TCPS_LAST_ACK:
4556 			freemsg(mp);
4557 			if (tcp->tcp_fin_acked) {
4558 				(void) tcp_clean_death(tcp, 0);
4559 				return;
4560 			}
4561 			goto xmit_check;
4562 		case TCPS_CLOSING:
4563 			if (tcp->tcp_fin_acked) {
4564 				SET_TIME_WAIT(tcps, tcp, connp);
4565 				DTRACE_TCP6(state__change, void, NULL,
4566 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4567 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4568 				    TCPS_CLOSING);
4569 			}
4570 			/*FALLTHRU*/
4571 		case TCPS_CLOSE_WAIT:
4572 			freemsg(mp);
4573 			goto xmit_check;
4574 		default:
4575 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
4576 			break;
4577 		}
4578 	}
4579 	if (flags & TH_FIN) {
4580 		/* Make sure we ack the fin */
4581 		flags |= TH_ACK_NEEDED;
4582 		if (!tcp->tcp_fin_rcvd) {
4583 			tcp->tcp_fin_rcvd = B_TRUE;
4584 			tcp->tcp_rnxt++;
4585 			tcpha = tcp->tcp_tcpha;
4586 			tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4587 
4588 			/*
4589 			 * Generate the ordrel_ind at the end unless the
4590 			 * conn is detached or it is a STREAMS based eager.
4591 			 * In the eager case we defer the notification until
4592 			 * tcp_accept_finish has run.
4593 			 */
4594 			if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) ||
4595 			    (tcp->tcp_listener == NULL &&
4596 			    !tcp->tcp_hard_binding)))
4597 				flags |= TH_ORDREL_NEEDED;
4598 			switch (tcp->tcp_state) {
4599 			case TCPS_SYN_RCVD:
4600 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4601 				DTRACE_TCP6(state__change, void, NULL,
4602 				    ip_xmit_attr_t *, connp->conn_ixa,
4603 				    void, NULL, tcp_t *, tcp, void, NULL,
4604 				    int32_t, TCPS_SYN_RCVD);
4605 				/* Keepalive? */
4606 				break;
4607 			case TCPS_ESTABLISHED:
4608 				tcp->tcp_state = TCPS_CLOSE_WAIT;
4609 				DTRACE_TCP6(state__change, void, NULL,
4610 				    ip_xmit_attr_t *, connp->conn_ixa,
4611 				    void, NULL, tcp_t *, tcp, void, NULL,
4612 				    int32_t, TCPS_ESTABLISHED);
4613 				/* Keepalive? */
4614 				break;
4615 			case TCPS_FIN_WAIT_1:
4616 				if (!tcp->tcp_fin_acked) {
4617 					tcp->tcp_state = TCPS_CLOSING;
4618 					DTRACE_TCP6(state__change, void, NULL,
4619 					    ip_xmit_attr_t *, connp->conn_ixa,
4620 					    void, NULL, tcp_t *, tcp, void,
4621 					    NULL, int32_t, TCPS_FIN_WAIT_1);
4622 					break;
4623 				}
4624 				/* FALLTHRU */
4625 			case TCPS_FIN_WAIT_2:
4626 				SET_TIME_WAIT(tcps, tcp, connp);
4627 				DTRACE_TCP6(state__change, void, NULL,
4628 				    ip_xmit_attr_t *, connp->conn_ixa, void,
4629 				    NULL, tcp_t *, tcp, void, NULL, int32_t,
4630 				    TCPS_FIN_WAIT_2);
4631 				if (seg_len) {
4632 					/*
4633 					 * implies data piggybacked on FIN.
4634 					 * break to handle data.
4635 					 */
4636 					break;
4637 				}
4638 				freemsg(mp);
4639 				goto ack_check;
4640 			}
4641 		}
4642 	}
4643 	if (mp == NULL)
4644 		goto xmit_check;
4645 	if (seg_len == 0) {
4646 		freemsg(mp);
4647 		goto xmit_check;
4648 	}
4649 	if (mp->b_rptr == mp->b_wptr) {
4650 		/*
4651 		 * The header has been consumed, so we remove the
4652 		 * zero-length mblk here.
4653 		 */
4654 		mp1 = mp;
4655 		mp = mp->b_cont;
4656 		freeb(mp1);
4657 	}
4658 update_ack:
4659 	tcpha = tcp->tcp_tcpha;
4660 	tcp->tcp_rack_cnt++;
4661 	{
4662 		uint32_t cur_max;
4663 
4664 		cur_max = tcp->tcp_rack_cur_max;
4665 		if (tcp->tcp_rack_cnt >= cur_max) {
4666 			/*
4667 			 * We have more unacked data than we should - send
4668 			 * an ACK now.
4669 			 */
4670 			flags |= TH_ACK_NEEDED;
4671 			cur_max++;
4672 			if (cur_max > tcp->tcp_rack_abs_max)
4673 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
4674 			else
4675 				tcp->tcp_rack_cur_max = cur_max;
4676 		} else if (TCP_IS_DETACHED(tcp)) {
4677 			/* We don't have an ACK timer for detached TCP. */
4678 			flags |= TH_ACK_NEEDED;
4679 		} else if (seg_len < mss) {
4680 			/*
4681 			 * If we get a segment that is less than an mss, and we
4682 			 * already have unacknowledged data, and the amount
4683 			 * unacknowledged is not a multiple of mss, then we
4684 			 * better generate an ACK now.  Otherwise, this may be
4685 			 * the tail piece of a transaction, and we would rather
4686 			 * wait for the response.
4687 			 */
4688 			uint32_t udif;
4689 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
4690 			    (uintptr_t)INT_MAX);
4691 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
4692 			if (udif && (udif % mss))
4693 				flags |= TH_ACK_NEEDED;
4694 			else
4695 				flags |= TH_ACK_TIMER_NEEDED;
4696 		} else {
4697 			/* Start delayed ack timer */
4698 			flags |= TH_ACK_TIMER_NEEDED;
4699 		}
4700 	}
4701 	tcp->tcp_rnxt += seg_len;
4702 	tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4703 
4704 	if (mp == NULL)
4705 		goto xmit_check;
4706 
4707 	/* Update SACK list */
4708 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4709 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
4710 		    &(tcp->tcp_num_sack_blk));
4711 	}
4712 
4713 	if (tcp->tcp_urp_mp) {
4714 		tcp->tcp_urp_mp->b_cont = mp;
4715 		mp = tcp->tcp_urp_mp;
4716 		tcp->tcp_urp_mp = NULL;
4717 		/* Ready for a new signal. */
4718 		tcp->tcp_urp_last_valid = B_FALSE;
4719 #ifdef DEBUG
4720 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4721 		    "tcp_rput: sending exdata_ind %s",
4722 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4723 #endif /* DEBUG */
4724 	}
4725 
4726 	/*
4727 	 * Check for ancillary data changes compared to last segment.
4728 	 */
4729 	if (connp->conn_recv_ancillary.crb_all != 0) {
4730 		mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
4731 		if (mp == NULL)
4732 			return;
4733 	}
4734 
4735 	if (IPCL_IS_NONSTR(connp)) {
4736 		/*
4737 		 * Non-STREAMS socket
4738 		 */
4739 		boolean_t push = flags & (TH_PUSH|TH_FIN);
4740 		int error;
4741 
4742 		if ((*sockupcalls->su_recv)(connp->conn_upper_handle,
4743 		    mp, seg_len, 0, &error, &push) <= 0) {
4744 			/*
4745 			 * We should never be in middle of a
4746 			 * fallback, the squeue guarantees that.
4747 			 */
4748 			ASSERT(error != EOPNOTSUPP);
4749 			if (error == ENOSPC)
4750 				tcp->tcp_rwnd -= seg_len;
4751 		} else if (push) {
4752 			/* PUSH bit set and sockfs is not flow controlled */
4753 			flags |= tcp_rwnd_reopen(tcp);
4754 		}
4755 	} else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
4756 		/*
4757 		 * Side queue inbound data until the accept happens.
4758 		 * tcp_accept/tcp_rput drains this when the accept happens.
4759 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
4760 		 * T_EXDATA_IND) it is queued on b_next.
4761 		 * XXX Make urgent data use this. Requires:
4762 		 *	Removing tcp_listener check for TH_URG
4763 		 *	Making M_PCPROTO and MARK messages skip the eager case
4764 		 */
4765 
4766 		tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4767 	} else {
4768 		/* Active STREAMS socket */
4769 		if (mp->b_datap->db_type != M_DATA ||
4770 		    (flags & TH_MARKNEXT_NEEDED)) {
4771 			if (tcp->tcp_rcv_list != NULL) {
4772 				flags |= tcp_rcv_drain(tcp);
4773 			}
4774 			ASSERT(tcp->tcp_rcv_list == NULL ||
4775 			    tcp->tcp_fused_sigurg);
4776 
4777 			if (flags & TH_MARKNEXT_NEEDED) {
4778 #ifdef DEBUG
4779 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4780 				    "tcp_rput: sending MSGMARKNEXT %s",
4781 				    tcp_display(tcp, NULL,
4782 				    DISP_PORT_ONLY));
4783 #endif /* DEBUG */
4784 				mp->b_flag |= MSGMARKNEXT;
4785 				flags &= ~TH_MARKNEXT_NEEDED;
4786 			}
4787 
4788 			if (is_system_labeled())
4789 				tcp_setcred_data(mp, ira);
4790 
4791 			putnext(connp->conn_rq, mp);
4792 			if (!canputnext(connp->conn_rq))
4793 				tcp->tcp_rwnd -= seg_len;
4794 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
4795 		    tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
4796 			if (tcp->tcp_rcv_list != NULL) {
4797 				/*
4798 				 * Enqueue the new segment first and then
4799 				 * call tcp_rcv_drain() to send all data
4800 				 * up.  The other way to do this is to
4801 				 * send all queued data up and then call
4802 				 * putnext() to send the new segment up.
4803 				 * This way can remove the else part later
4804 				 * on.
4805 				 *
4806 				 * We don't do this to avoid one more call to
4807 				 * canputnext() as tcp_rcv_drain() needs to
4808 				 * call canputnext().
4809 				 */
4810 				tcp_rcv_enqueue(tcp, mp, seg_len,
4811 				    ira->ira_cred);
4812 				flags |= tcp_rcv_drain(tcp);
4813 			} else {
4814 				if (is_system_labeled())
4815 					tcp_setcred_data(mp, ira);
4816 
4817 				putnext(connp->conn_rq, mp);
4818 				if (!canputnext(connp->conn_rq))
4819 					tcp->tcp_rwnd -= seg_len;
4820 			}
4821 		} else {
4822 			/*
4823 			 * Enqueue all packets when processing an mblk
4824 			 * from the co queue and also enqueue normal packets.
4825 			 */
4826 			tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4827 		}
4828 		/*
4829 		 * Make sure the timer is running if we have data waiting
4830 		 * for a push bit. This provides resiliency against
4831 		 * implementations that do not correctly generate push bits.
4832 		 */
4833 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
4834 			/*
4835 			 * The connection may be closed at this point, so don't
4836 			 * do anything for a detached tcp.
4837 			 */
4838 			if (!TCP_IS_DETACHED(tcp))
4839 				tcp->tcp_push_tid = TCP_TIMER(tcp,
4840 				    tcp_push_timer,
4841 				    tcps->tcps_push_timer_interval);
4842 		}
4843 	}
4844 
4845 xmit_check:
4846 	/* Is there anything left to do? */
4847 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
4848 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
4849 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
4850 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4851 		goto done;
4852 
4853 	/* Any transmit work to do and a non-zero window? */
4854 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
4855 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
4856 		if (flags & TH_REXMIT_NEEDED) {
4857 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
4858 
4859 			TCPS_BUMP_MIB(tcps, tcpOutFastRetrans);
4860 			if (snd_size > mss)
4861 				snd_size = mss;
4862 			if (snd_size > tcp->tcp_swnd)
4863 				snd_size = tcp->tcp_swnd;
4864 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
4865 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
4866 			    B_TRUE);
4867 
4868 			if (mp1 != NULL) {
4869 				tcp->tcp_xmit_head->b_prev =
4870 				    (mblk_t *)LBOLT_FASTPATH;
4871 				tcp->tcp_csuna = tcp->tcp_snxt;
4872 				TCPS_BUMP_MIB(tcps, tcpRetransSegs);
4873 				TCPS_UPDATE_MIB(tcps, tcpRetransBytes,
4874 				    snd_size);
4875 				tcp_send_data(tcp, mp1);
4876 			}
4877 		}
4878 		if (flags & TH_NEED_SACK_REXMIT) {
4879 			tcp_sack_rexmit(tcp, &flags);
4880 		}
4881 		/*
4882 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
4883 		 * out new segment.  Note that tcp_rexmit should not be
4884 		 * set, otherwise TH_LIMIT_XMIT should not be set.
4885 		 */
4886 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
4887 			if (!tcp->tcp_rexmit) {
4888 				tcp_wput_data(tcp, NULL, B_FALSE);
4889 			} else {
4890 				tcp_ss_rexmit(tcp);
4891 			}
4892 		}
4893 		/*
4894 		 * Adjust tcp_cwnd back to normal value after sending
4895 		 * new data segments.
4896 		 */
4897 		if (flags & TH_LIMIT_XMIT) {
4898 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
4899 			/*
4900 			 * This will restart the timer.  Restarting the
4901 			 * timer is used to avoid a timeout before the
4902 			 * limited transmitted segment's ACK gets back.
4903 			 */
4904 			if (tcp->tcp_xmit_head != NULL)
4905 				tcp->tcp_xmit_head->b_prev =
4906 				    (mblk_t *)LBOLT_FASTPATH;
4907 		}
4908 
4909 		/* Anything more to do? */
4910 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
4911 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4912 			goto done;
4913 	}
4914 ack_check:
4915 	if (flags & TH_SEND_URP_MARK) {
4916 		ASSERT(tcp->tcp_urp_mark_mp);
4917 		ASSERT(!IPCL_IS_NONSTR(connp));
4918 		/*
4919 		 * Send up any queued data and then send the mark message
4920 		 */
4921 		if (tcp->tcp_rcv_list != NULL) {
4922 			flags |= tcp_rcv_drain(tcp);
4923 
4924 		}
4925 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
4926 		mp1 = tcp->tcp_urp_mark_mp;
4927 		tcp->tcp_urp_mark_mp = NULL;
4928 		if (is_system_labeled())
4929 			tcp_setcred_data(mp1, ira);
4930 
4931 		putnext(connp->conn_rq, mp1);
4932 #ifdef DEBUG
4933 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4934 		    "tcp_rput: sending zero-length %s %s",
4935 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
4936 		    "MSGNOTMARKNEXT"),
4937 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4938 #endif /* DEBUG */
4939 		flags &= ~TH_SEND_URP_MARK;
4940 	}
4941 	if (flags & TH_ACK_NEEDED) {
4942 		/*
4943 		 * Time to send an ack for some reason.
4944 		 */
4945 		mp1 = tcp_ack_mp(tcp);
4946 
4947 		if (mp1 != NULL) {
4948 			tcp_send_data(tcp, mp1);
4949 			BUMP_LOCAL(tcp->tcp_obsegs);
4950 			TCPS_BUMP_MIB(tcps, tcpOutAck);
4951 		}
4952 		if (tcp->tcp_ack_tid != 0) {
4953 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4954 			tcp->tcp_ack_tid = 0;
4955 		}
4956 	}
4957 	if (flags & TH_ACK_TIMER_NEEDED) {
4958 		/*
4959 		 * Arrange for deferred ACK or push wait timeout.
4960 		 * Start timer if it is not already running.
4961 		 */
4962 		if (tcp->tcp_ack_tid == 0) {
4963 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
4964 			    tcp->tcp_localnet ?
4965 			    tcps->tcps_local_dack_interval :
4966 			    tcps->tcps_deferred_ack_interval);
4967 		}
4968 	}
4969 	if (flags & TH_ORDREL_NEEDED) {
4970 		/*
4971 		 * Notify upper layer about an orderly release. If this is
4972 		 * a non-STREAMS socket, then just make an upcall. For STREAMS
4973 		 * we send up an ordrel_ind, unless this is an eager, in which
4974 		 * case the ordrel will be sent when tcp_accept_finish runs.
4975 		 * Note that for non-STREAMS we make an upcall even if it is an
4976 		 * eager, because we have an upper handle to send it to.
4977 		 */
4978 		ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL);
4979 		ASSERT(!tcp->tcp_detached);
4980 
4981 		if (IPCL_IS_NONSTR(connp)) {
4982 			ASSERT(tcp->tcp_ordrel_mp == NULL);
4983 			tcp->tcp_ordrel_done = B_TRUE;
4984 			(*sockupcalls->su_opctl)(connp->conn_upper_handle,
4985 			    SOCK_OPCTL_SHUT_RECV, 0);
4986 			goto done;
4987 		}
4988 
4989 		if (tcp->tcp_rcv_list != NULL) {
4990 			/*
4991 			 * Push any mblk(s) enqueued from co processing.
4992 			 */
4993 			flags |= tcp_rcv_drain(tcp);
4994 		}
4995 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
4996 
4997 		mp1 = tcp->tcp_ordrel_mp;
4998 		tcp->tcp_ordrel_mp = NULL;
4999 		tcp->tcp_ordrel_done = B_TRUE;
5000 		putnext(connp->conn_rq, mp1);
5001 	}
5002 done:
5003 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
5004 }
5005 
5006 /*
5007  * Attach ancillary data to a received TCP segments for the
5008  * ancillary pieces requested by the application that are
5009  * different than they were in the previous data segment.
5010  *
5011  * Save the "current" values once memory allocation is ok so that
5012  * when memory allocation fails we can just wait for the next data segment.
5013  */
5014 static mblk_t *
5015 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
5016     ip_recv_attr_t *ira)
5017 {
5018 	struct T_optdata_ind *todi;
5019 	int optlen;
5020 	uchar_t *optptr;
5021 	struct T_opthdr *toh;
5022 	crb_t addflag;	/* Which pieces to add */
5023 	mblk_t *mp1;
5024 	conn_t	*connp = tcp->tcp_connp;
5025 
5026 	optlen = 0;
5027 	addflag.crb_all = 0;
5028 	/* If app asked for pktinfo and the index has changed ... */
5029 	if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
5030 	    ira->ira_ruifindex != tcp->tcp_recvifindex) {
5031 		optlen += sizeof (struct T_opthdr) +
5032 		    sizeof (struct in6_pktinfo);
5033 		addflag.crb_ip_recvpktinfo = 1;
5034 	}
5035 	/* If app asked for hoplimit and it has changed ... */
5036 	if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
5037 	    ipp->ipp_hoplimit != tcp->tcp_recvhops) {
5038 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5039 		addflag.crb_ipv6_recvhoplimit = 1;
5040 	}
5041 	/* If app asked for tclass and it has changed ... */
5042 	if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
5043 	    ipp->ipp_tclass != tcp->tcp_recvtclass) {
5044 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
5045 		addflag.crb_ipv6_recvtclass = 1;
5046 	}
5047 	/*
5048 	 * If app asked for hopbyhop headers and it has changed ...
5049 	 * For security labels, note that (1) security labels can't change on
5050 	 * a connected socket at all, (2) we're connected to at most one peer,
5051 	 * (3) if anything changes, then it must be some other extra option.
5052 	 */
5053 	if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
5054 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
5055 	    (ipp->ipp_fields & IPPF_HOPOPTS),
5056 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
5057 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
5058 		addflag.crb_ipv6_recvhopopts = 1;
5059 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
5060 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
5061 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
5062 			return (mp);
5063 	}
5064 	/* If app asked for dst headers before routing headers ... */
5065 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
5066 	    ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
5067 	    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5068 	    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
5069 		optlen += sizeof (struct T_opthdr) +
5070 		    ipp->ipp_rthdrdstoptslen;
5071 		addflag.crb_ipv6_recvrthdrdstopts = 1;
5072 		if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
5073 		    &tcp->tcp_rthdrdstoptslen,
5074 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5075 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
5076 			return (mp);
5077 	}
5078 	/* If app asked for routing headers and it has changed ... */
5079 	if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
5080 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
5081 	    (ipp->ipp_fields & IPPF_RTHDR),
5082 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
5083 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
5084 		addflag.crb_ipv6_recvrthdr = 1;
5085 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
5086 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
5087 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
5088 			return (mp);
5089 	}
5090 	/* If app asked for dest headers and it has changed ... */
5091 	if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
5092 	    connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
5093 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
5094 	    (ipp->ipp_fields & IPPF_DSTOPTS),
5095 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
5096 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
5097 		addflag.crb_ipv6_recvdstopts = 1;
5098 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
5099 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
5100 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
5101 			return (mp);
5102 	}
5103 
5104 	if (optlen == 0) {
5105 		/* Nothing to add */
5106 		return (mp);
5107 	}
5108 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
5109 	if (mp1 == NULL) {
5110 		/*
5111 		 * Defer sending ancillary data until the next TCP segment
5112 		 * arrives.
5113 		 */
5114 		return (mp);
5115 	}
5116 	mp1->b_cont = mp;
5117 	mp = mp1;
5118 	mp->b_wptr += sizeof (*todi) + optlen;
5119 	mp->b_datap->db_type = M_PROTO;
5120 	todi = (struct T_optdata_ind *)mp->b_rptr;
5121 	todi->PRIM_type = T_OPTDATA_IND;
5122 	todi->DATA_flag = 1;	/* MORE data */
5123 	todi->OPT_length = optlen;
5124 	todi->OPT_offset = sizeof (*todi);
5125 	optptr = (uchar_t *)&todi[1];
5126 	/*
5127 	 * If app asked for pktinfo and the index has changed ...
5128 	 * Note that the local address never changes for the connection.
5129 	 */
5130 	if (addflag.crb_ip_recvpktinfo) {
5131 		struct in6_pktinfo *pkti;
5132 		uint_t ifindex;
5133 
5134 		ifindex = ira->ira_ruifindex;
5135 		toh = (struct T_opthdr *)optptr;
5136 		toh->level = IPPROTO_IPV6;
5137 		toh->name = IPV6_PKTINFO;
5138 		toh->len = sizeof (*toh) + sizeof (*pkti);
5139 		toh->status = 0;
5140 		optptr += sizeof (*toh);
5141 		pkti = (struct in6_pktinfo *)optptr;
5142 		pkti->ipi6_addr = connp->conn_laddr_v6;
5143 		pkti->ipi6_ifindex = ifindex;
5144 		optptr += sizeof (*pkti);
5145 		ASSERT(OK_32PTR(optptr));
5146 		/* Save as "last" value */
5147 		tcp->tcp_recvifindex = ifindex;
5148 	}
5149 	/* If app asked for hoplimit and it has changed ... */
5150 	if (addflag.crb_ipv6_recvhoplimit) {
5151 		toh = (struct T_opthdr *)optptr;
5152 		toh->level = IPPROTO_IPV6;
5153 		toh->name = IPV6_HOPLIMIT;
5154 		toh->len = sizeof (*toh) + sizeof (uint_t);
5155 		toh->status = 0;
5156 		optptr += sizeof (*toh);
5157 		*(uint_t *)optptr = ipp->ipp_hoplimit;
5158 		optptr += sizeof (uint_t);
5159 		ASSERT(OK_32PTR(optptr));
5160 		/* Save as "last" value */
5161 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
5162 	}
5163 	/* If app asked for tclass and it has changed ... */
5164 	if (addflag.crb_ipv6_recvtclass) {
5165 		toh = (struct T_opthdr *)optptr;
5166 		toh->level = IPPROTO_IPV6;
5167 		toh->name = IPV6_TCLASS;
5168 		toh->len = sizeof (*toh) + sizeof (uint_t);
5169 		toh->status = 0;
5170 		optptr += sizeof (*toh);
5171 		*(uint_t *)optptr = ipp->ipp_tclass;
5172 		optptr += sizeof (uint_t);
5173 		ASSERT(OK_32PTR(optptr));
5174 		/* Save as "last" value */
5175 		tcp->tcp_recvtclass = ipp->ipp_tclass;
5176 	}
5177 	if (addflag.crb_ipv6_recvhopopts) {
5178 		toh = (struct T_opthdr *)optptr;
5179 		toh->level = IPPROTO_IPV6;
5180 		toh->name = IPV6_HOPOPTS;
5181 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
5182 		toh->status = 0;
5183 		optptr += sizeof (*toh);
5184 		bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
5185 		optptr += ipp->ipp_hopoptslen;
5186 		ASSERT(OK_32PTR(optptr));
5187 		/* Save as last value */
5188 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
5189 		    (ipp->ipp_fields & IPPF_HOPOPTS),
5190 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
5191 	}
5192 	if (addflag.crb_ipv6_recvrthdrdstopts) {
5193 		toh = (struct T_opthdr *)optptr;
5194 		toh->level = IPPROTO_IPV6;
5195 		toh->name = IPV6_RTHDRDSTOPTS;
5196 		toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
5197 		toh->status = 0;
5198 		optptr += sizeof (*toh);
5199 		bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
5200 		optptr += ipp->ipp_rthdrdstoptslen;
5201 		ASSERT(OK_32PTR(optptr));
5202 		/* Save as last value */
5203 		ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
5204 		    &tcp->tcp_rthdrdstoptslen,
5205 		    (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5206 		    ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
5207 	}
5208 	if (addflag.crb_ipv6_recvrthdr) {
5209 		toh = (struct T_opthdr *)optptr;
5210 		toh->level = IPPROTO_IPV6;
5211 		toh->name = IPV6_RTHDR;
5212 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
5213 		toh->status = 0;
5214 		optptr += sizeof (*toh);
5215 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
5216 		optptr += ipp->ipp_rthdrlen;
5217 		ASSERT(OK_32PTR(optptr));
5218 		/* Save as last value */
5219 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
5220 		    (ipp->ipp_fields & IPPF_RTHDR),
5221 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
5222 	}
5223 	if (addflag.crb_ipv6_recvdstopts) {
5224 		toh = (struct T_opthdr *)optptr;
5225 		toh->level = IPPROTO_IPV6;
5226 		toh->name = IPV6_DSTOPTS;
5227 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
5228 		toh->status = 0;
5229 		optptr += sizeof (*toh);
5230 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
5231 		optptr += ipp->ipp_dstoptslen;
5232 		ASSERT(OK_32PTR(optptr));
5233 		/* Save as last value */
5234 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
5235 		    (ipp->ipp_fields & IPPF_DSTOPTS),
5236 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
5237 	}
5238 	ASSERT(optptr == mp->b_wptr);
5239 	return (mp);
5240 }
5241 
5242 /* The minimum of smoothed mean deviation in RTO calculation. */
5243 #define	TCP_SD_MIN	400
5244 
5245 /*
5246  * Set RTO for this connection.  The formula is from Jacobson and Karels'
5247  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
5248  * are the same as those in Appendix A.2 of that paper.
5249  *
5250  * m = new measurement
5251  * sa = smoothed RTT average (8 * average estimates).
5252  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
5253  */
5254 static void
5255 tcp_set_rto(tcp_t *tcp, clock_t rtt)
5256 {
5257 	long m = TICK_TO_MSEC(rtt);
5258 	clock_t sa = tcp->tcp_rtt_sa;
5259 	clock_t sv = tcp->tcp_rtt_sd;
5260 	clock_t rto;
5261 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5262 
5263 	TCPS_BUMP_MIB(tcps, tcpRttUpdate);
5264 	tcp->tcp_rtt_update++;
5265 
5266 	/* tcp_rtt_sa is not 0 means this is a new sample. */
5267 	if (sa != 0) {
5268 		/*
5269 		 * Update average estimator:
5270 		 *	new rtt = 7/8 old rtt + 1/8 Error
5271 		 */
5272 
5273 		/* m is now Error in estimate. */
5274 		m -= sa >> 3;
5275 		if ((sa += m) <= 0) {
5276 			/*
5277 			 * Don't allow the smoothed average to be negative.
5278 			 * We use 0 to denote reinitialization of the
5279 			 * variables.
5280 			 */
5281 			sa = 1;
5282 		}
5283 
5284 		/*
5285 		 * Update deviation estimator:
5286 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
5287 		 */
5288 		if (m < 0)
5289 			m = -m;
5290 		m -= sv >> 2;
5291 		sv += m;
5292 	} else {
5293 		/*
5294 		 * This follows BSD's implementation.  So the reinitialized
5295 		 * RTO is 3 * m.  We cannot go less than 2 because if the
5296 		 * link is bandwidth dominated, doubling the window size
5297 		 * during slow start means doubling the RTT.  We want to be
5298 		 * more conservative when we reinitialize our estimates.  3
5299 		 * is just a convenient number.
5300 		 */
5301 		sa = m << 3;
5302 		sv = m << 1;
5303 	}
5304 	if (sv < TCP_SD_MIN) {
5305 		/*
5306 		 * We do not know that if sa captures the delay ACK
5307 		 * effect as in a long train of segments, a receiver
5308 		 * does not delay its ACKs.  So set the minimum of sv
5309 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
5310 		 * of BSD DATO.  That means the minimum of mean
5311 		 * deviation is 100 ms.
5312 		 *
5313 		 */
5314 		sv = TCP_SD_MIN;
5315 	}
5316 	tcp->tcp_rtt_sa = sa;
5317 	tcp->tcp_rtt_sd = sv;
5318 	/*
5319 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
5320 	 *
5321 	 * Add tcp_rexmit_interval extra in case of extreme environment
5322 	 * where the algorithm fails to work.  The default value of
5323 	 * tcp_rexmit_interval_extra should be 0.
5324 	 *
5325 	 * As we use a finer grained clock than BSD and update
5326 	 * RTO for every ACKs, add in another .25 of RTT to the
5327 	 * deviation of RTO to accomodate burstiness of 1/4 of
5328 	 * window size.
5329 	 */
5330 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
5331 
5332 	TCP_SET_RTO(tcp, rto);
5333 
5334 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
5335 	tcp->tcp_timer_backoff = 0;
5336 }
5337 
5338 /*
5339  * On a labeled system we have some protocols above TCP, such as RPC, which
5340  * appear to assume that every mblk in a chain has a db_credp.
5341  */
5342 static void
5343 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira)
5344 {
5345 	ASSERT(is_system_labeled());
5346 	ASSERT(ira->ira_cred != NULL);
5347 
5348 	while (mp != NULL) {
5349 		mblk_setcred(mp, ira->ira_cred, NOPID);
5350 		mp = mp->b_cont;
5351 	}
5352 }
5353 
5354 uint_t
5355 tcp_rwnd_reopen(tcp_t *tcp)
5356 {
5357 	uint_t ret = 0;
5358 	uint_t thwin;
5359 	conn_t *connp = tcp->tcp_connp;
5360 
5361 	/* Learn the latest rwnd information that we sent to the other side. */
5362 	thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
5363 	    << tcp->tcp_rcv_ws;
5364 	/* This is peer's calculated send window (our receive window). */
5365 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
5366 	/*
5367 	 * Increase the receive window to max.  But we need to do receiver
5368 	 * SWS avoidance.  This means that we need to check the increase of
5369 	 * of receive window is at least 1 MSS.
5370 	 */
5371 	if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
5372 		/*
5373 		 * If the window that the other side knows is less than max
5374 		 * deferred acks segments, send an update immediately.
5375 		 */
5376 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
5377 			TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate);
5378 			ret = TH_ACK_NEEDED;
5379 		}
5380 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5381 	}
5382 	return (ret);
5383 }
5384 
5385 /*
5386  * Handle a packet that has been reclassified by TCP.
5387  * This function drops the ref on connp that the caller had.
5388  */
5389 void
5390 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
5391 {
5392 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5393 
5394 	if (connp->conn_incoming_ifindex != 0 &&
5395 	    connp->conn_incoming_ifindex != ira->ira_ruifindex) {
5396 		freemsg(mp);
5397 		CONN_DEC_REF(connp);
5398 		return;
5399 	}
5400 
5401 	if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
5402 	    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
5403 		ip6_t *ip6h;
5404 		ipha_t *ipha;
5405 
5406 		if (ira->ira_flags & IRAF_IS_IPV4) {
5407 			ipha = (ipha_t *)mp->b_rptr;
5408 			ip6h = NULL;
5409 		} else {
5410 			ipha = NULL;
5411 			ip6h = (ip6_t *)mp->b_rptr;
5412 		}
5413 		mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
5414 		if (mp == NULL) {
5415 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
5416 			/* Note that mp is NULL */
5417 			ip_drop_input("ipIfStatsInDiscards", mp, NULL);
5418 			CONN_DEC_REF(connp);
5419 			return;
5420 		}
5421 	}
5422 
5423 	if (IPCL_IS_TCP(connp)) {
5424 		/*
5425 		 * do not drain, certain use cases can blow
5426 		 * the stack
5427 		 */
5428 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
5429 		    connp->conn_recv, connp, ira,
5430 		    SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
5431 	} else {
5432 		/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
5433 		(connp->conn_recv)(connp, mp, NULL,
5434 		    ira);
5435 		CONN_DEC_REF(connp);
5436 	}
5437 
5438 }
5439 
5440 /* ARGSUSED */
5441 static void
5442 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
5443 {
5444 	conn_t	*connp = (conn_t *)arg;
5445 	tcp_t	*tcp = connp->conn_tcp;
5446 	queue_t	*q = connp->conn_rq;
5447 
5448 	ASSERT(!IPCL_IS_NONSTR(connp));
5449 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5450 	tcp->tcp_rsrv_mp = mp;
5451 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5452 
5453 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
5454 		return;
5455 	}
5456 
5457 	if (tcp->tcp_fused) {
5458 		tcp_fuse_backenable(tcp);
5459 		return;
5460 	}
5461 
5462 	if (canputnext(q)) {
5463 		/* Not flow-controlled, open rwnd */
5464 		tcp->tcp_rwnd = connp->conn_rcvbuf;
5465 
5466 		/*
5467 		 * Send back a window update immediately if TCP is above
5468 		 * ESTABLISHED state and the increase of the rcv window
5469 		 * that the other side knows is at least 1 MSS after flow
5470 		 * control is lifted.
5471 		 */
5472 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
5473 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
5474 			tcp_xmit_ctl(NULL, tcp,
5475 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
5476 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
5477 		}
5478 	}
5479 }
5480 
5481 /*
5482  * The read side service routine is called mostly when we get back-enabled as a
5483  * result of flow control relief.  Since we don't actually queue anything in
5484  * TCP, we have no data to send out of here.  What we do is clear the receive
5485  * window, and send out a window update.
5486  */
5487 void
5488 tcp_rsrv(queue_t *q)
5489 {
5490 	conn_t		*connp = Q_TO_CONN(q);
5491 	tcp_t		*tcp = connp->conn_tcp;
5492 	mblk_t		*mp;
5493 
5494 	/* No code does a putq on the read side */
5495 	ASSERT(q->q_first == NULL);
5496 
5497 	/*
5498 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
5499 	 * been run.  So just return.
5500 	 */
5501 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
5502 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
5503 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
5504 		return;
5505 	}
5506 	tcp->tcp_rsrv_mp = NULL;
5507 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
5508 
5509 	CONN_INC_REF(connp);
5510 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
5511 	    NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
5512 }
5513 
5514 /* At minimum we need 8 bytes in the TCP header for the lookup */
5515 #define	ICMP_MIN_TCP_HDR	8
5516 
5517 /*
5518  * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
5519  * passed up by IP. The message is always received on the correct tcp_t.
5520  * Assumes that IP has pulled up everything up to and including the ICMP header.
5521  */
5522 /* ARGSUSED2 */
5523 void
5524 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
5525 {
5526 	conn_t		*connp = (conn_t *)arg1;
5527 	icmph_t		*icmph;
5528 	ipha_t		*ipha;
5529 	int		iph_hdr_length;
5530 	tcpha_t		*tcpha;
5531 	uint32_t	seg_seq;
5532 	tcp_t		*tcp = connp->conn_tcp;
5533 
5534 	/* Assume IP provides aligned packets */
5535 	ASSERT(OK_32PTR(mp->b_rptr));
5536 	ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
5537 
5538 	/*
5539 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
5540 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
5541 	 */
5542 	if (!(ira->ira_flags & IRAF_IS_IPV4)) {
5543 		tcp_icmp_error_ipv6(tcp, mp, ira);
5544 		return;
5545 	}
5546 
5547 	/* Skip past the outer IP and ICMP headers */
5548 	iph_hdr_length = ira->ira_ip_hdr_length;
5549 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
5550 	/*
5551 	 * If we don't have the correct outer IP header length
5552 	 * or if we don't have a complete inner IP header
5553 	 * drop it.
5554 	 */
5555 	if (iph_hdr_length < sizeof (ipha_t) ||
5556 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
5557 noticmpv4:
5558 		freemsg(mp);
5559 		return;
5560 	}
5561 	ipha = (ipha_t *)&icmph[1];
5562 
5563 	/* Skip past the inner IP and find the ULP header */
5564 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
5565 	tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
5566 	/*
5567 	 * If we don't have the correct inner IP header length or if the ULP
5568 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
5569 	 * bytes of TCP header, drop it.
5570 	 */
5571 	if (iph_hdr_length < sizeof (ipha_t) ||
5572 	    ipha->ipha_protocol != IPPROTO_TCP ||
5573 	    (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
5574 		goto noticmpv4;
5575 	}
5576 
5577 	seg_seq = ntohl(tcpha->tha_seq);
5578 	switch (icmph->icmph_type) {
5579 	case ICMP_DEST_UNREACHABLE:
5580 		switch (icmph->icmph_code) {
5581 		case ICMP_FRAGMENTATION_NEEDED:
5582 			/*
5583 			 * Update Path MTU, then try to send something out.
5584 			 */
5585 			tcp_update_pmtu(tcp, B_TRUE);
5586 			tcp_rexmit_after_error(tcp);
5587 			break;
5588 		case ICMP_PORT_UNREACHABLE:
5589 		case ICMP_PROTOCOL_UNREACHABLE:
5590 			switch (tcp->tcp_state) {
5591 			case TCPS_SYN_SENT:
5592 			case TCPS_SYN_RCVD:
5593 				/*
5594 				 * ICMP can snipe away incipient
5595 				 * TCP connections as long as
5596 				 * seq number is same as initial
5597 				 * send seq number.
5598 				 */
5599 				if (seg_seq == tcp->tcp_iss) {
5600 					(void) tcp_clean_death(tcp,
5601 					    ECONNREFUSED);
5602 				}
5603 				break;
5604 			}
5605 			break;
5606 		case ICMP_HOST_UNREACHABLE:
5607 		case ICMP_NET_UNREACHABLE:
5608 			/* Record the error in case we finally time out. */
5609 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
5610 				tcp->tcp_client_errno = EHOSTUNREACH;
5611 			else
5612 				tcp->tcp_client_errno = ENETUNREACH;
5613 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
5614 				if (tcp->tcp_listener != NULL &&
5615 				    tcp->tcp_listener->tcp_syn_defense) {
5616 					/*
5617 					 * Ditch the half-open connection if we
5618 					 * suspect a SYN attack is under way.
5619 					 */
5620 					(void) tcp_clean_death(tcp,
5621 					    tcp->tcp_client_errno);
5622 				}
5623 			}
5624 			break;
5625 		default:
5626 			break;
5627 		}
5628 		break;
5629 	case ICMP_SOURCE_QUENCH: {
5630 		/*
5631 		 * use a global boolean to control
5632 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
5633 		 * The default is false.
5634 		 */
5635 		if (tcp_icmp_source_quench) {
5636 			/*
5637 			 * Reduce the sending rate as if we got a
5638 			 * retransmit timeout
5639 			 */
5640 			uint32_t npkt;
5641 
5642 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
5643 			    tcp->tcp_mss;
5644 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
5645 			tcp->tcp_cwnd = tcp->tcp_mss;
5646 			tcp->tcp_cwnd_cnt = 0;
5647 		}
5648 		break;
5649 	}
5650 	}
5651 	freemsg(mp);
5652 }
5653 
5654 /*
5655  * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
5656  * error messages passed up by IP.
5657  * Assumes that IP has pulled up all the extension headers as well
5658  * as the ICMPv6 header.
5659  */
5660 static void
5661 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
5662 {
5663 	icmp6_t		*icmp6;
5664 	ip6_t		*ip6h;
5665 	uint16_t	iph_hdr_length = ira->ira_ip_hdr_length;
5666 	tcpha_t		*tcpha;
5667 	uint8_t		*nexthdrp;
5668 	uint32_t	seg_seq;
5669 
5670 	/*
5671 	 * Verify that we have a complete IP header.
5672 	 */
5673 	ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
5674 
5675 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
5676 	ip6h = (ip6_t *)&icmp6[1];
5677 	/*
5678 	 * Verify if we have a complete ICMP and inner IP header.
5679 	 */
5680 	if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
5681 noticmpv6:
5682 		freemsg(mp);
5683 		return;
5684 	}
5685 
5686 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
5687 		goto noticmpv6;
5688 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
5689 	/*
5690 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
5691 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
5692 	 * packet.
5693 	 */
5694 	if ((*nexthdrp != IPPROTO_TCP) ||
5695 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
5696 		goto noticmpv6;
5697 	}
5698 
5699 	seg_seq = ntohl(tcpha->tha_seq);
5700 	switch (icmp6->icmp6_type) {
5701 	case ICMP6_PACKET_TOO_BIG:
5702 		/*
5703 		 * Update Path MTU, then try to send something out.
5704 		 */
5705 		tcp_update_pmtu(tcp, B_TRUE);
5706 		tcp_rexmit_after_error(tcp);
5707 		break;
5708 	case ICMP6_DST_UNREACH:
5709 		switch (icmp6->icmp6_code) {
5710 		case ICMP6_DST_UNREACH_NOPORT:
5711 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5712 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5713 			    (seg_seq == tcp->tcp_iss)) {
5714 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5715 			}
5716 			break;
5717 		case ICMP6_DST_UNREACH_ADMIN:
5718 		case ICMP6_DST_UNREACH_NOROUTE:
5719 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
5720 		case ICMP6_DST_UNREACH_ADDR:
5721 			/* Record the error in case we finally time out. */
5722 			tcp->tcp_client_errno = EHOSTUNREACH;
5723 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5724 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5725 			    (seg_seq == tcp->tcp_iss)) {
5726 				if (tcp->tcp_listener != NULL &&
5727 				    tcp->tcp_listener->tcp_syn_defense) {
5728 					/*
5729 					 * Ditch the half-open connection if we
5730 					 * suspect a SYN attack is under way.
5731 					 */
5732 					(void) tcp_clean_death(tcp,
5733 					    tcp->tcp_client_errno);
5734 				}
5735 			}
5736 
5737 
5738 			break;
5739 		default:
5740 			break;
5741 		}
5742 		break;
5743 	case ICMP6_PARAM_PROB:
5744 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
5745 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
5746 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
5747 		    (uchar_t *)nexthdrp) {
5748 			if (tcp->tcp_state == TCPS_SYN_SENT ||
5749 			    tcp->tcp_state == TCPS_SYN_RCVD) {
5750 				(void) tcp_clean_death(tcp, ECONNREFUSED);
5751 			}
5752 			break;
5753 		}
5754 		break;
5755 
5756 	case ICMP6_TIME_EXCEEDED:
5757 	default:
5758 		break;
5759 	}
5760 	freemsg(mp);
5761 }
5762 
5763 /*
5764  * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
5765  * change. But it can refer to fields like tcp_suna and tcp_snxt.
5766  *
5767  * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
5768  * error messages received by IP. The message is always received on the correct
5769  * tcp_t.
5770  */
5771 /* ARGSUSED */
5772 boolean_t
5773 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
5774     ip_recv_attr_t *ira)
5775 {
5776 	tcpha_t		*tcpha = (tcpha_t *)arg2;
5777 	uint32_t	seq = ntohl(tcpha->tha_seq);
5778 	tcp_t		*tcp = connp->conn_tcp;
5779 
5780 	/*
5781 	 * TCP sequence number contained in payload of the ICMP error message
5782 	 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
5783 	 * the message is either a stale ICMP error, or an attack from the
5784 	 * network. Fail the verification.
5785 	 */
5786 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
5787 		return (B_FALSE);
5788 
5789 	/* For "too big" we also check the ignore flag */
5790 	if (ira->ira_flags & IRAF_IS_IPV4) {
5791 		ASSERT(icmph != NULL);
5792 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
5793 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
5794 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5795 			return (B_FALSE);
5796 	} else {
5797 		ASSERT(icmp6 != NULL);
5798 		if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
5799 		    tcp->tcp_tcps->tcps_ignore_path_mtu)
5800 			return (B_FALSE);
5801 	}
5802 	return (B_TRUE);
5803 }
5804