xref: /titanic_44/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision 7b8f5432e28de8a1817b54aeae412921f8db38ec)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsun.h>
29 #include <sys/strsubr.h>
30 #include <sys/debug.h>
31 #include <sys/sdt.h>
32 #include <sys/cmn_err.h>
33 #include <sys/tihdr.h>
34 
35 #include <inet/common.h>
36 #include <inet/optcom.h>
37 #include <inet/ip.h>
38 #include <inet/ip_if.h>
39 #include <inet/ip_impl.h>
40 #include <inet/tcp.h>
41 #include <inet/tcp_impl.h>
42 #include <inet/ipsec_impl.h>
43 #include <inet/ipclassifier.h>
44 #include <inet/ipp_common.h>
45 #include <inet/ip_if.h>
46 
47 /*
48  * This file implements TCP fusion - a protocol-less data path for TCP
49  * loopback connections.  The fusion of two local TCP endpoints occurs
50  * at connection establishment time.  Various conditions (see details
51  * in tcp_fuse()) need to be met for fusion to be successful.  If it
52  * fails, we fall back to the regular TCP data path; if it succeeds,
53  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
54  * tcp_fuse_output() enqueues application data directly onto the peer's
55  * receive queue; no protocol processing is involved.
56  *
57  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
58  * One of the requirements for fusion to succeed is that both endpoints
59  * need to be using the same squeue.  This ensures that neither side
60  * can disappear while the other side is still sending data. Flow
61  * control information is manipulated outside the squeue, so the
62  * tcp_non_sq_lock must be held when touching tcp_flow_stopped.
63  */
64 
65 /*
66  * Setting this to false means we disable fusion altogether and
67  * loopback connections would go through the protocol paths.
68  */
69 boolean_t do_tcp_fusion = B_TRUE;
70 
71 /*
72  * Return true if this connection needs some IP functionality
73  */
74 static boolean_t
75 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
76 {
77 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
78 
79 	/*
80 	 * If ire is not cached, do not use fusion
81 	 */
82 	if (tcp->tcp_connp->conn_ire_cache == NULL) {
83 		/*
84 		 * There is no need to hold conn_lock here because when called
85 		 * from tcp_fuse() there can be no window where conn_ire_cache
86 		 * can change. This is not true when called from
87 		 * tcp_fuse_output() as conn_ire_cache can become null just
88 		 * after the check. It will be necessary to recheck for a NULL
89 		 * conn_ire_cache in tcp_fuse_output() to avoid passing a
90 		 * stale ill pointer to FW_HOOKS.
91 		 */
92 		return (B_TRUE);
93 	}
94 	if (tcp->tcp_ipversion == IPV4_VERSION) {
95 		if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
96 			return (B_TRUE);
97 		if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
98 			return (B_TRUE);
99 		if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
100 			return (B_TRUE);
101 	} else {
102 		if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
103 			return (B_TRUE);
104 		if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
105 			return (B_TRUE);
106 		if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
107 			return (B_TRUE);
108 	}
109 	if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
110 		return (B_TRUE);
111 	return (B_FALSE);
112 }
113 
114 
115 /*
116  * This routine gets called by the eager tcp upon changing state from
117  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
118  * and the active connect tcp such that the regular tcp processings
119  * may be bypassed under allowable circumstances.  Because the fusion
120  * requires both endpoints to be in the same squeue, it does not work
121  * for simultaneous active connects because there is no easy way to
122  * switch from one squeue to another once the connection is created.
123  * This is different from the eager tcp case where we assign it the
124  * same squeue as the one given to the active connect tcp during open.
125  */
126 void
127 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
128 {
129 	conn_t *peer_connp, *connp = tcp->tcp_connp;
130 	tcp_t *peer_tcp;
131 	tcp_stack_t	*tcps = tcp->tcp_tcps;
132 	netstack_t	*ns;
133 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
134 
135 	ASSERT(!tcp->tcp_fused);
136 	ASSERT(tcp->tcp_loopback);
137 	ASSERT(tcp->tcp_loopback_peer == NULL);
138 	/*
139 	 * We need to inherit q_hiwat of the listener tcp, but we can't
140 	 * really use tcp_listener since we get here after sending up
141 	 * T_CONN_IND and tcp_wput_accept() may be called independently,
142 	 * at which point tcp_listener is cleared; this is why we use
143 	 * tcp_saved_listener.  The listener itself is guaranteed to be
144 	 * around until tcp_accept_finish() is called on this eager --
145 	 * this won't happen until we're done since we're inside the
146 	 * eager's perimeter now.
147 	 *
148 	 * We can also get called in the case were a connection needs
149 	 * to be re-fused. In this case tcp_saved_listener will be
150 	 * NULL but tcp_refuse will be true.
151 	 */
152 	ASSERT(tcp->tcp_saved_listener != NULL || tcp->tcp_refuse);
153 	/*
154 	 * Lookup peer endpoint; search for the remote endpoint having
155 	 * the reversed address-port quadruplet in ESTABLISHED state,
156 	 * which is guaranteed to be unique in the system.  Zone check
157 	 * is applied accordingly for loopback address, but not for
158 	 * local address since we want fusion to happen across Zones.
159 	 */
160 	if (tcp->tcp_ipversion == IPV4_VERSION) {
161 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
162 		    (ipha_t *)iphdr, tcph, ipst);
163 	} else {
164 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
165 		    (ip6_t *)iphdr, tcph, ipst);
166 	}
167 
168 	/*
169 	 * We can only proceed if peer exists, resides in the same squeue
170 	 * as our conn and is not raw-socket. We also restrict fusion to
171 	 * endpoints of the same type (STREAMS or non-STREAMS). The squeue
172 	 * assignment of this eager tcp was done earlier at the time of SYN
173 	 * processing in ip_fanout_tcp{_v6}.  Note that similar squeues by
174 	 * itself doesn't guarantee a safe condition to fuse, hence we perform
175 	 * additional tests below.
176 	 */
177 	ASSERT(peer_connp == NULL || peer_connp != connp);
178 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
179 	    !IPCL_IS_TCP(peer_connp) ||
180 	    IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) {
181 		if (peer_connp != NULL) {
182 			TCP_STAT(tcps, tcp_fusion_unqualified);
183 			CONN_DEC_REF(peer_connp);
184 		}
185 		return;
186 	}
187 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
188 
189 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
190 	ASSERT(peer_tcp->tcp_loopback_peer == NULL);
191 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
192 
193 	/*
194 	 * Due to IRE changes the peer and us might not agree on tcp_loopback.
195 	 * We bail in that case.
196 	 */
197 	if (!peer_tcp->tcp_loopback) {
198 		TCP_STAT(tcps, tcp_fusion_unqualified);
199 		CONN_DEC_REF(peer_connp);
200 		return;
201 	}
202 	/*
203 	 * Fuse the endpoints; we perform further checks against both
204 	 * tcp endpoints to ensure that a fusion is allowed to happen.
205 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
206 	 * IPQoS policy/kernel SSL exists. We also need to check if
207 	 * the connection is quiescent to cover the case when we are
208 	 * trying to re-enable fusion after IPobservability is turned off.
209 	 */
210 	ns = tcps->tcps_netstack;
211 	ipst = ns->netstack_ip;
212 
213 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
214 	    !tcp_loopback_needs_ip(tcp, ns) &&
215 	    !tcp_loopback_needs_ip(peer_tcp, ns) &&
216 	    tcp->tcp_kssl_ent == NULL &&
217 	    tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL &&
218 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
219 		mblk_t *mp;
220 		queue_t *peer_rq = peer_tcp->tcp_rq;
221 
222 		ASSERT(!TCP_IS_DETACHED(peer_tcp));
223 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
224 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
225 		ASSERT(tcp->tcp_kssl_ctx == NULL);
226 
227 		/*
228 		 * We need to drain data on both endpoints during unfuse.
229 		 * If we need to send up SIGURG at the time of draining,
230 		 * we want to be sure that an mblk is readily available.
231 		 * This is why we pre-allocate the M_PCSIG mblks for both
232 		 * endpoints which will only be used during/after unfuse.
233 		 */
234 		if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
235 			ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp));
236 
237 			if ((mp = allocb(1, BPRI_HI)) == NULL)
238 				goto failed;
239 			tcp->tcp_fused_sigurg_mp = mp;
240 
241 			if ((mp = allocb(1, BPRI_HI)) == NULL)
242 				goto failed;
243 			peer_tcp->tcp_fused_sigurg_mp = mp;
244 
245 			if ((mp = allocb(sizeof (struct stroptions),
246 			    BPRI_HI)) == NULL)
247 				goto failed;
248 		}
249 
250 		/* Fuse both endpoints */
251 		peer_tcp->tcp_loopback_peer = tcp;
252 		tcp->tcp_loopback_peer = peer_tcp;
253 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
254 
255 		/*
256 		 * We never use regular tcp paths in fusion and should
257 		 * therefore clear tcp_unsent on both endpoints.  Having
258 		 * them set to non-zero values means asking for trouble
259 		 * especially after unfuse, where we may end up sending
260 		 * through regular tcp paths which expect xmit_list and
261 		 * friends to be correctly setup.
262 		 */
263 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
264 
265 		tcp_timers_stop(tcp);
266 		tcp_timers_stop(peer_tcp);
267 
268 		/*
269 		 * At this point we are a detached eager tcp and therefore
270 		 * don't have a queue assigned to us until accept happens.
271 		 * In the mean time the peer endpoint may immediately send
272 		 * us data as soon as fusion is finished, and we need to be
273 		 * able to flow control it in case it sends down huge amount
274 		 * of data while we're still detached.  To prevent that we
275 		 * inherit the listener's recv_hiwater value; this is temporary
276 		 * since we'll repeat the process in tcp_accept_finish().
277 		 */
278 		if (!tcp->tcp_refuse) {
279 			(void) tcp_fuse_set_rcv_hiwat(tcp,
280 			    tcp->tcp_saved_listener->tcp_recv_hiwater);
281 
282 			/*
283 			 * Set the stream head's write offset value to zero
284 			 * since we won't be needing any room for TCP/IP
285 			 * headers; tell it to not break up the writes (this
286 			 * would reduce the amount of work done by kmem); and
287 			 * configure our receive buffer. Note that we can only
288 			 * do this for the active connect tcp since our eager is
289 			 * still detached; it will be dealt with later in
290 			 * tcp_accept_finish().
291 			 */
292 			if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
293 				struct stroptions *stropt;
294 
295 				DB_TYPE(mp) = M_SETOPTS;
296 				mp->b_wptr += sizeof (*stropt);
297 
298 				stropt = (struct stroptions *)mp->b_rptr;
299 				stropt->so_flags = SO_MAXBLK|SO_WROFF|SO_HIWAT;
300 				stropt->so_maxblk = tcp_maxpsz_set(peer_tcp,
301 				    B_FALSE);
302 				stropt->so_wroff = 0;
303 
304 				/*
305 				 * Record the stream head's high water mark for
306 				 * peer endpoint; this is used for flow-control
307 				 * purposes in tcp_fuse_output().
308 				 */
309 				stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(
310 				    peer_tcp, peer_rq->q_hiwat);
311 
312 				tcp->tcp_refuse = B_FALSE;
313 				peer_tcp->tcp_refuse = B_FALSE;
314 				/* Send the options up */
315 				putnext(peer_rq, mp);
316 			} else {
317 				struct sock_proto_props sopp;
318 
319 				/* The peer is a non-STREAMS end point */
320 				ASSERT(IPCL_IS_TCP(peer_connp));
321 
322 				(void) tcp_fuse_set_rcv_hiwat(tcp,
323 				    tcp->tcp_saved_listener->tcp_recv_hiwater);
324 
325 				sopp.sopp_flags = SOCKOPT_MAXBLK |
326 				    SOCKOPT_WROFF | SOCKOPT_RCVHIWAT;
327 				sopp.sopp_maxblk = tcp_maxpsz_set(peer_tcp,
328 				    B_FALSE);
329 				sopp.sopp_wroff = 0;
330 				sopp.sopp_rxhiwat = tcp_fuse_set_rcv_hiwat(
331 				    peer_tcp, peer_tcp->tcp_recv_hiwater);
332 				(*peer_connp->conn_upcalls->su_set_proto_props)
333 				    (peer_connp->conn_upper_handle, &sopp);
334 			}
335 		}
336 		tcp->tcp_refuse = B_FALSE;
337 		peer_tcp->tcp_refuse = B_FALSE;
338 	} else {
339 		TCP_STAT(tcps, tcp_fusion_unqualified);
340 	}
341 	CONN_DEC_REF(peer_connp);
342 	return;
343 
344 failed:
345 	if (tcp->tcp_fused_sigurg_mp != NULL) {
346 		freeb(tcp->tcp_fused_sigurg_mp);
347 		tcp->tcp_fused_sigurg_mp = NULL;
348 	}
349 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
350 		freeb(peer_tcp->tcp_fused_sigurg_mp);
351 		peer_tcp->tcp_fused_sigurg_mp = NULL;
352 	}
353 	CONN_DEC_REF(peer_connp);
354 }
355 
356 /*
357  * Unfuse a previously-fused pair of tcp loopback endpoints.
358  */
359 void
360 tcp_unfuse(tcp_t *tcp)
361 {
362 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
363 	tcp_stack_t *tcps = tcp->tcp_tcps;
364 
365 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
366 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
367 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
368 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
369 
370 	/*
371 	 * Cancel any pending push timers.
372 	 */
373 	if (tcp->tcp_push_tid != 0) {
374 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
375 		tcp->tcp_push_tid = 0;
376 	}
377 	if (peer_tcp->tcp_push_tid != 0) {
378 		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
379 		peer_tcp->tcp_push_tid = 0;
380 	}
381 
382 	/*
383 	 * Drain any pending data; Note that in case of a detached tcp, the
384 	 * draining will happen later after the tcp is unfused.  For non-
385 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
386 	 * If we have urgent data sitting in the receive list, we will
387 	 * need to send up a SIGURG signal first before draining the data.
388 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
389 	 * when called from tcp_rcv_drain().
390 	 */
391 	if (!TCP_IS_DETACHED(tcp)) {
392 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
393 		    &tcp->tcp_fused_sigurg_mp);
394 	}
395 	if (!TCP_IS_DETACHED(peer_tcp)) {
396 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
397 		    &peer_tcp->tcp_fused_sigurg_mp);
398 	}
399 
400 	/* Lift up any flow-control conditions */
401 	mutex_enter(&tcp->tcp_non_sq_lock);
402 	if (tcp->tcp_flow_stopped) {
403 		tcp_clrqfull(tcp);
404 		TCP_STAT(tcps, tcp_fusion_backenabled);
405 	}
406 	mutex_exit(&tcp->tcp_non_sq_lock);
407 
408 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
409 	if (peer_tcp->tcp_flow_stopped) {
410 		tcp_clrqfull(peer_tcp);
411 		TCP_STAT(tcps, tcp_fusion_backenabled);
412 	}
413 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
414 
415 	/*
416 	 * Update th_seq and th_ack in the header template
417 	 */
418 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
419 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
420 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
421 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
422 
423 	/* Unfuse the endpoints */
424 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
425 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
426 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
427 		ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
428 		freeb(peer_tcp->tcp_fused_sigurg_mp);
429 		peer_tcp->tcp_fused_sigurg_mp = NULL;
430 
431 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
432 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
433 		freeb(tcp->tcp_fused_sigurg_mp);
434 		tcp->tcp_fused_sigurg_mp = NULL;
435 	}
436 }
437 
438 /*
439  * Fusion output routine used to handle urgent data sent by STREAMS based
440  * endpoints. This routine is called by tcp_fuse_output() for handling
441  * non-M_DATA mblks.
442  */
443 void
444 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
445 {
446 	mblk_t *mp1;
447 	struct T_exdata_ind *tei;
448 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
449 	mblk_t *head, *prev_head = NULL;
450 	tcp_stack_t	*tcps = tcp->tcp_tcps;
451 
452 	ASSERT(tcp->tcp_fused);
453 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
454 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
455 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
456 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
457 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
458 
459 	/*
460 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
461 	 * Each occurence denotes a new urgent pointer.  For each new
462 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
463 	 * that it needs to go into urgent mode.  This is similar to the
464 	 * urgent data handling in the regular tcp.  We don't need to keep
465 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
466 	 * "advances" the urgent pointer for us.
467 	 *
468 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
469 	 * by a T_EXDATA_IND before being enqueued behind any existing data
470 	 * destined for the receiving app.  There is only a single urgent
471 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
472 	 * data arrives before the receiving app reads some existing urgent
473 	 * data, the previous marker is lost.  This behavior is emulated
474 	 * accordingly below, by removing any existing T_EXDATA_IND messages
475 	 * and essentially converting old urgent data into non-urgent.
476 	 */
477 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
478 	/* Let sender get out of urgent mode */
479 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
480 
481 	/*
482 	 * This flag indicates that a signal needs to be sent up.
483 	 * This flag will only get cleared once SIGURG is delivered and
484 	 * is not affected by the tcp_fused flag -- delivery will still
485 	 * happen even after an endpoint is unfused, to handle the case
486 	 * where the sending endpoint immediately closes/unfuses after
487 	 * sending urgent data and the accept is not yet finished.
488 	 */
489 	peer_tcp->tcp_fused_sigurg = B_TRUE;
490 
491 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
492 	DB_TYPE(mp) = M_PROTO;
493 	tei = (struct T_exdata_ind *)mp->b_rptr;
494 	tei->PRIM_type = T_EXDATA_IND;
495 	tei->MORE_flag = 0;
496 	mp->b_wptr = (uchar_t *)&tei[1];
497 
498 	TCP_STAT(tcps, tcp_fusion_urg);
499 	BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
500 
501 	head = peer_tcp->tcp_rcv_list;
502 	while (head != NULL) {
503 		/*
504 		 * Remove existing T_EXDATA_IND, keep the data which follows
505 		 * it and relink our list.  Note that we don't modify the
506 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
507 		 */
508 		if (DB_TYPE(head) != M_DATA) {
509 			mp1 = head;
510 
511 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
512 			head = mp1->b_cont;
513 			mp1->b_cont = NULL;
514 			head->b_next = mp1->b_next;
515 			mp1->b_next = NULL;
516 			if (prev_head != NULL)
517 				prev_head->b_next = head;
518 			if (peer_tcp->tcp_rcv_list == mp1)
519 				peer_tcp->tcp_rcv_list = head;
520 			if (peer_tcp->tcp_rcv_last_head == mp1)
521 				peer_tcp->tcp_rcv_last_head = head;
522 			freeb(mp1);
523 		}
524 		prev_head = head;
525 		head = head->b_next;
526 	}
527 }
528 
529 /*
530  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
531  * If we are modifying any member that can be changed outside the squeue,
532  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
533  */
534 boolean_t
535 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
536 {
537 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
538 	boolean_t flow_stopped, peer_data_queued = B_FALSE;
539 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
540 	boolean_t push = B_TRUE;
541 	mblk_t *mp1 = mp;
542 	ill_t *ilp, *olp;
543 	ipif_t *iifp, *oifp;
544 	ipha_t *ipha;
545 	ip6_t *ip6h;
546 	tcph_t *tcph;
547 	uint_t ip_hdr_len;
548 	uint32_t seq;
549 	uint32_t recv_size = send_size;
550 	tcp_stack_t	*tcps = tcp->tcp_tcps;
551 	netstack_t	*ns = tcps->tcps_netstack;
552 	ip_stack_t	*ipst = ns->netstack_ip;
553 
554 	ASSERT(tcp->tcp_fused);
555 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
556 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
557 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
558 	    DB_TYPE(mp) == M_PCPROTO);
559 
560 	/* If this connection requires IP, unfuse and use regular path */
561 	if (tcp_loopback_needs_ip(tcp, ns) ||
562 	    tcp_loopback_needs_ip(peer_tcp, ns) ||
563 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst) ||
564 	    list_head(&ipst->ips_ipobs_cb_list) != NULL) {
565 		TCP_STAT(tcps, tcp_fusion_aborted);
566 		tcp->tcp_refuse = B_TRUE;
567 		peer_tcp->tcp_refuse = B_TRUE;
568 
569 		bcopy(peer_tcp->tcp_tcph, &tcp->tcp_saved_tcph,
570 		    sizeof (tcph_t));
571 		bcopy(tcp->tcp_tcph, &peer_tcp->tcp_saved_tcph,
572 		    sizeof (tcph_t));
573 		if (tcp->tcp_ipversion == IPV4_VERSION) {
574 			bcopy(peer_tcp->tcp_ipha, &tcp->tcp_saved_ipha,
575 			    sizeof (ipha_t));
576 			bcopy(tcp->tcp_ipha, &peer_tcp->tcp_saved_ipha,
577 			    sizeof (ipha_t));
578 		} else {
579 			bcopy(peer_tcp->tcp_ip6h, &tcp->tcp_saved_ip6h,
580 			    sizeof (ip6_t));
581 			bcopy(tcp->tcp_ip6h, &peer_tcp->tcp_saved_ip6h,
582 			    sizeof (ip6_t));
583 		}
584 		goto unfuse;
585 	}
586 
587 	if (send_size == 0) {
588 		freemsg(mp);
589 		return (B_TRUE);
590 	}
591 
592 	/*
593 	 * Handle urgent data; we either send up SIGURG to the peer now
594 	 * or do it later when we drain, in case the peer is detached
595 	 * or if we're short of memory for M_PCSIG mblk.
596 	 */
597 	if (urgent) {
598 		tcp_fuse_output_urg(tcp, mp);
599 
600 		mp1 = mp->b_cont;
601 	}
602 
603 	if (tcp->tcp_ipversion == IPV4_VERSION &&
604 	    (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
605 	    HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
606 	    tcp->tcp_ipversion == IPV6_VERSION &&
607 	    (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
608 	    HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
609 		/*
610 		 * Build ip and tcp header to satisfy FW_HOOKS.
611 		 * We only build it when any hook is present.
612 		 */
613 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
614 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
615 			/* If tcp_xmit_mp fails, use regular path */
616 			goto unfuse;
617 
618 		/*
619 		 * The ipif and ill can be safely referenced under the
620 		 * protection of conn_lock - see head of function comment for
621 		 * conn_get_held_ipif(). It is necessary to check that both
622 		 * the ipif and ill can be looked up (i.e. not condemned). If
623 		 * not, bail out and unfuse this connection.
624 		 */
625 		mutex_enter(&peer_tcp->tcp_connp->conn_lock);
626 		if ((peer_tcp->tcp_connp->conn_ire_cache == NULL) ||
627 		    (peer_tcp->tcp_connp->conn_ire_cache->ire_marks &
628 		    IRE_MARK_CONDEMNED) ||
629 		    ((oifp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif)
630 		    == NULL) ||
631 		    (!IPIF_CAN_LOOKUP(oifp)) ||
632 		    ((olp = oifp->ipif_ill) == NULL) ||
633 		    (ill_check_and_refhold(olp) != 0)) {
634 			mutex_exit(&peer_tcp->tcp_connp->conn_lock);
635 			goto unfuse;
636 		}
637 		mutex_exit(&peer_tcp->tcp_connp->conn_lock);
638 
639 		/* PFHooks: LOOPBACK_OUT */
640 		if (tcp->tcp_ipversion == IPV4_VERSION) {
641 			ipha = (ipha_t *)mp1->b_rptr;
642 
643 			DTRACE_PROBE4(ip4__loopback__out__start,
644 			    ill_t *, NULL, ill_t *, olp,
645 			    ipha_t *, ipha, mblk_t *, mp1);
646 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
647 			    ipst->ips_ipv4firewall_loopback_out,
648 			    NULL, olp, ipha, mp1, mp1, 0, ipst);
649 			DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
650 		} else {
651 			ip6h = (ip6_t *)mp1->b_rptr;
652 
653 			DTRACE_PROBE4(ip6__loopback__out__start,
654 			    ill_t *, NULL, ill_t *, olp,
655 			    ip6_t *, ip6h, mblk_t *, mp1);
656 			FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
657 			    ipst->ips_ipv6firewall_loopback_out,
658 			    NULL, olp, ip6h, mp1, mp1, 0, ipst);
659 			DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
660 		}
661 		ill_refrele(olp);
662 
663 		if (mp1 == NULL)
664 			goto unfuse;
665 
666 		/*
667 		 * The ipif and ill can be safely referenced under the
668 		 * protection of conn_lock - see head of function comment for
669 		 * conn_get_held_ipif(). It is necessary to check that both
670 		 * the ipif and ill can be looked up (i.e. not condemned). If
671 		 * not, bail out and unfuse this connection.
672 		 */
673 		mutex_enter(&tcp->tcp_connp->conn_lock);
674 		if ((tcp->tcp_connp->conn_ire_cache == NULL) ||
675 		    (tcp->tcp_connp->conn_ire_cache->ire_marks &
676 		    IRE_MARK_CONDEMNED) ||
677 		    ((iifp = tcp->tcp_connp->conn_ire_cache->ire_ipif)
678 		    == NULL) ||
679 		    (!IPIF_CAN_LOOKUP(iifp)) ||
680 		    ((ilp = iifp->ipif_ill) == NULL) ||
681 		    (ill_check_and_refhold(ilp) != 0)) {
682 			mutex_exit(&tcp->tcp_connp->conn_lock);
683 			goto unfuse;
684 		}
685 		mutex_exit(&tcp->tcp_connp->conn_lock);
686 
687 		/* PFHooks: LOOPBACK_IN */
688 		if (tcp->tcp_ipversion == IPV4_VERSION) {
689 			DTRACE_PROBE4(ip4__loopback__in__start,
690 			    ill_t *, ilp, ill_t *, NULL,
691 			    ipha_t *, ipha, mblk_t *, mp1);
692 			FW_HOOKS(ipst->ips_ip4_loopback_in_event,
693 			    ipst->ips_ipv4firewall_loopback_in,
694 			    ilp, NULL, ipha, mp1, mp1, 0, ipst);
695 			DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
696 			ill_refrele(ilp);
697 			if (mp1 == NULL)
698 				goto unfuse;
699 
700 			ip_hdr_len = IPH_HDR_LENGTH(ipha);
701 		} else {
702 			DTRACE_PROBE4(ip6__loopback__in__start,
703 			    ill_t *, ilp, ill_t *, NULL,
704 			    ip6_t *, ip6h, mblk_t *, mp1);
705 			FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
706 			    ipst->ips_ipv6firewall_loopback_in,
707 			    ilp, NULL, ip6h, mp1, mp1, 0, ipst);
708 			DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
709 			ill_refrele(ilp);
710 			if (mp1 == NULL)
711 				goto unfuse;
712 
713 			ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
714 		}
715 
716 		/* Data length might be changed by FW_HOOKS */
717 		tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
718 		seq = ABE32_TO_U32(tcph->th_seq);
719 		recv_size += seq - tcp->tcp_snxt;
720 
721 		/*
722 		 * The message duplicated by tcp_xmit_mp is freed.
723 		 * Note: the original message passed in remains unchanged.
724 		 */
725 		freemsg(mp1);
726 	}
727 
728 	/*
729 	 * Enqueue data into the peer's receive list; we may or may not
730 	 * drain the contents depending on the conditions below.
731 	 *
732 	 * For non-STREAMS sockets we normally queue data directly in the
733 	 * socket by calling the su_recv upcall. However, if the peer is
734 	 * detached we use tcp_rcv_enqueue() instead. Queued data will be
735 	 * drained when the accept completes (in tcp_accept_finish()).
736 	 */
737 	if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
738 	    !TCP_IS_DETACHED(peer_tcp)) {
739 		int error;
740 		int flags = 0;
741 
742 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
743 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
744 			flags = MSG_OOB;
745 			(*peer_tcp->tcp_connp->conn_upcalls->su_signal_oob)
746 			    (peer_tcp->tcp_connp->conn_upper_handle, 0);
747 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
748 		}
749 		if ((*peer_tcp->tcp_connp->conn_upcalls->su_recv)(
750 		    peer_tcp->tcp_connp->conn_upper_handle, mp, recv_size,
751 		    flags, &error, &push) < 0) {
752 			ASSERT(error != EOPNOTSUPP);
753 			peer_data_queued = B_TRUE;
754 		}
755 	} else {
756 		if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
757 		    (tcp->tcp_valid_bits & TCP_URG_VALID) &&
758 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
759 			/*
760 			 * Can not deal with urgent pointers
761 			 * that arrive before the connection has been
762 			 * accept()ed.
763 			 */
764 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
765 			freemsg(mp);
766 			return (B_TRUE);
767 		}
768 
769 		tcp_rcv_enqueue(peer_tcp, mp, recv_size);
770 
771 		/* In case it wrapped around and also to keep it constant */
772 		peer_tcp->tcp_rwnd += recv_size;
773 	}
774 
775 	/*
776 	 * Exercise flow-control when needed; we will get back-enabled
777 	 * in either tcp_accept_finish(), tcp_unfuse(), or when data is
778 	 * consumed. If peer endpoint is detached, we emulate streams flow
779 	 * control by checking the peer's queue size and high water mark;
780 	 * otherwise we simply use canputnext() to decide if we need to stop
781 	 * our flow.
782 	 *
783 	 * Since we are accessing our tcp_flow_stopped and might modify it,
784 	 * we need to take tcp->tcp_non_sq_lock.
785 	 */
786 	mutex_enter(&tcp->tcp_non_sq_lock);
787 	flow_stopped = tcp->tcp_flow_stopped;
788 	if ((TCP_IS_DETACHED(peer_tcp) &&
789 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater)) ||
790 	    (!TCP_IS_DETACHED(peer_tcp) &&
791 	    !IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
792 	    !canputnext(peer_tcp->tcp_rq))) {
793 		peer_data_queued = B_TRUE;
794 	}
795 
796 	if (!flow_stopped && (peer_data_queued ||
797 	    (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) {
798 		tcp_setqfull(tcp);
799 		flow_stopped = B_TRUE;
800 		TCP_STAT(tcps, tcp_fusion_flowctl);
801 		DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp,
802 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt);
803 	} else if (flow_stopped && !peer_data_queued &&
804 	    (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) {
805 		tcp_clrqfull(tcp);
806 		TCP_STAT(tcps, tcp_fusion_backenabled);
807 		flow_stopped = B_FALSE;
808 	}
809 	mutex_exit(&tcp->tcp_non_sq_lock);
810 
811 	ipst->ips_loopback_packets++;
812 	tcp->tcp_last_sent_len = send_size;
813 
814 	/* Need to adjust the following SNMP MIB-related variables */
815 	tcp->tcp_snxt += send_size;
816 	tcp->tcp_suna = tcp->tcp_snxt;
817 	peer_tcp->tcp_rnxt += recv_size;
818 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
819 
820 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
821 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
822 
823 	BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
824 	BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
825 	UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
826 
827 	BUMP_LOCAL(tcp->tcp_obsegs);
828 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
829 
830 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
831 
832 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
833 	    !TCP_IS_DETACHED(peer_tcp)) {
834 		/*
835 		 * Drain the peer's receive queue it has urgent data or if
836 		 * we're not flow-controlled.
837 		 */
838 		if (urgent || !flow_stopped) {
839 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
840 			/*
841 			 * For TLI-based streams, a thread in tcp_accept_swap()
842 			 * can race with us.  That thread will ensure that the
843 			 * correct peer_tcp->tcp_rq is globally visible before
844 			 * peer_tcp->tcp_detached is visible as clear, but we
845 			 * must also ensure that the load of tcp_rq cannot be
846 			 * reordered to be before the tcp_detached check.
847 			 */
848 			membar_consumer();
849 			(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
850 			    NULL);
851 		}
852 	}
853 	return (B_TRUE);
854 unfuse:
855 	tcp_unfuse(tcp);
856 	return (B_FALSE);
857 }
858 
859 /*
860  * This routine gets called to deliver data upstream on a fused or
861  * previously fused tcp loopback endpoint; the latter happens only
862  * when there is a pending SIGURG signal plus urgent data that can't
863  * be sent upstream in the past.
864  */
865 boolean_t
866 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
867 {
868 	mblk_t *mp;
869 	conn_t	*connp = tcp->tcp_connp;
870 
871 #ifdef DEBUG
872 	uint_t cnt = 0;
873 #endif
874 	tcp_stack_t	*tcps = tcp->tcp_tcps;
875 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
876 
877 	ASSERT(tcp->tcp_loopback);
878 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
879 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
880 	ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
881 
882 	/* No need for the push timer now, in case it was scheduled */
883 	if (tcp->tcp_push_tid != 0) {
884 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
885 		tcp->tcp_push_tid = 0;
886 	}
887 	/*
888 	 * If there's urgent data sitting in receive list and we didn't
889 	 * get a chance to send up a SIGURG signal, make sure we send
890 	 * it first before draining in order to ensure that SIOCATMARK
891 	 * works properly.
892 	 */
893 	if (tcp->tcp_fused_sigurg) {
894 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
895 
896 		tcp->tcp_fused_sigurg = B_FALSE;
897 		/*
898 		 * sigurg_mpp is normally NULL, i.e. when we're still
899 		 * fused and didn't get here because of tcp_unfuse().
900 		 * In this case try hard to allocate the M_PCSIG mblk.
901 		 */
902 		if (sigurg_mpp == NULL &&
903 		    (mp = allocb(1, BPRI_HI)) == NULL &&
904 		    (mp = allocb_tryhard(1)) == NULL) {
905 			/* Alloc failed; try again next time */
906 			tcp->tcp_push_tid = TCP_TIMER(tcp,
907 			    tcp_push_timer,
908 			    MSEC_TO_TICK(
909 			    tcps->tcps_push_timer_interval));
910 			return (B_TRUE);
911 		} else if (sigurg_mpp != NULL) {
912 			/*
913 			 * Use the supplied M_PCSIG mblk; it means we're
914 			 * either unfused or in the process of unfusing,
915 			 * and the drain must happen now.
916 			 */
917 			mp = *sigurg_mpp;
918 			*sigurg_mpp = NULL;
919 		}
920 		ASSERT(mp != NULL);
921 
922 		/* Send up the signal */
923 		DB_TYPE(mp) = M_PCSIG;
924 		*mp->b_wptr++ = (uchar_t)SIGURG;
925 		putnext(q, mp);
926 
927 		/*
928 		 * Let the regular tcp_rcv_drain() path handle
929 		 * draining the data if we're no longer fused.
930 		 */
931 		if (!tcp->tcp_fused)
932 			return (B_FALSE);
933 	}
934 
935 	/* Drain the data */
936 	while ((mp = tcp->tcp_rcv_list) != NULL) {
937 		tcp->tcp_rcv_list = mp->b_next;
938 		mp->b_next = NULL;
939 #ifdef DEBUG
940 		cnt += msgdsize(mp);
941 #endif
942 		ASSERT(!IPCL_IS_NONSTR(connp));
943 		putnext(q, mp);
944 		TCP_STAT(tcps, tcp_fusion_putnext);
945 	}
946 
947 #ifdef DEBUG
948 	ASSERT(cnt == tcp->tcp_rcv_cnt);
949 #endif
950 	tcp->tcp_rcv_last_head = NULL;
951 	tcp->tcp_rcv_last_tail = NULL;
952 	tcp->tcp_rcv_cnt = 0;
953 	tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
954 
955 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
956 	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
957 	    peer_tcp->tcp_xmit_lowater)) {
958 		tcp_clrqfull(peer_tcp);
959 		TCP_STAT(tcps, tcp_fusion_backenabled);
960 	}
961 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
962 
963 	return (B_TRUE);
964 }
965 
966 /*
967  * Calculate the size of receive buffer for a fused tcp endpoint.
968  */
969 size_t
970 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
971 {
972 	tcp_stack_t	*tcps = tcp->tcp_tcps;
973 
974 	ASSERT(tcp->tcp_fused);
975 
976 	/* Ensure that value is within the maximum upper bound */
977 	if (rwnd > tcps->tcps_max_buf)
978 		rwnd = tcps->tcps_max_buf;
979 
980 	/* Obey the absolute minimum tcp receive high water mark */
981 	if (rwnd < tcps->tcps_sth_rcv_hiwat)
982 		rwnd = tcps->tcps_sth_rcv_hiwat;
983 
984 	/*
985 	 * Round up to system page size in case SO_RCVBUF is modified
986 	 * after SO_SNDBUF; the latter is also similarly rounded up.
987 	 */
988 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
989 	tcp->tcp_fuse_rcv_hiwater = rwnd;
990 	return (rwnd);
991 }
992 
993 /*
994  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
995  */
996 int
997 tcp_fuse_maxpsz_set(tcp_t *tcp)
998 {
999 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1000 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
1001 	uint_t maxpsz = sndbuf;
1002 
1003 	ASSERT(tcp->tcp_fused);
1004 	ASSERT(peer_tcp != NULL);
1005 	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
1006 	/*
1007 	 * In the fused loopback case, we want the stream head to split
1008 	 * up larger writes into smaller chunks for a more accurate flow-
1009 	 * control accounting.  Our maxpsz is half of the sender's send
1010 	 * buffer or the receiver's receive buffer, whichever is smaller.
1011 	 * We round up the buffer to system page size due to the lack of
1012 	 * TCP MSS concept in Fusion.
1013 	 */
1014 	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
1015 		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
1016 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
1017 
1018 	return (maxpsz);
1019 }
1020 
1021 /*
1022  * Called to release flow control.
1023  */
1024 void
1025 tcp_fuse_backenable(tcp_t *tcp)
1026 {
1027 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1028 
1029 	ASSERT(tcp->tcp_fused);
1030 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
1031 	ASSERT(peer_tcp->tcp_loopback_peer == tcp);
1032 	ASSERT(!TCP_IS_DETACHED(tcp));
1033 	ASSERT(tcp->tcp_connp->conn_sqp ==
1034 	    peer_tcp->tcp_connp->conn_sqp);
1035 
1036 	if (tcp->tcp_rcv_list != NULL)
1037 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, NULL);
1038 
1039 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
1040 	if (peer_tcp->tcp_flow_stopped &&
1041 	    (TCP_UNSENT_BYTES(peer_tcp) <=
1042 	    peer_tcp->tcp_xmit_lowater)) {
1043 		tcp_clrqfull(peer_tcp);
1044 	}
1045 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
1046 
1047 	TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled);
1048 }
1049