1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/pattr.h> 50 #include <sys/policy.h> 51 #include <sys/priv.h> 52 #include <sys/zone.h> 53 #include <sys/sunldi.h> 54 55 #include <sys/errno.h> 56 #include <sys/signal.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/sockio.h> 60 #include <sys/isa_defs.h> 61 #include <sys/md5.h> 62 #include <sys/random.h> 63 #include <sys/uio.h> 64 #include <sys/systm.h> 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <netinet/ip6.h> 68 #include <netinet/icmp6.h> 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <inet/ipsec_impl.h> 72 73 #include <inet/common.h> 74 #include <inet/ip.h> 75 #include <inet/ip_impl.h> 76 #include <inet/ip6.h> 77 #include <inet/ip_ndp.h> 78 #include <inet/proto_set.h> 79 #include <inet/mib2.h> 80 #include <inet/nd.h> 81 #include <inet/optcom.h> 82 #include <inet/snmpcom.h> 83 #include <inet/kstatcom.h> 84 #include <inet/tcp.h> 85 #include <inet/tcp_impl.h> 86 #include <inet/udp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipdrop.h> 89 90 #include <inet/ipclassifier.h> 91 #include <inet/ip_ire.h> 92 #include <inet/ip_ftable.h> 93 #include <inet/ip_if.h> 94 #include <inet/ipp_common.h> 95 #include <inet/ip_rts.h> 96 #include <inet/ip_netinfo.h> 97 #include <sys/squeue_impl.h> 98 #include <sys/squeue.h> 99 #include <inet/kssl/ksslapi.h> 100 #include <sys/tsol/label.h> 101 #include <sys/tsol/tnet.h> 102 #include <rpc/pmap_prot.h> 103 #include <sys/callo.h> 104 105 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_input_listener(). But briefly, the squeue is picked by 176 * ip_fanout based on the ring or the sender (if loopback). 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provisions for sockfs by marking tcp_issocket 202 * whenever we have only sockfs on top of TCP. This allows us to skip 203 * putting the tcp in acceptor hash since a sockfs listener can never 204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 205 * since eager has already been allocated and the accept now happens 206 * on acceptor STREAM. There is a big blob of comment on top of 207 * tcp_input_listener explaining the new accept. When socket is POP'd, 208 * sockfs sends us an ioctl to mark the fact and we go back to old 209 * behaviour. Once tcp_issocket is unset, its never set for the 210 * life of that connection. 211 * 212 * IPsec notes : 213 * 214 * Since a packet is always executed on the correct TCP perimeter 215 * all IPsec processing is defered to IP including checking new 216 * connections and setting IPSEC policies for new connection. The 217 * only exception is tcp_xmit_listeners_reset() which is called 218 * directly from IP and needs to policy check to see if TH_RST 219 * can be sent out. 220 */ 221 222 /* 223 * Values for squeue switch: 224 * 1: SQ_NODRAIN 225 * 2: SQ_PROCESS 226 * 3: SQ_FILL 227 */ 228 int tcp_squeue_wput = 2; /* /etc/systems */ 229 int tcp_squeue_flag; 230 231 /* 232 * This controls how tiny a write must be before we try to copy it 233 * into the mblk on the tail of the transmit queue. Not much 234 * speedup is observed for values larger than sixteen. Zero will 235 * disable the optimisation. 236 */ 237 int tcp_tx_pull_len = 16; 238 239 /* 240 * TCP Statistics. 241 * 242 * How TCP statistics work. 243 * 244 * There are two types of statistics invoked by two macros. 245 * 246 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 247 * supposed to be used in non MT-hot paths of the code. 248 * 249 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 250 * supposed to be used for DEBUG purposes and may be used on a hot path. 251 * 252 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 253 * (use "kstat tcp" to get them). 254 * 255 * There is also additional debugging facility that marks tcp_clean_death() 256 * instances and saves them in tcp_t structure. It is triggered by 257 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 258 * tcp_clean_death() calls that counts the number of times each tag was hit. It 259 * is triggered by TCP_CLD_COUNTERS define. 260 * 261 * How to add new counters. 262 * 263 * 1) Add a field in the tcp_stat structure describing your counter. 264 * 2) Add a line in the template in tcp_kstat2_init() with the name 265 * of the counter. 266 * 267 * IMPORTANT!! - make sure that both are in sync !! 268 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 269 * 270 * Please avoid using private counters which are not kstat-exported. 271 * 272 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 273 * in tcp_t structure. 274 * 275 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 276 */ 277 278 #ifndef TCP_DEBUG_COUNTER 279 #ifdef DEBUG 280 #define TCP_DEBUG_COUNTER 1 281 #else 282 #define TCP_DEBUG_COUNTER 0 283 #endif 284 #endif 285 286 #define TCP_CLD_COUNTERS 0 287 288 #define TCP_TAG_CLEAN_DEATH 1 289 #define TCP_MAX_CLEAN_DEATH_TAG 32 290 291 #ifdef lint 292 static int _lint_dummy_; 293 #endif 294 295 #if TCP_CLD_COUNTERS 296 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 297 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 298 #elif defined(lint) 299 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 300 #else 301 #define TCP_CLD_STAT(x) 302 #endif 303 304 #if TCP_DEBUG_COUNTER 305 #define TCP_DBGSTAT(tcps, x) \ 306 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 307 #define TCP_G_DBGSTAT(x) \ 308 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 309 #elif defined(lint) 310 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 311 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 312 #else 313 #define TCP_DBGSTAT(tcps, x) 314 #define TCP_G_DBGSTAT(x) 315 #endif 316 317 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 318 319 tcp_g_stat_t tcp_g_statistics; 320 kstat_t *tcp_g_kstat; 321 322 /* Macros for timestamp comparisons */ 323 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 324 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 325 326 /* 327 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 328 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 329 * by adding three components: a time component which grows by 1 every 4096 330 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 331 * a per-connection component which grows by 125000 for every new connection; 332 * and an "extra" component that grows by a random amount centered 333 * approximately on 64000. This causes the ISS generator to cycle every 334 * 4.89 hours if no TCP connections are made, and faster if connections are 335 * made. 336 * 337 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 338 * components: a time component which grows by 250000 every second; and 339 * a per-connection component which grows by 125000 for every new connections. 340 * 341 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 342 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 343 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 344 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 345 * password. 346 */ 347 #define ISS_INCR 250000 348 #define ISS_NSEC_SHT 12 349 350 static sin_t sin_null; /* Zero address for quick clears */ 351 static sin6_t sin6_null; /* Zero address for quick clears */ 352 353 /* 354 * This implementation follows the 4.3BSD interpretation of the urgent 355 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 356 * incompatible changes in protocols like telnet and rlogin. 357 */ 358 #define TCP_OLD_URP_INTERPRETATION 1 359 360 /* 361 * Since tcp_listener is not cleared atomically with tcp_detached 362 * being cleared we need this extra bit to tell a detached connection 363 * apart from one that is in the process of being accepted. 364 */ 365 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 366 (TCP_IS_DETACHED(tcp) && \ 367 (!(tcp)->tcp_hard_binding)) 368 369 /* 370 * TCP reassembly macros. We hide starting and ending sequence numbers in 371 * b_next and b_prev of messages on the reassembly queue. The messages are 372 * chained using b_cont. These macros are used in tcp_reass() so we don't 373 * have to see the ugly casts and assignments. 374 */ 375 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 376 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 377 (mblk_t *)(uintptr_t)(u)) 378 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 379 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 380 (mblk_t *)(uintptr_t)(u)) 381 382 /* 383 * Implementation of TCP Timers. 384 * ============================= 385 * 386 * INTERFACE: 387 * 388 * There are two basic functions dealing with tcp timers: 389 * 390 * timeout_id_t tcp_timeout(connp, func, time) 391 * clock_t tcp_timeout_cancel(connp, timeout_id) 392 * TCP_TIMER_RESTART(tcp, intvl) 393 * 394 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 395 * after 'time' ticks passed. The function called by timeout() must adhere to 396 * the same restrictions as a driver soft interrupt handler - it must not sleep 397 * or call other functions that might sleep. The value returned is the opaque 398 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 399 * cancel the request. The call to tcp_timeout() may fail in which case it 400 * returns zero. This is different from the timeout(9F) function which never 401 * fails. 402 * 403 * The call-back function 'func' always receives 'connp' as its single 404 * argument. It is always executed in the squeue corresponding to the tcp 405 * structure. The tcp structure is guaranteed to be present at the time the 406 * call-back is called. 407 * 408 * NOTE: The call-back function 'func' is never called if tcp is in 409 * the TCPS_CLOSED state. 410 * 411 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 412 * request. locks acquired by the call-back routine should not be held across 413 * the call to tcp_timeout_cancel() or a deadlock may result. 414 * 415 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 416 * Otherwise, it returns an integer value greater than or equal to 0. In 417 * particular, if the call-back function is already placed on the squeue, it can 418 * not be canceled. 419 * 420 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 421 * within squeue context corresponding to the tcp instance. Since the 422 * call-back is also called via the same squeue, there are no race 423 * conditions described in untimeout(9F) manual page since all calls are 424 * strictly serialized. 425 * 426 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 427 * stored in tcp_timer_tid and starts a new one using 428 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 429 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 430 * field. 431 * 432 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 433 * call-back may still be called, so it is possible tcp_timer() will be 434 * called several times. This should not be a problem since tcp_timer() 435 * should always check the tcp instance state. 436 * 437 * 438 * IMPLEMENTATION: 439 * 440 * TCP timers are implemented using three-stage process. The call to 441 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 442 * when the timer expires. The tcp_timer_callback() arranges the call of the 443 * tcp_timer_handler() function via squeue corresponding to the tcp 444 * instance. The tcp_timer_handler() calls actual requested timeout call-back 445 * and passes tcp instance as an argument to it. Information is passed between 446 * stages using the tcp_timer_t structure which contains the connp pointer, the 447 * tcp call-back to call and the timeout id returned by the timeout(9F). 448 * 449 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 450 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 451 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 452 * returns the pointer to this mblk. 453 * 454 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 455 * looks like a normal mblk without actual dblk attached to it. 456 * 457 * To optimize performance each tcp instance holds a small cache of timer 458 * mblocks. In the current implementation it caches up to two timer mblocks per 459 * tcp instance. The cache is preserved over tcp frees and is only freed when 460 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 461 * timer processing happens on a corresponding squeue, the cache manipulation 462 * does not require any locks. Experiments show that majority of timer mblocks 463 * allocations are satisfied from the tcp cache and do not involve kmem calls. 464 * 465 * The tcp_timeout() places a refhold on the connp instance which guarantees 466 * that it will be present at the time the call-back function fires. The 467 * tcp_timer_handler() drops the reference after calling the call-back, so the 468 * call-back function does not need to manipulate the references explicitly. 469 */ 470 471 typedef struct tcp_timer_s { 472 conn_t *connp; 473 void (*tcpt_proc)(void *); 474 callout_id_t tcpt_tid; 475 } tcp_timer_t; 476 477 static kmem_cache_t *tcp_timercache; 478 kmem_cache_t *tcp_sack_info_cache; 479 480 /* 481 * For scalability, we must not run a timer for every TCP connection 482 * in TIME_WAIT state. To see why, consider (for time wait interval of 483 * 4 minutes): 484 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 485 * 486 * This list is ordered by time, so you need only delete from the head 487 * until you get to entries which aren't old enough to delete yet. 488 * The list consists of only the detached TIME_WAIT connections. 489 * 490 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 491 * becomes detached TIME_WAIT (either by changing the state and already 492 * being detached or the other way around). This means that the TIME_WAIT 493 * state can be extended (up to doubled) if the connection doesn't become 494 * detached for a long time. 495 * 496 * The list manipulations (including tcp_time_wait_next/prev) 497 * are protected by the tcp_time_wait_lock. The content of the 498 * detached TIME_WAIT connections is protected by the normal perimeters. 499 * 500 * This list is per squeue and squeues are shared across the tcp_stack_t's. 501 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 502 * and conn_netstack. 503 * The tcp_t's that are added to tcp_free_list are disassociated and 504 * have NULL tcp_tcps and conn_netstack pointers. 505 */ 506 typedef struct tcp_squeue_priv_s { 507 kmutex_t tcp_time_wait_lock; 508 callout_id_t tcp_time_wait_tid; 509 tcp_t *tcp_time_wait_head; 510 tcp_t *tcp_time_wait_tail; 511 tcp_t *tcp_free_list; 512 uint_t tcp_free_list_cnt; 513 } tcp_squeue_priv_t; 514 515 /* 516 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 517 * Running it every 5 seconds seems to give the best results. 518 */ 519 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 520 521 /* 522 * To prevent memory hog, limit the number of entries in tcp_free_list 523 * to 1% of available memory / number of cpus 524 */ 525 uint_t tcp_free_list_max_cnt = 0; 526 527 #define TCP_XMIT_LOWATER 4096 528 #define TCP_XMIT_HIWATER 49152 529 #define TCP_RECV_LOWATER 2048 530 #define TCP_RECV_HIWATER 128000 531 532 /* 533 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 534 */ 535 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 536 537 #define TIDUSZ 4096 /* transport interface data unit size */ 538 539 /* 540 * Bind hash list size and has function. It has to be a power of 2 for 541 * hashing. 542 */ 543 #define TCP_BIND_FANOUT_SIZE 512 544 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 545 /* 546 * Size of listen and acceptor hash list. It has to be a power of 2 for 547 * hashing. 548 */ 549 #define TCP_FANOUT_SIZE 256 550 551 #ifdef _ILP32 552 #define TCP_ACCEPTOR_HASH(accid) \ 553 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 554 #else 555 #define TCP_ACCEPTOR_HASH(accid) \ 556 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 557 #endif /* _ILP32 */ 558 559 #define IP_ADDR_CACHE_SIZE 2048 560 #define IP_ADDR_CACHE_HASH(faddr) \ 561 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 562 563 /* 564 * TCP options struct returned from tcp_parse_options. 565 */ 566 typedef struct tcp_opt_s { 567 uint32_t tcp_opt_mss; 568 uint32_t tcp_opt_wscale; 569 uint32_t tcp_opt_ts_val; 570 uint32_t tcp_opt_ts_ecr; 571 tcp_t *tcp; 572 } tcp_opt_t; 573 574 /* 575 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 576 */ 577 578 #ifdef _BIG_ENDIAN 579 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 580 (TCPOPT_TSTAMP << 8) | 10) 581 #else 582 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 583 (TCPOPT_NOP << 8) | TCPOPT_NOP) 584 #endif 585 586 /* 587 * Flags returned from tcp_parse_options. 588 */ 589 #define TCP_OPT_MSS_PRESENT 1 590 #define TCP_OPT_WSCALE_PRESENT 2 591 #define TCP_OPT_TSTAMP_PRESENT 4 592 #define TCP_OPT_SACK_OK_PRESENT 8 593 #define TCP_OPT_SACK_PRESENT 16 594 595 /* TCP option length */ 596 #define TCPOPT_NOP_LEN 1 597 #define TCPOPT_MAXSEG_LEN 4 598 #define TCPOPT_WS_LEN 3 599 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 600 #define TCPOPT_TSTAMP_LEN 10 601 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 602 #define TCPOPT_SACK_OK_LEN 2 603 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 604 #define TCPOPT_REAL_SACK_LEN 4 605 #define TCPOPT_MAX_SACK_LEN 36 606 #define TCPOPT_HEADER_LEN 2 607 608 /* TCP cwnd burst factor. */ 609 #define TCP_CWND_INFINITE 65535 610 #define TCP_CWND_SS 3 611 #define TCP_CWND_NORMAL 5 612 613 /* Maximum TCP initial cwin (start/restart). */ 614 #define TCP_MAX_INIT_CWND 8 615 616 /* 617 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 618 * either tcp_slow_start_initial or tcp_slow_start_after idle 619 * depending on the caller. If the upper layer has not used the 620 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 621 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 622 * If the upper layer has changed set the tcp_init_cwnd, just use 623 * it to calculate the tcp_cwnd. 624 */ 625 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 626 { \ 627 if ((tcp)->tcp_init_cwnd == 0) { \ 628 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 629 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 630 } else { \ 631 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 632 } \ 633 tcp->tcp_cwnd_cnt = 0; \ 634 } 635 636 /* TCP Timer control structure */ 637 typedef struct tcpt_s { 638 pfv_t tcpt_pfv; /* The routine we are to call */ 639 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 640 } tcpt_t; 641 642 /* 643 * Functions called directly via squeue having a prototype of edesc_t. 644 */ 645 void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, 646 ip_recv_attr_t *ira); 647 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, 648 ip_recv_attr_t *dummy); 649 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, 650 ip_recv_attr_t *dummy); 651 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, 652 ip_recv_attr_t *dummy); 653 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, 654 ip_recv_attr_t *dummy); 655 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 656 ip_recv_attr_t *ira); 657 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2, 658 ip_recv_attr_t *dummy); 659 void tcp_output(void *arg, mblk_t *mp, void *arg2, 660 ip_recv_attr_t *dummy); 661 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, 662 ip_recv_attr_t *dummy); 663 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, 664 ip_recv_attr_t *dummy); 665 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, 666 ip_recv_attr_t *dummy); 667 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 668 ip_recv_attr_t *dummy); 669 670 671 /* Prototype for TCP functions */ 672 static void tcp_random_init(void); 673 int tcp_random(void); 674 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 675 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 676 tcp_t *eager); 677 static int tcp_set_destination(tcp_t *tcp); 678 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 679 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 680 boolean_t user_specified); 681 static void tcp_closei_local(tcp_t *tcp); 682 static void tcp_close_detached(tcp_t *tcp); 683 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, 684 mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira); 685 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 686 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 687 in_port_t dstport, uint_t srcid); 688 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 689 in_port_t dstport, uint32_t flowinfo, 690 uint_t srcid, uint32_t scope_id); 691 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 692 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 693 static char *tcp_display(tcp_t *tcp, char *, char); 694 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 695 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 696 static void tcp_eager_unlink(tcp_t *tcp); 697 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 698 int unixerr); 699 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 700 int tlierr, int unixerr); 701 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 702 cred_t *cr); 703 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 704 char *value, caddr_t cp, cred_t *cr); 705 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 706 char *value, caddr_t cp, cred_t *cr); 707 static int tcp_tpistate(tcp_t *tcp); 708 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 709 int caller_holds_lock); 710 static void tcp_bind_hash_remove(tcp_t *tcp); 711 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 712 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 713 static void tcp_acceptor_hash_remove(tcp_t *tcp); 714 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 715 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 716 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 717 static void tcp_init_values(tcp_t *tcp); 718 static void tcp_ip_notify(tcp_t *tcp); 719 static void tcp_iss_init(tcp_t *tcp); 720 static void tcp_keepalive_killer(void *arg); 721 static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt); 722 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 723 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 724 int *do_disconnectp, int *t_errorp, int *sys_errorp); 725 static boolean_t tcp_allow_connopt_set(int level, int name); 726 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 727 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 728 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 729 tcp_stack_t *); 730 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 731 caddr_t cp, cred_t *cr); 732 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 733 caddr_t cp, cred_t *cr); 734 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 735 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 736 caddr_t cp, cred_t *cr); 737 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 738 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 739 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 740 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 741 static void tcp_reinit(tcp_t *tcp); 742 static void tcp_reinit_values(tcp_t *tcp); 743 744 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 745 static uint_t tcp_rcv_drain(tcp_t *tcp); 746 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 747 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 748 static void tcp_ss_rexmit(tcp_t *tcp); 749 static mblk_t *tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 750 ip_recv_attr_t *); 751 static void tcp_process_options(tcp_t *, tcpha_t *); 752 static void tcp_rsrv(queue_t *q); 753 static int tcp_snmp_state(tcp_t *tcp); 754 static void tcp_timer(void *arg); 755 static void tcp_timer_callback(void *); 756 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 757 boolean_t random); 758 static in_port_t tcp_get_next_priv_port(const tcp_t *); 759 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 760 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 761 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 762 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 763 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 764 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 765 static int tcp_send(tcp_t *tcp, const int mss, 766 const int total_hdr_len, const int tcp_hdr_len, 767 const int num_sack_blk, int *usable, uint_t *snxt, 768 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time); 769 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 770 int num_sack_blk); 771 static void tcp_wsrv(queue_t *q); 772 static int tcp_xmit_end(tcp_t *tcp); 773 static void tcp_ack_timer(void *arg); 774 static mblk_t *tcp_ack_mp(tcp_t *tcp); 775 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 776 uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *, 777 ip_stack_t *, conn_t *); 778 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 779 uint32_t ack, int ctl); 780 static void tcp_set_rto(tcp_t *, time_t); 781 static void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); 782 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); 783 static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *, 784 ip_recv_attr_t *); 785 static int tcp_build_hdrs(tcp_t *); 786 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 787 uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha, 788 ip_recv_attr_t *ira); 789 boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp); 790 static boolean_t tcp_zcopy_check(tcp_t *); 791 static void tcp_zcopy_notify(tcp_t *); 792 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t); 793 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 794 static void tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only); 795 static void tcp_update_zcopy(tcp_t *tcp); 796 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 797 ixa_notify_arg_t); 798 static void tcp_rexmit_after_error(tcp_t *tcp); 799 static void tcp_send_data(tcp_t *, mblk_t *); 800 extern mblk_t *tcp_timermp_alloc(int); 801 extern void tcp_timermp_free(tcp_t *); 802 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 803 static void tcp_stop_lingering(tcp_t *tcp); 804 static void tcp_close_linger_timeout(void *arg); 805 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 806 static void tcp_stack_fini(netstackid_t stackid, void *arg); 807 static void *tcp_g_kstat_init(tcp_g_stat_t *); 808 static void tcp_g_kstat_fini(kstat_t *); 809 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 810 static void tcp_kstat_fini(netstackid_t, kstat_t *); 811 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 812 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 813 static int tcp_kstat_update(kstat_t *kp, int rw); 814 static mblk_t *tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 815 ip_recv_attr_t *ira); 816 static mblk_t *tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 817 ip_recv_attr_t *ira); 818 static int tcp_squeue_switch(int); 819 820 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 821 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 822 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 823 static int tcp_tpi_close(queue_t *, int); 824 static int tcp_tpi_close_accept(queue_t *); 825 826 static void tcp_squeue_add(squeue_t *); 827 static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); 828 829 extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); 830 831 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); 832 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 833 ip_recv_attr_t *dummy); 834 835 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 836 sock_upper_handle_t, cred_t *); 837 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 838 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 839 boolean_t); 840 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 841 cred_t *, pid_t); 842 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 843 boolean_t); 844 static int tcp_do_unbind(conn_t *); 845 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 846 boolean_t); 847 848 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 849 850 /* 851 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 852 * 853 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 854 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 855 * (defined in tcp.h) needs to be filled in and passed into the kernel 856 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 857 * structure contains the four-tuple of a TCP connection and a range of TCP 858 * states (specified by ac_start and ac_end). The use of wildcard addresses 859 * and ports is allowed. Connections with a matching four tuple and a state 860 * within the specified range will be aborted. The valid states for the 861 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 862 * inclusive. 863 * 864 * An application which has its connection aborted by this ioctl will receive 865 * an error that is dependent on the connection state at the time of the abort. 866 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 867 * though a RST packet has been received. If the connection state is equal to 868 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 869 * and all resources associated with the connection will be freed. 870 */ 871 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 872 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 873 static void tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 874 ip_recv_attr_t *dummy); 875 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 876 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 877 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 878 boolean_t, tcp_stack_t *); 879 880 static struct module_info tcp_rinfo = { 881 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 882 }; 883 884 static struct module_info tcp_winfo = { 885 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 886 }; 887 888 /* 889 * Entry points for TCP as a device. The normal case which supports 890 * the TCP functionality. 891 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 892 */ 893 struct qinit tcp_rinitv4 = { 894 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 895 }; 896 897 struct qinit tcp_rinitv6 = { 898 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 899 }; 900 901 struct qinit tcp_winit = { 902 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 903 }; 904 905 /* Initial entry point for TCP in socket mode. */ 906 struct qinit tcp_sock_winit = { 907 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 908 }; 909 910 /* TCP entry point during fallback */ 911 struct qinit tcp_fallback_sock_winit = { 912 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 913 }; 914 915 /* 916 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 917 * an accept. Avoid allocating data structures since eager has already 918 * been created. 919 */ 920 struct qinit tcp_acceptor_rinit = { 921 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 922 }; 923 924 struct qinit tcp_acceptor_winit = { 925 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 926 }; 927 928 /* For AF_INET aka /dev/tcp */ 929 struct streamtab tcpinfov4 = { 930 &tcp_rinitv4, &tcp_winit 931 }; 932 933 /* For AF_INET6 aka /dev/tcp6 */ 934 struct streamtab tcpinfov6 = { 935 &tcp_rinitv6, &tcp_winit 936 }; 937 938 sock_downcalls_t sock_tcp_downcalls; 939 940 /* Setable only in /etc/system. Move to ndd? */ 941 boolean_t tcp_icmp_source_quench = B_FALSE; 942 943 /* 944 * Following assumes TPI alignment requirements stay along 32 bit 945 * boundaries 946 */ 947 #define ROUNDUP32(x) \ 948 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 949 950 /* Template for response to info request. */ 951 static struct T_info_ack tcp_g_t_info_ack = { 952 T_INFO_ACK, /* PRIM_type */ 953 0, /* TSDU_size */ 954 T_INFINITE, /* ETSDU_size */ 955 T_INVALID, /* CDATA_size */ 956 T_INVALID, /* DDATA_size */ 957 sizeof (sin_t), /* ADDR_size */ 958 0, /* OPT_size - not initialized here */ 959 TIDUSZ, /* TIDU_size */ 960 T_COTS_ORD, /* SERV_type */ 961 TCPS_IDLE, /* CURRENT_state */ 962 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 963 }; 964 965 static struct T_info_ack tcp_g_t_info_ack_v6 = { 966 T_INFO_ACK, /* PRIM_type */ 967 0, /* TSDU_size */ 968 T_INFINITE, /* ETSDU_size */ 969 T_INVALID, /* CDATA_size */ 970 T_INVALID, /* DDATA_size */ 971 sizeof (sin6_t), /* ADDR_size */ 972 0, /* OPT_size - not initialized here */ 973 TIDUSZ, /* TIDU_size */ 974 T_COTS_ORD, /* SERV_type */ 975 TCPS_IDLE, /* CURRENT_state */ 976 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 977 }; 978 979 #define MS 1L 980 #define SECONDS (1000 * MS) 981 #define MINUTES (60 * SECONDS) 982 #define HOURS (60 * MINUTES) 983 #define DAYS (24 * HOURS) 984 985 #define PARAM_MAX (~(uint32_t)0) 986 987 /* Max size IP datagram is 64k - 1 */ 988 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t))) 989 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t))) 990 /* Max of the above */ 991 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 992 993 /* Largest TCP port number */ 994 #define TCP_MAX_PORT (64 * 1024 - 1) 995 996 /* 997 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 998 * layer header. It has to be a multiple of 4. 999 */ 1000 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1001 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1002 1003 /* 1004 * All of these are alterable, within the min/max values given, at run time. 1005 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1006 * per the TCP spec. 1007 */ 1008 /* BEGIN CSTYLED */ 1009 static tcpparam_t lcl_tcp_param_arr[] = { 1010 /*min max value name */ 1011 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1012 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1013 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1014 { 1, 1024, 1, "tcp_conn_req_min" }, 1015 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1016 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1017 { 0, 10, 0, "tcp_debug" }, 1018 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1019 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1020 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1021 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1022 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1023 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1024 { 1, 255, 64, "tcp_ipv4_ttl"}, 1025 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1026 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1027 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1028 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1029 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1030 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1031 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1032 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1033 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1034 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1035 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1036 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1037 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1038 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1039 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1040 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1041 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1042 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1043 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1044 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1045 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1046 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1047 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1048 /* 1049 * Question: What default value should I set for tcp_strong_iss? 1050 */ 1051 { 0, 2, 1, "tcp_strong_iss"}, 1052 { 0, 65536, 20, "tcp_rtt_updates"}, 1053 { 0, 1, 1, "tcp_wscale_always"}, 1054 { 0, 1, 0, "tcp_tstamp_always"}, 1055 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1056 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1057 { 0, 16, 2, "tcp_deferred_acks_max"}, 1058 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1059 { 1, 4, 4, "tcp_slow_start_initial"}, 1060 { 0, 2, 2, "tcp_sack_permitted"}, 1061 { 0, 1, 1, "tcp_compression_enabled"}, 1062 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1063 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1064 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1065 { 0, 1, 0, "tcp_rev_src_routes"}, 1066 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1067 { 0, 16, 8, "tcp_local_dacks_max"}, 1068 { 0, 2, 1, "tcp_ecn_permitted"}, 1069 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1070 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1071 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1072 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1073 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1074 { 0, 1, 0, "tcp_dev_flow_ctl"}, 1075 }; 1076 /* END CSTYLED */ 1077 1078 /* Round up the value to the nearest mss. */ 1079 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1080 1081 /* 1082 * Set ECN capable transport (ECT) code point in IP header. 1083 * 1084 * Note that there are 2 ECT code points '01' and '10', which are called 1085 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1086 * point ECT(0) for TCP as described in RFC 2481. 1087 */ 1088 #define SET_ECT(tcp, iph) \ 1089 if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \ 1090 /* We need to clear the code point first. */ \ 1091 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1092 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1093 } else { \ 1094 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1095 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1096 } 1097 1098 /* 1099 * The format argument to pass to tcp_display(). 1100 * DISP_PORT_ONLY means that the returned string has only port info. 1101 * DISP_ADDR_AND_PORT means that the returned string also contains the 1102 * remote and local IP address. 1103 */ 1104 #define DISP_PORT_ONLY 1 1105 #define DISP_ADDR_AND_PORT 2 1106 1107 #define IS_VMLOANED_MBLK(mp) \ 1108 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1109 1110 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1111 1112 /* 1113 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1114 * tunable settable via NDD. Otherwise, the per-connection behavior is 1115 * determined dynamically during tcp_set_destination(), which is the default. 1116 */ 1117 boolean_t tcp_static_maxpsz = B_FALSE; 1118 1119 /* Setable in /etc/system */ 1120 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1121 uint32_t tcp_random_anon_port = 1; 1122 1123 /* 1124 * To reach to an eager in Q0 which can be dropped due to an incoming 1125 * new SYN request when Q0 is full, a new doubly linked list is 1126 * introduced. This list allows to select an eager from Q0 in O(1) time. 1127 * This is needed to avoid spending too much time walking through the 1128 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1129 * this new list has to be a member of Q0. 1130 * This list is headed by listener's tcp_t. When the list is empty, 1131 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1132 * of listener's tcp_t point to listener's tcp_t itself. 1133 * 1134 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1135 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1136 * These macros do not affect the eager's membership to Q0. 1137 */ 1138 1139 1140 #define MAKE_DROPPABLE(listener, eager) \ 1141 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1142 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1143 = (eager); \ 1144 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1145 (eager)->tcp_eager_next_drop_q0 = \ 1146 (listener)->tcp_eager_next_drop_q0; \ 1147 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1148 } 1149 1150 #define MAKE_UNDROPPABLE(eager) \ 1151 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1152 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1153 = (eager)->tcp_eager_prev_drop_q0; \ 1154 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1155 = (eager)->tcp_eager_next_drop_q0; \ 1156 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1157 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1158 } 1159 1160 /* 1161 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1162 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1163 * data, TCP will not respond with an ACK. RFC 793 requires that 1164 * TCP responds with an ACK for such a bogus ACK. By not following 1165 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1166 * an attacker successfully spoofs an acceptable segment to our 1167 * peer; or when our peer is "confused." 1168 */ 1169 uint32_t tcp_drop_ack_unsent_cnt = 10; 1170 1171 /* 1172 * Hook functions to enable cluster networking 1173 * On non-clustered systems these vectors must always be NULL. 1174 */ 1175 1176 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1177 sa_family_t addr_family, uint8_t *laddrp, 1178 in_port_t lport, void *args) = NULL; 1179 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1180 sa_family_t addr_family, uint8_t *laddrp, 1181 in_port_t lport, void *args) = NULL; 1182 1183 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1184 boolean_t is_outgoing, 1185 sa_family_t addr_family, 1186 uint8_t *laddrp, in_port_t lport, 1187 uint8_t *faddrp, in_port_t fport, 1188 void *args) = NULL; 1189 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1190 sa_family_t addr_family, uint8_t *laddrp, 1191 in_port_t lport, uint8_t *faddrp, 1192 in_port_t fport, void *args) = NULL; 1193 1194 1195 /* 1196 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1197 */ 1198 #define CL_INET_CONNECT(connp, is_outgoing, err) { \ 1199 (err) = 0; \ 1200 if (cl_inet_connect2 != NULL) { \ 1201 /* \ 1202 * Running in cluster mode - register active connection \ 1203 * information \ 1204 */ \ 1205 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1206 if ((connp)->conn_laddr_v4 != 0) { \ 1207 (err) = (*cl_inet_connect2)( \ 1208 (connp)->conn_netstack->netstack_stackid,\ 1209 IPPROTO_TCP, is_outgoing, AF_INET, \ 1210 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1211 (in_port_t)(connp)->conn_lport, \ 1212 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1213 (in_port_t)(connp)->conn_fport, NULL); \ 1214 } \ 1215 } else { \ 1216 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1217 &(connp)->conn_laddr_v6)) { \ 1218 (err) = (*cl_inet_connect2)( \ 1219 (connp)->conn_netstack->netstack_stackid,\ 1220 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1221 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1222 (in_port_t)(connp)->conn_lport, \ 1223 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1224 (in_port_t)(connp)->conn_fport, NULL); \ 1225 } \ 1226 } \ 1227 } \ 1228 } 1229 1230 #define CL_INET_DISCONNECT(connp) { \ 1231 if (cl_inet_disconnect != NULL) { \ 1232 /* \ 1233 * Running in cluster mode - deregister active \ 1234 * connection information \ 1235 */ \ 1236 if ((connp)->conn_ipversion == IPV4_VERSION) { \ 1237 if ((connp)->conn_laddr_v4 != 0) { \ 1238 (*cl_inet_disconnect)( \ 1239 (connp)->conn_netstack->netstack_stackid,\ 1240 IPPROTO_TCP, AF_INET, \ 1241 (uint8_t *)(&((connp)->conn_laddr_v4)),\ 1242 (in_port_t)(connp)->conn_lport, \ 1243 (uint8_t *)(&((connp)->conn_faddr_v4)),\ 1244 (in_port_t)(connp)->conn_fport, NULL); \ 1245 } \ 1246 } else { \ 1247 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1248 &(connp)->conn_laddr_v6)) { \ 1249 (*cl_inet_disconnect)( \ 1250 (connp)->conn_netstack->netstack_stackid,\ 1251 IPPROTO_TCP, AF_INET6, \ 1252 (uint8_t *)(&((connp)->conn_laddr_v6)),\ 1253 (in_port_t)(connp)->conn_lport, \ 1254 (uint8_t *)(&((connp)->conn_faddr_v6)), \ 1255 (in_port_t)(connp)->conn_fport, NULL); \ 1256 } \ 1257 } \ 1258 } \ 1259 } 1260 1261 /* 1262 * Cluster networking hook for traversing current connection list. 1263 * This routine is used to extract the current list of live connections 1264 * which must continue to to be dispatched to this node. 1265 */ 1266 int cl_tcp_walk_list(netstackid_t stack_id, 1267 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1268 1269 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1270 void *arg, tcp_stack_t *tcps); 1271 1272 static void 1273 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 1274 { 1275 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 1276 1277 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 1278 conn_t *connp = tcp->tcp_connp; 1279 struct sock_proto_props sopp; 1280 1281 /* 1282 * only increase rcvthresh upto default_threshold 1283 */ 1284 if (new_rcvthresh > default_threshold) 1285 new_rcvthresh = default_threshold; 1286 1287 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 1288 sopp.sopp_rcvthresh = new_rcvthresh; 1289 1290 (*connp->conn_upcalls->su_set_proto_props) 1291 (connp->conn_upper_handle, &sopp); 1292 } 1293 } 1294 /* 1295 * Figure out the value of window scale opton. Note that the rwnd is 1296 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1297 * We cannot find the scale value and then do a round up of tcp_rwnd 1298 * because the scale value may not be correct after that. 1299 * 1300 * Set the compiler flag to make this function inline. 1301 */ 1302 static void 1303 tcp_set_ws_value(tcp_t *tcp) 1304 { 1305 int i; 1306 uint32_t rwnd = tcp->tcp_rwnd; 1307 1308 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1309 i++, rwnd >>= 1) 1310 ; 1311 tcp->tcp_rcv_ws = i; 1312 } 1313 1314 /* 1315 * Remove a connection from the list of detached TIME_WAIT connections. 1316 * It returns B_FALSE if it can't remove the connection from the list 1317 * as the connection has already been removed from the list due to an 1318 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1319 */ 1320 static boolean_t 1321 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1322 { 1323 boolean_t locked = B_FALSE; 1324 1325 if (tcp_time_wait == NULL) { 1326 tcp_time_wait = *((tcp_squeue_priv_t **) 1327 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1328 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1329 locked = B_TRUE; 1330 } else { 1331 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1332 } 1333 1334 if (tcp->tcp_time_wait_expire == 0) { 1335 ASSERT(tcp->tcp_time_wait_next == NULL); 1336 ASSERT(tcp->tcp_time_wait_prev == NULL); 1337 if (locked) 1338 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1339 return (B_FALSE); 1340 } 1341 ASSERT(TCP_IS_DETACHED(tcp)); 1342 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1343 1344 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1345 ASSERT(tcp->tcp_time_wait_prev == NULL); 1346 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1347 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1348 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1349 NULL; 1350 } else { 1351 tcp_time_wait->tcp_time_wait_tail = NULL; 1352 } 1353 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1354 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1355 ASSERT(tcp->tcp_time_wait_next == NULL); 1356 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1357 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1358 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1359 } else { 1360 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1361 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1362 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1363 tcp->tcp_time_wait_next; 1364 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1365 tcp->tcp_time_wait_prev; 1366 } 1367 tcp->tcp_time_wait_next = NULL; 1368 tcp->tcp_time_wait_prev = NULL; 1369 tcp->tcp_time_wait_expire = 0; 1370 1371 if (locked) 1372 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1373 return (B_TRUE); 1374 } 1375 1376 /* 1377 * Add a connection to the list of detached TIME_WAIT connections 1378 * and set its time to expire. 1379 */ 1380 static void 1381 tcp_time_wait_append(tcp_t *tcp) 1382 { 1383 tcp_stack_t *tcps = tcp->tcp_tcps; 1384 tcp_squeue_priv_t *tcp_time_wait = 1385 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1386 SQPRIVATE_TCP)); 1387 1388 tcp_timers_stop(tcp); 1389 1390 /* Freed above */ 1391 ASSERT(tcp->tcp_timer_tid == 0); 1392 ASSERT(tcp->tcp_ack_tid == 0); 1393 1394 /* must have happened at the time of detaching the tcp */ 1395 ASSERT(tcp->tcp_ptpahn == NULL); 1396 ASSERT(tcp->tcp_flow_stopped == 0); 1397 ASSERT(tcp->tcp_time_wait_next == NULL); 1398 ASSERT(tcp->tcp_time_wait_prev == NULL); 1399 ASSERT(tcp->tcp_time_wait_expire == NULL); 1400 ASSERT(tcp->tcp_listener == NULL); 1401 1402 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1403 /* 1404 * The value computed below in tcp->tcp_time_wait_expire may 1405 * appear negative or wrap around. That is ok since our 1406 * interest is only in the difference between the current lbolt 1407 * value and tcp->tcp_time_wait_expire. But the value should not 1408 * be zero, since it means the tcp is not in the TIME_WAIT list. 1409 * The corresponding comparison in tcp_time_wait_collector() uses 1410 * modular arithmetic. 1411 */ 1412 tcp->tcp_time_wait_expire += 1413 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1414 if (tcp->tcp_time_wait_expire == 0) 1415 tcp->tcp_time_wait_expire = 1; 1416 1417 ASSERT(TCP_IS_DETACHED(tcp)); 1418 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1419 ASSERT(tcp->tcp_time_wait_next == NULL); 1420 ASSERT(tcp->tcp_time_wait_prev == NULL); 1421 TCP_DBGSTAT(tcps, tcp_time_wait); 1422 1423 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1424 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1425 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1426 tcp_time_wait->tcp_time_wait_head = tcp; 1427 } else { 1428 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1429 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1430 TCPS_TIME_WAIT); 1431 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1432 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1433 } 1434 tcp_time_wait->tcp_time_wait_tail = tcp; 1435 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1436 } 1437 1438 /* ARGSUSED */ 1439 void 1440 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1441 { 1442 conn_t *connp = (conn_t *)arg; 1443 tcp_t *tcp = connp->conn_tcp; 1444 tcp_stack_t *tcps = tcp->tcp_tcps; 1445 1446 ASSERT(tcp != NULL); 1447 if (tcp->tcp_state == TCPS_CLOSED) { 1448 return; 1449 } 1450 1451 ASSERT((connp->conn_family == AF_INET && 1452 connp->conn_ipversion == IPV4_VERSION) || 1453 (connp->conn_family == AF_INET6 && 1454 (connp->conn_ipversion == IPV4_VERSION || 1455 connp->conn_ipversion == IPV6_VERSION))); 1456 ASSERT(!tcp->tcp_listener); 1457 1458 TCP_STAT(tcps, tcp_time_wait_reap); 1459 ASSERT(TCP_IS_DETACHED(tcp)); 1460 1461 /* 1462 * Because they have no upstream client to rebind or tcp_close() 1463 * them later, we axe the connection here and now. 1464 */ 1465 tcp_close_detached(tcp); 1466 } 1467 1468 /* 1469 * Remove cached/latched IPsec references. 1470 */ 1471 void 1472 tcp_ipsec_cleanup(tcp_t *tcp) 1473 { 1474 conn_t *connp = tcp->tcp_connp; 1475 1476 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1477 1478 if (connp->conn_latch != NULL) { 1479 IPLATCH_REFRELE(connp->conn_latch); 1480 connp->conn_latch = NULL; 1481 } 1482 if (connp->conn_latch_in_policy != NULL) { 1483 IPPOL_REFRELE(connp->conn_latch_in_policy); 1484 connp->conn_latch_in_policy = NULL; 1485 } 1486 if (connp->conn_latch_in_action != NULL) { 1487 IPACT_REFRELE(connp->conn_latch_in_action); 1488 connp->conn_latch_in_action = NULL; 1489 } 1490 if (connp->conn_policy != NULL) { 1491 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1492 connp->conn_policy = NULL; 1493 } 1494 } 1495 1496 /* 1497 * Cleaup before placing on free list. 1498 * Disassociate from the netstack/tcp_stack_t since the freelist 1499 * is per squeue and not per netstack. 1500 */ 1501 void 1502 tcp_cleanup(tcp_t *tcp) 1503 { 1504 mblk_t *mp; 1505 tcp_sack_info_t *tcp_sack_info; 1506 conn_t *connp = tcp->tcp_connp; 1507 tcp_stack_t *tcps = tcp->tcp_tcps; 1508 netstack_t *ns = tcps->tcps_netstack; 1509 mblk_t *tcp_rsrv_mp; 1510 1511 tcp_bind_hash_remove(tcp); 1512 1513 /* Cleanup that which needs the netstack first */ 1514 tcp_ipsec_cleanup(tcp); 1515 ixa_cleanup(connp->conn_ixa); 1516 1517 if (connp->conn_ht_iphc != NULL) { 1518 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 1519 connp->conn_ht_iphc = NULL; 1520 connp->conn_ht_iphc_allocated = 0; 1521 connp->conn_ht_iphc_len = 0; 1522 connp->conn_ht_ulp = NULL; 1523 connp->conn_ht_ulp_len = 0; 1524 tcp->tcp_ipha = NULL; 1525 tcp->tcp_ip6h = NULL; 1526 tcp->tcp_tcpha = NULL; 1527 } 1528 1529 /* We clear any IP_OPTIONS and extension headers */ 1530 ip_pkt_free(&connp->conn_xmit_ipp); 1531 1532 tcp_free(tcp); 1533 1534 /* Release any SSL context */ 1535 if (tcp->tcp_kssl_ent != NULL) { 1536 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1537 tcp->tcp_kssl_ent = NULL; 1538 } 1539 1540 if (tcp->tcp_kssl_ctx != NULL) { 1541 kssl_release_ctx(tcp->tcp_kssl_ctx); 1542 tcp->tcp_kssl_ctx = NULL; 1543 } 1544 tcp->tcp_kssl_pending = B_FALSE; 1545 1546 /* 1547 * Since we will bzero the entire structure, we need to 1548 * remove it and reinsert it in global hash list. We 1549 * know the walkers can't get to this conn because we 1550 * had set CONDEMNED flag earlier and checked reference 1551 * under conn_lock so walker won't pick it and when we 1552 * go the ipcl_globalhash_remove() below, no walker 1553 * can get to it. 1554 */ 1555 ipcl_globalhash_remove(connp); 1556 1557 /* Save some state */ 1558 mp = tcp->tcp_timercache; 1559 1560 tcp_sack_info = tcp->tcp_sack_info; 1561 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1562 1563 if (connp->conn_cred != NULL) { 1564 crfree(connp->conn_cred); 1565 connp->conn_cred = NULL; 1566 } 1567 ipcl_conn_cleanup(connp); 1568 connp->conn_flags = IPCL_TCPCONN; 1569 1570 /* 1571 * Now it is safe to decrement the reference counts. 1572 * This might be the last reference on the netstack 1573 * in which case it will cause the freeing of the IP Instance. 1574 */ 1575 connp->conn_netstack = NULL; 1576 connp->conn_ixa->ixa_ipst = NULL; 1577 netstack_rele(ns); 1578 ASSERT(tcps != NULL); 1579 tcp->tcp_tcps = NULL; 1580 1581 bzero(tcp, sizeof (tcp_t)); 1582 1583 /* restore the state */ 1584 tcp->tcp_timercache = mp; 1585 1586 tcp->tcp_sack_info = tcp_sack_info; 1587 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1588 1589 tcp->tcp_connp = connp; 1590 1591 ASSERT(connp->conn_tcp == tcp); 1592 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1593 connp->conn_state_flags = CONN_INCIPIENT; 1594 ASSERT(connp->conn_proto == IPPROTO_TCP); 1595 ASSERT(connp->conn_ref == 1); 1596 } 1597 1598 /* 1599 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1600 * is done forwards from the head. 1601 * This walks all stack instances since 1602 * tcp_time_wait remains global across all stacks. 1603 */ 1604 /* ARGSUSED */ 1605 void 1606 tcp_time_wait_collector(void *arg) 1607 { 1608 tcp_t *tcp; 1609 clock_t now; 1610 mblk_t *mp; 1611 conn_t *connp; 1612 kmutex_t *lock; 1613 boolean_t removed; 1614 1615 squeue_t *sqp = (squeue_t *)arg; 1616 tcp_squeue_priv_t *tcp_time_wait = 1617 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1618 1619 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1620 tcp_time_wait->tcp_time_wait_tid = 0; 1621 1622 if (tcp_time_wait->tcp_free_list != NULL && 1623 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1624 TCP_G_STAT(tcp_freelist_cleanup); 1625 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1626 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1627 tcp->tcp_time_wait_next = NULL; 1628 tcp_time_wait->tcp_free_list_cnt--; 1629 ASSERT(tcp->tcp_tcps == NULL); 1630 CONN_DEC_REF(tcp->tcp_connp); 1631 } 1632 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1633 } 1634 1635 /* 1636 * In order to reap time waits reliably, we should use a 1637 * source of time that is not adjustable by the user -- hence 1638 * the call to ddi_get_lbolt(). 1639 */ 1640 now = ddi_get_lbolt(); 1641 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1642 /* 1643 * Compare times using modular arithmetic, since 1644 * lbolt can wrapover. 1645 */ 1646 if ((now - tcp->tcp_time_wait_expire) < 0) { 1647 break; 1648 } 1649 1650 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1651 ASSERT(removed); 1652 1653 connp = tcp->tcp_connp; 1654 ASSERT(connp->conn_fanout != NULL); 1655 lock = &connp->conn_fanout->connf_lock; 1656 /* 1657 * This is essentially a TW reclaim fast path optimization for 1658 * performance where the timewait collector checks under the 1659 * fanout lock (so that no one else can get access to the 1660 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1661 * the classifier hash list. If ref count is indeed 2, we can 1662 * just remove the conn under the fanout lock and avoid 1663 * cleaning up the conn under the squeue, provided that 1664 * clustering callbacks are not enabled. If clustering is 1665 * enabled, we need to make the clustering callback before 1666 * setting the CONDEMNED flag and after dropping all locks and 1667 * so we forego this optimization and fall back to the slow 1668 * path. Also please see the comments in tcp_closei_local 1669 * regarding the refcnt logic. 1670 * 1671 * Since we are holding the tcp_time_wait_lock, its better 1672 * not to block on the fanout_lock because other connections 1673 * can't add themselves to time_wait list. So we do a 1674 * tryenter instead of mutex_enter. 1675 */ 1676 if (mutex_tryenter(lock)) { 1677 mutex_enter(&connp->conn_lock); 1678 if ((connp->conn_ref == 2) && 1679 (cl_inet_disconnect == NULL)) { 1680 ipcl_hash_remove_locked(connp, 1681 connp->conn_fanout); 1682 /* 1683 * Set the CONDEMNED flag now itself so that 1684 * the refcnt cannot increase due to any 1685 * walker. 1686 */ 1687 connp->conn_state_flags |= CONN_CONDEMNED; 1688 mutex_exit(lock); 1689 mutex_exit(&connp->conn_lock); 1690 if (tcp_time_wait->tcp_free_list_cnt < 1691 tcp_free_list_max_cnt) { 1692 /* Add to head of tcp_free_list */ 1693 mutex_exit( 1694 &tcp_time_wait->tcp_time_wait_lock); 1695 tcp_cleanup(tcp); 1696 ASSERT(connp->conn_latch == NULL); 1697 ASSERT(connp->conn_policy == NULL); 1698 ASSERT(tcp->tcp_tcps == NULL); 1699 ASSERT(connp->conn_netstack == NULL); 1700 1701 mutex_enter( 1702 &tcp_time_wait->tcp_time_wait_lock); 1703 tcp->tcp_time_wait_next = 1704 tcp_time_wait->tcp_free_list; 1705 tcp_time_wait->tcp_free_list = tcp; 1706 tcp_time_wait->tcp_free_list_cnt++; 1707 continue; 1708 } else { 1709 /* Do not add to tcp_free_list */ 1710 mutex_exit( 1711 &tcp_time_wait->tcp_time_wait_lock); 1712 tcp_bind_hash_remove(tcp); 1713 ixa_cleanup(tcp->tcp_connp->conn_ixa); 1714 tcp_ipsec_cleanup(tcp); 1715 CONN_DEC_REF(tcp->tcp_connp); 1716 } 1717 } else { 1718 CONN_INC_REF_LOCKED(connp); 1719 mutex_exit(lock); 1720 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1721 mutex_exit(&connp->conn_lock); 1722 /* 1723 * We can reuse the closemp here since conn has 1724 * detached (otherwise we wouldn't even be in 1725 * time_wait list). tcp_closemp_used can safely 1726 * be changed without taking a lock as no other 1727 * thread can concurrently access it at this 1728 * point in the connection lifecycle. 1729 */ 1730 1731 if (tcp->tcp_closemp.b_prev == NULL) 1732 tcp->tcp_closemp_used = B_TRUE; 1733 else 1734 cmn_err(CE_PANIC, 1735 "tcp_timewait_collector: " 1736 "concurrent use of tcp_closemp: " 1737 "connp %p tcp %p\n", (void *)connp, 1738 (void *)tcp); 1739 1740 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1741 mp = &tcp->tcp_closemp; 1742 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1743 tcp_timewait_output, connp, NULL, 1744 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1745 } 1746 } else { 1747 mutex_enter(&connp->conn_lock); 1748 CONN_INC_REF_LOCKED(connp); 1749 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1750 mutex_exit(&connp->conn_lock); 1751 /* 1752 * We can reuse the closemp here since conn has 1753 * detached (otherwise we wouldn't even be in 1754 * time_wait list). tcp_closemp_used can safely 1755 * be changed without taking a lock as no other 1756 * thread can concurrently access it at this 1757 * point in the connection lifecycle. 1758 */ 1759 1760 if (tcp->tcp_closemp.b_prev == NULL) 1761 tcp->tcp_closemp_used = B_TRUE; 1762 else 1763 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1764 "concurrent use of tcp_closemp: " 1765 "connp %p tcp %p\n", (void *)connp, 1766 (void *)tcp); 1767 1768 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1769 mp = &tcp->tcp_closemp; 1770 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1771 tcp_timewait_output, connp, NULL, 1772 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1773 } 1774 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1775 } 1776 1777 if (tcp_time_wait->tcp_free_list != NULL) 1778 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1779 1780 tcp_time_wait->tcp_time_wait_tid = 1781 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1782 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1783 CALLOUT_FLAG_ROUNDUP); 1784 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1785 } 1786 1787 /* 1788 * Reply to a clients T_CONN_RES TPI message. This function 1789 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1790 * on the acceptor STREAM and processed in tcp_accept_common(). 1791 * Read the block comment on top of tcp_input_listener(). 1792 */ 1793 static void 1794 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1795 { 1796 tcp_t *acceptor; 1797 tcp_t *eager; 1798 tcp_t *tcp; 1799 struct T_conn_res *tcr; 1800 t_uscalar_t acceptor_id; 1801 t_scalar_t seqnum; 1802 mblk_t *discon_mp = NULL; 1803 mblk_t *ok_mp; 1804 mblk_t *mp1; 1805 tcp_stack_t *tcps = listener->tcp_tcps; 1806 conn_t *econnp; 1807 1808 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1809 tcp_err_ack(listener, mp, TPROTO, 0); 1810 return; 1811 } 1812 tcr = (struct T_conn_res *)mp->b_rptr; 1813 1814 /* 1815 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1816 * read side queue of the streams device underneath us i.e. the 1817 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1818 * look it up in the queue_hash. Under LP64 it sends down the 1819 * minor_t of the accepting endpoint. 1820 * 1821 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1822 * fanout hash lock is held. 1823 * This prevents any thread from entering the acceptor queue from 1824 * below (since it has not been hard bound yet i.e. any inbound 1825 * packets will arrive on the listener conn_t and 1826 * go through the classifier). 1827 * The CONN_INC_REF will prevent the acceptor from closing. 1828 * 1829 * XXX It is still possible for a tli application to send down data 1830 * on the accepting stream while another thread calls t_accept. 1831 * This should not be a problem for well-behaved applications since 1832 * the T_OK_ACK is sent after the queue swapping is completed. 1833 * 1834 * If the accepting fd is the same as the listening fd, avoid 1835 * queue hash lookup since that will return an eager listener in a 1836 * already established state. 1837 */ 1838 acceptor_id = tcr->ACCEPTOR_id; 1839 mutex_enter(&listener->tcp_eager_lock); 1840 if (listener->tcp_acceptor_id == acceptor_id) { 1841 eager = listener->tcp_eager_next_q; 1842 /* only count how many T_CONN_INDs so don't count q0 */ 1843 if ((listener->tcp_conn_req_cnt_q != 1) || 1844 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1845 mutex_exit(&listener->tcp_eager_lock); 1846 tcp_err_ack(listener, mp, TBADF, 0); 1847 return; 1848 } 1849 if (listener->tcp_conn_req_cnt_q0 != 0) { 1850 /* Throw away all the eagers on q0. */ 1851 tcp_eager_cleanup(listener, 1); 1852 } 1853 if (listener->tcp_syn_defense) { 1854 listener->tcp_syn_defense = B_FALSE; 1855 if (listener->tcp_ip_addr_cache != NULL) { 1856 kmem_free(listener->tcp_ip_addr_cache, 1857 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1858 listener->tcp_ip_addr_cache = NULL; 1859 } 1860 } 1861 /* 1862 * Transfer tcp_conn_req_max to the eager so that when 1863 * a disconnect occurs we can revert the endpoint to the 1864 * listen state. 1865 */ 1866 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1867 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1868 /* 1869 * Get a reference on the acceptor just like the 1870 * tcp_acceptor_hash_lookup below. 1871 */ 1872 acceptor = listener; 1873 CONN_INC_REF(acceptor->tcp_connp); 1874 } else { 1875 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1876 if (acceptor == NULL) { 1877 if (listener->tcp_connp->conn_debug) { 1878 (void) strlog(TCP_MOD_ID, 0, 1, 1879 SL_ERROR|SL_TRACE, 1880 "tcp_accept: did not find acceptor 0x%x\n", 1881 acceptor_id); 1882 } 1883 mutex_exit(&listener->tcp_eager_lock); 1884 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1885 return; 1886 } 1887 /* 1888 * Verify acceptor state. The acceptable states for an acceptor 1889 * include TCPS_IDLE and TCPS_BOUND. 1890 */ 1891 switch (acceptor->tcp_state) { 1892 case TCPS_IDLE: 1893 /* FALLTHRU */ 1894 case TCPS_BOUND: 1895 break; 1896 default: 1897 CONN_DEC_REF(acceptor->tcp_connp); 1898 mutex_exit(&listener->tcp_eager_lock); 1899 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1900 return; 1901 } 1902 } 1903 1904 /* The listener must be in TCPS_LISTEN */ 1905 if (listener->tcp_state != TCPS_LISTEN) { 1906 CONN_DEC_REF(acceptor->tcp_connp); 1907 mutex_exit(&listener->tcp_eager_lock); 1908 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1909 return; 1910 } 1911 1912 /* 1913 * Rendezvous with an eager connection request packet hanging off 1914 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 1915 * tcp structure when the connection packet arrived in 1916 * tcp_input_listener(). 1917 */ 1918 seqnum = tcr->SEQ_number; 1919 eager = listener; 1920 do { 1921 eager = eager->tcp_eager_next_q; 1922 if (eager == NULL) { 1923 CONN_DEC_REF(acceptor->tcp_connp); 1924 mutex_exit(&listener->tcp_eager_lock); 1925 tcp_err_ack(listener, mp, TBADSEQ, 0); 1926 return; 1927 } 1928 } while (eager->tcp_conn_req_seqnum != seqnum); 1929 mutex_exit(&listener->tcp_eager_lock); 1930 1931 /* 1932 * At this point, both acceptor and listener have 2 ref 1933 * that they begin with. Acceptor has one additional ref 1934 * we placed in lookup while listener has 3 additional 1935 * ref for being behind the squeue (tcp_accept() is 1936 * done on listener's squeue); being in classifier hash; 1937 * and eager's ref on listener. 1938 */ 1939 ASSERT(listener->tcp_connp->conn_ref >= 5); 1940 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 1941 1942 /* 1943 * The eager at this point is set in its own squeue and 1944 * could easily have been killed (tcp_accept_finish will 1945 * deal with that) because of a TH_RST so we can only 1946 * ASSERT for a single ref. 1947 */ 1948 ASSERT(eager->tcp_connp->conn_ref >= 1); 1949 1950 /* 1951 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 1952 * use it if something failed. 1953 */ 1954 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 1955 sizeof (struct stroptions)), BPRI_HI); 1956 if (discon_mp == NULL) { 1957 CONN_DEC_REF(acceptor->tcp_connp); 1958 CONN_DEC_REF(eager->tcp_connp); 1959 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 1960 return; 1961 } 1962 1963 econnp = eager->tcp_connp; 1964 1965 /* Hold a copy of mp, in case reallocb fails */ 1966 if ((mp1 = copymsg(mp)) == NULL) { 1967 CONN_DEC_REF(acceptor->tcp_connp); 1968 CONN_DEC_REF(eager->tcp_connp); 1969 freemsg(discon_mp); 1970 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 1971 return; 1972 } 1973 1974 tcr = (struct T_conn_res *)mp1->b_rptr; 1975 1976 /* 1977 * This is an expanded version of mi_tpi_ok_ack_alloc() 1978 * which allocates a larger mblk and appends the new 1979 * local address to the ok_ack. The address is copied by 1980 * soaccept() for getsockname(). 1981 */ 1982 { 1983 int extra; 1984 1985 extra = (econnp->conn_family == AF_INET) ? 1986 sizeof (sin_t) : sizeof (sin6_t); 1987 1988 /* 1989 * Try to re-use mp, if possible. Otherwise, allocate 1990 * an mblk and return it as ok_mp. In any case, mp 1991 * is no longer usable upon return. 1992 */ 1993 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 1994 CONN_DEC_REF(acceptor->tcp_connp); 1995 CONN_DEC_REF(eager->tcp_connp); 1996 freemsg(discon_mp); 1997 /* Original mp has been freed by now, so use mp1 */ 1998 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 1999 return; 2000 } 2001 2002 mp = NULL; /* We should never use mp after this point */ 2003 2004 switch (extra) { 2005 case sizeof (sin_t): { 2006 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2007 2008 ok_mp->b_wptr += extra; 2009 sin->sin_family = AF_INET; 2010 sin->sin_port = econnp->conn_lport; 2011 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 2012 break; 2013 } 2014 case sizeof (sin6_t): { 2015 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2016 2017 ok_mp->b_wptr += extra; 2018 sin6->sin6_family = AF_INET6; 2019 sin6->sin6_port = econnp->conn_lport; 2020 sin6->sin6_addr = econnp->conn_laddr_v6; 2021 sin6->sin6_flowinfo = econnp->conn_flowinfo; 2022 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 2023 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 2024 sin6->sin6_scope_id = 2025 econnp->conn_ixa->ixa_scopeid; 2026 } else { 2027 sin6->sin6_scope_id = 0; 2028 } 2029 sin6->__sin6_src_id = 0; 2030 break; 2031 } 2032 default: 2033 break; 2034 } 2035 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2036 } 2037 2038 /* 2039 * If there are no options we know that the T_CONN_RES will 2040 * succeed. However, we can't send the T_OK_ACK upstream until 2041 * the tcp_accept_swap is done since it would be dangerous to 2042 * let the application start using the new fd prior to the swap. 2043 */ 2044 tcp_accept_swap(listener, acceptor, eager); 2045 2046 /* 2047 * tcp_accept_swap unlinks eager from listener but does not drop 2048 * the eager's reference on the listener. 2049 */ 2050 ASSERT(eager->tcp_listener == NULL); 2051 ASSERT(listener->tcp_connp->conn_ref >= 5); 2052 2053 /* 2054 * The eager is now associated with its own queue. Insert in 2055 * the hash so that the connection can be reused for a future 2056 * T_CONN_RES. 2057 */ 2058 tcp_acceptor_hash_insert(acceptor_id, eager); 2059 2060 /* 2061 * We now do the processing of options with T_CONN_RES. 2062 * We delay till now since we wanted to have queue to pass to 2063 * option processing routines that points back to the right 2064 * instance structure which does not happen until after 2065 * tcp_accept_swap(). 2066 * 2067 * Note: 2068 * The sanity of the logic here assumes that whatever options 2069 * are appropriate to inherit from listner=>eager are done 2070 * before this point, and whatever were to be overridden (or not) 2071 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2072 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2073 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2074 * This may not be true at this point in time but can be fixed 2075 * independently. This option processing code starts with 2076 * the instantiated acceptor instance and the final queue at 2077 * this point. 2078 */ 2079 2080 if (tcr->OPT_length != 0) { 2081 /* Options to process */ 2082 int t_error = 0; 2083 int sys_error = 0; 2084 int do_disconnect = 0; 2085 2086 if (tcp_conprim_opt_process(eager, mp1, 2087 &do_disconnect, &t_error, &sys_error) < 0) { 2088 eager->tcp_accept_error = 1; 2089 if (do_disconnect) { 2090 /* 2091 * An option failed which does not allow 2092 * connection to be accepted. 2093 * 2094 * We allow T_CONN_RES to succeed and 2095 * put a T_DISCON_IND on the eager queue. 2096 */ 2097 ASSERT(t_error == 0 && sys_error == 0); 2098 eager->tcp_send_discon_ind = 1; 2099 } else { 2100 ASSERT(t_error != 0); 2101 freemsg(ok_mp); 2102 /* 2103 * Original mp was either freed or set 2104 * to ok_mp above, so use mp1 instead. 2105 */ 2106 tcp_err_ack(listener, mp1, t_error, sys_error); 2107 goto finish; 2108 } 2109 } 2110 /* 2111 * Most likely success in setting options (except if 2112 * eager->tcp_send_discon_ind set). 2113 * mp1 option buffer represented by OPT_length/offset 2114 * potentially modified and contains results of setting 2115 * options at this point 2116 */ 2117 } 2118 2119 /* We no longer need mp1, since all options processing has passed */ 2120 freemsg(mp1); 2121 2122 putnext(listener->tcp_connp->conn_rq, ok_mp); 2123 2124 mutex_enter(&listener->tcp_eager_lock); 2125 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2126 tcp_t *tail; 2127 mblk_t *conn_ind; 2128 2129 /* 2130 * This path should not be executed if listener and 2131 * acceptor streams are the same. 2132 */ 2133 ASSERT(listener != acceptor); 2134 2135 tcp = listener->tcp_eager_prev_q0; 2136 /* 2137 * listener->tcp_eager_prev_q0 points to the TAIL of the 2138 * deferred T_conn_ind queue. We need to get to the head of 2139 * the queue in order to send up T_conn_ind the same order as 2140 * how the 3WHS is completed. 2141 */ 2142 while (tcp != listener) { 2143 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2144 break; 2145 else 2146 tcp = tcp->tcp_eager_prev_q0; 2147 } 2148 ASSERT(tcp != listener); 2149 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2150 ASSERT(conn_ind != NULL); 2151 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2152 2153 /* Move from q0 to q */ 2154 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2155 listener->tcp_conn_req_cnt_q0--; 2156 listener->tcp_conn_req_cnt_q++; 2157 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2158 tcp->tcp_eager_prev_q0; 2159 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2160 tcp->tcp_eager_next_q0; 2161 tcp->tcp_eager_prev_q0 = NULL; 2162 tcp->tcp_eager_next_q0 = NULL; 2163 tcp->tcp_conn_def_q0 = B_FALSE; 2164 2165 /* Make sure the tcp isn't in the list of droppables */ 2166 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2167 tcp->tcp_eager_prev_drop_q0 == NULL); 2168 2169 /* 2170 * Insert at end of the queue because sockfs sends 2171 * down T_CONN_RES in chronological order. Leaving 2172 * the older conn indications at front of the queue 2173 * helps reducing search time. 2174 */ 2175 tail = listener->tcp_eager_last_q; 2176 if (tail != NULL) 2177 tail->tcp_eager_next_q = tcp; 2178 else 2179 listener->tcp_eager_next_q = tcp; 2180 listener->tcp_eager_last_q = tcp; 2181 tcp->tcp_eager_next_q = NULL; 2182 mutex_exit(&listener->tcp_eager_lock); 2183 putnext(tcp->tcp_connp->conn_rq, conn_ind); 2184 } else { 2185 mutex_exit(&listener->tcp_eager_lock); 2186 } 2187 2188 /* 2189 * Done with the acceptor - free it 2190 * 2191 * Note: from this point on, no access to listener should be made 2192 * as listener can be equal to acceptor. 2193 */ 2194 finish: 2195 ASSERT(acceptor->tcp_detached); 2196 acceptor->tcp_connp->conn_rq = NULL; 2197 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2198 acceptor->tcp_connp->conn_wq = NULL; 2199 (void) tcp_clean_death(acceptor, 0, 2); 2200 CONN_DEC_REF(acceptor->tcp_connp); 2201 2202 /* 2203 * We pass discon_mp to tcp_accept_finish to get on the right squeue. 2204 * 2205 * It will update the setting for sockfs/stream head and also take 2206 * care of any data that arrived before accept() wad called. 2207 * In case we already received a FIN then tcp_accept_finish will send up 2208 * the ordrel. It will also send up a window update if the window 2209 * has opened up. 2210 */ 2211 2212 /* 2213 * XXX: we currently have a problem if XTI application closes the 2214 * acceptor stream in between. This problem exists in on10-gate also 2215 * and is well know but nothing can be done short of major rewrite 2216 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2217 * eager same squeue as listener (we can distinguish non socket 2218 * listeners at the time of handling a SYN in tcp_input_listener) 2219 * and do most of the work that tcp_accept_finish does here itself 2220 * and then get behind the acceptor squeue to access the acceptor 2221 * queue. 2222 */ 2223 /* 2224 * We already have a ref on tcp so no need to do one before squeue_enter 2225 */ 2226 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp, 2227 tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL, 2228 SQTAG_TCP_ACCEPT_FINISH); 2229 } 2230 2231 /* 2232 * Swap information between the eager and acceptor for a TLI/XTI client. 2233 * The sockfs accept is done on the acceptor stream and control goes 2234 * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not 2235 * called. In either case, both the eager and listener are in their own 2236 * perimeter (squeue) and the code has to deal with potential race. 2237 * 2238 * See the block comment on top of tcp_accept() and tcp_tli_accept(). 2239 */ 2240 static void 2241 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2242 { 2243 conn_t *econnp, *aconnp; 2244 2245 ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq); 2246 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2247 ASSERT(!TCP_IS_SOCKET(acceptor)); 2248 ASSERT(!TCP_IS_SOCKET(eager)); 2249 ASSERT(!TCP_IS_SOCKET(listener)); 2250 2251 /* 2252 * Trusted Extensions may need to use a security label that is 2253 * different from the acceptor's label on MLP and MAC-Exempt 2254 * sockets. If this is the case, the required security label 2255 * already exists in econnp->conn_ixa->ixa_tsl. Since we make the 2256 * acceptor stream refer to econnp we atomatically get that label. 2257 */ 2258 2259 acceptor->tcp_detached = B_TRUE; 2260 /* 2261 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2262 * the acceptor id. 2263 */ 2264 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2265 2266 /* remove eager from listen list... */ 2267 mutex_enter(&listener->tcp_eager_lock); 2268 tcp_eager_unlink(eager); 2269 ASSERT(eager->tcp_eager_next_q == NULL && 2270 eager->tcp_eager_last_q == NULL); 2271 ASSERT(eager->tcp_eager_next_q0 == NULL && 2272 eager->tcp_eager_prev_q0 == NULL); 2273 mutex_exit(&listener->tcp_eager_lock); 2274 2275 econnp = eager->tcp_connp; 2276 aconnp = acceptor->tcp_connp; 2277 econnp->conn_rq = aconnp->conn_rq; 2278 econnp->conn_wq = aconnp->conn_wq; 2279 econnp->conn_rq->q_ptr = econnp; 2280 econnp->conn_wq->q_ptr = econnp; 2281 2282 /* 2283 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2284 * which might be a different squeue from our peer TCP instance. 2285 * For TCP Fusion, the peer expects that whenever tcp_detached is 2286 * clear, our TCP queues point to the acceptor's queues. Thus, use 2287 * membar_producer() to ensure that the assignments of conn_rq/conn_wq 2288 * above reach global visibility prior to the clearing of tcp_detached. 2289 */ 2290 membar_producer(); 2291 eager->tcp_detached = B_FALSE; 2292 2293 ASSERT(eager->tcp_ack_tid == 0); 2294 2295 econnp->conn_dev = aconnp->conn_dev; 2296 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2297 2298 ASSERT(econnp->conn_minor_arena != NULL); 2299 if (econnp->conn_cred != NULL) 2300 crfree(econnp->conn_cred); 2301 econnp->conn_cred = aconnp->conn_cred; 2302 aconnp->conn_cred = NULL; 2303 econnp->conn_cpid = aconnp->conn_cpid; 2304 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2305 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2306 2307 econnp->conn_zoneid = aconnp->conn_zoneid; 2308 econnp->conn_allzones = aconnp->conn_allzones; 2309 econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid; 2310 2311 econnp->conn_mac_mode = aconnp->conn_mac_mode; 2312 econnp->conn_zone_is_global = aconnp->conn_zone_is_global; 2313 aconnp->conn_mac_mode = CONN_MAC_DEFAULT; 2314 2315 /* Do the IPC initialization */ 2316 CONN_INC_REF(econnp); 2317 2318 /* Done with old IPC. Drop its ref on its connp */ 2319 CONN_DEC_REF(aconnp); 2320 } 2321 2322 2323 /* 2324 * Adapt to the information, such as rtt and rtt_sd, provided from the 2325 * DCE and IRE maintained by IP. 2326 * 2327 * Checks for multicast and broadcast destination address. 2328 * Returns zero if ok; an errno on failure. 2329 * 2330 * Note that the MSS calculation here is based on the info given in 2331 * the DCE and IRE. We do not do any calculation based on TCP options. They 2332 * will be handled in tcp_input_data() when TCP knows which options to use. 2333 * 2334 * Note on how TCP gets its parameters for a connection. 2335 * 2336 * When a tcp_t structure is allocated, it gets all the default parameters. 2337 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 2338 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2339 * default. 2340 * 2341 * An incoming SYN with a multicast or broadcast destination address is dropped 2342 * in ip_fanout_v4/v6. 2343 * 2344 * An incoming SYN with a multicast or broadcast source address is always 2345 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 2346 * conn_connect. 2347 * The same logic in tcp_set_destination also serves to 2348 * reject an attempt to connect to a broadcast or multicast (destination) 2349 * address. 2350 */ 2351 static int 2352 tcp_set_destination(tcp_t *tcp) 2353 { 2354 uint32_t mss_max; 2355 uint32_t mss; 2356 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2357 conn_t *connp = tcp->tcp_connp; 2358 tcp_stack_t *tcps = tcp->tcp_tcps; 2359 iulp_t uinfo; 2360 int error; 2361 uint32_t flags; 2362 2363 flags = IPDF_LSO | IPDF_ZCOPY; 2364 /* 2365 * Make sure we have a dce for the destination to avoid dce_ident 2366 * contention for connected sockets. 2367 */ 2368 flags |= IPDF_UNIQUE_DCE; 2369 2370 if (!tcps->tcps_ignore_path_mtu) 2371 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 2372 2373 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 2374 mutex_enter(&connp->conn_lock); 2375 error = conn_connect(connp, &uinfo, flags); 2376 mutex_exit(&connp->conn_lock); 2377 if (error != 0) 2378 return (error); 2379 2380 error = tcp_build_hdrs(tcp); 2381 if (error != 0) 2382 return (error); 2383 2384 tcp->tcp_localnet = uinfo.iulp_localnet; 2385 2386 if (uinfo.iulp_rtt != 0) { 2387 clock_t rto; 2388 2389 tcp->tcp_rtt_sa = uinfo.iulp_rtt; 2390 tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; 2391 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2392 tcps->tcps_rexmit_interval_extra + 2393 (tcp->tcp_rtt_sa >> 5); 2394 2395 if (rto > tcps->tcps_rexmit_interval_max) { 2396 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2397 } else if (rto < tcps->tcps_rexmit_interval_min) { 2398 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2399 } else { 2400 tcp->tcp_rto = rto; 2401 } 2402 } 2403 if (uinfo.iulp_ssthresh != 0) 2404 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 2405 else 2406 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2407 if (uinfo.iulp_spipe > 0) { 2408 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 2409 tcps->tcps_max_buf); 2410 if (tcps->tcps_snd_lowat_fraction != 0) { 2411 connp->conn_sndlowat = connp->conn_sndbuf / 2412 tcps->tcps_snd_lowat_fraction; 2413 } 2414 (void) tcp_maxpsz_set(tcp, B_TRUE); 2415 } 2416 /* 2417 * Note that up till now, acceptor always inherits receive 2418 * window from the listener. But if there is a metrics 2419 * associated with a host, we should use that instead of 2420 * inheriting it from listener. Thus we need to pass this 2421 * info back to the caller. 2422 */ 2423 if (uinfo.iulp_rpipe > 0) { 2424 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 2425 tcps->tcps_max_buf); 2426 } 2427 2428 if (uinfo.iulp_rtomax > 0) { 2429 tcp->tcp_second_timer_threshold = 2430 uinfo.iulp_rtomax; 2431 } 2432 2433 /* 2434 * Use the metric option settings, iulp_tstamp_ok and 2435 * iulp_wscale_ok, only for active open. What this means 2436 * is that if the other side uses timestamp or window 2437 * scale option, TCP will also use those options. That 2438 * is for passive open. If the application sets a 2439 * large window, window scale is enabled regardless of 2440 * the value in iulp_wscale_ok. This is the behavior 2441 * since 2.6. So we keep it. 2442 * The only case left in passive open processing is the 2443 * check for SACK. 2444 * For ECN, it should probably be like SACK. But the 2445 * current value is binary, so we treat it like the other 2446 * cases. The metric only controls active open.For passive 2447 * open, the ndd param, tcp_ecn_permitted, controls the 2448 * behavior. 2449 */ 2450 if (!tcp_detached) { 2451 /* 2452 * The if check means that the following can only 2453 * be turned on by the metrics only IRE, but not off. 2454 */ 2455 if (uinfo.iulp_tstamp_ok) 2456 tcp->tcp_snd_ts_ok = B_TRUE; 2457 if (uinfo.iulp_wscale_ok) 2458 tcp->tcp_snd_ws_ok = B_TRUE; 2459 if (uinfo.iulp_sack == 2) 2460 tcp->tcp_snd_sack_ok = B_TRUE; 2461 if (uinfo.iulp_ecn_ok) 2462 tcp->tcp_ecn_ok = B_TRUE; 2463 } else { 2464 /* 2465 * Passive open. 2466 * 2467 * As above, the if check means that SACK can only be 2468 * turned on by the metric only IRE. 2469 */ 2470 if (uinfo.iulp_sack > 0) { 2471 tcp->tcp_snd_sack_ok = B_TRUE; 2472 } 2473 } 2474 2475 /* 2476 * XXX Note that currently, iulp_mtu can be as small as 68 2477 * because of PMTUd. So tcp_mss may go to negative if combined 2478 * length of all those options exceeds 28 bytes. But because 2479 * of the tcp_mss_min check below, we may not have a problem if 2480 * tcp_mss_min is of a reasonable value. The default is 1 so 2481 * the negative problem still exists. And the check defeats PMTUd. 2482 * In fact, if PMTUd finds that the MSS should be smaller than 2483 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2484 * value. 2485 * 2486 * We do not deal with that now. All those problems related to 2487 * PMTUd will be fixed later. 2488 */ 2489 ASSERT(uinfo.iulp_mtu != 0); 2490 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 2491 2492 /* Sanity check for MSS value. */ 2493 if (connp->conn_ipversion == IPV4_VERSION) 2494 mss_max = tcps->tcps_mss_max_ipv4; 2495 else 2496 mss_max = tcps->tcps_mss_max_ipv6; 2497 2498 if (tcp->tcp_ipsec_overhead == 0) 2499 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2500 2501 mss -= tcp->tcp_ipsec_overhead; 2502 2503 if (mss < tcps->tcps_mss_min) 2504 mss = tcps->tcps_mss_min; 2505 if (mss > mss_max) 2506 mss = mss_max; 2507 2508 /* Note that this is the maximum MSS, excluding all options. */ 2509 tcp->tcp_mss = mss; 2510 2511 /* 2512 * Update the tcp connection with LSO capability. 2513 */ 2514 tcp_update_lso(tcp, connp->conn_ixa); 2515 2516 /* 2517 * Initialize the ISS here now that we have the full connection ID. 2518 * The RFC 1948 method of initial sequence number generation requires 2519 * knowledge of the full connection ID before setting the ISS. 2520 */ 2521 tcp_iss_init(tcp); 2522 2523 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 2524 2525 /* 2526 * Make sure that conn is not marked incipient 2527 * for incoming connections. A blind 2528 * removal of incipient flag is cheaper than 2529 * check and removal. 2530 */ 2531 mutex_enter(&connp->conn_lock); 2532 connp->conn_state_flags &= ~CONN_INCIPIENT; 2533 mutex_exit(&connp->conn_lock); 2534 return (0); 2535 } 2536 2537 static void 2538 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2539 { 2540 int error; 2541 conn_t *connp = tcp->tcp_connp; 2542 struct sockaddr *sa; 2543 mblk_t *mp1; 2544 struct T_bind_req *tbr; 2545 int backlog; 2546 socklen_t len; 2547 sin_t *sin; 2548 sin6_t *sin6; 2549 cred_t *cr; 2550 2551 /* 2552 * All Solaris components should pass a db_credp 2553 * for this TPI message, hence we ASSERT. 2554 * But in case there is some other M_PROTO that looks 2555 * like a TPI message sent by some other kernel 2556 * component, we check and return an error. 2557 */ 2558 cr = msg_getcred(mp, NULL); 2559 ASSERT(cr != NULL); 2560 if (cr == NULL) { 2561 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2562 return; 2563 } 2564 2565 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2566 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2567 if (connp->conn_debug) { 2568 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2569 "tcp_tpi_bind: bad req, len %u", 2570 (uint_t)(mp->b_wptr - mp->b_rptr)); 2571 } 2572 tcp_err_ack(tcp, mp, TPROTO, 0); 2573 return; 2574 } 2575 /* Make sure the largest address fits */ 2576 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1); 2577 if (mp1 == NULL) { 2578 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2579 return; 2580 } 2581 mp = mp1; 2582 tbr = (struct T_bind_req *)mp->b_rptr; 2583 2584 backlog = tbr->CONIND_number; 2585 len = tbr->ADDR_length; 2586 2587 switch (len) { 2588 case 0: /* request for a generic port */ 2589 tbr->ADDR_offset = sizeof (struct T_bind_req); 2590 if (connp->conn_family == AF_INET) { 2591 tbr->ADDR_length = sizeof (sin_t); 2592 sin = (sin_t *)&tbr[1]; 2593 *sin = sin_null; 2594 sin->sin_family = AF_INET; 2595 sa = (struct sockaddr *)sin; 2596 len = sizeof (sin_t); 2597 mp->b_wptr = (uchar_t *)&sin[1]; 2598 } else { 2599 ASSERT(connp->conn_family == AF_INET6); 2600 tbr->ADDR_length = sizeof (sin6_t); 2601 sin6 = (sin6_t *)&tbr[1]; 2602 *sin6 = sin6_null; 2603 sin6->sin6_family = AF_INET6; 2604 sa = (struct sockaddr *)sin6; 2605 len = sizeof (sin6_t); 2606 mp->b_wptr = (uchar_t *)&sin6[1]; 2607 } 2608 break; 2609 2610 case sizeof (sin_t): /* Complete IPv4 address */ 2611 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 2612 sizeof (sin_t)); 2613 break; 2614 2615 case sizeof (sin6_t): /* Complete IPv6 address */ 2616 sa = (struct sockaddr *)mi_offset_param(mp, 2617 tbr->ADDR_offset, sizeof (sin6_t)); 2618 break; 2619 2620 default: 2621 if (connp->conn_debug) { 2622 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2623 "tcp_tpi_bind: bad address length, %d", 2624 tbr->ADDR_length); 2625 } 2626 tcp_err_ack(tcp, mp, TBADADDR, 0); 2627 return; 2628 } 2629 2630 if (backlog > 0) { 2631 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 2632 tbr->PRIM_type != O_T_BIND_REQ); 2633 } else { 2634 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 2635 tbr->PRIM_type != O_T_BIND_REQ); 2636 } 2637 done: 2638 if (error > 0) { 2639 tcp_err_ack(tcp, mp, TSYSERR, error); 2640 } else if (error < 0) { 2641 tcp_err_ack(tcp, mp, -error, 0); 2642 } else { 2643 /* 2644 * Update port information as sockfs/tpi needs it for checking 2645 */ 2646 if (connp->conn_family == AF_INET) { 2647 sin = (sin_t *)sa; 2648 sin->sin_port = connp->conn_lport; 2649 } else { 2650 sin6 = (sin6_t *)sa; 2651 sin6->sin6_port = connp->conn_lport; 2652 } 2653 mp->b_datap->db_type = M_PCPROTO; 2654 tbr->PRIM_type = T_BIND_ACK; 2655 putnext(connp->conn_rq, mp); 2656 } 2657 } 2658 2659 /* 2660 * If the "bind_to_req_port_only" parameter is set, if the requested port 2661 * number is available, return it, If not return 0 2662 * 2663 * If "bind_to_req_port_only" parameter is not set and 2664 * If the requested port number is available, return it. If not, return 2665 * the first anonymous port we happen across. If no anonymous ports are 2666 * available, return 0. addr is the requested local address, if any. 2667 * 2668 * In either case, when succeeding update the tcp_t to record the port number 2669 * and insert it in the bind hash table. 2670 * 2671 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 2672 * without setting SO_REUSEADDR. This is needed so that they 2673 * can be viewed as two independent transport protocols. 2674 */ 2675 static in_port_t 2676 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 2677 int reuseaddr, boolean_t quick_connect, 2678 boolean_t bind_to_req_port_only, boolean_t user_specified) 2679 { 2680 /* number of times we have run around the loop */ 2681 int count = 0; 2682 /* maximum number of times to run around the loop */ 2683 int loopmax; 2684 conn_t *connp = tcp->tcp_connp; 2685 tcp_stack_t *tcps = tcp->tcp_tcps; 2686 2687 /* 2688 * Lookup for free addresses is done in a loop and "loopmax" 2689 * influences how long we spin in the loop 2690 */ 2691 if (bind_to_req_port_only) { 2692 /* 2693 * If the requested port is busy, don't bother to look 2694 * for a new one. Setting loop maximum count to 1 has 2695 * that effect. 2696 */ 2697 loopmax = 1; 2698 } else { 2699 /* 2700 * If the requested port is busy, look for a free one 2701 * in the anonymous port range. 2702 * Set loopmax appropriately so that one does not look 2703 * forever in the case all of the anonymous ports are in use. 2704 */ 2705 if (connp->conn_anon_priv_bind) { 2706 /* 2707 * loopmax = 2708 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 2709 */ 2710 loopmax = IPPORT_RESERVED - 2711 tcps->tcps_min_anonpriv_port; 2712 } else { 2713 loopmax = (tcps->tcps_largest_anon_port - 2714 tcps->tcps_smallest_anon_port + 1); 2715 } 2716 } 2717 do { 2718 uint16_t lport; 2719 tf_t *tbf; 2720 tcp_t *ltcp; 2721 conn_t *lconnp; 2722 2723 lport = htons(port); 2724 2725 /* 2726 * Ensure that the tcp_t is not currently in the bind hash. 2727 * Hold the lock on the hash bucket to ensure that 2728 * the duplicate check plus the insertion is an atomic 2729 * operation. 2730 * 2731 * This function does an inline lookup on the bind hash list 2732 * Make sure that we access only members of tcp_t 2733 * and that we don't look at tcp_tcp, since we are not 2734 * doing a CONN_INC_REF. 2735 */ 2736 tcp_bind_hash_remove(tcp); 2737 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 2738 mutex_enter(&tbf->tf_lock); 2739 for (ltcp = tbf->tf_tcp; ltcp != NULL; 2740 ltcp = ltcp->tcp_bind_hash) { 2741 if (lport == ltcp->tcp_connp->conn_lport) 2742 break; 2743 } 2744 2745 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 2746 boolean_t not_socket; 2747 boolean_t exclbind; 2748 2749 lconnp = ltcp->tcp_connp; 2750 2751 /* 2752 * On a labeled system, we must treat bindings to ports 2753 * on shared IP addresses by sockets with MAC exemption 2754 * privilege as being in all zones, as there's 2755 * otherwise no way to identify the right receiver. 2756 */ 2757 if (!IPCL_BIND_ZONE_MATCH(lconnp, connp)) 2758 continue; 2759 2760 /* 2761 * If TCP_EXCLBIND is set for either the bound or 2762 * binding endpoint, the semantics of bind 2763 * is changed according to the following. 2764 * 2765 * spec = specified address (v4 or v6) 2766 * unspec = unspecified address (v4 or v6) 2767 * A = specified addresses are different for endpoints 2768 * 2769 * bound bind to allowed 2770 * ------------------------------------- 2771 * unspec unspec no 2772 * unspec spec no 2773 * spec unspec no 2774 * spec spec yes if A 2775 * 2776 * For labeled systems, SO_MAC_EXEMPT behaves the same 2777 * as TCP_EXCLBIND, except that zoneid is ignored. 2778 * 2779 * Note: 2780 * 2781 * 1. Because of TLI semantics, an endpoint can go 2782 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 2783 * TCPS_BOUND, depending on whether it is originally 2784 * a listener or not. That is why we need to check 2785 * for states greater than or equal to TCPS_BOUND 2786 * here. 2787 * 2788 * 2. Ideally, we should only check for state equals 2789 * to TCPS_LISTEN. And the following check should be 2790 * added. 2791 * 2792 * if (ltcp->tcp_state == TCPS_LISTEN || 2793 * !reuseaddr || !lconnp->conn_reuseaddr) { 2794 * ... 2795 * } 2796 * 2797 * The semantics will be changed to this. If the 2798 * endpoint on the list is in state not equal to 2799 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 2800 * set, let the bind succeed. 2801 * 2802 * Because of (1), we cannot do that for TLI 2803 * endpoints. But we can do that for socket endpoints. 2804 * If in future, we can change this going back 2805 * semantics, we can use the above check for TLI also. 2806 */ 2807 not_socket = !(TCP_IS_SOCKET(ltcp) && 2808 TCP_IS_SOCKET(tcp)); 2809 exclbind = lconnp->conn_exclbind || 2810 connp->conn_exclbind; 2811 2812 if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) || 2813 (connp->conn_mac_mode != CONN_MAC_DEFAULT) || 2814 (exclbind && (not_socket || 2815 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 2816 if (V6_OR_V4_INADDR_ANY( 2817 lconnp->conn_bound_addr_v6) || 2818 V6_OR_V4_INADDR_ANY(*laddr) || 2819 IN6_ARE_ADDR_EQUAL(laddr, 2820 &lconnp->conn_bound_addr_v6)) { 2821 break; 2822 } 2823 continue; 2824 } 2825 2826 /* 2827 * Check ipversion to allow IPv4 and IPv6 sockets to 2828 * have disjoint port number spaces, if *_EXCLBIND 2829 * is not set and only if the application binds to a 2830 * specific port. We use the same autoassigned port 2831 * number space for IPv4 and IPv6 sockets. 2832 */ 2833 if (connp->conn_ipversion != lconnp->conn_ipversion && 2834 bind_to_req_port_only) 2835 continue; 2836 2837 /* 2838 * Ideally, we should make sure that the source 2839 * address, remote address, and remote port in the 2840 * four tuple for this tcp-connection is unique. 2841 * However, trying to find out the local source 2842 * address would require too much code duplication 2843 * with IP, since IP needs needs to have that code 2844 * to support userland TCP implementations. 2845 */ 2846 if (quick_connect && 2847 (ltcp->tcp_state > TCPS_LISTEN) && 2848 ((connp->conn_fport != lconnp->conn_fport) || 2849 !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 2850 &lconnp->conn_faddr_v6))) 2851 continue; 2852 2853 if (!reuseaddr) { 2854 /* 2855 * No socket option SO_REUSEADDR. 2856 * If existing port is bound to 2857 * a non-wildcard IP address 2858 * and the requesting stream is 2859 * bound to a distinct 2860 * different IP addresses 2861 * (non-wildcard, also), keep 2862 * going. 2863 */ 2864 if (!V6_OR_V4_INADDR_ANY(*laddr) && 2865 !V6_OR_V4_INADDR_ANY( 2866 lconnp->conn_bound_addr_v6) && 2867 !IN6_ARE_ADDR_EQUAL(laddr, 2868 &lconnp->conn_bound_addr_v6)) 2869 continue; 2870 if (ltcp->tcp_state >= TCPS_BOUND) { 2871 /* 2872 * This port is being used and 2873 * its state is >= TCPS_BOUND, 2874 * so we can't bind to it. 2875 */ 2876 break; 2877 } 2878 } else { 2879 /* 2880 * socket option SO_REUSEADDR is set on the 2881 * binding tcp_t. 2882 * 2883 * If two streams are bound to 2884 * same IP address or both addr 2885 * and bound source are wildcards 2886 * (INADDR_ANY), we want to stop 2887 * searching. 2888 * We have found a match of IP source 2889 * address and source port, which is 2890 * refused regardless of the 2891 * SO_REUSEADDR setting, so we break. 2892 */ 2893 if (IN6_ARE_ADDR_EQUAL(laddr, 2894 &lconnp->conn_bound_addr_v6) && 2895 (ltcp->tcp_state == TCPS_LISTEN || 2896 ltcp->tcp_state == TCPS_BOUND)) 2897 break; 2898 } 2899 } 2900 if (ltcp != NULL) { 2901 /* The port number is busy */ 2902 mutex_exit(&tbf->tf_lock); 2903 } else { 2904 /* 2905 * This port is ours. Insert in fanout and mark as 2906 * bound to prevent others from getting the port 2907 * number. 2908 */ 2909 tcp->tcp_state = TCPS_BOUND; 2910 connp->conn_lport = htons(port); 2911 2912 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 2913 connp->conn_lport)] == tbf); 2914 tcp_bind_hash_insert(tbf, tcp, 1); 2915 2916 mutex_exit(&tbf->tf_lock); 2917 2918 /* 2919 * We don't want tcp_next_port_to_try to "inherit" 2920 * a port number supplied by the user in a bind. 2921 */ 2922 if (user_specified) 2923 return (port); 2924 2925 /* 2926 * This is the only place where tcp_next_port_to_try 2927 * is updated. After the update, it may or may not 2928 * be in the valid range. 2929 */ 2930 if (!connp->conn_anon_priv_bind) 2931 tcps->tcps_next_port_to_try = port + 1; 2932 return (port); 2933 } 2934 2935 if (connp->conn_anon_priv_bind) { 2936 port = tcp_get_next_priv_port(tcp); 2937 } else { 2938 if (count == 0 && user_specified) { 2939 /* 2940 * We may have to return an anonymous port. So 2941 * get one to start with. 2942 */ 2943 port = 2944 tcp_update_next_port( 2945 tcps->tcps_next_port_to_try, 2946 tcp, B_TRUE); 2947 user_specified = B_FALSE; 2948 } else { 2949 port = tcp_update_next_port(port + 1, tcp, 2950 B_FALSE); 2951 } 2952 } 2953 if (port == 0) 2954 break; 2955 2956 /* 2957 * Don't let this loop run forever in the case where 2958 * all of the anonymous ports are in use. 2959 */ 2960 } while (++count < loopmax); 2961 return (0); 2962 } 2963 2964 /* 2965 * tcp_clean_death / tcp_close_detached must not be called more than once 2966 * on a tcp. Thus every function that potentially calls tcp_clean_death 2967 * must check for the tcp state before calling tcp_clean_death. 2968 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 2969 * tcp_timer_handler, all check for the tcp state. 2970 */ 2971 /* ARGSUSED */ 2972 void 2973 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 2974 ip_recv_attr_t *dummy) 2975 { 2976 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 2977 2978 freemsg(mp); 2979 if (tcp->tcp_state > TCPS_BOUND) 2980 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 2981 ETIMEDOUT, 5); 2982 } 2983 2984 /* 2985 * We are dying for some reason. Try to do it gracefully. (May be called 2986 * as writer.) 2987 * 2988 * Return -1 if the structure was not cleaned up (if the cleanup had to be 2989 * done by a service procedure). 2990 * TBD - Should the return value distinguish between the tcp_t being 2991 * freed and it being reinitialized? 2992 */ 2993 static int 2994 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 2995 { 2996 mblk_t *mp; 2997 queue_t *q; 2998 conn_t *connp = tcp->tcp_connp; 2999 tcp_stack_t *tcps = tcp->tcp_tcps; 3000 3001 TCP_CLD_STAT(tag); 3002 3003 #if TCP_TAG_CLEAN_DEATH 3004 tcp->tcp_cleandeathtag = tag; 3005 #endif 3006 3007 if (tcp->tcp_fused) 3008 tcp_unfuse(tcp); 3009 3010 if (tcp->tcp_linger_tid != 0 && 3011 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3012 tcp_stop_lingering(tcp); 3013 } 3014 3015 ASSERT(tcp != NULL); 3016 ASSERT((connp->conn_family == AF_INET && 3017 connp->conn_ipversion == IPV4_VERSION) || 3018 (connp->conn_family == AF_INET6 && 3019 (connp->conn_ipversion == IPV4_VERSION || 3020 connp->conn_ipversion == IPV6_VERSION))); 3021 3022 if (TCP_IS_DETACHED(tcp)) { 3023 if (tcp->tcp_hard_binding) { 3024 /* 3025 * Its an eager that we are dealing with. We close the 3026 * eager but in case a conn_ind has already gone to the 3027 * listener, let tcp_accept_finish() send a discon_ind 3028 * to the listener and drop the last reference. If the 3029 * listener doesn't even know about the eager i.e. the 3030 * conn_ind hasn't gone up, blow away the eager and drop 3031 * the last reference as well. If the conn_ind has gone 3032 * up, state should be BOUND. tcp_accept_finish 3033 * will figure out that the connection has received a 3034 * RST and will send a DISCON_IND to the application. 3035 */ 3036 tcp_closei_local(tcp); 3037 if (!tcp->tcp_tconnind_started) { 3038 CONN_DEC_REF(connp); 3039 } else { 3040 tcp->tcp_state = TCPS_BOUND; 3041 } 3042 } else { 3043 tcp_close_detached(tcp); 3044 } 3045 return (0); 3046 } 3047 3048 TCP_STAT(tcps, tcp_clean_death_nondetached); 3049 3050 q = connp->conn_rq; 3051 3052 /* Trash all inbound data */ 3053 if (!IPCL_IS_NONSTR(connp)) { 3054 ASSERT(q != NULL); 3055 flushq(q, FLUSHALL); 3056 } 3057 3058 /* 3059 * If we are at least part way open and there is error 3060 * (err==0 implies no error) 3061 * notify our client by a T_DISCON_IND. 3062 */ 3063 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3064 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3065 !TCP_IS_SOCKET(tcp)) { 3066 /* 3067 * Send M_FLUSH according to TPI. Because sockets will 3068 * (and must) ignore FLUSHR we do that only for TPI 3069 * endpoints and sockets in STREAMS mode. 3070 */ 3071 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3072 } 3073 if (connp->conn_debug) { 3074 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3075 "tcp_clean_death: discon err %d", err); 3076 } 3077 if (IPCL_IS_NONSTR(connp)) { 3078 /* Direct socket, use upcall */ 3079 (*connp->conn_upcalls->su_disconnected)( 3080 connp->conn_upper_handle, tcp->tcp_connid, err); 3081 } else { 3082 mp = mi_tpi_discon_ind(NULL, err, 0); 3083 if (mp != NULL) { 3084 putnext(q, mp); 3085 } else { 3086 if (connp->conn_debug) { 3087 (void) strlog(TCP_MOD_ID, 0, 1, 3088 SL_ERROR|SL_TRACE, 3089 "tcp_clean_death, sending M_ERROR"); 3090 } 3091 (void) putnextctl1(q, M_ERROR, EPROTO); 3092 } 3093 } 3094 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3095 /* SYN_SENT or SYN_RCVD */ 3096 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3097 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3098 /* ESTABLISHED or CLOSE_WAIT */ 3099 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3100 } 3101 } 3102 3103 tcp_reinit(tcp); 3104 if (IPCL_IS_NONSTR(connp)) 3105 (void) tcp_do_unbind(connp); 3106 3107 return (-1); 3108 } 3109 3110 /* 3111 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3112 * to expire, stop the wait and finish the close. 3113 */ 3114 static void 3115 tcp_stop_lingering(tcp_t *tcp) 3116 { 3117 clock_t delta = 0; 3118 tcp_stack_t *tcps = tcp->tcp_tcps; 3119 conn_t *connp = tcp->tcp_connp; 3120 3121 tcp->tcp_linger_tid = 0; 3122 if (tcp->tcp_state > TCPS_LISTEN) { 3123 tcp_acceptor_hash_remove(tcp); 3124 mutex_enter(&tcp->tcp_non_sq_lock); 3125 if (tcp->tcp_flow_stopped) { 3126 tcp_clrqfull(tcp); 3127 } 3128 mutex_exit(&tcp->tcp_non_sq_lock); 3129 3130 if (tcp->tcp_timer_tid != 0) { 3131 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3132 tcp->tcp_timer_tid = 0; 3133 } 3134 /* 3135 * Need to cancel those timers which will not be used when 3136 * TCP is detached. This has to be done before the conn_wq 3137 * is cleared. 3138 */ 3139 tcp_timers_stop(tcp); 3140 3141 tcp->tcp_detached = B_TRUE; 3142 connp->conn_rq = NULL; 3143 connp->conn_wq = NULL; 3144 3145 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3146 tcp_time_wait_append(tcp); 3147 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3148 goto finish; 3149 } 3150 3151 /* 3152 * If delta is zero the timer event wasn't executed and was 3153 * successfully canceled. In this case we need to restart it 3154 * with the minimal delta possible. 3155 */ 3156 if (delta >= 0) { 3157 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3158 delta ? delta : 1); 3159 } 3160 } else { 3161 tcp_closei_local(tcp); 3162 CONN_DEC_REF(connp); 3163 } 3164 finish: 3165 /* Signal closing thread that it can complete close */ 3166 mutex_enter(&tcp->tcp_closelock); 3167 tcp->tcp_detached = B_TRUE; 3168 connp->conn_rq = NULL; 3169 connp->conn_wq = NULL; 3170 3171 tcp->tcp_closed = 1; 3172 cv_signal(&tcp->tcp_closecv); 3173 mutex_exit(&tcp->tcp_closelock); 3174 } 3175 3176 /* 3177 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3178 * expires. 3179 */ 3180 static void 3181 tcp_close_linger_timeout(void *arg) 3182 { 3183 conn_t *connp = (conn_t *)arg; 3184 tcp_t *tcp = connp->conn_tcp; 3185 3186 tcp->tcp_client_errno = ETIMEDOUT; 3187 tcp_stop_lingering(tcp); 3188 } 3189 3190 static void 3191 tcp_close_common(conn_t *connp, int flags) 3192 { 3193 tcp_t *tcp = connp->conn_tcp; 3194 mblk_t *mp = &tcp->tcp_closemp; 3195 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3196 mblk_t *bp; 3197 3198 ASSERT(connp->conn_ref >= 2); 3199 3200 /* 3201 * Mark the conn as closing. ipsq_pending_mp_add will not 3202 * add any mp to the pending mp list, after this conn has 3203 * started closing. 3204 */ 3205 mutex_enter(&connp->conn_lock); 3206 connp->conn_state_flags |= CONN_CLOSING; 3207 if (connp->conn_oper_pending_ill != NULL) 3208 conn_ioctl_cleanup_reqd = B_TRUE; 3209 CONN_INC_REF_LOCKED(connp); 3210 mutex_exit(&connp->conn_lock); 3211 tcp->tcp_closeflags = (uint8_t)flags; 3212 ASSERT(connp->conn_ref >= 3); 3213 3214 /* 3215 * tcp_closemp_used is used below without any protection of a lock 3216 * as we don't expect any one else to use it concurrently at this 3217 * point otherwise it would be a major defect. 3218 */ 3219 3220 if (mp->b_prev == NULL) 3221 tcp->tcp_closemp_used = B_TRUE; 3222 else 3223 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3224 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3225 3226 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3227 3228 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3229 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3230 3231 mutex_enter(&tcp->tcp_closelock); 3232 while (!tcp->tcp_closed) { 3233 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3234 /* 3235 * The cv_wait_sig() was interrupted. We now do the 3236 * following: 3237 * 3238 * 1) If the endpoint was lingering, we allow this 3239 * to be interrupted by cancelling the linger timeout 3240 * and closing normally. 3241 * 3242 * 2) Revert to calling cv_wait() 3243 * 3244 * We revert to using cv_wait() to avoid an 3245 * infinite loop which can occur if the calling 3246 * thread is higher priority than the squeue worker 3247 * thread and is bound to the same cpu. 3248 */ 3249 if (connp->conn_linger && connp->conn_lingertime > 0) { 3250 mutex_exit(&tcp->tcp_closelock); 3251 /* Entering squeue, bump ref count. */ 3252 CONN_INC_REF(connp); 3253 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3254 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3255 tcp_linger_interrupted, connp, NULL, 3256 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3257 mutex_enter(&tcp->tcp_closelock); 3258 } 3259 break; 3260 } 3261 } 3262 while (!tcp->tcp_closed) 3263 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3264 mutex_exit(&tcp->tcp_closelock); 3265 3266 /* 3267 * In the case of listener streams that have eagers in the q or q0 3268 * we wait for the eagers to drop their reference to us. conn_rq and 3269 * conn_wq of the eagers point to our queues. By waiting for the 3270 * refcnt to drop to 1, we are sure that the eagers have cleaned 3271 * up their queue pointers and also dropped their references to us. 3272 */ 3273 if (tcp->tcp_wait_for_eagers) { 3274 mutex_enter(&connp->conn_lock); 3275 while (connp->conn_ref != 1) { 3276 cv_wait(&connp->conn_cv, &connp->conn_lock); 3277 } 3278 mutex_exit(&connp->conn_lock); 3279 } 3280 /* 3281 * ioctl cleanup. The mp is queued in the ipx_pending_mp. 3282 */ 3283 if (conn_ioctl_cleanup_reqd) 3284 conn_ioctl_cleanup(connp); 3285 3286 connp->conn_cpid = NOPID; 3287 } 3288 3289 static int 3290 tcp_tpi_close(queue_t *q, int flags) 3291 { 3292 conn_t *connp; 3293 3294 ASSERT(WR(q)->q_next == NULL); 3295 3296 if (flags & SO_FALLBACK) { 3297 /* 3298 * stream is being closed while in fallback 3299 * simply free the resources that were allocated 3300 */ 3301 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3302 qprocsoff(q); 3303 goto done; 3304 } 3305 3306 connp = Q_TO_CONN(q); 3307 /* 3308 * We are being closed as /dev/tcp or /dev/tcp6. 3309 */ 3310 tcp_close_common(connp, flags); 3311 3312 qprocsoff(q); 3313 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3314 3315 /* 3316 * Drop IP's reference on the conn. This is the last reference 3317 * on the connp if the state was less than established. If the 3318 * connection has gone into timewait state, then we will have 3319 * one ref for the TCP and one more ref (total of two) for the 3320 * classifier connected hash list (a timewait connections stays 3321 * in connected hash till closed). 3322 * 3323 * We can't assert the references because there might be other 3324 * transient reference places because of some walkers or queued 3325 * packets in squeue for the timewait state. 3326 */ 3327 CONN_DEC_REF(connp); 3328 done: 3329 q->q_ptr = WR(q)->q_ptr = NULL; 3330 return (0); 3331 } 3332 3333 static int 3334 tcp_tpi_close_accept(queue_t *q) 3335 { 3336 vmem_t *minor_arena; 3337 dev_t conn_dev; 3338 3339 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3340 3341 /* 3342 * We had opened an acceptor STREAM for sockfs which is 3343 * now being closed due to some error. 3344 */ 3345 qprocsoff(q); 3346 3347 minor_arena = (vmem_t *)WR(q)->q_ptr; 3348 conn_dev = (dev_t)RD(q)->q_ptr; 3349 ASSERT(minor_arena != NULL); 3350 ASSERT(conn_dev != 0); 3351 inet_minor_free(minor_arena, conn_dev); 3352 q->q_ptr = WR(q)->q_ptr = NULL; 3353 return (0); 3354 } 3355 3356 /* 3357 * Called by tcp_close() routine via squeue when lingering is 3358 * interrupted by a signal. 3359 */ 3360 3361 /* ARGSUSED */ 3362 static void 3363 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3364 { 3365 conn_t *connp = (conn_t *)arg; 3366 tcp_t *tcp = connp->conn_tcp; 3367 3368 freeb(mp); 3369 if (tcp->tcp_linger_tid != 0 && 3370 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3371 tcp_stop_lingering(tcp); 3372 tcp->tcp_client_errno = EINTR; 3373 } 3374 } 3375 3376 /* 3377 * Called by streams close routine via squeues when our client blows off her 3378 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3379 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3380 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3381 * acked. 3382 * 3383 * NOTE: tcp_close potentially returns error when lingering. 3384 * However, the stream head currently does not pass these errors 3385 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3386 * errors to the application (from tsleep()) and not errors 3387 * like ECONNRESET caused by receiving a reset packet. 3388 */ 3389 3390 /* ARGSUSED */ 3391 static void 3392 tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 3393 { 3394 char *msg; 3395 conn_t *connp = (conn_t *)arg; 3396 tcp_t *tcp = connp->conn_tcp; 3397 clock_t delta = 0; 3398 tcp_stack_t *tcps = tcp->tcp_tcps; 3399 3400 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3401 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3402 3403 mutex_enter(&tcp->tcp_eager_lock); 3404 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3405 /* Cleanup for listener */ 3406 tcp_eager_cleanup(tcp, 0); 3407 tcp->tcp_wait_for_eagers = 1; 3408 } 3409 mutex_exit(&tcp->tcp_eager_lock); 3410 3411 tcp->tcp_lso = B_FALSE; 3412 3413 msg = NULL; 3414 switch (tcp->tcp_state) { 3415 case TCPS_CLOSED: 3416 case TCPS_IDLE: 3417 case TCPS_BOUND: 3418 case TCPS_LISTEN: 3419 break; 3420 case TCPS_SYN_SENT: 3421 msg = "tcp_close, during connect"; 3422 break; 3423 case TCPS_SYN_RCVD: 3424 /* 3425 * Close during the connect 3-way handshake 3426 * but here there may or may not be pending data 3427 * already on queue. Process almost same as in 3428 * the ESTABLISHED state. 3429 */ 3430 /* FALLTHRU */ 3431 default: 3432 if (tcp->tcp_fused) 3433 tcp_unfuse(tcp); 3434 3435 /* 3436 * If SO_LINGER has set a zero linger time, abort the 3437 * connection with a reset. 3438 */ 3439 if (connp->conn_linger && connp->conn_lingertime == 0) { 3440 msg = "tcp_close, zero lingertime"; 3441 break; 3442 } 3443 3444 /* 3445 * Abort connection if there is unread data queued. 3446 */ 3447 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3448 msg = "tcp_close, unread data"; 3449 break; 3450 } 3451 /* 3452 * We have done a qwait() above which could have possibly 3453 * drained more messages in turn causing transition to a 3454 * different state. Check whether we have to do the rest 3455 * of the processing or not. 3456 */ 3457 if (tcp->tcp_state <= TCPS_LISTEN) 3458 break; 3459 3460 /* 3461 * Transmit the FIN before detaching the tcp_t. 3462 * After tcp_detach returns this queue/perimeter 3463 * no longer owns the tcp_t thus others can modify it. 3464 */ 3465 (void) tcp_xmit_end(tcp); 3466 3467 /* 3468 * If lingering on close then wait until the fin is acked, 3469 * the SO_LINGER time passes, or a reset is sent/received. 3470 */ 3471 if (connp->conn_linger && connp->conn_lingertime > 0 && 3472 !(tcp->tcp_fin_acked) && 3473 tcp->tcp_state >= TCPS_ESTABLISHED) { 3474 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3475 tcp->tcp_client_errno = EWOULDBLOCK; 3476 } else if (tcp->tcp_client_errno == 0) { 3477 3478 ASSERT(tcp->tcp_linger_tid == 0); 3479 3480 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3481 tcp_close_linger_timeout, 3482 connp->conn_lingertime * hz); 3483 3484 /* tcp_close_linger_timeout will finish close */ 3485 if (tcp->tcp_linger_tid == 0) 3486 tcp->tcp_client_errno = ENOSR; 3487 else 3488 return; 3489 } 3490 3491 /* 3492 * Check if we need to detach or just close 3493 * the instance. 3494 */ 3495 if (tcp->tcp_state <= TCPS_LISTEN) 3496 break; 3497 } 3498 3499 /* 3500 * Make sure that no other thread will access the conn_rq of 3501 * this instance (through lookups etc.) as conn_rq will go 3502 * away shortly. 3503 */ 3504 tcp_acceptor_hash_remove(tcp); 3505 3506 mutex_enter(&tcp->tcp_non_sq_lock); 3507 if (tcp->tcp_flow_stopped) { 3508 tcp_clrqfull(tcp); 3509 } 3510 mutex_exit(&tcp->tcp_non_sq_lock); 3511 3512 if (tcp->tcp_timer_tid != 0) { 3513 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3514 tcp->tcp_timer_tid = 0; 3515 } 3516 /* 3517 * Need to cancel those timers which will not be used when 3518 * TCP is detached. This has to be done before the conn_wq 3519 * is set to NULL. 3520 */ 3521 tcp_timers_stop(tcp); 3522 3523 tcp->tcp_detached = B_TRUE; 3524 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3525 tcp_time_wait_append(tcp); 3526 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3527 ASSERT(connp->conn_ref >= 3); 3528 goto finish; 3529 } 3530 3531 /* 3532 * If delta is zero the timer event wasn't executed and was 3533 * successfully canceled. In this case we need to restart it 3534 * with the minimal delta possible. 3535 */ 3536 if (delta >= 0) 3537 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3538 delta ? delta : 1); 3539 3540 ASSERT(connp->conn_ref >= 3); 3541 goto finish; 3542 } 3543 3544 /* Detach did not complete. Still need to remove q from stream. */ 3545 if (msg) { 3546 if (tcp->tcp_state == TCPS_ESTABLISHED || 3547 tcp->tcp_state == TCPS_CLOSE_WAIT) 3548 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3549 if (tcp->tcp_state == TCPS_SYN_SENT || 3550 tcp->tcp_state == TCPS_SYN_RCVD) 3551 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3552 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3553 } 3554 3555 tcp_closei_local(tcp); 3556 CONN_DEC_REF(connp); 3557 ASSERT(connp->conn_ref >= 2); 3558 3559 finish: 3560 mutex_enter(&tcp->tcp_closelock); 3561 /* 3562 * Don't change the queues in the case of a listener that has 3563 * eagers in its q or q0. It could surprise the eagers. 3564 * Instead wait for the eagers outside the squeue. 3565 */ 3566 if (!tcp->tcp_wait_for_eagers) { 3567 tcp->tcp_detached = B_TRUE; 3568 connp->conn_rq = NULL; 3569 connp->conn_wq = NULL; 3570 } 3571 3572 /* Signal tcp_close() to finish closing. */ 3573 tcp->tcp_closed = 1; 3574 cv_signal(&tcp->tcp_closecv); 3575 mutex_exit(&tcp->tcp_closelock); 3576 } 3577 3578 /* 3579 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 3580 * Some stream heads get upset if they see these later on as anything but NULL. 3581 */ 3582 static void 3583 tcp_close_mpp(mblk_t **mpp) 3584 { 3585 mblk_t *mp; 3586 3587 if ((mp = *mpp) != NULL) { 3588 do { 3589 mp->b_next = NULL; 3590 mp->b_prev = NULL; 3591 } while ((mp = mp->b_cont) != NULL); 3592 3593 mp = *mpp; 3594 *mpp = NULL; 3595 freemsg(mp); 3596 } 3597 } 3598 3599 /* Do detached close. */ 3600 static void 3601 tcp_close_detached(tcp_t *tcp) 3602 { 3603 if (tcp->tcp_fused) 3604 tcp_unfuse(tcp); 3605 3606 /* 3607 * Clustering code serializes TCP disconnect callbacks and 3608 * cluster tcp list walks by blocking a TCP disconnect callback 3609 * if a cluster tcp list walk is in progress. This ensures 3610 * accurate accounting of TCPs in the cluster code even though 3611 * the TCP list walk itself is not atomic. 3612 */ 3613 tcp_closei_local(tcp); 3614 CONN_DEC_REF(tcp->tcp_connp); 3615 } 3616 3617 /* 3618 * Stop all TCP timers, and free the timer mblks if requested. 3619 */ 3620 void 3621 tcp_timers_stop(tcp_t *tcp) 3622 { 3623 if (tcp->tcp_timer_tid != 0) { 3624 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3625 tcp->tcp_timer_tid = 0; 3626 } 3627 if (tcp->tcp_ka_tid != 0) { 3628 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 3629 tcp->tcp_ka_tid = 0; 3630 } 3631 if (tcp->tcp_ack_tid != 0) { 3632 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 3633 tcp->tcp_ack_tid = 0; 3634 } 3635 if (tcp->tcp_push_tid != 0) { 3636 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 3637 tcp->tcp_push_tid = 0; 3638 } 3639 } 3640 3641 /* 3642 * The tcp_t is going away. Remove it from all lists and set it 3643 * to TCPS_CLOSED. The freeing up of memory is deferred until 3644 * tcp_inactive. This is needed since a thread in tcp_rput might have 3645 * done a CONN_INC_REF on this structure before it was removed from the 3646 * hashes. 3647 */ 3648 static void 3649 tcp_closei_local(tcp_t *tcp) 3650 { 3651 conn_t *connp = tcp->tcp_connp; 3652 tcp_stack_t *tcps = tcp->tcp_tcps; 3653 3654 if (!TCP_IS_SOCKET(tcp)) 3655 tcp_acceptor_hash_remove(tcp); 3656 3657 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 3658 tcp->tcp_ibsegs = 0; 3659 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 3660 tcp->tcp_obsegs = 0; 3661 3662 /* 3663 * If we are an eager connection hanging off a listener that 3664 * hasn't formally accepted the connection yet, get off his 3665 * list and blow off any data that we have accumulated. 3666 */ 3667 if (tcp->tcp_listener != NULL) { 3668 tcp_t *listener = tcp->tcp_listener; 3669 mutex_enter(&listener->tcp_eager_lock); 3670 /* 3671 * tcp_tconnind_started == B_TRUE means that the 3672 * conn_ind has already gone to listener. At 3673 * this point, eager will be closed but we 3674 * leave it in listeners eager list so that 3675 * if listener decides to close without doing 3676 * accept, we can clean this up. In tcp_tli_accept 3677 * we take care of the case of accept on closed 3678 * eager. 3679 */ 3680 if (!tcp->tcp_tconnind_started) { 3681 tcp_eager_unlink(tcp); 3682 mutex_exit(&listener->tcp_eager_lock); 3683 /* 3684 * We don't want to have any pointers to the 3685 * listener queue, after we have released our 3686 * reference on the listener 3687 */ 3688 ASSERT(tcp->tcp_detached); 3689 connp->conn_rq = NULL; 3690 connp->conn_wq = NULL; 3691 CONN_DEC_REF(listener->tcp_connp); 3692 } else { 3693 mutex_exit(&listener->tcp_eager_lock); 3694 } 3695 } 3696 3697 /* Stop all the timers */ 3698 tcp_timers_stop(tcp); 3699 3700 if (tcp->tcp_state == TCPS_LISTEN) { 3701 if (tcp->tcp_ip_addr_cache) { 3702 kmem_free((void *)tcp->tcp_ip_addr_cache, 3703 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 3704 tcp->tcp_ip_addr_cache = NULL; 3705 } 3706 } 3707 mutex_enter(&tcp->tcp_non_sq_lock); 3708 if (tcp->tcp_flow_stopped) 3709 tcp_clrqfull(tcp); 3710 mutex_exit(&tcp->tcp_non_sq_lock); 3711 3712 tcp_bind_hash_remove(tcp); 3713 /* 3714 * If the tcp_time_wait_collector (which runs outside the squeue) 3715 * is trying to remove this tcp from the time wait list, we will 3716 * block in tcp_time_wait_remove while trying to acquire the 3717 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 3718 * requires the ipcl_hash_remove to be ordered after the 3719 * tcp_time_wait_remove for the refcnt checks to work correctly. 3720 */ 3721 if (tcp->tcp_state == TCPS_TIME_WAIT) 3722 (void) tcp_time_wait_remove(tcp, NULL); 3723 CL_INET_DISCONNECT(connp); 3724 ipcl_hash_remove(connp); 3725 ixa_cleanup(connp->conn_ixa); 3726 3727 /* 3728 * Mark the conn as CONDEMNED 3729 */ 3730 mutex_enter(&connp->conn_lock); 3731 connp->conn_state_flags |= CONN_CONDEMNED; 3732 mutex_exit(&connp->conn_lock); 3733 3734 /* Need to cleanup any pending ioctls */ 3735 ASSERT(tcp->tcp_time_wait_next == NULL); 3736 ASSERT(tcp->tcp_time_wait_prev == NULL); 3737 ASSERT(tcp->tcp_time_wait_expire == 0); 3738 tcp->tcp_state = TCPS_CLOSED; 3739 3740 /* Release any SSL context */ 3741 if (tcp->tcp_kssl_ent != NULL) { 3742 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 3743 tcp->tcp_kssl_ent = NULL; 3744 } 3745 if (tcp->tcp_kssl_ctx != NULL) { 3746 kssl_release_ctx(tcp->tcp_kssl_ctx); 3747 tcp->tcp_kssl_ctx = NULL; 3748 } 3749 tcp->tcp_kssl_pending = B_FALSE; 3750 3751 tcp_ipsec_cleanup(tcp); 3752 } 3753 3754 /* 3755 * tcp is dying (called from ipcl_conn_destroy and error cases). 3756 * Free the tcp_t in either case. 3757 */ 3758 void 3759 tcp_free(tcp_t *tcp) 3760 { 3761 mblk_t *mp; 3762 conn_t *connp = tcp->tcp_connp; 3763 3764 ASSERT(tcp != NULL); 3765 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 3766 3767 connp->conn_rq = NULL; 3768 connp->conn_wq = NULL; 3769 3770 tcp_close_mpp(&tcp->tcp_xmit_head); 3771 tcp_close_mpp(&tcp->tcp_reass_head); 3772 if (tcp->tcp_rcv_list != NULL) { 3773 /* Free b_next chain */ 3774 tcp_close_mpp(&tcp->tcp_rcv_list); 3775 } 3776 if ((mp = tcp->tcp_urp_mp) != NULL) { 3777 freemsg(mp); 3778 } 3779 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 3780 freemsg(mp); 3781 } 3782 3783 if (tcp->tcp_fused_sigurg_mp != NULL) { 3784 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3785 freeb(tcp->tcp_fused_sigurg_mp); 3786 tcp->tcp_fused_sigurg_mp = NULL; 3787 } 3788 3789 if (tcp->tcp_ordrel_mp != NULL) { 3790 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 3791 freeb(tcp->tcp_ordrel_mp); 3792 tcp->tcp_ordrel_mp = NULL; 3793 } 3794 3795 if (tcp->tcp_sack_info != NULL) { 3796 if (tcp->tcp_notsack_list != NULL) { 3797 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 3798 tcp); 3799 } 3800 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 3801 } 3802 3803 if (tcp->tcp_hopopts != NULL) { 3804 mi_free(tcp->tcp_hopopts); 3805 tcp->tcp_hopopts = NULL; 3806 tcp->tcp_hopoptslen = 0; 3807 } 3808 ASSERT(tcp->tcp_hopoptslen == 0); 3809 if (tcp->tcp_dstopts != NULL) { 3810 mi_free(tcp->tcp_dstopts); 3811 tcp->tcp_dstopts = NULL; 3812 tcp->tcp_dstoptslen = 0; 3813 } 3814 ASSERT(tcp->tcp_dstoptslen == 0); 3815 if (tcp->tcp_rthdrdstopts != NULL) { 3816 mi_free(tcp->tcp_rthdrdstopts); 3817 tcp->tcp_rthdrdstopts = NULL; 3818 tcp->tcp_rthdrdstoptslen = 0; 3819 } 3820 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 3821 if (tcp->tcp_rthdr != NULL) { 3822 mi_free(tcp->tcp_rthdr); 3823 tcp->tcp_rthdr = NULL; 3824 tcp->tcp_rthdrlen = 0; 3825 } 3826 ASSERT(tcp->tcp_rthdrlen == 0); 3827 3828 /* 3829 * Following is really a blowing away a union. 3830 * It happens to have exactly two members of identical size 3831 * the following code is enough. 3832 */ 3833 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 3834 } 3835 3836 3837 /* 3838 * Put a connection confirmation message upstream built from the 3839 * address/flowid information with the conn and iph. Report our success or 3840 * failure. 3841 */ 3842 static boolean_t 3843 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp, 3844 mblk_t **defermp, ip_recv_attr_t *ira) 3845 { 3846 sin_t sin; 3847 sin6_t sin6; 3848 mblk_t *mp; 3849 char *optp = NULL; 3850 int optlen = 0; 3851 conn_t *connp = tcp->tcp_connp; 3852 3853 if (defermp != NULL) 3854 *defermp = NULL; 3855 3856 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 3857 /* 3858 * Return in T_CONN_CON results of option negotiation through 3859 * the T_CONN_REQ. Note: If there is an real end-to-end option 3860 * negotiation, then what is received from remote end needs 3861 * to be taken into account but there is no such thing (yet?) 3862 * in our TCP/IP. 3863 * Note: We do not use mi_offset_param() here as 3864 * tcp_opts_conn_req contents do not directly come from 3865 * an application and are either generated in kernel or 3866 * from user input that was already verified. 3867 */ 3868 mp = tcp->tcp_conn.tcp_opts_conn_req; 3869 optp = (char *)(mp->b_rptr + 3870 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 3871 optlen = (int) 3872 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 3873 } 3874 3875 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 3876 3877 /* packet is IPv4 */ 3878 if (connp->conn_family == AF_INET) { 3879 sin = sin_null; 3880 sin.sin_addr.s_addr = connp->conn_faddr_v4; 3881 sin.sin_port = connp->conn_fport; 3882 sin.sin_family = AF_INET; 3883 mp = mi_tpi_conn_con(NULL, (char *)&sin, 3884 (int)sizeof (sin_t), optp, optlen); 3885 } else { 3886 sin6 = sin6_null; 3887 sin6.sin6_addr = connp->conn_faddr_v6; 3888 sin6.sin6_port = connp->conn_fport; 3889 sin6.sin6_family = AF_INET6; 3890 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 3891 (int)sizeof (sin6_t), optp, optlen); 3892 3893 } 3894 } else { 3895 ip6_t *ip6h = (ip6_t *)iphdr; 3896 3897 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 3898 ASSERT(connp->conn_family == AF_INET6); 3899 sin6 = sin6_null; 3900 sin6.sin6_addr = connp->conn_faddr_v6; 3901 sin6.sin6_port = connp->conn_fport; 3902 sin6.sin6_family = AF_INET6; 3903 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 3904 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 3905 (int)sizeof (sin6_t), optp, optlen); 3906 } 3907 3908 if (!mp) 3909 return (B_FALSE); 3910 3911 mblk_copycred(mp, idmp); 3912 3913 if (defermp == NULL) { 3914 conn_t *connp = tcp->tcp_connp; 3915 if (IPCL_IS_NONSTR(connp)) { 3916 (*connp->conn_upcalls->su_connected) 3917 (connp->conn_upper_handle, tcp->tcp_connid, 3918 ira->ira_cred, ira->ira_cpid); 3919 freemsg(mp); 3920 } else { 3921 if (ira->ira_cred != NULL) { 3922 /* So that getpeerucred works for TPI sockfs */ 3923 mblk_setcred(mp, ira->ira_cred, ira->ira_cpid); 3924 } 3925 putnext(connp->conn_rq, mp); 3926 } 3927 } else { 3928 *defermp = mp; 3929 } 3930 3931 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 3932 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 3933 return (B_TRUE); 3934 } 3935 3936 /* 3937 * Defense for the SYN attack - 3938 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 3939 * one from the list of droppable eagers. This list is a subset of q0. 3940 * see comments before the definition of MAKE_DROPPABLE(). 3941 * 2. Don't drop a SYN request before its first timeout. This gives every 3942 * request at least til the first timeout to complete its 3-way handshake. 3943 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 3944 * requests currently on the queue that has timed out. This will be used 3945 * as an indicator of whether an attack is under way, so that appropriate 3946 * actions can be taken. (It's incremented in tcp_timer() and decremented 3947 * either when eager goes into ESTABLISHED, or gets freed up.) 3948 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 3949 * # of timeout drops back to <= q0len/32 => SYN alert off 3950 */ 3951 static boolean_t 3952 tcp_drop_q0(tcp_t *tcp) 3953 { 3954 tcp_t *eager; 3955 mblk_t *mp; 3956 tcp_stack_t *tcps = tcp->tcp_tcps; 3957 3958 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 3959 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 3960 3961 /* Pick oldest eager from the list of droppable eagers */ 3962 eager = tcp->tcp_eager_prev_drop_q0; 3963 3964 /* If list is empty. return B_FALSE */ 3965 if (eager == tcp) { 3966 return (B_FALSE); 3967 } 3968 3969 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 3970 if ((mp = allocb(0, BPRI_HI)) == NULL) 3971 return (B_FALSE); 3972 3973 /* 3974 * Take this eager out from the list of droppable eagers since we are 3975 * going to drop it. 3976 */ 3977 MAKE_UNDROPPABLE(eager); 3978 3979 if (tcp->tcp_connp->conn_debug) { 3980 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 3981 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 3982 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 3983 tcp->tcp_conn_req_cnt_q0, 3984 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 3985 } 3986 3987 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 3988 3989 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 3990 CONN_INC_REF(eager->tcp_connp); 3991 3992 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 3993 tcp_clean_death_wrapper, eager->tcp_connp, NULL, 3994 SQ_FILL, SQTAG_TCP_DROP_Q0); 3995 3996 return (B_TRUE); 3997 } 3998 3999 /* 4000 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 4001 */ 4002 static mblk_t * 4003 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4004 ip_recv_attr_t *ira) 4005 { 4006 tcp_t *ltcp = lconnp->conn_tcp; 4007 tcp_t *tcp = connp->conn_tcp; 4008 mblk_t *tpi_mp; 4009 ipha_t *ipha; 4010 ip6_t *ip6h; 4011 sin6_t sin6; 4012 uint_t ifindex = ira->ira_ruifindex; 4013 tcp_stack_t *tcps = tcp->tcp_tcps; 4014 4015 if (ira->ira_flags & IRAF_IS_IPV4) { 4016 ipha = (ipha_t *)mp->b_rptr; 4017 4018 connp->conn_ipversion = IPV4_VERSION; 4019 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4020 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4021 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4022 4023 sin6 = sin6_null; 4024 sin6.sin6_addr = connp->conn_faddr_v6; 4025 sin6.sin6_port = connp->conn_fport; 4026 sin6.sin6_family = AF_INET6; 4027 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4028 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4029 4030 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4031 sin6_t sin6d; 4032 4033 sin6d = sin6_null; 4034 sin6d.sin6_addr = connp->conn_laddr_v6; 4035 sin6d.sin6_port = connp->conn_lport; 4036 sin6d.sin6_family = AF_INET; 4037 tpi_mp = mi_tpi_extconn_ind(NULL, 4038 (char *)&sin6d, sizeof (sin6_t), 4039 (char *)&tcp, 4040 (t_scalar_t)sizeof (intptr_t), 4041 (char *)&sin6d, sizeof (sin6_t), 4042 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4043 } else { 4044 tpi_mp = mi_tpi_conn_ind(NULL, 4045 (char *)&sin6, sizeof (sin6_t), 4046 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4047 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4048 } 4049 } else { 4050 ip6h = (ip6_t *)mp->b_rptr; 4051 4052 connp->conn_ipversion = IPV6_VERSION; 4053 connp->conn_laddr_v6 = ip6h->ip6_dst; 4054 connp->conn_faddr_v6 = ip6h->ip6_src; 4055 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4056 4057 sin6 = sin6_null; 4058 sin6.sin6_addr = connp->conn_faddr_v6; 4059 sin6.sin6_port = connp->conn_fport; 4060 sin6.sin6_family = AF_INET6; 4061 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4062 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, 4063 IPCL_ZONEID(lconnp), tcps->tcps_netstack); 4064 4065 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4066 /* Pass up the scope_id of remote addr */ 4067 sin6.sin6_scope_id = ifindex; 4068 } else { 4069 sin6.sin6_scope_id = 0; 4070 } 4071 if (connp->conn_recv_ancillary.crb_recvdstaddr) { 4072 sin6_t sin6d; 4073 4074 sin6d = sin6_null; 4075 sin6.sin6_addr = connp->conn_laddr_v6; 4076 sin6d.sin6_port = connp->conn_lport; 4077 sin6d.sin6_family = AF_INET6; 4078 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) 4079 sin6d.sin6_scope_id = ifindex; 4080 4081 tpi_mp = mi_tpi_extconn_ind(NULL, 4082 (char *)&sin6d, sizeof (sin6_t), 4083 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4084 (char *)&sin6d, sizeof (sin6_t), 4085 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4086 } else { 4087 tpi_mp = mi_tpi_conn_ind(NULL, 4088 (char *)&sin6, sizeof (sin6_t), 4089 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4090 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4091 } 4092 } 4093 4094 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4095 return (tpi_mp); 4096 } 4097 4098 /* Handle a SYN on an AF_INET socket */ 4099 mblk_t * 4100 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4101 ip_recv_attr_t *ira) 4102 { 4103 tcp_t *ltcp = lconnp->conn_tcp; 4104 tcp_t *tcp = connp->conn_tcp; 4105 sin_t sin; 4106 mblk_t *tpi_mp = NULL; 4107 tcp_stack_t *tcps = tcp->tcp_tcps; 4108 ipha_t *ipha; 4109 4110 ASSERT(ira->ira_flags & IRAF_IS_IPV4); 4111 ipha = (ipha_t *)mp->b_rptr; 4112 4113 connp->conn_ipversion = IPV4_VERSION; 4114 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); 4115 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); 4116 connp->conn_saddr_v6 = connp->conn_laddr_v6; 4117 4118 sin = sin_null; 4119 sin.sin_addr.s_addr = connp->conn_faddr_v4; 4120 sin.sin_port = connp->conn_fport; 4121 sin.sin_family = AF_INET; 4122 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { 4123 sin_t sind; 4124 4125 sind = sin_null; 4126 sind.sin_addr.s_addr = connp->conn_laddr_v4; 4127 sind.sin_port = connp->conn_lport; 4128 sind.sin_family = AF_INET; 4129 tpi_mp = mi_tpi_extconn_ind(NULL, 4130 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4131 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4132 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4133 } else { 4134 tpi_mp = mi_tpi_conn_ind(NULL, 4135 (char *)&sin, sizeof (sin_t), 4136 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4137 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4138 } 4139 4140 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4141 return (tpi_mp); 4142 } 4143 4144 /* 4145 * tcp_get_conn/tcp_free_conn 4146 * 4147 * tcp_get_conn is used to get a clean tcp connection structure. 4148 * It tries to reuse the connections put on the freelist by the 4149 * time_wait_collector failing which it goes to kmem_cache. This 4150 * way has two benefits compared to just allocating from and 4151 * freeing to kmem_cache. 4152 * 1) The time_wait_collector can free (which includes the cleanup) 4153 * outside the squeue. So when the interrupt comes, we have a clean 4154 * connection sitting in the freelist. Obviously, this buys us 4155 * performance. 4156 * 4157 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 4158 * has multiple disadvantages - tying up the squeue during alloc. 4159 * But allocating the conn/tcp in IP land is also not the best since 4160 * we can't check the 'q' and 'q0' which are protected by squeue and 4161 * blindly allocate memory which might have to be freed here if we are 4162 * not allowed to accept the connection. By using the freelist and 4163 * putting the conn/tcp back in freelist, we don't pay a penalty for 4164 * allocating memory without checking 'q/q0' and freeing it if we can't 4165 * accept the connection. 4166 * 4167 * Care should be taken to put the conn back in the same squeue's freelist 4168 * from which it was allocated. Best results are obtained if conn is 4169 * allocated from listener's squeue and freed to the same. Time wait 4170 * collector will free up the freelist is the connection ends up sitting 4171 * there for too long. 4172 */ 4173 void * 4174 tcp_get_conn(void *arg, tcp_stack_t *tcps) 4175 { 4176 tcp_t *tcp = NULL; 4177 conn_t *connp = NULL; 4178 squeue_t *sqp = (squeue_t *)arg; 4179 tcp_squeue_priv_t *tcp_time_wait; 4180 netstack_t *ns; 4181 mblk_t *tcp_rsrv_mp = NULL; 4182 4183 tcp_time_wait = 4184 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 4185 4186 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 4187 tcp = tcp_time_wait->tcp_free_list; 4188 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 4189 if (tcp != NULL) { 4190 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 4191 tcp_time_wait->tcp_free_list_cnt--; 4192 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4193 tcp->tcp_time_wait_next = NULL; 4194 connp = tcp->tcp_connp; 4195 connp->conn_flags |= IPCL_REUSED; 4196 4197 ASSERT(tcp->tcp_tcps == NULL); 4198 ASSERT(connp->conn_netstack == NULL); 4199 ASSERT(tcp->tcp_rsrv_mp != NULL); 4200 ns = tcps->tcps_netstack; 4201 netstack_hold(ns); 4202 connp->conn_netstack = ns; 4203 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 4204 tcp->tcp_tcps = tcps; 4205 ipcl_globalhash_insert(connp); 4206 4207 connp->conn_ixa->ixa_notify_cookie = tcp; 4208 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 4209 connp->conn_recv = tcp_input_data; 4210 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 4211 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 4212 return ((void *)connp); 4213 } 4214 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4215 /* 4216 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 4217 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 4218 */ 4219 tcp_rsrv_mp = allocb(0, BPRI_HI); 4220 if (tcp_rsrv_mp == NULL) 4221 return (NULL); 4222 4223 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 4224 tcps->tcps_netstack)) == NULL) { 4225 freeb(tcp_rsrv_mp); 4226 return (NULL); 4227 } 4228 4229 tcp = connp->conn_tcp; 4230 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 4231 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 4232 4233 tcp->tcp_tcps = tcps; 4234 4235 connp->conn_recv = tcp_input_data; 4236 connp->conn_recvicmp = tcp_icmp_input; 4237 connp->conn_verifyicmp = tcp_verifyicmp; 4238 4239 /* 4240 * Register tcp_notify to listen to capability changes detected by IP. 4241 * This upcall is made in the context of the call to conn_ip_output 4242 * thus it is inside the squeue. 4243 */ 4244 connp->conn_ixa->ixa_notify = tcp_notify; 4245 connp->conn_ixa->ixa_notify_cookie = tcp; 4246 4247 return ((void *)connp); 4248 } 4249 4250 /* BEGIN CSTYLED */ 4251 /* 4252 * 4253 * The sockfs ACCEPT path: 4254 * ======================= 4255 * 4256 * The eager is now established in its own perimeter as soon as SYN is 4257 * received in tcp_input_listener(). When sockfs receives conn_ind, it 4258 * completes the accept processing on the acceptor STREAM. The sending 4259 * of conn_ind part is common for both sockfs listener and a TLI/XTI 4260 * listener but a TLI/XTI listener completes the accept processing 4261 * on the listener perimeter. 4262 * 4263 * Common control flow for 3 way handshake: 4264 * ---------------------------------------- 4265 * 4266 * incoming SYN (listener perimeter) -> tcp_input_listener() 4267 * 4268 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() 4269 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 4270 * 4271 * Sockfs ACCEPT Path: 4272 * ------------------- 4273 * 4274 * open acceptor stream (tcp_open allocates tcp_tli_accept() 4275 * as STREAM entry point) 4276 * 4277 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() 4278 * 4279 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager 4280 * association (we are not behind eager's squeue but sockfs is protecting us 4281 * and no one knows about this stream yet. The STREAMS entry point q->q_info 4282 * is changed to point at tcp_wput(). 4283 * 4284 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to 4285 * listener (done on listener's perimeter). 4286 * 4287 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish 4288 * accept. 4289 * 4290 * TLI/XTI client ACCEPT path: 4291 * --------------------------- 4292 * 4293 * soaccept() sends T_CONN_RES on the listener STREAM. 4294 * 4295 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send 4296 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). 4297 * 4298 * Locks: 4299 * ====== 4300 * 4301 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 4302 * and listeners->tcp_eager_next_q. 4303 * 4304 * Referencing: 4305 * ============ 4306 * 4307 * 1) We start out in tcp_input_listener by eager placing a ref on 4308 * listener and listener adding eager to listeners->tcp_eager_next_q0. 4309 * 4310 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 4311 * doing so we place a ref on the eager. This ref is finally dropped at the 4312 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 4313 * reference is dropped by the squeue framework. 4314 * 4315 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 4316 * 4317 * The reference must be released by the same entity that added the reference 4318 * In the above scheme, the eager is the entity that adds and releases the 4319 * references. Note that tcp_accept_finish executes in the squeue of the eager 4320 * (albeit after it is attached to the acceptor stream). Though 1. executes 4321 * in the listener's squeue, the eager is nascent at this point and the 4322 * reference can be considered to have been added on behalf of the eager. 4323 * 4324 * Eager getting a Reset or listener closing: 4325 * ========================================== 4326 * 4327 * Once the listener and eager are linked, the listener never does the unlink. 4328 * If the listener needs to close, tcp_eager_cleanup() is called which queues 4329 * a message on all eager perimeter. The eager then does the unlink, clears 4330 * any pointers to the listener's queue and drops the reference to the 4331 * listener. The listener waits in tcp_close outside the squeue until its 4332 * refcount has dropped to 1. This ensures that the listener has waited for 4333 * all eagers to clear their association with the listener. 4334 * 4335 * Similarly, if eager decides to go away, it can unlink itself and close. 4336 * When the T_CONN_RES comes down, we check if eager has closed. Note that 4337 * the reference to eager is still valid because of the extra ref we put 4338 * in tcp_send_conn_ind. 4339 * 4340 * Listener can always locate the eager under the protection 4341 * of the listener->tcp_eager_lock, and then do a refhold 4342 * on the eager during the accept processing. 4343 * 4344 * The acceptor stream accesses the eager in the accept processing 4345 * based on the ref placed on eager before sending T_conn_ind. 4346 * The only entity that can negate this refhold is a listener close 4347 * which is mutually exclusive with an active acceptor stream. 4348 * 4349 * Eager's reference on the listener 4350 * =================================== 4351 * 4352 * If the accept happens (even on a closed eager) the eager drops its 4353 * reference on the listener at the start of tcp_accept_finish. If the 4354 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 4355 * the reference is dropped in tcp_closei_local. If the listener closes, 4356 * the reference is dropped in tcp_eager_kill. In all cases the reference 4357 * is dropped while executing in the eager's context (squeue). 4358 */ 4359 /* END CSTYLED */ 4360 4361 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 4362 4363 /* 4364 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 4365 * tcp_input_data will not see any packets for listeners since the listener 4366 * has conn_recv set to tcp_input_listener. 4367 */ 4368 /* ARGSUSED */ 4369 void 4370 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4371 { 4372 tcpha_t *tcpha; 4373 uint32_t seg_seq; 4374 tcp_t *eager; 4375 int err; 4376 conn_t *econnp = NULL; 4377 squeue_t *new_sqp; 4378 mblk_t *mp1; 4379 uint_t ip_hdr_len; 4380 conn_t *lconnp = (conn_t *)arg; 4381 tcp_t *listener = lconnp->conn_tcp; 4382 tcp_stack_t *tcps = listener->tcp_tcps; 4383 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 4384 uint_t flags; 4385 mblk_t *tpi_mp; 4386 uint_t ifindex = ira->ira_ruifindex; 4387 4388 ip_hdr_len = ira->ira_ip_hdr_length; 4389 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 4390 flags = (unsigned int)tcpha->tha_flags & 0xFF; 4391 4392 if (!(flags & TH_SYN)) { 4393 if ((flags & TH_RST) || (flags & TH_URG)) { 4394 freemsg(mp); 4395 return; 4396 } 4397 if (flags & TH_ACK) { 4398 /* Note this executes in listener's squeue */ 4399 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); 4400 return; 4401 } 4402 4403 freemsg(mp); 4404 return; 4405 } 4406 4407 if (listener->tcp_state != TCPS_LISTEN) 4408 goto error2; 4409 4410 ASSERT(IPCL_IS_BOUND(lconnp)); 4411 4412 mutex_enter(&listener->tcp_eager_lock); 4413 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { 4414 mutex_exit(&listener->tcp_eager_lock); 4415 TCP_STAT(tcps, tcp_listendrop); 4416 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 4417 if (lconnp->conn_debug) { 4418 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 4419 "tcp_input_listener: listen backlog (max=%d) " 4420 "overflow (%d pending) on %s", 4421 listener->tcp_conn_req_max, 4422 listener->tcp_conn_req_cnt_q, 4423 tcp_display(listener, NULL, DISP_PORT_ONLY)); 4424 } 4425 goto error2; 4426 } 4427 4428 if (listener->tcp_conn_req_cnt_q0 >= 4429 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 4430 /* 4431 * Q0 is full. Drop a pending half-open req from the queue 4432 * to make room for the new SYN req. Also mark the time we 4433 * drop a SYN. 4434 * 4435 * A more aggressive defense against SYN attack will 4436 * be to set the "tcp_syn_defense" flag now. 4437 */ 4438 TCP_STAT(tcps, tcp_listendropq0); 4439 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 4440 if (!tcp_drop_q0(listener)) { 4441 mutex_exit(&listener->tcp_eager_lock); 4442 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 4443 if (lconnp->conn_debug) { 4444 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4445 "tcp_input_listener: listen half-open " 4446 "queue (max=%d) full (%d pending) on %s", 4447 tcps->tcps_conn_req_max_q0, 4448 listener->tcp_conn_req_cnt_q0, 4449 tcp_display(listener, NULL, 4450 DISP_PORT_ONLY)); 4451 } 4452 goto error2; 4453 } 4454 } 4455 mutex_exit(&listener->tcp_eager_lock); 4456 4457 /* 4458 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4459 * or based on the ring (for packets from GLD). Otherwise it is 4460 * set based on lbolt i.e., a somewhat random number. 4461 */ 4462 ASSERT(ira->ira_sqp != NULL); 4463 new_sqp = ira->ira_sqp; 4464 4465 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 4466 if (econnp == NULL) 4467 goto error2; 4468 4469 ASSERT(econnp->conn_netstack == lconnp->conn_netstack); 4470 econnp->conn_sqp = new_sqp; 4471 econnp->conn_initial_sqp = new_sqp; 4472 econnp->conn_ixa->ixa_sqp = new_sqp; 4473 4474 econnp->conn_fport = tcpha->tha_lport; 4475 econnp->conn_lport = tcpha->tha_fport; 4476 4477 err = conn_inherit_parent(lconnp, econnp); 4478 if (err != 0) 4479 goto error3; 4480 4481 ASSERT(OK_32PTR(mp->b_rptr)); 4482 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || 4483 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 4484 4485 if (lconnp->conn_family == AF_INET) { 4486 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 4487 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); 4488 } else { 4489 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); 4490 } 4491 4492 if (tpi_mp == NULL) 4493 goto error3; 4494 4495 eager = econnp->conn_tcp; 4496 eager->tcp_detached = B_TRUE; 4497 SOCK_CONNID_INIT(eager->tcp_connid); 4498 4499 tcp_init_values(eager); 4500 4501 ASSERT((econnp->conn_ixa->ixa_flags & 4502 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4503 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == 4504 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 4505 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); 4506 4507 if (!tcps->tcps_dev_flow_ctl) 4508 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 4509 4510 /* Prepare for diffing against previous packets */ 4511 eager->tcp_recvifindex = 0; 4512 eager->tcp_recvhops = 0xffffffffU; 4513 4514 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { 4515 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || 4516 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { 4517 econnp->conn_incoming_ifindex = ifindex; 4518 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 4519 econnp->conn_ixa->ixa_scopeid = ifindex; 4520 } 4521 } 4522 4523 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == 4524 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && 4525 tcps->tcps_rev_src_routes) { 4526 ipha_t *ipha = (ipha_t *)mp->b_rptr; 4527 ip_pkt_t *ipp = &econnp->conn_xmit_ipp; 4528 4529 /* Source routing option copyover (reverse it) */ 4530 err = ip_find_hdr_v4(ipha, ipp, B_TRUE); 4531 if (err != 0) { 4532 freemsg(tpi_mp); 4533 goto error3; 4534 } 4535 ip_pkt_source_route_reverse_v4(ipp); 4536 } 4537 4538 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); 4539 ASSERT(!eager->tcp_tconnind_started); 4540 /* 4541 * If the SYN came with a credential, it's a loopback packet or a 4542 * labeled packet; attach the credential to the TPI message. 4543 */ 4544 if (ira->ira_cred != NULL) 4545 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); 4546 4547 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4548 4549 /* Inherit the listener's SSL protection state */ 4550 if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { 4551 kssl_hold_ent(eager->tcp_kssl_ent); 4552 eager->tcp_kssl_pending = B_TRUE; 4553 } 4554 4555 /* Inherit the listener's non-STREAMS flag */ 4556 if (IPCL_IS_NONSTR(lconnp)) { 4557 econnp->conn_flags |= IPCL_NONSTR; 4558 } 4559 4560 ASSERT(eager->tcp_ordrel_mp == NULL); 4561 4562 if (!IPCL_IS_NONSTR(econnp)) { 4563 /* 4564 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 4565 * at close time, we will always have that to send up. 4566 * Otherwise, we need to do special handling in case the 4567 * allocation fails at that time. 4568 */ 4569 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 4570 goto error3; 4571 } 4572 /* 4573 * Now that the IP addresses and ports are setup in econnp we 4574 * can do the IPsec policy work. 4575 */ 4576 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 4577 if (lconnp->conn_policy != NULL) { 4578 /* 4579 * Inherit the policy from the listener; use 4580 * actions from ira 4581 */ 4582 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { 4583 CONN_DEC_REF(econnp); 4584 freemsg(mp); 4585 goto error3; 4586 } 4587 } 4588 } 4589 4590 /* Inherit various TCP parameters from the listener */ 4591 eager->tcp_naglim = listener->tcp_naglim; 4592 eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; 4593 eager->tcp_second_timer_threshold = 4594 listener->tcp_second_timer_threshold; 4595 eager->tcp_first_ctimer_threshold = 4596 listener->tcp_first_ctimer_threshold; 4597 eager->tcp_second_ctimer_threshold = 4598 listener->tcp_second_ctimer_threshold; 4599 4600 /* 4601 * tcp_set_destination() may set tcp_rwnd according to the route 4602 * metrics. If it does not, the eager's receive window will be set 4603 * to the listener's receive window later in this function. 4604 */ 4605 eager->tcp_rwnd = 0; 4606 4607 /* 4608 * Inherit listener's tcp_init_cwnd. Need to do this before 4609 * calling tcp_process_options() which set the initial cwnd. 4610 */ 4611 eager->tcp_init_cwnd = listener->tcp_init_cwnd; 4612 4613 if (is_system_labeled()) { 4614 ip_xmit_attr_t *ixa = econnp->conn_ixa; 4615 4616 ASSERT(ira->ira_tsl != NULL); 4617 /* Discard any old label */ 4618 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 4619 ASSERT(ixa->ixa_tsl != NULL); 4620 label_rele(ixa->ixa_tsl); 4621 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 4622 ixa->ixa_tsl = NULL; 4623 } 4624 if ((lconnp->conn_mlp_type != mlptSingle || 4625 lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && 4626 ira->ira_tsl != NULL) { 4627 /* 4628 * If this is an MLP connection or a MAC-Exempt 4629 * connection with an unlabeled node, packets are to be 4630 * exchanged using the security label of the received 4631 * SYN packet instead of the server application's label. 4632 * tsol_check_dest called from ip_set_destination 4633 * might later update TSF_UNLABELED by replacing 4634 * ixa_tsl with a new label. 4635 */ 4636 label_hold(ira->ira_tsl); 4637 ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); 4638 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 4639 econnp, ts_label_t *, ixa->ixa_tsl) 4640 } else { 4641 ixa->ixa_tsl = crgetlabel(econnp->conn_cred); 4642 DTRACE_PROBE2(syn_accept, conn_t *, 4643 econnp, ts_label_t *, ixa->ixa_tsl) 4644 } 4645 /* 4646 * conn_connect() called from tcp_set_destination will verify 4647 * the destination is allowed to receive packets at the 4648 * security label of the SYN-ACK we are generating. As part of 4649 * that, tsol_check_dest() may create a new effective label for 4650 * this connection. 4651 * Finally conn_connect() will call conn_update_label. 4652 * All that remains for TCP to do is to call 4653 * conn_build_hdr_template which is done as part of 4654 * tcp_set_destination. 4655 */ 4656 } 4657 4658 /* 4659 * Since we will clear tcp_listener before we clear tcp_detached 4660 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress 4661 * so we can tell a TCP_DETACHED_NONEAGER apart. 4662 */ 4663 eager->tcp_hard_binding = B_TRUE; 4664 4665 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 4666 TCP_BIND_HASH(econnp->conn_lport)], eager, 0); 4667 4668 CL_INET_CONNECT(econnp, B_FALSE, err); 4669 if (err != 0) { 4670 tcp_bind_hash_remove(eager); 4671 goto error3; 4672 } 4673 4674 /* 4675 * No need to check for multicast destination since ip will only pass 4676 * up multicasts to those that have expressed interest 4677 * TODO: what about rejecting broadcasts? 4678 * Also check that source is not a multicast or broadcast address. 4679 */ 4680 eager->tcp_state = TCPS_SYN_RCVD; 4681 SOCK_CONNID_BUMP(eager->tcp_connid); 4682 4683 /* 4684 * Adapt our mss, ttl, ... based on the remote address. 4685 */ 4686 4687 if (tcp_set_destination(eager) != 0) { 4688 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4689 /* Undo the bind_hash_insert */ 4690 tcp_bind_hash_remove(eager); 4691 goto error3; 4692 } 4693 4694 /* Process all TCP options. */ 4695 tcp_process_options(eager, tcpha); 4696 4697 /* Is the other end ECN capable? */ 4698 if (tcps->tcps_ecn_permitted >= 1 && 4699 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 4700 eager->tcp_ecn_ok = B_TRUE; 4701 } 4702 4703 /* 4704 * The listener's conn_rcvbuf should be the default window size or a 4705 * window size changed via SO_RCVBUF option. First round up the 4706 * eager's tcp_rwnd to the nearest MSS. Then find out the window 4707 * scale option value if needed. Call tcp_rwnd_set() to finish the 4708 * setting. 4709 * 4710 * Note if there is a rpipe metric associated with the remote host, 4711 * we should not inherit receive window size from listener. 4712 */ 4713 eager->tcp_rwnd = MSS_ROUNDUP( 4714 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : 4715 eager->tcp_rwnd), eager->tcp_mss); 4716 if (eager->tcp_snd_ws_ok) 4717 tcp_set_ws_value(eager); 4718 /* 4719 * Note that this is the only place tcp_rwnd_set() is called for 4720 * accepting a connection. We need to call it here instead of 4721 * after the 3-way handshake because we need to tell the other 4722 * side our rwnd in the SYN-ACK segment. 4723 */ 4724 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 4725 4726 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && 4727 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); 4728 4729 ASSERT(econnp->conn_rcvbuf != 0 && 4730 econnp->conn_rcvbuf == eager->tcp_rwnd); 4731 4732 /* Put a ref on the listener for the eager. */ 4733 CONN_INC_REF(lconnp); 4734 mutex_enter(&listener->tcp_eager_lock); 4735 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 4736 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; 4737 listener->tcp_eager_next_q0 = eager; 4738 eager->tcp_eager_prev_q0 = listener; 4739 4740 /* Set tcp_listener before adding it to tcp_conn_fanout */ 4741 eager->tcp_listener = listener; 4742 eager->tcp_saved_listener = listener; 4743 4744 /* 4745 * Tag this detached tcp vector for later retrieval 4746 * by our listener client in tcp_accept(). 4747 */ 4748 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; 4749 listener->tcp_conn_req_cnt_q0++; 4750 if (++listener->tcp_conn_req_seqnum == -1) { 4751 /* 4752 * -1 is "special" and defined in TPI as something 4753 * that should never be used in T_CONN_IND 4754 */ 4755 ++listener->tcp_conn_req_seqnum; 4756 } 4757 mutex_exit(&listener->tcp_eager_lock); 4758 4759 if (listener->tcp_syn_defense) { 4760 /* Don't drop the SYN that comes from a good IP source */ 4761 ipaddr_t *addr_cache; 4762 4763 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 4764 if (addr_cache != NULL && econnp->conn_faddr_v4 == 4765 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { 4766 eager->tcp_dontdrop = B_TRUE; 4767 } 4768 } 4769 4770 /* 4771 * We need to insert the eager in its own perimeter but as soon 4772 * as we do that, we expose the eager to the classifier and 4773 * should not touch any field outside the eager's perimeter. 4774 * So do all the work necessary before inserting the eager 4775 * in its own perimeter. Be optimistic that conn_connect() 4776 * will succeed but undo everything if it fails. 4777 */ 4778 seg_seq = ntohl(tcpha->tha_seq); 4779 eager->tcp_irs = seg_seq; 4780 eager->tcp_rack = seg_seq; 4781 eager->tcp_rnxt = seg_seq + 1; 4782 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); 4783 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 4784 eager->tcp_state = TCPS_SYN_RCVD; 4785 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 4786 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 4787 if (mp1 == NULL) { 4788 /* 4789 * Increment the ref count as we are going to 4790 * enqueueing an mp in squeue 4791 */ 4792 CONN_INC_REF(econnp); 4793 goto error; 4794 } 4795 4796 /* 4797 * We need to start the rto timer. In normal case, we start 4798 * the timer after sending the packet on the wire (or at 4799 * least believing that packet was sent by waiting for 4800 * conn_ip_output() to return). Since this is the first packet 4801 * being sent on the wire for the eager, our initial tcp_rto 4802 * is at least tcp_rexmit_interval_min which is a fairly 4803 * large value to allow the algorithm to adjust slowly to large 4804 * fluctuations of RTT during first few transmissions. 4805 * 4806 * Starting the timer first and then sending the packet in this 4807 * case shouldn't make much difference since tcp_rexmit_interval_min 4808 * is of the order of several 100ms and starting the timer 4809 * first and then sending the packet will result in difference 4810 * of few micro seconds. 4811 * 4812 * Without this optimization, we are forced to hold the fanout 4813 * lock across the ipcl_bind_insert() and sending the packet 4814 * so that we don't race against an incoming packet (maybe RST) 4815 * for this eager. 4816 * 4817 * It is necessary to acquire an extra reference on the eager 4818 * at this point and hold it until after tcp_send_data() to 4819 * ensure against an eager close race. 4820 */ 4821 4822 CONN_INC_REF(econnp); 4823 4824 TCP_TIMER_RESTART(eager, eager->tcp_rto); 4825 4826 /* 4827 * Insert the eager in its own perimeter now. We are ready to deal 4828 * with any packets on eager. 4829 */ 4830 if (ipcl_conn_insert(econnp) != 0) 4831 goto error; 4832 4833 /* 4834 * Send the SYN-ACK. Can't use tcp_send_data since we can't update 4835 * pmtu etc; we are not on the eager's squeue 4836 */ 4837 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); 4838 (void) conn_ip_output(mp1, econnp->conn_ixa); 4839 CONN_DEC_REF(econnp); 4840 freemsg(mp); 4841 4842 return; 4843 error: 4844 freemsg(mp1); 4845 eager->tcp_closemp_used = B_TRUE; 4846 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 4847 mp1 = &eager->tcp_closemp; 4848 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 4849 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 4850 4851 /* 4852 * If a connection already exists, send the mp to that connections so 4853 * that it can be appropriately dealt with. 4854 */ 4855 ipst = tcps->tcps_netstack->netstack_ip; 4856 4857 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { 4858 if (!IPCL_IS_CONNECTED(econnp)) { 4859 /* 4860 * Something bad happened. ipcl_conn_insert() 4861 * failed because a connection already existed 4862 * in connected hash but we can't find it 4863 * anymore (someone blew it away). Just 4864 * free this message and hopefully remote 4865 * will retransmit at which time the SYN can be 4866 * treated as a new connection or dealth with 4867 * a TH_RST if a connection already exists. 4868 */ 4869 CONN_DEC_REF(econnp); 4870 freemsg(mp); 4871 } else { 4872 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, 4873 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 4874 } 4875 } else { 4876 /* Nobody wants this packet */ 4877 freemsg(mp); 4878 } 4879 return; 4880 error3: 4881 CONN_DEC_REF(econnp); 4882 error2: 4883 freemsg(mp); 4884 } 4885 4886 /* 4887 * In an ideal case of vertical partition in NUMA architecture, its 4888 * beneficial to have the listener and all the incoming connections 4889 * tied to the same squeue. The other constraint is that incoming 4890 * connections should be tied to the squeue attached to interrupted 4891 * CPU for obvious locality reason so this leaves the listener to 4892 * be tied to the same squeue. Our only problem is that when listener 4893 * is binding, the CPU that will get interrupted by the NIC whose 4894 * IP address the listener is binding to is not even known. So 4895 * the code below allows us to change that binding at the time the 4896 * CPU is interrupted by virtue of incoming connection's squeue. 4897 * 4898 * This is usefull only in case of a listener bound to a specific IP 4899 * address. For other kind of listeners, they get bound the 4900 * very first time and there is no attempt to rebind them. 4901 */ 4902 void 4903 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, 4904 ip_recv_attr_t *ira) 4905 { 4906 conn_t *connp = (conn_t *)arg; 4907 squeue_t *sqp = (squeue_t *)arg2; 4908 squeue_t *new_sqp; 4909 uint32_t conn_flags; 4910 4911 /* 4912 * IP sets ira_sqp to either the senders conn_sqp (for loopback) 4913 * or based on the ring (for packets from GLD). Otherwise it is 4914 * set based on lbolt i.e., a somewhat random number. 4915 */ 4916 ASSERT(ira->ira_sqp != NULL); 4917 new_sqp = ira->ira_sqp; 4918 4919 if (connp->conn_fanout == NULL) 4920 goto done; 4921 4922 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 4923 mutex_enter(&connp->conn_fanout->connf_lock); 4924 mutex_enter(&connp->conn_lock); 4925 /* 4926 * No one from read or write side can access us now 4927 * except for already queued packets on this squeue. 4928 * But since we haven't changed the squeue yet, they 4929 * can't execute. If they are processed after we have 4930 * changed the squeue, they are sent back to the 4931 * correct squeue down below. 4932 * But a listner close can race with processing of 4933 * incoming SYN. If incoming SYN processing changes 4934 * the squeue then the listener close which is waiting 4935 * to enter the squeue would operate on the wrong 4936 * squeue. Hence we don't change the squeue here unless 4937 * the refcount is exactly the minimum refcount. The 4938 * minimum refcount of 4 is counted as - 1 each for 4939 * TCP and IP, 1 for being in the classifier hash, and 4940 * 1 for the mblk being processed. 4941 */ 4942 4943 if (connp->conn_ref != 4 || 4944 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 4945 mutex_exit(&connp->conn_lock); 4946 mutex_exit(&connp->conn_fanout->connf_lock); 4947 goto done; 4948 } 4949 if (connp->conn_sqp != new_sqp) { 4950 while (connp->conn_sqp != new_sqp) 4951 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 4952 /* No special MT issues for outbound ixa_sqp hint */ 4953 connp->conn_ixa->ixa_sqp = new_sqp; 4954 } 4955 4956 do { 4957 conn_flags = connp->conn_flags; 4958 conn_flags |= IPCL_FULLY_BOUND; 4959 (void) cas32(&connp->conn_flags, connp->conn_flags, 4960 conn_flags); 4961 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 4962 4963 mutex_exit(&connp->conn_fanout->connf_lock); 4964 mutex_exit(&connp->conn_lock); 4965 4966 /* 4967 * Assume we have picked a good squeue for the listener. Make 4968 * subsequent SYNs not try to change the squeue. 4969 */ 4970 connp->conn_recv = tcp_input_listener; 4971 } 4972 4973 done: 4974 if (connp->conn_sqp != sqp) { 4975 CONN_INC_REF(connp); 4976 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 4977 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 4978 } else { 4979 tcp_input_listener(connp, mp, sqp, ira); 4980 } 4981 } 4982 4983 /* 4984 * Successful connect request processing begins when our client passes 4985 * a T_CONN_REQ message into tcp_wput(), which performs function calls into 4986 * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream). 4987 * 4988 * After various error checks are completed, tcp_tpi_connect() lays 4989 * the target address and port into the composite header template. 4990 * Then we ask IP for information, including a source address if we didn't 4991 * already have one. Finally we prepare to send the SYN packet, and then 4992 * send up the T_OK_ACK reply message. 4993 */ 4994 static void 4995 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 4996 { 4997 sin_t *sin; 4998 struct T_conn_req *tcr; 4999 struct sockaddr *sa; 5000 socklen_t len; 5001 int error; 5002 cred_t *cr; 5003 pid_t cpid; 5004 conn_t *connp = tcp->tcp_connp; 5005 queue_t *q = connp->conn_wq; 5006 5007 /* 5008 * All Solaris components should pass a db_credp 5009 * for this TPI message, hence we ASSERT. 5010 * But in case there is some other M_PROTO that looks 5011 * like a TPI message sent by some other kernel 5012 * component, we check and return an error. 5013 */ 5014 cr = msg_getcred(mp, &cpid); 5015 ASSERT(cr != NULL); 5016 if (cr == NULL) { 5017 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5018 return; 5019 } 5020 5021 tcr = (struct T_conn_req *)mp->b_rptr; 5022 5023 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5024 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5025 tcp_err_ack(tcp, mp, TPROTO, 0); 5026 return; 5027 } 5028 5029 /* 5030 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5031 * will always have that to send up. Otherwise, we need to do 5032 * special handling in case the allocation fails at that time. 5033 * If the end point is TPI, the tcp_t can be reused and the 5034 * tcp_ordrel_mp may be allocated already. 5035 */ 5036 if (tcp->tcp_ordrel_mp == NULL) { 5037 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5038 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5039 return; 5040 } 5041 } 5042 5043 /* 5044 * Determine packet type based on type of address passed in 5045 * the request should contain an IPv4 or IPv6 address. 5046 * Make sure that address family matches the type of 5047 * family of the address passed down. 5048 */ 5049 switch (tcr->DEST_length) { 5050 default: 5051 tcp_err_ack(tcp, mp, TBADADDR, 0); 5052 return; 5053 5054 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5055 /* 5056 * XXX: The check for valid DEST_length was not there 5057 * in earlier releases and some buggy 5058 * TLI apps (e.g Sybase) got away with not feeding 5059 * in sin_zero part of address. 5060 * We allow that bug to keep those buggy apps humming. 5061 * Test suites require the check on DEST_length. 5062 * We construct a new mblk with valid DEST_length 5063 * free the original so the rest of the code does 5064 * not have to keep track of this special shorter 5065 * length address case. 5066 */ 5067 mblk_t *nmp; 5068 struct T_conn_req *ntcr; 5069 sin_t *nsin; 5070 5071 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5072 tcr->OPT_length, BPRI_HI); 5073 if (nmp == NULL) { 5074 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5075 return; 5076 } 5077 ntcr = (struct T_conn_req *)nmp->b_rptr; 5078 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5079 ntcr->PRIM_type = T_CONN_REQ; 5080 ntcr->DEST_length = sizeof (sin_t); 5081 ntcr->DEST_offset = sizeof (struct T_conn_req); 5082 5083 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5084 *nsin = sin_null; 5085 /* Get pointer to shorter address to copy from original mp */ 5086 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5087 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5088 if (sin == NULL || !OK_32PTR((char *)sin)) { 5089 freemsg(nmp); 5090 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5091 return; 5092 } 5093 nsin->sin_family = sin->sin_family; 5094 nsin->sin_port = sin->sin_port; 5095 nsin->sin_addr = sin->sin_addr; 5096 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5097 nmp->b_wptr = (uchar_t *)&nsin[1]; 5098 if (tcr->OPT_length != 0) { 5099 ntcr->OPT_length = tcr->OPT_length; 5100 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5101 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5102 (uchar_t *)ntcr + ntcr->OPT_offset, 5103 tcr->OPT_length); 5104 nmp->b_wptr += tcr->OPT_length; 5105 } 5106 freemsg(mp); /* original mp freed */ 5107 mp = nmp; /* re-initialize original variables */ 5108 tcr = ntcr; 5109 } 5110 /* FALLTHRU */ 5111 5112 case sizeof (sin_t): 5113 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5114 sizeof (sin_t)); 5115 len = sizeof (sin_t); 5116 break; 5117 5118 case sizeof (sin6_t): 5119 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5120 sizeof (sin6_t)); 5121 len = sizeof (sin6_t); 5122 break; 5123 } 5124 5125 error = proto_verify_ip_addr(connp->conn_family, sa, len); 5126 if (error != 0) { 5127 tcp_err_ack(tcp, mp, TSYSERR, error); 5128 return; 5129 } 5130 5131 /* 5132 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5133 * should key on their sequence number and cut them loose. 5134 */ 5135 5136 /* 5137 * If options passed in, feed it for verification and handling 5138 */ 5139 if (tcr->OPT_length != 0) { 5140 mblk_t *ok_mp; 5141 mblk_t *discon_mp; 5142 mblk_t *conn_opts_mp; 5143 int t_error, sys_error, do_disconnect; 5144 5145 conn_opts_mp = NULL; 5146 5147 if (tcp_conprim_opt_process(tcp, mp, 5148 &do_disconnect, &t_error, &sys_error) < 0) { 5149 if (do_disconnect) { 5150 ASSERT(t_error == 0 && sys_error == 0); 5151 discon_mp = mi_tpi_discon_ind(NULL, 5152 ECONNREFUSED, 0); 5153 if (!discon_mp) { 5154 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5155 TSYSERR, ENOMEM); 5156 return; 5157 } 5158 ok_mp = mi_tpi_ok_ack_alloc(mp); 5159 if (!ok_mp) { 5160 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5161 TSYSERR, ENOMEM); 5162 return; 5163 } 5164 qreply(q, ok_mp); 5165 qreply(q, discon_mp); /* no flush! */ 5166 } else { 5167 ASSERT(t_error != 0); 5168 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5169 sys_error); 5170 } 5171 return; 5172 } 5173 /* 5174 * Success in setting options, the mp option buffer represented 5175 * by OPT_length/offset has been potentially modified and 5176 * contains results of option processing. We copy it in 5177 * another mp to save it for potentially influencing returning 5178 * it in T_CONN_CONN. 5179 */ 5180 if (tcr->OPT_length != 0) { /* there are resulting options */ 5181 conn_opts_mp = copyb(mp); 5182 if (!conn_opts_mp) { 5183 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5184 TSYSERR, ENOMEM); 5185 return; 5186 } 5187 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5188 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5189 /* 5190 * Note: 5191 * These resulting option negotiation can include any 5192 * end-to-end negotiation options but there no such 5193 * thing (yet?) in our TCP/IP. 5194 */ 5195 } 5196 } 5197 5198 /* call the non-TPI version */ 5199 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 5200 if (error < 0) { 5201 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 5202 } else if (error > 0) { 5203 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 5204 } else { 5205 mp = mi_tpi_ok_ack_alloc(mp); 5206 } 5207 5208 /* 5209 * Note: Code below is the "failure" case 5210 */ 5211 /* return error ack and blow away saved option results if any */ 5212 connect_failed: 5213 if (mp != NULL) 5214 putnext(connp->conn_rq, mp); 5215 else { 5216 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5217 TSYSERR, ENOMEM); 5218 } 5219 } 5220 5221 /* 5222 * Handle connect to IPv4 destinations, including connections for AF_INET6 5223 * sockets connecting to IPv4 mapped IPv6 destinations. 5224 * Returns zero if OK, a positive errno, or a negative TLI error. 5225 */ 5226 static int 5227 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 5228 uint_t srcid) 5229 { 5230 ipaddr_t dstaddr = *dstaddrp; 5231 uint16_t lport; 5232 conn_t *connp = tcp->tcp_connp; 5233 tcp_stack_t *tcps = tcp->tcp_tcps; 5234 int error; 5235 5236 ASSERT(connp->conn_ipversion == IPV4_VERSION); 5237 5238 /* Check for attempt to connect to INADDR_ANY */ 5239 if (dstaddr == INADDR_ANY) { 5240 /* 5241 * SunOS 4.x and 4.3 BSD allow an application 5242 * to connect a TCP socket to INADDR_ANY. 5243 * When they do this, the kernel picks the 5244 * address of one interface and uses it 5245 * instead. The kernel usually ends up 5246 * picking the address of the loopback 5247 * interface. This is an undocumented feature. 5248 * However, we provide the same thing here 5249 * in order to have source and binary 5250 * compatibility with SunOS 4.x. 5251 * Update the T_CONN_REQ (sin/sin6) since it is used to 5252 * generate the T_CONN_CON. 5253 */ 5254 dstaddr = htonl(INADDR_LOOPBACK); 5255 *dstaddrp = dstaddr; 5256 } 5257 5258 /* Handle __sin6_src_id if socket not bound to an IP address */ 5259 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 5260 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5261 IPCL_ZONEID(connp), tcps->tcps_netstack); 5262 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5263 } 5264 5265 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 5266 connp->conn_fport = dstport; 5267 5268 /* 5269 * At this point the remote destination address and remote port fields 5270 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5271 * have to see which state tcp was in so we can take appropriate action. 5272 */ 5273 if (tcp->tcp_state == TCPS_IDLE) { 5274 /* 5275 * We support a quick connect capability here, allowing 5276 * clients to transition directly from IDLE to SYN_SENT 5277 * tcp_bindi will pick an unused port, insert the connection 5278 * in the bind hash and transition to BOUND state. 5279 */ 5280 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5281 tcp, B_TRUE); 5282 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5283 B_FALSE, B_FALSE); 5284 if (lport == 0) 5285 return (-TNOADDR); 5286 } 5287 5288 /* 5289 * Lookup the route to determine a source address and the uinfo. 5290 * Setup TCP parameters based on the metrics/DCE. 5291 */ 5292 error = tcp_set_destination(tcp); 5293 if (error != 0) 5294 return (error); 5295 5296 /* 5297 * Don't let an endpoint connect to itself. 5298 */ 5299 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 5300 connp->conn_fport == connp->conn_lport) 5301 return (-TBADADDR); 5302 5303 tcp->tcp_state = TCPS_SYN_SENT; 5304 5305 return (ipcl_conn_insert_v4(connp)); 5306 } 5307 5308 /* 5309 * Handle connect to IPv6 destinations. 5310 * Returns zero if OK, a positive errno, or a negative TLI error. 5311 */ 5312 static int 5313 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 5314 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 5315 { 5316 uint16_t lport; 5317 conn_t *connp = tcp->tcp_connp; 5318 tcp_stack_t *tcps = tcp->tcp_tcps; 5319 int error; 5320 5321 ASSERT(connp->conn_family == AF_INET6); 5322 5323 /* 5324 * If we're here, it means that the destination address is a native 5325 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 5326 * reason why it might not be IPv6 is if the socket was bound to an 5327 * IPv4-mapped IPv6 address. 5328 */ 5329 if (connp->conn_ipversion != IPV6_VERSION) 5330 return (-TBADADDR); 5331 5332 /* 5333 * Interpret a zero destination to mean loopback. 5334 * Update the T_CONN_REQ (sin/sin6) since it is used to 5335 * generate the T_CONN_CON. 5336 */ 5337 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 5338 *dstaddrp = ipv6_loopback; 5339 5340 /* Handle __sin6_src_id if socket not bound to an IP address */ 5341 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 5342 ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 5343 IPCL_ZONEID(connp), tcps->tcps_netstack); 5344 connp->conn_saddr_v6 = connp->conn_laddr_v6; 5345 } 5346 5347 /* 5348 * Take care of the scope_id now. 5349 */ 5350 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 5351 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 5352 connp->conn_ixa->ixa_scopeid = scope_id; 5353 } else { 5354 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 5355 } 5356 5357 connp->conn_flowinfo = flowinfo; 5358 connp->conn_faddr_v6 = *dstaddrp; 5359 connp->conn_fport = dstport; 5360 5361 /* 5362 * At this point the remote destination address and remote port fields 5363 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5364 * have to see which state tcp was in so we can take appropriate action. 5365 */ 5366 if (tcp->tcp_state == TCPS_IDLE) { 5367 /* 5368 * We support a quick connect capability here, allowing 5369 * clients to transition directly from IDLE to SYN_SENT 5370 * tcp_bindi will pick an unused port, insert the connection 5371 * in the bind hash and transition to BOUND state. 5372 */ 5373 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 5374 tcp, B_TRUE); 5375 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 5376 B_FALSE, B_FALSE); 5377 if (lport == 0) 5378 return (-TNOADDR); 5379 } 5380 5381 /* 5382 * Lookup the route to determine a source address and the uinfo. 5383 * Setup TCP parameters based on the metrics/DCE. 5384 */ 5385 error = tcp_set_destination(tcp); 5386 if (error != 0) 5387 return (error); 5388 5389 /* 5390 * Don't let an endpoint connect to itself. 5391 */ 5392 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 5393 connp->conn_fport == connp->conn_lport) 5394 return (-TBADADDR); 5395 5396 tcp->tcp_state = TCPS_SYN_SENT; 5397 5398 return (ipcl_conn_insert_v6(connp)); 5399 } 5400 5401 /* 5402 * Disconnect 5403 * Note that unlike other functions this returns a positive tli error 5404 * when it fails; it never returns an errno. 5405 */ 5406 static int 5407 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 5408 { 5409 conn_t *lconnp; 5410 tcp_stack_t *tcps = tcp->tcp_tcps; 5411 conn_t *connp = tcp->tcp_connp; 5412 5413 /* 5414 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 5415 * when the stream is in BOUND state. Do not send a reset, 5416 * since the destination IP address is not valid, and it can 5417 * be the initialized value of all zeros (broadcast address). 5418 */ 5419 if (tcp->tcp_state <= TCPS_BOUND) { 5420 if (connp->conn_debug) { 5421 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 5422 "tcp_disconnect: bad state, %d", tcp->tcp_state); 5423 } 5424 return (TOUTSTATE); 5425 } 5426 5427 5428 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 5429 5430 /* 5431 * According to TPI, for non-listeners, ignore seqnum 5432 * and disconnect. 5433 * Following interpretation of -1 seqnum is historical 5434 * and implied TPI ? (TPI only states that for T_CONN_IND, 5435 * a valid seqnum should not be -1). 5436 * 5437 * -1 means disconnect everything 5438 * regardless even on a listener. 5439 */ 5440 5441 int old_state = tcp->tcp_state; 5442 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 5443 5444 /* 5445 * The connection can't be on the tcp_time_wait_head list 5446 * since it is not detached. 5447 */ 5448 ASSERT(tcp->tcp_time_wait_next == NULL); 5449 ASSERT(tcp->tcp_time_wait_prev == NULL); 5450 ASSERT(tcp->tcp_time_wait_expire == 0); 5451 /* 5452 * If it used to be a listener, check to make sure no one else 5453 * has taken the port before switching back to LISTEN state. 5454 */ 5455 if (connp->conn_ipversion == IPV4_VERSION) { 5456 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 5457 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 5458 } else { 5459 uint_t ifindex = 0; 5460 5461 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 5462 ifindex = connp->conn_ixa->ixa_scopeid; 5463 5464 /* Allow conn_bound_if listeners? */ 5465 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 5466 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 5467 ipst); 5468 } 5469 if (tcp->tcp_conn_req_max && lconnp == NULL) { 5470 tcp->tcp_state = TCPS_LISTEN; 5471 } else if (old_state > TCPS_BOUND) { 5472 tcp->tcp_conn_req_max = 0; 5473 tcp->tcp_state = TCPS_BOUND; 5474 } 5475 if (lconnp != NULL) 5476 CONN_DEC_REF(lconnp); 5477 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 5478 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 5479 } else if (old_state == TCPS_ESTABLISHED || 5480 old_state == TCPS_CLOSE_WAIT) { 5481 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 5482 } 5483 5484 if (tcp->tcp_fused) 5485 tcp_unfuse(tcp); 5486 5487 mutex_enter(&tcp->tcp_eager_lock); 5488 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 5489 (tcp->tcp_conn_req_cnt_q != 0)) { 5490 tcp_eager_cleanup(tcp, 0); 5491 } 5492 mutex_exit(&tcp->tcp_eager_lock); 5493 5494 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 5495 tcp->tcp_rnxt, TH_RST | TH_ACK); 5496 5497 tcp_reinit(tcp); 5498 5499 return (0); 5500 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 5501 return (TBADSEQ); 5502 } 5503 return (0); 5504 } 5505 5506 /* 5507 * Our client hereby directs us to reject the connection request 5508 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 5509 * of sending the appropriate RST, not an ICMP error. 5510 */ 5511 static void 5512 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 5513 { 5514 t_scalar_t seqnum; 5515 int error; 5516 conn_t *connp = tcp->tcp_connp; 5517 5518 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5519 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 5520 tcp_err_ack(tcp, mp, TPROTO, 0); 5521 return; 5522 } 5523 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 5524 error = tcp_disconnect_common(tcp, seqnum); 5525 if (error != 0) 5526 tcp_err_ack(tcp, mp, error, 0); 5527 else { 5528 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 5529 /* Send M_FLUSH according to TPI */ 5530 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 5531 } 5532 mp = mi_tpi_ok_ack_alloc(mp); 5533 if (mp != NULL) 5534 putnext(connp->conn_rq, mp); 5535 } 5536 } 5537 5538 /* 5539 * Diagnostic routine used to return a string associated with the tcp state. 5540 * Note that if the caller does not supply a buffer, it will use an internal 5541 * static string. This means that if multiple threads call this function at 5542 * the same time, output can be corrupted... Note also that this function 5543 * does not check the size of the supplied buffer. The caller has to make 5544 * sure that it is big enough. 5545 */ 5546 static char * 5547 tcp_display(tcp_t *tcp, char *sup_buf, char format) 5548 { 5549 char buf1[30]; 5550 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 5551 char *buf; 5552 char *cp; 5553 in6_addr_t local, remote; 5554 char local_addrbuf[INET6_ADDRSTRLEN]; 5555 char remote_addrbuf[INET6_ADDRSTRLEN]; 5556 conn_t *connp; 5557 5558 if (sup_buf != NULL) 5559 buf = sup_buf; 5560 else 5561 buf = priv_buf; 5562 5563 if (tcp == NULL) 5564 return ("NULL_TCP"); 5565 5566 connp = tcp->tcp_connp; 5567 switch (tcp->tcp_state) { 5568 case TCPS_CLOSED: 5569 cp = "TCP_CLOSED"; 5570 break; 5571 case TCPS_IDLE: 5572 cp = "TCP_IDLE"; 5573 break; 5574 case TCPS_BOUND: 5575 cp = "TCP_BOUND"; 5576 break; 5577 case TCPS_LISTEN: 5578 cp = "TCP_LISTEN"; 5579 break; 5580 case TCPS_SYN_SENT: 5581 cp = "TCP_SYN_SENT"; 5582 break; 5583 case TCPS_SYN_RCVD: 5584 cp = "TCP_SYN_RCVD"; 5585 break; 5586 case TCPS_ESTABLISHED: 5587 cp = "TCP_ESTABLISHED"; 5588 break; 5589 case TCPS_CLOSE_WAIT: 5590 cp = "TCP_CLOSE_WAIT"; 5591 break; 5592 case TCPS_FIN_WAIT_1: 5593 cp = "TCP_FIN_WAIT_1"; 5594 break; 5595 case TCPS_CLOSING: 5596 cp = "TCP_CLOSING"; 5597 break; 5598 case TCPS_LAST_ACK: 5599 cp = "TCP_LAST_ACK"; 5600 break; 5601 case TCPS_FIN_WAIT_2: 5602 cp = "TCP_FIN_WAIT_2"; 5603 break; 5604 case TCPS_TIME_WAIT: 5605 cp = "TCP_TIME_WAIT"; 5606 break; 5607 default: 5608 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 5609 cp = buf1; 5610 break; 5611 } 5612 switch (format) { 5613 case DISP_ADDR_AND_PORT: 5614 if (connp->conn_ipversion == IPV4_VERSION) { 5615 /* 5616 * Note that we use the remote address in the tcp_b 5617 * structure. This means that it will print out 5618 * the real destination address, not the next hop's 5619 * address if source routing is used. 5620 */ 5621 IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local); 5622 IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote); 5623 5624 } else { 5625 local = connp->conn_laddr_v6; 5626 remote = connp->conn_faddr_v6; 5627 } 5628 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 5629 sizeof (local_addrbuf)); 5630 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 5631 sizeof (remote_addrbuf)); 5632 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 5633 local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf, 5634 ntohs(connp->conn_fport), cp); 5635 break; 5636 case DISP_PORT_ONLY: 5637 default: 5638 (void) mi_sprintf(buf, "[%u, %u] %s", 5639 ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp); 5640 break; 5641 } 5642 5643 return (buf); 5644 } 5645 5646 /* 5647 * Called via squeue to get on to eager's perimeter. It sends a 5648 * TH_RST if eager is in the fanout table. The listener wants the 5649 * eager to disappear either by means of tcp_eager_blowoff() or 5650 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 5651 * called (via squeue) if the eager cannot be inserted in the 5652 * fanout table in tcp_input_listener(). 5653 */ 5654 /* ARGSUSED */ 5655 void 5656 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 5657 { 5658 conn_t *econnp = (conn_t *)arg; 5659 tcp_t *eager = econnp->conn_tcp; 5660 tcp_t *listener = eager->tcp_listener; 5661 5662 /* 5663 * We could be called because listener is closing. Since 5664 * the eager was using listener's queue's, we avoid 5665 * using the listeners queues from now on. 5666 */ 5667 ASSERT(eager->tcp_detached); 5668 econnp->conn_rq = NULL; 5669 econnp->conn_wq = NULL; 5670 5671 /* 5672 * An eager's conn_fanout will be NULL if it's a duplicate 5673 * for an existing 4-tuples in the conn fanout table. 5674 * We don't want to send an RST out in such case. 5675 */ 5676 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 5677 tcp_xmit_ctl("tcp_eager_kill, can't wait", 5678 eager, eager->tcp_snxt, 0, TH_RST); 5679 } 5680 5681 /* We are here because listener wants this eager gone */ 5682 if (listener != NULL) { 5683 mutex_enter(&listener->tcp_eager_lock); 5684 tcp_eager_unlink(eager); 5685 if (eager->tcp_tconnind_started) { 5686 /* 5687 * The eager has sent a conn_ind up to the 5688 * listener but listener decides to close 5689 * instead. We need to drop the extra ref 5690 * placed on eager in tcp_input_data() before 5691 * sending the conn_ind to listener. 5692 */ 5693 CONN_DEC_REF(econnp); 5694 } 5695 mutex_exit(&listener->tcp_eager_lock); 5696 CONN_DEC_REF(listener->tcp_connp); 5697 } 5698 5699 if (eager->tcp_state != TCPS_CLOSED) 5700 tcp_close_detached(eager); 5701 } 5702 5703 /* 5704 * Reset any eager connection hanging off this listener marked 5705 * with 'seqnum' and then reclaim it's resources. 5706 */ 5707 static boolean_t 5708 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 5709 { 5710 tcp_t *eager; 5711 mblk_t *mp; 5712 tcp_stack_t *tcps = listener->tcp_tcps; 5713 5714 TCP_STAT(tcps, tcp_eager_blowoff_calls); 5715 eager = listener; 5716 mutex_enter(&listener->tcp_eager_lock); 5717 do { 5718 eager = eager->tcp_eager_next_q; 5719 if (eager == NULL) { 5720 mutex_exit(&listener->tcp_eager_lock); 5721 return (B_FALSE); 5722 } 5723 } while (eager->tcp_conn_req_seqnum != seqnum); 5724 5725 if (eager->tcp_closemp_used) { 5726 mutex_exit(&listener->tcp_eager_lock); 5727 return (B_TRUE); 5728 } 5729 eager->tcp_closemp_used = B_TRUE; 5730 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5731 CONN_INC_REF(eager->tcp_connp); 5732 mutex_exit(&listener->tcp_eager_lock); 5733 mp = &eager->tcp_closemp; 5734 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 5735 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 5736 return (B_TRUE); 5737 } 5738 5739 /* 5740 * Reset any eager connection hanging off this listener 5741 * and then reclaim it's resources. 5742 */ 5743 static void 5744 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 5745 { 5746 tcp_t *eager; 5747 mblk_t *mp; 5748 tcp_stack_t *tcps = listener->tcp_tcps; 5749 5750 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5751 5752 if (!q0_only) { 5753 /* First cleanup q */ 5754 TCP_STAT(tcps, tcp_eager_blowoff_q); 5755 eager = listener->tcp_eager_next_q; 5756 while (eager != NULL) { 5757 if (!eager->tcp_closemp_used) { 5758 eager->tcp_closemp_used = B_TRUE; 5759 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5760 CONN_INC_REF(eager->tcp_connp); 5761 mp = &eager->tcp_closemp; 5762 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5763 tcp_eager_kill, eager->tcp_connp, NULL, 5764 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 5765 } 5766 eager = eager->tcp_eager_next_q; 5767 } 5768 } 5769 /* Then cleanup q0 */ 5770 TCP_STAT(tcps, tcp_eager_blowoff_q0); 5771 eager = listener->tcp_eager_next_q0; 5772 while (eager != listener) { 5773 if (!eager->tcp_closemp_used) { 5774 eager->tcp_closemp_used = B_TRUE; 5775 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5776 CONN_INC_REF(eager->tcp_connp); 5777 mp = &eager->tcp_closemp; 5778 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 5779 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, 5780 SQTAG_TCP_EAGER_CLEANUP_Q0); 5781 } 5782 eager = eager->tcp_eager_next_q0; 5783 } 5784 } 5785 5786 /* 5787 * If we are an eager connection hanging off a listener that hasn't 5788 * formally accepted the connection yet, get off his list and blow off 5789 * any data that we have accumulated. 5790 */ 5791 static void 5792 tcp_eager_unlink(tcp_t *tcp) 5793 { 5794 tcp_t *listener = tcp->tcp_listener; 5795 5796 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 5797 ASSERT(listener != NULL); 5798 if (tcp->tcp_eager_next_q0 != NULL) { 5799 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 5800 5801 /* Remove the eager tcp from q0 */ 5802 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 5803 tcp->tcp_eager_prev_q0; 5804 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 5805 tcp->tcp_eager_next_q0; 5806 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 5807 listener->tcp_conn_req_cnt_q0--; 5808 5809 tcp->tcp_eager_next_q0 = NULL; 5810 tcp->tcp_eager_prev_q0 = NULL; 5811 5812 /* 5813 * Take the eager out, if it is in the list of droppable 5814 * eagers. 5815 */ 5816 MAKE_UNDROPPABLE(tcp); 5817 5818 if (tcp->tcp_syn_rcvd_timeout != 0) { 5819 /* we have timed out before */ 5820 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 5821 listener->tcp_syn_rcvd_timeout--; 5822 } 5823 } else { 5824 tcp_t **tcpp = &listener->tcp_eager_next_q; 5825 tcp_t *prev = NULL; 5826 5827 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 5828 if (tcpp[0] == tcp) { 5829 if (listener->tcp_eager_last_q == tcp) { 5830 /* 5831 * If we are unlinking the last 5832 * element on the list, adjust 5833 * tail pointer. Set tail pointer 5834 * to nil when list is empty. 5835 */ 5836 ASSERT(tcp->tcp_eager_next_q == NULL); 5837 if (listener->tcp_eager_last_q == 5838 listener->tcp_eager_next_q) { 5839 listener->tcp_eager_last_q = 5840 NULL; 5841 } else { 5842 /* 5843 * We won't get here if there 5844 * is only one eager in the 5845 * list. 5846 */ 5847 ASSERT(prev != NULL); 5848 listener->tcp_eager_last_q = 5849 prev; 5850 } 5851 } 5852 tcpp[0] = tcp->tcp_eager_next_q; 5853 tcp->tcp_eager_next_q = NULL; 5854 tcp->tcp_eager_last_q = NULL; 5855 ASSERT(listener->tcp_conn_req_cnt_q > 0); 5856 listener->tcp_conn_req_cnt_q--; 5857 break; 5858 } 5859 prev = tcpp[0]; 5860 } 5861 } 5862 tcp->tcp_listener = NULL; 5863 } 5864 5865 /* Shorthand to generate and send TPI error acks to our client */ 5866 static void 5867 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 5868 { 5869 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 5870 putnext(tcp->tcp_connp->conn_rq, mp); 5871 } 5872 5873 /* Shorthand to generate and send TPI error acks to our client */ 5874 static void 5875 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 5876 int t_error, int sys_error) 5877 { 5878 struct T_error_ack *teackp; 5879 5880 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 5881 M_PCPROTO, T_ERROR_ACK)) != NULL) { 5882 teackp = (struct T_error_ack *)mp->b_rptr; 5883 teackp->ERROR_prim = primitive; 5884 teackp->TLI_error = t_error; 5885 teackp->UNIX_error = sys_error; 5886 putnext(tcp->tcp_connp->conn_rq, mp); 5887 } 5888 } 5889 5890 /* 5891 * Note: No locks are held when inspecting tcp_g_*epriv_ports 5892 * but instead the code relies on: 5893 * - the fact that the address of the array and its size never changes 5894 * - the atomic assignment of the elements of the array 5895 */ 5896 /* ARGSUSED */ 5897 static int 5898 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 5899 { 5900 int i; 5901 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 5902 5903 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5904 if (tcps->tcps_g_epriv_ports[i] != 0) 5905 (void) mi_mpprintf(mp, "%d ", 5906 tcps->tcps_g_epriv_ports[i]); 5907 } 5908 return (0); 5909 } 5910 5911 /* 5912 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 5913 * threads from changing it at the same time. 5914 */ 5915 /* ARGSUSED */ 5916 static int 5917 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 5918 cred_t *cr) 5919 { 5920 long new_value; 5921 int i; 5922 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 5923 5924 /* 5925 * Fail the request if the new value does not lie within the 5926 * port number limits. 5927 */ 5928 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 5929 new_value <= 0 || new_value >= 65536) { 5930 return (EINVAL); 5931 } 5932 5933 mutex_enter(&tcps->tcps_epriv_port_lock); 5934 /* Check if the value is already in the list */ 5935 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5936 if (new_value == tcps->tcps_g_epriv_ports[i]) { 5937 mutex_exit(&tcps->tcps_epriv_port_lock); 5938 return (EEXIST); 5939 } 5940 } 5941 /* Find an empty slot */ 5942 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5943 if (tcps->tcps_g_epriv_ports[i] == 0) 5944 break; 5945 } 5946 if (i == tcps->tcps_g_num_epriv_ports) { 5947 mutex_exit(&tcps->tcps_epriv_port_lock); 5948 return (EOVERFLOW); 5949 } 5950 /* Set the new value */ 5951 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 5952 mutex_exit(&tcps->tcps_epriv_port_lock); 5953 return (0); 5954 } 5955 5956 /* 5957 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 5958 * threads from changing it at the same time. 5959 */ 5960 /* ARGSUSED */ 5961 static int 5962 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 5963 cred_t *cr) 5964 { 5965 long new_value; 5966 int i; 5967 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 5968 5969 /* 5970 * Fail the request if the new value does not lie within the 5971 * port number limits. 5972 */ 5973 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 5974 new_value >= 65536) { 5975 return (EINVAL); 5976 } 5977 5978 mutex_enter(&tcps->tcps_epriv_port_lock); 5979 /* Check that the value is already in the list */ 5980 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 5981 if (tcps->tcps_g_epriv_ports[i] == new_value) 5982 break; 5983 } 5984 if (i == tcps->tcps_g_num_epriv_ports) { 5985 mutex_exit(&tcps->tcps_epriv_port_lock); 5986 return (ESRCH); 5987 } 5988 /* Clear the value */ 5989 tcps->tcps_g_epriv_ports[i] = 0; 5990 mutex_exit(&tcps->tcps_epriv_port_lock); 5991 return (0); 5992 } 5993 5994 /* Return the TPI/TLI equivalent of our current tcp_state */ 5995 static int 5996 tcp_tpistate(tcp_t *tcp) 5997 { 5998 switch (tcp->tcp_state) { 5999 case TCPS_IDLE: 6000 return (TS_UNBND); 6001 case TCPS_LISTEN: 6002 /* 6003 * Return whether there are outstanding T_CONN_IND waiting 6004 * for the matching T_CONN_RES. Therefore don't count q0. 6005 */ 6006 if (tcp->tcp_conn_req_cnt_q > 0) 6007 return (TS_WRES_CIND); 6008 else 6009 return (TS_IDLE); 6010 case TCPS_BOUND: 6011 return (TS_IDLE); 6012 case TCPS_SYN_SENT: 6013 return (TS_WCON_CREQ); 6014 case TCPS_SYN_RCVD: 6015 /* 6016 * Note: assumption: this has to the active open SYN_RCVD. 6017 * The passive instance is detached in SYN_RCVD stage of 6018 * incoming connection processing so we cannot get request 6019 * for T_info_ack on it. 6020 */ 6021 return (TS_WACK_CRES); 6022 case TCPS_ESTABLISHED: 6023 return (TS_DATA_XFER); 6024 case TCPS_CLOSE_WAIT: 6025 return (TS_WREQ_ORDREL); 6026 case TCPS_FIN_WAIT_1: 6027 return (TS_WIND_ORDREL); 6028 case TCPS_FIN_WAIT_2: 6029 return (TS_WIND_ORDREL); 6030 6031 case TCPS_CLOSING: 6032 case TCPS_LAST_ACK: 6033 case TCPS_TIME_WAIT: 6034 case TCPS_CLOSED: 6035 /* 6036 * Following TS_WACK_DREQ7 is a rendition of "not 6037 * yet TS_IDLE" TPI state. There is no best match to any 6038 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6039 * choose a value chosen that will map to TLI/XTI level 6040 * state of TSTATECHNG (state is process of changing) which 6041 * captures what this dummy state represents. 6042 */ 6043 return (TS_WACK_DREQ7); 6044 default: 6045 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6046 tcp->tcp_state, tcp_display(tcp, NULL, 6047 DISP_PORT_ONLY)); 6048 return (TS_UNBND); 6049 } 6050 } 6051 6052 static void 6053 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6054 { 6055 tcp_stack_t *tcps = tcp->tcp_tcps; 6056 conn_t *connp = tcp->tcp_connp; 6057 6058 if (connp->conn_family == AF_INET6) 6059 *tia = tcp_g_t_info_ack_v6; 6060 else 6061 *tia = tcp_g_t_info_ack; 6062 tia->CURRENT_state = tcp_tpistate(tcp); 6063 tia->OPT_size = tcp_max_optsize; 6064 if (tcp->tcp_mss == 0) { 6065 /* Not yet set - tcp_open does not set mss */ 6066 if (connp->conn_ipversion == IPV4_VERSION) 6067 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 6068 else 6069 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 6070 } else { 6071 tia->TIDU_size = tcp->tcp_mss; 6072 } 6073 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6074 } 6075 6076 static void 6077 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 6078 t_uscalar_t cap_bits1) 6079 { 6080 tcap->CAP_bits1 = 0; 6081 6082 if (cap_bits1 & TC1_INFO) { 6083 tcp_copy_info(&tcap->INFO_ack, tcp); 6084 tcap->CAP_bits1 |= TC1_INFO; 6085 } 6086 6087 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6088 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6089 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6090 } 6091 6092 } 6093 6094 /* 6095 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6096 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6097 * tcp_g_t_info_ack. The current state of the stream is copied from 6098 * tcp_state. 6099 */ 6100 static void 6101 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6102 { 6103 t_uscalar_t cap_bits1; 6104 struct T_capability_ack *tcap; 6105 6106 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6107 freemsg(mp); 6108 return; 6109 } 6110 6111 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6112 6113 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6114 mp->b_datap->db_type, T_CAPABILITY_ACK); 6115 if (mp == NULL) 6116 return; 6117 6118 tcap = (struct T_capability_ack *)mp->b_rptr; 6119 tcp_do_capability_ack(tcp, tcap, cap_bits1); 6120 6121 putnext(tcp->tcp_connp->conn_rq, mp); 6122 } 6123 6124 /* 6125 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6126 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6127 * The current state of the stream is copied from tcp_state. 6128 */ 6129 static void 6130 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6131 { 6132 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6133 T_INFO_ACK); 6134 if (!mp) { 6135 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6136 return; 6137 } 6138 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6139 putnext(tcp->tcp_connp->conn_rq, mp); 6140 } 6141 6142 /* Respond to the TPI addr request */ 6143 static void 6144 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 6145 { 6146 struct sockaddr *sa; 6147 mblk_t *ackmp; 6148 struct T_addr_ack *taa; 6149 conn_t *connp = tcp->tcp_connp; 6150 uint_t addrlen; 6151 6152 /* Make it large enough for worst case */ 6153 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 6154 2 * sizeof (sin6_t), 1); 6155 if (ackmp == NULL) { 6156 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6157 return; 6158 } 6159 6160 taa = (struct T_addr_ack *)ackmp->b_rptr; 6161 6162 bzero(taa, sizeof (struct T_addr_ack)); 6163 ackmp->b_wptr = (uchar_t *)&taa[1]; 6164 6165 taa->PRIM_type = T_ADDR_ACK; 6166 ackmp->b_datap->db_type = M_PCPROTO; 6167 6168 if (connp->conn_family == AF_INET) 6169 addrlen = sizeof (sin_t); 6170 else 6171 addrlen = sizeof (sin6_t); 6172 6173 /* 6174 * Note: Following code assumes 32 bit alignment of basic 6175 * data structures like sin_t and struct T_addr_ack. 6176 */ 6177 if (tcp->tcp_state >= TCPS_BOUND) { 6178 /* 6179 * Fill in local address first 6180 */ 6181 taa->LOCADDR_offset = sizeof (*taa); 6182 taa->LOCADDR_length = addrlen; 6183 sa = (struct sockaddr *)&taa[1]; 6184 (void) conn_getsockname(connp, sa, &addrlen); 6185 ackmp->b_wptr += addrlen; 6186 } 6187 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 6188 /* 6189 * Fill in Remote address 6190 */ 6191 taa->REMADDR_length = addrlen; 6192 /* assumed 32-bit alignment */ 6193 taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; 6194 sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset); 6195 (void) conn_getpeername(connp, sa, &addrlen); 6196 ackmp->b_wptr += addrlen; 6197 } 6198 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 6199 putnext(tcp->tcp_connp->conn_rq, ackmp); 6200 } 6201 6202 /* 6203 * Handle reinitialization of a tcp structure. 6204 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 6205 */ 6206 static void 6207 tcp_reinit(tcp_t *tcp) 6208 { 6209 mblk_t *mp; 6210 tcp_stack_t *tcps = tcp->tcp_tcps; 6211 conn_t *connp = tcp->tcp_connp; 6212 6213 TCP_STAT(tcps, tcp_reinit_calls); 6214 6215 /* tcp_reinit should never be called for detached tcp_t's */ 6216 ASSERT(tcp->tcp_listener == NULL); 6217 ASSERT((connp->conn_family == AF_INET && 6218 connp->conn_ipversion == IPV4_VERSION) || 6219 (connp->conn_family == AF_INET6 && 6220 (connp->conn_ipversion == IPV4_VERSION || 6221 connp->conn_ipversion == IPV6_VERSION))); 6222 6223 /* Cancel outstanding timers */ 6224 tcp_timers_stop(tcp); 6225 6226 /* 6227 * Reset everything in the state vector, after updating global 6228 * MIB data from instance counters. 6229 */ 6230 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 6231 tcp->tcp_ibsegs = 0; 6232 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 6233 tcp->tcp_obsegs = 0; 6234 6235 tcp_close_mpp(&tcp->tcp_xmit_head); 6236 if (tcp->tcp_snd_zcopy_aware) 6237 tcp_zcopy_notify(tcp); 6238 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 6239 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 6240 mutex_enter(&tcp->tcp_non_sq_lock); 6241 if (tcp->tcp_flow_stopped && 6242 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 6243 tcp_clrqfull(tcp); 6244 } 6245 mutex_exit(&tcp->tcp_non_sq_lock); 6246 tcp_close_mpp(&tcp->tcp_reass_head); 6247 tcp->tcp_reass_tail = NULL; 6248 if (tcp->tcp_rcv_list != NULL) { 6249 /* Free b_next chain */ 6250 tcp_close_mpp(&tcp->tcp_rcv_list); 6251 tcp->tcp_rcv_last_head = NULL; 6252 tcp->tcp_rcv_last_tail = NULL; 6253 tcp->tcp_rcv_cnt = 0; 6254 } 6255 tcp->tcp_rcv_last_tail = NULL; 6256 6257 if ((mp = tcp->tcp_urp_mp) != NULL) { 6258 freemsg(mp); 6259 tcp->tcp_urp_mp = NULL; 6260 } 6261 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 6262 freemsg(mp); 6263 tcp->tcp_urp_mark_mp = NULL; 6264 } 6265 if (tcp->tcp_fused_sigurg_mp != NULL) { 6266 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6267 freeb(tcp->tcp_fused_sigurg_mp); 6268 tcp->tcp_fused_sigurg_mp = NULL; 6269 } 6270 if (tcp->tcp_ordrel_mp != NULL) { 6271 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 6272 freeb(tcp->tcp_ordrel_mp); 6273 tcp->tcp_ordrel_mp = NULL; 6274 } 6275 6276 /* 6277 * Following is a union with two members which are 6278 * identical types and size so the following cleanup 6279 * is enough. 6280 */ 6281 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 6282 6283 CL_INET_DISCONNECT(connp); 6284 6285 /* 6286 * The connection can't be on the tcp_time_wait_head list 6287 * since it is not detached. 6288 */ 6289 ASSERT(tcp->tcp_time_wait_next == NULL); 6290 ASSERT(tcp->tcp_time_wait_prev == NULL); 6291 ASSERT(tcp->tcp_time_wait_expire == 0); 6292 6293 if (tcp->tcp_kssl_pending) { 6294 tcp->tcp_kssl_pending = B_FALSE; 6295 6296 /* Don't reset if the initialized by bind. */ 6297 if (tcp->tcp_kssl_ent != NULL) { 6298 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 6299 KSSL_NO_PROXY); 6300 } 6301 } 6302 if (tcp->tcp_kssl_ctx != NULL) { 6303 kssl_release_ctx(tcp->tcp_kssl_ctx); 6304 tcp->tcp_kssl_ctx = NULL; 6305 } 6306 6307 /* 6308 * Reset/preserve other values 6309 */ 6310 tcp_reinit_values(tcp); 6311 ipcl_hash_remove(connp); 6312 ixa_cleanup(connp->conn_ixa); 6313 tcp_ipsec_cleanup(tcp); 6314 6315 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 6316 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 6317 6318 if (tcp->tcp_conn_req_max != 0) { 6319 /* 6320 * This is the case when a TLI program uses the same 6321 * transport end point to accept a connection. This 6322 * makes the TCP both a listener and acceptor. When 6323 * this connection is closed, we need to set the state 6324 * back to TCPS_LISTEN. Make sure that the eager list 6325 * is reinitialized. 6326 * 6327 * Note that this stream is still bound to the four 6328 * tuples of the previous connection in IP. If a new 6329 * SYN with different foreign address comes in, IP will 6330 * not find it and will send it to the global queue. In 6331 * the global queue, TCP will do a tcp_lookup_listener() 6332 * to find this stream. This works because this stream 6333 * is only removed from connected hash. 6334 * 6335 */ 6336 tcp->tcp_state = TCPS_LISTEN; 6337 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 6338 tcp->tcp_eager_next_drop_q0 = tcp; 6339 tcp->tcp_eager_prev_drop_q0 = tcp; 6340 /* 6341 * Initially set conn_recv to tcp_input_listener_unbound to try 6342 * to pick a good squeue for the listener when the first SYN 6343 * arrives. tcp_input_listener_unbound sets it to 6344 * tcp_input_listener on that first SYN. 6345 */ 6346 connp->conn_recv = tcp_input_listener_unbound; 6347 6348 connp->conn_proto = IPPROTO_TCP; 6349 connp->conn_faddr_v6 = ipv6_all_zeros; 6350 connp->conn_fport = 0; 6351 6352 (void) ipcl_bind_insert(connp); 6353 } else { 6354 tcp->tcp_state = TCPS_BOUND; 6355 } 6356 6357 /* 6358 * Initialize to default values 6359 */ 6360 tcp_init_values(tcp); 6361 6362 ASSERT(tcp->tcp_ptpbhn != NULL); 6363 tcp->tcp_rwnd = connp->conn_rcvbuf; 6364 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 6365 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 6366 } 6367 6368 /* 6369 * Force values to zero that need be zero. 6370 * Do not touch values asociated with the BOUND or LISTEN state 6371 * since the connection will end up in that state after the reinit. 6372 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 6373 * structure! 6374 */ 6375 static void 6376 tcp_reinit_values(tcp) 6377 tcp_t *tcp; 6378 { 6379 tcp_stack_t *tcps = tcp->tcp_tcps; 6380 conn_t *connp = tcp->tcp_connp; 6381 6382 #ifndef lint 6383 #define DONTCARE(x) 6384 #define PRESERVE(x) 6385 #else 6386 #define DONTCARE(x) ((x) = (x)) 6387 #define PRESERVE(x) ((x) = (x)) 6388 #endif /* lint */ 6389 6390 PRESERVE(tcp->tcp_bind_hash_port); 6391 PRESERVE(tcp->tcp_bind_hash); 6392 PRESERVE(tcp->tcp_ptpbhn); 6393 PRESERVE(tcp->tcp_acceptor_hash); 6394 PRESERVE(tcp->tcp_ptpahn); 6395 6396 /* Should be ASSERT NULL on these with new code! */ 6397 ASSERT(tcp->tcp_time_wait_next == NULL); 6398 ASSERT(tcp->tcp_time_wait_prev == NULL); 6399 ASSERT(tcp->tcp_time_wait_expire == 0); 6400 PRESERVE(tcp->tcp_state); 6401 PRESERVE(connp->conn_rq); 6402 PRESERVE(connp->conn_wq); 6403 6404 ASSERT(tcp->tcp_xmit_head == NULL); 6405 ASSERT(tcp->tcp_xmit_last == NULL); 6406 ASSERT(tcp->tcp_unsent == 0); 6407 ASSERT(tcp->tcp_xmit_tail == NULL); 6408 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 6409 6410 tcp->tcp_snxt = 0; /* Displayed in mib */ 6411 tcp->tcp_suna = 0; /* Displayed in mib */ 6412 tcp->tcp_swnd = 0; 6413 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 6414 6415 ASSERT(tcp->tcp_ibsegs == 0); 6416 ASSERT(tcp->tcp_obsegs == 0); 6417 6418 if (connp->conn_ht_iphc != NULL) { 6419 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 6420 connp->conn_ht_iphc = NULL; 6421 connp->conn_ht_iphc_allocated = 0; 6422 connp->conn_ht_iphc_len = 0; 6423 connp->conn_ht_ulp = NULL; 6424 connp->conn_ht_ulp_len = 0; 6425 tcp->tcp_ipha = NULL; 6426 tcp->tcp_ip6h = NULL; 6427 tcp->tcp_tcpha = NULL; 6428 } 6429 6430 /* We clear any IP_OPTIONS and extension headers */ 6431 ip_pkt_free(&connp->conn_xmit_ipp); 6432 6433 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 6434 DONTCARE(tcp->tcp_ipha); 6435 DONTCARE(tcp->tcp_ip6h); 6436 DONTCARE(tcp->tcp_tcpha); 6437 tcp->tcp_valid_bits = 0; 6438 6439 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 6440 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 6441 tcp->tcp_last_rcv_lbolt = 0; 6442 6443 tcp->tcp_init_cwnd = 0; 6444 6445 tcp->tcp_urp_last_valid = 0; 6446 tcp->tcp_hard_binding = 0; 6447 6448 tcp->tcp_fin_acked = 0; 6449 tcp->tcp_fin_rcvd = 0; 6450 tcp->tcp_fin_sent = 0; 6451 tcp->tcp_ordrel_done = 0; 6452 6453 tcp->tcp_detached = 0; 6454 6455 tcp->tcp_snd_ws_ok = B_FALSE; 6456 tcp->tcp_snd_ts_ok = B_FALSE; 6457 tcp->tcp_zero_win_probe = 0; 6458 6459 tcp->tcp_loopback = 0; 6460 tcp->tcp_localnet = 0; 6461 tcp->tcp_syn_defense = 0; 6462 tcp->tcp_set_timer = 0; 6463 6464 tcp->tcp_active_open = 0; 6465 tcp->tcp_rexmit = B_FALSE; 6466 tcp->tcp_xmit_zc_clean = B_FALSE; 6467 6468 tcp->tcp_snd_sack_ok = B_FALSE; 6469 tcp->tcp_hwcksum = B_FALSE; 6470 6471 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 6472 6473 tcp->tcp_conn_def_q0 = 0; 6474 tcp->tcp_ip_forward_progress = B_FALSE; 6475 tcp->tcp_ecn_ok = B_FALSE; 6476 6477 tcp->tcp_cwr = B_FALSE; 6478 tcp->tcp_ecn_echo_on = B_FALSE; 6479 tcp->tcp_is_wnd_shrnk = B_FALSE; 6480 6481 if (tcp->tcp_sack_info != NULL) { 6482 if (tcp->tcp_notsack_list != NULL) { 6483 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 6484 tcp); 6485 } 6486 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 6487 tcp->tcp_sack_info = NULL; 6488 } 6489 6490 tcp->tcp_rcv_ws = 0; 6491 tcp->tcp_snd_ws = 0; 6492 tcp->tcp_ts_recent = 0; 6493 tcp->tcp_rnxt = 0; /* Displayed in mib */ 6494 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 6495 tcp->tcp_initial_pmtu = 0; 6496 6497 ASSERT(tcp->tcp_reass_head == NULL); 6498 ASSERT(tcp->tcp_reass_tail == NULL); 6499 6500 tcp->tcp_cwnd_cnt = 0; 6501 6502 ASSERT(tcp->tcp_rcv_list == NULL); 6503 ASSERT(tcp->tcp_rcv_last_head == NULL); 6504 ASSERT(tcp->tcp_rcv_last_tail == NULL); 6505 ASSERT(tcp->tcp_rcv_cnt == 0); 6506 6507 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 6508 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 6509 tcp->tcp_csuna = 0; 6510 6511 tcp->tcp_rto = 0; /* Displayed in MIB */ 6512 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 6513 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 6514 tcp->tcp_rtt_update = 0; 6515 6516 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6517 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 6518 6519 tcp->tcp_rack = 0; /* Displayed in mib */ 6520 tcp->tcp_rack_cnt = 0; 6521 tcp->tcp_rack_cur_max = 0; 6522 tcp->tcp_rack_abs_max = 0; 6523 6524 tcp->tcp_max_swnd = 0; 6525 6526 ASSERT(tcp->tcp_listener == NULL); 6527 6528 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 6529 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 6530 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 6531 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 6532 6533 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 6534 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 6535 PRESERVE(tcp->tcp_conn_req_max); 6536 PRESERVE(tcp->tcp_conn_req_seqnum); 6537 6538 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 6539 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 6540 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 6541 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 6542 6543 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 6544 ASSERT(tcp->tcp_urp_mp == NULL); 6545 ASSERT(tcp->tcp_urp_mark_mp == NULL); 6546 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 6547 6548 ASSERT(tcp->tcp_eager_next_q == NULL); 6549 ASSERT(tcp->tcp_eager_last_q == NULL); 6550 ASSERT((tcp->tcp_eager_next_q0 == NULL && 6551 tcp->tcp_eager_prev_q0 == NULL) || 6552 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 6553 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 6554 6555 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 6556 tcp->tcp_eager_prev_drop_q0 == NULL) || 6557 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 6558 6559 tcp->tcp_client_errno = 0; 6560 6561 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 6562 6563 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 6564 6565 PRESERVE(connp->conn_bound_addr_v6); 6566 tcp->tcp_last_sent_len = 0; 6567 tcp->tcp_dupack_cnt = 0; 6568 6569 connp->conn_fport = 0; /* Displayed in MIB */ 6570 PRESERVE(connp->conn_lport); 6571 6572 PRESERVE(tcp->tcp_acceptor_lockp); 6573 6574 ASSERT(tcp->tcp_ordrel_mp == NULL); 6575 PRESERVE(tcp->tcp_acceptor_id); 6576 DONTCARE(tcp->tcp_ipsec_overhead); 6577 6578 PRESERVE(connp->conn_family); 6579 /* Remove any remnants of mapped address binding */ 6580 if (connp->conn_family == AF_INET6) { 6581 connp->conn_ipversion = IPV6_VERSION; 6582 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 6583 } else { 6584 connp->conn_ipversion = IPV4_VERSION; 6585 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 6586 } 6587 6588 connp->conn_bound_if = 0; 6589 connp->conn_recv_ancillary.crb_all = 0; 6590 tcp->tcp_recvifindex = 0; 6591 tcp->tcp_recvhops = 0; 6592 tcp->tcp_closed = 0; 6593 tcp->tcp_cleandeathtag = 0; 6594 if (tcp->tcp_hopopts != NULL) { 6595 mi_free(tcp->tcp_hopopts); 6596 tcp->tcp_hopopts = NULL; 6597 tcp->tcp_hopoptslen = 0; 6598 } 6599 ASSERT(tcp->tcp_hopoptslen == 0); 6600 if (tcp->tcp_dstopts != NULL) { 6601 mi_free(tcp->tcp_dstopts); 6602 tcp->tcp_dstopts = NULL; 6603 tcp->tcp_dstoptslen = 0; 6604 } 6605 ASSERT(tcp->tcp_dstoptslen == 0); 6606 if (tcp->tcp_rthdrdstopts != NULL) { 6607 mi_free(tcp->tcp_rthdrdstopts); 6608 tcp->tcp_rthdrdstopts = NULL; 6609 tcp->tcp_rthdrdstoptslen = 0; 6610 } 6611 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 6612 if (tcp->tcp_rthdr != NULL) { 6613 mi_free(tcp->tcp_rthdr); 6614 tcp->tcp_rthdr = NULL; 6615 tcp->tcp_rthdrlen = 0; 6616 } 6617 ASSERT(tcp->tcp_rthdrlen == 0); 6618 6619 /* Reset fusion-related fields */ 6620 tcp->tcp_fused = B_FALSE; 6621 tcp->tcp_unfusable = B_FALSE; 6622 tcp->tcp_fused_sigurg = B_FALSE; 6623 tcp->tcp_loopback_peer = NULL; 6624 6625 tcp->tcp_lso = B_FALSE; 6626 6627 tcp->tcp_in_ack_unsent = 0; 6628 tcp->tcp_cork = B_FALSE; 6629 tcp->tcp_tconnind_started = B_FALSE; 6630 6631 PRESERVE(tcp->tcp_squeue_bytes); 6632 6633 ASSERT(tcp->tcp_kssl_ctx == NULL); 6634 ASSERT(!tcp->tcp_kssl_pending); 6635 PRESERVE(tcp->tcp_kssl_ent); 6636 6637 tcp->tcp_closemp_used = B_FALSE; 6638 6639 PRESERVE(tcp->tcp_rsrv_mp); 6640 PRESERVE(tcp->tcp_rsrv_mp_lock); 6641 6642 #ifdef DEBUG 6643 DONTCARE(tcp->tcmp_stk[0]); 6644 #endif 6645 6646 PRESERVE(tcp->tcp_connid); 6647 6648 6649 #undef DONTCARE 6650 #undef PRESERVE 6651 } 6652 6653 static void 6654 tcp_init_values(tcp_t *tcp) 6655 { 6656 tcp_stack_t *tcps = tcp->tcp_tcps; 6657 conn_t *connp = tcp->tcp_connp; 6658 6659 ASSERT((connp->conn_family == AF_INET && 6660 connp->conn_ipversion == IPV4_VERSION) || 6661 (connp->conn_family == AF_INET6 && 6662 (connp->conn_ipversion == IPV4_VERSION || 6663 connp->conn_ipversion == IPV6_VERSION))); 6664 6665 /* 6666 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 6667 * will be close to tcp_rexmit_interval_initial. By doing this, we 6668 * allow the algorithm to adjust slowly to large fluctuations of RTT 6669 * during first few transmissions of a connection as seen in slow 6670 * links. 6671 */ 6672 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 6673 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 6674 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 6675 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 6676 tcps->tcps_conn_grace_period; 6677 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 6678 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 6679 tcp->tcp_timer_backoff = 0; 6680 tcp->tcp_ms_we_have_waited = 0; 6681 tcp->tcp_last_recv_time = ddi_get_lbolt(); 6682 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 6683 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 6684 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 6685 6686 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 6687 6688 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 6689 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 6690 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 6691 /* 6692 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 6693 * passive open. 6694 */ 6695 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 6696 6697 tcp->tcp_naglim = tcps->tcps_naglim_def; 6698 6699 /* NOTE: ISS is now set in tcp_set_destination(). */ 6700 6701 /* Reset fusion-related fields */ 6702 tcp->tcp_fused = B_FALSE; 6703 tcp->tcp_unfusable = B_FALSE; 6704 tcp->tcp_fused_sigurg = B_FALSE; 6705 tcp->tcp_loopback_peer = NULL; 6706 6707 /* We rebuild the header template on the next connect/conn_request */ 6708 6709 connp->conn_mlp_type = mlptSingle; 6710 6711 /* 6712 * Init the window scale to the max so tcp_rwnd_set() won't pare 6713 * down tcp_rwnd. tcp_set_destination() will set the right value later. 6714 */ 6715 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 6716 tcp->tcp_rwnd = connp->conn_rcvbuf; 6717 6718 tcp->tcp_cork = B_FALSE; 6719 /* 6720 * Init the tcp_debug option if it wasn't already set. This value 6721 * determines whether TCP 6722 * calls strlog() to print out debug messages. Doing this 6723 * initialization here means that this value is not inherited thru 6724 * tcp_reinit(). 6725 */ 6726 if (!connp->conn_debug) 6727 connp->conn_debug = tcps->tcps_dbg; 6728 6729 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 6730 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 6731 } 6732 6733 /* At minimum we need 8 bytes in the TCP header for the lookup */ 6734 #define ICMP_MIN_TCP_HDR 8 6735 6736 /* 6737 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages 6738 * passed up by IP. The message is always received on the correct tcp_t. 6739 * Assumes that IP has pulled up everything up to and including the ICMP header. 6740 */ 6741 /* ARGSUSED2 */ 6742 static void 6743 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 6744 { 6745 conn_t *connp = (conn_t *)arg1; 6746 icmph_t *icmph; 6747 ipha_t *ipha; 6748 int iph_hdr_length; 6749 tcpha_t *tcpha; 6750 uint32_t seg_seq; 6751 tcp_t *tcp = connp->conn_tcp; 6752 6753 /* Assume IP provides aligned packets */ 6754 ASSERT(OK_32PTR(mp->b_rptr)); 6755 ASSERT((MBLKL(mp) >= sizeof (ipha_t))); 6756 6757 /* 6758 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 6759 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 6760 */ 6761 if (!(ira->ira_flags & IRAF_IS_IPV4)) { 6762 tcp_icmp_error_ipv6(tcp, mp, ira); 6763 return; 6764 } 6765 6766 /* Skip past the outer IP and ICMP headers */ 6767 iph_hdr_length = ira->ira_ip_hdr_length; 6768 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 6769 /* 6770 * If we don't have the correct outer IP header length 6771 * or if we don't have a complete inner IP header 6772 * drop it. 6773 */ 6774 if (iph_hdr_length < sizeof (ipha_t) || 6775 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 6776 noticmpv4: 6777 freemsg(mp); 6778 return; 6779 } 6780 ipha = (ipha_t *)&icmph[1]; 6781 6782 /* Skip past the inner IP and find the ULP header */ 6783 iph_hdr_length = IPH_HDR_LENGTH(ipha); 6784 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); 6785 /* 6786 * If we don't have the correct inner IP header length or if the ULP 6787 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 6788 * bytes of TCP header, drop it. 6789 */ 6790 if (iph_hdr_length < sizeof (ipha_t) || 6791 ipha->ipha_protocol != IPPROTO_TCP || 6792 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { 6793 goto noticmpv4; 6794 } 6795 6796 seg_seq = ntohl(tcpha->tha_seq); 6797 switch (icmph->icmph_type) { 6798 case ICMP_DEST_UNREACHABLE: 6799 switch (icmph->icmph_code) { 6800 case ICMP_FRAGMENTATION_NEEDED: 6801 /* 6802 * Update Path MTU, then try to send something out. 6803 */ 6804 tcp_update_pmtu(tcp, B_TRUE); 6805 tcp_rexmit_after_error(tcp); 6806 break; 6807 case ICMP_PORT_UNREACHABLE: 6808 case ICMP_PROTOCOL_UNREACHABLE: 6809 switch (tcp->tcp_state) { 6810 case TCPS_SYN_SENT: 6811 case TCPS_SYN_RCVD: 6812 /* 6813 * ICMP can snipe away incipient 6814 * TCP connections as long as 6815 * seq number is same as initial 6816 * send seq number. 6817 */ 6818 if (seg_seq == tcp->tcp_iss) { 6819 (void) tcp_clean_death(tcp, 6820 ECONNREFUSED, 6); 6821 } 6822 break; 6823 } 6824 break; 6825 case ICMP_HOST_UNREACHABLE: 6826 case ICMP_NET_UNREACHABLE: 6827 /* Record the error in case we finally time out. */ 6828 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 6829 tcp->tcp_client_errno = EHOSTUNREACH; 6830 else 6831 tcp->tcp_client_errno = ENETUNREACH; 6832 if (tcp->tcp_state == TCPS_SYN_RCVD) { 6833 if (tcp->tcp_listener != NULL && 6834 tcp->tcp_listener->tcp_syn_defense) { 6835 /* 6836 * Ditch the half-open connection if we 6837 * suspect a SYN attack is under way. 6838 */ 6839 (void) tcp_clean_death(tcp, 6840 tcp->tcp_client_errno, 7); 6841 } 6842 } 6843 break; 6844 default: 6845 break; 6846 } 6847 break; 6848 case ICMP_SOURCE_QUENCH: { 6849 /* 6850 * use a global boolean to control 6851 * whether TCP should respond to ICMP_SOURCE_QUENCH. 6852 * The default is false. 6853 */ 6854 if (tcp_icmp_source_quench) { 6855 /* 6856 * Reduce the sending rate as if we got a 6857 * retransmit timeout 6858 */ 6859 uint32_t npkt; 6860 6861 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 6862 tcp->tcp_mss; 6863 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 6864 tcp->tcp_cwnd = tcp->tcp_mss; 6865 tcp->tcp_cwnd_cnt = 0; 6866 } 6867 break; 6868 } 6869 } 6870 freemsg(mp); 6871 } 6872 6873 /* 6874 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might 6875 * change. But it can refer to fields like tcp_suna and tcp_snxt. 6876 * 6877 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP 6878 * error messages received by IP. The message is always received on the correct 6879 * tcp_t. 6880 */ 6881 /* ARGSUSED */ 6882 static boolean_t 6883 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, 6884 ip_recv_attr_t *ira) 6885 { 6886 tcpha_t *tcpha = (tcpha_t *)arg2; 6887 uint32_t seq = ntohl(tcpha->tha_seq); 6888 tcp_t *tcp = connp->conn_tcp; 6889 6890 /* 6891 * TCP sequence number contained in payload of the ICMP error message 6892 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, 6893 * the message is either a stale ICMP error, or an attack from the 6894 * network. Fail the verification. 6895 */ 6896 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 6897 return (B_FALSE); 6898 6899 /* For "too big" we also check the ignore flag */ 6900 if (ira->ira_flags & IRAF_IS_IPV4) { 6901 ASSERT(icmph != NULL); 6902 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 6903 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 6904 tcp->tcp_tcps->tcps_ignore_path_mtu) 6905 return (B_FALSE); 6906 } else { 6907 ASSERT(icmp6 != NULL); 6908 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && 6909 tcp->tcp_tcps->tcps_ignore_path_mtu) 6910 return (B_FALSE); 6911 } 6912 return (B_TRUE); 6913 } 6914 6915 /* 6916 * Update the TCP connection according to change of PMTU. 6917 * 6918 * Path MTU might have changed by either increase or decrease, so need to 6919 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 6920 * or negative MSS, since tcp_mss_set() will do it. 6921 */ 6922 static void 6923 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 6924 { 6925 uint32_t pmtu; 6926 int32_t mss; 6927 conn_t *connp = tcp->tcp_connp; 6928 ip_xmit_attr_t *ixa = connp->conn_ixa; 6929 iaflags_t ixaflags; 6930 6931 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 6932 return; 6933 6934 if (tcp->tcp_state < TCPS_ESTABLISHED) 6935 return; 6936 6937 /* 6938 * Always call ip_get_pmtu() to make sure that IP has updated 6939 * ixa_flags properly. 6940 */ 6941 pmtu = ip_get_pmtu(ixa); 6942 ixaflags = ixa->ixa_flags; 6943 6944 /* 6945 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 6946 * IPsec overhead if applied. Make sure to use the most recent 6947 * IPsec information. 6948 */ 6949 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 6950 6951 /* 6952 * Nothing to change, so just return. 6953 */ 6954 if (mss == tcp->tcp_mss) 6955 return; 6956 6957 /* 6958 * Currently, for ICMP errors, only PMTU decrease is handled. 6959 */ 6960 if (mss > tcp->tcp_mss && decrease_only) 6961 return; 6962 6963 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 6964 6965 /* 6966 * Update ixa_fragsize and ixa_pmtu. 6967 */ 6968 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 6969 6970 /* 6971 * Adjust MSS and all relevant variables. 6972 */ 6973 tcp_mss_set(tcp, mss); 6974 6975 /* 6976 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 6977 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 6978 * has a (potentially different) min size we do the same. Make sure to 6979 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 6980 * fragment the packet. 6981 * 6982 * LSO over IPv6 can not be fragmented. So need to disable LSO 6983 * when IPv6 fragmentation is needed. 6984 */ 6985 if (mss < tcp->tcp_tcps->tcps_mss_min) 6986 ixaflags |= IXAF_PMTU_TOO_SMALL; 6987 6988 if (ixaflags & IXAF_PMTU_TOO_SMALL) 6989 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 6990 6991 if ((connp->conn_ipversion == IPV4_VERSION) && 6992 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 6993 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 6994 } 6995 ixa->ixa_flags = ixaflags; 6996 } 6997 6998 /* 6999 * Do slow start retransmission after ICMP errors of PMTU changes. 7000 */ 7001 static void 7002 tcp_rexmit_after_error(tcp_t *tcp) 7003 { 7004 /* 7005 * All sent data has been acknowledged or no data left to send, just 7006 * to return. 7007 */ 7008 if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) || 7009 (tcp->tcp_xmit_head == NULL)) 7010 return; 7011 7012 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) 7013 tcp->tcp_rexmit_max = tcp->tcp_fss; 7014 else 7015 tcp->tcp_rexmit_max = tcp->tcp_snxt; 7016 7017 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 7018 tcp->tcp_rexmit = B_TRUE; 7019 tcp->tcp_dupack_cnt = 0; 7020 tcp->tcp_snd_burst = TCP_CWND_SS; 7021 tcp_ss_rexmit(tcp); 7022 } 7023 7024 /* 7025 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 7026 * error messages passed up by IP. 7027 * Assumes that IP has pulled up all the extension headers as well 7028 * as the ICMPv6 header. 7029 */ 7030 static void 7031 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) 7032 { 7033 icmp6_t *icmp6; 7034 ip6_t *ip6h; 7035 uint16_t iph_hdr_length = ira->ira_ip_hdr_length; 7036 tcpha_t *tcpha; 7037 uint8_t *nexthdrp; 7038 uint32_t seg_seq; 7039 7040 /* 7041 * Verify that we have a complete IP header. 7042 */ 7043 ASSERT((MBLKL(mp) >= sizeof (ip6_t))); 7044 7045 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 7046 ip6h = (ip6_t *)&icmp6[1]; 7047 /* 7048 * Verify if we have a complete ICMP and inner IP header. 7049 */ 7050 if ((uchar_t *)&ip6h[1] > mp->b_wptr) { 7051 noticmpv6: 7052 freemsg(mp); 7053 return; 7054 } 7055 7056 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 7057 goto noticmpv6; 7058 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 7059 /* 7060 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 7061 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 7062 * packet. 7063 */ 7064 if ((*nexthdrp != IPPROTO_TCP) || 7065 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 7066 goto noticmpv6; 7067 } 7068 7069 seg_seq = ntohl(tcpha->tha_seq); 7070 switch (icmp6->icmp6_type) { 7071 case ICMP6_PACKET_TOO_BIG: 7072 /* 7073 * Update Path MTU, then try to send something out. 7074 */ 7075 tcp_update_pmtu(tcp, B_TRUE); 7076 tcp_rexmit_after_error(tcp); 7077 break; 7078 case ICMP6_DST_UNREACH: 7079 switch (icmp6->icmp6_code) { 7080 case ICMP6_DST_UNREACH_NOPORT: 7081 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7082 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7083 (seg_seq == tcp->tcp_iss)) { 7084 (void) tcp_clean_death(tcp, 7085 ECONNREFUSED, 8); 7086 } 7087 break; 7088 case ICMP6_DST_UNREACH_ADMIN: 7089 case ICMP6_DST_UNREACH_NOROUTE: 7090 case ICMP6_DST_UNREACH_BEYONDSCOPE: 7091 case ICMP6_DST_UNREACH_ADDR: 7092 /* Record the error in case we finally time out. */ 7093 tcp->tcp_client_errno = EHOSTUNREACH; 7094 if (((tcp->tcp_state == TCPS_SYN_SENT) || 7095 (tcp->tcp_state == TCPS_SYN_RCVD)) && 7096 (seg_seq == tcp->tcp_iss)) { 7097 if (tcp->tcp_listener != NULL && 7098 tcp->tcp_listener->tcp_syn_defense) { 7099 /* 7100 * Ditch the half-open connection if we 7101 * suspect a SYN attack is under way. 7102 */ 7103 (void) tcp_clean_death(tcp, 7104 tcp->tcp_client_errno, 9); 7105 } 7106 } 7107 7108 7109 break; 7110 default: 7111 break; 7112 } 7113 break; 7114 case ICMP6_PARAM_PROB: 7115 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 7116 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 7117 (uchar_t *)ip6h + icmp6->icmp6_pptr == 7118 (uchar_t *)nexthdrp) { 7119 if (tcp->tcp_state == TCPS_SYN_SENT || 7120 tcp->tcp_state == TCPS_SYN_RCVD) { 7121 (void) tcp_clean_death(tcp, 7122 ECONNREFUSED, 10); 7123 } 7124 break; 7125 } 7126 break; 7127 7128 case ICMP6_TIME_EXCEEDED: 7129 default: 7130 break; 7131 } 7132 freemsg(mp); 7133 } 7134 7135 /* 7136 * Notify IP that we are having trouble with this connection. IP should 7137 * make note so it can potentially use a different IRE. 7138 */ 7139 static void 7140 tcp_ip_notify(tcp_t *tcp) 7141 { 7142 conn_t *connp = tcp->tcp_connp; 7143 ire_t *ire; 7144 7145 /* 7146 * Note: in the case of source routing we want to blow away the 7147 * route to the first source route hop. 7148 */ 7149 ire = connp->conn_ixa->ixa_ire; 7150 if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 7151 if (ire->ire_ipversion == IPV4_VERSION) { 7152 /* 7153 * As per RFC 1122, we send an RTM_LOSING to inform 7154 * routing protocols. 7155 */ 7156 ip_rts_change(RTM_LOSING, ire->ire_addr, 7157 ire->ire_gateway_addr, ire->ire_mask, 7158 connp->conn_laddr_v4, 0, 0, 0, 7159 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 7160 ire->ire_ipst); 7161 } 7162 (void) ire_no_good(ire); 7163 } 7164 } 7165 7166 #pragma inline(tcp_send_data) 7167 7168 /* 7169 * Timer callback routine for keepalive probe. We do a fake resend of 7170 * last ACKed byte. Then set a timer using RTO. When the timer expires, 7171 * check to see if we have heard anything from the other end for the last 7172 * RTO period. If we have, set the timer to expire for another 7173 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 7174 * RTO << 1 and check again when it expires. Keep exponentially increasing 7175 * the timeout if we have not heard from the other side. If for more than 7176 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 7177 * kill the connection unless the keepalive abort threshold is 0. In 7178 * that case, we will probe "forever." 7179 */ 7180 static void 7181 tcp_keepalive_killer(void *arg) 7182 { 7183 mblk_t *mp; 7184 conn_t *connp = (conn_t *)arg; 7185 tcp_t *tcp = connp->conn_tcp; 7186 int32_t firetime; 7187 int32_t idletime; 7188 int32_t ka_intrvl; 7189 tcp_stack_t *tcps = tcp->tcp_tcps; 7190 7191 tcp->tcp_ka_tid = 0; 7192 7193 if (tcp->tcp_fused) 7194 return; 7195 7196 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 7197 ka_intrvl = tcp->tcp_ka_interval; 7198 7199 /* 7200 * Keepalive probe should only be sent if the application has not 7201 * done a close on the connection. 7202 */ 7203 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 7204 return; 7205 } 7206 /* Timer fired too early, restart it. */ 7207 if (tcp->tcp_state < TCPS_ESTABLISHED) { 7208 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7209 MSEC_TO_TICK(ka_intrvl)); 7210 return; 7211 } 7212 7213 idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time); 7214 /* 7215 * If we have not heard from the other side for a long 7216 * time, kill the connection unless the keepalive abort 7217 * threshold is 0. In that case, we will probe "forever." 7218 */ 7219 if (tcp->tcp_ka_abort_thres != 0 && 7220 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 7221 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 7222 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 7223 tcp->tcp_client_errno : ETIMEDOUT, 11); 7224 return; 7225 } 7226 7227 if (tcp->tcp_snxt == tcp->tcp_suna && 7228 idletime >= ka_intrvl) { 7229 /* Fake resend of last ACKed byte. */ 7230 mblk_t *mp1 = allocb(1, BPRI_LO); 7231 7232 if (mp1 != NULL) { 7233 *mp1->b_wptr++ = '\0'; 7234 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 7235 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 7236 freeb(mp1); 7237 /* 7238 * if allocation failed, fall through to start the 7239 * timer back. 7240 */ 7241 if (mp != NULL) { 7242 tcp_send_data(tcp, mp); 7243 BUMP_MIB(&tcps->tcps_mib, 7244 tcpTimKeepaliveProbe); 7245 if (tcp->tcp_ka_last_intrvl != 0) { 7246 int max; 7247 /* 7248 * We should probe again at least 7249 * in ka_intrvl, but not more than 7250 * tcp_rexmit_interval_max. 7251 */ 7252 max = tcps->tcps_rexmit_interval_max; 7253 firetime = MIN(ka_intrvl - 1, 7254 tcp->tcp_ka_last_intrvl << 1); 7255 if (firetime > max) 7256 firetime = max; 7257 } else { 7258 firetime = tcp->tcp_rto; 7259 } 7260 tcp->tcp_ka_tid = TCP_TIMER(tcp, 7261 tcp_keepalive_killer, 7262 MSEC_TO_TICK(firetime)); 7263 tcp->tcp_ka_last_intrvl = firetime; 7264 return; 7265 } 7266 } 7267 } else { 7268 tcp->tcp_ka_last_intrvl = 0; 7269 } 7270 7271 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 7272 if ((firetime = ka_intrvl - idletime) < 0) { 7273 firetime = ka_intrvl; 7274 } 7275 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 7276 MSEC_TO_TICK(firetime)); 7277 } 7278 7279 int 7280 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 7281 { 7282 conn_t *connp = tcp->tcp_connp; 7283 queue_t *q = connp->conn_rq; 7284 int32_t mss = tcp->tcp_mss; 7285 int maxpsz; 7286 7287 if (TCP_IS_DETACHED(tcp)) 7288 return (mss); 7289 if (tcp->tcp_fused) { 7290 maxpsz = tcp_fuse_maxpsz(tcp); 7291 mss = INFPSZ; 7292 } else if (tcp->tcp_maxpsz_multiplier == 0) { 7293 /* 7294 * Set the sd_qn_maxpsz according to the socket send buffer 7295 * size, and sd_maxblk to INFPSZ (-1). This will essentially 7296 * instruct the stream head to copyin user data into contiguous 7297 * kernel-allocated buffers without breaking it up into smaller 7298 * chunks. We round up the buffer size to the nearest SMSS. 7299 */ 7300 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 7301 if (tcp->tcp_kssl_ctx == NULL) 7302 mss = INFPSZ; 7303 else 7304 mss = SSL3_MAX_RECORD_LEN; 7305 } else { 7306 /* 7307 * Set sd_qn_maxpsz to approx half the (receivers) buffer 7308 * (and a multiple of the mss). This instructs the stream 7309 * head to break down larger than SMSS writes into SMSS- 7310 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 7311 */ 7312 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 7313 if (maxpsz > connp->conn_sndbuf / 2) { 7314 maxpsz = connp->conn_sndbuf / 2; 7315 /* Round up to nearest mss */ 7316 maxpsz = MSS_ROUNDUP(maxpsz, mss); 7317 } 7318 } 7319 7320 (void) proto_set_maxpsz(q, connp, maxpsz); 7321 if (!(IPCL_IS_NONSTR(connp))) 7322 connp->conn_wq->q_maxpsz = maxpsz; 7323 if (set_maxblk) 7324 (void) proto_set_tx_maxblk(q, connp, mss); 7325 return (mss); 7326 } 7327 7328 /* 7329 * Extract option values from a tcp header. We put any found values into the 7330 * tcpopt struct and return a bitmask saying which options were found. 7331 */ 7332 static int 7333 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) 7334 { 7335 uchar_t *endp; 7336 int len; 7337 uint32_t mss; 7338 uchar_t *up = (uchar_t *)tcpha; 7339 int found = 0; 7340 int32_t sack_len; 7341 tcp_seq sack_begin, sack_end; 7342 tcp_t *tcp; 7343 7344 endp = up + TCP_HDR_LENGTH(tcpha); 7345 up += TCP_MIN_HEADER_LENGTH; 7346 while (up < endp) { 7347 len = endp - up; 7348 switch (*up) { 7349 case TCPOPT_EOL: 7350 break; 7351 7352 case TCPOPT_NOP: 7353 up++; 7354 continue; 7355 7356 case TCPOPT_MAXSEG: 7357 if (len < TCPOPT_MAXSEG_LEN || 7358 up[1] != TCPOPT_MAXSEG_LEN) 7359 break; 7360 7361 mss = BE16_TO_U16(up+2); 7362 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 7363 tcpopt->tcp_opt_mss = mss; 7364 found |= TCP_OPT_MSS_PRESENT; 7365 7366 up += TCPOPT_MAXSEG_LEN; 7367 continue; 7368 7369 case TCPOPT_WSCALE: 7370 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 7371 break; 7372 7373 if (up[2] > TCP_MAX_WINSHIFT) 7374 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 7375 else 7376 tcpopt->tcp_opt_wscale = up[2]; 7377 found |= TCP_OPT_WSCALE_PRESENT; 7378 7379 up += TCPOPT_WS_LEN; 7380 continue; 7381 7382 case TCPOPT_SACK_PERMITTED: 7383 if (len < TCPOPT_SACK_OK_LEN || 7384 up[1] != TCPOPT_SACK_OK_LEN) 7385 break; 7386 found |= TCP_OPT_SACK_OK_PRESENT; 7387 up += TCPOPT_SACK_OK_LEN; 7388 continue; 7389 7390 case TCPOPT_SACK: 7391 if (len <= 2 || up[1] <= 2 || len < up[1]) 7392 break; 7393 7394 /* If TCP is not interested in SACK blks... */ 7395 if ((tcp = tcpopt->tcp) == NULL) { 7396 up += up[1]; 7397 continue; 7398 } 7399 sack_len = up[1] - TCPOPT_HEADER_LEN; 7400 up += TCPOPT_HEADER_LEN; 7401 7402 /* 7403 * If the list is empty, allocate one and assume 7404 * nothing is sack'ed. 7405 */ 7406 ASSERT(tcp->tcp_sack_info != NULL); 7407 if (tcp->tcp_notsack_list == NULL) { 7408 tcp_notsack_update(&(tcp->tcp_notsack_list), 7409 tcp->tcp_suna, tcp->tcp_snxt, 7410 &(tcp->tcp_num_notsack_blk), 7411 &(tcp->tcp_cnt_notsack_list)); 7412 7413 /* 7414 * Make sure tcp_notsack_list is not NULL. 7415 * This happens when kmem_alloc(KM_NOSLEEP) 7416 * returns NULL. 7417 */ 7418 if (tcp->tcp_notsack_list == NULL) { 7419 up += sack_len; 7420 continue; 7421 } 7422 tcp->tcp_fack = tcp->tcp_suna; 7423 } 7424 7425 while (sack_len > 0) { 7426 if (up + 8 > endp) { 7427 up = endp; 7428 break; 7429 } 7430 sack_begin = BE32_TO_U32(up); 7431 up += 4; 7432 sack_end = BE32_TO_U32(up); 7433 up += 4; 7434 sack_len -= 8; 7435 /* 7436 * Bounds checking. Make sure the SACK 7437 * info is within tcp_suna and tcp_snxt. 7438 * If this SACK blk is out of bound, ignore 7439 * it but continue to parse the following 7440 * blks. 7441 */ 7442 if (SEQ_LEQ(sack_end, sack_begin) || 7443 SEQ_LT(sack_begin, tcp->tcp_suna) || 7444 SEQ_GT(sack_end, tcp->tcp_snxt)) { 7445 continue; 7446 } 7447 tcp_notsack_insert(&(tcp->tcp_notsack_list), 7448 sack_begin, sack_end, 7449 &(tcp->tcp_num_notsack_blk), 7450 &(tcp->tcp_cnt_notsack_list)); 7451 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 7452 tcp->tcp_fack = sack_end; 7453 } 7454 } 7455 found |= TCP_OPT_SACK_PRESENT; 7456 continue; 7457 7458 case TCPOPT_TSTAMP: 7459 if (len < TCPOPT_TSTAMP_LEN || 7460 up[1] != TCPOPT_TSTAMP_LEN) 7461 break; 7462 7463 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 7464 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 7465 7466 found |= TCP_OPT_TSTAMP_PRESENT; 7467 7468 up += TCPOPT_TSTAMP_LEN; 7469 continue; 7470 7471 default: 7472 if (len <= 1 || len < (int)up[1] || up[1] == 0) 7473 break; 7474 up += up[1]; 7475 continue; 7476 } 7477 break; 7478 } 7479 return (found); 7480 } 7481 7482 /* 7483 * Set the MSS associated with a particular tcp based on its current value, 7484 * and a new one passed in. Observe minimums and maximums, and reset other 7485 * state variables that we want to view as multiples of MSS. 7486 * 7487 * The value of MSS could be either increased or descreased. 7488 */ 7489 static void 7490 tcp_mss_set(tcp_t *tcp, uint32_t mss) 7491 { 7492 uint32_t mss_max; 7493 tcp_stack_t *tcps = tcp->tcp_tcps; 7494 conn_t *connp = tcp->tcp_connp; 7495 7496 if (connp->conn_ipversion == IPV4_VERSION) 7497 mss_max = tcps->tcps_mss_max_ipv4; 7498 else 7499 mss_max = tcps->tcps_mss_max_ipv6; 7500 7501 if (mss < tcps->tcps_mss_min) 7502 mss = tcps->tcps_mss_min; 7503 if (mss > mss_max) 7504 mss = mss_max; 7505 /* 7506 * Unless naglim has been set by our client to 7507 * a non-mss value, force naglim to track mss. 7508 * This can help to aggregate small writes. 7509 */ 7510 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 7511 tcp->tcp_naglim = mss; 7512 /* 7513 * TCP should be able to buffer at least 4 MSS data for obvious 7514 * performance reason. 7515 */ 7516 if ((mss << 2) > connp->conn_sndbuf) 7517 connp->conn_sndbuf = mss << 2; 7518 7519 /* 7520 * Set the send lowater to at least twice of MSS. 7521 */ 7522 if ((mss << 1) > connp->conn_sndlowat) 7523 connp->conn_sndlowat = mss << 1; 7524 7525 /* 7526 * Update tcp_cwnd according to the new value of MSS. Keep the 7527 * previous ratio to preserve the transmit rate. 7528 */ 7529 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 7530 tcp->tcp_cwnd_cnt = 0; 7531 7532 tcp->tcp_mss = mss; 7533 (void) tcp_maxpsz_set(tcp, B_TRUE); 7534 } 7535 7536 /* For /dev/tcp aka AF_INET open */ 7537 static int 7538 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7539 { 7540 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 7541 } 7542 7543 /* For /dev/tcp6 aka AF_INET6 open */ 7544 static int 7545 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 7546 { 7547 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 7548 } 7549 7550 static conn_t * 7551 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 7552 int *errorp) 7553 { 7554 tcp_t *tcp = NULL; 7555 conn_t *connp; 7556 zoneid_t zoneid; 7557 tcp_stack_t *tcps; 7558 squeue_t *sqp; 7559 7560 ASSERT(errorp != NULL); 7561 /* 7562 * Find the proper zoneid and netstack. 7563 */ 7564 /* 7565 * Special case for install: miniroot needs to be able to 7566 * access files via NFS as though it were always in the 7567 * global zone. 7568 */ 7569 if (credp == kcred && nfs_global_client_only != 0) { 7570 zoneid = GLOBAL_ZONEID; 7571 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 7572 netstack_tcp; 7573 ASSERT(tcps != NULL); 7574 } else { 7575 netstack_t *ns; 7576 7577 ns = netstack_find_by_cred(credp); 7578 ASSERT(ns != NULL); 7579 tcps = ns->netstack_tcp; 7580 ASSERT(tcps != NULL); 7581 7582 /* 7583 * For exclusive stacks we set the zoneid to zero 7584 * to make TCP operate as if in the global zone. 7585 */ 7586 if (tcps->tcps_netstack->netstack_stackid != 7587 GLOBAL_NETSTACKID) 7588 zoneid = GLOBAL_ZONEID; 7589 else 7590 zoneid = crgetzoneid(credp); 7591 } 7592 7593 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 7594 connp = (conn_t *)tcp_get_conn(sqp, tcps); 7595 /* 7596 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 7597 * so we drop it by one. 7598 */ 7599 netstack_rele(tcps->tcps_netstack); 7600 if (connp == NULL) { 7601 *errorp = ENOSR; 7602 return (NULL); 7603 } 7604 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 7605 7606 connp->conn_sqp = sqp; 7607 connp->conn_initial_sqp = connp->conn_sqp; 7608 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 7609 tcp = connp->conn_tcp; 7610 7611 /* 7612 * Besides asking IP to set the checksum for us, have conn_ip_output 7613 * to do the following checks when necessary: 7614 * 7615 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 7616 * IXAF_VERIFY_PMTU: verify PMTU changes 7617 * IXAF_VERIFY_LSO: verify LSO capability changes 7618 */ 7619 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 7620 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 7621 7622 if (!tcps->tcps_dev_flow_ctl) 7623 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 7624 7625 if (isv6) { 7626 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 7627 connp->conn_ipversion = IPV6_VERSION; 7628 connp->conn_family = AF_INET6; 7629 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7630 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 7631 } else { 7632 connp->conn_ipversion = IPV4_VERSION; 7633 connp->conn_family = AF_INET; 7634 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7635 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 7636 } 7637 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 7638 7639 crhold(credp); 7640 connp->conn_cred = credp; 7641 connp->conn_cpid = curproc->p_pid; 7642 connp->conn_open_time = ddi_get_lbolt64(); 7643 7644 connp->conn_zoneid = zoneid; 7645 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 7646 connp->conn_ixa->ixa_zoneid = zoneid; 7647 connp->conn_mlp_type = mlptSingle; 7648 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 7649 ASSERT(tcp->tcp_tcps == tcps); 7650 7651 /* 7652 * If the caller has the process-wide flag set, then default to MAC 7653 * exempt mode. This allows read-down to unlabeled hosts. 7654 */ 7655 if (getpflags(NET_MAC_AWARE, credp) != 0) 7656 connp->conn_mac_mode = CONN_MAC_AWARE; 7657 7658 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 7659 7660 if (issocket) { 7661 tcp->tcp_issocket = 1; 7662 } 7663 7664 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 7665 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 7666 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 7667 connp->conn_so_type = SOCK_STREAM; 7668 connp->conn_wroff = connp->conn_ht_iphc_allocated + 7669 tcps->tcps_wroff_xtra; 7670 7671 SOCK_CONNID_INIT(tcp->tcp_connid); 7672 tcp->tcp_state = TCPS_IDLE; 7673 tcp_init_values(tcp); 7674 return (connp); 7675 } 7676 7677 static int 7678 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 7679 boolean_t isv6) 7680 { 7681 tcp_t *tcp = NULL; 7682 conn_t *connp = NULL; 7683 int err; 7684 vmem_t *minor_arena = NULL; 7685 dev_t conn_dev; 7686 boolean_t issocket; 7687 7688 if (q->q_ptr != NULL) 7689 return (0); 7690 7691 if (sflag == MODOPEN) 7692 return (EINVAL); 7693 7694 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 7695 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 7696 minor_arena = ip_minor_arena_la; 7697 } else { 7698 /* 7699 * Either minor numbers in the large arena were exhausted 7700 * or a non socket application is doing the open. 7701 * Try to allocate from the small arena. 7702 */ 7703 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 7704 return (EBUSY); 7705 } 7706 minor_arena = ip_minor_arena_sa; 7707 } 7708 7709 ASSERT(minor_arena != NULL); 7710 7711 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 7712 7713 if (flag & SO_FALLBACK) { 7714 /* 7715 * Non streams socket needs a stream to fallback to 7716 */ 7717 RD(q)->q_ptr = (void *)conn_dev; 7718 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 7719 WR(q)->q_ptr = (void *)minor_arena; 7720 qprocson(q); 7721 return (0); 7722 } else if (flag & SO_ACCEPTOR) { 7723 q->q_qinfo = &tcp_acceptor_rinit; 7724 /* 7725 * the conn_dev and minor_arena will be subsequently used by 7726 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 7727 * the minor device number for this connection from the q_ptr. 7728 */ 7729 RD(q)->q_ptr = (void *)conn_dev; 7730 WR(q)->q_qinfo = &tcp_acceptor_winit; 7731 WR(q)->q_ptr = (void *)minor_arena; 7732 qprocson(q); 7733 return (0); 7734 } 7735 7736 issocket = flag & SO_SOCKSTR; 7737 connp = tcp_create_common(credp, isv6, issocket, &err); 7738 7739 if (connp == NULL) { 7740 inet_minor_free(minor_arena, conn_dev); 7741 q->q_ptr = WR(q)->q_ptr = NULL; 7742 return (err); 7743 } 7744 7745 connp->conn_rq = q; 7746 connp->conn_wq = WR(q); 7747 q->q_ptr = WR(q)->q_ptr = connp; 7748 7749 connp->conn_dev = conn_dev; 7750 connp->conn_minor_arena = minor_arena; 7751 7752 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 7753 ASSERT(WR(q)->q_qinfo == &tcp_winit); 7754 7755 tcp = connp->conn_tcp; 7756 7757 if (issocket) { 7758 WR(q)->q_qinfo = &tcp_sock_winit; 7759 } else { 7760 #ifdef _ILP32 7761 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 7762 #else 7763 tcp->tcp_acceptor_id = conn_dev; 7764 #endif /* _ILP32 */ 7765 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 7766 } 7767 7768 /* 7769 * Put the ref for TCP. Ref for IP was already put 7770 * by ipcl_conn_create. Also Make the conn_t globally 7771 * visible to walkers 7772 */ 7773 mutex_enter(&connp->conn_lock); 7774 CONN_INC_REF_LOCKED(connp); 7775 ASSERT(connp->conn_ref == 2); 7776 connp->conn_state_flags &= ~CONN_INCIPIENT; 7777 mutex_exit(&connp->conn_lock); 7778 7779 qprocson(q); 7780 return (0); 7781 } 7782 7783 /* 7784 * Some TCP options can be "set" by requesting them in the option 7785 * buffer. This is needed for XTI feature test though we do not 7786 * allow it in general. We interpret that this mechanism is more 7787 * applicable to OSI protocols and need not be allowed in general. 7788 * This routine filters out options for which it is not allowed (most) 7789 * and lets through those (few) for which it is. [ The XTI interface 7790 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 7791 * ever implemented will have to be allowed here ]. 7792 */ 7793 static boolean_t 7794 tcp_allow_connopt_set(int level, int name) 7795 { 7796 7797 switch (level) { 7798 case IPPROTO_TCP: 7799 switch (name) { 7800 case TCP_NODELAY: 7801 return (B_TRUE); 7802 default: 7803 return (B_FALSE); 7804 } 7805 /*NOTREACHED*/ 7806 default: 7807 return (B_FALSE); 7808 } 7809 /*NOTREACHED*/ 7810 } 7811 7812 /* 7813 * This routine gets default values of certain options whose default 7814 * values are maintained by protocol specific code 7815 */ 7816 /* ARGSUSED */ 7817 int 7818 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 7819 { 7820 int32_t *i1 = (int32_t *)ptr; 7821 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7822 7823 switch (level) { 7824 case IPPROTO_TCP: 7825 switch (name) { 7826 case TCP_NOTIFY_THRESHOLD: 7827 *i1 = tcps->tcps_ip_notify_interval; 7828 break; 7829 case TCP_ABORT_THRESHOLD: 7830 *i1 = tcps->tcps_ip_abort_interval; 7831 break; 7832 case TCP_CONN_NOTIFY_THRESHOLD: 7833 *i1 = tcps->tcps_ip_notify_cinterval; 7834 break; 7835 case TCP_CONN_ABORT_THRESHOLD: 7836 *i1 = tcps->tcps_ip_abort_cinterval; 7837 break; 7838 default: 7839 return (-1); 7840 } 7841 break; 7842 case IPPROTO_IP: 7843 switch (name) { 7844 case IP_TTL: 7845 *i1 = tcps->tcps_ipv4_ttl; 7846 break; 7847 default: 7848 return (-1); 7849 } 7850 break; 7851 case IPPROTO_IPV6: 7852 switch (name) { 7853 case IPV6_UNICAST_HOPS: 7854 *i1 = tcps->tcps_ipv6_hoplimit; 7855 break; 7856 default: 7857 return (-1); 7858 } 7859 break; 7860 default: 7861 return (-1); 7862 } 7863 return (sizeof (int)); 7864 } 7865 7866 /* 7867 * TCP routine to get the values of options. 7868 */ 7869 static int 7870 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 7871 { 7872 int *i1 = (int *)ptr; 7873 tcp_t *tcp = connp->conn_tcp; 7874 conn_opt_arg_t coas; 7875 int retval; 7876 7877 coas.coa_connp = connp; 7878 coas.coa_ixa = connp->conn_ixa; 7879 coas.coa_ipp = &connp->conn_xmit_ipp; 7880 coas.coa_ancillary = B_FALSE; 7881 coas.coa_changed = 0; 7882 7883 switch (level) { 7884 case SOL_SOCKET: 7885 switch (name) { 7886 case SO_SND_COPYAVOID: 7887 *i1 = tcp->tcp_snd_zcopy_on ? 7888 SO_SND_COPYAVOID : 0; 7889 return (sizeof (int)); 7890 case SO_ACCEPTCONN: 7891 *i1 = (tcp->tcp_state == TCPS_LISTEN); 7892 return (sizeof (int)); 7893 } 7894 break; 7895 case IPPROTO_TCP: 7896 switch (name) { 7897 case TCP_NODELAY: 7898 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 7899 return (sizeof (int)); 7900 case TCP_MAXSEG: 7901 *i1 = tcp->tcp_mss; 7902 return (sizeof (int)); 7903 case TCP_NOTIFY_THRESHOLD: 7904 *i1 = (int)tcp->tcp_first_timer_threshold; 7905 return (sizeof (int)); 7906 case TCP_ABORT_THRESHOLD: 7907 *i1 = tcp->tcp_second_timer_threshold; 7908 return (sizeof (int)); 7909 case TCP_CONN_NOTIFY_THRESHOLD: 7910 *i1 = tcp->tcp_first_ctimer_threshold; 7911 return (sizeof (int)); 7912 case TCP_CONN_ABORT_THRESHOLD: 7913 *i1 = tcp->tcp_second_ctimer_threshold; 7914 return (sizeof (int)); 7915 case TCP_INIT_CWND: 7916 *i1 = tcp->tcp_init_cwnd; 7917 return (sizeof (int)); 7918 case TCP_KEEPALIVE_THRESHOLD: 7919 *i1 = tcp->tcp_ka_interval; 7920 return (sizeof (int)); 7921 case TCP_KEEPALIVE_ABORT_THRESHOLD: 7922 *i1 = tcp->tcp_ka_abort_thres; 7923 return (sizeof (int)); 7924 case TCP_CORK: 7925 *i1 = tcp->tcp_cork; 7926 return (sizeof (int)); 7927 } 7928 break; 7929 case IPPROTO_IP: 7930 if (connp->conn_family != AF_INET) 7931 return (-1); 7932 switch (name) { 7933 case IP_OPTIONS: 7934 case T_IP_OPTIONS: 7935 /* Caller ensures enough space */ 7936 return (ip_opt_get_user(connp, ptr)); 7937 default: 7938 break; 7939 } 7940 break; 7941 7942 case IPPROTO_IPV6: 7943 /* 7944 * IPPROTO_IPV6 options are only supported for sockets 7945 * that are using IPv6 on the wire. 7946 */ 7947 if (connp->conn_ipversion != IPV6_VERSION) { 7948 return (-1); 7949 } 7950 switch (name) { 7951 case IPV6_PATHMTU: 7952 if (tcp->tcp_state < TCPS_ESTABLISHED) 7953 return (-1); 7954 break; 7955 } 7956 break; 7957 } 7958 mutex_enter(&connp->conn_lock); 7959 retval = conn_opt_get(&coas, level, name, ptr); 7960 mutex_exit(&connp->conn_lock); 7961 return (retval); 7962 } 7963 7964 /* 7965 * TCP routine to get the values of options. 7966 */ 7967 int 7968 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 7969 { 7970 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 7971 } 7972 7973 /* returns UNIX error, the optlen is a value-result arg */ 7974 int 7975 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 7976 void *optvalp, socklen_t *optlen, cred_t *cr) 7977 { 7978 conn_t *connp = (conn_t *)proto_handle; 7979 squeue_t *sqp = connp->conn_sqp; 7980 int error; 7981 t_uscalar_t max_optbuf_len; 7982 void *optvalp_buf; 7983 int len; 7984 7985 ASSERT(connp->conn_upper_handle != NULL); 7986 7987 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 7988 tcp_opt_obj.odb_opt_des_arr, 7989 tcp_opt_obj.odb_opt_arr_cnt, 7990 B_FALSE, B_TRUE, cr); 7991 if (error != 0) { 7992 if (error < 0) { 7993 error = proto_tlitosyserr(-error); 7994 } 7995 return (error); 7996 } 7997 7998 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 7999 8000 error = squeue_synch_enter(sqp, connp, NULL); 8001 if (error == ENOMEM) { 8002 kmem_free(optvalp_buf, max_optbuf_len); 8003 return (ENOMEM); 8004 } 8005 8006 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 8007 squeue_synch_exit(sqp, connp); 8008 8009 if (len == -1) { 8010 kmem_free(optvalp_buf, max_optbuf_len); 8011 return (EINVAL); 8012 } 8013 8014 /* 8015 * update optlen and copy option value 8016 */ 8017 t_uscalar_t size = MIN(len, *optlen); 8018 8019 bcopy(optvalp_buf, optvalp, size); 8020 bcopy(&size, optlen, sizeof (size)); 8021 8022 kmem_free(optvalp_buf, max_optbuf_len); 8023 return (0); 8024 } 8025 8026 /* 8027 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 8028 * Parameters are assumed to be verified by the caller. 8029 */ 8030 /* ARGSUSED */ 8031 int 8032 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 8033 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8034 void *thisdg_attrs, cred_t *cr) 8035 { 8036 tcp_t *tcp = connp->conn_tcp; 8037 int *i1 = (int *)invalp; 8038 boolean_t onoff = (*i1 == 0) ? 0 : 1; 8039 boolean_t checkonly; 8040 int reterr; 8041 tcp_stack_t *tcps = tcp->tcp_tcps; 8042 conn_opt_arg_t coas; 8043 8044 coas.coa_connp = connp; 8045 coas.coa_ixa = connp->conn_ixa; 8046 coas.coa_ipp = &connp->conn_xmit_ipp; 8047 coas.coa_ancillary = B_FALSE; 8048 coas.coa_changed = 0; 8049 8050 switch (optset_context) { 8051 case SETFN_OPTCOM_CHECKONLY: 8052 checkonly = B_TRUE; 8053 /* 8054 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 8055 * inlen != 0 implies value supplied and 8056 * we have to "pretend" to set it. 8057 * inlen == 0 implies that there is no 8058 * value part in T_CHECK request and just validation 8059 * done elsewhere should be enough, we just return here. 8060 */ 8061 if (inlen == 0) { 8062 *outlenp = 0; 8063 return (0); 8064 } 8065 break; 8066 case SETFN_OPTCOM_NEGOTIATE: 8067 checkonly = B_FALSE; 8068 break; 8069 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 8070 case SETFN_CONN_NEGOTIATE: 8071 checkonly = B_FALSE; 8072 /* 8073 * Negotiating local and "association-related" options 8074 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 8075 * primitives is allowed by XTI, but we choose 8076 * to not implement this style negotiation for Internet 8077 * protocols (We interpret it is a must for OSI world but 8078 * optional for Internet protocols) for all options. 8079 * [ Will do only for the few options that enable test 8080 * suites that our XTI implementation of this feature 8081 * works for transports that do allow it ] 8082 */ 8083 if (!tcp_allow_connopt_set(level, name)) { 8084 *outlenp = 0; 8085 return (EINVAL); 8086 } 8087 break; 8088 default: 8089 /* 8090 * We should never get here 8091 */ 8092 *outlenp = 0; 8093 return (EINVAL); 8094 } 8095 8096 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 8097 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 8098 8099 /* 8100 * For TCP, we should have no ancillary data sent down 8101 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 8102 * has to be zero. 8103 */ 8104 ASSERT(thisdg_attrs == NULL); 8105 8106 /* 8107 * For fixed length options, no sanity check 8108 * of passed in length is done. It is assumed *_optcom_req() 8109 * routines do the right thing. 8110 */ 8111 switch (level) { 8112 case SOL_SOCKET: 8113 switch (name) { 8114 case SO_KEEPALIVE: 8115 if (checkonly) { 8116 /* check only case */ 8117 break; 8118 } 8119 8120 if (!onoff) { 8121 if (connp->conn_keepalive) { 8122 if (tcp->tcp_ka_tid != 0) { 8123 (void) TCP_TIMER_CANCEL(tcp, 8124 tcp->tcp_ka_tid); 8125 tcp->tcp_ka_tid = 0; 8126 } 8127 connp->conn_keepalive = 0; 8128 } 8129 break; 8130 } 8131 if (!connp->conn_keepalive) { 8132 /* Crank up the keepalive timer */ 8133 tcp->tcp_ka_last_intrvl = 0; 8134 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8135 tcp_keepalive_killer, 8136 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8137 connp->conn_keepalive = 1; 8138 } 8139 break; 8140 case SO_SNDBUF: { 8141 if (*i1 > tcps->tcps_max_buf) { 8142 *outlenp = 0; 8143 return (ENOBUFS); 8144 } 8145 if (checkonly) 8146 break; 8147 8148 connp->conn_sndbuf = *i1; 8149 if (tcps->tcps_snd_lowat_fraction != 0) { 8150 connp->conn_sndlowat = connp->conn_sndbuf / 8151 tcps->tcps_snd_lowat_fraction; 8152 } 8153 (void) tcp_maxpsz_set(tcp, B_TRUE); 8154 /* 8155 * If we are flow-controlled, recheck the condition. 8156 * There are apps that increase SO_SNDBUF size when 8157 * flow-controlled (EWOULDBLOCK), and expect the flow 8158 * control condition to be lifted right away. 8159 */ 8160 mutex_enter(&tcp->tcp_non_sq_lock); 8161 if (tcp->tcp_flow_stopped && 8162 TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) { 8163 tcp_clrqfull(tcp); 8164 } 8165 mutex_exit(&tcp->tcp_non_sq_lock); 8166 *outlenp = inlen; 8167 return (0); 8168 } 8169 case SO_RCVBUF: 8170 if (*i1 > tcps->tcps_max_buf) { 8171 *outlenp = 0; 8172 return (ENOBUFS); 8173 } 8174 /* Silently ignore zero */ 8175 if (!checkonly && *i1 != 0) { 8176 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 8177 (void) tcp_rwnd_set(tcp, *i1); 8178 } 8179 /* 8180 * XXX should we return the rwnd here 8181 * and tcp_opt_get ? 8182 */ 8183 *outlenp = inlen; 8184 return (0); 8185 case SO_SND_COPYAVOID: 8186 if (!checkonly) { 8187 if (tcp->tcp_loopback || 8188 (tcp->tcp_kssl_ctx != NULL) || 8189 (onoff != 1) || !tcp_zcopy_check(tcp)) { 8190 *outlenp = 0; 8191 return (EOPNOTSUPP); 8192 } 8193 tcp->tcp_snd_zcopy_aware = 1; 8194 } 8195 *outlenp = inlen; 8196 return (0); 8197 } 8198 break; 8199 case IPPROTO_TCP: 8200 switch (name) { 8201 case TCP_NODELAY: 8202 if (!checkonly) 8203 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 8204 break; 8205 case TCP_NOTIFY_THRESHOLD: 8206 if (!checkonly) 8207 tcp->tcp_first_timer_threshold = *i1; 8208 break; 8209 case TCP_ABORT_THRESHOLD: 8210 if (!checkonly) 8211 tcp->tcp_second_timer_threshold = *i1; 8212 break; 8213 case TCP_CONN_NOTIFY_THRESHOLD: 8214 if (!checkonly) 8215 tcp->tcp_first_ctimer_threshold = *i1; 8216 break; 8217 case TCP_CONN_ABORT_THRESHOLD: 8218 if (!checkonly) 8219 tcp->tcp_second_ctimer_threshold = *i1; 8220 break; 8221 case TCP_RECVDSTADDR: 8222 if (tcp->tcp_state > TCPS_LISTEN) { 8223 *outlenp = 0; 8224 return (EOPNOTSUPP); 8225 } 8226 /* Setting done in conn_opt_set */ 8227 break; 8228 case TCP_INIT_CWND: { 8229 uint32_t init_cwnd = *((uint32_t *)invalp); 8230 8231 if (checkonly) 8232 break; 8233 8234 /* 8235 * Only allow socket with network configuration 8236 * privilege to set the initial cwnd to be larger 8237 * than allowed by RFC 3390. 8238 */ 8239 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 8240 tcp->tcp_init_cwnd = init_cwnd; 8241 break; 8242 } 8243 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 8244 *outlenp = 0; 8245 return (reterr); 8246 } 8247 if (init_cwnd > TCP_MAX_INIT_CWND) { 8248 *outlenp = 0; 8249 return (EINVAL); 8250 } 8251 tcp->tcp_init_cwnd = init_cwnd; 8252 break; 8253 } 8254 case TCP_KEEPALIVE_THRESHOLD: 8255 if (checkonly) 8256 break; 8257 8258 if (*i1 < tcps->tcps_keepalive_interval_low || 8259 *i1 > tcps->tcps_keepalive_interval_high) { 8260 *outlenp = 0; 8261 return (EINVAL); 8262 } 8263 if (*i1 != tcp->tcp_ka_interval) { 8264 tcp->tcp_ka_interval = *i1; 8265 /* 8266 * Check if we need to restart the 8267 * keepalive timer. 8268 */ 8269 if (tcp->tcp_ka_tid != 0) { 8270 ASSERT(connp->conn_keepalive); 8271 (void) TCP_TIMER_CANCEL(tcp, 8272 tcp->tcp_ka_tid); 8273 tcp->tcp_ka_last_intrvl = 0; 8274 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8275 tcp_keepalive_killer, 8276 MSEC_TO_TICK(tcp->tcp_ka_interval)); 8277 } 8278 } 8279 break; 8280 case TCP_KEEPALIVE_ABORT_THRESHOLD: 8281 if (!checkonly) { 8282 if (*i1 < 8283 tcps->tcps_keepalive_abort_interval_low || 8284 *i1 > 8285 tcps->tcps_keepalive_abort_interval_high) { 8286 *outlenp = 0; 8287 return (EINVAL); 8288 } 8289 tcp->tcp_ka_abort_thres = *i1; 8290 } 8291 break; 8292 case TCP_CORK: 8293 if (!checkonly) { 8294 /* 8295 * if tcp->tcp_cork was set and is now 8296 * being unset, we have to make sure that 8297 * the remaining data gets sent out. Also 8298 * unset tcp->tcp_cork so that tcp_wput_data() 8299 * can send data even if it is less than mss 8300 */ 8301 if (tcp->tcp_cork && onoff == 0 && 8302 tcp->tcp_unsent > 0) { 8303 tcp->tcp_cork = B_FALSE; 8304 tcp_wput_data(tcp, NULL, B_FALSE); 8305 } 8306 tcp->tcp_cork = onoff; 8307 } 8308 break; 8309 default: 8310 break; 8311 } 8312 break; 8313 case IPPROTO_IP: 8314 if (connp->conn_family != AF_INET) { 8315 *outlenp = 0; 8316 return (EINVAL); 8317 } 8318 switch (name) { 8319 case IP_SEC_OPT: 8320 /* 8321 * We should not allow policy setting after 8322 * we start listening for connections. 8323 */ 8324 if (tcp->tcp_state == TCPS_LISTEN) { 8325 return (EINVAL); 8326 } 8327 break; 8328 } 8329 break; 8330 case IPPROTO_IPV6: 8331 /* 8332 * IPPROTO_IPV6 options are only supported for sockets 8333 * that are using IPv6 on the wire. 8334 */ 8335 if (connp->conn_ipversion != IPV6_VERSION) { 8336 *outlenp = 0; 8337 return (EINVAL); 8338 } 8339 8340 switch (name) { 8341 case IPV6_RECVPKTINFO: 8342 if (!checkonly) { 8343 /* Force it to be sent up with the next msg */ 8344 tcp->tcp_recvifindex = 0; 8345 } 8346 break; 8347 case IPV6_RECVTCLASS: 8348 if (!checkonly) { 8349 /* Force it to be sent up with the next msg */ 8350 tcp->tcp_recvtclass = 0xffffffffU; 8351 } 8352 break; 8353 case IPV6_RECVHOPLIMIT: 8354 if (!checkonly) { 8355 /* Force it to be sent up with the next msg */ 8356 tcp->tcp_recvhops = 0xffffffffU; 8357 } 8358 break; 8359 case IPV6_PKTINFO: 8360 /* This is an extra check for TCP */ 8361 if (inlen == sizeof (struct in6_pktinfo)) { 8362 struct in6_pktinfo *pkti; 8363 8364 pkti = (struct in6_pktinfo *)invalp; 8365 /* 8366 * RFC 3542 states that ipi6_addr must be 8367 * the unspecified address when setting the 8368 * IPV6_PKTINFO sticky socket option on a 8369 * TCP socket. 8370 */ 8371 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 8372 return (EINVAL); 8373 } 8374 break; 8375 case IPV6_SEC_OPT: 8376 /* 8377 * We should not allow policy setting after 8378 * we start listening for connections. 8379 */ 8380 if (tcp->tcp_state == TCPS_LISTEN) { 8381 return (EINVAL); 8382 } 8383 break; 8384 } 8385 break; 8386 } 8387 reterr = conn_opt_set(&coas, level, name, inlen, invalp, 8388 checkonly, cr); 8389 if (reterr != 0) { 8390 *outlenp = 0; 8391 return (reterr); 8392 } 8393 8394 /* 8395 * Common case of OK return with outval same as inval 8396 */ 8397 if (invalp != outvalp) { 8398 /* don't trust bcopy for identical src/dst */ 8399 (void) bcopy(invalp, outvalp, inlen); 8400 } 8401 *outlenp = inlen; 8402 8403 if (coas.coa_changed & COA_HEADER_CHANGED) { 8404 reterr = tcp_build_hdrs(tcp); 8405 if (reterr != 0) 8406 return (reterr); 8407 } 8408 if (coas.coa_changed & COA_ROUTE_CHANGED) { 8409 in6_addr_t nexthop; 8410 8411 /* 8412 * If we are connected we re-cache the information. 8413 * We ignore errors to preserve BSD behavior. 8414 * Note that we don't redo IPsec policy lookup here 8415 * since the final destination (or source) didn't change. 8416 */ 8417 ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa, 8418 &connp->conn_faddr_v6, &nexthop); 8419 8420 if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && 8421 !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { 8422 (void) ip_attr_connect(connp, connp->conn_ixa, 8423 &connp->conn_laddr_v6, &connp->conn_faddr_v6, 8424 &nexthop, connp->conn_fport, NULL, NULL, 8425 IPDF_VERIFY_DST); 8426 } 8427 } 8428 if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) { 8429 connp->conn_wq->q_hiwat = connp->conn_sndbuf; 8430 } 8431 if (coas.coa_changed & COA_WROFF_CHANGED) { 8432 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8433 tcps->tcps_wroff_xtra; 8434 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8435 connp->conn_wroff); 8436 } 8437 if (coas.coa_changed & COA_OOBINLINE_CHANGED) { 8438 if (IPCL_IS_NONSTR(connp)) 8439 proto_set_rx_oob_opt(connp, onoff); 8440 } 8441 return (0); 8442 } 8443 8444 /* ARGSUSED */ 8445 int 8446 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 8447 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 8448 void *thisdg_attrs, cred_t *cr) 8449 { 8450 conn_t *connp = Q_TO_CONN(q); 8451 8452 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 8453 outlenp, outvalp, thisdg_attrs, cr)); 8454 } 8455 8456 int 8457 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 8458 const void *optvalp, socklen_t optlen, cred_t *cr) 8459 { 8460 conn_t *connp = (conn_t *)proto_handle; 8461 squeue_t *sqp = connp->conn_sqp; 8462 int error; 8463 8464 ASSERT(connp->conn_upper_handle != NULL); 8465 /* 8466 * Entering the squeue synchronously can result in a context switch, 8467 * which can cause a rather sever performance degradation. So we try to 8468 * handle whatever options we can without entering the squeue. 8469 */ 8470 if (level == IPPROTO_TCP) { 8471 switch (option_name) { 8472 case TCP_NODELAY: 8473 if (optlen != sizeof (int32_t)) 8474 return (EINVAL); 8475 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 8476 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 8477 connp->conn_tcp->tcp_mss; 8478 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 8479 return (0); 8480 default: 8481 break; 8482 } 8483 } 8484 8485 error = squeue_synch_enter(sqp, connp, NULL); 8486 if (error == ENOMEM) { 8487 return (ENOMEM); 8488 } 8489 8490 error = proto_opt_check(level, option_name, optlen, NULL, 8491 tcp_opt_obj.odb_opt_des_arr, 8492 tcp_opt_obj.odb_opt_arr_cnt, 8493 B_TRUE, B_FALSE, cr); 8494 8495 if (error != 0) { 8496 if (error < 0) { 8497 error = proto_tlitosyserr(-error); 8498 } 8499 squeue_synch_exit(sqp, connp); 8500 return (error); 8501 } 8502 8503 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 8504 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 8505 NULL, cr); 8506 squeue_synch_exit(sqp, connp); 8507 8508 ASSERT(error >= 0); 8509 8510 return (error); 8511 } 8512 8513 /* 8514 * Build/update the tcp header template (in conn_ht_iphc) based on 8515 * conn_xmit_ipp. The headers include ip6_t, any extension 8516 * headers, and the maximum size tcp header (to avoid reallocation 8517 * on the fly for additional tcp options). 8518 * 8519 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 8520 * Returns failure if can't allocate memory. 8521 */ 8522 static int 8523 tcp_build_hdrs(tcp_t *tcp) 8524 { 8525 tcp_stack_t *tcps = tcp->tcp_tcps; 8526 conn_t *connp = tcp->tcp_connp; 8527 char buf[TCP_MAX_HDR_LENGTH]; 8528 uint_t buflen; 8529 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 8530 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 8531 tcpha_t *tcpha; 8532 uint32_t cksum; 8533 int error; 8534 8535 /* 8536 * We might be called after the connection is set up, and we might 8537 * have TS options already in the TCP header. Thus we save any 8538 * existing tcp header. 8539 */ 8540 buflen = connp->conn_ht_ulp_len; 8541 if (buflen != 0) { 8542 bcopy(connp->conn_ht_ulp, buf, buflen); 8543 extralen -= buflen - ulplen; 8544 ulplen = buflen; 8545 } 8546 8547 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 8548 mutex_enter(&connp->conn_lock); 8549 error = conn_build_hdr_template(connp, ulplen, extralen, 8550 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 8551 mutex_exit(&connp->conn_lock); 8552 if (error != 0) 8553 return (error); 8554 8555 /* 8556 * Any routing header/option has been massaged. The checksum difference 8557 * is stored in conn_sum for later use. 8558 */ 8559 tcpha = (tcpha_t *)connp->conn_ht_ulp; 8560 tcp->tcp_tcpha = tcpha; 8561 8562 /* restore any old tcp header */ 8563 if (buflen != 0) { 8564 bcopy(buf, connp->conn_ht_ulp, buflen); 8565 } else { 8566 tcpha->tha_sum = 0; 8567 tcpha->tha_offset_and_reserved = (5 << 4); 8568 } 8569 tcpha->tha_lport = connp->conn_lport; 8570 tcpha->tha_fport = connp->conn_fport; 8571 8572 /* 8573 * IP wants our header length in the checksum field to 8574 * allow it to perform a single pseudo-header+checksum 8575 * calculation on behalf of TCP. 8576 * Include the adjustment for a source route once IP_OPTIONS is set. 8577 */ 8578 cksum = sizeof (tcpha_t) + connp->conn_sum; 8579 cksum = (cksum >> 16) + (cksum & 0xFFFF); 8580 ASSERT(cksum < 0x10000); 8581 tcpha->tha_sum = htons(cksum); 8582 8583 if (connp->conn_ipversion == IPV4_VERSION) 8584 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 8585 else 8586 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 8587 8588 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 8589 connp->conn_wroff) { 8590 connp->conn_wroff = connp->conn_ht_iphc_allocated + 8591 tcps->tcps_wroff_xtra; 8592 (void) proto_set_tx_wroff(connp->conn_rq, connp, 8593 connp->conn_wroff); 8594 } 8595 return (0); 8596 } 8597 8598 /* Get callback routine passed to nd_load by tcp_param_register */ 8599 /* ARGSUSED */ 8600 static int 8601 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 8602 { 8603 tcpparam_t *tcppa = (tcpparam_t *)cp; 8604 8605 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 8606 return (0); 8607 } 8608 8609 /* 8610 * Walk through the param array specified registering each element with the 8611 * named dispatch handler. 8612 */ 8613 static boolean_t 8614 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 8615 { 8616 for (; cnt-- > 0; tcppa++) { 8617 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 8618 if (!nd_load(ndp, tcppa->tcp_param_name, 8619 tcp_param_get, tcp_param_set, 8620 (caddr_t)tcppa)) { 8621 nd_free(ndp); 8622 return (B_FALSE); 8623 } 8624 } 8625 } 8626 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 8627 KM_SLEEP); 8628 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 8629 sizeof (tcpparam_t)); 8630 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 8631 tcp_param_get, tcp_param_set_aligned, 8632 (caddr_t)tcps->tcps_wroff_xtra_param)) { 8633 nd_free(ndp); 8634 return (B_FALSE); 8635 } 8636 if (!nd_load(ndp, "tcp_extra_priv_ports", 8637 tcp_extra_priv_ports_get, NULL, NULL)) { 8638 nd_free(ndp); 8639 return (B_FALSE); 8640 } 8641 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 8642 NULL, tcp_extra_priv_ports_add, NULL)) { 8643 nd_free(ndp); 8644 return (B_FALSE); 8645 } 8646 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 8647 NULL, tcp_extra_priv_ports_del, NULL)) { 8648 nd_free(ndp); 8649 return (B_FALSE); 8650 } 8651 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 8652 tcp_1948_phrase_set, NULL)) { 8653 nd_free(ndp); 8654 return (B_FALSE); 8655 } 8656 /* 8657 * Dummy ndd variables - only to convey obsolescence information 8658 * through printing of their name (no get or set routines) 8659 * XXX Remove in future releases ? 8660 */ 8661 if (!nd_load(ndp, 8662 "tcp_close_wait_interval(obsoleted - " 8663 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 8664 nd_free(ndp); 8665 return (B_FALSE); 8666 } 8667 return (B_TRUE); 8668 } 8669 8670 /* ndd set routine for tcp_wroff_xtra. */ 8671 /* ARGSUSED */ 8672 static int 8673 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 8674 cred_t *cr) 8675 { 8676 long new_value; 8677 tcpparam_t *tcppa = (tcpparam_t *)cp; 8678 8679 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8680 new_value < tcppa->tcp_param_min || 8681 new_value > tcppa->tcp_param_max) { 8682 return (EINVAL); 8683 } 8684 /* 8685 * Need to make sure new_value is a multiple of 4. If it is not, 8686 * round it up. For future 64 bit requirement, we actually make it 8687 * a multiple of 8. 8688 */ 8689 if (new_value & 0x7) { 8690 new_value = (new_value & ~0x7) + 0x8; 8691 } 8692 tcppa->tcp_param_val = new_value; 8693 return (0); 8694 } 8695 8696 /* Set callback routine passed to nd_load by tcp_param_register */ 8697 /* ARGSUSED */ 8698 static int 8699 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 8700 { 8701 long new_value; 8702 tcpparam_t *tcppa = (tcpparam_t *)cp; 8703 8704 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 8705 new_value < tcppa->tcp_param_min || 8706 new_value > tcppa->tcp_param_max) { 8707 return (EINVAL); 8708 } 8709 tcppa->tcp_param_val = new_value; 8710 return (0); 8711 } 8712 8713 /* 8714 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 8715 * is filled, return as much as we can. The message passed in may be 8716 * multi-part, chained using b_cont. "start" is the starting sequence 8717 * number for this piece. 8718 */ 8719 static mblk_t * 8720 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 8721 { 8722 uint32_t end; 8723 mblk_t *mp1; 8724 mblk_t *mp2; 8725 mblk_t *next_mp; 8726 uint32_t u1; 8727 tcp_stack_t *tcps = tcp->tcp_tcps; 8728 8729 8730 /* Walk through all the new pieces. */ 8731 do { 8732 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 8733 (uintptr_t)INT_MAX); 8734 end = start + (int)(mp->b_wptr - mp->b_rptr); 8735 next_mp = mp->b_cont; 8736 if (start == end) { 8737 /* Empty. Blast it. */ 8738 freeb(mp); 8739 continue; 8740 } 8741 mp->b_cont = NULL; 8742 TCP_REASS_SET_SEQ(mp, start); 8743 TCP_REASS_SET_END(mp, end); 8744 mp1 = tcp->tcp_reass_tail; 8745 if (!mp1) { 8746 tcp->tcp_reass_tail = mp; 8747 tcp->tcp_reass_head = mp; 8748 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 8749 UPDATE_MIB(&tcps->tcps_mib, 8750 tcpInDataUnorderBytes, end - start); 8751 continue; 8752 } 8753 /* New stuff completely beyond tail? */ 8754 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 8755 /* Link it on end. */ 8756 mp1->b_cont = mp; 8757 tcp->tcp_reass_tail = mp; 8758 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 8759 UPDATE_MIB(&tcps->tcps_mib, 8760 tcpInDataUnorderBytes, end - start); 8761 continue; 8762 } 8763 mp1 = tcp->tcp_reass_head; 8764 u1 = TCP_REASS_SEQ(mp1); 8765 /* New stuff at the front? */ 8766 if (SEQ_LT(start, u1)) { 8767 /* Yes... Check for overlap. */ 8768 mp->b_cont = mp1; 8769 tcp->tcp_reass_head = mp; 8770 tcp_reass_elim_overlap(tcp, mp); 8771 continue; 8772 } 8773 /* 8774 * The new piece fits somewhere between the head and tail. 8775 * We find our slot, where mp1 precedes us and mp2 trails. 8776 */ 8777 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 8778 u1 = TCP_REASS_SEQ(mp2); 8779 if (SEQ_LEQ(start, u1)) 8780 break; 8781 } 8782 /* Link ourselves in */ 8783 mp->b_cont = mp2; 8784 mp1->b_cont = mp; 8785 8786 /* Trim overlap with following mblk(s) first */ 8787 tcp_reass_elim_overlap(tcp, mp); 8788 8789 /* Trim overlap with preceding mblk */ 8790 tcp_reass_elim_overlap(tcp, mp1); 8791 8792 } while (start = end, mp = next_mp); 8793 mp1 = tcp->tcp_reass_head; 8794 /* Anything ready to go? */ 8795 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 8796 return (NULL); 8797 /* Eat what we can off the queue */ 8798 for (;;) { 8799 mp = mp1->b_cont; 8800 end = TCP_REASS_END(mp1); 8801 TCP_REASS_SET_SEQ(mp1, 0); 8802 TCP_REASS_SET_END(mp1, 0); 8803 if (!mp) { 8804 tcp->tcp_reass_tail = NULL; 8805 break; 8806 } 8807 if (end != TCP_REASS_SEQ(mp)) { 8808 mp1->b_cont = NULL; 8809 break; 8810 } 8811 mp1 = mp; 8812 } 8813 mp1 = tcp->tcp_reass_head; 8814 tcp->tcp_reass_head = mp; 8815 return (mp1); 8816 } 8817 8818 /* Eliminate any overlap that mp may have over later mblks */ 8819 static void 8820 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 8821 { 8822 uint32_t end; 8823 mblk_t *mp1; 8824 uint32_t u1; 8825 tcp_stack_t *tcps = tcp->tcp_tcps; 8826 8827 end = TCP_REASS_END(mp); 8828 while ((mp1 = mp->b_cont) != NULL) { 8829 u1 = TCP_REASS_SEQ(mp1); 8830 if (!SEQ_GT(end, u1)) 8831 break; 8832 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 8833 mp->b_wptr -= end - u1; 8834 TCP_REASS_SET_END(mp, u1); 8835 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 8836 UPDATE_MIB(&tcps->tcps_mib, 8837 tcpInDataPartDupBytes, end - u1); 8838 break; 8839 } 8840 mp->b_cont = mp1->b_cont; 8841 TCP_REASS_SET_SEQ(mp1, 0); 8842 TCP_REASS_SET_END(mp1, 0); 8843 freeb(mp1); 8844 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 8845 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 8846 } 8847 if (!mp1) 8848 tcp->tcp_reass_tail = mp; 8849 } 8850 8851 static uint_t 8852 tcp_rwnd_reopen(tcp_t *tcp) 8853 { 8854 uint_t ret = 0; 8855 uint_t thwin; 8856 conn_t *connp = tcp->tcp_connp; 8857 8858 /* Learn the latest rwnd information that we sent to the other side. */ 8859 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) 8860 << tcp->tcp_rcv_ws; 8861 /* This is peer's calculated send window (our receive window). */ 8862 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 8863 /* 8864 * Increase the receive window to max. But we need to do receiver 8865 * SWS avoidance. This means that we need to check the increase of 8866 * of receive window is at least 1 MSS. 8867 */ 8868 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { 8869 /* 8870 * If the window that the other side knows is less than max 8871 * deferred acks segments, send an update immediately. 8872 */ 8873 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 8874 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 8875 ret = TH_ACK_NEEDED; 8876 } 8877 tcp->tcp_rwnd = connp->conn_rcvbuf; 8878 } 8879 return (ret); 8880 } 8881 8882 /* 8883 * Send up all messages queued on tcp_rcv_list. 8884 */ 8885 static uint_t 8886 tcp_rcv_drain(tcp_t *tcp) 8887 { 8888 mblk_t *mp; 8889 uint_t ret = 0; 8890 #ifdef DEBUG 8891 uint_t cnt = 0; 8892 #endif 8893 queue_t *q = tcp->tcp_connp->conn_rq; 8894 8895 /* Can't drain on an eager connection */ 8896 if (tcp->tcp_listener != NULL) 8897 return (ret); 8898 8899 /* Can't be a non-STREAMS connection */ 8900 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 8901 8902 /* No need for the push timer now. */ 8903 if (tcp->tcp_push_tid != 0) { 8904 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 8905 tcp->tcp_push_tid = 0; 8906 } 8907 8908 /* 8909 * Handle two cases here: we are currently fused or we were 8910 * previously fused and have some urgent data to be delivered 8911 * upstream. The latter happens because we either ran out of 8912 * memory or were detached and therefore sending the SIGURG was 8913 * deferred until this point. In either case we pass control 8914 * over to tcp_fuse_rcv_drain() since it may need to complete 8915 * some work. 8916 */ 8917 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 8918 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 8919 tcp->tcp_fused_sigurg_mp != NULL); 8920 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 8921 &tcp->tcp_fused_sigurg_mp)) 8922 return (ret); 8923 } 8924 8925 while ((mp = tcp->tcp_rcv_list) != NULL) { 8926 tcp->tcp_rcv_list = mp->b_next; 8927 mp->b_next = NULL; 8928 #ifdef DEBUG 8929 cnt += msgdsize(mp); 8930 #endif 8931 /* Does this need SSL processing first? */ 8932 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 8933 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 8934 mblk_t *, mp); 8935 tcp_kssl_input(tcp, mp, NULL); 8936 continue; 8937 } 8938 putnext(q, mp); 8939 } 8940 #ifdef DEBUG 8941 ASSERT(cnt == tcp->tcp_rcv_cnt); 8942 #endif 8943 tcp->tcp_rcv_last_head = NULL; 8944 tcp->tcp_rcv_last_tail = NULL; 8945 tcp->tcp_rcv_cnt = 0; 8946 8947 if (canputnext(q)) 8948 return (tcp_rwnd_reopen(tcp)); 8949 8950 return (ret); 8951 } 8952 8953 /* 8954 * Queue data on tcp_rcv_list which is a b_next chain. 8955 * tcp_rcv_last_head/tail is the last element of this chain. 8956 * Each element of the chain is a b_cont chain. 8957 * 8958 * M_DATA messages are added to the current element. 8959 * Other messages are added as new (b_next) elements. 8960 */ 8961 void 8962 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) 8963 { 8964 ASSERT(seg_len == msgdsize(mp)); 8965 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 8966 8967 if (is_system_labeled()) { 8968 ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); 8969 /* 8970 * Provide for protocols above TCP such as RPC. NOPID leaves 8971 * db_cpid unchanged. 8972 * The cred could have already been set. 8973 */ 8974 if (cr != NULL) 8975 mblk_setcred(mp, cr, NOPID); 8976 } 8977 8978 if (tcp->tcp_rcv_list == NULL) { 8979 ASSERT(tcp->tcp_rcv_last_head == NULL); 8980 tcp->tcp_rcv_list = mp; 8981 tcp->tcp_rcv_last_head = mp; 8982 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 8983 tcp->tcp_rcv_last_tail->b_cont = mp; 8984 } else { 8985 tcp->tcp_rcv_last_head->b_next = mp; 8986 tcp->tcp_rcv_last_head = mp; 8987 } 8988 8989 while (mp->b_cont) 8990 mp = mp->b_cont; 8991 8992 tcp->tcp_rcv_last_tail = mp; 8993 tcp->tcp_rcv_cnt += seg_len; 8994 tcp->tcp_rwnd -= seg_len; 8995 } 8996 8997 /* The minimum of smoothed mean deviation in RTO calculation. */ 8998 #define TCP_SD_MIN 400 8999 9000 /* 9001 * Set RTO for this connection. The formula is from Jacobson and Karels' 9002 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 9003 * are the same as those in Appendix A.2 of that paper. 9004 * 9005 * m = new measurement 9006 * sa = smoothed RTT average (8 * average estimates). 9007 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 9008 */ 9009 static void 9010 tcp_set_rto(tcp_t *tcp, clock_t rtt) 9011 { 9012 long m = TICK_TO_MSEC(rtt); 9013 clock_t sa = tcp->tcp_rtt_sa; 9014 clock_t sv = tcp->tcp_rtt_sd; 9015 clock_t rto; 9016 tcp_stack_t *tcps = tcp->tcp_tcps; 9017 9018 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 9019 tcp->tcp_rtt_update++; 9020 9021 /* tcp_rtt_sa is not 0 means this is a new sample. */ 9022 if (sa != 0) { 9023 /* 9024 * Update average estimator: 9025 * new rtt = 7/8 old rtt + 1/8 Error 9026 */ 9027 9028 /* m is now Error in estimate. */ 9029 m -= sa >> 3; 9030 if ((sa += m) <= 0) { 9031 /* 9032 * Don't allow the smoothed average to be negative. 9033 * We use 0 to denote reinitialization of the 9034 * variables. 9035 */ 9036 sa = 1; 9037 } 9038 9039 /* 9040 * Update deviation estimator: 9041 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 9042 */ 9043 if (m < 0) 9044 m = -m; 9045 m -= sv >> 2; 9046 sv += m; 9047 } else { 9048 /* 9049 * This follows BSD's implementation. So the reinitialized 9050 * RTO is 3 * m. We cannot go less than 2 because if the 9051 * link is bandwidth dominated, doubling the window size 9052 * during slow start means doubling the RTT. We want to be 9053 * more conservative when we reinitialize our estimates. 3 9054 * is just a convenient number. 9055 */ 9056 sa = m << 3; 9057 sv = m << 1; 9058 } 9059 if (sv < TCP_SD_MIN) { 9060 /* 9061 * We do not know that if sa captures the delay ACK 9062 * effect as in a long train of segments, a receiver 9063 * does not delay its ACKs. So set the minimum of sv 9064 * to be TCP_SD_MIN, which is default to 400 ms, twice 9065 * of BSD DATO. That means the minimum of mean 9066 * deviation is 100 ms. 9067 * 9068 */ 9069 sv = TCP_SD_MIN; 9070 } 9071 tcp->tcp_rtt_sa = sa; 9072 tcp->tcp_rtt_sd = sv; 9073 /* 9074 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 9075 * 9076 * Add tcp_rexmit_interval extra in case of extreme environment 9077 * where the algorithm fails to work. The default value of 9078 * tcp_rexmit_interval_extra should be 0. 9079 * 9080 * As we use a finer grained clock than BSD and update 9081 * RTO for every ACKs, add in another .25 of RTT to the 9082 * deviation of RTO to accomodate burstiness of 1/4 of 9083 * window size. 9084 */ 9085 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 9086 9087 if (rto > tcps->tcps_rexmit_interval_max) { 9088 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 9089 } else if (rto < tcps->tcps_rexmit_interval_min) { 9090 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 9091 } else { 9092 tcp->tcp_rto = rto; 9093 } 9094 9095 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 9096 tcp->tcp_timer_backoff = 0; 9097 } 9098 9099 /* 9100 * tcp_get_seg_mp() is called to get the pointer to a segment in the 9101 * send queue which starts at the given sequence number. If the given 9102 * sequence number is equal to last valid sequence number (tcp_snxt), the 9103 * returned mblk is the last valid mblk, and off is set to the length of 9104 * that mblk. 9105 * 9106 * send queue which starts at the given seq. no. 9107 * 9108 * Parameters: 9109 * tcp_t *tcp: the tcp instance pointer. 9110 * uint32_t seq: the starting seq. no of the requested segment. 9111 * int32_t *off: after the execution, *off will be the offset to 9112 * the returned mblk which points to the requested seq no. 9113 * It is the caller's responsibility to send in a non-null off. 9114 * 9115 * Return: 9116 * A mblk_t pointer pointing to the requested segment in send queue. 9117 */ 9118 static mblk_t * 9119 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 9120 { 9121 int32_t cnt; 9122 mblk_t *mp; 9123 9124 /* Defensive coding. Make sure we don't send incorrect data. */ 9125 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 9126 return (NULL); 9127 9128 cnt = seq - tcp->tcp_suna; 9129 mp = tcp->tcp_xmit_head; 9130 while (cnt > 0 && mp != NULL) { 9131 cnt -= mp->b_wptr - mp->b_rptr; 9132 if (cnt <= 0) { 9133 cnt += mp->b_wptr - mp->b_rptr; 9134 break; 9135 } 9136 mp = mp->b_cont; 9137 } 9138 ASSERT(mp != NULL); 9139 *off = cnt; 9140 return (mp); 9141 } 9142 9143 /* 9144 * This function handles all retransmissions if SACK is enabled for this 9145 * connection. First it calculates how many segments can be retransmitted 9146 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 9147 * segments. A segment is eligible if sack_cnt for that segment is greater 9148 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 9149 * all eligible segments, it checks to see if TCP can send some new segments 9150 * (fast recovery). If it can, set the appropriate flag for tcp_input_data(). 9151 * 9152 * Parameters: 9153 * tcp_t *tcp: the tcp structure of the connection. 9154 * uint_t *flags: in return, appropriate value will be set for 9155 * tcp_input_data(). 9156 */ 9157 static void 9158 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 9159 { 9160 notsack_blk_t *notsack_blk; 9161 int32_t usable_swnd; 9162 int32_t mss; 9163 uint32_t seg_len; 9164 mblk_t *xmit_mp; 9165 tcp_stack_t *tcps = tcp->tcp_tcps; 9166 9167 ASSERT(tcp->tcp_sack_info != NULL); 9168 ASSERT(tcp->tcp_notsack_list != NULL); 9169 ASSERT(tcp->tcp_rexmit == B_FALSE); 9170 9171 /* Defensive coding in case there is a bug... */ 9172 if (tcp->tcp_notsack_list == NULL) { 9173 return; 9174 } 9175 notsack_blk = tcp->tcp_notsack_list; 9176 mss = tcp->tcp_mss; 9177 9178 /* 9179 * Limit the num of outstanding data in the network to be 9180 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 9181 */ 9182 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9183 9184 /* At least retransmit 1 MSS of data. */ 9185 if (usable_swnd <= 0) { 9186 usable_swnd = mss; 9187 } 9188 9189 /* Make sure no new RTT samples will be taken. */ 9190 tcp->tcp_csuna = tcp->tcp_snxt; 9191 9192 notsack_blk = tcp->tcp_notsack_list; 9193 while (usable_swnd > 0) { 9194 mblk_t *snxt_mp, *tmp_mp; 9195 tcp_seq begin = tcp->tcp_sack_snxt; 9196 tcp_seq end; 9197 int32_t off; 9198 9199 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 9200 if (SEQ_GT(notsack_blk->end, begin) && 9201 (notsack_blk->sack_cnt >= 9202 tcps->tcps_dupack_fast_retransmit)) { 9203 end = notsack_blk->end; 9204 if (SEQ_LT(begin, notsack_blk->begin)) { 9205 begin = notsack_blk->begin; 9206 } 9207 break; 9208 } 9209 } 9210 /* 9211 * All holes are filled. Manipulate tcp_cwnd to send more 9212 * if we can. Note that after the SACK recovery, tcp_cwnd is 9213 * set to tcp_cwnd_ssthresh. 9214 */ 9215 if (notsack_blk == NULL) { 9216 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 9217 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 9218 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 9219 ASSERT(tcp->tcp_cwnd > 0); 9220 return; 9221 } else { 9222 usable_swnd = usable_swnd / mss; 9223 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 9224 MAX(usable_swnd * mss, mss); 9225 *flags |= TH_XMIT_NEEDED; 9226 return; 9227 } 9228 } 9229 9230 /* 9231 * Note that we may send more than usable_swnd allows here 9232 * because of round off, but no more than 1 MSS of data. 9233 */ 9234 seg_len = end - begin; 9235 if (seg_len > mss) 9236 seg_len = mss; 9237 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 9238 ASSERT(snxt_mp != NULL); 9239 /* This should not happen. Defensive coding again... */ 9240 if (snxt_mp == NULL) { 9241 return; 9242 } 9243 9244 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 9245 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 9246 if (xmit_mp == NULL) 9247 return; 9248 9249 usable_swnd -= seg_len; 9250 tcp->tcp_pipe += seg_len; 9251 tcp->tcp_sack_snxt = begin + seg_len; 9252 9253 tcp_send_data(tcp, xmit_mp); 9254 9255 /* 9256 * Update the send timestamp to avoid false retransmission. 9257 */ 9258 snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9259 9260 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9261 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 9262 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 9263 /* 9264 * Update tcp_rexmit_max to extend this SACK recovery phase. 9265 * This happens when new data sent during fast recovery is 9266 * also lost. If TCP retransmits those new data, it needs 9267 * to extend SACK recover phase to avoid starting another 9268 * fast retransmit/recovery unnecessarily. 9269 */ 9270 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 9271 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 9272 } 9273 } 9274 } 9275 9276 /* 9277 * tcp_ss_rexmit() is called to do slow start retransmission after a timeout 9278 * or ICMP errors. 9279 * 9280 * To limit the number of duplicate segments, we limit the number of segment 9281 * to be sent in one time to tcp_snd_burst, the burst variable. 9282 */ 9283 static void 9284 tcp_ss_rexmit(tcp_t *tcp) 9285 { 9286 uint32_t snxt; 9287 uint32_t smax; 9288 int32_t win; 9289 int32_t mss; 9290 int32_t off; 9291 int32_t burst = tcp->tcp_snd_burst; 9292 mblk_t *snxt_mp; 9293 tcp_stack_t *tcps = tcp->tcp_tcps; 9294 9295 /* 9296 * Note that tcp_rexmit can be set even though TCP has retransmitted 9297 * all unack'ed segments. 9298 */ 9299 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 9300 smax = tcp->tcp_rexmit_max; 9301 snxt = tcp->tcp_rexmit_nxt; 9302 if (SEQ_LT(snxt, tcp->tcp_suna)) { 9303 snxt = tcp->tcp_suna; 9304 } 9305 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 9306 win -= snxt - tcp->tcp_suna; 9307 mss = tcp->tcp_mss; 9308 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 9309 9310 while (SEQ_LT(snxt, smax) && (win > 0) && 9311 (burst > 0) && (snxt_mp != NULL)) { 9312 mblk_t *xmit_mp; 9313 mblk_t *old_snxt_mp = snxt_mp; 9314 uint32_t cnt = mss; 9315 9316 if (win < cnt) { 9317 cnt = win; 9318 } 9319 if (SEQ_GT(snxt + cnt, smax)) { 9320 cnt = smax - snxt; 9321 } 9322 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 9323 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 9324 if (xmit_mp == NULL) 9325 return; 9326 9327 tcp_send_data(tcp, xmit_mp); 9328 9329 snxt += cnt; 9330 win -= cnt; 9331 /* 9332 * Update the send timestamp to avoid false 9333 * retransmission. 9334 */ 9335 old_snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); 9336 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 9337 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 9338 9339 tcp->tcp_rexmit_nxt = snxt; 9340 burst--; 9341 } 9342 /* 9343 * If we have transmitted all we have at the time 9344 * we started the retranmission, we can leave 9345 * the rest of the job to tcp_wput_data(). But we 9346 * need to check the send window first. If the 9347 * win is not 0, go on with tcp_wput_data(). 9348 */ 9349 if (SEQ_LT(snxt, smax) || win == 0) { 9350 return; 9351 } 9352 } 9353 /* Only call tcp_wput_data() if there is data to be sent. */ 9354 if (tcp->tcp_unsent) { 9355 tcp_wput_data(tcp, NULL, B_FALSE); 9356 } 9357 } 9358 9359 /* 9360 * Process all TCP option in SYN segment. Note that this function should 9361 * be called after tcp_set_destination() is called so that the necessary info 9362 * from IRE is already set in the tcp structure. 9363 * 9364 * This function sets up the correct tcp_mss value according to the 9365 * MSS option value and our header size. It also sets up the window scale 9366 * and timestamp values, and initialize SACK info blocks. But it does not 9367 * change receive window size after setting the tcp_mss value. The caller 9368 * should do the appropriate change. 9369 */ 9370 void 9371 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) 9372 { 9373 int options; 9374 tcp_opt_t tcpopt; 9375 uint32_t mss_max; 9376 char *tmp_tcph; 9377 tcp_stack_t *tcps = tcp->tcp_tcps; 9378 conn_t *connp = tcp->tcp_connp; 9379 9380 tcpopt.tcp = NULL; 9381 options = tcp_parse_options(tcpha, &tcpopt); 9382 9383 /* 9384 * Process MSS option. Note that MSS option value does not account 9385 * for IP or TCP options. This means that it is equal to MTU - minimum 9386 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 9387 * IPv6. 9388 */ 9389 if (!(options & TCP_OPT_MSS_PRESENT)) { 9390 if (connp->conn_ipversion == IPV4_VERSION) 9391 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 9392 else 9393 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 9394 } else { 9395 if (connp->conn_ipversion == IPV4_VERSION) 9396 mss_max = tcps->tcps_mss_max_ipv4; 9397 else 9398 mss_max = tcps->tcps_mss_max_ipv6; 9399 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 9400 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 9401 else if (tcpopt.tcp_opt_mss > mss_max) 9402 tcpopt.tcp_opt_mss = mss_max; 9403 } 9404 9405 /* Process Window Scale option. */ 9406 if (options & TCP_OPT_WSCALE_PRESENT) { 9407 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 9408 tcp->tcp_snd_ws_ok = B_TRUE; 9409 } else { 9410 tcp->tcp_snd_ws = B_FALSE; 9411 tcp->tcp_snd_ws_ok = B_FALSE; 9412 tcp->tcp_rcv_ws = B_FALSE; 9413 } 9414 9415 /* Process Timestamp option. */ 9416 if ((options & TCP_OPT_TSTAMP_PRESENT) && 9417 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 9418 tmp_tcph = (char *)tcp->tcp_tcpha; 9419 9420 tcp->tcp_snd_ts_ok = B_TRUE; 9421 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 9422 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 9423 ASSERT(OK_32PTR(tmp_tcph)); 9424 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 9425 9426 /* Fill in our template header with basic timestamp option. */ 9427 tmp_tcph += connp->conn_ht_ulp_len; 9428 tmp_tcph[0] = TCPOPT_NOP; 9429 tmp_tcph[1] = TCPOPT_NOP; 9430 tmp_tcph[2] = TCPOPT_TSTAMP; 9431 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 9432 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; 9433 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; 9434 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); 9435 } else { 9436 tcp->tcp_snd_ts_ok = B_FALSE; 9437 } 9438 9439 /* 9440 * Process SACK options. If SACK is enabled for this connection, 9441 * then allocate the SACK info structure. Note the following ways 9442 * when tcp_snd_sack_ok is set to true. 9443 * 9444 * For active connection: in tcp_set_destination() called in 9445 * tcp_connect(). 9446 * 9447 * For passive connection: in tcp_set_destination() called in 9448 * tcp_input_listener(). 9449 * 9450 * That's the reason why the extra TCP_IS_DETACHED() check is there. 9451 * That check makes sure that if we did not send a SACK OK option, 9452 * we will not enable SACK for this connection even though the other 9453 * side sends us SACK OK option. For active connection, the SACK 9454 * info structure has already been allocated. So we need to free 9455 * it if SACK is disabled. 9456 */ 9457 if ((options & TCP_OPT_SACK_OK_PRESENT) && 9458 (tcp->tcp_snd_sack_ok || 9459 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 9460 /* This should be true only in the passive case. */ 9461 if (tcp->tcp_sack_info == NULL) { 9462 ASSERT(TCP_IS_DETACHED(tcp)); 9463 tcp->tcp_sack_info = 9464 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 9465 } 9466 if (tcp->tcp_sack_info == NULL) { 9467 tcp->tcp_snd_sack_ok = B_FALSE; 9468 } else { 9469 tcp->tcp_snd_sack_ok = B_TRUE; 9470 if (tcp->tcp_snd_ts_ok) { 9471 tcp->tcp_max_sack_blk = 3; 9472 } else { 9473 tcp->tcp_max_sack_blk = 4; 9474 } 9475 } 9476 } else { 9477 /* 9478 * Resetting tcp_snd_sack_ok to B_FALSE so that 9479 * no SACK info will be used for this 9480 * connection. This assumes that SACK usage 9481 * permission is negotiated. This may need 9482 * to be changed once this is clarified. 9483 */ 9484 if (tcp->tcp_sack_info != NULL) { 9485 ASSERT(tcp->tcp_notsack_list == NULL); 9486 kmem_cache_free(tcp_sack_info_cache, 9487 tcp->tcp_sack_info); 9488 tcp->tcp_sack_info = NULL; 9489 } 9490 tcp->tcp_snd_sack_ok = B_FALSE; 9491 } 9492 9493 /* 9494 * Now we know the exact TCP/IP header length, subtract 9495 * that from tcp_mss to get our side's MSS. 9496 */ 9497 tcp->tcp_mss -= connp->conn_ht_iphc_len; 9498 9499 /* 9500 * Here we assume that the other side's header size will be equal to 9501 * our header size. We calculate the real MSS accordingly. Need to 9502 * take into additional stuffs IPsec puts in. 9503 * 9504 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 9505 */ 9506 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + 9507 tcp->tcp_ipsec_overhead - 9508 ((connp->conn_ipversion == IPV4_VERSION ? 9509 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 9510 9511 /* 9512 * Set MSS to the smaller one of both ends of the connection. 9513 * We should not have called tcp_mss_set() before, but our 9514 * side of the MSS should have been set to a proper value 9515 * by tcp_set_destination(). tcp_mss_set() will also set up the 9516 * STREAM head parameters properly. 9517 * 9518 * If we have a larger-than-16-bit window but the other side 9519 * didn't want to do window scale, tcp_rwnd_set() will take 9520 * care of that. 9521 */ 9522 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 9523 9524 /* 9525 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been 9526 * updated properly. 9527 */ 9528 SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); 9529 } 9530 9531 /* 9532 * Sends the T_CONN_IND to the listener. The caller calls this 9533 * functions via squeue to get inside the listener's perimeter 9534 * once the 3 way hand shake is done a T_CONN_IND needs to be 9535 * sent. As an optimization, the caller can call this directly 9536 * if listener's perimeter is same as eager's. 9537 */ 9538 /* ARGSUSED */ 9539 void 9540 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 9541 { 9542 conn_t *lconnp = (conn_t *)arg; 9543 tcp_t *listener = lconnp->conn_tcp; 9544 tcp_t *tcp; 9545 struct T_conn_ind *conn_ind; 9546 ipaddr_t *addr_cache; 9547 boolean_t need_send_conn_ind = B_FALSE; 9548 tcp_stack_t *tcps = listener->tcp_tcps; 9549 9550 /* retrieve the eager */ 9551 conn_ind = (struct T_conn_ind *)mp->b_rptr; 9552 ASSERT(conn_ind->OPT_offset != 0 && 9553 conn_ind->OPT_length == sizeof (intptr_t)); 9554 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 9555 conn_ind->OPT_length); 9556 9557 /* 9558 * TLI/XTI applications will get confused by 9559 * sending eager as an option since it violates 9560 * the option semantics. So remove the eager as 9561 * option since TLI/XTI app doesn't need it anyway. 9562 */ 9563 if (!TCP_IS_SOCKET(listener)) { 9564 conn_ind->OPT_length = 0; 9565 conn_ind->OPT_offset = 0; 9566 } 9567 if (listener->tcp_state != TCPS_LISTEN) { 9568 /* 9569 * If listener has closed, it would have caused a 9570 * a cleanup/blowoff to happen for the eager. We 9571 * just need to return. 9572 */ 9573 freemsg(mp); 9574 return; 9575 } 9576 9577 9578 /* 9579 * if the conn_req_q is full defer passing up the 9580 * T_CONN_IND until space is availabe after t_accept() 9581 * processing 9582 */ 9583 mutex_enter(&listener->tcp_eager_lock); 9584 9585 /* 9586 * Take the eager out, if it is in the list of droppable eagers 9587 * as we are here because the 3W handshake is over. 9588 */ 9589 MAKE_UNDROPPABLE(tcp); 9590 9591 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 9592 tcp_t *tail; 9593 9594 /* 9595 * The eager already has an extra ref put in tcp_input_data 9596 * so that it stays till accept comes back even though it 9597 * might get into TCPS_CLOSED as a result of a TH_RST etc. 9598 */ 9599 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 9600 listener->tcp_conn_req_cnt_q0--; 9601 listener->tcp_conn_req_cnt_q++; 9602 9603 /* Move from SYN_RCVD to ESTABLISHED list */ 9604 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9605 tcp->tcp_eager_prev_q0; 9606 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9607 tcp->tcp_eager_next_q0; 9608 tcp->tcp_eager_prev_q0 = NULL; 9609 tcp->tcp_eager_next_q0 = NULL; 9610 9611 /* 9612 * Insert at end of the queue because sockfs 9613 * sends down T_CONN_RES in chronological 9614 * order. Leaving the older conn indications 9615 * at front of the queue helps reducing search 9616 * time. 9617 */ 9618 tail = listener->tcp_eager_last_q; 9619 if (tail != NULL) 9620 tail->tcp_eager_next_q = tcp; 9621 else 9622 listener->tcp_eager_next_q = tcp; 9623 listener->tcp_eager_last_q = tcp; 9624 tcp->tcp_eager_next_q = NULL; 9625 /* 9626 * Delay sending up the T_conn_ind until we are 9627 * done with the eager. Once we have have sent up 9628 * the T_conn_ind, the accept can potentially complete 9629 * any time and release the refhold we have on the eager. 9630 */ 9631 need_send_conn_ind = B_TRUE; 9632 } else { 9633 /* 9634 * Defer connection on q0 and set deferred 9635 * connection bit true 9636 */ 9637 tcp->tcp_conn_def_q0 = B_TRUE; 9638 9639 /* take tcp out of q0 ... */ 9640 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 9641 tcp->tcp_eager_next_q0; 9642 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 9643 tcp->tcp_eager_prev_q0; 9644 9645 /* ... and place it at the end of q0 */ 9646 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 9647 tcp->tcp_eager_next_q0 = listener; 9648 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 9649 listener->tcp_eager_prev_q0 = tcp; 9650 tcp->tcp_conn.tcp_eager_conn_ind = mp; 9651 } 9652 9653 /* we have timed out before */ 9654 if (tcp->tcp_syn_rcvd_timeout != 0) { 9655 tcp->tcp_syn_rcvd_timeout = 0; 9656 listener->tcp_syn_rcvd_timeout--; 9657 if (listener->tcp_syn_defense && 9658 listener->tcp_syn_rcvd_timeout <= 9659 (tcps->tcps_conn_req_max_q0 >> 5) && 9660 10*MINUTES < TICK_TO_MSEC(ddi_get_lbolt64() - 9661 listener->tcp_last_rcv_lbolt)) { 9662 /* 9663 * Turn off the defense mode if we 9664 * believe the SYN attack is over. 9665 */ 9666 listener->tcp_syn_defense = B_FALSE; 9667 if (listener->tcp_ip_addr_cache) { 9668 kmem_free((void *)listener->tcp_ip_addr_cache, 9669 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 9670 listener->tcp_ip_addr_cache = NULL; 9671 } 9672 } 9673 } 9674 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 9675 if (addr_cache != NULL) { 9676 /* 9677 * We have finished a 3-way handshake with this 9678 * remote host. This proves the IP addr is good. 9679 * Cache it! 9680 */ 9681 addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] = 9682 tcp->tcp_connp->conn_faddr_v4; 9683 } 9684 mutex_exit(&listener->tcp_eager_lock); 9685 if (need_send_conn_ind) 9686 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 9687 } 9688 9689 /* 9690 * Send the newconn notification to ulp. The eager is blown off if the 9691 * notification fails. 9692 */ 9693 static void 9694 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 9695 { 9696 if (IPCL_IS_NONSTR(lconnp)) { 9697 cred_t *cr; 9698 pid_t cpid = NOPID; 9699 9700 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 9701 ASSERT(econnp->conn_tcp->tcp_saved_listener == 9702 lconnp->conn_tcp); 9703 9704 cr = msg_getcred(mp, &cpid); 9705 9706 /* Keep the message around in case of a fallback to TPI */ 9707 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 9708 /* 9709 * Notify the ULP about the newconn. It is guaranteed that no 9710 * tcp_accept() call will be made for the eager if the 9711 * notification fails, so it's safe to blow it off in that 9712 * case. 9713 * 9714 * The upper handle will be assigned when tcp_accept() is 9715 * called. 9716 */ 9717 if ((*lconnp->conn_upcalls->su_newconn) 9718 (lconnp->conn_upper_handle, 9719 (sock_lower_handle_t)econnp, 9720 &sock_tcp_downcalls, cr, cpid, 9721 &econnp->conn_upcalls) == NULL) { 9722 /* Failed to allocate a socket */ 9723 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 9724 tcpEstabResets); 9725 (void) tcp_eager_blowoff(lconnp->conn_tcp, 9726 econnp->conn_tcp->tcp_conn_req_seqnum); 9727 } 9728 } else { 9729 putnext(lconnp->conn_rq, mp); 9730 } 9731 } 9732 9733 /* 9734 * Handle a packet that has been reclassified by TCP. 9735 * This function drops the ref on connp that the caller had. 9736 */ 9737 static void 9738 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) 9739 { 9740 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 9741 9742 if (connp->conn_incoming_ifindex != 0 && 9743 connp->conn_incoming_ifindex != ira->ira_ruifindex) { 9744 freemsg(mp); 9745 CONN_DEC_REF(connp); 9746 return; 9747 } 9748 9749 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || 9750 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 9751 ip6_t *ip6h; 9752 ipha_t *ipha; 9753 9754 if (ira->ira_flags & IRAF_IS_IPV4) { 9755 ipha = (ipha_t *)mp->b_rptr; 9756 ip6h = NULL; 9757 } else { 9758 ipha = NULL; 9759 ip6h = (ip6_t *)mp->b_rptr; 9760 } 9761 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); 9762 if (mp == NULL) { 9763 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 9764 /* Note that mp is NULL */ 9765 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 9766 CONN_DEC_REF(connp); 9767 return; 9768 } 9769 } 9770 9771 if (IPCL_IS_TCP(connp)) { 9772 /* 9773 * do not drain, certain use cases can blow 9774 * the stack 9775 */ 9776 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 9777 connp->conn_recv, connp, ira, 9778 SQ_NODRAIN, SQTAG_IP_TCP_INPUT); 9779 } else { 9780 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 9781 (connp->conn_recv)(connp, mp, NULL, 9782 ira); 9783 CONN_DEC_REF(connp); 9784 } 9785 9786 } 9787 9788 boolean_t tcp_outbound_squeue_switch = B_FALSE; 9789 9790 /* 9791 * Handle M_DATA messages from IP. Its called directly from IP via 9792 * squeue for received IP packets. 9793 * 9794 * The first argument is always the connp/tcp to which the mp belongs. 9795 * There are no exceptions to this rule. The caller has already put 9796 * a reference on this connp/tcp and once tcp_input_data() returns, 9797 * the squeue will do the refrele. 9798 * 9799 * The TH_SYN for the listener directly go to tcp_input_listener via 9800 * squeue. ICMP errors go directly to tcp_icmp_input(). 9801 * 9802 * sqp: NULL = recursive, sqp != NULL means called from squeue 9803 */ 9804 void 9805 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 9806 { 9807 int32_t bytes_acked; 9808 int32_t gap; 9809 mblk_t *mp1; 9810 uint_t flags; 9811 uint32_t new_swnd = 0; 9812 uchar_t *iphdr; 9813 uchar_t *rptr; 9814 int32_t rgap; 9815 uint32_t seg_ack; 9816 int seg_len; 9817 uint_t ip_hdr_len; 9818 uint32_t seg_seq; 9819 tcpha_t *tcpha; 9820 int urp; 9821 tcp_opt_t tcpopt; 9822 ip_pkt_t ipp; 9823 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 9824 uint32_t cwnd; 9825 uint32_t add; 9826 int npkt; 9827 int mss; 9828 conn_t *connp = (conn_t *)arg; 9829 squeue_t *sqp = (squeue_t *)arg2; 9830 tcp_t *tcp = connp->conn_tcp; 9831 tcp_stack_t *tcps = tcp->tcp_tcps; 9832 9833 /* 9834 * RST from fused tcp loopback peer should trigger an unfuse. 9835 */ 9836 if (tcp->tcp_fused) { 9837 TCP_STAT(tcps, tcp_fusion_aborted); 9838 tcp_unfuse(tcp); 9839 } 9840 9841 iphdr = mp->b_rptr; 9842 rptr = mp->b_rptr; 9843 ASSERT(OK_32PTR(rptr)); 9844 9845 ip_hdr_len = ira->ira_ip_hdr_length; 9846 if (connp->conn_recv_ancillary.crb_all != 0) { 9847 /* 9848 * Record packet information in the ip_pkt_t 9849 */ 9850 ipp.ipp_fields = 0; 9851 if (ira->ira_flags & IRAF_IS_IPV4) { 9852 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, 9853 B_FALSE); 9854 } else { 9855 uint8_t nexthdrp; 9856 9857 /* 9858 * IPv6 packets can only be received by applications 9859 * that are prepared to receive IPv6 addresses. 9860 * The IP fanout must ensure this. 9861 */ 9862 ASSERT(connp->conn_family == AF_INET6); 9863 9864 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, 9865 &nexthdrp); 9866 ASSERT(nexthdrp == IPPROTO_TCP); 9867 9868 /* Could have caused a pullup? */ 9869 iphdr = mp->b_rptr; 9870 rptr = mp->b_rptr; 9871 } 9872 } 9873 ASSERT(DB_TYPE(mp) == M_DATA); 9874 ASSERT(mp->b_next == NULL); 9875 9876 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 9877 seg_seq = ntohl(tcpha->tha_seq); 9878 seg_ack = ntohl(tcpha->tha_ack); 9879 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 9880 seg_len = (int)(mp->b_wptr - rptr) - 9881 (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); 9882 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 9883 do { 9884 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 9885 (uintptr_t)INT_MAX); 9886 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 9887 } while ((mp1 = mp1->b_cont) != NULL && 9888 mp1->b_datap->db_type == M_DATA); 9889 } 9890 9891 if (tcp->tcp_state == TCPS_TIME_WAIT) { 9892 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 9893 seg_len, tcpha, ira); 9894 return; 9895 } 9896 9897 if (sqp != NULL) { 9898 /* 9899 * This is the correct place to update tcp_last_recv_time. Note 9900 * that it is also updated for tcp structure that belongs to 9901 * global and listener queues which do not really need updating. 9902 * But that should not cause any harm. And it is updated for 9903 * all kinds of incoming segments, not only for data segments. 9904 */ 9905 tcp->tcp_last_recv_time = LBOLT_FASTPATH; 9906 } 9907 9908 flags = (unsigned int)tcpha->tha_flags & 0xFF; 9909 9910 BUMP_LOCAL(tcp->tcp_ibsegs); 9911 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 9912 9913 if ((flags & TH_URG) && sqp != NULL) { 9914 /* 9915 * TCP can't handle urgent pointers that arrive before 9916 * the connection has been accept()ed since it can't 9917 * buffer OOB data. Discard segment if this happens. 9918 * 9919 * We can't just rely on a non-null tcp_listener to indicate 9920 * that the accept() has completed since unlinking of the 9921 * eager and completion of the accept are not atomic. 9922 * tcp_detached, when it is not set (B_FALSE) indicates 9923 * that the accept() has completed. 9924 * 9925 * Nor can it reassemble urgent pointers, so discard 9926 * if it's not the next segment expected. 9927 * 9928 * Otherwise, collapse chain into one mblk (discard if 9929 * that fails). This makes sure the headers, retransmitted 9930 * data, and new data all are in the same mblk. 9931 */ 9932 ASSERT(mp != NULL); 9933 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 9934 freemsg(mp); 9935 return; 9936 } 9937 /* Update pointers into message */ 9938 iphdr = rptr = mp->b_rptr; 9939 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 9940 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 9941 /* 9942 * Since we can't handle any data with this urgent 9943 * pointer that is out of sequence, we expunge 9944 * the data. This allows us to still register 9945 * the urgent mark and generate the M_PCSIG, 9946 * which we can do. 9947 */ 9948 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 9949 seg_len = 0; 9950 } 9951 } 9952 9953 switch (tcp->tcp_state) { 9954 case TCPS_SYN_SENT: 9955 if (connp->conn_final_sqp == NULL && 9956 tcp_outbound_squeue_switch && sqp != NULL) { 9957 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 9958 connp->conn_final_sqp = sqp; 9959 if (connp->conn_final_sqp != connp->conn_sqp) { 9960 DTRACE_PROBE1(conn__final__sqp__switch, 9961 conn_t *, connp); 9962 CONN_INC_REF(connp); 9963 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 9964 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 9965 tcp_input_data, connp, ira, ip_squeue_flag, 9966 SQTAG_CONNECT_FINISH); 9967 return; 9968 } 9969 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); 9970 } 9971 if (flags & TH_ACK) { 9972 /* 9973 * Note that our stack cannot send data before a 9974 * connection is established, therefore the 9975 * following check is valid. Otherwise, it has 9976 * to be changed. 9977 */ 9978 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 9979 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 9980 freemsg(mp); 9981 if (flags & TH_RST) 9982 return; 9983 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 9984 tcp, seg_ack, 0, TH_RST); 9985 return; 9986 } 9987 ASSERT(tcp->tcp_suna + 1 == seg_ack); 9988 } 9989 if (flags & TH_RST) { 9990 freemsg(mp); 9991 if (flags & TH_ACK) 9992 (void) tcp_clean_death(tcp, 9993 ECONNREFUSED, 13); 9994 return; 9995 } 9996 if (!(flags & TH_SYN)) { 9997 freemsg(mp); 9998 return; 9999 } 10000 10001 /* Process all TCP options. */ 10002 tcp_process_options(tcp, tcpha); 10003 /* 10004 * The following changes our rwnd to be a multiple of the 10005 * MIN(peer MSS, our MSS) for performance reason. 10006 */ 10007 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, 10008 tcp->tcp_mss)); 10009 10010 /* Is the other end ECN capable? */ 10011 if (tcp->tcp_ecn_ok) { 10012 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 10013 tcp->tcp_ecn_ok = B_FALSE; 10014 } 10015 } 10016 /* 10017 * Clear ECN flags because it may interfere with later 10018 * processing. 10019 */ 10020 flags &= ~(TH_ECE|TH_CWR); 10021 10022 tcp->tcp_irs = seg_seq; 10023 tcp->tcp_rack = seg_seq; 10024 tcp->tcp_rnxt = seg_seq + 1; 10025 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10026 if (!TCP_IS_DETACHED(tcp)) { 10027 /* Allocate room for SACK options if needed. */ 10028 connp->conn_wroff = connp->conn_ht_iphc_len; 10029 if (tcp->tcp_snd_sack_ok) 10030 connp->conn_wroff += TCPOPT_MAX_SACK_LEN; 10031 if (!tcp->tcp_loopback) 10032 connp->conn_wroff += tcps->tcps_wroff_xtra; 10033 10034 (void) proto_set_tx_wroff(connp->conn_rq, connp, 10035 connp->conn_wroff); 10036 } 10037 if (flags & TH_ACK) { 10038 /* 10039 * If we can't get the confirmation upstream, pretend 10040 * we didn't even see this one. 10041 * 10042 * XXX: how can we pretend we didn't see it if we 10043 * have updated rnxt et. al. 10044 * 10045 * For loopback we defer sending up the T_CONN_CON 10046 * until after some checks below. 10047 */ 10048 mp1 = NULL; 10049 /* 10050 * tcp_sendmsg() checks tcp_state without entering 10051 * the squeue so tcp_state should be updated before 10052 * sending up connection confirmation 10053 */ 10054 tcp->tcp_state = TCPS_ESTABLISHED; 10055 if (!tcp_conn_con(tcp, iphdr, mp, 10056 tcp->tcp_loopback ? &mp1 : NULL, ira)) { 10057 tcp->tcp_state = TCPS_SYN_SENT; 10058 freemsg(mp); 10059 return; 10060 } 10061 /* SYN was acked - making progress */ 10062 tcp->tcp_ip_forward_progress = B_TRUE; 10063 10064 /* One for the SYN */ 10065 tcp->tcp_suna = tcp->tcp_iss + 1; 10066 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 10067 10068 /* 10069 * If SYN was retransmitted, need to reset all 10070 * retransmission info. This is because this 10071 * segment will be treated as a dup ACK. 10072 */ 10073 if (tcp->tcp_rexmit) { 10074 tcp->tcp_rexmit = B_FALSE; 10075 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 10076 tcp->tcp_rexmit_max = tcp->tcp_snxt; 10077 tcp->tcp_snd_burst = tcp->tcp_localnet ? 10078 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 10079 tcp->tcp_ms_we_have_waited = 0; 10080 10081 /* 10082 * Set tcp_cwnd back to 1 MSS, per 10083 * recommendation from 10084 * draft-floyd-incr-init-win-01.txt, 10085 * Increasing TCP's Initial Window. 10086 */ 10087 tcp->tcp_cwnd = tcp->tcp_mss; 10088 } 10089 10090 tcp->tcp_swl1 = seg_seq; 10091 tcp->tcp_swl2 = seg_ack; 10092 10093 new_swnd = ntohs(tcpha->tha_win); 10094 tcp->tcp_swnd = new_swnd; 10095 if (new_swnd > tcp->tcp_max_swnd) 10096 tcp->tcp_max_swnd = new_swnd; 10097 10098 /* 10099 * Always send the three-way handshake ack immediately 10100 * in order to make the connection complete as soon as 10101 * possible on the accepting host. 10102 */ 10103 flags |= TH_ACK_NEEDED; 10104 10105 /* 10106 * Special case for loopback. At this point we have 10107 * received SYN-ACK from the remote endpoint. In 10108 * order to ensure that both endpoints reach the 10109 * fused state prior to any data exchange, the final 10110 * ACK needs to be sent before we indicate T_CONN_CON 10111 * to the module upstream. 10112 */ 10113 if (tcp->tcp_loopback) { 10114 mblk_t *ack_mp; 10115 10116 ASSERT(!tcp->tcp_unfusable); 10117 ASSERT(mp1 != NULL); 10118 /* 10119 * For loopback, we always get a pure SYN-ACK 10120 * and only need to send back the final ACK 10121 * with no data (this is because the other 10122 * tcp is ours and we don't do T/TCP). This 10123 * final ACK triggers the passive side to 10124 * perform fusion in ESTABLISHED state. 10125 */ 10126 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 10127 if (tcp->tcp_ack_tid != 0) { 10128 (void) TCP_TIMER_CANCEL(tcp, 10129 tcp->tcp_ack_tid); 10130 tcp->tcp_ack_tid = 0; 10131 } 10132 tcp_send_data(tcp, ack_mp); 10133 BUMP_LOCAL(tcp->tcp_obsegs); 10134 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 10135 10136 if (!IPCL_IS_NONSTR(connp)) { 10137 /* Send up T_CONN_CON */ 10138 if (ira->ira_cred != NULL) { 10139 mblk_setcred(mp1, 10140 ira->ira_cred, 10141 ira->ira_cpid); 10142 } 10143 putnext(connp->conn_rq, mp1); 10144 } else { 10145 (*connp->conn_upcalls-> 10146 su_connected) 10147 (connp->conn_upper_handle, 10148 tcp->tcp_connid, 10149 ira->ira_cred, 10150 ira->ira_cpid); 10151 freemsg(mp1); 10152 } 10153 10154 freemsg(mp); 10155 return; 10156 } 10157 /* 10158 * Forget fusion; we need to handle more 10159 * complex cases below. Send the deferred 10160 * T_CONN_CON message upstream and proceed 10161 * as usual. Mark this tcp as not capable 10162 * of fusion. 10163 */ 10164 TCP_STAT(tcps, tcp_fusion_unfusable); 10165 tcp->tcp_unfusable = B_TRUE; 10166 if (!IPCL_IS_NONSTR(connp)) { 10167 if (ira->ira_cred != NULL) { 10168 mblk_setcred(mp1, ira->ira_cred, 10169 ira->ira_cpid); 10170 } 10171 putnext(connp->conn_rq, mp1); 10172 } else { 10173 (*connp->conn_upcalls->su_connected) 10174 (connp->conn_upper_handle, 10175 tcp->tcp_connid, ira->ira_cred, 10176 ira->ira_cpid); 10177 freemsg(mp1); 10178 } 10179 } 10180 10181 /* 10182 * Check to see if there is data to be sent. If 10183 * yes, set the transmit flag. Then check to see 10184 * if received data processing needs to be done. 10185 * If not, go straight to xmit_check. This short 10186 * cut is OK as we don't support T/TCP. 10187 */ 10188 if (tcp->tcp_unsent) 10189 flags |= TH_XMIT_NEEDED; 10190 10191 if (seg_len == 0 && !(flags & TH_URG)) { 10192 freemsg(mp); 10193 goto xmit_check; 10194 } 10195 10196 flags &= ~TH_SYN; 10197 seg_seq++; 10198 break; 10199 } 10200 tcp->tcp_state = TCPS_SYN_RCVD; 10201 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 10202 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 10203 if (mp1 != NULL) { 10204 tcp_send_data(tcp, mp1); 10205 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 10206 } 10207 freemsg(mp); 10208 return; 10209 case TCPS_SYN_RCVD: 10210 if (flags & TH_ACK) { 10211 /* 10212 * In this state, a SYN|ACK packet is either bogus 10213 * because the other side must be ACKing our SYN which 10214 * indicates it has seen the ACK for their SYN and 10215 * shouldn't retransmit it or we're crossing SYNs 10216 * on active open. 10217 */ 10218 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 10219 freemsg(mp); 10220 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 10221 tcp, seg_ack, 0, TH_RST); 10222 return; 10223 } 10224 /* 10225 * NOTE: RFC 793 pg. 72 says this should be 10226 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 10227 * but that would mean we have an ack that ignored 10228 * our SYN. 10229 */ 10230 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 10231 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 10232 freemsg(mp); 10233 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 10234 tcp, seg_ack, 0, TH_RST); 10235 return; 10236 } 10237 } 10238 break; 10239 case TCPS_LISTEN: 10240 /* 10241 * Only a TLI listener can come through this path when a 10242 * acceptor is going back to be a listener and a packet 10243 * for the acceptor hits the classifier. For a socket 10244 * listener, this can never happen because a listener 10245 * can never accept connection on itself and hence a 10246 * socket acceptor can not go back to being a listener. 10247 */ 10248 ASSERT(!TCP_IS_SOCKET(tcp)); 10249 /*FALLTHRU*/ 10250 case TCPS_CLOSED: 10251 case TCPS_BOUND: { 10252 conn_t *new_connp; 10253 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 10254 10255 /* 10256 * Don't accept any input on a closed tcp as this TCP logically 10257 * does not exist on the system. Don't proceed further with 10258 * this TCP. For instance, this packet could trigger another 10259 * close of this tcp which would be disastrous for tcp_refcnt. 10260 * tcp_close_detached / tcp_clean_death / tcp_closei_local must 10261 * be called at most once on a TCP. In this case we need to 10262 * refeed the packet into the classifier and figure out where 10263 * the packet should go. 10264 */ 10265 new_connp = ipcl_classify(mp, ira, ipst); 10266 if (new_connp != NULL) { 10267 /* Drops ref on new_connp */ 10268 tcp_reinput(new_connp, mp, ira, ipst); 10269 return; 10270 } 10271 /* We failed to classify. For now just drop the packet */ 10272 freemsg(mp); 10273 return; 10274 } 10275 case TCPS_IDLE: 10276 /* 10277 * Handle the case where the tcp_clean_death() has happened 10278 * on a connection (application hasn't closed yet) but a packet 10279 * was already queued on squeue before tcp_clean_death() 10280 * was processed. Calling tcp_clean_death() twice on same 10281 * connection can result in weird behaviour. 10282 */ 10283 freemsg(mp); 10284 return; 10285 default: 10286 break; 10287 } 10288 10289 /* 10290 * Already on the correct queue/perimeter. 10291 * If this is a detached connection and not an eager 10292 * connection hanging off a listener then new data 10293 * (past the FIN) will cause a reset. 10294 * We do a special check here where it 10295 * is out of the main line, rather than check 10296 * if we are detached every time we see new 10297 * data down below. 10298 */ 10299 if (TCP_IS_DETACHED_NONEAGER(tcp) && 10300 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 10301 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 10302 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 10303 10304 freemsg(mp); 10305 /* 10306 * This could be an SSL closure alert. We're detached so just 10307 * acknowledge it this last time. 10308 */ 10309 if (tcp->tcp_kssl_ctx != NULL) { 10310 kssl_release_ctx(tcp->tcp_kssl_ctx); 10311 tcp->tcp_kssl_ctx = NULL; 10312 10313 tcp->tcp_rnxt += seg_len; 10314 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 10315 flags |= TH_ACK_NEEDED; 10316 goto ack_check; 10317 } 10318 10319 tcp_xmit_ctl("new data when detached", tcp, 10320 tcp->tcp_snxt, 0, TH_RST); 10321 (void) tcp_clean_death(tcp, EPROTO, 12); 10322 return; 10323 } 10324 10325 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); 10326 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; 10327 new_swnd = ntohs(tcpha->tha_win) << 10328 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 10329 10330 if (tcp->tcp_snd_ts_ok) { 10331 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 10332 /* 10333 * This segment is not acceptable. 10334 * Drop it and send back an ACK. 10335 */ 10336 freemsg(mp); 10337 flags |= TH_ACK_NEEDED; 10338 goto ack_check; 10339 } 10340 } else if (tcp->tcp_snd_sack_ok) { 10341 ASSERT(tcp->tcp_sack_info != NULL); 10342 tcpopt.tcp = tcp; 10343 /* 10344 * SACK info in already updated in tcp_parse_options. Ignore 10345 * all other TCP options... 10346 */ 10347 (void) tcp_parse_options(tcpha, &tcpopt); 10348 } 10349 try_again:; 10350 mss = tcp->tcp_mss; 10351 gap = seg_seq - tcp->tcp_rnxt; 10352 rgap = tcp->tcp_rwnd - (gap + seg_len); 10353 /* 10354 * gap is the amount of sequence space between what we expect to see 10355 * and what we got for seg_seq. A positive value for gap means 10356 * something got lost. A negative value means we got some old stuff. 10357 */ 10358 if (gap < 0) { 10359 /* Old stuff present. Is the SYN in there? */ 10360 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 10361 (seg_len != 0)) { 10362 flags &= ~TH_SYN; 10363 seg_seq++; 10364 urp--; 10365 /* Recompute the gaps after noting the SYN. */ 10366 goto try_again; 10367 } 10368 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 10369 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 10370 (seg_len > -gap ? -gap : seg_len)); 10371 /* Remove the old stuff from seg_len. */ 10372 seg_len += gap; 10373 /* 10374 * Anything left? 10375 * Make sure to check for unack'd FIN when rest of data 10376 * has been previously ack'd. 10377 */ 10378 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 10379 /* 10380 * Resets are only valid if they lie within our offered 10381 * window. If the RST bit is set, we just ignore this 10382 * segment. 10383 */ 10384 if (flags & TH_RST) { 10385 freemsg(mp); 10386 return; 10387 } 10388 10389 /* 10390 * The arriving of dup data packets indicate that we 10391 * may have postponed an ack for too long, or the other 10392 * side's RTT estimate is out of shape. Start acking 10393 * more often. 10394 */ 10395 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 10396 tcp->tcp_rack_cnt >= 1 && 10397 tcp->tcp_rack_abs_max > 2) { 10398 tcp->tcp_rack_abs_max--; 10399 } 10400 tcp->tcp_rack_cur_max = 1; 10401 10402 /* 10403 * This segment is "unacceptable". None of its 10404 * sequence space lies within our advertized window. 10405 * 10406 * Adjust seg_len to the original value for tracing. 10407 */ 10408 seg_len -= gap; 10409 if (connp->conn_debug) { 10410 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10411 "tcp_rput: unacceptable, gap %d, rgap %d, " 10412 "flags 0x%x, seg_seq %u, seg_ack %u, " 10413 "seg_len %d, rnxt %u, snxt %u, %s", 10414 gap, rgap, flags, seg_seq, seg_ack, 10415 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 10416 tcp_display(tcp, NULL, 10417 DISP_ADDR_AND_PORT)); 10418 } 10419 10420 /* 10421 * Arrange to send an ACK in response to the 10422 * unacceptable segment per RFC 793 page 69. There 10423 * is only one small difference between ours and the 10424 * acceptability test in the RFC - we accept ACK-only 10425 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 10426 * will be generated. 10427 * 10428 * Note that we have to ACK an ACK-only packet at least 10429 * for stacks that send 0-length keep-alives with 10430 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 10431 * section 4.2.3.6. As long as we don't ever generate 10432 * an unacceptable packet in response to an incoming 10433 * packet that is unacceptable, it should not cause 10434 * "ACK wars". 10435 */ 10436 flags |= TH_ACK_NEEDED; 10437 10438 /* 10439 * Continue processing this segment in order to use the 10440 * ACK information it contains, but skip all other 10441 * sequence-number processing. Processing the ACK 10442 * information is necessary in order to 10443 * re-synchronize connections that may have lost 10444 * synchronization. 10445 * 10446 * We clear seg_len and flag fields related to 10447 * sequence number processing as they are not 10448 * to be trusted for an unacceptable segment. 10449 */ 10450 seg_len = 0; 10451 flags &= ~(TH_SYN | TH_FIN | TH_URG); 10452 goto process_ack; 10453 } 10454 10455 /* Fix seg_seq, and chew the gap off the front. */ 10456 seg_seq = tcp->tcp_rnxt; 10457 urp += gap; 10458 do { 10459 mblk_t *mp2; 10460 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10461 (uintptr_t)UINT_MAX); 10462 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 10463 if (gap > 0) { 10464 mp->b_rptr = mp->b_wptr - gap; 10465 break; 10466 } 10467 mp2 = mp; 10468 mp = mp->b_cont; 10469 freeb(mp2); 10470 } while (gap < 0); 10471 /* 10472 * If the urgent data has already been acknowledged, we 10473 * should ignore TH_URG below 10474 */ 10475 if (urp < 0) 10476 flags &= ~TH_URG; 10477 } 10478 /* 10479 * rgap is the amount of stuff received out of window. A negative 10480 * value is the amount out of window. 10481 */ 10482 if (rgap < 0) { 10483 mblk_t *mp2; 10484 10485 if (tcp->tcp_rwnd == 0) { 10486 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 10487 } else { 10488 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 10489 UPDATE_MIB(&tcps->tcps_mib, 10490 tcpInDataPastWinBytes, -rgap); 10491 } 10492 10493 /* 10494 * seg_len does not include the FIN, so if more than 10495 * just the FIN is out of window, we act like we don't 10496 * see it. (If just the FIN is out of window, rgap 10497 * will be zero and we will go ahead and acknowledge 10498 * the FIN.) 10499 */ 10500 flags &= ~TH_FIN; 10501 10502 /* Fix seg_len and make sure there is something left. */ 10503 seg_len += rgap; 10504 if (seg_len <= 0) { 10505 /* 10506 * Resets are only valid if they lie within our offered 10507 * window. If the RST bit is set, we just ignore this 10508 * segment. 10509 */ 10510 if (flags & TH_RST) { 10511 freemsg(mp); 10512 return; 10513 } 10514 10515 /* Per RFC 793, we need to send back an ACK. */ 10516 flags |= TH_ACK_NEEDED; 10517 10518 /* 10519 * Send SIGURG as soon as possible i.e. even 10520 * if the TH_URG was delivered in a window probe 10521 * packet (which will be unacceptable). 10522 * 10523 * We generate a signal if none has been generated 10524 * for this connection or if this is a new urgent 10525 * byte. Also send a zero-length "unmarked" message 10526 * to inform SIOCATMARK that this is not the mark. 10527 * 10528 * tcp_urp_last_valid is cleared when the T_exdata_ind 10529 * is sent up. This plus the check for old data 10530 * (gap >= 0) handles the wraparound of the sequence 10531 * number space without having to always track the 10532 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 10533 * this max in its rcv_up variable). 10534 * 10535 * This prevents duplicate SIGURGS due to a "late" 10536 * zero-window probe when the T_EXDATA_IND has already 10537 * been sent up. 10538 */ 10539 if ((flags & TH_URG) && 10540 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 10541 tcp->tcp_urp_last))) { 10542 if (IPCL_IS_NONSTR(connp)) { 10543 if (!TCP_IS_DETACHED(tcp)) { 10544 (*connp->conn_upcalls-> 10545 su_signal_oob) 10546 (connp->conn_upper_handle, 10547 urp); 10548 } 10549 } else { 10550 mp1 = allocb(0, BPRI_MED); 10551 if (mp1 == NULL) { 10552 freemsg(mp); 10553 return; 10554 } 10555 if (!TCP_IS_DETACHED(tcp) && 10556 !putnextctl1(connp->conn_rq, 10557 M_PCSIG, SIGURG)) { 10558 /* Try again on the rexmit. */ 10559 freemsg(mp1); 10560 freemsg(mp); 10561 return; 10562 } 10563 /* 10564 * If the next byte would be the mark 10565 * then mark with MARKNEXT else mark 10566 * with NOTMARKNEXT. 10567 */ 10568 if (gap == 0 && urp == 0) 10569 mp1->b_flag |= MSGMARKNEXT; 10570 else 10571 mp1->b_flag |= MSGNOTMARKNEXT; 10572 freemsg(tcp->tcp_urp_mark_mp); 10573 tcp->tcp_urp_mark_mp = mp1; 10574 flags |= TH_SEND_URP_MARK; 10575 } 10576 tcp->tcp_urp_last_valid = B_TRUE; 10577 tcp->tcp_urp_last = urp + seg_seq; 10578 } 10579 /* 10580 * If this is a zero window probe, continue to 10581 * process the ACK part. But we need to set seg_len 10582 * to 0 to avoid data processing. Otherwise just 10583 * drop the segment and send back an ACK. 10584 */ 10585 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 10586 flags &= ~(TH_SYN | TH_URG); 10587 seg_len = 0; 10588 goto process_ack; 10589 } else { 10590 freemsg(mp); 10591 goto ack_check; 10592 } 10593 } 10594 /* Pitch out of window stuff off the end. */ 10595 rgap = seg_len; 10596 mp2 = mp; 10597 do { 10598 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 10599 (uintptr_t)INT_MAX); 10600 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 10601 if (rgap < 0) { 10602 mp2->b_wptr += rgap; 10603 if ((mp1 = mp2->b_cont) != NULL) { 10604 mp2->b_cont = NULL; 10605 freemsg(mp1); 10606 } 10607 break; 10608 } 10609 } while ((mp2 = mp2->b_cont) != NULL); 10610 } 10611 ok:; 10612 /* 10613 * TCP should check ECN info for segments inside the window only. 10614 * Therefore the check should be done here. 10615 */ 10616 if (tcp->tcp_ecn_ok) { 10617 if (flags & TH_CWR) { 10618 tcp->tcp_ecn_echo_on = B_FALSE; 10619 } 10620 /* 10621 * Note that both ECN_CE and CWR can be set in the 10622 * same segment. In this case, we once again turn 10623 * on ECN_ECHO. 10624 */ 10625 if (connp->conn_ipversion == IPV4_VERSION) { 10626 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 10627 10628 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 10629 tcp->tcp_ecn_echo_on = B_TRUE; 10630 } 10631 } else { 10632 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 10633 10634 if ((vcf & htonl(IPH_ECN_CE << 20)) == 10635 htonl(IPH_ECN_CE << 20)) { 10636 tcp->tcp_ecn_echo_on = B_TRUE; 10637 } 10638 } 10639 } 10640 10641 /* 10642 * Check whether we can update tcp_ts_recent. This test is 10643 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 10644 * Extensions for High Performance: An Update", Internet Draft. 10645 */ 10646 if (tcp->tcp_snd_ts_ok && 10647 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 10648 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 10649 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 10650 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; 10651 } 10652 10653 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 10654 /* 10655 * FIN in an out of order segment. We record this in 10656 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 10657 * Clear the FIN so that any check on FIN flag will fail. 10658 * Remember that FIN also counts in the sequence number 10659 * space. So we need to ack out of order FIN only segments. 10660 */ 10661 if (flags & TH_FIN) { 10662 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 10663 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 10664 flags &= ~TH_FIN; 10665 flags |= TH_ACK_NEEDED; 10666 } 10667 if (seg_len > 0) { 10668 /* Fill in the SACK blk list. */ 10669 if (tcp->tcp_snd_sack_ok) { 10670 ASSERT(tcp->tcp_sack_info != NULL); 10671 tcp_sack_insert(tcp->tcp_sack_list, 10672 seg_seq, seg_seq + seg_len, 10673 &(tcp->tcp_num_sack_blk)); 10674 } 10675 10676 /* 10677 * Attempt reassembly and see if we have something 10678 * ready to go. 10679 */ 10680 mp = tcp_reass(tcp, mp, seg_seq); 10681 /* Always ack out of order packets */ 10682 flags |= TH_ACK_NEEDED | TH_PUSH; 10683 if (mp) { 10684 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10685 (uintptr_t)INT_MAX); 10686 seg_len = mp->b_cont ? msgdsize(mp) : 10687 (int)(mp->b_wptr - mp->b_rptr); 10688 seg_seq = tcp->tcp_rnxt; 10689 /* 10690 * A gap is filled and the seq num and len 10691 * of the gap match that of a previously 10692 * received FIN, put the FIN flag back in. 10693 */ 10694 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10695 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10696 flags |= TH_FIN; 10697 tcp->tcp_valid_bits &= 10698 ~TCP_OFO_FIN_VALID; 10699 } 10700 } else { 10701 /* 10702 * Keep going even with NULL mp. 10703 * There may be a useful ACK or something else 10704 * we don't want to miss. 10705 * 10706 * But TCP should not perform fast retransmit 10707 * because of the ack number. TCP uses 10708 * seg_len == 0 to determine if it is a pure 10709 * ACK. And this is not a pure ACK. 10710 */ 10711 seg_len = 0; 10712 ofo_seg = B_TRUE; 10713 } 10714 } 10715 } else if (seg_len > 0) { 10716 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 10717 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 10718 /* 10719 * If an out of order FIN was received before, and the seq 10720 * num and len of the new segment match that of the FIN, 10721 * put the FIN flag back in. 10722 */ 10723 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 10724 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 10725 flags |= TH_FIN; 10726 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 10727 } 10728 } 10729 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 10730 if (flags & TH_RST) { 10731 freemsg(mp); 10732 switch (tcp->tcp_state) { 10733 case TCPS_SYN_RCVD: 10734 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 10735 break; 10736 case TCPS_ESTABLISHED: 10737 case TCPS_FIN_WAIT_1: 10738 case TCPS_FIN_WAIT_2: 10739 case TCPS_CLOSE_WAIT: 10740 (void) tcp_clean_death(tcp, ECONNRESET, 15); 10741 break; 10742 case TCPS_CLOSING: 10743 case TCPS_LAST_ACK: 10744 (void) tcp_clean_death(tcp, 0, 16); 10745 break; 10746 default: 10747 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 10748 (void) tcp_clean_death(tcp, ENXIO, 17); 10749 break; 10750 } 10751 return; 10752 } 10753 if (flags & TH_SYN) { 10754 /* 10755 * See RFC 793, Page 71 10756 * 10757 * The seq number must be in the window as it should 10758 * be "fixed" above. If it is outside window, it should 10759 * be already rejected. Note that we allow seg_seq to be 10760 * rnxt + rwnd because we want to accept 0 window probe. 10761 */ 10762 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 10763 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 10764 freemsg(mp); 10765 /* 10766 * If the ACK flag is not set, just use our snxt as the 10767 * seq number of the RST segment. 10768 */ 10769 if (!(flags & TH_ACK)) { 10770 seg_ack = tcp->tcp_snxt; 10771 } 10772 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 10773 TH_RST|TH_ACK); 10774 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 10775 (void) tcp_clean_death(tcp, ECONNRESET, 18); 10776 return; 10777 } 10778 /* 10779 * urp could be -1 when the urp field in the packet is 0 10780 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 10781 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 10782 */ 10783 if (flags & TH_URG && urp >= 0) { 10784 if (!tcp->tcp_urp_last_valid || 10785 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 10786 /* 10787 * Non-STREAMS sockets handle the urgent data a litte 10788 * differently from STREAMS based sockets. There is no 10789 * need to mark any mblks with the MSG{NOT,}MARKNEXT 10790 * flags to keep SIOCATMARK happy. Instead a 10791 * su_signal_oob upcall is made to update the mark. 10792 * Neither is a T_EXDATA_IND mblk needed to be 10793 * prepended to the urgent data. The urgent data is 10794 * delivered using the su_recv upcall, where we set 10795 * the MSG_OOB flag to indicate that it is urg data. 10796 * 10797 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED 10798 * are used by non-STREAMS sockets. 10799 */ 10800 if (IPCL_IS_NONSTR(connp)) { 10801 if (!TCP_IS_DETACHED(tcp)) { 10802 (*connp->conn_upcalls->su_signal_oob) 10803 (connp->conn_upper_handle, urp); 10804 } 10805 } else { 10806 /* 10807 * If we haven't generated the signal yet for 10808 * this urgent pointer value, do it now. Also, 10809 * send up a zero-length M_DATA indicating 10810 * whether or not this is the mark. The latter 10811 * is not needed when a T_EXDATA_IND is sent up. 10812 * However, if there are allocation failures 10813 * this code relies on the sender retransmitting 10814 * and the socket code for determining the mark 10815 * should not block waiting for the peer to 10816 * transmit. Thus, for simplicity we always 10817 * send up the mark indication. 10818 */ 10819 mp1 = allocb(0, BPRI_MED); 10820 if (mp1 == NULL) { 10821 freemsg(mp); 10822 return; 10823 } 10824 if (!TCP_IS_DETACHED(tcp) && 10825 !putnextctl1(connp->conn_rq, M_PCSIG, 10826 SIGURG)) { 10827 /* Try again on the rexmit. */ 10828 freemsg(mp1); 10829 freemsg(mp); 10830 return; 10831 } 10832 /* 10833 * Mark with NOTMARKNEXT for now. 10834 * The code below will change this to MARKNEXT 10835 * if we are at the mark. 10836 * 10837 * If there are allocation failures (e.g. in 10838 * dupmsg below) the next time tcp_rput_data 10839 * sees the urgent segment it will send up the 10840 * MSGMARKNEXT message. 10841 */ 10842 mp1->b_flag |= MSGNOTMARKNEXT; 10843 freemsg(tcp->tcp_urp_mark_mp); 10844 tcp->tcp_urp_mark_mp = mp1; 10845 flags |= TH_SEND_URP_MARK; 10846 #ifdef DEBUG 10847 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 10848 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 10849 "last %x, %s", 10850 seg_seq, urp, tcp->tcp_urp_last, 10851 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 10852 #endif /* DEBUG */ 10853 } 10854 tcp->tcp_urp_last_valid = B_TRUE; 10855 tcp->tcp_urp_last = urp + seg_seq; 10856 } else if (tcp->tcp_urp_mark_mp != NULL) { 10857 /* 10858 * An allocation failure prevented the previous 10859 * tcp_input_data from sending up the allocated 10860 * MSG*MARKNEXT message - send it up this time 10861 * around. 10862 */ 10863 flags |= TH_SEND_URP_MARK; 10864 } 10865 10866 /* 10867 * If the urgent byte is in this segment, make sure that it is 10868 * all by itself. This makes it much easier to deal with the 10869 * possibility of an allocation failure on the T_exdata_ind. 10870 * Note that seg_len is the number of bytes in the segment, and 10871 * urp is the offset into the segment of the urgent byte. 10872 * urp < seg_len means that the urgent byte is in this segment. 10873 */ 10874 if (urp < seg_len) { 10875 if (seg_len != 1) { 10876 uint32_t tmp_rnxt; 10877 /* 10878 * Break it up and feed it back in. 10879 * Re-attach the IP header. 10880 */ 10881 mp->b_rptr = iphdr; 10882 if (urp > 0) { 10883 /* 10884 * There is stuff before the urgent 10885 * byte. 10886 */ 10887 mp1 = dupmsg(mp); 10888 if (!mp1) { 10889 /* 10890 * Trim from urgent byte on. 10891 * The rest will come back. 10892 */ 10893 (void) adjmsg(mp, 10894 urp - seg_len); 10895 tcp_input_data(connp, 10896 mp, NULL, ira); 10897 return; 10898 } 10899 (void) adjmsg(mp1, urp - seg_len); 10900 /* Feed this piece back in. */ 10901 tmp_rnxt = tcp->tcp_rnxt; 10902 tcp_input_data(connp, mp1, NULL, ira); 10903 /* 10904 * If the data passed back in was not 10905 * processed (ie: bad ACK) sending 10906 * the remainder back in will cause a 10907 * loop. In this case, drop the 10908 * packet and let the sender try 10909 * sending a good packet. 10910 */ 10911 if (tmp_rnxt == tcp->tcp_rnxt) { 10912 freemsg(mp); 10913 return; 10914 } 10915 } 10916 if (urp != seg_len - 1) { 10917 uint32_t tmp_rnxt; 10918 /* 10919 * There is stuff after the urgent 10920 * byte. 10921 */ 10922 mp1 = dupmsg(mp); 10923 if (!mp1) { 10924 /* 10925 * Trim everything beyond the 10926 * urgent byte. The rest will 10927 * come back. 10928 */ 10929 (void) adjmsg(mp, 10930 urp + 1 - seg_len); 10931 tcp_input_data(connp, 10932 mp, NULL, ira); 10933 return; 10934 } 10935 (void) adjmsg(mp1, urp + 1 - seg_len); 10936 tmp_rnxt = tcp->tcp_rnxt; 10937 tcp_input_data(connp, mp1, NULL, ira); 10938 /* 10939 * If the data passed back in was not 10940 * processed (ie: bad ACK) sending 10941 * the remainder back in will cause a 10942 * loop. In this case, drop the 10943 * packet and let the sender try 10944 * sending a good packet. 10945 */ 10946 if (tmp_rnxt == tcp->tcp_rnxt) { 10947 freemsg(mp); 10948 return; 10949 } 10950 } 10951 tcp_input_data(connp, mp, NULL, ira); 10952 return; 10953 } 10954 /* 10955 * This segment contains only the urgent byte. We 10956 * have to allocate the T_exdata_ind, if we can. 10957 */ 10958 if (IPCL_IS_NONSTR(connp)) { 10959 int error; 10960 10961 (*connp->conn_upcalls->su_recv) 10962 (connp->conn_upper_handle, mp, seg_len, 10963 MSG_OOB, &error, NULL); 10964 /* 10965 * We should never be in middle of a 10966 * fallback, the squeue guarantees that. 10967 */ 10968 ASSERT(error != EOPNOTSUPP); 10969 mp = NULL; 10970 goto update_ack; 10971 } else if (!tcp->tcp_urp_mp) { 10972 struct T_exdata_ind *tei; 10973 mp1 = allocb(sizeof (struct T_exdata_ind), 10974 BPRI_MED); 10975 if (!mp1) { 10976 /* 10977 * Sigh... It'll be back. 10978 * Generate any MSG*MARK message now. 10979 */ 10980 freemsg(mp); 10981 seg_len = 0; 10982 if (flags & TH_SEND_URP_MARK) { 10983 10984 10985 ASSERT(tcp->tcp_urp_mark_mp); 10986 tcp->tcp_urp_mark_mp->b_flag &= 10987 ~MSGNOTMARKNEXT; 10988 tcp->tcp_urp_mark_mp->b_flag |= 10989 MSGMARKNEXT; 10990 } 10991 goto ack_check; 10992 } 10993 mp1->b_datap->db_type = M_PROTO; 10994 tei = (struct T_exdata_ind *)mp1->b_rptr; 10995 tei->PRIM_type = T_EXDATA_IND; 10996 tei->MORE_flag = 0; 10997 mp1->b_wptr = (uchar_t *)&tei[1]; 10998 tcp->tcp_urp_mp = mp1; 10999 #ifdef DEBUG 11000 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11001 "tcp_rput: allocated exdata_ind %s", 11002 tcp_display(tcp, NULL, 11003 DISP_PORT_ONLY)); 11004 #endif /* DEBUG */ 11005 /* 11006 * There is no need to send a separate MSG*MARK 11007 * message since the T_EXDATA_IND will be sent 11008 * now. 11009 */ 11010 flags &= ~TH_SEND_URP_MARK; 11011 freemsg(tcp->tcp_urp_mark_mp); 11012 tcp->tcp_urp_mark_mp = NULL; 11013 } 11014 /* 11015 * Now we are all set. On the next putnext upstream, 11016 * tcp_urp_mp will be non-NULL and will get prepended 11017 * to what has to be this piece containing the urgent 11018 * byte. If for any reason we abort this segment below, 11019 * if it comes back, we will have this ready, or it 11020 * will get blown off in close. 11021 */ 11022 } else if (urp == seg_len) { 11023 /* 11024 * The urgent byte is the next byte after this sequence 11025 * number. If this endpoint is non-STREAMS, then there 11026 * is nothing to do here since the socket has already 11027 * been notified about the urg pointer by the 11028 * su_signal_oob call above. 11029 * 11030 * In case of STREAMS, some more work might be needed. 11031 * If there is data it is marked with MSGMARKNEXT and 11032 * and any tcp_urp_mark_mp is discarded since it is not 11033 * needed. Otherwise, if the code above just allocated 11034 * a zero-length tcp_urp_mark_mp message, that message 11035 * is tagged with MSGMARKNEXT. Sending up these 11036 * MSGMARKNEXT messages makes SIOCATMARK work correctly 11037 * even though the T_EXDATA_IND will not be sent up 11038 * until the urgent byte arrives. 11039 */ 11040 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 11041 if (seg_len != 0) { 11042 flags |= TH_MARKNEXT_NEEDED; 11043 freemsg(tcp->tcp_urp_mark_mp); 11044 tcp->tcp_urp_mark_mp = NULL; 11045 flags &= ~TH_SEND_URP_MARK; 11046 } else if (tcp->tcp_urp_mark_mp != NULL) { 11047 flags |= TH_SEND_URP_MARK; 11048 tcp->tcp_urp_mark_mp->b_flag &= 11049 ~MSGNOTMARKNEXT; 11050 tcp->tcp_urp_mark_mp->b_flag |= 11051 MSGMARKNEXT; 11052 } 11053 } 11054 #ifdef DEBUG 11055 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11056 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 11057 seg_len, flags, 11058 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 11059 #endif /* DEBUG */ 11060 } 11061 #ifdef DEBUG 11062 else { 11063 /* Data left until we hit mark */ 11064 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 11065 "tcp_rput: URP %d bytes left, %s", 11066 urp - seg_len, tcp_display(tcp, NULL, 11067 DISP_PORT_ONLY)); 11068 } 11069 #endif /* DEBUG */ 11070 } 11071 11072 process_ack: 11073 if (!(flags & TH_ACK)) { 11074 freemsg(mp); 11075 goto xmit_check; 11076 } 11077 } 11078 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 11079 11080 if (bytes_acked > 0) 11081 tcp->tcp_ip_forward_progress = B_TRUE; 11082 if (tcp->tcp_state == TCPS_SYN_RCVD) { 11083 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 11084 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 11085 /* 3-way handshake complete - pass up the T_CONN_IND */ 11086 tcp_t *listener = tcp->tcp_listener; 11087 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 11088 11089 tcp->tcp_tconnind_started = B_TRUE; 11090 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 11091 /* 11092 * We are here means eager is fine but it can 11093 * get a TH_RST at any point between now and till 11094 * accept completes and disappear. We need to 11095 * ensure that reference to eager is valid after 11096 * we get out of eager's perimeter. So we do 11097 * an extra refhold. 11098 */ 11099 CONN_INC_REF(connp); 11100 11101 /* 11102 * The listener also exists because of the refhold 11103 * done in tcp_input_listener. Its possible that it 11104 * might have closed. We will check that once we 11105 * get inside listeners context. 11106 */ 11107 CONN_INC_REF(listener->tcp_connp); 11108 if (listener->tcp_connp->conn_sqp == 11109 connp->conn_sqp) { 11110 /* 11111 * We optimize by not calling an SQUEUE_ENTER 11112 * on the listener since we know that the 11113 * listener and eager squeues are the same. 11114 * We are able to make this check safely only 11115 * because neither the eager nor the listener 11116 * can change its squeue. Only an active connect 11117 * can change its squeue 11118 */ 11119 tcp_send_conn_ind(listener->tcp_connp, mp, 11120 listener->tcp_connp->conn_sqp); 11121 CONN_DEC_REF(listener->tcp_connp); 11122 } else if (!tcp->tcp_loopback) { 11123 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11124 mp, tcp_send_conn_ind, 11125 listener->tcp_connp, NULL, SQ_FILL, 11126 SQTAG_TCP_CONN_IND); 11127 } else { 11128 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 11129 mp, tcp_send_conn_ind, 11130 listener->tcp_connp, NULL, SQ_PROCESS, 11131 SQTAG_TCP_CONN_IND); 11132 } 11133 } 11134 11135 /* 11136 * We are seeing the final ack in the three way 11137 * hand shake of a active open'ed connection 11138 * so we must send up a T_CONN_CON 11139 * 11140 * tcp_sendmsg() checks tcp_state without entering 11141 * the squeue so tcp_state should be updated before 11142 * sending up connection confirmation. 11143 */ 11144 tcp->tcp_state = TCPS_ESTABLISHED; 11145 if (tcp->tcp_active_open) { 11146 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { 11147 freemsg(mp); 11148 tcp->tcp_state = TCPS_SYN_RCVD; 11149 return; 11150 } 11151 /* 11152 * Don't fuse the loopback endpoints for 11153 * simultaneous active opens. 11154 */ 11155 if (tcp->tcp_loopback) { 11156 TCP_STAT(tcps, tcp_fusion_unfusable); 11157 tcp->tcp_unfusable = B_TRUE; 11158 } 11159 } 11160 11161 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 11162 bytes_acked--; 11163 /* SYN was acked - making progress */ 11164 tcp->tcp_ip_forward_progress = B_TRUE; 11165 11166 /* 11167 * If SYN was retransmitted, need to reset all 11168 * retransmission info as this segment will be 11169 * treated as a dup ACK. 11170 */ 11171 if (tcp->tcp_rexmit) { 11172 tcp->tcp_rexmit = B_FALSE; 11173 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11174 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11175 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11176 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11177 tcp->tcp_ms_we_have_waited = 0; 11178 tcp->tcp_cwnd = mss; 11179 } 11180 11181 /* 11182 * We set the send window to zero here. 11183 * This is needed if there is data to be 11184 * processed already on the queue. 11185 * Later (at swnd_update label), the 11186 * "new_swnd > tcp_swnd" condition is satisfied 11187 * the XMIT_NEEDED flag is set in the current 11188 * (SYN_RCVD) state. This ensures tcp_wput_data() is 11189 * called if there is already data on queue in 11190 * this state. 11191 */ 11192 tcp->tcp_swnd = 0; 11193 11194 if (new_swnd > tcp->tcp_max_swnd) 11195 tcp->tcp_max_swnd = new_swnd; 11196 tcp->tcp_swl1 = seg_seq; 11197 tcp->tcp_swl2 = seg_ack; 11198 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 11199 11200 /* Fuse when both sides are in ESTABLISHED state */ 11201 if (tcp->tcp_loopback && do_tcp_fusion) 11202 tcp_fuse(tcp, iphdr, tcpha); 11203 11204 } 11205 /* This code follows 4.4BSD-Lite2 mostly. */ 11206 if (bytes_acked < 0) 11207 goto est; 11208 11209 /* 11210 * If TCP is ECN capable and the congestion experience bit is 11211 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 11212 * done once per window (or more loosely, per RTT). 11213 */ 11214 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 11215 tcp->tcp_cwr = B_FALSE; 11216 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 11217 if (!tcp->tcp_cwr) { 11218 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 11219 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 11220 tcp->tcp_cwnd = npkt * mss; 11221 /* 11222 * If the cwnd is 0, use the timer to clock out 11223 * new segments. This is required by the ECN spec. 11224 */ 11225 if (npkt == 0) { 11226 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11227 /* 11228 * This makes sure that when the ACK comes 11229 * back, we will increase tcp_cwnd by 1 MSS. 11230 */ 11231 tcp->tcp_cwnd_cnt = 0; 11232 } 11233 tcp->tcp_cwr = B_TRUE; 11234 /* 11235 * This marks the end of the current window of in 11236 * flight data. That is why we don't use 11237 * tcp_suna + tcp_swnd. Only data in flight can 11238 * provide ECN info. 11239 */ 11240 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11241 tcp->tcp_ecn_cwr_sent = B_FALSE; 11242 } 11243 } 11244 11245 mp1 = tcp->tcp_xmit_head; 11246 if (bytes_acked == 0) { 11247 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 11248 int dupack_cnt; 11249 11250 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 11251 /* 11252 * Fast retransmit. When we have seen exactly three 11253 * identical ACKs while we have unacked data 11254 * outstanding we take it as a hint that our peer 11255 * dropped something. 11256 * 11257 * If TCP is retransmitting, don't do fast retransmit. 11258 */ 11259 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 11260 ! tcp->tcp_rexmit) { 11261 /* Do Limited Transmit */ 11262 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 11263 tcps->tcps_dupack_fast_retransmit) { 11264 /* 11265 * RFC 3042 11266 * 11267 * What we need to do is temporarily 11268 * increase tcp_cwnd so that new 11269 * data can be sent if it is allowed 11270 * by the receive window (tcp_rwnd). 11271 * tcp_wput_data() will take care of 11272 * the rest. 11273 * 11274 * If the connection is SACK capable, 11275 * only do limited xmit when there 11276 * is SACK info. 11277 * 11278 * Note how tcp_cwnd is incremented. 11279 * The first dup ACK will increase 11280 * it by 1 MSS. The second dup ACK 11281 * will increase it by 2 MSS. This 11282 * means that only 1 new segment will 11283 * be sent for each dup ACK. 11284 */ 11285 if (tcp->tcp_unsent > 0 && 11286 (!tcp->tcp_snd_sack_ok || 11287 (tcp->tcp_snd_sack_ok && 11288 tcp->tcp_notsack_list != NULL))) { 11289 tcp->tcp_cwnd += mss << 11290 (tcp->tcp_dupack_cnt - 1); 11291 flags |= TH_LIMIT_XMIT; 11292 } 11293 } else if (dupack_cnt == 11294 tcps->tcps_dupack_fast_retransmit) { 11295 11296 /* 11297 * If we have reduced tcp_ssthresh 11298 * because of ECN, do not reduce it again 11299 * unless it is already one window of data 11300 * away. After one window of data, tcp_cwr 11301 * should then be cleared. Note that 11302 * for non ECN capable connection, tcp_cwr 11303 * should always be false. 11304 * 11305 * Adjust cwnd since the duplicate 11306 * ack indicates that a packet was 11307 * dropped (due to congestion.) 11308 */ 11309 if (!tcp->tcp_cwr) { 11310 npkt = ((tcp->tcp_snxt - 11311 tcp->tcp_suna) >> 1) / mss; 11312 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 11313 mss; 11314 tcp->tcp_cwnd = (npkt + 11315 tcp->tcp_dupack_cnt) * mss; 11316 } 11317 if (tcp->tcp_ecn_ok) { 11318 tcp->tcp_cwr = B_TRUE; 11319 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 11320 tcp->tcp_ecn_cwr_sent = B_FALSE; 11321 } 11322 11323 /* 11324 * We do Hoe's algorithm. Refer to her 11325 * paper "Improving the Start-up Behavior 11326 * of a Congestion Control Scheme for TCP," 11327 * appeared in SIGCOMM'96. 11328 * 11329 * Save highest seq no we have sent so far. 11330 * Be careful about the invisible FIN byte. 11331 */ 11332 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 11333 (tcp->tcp_unsent == 0)) { 11334 tcp->tcp_rexmit_max = tcp->tcp_fss; 11335 } else { 11336 tcp->tcp_rexmit_max = tcp->tcp_snxt; 11337 } 11338 11339 /* 11340 * Do not allow bursty traffic during. 11341 * fast recovery. Refer to Fall and Floyd's 11342 * paper "Simulation-based Comparisons of 11343 * Tahoe, Reno and SACK TCP" (in CCR?) 11344 * This is a best current practise. 11345 */ 11346 tcp->tcp_snd_burst = TCP_CWND_SS; 11347 11348 /* 11349 * For SACK: 11350 * Calculate tcp_pipe, which is the 11351 * estimated number of bytes in 11352 * network. 11353 * 11354 * tcp_fack is the highest sack'ed seq num 11355 * TCP has received. 11356 * 11357 * tcp_pipe is explained in the above quoted 11358 * Fall and Floyd's paper. tcp_fack is 11359 * explained in Mathis and Mahdavi's 11360 * "Forward Acknowledgment: Refining TCP 11361 * Congestion Control" in SIGCOMM '96. 11362 */ 11363 if (tcp->tcp_snd_sack_ok) { 11364 ASSERT(tcp->tcp_sack_info != NULL); 11365 if (tcp->tcp_notsack_list != NULL) { 11366 tcp->tcp_pipe = tcp->tcp_snxt - 11367 tcp->tcp_fack; 11368 tcp->tcp_sack_snxt = seg_ack; 11369 flags |= TH_NEED_SACK_REXMIT; 11370 } else { 11371 /* 11372 * Always initialize tcp_pipe 11373 * even though we don't have 11374 * any SACK info. If later 11375 * we get SACK info and 11376 * tcp_pipe is not initialized, 11377 * funny things will happen. 11378 */ 11379 tcp->tcp_pipe = 11380 tcp->tcp_cwnd_ssthresh; 11381 } 11382 } else { 11383 flags |= TH_REXMIT_NEEDED; 11384 } /* tcp_snd_sack_ok */ 11385 11386 } else { 11387 /* 11388 * Here we perform congestion 11389 * avoidance, but NOT slow start. 11390 * This is known as the Fast 11391 * Recovery Algorithm. 11392 */ 11393 if (tcp->tcp_snd_sack_ok && 11394 tcp->tcp_notsack_list != NULL) { 11395 flags |= TH_NEED_SACK_REXMIT; 11396 tcp->tcp_pipe -= mss; 11397 if (tcp->tcp_pipe < 0) 11398 tcp->tcp_pipe = 0; 11399 } else { 11400 /* 11401 * We know that one more packet has 11402 * left the pipe thus we can update 11403 * cwnd. 11404 */ 11405 cwnd = tcp->tcp_cwnd + mss; 11406 if (cwnd > tcp->tcp_cwnd_max) 11407 cwnd = tcp->tcp_cwnd_max; 11408 tcp->tcp_cwnd = cwnd; 11409 if (tcp->tcp_unsent > 0) 11410 flags |= TH_XMIT_NEEDED; 11411 } 11412 } 11413 } 11414 } else if (tcp->tcp_zero_win_probe) { 11415 /* 11416 * If the window has opened, need to arrange 11417 * to send additional data. 11418 */ 11419 if (new_swnd != 0) { 11420 /* tcp_suna != tcp_snxt */ 11421 /* Packet contains a window update */ 11422 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 11423 tcp->tcp_zero_win_probe = 0; 11424 tcp->tcp_timer_backoff = 0; 11425 tcp->tcp_ms_we_have_waited = 0; 11426 11427 /* 11428 * Transmit starting with tcp_suna since 11429 * the one byte probe is not ack'ed. 11430 * If TCP has sent more than one identical 11431 * probe, tcp_rexmit will be set. That means 11432 * tcp_ss_rexmit() will send out the one 11433 * byte along with new data. Otherwise, 11434 * fake the retransmission. 11435 */ 11436 flags |= TH_XMIT_NEEDED; 11437 if (!tcp->tcp_rexmit) { 11438 tcp->tcp_rexmit = B_TRUE; 11439 tcp->tcp_dupack_cnt = 0; 11440 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 11441 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 11442 } 11443 } 11444 } 11445 goto swnd_update; 11446 } 11447 11448 /* 11449 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 11450 * If the ACK value acks something that we have not yet sent, it might 11451 * be an old duplicate segment. Send an ACK to re-synchronize the 11452 * other side. 11453 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 11454 * state is handled above, so we can always just drop the segment and 11455 * send an ACK here. 11456 * 11457 * In the case where the peer shrinks the window, we see the new window 11458 * update, but all the data sent previously is queued up by the peer. 11459 * To account for this, in tcp_process_shrunk_swnd(), the sequence 11460 * number, which was already sent, and within window, is recorded. 11461 * tcp_snxt is then updated. 11462 * 11463 * If the window has previously shrunk, and an ACK for data not yet 11464 * sent, according to tcp_snxt is recieved, it may still be valid. If 11465 * the ACK is for data within the window at the time the window was 11466 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 11467 * the sequence number ACK'ed. 11468 * 11469 * If the ACK covers all the data sent at the time the window was 11470 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 11471 * 11472 * Should we send ACKs in response to ACK only segments? 11473 */ 11474 11475 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 11476 if ((tcp->tcp_is_wnd_shrnk) && 11477 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 11478 uint32_t data_acked_ahead_snxt; 11479 11480 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 11481 tcp_update_xmit_tail(tcp, seg_ack); 11482 tcp->tcp_unsent -= data_acked_ahead_snxt; 11483 } else { 11484 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 11485 /* drop the received segment */ 11486 freemsg(mp); 11487 11488 /* 11489 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 11490 * greater than 0, check if the number of such 11491 * bogus ACks is greater than that count. If yes, 11492 * don't send back any ACK. This prevents TCP from 11493 * getting into an ACK storm if somehow an attacker 11494 * successfully spoofs an acceptable segment to our 11495 * peer. 11496 */ 11497 if (tcp_drop_ack_unsent_cnt > 0 && 11498 ++tcp->tcp_in_ack_unsent > 11499 tcp_drop_ack_unsent_cnt) { 11500 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 11501 return; 11502 } 11503 mp = tcp_ack_mp(tcp); 11504 if (mp != NULL) { 11505 BUMP_LOCAL(tcp->tcp_obsegs); 11506 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 11507 tcp_send_data(tcp, mp); 11508 } 11509 return; 11510 } 11511 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 11512 tcp->tcp_snxt_shrunk)) { 11513 tcp->tcp_is_wnd_shrnk = B_FALSE; 11514 } 11515 11516 /* 11517 * TCP gets a new ACK, update the notsack'ed list to delete those 11518 * blocks that are covered by this ACK. 11519 */ 11520 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 11521 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 11522 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 11523 } 11524 11525 /* 11526 * If we got an ACK after fast retransmit, check to see 11527 * if it is a partial ACK. If it is not and the congestion 11528 * window was inflated to account for the other side's 11529 * cached packets, retract it. If it is, do Hoe's algorithm. 11530 */ 11531 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 11532 ASSERT(tcp->tcp_rexmit == B_FALSE); 11533 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 11534 tcp->tcp_dupack_cnt = 0; 11535 /* 11536 * Restore the orig tcp_cwnd_ssthresh after 11537 * fast retransmit phase. 11538 */ 11539 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 11540 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 11541 } 11542 tcp->tcp_rexmit_max = seg_ack; 11543 tcp->tcp_cwnd_cnt = 0; 11544 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11545 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11546 11547 /* 11548 * Remove all notsack info to avoid confusion with 11549 * the next fast retrasnmit/recovery phase. 11550 */ 11551 if (tcp->tcp_snd_sack_ok && 11552 tcp->tcp_notsack_list != NULL) { 11553 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 11554 tcp); 11555 } 11556 } else { 11557 if (tcp->tcp_snd_sack_ok && 11558 tcp->tcp_notsack_list != NULL) { 11559 flags |= TH_NEED_SACK_REXMIT; 11560 tcp->tcp_pipe -= mss; 11561 if (tcp->tcp_pipe < 0) 11562 tcp->tcp_pipe = 0; 11563 } else { 11564 /* 11565 * Hoe's algorithm: 11566 * 11567 * Retransmit the unack'ed segment and 11568 * restart fast recovery. Note that we 11569 * need to scale back tcp_cwnd to the 11570 * original value when we started fast 11571 * recovery. This is to prevent overly 11572 * aggressive behaviour in sending new 11573 * segments. 11574 */ 11575 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 11576 tcps->tcps_dupack_fast_retransmit * mss; 11577 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 11578 flags |= TH_REXMIT_NEEDED; 11579 } 11580 } 11581 } else { 11582 tcp->tcp_dupack_cnt = 0; 11583 if (tcp->tcp_rexmit) { 11584 /* 11585 * TCP is retranmitting. If the ACK ack's all 11586 * outstanding data, update tcp_rexmit_max and 11587 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 11588 * to the correct value. 11589 * 11590 * Note that SEQ_LEQ() is used. This is to avoid 11591 * unnecessary fast retransmit caused by dup ACKs 11592 * received when TCP does slow start retransmission 11593 * after a time out. During this phase, TCP may 11594 * send out segments which are already received. 11595 * This causes dup ACKs to be sent back. 11596 */ 11597 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 11598 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 11599 tcp->tcp_rexmit_nxt = seg_ack; 11600 } 11601 if (seg_ack != tcp->tcp_rexmit_max) { 11602 flags |= TH_XMIT_NEEDED; 11603 } 11604 } else { 11605 tcp->tcp_rexmit = B_FALSE; 11606 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 11607 tcp->tcp_snd_burst = tcp->tcp_localnet ? 11608 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 11609 } 11610 tcp->tcp_ms_we_have_waited = 0; 11611 } 11612 } 11613 11614 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 11615 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 11616 tcp->tcp_suna = seg_ack; 11617 if (tcp->tcp_zero_win_probe != 0) { 11618 tcp->tcp_zero_win_probe = 0; 11619 tcp->tcp_timer_backoff = 0; 11620 } 11621 11622 /* 11623 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 11624 * Note that it cannot be the SYN being ack'ed. The code flow 11625 * will not reach here. 11626 */ 11627 if (mp1 == NULL) { 11628 goto fin_acked; 11629 } 11630 11631 /* 11632 * Update the congestion window. 11633 * 11634 * If TCP is not ECN capable or TCP is ECN capable but the 11635 * congestion experience bit is not set, increase the tcp_cwnd as 11636 * usual. 11637 */ 11638 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 11639 cwnd = tcp->tcp_cwnd; 11640 add = mss; 11641 11642 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 11643 /* 11644 * This is to prevent an increase of less than 1 MSS of 11645 * tcp_cwnd. With partial increase, tcp_wput_data() 11646 * may send out tinygrams in order to preserve mblk 11647 * boundaries. 11648 * 11649 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 11650 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 11651 * increased by 1 MSS for every RTTs. 11652 */ 11653 if (tcp->tcp_cwnd_cnt <= 0) { 11654 tcp->tcp_cwnd_cnt = cwnd + add; 11655 } else { 11656 tcp->tcp_cwnd_cnt -= add; 11657 add = 0; 11658 } 11659 } 11660 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 11661 } 11662 11663 /* See if the latest urgent data has been acknowledged */ 11664 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 11665 SEQ_GT(seg_ack, tcp->tcp_urg)) 11666 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 11667 11668 /* Can we update the RTT estimates? */ 11669 if (tcp->tcp_snd_ts_ok) { 11670 /* Ignore zero timestamp echo-reply. */ 11671 if (tcpopt.tcp_opt_ts_ecr != 0) { 11672 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 11673 (int32_t)tcpopt.tcp_opt_ts_ecr); 11674 } 11675 11676 /* If needed, restart the timer. */ 11677 if (tcp->tcp_set_timer == 1) { 11678 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11679 tcp->tcp_set_timer = 0; 11680 } 11681 /* 11682 * Update tcp_csuna in case the other side stops sending 11683 * us timestamps. 11684 */ 11685 tcp->tcp_csuna = tcp->tcp_snxt; 11686 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 11687 /* 11688 * An ACK sequence we haven't seen before, so get the RTT 11689 * and update the RTO. But first check if the timestamp is 11690 * valid to use. 11691 */ 11692 if ((mp1->b_next != NULL) && 11693 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 11694 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - 11695 (int32_t)(intptr_t)mp1->b_prev); 11696 else 11697 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 11698 11699 /* Remeber the last sequence to be ACKed */ 11700 tcp->tcp_csuna = seg_ack; 11701 if (tcp->tcp_set_timer == 1) { 11702 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 11703 tcp->tcp_set_timer = 0; 11704 } 11705 } else { 11706 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 11707 } 11708 11709 /* Eat acknowledged bytes off the xmit queue. */ 11710 for (;;) { 11711 mblk_t *mp2; 11712 uchar_t *wptr; 11713 11714 wptr = mp1->b_wptr; 11715 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 11716 bytes_acked -= (int)(wptr - mp1->b_rptr); 11717 if (bytes_acked < 0) { 11718 mp1->b_rptr = wptr + bytes_acked; 11719 /* 11720 * Set a new timestamp if all the bytes timed by the 11721 * old timestamp have been ack'ed. 11722 */ 11723 if (SEQ_GT(seg_ack, 11724 (uint32_t)(uintptr_t)(mp1->b_next))) { 11725 mp1->b_prev = 11726 (mblk_t *)(uintptr_t)LBOLT_FASTPATH; 11727 mp1->b_next = NULL; 11728 } 11729 break; 11730 } 11731 mp1->b_next = NULL; 11732 mp1->b_prev = NULL; 11733 mp2 = mp1; 11734 mp1 = mp1->b_cont; 11735 11736 /* 11737 * This notification is required for some zero-copy 11738 * clients to maintain a copy semantic. After the data 11739 * is ack'ed, client is safe to modify or reuse the buffer. 11740 */ 11741 if (tcp->tcp_snd_zcopy_aware && 11742 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 11743 tcp_zcopy_notify(tcp); 11744 freeb(mp2); 11745 if (bytes_acked == 0) { 11746 if (mp1 == NULL) { 11747 /* Everything is ack'ed, clear the tail. */ 11748 tcp->tcp_xmit_tail = NULL; 11749 /* 11750 * Cancel the timer unless we are still 11751 * waiting for an ACK for the FIN packet. 11752 */ 11753 if (tcp->tcp_timer_tid != 0 && 11754 tcp->tcp_snxt == tcp->tcp_suna) { 11755 (void) TCP_TIMER_CANCEL(tcp, 11756 tcp->tcp_timer_tid); 11757 tcp->tcp_timer_tid = 0; 11758 } 11759 goto pre_swnd_update; 11760 } 11761 if (mp2 != tcp->tcp_xmit_tail) 11762 break; 11763 tcp->tcp_xmit_tail = mp1; 11764 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 11765 (uintptr_t)INT_MAX); 11766 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 11767 mp1->b_rptr); 11768 break; 11769 } 11770 if (mp1 == NULL) { 11771 /* 11772 * More was acked but there is nothing more 11773 * outstanding. This means that the FIN was 11774 * just acked or that we're talking to a clown. 11775 */ 11776 fin_acked: 11777 ASSERT(tcp->tcp_fin_sent); 11778 tcp->tcp_xmit_tail = NULL; 11779 if (tcp->tcp_fin_sent) { 11780 /* FIN was acked - making progress */ 11781 if (!tcp->tcp_fin_acked) 11782 tcp->tcp_ip_forward_progress = B_TRUE; 11783 tcp->tcp_fin_acked = B_TRUE; 11784 if (tcp->tcp_linger_tid != 0 && 11785 TCP_TIMER_CANCEL(tcp, 11786 tcp->tcp_linger_tid) >= 0) { 11787 tcp_stop_lingering(tcp); 11788 freemsg(mp); 11789 mp = NULL; 11790 } 11791 } else { 11792 /* 11793 * We should never get here because 11794 * we have already checked that the 11795 * number of bytes ack'ed should be 11796 * smaller than or equal to what we 11797 * have sent so far (it is the 11798 * acceptability check of the ACK). 11799 * We can only get here if the send 11800 * queue is corrupted. 11801 * 11802 * Terminate the connection and 11803 * panic the system. It is better 11804 * for us to panic instead of 11805 * continuing to avoid other disaster. 11806 */ 11807 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 11808 tcp->tcp_rnxt, TH_RST|TH_ACK); 11809 panic("Memory corruption " 11810 "detected for connection %s.", 11811 tcp_display(tcp, NULL, 11812 DISP_ADDR_AND_PORT)); 11813 /*NOTREACHED*/ 11814 } 11815 goto pre_swnd_update; 11816 } 11817 ASSERT(mp2 != tcp->tcp_xmit_tail); 11818 } 11819 if (tcp->tcp_unsent) { 11820 flags |= TH_XMIT_NEEDED; 11821 } 11822 pre_swnd_update: 11823 tcp->tcp_xmit_head = mp1; 11824 swnd_update: 11825 /* 11826 * The following check is different from most other implementations. 11827 * For bi-directional transfer, when segments are dropped, the 11828 * "normal" check will not accept a window update in those 11829 * retransmitted segemnts. Failing to do that, TCP may send out 11830 * segments which are outside receiver's window. As TCP accepts 11831 * the ack in those retransmitted segments, if the window update in 11832 * the same segment is not accepted, TCP will incorrectly calculates 11833 * that it can send more segments. This can create a deadlock 11834 * with the receiver if its window becomes zero. 11835 */ 11836 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 11837 SEQ_LT(tcp->tcp_swl1, seg_seq) || 11838 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 11839 /* 11840 * The criteria for update is: 11841 * 11842 * 1. the segment acknowledges some data. Or 11843 * 2. the segment is new, i.e. it has a higher seq num. Or 11844 * 3. the segment is not old and the advertised window is 11845 * larger than the previous advertised window. 11846 */ 11847 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 11848 flags |= TH_XMIT_NEEDED; 11849 tcp->tcp_swnd = new_swnd; 11850 if (new_swnd > tcp->tcp_max_swnd) 11851 tcp->tcp_max_swnd = new_swnd; 11852 tcp->tcp_swl1 = seg_seq; 11853 tcp->tcp_swl2 = seg_ack; 11854 } 11855 est: 11856 if (tcp->tcp_state > TCPS_ESTABLISHED) { 11857 11858 switch (tcp->tcp_state) { 11859 case TCPS_FIN_WAIT_1: 11860 if (tcp->tcp_fin_acked) { 11861 tcp->tcp_state = TCPS_FIN_WAIT_2; 11862 /* 11863 * We implement the non-standard BSD/SunOS 11864 * FIN_WAIT_2 flushing algorithm. 11865 * If there is no user attached to this 11866 * TCP endpoint, then this TCP struct 11867 * could hang around forever in FIN_WAIT_2 11868 * state if the peer forgets to send us 11869 * a FIN. To prevent this, we wait only 11870 * 2*MSL (a convenient time value) for 11871 * the FIN to arrive. If it doesn't show up, 11872 * we flush the TCP endpoint. This algorithm, 11873 * though a violation of RFC-793, has worked 11874 * for over 10 years in BSD systems. 11875 * Note: SunOS 4.x waits 675 seconds before 11876 * flushing the FIN_WAIT_2 connection. 11877 */ 11878 TCP_TIMER_RESTART(tcp, 11879 tcps->tcps_fin_wait_2_flush_interval); 11880 } 11881 break; 11882 case TCPS_FIN_WAIT_2: 11883 break; /* Shutdown hook? */ 11884 case TCPS_LAST_ACK: 11885 freemsg(mp); 11886 if (tcp->tcp_fin_acked) { 11887 (void) tcp_clean_death(tcp, 0, 19); 11888 return; 11889 } 11890 goto xmit_check; 11891 case TCPS_CLOSING: 11892 if (tcp->tcp_fin_acked) { 11893 tcp->tcp_state = TCPS_TIME_WAIT; 11894 /* 11895 * Unconditionally clear the exclusive binding 11896 * bit so this TIME-WAIT connection won't 11897 * interfere with new ones. 11898 */ 11899 connp->conn_exclbind = 0; 11900 if (!TCP_IS_DETACHED(tcp)) { 11901 TCP_TIMER_RESTART(tcp, 11902 tcps->tcps_time_wait_interval); 11903 } else { 11904 tcp_time_wait_append(tcp); 11905 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 11906 } 11907 } 11908 /*FALLTHRU*/ 11909 case TCPS_CLOSE_WAIT: 11910 freemsg(mp); 11911 goto xmit_check; 11912 default: 11913 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 11914 break; 11915 } 11916 } 11917 if (flags & TH_FIN) { 11918 /* Make sure we ack the fin */ 11919 flags |= TH_ACK_NEEDED; 11920 if (!tcp->tcp_fin_rcvd) { 11921 tcp->tcp_fin_rcvd = B_TRUE; 11922 tcp->tcp_rnxt++; 11923 tcpha = tcp->tcp_tcpha; 11924 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 11925 11926 /* 11927 * Generate the ordrel_ind at the end unless we 11928 * are an eager guy. 11929 * In the eager case tcp_rsrv will do this when run 11930 * after tcp_accept is done. 11931 */ 11932 if (tcp->tcp_listener == NULL && 11933 !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) 11934 flags |= TH_ORDREL_NEEDED; 11935 switch (tcp->tcp_state) { 11936 case TCPS_SYN_RCVD: 11937 case TCPS_ESTABLISHED: 11938 tcp->tcp_state = TCPS_CLOSE_WAIT; 11939 /* Keepalive? */ 11940 break; 11941 case TCPS_FIN_WAIT_1: 11942 if (!tcp->tcp_fin_acked) { 11943 tcp->tcp_state = TCPS_CLOSING; 11944 break; 11945 } 11946 /* FALLTHRU */ 11947 case TCPS_FIN_WAIT_2: 11948 tcp->tcp_state = TCPS_TIME_WAIT; 11949 /* 11950 * Unconditionally clear the exclusive binding 11951 * bit so this TIME-WAIT connection won't 11952 * interfere with new ones. 11953 */ 11954 connp->conn_exclbind = 0; 11955 if (!TCP_IS_DETACHED(tcp)) { 11956 TCP_TIMER_RESTART(tcp, 11957 tcps->tcps_time_wait_interval); 11958 } else { 11959 tcp_time_wait_append(tcp); 11960 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 11961 } 11962 if (seg_len) { 11963 /* 11964 * implies data piggybacked on FIN. 11965 * break to handle data. 11966 */ 11967 break; 11968 } 11969 freemsg(mp); 11970 goto ack_check; 11971 } 11972 } 11973 } 11974 if (mp == NULL) 11975 goto xmit_check; 11976 if (seg_len == 0) { 11977 freemsg(mp); 11978 goto xmit_check; 11979 } 11980 if (mp->b_rptr == mp->b_wptr) { 11981 /* 11982 * The header has been consumed, so we remove the 11983 * zero-length mblk here. 11984 */ 11985 mp1 = mp; 11986 mp = mp->b_cont; 11987 freeb(mp1); 11988 } 11989 update_ack: 11990 tcpha = tcp->tcp_tcpha; 11991 tcp->tcp_rack_cnt++; 11992 { 11993 uint32_t cur_max; 11994 11995 cur_max = tcp->tcp_rack_cur_max; 11996 if (tcp->tcp_rack_cnt >= cur_max) { 11997 /* 11998 * We have more unacked data than we should - send 11999 * an ACK now. 12000 */ 12001 flags |= TH_ACK_NEEDED; 12002 cur_max++; 12003 if (cur_max > tcp->tcp_rack_abs_max) 12004 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 12005 else 12006 tcp->tcp_rack_cur_max = cur_max; 12007 } else if (TCP_IS_DETACHED(tcp)) { 12008 /* We don't have an ACK timer for detached TCP. */ 12009 flags |= TH_ACK_NEEDED; 12010 } else if (seg_len < mss) { 12011 /* 12012 * If we get a segment that is less than an mss, and we 12013 * already have unacknowledged data, and the amount 12014 * unacknowledged is not a multiple of mss, then we 12015 * better generate an ACK now. Otherwise, this may be 12016 * the tail piece of a transaction, and we would rather 12017 * wait for the response. 12018 */ 12019 uint32_t udif; 12020 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 12021 (uintptr_t)INT_MAX); 12022 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 12023 if (udif && (udif % mss)) 12024 flags |= TH_ACK_NEEDED; 12025 else 12026 flags |= TH_ACK_TIMER_NEEDED; 12027 } else { 12028 /* Start delayed ack timer */ 12029 flags |= TH_ACK_TIMER_NEEDED; 12030 } 12031 } 12032 tcp->tcp_rnxt += seg_len; 12033 tcpha->tha_ack = htonl(tcp->tcp_rnxt); 12034 12035 if (mp == NULL) 12036 goto xmit_check; 12037 12038 /* Update SACK list */ 12039 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 12040 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 12041 &(tcp->tcp_num_sack_blk)); 12042 } 12043 12044 if (tcp->tcp_urp_mp) { 12045 tcp->tcp_urp_mp->b_cont = mp; 12046 mp = tcp->tcp_urp_mp; 12047 tcp->tcp_urp_mp = NULL; 12048 /* Ready for a new signal. */ 12049 tcp->tcp_urp_last_valid = B_FALSE; 12050 #ifdef DEBUG 12051 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12052 "tcp_rput: sending exdata_ind %s", 12053 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12054 #endif /* DEBUG */ 12055 } 12056 12057 /* 12058 * Check for ancillary data changes compared to last segment. 12059 */ 12060 if (connp->conn_recv_ancillary.crb_all != 0) { 12061 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); 12062 if (mp == NULL) 12063 return; 12064 } 12065 12066 if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { 12067 /* 12068 * Side queue inbound data until the accept happens. 12069 * tcp_accept/tcp_rput drains this when the accept happens. 12070 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 12071 * T_EXDATA_IND) it is queued on b_next. 12072 * XXX Make urgent data use this. Requires: 12073 * Removing tcp_listener check for TH_URG 12074 * Making M_PCPROTO and MARK messages skip the eager case 12075 */ 12076 12077 if (tcp->tcp_kssl_pending) { 12078 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 12079 mblk_t *, mp); 12080 tcp_kssl_input(tcp, mp, ira->ira_cred); 12081 } else { 12082 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12083 } 12084 } else if (IPCL_IS_NONSTR(connp)) { 12085 /* 12086 * Non-STREAMS socket 12087 * 12088 * Note that no KSSL processing is done here, because 12089 * KSSL is not supported for non-STREAMS sockets. 12090 */ 12091 boolean_t push = flags & (TH_PUSH|TH_FIN); 12092 int error; 12093 12094 if ((*connp->conn_upcalls->su_recv)( 12095 connp->conn_upper_handle, 12096 mp, seg_len, 0, &error, &push) <= 0) { 12097 /* 12098 * We should never be in middle of a 12099 * fallback, the squeue guarantees that. 12100 */ 12101 ASSERT(error != EOPNOTSUPP); 12102 if (error == ENOSPC) 12103 tcp->tcp_rwnd -= seg_len; 12104 } else if (push) { 12105 /* PUSH bit set and sockfs is not flow controlled */ 12106 flags |= tcp_rwnd_reopen(tcp); 12107 } 12108 } else { 12109 /* STREAMS socket */ 12110 if (mp->b_datap->db_type != M_DATA || 12111 (flags & TH_MARKNEXT_NEEDED)) { 12112 if (tcp->tcp_rcv_list != NULL) { 12113 flags |= tcp_rcv_drain(tcp); 12114 } 12115 ASSERT(tcp->tcp_rcv_list == NULL || 12116 tcp->tcp_fused_sigurg); 12117 12118 if (flags & TH_MARKNEXT_NEEDED) { 12119 #ifdef DEBUG 12120 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12121 "tcp_rput: sending MSGMARKNEXT %s", 12122 tcp_display(tcp, NULL, 12123 DISP_PORT_ONLY)); 12124 #endif /* DEBUG */ 12125 mp->b_flag |= MSGMARKNEXT; 12126 flags &= ~TH_MARKNEXT_NEEDED; 12127 } 12128 12129 /* Does this need SSL processing first? */ 12130 if ((tcp->tcp_kssl_ctx != NULL) && 12131 (DB_TYPE(mp) == M_DATA)) { 12132 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 12133 mblk_t *, mp); 12134 tcp_kssl_input(tcp, mp, ira->ira_cred); 12135 } else { 12136 if (is_system_labeled()) 12137 tcp_setcred_data(mp, ira); 12138 12139 putnext(connp->conn_rq, mp); 12140 if (!canputnext(connp->conn_rq)) 12141 tcp->tcp_rwnd -= seg_len; 12142 } 12143 } else if ((tcp->tcp_kssl_ctx != NULL) && 12144 (DB_TYPE(mp) == M_DATA)) { 12145 /* Does this need SSL processing first? */ 12146 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 12147 tcp_kssl_input(tcp, mp, ira->ira_cred); 12148 } else if ((flags & (TH_PUSH|TH_FIN)) || 12149 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { 12150 if (tcp->tcp_rcv_list != NULL) { 12151 /* 12152 * Enqueue the new segment first and then 12153 * call tcp_rcv_drain() to send all data 12154 * up. The other way to do this is to 12155 * send all queued data up and then call 12156 * putnext() to send the new segment up. 12157 * This way can remove the else part later 12158 * on. 12159 * 12160 * We don't do this to avoid one more call to 12161 * canputnext() as tcp_rcv_drain() needs to 12162 * call canputnext(). 12163 */ 12164 tcp_rcv_enqueue(tcp, mp, seg_len, 12165 ira->ira_cred); 12166 flags |= tcp_rcv_drain(tcp); 12167 } else { 12168 if (is_system_labeled()) 12169 tcp_setcred_data(mp, ira); 12170 12171 putnext(connp->conn_rq, mp); 12172 if (!canputnext(connp->conn_rq)) 12173 tcp->tcp_rwnd -= seg_len; 12174 } 12175 } else { 12176 /* 12177 * Enqueue all packets when processing an mblk 12178 * from the co queue and also enqueue normal packets. 12179 */ 12180 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); 12181 } 12182 /* 12183 * Make sure the timer is running if we have data waiting 12184 * for a push bit. This provides resiliency against 12185 * implementations that do not correctly generate push bits. 12186 */ 12187 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 12188 /* 12189 * The connection may be closed at this point, so don't 12190 * do anything for a detached tcp. 12191 */ 12192 if (!TCP_IS_DETACHED(tcp)) 12193 tcp->tcp_push_tid = TCP_TIMER(tcp, 12194 tcp_push_timer, 12195 MSEC_TO_TICK( 12196 tcps->tcps_push_timer_interval)); 12197 } 12198 } 12199 12200 xmit_check: 12201 /* Is there anything left to do? */ 12202 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12203 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 12204 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 12205 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12206 goto done; 12207 12208 /* Any transmit work to do and a non-zero window? */ 12209 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 12210 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 12211 if (flags & TH_REXMIT_NEEDED) { 12212 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 12213 12214 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 12215 if (snd_size > mss) 12216 snd_size = mss; 12217 if (snd_size > tcp->tcp_swnd) 12218 snd_size = tcp->tcp_swnd; 12219 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 12220 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 12221 B_TRUE); 12222 12223 if (mp1 != NULL) { 12224 tcp->tcp_xmit_head->b_prev = 12225 (mblk_t *)LBOLT_FASTPATH; 12226 tcp->tcp_csuna = tcp->tcp_snxt; 12227 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12228 UPDATE_MIB(&tcps->tcps_mib, 12229 tcpRetransBytes, snd_size); 12230 tcp_send_data(tcp, mp1); 12231 } 12232 } 12233 if (flags & TH_NEED_SACK_REXMIT) { 12234 tcp_sack_rxmit(tcp, &flags); 12235 } 12236 /* 12237 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 12238 * out new segment. Note that tcp_rexmit should not be 12239 * set, otherwise TH_LIMIT_XMIT should not be set. 12240 */ 12241 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 12242 if (!tcp->tcp_rexmit) { 12243 tcp_wput_data(tcp, NULL, B_FALSE); 12244 } else { 12245 tcp_ss_rexmit(tcp); 12246 } 12247 } 12248 /* 12249 * Adjust tcp_cwnd back to normal value after sending 12250 * new data segments. 12251 */ 12252 if (flags & TH_LIMIT_XMIT) { 12253 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 12254 /* 12255 * This will restart the timer. Restarting the 12256 * timer is used to avoid a timeout before the 12257 * limited transmitted segment's ACK gets back. 12258 */ 12259 if (tcp->tcp_xmit_head != NULL) 12260 tcp->tcp_xmit_head->b_prev = 12261 (mblk_t *)LBOLT_FASTPATH; 12262 } 12263 12264 /* Anything more to do? */ 12265 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 12266 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 12267 goto done; 12268 } 12269 ack_check: 12270 if (flags & TH_SEND_URP_MARK) { 12271 ASSERT(tcp->tcp_urp_mark_mp); 12272 ASSERT(!IPCL_IS_NONSTR(connp)); 12273 /* 12274 * Send up any queued data and then send the mark message 12275 */ 12276 if (tcp->tcp_rcv_list != NULL) { 12277 flags |= tcp_rcv_drain(tcp); 12278 12279 } 12280 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12281 mp1 = tcp->tcp_urp_mark_mp; 12282 tcp->tcp_urp_mark_mp = NULL; 12283 if (is_system_labeled()) 12284 tcp_setcred_data(mp1, ira); 12285 12286 putnext(connp->conn_rq, mp1); 12287 #ifdef DEBUG 12288 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12289 "tcp_rput: sending zero-length %s %s", 12290 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 12291 "MSGNOTMARKNEXT"), 12292 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 12293 #endif /* DEBUG */ 12294 flags &= ~TH_SEND_URP_MARK; 12295 } 12296 if (flags & TH_ACK_NEEDED) { 12297 /* 12298 * Time to send an ack for some reason. 12299 */ 12300 mp1 = tcp_ack_mp(tcp); 12301 12302 if (mp1 != NULL) { 12303 tcp_send_data(tcp, mp1); 12304 BUMP_LOCAL(tcp->tcp_obsegs); 12305 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 12306 } 12307 if (tcp->tcp_ack_tid != 0) { 12308 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 12309 tcp->tcp_ack_tid = 0; 12310 } 12311 } 12312 if (flags & TH_ACK_TIMER_NEEDED) { 12313 /* 12314 * Arrange for deferred ACK or push wait timeout. 12315 * Start timer if it is not already running. 12316 */ 12317 if (tcp->tcp_ack_tid == 0) { 12318 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 12319 MSEC_TO_TICK(tcp->tcp_localnet ? 12320 (clock_t)tcps->tcps_local_dack_interval : 12321 (clock_t)tcps->tcps_deferred_ack_interval)); 12322 } 12323 } 12324 if (flags & TH_ORDREL_NEEDED) { 12325 /* 12326 * Send up the ordrel_ind unless we are an eager guy. 12327 * In the eager case tcp_rsrv will do this when run 12328 * after tcp_accept is done. 12329 */ 12330 ASSERT(tcp->tcp_listener == NULL); 12331 ASSERT(!tcp->tcp_detached); 12332 12333 if (IPCL_IS_NONSTR(connp)) { 12334 ASSERT(tcp->tcp_ordrel_mp == NULL); 12335 tcp->tcp_ordrel_done = B_TRUE; 12336 (*connp->conn_upcalls->su_opctl) 12337 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 12338 goto done; 12339 } 12340 12341 if (tcp->tcp_rcv_list != NULL) { 12342 /* 12343 * Push any mblk(s) enqueued from co processing. 12344 */ 12345 flags |= tcp_rcv_drain(tcp); 12346 } 12347 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 12348 12349 mp1 = tcp->tcp_ordrel_mp; 12350 tcp->tcp_ordrel_mp = NULL; 12351 tcp->tcp_ordrel_done = B_TRUE; 12352 putnext(connp->conn_rq, mp1); 12353 } 12354 done: 12355 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 12356 } 12357 12358 /* 12359 * This routine adjusts next-to-send sequence number variables, in the 12360 * case where the reciever has shrunk it's window. 12361 */ 12362 static void 12363 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 12364 { 12365 mblk_t *xmit_tail; 12366 int32_t offset; 12367 12368 tcp->tcp_snxt = snxt; 12369 12370 /* Get the mblk, and the offset in it, as per the shrunk window */ 12371 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 12372 ASSERT(xmit_tail != NULL); 12373 tcp->tcp_xmit_tail = xmit_tail; 12374 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 12375 xmit_tail->b_rptr - offset; 12376 } 12377 12378 /* 12379 * This function does PAWS protection check. Returns B_TRUE if the 12380 * segment passes the PAWS test, else returns B_FALSE. 12381 */ 12382 boolean_t 12383 tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) 12384 { 12385 uint8_t flags; 12386 int options; 12387 uint8_t *up; 12388 conn_t *connp = tcp->tcp_connp; 12389 12390 flags = (unsigned int)tcpha->tha_flags & 0xFF; 12391 /* 12392 * If timestamp option is aligned nicely, get values inline, 12393 * otherwise call general routine to parse. Only do that 12394 * if timestamp is the only option. 12395 */ 12396 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + 12397 TCPOPT_REAL_TS_LEN && 12398 OK_32PTR((up = ((uint8_t *)tcpha) + 12399 TCP_MIN_HEADER_LENGTH)) && 12400 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 12401 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 12402 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 12403 12404 options = TCP_OPT_TSTAMP_PRESENT; 12405 } else { 12406 if (tcp->tcp_snd_sack_ok) { 12407 tcpoptp->tcp = tcp; 12408 } else { 12409 tcpoptp->tcp = NULL; 12410 } 12411 options = tcp_parse_options(tcpha, tcpoptp); 12412 } 12413 12414 if (options & TCP_OPT_TSTAMP_PRESENT) { 12415 /* 12416 * Do PAWS per RFC 1323 section 4.2. Accept RST 12417 * regardless of the timestamp, page 18 RFC 1323.bis. 12418 */ 12419 if ((flags & TH_RST) == 0 && 12420 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 12421 tcp->tcp_ts_recent)) { 12422 if (TSTMP_LT(LBOLT_FASTPATH64, 12423 tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { 12424 /* This segment is not acceptable. */ 12425 return (B_FALSE); 12426 } else { 12427 /* 12428 * Connection has been idle for 12429 * too long. Reset the timestamp 12430 * and assume the segment is valid. 12431 */ 12432 tcp->tcp_ts_recent = 12433 tcpoptp->tcp_opt_ts_val; 12434 } 12435 } 12436 } else { 12437 /* 12438 * If we don't get a timestamp on every packet, we 12439 * figure we can't really trust 'em, so we stop sending 12440 * and parsing them. 12441 */ 12442 tcp->tcp_snd_ts_ok = B_FALSE; 12443 12444 connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; 12445 connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; 12446 tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); 12447 /* 12448 * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid 12449 * doing a slow start here so as to not to lose on the 12450 * transfer rate built up so far. 12451 */ 12452 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 12453 if (tcp->tcp_snd_sack_ok) { 12454 ASSERT(tcp->tcp_sack_info != NULL); 12455 tcp->tcp_max_sack_blk = 4; 12456 } 12457 } 12458 return (B_TRUE); 12459 } 12460 12461 /* 12462 * Attach ancillary data to a received TCP segments for the 12463 * ancillary pieces requested by the application that are 12464 * different than they were in the previous data segment. 12465 * 12466 * Save the "current" values once memory allocation is ok so that 12467 * when memory allocation fails we can just wait for the next data segment. 12468 */ 12469 static mblk_t * 12470 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, 12471 ip_recv_attr_t *ira) 12472 { 12473 struct T_optdata_ind *todi; 12474 int optlen; 12475 uchar_t *optptr; 12476 struct T_opthdr *toh; 12477 crb_t addflag; /* Which pieces to add */ 12478 mblk_t *mp1; 12479 conn_t *connp = tcp->tcp_connp; 12480 12481 optlen = 0; 12482 addflag.crb_all = 0; 12483 /* If app asked for pktinfo and the index has changed ... */ 12484 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && 12485 ira->ira_ruifindex != tcp->tcp_recvifindex) { 12486 optlen += sizeof (struct T_opthdr) + 12487 sizeof (struct in6_pktinfo); 12488 addflag.crb_ip_recvpktinfo = 1; 12489 } 12490 /* If app asked for hoplimit and it has changed ... */ 12491 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && 12492 ipp->ipp_hoplimit != tcp->tcp_recvhops) { 12493 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12494 addflag.crb_ipv6_recvhoplimit = 1; 12495 } 12496 /* If app asked for tclass and it has changed ... */ 12497 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && 12498 ipp->ipp_tclass != tcp->tcp_recvtclass) { 12499 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 12500 addflag.crb_ipv6_recvtclass = 1; 12501 } 12502 /* 12503 * If app asked for hopbyhop headers and it has changed ... 12504 * For security labels, note that (1) security labels can't change on 12505 * a connected socket at all, (2) we're connected to at most one peer, 12506 * (3) if anything changes, then it must be some other extra option. 12507 */ 12508 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && 12509 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 12510 (ipp->ipp_fields & IPPF_HOPOPTS), 12511 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 12512 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 12513 addflag.crb_ipv6_recvhopopts = 1; 12514 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 12515 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 12516 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 12517 return (mp); 12518 } 12519 /* If app asked for dst headers before routing headers ... */ 12520 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && 12521 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, 12522 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12523 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { 12524 optlen += sizeof (struct T_opthdr) + 12525 ipp->ipp_rthdrdstoptslen; 12526 addflag.crb_ipv6_recvrthdrdstopts = 1; 12527 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, 12528 &tcp->tcp_rthdrdstoptslen, 12529 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12530 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) 12531 return (mp); 12532 } 12533 /* If app asked for routing headers and it has changed ... */ 12534 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && 12535 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 12536 (ipp->ipp_fields & IPPF_RTHDR), 12537 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 12538 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 12539 addflag.crb_ipv6_recvrthdr = 1; 12540 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 12541 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 12542 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 12543 return (mp); 12544 } 12545 /* If app asked for dest headers and it has changed ... */ 12546 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || 12547 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && 12548 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 12549 (ipp->ipp_fields & IPPF_DSTOPTS), 12550 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 12551 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 12552 addflag.crb_ipv6_recvdstopts = 1; 12553 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 12554 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 12555 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 12556 return (mp); 12557 } 12558 12559 if (optlen == 0) { 12560 /* Nothing to add */ 12561 return (mp); 12562 } 12563 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 12564 if (mp1 == NULL) { 12565 /* 12566 * Defer sending ancillary data until the next TCP segment 12567 * arrives. 12568 */ 12569 return (mp); 12570 } 12571 mp1->b_cont = mp; 12572 mp = mp1; 12573 mp->b_wptr += sizeof (*todi) + optlen; 12574 mp->b_datap->db_type = M_PROTO; 12575 todi = (struct T_optdata_ind *)mp->b_rptr; 12576 todi->PRIM_type = T_OPTDATA_IND; 12577 todi->DATA_flag = 1; /* MORE data */ 12578 todi->OPT_length = optlen; 12579 todi->OPT_offset = sizeof (*todi); 12580 optptr = (uchar_t *)&todi[1]; 12581 /* 12582 * If app asked for pktinfo and the index has changed ... 12583 * Note that the local address never changes for the connection. 12584 */ 12585 if (addflag.crb_ip_recvpktinfo) { 12586 struct in6_pktinfo *pkti; 12587 uint_t ifindex; 12588 12589 ifindex = ira->ira_ruifindex; 12590 toh = (struct T_opthdr *)optptr; 12591 toh->level = IPPROTO_IPV6; 12592 toh->name = IPV6_PKTINFO; 12593 toh->len = sizeof (*toh) + sizeof (*pkti); 12594 toh->status = 0; 12595 optptr += sizeof (*toh); 12596 pkti = (struct in6_pktinfo *)optptr; 12597 pkti->ipi6_addr = connp->conn_laddr_v6; 12598 pkti->ipi6_ifindex = ifindex; 12599 optptr += sizeof (*pkti); 12600 ASSERT(OK_32PTR(optptr)); 12601 /* Save as "last" value */ 12602 tcp->tcp_recvifindex = ifindex; 12603 } 12604 /* If app asked for hoplimit and it has changed ... */ 12605 if (addflag.crb_ipv6_recvhoplimit) { 12606 toh = (struct T_opthdr *)optptr; 12607 toh->level = IPPROTO_IPV6; 12608 toh->name = IPV6_HOPLIMIT; 12609 toh->len = sizeof (*toh) + sizeof (uint_t); 12610 toh->status = 0; 12611 optptr += sizeof (*toh); 12612 *(uint_t *)optptr = ipp->ipp_hoplimit; 12613 optptr += sizeof (uint_t); 12614 ASSERT(OK_32PTR(optptr)); 12615 /* Save as "last" value */ 12616 tcp->tcp_recvhops = ipp->ipp_hoplimit; 12617 } 12618 /* If app asked for tclass and it has changed ... */ 12619 if (addflag.crb_ipv6_recvtclass) { 12620 toh = (struct T_opthdr *)optptr; 12621 toh->level = IPPROTO_IPV6; 12622 toh->name = IPV6_TCLASS; 12623 toh->len = sizeof (*toh) + sizeof (uint_t); 12624 toh->status = 0; 12625 optptr += sizeof (*toh); 12626 *(uint_t *)optptr = ipp->ipp_tclass; 12627 optptr += sizeof (uint_t); 12628 ASSERT(OK_32PTR(optptr)); 12629 /* Save as "last" value */ 12630 tcp->tcp_recvtclass = ipp->ipp_tclass; 12631 } 12632 if (addflag.crb_ipv6_recvhopopts) { 12633 toh = (struct T_opthdr *)optptr; 12634 toh->level = IPPROTO_IPV6; 12635 toh->name = IPV6_HOPOPTS; 12636 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 12637 toh->status = 0; 12638 optptr += sizeof (*toh); 12639 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 12640 optptr += ipp->ipp_hopoptslen; 12641 ASSERT(OK_32PTR(optptr)); 12642 /* Save as last value */ 12643 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 12644 (ipp->ipp_fields & IPPF_HOPOPTS), 12645 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 12646 } 12647 if (addflag.crb_ipv6_recvrthdrdstopts) { 12648 toh = (struct T_opthdr *)optptr; 12649 toh->level = IPPROTO_IPV6; 12650 toh->name = IPV6_RTHDRDSTOPTS; 12651 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; 12652 toh->status = 0; 12653 optptr += sizeof (*toh); 12654 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); 12655 optptr += ipp->ipp_rthdrdstoptslen; 12656 ASSERT(OK_32PTR(optptr)); 12657 /* Save as last value */ 12658 ip_savebuf((void **)&tcp->tcp_rthdrdstopts, 12659 &tcp->tcp_rthdrdstoptslen, 12660 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), 12661 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 12662 } 12663 if (addflag.crb_ipv6_recvrthdr) { 12664 toh = (struct T_opthdr *)optptr; 12665 toh->level = IPPROTO_IPV6; 12666 toh->name = IPV6_RTHDR; 12667 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 12668 toh->status = 0; 12669 optptr += sizeof (*toh); 12670 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 12671 optptr += ipp->ipp_rthdrlen; 12672 ASSERT(OK_32PTR(optptr)); 12673 /* Save as last value */ 12674 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 12675 (ipp->ipp_fields & IPPF_RTHDR), 12676 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 12677 } 12678 if (addflag.crb_ipv6_recvdstopts) { 12679 toh = (struct T_opthdr *)optptr; 12680 toh->level = IPPROTO_IPV6; 12681 toh->name = IPV6_DSTOPTS; 12682 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 12683 toh->status = 0; 12684 optptr += sizeof (*toh); 12685 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 12686 optptr += ipp->ipp_dstoptslen; 12687 ASSERT(OK_32PTR(optptr)); 12688 /* Save as last value */ 12689 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 12690 (ipp->ipp_fields & IPPF_DSTOPTS), 12691 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 12692 } 12693 ASSERT(optptr == mp->b_wptr); 12694 return (mp); 12695 } 12696 12697 /* ARGSUSED */ 12698 static void 12699 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 12700 { 12701 conn_t *connp = (conn_t *)arg; 12702 tcp_t *tcp = connp->conn_tcp; 12703 queue_t *q = connp->conn_rq; 12704 tcp_stack_t *tcps = tcp->tcp_tcps; 12705 12706 ASSERT(!IPCL_IS_NONSTR(connp)); 12707 mutex_enter(&tcp->tcp_rsrv_mp_lock); 12708 tcp->tcp_rsrv_mp = mp; 12709 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12710 12711 TCP_STAT(tcps, tcp_rsrv_calls); 12712 12713 if (TCP_IS_DETACHED(tcp) || q == NULL) { 12714 return; 12715 } 12716 12717 if (tcp->tcp_fused) { 12718 tcp_fuse_backenable(tcp); 12719 return; 12720 } 12721 12722 if (canputnext(q)) { 12723 /* Not flow-controlled, open rwnd */ 12724 tcp->tcp_rwnd = connp->conn_rcvbuf; 12725 12726 /* 12727 * Send back a window update immediately if TCP is above 12728 * ESTABLISHED state and the increase of the rcv window 12729 * that the other side knows is at least 1 MSS after flow 12730 * control is lifted. 12731 */ 12732 if (tcp->tcp_state >= TCPS_ESTABLISHED && 12733 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 12734 tcp_xmit_ctl(NULL, tcp, 12735 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 12736 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 12737 } 12738 } 12739 } 12740 12741 /* 12742 * The read side service routine is called mostly when we get back-enabled as a 12743 * result of flow control relief. Since we don't actually queue anything in 12744 * TCP, we have no data to send out of here. What we do is clear the receive 12745 * window, and send out a window update. 12746 */ 12747 static void 12748 tcp_rsrv(queue_t *q) 12749 { 12750 conn_t *connp = Q_TO_CONN(q); 12751 tcp_t *tcp = connp->conn_tcp; 12752 mblk_t *mp; 12753 12754 /* No code does a putq on the read side */ 12755 ASSERT(q->q_first == NULL); 12756 12757 /* 12758 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 12759 * been run. So just return. 12760 */ 12761 mutex_enter(&tcp->tcp_rsrv_mp_lock); 12762 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 12763 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12764 return; 12765 } 12766 tcp->tcp_rsrv_mp = NULL; 12767 mutex_exit(&tcp->tcp_rsrv_mp_lock); 12768 12769 CONN_INC_REF(connp); 12770 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 12771 NULL, SQ_PROCESS, SQTAG_TCP_RSRV); 12772 } 12773 12774 /* 12775 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 12776 * We do not allow the receive window to shrink. After setting rwnd, 12777 * set the flow control hiwat of the stream. 12778 * 12779 * This function is called in 2 cases: 12780 * 12781 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 12782 * connection (passive open) and in tcp_input_data() for active connect. 12783 * This is called after tcp_mss_set() when the desired MSS value is known. 12784 * This makes sure that our window size is a mutiple of the other side's 12785 * MSS. 12786 * 2) Handling SO_RCVBUF option. 12787 * 12788 * It is ASSUMED that the requested size is a multiple of the current MSS. 12789 * 12790 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 12791 * user requests so. 12792 */ 12793 int 12794 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 12795 { 12796 uint32_t mss = tcp->tcp_mss; 12797 uint32_t old_max_rwnd; 12798 uint32_t max_transmittable_rwnd; 12799 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 12800 tcp_stack_t *tcps = tcp->tcp_tcps; 12801 conn_t *connp = tcp->tcp_connp; 12802 12803 /* 12804 * Insist on a receive window that is at least 12805 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 12806 * funny TCP interactions of Nagle algorithm, SWS avoidance 12807 * and delayed acknowledgement. 12808 */ 12809 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 12810 12811 if (tcp->tcp_fused) { 12812 size_t sth_hiwat; 12813 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 12814 12815 ASSERT(peer_tcp != NULL); 12816 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 12817 if (!tcp_detached) { 12818 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 12819 sth_hiwat); 12820 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 12821 } 12822 12823 /* 12824 * In the fusion case, the maxpsz stream head value of 12825 * our peer is set according to its send buffer size 12826 * and our receive buffer size; since the latter may 12827 * have changed we need to update the peer's maxpsz. 12828 */ 12829 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 12830 return (sth_hiwat); 12831 } 12832 12833 if (tcp_detached) 12834 old_max_rwnd = tcp->tcp_rwnd; 12835 else 12836 old_max_rwnd = connp->conn_rcvbuf; 12837 12838 12839 /* 12840 * If window size info has already been exchanged, TCP should not 12841 * shrink the window. Shrinking window is doable if done carefully. 12842 * We may add that support later. But so far there is not a real 12843 * need to do that. 12844 */ 12845 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 12846 /* MSS may have changed, do a round up again. */ 12847 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 12848 } 12849 12850 /* 12851 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 12852 * can be applied even before the window scale option is decided. 12853 */ 12854 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 12855 if (rwnd > max_transmittable_rwnd) { 12856 rwnd = max_transmittable_rwnd - 12857 (max_transmittable_rwnd % mss); 12858 if (rwnd < mss) 12859 rwnd = max_transmittable_rwnd; 12860 /* 12861 * If we're over the limit we may have to back down tcp_rwnd. 12862 * The increment below won't work for us. So we set all three 12863 * here and the increment below will have no effect. 12864 */ 12865 tcp->tcp_rwnd = old_max_rwnd = rwnd; 12866 } 12867 if (tcp->tcp_localnet) { 12868 tcp->tcp_rack_abs_max = 12869 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 12870 } else { 12871 /* 12872 * For a remote host on a different subnet (through a router), 12873 * we ack every other packet to be conforming to RFC1122. 12874 * tcp_deferred_acks_max is default to 2. 12875 */ 12876 tcp->tcp_rack_abs_max = 12877 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 12878 } 12879 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 12880 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 12881 else 12882 tcp->tcp_rack_cur_max = 0; 12883 /* 12884 * Increment the current rwnd by the amount the maximum grew (we 12885 * can not overwrite it since we might be in the middle of a 12886 * connection.) 12887 */ 12888 tcp->tcp_rwnd += rwnd - old_max_rwnd; 12889 connp->conn_rcvbuf = rwnd; 12890 12891 /* Are we already connected? */ 12892 if (tcp->tcp_tcpha != NULL) { 12893 tcp->tcp_tcpha->tha_win = 12894 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 12895 } 12896 12897 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 12898 tcp->tcp_cwnd_max = rwnd; 12899 12900 if (tcp_detached) 12901 return (rwnd); 12902 12903 tcp_set_recv_threshold(tcp, rwnd >> 3); 12904 12905 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 12906 return (rwnd); 12907 } 12908 12909 /* 12910 * Return SNMP stuff in buffer in mpdata. 12911 */ 12912 mblk_t * 12913 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 12914 { 12915 mblk_t *mpdata; 12916 mblk_t *mp_conn_ctl = NULL; 12917 mblk_t *mp_conn_tail; 12918 mblk_t *mp_attr_ctl = NULL; 12919 mblk_t *mp_attr_tail; 12920 mblk_t *mp6_conn_ctl = NULL; 12921 mblk_t *mp6_conn_tail; 12922 mblk_t *mp6_attr_ctl = NULL; 12923 mblk_t *mp6_attr_tail; 12924 struct opthdr *optp; 12925 mib2_tcpConnEntry_t tce; 12926 mib2_tcp6ConnEntry_t tce6; 12927 mib2_transportMLPEntry_t mlp; 12928 connf_t *connfp; 12929 int i; 12930 boolean_t ispriv; 12931 zoneid_t zoneid; 12932 int v4_conn_idx; 12933 int v6_conn_idx; 12934 conn_t *connp = Q_TO_CONN(q); 12935 tcp_stack_t *tcps; 12936 ip_stack_t *ipst; 12937 mblk_t *mp2ctl; 12938 12939 /* 12940 * make a copy of the original message 12941 */ 12942 mp2ctl = copymsg(mpctl); 12943 12944 if (mpctl == NULL || 12945 (mpdata = mpctl->b_cont) == NULL || 12946 (mp_conn_ctl = copymsg(mpctl)) == NULL || 12947 (mp_attr_ctl = copymsg(mpctl)) == NULL || 12948 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 12949 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 12950 freemsg(mp_conn_ctl); 12951 freemsg(mp_attr_ctl); 12952 freemsg(mp6_conn_ctl); 12953 freemsg(mp6_attr_ctl); 12954 freemsg(mpctl); 12955 freemsg(mp2ctl); 12956 return (NULL); 12957 } 12958 12959 ipst = connp->conn_netstack->netstack_ip; 12960 tcps = connp->conn_netstack->netstack_tcp; 12961 12962 /* build table of connections -- need count in fixed part */ 12963 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 12964 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 12965 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 12966 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 12967 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 12968 12969 ispriv = 12970 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 12971 zoneid = Q_TO_CONN(q)->conn_zoneid; 12972 12973 v4_conn_idx = v6_conn_idx = 0; 12974 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 12975 12976 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 12977 ipst = tcps->tcps_netstack->netstack_ip; 12978 12979 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 12980 12981 connp = NULL; 12982 12983 while ((connp = 12984 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 12985 tcp_t *tcp; 12986 boolean_t needattr; 12987 12988 if (connp->conn_zoneid != zoneid) 12989 continue; /* not in this zone */ 12990 12991 tcp = connp->conn_tcp; 12992 UPDATE_MIB(&tcps->tcps_mib, 12993 tcpHCInSegs, tcp->tcp_ibsegs); 12994 tcp->tcp_ibsegs = 0; 12995 UPDATE_MIB(&tcps->tcps_mib, 12996 tcpHCOutSegs, tcp->tcp_obsegs); 12997 tcp->tcp_obsegs = 0; 12998 12999 tce6.tcp6ConnState = tce.tcpConnState = 13000 tcp_snmp_state(tcp); 13001 if (tce.tcpConnState == MIB2_TCP_established || 13002 tce.tcpConnState == MIB2_TCP_closeWait) 13003 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 13004 13005 needattr = B_FALSE; 13006 bzero(&mlp, sizeof (mlp)); 13007 if (connp->conn_mlp_type != mlptSingle) { 13008 if (connp->conn_mlp_type == mlptShared || 13009 connp->conn_mlp_type == mlptBoth) 13010 mlp.tme_flags |= MIB2_TMEF_SHARED; 13011 if (connp->conn_mlp_type == mlptPrivate || 13012 connp->conn_mlp_type == mlptBoth) 13013 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 13014 needattr = B_TRUE; 13015 } 13016 if (connp->conn_anon_mlp) { 13017 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 13018 needattr = B_TRUE; 13019 } 13020 switch (connp->conn_mac_mode) { 13021 case CONN_MAC_DEFAULT: 13022 break; 13023 case CONN_MAC_AWARE: 13024 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 13025 needattr = B_TRUE; 13026 break; 13027 case CONN_MAC_IMPLICIT: 13028 mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; 13029 needattr = B_TRUE; 13030 break; 13031 } 13032 if (connp->conn_ixa->ixa_tsl != NULL) { 13033 ts_label_t *tsl; 13034 13035 tsl = connp->conn_ixa->ixa_tsl; 13036 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 13037 mlp.tme_doi = label2doi(tsl); 13038 mlp.tme_label = *label2bslabel(tsl); 13039 needattr = B_TRUE; 13040 } 13041 13042 /* Create a message to report on IPv6 entries */ 13043 if (connp->conn_ipversion == IPV6_VERSION) { 13044 tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6; 13045 tce6.tcp6ConnRemAddress = connp->conn_faddr_v6; 13046 tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport); 13047 tce6.tcp6ConnRemPort = ntohs(connp->conn_fport); 13048 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) { 13049 tce6.tcp6ConnIfIndex = 13050 connp->conn_ixa->ixa_scopeid; 13051 } else { 13052 tce6.tcp6ConnIfIndex = connp->conn_bound_if; 13053 } 13054 /* Don't want just anybody seeing these... */ 13055 if (ispriv) { 13056 tce6.tcp6ConnEntryInfo.ce_snxt = 13057 tcp->tcp_snxt; 13058 tce6.tcp6ConnEntryInfo.ce_suna = 13059 tcp->tcp_suna; 13060 tce6.tcp6ConnEntryInfo.ce_rnxt = 13061 tcp->tcp_rnxt; 13062 tce6.tcp6ConnEntryInfo.ce_rack = 13063 tcp->tcp_rack; 13064 } else { 13065 /* 13066 * Netstat, unfortunately, uses this to 13067 * get send/receive queue sizes. How to fix? 13068 * Why not compute the difference only? 13069 */ 13070 tce6.tcp6ConnEntryInfo.ce_snxt = 13071 tcp->tcp_snxt - tcp->tcp_suna; 13072 tce6.tcp6ConnEntryInfo.ce_suna = 0; 13073 tce6.tcp6ConnEntryInfo.ce_rnxt = 13074 tcp->tcp_rnxt - tcp->tcp_rack; 13075 tce6.tcp6ConnEntryInfo.ce_rack = 0; 13076 } 13077 13078 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13079 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13080 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 13081 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 13082 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 13083 13084 tce6.tcp6ConnCreationProcess = 13085 (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 13086 connp->conn_cpid; 13087 tce6.tcp6ConnCreationTime = connp->conn_open_time; 13088 13089 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 13090 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 13091 13092 mlp.tme_connidx = v6_conn_idx++; 13093 if (needattr) 13094 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 13095 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 13096 } 13097 /* 13098 * Create an IPv4 table entry for IPv4 entries and also 13099 * for IPv6 entries which are bound to in6addr_any 13100 * but don't have IPV6_V6ONLY set. 13101 * (i.e. anything an IPv4 peer could connect to) 13102 */ 13103 if (connp->conn_ipversion == IPV4_VERSION || 13104 (tcp->tcp_state <= TCPS_LISTEN && 13105 !connp->conn_ipv6_v6only && 13106 IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) { 13107 if (connp->conn_ipversion == IPV6_VERSION) { 13108 tce.tcpConnRemAddress = INADDR_ANY; 13109 tce.tcpConnLocalAddress = INADDR_ANY; 13110 } else { 13111 tce.tcpConnRemAddress = 13112 connp->conn_faddr_v4; 13113 tce.tcpConnLocalAddress = 13114 connp->conn_laddr_v4; 13115 } 13116 tce.tcpConnLocalPort = ntohs(connp->conn_lport); 13117 tce.tcpConnRemPort = ntohs(connp->conn_fport); 13118 /* Don't want just anybody seeing these... */ 13119 if (ispriv) { 13120 tce.tcpConnEntryInfo.ce_snxt = 13121 tcp->tcp_snxt; 13122 tce.tcpConnEntryInfo.ce_suna = 13123 tcp->tcp_suna; 13124 tce.tcpConnEntryInfo.ce_rnxt = 13125 tcp->tcp_rnxt; 13126 tce.tcpConnEntryInfo.ce_rack = 13127 tcp->tcp_rack; 13128 } else { 13129 /* 13130 * Netstat, unfortunately, uses this to 13131 * get send/receive queue sizes. How 13132 * to fix? 13133 * Why not compute the difference only? 13134 */ 13135 tce.tcpConnEntryInfo.ce_snxt = 13136 tcp->tcp_snxt - tcp->tcp_suna; 13137 tce.tcpConnEntryInfo.ce_suna = 0; 13138 tce.tcpConnEntryInfo.ce_rnxt = 13139 tcp->tcp_rnxt - tcp->tcp_rack; 13140 tce.tcpConnEntryInfo.ce_rack = 0; 13141 } 13142 13143 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 13144 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 13145 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 13146 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 13147 tce.tcpConnEntryInfo.ce_state = 13148 tcp->tcp_state; 13149 13150 tce.tcpConnCreationProcess = 13151 (connp->conn_cpid < 0) ? 13152 MIB2_UNKNOWN_PROCESS : 13153 connp->conn_cpid; 13154 tce.tcpConnCreationTime = connp->conn_open_time; 13155 13156 (void) snmp_append_data2(mp_conn_ctl->b_cont, 13157 &mp_conn_tail, (char *)&tce, sizeof (tce)); 13158 13159 mlp.tme_connidx = v4_conn_idx++; 13160 if (needattr) 13161 (void) snmp_append_data2( 13162 mp_attr_ctl->b_cont, 13163 &mp_attr_tail, (char *)&mlp, 13164 sizeof (mlp)); 13165 } 13166 } 13167 } 13168 13169 /* fixed length structure for IPv4 and IPv6 counters */ 13170 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 13171 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 13172 sizeof (mib2_tcp6ConnEntry_t)); 13173 /* synchronize 32- and 64-bit counters */ 13174 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 13175 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 13176 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 13177 optp->level = MIB2_TCP; 13178 optp->name = 0; 13179 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 13180 sizeof (tcps->tcps_mib)); 13181 optp->len = msgdsize(mpdata); 13182 qreply(q, mpctl); 13183 13184 /* table of connections... */ 13185 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 13186 sizeof (struct T_optmgmt_ack)]; 13187 optp->level = MIB2_TCP; 13188 optp->name = MIB2_TCP_CONN; 13189 optp->len = msgdsize(mp_conn_ctl->b_cont); 13190 qreply(q, mp_conn_ctl); 13191 13192 /* table of MLP attributes... */ 13193 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 13194 sizeof (struct T_optmgmt_ack)]; 13195 optp->level = MIB2_TCP; 13196 optp->name = EXPER_XPORT_MLP; 13197 optp->len = msgdsize(mp_attr_ctl->b_cont); 13198 if (optp->len == 0) 13199 freemsg(mp_attr_ctl); 13200 else 13201 qreply(q, mp_attr_ctl); 13202 13203 /* table of IPv6 connections... */ 13204 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 13205 sizeof (struct T_optmgmt_ack)]; 13206 optp->level = MIB2_TCP6; 13207 optp->name = MIB2_TCP6_CONN; 13208 optp->len = msgdsize(mp6_conn_ctl->b_cont); 13209 qreply(q, mp6_conn_ctl); 13210 13211 /* table of IPv6 MLP attributes... */ 13212 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 13213 sizeof (struct T_optmgmt_ack)]; 13214 optp->level = MIB2_TCP6; 13215 optp->name = EXPER_XPORT_MLP; 13216 optp->len = msgdsize(mp6_attr_ctl->b_cont); 13217 if (optp->len == 0) 13218 freemsg(mp6_attr_ctl); 13219 else 13220 qreply(q, mp6_attr_ctl); 13221 return (mp2ctl); 13222 } 13223 13224 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 13225 /* ARGSUSED */ 13226 int 13227 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 13228 { 13229 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 13230 13231 switch (level) { 13232 case MIB2_TCP: 13233 switch (name) { 13234 case 13: 13235 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 13236 return (0); 13237 /* TODO: delete entry defined by tce */ 13238 return (1); 13239 default: 13240 return (0); 13241 } 13242 default: 13243 return (1); 13244 } 13245 } 13246 13247 /* Translate TCP state to MIB2 TCP state. */ 13248 static int 13249 tcp_snmp_state(tcp_t *tcp) 13250 { 13251 if (tcp == NULL) 13252 return (0); 13253 13254 switch (tcp->tcp_state) { 13255 case TCPS_CLOSED: 13256 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 13257 case TCPS_BOUND: 13258 return (MIB2_TCP_closed); 13259 case TCPS_LISTEN: 13260 return (MIB2_TCP_listen); 13261 case TCPS_SYN_SENT: 13262 return (MIB2_TCP_synSent); 13263 case TCPS_SYN_RCVD: 13264 return (MIB2_TCP_synReceived); 13265 case TCPS_ESTABLISHED: 13266 return (MIB2_TCP_established); 13267 case TCPS_CLOSE_WAIT: 13268 return (MIB2_TCP_closeWait); 13269 case TCPS_FIN_WAIT_1: 13270 return (MIB2_TCP_finWait1); 13271 case TCPS_CLOSING: 13272 return (MIB2_TCP_closing); 13273 case TCPS_LAST_ACK: 13274 return (MIB2_TCP_lastAck); 13275 case TCPS_FIN_WAIT_2: 13276 return (MIB2_TCP_finWait2); 13277 case TCPS_TIME_WAIT: 13278 return (MIB2_TCP_timeWait); 13279 default: 13280 return (0); 13281 } 13282 } 13283 13284 /* 13285 * tcp_timer is the timer service routine. It handles the retransmission, 13286 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 13287 * from the state of the tcp instance what kind of action needs to be done 13288 * at the time it is called. 13289 */ 13290 static void 13291 tcp_timer(void *arg) 13292 { 13293 mblk_t *mp; 13294 clock_t first_threshold; 13295 clock_t second_threshold; 13296 clock_t ms; 13297 uint32_t mss; 13298 conn_t *connp = (conn_t *)arg; 13299 tcp_t *tcp = connp->conn_tcp; 13300 tcp_stack_t *tcps = tcp->tcp_tcps; 13301 13302 tcp->tcp_timer_tid = 0; 13303 13304 if (tcp->tcp_fused) 13305 return; 13306 13307 first_threshold = tcp->tcp_first_timer_threshold; 13308 second_threshold = tcp->tcp_second_timer_threshold; 13309 switch (tcp->tcp_state) { 13310 case TCPS_IDLE: 13311 case TCPS_BOUND: 13312 case TCPS_LISTEN: 13313 return; 13314 case TCPS_SYN_RCVD: { 13315 tcp_t *listener = tcp->tcp_listener; 13316 13317 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 13318 /* it's our first timeout */ 13319 tcp->tcp_syn_rcvd_timeout = 1; 13320 mutex_enter(&listener->tcp_eager_lock); 13321 listener->tcp_syn_rcvd_timeout++; 13322 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 13323 /* 13324 * Make this eager available for drop if we 13325 * need to drop one to accomodate a new 13326 * incoming SYN request. 13327 */ 13328 MAKE_DROPPABLE(listener, tcp); 13329 } 13330 if (!listener->tcp_syn_defense && 13331 (listener->tcp_syn_rcvd_timeout > 13332 (tcps->tcps_conn_req_max_q0 >> 2)) && 13333 (tcps->tcps_conn_req_max_q0 > 200)) { 13334 /* We may be under attack. Put on a defense. */ 13335 listener->tcp_syn_defense = B_TRUE; 13336 cmn_err(CE_WARN, "High TCP connect timeout " 13337 "rate! System (port %d) may be under a " 13338 "SYN flood attack!", 13339 ntohs(listener->tcp_connp->conn_lport)); 13340 13341 listener->tcp_ip_addr_cache = kmem_zalloc( 13342 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 13343 KM_NOSLEEP); 13344 } 13345 mutex_exit(&listener->tcp_eager_lock); 13346 } else if (listener != NULL) { 13347 mutex_enter(&listener->tcp_eager_lock); 13348 tcp->tcp_syn_rcvd_timeout++; 13349 if (tcp->tcp_syn_rcvd_timeout > 1 && 13350 !tcp->tcp_closemp_used) { 13351 /* 13352 * This is our second timeout. Put the tcp in 13353 * the list of droppable eagers to allow it to 13354 * be dropped, if needed. We don't check 13355 * whether tcp_dontdrop is set or not to 13356 * protect ourselve from a SYN attack where a 13357 * remote host can spoof itself as one of the 13358 * good IP source and continue to hold 13359 * resources too long. 13360 */ 13361 MAKE_DROPPABLE(listener, tcp); 13362 } 13363 mutex_exit(&listener->tcp_eager_lock); 13364 } 13365 } 13366 /* FALLTHRU */ 13367 case TCPS_SYN_SENT: 13368 first_threshold = tcp->tcp_first_ctimer_threshold; 13369 second_threshold = tcp->tcp_second_ctimer_threshold; 13370 break; 13371 case TCPS_ESTABLISHED: 13372 case TCPS_FIN_WAIT_1: 13373 case TCPS_CLOSING: 13374 case TCPS_CLOSE_WAIT: 13375 case TCPS_LAST_ACK: 13376 /* If we have data to rexmit */ 13377 if (tcp->tcp_suna != tcp->tcp_snxt) { 13378 clock_t time_to_wait; 13379 13380 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 13381 if (!tcp->tcp_xmit_head) 13382 break; 13383 time_to_wait = ddi_get_lbolt() - 13384 (clock_t)tcp->tcp_xmit_head->b_prev; 13385 time_to_wait = tcp->tcp_rto - 13386 TICK_TO_MSEC(time_to_wait); 13387 /* 13388 * If the timer fires too early, 1 clock tick earlier, 13389 * restart the timer. 13390 */ 13391 if (time_to_wait > msec_per_tick) { 13392 TCP_STAT(tcps, tcp_timer_fire_early); 13393 TCP_TIMER_RESTART(tcp, time_to_wait); 13394 return; 13395 } 13396 /* 13397 * When we probe zero windows, we force the swnd open. 13398 * If our peer acks with a closed window swnd will be 13399 * set to zero by tcp_rput(). As long as we are 13400 * receiving acks tcp_rput will 13401 * reset 'tcp_ms_we_have_waited' so as not to trip the 13402 * first and second interval actions. NOTE: the timer 13403 * interval is allowed to continue its exponential 13404 * backoff. 13405 */ 13406 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 13407 if (connp->conn_debug) { 13408 (void) strlog(TCP_MOD_ID, 0, 1, 13409 SL_TRACE, "tcp_timer: zero win"); 13410 } 13411 } else { 13412 /* 13413 * After retransmission, we need to do 13414 * slow start. Set the ssthresh to one 13415 * half of current effective window and 13416 * cwnd to one MSS. Also reset 13417 * tcp_cwnd_cnt. 13418 * 13419 * Note that if tcp_ssthresh is reduced because 13420 * of ECN, do not reduce it again unless it is 13421 * already one window of data away (tcp_cwr 13422 * should then be cleared) or this is a 13423 * timeout for a retransmitted segment. 13424 */ 13425 uint32_t npkt; 13426 13427 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 13428 npkt = ((tcp->tcp_timer_backoff ? 13429 tcp->tcp_cwnd_ssthresh : 13430 tcp->tcp_snxt - 13431 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 13432 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13433 tcp->tcp_mss; 13434 } 13435 tcp->tcp_cwnd = tcp->tcp_mss; 13436 tcp->tcp_cwnd_cnt = 0; 13437 if (tcp->tcp_ecn_ok) { 13438 tcp->tcp_cwr = B_TRUE; 13439 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13440 tcp->tcp_ecn_cwr_sent = B_FALSE; 13441 } 13442 } 13443 break; 13444 } 13445 /* 13446 * We have something to send yet we cannot send. The 13447 * reason can be: 13448 * 13449 * 1. Zero send window: we need to do zero window probe. 13450 * 2. Zero cwnd: because of ECN, we need to "clock out 13451 * segments. 13452 * 3. SWS avoidance: receiver may have shrunk window, 13453 * reset our knowledge. 13454 * 13455 * Note that condition 2 can happen with either 1 or 13456 * 3. But 1 and 3 are exclusive. 13457 */ 13458 if (tcp->tcp_unsent != 0) { 13459 /* 13460 * Should not hold the zero-copy messages for too long. 13461 */ 13462 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13463 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13464 tcp->tcp_xmit_head, B_TRUE); 13465 13466 if (tcp->tcp_cwnd == 0) { 13467 /* 13468 * Set tcp_cwnd to 1 MSS so that a 13469 * new segment can be sent out. We 13470 * are "clocking out" new data when 13471 * the network is really congested. 13472 */ 13473 ASSERT(tcp->tcp_ecn_ok); 13474 tcp->tcp_cwnd = tcp->tcp_mss; 13475 } 13476 if (tcp->tcp_swnd == 0) { 13477 /* Extend window for zero window probe */ 13478 tcp->tcp_swnd++; 13479 tcp->tcp_zero_win_probe = B_TRUE; 13480 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 13481 } else { 13482 /* 13483 * Handle timeout from sender SWS avoidance. 13484 * Reset our knowledge of the max send window 13485 * since the receiver might have reduced its 13486 * receive buffer. Avoid setting tcp_max_swnd 13487 * to one since that will essentially disable 13488 * the SWS checks. 13489 * 13490 * Note that since we don't have a SWS 13491 * state variable, if the timeout is set 13492 * for ECN but not for SWS, this 13493 * code will also be executed. This is 13494 * fine as tcp_max_swnd is updated 13495 * constantly and it will not affect 13496 * anything. 13497 */ 13498 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 13499 } 13500 tcp_wput_data(tcp, NULL, B_FALSE); 13501 return; 13502 } 13503 /* Is there a FIN that needs to be to re retransmitted? */ 13504 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13505 !tcp->tcp_fin_acked) 13506 break; 13507 /* Nothing to do, return without restarting timer. */ 13508 TCP_STAT(tcps, tcp_timer_fire_miss); 13509 return; 13510 case TCPS_FIN_WAIT_2: 13511 /* 13512 * User closed the TCP endpoint and peer ACK'ed our FIN. 13513 * We waited some time for for peer's FIN, but it hasn't 13514 * arrived. We flush the connection now to avoid 13515 * case where the peer has rebooted. 13516 */ 13517 if (TCP_IS_DETACHED(tcp)) { 13518 (void) tcp_clean_death(tcp, 0, 23); 13519 } else { 13520 TCP_TIMER_RESTART(tcp, 13521 tcps->tcps_fin_wait_2_flush_interval); 13522 } 13523 return; 13524 case TCPS_TIME_WAIT: 13525 (void) tcp_clean_death(tcp, 0, 24); 13526 return; 13527 default: 13528 if (connp->conn_debug) { 13529 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 13530 "tcp_timer: strange state (%d) %s", 13531 tcp->tcp_state, tcp_display(tcp, NULL, 13532 DISP_PORT_ONLY)); 13533 } 13534 return; 13535 } 13536 13537 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 13538 /* 13539 * Should not hold the zero-copy messages for too long. 13540 */ 13541 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13542 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13543 tcp->tcp_xmit_head, B_TRUE); 13544 13545 /* 13546 * For zero window probe, we need to send indefinitely, 13547 * unless we have not heard from the other side for some 13548 * time... 13549 */ 13550 if ((tcp->tcp_zero_win_probe == 0) || 13551 (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) > 13552 second_threshold)) { 13553 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 13554 /* 13555 * If TCP is in SYN_RCVD state, send back a 13556 * RST|ACK as BSD does. Note that tcp_zero_win_probe 13557 * should be zero in TCPS_SYN_RCVD state. 13558 */ 13559 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13560 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 13561 "in SYN_RCVD", 13562 tcp, tcp->tcp_snxt, 13563 tcp->tcp_rnxt, TH_RST | TH_ACK); 13564 } 13565 (void) tcp_clean_death(tcp, 13566 tcp->tcp_client_errno ? 13567 tcp->tcp_client_errno : ETIMEDOUT, 25); 13568 return; 13569 } else { 13570 /* 13571 * Set tcp_ms_we_have_waited to second_threshold 13572 * so that in next timeout, we will do the above 13573 * check (ddi_get_lbolt() - tcp_last_recv_time). 13574 * This is also to avoid overflow. 13575 * 13576 * We don't need to decrement tcp_timer_backoff 13577 * to avoid overflow because it will be decremented 13578 * later if new timeout value is greater than 13579 * tcp_rexmit_interval_max. In the case when 13580 * tcp_rexmit_interval_max is greater than 13581 * second_threshold, it means that we will wait 13582 * longer than second_threshold to send the next 13583 * window probe. 13584 */ 13585 tcp->tcp_ms_we_have_waited = second_threshold; 13586 } 13587 } else if (ms > first_threshold) { 13588 /* 13589 * Should not hold the zero-copy messages for too long. 13590 */ 13591 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 13592 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 13593 tcp->tcp_xmit_head, B_TRUE); 13594 13595 /* 13596 * We have been retransmitting for too long... The RTT 13597 * we calculated is probably incorrect. Reinitialize it. 13598 * Need to compensate for 0 tcp_rtt_sa. Reset 13599 * tcp_rtt_update so that we won't accidentally cache a 13600 * bad value. But only do this if this is not a zero 13601 * window probe. 13602 */ 13603 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 13604 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 13605 (tcp->tcp_rtt_sa >> 5); 13606 tcp->tcp_rtt_sa = 0; 13607 tcp_ip_notify(tcp); 13608 tcp->tcp_rtt_update = 0; 13609 } 13610 } 13611 tcp->tcp_timer_backoff++; 13612 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 13613 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 13614 tcps->tcps_rexmit_interval_min) { 13615 /* 13616 * This means the original RTO is tcp_rexmit_interval_min. 13617 * So we will use tcp_rexmit_interval_min as the RTO value 13618 * and do the backoff. 13619 */ 13620 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 13621 } else { 13622 ms <<= tcp->tcp_timer_backoff; 13623 } 13624 if (ms > tcps->tcps_rexmit_interval_max) { 13625 ms = tcps->tcps_rexmit_interval_max; 13626 /* 13627 * ms is at max, decrement tcp_timer_backoff to avoid 13628 * overflow. 13629 */ 13630 tcp->tcp_timer_backoff--; 13631 } 13632 tcp->tcp_ms_we_have_waited += ms; 13633 if (tcp->tcp_zero_win_probe == 0) { 13634 tcp->tcp_rto = ms; 13635 } 13636 TCP_TIMER_RESTART(tcp, ms); 13637 /* 13638 * This is after a timeout and tcp_rto is backed off. Set 13639 * tcp_set_timer to 1 so that next time RTO is updated, we will 13640 * restart the timer with a correct value. 13641 */ 13642 tcp->tcp_set_timer = 1; 13643 mss = tcp->tcp_snxt - tcp->tcp_suna; 13644 if (mss > tcp->tcp_mss) 13645 mss = tcp->tcp_mss; 13646 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 13647 mss = tcp->tcp_swnd; 13648 13649 if ((mp = tcp->tcp_xmit_head) != NULL) 13650 mp->b_prev = (mblk_t *)ddi_get_lbolt(); 13651 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 13652 B_TRUE); 13653 13654 /* 13655 * When slow start after retransmission begins, start with 13656 * this seq no. tcp_rexmit_max marks the end of special slow 13657 * start phase. tcp_snd_burst controls how many segments 13658 * can be sent because of an ack. 13659 */ 13660 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13661 tcp->tcp_snd_burst = TCP_CWND_SS; 13662 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13663 (tcp->tcp_unsent == 0)) { 13664 tcp->tcp_rexmit_max = tcp->tcp_fss; 13665 } else { 13666 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13667 } 13668 tcp->tcp_rexmit = B_TRUE; 13669 tcp->tcp_dupack_cnt = 0; 13670 13671 /* 13672 * Remove all rexmit SACK blk to start from fresh. 13673 */ 13674 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 13675 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 13676 if (mp == NULL) { 13677 return; 13678 } 13679 13680 tcp->tcp_csuna = tcp->tcp_snxt; 13681 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 13682 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 13683 tcp_send_data(tcp, mp); 13684 13685 } 13686 13687 static int 13688 tcp_do_unbind(conn_t *connp) 13689 { 13690 tcp_t *tcp = connp->conn_tcp; 13691 13692 switch (tcp->tcp_state) { 13693 case TCPS_BOUND: 13694 case TCPS_LISTEN: 13695 break; 13696 default: 13697 return (-TOUTSTATE); 13698 } 13699 13700 /* 13701 * Need to clean up all the eagers since after the unbind, segments 13702 * will no longer be delivered to this listener stream. 13703 */ 13704 mutex_enter(&tcp->tcp_eager_lock); 13705 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 13706 tcp_eager_cleanup(tcp, 0); 13707 } 13708 mutex_exit(&tcp->tcp_eager_lock); 13709 13710 connp->conn_laddr_v6 = ipv6_all_zeros; 13711 connp->conn_saddr_v6 = ipv6_all_zeros; 13712 tcp_bind_hash_remove(tcp); 13713 tcp->tcp_state = TCPS_IDLE; 13714 13715 ip_unbind(connp); 13716 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 13717 13718 return (0); 13719 } 13720 13721 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 13722 static void 13723 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 13724 { 13725 conn_t *connp = tcp->tcp_connp; 13726 int error; 13727 13728 error = tcp_do_unbind(connp); 13729 if (error > 0) { 13730 tcp_err_ack(tcp, mp, TSYSERR, error); 13731 } else if (error < 0) { 13732 tcp_err_ack(tcp, mp, -error, 0); 13733 } else { 13734 /* Send M_FLUSH according to TPI */ 13735 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 13736 13737 mp = mi_tpi_ok_ack_alloc(mp); 13738 if (mp != NULL) 13739 putnext(connp->conn_rq, mp); 13740 } 13741 } 13742 13743 /* 13744 * Don't let port fall into the privileged range. 13745 * Since the extra privileged ports can be arbitrary we also 13746 * ensure that we exclude those from consideration. 13747 * tcp_g_epriv_ports is not sorted thus we loop over it until 13748 * there are no changes. 13749 * 13750 * Note: No locks are held when inspecting tcp_g_*epriv_ports 13751 * but instead the code relies on: 13752 * - the fact that the address of the array and its size never changes 13753 * - the atomic assignment of the elements of the array 13754 * 13755 * Returns 0 if there are no more ports available. 13756 * 13757 * TS note: skip multilevel ports. 13758 */ 13759 static in_port_t 13760 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 13761 { 13762 int i; 13763 boolean_t restart = B_FALSE; 13764 tcp_stack_t *tcps = tcp->tcp_tcps; 13765 13766 if (random && tcp_random_anon_port != 0) { 13767 (void) random_get_pseudo_bytes((uint8_t *)&port, 13768 sizeof (in_port_t)); 13769 /* 13770 * Unless changed by a sys admin, the smallest anon port 13771 * is 32768 and the largest anon port is 65535. It is 13772 * very likely (50%) for the random port to be smaller 13773 * than the smallest anon port. When that happens, 13774 * add port % (anon port range) to the smallest anon 13775 * port to get the random port. It should fall into the 13776 * valid anon port range. 13777 */ 13778 if (port < tcps->tcps_smallest_anon_port) { 13779 port = tcps->tcps_smallest_anon_port + 13780 port % (tcps->tcps_largest_anon_port - 13781 tcps->tcps_smallest_anon_port); 13782 } 13783 } 13784 13785 retry: 13786 if (port < tcps->tcps_smallest_anon_port) 13787 port = (in_port_t)tcps->tcps_smallest_anon_port; 13788 13789 if (port > tcps->tcps_largest_anon_port) { 13790 if (restart) 13791 return (0); 13792 restart = B_TRUE; 13793 port = (in_port_t)tcps->tcps_smallest_anon_port; 13794 } 13795 13796 if (port < tcps->tcps_smallest_nonpriv_port) 13797 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 13798 13799 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 13800 if (port == tcps->tcps_g_epriv_ports[i]) { 13801 port++; 13802 /* 13803 * Make sure whether the port is in the 13804 * valid range. 13805 */ 13806 goto retry; 13807 } 13808 } 13809 if (is_system_labeled() && 13810 (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port, 13811 IPPROTO_TCP, B_TRUE)) != 0) { 13812 port = i; 13813 goto retry; 13814 } 13815 return (port); 13816 } 13817 13818 /* 13819 * Return the next anonymous port in the privileged port range for 13820 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 13821 * downwards. This is the same behavior as documented in the userland 13822 * library call rresvport(3N). 13823 * 13824 * TS note: skip multilevel ports. 13825 */ 13826 static in_port_t 13827 tcp_get_next_priv_port(const tcp_t *tcp) 13828 { 13829 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 13830 in_port_t nextport; 13831 boolean_t restart = B_FALSE; 13832 tcp_stack_t *tcps = tcp->tcp_tcps; 13833 retry: 13834 if (next_priv_port < tcps->tcps_min_anonpriv_port || 13835 next_priv_port >= IPPORT_RESERVED) { 13836 next_priv_port = IPPORT_RESERVED - 1; 13837 if (restart) 13838 return (0); 13839 restart = B_TRUE; 13840 } 13841 if (is_system_labeled() && 13842 (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), 13843 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 13844 next_priv_port = nextport; 13845 goto retry; 13846 } 13847 return (next_priv_port--); 13848 } 13849 13850 /* The write side r/w procedure. */ 13851 13852 #if CCS_STATS 13853 struct { 13854 struct { 13855 int64_t count, bytes; 13856 } tot, hit; 13857 } wrw_stats; 13858 #endif 13859 13860 /* 13861 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 13862 * messages. 13863 */ 13864 /* ARGSUSED */ 13865 static void 13866 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 13867 { 13868 conn_t *connp = (conn_t *)arg; 13869 tcp_t *tcp = connp->conn_tcp; 13870 13871 ASSERT(DB_TYPE(mp) != M_IOCTL); 13872 /* 13873 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 13874 * Once the close starts, streamhead and sockfs will not let any data 13875 * packets come down (close ensures that there are no threads using the 13876 * queue and no new threads will come down) but since qprocsoff() 13877 * hasn't happened yet, a M_FLUSH or some non data message might 13878 * get reflected back (in response to our own FLUSHRW) and get 13879 * processed after tcp_close() is done. The conn would still be valid 13880 * because a ref would have added but we need to check the state 13881 * before actually processing the packet. 13882 */ 13883 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 13884 freemsg(mp); 13885 return; 13886 } 13887 13888 switch (DB_TYPE(mp)) { 13889 case M_IOCDATA: 13890 tcp_wput_iocdata(tcp, mp); 13891 break; 13892 case M_FLUSH: 13893 tcp_wput_flush(tcp, mp); 13894 break; 13895 default: 13896 ip_wput_nondata(connp->conn_wq, mp); 13897 break; 13898 } 13899 } 13900 13901 /* 13902 * The TCP fast path write put procedure. 13903 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 13904 */ 13905 /* ARGSUSED */ 13906 void 13907 tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 13908 { 13909 int len; 13910 int hdrlen; 13911 int plen; 13912 mblk_t *mp1; 13913 uchar_t *rptr; 13914 uint32_t snxt; 13915 tcpha_t *tcpha; 13916 struct datab *db; 13917 uint32_t suna; 13918 uint32_t mss; 13919 ipaddr_t *dst; 13920 ipaddr_t *src; 13921 uint32_t sum; 13922 int usable; 13923 conn_t *connp = (conn_t *)arg; 13924 tcp_t *tcp = connp->conn_tcp; 13925 uint32_t msize; 13926 tcp_stack_t *tcps = tcp->tcp_tcps; 13927 ip_xmit_attr_t *ixa; 13928 clock_t now; 13929 13930 /* 13931 * Try and ASSERT the minimum possible references on the 13932 * conn early enough. Since we are executing on write side, 13933 * the connection is obviously not detached and that means 13934 * there is a ref each for TCP and IP. Since we are behind 13935 * the squeue, the minimum references needed are 3. If the 13936 * conn is in classifier hash list, there should be an 13937 * extra ref for that (we check both the possibilities). 13938 */ 13939 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 13940 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 13941 13942 ASSERT(DB_TYPE(mp) == M_DATA); 13943 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 13944 13945 mutex_enter(&tcp->tcp_non_sq_lock); 13946 tcp->tcp_squeue_bytes -= msize; 13947 mutex_exit(&tcp->tcp_non_sq_lock); 13948 13949 /* Bypass tcp protocol for fused tcp loopback */ 13950 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 13951 return; 13952 13953 mss = tcp->tcp_mss; 13954 /* 13955 * If ZEROCOPY has turned off, try not to send any zero-copy message 13956 * down. Do backoff, now. 13957 */ 13958 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on) 13959 mp = tcp_zcopy_backoff(tcp, mp, B_FALSE); 13960 13961 13962 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 13963 len = (int)(mp->b_wptr - mp->b_rptr); 13964 13965 /* 13966 * Criteria for fast path: 13967 * 13968 * 1. no unsent data 13969 * 2. single mblk in request 13970 * 3. connection established 13971 * 4. data in mblk 13972 * 5. len <= mss 13973 * 6. no tcp_valid bits 13974 */ 13975 if ((tcp->tcp_unsent != 0) || 13976 (tcp->tcp_cork) || 13977 (mp->b_cont != NULL) || 13978 (tcp->tcp_state != TCPS_ESTABLISHED) || 13979 (len == 0) || 13980 (len > mss) || 13981 (tcp->tcp_valid_bits != 0)) { 13982 tcp_wput_data(tcp, mp, B_FALSE); 13983 return; 13984 } 13985 13986 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 13987 ASSERT(tcp->tcp_fin_sent == 0); 13988 13989 /* queue new packet onto retransmission queue */ 13990 if (tcp->tcp_xmit_head == NULL) { 13991 tcp->tcp_xmit_head = mp; 13992 } else { 13993 tcp->tcp_xmit_last->b_cont = mp; 13994 } 13995 tcp->tcp_xmit_last = mp; 13996 tcp->tcp_xmit_tail = mp; 13997 13998 /* find out how much we can send */ 13999 /* BEGIN CSTYLED */ 14000 /* 14001 * un-acked usable 14002 * |--------------|-----------------| 14003 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 14004 */ 14005 /* END CSTYLED */ 14006 14007 /* start sending from tcp_snxt */ 14008 snxt = tcp->tcp_snxt; 14009 14010 /* 14011 * Check to see if this connection has been idled for some 14012 * time and no ACK is expected. If it is, we need to slow 14013 * start again to get back the connection's "self-clock" as 14014 * described in VJ's paper. 14015 * 14016 * Reinitialize tcp_cwnd after idle. 14017 */ 14018 now = LBOLT_FASTPATH; 14019 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 14020 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 14021 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 14022 } 14023 14024 usable = tcp->tcp_swnd; /* tcp window size */ 14025 if (usable > tcp->tcp_cwnd) 14026 usable = tcp->tcp_cwnd; /* congestion window smaller */ 14027 usable -= snxt; /* subtract stuff already sent */ 14028 suna = tcp->tcp_suna; 14029 usable += suna; 14030 /* usable can be < 0 if the congestion window is smaller */ 14031 if (len > usable) { 14032 /* Can't send complete M_DATA in one shot */ 14033 goto slow; 14034 } 14035 14036 mutex_enter(&tcp->tcp_non_sq_lock); 14037 if (tcp->tcp_flow_stopped && 14038 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 14039 tcp_clrqfull(tcp); 14040 } 14041 mutex_exit(&tcp->tcp_non_sq_lock); 14042 14043 /* 14044 * determine if anything to send (Nagle). 14045 * 14046 * 1. len < tcp_mss (i.e. small) 14047 * 2. unacknowledged data present 14048 * 3. len < nagle limit 14049 * 4. last packet sent < nagle limit (previous packet sent) 14050 */ 14051 if ((len < mss) && (snxt != suna) && 14052 (len < (int)tcp->tcp_naglim) && 14053 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 14054 /* 14055 * This was the first unsent packet and normally 14056 * mss < xmit_hiwater so there is no need to worry 14057 * about flow control. The next packet will go 14058 * through the flow control check in tcp_wput_data(). 14059 */ 14060 /* leftover work from above */ 14061 tcp->tcp_unsent = len; 14062 tcp->tcp_xmit_tail_unsent = len; 14063 14064 return; 14065 } 14066 14067 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 14068 14069 if (snxt == suna) { 14070 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14071 } 14072 14073 /* we have always sent something */ 14074 tcp->tcp_rack_cnt = 0; 14075 14076 tcp->tcp_snxt = snxt + len; 14077 tcp->tcp_rack = tcp->tcp_rnxt; 14078 14079 if ((mp1 = dupb(mp)) == 0) 14080 goto no_memory; 14081 mp->b_prev = (mblk_t *)(uintptr_t)now; 14082 mp->b_next = (mblk_t *)(uintptr_t)snxt; 14083 14084 /* adjust tcp header information */ 14085 tcpha = tcp->tcp_tcpha; 14086 tcpha->tha_flags = (TH_ACK|TH_PUSH); 14087 14088 sum = len + connp->conn_ht_ulp_len + connp->conn_sum; 14089 sum = (sum >> 16) + (sum & 0xFFFF); 14090 tcpha->tha_sum = htons(sum); 14091 14092 tcpha->tha_seq = htonl(snxt); 14093 14094 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 14095 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 14096 BUMP_LOCAL(tcp->tcp_obsegs); 14097 14098 /* Update the latest receive window size in TCP header. */ 14099 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 14100 14101 tcp->tcp_last_sent_len = (ushort_t)len; 14102 14103 plen = len + connp->conn_ht_iphc_len; 14104 14105 ixa = connp->conn_ixa; 14106 ixa->ixa_pktlen = plen; 14107 14108 if (ixa->ixa_flags & IXAF_IS_IPV4) { 14109 tcp->tcp_ipha->ipha_length = htons(plen); 14110 } else { 14111 tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN); 14112 } 14113 14114 /* see if we need to allocate a mblk for the headers */ 14115 hdrlen = connp->conn_ht_iphc_len; 14116 rptr = mp1->b_rptr - hdrlen; 14117 db = mp1->b_datap; 14118 if ((db->db_ref != 2) || rptr < db->db_base || 14119 (!OK_32PTR(rptr))) { 14120 /* NOTE: we assume allocb returns an OK_32PTR */ 14121 mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED); 14122 if (!mp) { 14123 freemsg(mp1); 14124 goto no_memory; 14125 } 14126 mp->b_cont = mp1; 14127 mp1 = mp; 14128 /* Leave room for Link Level header */ 14129 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 14130 mp1->b_wptr = &rptr[hdrlen]; 14131 } 14132 mp1->b_rptr = rptr; 14133 14134 /* Fill in the timestamp option. */ 14135 if (tcp->tcp_snd_ts_ok) { 14136 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 14137 14138 U32_TO_BE32(llbolt, 14139 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 14140 U32_TO_BE32(tcp->tcp_ts_recent, 14141 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 14142 } else { 14143 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 14144 } 14145 14146 /* copy header into outgoing packet */ 14147 dst = (ipaddr_t *)rptr; 14148 src = (ipaddr_t *)connp->conn_ht_iphc; 14149 dst[0] = src[0]; 14150 dst[1] = src[1]; 14151 dst[2] = src[2]; 14152 dst[3] = src[3]; 14153 dst[4] = src[4]; 14154 dst[5] = src[5]; 14155 dst[6] = src[6]; 14156 dst[7] = src[7]; 14157 dst[8] = src[8]; 14158 dst[9] = src[9]; 14159 if (hdrlen -= 40) { 14160 hdrlen >>= 2; 14161 dst += 10; 14162 src += 10; 14163 do { 14164 *dst++ = *src++; 14165 } while (--hdrlen); 14166 } 14167 14168 /* 14169 * Set the ECN info in the TCP header. Note that this 14170 * is not the template header. 14171 */ 14172 if (tcp->tcp_ecn_ok) { 14173 SET_ECT(tcp, rptr); 14174 14175 tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length); 14176 if (tcp->tcp_ecn_echo_on) 14177 tcpha->tha_flags |= TH_ECE; 14178 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 14179 tcpha->tha_flags |= TH_CWR; 14180 tcp->tcp_ecn_cwr_sent = B_TRUE; 14181 } 14182 } 14183 14184 if (tcp->tcp_ip_forward_progress) { 14185 tcp->tcp_ip_forward_progress = B_FALSE; 14186 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 14187 } else { 14188 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 14189 } 14190 tcp_send_data(tcp, mp1); 14191 return; 14192 14193 /* 14194 * If we ran out of memory, we pretend to have sent the packet 14195 * and that it was lost on the wire. 14196 */ 14197 no_memory: 14198 return; 14199 14200 slow: 14201 /* leftover work from above */ 14202 tcp->tcp_unsent = len; 14203 tcp->tcp_xmit_tail_unsent = len; 14204 tcp_wput_data(tcp, NULL, B_FALSE); 14205 } 14206 14207 /* 14208 * This runs at the tail end of accept processing on the squeue of the 14209 * new connection. 14210 */ 14211 /* ARGSUSED */ 14212 void 14213 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14214 { 14215 conn_t *connp = (conn_t *)arg; 14216 tcp_t *tcp = connp->conn_tcp; 14217 queue_t *q = connp->conn_rq; 14218 tcp_stack_t *tcps = tcp->tcp_tcps; 14219 /* socket options */ 14220 struct sock_proto_props sopp; 14221 14222 /* We should just receive a single mblk that fits a T_discon_ind */ 14223 ASSERT(mp->b_cont == NULL); 14224 14225 /* 14226 * Drop the eager's ref on the listener, that was placed when 14227 * this eager began life in tcp_input_listener. 14228 */ 14229 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 14230 if (IPCL_IS_NONSTR(connp)) { 14231 /* Safe to free conn_ind message */ 14232 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 14233 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14234 } 14235 14236 tcp->tcp_detached = B_FALSE; 14237 14238 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 14239 /* 14240 * Someone blewoff the eager before we could finish 14241 * the accept. 14242 * 14243 * The only reason eager exists it because we put in 14244 * a ref on it when conn ind went up. We need to send 14245 * a disconnect indication up while the last reference 14246 * on the eager will be dropped by the squeue when we 14247 * return. 14248 */ 14249 ASSERT(tcp->tcp_listener == NULL); 14250 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 14251 if (IPCL_IS_NONSTR(connp)) { 14252 ASSERT(tcp->tcp_issocket); 14253 (*connp->conn_upcalls->su_disconnected)( 14254 connp->conn_upper_handle, tcp->tcp_connid, 14255 ECONNREFUSED); 14256 freemsg(mp); 14257 } else { 14258 struct T_discon_ind *tdi; 14259 14260 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 14261 /* 14262 * Let us reuse the incoming mblk to avoid 14263 * memory allocation failure problems. We know 14264 * that the size of the incoming mblk i.e. 14265 * stroptions is greater than sizeof 14266 * T_discon_ind. 14267 */ 14268 ASSERT(DB_REF(mp) == 1); 14269 ASSERT(MBLKSIZE(mp) >= 14270 sizeof (struct T_discon_ind)); 14271 14272 DB_TYPE(mp) = M_PROTO; 14273 ((union T_primitives *)mp->b_rptr)->type = 14274 T_DISCON_IND; 14275 tdi = (struct T_discon_ind *)mp->b_rptr; 14276 if (tcp->tcp_issocket) { 14277 tdi->DISCON_reason = ECONNREFUSED; 14278 tdi->SEQ_number = 0; 14279 } else { 14280 tdi->DISCON_reason = ENOPROTOOPT; 14281 tdi->SEQ_number = 14282 tcp->tcp_conn_req_seqnum; 14283 } 14284 mp->b_wptr = mp->b_rptr + 14285 sizeof (struct T_discon_ind); 14286 putnext(q, mp); 14287 } 14288 } 14289 tcp->tcp_hard_binding = B_FALSE; 14290 return; 14291 } 14292 14293 /* 14294 * Set max window size (conn_rcvbuf) of the acceptor. 14295 */ 14296 if (tcp->tcp_rcv_list == NULL) { 14297 /* 14298 * Recv queue is empty, tcp_rwnd should not have changed. 14299 * That means it should be equal to the listener's tcp_rwnd. 14300 */ 14301 connp->conn_rcvbuf = tcp->tcp_rwnd; 14302 } else { 14303 #ifdef DEBUG 14304 mblk_t *tmp; 14305 mblk_t *mp1; 14306 uint_t cnt = 0; 14307 14308 mp1 = tcp->tcp_rcv_list; 14309 while ((tmp = mp1) != NULL) { 14310 mp1 = tmp->b_next; 14311 cnt += msgdsize(tmp); 14312 } 14313 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 14314 #endif 14315 /* There is some data, add them back to get the max. */ 14316 connp->conn_rcvbuf = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 14317 } 14318 /* 14319 * This is the first time we run on the correct 14320 * queue after tcp_accept. So fix all the q parameters 14321 * here. 14322 */ 14323 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 14324 sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 14325 14326 sopp.sopp_rxhiwat = tcp->tcp_fused ? 14327 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 14328 connp->conn_rcvbuf; 14329 14330 /* 14331 * Determine what write offset value to use depending on SACK and 14332 * whether the endpoint is fused or not. 14333 */ 14334 if (tcp->tcp_fused) { 14335 ASSERT(tcp->tcp_loopback); 14336 ASSERT(tcp->tcp_loopback_peer != NULL); 14337 /* 14338 * For fused tcp loopback, set the stream head's write 14339 * offset value to zero since we won't be needing any room 14340 * for TCP/IP headers. This would also improve performance 14341 * since it would reduce the amount of work done by kmem. 14342 * Non-fused tcp loopback case is handled separately below. 14343 */ 14344 sopp.sopp_wroff = 0; 14345 /* 14346 * Update the peer's transmit parameters according to 14347 * our recently calculated high water mark value. 14348 */ 14349 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 14350 } else if (tcp->tcp_snd_sack_ok) { 14351 sopp.sopp_wroff = connp->conn_ht_iphc_allocated + 14352 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14353 } else { 14354 sopp.sopp_wroff = connp->conn_ht_iphc_len + 14355 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 14356 } 14357 14358 /* 14359 * If this is endpoint is handling SSL, then reserve extra 14360 * offset and space at the end. 14361 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 14362 * overriding the previous setting. The extra cost of signing and 14363 * encrypting multiple MSS-size records (12 of them with Ethernet), 14364 * instead of a single contiguous one by the stream head 14365 * largely outweighs the statistical reduction of ACKs, when 14366 * applicable. The peer will also save on decryption and verification 14367 * costs. 14368 */ 14369 if (tcp->tcp_kssl_ctx != NULL) { 14370 sopp.sopp_wroff += SSL3_WROFFSET; 14371 14372 sopp.sopp_flags |= SOCKOPT_TAIL; 14373 sopp.sopp_tail = SSL3_MAX_TAIL_LEN; 14374 14375 sopp.sopp_flags |= SOCKOPT_ZCOPY; 14376 sopp.sopp_zcopyflag = ZCVMUNSAFE; 14377 14378 sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; 14379 } 14380 14381 /* Send the options up */ 14382 if (IPCL_IS_NONSTR(connp)) { 14383 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14384 ASSERT(tcp->tcp_kssl_ctx != NULL); 14385 ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); 14386 } 14387 if (tcp->tcp_loopback) { 14388 sopp.sopp_flags |= SOCKOPT_LOOPBACK; 14389 sopp.sopp_loopback = B_TRUE; 14390 } 14391 (*connp->conn_upcalls->su_set_proto_props) 14392 (connp->conn_upper_handle, &sopp); 14393 freemsg(mp); 14394 } else { 14395 /* 14396 * Let us reuse the incoming mblk to avoid 14397 * memory allocation failure problems. We know 14398 * that the size of the incoming mblk is at least 14399 * stroptions 14400 */ 14401 struct stroptions *stropt; 14402 14403 ASSERT(DB_REF(mp) == 1); 14404 ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); 14405 14406 DB_TYPE(mp) = M_SETOPTS; 14407 stropt = (struct stroptions *)mp->b_rptr; 14408 mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); 14409 stropt = (struct stroptions *)mp->b_rptr; 14410 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 14411 stropt->so_hiwat = sopp.sopp_rxhiwat; 14412 stropt->so_wroff = sopp.sopp_wroff; 14413 stropt->so_maxblk = sopp.sopp_maxblk; 14414 14415 if (sopp.sopp_flags & SOCKOPT_TAIL) { 14416 ASSERT(tcp->tcp_kssl_ctx != NULL); 14417 14418 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 14419 stropt->so_tail = sopp.sopp_tail; 14420 stropt->so_copyopt = sopp.sopp_zcopyflag; 14421 } 14422 14423 /* Send the options up */ 14424 putnext(q, mp); 14425 } 14426 14427 /* 14428 * Pass up any data and/or a fin that has been received. 14429 * 14430 * Adjust receive window in case it had decreased 14431 * (because there is data <=> tcp_rcv_list != NULL) 14432 * while the connection was detached. Note that 14433 * in case the eager was flow-controlled, w/o this 14434 * code, the rwnd may never open up again! 14435 */ 14436 if (tcp->tcp_rcv_list != NULL) { 14437 if (IPCL_IS_NONSTR(connp)) { 14438 mblk_t *mp; 14439 int space_left; 14440 int error; 14441 boolean_t push = B_TRUE; 14442 14443 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 14444 (connp->conn_upper_handle, NULL, 0, 0, &error, 14445 &push) >= 0) { 14446 tcp->tcp_rwnd = connp->conn_rcvbuf; 14447 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14448 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14449 tcp_xmit_ctl(NULL, 14450 tcp, (tcp->tcp_swnd == 0) ? 14451 tcp->tcp_suna : tcp->tcp_snxt, 14452 tcp->tcp_rnxt, TH_ACK); 14453 } 14454 } 14455 while ((mp = tcp->tcp_rcv_list) != NULL) { 14456 push = B_TRUE; 14457 tcp->tcp_rcv_list = mp->b_next; 14458 mp->b_next = NULL; 14459 space_left = (*connp->conn_upcalls->su_recv) 14460 (connp->conn_upper_handle, mp, msgdsize(mp), 14461 0, &error, &push); 14462 if (space_left < 0) { 14463 /* 14464 * We should never be in middle of a 14465 * fallback, the squeue guarantees that. 14466 */ 14467 ASSERT(error != EOPNOTSUPP); 14468 } 14469 } 14470 tcp->tcp_rcv_last_head = NULL; 14471 tcp->tcp_rcv_last_tail = NULL; 14472 tcp->tcp_rcv_cnt = 0; 14473 } else { 14474 /* We drain directly in case of fused tcp loopback */ 14475 14476 if (!tcp->tcp_fused && canputnext(q)) { 14477 tcp->tcp_rwnd = connp->conn_rcvbuf; 14478 if (tcp->tcp_state >= TCPS_ESTABLISHED && 14479 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 14480 tcp_xmit_ctl(NULL, 14481 tcp, (tcp->tcp_swnd == 0) ? 14482 tcp->tcp_suna : tcp->tcp_snxt, 14483 tcp->tcp_rnxt, TH_ACK); 14484 } 14485 } 14486 14487 (void) tcp_rcv_drain(tcp); 14488 } 14489 14490 /* 14491 * For fused tcp loopback, back-enable peer endpoint 14492 * if it's currently flow-controlled. 14493 */ 14494 if (tcp->tcp_fused) { 14495 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 14496 14497 ASSERT(peer_tcp != NULL); 14498 ASSERT(peer_tcp->tcp_fused); 14499 14500 mutex_enter(&peer_tcp->tcp_non_sq_lock); 14501 if (peer_tcp->tcp_flow_stopped) { 14502 tcp_clrqfull(peer_tcp); 14503 TCP_STAT(tcps, tcp_fusion_backenabled); 14504 } 14505 mutex_exit(&peer_tcp->tcp_non_sq_lock); 14506 } 14507 } 14508 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14509 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 14510 tcp->tcp_ordrel_done = B_TRUE; 14511 if (IPCL_IS_NONSTR(connp)) { 14512 ASSERT(tcp->tcp_ordrel_mp == NULL); 14513 (*connp->conn_upcalls->su_opctl)( 14514 connp->conn_upper_handle, 14515 SOCK_OPCTL_SHUT_RECV, 0); 14516 } else { 14517 mp = tcp->tcp_ordrel_mp; 14518 tcp->tcp_ordrel_mp = NULL; 14519 putnext(q, mp); 14520 } 14521 } 14522 tcp->tcp_hard_binding = B_FALSE; 14523 14524 if (connp->conn_keepalive) { 14525 tcp->tcp_ka_last_intrvl = 0; 14526 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 14527 MSEC_TO_TICK(tcp->tcp_ka_interval)); 14528 } 14529 14530 /* 14531 * At this point, eager is fully established and will 14532 * have the following references - 14533 * 14534 * 2 references for connection to exist (1 for TCP and 1 for IP). 14535 * 1 reference for the squeue which will be dropped by the squeue as 14536 * soon as this function returns. 14537 * There will be 1 additonal reference for being in classifier 14538 * hash list provided something bad hasn't happened. 14539 */ 14540 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 14541 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 14542 } 14543 14544 /* 14545 * The function called through squeue to get behind listener's perimeter to 14546 * send a deferred conn_ind. 14547 */ 14548 /* ARGSUSED */ 14549 void 14550 tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 14551 { 14552 conn_t *lconnp = (conn_t *)arg; 14553 tcp_t *listener = lconnp->conn_tcp; 14554 struct T_conn_ind *conn_ind; 14555 tcp_t *tcp; 14556 14557 conn_ind = (struct T_conn_ind *)mp->b_rptr; 14558 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 14559 conn_ind->OPT_length); 14560 14561 if (listener->tcp_state != TCPS_LISTEN) { 14562 /* 14563 * If listener has closed, it would have caused a 14564 * a cleanup/blowoff to happen for the eager, so 14565 * we don't need to do anything more. 14566 */ 14567 freemsg(mp); 14568 return; 14569 } 14570 14571 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 14572 } 14573 14574 /* 14575 * Common to TPI and sockfs accept code. 14576 */ 14577 /* ARGSUSED2 */ 14578 static int 14579 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 14580 { 14581 tcp_t *listener, *eager; 14582 mblk_t *discon_mp; 14583 14584 listener = lconnp->conn_tcp; 14585 ASSERT(listener->tcp_state == TCPS_LISTEN); 14586 eager = econnp->conn_tcp; 14587 ASSERT(eager->tcp_listener != NULL); 14588 14589 /* 14590 * Pre allocate the discon_ind mblk also. tcp_accept_finish will 14591 * use it if something failed. 14592 */ 14593 discon_mp = allocb(MAX(sizeof (struct T_discon_ind), 14594 sizeof (struct stroptions)), BPRI_HI); 14595 14596 if (discon_mp == NULL) { 14597 return (-TPROTO); 14598 } 14599 eager->tcp_issocket = B_TRUE; 14600 14601 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 14602 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 14603 ASSERT(econnp->conn_netstack == 14604 listener->tcp_connp->conn_netstack); 14605 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 14606 14607 /* Put the ref for IP */ 14608 CONN_INC_REF(econnp); 14609 14610 /* 14611 * We should have minimum of 3 references on the conn 14612 * at this point. One each for TCP and IP and one for 14613 * the T_conn_ind that was sent up when the 3-way handshake 14614 * completed. In the normal case we would also have another 14615 * reference (making a total of 4) for the conn being in the 14616 * classifier hash list. However the eager could have received 14617 * an RST subsequently and tcp_closei_local could have removed 14618 * the eager from the classifier hash list, hence we can't 14619 * assert that reference. 14620 */ 14621 ASSERT(econnp->conn_ref >= 3); 14622 14623 mutex_enter(&listener->tcp_eager_lock); 14624 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 14625 14626 tcp_t *tail; 14627 tcp_t *tcp; 14628 mblk_t *mp1; 14629 14630 tcp = listener->tcp_eager_prev_q0; 14631 /* 14632 * listener->tcp_eager_prev_q0 points to the TAIL of the 14633 * deferred T_conn_ind queue. We need to get to the head 14634 * of the queue in order to send up T_conn_ind the same 14635 * order as how the 3WHS is completed. 14636 */ 14637 while (tcp != listener) { 14638 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 14639 !tcp->tcp_kssl_pending) 14640 break; 14641 else 14642 tcp = tcp->tcp_eager_prev_q0; 14643 } 14644 /* None of the pending eagers can be sent up now */ 14645 if (tcp == listener) 14646 goto no_more_eagers; 14647 14648 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 14649 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14650 /* Move from q0 to q */ 14651 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 14652 listener->tcp_conn_req_cnt_q0--; 14653 listener->tcp_conn_req_cnt_q++; 14654 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 14655 tcp->tcp_eager_prev_q0; 14656 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 14657 tcp->tcp_eager_next_q0; 14658 tcp->tcp_eager_prev_q0 = NULL; 14659 tcp->tcp_eager_next_q0 = NULL; 14660 tcp->tcp_conn_def_q0 = B_FALSE; 14661 14662 /* Make sure the tcp isn't in the list of droppables */ 14663 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 14664 tcp->tcp_eager_prev_drop_q0 == NULL); 14665 14666 /* 14667 * Insert at end of the queue because sockfs sends 14668 * down T_CONN_RES in chronological order. Leaving 14669 * the older conn indications at front of the queue 14670 * helps reducing search time. 14671 */ 14672 tail = listener->tcp_eager_last_q; 14673 if (tail != NULL) { 14674 tail->tcp_eager_next_q = tcp; 14675 } else { 14676 listener->tcp_eager_next_q = tcp; 14677 } 14678 listener->tcp_eager_last_q = tcp; 14679 tcp->tcp_eager_next_q = NULL; 14680 14681 /* Need to get inside the listener perimeter */ 14682 CONN_INC_REF(listener->tcp_connp); 14683 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 14684 tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, 14685 SQTAG_TCP_SEND_PENDING); 14686 } 14687 no_more_eagers: 14688 tcp_eager_unlink(eager); 14689 mutex_exit(&listener->tcp_eager_lock); 14690 14691 /* 14692 * At this point, the eager is detached from the listener 14693 * but we still have an extra refs on eager (apart from the 14694 * usual tcp references). The ref was placed in tcp_rput_data 14695 * before sending the conn_ind in tcp_send_conn_ind. 14696 * The ref will be dropped in tcp_accept_finish(). 14697 */ 14698 SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, 14699 econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 14700 return (0); 14701 } 14702 14703 int 14704 tcp_accept(sock_lower_handle_t lproto_handle, 14705 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 14706 cred_t *cr) 14707 { 14708 conn_t *lconnp, *econnp; 14709 tcp_t *listener, *eager; 14710 14711 lconnp = (conn_t *)lproto_handle; 14712 listener = lconnp->conn_tcp; 14713 ASSERT(listener->tcp_state == TCPS_LISTEN); 14714 econnp = (conn_t *)eproto_handle; 14715 eager = econnp->conn_tcp; 14716 ASSERT(eager->tcp_listener != NULL); 14717 14718 /* 14719 * It is OK to manipulate these fields outside the eager's squeue 14720 * because they will not start being used until tcp_accept_finish 14721 * has been called. 14722 */ 14723 ASSERT(lconnp->conn_upper_handle != NULL); 14724 ASSERT(econnp->conn_upper_handle == NULL); 14725 econnp->conn_upper_handle = sock_handle; 14726 econnp->conn_upcalls = lconnp->conn_upcalls; 14727 ASSERT(IPCL_IS_NONSTR(econnp)); 14728 return (tcp_accept_common(lconnp, econnp, cr)); 14729 } 14730 14731 14732 /* 14733 * This is the STREAMS entry point for T_CONN_RES coming down on 14734 * Acceptor STREAM when sockfs listener does accept processing. 14735 * Read the block comment on top of tcp_input_listener(). 14736 */ 14737 void 14738 tcp_tpi_accept(queue_t *q, mblk_t *mp) 14739 { 14740 queue_t *rq = RD(q); 14741 struct T_conn_res *conn_res; 14742 tcp_t *eager; 14743 tcp_t *listener; 14744 struct T_ok_ack *ok; 14745 t_scalar_t PRIM_type; 14746 conn_t *econnp; 14747 cred_t *cr; 14748 14749 ASSERT(DB_TYPE(mp) == M_PROTO); 14750 14751 /* 14752 * All Solaris components should pass a db_credp 14753 * for this TPI message, hence we ASSERT. 14754 * But in case there is some other M_PROTO that looks 14755 * like a TPI message sent by some other kernel 14756 * component, we check and return an error. 14757 */ 14758 cr = msg_getcred(mp, NULL); 14759 ASSERT(cr != NULL); 14760 if (cr == NULL) { 14761 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 14762 if (mp != NULL) 14763 putnext(rq, mp); 14764 return; 14765 } 14766 conn_res = (struct T_conn_res *)mp->b_rptr; 14767 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 14768 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 14769 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 14770 if (mp != NULL) 14771 putnext(rq, mp); 14772 return; 14773 } 14774 switch (conn_res->PRIM_type) { 14775 case O_T_CONN_RES: 14776 case T_CONN_RES: 14777 /* 14778 * We pass up an err ack if allocb fails. This will 14779 * cause sockfs to issue a T_DISCON_REQ which will cause 14780 * tcp_eager_blowoff to be called. sockfs will then call 14781 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 14782 * we need to do the allocb up here because we have to 14783 * make sure rq->q_qinfo->qi_qclose still points to the 14784 * correct function (tcp_tpi_close_accept) in case allocb 14785 * fails. 14786 */ 14787 bcopy(mp->b_rptr + conn_res->OPT_offset, 14788 &eager, conn_res->OPT_length); 14789 PRIM_type = conn_res->PRIM_type; 14790 mp->b_datap->db_type = M_PCPROTO; 14791 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 14792 ok = (struct T_ok_ack *)mp->b_rptr; 14793 ok->PRIM_type = T_OK_ACK; 14794 ok->CORRECT_prim = PRIM_type; 14795 econnp = eager->tcp_connp; 14796 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 14797 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 14798 econnp->conn_rq = rq; 14799 econnp->conn_wq = q; 14800 rq->q_ptr = econnp; 14801 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 14802 q->q_ptr = econnp; 14803 q->q_qinfo = &tcp_winit; 14804 listener = eager->tcp_listener; 14805 14806 if (tcp_accept_common(listener->tcp_connp, 14807 econnp, cr) < 0) { 14808 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 14809 if (mp != NULL) 14810 putnext(rq, mp); 14811 return; 14812 } 14813 14814 /* 14815 * Send the new local address also up to sockfs. There 14816 * should already be enough space in the mp that came 14817 * down from soaccept(). 14818 */ 14819 if (econnp->conn_family == AF_INET) { 14820 sin_t *sin; 14821 14822 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 14823 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 14824 sin = (sin_t *)mp->b_wptr; 14825 mp->b_wptr += sizeof (sin_t); 14826 sin->sin_family = AF_INET; 14827 sin->sin_port = econnp->conn_lport; 14828 sin->sin_addr.s_addr = econnp->conn_laddr_v4; 14829 } else { 14830 sin6_t *sin6; 14831 14832 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 14833 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 14834 sin6 = (sin6_t *)mp->b_wptr; 14835 mp->b_wptr += sizeof (sin6_t); 14836 sin6->sin6_family = AF_INET6; 14837 sin6->sin6_port = econnp->conn_lport; 14838 sin6->sin6_addr = econnp->conn_laddr_v6; 14839 if (econnp->conn_ipversion == IPV4_VERSION) { 14840 sin6->sin6_flowinfo = 0; 14841 } else { 14842 ASSERT(eager->tcp_ip6h != NULL); 14843 sin6->sin6_flowinfo = 14844 eager->tcp_ip6h->ip6_vcf & 14845 ~IPV6_VERS_AND_FLOW_MASK; 14846 } 14847 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && 14848 (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { 14849 sin6->sin6_scope_id = 14850 econnp->conn_ixa->ixa_scopeid; 14851 } else { 14852 sin6->sin6_scope_id = 0; 14853 } 14854 sin6->__sin6_src_id = 0; 14855 } 14856 14857 putnext(rq, mp); 14858 return; 14859 default: 14860 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 14861 if (mp != NULL) 14862 putnext(rq, mp); 14863 return; 14864 } 14865 } 14866 14867 /* 14868 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 14869 */ 14870 static void 14871 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 14872 { 14873 void *data; 14874 mblk_t *datamp = mp->b_cont; 14875 conn_t *connp = Q_TO_CONN(q); 14876 tcp_t *tcp = connp->conn_tcp; 14877 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 14878 14879 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 14880 cmdp->cb_error = EPROTO; 14881 qreply(q, mp); 14882 return; 14883 } 14884 14885 data = datamp->b_rptr; 14886 14887 switch (cmdp->cb_cmd) { 14888 case TI_GETPEERNAME: 14889 if (tcp->tcp_state < TCPS_SYN_RCVD) 14890 cmdp->cb_error = ENOTCONN; 14891 else 14892 cmdp->cb_error = conn_getpeername(connp, data, 14893 &cmdp->cb_len); 14894 break; 14895 case TI_GETMYNAME: 14896 cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len); 14897 break; 14898 default: 14899 cmdp->cb_error = EINVAL; 14900 break; 14901 } 14902 14903 qreply(q, mp); 14904 } 14905 14906 void 14907 tcp_wput(queue_t *q, mblk_t *mp) 14908 { 14909 conn_t *connp = Q_TO_CONN(q); 14910 tcp_t *tcp; 14911 void (*output_proc)(); 14912 t_scalar_t type; 14913 uchar_t *rptr; 14914 struct iocblk *iocp; 14915 size_t size; 14916 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 14917 14918 ASSERT(connp->conn_ref >= 2); 14919 14920 switch (DB_TYPE(mp)) { 14921 case M_DATA: 14922 tcp = connp->conn_tcp; 14923 ASSERT(tcp != NULL); 14924 14925 size = msgdsize(mp); 14926 14927 mutex_enter(&tcp->tcp_non_sq_lock); 14928 tcp->tcp_squeue_bytes += size; 14929 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 14930 tcp_setqfull(tcp); 14931 } 14932 mutex_exit(&tcp->tcp_non_sq_lock); 14933 14934 CONN_INC_REF(connp); 14935 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 14936 NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 14937 return; 14938 14939 case M_CMD: 14940 tcp_wput_cmdblk(q, mp); 14941 return; 14942 14943 case M_PROTO: 14944 case M_PCPROTO: 14945 /* 14946 * if it is a snmp message, don't get behind the squeue 14947 */ 14948 tcp = connp->conn_tcp; 14949 rptr = mp->b_rptr; 14950 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 14951 type = ((union T_primitives *)rptr)->type; 14952 } else { 14953 if (connp->conn_debug) { 14954 (void) strlog(TCP_MOD_ID, 0, 1, 14955 SL_ERROR|SL_TRACE, 14956 "tcp_wput_proto, dropping one..."); 14957 } 14958 freemsg(mp); 14959 return; 14960 } 14961 if (type == T_SVR4_OPTMGMT_REQ) { 14962 /* 14963 * All Solaris components should pass a db_credp 14964 * for this TPI message, hence we ASSERT. 14965 * But in case there is some other M_PROTO that looks 14966 * like a TPI message sent by some other kernel 14967 * component, we check and return an error. 14968 */ 14969 cred_t *cr = msg_getcred(mp, NULL); 14970 14971 ASSERT(cr != NULL); 14972 if (cr == NULL) { 14973 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 14974 return; 14975 } 14976 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 14977 cr)) { 14978 /* 14979 * This was a SNMP request 14980 */ 14981 return; 14982 } else { 14983 output_proc = tcp_wput_proto; 14984 } 14985 } else { 14986 output_proc = tcp_wput_proto; 14987 } 14988 break; 14989 case M_IOCTL: 14990 /* 14991 * Most ioctls can be processed right away without going via 14992 * squeues - process them right here. Those that do require 14993 * squeue (currently _SIOCSOCKFALLBACK) 14994 * are processed by tcp_wput_ioctl(). 14995 */ 14996 iocp = (struct iocblk *)mp->b_rptr; 14997 tcp = connp->conn_tcp; 14998 14999 switch (iocp->ioc_cmd) { 15000 case TCP_IOC_ABORT_CONN: 15001 tcp_ioctl_abort_conn(q, mp); 15002 return; 15003 case TI_GETPEERNAME: 15004 case TI_GETMYNAME: 15005 mi_copyin(q, mp, NULL, 15006 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 15007 return; 15008 case ND_SET: 15009 /* nd_getset does the necessary checks */ 15010 case ND_GET: 15011 if (nd_getset(q, tcps->tcps_g_nd, mp)) { 15012 qreply(q, mp); 15013 return; 15014 } 15015 ip_wput_nondata(q, mp); 15016 return; 15017 15018 default: 15019 output_proc = tcp_wput_ioctl; 15020 break; 15021 } 15022 break; 15023 default: 15024 output_proc = tcp_wput_nondata; 15025 break; 15026 } 15027 15028 CONN_INC_REF(connp); 15029 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 15030 NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 15031 } 15032 15033 /* 15034 * Initial STREAMS write side put() procedure for sockets. It tries to 15035 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 15036 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 15037 * are handled by tcp_wput() as usual. 15038 * 15039 * All further messages will also be handled by tcp_wput() because we cannot 15040 * be sure that the above short cut is safe later. 15041 */ 15042 static void 15043 tcp_wput_sock(queue_t *wq, mblk_t *mp) 15044 { 15045 conn_t *connp = Q_TO_CONN(wq); 15046 tcp_t *tcp = connp->conn_tcp; 15047 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 15048 15049 ASSERT(wq->q_qinfo == &tcp_sock_winit); 15050 wq->q_qinfo = &tcp_winit; 15051 15052 ASSERT(IPCL_IS_TCP(connp)); 15053 ASSERT(TCP_IS_SOCKET(tcp)); 15054 15055 if (DB_TYPE(mp) == M_PCPROTO && 15056 MBLKL(mp) == sizeof (struct T_capability_req) && 15057 car->PRIM_type == T_CAPABILITY_REQ) { 15058 tcp_capability_req(tcp, mp); 15059 return; 15060 } 15061 15062 tcp_wput(wq, mp); 15063 } 15064 15065 /* ARGSUSED */ 15066 static void 15067 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 15068 { 15069 #ifdef DEBUG 15070 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 15071 #endif 15072 freemsg(mp); 15073 } 15074 15075 /* 15076 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 15077 */ 15078 static boolean_t 15079 tcp_zcopy_check(tcp_t *tcp) 15080 { 15081 conn_t *connp = tcp->tcp_connp; 15082 ip_xmit_attr_t *ixa = connp->conn_ixa; 15083 boolean_t zc_enabled = B_FALSE; 15084 tcp_stack_t *tcps = tcp->tcp_tcps; 15085 15086 if (do_tcpzcopy == 2) 15087 zc_enabled = B_TRUE; 15088 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 15089 zc_enabled = B_TRUE; 15090 15091 tcp->tcp_snd_zcopy_on = zc_enabled; 15092 if (!TCP_IS_DETACHED(tcp)) { 15093 if (zc_enabled) { 15094 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 15095 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15096 ZCVMSAFE); 15097 TCP_STAT(tcps, tcp_zcopy_on); 15098 } else { 15099 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 15100 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15101 ZCVMUNSAFE); 15102 TCP_STAT(tcps, tcp_zcopy_off); 15103 } 15104 } 15105 return (zc_enabled); 15106 } 15107 15108 /* 15109 * Backoff from a zero-copy message by copying data to a new allocated 15110 * message and freeing the original desballoca'ed segmapped message. 15111 * 15112 * This function is called by following two callers: 15113 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 15114 * the origial desballoca'ed message and notify sockfs. This is in re- 15115 * transmit state. 15116 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 15117 * to be copied to new message. 15118 */ 15119 static mblk_t * 15120 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 15121 { 15122 mblk_t *nbp; 15123 mblk_t *head = NULL; 15124 mblk_t *tail = NULL; 15125 tcp_stack_t *tcps = tcp->tcp_tcps; 15126 15127 ASSERT(bp != NULL); 15128 while (bp != NULL) { 15129 if (IS_VMLOANED_MBLK(bp)) { 15130 TCP_STAT(tcps, tcp_zcopy_backoff); 15131 if ((nbp = copyb(bp)) == NULL) { 15132 tcp->tcp_xmit_zc_clean = B_FALSE; 15133 if (tail != NULL) 15134 tail->b_cont = bp; 15135 return ((head == NULL) ? bp : head); 15136 } 15137 15138 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 15139 if (fix_xmitlist) 15140 tcp_zcopy_notify(tcp); 15141 else 15142 nbp->b_datap->db_struioflag |= 15143 STRUIO_ZCNOTIFY; 15144 } 15145 nbp->b_cont = bp->b_cont; 15146 15147 /* 15148 * Copy saved information and adjust tcp_xmit_tail 15149 * if needed. 15150 */ 15151 if (fix_xmitlist) { 15152 nbp->b_prev = bp->b_prev; 15153 nbp->b_next = bp->b_next; 15154 15155 if (tcp->tcp_xmit_tail == bp) 15156 tcp->tcp_xmit_tail = nbp; 15157 } 15158 15159 /* Free the original message. */ 15160 bp->b_prev = NULL; 15161 bp->b_next = NULL; 15162 freeb(bp); 15163 15164 bp = nbp; 15165 } 15166 15167 if (head == NULL) { 15168 head = bp; 15169 } 15170 if (tail == NULL) { 15171 tail = bp; 15172 } else { 15173 tail->b_cont = bp; 15174 tail = bp; 15175 } 15176 15177 /* Move forward. */ 15178 bp = bp->b_cont; 15179 } 15180 15181 if (fix_xmitlist) { 15182 tcp->tcp_xmit_last = tail; 15183 tcp->tcp_xmit_zc_clean = B_TRUE; 15184 } 15185 15186 return (head); 15187 } 15188 15189 static void 15190 tcp_zcopy_notify(tcp_t *tcp) 15191 { 15192 struct stdata *stp; 15193 conn_t *connp; 15194 15195 if (tcp->tcp_detached) 15196 return; 15197 connp = tcp->tcp_connp; 15198 if (IPCL_IS_NONSTR(connp)) { 15199 (*connp->conn_upcalls->su_zcopy_notify) 15200 (connp->conn_upper_handle); 15201 return; 15202 } 15203 stp = STREAM(connp->conn_rq); 15204 mutex_enter(&stp->sd_lock); 15205 stp->sd_flag |= STZCNOTIFY; 15206 cv_broadcast(&stp->sd_zcopy_wait); 15207 mutex_exit(&stp->sd_lock); 15208 } 15209 15210 /* 15211 * Update the TCP connection according to change of LSO capability. 15212 */ 15213 static void 15214 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 15215 { 15216 /* 15217 * We check against IPv4 header length to preserve the old behavior 15218 * of only enabling LSO when there are no IP options. 15219 * But this restriction might not be necessary at all. Before removing 15220 * it, need to verify how LSO is handled for source routing case, with 15221 * which IP does software checksum. 15222 * 15223 * For IPv6, whenever any extension header is needed, LSO is supressed. 15224 */ 15225 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 15226 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 15227 return; 15228 15229 /* 15230 * Either the LSO capability newly became usable, or it has changed. 15231 */ 15232 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 15233 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 15234 15235 ASSERT(lsoc->ill_lso_max > 0); 15236 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 15237 15238 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15239 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 15240 15241 /* 15242 * If LSO to be enabled, notify the STREAM header with larger 15243 * data block. 15244 */ 15245 if (!tcp->tcp_lso) 15246 tcp->tcp_maxpsz_multiplier = 0; 15247 15248 tcp->tcp_lso = B_TRUE; 15249 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 15250 } else { /* LSO capability is not usable any more. */ 15251 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 15252 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 15253 15254 /* 15255 * If LSO to be disabled, notify the STREAM header with smaller 15256 * data block. And need to restore fragsize to PMTU. 15257 */ 15258 if (tcp->tcp_lso) { 15259 tcp->tcp_maxpsz_multiplier = 15260 tcp->tcp_tcps->tcps_maxpsz_multiplier; 15261 ixa->ixa_fragsize = ixa->ixa_pmtu; 15262 tcp->tcp_lso = B_FALSE; 15263 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 15264 } 15265 } 15266 15267 (void) tcp_maxpsz_set(tcp, B_TRUE); 15268 } 15269 15270 /* 15271 * Update the TCP connection according to change of ZEROCOPY capability. 15272 */ 15273 static void 15274 tcp_update_zcopy(tcp_t *tcp) 15275 { 15276 conn_t *connp = tcp->tcp_connp; 15277 tcp_stack_t *tcps = tcp->tcp_tcps; 15278 15279 if (tcp->tcp_snd_zcopy_on) { 15280 tcp->tcp_snd_zcopy_on = B_FALSE; 15281 if (!TCP_IS_DETACHED(tcp)) { 15282 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15283 ZCVMUNSAFE); 15284 TCP_STAT(tcps, tcp_zcopy_off); 15285 } 15286 } else { 15287 tcp->tcp_snd_zcopy_on = B_TRUE; 15288 if (!TCP_IS_DETACHED(tcp)) { 15289 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 15290 ZCVMSAFE); 15291 TCP_STAT(tcps, tcp_zcopy_on); 15292 } 15293 } 15294 } 15295 15296 /* 15297 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 15298 * so it's safe to update the TCP connection. 15299 */ 15300 /* ARGSUSED1 */ 15301 static void 15302 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 15303 ixa_notify_arg_t narg) 15304 { 15305 tcp_t *tcp = (tcp_t *)arg; 15306 conn_t *connp = tcp->tcp_connp; 15307 15308 switch (ntype) { 15309 case IXAN_LSO: 15310 tcp_update_lso(tcp, connp->conn_ixa); 15311 break; 15312 case IXAN_PMTU: 15313 tcp_update_pmtu(tcp, B_FALSE); 15314 break; 15315 case IXAN_ZCOPY: 15316 tcp_update_zcopy(tcp); 15317 break; 15318 default: 15319 break; 15320 } 15321 } 15322 15323 static void 15324 tcp_send_data(tcp_t *tcp, mblk_t *mp) 15325 { 15326 conn_t *connp = tcp->tcp_connp; 15327 15328 /* 15329 * Check here to avoid sending zero-copy message down to IP when 15330 * ZEROCOPY capability has turned off. We only need to deal with 15331 * the race condition between sockfs and the notification here. 15332 * Since we have tried to backoff the tcp_xmit_head when turning 15333 * zero-copy off and new messages in tcp_output(), we simply drop 15334 * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean 15335 * is not true. 15336 */ 15337 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on && 15338 !tcp->tcp_xmit_zc_clean) { 15339 ip_drop_output("TCP ZC was disabled but not clean", mp, NULL); 15340 freemsg(mp); 15341 return; 15342 } 15343 15344 ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp); 15345 (void) conn_ip_output(mp, connp->conn_ixa); 15346 } 15347 15348 /* 15349 * This handles the case when the receiver has shrunk its win. Per RFC 1122 15350 * if the receiver shrinks the window, i.e. moves the right window to the 15351 * left, the we should not send new data, but should retransmit normally the 15352 * old unacked data between suna and suna + swnd. We might has sent data 15353 * that is now outside the new window, pretend that we didn't send it. 15354 */ 15355 static void 15356 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 15357 { 15358 uint32_t snxt = tcp->tcp_snxt; 15359 15360 ASSERT(shrunk_count > 0); 15361 15362 if (!tcp->tcp_is_wnd_shrnk) { 15363 tcp->tcp_snxt_shrunk = snxt; 15364 tcp->tcp_is_wnd_shrnk = B_TRUE; 15365 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 15366 tcp->tcp_snxt_shrunk = snxt; 15367 } 15368 15369 /* Pretend we didn't send the data outside the window */ 15370 snxt -= shrunk_count; 15371 15372 /* Reset all the values per the now shrunk window */ 15373 tcp_update_xmit_tail(tcp, snxt); 15374 tcp->tcp_unsent += shrunk_count; 15375 15376 /* 15377 * If the SACK option is set, delete the entire list of 15378 * notsack'ed blocks. 15379 */ 15380 if (tcp->tcp_sack_info != NULL) { 15381 if (tcp->tcp_notsack_list != NULL) 15382 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 15383 } 15384 15385 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 15386 /* 15387 * Make sure the timer is running so that we will probe a zero 15388 * window. 15389 */ 15390 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15391 } 15392 15393 15394 /* 15395 * The TCP normal data output path. 15396 * NOTE: the logic of the fast path is duplicated from this function. 15397 */ 15398 static void 15399 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 15400 { 15401 int len; 15402 mblk_t *local_time; 15403 mblk_t *mp1; 15404 uint32_t snxt; 15405 int tail_unsent; 15406 int tcpstate; 15407 int usable = 0; 15408 mblk_t *xmit_tail; 15409 int32_t mss; 15410 int32_t num_sack_blk = 0; 15411 int32_t total_hdr_len; 15412 int32_t tcp_hdr_len; 15413 int rc; 15414 tcp_stack_t *tcps = tcp->tcp_tcps; 15415 conn_t *connp = tcp->tcp_connp; 15416 clock_t now = LBOLT_FASTPATH; 15417 15418 tcpstate = tcp->tcp_state; 15419 if (mp == NULL) { 15420 /* 15421 * tcp_wput_data() with NULL mp should only be called when 15422 * there is unsent data. 15423 */ 15424 ASSERT(tcp->tcp_unsent > 0); 15425 /* Really tacky... but we need this for detached closes. */ 15426 len = tcp->tcp_unsent; 15427 goto data_null; 15428 } 15429 15430 #if CCS_STATS 15431 wrw_stats.tot.count++; 15432 wrw_stats.tot.bytes += msgdsize(mp); 15433 #endif 15434 ASSERT(mp->b_datap->db_type == M_DATA); 15435 /* 15436 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 15437 * or before a connection attempt has begun. 15438 */ 15439 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 15440 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15441 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 15442 #ifdef DEBUG 15443 cmn_err(CE_WARN, 15444 "tcp_wput_data: data after ordrel, %s", 15445 tcp_display(tcp, NULL, 15446 DISP_ADDR_AND_PORT)); 15447 #else 15448 if (connp->conn_debug) { 15449 (void) strlog(TCP_MOD_ID, 0, 1, 15450 SL_TRACE|SL_ERROR, 15451 "tcp_wput_data: data after ordrel, %s\n", 15452 tcp_display(tcp, NULL, 15453 DISP_ADDR_AND_PORT)); 15454 } 15455 #endif /* DEBUG */ 15456 } 15457 if (tcp->tcp_snd_zcopy_aware && 15458 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15459 tcp_zcopy_notify(tcp); 15460 freemsg(mp); 15461 mutex_enter(&tcp->tcp_non_sq_lock); 15462 if (tcp->tcp_flow_stopped && 15463 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15464 tcp_clrqfull(tcp); 15465 } 15466 mutex_exit(&tcp->tcp_non_sq_lock); 15467 return; 15468 } 15469 15470 /* Strip empties */ 15471 for (;;) { 15472 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 15473 (uintptr_t)INT_MAX); 15474 len = (int)(mp->b_wptr - mp->b_rptr); 15475 if (len > 0) 15476 break; 15477 mp1 = mp; 15478 mp = mp->b_cont; 15479 freeb(mp1); 15480 if (!mp) { 15481 return; 15482 } 15483 } 15484 15485 /* If we are the first on the list ... */ 15486 if (tcp->tcp_xmit_head == NULL) { 15487 tcp->tcp_xmit_head = mp; 15488 tcp->tcp_xmit_tail = mp; 15489 tcp->tcp_xmit_tail_unsent = len; 15490 } else { 15491 /* If tiny tx and room in txq tail, pullup to save mblks. */ 15492 struct datab *dp; 15493 15494 mp1 = tcp->tcp_xmit_last; 15495 if (len < tcp_tx_pull_len && 15496 (dp = mp1->b_datap)->db_ref == 1 && 15497 dp->db_lim - mp1->b_wptr >= len) { 15498 ASSERT(len > 0); 15499 ASSERT(!mp1->b_cont); 15500 if (len == 1) { 15501 *mp1->b_wptr++ = *mp->b_rptr; 15502 } else { 15503 bcopy(mp->b_rptr, mp1->b_wptr, len); 15504 mp1->b_wptr += len; 15505 } 15506 if (mp1 == tcp->tcp_xmit_tail) 15507 tcp->tcp_xmit_tail_unsent += len; 15508 mp1->b_cont = mp->b_cont; 15509 if (tcp->tcp_snd_zcopy_aware && 15510 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 15511 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 15512 freeb(mp); 15513 mp = mp1; 15514 } else { 15515 tcp->tcp_xmit_last->b_cont = mp; 15516 } 15517 len += tcp->tcp_unsent; 15518 } 15519 15520 /* Tack on however many more positive length mblks we have */ 15521 if ((mp1 = mp->b_cont) != NULL) { 15522 do { 15523 int tlen; 15524 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 15525 (uintptr_t)INT_MAX); 15526 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 15527 if (tlen <= 0) { 15528 mp->b_cont = mp1->b_cont; 15529 freeb(mp1); 15530 } else { 15531 len += tlen; 15532 mp = mp1; 15533 } 15534 } while ((mp1 = mp->b_cont) != NULL); 15535 } 15536 tcp->tcp_xmit_last = mp; 15537 tcp->tcp_unsent = len; 15538 15539 if (urgent) 15540 usable = 1; 15541 15542 data_null: 15543 snxt = tcp->tcp_snxt; 15544 xmit_tail = tcp->tcp_xmit_tail; 15545 tail_unsent = tcp->tcp_xmit_tail_unsent; 15546 15547 /* 15548 * Note that tcp_mss has been adjusted to take into account the 15549 * timestamp option if applicable. Because SACK options do not 15550 * appear in every TCP segments and they are of variable lengths, 15551 * they cannot be included in tcp_mss. Thus we need to calculate 15552 * the actual segment length when we need to send a segment which 15553 * includes SACK options. 15554 */ 15555 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15556 int32_t opt_len; 15557 15558 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 15559 tcp->tcp_num_sack_blk); 15560 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 15561 2 + TCPOPT_HEADER_LEN; 15562 mss = tcp->tcp_mss - opt_len; 15563 total_hdr_len = connp->conn_ht_iphc_len + opt_len; 15564 tcp_hdr_len = connp->conn_ht_ulp_len + opt_len; 15565 } else { 15566 mss = tcp->tcp_mss; 15567 total_hdr_len = connp->conn_ht_iphc_len; 15568 tcp_hdr_len = connp->conn_ht_ulp_len; 15569 } 15570 15571 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 15572 (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 15573 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 15574 } 15575 if (tcpstate == TCPS_SYN_RCVD) { 15576 /* 15577 * The three-way connection establishment handshake is not 15578 * complete yet. We want to queue the data for transmission 15579 * after entering ESTABLISHED state (RFC793). A jump to 15580 * "done" label effectively leaves data on the queue. 15581 */ 15582 goto done; 15583 } else { 15584 int usable_r; 15585 15586 /* 15587 * In the special case when cwnd is zero, which can only 15588 * happen if the connection is ECN capable, return now. 15589 * New segments is sent using tcp_timer(). The timer 15590 * is set in tcp_input_data(). 15591 */ 15592 if (tcp->tcp_cwnd == 0) { 15593 /* 15594 * Note that tcp_cwnd is 0 before 3-way handshake is 15595 * finished. 15596 */ 15597 ASSERT(tcp->tcp_ecn_ok || 15598 tcp->tcp_state < TCPS_ESTABLISHED); 15599 return; 15600 } 15601 15602 /* NOTE: trouble if xmitting while SYN not acked? */ 15603 usable_r = snxt - tcp->tcp_suna; 15604 usable_r = tcp->tcp_swnd - usable_r; 15605 15606 /* 15607 * Check if the receiver has shrunk the window. If 15608 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 15609 * cannot be set as there is unsent data, so FIN cannot 15610 * be sent out. Otherwise, we need to take into account 15611 * of FIN as it consumes an "invisible" sequence number. 15612 */ 15613 ASSERT(tcp->tcp_fin_sent == 0); 15614 if (usable_r < 0) { 15615 /* 15616 * The receiver has shrunk the window and we have sent 15617 * -usable_r date beyond the window, re-adjust. 15618 * 15619 * If TCP window scaling is enabled, there can be 15620 * round down error as the advertised receive window 15621 * is actually right shifted n bits. This means that 15622 * the lower n bits info is wiped out. It will look 15623 * like the window is shrunk. Do a check here to 15624 * see if the shrunk amount is actually within the 15625 * error in window calculation. If it is, just 15626 * return. Note that this check is inside the 15627 * shrunk window check. This makes sure that even 15628 * though tcp_process_shrunk_swnd() is not called, 15629 * we will stop further processing. 15630 */ 15631 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 15632 tcp_process_shrunk_swnd(tcp, -usable_r); 15633 } 15634 return; 15635 } 15636 15637 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 15638 if (tcp->tcp_swnd > tcp->tcp_cwnd) 15639 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 15640 15641 /* usable = MIN(usable, unsent) */ 15642 if (usable_r > len) 15643 usable_r = len; 15644 15645 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 15646 if (usable_r > 0) { 15647 usable = usable_r; 15648 } else { 15649 /* Bypass all other unnecessary processing. */ 15650 goto done; 15651 } 15652 } 15653 15654 local_time = (mblk_t *)now; 15655 15656 /* 15657 * "Our" Nagle Algorithm. This is not the same as in the old 15658 * BSD. This is more in line with the true intent of Nagle. 15659 * 15660 * The conditions are: 15661 * 1. The amount of unsent data (or amount of data which can be 15662 * sent, whichever is smaller) is less than Nagle limit. 15663 * 2. The last sent size is also less than Nagle limit. 15664 * 3. There is unack'ed data. 15665 * 4. Urgent pointer is not set. Send urgent data ignoring the 15666 * Nagle algorithm. This reduces the probability that urgent 15667 * bytes get "merged" together. 15668 * 5. The app has not closed the connection. This eliminates the 15669 * wait time of the receiving side waiting for the last piece of 15670 * (small) data. 15671 * 15672 * If all are satisified, exit without sending anything. Note 15673 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 15674 * the smaller of 1 MSS and global tcp_naglim_def (default to be 15675 * 4095). 15676 */ 15677 if (usable < (int)tcp->tcp_naglim && 15678 tcp->tcp_naglim > tcp->tcp_last_sent_len && 15679 snxt != tcp->tcp_suna && 15680 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 15681 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 15682 goto done; 15683 } 15684 15685 /* 15686 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 15687 * is set, then we have to force TCP not to send partial segment 15688 * (smaller than MSS bytes). We are calculating the usable now 15689 * based on full mss and will save the rest of remaining data for 15690 * later. When tcp_zero_win_probe is set, TCP needs to send out 15691 * something to do zero window probe. 15692 */ 15693 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 15694 if (usable < mss) 15695 goto done; 15696 usable = (usable / mss) * mss; 15697 } 15698 15699 /* Update the latest receive window size in TCP header. */ 15700 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 15701 15702 /* Send the packet. */ 15703 rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len, 15704 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 15705 local_time); 15706 15707 /* Pretend that all we were trying to send really got sent */ 15708 if (rc < 0 && tail_unsent < 0) { 15709 do { 15710 xmit_tail = xmit_tail->b_cont; 15711 xmit_tail->b_prev = local_time; 15712 ASSERT((uintptr_t)(xmit_tail->b_wptr - 15713 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 15714 tail_unsent += (int)(xmit_tail->b_wptr - 15715 xmit_tail->b_rptr); 15716 } while (tail_unsent < 0); 15717 } 15718 done:; 15719 tcp->tcp_xmit_tail = xmit_tail; 15720 tcp->tcp_xmit_tail_unsent = tail_unsent; 15721 len = tcp->tcp_snxt - snxt; 15722 if (len) { 15723 /* 15724 * If new data was sent, need to update the notsack 15725 * list, which is, afterall, data blocks that have 15726 * not been sack'ed by the receiver. New data is 15727 * not sack'ed. 15728 */ 15729 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 15730 /* len is a negative value. */ 15731 tcp->tcp_pipe -= len; 15732 tcp_notsack_update(&(tcp->tcp_notsack_list), 15733 tcp->tcp_snxt, snxt, 15734 &(tcp->tcp_num_notsack_blk), 15735 &(tcp->tcp_cnt_notsack_list)); 15736 } 15737 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 15738 tcp->tcp_rack = tcp->tcp_rnxt; 15739 tcp->tcp_rack_cnt = 0; 15740 if ((snxt + len) == tcp->tcp_suna) { 15741 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15742 } 15743 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 15744 /* 15745 * Didn't send anything. Make sure the timer is running 15746 * so that we will probe a zero window. 15747 */ 15748 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15749 } 15750 /* Note that len is the amount we just sent but with a negative sign */ 15751 tcp->tcp_unsent += len; 15752 mutex_enter(&tcp->tcp_non_sq_lock); 15753 if (tcp->tcp_flow_stopped) { 15754 if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 15755 tcp_clrqfull(tcp); 15756 } 15757 } else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) { 15758 if (!(tcp->tcp_detached)) 15759 tcp_setqfull(tcp); 15760 } 15761 mutex_exit(&tcp->tcp_non_sq_lock); 15762 } 15763 15764 /* 15765 * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header 15766 * with the template header, as well as other options such as time-stamp, 15767 * ECN and/or SACK. 15768 */ 15769 static void 15770 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 15771 { 15772 tcpha_t *tcp_tmpl, *tcpha; 15773 uint32_t *dst, *src; 15774 int hdrlen; 15775 conn_t *connp = tcp->tcp_connp; 15776 15777 ASSERT(OK_32PTR(rptr)); 15778 15779 /* Template header */ 15780 tcp_tmpl = tcp->tcp_tcpha; 15781 15782 /* Header of outgoing packet */ 15783 tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length); 15784 15785 /* dst and src are opaque 32-bit fields, used for copying */ 15786 dst = (uint32_t *)rptr; 15787 src = (uint32_t *)connp->conn_ht_iphc; 15788 hdrlen = connp->conn_ht_iphc_len; 15789 15790 /* Fill time-stamp option if needed */ 15791 if (tcp->tcp_snd_ts_ok) { 15792 U32_TO_BE32((uint32_t)now, 15793 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 15794 U32_TO_BE32(tcp->tcp_ts_recent, 15795 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 15796 } else { 15797 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); 15798 } 15799 15800 /* 15801 * Copy the template header; is this really more efficient than 15802 * calling bcopy()? For simple IPv4/TCP, it may be the case, 15803 * but perhaps not for other scenarios. 15804 */ 15805 dst[0] = src[0]; 15806 dst[1] = src[1]; 15807 dst[2] = src[2]; 15808 dst[3] = src[3]; 15809 dst[4] = src[4]; 15810 dst[5] = src[5]; 15811 dst[6] = src[6]; 15812 dst[7] = src[7]; 15813 dst[8] = src[8]; 15814 dst[9] = src[9]; 15815 if (hdrlen -= 40) { 15816 hdrlen >>= 2; 15817 dst += 10; 15818 src += 10; 15819 do { 15820 *dst++ = *src++; 15821 } while (--hdrlen); 15822 } 15823 15824 /* 15825 * Set the ECN info in the TCP header if it is not a zero 15826 * window probe. Zero window probe is only sent in 15827 * tcp_wput_data() and tcp_timer(). 15828 */ 15829 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 15830 SET_ECT(tcp, rptr); 15831 15832 if (tcp->tcp_ecn_echo_on) 15833 tcpha->tha_flags |= TH_ECE; 15834 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 15835 tcpha->tha_flags |= TH_CWR; 15836 tcp->tcp_ecn_cwr_sent = B_TRUE; 15837 } 15838 } 15839 15840 /* Fill in SACK options */ 15841 if (num_sack_blk > 0) { 15842 uchar_t *wptr = rptr + connp->conn_ht_iphc_len; 15843 sack_blk_t *tmp; 15844 int32_t i; 15845 15846 wptr[0] = TCPOPT_NOP; 15847 wptr[1] = TCPOPT_NOP; 15848 wptr[2] = TCPOPT_SACK; 15849 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 15850 sizeof (sack_blk_t); 15851 wptr += TCPOPT_REAL_SACK_LEN; 15852 15853 tmp = tcp->tcp_sack_list; 15854 for (i = 0; i < num_sack_blk; i++) { 15855 U32_TO_BE32(tmp[i].begin, wptr); 15856 wptr += sizeof (tcp_seq); 15857 U32_TO_BE32(tmp[i].end, wptr); 15858 wptr += sizeof (tcp_seq); 15859 } 15860 tcpha->tha_offset_and_reserved += 15861 ((num_sack_blk * 2 + 1) << 4); 15862 } 15863 } 15864 15865 /* 15866 * tcp_send() is called by tcp_wput_data() and returns one of the following: 15867 * 15868 * -1 = failed allocation. 15869 * 0 = success; burst count reached, or usable send window is too small, 15870 * and that we'd rather wait until later before sending again. 15871 */ 15872 static int 15873 tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len, 15874 const int tcp_hdr_len, const int num_sack_blk, int *usable, 15875 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time) 15876 { 15877 int num_burst_seg = tcp->tcp_snd_burst; 15878 int num_lso_seg = 1; 15879 uint_t lso_usable; 15880 boolean_t do_lso_send = B_FALSE; 15881 tcp_stack_t *tcps = tcp->tcp_tcps; 15882 conn_t *connp = tcp->tcp_connp; 15883 ip_xmit_attr_t *ixa = connp->conn_ixa; 15884 15885 /* 15886 * Check LSO possibility. The value of tcp->tcp_lso indicates whether 15887 * the underlying connection is LSO capable. Will check whether having 15888 * enough available data to initiate LSO transmission in the for(){} 15889 * loops. 15890 */ 15891 if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0) 15892 do_lso_send = B_TRUE; 15893 15894 for (;;) { 15895 struct datab *db; 15896 tcpha_t *tcpha; 15897 uint32_t sum; 15898 mblk_t *mp, *mp1; 15899 uchar_t *rptr; 15900 int len; 15901 15902 /* 15903 * Burst count reached, return successfully. 15904 */ 15905 if (num_burst_seg == 0) 15906 break; 15907 15908 /* 15909 * Calculate the maximum payload length we can send at one 15910 * time. 15911 */ 15912 if (do_lso_send) { 15913 /* 15914 * Check whether be able to to do LSO for the current 15915 * available data. 15916 */ 15917 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 15918 lso_usable = MIN(tcp->tcp_lso_max, *usable); 15919 lso_usable = MIN(lso_usable, 15920 num_burst_seg * mss); 15921 15922 num_lso_seg = lso_usable / mss; 15923 if (lso_usable % mss) { 15924 num_lso_seg++; 15925 tcp->tcp_last_sent_len = (ushort_t) 15926 (lso_usable % mss); 15927 } else { 15928 tcp->tcp_last_sent_len = (ushort_t)mss; 15929 } 15930 } else { 15931 do_lso_send = B_FALSE; 15932 num_lso_seg = 1; 15933 lso_usable = mss; 15934 } 15935 } 15936 15937 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 15938 #ifdef DEBUG 15939 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t, 15940 do_lso_send); 15941 #endif 15942 /* 15943 * Adjust num_burst_seg here. 15944 */ 15945 num_burst_seg -= num_lso_seg; 15946 15947 len = mss; 15948 if (len > *usable) { 15949 ASSERT(do_lso_send == B_FALSE); 15950 15951 len = *usable; 15952 if (len <= 0) { 15953 /* Terminate the loop */ 15954 break; /* success; too small */ 15955 } 15956 /* 15957 * Sender silly-window avoidance. 15958 * Ignore this if we are going to send a 15959 * zero window probe out. 15960 * 15961 * TODO: force data into microscopic window? 15962 * ==> (!pushed || (unsent > usable)) 15963 */ 15964 if (len < (tcp->tcp_max_swnd >> 1) && 15965 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 15966 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 15967 len == 1) && (! tcp->tcp_zero_win_probe)) { 15968 /* 15969 * If the retransmit timer is not running 15970 * we start it so that we will retransmit 15971 * in the case when the receiver has 15972 * decremented the window. 15973 */ 15974 if (*snxt == tcp->tcp_snxt && 15975 *snxt == tcp->tcp_suna) { 15976 /* 15977 * We are not supposed to send 15978 * anything. So let's wait a little 15979 * bit longer before breaking SWS 15980 * avoidance. 15981 * 15982 * What should the value be? 15983 * Suggestion: MAX(init rexmit time, 15984 * tcp->tcp_rto) 15985 */ 15986 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15987 } 15988 break; /* success; too small */ 15989 } 15990 } 15991 15992 tcpha = tcp->tcp_tcpha; 15993 15994 /* 15995 * The reason to adjust len here is that we need to set flags 15996 * and calculate checksum. 15997 */ 15998 if (do_lso_send) 15999 len = lso_usable; 16000 16001 *usable -= len; /* Approximate - can be adjusted later */ 16002 if (*usable > 0) 16003 tcpha->tha_flags = TH_ACK; 16004 else 16005 tcpha->tha_flags = (TH_ACK | TH_PUSH); 16006 16007 /* 16008 * Prime pump for IP's checksumming on our behalf. 16009 * Include the adjustment for a source route if any. 16010 * In case of LSO, the partial pseudo-header checksum should 16011 * exclusive TCP length, so zero tha_sum before IP calculate 16012 * pseudo-header checksum for partial checksum offload. 16013 */ 16014 if (do_lso_send) { 16015 sum = 0; 16016 } else { 16017 sum = len + tcp_hdr_len + connp->conn_sum; 16018 sum = (sum >> 16) + (sum & 0xFFFF); 16019 } 16020 tcpha->tha_sum = htons(sum); 16021 tcpha->tha_seq = htonl(*snxt); 16022 16023 /* 16024 * Branch off to tcp_xmit_mp() if any of the VALID bits is 16025 * set. For the case when TCP_FSS_VALID is the only valid 16026 * bit (normal active close), branch off only when we think 16027 * that the FIN flag needs to be set. Note for this case, 16028 * that (snxt + len) may not reflect the actual seg_len, 16029 * as len may be further reduced in tcp_xmit_mp(). If len 16030 * gets modified, we will end up here again. 16031 */ 16032 if (tcp->tcp_valid_bits != 0 && 16033 (tcp->tcp_valid_bits != TCP_FSS_VALID || 16034 ((*snxt + len) == tcp->tcp_fss))) { 16035 uchar_t *prev_rptr; 16036 uint32_t prev_snxt = tcp->tcp_snxt; 16037 16038 if (*tail_unsent == 0) { 16039 ASSERT((*xmit_tail)->b_cont != NULL); 16040 *xmit_tail = (*xmit_tail)->b_cont; 16041 prev_rptr = (*xmit_tail)->b_rptr; 16042 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16043 (*xmit_tail)->b_rptr); 16044 } else { 16045 prev_rptr = (*xmit_tail)->b_rptr; 16046 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 16047 *tail_unsent; 16048 } 16049 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 16050 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 16051 /* Restore tcp_snxt so we get amount sent right. */ 16052 tcp->tcp_snxt = prev_snxt; 16053 if (prev_rptr == (*xmit_tail)->b_rptr) { 16054 /* 16055 * If the previous timestamp is still in use, 16056 * don't stomp on it. 16057 */ 16058 if ((*xmit_tail)->b_next == NULL) { 16059 (*xmit_tail)->b_prev = local_time; 16060 (*xmit_tail)->b_next = 16061 (mblk_t *)(uintptr_t)(*snxt); 16062 } 16063 } else 16064 (*xmit_tail)->b_rptr = prev_rptr; 16065 16066 if (mp == NULL) { 16067 return (-1); 16068 } 16069 mp1 = mp->b_cont; 16070 16071 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16072 tcp->tcp_last_sent_len = (ushort_t)len; 16073 while (mp1->b_cont) { 16074 *xmit_tail = (*xmit_tail)->b_cont; 16075 (*xmit_tail)->b_prev = local_time; 16076 (*xmit_tail)->b_next = 16077 (mblk_t *)(uintptr_t)(*snxt); 16078 mp1 = mp1->b_cont; 16079 } 16080 *snxt += len; 16081 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 16082 BUMP_LOCAL(tcp->tcp_obsegs); 16083 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16084 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16085 tcp_send_data(tcp, mp); 16086 continue; 16087 } 16088 16089 *snxt += len; /* Adjust later if we don't send all of len */ 16090 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16091 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16092 16093 if (*tail_unsent) { 16094 /* Are the bytes above us in flight? */ 16095 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 16096 if (rptr != (*xmit_tail)->b_rptr) { 16097 *tail_unsent -= len; 16098 if (len <= mss) /* LSO is unusable */ 16099 tcp->tcp_last_sent_len = (ushort_t)len; 16100 len += total_hdr_len; 16101 ixa->ixa_pktlen = len; 16102 16103 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16104 tcp->tcp_ipha->ipha_length = htons(len); 16105 } else { 16106 tcp->tcp_ip6h->ip6_plen = 16107 htons(len - IPV6_HDR_LEN); 16108 } 16109 16110 mp = dupb(*xmit_tail); 16111 if (mp == NULL) { 16112 return (-1); /* out_of_mem */ 16113 } 16114 mp->b_rptr = rptr; 16115 /* 16116 * If the old timestamp is no longer in use, 16117 * sample a new timestamp now. 16118 */ 16119 if ((*xmit_tail)->b_next == NULL) { 16120 (*xmit_tail)->b_prev = local_time; 16121 (*xmit_tail)->b_next = 16122 (mblk_t *)(uintptr_t)(*snxt-len); 16123 } 16124 goto must_alloc; 16125 } 16126 } else { 16127 *xmit_tail = (*xmit_tail)->b_cont; 16128 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 16129 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 16130 *tail_unsent = (int)((*xmit_tail)->b_wptr - 16131 (*xmit_tail)->b_rptr); 16132 } 16133 16134 (*xmit_tail)->b_prev = local_time; 16135 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 16136 16137 *tail_unsent -= len; 16138 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 16139 tcp->tcp_last_sent_len = (ushort_t)len; 16140 16141 len += total_hdr_len; 16142 ixa->ixa_pktlen = len; 16143 16144 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16145 tcp->tcp_ipha->ipha_length = htons(len); 16146 } else { 16147 tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 16148 } 16149 16150 mp = dupb(*xmit_tail); 16151 if (mp == NULL) { 16152 return (-1); /* out_of_mem */ 16153 } 16154 16155 len = total_hdr_len; 16156 /* 16157 * There are four reasons to allocate a new hdr mblk: 16158 * 1) The bytes above us are in use by another packet 16159 * 2) We don't have good alignment 16160 * 3) The mblk is being shared 16161 * 4) We don't have enough room for a header 16162 */ 16163 rptr = mp->b_rptr - len; 16164 if (!OK_32PTR(rptr) || 16165 ((db = mp->b_datap), db->db_ref != 2) || 16166 rptr < db->db_base) { 16167 /* NOTE: we assume allocb returns an OK_32PTR */ 16168 16169 must_alloc:; 16170 mp1 = allocb(connp->conn_ht_iphc_allocated + 16171 tcps->tcps_wroff_xtra, BPRI_MED); 16172 if (mp1 == NULL) { 16173 freemsg(mp); 16174 return (-1); /* out_of_mem */ 16175 } 16176 mp1->b_cont = mp; 16177 mp = mp1; 16178 /* Leave room for Link Level header */ 16179 len = total_hdr_len; 16180 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16181 mp->b_wptr = &rptr[len]; 16182 } 16183 16184 /* 16185 * Fill in the header using the template header, and add 16186 * options such as time-stamp, ECN and/or SACK, as needed. 16187 */ 16188 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 16189 16190 mp->b_rptr = rptr; 16191 16192 if (*tail_unsent) { 16193 int spill = *tail_unsent; 16194 16195 mp1 = mp->b_cont; 16196 if (mp1 == NULL) 16197 mp1 = mp; 16198 16199 /* 16200 * If we're a little short, tack on more mblks until 16201 * there is no more spillover. 16202 */ 16203 while (spill < 0) { 16204 mblk_t *nmp; 16205 int nmpsz; 16206 16207 nmp = (*xmit_tail)->b_cont; 16208 nmpsz = MBLKL(nmp); 16209 16210 /* 16211 * Excess data in mblk; can we split it? 16212 * If LSO is enabled for the connection, 16213 * keep on splitting as this is a transient 16214 * send path. 16215 */ 16216 if (!do_lso_send && (spill + nmpsz > 0)) { 16217 /* 16218 * Don't split if stream head was 16219 * told to break up larger writes 16220 * into smaller ones. 16221 */ 16222 if (tcp->tcp_maxpsz_multiplier > 0) 16223 break; 16224 16225 /* 16226 * Next mblk is less than SMSS/2 16227 * rounded up to nearest 64-byte; 16228 * let it get sent as part of the 16229 * next segment. 16230 */ 16231 if (tcp->tcp_localnet && 16232 !tcp->tcp_cork && 16233 (nmpsz < roundup((mss >> 1), 64))) 16234 break; 16235 } 16236 16237 *xmit_tail = nmp; 16238 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 16239 /* Stash for rtt use later */ 16240 (*xmit_tail)->b_prev = local_time; 16241 (*xmit_tail)->b_next = 16242 (mblk_t *)(uintptr_t)(*snxt - len); 16243 mp1->b_cont = dupb(*xmit_tail); 16244 mp1 = mp1->b_cont; 16245 16246 spill += nmpsz; 16247 if (mp1 == NULL) { 16248 *tail_unsent = spill; 16249 freemsg(mp); 16250 return (-1); /* out_of_mem */ 16251 } 16252 } 16253 16254 /* Trim back any surplus on the last mblk */ 16255 if (spill >= 0) { 16256 mp1->b_wptr -= spill; 16257 *tail_unsent = spill; 16258 } else { 16259 /* 16260 * We did not send everything we could in 16261 * order to remain within the b_cont limit. 16262 */ 16263 *usable -= spill; 16264 *snxt += spill; 16265 tcp->tcp_last_sent_len += spill; 16266 UPDATE_MIB(&tcps->tcps_mib, 16267 tcpOutDataBytes, spill); 16268 /* 16269 * Adjust the checksum 16270 */ 16271 tcpha = (tcpha_t *)(rptr + 16272 ixa->ixa_ip_hdr_length); 16273 sum += spill; 16274 sum = (sum >> 16) + (sum & 0xFFFF); 16275 tcpha->tha_sum = htons(sum); 16276 if (connp->conn_ipversion == IPV4_VERSION) { 16277 sum = ntohs( 16278 ((ipha_t *)rptr)->ipha_length) + 16279 spill; 16280 ((ipha_t *)rptr)->ipha_length = 16281 htons(sum); 16282 } else { 16283 sum = ntohs( 16284 ((ip6_t *)rptr)->ip6_plen) + 16285 spill; 16286 ((ip6_t *)rptr)->ip6_plen = 16287 htons(sum); 16288 } 16289 ixa->ixa_pktlen += spill; 16290 *tail_unsent = 0; 16291 } 16292 } 16293 if (tcp->tcp_ip_forward_progress) { 16294 tcp->tcp_ip_forward_progress = B_FALSE; 16295 ixa->ixa_flags |= IXAF_REACH_CONF; 16296 } else { 16297 ixa->ixa_flags &= ~IXAF_REACH_CONF; 16298 } 16299 16300 /* 16301 * Append LSO information, both flags and mss, to the mp. 16302 */ 16303 if (do_lso_send) { 16304 lso_info_set(mp, mss, HW_LSO); 16305 ixa->ixa_fragsize = IP_MAXPACKET; 16306 ixa->ixa_extra_ident = num_lso_seg - 1; 16307 16308 DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, 16309 boolean_t, B_TRUE); 16310 16311 tcp_send_data(tcp, mp); 16312 16313 /* 16314 * Restore values of ixa_fragsize and ixa_extra_ident. 16315 */ 16316 ixa->ixa_fragsize = ixa->ixa_pmtu; 16317 ixa->ixa_extra_ident = 0; 16318 tcp->tcp_obsegs += num_lso_seg; 16319 TCP_STAT(tcps, tcp_lso_times); 16320 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 16321 } else { 16322 tcp_send_data(tcp, mp); 16323 BUMP_LOCAL(tcp->tcp_obsegs); 16324 } 16325 } 16326 16327 return (0); 16328 } 16329 16330 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 16331 static void 16332 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 16333 { 16334 uchar_t fval = *mp->b_rptr; 16335 mblk_t *tail; 16336 conn_t *connp = tcp->tcp_connp; 16337 queue_t *q = connp->conn_wq; 16338 16339 /* TODO: How should flush interact with urgent data? */ 16340 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 16341 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 16342 /* 16343 * Flush only data that has not yet been put on the wire. If 16344 * we flush data that we have already transmitted, life, as we 16345 * know it, may come to an end. 16346 */ 16347 tail = tcp->tcp_xmit_tail; 16348 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 16349 tcp->tcp_xmit_tail_unsent = 0; 16350 tcp->tcp_unsent = 0; 16351 if (tail->b_wptr != tail->b_rptr) 16352 tail = tail->b_cont; 16353 if (tail) { 16354 mblk_t **excess = &tcp->tcp_xmit_head; 16355 for (;;) { 16356 mblk_t *mp1 = *excess; 16357 if (mp1 == tail) 16358 break; 16359 tcp->tcp_xmit_tail = mp1; 16360 tcp->tcp_xmit_last = mp1; 16361 excess = &mp1->b_cont; 16362 } 16363 *excess = NULL; 16364 tcp_close_mpp(&tail); 16365 if (tcp->tcp_snd_zcopy_aware) 16366 tcp_zcopy_notify(tcp); 16367 } 16368 /* 16369 * We have no unsent data, so unsent must be less than 16370 * conn_sndlowat, so re-enable flow. 16371 */ 16372 mutex_enter(&tcp->tcp_non_sq_lock); 16373 if (tcp->tcp_flow_stopped) { 16374 tcp_clrqfull(tcp); 16375 } 16376 mutex_exit(&tcp->tcp_non_sq_lock); 16377 } 16378 /* 16379 * TODO: you can't just flush these, you have to increase rwnd for one 16380 * thing. For another, how should urgent data interact? 16381 */ 16382 if (fval & FLUSHR) { 16383 *mp->b_rptr = fval & ~FLUSHW; 16384 /* XXX */ 16385 qreply(q, mp); 16386 return; 16387 } 16388 freemsg(mp); 16389 } 16390 16391 /* 16392 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 16393 * messages. 16394 */ 16395 static void 16396 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 16397 { 16398 mblk_t *mp1; 16399 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 16400 STRUCT_HANDLE(strbuf, sb); 16401 uint_t addrlen; 16402 conn_t *connp = tcp->tcp_connp; 16403 queue_t *q = connp->conn_wq; 16404 16405 /* Make sure it is one of ours. */ 16406 switch (iocp->ioc_cmd) { 16407 case TI_GETMYNAME: 16408 case TI_GETPEERNAME: 16409 break; 16410 default: 16411 ip_wput_nondata(q, mp); 16412 return; 16413 } 16414 switch (mi_copy_state(q, mp, &mp1)) { 16415 case -1: 16416 return; 16417 case MI_COPY_CASE(MI_COPY_IN, 1): 16418 break; 16419 case MI_COPY_CASE(MI_COPY_OUT, 1): 16420 /* Copy out the strbuf. */ 16421 mi_copyout(q, mp); 16422 return; 16423 case MI_COPY_CASE(MI_COPY_OUT, 2): 16424 /* All done. */ 16425 mi_copy_done(q, mp, 0); 16426 return; 16427 default: 16428 mi_copy_done(q, mp, EPROTO); 16429 return; 16430 } 16431 /* Check alignment of the strbuf */ 16432 if (!OK_32PTR(mp1->b_rptr)) { 16433 mi_copy_done(q, mp, EINVAL); 16434 return; 16435 } 16436 16437 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 16438 16439 if (connp->conn_family == AF_INET) 16440 addrlen = sizeof (sin_t); 16441 else 16442 addrlen = sizeof (sin6_t); 16443 16444 if (STRUCT_FGET(sb, maxlen) < addrlen) { 16445 mi_copy_done(q, mp, EINVAL); 16446 return; 16447 } 16448 16449 switch (iocp->ioc_cmd) { 16450 case TI_GETMYNAME: 16451 break; 16452 case TI_GETPEERNAME: 16453 if (tcp->tcp_state < TCPS_SYN_RCVD) { 16454 mi_copy_done(q, mp, ENOTCONN); 16455 return; 16456 } 16457 break; 16458 } 16459 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 16460 if (!mp1) 16461 return; 16462 16463 STRUCT_FSET(sb, len, addrlen); 16464 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 16465 case TI_GETMYNAME: 16466 (void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr, 16467 &addrlen); 16468 break; 16469 case TI_GETPEERNAME: 16470 (void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr, 16471 &addrlen); 16472 break; 16473 } 16474 mp1->b_wptr += addrlen; 16475 /* Copy out the address */ 16476 mi_copyout(q, mp); 16477 } 16478 16479 static void 16480 tcp_use_pure_tpi(tcp_t *tcp) 16481 { 16482 conn_t *connp = tcp->tcp_connp; 16483 16484 #ifdef _ILP32 16485 tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq; 16486 #else 16487 tcp->tcp_acceptor_id = connp->conn_dev; 16488 #endif 16489 /* 16490 * Insert this socket into the acceptor hash. 16491 * We might need it for T_CONN_RES message 16492 */ 16493 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 16494 16495 tcp->tcp_issocket = B_FALSE; 16496 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 16497 } 16498 16499 /* 16500 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 16501 * messages. 16502 */ 16503 /* ARGSUSED */ 16504 static void 16505 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16506 { 16507 conn_t *connp = (conn_t *)arg; 16508 tcp_t *tcp = connp->conn_tcp; 16509 queue_t *q = connp->conn_wq; 16510 struct iocblk *iocp; 16511 16512 ASSERT(DB_TYPE(mp) == M_IOCTL); 16513 /* 16514 * Try and ASSERT the minimum possible references on the 16515 * conn early enough. Since we are executing on write side, 16516 * the connection is obviously not detached and that means 16517 * there is a ref each for TCP and IP. Since we are behind 16518 * the squeue, the minimum references needed are 3. If the 16519 * conn is in classifier hash list, there should be an 16520 * extra ref for that (we check both the possibilities). 16521 */ 16522 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16523 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16524 16525 iocp = (struct iocblk *)mp->b_rptr; 16526 switch (iocp->ioc_cmd) { 16527 case _SIOCSOCKFALLBACK: 16528 /* 16529 * Either sockmod is about to be popped and the socket 16530 * would now be treated as a plain stream, or a module 16531 * is about to be pushed so we could no longer use read- 16532 * side synchronous streams for fused loopback tcp. 16533 * Drain any queued data and disable direct sockfs 16534 * interface from now on. 16535 */ 16536 if (!tcp->tcp_issocket) { 16537 DB_TYPE(mp) = M_IOCNAK; 16538 iocp->ioc_error = EINVAL; 16539 } else { 16540 tcp_use_pure_tpi(tcp); 16541 DB_TYPE(mp) = M_IOCACK; 16542 iocp->ioc_error = 0; 16543 } 16544 iocp->ioc_count = 0; 16545 iocp->ioc_rval = 0; 16546 qreply(q, mp); 16547 return; 16548 } 16549 ip_wput_nondata(q, mp); 16550 } 16551 16552 /* 16553 * This routine is called by tcp_wput() to handle all TPI requests. 16554 */ 16555 /* ARGSUSED */ 16556 static void 16557 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 16558 { 16559 conn_t *connp = (conn_t *)arg; 16560 tcp_t *tcp = connp->conn_tcp; 16561 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 16562 uchar_t *rptr; 16563 t_scalar_t type; 16564 cred_t *cr; 16565 16566 /* 16567 * Try and ASSERT the minimum possible references on the 16568 * conn early enough. Since we are executing on write side, 16569 * the connection is obviously not detached and that means 16570 * there is a ref each for TCP and IP. Since we are behind 16571 * the squeue, the minimum references needed are 3. If the 16572 * conn is in classifier hash list, there should be an 16573 * extra ref for that (we check both the possibilities). 16574 */ 16575 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16576 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16577 16578 rptr = mp->b_rptr; 16579 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 16580 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 16581 type = ((union T_primitives *)rptr)->type; 16582 if (type == T_EXDATA_REQ) { 16583 tcp_output_urgent(connp, mp, arg2, NULL); 16584 } else if (type != T_DATA_REQ) { 16585 goto non_urgent_data; 16586 } else { 16587 /* TODO: options, flags, ... from user */ 16588 /* Set length to zero for reclamation below */ 16589 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 16590 freeb(mp); 16591 } 16592 return; 16593 } else { 16594 if (connp->conn_debug) { 16595 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16596 "tcp_wput_proto, dropping one..."); 16597 } 16598 freemsg(mp); 16599 return; 16600 } 16601 16602 non_urgent_data: 16603 16604 switch ((int)tprim->type) { 16605 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 16606 /* 16607 * save the kssl_ent_t from the next block, and convert this 16608 * back to a normal bind_req. 16609 */ 16610 if (mp->b_cont != NULL) { 16611 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 16612 16613 if (tcp->tcp_kssl_ent != NULL) { 16614 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 16615 KSSL_NO_PROXY); 16616 tcp->tcp_kssl_ent = NULL; 16617 } 16618 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 16619 sizeof (kssl_ent_t)); 16620 kssl_hold_ent(tcp->tcp_kssl_ent); 16621 freemsg(mp->b_cont); 16622 mp->b_cont = NULL; 16623 } 16624 tprim->type = T_BIND_REQ; 16625 16626 /* FALLTHROUGH */ 16627 case O_T_BIND_REQ: /* bind request */ 16628 case T_BIND_REQ: /* new semantics bind request */ 16629 tcp_tpi_bind(tcp, mp); 16630 break; 16631 case T_UNBIND_REQ: /* unbind request */ 16632 tcp_tpi_unbind(tcp, mp); 16633 break; 16634 case O_T_CONN_RES: /* old connection response XXX */ 16635 case T_CONN_RES: /* connection response */ 16636 tcp_tli_accept(tcp, mp); 16637 break; 16638 case T_CONN_REQ: /* connection request */ 16639 tcp_tpi_connect(tcp, mp); 16640 break; 16641 case T_DISCON_REQ: /* disconnect request */ 16642 tcp_disconnect(tcp, mp); 16643 break; 16644 case T_CAPABILITY_REQ: 16645 tcp_capability_req(tcp, mp); /* capability request */ 16646 break; 16647 case T_INFO_REQ: /* information request */ 16648 tcp_info_req(tcp, mp); 16649 break; 16650 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 16651 case T_OPTMGMT_REQ: 16652 /* 16653 * Note: no support for snmpcom_req() through new 16654 * T_OPTMGMT_REQ. See comments in ip.c 16655 */ 16656 16657 /* 16658 * All Solaris components should pass a db_credp 16659 * for this TPI message, hence we ASSERT. 16660 * But in case there is some other M_PROTO that looks 16661 * like a TPI message sent by some other kernel 16662 * component, we check and return an error. 16663 */ 16664 cr = msg_getcred(mp, NULL); 16665 ASSERT(cr != NULL); 16666 if (cr == NULL) { 16667 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 16668 return; 16669 } 16670 /* 16671 * If EINPROGRESS is returned, the request has been queued 16672 * for subsequent processing by ip_restart_optmgmt(), which 16673 * will do the CONN_DEC_REF(). 16674 */ 16675 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 16676 svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 16677 } else { 16678 tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); 16679 } 16680 break; 16681 16682 case T_UNITDATA_REQ: /* unitdata request */ 16683 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 16684 break; 16685 case T_ORDREL_REQ: /* orderly release req */ 16686 freemsg(mp); 16687 16688 if (tcp->tcp_fused) 16689 tcp_unfuse(tcp); 16690 16691 if (tcp_xmit_end(tcp) != 0) { 16692 /* 16693 * We were crossing FINs and got a reset from 16694 * the other side. Just ignore it. 16695 */ 16696 if (connp->conn_debug) { 16697 (void) strlog(TCP_MOD_ID, 0, 1, 16698 SL_ERROR|SL_TRACE, 16699 "tcp_wput_proto, T_ORDREL_REQ out of " 16700 "state %s", 16701 tcp_display(tcp, NULL, 16702 DISP_ADDR_AND_PORT)); 16703 } 16704 } 16705 break; 16706 case T_ADDR_REQ: 16707 tcp_addr_req(tcp, mp); 16708 break; 16709 default: 16710 if (connp->conn_debug) { 16711 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 16712 "tcp_wput_proto, bogus TPI msg, type %d", 16713 tprim->type); 16714 } 16715 /* 16716 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 16717 * to recover. 16718 */ 16719 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 16720 break; 16721 } 16722 } 16723 16724 /* 16725 * The TCP write service routine should never be called... 16726 */ 16727 /* ARGSUSED */ 16728 static void 16729 tcp_wsrv(queue_t *q) 16730 { 16731 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16732 16733 TCP_STAT(tcps, tcp_wsrv_called); 16734 } 16735 16736 /* 16737 * Send out a control packet on the tcp connection specified. This routine 16738 * is typically called where we need a simple ACK or RST generated. 16739 */ 16740 static void 16741 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 16742 { 16743 uchar_t *rptr; 16744 tcpha_t *tcpha; 16745 ipha_t *ipha = NULL; 16746 ip6_t *ip6h = NULL; 16747 uint32_t sum; 16748 int total_hdr_len; 16749 int ip_hdr_len; 16750 mblk_t *mp; 16751 tcp_stack_t *tcps = tcp->tcp_tcps; 16752 conn_t *connp = tcp->tcp_connp; 16753 ip_xmit_attr_t *ixa = connp->conn_ixa; 16754 16755 /* 16756 * Save sum for use in source route later. 16757 */ 16758 sum = connp->conn_ht_ulp_len + connp->conn_sum; 16759 total_hdr_len = connp->conn_ht_iphc_len; 16760 ip_hdr_len = ixa->ixa_ip_hdr_length; 16761 16762 /* If a text string is passed in with the request, pass it to strlog. */ 16763 if (str != NULL && connp->conn_debug) { 16764 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 16765 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 16766 str, seq, ack, ctl); 16767 } 16768 mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 16769 BPRI_MED); 16770 if (mp == NULL) { 16771 return; 16772 } 16773 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 16774 mp->b_rptr = rptr; 16775 mp->b_wptr = &rptr[total_hdr_len]; 16776 bcopy(connp->conn_ht_iphc, rptr, total_hdr_len); 16777 16778 ixa->ixa_pktlen = total_hdr_len; 16779 16780 if (ixa->ixa_flags & IXAF_IS_IPV4) { 16781 ipha = (ipha_t *)rptr; 16782 ipha->ipha_length = htons(total_hdr_len); 16783 } else { 16784 ip6h = (ip6_t *)rptr; 16785 ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 16786 } 16787 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 16788 tcpha->tha_flags = (uint8_t)ctl; 16789 if (ctl & TH_RST) { 16790 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 16791 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 16792 /* 16793 * Don't send TSopt w/ TH_RST packets per RFC 1323. 16794 */ 16795 if (tcp->tcp_snd_ts_ok && 16796 tcp->tcp_state > TCPS_SYN_SENT) { 16797 mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN]; 16798 *(mp->b_wptr) = TCPOPT_EOL; 16799 16800 ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN; 16801 16802 if (connp->conn_ipversion == IPV4_VERSION) { 16803 ipha->ipha_length = htons(total_hdr_len - 16804 TCPOPT_REAL_TS_LEN); 16805 } else { 16806 ip6h->ip6_plen = htons(total_hdr_len - 16807 IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN); 16808 } 16809 tcpha->tha_offset_and_reserved -= (3 << 4); 16810 sum -= TCPOPT_REAL_TS_LEN; 16811 } 16812 } 16813 if (ctl & TH_ACK) { 16814 if (tcp->tcp_snd_ts_ok) { 16815 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 16816 16817 U32_TO_BE32(llbolt, 16818 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 16819 U32_TO_BE32(tcp->tcp_ts_recent, 16820 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 16821 } 16822 16823 /* Update the latest receive window size in TCP header. */ 16824 tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 16825 tcp->tcp_rack = ack; 16826 tcp->tcp_rack_cnt = 0; 16827 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 16828 } 16829 BUMP_LOCAL(tcp->tcp_obsegs); 16830 tcpha->tha_seq = htonl(seq); 16831 tcpha->tha_ack = htonl(ack); 16832 /* 16833 * Include the adjustment for a source route if any. 16834 */ 16835 sum = (sum >> 16) + (sum & 0xFFFF); 16836 tcpha->tha_sum = htons(sum); 16837 tcp_send_data(tcp, mp); 16838 } 16839 16840 /* 16841 * If this routine returns B_TRUE, TCP can generate a RST in response 16842 * to a segment. If it returns B_FALSE, TCP should not respond. 16843 */ 16844 static boolean_t 16845 tcp_send_rst_chk(tcp_stack_t *tcps) 16846 { 16847 clock_t now; 16848 16849 /* 16850 * TCP needs to protect itself from generating too many RSTs. 16851 * This can be a DoS attack by sending us random segments 16852 * soliciting RSTs. 16853 * 16854 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 16855 * in each 1 second interval. In this way, TCP still generate 16856 * RSTs in normal cases but when under attack, the impact is 16857 * limited. 16858 */ 16859 if (tcps->tcps_rst_sent_rate_enabled != 0) { 16860 now = ddi_get_lbolt(); 16861 /* lbolt can wrap around. */ 16862 if ((tcps->tcps_last_rst_intrvl > now) || 16863 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 16864 1*SECONDS)) { 16865 tcps->tcps_last_rst_intrvl = now; 16866 tcps->tcps_rst_cnt = 1; 16867 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 16868 return (B_FALSE); 16869 } 16870 } 16871 return (B_TRUE); 16872 } 16873 16874 /* 16875 * Generate a reset based on an inbound packet, connp is set by caller 16876 * when RST is in response to an unexpected inbound packet for which 16877 * there is active tcp state in the system. 16878 * 16879 * IPSEC NOTE : Try to send the reply with the same protection as it came 16880 * in. We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t. 16881 * That way the packet will go out at the same level of protection as it 16882 * came in with. 16883 */ 16884 static void 16885 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, 16886 ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp) 16887 { 16888 ipha_t *ipha = NULL; 16889 ip6_t *ip6h = NULL; 16890 ushort_t len; 16891 tcpha_t *tcpha; 16892 int i; 16893 ipaddr_t v4addr; 16894 in6_addr_t v6addr; 16895 netstack_t *ns = ipst->ips_netstack; 16896 tcp_stack_t *tcps = ns->netstack_tcp; 16897 ip_xmit_attr_t ixas, *ixa; 16898 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 16899 boolean_t need_refrele = B_FALSE; /* ixa_refrele(ixa) */ 16900 ushort_t port; 16901 16902 if (!tcp_send_rst_chk(tcps)) { 16903 tcps->tcps_rst_unsent++; 16904 freemsg(mp); 16905 return; 16906 } 16907 16908 /* 16909 * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other 16910 * options from the listener. In that case the caller must ensure that 16911 * we are running on the listener = connp squeue. 16912 * 16913 * We get a safe copy of conn_ixa so we don't need to restore anything 16914 * we or ip_output_simple might change in the ixa. 16915 */ 16916 if (connp != NULL) { 16917 ASSERT(connp->conn_on_sqp); 16918 16919 ixa = conn_get_ixa_exclusive(connp); 16920 if (ixa == NULL) { 16921 tcps->tcps_rst_unsent++; 16922 freemsg(mp); 16923 return; 16924 } 16925 need_refrele = B_TRUE; 16926 } else { 16927 bzero(&ixas, sizeof (ixas)); 16928 ixa = &ixas; 16929 /* 16930 * IXAF_VERIFY_SOURCE is overkill since we know the 16931 * packet was for us. 16932 */ 16933 ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE; 16934 ixa->ixa_protocol = IPPROTO_TCP; 16935 ixa->ixa_zoneid = ira->ira_zoneid; 16936 ixa->ixa_ifindex = 0; 16937 ixa->ixa_ipst = ipst; 16938 ixa->ixa_cred = kcred; 16939 ixa->ixa_cpid = NOPID; 16940 } 16941 16942 if (str && tcps->tcps_dbg) { 16943 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 16944 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 16945 "flags 0x%x", 16946 str, seq, ack, ctl); 16947 } 16948 if (mp->b_datap->db_ref != 1) { 16949 mblk_t *mp1 = copyb(mp); 16950 freemsg(mp); 16951 mp = mp1; 16952 if (mp == NULL) 16953 goto done; 16954 } else if (mp->b_cont) { 16955 freemsg(mp->b_cont); 16956 mp->b_cont = NULL; 16957 DB_CKSUMFLAGS(mp) = 0; 16958 } 16959 /* 16960 * We skip reversing source route here. 16961 * (for now we replace all IP options with EOL) 16962 */ 16963 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 16964 ipha = (ipha_t *)mp->b_rptr; 16965 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 16966 mp->b_rptr[i] = IPOPT_EOL; 16967 /* 16968 * Make sure that src address isn't flagrantly invalid. 16969 * Not all broadcast address checking for the src address 16970 * is possible, since we don't know the netmask of the src 16971 * addr. No check for destination address is done, since 16972 * IP will not pass up a packet with a broadcast dest 16973 * address to TCP. Similar checks are done below for IPv6. 16974 */ 16975 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 16976 CLASSD(ipha->ipha_src)) { 16977 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 16978 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 16979 freemsg(mp); 16980 goto done; 16981 } 16982 } else { 16983 ip6h = (ip6_t *)mp->b_rptr; 16984 16985 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 16986 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 16987 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 16988 ip_drop_input("ipIfStatsInDiscards", mp, NULL); 16989 freemsg(mp); 16990 goto done; 16991 } 16992 16993 /* Remove any extension headers assuming partial overlay */ 16994 if (ip_hdr_len > IPV6_HDR_LEN) { 16995 uint8_t *to; 16996 16997 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 16998 ovbcopy(ip6h, to, IPV6_HDR_LEN); 16999 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 17000 ip_hdr_len = IPV6_HDR_LEN; 17001 ip6h = (ip6_t *)mp->b_rptr; 17002 ip6h->ip6_nxt = IPPROTO_TCP; 17003 } 17004 } 17005 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; 17006 if (tcpha->tha_flags & TH_RST) { 17007 freemsg(mp); 17008 goto done; 17009 } 17010 tcpha->tha_offset_and_reserved = (5 << 4); 17011 len = ip_hdr_len + sizeof (tcpha_t); 17012 mp->b_wptr = &mp->b_rptr[len]; 17013 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17014 ipha->ipha_length = htons(len); 17015 /* Swap addresses */ 17016 v4addr = ipha->ipha_src; 17017 ipha->ipha_src = ipha->ipha_dst; 17018 ipha->ipha_dst = v4addr; 17019 ipha->ipha_ident = 0; 17020 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 17021 ixa->ixa_flags |= IXAF_IS_IPV4; 17022 ixa->ixa_ip_hdr_length = ip_hdr_len; 17023 } else { 17024 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 17025 /* Swap addresses */ 17026 v6addr = ip6h->ip6_src; 17027 ip6h->ip6_src = ip6h->ip6_dst; 17028 ip6h->ip6_dst = v6addr; 17029 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 17030 ixa->ixa_flags &= ~IXAF_IS_IPV4; 17031 17032 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) { 17033 ixa->ixa_flags |= IXAF_SCOPEID_SET; 17034 ixa->ixa_scopeid = ira->ira_ruifindex; 17035 } 17036 ixa->ixa_ip_hdr_length = IPV6_HDR_LEN; 17037 } 17038 ixa->ixa_pktlen = len; 17039 17040 /* Swap the ports */ 17041 port = tcpha->tha_fport; 17042 tcpha->tha_fport = tcpha->tha_lport; 17043 tcpha->tha_lport = port; 17044 17045 tcpha->tha_ack = htonl(ack); 17046 tcpha->tha_seq = htonl(seq); 17047 tcpha->tha_win = 0; 17048 tcpha->tha_sum = htons(sizeof (tcpha_t)); 17049 tcpha->tha_flags = (uint8_t)ctl; 17050 if (ctl & TH_RST) { 17051 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 17052 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17053 } 17054 17055 /* Discard any old label */ 17056 if (ixa->ixa_free_flags & IXA_FREE_TSL) { 17057 ASSERT(ixa->ixa_tsl != NULL); 17058 label_rele(ixa->ixa_tsl); 17059 ixa->ixa_free_flags &= ~IXA_FREE_TSL; 17060 } 17061 ixa->ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 17062 17063 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 17064 /* 17065 * Apply IPsec based on how IPsec was applied to 17066 * the packet that caused the RST. 17067 */ 17068 if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) { 17069 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 17070 /* Note: mp already consumed and ip_drop_packet done */ 17071 goto done; 17072 } 17073 } else { 17074 /* 17075 * This is in clear. The RST message we are building 17076 * here should go out in clear, independent of our policy. 17077 */ 17078 ixa->ixa_flags |= IXAF_NO_IPSEC; 17079 } 17080 17081 /* 17082 * NOTE: one might consider tracing a TCP packet here, but 17083 * this function has no active TCP state and no tcp structure 17084 * that has a trace buffer. If we traced here, we would have 17085 * to keep a local trace buffer in tcp_record_trace(). 17086 */ 17087 17088 (void) ip_output_simple(mp, ixa); 17089 done: 17090 ixa_cleanup(ixa); 17091 if (need_refrele) { 17092 ASSERT(ixa != &ixas); 17093 ixa_refrele(ixa); 17094 } 17095 } 17096 17097 /* 17098 * Initiate closedown sequence on an active connection. (May be called as 17099 * writer.) Return value zero for OK return, non-zero for error return. 17100 */ 17101 static int 17102 tcp_xmit_end(tcp_t *tcp) 17103 { 17104 mblk_t *mp; 17105 tcp_stack_t *tcps = tcp->tcp_tcps; 17106 iulp_t uinfo; 17107 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17108 conn_t *connp = tcp->tcp_connp; 17109 17110 if (tcp->tcp_state < TCPS_SYN_RCVD || 17111 tcp->tcp_state > TCPS_CLOSE_WAIT) { 17112 /* 17113 * Invalid state, only states TCPS_SYN_RCVD, 17114 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 17115 */ 17116 return (-1); 17117 } 17118 17119 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 17120 tcp->tcp_valid_bits |= TCP_FSS_VALID; 17121 /* 17122 * If there is nothing more unsent, send the FIN now. 17123 * Otherwise, it will go out with the last segment. 17124 */ 17125 if (tcp->tcp_unsent == 0) { 17126 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 17127 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 17128 17129 if (mp) { 17130 tcp_send_data(tcp, mp); 17131 } else { 17132 /* 17133 * Couldn't allocate msg. Pretend we got it out. 17134 * Wait for rexmit timeout. 17135 */ 17136 tcp->tcp_snxt = tcp->tcp_fss + 1; 17137 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17138 } 17139 17140 /* 17141 * If needed, update tcp_rexmit_snxt as tcp_snxt is 17142 * changed. 17143 */ 17144 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 17145 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 17146 } 17147 } else { 17148 /* 17149 * If tcp->tcp_cork is set, then the data will not get sent, 17150 * so we have to check that and unset it first. 17151 */ 17152 if (tcp->tcp_cork) 17153 tcp->tcp_cork = B_FALSE; 17154 tcp_wput_data(tcp, NULL, B_FALSE); 17155 } 17156 17157 /* 17158 * If TCP does not get enough samples of RTT or tcp_rtt_updates 17159 * is 0, don't update the cache. 17160 */ 17161 if (tcps->tcps_rtt_updates == 0 || 17162 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 17163 return (0); 17164 17165 /* 17166 * We do not have a good algorithm to update ssthresh at this time. 17167 * So don't do any update. 17168 */ 17169 bzero(&uinfo, sizeof (uinfo)); 17170 uinfo.iulp_rtt = tcp->tcp_rtt_sa; 17171 uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd; 17172 17173 /* 17174 * Note that uinfo is kept for conn_faddr in the DCE. Could update even 17175 * if source routed but we don't. 17176 */ 17177 if (connp->conn_ipversion == IPV4_VERSION) { 17178 if (connp->conn_faddr_v4 != tcp->tcp_ipha->ipha_dst) { 17179 return (0); 17180 } 17181 (void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst); 17182 } else { 17183 uint_t ifindex; 17184 17185 if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, 17186 &tcp->tcp_ip6h->ip6_dst))) { 17187 return (0); 17188 } 17189 ifindex = 0; 17190 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) { 17191 ip_xmit_attr_t *ixa = connp->conn_ixa; 17192 17193 /* 17194 * If we are going to create a DCE we'd better have 17195 * an ifindex 17196 */ 17197 if (ixa->ixa_nce != NULL) { 17198 ifindex = ixa->ixa_nce->nce_common->ncec_ill-> 17199 ill_phyint->phyint_ifindex; 17200 } else { 17201 return (0); 17202 } 17203 } 17204 17205 (void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo, 17206 ipst); 17207 } 17208 return (0); 17209 } 17210 17211 /* 17212 * Generate a "no listener here" RST in response to an "unknown" segment. 17213 * connp is set by caller when RST is in response to an unexpected 17214 * inbound packet for which there is active tcp state in the system. 17215 * Note that we are reusing the incoming mp to construct the outgoing RST. 17216 */ 17217 void 17218 tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst, 17219 conn_t *connp) 17220 { 17221 uchar_t *rptr; 17222 uint32_t seg_len; 17223 tcpha_t *tcpha; 17224 uint32_t seg_seq; 17225 uint32_t seg_ack; 17226 uint_t flags; 17227 ipha_t *ipha; 17228 ip6_t *ip6h; 17229 boolean_t policy_present; 17230 netstack_t *ns = ipst->ips_netstack; 17231 tcp_stack_t *tcps = ns->netstack_tcp; 17232 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 17233 uint_t ip_hdr_len = ira->ira_ip_hdr_length; 17234 17235 TCP_STAT(tcps, tcp_no_listener); 17236 17237 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 17238 policy_present = ipss->ipsec_inbound_v4_policy_present; 17239 ipha = (ipha_t *)mp->b_rptr; 17240 ip6h = NULL; 17241 } else { 17242 policy_present = ipss->ipsec_inbound_v6_policy_present; 17243 ipha = NULL; 17244 ip6h = (ip6_t *)mp->b_rptr; 17245 } 17246 17247 if (policy_present) { 17248 /* 17249 * The conn_t parameter is NULL because we already know 17250 * nobody's home. 17251 */ 17252 mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h, 17253 ira, ns); 17254 if (mp == NULL) 17255 return; 17256 } 17257 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 17258 DTRACE_PROBE2( 17259 tx__ip__log__error__nolistener__tcp, 17260 char *, "Could not reply with RST to mp(1)", 17261 mblk_t *, mp); 17262 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 17263 freemsg(mp); 17264 return; 17265 } 17266 17267 rptr = mp->b_rptr; 17268 17269 tcpha = (tcpha_t *)&rptr[ip_hdr_len]; 17270 seg_seq = ntohl(tcpha->tha_seq); 17271 seg_ack = ntohl(tcpha->tha_ack); 17272 flags = tcpha->tha_flags; 17273 17274 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len); 17275 if (flags & TH_RST) { 17276 freemsg(mp); 17277 } else if (flags & TH_ACK) { 17278 tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST, 17279 ira, ipst, connp); 17280 } else { 17281 if (flags & TH_SYN) { 17282 seg_len++; 17283 } else { 17284 /* 17285 * Here we violate the RFC. Note that a normal 17286 * TCP will never send a segment without the ACK 17287 * flag, except for RST or SYN segment. This 17288 * segment is neither. Just drop it on the 17289 * floor. 17290 */ 17291 freemsg(mp); 17292 tcps->tcps_rst_unsent++; 17293 return; 17294 } 17295 17296 tcp_xmit_early_reset("no tcp, reset/ack", mp, 0, 17297 seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp); 17298 } 17299 } 17300 17301 /* 17302 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 17303 * ip and tcp header ready to pass down to IP. If the mp passed in is 17304 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 17305 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 17306 * otherwise it will dup partial mblks.) 17307 * Otherwise, an appropriate ACK packet will be generated. This 17308 * routine is not usually called to send new data for the first time. It 17309 * is mostly called out of the timer for retransmits, and to generate ACKs. 17310 * 17311 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 17312 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 17313 * of the original mblk chain will be returned in *offset and *end_mp. 17314 */ 17315 mblk_t * 17316 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 17317 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 17318 boolean_t rexmit) 17319 { 17320 int data_length; 17321 int32_t off = 0; 17322 uint_t flags; 17323 mblk_t *mp1; 17324 mblk_t *mp2; 17325 uchar_t *rptr; 17326 tcpha_t *tcpha; 17327 int32_t num_sack_blk = 0; 17328 int32_t sack_opt_len = 0; 17329 tcp_stack_t *tcps = tcp->tcp_tcps; 17330 conn_t *connp = tcp->tcp_connp; 17331 ip_xmit_attr_t *ixa = connp->conn_ixa; 17332 17333 /* Allocate for our maximum TCP header + link-level */ 17334 mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, 17335 BPRI_MED); 17336 if (!mp1) 17337 return (NULL); 17338 data_length = 0; 17339 17340 /* 17341 * Note that tcp_mss has been adjusted to take into account the 17342 * timestamp option if applicable. Because SACK options do not 17343 * appear in every TCP segments and they are of variable lengths, 17344 * they cannot be included in tcp_mss. Thus we need to calculate 17345 * the actual segment length when we need to send a segment which 17346 * includes SACK options. 17347 */ 17348 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17349 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17350 tcp->tcp_num_sack_blk); 17351 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17352 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17353 if (max_to_send + sack_opt_len > tcp->tcp_mss) 17354 max_to_send -= sack_opt_len; 17355 } 17356 17357 if (offset != NULL) { 17358 off = *offset; 17359 /* We use offset as an indicator that end_mp is not NULL. */ 17360 *end_mp = NULL; 17361 } 17362 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 17363 /* This could be faster with cooperation from downstream */ 17364 if (mp2 != mp1 && !sendall && 17365 data_length + (int)(mp->b_wptr - mp->b_rptr) > 17366 max_to_send) 17367 /* 17368 * Don't send the next mblk since the whole mblk 17369 * does not fit. 17370 */ 17371 break; 17372 mp2->b_cont = dupb(mp); 17373 mp2 = mp2->b_cont; 17374 if (!mp2) { 17375 freemsg(mp1); 17376 return (NULL); 17377 } 17378 mp2->b_rptr += off; 17379 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 17380 (uintptr_t)INT_MAX); 17381 17382 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 17383 if (data_length > max_to_send) { 17384 mp2->b_wptr -= data_length - max_to_send; 17385 data_length = max_to_send; 17386 off = mp2->b_wptr - mp->b_rptr; 17387 break; 17388 } else { 17389 off = 0; 17390 } 17391 } 17392 if (offset != NULL) { 17393 *offset = off; 17394 *end_mp = mp; 17395 } 17396 if (seg_len != NULL) { 17397 *seg_len = data_length; 17398 } 17399 17400 /* Update the latest receive window size in TCP header. */ 17401 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17402 17403 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17404 mp1->b_rptr = rptr; 17405 mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len; 17406 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17407 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17408 tcpha->tha_seq = htonl(seq); 17409 17410 /* 17411 * Use tcp_unsent to determine if the PUSH bit should be used assumes 17412 * that this function was called from tcp_wput_data. Thus, when called 17413 * to retransmit data the setting of the PUSH bit may appear some 17414 * what random in that it might get set when it should not. This 17415 * should not pose any performance issues. 17416 */ 17417 if (data_length != 0 && (tcp->tcp_unsent == 0 || 17418 tcp->tcp_unsent == data_length)) { 17419 flags = TH_ACK | TH_PUSH; 17420 } else { 17421 flags = TH_ACK; 17422 } 17423 17424 if (tcp->tcp_ecn_ok) { 17425 if (tcp->tcp_ecn_echo_on) 17426 flags |= TH_ECE; 17427 17428 /* 17429 * Only set ECT bit and ECN_CWR if a segment contains new data. 17430 * There is no TCP flow control for non-data segments, and 17431 * only data segment is transmitted reliably. 17432 */ 17433 if (data_length > 0 && !rexmit) { 17434 SET_ECT(tcp, rptr); 17435 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17436 flags |= TH_CWR; 17437 tcp->tcp_ecn_cwr_sent = B_TRUE; 17438 } 17439 } 17440 } 17441 17442 if (tcp->tcp_valid_bits) { 17443 uint32_t u1; 17444 17445 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 17446 seq == tcp->tcp_iss) { 17447 uchar_t *wptr; 17448 17449 /* 17450 * If TCP_ISS_VALID and the seq number is tcp_iss, 17451 * TCP can only be in SYN-SENT, SYN-RCVD or 17452 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 17453 * our SYN is not ack'ed but the app closes this 17454 * TCP connection. 17455 */ 17456 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 17457 tcp->tcp_state == TCPS_SYN_RCVD || 17458 tcp->tcp_state == TCPS_FIN_WAIT_1); 17459 17460 /* 17461 * Tack on the MSS option. It is always needed 17462 * for both active and passive open. 17463 * 17464 * MSS option value should be interface MTU - MIN 17465 * TCP/IP header according to RFC 793 as it means 17466 * the maximum segment size TCP can receive. But 17467 * to get around some broken middle boxes/end hosts 17468 * out there, we allow the option value to be the 17469 * same as the MSS option size on the peer side. 17470 * In this way, the other side will not send 17471 * anything larger than they can receive. 17472 * 17473 * Note that for SYN_SENT state, the ndd param 17474 * tcp_use_smss_as_mss_opt has no effect as we 17475 * don't know the peer's MSS option value. So 17476 * the only case we need to take care of is in 17477 * SYN_RCVD state, which is done later. 17478 */ 17479 wptr = mp1->b_wptr; 17480 wptr[0] = TCPOPT_MAXSEG; 17481 wptr[1] = TCPOPT_MAXSEG_LEN; 17482 wptr += 2; 17483 u1 = tcp->tcp_initial_pmtu - 17484 (connp->conn_ipversion == IPV4_VERSION ? 17485 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 17486 TCP_MIN_HEADER_LENGTH; 17487 U16_TO_BE16(u1, wptr); 17488 mp1->b_wptr = wptr + 2; 17489 /* Update the offset to cover the additional word */ 17490 tcpha->tha_offset_and_reserved += (1 << 4); 17491 17492 /* 17493 * Note that the following way of filling in 17494 * TCP options are not optimal. Some NOPs can 17495 * be saved. But there is no need at this time 17496 * to optimize it. When it is needed, we will 17497 * do it. 17498 */ 17499 switch (tcp->tcp_state) { 17500 case TCPS_SYN_SENT: 17501 flags = TH_SYN; 17502 17503 if (tcp->tcp_snd_ts_ok) { 17504 uint32_t llbolt = 17505 (uint32_t)LBOLT_FASTPATH; 17506 17507 wptr = mp1->b_wptr; 17508 wptr[0] = TCPOPT_NOP; 17509 wptr[1] = TCPOPT_NOP; 17510 wptr[2] = TCPOPT_TSTAMP; 17511 wptr[3] = TCPOPT_TSTAMP_LEN; 17512 wptr += 4; 17513 U32_TO_BE32(llbolt, wptr); 17514 wptr += 4; 17515 ASSERT(tcp->tcp_ts_recent == 0); 17516 U32_TO_BE32(0L, wptr); 17517 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 17518 tcpha->tha_offset_and_reserved += 17519 (3 << 4); 17520 } 17521 17522 /* 17523 * Set up all the bits to tell other side 17524 * we are ECN capable. 17525 */ 17526 if (tcp->tcp_ecn_ok) { 17527 flags |= (TH_ECE | TH_CWR); 17528 } 17529 break; 17530 case TCPS_SYN_RCVD: 17531 flags |= TH_SYN; 17532 17533 /* 17534 * Reset the MSS option value to be SMSS 17535 * We should probably add back the bytes 17536 * for timestamp option and IPsec. We 17537 * don't do that as this is a workaround 17538 * for broken middle boxes/end hosts, it 17539 * is better for us to be more cautious. 17540 * They may not take these things into 17541 * account in their SMSS calculation. Thus 17542 * the peer's calculated SMSS may be smaller 17543 * than what it can be. This should be OK. 17544 */ 17545 if (tcps->tcps_use_smss_as_mss_opt) { 17546 u1 = tcp->tcp_mss; 17547 U16_TO_BE16(u1, wptr); 17548 } 17549 17550 /* 17551 * If the other side is ECN capable, reply 17552 * that we are also ECN capable. 17553 */ 17554 if (tcp->tcp_ecn_ok) 17555 flags |= TH_ECE; 17556 break; 17557 default: 17558 /* 17559 * The above ASSERT() makes sure that this 17560 * must be FIN-WAIT-1 state. Our SYN has 17561 * not been ack'ed so retransmit it. 17562 */ 17563 flags |= TH_SYN; 17564 break; 17565 } 17566 17567 if (tcp->tcp_snd_ws_ok) { 17568 wptr = mp1->b_wptr; 17569 wptr[0] = TCPOPT_NOP; 17570 wptr[1] = TCPOPT_WSCALE; 17571 wptr[2] = TCPOPT_WS_LEN; 17572 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 17573 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 17574 tcpha->tha_offset_and_reserved += (1 << 4); 17575 } 17576 17577 if (tcp->tcp_snd_sack_ok) { 17578 wptr = mp1->b_wptr; 17579 wptr[0] = TCPOPT_NOP; 17580 wptr[1] = TCPOPT_NOP; 17581 wptr[2] = TCPOPT_SACK_PERMITTED; 17582 wptr[3] = TCPOPT_SACK_OK_LEN; 17583 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 17584 tcpha->tha_offset_and_reserved += (1 << 4); 17585 } 17586 17587 /* allocb() of adequate mblk assures space */ 17588 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 17589 (uintptr_t)INT_MAX); 17590 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 17591 /* 17592 * Get IP set to checksum on our behalf 17593 * Include the adjustment for a source route if any. 17594 */ 17595 u1 += connp->conn_sum; 17596 u1 = (u1 >> 16) + (u1 & 0xFFFF); 17597 tcpha->tha_sum = htons(u1); 17598 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17599 } 17600 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17601 (seq + data_length) == tcp->tcp_fss) { 17602 if (!tcp->tcp_fin_acked) { 17603 flags |= TH_FIN; 17604 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 17605 } 17606 if (!tcp->tcp_fin_sent) { 17607 tcp->tcp_fin_sent = B_TRUE; 17608 switch (tcp->tcp_state) { 17609 case TCPS_SYN_RCVD: 17610 case TCPS_ESTABLISHED: 17611 tcp->tcp_state = TCPS_FIN_WAIT_1; 17612 break; 17613 case TCPS_CLOSE_WAIT: 17614 tcp->tcp_state = TCPS_LAST_ACK; 17615 break; 17616 } 17617 if (tcp->tcp_suna == tcp->tcp_snxt) 17618 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17619 tcp->tcp_snxt = tcp->tcp_fss + 1; 17620 } 17621 } 17622 /* 17623 * Note the trick here. u1 is unsigned. When tcp_urg 17624 * is smaller than seq, u1 will become a very huge value. 17625 * So the comparison will fail. Also note that tcp_urp 17626 * should be positive, see RFC 793 page 17. 17627 */ 17628 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 17629 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 17630 u1 < (uint32_t)(64 * 1024)) { 17631 flags |= TH_URG; 17632 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 17633 tcpha->tha_urp = htons(u1); 17634 } 17635 } 17636 tcpha->tha_flags = (uchar_t)flags; 17637 tcp->tcp_rack = tcp->tcp_rnxt; 17638 tcp->tcp_rack_cnt = 0; 17639 17640 if (tcp->tcp_snd_ts_ok) { 17641 if (tcp->tcp_state != TCPS_SYN_SENT) { 17642 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17643 17644 U32_TO_BE32(llbolt, 17645 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17646 U32_TO_BE32(tcp->tcp_ts_recent, 17647 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17648 } 17649 } 17650 17651 if (num_sack_blk > 0) { 17652 uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; 17653 sack_blk_t *tmp; 17654 int32_t i; 17655 17656 wptr[0] = TCPOPT_NOP; 17657 wptr[1] = TCPOPT_NOP; 17658 wptr[2] = TCPOPT_SACK; 17659 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 17660 sizeof (sack_blk_t); 17661 wptr += TCPOPT_REAL_SACK_LEN; 17662 17663 tmp = tcp->tcp_sack_list; 17664 for (i = 0; i < num_sack_blk; i++) { 17665 U32_TO_BE32(tmp[i].begin, wptr); 17666 wptr += sizeof (tcp_seq); 17667 U32_TO_BE32(tmp[i].end, wptr); 17668 wptr += sizeof (tcp_seq); 17669 } 17670 tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); 17671 } 17672 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 17673 data_length += (int)(mp1->b_wptr - rptr); 17674 17675 ixa->ixa_pktlen = data_length; 17676 17677 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17678 ((ipha_t *)rptr)->ipha_length = htons(data_length); 17679 } else { 17680 ip6_t *ip6 = (ip6_t *)rptr; 17681 17682 ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN); 17683 } 17684 17685 /* 17686 * Prime pump for IP 17687 * Include the adjustment for a source route if any. 17688 */ 17689 data_length -= ixa->ixa_ip_hdr_length; 17690 data_length += connp->conn_sum; 17691 data_length = (data_length >> 16) + (data_length & 0xFFFF); 17692 tcpha->tha_sum = htons(data_length); 17693 if (tcp->tcp_ip_forward_progress) { 17694 tcp->tcp_ip_forward_progress = B_FALSE; 17695 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 17696 } else { 17697 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 17698 } 17699 return (mp1); 17700 } 17701 17702 /* This function handles the push timeout. */ 17703 void 17704 tcp_push_timer(void *arg) 17705 { 17706 conn_t *connp = (conn_t *)arg; 17707 tcp_t *tcp = connp->conn_tcp; 17708 17709 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 17710 17711 ASSERT(tcp->tcp_listener == NULL); 17712 17713 ASSERT(!IPCL_IS_NONSTR(connp)); 17714 17715 tcp->tcp_push_tid = 0; 17716 17717 if (tcp->tcp_rcv_list != NULL && 17718 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 17719 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 17720 } 17721 17722 /* 17723 * This function handles delayed ACK timeout. 17724 */ 17725 static void 17726 tcp_ack_timer(void *arg) 17727 { 17728 conn_t *connp = (conn_t *)arg; 17729 tcp_t *tcp = connp->conn_tcp; 17730 mblk_t *mp; 17731 tcp_stack_t *tcps = tcp->tcp_tcps; 17732 17733 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 17734 17735 tcp->tcp_ack_tid = 0; 17736 17737 if (tcp->tcp_fused) 17738 return; 17739 17740 /* 17741 * Do not send ACK if there is no outstanding unack'ed data. 17742 */ 17743 if (tcp->tcp_rnxt == tcp->tcp_rack) { 17744 return; 17745 } 17746 17747 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 17748 /* 17749 * Make sure we don't allow deferred ACKs to result in 17750 * timer-based ACKing. If we have held off an ACK 17751 * when there was more than an mss here, and the timer 17752 * goes off, we have to worry about the possibility 17753 * that the sender isn't doing slow-start, or is out 17754 * of step with us for some other reason. We fall 17755 * permanently back in the direction of 17756 * ACK-every-other-packet as suggested in RFC 1122. 17757 */ 17758 if (tcp->tcp_rack_abs_max > 2) 17759 tcp->tcp_rack_abs_max--; 17760 tcp->tcp_rack_cur_max = 2; 17761 } 17762 mp = tcp_ack_mp(tcp); 17763 17764 if (mp != NULL) { 17765 BUMP_LOCAL(tcp->tcp_obsegs); 17766 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 17767 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 17768 tcp_send_data(tcp, mp); 17769 } 17770 } 17771 17772 17773 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 17774 static mblk_t * 17775 tcp_ack_mp(tcp_t *tcp) 17776 { 17777 uint32_t seq_no; 17778 tcp_stack_t *tcps = tcp->tcp_tcps; 17779 conn_t *connp = tcp->tcp_connp; 17780 17781 /* 17782 * There are a few cases to be considered while setting the sequence no. 17783 * Essentially, we can come here while processing an unacceptable pkt 17784 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 17785 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 17786 * If we are here for a zero window probe, stick with suna. In all 17787 * other cases, we check if suna + swnd encompasses snxt and set 17788 * the sequence number to snxt, if so. If snxt falls outside the 17789 * window (the receiver probably shrunk its window), we will go with 17790 * suna + swnd, otherwise the sequence no will be unacceptable to the 17791 * receiver. 17792 */ 17793 if (tcp->tcp_zero_win_probe) { 17794 seq_no = tcp->tcp_suna; 17795 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 17796 ASSERT(tcp->tcp_swnd == 0); 17797 seq_no = tcp->tcp_snxt; 17798 } else { 17799 seq_no = SEQ_GT(tcp->tcp_snxt, 17800 (tcp->tcp_suna + tcp->tcp_swnd)) ? 17801 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 17802 } 17803 17804 if (tcp->tcp_valid_bits) { 17805 /* 17806 * For the complex case where we have to send some 17807 * controls (FIN or SYN), let tcp_xmit_mp do it. 17808 */ 17809 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 17810 NULL, B_FALSE)); 17811 } else { 17812 /* Generate a simple ACK */ 17813 int data_length; 17814 uchar_t *rptr; 17815 tcpha_t *tcpha; 17816 mblk_t *mp1; 17817 int32_t total_hdr_len; 17818 int32_t tcp_hdr_len; 17819 int32_t num_sack_blk = 0; 17820 int32_t sack_opt_len; 17821 ip_xmit_attr_t *ixa = connp->conn_ixa; 17822 17823 /* 17824 * Allocate space for TCP + IP headers 17825 * and link-level header 17826 */ 17827 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 17828 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 17829 tcp->tcp_num_sack_blk); 17830 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 17831 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 17832 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; 17833 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; 17834 } else { 17835 total_hdr_len = connp->conn_ht_iphc_len; 17836 tcp_hdr_len = connp->conn_ht_ulp_len; 17837 } 17838 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 17839 if (!mp1) 17840 return (NULL); 17841 17842 /* Update the latest receive window size in TCP header. */ 17843 tcp->tcp_tcpha->tha_win = 17844 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 17845 /* copy in prototype TCP + IP header */ 17846 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 17847 mp1->b_rptr = rptr; 17848 mp1->b_wptr = rptr + total_hdr_len; 17849 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); 17850 17851 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; 17852 17853 /* Set the TCP sequence number. */ 17854 tcpha->tha_seq = htonl(seq_no); 17855 17856 /* Set up the TCP flag field. */ 17857 tcpha->tha_flags = (uchar_t)TH_ACK; 17858 if (tcp->tcp_ecn_echo_on) 17859 tcpha->tha_flags |= TH_ECE; 17860 17861 tcp->tcp_rack = tcp->tcp_rnxt; 17862 tcp->tcp_rack_cnt = 0; 17863 17864 /* fill in timestamp option if in use */ 17865 if (tcp->tcp_snd_ts_ok) { 17866 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; 17867 17868 U32_TO_BE32(llbolt, 17869 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); 17870 U32_TO_BE32(tcp->tcp_ts_recent, 17871 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); 17872 } 17873 17874 /* Fill in SACK options */ 17875 if (num_sack_blk > 0) { 17876 uchar_t *wptr = (uchar_t *)tcpha + 17877 connp->conn_ht_ulp_len; 17878 sack_blk_t *tmp; 17879 int32_t i; 17880 17881 wptr[0] = TCPOPT_NOP; 17882 wptr[1] = TCPOPT_NOP; 17883 wptr[2] = TCPOPT_SACK; 17884 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 17885 sizeof (sack_blk_t); 17886 wptr += TCPOPT_REAL_SACK_LEN; 17887 17888 tmp = tcp->tcp_sack_list; 17889 for (i = 0; i < num_sack_blk; i++) { 17890 U32_TO_BE32(tmp[i].begin, wptr); 17891 wptr += sizeof (tcp_seq); 17892 U32_TO_BE32(tmp[i].end, wptr); 17893 wptr += sizeof (tcp_seq); 17894 } 17895 tcpha->tha_offset_and_reserved += 17896 ((num_sack_blk * 2 + 1) << 4); 17897 } 17898 17899 ixa->ixa_pktlen = total_hdr_len; 17900 17901 if (ixa->ixa_flags & IXAF_IS_IPV4) { 17902 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); 17903 } else { 17904 ip6_t *ip6 = (ip6_t *)rptr; 17905 17906 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); 17907 } 17908 17909 /* 17910 * Prime pump for checksum calculation in IP. Include the 17911 * adjustment for a source route if any. 17912 */ 17913 data_length = tcp_hdr_len + connp->conn_sum; 17914 data_length = (data_length >> 16) + (data_length & 0xFFFF); 17915 tcpha->tha_sum = htons(data_length); 17916 17917 if (tcp->tcp_ip_forward_progress) { 17918 tcp->tcp_ip_forward_progress = B_FALSE; 17919 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; 17920 } else { 17921 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; 17922 } 17923 return (mp1); 17924 } 17925 } 17926 17927 /* 17928 * Hash list insertion routine for tcp_t structures. Each hash bucket 17929 * contains a list of tcp_t entries, and each entry is bound to a unique 17930 * port. If there are multiple tcp_t's that are bound to the same port, then 17931 * one of them will be linked into the hash bucket list, and the rest will 17932 * hang off of that one entry. For each port, entries bound to a specific IP 17933 * address will be inserted before those those bound to INADDR_ANY. 17934 */ 17935 static void 17936 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 17937 { 17938 tcp_t **tcpp; 17939 tcp_t *tcpnext; 17940 tcp_t *tcphash; 17941 conn_t *connp = tcp->tcp_connp; 17942 conn_t *connext; 17943 17944 if (tcp->tcp_ptpbhn != NULL) { 17945 ASSERT(!caller_holds_lock); 17946 tcp_bind_hash_remove(tcp); 17947 } 17948 tcpp = &tbf->tf_tcp; 17949 if (!caller_holds_lock) { 17950 mutex_enter(&tbf->tf_lock); 17951 } else { 17952 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 17953 } 17954 tcphash = tcpp[0]; 17955 tcpnext = NULL; 17956 if (tcphash != NULL) { 17957 /* Look for an entry using the same port */ 17958 while ((tcphash = tcpp[0]) != NULL && 17959 connp->conn_lport != tcphash->tcp_connp->conn_lport) 17960 tcpp = &(tcphash->tcp_bind_hash); 17961 17962 /* The port was not found, just add to the end */ 17963 if (tcphash == NULL) 17964 goto insert; 17965 17966 /* 17967 * OK, there already exists an entry bound to the 17968 * same port. 17969 * 17970 * If the new tcp bound to the INADDR_ANY address 17971 * and the first one in the list is not bound to 17972 * INADDR_ANY we skip all entries until we find the 17973 * first one bound to INADDR_ANY. 17974 * This makes sure that applications binding to a 17975 * specific address get preference over those binding to 17976 * INADDR_ANY. 17977 */ 17978 tcpnext = tcphash; 17979 connext = tcpnext->tcp_connp; 17980 tcphash = NULL; 17981 if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) && 17982 !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { 17983 while ((tcpnext = tcpp[0]) != NULL) { 17984 connext = tcpnext->tcp_connp; 17985 if (!V6_OR_V4_INADDR_ANY( 17986 connext->conn_bound_addr_v6)) 17987 tcpp = &(tcpnext->tcp_bind_hash_port); 17988 else 17989 break; 17990 } 17991 if (tcpnext != NULL) { 17992 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 17993 tcphash = tcpnext->tcp_bind_hash; 17994 if (tcphash != NULL) { 17995 tcphash->tcp_ptpbhn = 17996 &(tcp->tcp_bind_hash); 17997 tcpnext->tcp_bind_hash = NULL; 17998 } 17999 } 18000 } else { 18001 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 18002 tcphash = tcpnext->tcp_bind_hash; 18003 if (tcphash != NULL) { 18004 tcphash->tcp_ptpbhn = 18005 &(tcp->tcp_bind_hash); 18006 tcpnext->tcp_bind_hash = NULL; 18007 } 18008 } 18009 } 18010 insert: 18011 tcp->tcp_bind_hash_port = tcpnext; 18012 tcp->tcp_bind_hash = tcphash; 18013 tcp->tcp_ptpbhn = tcpp; 18014 tcpp[0] = tcp; 18015 if (!caller_holds_lock) 18016 mutex_exit(&tbf->tf_lock); 18017 } 18018 18019 /* 18020 * Hash list removal routine for tcp_t structures. 18021 */ 18022 static void 18023 tcp_bind_hash_remove(tcp_t *tcp) 18024 { 18025 tcp_t *tcpnext; 18026 kmutex_t *lockp; 18027 tcp_stack_t *tcps = tcp->tcp_tcps; 18028 conn_t *connp = tcp->tcp_connp; 18029 18030 if (tcp->tcp_ptpbhn == NULL) 18031 return; 18032 18033 /* 18034 * Extract the lock pointer in case there are concurrent 18035 * hash_remove's for this instance. 18036 */ 18037 ASSERT(connp->conn_lport != 0); 18038 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH( 18039 connp->conn_lport)].tf_lock; 18040 18041 ASSERT(lockp != NULL); 18042 mutex_enter(lockp); 18043 if (tcp->tcp_ptpbhn) { 18044 tcpnext = tcp->tcp_bind_hash_port; 18045 if (tcpnext != NULL) { 18046 tcp->tcp_bind_hash_port = NULL; 18047 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18048 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 18049 if (tcpnext->tcp_bind_hash != NULL) { 18050 tcpnext->tcp_bind_hash->tcp_ptpbhn = 18051 &(tcpnext->tcp_bind_hash); 18052 tcp->tcp_bind_hash = NULL; 18053 } 18054 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 18055 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 18056 tcp->tcp_bind_hash = NULL; 18057 } 18058 *tcp->tcp_ptpbhn = tcpnext; 18059 tcp->tcp_ptpbhn = NULL; 18060 } 18061 mutex_exit(lockp); 18062 } 18063 18064 18065 /* 18066 * Hash list lookup routine for tcp_t structures. 18067 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 18068 */ 18069 static tcp_t * 18070 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 18071 { 18072 tf_t *tf; 18073 tcp_t *tcp; 18074 18075 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18076 mutex_enter(&tf->tf_lock); 18077 for (tcp = tf->tf_tcp; tcp != NULL; 18078 tcp = tcp->tcp_acceptor_hash) { 18079 if (tcp->tcp_acceptor_id == id) { 18080 CONN_INC_REF(tcp->tcp_connp); 18081 mutex_exit(&tf->tf_lock); 18082 return (tcp); 18083 } 18084 } 18085 mutex_exit(&tf->tf_lock); 18086 return (NULL); 18087 } 18088 18089 18090 /* 18091 * Hash list insertion routine for tcp_t structures. 18092 */ 18093 void 18094 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 18095 { 18096 tf_t *tf; 18097 tcp_t **tcpp; 18098 tcp_t *tcpnext; 18099 tcp_stack_t *tcps = tcp->tcp_tcps; 18100 18101 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 18102 18103 if (tcp->tcp_ptpahn != NULL) 18104 tcp_acceptor_hash_remove(tcp); 18105 tcpp = &tf->tf_tcp; 18106 mutex_enter(&tf->tf_lock); 18107 tcpnext = tcpp[0]; 18108 if (tcpnext) 18109 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 18110 tcp->tcp_acceptor_hash = tcpnext; 18111 tcp->tcp_ptpahn = tcpp; 18112 tcpp[0] = tcp; 18113 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 18114 mutex_exit(&tf->tf_lock); 18115 } 18116 18117 /* 18118 * Hash list removal routine for tcp_t structures. 18119 */ 18120 static void 18121 tcp_acceptor_hash_remove(tcp_t *tcp) 18122 { 18123 tcp_t *tcpnext; 18124 kmutex_t *lockp; 18125 18126 /* 18127 * Extract the lock pointer in case there are concurrent 18128 * hash_remove's for this instance. 18129 */ 18130 lockp = tcp->tcp_acceptor_lockp; 18131 18132 if (tcp->tcp_ptpahn == NULL) 18133 return; 18134 18135 ASSERT(lockp != NULL); 18136 mutex_enter(lockp); 18137 if (tcp->tcp_ptpahn) { 18138 tcpnext = tcp->tcp_acceptor_hash; 18139 if (tcpnext) { 18140 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 18141 tcp->tcp_acceptor_hash = NULL; 18142 } 18143 *tcp->tcp_ptpahn = tcpnext; 18144 tcp->tcp_ptpahn = NULL; 18145 } 18146 mutex_exit(lockp); 18147 tcp->tcp_acceptor_lockp = NULL; 18148 } 18149 18150 /* 18151 * Type three generator adapted from the random() function in 4.4 BSD: 18152 */ 18153 18154 /* 18155 * Copyright (c) 1983, 1993 18156 * The Regents of the University of California. All rights reserved. 18157 * 18158 * Redistribution and use in source and binary forms, with or without 18159 * modification, are permitted provided that the following conditions 18160 * are met: 18161 * 1. Redistributions of source code must retain the above copyright 18162 * notice, this list of conditions and the following disclaimer. 18163 * 2. Redistributions in binary form must reproduce the above copyright 18164 * notice, this list of conditions and the following disclaimer in the 18165 * documentation and/or other materials provided with the distribution. 18166 * 3. All advertising materials mentioning features or use of this software 18167 * must display the following acknowledgement: 18168 * This product includes software developed by the University of 18169 * California, Berkeley and its contributors. 18170 * 4. Neither the name of the University nor the names of its contributors 18171 * may be used to endorse or promote products derived from this software 18172 * without specific prior written permission. 18173 * 18174 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18175 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18176 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18177 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 18178 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18179 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 18180 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 18181 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 18182 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 18183 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 18184 * SUCH DAMAGE. 18185 */ 18186 18187 /* Type 3 -- x**31 + x**3 + 1 */ 18188 #define DEG_3 31 18189 #define SEP_3 3 18190 18191 18192 /* Protected by tcp_random_lock */ 18193 static int tcp_randtbl[DEG_3 + 1]; 18194 18195 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 18196 static int *tcp_random_rptr = &tcp_randtbl[1]; 18197 18198 static int *tcp_random_state = &tcp_randtbl[1]; 18199 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 18200 18201 kmutex_t tcp_random_lock; 18202 18203 void 18204 tcp_random_init(void) 18205 { 18206 int i; 18207 hrtime_t hrt; 18208 time_t wallclock; 18209 uint64_t result; 18210 18211 /* 18212 * Use high-res timer and current time for seed. Gethrtime() returns 18213 * a longlong, which may contain resolution down to nanoseconds. 18214 * The current time will either be a 32-bit or a 64-bit quantity. 18215 * XOR the two together in a 64-bit result variable. 18216 * Convert the result to a 32-bit value by multiplying the high-order 18217 * 32-bits by the low-order 32-bits. 18218 */ 18219 18220 hrt = gethrtime(); 18221 (void) drv_getparm(TIME, &wallclock); 18222 result = (uint64_t)wallclock ^ (uint64_t)hrt; 18223 mutex_enter(&tcp_random_lock); 18224 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 18225 (result & 0xffffffff); 18226 18227 for (i = 1; i < DEG_3; i++) 18228 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 18229 + 12345; 18230 tcp_random_fptr = &tcp_random_state[SEP_3]; 18231 tcp_random_rptr = &tcp_random_state[0]; 18232 mutex_exit(&tcp_random_lock); 18233 for (i = 0; i < 10 * DEG_3; i++) 18234 (void) tcp_random(); 18235 } 18236 18237 /* 18238 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 18239 * This range is selected to be approximately centered on TCP_ISS / 2, 18240 * and easy to compute. We get this value by generating a 32-bit random 18241 * number, selecting out the high-order 17 bits, and then adding one so 18242 * that we never return zero. 18243 */ 18244 int 18245 tcp_random(void) 18246 { 18247 int i; 18248 18249 mutex_enter(&tcp_random_lock); 18250 *tcp_random_fptr += *tcp_random_rptr; 18251 18252 /* 18253 * The high-order bits are more random than the low-order bits, 18254 * so we select out the high-order 17 bits and add one so that 18255 * we never return zero. 18256 */ 18257 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 18258 if (++tcp_random_fptr >= tcp_random_end_ptr) { 18259 tcp_random_fptr = tcp_random_state; 18260 ++tcp_random_rptr; 18261 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 18262 tcp_random_rptr = tcp_random_state; 18263 18264 mutex_exit(&tcp_random_lock); 18265 return (i); 18266 } 18267 18268 static int 18269 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 18270 int *t_errorp, int *sys_errorp) 18271 { 18272 int error; 18273 int is_absreq_failure; 18274 t_scalar_t *opt_lenp; 18275 t_scalar_t opt_offset; 18276 int prim_type; 18277 struct T_conn_req *tcreqp; 18278 struct T_conn_res *tcresp; 18279 cred_t *cr; 18280 18281 /* 18282 * All Solaris components should pass a db_credp 18283 * for this TPI message, hence we ASSERT. 18284 * But in case there is some other M_PROTO that looks 18285 * like a TPI message sent by some other kernel 18286 * component, we check and return an error. 18287 */ 18288 cr = msg_getcred(mp, NULL); 18289 ASSERT(cr != NULL); 18290 if (cr == NULL) 18291 return (-1); 18292 18293 prim_type = ((union T_primitives *)mp->b_rptr)->type; 18294 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 18295 prim_type == T_CONN_RES); 18296 18297 switch (prim_type) { 18298 case T_CONN_REQ: 18299 tcreqp = (struct T_conn_req *)mp->b_rptr; 18300 opt_offset = tcreqp->OPT_offset; 18301 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 18302 break; 18303 case O_T_CONN_RES: 18304 case T_CONN_RES: 18305 tcresp = (struct T_conn_res *)mp->b_rptr; 18306 opt_offset = tcresp->OPT_offset; 18307 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 18308 break; 18309 } 18310 18311 *t_errorp = 0; 18312 *sys_errorp = 0; 18313 *do_disconnectp = 0; 18314 18315 error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp, 18316 opt_offset, cr, &tcp_opt_obj, 18317 NULL, &is_absreq_failure); 18318 18319 switch (error) { 18320 case 0: /* no error */ 18321 ASSERT(is_absreq_failure == 0); 18322 return (0); 18323 case ENOPROTOOPT: 18324 *t_errorp = TBADOPT; 18325 break; 18326 case EACCES: 18327 *t_errorp = TACCES; 18328 break; 18329 default: 18330 *t_errorp = TSYSERR; *sys_errorp = error; 18331 break; 18332 } 18333 if (is_absreq_failure != 0) { 18334 /* 18335 * The connection request should get the local ack 18336 * T_OK_ACK and then a T_DISCON_IND. 18337 */ 18338 *do_disconnectp = 1; 18339 } 18340 return (-1); 18341 } 18342 18343 /* 18344 * Split this function out so that if the secret changes, I'm okay. 18345 * 18346 * Initialize the tcp_iss_cookie and tcp_iss_key. 18347 */ 18348 18349 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 18350 18351 static void 18352 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 18353 { 18354 struct { 18355 int32_t current_time; 18356 uint32_t randnum; 18357 uint16_t pad; 18358 uint8_t ether[6]; 18359 uint8_t passwd[PASSWD_SIZE]; 18360 } tcp_iss_cookie; 18361 time_t t; 18362 18363 /* 18364 * Start with the current absolute time. 18365 */ 18366 (void) drv_getparm(TIME, &t); 18367 tcp_iss_cookie.current_time = t; 18368 18369 /* 18370 * XXX - Need a more random number per RFC 1750, not this crap. 18371 * OTOH, if what follows is pretty random, then I'm in better shape. 18372 */ 18373 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 18374 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 18375 18376 /* 18377 * The cpu_type_info is pretty non-random. Ugggh. It does serve 18378 * as a good template. 18379 */ 18380 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 18381 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 18382 18383 /* 18384 * The pass-phrase. Normally this is supplied by user-called NDD. 18385 */ 18386 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 18387 18388 /* 18389 * See 4010593 if this section becomes a problem again, 18390 * but the local ethernet address is useful here. 18391 */ 18392 (void) localetheraddr(NULL, 18393 (struct ether_addr *)&tcp_iss_cookie.ether); 18394 18395 /* 18396 * Hash 'em all together. The MD5Final is called per-connection. 18397 */ 18398 mutex_enter(&tcps->tcps_iss_key_lock); 18399 MD5Init(&tcps->tcps_iss_key); 18400 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 18401 sizeof (tcp_iss_cookie)); 18402 mutex_exit(&tcps->tcps_iss_key_lock); 18403 } 18404 18405 /* 18406 * Set the RFC 1948 pass phrase 18407 */ 18408 /* ARGSUSED */ 18409 static int 18410 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 18411 cred_t *cr) 18412 { 18413 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18414 18415 /* 18416 * Basically, value contains a new pass phrase. Pass it along! 18417 */ 18418 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 18419 return (0); 18420 } 18421 18422 /* ARGSUSED */ 18423 static int 18424 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 18425 { 18426 bzero(buf, sizeof (tcp_sack_info_t)); 18427 return (0); 18428 } 18429 18430 /* 18431 * Called by IP when IP is loaded into the kernel 18432 */ 18433 void 18434 tcp_ddi_g_init(void) 18435 { 18436 tcp_timercache = kmem_cache_create("tcp_timercache", 18437 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 18438 NULL, NULL, NULL, NULL, NULL, 0); 18439 18440 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 18441 sizeof (tcp_sack_info_t), 0, 18442 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 18443 18444 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 18445 18446 /* Initialize the random number generator */ 18447 tcp_random_init(); 18448 18449 /* A single callback independently of how many netstacks we have */ 18450 ip_squeue_init(tcp_squeue_add); 18451 18452 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 18453 18454 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 18455 18456 /* 18457 * We want to be informed each time a stack is created or 18458 * destroyed in the kernel, so we can maintain the 18459 * set of tcp_stack_t's. 18460 */ 18461 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 18462 } 18463 18464 18465 #define INET_NAME "ip" 18466 18467 /* 18468 * Initialize the TCP stack instance. 18469 */ 18470 static void * 18471 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 18472 { 18473 tcp_stack_t *tcps; 18474 tcpparam_t *pa; 18475 int i; 18476 int error = 0; 18477 major_t major; 18478 18479 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 18480 tcps->tcps_netstack = ns; 18481 18482 /* Initialize locks */ 18483 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 18484 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 18485 18486 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 18487 tcps->tcps_g_epriv_ports[0] = 2049; 18488 tcps->tcps_g_epriv_ports[1] = 4045; 18489 tcps->tcps_min_anonpriv_port = 512; 18490 18491 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 18492 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 18493 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 18494 TCP_FANOUT_SIZE, KM_SLEEP); 18495 18496 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18497 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 18498 MUTEX_DEFAULT, NULL); 18499 } 18500 18501 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 18502 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 18503 MUTEX_DEFAULT, NULL); 18504 } 18505 18506 /* TCP's IPsec code calls the packet dropper. */ 18507 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 18508 18509 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 18510 tcps->tcps_params = pa; 18511 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18512 18513 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 18514 A_CNT(lcl_tcp_param_arr), tcps); 18515 18516 /* 18517 * Note: To really walk the device tree you need the devinfo 18518 * pointer to your device which is only available after probe/attach. 18519 * The following is safe only because it uses ddi_root_node() 18520 */ 18521 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 18522 tcp_opt_obj.odb_opt_arr_cnt); 18523 18524 /* 18525 * Initialize RFC 1948 secret values. This will probably be reset once 18526 * by the boot scripts. 18527 * 18528 * Use NULL name, as the name is caught by the new lockstats. 18529 * 18530 * Initialize with some random, non-guessable string, like the global 18531 * T_INFO_ACK. 18532 */ 18533 18534 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 18535 sizeof (tcp_g_t_info_ack), tcps); 18536 18537 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 18538 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 18539 18540 major = mod_name_to_major(INET_NAME); 18541 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 18542 ASSERT(error == 0); 18543 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 18544 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 18545 cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); 18546 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 18547 18548 return (tcps); 18549 } 18550 18551 /* 18552 * Called when the IP module is about to be unloaded. 18553 */ 18554 void 18555 tcp_ddi_g_destroy(void) 18556 { 18557 tcp_g_kstat_fini(tcp_g_kstat); 18558 tcp_g_kstat = NULL; 18559 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 18560 18561 mutex_destroy(&tcp_random_lock); 18562 18563 kmem_cache_destroy(tcp_timercache); 18564 kmem_cache_destroy(tcp_sack_info_cache); 18565 18566 netstack_unregister(NS_TCP); 18567 } 18568 18569 /* 18570 * Free the TCP stack instance. 18571 */ 18572 static void 18573 tcp_stack_fini(netstackid_t stackid, void *arg) 18574 { 18575 tcp_stack_t *tcps = (tcp_stack_t *)arg; 18576 int i; 18577 18578 freeb(tcps->tcps_ixa_cleanup_mp); 18579 tcps->tcps_ixa_cleanup_mp = NULL; 18580 cv_destroy(&tcps->tcps_ixa_cleanup_cv); 18581 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 18582 18583 nd_free(&tcps->tcps_g_nd); 18584 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 18585 tcps->tcps_params = NULL; 18586 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 18587 tcps->tcps_wroff_xtra_param = NULL; 18588 18589 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 18590 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 18591 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 18592 } 18593 18594 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 18595 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 18596 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 18597 } 18598 18599 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 18600 tcps->tcps_bind_fanout = NULL; 18601 18602 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 18603 tcps->tcps_acceptor_fanout = NULL; 18604 18605 mutex_destroy(&tcps->tcps_iss_key_lock); 18606 mutex_destroy(&tcps->tcps_epriv_port_lock); 18607 18608 ip_drop_unregister(&tcps->tcps_dropper); 18609 18610 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 18611 tcps->tcps_kstat = NULL; 18612 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 18613 18614 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 18615 tcps->tcps_mibkp = NULL; 18616 18617 ldi_ident_release(tcps->tcps_ldi_ident); 18618 kmem_free(tcps, sizeof (*tcps)); 18619 } 18620 18621 /* 18622 * Generate ISS, taking into account NDD changes may happen halfway through. 18623 * (If the iss is not zero, set it.) 18624 */ 18625 18626 static void 18627 tcp_iss_init(tcp_t *tcp) 18628 { 18629 MD5_CTX context; 18630 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 18631 uint32_t answer[4]; 18632 tcp_stack_t *tcps = tcp->tcp_tcps; 18633 conn_t *connp = tcp->tcp_connp; 18634 18635 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 18636 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 18637 switch (tcps->tcps_strong_iss) { 18638 case 2: 18639 mutex_enter(&tcps->tcps_iss_key_lock); 18640 context = tcps->tcps_iss_key; 18641 mutex_exit(&tcps->tcps_iss_key_lock); 18642 arg.ports = connp->conn_ports; 18643 arg.src = connp->conn_laddr_v6; 18644 arg.dst = connp->conn_faddr_v6; 18645 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 18646 MD5Final((uchar_t *)answer, &context); 18647 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 18648 /* 18649 * Now that we've hashed into a unique per-connection sequence 18650 * space, add a random increment per strong_iss == 1. So I 18651 * guess we'll have to... 18652 */ 18653 /* FALLTHRU */ 18654 case 1: 18655 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 18656 break; 18657 default: 18658 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 18659 break; 18660 } 18661 tcp->tcp_valid_bits = TCP_ISS_VALID; 18662 tcp->tcp_fss = tcp->tcp_iss - 1; 18663 tcp->tcp_suna = tcp->tcp_iss; 18664 tcp->tcp_snxt = tcp->tcp_iss + 1; 18665 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 18666 tcp->tcp_csuna = tcp->tcp_snxt; 18667 } 18668 18669 /* 18670 * Exported routine for extracting active tcp connection status. 18671 * 18672 * This is used by the Solaris Cluster Networking software to 18673 * gather a list of connections that need to be forwarded to 18674 * specific nodes in the cluster when configuration changes occur. 18675 * 18676 * The callback is invoked for each tcp_t structure from all netstacks, 18677 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 18678 * from the netstack with the specified stack_id. Returning 18679 * non-zero from the callback routine terminates the search. 18680 */ 18681 int 18682 cl_tcp_walk_list(netstackid_t stack_id, 18683 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 18684 { 18685 netstack_handle_t nh; 18686 netstack_t *ns; 18687 int ret = 0; 18688 18689 if (stack_id >= 0) { 18690 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 18691 return (EINVAL); 18692 18693 ret = cl_tcp_walk_list_stack(cl_callback, arg, 18694 ns->netstack_tcp); 18695 netstack_rele(ns); 18696 return (ret); 18697 } 18698 18699 netstack_next_init(&nh); 18700 while ((ns = netstack_next(&nh)) != NULL) { 18701 ret = cl_tcp_walk_list_stack(cl_callback, arg, 18702 ns->netstack_tcp); 18703 netstack_rele(ns); 18704 } 18705 netstack_next_fini(&nh); 18706 return (ret); 18707 } 18708 18709 static int 18710 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 18711 tcp_stack_t *tcps) 18712 { 18713 tcp_t *tcp; 18714 cl_tcp_info_t cl_tcpi; 18715 connf_t *connfp; 18716 conn_t *connp; 18717 int i; 18718 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18719 18720 ASSERT(callback != NULL); 18721 18722 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 18723 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 18724 connp = NULL; 18725 18726 while ((connp = 18727 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 18728 18729 tcp = connp->conn_tcp; 18730 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 18731 cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion; 18732 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 18733 cl_tcpi.cl_tcpi_lport = connp->conn_lport; 18734 cl_tcpi.cl_tcpi_fport = connp->conn_fport; 18735 cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6; 18736 cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6; 18737 18738 /* 18739 * If the callback returns non-zero 18740 * we terminate the traversal. 18741 */ 18742 if ((*callback)(&cl_tcpi, arg) != 0) { 18743 CONN_DEC_REF(tcp->tcp_connp); 18744 return (1); 18745 } 18746 } 18747 } 18748 18749 return (0); 18750 } 18751 18752 /* 18753 * Macros used for accessing the different types of sockaddr 18754 * structures inside a tcp_ioc_abort_conn_t. 18755 */ 18756 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 18757 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 18758 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 18759 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 18760 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 18761 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 18762 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 18763 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 18764 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 18765 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 18766 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 18767 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 18768 18769 /* 18770 * Return the correct error code to mimic the behavior 18771 * of a connection reset. 18772 */ 18773 #define TCP_AC_GET_ERRCODE(state, err) { \ 18774 switch ((state)) { \ 18775 case TCPS_SYN_SENT: \ 18776 case TCPS_SYN_RCVD: \ 18777 (err) = ECONNREFUSED; \ 18778 break; \ 18779 case TCPS_ESTABLISHED: \ 18780 case TCPS_FIN_WAIT_1: \ 18781 case TCPS_FIN_WAIT_2: \ 18782 case TCPS_CLOSE_WAIT: \ 18783 (err) = ECONNRESET; \ 18784 break; \ 18785 case TCPS_CLOSING: \ 18786 case TCPS_LAST_ACK: \ 18787 case TCPS_TIME_WAIT: \ 18788 (err) = 0; \ 18789 break; \ 18790 default: \ 18791 (err) = ENXIO; \ 18792 } \ 18793 } 18794 18795 /* 18796 * Check if a tcp structure matches the info in acp. 18797 */ 18798 #define TCP_AC_ADDR_MATCH(acp, connp, tcp) \ 18799 (((acp)->ac_local.ss_family == AF_INET) ? \ 18800 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 18801 TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) && \ 18802 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 18803 TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) && \ 18804 (TCP_AC_V4LPORT((acp)) == 0 || \ 18805 TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) && \ 18806 (TCP_AC_V4RPORT((acp)) == 0 || \ 18807 TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) && \ 18808 (acp)->ac_start <= (tcp)->tcp_state && \ 18809 (acp)->ac_end >= (tcp)->tcp_state) : \ 18810 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 18811 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 18812 &(connp)->conn_laddr_v6)) && \ 18813 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 18814 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 18815 &(connp)->conn_faddr_v6)) && \ 18816 (TCP_AC_V6LPORT((acp)) == 0 || \ 18817 TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) && \ 18818 (TCP_AC_V6RPORT((acp)) == 0 || \ 18819 TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) && \ 18820 (acp)->ac_start <= (tcp)->tcp_state && \ 18821 (acp)->ac_end >= (tcp)->tcp_state)) 18822 18823 #define TCP_AC_MATCH(acp, connp, tcp) \ 18824 (((acp)->ac_zoneid == ALL_ZONES || \ 18825 (acp)->ac_zoneid == (connp)->conn_zoneid) ? \ 18826 TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0) 18827 18828 /* 18829 * Build a message containing a tcp_ioc_abort_conn_t structure 18830 * which is filled in with information from acp and tp. 18831 */ 18832 static mblk_t * 18833 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 18834 { 18835 mblk_t *mp; 18836 tcp_ioc_abort_conn_t *tacp; 18837 18838 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 18839 if (mp == NULL) 18840 return (NULL); 18841 18842 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 18843 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 18844 sizeof (uint32_t)); 18845 18846 tacp->ac_start = acp->ac_start; 18847 tacp->ac_end = acp->ac_end; 18848 tacp->ac_zoneid = acp->ac_zoneid; 18849 18850 if (acp->ac_local.ss_family == AF_INET) { 18851 tacp->ac_local.ss_family = AF_INET; 18852 tacp->ac_remote.ss_family = AF_INET; 18853 TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4; 18854 TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4; 18855 TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport; 18856 TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport; 18857 } else { 18858 tacp->ac_local.ss_family = AF_INET6; 18859 tacp->ac_remote.ss_family = AF_INET6; 18860 TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6; 18861 TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6; 18862 TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport; 18863 TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport; 18864 } 18865 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 18866 return (mp); 18867 } 18868 18869 /* 18870 * Print a tcp_ioc_abort_conn_t structure. 18871 */ 18872 static void 18873 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 18874 { 18875 char lbuf[128]; 18876 char rbuf[128]; 18877 sa_family_t af; 18878 in_port_t lport, rport; 18879 ushort_t logflags; 18880 18881 af = acp->ac_local.ss_family; 18882 18883 if (af == AF_INET) { 18884 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 18885 lbuf, 128); 18886 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 18887 rbuf, 128); 18888 lport = ntohs(TCP_AC_V4LPORT(acp)); 18889 rport = ntohs(TCP_AC_V4RPORT(acp)); 18890 } else { 18891 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 18892 lbuf, 128); 18893 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 18894 rbuf, 128); 18895 lport = ntohs(TCP_AC_V6LPORT(acp)); 18896 rport = ntohs(TCP_AC_V6RPORT(acp)); 18897 } 18898 18899 logflags = SL_TRACE | SL_NOTE; 18900 /* 18901 * Don't print this message to the console if the operation was done 18902 * to a non-global zone. 18903 */ 18904 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 18905 logflags |= SL_CONSOLE; 18906 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 18907 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 18908 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 18909 acp->ac_start, acp->ac_end); 18910 } 18911 18912 /* 18913 * Called using SQ_FILL when a message built using 18914 * tcp_ioctl_abort_build_msg is put into a queue. 18915 * Note that when we get here there is no wildcard in acp any more. 18916 */ 18917 /* ARGSUSED2 */ 18918 static void 18919 tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, 18920 ip_recv_attr_t *dummy) 18921 { 18922 conn_t *connp = (conn_t *)arg; 18923 tcp_t *tcp = connp->conn_tcp; 18924 tcp_ioc_abort_conn_t *acp; 18925 18926 /* 18927 * Don't accept any input on a closed tcp as this TCP logically does 18928 * not exist on the system. Don't proceed further with this TCP. 18929 * For eg. this packet could trigger another close of this tcp 18930 * which would be disastrous for tcp_refcnt. tcp_close_detached / 18931 * tcp_clean_death / tcp_closei_local must be called at most once 18932 * on a TCP. 18933 */ 18934 if (tcp->tcp_state == TCPS_CLOSED || 18935 tcp->tcp_state == TCPS_BOUND) { 18936 freemsg(mp); 18937 return; 18938 } 18939 18940 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 18941 if (tcp->tcp_state <= acp->ac_end) { 18942 /* 18943 * If we get here, we are already on the correct 18944 * squeue. This ioctl follows the following path 18945 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 18946 * ->tcp_ioctl_abort->squeue_enter (if on a 18947 * different squeue) 18948 */ 18949 int errcode; 18950 18951 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 18952 (void) tcp_clean_death(tcp, errcode, 26); 18953 } 18954 freemsg(mp); 18955 } 18956 18957 /* 18958 * Abort all matching connections on a hash chain. 18959 */ 18960 static int 18961 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 18962 boolean_t exact, tcp_stack_t *tcps) 18963 { 18964 int nmatch, err = 0; 18965 tcp_t *tcp; 18966 MBLKP mp, last, listhead = NULL; 18967 conn_t *tconnp; 18968 connf_t *connfp; 18969 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18970 18971 connfp = &ipst->ips_ipcl_conn_fanout[index]; 18972 18973 startover: 18974 nmatch = 0; 18975 18976 mutex_enter(&connfp->connf_lock); 18977 for (tconnp = connfp->connf_head; tconnp != NULL; 18978 tconnp = tconnp->conn_next) { 18979 tcp = tconnp->conn_tcp; 18980 /* 18981 * We are missing a check on sin6_scope_id for linklocals here, 18982 * but current usage is just for aborting based on zoneid 18983 * for shared-IP zones. 18984 */ 18985 if (TCP_AC_MATCH(acp, tconnp, tcp)) { 18986 CONN_INC_REF(tconnp); 18987 mp = tcp_ioctl_abort_build_msg(acp, tcp); 18988 if (mp == NULL) { 18989 err = ENOMEM; 18990 CONN_DEC_REF(tconnp); 18991 break; 18992 } 18993 mp->b_prev = (mblk_t *)tcp; 18994 18995 if (listhead == NULL) { 18996 listhead = mp; 18997 last = mp; 18998 } else { 18999 last->b_next = mp; 19000 last = mp; 19001 } 19002 nmatch++; 19003 if (exact) 19004 break; 19005 } 19006 19007 /* Avoid holding lock for too long. */ 19008 if (nmatch >= 500) 19009 break; 19010 } 19011 mutex_exit(&connfp->connf_lock); 19012 19013 /* Pass mp into the correct tcp */ 19014 while ((mp = listhead) != NULL) { 19015 listhead = listhead->b_next; 19016 tcp = (tcp_t *)mp->b_prev; 19017 mp->b_next = mp->b_prev = NULL; 19018 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, 19019 tcp_ioctl_abort_handler, tcp->tcp_connp, NULL, 19020 SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 19021 } 19022 19023 *count += nmatch; 19024 if (nmatch >= 500 && err == 0) 19025 goto startover; 19026 return (err); 19027 } 19028 19029 /* 19030 * Abort all connections that matches the attributes specified in acp. 19031 */ 19032 static int 19033 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 19034 { 19035 sa_family_t af; 19036 uint32_t ports; 19037 uint16_t *pports; 19038 int err = 0, count = 0; 19039 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 19040 int index = -1; 19041 ushort_t logflags; 19042 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19043 19044 af = acp->ac_local.ss_family; 19045 19046 if (af == AF_INET) { 19047 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 19048 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 19049 pports = (uint16_t *)&ports; 19050 pports[1] = TCP_AC_V4LPORT(acp); 19051 pports[0] = TCP_AC_V4RPORT(acp); 19052 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 19053 } 19054 } else { 19055 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 19056 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 19057 pports = (uint16_t *)&ports; 19058 pports[1] = TCP_AC_V6LPORT(acp); 19059 pports[0] = TCP_AC_V6RPORT(acp); 19060 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 19061 } 19062 } 19063 19064 /* 19065 * For cases where remote addr, local port, and remote port are non- 19066 * wildcards, tcp_ioctl_abort_bucket will only be called once. 19067 */ 19068 if (index != -1) { 19069 err = tcp_ioctl_abort_bucket(acp, index, 19070 &count, exact, tcps); 19071 } else { 19072 /* 19073 * loop through all entries for wildcard case 19074 */ 19075 for (index = 0; 19076 index < ipst->ips_ipcl_conn_fanout_size; 19077 index++) { 19078 err = tcp_ioctl_abort_bucket(acp, index, 19079 &count, exact, tcps); 19080 if (err != 0) 19081 break; 19082 } 19083 } 19084 19085 logflags = SL_TRACE | SL_NOTE; 19086 /* 19087 * Don't print this message to the console if the operation was done 19088 * to a non-global zone. 19089 */ 19090 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 19091 logflags |= SL_CONSOLE; 19092 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 19093 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 19094 if (err == 0 && count == 0) 19095 err = ENOENT; 19096 return (err); 19097 } 19098 19099 /* 19100 * Process the TCP_IOC_ABORT_CONN ioctl request. 19101 */ 19102 static void 19103 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 19104 { 19105 int err; 19106 IOCP iocp; 19107 MBLKP mp1; 19108 sa_family_t laf, raf; 19109 tcp_ioc_abort_conn_t *acp; 19110 zone_t *zptr; 19111 conn_t *connp = Q_TO_CONN(q); 19112 zoneid_t zoneid = connp->conn_zoneid; 19113 tcp_t *tcp = connp->conn_tcp; 19114 tcp_stack_t *tcps = tcp->tcp_tcps; 19115 19116 iocp = (IOCP)mp->b_rptr; 19117 19118 if ((mp1 = mp->b_cont) == NULL || 19119 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 19120 err = EINVAL; 19121 goto out; 19122 } 19123 19124 /* check permissions */ 19125 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 19126 err = EPERM; 19127 goto out; 19128 } 19129 19130 if (mp1->b_cont != NULL) { 19131 freemsg(mp1->b_cont); 19132 mp1->b_cont = NULL; 19133 } 19134 19135 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 19136 laf = acp->ac_local.ss_family; 19137 raf = acp->ac_remote.ss_family; 19138 19139 /* check that a zone with the supplied zoneid exists */ 19140 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 19141 zptr = zone_find_by_id(zoneid); 19142 if (zptr != NULL) { 19143 zone_rele(zptr); 19144 } else { 19145 err = EINVAL; 19146 goto out; 19147 } 19148 } 19149 19150 /* 19151 * For exclusive stacks we set the zoneid to zero 19152 * to make TCP operate as if in the global zone. 19153 */ 19154 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 19155 acp->ac_zoneid = GLOBAL_ZONEID; 19156 19157 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 19158 acp->ac_start > acp->ac_end || laf != raf || 19159 (laf != AF_INET && laf != AF_INET6)) { 19160 err = EINVAL; 19161 goto out; 19162 } 19163 19164 tcp_ioctl_abort_dump(acp); 19165 err = tcp_ioctl_abort(acp, tcps); 19166 19167 out: 19168 if (mp1 != NULL) { 19169 freemsg(mp1); 19170 mp->b_cont = NULL; 19171 } 19172 19173 if (err != 0) 19174 miocnak(q, mp, 0, err); 19175 else 19176 miocack(q, mp, 0, 0); 19177 } 19178 19179 /* 19180 * tcp_time_wait_processing() handles processing of incoming packets when 19181 * the tcp is in the TIME_WAIT state. 19182 * A TIME_WAIT tcp that has an associated open TCP stream is never put 19183 * on the time wait list. 19184 */ 19185 void 19186 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 19187 uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira) 19188 { 19189 int32_t bytes_acked; 19190 int32_t gap; 19191 int32_t rgap; 19192 tcp_opt_t tcpopt; 19193 uint_t flags; 19194 uint32_t new_swnd = 0; 19195 conn_t *nconnp; 19196 conn_t *connp = tcp->tcp_connp; 19197 tcp_stack_t *tcps = tcp->tcp_tcps; 19198 19199 BUMP_LOCAL(tcp->tcp_ibsegs); 19200 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 19201 19202 flags = (unsigned int)tcpha->tha_flags & 0xFF; 19203 new_swnd = ntohs(tcpha->tha_win) << 19204 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); 19205 if (tcp->tcp_snd_ts_ok) { 19206 if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { 19207 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19208 tcp->tcp_rnxt, TH_ACK); 19209 goto done; 19210 } 19211 } 19212 gap = seg_seq - tcp->tcp_rnxt; 19213 rgap = tcp->tcp_rwnd - (gap + seg_len); 19214 if (gap < 0) { 19215 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 19216 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 19217 (seg_len > -gap ? -gap : seg_len)); 19218 seg_len += gap; 19219 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 19220 if (flags & TH_RST) { 19221 goto done; 19222 } 19223 if ((flags & TH_FIN) && seg_len == -1) { 19224 /* 19225 * When TCP receives a duplicate FIN in 19226 * TIME_WAIT state, restart the 2 MSL timer. 19227 * See page 73 in RFC 793. Make sure this TCP 19228 * is already on the TIME_WAIT list. If not, 19229 * just restart the timer. 19230 */ 19231 if (TCP_IS_DETACHED(tcp)) { 19232 if (tcp_time_wait_remove(tcp, NULL) == 19233 B_TRUE) { 19234 tcp_time_wait_append(tcp); 19235 TCP_DBGSTAT(tcps, 19236 tcp_rput_time_wait); 19237 } 19238 } else { 19239 ASSERT(tcp != NULL); 19240 TCP_TIMER_RESTART(tcp, 19241 tcps->tcps_time_wait_interval); 19242 } 19243 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19244 tcp->tcp_rnxt, TH_ACK); 19245 goto done; 19246 } 19247 flags |= TH_ACK_NEEDED; 19248 seg_len = 0; 19249 goto process_ack; 19250 } 19251 19252 /* Fix seg_seq, and chew the gap off the front. */ 19253 seg_seq = tcp->tcp_rnxt; 19254 } 19255 19256 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 19257 /* 19258 * Make sure that when we accept the connection, pick 19259 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 19260 * old connection. 19261 * 19262 * The next ISS generated is equal to tcp_iss_incr_extra 19263 * + ISS_INCR/2 + other components depending on the 19264 * value of tcp_strong_iss. We pre-calculate the new 19265 * ISS here and compare with tcp_snxt to determine if 19266 * we need to make adjustment to tcp_iss_incr_extra. 19267 * 19268 * The above calculation is ugly and is a 19269 * waste of CPU cycles... 19270 */ 19271 uint32_t new_iss = tcps->tcps_iss_incr_extra; 19272 int32_t adj; 19273 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19274 19275 switch (tcps->tcps_strong_iss) { 19276 case 2: { 19277 /* Add time and MD5 components. */ 19278 uint32_t answer[4]; 19279 struct { 19280 uint32_t ports; 19281 in6_addr_t src; 19282 in6_addr_t dst; 19283 } arg; 19284 MD5_CTX context; 19285 19286 mutex_enter(&tcps->tcps_iss_key_lock); 19287 context = tcps->tcps_iss_key; 19288 mutex_exit(&tcps->tcps_iss_key_lock); 19289 arg.ports = connp->conn_ports; 19290 /* We use MAPPED addresses in tcp_iss_init */ 19291 arg.src = connp->conn_laddr_v6; 19292 arg.dst = connp->conn_faddr_v6; 19293 MD5Update(&context, (uchar_t *)&arg, 19294 sizeof (arg)); 19295 MD5Final((uchar_t *)answer, &context); 19296 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 19297 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 19298 break; 19299 } 19300 case 1: 19301 /* Add time component and min random (i.e. 1). */ 19302 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 19303 break; 19304 default: 19305 /* Add only time component. */ 19306 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 19307 break; 19308 } 19309 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 19310 /* 19311 * New ISS not guaranteed to be ISS_INCR/2 19312 * ahead of the current tcp_snxt, so add the 19313 * difference to tcp_iss_incr_extra. 19314 */ 19315 tcps->tcps_iss_incr_extra += adj; 19316 } 19317 /* 19318 * If tcp_clean_death() can not perform the task now, 19319 * drop the SYN packet and let the other side re-xmit. 19320 * Otherwise pass the SYN packet back in, since the 19321 * old tcp state has been cleaned up or freed. 19322 */ 19323 if (tcp_clean_death(tcp, 0, 27) == -1) 19324 goto done; 19325 nconnp = ipcl_classify(mp, ira, ipst); 19326 if (nconnp != NULL) { 19327 TCP_STAT(tcps, tcp_time_wait_syn_success); 19328 /* Drops ref on nconnp */ 19329 tcp_reinput(nconnp, mp, ira, ipst); 19330 return; 19331 } 19332 goto done; 19333 } 19334 19335 /* 19336 * rgap is the amount of stuff received out of window. A negative 19337 * value is the amount out of window. 19338 */ 19339 if (rgap < 0) { 19340 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 19341 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 19342 /* Fix seg_len and make sure there is something left. */ 19343 seg_len += rgap; 19344 if (seg_len <= 0) { 19345 if (flags & TH_RST) { 19346 goto done; 19347 } 19348 flags |= TH_ACK_NEEDED; 19349 seg_len = 0; 19350 goto process_ack; 19351 } 19352 } 19353 /* 19354 * Check whether we can update tcp_ts_recent. This test is 19355 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 19356 * Extensions for High Performance: An Update", Internet Draft. 19357 */ 19358 if (tcp->tcp_snd_ts_ok && 19359 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 19360 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 19361 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 19362 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); 19363 } 19364 19365 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 19366 /* Always ack out of order packets */ 19367 flags |= TH_ACK_NEEDED; 19368 seg_len = 0; 19369 } else if (seg_len > 0) { 19370 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 19371 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 19372 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 19373 } 19374 if (flags & TH_RST) { 19375 (void) tcp_clean_death(tcp, 0, 28); 19376 goto done; 19377 } 19378 if (flags & TH_SYN) { 19379 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 19380 TH_RST|TH_ACK); 19381 /* 19382 * Do not delete the TCP structure if it is in 19383 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 19384 */ 19385 goto done; 19386 } 19387 process_ack: 19388 if (flags & TH_ACK) { 19389 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 19390 if (bytes_acked <= 0) { 19391 if (bytes_acked == 0 && seg_len == 0 && 19392 new_swnd == tcp->tcp_swnd) 19393 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 19394 } else { 19395 /* Acks something not sent */ 19396 flags |= TH_ACK_NEEDED; 19397 } 19398 } 19399 if (flags & TH_ACK_NEEDED) { 19400 /* 19401 * Time to send an ack for some reason. 19402 */ 19403 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 19404 tcp->tcp_rnxt, TH_ACK); 19405 } 19406 done: 19407 freemsg(mp); 19408 } 19409 19410 /* 19411 * TCP Timers Implementation. 19412 */ 19413 timeout_id_t 19414 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 19415 { 19416 mblk_t *mp; 19417 tcp_timer_t *tcpt; 19418 tcp_t *tcp = connp->conn_tcp; 19419 19420 ASSERT(connp->conn_sqp != NULL); 19421 19422 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 19423 19424 if (tcp->tcp_timercache == NULL) { 19425 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 19426 } else { 19427 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 19428 mp = tcp->tcp_timercache; 19429 tcp->tcp_timercache = mp->b_next; 19430 mp->b_next = NULL; 19431 ASSERT(mp->b_wptr == NULL); 19432 } 19433 19434 CONN_INC_REF(connp); 19435 tcpt = (tcp_timer_t *)mp->b_rptr; 19436 tcpt->connp = connp; 19437 tcpt->tcpt_proc = f; 19438 /* 19439 * TCP timers are normal timeouts. Plus, they do not require more than 19440 * a 10 millisecond resolution. By choosing a coarser resolution and by 19441 * rounding up the expiration to the next resolution boundary, we can 19442 * batch timers in the callout subsystem to make TCP timers more 19443 * efficient. The roundup also protects short timers from expiring too 19444 * early before they have a chance to be cancelled. 19445 */ 19446 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 19447 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 19448 19449 return ((timeout_id_t)mp); 19450 } 19451 19452 static void 19453 tcp_timer_callback(void *arg) 19454 { 19455 mblk_t *mp = (mblk_t *)arg; 19456 tcp_timer_t *tcpt; 19457 conn_t *connp; 19458 19459 tcpt = (tcp_timer_t *)mp->b_rptr; 19460 connp = tcpt->connp; 19461 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 19462 NULL, SQ_FILL, SQTAG_TCP_TIMER); 19463 } 19464 19465 /* ARGSUSED */ 19466 static void 19467 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 19468 { 19469 tcp_timer_t *tcpt; 19470 conn_t *connp = (conn_t *)arg; 19471 tcp_t *tcp = connp->conn_tcp; 19472 19473 tcpt = (tcp_timer_t *)mp->b_rptr; 19474 ASSERT(connp == tcpt->connp); 19475 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 19476 19477 /* 19478 * If the TCP has reached the closed state, don't proceed any 19479 * further. This TCP logically does not exist on the system. 19480 * tcpt_proc could for example access queues, that have already 19481 * been qprocoff'ed off. 19482 */ 19483 if (tcp->tcp_state != TCPS_CLOSED) { 19484 (*tcpt->tcpt_proc)(connp); 19485 } else { 19486 tcp->tcp_timer_tid = 0; 19487 } 19488 tcp_timer_free(connp->conn_tcp, mp); 19489 } 19490 19491 /* 19492 * There is potential race with untimeout and the handler firing at the same 19493 * time. The mblock may be freed by the handler while we are trying to use 19494 * it. But since both should execute on the same squeue, this race should not 19495 * occur. 19496 */ 19497 clock_t 19498 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 19499 { 19500 mblk_t *mp = (mblk_t *)id; 19501 tcp_timer_t *tcpt; 19502 clock_t delta; 19503 19504 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 19505 19506 if (mp == NULL) 19507 return (-1); 19508 19509 tcpt = (tcp_timer_t *)mp->b_rptr; 19510 ASSERT(tcpt->connp == connp); 19511 19512 delta = untimeout_default(tcpt->tcpt_tid, 0); 19513 19514 if (delta >= 0) { 19515 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 19516 tcp_timer_free(connp->conn_tcp, mp); 19517 CONN_DEC_REF(connp); 19518 } 19519 19520 return (delta); 19521 } 19522 19523 /* 19524 * Allocate space for the timer event. The allocation looks like mblk, but it is 19525 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 19526 * 19527 * Dealing with failures: If we can't allocate from the timer cache we try 19528 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 19529 * points to b_rptr. 19530 * If we can't allocate anything using allocb_tryhard(), we perform a last 19531 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 19532 * save the actual allocation size in b_datap. 19533 */ 19534 mblk_t * 19535 tcp_timermp_alloc(int kmflags) 19536 { 19537 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 19538 kmflags & ~KM_PANIC); 19539 19540 if (mp != NULL) { 19541 mp->b_next = mp->b_prev = NULL; 19542 mp->b_rptr = (uchar_t *)(&mp[1]); 19543 mp->b_wptr = NULL; 19544 mp->b_datap = NULL; 19545 mp->b_queue = NULL; 19546 mp->b_cont = NULL; 19547 } else if (kmflags & KM_PANIC) { 19548 /* 19549 * Failed to allocate memory for the timer. Try allocating from 19550 * dblock caches. 19551 */ 19552 /* ipclassifier calls this from a constructor - hence no tcps */ 19553 TCP_G_STAT(tcp_timermp_allocfail); 19554 mp = allocb_tryhard(sizeof (tcp_timer_t)); 19555 if (mp == NULL) { 19556 size_t size = 0; 19557 /* 19558 * Memory is really low. Try tryhard allocation. 19559 * 19560 * ipclassifier calls this from a constructor - 19561 * hence no tcps 19562 */ 19563 TCP_G_STAT(tcp_timermp_allocdblfail); 19564 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 19565 sizeof (tcp_timer_t), &size, kmflags); 19566 mp->b_rptr = (uchar_t *)(&mp[1]); 19567 mp->b_next = mp->b_prev = NULL; 19568 mp->b_wptr = (uchar_t *)-1; 19569 mp->b_datap = (dblk_t *)size; 19570 mp->b_queue = NULL; 19571 mp->b_cont = NULL; 19572 } 19573 ASSERT(mp->b_wptr != NULL); 19574 } 19575 /* ipclassifier calls this from a constructor - hence no tcps */ 19576 TCP_G_DBGSTAT(tcp_timermp_alloced); 19577 19578 return (mp); 19579 } 19580 19581 /* 19582 * Free per-tcp timer cache. 19583 * It can only contain entries from tcp_timercache. 19584 */ 19585 void 19586 tcp_timermp_free(tcp_t *tcp) 19587 { 19588 mblk_t *mp; 19589 19590 while ((mp = tcp->tcp_timercache) != NULL) { 19591 ASSERT(mp->b_wptr == NULL); 19592 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 19593 kmem_cache_free(tcp_timercache, mp); 19594 } 19595 } 19596 19597 /* 19598 * Free timer event. Put it on the per-tcp timer cache if there is not too many 19599 * events there already (currently at most two events are cached). 19600 * If the event is not allocated from the timer cache, free it right away. 19601 */ 19602 static void 19603 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 19604 { 19605 mblk_t *mp1 = tcp->tcp_timercache; 19606 19607 if (mp->b_wptr != NULL) { 19608 /* 19609 * This allocation is not from a timer cache, free it right 19610 * away. 19611 */ 19612 if (mp->b_wptr != (uchar_t *)-1) 19613 freeb(mp); 19614 else 19615 kmem_free(mp, (size_t)mp->b_datap); 19616 } else if (mp1 == NULL || mp1->b_next == NULL) { 19617 /* Cache this timer block for future allocations */ 19618 mp->b_rptr = (uchar_t *)(&mp[1]); 19619 mp->b_next = mp1; 19620 tcp->tcp_timercache = mp; 19621 } else { 19622 kmem_cache_free(tcp_timercache, mp); 19623 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 19624 } 19625 } 19626 19627 /* 19628 * End of TCP Timers implementation. 19629 */ 19630 19631 /* 19632 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 19633 * on the specified backing STREAMS q. Note, the caller may make the 19634 * decision to call based on the tcp_t.tcp_flow_stopped value which 19635 * when check outside the q's lock is only an advisory check ... 19636 */ 19637 void 19638 tcp_setqfull(tcp_t *tcp) 19639 { 19640 tcp_stack_t *tcps = tcp->tcp_tcps; 19641 conn_t *connp = tcp->tcp_connp; 19642 19643 if (tcp->tcp_closed) 19644 return; 19645 19646 conn_setqfull(connp, &tcp->tcp_flow_stopped); 19647 if (tcp->tcp_flow_stopped) 19648 TCP_STAT(tcps, tcp_flwctl_on); 19649 } 19650 19651 void 19652 tcp_clrqfull(tcp_t *tcp) 19653 { 19654 conn_t *connp = tcp->tcp_connp; 19655 19656 if (tcp->tcp_closed) 19657 return; 19658 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 19659 } 19660 19661 /* 19662 * kstats related to squeues i.e. not per IP instance 19663 */ 19664 static void * 19665 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 19666 { 19667 kstat_t *ksp; 19668 19669 tcp_g_stat_t template = { 19670 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 19671 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 19672 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 19673 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 19674 }; 19675 19676 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 19677 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 19678 KSTAT_FLAG_VIRTUAL); 19679 19680 if (ksp == NULL) 19681 return (NULL); 19682 19683 bcopy(&template, tcp_g_statp, sizeof (template)); 19684 ksp->ks_data = (void *)tcp_g_statp; 19685 19686 kstat_install(ksp); 19687 return (ksp); 19688 } 19689 19690 static void 19691 tcp_g_kstat_fini(kstat_t *ksp) 19692 { 19693 if (ksp != NULL) { 19694 kstat_delete(ksp); 19695 } 19696 } 19697 19698 19699 static void * 19700 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 19701 { 19702 kstat_t *ksp; 19703 19704 tcp_stat_t template = { 19705 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 19706 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 19707 { "tcp_time_wait_syn_success", KSTAT_DATA_UINT64 }, 19708 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 19709 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 19710 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 19711 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 19712 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 19713 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 19714 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 19715 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 19716 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 19717 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 19718 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 19719 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 19720 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 19721 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 19722 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 19723 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 19724 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 19725 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 19726 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 19727 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 19728 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 19729 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 19730 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 19731 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 19732 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 19733 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 19734 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 19735 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 19736 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 19737 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 19738 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 19739 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 19740 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 19741 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 19742 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 19743 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 19744 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 19745 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 19746 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 19747 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 19748 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 19749 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 19750 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 19751 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 19752 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 19753 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 19754 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 19755 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 19756 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 19757 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 19758 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 19759 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 19760 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 19761 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 19762 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 19763 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 19764 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 19765 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 19766 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 19767 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 19768 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 19769 }; 19770 19771 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 19772 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 19773 KSTAT_FLAG_VIRTUAL, stackid); 19774 19775 if (ksp == NULL) 19776 return (NULL); 19777 19778 bcopy(&template, tcps_statisticsp, sizeof (template)); 19779 ksp->ks_data = (void *)tcps_statisticsp; 19780 ksp->ks_private = (void *)(uintptr_t)stackid; 19781 19782 kstat_install(ksp); 19783 return (ksp); 19784 } 19785 19786 static void 19787 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 19788 { 19789 if (ksp != NULL) { 19790 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 19791 kstat_delete_netstack(ksp, stackid); 19792 } 19793 } 19794 19795 /* 19796 * TCP Kstats implementation 19797 */ 19798 static void * 19799 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 19800 { 19801 kstat_t *ksp; 19802 19803 tcp_named_kstat_t template = { 19804 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 19805 { "rtoMin", KSTAT_DATA_INT32, 0 }, 19806 { "rtoMax", KSTAT_DATA_INT32, 0 }, 19807 { "maxConn", KSTAT_DATA_INT32, 0 }, 19808 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 19809 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 19810 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 19811 { "estabResets", KSTAT_DATA_UINT32, 0 }, 19812 { "currEstab", KSTAT_DATA_UINT32, 0 }, 19813 { "inSegs", KSTAT_DATA_UINT64, 0 }, 19814 { "outSegs", KSTAT_DATA_UINT64, 0 }, 19815 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 19816 { "connTableSize", KSTAT_DATA_INT32, 0 }, 19817 { "outRsts", KSTAT_DATA_UINT32, 0 }, 19818 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 19819 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 19820 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 19821 { "outAck", KSTAT_DATA_UINT32, 0 }, 19822 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 19823 { "outUrg", KSTAT_DATA_UINT32, 0 }, 19824 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 19825 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 19826 { "outControl", KSTAT_DATA_UINT32, 0 }, 19827 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 19828 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 19829 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 19830 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 19831 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 19832 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 19833 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 19834 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 19835 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 19836 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 19837 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 19838 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 19839 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 19840 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 19841 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 19842 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 19843 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 19844 { "inClosed", KSTAT_DATA_UINT32, 0 }, 19845 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 19846 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 19847 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 19848 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 19849 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 19850 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 19851 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 19852 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 19853 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 19854 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 19855 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 19856 { "connTableSize6", KSTAT_DATA_INT32, 0 } 19857 }; 19858 19859 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 19860 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 19861 19862 if (ksp == NULL) 19863 return (NULL); 19864 19865 template.rtoAlgorithm.value.ui32 = 4; 19866 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 19867 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 19868 template.maxConn.value.i32 = -1; 19869 19870 bcopy(&template, ksp->ks_data, sizeof (template)); 19871 ksp->ks_update = tcp_kstat_update; 19872 ksp->ks_private = (void *)(uintptr_t)stackid; 19873 19874 kstat_install(ksp); 19875 return (ksp); 19876 } 19877 19878 static void 19879 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 19880 { 19881 if (ksp != NULL) { 19882 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 19883 kstat_delete_netstack(ksp, stackid); 19884 } 19885 } 19886 19887 static int 19888 tcp_kstat_update(kstat_t *kp, int rw) 19889 { 19890 tcp_named_kstat_t *tcpkp; 19891 tcp_t *tcp; 19892 connf_t *connfp; 19893 conn_t *connp; 19894 int i; 19895 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 19896 netstack_t *ns; 19897 tcp_stack_t *tcps; 19898 ip_stack_t *ipst; 19899 19900 if ((kp == NULL) || (kp->ks_data == NULL)) 19901 return (EIO); 19902 19903 if (rw == KSTAT_WRITE) 19904 return (EACCES); 19905 19906 ns = netstack_find_by_stackid(stackid); 19907 if (ns == NULL) 19908 return (-1); 19909 tcps = ns->netstack_tcp; 19910 if (tcps == NULL) { 19911 netstack_rele(ns); 19912 return (-1); 19913 } 19914 19915 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 19916 19917 tcpkp->currEstab.value.ui32 = 0; 19918 19919 ipst = ns->netstack_ip; 19920 19921 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 19922 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 19923 connp = NULL; 19924 while ((connp = 19925 ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { 19926 tcp = connp->conn_tcp; 19927 switch (tcp_snmp_state(tcp)) { 19928 case MIB2_TCP_established: 19929 case MIB2_TCP_closeWait: 19930 tcpkp->currEstab.value.ui32++; 19931 break; 19932 } 19933 } 19934 } 19935 19936 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 19937 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 19938 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 19939 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 19940 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 19941 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 19942 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 19943 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 19944 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 19945 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 19946 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 19947 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 19948 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 19949 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 19950 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 19951 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 19952 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 19953 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 19954 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 19955 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 19956 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 19957 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 19958 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 19959 tcpkp->inDataInorderSegs.value.ui32 = 19960 tcps->tcps_mib.tcpInDataInorderSegs; 19961 tcpkp->inDataInorderBytes.value.ui32 = 19962 tcps->tcps_mib.tcpInDataInorderBytes; 19963 tcpkp->inDataUnorderSegs.value.ui32 = 19964 tcps->tcps_mib.tcpInDataUnorderSegs; 19965 tcpkp->inDataUnorderBytes.value.ui32 = 19966 tcps->tcps_mib.tcpInDataUnorderBytes; 19967 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 19968 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 19969 tcpkp->inDataPartDupSegs.value.ui32 = 19970 tcps->tcps_mib.tcpInDataPartDupSegs; 19971 tcpkp->inDataPartDupBytes.value.ui32 = 19972 tcps->tcps_mib.tcpInDataPartDupBytes; 19973 tcpkp->inDataPastWinSegs.value.ui32 = 19974 tcps->tcps_mib.tcpInDataPastWinSegs; 19975 tcpkp->inDataPastWinBytes.value.ui32 = 19976 tcps->tcps_mib.tcpInDataPastWinBytes; 19977 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 19978 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 19979 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 19980 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 19981 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 19982 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 19983 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 19984 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 19985 tcpkp->timKeepaliveProbe.value.ui32 = 19986 tcps->tcps_mib.tcpTimKeepaliveProbe; 19987 tcpkp->timKeepaliveDrop.value.ui32 = 19988 tcps->tcps_mib.tcpTimKeepaliveDrop; 19989 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 19990 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 19991 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 19992 tcpkp->outSackRetransSegs.value.ui32 = 19993 tcps->tcps_mib.tcpOutSackRetransSegs; 19994 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 19995 19996 netstack_rele(ns); 19997 return (0); 19998 } 19999 20000 static int 20001 tcp_squeue_switch(int val) 20002 { 20003 int rval = SQ_FILL; 20004 20005 switch (val) { 20006 case 1: 20007 rval = SQ_NODRAIN; 20008 break; 20009 case 2: 20010 rval = SQ_PROCESS; 20011 break; 20012 default: 20013 break; 20014 } 20015 return (rval); 20016 } 20017 20018 /* 20019 * This is called once for each squeue - globally for all stack 20020 * instances. 20021 */ 20022 static void 20023 tcp_squeue_add(squeue_t *sqp) 20024 { 20025 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 20026 sizeof (tcp_squeue_priv_t), KM_SLEEP); 20027 20028 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 20029 tcp_time_wait->tcp_time_wait_tid = 20030 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 20031 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 20032 CALLOUT_FLAG_ROUNDUP); 20033 if (tcp_free_list_max_cnt == 0) { 20034 int tcp_ncpus = ((boot_max_ncpus == -1) ? 20035 max_ncpus : boot_max_ncpus); 20036 20037 /* 20038 * Limit number of entries to 1% of availble memory / tcp_ncpus 20039 */ 20040 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 20041 (tcp_ncpus * sizeof (tcp_t) * 100); 20042 } 20043 tcp_time_wait->tcp_free_list_cnt = 0; 20044 } 20045 20046 /* 20047 * On a labeled system we have some protocols above TCP, such as RPC, which 20048 * appear to assume that every mblk in a chain has a db_credp. 20049 */ 20050 static void 20051 tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) 20052 { 20053 ASSERT(is_system_labeled()); 20054 ASSERT(ira->ira_cred != NULL); 20055 20056 while (mp != NULL) { 20057 mblk_setcred(mp, ira->ira_cred, NOPID); 20058 mp = mp->b_cont; 20059 } 20060 } 20061 20062 static int 20063 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 20064 boolean_t bind_to_req_port_only, cred_t *cr) 20065 { 20066 in_port_t mlp_port; 20067 mlp_type_t addrtype, mlptype; 20068 boolean_t user_specified; 20069 in_port_t allocated_port; 20070 in_port_t requested_port = *requested_port_ptr; 20071 conn_t *connp = tcp->tcp_connp; 20072 zone_t *zone; 20073 tcp_stack_t *tcps = tcp->tcp_tcps; 20074 in6_addr_t v6addr = connp->conn_laddr_v6; 20075 20076 /* 20077 * XXX It's up to the caller to specify bind_to_req_port_only or not. 20078 */ 20079 ASSERT(cr != NULL); 20080 20081 /* 20082 * Get a valid port (within the anonymous range and should not 20083 * be a privileged one) to use if the user has not given a port. 20084 * If multiple threads are here, they may all start with 20085 * with the same initial port. But, it should be fine as long as 20086 * tcp_bindi will ensure that no two threads will be assigned 20087 * the same port. 20088 * 20089 * NOTE: XXX If a privileged process asks for an anonymous port, we 20090 * still check for ports only in the range > tcp_smallest_non_priv_port, 20091 * unless TCP_ANONPRIVBIND option is set. 20092 */ 20093 mlptype = mlptSingle; 20094 mlp_port = requested_port; 20095 if (requested_port == 0) { 20096 requested_port = connp->conn_anon_priv_bind ? 20097 tcp_get_next_priv_port(tcp) : 20098 tcp_update_next_port(tcps->tcps_next_port_to_try, 20099 tcp, B_TRUE); 20100 if (requested_port == 0) { 20101 return (-TNOADDR); 20102 } 20103 user_specified = B_FALSE; 20104 20105 /* 20106 * If the user went through one of the RPC interfaces to create 20107 * this socket and RPC is MLP in this zone, then give him an 20108 * anonymous MLP. 20109 */ 20110 if (connp->conn_anon_mlp && is_system_labeled()) { 20111 zone = crgetzone(cr); 20112 addrtype = tsol_mlp_addr_type( 20113 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20114 IPV6_VERSION, &v6addr, 20115 tcps->tcps_netstack->netstack_ip); 20116 if (addrtype == mlptSingle) { 20117 return (-TNOADDR); 20118 } 20119 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20120 PMAPPORT, addrtype); 20121 mlp_port = PMAPPORT; 20122 } 20123 } else { 20124 int i; 20125 boolean_t priv = B_FALSE; 20126 20127 /* 20128 * If the requested_port is in the well-known privileged range, 20129 * verify that the stream was opened by a privileged user. 20130 * Note: No locks are held when inspecting tcp_g_*epriv_ports 20131 * but instead the code relies on: 20132 * - the fact that the address of the array and its size never 20133 * changes 20134 * - the atomic assignment of the elements of the array 20135 */ 20136 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 20137 priv = B_TRUE; 20138 } else { 20139 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 20140 if (requested_port == 20141 tcps->tcps_g_epriv_ports[i]) { 20142 priv = B_TRUE; 20143 break; 20144 } 20145 } 20146 } 20147 if (priv) { 20148 if (secpolicy_net_privaddr(cr, requested_port, 20149 IPPROTO_TCP) != 0) { 20150 if (connp->conn_debug) { 20151 (void) strlog(TCP_MOD_ID, 0, 1, 20152 SL_ERROR|SL_TRACE, 20153 "tcp_bind: no priv for port %d", 20154 requested_port); 20155 } 20156 return (-TACCES); 20157 } 20158 } 20159 user_specified = B_TRUE; 20160 20161 connp = tcp->tcp_connp; 20162 if (is_system_labeled()) { 20163 zone = crgetzone(cr); 20164 addrtype = tsol_mlp_addr_type( 20165 connp->conn_allzones ? ALL_ZONES : zone->zone_id, 20166 IPV6_VERSION, &v6addr, 20167 tcps->tcps_netstack->netstack_ip); 20168 if (addrtype == mlptSingle) { 20169 return (-TNOADDR); 20170 } 20171 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 20172 requested_port, addrtype); 20173 } 20174 } 20175 20176 if (mlptype != mlptSingle) { 20177 if (secpolicy_net_bindmlp(cr) != 0) { 20178 if (connp->conn_debug) { 20179 (void) strlog(TCP_MOD_ID, 0, 1, 20180 SL_ERROR|SL_TRACE, 20181 "tcp_bind: no priv for multilevel port %d", 20182 requested_port); 20183 } 20184 return (-TACCES); 20185 } 20186 20187 /* 20188 * If we're specifically binding a shared IP address and the 20189 * port is MLP on shared addresses, then check to see if this 20190 * zone actually owns the MLP. Reject if not. 20191 */ 20192 if (mlptype == mlptShared && addrtype == mlptShared) { 20193 /* 20194 * No need to handle exclusive-stack zones since 20195 * ALL_ZONES only applies to the shared stack. 20196 */ 20197 zoneid_t mlpzone; 20198 20199 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 20200 htons(mlp_port)); 20201 if (connp->conn_zoneid != mlpzone) { 20202 if (connp->conn_debug) { 20203 (void) strlog(TCP_MOD_ID, 0, 1, 20204 SL_ERROR|SL_TRACE, 20205 "tcp_bind: attempt to bind port " 20206 "%d on shared addr in zone %d " 20207 "(should be %d)", 20208 mlp_port, connp->conn_zoneid, 20209 mlpzone); 20210 } 20211 return (-TACCES); 20212 } 20213 } 20214 20215 if (!user_specified) { 20216 int err; 20217 err = tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20218 requested_port, B_TRUE); 20219 if (err != 0) { 20220 if (connp->conn_debug) { 20221 (void) strlog(TCP_MOD_ID, 0, 1, 20222 SL_ERROR|SL_TRACE, 20223 "tcp_bind: cannot establish anon " 20224 "MLP for port %d", 20225 requested_port); 20226 } 20227 return (err); 20228 } 20229 connp->conn_anon_port = B_TRUE; 20230 } 20231 connp->conn_mlp_type = mlptype; 20232 } 20233 20234 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 20235 connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only, 20236 user_specified); 20237 20238 if (allocated_port == 0) { 20239 connp->conn_mlp_type = mlptSingle; 20240 if (connp->conn_anon_port) { 20241 connp->conn_anon_port = B_FALSE; 20242 (void) tsol_mlp_anon(zone, mlptype, connp->conn_proto, 20243 requested_port, B_FALSE); 20244 } 20245 if (bind_to_req_port_only) { 20246 if (connp->conn_debug) { 20247 (void) strlog(TCP_MOD_ID, 0, 1, 20248 SL_ERROR|SL_TRACE, 20249 "tcp_bind: requested addr busy"); 20250 } 20251 return (-TADDRBUSY); 20252 } else { 20253 /* If we are out of ports, fail the bind. */ 20254 if (connp->conn_debug) { 20255 (void) strlog(TCP_MOD_ID, 0, 1, 20256 SL_ERROR|SL_TRACE, 20257 "tcp_bind: out of ports?"); 20258 } 20259 return (-TNOADDR); 20260 } 20261 } 20262 20263 /* Pass the allocated port back */ 20264 *requested_port_ptr = allocated_port; 20265 return (0); 20266 } 20267 20268 /* 20269 * Check the address and check/pick a local port number. 20270 */ 20271 static int 20272 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20273 boolean_t bind_to_req_port_only) 20274 { 20275 tcp_t *tcp = connp->conn_tcp; 20276 sin_t *sin; 20277 sin6_t *sin6; 20278 in_port_t requested_port; 20279 ipaddr_t v4addr; 20280 in6_addr_t v6addr; 20281 ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */ 20282 zoneid_t zoneid = IPCL_ZONEID(connp); 20283 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 20284 uint_t scopeid = 0; 20285 int error = 0; 20286 ip_xmit_attr_t *ixa = connp->conn_ixa; 20287 20288 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 20289 20290 if (tcp->tcp_state == TCPS_BOUND) { 20291 return (0); 20292 } else if (tcp->tcp_state > TCPS_BOUND) { 20293 if (connp->conn_debug) { 20294 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20295 "tcp_bind: bad state, %d", tcp->tcp_state); 20296 } 20297 return (-TOUTSTATE); 20298 } 20299 20300 ASSERT(sa != NULL && len != 0); 20301 20302 if (!OK_32PTR((char *)sa)) { 20303 if (connp->conn_debug) { 20304 (void) strlog(TCP_MOD_ID, 0, 1, 20305 SL_ERROR|SL_TRACE, 20306 "tcp_bind: bad address parameter, " 20307 "address %p, len %d", 20308 (void *)sa, len); 20309 } 20310 return (-TPROTO); 20311 } 20312 20313 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20314 if (error != 0) { 20315 return (error); 20316 } 20317 20318 switch (len) { 20319 case sizeof (sin_t): /* Complete IPv4 address */ 20320 sin = (sin_t *)sa; 20321 requested_port = ntohs(sin->sin_port); 20322 v4addr = sin->sin_addr.s_addr; 20323 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 20324 if (v4addr != INADDR_ANY) { 20325 laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst, 20326 B_FALSE); 20327 } 20328 break; 20329 20330 case sizeof (sin6_t): /* Complete IPv6 address */ 20331 sin6 = (sin6_t *)sa; 20332 v6addr = sin6->sin6_addr; 20333 requested_port = ntohs(sin6->sin6_port); 20334 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) { 20335 if (connp->conn_ipv6_v6only) 20336 return (EADDRNOTAVAIL); 20337 20338 IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr); 20339 if (v4addr != INADDR_ANY) { 20340 laddr_type = ip_laddr_verify_v4(v4addr, 20341 zoneid, ipst, B_FALSE); 20342 } 20343 } else { 20344 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) { 20345 if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) 20346 scopeid = sin6->sin6_scope_id; 20347 laddr_type = ip_laddr_verify_v6(&v6addr, 20348 zoneid, ipst, B_FALSE, scopeid); 20349 } 20350 } 20351 break; 20352 20353 default: 20354 if (connp->conn_debug) { 20355 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20356 "tcp_bind: bad address length, %d", len); 20357 } 20358 return (EAFNOSUPPORT); 20359 /* return (-TBADADDR); */ 20360 } 20361 20362 /* Is the local address a valid unicast address? */ 20363 if (laddr_type == IPVL_BAD) 20364 return (EADDRNOTAVAIL); 20365 20366 connp->conn_bound_addr_v6 = v6addr; 20367 if (scopeid != 0) { 20368 ixa->ixa_flags |= IXAF_SCOPEID_SET; 20369 ixa->ixa_scopeid = scopeid; 20370 connp->conn_incoming_ifindex = scopeid; 20371 } else { 20372 ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 20373 connp->conn_incoming_ifindex = connp->conn_bound_if; 20374 } 20375 20376 connp->conn_laddr_v6 = v6addr; 20377 connp->conn_saddr_v6 = v6addr; 20378 20379 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 20380 20381 error = tcp_bind_select_lport(tcp, &requested_port, 20382 bind_to_req_port_only, cr); 20383 if (error != 0) { 20384 connp->conn_laddr_v6 = ipv6_all_zeros; 20385 connp->conn_saddr_v6 = ipv6_all_zeros; 20386 connp->conn_bound_addr_v6 = ipv6_all_zeros; 20387 } 20388 return (error); 20389 } 20390 20391 /* 20392 * Return unix error is tli error is TSYSERR, otherwise return a negative 20393 * tli error. 20394 */ 20395 int 20396 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 20397 boolean_t bind_to_req_port_only) 20398 { 20399 int error; 20400 tcp_t *tcp = connp->conn_tcp; 20401 20402 if (tcp->tcp_state >= TCPS_BOUND) { 20403 if (connp->conn_debug) { 20404 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20405 "tcp_bind: bad state, %d", tcp->tcp_state); 20406 } 20407 return (-TOUTSTATE); 20408 } 20409 20410 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 20411 if (error != 0) 20412 return (error); 20413 20414 ASSERT(tcp->tcp_state == TCPS_BOUND); 20415 tcp->tcp_conn_req_max = 0; 20416 return (0); 20417 } 20418 20419 int 20420 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 20421 socklen_t len, cred_t *cr) 20422 { 20423 int error; 20424 conn_t *connp = (conn_t *)proto_handle; 20425 squeue_t *sqp = connp->conn_sqp; 20426 20427 /* All Solaris components should pass a cred for this operation. */ 20428 ASSERT(cr != NULL); 20429 20430 ASSERT(sqp != NULL); 20431 ASSERT(connp->conn_upper_handle != NULL); 20432 20433 error = squeue_synch_enter(sqp, connp, NULL); 20434 if (error != 0) { 20435 /* failed to enter */ 20436 return (ENOSR); 20437 } 20438 20439 /* binding to a NULL address really means unbind */ 20440 if (sa == NULL) { 20441 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 20442 error = tcp_do_unbind(connp); 20443 else 20444 error = EINVAL; 20445 } else { 20446 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 20447 } 20448 20449 squeue_synch_exit(sqp, connp); 20450 20451 if (error < 0) { 20452 if (error == -TOUTSTATE) 20453 error = EINVAL; 20454 else 20455 error = proto_tlitosyserr(-error); 20456 } 20457 20458 return (error); 20459 } 20460 20461 /* 20462 * If the return value from this function is positive, it's a UNIX error. 20463 * Otherwise, if it's negative, then the absolute value is a TLI error. 20464 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 20465 */ 20466 int 20467 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 20468 cred_t *cr, pid_t pid) 20469 { 20470 tcp_t *tcp = connp->conn_tcp; 20471 sin_t *sin = (sin_t *)sa; 20472 sin6_t *sin6 = (sin6_t *)sa; 20473 ipaddr_t *dstaddrp; 20474 in_port_t dstport; 20475 uint_t srcid; 20476 int error; 20477 uint32_t mss; 20478 mblk_t *syn_mp; 20479 tcp_stack_t *tcps = tcp->tcp_tcps; 20480 int32_t oldstate; 20481 ip_xmit_attr_t *ixa = connp->conn_ixa; 20482 20483 oldstate = tcp->tcp_state; 20484 20485 switch (len) { 20486 default: 20487 /* 20488 * Should never happen 20489 */ 20490 return (EINVAL); 20491 20492 case sizeof (sin_t): 20493 sin = (sin_t *)sa; 20494 if (sin->sin_port == 0) { 20495 return (-TBADADDR); 20496 } 20497 if (connp->conn_ipv6_v6only) { 20498 return (EAFNOSUPPORT); 20499 } 20500 break; 20501 20502 case sizeof (sin6_t): 20503 sin6 = (sin6_t *)sa; 20504 if (sin6->sin6_port == 0) { 20505 return (-TBADADDR); 20506 } 20507 break; 20508 } 20509 /* 20510 * If we're connecting to an IPv4-mapped IPv6 address, we need to 20511 * make sure that the conn_ipversion is IPV4_VERSION. We 20512 * need to this before we call tcp_bindi() so that the port lookup 20513 * code will look for ports in the correct port space (IPv4 and 20514 * IPv6 have separate port spaces). 20515 */ 20516 if (connp->conn_family == AF_INET6 && 20517 connp->conn_ipversion == IPV6_VERSION && 20518 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20519 if (connp->conn_ipv6_v6only) 20520 return (EADDRNOTAVAIL); 20521 20522 connp->conn_ipversion = IPV4_VERSION; 20523 } 20524 20525 switch (tcp->tcp_state) { 20526 case TCPS_LISTEN: 20527 /* 20528 * Listening sockets are not allowed to issue connect(). 20529 */ 20530 if (IPCL_IS_NONSTR(connp)) 20531 return (EOPNOTSUPP); 20532 /* FALLTHRU */ 20533 case TCPS_IDLE: 20534 /* 20535 * We support quick connect, refer to comments in 20536 * tcp_connect_*() 20537 */ 20538 /* FALLTHRU */ 20539 case TCPS_BOUND: 20540 break; 20541 default: 20542 return (-TOUTSTATE); 20543 } 20544 20545 /* 20546 * We update our cred/cpid based on the caller of connect 20547 */ 20548 if (connp->conn_cred != cr) { 20549 crhold(cr); 20550 crfree(connp->conn_cred); 20551 connp->conn_cred = cr; 20552 } 20553 connp->conn_cpid = pid; 20554 20555 /* Cache things in the ixa without any refhold */ 20556 ixa->ixa_cred = cr; 20557 ixa->ixa_cpid = pid; 20558 if (is_system_labeled()) { 20559 /* We need to restart with a label based on the cred */ 20560 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 20561 } 20562 20563 if (connp->conn_family == AF_INET6) { 20564 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 20565 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 20566 sin6->sin6_port, sin6->sin6_flowinfo, 20567 sin6->__sin6_src_id, sin6->sin6_scope_id); 20568 } else { 20569 /* 20570 * Destination adress is mapped IPv6 address. 20571 * Source bound address should be unspecified or 20572 * IPv6 mapped address as well. 20573 */ 20574 if (!IN6_IS_ADDR_UNSPECIFIED( 20575 &connp->conn_bound_addr_v6) && 20576 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 20577 return (EADDRNOTAVAIL); 20578 } 20579 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 20580 dstport = sin6->sin6_port; 20581 srcid = sin6->__sin6_src_id; 20582 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 20583 srcid); 20584 } 20585 } else { 20586 dstaddrp = &sin->sin_addr.s_addr; 20587 dstport = sin->sin_port; 20588 srcid = 0; 20589 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 20590 } 20591 20592 if (error != 0) 20593 goto connect_failed; 20594 20595 CL_INET_CONNECT(connp, B_TRUE, error); 20596 if (error != 0) 20597 goto connect_failed; 20598 20599 /* connect succeeded */ 20600 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 20601 tcp->tcp_active_open = 1; 20602 20603 /* 20604 * tcp_set_destination() does not adjust for TCP/IP header length. 20605 */ 20606 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 20607 20608 /* 20609 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 20610 * to the nearest MSS. 20611 * 20612 * We do the round up here because we need to get the interface MTU 20613 * first before we can do the round up. 20614 */ 20615 tcp->tcp_rwnd = connp->conn_rcvbuf; 20616 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 20617 tcps->tcps_recv_hiwat_minmss * mss); 20618 connp->conn_rcvbuf = tcp->tcp_rwnd; 20619 tcp_set_ws_value(tcp); 20620 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 20621 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 20622 tcp->tcp_snd_ws_ok = B_TRUE; 20623 20624 /* 20625 * Set tcp_snd_ts_ok to true 20626 * so that tcp_xmit_mp will 20627 * include the timestamp 20628 * option in the SYN segment. 20629 */ 20630 if (tcps->tcps_tstamp_always || 20631 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 20632 tcp->tcp_snd_ts_ok = B_TRUE; 20633 } 20634 20635 /* 20636 * tcp_snd_sack_ok can be set in 20637 * tcp_set_destination() if the sack metric 20638 * is set. So check it here also. 20639 */ 20640 if (tcps->tcps_sack_permitted == 2 || 20641 tcp->tcp_snd_sack_ok) { 20642 if (tcp->tcp_sack_info == NULL) { 20643 tcp->tcp_sack_info = kmem_cache_alloc( 20644 tcp_sack_info_cache, KM_SLEEP); 20645 } 20646 tcp->tcp_snd_sack_ok = B_TRUE; 20647 } 20648 20649 /* 20650 * Should we use ECN? Note that the current 20651 * default value (SunOS 5.9) of tcp_ecn_permitted 20652 * is 1. The reason for doing this is that there 20653 * are equipments out there that will drop ECN 20654 * enabled IP packets. Setting it to 1 avoids 20655 * compatibility problems. 20656 */ 20657 if (tcps->tcps_ecn_permitted == 2) 20658 tcp->tcp_ecn_ok = B_TRUE; 20659 20660 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20661 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 20662 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 20663 if (syn_mp != NULL) { 20664 /* 20665 * We must bump the generation before sending the syn 20666 * to ensure that we use the right generation in case 20667 * this thread issues a "connected" up call. 20668 */ 20669 SOCK_CONNID_BUMP(tcp->tcp_connid); 20670 tcp_send_data(tcp, syn_mp); 20671 } 20672 20673 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 20674 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 20675 return (0); 20676 20677 connect_failed: 20678 connp->conn_faddr_v6 = ipv6_all_zeros; 20679 connp->conn_fport = 0; 20680 tcp->tcp_state = oldstate; 20681 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 20682 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 20683 return (error); 20684 } 20685 20686 int 20687 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 20688 socklen_t len, sock_connid_t *id, cred_t *cr) 20689 { 20690 conn_t *connp = (conn_t *)proto_handle; 20691 squeue_t *sqp = connp->conn_sqp; 20692 int error; 20693 20694 ASSERT(connp->conn_upper_handle != NULL); 20695 20696 /* All Solaris components should pass a cred for this operation. */ 20697 ASSERT(cr != NULL); 20698 20699 error = proto_verify_ip_addr(connp->conn_family, sa, len); 20700 if (error != 0) { 20701 return (error); 20702 } 20703 20704 error = squeue_synch_enter(sqp, connp, NULL); 20705 if (error != 0) { 20706 /* failed to enter */ 20707 return (ENOSR); 20708 } 20709 20710 /* 20711 * TCP supports quick connect, so no need to do an implicit bind 20712 */ 20713 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 20714 if (error == 0) { 20715 *id = connp->conn_tcp->tcp_connid; 20716 } else if (error < 0) { 20717 if (error == -TOUTSTATE) { 20718 switch (connp->conn_tcp->tcp_state) { 20719 case TCPS_SYN_SENT: 20720 error = EALREADY; 20721 break; 20722 case TCPS_ESTABLISHED: 20723 error = EISCONN; 20724 break; 20725 case TCPS_LISTEN: 20726 error = EOPNOTSUPP; 20727 break; 20728 default: 20729 error = EINVAL; 20730 break; 20731 } 20732 } else { 20733 error = proto_tlitosyserr(-error); 20734 } 20735 } 20736 20737 if (connp->conn_tcp->tcp_loopback) { 20738 struct sock_proto_props sopp; 20739 20740 sopp.sopp_flags = SOCKOPT_LOOPBACK; 20741 sopp.sopp_loopback = B_TRUE; 20742 20743 (*connp->conn_upcalls->su_set_proto_props)( 20744 connp->conn_upper_handle, &sopp); 20745 } 20746 done: 20747 squeue_synch_exit(sqp, connp); 20748 20749 return ((error == 0) ? EINPROGRESS : error); 20750 } 20751 20752 /* ARGSUSED */ 20753 sock_lower_handle_t 20754 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 20755 uint_t *smodep, int *errorp, int flags, cred_t *credp) 20756 { 20757 conn_t *connp; 20758 boolean_t isv6 = family == AF_INET6; 20759 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 20760 (proto != 0 && proto != IPPROTO_TCP)) { 20761 *errorp = EPROTONOSUPPORT; 20762 return (NULL); 20763 } 20764 20765 connp = tcp_create_common(credp, isv6, B_TRUE, errorp); 20766 if (connp == NULL) { 20767 return (NULL); 20768 } 20769 20770 /* 20771 * Put the ref for TCP. Ref for IP was already put 20772 * by ipcl_conn_create. Also Make the conn_t globally 20773 * visible to walkers 20774 */ 20775 mutex_enter(&connp->conn_lock); 20776 CONN_INC_REF_LOCKED(connp); 20777 ASSERT(connp->conn_ref == 2); 20778 connp->conn_state_flags &= ~CONN_INCIPIENT; 20779 20780 connp->conn_flags |= IPCL_NONSTR; 20781 mutex_exit(&connp->conn_lock); 20782 20783 ASSERT(errorp != NULL); 20784 *errorp = 0; 20785 *sock_downcalls = &sock_tcp_downcalls; 20786 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 20787 SM_SENDFILESUPP; 20788 20789 return ((sock_lower_handle_t)connp); 20790 } 20791 20792 /* ARGSUSED */ 20793 void 20794 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 20795 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 20796 { 20797 conn_t *connp = (conn_t *)proto_handle; 20798 struct sock_proto_props sopp; 20799 20800 ASSERT(connp->conn_upper_handle == NULL); 20801 20802 /* All Solaris components should pass a cred for this operation. */ 20803 ASSERT(cr != NULL); 20804 20805 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 20806 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 20807 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 20808 20809 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 20810 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 20811 sopp.sopp_maxpsz = INFPSZ; 20812 sopp.sopp_maxblk = INFPSZ; 20813 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 20814 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 20815 sopp.sopp_maxaddrlen = sizeof (sin6_t); 20816 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 20817 tcp_rinfo.mi_minpsz; 20818 20819 connp->conn_upcalls = sock_upcalls; 20820 connp->conn_upper_handle = sock_handle; 20821 20822 ASSERT(connp->conn_rcvbuf != 0 && 20823 connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd); 20824 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 20825 } 20826 20827 /* ARGSUSED */ 20828 int 20829 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 20830 { 20831 conn_t *connp = (conn_t *)proto_handle; 20832 20833 ASSERT(connp->conn_upper_handle != NULL); 20834 20835 /* All Solaris components should pass a cred for this operation. */ 20836 ASSERT(cr != NULL); 20837 20838 tcp_close_common(connp, flags); 20839 20840 ip_free_helper_stream(connp); 20841 20842 /* 20843 * Drop IP's reference on the conn. This is the last reference 20844 * on the connp if the state was less than established. If the 20845 * connection has gone into timewait state, then we will have 20846 * one ref for the TCP and one more ref (total of two) for the 20847 * classifier connected hash list (a timewait connections stays 20848 * in connected hash till closed). 20849 * 20850 * We can't assert the references because there might be other 20851 * transient reference places because of some walkers or queued 20852 * packets in squeue for the timewait state. 20853 */ 20854 CONN_DEC_REF(connp); 20855 return (0); 20856 } 20857 20858 /* ARGSUSED */ 20859 int 20860 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 20861 cred_t *cr) 20862 { 20863 tcp_t *tcp; 20864 uint32_t msize; 20865 conn_t *connp = (conn_t *)proto_handle; 20866 int32_t tcpstate; 20867 20868 /* All Solaris components should pass a cred for this operation. */ 20869 ASSERT(cr != NULL); 20870 20871 ASSERT(connp->conn_ref >= 2); 20872 ASSERT(connp->conn_upper_handle != NULL); 20873 20874 if (msg->msg_controllen != 0) { 20875 freemsg(mp); 20876 return (EOPNOTSUPP); 20877 } 20878 20879 switch (DB_TYPE(mp)) { 20880 case M_DATA: 20881 tcp = connp->conn_tcp; 20882 ASSERT(tcp != NULL); 20883 20884 tcpstate = tcp->tcp_state; 20885 if (tcpstate < TCPS_ESTABLISHED) { 20886 freemsg(mp); 20887 /* 20888 * We return ENOTCONN if the endpoint is trying to 20889 * connect or has never been connected, and EPIPE if it 20890 * has been disconnected. The connection id helps us 20891 * distinguish between the last two cases. 20892 */ 20893 return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN : 20894 ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN)); 20895 } else if (tcpstate > TCPS_CLOSE_WAIT) { 20896 freemsg(mp); 20897 return (EPIPE); 20898 } 20899 20900 msize = msgdsize(mp); 20901 20902 mutex_enter(&tcp->tcp_non_sq_lock); 20903 tcp->tcp_squeue_bytes += msize; 20904 /* 20905 * Squeue Flow Control 20906 */ 20907 if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { 20908 tcp_setqfull(tcp); 20909 } 20910 mutex_exit(&tcp->tcp_non_sq_lock); 20911 20912 /* 20913 * The application may pass in an address in the msghdr, but 20914 * we ignore the address on connection-oriented sockets. 20915 * Just like BSD this code does not generate an error for 20916 * TCP (a CONNREQUIRED socket) when sending to an address 20917 * passed in with sendto/sendmsg. Instead the data is 20918 * delivered on the connection as if no address had been 20919 * supplied. 20920 */ 20921 CONN_INC_REF(connp); 20922 20923 if (msg->msg_flags & MSG_OOB) { 20924 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent, 20925 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 20926 } else { 20927 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 20928 connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 20929 } 20930 20931 return (0); 20932 20933 default: 20934 ASSERT(0); 20935 } 20936 20937 freemsg(mp); 20938 return (0); 20939 } 20940 20941 /* ARGSUSED2 */ 20942 void 20943 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 20944 { 20945 int len; 20946 uint32_t msize; 20947 conn_t *connp = (conn_t *)arg; 20948 tcp_t *tcp = connp->conn_tcp; 20949 20950 msize = msgdsize(mp); 20951 20952 len = msize - 1; 20953 if (len < 0) { 20954 freemsg(mp); 20955 return; 20956 } 20957 20958 /* 20959 * Try to force urgent data out on the wire. Even if we have unsent 20960 * data this will at least send the urgent flag. 20961 * XXX does not handle more flag correctly. 20962 */ 20963 len += tcp->tcp_unsent; 20964 len += tcp->tcp_snxt; 20965 tcp->tcp_urg = len; 20966 tcp->tcp_valid_bits |= TCP_URG_VALID; 20967 20968 /* Bypass tcp protocol for fused tcp loopback */ 20969 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 20970 return; 20971 20972 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 20973 if (DB_TYPE(mp) != M_DATA) { 20974 mblk_t *mp1 = mp; 20975 ASSERT(!IPCL_IS_NONSTR(connp)); 20976 mp = mp->b_cont; 20977 freeb(mp1); 20978 } 20979 tcp_wput_data(tcp, mp, B_TRUE); 20980 } 20981 20982 /* ARGSUSED3 */ 20983 int 20984 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 20985 socklen_t *addrlenp, cred_t *cr) 20986 { 20987 conn_t *connp = (conn_t *)proto_handle; 20988 tcp_t *tcp = connp->conn_tcp; 20989 20990 ASSERT(connp->conn_upper_handle != NULL); 20991 /* All Solaris components should pass a cred for this operation. */ 20992 ASSERT(cr != NULL); 20993 20994 ASSERT(tcp != NULL); 20995 if (tcp->tcp_state < TCPS_SYN_RCVD) 20996 return (ENOTCONN); 20997 20998 return (conn_getpeername(connp, addr, addrlenp)); 20999 } 21000 21001 /* ARGSUSED3 */ 21002 int 21003 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 21004 socklen_t *addrlenp, cred_t *cr) 21005 { 21006 conn_t *connp = (conn_t *)proto_handle; 21007 21008 /* All Solaris components should pass a cred for this operation. */ 21009 ASSERT(cr != NULL); 21010 21011 ASSERT(connp->conn_upper_handle != NULL); 21012 return (conn_getsockname(connp, addr, addrlenp)); 21013 } 21014 21015 /* 21016 * tcp_fallback 21017 * 21018 * A direct socket is falling back to using STREAMS. The queue 21019 * that is being passed down was created using tcp_open() with 21020 * the SO_FALLBACK flag set. As a result, the queue is not 21021 * associated with a conn, and the q_ptrs instead contain the 21022 * dev and minor area that should be used. 21023 * 21024 * The 'issocket' flag indicates whether the FireEngine 21025 * optimizations should be used. The common case would be that 21026 * optimizations are enabled, and they might be subsequently 21027 * disabled using the _SIOCSOCKFALLBACK ioctl. 21028 */ 21029 21030 /* 21031 * An active connection is falling back to TPI. Gather all the information 21032 * required by the STREAM head and TPI sonode and send it up. 21033 */ 21034 void 21035 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 21036 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 21037 { 21038 conn_t *connp = tcp->tcp_connp; 21039 struct stroptions *stropt; 21040 struct T_capability_ack tca; 21041 struct sockaddr_in6 laddr, faddr; 21042 socklen_t laddrlen, faddrlen; 21043 short opts; 21044 int error; 21045 mblk_t *mp; 21046 21047 connp->conn_dev = (dev_t)RD(q)->q_ptr; 21048 connp->conn_minor_arena = WR(q)->q_ptr; 21049 21050 RD(q)->q_ptr = WR(q)->q_ptr = connp; 21051 21052 connp->conn_rq = RD(q); 21053 connp->conn_wq = WR(q); 21054 21055 WR(q)->q_qinfo = &tcp_sock_winit; 21056 21057 if (!issocket) 21058 tcp_use_pure_tpi(tcp); 21059 21060 /* 21061 * free the helper stream 21062 */ 21063 ip_free_helper_stream(connp); 21064 21065 /* 21066 * Notify the STREAM head about options 21067 */ 21068 DB_TYPE(stropt_mp) = M_SETOPTS; 21069 stropt = (struct stroptions *)stropt_mp->b_rptr; 21070 stropt_mp->b_wptr += sizeof (struct stroptions); 21071 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 21072 21073 stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 : 21074 tcp->tcp_tcps->tcps_wroff_xtra); 21075 if (tcp->tcp_snd_sack_ok) 21076 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 21077 stropt->so_hiwat = connp->conn_rcvbuf; 21078 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 21079 21080 putnext(RD(q), stropt_mp); 21081 21082 /* 21083 * Collect the information needed to sync with the sonode 21084 */ 21085 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 21086 21087 laddrlen = faddrlen = sizeof (sin6_t); 21088 (void) tcp_getsockname((sock_lower_handle_t)connp, 21089 (struct sockaddr *)&laddr, &laddrlen, CRED()); 21090 error = tcp_getpeername((sock_lower_handle_t)connp, 21091 (struct sockaddr *)&faddr, &faddrlen, CRED()); 21092 if (error != 0) 21093 faddrlen = 0; 21094 21095 opts = 0; 21096 if (connp->conn_oobinline) 21097 opts |= SO_OOBINLINE; 21098 if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE) 21099 opts |= SO_DONTROUTE; 21100 21101 /* 21102 * Notify the socket that the protocol is now quiescent, 21103 * and it's therefore safe move data from the socket 21104 * to the stream head. 21105 */ 21106 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 21107 (struct sockaddr *)&laddr, laddrlen, 21108 (struct sockaddr *)&faddr, faddrlen, opts); 21109 21110 while ((mp = tcp->tcp_rcv_list) != NULL) { 21111 tcp->tcp_rcv_list = mp->b_next; 21112 mp->b_next = NULL; 21113 /* We never do fallback for kernel RPC */ 21114 putnext(q, mp); 21115 } 21116 tcp->tcp_rcv_last_head = NULL; 21117 tcp->tcp_rcv_last_tail = NULL; 21118 tcp->tcp_rcv_cnt = 0; 21119 } 21120 21121 /* 21122 * An eager is falling back to TPI. All we have to do is send 21123 * up a T_CONN_IND. 21124 */ 21125 void 21126 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 21127 { 21128 tcp_t *listener = eager->tcp_listener; 21129 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 21130 21131 ASSERT(listener != NULL); 21132 ASSERT(mp != NULL); 21133 21134 eager->tcp_conn.tcp_eager_conn_ind = NULL; 21135 21136 /* 21137 * TLI/XTI applications will get confused by 21138 * sending eager as an option since it violates 21139 * the option semantics. So remove the eager as 21140 * option since TLI/XTI app doesn't need it anyway. 21141 */ 21142 if (!direct_sockfs) { 21143 struct T_conn_ind *conn_ind; 21144 21145 conn_ind = (struct T_conn_ind *)mp->b_rptr; 21146 conn_ind->OPT_length = 0; 21147 conn_ind->OPT_offset = 0; 21148 } 21149 21150 /* 21151 * Sockfs guarantees that the listener will not be closed 21152 * during fallback. So we can safely use the listener's queue. 21153 */ 21154 putnext(listener->tcp_connp->conn_rq, mp); 21155 } 21156 21157 int 21158 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 21159 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 21160 { 21161 tcp_t *tcp; 21162 conn_t *connp = (conn_t *)proto_handle; 21163 int error; 21164 mblk_t *stropt_mp; 21165 mblk_t *ordrel_mp; 21166 21167 tcp = connp->conn_tcp; 21168 21169 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 21170 NULL); 21171 21172 /* Pre-allocate the T_ordrel_ind mblk. */ 21173 ASSERT(tcp->tcp_ordrel_mp == NULL); 21174 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 21175 STR_NOSIG, NULL); 21176 ordrel_mp->b_datap->db_type = M_PROTO; 21177 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 21178 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 21179 21180 /* 21181 * Enter the squeue so that no new packets can come in 21182 */ 21183 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 21184 if (error != 0) { 21185 /* failed to enter, free all the pre-allocated messages. */ 21186 freeb(stropt_mp); 21187 freeb(ordrel_mp); 21188 /* 21189 * We cannot process the eager, so at least send out a 21190 * RST so the peer can reconnect. 21191 */ 21192 if (tcp->tcp_listener != NULL) { 21193 (void) tcp_eager_blowoff(tcp->tcp_listener, 21194 tcp->tcp_conn_req_seqnum); 21195 } 21196 return (ENOMEM); 21197 } 21198 21199 /* 21200 * Both endpoints must be of the same type (either STREAMS or 21201 * non-STREAMS) for fusion to be enabled. So if we are fused, 21202 * we have to unfuse. 21203 */ 21204 if (tcp->tcp_fused) 21205 tcp_unfuse(tcp); 21206 21207 /* 21208 * No longer a direct socket 21209 */ 21210 connp->conn_flags &= ~IPCL_NONSTR; 21211 tcp->tcp_ordrel_mp = ordrel_mp; 21212 21213 if (tcp->tcp_listener != NULL) { 21214 /* The eager will deal with opts when accept() is called */ 21215 freeb(stropt_mp); 21216 tcp_fallback_eager(tcp, direct_sockfs); 21217 } else { 21218 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 21219 quiesced_cb); 21220 } 21221 21222 /* 21223 * There should be atleast two ref's (IP + TCP) 21224 */ 21225 ASSERT(connp->conn_ref >= 2); 21226 squeue_synch_exit(connp->conn_sqp, connp); 21227 21228 return (0); 21229 } 21230 21231 /* ARGSUSED */ 21232 static void 21233 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 21234 { 21235 conn_t *connp = (conn_t *)arg; 21236 tcp_t *tcp = connp->conn_tcp; 21237 21238 freemsg(mp); 21239 21240 if (tcp->tcp_fused) 21241 tcp_unfuse(tcp); 21242 21243 if (tcp_xmit_end(tcp) != 0) { 21244 /* 21245 * We were crossing FINs and got a reset from 21246 * the other side. Just ignore it. 21247 */ 21248 if (connp->conn_debug) { 21249 (void) strlog(TCP_MOD_ID, 0, 1, 21250 SL_ERROR|SL_TRACE, 21251 "tcp_shutdown_output() out of state %s", 21252 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 21253 } 21254 } 21255 } 21256 21257 /* ARGSUSED */ 21258 int 21259 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 21260 { 21261 conn_t *connp = (conn_t *)proto_handle; 21262 tcp_t *tcp = connp->conn_tcp; 21263 21264 ASSERT(connp->conn_upper_handle != NULL); 21265 21266 /* All Solaris components should pass a cred for this operation. */ 21267 ASSERT(cr != NULL); 21268 21269 /* 21270 * X/Open requires that we check the connected state. 21271 */ 21272 if (tcp->tcp_state < TCPS_SYN_SENT) 21273 return (ENOTCONN); 21274 21275 /* shutdown the send side */ 21276 if (how != SHUT_RD) { 21277 mblk_t *bp; 21278 21279 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 21280 CONN_INC_REF(connp); 21281 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 21282 connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 21283 21284 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21285 SOCK_OPCTL_SHUT_SEND, 0); 21286 } 21287 21288 /* shutdown the recv side */ 21289 if (how != SHUT_WR) 21290 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21291 SOCK_OPCTL_SHUT_RECV, 0); 21292 21293 return (0); 21294 } 21295 21296 /* 21297 * SOP_LISTEN() calls into tcp_listen(). 21298 */ 21299 /* ARGSUSED */ 21300 int 21301 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 21302 { 21303 conn_t *connp = (conn_t *)proto_handle; 21304 int error; 21305 squeue_t *sqp = connp->conn_sqp; 21306 21307 ASSERT(connp->conn_upper_handle != NULL); 21308 21309 /* All Solaris components should pass a cred for this operation. */ 21310 ASSERT(cr != NULL); 21311 21312 error = squeue_synch_enter(sqp, connp, NULL); 21313 if (error != 0) { 21314 /* failed to enter */ 21315 return (ENOBUFS); 21316 } 21317 21318 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 21319 if (error == 0) { 21320 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 21321 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 21322 } else if (error < 0) { 21323 if (error == -TOUTSTATE) 21324 error = EINVAL; 21325 else 21326 error = proto_tlitosyserr(-error); 21327 } 21328 squeue_synch_exit(sqp, connp); 21329 return (error); 21330 } 21331 21332 static int 21333 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 21334 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 21335 { 21336 tcp_t *tcp = connp->conn_tcp; 21337 int error = 0; 21338 tcp_stack_t *tcps = tcp->tcp_tcps; 21339 21340 /* All Solaris components should pass a cred for this operation. */ 21341 ASSERT(cr != NULL); 21342 21343 if (tcp->tcp_state >= TCPS_BOUND) { 21344 if ((tcp->tcp_state == TCPS_BOUND || 21345 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 21346 /* 21347 * Handle listen() increasing backlog. 21348 * This is more "liberal" then what the TPI spec 21349 * requires but is needed to avoid a t_unbind 21350 * when handling listen() since the port number 21351 * might be "stolen" between the unbind and bind. 21352 */ 21353 goto do_listen; 21354 } 21355 if (connp->conn_debug) { 21356 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21357 "tcp_listen: bad state, %d", tcp->tcp_state); 21358 } 21359 return (-TOUTSTATE); 21360 } else { 21361 if (sa == NULL) { 21362 sin6_t addr; 21363 sin_t *sin; 21364 sin6_t *sin6; 21365 21366 ASSERT(IPCL_IS_NONSTR(connp)); 21367 /* Do an implicit bind: Request for a generic port. */ 21368 if (connp->conn_family == AF_INET) { 21369 len = sizeof (sin_t); 21370 sin = (sin_t *)&addr; 21371 *sin = sin_null; 21372 sin->sin_family = AF_INET; 21373 } else { 21374 ASSERT(connp->conn_family == AF_INET6); 21375 len = sizeof (sin6_t); 21376 sin6 = (sin6_t *)&addr; 21377 *sin6 = sin6_null; 21378 sin6->sin6_family = AF_INET6; 21379 } 21380 sa = (struct sockaddr *)&addr; 21381 } 21382 21383 error = tcp_bind_check(connp, sa, len, cr, 21384 bind_to_req_port_only); 21385 if (error) 21386 return (error); 21387 /* Fall through and do the fanout insertion */ 21388 } 21389 21390 do_listen: 21391 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 21392 tcp->tcp_conn_req_max = backlog; 21393 if (tcp->tcp_conn_req_max) { 21394 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 21395 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 21396 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 21397 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 21398 /* 21399 * If this is a listener, do not reset the eager list 21400 * and other stuffs. Note that we don't check if the 21401 * existing eager list meets the new tcp_conn_req_max 21402 * requirement. 21403 */ 21404 if (tcp->tcp_state != TCPS_LISTEN) { 21405 tcp->tcp_state = TCPS_LISTEN; 21406 /* Initialize the chain. Don't need the eager_lock */ 21407 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 21408 tcp->tcp_eager_next_drop_q0 = tcp; 21409 tcp->tcp_eager_prev_drop_q0 = tcp; 21410 tcp->tcp_second_ctimer_threshold = 21411 tcps->tcps_ip_abort_linterval; 21412 } 21413 } 21414 21415 /* 21416 * We need to make sure that the conn_recv is set to a non-null 21417 * value before we insert the conn into the classifier table. 21418 * This is to avoid a race with an incoming packet which does an 21419 * ipcl_classify(). 21420 * We initially set it to tcp_input_listener_unbound to try to 21421 * pick a good squeue for the listener when the first SYN arrives. 21422 * tcp_input_listener_unbound sets it to tcp_input_listener on that 21423 * first SYN. 21424 */ 21425 connp->conn_recv = tcp_input_listener_unbound; 21426 21427 /* Insert the listener in the classifier table */ 21428 error = ip_laddr_fanout_insert(connp); 21429 if (error != 0) { 21430 /* Undo the bind - release the port number */ 21431 tcp->tcp_state = TCPS_IDLE; 21432 connp->conn_bound_addr_v6 = ipv6_all_zeros; 21433 21434 connp->conn_laddr_v6 = ipv6_all_zeros; 21435 connp->conn_saddr_v6 = ipv6_all_zeros; 21436 connp->conn_ports = 0; 21437 21438 if (connp->conn_anon_port) { 21439 zone_t *zone; 21440 21441 zone = crgetzone(cr); 21442 connp->conn_anon_port = B_FALSE; 21443 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 21444 connp->conn_proto, connp->conn_lport, B_FALSE); 21445 } 21446 connp->conn_mlp_type = mlptSingle; 21447 21448 tcp_bind_hash_remove(tcp); 21449 return (error); 21450 } 21451 return (error); 21452 } 21453 21454 void 21455 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 21456 { 21457 conn_t *connp = (conn_t *)proto_handle; 21458 tcp_t *tcp = connp->conn_tcp; 21459 mblk_t *mp; 21460 int error; 21461 21462 ASSERT(connp->conn_upper_handle != NULL); 21463 21464 /* 21465 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 21466 * is currently running. 21467 */ 21468 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21469 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 21470 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21471 return; 21472 } 21473 tcp->tcp_rsrv_mp = NULL; 21474 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21475 21476 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 21477 ASSERT(error == 0); 21478 21479 mutex_enter(&tcp->tcp_rsrv_mp_lock); 21480 tcp->tcp_rsrv_mp = mp; 21481 mutex_exit(&tcp->tcp_rsrv_mp_lock); 21482 21483 if (tcp->tcp_fused) { 21484 tcp_fuse_backenable(tcp); 21485 } else { 21486 tcp->tcp_rwnd = connp->conn_rcvbuf; 21487 /* 21488 * Send back a window update immediately if TCP is above 21489 * ESTABLISHED state and the increase of the rcv window 21490 * that the other side knows is at least 1 MSS after flow 21491 * control is lifted. 21492 */ 21493 if (tcp->tcp_state >= TCPS_ESTABLISHED && 21494 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 21495 tcp_xmit_ctl(NULL, tcp, 21496 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 21497 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21498 } 21499 } 21500 21501 squeue_synch_exit(connp->conn_sqp, connp); 21502 } 21503 21504 /* ARGSUSED */ 21505 int 21506 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 21507 int mode, int32_t *rvalp, cred_t *cr) 21508 { 21509 conn_t *connp = (conn_t *)proto_handle; 21510 int error; 21511 21512 ASSERT(connp->conn_upper_handle != NULL); 21513 21514 /* All Solaris components should pass a cred for this operation. */ 21515 ASSERT(cr != NULL); 21516 21517 /* 21518 * If we don't have a helper stream then create one. 21519 * ip_create_helper_stream takes care of locking the conn_t, 21520 * so this check for NULL is just a performance optimization. 21521 */ 21522 if (connp->conn_helper_info == NULL) { 21523 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 21524 21525 /* 21526 * Create a helper stream for non-STREAMS socket. 21527 */ 21528 error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 21529 if (error != 0) { 21530 ip0dbg(("tcp_ioctl: create of IP helper stream " 21531 "failed %d\n", error)); 21532 return (error); 21533 } 21534 } 21535 21536 switch (cmd) { 21537 case ND_SET: 21538 case ND_GET: 21539 case _SIOCSOCKFALLBACK: 21540 case TCP_IOC_ABORT_CONN: 21541 case TI_GETPEERNAME: 21542 case TI_GETMYNAME: 21543 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 21544 cmd)); 21545 error = EINVAL; 21546 break; 21547 default: 21548 /* 21549 * Pass on to IP using helper stream 21550 */ 21551 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 21552 cmd, arg, mode, cr, rvalp); 21553 break; 21554 } 21555 return (error); 21556 } 21557 21558 sock_downcalls_t sock_tcp_downcalls = { 21559 tcp_activate, 21560 tcp_accept, 21561 tcp_bind, 21562 tcp_listen, 21563 tcp_connect, 21564 tcp_getpeername, 21565 tcp_getsockname, 21566 tcp_getsockopt, 21567 tcp_setsockopt, 21568 tcp_sendmsg, 21569 NULL, 21570 NULL, 21571 NULL, 21572 tcp_shutdown, 21573 tcp_clr_flowctrl, 21574 tcp_ioctl, 21575 tcp_close, 21576 }; 21577