xref: /titanic_44/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision c1591d2226910ad10594ffb2fa2f1db887f35afb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsun.h>
29 #include <sys/strsubr.h>
30 #include <sys/debug.h>
31 #include <sys/sdt.h>
32 #include <sys/cmn_err.h>
33 #include <sys/tihdr.h>
34 
35 #include <inet/common.h>
36 #include <inet/optcom.h>
37 #include <inet/ip.h>
38 #include <inet/ip_impl.h>
39 #include <inet/tcp.h>
40 #include <inet/tcp_impl.h>
41 #include <inet/ipsec_impl.h>
42 #include <inet/ipclassifier.h>
43 #include <inet/ipp_common.h>
44 #include <inet/ip_if.h>
45 
46 /*
47  * This file implements TCP fusion - a protocol-less data path for TCP
48  * loopback connections.  The fusion of two local TCP endpoints occurs
49  * at connection establishment time.  Various conditions (see details
50  * in tcp_fuse()) need to be met for fusion to be successful.  If it
51  * fails, we fall back to the regular TCP data path; if it succeeds,
52  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
53  * tcp_fuse_output() enqueues application data directly onto the peer's
54  * receive queue; no protocol processing is involved.  After enqueueing
55  * the data, the sender can either push (putnext) data up the receiver's
56  * read queue; or the sender can simply return and let the receiver
57  * retrieve the enqueued data via the synchronous streams entry point
58  * tcp_fuse_rrw().  The latter path is taken if synchronous streams is
59  * enabled (the default).  It is disabled if sockfs no longer resides
60  * directly on top of tcp module due to a module insertion or removal.
61  * It also needs to be temporarily disabled when sending urgent data
62  * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
63  * by strsock_proto() hook.
64  *
65  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
66  * One of the requirements for fusion to succeed is that both endpoints
67  * need to be using the same squeue.  This ensures that neither side
68  * can disappear while the other side is still sending data.  By itself,
69  * squeue is not sufficient for guaranteeing safety when synchronous
70  * streams is enabled.  The reason is that tcp_fuse_rrw() doesn't enter
71  * the squeue and its access to tcp_rcv_list and other fusion-related
72  * fields needs to be sychronized with the sender.  tcp_non_sq_lock is
73  * used for this purpose.  When there is urgent data, the sender needs
74  * to push the data up the receiver's streams read queue.  In order to
75  * avoid holding the tcp_non_sq_lock across putnext(), the sender sets
76  * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock
77  * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()).  If tcp_fuse_rrw() enters
78  * after this point, it will see that synchronous streams is plugged and
79  * will wait on tcp_fuse_plugcv.  After the sender has finished pushing up
80  * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using
81  * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN().  This will cause any threads waiting
82  * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call
83  * getq_noenab() to dequeue data from the stream head instead.  Once the
84  * data on the stream head has been consumed, tcp_fuse_rrw() may again
85  * be used to process tcp_rcv_list.  However, if TCP_FUSE_SYNCSTR_STOP()
86  * has been called, all future calls to tcp_fuse_rrw() will return EBUSY,
87  * effectively disabling synchronous streams.
88  *
89  * The following note applies only to the synchronous streams mode.
90  *
91  * Flow control is done by checking the size of receive buffer and
92  * the number of data blocks, both set to different limits.  This is
93  * different than regular streams flow control where cumulative size
94  * check dominates block count check -- streams queue high water mark
95  * typically represents bytes.  Each enqueue triggers notifications
96  * to the receiving process; a build up of data blocks indicates a
97  * slow receiver and the sender should be blocked or informed at the
98  * earliest moment instead of further wasting system resources.  In
99  * effect, this is equivalent to limiting the number of outstanding
100  * segments in flight.
101  */
102 
103 /*
104  * Setting this to false means we disable fusion altogether and
105  * loopback connections would go through the protocol paths.
106  */
107 boolean_t do_tcp_fusion = B_TRUE;
108 
109 /*
110  * Enabling this flag allows sockfs to retrieve data directly
111  * from a fused tcp endpoint using synchronous streams interface.
112  */
113 boolean_t do_tcp_direct_sockfs = B_TRUE;
114 
115 /*
116  * This is the minimum amount of outstanding writes allowed on
117  * a synchronous streams-enabled receiving endpoint before the
118  * sender gets flow-controlled.  Setting this value to 0 means
119  * that the data block limit is equivalent to the byte count
120  * limit, which essentially disables the check.
121  */
122 #define	TCP_FUSION_RCV_UNREAD_MIN	8
123 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
124 
125 static void		tcp_fuse_syncstr_enable(tcp_t *);
126 static void		tcp_fuse_syncstr_disable(tcp_t *);
127 static boolean_t	strrput_sig(queue_t *, boolean_t);
128 
129 /*
130  * Return true if this connection needs some IP functionality
131  */
132 static boolean_t
133 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
134 {
135 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
136 
137 	/*
138 	 * If ire is not cached, do not use fusion
139 	 */
140 	if (tcp->tcp_connp->conn_ire_cache == NULL) {
141 		/*
142 		 * There is no need to hold conn_lock here because when called
143 		 * from tcp_fuse() there can be no window where conn_ire_cache
144 		 * can change. This is not true when called from
145 		 * tcp_fuse_output() as conn_ire_cache can become null just
146 		 * after the check. It will be necessary to recheck for a NULL
147 		 * conn_ire_cache in tcp_fuse_output() to avoid passing a
148 		 * stale ill pointer to FW_HOOKS.
149 		 */
150 		return (B_TRUE);
151 	}
152 	if (tcp->tcp_ipversion == IPV4_VERSION) {
153 		if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
154 			return (B_TRUE);
155 		if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
156 			return (B_TRUE);
157 		if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
158 			return (B_TRUE);
159 	} else {
160 		if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
161 			return (B_TRUE);
162 		if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
163 			return (B_TRUE);
164 		if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
165 			return (B_TRUE);
166 	}
167 	if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
168 		return (B_TRUE);
169 	return (B_FALSE);
170 }
171 
172 
173 /*
174  * This routine gets called by the eager tcp upon changing state from
175  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
176  * and the active connect tcp such that the regular tcp processings
177  * may be bypassed under allowable circumstances.  Because the fusion
178  * requires both endpoints to be in the same squeue, it does not work
179  * for simultaneous active connects because there is no easy way to
180  * switch from one squeue to another once the connection is created.
181  * This is different from the eager tcp case where we assign it the
182  * same squeue as the one given to the active connect tcp during open.
183  */
184 void
185 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
186 {
187 	conn_t *peer_connp, *connp = tcp->tcp_connp;
188 	tcp_t *peer_tcp;
189 	tcp_stack_t	*tcps = tcp->tcp_tcps;
190 	netstack_t	*ns;
191 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
192 
193 	ASSERT(!tcp->tcp_fused);
194 	ASSERT(tcp->tcp_loopback);
195 	ASSERT(tcp->tcp_loopback_peer == NULL);
196 	/*
197 	 * We need to inherit q_hiwat of the listener tcp, but we can't
198 	 * really use tcp_listener since we get here after sending up
199 	 * T_CONN_IND and tcp_wput_accept() may be called independently,
200 	 * at which point tcp_listener is cleared; this is why we use
201 	 * tcp_saved_listener.  The listener itself is guaranteed to be
202 	 * around until tcp_accept_finish() is called on this eager --
203 	 * this won't happen until we're done since we're inside the
204 	 * eager's perimeter now.
205 	 *
206 	 * We can also get called in the case were a connection needs
207 	 * to be re-fused. In this case tcp_saved_listener will be
208 	 * NULL but tcp_refuse will be true.
209 	 */
210 	ASSERT(tcp->tcp_saved_listener != NULL || tcp->tcp_refuse);
211 	/*
212 	 * Lookup peer endpoint; search for the remote endpoint having
213 	 * the reversed address-port quadruplet in ESTABLISHED state,
214 	 * which is guaranteed to be unique in the system.  Zone check
215 	 * is applied accordingly for loopback address, but not for
216 	 * local address since we want fusion to happen across Zones.
217 	 */
218 	if (tcp->tcp_ipversion == IPV4_VERSION) {
219 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
220 		    (ipha_t *)iphdr, tcph, ipst);
221 	} else {
222 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
223 		    (ip6_t *)iphdr, tcph, ipst);
224 	}
225 
226 	/*
227 	 * We can only proceed if peer exists, resides in the same squeue
228 	 * as our conn and is not raw-socket.  The squeue assignment of
229 	 * this eager tcp was done earlier at the time of SYN processing
230 	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
231 	 * doesn't guarantee a safe condition to fuse, hence we perform
232 	 * additional tests below.
233 	 */
234 	ASSERT(peer_connp == NULL || peer_connp != connp);
235 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
236 	    !IPCL_IS_TCP(peer_connp)) {
237 		if (peer_connp != NULL) {
238 			TCP_STAT(tcps, tcp_fusion_unqualified);
239 			CONN_DEC_REF(peer_connp);
240 		}
241 		return;
242 	}
243 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
244 
245 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
246 	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
247 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
248 
249 	/*
250 	 * Fuse the endpoints; we perform further checks against both
251 	 * tcp endpoints to ensure that a fusion is allowed to happen.
252 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
253 	 * IPQoS policy/kernel SSL exists.
254 	 */
255 	ns = tcps->tcps_netstack;
256 	ipst = ns->netstack_ip;
257 
258 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
259 	    !tcp_loopback_needs_ip(tcp, ns) &&
260 	    !tcp_loopback_needs_ip(peer_tcp, ns) &&
261 	    tcp->tcp_kssl_ent == NULL &&
262 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
263 		mblk_t *mp;
264 		queue_t *peer_rq = peer_tcp->tcp_rq;
265 
266 		ASSERT(!TCP_IS_DETACHED(peer_tcp));
267 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
268 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
269 		ASSERT(tcp->tcp_kssl_ctx == NULL);
270 
271 		/*
272 		 * We need to drain data on both endpoints during unfuse.
273 		 * If we need to send up SIGURG at the time of draining,
274 		 * we want to be sure that an mblk is readily available.
275 		 * This is why we pre-allocate the M_PCSIG mblks for both
276 		 * endpoints which will only be used during/after unfuse.
277 		 */
278 		if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
279 			if ((mp = allocb(1, BPRI_HI)) == NULL)
280 				goto failed;
281 
282 			tcp->tcp_fused_sigurg_mp = mp;
283 		}
284 
285 		if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
286 			if ((mp = allocb(1, BPRI_HI)) == NULL)
287 				goto failed;
288 
289 			peer_tcp->tcp_fused_sigurg_mp = mp;
290 		}
291 
292 		if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
293 		    (mp = allocb(sizeof (struct stroptions),
294 		    BPRI_HI)) == NULL) {
295 			goto failed;
296 		}
297 
298 		/* If either tcp or peer_tcp sodirect enabled then disable */
299 		if (tcp->tcp_sodirect != NULL) {
300 			mutex_enter(tcp->tcp_sodirect->sod_lockp);
301 			SOD_DISABLE(tcp->tcp_sodirect);
302 			mutex_exit(tcp->tcp_sodirect->sod_lockp);
303 			tcp->tcp_sodirect = NULL;
304 		}
305 		if (peer_tcp->tcp_sodirect != NULL) {
306 			mutex_enter(peer_tcp->tcp_sodirect->sod_lockp);
307 			SOD_DISABLE(peer_tcp->tcp_sodirect);
308 			mutex_exit(peer_tcp->tcp_sodirect->sod_lockp);
309 			peer_tcp->tcp_sodirect = NULL;
310 		}
311 
312 		/* Fuse both endpoints */
313 		peer_tcp->tcp_loopback_peer = tcp;
314 		tcp->tcp_loopback_peer = peer_tcp;
315 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
316 
317 		/*
318 		 * We never use regular tcp paths in fusion and should
319 		 * therefore clear tcp_unsent on both endpoints.  Having
320 		 * them set to non-zero values means asking for trouble
321 		 * especially after unfuse, where we may end up sending
322 		 * through regular tcp paths which expect xmit_list and
323 		 * friends to be correctly setup.
324 		 */
325 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
326 
327 		tcp_timers_stop(tcp);
328 		tcp_timers_stop(peer_tcp);
329 
330 		/*
331 		 * At this point we are a detached eager tcp and therefore
332 		 * don't have a queue assigned to us until accept happens.
333 		 * In the mean time the peer endpoint may immediately send
334 		 * us data as soon as fusion is finished, and we need to be
335 		 * able to flow control it in case it sends down huge amount
336 		 * of data while we're still detached.  To prevent that we
337 		 * inherit the listener's recv_hiwater value; this is temporary
338 		 * since we'll repeat the process intcp_accept_finish().
339 		 */
340 		if (!tcp->tcp_refuse) {
341 			(void) tcp_fuse_set_rcv_hiwat(tcp,
342 			    tcp->tcp_saved_listener->tcp_recv_hiwater);
343 
344 			/*
345 			 * Set the stream head's write offset value to zero
346 			 * since we won't be needing any room for TCP/IP
347 			 * headers; tell it to not break up the writes (this
348 			 * would reduce the amount of work done by kmem); and
349 			 * configure our receive buffer. Note that we can only
350 			 * do this for the active connect tcp since our eager is
351 			 * still detached; it will be dealt with later in
352 			 * tcp_accept_finish().
353 			 */
354 			if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
355 				struct stroptions *stropt;
356 
357 				DB_TYPE(mp) = M_SETOPTS;
358 				mp->b_wptr += sizeof (*stropt);
359 
360 				stropt = (struct stroptions *)mp->b_rptr;
361 				stropt->so_flags = SO_MAXBLK|SO_WROFF|SO_HIWAT;
362 				stropt->so_maxblk = tcp_maxpsz_set(peer_tcp,
363 				    B_FALSE);
364 				stropt->so_wroff = 0;
365 
366 				/*
367 				 * Record the stream head's high water mark for
368 				 * peer endpoint; this is used for flow-control
369 				 * purposes in tcp_fuse_output().
370 				 */
371 				stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(
372 				    peer_tcp, peer_rq->q_hiwat);
373 
374 				tcp->tcp_refuse = B_FALSE;
375 				peer_tcp->tcp_refuse = B_FALSE;
376 				/* Send the options up */
377 				putnext(peer_rq, mp);
378 			} else {
379 				struct sock_proto_props sopp;
380 
381 				/* The peer is a non-STREAMS end point */
382 				ASSERT(IPCL_IS_TCP(peer_connp));
383 
384 				(void) tcp_fuse_set_rcv_hiwat(tcp,
385 				    tcp->tcp_saved_listener->tcp_recv_hiwater);
386 
387 				sopp.sopp_flags = SOCKOPT_MAXBLK |
388 				    SOCKOPT_WROFF | SOCKOPT_RCVHIWAT;
389 				sopp.sopp_maxblk = tcp_maxpsz_set(peer_tcp,
390 				    B_FALSE);
391 				sopp.sopp_wroff = 0;
392 				sopp.sopp_rxhiwat = tcp_fuse_set_rcv_hiwat(
393 				    peer_tcp, peer_tcp->tcp_recv_hiwater);
394 				(*peer_connp->conn_upcalls->su_set_proto_props)
395 				    (peer_connp->conn_upper_handle, &sopp);
396 			}
397 		}
398 		tcp->tcp_refuse = B_FALSE;
399 		peer_tcp->tcp_refuse = B_FALSE;
400 	} else {
401 		TCP_STAT(tcps, tcp_fusion_unqualified);
402 	}
403 	CONN_DEC_REF(peer_connp);
404 	return;
405 
406 failed:
407 	if (tcp->tcp_fused_sigurg_mp != NULL) {
408 		freeb(tcp->tcp_fused_sigurg_mp);
409 		tcp->tcp_fused_sigurg_mp = NULL;
410 	}
411 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
412 		freeb(peer_tcp->tcp_fused_sigurg_mp);
413 		peer_tcp->tcp_fused_sigurg_mp = NULL;
414 	}
415 	CONN_DEC_REF(peer_connp);
416 }
417 
418 /*
419  * Unfuse a previously-fused pair of tcp loopback endpoints.
420  */
421 void
422 tcp_unfuse(tcp_t *tcp)
423 {
424 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
425 
426 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
427 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
428 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
429 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
430 
431 	/*
432 	 * We disable synchronous streams, drain any queued data and
433 	 * clear tcp_direct_sockfs.  The synchronous streams entry
434 	 * points will become no-ops after this point.
435 	 */
436 	tcp_fuse_disable_pair(tcp, B_TRUE);
437 
438 	/*
439 	 * Update th_seq and th_ack in the header template
440 	 */
441 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
442 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
443 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
444 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
445 
446 	/* Unfuse the endpoints */
447 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
448 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
449 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
450 		ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
451 		freeb(peer_tcp->tcp_fused_sigurg_mp);
452 		peer_tcp->tcp_fused_sigurg_mp = NULL;
453 	}
454 	if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
455 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
456 		freeb(tcp->tcp_fused_sigurg_mp);
457 		tcp->tcp_fused_sigurg_mp = NULL;
458 	}
459 }
460 
461 /*
462  * Fusion output routine for urgent data.  This routine is called by
463  * tcp_fuse_output() for handling non-M_DATA mblks.
464  */
465 void
466 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
467 {
468 	mblk_t *mp1;
469 	struct T_exdata_ind *tei;
470 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
471 	mblk_t *head, *prev_head = NULL;
472 	tcp_stack_t	*tcps = tcp->tcp_tcps;
473 
474 	ASSERT(tcp->tcp_fused);
475 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
476 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
477 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
478 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
479 
480 	/*
481 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
482 	 * Each occurence denotes a new urgent pointer.  For each new
483 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
484 	 * that it needs to go into urgent mode.  This is similar to the
485 	 * urgent data handling in the regular tcp.  We don't need to keep
486 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
487 	 * "advances" the urgent pointer for us.
488 	 *
489 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
490 	 * by a T_EXDATA_IND before being enqueued behind any existing data
491 	 * destined for the receiving app.  There is only a single urgent
492 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
493 	 * data arrives before the receiving app reads some existing urgent
494 	 * data, the previous marker is lost.  This behavior is emulated
495 	 * accordingly below, by removing any existing T_EXDATA_IND messages
496 	 * and essentially converting old urgent data into non-urgent.
497 	 */
498 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
499 	/* Let sender get out of urgent mode */
500 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
501 
502 	/*
503 	 * This flag indicates that a signal needs to be sent up.
504 	 * This flag will only get cleared once SIGURG is delivered and
505 	 * is not affected by the tcp_fused flag -- delivery will still
506 	 * happen even after an endpoint is unfused, to handle the case
507 	 * where the sending endpoint immediately closes/unfuses after
508 	 * sending urgent data and the accept is not yet finished.
509 	 */
510 	peer_tcp->tcp_fused_sigurg = B_TRUE;
511 
512 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
513 	DB_TYPE(mp) = M_PROTO;
514 	tei = (struct T_exdata_ind *)mp->b_rptr;
515 	tei->PRIM_type = T_EXDATA_IND;
516 	tei->MORE_flag = 0;
517 	mp->b_wptr = (uchar_t *)&tei[1];
518 
519 	TCP_STAT(tcps, tcp_fusion_urg);
520 	BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
521 
522 	head = peer_tcp->tcp_rcv_list;
523 	while (head != NULL) {
524 		/*
525 		 * Remove existing T_EXDATA_IND, keep the data which follows
526 		 * it and relink our list.  Note that we don't modify the
527 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
528 		 */
529 		if (DB_TYPE(head) != M_DATA) {
530 			mp1 = head;
531 
532 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
533 			head = mp1->b_cont;
534 			mp1->b_cont = NULL;
535 			head->b_next = mp1->b_next;
536 			mp1->b_next = NULL;
537 			if (prev_head != NULL)
538 				prev_head->b_next = head;
539 			if (peer_tcp->tcp_rcv_list == mp1)
540 				peer_tcp->tcp_rcv_list = head;
541 			if (peer_tcp->tcp_rcv_last_head == mp1)
542 				peer_tcp->tcp_rcv_last_head = head;
543 			freeb(mp1);
544 		}
545 		prev_head = head;
546 		head = head->b_next;
547 	}
548 }
549 
550 /*
551  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
552  * If we are modifying any member that can be changed outside the squeue,
553  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
554  */
555 boolean_t
556 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
557 {
558 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
559 	uint_t max_unread;
560 	boolean_t flow_stopped, peer_data_queued = B_FALSE;
561 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
562 	boolean_t push = B_FALSE;
563 	mblk_t *mp1 = mp;
564 	ill_t *ilp, *olp;
565 	ipif_t *iifp, *oifp;
566 	ipha_t *ipha;
567 	ip6_t *ip6h;
568 	tcph_t *tcph;
569 	uint_t ip_hdr_len;
570 	uint32_t seq;
571 	uint32_t recv_size = send_size;
572 	tcp_stack_t	*tcps = tcp->tcp_tcps;
573 	netstack_t	*ns = tcps->tcps_netstack;
574 	ip_stack_t	*ipst = ns->netstack_ip;
575 
576 	ASSERT(tcp->tcp_fused);
577 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
578 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
579 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
580 	    DB_TYPE(mp) == M_PCPROTO);
581 
582 	/* If this connection requires IP, unfuse and use regular path */
583 	if (tcp_loopback_needs_ip(tcp, ns) ||
584 	    tcp_loopback_needs_ip(peer_tcp, ns) ||
585 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst) ||
586 	    list_head(&ipst->ips_ipobs_cb_list) != NULL) {
587 		TCP_STAT(tcps, tcp_fusion_aborted);
588 		tcp->tcp_refuse = B_TRUE;
589 		peer_tcp->tcp_refuse = B_TRUE;
590 
591 		bcopy(peer_tcp->tcp_tcph, &tcp->tcp_saved_tcph,
592 		    sizeof (tcph_t));
593 		bcopy(tcp->tcp_tcph, &peer_tcp->tcp_saved_tcph,
594 		    sizeof (tcph_t));
595 		if (tcp->tcp_ipversion == IPV4_VERSION) {
596 			bcopy(peer_tcp->tcp_ipha, &tcp->tcp_saved_ipha,
597 			    sizeof (ipha_t));
598 			bcopy(tcp->tcp_ipha, &peer_tcp->tcp_saved_ipha,
599 			    sizeof (ipha_t));
600 		} else {
601 			bcopy(peer_tcp->tcp_ip6h, &tcp->tcp_saved_ip6h,
602 			    sizeof (ip6_t));
603 			bcopy(tcp->tcp_ip6h, &peer_tcp->tcp_saved_ip6h,
604 			    sizeof (ip6_t));
605 		}
606 		goto unfuse;
607 	}
608 
609 	if (send_size == 0) {
610 		freemsg(mp);
611 		return (B_TRUE);
612 	}
613 	max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
614 
615 	/*
616 	 * Handle urgent data; we either send up SIGURG to the peer now
617 	 * or do it later when we drain, in case the peer is detached
618 	 * or if we're short of memory for M_PCSIG mblk.
619 	 */
620 	if (urgent) {
621 		/*
622 		 * We stop synchronous streams when we have urgent data
623 		 * queued to prevent tcp_fuse_rrw() from pulling it.  If
624 		 * for some reasons the urgent data can't be delivered
625 		 * below, synchronous streams will remain stopped until
626 		 * someone drains the tcp_rcv_list.
627 		 */
628 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
629 		tcp_fuse_output_urg(tcp, mp);
630 
631 		mp1 = mp->b_cont;
632 	}
633 
634 	if (tcp->tcp_ipversion == IPV4_VERSION &&
635 	    (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
636 	    HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
637 	    tcp->tcp_ipversion == IPV6_VERSION &&
638 	    (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
639 	    HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
640 		/*
641 		 * Build ip and tcp header to satisfy FW_HOOKS.
642 		 * We only build it when any hook is present.
643 		 */
644 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
645 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
646 			/* If tcp_xmit_mp fails, use regular path */
647 			goto unfuse;
648 
649 		/*
650 		 * The ipif and ill can be safely referenced under the
651 		 * protection of conn_lock - see head of function comment for
652 		 * conn_get_held_ipif(). It is necessary to check that both
653 		 * the ipif and ill can be looked up (i.e. not condemned). If
654 		 * not, bail out and unfuse this connection.
655 		 */
656 		mutex_enter(&peer_tcp->tcp_connp->conn_lock);
657 		if ((peer_tcp->tcp_connp->conn_ire_cache == NULL) ||
658 		    (peer_tcp->tcp_connp->conn_ire_cache->ire_marks &
659 		    IRE_MARK_CONDEMNED) ||
660 		    ((oifp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif)
661 		    == NULL) ||
662 		    (!IPIF_CAN_LOOKUP(oifp)) ||
663 		    ((olp = oifp->ipif_ill) == NULL) ||
664 		    (ill_check_and_refhold(olp) != 0)) {
665 			mutex_exit(&peer_tcp->tcp_connp->conn_lock);
666 			goto unfuse;
667 		}
668 		mutex_exit(&peer_tcp->tcp_connp->conn_lock);
669 
670 		/* PFHooks: LOOPBACK_OUT */
671 		if (tcp->tcp_ipversion == IPV4_VERSION) {
672 			ipha = (ipha_t *)mp1->b_rptr;
673 
674 			DTRACE_PROBE4(ip4__loopback__out__start,
675 			    ill_t *, NULL, ill_t *, olp,
676 			    ipha_t *, ipha, mblk_t *, mp1);
677 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
678 			    ipst->ips_ipv4firewall_loopback_out,
679 			    NULL, olp, ipha, mp1, mp1, 0, ipst);
680 			DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
681 		} else {
682 			ip6h = (ip6_t *)mp1->b_rptr;
683 
684 			DTRACE_PROBE4(ip6__loopback__out__start,
685 			    ill_t *, NULL, ill_t *, olp,
686 			    ip6_t *, ip6h, mblk_t *, mp1);
687 			FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
688 			    ipst->ips_ipv6firewall_loopback_out,
689 			    NULL, olp, ip6h, mp1, mp1, 0, ipst);
690 			DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
691 		}
692 		ill_refrele(olp);
693 
694 		if (mp1 == NULL)
695 			goto unfuse;
696 
697 		/*
698 		 * The ipif and ill can be safely referenced under the
699 		 * protection of conn_lock - see head of function comment for
700 		 * conn_get_held_ipif(). It is necessary to check that both
701 		 * the ipif and ill can be looked up (i.e. not condemned). If
702 		 * not, bail out and unfuse this connection.
703 		 */
704 		mutex_enter(&tcp->tcp_connp->conn_lock);
705 		if ((tcp->tcp_connp->conn_ire_cache == NULL) ||
706 		    (tcp->tcp_connp->conn_ire_cache->ire_marks &
707 		    IRE_MARK_CONDEMNED) ||
708 		    ((iifp = tcp->tcp_connp->conn_ire_cache->ire_ipif)
709 		    == NULL) ||
710 		    (!IPIF_CAN_LOOKUP(iifp)) ||
711 		    ((ilp = iifp->ipif_ill) == NULL) ||
712 		    (ill_check_and_refhold(ilp) != 0)) {
713 			mutex_exit(&tcp->tcp_connp->conn_lock);
714 			goto unfuse;
715 		}
716 		mutex_exit(&tcp->tcp_connp->conn_lock);
717 
718 		/* PFHooks: LOOPBACK_IN */
719 		if (tcp->tcp_ipversion == IPV4_VERSION) {
720 			DTRACE_PROBE4(ip4__loopback__in__start,
721 			    ill_t *, ilp, ill_t *, NULL,
722 			    ipha_t *, ipha, mblk_t *, mp1);
723 			FW_HOOKS(ipst->ips_ip4_loopback_in_event,
724 			    ipst->ips_ipv4firewall_loopback_in,
725 			    ilp, NULL, ipha, mp1, mp1, 0, ipst);
726 			DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
727 			ill_refrele(ilp);
728 			if (mp1 == NULL)
729 				goto unfuse;
730 
731 			ip_hdr_len = IPH_HDR_LENGTH(ipha);
732 		} else {
733 			DTRACE_PROBE4(ip6__loopback__in__start,
734 			    ill_t *, ilp, ill_t *, NULL,
735 			    ip6_t *, ip6h, mblk_t *, mp1);
736 			FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
737 			    ipst->ips_ipv6firewall_loopback_in,
738 			    ilp, NULL, ip6h, mp1, mp1, 0, ipst);
739 			DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
740 			ill_refrele(ilp);
741 			if (mp1 == NULL)
742 				goto unfuse;
743 
744 			ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
745 		}
746 
747 		/* Data length might be changed by FW_HOOKS */
748 		tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
749 		seq = ABE32_TO_U32(tcph->th_seq);
750 		recv_size += seq - tcp->tcp_snxt;
751 
752 		/*
753 		 * The message duplicated by tcp_xmit_mp is freed.
754 		 * Note: the original message passed in remains unchanged.
755 		 */
756 		freemsg(mp1);
757 	}
758 
759 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
760 	/*
761 	 * Wake up and signal the peer; it is okay to do this before
762 	 * enqueueing because we are holding the lock.  One of the
763 	 * advantages of synchronous streams is the ability for us to
764 	 * find out when the application performs a read on the socket,
765 	 * by way of tcp_fuse_rrw() entry point being called.  Every
766 	 * data that gets enqueued onto the receiver is treated as if
767 	 * it has arrived at the receiving endpoint, thus generating
768 	 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
769 	 * case.  However, we only wake up the application when necessary,
770 	 * i.e. during the first enqueue.  When tcp_fuse_rrw() is called
771 	 * it will send everything upstream.
772 	 */
773 	if (peer_tcp->tcp_direct_sockfs && !urgent &&
774 	    !TCP_IS_DETACHED(peer_tcp)) {
775 		/* Update poll events and send SIGPOLL/SIGIO if necessary */
776 		STR_WAKEUP_SENDSIG(STREAM(peer_tcp->tcp_rq),
777 		    peer_tcp->tcp_rcv_list);
778 	}
779 
780 	/*
781 	 * Enqueue data into the peer's receive list; we may or may not
782 	 * drain the contents depending on the conditions below.
783 	 */
784 	if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
785 	    peer_tcp->tcp_connp->conn_upper_handle != NULL) {
786 		int error;
787 		int flags = 0;
788 
789 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
790 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
791 			flags = MSG_OOB;
792 			(*peer_tcp->tcp_connp->conn_upcalls->su_signal_oob)
793 			    (peer_tcp->tcp_connp->conn_upper_handle, 0);
794 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
795 		}
796 		(*peer_tcp->tcp_connp->conn_upcalls->su_recv)(
797 		    peer_tcp->tcp_connp->conn_upper_handle, mp, recv_size,
798 		    flags, &error, &push);
799 	} else {
800 		if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
801 		    (tcp->tcp_valid_bits & TCP_URG_VALID) &&
802 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
803 			/*
804 			 * Can not deal with urgent pointers
805 			 * that arrive before the connection has been
806 			 * accept()ed.
807 			 */
808 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
809 			freemsg(mp);
810 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
811 			return (B_TRUE);
812 		}
813 
814 		tcp_rcv_enqueue(peer_tcp, mp, recv_size);
815 	}
816 
817 	/* In case it wrapped around and also to keep it constant */
818 	peer_tcp->tcp_rwnd += recv_size;
819 	/*
820 	 * We increase the peer's unread message count here whilst still
821 	 * holding it's tcp_non_sq_lock. This ensures that the increment
822 	 * occurs in the same lock acquisition perimeter as the enqueue.
823 	 * Depending on lock hierarchy, we can release these locks which
824 	 * creates a window in which we can race with tcp_fuse_rrw()
825 	 */
826 	peer_tcp->tcp_fuse_rcv_unread_cnt++;
827 
828 	/*
829 	 * Exercise flow-control when needed; we will get back-enabled
830 	 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
831 	 * If tcp_direct_sockfs is on or if the peer endpoint is detached,
832 	 * we emulate streams flow control by checking the peer's queue
833 	 * size and high water mark; otherwise we simply use canputnext()
834 	 * to decide if we need to stop our flow.
835 	 *
836 	 * The outstanding unread data block check does not apply for a
837 	 * detached receiver; this is to avoid unnecessary blocking of the
838 	 * sender while the accept is currently in progress and is quite
839 	 * similar to the regular tcp.
840 	 */
841 	if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
842 		max_unread = UINT_MAX;
843 
844 	/*
845 	 * Since we are accessing our tcp_flow_stopped and might modify it,
846 	 * we need to take tcp->tcp_non_sq_lock. The lock for the highest
847 	 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should
848 	 * not be an issue here since we are within the squeue and the peer
849 	 * won't disappear.
850 	 */
851 	if (tcp > peer_tcp) {
852 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
853 		mutex_enter(&tcp->tcp_non_sq_lock);
854 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
855 	} else {
856 		mutex_enter(&tcp->tcp_non_sq_lock);
857 	}
858 	flow_stopped = tcp->tcp_flow_stopped;
859 	if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
860 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
861 	    peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
862 	    (!peer_tcp->tcp_direct_sockfs && !TCP_IS_DETACHED(peer_tcp) &&
863 	    !IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
864 	    !canputnext(peer_tcp->tcp_rq))) {
865 		peer_data_queued = B_TRUE;
866 	}
867 
868 	if (!flow_stopped && (peer_data_queued ||
869 	    (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) {
870 		tcp_setqfull(tcp);
871 		flow_stopped = B_TRUE;
872 		TCP_STAT(tcps, tcp_fusion_flowctl);
873 		DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
874 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
875 		    uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
876 	} else if (flow_stopped && !peer_data_queued &&
877 	    (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) {
878 		tcp_clrqfull(tcp);
879 		TCP_STAT(tcps, tcp_fusion_backenabled);
880 		flow_stopped = B_FALSE;
881 	}
882 	mutex_exit(&tcp->tcp_non_sq_lock);
883 
884 	/*
885 	 * If we are in synchronous streams mode and the peer read queue is
886 	 * not full then schedule a push timer if one is not scheduled
887 	 * already. This is needed for applications which use MSG_PEEK to
888 	 * determine the number of bytes available before issuing a 'real'
889 	 * read. It also makes flow control more deterministic, particularly
890 	 * for smaller message sizes.
891 	 */
892 	if (!urgent && peer_tcp->tcp_direct_sockfs &&
893 	    peer_tcp->tcp_push_tid == 0 && !TCP_IS_DETACHED(peer_tcp) &&
894 	    canputnext(peer_tcp->tcp_rq)) {
895 		peer_tcp->tcp_push_tid = TCP_TIMER(peer_tcp, tcp_push_timer,
896 		    MSEC_TO_TICK(tcps->tcps_push_timer_interval));
897 	}
898 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
899 	ipst->ips_loopback_packets++;
900 	tcp->tcp_last_sent_len = send_size;
901 
902 	/* Need to adjust the following SNMP MIB-related variables */
903 	tcp->tcp_snxt += send_size;
904 	tcp->tcp_suna = tcp->tcp_snxt;
905 	peer_tcp->tcp_rnxt += recv_size;
906 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
907 
908 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
909 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
910 
911 	BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
912 	BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
913 	UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
914 
915 	BUMP_LOCAL(tcp->tcp_obsegs);
916 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
917 
918 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
919 
920 	if (!TCP_IS_DETACHED(peer_tcp)) {
921 		/*
922 		 * Drain the peer's receive queue it has urgent data or if
923 		 * we're not flow-controlled.  There is no need for draining
924 		 * normal data when tcp_direct_sockfs is on because the peer
925 		 * will pull the data via tcp_fuse_rrw().
926 		 */
927 		if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
928 			ASSERT(IPCL_IS_NONSTR(peer_tcp->tcp_connp) ||
929 			    peer_tcp->tcp_rcv_list != NULL);
930 			/*
931 			 * For TLI-based streams, a thread in tcp_accept_swap()
932 			 * can race with us.  That thread will ensure that the
933 			 * correct peer_tcp->tcp_rq is globally visible before
934 			 * peer_tcp->tcp_detached is visible as clear, but we
935 			 * must also ensure that the load of tcp_rq cannot be
936 			 * reordered to be before the tcp_detached check.
937 			 */
938 			membar_consumer();
939 			(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
940 			    NULL);
941 			/*
942 			 * If synchronous streams was stopped above due
943 			 * to the presence of urgent data, re-enable it.
944 			 */
945 			if (urgent)
946 				TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
947 		}
948 	}
949 	return (B_TRUE);
950 unfuse:
951 	tcp_unfuse(tcp);
952 	return (B_FALSE);
953 }
954 
955 /*
956  * This routine gets called to deliver data upstream on a fused or
957  * previously fused tcp loopback endpoint; the latter happens only
958  * when there is a pending SIGURG signal plus urgent data that can't
959  * be sent upstream in the past.
960  */
961 boolean_t
962 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
963 {
964 	mblk_t *mp;
965 	conn_t	*connp = tcp->tcp_connp;
966 
967 #ifdef DEBUG
968 	uint_t cnt = 0;
969 #endif
970 	tcp_stack_t	*tcps = tcp->tcp_tcps;
971 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
972 	boolean_t	sd_rd_eof = B_FALSE;
973 
974 	ASSERT(tcp->tcp_loopback);
975 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
976 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
977 	ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
978 
979 	/* No need for the push timer now, in case it was scheduled */
980 	if (tcp->tcp_push_tid != 0) {
981 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
982 		tcp->tcp_push_tid = 0;
983 	}
984 	/*
985 	 * If there's urgent data sitting in receive list and we didn't
986 	 * get a chance to send up a SIGURG signal, make sure we send
987 	 * it first before draining in order to ensure that SIOCATMARK
988 	 * works properly.
989 	 */
990 	if (tcp->tcp_fused_sigurg) {
991 		tcp->tcp_fused_sigurg = B_FALSE;
992 		if (IPCL_IS_NONSTR(connp)) {
993 			(*connp->conn_upcalls->su_signal_oob)
994 			    (connp->conn_upper_handle, 0);
995 		} else {
996 			/*
997 			 * sigurg_mpp is normally NULL, i.e. when we're still
998 			 * fused and didn't get here because of tcp_unfuse().
999 			 * In this case try hard to allocate the M_PCSIG mblk.
1000 			 */
1001 			if (sigurg_mpp == NULL &&
1002 			    (mp = allocb(1, BPRI_HI)) == NULL &&
1003 			    (mp = allocb_tryhard(1)) == NULL) {
1004 				/* Alloc failed; try again next time */
1005 				tcp->tcp_push_tid = TCP_TIMER(tcp,
1006 				    tcp_push_timer,
1007 				    MSEC_TO_TICK(
1008 				    tcps->tcps_push_timer_interval));
1009 				return (B_TRUE);
1010 			} else if (sigurg_mpp != NULL) {
1011 				/*
1012 				 * Use the supplied M_PCSIG mblk; it means we're
1013 				 * either unfused or in the process of unfusing,
1014 				 * and the drain must happen now.
1015 				 */
1016 				mp = *sigurg_mpp;
1017 				*sigurg_mpp = NULL;
1018 			}
1019 			ASSERT(mp != NULL);
1020 
1021 			/* Send up the signal */
1022 			DB_TYPE(mp) = M_PCSIG;
1023 			*mp->b_wptr++ = (uchar_t)SIGURG;
1024 			putnext(q, mp);
1025 		}
1026 		/*
1027 		 * Let the regular tcp_rcv_drain() path handle
1028 		 * draining the data if we're no longer fused.
1029 		 */
1030 		if (!tcp->tcp_fused)
1031 			return (B_FALSE);
1032 	}
1033 
1034 	/*
1035 	 * In the synchronous streams case, we generate SIGPOLL/SIGIO for
1036 	 * each M_DATA that gets enqueued onto the receiver.  At this point
1037 	 * we are about to drain any queued data via putnext().  In order
1038 	 * to avoid extraneous signal generation from strrput(), we set
1039 	 * STRGETINPROG flag at the stream head prior to the draining and
1040 	 * restore it afterwards.  This masks out signal generation only
1041 	 * for M_DATA messages and does not affect urgent data. We only do
1042 	 * this if the STREOF flag is not set which can happen if the
1043 	 * application shuts down the read side of a stream. In this case
1044 	 * we simply free these messages to approximate the flushq behavior
1045 	 * which normally occurs when STREOF is on the stream head read queue.
1046 	 */
1047 	if (tcp->tcp_direct_sockfs)
1048 		sd_rd_eof = strrput_sig(q, B_FALSE);
1049 
1050 	/* Drain the data */
1051 	while ((mp = tcp->tcp_rcv_list) != NULL) {
1052 		tcp->tcp_rcv_list = mp->b_next;
1053 		mp->b_next = NULL;
1054 #ifdef DEBUG
1055 		cnt += msgdsize(mp);
1056 #endif
1057 		ASSERT(!IPCL_IS_NONSTR(connp));
1058 		if (sd_rd_eof) {
1059 			freemsg(mp);
1060 		} else {
1061 			putnext(q, mp);
1062 			TCP_STAT(tcps, tcp_fusion_putnext);
1063 		}
1064 	}
1065 
1066 	if (tcp->tcp_direct_sockfs && !sd_rd_eof)
1067 		(void) strrput_sig(q, B_TRUE);
1068 
1069 #ifdef DEBUG
1070 	ASSERT(cnt == tcp->tcp_rcv_cnt);
1071 #endif
1072 	tcp->tcp_rcv_last_head = NULL;
1073 	tcp->tcp_rcv_last_tail = NULL;
1074 	tcp->tcp_rcv_cnt = 0;
1075 	tcp->tcp_fuse_rcv_unread_cnt = 0;
1076 	tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
1077 
1078 	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
1079 	    peer_tcp->tcp_xmit_lowater)) {
1080 		tcp_clrqfull(peer_tcp);
1081 		TCP_STAT(tcps, tcp_fusion_backenabled);
1082 	}
1083 
1084 	return (B_TRUE);
1085 }
1086 
1087 /*
1088  * Synchronous stream entry point for sockfs to retrieve
1089  * data directly from tcp_rcv_list.
1090  * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped,
1091  * for which it  must take the tcp_non_sq_lock of the peer as well
1092  * making any change. The order of taking the locks is based on
1093  * the TCP pointer itself. Before we get the peer we need to take
1094  * our tcp_non_sq_lock so that the peer doesn't disappear. However,
1095  * we cannot drop the lock if we have to grab the peer's lock (because
1096  * of ordering), since the peer might disappear in the interim. So,
1097  * we take our tcp_non_sq_lock, get the peer, increment the ref on the
1098  * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the
1099  * desired order. Incrementing the conn ref on the peer means that the
1100  * peer won't disappear when we drop our tcp_non_sq_lock.
1101  */
1102 int
1103 tcp_fuse_rrw(queue_t *q, struiod_t *dp)
1104 {
1105 	tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
1106 	mblk_t *mp;
1107 	tcp_t *peer_tcp;
1108 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1109 
1110 	mutex_enter(&tcp->tcp_non_sq_lock);
1111 
1112 	/*
1113 	 * If tcp_fuse_syncstr_plugged is set, then another thread is moving
1114 	 * the underlying data to the stream head.  We need to wait until it's
1115 	 * done, then return EBUSY so that strget() will dequeue data from the
1116 	 * stream head to ensure data is drained in-order.
1117 	 */
1118 plugged:
1119 	if (tcp->tcp_fuse_syncstr_plugged) {
1120 		do {
1121 			cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock);
1122 		} while (tcp->tcp_fuse_syncstr_plugged);
1123 
1124 		mutex_exit(&tcp->tcp_non_sq_lock);
1125 		TCP_STAT(tcps, tcp_fusion_rrw_plugged);
1126 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
1127 		return (EBUSY);
1128 	}
1129 
1130 	peer_tcp = tcp->tcp_loopback_peer;
1131 
1132 	/*
1133 	 * If someone had turned off tcp_direct_sockfs or if synchronous
1134 	 * streams is stopped, we return EBUSY.  This causes strget() to
1135 	 * dequeue data from the stream head instead.
1136 	 */
1137 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
1138 		mutex_exit(&tcp->tcp_non_sq_lock);
1139 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
1140 		return (EBUSY);
1141 	}
1142 
1143 	/*
1144 	 * Grab lock in order. The highest addressed tcp is locked first.
1145 	 * We don't do this within the tcp_rcv_list check since if we
1146 	 * have to drop the lock, for ordering, then the tcp_rcv_list
1147 	 * could change.
1148 	 */
1149 	if (peer_tcp > tcp) {
1150 		CONN_INC_REF(peer_tcp->tcp_connp);
1151 		mutex_exit(&tcp->tcp_non_sq_lock);
1152 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
1153 		mutex_enter(&tcp->tcp_non_sq_lock);
1154 		/*
1155 		 * This might have changed in the interim
1156 		 * Once read-side tcp_non_sq_lock is dropped above
1157 		 * anything can happen, we need to check all
1158 		 * known conditions again once we reaquire
1159 		 * read-side tcp_non_sq_lock.
1160 		 */
1161 		if (tcp->tcp_fuse_syncstr_plugged) {
1162 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
1163 			CONN_DEC_REF(peer_tcp->tcp_connp);
1164 			goto plugged;
1165 		}
1166 		if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
1167 			mutex_exit(&tcp->tcp_non_sq_lock);
1168 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
1169 			CONN_DEC_REF(peer_tcp->tcp_connp);
1170 			TCP_STAT(tcps, tcp_fusion_rrw_busy);
1171 			return (EBUSY);
1172 		}
1173 		CONN_DEC_REF(peer_tcp->tcp_connp);
1174 	} else {
1175 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
1176 	}
1177 
1178 	if ((mp = tcp->tcp_rcv_list) != NULL) {
1179 
1180 		DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
1181 		    uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
1182 
1183 		tcp->tcp_rcv_list = NULL;
1184 		TCP_STAT(tcps, tcp_fusion_rrw_msgcnt);
1185 
1186 		/*
1187 		 * At this point nothing should be left in tcp_rcv_list.
1188 		 * The only possible case where we would have a chain of
1189 		 * b_next-linked messages is urgent data, but we wouldn't
1190 		 * be here if that's true since urgent data is delivered
1191 		 * via putnext() and synchronous streams is stopped until
1192 		 * tcp_fuse_rcv_drain() is finished.
1193 		 */
1194 		ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
1195 
1196 		tcp->tcp_rcv_last_head = NULL;
1197 		tcp->tcp_rcv_last_tail = NULL;
1198 		tcp->tcp_rcv_cnt = 0;
1199 		tcp->tcp_fuse_rcv_unread_cnt = 0;
1200 
1201 		if (peer_tcp->tcp_flow_stopped &&
1202 		    (TCP_UNSENT_BYTES(peer_tcp) <=
1203 		    peer_tcp->tcp_xmit_lowater)) {
1204 			tcp_clrqfull(peer_tcp);
1205 			TCP_STAT(tcps, tcp_fusion_backenabled);
1206 		}
1207 	}
1208 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
1209 	/*
1210 	 * Either we just dequeued everything or we get here from sockfs
1211 	 * and have nothing to return; in this case clear RSLEEP.
1212 	 */
1213 	ASSERT(tcp->tcp_rcv_last_head == NULL);
1214 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
1215 	ASSERT(tcp->tcp_rcv_cnt == 0);
1216 	ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
1217 	STR_WAKEUP_CLEAR(STREAM(q));
1218 
1219 	mutex_exit(&tcp->tcp_non_sq_lock);
1220 	dp->d_mp = mp;
1221 	return (0);
1222 }
1223 
1224 /*
1225  * Synchronous stream entry point used by certain ioctls to retrieve
1226  * information about or peek into the tcp_rcv_list.
1227  */
1228 int
1229 tcp_fuse_rinfop(queue_t *q, infod_t *dp)
1230 {
1231 	tcp_t	*tcp = Q_TO_CONN(q)->conn_tcp;
1232 	mblk_t	*mp;
1233 	uint_t	cmd = dp->d_cmd;
1234 	int	res = 0;
1235 	int	error = 0;
1236 	struct stdata *stp = STREAM(q);
1237 
1238 	mutex_enter(&tcp->tcp_non_sq_lock);
1239 	/* If shutdown on read has happened, return nothing */
1240 	mutex_enter(&stp->sd_lock);
1241 	if (stp->sd_flag & STREOF) {
1242 		mutex_exit(&stp->sd_lock);
1243 		goto done;
1244 	}
1245 	mutex_exit(&stp->sd_lock);
1246 
1247 	/*
1248 	 * It is OK not to return an answer if tcp_rcv_list is
1249 	 * currently not accessible.
1250 	 */
1251 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
1252 	    tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL)
1253 		goto done;
1254 
1255 	if (cmd & INFOD_COUNT) {
1256 		/*
1257 		 * We have at least one message and
1258 		 * could return only one at a time.
1259 		 */
1260 		dp->d_count++;
1261 		res |= INFOD_COUNT;
1262 	}
1263 	if (cmd & INFOD_BYTES) {
1264 		/*
1265 		 * Return size of all data messages.
1266 		 */
1267 		dp->d_bytes += tcp->tcp_rcv_cnt;
1268 		res |= INFOD_BYTES;
1269 	}
1270 	if (cmd & INFOD_FIRSTBYTES) {
1271 		/*
1272 		 * Return size of first data message.
1273 		 */
1274 		dp->d_bytes = msgdsize(mp);
1275 		res |= INFOD_FIRSTBYTES;
1276 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
1277 	}
1278 	if (cmd & INFOD_COPYOUT) {
1279 		mblk_t *mp1;
1280 		int n;
1281 
1282 		if (DB_TYPE(mp) == M_DATA) {
1283 			mp1 = mp;
1284 		} else {
1285 			mp1 = mp->b_cont;
1286 			ASSERT(mp1 != NULL);
1287 		}
1288 
1289 		/*
1290 		 * Return data contents of first message.
1291 		 */
1292 		ASSERT(DB_TYPE(mp1) == M_DATA);
1293 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
1294 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
1295 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
1296 			    UIO_READ, dp->d_uiop)) != 0) {
1297 				goto done;
1298 			}
1299 			mp1 = mp1->b_cont;
1300 		}
1301 		res |= INFOD_COPYOUT;
1302 		dp->d_cmd &= ~INFOD_COPYOUT;
1303 	}
1304 done:
1305 	mutex_exit(&tcp->tcp_non_sq_lock);
1306 
1307 	dp->d_res |= res;
1308 
1309 	return (error);
1310 }
1311 
1312 /*
1313  * Enable synchronous streams on a fused tcp loopback endpoint.
1314  */
1315 static void
1316 tcp_fuse_syncstr_enable(tcp_t *tcp)
1317 {
1318 	queue_t *rq = tcp->tcp_rq;
1319 	struct stdata *stp = STREAM(rq);
1320 
1321 	/* We can only enable synchronous streams for sockfs mode */
1322 	tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
1323 
1324 	if (!tcp->tcp_direct_sockfs)
1325 		return;
1326 
1327 	mutex_enter(&stp->sd_lock);
1328 	mutex_enter(QLOCK(rq));
1329 
1330 	/*
1331 	 * We replace our q_qinfo with one that has the qi_rwp entry point.
1332 	 * Clear SR_SIGALLDATA because we generate the equivalent signal(s)
1333 	 * for every enqueued data in tcp_fuse_output().
1334 	 */
1335 	rq->q_qinfo = &tcp_loopback_rinit;
1336 	rq->q_struiot = tcp_loopback_rinit.qi_struiot;
1337 	stp->sd_struiordq = rq;
1338 	stp->sd_rput_opt &= ~SR_SIGALLDATA;
1339 
1340 	mutex_exit(QLOCK(rq));
1341 	mutex_exit(&stp->sd_lock);
1342 }
1343 
1344 /*
1345  * Disable synchronous streams on a fused tcp loopback endpoint.
1346  */
1347 static void
1348 tcp_fuse_syncstr_disable(tcp_t *tcp)
1349 {
1350 	queue_t *rq = tcp->tcp_rq;
1351 	struct stdata *stp = STREAM(rq);
1352 
1353 	if (!tcp->tcp_direct_sockfs)
1354 		return;
1355 
1356 	mutex_enter(&stp->sd_lock);
1357 	mutex_enter(QLOCK(rq));
1358 
1359 	/*
1360 	 * Reset q_qinfo to point to the default tcp entry points.
1361 	 * Also restore SR_SIGALLDATA so that strrput() can generate
1362 	 * the signals again for future M_DATA messages.
1363 	 */
1364 	rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
1365 	rq->q_struiot = tcp_rinitv4.qi_struiot;
1366 	stp->sd_struiordq = NULL;
1367 	stp->sd_rput_opt |= SR_SIGALLDATA;
1368 	tcp->tcp_direct_sockfs = B_FALSE;
1369 
1370 	mutex_exit(QLOCK(rq));
1371 	mutex_exit(&stp->sd_lock);
1372 }
1373 
1374 /*
1375  * Enable synchronous streams on a pair of fused tcp endpoints.
1376  */
1377 void
1378 tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
1379 {
1380 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1381 
1382 	ASSERT(tcp->tcp_fused);
1383 	ASSERT(peer_tcp != NULL);
1384 
1385 	tcp_fuse_syncstr_enable(tcp);
1386 	tcp_fuse_syncstr_enable(peer_tcp);
1387 }
1388 
1389 /*
1390  * Used to enable/disable signal generation at the stream head. We already
1391  * generated the signal(s) for these messages when they were enqueued on the
1392  * receiver. We also check if STREOF is set here. If it is, we return false
1393  * and let the caller decide what to do.
1394  */
1395 static boolean_t
1396 strrput_sig(queue_t *q, boolean_t on)
1397 {
1398 	struct stdata *stp = STREAM(q);
1399 
1400 	mutex_enter(&stp->sd_lock);
1401 	if (stp->sd_flag == STREOF) {
1402 		mutex_exit(&stp->sd_lock);
1403 		return (B_TRUE);
1404 	}
1405 	if (on)
1406 		stp->sd_flag &= ~STRGETINPROG;
1407 	else
1408 		stp->sd_flag |= STRGETINPROG;
1409 	mutex_exit(&stp->sd_lock);
1410 
1411 	return (B_FALSE);
1412 }
1413 
1414 /*
1415  * Disable synchronous streams on a pair of fused tcp endpoints and drain
1416  * any queued data; called either during unfuse or upon transitioning from
1417  * a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
1418  */
1419 void
1420 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
1421 {
1422 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1423 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1424 
1425 	ASSERT(tcp->tcp_fused);
1426 	ASSERT(peer_tcp != NULL);
1427 
1428 	/*
1429 	 * Force any tcp_fuse_rrw() calls to block until we've moved the data
1430 	 * onto the stream head.
1431 	 */
1432 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
1433 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
1434 
1435 	/*
1436 	 * Cancel any pending push timers.
1437 	 */
1438 	if (tcp->tcp_push_tid != 0) {
1439 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
1440 		tcp->tcp_push_tid = 0;
1441 	}
1442 	if (peer_tcp->tcp_push_tid != 0) {
1443 		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
1444 		peer_tcp->tcp_push_tid = 0;
1445 	}
1446 
1447 	/*
1448 	 * Drain any pending data; the detached check is needed because
1449 	 * we may be called as a result of a tcp_unfuse() triggered by
1450 	 * tcp_fuse_output().  Note that in case of a detached tcp, the
1451 	 * draining will happen later after the tcp is unfused.  For non-
1452 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
1453 	 * If we have urgent data sitting in the receive list, we will
1454 	 * need to send up a SIGURG signal first before draining the data.
1455 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
1456 	 * when called from tcp_rcv_drain().
1457 	 */
1458 	if (!TCP_IS_DETACHED(tcp)) {
1459 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
1460 		    (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
1461 	}
1462 	if (!TCP_IS_DETACHED(peer_tcp)) {
1463 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
1464 		    (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
1465 	}
1466 
1467 	/*
1468 	 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY.
1469 	 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(),
1470 	 * a given stream must be stopped prior to being unplugged (but the
1471 	 * ordering of operations between the streams is unimportant).
1472 	 */
1473 	TCP_FUSE_SYNCSTR_STOP(tcp);
1474 	TCP_FUSE_SYNCSTR_STOP(peer_tcp);
1475 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
1476 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
1477 
1478 	/* Lift up any flow-control conditions */
1479 	if (tcp->tcp_flow_stopped) {
1480 		tcp_clrqfull(tcp);
1481 		TCP_STAT(tcps, tcp_fusion_backenabled);
1482 	}
1483 	if (peer_tcp->tcp_flow_stopped) {
1484 		tcp_clrqfull(peer_tcp);
1485 		TCP_STAT(tcps, tcp_fusion_backenabled);
1486 	}
1487 
1488 	/* Disable synchronous streams */
1489 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
1490 		tcp_fuse_syncstr_disable(tcp);
1491 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp))
1492 		tcp_fuse_syncstr_disable(peer_tcp);
1493 }
1494 
1495 /*
1496  * Calculate the size of receive buffer for a fused tcp endpoint.
1497  */
1498 size_t
1499 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
1500 {
1501 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1502 
1503 	ASSERT(tcp->tcp_fused);
1504 
1505 	/* Ensure that value is within the maximum upper bound */
1506 	if (rwnd > tcps->tcps_max_buf)
1507 		rwnd = tcps->tcps_max_buf;
1508 
1509 	/* Obey the absolute minimum tcp receive high water mark */
1510 	if (rwnd < tcps->tcps_sth_rcv_hiwat)
1511 		rwnd = tcps->tcps_sth_rcv_hiwat;
1512 
1513 	/*
1514 	 * Round up to system page size in case SO_RCVBUF is modified
1515 	 * after SO_SNDBUF; the latter is also similarly rounded up.
1516 	 */
1517 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
1518 	tcp->tcp_fuse_rcv_hiwater = rwnd;
1519 	return (rwnd);
1520 }
1521 
1522 /*
1523  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
1524  */
1525 int
1526 tcp_fuse_maxpsz_set(tcp_t *tcp)
1527 {
1528 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1529 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
1530 	uint_t maxpsz = sndbuf;
1531 
1532 	ASSERT(tcp->tcp_fused);
1533 	ASSERT(peer_tcp != NULL);
1534 	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
1535 	/*
1536 	 * In the fused loopback case, we want the stream head to split
1537 	 * up larger writes into smaller chunks for a more accurate flow-
1538 	 * control accounting.  Our maxpsz is half of the sender's send
1539 	 * buffer or the receiver's receive buffer, whichever is smaller.
1540 	 * We round up the buffer to system page size due to the lack of
1541 	 * TCP MSS concept in Fusion.
1542 	 */
1543 	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
1544 		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
1545 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
1546 
1547 	/*
1548 	 * Calculate the peer's limit for the number of outstanding unread
1549 	 * data block.  This is the amount of data blocks that are allowed
1550 	 * to reside in the receiver's queue before the sender gets flow
1551 	 * controlled.  It is used only in the synchronous streams mode as
1552 	 * a way to throttle the sender when it performs consecutive writes
1553 	 * faster than can be read.  The value is derived from SO_SNDBUF in
1554 	 * order to give the sender some control; we divide it with a large
1555 	 * value (16KB) to produce a fairly low initial limit.
1556 	 */
1557 	if (tcp_fusion_rcv_unread_min == 0) {
1558 		/* A value of 0 means that we disable the check */
1559 		peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
1560 	} else {
1561 		peer_tcp->tcp_fuse_rcv_unread_hiwater =
1562 		    MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
1563 	}
1564 	return (maxpsz);
1565 }
1566