1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2011 Joyent, Inc. All rights reserved. 26 */ 27 28 /* This file contains all TCP input processing functions. */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/strsun.h> 33 #include <sys/strsubr.h> 34 #include <sys/stropts.h> 35 #include <sys/strlog.h> 36 #define _SUN_TPI_VERSION 2 37 #include <sys/tihdr.h> 38 #include <sys/suntpi.h> 39 #include <sys/xti_inet.h> 40 #include <sys/squeue_impl.h> 41 #include <sys/squeue.h> 42 #include <sys/tsol/tnet.h> 43 44 #include <inet/common.h> 45 #include <inet/ip.h> 46 #include <inet/tcp.h> 47 #include <inet/tcp_impl.h> 48 #include <inet/tcp_cluster.h> 49 #include <inet/proto_set.h> 50 #include <inet/ipsec_impl.h> 51 52 /* 53 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 54 */ 55 56 #ifdef _BIG_ENDIAN 57 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 58 (TCPOPT_TSTAMP << 8) | 10) 59 #else 60 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 61 (TCPOPT_NOP << 8) | TCPOPT_NOP) 62 #endif 63 64 /* 65 * Flags returned from tcp_parse_options. 66 */ 67 #define TCP_OPT_MSS_PRESENT 1 68 #define TCP_OPT_WSCALE_PRESENT 2 69 #define TCP_OPT_TSTAMP_PRESENT 4 70 #define TCP_OPT_SACK_OK_PRESENT 8 71 #define TCP_OPT_SACK_PRESENT 16 72 73 /* 74 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 75 */ 76 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 77 78 /* 79 * Since tcp_listener is not cleared atomically with tcp_detached 80 * being cleared we need this extra bit to tell a detached connection 81 * apart from one that is in the process of being accepted. 82 */ 83 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 84 (TCP_IS_DETACHED(tcp) && \ 85 (!(tcp)->tcp_hard_binding)) 86 87 /* 88 * Steps to do when a tcp_t moves to TIME-WAIT state. 89 * 90 * This connection is done, we don't need to account for it. Decrement 91 * the listener connection counter if needed. 92 * 93 * Decrement the connection counter of the stack. Note that this counter 94 * is per CPU. So the total number of connections in a stack is the sum of all 95 * of them. Since there is no lock for handling all of them exclusively, the 96 * resulting sum is only an approximation. 97 * 98 * Unconditionally clear the exclusive binding bit so this TIME-WAIT 99 * connection won't interfere with new ones. 100 * 101 * Start the TIME-WAIT timer. If upper layer has not closed the connection, 102 * the timer is handled within the context of this tcp_t. When the timer 103 * fires, tcp_clean_death() is called. If upper layer closes the connection 104 * during this period, tcp_time_wait_append() will be called to add this 105 * tcp_t to the global TIME-WAIT list. Note that this means that the 106 * actual wait time in TIME-WAIT state will be longer than the 107 * tcps_time_wait_interval since the period before upper layer closes the 108 * connection is not accounted for when tcp_time_wait_append() is called. 109 * 110 * If uppser layer has closed the connection, call tcp_time_wait_append() 111 * directly. 112 * 113 */ 114 #define SET_TIME_WAIT(tcps, tcp, connp) \ 115 { \ 116 (tcp)->tcp_state = TCPS_TIME_WAIT; \ 117 if ((tcp)->tcp_listen_cnt != NULL) \ 118 TCP_DECR_LISTEN_CNT(tcp); \ 119 atomic_dec_64( \ 120 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \ 121 (connp)->conn_exclbind = 0; \ 122 if (!TCP_IS_DETACHED(tcp)) { \ 123 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \ 124 } else { \ 125 tcp_time_wait_append(tcp); \ 126 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \ 127 } \ 128 } 129 130 /* 131 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 132 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 133 * data, TCP will not respond with an ACK. RFC 793 requires that 134 * TCP responds with an ACK for such a bogus ACK. By not following 135 * the RFC, we prevent TCP from getting into an ACK storm if somehow 136 * an attacker successfully spoofs an acceptable segment to our 137 * peer; or when our peer is "confused." 138 */ 139 static uint32_t tcp_drop_ack_unsent_cnt = 10; 140 141 /* 142 * To protect TCP against attacker using a small window and requesting 143 * large amount of data (DoS attack by conuming memory), TCP checks the 144 * window advertised in the last ACK of the 3-way handshake. TCP uses 145 * the tcp_mss (the size of one packet) value for comparion. The window 146 * should be larger than tcp_mss. But while a sane TCP should advertise 147 * a receive window larger than or equal to 4*MSS to avoid stop and go 148 * tarrfic, not all TCP stacks do that. This is especially true when 149 * tcp_mss is a big value. 150 * 151 * To work around this issue, an additional fixed value for comparison 152 * is also used. If the advertised window is smaller than both tcp_mss 153 * and tcp_init_wnd_chk, the ACK is considered as invalid. So for large 154 * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but 155 * smaller than 8K is considered to be OK. 156 */ 157 static uint32_t tcp_init_wnd_chk = 4096; 158 159 /* Process ICMP source quench message or not. */ 160 static boolean_t tcp_icmp_source_quench = B_FALSE; 161 162 static boolean_t tcp_outbound_squeue_switch = B_FALSE; 163 164 static mblk_t *tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *, 165 ip_recv_attr_t *); 166 static mblk_t *tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *, 167 ip_recv_attr_t *); 168 static boolean_t tcp_drop_q0(tcp_t *); 169 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 170 static mblk_t *tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *, 171 ip_recv_attr_t *); 172 static void tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *); 173 static int tcp_parse_options(tcpha_t *, tcp_opt_t *); 174 static void tcp_process_options(tcp_t *, tcpha_t *); 175 static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t); 176 static void tcp_reass_elim_overlap(tcp_t *, mblk_t *); 177 static void tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *); 178 static void tcp_set_rto(tcp_t *, time_t); 179 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 180 181 /* 182 * Set the MSS associated with a particular tcp based on its current value, 183 * and a new one passed in. Observe minimums and maximums, and reset other 184 * state variables that we want to view as multiples of MSS. 185 * 186 * The value of MSS could be either increased or descreased. 187 */ 188 void 189 tcp_mss_set(tcp_t *tcp, uint32_t mss) 190 { 191 uint32_t mss_max; 192 tcp_stack_t *tcps = tcp->tcp_tcps; 193 conn_t *connp = tcp->tcp_connp; 194 195 if (connp->conn_ipversion == IPV4_VERSION) 196 mss_max = tcps->tcps_mss_max_ipv4; 197 else 198 mss_max = tcps->tcps_mss_max_ipv6; 199 200 if (mss < tcps->tcps_mss_min) 201 mss = tcps->tcps_mss_min; 202 if (mss > mss_max) 203 mss = mss_max; 204 /* 205 * Unless naglim has been set by our client to 206 * a non-mss value, force naglim to track mss. 207 * This can help to aggregate small writes. 208 */ 209 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 210 tcp->tcp_naglim = mss; 211 /* 212 * TCP should be able to buffer at least 4 MSS data for obvious 213 * performance reason. 214 */ 215 if ((mss << 2) > connp->conn_sndbuf) 216 connp->conn_sndbuf = mss << 2; 217 218 /* 219 * Set the send lowater to at least twice of MSS. 220 */ 221 if ((mss << 1) > connp->conn_sndlowat) 222 connp->conn_sndlowat = mss << 1; 223 224 /* 225 * Update tcp_cwnd according to the new value of MSS. Keep the 226 * previous ratio to preserve the transmit rate. 227 */ 228 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 229 tcp->tcp_cwnd_cnt = 0; 230 231 tcp->tcp_mss = mss; 232 (void) tcp_maxpsz_set(tcp, B_TRUE); 233 } 234 235 /* 236 * Extract option values from a tcp header. We put any found values into the 237 * tcpopt struct and return a bitmask saying which options were found. 238 */ 239 static int 240 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 241 { 242 uchar_t *endp; 243 int len; 244 uint32_t mss; 245 uchar_t *up = (uchar_t *)tcpha; 246 int found = 0; 247 int32_t sack_len; 248 tcp_seq sack_begin, sack_end; 249 tcp_t *tcp; 250 251 endp = up + TCP_HDR_LENGTH(tcpha); 252 up += TCP_MIN_HEADER_LENGTH; 253 while (up < endp) { 254 len = endp - up; 255 switch (*up) { 256 case TCPOPT_EOL: 257 break; 258 259 case TCPOPT_NOP: 260 up++; 261 continue; 262 263 case TCPOPT_MAXSEG: 264 if (len < TCPOPT_MAXSEG_LEN || 265 up[1] != TCPOPT_MAXSEG_LEN) 266 break; 267 268 mss = BE16_TO_U16(up+2); 269 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 270 tcpopt->tcp_opt_mss = mss; 271 found |= TCP_OPT_MSS_PRESENT; 272 273 up += TCPOPT_MAXSEG_LEN; 274 continue; 275 276 case TCPOPT_WSCALE: 277 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 278 break; 279 280 if (up[2] > TCP_MAX_WINSHIFT) 281 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 282 else 283 tcpopt->tcp_opt_wscale = up[2]; 284 found |= TCP_OPT_WSCALE_PRESENT; 285 286 up += TCPOPT_WS_LEN; 287 continue; 288 289 case TCPOPT_SACK_PERMITTED: 290 if (len < TCPOPT_SACK_OK_LEN || 291 up[1] != TCPOPT_SACK_OK_LEN) 292 break; 293 found |= TCP_OPT_SACK_OK_PRESENT; 294 up += TCPOPT_SACK_OK_LEN; 295 continue; 296 297 case TCPOPT_SACK: 298 if (len <= 2 || up[1] <= 2 || len < up[1]) 299 break; 300 301 /* If TCP is not interested in SACK blks... */ 302 if ((tcp = tcpopt->tcp) == NULL) { 303 up += up[1]; 304 continue; 305 } 306 sack_len = up[1] - TCPOPT_HEADER_LEN; 307 up += TCPOPT_HEADER_LEN; 308 309 /* 310 * If the list is empty, allocate one and assume 311 * nothing is sack'ed. 312 */ 313 if (tcp->tcp_notsack_list == NULL) { 314 tcp_notsack_update(&(tcp->tcp_notsack_list), 315 tcp->tcp_suna, tcp->tcp_snxt, 316 &(tcp->tcp_num_notsack_blk), 317 &(tcp->tcp_cnt_notsack_list)); 318 319 /* 320 * Make sure tcp_notsack_list is not NULL. 321 * This happens when kmem_alloc(KM_NOSLEEP) 322 * returns NULL. 323 */ 324 if (tcp->tcp_notsack_list == NULL) { 325 up += sack_len; 326 continue; 327 } 328 tcp->tcp_fack = tcp->tcp_suna; 329 } 330 331 while (sack_len > 0) { 332 if (up + 8 > endp) { 333 up = endp; 334 break; 335 } 336 sack_begin = BE32_TO_U32(up); 337 up += 4; 338 sack_end = BE32_TO_U32(up); 339 up += 4; 340 sack_len -= 8; 341 /* 342 * Bounds checking. Make sure the SACK 343 * info is within tcp_suna and tcp_snxt. 344 * If this SACK blk is out of bound, ignore 345 * it but continue to parse the following 346 * blks. 347 */ 348 if (SEQ_LEQ(sack_end, sack_begin) || 349 SEQ_LT(sack_begin, tcp->tcp_suna) || 350 SEQ_GT(sack_end, tcp->tcp_snxt)) { 351 continue; 352 } 353 tcp_notsack_insert(&(tcp->tcp_notsack_list), 354 sack_begin, sack_end, 355 &(tcp->tcp_num_notsack_blk), 356 &(tcp->tcp_cnt_notsack_list)); 357 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 358 tcp->tcp_fack = sack_end; 359 } 360 } 361 found |= TCP_OPT_SACK_PRESENT; 362 continue; 363 364 case TCPOPT_TSTAMP: 365 if (len < TCPOPT_TSTAMP_LEN || 366 up[1] != TCPOPT_TSTAMP_LEN) 367 break; 368 369 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 370 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 371 372 found |= TCP_OPT_TSTAMP_PRESENT; 373 374 up += TCPOPT_TSTAMP_LEN; 375 continue; 376 377 default: 378 if (len <= 1 || len < (int)up[1] || up[1] == 0) 379 break; 380 up += up[1]; 381 continue; 382 } 383 break; 384 } 385 return (found); 386 } 387 388 /* 389 * Process all TCP option in SYN segment. Note that this function should 390 * be called after tcp_set_destination() is called so that the necessary info 391 * from IRE is already set in the tcp structure. 392 * 393 * This function sets up the correct tcp_mss value according to the 394 * MSS option value and our header size. It also sets up the window scale 395 * and timestamp values, and initialize SACK info blocks. But it does not 396 * change receive window size after setting the tcp_mss value. The caller 397 * should do the appropriate change. 398 */ 399 static void 400 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 401 { 402 int options; 403 tcp_opt_t tcpopt; 404 uint32_t mss_max; 405 char *tmp_tcph; 406 tcp_stack_t *tcps = tcp->tcp_tcps; 407 conn_t *connp = tcp->tcp_connp; 408 409 tcpopt.tcp = NULL; 410 options = tcp_parse_options(tcpha, &tcpopt); 411 412 /* 413 * Process MSS option. Note that MSS option value does not account 414 * for IP or TCP options. This means that it is equal to MTU - minimum 415 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 416 * IPv6. 417 */ 418 if (!(options & TCP_OPT_MSS_PRESENT)) { 419 if (connp->conn_ipversion == IPV4_VERSION) 420 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 421 else 422 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 423 } else { 424 if (connp->conn_ipversion == IPV4_VERSION) 425 mss_max = tcps->tcps_mss_max_ipv4; 426 else 427 mss_max = tcps->tcps_mss_max_ipv6; 428 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 429 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 430 else if (tcpopt.tcp_opt_mss > mss_max) 431 tcpopt.tcp_opt_mss = mss_max; 432 } 433 434 /* Process Window Scale option. */ 435 if (options & TCP_OPT_WSCALE_PRESENT) { 436 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 437 tcp->tcp_snd_ws_ok = B_TRUE; 438 } else { 439 tcp->tcp_snd_ws = B_FALSE; 440 tcp->tcp_snd_ws_ok = B_FALSE; 441 tcp->tcp_rcv_ws = B_FALSE; 442 } 443 444 /* Process Timestamp option. */ 445 if ((options & TCP_OPT_TSTAMP_PRESENT) && 446 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 447 tmp_tcph = (char *)tcp->tcp_tcpha; 448 449 tcp->tcp_snd_ts_ok = B_TRUE; 450 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 451 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 452 ASSERT(OK_32PTR(tmp_tcph)); 453 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 454 455 /* Fill in our template header with basic timestamp option. */ 456 tmp_tcph += connp->conn_ht_ulp_len; 457 tmp_tcph[0] = TCPOPT_NOP; 458 tmp_tcph[1] = TCPOPT_NOP; 459 tmp_tcph[2] = TCPOPT_TSTAMP; 460 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 461 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 462 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 463 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 464 } else { 465 tcp->tcp_snd_ts_ok = B_FALSE; 466 } 467 468 /* 469 * Process SACK options. If SACK is enabled for this connection, 470 * then allocate the SACK info structure. Note the following ways 471 * when tcp_snd_sack_ok is set to true. 472 * 473 * For active connection: in tcp_set_destination() called in 474 * tcp_connect(). 475 * 476 * For passive connection: in tcp_set_destination() called in 477 * tcp_input_listener(). 478 * 479 * That's the reason why the extra TCP_IS_DETACHED() check is there. 480 * That check makes sure that if we did not send a SACK OK option, 481 * we will not enable SACK for this connection even though the other 482 * side sends us SACK OK option. For active connection, the SACK 483 * info structure has already been allocated. So we need to free 484 * it if SACK is disabled. 485 */ 486 if ((options & TCP_OPT_SACK_OK_PRESENT) && 487 (tcp->tcp_snd_sack_ok || 488 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 489 ASSERT(tcp->tcp_num_sack_blk == 0); 490 ASSERT(tcp->tcp_notsack_list == NULL); 491 492 tcp->tcp_snd_sack_ok = B_TRUE; 493 if (tcp->tcp_snd_ts_ok) { 494 tcp->tcp_max_sack_blk = 3; 495 } else { 496 tcp->tcp_max_sack_blk = 4; 497 } 498 } else if (tcp->tcp_snd_sack_ok) { 499 /* 500 * Resetting tcp_snd_sack_ok to B_FALSE so that 501 * no SACK info will be used for this 502 * connection. This assumes that SACK usage 503 * permission is negotiated. This may need 504 * to be changed once this is clarified. 505 */ 506 ASSERT(tcp->tcp_num_sack_blk == 0); 507 ASSERT(tcp->tcp_notsack_list == NULL); 508 tcp->tcp_snd_sack_ok = B_FALSE; 509 } 510 511 /* 512 * Now we know the exact TCP/IP header length, subtract 513 * that from tcp_mss to get our side's MSS. 514 */ 515 tcp->tcp_mss -= connp->conn_ht_iphc_len; 516 517 /* 518 * Here we assume that the other side's header size will be equal to 519 * our header size. We calculate the real MSS accordingly. Need to 520 * take into additional stuffs IPsec puts in. 521 * 522 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 523 */ 524 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 525 tcp->tcp_ipsec_overhead - 526 ((connp->conn_ipversion == IPV4_VERSION ? 527 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 528 529 /* 530 * Set MSS to the smaller one of both ends of the connection. 531 * We should not have called tcp_mss_set() before, but our 532 * side of the MSS should have been set to a proper value 533 * by tcp_set_destination(). tcp_mss_set() will also set up the 534 * STREAM head parameters properly. 535 * 536 * If we have a larger-than-16-bit window but the other side 537 * didn't want to do window scale, tcp_rwnd_set() will take 538 * care of that. 539 */ 540 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 541 542 /* 543 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 544 * updated properly. 545 */ 546 TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 547 } 548 549 /* 550 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 551 * is filled, return as much as we can. The message passed in may be 552 * multi-part, chained using b_cont. "start" is the starting sequence 553 * number for this piece. 554 */ 555 static mblk_t * 556 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 557 { 558 uint32_t end; 559 mblk_t *mp1; 560 mblk_t *mp2; 561 mblk_t *next_mp; 562 uint32_t u1; 563 tcp_stack_t *tcps = tcp->tcp_tcps; 564 565 566 /* Walk through all the new pieces. */ 567 do { 568 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 569 (uintptr_t)INT_MAX); 570 end = start + (int)(mp->b_wptr - mp->b_rptr); 571 next_mp = mp->b_cont; 572 if (start == end) { 573 /* Empty. Blast it. */ 574 freeb(mp); 575 continue; 576 } 577 mp->b_cont = NULL; 578 TCP_REASS_SET_SEQ(mp, start); 579 TCP_REASS_SET_END(mp, end); 580 mp1 = tcp->tcp_reass_tail; 581 if (!mp1) { 582 tcp->tcp_reass_tail = mp; 583 tcp->tcp_reass_head = mp; 584 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 585 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, 586 end - start); 587 continue; 588 } 589 /* New stuff completely beyond tail? */ 590 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 591 /* Link it on end. */ 592 mp1->b_cont = mp; 593 tcp->tcp_reass_tail = mp; 594 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs); 595 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes, 596 end - start); 597 continue; 598 } 599 mp1 = tcp->tcp_reass_head; 600 u1 = TCP_REASS_SEQ(mp1); 601 /* New stuff at the front? */ 602 if (SEQ_LT(start, u1)) { 603 /* Yes... Check for overlap. */ 604 mp->b_cont = mp1; 605 tcp->tcp_reass_head = mp; 606 tcp_reass_elim_overlap(tcp, mp); 607 continue; 608 } 609 /* 610 * The new piece fits somewhere between the head and tail. 611 * We find our slot, where mp1 precedes us and mp2 trails. 612 */ 613 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 614 u1 = TCP_REASS_SEQ(mp2); 615 if (SEQ_LEQ(start, u1)) 616 break; 617 } 618 /* Link ourselves in */ 619 mp->b_cont = mp2; 620 mp1->b_cont = mp; 621 622 /* Trim overlap with following mblk(s) first */ 623 tcp_reass_elim_overlap(tcp, mp); 624 625 /* Trim overlap with preceding mblk */ 626 tcp_reass_elim_overlap(tcp, mp1); 627 628 } while (start = end, mp = next_mp); 629 mp1 = tcp->tcp_reass_head; 630 /* Anything ready to go? */ 631 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 632 return (NULL); 633 /* Eat what we can off the queue */ 634 for (;;) { 635 mp = mp1->b_cont; 636 end = TCP_REASS_END(mp1); 637 TCP_REASS_SET_SEQ(mp1, 0); 638 TCP_REASS_SET_END(mp1, 0); 639 if (!mp) { 640 tcp->tcp_reass_tail = NULL; 641 break; 642 } 643 if (end != TCP_REASS_SEQ(mp)) { 644 mp1->b_cont = NULL; 645 break; 646 } 647 mp1 = mp; 648 } 649 mp1 = tcp->tcp_reass_head; 650 tcp->tcp_reass_head = mp; 651 return (mp1); 652 } 653 654 /* Eliminate any overlap that mp may have over later mblks */ 655 static void 656 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 657 { 658 uint32_t end; 659 mblk_t *mp1; 660 uint32_t u1; 661 tcp_stack_t *tcps = tcp->tcp_tcps; 662 663 end = TCP_REASS_END(mp); 664 while ((mp1 = mp->b_cont) != NULL) { 665 u1 = TCP_REASS_SEQ(mp1); 666 if (!SEQ_GT(end, u1)) 667 break; 668 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 669 mp->b_wptr -= end - u1; 670 TCP_REASS_SET_END(mp, u1); 671 TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs); 672 TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes, 673 end - u1); 674 break; 675 } 676 mp->b_cont = mp1->b_cont; 677 TCP_REASS_SET_SEQ(mp1, 0); 678 TCP_REASS_SET_END(mp1, 0); 679 freeb(mp1); 680 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 681 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1); 682 } 683 if (!mp1) 684 tcp->tcp_reass_tail = mp; 685 } 686 687 /* 688 * This function does PAWS protection check. Returns B_TRUE if the 689 * segment passes the PAWS test, else returns B_FALSE. 690 */ 691 boolean_t 692 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 693 { 694 uint8_t flags; 695 int options; 696 uint8_t *up; 697 conn_t *connp = tcp->tcp_connp; 698 699 flags = (unsigned int)tcpha->tha_flags & 0xFF; 700 /* 701 * If timestamp option is aligned nicely, get values inline, 702 * otherwise call general routine to parse. Only do that 703 * if timestamp is the only option. 704 */ 705 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 706 TCPOPT_REAL_TS_LEN && 707 OK_32PTR((up = ((uint8_t *)tcpha) + 708 TCP_MIN_HEADER_LENGTH)) && 709 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 710 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 711 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 712 713 options = TCP_OPT_TSTAMP_PRESENT; 714 } else { 715 if (tcp->tcp_snd_sack_ok) { 716 tcpoptp->tcp = tcp; 717 } else { 718 tcpoptp->tcp = NULL; 719 } 720 options = tcp_parse_options(tcpha, tcpoptp); 721 } 722 723 if (options & TCP_OPT_TSTAMP_PRESENT) { 724 /* 725 * Do PAWS per RFC 1323 section 4.2. Accept RST 726 * regardless of the timestamp, page 18 RFC 1323.bis. 727 */ 728 if ((flags & TH_RST) == 0 && 729 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 730 tcp->tcp_ts_recent)) { 731 if (LBOLT_FASTPATH64 < 732 (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 733 /* This segment is not acceptable. */ 734 return (B_FALSE); 735 } else { 736 /* 737 * Connection has been idle for 738 * too long. Reset the timestamp 739 * and assume the segment is valid. 740 */ 741 tcp->tcp_ts_recent = 742 tcpoptp->tcp_opt_ts_val; 743 } 744 } 745 } else { 746 /* 747 * If we don't get a timestamp on every packet, we 748 * figure we can't really trust 'em, so we stop sending 749 * and parsing them. 750 */ 751 tcp->tcp_snd_ts_ok = B_FALSE; 752 753 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 754 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 755 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 756 /* 757 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 758 * doing a slow start here so as to not to lose on the 759 * transfer rate built up so far. 760 */ 761 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 762 if (tcp->tcp_snd_sack_ok) 763 tcp->tcp_max_sack_blk = 4; 764 } 765 return (B_TRUE); 766 } 767 768 /* 769 * Defense for the SYN attack - 770 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 771 * one from the list of droppable eagers. This list is a subset of q0. 772 * see comments before the definition of MAKE_DROPPABLE(). 773 * 2. Don't drop a SYN request before its first timeout. This gives every 774 * request at least til the first timeout to complete its 3-way handshake. 775 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 776 * requests currently on the queue that has timed out. This will be used 777 * as an indicator of whether an attack is under way, so that appropriate 778 * actions can be taken. (It's incremented in tcp_timer() and decremented 779 * either when eager goes into ESTABLISHED, or gets freed up.) 780 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 781 * # of timeout drops back to <= q0len/32 => SYN alert off 782 */ 783 static boolean_t 784 tcp_drop_q0(tcp_t *tcp) 785 { 786 tcp_t *eager; 787 mblk_t *mp; 788 tcp_stack_t *tcps = tcp->tcp_tcps; 789 790 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 791 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 792 793 /* Pick oldest eager from the list of droppable eagers */ 794 eager = tcp->tcp_eager_prev_drop_q0; 795 796 /* If list is empty. return B_FALSE */ 797 if (eager == tcp) { 798 return (B_FALSE); 799 } 800 801 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 802 if ((mp = allocb(0, BPRI_HI)) == NULL) 803 return (B_FALSE); 804 805 /* 806 * Take this eager out from the list of droppable eagers since we are 807 * going to drop it. 808 */ 809 MAKE_UNDROPPABLE(eager); 810 811 if (tcp->tcp_connp->conn_debug) { 812 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 813 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 814 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 815 tcp->tcp_conn_req_cnt_q0, 816 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 817 } 818 819 TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop); 820 821 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 822 CONN_INC_REF(eager->tcp_connp); 823 824 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 825 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 826 SQ_FILL, SQTAG_TCP_DROP_Q0); 827 828 return (B_TRUE); 829 } 830 831 /* 832 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 833 */ 834 static mblk_t * 835 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 836 ip_recv_attr_t *ira) 837 { 838 tcp_t *ltcp = lconnp->conn_tcp; 839 tcp_t *tcp = connp->conn_tcp; 840 mblk_t *tpi_mp; 841 ipha_t *ipha; 842 ip6_t *ip6h; 843 sin6_t sin6; 844 uint_t ifindex = ira->ira_ruifindex; 845 tcp_stack_t *tcps = tcp->tcp_tcps; 846 847 if (ira->ira_flags & IRAF_IS_IPV4) { 848 ipha = (ipha_t *)mp->b_rptr; 849 850 connp->conn_ipversion = IPV4_VERSION; 851 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 852 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 853 connp->conn_saddr_v6 = connp->conn_laddr_v6; 854 855 sin6 = sin6_null; 856 sin6.sin6_addr = connp->conn_faddr_v6; 857 sin6.sin6_port = connp->conn_fport; 858 sin6.sin6_family = AF_INET6; 859 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 860 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 861 862 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 863 sin6_t sin6d; 864 865 sin6d = sin6_null; 866 sin6d.sin6_addr = connp->conn_laddr_v6; 867 sin6d.sin6_port = connp->conn_lport; 868 sin6d.sin6_family = AF_INET; 869 tpi_mp = mi_tpi_extconn_ind(NULL, 870 (char *)&sin6d, sizeof (sin6_t), 871 (char *)&tcp, 872 (t_scalar_t)sizeof (intptr_t), 873 (char *)&sin6d, sizeof (sin6_t), 874 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 875 } else { 876 tpi_mp = mi_tpi_conn_ind(NULL, 877 (char *)&sin6, sizeof (sin6_t), 878 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 879 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 880 } 881 } else { 882 ip6h = (ip6_t *)mp->b_rptr; 883 884 connp->conn_ipversion = IPV6_VERSION; 885 connp->conn_laddr_v6 = ip6h->ip6_dst; 886 connp->conn_faddr_v6 = ip6h->ip6_src; 887 connp->conn_saddr_v6 = connp->conn_laddr_v6; 888 889 sin6 = sin6_null; 890 sin6.sin6_addr = connp->conn_faddr_v6; 891 sin6.sin6_port = connp->conn_fport; 892 sin6.sin6_family = AF_INET6; 893 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 894 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 895 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 896 897 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 898 /* Pass up the scope_id of remote addr */ 899 sin6.sin6_scope_id = ifindex; 900 } else { 901 sin6.sin6_scope_id = 0; 902 } 903 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 904 sin6_t sin6d; 905 906 sin6d = sin6_null; 907 sin6.sin6_addr = connp->conn_laddr_v6; 908 sin6d.sin6_port = connp->conn_lport; 909 sin6d.sin6_family = AF_INET6; 910 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 911 sin6d.sin6_scope_id = ifindex; 912 913 tpi_mp = mi_tpi_extconn_ind(NULL, 914 (char *)&sin6d, sizeof (sin6_t), 915 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 916 (char *)&sin6d, sizeof (sin6_t), 917 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 918 } else { 919 tpi_mp = mi_tpi_conn_ind(NULL, 920 (char *)&sin6, sizeof (sin6_t), 921 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 922 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 923 } 924 } 925 926 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 927 return (tpi_mp); 928 } 929 930 /* Handle a SYN on an AF_INET socket */ 931 static mblk_t * 932 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 933 ip_recv_attr_t *ira) 934 { 935 tcp_t *ltcp = lconnp->conn_tcp; 936 tcp_t *tcp = connp->conn_tcp; 937 sin_t sin; 938 mblk_t *tpi_mp = NULL; 939 tcp_stack_t *tcps = tcp->tcp_tcps; 940 ipha_t *ipha; 941 942 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 943 ipha = (ipha_t *)mp->b_rptr; 944 945 connp->conn_ipversion = IPV4_VERSION; 946 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 947 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 948 connp->conn_saddr_v6 = connp->conn_laddr_v6; 949 950 sin = sin_null; 951 sin.sin_addr.s_addr = connp->conn_faddr_v4; 952 sin.sin_port = connp->conn_fport; 953 sin.sin_family = AF_INET; 954 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 955 sin_t sind; 956 957 sind = sin_null; 958 sind.sin_addr.s_addr = connp->conn_laddr_v4; 959 sind.sin_port = connp->conn_lport; 960 sind.sin_family = AF_INET; 961 tpi_mp = mi_tpi_extconn_ind(NULL, 962 (char *)&sind, sizeof (sin_t), (char *)&tcp, 963 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 964 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 965 } else { 966 tpi_mp = mi_tpi_conn_ind(NULL, 967 (char *)&sin, sizeof (sin_t), 968 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 969 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 970 } 971 972 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 973 return (tpi_mp); 974 } 975 976 /* 977 * Called via squeue to get on to eager's perimeter. It sends a 978 * TH_RST if eager is in the fanout table. The listener wants the 979 * eager to disappear either by means of tcp_eager_blowoff() or 980 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 981 * called (via squeue) if the eager cannot be inserted in the 982 * fanout table in tcp_input_listener(). 983 */ 984 /* ARGSUSED */ 985 void 986 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 987 { 988 conn_t *econnp = (conn_t *)arg; 989 tcp_t *eager = econnp->conn_tcp; 990 tcp_t *listener = eager->tcp_listener; 991 992 /* 993 * We could be called because listener is closing. Since 994 * the eager was using listener's queue's, we avoid 995 * using the listeners queues from now on. 996 */ 997 ASSERT(eager->tcp_detached); 998 econnp->conn_rq = NULL; 999 econnp->conn_wq = NULL; 1000 1001 /* 1002 * An eager's conn_fanout will be NULL if it's a duplicate 1003 * for an existing 4-tuples in the conn fanout table. 1004 * We don't want to send an RST out in such case. 1005 */ 1006 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 1007 tcp_xmit_ctl("tcp_eager_kill, can't wait", 1008 eager, eager->tcp_snxt, 0, TH_RST); 1009 } 1010 1011 /* We are here because listener wants this eager gone */ 1012 if (listener != NULL) { 1013 mutex_enter(&listener->tcp_eager_lock); 1014 tcp_eager_unlink(eager); 1015 if (eager->tcp_tconnind_started) { 1016 /* 1017 * The eager has sent a conn_ind up to the 1018 * listener but listener decides to close 1019 * instead. We need to drop the extra ref 1020 * placed on eager in tcp_input_data() before 1021 * sending the conn_ind to listener. 1022 */ 1023 CONN_DEC_REF(econnp); 1024 } 1025 mutex_exit(&listener->tcp_eager_lock); 1026 CONN_DEC_REF(listener->tcp_connp); 1027 } 1028 1029 if (eager->tcp_state != TCPS_CLOSED) 1030 tcp_close_detached(eager); 1031 } 1032 1033 /* 1034 * Reset any eager connection hanging off this listener marked 1035 * with 'seqnum' and then reclaim it's resources. 1036 */ 1037 boolean_t 1038 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 1039 { 1040 tcp_t *eager; 1041 mblk_t *mp; 1042 1043 eager = listener; 1044 mutex_enter(&listener->tcp_eager_lock); 1045 do { 1046 eager = eager->tcp_eager_next_q; 1047 if (eager == NULL) { 1048 mutex_exit(&listener->tcp_eager_lock); 1049 return (B_FALSE); 1050 } 1051 } while (eager->tcp_conn_req_seqnum != seqnum); 1052 1053 if (eager->tcp_closemp_used) { 1054 mutex_exit(&listener->tcp_eager_lock); 1055 return (B_TRUE); 1056 } 1057 eager->tcp_closemp_used = B_TRUE; 1058 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1059 CONN_INC_REF(eager->tcp_connp); 1060 mutex_exit(&listener->tcp_eager_lock); 1061 mp = &eager->tcp_closemp; 1062 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 1063 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 1064 return (B_TRUE); 1065 } 1066 1067 /* 1068 * Reset any eager connection hanging off this listener 1069 * and then reclaim it's resources. 1070 */ 1071 void 1072 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 1073 { 1074 tcp_t *eager; 1075 mblk_t *mp; 1076 tcp_stack_t *tcps = listener->tcp_tcps; 1077 1078 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1079 1080 if (!q0_only) { 1081 /* First cleanup q */ 1082 TCP_STAT(tcps, tcp_eager_blowoff_q); 1083 eager = listener->tcp_eager_next_q; 1084 while (eager != NULL) { 1085 if (!eager->tcp_closemp_used) { 1086 eager->tcp_closemp_used = B_TRUE; 1087 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1088 CONN_INC_REF(eager->tcp_connp); 1089 mp = &eager->tcp_closemp; 1090 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1091 tcp_eager_kill, eager->tcp_connp, NULL, 1092 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 1093 } 1094 eager = eager->tcp_eager_next_q; 1095 } 1096 } 1097 /* Then cleanup q0 */ 1098 TCP_STAT(tcps, tcp_eager_blowoff_q0); 1099 eager = listener->tcp_eager_next_q0; 1100 while (eager != listener) { 1101 if (!eager->tcp_closemp_used) { 1102 eager->tcp_closemp_used = B_TRUE; 1103 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1104 CONN_INC_REF(eager->tcp_connp); 1105 mp = &eager->tcp_closemp; 1106 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 1107 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 1108 SQTAG_TCP_EAGER_CLEANUP_Q0); 1109 } 1110 eager = eager->tcp_eager_next_q0; 1111 } 1112 } 1113 1114 /* 1115 * If we are an eager connection hanging off a listener that hasn't 1116 * formally accepted the connection yet, get off his list and blow off 1117 * any data that we have accumulated. 1118 */ 1119 void 1120 tcp_eager_unlink(tcp_t *tcp) 1121 { 1122 tcp_t *listener = tcp->tcp_listener; 1123 1124 ASSERT(listener != NULL); 1125 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 1126 if (tcp->tcp_eager_next_q0 != NULL) { 1127 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 1128 1129 /* Remove the eager tcp from q0 */ 1130 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 1131 tcp->tcp_eager_prev_q0; 1132 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 1133 tcp->tcp_eager_next_q0; 1134 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 1135 listener->tcp_conn_req_cnt_q0--; 1136 1137 tcp->tcp_eager_next_q0 = NULL; 1138 tcp->tcp_eager_prev_q0 = NULL; 1139 1140 /* 1141 * Take the eager out, if it is in the list of droppable 1142 * eagers. 1143 */ 1144 MAKE_UNDROPPABLE(tcp); 1145 1146 if (tcp->tcp_syn_rcvd_timeout != 0) { 1147 /* we have timed out before */ 1148 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 1149 listener->tcp_syn_rcvd_timeout--; 1150 } 1151 } else { 1152 tcp_t **tcpp = &listener->tcp_eager_next_q; 1153 tcp_t *prev = NULL; 1154 1155 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 1156 if (tcpp[0] == tcp) { 1157 if (listener->tcp_eager_last_q == tcp) { 1158 /* 1159 * If we are unlinking the last 1160 * element on the list, adjust 1161 * tail pointer. Set tail pointer 1162 * to nil when list is empty. 1163 */ 1164 ASSERT(tcp->tcp_eager_next_q == NULL); 1165 if (listener->tcp_eager_last_q == 1166 listener->tcp_eager_next_q) { 1167 listener->tcp_eager_last_q = 1168 NULL; 1169 } else { 1170 /* 1171 * We won't get here if there 1172 * is only one eager in the 1173 * list. 1174 */ 1175 ASSERT(prev != NULL); 1176 listener->tcp_eager_last_q = 1177 prev; 1178 } 1179 } 1180 tcpp[0] = tcp->tcp_eager_next_q; 1181 tcp->tcp_eager_next_q = NULL; 1182 tcp->tcp_eager_last_q = NULL; 1183 ASSERT(listener->tcp_conn_req_cnt_q > 0); 1184 listener->tcp_conn_req_cnt_q--; 1185 break; 1186 } 1187 prev = tcpp[0]; 1188 } 1189 } 1190 tcp->tcp_listener = NULL; 1191 } 1192 1193 /* BEGIN CSTYLED */ 1194 /* 1195 * 1196 * The sockfs ACCEPT path: 1197 * ======================= 1198 * 1199 * The eager is now established in its own perimeter as soon as SYN is 1200 * received in tcp_input_listener(). When sockfs receives conn_ind, it 1201 * completes the accept processing on the acceptor STREAM. The sending 1202 * of conn_ind part is common for both sockfs listener and a TLI/XTI 1203 * listener but a TLI/XTI listener completes the accept processing 1204 * on the listener perimeter. 1205 * 1206 * Common control flow for 3 way handshake: 1207 * ---------------------------------------- 1208 * 1209 * incoming SYN (listener perimeter) -> tcp_input_listener() 1210 * 1211 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 1212 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 1213 * 1214 * Sockfs ACCEPT Path: 1215 * ------------------- 1216 * 1217 * open acceptor stream (tcp_open allocates tcp_tli_accept() 1218 * as STREAM entry point) 1219 * 1220 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 1221 * 1222 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 1223 * association (we are not behind eager's squeue but sockfs is protecting us 1224 * and no one knows about this stream yet. The STREAMS entry point q->q_info 1225 * is changed to point at tcp_wput(). 1226 * 1227 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 1228 * listener (done on listener's perimeter). 1229 * 1230 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 1231 * accept. 1232 * 1233 * TLI/XTI client ACCEPT path: 1234 * --------------------------- 1235 * 1236 * soaccept() sends T_CONN_RES on the listener STREAM. 1237 * 1238 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 1239 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 1240 * 1241 * Locks: 1242 * ====== 1243 * 1244 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 1245 * and listeners->tcp_eager_next_q. 1246 * 1247 * Referencing: 1248 * ============ 1249 * 1250 * 1) We start out in tcp_input_listener by eager placing a ref on 1251 * listener and listener adding eager to listeners->tcp_eager_next_q0. 1252 * 1253 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 1254 * doing so we place a ref on the eager. This ref is finally dropped at the 1255 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 1256 * reference is dropped by the squeue framework. 1257 * 1258 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 1259 * 1260 * The reference must be released by the same entity that added the reference 1261 * In the above scheme, the eager is the entity that adds and releases the 1262 * references. Note that tcp_accept_finish executes in the squeue of the eager 1263 * (albeit after it is attached to the acceptor stream). Though 1. executes 1264 * in the listener's squeue, the eager is nascent at this point and the 1265 * reference can be considered to have been added on behalf of the eager. 1266 * 1267 * Eager getting a Reset or listener closing: 1268 * ========================================== 1269 * 1270 * Once the listener and eager are linked, the listener never does the unlink. 1271 * If the listener needs to close, tcp_eager_cleanup() is called which queues 1272 * a message on all eager perimeter. The eager then does the unlink, clears 1273 * any pointers to the listener's queue and drops the reference to the 1274 * listener. The listener waits in tcp_close outside the squeue until its 1275 * refcount has dropped to 1. This ensures that the listener has waited for 1276 * all eagers to clear their association with the listener. 1277 * 1278 * Similarly, if eager decides to go away, it can unlink itself and close. 1279 * When the T_CONN_RES comes down, we check if eager has closed. Note that 1280 * the reference to eager is still valid because of the extra ref we put 1281 * in tcp_send_conn_ind. 1282 * 1283 * Listener can always locate the eager under the protection 1284 * of the listener->tcp_eager_lock, and then do a refhold 1285 * on the eager during the accept processing. 1286 * 1287 * The acceptor stream accesses the eager in the accept processing 1288 * based on the ref placed on eager before sending T_conn_ind. 1289 * The only entity that can negate this refhold is a listener close 1290 * which is mutually exclusive with an active acceptor stream. 1291 * 1292 * Eager's reference on the listener 1293 * =================================== 1294 * 1295 * If the accept happens (even on a closed eager) the eager drops its 1296 * reference on the listener at the start of tcp_accept_finish. If the 1297 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 1298 * the reference is dropped in tcp_closei_local. If the listener closes, 1299 * the reference is dropped in tcp_eager_kill. In all cases the reference 1300 * is dropped while executing in the eager's context (squeue). 1301 */ 1302 /* END CSTYLED */ 1303 1304 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 1305 1306 /* 1307 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 1308 * tcp_input_data will not see any packets for listeners since the listener 1309 * has conn_recv set to tcp_input_listener. 1310 */ 1311 /* ARGSUSED */ 1312 static void 1313 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 1314 { 1315 tcpha_t *tcpha; 1316 uint32_t seg_seq; 1317 tcp_t *eager; 1318 int err; 1319 conn_t *econnp = NULL; 1320 squeue_t *new_sqp; 1321 mblk_t *mp1; 1322 uint_t ip_hdr_len; 1323 conn_t *lconnp = (conn_t *)arg; 1324 tcp_t *listener = lconnp->conn_tcp; 1325 tcp_stack_t *tcps = listener->tcp_tcps; 1326 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1327 uint_t flags; 1328 mblk_t *tpi_mp; 1329 uint_t ifindex = ira->ira_ruifindex; 1330 boolean_t tlc_set = B_FALSE; 1331 1332 ip_hdr_len = ira->ira_ip_hdr_length; 1333 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 1334 flags = (unsigned int)tcpha->tha_flags & 0xFF; 1335 1336 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa, 1337 __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener, 1338 __dtrace_tcp_tcph_t *, tcpha); 1339 1340 if (!(flags & TH_SYN)) { 1341 if ((flags & TH_RST) || (flags & TH_URG)) { 1342 freemsg(mp); 1343 return; 1344 } 1345 if (flags & TH_ACK) { 1346 /* Note this executes in listener's squeue */ 1347 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 1348 return; 1349 } 1350 1351 freemsg(mp); 1352 return; 1353 } 1354 1355 if (listener->tcp_state != TCPS_LISTEN) 1356 goto error2; 1357 1358 ASSERT(IPCL_IS_BOUND(lconnp)); 1359 1360 mutex_enter(&listener->tcp_eager_lock); 1361 1362 /* 1363 * The system is under memory pressure, so we need to do our part 1364 * to relieve the pressure. So we only accept new request if there 1365 * is nothing waiting to be accepted or waiting to complete the 3-way 1366 * handshake. This means that busy listener will not get too many 1367 * new requests which they cannot handle in time while non-busy 1368 * listener is still functioning properly. 1369 */ 1370 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 || 1371 listener->tcp_conn_req_cnt_q0 > 0)) { 1372 mutex_exit(&listener->tcp_eager_lock); 1373 TCP_STAT(tcps, tcp_listen_mem_drop); 1374 goto error2; 1375 } 1376 1377 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 1378 mutex_exit(&listener->tcp_eager_lock); 1379 TCP_STAT(tcps, tcp_listendrop); 1380 TCPS_BUMP_MIB(tcps, tcpListenDrop); 1381 if (lconnp->conn_debug) { 1382 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 1383 "tcp_input_listener: listen backlog (max=%d) " 1384 "overflow (%d pending) on %s", 1385 listener->tcp_conn_req_max, 1386 listener->tcp_conn_req_cnt_q, 1387 tcp_display(listener, NULL, DISP_PORT_ONLY)); 1388 } 1389 goto error2; 1390 } 1391 1392 if (listener->tcp_conn_req_cnt_q0 >= 1393 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 1394 /* 1395 * Q0 is full. Drop a pending half-open req from the queue 1396 * to make room for the new SYN req. Also mark the time we 1397 * drop a SYN. 1398 * 1399 * A more aggressive defense against SYN attack will 1400 * be to set the "tcp_syn_defense" flag now. 1401 */ 1402 TCP_STAT(tcps, tcp_listendropq0); 1403 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 1404 if (!tcp_drop_q0(listener)) { 1405 mutex_exit(&listener->tcp_eager_lock); 1406 TCPS_BUMP_MIB(tcps, tcpListenDropQ0); 1407 if (lconnp->conn_debug) { 1408 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 1409 "tcp_input_listener: listen half-open " 1410 "queue (max=%d) full (%d pending) on %s", 1411 tcps->tcps_conn_req_max_q0, 1412 listener->tcp_conn_req_cnt_q0, 1413 tcp_display(listener, NULL, 1414 DISP_PORT_ONLY)); 1415 } 1416 goto error2; 1417 } 1418 } 1419 1420 /* 1421 * Enforce the limit set on the number of connections per listener. 1422 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max 1423 * for comparison. 1424 */ 1425 if (listener->tcp_listen_cnt != NULL) { 1426 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt; 1427 int64_t now; 1428 1429 if (atomic_add_32_nv(&tlc->tlc_cnt, 1) > tlc->tlc_max + 1) { 1430 mutex_exit(&listener->tcp_eager_lock); 1431 now = ddi_get_lbolt64(); 1432 atomic_add_32(&tlc->tlc_cnt, -1); 1433 TCP_STAT(tcps, tcp_listen_cnt_drop); 1434 tlc->tlc_drop++; 1435 if (now - tlc->tlc_report_time > 1436 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) { 1437 zcmn_err(lconnp->conn_zoneid, CE_WARN, 1438 "Listener (port %d) connection max (%u) " 1439 "reached: %u attempts dropped total\n", 1440 ntohs(listener->tcp_connp->conn_lport), 1441 tlc->tlc_max, tlc->tlc_drop); 1442 tlc->tlc_report_time = now; 1443 } 1444 goto error2; 1445 } 1446 tlc_set = B_TRUE; 1447 } 1448 1449 mutex_exit(&listener->tcp_eager_lock); 1450 1451 /* 1452 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1453 * or based on the ring (for packets from GLD). Otherwise it is 1454 * set based on lbolt i.e., a somewhat random number. 1455 */ 1456 ASSERT(ira->ira_sqp != NULL); 1457 new_sqp = ira->ira_sqp; 1458 1459 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 1460 if (econnp == NULL) 1461 goto error2; 1462 1463 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 1464 econnp->conn_sqp = new_sqp; 1465 econnp->conn_initial_sqp = new_sqp; 1466 econnp->conn_ixa->ixa_sqp = new_sqp; 1467 1468 econnp->conn_fport = tcpha->tha_lport; 1469 econnp->conn_lport = tcpha->tha_fport; 1470 1471 err = conn_inherit_parent(lconnp, econnp); 1472 if (err != 0) 1473 goto error3; 1474 1475 /* We already know the laddr of the new connection is ours */ 1476 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation; 1477 1478 ASSERT(OK_32PTR(mp->b_rptr)); 1479 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 1480 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 1481 1482 if (lconnp->conn_family == AF_INET) { 1483 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 1484 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 1485 } else { 1486 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 1487 } 1488 1489 if (tpi_mp == NULL) 1490 goto error3; 1491 1492 eager = econnp->conn_tcp; 1493 eager->tcp_detached = B_TRUE; 1494 SOCK_CONNID_INIT(eager->tcp_connid); 1495 1496 /* 1497 * Initialize the eager's tcp_t and inherit some parameters from 1498 * the listener. 1499 */ 1500 tcp_init_values(eager, listener); 1501 1502 ASSERT((econnp->conn_ixa->ixa_flags & 1503 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1504 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 1505 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 1506 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 1507 1508 if (!tcps->tcps_dev_flow_ctl) 1509 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 1510 1511 /* Prepare for diffing against previous packets */ 1512 eager->tcp_recvifindex = 0; 1513 eager->tcp_recvhops = 0xffffffffU; 1514 1515 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 1516 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 1517 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 1518 econnp->conn_incoming_ifindex = ifindex; 1519 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1520 econnp->conn_ixa->ixa_scopeid = ifindex; 1521 } 1522 } 1523 1524 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 1525 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 1526 tcps->tcps_rev_src_routes) { 1527 ipha_t *ipha = (ipha_t *)mp->b_rptr; 1528 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 1529 1530 /* Source routing option copyover (reverse it) */ 1531 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 1532 if (err != 0) { 1533 freemsg(tpi_mp); 1534 goto error3; 1535 } 1536 ip_pkt_source_route_reverse_v4(ipp); 1537 } 1538 1539 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 1540 ASSERT(!eager->tcp_tconnind_started); 1541 /* 1542 * If the SYN came with a credential, it's a loopback packet or a 1543 * labeled packet; attach the credential to the TPI message. 1544 */ 1545 if (ira->ira_cred != NULL) 1546 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 1547 1548 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 1549 ASSERT(eager->tcp_ordrel_mp == NULL); 1550 1551 /* Inherit the listener's non-STREAMS flag */ 1552 if (IPCL_IS_NONSTR(lconnp)) { 1553 econnp->conn_flags |= IPCL_NONSTR; 1554 /* All non-STREAMS tcp_ts are sockets */ 1555 eager->tcp_issocket = B_TRUE; 1556 } else { 1557 /* 1558 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 1559 * at close time, we will always have that to send up. 1560 * Otherwise, we need to do special handling in case the 1561 * allocation fails at that time. 1562 */ 1563 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 1564 goto error3; 1565 } 1566 /* 1567 * Now that the IP addresses and ports are setup in econnp we 1568 * can do the IPsec policy work. 1569 */ 1570 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 1571 if (lconnp->conn_policy != NULL) { 1572 /* 1573 * Inherit the policy from the listener; use 1574 * actions from ira 1575 */ 1576 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 1577 CONN_DEC_REF(econnp); 1578 freemsg(mp); 1579 goto error3; 1580 } 1581 } 1582 } 1583 1584 /* 1585 * tcp_set_destination() may set tcp_rwnd according to the route 1586 * metrics. If it does not, the eager's receive window will be set 1587 * to the listener's receive window later in this function. 1588 */ 1589 eager->tcp_rwnd = 0; 1590 1591 if (is_system_labeled()) { 1592 ip_xmit_attr_t *ixa = econnp->conn_ixa; 1593 1594 ASSERT(ira->ira_tsl != NULL); 1595 /* Discard any old label */ 1596 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 1597 ASSERT(ixa->ixa_tsl != NULL); 1598 label_rele(ixa->ixa_tsl); 1599 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 1600 ixa->ixa_tsl = NULL; 1601 } 1602 if ((lconnp->conn_mlp_type != mlptSingle || 1603 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 1604 ira->ira_tsl != NULL) { 1605 /* 1606 * If this is an MLP connection or a MAC-Exempt 1607 * connection with an unlabeled node, packets are to be 1608 * exchanged using the security label of the received 1609 * SYN packet instead of the server application's label. 1610 * tsol_check_dest called from ip_set_destination 1611 * might later update TSF_UNLABELED by replacing 1612 * ixa_tsl with a new label. 1613 */ 1614 label_hold(ira->ira_tsl); 1615 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 1616 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 1617 econnp, ts_label_t *, ixa->ixa_tsl) 1618 } else { 1619 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 1620 DTRACE_PROBE2(syn_accept, conn_t *, 1621 econnp, ts_label_t *, ixa->ixa_tsl) 1622 } 1623 /* 1624 * conn_connect() called from tcp_set_destination will verify 1625 * the destination is allowed to receive packets at the 1626 * security label of the SYN-ACK we are generating. As part of 1627 * that, tsol_check_dest() may create a new effective label for 1628 * this connection. 1629 * Finally conn_connect() will call conn_update_label. 1630 * All that remains for TCP to do is to call 1631 * conn_build_hdr_template which is done as part of 1632 * tcp_set_destination. 1633 */ 1634 } 1635 1636 /* 1637 * Since we will clear tcp_listener before we clear tcp_detached 1638 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 1639 * so we can tell a TCP_IS_DETACHED_NONEAGER apart. 1640 */ 1641 eager->tcp_hard_binding = B_TRUE; 1642 1643 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 1644 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 1645 1646 CL_INET_CONNECT(econnp, B_FALSE, err); 1647 if (err != 0) { 1648 tcp_bind_hash_remove(eager); 1649 goto error3; 1650 } 1651 1652 SOCK_CONNID_BUMP(eager->tcp_connid); 1653 1654 /* 1655 * Adapt our mss, ttl, ... based on the remote address. 1656 */ 1657 1658 if (tcp_set_destination(eager) != 0) { 1659 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1660 /* Undo the bind_hash_insert */ 1661 tcp_bind_hash_remove(eager); 1662 goto error3; 1663 } 1664 1665 /* Process all TCP options. */ 1666 tcp_process_options(eager, tcpha); 1667 1668 /* Is the other end ECN capable? */ 1669 if (tcps->tcps_ecn_permitted >= 1 && 1670 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 1671 eager->tcp_ecn_ok = B_TRUE; 1672 } 1673 1674 /* 1675 * The listener's conn_rcvbuf should be the default window size or a 1676 * window size changed via SO_RCVBUF option. First round up the 1677 * eager's tcp_rwnd to the nearest MSS. Then find out the window 1678 * scale option value if needed. Call tcp_rwnd_set() to finish the 1679 * setting. 1680 * 1681 * Note if there is a rpipe metric associated with the remote host, 1682 * we should not inherit receive window size from listener. 1683 */ 1684 eager->tcp_rwnd = MSS_ROUNDUP( 1685 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 1686 eager->tcp_rwnd), eager->tcp_mss); 1687 if (eager->tcp_snd_ws_ok) 1688 tcp_set_ws_value(eager); 1689 /* 1690 * Note that this is the only place tcp_rwnd_set() is called for 1691 * accepting a connection. We need to call it here instead of 1692 * after the 3-way handshake because we need to tell the other 1693 * side our rwnd in the SYN-ACK segment. 1694 */ 1695 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 1696 1697 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 1698 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 1699 1700 ASSERT(econnp->conn_rcvbuf != 0 && 1701 econnp->conn_rcvbuf == eager->tcp_rwnd); 1702 1703 /* Put a ref on the listener for the eager. */ 1704 CONN_INC_REF(lconnp); 1705 mutex_enter(&listener->tcp_eager_lock); 1706 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 1707 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 1708 listener->tcp_eager_next_q0 = eager; 1709 eager->tcp_eager_prev_q0 = listener; 1710 1711 /* Set tcp_listener before adding it to tcp_conn_fanout */ 1712 eager->tcp_listener = listener; 1713 eager->tcp_saved_listener = listener; 1714 1715 /* 1716 * Set tcp_listen_cnt so that when the connection is done, the counter 1717 * is decremented. 1718 */ 1719 eager->tcp_listen_cnt = listener->tcp_listen_cnt; 1720 1721 /* 1722 * Tag this detached tcp vector for later retrieval 1723 * by our listener client in tcp_accept(). 1724 */ 1725 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 1726 listener->tcp_conn_req_cnt_q0++; 1727 if (++listener->tcp_conn_req_seqnum == -1) { 1728 /* 1729 * -1 is "special" and defined in TPI as something 1730 * that should never be used in T_CONN_IND 1731 */ 1732 ++listener->tcp_conn_req_seqnum; 1733 } 1734 mutex_exit(&listener->tcp_eager_lock); 1735 1736 if (listener->tcp_syn_defense) { 1737 /* Don't drop the SYN that comes from a good IP source */ 1738 ipaddr_t *addr_cache; 1739 1740 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 1741 if (addr_cache != NULL && econnp->conn_faddr_v4 == 1742 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 1743 eager->tcp_dontdrop = B_TRUE; 1744 } 1745 } 1746 1747 /* 1748 * We need to insert the eager in its own perimeter but as soon 1749 * as we do that, we expose the eager to the classifier and 1750 * should not touch any field outside the eager's perimeter. 1751 * So do all the work necessary before inserting the eager 1752 * in its own perimeter. Be optimistic that conn_connect() 1753 * will succeed but undo everything if it fails. 1754 */ 1755 seg_seq = ntohl(tcpha->tha_seq); 1756 eager->tcp_irs = seg_seq; 1757 eager->tcp_rack = seg_seq; 1758 eager->tcp_rnxt = seg_seq + 1; 1759 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 1760 TCPS_BUMP_MIB(tcps, tcpPassiveOpens); 1761 eager->tcp_state = TCPS_SYN_RCVD; 1762 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1763 econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL, 1764 int32_t, TCPS_LISTEN); 1765 1766 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 1767 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 1768 if (mp1 == NULL) { 1769 /* 1770 * Increment the ref count as we are going to 1771 * enqueueing an mp in squeue 1772 */ 1773 CONN_INC_REF(econnp); 1774 goto error; 1775 } 1776 1777 /* 1778 * We need to start the rto timer. In normal case, we start 1779 * the timer after sending the packet on the wire (or at 1780 * least believing that packet was sent by waiting for 1781 * conn_ip_output() to return). Since this is the first packet 1782 * being sent on the wire for the eager, our initial tcp_rto 1783 * is at least tcp_rexmit_interval_min which is a fairly 1784 * large value to allow the algorithm to adjust slowly to large 1785 * fluctuations of RTT during first few transmissions. 1786 * 1787 * Starting the timer first and then sending the packet in this 1788 * case shouldn't make much difference since tcp_rexmit_interval_min 1789 * is of the order of several 100ms and starting the timer 1790 * first and then sending the packet will result in difference 1791 * of few micro seconds. 1792 * 1793 * Without this optimization, we are forced to hold the fanout 1794 * lock across the ipcl_bind_insert() and sending the packet 1795 * so that we don't race against an incoming packet (maybe RST) 1796 * for this eager. 1797 * 1798 * It is necessary to acquire an extra reference on the eager 1799 * at this point and hold it until after tcp_send_data() to 1800 * ensure against an eager close race. 1801 */ 1802 1803 CONN_INC_REF(econnp); 1804 1805 TCP_TIMER_RESTART(eager, eager->tcp_rto); 1806 1807 /* 1808 * Insert the eager in its own perimeter now. We are ready to deal 1809 * with any packets on eager. 1810 */ 1811 if (ipcl_conn_insert(econnp) != 0) 1812 goto error; 1813 1814 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 1815 freemsg(mp); 1816 /* 1817 * Send the SYN-ACK. Use the right squeue so that conn_ixa is 1818 * only used by one thread at a time. 1819 */ 1820 if (econnp->conn_sqp == lconnp->conn_sqp) { 1821 DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *, 1822 econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr, 1823 tcp_t *, eager, __dtrace_tcp_tcph_t *, 1824 &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]); 1825 (void) conn_ip_output(mp1, econnp->conn_ixa); 1826 CONN_DEC_REF(econnp); 1827 } else { 1828 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack, 1829 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK); 1830 } 1831 return; 1832 error: 1833 freemsg(mp1); 1834 eager->tcp_closemp_used = B_TRUE; 1835 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 1836 mp1 = &eager->tcp_closemp; 1837 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 1838 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 1839 1840 /* 1841 * If a connection already exists, send the mp to that connections so 1842 * that it can be appropriately dealt with. 1843 */ 1844 ipst = tcps->tcps_netstack->netstack_ip; 1845 1846 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 1847 if (!IPCL_IS_CONNECTED(econnp)) { 1848 /* 1849 * Something bad happened. ipcl_conn_insert() 1850 * failed because a connection already existed 1851 * in connected hash but we can't find it 1852 * anymore (someone blew it away). Just 1853 * free this message and hopefully remote 1854 * will retransmit at which time the SYN can be 1855 * treated as a new connection or dealth with 1856 * a TH_RST if a connection already exists. 1857 */ 1858 CONN_DEC_REF(econnp); 1859 freemsg(mp); 1860 } else { 1861 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 1862 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 1863 } 1864 } else { 1865 /* Nobody wants this packet */ 1866 freemsg(mp); 1867 } 1868 return; 1869 error3: 1870 CONN_DEC_REF(econnp); 1871 error2: 1872 freemsg(mp); 1873 if (tlc_set) 1874 atomic_add_32(&listener->tcp_listen_cnt->tlc_cnt, -1); 1875 } 1876 1877 /* 1878 * In an ideal case of vertical partition in NUMA architecture, its 1879 * beneficial to have the listener and all the incoming connections 1880 * tied to the same squeue. The other constraint is that incoming 1881 * connections should be tied to the squeue attached to interrupted 1882 * CPU for obvious locality reason so this leaves the listener to 1883 * be tied to the same squeue. Our only problem is that when listener 1884 * is binding, the CPU that will get interrupted by the NIC whose 1885 * IP address the listener is binding to is not even known. So 1886 * the code below allows us to change that binding at the time the 1887 * CPU is interrupted by virtue of incoming connection's squeue. 1888 * 1889 * This is usefull only in case of a listener bound to a specific IP 1890 * address. For other kind of listeners, they get bound the 1891 * very first time and there is no attempt to rebind them. 1892 */ 1893 void 1894 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 1895 ip_recv_attr_t *ira) 1896 { 1897 conn_t *connp = (conn_t *)arg; 1898 squeue_t *sqp = (squeue_t *)arg2; 1899 squeue_t *new_sqp; 1900 uint32_t conn_flags; 1901 1902 /* 1903 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 1904 * or based on the ring (for packets from GLD). Otherwise it is 1905 * set based on lbolt i.e., a somewhat random number. 1906 */ 1907 ASSERT(ira->ira_sqp != NULL); 1908 new_sqp = ira->ira_sqp; 1909 1910 if (connp->conn_fanout == NULL) 1911 goto done; 1912 1913 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 1914 mutex_enter(&connp->conn_fanout->connf_lock); 1915 mutex_enter(&connp->conn_lock); 1916 /* 1917 * No one from read or write side can access us now 1918 * except for already queued packets on this squeue. 1919 * But since we haven't changed the squeue yet, they 1920 * can't execute. If they are processed after we have 1921 * changed the squeue, they are sent back to the 1922 * correct squeue down below. 1923 * But a listner close can race with processing of 1924 * incoming SYN. If incoming SYN processing changes 1925 * the squeue then the listener close which is waiting 1926 * to enter the squeue would operate on the wrong 1927 * squeue. Hence we don't change the squeue here unless 1928 * the refcount is exactly the minimum refcount. The 1929 * minimum refcount of 4 is counted as - 1 each for 1930 * TCP and IP, 1 for being in the classifier hash, and 1931 * 1 for the mblk being processed. 1932 */ 1933 1934 if (connp->conn_ref != 4 || 1935 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 1936 mutex_exit(&connp->conn_lock); 1937 mutex_exit(&connp->conn_fanout->connf_lock); 1938 goto done; 1939 } 1940 if (connp->conn_sqp != new_sqp) { 1941 while (connp->conn_sqp != new_sqp) 1942 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 1943 /* No special MT issues for outbound ixa_sqp hint */ 1944 connp->conn_ixa->ixa_sqp = new_sqp; 1945 } 1946 1947 do { 1948 conn_flags = connp->conn_flags; 1949 conn_flags |= IPCL_FULLY_BOUND; 1950 (void) cas32(&connp->conn_flags, connp->conn_flags, 1951 conn_flags); 1952 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 1953 1954 mutex_exit(&connp->conn_fanout->connf_lock); 1955 mutex_exit(&connp->conn_lock); 1956 1957 /* 1958 * Assume we have picked a good squeue for the listener. Make 1959 * subsequent SYNs not try to change the squeue. 1960 */ 1961 connp->conn_recv = tcp_input_listener; 1962 } 1963 1964 done: 1965 if (connp->conn_sqp != sqp) { 1966 CONN_INC_REF(connp); 1967 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 1968 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 1969 } else { 1970 tcp_input_listener(connp, mp, sqp, ira); 1971 } 1972 } 1973 1974 /* 1975 * Send up all messages queued on tcp_rcv_list. 1976 */ 1977 uint_t 1978 tcp_rcv_drain(tcp_t *tcp) 1979 { 1980 mblk_t *mp; 1981 uint_t ret = 0; 1982 #ifdef DEBUG 1983 uint_t cnt = 0; 1984 #endif 1985 queue_t *q = tcp->tcp_connp->conn_rq; 1986 1987 /* Can't drain on an eager connection */ 1988 if (tcp->tcp_listener != NULL) 1989 return (ret); 1990 1991 /* Can't be a non-STREAMS connection */ 1992 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1993 1994 /* No need for the push timer now. */ 1995 if (tcp->tcp_push_tid != 0) { 1996 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 1997 tcp->tcp_push_tid = 0; 1998 } 1999 2000 /* 2001 * Handle two cases here: we are currently fused or we were 2002 * previously fused and have some urgent data to be delivered 2003 * upstream. The latter happens because we either ran out of 2004 * memory or were detached and therefore sending the SIGURG was 2005 * deferred until this point. In either case we pass control 2006 * over to tcp_fuse_rcv_drain() since it may need to complete 2007 * some work. 2008 */ 2009 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 2010 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 2011 &tcp->tcp_fused_sigurg_mp)) 2012 return (ret); 2013 } 2014 2015 while ((mp = tcp->tcp_rcv_list) != NULL) { 2016 tcp->tcp_rcv_list = mp->b_next; 2017 mp->b_next = NULL; 2018 #ifdef DEBUG 2019 cnt += msgdsize(mp); 2020 #endif 2021 putnext(q, mp); 2022 } 2023 #ifdef DEBUG 2024 ASSERT(cnt == tcp->tcp_rcv_cnt); 2025 #endif 2026 tcp->tcp_rcv_last_head = NULL; 2027 tcp->tcp_rcv_last_tail = NULL; 2028 tcp->tcp_rcv_cnt = 0; 2029 2030 if (canputnext(q)) 2031 return (tcp_rwnd_reopen(tcp)); 2032 2033 return (ret); 2034 } 2035 2036 /* 2037 * Queue data on tcp_rcv_list which is a b_next chain. 2038 * tcp_rcv_last_head/tail is the last element of this chain. 2039 * Each element of the chain is a b_cont chain. 2040 * 2041 * M_DATA messages are added to the current element. 2042 * Other messages are added as new (b_next) elements. 2043 */ 2044 void 2045 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 2046 { 2047 ASSERT(seg_len == msgdsize(mp)); 2048 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 2049 2050 if (is_system_labeled()) { 2051 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 2052 /* 2053 * Provide for protocols above TCP such as RPC. NOPID leaves 2054 * db_cpid unchanged. 2055 * The cred could have already been set. 2056 */ 2057 if (cr != NULL) 2058 mblk_setcred(mp, cr, NOPID); 2059 } 2060 2061 if (tcp->tcp_rcv_list == NULL) { 2062 ASSERT(tcp->tcp_rcv_last_head == NULL); 2063 tcp->tcp_rcv_list = mp; 2064 tcp->tcp_rcv_last_head = mp; 2065 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 2066 tcp->tcp_rcv_last_tail->b_cont = mp; 2067 } else { 2068 tcp->tcp_rcv_last_head->b_next = mp; 2069 tcp->tcp_rcv_last_head = mp; 2070 } 2071 2072 while (mp->b_cont) 2073 mp = mp->b_cont; 2074 2075 tcp->tcp_rcv_last_tail = mp; 2076 tcp->tcp_rcv_cnt += seg_len; 2077 tcp->tcp_rwnd -= seg_len; 2078 } 2079 2080 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 2081 mblk_t * 2082 tcp_ack_mp(tcp_t *tcp) 2083 { 2084 uint32_t seq_no; 2085 tcp_stack_t *tcps = tcp->tcp_tcps; 2086 conn_t *connp = tcp->tcp_connp; 2087 2088 /* 2089 * There are a few cases to be considered while setting the sequence no. 2090 * Essentially, we can come here while processing an unacceptable pkt 2091 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 2092 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 2093 * If we are here for a zero window probe, stick with suna. In all 2094 * other cases, we check if suna + swnd encompasses snxt and set 2095 * the sequence number to snxt, if so. If snxt falls outside the 2096 * window (the receiver probably shrunk its window), we will go with 2097 * suna + swnd, otherwise the sequence no will be unacceptable to the 2098 * receiver. 2099 */ 2100 if (tcp->tcp_zero_win_probe) { 2101 seq_no = tcp->tcp_suna; 2102 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 2103 ASSERT(tcp->tcp_swnd == 0); 2104 seq_no = tcp->tcp_snxt; 2105 } else { 2106 seq_no = SEQ_GT(tcp->tcp_snxt, 2107 (tcp->tcp_suna + tcp->tcp_swnd)) ? 2108 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 2109 } 2110 2111 if (tcp->tcp_valid_bits) { 2112 /* 2113 * For the complex case where we have to send some 2114 * controls (FIN or SYN), let tcp_xmit_mp do it. 2115 */ 2116 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 2117 NULL, B_FALSE)); 2118 } else { 2119 /* Generate a simple ACK */ 2120 int data_length; 2121 uchar_t *rptr; 2122 tcpha_t *tcpha; 2123 mblk_t *mp1; 2124 int32_t total_hdr_len; 2125 int32_t tcp_hdr_len; 2126 int32_t num_sack_blk = 0; 2127 int32_t sack_opt_len; 2128 ip_xmit_attr_t *ixa = connp->conn_ixa; 2129 2130 /* 2131 * Allocate space for TCP + IP headers 2132 * and link-level header 2133 */ 2134 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 2135 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 2136 tcp->tcp_num_sack_blk); 2137 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 2138 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 2139 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 2140 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 2141 } else { 2142 total_hdr_len = connp->conn_ht_iphc_len; 2143 tcp_hdr_len = connp->conn_ht_ulp_len; 2144 } 2145 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 2146 if (!mp1) 2147 return (NULL); 2148 2149 /* Update the latest receive window size in TCP header. */ 2150 tcp->tcp_tcpha->tha_win = 2151 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2152 /* copy in prototype TCP + IP header */ 2153 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 2154 mp1->b_rptr = rptr; 2155 mp1->b_wptr = rptr + total_hdr_len; 2156 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 2157 2158 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 2159 2160 /* Set the TCP sequence number. */ 2161 tcpha->tha_seq = htonl(seq_no); 2162 2163 /* Set up the TCP flag field. */ 2164 tcpha->tha_flags = (uchar_t)TH_ACK; 2165 if (tcp->tcp_ecn_echo_on) 2166 tcpha->tha_flags |= TH_ECE; 2167 2168 tcp->tcp_rack = tcp->tcp_rnxt; 2169 tcp->tcp_rack_cnt = 0; 2170 2171 /* fill in timestamp option if in use */ 2172 if (tcp->tcp_snd_ts_ok) { 2173 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 2174 2175 U32_TO_BE32(llbolt, 2176 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 2177 U32_TO_BE32(tcp->tcp_ts_recent, 2178 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 2179 } 2180 2181 /* Fill in SACK options */ 2182 if (num_sack_blk > 0) { 2183 uchar_t *wptr = (uchar_t *)tcpha + 2184 connp->conn_ht_ulp_len; 2185 sack_blk_t *tmp; 2186 int32_t i; 2187 2188 wptr[0] = TCPOPT_NOP; 2189 wptr[1] = TCPOPT_NOP; 2190 wptr[2] = TCPOPT_SACK; 2191 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 2192 sizeof (sack_blk_t); 2193 wptr += TCPOPT_REAL_SACK_LEN; 2194 2195 tmp = tcp->tcp_sack_list; 2196 for (i = 0; i < num_sack_blk; i++) { 2197 U32_TO_BE32(tmp[i].begin, wptr); 2198 wptr += sizeof (tcp_seq); 2199 U32_TO_BE32(tmp[i].end, wptr); 2200 wptr += sizeof (tcp_seq); 2201 } 2202 tcpha->tha_offset_and_reserved += 2203 ((num_sack_blk * 2 + 1) << 4); 2204 } 2205 2206 ixa->ixa_pktlen = total_hdr_len; 2207 2208 if (ixa->ixa_flags & IXAF_IS_IPV4) { 2209 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 2210 } else { 2211 ip6_t *ip6 = (ip6_t *)rptr; 2212 2213 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 2214 } 2215 2216 /* 2217 * Prime pump for checksum calculation in IP. Include the 2218 * adjustment for a source route if any. 2219 */ 2220 data_length = tcp_hdr_len + connp->conn_sum; 2221 data_length = (data_length >> 16) + (data_length & 0xFFFF); 2222 tcpha->tha_sum = htons(data_length); 2223 2224 if (tcp->tcp_ip_forward_progress) { 2225 tcp->tcp_ip_forward_progress = B_FALSE; 2226 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 2227 } else { 2228 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 2229 } 2230 return (mp1); 2231 } 2232 } 2233 2234 /* 2235 * Dummy socket upcalls for if/when the conn_t gets detached from a 2236 * direct-callback sonode via a user-driven close(). Easy to catch with 2237 * DTrace FBT, and should be mostly harmless. 2238 */ 2239 2240 /* ARGSUSED */ 2241 static sock_upper_handle_t 2242 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y, 2243 sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored) 2244 { 2245 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2246 return (NULL); 2247 } 2248 2249 /* ARGSUSED */ 2250 static void 2251 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr, 2252 pid_t pid) 2253 { 2254 ASSERT(x == NULL); 2255 /* Normally we'd crhold(cr) and attach it to socket state. */ 2256 /* LINTED */ 2257 } 2258 2259 /* ARGSUSED */ 2260 static int 2261 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah) 2262 { 2263 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2264 return (-1); 2265 } 2266 2267 /* ARGSUSED */ 2268 static void 2269 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah) 2270 { 2271 ASSERT(x == NULL); 2272 /* We really want this one to be a harmless NOP for now. */ 2273 /* LINTED */ 2274 } 2275 2276 /* ARGSUSED */ 2277 static ssize_t 2278 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags, 2279 int *error, boolean_t *push) 2280 { 2281 ASSERT(x == NULL); 2282 2283 /* 2284 * Consume the message, set ESHUTDOWN, and return an error. 2285 * Nobody's home! 2286 */ 2287 freemsg(mp); 2288 *error = ESHUTDOWN; 2289 return (-1); 2290 } 2291 2292 /* ARGSUSED */ 2293 static void 2294 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y) 2295 { 2296 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2297 } 2298 2299 /* ARGSUSED */ 2300 static void 2301 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y) 2302 { 2303 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2304 } 2305 2306 /* ARGSUSED */ 2307 static void 2308 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len) 2309 { 2310 ASSERT(x == NULL); 2311 /* Otherwise, this would signal socket state about OOB data. */ 2312 } 2313 2314 /* ARGSUSED */ 2315 static void 2316 tcp_dummy_set_error(sock_upper_handle_t x, int err) 2317 { 2318 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2319 } 2320 2321 /* ARGSUSED */ 2322 static void 2323 tcp_dummy_onearg(sock_upper_handle_t x) 2324 { 2325 ASSERT(0); /* Panic in debug, otherwise ignore. */ 2326 } 2327 2328 static sock_upcalls_t tcp_dummy_upcalls = { 2329 tcp_dummy_newconn, 2330 tcp_dummy_connected, 2331 tcp_dummy_disconnected, 2332 tcp_dummy_opctl, 2333 tcp_dummy_recv, 2334 tcp_dummy_set_proto_props, 2335 tcp_dummy_txq_full, 2336 tcp_dummy_signal_oob, 2337 tcp_dummy_onearg, 2338 tcp_dummy_set_error, 2339 tcp_dummy_onearg 2340 }; 2341 2342 /* 2343 * Handle M_DATA messages from IP. Its called directly from IP via 2344 * squeue for received IP packets. 2345 * 2346 * The first argument is always the connp/tcp to which the mp belongs. 2347 * There are no exceptions to this rule. The caller has already put 2348 * a reference on this connp/tcp and once tcp_input_data() returns, 2349 * the squeue will do the refrele. 2350 * 2351 * The TH_SYN for the listener directly go to tcp_input_listener via 2352 * squeue. ICMP errors go directly to tcp_icmp_input(). 2353 * 2354 * sqp: NULL = recursive, sqp != NULL means called from squeue 2355 */ 2356 void 2357 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 2358 { 2359 int32_t bytes_acked; 2360 int32_t gap; 2361 mblk_t *mp1; 2362 uint_t flags; 2363 uint32_t new_swnd = 0; 2364 uchar_t *iphdr; 2365 uchar_t *rptr; 2366 int32_t rgap; 2367 uint32_t seg_ack; 2368 int seg_len; 2369 uint_t ip_hdr_len; 2370 uint32_t seg_seq; 2371 tcpha_t *tcpha; 2372 int urp; 2373 tcp_opt_t tcpopt; 2374 ip_pkt_t ipp; 2375 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 2376 uint32_t cwnd; 2377 uint32_t add; 2378 int npkt; 2379 int mss; 2380 conn_t *connp = (conn_t *)arg; 2381 squeue_t *sqp = (squeue_t *)arg2; 2382 tcp_t *tcp = connp->conn_tcp; 2383 tcp_stack_t *tcps = tcp->tcp_tcps; 2384 sock_upcalls_t *sockupcalls; 2385 2386 /* 2387 * RST from fused tcp loopback peer should trigger an unfuse. 2388 */ 2389 if (tcp->tcp_fused) { 2390 TCP_STAT(tcps, tcp_fusion_aborted); 2391 tcp_unfuse(tcp); 2392 } 2393 2394 iphdr = mp->b_rptr; 2395 rptr = mp->b_rptr; 2396 ASSERT(OK_32PTR(rptr)); 2397 2398 ip_hdr_len = ira->ira_ip_hdr_length; 2399 if (connp->conn_recv_ancillary.crb_all != 0) { 2400 /* 2401 * Record packet information in the ip_pkt_t 2402 */ 2403 ipp.ipp_fields = 0; 2404 if (ira->ira_flags & IRAF_IS_IPV4) { 2405 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 2406 B_FALSE); 2407 } else { 2408 uint8_t nexthdrp; 2409 2410 /* 2411 * IPv6 packets can only be received by applications 2412 * that are prepared to receive IPv6 addresses. 2413 * The IP fanout must ensure this. 2414 */ 2415 ASSERT(connp->conn_family == AF_INET6); 2416 2417 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 2418 &nexthdrp); 2419 ASSERT(nexthdrp == IPPROTO_TCP); 2420 2421 /* Could have caused a pullup? */ 2422 iphdr = mp->b_rptr; 2423 rptr = mp->b_rptr; 2424 } 2425 } 2426 ASSERT(DB_TYPE(mp) == M_DATA); 2427 ASSERT(mp->b_next == NULL); 2428 2429 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2430 seg_seq = ntohl(tcpha->tha_seq); 2431 seg_ack = ntohl(tcpha->tha_ack); 2432 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 2433 seg_len = (int)(mp->b_wptr - rptr) - 2434 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 2435 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 2436 do { 2437 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 2438 (uintptr_t)INT_MAX); 2439 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 2440 } while ((mp1 = mp1->b_cont) != NULL && 2441 mp1->b_datap->db_type == M_DATA); 2442 } 2443 2444 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa, 2445 __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp, 2446 __dtrace_tcp_tcph_t *, tcpha); 2447 2448 if (tcp->tcp_state == TCPS_TIME_WAIT) { 2449 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 2450 seg_len, tcpha, ira); 2451 return; 2452 } 2453 2454 if (sqp != NULL) { 2455 /* 2456 * This is the correct place to update tcp_last_recv_time. Note 2457 * that it is also updated for tcp structure that belongs to 2458 * global and listener queues which do not really need updating. 2459 * But that should not cause any harm. And it is updated for 2460 * all kinds of incoming segments, not only for data segments. 2461 */ 2462 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 2463 } 2464 2465 flags = (unsigned int)tcpha->tha_flags & 0xFF; 2466 2467 BUMP_LOCAL(tcp->tcp_ibsegs); 2468 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2469 2470 if ((flags & TH_URG) && sqp != NULL) { 2471 /* 2472 * TCP can't handle urgent pointers that arrive before 2473 * the connection has been accept()ed since it can't 2474 * buffer OOB data. Discard segment if this happens. 2475 * 2476 * We can't just rely on a non-null tcp_listener to indicate 2477 * that the accept() has completed since unlinking of the 2478 * eager and completion of the accept are not atomic. 2479 * tcp_detached, when it is not set (B_FALSE) indicates 2480 * that the accept() has completed. 2481 * 2482 * Nor can it reassemble urgent pointers, so discard 2483 * if it's not the next segment expected. 2484 * 2485 * Otherwise, collapse chain into one mblk (discard if 2486 * that fails). This makes sure the headers, retransmitted 2487 * data, and new data all are in the same mblk. 2488 */ 2489 ASSERT(mp != NULL); 2490 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 2491 freemsg(mp); 2492 return; 2493 } 2494 /* Update pointers into message */ 2495 iphdr = rptr = mp->b_rptr; 2496 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 2497 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 2498 /* 2499 * Since we can't handle any data with this urgent 2500 * pointer that is out of sequence, we expunge 2501 * the data. This allows us to still register 2502 * the urgent mark and generate the M_PCSIG, 2503 * which we can do. 2504 */ 2505 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2506 seg_len = 0; 2507 } 2508 } 2509 2510 sockupcalls = connp->conn_upcalls; 2511 /* A conn_t may have belonged to a now-closed socket. Be careful. */ 2512 if (sockupcalls == NULL) 2513 sockupcalls = &tcp_dummy_upcalls; 2514 2515 switch (tcp->tcp_state) { 2516 case TCPS_SYN_SENT: 2517 if (connp->conn_final_sqp == NULL && 2518 tcp_outbound_squeue_switch && sqp != NULL) { 2519 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 2520 connp->conn_final_sqp = sqp; 2521 if (connp->conn_final_sqp != connp->conn_sqp) { 2522 DTRACE_PROBE1(conn__final__sqp__switch, 2523 conn_t *, connp); 2524 CONN_INC_REF(connp); 2525 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 2526 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2527 tcp_input_data, connp, ira, ip_squeue_flag, 2528 SQTAG_CONNECT_FINISH); 2529 return; 2530 } 2531 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 2532 } 2533 if (flags & TH_ACK) { 2534 /* 2535 * Note that our stack cannot send data before a 2536 * connection is established, therefore the 2537 * following check is valid. Otherwise, it has 2538 * to be changed. 2539 */ 2540 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 2541 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2542 freemsg(mp); 2543 if (flags & TH_RST) 2544 return; 2545 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 2546 tcp, seg_ack, 0, TH_RST); 2547 return; 2548 } 2549 ASSERT(tcp->tcp_suna + 1 == seg_ack); 2550 } 2551 if (flags & TH_RST) { 2552 if (flags & TH_ACK) { 2553 DTRACE_TCP5(connect__refused, mblk_t *, NULL, 2554 ip_xmit_attr_t *, connp->conn_ixa, 2555 void_ip_t *, iphdr, tcp_t *, tcp, 2556 tcph_t *, tcpha); 2557 (void) tcp_clean_death(tcp, ECONNREFUSED); 2558 } 2559 freemsg(mp); 2560 return; 2561 } 2562 if (!(flags & TH_SYN)) { 2563 freemsg(mp); 2564 return; 2565 } 2566 2567 /* Process all TCP options. */ 2568 tcp_process_options(tcp, tcpha); 2569 /* 2570 * The following changes our rwnd to be a multiple of the 2571 * MIN(peer MSS, our MSS) for performance reason. 2572 */ 2573 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 2574 tcp->tcp_mss)); 2575 2576 /* Is the other end ECN capable? */ 2577 if (tcp->tcp_ecn_ok) { 2578 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 2579 tcp->tcp_ecn_ok = B_FALSE; 2580 } 2581 } 2582 /* 2583 * Clear ECN flags because it may interfere with later 2584 * processing. 2585 */ 2586 flags &= ~(TH_ECE|TH_CWR); 2587 2588 tcp->tcp_irs = seg_seq; 2589 tcp->tcp_rack = seg_seq; 2590 tcp->tcp_rnxt = seg_seq + 1; 2591 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 2592 if (!TCP_IS_DETACHED(tcp)) { 2593 /* Allocate room for SACK options if needed. */ 2594 connp->conn_wroff = connp->conn_ht_iphc_len; 2595 if (tcp->tcp_snd_sack_ok) 2596 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 2597 if (!tcp->tcp_loopback) 2598 connp->conn_wroff += tcps->tcps_wroff_xtra; 2599 2600 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2601 connp->conn_wroff); 2602 } 2603 if (flags & TH_ACK) { 2604 /* 2605 * If we can't get the confirmation upstream, pretend 2606 * we didn't even see this one. 2607 * 2608 * XXX: how can we pretend we didn't see it if we 2609 * have updated rnxt et. al. 2610 * 2611 * For loopback we defer sending up the T_CONN_CON 2612 * until after some checks below. 2613 */ 2614 mp1 = NULL; 2615 /* 2616 * tcp_sendmsg() checks tcp_state without entering 2617 * the squeue so tcp_state should be updated before 2618 * sending up connection confirmation. Probe the 2619 * state change below when we are sure the connection 2620 * confirmation has been sent. 2621 */ 2622 tcp->tcp_state = TCPS_ESTABLISHED; 2623 if (!tcp_conn_con(tcp, iphdr, mp, 2624 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 2625 tcp->tcp_state = TCPS_SYN_SENT; 2626 freemsg(mp); 2627 return; 2628 } 2629 TCPS_CONN_INC(tcps); 2630 /* SYN was acked - making progress */ 2631 tcp->tcp_ip_forward_progress = B_TRUE; 2632 2633 /* One for the SYN */ 2634 tcp->tcp_suna = tcp->tcp_iss + 1; 2635 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 2636 2637 /* 2638 * If SYN was retransmitted, need to reset all 2639 * retransmission info. This is because this 2640 * segment will be treated as a dup ACK. 2641 */ 2642 if (tcp->tcp_rexmit) { 2643 tcp->tcp_rexmit = B_FALSE; 2644 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 2645 tcp->tcp_rexmit_max = tcp->tcp_snxt; 2646 tcp->tcp_snd_burst = tcp->tcp_localnet ? 2647 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 2648 tcp->tcp_ms_we_have_waited = 0; 2649 2650 /* 2651 * Set tcp_cwnd back to 1 MSS, per 2652 * recommendation from 2653 * draft-floyd-incr-init-win-01.txt, 2654 * Increasing TCP's Initial Window. 2655 */ 2656 tcp->tcp_cwnd = tcp->tcp_mss; 2657 } 2658 2659 tcp->tcp_swl1 = seg_seq; 2660 tcp->tcp_swl2 = seg_ack; 2661 2662 new_swnd = ntohs(tcpha->tha_win); 2663 tcp->tcp_swnd = new_swnd; 2664 if (new_swnd > tcp->tcp_max_swnd) 2665 tcp->tcp_max_swnd = new_swnd; 2666 2667 /* 2668 * Always send the three-way handshake ack immediately 2669 * in order to make the connection complete as soon as 2670 * possible on the accepting host. 2671 */ 2672 flags |= TH_ACK_NEEDED; 2673 2674 /* 2675 * Trace connect-established here. 2676 */ 2677 DTRACE_TCP5(connect__established, mblk_t *, NULL, 2678 ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa, 2679 void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha); 2680 2681 /* Trace change from SYN_SENT -> ESTABLISHED here */ 2682 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2683 connp->conn_ixa, void, NULL, tcp_t *, tcp, 2684 void, NULL, int32_t, TCPS_SYN_SENT); 2685 2686 /* 2687 * Special case for loopback. At this point we have 2688 * received SYN-ACK from the remote endpoint. In 2689 * order to ensure that both endpoints reach the 2690 * fused state prior to any data exchange, the final 2691 * ACK needs to be sent before we indicate T_CONN_CON 2692 * to the module upstream. 2693 */ 2694 if (tcp->tcp_loopback) { 2695 mblk_t *ack_mp; 2696 2697 ASSERT(!tcp->tcp_unfusable); 2698 ASSERT(mp1 != NULL); 2699 /* 2700 * For loopback, we always get a pure SYN-ACK 2701 * and only need to send back the final ACK 2702 * with no data (this is because the other 2703 * tcp is ours and we don't do T/TCP). This 2704 * final ACK triggers the passive side to 2705 * perform fusion in ESTABLISHED state. 2706 */ 2707 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 2708 if (tcp->tcp_ack_tid != 0) { 2709 (void) TCP_TIMER_CANCEL(tcp, 2710 tcp->tcp_ack_tid); 2711 tcp->tcp_ack_tid = 0; 2712 } 2713 tcp_send_data(tcp, ack_mp); 2714 BUMP_LOCAL(tcp->tcp_obsegs); 2715 TCPS_BUMP_MIB(tcps, tcpOutAck); 2716 2717 if (!IPCL_IS_NONSTR(connp)) { 2718 /* Send up T_CONN_CON */ 2719 if (ira->ira_cred != NULL) { 2720 mblk_setcred(mp1, 2721 ira->ira_cred, 2722 ira->ira_cpid); 2723 } 2724 putnext(connp->conn_rq, mp1); 2725 } else { 2726 (*sockupcalls->su_connected) 2727 (connp->conn_upper_handle, 2728 tcp->tcp_connid, 2729 ira->ira_cred, 2730 ira->ira_cpid); 2731 freemsg(mp1); 2732 } 2733 2734 freemsg(mp); 2735 return; 2736 } 2737 /* 2738 * Forget fusion; we need to handle more 2739 * complex cases below. Send the deferred 2740 * T_CONN_CON message upstream and proceed 2741 * as usual. Mark this tcp as not capable 2742 * of fusion. 2743 */ 2744 TCP_STAT(tcps, tcp_fusion_unfusable); 2745 tcp->tcp_unfusable = B_TRUE; 2746 if (!IPCL_IS_NONSTR(connp)) { 2747 if (ira->ira_cred != NULL) { 2748 mblk_setcred(mp1, ira->ira_cred, 2749 ira->ira_cpid); 2750 } 2751 putnext(connp->conn_rq, mp1); 2752 } else { 2753 (*sockupcalls->su_connected) 2754 (connp->conn_upper_handle, 2755 tcp->tcp_connid, ira->ira_cred, 2756 ira->ira_cpid); 2757 freemsg(mp1); 2758 } 2759 } 2760 2761 /* 2762 * Check to see if there is data to be sent. If 2763 * yes, set the transmit flag. Then check to see 2764 * if received data processing needs to be done. 2765 * If not, go straight to xmit_check. This short 2766 * cut is OK as we don't support T/TCP. 2767 */ 2768 if (tcp->tcp_unsent) 2769 flags |= TH_XMIT_NEEDED; 2770 2771 if (seg_len == 0 && !(flags & TH_URG)) { 2772 freemsg(mp); 2773 goto xmit_check; 2774 } 2775 2776 flags &= ~TH_SYN; 2777 seg_seq++; 2778 break; 2779 } 2780 tcp->tcp_state = TCPS_SYN_RCVD; 2781 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2782 connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp, 2783 tcph_t *, NULL, int32_t, TCPS_SYN_SENT); 2784 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 2785 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 2786 if (mp1 != NULL) { 2787 tcp_send_data(tcp, mp1); 2788 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 2789 } 2790 freemsg(mp); 2791 return; 2792 case TCPS_SYN_RCVD: 2793 if (flags & TH_ACK) { 2794 uint32_t pinit_wnd; 2795 2796 /* 2797 * In this state, a SYN|ACK packet is either bogus 2798 * because the other side must be ACKing our SYN which 2799 * indicates it has seen the ACK for their SYN and 2800 * shouldn't retransmit it or we're crossing SYNs 2801 * on active open. 2802 */ 2803 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 2804 freemsg(mp); 2805 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 2806 tcp, seg_ack, 0, TH_RST); 2807 return; 2808 } 2809 /* 2810 * NOTE: RFC 793 pg. 72 says this should be 2811 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 2812 * but that would mean we have an ack that ignored 2813 * our SYN. 2814 */ 2815 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 2816 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 2817 freemsg(mp); 2818 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 2819 tcp, seg_ack, 0, TH_RST); 2820 return; 2821 } 2822 /* 2823 * No sane TCP stack will send such a small window 2824 * without receiving any data. Just drop this invalid 2825 * ACK. We also shorten the abort timeout in case 2826 * this is an attack. 2827 */ 2828 pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws; 2829 if (pinit_wnd < tcp->tcp_mss && 2830 pinit_wnd < tcp_init_wnd_chk) { 2831 freemsg(mp); 2832 TCP_STAT(tcps, tcp_zwin_ack_syn); 2833 tcp->tcp_second_ctimer_threshold = 2834 tcp_early_abort * SECONDS; 2835 return; 2836 } 2837 } 2838 break; 2839 case TCPS_LISTEN: 2840 /* 2841 * Only a TLI listener can come through this path when a 2842 * acceptor is going back to be a listener and a packet 2843 * for the acceptor hits the classifier. For a socket 2844 * listener, this can never happen because a listener 2845 * can never accept connection on itself and hence a 2846 * socket acceptor can not go back to being a listener. 2847 */ 2848 ASSERT(!TCP_IS_SOCKET(tcp)); 2849 /*FALLTHRU*/ 2850 case TCPS_CLOSED: 2851 case TCPS_BOUND: { 2852 conn_t *new_connp; 2853 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2854 2855 /* 2856 * Don't accept any input on a closed tcp as this TCP logically 2857 * does not exist on the system. Don't proceed further with 2858 * this TCP. For instance, this packet could trigger another 2859 * close of this tcp which would be disastrous for tcp_refcnt. 2860 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 2861 * be called at most once on a TCP. In this case we need to 2862 * refeed the packet into the classifier and figure out where 2863 * the packet should go. 2864 */ 2865 new_connp = ipcl_classify(mp, ira, ipst); 2866 if (new_connp != NULL) { 2867 /* Drops ref on new_connp */ 2868 tcp_reinput(new_connp, mp, ira, ipst); 2869 return; 2870 } 2871 /* We failed to classify. For now just drop the packet */ 2872 freemsg(mp); 2873 return; 2874 } 2875 case TCPS_IDLE: 2876 /* 2877 * Handle the case where the tcp_clean_death() has happened 2878 * on a connection (application hasn't closed yet) but a packet 2879 * was already queued on squeue before tcp_clean_death() 2880 * was processed. Calling tcp_clean_death() twice on same 2881 * connection can result in weird behaviour. 2882 */ 2883 freemsg(mp); 2884 return; 2885 default: 2886 break; 2887 } 2888 2889 /* 2890 * Already on the correct queue/perimeter. 2891 * If this is a detached connection and not an eager 2892 * connection hanging off a listener then new data 2893 * (past the FIN) will cause a reset. 2894 * We do a special check here where it 2895 * is out of the main line, rather than check 2896 * if we are detached every time we see new 2897 * data down below. 2898 */ 2899 if (TCP_IS_DETACHED_NONEAGER(tcp) && 2900 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 2901 TCPS_BUMP_MIB(tcps, tcpInClosed); 2902 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 2903 freemsg(mp); 2904 tcp_xmit_ctl("new data when detached", tcp, 2905 tcp->tcp_snxt, 0, TH_RST); 2906 (void) tcp_clean_death(tcp, EPROTO); 2907 return; 2908 } 2909 2910 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 2911 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 2912 new_swnd = ntohs(tcpha->tha_win) << 2913 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 2914 2915 if (tcp->tcp_snd_ts_ok) { 2916 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 2917 /* 2918 * This segment is not acceptable. 2919 * Drop it and send back an ACK. 2920 */ 2921 freemsg(mp); 2922 flags |= TH_ACK_NEEDED; 2923 goto ack_check; 2924 } 2925 } else if (tcp->tcp_snd_sack_ok) { 2926 tcpopt.tcp = tcp; 2927 /* 2928 * SACK info in already updated in tcp_parse_options. Ignore 2929 * all other TCP options... 2930 */ 2931 (void) tcp_parse_options(tcpha, &tcpopt); 2932 } 2933 try_again:; 2934 mss = tcp->tcp_mss; 2935 gap = seg_seq - tcp->tcp_rnxt; 2936 rgap = tcp->tcp_rwnd - (gap + seg_len); 2937 /* 2938 * gap is the amount of sequence space between what we expect to see 2939 * and what we got for seg_seq. A positive value for gap means 2940 * something got lost. A negative value means we got some old stuff. 2941 */ 2942 if (gap < 0) { 2943 /* Old stuff present. Is the SYN in there? */ 2944 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 2945 (seg_len != 0)) { 2946 flags &= ~TH_SYN; 2947 seg_seq++; 2948 urp--; 2949 /* Recompute the gaps after noting the SYN. */ 2950 goto try_again; 2951 } 2952 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs); 2953 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, 2954 (seg_len > -gap ? -gap : seg_len)); 2955 /* Remove the old stuff from seg_len. */ 2956 seg_len += gap; 2957 /* 2958 * Anything left? 2959 * Make sure to check for unack'd FIN when rest of data 2960 * has been previously ack'd. 2961 */ 2962 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 2963 /* 2964 * Resets are only valid if they lie within our offered 2965 * window. If the RST bit is set, we just ignore this 2966 * segment. 2967 */ 2968 if (flags & TH_RST) { 2969 freemsg(mp); 2970 return; 2971 } 2972 2973 /* 2974 * The arriving of dup data packets indicate that we 2975 * may have postponed an ack for too long, or the other 2976 * side's RTT estimate is out of shape. Start acking 2977 * more often. 2978 */ 2979 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 2980 tcp->tcp_rack_cnt >= 1 && 2981 tcp->tcp_rack_abs_max > 2) { 2982 tcp->tcp_rack_abs_max--; 2983 } 2984 tcp->tcp_rack_cur_max = 1; 2985 2986 /* 2987 * This segment is "unacceptable". None of its 2988 * sequence space lies within our advertized window. 2989 * 2990 * Adjust seg_len to the original value for tracing. 2991 */ 2992 seg_len -= gap; 2993 if (connp->conn_debug) { 2994 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 2995 "tcp_rput: unacceptable, gap %d, rgap %d, " 2996 "flags 0x%x, seg_seq %u, seg_ack %u, " 2997 "seg_len %d, rnxt %u, snxt %u, %s", 2998 gap, rgap, flags, seg_seq, seg_ack, 2999 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 3000 tcp_display(tcp, NULL, 3001 DISP_ADDR_AND_PORT)); 3002 } 3003 3004 /* 3005 * Arrange to send an ACK in response to the 3006 * unacceptable segment per RFC 793 page 69. There 3007 * is only one small difference between ours and the 3008 * acceptability test in the RFC - we accept ACK-only 3009 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 3010 * will be generated. 3011 * 3012 * Note that we have to ACK an ACK-only packet at least 3013 * for stacks that send 0-length keep-alives with 3014 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 3015 * section 4.2.3.6. As long as we don't ever generate 3016 * an unacceptable packet in response to an incoming 3017 * packet that is unacceptable, it should not cause 3018 * "ACK wars". 3019 */ 3020 flags |= TH_ACK_NEEDED; 3021 3022 /* 3023 * Continue processing this segment in order to use the 3024 * ACK information it contains, but skip all other 3025 * sequence-number processing. Processing the ACK 3026 * information is necessary in order to 3027 * re-synchronize connections that may have lost 3028 * synchronization. 3029 * 3030 * We clear seg_len and flag fields related to 3031 * sequence number processing as they are not 3032 * to be trusted for an unacceptable segment. 3033 */ 3034 seg_len = 0; 3035 flags &= ~(TH_SYN | TH_FIN | TH_URG); 3036 goto process_ack; 3037 } 3038 3039 /* Fix seg_seq, and chew the gap off the front. */ 3040 seg_seq = tcp->tcp_rnxt; 3041 urp += gap; 3042 do { 3043 mblk_t *mp2; 3044 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3045 (uintptr_t)UINT_MAX); 3046 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 3047 if (gap > 0) { 3048 mp->b_rptr = mp->b_wptr - gap; 3049 break; 3050 } 3051 mp2 = mp; 3052 mp = mp->b_cont; 3053 freeb(mp2); 3054 } while (gap < 0); 3055 /* 3056 * If the urgent data has already been acknowledged, we 3057 * should ignore TH_URG below 3058 */ 3059 if (urp < 0) 3060 flags &= ~TH_URG; 3061 } 3062 /* 3063 * rgap is the amount of stuff received out of window. A negative 3064 * value is the amount out of window. 3065 */ 3066 if (rgap < 0) { 3067 mblk_t *mp2; 3068 3069 if (tcp->tcp_rwnd == 0) { 3070 TCPS_BUMP_MIB(tcps, tcpInWinProbe); 3071 } else { 3072 TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs); 3073 TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap); 3074 } 3075 3076 /* 3077 * seg_len does not include the FIN, so if more than 3078 * just the FIN is out of window, we act like we don't 3079 * see it. (If just the FIN is out of window, rgap 3080 * will be zero and we will go ahead and acknowledge 3081 * the FIN.) 3082 */ 3083 flags &= ~TH_FIN; 3084 3085 /* Fix seg_len and make sure there is something left. */ 3086 seg_len += rgap; 3087 if (seg_len <= 0) { 3088 /* 3089 * Resets are only valid if they lie within our offered 3090 * window. If the RST bit is set, we just ignore this 3091 * segment. 3092 */ 3093 if (flags & TH_RST) { 3094 freemsg(mp); 3095 return; 3096 } 3097 3098 /* Per RFC 793, we need to send back an ACK. */ 3099 flags |= TH_ACK_NEEDED; 3100 3101 /* 3102 * Send SIGURG as soon as possible i.e. even 3103 * if the TH_URG was delivered in a window probe 3104 * packet (which will be unacceptable). 3105 * 3106 * We generate a signal if none has been generated 3107 * for this connection or if this is a new urgent 3108 * byte. Also send a zero-length "unmarked" message 3109 * to inform SIOCATMARK that this is not the mark. 3110 * 3111 * tcp_urp_last_valid is cleared when the T_exdata_ind 3112 * is sent up. This plus the check for old data 3113 * (gap >= 0) handles the wraparound of the sequence 3114 * number space without having to always track the 3115 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 3116 * this max in its rcv_up variable). 3117 * 3118 * This prevents duplicate SIGURGS due to a "late" 3119 * zero-window probe when the T_EXDATA_IND has already 3120 * been sent up. 3121 */ 3122 if ((flags & TH_URG) && 3123 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 3124 tcp->tcp_urp_last))) { 3125 if (IPCL_IS_NONSTR(connp)) { 3126 if (!TCP_IS_DETACHED(tcp)) { 3127 (*sockupcalls->su_signal_oob) 3128 (connp->conn_upper_handle, 3129 urp); 3130 } 3131 } else { 3132 mp1 = allocb(0, BPRI_MED); 3133 if (mp1 == NULL) { 3134 freemsg(mp); 3135 return; 3136 } 3137 if (!TCP_IS_DETACHED(tcp) && 3138 !putnextctl1(connp->conn_rq, 3139 M_PCSIG, SIGURG)) { 3140 /* Try again on the rexmit. */ 3141 freemsg(mp1); 3142 freemsg(mp); 3143 return; 3144 } 3145 /* 3146 * If the next byte would be the mark 3147 * then mark with MARKNEXT else mark 3148 * with NOTMARKNEXT. 3149 */ 3150 if (gap == 0 && urp == 0) 3151 mp1->b_flag |= MSGMARKNEXT; 3152 else 3153 mp1->b_flag |= MSGNOTMARKNEXT; 3154 freemsg(tcp->tcp_urp_mark_mp); 3155 tcp->tcp_urp_mark_mp = mp1; 3156 flags |= TH_SEND_URP_MARK; 3157 } 3158 tcp->tcp_urp_last_valid = B_TRUE; 3159 tcp->tcp_urp_last = urp + seg_seq; 3160 } 3161 /* 3162 * If this is a zero window probe, continue to 3163 * process the ACK part. But we need to set seg_len 3164 * to 0 to avoid data processing. Otherwise just 3165 * drop the segment and send back an ACK. 3166 */ 3167 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 3168 flags &= ~(TH_SYN | TH_URG); 3169 seg_len = 0; 3170 goto process_ack; 3171 } else { 3172 freemsg(mp); 3173 goto ack_check; 3174 } 3175 } 3176 /* Pitch out of window stuff off the end. */ 3177 rgap = seg_len; 3178 mp2 = mp; 3179 do { 3180 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 3181 (uintptr_t)INT_MAX); 3182 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 3183 if (rgap < 0) { 3184 mp2->b_wptr += rgap; 3185 if ((mp1 = mp2->b_cont) != NULL) { 3186 mp2->b_cont = NULL; 3187 freemsg(mp1); 3188 } 3189 break; 3190 } 3191 } while ((mp2 = mp2->b_cont) != NULL); 3192 } 3193 ok:; 3194 /* 3195 * TCP should check ECN info for segments inside the window only. 3196 * Therefore the check should be done here. 3197 */ 3198 if (tcp->tcp_ecn_ok) { 3199 if (flags & TH_CWR) { 3200 tcp->tcp_ecn_echo_on = B_FALSE; 3201 } 3202 /* 3203 * Note that both ECN_CE and CWR can be set in the 3204 * same segment. In this case, we once again turn 3205 * on ECN_ECHO. 3206 */ 3207 if (connp->conn_ipversion == IPV4_VERSION) { 3208 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 3209 3210 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 3211 tcp->tcp_ecn_echo_on = B_TRUE; 3212 } 3213 } else { 3214 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 3215 3216 if ((vcf & htonl(IPH_ECN_CE << 20)) == 3217 htonl(IPH_ECN_CE << 20)) { 3218 tcp->tcp_ecn_echo_on = B_TRUE; 3219 } 3220 } 3221 } 3222 3223 /* 3224 * Check whether we can update tcp_ts_recent. This test is 3225 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 3226 * Extensions for High Performance: An Update", Internet Draft. 3227 */ 3228 if (tcp->tcp_snd_ts_ok && 3229 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 3230 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 3231 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 3232 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 3233 } 3234 3235 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 3236 /* 3237 * FIN in an out of order segment. We record this in 3238 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 3239 * Clear the FIN so that any check on FIN flag will fail. 3240 * Remember that FIN also counts in the sequence number 3241 * space. So we need to ack out of order FIN only segments. 3242 */ 3243 if (flags & TH_FIN) { 3244 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 3245 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 3246 flags &= ~TH_FIN; 3247 flags |= TH_ACK_NEEDED; 3248 } 3249 if (seg_len > 0) { 3250 /* Fill in the SACK blk list. */ 3251 if (tcp->tcp_snd_sack_ok) { 3252 tcp_sack_insert(tcp->tcp_sack_list, 3253 seg_seq, seg_seq + seg_len, 3254 &(tcp->tcp_num_sack_blk)); 3255 } 3256 3257 /* 3258 * Attempt reassembly and see if we have something 3259 * ready to go. 3260 */ 3261 mp = tcp_reass(tcp, mp, seg_seq); 3262 /* Always ack out of order packets */ 3263 flags |= TH_ACK_NEEDED | TH_PUSH; 3264 if (mp) { 3265 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 3266 (uintptr_t)INT_MAX); 3267 seg_len = mp->b_cont ? msgdsize(mp) : 3268 (int)(mp->b_wptr - mp->b_rptr); 3269 seg_seq = tcp->tcp_rnxt; 3270 /* 3271 * A gap is filled and the seq num and len 3272 * of the gap match that of a previously 3273 * received FIN, put the FIN flag back in. 3274 */ 3275 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3276 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3277 flags |= TH_FIN; 3278 tcp->tcp_valid_bits &= 3279 ~TCP_OFO_FIN_VALID; 3280 } 3281 if (tcp->tcp_reass_tid != 0) { 3282 (void) TCP_TIMER_CANCEL(tcp, 3283 tcp->tcp_reass_tid); 3284 /* 3285 * Restart the timer if there is still 3286 * data in the reassembly queue. 3287 */ 3288 if (tcp->tcp_reass_head != NULL) { 3289 tcp->tcp_reass_tid = TCP_TIMER( 3290 tcp, tcp_reass_timer, 3291 tcps->tcps_reass_timeout); 3292 } else { 3293 tcp->tcp_reass_tid = 0; 3294 } 3295 } 3296 } else { 3297 /* 3298 * Keep going even with NULL mp. 3299 * There may be a useful ACK or something else 3300 * we don't want to miss. 3301 * 3302 * But TCP should not perform fast retransmit 3303 * because of the ack number. TCP uses 3304 * seg_len == 0 to determine if it is a pure 3305 * ACK. And this is not a pure ACK. 3306 */ 3307 seg_len = 0; 3308 ofo_seg = B_TRUE; 3309 3310 if (tcps->tcps_reass_timeout != 0 && 3311 tcp->tcp_reass_tid == 0) { 3312 tcp->tcp_reass_tid = TCP_TIMER(tcp, 3313 tcp_reass_timer, 3314 tcps->tcps_reass_timeout); 3315 } 3316 } 3317 } 3318 } else if (seg_len > 0) { 3319 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 3320 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len); 3321 /* 3322 * If an out of order FIN was received before, and the seq 3323 * num and len of the new segment match that of the FIN, 3324 * put the FIN flag back in. 3325 */ 3326 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 3327 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 3328 flags |= TH_FIN; 3329 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 3330 } 3331 } 3332 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 3333 if (flags & TH_RST) { 3334 freemsg(mp); 3335 switch (tcp->tcp_state) { 3336 case TCPS_SYN_RCVD: 3337 (void) tcp_clean_death(tcp, ECONNREFUSED); 3338 break; 3339 case TCPS_ESTABLISHED: 3340 case TCPS_FIN_WAIT_1: 3341 case TCPS_FIN_WAIT_2: 3342 case TCPS_CLOSE_WAIT: 3343 (void) tcp_clean_death(tcp, ECONNRESET); 3344 break; 3345 case TCPS_CLOSING: 3346 case TCPS_LAST_ACK: 3347 (void) tcp_clean_death(tcp, 0); 3348 break; 3349 default: 3350 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3351 (void) tcp_clean_death(tcp, ENXIO); 3352 break; 3353 } 3354 return; 3355 } 3356 if (flags & TH_SYN) { 3357 /* 3358 * See RFC 793, Page 71 3359 * 3360 * The seq number must be in the window as it should 3361 * be "fixed" above. If it is outside window, it should 3362 * be already rejected. Note that we allow seg_seq to be 3363 * rnxt + rwnd because we want to accept 0 window probe. 3364 */ 3365 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 3366 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 3367 freemsg(mp); 3368 /* 3369 * If the ACK flag is not set, just use our snxt as the 3370 * seq number of the RST segment. 3371 */ 3372 if (!(flags & TH_ACK)) { 3373 seg_ack = tcp->tcp_snxt; 3374 } 3375 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 3376 TH_RST|TH_ACK); 3377 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 3378 (void) tcp_clean_death(tcp, ECONNRESET); 3379 return; 3380 } 3381 /* 3382 * urp could be -1 when the urp field in the packet is 0 3383 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 3384 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 3385 */ 3386 if (flags & TH_URG && urp >= 0) { 3387 if (!tcp->tcp_urp_last_valid || 3388 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 3389 /* 3390 * Non-STREAMS sockets handle the urgent data a litte 3391 * differently from STREAMS based sockets. There is no 3392 * need to mark any mblks with the MSG{NOT,}MARKNEXT 3393 * flags to keep SIOCATMARK happy. Instead a 3394 * su_signal_oob upcall is made to update the mark. 3395 * Neither is a T_EXDATA_IND mblk needed to be 3396 * prepended to the urgent data. The urgent data is 3397 * delivered using the su_recv upcall, where we set 3398 * the MSG_OOB flag to indicate that it is urg data. 3399 * 3400 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 3401 * are used by non-STREAMS sockets. 3402 */ 3403 if (IPCL_IS_NONSTR(connp)) { 3404 if (!TCP_IS_DETACHED(tcp)) { 3405 (*sockupcalls->su_signal_oob) 3406 (connp->conn_upper_handle, urp); 3407 } 3408 } else { 3409 /* 3410 * If we haven't generated the signal yet for 3411 * this urgent pointer value, do it now. Also, 3412 * send up a zero-length M_DATA indicating 3413 * whether or not this is the mark. The latter 3414 * is not needed when a T_EXDATA_IND is sent up. 3415 * However, if there are allocation failures 3416 * this code relies on the sender retransmitting 3417 * and the socket code for determining the mark 3418 * should not block waiting for the peer to 3419 * transmit. Thus, for simplicity we always 3420 * send up the mark indication. 3421 */ 3422 mp1 = allocb(0, BPRI_MED); 3423 if (mp1 == NULL) { 3424 freemsg(mp); 3425 return; 3426 } 3427 if (!TCP_IS_DETACHED(tcp) && 3428 !putnextctl1(connp->conn_rq, M_PCSIG, 3429 SIGURG)) { 3430 /* Try again on the rexmit. */ 3431 freemsg(mp1); 3432 freemsg(mp); 3433 return; 3434 } 3435 /* 3436 * Mark with NOTMARKNEXT for now. 3437 * The code below will change this to MARKNEXT 3438 * if we are at the mark. 3439 * 3440 * If there are allocation failures (e.g. in 3441 * dupmsg below) the next time tcp_input_data 3442 * sees the urgent segment it will send up the 3443 * MSGMARKNEXT message. 3444 */ 3445 mp1->b_flag |= MSGNOTMARKNEXT; 3446 freemsg(tcp->tcp_urp_mark_mp); 3447 tcp->tcp_urp_mark_mp = mp1; 3448 flags |= TH_SEND_URP_MARK; 3449 #ifdef DEBUG 3450 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3451 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 3452 "last %x, %s", 3453 seg_seq, urp, tcp->tcp_urp_last, 3454 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3455 #endif /* DEBUG */ 3456 } 3457 tcp->tcp_urp_last_valid = B_TRUE; 3458 tcp->tcp_urp_last = urp + seg_seq; 3459 } else if (tcp->tcp_urp_mark_mp != NULL) { 3460 /* 3461 * An allocation failure prevented the previous 3462 * tcp_input_data from sending up the allocated 3463 * MSG*MARKNEXT message - send it up this time 3464 * around. 3465 */ 3466 flags |= TH_SEND_URP_MARK; 3467 } 3468 3469 /* 3470 * If the urgent byte is in this segment, make sure that it is 3471 * all by itself. This makes it much easier to deal with the 3472 * possibility of an allocation failure on the T_exdata_ind. 3473 * Note that seg_len is the number of bytes in the segment, and 3474 * urp is the offset into the segment of the urgent byte. 3475 * urp < seg_len means that the urgent byte is in this segment. 3476 */ 3477 if (urp < seg_len) { 3478 if (seg_len != 1) { 3479 uint32_t tmp_rnxt; 3480 /* 3481 * Break it up and feed it back in. 3482 * Re-attach the IP header. 3483 */ 3484 mp->b_rptr = iphdr; 3485 if (urp > 0) { 3486 /* 3487 * There is stuff before the urgent 3488 * byte. 3489 */ 3490 mp1 = dupmsg(mp); 3491 if (!mp1) { 3492 /* 3493 * Trim from urgent byte on. 3494 * The rest will come back. 3495 */ 3496 (void) adjmsg(mp, 3497 urp - seg_len); 3498 tcp_input_data(connp, 3499 mp, NULL, ira); 3500 return; 3501 } 3502 (void) adjmsg(mp1, urp - seg_len); 3503 /* Feed this piece back in. */ 3504 tmp_rnxt = tcp->tcp_rnxt; 3505 tcp_input_data(connp, mp1, NULL, ira); 3506 /* 3507 * If the data passed back in was not 3508 * processed (ie: bad ACK) sending 3509 * the remainder back in will cause a 3510 * loop. In this case, drop the 3511 * packet and let the sender try 3512 * sending a good packet. 3513 */ 3514 if (tmp_rnxt == tcp->tcp_rnxt) { 3515 freemsg(mp); 3516 return; 3517 } 3518 } 3519 if (urp != seg_len - 1) { 3520 uint32_t tmp_rnxt; 3521 /* 3522 * There is stuff after the urgent 3523 * byte. 3524 */ 3525 mp1 = dupmsg(mp); 3526 if (!mp1) { 3527 /* 3528 * Trim everything beyond the 3529 * urgent byte. The rest will 3530 * come back. 3531 */ 3532 (void) adjmsg(mp, 3533 urp + 1 - seg_len); 3534 tcp_input_data(connp, 3535 mp, NULL, ira); 3536 return; 3537 } 3538 (void) adjmsg(mp1, urp + 1 - seg_len); 3539 tmp_rnxt = tcp->tcp_rnxt; 3540 tcp_input_data(connp, mp1, NULL, ira); 3541 /* 3542 * If the data passed back in was not 3543 * processed (ie: bad ACK) sending 3544 * the remainder back in will cause a 3545 * loop. In this case, drop the 3546 * packet and let the sender try 3547 * sending a good packet. 3548 */ 3549 if (tmp_rnxt == tcp->tcp_rnxt) { 3550 freemsg(mp); 3551 return; 3552 } 3553 } 3554 tcp_input_data(connp, mp, NULL, ira); 3555 return; 3556 } 3557 /* 3558 * This segment contains only the urgent byte. We 3559 * have to allocate the T_exdata_ind, if we can. 3560 */ 3561 if (IPCL_IS_NONSTR(connp)) { 3562 int error; 3563 3564 (*sockupcalls->su_recv) 3565 (connp->conn_upper_handle, mp, seg_len, 3566 MSG_OOB, &error, NULL); 3567 /* 3568 * We should never be in middle of a 3569 * fallback, the squeue guarantees that. 3570 */ 3571 ASSERT(error != EOPNOTSUPP); 3572 mp = NULL; 3573 goto update_ack; 3574 } else if (!tcp->tcp_urp_mp) { 3575 struct T_exdata_ind *tei; 3576 mp1 = allocb(sizeof (struct T_exdata_ind), 3577 BPRI_MED); 3578 if (!mp1) { 3579 /* 3580 * Sigh... It'll be back. 3581 * Generate any MSG*MARK message now. 3582 */ 3583 freemsg(mp); 3584 seg_len = 0; 3585 if (flags & TH_SEND_URP_MARK) { 3586 3587 3588 ASSERT(tcp->tcp_urp_mark_mp); 3589 tcp->tcp_urp_mark_mp->b_flag &= 3590 ~MSGNOTMARKNEXT; 3591 tcp->tcp_urp_mark_mp->b_flag |= 3592 MSGMARKNEXT; 3593 } 3594 goto ack_check; 3595 } 3596 mp1->b_datap->db_type = M_PROTO; 3597 tei = (struct T_exdata_ind *)mp1->b_rptr; 3598 tei->PRIM_type = T_EXDATA_IND; 3599 tei->MORE_flag = 0; 3600 mp1->b_wptr = (uchar_t *)&tei[1]; 3601 tcp->tcp_urp_mp = mp1; 3602 #ifdef DEBUG 3603 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3604 "tcp_rput: allocated exdata_ind %s", 3605 tcp_display(tcp, NULL, 3606 DISP_PORT_ONLY)); 3607 #endif /* DEBUG */ 3608 /* 3609 * There is no need to send a separate MSG*MARK 3610 * message since the T_EXDATA_IND will be sent 3611 * now. 3612 */ 3613 flags &= ~TH_SEND_URP_MARK; 3614 freemsg(tcp->tcp_urp_mark_mp); 3615 tcp->tcp_urp_mark_mp = NULL; 3616 } 3617 /* 3618 * Now we are all set. On the next putnext upstream, 3619 * tcp_urp_mp will be non-NULL and will get prepended 3620 * to what has to be this piece containing the urgent 3621 * byte. If for any reason we abort this segment below, 3622 * if it comes back, we will have this ready, or it 3623 * will get blown off in close. 3624 */ 3625 } else if (urp == seg_len) { 3626 /* 3627 * The urgent byte is the next byte after this sequence 3628 * number. If this endpoint is non-STREAMS, then there 3629 * is nothing to do here since the socket has already 3630 * been notified about the urg pointer by the 3631 * su_signal_oob call above. 3632 * 3633 * In case of STREAMS, some more work might be needed. 3634 * If there is data it is marked with MSGMARKNEXT and 3635 * and any tcp_urp_mark_mp is discarded since it is not 3636 * needed. Otherwise, if the code above just allocated 3637 * a zero-length tcp_urp_mark_mp message, that message 3638 * is tagged with MSGMARKNEXT. Sending up these 3639 * MSGMARKNEXT messages makes SIOCATMARK work correctly 3640 * even though the T_EXDATA_IND will not be sent up 3641 * until the urgent byte arrives. 3642 */ 3643 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 3644 if (seg_len != 0) { 3645 flags |= TH_MARKNEXT_NEEDED; 3646 freemsg(tcp->tcp_urp_mark_mp); 3647 tcp->tcp_urp_mark_mp = NULL; 3648 flags &= ~TH_SEND_URP_MARK; 3649 } else if (tcp->tcp_urp_mark_mp != NULL) { 3650 flags |= TH_SEND_URP_MARK; 3651 tcp->tcp_urp_mark_mp->b_flag &= 3652 ~MSGNOTMARKNEXT; 3653 tcp->tcp_urp_mark_mp->b_flag |= 3654 MSGMARKNEXT; 3655 } 3656 } 3657 #ifdef DEBUG 3658 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3659 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 3660 seg_len, flags, 3661 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3662 #endif /* DEBUG */ 3663 } 3664 #ifdef DEBUG 3665 else { 3666 /* Data left until we hit mark */ 3667 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 3668 "tcp_rput: URP %d bytes left, %s", 3669 urp - seg_len, tcp_display(tcp, NULL, 3670 DISP_PORT_ONLY)); 3671 } 3672 #endif /* DEBUG */ 3673 } 3674 3675 process_ack: 3676 if (!(flags & TH_ACK)) { 3677 freemsg(mp); 3678 goto xmit_check; 3679 } 3680 } 3681 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 3682 3683 if (bytes_acked > 0) 3684 tcp->tcp_ip_forward_progress = B_TRUE; 3685 if (tcp->tcp_state == TCPS_SYN_RCVD) { 3686 /* 3687 * tcp_sendmsg() checks tcp_state without entering 3688 * the squeue so tcp_state should be updated before 3689 * sending up a connection confirmation or a new 3690 * connection indication. 3691 */ 3692 tcp->tcp_state = TCPS_ESTABLISHED; 3693 3694 /* 3695 * We are seeing the final ack in the three way 3696 * hand shake of a active open'ed connection 3697 * so we must send up a T_CONN_CON 3698 */ 3699 if (tcp->tcp_active_open) { 3700 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 3701 freemsg(mp); 3702 tcp->tcp_state = TCPS_SYN_RCVD; 3703 return; 3704 } 3705 /* 3706 * Don't fuse the loopback endpoints for 3707 * simultaneous active opens. 3708 */ 3709 if (tcp->tcp_loopback) { 3710 TCP_STAT(tcps, tcp_fusion_unfusable); 3711 tcp->tcp_unfusable = B_TRUE; 3712 } 3713 /* 3714 * For simultaneous active open, trace receipt of final 3715 * ACK as tcp:::connect-established. 3716 */ 3717 DTRACE_TCP5(connect__established, mblk_t *, NULL, 3718 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3719 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3720 } else if (IPCL_IS_NONSTR(connp)) { 3721 /* 3722 * 3-way handshake has completed, so notify socket 3723 * of the new connection. 3724 * 3725 * We are here means eager is fine but it can 3726 * get a TH_RST at any point between now and till 3727 * accept completes and disappear. We need to 3728 * ensure that reference to eager is valid after 3729 * we get out of eager's perimeter. So we do 3730 * an extra refhold. 3731 */ 3732 CONN_INC_REF(connp); 3733 3734 if (!tcp_newconn_notify(tcp, ira)) { 3735 /* 3736 * The state-change probe for SYN_RCVD -> 3737 * ESTABLISHED has not fired yet. We reset 3738 * the state to SYN_RCVD so that future 3739 * state-change probes report correct state 3740 * transistions. 3741 */ 3742 tcp->tcp_state = TCPS_SYN_RCVD; 3743 freemsg(mp); 3744 /* notification did not go up, so drop ref */ 3745 CONN_DEC_REF(connp); 3746 /* ... and close the eager */ 3747 ASSERT(TCP_IS_DETACHED(tcp)); 3748 (void) tcp_close_detached(tcp); 3749 return; 3750 } 3751 /* 3752 * For passive open, trace receipt of final ACK as 3753 * tcp:::accept-established. 3754 */ 3755 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3756 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3757 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3758 } else { 3759 /* 3760 * 3-way handshake complete - this is a STREAMS based 3761 * socket, so pass up the T_CONN_IND. 3762 */ 3763 tcp_t *listener = tcp->tcp_listener; 3764 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 3765 3766 tcp->tcp_tconnind_started = B_TRUE; 3767 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 3768 ASSERT(mp != NULL); 3769 /* 3770 * We are here means eager is fine but it can 3771 * get a TH_RST at any point between now and till 3772 * accept completes and disappear. We need to 3773 * ensure that reference to eager is valid after 3774 * we get out of eager's perimeter. So we do 3775 * an extra refhold. 3776 */ 3777 CONN_INC_REF(connp); 3778 3779 /* 3780 * The listener also exists because of the refhold 3781 * done in tcp_input_listener. Its possible that it 3782 * might have closed. We will check that once we 3783 * get inside listeners context. 3784 */ 3785 CONN_INC_REF(listener->tcp_connp); 3786 if (listener->tcp_connp->conn_sqp == 3787 connp->conn_sqp) { 3788 /* 3789 * We optimize by not calling an SQUEUE_ENTER 3790 * on the listener since we know that the 3791 * listener and eager squeues are the same. 3792 * We are able to make this check safely only 3793 * because neither the eager nor the listener 3794 * can change its squeue. Only an active connect 3795 * can change its squeue 3796 */ 3797 tcp_send_conn_ind(listener->tcp_connp, mp, 3798 listener->tcp_connp->conn_sqp); 3799 CONN_DEC_REF(listener->tcp_connp); 3800 } else if (!tcp->tcp_loopback) { 3801 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3802 mp, tcp_send_conn_ind, 3803 listener->tcp_connp, NULL, SQ_FILL, 3804 SQTAG_TCP_CONN_IND); 3805 } else { 3806 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 3807 mp, tcp_send_conn_ind, 3808 listener->tcp_connp, NULL, SQ_NODRAIN, 3809 SQTAG_TCP_CONN_IND); 3810 } 3811 /* 3812 * For passive open, trace receipt of final ACK as 3813 * tcp:::accept-established. 3814 */ 3815 DTRACE_TCP5(accept__established, mlbk_t *, NULL, 3816 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *, 3817 iphdr, tcp_t *, tcp, tcph_t *, tcpha); 3818 } 3819 TCPS_CONN_INC(tcps); 3820 3821 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 3822 bytes_acked--; 3823 /* SYN was acked - making progress */ 3824 tcp->tcp_ip_forward_progress = B_TRUE; 3825 3826 /* 3827 * If SYN was retransmitted, need to reset all 3828 * retransmission info as this segment will be 3829 * treated as a dup ACK. 3830 */ 3831 if (tcp->tcp_rexmit) { 3832 tcp->tcp_rexmit = B_FALSE; 3833 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3834 tcp->tcp_rexmit_max = tcp->tcp_snxt; 3835 tcp->tcp_snd_burst = tcp->tcp_localnet ? 3836 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 3837 tcp->tcp_ms_we_have_waited = 0; 3838 tcp->tcp_cwnd = mss; 3839 } 3840 3841 /* 3842 * We set the send window to zero here. 3843 * This is needed if there is data to be 3844 * processed already on the queue. 3845 * Later (at swnd_update label), the 3846 * "new_swnd > tcp_swnd" condition is satisfied 3847 * the XMIT_NEEDED flag is set in the current 3848 * (SYN_RCVD) state. This ensures tcp_wput_data() is 3849 * called if there is already data on queue in 3850 * this state. 3851 */ 3852 tcp->tcp_swnd = 0; 3853 3854 if (new_swnd > tcp->tcp_max_swnd) 3855 tcp->tcp_max_swnd = new_swnd; 3856 tcp->tcp_swl1 = seg_seq; 3857 tcp->tcp_swl2 = seg_ack; 3858 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 3859 3860 /* Trace change from SYN_RCVD -> ESTABLISHED here */ 3861 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3862 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3863 int32_t, TCPS_SYN_RCVD); 3864 3865 /* Fuse when both sides are in ESTABLISHED state */ 3866 if (tcp->tcp_loopback && do_tcp_fusion) 3867 tcp_fuse(tcp, iphdr, tcpha); 3868 3869 } 3870 /* This code follows 4.4BSD-Lite2 mostly. */ 3871 if (bytes_acked < 0) 3872 goto est; 3873 3874 /* 3875 * If TCP is ECN capable and the congestion experience bit is 3876 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 3877 * done once per window (or more loosely, per RTT). 3878 */ 3879 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 3880 tcp->tcp_cwr = B_FALSE; 3881 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 3882 if (!tcp->tcp_cwr) { 3883 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 3884 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 3885 tcp->tcp_cwnd = npkt * mss; 3886 /* 3887 * If the cwnd is 0, use the timer to clock out 3888 * new segments. This is required by the ECN spec. 3889 */ 3890 if (npkt == 0) { 3891 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 3892 /* 3893 * This makes sure that when the ACK comes 3894 * back, we will increase tcp_cwnd by 1 MSS. 3895 */ 3896 tcp->tcp_cwnd_cnt = 0; 3897 } 3898 tcp->tcp_cwr = B_TRUE; 3899 /* 3900 * This marks the end of the current window of in 3901 * flight data. That is why we don't use 3902 * tcp_suna + tcp_swnd. Only data in flight can 3903 * provide ECN info. 3904 */ 3905 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 3906 tcp->tcp_ecn_cwr_sent = B_FALSE; 3907 } 3908 } 3909 3910 mp1 = tcp->tcp_xmit_head; 3911 if (bytes_acked == 0) { 3912 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 3913 int dupack_cnt; 3914 3915 TCPS_BUMP_MIB(tcps, tcpInDupAck); 3916 /* 3917 * Fast retransmit. When we have seen exactly three 3918 * identical ACKs while we have unacked data 3919 * outstanding we take it as a hint that our peer 3920 * dropped something. 3921 * 3922 * If TCP is retransmitting, don't do fast retransmit. 3923 */ 3924 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 3925 ! tcp->tcp_rexmit) { 3926 /* Do Limited Transmit */ 3927 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 3928 tcps->tcps_dupack_fast_retransmit) { 3929 /* 3930 * RFC 3042 3931 * 3932 * What we need to do is temporarily 3933 * increase tcp_cwnd so that new 3934 * data can be sent if it is allowed 3935 * by the receive window (tcp_rwnd). 3936 * tcp_wput_data() will take care of 3937 * the rest. 3938 * 3939 * If the connection is SACK capable, 3940 * only do limited xmit when there 3941 * is SACK info. 3942 * 3943 * Note how tcp_cwnd is incremented. 3944 * The first dup ACK will increase 3945 * it by 1 MSS. The second dup ACK 3946 * will increase it by 2 MSS. This 3947 * means that only 1 new segment will 3948 * be sent for each dup ACK. 3949 */ 3950 if (tcp->tcp_unsent > 0 && 3951 (!tcp->tcp_snd_sack_ok || 3952 (tcp->tcp_snd_sack_ok && 3953 tcp->tcp_notsack_list != NULL))) { 3954 tcp->tcp_cwnd += mss << 3955 (tcp->tcp_dupack_cnt - 1); 3956 flags |= TH_LIMIT_XMIT; 3957 } 3958 } else if (dupack_cnt == 3959 tcps->tcps_dupack_fast_retransmit) { 3960 3961 /* 3962 * If we have reduced tcp_ssthresh 3963 * because of ECN, do not reduce it again 3964 * unless it is already one window of data 3965 * away. After one window of data, tcp_cwr 3966 * should then be cleared. Note that 3967 * for non ECN capable connection, tcp_cwr 3968 * should always be false. 3969 * 3970 * Adjust cwnd since the duplicate 3971 * ack indicates that a packet was 3972 * dropped (due to congestion.) 3973 */ 3974 if (!tcp->tcp_cwr) { 3975 npkt = ((tcp->tcp_snxt - 3976 tcp->tcp_suna) >> 1) / mss; 3977 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 3978 mss; 3979 tcp->tcp_cwnd = (npkt + 3980 tcp->tcp_dupack_cnt) * mss; 3981 } 3982 if (tcp->tcp_ecn_ok) { 3983 tcp->tcp_cwr = B_TRUE; 3984 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 3985 tcp->tcp_ecn_cwr_sent = B_FALSE; 3986 } 3987 3988 /* 3989 * We do Hoe's algorithm. Refer to her 3990 * paper "Improving the Start-up Behavior 3991 * of a Congestion Control Scheme for TCP," 3992 * appeared in SIGCOMM'96. 3993 * 3994 * Save highest seq no we have sent so far. 3995 * Be careful about the invisible FIN byte. 3996 */ 3997 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 3998 (tcp->tcp_unsent == 0)) { 3999 tcp->tcp_rexmit_max = tcp->tcp_fss; 4000 } else { 4001 tcp->tcp_rexmit_max = tcp->tcp_snxt; 4002 } 4003 4004 /* 4005 * Do not allow bursty traffic during. 4006 * fast recovery. Refer to Fall and Floyd's 4007 * paper "Simulation-based Comparisons of 4008 * Tahoe, Reno and SACK TCP" (in CCR?) 4009 * This is a best current practise. 4010 */ 4011 tcp->tcp_snd_burst = TCP_CWND_SS; 4012 4013 /* 4014 * For SACK: 4015 * Calculate tcp_pipe, which is the 4016 * estimated number of bytes in 4017 * network. 4018 * 4019 * tcp_fack is the highest sack'ed seq num 4020 * TCP has received. 4021 * 4022 * tcp_pipe is explained in the above quoted 4023 * Fall and Floyd's paper. tcp_fack is 4024 * explained in Mathis and Mahdavi's 4025 * "Forward Acknowledgment: Refining TCP 4026 * Congestion Control" in SIGCOMM '96. 4027 */ 4028 if (tcp->tcp_snd_sack_ok) { 4029 if (tcp->tcp_notsack_list != NULL) { 4030 tcp->tcp_pipe = tcp->tcp_snxt - 4031 tcp->tcp_fack; 4032 tcp->tcp_sack_snxt = seg_ack; 4033 flags |= TH_NEED_SACK_REXMIT; 4034 } else { 4035 /* 4036 * Always initialize tcp_pipe 4037 * even though we don't have 4038 * any SACK info. If later 4039 * we get SACK info and 4040 * tcp_pipe is not initialized, 4041 * funny things will happen. 4042 */ 4043 tcp->tcp_pipe = 4044 tcp->tcp_cwnd_ssthresh; 4045 } 4046 } else { 4047 flags |= TH_REXMIT_NEEDED; 4048 } /* tcp_snd_sack_ok */ 4049 4050 } else { 4051 /* 4052 * Here we perform congestion 4053 * avoidance, but NOT slow start. 4054 * This is known as the Fast 4055 * Recovery Algorithm. 4056 */ 4057 if (tcp->tcp_snd_sack_ok && 4058 tcp->tcp_notsack_list != NULL) { 4059 flags |= TH_NEED_SACK_REXMIT; 4060 tcp->tcp_pipe -= mss; 4061 if (tcp->tcp_pipe < 0) 4062 tcp->tcp_pipe = 0; 4063 } else { 4064 /* 4065 * We know that one more packet has 4066 * left the pipe thus we can update 4067 * cwnd. 4068 */ 4069 cwnd = tcp->tcp_cwnd + mss; 4070 if (cwnd > tcp->tcp_cwnd_max) 4071 cwnd = tcp->tcp_cwnd_max; 4072 tcp->tcp_cwnd = cwnd; 4073 if (tcp->tcp_unsent > 0) 4074 flags |= TH_XMIT_NEEDED; 4075 } 4076 } 4077 } 4078 } else if (tcp->tcp_zero_win_probe) { 4079 /* 4080 * If the window has opened, need to arrange 4081 * to send additional data. 4082 */ 4083 if (new_swnd != 0) { 4084 /* tcp_suna != tcp_snxt */ 4085 /* Packet contains a window update */ 4086 TCPS_BUMP_MIB(tcps, tcpInWinUpdate); 4087 tcp->tcp_zero_win_probe = 0; 4088 tcp->tcp_timer_backoff = 0; 4089 tcp->tcp_ms_we_have_waited = 0; 4090 4091 /* 4092 * Transmit starting with tcp_suna since 4093 * the one byte probe is not ack'ed. 4094 * If TCP has sent more than one identical 4095 * probe, tcp_rexmit will be set. That means 4096 * tcp_ss_rexmit() will send out the one 4097 * byte along with new data. Otherwise, 4098 * fake the retransmission. 4099 */ 4100 flags |= TH_XMIT_NEEDED; 4101 if (!tcp->tcp_rexmit) { 4102 tcp->tcp_rexmit = B_TRUE; 4103 tcp->tcp_dupack_cnt = 0; 4104 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 4105 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 4106 } 4107 } 4108 } 4109 goto swnd_update; 4110 } 4111 4112 /* 4113 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 4114 * If the ACK value acks something that we have not yet sent, it might 4115 * be an old duplicate segment. Send an ACK to re-synchronize the 4116 * other side. 4117 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 4118 * state is handled above, so we can always just drop the segment and 4119 * send an ACK here. 4120 * 4121 * In the case where the peer shrinks the window, we see the new window 4122 * update, but all the data sent previously is queued up by the peer. 4123 * To account for this, in tcp_process_shrunk_swnd(), the sequence 4124 * number, which was already sent, and within window, is recorded. 4125 * tcp_snxt is then updated. 4126 * 4127 * If the window has previously shrunk, and an ACK for data not yet 4128 * sent, according to tcp_snxt is recieved, it may still be valid. If 4129 * the ACK is for data within the window at the time the window was 4130 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 4131 * the sequence number ACK'ed. 4132 * 4133 * If the ACK covers all the data sent at the time the window was 4134 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 4135 * 4136 * Should we send ACKs in response to ACK only segments? 4137 */ 4138 4139 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 4140 if ((tcp->tcp_is_wnd_shrnk) && 4141 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 4142 uint32_t data_acked_ahead_snxt; 4143 4144 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 4145 tcp_update_xmit_tail(tcp, seg_ack); 4146 tcp->tcp_unsent -= data_acked_ahead_snxt; 4147 } else { 4148 TCPS_BUMP_MIB(tcps, tcpInAckUnsent); 4149 /* drop the received segment */ 4150 freemsg(mp); 4151 4152 /* 4153 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 4154 * greater than 0, check if the number of such 4155 * bogus ACks is greater than that count. If yes, 4156 * don't send back any ACK. This prevents TCP from 4157 * getting into an ACK storm if somehow an attacker 4158 * successfully spoofs an acceptable segment to our 4159 * peer. If this continues (count > 2 X threshold), 4160 * we should abort this connection. 4161 */ 4162 if (tcp_drop_ack_unsent_cnt > 0 && 4163 ++tcp->tcp_in_ack_unsent > 4164 tcp_drop_ack_unsent_cnt) { 4165 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 4166 if (tcp->tcp_in_ack_unsent > 2 * 4167 tcp_drop_ack_unsent_cnt) { 4168 (void) tcp_clean_death(tcp, EPROTO); 4169 } 4170 return; 4171 } 4172 mp = tcp_ack_mp(tcp); 4173 if (mp != NULL) { 4174 BUMP_LOCAL(tcp->tcp_obsegs); 4175 TCPS_BUMP_MIB(tcps, tcpOutAck); 4176 tcp_send_data(tcp, mp); 4177 } 4178 return; 4179 } 4180 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 4181 tcp->tcp_snxt_shrunk)) { 4182 tcp->tcp_is_wnd_shrnk = B_FALSE; 4183 } 4184 4185 /* 4186 * TCP gets a new ACK, update the notsack'ed list to delete those 4187 * blocks that are covered by this ACK. 4188 */ 4189 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 4190 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 4191 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 4192 } 4193 4194 /* 4195 * If we got an ACK after fast retransmit, check to see 4196 * if it is a partial ACK. If it is not and the congestion 4197 * window was inflated to account for the other side's 4198 * cached packets, retract it. If it is, do Hoe's algorithm. 4199 */ 4200 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 4201 ASSERT(tcp->tcp_rexmit == B_FALSE); 4202 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 4203 tcp->tcp_dupack_cnt = 0; 4204 /* 4205 * Restore the orig tcp_cwnd_ssthresh after 4206 * fast retransmit phase. 4207 */ 4208 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 4209 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 4210 } 4211 tcp->tcp_rexmit_max = seg_ack; 4212 tcp->tcp_cwnd_cnt = 0; 4213 tcp->tcp_snd_burst = tcp->tcp_localnet ? 4214 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 4215 4216 /* 4217 * Remove all notsack info to avoid confusion with 4218 * the next fast retrasnmit/recovery phase. 4219 */ 4220 if (tcp->tcp_snd_sack_ok) { 4221 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4222 tcp); 4223 } 4224 } else { 4225 if (tcp->tcp_snd_sack_ok && 4226 tcp->tcp_notsack_list != NULL) { 4227 flags |= TH_NEED_SACK_REXMIT; 4228 tcp->tcp_pipe -= mss; 4229 if (tcp->tcp_pipe < 0) 4230 tcp->tcp_pipe = 0; 4231 } else { 4232 /* 4233 * Hoe's algorithm: 4234 * 4235 * Retransmit the unack'ed segment and 4236 * restart fast recovery. Note that we 4237 * need to scale back tcp_cwnd to the 4238 * original value when we started fast 4239 * recovery. This is to prevent overly 4240 * aggressive behaviour in sending new 4241 * segments. 4242 */ 4243 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 4244 tcps->tcps_dupack_fast_retransmit * mss; 4245 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 4246 flags |= TH_REXMIT_NEEDED; 4247 } 4248 } 4249 } else { 4250 tcp->tcp_dupack_cnt = 0; 4251 if (tcp->tcp_rexmit) { 4252 /* 4253 * TCP is retranmitting. If the ACK ack's all 4254 * outstanding data, update tcp_rexmit_max and 4255 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 4256 * to the correct value. 4257 * 4258 * Note that SEQ_LEQ() is used. This is to avoid 4259 * unnecessary fast retransmit caused by dup ACKs 4260 * received when TCP does slow start retransmission 4261 * after a time out. During this phase, TCP may 4262 * send out segments which are already received. 4263 * This causes dup ACKs to be sent back. 4264 */ 4265 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 4266 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 4267 tcp->tcp_rexmit_nxt = seg_ack; 4268 } 4269 if (seg_ack != tcp->tcp_rexmit_max) { 4270 flags |= TH_XMIT_NEEDED; 4271 } 4272 } else { 4273 tcp->tcp_rexmit = B_FALSE; 4274 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 4275 tcp->tcp_snd_burst = tcp->tcp_localnet ? 4276 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 4277 } 4278 tcp->tcp_ms_we_have_waited = 0; 4279 } 4280 } 4281 4282 TCPS_BUMP_MIB(tcps, tcpInAckSegs); 4283 TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked); 4284 tcp->tcp_suna = seg_ack; 4285 if (tcp->tcp_zero_win_probe != 0) { 4286 tcp->tcp_zero_win_probe = 0; 4287 tcp->tcp_timer_backoff = 0; 4288 } 4289 4290 /* 4291 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 4292 * Note that it cannot be the SYN being ack'ed. The code flow 4293 * will not reach here. 4294 */ 4295 if (mp1 == NULL) { 4296 goto fin_acked; 4297 } 4298 4299 /* 4300 * Update the congestion window. 4301 * 4302 * If TCP is not ECN capable or TCP is ECN capable but the 4303 * congestion experience bit is not set, increase the tcp_cwnd as 4304 * usual. 4305 */ 4306 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 4307 cwnd = tcp->tcp_cwnd; 4308 add = mss; 4309 4310 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 4311 /* 4312 * This is to prevent an increase of less than 1 MSS of 4313 * tcp_cwnd. With partial increase, tcp_wput_data() 4314 * may send out tinygrams in order to preserve mblk 4315 * boundaries. 4316 * 4317 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 4318 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 4319 * increased by 1 MSS for every RTTs. 4320 */ 4321 if (tcp->tcp_cwnd_cnt <= 0) { 4322 tcp->tcp_cwnd_cnt = cwnd + add; 4323 } else { 4324 tcp->tcp_cwnd_cnt -= add; 4325 add = 0; 4326 } 4327 } 4328 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 4329 } 4330 4331 /* See if the latest urgent data has been acknowledged */ 4332 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 4333 SEQ_GT(seg_ack, tcp->tcp_urg)) 4334 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 4335 4336 /* Can we update the RTT estimates? */ 4337 if (tcp->tcp_snd_ts_ok) { 4338 /* Ignore zero timestamp echo-reply. */ 4339 if (tcpopt.tcp_opt_ts_ecr != 0) { 4340 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 4341 (int32_t)tcpopt.tcp_opt_ts_ecr); 4342 } 4343 4344 /* If needed, restart the timer. */ 4345 if (tcp->tcp_set_timer == 1) { 4346 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4347 tcp->tcp_set_timer = 0; 4348 } 4349 /* 4350 * Update tcp_csuna in case the other side stops sending 4351 * us timestamps. 4352 */ 4353 tcp->tcp_csuna = tcp->tcp_snxt; 4354 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 4355 /* 4356 * An ACK sequence we haven't seen before, so get the RTT 4357 * and update the RTO. But first check if the timestamp is 4358 * valid to use. 4359 */ 4360 if ((mp1->b_next != NULL) && 4361 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 4362 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 4363 (int32_t)(intptr_t)mp1->b_prev); 4364 else 4365 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4366 4367 /* Remeber the last sequence to be ACKed */ 4368 tcp->tcp_csuna = seg_ack; 4369 if (tcp->tcp_set_timer == 1) { 4370 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4371 tcp->tcp_set_timer = 0; 4372 } 4373 } else { 4374 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate); 4375 } 4376 4377 /* Eat acknowledged bytes off the xmit queue. */ 4378 for (;;) { 4379 mblk_t *mp2; 4380 uchar_t *wptr; 4381 4382 wptr = mp1->b_wptr; 4383 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 4384 bytes_acked -= (int)(wptr - mp1->b_rptr); 4385 if (bytes_acked < 0) { 4386 mp1->b_rptr = wptr + bytes_acked; 4387 /* 4388 * Set a new timestamp if all the bytes timed by the 4389 * old timestamp have been ack'ed. 4390 */ 4391 if (SEQ_GT(seg_ack, 4392 (uint32_t)(uintptr_t)(mp1->b_next))) { 4393 mp1->b_prev = 4394 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 4395 mp1->b_next = NULL; 4396 } 4397 break; 4398 } 4399 mp1->b_next = NULL; 4400 mp1->b_prev = NULL; 4401 mp2 = mp1; 4402 mp1 = mp1->b_cont; 4403 4404 /* 4405 * This notification is required for some zero-copy 4406 * clients to maintain a copy semantic. After the data 4407 * is ack'ed, client is safe to modify or reuse the buffer. 4408 */ 4409 if (tcp->tcp_snd_zcopy_aware && 4410 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 4411 tcp_zcopy_notify(tcp); 4412 freeb(mp2); 4413 if (bytes_acked == 0) { 4414 if (mp1 == NULL) { 4415 /* Everything is ack'ed, clear the tail. */ 4416 tcp->tcp_xmit_tail = NULL; 4417 /* 4418 * Cancel the timer unless we are still 4419 * waiting for an ACK for the FIN packet. 4420 */ 4421 if (tcp->tcp_timer_tid != 0 && 4422 tcp->tcp_snxt == tcp->tcp_suna) { 4423 (void) TCP_TIMER_CANCEL(tcp, 4424 tcp->tcp_timer_tid); 4425 tcp->tcp_timer_tid = 0; 4426 } 4427 goto pre_swnd_update; 4428 } 4429 if (mp2 != tcp->tcp_xmit_tail) 4430 break; 4431 tcp->tcp_xmit_tail = mp1; 4432 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 4433 (uintptr_t)INT_MAX); 4434 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 4435 mp1->b_rptr); 4436 break; 4437 } 4438 if (mp1 == NULL) { 4439 /* 4440 * More was acked but there is nothing more 4441 * outstanding. This means that the FIN was 4442 * just acked or that we're talking to a clown. 4443 */ 4444 fin_acked: 4445 ASSERT(tcp->tcp_fin_sent); 4446 tcp->tcp_xmit_tail = NULL; 4447 if (tcp->tcp_fin_sent) { 4448 /* FIN was acked - making progress */ 4449 if (!tcp->tcp_fin_acked) 4450 tcp->tcp_ip_forward_progress = B_TRUE; 4451 tcp->tcp_fin_acked = B_TRUE; 4452 if (tcp->tcp_linger_tid != 0 && 4453 TCP_TIMER_CANCEL(tcp, 4454 tcp->tcp_linger_tid) >= 0) { 4455 tcp_stop_lingering(tcp); 4456 freemsg(mp); 4457 mp = NULL; 4458 } 4459 } else { 4460 /* 4461 * We should never get here because 4462 * we have already checked that the 4463 * number of bytes ack'ed should be 4464 * smaller than or equal to what we 4465 * have sent so far (it is the 4466 * acceptability check of the ACK). 4467 * We can only get here if the send 4468 * queue is corrupted. 4469 * 4470 * Terminate the connection and 4471 * panic the system. It is better 4472 * for us to panic instead of 4473 * continuing to avoid other disaster. 4474 */ 4475 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 4476 tcp->tcp_rnxt, TH_RST|TH_ACK); 4477 panic("Memory corruption " 4478 "detected for connection %s.", 4479 tcp_display(tcp, NULL, 4480 DISP_ADDR_AND_PORT)); 4481 /*NOTREACHED*/ 4482 } 4483 goto pre_swnd_update; 4484 } 4485 ASSERT(mp2 != tcp->tcp_xmit_tail); 4486 } 4487 if (tcp->tcp_unsent) { 4488 flags |= TH_XMIT_NEEDED; 4489 } 4490 pre_swnd_update: 4491 tcp->tcp_xmit_head = mp1; 4492 swnd_update: 4493 /* 4494 * The following check is different from most other implementations. 4495 * For bi-directional transfer, when segments are dropped, the 4496 * "normal" check will not accept a window update in those 4497 * retransmitted segemnts. Failing to do that, TCP may send out 4498 * segments which are outside receiver's window. As TCP accepts 4499 * the ack in those retransmitted segments, if the window update in 4500 * the same segment is not accepted, TCP will incorrectly calculates 4501 * that it can send more segments. This can create a deadlock 4502 * with the receiver if its window becomes zero. 4503 */ 4504 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 4505 SEQ_LT(tcp->tcp_swl1, seg_seq) || 4506 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 4507 /* 4508 * The criteria for update is: 4509 * 4510 * 1. the segment acknowledges some data. Or 4511 * 2. the segment is new, i.e. it has a higher seq num. Or 4512 * 3. the segment is not old and the advertised window is 4513 * larger than the previous advertised window. 4514 */ 4515 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 4516 flags |= TH_XMIT_NEEDED; 4517 tcp->tcp_swnd = new_swnd; 4518 if (new_swnd > tcp->tcp_max_swnd) 4519 tcp->tcp_max_swnd = new_swnd; 4520 tcp->tcp_swl1 = seg_seq; 4521 tcp->tcp_swl2 = seg_ack; 4522 } 4523 est: 4524 if (tcp->tcp_state > TCPS_ESTABLISHED) { 4525 4526 switch (tcp->tcp_state) { 4527 case TCPS_FIN_WAIT_1: 4528 if (tcp->tcp_fin_acked) { 4529 tcp->tcp_state = TCPS_FIN_WAIT_2; 4530 DTRACE_TCP6(state__change, void, NULL, 4531 ip_xmit_attr_t *, connp->conn_ixa, 4532 void, NULL, tcp_t *, tcp, void, NULL, 4533 int32_t, TCPS_FIN_WAIT_1); 4534 /* 4535 * We implement the non-standard BSD/SunOS 4536 * FIN_WAIT_2 flushing algorithm. 4537 * If there is no user attached to this 4538 * TCP endpoint, then this TCP struct 4539 * could hang around forever in FIN_WAIT_2 4540 * state if the peer forgets to send us 4541 * a FIN. To prevent this, we wait only 4542 * 2*MSL (a convenient time value) for 4543 * the FIN to arrive. If it doesn't show up, 4544 * we flush the TCP endpoint. This algorithm, 4545 * though a violation of RFC-793, has worked 4546 * for over 10 years in BSD systems. 4547 * Note: SunOS 4.x waits 675 seconds before 4548 * flushing the FIN_WAIT_2 connection. 4549 */ 4550 TCP_TIMER_RESTART(tcp, 4551 tcp->tcp_fin_wait_2_flush_interval); 4552 } 4553 break; 4554 case TCPS_FIN_WAIT_2: 4555 break; /* Shutdown hook? */ 4556 case TCPS_LAST_ACK: 4557 freemsg(mp); 4558 if (tcp->tcp_fin_acked) { 4559 (void) tcp_clean_death(tcp, 0); 4560 return; 4561 } 4562 goto xmit_check; 4563 case TCPS_CLOSING: 4564 if (tcp->tcp_fin_acked) { 4565 SET_TIME_WAIT(tcps, tcp, connp); 4566 DTRACE_TCP6(state__change, void, NULL, 4567 ip_xmit_attr_t *, connp->conn_ixa, void, 4568 NULL, tcp_t *, tcp, void, NULL, int32_t, 4569 TCPS_CLOSING); 4570 } 4571 /*FALLTHRU*/ 4572 case TCPS_CLOSE_WAIT: 4573 freemsg(mp); 4574 goto xmit_check; 4575 default: 4576 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 4577 break; 4578 } 4579 } 4580 if (flags & TH_FIN) { 4581 /* Make sure we ack the fin */ 4582 flags |= TH_ACK_NEEDED; 4583 if (!tcp->tcp_fin_rcvd) { 4584 tcp->tcp_fin_rcvd = B_TRUE; 4585 tcp->tcp_rnxt++; 4586 tcpha = tcp->tcp_tcpha; 4587 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4588 4589 /* 4590 * Generate the ordrel_ind at the end unless the 4591 * conn is detached or it is a STREAMS based eager. 4592 * In the eager case we defer the notification until 4593 * tcp_accept_finish has run. 4594 */ 4595 if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) || 4596 (tcp->tcp_listener == NULL && 4597 !tcp->tcp_hard_binding))) 4598 flags |= TH_ORDREL_NEEDED; 4599 switch (tcp->tcp_state) { 4600 case TCPS_SYN_RCVD: 4601 tcp->tcp_state = TCPS_CLOSE_WAIT; 4602 DTRACE_TCP6(state__change, void, NULL, 4603 ip_xmit_attr_t *, connp->conn_ixa, 4604 void, NULL, tcp_t *, tcp, void, NULL, 4605 int32_t, TCPS_SYN_RCVD); 4606 /* Keepalive? */ 4607 break; 4608 case TCPS_ESTABLISHED: 4609 tcp->tcp_state = TCPS_CLOSE_WAIT; 4610 DTRACE_TCP6(state__change, void, NULL, 4611 ip_xmit_attr_t *, connp->conn_ixa, 4612 void, NULL, tcp_t *, tcp, void, NULL, 4613 int32_t, TCPS_ESTABLISHED); 4614 /* Keepalive? */ 4615 break; 4616 case TCPS_FIN_WAIT_1: 4617 if (!tcp->tcp_fin_acked) { 4618 tcp->tcp_state = TCPS_CLOSING; 4619 DTRACE_TCP6(state__change, void, NULL, 4620 ip_xmit_attr_t *, connp->conn_ixa, 4621 void, NULL, tcp_t *, tcp, void, 4622 NULL, int32_t, TCPS_FIN_WAIT_1); 4623 break; 4624 } 4625 /* FALLTHRU */ 4626 case TCPS_FIN_WAIT_2: 4627 SET_TIME_WAIT(tcps, tcp, connp); 4628 DTRACE_TCP6(state__change, void, NULL, 4629 ip_xmit_attr_t *, connp->conn_ixa, void, 4630 NULL, tcp_t *, tcp, void, NULL, int32_t, 4631 TCPS_FIN_WAIT_2); 4632 if (seg_len) { 4633 /* 4634 * implies data piggybacked on FIN. 4635 * break to handle data. 4636 */ 4637 break; 4638 } 4639 freemsg(mp); 4640 goto ack_check; 4641 } 4642 } 4643 } 4644 if (mp == NULL) 4645 goto xmit_check; 4646 if (seg_len == 0) { 4647 freemsg(mp); 4648 goto xmit_check; 4649 } 4650 if (mp->b_rptr == mp->b_wptr) { 4651 /* 4652 * The header has been consumed, so we remove the 4653 * zero-length mblk here. 4654 */ 4655 mp1 = mp; 4656 mp = mp->b_cont; 4657 freeb(mp1); 4658 } 4659 update_ack: 4660 tcpha = tcp->tcp_tcpha; 4661 tcp->tcp_rack_cnt++; 4662 { 4663 uint32_t cur_max; 4664 4665 cur_max = tcp->tcp_rack_cur_max; 4666 if (tcp->tcp_rack_cnt >= cur_max) { 4667 /* 4668 * We have more unacked data than we should - send 4669 * an ACK now. 4670 */ 4671 flags |= TH_ACK_NEEDED; 4672 cur_max++; 4673 if (cur_max > tcp->tcp_rack_abs_max) 4674 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 4675 else 4676 tcp->tcp_rack_cur_max = cur_max; 4677 } else if (TCP_IS_DETACHED(tcp)) { 4678 /* We don't have an ACK timer for detached TCP. */ 4679 flags |= TH_ACK_NEEDED; 4680 } else if (seg_len < mss) { 4681 /* 4682 * If we get a segment that is less than an mss, and we 4683 * already have unacknowledged data, and the amount 4684 * unacknowledged is not a multiple of mss, then we 4685 * better generate an ACK now. Otherwise, this may be 4686 * the tail piece of a transaction, and we would rather 4687 * wait for the response. 4688 */ 4689 uint32_t udif; 4690 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 4691 (uintptr_t)INT_MAX); 4692 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 4693 if (udif && (udif % mss)) 4694 flags |= TH_ACK_NEEDED; 4695 else 4696 flags |= TH_ACK_TIMER_NEEDED; 4697 } else { 4698 /* Start delayed ack timer */ 4699 flags |= TH_ACK_TIMER_NEEDED; 4700 } 4701 } 4702 tcp->tcp_rnxt += seg_len; 4703 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 4704 4705 if (mp == NULL) 4706 goto xmit_check; 4707 4708 /* Update SACK list */ 4709 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 4710 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 4711 &(tcp->tcp_num_sack_blk)); 4712 } 4713 4714 if (tcp->tcp_urp_mp) { 4715 tcp->tcp_urp_mp->b_cont = mp; 4716 mp = tcp->tcp_urp_mp; 4717 tcp->tcp_urp_mp = NULL; 4718 /* Ready for a new signal. */ 4719 tcp->tcp_urp_last_valid = B_FALSE; 4720 #ifdef DEBUG 4721 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4722 "tcp_rput: sending exdata_ind %s", 4723 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4724 #endif /* DEBUG */ 4725 } 4726 4727 /* 4728 * Check for ancillary data changes compared to last segment. 4729 */ 4730 if (connp->conn_recv_ancillary.crb_all != 0) { 4731 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 4732 if (mp == NULL) 4733 return; 4734 } 4735 4736 if (IPCL_IS_NONSTR(connp)) { 4737 /* 4738 * Non-STREAMS socket 4739 */ 4740 boolean_t push = flags & (TH_PUSH|TH_FIN); 4741 int error; 4742 4743 if ((*sockupcalls->su_recv)(connp->conn_upper_handle, 4744 mp, seg_len, 0, &error, &push) <= 0) { 4745 /* 4746 * We should never be in middle of a 4747 * fallback, the squeue guarantees that. 4748 */ 4749 ASSERT(error != EOPNOTSUPP); 4750 if (error == ENOSPC) 4751 tcp->tcp_rwnd -= seg_len; 4752 } else if (push) { 4753 /* PUSH bit set and sockfs is not flow controlled */ 4754 flags |= tcp_rwnd_reopen(tcp); 4755 } 4756 } else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 4757 /* 4758 * Side queue inbound data until the accept happens. 4759 * tcp_accept/tcp_rput drains this when the accept happens. 4760 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 4761 * T_EXDATA_IND) it is queued on b_next. 4762 * XXX Make urgent data use this. Requires: 4763 * Removing tcp_listener check for TH_URG 4764 * Making M_PCPROTO and MARK messages skip the eager case 4765 */ 4766 4767 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4768 } else { 4769 /* Active STREAMS socket */ 4770 if (mp->b_datap->db_type != M_DATA || 4771 (flags & TH_MARKNEXT_NEEDED)) { 4772 if (tcp->tcp_rcv_list != NULL) { 4773 flags |= tcp_rcv_drain(tcp); 4774 } 4775 ASSERT(tcp->tcp_rcv_list == NULL || 4776 tcp->tcp_fused_sigurg); 4777 4778 if (flags & TH_MARKNEXT_NEEDED) { 4779 #ifdef DEBUG 4780 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4781 "tcp_rput: sending MSGMARKNEXT %s", 4782 tcp_display(tcp, NULL, 4783 DISP_PORT_ONLY)); 4784 #endif /* DEBUG */ 4785 mp->b_flag |= MSGMARKNEXT; 4786 flags &= ~TH_MARKNEXT_NEEDED; 4787 } 4788 4789 if (is_system_labeled()) 4790 tcp_setcred_data(mp, ira); 4791 4792 putnext(connp->conn_rq, mp); 4793 if (!canputnext(connp->conn_rq)) 4794 tcp->tcp_rwnd -= seg_len; 4795 } else if ((flags & (TH_PUSH|TH_FIN)) || 4796 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 4797 if (tcp->tcp_rcv_list != NULL) { 4798 /* 4799 * Enqueue the new segment first and then 4800 * call tcp_rcv_drain() to send all data 4801 * up. The other way to do this is to 4802 * send all queued data up and then call 4803 * putnext() to send the new segment up. 4804 * This way can remove the else part later 4805 * on. 4806 * 4807 * We don't do this to avoid one more call to 4808 * canputnext() as tcp_rcv_drain() needs to 4809 * call canputnext(). 4810 */ 4811 tcp_rcv_enqueue(tcp, mp, seg_len, 4812 ira->ira_cred); 4813 flags |= tcp_rcv_drain(tcp); 4814 } else { 4815 if (is_system_labeled()) 4816 tcp_setcred_data(mp, ira); 4817 4818 putnext(connp->conn_rq, mp); 4819 if (!canputnext(connp->conn_rq)) 4820 tcp->tcp_rwnd -= seg_len; 4821 } 4822 } else { 4823 /* 4824 * Enqueue all packets when processing an mblk 4825 * from the co queue and also enqueue normal packets. 4826 */ 4827 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 4828 } 4829 /* 4830 * Make sure the timer is running if we have data waiting 4831 * for a push bit. This provides resiliency against 4832 * implementations that do not correctly generate push bits. 4833 */ 4834 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 4835 /* 4836 * The connection may be closed at this point, so don't 4837 * do anything for a detached tcp. 4838 */ 4839 if (!TCP_IS_DETACHED(tcp)) 4840 tcp->tcp_push_tid = TCP_TIMER(tcp, 4841 tcp_push_timer, 4842 tcps->tcps_push_timer_interval); 4843 } 4844 } 4845 4846 xmit_check: 4847 /* Is there anything left to do? */ 4848 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 4849 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 4850 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 4851 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4852 goto done; 4853 4854 /* Any transmit work to do and a non-zero window? */ 4855 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 4856 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 4857 if (flags & TH_REXMIT_NEEDED) { 4858 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 4859 4860 TCPS_BUMP_MIB(tcps, tcpOutFastRetrans); 4861 if (snd_size > mss) 4862 snd_size = mss; 4863 if (snd_size > tcp->tcp_swnd) 4864 snd_size = tcp->tcp_swnd; 4865 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 4866 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 4867 B_TRUE); 4868 4869 if (mp1 != NULL) { 4870 tcp->tcp_xmit_head->b_prev = 4871 (mblk_t *)LBOLT_FASTPATH; 4872 tcp->tcp_csuna = tcp->tcp_snxt; 4873 TCPS_BUMP_MIB(tcps, tcpRetransSegs); 4874 TCPS_UPDATE_MIB(tcps, tcpRetransBytes, 4875 snd_size); 4876 tcp_send_data(tcp, mp1); 4877 } 4878 } 4879 if (flags & TH_NEED_SACK_REXMIT) { 4880 tcp_sack_rexmit(tcp, &flags); 4881 } 4882 /* 4883 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 4884 * out new segment. Note that tcp_rexmit should not be 4885 * set, otherwise TH_LIMIT_XMIT should not be set. 4886 */ 4887 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 4888 if (!tcp->tcp_rexmit) { 4889 tcp_wput_data(tcp, NULL, B_FALSE); 4890 } else { 4891 tcp_ss_rexmit(tcp); 4892 } 4893 } 4894 /* 4895 * Adjust tcp_cwnd back to normal value after sending 4896 * new data segments. 4897 */ 4898 if (flags & TH_LIMIT_XMIT) { 4899 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 4900 /* 4901 * This will restart the timer. Restarting the 4902 * timer is used to avoid a timeout before the 4903 * limited transmitted segment's ACK gets back. 4904 */ 4905 if (tcp->tcp_xmit_head != NULL) 4906 tcp->tcp_xmit_head->b_prev = 4907 (mblk_t *)LBOLT_FASTPATH; 4908 } 4909 4910 /* Anything more to do? */ 4911 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 4912 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 4913 goto done; 4914 } 4915 ack_check: 4916 if (flags & TH_SEND_URP_MARK) { 4917 ASSERT(tcp->tcp_urp_mark_mp); 4918 ASSERT(!IPCL_IS_NONSTR(connp)); 4919 /* 4920 * Send up any queued data and then send the mark message 4921 */ 4922 if (tcp->tcp_rcv_list != NULL) { 4923 flags |= tcp_rcv_drain(tcp); 4924 4925 } 4926 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 4927 mp1 = tcp->tcp_urp_mark_mp; 4928 tcp->tcp_urp_mark_mp = NULL; 4929 if (is_system_labeled()) 4930 tcp_setcred_data(mp1, ira); 4931 4932 putnext(connp->conn_rq, mp1); 4933 #ifdef DEBUG 4934 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 4935 "tcp_rput: sending zero-length %s %s", 4936 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 4937 "MSGNOTMARKNEXT"), 4938 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4939 #endif /* DEBUG */ 4940 flags &= ~TH_SEND_URP_MARK; 4941 } 4942 if (flags & TH_ACK_NEEDED) { 4943 /* 4944 * Time to send an ack for some reason. 4945 */ 4946 mp1 = tcp_ack_mp(tcp); 4947 4948 if (mp1 != NULL) { 4949 tcp_send_data(tcp, mp1); 4950 BUMP_LOCAL(tcp->tcp_obsegs); 4951 TCPS_BUMP_MIB(tcps, tcpOutAck); 4952 } 4953 if (tcp->tcp_ack_tid != 0) { 4954 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4955 tcp->tcp_ack_tid = 0; 4956 } 4957 } 4958 if (flags & TH_ACK_TIMER_NEEDED) { 4959 /* 4960 * Arrange for deferred ACK or push wait timeout. 4961 * Start timer if it is not already running. 4962 */ 4963 if (tcp->tcp_ack_tid == 0) { 4964 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 4965 tcp->tcp_localnet ? 4966 tcps->tcps_local_dack_interval : 4967 tcps->tcps_deferred_ack_interval); 4968 } 4969 } 4970 if (flags & TH_ORDREL_NEEDED) { 4971 /* 4972 * Notify upper layer about an orderly release. If this is 4973 * a non-STREAMS socket, then just make an upcall. For STREAMS 4974 * we send up an ordrel_ind, unless this is an eager, in which 4975 * case the ordrel will be sent when tcp_accept_finish runs. 4976 * Note that for non-STREAMS we make an upcall even if it is an 4977 * eager, because we have an upper handle to send it to. 4978 */ 4979 ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL); 4980 ASSERT(!tcp->tcp_detached); 4981 4982 if (IPCL_IS_NONSTR(connp)) { 4983 ASSERT(tcp->tcp_ordrel_mp == NULL); 4984 tcp->tcp_ordrel_done = B_TRUE; 4985 (*sockupcalls->su_opctl)(connp->conn_upper_handle, 4986 SOCK_OPCTL_SHUT_RECV, 0); 4987 goto done; 4988 } 4989 4990 if (tcp->tcp_rcv_list != NULL) { 4991 /* 4992 * Push any mblk(s) enqueued from co processing. 4993 */ 4994 flags |= tcp_rcv_drain(tcp); 4995 } 4996 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 4997 4998 mp1 = tcp->tcp_ordrel_mp; 4999 tcp->tcp_ordrel_mp = NULL; 5000 tcp->tcp_ordrel_done = B_TRUE; 5001 putnext(connp->conn_rq, mp1); 5002 } 5003 done: 5004 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 5005 } 5006 5007 /* 5008 * Attach ancillary data to a received TCP segments for the 5009 * ancillary pieces requested by the application that are 5010 * different than they were in the previous data segment. 5011 * 5012 * Save the "current" values once memory allocation is ok so that 5013 * when memory allocation fails we can just wait for the next data segment. 5014 */ 5015 static mblk_t * 5016 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 5017 ip_recv_attr_t *ira) 5018 { 5019 struct T_optdata_ind *todi; 5020 int optlen; 5021 uchar_t *optptr; 5022 struct T_opthdr *toh; 5023 crb_t addflag; /* Which pieces to add */ 5024 mblk_t *mp1; 5025 conn_t *connp = tcp->tcp_connp; 5026 5027 optlen = 0; 5028 addflag.crb_all = 0; 5029 /* If app asked for pktinfo and the index has changed ... */ 5030 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 5031 ira->ira_ruifindex != tcp->tcp_recvifindex) { 5032 optlen += sizeof (struct T_opthdr) + 5033 sizeof (struct in6_pktinfo); 5034 addflag.crb_ip_recvpktinfo = 1; 5035 } 5036 /* If app asked for hoplimit and it has changed ... */ 5037 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 5038 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 5039 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 5040 addflag.crb_ipv6_recvhoplimit = 1; 5041 } 5042 /* If app asked for tclass and it has changed ... */ 5043 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 5044 ipp->ipp_tclass != tcp->tcp_recvtclass) { 5045 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 5046 addflag.crb_ipv6_recvtclass = 1; 5047 } 5048 /* 5049 * If app asked for hopbyhop headers and it has changed ... 5050 * For security labels, note that (1) security labels can't change on 5051 * a connected socket at all, (2) we're connected to at most one peer, 5052 * (3) if anything changes, then it must be some other extra option. 5053 */ 5054 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 5055 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 5056 (ipp->ipp_fields & IPPF_HOPOPTS), 5057 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 5058 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 5059 addflag.crb_ipv6_recvhopopts = 1; 5060 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 5061 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 5062 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 5063 return (mp); 5064 } 5065 /* If app asked for dst headers before routing headers ... */ 5066 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 5067 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 5068 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5069 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 5070 optlen += sizeof (struct T_opthdr) + 5071 ipp->ipp_rthdrdstoptslen; 5072 addflag.crb_ipv6_recvrthdrdstopts = 1; 5073 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 5074 &tcp->tcp_rthdrdstoptslen, 5075 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5076 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 5077 return (mp); 5078 } 5079 /* If app asked for routing headers and it has changed ... */ 5080 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 5081 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 5082 (ipp->ipp_fields & IPPF_RTHDR), 5083 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 5084 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 5085 addflag.crb_ipv6_recvrthdr = 1; 5086 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 5087 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 5088 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 5089 return (mp); 5090 } 5091 /* If app asked for dest headers and it has changed ... */ 5092 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 5093 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 5094 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 5095 (ipp->ipp_fields & IPPF_DSTOPTS), 5096 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 5097 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 5098 addflag.crb_ipv6_recvdstopts = 1; 5099 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 5100 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 5101 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 5102 return (mp); 5103 } 5104 5105 if (optlen == 0) { 5106 /* Nothing to add */ 5107 return (mp); 5108 } 5109 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 5110 if (mp1 == NULL) { 5111 /* 5112 * Defer sending ancillary data until the next TCP segment 5113 * arrives. 5114 */ 5115 return (mp); 5116 } 5117 mp1->b_cont = mp; 5118 mp = mp1; 5119 mp->b_wptr += sizeof (*todi) + optlen; 5120 mp->b_datap->db_type = M_PROTO; 5121 todi = (struct T_optdata_ind *)mp->b_rptr; 5122 todi->PRIM_type = T_OPTDATA_IND; 5123 todi->DATA_flag = 1; /* MORE data */ 5124 todi->OPT_length = optlen; 5125 todi->OPT_offset = sizeof (*todi); 5126 optptr = (uchar_t *)&todi[1]; 5127 /* 5128 * If app asked for pktinfo and the index has changed ... 5129 * Note that the local address never changes for the connection. 5130 */ 5131 if (addflag.crb_ip_recvpktinfo) { 5132 struct in6_pktinfo *pkti; 5133 uint_t ifindex; 5134 5135 ifindex = ira->ira_ruifindex; 5136 toh = (struct T_opthdr *)optptr; 5137 toh->level = IPPROTO_IPV6; 5138 toh->name = IPV6_PKTINFO; 5139 toh->len = sizeof (*toh) + sizeof (*pkti); 5140 toh->status = 0; 5141 optptr += sizeof (*toh); 5142 pkti = (struct in6_pktinfo *)optptr; 5143 pkti->ipi6_addr = connp->conn_laddr_v6; 5144 pkti->ipi6_ifindex = ifindex; 5145 optptr += sizeof (*pkti); 5146 ASSERT(OK_32PTR(optptr)); 5147 /* Save as "last" value */ 5148 tcp->tcp_recvifindex = ifindex; 5149 } 5150 /* If app asked for hoplimit and it has changed ... */ 5151 if (addflag.crb_ipv6_recvhoplimit) { 5152 toh = (struct T_opthdr *)optptr; 5153 toh->level = IPPROTO_IPV6; 5154 toh->name = IPV6_HOPLIMIT; 5155 toh->len = sizeof (*toh) + sizeof (uint_t); 5156 toh->status = 0; 5157 optptr += sizeof (*toh); 5158 *(uint_t *)optptr = ipp->ipp_hoplimit; 5159 optptr += sizeof (uint_t); 5160 ASSERT(OK_32PTR(optptr)); 5161 /* Save as "last" value */ 5162 tcp->tcp_recvhops = ipp->ipp_hoplimit; 5163 } 5164 /* If app asked for tclass and it has changed ... */ 5165 if (addflag.crb_ipv6_recvtclass) { 5166 toh = (struct T_opthdr *)optptr; 5167 toh->level = IPPROTO_IPV6; 5168 toh->name = IPV6_TCLASS; 5169 toh->len = sizeof (*toh) + sizeof (uint_t); 5170 toh->status = 0; 5171 optptr += sizeof (*toh); 5172 *(uint_t *)optptr = ipp->ipp_tclass; 5173 optptr += sizeof (uint_t); 5174 ASSERT(OK_32PTR(optptr)); 5175 /* Save as "last" value */ 5176 tcp->tcp_recvtclass = ipp->ipp_tclass; 5177 } 5178 if (addflag.crb_ipv6_recvhopopts) { 5179 toh = (struct T_opthdr *)optptr; 5180 toh->level = IPPROTO_IPV6; 5181 toh->name = IPV6_HOPOPTS; 5182 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 5183 toh->status = 0; 5184 optptr += sizeof (*toh); 5185 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 5186 optptr += ipp->ipp_hopoptslen; 5187 ASSERT(OK_32PTR(optptr)); 5188 /* Save as last value */ 5189 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 5190 (ipp->ipp_fields & IPPF_HOPOPTS), 5191 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 5192 } 5193 if (addflag.crb_ipv6_recvrthdrdstopts) { 5194 toh = (struct T_opthdr *)optptr; 5195 toh->level = IPPROTO_IPV6; 5196 toh->name = IPV6_RTHDRDSTOPTS; 5197 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 5198 toh->status = 0; 5199 optptr += sizeof (*toh); 5200 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 5201 optptr += ipp->ipp_rthdrdstoptslen; 5202 ASSERT(OK_32PTR(optptr)); 5203 /* Save as last value */ 5204 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 5205 &tcp->tcp_rthdrdstoptslen, 5206 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 5207 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 5208 } 5209 if (addflag.crb_ipv6_recvrthdr) { 5210 toh = (struct T_opthdr *)optptr; 5211 toh->level = IPPROTO_IPV6; 5212 toh->name = IPV6_RTHDR; 5213 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 5214 toh->status = 0; 5215 optptr += sizeof (*toh); 5216 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 5217 optptr += ipp->ipp_rthdrlen; 5218 ASSERT(OK_32PTR(optptr)); 5219 /* Save as last value */ 5220 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 5221 (ipp->ipp_fields & IPPF_RTHDR), 5222 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 5223 } 5224 if (addflag.crb_ipv6_recvdstopts) { 5225 toh = (struct T_opthdr *)optptr; 5226 toh->level = IPPROTO_IPV6; 5227 toh->name = IPV6_DSTOPTS; 5228 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 5229 toh->status = 0; 5230 optptr += sizeof (*toh); 5231 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 5232 optptr += ipp->ipp_dstoptslen; 5233 ASSERT(OK_32PTR(optptr)); 5234 /* Save as last value */ 5235 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 5236 (ipp->ipp_fields & IPPF_DSTOPTS), 5237 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 5238 } 5239 ASSERT(optptr == mp->b_wptr); 5240 return (mp); 5241 } 5242 5243 /* The minimum of smoothed mean deviation in RTO calculation. */ 5244 #define TCP_SD_MIN 400 5245 5246 /* 5247 * Set RTO for this connection. The formula is from Jacobson and Karels' 5248 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 5249 * are the same as those in Appendix A.2 of that paper. 5250 * 5251 * m = new measurement 5252 * sa = smoothed RTT average (8 * average estimates). 5253 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 5254 */ 5255 static void 5256 tcp_set_rto(tcp_t *tcp, clock_t rtt) 5257 { 5258 long m = TICK_TO_MSEC(rtt); 5259 clock_t sa = tcp->tcp_rtt_sa; 5260 clock_t sv = tcp->tcp_rtt_sd; 5261 clock_t rto; 5262 tcp_stack_t *tcps = tcp->tcp_tcps; 5263 5264 TCPS_BUMP_MIB(tcps, tcpRttUpdate); 5265 tcp->tcp_rtt_update++; 5266 5267 /* tcp_rtt_sa is not 0 means this is a new sample. */ 5268 if (sa != 0) { 5269 /* 5270 * Update average estimator: 5271 * new rtt = 7/8 old rtt + 1/8 Error 5272 */ 5273 5274 /* m is now Error in estimate. */ 5275 m -= sa >> 3; 5276 if ((sa += m) <= 0) { 5277 /* 5278 * Don't allow the smoothed average to be negative. 5279 * We use 0 to denote reinitialization of the 5280 * variables. 5281 */ 5282 sa = 1; 5283 } 5284 5285 /* 5286 * Update deviation estimator: 5287 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 5288 */ 5289 if (m < 0) 5290 m = -m; 5291 m -= sv >> 2; 5292 sv += m; 5293 } else { 5294 /* 5295 * This follows BSD's implementation. So the reinitialized 5296 * RTO is 3 * m. We cannot go less than 2 because if the 5297 * link is bandwidth dominated, doubling the window size 5298 * during slow start means doubling the RTT. We want to be 5299 * more conservative when we reinitialize our estimates. 3 5300 * is just a convenient number. 5301 */ 5302 sa = m << 3; 5303 sv = m << 1; 5304 } 5305 if (sv < TCP_SD_MIN) { 5306 /* 5307 * We do not know that if sa captures the delay ACK 5308 * effect as in a long train of segments, a receiver 5309 * does not delay its ACKs. So set the minimum of sv 5310 * to be TCP_SD_MIN, which is default to 400 ms, twice 5311 * of BSD DATO. That means the minimum of mean 5312 * deviation is 100 ms. 5313 * 5314 */ 5315 sv = TCP_SD_MIN; 5316 } 5317 tcp->tcp_rtt_sa = sa; 5318 tcp->tcp_rtt_sd = sv; 5319 /* 5320 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 5321 * 5322 * Add tcp_rexmit_interval extra in case of extreme environment 5323 * where the algorithm fails to work. The default value of 5324 * tcp_rexmit_interval_extra should be 0. 5325 * 5326 * As we use a finer grained clock than BSD and update 5327 * RTO for every ACKs, add in another .25 of RTT to the 5328 * deviation of RTO to accomodate burstiness of 1/4 of 5329 * window size. 5330 */ 5331 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 5332 5333 TCP_SET_RTO(tcp, rto); 5334 5335 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 5336 tcp->tcp_timer_backoff = 0; 5337 } 5338 5339 /* 5340 * On a labeled system we have some protocols above TCP, such as RPC, which 5341 * appear to assume that every mblk in a chain has a db_credp. 5342 */ 5343 static void 5344 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 5345 { 5346 ASSERT(is_system_labeled()); 5347 ASSERT(ira->ira_cred != NULL); 5348 5349 while (mp != NULL) { 5350 mblk_setcred(mp, ira->ira_cred, NOPID); 5351 mp = mp->b_cont; 5352 } 5353 } 5354 5355 uint_t 5356 tcp_rwnd_reopen(tcp_t *tcp) 5357 { 5358 uint_t ret = 0; 5359 uint_t thwin; 5360 conn_t *connp = tcp->tcp_connp; 5361 5362 /* Learn the latest rwnd information that we sent to the other side. */ 5363 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 5364 << tcp->tcp_rcv_ws; 5365 /* This is peer's calculated send window (our receive window). */ 5366 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 5367 /* 5368 * Increase the receive window to max. But we need to do receiver 5369 * SWS avoidance. This means that we need to check the increase of 5370 * of receive window is at least 1 MSS. 5371 */ 5372 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 5373 /* 5374 * If the window that the other side knows is less than max 5375 * deferred acks segments, send an update immediately. 5376 */ 5377 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 5378 TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate); 5379 ret = TH_ACK_NEEDED; 5380 } 5381 tcp->tcp_rwnd = connp->conn_rcvbuf; 5382 } 5383 return (ret); 5384 } 5385 5386 /* 5387 * Handle a packet that has been reclassified by TCP. 5388 * This function drops the ref on connp that the caller had. 5389 */ 5390 void 5391 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 5392 { 5393 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5394 5395 if (connp->conn_incoming_ifindex != 0 && 5396 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 5397 freemsg(mp); 5398 CONN_DEC_REF(connp); 5399 return; 5400 } 5401 5402 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 5403 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 5404 ip6_t *ip6h; 5405 ipha_t *ipha; 5406 5407 if (ira->ira_flags & IRAF_IS_IPV4) { 5408 ipha = (ipha_t *)mp->b_rptr; 5409 ip6h = NULL; 5410 } else { 5411 ipha = NULL; 5412 ip6h = (ip6_t *)mp->b_rptr; 5413 } 5414 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 5415 if (mp == NULL) { 5416 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 5417 /* Note that mp is NULL */ 5418 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 5419 CONN_DEC_REF(connp); 5420 return; 5421 } 5422 } 5423 5424 if (IPCL_IS_TCP(connp)) { 5425 /* 5426 * do not drain, certain use cases can blow 5427 * the stack 5428 */ 5429 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 5430 connp->conn_recv, connp, ira, 5431 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 5432 } else { 5433 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 5434 (connp->conn_recv)(connp, mp, NULL, 5435 ira); 5436 CONN_DEC_REF(connp); 5437 } 5438 5439 } 5440 5441 /* ARGSUSED */ 5442 static void 5443 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5444 { 5445 conn_t *connp = (conn_t *)arg; 5446 tcp_t *tcp = connp->conn_tcp; 5447 queue_t *q = connp->conn_rq; 5448 5449 ASSERT(!IPCL_IS_NONSTR(connp)); 5450 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5451 tcp->tcp_rsrv_mp = mp; 5452 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5453 5454 if (TCP_IS_DETACHED(tcp) || q == NULL) { 5455 return; 5456 } 5457 5458 if (tcp->tcp_fused) { 5459 tcp_fuse_backenable(tcp); 5460 return; 5461 } 5462 5463 if (canputnext(q)) { 5464 /* Not flow-controlled, open rwnd */ 5465 tcp->tcp_rwnd = connp->conn_rcvbuf; 5466 5467 /* 5468 * Send back a window update immediately if TCP is above 5469 * ESTABLISHED state and the increase of the rcv window 5470 * that the other side knows is at least 1 MSS after flow 5471 * control is lifted. 5472 */ 5473 if (tcp->tcp_state >= TCPS_ESTABLISHED && 5474 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 5475 tcp_xmit_ctl(NULL, tcp, 5476 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 5477 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 5478 } 5479 } 5480 } 5481 5482 /* 5483 * The read side service routine is called mostly when we get back-enabled as a 5484 * result of flow control relief. Since we don't actually queue anything in 5485 * TCP, we have no data to send out of here. What we do is clear the receive 5486 * window, and send out a window update. 5487 */ 5488 void 5489 tcp_rsrv(queue_t *q) 5490 { 5491 conn_t *connp = Q_TO_CONN(q); 5492 tcp_t *tcp = connp->conn_tcp; 5493 mblk_t *mp; 5494 5495 /* No code does a putq on the read side */ 5496 ASSERT(q->q_first == NULL); 5497 5498 /* 5499 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 5500 * been run. So just return. 5501 */ 5502 mutex_enter(&tcp->tcp_rsrv_mp_lock); 5503 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 5504 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5505 return; 5506 } 5507 tcp->tcp_rsrv_mp = NULL; 5508 mutex_exit(&tcp->tcp_rsrv_mp_lock); 5509 5510 CONN_INC_REF(connp); 5511 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 5512 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 5513 } 5514 5515 /* At minimum we need 8 bytes in the TCP header for the lookup */ 5516 #define ICMP_MIN_TCP_HDR 8 5517 5518 /* 5519 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 5520 * passed up by IP. The message is always received on the correct tcp_t. 5521 * Assumes that IP has pulled up everything up to and including the ICMP header. 5522 */ 5523 /* ARGSUSED2 */ 5524 void 5525 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 5526 { 5527 conn_t *connp = (conn_t *)arg1; 5528 icmph_t *icmph; 5529 ipha_t *ipha; 5530 int iph_hdr_length; 5531 tcpha_t *tcpha; 5532 uint32_t seg_seq; 5533 tcp_t *tcp = connp->conn_tcp; 5534 5535 /* Assume IP provides aligned packets */ 5536 ASSERT(OK_32PTR(mp->b_rptr)); 5537 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 5538 5539 /* 5540 * It's possible we have a closed, but not yet destroyed, TCP 5541 * connection. Several fields (e.g. conn_ixa->ixa_ire) are invalid 5542 * in the closed state, so don't take any chances and drop the packet. 5543 */ 5544 if (tcp->tcp_state == TCPS_CLOSED) { 5545 freemsg(mp); 5546 return; 5547 } 5548 5549 /* 5550 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 5551 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 5552 */ 5553 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 5554 tcp_icmp_error_ipv6(tcp, mp, ira); 5555 return; 5556 } 5557 5558 /* Skip past the outer IP and ICMP headers */ 5559 iph_hdr_length = ira->ira_ip_hdr_length; 5560 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 5561 /* 5562 * If we don't have the correct outer IP header length 5563 * or if we don't have a complete inner IP header 5564 * drop it. 5565 */ 5566 if (iph_hdr_length < sizeof (ipha_t) || 5567 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 5568 noticmpv4: 5569 freemsg(mp); 5570 return; 5571 } 5572 ipha = (ipha_t *)&icmph[1]; 5573 5574 /* Skip past the inner IP and find the ULP header */ 5575 iph_hdr_length = IPH_HDR_LENGTH(ipha); 5576 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 5577 /* 5578 * If we don't have the correct inner IP header length or if the ULP 5579 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 5580 * bytes of TCP header, drop it. 5581 */ 5582 if (iph_hdr_length < sizeof (ipha_t) || 5583 ipha->ipha_protocol != IPPROTO_TCP || 5584 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 5585 goto noticmpv4; 5586 } 5587 5588 seg_seq = ntohl(tcpha->tha_seq); 5589 switch (icmph->icmph_type) { 5590 case ICMP_DEST_UNREACHABLE: 5591 switch (icmph->icmph_code) { 5592 case ICMP_FRAGMENTATION_NEEDED: 5593 /* 5594 * Update Path MTU, then try to send something out. 5595 */ 5596 tcp_update_pmtu(tcp, B_TRUE); 5597 tcp_rexmit_after_error(tcp); 5598 break; 5599 case ICMP_PORT_UNREACHABLE: 5600 case ICMP_PROTOCOL_UNREACHABLE: 5601 switch (tcp->tcp_state) { 5602 case TCPS_SYN_SENT: 5603 case TCPS_SYN_RCVD: 5604 /* 5605 * ICMP can snipe away incipient 5606 * TCP connections as long as 5607 * seq number is same as initial 5608 * send seq number. 5609 */ 5610 if (seg_seq == tcp->tcp_iss) { 5611 (void) tcp_clean_death(tcp, 5612 ECONNREFUSED); 5613 } 5614 break; 5615 } 5616 break; 5617 case ICMP_HOST_UNREACHABLE: 5618 case ICMP_NET_UNREACHABLE: 5619 /* Record the error in case we finally time out. */ 5620 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 5621 tcp->tcp_client_errno = EHOSTUNREACH; 5622 else 5623 tcp->tcp_client_errno = ENETUNREACH; 5624 if (tcp->tcp_state == TCPS_SYN_RCVD) { 5625 if (tcp->tcp_listener != NULL && 5626 tcp->tcp_listener->tcp_syn_defense) { 5627 /* 5628 * Ditch the half-open connection if we 5629 * suspect a SYN attack is under way. 5630 */ 5631 (void) tcp_clean_death(tcp, 5632 tcp->tcp_client_errno); 5633 } 5634 } 5635 break; 5636 default: 5637 break; 5638 } 5639 break; 5640 case ICMP_SOURCE_QUENCH: { 5641 /* 5642 * use a global boolean to control 5643 * whether TCP should respond to ICMP_SOURCE_QUENCH. 5644 * The default is false. 5645 */ 5646 if (tcp_icmp_source_quench) { 5647 /* 5648 * Reduce the sending rate as if we got a 5649 * retransmit timeout 5650 */ 5651 uint32_t npkt; 5652 5653 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 5654 tcp->tcp_mss; 5655 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 5656 tcp->tcp_cwnd = tcp->tcp_mss; 5657 tcp->tcp_cwnd_cnt = 0; 5658 } 5659 break; 5660 } 5661 } 5662 freemsg(mp); 5663 } 5664 5665 /* 5666 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 5667 * error messages passed up by IP. 5668 * Assumes that IP has pulled up all the extension headers as well 5669 * as the ICMPv6 header. 5670 */ 5671 static void 5672 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 5673 { 5674 icmp6_t *icmp6; 5675 ip6_t *ip6h; 5676 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 5677 tcpha_t *tcpha; 5678 uint8_t *nexthdrp; 5679 uint32_t seg_seq; 5680 5681 /* 5682 * Verify that we have a complete IP header. 5683 */ 5684 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 5685 5686 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 5687 ip6h = (ip6_t *)&icmp6[1]; 5688 /* 5689 * Verify if we have a complete ICMP and inner IP header. 5690 */ 5691 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 5692 noticmpv6: 5693 freemsg(mp); 5694 return; 5695 } 5696 5697 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 5698 goto noticmpv6; 5699 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 5700 /* 5701 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 5702 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 5703 * packet. 5704 */ 5705 if ((*nexthdrp != IPPROTO_TCP) || 5706 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 5707 goto noticmpv6; 5708 } 5709 5710 seg_seq = ntohl(tcpha->tha_seq); 5711 switch (icmp6->icmp6_type) { 5712 case ICMP6_PACKET_TOO_BIG: 5713 /* 5714 * Update Path MTU, then try to send something out. 5715 */ 5716 tcp_update_pmtu(tcp, B_TRUE); 5717 tcp_rexmit_after_error(tcp); 5718 break; 5719 case ICMP6_DST_UNREACH: 5720 switch (icmp6->icmp6_code) { 5721 case ICMP6_DST_UNREACH_NOPORT: 5722 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5723 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5724 (seg_seq == tcp->tcp_iss)) { 5725 (void) tcp_clean_death(tcp, ECONNREFUSED); 5726 } 5727 break; 5728 case ICMP6_DST_UNREACH_ADMIN: 5729 case ICMP6_DST_UNREACH_NOROUTE: 5730 case ICMP6_DST_UNREACH_BEYONDSCOPE: 5731 case ICMP6_DST_UNREACH_ADDR: 5732 /* Record the error in case we finally time out. */ 5733 tcp->tcp_client_errno = EHOSTUNREACH; 5734 if (((tcp->tcp_state == TCPS_SYN_SENT) || 5735 (tcp->tcp_state == TCPS_SYN_RCVD)) && 5736 (seg_seq == tcp->tcp_iss)) { 5737 if (tcp->tcp_listener != NULL && 5738 tcp->tcp_listener->tcp_syn_defense) { 5739 /* 5740 * Ditch the half-open connection if we 5741 * suspect a SYN attack is under way. 5742 */ 5743 (void) tcp_clean_death(tcp, 5744 tcp->tcp_client_errno); 5745 } 5746 } 5747 5748 5749 break; 5750 default: 5751 break; 5752 } 5753 break; 5754 case ICMP6_PARAM_PROB: 5755 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 5756 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 5757 (uchar_t *)ip6h + icmp6->icmp6_pptr == 5758 (uchar_t *)nexthdrp) { 5759 if (tcp->tcp_state == TCPS_SYN_SENT || 5760 tcp->tcp_state == TCPS_SYN_RCVD) { 5761 (void) tcp_clean_death(tcp, ECONNREFUSED); 5762 } 5763 break; 5764 } 5765 break; 5766 5767 case ICMP6_TIME_EXCEEDED: 5768 default: 5769 break; 5770 } 5771 freemsg(mp); 5772 } 5773 5774 /* 5775 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 5776 * change. But it can refer to fields like tcp_suna and tcp_snxt. 5777 * 5778 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 5779 * error messages received by IP. The message is always received on the correct 5780 * tcp_t. 5781 */ 5782 /* ARGSUSED */ 5783 boolean_t 5784 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 5785 ip_recv_attr_t *ira) 5786 { 5787 tcpha_t *tcpha = (tcpha_t *)arg2; 5788 uint32_t seq = ntohl(tcpha->tha_seq); 5789 tcp_t *tcp = connp->conn_tcp; 5790 5791 /* 5792 * TCP sequence number contained in payload of the ICMP error message 5793 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 5794 * the message is either a stale ICMP error, or an attack from the 5795 * network. Fail the verification. 5796 */ 5797 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 5798 return (B_FALSE); 5799 5800 /* For "too big" we also check the ignore flag */ 5801 if (ira->ira_flags & IRAF_IS_IPV4) { 5802 ASSERT(icmph != NULL); 5803 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 5804 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 5805 tcp->tcp_tcps->tcps_ignore_path_mtu) 5806 return (B_FALSE); 5807 } else { 5808 ASSERT(icmp6 != NULL); 5809 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 5810 tcp->tcp_tcps->tcps_ignore_path_mtu) 5811 return (B_FALSE); 5812 } 5813 return (B_TRUE); 5814 } 5815