1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/ethernet.h> 51 #include <sys/cpuvar.h> 52 #include <sys/dlpi.h> 53 #include <sys/multidata.h> 54 #include <sys/multidata_impl.h> 55 #include <sys/pattr.h> 56 #include <sys/policy.h> 57 #include <sys/zone.h> 58 59 #include <sys/errno.h> 60 #include <sys/signal.h> 61 #include <sys/socket.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <netinet/in.h> 67 #include <netinet/tcp.h> 68 #include <netinet/ip6.h> 69 #include <netinet/icmp6.h> 70 #include <net/if.h> 71 #include <net/route.h> 72 #include <inet/ipsec_impl.h> 73 74 #include <inet/common.h> 75 #include <inet/ip.h> 76 #include <inet/ip_impl.h> 77 #include <inet/ip6.h> 78 #include <inet/ip_ndp.h> 79 #include <inet/mi.h> 80 #include <inet/mib2.h> 81 #include <inet/nd.h> 82 #include <inet/optcom.h> 83 #include <inet/snmpcom.h> 84 #include <inet/kstatcom.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipsec_info.h> 89 #include <inet/ipdrop.h> 90 #include <inet/tcp_trace.h> 91 92 #include <inet/ipclassifier.h> 93 #include <inet/ip_ire.h> 94 #include <inet/ip_if.h> 95 #include <inet/ipp_common.h> 96 #include <sys/squeue.h> 97 #include <inet/kssl/ksslapi.h> 98 99 /* 100 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 101 * 102 * (Read the detailed design doc in PSARC case directory) 103 * 104 * The entire tcp state is contained in tcp_t and conn_t structure 105 * which are allocated in tandem using ipcl_conn_create() and passing 106 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 107 * the references on the tcp_t. The tcp_t structure is never compressed 108 * and packets always land on the correct TCP perimeter from the time 109 * eager is created till the time tcp_t dies (as such the old mentat 110 * TCP global queue is not used for detached state and no IPSEC checking 111 * is required). The global queue is still allocated to send out resets 112 * for connection which have no listeners and IP directly calls 113 * tcp_xmit_listeners_reset() which does any policy check. 114 * 115 * Protection and Synchronisation mechanism: 116 * 117 * The tcp data structure does not use any kind of lock for protecting 118 * its state but instead uses 'squeues' for mutual exclusion from various 119 * read and write side threads. To access a tcp member, the thread should 120 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 121 * squeue_fill). Since the squeues allow a direct function call, caller 122 * can pass any tcp function having prototype of edesc_t as argument 123 * (different from traditional STREAMs model where packets come in only 124 * designated entry points). The list of functions that can be directly 125 * called via squeue are listed before the usual function prototype. 126 * 127 * Referencing: 128 * 129 * TCP is MT-Hot and we use a reference based scheme to make sure that the 130 * tcp structure doesn't disappear when its needed. When the application 131 * creates an outgoing connection or accepts an incoming connection, we 132 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 133 * The IP reference is just a symbolic reference since ip_tcpclose() 134 * looks at tcp structure after tcp_close_output() returns which could 135 * have dropped the last TCP reference. So as long as the connection is 136 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 137 * conn_t. The classifier puts its own reference when the connection is 138 * inserted in listen or connected hash. Anytime a thread needs to enter 139 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 140 * on write side or by doing a classify on read side and then puts a 141 * reference on the conn before doing squeue_enter/tryenter/fill. For 142 * read side, the classifier itself puts the reference under fanout lock 143 * to make sure that tcp can't disappear before it gets processed. The 144 * squeue will drop this reference automatically so the called function 145 * doesn't have to do a DEC_REF. 146 * 147 * Opening a new connection: 148 * 149 * The outgoing connection open is pretty simple. ip_tcpopen() does the 150 * work in creating the conn/tcp structure and initializing it. The 151 * squeue assignment is done based on the CPU the application 152 * is running on. So for outbound connections, processing is always done 153 * on application CPU which might be different from the incoming CPU 154 * being interrupted by the NIC. An optimal way would be to figure out 155 * the NIC <-> CPU binding at listen time, and assign the outgoing 156 * connection to the squeue attached to the CPU that will be interrupted 157 * for incoming packets (we know the NIC based on the bind IP address). 158 * This might seem like a problem if more data is going out but the 159 * fact is that in most cases the transmit is ACK driven transmit where 160 * the outgoing data normally sits on TCP's xmit queue waiting to be 161 * transmitted. 162 * 163 * Accepting a connection: 164 * 165 * This is a more interesting case because of various races involved in 166 * establishing a eager in its own perimeter. Read the meta comment on 167 * top of tcp_conn_request(). But briefly, the squeue is picked by 168 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 169 * 170 * Closing a connection: 171 * 172 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 173 * via squeue to do the close and mark the tcp as detached if the connection 174 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 175 * reference but tcp_close() drop IP's reference always. So if tcp was 176 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 177 * and 1 because it is in classifier's connected hash. This is the condition 178 * we use to determine that its OK to clean up the tcp outside of squeue 179 * when time wait expires (check the ref under fanout and conn_lock and 180 * if it is 2, remove it from fanout hash and kill it). 181 * 182 * Although close just drops the necessary references and marks the 183 * tcp_detached state, tcp_close needs to know the tcp_detached has been 184 * set (under squeue) before letting the STREAM go away (because a 185 * inbound packet might attempt to go up the STREAM while the close 186 * has happened and tcp_detached is not set). So a special lock and 187 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 188 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 189 * tcp_detached. 190 * 191 * Special provisions and fast paths: 192 * 193 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 194 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 195 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 196 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 197 * check to send packets directly to tcp_rput_data via squeue. Everyone 198 * else comes through tcp_input() on the read side. 199 * 200 * We also make special provisions for sockfs by marking tcp_issocket 201 * whenever we have only sockfs on top of TCP. This allows us to skip 202 * putting the tcp in acceptor hash since a sockfs listener can never 203 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 204 * since eager has already been allocated and the accept now happens 205 * on acceptor STREAM. There is a big blob of comment on top of 206 * tcp_conn_request explaining the new accept. When socket is POP'd, 207 * sockfs sends us an ioctl to mark the fact and we go back to old 208 * behaviour. Once tcp_issocket is unset, its never set for the 209 * life of that connection. 210 * 211 * IPsec notes : 212 * 213 * Since a packet is always executed on the correct TCP perimeter 214 * all IPsec processing is defered to IP including checking new 215 * connections and setting IPSEC policies for new connection. The 216 * only exception is tcp_xmit_listeners_reset() which is called 217 * directly from IP and needs to policy check to see if TH_RST 218 * can be sent out. 219 */ 220 221 222 extern major_t TCP6_MAJ; 223 224 /* 225 * Values for squeue switch: 226 * 1: squeue_enter_nodrain 227 * 2: squeue_enter 228 * 3: squeue_fill 229 */ 230 int tcp_squeue_close = 2; 231 int tcp_squeue_wput = 2; 232 233 squeue_func_t tcp_squeue_close_proc; 234 squeue_func_t tcp_squeue_wput_proc; 235 236 /* 237 * This controls how tiny a write must be before we try to copy it 238 * into the the mblk on the tail of the transmit queue. Not much 239 * speedup is observed for values larger than sixteen. Zero will 240 * disable the optimisation. 241 */ 242 int tcp_tx_pull_len = 16; 243 244 /* 245 * TCP Statistics. 246 * 247 * How TCP statistics work. 248 * 249 * There are two types of statistics invoked by two macros. 250 * 251 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 252 * supposed to be used in non MT-hot paths of the code. 253 * 254 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 255 * supposed to be used for DEBUG purposes and may be used on a hot path. 256 * 257 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 258 * (use "kstat tcp" to get them). 259 * 260 * There is also additional debugging facility that marks tcp_clean_death() 261 * instances and saves them in tcp_t structure. It is triggered by 262 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 263 * tcp_clean_death() calls that counts the number of times each tag was hit. It 264 * is triggered by TCP_CLD_COUNTERS define. 265 * 266 * How to add new counters. 267 * 268 * 1) Add a field in the tcp_stat structure describing your counter. 269 * 2) Add a line in tcp_statistics with the name of the counter. 270 * 271 * IMPORTANT!! - make sure that both are in sync !! 272 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 273 * 274 * Please avoid using private counters which are not kstat-exported. 275 * 276 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 277 * in tcp_t structure. 278 * 279 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 280 */ 281 282 #ifndef TCP_DEBUG_COUNTER 283 #ifdef DEBUG 284 #define TCP_DEBUG_COUNTER 1 285 #else 286 #define TCP_DEBUG_COUNTER 0 287 #endif 288 #endif 289 290 #define TCP_CLD_COUNTERS 0 291 292 #define TCP_TAG_CLEAN_DEATH 1 293 #define TCP_MAX_CLEAN_DEATH_TAG 32 294 295 #ifdef lint 296 static int _lint_dummy_; 297 #endif 298 299 #if TCP_CLD_COUNTERS 300 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 301 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 302 #elif defined(lint) 303 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 304 #else 305 #define TCP_CLD_STAT(x) 306 #endif 307 308 #if TCP_DEBUG_COUNTER 309 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 310 #elif defined(lint) 311 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 312 #else 313 #define TCP_DBGSTAT(x) 314 #endif 315 316 tcp_stat_t tcp_statistics = { 317 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 318 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 319 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 320 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 321 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 322 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 323 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 324 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 325 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 326 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 327 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 328 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 329 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 330 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 331 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 332 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 333 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 334 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 335 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 336 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 337 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 338 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 339 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 340 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 341 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 342 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 343 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 344 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 345 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 346 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 347 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 348 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 349 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 350 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 351 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 352 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 353 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 354 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 355 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 356 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 357 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 358 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 359 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 360 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 361 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 362 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 363 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 364 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 365 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 366 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 367 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 368 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 369 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 370 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 371 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 372 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 373 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 374 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 375 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 376 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 377 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 378 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 379 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 380 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 381 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 382 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 383 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 384 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 385 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 386 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 387 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 388 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 389 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 390 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 391 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 392 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 395 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 396 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 397 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 398 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 399 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 400 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 401 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 402 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 403 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 404 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 405 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 406 }; 407 408 static kstat_t *tcp_kstat; 409 410 /* 411 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 412 * tcp write side. 413 */ 414 #define CALL_IP_WPUT(connp, q, mp) { \ 415 ASSERT(((q)->q_flag & QREADR) == 0); \ 416 TCP_DBGSTAT(tcp_ip_output); \ 417 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 418 } 419 420 /* Macros for timestamp comparisons */ 421 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 422 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 423 424 /* 425 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 426 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 427 * by adding three components: a time component which grows by 1 every 4096 428 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 429 * a per-connection component which grows by 125000 for every new connection; 430 * and an "extra" component that grows by a random amount centered 431 * approximately on 64000. This causes the the ISS generator to cycle every 432 * 4.89 hours if no TCP connections are made, and faster if connections are 433 * made. 434 * 435 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 436 * components: a time component which grows by 250000 every second; and 437 * a per-connection component which grows by 125000 for every new connections. 438 * 439 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 440 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 441 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 442 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 443 * password. 444 */ 445 #define ISS_INCR 250000 446 #define ISS_NSEC_SHT 12 447 448 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 449 static kmutex_t tcp_iss_key_lock; 450 static MD5_CTX tcp_iss_key; 451 static sin_t sin_null; /* Zero address for quick clears */ 452 static sin6_t sin6_null; /* Zero address for quick clears */ 453 454 /* Packet dropper for TCP IPsec policy drops. */ 455 static ipdropper_t tcp_dropper; 456 457 /* 458 * This implementation follows the 4.3BSD interpretation of the urgent 459 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 460 * incompatible changes in protocols like telnet and rlogin. 461 */ 462 #define TCP_OLD_URP_INTERPRETATION 1 463 464 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 465 (TCP_IS_DETACHED(tcp) && \ 466 (!(tcp)->tcp_hard_binding)) 467 468 /* 469 * TCP reassembly macros. We hide starting and ending sequence numbers in 470 * b_next and b_prev of messages on the reassembly queue. The messages are 471 * chained using b_cont. These macros are used in tcp_reass() so we don't 472 * have to see the ugly casts and assignments. 473 */ 474 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 475 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 476 (mblk_t *)(uintptr_t)(u)) 477 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 478 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 479 (mblk_t *)(uintptr_t)(u)) 480 481 /* 482 * Implementation of TCP Timers. 483 * ============================= 484 * 485 * INTERFACE: 486 * 487 * There are two basic functions dealing with tcp timers: 488 * 489 * timeout_id_t tcp_timeout(connp, func, time) 490 * clock_t tcp_timeout_cancel(connp, timeout_id) 491 * TCP_TIMER_RESTART(tcp, intvl) 492 * 493 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 494 * after 'time' ticks passed. The function called by timeout() must adhere to 495 * the same restrictions as a driver soft interrupt handler - it must not sleep 496 * or call other functions that might sleep. The value returned is the opaque 497 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 498 * cancel the request. The call to tcp_timeout() may fail in which case it 499 * returns zero. This is different from the timeout(9F) function which never 500 * fails. 501 * 502 * The call-back function 'func' always receives 'connp' as its single 503 * argument. It is always executed in the squeue corresponding to the tcp 504 * structure. The tcp structure is guaranteed to be present at the time the 505 * call-back is called. 506 * 507 * NOTE: The call-back function 'func' is never called if tcp is in 508 * the TCPS_CLOSED state. 509 * 510 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 511 * request. locks acquired by the call-back routine should not be held across 512 * the call to tcp_timeout_cancel() or a deadlock may result. 513 * 514 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 515 * Otherwise, it returns an integer value greater than or equal to 0. In 516 * particular, if the call-back function is already placed on the squeue, it can 517 * not be canceled. 518 * 519 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 520 * within squeue context corresponding to the tcp instance. Since the 521 * call-back is also called via the same squeue, there are no race 522 * conditions described in untimeout(9F) manual page since all calls are 523 * strictly serialized. 524 * 525 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 526 * stored in tcp_timer_tid and starts a new one using 527 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 528 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 529 * field. 530 * 531 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 532 * call-back may still be called, so it is possible tcp_timer() will be 533 * called several times. This should not be a problem since tcp_timer() 534 * should always check the tcp instance state. 535 * 536 * 537 * IMPLEMENTATION: 538 * 539 * TCP timers are implemented using three-stage process. The call to 540 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 541 * when the timer expires. The tcp_timer_callback() arranges the call of the 542 * tcp_timer_handler() function via squeue corresponding to the tcp 543 * instance. The tcp_timer_handler() calls actual requested timeout call-back 544 * and passes tcp instance as an argument to it. Information is passed between 545 * stages using the tcp_timer_t structure which contains the connp pointer, the 546 * tcp call-back to call and the timeout id returned by the timeout(9F). 547 * 548 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 549 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 550 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 551 * returns the pointer to this mblk. 552 * 553 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 554 * looks like a normal mblk without actual dblk attached to it. 555 * 556 * To optimize performance each tcp instance holds a small cache of timer 557 * mblocks. In the current implementation it caches up to two timer mblocks per 558 * tcp instance. The cache is preserved over tcp frees and is only freed when 559 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 560 * timer processing happens on a corresponding squeue, the cache manipulation 561 * does not require any locks. Experiments show that majority of timer mblocks 562 * allocations are satisfied from the tcp cache and do not involve kmem calls. 563 * 564 * The tcp_timeout() places a refhold on the connp instance which guarantees 565 * that it will be present at the time the call-back function fires. The 566 * tcp_timer_handler() drops the reference after calling the call-back, so the 567 * call-back function does not need to manipulate the references explicitly. 568 */ 569 570 typedef struct tcp_timer_s { 571 conn_t *connp; 572 void (*tcpt_proc)(void *); 573 timeout_id_t tcpt_tid; 574 } tcp_timer_t; 575 576 static kmem_cache_t *tcp_timercache; 577 kmem_cache_t *tcp_sack_info_cache; 578 kmem_cache_t *tcp_iphc_cache; 579 580 /* 581 * For scalability, we must not run a timer for every TCP connection 582 * in TIME_WAIT state. To see why, consider (for time wait interval of 583 * 4 minutes): 584 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 585 * 586 * This list is ordered by time, so you need only delete from the head 587 * until you get to entries which aren't old enough to delete yet. 588 * The list consists of only the detached TIME_WAIT connections. 589 * 590 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 591 * becomes detached TIME_WAIT (either by changing the state and already 592 * being detached or the other way around). This means that the TIME_WAIT 593 * state can be extended (up to doubled) if the connection doesn't become 594 * detached for a long time. 595 * 596 * The list manipulations (including tcp_time_wait_next/prev) 597 * are protected by the tcp_time_wait_lock. The content of the 598 * detached TIME_WAIT connections is protected by the normal perimeters. 599 */ 600 601 typedef struct tcp_squeue_priv_s { 602 kmutex_t tcp_time_wait_lock; 603 /* Protects the next 3 globals */ 604 timeout_id_t tcp_time_wait_tid; 605 tcp_t *tcp_time_wait_head; 606 tcp_t *tcp_time_wait_tail; 607 tcp_t *tcp_free_list; 608 uint_t tcp_free_list_cnt; 609 } tcp_squeue_priv_t; 610 611 /* 612 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 613 * Running it every 5 seconds seems to give the best results. 614 */ 615 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 616 617 /* 618 * To prevent memory hog, limit the number of entries in tcp_free_list 619 * to 1% of available memory / number of cpus 620 */ 621 uint_t tcp_free_list_max_cnt = 0; 622 623 #define TCP_XMIT_LOWATER 4096 624 #define TCP_XMIT_HIWATER 49152 625 #define TCP_RECV_LOWATER 2048 626 #define TCP_RECV_HIWATER 49152 627 628 /* 629 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 630 */ 631 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 632 633 #define TIDUSZ 4096 /* transport interface data unit size */ 634 635 /* 636 * Bind hash list size and has function. It has to be a power of 2 for 637 * hashing. 638 */ 639 #define TCP_BIND_FANOUT_SIZE 512 640 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 641 /* 642 * Size of listen and acceptor hash list. It has to be a power of 2 for 643 * hashing. 644 */ 645 #define TCP_FANOUT_SIZE 256 646 647 #ifdef _ILP32 648 #define TCP_ACCEPTOR_HASH(accid) \ 649 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 650 #else 651 #define TCP_ACCEPTOR_HASH(accid) \ 652 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 653 #endif /* _ILP32 */ 654 655 #define IP_ADDR_CACHE_SIZE 2048 656 #define IP_ADDR_CACHE_HASH(faddr) \ 657 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 658 659 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 660 #define TCP_HSP_HASH_SIZE 256 661 662 #define TCP_HSP_HASH(addr) \ 663 (((addr>>24) ^ (addr >>16) ^ \ 664 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 665 666 /* 667 * TCP options struct returned from tcp_parse_options. 668 */ 669 typedef struct tcp_opt_s { 670 uint32_t tcp_opt_mss; 671 uint32_t tcp_opt_wscale; 672 uint32_t tcp_opt_ts_val; 673 uint32_t tcp_opt_ts_ecr; 674 tcp_t *tcp; 675 } tcp_opt_t; 676 677 /* 678 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 679 */ 680 681 #ifdef _BIG_ENDIAN 682 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 683 (TCPOPT_TSTAMP << 8) | 10) 684 #else 685 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 686 (TCPOPT_NOP << 8) | TCPOPT_NOP) 687 #endif 688 689 /* 690 * Flags returned from tcp_parse_options. 691 */ 692 #define TCP_OPT_MSS_PRESENT 1 693 #define TCP_OPT_WSCALE_PRESENT 2 694 #define TCP_OPT_TSTAMP_PRESENT 4 695 #define TCP_OPT_SACK_OK_PRESENT 8 696 #define TCP_OPT_SACK_PRESENT 16 697 698 /* TCP option length */ 699 #define TCPOPT_NOP_LEN 1 700 #define TCPOPT_MAXSEG_LEN 4 701 #define TCPOPT_WS_LEN 3 702 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 703 #define TCPOPT_TSTAMP_LEN 10 704 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 705 #define TCPOPT_SACK_OK_LEN 2 706 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 707 #define TCPOPT_REAL_SACK_LEN 4 708 #define TCPOPT_MAX_SACK_LEN 36 709 #define TCPOPT_HEADER_LEN 2 710 711 /* TCP cwnd burst factor. */ 712 #define TCP_CWND_INFINITE 65535 713 #define TCP_CWND_SS 3 714 #define TCP_CWND_NORMAL 5 715 716 /* Maximum TCP initial cwin (start/restart). */ 717 #define TCP_MAX_INIT_CWND 8 718 719 /* 720 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 721 * either tcp_slow_start_initial or tcp_slow_start_after idle 722 * depending on the caller. If the upper layer has not used the 723 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 724 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 725 * If the upper layer has changed set the tcp_init_cwnd, just use 726 * it to calculate the tcp_cwnd. 727 */ 728 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 729 { \ 730 if ((tcp)->tcp_init_cwnd == 0) { \ 731 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 732 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 733 } else { \ 734 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 735 } \ 736 tcp->tcp_cwnd_cnt = 0; \ 737 } 738 739 /* TCP Timer control structure */ 740 typedef struct tcpt_s { 741 pfv_t tcpt_pfv; /* The routine we are to call */ 742 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 743 } tcpt_t; 744 745 /* Host Specific Parameter structure */ 746 typedef struct tcp_hsp { 747 struct tcp_hsp *tcp_hsp_next; 748 in6_addr_t tcp_hsp_addr_v6; 749 in6_addr_t tcp_hsp_subnet_v6; 750 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 751 int32_t tcp_hsp_sendspace; 752 int32_t tcp_hsp_recvspace; 753 int32_t tcp_hsp_tstamp; 754 } tcp_hsp_t; 755 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 756 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 757 758 /* 759 * Functions called directly via squeue having a prototype of edesc_t. 760 */ 761 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 762 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 763 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 764 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 765 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 766 void tcp_input(void *arg, mblk_t *mp, void *arg2); 767 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 768 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 769 void tcp_output(void *arg, mblk_t *mp, void *arg2); 770 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 771 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 772 773 774 /* Prototype for TCP functions */ 775 static void tcp_random_init(void); 776 int tcp_random(void); 777 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 778 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 779 tcp_t *eager); 780 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 781 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 782 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 783 boolean_t user_specified); 784 static void tcp_closei_local(tcp_t *tcp); 785 static void tcp_close_detached(tcp_t *tcp); 786 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 787 mblk_t *idmp, mblk_t **defermp); 788 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 789 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 790 in_port_t dstport, uint_t srcid); 791 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 792 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 793 uint32_t scope_id); 794 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 795 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 796 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 797 static char *tcp_display(tcp_t *tcp, char *, char); 798 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 799 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 800 static void tcp_eager_unlink(tcp_t *tcp); 801 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 802 int unixerr); 803 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 804 int tlierr, int unixerr); 805 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 806 cred_t *cr); 807 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 808 char *value, caddr_t cp, cred_t *cr); 809 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 810 char *value, caddr_t cp, cred_t *cr); 811 static int tcp_tpistate(tcp_t *tcp); 812 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 813 int caller_holds_lock); 814 static void tcp_bind_hash_remove(tcp_t *tcp); 815 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 816 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 817 static void tcp_acceptor_hash_remove(tcp_t *tcp); 818 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 819 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 820 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 821 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 822 static int tcp_header_init_ipv4(tcp_t *tcp); 823 static int tcp_header_init_ipv6(tcp_t *tcp); 824 int tcp_init(tcp_t *tcp, queue_t *q); 825 static int tcp_init_values(tcp_t *tcp); 826 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 827 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 828 t_scalar_t addr_length); 829 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 830 static void tcp_ip_notify(tcp_t *tcp); 831 static mblk_t *tcp_ire_mp(mblk_t *mp); 832 static void tcp_iss_init(tcp_t *tcp); 833 static void tcp_keepalive_killer(void *arg); 834 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 835 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 836 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 837 int *do_disconnectp, int *t_errorp, int *sys_errorp); 838 static boolean_t tcp_allow_connopt_set(int level, int name); 839 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 840 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 841 static int tcp_opt_get_user(ipha_t *ipha, uchar_t *ptr); 842 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 843 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 844 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 845 mblk_t *mblk); 846 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 847 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 848 uchar_t *ptr, uint_t len); 849 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 850 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 851 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 852 caddr_t cp, cred_t *cr); 853 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 854 caddr_t cp, cred_t *cr); 855 static void tcp_iss_key_init(uint8_t *phrase, int len); 856 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 857 caddr_t cp, cred_t *cr); 858 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 859 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 860 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 861 static void tcp_reinit(tcp_t *tcp); 862 static void tcp_reinit_values(tcp_t *tcp); 863 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 864 tcp_t *thisstream, cred_t *cr); 865 866 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 867 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 868 static boolean_t tcp_send_rst_chk(void); 869 static void tcp_ss_rexmit(tcp_t *tcp); 870 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 871 static void tcp_process_options(tcp_t *, tcph_t *); 872 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 873 static void tcp_rsrv(queue_t *q); 874 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 875 static int tcp_snmp_state(tcp_t *tcp); 876 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 877 cred_t *cr); 878 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 879 cred_t *cr); 880 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 881 cred_t *cr); 882 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 883 cred_t *cr); 884 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 885 cred_t *cr); 886 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 887 caddr_t cp, cred_t *cr); 888 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 889 caddr_t cp, cred_t *cr); 890 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 891 cred_t *cr); 892 static void tcp_timer(void *arg); 893 static void tcp_timer_callback(void *); 894 static in_port_t tcp_update_next_port(in_port_t port, boolean_t random); 895 static in_port_t tcp_get_next_priv_port(void); 896 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 897 void tcp_wput_accept(queue_t *q, mblk_t *mp); 898 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 899 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 900 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 901 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 902 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 903 const int num_sack_blk, int *usable, uint_t *snxt, 904 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 905 const int mdt_thres); 906 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 907 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 908 const int num_sack_blk, int *usable, uint_t *snxt, 909 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 910 const int mdt_thres); 911 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 912 int num_sack_blk); 913 static void tcp_wsrv(queue_t *q); 914 static int tcp_xmit_end(tcp_t *tcp); 915 void tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len); 916 static mblk_t *tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, 917 int32_t *offset, mblk_t **end_mp, uint32_t seq, 918 boolean_t sendall, uint32_t *seg_len, boolean_t rexmit); 919 static void tcp_ack_timer(void *arg); 920 static mblk_t *tcp_ack_mp(tcp_t *tcp); 921 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 922 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len); 923 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 924 uint32_t ack, int ctl); 925 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 926 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 927 static int setmaxps(queue_t *q, int maxpsz); 928 static void tcp_set_rto(tcp_t *, time_t); 929 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 930 boolean_t, boolean_t); 931 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 932 boolean_t ipsec_mctl); 933 static boolean_t tcp_cmpbuf(void *a, uint_t alen, 934 boolean_t b_valid, void *b, uint_t blen); 935 static boolean_t tcp_allocbuf(void **dstp, uint_t *dstlenp, 936 boolean_t src_valid, void *src, uint_t srclen); 937 static void tcp_savebuf(void **dstp, uint_t *dstlenp, 938 boolean_t src_valid, void *src, uint_t srclen); 939 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 940 char *opt, int optlen); 941 static int tcp_pkt_set(uchar_t *, uint_t, uchar_t **, uint_t *); 942 static int tcp_build_hdrs(queue_t *, tcp_t *); 943 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 944 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 945 tcph_t *tcph); 946 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 947 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 948 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 949 boolean_t tcp_reserved_port_check(in_port_t); 950 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 951 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 952 static mblk_t *tcp_mdt_info_mp(mblk_t *); 953 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 954 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 955 const boolean_t, const uint32_t, const uint32_t, 956 const uint32_t, const uint32_t); 957 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 958 const uint_t, const uint_t, boolean_t *); 959 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 960 extern mblk_t *tcp_timermp_alloc(int); 961 extern void tcp_timermp_free(tcp_t *); 962 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 963 static void tcp_stop_lingering(tcp_t *tcp); 964 static void tcp_close_linger_timeout(void *arg); 965 void tcp_ddi_init(void); 966 void tcp_ddi_destroy(void); 967 static void tcp_kstat_init(void); 968 static void tcp_kstat_fini(void); 969 static int tcp_kstat_update(kstat_t *kp, int rw); 970 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 971 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 972 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 973 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 974 tcph_t *tcph, mblk_t *idmp); 975 static squeue_func_t tcp_squeue_switch(int); 976 977 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 978 static int tcp_close(queue_t *, int); 979 static int tcpclose_accept(queue_t *); 980 static int tcp_modclose(queue_t *); 981 static void tcp_wput_mod(queue_t *, mblk_t *); 982 983 static void tcp_squeue_add(squeue_t *); 984 static boolean_t tcp_zcopy_check(tcp_t *); 985 static void tcp_zcopy_notify(tcp_t *); 986 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 987 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 988 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 989 990 extern void tcp_kssl_input(tcp_t *, mblk_t *); 991 992 /* 993 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 994 * 995 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 996 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 997 * (defined in tcp.h) needs to be filled in and passed into the kernel 998 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 999 * structure contains the four-tuple of a TCP connection and a range of TCP 1000 * states (specified by ac_start and ac_end). The use of wildcard addresses 1001 * and ports is allowed. Connections with a matching four tuple and a state 1002 * within the specified range will be aborted. The valid states for the 1003 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1004 * inclusive. 1005 * 1006 * An application which has its connection aborted by this ioctl will receive 1007 * an error that is dependent on the connection state at the time of the abort. 1008 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1009 * though a RST packet has been received. If the connection state is equal to 1010 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1011 * and all resources associated with the connection will be freed. 1012 */ 1013 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1014 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1015 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1016 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1017 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1018 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1019 boolean_t); 1020 1021 static struct module_info tcp_rinfo = { 1022 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1023 }; 1024 1025 static struct module_info tcp_winfo = { 1026 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1027 }; 1028 1029 /* 1030 * Entry points for TCP as a module. It only allows SNMP requests 1031 * to pass through. 1032 */ 1033 struct qinit tcp_mod_rinit = { 1034 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1035 }; 1036 1037 struct qinit tcp_mod_winit = { 1038 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1039 &tcp_rinfo 1040 }; 1041 1042 /* 1043 * Entry points for TCP as a device. The normal case which supports 1044 * the TCP functionality. 1045 */ 1046 struct qinit tcp_rinit = { 1047 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1048 }; 1049 1050 struct qinit tcp_winit = { 1051 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1052 }; 1053 1054 /* Initial entry point for TCP in socket mode. */ 1055 struct qinit tcp_sock_winit = { 1056 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1057 }; 1058 1059 /* 1060 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1061 * an accept. Avoid allocating data structures since eager has already 1062 * been created. 1063 */ 1064 struct qinit tcp_acceptor_rinit = { 1065 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1066 }; 1067 1068 struct qinit tcp_acceptor_winit = { 1069 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1070 }; 1071 1072 /* 1073 * Entry points for TCP loopback (read side only) 1074 */ 1075 struct qinit tcp_loopback_rinit = { 1076 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1077 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1078 }; 1079 1080 struct streamtab tcpinfo = { 1081 &tcp_rinit, &tcp_winit 1082 }; 1083 1084 extern squeue_func_t tcp_squeue_wput_proc; 1085 extern squeue_func_t tcp_squeue_timer_proc; 1086 1087 /* Protected by tcp_g_q_lock */ 1088 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1089 kmutex_t tcp_g_q_lock; 1090 1091 /* Protected by tcp_hsp_lock */ 1092 /* 1093 * XXX The host param mechanism should go away and instead we should use 1094 * the metrics associated with the routes to determine the default sndspace 1095 * and rcvspace. 1096 */ 1097 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1098 krwlock_t tcp_hsp_lock; 1099 1100 /* 1101 * Extra privileged ports. In host byte order. 1102 * Protected by tcp_epriv_port_lock. 1103 */ 1104 #define TCP_NUM_EPRIV_PORTS 64 1105 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1106 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1107 kmutex_t tcp_epriv_port_lock; 1108 1109 /* 1110 * The smallest anonymous port in the priviledged port range which TCP 1111 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1112 */ 1113 static in_port_t tcp_min_anonpriv_port = 512; 1114 1115 /* Only modified during _init and _fini thus no locking is needed. */ 1116 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1117 1118 /* Hint not protected by any lock */ 1119 static uint_t tcp_next_port_to_try; 1120 1121 1122 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1123 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1124 1125 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1126 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1127 1128 /* 1129 * TCP has a private interface for other kernel modules to reserve a 1130 * port range for them to use. Once reserved, TCP will not use any ports 1131 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1132 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1133 * has to be verified. 1134 * 1135 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1136 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1137 * range is [port a, port b] inclusive. And each port range is between 1138 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1139 * 1140 * Note that the default anonymous port range starts from 32768. There is 1141 * no port "collision" between that and the reserved port range. If there 1142 * is port collision (because the default smallest anonymous port is lowered 1143 * or some apps specifically bind to ports in the reserved port range), the 1144 * system may not be able to reserve a port range even there are enough 1145 * unbound ports as a reserved port range contains consecutive ports . 1146 */ 1147 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1148 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1149 #define TCP_SMALLEST_RESERVED_PORT 10240 1150 #define TCP_LARGEST_RESERVED_PORT 20480 1151 1152 /* Structure to represent those reserved port ranges. */ 1153 typedef struct tcp_rport_s { 1154 in_port_t lo_port; 1155 in_port_t hi_port; 1156 tcp_t **temp_tcp_array; 1157 } tcp_rport_t; 1158 1159 /* The reserved port array. */ 1160 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1161 1162 /* Locks to protect the tcp_reserved_ports array. */ 1163 static krwlock_t tcp_reserved_port_lock; 1164 1165 /* The number of ranges in the array. */ 1166 uint32_t tcp_reserved_port_array_size = 0; 1167 1168 /* 1169 * MIB-2 stuff for SNMP 1170 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1171 */ 1172 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1173 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1174 1175 boolean_t tcp_icmp_source_quench = B_FALSE; 1176 /* 1177 * Following assumes TPI alignment requirements stay along 32 bit 1178 * boundaries 1179 */ 1180 #define ROUNDUP32(x) \ 1181 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1182 1183 /* Template for response to info request. */ 1184 static struct T_info_ack tcp_g_t_info_ack = { 1185 T_INFO_ACK, /* PRIM_type */ 1186 0, /* TSDU_size */ 1187 T_INFINITE, /* ETSDU_size */ 1188 T_INVALID, /* CDATA_size */ 1189 T_INVALID, /* DDATA_size */ 1190 sizeof (sin_t), /* ADDR_size */ 1191 0, /* OPT_size - not initialized here */ 1192 TIDUSZ, /* TIDU_size */ 1193 T_COTS_ORD, /* SERV_type */ 1194 TCPS_IDLE, /* CURRENT_state */ 1195 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1196 }; 1197 1198 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1199 T_INFO_ACK, /* PRIM_type */ 1200 0, /* TSDU_size */ 1201 T_INFINITE, /* ETSDU_size */ 1202 T_INVALID, /* CDATA_size */ 1203 T_INVALID, /* DDATA_size */ 1204 sizeof (sin6_t), /* ADDR_size */ 1205 0, /* OPT_size - not initialized here */ 1206 TIDUSZ, /* TIDU_size */ 1207 T_COTS_ORD, /* SERV_type */ 1208 TCPS_IDLE, /* CURRENT_state */ 1209 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1210 }; 1211 1212 #define MS 1L 1213 #define SECONDS (1000 * MS) 1214 #define MINUTES (60 * SECONDS) 1215 #define HOURS (60 * MINUTES) 1216 #define DAYS (24 * HOURS) 1217 1218 #define PARAM_MAX (~(uint32_t)0) 1219 1220 /* Max size IP datagram is 64k - 1 */ 1221 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1222 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1223 /* Max of the above */ 1224 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1225 1226 /* Largest TCP port number */ 1227 #define TCP_MAX_PORT (64 * 1024 - 1) 1228 1229 /* 1230 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1231 * layer header. It has to be a multiple of 4. 1232 */ 1233 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1234 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1235 1236 /* 1237 * All of these are alterable, within the min/max values given, at run time. 1238 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1239 * per the TCP spec. 1240 */ 1241 /* BEGIN CSTYLED */ 1242 tcpparam_t tcp_param_arr[] = { 1243 /*min max value name */ 1244 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1245 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1246 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1247 { 1, 1024, 1, "tcp_conn_req_min" }, 1248 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1249 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1250 { 0, 10, 0, "tcp_debug" }, 1251 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1252 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1253 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1254 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1255 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1256 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1257 { 1, 255, 64, "tcp_ipv4_ttl"}, 1258 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1259 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1260 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1261 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1262 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1263 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1264 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1265 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1266 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1267 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1268 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1269 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1270 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1271 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1272 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1273 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1274 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1275 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1276 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1277 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1278 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1279 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1280 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1281 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1282 /* 1283 * Question: What default value should I set for tcp_strong_iss? 1284 */ 1285 { 0, 2, 1, "tcp_strong_iss"}, 1286 { 0, 65536, 20, "tcp_rtt_updates"}, 1287 { 0, 1, 1, "tcp_wscale_always"}, 1288 { 0, 1, 0, "tcp_tstamp_always"}, 1289 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1290 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1291 { 0, 16, 2, "tcp_deferred_acks_max"}, 1292 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1293 { 1, 4, 4, "tcp_slow_start_initial"}, 1294 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1295 { 0, 2, 2, "tcp_sack_permitted"}, 1296 { 0, 1, 0, "tcp_trace"}, 1297 { 0, 1, 1, "tcp_compression_enabled"}, 1298 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1299 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1300 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1301 { 0, 1, 0, "tcp_rev_src_routes"}, 1302 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1303 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1304 { 0, 16, 8, "tcp_local_dacks_max"}, 1305 { 0, 2, 1, "tcp_ecn_permitted"}, 1306 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1307 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1308 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1309 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1310 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1311 }; 1312 /* END CSTYLED */ 1313 1314 /* 1315 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1316 * each header fragment in the header buffer. Each parameter value has 1317 * to be a multiple of 4 (32-bit aligned). 1318 */ 1319 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1320 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1321 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1322 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1323 1324 /* 1325 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1326 * the maximum number of payload buffers associated per Multidata. 1327 */ 1328 static tcpparam_t tcp_mdt_max_pbufs_param = 1329 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1330 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1331 1332 /* Round up the value to the nearest mss. */ 1333 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1334 1335 /* 1336 * Set ECN capable transport (ECT) code point in IP header. 1337 * 1338 * Note that there are 2 ECT code points '01' and '10', which are called 1339 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1340 * point ECT(0) for TCP as described in RFC 2481. 1341 */ 1342 #define SET_ECT(tcp, iph) \ 1343 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1344 /* We need to clear the code point first. */ \ 1345 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1346 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1347 } else { \ 1348 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1349 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1350 } 1351 1352 /* 1353 * The format argument to pass to tcp_display(). 1354 * DISP_PORT_ONLY means that the returned string has only port info. 1355 * DISP_ADDR_AND_PORT means that the returned string also contains the 1356 * remote and local IP address. 1357 */ 1358 #define DISP_PORT_ONLY 1 1359 #define DISP_ADDR_AND_PORT 2 1360 1361 /* 1362 * This controls the rate some ndd info report functions can be used 1363 * by non-priviledged users. It stores the last time such info is 1364 * requested. When those report functions are called again, this 1365 * is checked with the current time and compare with the ndd param 1366 * tcp_ndd_get_info_interval. 1367 */ 1368 static clock_t tcp_last_ndd_get_info_time = 0; 1369 #define NDD_TOO_QUICK_MSG \ 1370 "ndd get info rate too high for non-priviledged users, try again " \ 1371 "later.\n" 1372 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1373 1374 #define IS_VMLOANED_MBLK(mp) \ 1375 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1376 1377 /* 1378 * These two variables control the rate for TCP to generate RSTs in 1379 * response to segments not belonging to any connections. We limit 1380 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1381 * each 1 second interval. This is to protect TCP against DoS attack. 1382 */ 1383 static clock_t tcp_last_rst_intrvl; 1384 static uint32_t tcp_rst_cnt; 1385 1386 /* The number of RST not sent because of the rate limit. */ 1387 static uint32_t tcp_rst_unsent; 1388 1389 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1390 boolean_t tcp_mdt_chain = B_TRUE; 1391 1392 /* 1393 * MDT threshold in the form of effective send MSS multiplier; we take 1394 * the MDT path if the amount of unsent data exceeds the threshold value 1395 * (default threshold is 1*SMSS). 1396 */ 1397 uint_t tcp_mdt_smss_threshold = 1; 1398 1399 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1400 1401 /* 1402 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1403 * tunable settable via NDD. Otherwise, the per-connection behavior is 1404 * determined dynamically during tcp_adapt_ire(), which is the default. 1405 */ 1406 boolean_t tcp_static_maxpsz = B_FALSE; 1407 1408 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1409 uint32_t tcp_random_anon_port = 1; 1410 1411 /* 1412 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1413 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1414 * data, TCP will not respond with an ACK. RFC 793 requires that 1415 * TCP responds with an ACK for such a bogus ACK. By not following 1416 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1417 * an attacker successfully spoofs an acceptable segment to our 1418 * peer; or when our peer is "confused." 1419 */ 1420 uint32_t tcp_drop_ack_unsent_cnt = 10; 1421 1422 /* 1423 * Hook functions to enable cluster networking 1424 * On non-clustered systems these vectors must always be NULL. 1425 */ 1426 1427 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1428 uint8_t *laddrp, in_port_t lport) = NULL; 1429 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1430 uint8_t *laddrp, in_port_t lport) = NULL; 1431 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1432 uint8_t *laddrp, in_port_t lport, 1433 uint8_t *faddrp, in_port_t fport) = NULL; 1434 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1435 uint8_t *laddrp, in_port_t lport, 1436 uint8_t *faddrp, in_port_t fport) = NULL; 1437 1438 /* 1439 * The following are defined in ip.c 1440 */ 1441 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1442 uint8_t *laddrp); 1443 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1444 uint8_t *laddrp, uint8_t *faddrp); 1445 1446 #define CL_INET_CONNECT(tcp) { \ 1447 if (cl_inet_connect != NULL) { \ 1448 /* \ 1449 * Running in cluster mode - register active connection \ 1450 * information \ 1451 */ \ 1452 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1453 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1454 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1455 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1456 (in_port_t)(tcp)->tcp_lport, \ 1457 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1458 (in_port_t)(tcp)->tcp_fport); \ 1459 } \ 1460 } else { \ 1461 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1462 &(tcp)->tcp_ip6h->ip6_src)) {\ 1463 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1464 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1465 (in_port_t)(tcp)->tcp_lport, \ 1466 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1467 (in_port_t)(tcp)->tcp_fport); \ 1468 } \ 1469 } \ 1470 } \ 1471 } 1472 1473 #define CL_INET_DISCONNECT(tcp) { \ 1474 if (cl_inet_disconnect != NULL) { \ 1475 /* \ 1476 * Running in cluster mode - deregister active \ 1477 * connection information \ 1478 */ \ 1479 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1480 if ((tcp)->tcp_ip_src != 0) { \ 1481 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1482 AF_INET, \ 1483 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1484 (in_port_t)(tcp)->tcp_lport, \ 1485 (uint8_t *) \ 1486 (&((tcp)->tcp_ipha->ipha_dst)),\ 1487 (in_port_t)(tcp)->tcp_fport); \ 1488 } \ 1489 } else { \ 1490 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1491 &(tcp)->tcp_ip_src_v6)) { \ 1492 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1493 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1494 (in_port_t)(tcp)->tcp_lport, \ 1495 (uint8_t *) \ 1496 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1497 (in_port_t)(tcp)->tcp_fport); \ 1498 } \ 1499 } \ 1500 } \ 1501 } 1502 1503 /* 1504 * Cluster networking hook for traversing current connection list. 1505 * This routine is used to extract the current list of live connections 1506 * which must continue to to be dispatched to this node. 1507 */ 1508 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1509 1510 /* 1511 * Figure out the value of window scale opton. Note that the rwnd is 1512 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1513 * We cannot find the scale value and then do a round up of tcp_rwnd 1514 * because the scale value may not be correct after that. 1515 * 1516 * Set the compiler flag to make this function inline. 1517 */ 1518 static void 1519 tcp_set_ws_value(tcp_t *tcp) 1520 { 1521 int i; 1522 uint32_t rwnd = tcp->tcp_rwnd; 1523 1524 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1525 i++, rwnd >>= 1) 1526 ; 1527 tcp->tcp_rcv_ws = i; 1528 } 1529 1530 /* 1531 * Remove a connection from the list of detached TIME_WAIT connections. 1532 */ 1533 static void 1534 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1535 { 1536 boolean_t locked = B_FALSE; 1537 1538 if (tcp_time_wait == NULL) { 1539 tcp_time_wait = *((tcp_squeue_priv_t **) 1540 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1541 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1542 locked = B_TRUE; 1543 } 1544 1545 if (tcp->tcp_time_wait_expire == 0) { 1546 ASSERT(tcp->tcp_time_wait_next == NULL); 1547 ASSERT(tcp->tcp_time_wait_prev == NULL); 1548 if (locked) 1549 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1550 return; 1551 } 1552 ASSERT(TCP_IS_DETACHED(tcp)); 1553 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1554 1555 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1556 ASSERT(tcp->tcp_time_wait_prev == NULL); 1557 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1558 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1559 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1560 NULL; 1561 } else { 1562 tcp_time_wait->tcp_time_wait_tail = NULL; 1563 } 1564 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1565 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1566 ASSERT(tcp->tcp_time_wait_next == NULL); 1567 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1568 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1569 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1570 } else { 1571 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1572 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1573 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1574 tcp->tcp_time_wait_next; 1575 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1576 tcp->tcp_time_wait_prev; 1577 } 1578 tcp->tcp_time_wait_next = NULL; 1579 tcp->tcp_time_wait_prev = NULL; 1580 tcp->tcp_time_wait_expire = 0; 1581 1582 if (locked) 1583 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1584 } 1585 1586 /* 1587 * Add a connection to the list of detached TIME_WAIT connections 1588 * and set its time to expire. 1589 */ 1590 static void 1591 tcp_time_wait_append(tcp_t *tcp) 1592 { 1593 tcp_squeue_priv_t *tcp_time_wait = 1594 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1595 SQPRIVATE_TCP)); 1596 1597 tcp_timers_stop(tcp); 1598 1599 /* Freed above */ 1600 ASSERT(tcp->tcp_timer_tid == 0); 1601 ASSERT(tcp->tcp_ack_tid == 0); 1602 1603 /* must have happened at the time of detaching the tcp */ 1604 ASSERT(tcp->tcp_ptpahn == NULL); 1605 ASSERT(tcp->tcp_flow_stopped == 0); 1606 ASSERT(tcp->tcp_time_wait_next == NULL); 1607 ASSERT(tcp->tcp_time_wait_prev == NULL); 1608 ASSERT(tcp->tcp_time_wait_expire == NULL); 1609 ASSERT(tcp->tcp_listener == NULL); 1610 1611 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1612 /* 1613 * The value computed below in tcp->tcp_time_wait_expire may 1614 * appear negative or wrap around. That is ok since our 1615 * interest is only in the difference between the current lbolt 1616 * value and tcp->tcp_time_wait_expire. But the value should not 1617 * be zero, since it means the tcp is not in the TIME_WAIT list. 1618 * The corresponding comparison in tcp_time_wait_collector() uses 1619 * modular arithmetic. 1620 */ 1621 tcp->tcp_time_wait_expire += 1622 drv_usectohz(tcp_time_wait_interval * 1000); 1623 if (tcp->tcp_time_wait_expire == 0) 1624 tcp->tcp_time_wait_expire = 1; 1625 1626 ASSERT(TCP_IS_DETACHED(tcp)); 1627 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1628 ASSERT(tcp->tcp_time_wait_next == NULL); 1629 ASSERT(tcp->tcp_time_wait_prev == NULL); 1630 TCP_DBGSTAT(tcp_time_wait); 1631 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1632 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1633 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1634 tcp_time_wait->tcp_time_wait_head = tcp; 1635 } else { 1636 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1637 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1638 TCPS_TIME_WAIT); 1639 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1640 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1641 } 1642 tcp_time_wait->tcp_time_wait_tail = tcp; 1643 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1644 } 1645 1646 /* ARGSUSED */ 1647 void 1648 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1649 { 1650 conn_t *connp = (conn_t *)arg; 1651 tcp_t *tcp = connp->conn_tcp; 1652 1653 ASSERT(tcp != NULL); 1654 if (tcp->tcp_state == TCPS_CLOSED) { 1655 return; 1656 } 1657 1658 ASSERT((tcp->tcp_family == AF_INET && 1659 tcp->tcp_ipversion == IPV4_VERSION) || 1660 (tcp->tcp_family == AF_INET6 && 1661 (tcp->tcp_ipversion == IPV4_VERSION || 1662 tcp->tcp_ipversion == IPV6_VERSION))); 1663 ASSERT(!tcp->tcp_listener); 1664 1665 TCP_STAT(tcp_time_wait_reap); 1666 ASSERT(TCP_IS_DETACHED(tcp)); 1667 1668 /* 1669 * Because they have no upstream client to rebind or tcp_close() 1670 * them later, we axe the connection here and now. 1671 */ 1672 tcp_close_detached(tcp); 1673 } 1674 1675 void 1676 tcp_cleanup(tcp_t *tcp) 1677 { 1678 mblk_t *mp; 1679 char *tcp_iphc; 1680 int tcp_iphc_len; 1681 int tcp_hdr_grown; 1682 tcp_sack_info_t *tcp_sack_info; 1683 conn_t *connp = tcp->tcp_connp; 1684 1685 tcp_bind_hash_remove(tcp); 1686 tcp_free(tcp); 1687 1688 /* Release any SSL context */ 1689 if (tcp->tcp_kssl_ent != NULL) { 1690 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1691 tcp->tcp_kssl_ent = NULL; 1692 } 1693 1694 if (tcp->tcp_kssl_ctx != NULL) { 1695 kssl_release_ctx(tcp->tcp_kssl_ctx); 1696 tcp->tcp_kssl_ctx = NULL; 1697 } 1698 tcp->tcp_kssl_pending = B_FALSE; 1699 1700 conn_delete_ire(connp, NULL); 1701 if (connp->conn_flags & IPCL_TCPCONN) { 1702 if (connp->conn_latch != NULL) 1703 IPLATCH_REFRELE(connp->conn_latch); 1704 if (connp->conn_policy != NULL) 1705 IPPH_REFRELE(connp->conn_policy); 1706 } 1707 1708 /* 1709 * Since we will bzero the entire structure, we need to 1710 * remove it and reinsert it in global hash list. We 1711 * know the walkers can't get to this conn because we 1712 * had set CONDEMNED flag earlier and checked reference 1713 * under conn_lock so walker won't pick it and when we 1714 * go the ipcl_globalhash_remove() below, no walker 1715 * can get to it. 1716 */ 1717 ipcl_globalhash_remove(connp); 1718 1719 /* Save some state */ 1720 mp = tcp->tcp_timercache; 1721 1722 tcp_sack_info = tcp->tcp_sack_info; 1723 tcp_iphc = tcp->tcp_iphc; 1724 tcp_iphc_len = tcp->tcp_iphc_len; 1725 tcp_hdr_grown = tcp->tcp_hdr_grown; 1726 1727 bzero(connp, sizeof (conn_t)); 1728 bzero(tcp, sizeof (tcp_t)); 1729 1730 /* restore the state */ 1731 tcp->tcp_timercache = mp; 1732 1733 tcp->tcp_sack_info = tcp_sack_info; 1734 tcp->tcp_iphc = tcp_iphc; 1735 tcp->tcp_iphc_len = tcp_iphc_len; 1736 tcp->tcp_hdr_grown = tcp_hdr_grown; 1737 1738 1739 tcp->tcp_connp = connp; 1740 1741 connp->conn_tcp = tcp; 1742 connp->conn_flags = IPCL_TCPCONN; 1743 connp->conn_state_flags = CONN_INCIPIENT; 1744 connp->conn_ulp = IPPROTO_TCP; 1745 connp->conn_ref = 1; 1746 1747 ipcl_globalhash_insert(connp); 1748 } 1749 1750 /* 1751 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1752 * is done forwards from the head. 1753 */ 1754 /* ARGSUSED */ 1755 void 1756 tcp_time_wait_collector(void *arg) 1757 { 1758 tcp_t *tcp; 1759 clock_t now; 1760 mblk_t *mp; 1761 conn_t *connp; 1762 kmutex_t *lock; 1763 1764 squeue_t *sqp = (squeue_t *)arg; 1765 tcp_squeue_priv_t *tcp_time_wait = 1766 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1767 1768 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1769 tcp_time_wait->tcp_time_wait_tid = 0; 1770 1771 if (tcp_time_wait->tcp_free_list != NULL && 1772 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1773 TCP_STAT(tcp_freelist_cleanup); 1774 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1775 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1776 CONN_DEC_REF(tcp->tcp_connp); 1777 } 1778 tcp_time_wait->tcp_free_list_cnt = 0; 1779 } 1780 1781 /* 1782 * In order to reap time waits reliably, we should use a 1783 * source of time that is not adjustable by the user -- hence 1784 * the call to ddi_get_lbolt(). 1785 */ 1786 now = ddi_get_lbolt(); 1787 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1788 /* 1789 * Compare times using modular arithmetic, since 1790 * lbolt can wrapover. 1791 */ 1792 if ((now - tcp->tcp_time_wait_expire) < 0) { 1793 break; 1794 } 1795 1796 tcp_time_wait_remove(tcp, tcp_time_wait); 1797 1798 connp = tcp->tcp_connp; 1799 ASSERT(connp->conn_fanout != NULL); 1800 lock = &connp->conn_fanout->connf_lock; 1801 /* 1802 * This is essentially a TW reclaim fast path optimization for 1803 * performance where the timewait collector checks under the 1804 * fanout lock (so that no one else can get access to the 1805 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1806 * the classifier hash list. If ref count is indeed 2, we can 1807 * just remove the conn under the fanout lock and avoid 1808 * cleaning up the conn under the squeue, provided that 1809 * clustering callbacks are not enabled. If clustering is 1810 * enabled, we need to make the clustering callback before 1811 * setting the CONDEMNED flag and after dropping all locks and 1812 * so we forego this optimization and fall back to the slow 1813 * path. Also please see the comments in tcp_closei_local 1814 * regarding the refcnt logic. 1815 * 1816 * Since we are holding the tcp_time_wait_lock, its better 1817 * not to block on the fanout_lock because other connections 1818 * can't add themselves to time_wait list. So we do a 1819 * tryenter instead of mutex_enter. 1820 */ 1821 if (mutex_tryenter(lock)) { 1822 mutex_enter(&connp->conn_lock); 1823 if ((connp->conn_ref == 2) && 1824 (cl_inet_disconnect == NULL)) { 1825 ipcl_hash_remove_locked(connp, 1826 connp->conn_fanout); 1827 /* 1828 * Set the CONDEMNED flag now itself so that 1829 * the refcnt cannot increase due to any 1830 * walker. But we have still not cleaned up 1831 * conn_ire_cache. This is still ok since 1832 * we are going to clean it up in tcp_cleanup 1833 * immediately and any interface unplumb 1834 * thread will wait till the ire is blown away 1835 */ 1836 connp->conn_state_flags |= CONN_CONDEMNED; 1837 mutex_exit(lock); 1838 mutex_exit(&connp->conn_lock); 1839 if (tcp_time_wait->tcp_free_list_cnt < 1840 tcp_free_list_max_cnt) { 1841 /* Add to head of tcp_free_list */ 1842 mutex_exit( 1843 &tcp_time_wait->tcp_time_wait_lock); 1844 tcp_cleanup(tcp); 1845 mutex_enter( 1846 &tcp_time_wait->tcp_time_wait_lock); 1847 tcp->tcp_time_wait_next = 1848 tcp_time_wait->tcp_free_list; 1849 tcp_time_wait->tcp_free_list = tcp; 1850 tcp_time_wait->tcp_free_list_cnt++; 1851 continue; 1852 } else { 1853 /* Do not add to tcp_free_list */ 1854 mutex_exit( 1855 &tcp_time_wait->tcp_time_wait_lock); 1856 tcp_bind_hash_remove(tcp); 1857 conn_delete_ire(tcp->tcp_connp, NULL); 1858 CONN_DEC_REF(tcp->tcp_connp); 1859 } 1860 } else { 1861 CONN_INC_REF_LOCKED(connp); 1862 mutex_exit(lock); 1863 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1864 mutex_exit(&connp->conn_lock); 1865 /* 1866 * We can reuse the closemp here since conn has 1867 * detached (otherwise we wouldn't even be in 1868 * time_wait list). 1869 */ 1870 mp = &tcp->tcp_closemp; 1871 squeue_fill(connp->conn_sqp, mp, 1872 tcp_timewait_output, connp, 1873 SQTAG_TCP_TIMEWAIT); 1874 } 1875 } else { 1876 mutex_enter(&connp->conn_lock); 1877 CONN_INC_REF_LOCKED(connp); 1878 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1879 mutex_exit(&connp->conn_lock); 1880 /* 1881 * We can reuse the closemp here since conn has 1882 * detached (otherwise we wouldn't even be in 1883 * time_wait list). 1884 */ 1885 mp = &tcp->tcp_closemp; 1886 squeue_fill(connp->conn_sqp, mp, 1887 tcp_timewait_output, connp, 0); 1888 } 1889 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1890 } 1891 1892 if (tcp_time_wait->tcp_free_list != NULL) 1893 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1894 1895 tcp_time_wait->tcp_time_wait_tid = 1896 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1897 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1898 } 1899 1900 /* 1901 * Reply to a clients T_CONN_RES TPI message. This function 1902 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1903 * on the acceptor STREAM and processed in tcp_wput_accept(). 1904 * Read the block comment on top of tcp_conn_request(). 1905 */ 1906 static void 1907 tcp_accept(tcp_t *listener, mblk_t *mp) 1908 { 1909 tcp_t *acceptor; 1910 tcp_t *eager; 1911 tcp_t *tcp; 1912 struct T_conn_res *tcr; 1913 t_uscalar_t acceptor_id; 1914 t_scalar_t seqnum; 1915 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1916 mblk_t *ok_mp; 1917 mblk_t *mp1; 1918 1919 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1920 tcp_err_ack(listener, mp, TPROTO, 0); 1921 return; 1922 } 1923 tcr = (struct T_conn_res *)mp->b_rptr; 1924 1925 /* 1926 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1927 * read side queue of the streams device underneath us i.e. the 1928 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1929 * look it up in the queue_hash. Under LP64 it sends down the 1930 * minor_t of the accepting endpoint. 1931 * 1932 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1933 * fanout hash lock is held. 1934 * This prevents any thread from entering the acceptor queue from 1935 * below (since it has not been hard bound yet i.e. any inbound 1936 * packets will arrive on the listener or default tcp queue and 1937 * go through tcp_lookup). 1938 * The CONN_INC_REF will prevent the acceptor from closing. 1939 * 1940 * XXX It is still possible for a tli application to send down data 1941 * on the accepting stream while another thread calls t_accept. 1942 * This should not be a problem for well-behaved applications since 1943 * the T_OK_ACK is sent after the queue swapping is completed. 1944 * 1945 * If the accepting fd is the same as the listening fd, avoid 1946 * queue hash lookup since that will return an eager listener in a 1947 * already established state. 1948 */ 1949 acceptor_id = tcr->ACCEPTOR_id; 1950 mutex_enter(&listener->tcp_eager_lock); 1951 if (listener->tcp_acceptor_id == acceptor_id) { 1952 eager = listener->tcp_eager_next_q; 1953 /* only count how many T_CONN_INDs so don't count q0 */ 1954 if ((listener->tcp_conn_req_cnt_q != 1) || 1955 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1956 mutex_exit(&listener->tcp_eager_lock); 1957 tcp_err_ack(listener, mp, TBADF, 0); 1958 return; 1959 } 1960 if (listener->tcp_conn_req_cnt_q0 != 0) { 1961 /* Throw away all the eagers on q0. */ 1962 tcp_eager_cleanup(listener, 1); 1963 } 1964 if (listener->tcp_syn_defense) { 1965 listener->tcp_syn_defense = B_FALSE; 1966 if (listener->tcp_ip_addr_cache != NULL) { 1967 kmem_free(listener->tcp_ip_addr_cache, 1968 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1969 listener->tcp_ip_addr_cache = NULL; 1970 } 1971 } 1972 /* 1973 * Transfer tcp_conn_req_max to the eager so that when 1974 * a disconnect occurs we can revert the endpoint to the 1975 * listen state. 1976 */ 1977 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1978 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1979 /* 1980 * Get a reference on the acceptor just like the 1981 * tcp_acceptor_hash_lookup below. 1982 */ 1983 acceptor = listener; 1984 CONN_INC_REF(acceptor->tcp_connp); 1985 } else { 1986 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 1987 if (acceptor == NULL) { 1988 if (listener->tcp_debug) { 1989 (void) strlog(TCP_MOD_ID, 0, 1, 1990 SL_ERROR|SL_TRACE, 1991 "tcp_accept: did not find acceptor 0x%x\n", 1992 acceptor_id); 1993 } 1994 mutex_exit(&listener->tcp_eager_lock); 1995 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1996 return; 1997 } 1998 /* 1999 * Verify acceptor state. The acceptable states for an acceptor 2000 * include TCPS_IDLE and TCPS_BOUND. 2001 */ 2002 switch (acceptor->tcp_state) { 2003 case TCPS_IDLE: 2004 /* FALLTHRU */ 2005 case TCPS_BOUND: 2006 break; 2007 default: 2008 CONN_DEC_REF(acceptor->tcp_connp); 2009 mutex_exit(&listener->tcp_eager_lock); 2010 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2011 return; 2012 } 2013 } 2014 2015 /* The listener must be in TCPS_LISTEN */ 2016 if (listener->tcp_state != TCPS_LISTEN) { 2017 CONN_DEC_REF(acceptor->tcp_connp); 2018 mutex_exit(&listener->tcp_eager_lock); 2019 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2020 return; 2021 } 2022 2023 /* 2024 * Rendezvous with an eager connection request packet hanging off 2025 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2026 * tcp structure when the connection packet arrived in 2027 * tcp_conn_request(). 2028 */ 2029 seqnum = tcr->SEQ_number; 2030 eager = listener; 2031 do { 2032 eager = eager->tcp_eager_next_q; 2033 if (eager == NULL) { 2034 CONN_DEC_REF(acceptor->tcp_connp); 2035 mutex_exit(&listener->tcp_eager_lock); 2036 tcp_err_ack(listener, mp, TBADSEQ, 0); 2037 return; 2038 } 2039 } while (eager->tcp_conn_req_seqnum != seqnum); 2040 mutex_exit(&listener->tcp_eager_lock); 2041 2042 /* 2043 * At this point, both acceptor and listener have 2 ref 2044 * that they begin with. Acceptor has one additional ref 2045 * we placed in lookup while listener has 3 additional 2046 * ref for being behind the squeue (tcp_accept() is 2047 * done on listener's squeue); being in classifier hash; 2048 * and eager's ref on listener. 2049 */ 2050 ASSERT(listener->tcp_connp->conn_ref >= 5); 2051 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2052 2053 /* 2054 * The eager at this point is set in its own squeue and 2055 * could easily have been killed (tcp_accept_finish will 2056 * deal with that) because of a TH_RST so we can only 2057 * ASSERT for a single ref. 2058 */ 2059 ASSERT(eager->tcp_connp->conn_ref >= 1); 2060 2061 /* Pre allocate the stroptions mblk also */ 2062 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2063 if (opt_mp == NULL) { 2064 CONN_DEC_REF(acceptor->tcp_connp); 2065 CONN_DEC_REF(eager->tcp_connp); 2066 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2067 return; 2068 } 2069 DB_TYPE(opt_mp) = M_SETOPTS; 2070 opt_mp->b_wptr += sizeof (struct stroptions); 2071 2072 /* 2073 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2074 * from listener to acceptor. The message is chained on opt_mp 2075 * which will be sent onto eager's squeue. 2076 */ 2077 if (listener->tcp_bound_if != 0) { 2078 /* allocate optmgmt req */ 2079 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2080 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2081 sizeof (int)); 2082 if (mp1 != NULL) 2083 linkb(opt_mp, mp1); 2084 } 2085 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2086 uint_t on = 1; 2087 2088 /* allocate optmgmt req */ 2089 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2090 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2091 if (mp1 != NULL) 2092 linkb(opt_mp, mp1); 2093 } 2094 2095 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2096 if ((mp1 = copymsg(mp)) == NULL) { 2097 CONN_DEC_REF(acceptor->tcp_connp); 2098 CONN_DEC_REF(eager->tcp_connp); 2099 freemsg(opt_mp); 2100 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2101 return; 2102 } 2103 2104 tcr = (struct T_conn_res *)mp1->b_rptr; 2105 2106 /* 2107 * This is an expanded version of mi_tpi_ok_ack_alloc() 2108 * which allocates a larger mblk and appends the new 2109 * local address to the ok_ack. The address is copied by 2110 * soaccept() for getsockname(). 2111 */ 2112 { 2113 int extra; 2114 2115 extra = (eager->tcp_family == AF_INET) ? 2116 sizeof (sin_t) : sizeof (sin6_t); 2117 2118 /* 2119 * Try to re-use mp, if possible. Otherwise, allocate 2120 * an mblk and return it as ok_mp. In any case, mp 2121 * is no longer usable upon return. 2122 */ 2123 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2124 CONN_DEC_REF(acceptor->tcp_connp); 2125 CONN_DEC_REF(eager->tcp_connp); 2126 freemsg(opt_mp); 2127 /* Original mp has been freed by now, so use mp1 */ 2128 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2129 return; 2130 } 2131 2132 mp = NULL; /* We should never use mp after this point */ 2133 2134 switch (extra) { 2135 case sizeof (sin_t): { 2136 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2137 2138 ok_mp->b_wptr += extra; 2139 sin->sin_family = AF_INET; 2140 sin->sin_port = eager->tcp_lport; 2141 sin->sin_addr.s_addr = 2142 eager->tcp_ipha->ipha_src; 2143 break; 2144 } 2145 case sizeof (sin6_t): { 2146 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2147 2148 ok_mp->b_wptr += extra; 2149 sin6->sin6_family = AF_INET6; 2150 sin6->sin6_port = eager->tcp_lport; 2151 if (eager->tcp_ipversion == IPV4_VERSION) { 2152 sin6->sin6_flowinfo = 0; 2153 IN6_IPADDR_TO_V4MAPPED( 2154 eager->tcp_ipha->ipha_src, 2155 &sin6->sin6_addr); 2156 } else { 2157 ASSERT(eager->tcp_ip6h != NULL); 2158 sin6->sin6_flowinfo = 2159 eager->tcp_ip6h->ip6_vcf & 2160 ~IPV6_VERS_AND_FLOW_MASK; 2161 sin6->sin6_addr = 2162 eager->tcp_ip6h->ip6_src; 2163 } 2164 break; 2165 } 2166 default: 2167 break; 2168 } 2169 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2170 } 2171 2172 /* 2173 * If there are no options we know that the T_CONN_RES will 2174 * succeed. However, we can't send the T_OK_ACK upstream until 2175 * the tcp_accept_swap is done since it would be dangerous to 2176 * let the application start using the new fd prior to the swap. 2177 */ 2178 tcp_accept_swap(listener, acceptor, eager); 2179 2180 /* 2181 * tcp_accept_swap unlinks eager from listener but does not drop 2182 * the eager's reference on the listener. 2183 */ 2184 ASSERT(eager->tcp_listener == NULL); 2185 ASSERT(listener->tcp_connp->conn_ref >= 5); 2186 2187 /* 2188 * The eager is now associated with its own queue. Insert in 2189 * the hash so that the connection can be reused for a future 2190 * T_CONN_RES. 2191 */ 2192 tcp_acceptor_hash_insert(acceptor_id, eager); 2193 2194 /* 2195 * We now do the processing of options with T_CONN_RES. 2196 * We delay till now since we wanted to have queue to pass to 2197 * option processing routines that points back to the right 2198 * instance structure which does not happen until after 2199 * tcp_accept_swap(). 2200 * 2201 * Note: 2202 * The sanity of the logic here assumes that whatever options 2203 * are appropriate to inherit from listner=>eager are done 2204 * before this point, and whatever were to be overridden (or not) 2205 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2206 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2207 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2208 * This may not be true at this point in time but can be fixed 2209 * independently. This option processing code starts with 2210 * the instantiated acceptor instance and the final queue at 2211 * this point. 2212 */ 2213 2214 if (tcr->OPT_length != 0) { 2215 /* Options to process */ 2216 int t_error = 0; 2217 int sys_error = 0; 2218 int do_disconnect = 0; 2219 2220 if (tcp_conprim_opt_process(eager, mp1, 2221 &do_disconnect, &t_error, &sys_error) < 0) { 2222 eager->tcp_accept_error = 1; 2223 if (do_disconnect) { 2224 /* 2225 * An option failed which does not allow 2226 * connection to be accepted. 2227 * 2228 * We allow T_CONN_RES to succeed and 2229 * put a T_DISCON_IND on the eager queue. 2230 */ 2231 ASSERT(t_error == 0 && sys_error == 0); 2232 eager->tcp_send_discon_ind = 1; 2233 } else { 2234 ASSERT(t_error != 0); 2235 freemsg(ok_mp); 2236 /* 2237 * Original mp was either freed or set 2238 * to ok_mp above, so use mp1 instead. 2239 */ 2240 tcp_err_ack(listener, mp1, t_error, sys_error); 2241 goto finish; 2242 } 2243 } 2244 /* 2245 * Most likely success in setting options (except if 2246 * eager->tcp_send_discon_ind set). 2247 * mp1 option buffer represented by OPT_length/offset 2248 * potentially modified and contains results of setting 2249 * options at this point 2250 */ 2251 } 2252 2253 /* We no longer need mp1, since all options processing has passed */ 2254 freemsg(mp1); 2255 2256 putnext(listener->tcp_rq, ok_mp); 2257 2258 mutex_enter(&listener->tcp_eager_lock); 2259 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2260 tcp_t *tail; 2261 mblk_t *conn_ind; 2262 2263 /* 2264 * This path should not be executed if listener and 2265 * acceptor streams are the same. 2266 */ 2267 ASSERT(listener != acceptor); 2268 2269 tcp = listener->tcp_eager_prev_q0; 2270 /* 2271 * listener->tcp_eager_prev_q0 points to the TAIL of the 2272 * deferred T_conn_ind queue. We need to get to the head of 2273 * the queue in order to send up T_conn_ind the same order as 2274 * how the 3WHS is completed. 2275 */ 2276 while (tcp != listener) { 2277 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2278 break; 2279 else 2280 tcp = tcp->tcp_eager_prev_q0; 2281 } 2282 ASSERT(tcp != listener); 2283 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2284 ASSERT(conn_ind != NULL); 2285 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2286 2287 /* Move from q0 to q */ 2288 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2289 listener->tcp_conn_req_cnt_q0--; 2290 listener->tcp_conn_req_cnt_q++; 2291 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2292 tcp->tcp_eager_prev_q0; 2293 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2294 tcp->tcp_eager_next_q0; 2295 tcp->tcp_eager_prev_q0 = NULL; 2296 tcp->tcp_eager_next_q0 = NULL; 2297 tcp->tcp_conn_def_q0 = B_FALSE; 2298 2299 /* 2300 * Insert at end of the queue because sockfs sends 2301 * down T_CONN_RES in chronological order. Leaving 2302 * the older conn indications at front of the queue 2303 * helps reducing search time. 2304 */ 2305 tail = listener->tcp_eager_last_q; 2306 if (tail != NULL) 2307 tail->tcp_eager_next_q = tcp; 2308 else 2309 listener->tcp_eager_next_q = tcp; 2310 listener->tcp_eager_last_q = tcp; 2311 tcp->tcp_eager_next_q = NULL; 2312 mutex_exit(&listener->tcp_eager_lock); 2313 putnext(tcp->tcp_rq, conn_ind); 2314 } else { 2315 mutex_exit(&listener->tcp_eager_lock); 2316 } 2317 2318 /* 2319 * Done with the acceptor - free it 2320 * 2321 * Note: from this point on, no access to listener should be made 2322 * as listener can be equal to acceptor. 2323 */ 2324 finish: 2325 ASSERT(acceptor->tcp_detached); 2326 acceptor->tcp_rq = tcp_g_q; 2327 acceptor->tcp_wq = WR(tcp_g_q); 2328 (void) tcp_clean_death(acceptor, 0, 2); 2329 CONN_DEC_REF(acceptor->tcp_connp); 2330 2331 /* 2332 * In case we already received a FIN we have to make tcp_rput send 2333 * the ordrel_ind. This will also send up a window update if the window 2334 * has opened up. 2335 * 2336 * In the normal case of a successful connection acceptance 2337 * we give the O_T_BIND_REQ to the read side put procedure as an 2338 * indication that this was just accepted. This tells tcp_rput to 2339 * pass up any data queued in tcp_rcv_list. 2340 * 2341 * In the fringe case where options sent with T_CONN_RES failed and 2342 * we required, we would be indicating a T_DISCON_IND to blow 2343 * away this connection. 2344 */ 2345 2346 /* 2347 * XXX: we currently have a problem if XTI application closes the 2348 * acceptor stream in between. This problem exists in on10-gate also 2349 * and is well know but nothing can be done short of major rewrite 2350 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2351 * eager same squeue as listener (we can distinguish non socket 2352 * listeners at the time of handling a SYN in tcp_conn_request) 2353 * and do most of the work that tcp_accept_finish does here itself 2354 * and then get behind the acceptor squeue to access the acceptor 2355 * queue. 2356 */ 2357 /* 2358 * We already have a ref on tcp so no need to do one before squeue_fill 2359 */ 2360 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2361 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2362 } 2363 2364 /* 2365 * Swap information between the eager and acceptor for a TLI/XTI client. 2366 * The sockfs accept is done on the acceptor stream and control goes 2367 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2368 * called. In either case, both the eager and listener are in their own 2369 * perimeter (squeue) and the code has to deal with potential race. 2370 * 2371 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2372 */ 2373 static void 2374 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2375 { 2376 conn_t *econnp, *aconnp; 2377 2378 ASSERT(eager->tcp_rq == listener->tcp_rq); 2379 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2380 ASSERT(!eager->tcp_hard_bound); 2381 ASSERT(!TCP_IS_SOCKET(acceptor)); 2382 ASSERT(!TCP_IS_SOCKET(eager)); 2383 ASSERT(!TCP_IS_SOCKET(listener)); 2384 2385 acceptor->tcp_detached = B_TRUE; 2386 /* 2387 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2388 * the acceptor id. 2389 */ 2390 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2391 2392 /* remove eager from listen list... */ 2393 mutex_enter(&listener->tcp_eager_lock); 2394 tcp_eager_unlink(eager); 2395 ASSERT(eager->tcp_eager_next_q == NULL && 2396 eager->tcp_eager_last_q == NULL); 2397 ASSERT(eager->tcp_eager_next_q0 == NULL && 2398 eager->tcp_eager_prev_q0 == NULL); 2399 mutex_exit(&listener->tcp_eager_lock); 2400 eager->tcp_rq = acceptor->tcp_rq; 2401 eager->tcp_wq = acceptor->tcp_wq; 2402 2403 econnp = eager->tcp_connp; 2404 aconnp = acceptor->tcp_connp; 2405 2406 eager->tcp_rq->q_ptr = econnp; 2407 eager->tcp_wq->q_ptr = econnp; 2408 eager->tcp_detached = B_FALSE; 2409 2410 ASSERT(eager->tcp_ack_tid == 0); 2411 2412 econnp->conn_dev = aconnp->conn_dev; 2413 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2414 econnp->conn_zoneid = aconnp->conn_zoneid; 2415 aconnp->conn_cred = NULL; 2416 2417 /* Do the IPC initialization */ 2418 CONN_INC_REF(econnp); 2419 2420 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2421 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2422 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2423 econnp->conn_ulp = aconnp->conn_ulp; 2424 2425 /* Done with old IPC. Drop its ref on its connp */ 2426 CONN_DEC_REF(aconnp); 2427 } 2428 2429 2430 /* 2431 * Adapt to the information, such as rtt and rtt_sd, provided from the 2432 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2433 * 2434 * Checks for multicast and broadcast destination address. 2435 * Returns zero on failure; non-zero if ok. 2436 * 2437 * Note that the MSS calculation here is based on the info given in 2438 * the IRE. We do not do any calculation based on TCP options. They 2439 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2440 * knows which options to use. 2441 * 2442 * Note on how TCP gets its parameters for a connection. 2443 * 2444 * When a tcp_t structure is allocated, it gets all the default parameters. 2445 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2446 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2447 * default. But if there is an associated tcp_host_param, it will override 2448 * the metrics. 2449 * 2450 * An incoming SYN with a multicast or broadcast destination address, is dropped 2451 * in 1 of 2 places. 2452 * 2453 * 1. If the packet was received over the wire it is dropped in 2454 * ip_rput_process_broadcast() 2455 * 2456 * 2. If the packet was received through internal IP loopback, i.e. the packet 2457 * was generated and received on the same machine, it is dropped in 2458 * ip_wput_local() 2459 * 2460 * An incoming SYN with a multicast or broadcast source address is always 2461 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2462 * reject an attempt to connect to a broadcast or multicast (destination) 2463 * address. 2464 */ 2465 static int 2466 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2467 { 2468 tcp_hsp_t *hsp; 2469 ire_t *ire; 2470 ire_t *sire = NULL; 2471 iulp_t *ire_uinfo; 2472 uint32_t mss_max; 2473 uint32_t mss; 2474 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2475 conn_t *connp = tcp->tcp_connp; 2476 boolean_t ire_cacheable = B_FALSE; 2477 zoneid_t zoneid = connp->conn_zoneid; 2478 ill_t *ill = NULL; 2479 boolean_t incoming = (ire_mp == NULL); 2480 2481 ASSERT(connp->conn_ire_cache == NULL); 2482 2483 if (tcp->tcp_ipversion == IPV4_VERSION) { 2484 2485 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2486 BUMP_MIB(&ip_mib, ipInDiscards); 2487 return (0); 2488 } 2489 2490 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, zoneid); 2491 if (ire != NULL) { 2492 ire_cacheable = B_TRUE; 2493 ire_uinfo = (ire_mp != NULL) ? 2494 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2495 &ire->ire_uinfo; 2496 2497 } else { 2498 if (ire_mp == NULL) { 2499 ire = ire_ftable_lookup( 2500 tcp->tcp_connp->conn_rem, 2501 0, 0, 0, NULL, &sire, zoneid, 0, 2502 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 2503 if (ire == NULL) 2504 return (0); 2505 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2506 &ire->ire_uinfo; 2507 } else { 2508 ire = (ire_t *)ire_mp->b_rptr; 2509 ire_uinfo = 2510 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2511 } 2512 } 2513 ASSERT(ire != NULL); 2514 ASSERT(ire_uinfo != NULL); 2515 2516 if ((ire->ire_src_addr == INADDR_ANY) || 2517 (ire->ire_type & IRE_BROADCAST)) { 2518 /* 2519 * ire->ire_mp is non null when ire_mp passed in is used 2520 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2521 */ 2522 if (ire->ire_mp == NULL) 2523 ire_refrele(ire); 2524 if (sire != NULL) 2525 ire_refrele(sire); 2526 return (0); 2527 } 2528 2529 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2530 ipaddr_t src_addr; 2531 2532 /* 2533 * ip_bind_connected() has stored the correct source 2534 * address in conn_src. 2535 */ 2536 src_addr = tcp->tcp_connp->conn_src; 2537 tcp->tcp_ipha->ipha_src = src_addr; 2538 /* 2539 * Copy of the src addr. in tcp_t is needed 2540 * for the lookup funcs. 2541 */ 2542 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2543 } 2544 /* 2545 * Set the fragment bit so that IP will tell us if the MTU 2546 * should change. IP tells us the latest setting of 2547 * ip_path_mtu_discovery through ire_frag_flag. 2548 */ 2549 if (ip_path_mtu_discovery) { 2550 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2551 htons(IPH_DF); 2552 } 2553 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2554 } else { 2555 /* 2556 * For incoming connection ire_mp = NULL 2557 * For outgoing connection ire_mp != NULL 2558 * Technically we should check conn_incoming_ill 2559 * when ire_mp is NULL and conn_outgoing_ill when 2560 * ire_mp is non-NULL. But this is performance 2561 * critical path and for IPV*_BOUND_IF, outgoing 2562 * and incoming ill are always set to the same value. 2563 */ 2564 ill_t *dst_ill = NULL; 2565 ipif_t *dst_ipif = NULL; 2566 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT; 2567 2568 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2569 2570 if (connp->conn_outgoing_ill != NULL) { 2571 /* Outgoing or incoming path */ 2572 int err; 2573 2574 dst_ill = conn_get_held_ill(connp, 2575 &connp->conn_outgoing_ill, &err); 2576 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2577 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2578 return (0); 2579 } 2580 match_flags |= MATCH_IRE_ILL; 2581 dst_ipif = dst_ill->ill_ipif; 2582 } 2583 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2584 0, 0, dst_ipif, zoneid, match_flags); 2585 2586 if (ire != NULL) { 2587 ire_cacheable = B_TRUE; 2588 ire_uinfo = (ire_mp != NULL) ? 2589 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2590 &ire->ire_uinfo; 2591 } else { 2592 if (ire_mp == NULL) { 2593 ire = ire_ftable_lookup_v6( 2594 &tcp->tcp_connp->conn_remv6, 2595 0, 0, 0, dst_ipif, &sire, zoneid, 2596 0, match_flags); 2597 if (ire == NULL) { 2598 if (dst_ill != NULL) 2599 ill_refrele(dst_ill); 2600 return (0); 2601 } 2602 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2603 &ire->ire_uinfo; 2604 } else { 2605 ire = (ire_t *)ire_mp->b_rptr; 2606 ire_uinfo = 2607 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2608 } 2609 } 2610 if (dst_ill != NULL) 2611 ill_refrele(dst_ill); 2612 2613 ASSERT(ire != NULL); 2614 ASSERT(ire_uinfo != NULL); 2615 2616 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2617 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2618 /* 2619 * ire->ire_mp is non null when ire_mp passed in is used 2620 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2621 */ 2622 if (ire->ire_mp == NULL) 2623 ire_refrele(ire); 2624 if (sire != NULL) 2625 ire_refrele(sire); 2626 return (0); 2627 } 2628 2629 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2630 in6_addr_t src_addr; 2631 2632 /* 2633 * ip_bind_connected_v6() has stored the correct source 2634 * address per IPv6 addr. selection policy in 2635 * conn_src_v6. 2636 */ 2637 src_addr = tcp->tcp_connp->conn_srcv6; 2638 2639 tcp->tcp_ip6h->ip6_src = src_addr; 2640 /* 2641 * Copy of the src addr. in tcp_t is needed 2642 * for the lookup funcs. 2643 */ 2644 tcp->tcp_ip_src_v6 = src_addr; 2645 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2646 &connp->conn_srcv6)); 2647 } 2648 tcp->tcp_localnet = 2649 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2650 } 2651 2652 /* 2653 * This allows applications to fail quickly when connections are made 2654 * to dead hosts. Hosts can be labeled dead by adding a reject route 2655 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2656 */ 2657 if ((ire->ire_flags & RTF_REJECT) && 2658 (ire->ire_flags & RTF_PRIVATE)) 2659 goto error; 2660 2661 /* 2662 * Make use of the cached rtt and rtt_sd values to calculate the 2663 * initial RTO. Note that they are already initialized in 2664 * tcp_init_values(). 2665 */ 2666 if (ire_uinfo->iulp_rtt != 0) { 2667 clock_t rto; 2668 2669 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2670 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2671 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2672 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2673 2674 if (rto > tcp_rexmit_interval_max) { 2675 tcp->tcp_rto = tcp_rexmit_interval_max; 2676 } else if (rto < tcp_rexmit_interval_min) { 2677 tcp->tcp_rto = tcp_rexmit_interval_min; 2678 } else { 2679 tcp->tcp_rto = rto; 2680 } 2681 } 2682 if (ire_uinfo->iulp_ssthresh != 0) 2683 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2684 else 2685 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2686 if (ire_uinfo->iulp_spipe > 0) { 2687 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2688 tcp_max_buf); 2689 if (tcp_snd_lowat_fraction != 0) 2690 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2691 tcp_snd_lowat_fraction; 2692 (void) tcp_maxpsz_set(tcp, B_TRUE); 2693 } 2694 /* 2695 * Note that up till now, acceptor always inherits receive 2696 * window from the listener. But if there is a metrics associated 2697 * with a host, we should use that instead of inheriting it from 2698 * listener. Thus we need to pass this info back to the caller. 2699 */ 2700 if (ire_uinfo->iulp_rpipe > 0) { 2701 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2702 } else { 2703 /* 2704 * For passive open, set tcp_rwnd to 0 so that the caller 2705 * knows that there is no rpipe metric for this connection. 2706 */ 2707 if (tcp_detached) 2708 tcp->tcp_rwnd = 0; 2709 } 2710 if (ire_uinfo->iulp_rtomax > 0) { 2711 tcp->tcp_second_timer_threshold = ire_uinfo->iulp_rtomax; 2712 } 2713 2714 /* 2715 * Use the metric option settings, iulp_tstamp_ok and iulp_wscale_ok, 2716 * only for active open. What this means is that if the other side 2717 * uses timestamp or window scale option, TCP will also use those 2718 * options. That is for passive open. If the application sets a 2719 * large window, window scale is enabled regardless of the value in 2720 * iulp_wscale_ok. This is the behavior since 2.6. So we keep it. 2721 * The only case left in passive open processing is the check for SACK. 2722 * 2723 * For ECN, it should probably be like SACK. But the current 2724 * value is binary, so we treat it like the other cases. The 2725 * metric only controls active open. For passive open, the ndd 2726 * param, tcp_ecn_permitted, controls the behavior. 2727 */ 2728 if (!tcp_detached) { 2729 /* 2730 * The if check means that the following can only be turned 2731 * on by the metrics only IRE, but not off. 2732 */ 2733 if (ire_uinfo->iulp_tstamp_ok) 2734 tcp->tcp_snd_ts_ok = B_TRUE; 2735 if (ire_uinfo->iulp_wscale_ok) 2736 tcp->tcp_snd_ws_ok = B_TRUE; 2737 if (ire_uinfo->iulp_sack == 2) 2738 tcp->tcp_snd_sack_ok = B_TRUE; 2739 if (ire_uinfo->iulp_ecn_ok) 2740 tcp->tcp_ecn_ok = B_TRUE; 2741 } else { 2742 /* 2743 * Passive open. 2744 * 2745 * As above, the if check means that SACK can only be 2746 * turned on by the metric only IRE. 2747 */ 2748 if (ire_uinfo->iulp_sack > 0) { 2749 tcp->tcp_snd_sack_ok = B_TRUE; 2750 } 2751 } 2752 2753 /* 2754 * XXX: Note that currently, ire_max_frag can be as small as 68 2755 * because of PMTUd. So tcp_mss may go to negative if combined 2756 * length of all those options exceeds 28 bytes. But because 2757 * of the tcp_mss_min check below, we may not have a problem if 2758 * tcp_mss_min is of a reasonable value. The default is 1 so 2759 * the negative problem still exists. And the check defeats PMTUd. 2760 * In fact, if PMTUd finds that the MSS should be smaller than 2761 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2762 * value. 2763 * 2764 * We do not deal with that now. All those problems related to 2765 * PMTUd will be fixed later. 2766 */ 2767 ASSERT(ire->ire_max_frag != 0); 2768 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2769 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2770 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2771 mss = MIN(mss, IPV6_MIN_MTU); 2772 } 2773 } 2774 2775 /* Sanity check for MSS value. */ 2776 if (tcp->tcp_ipversion == IPV4_VERSION) 2777 mss_max = tcp_mss_max_ipv4; 2778 else 2779 mss_max = tcp_mss_max_ipv6; 2780 2781 if (tcp->tcp_ipversion == IPV6_VERSION && 2782 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2783 /* 2784 * After receiving an ICMPv6 "packet too big" message with a 2785 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2786 * will insert a 8-byte fragment header in every packet; we 2787 * reduce the MSS by that amount here. 2788 */ 2789 mss -= sizeof (ip6_frag_t); 2790 } 2791 2792 if (tcp->tcp_ipsec_overhead == 0) 2793 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2794 2795 mss -= tcp->tcp_ipsec_overhead; 2796 2797 if (mss < tcp_mss_min) 2798 mss = tcp_mss_min; 2799 if (mss > mss_max) 2800 mss = mss_max; 2801 2802 /* Note that this is the maximum MSS, excluding all options. */ 2803 tcp->tcp_mss = mss; 2804 2805 /* 2806 * Initialize the ISS here now that we have the full connection ID. 2807 * The RFC 1948 method of initial sequence number generation requires 2808 * knowledge of the full connection ID before setting the ISS. 2809 */ 2810 2811 tcp_iss_init(tcp); 2812 2813 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2814 tcp->tcp_loopback = B_TRUE; 2815 2816 if (tcp->tcp_ipversion == IPV4_VERSION) { 2817 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2818 } else { 2819 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2820 } 2821 2822 if (hsp != NULL) { 2823 /* Only modify if we're going to make them bigger */ 2824 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2825 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2826 if (tcp_snd_lowat_fraction != 0) 2827 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2828 tcp_snd_lowat_fraction; 2829 } 2830 2831 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2832 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2833 } 2834 2835 /* Copy timestamp flag only for active open */ 2836 if (!tcp_detached) 2837 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2838 } 2839 2840 if (sire != NULL) 2841 IRE_REFRELE(sire); 2842 2843 /* 2844 * If we got an IRE_CACHE and an ILL, go through their properties; 2845 * otherwise, this is deferred until later when we have an IRE_CACHE. 2846 */ 2847 if (tcp->tcp_loopback || 2848 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2849 /* 2850 * For incoming, see if this tcp may be MDT-capable. For 2851 * outgoing, this process has been taken care of through 2852 * tcp_rput_other. 2853 */ 2854 tcp_ire_ill_check(tcp, ire, ill, incoming); 2855 tcp->tcp_ire_ill_check_done = B_TRUE; 2856 } 2857 2858 mutex_enter(&connp->conn_lock); 2859 /* 2860 * Make sure that conn is not marked incipient 2861 * for incoming connections. A blind 2862 * removal of incipient flag is cheaper than 2863 * check and removal. 2864 */ 2865 connp->conn_state_flags &= ~CONN_INCIPIENT; 2866 2867 /* Must not cache forwarding table routes. */ 2868 if (ire_cacheable) { 2869 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2870 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2871 connp->conn_ire_cache = ire; 2872 IRE_UNTRACE_REF(ire); 2873 rw_exit(&ire->ire_bucket->irb_lock); 2874 mutex_exit(&connp->conn_lock); 2875 return (1); 2876 } 2877 rw_exit(&ire->ire_bucket->irb_lock); 2878 } 2879 mutex_exit(&connp->conn_lock); 2880 2881 if (ire->ire_mp == NULL) 2882 ire_refrele(ire); 2883 return (1); 2884 2885 error: 2886 if (ire->ire_mp == NULL) 2887 ire_refrele(ire); 2888 if (sire != NULL) 2889 ire_refrele(sire); 2890 return (0); 2891 } 2892 2893 /* 2894 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2895 * O_T_BIND_REQ/T_BIND_REQ message. 2896 */ 2897 static void 2898 tcp_bind(tcp_t *tcp, mblk_t *mp) 2899 { 2900 sin_t *sin; 2901 sin6_t *sin6; 2902 mblk_t *mp1; 2903 in_port_t requested_port; 2904 in_port_t allocated_port; 2905 struct T_bind_req *tbr; 2906 boolean_t bind_to_req_port_only; 2907 boolean_t backlog_update = B_FALSE; 2908 boolean_t user_specified; 2909 in6_addr_t v6addr; 2910 ipaddr_t v4addr; 2911 uint_t origipversion; 2912 int err; 2913 queue_t *q = tcp->tcp_wq; 2914 2915 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2916 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2917 if (tcp->tcp_debug) { 2918 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2919 "tcp_bind: bad req, len %u", 2920 (uint_t)(mp->b_wptr - mp->b_rptr)); 2921 } 2922 tcp_err_ack(tcp, mp, TPROTO, 0); 2923 return; 2924 } 2925 /* Make sure the largest address fits */ 2926 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 2927 if (mp1 == NULL) { 2928 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2929 return; 2930 } 2931 mp = mp1; 2932 tbr = (struct T_bind_req *)mp->b_rptr; 2933 if (tcp->tcp_state >= TCPS_BOUND) { 2934 if ((tcp->tcp_state == TCPS_BOUND || 2935 tcp->tcp_state == TCPS_LISTEN) && 2936 tcp->tcp_conn_req_max != tbr->CONIND_number && 2937 tbr->CONIND_number > 0) { 2938 /* 2939 * Handle listen() increasing CONIND_number. 2940 * This is more "liberal" then what the TPI spec 2941 * requires but is needed to avoid a t_unbind 2942 * when handling listen() since the port number 2943 * might be "stolen" between the unbind and bind. 2944 */ 2945 backlog_update = B_TRUE; 2946 goto do_bind; 2947 } 2948 if (tcp->tcp_debug) { 2949 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2950 "tcp_bind: bad state, %d", tcp->tcp_state); 2951 } 2952 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 2953 return; 2954 } 2955 origipversion = tcp->tcp_ipversion; 2956 2957 switch (tbr->ADDR_length) { 2958 case 0: /* request for a generic port */ 2959 tbr->ADDR_offset = sizeof (struct T_bind_req); 2960 if (tcp->tcp_family == AF_INET) { 2961 tbr->ADDR_length = sizeof (sin_t); 2962 sin = (sin_t *)&tbr[1]; 2963 *sin = sin_null; 2964 sin->sin_family = AF_INET; 2965 mp->b_wptr = (uchar_t *)&sin[1]; 2966 tcp->tcp_ipversion = IPV4_VERSION; 2967 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 2968 } else { 2969 ASSERT(tcp->tcp_family == AF_INET6); 2970 tbr->ADDR_length = sizeof (sin6_t); 2971 sin6 = (sin6_t *)&tbr[1]; 2972 *sin6 = sin6_null; 2973 sin6->sin6_family = AF_INET6; 2974 mp->b_wptr = (uchar_t *)&sin6[1]; 2975 tcp->tcp_ipversion = IPV6_VERSION; 2976 V6_SET_ZERO(v6addr); 2977 } 2978 requested_port = 0; 2979 break; 2980 2981 case sizeof (sin_t): /* Complete IPv4 address */ 2982 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 2983 sizeof (sin_t)); 2984 if (sin == NULL || !OK_32PTR((char *)sin)) { 2985 if (tcp->tcp_debug) { 2986 (void) strlog(TCP_MOD_ID, 0, 1, 2987 SL_ERROR|SL_TRACE, 2988 "tcp_bind: bad address parameter, " 2989 "offset %d, len %d", 2990 tbr->ADDR_offset, tbr->ADDR_length); 2991 } 2992 tcp_err_ack(tcp, mp, TPROTO, 0); 2993 return; 2994 } 2995 /* 2996 * With sockets sockfs will accept bogus sin_family in 2997 * bind() and replace it with the family used in the socket 2998 * call. 2999 */ 3000 if (sin->sin_family != AF_INET || 3001 tcp->tcp_family != AF_INET) { 3002 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3003 return; 3004 } 3005 requested_port = ntohs(sin->sin_port); 3006 tcp->tcp_ipversion = IPV4_VERSION; 3007 v4addr = sin->sin_addr.s_addr; 3008 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3009 break; 3010 3011 case sizeof (sin6_t): /* Complete IPv6 address */ 3012 sin6 = (sin6_t *)mi_offset_param(mp, 3013 tbr->ADDR_offset, sizeof (sin6_t)); 3014 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3015 if (tcp->tcp_debug) { 3016 (void) strlog(TCP_MOD_ID, 0, 1, 3017 SL_ERROR|SL_TRACE, 3018 "tcp_bind: bad IPv6 address parameter, " 3019 "offset %d, len %d", tbr->ADDR_offset, 3020 tbr->ADDR_length); 3021 } 3022 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3023 return; 3024 } 3025 if (sin6->sin6_family != AF_INET6 || 3026 tcp->tcp_family != AF_INET6) { 3027 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3028 return; 3029 } 3030 requested_port = ntohs(sin6->sin6_port); 3031 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3032 IPV4_VERSION : IPV6_VERSION; 3033 v6addr = sin6->sin6_addr; 3034 break; 3035 3036 default: 3037 if (tcp->tcp_debug) { 3038 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3039 "tcp_bind: bad address length, %d", 3040 tbr->ADDR_length); 3041 } 3042 tcp_err_ack(tcp, mp, TBADADDR, 0); 3043 return; 3044 } 3045 tcp->tcp_bound_source_v6 = v6addr; 3046 3047 /* Check for change in ipversion */ 3048 if (origipversion != tcp->tcp_ipversion) { 3049 ASSERT(tcp->tcp_family == AF_INET6); 3050 err = tcp->tcp_ipversion == IPV6_VERSION ? 3051 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3052 if (err) { 3053 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3054 return; 3055 } 3056 } 3057 3058 /* 3059 * Initialize family specific fields. Copy of the src addr. 3060 * in tcp_t is needed for the lookup funcs. 3061 */ 3062 if (tcp->tcp_ipversion == IPV6_VERSION) { 3063 tcp->tcp_ip6h->ip6_src = v6addr; 3064 } else { 3065 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3066 } 3067 tcp->tcp_ip_src_v6 = v6addr; 3068 3069 /* 3070 * For O_T_BIND_REQ: 3071 * Verify that the target port/addr is available, or choose 3072 * another. 3073 * For T_BIND_REQ: 3074 * Verify that the target port/addr is available or fail. 3075 * In both cases when it succeeds the tcp is inserted in the 3076 * bind hash table. This ensures that the operation is atomic 3077 * under the lock on the hash bucket. 3078 */ 3079 bind_to_req_port_only = requested_port != 0 && 3080 tbr->PRIM_type != O_T_BIND_REQ; 3081 /* 3082 * Get a valid port (within the anonymous range and should not 3083 * be a privileged one) to use if the user has not given a port. 3084 * If multiple threads are here, they may all start with 3085 * with the same initial port. But, it should be fine as long as 3086 * tcp_bindi will ensure that no two threads will be assigned 3087 * the same port. 3088 * 3089 * NOTE: XXX If a privileged process asks for an anonymous port, we 3090 * still check for ports only in the range > tcp_smallest_non_priv_port, 3091 * unless TCP_ANONPRIVBIND option is set. 3092 */ 3093 if (requested_port == 0) { 3094 requested_port = tcp->tcp_anon_priv_bind ? 3095 tcp_get_next_priv_port() : 3096 tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 3097 user_specified = B_FALSE; 3098 } else { 3099 int i; 3100 boolean_t priv = B_FALSE; 3101 /* 3102 * If the requested_port is in the well-known privileged range, 3103 * verify that the stream was opened by a privileged user. 3104 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3105 * but instead the code relies on: 3106 * - the fact that the address of the array and its size never 3107 * changes 3108 * - the atomic assignment of the elements of the array 3109 */ 3110 if (requested_port < tcp_smallest_nonpriv_port) { 3111 priv = B_TRUE; 3112 } else { 3113 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3114 if (requested_port == 3115 tcp_g_epriv_ports[i]) { 3116 priv = B_TRUE; 3117 break; 3118 } 3119 } 3120 } 3121 if (priv) { 3122 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 3123 3124 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3125 if (tcp->tcp_debug) { 3126 (void) strlog(TCP_MOD_ID, 0, 1, 3127 SL_ERROR|SL_TRACE, 3128 "tcp_bind: no priv for port %d", 3129 requested_port); 3130 } 3131 tcp_err_ack(tcp, mp, TACCES, 0); 3132 return; 3133 } 3134 } 3135 user_specified = B_TRUE; 3136 } 3137 3138 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3139 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3140 3141 if (allocated_port == 0) { 3142 if (bind_to_req_port_only) { 3143 if (tcp->tcp_debug) { 3144 (void) strlog(TCP_MOD_ID, 0, 1, 3145 SL_ERROR|SL_TRACE, 3146 "tcp_bind: requested addr busy"); 3147 } 3148 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3149 } else { 3150 /* If we are out of ports, fail the bind. */ 3151 if (tcp->tcp_debug) { 3152 (void) strlog(TCP_MOD_ID, 0, 1, 3153 SL_ERROR|SL_TRACE, 3154 "tcp_bind: out of ports?"); 3155 } 3156 tcp_err_ack(tcp, mp, TNOADDR, 0); 3157 } 3158 return; 3159 } 3160 ASSERT(tcp->tcp_state == TCPS_BOUND); 3161 do_bind: 3162 if (!backlog_update) { 3163 if (tcp->tcp_family == AF_INET) 3164 sin->sin_port = htons(allocated_port); 3165 else 3166 sin6->sin6_port = htons(allocated_port); 3167 } 3168 if (tcp->tcp_family == AF_INET) { 3169 if (tbr->CONIND_number != 0) { 3170 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3171 sizeof (sin_t)); 3172 } else { 3173 /* Just verify the local IP address */ 3174 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3175 } 3176 } else { 3177 if (tbr->CONIND_number != 0) { 3178 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3179 sizeof (sin6_t)); 3180 } else { 3181 /* Just verify the local IP address */ 3182 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3183 IPV6_ADDR_LEN); 3184 } 3185 } 3186 if (!mp1) { 3187 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3188 return; 3189 } 3190 3191 tbr->PRIM_type = T_BIND_ACK; 3192 mp->b_datap->db_type = M_PCPROTO; 3193 3194 /* Chain in the reply mp for tcp_rput() */ 3195 mp1->b_cont = mp; 3196 mp = mp1; 3197 3198 tcp->tcp_conn_req_max = tbr->CONIND_number; 3199 if (tcp->tcp_conn_req_max) { 3200 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3201 tcp->tcp_conn_req_max = tcp_conn_req_min; 3202 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3203 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3204 /* 3205 * If this is a listener, do not reset the eager list 3206 * and other stuffs. Note that we don't check if the 3207 * existing eager list meets the new tcp_conn_req_max 3208 * requirement. 3209 */ 3210 if (tcp->tcp_state != TCPS_LISTEN) { 3211 tcp->tcp_state = TCPS_LISTEN; 3212 /* Initialize the chain. Don't need the eager_lock */ 3213 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3214 tcp->tcp_second_ctimer_threshold = 3215 tcp_ip_abort_linterval; 3216 } 3217 } 3218 3219 /* 3220 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3221 * processing continues in tcp_rput_other(). 3222 */ 3223 if (tcp->tcp_family == AF_INET6) { 3224 ASSERT(tcp->tcp_connp->conn_af_isv6); 3225 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3226 } else { 3227 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3228 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3229 } 3230 /* 3231 * If the bind cannot complete immediately 3232 * IP will arrange to call tcp_rput_other 3233 * when the bind completes. 3234 */ 3235 if (mp != NULL) { 3236 tcp_rput_other(tcp, mp); 3237 } else { 3238 /* 3239 * Bind will be resumed later. Need to ensure 3240 * that conn doesn't disappear when that happens. 3241 * This will be decremented in ip_resume_tcp_bind(). 3242 */ 3243 CONN_INC_REF(tcp->tcp_connp); 3244 } 3245 } 3246 3247 3248 /* 3249 * If the "bind_to_req_port_only" parameter is set, if the requested port 3250 * number is available, return it, If not return 0 3251 * 3252 * If "bind_to_req_port_only" parameter is not set and 3253 * If the requested port number is available, return it. If not, return 3254 * the first anonymous port we happen across. If no anonymous ports are 3255 * available, return 0. addr is the requested local address, if any. 3256 * 3257 * In either case, when succeeding update the tcp_t to record the port number 3258 * and insert it in the bind hash table. 3259 * 3260 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3261 * without setting SO_REUSEADDR. This is needed so that they 3262 * can be viewed as two independent transport protocols. 3263 */ 3264 static in_port_t 3265 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3266 int reuseaddr, boolean_t quick_connect, 3267 boolean_t bind_to_req_port_only, boolean_t user_specified) 3268 { 3269 /* number of times we have run around the loop */ 3270 int count = 0; 3271 /* maximum number of times to run around the loop */ 3272 int loopmax; 3273 zoneid_t zoneid = tcp->tcp_connp->conn_zoneid; 3274 3275 /* 3276 * Lookup for free addresses is done in a loop and "loopmax" 3277 * influences how long we spin in the loop 3278 */ 3279 if (bind_to_req_port_only) { 3280 /* 3281 * If the requested port is busy, don't bother to look 3282 * for a new one. Setting loop maximum count to 1 has 3283 * that effect. 3284 */ 3285 loopmax = 1; 3286 } else { 3287 /* 3288 * If the requested port is busy, look for a free one 3289 * in the anonymous port range. 3290 * Set loopmax appropriately so that one does not look 3291 * forever in the case all of the anonymous ports are in use. 3292 */ 3293 if (tcp->tcp_anon_priv_bind) { 3294 /* 3295 * loopmax = 3296 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3297 */ 3298 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3299 } else { 3300 loopmax = (tcp_largest_anon_port - 3301 tcp_smallest_anon_port + 1); 3302 } 3303 } 3304 do { 3305 uint16_t lport; 3306 tf_t *tbf; 3307 tcp_t *ltcp; 3308 3309 lport = htons(port); 3310 3311 /* 3312 * Ensure that the tcp_t is not currently in the bind hash. 3313 * Hold the lock on the hash bucket to ensure that 3314 * the duplicate check plus the insertion is an atomic 3315 * operation. 3316 * 3317 * This function does an inline lookup on the bind hash list 3318 * Make sure that we access only members of tcp_t 3319 * and that we don't look at tcp_tcp, since we are not 3320 * doing a CONN_INC_REF. 3321 */ 3322 tcp_bind_hash_remove(tcp); 3323 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3324 mutex_enter(&tbf->tf_lock); 3325 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3326 ltcp = ltcp->tcp_bind_hash) { 3327 if (lport != ltcp->tcp_lport || 3328 ltcp->tcp_connp->conn_zoneid != zoneid) { 3329 continue; 3330 } 3331 3332 /* 3333 * If TCP_EXCLBIND is set for either the bound or 3334 * binding endpoint, the semantics of bind 3335 * is changed according to the following. 3336 * 3337 * spec = specified address (v4 or v6) 3338 * unspec = unspecified address (v4 or v6) 3339 * A = specified addresses are different for endpoints 3340 * 3341 * bound bind to allowed 3342 * ------------------------------------- 3343 * unspec unspec no 3344 * unspec spec no 3345 * spec unspec no 3346 * spec spec yes if A 3347 * 3348 * Note: 3349 * 3350 * 1. Because of TLI semantics, an endpoint can go 3351 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3352 * TCPS_BOUND, depending on whether it is originally 3353 * a listener or not. That is why we need to check 3354 * for states greater than or equal to TCPS_BOUND 3355 * here. 3356 * 3357 * 2. Ideally, we should only check for state equals 3358 * to TCPS_LISTEN. And the following check should be 3359 * added. 3360 * 3361 * if (ltcp->tcp_state == TCPS_LISTEN || 3362 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3363 * ... 3364 * } 3365 * 3366 * The semantics will be changed to this. If the 3367 * endpoint on the list is in state not equal to 3368 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3369 * set, let the bind succeed. 3370 * 3371 * But because of (1), we cannot do that now. If 3372 * in future, we can change this going back semantics, 3373 * we can add the above check. 3374 */ 3375 if (ltcp->tcp_exclbind || tcp->tcp_exclbind) { 3376 if (V6_OR_V4_INADDR_ANY( 3377 ltcp->tcp_bound_source_v6) || 3378 V6_OR_V4_INADDR_ANY(*laddr) || 3379 IN6_ARE_ADDR_EQUAL(laddr, 3380 <cp->tcp_bound_source_v6)) { 3381 break; 3382 } 3383 continue; 3384 } 3385 3386 /* 3387 * Check ipversion to allow IPv4 and IPv6 sockets to 3388 * have disjoint port number spaces, if *_EXCLBIND 3389 * is not set and only if the application binds to a 3390 * specific port. We use the same autoassigned port 3391 * number space for IPv4 and IPv6 sockets. 3392 */ 3393 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3394 bind_to_req_port_only) 3395 continue; 3396 3397 /* 3398 * Ideally, we should make sure that the source 3399 * address, remote address, and remote port in the 3400 * four tuple for this tcp-connection is unique. 3401 * However, trying to find out the local source 3402 * address would require too much code duplication 3403 * with IP, since IP needs needs to have that code 3404 * to support userland TCP implementations. 3405 */ 3406 if (quick_connect && 3407 (ltcp->tcp_state > TCPS_LISTEN) && 3408 ((tcp->tcp_fport != ltcp->tcp_fport) || 3409 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3410 <cp->tcp_remote_v6))) 3411 continue; 3412 3413 if (!reuseaddr) { 3414 /* 3415 * No socket option SO_REUSEADDR. 3416 * If existing port is bound to 3417 * a non-wildcard IP address 3418 * and the requesting stream is 3419 * bound to a distinct 3420 * different IP addresses 3421 * (non-wildcard, also), keep 3422 * going. 3423 */ 3424 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3425 !V6_OR_V4_INADDR_ANY( 3426 ltcp->tcp_bound_source_v6) && 3427 !IN6_ARE_ADDR_EQUAL(laddr, 3428 <cp->tcp_bound_source_v6)) 3429 continue; 3430 if (ltcp->tcp_state >= TCPS_BOUND) { 3431 /* 3432 * This port is being used and 3433 * its state is >= TCPS_BOUND, 3434 * so we can't bind to it. 3435 */ 3436 break; 3437 } 3438 } else { 3439 /* 3440 * socket option SO_REUSEADDR is set on the 3441 * binding tcp_t. 3442 * 3443 * If two streams are bound to 3444 * same IP address or both addr 3445 * and bound source are wildcards 3446 * (INADDR_ANY), we want to stop 3447 * searching. 3448 * We have found a match of IP source 3449 * address and source port, which is 3450 * refused regardless of the 3451 * SO_REUSEADDR setting, so we break. 3452 */ 3453 if (IN6_ARE_ADDR_EQUAL(laddr, 3454 <cp->tcp_bound_source_v6) && 3455 (ltcp->tcp_state == TCPS_LISTEN || 3456 ltcp->tcp_state == TCPS_BOUND)) 3457 break; 3458 } 3459 } 3460 if (ltcp != NULL) { 3461 /* The port number is busy */ 3462 mutex_exit(&tbf->tf_lock); 3463 } else { 3464 /* 3465 * This port is ours. Insert in fanout and mark as 3466 * bound to prevent others from getting the port 3467 * number. 3468 */ 3469 tcp->tcp_state = TCPS_BOUND; 3470 tcp->tcp_lport = htons(port); 3471 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3472 3473 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3474 tcp->tcp_lport)] == tbf); 3475 tcp_bind_hash_insert(tbf, tcp, 1); 3476 3477 mutex_exit(&tbf->tf_lock); 3478 3479 /* 3480 * We don't want tcp_next_port_to_try to "inherit" 3481 * a port number supplied by the user in a bind. 3482 */ 3483 if (user_specified) 3484 return (port); 3485 3486 /* 3487 * This is the only place where tcp_next_port_to_try 3488 * is updated. After the update, it may or may not 3489 * be in the valid range. 3490 */ 3491 if (!tcp->tcp_anon_priv_bind) 3492 tcp_next_port_to_try = port + 1; 3493 return (port); 3494 } 3495 3496 if (tcp->tcp_anon_priv_bind) { 3497 port = tcp_get_next_priv_port(); 3498 } else { 3499 if (count == 0 && user_specified) { 3500 /* 3501 * We may have to return an anonymous port. So 3502 * get one to start with. 3503 */ 3504 port = 3505 tcp_update_next_port(tcp_next_port_to_try, 3506 B_TRUE); 3507 user_specified = B_FALSE; 3508 } else { 3509 port = tcp_update_next_port(port + 1, B_FALSE); 3510 } 3511 } 3512 3513 /* 3514 * Don't let this loop run forever in the case where 3515 * all of the anonymous ports are in use. 3516 */ 3517 } while (++count < loopmax); 3518 return (0); 3519 } 3520 3521 /* 3522 * We are dying for some reason. Try to do it gracefully. (May be called 3523 * as writer.) 3524 * 3525 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3526 * done by a service procedure). 3527 * TBD - Should the return value distinguish between the tcp_t being 3528 * freed and it being reinitialized? 3529 */ 3530 static int 3531 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3532 { 3533 mblk_t *mp; 3534 queue_t *q; 3535 3536 TCP_CLD_STAT(tag); 3537 3538 #if TCP_TAG_CLEAN_DEATH 3539 tcp->tcp_cleandeathtag = tag; 3540 #endif 3541 3542 if (tcp->tcp_linger_tid != 0 && 3543 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3544 tcp_stop_lingering(tcp); 3545 } 3546 3547 ASSERT(tcp != NULL); 3548 ASSERT((tcp->tcp_family == AF_INET && 3549 tcp->tcp_ipversion == IPV4_VERSION) || 3550 (tcp->tcp_family == AF_INET6 && 3551 (tcp->tcp_ipversion == IPV4_VERSION || 3552 tcp->tcp_ipversion == IPV6_VERSION))); 3553 3554 if (TCP_IS_DETACHED(tcp)) { 3555 if (tcp->tcp_hard_binding) { 3556 /* 3557 * Its an eager that we are dealing with. We close the 3558 * eager but in case a conn_ind has already gone to the 3559 * listener, let tcp_accept_finish() send a discon_ind 3560 * to the listener and drop the last reference. If the 3561 * listener doesn't even know about the eager i.e. the 3562 * conn_ind hasn't gone up, blow away the eager and drop 3563 * the last reference as well. If the conn_ind has gone 3564 * up, state should be BOUND. tcp_accept_finish 3565 * will figure out that the connection has received a 3566 * RST and will send a DISCON_IND to the application. 3567 */ 3568 tcp_closei_local(tcp); 3569 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 3570 CONN_DEC_REF(tcp->tcp_connp); 3571 } else { 3572 tcp->tcp_state = TCPS_BOUND; 3573 } 3574 } else { 3575 tcp_close_detached(tcp); 3576 } 3577 return (0); 3578 } 3579 3580 TCP_STAT(tcp_clean_death_nondetached); 3581 3582 /* 3583 * If T_ORDREL_IND has not been sent yet (done when service routine 3584 * is run) postpone cleaning up the endpoint until service routine 3585 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3586 * client_errno since tcp_close uses the client_errno field. 3587 */ 3588 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3589 if (err != 0) 3590 tcp->tcp_client_errno = err; 3591 3592 tcp->tcp_deferred_clean_death = B_TRUE; 3593 return (-1); 3594 } 3595 3596 q = tcp->tcp_rq; 3597 3598 /* Trash all inbound data */ 3599 flushq(q, FLUSHALL); 3600 3601 /* 3602 * If we are at least part way open and there is error 3603 * (err==0 implies no error) 3604 * notify our client by a T_DISCON_IND. 3605 */ 3606 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3607 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3608 !TCP_IS_SOCKET(tcp)) { 3609 /* 3610 * Send M_FLUSH according to TPI. Because sockets will 3611 * (and must) ignore FLUSHR we do that only for TPI 3612 * endpoints and sockets in STREAMS mode. 3613 */ 3614 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3615 } 3616 if (tcp->tcp_debug) { 3617 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3618 "tcp_clean_death: discon err %d", err); 3619 } 3620 mp = mi_tpi_discon_ind(NULL, err, 0); 3621 if (mp != NULL) { 3622 putnext(q, mp); 3623 } else { 3624 if (tcp->tcp_debug) { 3625 (void) strlog(TCP_MOD_ID, 0, 1, 3626 SL_ERROR|SL_TRACE, 3627 "tcp_clean_death, sending M_ERROR"); 3628 } 3629 (void) putnextctl1(q, M_ERROR, EPROTO); 3630 } 3631 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3632 /* SYN_SENT or SYN_RCVD */ 3633 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3634 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3635 /* ESTABLISHED or CLOSE_WAIT */ 3636 BUMP_MIB(&tcp_mib, tcpEstabResets); 3637 } 3638 } 3639 3640 tcp_reinit(tcp); 3641 return (-1); 3642 } 3643 3644 /* 3645 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3646 * to expire, stop the wait and finish the close. 3647 */ 3648 static void 3649 tcp_stop_lingering(tcp_t *tcp) 3650 { 3651 clock_t delta = 0; 3652 3653 tcp->tcp_linger_tid = 0; 3654 if (tcp->tcp_state > TCPS_LISTEN) { 3655 tcp_acceptor_hash_remove(tcp); 3656 if (tcp->tcp_flow_stopped) { 3657 tcp_clrqfull(tcp); 3658 } 3659 3660 if (tcp->tcp_timer_tid != 0) { 3661 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3662 tcp->tcp_timer_tid = 0; 3663 } 3664 /* 3665 * Need to cancel those timers which will not be used when 3666 * TCP is detached. This has to be done before the tcp_wq 3667 * is set to the global queue. 3668 */ 3669 tcp_timers_stop(tcp); 3670 3671 3672 tcp->tcp_detached = B_TRUE; 3673 tcp->tcp_rq = tcp_g_q; 3674 tcp->tcp_wq = WR(tcp_g_q); 3675 3676 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3677 tcp_time_wait_append(tcp); 3678 TCP_DBGSTAT(tcp_detach_time_wait); 3679 goto finish; 3680 } 3681 3682 /* 3683 * If delta is zero the timer event wasn't executed and was 3684 * successfully canceled. In this case we need to restart it 3685 * with the minimal delta possible. 3686 */ 3687 if (delta >= 0) { 3688 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3689 delta ? delta : 1); 3690 } 3691 } else { 3692 tcp_closei_local(tcp); 3693 CONN_DEC_REF(tcp->tcp_connp); 3694 } 3695 finish: 3696 /* Signal closing thread that it can complete close */ 3697 mutex_enter(&tcp->tcp_closelock); 3698 tcp->tcp_detached = B_TRUE; 3699 tcp->tcp_rq = tcp_g_q; 3700 tcp->tcp_wq = WR(tcp_g_q); 3701 tcp->tcp_closed = 1; 3702 cv_signal(&tcp->tcp_closecv); 3703 mutex_exit(&tcp->tcp_closelock); 3704 } 3705 3706 /* 3707 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3708 * expires. 3709 */ 3710 static void 3711 tcp_close_linger_timeout(void *arg) 3712 { 3713 conn_t *connp = (conn_t *)arg; 3714 tcp_t *tcp = connp->conn_tcp; 3715 3716 tcp->tcp_client_errno = ETIMEDOUT; 3717 tcp_stop_lingering(tcp); 3718 } 3719 3720 static int 3721 tcp_close(queue_t *q, int flags) 3722 { 3723 conn_t *connp = Q_TO_CONN(q); 3724 tcp_t *tcp = connp->conn_tcp; 3725 mblk_t *mp = &tcp->tcp_closemp; 3726 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3727 3728 ASSERT(WR(q)->q_next == NULL); 3729 ASSERT(connp->conn_ref >= 2); 3730 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 3731 3732 /* 3733 * We are being closed as /dev/tcp or /dev/tcp6. 3734 * 3735 * Mark the conn as closing. ill_pending_mp_add will not 3736 * add any mp to the pending mp list, after this conn has 3737 * started closing. Same for sq_pending_mp_add 3738 */ 3739 mutex_enter(&connp->conn_lock); 3740 connp->conn_state_flags |= CONN_CLOSING; 3741 if (connp->conn_oper_pending_ill != NULL) 3742 conn_ioctl_cleanup_reqd = B_TRUE; 3743 CONN_INC_REF_LOCKED(connp); 3744 mutex_exit(&connp->conn_lock); 3745 tcp->tcp_closeflags = (uint8_t)flags; 3746 ASSERT(connp->conn_ref >= 3); 3747 3748 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 3749 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 3750 3751 mutex_enter(&tcp->tcp_closelock); 3752 3753 while (!tcp->tcp_closed) 3754 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3755 mutex_exit(&tcp->tcp_closelock); 3756 /* 3757 * In the case of listener streams that have eagers in the q or q0 3758 * we wait for the eagers to drop their reference to us. tcp_rq and 3759 * tcp_wq of the eagers point to our queues. By waiting for the 3760 * refcnt to drop to 1, we are sure that the eagers have cleaned 3761 * up their queue pointers and also dropped their references to us. 3762 */ 3763 if (tcp->tcp_wait_for_eagers) { 3764 mutex_enter(&connp->conn_lock); 3765 while (connp->conn_ref != 1) { 3766 cv_wait(&connp->conn_cv, &connp->conn_lock); 3767 } 3768 mutex_exit(&connp->conn_lock); 3769 } 3770 /* 3771 * ioctl cleanup. The mp is queued in the 3772 * ill_pending_mp or in the sq_pending_mp. 3773 */ 3774 if (conn_ioctl_cleanup_reqd) 3775 conn_ioctl_cleanup(connp); 3776 3777 qprocsoff(q); 3778 inet_minor_free(ip_minor_arena, connp->conn_dev); 3779 3780 ASSERT(connp->conn_cred != NULL); 3781 crfree(connp->conn_cred); 3782 tcp->tcp_cred = connp->conn_cred = NULL; 3783 tcp->tcp_cpid = -1; 3784 3785 /* 3786 * Drop IP's reference on the conn. This is the last reference 3787 * on the connp if the state was less than established. If the 3788 * connection has gone into timewait state, then we will have 3789 * one ref for the TCP and one more ref (total of two) for the 3790 * classifier connected hash list (a timewait connections stays 3791 * in connected hash till closed). 3792 * 3793 * We can't assert the references because there might be other 3794 * transient reference places because of some walkers or queued 3795 * packets in squeue for the timewait state. 3796 */ 3797 CONN_DEC_REF(connp); 3798 q->q_ptr = WR(q)->q_ptr = NULL; 3799 return (0); 3800 } 3801 3802 static int 3803 tcpclose_accept(queue_t *q) 3804 { 3805 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3806 3807 /* 3808 * We had opened an acceptor STREAM for sockfs which is 3809 * now being closed due to some error. 3810 */ 3811 qprocsoff(q); 3812 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 3813 q->q_ptr = WR(q)->q_ptr = NULL; 3814 return (0); 3815 } 3816 3817 3818 /* 3819 * Called by streams close routine via squeues when our client blows off her 3820 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3821 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3822 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3823 * acked. 3824 * 3825 * NOTE: tcp_close potentially returns error when lingering. 3826 * However, the stream head currently does not pass these errors 3827 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3828 * errors to the application (from tsleep()) and not errors 3829 * like ECONNRESET caused by receiving a reset packet. 3830 */ 3831 3832 /* ARGSUSED */ 3833 static void 3834 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3835 { 3836 char *msg; 3837 conn_t *connp = (conn_t *)arg; 3838 tcp_t *tcp = connp->conn_tcp; 3839 clock_t delta = 0; 3840 3841 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3842 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3843 3844 /* Cancel any pending timeout */ 3845 if (tcp->tcp_ordrelid != 0) { 3846 if (tcp->tcp_timeout) { 3847 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 3848 } 3849 tcp->tcp_ordrelid = 0; 3850 tcp->tcp_timeout = B_FALSE; 3851 } 3852 3853 mutex_enter(&tcp->tcp_eager_lock); 3854 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3855 /* Cleanup for listener */ 3856 tcp_eager_cleanup(tcp, 0); 3857 tcp->tcp_wait_for_eagers = 1; 3858 } 3859 mutex_exit(&tcp->tcp_eager_lock); 3860 3861 connp->conn_mdt_ok = B_FALSE; 3862 tcp->tcp_mdt = B_FALSE; 3863 3864 msg = NULL; 3865 switch (tcp->tcp_state) { 3866 case TCPS_CLOSED: 3867 case TCPS_IDLE: 3868 case TCPS_BOUND: 3869 case TCPS_LISTEN: 3870 break; 3871 case TCPS_SYN_SENT: 3872 msg = "tcp_close, during connect"; 3873 break; 3874 case TCPS_SYN_RCVD: 3875 /* 3876 * Close during the connect 3-way handshake 3877 * but here there may or may not be pending data 3878 * already on queue. Process almost same as in 3879 * the ESTABLISHED state. 3880 */ 3881 /* FALLTHRU */ 3882 default: 3883 if (tcp->tcp_fused) 3884 tcp_unfuse(tcp); 3885 3886 /* 3887 * If SO_LINGER has set a zero linger time, abort the 3888 * connection with a reset. 3889 */ 3890 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3891 msg = "tcp_close, zero lingertime"; 3892 break; 3893 } 3894 3895 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3896 /* 3897 * Abort connection if there is unread data queued. 3898 */ 3899 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3900 msg = "tcp_close, unread data"; 3901 break; 3902 } 3903 /* 3904 * tcp_hard_bound is now cleared thus all packets go through 3905 * tcp_lookup. This fact is used by tcp_detach below. 3906 * 3907 * We have done a qwait() above which could have possibly 3908 * drained more messages in turn causing transition to a 3909 * different state. Check whether we have to do the rest 3910 * of the processing or not. 3911 */ 3912 if (tcp->tcp_state <= TCPS_LISTEN) 3913 break; 3914 3915 /* 3916 * Transmit the FIN before detaching the tcp_t. 3917 * After tcp_detach returns this queue/perimeter 3918 * no longer owns the tcp_t thus others can modify it. 3919 */ 3920 (void) tcp_xmit_end(tcp); 3921 3922 /* 3923 * If lingering on close then wait until the fin is acked, 3924 * the SO_LINGER time passes, or a reset is sent/received. 3925 */ 3926 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3927 !(tcp->tcp_fin_acked) && 3928 tcp->tcp_state >= TCPS_ESTABLISHED) { 3929 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3930 tcp->tcp_client_errno = EWOULDBLOCK; 3931 } else if (tcp->tcp_client_errno == 0) { 3932 3933 ASSERT(tcp->tcp_linger_tid == 0); 3934 3935 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3936 tcp_close_linger_timeout, 3937 tcp->tcp_lingertime * hz); 3938 3939 /* tcp_close_linger_timeout will finish close */ 3940 if (tcp->tcp_linger_tid == 0) 3941 tcp->tcp_client_errno = ENOSR; 3942 else 3943 return; 3944 } 3945 3946 /* 3947 * Check if we need to detach or just close 3948 * the instance. 3949 */ 3950 if (tcp->tcp_state <= TCPS_LISTEN) 3951 break; 3952 } 3953 3954 /* 3955 * Make sure that no other thread will access the tcp_rq of 3956 * this instance (through lookups etc.) as tcp_rq will go 3957 * away shortly. 3958 */ 3959 tcp_acceptor_hash_remove(tcp); 3960 3961 if (tcp->tcp_flow_stopped) { 3962 tcp_clrqfull(tcp); 3963 } 3964 3965 if (tcp->tcp_timer_tid != 0) { 3966 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3967 tcp->tcp_timer_tid = 0; 3968 } 3969 /* 3970 * Need to cancel those timers which will not be used when 3971 * TCP is detached. This has to be done before the tcp_wq 3972 * is set to the global queue. 3973 */ 3974 tcp_timers_stop(tcp); 3975 3976 tcp->tcp_detached = B_TRUE; 3977 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3978 tcp_time_wait_append(tcp); 3979 TCP_DBGSTAT(tcp_detach_time_wait); 3980 ASSERT(connp->conn_ref >= 3); 3981 goto finish; 3982 } 3983 3984 /* 3985 * If delta is zero the timer event wasn't executed and was 3986 * successfully canceled. In this case we need to restart it 3987 * with the minimal delta possible. 3988 */ 3989 if (delta >= 0) 3990 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3991 delta ? delta : 1); 3992 3993 ASSERT(connp->conn_ref >= 3); 3994 goto finish; 3995 } 3996 3997 /* Detach did not complete. Still need to remove q from stream. */ 3998 if (msg) { 3999 if (tcp->tcp_state == TCPS_ESTABLISHED || 4000 tcp->tcp_state == TCPS_CLOSE_WAIT) 4001 BUMP_MIB(&tcp_mib, tcpEstabResets); 4002 if (tcp->tcp_state == TCPS_SYN_SENT || 4003 tcp->tcp_state == TCPS_SYN_RCVD) 4004 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4005 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4006 } 4007 4008 tcp_closei_local(tcp); 4009 CONN_DEC_REF(connp); 4010 ASSERT(connp->conn_ref >= 2); 4011 4012 finish: 4013 /* 4014 * Although packets are always processed on the correct 4015 * tcp's perimeter and access is serialized via squeue's, 4016 * IP still needs a queue when sending packets in time_wait 4017 * state so use WR(tcp_g_q) till ip_output() can be 4018 * changed to deal with just connp. For read side, we 4019 * could have set tcp_rq to NULL but there are some cases 4020 * in tcp_rput_data() from early days of this code which 4021 * do a putnext without checking if tcp is closed. Those 4022 * need to be identified before both tcp_rq and tcp_wq 4023 * can be set to NULL and tcp_q_q can disappear forever. 4024 */ 4025 mutex_enter(&tcp->tcp_closelock); 4026 /* 4027 * Don't change the queues in the case of a listener that has 4028 * eagers in its q or q0. It could surprise the eagers. 4029 * Instead wait for the eagers outside the squeue. 4030 */ 4031 if (!tcp->tcp_wait_for_eagers) { 4032 tcp->tcp_detached = B_TRUE; 4033 tcp->tcp_rq = tcp_g_q; 4034 tcp->tcp_wq = WR(tcp_g_q); 4035 } 4036 4037 /* Signal tcp_close() to finish closing. */ 4038 tcp->tcp_closed = 1; 4039 cv_signal(&tcp->tcp_closecv); 4040 mutex_exit(&tcp->tcp_closelock); 4041 } 4042 4043 4044 /* 4045 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4046 * Some stream heads get upset if they see these later on as anything but NULL. 4047 */ 4048 static void 4049 tcp_close_mpp(mblk_t **mpp) 4050 { 4051 mblk_t *mp; 4052 4053 if ((mp = *mpp) != NULL) { 4054 do { 4055 mp->b_next = NULL; 4056 mp->b_prev = NULL; 4057 } while ((mp = mp->b_cont) != NULL); 4058 4059 mp = *mpp; 4060 *mpp = NULL; 4061 freemsg(mp); 4062 } 4063 } 4064 4065 /* Do detached close. */ 4066 static void 4067 tcp_close_detached(tcp_t *tcp) 4068 { 4069 if (tcp->tcp_fused) 4070 tcp_unfuse(tcp); 4071 4072 /* 4073 * Clustering code serializes TCP disconnect callbacks and 4074 * cluster tcp list walks by blocking a TCP disconnect callback 4075 * if a cluster tcp list walk is in progress. This ensures 4076 * accurate accounting of TCPs in the cluster code even though 4077 * the TCP list walk itself is not atomic. 4078 */ 4079 tcp_closei_local(tcp); 4080 CONN_DEC_REF(tcp->tcp_connp); 4081 } 4082 4083 /* 4084 * Stop all TCP timers, and free the timer mblks if requested. 4085 */ 4086 void 4087 tcp_timers_stop(tcp_t *tcp) 4088 { 4089 if (tcp->tcp_timer_tid != 0) { 4090 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4091 tcp->tcp_timer_tid = 0; 4092 } 4093 if (tcp->tcp_ka_tid != 0) { 4094 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4095 tcp->tcp_ka_tid = 0; 4096 } 4097 if (tcp->tcp_ack_tid != 0) { 4098 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4099 tcp->tcp_ack_tid = 0; 4100 } 4101 if (tcp->tcp_push_tid != 0) { 4102 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4103 tcp->tcp_push_tid = 0; 4104 } 4105 } 4106 4107 /* 4108 * The tcp_t is going away. Remove it from all lists and set it 4109 * to TCPS_CLOSED. The freeing up of memory is deferred until 4110 * tcp_inactive. This is needed since a thread in tcp_rput might have 4111 * done a CONN_INC_REF on this structure before it was removed from the 4112 * hashes. 4113 */ 4114 static void 4115 tcp_closei_local(tcp_t *tcp) 4116 { 4117 ire_t *ire; 4118 conn_t *connp = tcp->tcp_connp; 4119 4120 if (!TCP_IS_SOCKET(tcp)) 4121 tcp_acceptor_hash_remove(tcp); 4122 4123 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4124 tcp->tcp_ibsegs = 0; 4125 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4126 tcp->tcp_obsegs = 0; 4127 4128 /* 4129 * If we are an eager connection hanging off a listener that 4130 * hasn't formally accepted the connection yet, get off his 4131 * list and blow off any data that we have accumulated. 4132 */ 4133 if (tcp->tcp_listener != NULL) { 4134 tcp_t *listener = tcp->tcp_listener; 4135 mutex_enter(&listener->tcp_eager_lock); 4136 /* 4137 * tcp_eager_conn_ind == NULL means that the 4138 * conn_ind has already gone to listener. At 4139 * this point, eager will be closed but we 4140 * leave it in listeners eager list so that 4141 * if listener decides to close without doing 4142 * accept, we can clean this up. In tcp_wput_accept 4143 * we take case of the case of accept on closed 4144 * eager. 4145 */ 4146 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4147 tcp_eager_unlink(tcp); 4148 mutex_exit(&listener->tcp_eager_lock); 4149 /* 4150 * We don't want to have any pointers to the 4151 * listener queue, after we have released our 4152 * reference on the listener 4153 */ 4154 tcp->tcp_rq = tcp_g_q; 4155 tcp->tcp_wq = WR(tcp_g_q); 4156 CONN_DEC_REF(listener->tcp_connp); 4157 } else { 4158 mutex_exit(&listener->tcp_eager_lock); 4159 } 4160 } 4161 4162 /* Stop all the timers */ 4163 tcp_timers_stop(tcp); 4164 4165 if (tcp->tcp_state == TCPS_LISTEN) { 4166 if (tcp->tcp_ip_addr_cache) { 4167 kmem_free((void *)tcp->tcp_ip_addr_cache, 4168 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4169 tcp->tcp_ip_addr_cache = NULL; 4170 } 4171 } 4172 if (tcp->tcp_flow_stopped) 4173 tcp_clrqfull(tcp); 4174 4175 tcp_bind_hash_remove(tcp); 4176 /* 4177 * If the tcp_time_wait_collector (which runs outside the squeue) 4178 * is trying to remove this tcp from the time wait list, we will 4179 * block in tcp_time_wait_remove while trying to acquire the 4180 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4181 * requires the ipcl_hash_remove to be ordered after the 4182 * tcp_time_wait_remove for the refcnt checks to work correctly. 4183 */ 4184 if (tcp->tcp_state == TCPS_TIME_WAIT) 4185 tcp_time_wait_remove(tcp, NULL); 4186 CL_INET_DISCONNECT(tcp); 4187 ipcl_hash_remove(connp); 4188 4189 /* 4190 * Delete the cached ire in conn_ire_cache and also mark 4191 * the conn as CONDEMNED 4192 */ 4193 mutex_enter(&connp->conn_lock); 4194 connp->conn_state_flags |= CONN_CONDEMNED; 4195 ire = connp->conn_ire_cache; 4196 connp->conn_ire_cache = NULL; 4197 mutex_exit(&connp->conn_lock); 4198 if (ire != NULL) 4199 IRE_REFRELE_NOTR(ire); 4200 4201 /* Need to cleanup any pending ioctls */ 4202 ASSERT(tcp->tcp_time_wait_next == NULL); 4203 ASSERT(tcp->tcp_time_wait_prev == NULL); 4204 ASSERT(tcp->tcp_time_wait_expire == 0); 4205 tcp->tcp_state = TCPS_CLOSED; 4206 4207 /* Release any SSL context */ 4208 if (tcp->tcp_kssl_ent != NULL) { 4209 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4210 tcp->tcp_kssl_ent = NULL; 4211 } 4212 if (tcp->tcp_kssl_ctx != NULL) { 4213 kssl_release_ctx(tcp->tcp_kssl_ctx); 4214 tcp->tcp_kssl_ctx = NULL; 4215 } 4216 tcp->tcp_kssl_pending = B_FALSE; 4217 } 4218 4219 /* 4220 * tcp is dying (called from ipcl_conn_destroy and error cases). 4221 * Free the tcp_t in either case. 4222 */ 4223 void 4224 tcp_free(tcp_t *tcp) 4225 { 4226 mblk_t *mp; 4227 ip6_pkt_t *ipp; 4228 4229 ASSERT(tcp != NULL); 4230 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4231 4232 tcp->tcp_rq = NULL; 4233 tcp->tcp_wq = NULL; 4234 4235 tcp_close_mpp(&tcp->tcp_xmit_head); 4236 tcp_close_mpp(&tcp->tcp_reass_head); 4237 if (tcp->tcp_rcv_list != NULL) { 4238 /* Free b_next chain */ 4239 tcp_close_mpp(&tcp->tcp_rcv_list); 4240 } 4241 if ((mp = tcp->tcp_urp_mp) != NULL) { 4242 freemsg(mp); 4243 } 4244 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4245 freemsg(mp); 4246 } 4247 4248 if (tcp->tcp_fused_sigurg_mp != NULL) { 4249 freeb(tcp->tcp_fused_sigurg_mp); 4250 tcp->tcp_fused_sigurg_mp = NULL; 4251 } 4252 4253 if (tcp->tcp_sack_info != NULL) { 4254 if (tcp->tcp_notsack_list != NULL) { 4255 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4256 } 4257 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4258 } 4259 4260 if (tcp->tcp_hopopts != NULL) { 4261 mi_free(tcp->tcp_hopopts); 4262 tcp->tcp_hopopts = NULL; 4263 tcp->tcp_hopoptslen = 0; 4264 } 4265 ASSERT(tcp->tcp_hopoptslen == 0); 4266 if (tcp->tcp_dstopts != NULL) { 4267 mi_free(tcp->tcp_dstopts); 4268 tcp->tcp_dstopts = NULL; 4269 tcp->tcp_dstoptslen = 0; 4270 } 4271 ASSERT(tcp->tcp_dstoptslen == 0); 4272 if (tcp->tcp_rtdstopts != NULL) { 4273 mi_free(tcp->tcp_rtdstopts); 4274 tcp->tcp_rtdstopts = NULL; 4275 tcp->tcp_rtdstoptslen = 0; 4276 } 4277 ASSERT(tcp->tcp_rtdstoptslen == 0); 4278 if (tcp->tcp_rthdr != NULL) { 4279 mi_free(tcp->tcp_rthdr); 4280 tcp->tcp_rthdr = NULL; 4281 tcp->tcp_rthdrlen = 0; 4282 } 4283 ASSERT(tcp->tcp_rthdrlen == 0); 4284 4285 ipp = &tcp->tcp_sticky_ipp; 4286 if ((ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | 4287 IPPF_DSTOPTS | IPPF_RTHDR)) != 0) { 4288 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 4289 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 4290 ipp->ipp_hopopts = NULL; 4291 ipp->ipp_hopoptslen = 0; 4292 } 4293 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 4294 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 4295 ipp->ipp_rtdstopts = NULL; 4296 ipp->ipp_rtdstoptslen = 0; 4297 } 4298 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 4299 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 4300 ipp->ipp_dstopts = NULL; 4301 ipp->ipp_dstoptslen = 0; 4302 } 4303 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 4304 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 4305 ipp->ipp_rthdr = NULL; 4306 ipp->ipp_rthdrlen = 0; 4307 } 4308 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | 4309 IPPF_DSTOPTS | IPPF_RTHDR); 4310 } 4311 4312 /* 4313 * Free memory associated with the tcp/ip header template. 4314 */ 4315 4316 if (tcp->tcp_iphc != NULL) 4317 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4318 4319 /* 4320 * Following is really a blowing away a union. 4321 * It happens to have exactly two members of identical size 4322 * the following code is enough. 4323 */ 4324 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4325 4326 if (tcp->tcp_tracebuf != NULL) { 4327 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4328 tcp->tcp_tracebuf = NULL; 4329 } 4330 } 4331 4332 4333 /* 4334 * Put a connection confirmation message upstream built from the 4335 * address information within 'iph' and 'tcph'. Report our success or failure. 4336 */ 4337 static boolean_t 4338 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4339 mblk_t **defermp) 4340 { 4341 sin_t sin; 4342 sin6_t sin6; 4343 mblk_t *mp; 4344 char *optp = NULL; 4345 int optlen = 0; 4346 cred_t *cr; 4347 4348 if (defermp != NULL) 4349 *defermp = NULL; 4350 4351 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4352 /* 4353 * Return in T_CONN_CON results of option negotiation through 4354 * the T_CONN_REQ. Note: If there is an real end-to-end option 4355 * negotiation, then what is received from remote end needs 4356 * to be taken into account but there is no such thing (yet?) 4357 * in our TCP/IP. 4358 * Note: We do not use mi_offset_param() here as 4359 * tcp_opts_conn_req contents do not directly come from 4360 * an application and are either generated in kernel or 4361 * from user input that was already verified. 4362 */ 4363 mp = tcp->tcp_conn.tcp_opts_conn_req; 4364 optp = (char *)(mp->b_rptr + 4365 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4366 optlen = (int) 4367 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4368 } 4369 4370 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4371 ipha_t *ipha = (ipha_t *)iphdr; 4372 4373 /* packet is IPv4 */ 4374 if (tcp->tcp_family == AF_INET) { 4375 sin = sin_null; 4376 sin.sin_addr.s_addr = ipha->ipha_src; 4377 sin.sin_port = *(uint16_t *)tcph->th_lport; 4378 sin.sin_family = AF_INET; 4379 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4380 (int)sizeof (sin_t), optp, optlen); 4381 } else { 4382 sin6 = sin6_null; 4383 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4384 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4385 sin6.sin6_family = AF_INET6; 4386 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4387 (int)sizeof (sin6_t), optp, optlen); 4388 4389 } 4390 } else { 4391 ip6_t *ip6h = (ip6_t *)iphdr; 4392 4393 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4394 ASSERT(tcp->tcp_family == AF_INET6); 4395 sin6 = sin6_null; 4396 sin6.sin6_addr = ip6h->ip6_src; 4397 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4398 sin6.sin6_family = AF_INET6; 4399 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4400 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4401 (int)sizeof (sin6_t), optp, optlen); 4402 } 4403 4404 if (!mp) 4405 return (B_FALSE); 4406 4407 if ((cr = DB_CRED(idmp)) != NULL) { 4408 mblk_setcred(mp, cr); 4409 DB_CPID(mp) = DB_CPID(idmp); 4410 } 4411 4412 if (defermp == NULL) 4413 putnext(tcp->tcp_rq, mp); 4414 else 4415 *defermp = mp; 4416 4417 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4418 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4419 return (B_TRUE); 4420 } 4421 4422 /* 4423 * Defense for the SYN attack - 4424 * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest 4425 * one that doesn't have the dontdrop bit set. 4426 * 2. Don't drop a SYN request before its first timeout. This gives every 4427 * request at least til the first timeout to complete its 3-way handshake. 4428 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4429 * requests currently on the queue that has timed out. This will be used 4430 * as an indicator of whether an attack is under way, so that appropriate 4431 * actions can be taken. (It's incremented in tcp_timer() and decremented 4432 * either when eager goes into ESTABLISHED, or gets freed up.) 4433 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4434 * # of timeout drops back to <= q0len/32 => SYN alert off 4435 */ 4436 static boolean_t 4437 tcp_drop_q0(tcp_t *tcp) 4438 { 4439 tcp_t *eager; 4440 4441 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4442 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4443 /* 4444 * New one is added after next_q0 so prev_q0 points to the oldest 4445 * Also do not drop any established connections that are deferred on 4446 * q0 due to q being full 4447 */ 4448 4449 eager = tcp->tcp_eager_prev_q0; 4450 while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { 4451 eager = eager->tcp_eager_prev_q0; 4452 if (eager == tcp) { 4453 eager = tcp->tcp_eager_prev_q0; 4454 break; 4455 } 4456 } 4457 if (eager->tcp_syn_rcvd_timeout == 0) 4458 return (B_FALSE); 4459 4460 if (tcp->tcp_debug) { 4461 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4462 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4463 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4464 tcp->tcp_conn_req_cnt_q0, 4465 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4466 } 4467 4468 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4469 4470 /* 4471 * need to do refhold here because the selected eager could 4472 * be removed by someone else if we release the eager lock. 4473 */ 4474 CONN_INC_REF(eager->tcp_connp); 4475 mutex_exit(&tcp->tcp_eager_lock); 4476 4477 /* Mark the IRE created for this SYN request temporary */ 4478 tcp_ip_ire_mark_advice(eager); 4479 (void) tcp_clean_death(eager, ETIMEDOUT, 5); 4480 CONN_DEC_REF(eager->tcp_connp); 4481 4482 mutex_enter(&tcp->tcp_eager_lock); 4483 return (B_TRUE); 4484 } 4485 4486 int 4487 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4488 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4489 { 4490 tcp_t *ltcp = lconnp->conn_tcp; 4491 tcp_t *tcp = connp->conn_tcp; 4492 mblk_t *tpi_mp; 4493 ipha_t *ipha; 4494 ip6_t *ip6h; 4495 sin6_t sin6; 4496 in6_addr_t v6dst; 4497 int err; 4498 int ifindex = 0; 4499 cred_t *cr; 4500 4501 if (ipvers == IPV4_VERSION) { 4502 ipha = (ipha_t *)mp->b_rptr; 4503 4504 connp->conn_send = ip_output; 4505 connp->conn_recv = tcp_input; 4506 4507 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4508 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4509 4510 sin6 = sin6_null; 4511 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4512 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4513 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4514 sin6.sin6_family = AF_INET6; 4515 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4516 lconnp->conn_zoneid); 4517 if (tcp->tcp_recvdstaddr) { 4518 sin6_t sin6d; 4519 4520 sin6d = sin6_null; 4521 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4522 &sin6d.sin6_addr); 4523 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4524 sin6d.sin6_family = AF_INET; 4525 tpi_mp = mi_tpi_extconn_ind(NULL, 4526 (char *)&sin6d, sizeof (sin6_t), 4527 (char *)&tcp, 4528 (t_scalar_t)sizeof (intptr_t), 4529 (char *)&sin6d, sizeof (sin6_t), 4530 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4531 } else { 4532 tpi_mp = mi_tpi_conn_ind(NULL, 4533 (char *)&sin6, sizeof (sin6_t), 4534 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4535 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4536 } 4537 } else { 4538 ip6h = (ip6_t *)mp->b_rptr; 4539 4540 connp->conn_send = ip_output_v6; 4541 connp->conn_recv = tcp_input; 4542 4543 connp->conn_srcv6 = ip6h->ip6_dst; 4544 connp->conn_remv6 = ip6h->ip6_src; 4545 4546 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4547 ifindex = (int)DB_CKSUMSTUFF(mp); 4548 DB_CKSUMSTUFF(mp) = 0; 4549 4550 sin6 = sin6_null; 4551 sin6.sin6_addr = ip6h->ip6_src; 4552 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4553 sin6.sin6_family = AF_INET6; 4554 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4555 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4556 lconnp->conn_zoneid); 4557 4558 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4559 /* Pass up the scope_id of remote addr */ 4560 sin6.sin6_scope_id = ifindex; 4561 } else { 4562 sin6.sin6_scope_id = 0; 4563 } 4564 if (tcp->tcp_recvdstaddr) { 4565 sin6_t sin6d; 4566 4567 sin6d = sin6_null; 4568 sin6.sin6_addr = ip6h->ip6_dst; 4569 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4570 sin6d.sin6_family = AF_INET; 4571 tpi_mp = mi_tpi_extconn_ind(NULL, 4572 (char *)&sin6d, sizeof (sin6_t), 4573 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4574 (char *)&sin6d, sizeof (sin6_t), 4575 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4576 } else { 4577 tpi_mp = mi_tpi_conn_ind(NULL, 4578 (char *)&sin6, sizeof (sin6_t), 4579 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4580 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4581 } 4582 } 4583 4584 if (tpi_mp == NULL) 4585 return (ENOMEM); 4586 4587 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4588 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4589 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4590 connp->conn_fully_bound = B_FALSE; 4591 4592 if (tcp_trace) 4593 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4594 4595 /* Inherit information from the "parent" */ 4596 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4597 tcp->tcp_family = ltcp->tcp_family; 4598 tcp->tcp_wq = ltcp->tcp_wq; 4599 tcp->tcp_rq = ltcp->tcp_rq; 4600 tcp->tcp_mss = tcp_mss_def_ipv6; 4601 tcp->tcp_detached = B_TRUE; 4602 if ((err = tcp_init_values(tcp)) != 0) { 4603 freemsg(tpi_mp); 4604 return (err); 4605 } 4606 4607 if (ipvers == IPV4_VERSION) { 4608 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4609 freemsg(tpi_mp); 4610 return (err); 4611 } 4612 ASSERT(tcp->tcp_ipha != NULL); 4613 } else { 4614 /* ifindex must be already set */ 4615 ASSERT(ifindex != 0); 4616 4617 if (ltcp->tcp_bound_if != 0) { 4618 /* 4619 * Set newtcp's bound_if equal to 4620 * listener's value. If ifindex is 4621 * not the same as ltcp->tcp_bound_if, 4622 * it must be a packet for the ipmp group 4623 * of interfaces 4624 */ 4625 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4626 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4627 tcp->tcp_bound_if = ifindex; 4628 } 4629 4630 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4631 tcp->tcp_recvifindex = 0; 4632 tcp->tcp_recvhops = 0xffffffffU; 4633 ASSERT(tcp->tcp_ip6h != NULL); 4634 } 4635 4636 tcp->tcp_lport = ltcp->tcp_lport; 4637 4638 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4639 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4640 /* 4641 * Listener had options of some sort; eager inherits. 4642 * Free up the eager template and allocate one 4643 * of the right size. 4644 */ 4645 if (tcp->tcp_hdr_grown) { 4646 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4647 } else { 4648 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4649 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4650 } 4651 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4652 KM_NOSLEEP); 4653 if (tcp->tcp_iphc == NULL) { 4654 tcp->tcp_iphc_len = 0; 4655 freemsg(tpi_mp); 4656 return (ENOMEM); 4657 } 4658 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4659 tcp->tcp_hdr_grown = B_TRUE; 4660 } 4661 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4662 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4663 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4664 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4665 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4666 4667 /* 4668 * Copy the IP+TCP header template from listener to eager 4669 */ 4670 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4671 if (tcp->tcp_ipversion == IPV6_VERSION) { 4672 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4673 IPPROTO_RAW) { 4674 tcp->tcp_ip6h = 4675 (ip6_t *)(tcp->tcp_iphc + 4676 sizeof (ip6i_t)); 4677 } else { 4678 tcp->tcp_ip6h = 4679 (ip6_t *)(tcp->tcp_iphc); 4680 } 4681 tcp->tcp_ipha = NULL; 4682 } else { 4683 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4684 tcp->tcp_ip6h = NULL; 4685 } 4686 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4687 tcp->tcp_ip_hdr_len); 4688 } else { 4689 /* 4690 * only valid case when ipversion of listener and 4691 * eager differ is when listener is IPv6 and 4692 * eager is IPv4. 4693 * Eager header template has been initialized to the 4694 * maximum v4 header sizes, which includes space for 4695 * TCP and IP options. 4696 */ 4697 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4698 (tcp->tcp_ipversion == IPV4_VERSION)); 4699 ASSERT(tcp->tcp_iphc_len >= 4700 TCP_MAX_COMBINED_HEADER_LENGTH); 4701 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4702 /* copy IP header fields individually */ 4703 tcp->tcp_ipha->ipha_ttl = 4704 ltcp->tcp_ip6h->ip6_hops; 4705 bcopy(ltcp->tcp_tcph->th_lport, 4706 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4707 } 4708 4709 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4710 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4711 sizeof (in_port_t)); 4712 4713 if (ltcp->tcp_lport == 0) { 4714 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4715 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4716 sizeof (in_port_t)); 4717 } 4718 4719 if (tcp->tcp_ipversion == IPV4_VERSION) { 4720 ASSERT(ipha != NULL); 4721 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4722 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4723 4724 /* Source routing option copyover (reverse it) */ 4725 if (tcp_rev_src_routes) 4726 tcp_opt_reverse(tcp, ipha); 4727 } else { 4728 ASSERT(ip6h != NULL); 4729 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4730 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4731 } 4732 4733 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4734 /* 4735 * If the SYN contains a credential, it's a loopback packet; attach 4736 * the credential to the TPI message. 4737 */ 4738 if ((cr = DB_CRED(idmp)) != NULL) { 4739 mblk_setcred(tpi_mp, cr); 4740 DB_CPID(tpi_mp) = DB_CPID(idmp); 4741 } 4742 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4743 4744 /* Inherit the listener's SSL protection state */ 4745 4746 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4747 kssl_hold_ent(tcp->tcp_kssl_ent); 4748 tcp->tcp_kssl_pending = B_TRUE; 4749 } 4750 4751 return (0); 4752 } 4753 4754 4755 int 4756 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4757 tcph_t *tcph, mblk_t *idmp) 4758 { 4759 tcp_t *ltcp = lconnp->conn_tcp; 4760 tcp_t *tcp = connp->conn_tcp; 4761 sin_t sin; 4762 mblk_t *tpi_mp = NULL; 4763 int err; 4764 cred_t *cr; 4765 4766 sin = sin_null; 4767 sin.sin_addr.s_addr = ipha->ipha_src; 4768 sin.sin_port = *(uint16_t *)tcph->th_lport; 4769 sin.sin_family = AF_INET; 4770 if (ltcp->tcp_recvdstaddr) { 4771 sin_t sind; 4772 4773 sind = sin_null; 4774 sind.sin_addr.s_addr = ipha->ipha_dst; 4775 sind.sin_port = *(uint16_t *)tcph->th_fport; 4776 sind.sin_family = AF_INET; 4777 tpi_mp = mi_tpi_extconn_ind(NULL, 4778 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4779 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4780 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4781 } else { 4782 tpi_mp = mi_tpi_conn_ind(NULL, 4783 (char *)&sin, sizeof (sin_t), 4784 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4785 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4786 } 4787 4788 if (tpi_mp == NULL) { 4789 return (ENOMEM); 4790 } 4791 4792 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4793 connp->conn_send = ip_output; 4794 connp->conn_recv = tcp_input; 4795 connp->conn_fully_bound = B_FALSE; 4796 4797 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4798 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4799 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4800 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4801 4802 if (tcp_trace) { 4803 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4804 } 4805 4806 /* Inherit information from the "parent" */ 4807 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4808 tcp->tcp_family = ltcp->tcp_family; 4809 tcp->tcp_wq = ltcp->tcp_wq; 4810 tcp->tcp_rq = ltcp->tcp_rq; 4811 tcp->tcp_mss = tcp_mss_def_ipv4; 4812 tcp->tcp_detached = B_TRUE; 4813 if ((err = tcp_init_values(tcp)) != 0) { 4814 freemsg(tpi_mp); 4815 return (err); 4816 } 4817 4818 /* 4819 * Let's make sure that eager tcp template has enough space to 4820 * copy IPv4 listener's tcp template. Since the conn_t structure is 4821 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4822 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4823 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4824 * extension headers or with ip6i_t struct). Note that bcopy() below 4825 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4826 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4827 */ 4828 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4829 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4830 4831 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4832 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4833 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4834 tcp->tcp_ttl = ltcp->tcp_ttl; 4835 tcp->tcp_tos = ltcp->tcp_tos; 4836 4837 /* Copy the IP+TCP header template from listener to eager */ 4838 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4839 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4840 tcp->tcp_ip6h = NULL; 4841 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4842 tcp->tcp_ip_hdr_len); 4843 4844 /* Initialize the IP addresses and Ports */ 4845 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4846 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4847 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4848 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4849 4850 /* Source routing option copyover (reverse it) */ 4851 if (tcp_rev_src_routes) 4852 tcp_opt_reverse(tcp, ipha); 4853 4854 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4855 4856 /* 4857 * If the SYN contains a credential, it's a loopback packet; attach 4858 * the credential to the TPI message. 4859 */ 4860 if ((cr = DB_CRED(idmp)) != NULL) { 4861 mblk_setcred(tpi_mp, cr); 4862 DB_CPID(tpi_mp) = DB_CPID(idmp); 4863 } 4864 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4865 4866 /* Inherit the listener's SSL protection state */ 4867 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4868 kssl_hold_ent(tcp->tcp_kssl_ent); 4869 tcp->tcp_kssl_pending = B_TRUE; 4870 } 4871 4872 return (0); 4873 } 4874 4875 /* 4876 * sets up conn for ipsec. 4877 * if the first mblk is M_CTL it is consumed and mpp is updated. 4878 * in case of error mpp is freed. 4879 */ 4880 conn_t * 4881 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4882 { 4883 conn_t *connp = tcp->tcp_connp; 4884 conn_t *econnp; 4885 squeue_t *new_sqp; 4886 mblk_t *first_mp = *mpp; 4887 mblk_t *mp = *mpp; 4888 boolean_t mctl_present = B_FALSE; 4889 uint_t ipvers; 4890 4891 econnp = tcp_get_conn(sqp); 4892 if (econnp == NULL) { 4893 freemsg(first_mp); 4894 return (NULL); 4895 } 4896 if (DB_TYPE(mp) == M_CTL) { 4897 if (mp->b_cont == NULL || 4898 mp->b_cont->b_datap->db_type != M_DATA) { 4899 freemsg(first_mp); 4900 return (NULL); 4901 } 4902 mp = mp->b_cont; 4903 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4904 freemsg(first_mp); 4905 return (NULL); 4906 } 4907 4908 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4909 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4910 mctl_present = B_TRUE; 4911 } else { 4912 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4913 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4914 } 4915 4916 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4917 DB_CKSUMSTART(mp) = 0; 4918 4919 ASSERT(OK_32PTR(mp->b_rptr)); 4920 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4921 if (ipvers == IPV4_VERSION) { 4922 uint16_t *up; 4923 uint32_t ports; 4924 ipha_t *ipha; 4925 4926 ipha = (ipha_t *)mp->b_rptr; 4927 up = (uint16_t *)((uchar_t *)ipha + 4928 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4929 ports = *(uint32_t *)up; 4930 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4931 ipha->ipha_dst, ipha->ipha_src, ports); 4932 } else { 4933 uint16_t *up; 4934 uint32_t ports; 4935 uint16_t ip_hdr_len; 4936 uint8_t *nexthdrp; 4937 ip6_t *ip6h; 4938 tcph_t *tcph; 4939 4940 ip6h = (ip6_t *)mp->b_rptr; 4941 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4942 ip_hdr_len = IPV6_HDR_LEN; 4943 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4944 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4945 CONN_DEC_REF(econnp); 4946 freemsg(first_mp); 4947 return (NULL); 4948 } 4949 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4950 up = (uint16_t *)tcph->th_lport; 4951 ports = *(uint32_t *)up; 4952 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4953 ip6h->ip6_dst, ip6h->ip6_src, ports); 4954 } 4955 4956 /* 4957 * The caller already ensured that there is a sqp present. 4958 */ 4959 econnp->conn_sqp = new_sqp; 4960 4961 if (connp->conn_policy != NULL) { 4962 ipsec_in_t *ii; 4963 ii = (ipsec_in_t *)(first_mp->b_rptr); 4964 ASSERT(ii->ipsec_in_policy == NULL); 4965 IPPH_REFHOLD(connp->conn_policy); 4966 ii->ipsec_in_policy = connp->conn_policy; 4967 4968 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4969 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4970 CONN_DEC_REF(econnp); 4971 freemsg(first_mp); 4972 return (NULL); 4973 } 4974 } 4975 4976 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4977 CONN_DEC_REF(econnp); 4978 freemsg(first_mp); 4979 return (NULL); 4980 } 4981 4982 /* 4983 * If we know we have some policy, pass the "IPSEC" 4984 * options size TCP uses this adjust the MSS. 4985 */ 4986 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 4987 if (mctl_present) { 4988 freeb(first_mp); 4989 *mpp = mp; 4990 } 4991 4992 return (econnp); 4993 } 4994 4995 /* 4996 * tcp_get_conn/tcp_free_conn 4997 * 4998 * tcp_get_conn is used to get a clean tcp connection structure. 4999 * It tries to reuse the connections put on the freelist by the 5000 * time_wait_collector failing which it goes to kmem_cache. This 5001 * way has two benefits compared to just allocating from and 5002 * freeing to kmem_cache. 5003 * 1) The time_wait_collector can free (which includes the cleanup) 5004 * outside the squeue. So when the interrupt comes, we have a clean 5005 * connection sitting in the freelist. Obviously, this buys us 5006 * performance. 5007 * 5008 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5009 * has multiple disadvantages - tying up the squeue during alloc, and the 5010 * fact that IPSec policy initialization has to happen here which 5011 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5012 * But allocating the conn/tcp in IP land is also not the best since 5013 * we can't check the 'q' and 'q0' which are protected by squeue and 5014 * blindly allocate memory which might have to be freed here if we are 5015 * not allowed to accept the connection. By using the freelist and 5016 * putting the conn/tcp back in freelist, we don't pay a penalty for 5017 * allocating memory without checking 'q/q0' and freeing it if we can't 5018 * accept the connection. 5019 * 5020 * Care should be taken to put the conn back in the same squeue's freelist 5021 * from which it was allocated. Best results are obtained if conn is 5022 * allocated from listener's squeue and freed to the same. Time wait 5023 * collector will free up the freelist is the connection ends up sitting 5024 * there for too long. 5025 */ 5026 void * 5027 tcp_get_conn(void *arg) 5028 { 5029 tcp_t *tcp = NULL; 5030 conn_t *connp = NULL; 5031 squeue_t *sqp = (squeue_t *)arg; 5032 tcp_squeue_priv_t *tcp_time_wait; 5033 5034 tcp_time_wait = 5035 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5036 5037 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5038 tcp = tcp_time_wait->tcp_free_list; 5039 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5040 if (tcp != NULL) { 5041 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5042 tcp_time_wait->tcp_free_list_cnt--; 5043 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5044 tcp->tcp_time_wait_next = NULL; 5045 connp = tcp->tcp_connp; 5046 connp->conn_flags |= IPCL_REUSED; 5047 return ((void *)connp); 5048 } 5049 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5050 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5051 return (NULL); 5052 return ((void *)connp); 5053 } 5054 5055 /* BEGIN CSTYLED */ 5056 /* 5057 * 5058 * The sockfs ACCEPT path: 5059 * ======================= 5060 * 5061 * The eager is now established in its own perimeter as soon as SYN is 5062 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5063 * completes the accept processing on the acceptor STREAM. The sending 5064 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5065 * listener but a TLI/XTI listener completes the accept processing 5066 * on the listener perimeter. 5067 * 5068 * Common control flow for 3 way handshake: 5069 * ---------------------------------------- 5070 * 5071 * incoming SYN (listener perimeter) -> tcp_rput_data() 5072 * -> tcp_conn_request() 5073 * 5074 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5075 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5076 * 5077 * Sockfs ACCEPT Path: 5078 * ------------------- 5079 * 5080 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5081 * as STREAM entry point) 5082 * 5083 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5084 * 5085 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5086 * association (we are not behind eager's squeue but sockfs is protecting us 5087 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5088 * is changed to point at tcp_wput(). 5089 * 5090 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5091 * listener (done on listener's perimeter). 5092 * 5093 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5094 * accept. 5095 * 5096 * TLI/XTI client ACCEPT path: 5097 * --------------------------- 5098 * 5099 * soaccept() sends T_CONN_RES on the listener STREAM. 5100 * 5101 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5102 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5103 * 5104 * Locks: 5105 * ====== 5106 * 5107 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5108 * and listeners->tcp_eager_next_q. 5109 * 5110 * Referencing: 5111 * ============ 5112 * 5113 * 1) We start out in tcp_conn_request by eager placing a ref on 5114 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5115 * 5116 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5117 * doing so we place a ref on the eager. This ref is finally dropped at the 5118 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5119 * reference is dropped by the squeue framework. 5120 * 5121 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5122 * 5123 * The reference must be released by the same entity that added the reference 5124 * In the above scheme, the eager is the entity that adds and releases the 5125 * references. Note that tcp_accept_finish executes in the squeue of the eager 5126 * (albeit after it is attached to the acceptor stream). Though 1. executes 5127 * in the listener's squeue, the eager is nascent at this point and the 5128 * reference can be considered to have been added on behalf of the eager. 5129 * 5130 * Eager getting a Reset or listener closing: 5131 * ========================================== 5132 * 5133 * Once the listener and eager are linked, the listener never does the unlink. 5134 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5135 * a message on all eager perimeter. The eager then does the unlink, clears 5136 * any pointers to the listener's queue and drops the reference to the 5137 * listener. The listener waits in tcp_close outside the squeue until its 5138 * refcount has dropped to 1. This ensures that the listener has waited for 5139 * all eagers to clear their association with the listener. 5140 * 5141 * Similarly, if eager decides to go away, it can unlink itself and close. 5142 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5143 * the reference to eager is still valid because of the extra ref we put 5144 * in tcp_send_conn_ind. 5145 * 5146 * Listener can always locate the eager under the protection 5147 * of the listener->tcp_eager_lock, and then do a refhold 5148 * on the eager during the accept processing. 5149 * 5150 * The acceptor stream accesses the eager in the accept processing 5151 * based on the ref placed on eager before sending T_conn_ind. 5152 * The only entity that can negate this refhold is a listener close 5153 * which is mutually exclusive with an active acceptor stream. 5154 * 5155 * Eager's reference on the listener 5156 * =================================== 5157 * 5158 * If the accept happens (even on a closed eager) the eager drops its 5159 * reference on the listener at the start of tcp_accept_finish. If the 5160 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5161 * the reference is dropped in tcp_closei_local. If the listener closes, 5162 * the reference is dropped in tcp_eager_kill. In all cases the reference 5163 * is dropped while executing in the eager's context (squeue). 5164 */ 5165 /* END CSTYLED */ 5166 5167 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5168 5169 /* 5170 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5171 * tcp_rput_data will not see any SYN packets. 5172 */ 5173 /* ARGSUSED */ 5174 void 5175 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5176 { 5177 tcph_t *tcph; 5178 uint32_t seg_seq; 5179 tcp_t *eager; 5180 uint_t ipvers; 5181 ipha_t *ipha; 5182 ip6_t *ip6h; 5183 int err; 5184 conn_t *econnp = NULL; 5185 squeue_t *new_sqp; 5186 mblk_t *mp1; 5187 uint_t ip_hdr_len; 5188 conn_t *connp = (conn_t *)arg; 5189 tcp_t *tcp = connp->conn_tcp; 5190 ire_t *ire; 5191 5192 if (tcp->tcp_state != TCPS_LISTEN) 5193 goto error2; 5194 5195 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5196 5197 mutex_enter(&tcp->tcp_eager_lock); 5198 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5199 mutex_exit(&tcp->tcp_eager_lock); 5200 TCP_STAT(tcp_listendrop); 5201 BUMP_MIB(&tcp_mib, tcpListenDrop); 5202 if (tcp->tcp_debug) { 5203 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5204 "tcp_conn_request: listen backlog (max=%d) " 5205 "overflow (%d pending) on %s", 5206 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5207 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5208 } 5209 goto error2; 5210 } 5211 5212 if (tcp->tcp_conn_req_cnt_q0 >= 5213 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5214 /* 5215 * Q0 is full. Drop a pending half-open req from the queue 5216 * to make room for the new SYN req. Also mark the time we 5217 * drop a SYN. 5218 * 5219 * A more aggressive defense against SYN attack will 5220 * be to set the "tcp_syn_defense" flag now. 5221 */ 5222 TCP_STAT(tcp_listendropq0); 5223 tcp->tcp_last_rcv_lbolt = lbolt64; 5224 if (!tcp_drop_q0(tcp)) { 5225 mutex_exit(&tcp->tcp_eager_lock); 5226 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5227 if (tcp->tcp_debug) { 5228 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5229 "tcp_conn_request: listen half-open queue " 5230 "(max=%d) full (%d pending) on %s", 5231 tcp_conn_req_max_q0, 5232 tcp->tcp_conn_req_cnt_q0, 5233 tcp_display(tcp, NULL, 5234 DISP_PORT_ONLY)); 5235 } 5236 goto error2; 5237 } 5238 } 5239 mutex_exit(&tcp->tcp_eager_lock); 5240 5241 /* 5242 * IP adds STRUIO_EAGER and ensures that the received packet is 5243 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5244 * link local address. If IPSec is enabled, db_struioflag has 5245 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5246 * otherwise an error case if neither of them is set. 5247 */ 5248 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5249 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5250 DB_CKSUMSTART(mp) = 0; 5251 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5252 econnp = (conn_t *)tcp_get_conn(arg2); 5253 if (econnp == NULL) 5254 goto error2; 5255 econnp->conn_sqp = new_sqp; 5256 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5257 /* 5258 * mp is updated in tcp_get_ipsec_conn(). 5259 */ 5260 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5261 if (econnp == NULL) { 5262 /* 5263 * mp freed by tcp_get_ipsec_conn. 5264 */ 5265 return; 5266 } 5267 } else { 5268 goto error2; 5269 } 5270 5271 ASSERT(DB_TYPE(mp) == M_DATA); 5272 5273 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5274 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5275 ASSERT(OK_32PTR(mp->b_rptr)); 5276 if (ipvers == IPV4_VERSION) { 5277 ipha = (ipha_t *)mp->b_rptr; 5278 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5279 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5280 } else { 5281 ip6h = (ip6_t *)mp->b_rptr; 5282 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5283 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5284 } 5285 5286 if (tcp->tcp_family == AF_INET) { 5287 ASSERT(ipvers == IPV4_VERSION); 5288 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5289 } else { 5290 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5291 } 5292 5293 if (err) 5294 goto error3; 5295 5296 eager = econnp->conn_tcp; 5297 5298 /* Inherit various TCP parameters from the listener */ 5299 eager->tcp_naglim = tcp->tcp_naglim; 5300 eager->tcp_first_timer_threshold = 5301 tcp->tcp_first_timer_threshold; 5302 eager->tcp_second_timer_threshold = 5303 tcp->tcp_second_timer_threshold; 5304 5305 eager->tcp_first_ctimer_threshold = 5306 tcp->tcp_first_ctimer_threshold; 5307 eager->tcp_second_ctimer_threshold = 5308 tcp->tcp_second_ctimer_threshold; 5309 5310 /* 5311 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5312 * zone id before the accept is completed in tcp_wput_accept(). 5313 */ 5314 econnp->conn_zoneid = connp->conn_zoneid; 5315 5316 eager->tcp_hard_binding = B_TRUE; 5317 5318 tcp_bind_hash_insert(&tcp_bind_fanout[ 5319 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5320 5321 CL_INET_CONNECT(eager); 5322 5323 /* 5324 * No need to check for multicast destination since ip will only pass 5325 * up multicasts to those that have expressed interest 5326 * TODO: what about rejecting broadcasts? 5327 * Also check that source is not a multicast or broadcast address. 5328 */ 5329 eager->tcp_state = TCPS_SYN_RCVD; 5330 5331 5332 /* 5333 * There should be no ire in the mp as we are being called after 5334 * receiving the SYN. 5335 */ 5336 ASSERT(tcp_ire_mp(mp) == NULL); 5337 5338 /* 5339 * Adapt our mss, ttl, ... according to information provided in IRE. 5340 */ 5341 5342 if (tcp_adapt_ire(eager, NULL) == 0) { 5343 /* Undo the bind_hash_insert */ 5344 tcp_bind_hash_remove(eager); 5345 goto error3; 5346 } 5347 5348 /* Process all TCP options. */ 5349 tcp_process_options(eager, tcph); 5350 5351 /* Is the other end ECN capable? */ 5352 if (tcp_ecn_permitted >= 1 && 5353 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5354 eager->tcp_ecn_ok = B_TRUE; 5355 } 5356 5357 /* 5358 * listener->tcp_rq->q_hiwat should be the default window size or a 5359 * window size changed via SO_RCVBUF option. First round up the 5360 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5361 * scale option value if needed. Call tcp_rwnd_set() to finish the 5362 * setting. 5363 * 5364 * Note if there is a rpipe metric associated with the remote host, 5365 * we should not inherit receive window size from listener. 5366 */ 5367 eager->tcp_rwnd = MSS_ROUNDUP( 5368 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5369 eager->tcp_rwnd), eager->tcp_mss); 5370 if (eager->tcp_snd_ws_ok) 5371 tcp_set_ws_value(eager); 5372 /* 5373 * Note that this is the only place tcp_rwnd_set() is called for 5374 * accepting a connection. We need to call it here instead of 5375 * after the 3-way handshake because we need to tell the other 5376 * side our rwnd in the SYN-ACK segment. 5377 */ 5378 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5379 5380 /* 5381 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5382 * via soaccept()->soinheritoptions() which essentially applies 5383 * all the listener options to the new STREAM. The options that we 5384 * need to take care of are: 5385 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5386 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5387 * SO_SNDBUF, SO_RCVBUF. 5388 * 5389 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5390 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5391 * tcp_maxpsz_set() gets called later from 5392 * tcp_accept_finish(), the option takes effect. 5393 * 5394 */ 5395 /* Set the TCP options */ 5396 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5397 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5398 eager->tcp_oobinline = tcp->tcp_oobinline; 5399 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5400 eager->tcp_broadcast = tcp->tcp_broadcast; 5401 eager->tcp_useloopback = tcp->tcp_useloopback; 5402 eager->tcp_dontroute = tcp->tcp_dontroute; 5403 eager->tcp_linger = tcp->tcp_linger; 5404 eager->tcp_lingertime = tcp->tcp_lingertime; 5405 if (tcp->tcp_ka_enabled) 5406 eager->tcp_ka_enabled = 1; 5407 5408 /* Set the IP options */ 5409 econnp->conn_broadcast = connp->conn_broadcast; 5410 econnp->conn_loopback = connp->conn_loopback; 5411 econnp->conn_dontroute = connp->conn_dontroute; 5412 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5413 5414 /* Put a ref on the listener for the eager. */ 5415 CONN_INC_REF(connp); 5416 mutex_enter(&tcp->tcp_eager_lock); 5417 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5418 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5419 tcp->tcp_eager_next_q0 = eager; 5420 eager->tcp_eager_prev_q0 = tcp; 5421 5422 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5423 eager->tcp_listener = tcp; 5424 eager->tcp_saved_listener = tcp; 5425 5426 /* 5427 * Tag this detached tcp vector for later retrieval 5428 * by our listener client in tcp_accept(). 5429 */ 5430 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5431 tcp->tcp_conn_req_cnt_q0++; 5432 if (++tcp->tcp_conn_req_seqnum == -1) { 5433 /* 5434 * -1 is "special" and defined in TPI as something 5435 * that should never be used in T_CONN_IND 5436 */ 5437 ++tcp->tcp_conn_req_seqnum; 5438 } 5439 mutex_exit(&tcp->tcp_eager_lock); 5440 5441 if (tcp->tcp_syn_defense) { 5442 /* Don't drop the SYN that comes from a good IP source */ 5443 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5444 if (addr_cache != NULL && eager->tcp_remote == 5445 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5446 eager->tcp_dontdrop = B_TRUE; 5447 } 5448 } 5449 5450 /* 5451 * We need to insert the eager in its own perimeter but as soon 5452 * as we do that, we expose the eager to the classifier and 5453 * should not touch any field outside the eager's perimeter. 5454 * So do all the work necessary before inserting the eager 5455 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5456 * will succeed but undo everything if it fails. 5457 */ 5458 seg_seq = ABE32_TO_U32(tcph->th_seq); 5459 eager->tcp_irs = seg_seq; 5460 eager->tcp_rack = seg_seq; 5461 eager->tcp_rnxt = seg_seq + 1; 5462 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5463 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5464 eager->tcp_state = TCPS_SYN_RCVD; 5465 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5466 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5467 if (mp1 == NULL) 5468 goto error1; 5469 mblk_setcred(mp1, tcp->tcp_cred); 5470 DB_CPID(mp1) = tcp->tcp_cpid; 5471 5472 /* 5473 * We need to start the rto timer. In normal case, we start 5474 * the timer after sending the packet on the wire (or at 5475 * least believing that packet was sent by waiting for 5476 * CALL_IP_WPUT() to return). Since this is the first packet 5477 * being sent on the wire for the eager, our initial tcp_rto 5478 * is at least tcp_rexmit_interval_min which is a fairly 5479 * large value to allow the algorithm to adjust slowly to large 5480 * fluctuations of RTT during first few transmissions. 5481 * 5482 * Starting the timer first and then sending the packet in this 5483 * case shouldn't make much difference since tcp_rexmit_interval_min 5484 * is of the order of several 100ms and starting the timer 5485 * first and then sending the packet will result in difference 5486 * of few micro seconds. 5487 * 5488 * Without this optimization, we are forced to hold the fanout 5489 * lock across the ipcl_bind_insert() and sending the packet 5490 * so that we don't race against an incoming packet (maybe RST) 5491 * for this eager. 5492 */ 5493 5494 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5495 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5496 5497 5498 /* 5499 * Insert the eager in its own perimeter now. We are ready to deal 5500 * with any packets on eager. 5501 */ 5502 if (eager->tcp_ipversion == IPV4_VERSION) { 5503 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5504 goto error; 5505 } 5506 } else { 5507 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5508 goto error; 5509 } 5510 } 5511 5512 /* mark conn as fully-bound */ 5513 econnp->conn_fully_bound = B_TRUE; 5514 5515 /* Send the SYN-ACK */ 5516 tcp_send_data(eager, eager->tcp_wq, mp1); 5517 freemsg(mp); 5518 5519 return; 5520 error: 5521 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 5522 freemsg(mp1); 5523 error1: 5524 /* Undo what we did above */ 5525 mutex_enter(&tcp->tcp_eager_lock); 5526 tcp_eager_unlink(eager); 5527 mutex_exit(&tcp->tcp_eager_lock); 5528 /* Drop eager's reference on the listener */ 5529 CONN_DEC_REF(connp); 5530 5531 /* 5532 * Delete the cached ire in conn_ire_cache and also mark 5533 * the conn as CONDEMNED 5534 */ 5535 mutex_enter(&econnp->conn_lock); 5536 econnp->conn_state_flags |= CONN_CONDEMNED; 5537 ire = econnp->conn_ire_cache; 5538 econnp->conn_ire_cache = NULL; 5539 mutex_exit(&econnp->conn_lock); 5540 if (ire != NULL) 5541 IRE_REFRELE_NOTR(ire); 5542 5543 /* 5544 * tcp_accept_comm inserts the eager to the bind_hash 5545 * we need to remove it from the hash if ipcl_conn_insert 5546 * fails. 5547 */ 5548 tcp_bind_hash_remove(eager); 5549 /* Drop the eager ref placed in tcp_open_detached */ 5550 CONN_DEC_REF(econnp); 5551 5552 /* 5553 * If a connection already exists, send the mp to that connections so 5554 * that it can be appropriately dealt with. 5555 */ 5556 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 5557 if (!IPCL_IS_CONNECTED(econnp)) { 5558 /* 5559 * Something bad happened. ipcl_conn_insert() 5560 * failed because a connection already existed 5561 * in connected hash but we can't find it 5562 * anymore (someone blew it away). Just 5563 * free this message and hopefully remote 5564 * will retransmit at which time the SYN can be 5565 * treated as a new connection or dealth with 5566 * a TH_RST if a connection already exists. 5567 */ 5568 freemsg(mp); 5569 } else { 5570 squeue_fill(econnp->conn_sqp, mp, tcp_input, 5571 econnp, SQTAG_TCP_CONN_REQ); 5572 } 5573 } else { 5574 /* Nobody wants this packet */ 5575 freemsg(mp); 5576 } 5577 return; 5578 error2: 5579 freemsg(mp); 5580 return; 5581 error3: 5582 CONN_DEC_REF(econnp); 5583 freemsg(mp); 5584 } 5585 5586 /* 5587 * In an ideal case of vertical partition in NUMA architecture, its 5588 * beneficial to have the listener and all the incoming connections 5589 * tied to the same squeue. The other constraint is that incoming 5590 * connections should be tied to the squeue attached to interrupted 5591 * CPU for obvious locality reason so this leaves the listener to 5592 * be tied to the same squeue. Our only problem is that when listener 5593 * is binding, the CPU that will get interrupted by the NIC whose 5594 * IP address the listener is binding to is not even known. So 5595 * the code below allows us to change that binding at the time the 5596 * CPU is interrupted by virtue of incoming connection's squeue. 5597 * 5598 * This is usefull only in case of a listener bound to a specific IP 5599 * address. For other kind of listeners, they get bound the 5600 * very first time and there is no attempt to rebind them. 5601 */ 5602 void 5603 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5604 { 5605 conn_t *connp = (conn_t *)arg; 5606 squeue_t *sqp = (squeue_t *)arg2; 5607 squeue_t *new_sqp; 5608 uint32_t conn_flags; 5609 5610 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5611 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5612 } else { 5613 goto done; 5614 } 5615 5616 if (connp->conn_fanout == NULL) 5617 goto done; 5618 5619 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5620 mutex_enter(&connp->conn_fanout->connf_lock); 5621 mutex_enter(&connp->conn_lock); 5622 /* 5623 * No one from read or write side can access us now 5624 * except for already queued packets on this squeue. 5625 * But since we haven't changed the squeue yet, they 5626 * can't execute. If they are processed after we have 5627 * changed the squeue, they are sent back to the 5628 * correct squeue down below. 5629 */ 5630 if (connp->conn_sqp != new_sqp) { 5631 while (connp->conn_sqp != new_sqp) 5632 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5633 } 5634 5635 do { 5636 conn_flags = connp->conn_flags; 5637 conn_flags |= IPCL_FULLY_BOUND; 5638 (void) cas32(&connp->conn_flags, connp->conn_flags, 5639 conn_flags); 5640 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5641 5642 mutex_exit(&connp->conn_fanout->connf_lock); 5643 mutex_exit(&connp->conn_lock); 5644 } 5645 5646 done: 5647 if (connp->conn_sqp != sqp) { 5648 CONN_INC_REF(connp); 5649 squeue_fill(connp->conn_sqp, mp, 5650 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 5651 } else { 5652 tcp_conn_request(connp, mp, sqp); 5653 } 5654 } 5655 5656 /* 5657 * Successful connect request processing begins when our client passes 5658 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5659 * our T_OK_ACK reply message upstream. The control flow looks like this: 5660 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 5661 * upstream <- tcp_rput() <- IP 5662 * After various error checks are completed, tcp_connect() lays 5663 * the target address and port into the composite header template, 5664 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5665 * request followed by an IRE request, and passes the three mblk message 5666 * down to IP looking like this: 5667 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5668 * Processing continues in tcp_rput() when we receive the following message: 5669 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5670 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5671 * to fire off the connection request, and then passes the T_OK_ACK mblk 5672 * upstream that we filled in below. There are, of course, numerous 5673 * error conditions along the way which truncate the processing described 5674 * above. 5675 */ 5676 static void 5677 tcp_connect(tcp_t *tcp, mblk_t *mp) 5678 { 5679 sin_t *sin; 5680 sin6_t *sin6; 5681 queue_t *q = tcp->tcp_wq; 5682 struct T_conn_req *tcr; 5683 ipaddr_t *dstaddrp; 5684 in_port_t dstport; 5685 uint_t srcid; 5686 5687 tcr = (struct T_conn_req *)mp->b_rptr; 5688 5689 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5690 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5691 tcp_err_ack(tcp, mp, TPROTO, 0); 5692 return; 5693 } 5694 5695 /* 5696 * Determine packet type based on type of address passed in 5697 * the request should contain an IPv4 or IPv6 address. 5698 * Make sure that address family matches the type of 5699 * family of the the address passed down 5700 */ 5701 switch (tcr->DEST_length) { 5702 default: 5703 tcp_err_ack(tcp, mp, TBADADDR, 0); 5704 return; 5705 5706 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5707 /* 5708 * XXX: The check for valid DEST_length was not there 5709 * in earlier releases and some buggy 5710 * TLI apps (e.g Sybase) got away with not feeding 5711 * in sin_zero part of address. 5712 * We allow that bug to keep those buggy apps humming. 5713 * Test suites require the check on DEST_length. 5714 * We construct a new mblk with valid DEST_length 5715 * free the original so the rest of the code does 5716 * not have to keep track of this special shorter 5717 * length address case. 5718 */ 5719 mblk_t *nmp; 5720 struct T_conn_req *ntcr; 5721 sin_t *nsin; 5722 5723 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5724 tcr->OPT_length, BPRI_HI); 5725 if (nmp == NULL) { 5726 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5727 return; 5728 } 5729 ntcr = (struct T_conn_req *)nmp->b_rptr; 5730 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5731 ntcr->PRIM_type = T_CONN_REQ; 5732 ntcr->DEST_length = sizeof (sin_t); 5733 ntcr->DEST_offset = sizeof (struct T_conn_req); 5734 5735 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5736 *nsin = sin_null; 5737 /* Get pointer to shorter address to copy from original mp */ 5738 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5739 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5740 if (sin == NULL || !OK_32PTR((char *)sin)) { 5741 freemsg(nmp); 5742 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5743 return; 5744 } 5745 nsin->sin_family = sin->sin_family; 5746 nsin->sin_port = sin->sin_port; 5747 nsin->sin_addr = sin->sin_addr; 5748 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5749 nmp->b_wptr = (uchar_t *)&nsin[1]; 5750 if (tcr->OPT_length != 0) { 5751 ntcr->OPT_length = tcr->OPT_length; 5752 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5753 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5754 (uchar_t *)ntcr + ntcr->OPT_offset, 5755 tcr->OPT_length); 5756 nmp->b_wptr += tcr->OPT_length; 5757 } 5758 freemsg(mp); /* original mp freed */ 5759 mp = nmp; /* re-initialize original variables */ 5760 tcr = ntcr; 5761 } 5762 /* FALLTHRU */ 5763 5764 case sizeof (sin_t): 5765 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5766 sizeof (sin_t)); 5767 if (sin == NULL || !OK_32PTR((char *)sin)) { 5768 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5769 return; 5770 } 5771 if (tcp->tcp_family != AF_INET || 5772 sin->sin_family != AF_INET) { 5773 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5774 return; 5775 } 5776 if (sin->sin_port == 0) { 5777 tcp_err_ack(tcp, mp, TBADADDR, 0); 5778 return; 5779 } 5780 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 5781 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5782 return; 5783 } 5784 5785 break; 5786 5787 case sizeof (sin6_t): 5788 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 5789 sizeof (sin6_t)); 5790 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 5791 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5792 return; 5793 } 5794 if (tcp->tcp_family != AF_INET6 || 5795 sin6->sin6_family != AF_INET6) { 5796 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5797 return; 5798 } 5799 if (sin6->sin6_port == 0) { 5800 tcp_err_ack(tcp, mp, TBADADDR, 0); 5801 return; 5802 } 5803 break; 5804 } 5805 /* 5806 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5807 * should key on their sequence number and cut them loose. 5808 */ 5809 5810 /* 5811 * If options passed in, feed it for verification and handling 5812 */ 5813 if (tcr->OPT_length != 0) { 5814 mblk_t *ok_mp; 5815 mblk_t *discon_mp; 5816 mblk_t *conn_opts_mp; 5817 int t_error, sys_error, do_disconnect; 5818 5819 conn_opts_mp = NULL; 5820 5821 if (tcp_conprim_opt_process(tcp, mp, 5822 &do_disconnect, &t_error, &sys_error) < 0) { 5823 if (do_disconnect) { 5824 ASSERT(t_error == 0 && sys_error == 0); 5825 discon_mp = mi_tpi_discon_ind(NULL, 5826 ECONNREFUSED, 0); 5827 if (!discon_mp) { 5828 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5829 TSYSERR, ENOMEM); 5830 return; 5831 } 5832 ok_mp = mi_tpi_ok_ack_alloc(mp); 5833 if (!ok_mp) { 5834 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5835 TSYSERR, ENOMEM); 5836 return; 5837 } 5838 qreply(q, ok_mp); 5839 qreply(q, discon_mp); /* no flush! */ 5840 } else { 5841 ASSERT(t_error != 0); 5842 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5843 sys_error); 5844 } 5845 return; 5846 } 5847 /* 5848 * Success in setting options, the mp option buffer represented 5849 * by OPT_length/offset has been potentially modified and 5850 * contains results of option processing. We copy it in 5851 * another mp to save it for potentially influencing returning 5852 * it in T_CONN_CONN. 5853 */ 5854 if (tcr->OPT_length != 0) { /* there are resulting options */ 5855 conn_opts_mp = copyb(mp); 5856 if (!conn_opts_mp) { 5857 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5858 TSYSERR, ENOMEM); 5859 return; 5860 } 5861 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5862 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5863 /* 5864 * Note: 5865 * These resulting option negotiation can include any 5866 * end-to-end negotiation options but there no such 5867 * thing (yet?) in our TCP/IP. 5868 */ 5869 } 5870 } 5871 5872 /* 5873 * If we're connecting to an IPv4-mapped IPv6 address, we need to 5874 * make sure that the template IP header in the tcp structure is an 5875 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 5876 * need to this before we call tcp_bindi() so that the port lookup 5877 * code will look for ports in the correct port space (IPv4 and 5878 * IPv6 have separate port spaces). 5879 */ 5880 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 5881 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 5882 int err = 0; 5883 5884 err = tcp_header_init_ipv4(tcp); 5885 if (err != 0) { 5886 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 5887 goto connect_failed; 5888 } 5889 if (tcp->tcp_lport != 0) 5890 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 5891 } 5892 5893 switch (tcp->tcp_state) { 5894 case TCPS_IDLE: 5895 /* 5896 * We support quick connect, refer to comments in 5897 * tcp_connect_*() 5898 */ 5899 /* FALLTHRU */ 5900 case TCPS_BOUND: 5901 case TCPS_LISTEN: 5902 if (tcp->tcp_family == AF_INET6) { 5903 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 5904 tcp_connect_ipv6(tcp, mp, 5905 &sin6->sin6_addr, 5906 sin6->sin6_port, sin6->sin6_flowinfo, 5907 sin6->__sin6_src_id, sin6->sin6_scope_id); 5908 return; 5909 } 5910 /* 5911 * Destination adress is mapped IPv6 address. 5912 * Source bound address should be unspecified or 5913 * IPv6 mapped address as well. 5914 */ 5915 if (!IN6_IS_ADDR_UNSPECIFIED( 5916 &tcp->tcp_bound_source_v6) && 5917 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 5918 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 5919 EADDRNOTAVAIL); 5920 break; 5921 } 5922 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 5923 dstport = sin6->sin6_port; 5924 srcid = sin6->__sin6_src_id; 5925 } else { 5926 dstaddrp = &sin->sin_addr.s_addr; 5927 dstport = sin->sin_port; 5928 srcid = 0; 5929 } 5930 5931 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 5932 return; 5933 default: 5934 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 5935 break; 5936 } 5937 /* 5938 * Note: Code below is the "failure" case 5939 */ 5940 /* return error ack and blow away saved option results if any */ 5941 connect_failed: 5942 if (mp != NULL) 5943 putnext(tcp->tcp_rq, mp); 5944 else { 5945 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5946 TSYSERR, ENOMEM); 5947 } 5948 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 5949 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 5950 } 5951 5952 /* 5953 * Handle connect to IPv4 destinations, including connections for AF_INET6 5954 * sockets connecting to IPv4 mapped IPv6 destinations. 5955 */ 5956 static void 5957 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 5958 uint_t srcid) 5959 { 5960 tcph_t *tcph; 5961 mblk_t *mp1; 5962 ipaddr_t dstaddr = *dstaddrp; 5963 int32_t oldstate; 5964 uint16_t lport; 5965 5966 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 5967 5968 /* Check for attempt to connect to INADDR_ANY */ 5969 if (dstaddr == INADDR_ANY) { 5970 /* 5971 * SunOS 4.x and 4.3 BSD allow an application 5972 * to connect a TCP socket to INADDR_ANY. 5973 * When they do this, the kernel picks the 5974 * address of one interface and uses it 5975 * instead. The kernel usually ends up 5976 * picking the address of the loopback 5977 * interface. This is an undocumented feature. 5978 * However, we provide the same thing here 5979 * in order to have source and binary 5980 * compatibility with SunOS 4.x. 5981 * Update the T_CONN_REQ (sin/sin6) since it is used to 5982 * generate the T_CONN_CON. 5983 */ 5984 dstaddr = htonl(INADDR_LOOPBACK); 5985 *dstaddrp = dstaddr; 5986 } 5987 5988 /* Handle __sin6_src_id if socket not bound to an IP address */ 5989 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 5990 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 5991 tcp->tcp_connp->conn_zoneid); 5992 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 5993 tcp->tcp_ipha->ipha_src); 5994 } 5995 5996 /* 5997 * Don't let an endpoint connect to itself. Note that 5998 * the test here does not catch the case where the 5999 * source IP addr was left unspecified by the user. In 6000 * this case, the source addr is set in tcp_adapt_ire() 6001 * using the reply to the T_BIND message that we send 6002 * down to IP here and the check is repeated in tcp_rput_other. 6003 */ 6004 if (dstaddr == tcp->tcp_ipha->ipha_src && 6005 dstport == tcp->tcp_lport) { 6006 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6007 goto failed; 6008 } 6009 6010 tcp->tcp_ipha->ipha_dst = dstaddr; 6011 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6012 6013 /* 6014 * Massage a source route if any putting the first hop 6015 * in iph_dst. Compute a starting value for the checksum which 6016 * takes into account that the original iph_dst should be 6017 * included in the checksum but that ip will include the 6018 * first hop in the source route in the tcp checksum. 6019 */ 6020 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6021 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6022 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6023 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6024 if ((int)tcp->tcp_sum < 0) 6025 tcp->tcp_sum--; 6026 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6027 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6028 (tcp->tcp_sum >> 16)); 6029 tcph = tcp->tcp_tcph; 6030 *(uint16_t *)tcph->th_fport = dstport; 6031 tcp->tcp_fport = dstport; 6032 6033 oldstate = tcp->tcp_state; 6034 /* 6035 * At this point the remote destination address and remote port fields 6036 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6037 * have to see which state tcp was in so we can take apropriate action. 6038 */ 6039 if (oldstate == TCPS_IDLE) { 6040 /* 6041 * We support a quick connect capability here, allowing 6042 * clients to transition directly from IDLE to SYN_SENT 6043 * tcp_bindi will pick an unused port, insert the connection 6044 * in the bind hash and transition to BOUND state. 6045 */ 6046 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 6047 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6048 B_FALSE, B_FALSE); 6049 if (lport == 0) { 6050 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6051 goto failed; 6052 } 6053 } 6054 tcp->tcp_state = TCPS_SYN_SENT; 6055 6056 /* 6057 * TODO: allow data with connect requests 6058 * by unlinking M_DATA trailers here and 6059 * linking them in behind the T_OK_ACK mblk. 6060 * The tcp_rput() bind ack handler would then 6061 * feed them to tcp_wput_data() rather than call 6062 * tcp_timer(). 6063 */ 6064 mp = mi_tpi_ok_ack_alloc(mp); 6065 if (!mp) { 6066 tcp->tcp_state = oldstate; 6067 goto failed; 6068 } 6069 if (tcp->tcp_family == AF_INET) { 6070 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6071 sizeof (ipa_conn_t)); 6072 } else { 6073 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6074 sizeof (ipa6_conn_t)); 6075 } 6076 if (mp1) { 6077 /* Hang onto the T_OK_ACK for later. */ 6078 linkb(mp1, mp); 6079 if (tcp->tcp_family == AF_INET) 6080 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6081 else { 6082 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6083 &tcp->tcp_sticky_ipp); 6084 } 6085 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6086 tcp->tcp_active_open = 1; 6087 /* 6088 * If the bind cannot complete immediately 6089 * IP will arrange to call tcp_rput_other 6090 * when the bind completes. 6091 */ 6092 if (mp1 != NULL) 6093 tcp_rput_other(tcp, mp1); 6094 return; 6095 } 6096 /* Error case */ 6097 tcp->tcp_state = oldstate; 6098 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6099 6100 failed: 6101 /* return error ack and blow away saved option results if any */ 6102 if (mp != NULL) 6103 putnext(tcp->tcp_rq, mp); 6104 else { 6105 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6106 TSYSERR, ENOMEM); 6107 } 6108 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6109 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6110 6111 } 6112 6113 /* 6114 * Handle connect to IPv6 destinations. 6115 */ 6116 static void 6117 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6118 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6119 { 6120 tcph_t *tcph; 6121 mblk_t *mp1; 6122 ip6_rthdr_t *rth; 6123 int32_t oldstate; 6124 uint16_t lport; 6125 6126 ASSERT(tcp->tcp_family == AF_INET6); 6127 6128 /* 6129 * If we're here, it means that the destination address is a native 6130 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6131 * reason why it might not be IPv6 is if the socket was bound to an 6132 * IPv4-mapped IPv6 address. 6133 */ 6134 if (tcp->tcp_ipversion != IPV6_VERSION) { 6135 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6136 goto failed; 6137 } 6138 6139 /* 6140 * Interpret a zero destination to mean loopback. 6141 * Update the T_CONN_REQ (sin/sin6) since it is used to 6142 * generate the T_CONN_CON. 6143 */ 6144 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6145 *dstaddrp = ipv6_loopback; 6146 } 6147 6148 /* Handle __sin6_src_id if socket not bound to an IP address */ 6149 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6150 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6151 tcp->tcp_connp->conn_zoneid); 6152 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6153 } 6154 6155 /* 6156 * Take care of the scope_id now and add ip6i_t 6157 * if ip6i_t is not already allocated through TCP 6158 * sticky options. At this point tcp_ip6h does not 6159 * have dst info, thus use dstaddrp. 6160 */ 6161 if (scope_id != 0 && 6162 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6163 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6164 ip6i_t *ip6i; 6165 6166 ipp->ipp_ifindex = scope_id; 6167 ip6i = (ip6i_t *)tcp->tcp_iphc; 6168 6169 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6170 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6171 /* Already allocated */ 6172 ip6i->ip6i_flags |= IP6I_IFINDEX; 6173 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6174 ipp->ipp_fields |= IPPF_SCOPE_ID; 6175 } else { 6176 int reterr; 6177 6178 ipp->ipp_fields |= IPPF_SCOPE_ID; 6179 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6180 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6181 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6182 if (reterr != 0) 6183 goto failed; 6184 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6185 } 6186 } 6187 6188 /* 6189 * Don't let an endpoint connect to itself. Note that 6190 * the test here does not catch the case where the 6191 * source IP addr was left unspecified by the user. In 6192 * this case, the source addr is set in tcp_adapt_ire() 6193 * using the reply to the T_BIND message that we send 6194 * down to IP here and the check is repeated in tcp_rput_other. 6195 */ 6196 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6197 (dstport == tcp->tcp_lport)) { 6198 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6199 goto failed; 6200 } 6201 6202 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6203 tcp->tcp_remote_v6 = *dstaddrp; 6204 tcp->tcp_ip6h->ip6_vcf = 6205 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6206 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6207 6208 6209 /* 6210 * Massage a routing header (if present) putting the first hop 6211 * in ip6_dst. Compute a starting value for the checksum which 6212 * takes into account that the original ip6_dst should be 6213 * included in the checksum but that ip will include the 6214 * first hop in the source route in the tcp checksum. 6215 */ 6216 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6217 if (rth != NULL) { 6218 6219 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6220 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6221 (tcp->tcp_sum >> 16)); 6222 } else { 6223 tcp->tcp_sum = 0; 6224 } 6225 6226 tcph = tcp->tcp_tcph; 6227 *(uint16_t *)tcph->th_fport = dstport; 6228 tcp->tcp_fport = dstport; 6229 6230 oldstate = tcp->tcp_state; 6231 /* 6232 * At this point the remote destination address and remote port fields 6233 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6234 * have to see which state tcp was in so we can take apropriate action. 6235 */ 6236 if (oldstate == TCPS_IDLE) { 6237 /* 6238 * We support a quick connect capability here, allowing 6239 * clients to transition directly from IDLE to SYN_SENT 6240 * tcp_bindi will pick an unused port, insert the connection 6241 * in the bind hash and transition to BOUND state. 6242 */ 6243 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 6244 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6245 B_FALSE, B_FALSE); 6246 if (lport == 0) { 6247 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6248 goto failed; 6249 } 6250 } 6251 tcp->tcp_state = TCPS_SYN_SENT; 6252 /* 6253 * TODO: allow data with connect requests 6254 * by unlinking M_DATA trailers here and 6255 * linking them in behind the T_OK_ACK mblk. 6256 * The tcp_rput() bind ack handler would then 6257 * feed them to tcp_wput_data() rather than call 6258 * tcp_timer(). 6259 */ 6260 mp = mi_tpi_ok_ack_alloc(mp); 6261 if (!mp) { 6262 tcp->tcp_state = oldstate; 6263 goto failed; 6264 } 6265 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6266 if (mp1) { 6267 /* Hang onto the T_OK_ACK for later. */ 6268 linkb(mp1, mp); 6269 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6270 &tcp->tcp_sticky_ipp); 6271 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6272 tcp->tcp_active_open = 1; 6273 /* ip_bind_v6() may return ACK or ERROR */ 6274 if (mp1 != NULL) 6275 tcp_rput_other(tcp, mp1); 6276 return; 6277 } 6278 /* Error case */ 6279 tcp->tcp_state = oldstate; 6280 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6281 6282 failed: 6283 /* return error ack and blow away saved option results if any */ 6284 if (mp != NULL) 6285 putnext(tcp->tcp_rq, mp); 6286 else { 6287 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6288 TSYSERR, ENOMEM); 6289 } 6290 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6291 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6292 } 6293 6294 /* 6295 * We need a stream q for detached closing tcp connections 6296 * to use. Our client hereby indicates that this q is the 6297 * one to use. 6298 */ 6299 static void 6300 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6301 { 6302 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6303 queue_t *q = tcp->tcp_wq; 6304 6305 mp->b_datap->db_type = M_IOCACK; 6306 iocp->ioc_count = 0; 6307 mutex_enter(&tcp_g_q_lock); 6308 if (tcp_g_q != NULL) { 6309 mutex_exit(&tcp_g_q_lock); 6310 iocp->ioc_error = EALREADY; 6311 } else { 6312 mblk_t *mp1; 6313 6314 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6315 if (mp1 == NULL) { 6316 mutex_exit(&tcp_g_q_lock); 6317 iocp->ioc_error = ENOMEM; 6318 } else { 6319 tcp_g_q = tcp->tcp_rq; 6320 mutex_exit(&tcp_g_q_lock); 6321 iocp->ioc_error = 0; 6322 iocp->ioc_rval = 0; 6323 /* 6324 * We are passing tcp_sticky_ipp as NULL 6325 * as it is not useful for tcp_default queue 6326 */ 6327 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6328 if (mp1 != NULL) 6329 tcp_rput_other(tcp, mp1); 6330 } 6331 } 6332 qreply(q, mp); 6333 } 6334 6335 /* 6336 * Our client hereby directs us to reject the connection request 6337 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6338 * of sending the appropriate RST, not an ICMP error. 6339 */ 6340 static void 6341 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6342 { 6343 tcp_t *ltcp = NULL; 6344 t_scalar_t seqnum; 6345 conn_t *connp; 6346 6347 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6348 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6349 tcp_err_ack(tcp, mp, TPROTO, 0); 6350 return; 6351 } 6352 6353 /* 6354 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6355 * when the stream is in BOUND state. Do not send a reset, 6356 * since the destination IP address is not valid, and it can 6357 * be the initialized value of all zeros (broadcast address). 6358 * 6359 * If TCP has sent down a bind request to IP and has not 6360 * received the reply, reject the request. Otherwise, TCP 6361 * will be confused. 6362 */ 6363 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6364 if (tcp->tcp_debug) { 6365 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6366 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6367 } 6368 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6369 return; 6370 } 6371 6372 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6373 6374 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6375 6376 /* 6377 * According to TPI, for non-listeners, ignore seqnum 6378 * and disconnect. 6379 * Following interpretation of -1 seqnum is historical 6380 * and implied TPI ? (TPI only states that for T_CONN_IND, 6381 * a valid seqnum should not be -1). 6382 * 6383 * -1 means disconnect everything 6384 * regardless even on a listener. 6385 */ 6386 6387 int old_state = tcp->tcp_state; 6388 6389 /* 6390 * The connection can't be on the tcp_time_wait_head list 6391 * since it is not detached. 6392 */ 6393 ASSERT(tcp->tcp_time_wait_next == NULL); 6394 ASSERT(tcp->tcp_time_wait_prev == NULL); 6395 ASSERT(tcp->tcp_time_wait_expire == 0); 6396 ltcp = NULL; 6397 /* 6398 * If it used to be a listener, check to make sure no one else 6399 * has taken the port before switching back to LISTEN state. 6400 */ 6401 if (tcp->tcp_ipversion == IPV4_VERSION) { 6402 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6403 tcp->tcp_ipha->ipha_src, 6404 tcp->tcp_connp->conn_zoneid); 6405 if (connp != NULL) 6406 ltcp = connp->conn_tcp; 6407 } else { 6408 /* Allow tcp_bound_if listeners? */ 6409 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6410 &tcp->tcp_ip6h->ip6_src, 0, 6411 tcp->tcp_connp->conn_zoneid); 6412 if (connp != NULL) 6413 ltcp = connp->conn_tcp; 6414 } 6415 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6416 tcp->tcp_state = TCPS_LISTEN; 6417 } else if (old_state > TCPS_BOUND) { 6418 tcp->tcp_conn_req_max = 0; 6419 tcp->tcp_state = TCPS_BOUND; 6420 } 6421 if (ltcp != NULL) 6422 CONN_DEC_REF(ltcp->tcp_connp); 6423 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6424 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6425 } else if (old_state == TCPS_ESTABLISHED || 6426 old_state == TCPS_CLOSE_WAIT) { 6427 BUMP_MIB(&tcp_mib, tcpEstabResets); 6428 } 6429 6430 if (tcp->tcp_fused) 6431 tcp_unfuse(tcp); 6432 6433 mutex_enter(&tcp->tcp_eager_lock); 6434 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6435 (tcp->tcp_conn_req_cnt_q != 0)) { 6436 tcp_eager_cleanup(tcp, 0); 6437 } 6438 mutex_exit(&tcp->tcp_eager_lock); 6439 6440 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6441 tcp->tcp_rnxt, TH_RST | TH_ACK); 6442 6443 tcp_reinit(tcp); 6444 6445 if (old_state >= TCPS_ESTABLISHED) { 6446 /* Send M_FLUSH according to TPI */ 6447 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6448 } 6449 mp = mi_tpi_ok_ack_alloc(mp); 6450 if (mp) 6451 putnext(tcp->tcp_rq, mp); 6452 return; 6453 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6454 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6455 return; 6456 } 6457 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6458 /* Send M_FLUSH according to TPI */ 6459 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6460 } 6461 mp = mi_tpi_ok_ack_alloc(mp); 6462 if (mp) 6463 putnext(tcp->tcp_rq, mp); 6464 } 6465 6466 /* 6467 * Diagnostic routine used to return a string associated with the tcp state. 6468 * Note that if the caller does not supply a buffer, it will use an internal 6469 * static string. This means that if multiple threads call this function at 6470 * the same time, output can be corrupted... Note also that this function 6471 * does not check the size of the supplied buffer. The caller has to make 6472 * sure that it is big enough. 6473 */ 6474 static char * 6475 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6476 { 6477 char buf1[30]; 6478 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6479 char *buf; 6480 char *cp; 6481 in6_addr_t local, remote; 6482 char local_addrbuf[INET6_ADDRSTRLEN]; 6483 char remote_addrbuf[INET6_ADDRSTRLEN]; 6484 6485 if (sup_buf != NULL) 6486 buf = sup_buf; 6487 else 6488 buf = priv_buf; 6489 6490 if (tcp == NULL) 6491 return ("NULL_TCP"); 6492 switch (tcp->tcp_state) { 6493 case TCPS_CLOSED: 6494 cp = "TCP_CLOSED"; 6495 break; 6496 case TCPS_IDLE: 6497 cp = "TCP_IDLE"; 6498 break; 6499 case TCPS_BOUND: 6500 cp = "TCP_BOUND"; 6501 break; 6502 case TCPS_LISTEN: 6503 cp = "TCP_LISTEN"; 6504 break; 6505 case TCPS_SYN_SENT: 6506 cp = "TCP_SYN_SENT"; 6507 break; 6508 case TCPS_SYN_RCVD: 6509 cp = "TCP_SYN_RCVD"; 6510 break; 6511 case TCPS_ESTABLISHED: 6512 cp = "TCP_ESTABLISHED"; 6513 break; 6514 case TCPS_CLOSE_WAIT: 6515 cp = "TCP_CLOSE_WAIT"; 6516 break; 6517 case TCPS_FIN_WAIT_1: 6518 cp = "TCP_FIN_WAIT_1"; 6519 break; 6520 case TCPS_CLOSING: 6521 cp = "TCP_CLOSING"; 6522 break; 6523 case TCPS_LAST_ACK: 6524 cp = "TCP_LAST_ACK"; 6525 break; 6526 case TCPS_FIN_WAIT_2: 6527 cp = "TCP_FIN_WAIT_2"; 6528 break; 6529 case TCPS_TIME_WAIT: 6530 cp = "TCP_TIME_WAIT"; 6531 break; 6532 default: 6533 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6534 cp = buf1; 6535 break; 6536 } 6537 switch (format) { 6538 case DISP_ADDR_AND_PORT: 6539 if (tcp->tcp_ipversion == IPV4_VERSION) { 6540 /* 6541 * Note that we use the remote address in the tcp_b 6542 * structure. This means that it will print out 6543 * the real destination address, not the next hop's 6544 * address if source routing is used. 6545 */ 6546 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6547 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6548 6549 } else { 6550 local = tcp->tcp_ip_src_v6; 6551 remote = tcp->tcp_remote_v6; 6552 } 6553 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6554 sizeof (local_addrbuf)); 6555 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6556 sizeof (remote_addrbuf)); 6557 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6558 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6559 ntohs(tcp->tcp_fport), cp); 6560 break; 6561 case DISP_PORT_ONLY: 6562 default: 6563 (void) mi_sprintf(buf, "[%u, %u] %s", 6564 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6565 break; 6566 } 6567 6568 return (buf); 6569 } 6570 6571 /* 6572 * Called via squeue to get on to eager's perimeter to send a 6573 * TH_RST. The listener wants the eager to disappear either 6574 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 6575 * being called. 6576 */ 6577 /* ARGSUSED */ 6578 void 6579 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6580 { 6581 conn_t *econnp = (conn_t *)arg; 6582 tcp_t *eager = econnp->conn_tcp; 6583 tcp_t *listener = eager->tcp_listener; 6584 6585 /* 6586 * We could be called because listener is closing. Since 6587 * the eager is using listener's queue's, its not safe. 6588 * Better use the default queue just to send the TH_RST 6589 * out. 6590 */ 6591 eager->tcp_rq = tcp_g_q; 6592 eager->tcp_wq = WR(tcp_g_q); 6593 6594 if (eager->tcp_state > TCPS_LISTEN) { 6595 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6596 eager, eager->tcp_snxt, 0, TH_RST); 6597 } 6598 6599 /* We are here because listener wants this eager gone */ 6600 if (listener != NULL) { 6601 mutex_enter(&listener->tcp_eager_lock); 6602 tcp_eager_unlink(eager); 6603 if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { 6604 /* 6605 * The eager has sent a conn_ind up to the 6606 * listener but listener decides to close 6607 * instead. We need to drop the extra ref 6608 * placed on eager in tcp_rput_data() before 6609 * sending the conn_ind to listener. 6610 */ 6611 CONN_DEC_REF(econnp); 6612 } 6613 mutex_exit(&listener->tcp_eager_lock); 6614 CONN_DEC_REF(listener->tcp_connp); 6615 } 6616 6617 if (eager->tcp_state > TCPS_BOUND) 6618 tcp_close_detached(eager); 6619 } 6620 6621 /* 6622 * Reset any eager connection hanging off this listener marked 6623 * with 'seqnum' and then reclaim it's resources. 6624 */ 6625 static boolean_t 6626 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6627 { 6628 tcp_t *eager; 6629 mblk_t *mp; 6630 6631 TCP_STAT(tcp_eager_blowoff_calls); 6632 eager = listener; 6633 mutex_enter(&listener->tcp_eager_lock); 6634 do { 6635 eager = eager->tcp_eager_next_q; 6636 if (eager == NULL) { 6637 mutex_exit(&listener->tcp_eager_lock); 6638 return (B_FALSE); 6639 } 6640 } while (eager->tcp_conn_req_seqnum != seqnum); 6641 CONN_INC_REF(eager->tcp_connp); 6642 mutex_exit(&listener->tcp_eager_lock); 6643 mp = &eager->tcp_closemp; 6644 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6645 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 6646 return (B_TRUE); 6647 } 6648 6649 /* 6650 * Reset any eager connection hanging off this listener 6651 * and then reclaim it's resources. 6652 */ 6653 static void 6654 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6655 { 6656 tcp_t *eager; 6657 mblk_t *mp; 6658 6659 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6660 6661 if (!q0_only) { 6662 /* First cleanup q */ 6663 TCP_STAT(tcp_eager_blowoff_q); 6664 eager = listener->tcp_eager_next_q; 6665 while (eager != NULL) { 6666 CONN_INC_REF(eager->tcp_connp); 6667 mp = &eager->tcp_closemp; 6668 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6669 tcp_eager_kill, eager->tcp_connp, 6670 SQTAG_TCP_EAGER_CLEANUP); 6671 eager = eager->tcp_eager_next_q; 6672 } 6673 } 6674 /* Then cleanup q0 */ 6675 TCP_STAT(tcp_eager_blowoff_q0); 6676 eager = listener->tcp_eager_next_q0; 6677 while (eager != listener) { 6678 CONN_INC_REF(eager->tcp_connp); 6679 mp = &eager->tcp_closemp; 6680 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6681 tcp_eager_kill, eager->tcp_connp, 6682 SQTAG_TCP_EAGER_CLEANUP_Q0); 6683 eager = eager->tcp_eager_next_q0; 6684 } 6685 } 6686 6687 /* 6688 * If we are an eager connection hanging off a listener that hasn't 6689 * formally accepted the connection yet, get off his list and blow off 6690 * any data that we have accumulated. 6691 */ 6692 static void 6693 tcp_eager_unlink(tcp_t *tcp) 6694 { 6695 tcp_t *listener = tcp->tcp_listener; 6696 6697 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6698 ASSERT(listener != NULL); 6699 if (tcp->tcp_eager_next_q0 != NULL) { 6700 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6701 6702 /* Remove the eager tcp from q0 */ 6703 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6704 tcp->tcp_eager_prev_q0; 6705 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6706 tcp->tcp_eager_next_q0; 6707 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6708 listener->tcp_conn_req_cnt_q0--; 6709 6710 tcp->tcp_eager_next_q0 = NULL; 6711 tcp->tcp_eager_prev_q0 = NULL; 6712 6713 if (tcp->tcp_syn_rcvd_timeout != 0) { 6714 /* we have timed out before */ 6715 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6716 listener->tcp_syn_rcvd_timeout--; 6717 } 6718 } else { 6719 tcp_t **tcpp = &listener->tcp_eager_next_q; 6720 tcp_t *prev = NULL; 6721 6722 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6723 if (tcpp[0] == tcp) { 6724 if (listener->tcp_eager_last_q == tcp) { 6725 /* 6726 * If we are unlinking the last 6727 * element on the list, adjust 6728 * tail pointer. Set tail pointer 6729 * to nil when list is empty. 6730 */ 6731 ASSERT(tcp->tcp_eager_next_q == NULL); 6732 if (listener->tcp_eager_last_q == 6733 listener->tcp_eager_next_q) { 6734 listener->tcp_eager_last_q = 6735 NULL; 6736 } else { 6737 /* 6738 * We won't get here if there 6739 * is only one eager in the 6740 * list. 6741 */ 6742 ASSERT(prev != NULL); 6743 listener->tcp_eager_last_q = 6744 prev; 6745 } 6746 } 6747 tcpp[0] = tcp->tcp_eager_next_q; 6748 tcp->tcp_eager_next_q = NULL; 6749 tcp->tcp_eager_last_q = NULL; 6750 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6751 listener->tcp_conn_req_cnt_q--; 6752 break; 6753 } 6754 prev = tcpp[0]; 6755 } 6756 } 6757 tcp->tcp_listener = NULL; 6758 } 6759 6760 /* Shorthand to generate and send TPI error acks to our client */ 6761 static void 6762 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6763 { 6764 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6765 putnext(tcp->tcp_rq, mp); 6766 } 6767 6768 /* Shorthand to generate and send TPI error acks to our client */ 6769 static void 6770 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6771 int t_error, int sys_error) 6772 { 6773 struct T_error_ack *teackp; 6774 6775 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6776 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6777 teackp = (struct T_error_ack *)mp->b_rptr; 6778 teackp->ERROR_prim = primitive; 6779 teackp->TLI_error = t_error; 6780 teackp->UNIX_error = sys_error; 6781 putnext(tcp->tcp_rq, mp); 6782 } 6783 } 6784 6785 /* 6786 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6787 * but instead the code relies on: 6788 * - the fact that the address of the array and its size never changes 6789 * - the atomic assignment of the elements of the array 6790 */ 6791 /* ARGSUSED */ 6792 static int 6793 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6794 { 6795 int i; 6796 6797 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6798 if (tcp_g_epriv_ports[i] != 0) 6799 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 6800 } 6801 return (0); 6802 } 6803 6804 /* 6805 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6806 * threads from changing it at the same time. 6807 */ 6808 /* ARGSUSED */ 6809 static int 6810 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6811 cred_t *cr) 6812 { 6813 long new_value; 6814 int i; 6815 6816 /* 6817 * Fail the request if the new value does not lie within the 6818 * port number limits. 6819 */ 6820 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6821 new_value <= 0 || new_value >= 65536) { 6822 return (EINVAL); 6823 } 6824 6825 mutex_enter(&tcp_epriv_port_lock); 6826 /* Check if the value is already in the list */ 6827 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6828 if (new_value == tcp_g_epriv_ports[i]) { 6829 mutex_exit(&tcp_epriv_port_lock); 6830 return (EEXIST); 6831 } 6832 } 6833 /* Find an empty slot */ 6834 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6835 if (tcp_g_epriv_ports[i] == 0) 6836 break; 6837 } 6838 if (i == tcp_g_num_epriv_ports) { 6839 mutex_exit(&tcp_epriv_port_lock); 6840 return (EOVERFLOW); 6841 } 6842 /* Set the new value */ 6843 tcp_g_epriv_ports[i] = (uint16_t)new_value; 6844 mutex_exit(&tcp_epriv_port_lock); 6845 return (0); 6846 } 6847 6848 /* 6849 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6850 * threads from changing it at the same time. 6851 */ 6852 /* ARGSUSED */ 6853 static int 6854 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6855 cred_t *cr) 6856 { 6857 long new_value; 6858 int i; 6859 6860 /* 6861 * Fail the request if the new value does not lie within the 6862 * port number limits. 6863 */ 6864 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 6865 new_value >= 65536) { 6866 return (EINVAL); 6867 } 6868 6869 mutex_enter(&tcp_epriv_port_lock); 6870 /* Check that the value is already in the list */ 6871 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6872 if (tcp_g_epriv_ports[i] == new_value) 6873 break; 6874 } 6875 if (i == tcp_g_num_epriv_ports) { 6876 mutex_exit(&tcp_epriv_port_lock); 6877 return (ESRCH); 6878 } 6879 /* Clear the value */ 6880 tcp_g_epriv_ports[i] = 0; 6881 mutex_exit(&tcp_epriv_port_lock); 6882 return (0); 6883 } 6884 6885 /* Return the TPI/TLI equivalent of our current tcp_state */ 6886 static int 6887 tcp_tpistate(tcp_t *tcp) 6888 { 6889 switch (tcp->tcp_state) { 6890 case TCPS_IDLE: 6891 return (TS_UNBND); 6892 case TCPS_LISTEN: 6893 /* 6894 * Return whether there are outstanding T_CONN_IND waiting 6895 * for the matching T_CONN_RES. Therefore don't count q0. 6896 */ 6897 if (tcp->tcp_conn_req_cnt_q > 0) 6898 return (TS_WRES_CIND); 6899 else 6900 return (TS_IDLE); 6901 case TCPS_BOUND: 6902 return (TS_IDLE); 6903 case TCPS_SYN_SENT: 6904 return (TS_WCON_CREQ); 6905 case TCPS_SYN_RCVD: 6906 /* 6907 * Note: assumption: this has to the active open SYN_RCVD. 6908 * The passive instance is detached in SYN_RCVD stage of 6909 * incoming connection processing so we cannot get request 6910 * for T_info_ack on it. 6911 */ 6912 return (TS_WACK_CRES); 6913 case TCPS_ESTABLISHED: 6914 return (TS_DATA_XFER); 6915 case TCPS_CLOSE_WAIT: 6916 return (TS_WREQ_ORDREL); 6917 case TCPS_FIN_WAIT_1: 6918 return (TS_WIND_ORDREL); 6919 case TCPS_FIN_WAIT_2: 6920 return (TS_WIND_ORDREL); 6921 6922 case TCPS_CLOSING: 6923 case TCPS_LAST_ACK: 6924 case TCPS_TIME_WAIT: 6925 case TCPS_CLOSED: 6926 /* 6927 * Following TS_WACK_DREQ7 is a rendition of "not 6928 * yet TS_IDLE" TPI state. There is no best match to any 6929 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6930 * choose a value chosen that will map to TLI/XTI level 6931 * state of TSTATECHNG (state is process of changing) which 6932 * captures what this dummy state represents. 6933 */ 6934 return (TS_WACK_DREQ7); 6935 default: 6936 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6937 tcp->tcp_state, tcp_display(tcp, NULL, 6938 DISP_PORT_ONLY)); 6939 return (TS_UNBND); 6940 } 6941 } 6942 6943 static void 6944 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6945 { 6946 if (tcp->tcp_family == AF_INET6) 6947 *tia = tcp_g_t_info_ack_v6; 6948 else 6949 *tia = tcp_g_t_info_ack; 6950 tia->CURRENT_state = tcp_tpistate(tcp); 6951 tia->OPT_size = tcp_max_optsize; 6952 if (tcp->tcp_mss == 0) { 6953 /* Not yet set - tcp_open does not set mss */ 6954 if (tcp->tcp_ipversion == IPV4_VERSION) 6955 tia->TIDU_size = tcp_mss_def_ipv4; 6956 else 6957 tia->TIDU_size = tcp_mss_def_ipv6; 6958 } else { 6959 tia->TIDU_size = tcp->tcp_mss; 6960 } 6961 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6962 } 6963 6964 /* 6965 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6966 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6967 * tcp_g_t_info_ack. The current state of the stream is copied from 6968 * tcp_state. 6969 */ 6970 static void 6971 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6972 { 6973 t_uscalar_t cap_bits1; 6974 struct T_capability_ack *tcap; 6975 6976 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6977 freemsg(mp); 6978 return; 6979 } 6980 6981 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6982 6983 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6984 mp->b_datap->db_type, T_CAPABILITY_ACK); 6985 if (mp == NULL) 6986 return; 6987 6988 tcap = (struct T_capability_ack *)mp->b_rptr; 6989 tcap->CAP_bits1 = 0; 6990 6991 if (cap_bits1 & TC1_INFO) { 6992 tcp_copy_info(&tcap->INFO_ack, tcp); 6993 tcap->CAP_bits1 |= TC1_INFO; 6994 } 6995 6996 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6997 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6998 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6999 } 7000 7001 putnext(tcp->tcp_rq, mp); 7002 } 7003 7004 /* 7005 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7006 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7007 * The current state of the stream is copied from tcp_state. 7008 */ 7009 static void 7010 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7011 { 7012 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7013 T_INFO_ACK); 7014 if (!mp) { 7015 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7016 return; 7017 } 7018 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7019 putnext(tcp->tcp_rq, mp); 7020 } 7021 7022 /* Respond to the TPI addr request */ 7023 static void 7024 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7025 { 7026 sin_t *sin; 7027 mblk_t *ackmp; 7028 struct T_addr_ack *taa; 7029 7030 /* Make it large enough for worst case */ 7031 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7032 2 * sizeof (sin6_t), 1); 7033 if (ackmp == NULL) { 7034 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7035 return; 7036 } 7037 7038 if (tcp->tcp_ipversion == IPV6_VERSION) { 7039 tcp_addr_req_ipv6(tcp, ackmp); 7040 return; 7041 } 7042 taa = (struct T_addr_ack *)ackmp->b_rptr; 7043 7044 bzero(taa, sizeof (struct T_addr_ack)); 7045 ackmp->b_wptr = (uchar_t *)&taa[1]; 7046 7047 taa->PRIM_type = T_ADDR_ACK; 7048 ackmp->b_datap->db_type = M_PCPROTO; 7049 7050 /* 7051 * Note: Following code assumes 32 bit alignment of basic 7052 * data structures like sin_t and struct T_addr_ack. 7053 */ 7054 if (tcp->tcp_state >= TCPS_BOUND) { 7055 /* 7056 * Fill in local address 7057 */ 7058 taa->LOCADDR_length = sizeof (sin_t); 7059 taa->LOCADDR_offset = sizeof (*taa); 7060 7061 sin = (sin_t *)&taa[1]; 7062 7063 /* Fill zeroes and then intialize non-zero fields */ 7064 *sin = sin_null; 7065 7066 sin->sin_family = AF_INET; 7067 7068 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7069 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7070 7071 ackmp->b_wptr = (uchar_t *)&sin[1]; 7072 7073 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7074 /* 7075 * Fill in Remote address 7076 */ 7077 taa->REMADDR_length = sizeof (sin_t); 7078 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7079 taa->LOCADDR_length); 7080 7081 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7082 *sin = sin_null; 7083 sin->sin_family = AF_INET; 7084 sin->sin_addr.s_addr = tcp->tcp_remote; 7085 sin->sin_port = tcp->tcp_fport; 7086 7087 ackmp->b_wptr = (uchar_t *)&sin[1]; 7088 } 7089 } 7090 putnext(tcp->tcp_rq, ackmp); 7091 } 7092 7093 /* Assumes that tcp_addr_req gets enough space and alignment */ 7094 static void 7095 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7096 { 7097 sin6_t *sin6; 7098 struct T_addr_ack *taa; 7099 7100 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7101 ASSERT(OK_32PTR(ackmp->b_rptr)); 7102 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7103 2 * sizeof (sin6_t)); 7104 7105 taa = (struct T_addr_ack *)ackmp->b_rptr; 7106 7107 bzero(taa, sizeof (struct T_addr_ack)); 7108 ackmp->b_wptr = (uchar_t *)&taa[1]; 7109 7110 taa->PRIM_type = T_ADDR_ACK; 7111 ackmp->b_datap->db_type = M_PCPROTO; 7112 7113 /* 7114 * Note: Following code assumes 32 bit alignment of basic 7115 * data structures like sin6_t and struct T_addr_ack. 7116 */ 7117 if (tcp->tcp_state >= TCPS_BOUND) { 7118 /* 7119 * Fill in local address 7120 */ 7121 taa->LOCADDR_length = sizeof (sin6_t); 7122 taa->LOCADDR_offset = sizeof (*taa); 7123 7124 sin6 = (sin6_t *)&taa[1]; 7125 *sin6 = sin6_null; 7126 7127 sin6->sin6_family = AF_INET6; 7128 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7129 sin6->sin6_port = tcp->tcp_lport; 7130 7131 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7132 7133 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7134 /* 7135 * Fill in Remote address 7136 */ 7137 taa->REMADDR_length = sizeof (sin6_t); 7138 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7139 taa->LOCADDR_length); 7140 7141 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7142 *sin6 = sin6_null; 7143 sin6->sin6_family = AF_INET6; 7144 sin6->sin6_flowinfo = 7145 tcp->tcp_ip6h->ip6_vcf & 7146 ~IPV6_VERS_AND_FLOW_MASK; 7147 sin6->sin6_addr = tcp->tcp_remote_v6; 7148 sin6->sin6_port = tcp->tcp_fport; 7149 7150 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7151 } 7152 } 7153 putnext(tcp->tcp_rq, ackmp); 7154 } 7155 7156 /* 7157 * Handle reinitialization of a tcp structure. 7158 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7159 */ 7160 static void 7161 tcp_reinit(tcp_t *tcp) 7162 { 7163 mblk_t *mp; 7164 int err; 7165 7166 TCP_STAT(tcp_reinit_calls); 7167 7168 /* tcp_reinit should never be called for detached tcp_t's */ 7169 ASSERT(tcp->tcp_listener == NULL); 7170 ASSERT((tcp->tcp_family == AF_INET && 7171 tcp->tcp_ipversion == IPV4_VERSION) || 7172 (tcp->tcp_family == AF_INET6 && 7173 (tcp->tcp_ipversion == IPV4_VERSION || 7174 tcp->tcp_ipversion == IPV6_VERSION))); 7175 7176 /* Cancel outstanding timers */ 7177 tcp_timers_stop(tcp); 7178 7179 /* 7180 * Reset everything in the state vector, after updating global 7181 * MIB data from instance counters. 7182 */ 7183 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 7184 tcp->tcp_ibsegs = 0; 7185 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 7186 tcp->tcp_obsegs = 0; 7187 7188 tcp_close_mpp(&tcp->tcp_xmit_head); 7189 if (tcp->tcp_snd_zcopy_aware) 7190 tcp_zcopy_notify(tcp); 7191 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7192 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7193 if (tcp->tcp_flow_stopped && 7194 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7195 tcp_clrqfull(tcp); 7196 } 7197 tcp_close_mpp(&tcp->tcp_reass_head); 7198 tcp->tcp_reass_tail = NULL; 7199 if (tcp->tcp_rcv_list != NULL) { 7200 /* Free b_next chain */ 7201 tcp_close_mpp(&tcp->tcp_rcv_list); 7202 tcp->tcp_rcv_last_head = NULL; 7203 tcp->tcp_rcv_last_tail = NULL; 7204 tcp->tcp_rcv_cnt = 0; 7205 } 7206 tcp->tcp_rcv_last_tail = NULL; 7207 7208 if ((mp = tcp->tcp_urp_mp) != NULL) { 7209 freemsg(mp); 7210 tcp->tcp_urp_mp = NULL; 7211 } 7212 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7213 freemsg(mp); 7214 tcp->tcp_urp_mark_mp = NULL; 7215 } 7216 if (tcp->tcp_fused_sigurg_mp != NULL) { 7217 freeb(tcp->tcp_fused_sigurg_mp); 7218 tcp->tcp_fused_sigurg_mp = NULL; 7219 } 7220 7221 /* 7222 * Following is a union with two members which are 7223 * identical types and size so the following cleanup 7224 * is enough. 7225 */ 7226 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7227 7228 CL_INET_DISCONNECT(tcp); 7229 7230 /* 7231 * The connection can't be on the tcp_time_wait_head list 7232 * since it is not detached. 7233 */ 7234 ASSERT(tcp->tcp_time_wait_next == NULL); 7235 ASSERT(tcp->tcp_time_wait_prev == NULL); 7236 ASSERT(tcp->tcp_time_wait_expire == 0); 7237 7238 if (tcp->tcp_kssl_pending) { 7239 tcp->tcp_kssl_pending = B_FALSE; 7240 7241 /* Don't reset if the initialized by bind. */ 7242 if (tcp->tcp_kssl_ent != NULL) { 7243 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7244 KSSL_NO_PROXY); 7245 } 7246 } 7247 if (tcp->tcp_kssl_ctx != NULL) { 7248 kssl_release_ctx(tcp->tcp_kssl_ctx); 7249 tcp->tcp_kssl_ctx = NULL; 7250 } 7251 7252 /* 7253 * Reset/preserve other values 7254 */ 7255 tcp_reinit_values(tcp); 7256 ipcl_hash_remove(tcp->tcp_connp); 7257 conn_delete_ire(tcp->tcp_connp, NULL); 7258 7259 if (tcp->tcp_conn_req_max != 0) { 7260 /* 7261 * This is the case when a TLI program uses the same 7262 * transport end point to accept a connection. This 7263 * makes the TCP both a listener and acceptor. When 7264 * this connection is closed, we need to set the state 7265 * back to TCPS_LISTEN. Make sure that the eager list 7266 * is reinitialized. 7267 * 7268 * Note that this stream is still bound to the four 7269 * tuples of the previous connection in IP. If a new 7270 * SYN with different foreign address comes in, IP will 7271 * not find it and will send it to the global queue. In 7272 * the global queue, TCP will do a tcp_lookup_listener() 7273 * to find this stream. This works because this stream 7274 * is only removed from connected hash. 7275 * 7276 */ 7277 tcp->tcp_state = TCPS_LISTEN; 7278 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7279 tcp->tcp_connp->conn_recv = tcp_conn_request; 7280 if (tcp->tcp_family == AF_INET6) { 7281 ASSERT(tcp->tcp_connp->conn_af_isv6); 7282 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7283 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7284 } else { 7285 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7286 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7287 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7288 } 7289 } else { 7290 tcp->tcp_state = TCPS_BOUND; 7291 } 7292 7293 /* 7294 * Initialize to default values 7295 * Can't fail since enough header template space already allocated 7296 * at open(). 7297 */ 7298 err = tcp_init_values(tcp); 7299 ASSERT(err == 0); 7300 /* Restore state in tcp_tcph */ 7301 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7302 if (tcp->tcp_ipversion == IPV4_VERSION) 7303 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7304 else 7305 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7306 /* 7307 * Copy of the src addr. in tcp_t is needed in tcp_t 7308 * since the lookup funcs can only lookup on tcp_t 7309 */ 7310 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7311 7312 ASSERT(tcp->tcp_ptpbhn != NULL); 7313 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7314 tcp->tcp_rwnd = tcp_recv_hiwat; 7315 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7316 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7317 } 7318 7319 /* 7320 * Force values to zero that need be zero. 7321 * Do not touch values asociated with the BOUND or LISTEN state 7322 * since the connection will end up in that state after the reinit. 7323 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7324 * structure! 7325 */ 7326 static void 7327 tcp_reinit_values(tcp) 7328 tcp_t *tcp; 7329 { 7330 #ifndef lint 7331 #define DONTCARE(x) 7332 #define PRESERVE(x) 7333 #else 7334 #define DONTCARE(x) ((x) = (x)) 7335 #define PRESERVE(x) ((x) = (x)) 7336 #endif /* lint */ 7337 7338 PRESERVE(tcp->tcp_bind_hash); 7339 PRESERVE(tcp->tcp_ptpbhn); 7340 PRESERVE(tcp->tcp_acceptor_hash); 7341 PRESERVE(tcp->tcp_ptpahn); 7342 7343 /* Should be ASSERT NULL on these with new code! */ 7344 ASSERT(tcp->tcp_time_wait_next == NULL); 7345 ASSERT(tcp->tcp_time_wait_prev == NULL); 7346 ASSERT(tcp->tcp_time_wait_expire == 0); 7347 PRESERVE(tcp->tcp_state); 7348 PRESERVE(tcp->tcp_rq); 7349 PRESERVE(tcp->tcp_wq); 7350 7351 ASSERT(tcp->tcp_xmit_head == NULL); 7352 ASSERT(tcp->tcp_xmit_last == NULL); 7353 ASSERT(tcp->tcp_unsent == 0); 7354 ASSERT(tcp->tcp_xmit_tail == NULL); 7355 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7356 7357 tcp->tcp_snxt = 0; /* Displayed in mib */ 7358 tcp->tcp_suna = 0; /* Displayed in mib */ 7359 tcp->tcp_swnd = 0; 7360 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7361 7362 ASSERT(tcp->tcp_ibsegs == 0); 7363 ASSERT(tcp->tcp_obsegs == 0); 7364 7365 if (tcp->tcp_iphc != NULL) { 7366 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7367 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7368 } 7369 7370 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7371 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7372 DONTCARE(tcp->tcp_ipha); 7373 DONTCARE(tcp->tcp_ip6h); 7374 DONTCARE(tcp->tcp_ip_hdr_len); 7375 DONTCARE(tcp->tcp_tcph); 7376 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7377 tcp->tcp_valid_bits = 0; 7378 7379 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7380 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7381 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7382 tcp->tcp_last_rcv_lbolt = 0; 7383 7384 tcp->tcp_init_cwnd = 0; 7385 7386 tcp->tcp_urp_last_valid = 0; 7387 tcp->tcp_hard_binding = 0; 7388 tcp->tcp_hard_bound = 0; 7389 PRESERVE(tcp->tcp_cred); 7390 PRESERVE(tcp->tcp_cpid); 7391 PRESERVE(tcp->tcp_exclbind); 7392 7393 tcp->tcp_fin_acked = 0; 7394 tcp->tcp_fin_rcvd = 0; 7395 tcp->tcp_fin_sent = 0; 7396 tcp->tcp_ordrel_done = 0; 7397 7398 tcp->tcp_debug = 0; 7399 tcp->tcp_dontroute = 0; 7400 tcp->tcp_broadcast = 0; 7401 7402 tcp->tcp_useloopback = 0; 7403 tcp->tcp_reuseaddr = 0; 7404 tcp->tcp_oobinline = 0; 7405 tcp->tcp_dgram_errind = 0; 7406 7407 tcp->tcp_detached = 0; 7408 tcp->tcp_bind_pending = 0; 7409 tcp->tcp_unbind_pending = 0; 7410 tcp->tcp_deferred_clean_death = 0; 7411 7412 tcp->tcp_snd_ws_ok = B_FALSE; 7413 tcp->tcp_snd_ts_ok = B_FALSE; 7414 tcp->tcp_linger = 0; 7415 tcp->tcp_ka_enabled = 0; 7416 tcp->tcp_zero_win_probe = 0; 7417 7418 tcp->tcp_loopback = 0; 7419 tcp->tcp_localnet = 0; 7420 tcp->tcp_syn_defense = 0; 7421 tcp->tcp_set_timer = 0; 7422 7423 tcp->tcp_active_open = 0; 7424 ASSERT(tcp->tcp_timeout == B_FALSE); 7425 tcp->tcp_rexmit = B_FALSE; 7426 tcp->tcp_xmit_zc_clean = B_FALSE; 7427 7428 tcp->tcp_snd_sack_ok = B_FALSE; 7429 PRESERVE(tcp->tcp_recvdstaddr); 7430 tcp->tcp_hwcksum = B_FALSE; 7431 7432 tcp->tcp_ire_ill_check_done = B_FALSE; 7433 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7434 7435 tcp->tcp_mdt = B_FALSE; 7436 tcp->tcp_mdt_hdr_head = 0; 7437 tcp->tcp_mdt_hdr_tail = 0; 7438 7439 tcp->tcp_conn_def_q0 = 0; 7440 tcp->tcp_ip_forward_progress = B_FALSE; 7441 tcp->tcp_anon_priv_bind = 0; 7442 tcp->tcp_ecn_ok = B_FALSE; 7443 7444 tcp->tcp_cwr = B_FALSE; 7445 tcp->tcp_ecn_echo_on = B_FALSE; 7446 7447 if (tcp->tcp_sack_info != NULL) { 7448 if (tcp->tcp_notsack_list != NULL) { 7449 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7450 } 7451 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7452 tcp->tcp_sack_info = NULL; 7453 } 7454 7455 tcp->tcp_rcv_ws = 0; 7456 tcp->tcp_snd_ws = 0; 7457 tcp->tcp_ts_recent = 0; 7458 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7459 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7460 tcp->tcp_if_mtu = 0; 7461 7462 ASSERT(tcp->tcp_reass_head == NULL); 7463 ASSERT(tcp->tcp_reass_tail == NULL); 7464 7465 tcp->tcp_cwnd_cnt = 0; 7466 7467 ASSERT(tcp->tcp_rcv_list == NULL); 7468 ASSERT(tcp->tcp_rcv_last_head == NULL); 7469 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7470 ASSERT(tcp->tcp_rcv_cnt == 0); 7471 7472 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7473 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7474 tcp->tcp_csuna = 0; 7475 7476 tcp->tcp_rto = 0; /* Displayed in MIB */ 7477 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7478 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7479 tcp->tcp_rtt_update = 0; 7480 7481 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7482 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7483 7484 tcp->tcp_rack = 0; /* Displayed in mib */ 7485 tcp->tcp_rack_cnt = 0; 7486 tcp->tcp_rack_cur_max = 0; 7487 tcp->tcp_rack_abs_max = 0; 7488 7489 tcp->tcp_max_swnd = 0; 7490 7491 ASSERT(tcp->tcp_listener == NULL); 7492 7493 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7494 7495 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7496 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7497 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7498 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7499 7500 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7501 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7502 PRESERVE(tcp->tcp_conn_req_max); 7503 PRESERVE(tcp->tcp_conn_req_seqnum); 7504 7505 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7506 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7507 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7508 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7509 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7510 7511 tcp->tcp_lingertime = 0; 7512 7513 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7514 ASSERT(tcp->tcp_urp_mp == NULL); 7515 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7516 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7517 7518 ASSERT(tcp->tcp_eager_next_q == NULL); 7519 ASSERT(tcp->tcp_eager_last_q == NULL); 7520 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7521 tcp->tcp_eager_prev_q0 == NULL) || 7522 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7523 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7524 7525 tcp->tcp_client_errno = 0; 7526 7527 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7528 7529 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7530 7531 PRESERVE(tcp->tcp_bound_source_v6); 7532 tcp->tcp_last_sent_len = 0; 7533 tcp->tcp_dupack_cnt = 0; 7534 7535 tcp->tcp_fport = 0; /* Displayed in MIB */ 7536 PRESERVE(tcp->tcp_lport); 7537 7538 PRESERVE(tcp->tcp_acceptor_lockp); 7539 7540 ASSERT(tcp->tcp_ordrelid == 0); 7541 PRESERVE(tcp->tcp_acceptor_id); 7542 DONTCARE(tcp->tcp_ipsec_overhead); 7543 7544 /* 7545 * If tcp_tracing flag is ON (i.e. We have a trace buffer 7546 * in tcp structure and now tracing), Re-initialize all 7547 * members of tcp_traceinfo. 7548 */ 7549 if (tcp->tcp_tracebuf != NULL) { 7550 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 7551 } 7552 7553 PRESERVE(tcp->tcp_family); 7554 if (tcp->tcp_family == AF_INET6) { 7555 tcp->tcp_ipversion = IPV6_VERSION; 7556 tcp->tcp_mss = tcp_mss_def_ipv6; 7557 } else { 7558 tcp->tcp_ipversion = IPV4_VERSION; 7559 tcp->tcp_mss = tcp_mss_def_ipv4; 7560 } 7561 7562 tcp->tcp_bound_if = 0; 7563 tcp->tcp_ipv6_recvancillary = 0; 7564 tcp->tcp_recvifindex = 0; 7565 tcp->tcp_recvhops = 0; 7566 tcp->tcp_closed = 0; 7567 tcp->tcp_cleandeathtag = 0; 7568 if (tcp->tcp_hopopts != NULL) { 7569 mi_free(tcp->tcp_hopopts); 7570 tcp->tcp_hopopts = NULL; 7571 tcp->tcp_hopoptslen = 0; 7572 } 7573 ASSERT(tcp->tcp_hopoptslen == 0); 7574 if (tcp->tcp_dstopts != NULL) { 7575 mi_free(tcp->tcp_dstopts); 7576 tcp->tcp_dstopts = NULL; 7577 tcp->tcp_dstoptslen = 0; 7578 } 7579 ASSERT(tcp->tcp_dstoptslen == 0); 7580 if (tcp->tcp_rtdstopts != NULL) { 7581 mi_free(tcp->tcp_rtdstopts); 7582 tcp->tcp_rtdstopts = NULL; 7583 tcp->tcp_rtdstoptslen = 0; 7584 } 7585 ASSERT(tcp->tcp_rtdstoptslen == 0); 7586 if (tcp->tcp_rthdr != NULL) { 7587 mi_free(tcp->tcp_rthdr); 7588 tcp->tcp_rthdr = NULL; 7589 tcp->tcp_rthdrlen = 0; 7590 } 7591 ASSERT(tcp->tcp_rthdrlen == 0); 7592 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7593 7594 /* Reset fusion-related fields */ 7595 tcp->tcp_fused = B_FALSE; 7596 tcp->tcp_unfusable = B_FALSE; 7597 tcp->tcp_fused_sigurg = B_FALSE; 7598 tcp->tcp_direct_sockfs = B_FALSE; 7599 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7600 tcp->tcp_loopback_peer = NULL; 7601 tcp->tcp_fuse_rcv_hiwater = 0; 7602 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7603 tcp->tcp_fuse_rcv_unread_cnt = 0; 7604 7605 tcp->tcp_in_ack_unsent = 0; 7606 tcp->tcp_cork = B_FALSE; 7607 7608 PRESERVE(tcp->tcp_squeue_bytes); 7609 7610 ASSERT(tcp->tcp_kssl_ctx == NULL); 7611 ASSERT(!tcp->tcp_kssl_pending); 7612 PRESERVE(tcp->tcp_kssl_ent); 7613 7614 #undef DONTCARE 7615 #undef PRESERVE 7616 } 7617 7618 /* 7619 * Allocate necessary resources and initialize state vector. 7620 * Guaranteed not to fail so that when an error is returned, 7621 * the caller doesn't need to do any additional cleanup. 7622 */ 7623 int 7624 tcp_init(tcp_t *tcp, queue_t *q) 7625 { 7626 int err; 7627 7628 tcp->tcp_rq = q; 7629 tcp->tcp_wq = WR(q); 7630 tcp->tcp_state = TCPS_IDLE; 7631 if ((err = tcp_init_values(tcp)) != 0) 7632 tcp_timers_stop(tcp); 7633 return (err); 7634 } 7635 7636 static int 7637 tcp_init_values(tcp_t *tcp) 7638 { 7639 int err; 7640 7641 ASSERT((tcp->tcp_family == AF_INET && 7642 tcp->tcp_ipversion == IPV4_VERSION) || 7643 (tcp->tcp_family == AF_INET6 && 7644 (tcp->tcp_ipversion == IPV4_VERSION || 7645 tcp->tcp_ipversion == IPV6_VERSION))); 7646 7647 /* 7648 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7649 * will be close to tcp_rexmit_interval_initial. By doing this, we 7650 * allow the algorithm to adjust slowly to large fluctuations of RTT 7651 * during first few transmissions of a connection as seen in slow 7652 * links. 7653 */ 7654 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 7655 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 7656 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7657 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7658 tcp_conn_grace_period; 7659 if (tcp->tcp_rto < tcp_rexmit_interval_min) 7660 tcp->tcp_rto = tcp_rexmit_interval_min; 7661 tcp->tcp_timer_backoff = 0; 7662 tcp->tcp_ms_we_have_waited = 0; 7663 tcp->tcp_last_recv_time = lbolt; 7664 tcp->tcp_cwnd_max = tcp_cwnd_max_; 7665 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7666 7667 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 7668 7669 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 7670 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 7671 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 7672 /* 7673 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7674 * passive open. 7675 */ 7676 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 7677 7678 tcp->tcp_naglim = tcp_naglim_def; 7679 7680 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7681 7682 tcp->tcp_mdt_hdr_head = 0; 7683 tcp->tcp_mdt_hdr_tail = 0; 7684 7685 /* Reset fusion-related fields */ 7686 tcp->tcp_fused = B_FALSE; 7687 tcp->tcp_unfusable = B_FALSE; 7688 tcp->tcp_fused_sigurg = B_FALSE; 7689 tcp->tcp_direct_sockfs = B_FALSE; 7690 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7691 tcp->tcp_loopback_peer = NULL; 7692 tcp->tcp_fuse_rcv_hiwater = 0; 7693 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7694 tcp->tcp_fuse_rcv_unread_cnt = 0; 7695 7696 /* Initialize the header template */ 7697 if (tcp->tcp_ipversion == IPV4_VERSION) { 7698 err = tcp_header_init_ipv4(tcp); 7699 } else { 7700 err = tcp_header_init_ipv6(tcp); 7701 } 7702 if (err) 7703 return (err); 7704 7705 /* 7706 * Init the window scale to the max so tcp_rwnd_set() won't pare 7707 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7708 */ 7709 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7710 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 7711 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 7712 7713 tcp->tcp_cork = B_FALSE; 7714 /* 7715 * Init the tcp_debug option. This value determines whether TCP 7716 * calls strlog() to print out debug messages. Doing this 7717 * initialization here means that this value is not inherited thru 7718 * tcp_reinit(). 7719 */ 7720 tcp->tcp_debug = tcp_dbg; 7721 7722 tcp->tcp_ka_interval = tcp_keepalive_interval; 7723 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 7724 7725 return (0); 7726 } 7727 7728 /* 7729 * Initialize the IPv4 header. Loses any record of any IP options. 7730 */ 7731 static int 7732 tcp_header_init_ipv4(tcp_t *tcp) 7733 { 7734 tcph_t *tcph; 7735 uint32_t sum; 7736 7737 /* 7738 * This is a simple initialization. If there's 7739 * already a template, it should never be too small, 7740 * so reuse it. Otherwise, allocate space for the new one. 7741 */ 7742 if (tcp->tcp_iphc == NULL) { 7743 ASSERT(tcp->tcp_iphc_len == 0); 7744 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7745 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7746 if (tcp->tcp_iphc == NULL) { 7747 tcp->tcp_iphc_len = 0; 7748 return (ENOMEM); 7749 } 7750 } 7751 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7752 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 7753 tcp->tcp_ip6h = NULL; 7754 tcp->tcp_ipversion = IPV4_VERSION; 7755 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 7756 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 7757 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 7758 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 7759 tcp->tcp_ipha->ipha_version_and_hdr_length 7760 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 7761 tcp->tcp_ipha->ipha_ident = 0; 7762 7763 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 7764 tcp->tcp_tos = 0; 7765 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7766 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 7767 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 7768 7769 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 7770 tcp->tcp_tcph = tcph; 7771 tcph->th_offset_and_rsrvd[0] = (5 << 4); 7772 /* 7773 * IP wants our header length in the checksum field to 7774 * allow it to perform a single pseudo-header+checksum 7775 * calculation on behalf of TCP. 7776 * Include the adjustment for a source route once IP_OPTIONS is set. 7777 */ 7778 sum = sizeof (tcph_t) + tcp->tcp_sum; 7779 sum = (sum >> 16) + (sum & 0xFFFF); 7780 U16_TO_ABE16(sum, tcph->th_sum); 7781 return (0); 7782 } 7783 7784 /* 7785 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 7786 */ 7787 static int 7788 tcp_header_init_ipv6(tcp_t *tcp) 7789 { 7790 tcph_t *tcph; 7791 uint32_t sum; 7792 7793 /* 7794 * This is a simple initialization. If there's 7795 * already a template, it should never be too small, 7796 * so reuse it. Otherwise, allocate space for the new one. 7797 * Ensure that there is enough space to "downgrade" the tcp_t 7798 * to an IPv4 tcp_t. This requires having space for a full load 7799 * of IPv4 options, as well as a full load of TCP options 7800 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 7801 * than a v6 header and a TCP header with a full load of TCP options 7802 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 7803 * We want to avoid reallocation in the "downgraded" case when 7804 * processing outbound IPv4 options. 7805 */ 7806 if (tcp->tcp_iphc == NULL) { 7807 ASSERT(tcp->tcp_iphc_len == 0); 7808 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7809 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7810 if (tcp->tcp_iphc == NULL) { 7811 tcp->tcp_iphc_len = 0; 7812 return (ENOMEM); 7813 } 7814 } 7815 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7816 tcp->tcp_ipversion = IPV6_VERSION; 7817 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 7818 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 7819 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 7820 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 7821 tcp->tcp_ipha = NULL; 7822 7823 /* Initialize the header template */ 7824 7825 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7826 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 7827 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 7828 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 7829 7830 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 7831 tcp->tcp_tcph = tcph; 7832 tcph->th_offset_and_rsrvd[0] = (5 << 4); 7833 /* 7834 * IP wants our header length in the checksum field to 7835 * allow it to perform a single psuedo-header+checksum 7836 * calculation on behalf of TCP. 7837 * Include the adjustment for a source route when IPV6_RTHDR is set. 7838 */ 7839 sum = sizeof (tcph_t) + tcp->tcp_sum; 7840 sum = (sum >> 16) + (sum & 0xFFFF); 7841 U16_TO_ABE16(sum, tcph->th_sum); 7842 return (0); 7843 } 7844 7845 /* At minimum we need 4 bytes in the TCP header for the lookup */ 7846 #define ICMP_MIN_TCP_HDR 4 7847 7848 /* 7849 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 7850 * passed up by IP. The message is always received on the correct tcp_t. 7851 * Assumes that IP has pulled up everything up to and including the ICMP header. 7852 */ 7853 void 7854 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 7855 { 7856 icmph_t *icmph; 7857 ipha_t *ipha; 7858 int iph_hdr_length; 7859 tcph_t *tcph; 7860 boolean_t ipsec_mctl = B_FALSE; 7861 boolean_t secure; 7862 mblk_t *first_mp = mp; 7863 uint32_t new_mss; 7864 uint32_t ratio; 7865 size_t mp_size = MBLKL(mp); 7866 uint32_t seg_ack; 7867 uint32_t seg_seq; 7868 7869 /* Assume IP provides aligned packets - otherwise toss */ 7870 if (!OK_32PTR(mp->b_rptr)) { 7871 freemsg(mp); 7872 return; 7873 } 7874 7875 /* 7876 * Since ICMP errors are normal data marked with M_CTL when sent 7877 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 7878 * packets starting with an ipsec_info_t, see ipsec_info.h. 7879 */ 7880 if ((mp_size == sizeof (ipsec_info_t)) && 7881 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 7882 ASSERT(mp->b_cont != NULL); 7883 mp = mp->b_cont; 7884 /* IP should have done this */ 7885 ASSERT(OK_32PTR(mp->b_rptr)); 7886 mp_size = MBLKL(mp); 7887 ipsec_mctl = B_TRUE; 7888 } 7889 7890 /* 7891 * Verify that we have a complete outer IP header. If not, drop it. 7892 */ 7893 if (mp_size < sizeof (ipha_t)) { 7894 noticmpv4: 7895 freemsg(first_mp); 7896 return; 7897 } 7898 7899 ipha = (ipha_t *)mp->b_rptr; 7900 /* 7901 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 7902 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 7903 */ 7904 switch (IPH_HDR_VERSION(ipha)) { 7905 case IPV6_VERSION: 7906 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 7907 return; 7908 case IPV4_VERSION: 7909 break; 7910 default: 7911 goto noticmpv4; 7912 } 7913 7914 /* Skip past the outer IP and ICMP headers */ 7915 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7916 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 7917 /* 7918 * If we don't have the correct outer IP header length or if the ULP 7919 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 7920 * send it upstream. 7921 */ 7922 if (iph_hdr_length < sizeof (ipha_t) || 7923 ipha->ipha_protocol != IPPROTO_ICMP || 7924 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 7925 goto noticmpv4; 7926 } 7927 ipha = (ipha_t *)&icmph[1]; 7928 7929 /* Skip past the inner IP and find the ULP header */ 7930 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7931 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 7932 /* 7933 * If we don't have the correct inner IP header length or if the ULP 7934 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 7935 * bytes of TCP header, drop it. 7936 */ 7937 if (iph_hdr_length < sizeof (ipha_t) || 7938 ipha->ipha_protocol != IPPROTO_TCP || 7939 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 7940 goto noticmpv4; 7941 } 7942 7943 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 7944 if (ipsec_mctl) { 7945 secure = ipsec_in_is_secure(first_mp); 7946 } else { 7947 secure = B_FALSE; 7948 } 7949 if (secure) { 7950 /* 7951 * If we are willing to accept this in clear 7952 * we don't have to verify policy. 7953 */ 7954 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 7955 if (!tcp_check_policy(tcp, first_mp, 7956 ipha, NULL, secure, ipsec_mctl)) { 7957 /* 7958 * tcp_check_policy called 7959 * ip_drop_packet() on failure. 7960 */ 7961 return; 7962 } 7963 } 7964 } 7965 } else if (ipsec_mctl) { 7966 /* 7967 * This is a hard_bound connection. IP has already 7968 * verified policy. We don't have to do it again. 7969 */ 7970 freeb(first_mp); 7971 first_mp = mp; 7972 ipsec_mctl = B_FALSE; 7973 } 7974 7975 seg_ack = ABE32_TO_U32(tcph->th_ack); 7976 seg_seq = ABE32_TO_U32(tcph->th_seq); 7977 /* 7978 * TCP SHOULD check that the TCP sequence number contained in 7979 * payload of the ICMP error message is within the range 7980 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 7981 */ 7982 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 7983 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 7984 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 7985 /* 7986 * If the ICMP message is bogus, should we kill the 7987 * connection, or should we just drop the bogus ICMP 7988 * message? It would probably make more sense to just 7989 * drop the message so that if this one managed to get 7990 * in, the real connection should not suffer. 7991 */ 7992 goto noticmpv4; 7993 } 7994 7995 switch (icmph->icmph_type) { 7996 case ICMP_DEST_UNREACHABLE: 7997 switch (icmph->icmph_code) { 7998 case ICMP_FRAGMENTATION_NEEDED: 7999 /* 8000 * Reduce the MSS based on the new MTU. This will 8001 * eliminate any fragmentation locally. 8002 * N.B. There may well be some funny side-effects on 8003 * the local send policy and the remote receive policy. 8004 * Pending further research, we provide 8005 * tcp_ignore_path_mtu just in case this proves 8006 * disastrous somewhere. 8007 * 8008 * After updating the MSS, retransmit part of the 8009 * dropped segment using the new mss by calling 8010 * tcp_wput_data(). Need to adjust all those 8011 * params to make sure tcp_wput_data() work properly. 8012 */ 8013 if (tcp_ignore_path_mtu) 8014 break; 8015 8016 /* 8017 * Decrease the MSS by time stamp options 8018 * IP options and IPSEC options. tcp_hdr_len 8019 * includes time stamp option and IP option 8020 * length. 8021 */ 8022 8023 new_mss = ntohs(icmph->icmph_du_mtu) - 8024 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8025 8026 /* 8027 * Only update the MSS if the new one is 8028 * smaller than the previous one. This is 8029 * to avoid problems when getting multiple 8030 * ICMP errors for the same MTU. 8031 */ 8032 if (new_mss >= tcp->tcp_mss) 8033 break; 8034 8035 /* 8036 * Stop doing PMTU if new_mss is less than 68 8037 * or less than tcp_mss_min. 8038 * The value 68 comes from rfc 1191. 8039 */ 8040 if (new_mss < MAX(68, tcp_mss_min)) 8041 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8042 0; 8043 8044 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8045 ASSERT(ratio >= 1); 8046 tcp_mss_set(tcp, new_mss); 8047 8048 /* 8049 * Make sure we have something to 8050 * send. 8051 */ 8052 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8053 (tcp->tcp_xmit_head != NULL)) { 8054 /* 8055 * Shrink tcp_cwnd in 8056 * proportion to the old MSS/new MSS. 8057 */ 8058 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8059 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8060 (tcp->tcp_unsent == 0)) { 8061 tcp->tcp_rexmit_max = tcp->tcp_fss; 8062 } else { 8063 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8064 } 8065 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8066 tcp->tcp_rexmit = B_TRUE; 8067 tcp->tcp_dupack_cnt = 0; 8068 tcp->tcp_snd_burst = TCP_CWND_SS; 8069 tcp_ss_rexmit(tcp); 8070 } 8071 break; 8072 case ICMP_PORT_UNREACHABLE: 8073 case ICMP_PROTOCOL_UNREACHABLE: 8074 switch (tcp->tcp_state) { 8075 case TCPS_SYN_SENT: 8076 case TCPS_SYN_RCVD: 8077 /* 8078 * ICMP can snipe away incipient 8079 * TCP connections as long as 8080 * seq number is same as initial 8081 * send seq number. 8082 */ 8083 if (seg_seq == tcp->tcp_iss) { 8084 (void) tcp_clean_death(tcp, 8085 ECONNREFUSED, 6); 8086 } 8087 break; 8088 } 8089 break; 8090 case ICMP_HOST_UNREACHABLE: 8091 case ICMP_NET_UNREACHABLE: 8092 /* Record the error in case we finally time out. */ 8093 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8094 tcp->tcp_client_errno = EHOSTUNREACH; 8095 else 8096 tcp->tcp_client_errno = ENETUNREACH; 8097 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8098 if (tcp->tcp_listener != NULL && 8099 tcp->tcp_listener->tcp_syn_defense) { 8100 /* 8101 * Ditch the half-open connection if we 8102 * suspect a SYN attack is under way. 8103 */ 8104 tcp_ip_ire_mark_advice(tcp); 8105 (void) tcp_clean_death(tcp, 8106 tcp->tcp_client_errno, 7); 8107 } 8108 } 8109 break; 8110 default: 8111 break; 8112 } 8113 break; 8114 case ICMP_SOURCE_QUENCH: { 8115 /* 8116 * use a global boolean to control 8117 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8118 * The default is false. 8119 */ 8120 if (tcp_icmp_source_quench) { 8121 /* 8122 * Reduce the sending rate as if we got a 8123 * retransmit timeout 8124 */ 8125 uint32_t npkt; 8126 8127 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8128 tcp->tcp_mss; 8129 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8130 tcp->tcp_cwnd = tcp->tcp_mss; 8131 tcp->tcp_cwnd_cnt = 0; 8132 } 8133 break; 8134 } 8135 } 8136 freemsg(first_mp); 8137 } 8138 8139 /* 8140 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8141 * error messages passed up by IP. 8142 * Assumes that IP has pulled up all the extension headers as well 8143 * as the ICMPv6 header. 8144 */ 8145 static void 8146 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8147 { 8148 icmp6_t *icmp6; 8149 ip6_t *ip6h; 8150 uint16_t iph_hdr_length; 8151 tcpha_t *tcpha; 8152 uint8_t *nexthdrp; 8153 uint32_t new_mss; 8154 uint32_t ratio; 8155 boolean_t secure; 8156 mblk_t *first_mp = mp; 8157 size_t mp_size; 8158 uint32_t seg_ack; 8159 uint32_t seg_seq; 8160 8161 /* 8162 * The caller has determined if this is an IPSEC_IN packet and 8163 * set ipsec_mctl appropriately (see tcp_icmp_error). 8164 */ 8165 if (ipsec_mctl) 8166 mp = mp->b_cont; 8167 8168 mp_size = MBLKL(mp); 8169 8170 /* 8171 * Verify that we have a complete IP header. If not, send it upstream. 8172 */ 8173 if (mp_size < sizeof (ip6_t)) { 8174 noticmpv6: 8175 freemsg(first_mp); 8176 return; 8177 } 8178 8179 /* 8180 * Verify this is an ICMPV6 packet, else send it upstream. 8181 */ 8182 ip6h = (ip6_t *)mp->b_rptr; 8183 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8184 iph_hdr_length = IPV6_HDR_LEN; 8185 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8186 &nexthdrp) || 8187 *nexthdrp != IPPROTO_ICMPV6) { 8188 goto noticmpv6; 8189 } 8190 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8191 ip6h = (ip6_t *)&icmp6[1]; 8192 /* 8193 * Verify if we have a complete ICMP and inner IP header. 8194 */ 8195 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8196 goto noticmpv6; 8197 8198 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8199 goto noticmpv6; 8200 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8201 /* 8202 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8203 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8204 * packet. 8205 */ 8206 if ((*nexthdrp != IPPROTO_TCP) || 8207 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8208 goto noticmpv6; 8209 } 8210 8211 /* 8212 * ICMP errors come on the right queue or come on 8213 * listener/global queue for detached connections and 8214 * get switched to the right queue. If it comes on the 8215 * right queue, policy check has already been done by IP 8216 * and thus free the first_mp without verifying the policy. 8217 * If it has come for a non-hard bound connection, we need 8218 * to verify policy as IP may not have done it. 8219 */ 8220 if (!tcp->tcp_hard_bound) { 8221 if (ipsec_mctl) { 8222 secure = ipsec_in_is_secure(first_mp); 8223 } else { 8224 secure = B_FALSE; 8225 } 8226 if (secure) { 8227 /* 8228 * If we are willing to accept this in clear 8229 * we don't have to verify policy. 8230 */ 8231 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8232 if (!tcp_check_policy(tcp, first_mp, 8233 NULL, ip6h, secure, ipsec_mctl)) { 8234 /* 8235 * tcp_check_policy called 8236 * ip_drop_packet() on failure. 8237 */ 8238 return; 8239 } 8240 } 8241 } 8242 } else if (ipsec_mctl) { 8243 /* 8244 * This is a hard_bound connection. IP has already 8245 * verified policy. We don't have to do it again. 8246 */ 8247 freeb(first_mp); 8248 first_mp = mp; 8249 ipsec_mctl = B_FALSE; 8250 } 8251 8252 seg_ack = ntohl(tcpha->tha_ack); 8253 seg_seq = ntohl(tcpha->tha_seq); 8254 /* 8255 * TCP SHOULD check that the TCP sequence number contained in 8256 * payload of the ICMP error message is within the range 8257 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8258 */ 8259 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8260 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8261 /* 8262 * If the ICMP message is bogus, should we kill the 8263 * connection, or should we just drop the bogus ICMP 8264 * message? It would probably make more sense to just 8265 * drop the message so that if this one managed to get 8266 * in, the real connection should not suffer. 8267 */ 8268 goto noticmpv6; 8269 } 8270 8271 switch (icmp6->icmp6_type) { 8272 case ICMP6_PACKET_TOO_BIG: 8273 /* 8274 * Reduce the MSS based on the new MTU. This will 8275 * eliminate any fragmentation locally. 8276 * N.B. There may well be some funny side-effects on 8277 * the local send policy and the remote receive policy. 8278 * Pending further research, we provide 8279 * tcp_ignore_path_mtu just in case this proves 8280 * disastrous somewhere. 8281 * 8282 * After updating the MSS, retransmit part of the 8283 * dropped segment using the new mss by calling 8284 * tcp_wput_data(). Need to adjust all those 8285 * params to make sure tcp_wput_data() work properly. 8286 */ 8287 if (tcp_ignore_path_mtu) 8288 break; 8289 8290 /* 8291 * Decrease the MSS by time stamp options 8292 * IP options and IPSEC options. tcp_hdr_len 8293 * includes time stamp option and IP option 8294 * length. 8295 */ 8296 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8297 tcp->tcp_ipsec_overhead; 8298 8299 /* 8300 * Only update the MSS if the new one is 8301 * smaller than the previous one. This is 8302 * to avoid problems when getting multiple 8303 * ICMP errors for the same MTU. 8304 */ 8305 if (new_mss >= tcp->tcp_mss) 8306 break; 8307 8308 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8309 ASSERT(ratio >= 1); 8310 tcp_mss_set(tcp, new_mss); 8311 8312 /* 8313 * Make sure we have something to 8314 * send. 8315 */ 8316 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8317 (tcp->tcp_xmit_head != NULL)) { 8318 /* 8319 * Shrink tcp_cwnd in 8320 * proportion to the old MSS/new MSS. 8321 */ 8322 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8323 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8324 (tcp->tcp_unsent == 0)) { 8325 tcp->tcp_rexmit_max = tcp->tcp_fss; 8326 } else { 8327 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8328 } 8329 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8330 tcp->tcp_rexmit = B_TRUE; 8331 tcp->tcp_dupack_cnt = 0; 8332 tcp->tcp_snd_burst = TCP_CWND_SS; 8333 tcp_ss_rexmit(tcp); 8334 } 8335 break; 8336 8337 case ICMP6_DST_UNREACH: 8338 switch (icmp6->icmp6_code) { 8339 case ICMP6_DST_UNREACH_NOPORT: 8340 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8341 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8342 (seg_seq == tcp->tcp_iss)) { 8343 (void) tcp_clean_death(tcp, 8344 ECONNREFUSED, 8); 8345 } 8346 break; 8347 8348 case ICMP6_DST_UNREACH_ADMIN: 8349 case ICMP6_DST_UNREACH_NOROUTE: 8350 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8351 case ICMP6_DST_UNREACH_ADDR: 8352 /* Record the error in case we finally time out. */ 8353 tcp->tcp_client_errno = EHOSTUNREACH; 8354 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8355 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8356 (seg_seq == tcp->tcp_iss)) { 8357 if (tcp->tcp_listener != NULL && 8358 tcp->tcp_listener->tcp_syn_defense) { 8359 /* 8360 * Ditch the half-open connection if we 8361 * suspect a SYN attack is under way. 8362 */ 8363 tcp_ip_ire_mark_advice(tcp); 8364 (void) tcp_clean_death(tcp, 8365 tcp->tcp_client_errno, 9); 8366 } 8367 } 8368 8369 8370 break; 8371 default: 8372 break; 8373 } 8374 break; 8375 8376 case ICMP6_PARAM_PROB: 8377 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8378 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8379 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8380 (uchar_t *)nexthdrp) { 8381 if (tcp->tcp_state == TCPS_SYN_SENT || 8382 tcp->tcp_state == TCPS_SYN_RCVD) { 8383 (void) tcp_clean_death(tcp, 8384 ECONNREFUSED, 10); 8385 } 8386 break; 8387 } 8388 break; 8389 8390 case ICMP6_TIME_EXCEEDED: 8391 default: 8392 break; 8393 } 8394 freemsg(first_mp); 8395 } 8396 8397 /* 8398 * IP recognizes seven kinds of bind requests: 8399 * 8400 * - A zero-length address binds only to the protocol number. 8401 * 8402 * - A 4-byte address is treated as a request to 8403 * validate that the address is a valid local IPv4 8404 * address, appropriate for an application to bind to. 8405 * IP does the verification, but does not make any note 8406 * of the address at this time. 8407 * 8408 * - A 16-byte address contains is treated as a request 8409 * to validate a local IPv6 address, as the 4-byte 8410 * address case above. 8411 * 8412 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8413 * use it for the inbound fanout of packets. 8414 * 8415 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8416 * use it for the inbound fanout of packets. 8417 * 8418 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8419 * information consisting of local and remote addresses 8420 * and ports. In this case, the addresses are both 8421 * validated as appropriate for this operation, and, if 8422 * so, the information is retained for use in the 8423 * inbound fanout. 8424 * 8425 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8426 * fanout information, like the 12-byte case above. 8427 * 8428 * IP will also fill in the IRE request mblk with information 8429 * regarding our peer. In all cases, we notify IP of our protocol 8430 * type by appending a single protocol byte to the bind request. 8431 */ 8432 static mblk_t * 8433 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8434 { 8435 char *cp; 8436 mblk_t *mp; 8437 struct T_bind_req *tbr; 8438 ipa_conn_t *ac; 8439 ipa6_conn_t *ac6; 8440 sin_t *sin; 8441 sin6_t *sin6; 8442 8443 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8444 ASSERT((tcp->tcp_family == AF_INET && 8445 tcp->tcp_ipversion == IPV4_VERSION) || 8446 (tcp->tcp_family == AF_INET6 && 8447 (tcp->tcp_ipversion == IPV4_VERSION || 8448 tcp->tcp_ipversion == IPV6_VERSION))); 8449 8450 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 8451 if (!mp) 8452 return (mp); 8453 mp->b_datap->db_type = M_PROTO; 8454 tbr = (struct T_bind_req *)mp->b_rptr; 8455 tbr->PRIM_type = bind_prim; 8456 tbr->ADDR_offset = sizeof (*tbr); 8457 tbr->CONIND_number = 0; 8458 tbr->ADDR_length = addr_length; 8459 cp = (char *)&tbr[1]; 8460 switch (addr_length) { 8461 case sizeof (ipa_conn_t): 8462 ASSERT(tcp->tcp_family == AF_INET); 8463 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8464 8465 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8466 if (mp->b_cont == NULL) { 8467 freemsg(mp); 8468 return (NULL); 8469 } 8470 mp->b_cont->b_wptr += sizeof (ire_t); 8471 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8472 8473 /* cp known to be 32 bit aligned */ 8474 ac = (ipa_conn_t *)cp; 8475 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 8476 ac->ac_faddr = tcp->tcp_remote; 8477 ac->ac_fport = tcp->tcp_fport; 8478 ac->ac_lport = tcp->tcp_lport; 8479 tcp->tcp_hard_binding = 1; 8480 break; 8481 8482 case sizeof (ipa6_conn_t): 8483 ASSERT(tcp->tcp_family == AF_INET6); 8484 8485 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8486 if (mp->b_cont == NULL) { 8487 freemsg(mp); 8488 return (NULL); 8489 } 8490 mp->b_cont->b_wptr += sizeof (ire_t); 8491 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8492 8493 /* cp known to be 32 bit aligned */ 8494 ac6 = (ipa6_conn_t *)cp; 8495 if (tcp->tcp_ipversion == IPV4_VERSION) { 8496 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 8497 &ac6->ac6_laddr); 8498 } else { 8499 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 8500 } 8501 ac6->ac6_faddr = tcp->tcp_remote_v6; 8502 ac6->ac6_fport = tcp->tcp_fport; 8503 ac6->ac6_lport = tcp->tcp_lport; 8504 tcp->tcp_hard_binding = 1; 8505 break; 8506 8507 case sizeof (sin_t): 8508 /* 8509 * NOTE: IPV6_ADDR_LEN also has same size. 8510 * Use family to discriminate. 8511 */ 8512 if (tcp->tcp_family == AF_INET) { 8513 sin = (sin_t *)cp; 8514 8515 *sin = sin_null; 8516 sin->sin_family = AF_INET; 8517 sin->sin_addr.s_addr = tcp->tcp_bound_source; 8518 sin->sin_port = tcp->tcp_lport; 8519 break; 8520 } else { 8521 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 8522 } 8523 break; 8524 8525 case sizeof (sin6_t): 8526 ASSERT(tcp->tcp_family == AF_INET6); 8527 sin6 = (sin6_t *)cp; 8528 8529 *sin6 = sin6_null; 8530 sin6->sin6_family = AF_INET6; 8531 sin6->sin6_addr = tcp->tcp_bound_source_v6; 8532 sin6->sin6_port = tcp->tcp_lport; 8533 break; 8534 8535 case IP_ADDR_LEN: 8536 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8537 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 8538 break; 8539 8540 } 8541 /* Add protocol number to end */ 8542 cp[addr_length] = (char)IPPROTO_TCP; 8543 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 8544 return (mp); 8545 } 8546 8547 /* 8548 * Notify IP that we are having trouble with this connection. IP should 8549 * blow the IRE away and start over. 8550 */ 8551 static void 8552 tcp_ip_notify(tcp_t *tcp) 8553 { 8554 struct iocblk *iocp; 8555 ipid_t *ipid; 8556 mblk_t *mp; 8557 8558 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8559 if (tcp->tcp_ipversion == IPV6_VERSION) 8560 return; 8561 8562 mp = mkiocb(IP_IOCTL); 8563 if (mp == NULL) 8564 return; 8565 8566 iocp = (struct iocblk *)mp->b_rptr; 8567 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8568 8569 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8570 if (!mp->b_cont) { 8571 freeb(mp); 8572 return; 8573 } 8574 8575 ipid = (ipid_t *)mp->b_cont->b_rptr; 8576 mp->b_cont->b_wptr += iocp->ioc_count; 8577 bzero(ipid, sizeof (*ipid)); 8578 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8579 ipid->ipid_ire_type = IRE_CACHE; 8580 ipid->ipid_addr_offset = sizeof (ipid_t); 8581 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8582 /* 8583 * Note: in the case of source routing we want to blow away the 8584 * route to the first source route hop. 8585 */ 8586 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8587 sizeof (tcp->tcp_ipha->ipha_dst)); 8588 8589 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8590 } 8591 8592 /* Unlink and return any mblk that looks like it contains an ire */ 8593 static mblk_t * 8594 tcp_ire_mp(mblk_t *mp) 8595 { 8596 mblk_t *prev_mp; 8597 8598 for (;;) { 8599 prev_mp = mp; 8600 mp = mp->b_cont; 8601 if (mp == NULL) 8602 break; 8603 switch (DB_TYPE(mp)) { 8604 case IRE_DB_TYPE: 8605 case IRE_DB_REQ_TYPE: 8606 if (prev_mp != NULL) 8607 prev_mp->b_cont = mp->b_cont; 8608 mp->b_cont = NULL; 8609 return (mp); 8610 default: 8611 break; 8612 } 8613 } 8614 return (mp); 8615 } 8616 8617 /* 8618 * Timer callback routine for keepalive probe. We do a fake resend of 8619 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8620 * check to see if we have heard anything from the other end for the last 8621 * RTO period. If we have, set the timer to expire for another 8622 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8623 * RTO << 1 and check again when it expires. Keep exponentially increasing 8624 * the timeout if we have not heard from the other side. If for more than 8625 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8626 * kill the connection unless the keepalive abort threshold is 0. In 8627 * that case, we will probe "forever." 8628 */ 8629 static void 8630 tcp_keepalive_killer(void *arg) 8631 { 8632 mblk_t *mp; 8633 conn_t *connp = (conn_t *)arg; 8634 tcp_t *tcp = connp->conn_tcp; 8635 int32_t firetime; 8636 int32_t idletime; 8637 int32_t ka_intrvl; 8638 8639 tcp->tcp_ka_tid = 0; 8640 8641 if (tcp->tcp_fused) 8642 return; 8643 8644 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 8645 ka_intrvl = tcp->tcp_ka_interval; 8646 8647 /* 8648 * Keepalive probe should only be sent if the application has not 8649 * done a close on the connection. 8650 */ 8651 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8652 return; 8653 } 8654 /* Timer fired too early, restart it. */ 8655 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8656 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8657 MSEC_TO_TICK(ka_intrvl)); 8658 return; 8659 } 8660 8661 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8662 /* 8663 * If we have not heard from the other side for a long 8664 * time, kill the connection unless the keepalive abort 8665 * threshold is 0. In that case, we will probe "forever." 8666 */ 8667 if (tcp->tcp_ka_abort_thres != 0 && 8668 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8669 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 8670 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8671 tcp->tcp_client_errno : ETIMEDOUT, 11); 8672 return; 8673 } 8674 8675 if (tcp->tcp_snxt == tcp->tcp_suna && 8676 idletime >= ka_intrvl) { 8677 /* Fake resend of last ACKed byte. */ 8678 mblk_t *mp1 = allocb(1, BPRI_LO); 8679 8680 if (mp1 != NULL) { 8681 *mp1->b_wptr++ = '\0'; 8682 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8683 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8684 freeb(mp1); 8685 /* 8686 * if allocation failed, fall through to start the 8687 * timer back. 8688 */ 8689 if (mp != NULL) { 8690 TCP_RECORD_TRACE(tcp, mp, 8691 TCP_TRACE_SEND_PKT); 8692 tcp_send_data(tcp, tcp->tcp_wq, mp); 8693 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 8694 if (tcp->tcp_ka_last_intrvl != 0) { 8695 /* 8696 * We should probe again at least 8697 * in ka_intrvl, but not more than 8698 * tcp_rexmit_interval_max. 8699 */ 8700 firetime = MIN(ka_intrvl - 1, 8701 tcp->tcp_ka_last_intrvl << 1); 8702 if (firetime > tcp_rexmit_interval_max) 8703 firetime = 8704 tcp_rexmit_interval_max; 8705 } else { 8706 firetime = tcp->tcp_rto; 8707 } 8708 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8709 tcp_keepalive_killer, 8710 MSEC_TO_TICK(firetime)); 8711 tcp->tcp_ka_last_intrvl = firetime; 8712 return; 8713 } 8714 } 8715 } else { 8716 tcp->tcp_ka_last_intrvl = 0; 8717 } 8718 8719 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8720 if ((firetime = ka_intrvl - idletime) < 0) { 8721 firetime = ka_intrvl; 8722 } 8723 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8724 MSEC_TO_TICK(firetime)); 8725 } 8726 8727 int 8728 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8729 { 8730 queue_t *q = tcp->tcp_rq; 8731 int32_t mss = tcp->tcp_mss; 8732 int maxpsz; 8733 8734 if (TCP_IS_DETACHED(tcp)) 8735 return (mss); 8736 8737 if (tcp->tcp_fused) { 8738 maxpsz = tcp_fuse_maxpsz_set(tcp); 8739 mss = INFPSZ; 8740 } else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { 8741 /* 8742 * Set the sd_qn_maxpsz according to the socket send buffer 8743 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8744 * instruct the stream head to copyin user data into contiguous 8745 * kernel-allocated buffers without breaking it up into smaller 8746 * chunks. We round up the buffer size to the nearest SMSS. 8747 */ 8748 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8749 if (tcp->tcp_kssl_ctx == NULL) 8750 mss = INFPSZ; 8751 else 8752 mss = SSL3_MAX_RECORD_LEN; 8753 } else { 8754 /* 8755 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8756 * (and a multiple of the mss). This instructs the stream 8757 * head to break down larger than SMSS writes into SMSS- 8758 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8759 */ 8760 maxpsz = tcp->tcp_maxpsz * mss; 8761 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8762 maxpsz = tcp->tcp_xmit_hiwater/2; 8763 /* Round up to nearest mss */ 8764 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8765 } 8766 } 8767 (void) setmaxps(q, maxpsz); 8768 tcp->tcp_wq->q_maxpsz = maxpsz; 8769 8770 if (set_maxblk) 8771 (void) mi_set_sth_maxblk(q, mss); 8772 8773 return (mss); 8774 } 8775 8776 /* 8777 * Extract option values from a tcp header. We put any found values into the 8778 * tcpopt struct and return a bitmask saying which options were found. 8779 */ 8780 static int 8781 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8782 { 8783 uchar_t *endp; 8784 int len; 8785 uint32_t mss; 8786 uchar_t *up = (uchar_t *)tcph; 8787 int found = 0; 8788 int32_t sack_len; 8789 tcp_seq sack_begin, sack_end; 8790 tcp_t *tcp; 8791 8792 endp = up + TCP_HDR_LENGTH(tcph); 8793 up += TCP_MIN_HEADER_LENGTH; 8794 while (up < endp) { 8795 len = endp - up; 8796 switch (*up) { 8797 case TCPOPT_EOL: 8798 break; 8799 8800 case TCPOPT_NOP: 8801 up++; 8802 continue; 8803 8804 case TCPOPT_MAXSEG: 8805 if (len < TCPOPT_MAXSEG_LEN || 8806 up[1] != TCPOPT_MAXSEG_LEN) 8807 break; 8808 8809 mss = BE16_TO_U16(up+2); 8810 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8811 tcpopt->tcp_opt_mss = mss; 8812 found |= TCP_OPT_MSS_PRESENT; 8813 8814 up += TCPOPT_MAXSEG_LEN; 8815 continue; 8816 8817 case TCPOPT_WSCALE: 8818 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 8819 break; 8820 8821 if (up[2] > TCP_MAX_WINSHIFT) 8822 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 8823 else 8824 tcpopt->tcp_opt_wscale = up[2]; 8825 found |= TCP_OPT_WSCALE_PRESENT; 8826 8827 up += TCPOPT_WS_LEN; 8828 continue; 8829 8830 case TCPOPT_SACK_PERMITTED: 8831 if (len < TCPOPT_SACK_OK_LEN || 8832 up[1] != TCPOPT_SACK_OK_LEN) 8833 break; 8834 found |= TCP_OPT_SACK_OK_PRESENT; 8835 up += TCPOPT_SACK_OK_LEN; 8836 continue; 8837 8838 case TCPOPT_SACK: 8839 if (len <= 2 || up[1] <= 2 || len < up[1]) 8840 break; 8841 8842 /* If TCP is not interested in SACK blks... */ 8843 if ((tcp = tcpopt->tcp) == NULL) { 8844 up += up[1]; 8845 continue; 8846 } 8847 sack_len = up[1] - TCPOPT_HEADER_LEN; 8848 up += TCPOPT_HEADER_LEN; 8849 8850 /* 8851 * If the list is empty, allocate one and assume 8852 * nothing is sack'ed. 8853 */ 8854 ASSERT(tcp->tcp_sack_info != NULL); 8855 if (tcp->tcp_notsack_list == NULL) { 8856 tcp_notsack_update(&(tcp->tcp_notsack_list), 8857 tcp->tcp_suna, tcp->tcp_snxt, 8858 &(tcp->tcp_num_notsack_blk), 8859 &(tcp->tcp_cnt_notsack_list)); 8860 8861 /* 8862 * Make sure tcp_notsack_list is not NULL. 8863 * This happens when kmem_alloc(KM_NOSLEEP) 8864 * returns NULL. 8865 */ 8866 if (tcp->tcp_notsack_list == NULL) { 8867 up += sack_len; 8868 continue; 8869 } 8870 tcp->tcp_fack = tcp->tcp_suna; 8871 } 8872 8873 while (sack_len > 0) { 8874 if (up + 8 > endp) { 8875 up = endp; 8876 break; 8877 } 8878 sack_begin = BE32_TO_U32(up); 8879 up += 4; 8880 sack_end = BE32_TO_U32(up); 8881 up += 4; 8882 sack_len -= 8; 8883 /* 8884 * Bounds checking. Make sure the SACK 8885 * info is within tcp_suna and tcp_snxt. 8886 * If this SACK blk is out of bound, ignore 8887 * it but continue to parse the following 8888 * blks. 8889 */ 8890 if (SEQ_LEQ(sack_end, sack_begin) || 8891 SEQ_LT(sack_begin, tcp->tcp_suna) || 8892 SEQ_GT(sack_end, tcp->tcp_snxt)) { 8893 continue; 8894 } 8895 tcp_notsack_insert(&(tcp->tcp_notsack_list), 8896 sack_begin, sack_end, 8897 &(tcp->tcp_num_notsack_blk), 8898 &(tcp->tcp_cnt_notsack_list)); 8899 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 8900 tcp->tcp_fack = sack_end; 8901 } 8902 } 8903 found |= TCP_OPT_SACK_PRESENT; 8904 continue; 8905 8906 case TCPOPT_TSTAMP: 8907 if (len < TCPOPT_TSTAMP_LEN || 8908 up[1] != TCPOPT_TSTAMP_LEN) 8909 break; 8910 8911 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 8912 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 8913 8914 found |= TCP_OPT_TSTAMP_PRESENT; 8915 8916 up += TCPOPT_TSTAMP_LEN; 8917 continue; 8918 8919 default: 8920 if (len <= 1 || len < (int)up[1] || up[1] == 0) 8921 break; 8922 up += up[1]; 8923 continue; 8924 } 8925 break; 8926 } 8927 return (found); 8928 } 8929 8930 /* 8931 * Set the mss associated with a particular tcp based on its current value, 8932 * and a new one passed in. Observe minimums and maximums, and reset 8933 * other state variables that we want to view as multiples of mss. 8934 * 8935 * This function is called in various places mainly because 8936 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 8937 * other side's SYN/SYN-ACK packet arrives. 8938 * 2) PMTUd may get us a new MSS. 8939 * 3) If the other side stops sending us timestamp option, we need to 8940 * increase the MSS size to use the extra bytes available. 8941 */ 8942 static void 8943 tcp_mss_set(tcp_t *tcp, uint32_t mss) 8944 { 8945 uint32_t mss_max; 8946 8947 if (tcp->tcp_ipversion == IPV4_VERSION) 8948 mss_max = tcp_mss_max_ipv4; 8949 else 8950 mss_max = tcp_mss_max_ipv6; 8951 8952 if (mss < tcp_mss_min) 8953 mss = tcp_mss_min; 8954 if (mss > mss_max) 8955 mss = mss_max; 8956 /* 8957 * Unless naglim has been set by our client to 8958 * a non-mss value, force naglim to track mss. 8959 * This can help to aggregate small writes. 8960 */ 8961 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 8962 tcp->tcp_naglim = mss; 8963 /* 8964 * TCP should be able to buffer at least 4 MSS data for obvious 8965 * performance reason. 8966 */ 8967 if ((mss << 2) > tcp->tcp_xmit_hiwater) 8968 tcp->tcp_xmit_hiwater = mss << 2; 8969 8970 /* 8971 * Check if we need to apply the tcp_init_cwnd here. If 8972 * it is set and the MSS gets bigger (should not happen 8973 * normally), we need to adjust the resulting tcp_cwnd properly. 8974 * The new tcp_cwnd should not get bigger. 8975 */ 8976 if (tcp->tcp_init_cwnd == 0) { 8977 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 8978 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 8979 } else { 8980 if (tcp->tcp_mss < mss) { 8981 tcp->tcp_cwnd = MAX(1, 8982 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 8983 } else { 8984 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 8985 } 8986 } 8987 tcp->tcp_mss = mss; 8988 tcp->tcp_cwnd_cnt = 0; 8989 (void) tcp_maxpsz_set(tcp, B_TRUE); 8990 } 8991 8992 static int 8993 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8994 { 8995 tcp_t *tcp = NULL; 8996 conn_t *connp; 8997 int err; 8998 dev_t conn_dev; 8999 zoneid_t zoneid = getzoneid(); 9000 9001 /* 9002 * Special case for install: miniroot needs to be able to access files 9003 * via NFS as though it were always in the global zone. 9004 */ 9005 if (credp == kcred && nfs_global_client_only != 0) 9006 zoneid = GLOBAL_ZONEID; 9007 9008 if (q->q_ptr != NULL) 9009 return (0); 9010 9011 if (sflag == MODOPEN) { 9012 /* 9013 * This is a special case. The purpose of a modopen 9014 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9015 * through for MIB browsers. Everything else is failed. 9016 */ 9017 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9018 9019 if (connp == NULL) 9020 return (ENOMEM); 9021 9022 connp->conn_flags |= IPCL_TCPMOD; 9023 connp->conn_cred = credp; 9024 connp->conn_zoneid = zoneid; 9025 q->q_ptr = WR(q)->q_ptr = connp; 9026 crhold(credp); 9027 q->q_qinfo = &tcp_mod_rinit; 9028 WR(q)->q_qinfo = &tcp_mod_winit; 9029 qprocson(q); 9030 return (0); 9031 } 9032 9033 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9034 return (EBUSY); 9035 9036 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9037 9038 if (flag & SO_ACCEPTOR) { 9039 q->q_qinfo = &tcp_acceptor_rinit; 9040 q->q_ptr = (void *)conn_dev; 9041 WR(q)->q_qinfo = &tcp_acceptor_winit; 9042 WR(q)->q_ptr = (void *)conn_dev; 9043 qprocson(q); 9044 return (0); 9045 } 9046 9047 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9048 if (connp == NULL) { 9049 inet_minor_free(ip_minor_arena, conn_dev); 9050 q->q_ptr = NULL; 9051 return (ENOSR); 9052 } 9053 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9054 tcp = connp->conn_tcp; 9055 9056 q->q_ptr = WR(q)->q_ptr = connp; 9057 if (getmajor(*devp) == TCP6_MAJ) { 9058 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9059 connp->conn_send = ip_output_v6; 9060 connp->conn_af_isv6 = B_TRUE; 9061 connp->conn_pkt_isv6 = B_TRUE; 9062 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9063 tcp->tcp_ipversion = IPV6_VERSION; 9064 tcp->tcp_family = AF_INET6; 9065 tcp->tcp_mss = tcp_mss_def_ipv6; 9066 } else { 9067 connp->conn_flags |= IPCL_TCP4; 9068 connp->conn_send = ip_output; 9069 connp->conn_af_isv6 = B_FALSE; 9070 connp->conn_pkt_isv6 = B_FALSE; 9071 tcp->tcp_ipversion = IPV4_VERSION; 9072 tcp->tcp_family = AF_INET; 9073 tcp->tcp_mss = tcp_mss_def_ipv4; 9074 } 9075 9076 /* 9077 * TCP keeps a copy of cred for cache locality reasons but 9078 * we put a reference only once. If connp->conn_cred 9079 * becomes invalid, tcp_cred should also be set to NULL. 9080 */ 9081 tcp->tcp_cred = connp->conn_cred = credp; 9082 crhold(connp->conn_cred); 9083 tcp->tcp_cpid = curproc->p_pid; 9084 connp->conn_zoneid = zoneid; 9085 9086 connp->conn_dev = conn_dev; 9087 9088 ASSERT(q->q_qinfo == &tcp_rinit); 9089 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9090 9091 if (flag & SO_SOCKSTR) { 9092 /* 9093 * No need to insert a socket in tcp acceptor hash. 9094 * If it was a socket acceptor stream, we dealt with 9095 * it above. A socket listener can never accept a 9096 * connection and doesn't need acceptor_id. 9097 */ 9098 connp->conn_flags |= IPCL_SOCKET; 9099 tcp->tcp_issocket = 1; 9100 WR(q)->q_qinfo = &tcp_sock_winit; 9101 } else { 9102 #ifdef _ILP32 9103 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9104 #else 9105 tcp->tcp_acceptor_id = conn_dev; 9106 #endif /* _ILP32 */ 9107 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9108 } 9109 9110 if (tcp_trace) 9111 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9112 9113 err = tcp_init(tcp, q); 9114 if (err != 0) { 9115 inet_minor_free(ip_minor_arena, connp->conn_dev); 9116 tcp_acceptor_hash_remove(tcp); 9117 CONN_DEC_REF(connp); 9118 q->q_ptr = WR(q)->q_ptr = NULL; 9119 return (err); 9120 } 9121 9122 RD(q)->q_hiwat = tcp_recv_hiwat; 9123 tcp->tcp_rwnd = tcp_recv_hiwat; 9124 9125 /* Non-zero default values */ 9126 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9127 /* 9128 * Put the ref for TCP. Ref for IP was already put 9129 * by ipcl_conn_create. Also Make the conn_t globally 9130 * visible to walkers 9131 */ 9132 mutex_enter(&connp->conn_lock); 9133 CONN_INC_REF_LOCKED(connp); 9134 ASSERT(connp->conn_ref == 2); 9135 connp->conn_state_flags &= ~CONN_INCIPIENT; 9136 mutex_exit(&connp->conn_lock); 9137 9138 qprocson(q); 9139 return (0); 9140 } 9141 9142 /* 9143 * Some TCP options can be "set" by requesting them in the option 9144 * buffer. This is needed for XTI feature test though we do not 9145 * allow it in general. We interpret that this mechanism is more 9146 * applicable to OSI protocols and need not be allowed in general. 9147 * This routine filters out options for which it is not allowed (most) 9148 * and lets through those (few) for which it is. [ The XTI interface 9149 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9150 * ever implemented will have to be allowed here ]. 9151 */ 9152 static boolean_t 9153 tcp_allow_connopt_set(int level, int name) 9154 { 9155 9156 switch (level) { 9157 case IPPROTO_TCP: 9158 switch (name) { 9159 case TCP_NODELAY: 9160 return (B_TRUE); 9161 default: 9162 return (B_FALSE); 9163 } 9164 /*NOTREACHED*/ 9165 default: 9166 return (B_FALSE); 9167 } 9168 /*NOTREACHED*/ 9169 } 9170 9171 /* 9172 * This routine gets default values of certain options whose default 9173 * values are maintained by protocol specific code 9174 */ 9175 /* ARGSUSED */ 9176 int 9177 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9178 { 9179 int32_t *i1 = (int32_t *)ptr; 9180 9181 switch (level) { 9182 case IPPROTO_TCP: 9183 switch (name) { 9184 case TCP_NOTIFY_THRESHOLD: 9185 *i1 = tcp_ip_notify_interval; 9186 break; 9187 case TCP_ABORT_THRESHOLD: 9188 *i1 = tcp_ip_abort_interval; 9189 break; 9190 case TCP_CONN_NOTIFY_THRESHOLD: 9191 *i1 = tcp_ip_notify_cinterval; 9192 break; 9193 case TCP_CONN_ABORT_THRESHOLD: 9194 *i1 = tcp_ip_abort_cinterval; 9195 break; 9196 default: 9197 return (-1); 9198 } 9199 break; 9200 case IPPROTO_IP: 9201 switch (name) { 9202 case IP_TTL: 9203 *i1 = tcp_ipv4_ttl; 9204 break; 9205 default: 9206 return (-1); 9207 } 9208 break; 9209 case IPPROTO_IPV6: 9210 switch (name) { 9211 case IPV6_UNICAST_HOPS: 9212 *i1 = tcp_ipv6_hoplimit; 9213 break; 9214 default: 9215 return (-1); 9216 } 9217 break; 9218 default: 9219 return (-1); 9220 } 9221 return (sizeof (int)); 9222 } 9223 9224 9225 /* 9226 * TCP routine to get the values of options. 9227 */ 9228 int 9229 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9230 { 9231 int *i1 = (int *)ptr; 9232 conn_t *connp = Q_TO_CONN(q); 9233 tcp_t *tcp = connp->conn_tcp; 9234 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9235 9236 switch (level) { 9237 case SOL_SOCKET: 9238 switch (name) { 9239 case SO_LINGER: { 9240 struct linger *lgr = (struct linger *)ptr; 9241 9242 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9243 lgr->l_linger = tcp->tcp_lingertime; 9244 } 9245 return (sizeof (struct linger)); 9246 case SO_DEBUG: 9247 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9248 break; 9249 case SO_KEEPALIVE: 9250 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9251 break; 9252 case SO_DONTROUTE: 9253 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9254 break; 9255 case SO_USELOOPBACK: 9256 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9257 break; 9258 case SO_BROADCAST: 9259 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9260 break; 9261 case SO_REUSEADDR: 9262 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9263 break; 9264 case SO_OOBINLINE: 9265 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9266 break; 9267 case SO_DGRAM_ERRIND: 9268 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9269 break; 9270 case SO_TYPE: 9271 *i1 = SOCK_STREAM; 9272 break; 9273 case SO_SNDBUF: 9274 *i1 = tcp->tcp_xmit_hiwater; 9275 break; 9276 case SO_RCVBUF: 9277 *i1 = RD(q)->q_hiwat; 9278 break; 9279 case SO_SND_COPYAVOID: 9280 *i1 = tcp->tcp_snd_zcopy_on ? 9281 SO_SND_COPYAVOID : 0; 9282 break; 9283 default: 9284 return (-1); 9285 } 9286 break; 9287 case IPPROTO_TCP: 9288 switch (name) { 9289 case TCP_NODELAY: 9290 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9291 break; 9292 case TCP_MAXSEG: 9293 *i1 = tcp->tcp_mss; 9294 break; 9295 case TCP_NOTIFY_THRESHOLD: 9296 *i1 = (int)tcp->tcp_first_timer_threshold; 9297 break; 9298 case TCP_ABORT_THRESHOLD: 9299 *i1 = tcp->tcp_second_timer_threshold; 9300 break; 9301 case TCP_CONN_NOTIFY_THRESHOLD: 9302 *i1 = tcp->tcp_first_ctimer_threshold; 9303 break; 9304 case TCP_CONN_ABORT_THRESHOLD: 9305 *i1 = tcp->tcp_second_ctimer_threshold; 9306 break; 9307 case TCP_RECVDSTADDR: 9308 *i1 = tcp->tcp_recvdstaddr; 9309 break; 9310 case TCP_ANONPRIVBIND: 9311 *i1 = tcp->tcp_anon_priv_bind; 9312 break; 9313 case TCP_EXCLBIND: 9314 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9315 break; 9316 case TCP_INIT_CWND: 9317 *i1 = tcp->tcp_init_cwnd; 9318 break; 9319 case TCP_KEEPALIVE_THRESHOLD: 9320 *i1 = tcp->tcp_ka_interval; 9321 break; 9322 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9323 *i1 = tcp->tcp_ka_abort_thres; 9324 break; 9325 case TCP_CORK: 9326 *i1 = tcp->tcp_cork; 9327 break; 9328 default: 9329 return (-1); 9330 } 9331 break; 9332 case IPPROTO_IP: 9333 if (tcp->tcp_family != AF_INET) 9334 return (-1); 9335 switch (name) { 9336 case IP_OPTIONS: 9337 case T_IP_OPTIONS: { 9338 /* 9339 * This is compatible with BSD in that in only return 9340 * the reverse source route with the final destination 9341 * as the last entry. The first 4 bytes of the option 9342 * will contain the final destination. 9343 */ 9344 char *opt_ptr; 9345 int opt_len; 9346 opt_ptr = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 9347 opt_len = (char *)tcp->tcp_tcph - opt_ptr; 9348 /* Caller ensures enough space */ 9349 if (opt_len > 0) { 9350 /* 9351 * TODO: Do we have to handle getsockopt on an 9352 * initiator as well? 9353 */ 9354 return (tcp_opt_get_user(tcp->tcp_ipha, ptr)); 9355 } 9356 return (0); 9357 } 9358 case IP_TOS: 9359 case T_IP_TOS: 9360 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9361 break; 9362 case IP_TTL: 9363 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9364 break; 9365 default: 9366 return (-1); 9367 } 9368 break; 9369 case IPPROTO_IPV6: 9370 /* 9371 * IPPROTO_IPV6 options are only supported for sockets 9372 * that are using IPv6 on the wire. 9373 */ 9374 if (tcp->tcp_ipversion != IPV6_VERSION) { 9375 return (-1); 9376 } 9377 switch (name) { 9378 case IPV6_UNICAST_HOPS: 9379 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9380 break; /* goto sizeof (int) option return */ 9381 case IPV6_BOUND_IF: 9382 /* Zero if not set */ 9383 *i1 = tcp->tcp_bound_if; 9384 break; /* goto sizeof (int) option return */ 9385 case IPV6_RECVPKTINFO: 9386 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9387 *i1 = 1; 9388 else 9389 *i1 = 0; 9390 break; /* goto sizeof (int) option return */ 9391 case IPV6_RECVTCLASS: 9392 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9393 *i1 = 1; 9394 else 9395 *i1 = 0; 9396 break; /* goto sizeof (int) option return */ 9397 case IPV6_RECVHOPLIMIT: 9398 if (tcp->tcp_ipv6_recvancillary & 9399 TCP_IPV6_RECVHOPLIMIT) 9400 *i1 = 1; 9401 else 9402 *i1 = 0; 9403 break; /* goto sizeof (int) option return */ 9404 case IPV6_RECVHOPOPTS: 9405 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9406 *i1 = 1; 9407 else 9408 *i1 = 0; 9409 break; /* goto sizeof (int) option return */ 9410 case IPV6_RECVDSTOPTS: 9411 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9412 *i1 = 1; 9413 else 9414 *i1 = 0; 9415 break; /* goto sizeof (int) option return */ 9416 case _OLD_IPV6_RECVDSTOPTS: 9417 if (tcp->tcp_ipv6_recvancillary & 9418 TCP_OLD_IPV6_RECVDSTOPTS) 9419 *i1 = 1; 9420 else 9421 *i1 = 0; 9422 break; /* goto sizeof (int) option return */ 9423 case IPV6_RECVRTHDR: 9424 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9425 *i1 = 1; 9426 else 9427 *i1 = 0; 9428 break; /* goto sizeof (int) option return */ 9429 case IPV6_RECVRTHDRDSTOPTS: 9430 if (tcp->tcp_ipv6_recvancillary & 9431 TCP_IPV6_RECVRTDSTOPTS) 9432 *i1 = 1; 9433 else 9434 *i1 = 0; 9435 break; /* goto sizeof (int) option return */ 9436 case IPV6_PKTINFO: { 9437 /* XXX assumes that caller has room for max size! */ 9438 struct in6_pktinfo *pkti; 9439 9440 pkti = (struct in6_pktinfo *)ptr; 9441 if (ipp->ipp_fields & IPPF_IFINDEX) 9442 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9443 else 9444 pkti->ipi6_ifindex = 0; 9445 if (ipp->ipp_fields & IPPF_ADDR) 9446 pkti->ipi6_addr = ipp->ipp_addr; 9447 else 9448 pkti->ipi6_addr = ipv6_all_zeros; 9449 return (sizeof (struct in6_pktinfo)); 9450 } 9451 case IPV6_TCLASS: 9452 if (ipp->ipp_fields & IPPF_TCLASS) 9453 *i1 = ipp->ipp_tclass; 9454 else 9455 *i1 = IPV6_FLOW_TCLASS( 9456 IPV6_DEFAULT_VERS_AND_FLOW); 9457 break; /* goto sizeof (int) option return */ 9458 case IPV6_NEXTHOP: { 9459 sin6_t *sin6 = (sin6_t *)ptr; 9460 9461 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9462 return (0); 9463 *sin6 = sin6_null; 9464 sin6->sin6_family = AF_INET6; 9465 sin6->sin6_addr = ipp->ipp_nexthop; 9466 return (sizeof (sin6_t)); 9467 } 9468 case IPV6_HOPOPTS: 9469 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9470 return (0); 9471 bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen); 9472 return (ipp->ipp_hopoptslen); 9473 case IPV6_RTHDRDSTOPTS: 9474 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9475 return (0); 9476 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9477 return (ipp->ipp_rtdstoptslen); 9478 case IPV6_RTHDR: 9479 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9480 return (0); 9481 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9482 return (ipp->ipp_rthdrlen); 9483 case IPV6_DSTOPTS: 9484 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9485 return (0); 9486 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9487 return (ipp->ipp_dstoptslen); 9488 case IPV6_SRC_PREFERENCES: 9489 return (ip6_get_src_preferences(connp, 9490 (uint32_t *)ptr)); 9491 case IPV6_PATHMTU: { 9492 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9493 9494 if (tcp->tcp_state < TCPS_ESTABLISHED) 9495 return (-1); 9496 9497 return (ip_fill_mtuinfo(&connp->conn_remv6, 9498 connp->conn_fport, mtuinfo)); 9499 } 9500 default: 9501 return (-1); 9502 } 9503 break; 9504 default: 9505 return (-1); 9506 } 9507 return (sizeof (int)); 9508 } 9509 9510 /* 9511 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9512 * Parameters are assumed to be verified by the caller. 9513 */ 9514 /* ARGSUSED */ 9515 int 9516 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9517 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9518 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9519 { 9520 tcp_t *tcp = Q_TO_TCP(q); 9521 int *i1 = (int *)invalp; 9522 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9523 boolean_t checkonly; 9524 int reterr; 9525 9526 switch (optset_context) { 9527 case SETFN_OPTCOM_CHECKONLY: 9528 checkonly = B_TRUE; 9529 /* 9530 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9531 * inlen != 0 implies value supplied and 9532 * we have to "pretend" to set it. 9533 * inlen == 0 implies that there is no 9534 * value part in T_CHECK request and just validation 9535 * done elsewhere should be enough, we just return here. 9536 */ 9537 if (inlen == 0) { 9538 *outlenp = 0; 9539 return (0); 9540 } 9541 break; 9542 case SETFN_OPTCOM_NEGOTIATE: 9543 checkonly = B_FALSE; 9544 break; 9545 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9546 case SETFN_CONN_NEGOTIATE: 9547 checkonly = B_FALSE; 9548 /* 9549 * Negotiating local and "association-related" options 9550 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9551 * primitives is allowed by XTI, but we choose 9552 * to not implement this style negotiation for Internet 9553 * protocols (We interpret it is a must for OSI world but 9554 * optional for Internet protocols) for all options. 9555 * [ Will do only for the few options that enable test 9556 * suites that our XTI implementation of this feature 9557 * works for transports that do allow it ] 9558 */ 9559 if (!tcp_allow_connopt_set(level, name)) { 9560 *outlenp = 0; 9561 return (EINVAL); 9562 } 9563 break; 9564 default: 9565 /* 9566 * We should never get here 9567 */ 9568 *outlenp = 0; 9569 return (EINVAL); 9570 } 9571 9572 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9573 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9574 9575 /* 9576 * For TCP, we should have no ancillary data sent down 9577 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9578 * has to be zero. 9579 */ 9580 ASSERT(thisdg_attrs == NULL); 9581 9582 /* 9583 * For fixed length options, no sanity check 9584 * of passed in length is done. It is assumed *_optcom_req() 9585 * routines do the right thing. 9586 */ 9587 9588 switch (level) { 9589 case SOL_SOCKET: 9590 switch (name) { 9591 case SO_LINGER: { 9592 struct linger *lgr = (struct linger *)invalp; 9593 9594 if (!checkonly) { 9595 if (lgr->l_onoff) { 9596 tcp->tcp_linger = 1; 9597 tcp->tcp_lingertime = lgr->l_linger; 9598 } else { 9599 tcp->tcp_linger = 0; 9600 tcp->tcp_lingertime = 0; 9601 } 9602 /* struct copy */ 9603 *(struct linger *)outvalp = *lgr; 9604 } else { 9605 if (!lgr->l_onoff) { 9606 ((struct linger *)outvalp)->l_onoff = 0; 9607 ((struct linger *)outvalp)->l_linger = 0; 9608 } else { 9609 /* struct copy */ 9610 *(struct linger *)outvalp = *lgr; 9611 } 9612 } 9613 *outlenp = sizeof (struct linger); 9614 return (0); 9615 } 9616 case SO_DEBUG: 9617 if (!checkonly) 9618 tcp->tcp_debug = onoff; 9619 break; 9620 case SO_KEEPALIVE: 9621 if (checkonly) { 9622 /* T_CHECK case */ 9623 break; 9624 } 9625 9626 if (!onoff) { 9627 if (tcp->tcp_ka_enabled) { 9628 if (tcp->tcp_ka_tid != 0) { 9629 (void) TCP_TIMER_CANCEL(tcp, 9630 tcp->tcp_ka_tid); 9631 tcp->tcp_ka_tid = 0; 9632 } 9633 tcp->tcp_ka_enabled = 0; 9634 } 9635 break; 9636 } 9637 if (!tcp->tcp_ka_enabled) { 9638 /* Crank up the keepalive timer */ 9639 tcp->tcp_ka_last_intrvl = 0; 9640 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9641 tcp_keepalive_killer, 9642 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9643 tcp->tcp_ka_enabled = 1; 9644 } 9645 break; 9646 case SO_DONTROUTE: 9647 /* 9648 * SO_DONTROUTE, SO_USELOOPBACK and SO_BROADCAST are 9649 * only of interest to IP. We track them here only so 9650 * that we can report their current value. 9651 */ 9652 if (!checkonly) { 9653 tcp->tcp_dontroute = onoff; 9654 tcp->tcp_connp->conn_dontroute = onoff; 9655 } 9656 break; 9657 case SO_USELOOPBACK: 9658 if (!checkonly) { 9659 tcp->tcp_useloopback = onoff; 9660 tcp->tcp_connp->conn_loopback = onoff; 9661 } 9662 break; 9663 case SO_BROADCAST: 9664 if (!checkonly) { 9665 tcp->tcp_broadcast = onoff; 9666 tcp->tcp_connp->conn_broadcast = onoff; 9667 } 9668 break; 9669 case SO_REUSEADDR: 9670 if (!checkonly) { 9671 tcp->tcp_reuseaddr = onoff; 9672 tcp->tcp_connp->conn_reuseaddr = onoff; 9673 } 9674 break; 9675 case SO_OOBINLINE: 9676 if (!checkonly) 9677 tcp->tcp_oobinline = onoff; 9678 break; 9679 case SO_DGRAM_ERRIND: 9680 if (!checkonly) 9681 tcp->tcp_dgram_errind = onoff; 9682 break; 9683 case SO_SNDBUF: { 9684 tcp_t *peer_tcp; 9685 9686 if (*i1 > tcp_max_buf) { 9687 *outlenp = 0; 9688 return (ENOBUFS); 9689 } 9690 if (checkonly) 9691 break; 9692 9693 tcp->tcp_xmit_hiwater = *i1; 9694 if (tcp_snd_lowat_fraction != 0) 9695 tcp->tcp_xmit_lowater = 9696 tcp->tcp_xmit_hiwater / 9697 tcp_snd_lowat_fraction; 9698 (void) tcp_maxpsz_set(tcp, B_TRUE); 9699 /* 9700 * If we are flow-controlled, recheck the condition. 9701 * There are apps that increase SO_SNDBUF size when 9702 * flow-controlled (EWOULDBLOCK), and expect the flow 9703 * control condition to be lifted right away. 9704 * 9705 * For the fused tcp loopback case, in order to avoid 9706 * a race with the peer's tcp_fuse_rrw() we need to 9707 * hold its fuse_lock while accessing tcp_flow_stopped. 9708 */ 9709 peer_tcp = tcp->tcp_loopback_peer; 9710 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 9711 if (tcp->tcp_fused) 9712 mutex_enter(&peer_tcp->tcp_fuse_lock); 9713 9714 if (tcp->tcp_flow_stopped && 9715 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 9716 tcp_clrqfull(tcp); 9717 } 9718 if (tcp->tcp_fused) 9719 mutex_exit(&peer_tcp->tcp_fuse_lock); 9720 break; 9721 } 9722 case SO_RCVBUF: 9723 if (*i1 > tcp_max_buf) { 9724 *outlenp = 0; 9725 return (ENOBUFS); 9726 } 9727 /* Silently ignore zero */ 9728 if (!checkonly && *i1 != 0) { 9729 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 9730 (void) tcp_rwnd_set(tcp, *i1); 9731 } 9732 /* 9733 * XXX should we return the rwnd here 9734 * and tcp_opt_get ? 9735 */ 9736 break; 9737 case SO_SND_COPYAVOID: 9738 if (!checkonly) { 9739 /* we only allow enable at most once for now */ 9740 if (tcp->tcp_loopback || 9741 (!tcp->tcp_snd_zcopy_aware && 9742 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 9743 *outlenp = 0; 9744 return (EOPNOTSUPP); 9745 } 9746 tcp->tcp_snd_zcopy_aware = 1; 9747 } 9748 break; 9749 default: 9750 *outlenp = 0; 9751 return (EINVAL); 9752 } 9753 break; 9754 case IPPROTO_TCP: 9755 switch (name) { 9756 case TCP_NODELAY: 9757 if (!checkonly) 9758 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 9759 break; 9760 case TCP_NOTIFY_THRESHOLD: 9761 if (!checkonly) 9762 tcp->tcp_first_timer_threshold = *i1; 9763 break; 9764 case TCP_ABORT_THRESHOLD: 9765 if (!checkonly) 9766 tcp->tcp_second_timer_threshold = *i1; 9767 break; 9768 case TCP_CONN_NOTIFY_THRESHOLD: 9769 if (!checkonly) 9770 tcp->tcp_first_ctimer_threshold = *i1; 9771 break; 9772 case TCP_CONN_ABORT_THRESHOLD: 9773 if (!checkonly) 9774 tcp->tcp_second_ctimer_threshold = *i1; 9775 break; 9776 case TCP_RECVDSTADDR: 9777 if (tcp->tcp_state > TCPS_LISTEN) 9778 return (EOPNOTSUPP); 9779 if (!checkonly) 9780 tcp->tcp_recvdstaddr = onoff; 9781 break; 9782 case TCP_ANONPRIVBIND: 9783 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 9784 *outlenp = 0; 9785 return (reterr); 9786 } 9787 if (!checkonly) { 9788 tcp->tcp_anon_priv_bind = onoff; 9789 } 9790 break; 9791 case TCP_EXCLBIND: 9792 if (!checkonly) 9793 tcp->tcp_exclbind = onoff; 9794 break; /* goto sizeof (int) option return */ 9795 case TCP_INIT_CWND: { 9796 uint32_t init_cwnd = *((uint32_t *)invalp); 9797 9798 if (checkonly) 9799 break; 9800 9801 /* 9802 * Only allow socket with network configuration 9803 * privilege to set the initial cwnd to be larger 9804 * than allowed by RFC 3390. 9805 */ 9806 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 9807 tcp->tcp_init_cwnd = init_cwnd; 9808 break; 9809 } 9810 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 9811 *outlenp = 0; 9812 return (reterr); 9813 } 9814 if (init_cwnd > TCP_MAX_INIT_CWND) { 9815 *outlenp = 0; 9816 return (EINVAL); 9817 } 9818 tcp->tcp_init_cwnd = init_cwnd; 9819 break; 9820 } 9821 case TCP_KEEPALIVE_THRESHOLD: 9822 if (checkonly) 9823 break; 9824 9825 if (*i1 < tcp_keepalive_interval_low || 9826 *i1 > tcp_keepalive_interval_high) { 9827 *outlenp = 0; 9828 return (EINVAL); 9829 } 9830 if (*i1 != tcp->tcp_ka_interval) { 9831 tcp->tcp_ka_interval = *i1; 9832 /* 9833 * Check if we need to restart the 9834 * keepalive timer. 9835 */ 9836 if (tcp->tcp_ka_tid != 0) { 9837 ASSERT(tcp->tcp_ka_enabled); 9838 (void) TCP_TIMER_CANCEL(tcp, 9839 tcp->tcp_ka_tid); 9840 tcp->tcp_ka_last_intrvl = 0; 9841 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9842 tcp_keepalive_killer, 9843 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9844 } 9845 } 9846 break; 9847 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9848 if (!checkonly) { 9849 if (*i1 < tcp_keepalive_abort_interval_low || 9850 *i1 > tcp_keepalive_abort_interval_high) { 9851 *outlenp = 0; 9852 return (EINVAL); 9853 } 9854 tcp->tcp_ka_abort_thres = *i1; 9855 } 9856 break; 9857 case TCP_CORK: 9858 if (!checkonly) { 9859 /* 9860 * if tcp->tcp_cork was set and is now 9861 * being unset, we have to make sure that 9862 * the remaining data gets sent out. Also 9863 * unset tcp->tcp_cork so that tcp_wput_data() 9864 * can send data even if it is less than mss 9865 */ 9866 if (tcp->tcp_cork && onoff == 0 && 9867 tcp->tcp_unsent > 0) { 9868 tcp->tcp_cork = B_FALSE; 9869 tcp_wput_data(tcp, NULL, B_FALSE); 9870 } 9871 tcp->tcp_cork = onoff; 9872 } 9873 break; 9874 default: 9875 *outlenp = 0; 9876 return (EINVAL); 9877 } 9878 break; 9879 case IPPROTO_IP: 9880 if (tcp->tcp_family != AF_INET) { 9881 *outlenp = 0; 9882 return (ENOPROTOOPT); 9883 } 9884 switch (name) { 9885 case IP_OPTIONS: 9886 case T_IP_OPTIONS: 9887 reterr = tcp_opt_set_header(tcp, checkonly, 9888 invalp, inlen); 9889 if (reterr) { 9890 *outlenp = 0; 9891 return (reterr); 9892 } 9893 /* OK return - copy input buffer into output buffer */ 9894 if (invalp != outvalp) { 9895 /* don't trust bcopy for identical src/dst */ 9896 bcopy(invalp, outvalp, inlen); 9897 } 9898 *outlenp = inlen; 9899 return (0); 9900 case IP_TOS: 9901 case T_IP_TOS: 9902 if (!checkonly) { 9903 tcp->tcp_ipha->ipha_type_of_service = 9904 (uchar_t)*i1; 9905 tcp->tcp_tos = (uchar_t)*i1; 9906 } 9907 break; 9908 case IP_TTL: 9909 if (!checkonly) { 9910 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 9911 tcp->tcp_ttl = (uchar_t)*i1; 9912 } 9913 break; 9914 case IP_BOUND_IF: 9915 /* Handled at the IP level */ 9916 return (-EINVAL); 9917 case IP_SEC_OPT: 9918 /* 9919 * We should not allow policy setting after 9920 * we start listening for connections. 9921 */ 9922 if (tcp->tcp_state == TCPS_LISTEN) { 9923 return (EINVAL); 9924 } else { 9925 /* Handled at the IP level */ 9926 return (-EINVAL); 9927 } 9928 default: 9929 *outlenp = 0; 9930 return (EINVAL); 9931 } 9932 break; 9933 case IPPROTO_IPV6: { 9934 ip6_pkt_t *ipp; 9935 9936 /* 9937 * IPPROTO_IPV6 options are only supported for sockets 9938 * that are using IPv6 on the wire. 9939 */ 9940 if (tcp->tcp_ipversion != IPV6_VERSION) { 9941 *outlenp = 0; 9942 return (ENOPROTOOPT); 9943 } 9944 /* 9945 * Only sticky options; no ancillary data 9946 */ 9947 ASSERT(thisdg_attrs == NULL); 9948 ipp = &tcp->tcp_sticky_ipp; 9949 9950 switch (name) { 9951 case IPV6_UNICAST_HOPS: 9952 /* -1 means use default */ 9953 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 9954 *outlenp = 0; 9955 return (EINVAL); 9956 } 9957 if (!checkonly) { 9958 if (*i1 == -1) { 9959 tcp->tcp_ip6h->ip6_hops = 9960 ipp->ipp_unicast_hops = 9961 (uint8_t)tcp_ipv6_hoplimit; 9962 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 9963 /* Pass modified value to IP. */ 9964 *i1 = tcp->tcp_ip6h->ip6_hops; 9965 } else { 9966 tcp->tcp_ip6h->ip6_hops = 9967 ipp->ipp_unicast_hops = 9968 (uint8_t)*i1; 9969 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 9970 } 9971 reterr = tcp_build_hdrs(q, tcp); 9972 if (reterr != 0) 9973 return (reterr); 9974 } 9975 break; 9976 case IPV6_BOUND_IF: 9977 if (!checkonly) { 9978 int error = 0; 9979 9980 tcp->tcp_bound_if = *i1; 9981 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 9982 B_TRUE, checkonly, level, name, mblk); 9983 if (error != 0) { 9984 *outlenp = 0; 9985 return (error); 9986 } 9987 } 9988 break; 9989 /* 9990 * Set boolean switches for ancillary data delivery 9991 */ 9992 case IPV6_RECVPKTINFO: 9993 if (!checkonly) { 9994 if (onoff) 9995 tcp->tcp_ipv6_recvancillary |= 9996 TCP_IPV6_RECVPKTINFO; 9997 else 9998 tcp->tcp_ipv6_recvancillary &= 9999 ~TCP_IPV6_RECVPKTINFO; 10000 /* Force it to be sent up with the next msg */ 10001 tcp->tcp_recvifindex = 0; 10002 } 10003 break; 10004 case IPV6_RECVTCLASS: 10005 if (!checkonly) { 10006 if (onoff) 10007 tcp->tcp_ipv6_recvancillary |= 10008 TCP_IPV6_RECVTCLASS; 10009 else 10010 tcp->tcp_ipv6_recvancillary &= 10011 ~TCP_IPV6_RECVTCLASS; 10012 } 10013 break; 10014 case IPV6_RECVHOPLIMIT: 10015 if (!checkonly) { 10016 if (onoff) 10017 tcp->tcp_ipv6_recvancillary |= 10018 TCP_IPV6_RECVHOPLIMIT; 10019 else 10020 tcp->tcp_ipv6_recvancillary &= 10021 ~TCP_IPV6_RECVHOPLIMIT; 10022 /* Force it to be sent up with the next msg */ 10023 tcp->tcp_recvhops = 0xffffffffU; 10024 } 10025 break; 10026 case IPV6_RECVHOPOPTS: 10027 if (!checkonly) { 10028 if (onoff) 10029 tcp->tcp_ipv6_recvancillary |= 10030 TCP_IPV6_RECVHOPOPTS; 10031 else 10032 tcp->tcp_ipv6_recvancillary &= 10033 ~TCP_IPV6_RECVHOPOPTS; 10034 } 10035 break; 10036 case IPV6_RECVDSTOPTS: 10037 if (!checkonly) { 10038 if (onoff) 10039 tcp->tcp_ipv6_recvancillary |= 10040 TCP_IPV6_RECVDSTOPTS; 10041 else 10042 tcp->tcp_ipv6_recvancillary &= 10043 ~TCP_IPV6_RECVDSTOPTS; 10044 } 10045 break; 10046 case _OLD_IPV6_RECVDSTOPTS: 10047 if (!checkonly) { 10048 if (onoff) 10049 tcp->tcp_ipv6_recvancillary |= 10050 TCP_OLD_IPV6_RECVDSTOPTS; 10051 else 10052 tcp->tcp_ipv6_recvancillary &= 10053 ~TCP_OLD_IPV6_RECVDSTOPTS; 10054 } 10055 break; 10056 case IPV6_RECVRTHDR: 10057 if (!checkonly) { 10058 if (onoff) 10059 tcp->tcp_ipv6_recvancillary |= 10060 TCP_IPV6_RECVRTHDR; 10061 else 10062 tcp->tcp_ipv6_recvancillary &= 10063 ~TCP_IPV6_RECVRTHDR; 10064 } 10065 break; 10066 case IPV6_RECVRTHDRDSTOPTS: 10067 if (!checkonly) { 10068 if (onoff) 10069 tcp->tcp_ipv6_recvancillary |= 10070 TCP_IPV6_RECVRTDSTOPTS; 10071 else 10072 tcp->tcp_ipv6_recvancillary &= 10073 ~TCP_IPV6_RECVRTDSTOPTS; 10074 } 10075 break; 10076 case IPV6_PKTINFO: 10077 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10078 return (EINVAL); 10079 if (checkonly) 10080 break; 10081 10082 if (inlen == 0) { 10083 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10084 } else { 10085 struct in6_pktinfo *pkti; 10086 10087 pkti = (struct in6_pktinfo *)invalp; 10088 /* 10089 * RFC 3542 states that ipi6_addr must be 10090 * the unspecified address when setting the 10091 * IPV6_PKTINFO sticky socket option on a 10092 * TCP socket. 10093 */ 10094 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10095 return (EINVAL); 10096 /* 10097 * ip6_set_pktinfo() validates the source 10098 * address and interface index. 10099 */ 10100 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10101 pkti, mblk); 10102 if (reterr != 0) 10103 return (reterr); 10104 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10105 ipp->ipp_addr = pkti->ipi6_addr; 10106 if (ipp->ipp_ifindex != 0) 10107 ipp->ipp_fields |= IPPF_IFINDEX; 10108 else 10109 ipp->ipp_fields &= ~IPPF_IFINDEX; 10110 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10111 ipp->ipp_fields |= IPPF_ADDR; 10112 else 10113 ipp->ipp_fields &= ~IPPF_ADDR; 10114 } 10115 reterr = tcp_build_hdrs(q, tcp); 10116 if (reterr != 0) 10117 return (reterr); 10118 break; 10119 case IPV6_TCLASS: 10120 if (inlen != 0 && inlen != sizeof (int)) 10121 return (EINVAL); 10122 if (checkonly) 10123 break; 10124 10125 if (inlen == 0) { 10126 ipp->ipp_fields &= ~IPPF_TCLASS; 10127 } else { 10128 if (*i1 > 255 || *i1 < -1) 10129 return (EINVAL); 10130 if (*i1 == -1) { 10131 ipp->ipp_tclass = 0; 10132 *i1 = 0; 10133 } else { 10134 ipp->ipp_tclass = *i1; 10135 } 10136 ipp->ipp_fields |= IPPF_TCLASS; 10137 } 10138 reterr = tcp_build_hdrs(q, tcp); 10139 if (reterr != 0) 10140 return (reterr); 10141 break; 10142 case IPV6_NEXTHOP: 10143 /* 10144 * IP will verify that the nexthop is reachable 10145 * and fail for sticky options. 10146 */ 10147 if (inlen != 0 && inlen != sizeof (sin6_t)) 10148 return (EINVAL); 10149 if (checkonly) 10150 break; 10151 10152 if (inlen == 0) { 10153 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10154 } else { 10155 sin6_t *sin6 = (sin6_t *)invalp; 10156 10157 if (sin6->sin6_family != AF_INET6) 10158 return (EAFNOSUPPORT); 10159 if (IN6_IS_ADDR_V4MAPPED( 10160 &sin6->sin6_addr)) 10161 return (EADDRNOTAVAIL); 10162 ipp->ipp_nexthop = sin6->sin6_addr; 10163 if (!IN6_IS_ADDR_UNSPECIFIED( 10164 &ipp->ipp_nexthop)) 10165 ipp->ipp_fields |= IPPF_NEXTHOP; 10166 else 10167 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10168 } 10169 reterr = tcp_build_hdrs(q, tcp); 10170 if (reterr != 0) 10171 return (reterr); 10172 break; 10173 case IPV6_HOPOPTS: { 10174 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10175 /* 10176 * Sanity checks - minimum size, size a multiple of 10177 * eight bytes, and matching size passed in. 10178 */ 10179 if (inlen != 0 && 10180 inlen != (8 * (hopts->ip6h_len + 1))) 10181 return (EINVAL); 10182 10183 if (checkonly) 10184 break; 10185 10186 if (inlen == 0) { 10187 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 10188 kmem_free(ipp->ipp_hopopts, 10189 ipp->ipp_hopoptslen); 10190 ipp->ipp_hopopts = NULL; 10191 ipp->ipp_hopoptslen = 0; 10192 } 10193 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10194 } else { 10195 reterr = tcp_pkt_set(invalp, inlen, 10196 (uchar_t **)&ipp->ipp_hopopts, 10197 &ipp->ipp_hopoptslen); 10198 if (reterr != 0) 10199 return (reterr); 10200 ipp->ipp_fields |= IPPF_HOPOPTS; 10201 } 10202 reterr = tcp_build_hdrs(q, tcp); 10203 if (reterr != 0) 10204 return (reterr); 10205 break; 10206 } 10207 case IPV6_RTHDRDSTOPTS: { 10208 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10209 10210 /* 10211 * Sanity checks - minimum size, size a multiple of 10212 * eight bytes, and matching size passed in. 10213 */ 10214 if (inlen != 0 && 10215 inlen != (8 * (dopts->ip6d_len + 1))) 10216 return (EINVAL); 10217 10218 if (checkonly) 10219 break; 10220 10221 if (inlen == 0) { 10222 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 10223 kmem_free(ipp->ipp_rtdstopts, 10224 ipp->ipp_rtdstoptslen); 10225 ipp->ipp_rtdstopts = NULL; 10226 ipp->ipp_rtdstoptslen = 0; 10227 } 10228 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10229 } else { 10230 reterr = tcp_pkt_set(invalp, inlen, 10231 (uchar_t **)&ipp->ipp_rtdstopts, 10232 &ipp->ipp_rtdstoptslen); 10233 if (reterr != 0) 10234 return (reterr); 10235 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10236 } 10237 reterr = tcp_build_hdrs(q, tcp); 10238 if (reterr != 0) 10239 return (reterr); 10240 break; 10241 } 10242 case IPV6_DSTOPTS: { 10243 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10244 10245 /* 10246 * Sanity checks - minimum size, size a multiple of 10247 * eight bytes, and matching size passed in. 10248 */ 10249 if (inlen != 0 && 10250 inlen != (8 * (dopts->ip6d_len + 1))) 10251 return (EINVAL); 10252 10253 if (checkonly) 10254 break; 10255 10256 if (inlen == 0) { 10257 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 10258 kmem_free(ipp->ipp_dstopts, 10259 ipp->ipp_dstoptslen); 10260 ipp->ipp_dstopts = NULL; 10261 ipp->ipp_dstoptslen = 0; 10262 } 10263 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10264 } else { 10265 reterr = tcp_pkt_set(invalp, inlen, 10266 (uchar_t **)&ipp->ipp_dstopts, 10267 &ipp->ipp_dstoptslen); 10268 if (reterr != 0) 10269 return (reterr); 10270 ipp->ipp_fields |= IPPF_DSTOPTS; 10271 } 10272 reterr = tcp_build_hdrs(q, tcp); 10273 if (reterr != 0) 10274 return (reterr); 10275 break; 10276 } 10277 case IPV6_RTHDR: { 10278 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10279 10280 /* 10281 * Sanity checks - minimum size, size a multiple of 10282 * eight bytes, and matching size passed in. 10283 */ 10284 if (inlen != 0 && 10285 inlen != (8 * (rt->ip6r_len + 1))) 10286 return (EINVAL); 10287 10288 if (checkonly) 10289 break; 10290 10291 if (inlen == 0) { 10292 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 10293 kmem_free(ipp->ipp_rthdr, 10294 ipp->ipp_rthdrlen); 10295 ipp->ipp_rthdr = NULL; 10296 ipp->ipp_rthdrlen = 0; 10297 } 10298 ipp->ipp_fields &= ~IPPF_RTHDR; 10299 } else { 10300 reterr = tcp_pkt_set(invalp, inlen, 10301 (uchar_t **)&ipp->ipp_rthdr, 10302 &ipp->ipp_rthdrlen); 10303 if (reterr != 0) 10304 return (reterr); 10305 ipp->ipp_fields |= IPPF_RTHDR; 10306 } 10307 reterr = tcp_build_hdrs(q, tcp); 10308 if (reterr != 0) 10309 return (reterr); 10310 break; 10311 } 10312 case IPV6_V6ONLY: 10313 if (!checkonly) 10314 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10315 break; 10316 case IPV6_USE_MIN_MTU: 10317 if (inlen != sizeof (int)) 10318 return (EINVAL); 10319 10320 if (*i1 < -1 || *i1 > 1) 10321 return (EINVAL); 10322 10323 if (checkonly) 10324 break; 10325 10326 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10327 ipp->ipp_use_min_mtu = *i1; 10328 break; 10329 case IPV6_BOUND_PIF: 10330 /* Handled at the IP level */ 10331 return (-EINVAL); 10332 case IPV6_SEC_OPT: 10333 /* 10334 * We should not allow policy setting after 10335 * we start listening for connections. 10336 */ 10337 if (tcp->tcp_state == TCPS_LISTEN) { 10338 return (EINVAL); 10339 } else { 10340 /* Handled at the IP level */ 10341 return (-EINVAL); 10342 } 10343 case IPV6_SRC_PREFERENCES: 10344 if (inlen != sizeof (uint32_t)) 10345 return (EINVAL); 10346 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10347 *(uint32_t *)invalp); 10348 if (reterr != 0) { 10349 *outlenp = 0; 10350 return (reterr); 10351 } 10352 break; 10353 default: 10354 *outlenp = 0; 10355 return (EINVAL); 10356 } 10357 break; 10358 } /* end IPPROTO_IPV6 */ 10359 default: 10360 *outlenp = 0; 10361 return (EINVAL); 10362 } 10363 /* 10364 * Common case of OK return with outval same as inval 10365 */ 10366 if (invalp != outvalp) { 10367 /* don't trust bcopy for identical src/dst */ 10368 (void) bcopy(invalp, outvalp, inlen); 10369 } 10370 *outlenp = inlen; 10371 return (0); 10372 } 10373 10374 /* 10375 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10376 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10377 * headers, and the maximum size tcp header (to avoid reallocation 10378 * on the fly for additional tcp options). 10379 * Returns failure if can't allocate memory. 10380 */ 10381 static int 10382 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10383 { 10384 char *hdrs; 10385 uint_t hdrs_len; 10386 ip6i_t *ip6i; 10387 char buf[TCP_MAX_HDR_LENGTH]; 10388 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10389 in6_addr_t src, dst; 10390 10391 /* 10392 * save the existing tcp header and source/dest IP addresses 10393 */ 10394 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10395 src = tcp->tcp_ip6h->ip6_src; 10396 dst = tcp->tcp_ip6h->ip6_dst; 10397 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10398 ASSERT(hdrs_len != 0); 10399 if (hdrs_len > tcp->tcp_iphc_len) { 10400 /* Need to reallocate */ 10401 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10402 if (hdrs == NULL) 10403 return (ENOMEM); 10404 if (tcp->tcp_iphc != NULL) { 10405 if (tcp->tcp_hdr_grown) { 10406 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10407 } else { 10408 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10409 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10410 } 10411 tcp->tcp_iphc_len = 0; 10412 } 10413 ASSERT(tcp->tcp_iphc_len == 0); 10414 tcp->tcp_iphc = hdrs; 10415 tcp->tcp_iphc_len = hdrs_len; 10416 tcp->tcp_hdr_grown = B_TRUE; 10417 } 10418 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10419 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10420 10421 /* Set header fields not in ipp */ 10422 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10423 ip6i = (ip6i_t *)tcp->tcp_iphc; 10424 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10425 } else { 10426 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10427 } 10428 /* 10429 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10430 * 10431 * tcp->tcp_tcp_hdr_len doesn't change here. 10432 */ 10433 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10434 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10435 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10436 10437 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10438 10439 tcp->tcp_ip6h->ip6_src = src; 10440 tcp->tcp_ip6h->ip6_dst = dst; 10441 10442 /* 10443 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10444 * the default value for TCP. 10445 */ 10446 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10447 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 10448 10449 /* 10450 * If we're setting extension headers after a connection 10451 * has been established, and if we have a routing header 10452 * among the extension headers, call ip_massage_options_v6 to 10453 * manipulate the routing header/ip6_dst set the checksum 10454 * difference in the tcp header template. 10455 * (This happens in tcp_connect_ipv6 if the routing header 10456 * is set prior to the connect.) 10457 * Set the tcp_sum to zero first in case we've cleared a 10458 * routing header or don't have one at all. 10459 */ 10460 tcp->tcp_sum = 0; 10461 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10462 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10463 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10464 (uint8_t *)tcp->tcp_tcph); 10465 if (rth != NULL) { 10466 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10467 rth); 10468 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10469 (tcp->tcp_sum >> 16)); 10470 } 10471 } 10472 10473 /* Try to get everything in a single mblk */ 10474 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 10475 return (0); 10476 } 10477 10478 /* 10479 * Set optbuf and optlen for the option. 10480 * Allocate memory (if not already present). 10481 * Otherwise just point optbuf and optlen at invalp and inlen. 10482 * Returns failure if memory can not be allocated. 10483 */ 10484 static int 10485 tcp_pkt_set(uchar_t *invalp, uint_t inlen, uchar_t **optbufp, uint_t *optlenp) 10486 { 10487 uchar_t *optbuf; 10488 10489 if (inlen == *optlenp) { 10490 /* Unchanged length - no need to realocate */ 10491 bcopy(invalp, *optbufp, inlen); 10492 return (0); 10493 } 10494 if (inlen != 0) { 10495 /* Allocate new buffer before free */ 10496 optbuf = kmem_alloc(inlen, KM_NOSLEEP); 10497 if (optbuf == NULL) 10498 return (ENOMEM); 10499 } else { 10500 optbuf = NULL; 10501 } 10502 /* Free old buffer */ 10503 if (*optlenp != 0) 10504 kmem_free(*optbufp, *optlenp); 10505 10506 bcopy(invalp, optbuf, inlen); 10507 *optbufp = optbuf; 10508 *optlenp = inlen; 10509 return (0); 10510 } 10511 10512 10513 /* 10514 * Use the outgoing IP header to create an IP_OPTIONS option the way 10515 * it was passed down from the application. 10516 */ 10517 static int 10518 tcp_opt_get_user(ipha_t *ipha, uchar_t *buf) 10519 { 10520 ipoptp_t opts; 10521 uchar_t *opt; 10522 uint8_t optval; 10523 uint8_t optlen; 10524 uint32_t len = 0; 10525 uchar_t *buf1 = buf; 10526 10527 buf += IP_ADDR_LEN; /* Leave room for final destination */ 10528 len += IP_ADDR_LEN; 10529 bzero(buf1, IP_ADDR_LEN); 10530 10531 for (optval = ipoptp_first(&opts, ipha); 10532 optval != IPOPT_EOL; 10533 optval = ipoptp_next(&opts)) { 10534 opt = opts.ipoptp_cur; 10535 optlen = opts.ipoptp_len; 10536 switch (optval) { 10537 int off; 10538 case IPOPT_SSRR: 10539 case IPOPT_LSRR: 10540 10541 /* 10542 * Insert ipha_dst as the first entry in the source 10543 * route and move down the entries on step. 10544 * The last entry gets placed at buf1. 10545 */ 10546 buf[IPOPT_OPTVAL] = optval; 10547 buf[IPOPT_OLEN] = optlen; 10548 buf[IPOPT_OFFSET] = optlen; 10549 10550 off = optlen - IP_ADDR_LEN; 10551 if (off < 0) { 10552 /* No entries in source route */ 10553 break; 10554 } 10555 /* Last entry in source route */ 10556 bcopy(opt + off, buf1, IP_ADDR_LEN); 10557 off -= IP_ADDR_LEN; 10558 10559 while (off > 0) { 10560 bcopy(opt + off, 10561 buf + off + IP_ADDR_LEN, 10562 IP_ADDR_LEN); 10563 off -= IP_ADDR_LEN; 10564 } 10565 /* ipha_dst into first slot */ 10566 bcopy(&ipha->ipha_dst, 10567 buf + off + IP_ADDR_LEN, 10568 IP_ADDR_LEN); 10569 buf += optlen; 10570 len += optlen; 10571 break; 10572 default: 10573 bcopy(opt, buf, optlen); 10574 buf += optlen; 10575 len += optlen; 10576 break; 10577 } 10578 } 10579 done: 10580 /* Pad the resulting options */ 10581 while (len & 0x3) { 10582 *buf++ = IPOPT_EOL; 10583 len++; 10584 } 10585 return (len); 10586 } 10587 10588 /* 10589 * Transfer any source route option from ipha to buf/dst in reversed form. 10590 */ 10591 static int 10592 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10593 { 10594 ipoptp_t opts; 10595 uchar_t *opt; 10596 uint8_t optval; 10597 uint8_t optlen; 10598 uint32_t len = 0; 10599 10600 for (optval = ipoptp_first(&opts, ipha); 10601 optval != IPOPT_EOL; 10602 optval = ipoptp_next(&opts)) { 10603 opt = opts.ipoptp_cur; 10604 optlen = opts.ipoptp_len; 10605 switch (optval) { 10606 int off1, off2; 10607 case IPOPT_SSRR: 10608 case IPOPT_LSRR: 10609 10610 /* Reverse source route */ 10611 /* 10612 * First entry should be the next to last one in the 10613 * current source route (the last entry is our 10614 * address.) 10615 * The last entry should be the final destination. 10616 */ 10617 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10618 buf[IPOPT_OLEN] = (uint8_t)optlen; 10619 off1 = IPOPT_MINOFF_SR - 1; 10620 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10621 if (off2 < 0) { 10622 /* No entries in source route */ 10623 break; 10624 } 10625 bcopy(opt + off2, dst, IP_ADDR_LEN); 10626 /* 10627 * Note: use src since ipha has not had its src 10628 * and dst reversed (it is in the state it was 10629 * received. 10630 */ 10631 bcopy(&ipha->ipha_src, buf + off2, 10632 IP_ADDR_LEN); 10633 off2 -= IP_ADDR_LEN; 10634 10635 while (off2 > 0) { 10636 bcopy(opt + off2, buf + off1, 10637 IP_ADDR_LEN); 10638 off1 += IP_ADDR_LEN; 10639 off2 -= IP_ADDR_LEN; 10640 } 10641 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10642 buf += optlen; 10643 len += optlen; 10644 break; 10645 } 10646 } 10647 done: 10648 /* Pad the resulting options */ 10649 while (len & 0x3) { 10650 *buf++ = IPOPT_EOL; 10651 len++; 10652 } 10653 return (len); 10654 } 10655 10656 10657 /* 10658 * Extract and revert a source route from ipha (if any) 10659 * and then update the relevant fields in both tcp_t and the standard header. 10660 */ 10661 static void 10662 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 10663 { 10664 char buf[TCP_MAX_HDR_LENGTH]; 10665 uint_t tcph_len; 10666 int len; 10667 10668 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 10669 len = IPH_HDR_LENGTH(ipha); 10670 if (len == IP_SIMPLE_HDR_LENGTH) 10671 /* Nothing to do */ 10672 return; 10673 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 10674 (len & 0x3)) 10675 return; 10676 10677 tcph_len = tcp->tcp_tcp_hdr_len; 10678 bcopy(tcp->tcp_tcph, buf, tcph_len); 10679 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 10680 (tcp->tcp_ipha->ipha_dst & 0xffff); 10681 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 10682 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 10683 len += IP_SIMPLE_HDR_LENGTH; 10684 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 10685 (tcp->tcp_ipha->ipha_dst & 0xffff)); 10686 if ((int)tcp->tcp_sum < 0) 10687 tcp->tcp_sum--; 10688 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 10689 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 10690 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 10691 bcopy(buf, tcp->tcp_tcph, tcph_len); 10692 tcp->tcp_ip_hdr_len = len; 10693 tcp->tcp_ipha->ipha_version_and_hdr_length = 10694 (IP_VERSION << 4) | (len >> 2); 10695 len += tcph_len; 10696 tcp->tcp_hdr_len = len; 10697 } 10698 10699 /* 10700 * Copy the standard header into its new location, 10701 * lay in the new options and then update the relevant 10702 * fields in both tcp_t and the standard header. 10703 */ 10704 static int 10705 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 10706 { 10707 uint_t tcph_len; 10708 char *ip_optp; 10709 tcph_t *new_tcph; 10710 10711 if (checkonly) { 10712 /* 10713 * do not really set, just pretend to - T_CHECK 10714 */ 10715 if (len != 0) { 10716 /* 10717 * there is value supplied, validate it as if 10718 * for a real set operation. 10719 */ 10720 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10721 return (EINVAL); 10722 } 10723 return (0); 10724 } 10725 10726 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10727 return (EINVAL); 10728 10729 ip_optp = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 10730 tcph_len = tcp->tcp_tcp_hdr_len; 10731 new_tcph = (tcph_t *)(ip_optp + len); 10732 ovbcopy((char *)tcp->tcp_tcph, (char *)new_tcph, tcph_len); 10733 tcp->tcp_tcph = new_tcph; 10734 bcopy(ptr, ip_optp, len); 10735 10736 len += IP_SIMPLE_HDR_LENGTH; 10737 10738 tcp->tcp_ip_hdr_len = len; 10739 tcp->tcp_ipha->ipha_version_and_hdr_length = 10740 (IP_VERSION << 4) | (len >> 2); 10741 len += tcph_len; 10742 tcp->tcp_hdr_len = len; 10743 if (!TCP_IS_DETACHED(tcp)) { 10744 /* Always allocate room for all options. */ 10745 (void) mi_set_sth_wroff(tcp->tcp_rq, 10746 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 10747 } 10748 return (0); 10749 } 10750 10751 /* Get callback routine passed to nd_load by tcp_param_register */ 10752 /* ARGSUSED */ 10753 static int 10754 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 10755 { 10756 tcpparam_t *tcppa = (tcpparam_t *)cp; 10757 10758 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 10759 return (0); 10760 } 10761 10762 /* 10763 * Walk through the param array specified registering each element with the 10764 * named dispatch handler. 10765 */ 10766 static boolean_t 10767 tcp_param_register(tcpparam_t *tcppa, int cnt) 10768 { 10769 for (; cnt-- > 0; tcppa++) { 10770 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 10771 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 10772 tcp_param_get, tcp_param_set, 10773 (caddr_t)tcppa)) { 10774 nd_free(&tcp_g_nd); 10775 return (B_FALSE); 10776 } 10777 } 10778 } 10779 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 10780 tcp_param_get, tcp_param_set_aligned, 10781 (caddr_t)&tcp_wroff_xtra_param)) { 10782 nd_free(&tcp_g_nd); 10783 return (B_FALSE); 10784 } 10785 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 10786 tcp_param_get, tcp_param_set_aligned, 10787 (caddr_t)&tcp_mdt_head_param)) { 10788 nd_free(&tcp_g_nd); 10789 return (B_FALSE); 10790 } 10791 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 10792 tcp_param_get, tcp_param_set_aligned, 10793 (caddr_t)&tcp_mdt_tail_param)) { 10794 nd_free(&tcp_g_nd); 10795 return (B_FALSE); 10796 } 10797 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 10798 tcp_param_get, tcp_param_set, 10799 (caddr_t)&tcp_mdt_max_pbufs_param)) { 10800 nd_free(&tcp_g_nd); 10801 return (B_FALSE); 10802 } 10803 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 10804 tcp_extra_priv_ports_get, NULL, NULL)) { 10805 nd_free(&tcp_g_nd); 10806 return (B_FALSE); 10807 } 10808 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 10809 NULL, tcp_extra_priv_ports_add, NULL)) { 10810 nd_free(&tcp_g_nd); 10811 return (B_FALSE); 10812 } 10813 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 10814 NULL, tcp_extra_priv_ports_del, NULL)) { 10815 nd_free(&tcp_g_nd); 10816 return (B_FALSE); 10817 } 10818 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 10819 NULL)) { 10820 nd_free(&tcp_g_nd); 10821 return (B_FALSE); 10822 } 10823 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 10824 NULL, NULL)) { 10825 nd_free(&tcp_g_nd); 10826 return (B_FALSE); 10827 } 10828 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 10829 NULL, NULL)) { 10830 nd_free(&tcp_g_nd); 10831 return (B_FALSE); 10832 } 10833 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 10834 NULL, NULL)) { 10835 nd_free(&tcp_g_nd); 10836 return (B_FALSE); 10837 } 10838 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 10839 NULL, NULL)) { 10840 nd_free(&tcp_g_nd); 10841 return (B_FALSE); 10842 } 10843 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 10844 tcp_host_param_set, NULL)) { 10845 nd_free(&tcp_g_nd); 10846 return (B_FALSE); 10847 } 10848 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 10849 tcp_host_param_set_ipv6, NULL)) { 10850 nd_free(&tcp_g_nd); 10851 return (B_FALSE); 10852 } 10853 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 10854 NULL)) { 10855 nd_free(&tcp_g_nd); 10856 return (B_FALSE); 10857 } 10858 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 10859 tcp_reserved_port_list, NULL, NULL)) { 10860 nd_free(&tcp_g_nd); 10861 return (B_FALSE); 10862 } 10863 /* 10864 * Dummy ndd variables - only to convey obsolescence information 10865 * through printing of their name (no get or set routines) 10866 * XXX Remove in future releases ? 10867 */ 10868 if (!nd_load(&tcp_g_nd, 10869 "tcp_close_wait_interval(obsoleted - " 10870 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 10871 nd_free(&tcp_g_nd); 10872 return (B_FALSE); 10873 } 10874 return (B_TRUE); 10875 } 10876 10877 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 10878 /* ARGSUSED */ 10879 static int 10880 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 10881 cred_t *cr) 10882 { 10883 long new_value; 10884 tcpparam_t *tcppa = (tcpparam_t *)cp; 10885 10886 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10887 new_value < tcppa->tcp_param_min || 10888 new_value > tcppa->tcp_param_max) { 10889 return (EINVAL); 10890 } 10891 /* 10892 * Need to make sure new_value is a multiple of 4. If it is not, 10893 * round it up. For future 64 bit requirement, we actually make it 10894 * a multiple of 8. 10895 */ 10896 if (new_value & 0x7) { 10897 new_value = (new_value & ~0x7) + 0x8; 10898 } 10899 tcppa->tcp_param_val = new_value; 10900 return (0); 10901 } 10902 10903 /* Set callback routine passed to nd_load by tcp_param_register */ 10904 /* ARGSUSED */ 10905 static int 10906 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 10907 { 10908 long new_value; 10909 tcpparam_t *tcppa = (tcpparam_t *)cp; 10910 10911 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10912 new_value < tcppa->tcp_param_min || 10913 new_value > tcppa->tcp_param_max) { 10914 return (EINVAL); 10915 } 10916 tcppa->tcp_param_val = new_value; 10917 return (0); 10918 } 10919 10920 /* 10921 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 10922 * is filled, return as much as we can. The message passed in may be 10923 * multi-part, chained using b_cont. "start" is the starting sequence 10924 * number for this piece. 10925 */ 10926 static mblk_t * 10927 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 10928 { 10929 uint32_t end; 10930 mblk_t *mp1; 10931 mblk_t *mp2; 10932 mblk_t *next_mp; 10933 uint32_t u1; 10934 10935 /* Walk through all the new pieces. */ 10936 do { 10937 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10938 (uintptr_t)INT_MAX); 10939 end = start + (int)(mp->b_wptr - mp->b_rptr); 10940 next_mp = mp->b_cont; 10941 if (start == end) { 10942 /* Empty. Blast it. */ 10943 freeb(mp); 10944 continue; 10945 } 10946 mp->b_cont = NULL; 10947 TCP_REASS_SET_SEQ(mp, start); 10948 TCP_REASS_SET_END(mp, end); 10949 mp1 = tcp->tcp_reass_tail; 10950 if (!mp1) { 10951 tcp->tcp_reass_tail = mp; 10952 tcp->tcp_reass_head = mp; 10953 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 10954 UPDATE_MIB(&tcp_mib, 10955 tcpInDataUnorderBytes, end - start); 10956 continue; 10957 } 10958 /* New stuff completely beyond tail? */ 10959 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 10960 /* Link it on end. */ 10961 mp1->b_cont = mp; 10962 tcp->tcp_reass_tail = mp; 10963 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 10964 UPDATE_MIB(&tcp_mib, 10965 tcpInDataUnorderBytes, end - start); 10966 continue; 10967 } 10968 mp1 = tcp->tcp_reass_head; 10969 u1 = TCP_REASS_SEQ(mp1); 10970 /* New stuff at the front? */ 10971 if (SEQ_LT(start, u1)) { 10972 /* Yes... Check for overlap. */ 10973 mp->b_cont = mp1; 10974 tcp->tcp_reass_head = mp; 10975 tcp_reass_elim_overlap(tcp, mp); 10976 continue; 10977 } 10978 /* 10979 * The new piece fits somewhere between the head and tail. 10980 * We find our slot, where mp1 precedes us and mp2 trails. 10981 */ 10982 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 10983 u1 = TCP_REASS_SEQ(mp2); 10984 if (SEQ_LEQ(start, u1)) 10985 break; 10986 } 10987 /* Link ourselves in */ 10988 mp->b_cont = mp2; 10989 mp1->b_cont = mp; 10990 10991 /* Trim overlap with following mblk(s) first */ 10992 tcp_reass_elim_overlap(tcp, mp); 10993 10994 /* Trim overlap with preceding mblk */ 10995 tcp_reass_elim_overlap(tcp, mp1); 10996 10997 } while (start = end, mp = next_mp); 10998 mp1 = tcp->tcp_reass_head; 10999 /* Anything ready to go? */ 11000 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11001 return (NULL); 11002 /* Eat what we can off the queue */ 11003 for (;;) { 11004 mp = mp1->b_cont; 11005 end = TCP_REASS_END(mp1); 11006 TCP_REASS_SET_SEQ(mp1, 0); 11007 TCP_REASS_SET_END(mp1, 0); 11008 if (!mp) { 11009 tcp->tcp_reass_tail = NULL; 11010 break; 11011 } 11012 if (end != TCP_REASS_SEQ(mp)) { 11013 mp1->b_cont = NULL; 11014 break; 11015 } 11016 mp1 = mp; 11017 } 11018 mp1 = tcp->tcp_reass_head; 11019 tcp->tcp_reass_head = mp; 11020 return (mp1); 11021 } 11022 11023 /* Eliminate any overlap that mp may have over later mblks */ 11024 static void 11025 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11026 { 11027 uint32_t end; 11028 mblk_t *mp1; 11029 uint32_t u1; 11030 11031 end = TCP_REASS_END(mp); 11032 while ((mp1 = mp->b_cont) != NULL) { 11033 u1 = TCP_REASS_SEQ(mp1); 11034 if (!SEQ_GT(end, u1)) 11035 break; 11036 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11037 mp->b_wptr -= end - u1; 11038 TCP_REASS_SET_END(mp, u1); 11039 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11040 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11041 break; 11042 } 11043 mp->b_cont = mp1->b_cont; 11044 TCP_REASS_SET_SEQ(mp1, 0); 11045 TCP_REASS_SET_END(mp1, 0); 11046 freeb(mp1); 11047 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11048 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11049 } 11050 if (!mp1) 11051 tcp->tcp_reass_tail = mp; 11052 } 11053 11054 /* 11055 * Send up all messages queued on tcp_rcv_list. 11056 */ 11057 static uint_t 11058 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11059 { 11060 mblk_t *mp; 11061 uint_t ret = 0; 11062 uint_t thwin; 11063 #ifdef DEBUG 11064 uint_t cnt = 0; 11065 #endif 11066 /* Can't drain on an eager connection */ 11067 if (tcp->tcp_listener != NULL) 11068 return (ret); 11069 11070 /* 11071 * Handle two cases here: we are currently fused or we were 11072 * previously fused and have some urgent data to be delivered 11073 * upstream. The latter happens because we either ran out of 11074 * memory or were detached and therefore sending the SIGURG was 11075 * deferred until this point. In either case we pass control 11076 * over to tcp_fuse_rcv_drain() since it may need to complete 11077 * some work. 11078 */ 11079 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11080 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11081 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11082 &tcp->tcp_fused_sigurg_mp)) 11083 return (ret); 11084 } 11085 11086 while ((mp = tcp->tcp_rcv_list) != NULL) { 11087 tcp->tcp_rcv_list = mp->b_next; 11088 mp->b_next = NULL; 11089 #ifdef DEBUG 11090 cnt += msgdsize(mp); 11091 #endif 11092 /* Does this need SSL processing first? */ 11093 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11094 tcp_kssl_input(tcp, mp); 11095 continue; 11096 } 11097 putnext(q, mp); 11098 } 11099 ASSERT(cnt == tcp->tcp_rcv_cnt); 11100 tcp->tcp_rcv_last_head = NULL; 11101 tcp->tcp_rcv_last_tail = NULL; 11102 tcp->tcp_rcv_cnt = 0; 11103 11104 /* Learn the latest rwnd information that we sent to the other side. */ 11105 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11106 << tcp->tcp_rcv_ws; 11107 /* This is peer's calculated send window (our receive window). */ 11108 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11109 /* 11110 * Increase the receive window to max. But we need to do receiver 11111 * SWS avoidance. This means that we need to check the increase of 11112 * of receive window is at least 1 MSS. 11113 */ 11114 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11115 /* 11116 * If the window that the other side knows is less than max 11117 * deferred acks segments, send an update immediately. 11118 */ 11119 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11120 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11121 ret = TH_ACK_NEEDED; 11122 } 11123 tcp->tcp_rwnd = q->q_hiwat; 11124 } 11125 /* No need for the push timer now. */ 11126 if (tcp->tcp_push_tid != 0) { 11127 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11128 tcp->tcp_push_tid = 0; 11129 } 11130 return (ret); 11131 } 11132 11133 /* 11134 * Queue data on tcp_rcv_list which is a b_next chain. 11135 * tcp_rcv_last_head/tail is the last element of this chain. 11136 * Each element of the chain is a b_cont chain. 11137 * 11138 * M_DATA messages are added to the current element. 11139 * Other messages are added as new (b_next) elements. 11140 */ 11141 void 11142 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11143 { 11144 ASSERT(seg_len == msgdsize(mp)); 11145 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11146 11147 if (tcp->tcp_rcv_list == NULL) { 11148 ASSERT(tcp->tcp_rcv_last_head == NULL); 11149 tcp->tcp_rcv_list = mp; 11150 tcp->tcp_rcv_last_head = mp; 11151 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11152 tcp->tcp_rcv_last_tail->b_cont = mp; 11153 } else { 11154 tcp->tcp_rcv_last_head->b_next = mp; 11155 tcp->tcp_rcv_last_head = mp; 11156 } 11157 11158 while (mp->b_cont) 11159 mp = mp->b_cont; 11160 11161 tcp->tcp_rcv_last_tail = mp; 11162 tcp->tcp_rcv_cnt += seg_len; 11163 tcp->tcp_rwnd -= seg_len; 11164 } 11165 11166 /* 11167 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11168 * 11169 * This is the default entry function into TCP on the read side. TCP is 11170 * always entered via squeue i.e. using squeue's for mutual exclusion. 11171 * When classifier does a lookup to find the tcp, it also puts a reference 11172 * on the conn structure associated so the tcp is guaranteed to exist 11173 * when we come here. We still need to check the state because it might 11174 * as well has been closed. The squeue processing function i.e. squeue_enter, 11175 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11176 * CONN_DEC_REF. 11177 * 11178 * Apart from the default entry point, IP also sends packets directly to 11179 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11180 * connections. 11181 */ 11182 void 11183 tcp_input(void *arg, mblk_t *mp, void *arg2) 11184 { 11185 conn_t *connp = (conn_t *)arg; 11186 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11187 11188 /* arg2 is the sqp */ 11189 ASSERT(arg2 != NULL); 11190 ASSERT(mp != NULL); 11191 11192 /* 11193 * Don't accept any input on a closed tcp as this TCP logically does 11194 * not exist on the system. Don't proceed further with this TCP. 11195 * For eg. this packet could trigger another close of this tcp 11196 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11197 * tcp_clean_death / tcp_closei_local must be called at most once 11198 * on a TCP. In this case we need to refeed the packet into the 11199 * classifier and figure out where the packet should go. Need to 11200 * preserve the recv_ill somehow. Until we figure that out, for 11201 * now just drop the packet if we can't classify the packet. 11202 */ 11203 if (tcp->tcp_state == TCPS_CLOSED || 11204 tcp->tcp_state == TCPS_BOUND) { 11205 conn_t *new_connp; 11206 11207 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11208 if (new_connp != NULL) { 11209 tcp_reinput(new_connp, mp, arg2); 11210 return; 11211 } 11212 /* We failed to classify. For now just drop the packet */ 11213 freemsg(mp); 11214 return; 11215 } 11216 11217 if (DB_TYPE(mp) == M_DATA) 11218 tcp_rput_data(connp, mp, arg2); 11219 else 11220 tcp_rput_common(tcp, mp); 11221 } 11222 11223 /* 11224 * The read side put procedure. 11225 * The packets passed up by ip are assume to be aligned according to 11226 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11227 */ 11228 static void 11229 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11230 { 11231 /* 11232 * tcp_rput_data() does not expect M_CTL except for the case 11233 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11234 * type. Need to make sure that any other M_CTLs don't make 11235 * it to tcp_rput_data since it is not expecting any and doesn't 11236 * check for it. 11237 */ 11238 if (DB_TYPE(mp) == M_CTL) { 11239 switch (*(uint32_t *)(mp->b_rptr)) { 11240 case TCP_IOC_ABORT_CONN: 11241 /* 11242 * Handle connection abort request. 11243 */ 11244 tcp_ioctl_abort_handler(tcp, mp); 11245 return; 11246 case IPSEC_IN: 11247 /* 11248 * Only secure icmp arrive in TCP and they 11249 * don't go through data path. 11250 */ 11251 tcp_icmp_error(tcp, mp); 11252 return; 11253 case IN_PKTINFO: 11254 /* 11255 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11256 * sockets that are receiving IPv4 traffic. tcp 11257 */ 11258 ASSERT(tcp->tcp_family == AF_INET6); 11259 ASSERT(tcp->tcp_ipv6_recvancillary & 11260 TCP_IPV6_RECVPKTINFO); 11261 tcp_rput_data(tcp->tcp_connp, mp, 11262 tcp->tcp_connp->conn_sqp); 11263 return; 11264 case MDT_IOC_INFO_UPDATE: 11265 /* 11266 * Handle Multidata information update; the 11267 * following routine will free the message. 11268 */ 11269 if (tcp->tcp_connp->conn_mdt_ok) { 11270 tcp_mdt_update(tcp, 11271 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11272 B_FALSE); 11273 } 11274 freemsg(mp); 11275 return; 11276 default: 11277 break; 11278 } 11279 } 11280 11281 /* No point processing the message if tcp is already closed */ 11282 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11283 freemsg(mp); 11284 return; 11285 } 11286 11287 tcp_rput_other(tcp, mp); 11288 } 11289 11290 11291 /* The minimum of smoothed mean deviation in RTO calculation. */ 11292 #define TCP_SD_MIN 400 11293 11294 /* 11295 * Set RTO for this connection. The formula is from Jacobson and Karels' 11296 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11297 * are the same as those in Appendix A.2 of that paper. 11298 * 11299 * m = new measurement 11300 * sa = smoothed RTT average (8 * average estimates). 11301 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11302 */ 11303 static void 11304 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11305 { 11306 long m = TICK_TO_MSEC(rtt); 11307 clock_t sa = tcp->tcp_rtt_sa; 11308 clock_t sv = tcp->tcp_rtt_sd; 11309 clock_t rto; 11310 11311 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11312 tcp->tcp_rtt_update++; 11313 11314 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11315 if (sa != 0) { 11316 /* 11317 * Update average estimator: 11318 * new rtt = 7/8 old rtt + 1/8 Error 11319 */ 11320 11321 /* m is now Error in estimate. */ 11322 m -= sa >> 3; 11323 if ((sa += m) <= 0) { 11324 /* 11325 * Don't allow the smoothed average to be negative. 11326 * We use 0 to denote reinitialization of the 11327 * variables. 11328 */ 11329 sa = 1; 11330 } 11331 11332 /* 11333 * Update deviation estimator: 11334 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11335 */ 11336 if (m < 0) 11337 m = -m; 11338 m -= sv >> 2; 11339 sv += m; 11340 } else { 11341 /* 11342 * This follows BSD's implementation. So the reinitialized 11343 * RTO is 3 * m. We cannot go less than 2 because if the 11344 * link is bandwidth dominated, doubling the window size 11345 * during slow start means doubling the RTT. We want to be 11346 * more conservative when we reinitialize our estimates. 3 11347 * is just a convenient number. 11348 */ 11349 sa = m << 3; 11350 sv = m << 1; 11351 } 11352 if (sv < TCP_SD_MIN) { 11353 /* 11354 * We do not know that if sa captures the delay ACK 11355 * effect as in a long train of segments, a receiver 11356 * does not delay its ACKs. So set the minimum of sv 11357 * to be TCP_SD_MIN, which is default to 400 ms, twice 11358 * of BSD DATO. That means the minimum of mean 11359 * deviation is 100 ms. 11360 * 11361 */ 11362 sv = TCP_SD_MIN; 11363 } 11364 tcp->tcp_rtt_sa = sa; 11365 tcp->tcp_rtt_sd = sv; 11366 /* 11367 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11368 * 11369 * Add tcp_rexmit_interval extra in case of extreme environment 11370 * where the algorithm fails to work. The default value of 11371 * tcp_rexmit_interval_extra should be 0. 11372 * 11373 * As we use a finer grained clock than BSD and update 11374 * RTO for every ACKs, add in another .25 of RTT to the 11375 * deviation of RTO to accomodate burstiness of 1/4 of 11376 * window size. 11377 */ 11378 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11379 11380 if (rto > tcp_rexmit_interval_max) { 11381 tcp->tcp_rto = tcp_rexmit_interval_max; 11382 } else if (rto < tcp_rexmit_interval_min) { 11383 tcp->tcp_rto = tcp_rexmit_interval_min; 11384 } else { 11385 tcp->tcp_rto = rto; 11386 } 11387 11388 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11389 tcp->tcp_timer_backoff = 0; 11390 } 11391 11392 /* 11393 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11394 * send queue which starts at the given seq. no. 11395 * 11396 * Parameters: 11397 * tcp_t *tcp: the tcp instance pointer. 11398 * uint32_t seq: the starting seq. no of the requested segment. 11399 * int32_t *off: after the execution, *off will be the offset to 11400 * the returned mblk which points to the requested seq no. 11401 * It is the caller's responsibility to send in a non-null off. 11402 * 11403 * Return: 11404 * A mblk_t pointer pointing to the requested segment in send queue. 11405 */ 11406 static mblk_t * 11407 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11408 { 11409 int32_t cnt; 11410 mblk_t *mp; 11411 11412 /* Defensive coding. Make sure we don't send incorrect data. */ 11413 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11414 return (NULL); 11415 11416 cnt = seq - tcp->tcp_suna; 11417 mp = tcp->tcp_xmit_head; 11418 while (cnt > 0 && mp != NULL) { 11419 cnt -= mp->b_wptr - mp->b_rptr; 11420 if (cnt < 0) { 11421 cnt += mp->b_wptr - mp->b_rptr; 11422 break; 11423 } 11424 mp = mp->b_cont; 11425 } 11426 ASSERT(mp != NULL); 11427 *off = cnt; 11428 return (mp); 11429 } 11430 11431 /* 11432 * This function handles all retransmissions if SACK is enabled for this 11433 * connection. First it calculates how many segments can be retransmitted 11434 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11435 * segments. A segment is eligible if sack_cnt for that segment is greater 11436 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11437 * all eligible segments, it checks to see if TCP can send some new segments 11438 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11439 * 11440 * Parameters: 11441 * tcp_t *tcp: the tcp structure of the connection. 11442 * uint_t *flags: in return, appropriate value will be set for 11443 * tcp_rput_data(). 11444 */ 11445 static void 11446 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11447 { 11448 notsack_blk_t *notsack_blk; 11449 int32_t usable_swnd; 11450 int32_t mss; 11451 uint32_t seg_len; 11452 mblk_t *xmit_mp; 11453 11454 ASSERT(tcp->tcp_sack_info != NULL); 11455 ASSERT(tcp->tcp_notsack_list != NULL); 11456 ASSERT(tcp->tcp_rexmit == B_FALSE); 11457 11458 /* Defensive coding in case there is a bug... */ 11459 if (tcp->tcp_notsack_list == NULL) { 11460 return; 11461 } 11462 notsack_blk = tcp->tcp_notsack_list; 11463 mss = tcp->tcp_mss; 11464 11465 /* 11466 * Limit the num of outstanding data in the network to be 11467 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11468 */ 11469 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11470 11471 /* At least retransmit 1 MSS of data. */ 11472 if (usable_swnd <= 0) { 11473 usable_swnd = mss; 11474 } 11475 11476 /* Make sure no new RTT samples will be taken. */ 11477 tcp->tcp_csuna = tcp->tcp_snxt; 11478 11479 notsack_blk = tcp->tcp_notsack_list; 11480 while (usable_swnd > 0) { 11481 mblk_t *snxt_mp, *tmp_mp; 11482 tcp_seq begin = tcp->tcp_sack_snxt; 11483 tcp_seq end; 11484 int32_t off; 11485 11486 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11487 if (SEQ_GT(notsack_blk->end, begin) && 11488 (notsack_blk->sack_cnt >= 11489 tcp_dupack_fast_retransmit)) { 11490 end = notsack_blk->end; 11491 if (SEQ_LT(begin, notsack_blk->begin)) { 11492 begin = notsack_blk->begin; 11493 } 11494 break; 11495 } 11496 } 11497 /* 11498 * All holes are filled. Manipulate tcp_cwnd to send more 11499 * if we can. Note that after the SACK recovery, tcp_cwnd is 11500 * set to tcp_cwnd_ssthresh. 11501 */ 11502 if (notsack_blk == NULL) { 11503 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11504 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11505 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11506 ASSERT(tcp->tcp_cwnd > 0); 11507 return; 11508 } else { 11509 usable_swnd = usable_swnd / mss; 11510 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11511 MAX(usable_swnd * mss, mss); 11512 *flags |= TH_XMIT_NEEDED; 11513 return; 11514 } 11515 } 11516 11517 /* 11518 * Note that we may send more than usable_swnd allows here 11519 * because of round off, but no more than 1 MSS of data. 11520 */ 11521 seg_len = end - begin; 11522 if (seg_len > mss) 11523 seg_len = mss; 11524 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11525 ASSERT(snxt_mp != NULL); 11526 /* This should not happen. Defensive coding again... */ 11527 if (snxt_mp == NULL) { 11528 return; 11529 } 11530 11531 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11532 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11533 if (xmit_mp == NULL) 11534 return; 11535 11536 usable_swnd -= seg_len; 11537 tcp->tcp_pipe += seg_len; 11538 tcp->tcp_sack_snxt = begin + seg_len; 11539 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 11540 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11541 11542 /* 11543 * Update the send timestamp to avoid false retransmission. 11544 */ 11545 snxt_mp->b_prev = (mblk_t *)lbolt; 11546 11547 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11548 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 11549 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 11550 /* 11551 * Update tcp_rexmit_max to extend this SACK recovery phase. 11552 * This happens when new data sent during fast recovery is 11553 * also lost. If TCP retransmits those new data, it needs 11554 * to extend SACK recover phase to avoid starting another 11555 * fast retransmit/recovery unnecessarily. 11556 */ 11557 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11558 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11559 } 11560 } 11561 } 11562 11563 /* 11564 * This function handles policy checking at TCP level for non-hard_bound/ 11565 * detached connections. 11566 */ 11567 static boolean_t 11568 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11569 boolean_t secure, boolean_t mctl_present) 11570 { 11571 ipsec_latch_t *ipl = NULL; 11572 ipsec_action_t *act = NULL; 11573 mblk_t *data_mp; 11574 ipsec_in_t *ii; 11575 const char *reason; 11576 kstat_named_t *counter; 11577 11578 ASSERT(mctl_present || !secure); 11579 11580 ASSERT((ipha == NULL && ip6h != NULL) || 11581 (ip6h == NULL && ipha != NULL)); 11582 11583 /* 11584 * We don't necessarily have an ipsec_in_act action to verify 11585 * policy because of assymetrical policy where we have only 11586 * outbound policy and no inbound policy (possible with global 11587 * policy). 11588 */ 11589 if (!secure) { 11590 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 11591 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 11592 return (B_TRUE); 11593 ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, 11594 "tcp_check_policy", ipha, ip6h, secure); 11595 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11596 &ipdrops_tcp_clear, &tcp_dropper); 11597 return (B_FALSE); 11598 } 11599 11600 /* 11601 * We have a secure packet. 11602 */ 11603 if (act == NULL) { 11604 ipsec_log_policy_failure(tcp->tcp_wq, 11605 IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, 11606 secure); 11607 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11608 &ipdrops_tcp_secure, &tcp_dropper); 11609 return (B_FALSE); 11610 } 11611 11612 /* 11613 * XXX This whole routine is currently incorrect. ipl should 11614 * be set to the latch pointer, but is currently not set, so 11615 * we initialize it to NULL to avoid picking up random garbage. 11616 */ 11617 if (ipl == NULL) 11618 return (B_TRUE); 11619 11620 data_mp = first_mp->b_cont; 11621 11622 ii = (ipsec_in_t *)first_mp->b_rptr; 11623 11624 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 11625 &counter)) { 11626 BUMP_MIB(&ip_mib, ipsecInSucceeded); 11627 return (B_TRUE); 11628 } 11629 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 11630 "tcp inbound policy mismatch: %s, packet dropped\n", 11631 reason); 11632 BUMP_MIB(&ip_mib, ipsecInFailed); 11633 11634 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 11635 return (B_FALSE); 11636 } 11637 11638 /* 11639 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 11640 * retransmission after a timeout. 11641 * 11642 * To limit the number of duplicate segments, we limit the number of segment 11643 * to be sent in one time to tcp_snd_burst, the burst variable. 11644 */ 11645 static void 11646 tcp_ss_rexmit(tcp_t *tcp) 11647 { 11648 uint32_t snxt; 11649 uint32_t smax; 11650 int32_t win; 11651 int32_t mss; 11652 int32_t off; 11653 int32_t burst = tcp->tcp_snd_burst; 11654 mblk_t *snxt_mp; 11655 11656 /* 11657 * Note that tcp_rexmit can be set even though TCP has retransmitted 11658 * all unack'ed segments. 11659 */ 11660 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 11661 smax = tcp->tcp_rexmit_max; 11662 snxt = tcp->tcp_rexmit_nxt; 11663 if (SEQ_LT(snxt, tcp->tcp_suna)) { 11664 snxt = tcp->tcp_suna; 11665 } 11666 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 11667 win -= snxt - tcp->tcp_suna; 11668 mss = tcp->tcp_mss; 11669 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 11670 11671 while (SEQ_LT(snxt, smax) && (win > 0) && 11672 (burst > 0) && (snxt_mp != NULL)) { 11673 mblk_t *xmit_mp; 11674 mblk_t *old_snxt_mp = snxt_mp; 11675 uint32_t cnt = mss; 11676 11677 if (win < cnt) { 11678 cnt = win; 11679 } 11680 if (SEQ_GT(snxt + cnt, smax)) { 11681 cnt = smax - snxt; 11682 } 11683 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 11684 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 11685 if (xmit_mp == NULL) 11686 return; 11687 11688 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11689 11690 snxt += cnt; 11691 win -= cnt; 11692 /* 11693 * Update the send timestamp to avoid false 11694 * retransmission. 11695 */ 11696 old_snxt_mp->b_prev = (mblk_t *)lbolt; 11697 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11698 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 11699 11700 tcp->tcp_rexmit_nxt = snxt; 11701 burst--; 11702 } 11703 /* 11704 * If we have transmitted all we have at the time 11705 * we started the retranmission, we can leave 11706 * the rest of the job to tcp_wput_data(). But we 11707 * need to check the send window first. If the 11708 * win is not 0, go on with tcp_wput_data(). 11709 */ 11710 if (SEQ_LT(snxt, smax) || win == 0) { 11711 return; 11712 } 11713 } 11714 /* Only call tcp_wput_data() if there is data to be sent. */ 11715 if (tcp->tcp_unsent) { 11716 tcp_wput_data(tcp, NULL, B_FALSE); 11717 } 11718 } 11719 11720 /* 11721 * Process all TCP option in SYN segment. Note that this function should 11722 * be called after tcp_adapt_ire() is called so that the necessary info 11723 * from IRE is already set in the tcp structure. 11724 * 11725 * This function sets up the correct tcp_mss value according to the 11726 * MSS option value and our header size. It also sets up the window scale 11727 * and timestamp values, and initialize SACK info blocks. But it does not 11728 * change receive window size after setting the tcp_mss value. The caller 11729 * should do the appropriate change. 11730 */ 11731 void 11732 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 11733 { 11734 int options; 11735 tcp_opt_t tcpopt; 11736 uint32_t mss_max; 11737 char *tmp_tcph; 11738 11739 tcpopt.tcp = NULL; 11740 options = tcp_parse_options(tcph, &tcpopt); 11741 11742 /* 11743 * Process MSS option. Note that MSS option value does not account 11744 * for IP or TCP options. This means that it is equal to MTU - minimum 11745 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 11746 * IPv6. 11747 */ 11748 if (!(options & TCP_OPT_MSS_PRESENT)) { 11749 if (tcp->tcp_ipversion == IPV4_VERSION) 11750 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 11751 else 11752 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 11753 } else { 11754 if (tcp->tcp_ipversion == IPV4_VERSION) 11755 mss_max = tcp_mss_max_ipv4; 11756 else 11757 mss_max = tcp_mss_max_ipv6; 11758 if (tcpopt.tcp_opt_mss < tcp_mss_min) 11759 tcpopt.tcp_opt_mss = tcp_mss_min; 11760 else if (tcpopt.tcp_opt_mss > mss_max) 11761 tcpopt.tcp_opt_mss = mss_max; 11762 } 11763 11764 /* Process Window Scale option. */ 11765 if (options & TCP_OPT_WSCALE_PRESENT) { 11766 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 11767 tcp->tcp_snd_ws_ok = B_TRUE; 11768 } else { 11769 tcp->tcp_snd_ws = B_FALSE; 11770 tcp->tcp_snd_ws_ok = B_FALSE; 11771 tcp->tcp_rcv_ws = B_FALSE; 11772 } 11773 11774 /* Process Timestamp option. */ 11775 if ((options & TCP_OPT_TSTAMP_PRESENT) && 11776 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 11777 tmp_tcph = (char *)tcp->tcp_tcph; 11778 11779 tcp->tcp_snd_ts_ok = B_TRUE; 11780 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 11781 tcp->tcp_last_rcv_lbolt = lbolt64; 11782 ASSERT(OK_32PTR(tmp_tcph)); 11783 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 11784 11785 /* Fill in our template header with basic timestamp option. */ 11786 tmp_tcph += tcp->tcp_tcp_hdr_len; 11787 tmp_tcph[0] = TCPOPT_NOP; 11788 tmp_tcph[1] = TCPOPT_NOP; 11789 tmp_tcph[2] = TCPOPT_TSTAMP; 11790 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 11791 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 11792 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 11793 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 11794 } else { 11795 tcp->tcp_snd_ts_ok = B_FALSE; 11796 } 11797 11798 /* 11799 * Process SACK options. If SACK is enabled for this connection, 11800 * then allocate the SACK info structure. Note the following ways 11801 * when tcp_snd_sack_ok is set to true. 11802 * 11803 * For active connection: in tcp_adapt_ire() called in 11804 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 11805 * is checked. 11806 * 11807 * For passive connection: in tcp_adapt_ire() called in 11808 * tcp_accept_comm(). 11809 * 11810 * That's the reason why the extra TCP_IS_DETACHED() check is there. 11811 * That check makes sure that if we did not send a SACK OK option, 11812 * we will not enable SACK for this connection even though the other 11813 * side sends us SACK OK option. For active connection, the SACK 11814 * info structure has already been allocated. So we need to free 11815 * it if SACK is disabled. 11816 */ 11817 if ((options & TCP_OPT_SACK_OK_PRESENT) && 11818 (tcp->tcp_snd_sack_ok || 11819 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 11820 /* This should be true only in the passive case. */ 11821 if (tcp->tcp_sack_info == NULL) { 11822 ASSERT(TCP_IS_DETACHED(tcp)); 11823 tcp->tcp_sack_info = 11824 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 11825 } 11826 if (tcp->tcp_sack_info == NULL) { 11827 tcp->tcp_snd_sack_ok = B_FALSE; 11828 } else { 11829 tcp->tcp_snd_sack_ok = B_TRUE; 11830 if (tcp->tcp_snd_ts_ok) { 11831 tcp->tcp_max_sack_blk = 3; 11832 } else { 11833 tcp->tcp_max_sack_blk = 4; 11834 } 11835 } 11836 } else { 11837 /* 11838 * Resetting tcp_snd_sack_ok to B_FALSE so that 11839 * no SACK info will be used for this 11840 * connection. This assumes that SACK usage 11841 * permission is negotiated. This may need 11842 * to be changed once this is clarified. 11843 */ 11844 if (tcp->tcp_sack_info != NULL) { 11845 ASSERT(tcp->tcp_notsack_list == NULL); 11846 kmem_cache_free(tcp_sack_info_cache, 11847 tcp->tcp_sack_info); 11848 tcp->tcp_sack_info = NULL; 11849 } 11850 tcp->tcp_snd_sack_ok = B_FALSE; 11851 } 11852 11853 /* 11854 * Now we know the exact TCP/IP header length, subtract 11855 * that from tcp_mss to get our side's MSS. 11856 */ 11857 tcp->tcp_mss -= tcp->tcp_hdr_len; 11858 /* 11859 * Here we assume that the other side's header size will be equal to 11860 * our header size. We calculate the real MSS accordingly. Need to 11861 * take into additional stuffs IPsec puts in. 11862 * 11863 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 11864 */ 11865 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 11866 ((tcp->tcp_ipversion == IPV4_VERSION ? 11867 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 11868 11869 /* 11870 * Set MSS to the smaller one of both ends of the connection. 11871 * We should not have called tcp_mss_set() before, but our 11872 * side of the MSS should have been set to a proper value 11873 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 11874 * STREAM head parameters properly. 11875 * 11876 * If we have a larger-than-16-bit window but the other side 11877 * didn't want to do window scale, tcp_rwnd_set() will take 11878 * care of that. 11879 */ 11880 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 11881 } 11882 11883 /* 11884 * Sends the T_CONN_IND to the listener. The caller calls this 11885 * functions via squeue to get inside the listener's perimeter 11886 * once the 3 way hand shake is done a T_CONN_IND needs to be 11887 * sent. As an optimization, the caller can call this directly 11888 * if listener's perimeter is same as eager's. 11889 */ 11890 /* ARGSUSED */ 11891 void 11892 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 11893 { 11894 conn_t *lconnp = (conn_t *)arg; 11895 tcp_t *listener = lconnp->conn_tcp; 11896 tcp_t *tcp; 11897 struct T_conn_ind *conn_ind; 11898 ipaddr_t *addr_cache; 11899 boolean_t need_send_conn_ind = B_FALSE; 11900 11901 /* retrieve the eager */ 11902 conn_ind = (struct T_conn_ind *)mp->b_rptr; 11903 ASSERT(conn_ind->OPT_offset != 0 && 11904 conn_ind->OPT_length == sizeof (intptr_t)); 11905 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 11906 conn_ind->OPT_length); 11907 11908 /* 11909 * TLI/XTI applications will get confused by 11910 * sending eager as an option since it violates 11911 * the option semantics. So remove the eager as 11912 * option since TLI/XTI app doesn't need it anyway. 11913 */ 11914 if (!TCP_IS_SOCKET(listener)) { 11915 conn_ind->OPT_length = 0; 11916 conn_ind->OPT_offset = 0; 11917 } 11918 if (listener->tcp_state == TCPS_CLOSED || 11919 TCP_IS_DETACHED(listener)) { 11920 /* 11921 * If listener has closed, it would have caused a 11922 * a cleanup/blowoff to happen for the eager. We 11923 * just need to return. 11924 */ 11925 freemsg(mp); 11926 return; 11927 } 11928 11929 11930 /* 11931 * if the conn_req_q is full defer passing up the 11932 * T_CONN_IND until space is availabe after t_accept() 11933 * processing 11934 */ 11935 mutex_enter(&listener->tcp_eager_lock); 11936 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 11937 tcp_t *tail; 11938 11939 /* 11940 * The eager already has an extra ref put in tcp_rput_data 11941 * so that it stays till accept comes back even though it 11942 * might get into TCPS_CLOSED as a result of a TH_RST etc. 11943 */ 11944 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 11945 listener->tcp_conn_req_cnt_q0--; 11946 listener->tcp_conn_req_cnt_q++; 11947 11948 /* Move from SYN_RCVD to ESTABLISHED list */ 11949 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 11950 tcp->tcp_eager_prev_q0; 11951 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 11952 tcp->tcp_eager_next_q0; 11953 tcp->tcp_eager_prev_q0 = NULL; 11954 tcp->tcp_eager_next_q0 = NULL; 11955 11956 /* 11957 * Insert at end of the queue because sockfs 11958 * sends down T_CONN_RES in chronological 11959 * order. Leaving the older conn indications 11960 * at front of the queue helps reducing search 11961 * time. 11962 */ 11963 tail = listener->tcp_eager_last_q; 11964 if (tail != NULL) 11965 tail->tcp_eager_next_q = tcp; 11966 else 11967 listener->tcp_eager_next_q = tcp; 11968 listener->tcp_eager_last_q = tcp; 11969 tcp->tcp_eager_next_q = NULL; 11970 /* 11971 * Delay sending up the T_conn_ind until we are 11972 * done with the eager. Once we have have sent up 11973 * the T_conn_ind, the accept can potentially complete 11974 * any time and release the refhold we have on the eager. 11975 */ 11976 need_send_conn_ind = B_TRUE; 11977 } else { 11978 /* 11979 * Defer connection on q0 and set deferred 11980 * connection bit true 11981 */ 11982 tcp->tcp_conn_def_q0 = B_TRUE; 11983 11984 /* take tcp out of q0 ... */ 11985 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 11986 tcp->tcp_eager_next_q0; 11987 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 11988 tcp->tcp_eager_prev_q0; 11989 11990 /* ... and place it at the end of q0 */ 11991 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 11992 tcp->tcp_eager_next_q0 = listener; 11993 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 11994 listener->tcp_eager_prev_q0 = tcp; 11995 tcp->tcp_conn.tcp_eager_conn_ind = mp; 11996 } 11997 11998 /* we have timed out before */ 11999 if (tcp->tcp_syn_rcvd_timeout != 0) { 12000 tcp->tcp_syn_rcvd_timeout = 0; 12001 listener->tcp_syn_rcvd_timeout--; 12002 if (listener->tcp_syn_defense && 12003 listener->tcp_syn_rcvd_timeout <= 12004 (tcp_conn_req_max_q0 >> 5) && 12005 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12006 listener->tcp_last_rcv_lbolt)) { 12007 /* 12008 * Turn off the defense mode if we 12009 * believe the SYN attack is over. 12010 */ 12011 listener->tcp_syn_defense = B_FALSE; 12012 if (listener->tcp_ip_addr_cache) { 12013 kmem_free((void *)listener->tcp_ip_addr_cache, 12014 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12015 listener->tcp_ip_addr_cache = NULL; 12016 } 12017 } 12018 } 12019 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12020 if (addr_cache != NULL) { 12021 /* 12022 * We have finished a 3-way handshake with this 12023 * remote host. This proves the IP addr is good. 12024 * Cache it! 12025 */ 12026 addr_cache[IP_ADDR_CACHE_HASH( 12027 tcp->tcp_remote)] = tcp->tcp_remote; 12028 } 12029 mutex_exit(&listener->tcp_eager_lock); 12030 if (need_send_conn_ind) 12031 putnext(listener->tcp_rq, mp); 12032 } 12033 12034 mblk_t * 12035 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12036 uint_t *ifindexp, ip6_pkt_t *ippp) 12037 { 12038 in_pktinfo_t *pinfo; 12039 ip6_t *ip6h; 12040 uchar_t *rptr; 12041 mblk_t *first_mp = mp; 12042 boolean_t mctl_present = B_FALSE; 12043 uint_t ifindex = 0; 12044 ip6_pkt_t ipp; 12045 uint_t ipvers; 12046 uint_t ip_hdr_len; 12047 12048 rptr = mp->b_rptr; 12049 ASSERT(OK_32PTR(rptr)); 12050 ASSERT(tcp != NULL); 12051 ipp.ipp_fields = 0; 12052 12053 switch DB_TYPE(mp) { 12054 case M_CTL: 12055 mp = mp->b_cont; 12056 if (mp == NULL) { 12057 freemsg(first_mp); 12058 return (NULL); 12059 } 12060 if (DB_TYPE(mp) != M_DATA) { 12061 freemsg(first_mp); 12062 return (NULL); 12063 } 12064 mctl_present = B_TRUE; 12065 break; 12066 case M_DATA: 12067 break; 12068 default: 12069 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12070 freemsg(mp); 12071 return (NULL); 12072 } 12073 ipvers = IPH_HDR_VERSION(rptr); 12074 if (ipvers == IPV4_VERSION) { 12075 if (tcp == NULL) { 12076 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12077 goto done; 12078 } 12079 12080 ipp.ipp_fields |= IPPF_HOPLIMIT; 12081 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12082 12083 /* 12084 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12085 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12086 */ 12087 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12088 mctl_present) { 12089 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12090 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12091 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12092 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12093 ipp.ipp_fields |= IPPF_IFINDEX; 12094 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12095 ifindex = pinfo->in_pkt_ifindex; 12096 } 12097 freeb(first_mp); 12098 mctl_present = B_FALSE; 12099 } 12100 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12101 } else { 12102 ip6h = (ip6_t *)rptr; 12103 12104 ASSERT(ipvers == IPV6_VERSION); 12105 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12106 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12107 ipp.ipp_hoplimit = ip6h->ip6_hops; 12108 12109 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12110 uint8_t nexthdrp; 12111 12112 /* Look for ifindex information */ 12113 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12114 ip6i_t *ip6i = (ip6i_t *)ip6h; 12115 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12116 BUMP_MIB(&ip_mib, tcpInErrs); 12117 freemsg(first_mp); 12118 return (NULL); 12119 } 12120 12121 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12122 ASSERT(ip6i->ip6i_ifindex != 0); 12123 ipp.ipp_fields |= IPPF_IFINDEX; 12124 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12125 ifindex = ip6i->ip6i_ifindex; 12126 } 12127 rptr = (uchar_t *)&ip6i[1]; 12128 mp->b_rptr = rptr; 12129 if (rptr == mp->b_wptr) { 12130 mblk_t *mp1; 12131 mp1 = mp->b_cont; 12132 freeb(mp); 12133 mp = mp1; 12134 rptr = mp->b_rptr; 12135 } 12136 if (MBLKL(mp) < IPV6_HDR_LEN + 12137 sizeof (tcph_t)) { 12138 BUMP_MIB(&ip_mib, tcpInErrs); 12139 freemsg(first_mp); 12140 return (NULL); 12141 } 12142 ip6h = (ip6_t *)rptr; 12143 } 12144 12145 /* 12146 * Find any potentially interesting extension headers 12147 * as well as the length of the IPv6 + extension 12148 * headers. 12149 */ 12150 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12151 /* Verify if this is a TCP packet */ 12152 if (nexthdrp != IPPROTO_TCP) { 12153 BUMP_MIB(&ip_mib, tcpInErrs); 12154 freemsg(first_mp); 12155 return (NULL); 12156 } 12157 } else { 12158 ip_hdr_len = IPV6_HDR_LEN; 12159 } 12160 } 12161 12162 done: 12163 if (ipversp != NULL) 12164 *ipversp = ipvers; 12165 if (ip_hdr_lenp != NULL) 12166 *ip_hdr_lenp = ip_hdr_len; 12167 if (ippp != NULL) 12168 *ippp = ipp; 12169 if (ifindexp != NULL) 12170 *ifindexp = ifindex; 12171 if (mctl_present) { 12172 freeb(first_mp); 12173 } 12174 return (mp); 12175 } 12176 12177 /* 12178 * Handle M_DATA messages from IP. Its called directly from IP via 12179 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12180 * in this path. 12181 * 12182 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12183 * v4 and v6), we are called through tcp_input() and a M_CTL can 12184 * be present for options but tcp_find_pktinfo() deals with it. We 12185 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12186 * 12187 * The first argument is always the connp/tcp to which the mp belongs. 12188 * There are no exceptions to this rule. The caller has already put 12189 * a reference on this connp/tcp and once tcp_rput_data() returns, 12190 * the squeue will do the refrele. 12191 * 12192 * The TH_SYN for the listener directly go to tcp_conn_request via 12193 * squeue. 12194 * 12195 * sqp: NULL = recursive, sqp != NULL means called from squeue 12196 */ 12197 void 12198 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12199 { 12200 int32_t bytes_acked; 12201 int32_t gap; 12202 mblk_t *mp1; 12203 uint_t flags; 12204 uint32_t new_swnd = 0; 12205 uchar_t *iphdr; 12206 uchar_t *rptr; 12207 int32_t rgap; 12208 uint32_t seg_ack; 12209 int seg_len; 12210 uint_t ip_hdr_len; 12211 uint32_t seg_seq; 12212 tcph_t *tcph; 12213 int urp; 12214 tcp_opt_t tcpopt; 12215 uint_t ipvers; 12216 ip6_pkt_t ipp; 12217 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12218 uint32_t cwnd; 12219 uint32_t add; 12220 int npkt; 12221 int mss; 12222 conn_t *connp = (conn_t *)arg; 12223 squeue_t *sqp = (squeue_t *)arg2; 12224 tcp_t *tcp = connp->conn_tcp; 12225 12226 /* 12227 * RST from fused tcp loopback peer should trigger an unfuse. 12228 */ 12229 if (tcp->tcp_fused) { 12230 TCP_STAT(tcp_fusion_aborted); 12231 tcp_unfuse(tcp); 12232 } 12233 12234 iphdr = mp->b_rptr; 12235 rptr = mp->b_rptr; 12236 ASSERT(OK_32PTR(rptr)); 12237 12238 /* 12239 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12240 * processing here. For rest call tcp_find_pktinfo to fill up the 12241 * necessary information. 12242 */ 12243 if (IPCL_IS_TCP4(connp)) { 12244 ipvers = IPV4_VERSION; 12245 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12246 } else { 12247 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12248 NULL, &ipp); 12249 if (mp == NULL) { 12250 TCP_STAT(tcp_rput_v6_error); 12251 return; 12252 } 12253 iphdr = mp->b_rptr; 12254 rptr = mp->b_rptr; 12255 } 12256 ASSERT(DB_TYPE(mp) == M_DATA); 12257 12258 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12259 seg_seq = ABE32_TO_U32(tcph->th_seq); 12260 seg_ack = ABE32_TO_U32(tcph->th_ack); 12261 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12262 seg_len = (int)(mp->b_wptr - rptr) - 12263 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12264 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12265 do { 12266 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12267 (uintptr_t)INT_MAX); 12268 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12269 } while ((mp1 = mp1->b_cont) != NULL && 12270 mp1->b_datap->db_type == M_DATA); 12271 } 12272 12273 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12274 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12275 seg_len, tcph); 12276 return; 12277 } 12278 12279 if (sqp != NULL) { 12280 /* 12281 * This is the correct place to update tcp_last_recv_time. Note 12282 * that it is also updated for tcp structure that belongs to 12283 * global and listener queues which do not really need updating. 12284 * But that should not cause any harm. And it is updated for 12285 * all kinds of incoming segments, not only for data segments. 12286 */ 12287 tcp->tcp_last_recv_time = lbolt; 12288 } 12289 12290 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12291 12292 BUMP_LOCAL(tcp->tcp_ibsegs); 12293 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12294 12295 if ((flags & TH_URG) && sqp != NULL) { 12296 /* 12297 * TCP can't handle urgent pointers that arrive before 12298 * the connection has been accept()ed since it can't 12299 * buffer OOB data. Discard segment if this happens. 12300 * 12301 * Nor can it reassemble urgent pointers, so discard 12302 * if it's not the next segment expected. 12303 * 12304 * Otherwise, collapse chain into one mblk (discard if 12305 * that fails). This makes sure the headers, retransmitted 12306 * data, and new data all are in the same mblk. 12307 */ 12308 ASSERT(mp != NULL); 12309 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12310 freemsg(mp); 12311 return; 12312 } 12313 /* Update pointers into message */ 12314 iphdr = rptr = mp->b_rptr; 12315 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12316 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12317 /* 12318 * Since we can't handle any data with this urgent 12319 * pointer that is out of sequence, we expunge 12320 * the data. This allows us to still register 12321 * the urgent mark and generate the M_PCSIG, 12322 * which we can do. 12323 */ 12324 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12325 seg_len = 0; 12326 } 12327 } 12328 12329 switch (tcp->tcp_state) { 12330 case TCPS_SYN_SENT: 12331 if (flags & TH_ACK) { 12332 /* 12333 * Note that our stack cannot send data before a 12334 * connection is established, therefore the 12335 * following check is valid. Otherwise, it has 12336 * to be changed. 12337 */ 12338 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12339 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12340 freemsg(mp); 12341 if (flags & TH_RST) 12342 return; 12343 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12344 tcp, seg_ack, 0, TH_RST); 12345 return; 12346 } 12347 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12348 } 12349 if (flags & TH_RST) { 12350 freemsg(mp); 12351 if (flags & TH_ACK) 12352 (void) tcp_clean_death(tcp, 12353 ECONNREFUSED, 13); 12354 return; 12355 } 12356 if (!(flags & TH_SYN)) { 12357 freemsg(mp); 12358 return; 12359 } 12360 12361 /* Process all TCP options. */ 12362 tcp_process_options(tcp, tcph); 12363 /* 12364 * The following changes our rwnd to be a multiple of the 12365 * MIN(peer MSS, our MSS) for performance reason. 12366 */ 12367 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12368 tcp->tcp_mss)); 12369 12370 /* Is the other end ECN capable? */ 12371 if (tcp->tcp_ecn_ok) { 12372 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12373 tcp->tcp_ecn_ok = B_FALSE; 12374 } 12375 } 12376 /* 12377 * Clear ECN flags because it may interfere with later 12378 * processing. 12379 */ 12380 flags &= ~(TH_ECE|TH_CWR); 12381 12382 tcp->tcp_irs = seg_seq; 12383 tcp->tcp_rack = seg_seq; 12384 tcp->tcp_rnxt = seg_seq + 1; 12385 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12386 if (!TCP_IS_DETACHED(tcp)) { 12387 /* Allocate room for SACK options if needed. */ 12388 if (tcp->tcp_snd_sack_ok) { 12389 (void) mi_set_sth_wroff(tcp->tcp_rq, 12390 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12391 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12392 } else { 12393 (void) mi_set_sth_wroff(tcp->tcp_rq, 12394 tcp->tcp_hdr_len + 12395 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12396 } 12397 } 12398 if (flags & TH_ACK) { 12399 /* 12400 * If we can't get the confirmation upstream, pretend 12401 * we didn't even see this one. 12402 * 12403 * XXX: how can we pretend we didn't see it if we 12404 * have updated rnxt et. al. 12405 * 12406 * For loopback we defer sending up the T_CONN_CON 12407 * until after some checks below. 12408 */ 12409 mp1 = NULL; 12410 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12411 tcp->tcp_loopback ? &mp1 : NULL)) { 12412 freemsg(mp); 12413 return; 12414 } 12415 /* SYN was acked - making progress */ 12416 if (tcp->tcp_ipversion == IPV6_VERSION) 12417 tcp->tcp_ip_forward_progress = B_TRUE; 12418 12419 /* One for the SYN */ 12420 tcp->tcp_suna = tcp->tcp_iss + 1; 12421 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12422 tcp->tcp_state = TCPS_ESTABLISHED; 12423 12424 /* 12425 * If SYN was retransmitted, need to reset all 12426 * retransmission info. This is because this 12427 * segment will be treated as a dup ACK. 12428 */ 12429 if (tcp->tcp_rexmit) { 12430 tcp->tcp_rexmit = B_FALSE; 12431 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12432 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12433 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12434 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12435 tcp->tcp_ms_we_have_waited = 0; 12436 12437 /* 12438 * Set tcp_cwnd back to 1 MSS, per 12439 * recommendation from 12440 * draft-floyd-incr-init-win-01.txt, 12441 * Increasing TCP's Initial Window. 12442 */ 12443 tcp->tcp_cwnd = tcp->tcp_mss; 12444 } 12445 12446 tcp->tcp_swl1 = seg_seq; 12447 tcp->tcp_swl2 = seg_ack; 12448 12449 new_swnd = BE16_TO_U16(tcph->th_win); 12450 tcp->tcp_swnd = new_swnd; 12451 if (new_swnd > tcp->tcp_max_swnd) 12452 tcp->tcp_max_swnd = new_swnd; 12453 12454 /* 12455 * Always send the three-way handshake ack immediately 12456 * in order to make the connection complete as soon as 12457 * possible on the accepting host. 12458 */ 12459 flags |= TH_ACK_NEEDED; 12460 12461 /* 12462 * Special case for loopback. At this point we have 12463 * received SYN-ACK from the remote endpoint. In 12464 * order to ensure that both endpoints reach the 12465 * fused state prior to any data exchange, the final 12466 * ACK needs to be sent before we indicate T_CONN_CON 12467 * to the module upstream. 12468 */ 12469 if (tcp->tcp_loopback) { 12470 mblk_t *ack_mp; 12471 12472 ASSERT(!tcp->tcp_unfusable); 12473 ASSERT(mp1 != NULL); 12474 /* 12475 * For loopback, we always get a pure SYN-ACK 12476 * and only need to send back the final ACK 12477 * with no data (this is because the other 12478 * tcp is ours and we don't do T/TCP). This 12479 * final ACK triggers the passive side to 12480 * perform fusion in ESTABLISHED state. 12481 */ 12482 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12483 if (tcp->tcp_ack_tid != 0) { 12484 (void) TCP_TIMER_CANCEL(tcp, 12485 tcp->tcp_ack_tid); 12486 tcp->tcp_ack_tid = 0; 12487 } 12488 TCP_RECORD_TRACE(tcp, ack_mp, 12489 TCP_TRACE_SEND_PKT); 12490 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12491 BUMP_LOCAL(tcp->tcp_obsegs); 12492 BUMP_MIB(&tcp_mib, tcpOutAck); 12493 12494 /* Send up T_CONN_CON */ 12495 putnext(tcp->tcp_rq, mp1); 12496 12497 freemsg(mp); 12498 return; 12499 } 12500 /* 12501 * Forget fusion; we need to handle more 12502 * complex cases below. Send the deferred 12503 * T_CONN_CON message upstream and proceed 12504 * as usual. Mark this tcp as not capable 12505 * of fusion. 12506 */ 12507 TCP_STAT(tcp_fusion_unfusable); 12508 tcp->tcp_unfusable = B_TRUE; 12509 putnext(tcp->tcp_rq, mp1); 12510 } 12511 12512 /* 12513 * Check to see if there is data to be sent. If 12514 * yes, set the transmit flag. Then check to see 12515 * if received data processing needs to be done. 12516 * If not, go straight to xmit_check. This short 12517 * cut is OK as we don't support T/TCP. 12518 */ 12519 if (tcp->tcp_unsent) 12520 flags |= TH_XMIT_NEEDED; 12521 12522 if (seg_len == 0 && !(flags & TH_URG)) { 12523 freemsg(mp); 12524 goto xmit_check; 12525 } 12526 12527 flags &= ~TH_SYN; 12528 seg_seq++; 12529 break; 12530 } 12531 tcp->tcp_state = TCPS_SYN_RCVD; 12532 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 12533 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 12534 if (mp1) { 12535 mblk_setcred(mp1, tcp->tcp_cred); 12536 DB_CPID(mp1) = tcp->tcp_cpid; 12537 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 12538 tcp_send_data(tcp, tcp->tcp_wq, mp1); 12539 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12540 } 12541 freemsg(mp); 12542 return; 12543 case TCPS_SYN_RCVD: 12544 if (flags & TH_ACK) { 12545 /* 12546 * In this state, a SYN|ACK packet is either bogus 12547 * because the other side must be ACKing our SYN which 12548 * indicates it has seen the ACK for their SYN and 12549 * shouldn't retransmit it or we're crossing SYNs 12550 * on active open. 12551 */ 12552 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 12553 freemsg(mp); 12554 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 12555 tcp, seg_ack, 0, TH_RST); 12556 return; 12557 } 12558 /* 12559 * NOTE: RFC 793 pg. 72 says this should be 12560 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 12561 * but that would mean we have an ack that ignored 12562 * our SYN. 12563 */ 12564 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 12565 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12566 freemsg(mp); 12567 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 12568 tcp, seg_ack, 0, TH_RST); 12569 return; 12570 } 12571 } 12572 break; 12573 case TCPS_LISTEN: 12574 /* 12575 * Only a TLI listener can come through this path when a 12576 * acceptor is going back to be a listener and a packet 12577 * for the acceptor hits the classifier. For a socket 12578 * listener, this can never happen because a listener 12579 * can never accept connection on itself and hence a 12580 * socket acceptor can not go back to being a listener. 12581 */ 12582 ASSERT(!TCP_IS_SOCKET(tcp)); 12583 /*FALLTHRU*/ 12584 case TCPS_CLOSED: 12585 case TCPS_BOUND: { 12586 conn_t *new_connp; 12587 12588 new_connp = ipcl_classify(mp, connp->conn_zoneid); 12589 if (new_connp != NULL) { 12590 tcp_reinput(new_connp, mp, connp->conn_sqp); 12591 return; 12592 } 12593 /* We failed to classify. For now just drop the packet */ 12594 freemsg(mp); 12595 return; 12596 } 12597 case TCPS_IDLE: 12598 /* 12599 * Handle the case where the tcp_clean_death() has happened 12600 * on a connection (application hasn't closed yet) but a packet 12601 * was already queued on squeue before tcp_clean_death() 12602 * was processed. Calling tcp_clean_death() twice on same 12603 * connection can result in weird behaviour. 12604 */ 12605 freemsg(mp); 12606 return; 12607 default: 12608 break; 12609 } 12610 12611 /* 12612 * Already on the correct queue/perimeter. 12613 * If this is a detached connection and not an eager 12614 * connection hanging off a listener then new data 12615 * (past the FIN) will cause a reset. 12616 * We do a special check here where it 12617 * is out of the main line, rather than check 12618 * if we are detached every time we see new 12619 * data down below. 12620 */ 12621 if (TCP_IS_DETACHED_NONEAGER(tcp) && 12622 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 12623 BUMP_MIB(&tcp_mib, tcpInClosed); 12624 TCP_RECORD_TRACE(tcp, 12625 mp, TCP_TRACE_RECV_PKT); 12626 12627 freemsg(mp); 12628 /* 12629 * This could be an SSL closure alert. We're detached so just 12630 * acknowledge it this last time. 12631 */ 12632 if (tcp->tcp_kssl_ctx != NULL) { 12633 kssl_release_ctx(tcp->tcp_kssl_ctx); 12634 tcp->tcp_kssl_ctx = NULL; 12635 12636 tcp->tcp_rnxt += seg_len; 12637 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12638 flags |= TH_ACK_NEEDED; 12639 goto ack_check; 12640 } 12641 12642 tcp_xmit_ctl("new data when detached", tcp, 12643 tcp->tcp_snxt, 0, TH_RST); 12644 (void) tcp_clean_death(tcp, EPROTO, 12); 12645 return; 12646 } 12647 12648 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12649 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 12650 new_swnd = BE16_TO_U16(tcph->th_win) << 12651 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 12652 mss = tcp->tcp_mss; 12653 12654 if (tcp->tcp_snd_ts_ok) { 12655 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 12656 /* 12657 * This segment is not acceptable. 12658 * Drop it and send back an ACK. 12659 */ 12660 freemsg(mp); 12661 flags |= TH_ACK_NEEDED; 12662 goto ack_check; 12663 } 12664 } else if (tcp->tcp_snd_sack_ok) { 12665 ASSERT(tcp->tcp_sack_info != NULL); 12666 tcpopt.tcp = tcp; 12667 /* 12668 * SACK info in already updated in tcp_parse_options. Ignore 12669 * all other TCP options... 12670 */ 12671 (void) tcp_parse_options(tcph, &tcpopt); 12672 } 12673 try_again:; 12674 gap = seg_seq - tcp->tcp_rnxt; 12675 rgap = tcp->tcp_rwnd - (gap + seg_len); 12676 /* 12677 * gap is the amount of sequence space between what we expect to see 12678 * and what we got for seg_seq. A positive value for gap means 12679 * something got lost. A negative value means we got some old stuff. 12680 */ 12681 if (gap < 0) { 12682 /* Old stuff present. Is the SYN in there? */ 12683 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 12684 (seg_len != 0)) { 12685 flags &= ~TH_SYN; 12686 seg_seq++; 12687 urp--; 12688 /* Recompute the gaps after noting the SYN. */ 12689 goto try_again; 12690 } 12691 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 12692 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 12693 (seg_len > -gap ? -gap : seg_len)); 12694 /* Remove the old stuff from seg_len. */ 12695 seg_len += gap; 12696 /* 12697 * Anything left? 12698 * Make sure to check for unack'd FIN when rest of data 12699 * has been previously ack'd. 12700 */ 12701 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 12702 /* 12703 * Resets are only valid if they lie within our offered 12704 * window. If the RST bit is set, we just ignore this 12705 * segment. 12706 */ 12707 if (flags & TH_RST) { 12708 freemsg(mp); 12709 return; 12710 } 12711 12712 /* 12713 * The arriving of dup data packets indicate that we 12714 * may have postponed an ack for too long, or the other 12715 * side's RTT estimate is out of shape. Start acking 12716 * more often. 12717 */ 12718 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 12719 tcp->tcp_rack_cnt >= 1 && 12720 tcp->tcp_rack_abs_max > 2) { 12721 tcp->tcp_rack_abs_max--; 12722 } 12723 tcp->tcp_rack_cur_max = 1; 12724 12725 /* 12726 * This segment is "unacceptable". None of its 12727 * sequence space lies within our advertized window. 12728 * 12729 * Adjust seg_len to the original value for tracing. 12730 */ 12731 seg_len -= gap; 12732 if (tcp->tcp_debug) { 12733 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12734 "tcp_rput: unacceptable, gap %d, rgap %d, " 12735 "flags 0x%x, seg_seq %u, seg_ack %u, " 12736 "seg_len %d, rnxt %u, snxt %u, %s", 12737 gap, rgap, flags, seg_seq, seg_ack, 12738 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 12739 tcp_display(tcp, NULL, 12740 DISP_ADDR_AND_PORT)); 12741 } 12742 12743 /* 12744 * Arrange to send an ACK in response to the 12745 * unacceptable segment per RFC 793 page 69. There 12746 * is only one small difference between ours and the 12747 * acceptability test in the RFC - we accept ACK-only 12748 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 12749 * will be generated. 12750 * 12751 * Note that we have to ACK an ACK-only packet at least 12752 * for stacks that send 0-length keep-alives with 12753 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 12754 * section 4.2.3.6. As long as we don't ever generate 12755 * an unacceptable packet in response to an incoming 12756 * packet that is unacceptable, it should not cause 12757 * "ACK wars". 12758 */ 12759 flags |= TH_ACK_NEEDED; 12760 12761 /* 12762 * Continue processing this segment in order to use the 12763 * ACK information it contains, but skip all other 12764 * sequence-number processing. Processing the ACK 12765 * information is necessary in order to 12766 * re-synchronize connections that may have lost 12767 * synchronization. 12768 * 12769 * We clear seg_len and flag fields related to 12770 * sequence number processing as they are not 12771 * to be trusted for an unacceptable segment. 12772 */ 12773 seg_len = 0; 12774 flags &= ~(TH_SYN | TH_FIN | TH_URG); 12775 goto process_ack; 12776 } 12777 12778 /* Fix seg_seq, and chew the gap off the front. */ 12779 seg_seq = tcp->tcp_rnxt; 12780 urp += gap; 12781 do { 12782 mblk_t *mp2; 12783 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 12784 (uintptr_t)UINT_MAX); 12785 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 12786 if (gap > 0) { 12787 mp->b_rptr = mp->b_wptr - gap; 12788 break; 12789 } 12790 mp2 = mp; 12791 mp = mp->b_cont; 12792 freeb(mp2); 12793 } while (gap < 0); 12794 /* 12795 * If the urgent data has already been acknowledged, we 12796 * should ignore TH_URG below 12797 */ 12798 if (urp < 0) 12799 flags &= ~TH_URG; 12800 } 12801 /* 12802 * rgap is the amount of stuff received out of window. A negative 12803 * value is the amount out of window. 12804 */ 12805 if (rgap < 0) { 12806 mblk_t *mp2; 12807 12808 if (tcp->tcp_rwnd == 0) { 12809 BUMP_MIB(&tcp_mib, tcpInWinProbe); 12810 } else { 12811 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 12812 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 12813 } 12814 12815 /* 12816 * seg_len does not include the FIN, so if more than 12817 * just the FIN is out of window, we act like we don't 12818 * see it. (If just the FIN is out of window, rgap 12819 * will be zero and we will go ahead and acknowledge 12820 * the FIN.) 12821 */ 12822 flags &= ~TH_FIN; 12823 12824 /* Fix seg_len and make sure there is something left. */ 12825 seg_len += rgap; 12826 if (seg_len <= 0) { 12827 /* 12828 * Resets are only valid if they lie within our offered 12829 * window. If the RST bit is set, we just ignore this 12830 * segment. 12831 */ 12832 if (flags & TH_RST) { 12833 freemsg(mp); 12834 return; 12835 } 12836 12837 /* Per RFC 793, we need to send back an ACK. */ 12838 flags |= TH_ACK_NEEDED; 12839 12840 /* 12841 * Send SIGURG as soon as possible i.e. even 12842 * if the TH_URG was delivered in a window probe 12843 * packet (which will be unacceptable). 12844 * 12845 * We generate a signal if none has been generated 12846 * for this connection or if this is a new urgent 12847 * byte. Also send a zero-length "unmarked" message 12848 * to inform SIOCATMARK that this is not the mark. 12849 * 12850 * tcp_urp_last_valid is cleared when the T_exdata_ind 12851 * is sent up. This plus the check for old data 12852 * (gap >= 0) handles the wraparound of the sequence 12853 * number space without having to always track the 12854 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 12855 * this max in its rcv_up variable). 12856 * 12857 * This prevents duplicate SIGURGS due to a "late" 12858 * zero-window probe when the T_EXDATA_IND has already 12859 * been sent up. 12860 */ 12861 if ((flags & TH_URG) && 12862 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 12863 tcp->tcp_urp_last))) { 12864 mp1 = allocb(0, BPRI_MED); 12865 if (mp1 == NULL) { 12866 freemsg(mp); 12867 return; 12868 } 12869 if (!TCP_IS_DETACHED(tcp) && 12870 !putnextctl1(tcp->tcp_rq, M_PCSIG, 12871 SIGURG)) { 12872 /* Try again on the rexmit. */ 12873 freemsg(mp1); 12874 freemsg(mp); 12875 return; 12876 } 12877 /* 12878 * If the next byte would be the mark 12879 * then mark with MARKNEXT else mark 12880 * with NOTMARKNEXT. 12881 */ 12882 if (gap == 0 && urp == 0) 12883 mp1->b_flag |= MSGMARKNEXT; 12884 else 12885 mp1->b_flag |= MSGNOTMARKNEXT; 12886 freemsg(tcp->tcp_urp_mark_mp); 12887 tcp->tcp_urp_mark_mp = mp1; 12888 flags |= TH_SEND_URP_MARK; 12889 tcp->tcp_urp_last_valid = B_TRUE; 12890 tcp->tcp_urp_last = urp + seg_seq; 12891 } 12892 /* 12893 * If this is a zero window probe, continue to 12894 * process the ACK part. But we need to set seg_len 12895 * to 0 to avoid data processing. Otherwise just 12896 * drop the segment and send back an ACK. 12897 */ 12898 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 12899 flags &= ~(TH_SYN | TH_URG); 12900 seg_len = 0; 12901 goto process_ack; 12902 } else { 12903 freemsg(mp); 12904 goto ack_check; 12905 } 12906 } 12907 /* Pitch out of window stuff off the end. */ 12908 rgap = seg_len; 12909 mp2 = mp; 12910 do { 12911 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 12912 (uintptr_t)INT_MAX); 12913 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 12914 if (rgap < 0) { 12915 mp2->b_wptr += rgap; 12916 if ((mp1 = mp2->b_cont) != NULL) { 12917 mp2->b_cont = NULL; 12918 freemsg(mp1); 12919 } 12920 break; 12921 } 12922 } while ((mp2 = mp2->b_cont) != NULL); 12923 } 12924 ok:; 12925 /* 12926 * TCP should check ECN info for segments inside the window only. 12927 * Therefore the check should be done here. 12928 */ 12929 if (tcp->tcp_ecn_ok) { 12930 if (flags & TH_CWR) { 12931 tcp->tcp_ecn_echo_on = B_FALSE; 12932 } 12933 /* 12934 * Note that both ECN_CE and CWR can be set in the 12935 * same segment. In this case, we once again turn 12936 * on ECN_ECHO. 12937 */ 12938 if (tcp->tcp_ipversion == IPV4_VERSION) { 12939 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 12940 12941 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 12942 tcp->tcp_ecn_echo_on = B_TRUE; 12943 } 12944 } else { 12945 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 12946 12947 if ((vcf & htonl(IPH_ECN_CE << 20)) == 12948 htonl(IPH_ECN_CE << 20)) { 12949 tcp->tcp_ecn_echo_on = B_TRUE; 12950 } 12951 } 12952 } 12953 12954 /* 12955 * Check whether we can update tcp_ts_recent. This test is 12956 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 12957 * Extensions for High Performance: An Update", Internet Draft. 12958 */ 12959 if (tcp->tcp_snd_ts_ok && 12960 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 12961 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 12962 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12963 tcp->tcp_last_rcv_lbolt = lbolt64; 12964 } 12965 12966 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 12967 /* 12968 * FIN in an out of order segment. We record this in 12969 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 12970 * Clear the FIN so that any check on FIN flag will fail. 12971 * Remember that FIN also counts in the sequence number 12972 * space. So we need to ack out of order FIN only segments. 12973 */ 12974 if (flags & TH_FIN) { 12975 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 12976 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 12977 flags &= ~TH_FIN; 12978 flags |= TH_ACK_NEEDED; 12979 } 12980 if (seg_len > 0) { 12981 /* Fill in the SACK blk list. */ 12982 if (tcp->tcp_snd_sack_ok) { 12983 ASSERT(tcp->tcp_sack_info != NULL); 12984 tcp_sack_insert(tcp->tcp_sack_list, 12985 seg_seq, seg_seq + seg_len, 12986 &(tcp->tcp_num_sack_blk)); 12987 } 12988 12989 /* 12990 * Attempt reassembly and see if we have something 12991 * ready to go. 12992 */ 12993 mp = tcp_reass(tcp, mp, seg_seq); 12994 /* Always ack out of order packets */ 12995 flags |= TH_ACK_NEEDED | TH_PUSH; 12996 if (mp) { 12997 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 12998 (uintptr_t)INT_MAX); 12999 seg_len = mp->b_cont ? msgdsize(mp) : 13000 (int)(mp->b_wptr - mp->b_rptr); 13001 seg_seq = tcp->tcp_rnxt; 13002 /* 13003 * A gap is filled and the seq num and len 13004 * of the gap match that of a previously 13005 * received FIN, put the FIN flag back in. 13006 */ 13007 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13008 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13009 flags |= TH_FIN; 13010 tcp->tcp_valid_bits &= 13011 ~TCP_OFO_FIN_VALID; 13012 } 13013 } else { 13014 /* 13015 * Keep going even with NULL mp. 13016 * There may be a useful ACK or something else 13017 * we don't want to miss. 13018 * 13019 * But TCP should not perform fast retransmit 13020 * because of the ack number. TCP uses 13021 * seg_len == 0 to determine if it is a pure 13022 * ACK. And this is not a pure ACK. 13023 */ 13024 seg_len = 0; 13025 ofo_seg = B_TRUE; 13026 } 13027 } 13028 } else if (seg_len > 0) { 13029 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13030 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13031 /* 13032 * If an out of order FIN was received before, and the seq 13033 * num and len of the new segment match that of the FIN, 13034 * put the FIN flag back in. 13035 */ 13036 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13037 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13038 flags |= TH_FIN; 13039 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13040 } 13041 } 13042 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13043 if (flags & TH_RST) { 13044 freemsg(mp); 13045 switch (tcp->tcp_state) { 13046 case TCPS_SYN_RCVD: 13047 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13048 break; 13049 case TCPS_ESTABLISHED: 13050 case TCPS_FIN_WAIT_1: 13051 case TCPS_FIN_WAIT_2: 13052 case TCPS_CLOSE_WAIT: 13053 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13054 break; 13055 case TCPS_CLOSING: 13056 case TCPS_LAST_ACK: 13057 (void) tcp_clean_death(tcp, 0, 16); 13058 break; 13059 default: 13060 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13061 (void) tcp_clean_death(tcp, ENXIO, 17); 13062 break; 13063 } 13064 return; 13065 } 13066 if (flags & TH_SYN) { 13067 /* 13068 * See RFC 793, Page 71 13069 * 13070 * The seq number must be in the window as it should 13071 * be "fixed" above. If it is outside window, it should 13072 * be already rejected. Note that we allow seg_seq to be 13073 * rnxt + rwnd because we want to accept 0 window probe. 13074 */ 13075 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13076 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13077 freemsg(mp); 13078 /* 13079 * If the ACK flag is not set, just use our snxt as the 13080 * seq number of the RST segment. 13081 */ 13082 if (!(flags & TH_ACK)) { 13083 seg_ack = tcp->tcp_snxt; 13084 } 13085 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13086 TH_RST|TH_ACK); 13087 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13088 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13089 return; 13090 } 13091 /* 13092 * urp could be -1 when the urp field in the packet is 0 13093 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13094 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13095 */ 13096 if (flags & TH_URG && urp >= 0) { 13097 if (!tcp->tcp_urp_last_valid || 13098 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13099 /* 13100 * If we haven't generated the signal yet for this 13101 * urgent pointer value, do it now. Also, send up a 13102 * zero-length M_DATA indicating whether or not this is 13103 * the mark. The latter is not needed when a 13104 * T_EXDATA_IND is sent up. However, if there are 13105 * allocation failures this code relies on the sender 13106 * retransmitting and the socket code for determining 13107 * the mark should not block waiting for the peer to 13108 * transmit. Thus, for simplicity we always send up the 13109 * mark indication. 13110 */ 13111 mp1 = allocb(0, BPRI_MED); 13112 if (mp1 == NULL) { 13113 freemsg(mp); 13114 return; 13115 } 13116 if (!TCP_IS_DETACHED(tcp) && 13117 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13118 /* Try again on the rexmit. */ 13119 freemsg(mp1); 13120 freemsg(mp); 13121 return; 13122 } 13123 /* 13124 * Mark with NOTMARKNEXT for now. 13125 * The code below will change this to MARKNEXT 13126 * if we are at the mark. 13127 * 13128 * If there are allocation failures (e.g. in dupmsg 13129 * below) the next time tcp_rput_data sees the urgent 13130 * segment it will send up the MSG*MARKNEXT message. 13131 */ 13132 mp1->b_flag |= MSGNOTMARKNEXT; 13133 freemsg(tcp->tcp_urp_mark_mp); 13134 tcp->tcp_urp_mark_mp = mp1; 13135 flags |= TH_SEND_URP_MARK; 13136 #ifdef DEBUG 13137 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13138 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13139 "last %x, %s", 13140 seg_seq, urp, tcp->tcp_urp_last, 13141 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13142 #endif /* DEBUG */ 13143 tcp->tcp_urp_last_valid = B_TRUE; 13144 tcp->tcp_urp_last = urp + seg_seq; 13145 } else if (tcp->tcp_urp_mark_mp != NULL) { 13146 /* 13147 * An allocation failure prevented the previous 13148 * tcp_rput_data from sending up the allocated 13149 * MSG*MARKNEXT message - send it up this time 13150 * around. 13151 */ 13152 flags |= TH_SEND_URP_MARK; 13153 } 13154 13155 /* 13156 * If the urgent byte is in this segment, make sure that it is 13157 * all by itself. This makes it much easier to deal with the 13158 * possibility of an allocation failure on the T_exdata_ind. 13159 * Note that seg_len is the number of bytes in the segment, and 13160 * urp is the offset into the segment of the urgent byte. 13161 * urp < seg_len means that the urgent byte is in this segment. 13162 */ 13163 if (urp < seg_len) { 13164 if (seg_len != 1) { 13165 uint32_t tmp_rnxt; 13166 /* 13167 * Break it up and feed it back in. 13168 * Re-attach the IP header. 13169 */ 13170 mp->b_rptr = iphdr; 13171 if (urp > 0) { 13172 /* 13173 * There is stuff before the urgent 13174 * byte. 13175 */ 13176 mp1 = dupmsg(mp); 13177 if (!mp1) { 13178 /* 13179 * Trim from urgent byte on. 13180 * The rest will come back. 13181 */ 13182 (void) adjmsg(mp, 13183 urp - seg_len); 13184 tcp_rput_data(connp, 13185 mp, NULL); 13186 return; 13187 } 13188 (void) adjmsg(mp1, urp - seg_len); 13189 /* Feed this piece back in. */ 13190 tmp_rnxt = tcp->tcp_rnxt; 13191 tcp_rput_data(connp, mp1, NULL); 13192 /* 13193 * If the data passed back in was not 13194 * processed (ie: bad ACK) sending 13195 * the remainder back in will cause a 13196 * loop. In this case, drop the 13197 * packet and let the sender try 13198 * sending a good packet. 13199 */ 13200 if (tmp_rnxt == tcp->tcp_rnxt) { 13201 freemsg(mp); 13202 return; 13203 } 13204 } 13205 if (urp != seg_len - 1) { 13206 uint32_t tmp_rnxt; 13207 /* 13208 * There is stuff after the urgent 13209 * byte. 13210 */ 13211 mp1 = dupmsg(mp); 13212 if (!mp1) { 13213 /* 13214 * Trim everything beyond the 13215 * urgent byte. The rest will 13216 * come back. 13217 */ 13218 (void) adjmsg(mp, 13219 urp + 1 - seg_len); 13220 tcp_rput_data(connp, 13221 mp, NULL); 13222 return; 13223 } 13224 (void) adjmsg(mp1, urp + 1 - seg_len); 13225 tmp_rnxt = tcp->tcp_rnxt; 13226 tcp_rput_data(connp, mp1, NULL); 13227 /* 13228 * If the data passed back in was not 13229 * processed (ie: bad ACK) sending 13230 * the remainder back in will cause a 13231 * loop. In this case, drop the 13232 * packet and let the sender try 13233 * sending a good packet. 13234 */ 13235 if (tmp_rnxt == tcp->tcp_rnxt) { 13236 freemsg(mp); 13237 return; 13238 } 13239 } 13240 tcp_rput_data(connp, mp, NULL); 13241 return; 13242 } 13243 /* 13244 * This segment contains only the urgent byte. We 13245 * have to allocate the T_exdata_ind, if we can. 13246 */ 13247 if (!tcp->tcp_urp_mp) { 13248 struct T_exdata_ind *tei; 13249 mp1 = allocb(sizeof (struct T_exdata_ind), 13250 BPRI_MED); 13251 if (!mp1) { 13252 /* 13253 * Sigh... It'll be back. 13254 * Generate any MSG*MARK message now. 13255 */ 13256 freemsg(mp); 13257 seg_len = 0; 13258 if (flags & TH_SEND_URP_MARK) { 13259 13260 13261 ASSERT(tcp->tcp_urp_mark_mp); 13262 tcp->tcp_urp_mark_mp->b_flag &= 13263 ~MSGNOTMARKNEXT; 13264 tcp->tcp_urp_mark_mp->b_flag |= 13265 MSGMARKNEXT; 13266 } 13267 goto ack_check; 13268 } 13269 mp1->b_datap->db_type = M_PROTO; 13270 tei = (struct T_exdata_ind *)mp1->b_rptr; 13271 tei->PRIM_type = T_EXDATA_IND; 13272 tei->MORE_flag = 0; 13273 mp1->b_wptr = (uchar_t *)&tei[1]; 13274 tcp->tcp_urp_mp = mp1; 13275 #ifdef DEBUG 13276 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13277 "tcp_rput: allocated exdata_ind %s", 13278 tcp_display(tcp, NULL, 13279 DISP_PORT_ONLY)); 13280 #endif /* DEBUG */ 13281 /* 13282 * There is no need to send a separate MSG*MARK 13283 * message since the T_EXDATA_IND will be sent 13284 * now. 13285 */ 13286 flags &= ~TH_SEND_URP_MARK; 13287 freemsg(tcp->tcp_urp_mark_mp); 13288 tcp->tcp_urp_mark_mp = NULL; 13289 } 13290 /* 13291 * Now we are all set. On the next putnext upstream, 13292 * tcp_urp_mp will be non-NULL and will get prepended 13293 * to what has to be this piece containing the urgent 13294 * byte. If for any reason we abort this segment below, 13295 * if it comes back, we will have this ready, or it 13296 * will get blown off in close. 13297 */ 13298 } else if (urp == seg_len) { 13299 /* 13300 * The urgent byte is the next byte after this sequence 13301 * number. If there is data it is marked with 13302 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13303 * since it is not needed. Otherwise, if the code 13304 * above just allocated a zero-length tcp_urp_mark_mp 13305 * message, that message is tagged with MSGMARKNEXT. 13306 * Sending up these MSGMARKNEXT messages makes 13307 * SIOCATMARK work correctly even though 13308 * the T_EXDATA_IND will not be sent up until the 13309 * urgent byte arrives. 13310 */ 13311 if (seg_len != 0) { 13312 flags |= TH_MARKNEXT_NEEDED; 13313 freemsg(tcp->tcp_urp_mark_mp); 13314 tcp->tcp_urp_mark_mp = NULL; 13315 flags &= ~TH_SEND_URP_MARK; 13316 } else if (tcp->tcp_urp_mark_mp != NULL) { 13317 flags |= TH_SEND_URP_MARK; 13318 tcp->tcp_urp_mark_mp->b_flag &= 13319 ~MSGNOTMARKNEXT; 13320 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13321 } 13322 #ifdef DEBUG 13323 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13324 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13325 seg_len, flags, 13326 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13327 #endif /* DEBUG */ 13328 } else { 13329 /* Data left until we hit mark */ 13330 #ifdef DEBUG 13331 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13332 "tcp_rput: URP %d bytes left, %s", 13333 urp - seg_len, tcp_display(tcp, NULL, 13334 DISP_PORT_ONLY)); 13335 #endif /* DEBUG */ 13336 } 13337 } 13338 13339 process_ack: 13340 if (!(flags & TH_ACK)) { 13341 freemsg(mp); 13342 goto xmit_check; 13343 } 13344 } 13345 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13346 13347 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13348 tcp->tcp_ip_forward_progress = B_TRUE; 13349 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13350 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13351 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13352 /* 3-way handshake complete - pass up the T_CONN_IND */ 13353 tcp_t *listener = tcp->tcp_listener; 13354 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13355 13356 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13357 /* 13358 * We are here means eager is fine but it can 13359 * get a TH_RST at any point between now and till 13360 * accept completes and disappear. We need to 13361 * ensure that reference to eager is valid after 13362 * we get out of eager's perimeter. So we do 13363 * an extra refhold. 13364 */ 13365 CONN_INC_REF(connp); 13366 13367 /* 13368 * The listener also exists because of the refhold 13369 * done in tcp_conn_request. Its possible that it 13370 * might have closed. We will check that once we 13371 * get inside listeners context. 13372 */ 13373 CONN_INC_REF(listener->tcp_connp); 13374 if (listener->tcp_connp->conn_sqp == 13375 connp->conn_sqp) { 13376 tcp_send_conn_ind(listener->tcp_connp, mp, 13377 listener->tcp_connp->conn_sqp); 13378 CONN_DEC_REF(listener->tcp_connp); 13379 } else if (!tcp->tcp_loopback) { 13380 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13381 tcp_send_conn_ind, 13382 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13383 } else { 13384 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13385 tcp_send_conn_ind, listener->tcp_connp, 13386 SQTAG_TCP_CONN_IND); 13387 } 13388 } 13389 13390 if (tcp->tcp_active_open) { 13391 /* 13392 * We are seeing the final ack in the three way 13393 * hand shake of a active open'ed connection 13394 * so we must send up a T_CONN_CON 13395 */ 13396 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13397 freemsg(mp); 13398 return; 13399 } 13400 /* 13401 * Don't fuse the loopback endpoints for 13402 * simultaneous active opens. 13403 */ 13404 if (tcp->tcp_loopback) { 13405 TCP_STAT(tcp_fusion_unfusable); 13406 tcp->tcp_unfusable = B_TRUE; 13407 } 13408 } 13409 13410 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13411 bytes_acked--; 13412 /* SYN was acked - making progress */ 13413 if (tcp->tcp_ipversion == IPV6_VERSION) 13414 tcp->tcp_ip_forward_progress = B_TRUE; 13415 13416 /* 13417 * If SYN was retransmitted, need to reset all 13418 * retransmission info as this segment will be 13419 * treated as a dup ACK. 13420 */ 13421 if (tcp->tcp_rexmit) { 13422 tcp->tcp_rexmit = B_FALSE; 13423 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13424 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13425 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13426 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13427 tcp->tcp_ms_we_have_waited = 0; 13428 tcp->tcp_cwnd = mss; 13429 } 13430 13431 /* 13432 * We set the send window to zero here. 13433 * This is needed if there is data to be 13434 * processed already on the queue. 13435 * Later (at swnd_update label), the 13436 * "new_swnd > tcp_swnd" condition is satisfied 13437 * the XMIT_NEEDED flag is set in the current 13438 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13439 * called if there is already data on queue in 13440 * this state. 13441 */ 13442 tcp->tcp_swnd = 0; 13443 13444 if (new_swnd > tcp->tcp_max_swnd) 13445 tcp->tcp_max_swnd = new_swnd; 13446 tcp->tcp_swl1 = seg_seq; 13447 tcp->tcp_swl2 = seg_ack; 13448 tcp->tcp_state = TCPS_ESTABLISHED; 13449 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13450 13451 /* Fuse when both sides are in ESTABLISHED state */ 13452 if (tcp->tcp_loopback && do_tcp_fusion) 13453 tcp_fuse(tcp, iphdr, tcph); 13454 13455 } 13456 /* This code follows 4.4BSD-Lite2 mostly. */ 13457 if (bytes_acked < 0) 13458 goto est; 13459 13460 /* 13461 * If TCP is ECN capable and the congestion experience bit is 13462 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13463 * done once per window (or more loosely, per RTT). 13464 */ 13465 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13466 tcp->tcp_cwr = B_FALSE; 13467 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13468 if (!tcp->tcp_cwr) { 13469 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13470 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13471 tcp->tcp_cwnd = npkt * mss; 13472 /* 13473 * If the cwnd is 0, use the timer to clock out 13474 * new segments. This is required by the ECN spec. 13475 */ 13476 if (npkt == 0) { 13477 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13478 /* 13479 * This makes sure that when the ACK comes 13480 * back, we will increase tcp_cwnd by 1 MSS. 13481 */ 13482 tcp->tcp_cwnd_cnt = 0; 13483 } 13484 tcp->tcp_cwr = B_TRUE; 13485 /* 13486 * This marks the end of the current window of in 13487 * flight data. That is why we don't use 13488 * tcp_suna + tcp_swnd. Only data in flight can 13489 * provide ECN info. 13490 */ 13491 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13492 tcp->tcp_ecn_cwr_sent = B_FALSE; 13493 } 13494 } 13495 13496 mp1 = tcp->tcp_xmit_head; 13497 if (bytes_acked == 0) { 13498 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 13499 int dupack_cnt; 13500 13501 BUMP_MIB(&tcp_mib, tcpInDupAck); 13502 /* 13503 * Fast retransmit. When we have seen exactly three 13504 * identical ACKs while we have unacked data 13505 * outstanding we take it as a hint that our peer 13506 * dropped something. 13507 * 13508 * If TCP is retransmitting, don't do fast retransmit. 13509 */ 13510 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 13511 ! tcp->tcp_rexmit) { 13512 /* Do Limited Transmit */ 13513 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 13514 tcp_dupack_fast_retransmit) { 13515 /* 13516 * RFC 3042 13517 * 13518 * What we need to do is temporarily 13519 * increase tcp_cwnd so that new 13520 * data can be sent if it is allowed 13521 * by the receive window (tcp_rwnd). 13522 * tcp_wput_data() will take care of 13523 * the rest. 13524 * 13525 * If the connection is SACK capable, 13526 * only do limited xmit when there 13527 * is SACK info. 13528 * 13529 * Note how tcp_cwnd is incremented. 13530 * The first dup ACK will increase 13531 * it by 1 MSS. The second dup ACK 13532 * will increase it by 2 MSS. This 13533 * means that only 1 new segment will 13534 * be sent for each dup ACK. 13535 */ 13536 if (tcp->tcp_unsent > 0 && 13537 (!tcp->tcp_snd_sack_ok || 13538 (tcp->tcp_snd_sack_ok && 13539 tcp->tcp_notsack_list != NULL))) { 13540 tcp->tcp_cwnd += mss << 13541 (tcp->tcp_dupack_cnt - 1); 13542 flags |= TH_LIMIT_XMIT; 13543 } 13544 } else if (dupack_cnt == 13545 tcp_dupack_fast_retransmit) { 13546 13547 /* 13548 * If we have reduced tcp_ssthresh 13549 * because of ECN, do not reduce it again 13550 * unless it is already one window of data 13551 * away. After one window of data, tcp_cwr 13552 * should then be cleared. Note that 13553 * for non ECN capable connection, tcp_cwr 13554 * should always be false. 13555 * 13556 * Adjust cwnd since the duplicate 13557 * ack indicates that a packet was 13558 * dropped (due to congestion.) 13559 */ 13560 if (!tcp->tcp_cwr) { 13561 npkt = ((tcp->tcp_snxt - 13562 tcp->tcp_suna) >> 1) / mss; 13563 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13564 mss; 13565 tcp->tcp_cwnd = (npkt + 13566 tcp->tcp_dupack_cnt) * mss; 13567 } 13568 if (tcp->tcp_ecn_ok) { 13569 tcp->tcp_cwr = B_TRUE; 13570 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13571 tcp->tcp_ecn_cwr_sent = B_FALSE; 13572 } 13573 13574 /* 13575 * We do Hoe's algorithm. Refer to her 13576 * paper "Improving the Start-up Behavior 13577 * of a Congestion Control Scheme for TCP," 13578 * appeared in SIGCOMM'96. 13579 * 13580 * Save highest seq no we have sent so far. 13581 * Be careful about the invisible FIN byte. 13582 */ 13583 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13584 (tcp->tcp_unsent == 0)) { 13585 tcp->tcp_rexmit_max = tcp->tcp_fss; 13586 } else { 13587 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13588 } 13589 13590 /* 13591 * Do not allow bursty traffic during. 13592 * fast recovery. Refer to Fall and Floyd's 13593 * paper "Simulation-based Comparisons of 13594 * Tahoe, Reno and SACK TCP" (in CCR?) 13595 * This is a best current practise. 13596 */ 13597 tcp->tcp_snd_burst = TCP_CWND_SS; 13598 13599 /* 13600 * For SACK: 13601 * Calculate tcp_pipe, which is the 13602 * estimated number of bytes in 13603 * network. 13604 * 13605 * tcp_fack is the highest sack'ed seq num 13606 * TCP has received. 13607 * 13608 * tcp_pipe is explained in the above quoted 13609 * Fall and Floyd's paper. tcp_fack is 13610 * explained in Mathis and Mahdavi's 13611 * "Forward Acknowledgment: Refining TCP 13612 * Congestion Control" in SIGCOMM '96. 13613 */ 13614 if (tcp->tcp_snd_sack_ok) { 13615 ASSERT(tcp->tcp_sack_info != NULL); 13616 if (tcp->tcp_notsack_list != NULL) { 13617 tcp->tcp_pipe = tcp->tcp_snxt - 13618 tcp->tcp_fack; 13619 tcp->tcp_sack_snxt = seg_ack; 13620 flags |= TH_NEED_SACK_REXMIT; 13621 } else { 13622 /* 13623 * Always initialize tcp_pipe 13624 * even though we don't have 13625 * any SACK info. If later 13626 * we get SACK info and 13627 * tcp_pipe is not initialized, 13628 * funny things will happen. 13629 */ 13630 tcp->tcp_pipe = 13631 tcp->tcp_cwnd_ssthresh; 13632 } 13633 } else { 13634 flags |= TH_REXMIT_NEEDED; 13635 } /* tcp_snd_sack_ok */ 13636 13637 } else { 13638 /* 13639 * Here we perform congestion 13640 * avoidance, but NOT slow start. 13641 * This is known as the Fast 13642 * Recovery Algorithm. 13643 */ 13644 if (tcp->tcp_snd_sack_ok && 13645 tcp->tcp_notsack_list != NULL) { 13646 flags |= TH_NEED_SACK_REXMIT; 13647 tcp->tcp_pipe -= mss; 13648 if (tcp->tcp_pipe < 0) 13649 tcp->tcp_pipe = 0; 13650 } else { 13651 /* 13652 * We know that one more packet has 13653 * left the pipe thus we can update 13654 * cwnd. 13655 */ 13656 cwnd = tcp->tcp_cwnd + mss; 13657 if (cwnd > tcp->tcp_cwnd_max) 13658 cwnd = tcp->tcp_cwnd_max; 13659 tcp->tcp_cwnd = cwnd; 13660 if (tcp->tcp_unsent > 0) 13661 flags |= TH_XMIT_NEEDED; 13662 } 13663 } 13664 } 13665 } else if (tcp->tcp_zero_win_probe) { 13666 /* 13667 * If the window has opened, need to arrange 13668 * to send additional data. 13669 */ 13670 if (new_swnd != 0) { 13671 /* tcp_suna != tcp_snxt */ 13672 /* Packet contains a window update */ 13673 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 13674 tcp->tcp_zero_win_probe = 0; 13675 tcp->tcp_timer_backoff = 0; 13676 tcp->tcp_ms_we_have_waited = 0; 13677 13678 /* 13679 * Transmit starting with tcp_suna since 13680 * the one byte probe is not ack'ed. 13681 * If TCP has sent more than one identical 13682 * probe, tcp_rexmit will be set. That means 13683 * tcp_ss_rexmit() will send out the one 13684 * byte along with new data. Otherwise, 13685 * fake the retransmission. 13686 */ 13687 flags |= TH_XMIT_NEEDED; 13688 if (!tcp->tcp_rexmit) { 13689 tcp->tcp_rexmit = B_TRUE; 13690 tcp->tcp_dupack_cnt = 0; 13691 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13692 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 13693 } 13694 } 13695 } 13696 goto swnd_update; 13697 } 13698 13699 /* 13700 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 13701 * If the ACK value acks something that we have not yet sent, it might 13702 * be an old duplicate segment. Send an ACK to re-synchronize the 13703 * other side. 13704 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 13705 * state is handled above, so we can always just drop the segment and 13706 * send an ACK here. 13707 * 13708 * Should we send ACKs in response to ACK only segments? 13709 */ 13710 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13711 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 13712 /* drop the received segment */ 13713 freemsg(mp); 13714 13715 /* 13716 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 13717 * greater than 0, check if the number of such 13718 * bogus ACks is greater than that count. If yes, 13719 * don't send back any ACK. This prevents TCP from 13720 * getting into an ACK storm if somehow an attacker 13721 * successfully spoofs an acceptable segment to our 13722 * peer. 13723 */ 13724 if (tcp_drop_ack_unsent_cnt > 0 && 13725 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 13726 TCP_STAT(tcp_in_ack_unsent_drop); 13727 return; 13728 } 13729 mp = tcp_ack_mp(tcp); 13730 if (mp != NULL) { 13731 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 13732 BUMP_LOCAL(tcp->tcp_obsegs); 13733 BUMP_MIB(&tcp_mib, tcpOutAck); 13734 tcp_send_data(tcp, tcp->tcp_wq, mp); 13735 } 13736 return; 13737 } 13738 13739 /* 13740 * TCP gets a new ACK, update the notsack'ed list to delete those 13741 * blocks that are covered by this ACK. 13742 */ 13743 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 13744 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 13745 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 13746 } 13747 13748 /* 13749 * If we got an ACK after fast retransmit, check to see 13750 * if it is a partial ACK. If it is not and the congestion 13751 * window was inflated to account for the other side's 13752 * cached packets, retract it. If it is, do Hoe's algorithm. 13753 */ 13754 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 13755 ASSERT(tcp->tcp_rexmit == B_FALSE); 13756 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 13757 tcp->tcp_dupack_cnt = 0; 13758 /* 13759 * Restore the orig tcp_cwnd_ssthresh after 13760 * fast retransmit phase. 13761 */ 13762 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 13763 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 13764 } 13765 tcp->tcp_rexmit_max = seg_ack; 13766 tcp->tcp_cwnd_cnt = 0; 13767 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13768 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13769 13770 /* 13771 * Remove all notsack info to avoid confusion with 13772 * the next fast retrasnmit/recovery phase. 13773 */ 13774 if (tcp->tcp_snd_sack_ok && 13775 tcp->tcp_notsack_list != NULL) { 13776 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 13777 } 13778 } else { 13779 if (tcp->tcp_snd_sack_ok && 13780 tcp->tcp_notsack_list != NULL) { 13781 flags |= TH_NEED_SACK_REXMIT; 13782 tcp->tcp_pipe -= mss; 13783 if (tcp->tcp_pipe < 0) 13784 tcp->tcp_pipe = 0; 13785 } else { 13786 /* 13787 * Hoe's algorithm: 13788 * 13789 * Retransmit the unack'ed segment and 13790 * restart fast recovery. Note that we 13791 * need to scale back tcp_cwnd to the 13792 * original value when we started fast 13793 * recovery. This is to prevent overly 13794 * aggressive behaviour in sending new 13795 * segments. 13796 */ 13797 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 13798 tcp_dupack_fast_retransmit * mss; 13799 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 13800 flags |= TH_REXMIT_NEEDED; 13801 } 13802 } 13803 } else { 13804 tcp->tcp_dupack_cnt = 0; 13805 if (tcp->tcp_rexmit) { 13806 /* 13807 * TCP is retranmitting. If the ACK ack's all 13808 * outstanding data, update tcp_rexmit_max and 13809 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 13810 * to the correct value. 13811 * 13812 * Note that SEQ_LEQ() is used. This is to avoid 13813 * unnecessary fast retransmit caused by dup ACKs 13814 * received when TCP does slow start retransmission 13815 * after a time out. During this phase, TCP may 13816 * send out segments which are already received. 13817 * This causes dup ACKs to be sent back. 13818 */ 13819 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 13820 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 13821 tcp->tcp_rexmit_nxt = seg_ack; 13822 } 13823 if (seg_ack != tcp->tcp_rexmit_max) { 13824 flags |= TH_XMIT_NEEDED; 13825 } 13826 } else { 13827 tcp->tcp_rexmit = B_FALSE; 13828 tcp->tcp_xmit_zc_clean = B_FALSE; 13829 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13830 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13831 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13832 } 13833 tcp->tcp_ms_we_have_waited = 0; 13834 } 13835 } 13836 13837 BUMP_MIB(&tcp_mib, tcpInAckSegs); 13838 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 13839 tcp->tcp_suna = seg_ack; 13840 if (tcp->tcp_zero_win_probe != 0) { 13841 tcp->tcp_zero_win_probe = 0; 13842 tcp->tcp_timer_backoff = 0; 13843 } 13844 13845 /* 13846 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 13847 * Note that it cannot be the SYN being ack'ed. The code flow 13848 * will not reach here. 13849 */ 13850 if (mp1 == NULL) { 13851 goto fin_acked; 13852 } 13853 13854 /* 13855 * Update the congestion window. 13856 * 13857 * If TCP is not ECN capable or TCP is ECN capable but the 13858 * congestion experience bit is not set, increase the tcp_cwnd as 13859 * usual. 13860 */ 13861 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 13862 cwnd = tcp->tcp_cwnd; 13863 add = mss; 13864 13865 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 13866 /* 13867 * This is to prevent an increase of less than 1 MSS of 13868 * tcp_cwnd. With partial increase, tcp_wput_data() 13869 * may send out tinygrams in order to preserve mblk 13870 * boundaries. 13871 * 13872 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 13873 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 13874 * increased by 1 MSS for every RTTs. 13875 */ 13876 if (tcp->tcp_cwnd_cnt <= 0) { 13877 tcp->tcp_cwnd_cnt = cwnd + add; 13878 } else { 13879 tcp->tcp_cwnd_cnt -= add; 13880 add = 0; 13881 } 13882 } 13883 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 13884 } 13885 13886 /* See if the latest urgent data has been acknowledged */ 13887 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 13888 SEQ_GT(seg_ack, tcp->tcp_urg)) 13889 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 13890 13891 /* Can we update the RTT estimates? */ 13892 if (tcp->tcp_snd_ts_ok) { 13893 /* Ignore zero timestamp echo-reply. */ 13894 if (tcpopt.tcp_opt_ts_ecr != 0) { 13895 tcp_set_rto(tcp, (int32_t)lbolt - 13896 (int32_t)tcpopt.tcp_opt_ts_ecr); 13897 } 13898 13899 /* If needed, restart the timer. */ 13900 if (tcp->tcp_set_timer == 1) { 13901 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13902 tcp->tcp_set_timer = 0; 13903 } 13904 /* 13905 * Update tcp_csuna in case the other side stops sending 13906 * us timestamps. 13907 */ 13908 tcp->tcp_csuna = tcp->tcp_snxt; 13909 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 13910 /* 13911 * An ACK sequence we haven't seen before, so get the RTT 13912 * and update the RTO. But first check if the timestamp is 13913 * valid to use. 13914 */ 13915 if ((mp1->b_next != NULL) && 13916 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 13917 tcp_set_rto(tcp, (int32_t)lbolt - 13918 (int32_t)(intptr_t)mp1->b_prev); 13919 else 13920 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 13921 13922 /* Remeber the last sequence to be ACKed */ 13923 tcp->tcp_csuna = seg_ack; 13924 if (tcp->tcp_set_timer == 1) { 13925 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13926 tcp->tcp_set_timer = 0; 13927 } 13928 } else { 13929 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 13930 } 13931 13932 /* Eat acknowledged bytes off the xmit queue. */ 13933 for (;;) { 13934 mblk_t *mp2; 13935 uchar_t *wptr; 13936 13937 wptr = mp1->b_wptr; 13938 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 13939 bytes_acked -= (int)(wptr - mp1->b_rptr); 13940 if (bytes_acked < 0) { 13941 mp1->b_rptr = wptr + bytes_acked; 13942 /* 13943 * Set a new timestamp if all the bytes timed by the 13944 * old timestamp have been ack'ed. 13945 */ 13946 if (SEQ_GT(seg_ack, 13947 (uint32_t)(uintptr_t)(mp1->b_next))) { 13948 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 13949 mp1->b_next = NULL; 13950 } 13951 break; 13952 } 13953 mp1->b_next = NULL; 13954 mp1->b_prev = NULL; 13955 mp2 = mp1; 13956 mp1 = mp1->b_cont; 13957 13958 /* 13959 * This notification is required for some zero-copy 13960 * clients to maintain a copy semantic. After the data 13961 * is ack'ed, client is safe to modify or reuse the buffer. 13962 */ 13963 if (tcp->tcp_snd_zcopy_aware && 13964 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 13965 tcp_zcopy_notify(tcp); 13966 freeb(mp2); 13967 if (bytes_acked == 0) { 13968 if (mp1 == NULL) { 13969 /* Everything is ack'ed, clear the tail. */ 13970 tcp->tcp_xmit_tail = NULL; 13971 /* 13972 * Cancel the timer unless we are still 13973 * waiting for an ACK for the FIN packet. 13974 */ 13975 if (tcp->tcp_timer_tid != 0 && 13976 tcp->tcp_snxt == tcp->tcp_suna) { 13977 (void) TCP_TIMER_CANCEL(tcp, 13978 tcp->tcp_timer_tid); 13979 tcp->tcp_timer_tid = 0; 13980 } 13981 goto pre_swnd_update; 13982 } 13983 if (mp2 != tcp->tcp_xmit_tail) 13984 break; 13985 tcp->tcp_xmit_tail = mp1; 13986 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 13987 (uintptr_t)INT_MAX); 13988 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 13989 mp1->b_rptr); 13990 break; 13991 } 13992 if (mp1 == NULL) { 13993 /* 13994 * More was acked but there is nothing more 13995 * outstanding. This means that the FIN was 13996 * just acked or that we're talking to a clown. 13997 */ 13998 fin_acked: 13999 ASSERT(tcp->tcp_fin_sent); 14000 tcp->tcp_xmit_tail = NULL; 14001 if (tcp->tcp_fin_sent) { 14002 /* FIN was acked - making progress */ 14003 if (tcp->tcp_ipversion == IPV6_VERSION && 14004 !tcp->tcp_fin_acked) 14005 tcp->tcp_ip_forward_progress = B_TRUE; 14006 tcp->tcp_fin_acked = B_TRUE; 14007 if (tcp->tcp_linger_tid != 0 && 14008 TCP_TIMER_CANCEL(tcp, 14009 tcp->tcp_linger_tid) >= 0) { 14010 tcp_stop_lingering(tcp); 14011 } 14012 } else { 14013 /* 14014 * We should never get here because 14015 * we have already checked that the 14016 * number of bytes ack'ed should be 14017 * smaller than or equal to what we 14018 * have sent so far (it is the 14019 * acceptability check of the ACK). 14020 * We can only get here if the send 14021 * queue is corrupted. 14022 * 14023 * Terminate the connection and 14024 * panic the system. It is better 14025 * for us to panic instead of 14026 * continuing to avoid other disaster. 14027 */ 14028 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14029 tcp->tcp_rnxt, TH_RST|TH_ACK); 14030 panic("Memory corruption " 14031 "detected for connection %s.", 14032 tcp_display(tcp, NULL, 14033 DISP_ADDR_AND_PORT)); 14034 /*NOTREACHED*/ 14035 } 14036 goto pre_swnd_update; 14037 } 14038 ASSERT(mp2 != tcp->tcp_xmit_tail); 14039 } 14040 if (tcp->tcp_unsent) { 14041 flags |= TH_XMIT_NEEDED; 14042 } 14043 pre_swnd_update: 14044 tcp->tcp_xmit_head = mp1; 14045 swnd_update: 14046 /* 14047 * The following check is different from most other implementations. 14048 * For bi-directional transfer, when segments are dropped, the 14049 * "normal" check will not accept a window update in those 14050 * retransmitted segemnts. Failing to do that, TCP may send out 14051 * segments which are outside receiver's window. As TCP accepts 14052 * the ack in those retransmitted segments, if the window update in 14053 * the same segment is not accepted, TCP will incorrectly calculates 14054 * that it can send more segments. This can create a deadlock 14055 * with the receiver if its window becomes zero. 14056 */ 14057 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14058 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14059 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14060 /* 14061 * The criteria for update is: 14062 * 14063 * 1. the segment acknowledges some data. Or 14064 * 2. the segment is new, i.e. it has a higher seq num. Or 14065 * 3. the segment is not old and the advertised window is 14066 * larger than the previous advertised window. 14067 */ 14068 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14069 flags |= TH_XMIT_NEEDED; 14070 tcp->tcp_swnd = new_swnd; 14071 if (new_swnd > tcp->tcp_max_swnd) 14072 tcp->tcp_max_swnd = new_swnd; 14073 tcp->tcp_swl1 = seg_seq; 14074 tcp->tcp_swl2 = seg_ack; 14075 } 14076 est: 14077 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14078 14079 switch (tcp->tcp_state) { 14080 case TCPS_FIN_WAIT_1: 14081 if (tcp->tcp_fin_acked) { 14082 tcp->tcp_state = TCPS_FIN_WAIT_2; 14083 /* 14084 * We implement the non-standard BSD/SunOS 14085 * FIN_WAIT_2 flushing algorithm. 14086 * If there is no user attached to this 14087 * TCP endpoint, then this TCP struct 14088 * could hang around forever in FIN_WAIT_2 14089 * state if the peer forgets to send us 14090 * a FIN. To prevent this, we wait only 14091 * 2*MSL (a convenient time value) for 14092 * the FIN to arrive. If it doesn't show up, 14093 * we flush the TCP endpoint. This algorithm, 14094 * though a violation of RFC-793, has worked 14095 * for over 10 years in BSD systems. 14096 * Note: SunOS 4.x waits 675 seconds before 14097 * flushing the FIN_WAIT_2 connection. 14098 */ 14099 TCP_TIMER_RESTART(tcp, 14100 tcp_fin_wait_2_flush_interval); 14101 } 14102 break; 14103 case TCPS_FIN_WAIT_2: 14104 break; /* Shutdown hook? */ 14105 case TCPS_LAST_ACK: 14106 freemsg(mp); 14107 if (tcp->tcp_fin_acked) { 14108 (void) tcp_clean_death(tcp, 0, 19); 14109 return; 14110 } 14111 goto xmit_check; 14112 case TCPS_CLOSING: 14113 if (tcp->tcp_fin_acked) { 14114 tcp->tcp_state = TCPS_TIME_WAIT; 14115 if (!TCP_IS_DETACHED(tcp)) { 14116 TCP_TIMER_RESTART(tcp, 14117 tcp_time_wait_interval); 14118 } else { 14119 tcp_time_wait_append(tcp); 14120 TCP_DBGSTAT(tcp_rput_time_wait); 14121 } 14122 } 14123 /*FALLTHRU*/ 14124 case TCPS_CLOSE_WAIT: 14125 freemsg(mp); 14126 goto xmit_check; 14127 default: 14128 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14129 break; 14130 } 14131 } 14132 if (flags & TH_FIN) { 14133 /* Make sure we ack the fin */ 14134 flags |= TH_ACK_NEEDED; 14135 if (!tcp->tcp_fin_rcvd) { 14136 tcp->tcp_fin_rcvd = B_TRUE; 14137 tcp->tcp_rnxt++; 14138 tcph = tcp->tcp_tcph; 14139 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14140 14141 /* 14142 * Generate the ordrel_ind at the end unless we 14143 * are an eager guy. 14144 * In the eager case tcp_rsrv will do this when run 14145 * after tcp_accept is done. 14146 */ 14147 if (tcp->tcp_listener == NULL && 14148 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14149 flags |= TH_ORDREL_NEEDED; 14150 switch (tcp->tcp_state) { 14151 case TCPS_SYN_RCVD: 14152 case TCPS_ESTABLISHED: 14153 tcp->tcp_state = TCPS_CLOSE_WAIT; 14154 /* Keepalive? */ 14155 break; 14156 case TCPS_FIN_WAIT_1: 14157 if (!tcp->tcp_fin_acked) { 14158 tcp->tcp_state = TCPS_CLOSING; 14159 break; 14160 } 14161 /* FALLTHRU */ 14162 case TCPS_FIN_WAIT_2: 14163 tcp->tcp_state = TCPS_TIME_WAIT; 14164 if (!TCP_IS_DETACHED(tcp)) { 14165 TCP_TIMER_RESTART(tcp, 14166 tcp_time_wait_interval); 14167 } else { 14168 tcp_time_wait_append(tcp); 14169 TCP_DBGSTAT(tcp_rput_time_wait); 14170 } 14171 if (seg_len) { 14172 /* 14173 * implies data piggybacked on FIN. 14174 * break to handle data. 14175 */ 14176 break; 14177 } 14178 freemsg(mp); 14179 goto ack_check; 14180 } 14181 } 14182 } 14183 if (mp == NULL) 14184 goto xmit_check; 14185 if (seg_len == 0) { 14186 freemsg(mp); 14187 goto xmit_check; 14188 } 14189 if (mp->b_rptr == mp->b_wptr) { 14190 /* 14191 * The header has been consumed, so we remove the 14192 * zero-length mblk here. 14193 */ 14194 mp1 = mp; 14195 mp = mp->b_cont; 14196 freeb(mp1); 14197 } 14198 tcph = tcp->tcp_tcph; 14199 tcp->tcp_rack_cnt++; 14200 { 14201 uint32_t cur_max; 14202 14203 cur_max = tcp->tcp_rack_cur_max; 14204 if (tcp->tcp_rack_cnt >= cur_max) { 14205 /* 14206 * We have more unacked data than we should - send 14207 * an ACK now. 14208 */ 14209 flags |= TH_ACK_NEEDED; 14210 cur_max++; 14211 if (cur_max > tcp->tcp_rack_abs_max) 14212 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14213 else 14214 tcp->tcp_rack_cur_max = cur_max; 14215 } else if (TCP_IS_DETACHED(tcp)) { 14216 /* We don't have an ACK timer for detached TCP. */ 14217 flags |= TH_ACK_NEEDED; 14218 } else if (seg_len < mss) { 14219 /* 14220 * If we get a segment that is less than an mss, and we 14221 * already have unacknowledged data, and the amount 14222 * unacknowledged is not a multiple of mss, then we 14223 * better generate an ACK now. Otherwise, this may be 14224 * the tail piece of a transaction, and we would rather 14225 * wait for the response. 14226 */ 14227 uint32_t udif; 14228 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14229 (uintptr_t)INT_MAX); 14230 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14231 if (udif && (udif % mss)) 14232 flags |= TH_ACK_NEEDED; 14233 else 14234 flags |= TH_ACK_TIMER_NEEDED; 14235 } else { 14236 /* Start delayed ack timer */ 14237 flags |= TH_ACK_TIMER_NEEDED; 14238 } 14239 } 14240 tcp->tcp_rnxt += seg_len; 14241 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14242 14243 /* Update SACK list */ 14244 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14245 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14246 &(tcp->tcp_num_sack_blk)); 14247 } 14248 14249 if (tcp->tcp_urp_mp) { 14250 tcp->tcp_urp_mp->b_cont = mp; 14251 mp = tcp->tcp_urp_mp; 14252 tcp->tcp_urp_mp = NULL; 14253 /* Ready for a new signal. */ 14254 tcp->tcp_urp_last_valid = B_FALSE; 14255 #ifdef DEBUG 14256 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14257 "tcp_rput: sending exdata_ind %s", 14258 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14259 #endif /* DEBUG */ 14260 } 14261 14262 /* 14263 * Check for ancillary data changes compared to last segment. 14264 */ 14265 if (tcp->tcp_ipv6_recvancillary != 0) { 14266 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14267 if (mp == NULL) 14268 return; 14269 } 14270 14271 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14272 /* 14273 * Side queue inbound data until the accept happens. 14274 * tcp_accept/tcp_rput drains this when the accept happens. 14275 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14276 * T_EXDATA_IND) it is queued on b_next. 14277 * XXX Make urgent data use this. Requires: 14278 * Removing tcp_listener check for TH_URG 14279 * Making M_PCPROTO and MARK messages skip the eager case 14280 */ 14281 14282 if (tcp->tcp_kssl_pending) { 14283 tcp_kssl_input(tcp, mp); 14284 } else { 14285 tcp_rcv_enqueue(tcp, mp, seg_len); 14286 } 14287 } else { 14288 if (mp->b_datap->db_type != M_DATA || 14289 (flags & TH_MARKNEXT_NEEDED)) { 14290 if (tcp->tcp_rcv_list != NULL) { 14291 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14292 } 14293 ASSERT(tcp->tcp_rcv_list == NULL || 14294 tcp->tcp_fused_sigurg); 14295 if (flags & TH_MARKNEXT_NEEDED) { 14296 #ifdef DEBUG 14297 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14298 "tcp_rput: sending MSGMARKNEXT %s", 14299 tcp_display(tcp, NULL, 14300 DISP_PORT_ONLY)); 14301 #endif /* DEBUG */ 14302 mp->b_flag |= MSGMARKNEXT; 14303 flags &= ~TH_MARKNEXT_NEEDED; 14304 } 14305 14306 /* Does this need SSL processing first? */ 14307 if ((tcp->tcp_kssl_ctx != NULL) && 14308 (DB_TYPE(mp) == M_DATA)) { 14309 tcp_kssl_input(tcp, mp); 14310 } else { 14311 putnext(tcp->tcp_rq, mp); 14312 if (!canputnext(tcp->tcp_rq)) 14313 tcp->tcp_rwnd -= seg_len; 14314 } 14315 } else if (((flags & (TH_PUSH|TH_FIN)) || 14316 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) && 14317 (sqp != NULL)) { 14318 if (tcp->tcp_rcv_list != NULL) { 14319 /* 14320 * Enqueue the new segment first and then 14321 * call tcp_rcv_drain() to send all data 14322 * up. The other way to do this is to 14323 * send all queued data up and then call 14324 * putnext() to send the new segment up. 14325 * This way can remove the else part later 14326 * on. 14327 * 14328 * We don't this to avoid one more call to 14329 * canputnext() as tcp_rcv_drain() needs to 14330 * call canputnext(). 14331 */ 14332 tcp_rcv_enqueue(tcp, mp, seg_len); 14333 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14334 } else { 14335 /* Does this need SSL processing first? */ 14336 if ((tcp->tcp_kssl_ctx != NULL) && 14337 (DB_TYPE(mp) == M_DATA)) { 14338 tcp_kssl_input(tcp, mp); 14339 } else { 14340 putnext(tcp->tcp_rq, mp); 14341 if (!canputnext(tcp->tcp_rq)) 14342 tcp->tcp_rwnd -= seg_len; 14343 } 14344 } 14345 } else { 14346 /* 14347 * Enqueue all packets when processing an mblk 14348 * from the co queue and also enqueue normal packets. 14349 */ 14350 tcp_rcv_enqueue(tcp, mp, seg_len); 14351 } 14352 /* 14353 * Make sure the timer is running if we have data waiting 14354 * for a push bit. This provides resiliency against 14355 * implementations that do not correctly generate push bits. 14356 */ 14357 if ((sqp != NULL) && tcp->tcp_rcv_list != NULL && 14358 tcp->tcp_push_tid == 0) { 14359 /* 14360 * The connection may be closed at this point, so don't 14361 * do anything for a detached tcp. 14362 */ 14363 if (!TCP_IS_DETACHED(tcp)) 14364 tcp->tcp_push_tid = TCP_TIMER(tcp, 14365 tcp_push_timer, 14366 MSEC_TO_TICK(tcp_push_timer_interval)); 14367 } 14368 } 14369 xmit_check: 14370 /* Is there anything left to do? */ 14371 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14372 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14373 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14374 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14375 goto done; 14376 14377 /* Any transmit work to do and a non-zero window? */ 14378 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14379 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14380 if (flags & TH_REXMIT_NEEDED) { 14381 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14382 14383 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14384 if (snd_size > mss) 14385 snd_size = mss; 14386 if (snd_size > tcp->tcp_swnd) 14387 snd_size = tcp->tcp_swnd; 14388 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14389 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14390 B_TRUE); 14391 14392 if (mp1 != NULL) { 14393 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14394 tcp->tcp_csuna = tcp->tcp_snxt; 14395 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14396 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14397 TCP_RECORD_TRACE(tcp, mp1, 14398 TCP_TRACE_SEND_PKT); 14399 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14400 } 14401 } 14402 if (flags & TH_NEED_SACK_REXMIT) { 14403 tcp_sack_rxmit(tcp, &flags); 14404 } 14405 /* 14406 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14407 * out new segment. Note that tcp_rexmit should not be 14408 * set, otherwise TH_LIMIT_XMIT should not be set. 14409 */ 14410 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14411 if (!tcp->tcp_rexmit) { 14412 tcp_wput_data(tcp, NULL, B_FALSE); 14413 } else { 14414 tcp_ss_rexmit(tcp); 14415 } 14416 } 14417 /* 14418 * Adjust tcp_cwnd back to normal value after sending 14419 * new data segments. 14420 */ 14421 if (flags & TH_LIMIT_XMIT) { 14422 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14423 /* 14424 * This will restart the timer. Restarting the 14425 * timer is used to avoid a timeout before the 14426 * limited transmitted segment's ACK gets back. 14427 */ 14428 if (tcp->tcp_xmit_head != NULL) 14429 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14430 } 14431 14432 /* Anything more to do? */ 14433 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14434 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14435 goto done; 14436 } 14437 ack_check: 14438 if (flags & TH_SEND_URP_MARK) { 14439 ASSERT(tcp->tcp_urp_mark_mp); 14440 /* 14441 * Send up any queued data and then send the mark message 14442 */ 14443 if (tcp->tcp_rcv_list != NULL) { 14444 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14445 } 14446 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14447 14448 mp1 = tcp->tcp_urp_mark_mp; 14449 tcp->tcp_urp_mark_mp = NULL; 14450 #ifdef DEBUG 14451 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14452 "tcp_rput: sending zero-length %s %s", 14453 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14454 "MSGNOTMARKNEXT"), 14455 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14456 #endif /* DEBUG */ 14457 putnext(tcp->tcp_rq, mp1); 14458 flags &= ~TH_SEND_URP_MARK; 14459 } 14460 if (flags & TH_ACK_NEEDED) { 14461 /* 14462 * Time to send an ack for some reason. 14463 */ 14464 mp1 = tcp_ack_mp(tcp); 14465 14466 if (mp1 != NULL) { 14467 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14468 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14469 BUMP_LOCAL(tcp->tcp_obsegs); 14470 BUMP_MIB(&tcp_mib, tcpOutAck); 14471 } 14472 if (tcp->tcp_ack_tid != 0) { 14473 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14474 tcp->tcp_ack_tid = 0; 14475 } 14476 } 14477 if (flags & TH_ACK_TIMER_NEEDED) { 14478 /* 14479 * Arrange for deferred ACK or push wait timeout. 14480 * Start timer if it is not already running. 14481 */ 14482 if (tcp->tcp_ack_tid == 0) { 14483 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14484 MSEC_TO_TICK(tcp->tcp_localnet ? 14485 (clock_t)tcp_local_dack_interval : 14486 (clock_t)tcp_deferred_ack_interval)); 14487 } 14488 } 14489 if (flags & TH_ORDREL_NEEDED) { 14490 /* 14491 * Send up the ordrel_ind unless we are an eager guy. 14492 * In the eager case tcp_rsrv will do this when run 14493 * after tcp_accept is done. 14494 */ 14495 ASSERT(tcp->tcp_listener == NULL); 14496 if (tcp->tcp_rcv_list != NULL) { 14497 /* 14498 * Push any mblk(s) enqueued from co processing. 14499 */ 14500 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14501 } 14502 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14503 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 14504 tcp->tcp_ordrel_done = B_TRUE; 14505 putnext(tcp->tcp_rq, mp1); 14506 if (tcp->tcp_deferred_clean_death) { 14507 /* 14508 * tcp_clean_death was deferred 14509 * for T_ORDREL_IND - do it now 14510 */ 14511 (void) tcp_clean_death(tcp, 14512 tcp->tcp_client_errno, 20); 14513 tcp->tcp_deferred_clean_death = B_FALSE; 14514 } 14515 } else { 14516 /* 14517 * Run the orderly release in the 14518 * service routine. 14519 */ 14520 qenable(tcp->tcp_rq); 14521 /* 14522 * Caveat(XXX): The machine may be so 14523 * overloaded that tcp_rsrv() is not scheduled 14524 * until after the endpoint has transitioned 14525 * to TCPS_TIME_WAIT 14526 * and tcp_time_wait_interval expires. Then 14527 * tcp_timer() will blow away state in tcp_t 14528 * and T_ORDREL_IND will never be delivered 14529 * upstream. Unlikely but potentially 14530 * a problem. 14531 */ 14532 } 14533 } 14534 done: 14535 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14536 } 14537 14538 /* 14539 * This function does PAWS protection check. Returns B_TRUE if the 14540 * segment passes the PAWS test, else returns B_FALSE. 14541 */ 14542 boolean_t 14543 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 14544 { 14545 uint8_t flags; 14546 int options; 14547 uint8_t *up; 14548 14549 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 14550 /* 14551 * If timestamp option is aligned nicely, get values inline, 14552 * otherwise call general routine to parse. Only do that 14553 * if timestamp is the only option. 14554 */ 14555 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 14556 TCPOPT_REAL_TS_LEN && 14557 OK_32PTR((up = ((uint8_t *)tcph) + 14558 TCP_MIN_HEADER_LENGTH)) && 14559 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 14560 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 14561 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 14562 14563 options = TCP_OPT_TSTAMP_PRESENT; 14564 } else { 14565 if (tcp->tcp_snd_sack_ok) { 14566 tcpoptp->tcp = tcp; 14567 } else { 14568 tcpoptp->tcp = NULL; 14569 } 14570 options = tcp_parse_options(tcph, tcpoptp); 14571 } 14572 14573 if (options & TCP_OPT_TSTAMP_PRESENT) { 14574 /* 14575 * Do PAWS per RFC 1323 section 4.2. Accept RST 14576 * regardless of the timestamp, page 18 RFC 1323.bis. 14577 */ 14578 if ((flags & TH_RST) == 0 && 14579 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 14580 tcp->tcp_ts_recent)) { 14581 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 14582 PAWS_TIMEOUT)) { 14583 /* This segment is not acceptable. */ 14584 return (B_FALSE); 14585 } else { 14586 /* 14587 * Connection has been idle for 14588 * too long. Reset the timestamp 14589 * and assume the segment is valid. 14590 */ 14591 tcp->tcp_ts_recent = 14592 tcpoptp->tcp_opt_ts_val; 14593 } 14594 } 14595 } else { 14596 /* 14597 * If we don't get a timestamp on every packet, we 14598 * figure we can't really trust 'em, so we stop sending 14599 * and parsing them. 14600 */ 14601 tcp->tcp_snd_ts_ok = B_FALSE; 14602 14603 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14604 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14605 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 14606 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 14607 if (tcp->tcp_snd_sack_ok) { 14608 ASSERT(tcp->tcp_sack_info != NULL); 14609 tcp->tcp_max_sack_blk = 4; 14610 } 14611 } 14612 return (B_TRUE); 14613 } 14614 14615 /* 14616 * Attach ancillary data to a received TCP segments for the 14617 * ancillary pieces requested by the application that are 14618 * different than they were in the previous data segment. 14619 * 14620 * Save the "current" values once memory allocation is ok so that 14621 * when memory allocation fails we can just wait for the next data segment. 14622 */ 14623 static mblk_t * 14624 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 14625 { 14626 struct T_optdata_ind *todi; 14627 int optlen; 14628 uchar_t *optptr; 14629 struct T_opthdr *toh; 14630 uint_t addflag; /* Which pieces to add */ 14631 mblk_t *mp1; 14632 14633 optlen = 0; 14634 addflag = 0; 14635 /* If app asked for pktinfo and the index has changed ... */ 14636 if ((ipp->ipp_fields & IPPF_IFINDEX) && 14637 ipp->ipp_ifindex != tcp->tcp_recvifindex && 14638 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 14639 optlen += sizeof (struct T_opthdr) + 14640 sizeof (struct in6_pktinfo); 14641 addflag |= TCP_IPV6_RECVPKTINFO; 14642 } 14643 /* If app asked for hoplimit and it has changed ... */ 14644 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 14645 ipp->ipp_hoplimit != tcp->tcp_recvhops && 14646 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 14647 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14648 addflag |= TCP_IPV6_RECVHOPLIMIT; 14649 } 14650 /* If app asked for tclass and it has changed ... */ 14651 if ((ipp->ipp_fields & IPPF_TCLASS) && 14652 ipp->ipp_tclass != tcp->tcp_recvtclass && 14653 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 14654 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14655 addflag |= TCP_IPV6_RECVTCLASS; 14656 } 14657 /* If app asked for hopbyhop headers and it has changed ... */ 14658 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 14659 tcp_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 14660 (ipp->ipp_fields & IPPF_HOPOPTS), 14661 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 14662 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 14663 addflag |= TCP_IPV6_RECVHOPOPTS; 14664 if (!tcp_allocbuf((void **)&tcp->tcp_hopopts, 14665 &tcp->tcp_hopoptslen, 14666 (ipp->ipp_fields & IPPF_HOPOPTS), 14667 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 14668 return (mp); 14669 } 14670 /* If app asked for dst headers before routing headers ... */ 14671 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 14672 tcp_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 14673 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14674 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 14675 optlen += sizeof (struct T_opthdr) + 14676 ipp->ipp_rtdstoptslen; 14677 addflag |= TCP_IPV6_RECVRTDSTOPTS; 14678 if (!tcp_allocbuf((void **)&tcp->tcp_rtdstopts, 14679 &tcp->tcp_rtdstoptslen, 14680 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14681 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 14682 return (mp); 14683 } 14684 /* If app asked for routing headers and it has changed ... */ 14685 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 14686 tcp_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 14687 (ipp->ipp_fields & IPPF_RTHDR), 14688 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 14689 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 14690 addflag |= TCP_IPV6_RECVRTHDR; 14691 if (!tcp_allocbuf((void **)&tcp->tcp_rthdr, 14692 &tcp->tcp_rthdrlen, 14693 (ipp->ipp_fields & IPPF_RTHDR), 14694 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 14695 return (mp); 14696 } 14697 /* If app asked for dest headers and it has changed ... */ 14698 if ((tcp->tcp_ipv6_recvancillary & 14699 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 14700 tcp_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 14701 (ipp->ipp_fields & IPPF_DSTOPTS), 14702 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 14703 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 14704 addflag |= TCP_IPV6_RECVDSTOPTS; 14705 if (!tcp_allocbuf((void **)&tcp->tcp_dstopts, 14706 &tcp->tcp_dstoptslen, 14707 (ipp->ipp_fields & IPPF_DSTOPTS), 14708 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 14709 return (mp); 14710 } 14711 14712 if (optlen == 0) { 14713 /* Nothing to add */ 14714 return (mp); 14715 } 14716 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 14717 if (mp1 == NULL) { 14718 /* 14719 * Defer sending ancillary data until the next TCP segment 14720 * arrives. 14721 */ 14722 return (mp); 14723 } 14724 mp1->b_cont = mp; 14725 mp = mp1; 14726 mp->b_wptr += sizeof (*todi) + optlen; 14727 mp->b_datap->db_type = M_PROTO; 14728 todi = (struct T_optdata_ind *)mp->b_rptr; 14729 todi->PRIM_type = T_OPTDATA_IND; 14730 todi->DATA_flag = 1; /* MORE data */ 14731 todi->OPT_length = optlen; 14732 todi->OPT_offset = sizeof (*todi); 14733 optptr = (uchar_t *)&todi[1]; 14734 /* 14735 * If app asked for pktinfo and the index has changed ... 14736 * Note that the local address never changes for the connection. 14737 */ 14738 if (addflag & TCP_IPV6_RECVPKTINFO) { 14739 struct in6_pktinfo *pkti; 14740 14741 toh = (struct T_opthdr *)optptr; 14742 toh->level = IPPROTO_IPV6; 14743 toh->name = IPV6_PKTINFO; 14744 toh->len = sizeof (*toh) + sizeof (*pkti); 14745 toh->status = 0; 14746 optptr += sizeof (*toh); 14747 pkti = (struct in6_pktinfo *)optptr; 14748 if (tcp->tcp_ipversion == IPV6_VERSION) 14749 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 14750 else 14751 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 14752 &pkti->ipi6_addr); 14753 pkti->ipi6_ifindex = ipp->ipp_ifindex; 14754 optptr += sizeof (*pkti); 14755 ASSERT(OK_32PTR(optptr)); 14756 /* Save as "last" value */ 14757 tcp->tcp_recvifindex = ipp->ipp_ifindex; 14758 } 14759 /* If app asked for hoplimit and it has changed ... */ 14760 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 14761 toh = (struct T_opthdr *)optptr; 14762 toh->level = IPPROTO_IPV6; 14763 toh->name = IPV6_HOPLIMIT; 14764 toh->len = sizeof (*toh) + sizeof (uint_t); 14765 toh->status = 0; 14766 optptr += sizeof (*toh); 14767 *(uint_t *)optptr = ipp->ipp_hoplimit; 14768 optptr += sizeof (uint_t); 14769 ASSERT(OK_32PTR(optptr)); 14770 /* Save as "last" value */ 14771 tcp->tcp_recvhops = ipp->ipp_hoplimit; 14772 } 14773 /* If app asked for tclass and it has changed ... */ 14774 if (addflag & TCP_IPV6_RECVTCLASS) { 14775 toh = (struct T_opthdr *)optptr; 14776 toh->level = IPPROTO_IPV6; 14777 toh->name = IPV6_TCLASS; 14778 toh->len = sizeof (*toh) + sizeof (uint_t); 14779 toh->status = 0; 14780 optptr += sizeof (*toh); 14781 *(uint_t *)optptr = ipp->ipp_tclass; 14782 optptr += sizeof (uint_t); 14783 ASSERT(OK_32PTR(optptr)); 14784 /* Save as "last" value */ 14785 tcp->tcp_recvtclass = ipp->ipp_tclass; 14786 } 14787 if (addflag & TCP_IPV6_RECVHOPOPTS) { 14788 toh = (struct T_opthdr *)optptr; 14789 toh->level = IPPROTO_IPV6; 14790 toh->name = IPV6_HOPOPTS; 14791 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 14792 toh->status = 0; 14793 optptr += sizeof (*toh); 14794 bcopy(ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 14795 optptr += ipp->ipp_hopoptslen; 14796 ASSERT(OK_32PTR(optptr)); 14797 /* Save as last value */ 14798 tcp_savebuf((void **)&tcp->tcp_hopopts, 14799 &tcp->tcp_hopoptslen, 14800 (ipp->ipp_fields & IPPF_HOPOPTS), 14801 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14802 } 14803 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 14804 toh = (struct T_opthdr *)optptr; 14805 toh->level = IPPROTO_IPV6; 14806 toh->name = IPV6_RTHDRDSTOPTS; 14807 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 14808 toh->status = 0; 14809 optptr += sizeof (*toh); 14810 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 14811 optptr += ipp->ipp_rtdstoptslen; 14812 ASSERT(OK_32PTR(optptr)); 14813 /* Save as last value */ 14814 tcp_savebuf((void **)&tcp->tcp_rtdstopts, 14815 &tcp->tcp_rtdstoptslen, 14816 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14817 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 14818 } 14819 if (addflag & TCP_IPV6_RECVRTHDR) { 14820 toh = (struct T_opthdr *)optptr; 14821 toh->level = IPPROTO_IPV6; 14822 toh->name = IPV6_RTHDR; 14823 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 14824 toh->status = 0; 14825 optptr += sizeof (*toh); 14826 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 14827 optptr += ipp->ipp_rthdrlen; 14828 ASSERT(OK_32PTR(optptr)); 14829 /* Save as last value */ 14830 tcp_savebuf((void **)&tcp->tcp_rthdr, 14831 &tcp->tcp_rthdrlen, 14832 (ipp->ipp_fields & IPPF_RTHDR), 14833 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14834 } 14835 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 14836 toh = (struct T_opthdr *)optptr; 14837 toh->level = IPPROTO_IPV6; 14838 toh->name = IPV6_DSTOPTS; 14839 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 14840 toh->status = 0; 14841 optptr += sizeof (*toh); 14842 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 14843 optptr += ipp->ipp_dstoptslen; 14844 ASSERT(OK_32PTR(optptr)); 14845 /* Save as last value */ 14846 tcp_savebuf((void **)&tcp->tcp_dstopts, 14847 &tcp->tcp_dstoptslen, 14848 (ipp->ipp_fields & IPPF_DSTOPTS), 14849 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14850 } 14851 ASSERT(optptr == mp->b_wptr); 14852 return (mp); 14853 } 14854 14855 14856 /* 14857 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 14858 * or a "bad" IRE detected by tcp_adapt_ire. 14859 * We can't tell if the failure was due to the laddr or the faddr 14860 * thus we clear out all addresses and ports. 14861 */ 14862 static void 14863 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 14864 { 14865 queue_t *q = tcp->tcp_rq; 14866 tcph_t *tcph; 14867 struct T_error_ack *tea; 14868 conn_t *connp = tcp->tcp_connp; 14869 14870 14871 ASSERT(mp->b_datap->db_type == M_PCPROTO); 14872 14873 if (mp->b_cont) { 14874 freemsg(mp->b_cont); 14875 mp->b_cont = NULL; 14876 } 14877 tea = (struct T_error_ack *)mp->b_rptr; 14878 switch (tea->PRIM_type) { 14879 case T_BIND_ACK: 14880 /* 14881 * Need to unbind with classifier since we were just told that 14882 * our bind succeeded. 14883 */ 14884 tcp->tcp_hard_bound = B_FALSE; 14885 tcp->tcp_hard_binding = B_FALSE; 14886 14887 ipcl_hash_remove(connp); 14888 /* Reuse the mblk if possible */ 14889 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 14890 sizeof (*tea)); 14891 mp->b_rptr = mp->b_datap->db_base; 14892 mp->b_wptr = mp->b_rptr + sizeof (*tea); 14893 tea = (struct T_error_ack *)mp->b_rptr; 14894 tea->PRIM_type = T_ERROR_ACK; 14895 tea->TLI_error = TSYSERR; 14896 tea->UNIX_error = error; 14897 if (tcp->tcp_state >= TCPS_SYN_SENT) { 14898 tea->ERROR_prim = T_CONN_REQ; 14899 } else { 14900 tea->ERROR_prim = O_T_BIND_REQ; 14901 } 14902 break; 14903 14904 case T_ERROR_ACK: 14905 if (tcp->tcp_state >= TCPS_SYN_SENT) 14906 tea->ERROR_prim = T_CONN_REQ; 14907 break; 14908 default: 14909 panic("tcp_bind_failed: unexpected TPI type"); 14910 /*NOTREACHED*/ 14911 } 14912 14913 tcp->tcp_state = TCPS_IDLE; 14914 if (tcp->tcp_ipversion == IPV4_VERSION) 14915 tcp->tcp_ipha->ipha_src = 0; 14916 else 14917 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 14918 /* 14919 * Copy of the src addr. in tcp_t is needed since 14920 * the lookup funcs. can only look at tcp_t 14921 */ 14922 V6_SET_ZERO(tcp->tcp_ip_src_v6); 14923 14924 tcph = tcp->tcp_tcph; 14925 tcph->th_lport[0] = 0; 14926 tcph->th_lport[1] = 0; 14927 tcp_bind_hash_remove(tcp); 14928 bzero(&connp->u_port, sizeof (connp->u_port)); 14929 /* blow away saved option results if any */ 14930 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 14931 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 14932 14933 conn_delete_ire(tcp->tcp_connp, NULL); 14934 putnext(q, mp); 14935 } 14936 14937 /* 14938 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 14939 * messages. 14940 */ 14941 void 14942 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 14943 { 14944 mblk_t *mp1; 14945 uchar_t *rptr = mp->b_rptr; 14946 queue_t *q = tcp->tcp_rq; 14947 struct T_error_ack *tea; 14948 uint32_t mss; 14949 mblk_t *syn_mp; 14950 mblk_t *mdti; 14951 int retval; 14952 mblk_t *ire_mp; 14953 14954 switch (mp->b_datap->db_type) { 14955 case M_PROTO: 14956 case M_PCPROTO: 14957 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 14958 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 14959 break; 14960 tea = (struct T_error_ack *)rptr; 14961 switch (tea->PRIM_type) { 14962 case T_BIND_ACK: 14963 /* 14964 * Adapt Multidata information, if any. The 14965 * following tcp_mdt_update routine will free 14966 * the message. 14967 */ 14968 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 14969 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 14970 b_rptr)->mdt_capab, B_TRUE); 14971 freemsg(mdti); 14972 } 14973 14974 /* Get the IRE, if we had requested for it */ 14975 ire_mp = tcp_ire_mp(mp); 14976 14977 if (tcp->tcp_hard_binding) { 14978 tcp->tcp_hard_binding = B_FALSE; 14979 tcp->tcp_hard_bound = B_TRUE; 14980 CL_INET_CONNECT(tcp); 14981 } else { 14982 if (ire_mp != NULL) 14983 freeb(ire_mp); 14984 goto after_syn_sent; 14985 } 14986 14987 retval = tcp_adapt_ire(tcp, ire_mp); 14988 if (ire_mp != NULL) 14989 freeb(ire_mp); 14990 if (retval == 0) { 14991 tcp_bind_failed(tcp, mp, 14992 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 14993 ENETUNREACH : EADDRNOTAVAIL)); 14994 return; 14995 } 14996 /* 14997 * Don't let an endpoint connect to itself. 14998 * Also checked in tcp_connect() but that 14999 * check can't handle the case when the 15000 * local IP address is INADDR_ANY. 15001 */ 15002 if (tcp->tcp_ipversion == IPV4_VERSION) { 15003 if ((tcp->tcp_ipha->ipha_dst == 15004 tcp->tcp_ipha->ipha_src) && 15005 (BE16_EQL(tcp->tcp_tcph->th_lport, 15006 tcp->tcp_tcph->th_fport))) { 15007 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15008 return; 15009 } 15010 } else { 15011 if (IN6_ARE_ADDR_EQUAL( 15012 &tcp->tcp_ip6h->ip6_dst, 15013 &tcp->tcp_ip6h->ip6_src) && 15014 (BE16_EQL(tcp->tcp_tcph->th_lport, 15015 tcp->tcp_tcph->th_fport))) { 15016 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15017 return; 15018 } 15019 } 15020 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15021 /* 15022 * This should not be possible! Just for 15023 * defensive coding... 15024 */ 15025 if (tcp->tcp_state != TCPS_SYN_SENT) 15026 goto after_syn_sent; 15027 15028 ASSERT(q == tcp->tcp_rq); 15029 /* 15030 * tcp_adapt_ire() does not adjust 15031 * for TCP/IP header length. 15032 */ 15033 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15034 15035 /* 15036 * Just make sure our rwnd is at 15037 * least tcp_recv_hiwat_mss * MSS 15038 * large, and round up to the nearest 15039 * MSS. 15040 * 15041 * We do the round up here because 15042 * we need to get the interface 15043 * MTU first before we can do the 15044 * round up. 15045 */ 15046 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15047 tcp_recv_hiwat_minmss * mss); 15048 q->q_hiwat = tcp->tcp_rwnd; 15049 tcp_set_ws_value(tcp); 15050 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15051 tcp->tcp_tcph->th_win); 15052 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15053 tcp->tcp_snd_ws_ok = B_TRUE; 15054 15055 /* 15056 * Set tcp_snd_ts_ok to true 15057 * so that tcp_xmit_mp will 15058 * include the timestamp 15059 * option in the SYN segment. 15060 */ 15061 if (tcp_tstamp_always || 15062 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15063 tcp->tcp_snd_ts_ok = B_TRUE; 15064 } 15065 15066 /* 15067 * tcp_snd_sack_ok can be set in 15068 * tcp_adapt_ire() if the sack metric 15069 * is set. So check it here also. 15070 */ 15071 if (tcp_sack_permitted == 2 || 15072 tcp->tcp_snd_sack_ok) { 15073 if (tcp->tcp_sack_info == NULL) { 15074 tcp->tcp_sack_info = 15075 kmem_cache_alloc(tcp_sack_info_cache, 15076 KM_SLEEP); 15077 } 15078 tcp->tcp_snd_sack_ok = B_TRUE; 15079 } 15080 15081 /* 15082 * Should we use ECN? Note that the current 15083 * default value (SunOS 5.9) of tcp_ecn_permitted 15084 * is 1. The reason for doing this is that there 15085 * are equipments out there that will drop ECN 15086 * enabled IP packets. Setting it to 1 avoids 15087 * compatibility problems. 15088 */ 15089 if (tcp_ecn_permitted == 2) 15090 tcp->tcp_ecn_ok = B_TRUE; 15091 15092 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15093 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15094 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15095 if (syn_mp) { 15096 cred_t *cr; 15097 pid_t pid; 15098 15099 /* 15100 * Obtain the credential from the 15101 * thread calling connect(); the credential 15102 * lives on in the second mblk which 15103 * originated from T_CONN_REQ and is echoed 15104 * with the T_BIND_ACK from ip. If none 15105 * can be found, default to the creator 15106 * of the socket. 15107 */ 15108 if (mp->b_cont == NULL || 15109 (cr = DB_CRED(mp->b_cont)) == NULL) { 15110 cr = tcp->tcp_cred; 15111 pid = tcp->tcp_cpid; 15112 } else { 15113 pid = DB_CPID(mp->b_cont); 15114 } 15115 15116 TCP_RECORD_TRACE(tcp, syn_mp, 15117 TCP_TRACE_SEND_PKT); 15118 mblk_setcred(syn_mp, cr); 15119 DB_CPID(syn_mp) = pid; 15120 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15121 } 15122 after_syn_sent: 15123 /* 15124 * A trailer mblk indicates a waiting client upstream. 15125 * We complete here the processing begun in 15126 * either tcp_bind() or tcp_connect() by passing 15127 * upstream the reply message they supplied. 15128 */ 15129 mp1 = mp; 15130 mp = mp->b_cont; 15131 freeb(mp1); 15132 if (mp) 15133 break; 15134 return; 15135 case T_ERROR_ACK: 15136 if (tcp->tcp_debug) { 15137 (void) strlog(TCP_MOD_ID, 0, 1, 15138 SL_TRACE|SL_ERROR, 15139 "tcp_rput_other: case T_ERROR_ACK, " 15140 "ERROR_prim == %d", 15141 tea->ERROR_prim); 15142 } 15143 switch (tea->ERROR_prim) { 15144 case O_T_BIND_REQ: 15145 case T_BIND_REQ: 15146 tcp_bind_failed(tcp, mp, 15147 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15148 ENETUNREACH : EADDRNOTAVAIL)); 15149 return; 15150 case T_UNBIND_REQ: 15151 tcp->tcp_hard_binding = B_FALSE; 15152 tcp->tcp_hard_bound = B_FALSE; 15153 if (mp->b_cont) { 15154 freemsg(mp->b_cont); 15155 mp->b_cont = NULL; 15156 } 15157 if (tcp->tcp_unbind_pending) 15158 tcp->tcp_unbind_pending = 0; 15159 else { 15160 /* From tcp_ip_unbind() - free */ 15161 freemsg(mp); 15162 return; 15163 } 15164 break; 15165 case T_SVR4_OPTMGMT_REQ: 15166 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15167 /* T_OPTMGMT_REQ generated by TCP */ 15168 printf("T_SVR4_OPTMGMT_REQ failed " 15169 "%d/%d - dropped (cnt %d)\n", 15170 tea->TLI_error, tea->UNIX_error, 15171 tcp->tcp_drop_opt_ack_cnt); 15172 freemsg(mp); 15173 tcp->tcp_drop_opt_ack_cnt--; 15174 return; 15175 } 15176 break; 15177 } 15178 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15179 tcp->tcp_drop_opt_ack_cnt > 0) { 15180 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15181 "- dropped (cnt %d)\n", 15182 tea->TLI_error, tea->UNIX_error, 15183 tcp->tcp_drop_opt_ack_cnt); 15184 freemsg(mp); 15185 tcp->tcp_drop_opt_ack_cnt--; 15186 return; 15187 } 15188 break; 15189 case T_OPTMGMT_ACK: 15190 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15191 /* T_OPTMGMT_REQ generated by TCP */ 15192 freemsg(mp); 15193 tcp->tcp_drop_opt_ack_cnt--; 15194 return; 15195 } 15196 break; 15197 default: 15198 break; 15199 } 15200 break; 15201 case M_CTL: 15202 /* 15203 * ICMP messages. 15204 */ 15205 tcp_icmp_error(tcp, mp); 15206 return; 15207 case M_FLUSH: 15208 if (*rptr & FLUSHR) 15209 flushq(q, FLUSHDATA); 15210 break; 15211 default: 15212 break; 15213 } 15214 /* 15215 * Make sure we set this bit before sending the ACK for 15216 * bind. Otherwise accept could possibly run and free 15217 * this tcp struct. 15218 */ 15219 putnext(q, mp); 15220 } 15221 15222 /* 15223 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15224 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15225 * tcp_rsrv() try again. 15226 */ 15227 static void 15228 tcp_ordrel_kick(void *arg) 15229 { 15230 conn_t *connp = (conn_t *)arg; 15231 tcp_t *tcp = connp->conn_tcp; 15232 15233 tcp->tcp_ordrelid = 0; 15234 tcp->tcp_timeout = B_FALSE; 15235 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15236 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15237 qenable(tcp->tcp_rq); 15238 } 15239 } 15240 15241 /* ARGSUSED */ 15242 static void 15243 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15244 { 15245 conn_t *connp = (conn_t *)arg; 15246 tcp_t *tcp = connp->conn_tcp; 15247 queue_t *q = tcp->tcp_rq; 15248 uint_t thwin; 15249 15250 freeb(mp); 15251 15252 TCP_STAT(tcp_rsrv_calls); 15253 15254 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15255 return; 15256 } 15257 15258 if (tcp->tcp_fused) { 15259 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15260 15261 ASSERT(tcp->tcp_fused); 15262 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15263 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15264 ASSERT(!TCP_IS_DETACHED(tcp)); 15265 ASSERT(tcp->tcp_connp->conn_sqp == 15266 peer_tcp->tcp_connp->conn_sqp); 15267 15268 /* 15269 * Normally we would not get backenabled in synchronous 15270 * streams mode, but in case this happens, we need to stop 15271 * synchronous streams temporarily to prevent a race with 15272 * tcp_fuse_rrw() or tcp_fuse_rinfop(). It is safe to access 15273 * tcp_rcv_list here because those entry points will return 15274 * right away when synchronous streams is stopped. 15275 */ 15276 TCP_FUSE_SYNCSTR_STOP(tcp); 15277 if (tcp->tcp_rcv_list != NULL) 15278 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15279 15280 tcp_clrqfull(peer_tcp); 15281 TCP_FUSE_SYNCSTR_RESUME(tcp); 15282 TCP_STAT(tcp_fusion_backenabled); 15283 return; 15284 } 15285 15286 if (canputnext(q)) { 15287 tcp->tcp_rwnd = q->q_hiwat; 15288 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15289 << tcp->tcp_rcv_ws; 15290 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15291 /* 15292 * Send back a window update immediately if TCP is above 15293 * ESTABLISHED state and the increase of the rcv window 15294 * that the other side knows is at least 1 MSS after flow 15295 * control is lifted. 15296 */ 15297 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15298 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15299 tcp_xmit_ctl(NULL, tcp, 15300 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15301 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15302 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15303 } 15304 } 15305 /* Handle a failure to allocate a T_ORDREL_IND here */ 15306 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15307 ASSERT(tcp->tcp_listener == NULL); 15308 if (tcp->tcp_rcv_list != NULL) { 15309 (void) tcp_rcv_drain(q, tcp); 15310 } 15311 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15312 mp = mi_tpi_ordrel_ind(); 15313 if (mp) { 15314 tcp->tcp_ordrel_done = B_TRUE; 15315 putnext(q, mp); 15316 if (tcp->tcp_deferred_clean_death) { 15317 /* 15318 * tcp_clean_death was deferred for 15319 * T_ORDREL_IND - do it now 15320 */ 15321 tcp->tcp_deferred_clean_death = B_FALSE; 15322 (void) tcp_clean_death(tcp, 15323 tcp->tcp_client_errno, 22); 15324 } 15325 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15326 /* 15327 * If there isn't already a timer running 15328 * start one. Use a 4 second 15329 * timer as a fallback since it can't fail. 15330 */ 15331 tcp->tcp_timeout = B_TRUE; 15332 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15333 MSEC_TO_TICK(4000)); 15334 } 15335 } 15336 } 15337 15338 /* 15339 * The read side service routine is called mostly when we get back-enabled as a 15340 * result of flow control relief. Since we don't actually queue anything in 15341 * TCP, we have no data to send out of here. What we do is clear the receive 15342 * window, and send out a window update. 15343 * This routine is also called to drive an orderly release message upstream 15344 * if the attempt in tcp_rput failed. 15345 */ 15346 static void 15347 tcp_rsrv(queue_t *q) 15348 { 15349 conn_t *connp = Q_TO_CONN(q); 15350 tcp_t *tcp = connp->conn_tcp; 15351 mblk_t *mp; 15352 15353 /* No code does a putq on the read side */ 15354 ASSERT(q->q_first == NULL); 15355 15356 /* Nothing to do for the default queue */ 15357 if (q == tcp_g_q) { 15358 return; 15359 } 15360 15361 mp = allocb(0, BPRI_HI); 15362 if (mp == NULL) { 15363 /* 15364 * We are under memory pressure. Return for now and we 15365 * we will be called again later. 15366 */ 15367 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15368 /* 15369 * If there isn't already a timer running 15370 * start one. Use a 4 second 15371 * timer as a fallback since it can't fail. 15372 */ 15373 tcp->tcp_timeout = B_TRUE; 15374 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15375 MSEC_TO_TICK(4000)); 15376 } 15377 return; 15378 } 15379 CONN_INC_REF(connp); 15380 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15381 SQTAG_TCP_RSRV); 15382 } 15383 15384 /* 15385 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15386 * We do not allow the receive window to shrink. After setting rwnd, 15387 * set the flow control hiwat of the stream. 15388 * 15389 * This function is called in 2 cases: 15390 * 15391 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15392 * connection (passive open) and in tcp_rput_data() for active connect. 15393 * This is called after tcp_mss_set() when the desired MSS value is known. 15394 * This makes sure that our window size is a mutiple of the other side's 15395 * MSS. 15396 * 2) Handling SO_RCVBUF option. 15397 * 15398 * It is ASSUMED that the requested size is a multiple of the current MSS. 15399 * 15400 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15401 * user requests so. 15402 */ 15403 static int 15404 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15405 { 15406 uint32_t mss = tcp->tcp_mss; 15407 uint32_t old_max_rwnd; 15408 uint32_t max_transmittable_rwnd; 15409 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15410 15411 if (tcp->tcp_fused) { 15412 size_t sth_hiwat; 15413 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15414 15415 ASSERT(peer_tcp != NULL); 15416 /* 15417 * Record the stream head's high water mark for 15418 * this endpoint; this is used for flow-control 15419 * purposes in tcp_fuse_output(). 15420 */ 15421 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15422 if (!tcp_detached) 15423 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15424 15425 /* 15426 * In the fusion case, the maxpsz stream head value of 15427 * our peer is set according to its send buffer size 15428 * and our receive buffer size; since the latter may 15429 * have changed we need to update the peer's maxpsz. 15430 */ 15431 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15432 return (rwnd); 15433 } 15434 15435 if (tcp_detached) 15436 old_max_rwnd = tcp->tcp_rwnd; 15437 else 15438 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15439 15440 /* 15441 * Insist on a receive window that is at least 15442 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15443 * funny TCP interactions of Nagle algorithm, SWS avoidance 15444 * and delayed acknowledgement. 15445 */ 15446 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15447 15448 /* 15449 * If window size info has already been exchanged, TCP should not 15450 * shrink the window. Shrinking window is doable if done carefully. 15451 * We may add that support later. But so far there is not a real 15452 * need to do that. 15453 */ 15454 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15455 /* MSS may have changed, do a round up again. */ 15456 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15457 } 15458 15459 /* 15460 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15461 * can be applied even before the window scale option is decided. 15462 */ 15463 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15464 if (rwnd > max_transmittable_rwnd) { 15465 rwnd = max_transmittable_rwnd - 15466 (max_transmittable_rwnd % mss); 15467 if (rwnd < mss) 15468 rwnd = max_transmittable_rwnd; 15469 /* 15470 * If we're over the limit we may have to back down tcp_rwnd. 15471 * The increment below won't work for us. So we set all three 15472 * here and the increment below will have no effect. 15473 */ 15474 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15475 } 15476 if (tcp->tcp_localnet) { 15477 tcp->tcp_rack_abs_max = 15478 MIN(tcp_local_dacks_max, rwnd / mss / 2); 15479 } else { 15480 /* 15481 * For a remote host on a different subnet (through a router), 15482 * we ack every other packet to be conforming to RFC1122. 15483 * tcp_deferred_acks_max is default to 2. 15484 */ 15485 tcp->tcp_rack_abs_max = 15486 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 15487 } 15488 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15489 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15490 else 15491 tcp->tcp_rack_cur_max = 0; 15492 /* 15493 * Increment the current rwnd by the amount the maximum grew (we 15494 * can not overwrite it since we might be in the middle of a 15495 * connection.) 15496 */ 15497 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15498 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15499 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15500 tcp->tcp_cwnd_max = rwnd; 15501 15502 if (tcp_detached) 15503 return (rwnd); 15504 /* 15505 * We set the maximum receive window into rq->q_hiwat. 15506 * This is not actually used for flow control. 15507 */ 15508 tcp->tcp_rq->q_hiwat = rwnd; 15509 /* 15510 * Set the Stream head high water mark. This doesn't have to be 15511 * here, since we are simply using default values, but we would 15512 * prefer to choose these values algorithmically, with a likely 15513 * relationship to rwnd. 15514 */ 15515 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 15516 return (rwnd); 15517 } 15518 15519 /* 15520 * Return SNMP stuff in buffer in mpdata. 15521 */ 15522 int 15523 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15524 { 15525 mblk_t *mpdata; 15526 mblk_t *mp_conn_ctl = NULL; 15527 mblk_t *mp_conn_data; 15528 mblk_t *mp6_conn_ctl = NULL; 15529 mblk_t *mp6_conn_data; 15530 mblk_t *mp_conn_tail = NULL; 15531 mblk_t *mp6_conn_tail = NULL; 15532 struct opthdr *optp; 15533 mib2_tcpConnEntry_t tce; 15534 mib2_tcp6ConnEntry_t tce6; 15535 connf_t *connfp; 15536 conn_t *connp; 15537 int i; 15538 boolean_t ispriv; 15539 zoneid_t zoneid; 15540 15541 if (mpctl == NULL || 15542 (mpdata = mpctl->b_cont) == NULL || 15543 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15544 (mp6_conn_ctl = copymsg(mpctl)) == NULL) { 15545 if (mp_conn_ctl != NULL) 15546 freemsg(mp_conn_ctl); 15547 if (mp6_conn_ctl != NULL) 15548 freemsg(mp6_conn_ctl); 15549 return (0); 15550 } 15551 15552 /* build table of connections -- need count in fixed part */ 15553 mp_conn_data = mp_conn_ctl->b_cont; 15554 mp6_conn_data = mp6_conn_ctl->b_cont; 15555 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 15556 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 15557 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 15558 SET_MIB(tcp_mib.tcpMaxConn, -1); 15559 SET_MIB(tcp_mib.tcpCurrEstab, 0); 15560 15561 ispriv = 15562 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15563 zoneid = Q_TO_CONN(q)->conn_zoneid; 15564 15565 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15566 15567 connfp = &ipcl_globalhash_fanout[i]; 15568 15569 connp = NULL; 15570 15571 while ((connp = 15572 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15573 tcp_t *tcp; 15574 15575 if (connp->conn_zoneid != zoneid) 15576 continue; /* not in this zone */ 15577 15578 tcp = connp->conn_tcp; 15579 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 15580 tcp->tcp_ibsegs = 0; 15581 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 15582 tcp->tcp_obsegs = 0; 15583 15584 tce6.tcp6ConnState = tce.tcpConnState = 15585 tcp_snmp_state(tcp); 15586 if (tce.tcpConnState == MIB2_TCP_established || 15587 tce.tcpConnState == MIB2_TCP_closeWait) 15588 BUMP_MIB(&tcp_mib, tcpCurrEstab); 15589 15590 /* Create a message to report on IPv6 entries */ 15591 if (tcp->tcp_ipversion == IPV6_VERSION) { 15592 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15593 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15594 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15595 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15596 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15597 /* Don't want just anybody seeing these... */ 15598 if (ispriv) { 15599 tce6.tcp6ConnEntryInfo.ce_snxt = 15600 tcp->tcp_snxt; 15601 tce6.tcp6ConnEntryInfo.ce_suna = 15602 tcp->tcp_suna; 15603 tce6.tcp6ConnEntryInfo.ce_rnxt = 15604 tcp->tcp_rnxt; 15605 tce6.tcp6ConnEntryInfo.ce_rack = 15606 tcp->tcp_rack; 15607 } else { 15608 /* 15609 * Netstat, unfortunately, uses this to 15610 * get send/receive queue sizes. How to fix? 15611 * Why not compute the difference only? 15612 */ 15613 tce6.tcp6ConnEntryInfo.ce_snxt = 15614 tcp->tcp_snxt - tcp->tcp_suna; 15615 tce6.tcp6ConnEntryInfo.ce_suna = 0; 15616 tce6.tcp6ConnEntryInfo.ce_rnxt = 15617 tcp->tcp_rnxt - tcp->tcp_rack; 15618 tce6.tcp6ConnEntryInfo.ce_rack = 0; 15619 } 15620 15621 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15622 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15623 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 15624 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 15625 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 15626 (void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail, 15627 (char *)&tce6, sizeof (tce6)); 15628 } 15629 /* 15630 * Create an IPv4 table entry for IPv4 entries and also 15631 * for IPv6 entries which are bound to in6addr_any 15632 * but don't have IPV6_V6ONLY set. 15633 * (i.e. anything an IPv4 peer could connect to) 15634 */ 15635 if (tcp->tcp_ipversion == IPV4_VERSION || 15636 (tcp->tcp_state <= TCPS_LISTEN && 15637 !tcp->tcp_connp->conn_ipv6_v6only && 15638 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 15639 if (tcp->tcp_ipversion == IPV6_VERSION) { 15640 tce.tcpConnRemAddress = INADDR_ANY; 15641 tce.tcpConnLocalAddress = INADDR_ANY; 15642 } else { 15643 tce.tcpConnRemAddress = 15644 tcp->tcp_remote; 15645 tce.tcpConnLocalAddress = 15646 tcp->tcp_ip_src; 15647 } 15648 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 15649 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 15650 /* Don't want just anybody seeing these... */ 15651 if (ispriv) { 15652 tce.tcpConnEntryInfo.ce_snxt = 15653 tcp->tcp_snxt; 15654 tce.tcpConnEntryInfo.ce_suna = 15655 tcp->tcp_suna; 15656 tce.tcpConnEntryInfo.ce_rnxt = 15657 tcp->tcp_rnxt; 15658 tce.tcpConnEntryInfo.ce_rack = 15659 tcp->tcp_rack; 15660 } else { 15661 /* 15662 * Netstat, unfortunately, uses this to 15663 * get send/receive queue sizes. How 15664 * to fix? 15665 * Why not compute the difference only? 15666 */ 15667 tce.tcpConnEntryInfo.ce_snxt = 15668 tcp->tcp_snxt - tcp->tcp_suna; 15669 tce.tcpConnEntryInfo.ce_suna = 0; 15670 tce.tcpConnEntryInfo.ce_rnxt = 15671 tcp->tcp_rnxt - tcp->tcp_rack; 15672 tce.tcpConnEntryInfo.ce_rack = 0; 15673 } 15674 15675 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15676 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15677 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 15678 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 15679 tce.tcpConnEntryInfo.ce_state = 15680 tcp->tcp_state; 15681 (void) snmp_append_data2(mp_conn_data, 15682 &mp_conn_tail, (char *)&tce, sizeof (tce)); 15683 } 15684 } 15685 } 15686 15687 /* fixed length structure for IPv4 and IPv6 counters */ 15688 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 15689 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 15690 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 15691 optp->level = MIB2_TCP; 15692 optp->name = 0; 15693 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 15694 optp->len = msgdsize(mpdata); 15695 qreply(q, mpctl); 15696 15697 /* table of connections... */ 15698 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 15699 sizeof (struct T_optmgmt_ack)]; 15700 optp->level = MIB2_TCP; 15701 optp->name = MIB2_TCP_CONN; 15702 optp->len = msgdsize(mp_conn_data); 15703 qreply(q, mp_conn_ctl); 15704 15705 /* table of IPv6 connections... */ 15706 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 15707 sizeof (struct T_optmgmt_ack)]; 15708 optp->level = MIB2_TCP6; 15709 optp->name = MIB2_TCP6_CONN; 15710 optp->len = msgdsize(mp6_conn_data); 15711 qreply(q, mp6_conn_ctl); 15712 return (1); 15713 } 15714 15715 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 15716 /* ARGSUSED */ 15717 int 15718 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 15719 { 15720 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 15721 15722 switch (level) { 15723 case MIB2_TCP: 15724 switch (name) { 15725 case 13: 15726 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 15727 return (0); 15728 /* TODO: delete entry defined by tce */ 15729 return (1); 15730 default: 15731 return (0); 15732 } 15733 default: 15734 return (1); 15735 } 15736 } 15737 15738 /* Translate TCP state to MIB2 TCP state. */ 15739 static int 15740 tcp_snmp_state(tcp_t *tcp) 15741 { 15742 if (tcp == NULL) 15743 return (0); 15744 15745 switch (tcp->tcp_state) { 15746 case TCPS_CLOSED: 15747 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 15748 case TCPS_BOUND: 15749 return (MIB2_TCP_closed); 15750 case TCPS_LISTEN: 15751 return (MIB2_TCP_listen); 15752 case TCPS_SYN_SENT: 15753 return (MIB2_TCP_synSent); 15754 case TCPS_SYN_RCVD: 15755 return (MIB2_TCP_synReceived); 15756 case TCPS_ESTABLISHED: 15757 return (MIB2_TCP_established); 15758 case TCPS_CLOSE_WAIT: 15759 return (MIB2_TCP_closeWait); 15760 case TCPS_FIN_WAIT_1: 15761 return (MIB2_TCP_finWait1); 15762 case TCPS_CLOSING: 15763 return (MIB2_TCP_closing); 15764 case TCPS_LAST_ACK: 15765 return (MIB2_TCP_lastAck); 15766 case TCPS_FIN_WAIT_2: 15767 return (MIB2_TCP_finWait2); 15768 case TCPS_TIME_WAIT: 15769 return (MIB2_TCP_timeWait); 15770 default: 15771 return (0); 15772 } 15773 } 15774 15775 static char tcp_report_header[] = 15776 "TCP " MI_COL_HDRPAD_STR 15777 "zone dest snxt suna " 15778 "swnd rnxt rack rwnd rto mss w sw rw t " 15779 "recent [lport,fport] state"; 15780 15781 /* 15782 * TCP status report triggered via the Named Dispatch mechanism. 15783 */ 15784 /* ARGSUSED */ 15785 static void 15786 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 15787 cred_t *cr) 15788 { 15789 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 15790 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 15791 char cflag; 15792 in6_addr_t v6dst; 15793 char buf[80]; 15794 uint_t print_len, buf_len; 15795 15796 buf_len = mp->b_datap->db_lim - mp->b_wptr; 15797 if (buf_len <= 0) 15798 return; 15799 15800 if (hashval >= 0) 15801 (void) sprintf(hash, "%03d ", hashval); 15802 else 15803 hash[0] = '\0'; 15804 15805 /* 15806 * Note that we use the remote address in the tcp_b structure. 15807 * This means that it will print out the real destination address, 15808 * not the next hop's address if source routing is used. This 15809 * avoid the confusion on the output because user may not 15810 * know that source routing is used for a connection. 15811 */ 15812 if (tcp->tcp_ipversion == IPV4_VERSION) { 15813 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 15814 } else { 15815 v6dst = tcp->tcp_remote_v6; 15816 } 15817 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 15818 /* 15819 * the ispriv checks are so that normal users cannot determine 15820 * sequence number information using NDD. 15821 */ 15822 15823 if (TCP_IS_DETACHED(tcp)) 15824 cflag = '*'; 15825 else 15826 cflag = ' '; 15827 print_len = snprintf((char *)mp->b_wptr, buf_len, 15828 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 15829 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 15830 hash, 15831 (void *)tcp, 15832 tcp->tcp_connp->conn_zoneid, 15833 addrbuf, 15834 (ispriv) ? tcp->tcp_snxt : 0, 15835 (ispriv) ? tcp->tcp_suna : 0, 15836 tcp->tcp_swnd, 15837 (ispriv) ? tcp->tcp_rnxt : 0, 15838 (ispriv) ? tcp->tcp_rack : 0, 15839 tcp->tcp_rwnd, 15840 tcp->tcp_rto, 15841 tcp->tcp_mss, 15842 tcp->tcp_snd_ws_ok, 15843 tcp->tcp_snd_ws, 15844 tcp->tcp_rcv_ws, 15845 tcp->tcp_snd_ts_ok, 15846 tcp->tcp_ts_recent, 15847 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 15848 if (print_len < buf_len) { 15849 ((mblk_t *)mp)->b_wptr += print_len; 15850 } else { 15851 ((mblk_t *)mp)->b_wptr += buf_len; 15852 } 15853 } 15854 15855 /* 15856 * TCP status report (for listeners only) triggered via the Named Dispatch 15857 * mechanism. 15858 */ 15859 /* ARGSUSED */ 15860 static void 15861 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 15862 { 15863 char addrbuf[INET6_ADDRSTRLEN]; 15864 in6_addr_t v6dst; 15865 uint_t print_len, buf_len; 15866 15867 buf_len = mp->b_datap->db_lim - mp->b_wptr; 15868 if (buf_len <= 0) 15869 return; 15870 15871 if (tcp->tcp_ipversion == IPV4_VERSION) { 15872 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 15873 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 15874 } else { 15875 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 15876 addrbuf, sizeof (addrbuf)); 15877 } 15878 print_len = snprintf((char *)mp->b_wptr, buf_len, 15879 "%03d " 15880 MI_COL_PTRFMT_STR 15881 "%d %s %05u %08u %d/%d/%d%c\n", 15882 hashval, (void *)tcp, 15883 tcp->tcp_connp->conn_zoneid, 15884 addrbuf, 15885 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 15886 tcp->tcp_conn_req_seqnum, 15887 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 15888 tcp->tcp_conn_req_max, 15889 tcp->tcp_syn_defense ? '*' : ' '); 15890 if (print_len < buf_len) { 15891 ((mblk_t *)mp)->b_wptr += print_len; 15892 } else { 15893 ((mblk_t *)mp)->b_wptr += buf_len; 15894 } 15895 } 15896 15897 /* TCP status report triggered via the Named Dispatch mechanism. */ 15898 /* ARGSUSED */ 15899 static int 15900 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15901 { 15902 tcp_t *tcp; 15903 int i; 15904 conn_t *connp; 15905 connf_t *connfp; 15906 zoneid_t zoneid; 15907 15908 /* 15909 * Because of the ndd constraint, at most we can have 64K buffer 15910 * to put in all TCP info. So to be more efficient, just 15911 * allocate a 64K buffer here, assuming we need that large buffer. 15912 * This may be a problem as any user can read tcp_status. Therefore 15913 * we limit the rate of doing this using tcp_ndd_get_info_interval. 15914 * This should be OK as normal users should not do this too often. 15915 */ 15916 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15917 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15918 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15919 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15920 return (0); 15921 } 15922 } 15923 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15924 /* The following may work even if we cannot get a large buf. */ 15925 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15926 return (0); 15927 } 15928 15929 (void) mi_mpprintf(mp, "%s", tcp_report_header); 15930 15931 zoneid = Q_TO_CONN(q)->conn_zoneid; 15932 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15933 15934 connfp = &ipcl_globalhash_fanout[i]; 15935 15936 connp = NULL; 15937 15938 while ((connp = 15939 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15940 tcp = connp->conn_tcp; 15941 if (zoneid != GLOBAL_ZONEID && 15942 zoneid != connp->conn_zoneid) 15943 continue; 15944 tcp_report_item(mp->b_cont, tcp, -1, tcp, 15945 cr); 15946 } 15947 15948 } 15949 15950 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15951 return (0); 15952 } 15953 15954 /* TCP status report triggered via the Named Dispatch mechanism. */ 15955 /* ARGSUSED */ 15956 static int 15957 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15958 { 15959 tf_t *tbf; 15960 tcp_t *tcp; 15961 int i; 15962 zoneid_t zoneid; 15963 15964 /* Refer to comments in tcp_status_report(). */ 15965 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15966 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15967 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15968 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15969 return (0); 15970 } 15971 } 15972 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15973 /* The following may work even if we cannot get a large buf. */ 15974 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15975 return (0); 15976 } 15977 15978 (void) mi_mpprintf(mp, " %s", tcp_report_header); 15979 15980 zoneid = Q_TO_CONN(q)->conn_zoneid; 15981 15982 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 15983 tbf = &tcp_bind_fanout[i]; 15984 mutex_enter(&tbf->tf_lock); 15985 for (tcp = tbf->tf_tcp; tcp != NULL; 15986 tcp = tcp->tcp_bind_hash) { 15987 if (zoneid != GLOBAL_ZONEID && 15988 zoneid != tcp->tcp_connp->conn_zoneid) 15989 continue; 15990 CONN_INC_REF(tcp->tcp_connp); 15991 tcp_report_item(mp->b_cont, tcp, i, 15992 Q_TO_TCP(q), cr); 15993 CONN_DEC_REF(tcp->tcp_connp); 15994 } 15995 mutex_exit(&tbf->tf_lock); 15996 } 15997 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15998 return (0); 15999 } 16000 16001 /* TCP status report triggered via the Named Dispatch mechanism. */ 16002 /* ARGSUSED */ 16003 static int 16004 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16005 { 16006 connf_t *connfp; 16007 conn_t *connp; 16008 tcp_t *tcp; 16009 int i; 16010 zoneid_t zoneid; 16011 16012 /* Refer to comments in tcp_status_report(). */ 16013 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16014 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16015 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16016 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16017 return (0); 16018 } 16019 } 16020 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16021 /* The following may work even if we cannot get a large buf. */ 16022 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16023 return (0); 16024 } 16025 16026 (void) mi_mpprintf(mp, 16027 " TCP " MI_COL_HDRPAD_STR 16028 "zone IP addr port seqnum backlog (q0/q/max)"); 16029 16030 zoneid = Q_TO_CONN(q)->conn_zoneid; 16031 16032 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16033 connfp = &ipcl_bind_fanout[i]; 16034 connp = NULL; 16035 while ((connp = 16036 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16037 tcp = connp->conn_tcp; 16038 if (zoneid != GLOBAL_ZONEID && 16039 zoneid != connp->conn_zoneid) 16040 continue; 16041 tcp_report_listener(mp->b_cont, tcp, i); 16042 } 16043 } 16044 16045 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16046 return (0); 16047 } 16048 16049 /* TCP status report triggered via the Named Dispatch mechanism. */ 16050 /* ARGSUSED */ 16051 static int 16052 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16053 { 16054 connf_t *connfp; 16055 conn_t *connp; 16056 tcp_t *tcp; 16057 int i; 16058 zoneid_t zoneid; 16059 16060 /* Refer to comments in tcp_status_report(). */ 16061 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16062 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16063 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16064 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16065 return (0); 16066 } 16067 } 16068 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16069 /* The following may work even if we cannot get a large buf. */ 16070 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16071 return (0); 16072 } 16073 16074 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16075 ipcl_conn_fanout_size); 16076 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16077 16078 zoneid = Q_TO_CONN(q)->conn_zoneid; 16079 16080 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16081 connfp = &ipcl_conn_fanout[i]; 16082 connp = NULL; 16083 while ((connp = 16084 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16085 tcp = connp->conn_tcp; 16086 if (zoneid != GLOBAL_ZONEID && 16087 zoneid != connp->conn_zoneid) 16088 continue; 16089 tcp_report_item(mp->b_cont, tcp, i, 16090 Q_TO_TCP(q), cr); 16091 } 16092 } 16093 16094 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16095 return (0); 16096 } 16097 16098 /* TCP status report triggered via the Named Dispatch mechanism. */ 16099 /* ARGSUSED */ 16100 static int 16101 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16102 { 16103 tf_t *tf; 16104 tcp_t *tcp; 16105 int i; 16106 zoneid_t zoneid; 16107 16108 /* Refer to comments in tcp_status_report(). */ 16109 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16110 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16111 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16112 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16113 return (0); 16114 } 16115 } 16116 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16117 /* The following may work even if we cannot get a large buf. */ 16118 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16119 return (0); 16120 } 16121 16122 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16123 16124 zoneid = Q_TO_CONN(q)->conn_zoneid; 16125 16126 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16127 tf = &tcp_acceptor_fanout[i]; 16128 mutex_enter(&tf->tf_lock); 16129 for (tcp = tf->tf_tcp; tcp != NULL; 16130 tcp = tcp->tcp_acceptor_hash) { 16131 if (zoneid != GLOBAL_ZONEID && 16132 zoneid != tcp->tcp_connp->conn_zoneid) 16133 continue; 16134 tcp_report_item(mp->b_cont, tcp, i, 16135 Q_TO_TCP(q), cr); 16136 } 16137 mutex_exit(&tf->tf_lock); 16138 } 16139 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16140 return (0); 16141 } 16142 16143 /* 16144 * tcp_timer is the timer service routine. It handles the retransmission, 16145 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16146 * from the state of the tcp instance what kind of action needs to be done 16147 * at the time it is called. 16148 */ 16149 static void 16150 tcp_timer(void *arg) 16151 { 16152 mblk_t *mp; 16153 clock_t first_threshold; 16154 clock_t second_threshold; 16155 clock_t ms; 16156 uint32_t mss; 16157 conn_t *connp = (conn_t *)arg; 16158 tcp_t *tcp = connp->conn_tcp; 16159 16160 tcp->tcp_timer_tid = 0; 16161 16162 if (tcp->tcp_fused) 16163 return; 16164 16165 first_threshold = tcp->tcp_first_timer_threshold; 16166 second_threshold = tcp->tcp_second_timer_threshold; 16167 switch (tcp->tcp_state) { 16168 case TCPS_IDLE: 16169 case TCPS_BOUND: 16170 case TCPS_LISTEN: 16171 return; 16172 case TCPS_SYN_RCVD: { 16173 tcp_t *listener = tcp->tcp_listener; 16174 16175 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16176 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16177 /* it's our first timeout */ 16178 tcp->tcp_syn_rcvd_timeout = 1; 16179 mutex_enter(&listener->tcp_eager_lock); 16180 listener->tcp_syn_rcvd_timeout++; 16181 if (!listener->tcp_syn_defense && 16182 (listener->tcp_syn_rcvd_timeout > 16183 (tcp_conn_req_max_q0 >> 2)) && 16184 (tcp_conn_req_max_q0 > 200)) { 16185 /* We may be under attack. Put on a defense. */ 16186 listener->tcp_syn_defense = B_TRUE; 16187 cmn_err(CE_WARN, "High TCP connect timeout " 16188 "rate! System (port %d) may be under a " 16189 "SYN flood attack!", 16190 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16191 16192 listener->tcp_ip_addr_cache = kmem_zalloc( 16193 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16194 KM_NOSLEEP); 16195 } 16196 mutex_exit(&listener->tcp_eager_lock); 16197 } 16198 } 16199 /* FALLTHRU */ 16200 case TCPS_SYN_SENT: 16201 first_threshold = tcp->tcp_first_ctimer_threshold; 16202 second_threshold = tcp->tcp_second_ctimer_threshold; 16203 break; 16204 case TCPS_ESTABLISHED: 16205 case TCPS_FIN_WAIT_1: 16206 case TCPS_CLOSING: 16207 case TCPS_CLOSE_WAIT: 16208 case TCPS_LAST_ACK: 16209 /* If we have data to rexmit */ 16210 if (tcp->tcp_suna != tcp->tcp_snxt) { 16211 clock_t time_to_wait; 16212 16213 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16214 if (!tcp->tcp_xmit_head) 16215 break; 16216 time_to_wait = lbolt - 16217 (clock_t)tcp->tcp_xmit_head->b_prev; 16218 time_to_wait = tcp->tcp_rto - 16219 TICK_TO_MSEC(time_to_wait); 16220 /* 16221 * If the timer fires too early, 1 clock tick earlier, 16222 * restart the timer. 16223 */ 16224 if (time_to_wait > msec_per_tick) { 16225 TCP_STAT(tcp_timer_fire_early); 16226 TCP_TIMER_RESTART(tcp, time_to_wait); 16227 return; 16228 } 16229 /* 16230 * When we probe zero windows, we force the swnd open. 16231 * If our peer acks with a closed window swnd will be 16232 * set to zero by tcp_rput(). As long as we are 16233 * receiving acks tcp_rput will 16234 * reset 'tcp_ms_we_have_waited' so as not to trip the 16235 * first and second interval actions. NOTE: the timer 16236 * interval is allowed to continue its exponential 16237 * backoff. 16238 */ 16239 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16240 if (tcp->tcp_debug) { 16241 (void) strlog(TCP_MOD_ID, 0, 1, 16242 SL_TRACE, "tcp_timer: zero win"); 16243 } 16244 } else { 16245 /* 16246 * After retransmission, we need to do 16247 * slow start. Set the ssthresh to one 16248 * half of current effective window and 16249 * cwnd to one MSS. Also reset 16250 * tcp_cwnd_cnt. 16251 * 16252 * Note that if tcp_ssthresh is reduced because 16253 * of ECN, do not reduce it again unless it is 16254 * already one window of data away (tcp_cwr 16255 * should then be cleared) or this is a 16256 * timeout for a retransmitted segment. 16257 */ 16258 uint32_t npkt; 16259 16260 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16261 npkt = ((tcp->tcp_timer_backoff ? 16262 tcp->tcp_cwnd_ssthresh : 16263 tcp->tcp_snxt - 16264 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16265 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16266 tcp->tcp_mss; 16267 } 16268 tcp->tcp_cwnd = tcp->tcp_mss; 16269 tcp->tcp_cwnd_cnt = 0; 16270 if (tcp->tcp_ecn_ok) { 16271 tcp->tcp_cwr = B_TRUE; 16272 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16273 tcp->tcp_ecn_cwr_sent = B_FALSE; 16274 } 16275 } 16276 break; 16277 } 16278 /* 16279 * We have something to send yet we cannot send. The 16280 * reason can be: 16281 * 16282 * 1. Zero send window: we need to do zero window probe. 16283 * 2. Zero cwnd: because of ECN, we need to "clock out 16284 * segments. 16285 * 3. SWS avoidance: receiver may have shrunk window, 16286 * reset our knowledge. 16287 * 16288 * Note that condition 2 can happen with either 1 or 16289 * 3. But 1 and 3 are exclusive. 16290 */ 16291 if (tcp->tcp_unsent != 0) { 16292 if (tcp->tcp_cwnd == 0) { 16293 /* 16294 * Set tcp_cwnd to 1 MSS so that a 16295 * new segment can be sent out. We 16296 * are "clocking out" new data when 16297 * the network is really congested. 16298 */ 16299 ASSERT(tcp->tcp_ecn_ok); 16300 tcp->tcp_cwnd = tcp->tcp_mss; 16301 } 16302 if (tcp->tcp_swnd == 0) { 16303 /* Extend window for zero window probe */ 16304 tcp->tcp_swnd++; 16305 tcp->tcp_zero_win_probe = B_TRUE; 16306 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16307 } else { 16308 /* 16309 * Handle timeout from sender SWS avoidance. 16310 * Reset our knowledge of the max send window 16311 * since the receiver might have reduced its 16312 * receive buffer. Avoid setting tcp_max_swnd 16313 * to one since that will essentially disable 16314 * the SWS checks. 16315 * 16316 * Note that since we don't have a SWS 16317 * state variable, if the timeout is set 16318 * for ECN but not for SWS, this 16319 * code will also be executed. This is 16320 * fine as tcp_max_swnd is updated 16321 * constantly and it will not affect 16322 * anything. 16323 */ 16324 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16325 } 16326 tcp_wput_data(tcp, NULL, B_FALSE); 16327 return; 16328 } 16329 /* Is there a FIN that needs to be to re retransmitted? */ 16330 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16331 !tcp->tcp_fin_acked) 16332 break; 16333 /* Nothing to do, return without restarting timer. */ 16334 TCP_STAT(tcp_timer_fire_miss); 16335 return; 16336 case TCPS_FIN_WAIT_2: 16337 /* 16338 * User closed the TCP endpoint and peer ACK'ed our FIN. 16339 * We waited some time for for peer's FIN, but it hasn't 16340 * arrived. We flush the connection now to avoid 16341 * case where the peer has rebooted. 16342 */ 16343 if (TCP_IS_DETACHED(tcp)) { 16344 (void) tcp_clean_death(tcp, 0, 23); 16345 } else { 16346 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16347 } 16348 return; 16349 case TCPS_TIME_WAIT: 16350 (void) tcp_clean_death(tcp, 0, 24); 16351 return; 16352 default: 16353 if (tcp->tcp_debug) { 16354 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16355 "tcp_timer: strange state (%d) %s", 16356 tcp->tcp_state, tcp_display(tcp, NULL, 16357 DISP_PORT_ONLY)); 16358 } 16359 return; 16360 } 16361 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16362 /* 16363 * For zero window probe, we need to send indefinitely, 16364 * unless we have not heard from the other side for some 16365 * time... 16366 */ 16367 if ((tcp->tcp_zero_win_probe == 0) || 16368 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16369 second_threshold)) { 16370 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 16371 /* 16372 * If TCP is in SYN_RCVD state, send back a 16373 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16374 * should be zero in TCPS_SYN_RCVD state. 16375 */ 16376 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16377 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16378 "in SYN_RCVD", 16379 tcp, tcp->tcp_snxt, 16380 tcp->tcp_rnxt, TH_RST | TH_ACK); 16381 } 16382 (void) tcp_clean_death(tcp, 16383 tcp->tcp_client_errno ? 16384 tcp->tcp_client_errno : ETIMEDOUT, 25); 16385 return; 16386 } else { 16387 /* 16388 * Set tcp_ms_we_have_waited to second_threshold 16389 * so that in next timeout, we will do the above 16390 * check (lbolt - tcp_last_recv_time). This is 16391 * also to avoid overflow. 16392 * 16393 * We don't need to decrement tcp_timer_backoff 16394 * to avoid overflow because it will be decremented 16395 * later if new timeout value is greater than 16396 * tcp_rexmit_interval_max. In the case when 16397 * tcp_rexmit_interval_max is greater than 16398 * second_threshold, it means that we will wait 16399 * longer than second_threshold to send the next 16400 * window probe. 16401 */ 16402 tcp->tcp_ms_we_have_waited = second_threshold; 16403 } 16404 } else if (ms > first_threshold) { 16405 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16406 tcp->tcp_xmit_head != NULL) { 16407 tcp->tcp_xmit_head = 16408 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16409 } 16410 /* 16411 * We have been retransmitting for too long... The RTT 16412 * we calculated is probably incorrect. Reinitialize it. 16413 * Need to compensate for 0 tcp_rtt_sa. Reset 16414 * tcp_rtt_update so that we won't accidentally cache a 16415 * bad value. But only do this if this is not a zero 16416 * window probe. 16417 */ 16418 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16419 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16420 (tcp->tcp_rtt_sa >> 5); 16421 tcp->tcp_rtt_sa = 0; 16422 tcp_ip_notify(tcp); 16423 tcp->tcp_rtt_update = 0; 16424 } 16425 } 16426 tcp->tcp_timer_backoff++; 16427 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16428 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16429 tcp_rexmit_interval_min) { 16430 /* 16431 * This means the original RTO is tcp_rexmit_interval_min. 16432 * So we will use tcp_rexmit_interval_min as the RTO value 16433 * and do the backoff. 16434 */ 16435 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 16436 } else { 16437 ms <<= tcp->tcp_timer_backoff; 16438 } 16439 if (ms > tcp_rexmit_interval_max) { 16440 ms = tcp_rexmit_interval_max; 16441 /* 16442 * ms is at max, decrement tcp_timer_backoff to avoid 16443 * overflow. 16444 */ 16445 tcp->tcp_timer_backoff--; 16446 } 16447 tcp->tcp_ms_we_have_waited += ms; 16448 if (tcp->tcp_zero_win_probe == 0) { 16449 tcp->tcp_rto = ms; 16450 } 16451 TCP_TIMER_RESTART(tcp, ms); 16452 /* 16453 * This is after a timeout and tcp_rto is backed off. Set 16454 * tcp_set_timer to 1 so that next time RTO is updated, we will 16455 * restart the timer with a correct value. 16456 */ 16457 tcp->tcp_set_timer = 1; 16458 mss = tcp->tcp_snxt - tcp->tcp_suna; 16459 if (mss > tcp->tcp_mss) 16460 mss = tcp->tcp_mss; 16461 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16462 mss = tcp->tcp_swnd; 16463 16464 if ((mp = tcp->tcp_xmit_head) != NULL) 16465 mp->b_prev = (mblk_t *)lbolt; 16466 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16467 B_TRUE); 16468 16469 /* 16470 * When slow start after retransmission begins, start with 16471 * this seq no. tcp_rexmit_max marks the end of special slow 16472 * start phase. tcp_snd_burst controls how many segments 16473 * can be sent because of an ack. 16474 */ 16475 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16476 tcp->tcp_snd_burst = TCP_CWND_SS; 16477 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16478 (tcp->tcp_unsent == 0)) { 16479 tcp->tcp_rexmit_max = tcp->tcp_fss; 16480 } else { 16481 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16482 } 16483 tcp->tcp_rexmit = B_TRUE; 16484 tcp->tcp_dupack_cnt = 0; 16485 16486 /* 16487 * Remove all rexmit SACK blk to start from fresh. 16488 */ 16489 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16490 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16491 tcp->tcp_num_notsack_blk = 0; 16492 tcp->tcp_cnt_notsack_list = 0; 16493 } 16494 if (mp == NULL) { 16495 return; 16496 } 16497 /* Attach credentials to retransmitted initial SYNs. */ 16498 if (tcp->tcp_state == TCPS_SYN_SENT) { 16499 mblk_setcred(mp, tcp->tcp_cred); 16500 DB_CPID(mp) = tcp->tcp_cpid; 16501 } 16502 16503 tcp->tcp_csuna = tcp->tcp_snxt; 16504 BUMP_MIB(&tcp_mib, tcpRetransSegs); 16505 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 16506 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 16507 tcp_send_data(tcp, tcp->tcp_wq, mp); 16508 16509 } 16510 16511 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16512 static void 16513 tcp_unbind(tcp_t *tcp, mblk_t *mp) 16514 { 16515 conn_t *connp; 16516 16517 switch (tcp->tcp_state) { 16518 case TCPS_BOUND: 16519 case TCPS_LISTEN: 16520 break; 16521 default: 16522 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 16523 return; 16524 } 16525 16526 /* 16527 * Need to clean up all the eagers since after the unbind, segments 16528 * will no longer be delivered to this listener stream. 16529 */ 16530 mutex_enter(&tcp->tcp_eager_lock); 16531 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16532 tcp_eager_cleanup(tcp, 0); 16533 } 16534 mutex_exit(&tcp->tcp_eager_lock); 16535 16536 if (tcp->tcp_ipversion == IPV4_VERSION) { 16537 tcp->tcp_ipha->ipha_src = 0; 16538 } else { 16539 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16540 } 16541 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16542 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16543 tcp_bind_hash_remove(tcp); 16544 tcp->tcp_state = TCPS_IDLE; 16545 tcp->tcp_mdt = B_FALSE; 16546 /* Send M_FLUSH according to TPI */ 16547 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16548 connp = tcp->tcp_connp; 16549 connp->conn_mdt_ok = B_FALSE; 16550 ipcl_hash_remove(connp); 16551 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16552 mp = mi_tpi_ok_ack_alloc(mp); 16553 putnext(tcp->tcp_rq, mp); 16554 } 16555 16556 /* 16557 * Don't let port fall into the privileged range. 16558 * Since the extra privileged ports can be arbitrary we also 16559 * ensure that we exclude those from consideration. 16560 * tcp_g_epriv_ports is not sorted thus we loop over it until 16561 * there are no changes. 16562 * 16563 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16564 * but instead the code relies on: 16565 * - the fact that the address of the array and its size never changes 16566 * - the atomic assignment of the elements of the array 16567 */ 16568 static in_port_t 16569 tcp_update_next_port(in_port_t port, boolean_t random) 16570 { 16571 int i; 16572 16573 if (random && tcp_random_anon_port != 0) { 16574 (void) random_get_pseudo_bytes((uint8_t *)&port, 16575 sizeof (in_port_t)); 16576 /* 16577 * Unless changed by a sys admin, the smallest anon port 16578 * is 32768 and the largest anon port is 65535. It is 16579 * very likely (50%) for the random port to be smaller 16580 * than the smallest anon port. When that happens, 16581 * add port % (anon port range) to the smallest anon 16582 * port to get the random port. It should fall into the 16583 * valid anon port range. 16584 */ 16585 if (port < tcp_smallest_anon_port) { 16586 port = tcp_smallest_anon_port + 16587 port % (tcp_largest_anon_port - 16588 tcp_smallest_anon_port); 16589 } 16590 } 16591 16592 retry: 16593 if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port) 16594 port = (in_port_t)tcp_smallest_anon_port; 16595 16596 if (port < tcp_smallest_nonpriv_port) 16597 port = (in_port_t)tcp_smallest_nonpriv_port; 16598 16599 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 16600 if (port == tcp_g_epriv_ports[i]) { 16601 port++; 16602 /* 16603 * Make sure whether the port is in the 16604 * valid range. 16605 * 16606 * XXX Note that if tcp_g_epriv_ports contains 16607 * all the anonymous ports this will be an 16608 * infinite loop. 16609 */ 16610 goto retry; 16611 } 16612 } 16613 return (port); 16614 } 16615 16616 /* 16617 * Return the next anonymous port in the priviledged port range for 16618 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16619 * downwards. This is the same behavior as documented in the userland 16620 * library call rresvport(3N). 16621 */ 16622 static in_port_t 16623 tcp_get_next_priv_port(void) 16624 { 16625 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16626 16627 if (next_priv_port < tcp_min_anonpriv_port) { 16628 next_priv_port = IPPORT_RESERVED - 1; 16629 } 16630 return (next_priv_port--); 16631 } 16632 16633 /* The write side r/w procedure. */ 16634 16635 #if CCS_STATS 16636 struct { 16637 struct { 16638 int64_t count, bytes; 16639 } tot, hit; 16640 } wrw_stats; 16641 #endif 16642 16643 /* 16644 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16645 * messages. 16646 */ 16647 /* ARGSUSED */ 16648 static void 16649 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16650 { 16651 conn_t *connp = (conn_t *)arg; 16652 tcp_t *tcp = connp->conn_tcp; 16653 queue_t *q = tcp->tcp_wq; 16654 16655 ASSERT(DB_TYPE(mp) != M_IOCTL); 16656 /* 16657 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16658 * Once the close starts, streamhead and sockfs will not let any data 16659 * packets come down (close ensures that there are no threads using the 16660 * queue and no new threads will come down) but since qprocsoff() 16661 * hasn't happened yet, a M_FLUSH or some non data message might 16662 * get reflected back (in response to our own FLUSHRW) and get 16663 * processed after tcp_close() is done. The conn would still be valid 16664 * because a ref would have added but we need to check the state 16665 * before actually processing the packet. 16666 */ 16667 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16668 freemsg(mp); 16669 return; 16670 } 16671 16672 switch (DB_TYPE(mp)) { 16673 case M_IOCDATA: 16674 tcp_wput_iocdata(tcp, mp); 16675 break; 16676 case M_FLUSH: 16677 tcp_wput_flush(tcp, mp); 16678 break; 16679 default: 16680 CALL_IP_WPUT(connp, q, mp); 16681 break; 16682 } 16683 } 16684 16685 /* 16686 * The TCP fast path write put procedure. 16687 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16688 */ 16689 /* ARGSUSED */ 16690 void 16691 tcp_output(void *arg, mblk_t *mp, void *arg2) 16692 { 16693 int len; 16694 int hdrlen; 16695 int plen; 16696 mblk_t *mp1; 16697 uchar_t *rptr; 16698 uint32_t snxt; 16699 tcph_t *tcph; 16700 struct datab *db; 16701 uint32_t suna; 16702 uint32_t mss; 16703 ipaddr_t *dst; 16704 ipaddr_t *src; 16705 uint32_t sum; 16706 int usable; 16707 conn_t *connp = (conn_t *)arg; 16708 tcp_t *tcp = connp->conn_tcp; 16709 uint32_t msize; 16710 16711 /* 16712 * Try and ASSERT the minimum possible references on the 16713 * conn early enough. Since we are executing on write side, 16714 * the connection is obviously not detached and that means 16715 * there is a ref each for TCP and IP. Since we are behind 16716 * the squeue, the minimum references needed are 3. If the 16717 * conn is in classifier hash list, there should be an 16718 * extra ref for that (we check both the possibilities). 16719 */ 16720 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16721 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16722 16723 /* Bypass tcp protocol for fused tcp loopback */ 16724 if (tcp->tcp_fused) { 16725 msize = msgdsize(mp); 16726 mutex_enter(&connp->conn_lock); 16727 tcp->tcp_squeue_bytes -= msize; 16728 mutex_exit(&connp->conn_lock); 16729 16730 if (tcp_fuse_output(tcp, mp, msize)) 16731 return; 16732 } 16733 16734 mss = tcp->tcp_mss; 16735 if (tcp->tcp_xmit_zc_clean) 16736 mp = tcp_zcopy_backoff(tcp, mp, 0); 16737 16738 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16739 len = (int)(mp->b_wptr - mp->b_rptr); 16740 16741 /* 16742 * Criteria for fast path: 16743 * 16744 * 1. no unsent data 16745 * 2. single mblk in request 16746 * 3. connection established 16747 * 4. data in mblk 16748 * 5. len <= mss 16749 * 6. no tcp_valid bits 16750 */ 16751 if ((tcp->tcp_unsent != 0) || 16752 (tcp->tcp_cork) || 16753 (mp->b_cont != NULL) || 16754 (tcp->tcp_state != TCPS_ESTABLISHED) || 16755 (len == 0) || 16756 (len > mss) || 16757 (tcp->tcp_valid_bits != 0)) { 16758 msize = msgdsize(mp); 16759 mutex_enter(&connp->conn_lock); 16760 tcp->tcp_squeue_bytes -= msize; 16761 mutex_exit(&connp->conn_lock); 16762 16763 tcp_wput_data(tcp, mp, B_FALSE); 16764 return; 16765 } 16766 16767 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16768 ASSERT(tcp->tcp_fin_sent == 0); 16769 16770 mutex_enter(&connp->conn_lock); 16771 tcp->tcp_squeue_bytes -= len; 16772 mutex_exit(&connp->conn_lock); 16773 16774 /* queue new packet onto retransmission queue */ 16775 if (tcp->tcp_xmit_head == NULL) { 16776 tcp->tcp_xmit_head = mp; 16777 } else { 16778 tcp->tcp_xmit_last->b_cont = mp; 16779 } 16780 tcp->tcp_xmit_last = mp; 16781 tcp->tcp_xmit_tail = mp; 16782 16783 /* find out how much we can send */ 16784 /* BEGIN CSTYLED */ 16785 /* 16786 * un-acked usable 16787 * |--------------|-----------------| 16788 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16789 */ 16790 /* END CSTYLED */ 16791 16792 /* start sending from tcp_snxt */ 16793 snxt = tcp->tcp_snxt; 16794 16795 /* 16796 * Check to see if this connection has been idled for some 16797 * time and no ACK is expected. If it is, we need to slow 16798 * start again to get back the connection's "self-clock" as 16799 * described in VJ's paper. 16800 * 16801 * Refer to the comment in tcp_mss_set() for the calculation 16802 * of tcp_cwnd after idle. 16803 */ 16804 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16805 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16806 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 16807 } 16808 16809 usable = tcp->tcp_swnd; /* tcp window size */ 16810 if (usable > tcp->tcp_cwnd) 16811 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16812 usable -= snxt; /* subtract stuff already sent */ 16813 suna = tcp->tcp_suna; 16814 usable += suna; 16815 /* usable can be < 0 if the congestion window is smaller */ 16816 if (len > usable) { 16817 /* Can't send complete M_DATA in one shot */ 16818 goto slow; 16819 } 16820 16821 if (tcp->tcp_flow_stopped && 16822 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 16823 tcp_clrqfull(tcp); 16824 } 16825 16826 /* 16827 * determine if anything to send (Nagle). 16828 * 16829 * 1. len < tcp_mss (i.e. small) 16830 * 2. unacknowledged data present 16831 * 3. len < nagle limit 16832 * 4. last packet sent < nagle limit (previous packet sent) 16833 */ 16834 if ((len < mss) && (snxt != suna) && 16835 (len < (int)tcp->tcp_naglim) && 16836 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 16837 /* 16838 * This was the first unsent packet and normally 16839 * mss < xmit_hiwater so there is no need to worry 16840 * about flow control. The next packet will go 16841 * through the flow control check in tcp_wput_data(). 16842 */ 16843 /* leftover work from above */ 16844 tcp->tcp_unsent = len; 16845 tcp->tcp_xmit_tail_unsent = len; 16846 16847 return; 16848 } 16849 16850 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 16851 16852 if (snxt == suna) { 16853 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16854 } 16855 16856 /* we have always sent something */ 16857 tcp->tcp_rack_cnt = 0; 16858 16859 tcp->tcp_snxt = snxt + len; 16860 tcp->tcp_rack = tcp->tcp_rnxt; 16861 16862 if ((mp1 = dupb(mp)) == 0) 16863 goto no_memory; 16864 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 16865 mp->b_next = (mblk_t *)(uintptr_t)snxt; 16866 16867 /* adjust tcp header information */ 16868 tcph = tcp->tcp_tcph; 16869 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 16870 16871 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 16872 sum = (sum >> 16) + (sum & 0xFFFF); 16873 U16_TO_ABE16(sum, tcph->th_sum); 16874 16875 U32_TO_ABE32(snxt, tcph->th_seq); 16876 16877 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 16878 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 16879 BUMP_LOCAL(tcp->tcp_obsegs); 16880 16881 /* Update the latest receive window size in TCP header. */ 16882 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 16883 tcph->th_win); 16884 16885 tcp->tcp_last_sent_len = (ushort_t)len; 16886 16887 plen = len + tcp->tcp_hdr_len; 16888 16889 if (tcp->tcp_ipversion == IPV4_VERSION) { 16890 tcp->tcp_ipha->ipha_length = htons(plen); 16891 } else { 16892 tcp->tcp_ip6h->ip6_plen = htons(plen - 16893 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 16894 } 16895 16896 /* see if we need to allocate a mblk for the headers */ 16897 hdrlen = tcp->tcp_hdr_len; 16898 rptr = mp1->b_rptr - hdrlen; 16899 db = mp1->b_datap; 16900 if ((db->db_ref != 2) || rptr < db->db_base || 16901 (!OK_32PTR(rptr))) { 16902 /* NOTE: we assume allocb returns an OK_32PTR */ 16903 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 16904 tcp_wroff_xtra, BPRI_MED); 16905 if (!mp) { 16906 freemsg(mp1); 16907 goto no_memory; 16908 } 16909 mp->b_cont = mp1; 16910 mp1 = mp; 16911 /* Leave room for Link Level header */ 16912 /* hdrlen = tcp->tcp_hdr_len; */ 16913 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 16914 mp1->b_wptr = &rptr[hdrlen]; 16915 } 16916 mp1->b_rptr = rptr; 16917 16918 /* Fill in the timestamp option. */ 16919 if (tcp->tcp_snd_ts_ok) { 16920 U32_TO_BE32((uint32_t)lbolt, 16921 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 16922 U32_TO_BE32(tcp->tcp_ts_recent, 16923 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 16924 } else { 16925 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 16926 } 16927 16928 /* copy header into outgoing packet */ 16929 dst = (ipaddr_t *)rptr; 16930 src = (ipaddr_t *)tcp->tcp_iphc; 16931 dst[0] = src[0]; 16932 dst[1] = src[1]; 16933 dst[2] = src[2]; 16934 dst[3] = src[3]; 16935 dst[4] = src[4]; 16936 dst[5] = src[5]; 16937 dst[6] = src[6]; 16938 dst[7] = src[7]; 16939 dst[8] = src[8]; 16940 dst[9] = src[9]; 16941 if (hdrlen -= 40) { 16942 hdrlen >>= 2; 16943 dst += 10; 16944 src += 10; 16945 do { 16946 *dst++ = *src++; 16947 } while (--hdrlen); 16948 } 16949 16950 /* 16951 * Set the ECN info in the TCP header. Note that this 16952 * is not the template header. 16953 */ 16954 if (tcp->tcp_ecn_ok) { 16955 SET_ECT(tcp, rptr); 16956 16957 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 16958 if (tcp->tcp_ecn_echo_on) 16959 tcph->th_flags[0] |= TH_ECE; 16960 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 16961 tcph->th_flags[0] |= TH_CWR; 16962 tcp->tcp_ecn_cwr_sent = B_TRUE; 16963 } 16964 } 16965 16966 if (tcp->tcp_ip_forward_progress) { 16967 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 16968 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 16969 tcp->tcp_ip_forward_progress = B_FALSE; 16970 } 16971 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 16972 tcp_send_data(tcp, tcp->tcp_wq, mp1); 16973 return; 16974 16975 /* 16976 * If we ran out of memory, we pretend to have sent the packet 16977 * and that it was lost on the wire. 16978 */ 16979 no_memory: 16980 return; 16981 16982 slow: 16983 /* leftover work from above */ 16984 tcp->tcp_unsent = len; 16985 tcp->tcp_xmit_tail_unsent = len; 16986 tcp_wput_data(tcp, NULL, B_FALSE); 16987 } 16988 16989 /* 16990 * The function called through squeue to get behind eager's perimeter to 16991 * finish the accept processing. 16992 */ 16993 /* ARGSUSED */ 16994 void 16995 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 16996 { 16997 conn_t *connp = (conn_t *)arg; 16998 tcp_t *tcp = connp->conn_tcp; 16999 queue_t *q = tcp->tcp_rq; 17000 mblk_t *mp1; 17001 mblk_t *stropt_mp = mp; 17002 struct stroptions *stropt; 17003 uint_t thwin; 17004 17005 /* 17006 * Drop the eager's ref on the listener, that was placed when 17007 * this eager began life in tcp_conn_request. 17008 */ 17009 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17010 17011 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17012 /* 17013 * Someone blewoff the eager before we could finish 17014 * the accept. 17015 * 17016 * The only reason eager exists it because we put in 17017 * a ref on it when conn ind went up. We need to send 17018 * a disconnect indication up while the last reference 17019 * on the eager will be dropped by the squeue when we 17020 * return. 17021 */ 17022 ASSERT(tcp->tcp_listener == NULL); 17023 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17024 struct T_discon_ind *tdi; 17025 17026 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17027 /* 17028 * Let us reuse the incoming mblk to avoid memory 17029 * allocation failure problems. We know that the 17030 * size of the incoming mblk i.e. stroptions is greater 17031 * than sizeof T_discon_ind. So the reallocb below 17032 * can't fail. 17033 */ 17034 freemsg(mp->b_cont); 17035 mp->b_cont = NULL; 17036 ASSERT(DB_REF(mp) == 1); 17037 mp = reallocb(mp, sizeof (struct T_discon_ind), 17038 B_FALSE); 17039 ASSERT(mp != NULL); 17040 DB_TYPE(mp) = M_PROTO; 17041 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17042 tdi = (struct T_discon_ind *)mp->b_rptr; 17043 if (tcp->tcp_issocket) { 17044 tdi->DISCON_reason = ECONNREFUSED; 17045 tdi->SEQ_number = 0; 17046 } else { 17047 tdi->DISCON_reason = ENOPROTOOPT; 17048 tdi->SEQ_number = 17049 tcp->tcp_conn_req_seqnum; 17050 } 17051 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17052 putnext(q, mp); 17053 } else { 17054 freemsg(mp); 17055 } 17056 if (tcp->tcp_hard_binding) { 17057 tcp->tcp_hard_binding = B_FALSE; 17058 tcp->tcp_hard_bound = B_TRUE; 17059 } 17060 tcp->tcp_detached = B_FALSE; 17061 return; 17062 } 17063 17064 mp1 = stropt_mp->b_cont; 17065 stropt_mp->b_cont = NULL; 17066 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17067 stropt = (struct stroptions *)stropt_mp->b_rptr; 17068 17069 while (mp1 != NULL) { 17070 mp = mp1; 17071 mp1 = mp1->b_cont; 17072 mp->b_cont = NULL; 17073 tcp->tcp_drop_opt_ack_cnt++; 17074 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17075 } 17076 mp = NULL; 17077 17078 /* 17079 * For a loopback connection with tcp_direct_sockfs on, note that 17080 * we don't have to protect tcp_rcv_list yet because synchronous 17081 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17082 * possibly race with us. 17083 */ 17084 17085 /* 17086 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17087 * properly. This is the first time we know of the acceptor' 17088 * queue. So we do it here. 17089 */ 17090 if (tcp->tcp_rcv_list == NULL) { 17091 /* 17092 * Recv queue is empty, tcp_rwnd should not have changed. 17093 * That means it should be equal to the listener's tcp_rwnd. 17094 */ 17095 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17096 } else { 17097 #ifdef DEBUG 17098 uint_t cnt = 0; 17099 17100 mp1 = tcp->tcp_rcv_list; 17101 while ((mp = mp1) != NULL) { 17102 mp1 = mp->b_next; 17103 cnt += msgdsize(mp); 17104 } 17105 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17106 #endif 17107 /* There is some data, add them back to get the max. */ 17108 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17109 } 17110 17111 stropt->so_flags = SO_HIWAT; 17112 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17113 17114 stropt->so_flags |= SO_MAXBLK; 17115 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17116 17117 /* 17118 * This is the first time we run on the correct 17119 * queue after tcp_accept. So fix all the q parameters 17120 * here. 17121 */ 17122 /* Allocate room for SACK options if needed. */ 17123 stropt->so_flags |= SO_WROFF; 17124 if (tcp->tcp_fused) { 17125 ASSERT(tcp->tcp_loopback); 17126 ASSERT(tcp->tcp_loopback_peer != NULL); 17127 /* 17128 * For fused tcp loopback, set the stream head's write 17129 * offset value to zero since we won't be needing any room 17130 * for TCP/IP headers. This would also improve performance 17131 * since it would reduce the amount of work done by kmem. 17132 * Non-fused tcp loopback case is handled separately below. 17133 */ 17134 stropt->so_wroff = 0; 17135 /* 17136 * Record the stream head's high water mark for this endpoint; 17137 * this is used for flow-control purposes in tcp_fuse_output(). 17138 */ 17139 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17140 /* 17141 * Update the peer's transmit parameters according to 17142 * our recently calculated high water mark value. 17143 */ 17144 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17145 } else if (tcp->tcp_snd_sack_ok) { 17146 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17147 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17148 } else { 17149 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17150 tcp_wroff_xtra); 17151 } 17152 17153 /* 17154 * If this is endpoint is handling SSL, then reserve extra 17155 * offset and space at the end. 17156 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17157 * overriding the previous setting. The extra cost of signing and 17158 * encrypting multiple MSS-size records (12 of them with Ethernet), 17159 * instead of a single contiguous one by the stream head 17160 * largely outweighs the statistical reduction of ACKs, when 17161 * applicable. The peer will also save on decyption and verification 17162 * costs. 17163 */ 17164 if (tcp->tcp_kssl_ctx != NULL) { 17165 stropt->so_wroff += SSL3_WROFFSET; 17166 17167 stropt->so_flags |= SO_TAIL; 17168 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17169 17170 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17171 } 17172 17173 /* Send the options up */ 17174 putnext(q, stropt_mp); 17175 17176 /* 17177 * Pass up any data and/or a fin that has been received. 17178 * 17179 * Adjust receive window in case it had decreased 17180 * (because there is data <=> tcp_rcv_list != NULL) 17181 * while the connection was detached. Note that 17182 * in case the eager was flow-controlled, w/o this 17183 * code, the rwnd may never open up again! 17184 */ 17185 if (tcp->tcp_rcv_list != NULL) { 17186 /* We drain directly in case of fused tcp loopback */ 17187 if (!tcp->tcp_fused && canputnext(q)) { 17188 tcp->tcp_rwnd = q->q_hiwat; 17189 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17190 << tcp->tcp_rcv_ws; 17191 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17192 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17193 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17194 tcp_xmit_ctl(NULL, 17195 tcp, (tcp->tcp_swnd == 0) ? 17196 tcp->tcp_suna : tcp->tcp_snxt, 17197 tcp->tcp_rnxt, TH_ACK); 17198 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17199 } 17200 17201 } 17202 (void) tcp_rcv_drain(q, tcp); 17203 17204 /* 17205 * For fused tcp loopback, back-enable peer endpoint 17206 * if it's currently flow-controlled. 17207 */ 17208 if (tcp->tcp_fused && 17209 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17210 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17211 17212 ASSERT(peer_tcp != NULL); 17213 ASSERT(peer_tcp->tcp_fused); 17214 17215 tcp_clrqfull(peer_tcp); 17216 TCP_STAT(tcp_fusion_backenabled); 17217 } 17218 } 17219 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17220 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17221 mp = mi_tpi_ordrel_ind(); 17222 if (mp) { 17223 tcp->tcp_ordrel_done = B_TRUE; 17224 putnext(q, mp); 17225 if (tcp->tcp_deferred_clean_death) { 17226 /* 17227 * tcp_clean_death was deferred 17228 * for T_ORDREL_IND - do it now 17229 */ 17230 (void) tcp_clean_death(tcp, 17231 tcp->tcp_client_errno, 21); 17232 tcp->tcp_deferred_clean_death = B_FALSE; 17233 } 17234 } else { 17235 /* 17236 * Run the orderly release in the 17237 * service routine. 17238 */ 17239 qenable(q); 17240 } 17241 } 17242 if (tcp->tcp_hard_binding) { 17243 tcp->tcp_hard_binding = B_FALSE; 17244 tcp->tcp_hard_bound = B_TRUE; 17245 } 17246 17247 tcp->tcp_detached = B_FALSE; 17248 17249 /* We can enable synchronous streams now */ 17250 if (tcp->tcp_fused) { 17251 tcp_fuse_syncstr_enable_pair(tcp); 17252 } 17253 17254 if (tcp->tcp_ka_enabled) { 17255 tcp->tcp_ka_last_intrvl = 0; 17256 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17257 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17258 } 17259 17260 /* 17261 * At this point, eager is fully established and will 17262 * have the following references - 17263 * 17264 * 2 references for connection to exist (1 for TCP and 1 for IP). 17265 * 1 reference for the squeue which will be dropped by the squeue as 17266 * soon as this function returns. 17267 * There will be 1 additonal reference for being in classifier 17268 * hash list provided something bad hasn't happened. 17269 */ 17270 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17271 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17272 } 17273 17274 /* 17275 * The function called through squeue to get behind listener's perimeter to 17276 * send a deffered conn_ind. 17277 */ 17278 /* ARGSUSED */ 17279 void 17280 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17281 { 17282 conn_t *connp = (conn_t *)arg; 17283 tcp_t *listener = connp->conn_tcp; 17284 17285 if (listener->tcp_state == TCPS_CLOSED || 17286 TCP_IS_DETACHED(listener)) { 17287 /* 17288 * If listener has closed, it would have caused a 17289 * a cleanup/blowoff to happen for the eager. 17290 */ 17291 tcp_t *tcp; 17292 struct T_conn_ind *conn_ind; 17293 17294 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17295 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17296 conn_ind->OPT_length); 17297 /* 17298 * We need to drop the ref on eager that was put 17299 * tcp_rput_data() before trying to send the conn_ind 17300 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17301 * and tcp_wput_accept() is sending this deferred conn_ind but 17302 * listener is closed so we drop the ref. 17303 */ 17304 CONN_DEC_REF(tcp->tcp_connp); 17305 freemsg(mp); 17306 return; 17307 } 17308 putnext(listener->tcp_rq, mp); 17309 } 17310 17311 17312 /* 17313 * This is the STREAMS entry point for T_CONN_RES coming down on 17314 * Acceptor STREAM when sockfs listener does accept processing. 17315 * Read the block comment on top pf tcp_conn_request(). 17316 */ 17317 void 17318 tcp_wput_accept(queue_t *q, mblk_t *mp) 17319 { 17320 queue_t *rq = RD(q); 17321 struct T_conn_res *conn_res; 17322 tcp_t *eager; 17323 tcp_t *listener; 17324 struct T_ok_ack *ok; 17325 t_scalar_t PRIM_type; 17326 mblk_t *opt_mp; 17327 conn_t *econnp; 17328 17329 ASSERT(DB_TYPE(mp) == M_PROTO); 17330 17331 conn_res = (struct T_conn_res *)mp->b_rptr; 17332 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17333 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17334 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17335 if (mp != NULL) 17336 putnext(rq, mp); 17337 return; 17338 } 17339 switch (conn_res->PRIM_type) { 17340 case O_T_CONN_RES: 17341 case T_CONN_RES: 17342 /* 17343 * We pass up an err ack if allocb fails. This will 17344 * cause sockfs to issue a T_DISCON_REQ which will cause 17345 * tcp_eager_blowoff to be called. sockfs will then call 17346 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17347 * we need to do the allocb up here because we have to 17348 * make sure rq->q_qinfo->qi_qclose still points to the 17349 * correct function (tcpclose_accept) in case allocb 17350 * fails. 17351 */ 17352 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17353 if (opt_mp == NULL) { 17354 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17355 if (mp != NULL) 17356 putnext(rq, mp); 17357 return; 17358 } 17359 17360 bcopy(mp->b_rptr + conn_res->OPT_offset, 17361 &eager, conn_res->OPT_length); 17362 PRIM_type = conn_res->PRIM_type; 17363 mp->b_datap->db_type = M_PCPROTO; 17364 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17365 ok = (struct T_ok_ack *)mp->b_rptr; 17366 ok->PRIM_type = T_OK_ACK; 17367 ok->CORRECT_prim = PRIM_type; 17368 econnp = eager->tcp_connp; 17369 econnp->conn_dev = (dev_t)q->q_ptr; 17370 eager->tcp_rq = rq; 17371 eager->tcp_wq = q; 17372 rq->q_ptr = econnp; 17373 rq->q_qinfo = &tcp_rinit; 17374 q->q_ptr = econnp; 17375 q->q_qinfo = &tcp_winit; 17376 listener = eager->tcp_listener; 17377 eager->tcp_issocket = B_TRUE; 17378 eager->tcp_cred = econnp->conn_cred = 17379 listener->tcp_connp->conn_cred; 17380 crhold(econnp->conn_cred); 17381 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17382 17383 /* Put the ref for IP */ 17384 CONN_INC_REF(econnp); 17385 17386 /* 17387 * We should have minimum of 3 references on the conn 17388 * at this point. One each for TCP and IP and one for 17389 * the T_conn_ind that was sent up when the 3-way handshake 17390 * completed. In the normal case we would also have another 17391 * reference (making a total of 4) for the conn being in the 17392 * classifier hash list. However the eager could have received 17393 * an RST subsequently and tcp_closei_local could have removed 17394 * the eager from the classifier hash list, hence we can't 17395 * assert that reference. 17396 */ 17397 ASSERT(econnp->conn_ref >= 3); 17398 17399 /* 17400 * Send the new local address also up to sockfs. There 17401 * should already be enough space in the mp that came 17402 * down from soaccept(). 17403 */ 17404 if (eager->tcp_family == AF_INET) { 17405 sin_t *sin; 17406 17407 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17408 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17409 sin = (sin_t *)mp->b_wptr; 17410 mp->b_wptr += sizeof (sin_t); 17411 sin->sin_family = AF_INET; 17412 sin->sin_port = eager->tcp_lport; 17413 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17414 } else { 17415 sin6_t *sin6; 17416 17417 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17418 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17419 sin6 = (sin6_t *)mp->b_wptr; 17420 mp->b_wptr += sizeof (sin6_t); 17421 sin6->sin6_family = AF_INET6; 17422 sin6->sin6_port = eager->tcp_lport; 17423 if (eager->tcp_ipversion == IPV4_VERSION) { 17424 sin6->sin6_flowinfo = 0; 17425 IN6_IPADDR_TO_V4MAPPED( 17426 eager->tcp_ipha->ipha_src, 17427 &sin6->sin6_addr); 17428 } else { 17429 ASSERT(eager->tcp_ip6h != NULL); 17430 sin6->sin6_flowinfo = 17431 eager->tcp_ip6h->ip6_vcf & 17432 ~IPV6_VERS_AND_FLOW_MASK; 17433 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17434 } 17435 sin6->sin6_scope_id = 0; 17436 sin6->__sin6_src_id = 0; 17437 } 17438 17439 putnext(rq, mp); 17440 17441 opt_mp->b_datap->db_type = M_SETOPTS; 17442 opt_mp->b_wptr += sizeof (struct stroptions); 17443 17444 /* 17445 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17446 * from listener to acceptor. The message is chained on the 17447 * bind_mp which tcp_rput_other will send down to IP. 17448 */ 17449 if (listener->tcp_bound_if != 0) { 17450 /* allocate optmgmt req */ 17451 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17452 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 17453 sizeof (int)); 17454 if (mp != NULL) 17455 linkb(opt_mp, mp); 17456 } 17457 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17458 uint_t on = 1; 17459 17460 /* allocate optmgmt req */ 17461 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17462 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 17463 if (mp != NULL) 17464 linkb(opt_mp, mp); 17465 } 17466 17467 17468 mutex_enter(&listener->tcp_eager_lock); 17469 17470 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17471 17472 tcp_t *tail; 17473 tcp_t *tcp; 17474 mblk_t *mp1; 17475 17476 tcp = listener->tcp_eager_prev_q0; 17477 /* 17478 * listener->tcp_eager_prev_q0 points to the TAIL of the 17479 * deferred T_conn_ind queue. We need to get to the head 17480 * of the queue in order to send up T_conn_ind the same 17481 * order as how the 3WHS is completed. 17482 */ 17483 while (tcp != listener) { 17484 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17485 !tcp->tcp_kssl_pending) 17486 break; 17487 else 17488 tcp = tcp->tcp_eager_prev_q0; 17489 } 17490 /* None of the pending eagers can be sent up now */ 17491 if (tcp == listener) 17492 goto no_more_eagers; 17493 17494 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17495 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17496 /* Move from q0 to q */ 17497 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17498 listener->tcp_conn_req_cnt_q0--; 17499 listener->tcp_conn_req_cnt_q++; 17500 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17501 tcp->tcp_eager_prev_q0; 17502 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17503 tcp->tcp_eager_next_q0; 17504 tcp->tcp_eager_prev_q0 = NULL; 17505 tcp->tcp_eager_next_q0 = NULL; 17506 tcp->tcp_conn_def_q0 = B_FALSE; 17507 17508 /* 17509 * Insert at end of the queue because sockfs sends 17510 * down T_CONN_RES in chronological order. Leaving 17511 * the older conn indications at front of the queue 17512 * helps reducing search time. 17513 */ 17514 tail = listener->tcp_eager_last_q; 17515 if (tail != NULL) { 17516 tail->tcp_eager_next_q = tcp; 17517 } else { 17518 listener->tcp_eager_next_q = tcp; 17519 } 17520 listener->tcp_eager_last_q = tcp; 17521 tcp->tcp_eager_next_q = NULL; 17522 17523 /* Need to get inside the listener perimeter */ 17524 CONN_INC_REF(listener->tcp_connp); 17525 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 17526 tcp_send_pending, listener->tcp_connp, 17527 SQTAG_TCP_SEND_PENDING); 17528 } 17529 no_more_eagers: 17530 tcp_eager_unlink(eager); 17531 mutex_exit(&listener->tcp_eager_lock); 17532 17533 /* 17534 * At this point, the eager is detached from the listener 17535 * but we still have an extra refs on eager (apart from the 17536 * usual tcp references). The ref was placed in tcp_rput_data 17537 * before sending the conn_ind in tcp_send_conn_ind. 17538 * The ref will be dropped in tcp_accept_finish(). 17539 */ 17540 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 17541 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 17542 return; 17543 default: 17544 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17545 if (mp != NULL) 17546 putnext(rq, mp); 17547 return; 17548 } 17549 } 17550 17551 void 17552 tcp_wput(queue_t *q, mblk_t *mp) 17553 { 17554 conn_t *connp = Q_TO_CONN(q); 17555 tcp_t *tcp; 17556 void (*output_proc)(); 17557 t_scalar_t type; 17558 uchar_t *rptr; 17559 struct iocblk *iocp; 17560 uint32_t msize; 17561 17562 ASSERT(connp->conn_ref >= 2); 17563 17564 switch (DB_TYPE(mp)) { 17565 case M_DATA: 17566 tcp = connp->conn_tcp; 17567 ASSERT(tcp != NULL); 17568 17569 msize = msgdsize(mp); 17570 17571 mutex_enter(&connp->conn_lock); 17572 CONN_INC_REF_LOCKED(connp); 17573 17574 tcp->tcp_squeue_bytes += msize; 17575 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 17576 mutex_exit(&connp->conn_lock); 17577 tcp_setqfull(tcp); 17578 } else 17579 mutex_exit(&connp->conn_lock); 17580 17581 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17582 tcp_output, connp, SQTAG_TCP_OUTPUT); 17583 return; 17584 case M_PROTO: 17585 case M_PCPROTO: 17586 /* 17587 * if it is a snmp message, don't get behind the squeue 17588 */ 17589 tcp = connp->conn_tcp; 17590 rptr = mp->b_rptr; 17591 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 17592 type = ((union T_primitives *)rptr)->type; 17593 } else { 17594 if (tcp->tcp_debug) { 17595 (void) strlog(TCP_MOD_ID, 0, 1, 17596 SL_ERROR|SL_TRACE, 17597 "tcp_wput_proto, dropping one..."); 17598 } 17599 freemsg(mp); 17600 return; 17601 } 17602 if (type == T_SVR4_OPTMGMT_REQ) { 17603 cred_t *cr = DB_CREDDEF(mp, 17604 tcp->tcp_cred); 17605 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 17606 cr)) { 17607 /* 17608 * This was a SNMP request 17609 */ 17610 return; 17611 } else { 17612 output_proc = tcp_wput_proto; 17613 } 17614 } else { 17615 output_proc = tcp_wput_proto; 17616 } 17617 break; 17618 case M_IOCTL: 17619 /* 17620 * Most ioctls can be processed right away without going via 17621 * squeues - process them right here. Those that do require 17622 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 17623 * are processed by tcp_wput_ioctl(). 17624 */ 17625 iocp = (struct iocblk *)mp->b_rptr; 17626 tcp = connp->conn_tcp; 17627 17628 switch (iocp->ioc_cmd) { 17629 case TCP_IOC_ABORT_CONN: 17630 tcp_ioctl_abort_conn(q, mp); 17631 return; 17632 case TI_GETPEERNAME: 17633 if (tcp->tcp_state < TCPS_SYN_RCVD) { 17634 iocp->ioc_error = ENOTCONN; 17635 iocp->ioc_count = 0; 17636 mp->b_datap->db_type = M_IOCACK; 17637 qreply(q, mp); 17638 return; 17639 } 17640 /* FALLTHRU */ 17641 case TI_GETMYNAME: 17642 mi_copyin(q, mp, NULL, 17643 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 17644 return; 17645 case ND_SET: 17646 /* nd_getset does the necessary checks */ 17647 case ND_GET: 17648 if (!nd_getset(q, tcp_g_nd, mp)) { 17649 CALL_IP_WPUT(connp, q, mp); 17650 return; 17651 } 17652 qreply(q, mp); 17653 return; 17654 case TCP_IOC_DEFAULT_Q: 17655 /* 17656 * Wants to be the default wq. Check the credentials 17657 * first, the rest is executed via squeue. 17658 */ 17659 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 17660 iocp->ioc_error = EPERM; 17661 iocp->ioc_count = 0; 17662 mp->b_datap->db_type = M_IOCACK; 17663 qreply(q, mp); 17664 return; 17665 } 17666 output_proc = tcp_wput_ioctl; 17667 break; 17668 default: 17669 output_proc = tcp_wput_ioctl; 17670 break; 17671 } 17672 break; 17673 default: 17674 output_proc = tcp_wput_nondata; 17675 break; 17676 } 17677 17678 CONN_INC_REF(connp); 17679 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17680 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 17681 } 17682 17683 /* 17684 * Initial STREAMS write side put() procedure for sockets. It tries to 17685 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 17686 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 17687 * are handled by tcp_wput() as usual. 17688 * 17689 * All further messages will also be handled by tcp_wput() because we cannot 17690 * be sure that the above short cut is safe later. 17691 */ 17692 static void 17693 tcp_wput_sock(queue_t *wq, mblk_t *mp) 17694 { 17695 conn_t *connp = Q_TO_CONN(wq); 17696 tcp_t *tcp = connp->conn_tcp; 17697 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 17698 17699 ASSERT(wq->q_qinfo == &tcp_sock_winit); 17700 wq->q_qinfo = &tcp_winit; 17701 17702 ASSERT(IPCL_IS_TCP(connp)); 17703 ASSERT(TCP_IS_SOCKET(tcp)); 17704 17705 if (DB_TYPE(mp) == M_PCPROTO && 17706 MBLKL(mp) == sizeof (struct T_capability_req) && 17707 car->PRIM_type == T_CAPABILITY_REQ) { 17708 tcp_capability_req(tcp, mp); 17709 return; 17710 } 17711 17712 tcp_wput(wq, mp); 17713 } 17714 17715 static boolean_t 17716 tcp_zcopy_check(tcp_t *tcp) 17717 { 17718 conn_t *connp = tcp->tcp_connp; 17719 ire_t *ire; 17720 boolean_t zc_enabled = B_FALSE; 17721 17722 if (do_tcpzcopy == 2) 17723 zc_enabled = B_TRUE; 17724 else if (tcp->tcp_ipversion == IPV4_VERSION && 17725 IPCL_IS_CONNECTED(connp) && 17726 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 17727 connp->conn_dontroute == 0 && 17728 connp->conn_xmit_if_ill == NULL && 17729 connp->conn_nofailover_ill == NULL && 17730 do_tcpzcopy == 1) { 17731 /* 17732 * the checks above closely resemble the fast path checks 17733 * in tcp_send_data(). 17734 */ 17735 mutex_enter(&connp->conn_lock); 17736 ire = connp->conn_ire_cache; 17737 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 17738 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17739 IRE_REFHOLD(ire); 17740 if (ire->ire_stq != NULL) { 17741 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 17742 17743 zc_enabled = ill && (ill->ill_capabilities & 17744 ILL_CAPAB_ZEROCOPY) && 17745 (ill->ill_zerocopy_capab-> 17746 ill_zerocopy_flags != 0); 17747 } 17748 IRE_REFRELE(ire); 17749 } 17750 mutex_exit(&connp->conn_lock); 17751 } 17752 tcp->tcp_snd_zcopy_on = zc_enabled; 17753 if (!TCP_IS_DETACHED(tcp)) { 17754 if (zc_enabled) { 17755 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 17756 TCP_STAT(tcp_zcopy_on); 17757 } else { 17758 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 17759 TCP_STAT(tcp_zcopy_off); 17760 } 17761 } 17762 return (zc_enabled); 17763 } 17764 17765 static mblk_t * 17766 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 17767 { 17768 if (do_tcpzcopy == 2) 17769 return (bp); 17770 else if (tcp->tcp_snd_zcopy_on) { 17771 tcp->tcp_snd_zcopy_on = B_FALSE; 17772 if (!TCP_IS_DETACHED(tcp)) { 17773 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 17774 TCP_STAT(tcp_zcopy_disable); 17775 } 17776 } 17777 return (tcp_zcopy_backoff(tcp, bp, 0)); 17778 } 17779 17780 /* 17781 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 17782 * the original desballoca'ed segmapped mblk. 17783 */ 17784 static mblk_t * 17785 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 17786 { 17787 mblk_t *head, *tail, *nbp; 17788 if (IS_VMLOANED_MBLK(bp)) { 17789 TCP_STAT(tcp_zcopy_backoff); 17790 if ((head = copyb(bp)) == NULL) { 17791 /* fail to backoff; leave it for the next backoff */ 17792 tcp->tcp_xmit_zc_clean = B_FALSE; 17793 return (bp); 17794 } 17795 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 17796 if (fix_xmitlist) 17797 tcp_zcopy_notify(tcp); 17798 else 17799 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 17800 } 17801 nbp = bp->b_cont; 17802 if (fix_xmitlist) { 17803 head->b_prev = bp->b_prev; 17804 head->b_next = bp->b_next; 17805 if (tcp->tcp_xmit_tail == bp) 17806 tcp->tcp_xmit_tail = head; 17807 } 17808 bp->b_next = NULL; 17809 bp->b_prev = NULL; 17810 freeb(bp); 17811 } else { 17812 head = bp; 17813 nbp = bp->b_cont; 17814 } 17815 tail = head; 17816 while (nbp) { 17817 if (IS_VMLOANED_MBLK(nbp)) { 17818 TCP_STAT(tcp_zcopy_backoff); 17819 if ((tail->b_cont = copyb(nbp)) == NULL) { 17820 tcp->tcp_xmit_zc_clean = B_FALSE; 17821 tail->b_cont = nbp; 17822 return (head); 17823 } 17824 tail = tail->b_cont; 17825 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 17826 if (fix_xmitlist) 17827 tcp_zcopy_notify(tcp); 17828 else 17829 tail->b_datap->db_struioflag |= 17830 STRUIO_ZCNOTIFY; 17831 } 17832 bp = nbp; 17833 nbp = nbp->b_cont; 17834 if (fix_xmitlist) { 17835 tail->b_prev = bp->b_prev; 17836 tail->b_next = bp->b_next; 17837 if (tcp->tcp_xmit_tail == bp) 17838 tcp->tcp_xmit_tail = tail; 17839 } 17840 bp->b_next = NULL; 17841 bp->b_prev = NULL; 17842 freeb(bp); 17843 } else { 17844 tail->b_cont = nbp; 17845 tail = nbp; 17846 nbp = nbp->b_cont; 17847 } 17848 } 17849 if (fix_xmitlist) { 17850 tcp->tcp_xmit_last = tail; 17851 tcp->tcp_xmit_zc_clean = B_TRUE; 17852 } 17853 return (head); 17854 } 17855 17856 static void 17857 tcp_zcopy_notify(tcp_t *tcp) 17858 { 17859 struct stdata *stp; 17860 17861 if (tcp->tcp_detached) 17862 return; 17863 stp = STREAM(tcp->tcp_rq); 17864 mutex_enter(&stp->sd_lock); 17865 stp->sd_flag |= STZCNOTIFY; 17866 cv_broadcast(&stp->sd_zcopy_wait); 17867 mutex_exit(&stp->sd_lock); 17868 } 17869 17870 static void 17871 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 17872 { 17873 ipha_t *ipha; 17874 ipaddr_t src; 17875 ipaddr_t dst; 17876 uint32_t cksum; 17877 ire_t *ire; 17878 uint16_t *up; 17879 ill_t *ill; 17880 conn_t *connp = tcp->tcp_connp; 17881 uint32_t hcksum_txflags = 0; 17882 mblk_t *ire_fp_mp; 17883 uint_t ire_fp_mp_len; 17884 17885 ASSERT(DB_TYPE(mp) == M_DATA); 17886 17887 ipha = (ipha_t *)mp->b_rptr; 17888 src = ipha->ipha_src; 17889 dst = ipha->ipha_dst; 17890 17891 /* 17892 * Drop off slow path for IPv6 and also if options are present. 17893 */ 17894 if (tcp->tcp_ipversion != IPV4_VERSION || 17895 !IPCL_IS_CONNECTED(connp) || 17896 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 17897 connp->conn_dontroute || 17898 connp->conn_xmit_if_ill != NULL || 17899 connp->conn_nofailover_ill != NULL || 17900 ipha->ipha_ident == IP_HDR_INCLUDED || 17901 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 17902 IPP_ENABLED(IPP_LOCAL_OUT)) { 17903 if (tcp->tcp_snd_zcopy_aware) 17904 mp = tcp_zcopy_disable(tcp, mp); 17905 TCP_STAT(tcp_ip_send); 17906 CALL_IP_WPUT(connp, q, mp); 17907 return; 17908 } 17909 17910 mutex_enter(&connp->conn_lock); 17911 ire = connp->conn_ire_cache; 17912 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 17913 if (ire != NULL && ire->ire_addr == dst && 17914 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17915 IRE_REFHOLD(ire); 17916 mutex_exit(&connp->conn_lock); 17917 } else { 17918 boolean_t cached = B_FALSE; 17919 17920 /* force a recheck later on */ 17921 tcp->tcp_ire_ill_check_done = B_FALSE; 17922 17923 TCP_DBGSTAT(tcp_ire_null1); 17924 connp->conn_ire_cache = NULL; 17925 mutex_exit(&connp->conn_lock); 17926 if (ire != NULL) 17927 IRE_REFRELE_NOTR(ire); 17928 ire = ire_cache_lookup(dst, connp->conn_zoneid); 17929 if (ire == NULL) { 17930 if (tcp->tcp_snd_zcopy_aware) 17931 mp = tcp_zcopy_backoff(tcp, mp, 0); 17932 TCP_STAT(tcp_ire_null); 17933 CALL_IP_WPUT(connp, q, mp); 17934 return; 17935 } 17936 IRE_REFHOLD_NOTR(ire); 17937 /* 17938 * Since we are inside the squeue, there cannot be another 17939 * thread in TCP trying to set the conn_ire_cache now. The 17940 * check for IRE_MARK_CONDEMNED ensures that an interface 17941 * unplumb thread has not yet started cleaning up the conns. 17942 * Hence we don't need to grab the conn lock. 17943 */ 17944 if (!(connp->conn_state_flags & CONN_CLOSING)) { 17945 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 17946 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17947 connp->conn_ire_cache = ire; 17948 cached = B_TRUE; 17949 } 17950 rw_exit(&ire->ire_bucket->irb_lock); 17951 } 17952 17953 /* 17954 * We can continue to use the ire but since it was 17955 * not cached, we should drop the extra reference. 17956 */ 17957 if (!cached) 17958 IRE_REFRELE_NOTR(ire); 17959 } 17960 17961 if (ire->ire_flags & RTF_MULTIRT || 17962 ire->ire_stq == NULL || 17963 ire->ire_max_frag < ntohs(ipha->ipha_length) || 17964 (ire_fp_mp = ire->ire_fp_mp) == NULL || 17965 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 17966 if (tcp->tcp_snd_zcopy_aware) 17967 mp = tcp_zcopy_disable(tcp, mp); 17968 TCP_STAT(tcp_ip_ire_send); 17969 IRE_REFRELE(ire); 17970 CALL_IP_WPUT(connp, q, mp); 17971 return; 17972 } 17973 17974 ill = ire_to_ill(ire); 17975 if (connp->conn_outgoing_ill != NULL) { 17976 ill_t *conn_outgoing_ill = NULL; 17977 /* 17978 * Choose a good ill in the group to send the packets on. 17979 */ 17980 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 17981 ill = ire_to_ill(ire); 17982 } 17983 ASSERT(ill != NULL); 17984 17985 if (!tcp->tcp_ire_ill_check_done) { 17986 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 17987 tcp->tcp_ire_ill_check_done = B_TRUE; 17988 } 17989 17990 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 17991 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 17992 #ifndef _BIG_ENDIAN 17993 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 17994 #endif 17995 17996 /* 17997 * Check to see if we need to re-enable MDT for this connection 17998 * because it was previously disabled due to changes in the ill; 17999 * note that by doing it here, this re-enabling only applies when 18000 * the packet is not dispatched through CALL_IP_WPUT(). 18001 * 18002 * That means for IPv4, it is worth re-enabling MDT for the fastpath 18003 * case, since that's how we ended up here. For IPv6, we do the 18004 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18005 */ 18006 if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18007 /* 18008 * Restore MDT for this connection, so that next time around 18009 * it is eligible to go through tcp_multisend() path again. 18010 */ 18011 TCP_STAT(tcp_mdt_conn_resumed1); 18012 tcp->tcp_mdt = B_TRUE; 18013 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18014 "interface %s\n", (void *)connp, ill->ill_name)); 18015 } 18016 18017 if (tcp->tcp_snd_zcopy_aware) { 18018 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18019 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18020 mp = tcp_zcopy_disable(tcp, mp); 18021 /* 18022 * we shouldn't need to reset ipha as the mp containing 18023 * ipha should never be a zero-copy mp. 18024 */ 18025 } 18026 18027 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18028 ASSERT(ill->ill_hcksum_capab != NULL); 18029 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18030 } 18031 18032 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18033 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18034 18035 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18036 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18037 18038 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18039 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18040 18041 /* Software checksum? */ 18042 if (DB_CKSUMFLAGS(mp) == 0) { 18043 TCP_STAT(tcp_out_sw_cksum); 18044 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18045 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18046 } 18047 18048 ipha->ipha_fragment_offset_and_flags |= 18049 (uint32_t)htons(ire->ire_frag_flag); 18050 18051 /* Calculate IP header checksum if hardware isn't capable */ 18052 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18053 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18054 ((uint16_t *)ipha)[4]); 18055 } 18056 18057 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18058 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18059 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18060 18061 UPDATE_OB_PKT_COUNT(ire); 18062 ire->ire_last_used_time = lbolt; 18063 BUMP_MIB(&ip_mib, ipOutRequests); 18064 18065 if (ILL_POLL_CAPABLE(ill)) { 18066 /* 18067 * Send the packet directly to DLD, where it may be queued 18068 * depending on the availability of transmit resources at 18069 * the media layer. 18070 */ 18071 IP_POLL_ILL_TX(ill, mp); 18072 } else { 18073 putnext(ire->ire_stq, mp); 18074 } 18075 IRE_REFRELE(ire); 18076 } 18077 18078 /* 18079 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18080 * if the receiver shrinks the window, i.e. moves the right window to the 18081 * left, the we should not send new data, but should retransmit normally the 18082 * old unacked data between suna and suna + swnd. We might has sent data 18083 * that is now outside the new window, pretend that we didn't send it. 18084 */ 18085 static void 18086 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18087 { 18088 uint32_t snxt = tcp->tcp_snxt; 18089 mblk_t *xmit_tail; 18090 int32_t offset; 18091 18092 ASSERT(shrunk_count > 0); 18093 18094 /* Pretend we didn't send the data outside the window */ 18095 snxt -= shrunk_count; 18096 18097 /* Get the mblk and the offset in it per the shrunk window */ 18098 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18099 18100 ASSERT(xmit_tail != NULL); 18101 18102 /* Reset all the values per the now shrunk window */ 18103 tcp->tcp_snxt = snxt; 18104 tcp->tcp_xmit_tail = xmit_tail; 18105 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18106 offset; 18107 tcp->tcp_unsent += shrunk_count; 18108 18109 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18110 /* 18111 * Make sure the timer is running so that we will probe a zero 18112 * window. 18113 */ 18114 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18115 } 18116 18117 18118 /* 18119 * The TCP normal data output path. 18120 * NOTE: the logic of the fast path is duplicated from this function. 18121 */ 18122 static void 18123 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18124 { 18125 int len; 18126 mblk_t *local_time; 18127 mblk_t *mp1; 18128 uint32_t snxt; 18129 int tail_unsent; 18130 int tcpstate; 18131 int usable = 0; 18132 mblk_t *xmit_tail; 18133 queue_t *q = tcp->tcp_wq; 18134 int32_t mss; 18135 int32_t num_sack_blk = 0; 18136 int32_t tcp_hdr_len; 18137 int32_t tcp_tcp_hdr_len; 18138 int mdt_thres; 18139 int rc; 18140 18141 tcpstate = tcp->tcp_state; 18142 if (mp == NULL) { 18143 /* 18144 * tcp_wput_data() with NULL mp should only be called when 18145 * there is unsent data. 18146 */ 18147 ASSERT(tcp->tcp_unsent > 0); 18148 /* Really tacky... but we need this for detached closes. */ 18149 len = tcp->tcp_unsent; 18150 goto data_null; 18151 } 18152 18153 #if CCS_STATS 18154 wrw_stats.tot.count++; 18155 wrw_stats.tot.bytes += msgdsize(mp); 18156 #endif 18157 ASSERT(mp->b_datap->db_type == M_DATA); 18158 /* 18159 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18160 * or before a connection attempt has begun. 18161 */ 18162 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18163 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18164 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18165 #ifdef DEBUG 18166 cmn_err(CE_WARN, 18167 "tcp_wput_data: data after ordrel, %s", 18168 tcp_display(tcp, NULL, 18169 DISP_ADDR_AND_PORT)); 18170 #else 18171 if (tcp->tcp_debug) { 18172 (void) strlog(TCP_MOD_ID, 0, 1, 18173 SL_TRACE|SL_ERROR, 18174 "tcp_wput_data: data after ordrel, %s\n", 18175 tcp_display(tcp, NULL, 18176 DISP_ADDR_AND_PORT)); 18177 } 18178 #endif /* DEBUG */ 18179 } 18180 if (tcp->tcp_snd_zcopy_aware && 18181 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18182 tcp_zcopy_notify(tcp); 18183 freemsg(mp); 18184 if (tcp->tcp_flow_stopped && 18185 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18186 tcp_clrqfull(tcp); 18187 } 18188 return; 18189 } 18190 18191 /* Strip empties */ 18192 for (;;) { 18193 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18194 (uintptr_t)INT_MAX); 18195 len = (int)(mp->b_wptr - mp->b_rptr); 18196 if (len > 0) 18197 break; 18198 mp1 = mp; 18199 mp = mp->b_cont; 18200 freeb(mp1); 18201 if (!mp) { 18202 return; 18203 } 18204 } 18205 18206 /* If we are the first on the list ... */ 18207 if (tcp->tcp_xmit_head == NULL) { 18208 tcp->tcp_xmit_head = mp; 18209 tcp->tcp_xmit_tail = mp; 18210 tcp->tcp_xmit_tail_unsent = len; 18211 } else { 18212 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18213 struct datab *dp; 18214 18215 mp1 = tcp->tcp_xmit_last; 18216 if (len < tcp_tx_pull_len && 18217 (dp = mp1->b_datap)->db_ref == 1 && 18218 dp->db_lim - mp1->b_wptr >= len) { 18219 ASSERT(len > 0); 18220 ASSERT(!mp1->b_cont); 18221 if (len == 1) { 18222 *mp1->b_wptr++ = *mp->b_rptr; 18223 } else { 18224 bcopy(mp->b_rptr, mp1->b_wptr, len); 18225 mp1->b_wptr += len; 18226 } 18227 if (mp1 == tcp->tcp_xmit_tail) 18228 tcp->tcp_xmit_tail_unsent += len; 18229 mp1->b_cont = mp->b_cont; 18230 if (tcp->tcp_snd_zcopy_aware && 18231 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18232 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18233 freeb(mp); 18234 mp = mp1; 18235 } else { 18236 tcp->tcp_xmit_last->b_cont = mp; 18237 } 18238 len += tcp->tcp_unsent; 18239 } 18240 18241 /* Tack on however many more positive length mblks we have */ 18242 if ((mp1 = mp->b_cont) != NULL) { 18243 do { 18244 int tlen; 18245 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18246 (uintptr_t)INT_MAX); 18247 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18248 if (tlen <= 0) { 18249 mp->b_cont = mp1->b_cont; 18250 freeb(mp1); 18251 } else { 18252 len += tlen; 18253 mp = mp1; 18254 } 18255 } while ((mp1 = mp->b_cont) != NULL); 18256 } 18257 tcp->tcp_xmit_last = mp; 18258 tcp->tcp_unsent = len; 18259 18260 if (urgent) 18261 usable = 1; 18262 18263 data_null: 18264 snxt = tcp->tcp_snxt; 18265 xmit_tail = tcp->tcp_xmit_tail; 18266 tail_unsent = tcp->tcp_xmit_tail_unsent; 18267 18268 /* 18269 * Note that tcp_mss has been adjusted to take into account the 18270 * timestamp option if applicable. Because SACK options do not 18271 * appear in every TCP segments and they are of variable lengths, 18272 * they cannot be included in tcp_mss. Thus we need to calculate 18273 * the actual segment length when we need to send a segment which 18274 * includes SACK options. 18275 */ 18276 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18277 int32_t opt_len; 18278 18279 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18280 tcp->tcp_num_sack_blk); 18281 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18282 2 + TCPOPT_HEADER_LEN; 18283 mss = tcp->tcp_mss - opt_len; 18284 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18285 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18286 } else { 18287 mss = tcp->tcp_mss; 18288 tcp_hdr_len = tcp->tcp_hdr_len; 18289 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18290 } 18291 18292 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18293 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18294 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 18295 } 18296 if (tcpstate == TCPS_SYN_RCVD) { 18297 /* 18298 * The three-way connection establishment handshake is not 18299 * complete yet. We want to queue the data for transmission 18300 * after entering ESTABLISHED state (RFC793). A jump to 18301 * "done" label effectively leaves data on the queue. 18302 */ 18303 goto done; 18304 } else { 18305 int usable_r = tcp->tcp_swnd; 18306 18307 /* 18308 * In the special case when cwnd is zero, which can only 18309 * happen if the connection is ECN capable, return now. 18310 * New segments is sent using tcp_timer(). The timer 18311 * is set in tcp_rput_data(). 18312 */ 18313 if (tcp->tcp_cwnd == 0) { 18314 /* 18315 * Note that tcp_cwnd is 0 before 3-way handshake is 18316 * finished. 18317 */ 18318 ASSERT(tcp->tcp_ecn_ok || 18319 tcp->tcp_state < TCPS_ESTABLISHED); 18320 return; 18321 } 18322 18323 /* NOTE: trouble if xmitting while SYN not acked? */ 18324 usable_r -= snxt; 18325 usable_r += tcp->tcp_suna; 18326 18327 /* 18328 * Check if the receiver has shrunk the window. If 18329 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18330 * cannot be set as there is unsent data, so FIN cannot 18331 * be sent out. Otherwise, we need to take into account 18332 * of FIN as it consumes an "invisible" sequence number. 18333 */ 18334 ASSERT(tcp->tcp_fin_sent == 0); 18335 if (usable_r < 0) { 18336 /* 18337 * The receiver has shrunk the window and we have sent 18338 * -usable_r date beyond the window, re-adjust. 18339 * 18340 * If TCP window scaling is enabled, there can be 18341 * round down error as the advertised receive window 18342 * is actually right shifted n bits. This means that 18343 * the lower n bits info is wiped out. It will look 18344 * like the window is shrunk. Do a check here to 18345 * see if the shrunk amount is actually within the 18346 * error in window calculation. If it is, just 18347 * return. Note that this check is inside the 18348 * shrunk window check. This makes sure that even 18349 * though tcp_process_shrunk_swnd() is not called, 18350 * we will stop further processing. 18351 */ 18352 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18353 tcp_process_shrunk_swnd(tcp, -usable_r); 18354 } 18355 return; 18356 } 18357 18358 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18359 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18360 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18361 18362 /* usable = MIN(usable, unsent) */ 18363 if (usable_r > len) 18364 usable_r = len; 18365 18366 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18367 if (usable_r > 0) { 18368 usable = usable_r; 18369 } else { 18370 /* Bypass all other unnecessary processing. */ 18371 goto done; 18372 } 18373 } 18374 18375 local_time = (mblk_t *)lbolt; 18376 18377 /* 18378 * "Our" Nagle Algorithm. This is not the same as in the old 18379 * BSD. This is more in line with the true intent of Nagle. 18380 * 18381 * The conditions are: 18382 * 1. The amount of unsent data (or amount of data which can be 18383 * sent, whichever is smaller) is less than Nagle limit. 18384 * 2. The last sent size is also less than Nagle limit. 18385 * 3. There is unack'ed data. 18386 * 4. Urgent pointer is not set. Send urgent data ignoring the 18387 * Nagle algorithm. This reduces the probability that urgent 18388 * bytes get "merged" together. 18389 * 5. The app has not closed the connection. This eliminates the 18390 * wait time of the receiving side waiting for the last piece of 18391 * (small) data. 18392 * 18393 * If all are satisified, exit without sending anything. Note 18394 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18395 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18396 * 4095). 18397 */ 18398 if (usable < (int)tcp->tcp_naglim && 18399 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18400 snxt != tcp->tcp_suna && 18401 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18402 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18403 goto done; 18404 } 18405 18406 if (tcp->tcp_cork) { 18407 /* 18408 * if the tcp->tcp_cork option is set, then we have to force 18409 * TCP not to send partial segment (smaller than MSS bytes). 18410 * We are calculating the usable now based on full mss and 18411 * will save the rest of remaining data for later. 18412 */ 18413 if (usable < mss) 18414 goto done; 18415 usable = (usable / mss) * mss; 18416 } 18417 18418 /* Update the latest receive window size in TCP header. */ 18419 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18420 tcp->tcp_tcph->th_win); 18421 18422 /* 18423 * Determine if it's worthwhile to attempt MDT, based on: 18424 * 18425 * 1. Simple TCP/IP{v4,v6} (no options). 18426 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18427 * 3. If the TCP connection is in ESTABLISHED state. 18428 * 4. The TCP is not detached. 18429 * 18430 * If any of the above conditions have changed during the 18431 * connection, stop using MDT and restore the stream head 18432 * parameters accordingly. 18433 */ 18434 if (tcp->tcp_mdt && 18435 ((tcp->tcp_ipversion == IPV4_VERSION && 18436 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 18437 (tcp->tcp_ipversion == IPV6_VERSION && 18438 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 18439 tcp->tcp_state != TCPS_ESTABLISHED || 18440 TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || 18441 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 18442 IPP_ENABLED(IPP_LOCAL_OUT))) { 18443 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 18444 tcp->tcp_mdt = B_FALSE; 18445 18446 /* Anything other than detached is considered pathological */ 18447 if (!TCP_IS_DETACHED(tcp)) { 18448 TCP_STAT(tcp_mdt_conn_halted1); 18449 (void) tcp_maxpsz_set(tcp, B_TRUE); 18450 } 18451 } 18452 18453 /* Use MDT if sendable amount is greater than the threshold */ 18454 if (tcp->tcp_mdt && 18455 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 18456 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 18457 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 18458 (tcp->tcp_valid_bits == 0 || 18459 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 18460 ASSERT(tcp->tcp_connp->conn_mdt_ok); 18461 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18462 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18463 local_time, mdt_thres); 18464 } else { 18465 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18466 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18467 local_time, INT_MAX); 18468 } 18469 18470 /* Pretend that all we were trying to send really got sent */ 18471 if (rc < 0 && tail_unsent < 0) { 18472 do { 18473 xmit_tail = xmit_tail->b_cont; 18474 xmit_tail->b_prev = local_time; 18475 ASSERT((uintptr_t)(xmit_tail->b_wptr - 18476 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 18477 tail_unsent += (int)(xmit_tail->b_wptr - 18478 xmit_tail->b_rptr); 18479 } while (tail_unsent < 0); 18480 } 18481 done:; 18482 tcp->tcp_xmit_tail = xmit_tail; 18483 tcp->tcp_xmit_tail_unsent = tail_unsent; 18484 len = tcp->tcp_snxt - snxt; 18485 if (len) { 18486 /* 18487 * If new data was sent, need to update the notsack 18488 * list, which is, afterall, data blocks that have 18489 * not been sack'ed by the receiver. New data is 18490 * not sack'ed. 18491 */ 18492 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 18493 /* len is a negative value. */ 18494 tcp->tcp_pipe -= len; 18495 tcp_notsack_update(&(tcp->tcp_notsack_list), 18496 tcp->tcp_snxt, snxt, 18497 &(tcp->tcp_num_notsack_blk), 18498 &(tcp->tcp_cnt_notsack_list)); 18499 } 18500 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 18501 tcp->tcp_rack = tcp->tcp_rnxt; 18502 tcp->tcp_rack_cnt = 0; 18503 if ((snxt + len) == tcp->tcp_suna) { 18504 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18505 } 18506 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 18507 /* 18508 * Didn't send anything. Make sure the timer is running 18509 * so that we will probe a zero window. 18510 */ 18511 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18512 } 18513 /* Note that len is the amount we just sent but with a negative sign */ 18514 tcp->tcp_unsent += len; 18515 if (tcp->tcp_flow_stopped) { 18516 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18517 tcp_clrqfull(tcp); 18518 } 18519 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 18520 tcp_setqfull(tcp); 18521 } 18522 } 18523 18524 /* 18525 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 18526 * outgoing TCP header with the template header, as well as other 18527 * options such as time-stamp, ECN and/or SACK. 18528 */ 18529 static void 18530 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 18531 { 18532 tcph_t *tcp_tmpl, *tcp_h; 18533 uint32_t *dst, *src; 18534 int hdrlen; 18535 18536 ASSERT(OK_32PTR(rptr)); 18537 18538 /* Template header */ 18539 tcp_tmpl = tcp->tcp_tcph; 18540 18541 /* Header of outgoing packet */ 18542 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18543 18544 /* dst and src are opaque 32-bit fields, used for copying */ 18545 dst = (uint32_t *)rptr; 18546 src = (uint32_t *)tcp->tcp_iphc; 18547 hdrlen = tcp->tcp_hdr_len; 18548 18549 /* Fill time-stamp option if needed */ 18550 if (tcp->tcp_snd_ts_ok) { 18551 U32_TO_BE32((uint32_t)now, 18552 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 18553 U32_TO_BE32(tcp->tcp_ts_recent, 18554 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 18555 } else { 18556 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18557 } 18558 18559 /* 18560 * Copy the template header; is this really more efficient than 18561 * calling bcopy()? For simple IPv4/TCP, it may be the case, 18562 * but perhaps not for other scenarios. 18563 */ 18564 dst[0] = src[0]; 18565 dst[1] = src[1]; 18566 dst[2] = src[2]; 18567 dst[3] = src[3]; 18568 dst[4] = src[4]; 18569 dst[5] = src[5]; 18570 dst[6] = src[6]; 18571 dst[7] = src[7]; 18572 dst[8] = src[8]; 18573 dst[9] = src[9]; 18574 if (hdrlen -= 40) { 18575 hdrlen >>= 2; 18576 dst += 10; 18577 src += 10; 18578 do { 18579 *dst++ = *src++; 18580 } while (--hdrlen); 18581 } 18582 18583 /* 18584 * Set the ECN info in the TCP header if it is not a zero 18585 * window probe. Zero window probe is only sent in 18586 * tcp_wput_data() and tcp_timer(). 18587 */ 18588 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 18589 SET_ECT(tcp, rptr); 18590 18591 if (tcp->tcp_ecn_echo_on) 18592 tcp_h->th_flags[0] |= TH_ECE; 18593 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18594 tcp_h->th_flags[0] |= TH_CWR; 18595 tcp->tcp_ecn_cwr_sent = B_TRUE; 18596 } 18597 } 18598 18599 /* Fill in SACK options */ 18600 if (num_sack_blk > 0) { 18601 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 18602 sack_blk_t *tmp; 18603 int32_t i; 18604 18605 wptr[0] = TCPOPT_NOP; 18606 wptr[1] = TCPOPT_NOP; 18607 wptr[2] = TCPOPT_SACK; 18608 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18609 sizeof (sack_blk_t); 18610 wptr += TCPOPT_REAL_SACK_LEN; 18611 18612 tmp = tcp->tcp_sack_list; 18613 for (i = 0; i < num_sack_blk; i++) { 18614 U32_TO_BE32(tmp[i].begin, wptr); 18615 wptr += sizeof (tcp_seq); 18616 U32_TO_BE32(tmp[i].end, wptr); 18617 wptr += sizeof (tcp_seq); 18618 } 18619 tcp_h->th_offset_and_rsrvd[0] += 18620 ((num_sack_blk * 2 + 1) << 4); 18621 } 18622 } 18623 18624 /* 18625 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 18626 * the destination address and SAP attribute, and if necessary, the 18627 * hardware checksum offload attribute to a Multidata message. 18628 */ 18629 static int 18630 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 18631 const uint32_t start, const uint32_t stuff, const uint32_t end, 18632 const uint32_t flags) 18633 { 18634 /* Add global destination address & SAP attribute */ 18635 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 18636 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 18637 "destination address+SAP\n")); 18638 18639 if (dlmp != NULL) 18640 TCP_STAT(tcp_mdt_allocfail); 18641 return (-1); 18642 } 18643 18644 /* Add global hwcksum attribute */ 18645 if (hwcksum && 18646 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 18647 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 18648 "checksum attribute\n")); 18649 18650 TCP_STAT(tcp_mdt_allocfail); 18651 return (-1); 18652 } 18653 18654 return (0); 18655 } 18656 18657 /* 18658 * Smaller and private version of pdescinfo_t used specifically for TCP, 18659 * which allows for only two payload spans per packet. 18660 */ 18661 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 18662 18663 /* 18664 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 18665 * scheme, and returns one the following: 18666 * 18667 * -1 = failed allocation. 18668 * 0 = success; burst count reached, or usable send window is too small, 18669 * and that we'd rather wait until later before sending again. 18670 */ 18671 static int 18672 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 18673 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 18674 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 18675 const int mdt_thres) 18676 { 18677 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 18678 multidata_t *mmd; 18679 uint_t obsegs, obbytes, hdr_frag_sz; 18680 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 18681 int num_burst_seg, max_pld; 18682 pdesc_t *pkt; 18683 tcp_pdescinfo_t tcp_pkt_info; 18684 pdescinfo_t *pkt_info; 18685 int pbuf_idx, pbuf_idx_nxt; 18686 int seg_len, len, spill, af; 18687 boolean_t add_buffer, zcopy, clusterwide; 18688 boolean_t rconfirm = B_FALSE; 18689 boolean_t done = B_FALSE; 18690 uint32_t cksum; 18691 uint32_t hwcksum_flags; 18692 ire_t *ire; 18693 ill_t *ill; 18694 ipha_t *ipha; 18695 ip6_t *ip6h; 18696 ipaddr_t src, dst; 18697 ill_zerocopy_capab_t *zc_cap = NULL; 18698 uint16_t *up; 18699 int err; 18700 18701 #ifdef _BIG_ENDIAN 18702 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 18703 #else 18704 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 18705 #endif 18706 18707 #define PREP_NEW_MULTIDATA() { \ 18708 mmd = NULL; \ 18709 md_mp = md_hbuf = NULL; \ 18710 cur_hdr_off = 0; \ 18711 max_pld = tcp->tcp_mdt_max_pld; \ 18712 pbuf_idx = pbuf_idx_nxt = -1; \ 18713 add_buffer = B_TRUE; \ 18714 zcopy = B_FALSE; \ 18715 } 18716 18717 #define PREP_NEW_PBUF() { \ 18718 md_pbuf = md_pbuf_nxt = NULL; \ 18719 pbuf_idx = pbuf_idx_nxt = -1; \ 18720 cur_pld_off = 0; \ 18721 first_snxt = *snxt; \ 18722 ASSERT(*tail_unsent > 0); \ 18723 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 18724 } 18725 18726 ASSERT(mdt_thres >= mss); 18727 ASSERT(*usable > 0 && *usable > mdt_thres); 18728 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 18729 ASSERT(!TCP_IS_DETACHED(tcp)); 18730 ASSERT(tcp->tcp_valid_bits == 0 || 18731 tcp->tcp_valid_bits == TCP_FSS_VALID); 18732 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 18733 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 18734 (tcp->tcp_ipversion == IPV6_VERSION && 18735 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 18736 ASSERT(tcp->tcp_connp != NULL); 18737 ASSERT(CONN_IS_MD_FASTPATH(tcp->tcp_connp)); 18738 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp)); 18739 18740 /* 18741 * Note that tcp will only declare at most 2 payload spans per 18742 * packet, which is much lower than the maximum allowable number 18743 * of packet spans per Multidata. For this reason, we use the 18744 * privately declared and smaller descriptor info structure, in 18745 * order to save some stack space. 18746 */ 18747 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 18748 18749 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 18750 if (af == AF_INET) { 18751 dst = tcp->tcp_ipha->ipha_dst; 18752 src = tcp->tcp_ipha->ipha_src; 18753 ASSERT(!CLASSD(dst)); 18754 } 18755 ASSERT(af == AF_INET || 18756 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 18757 18758 obsegs = obbytes = 0; 18759 num_burst_seg = tcp->tcp_snd_burst; 18760 md_mp_head = NULL; 18761 PREP_NEW_MULTIDATA(); 18762 18763 /* 18764 * Before we go on further, make sure there is an IRE that we can 18765 * use, and that the ILL supports MDT. Otherwise, there's no point 18766 * in proceeding any further, and we should just hand everything 18767 * off to the legacy path. 18768 */ 18769 mutex_enter(&tcp->tcp_connp->conn_lock); 18770 ire = tcp->tcp_connp->conn_ire_cache; 18771 ASSERT(!(tcp->tcp_connp->conn_state_flags & CONN_INCIPIENT)); 18772 if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || 18773 (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 18774 &tcp->tcp_ip6h->ip6_dst))) && 18775 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18776 IRE_REFHOLD(ire); 18777 mutex_exit(&tcp->tcp_connp->conn_lock); 18778 } else { 18779 boolean_t cached = B_FALSE; 18780 18781 /* force a recheck later on */ 18782 tcp->tcp_ire_ill_check_done = B_FALSE; 18783 18784 TCP_DBGSTAT(tcp_ire_null1); 18785 tcp->tcp_connp->conn_ire_cache = NULL; 18786 mutex_exit(&tcp->tcp_connp->conn_lock); 18787 18788 /* Release the old ire */ 18789 if (ire != NULL) 18790 IRE_REFRELE_NOTR(ire); 18791 18792 ire = (af == AF_INET) ? 18793 ire_cache_lookup(dst, tcp->tcp_connp->conn_zoneid) : 18794 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18795 tcp->tcp_connp->conn_zoneid); 18796 18797 if (ire == NULL) { 18798 TCP_STAT(tcp_ire_null); 18799 goto legacy_send_no_md; 18800 } 18801 18802 IRE_REFHOLD_NOTR(ire); 18803 /* 18804 * Since we are inside the squeue, there cannot be another 18805 * thread in TCP trying to set the conn_ire_cache now. The 18806 * check for IRE_MARK_CONDEMNED ensures that an interface 18807 * unplumb thread has not yet started cleaning up the conns. 18808 * Hence we don't need to grab the conn lock. 18809 */ 18810 if (!(tcp->tcp_connp->conn_state_flags & CONN_CLOSING)) { 18811 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18812 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18813 tcp->tcp_connp->conn_ire_cache = ire; 18814 cached = B_TRUE; 18815 } 18816 rw_exit(&ire->ire_bucket->irb_lock); 18817 } 18818 18819 /* 18820 * We can continue to use the ire but since it was not 18821 * cached, we should drop the extra reference. 18822 */ 18823 if (!cached) 18824 IRE_REFRELE_NOTR(ire); 18825 } 18826 18827 ASSERT(ire != NULL); 18828 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 18829 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 18830 ASSERT(af == AF_INET || ire->ire_nce != NULL); 18831 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18832 /* 18833 * If we do support loopback for MDT (which requires modifications 18834 * to the receiving paths), the following assertions should go away, 18835 * and we would be sending the Multidata to loopback conn later on. 18836 */ 18837 ASSERT(!IRE_IS_LOCAL(ire)); 18838 ASSERT(ire->ire_stq != NULL); 18839 18840 ill = ire_to_ill(ire); 18841 ASSERT(ill != NULL); 18842 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 18843 18844 if (!tcp->tcp_ire_ill_check_done) { 18845 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18846 tcp->tcp_ire_ill_check_done = B_TRUE; 18847 } 18848 18849 /* 18850 * If the underlying interface conditions have changed, or if the 18851 * new interface does not support MDT, go back to legacy path. 18852 */ 18853 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 18854 /* don't go through this path anymore for this connection */ 18855 TCP_STAT(tcp_mdt_conn_halted2); 18856 tcp->tcp_mdt = B_FALSE; 18857 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 18858 "interface %s\n", (void *)tcp->tcp_connp, ill->ill_name)); 18859 /* IRE will be released prior to returning */ 18860 goto legacy_send_no_md; 18861 } 18862 18863 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 18864 zc_cap = ill->ill_zerocopy_capab; 18865 18866 /* go to legacy path if interface doesn't support zerocopy */ 18867 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 18868 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 18869 /* IRE will be released prior to returning */ 18870 goto legacy_send_no_md; 18871 } 18872 18873 /* does the interface support hardware checksum offload? */ 18874 hwcksum_flags = 0; 18875 if (ILL_HCKSUM_CAPABLE(ill) && 18876 (ill->ill_hcksum_capab->ill_hcksum_txflags & 18877 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 18878 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 18879 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18880 HCKSUM_IPHDRCKSUM) 18881 hwcksum_flags = HCK_IPV4_HDRCKSUM; 18882 18883 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18884 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 18885 hwcksum_flags |= HCK_FULLCKSUM; 18886 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18887 HCKSUM_INET_PARTIAL) 18888 hwcksum_flags |= HCK_PARTIALCKSUM; 18889 } 18890 18891 /* 18892 * Each header fragment consists of the leading extra space, 18893 * followed by the TCP/IP header, and the trailing extra space. 18894 * We make sure that each header fragment begins on a 32-bit 18895 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 18896 * aligned in tcp_mdt_update). 18897 */ 18898 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 18899 tcp->tcp_mdt_hdr_tail), 4); 18900 18901 /* are we starting from the beginning of data block? */ 18902 if (*tail_unsent == 0) { 18903 *xmit_tail = (*xmit_tail)->b_cont; 18904 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 18905 *tail_unsent = (int)MBLKL(*xmit_tail); 18906 } 18907 18908 /* 18909 * Here we create one or more Multidata messages, each made up of 18910 * one header buffer and up to N payload buffers. This entire 18911 * operation is done within two loops: 18912 * 18913 * The outer loop mostly deals with creating the Multidata message, 18914 * as well as the header buffer that gets added to it. It also 18915 * links the Multidata messages together such that all of them can 18916 * be sent down to the lower layer in a single putnext call; this 18917 * linking behavior depends on the tcp_mdt_chain tunable. 18918 * 18919 * The inner loop takes an existing Multidata message, and adds 18920 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 18921 * packetizes those buffers by filling up the corresponding header 18922 * buffer fragments with the proper IP and TCP headers, and by 18923 * describing the layout of each packet in the packet descriptors 18924 * that get added to the Multidata. 18925 */ 18926 do { 18927 /* 18928 * If usable send window is too small, or data blocks in 18929 * transmit list are smaller than our threshold (i.e. app 18930 * performs large writes followed by small ones), we hand 18931 * off the control over to the legacy path. Note that we'll 18932 * get back the control once it encounters a large block. 18933 */ 18934 if (*usable < mss || (*tail_unsent <= mdt_thres && 18935 (*xmit_tail)->b_cont != NULL && 18936 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 18937 /* send down what we've got so far */ 18938 if (md_mp_head != NULL) { 18939 tcp_multisend_data(tcp, ire, ill, md_mp_head, 18940 obsegs, obbytes, &rconfirm); 18941 } 18942 /* 18943 * Pass control over to tcp_send(), but tell it to 18944 * return to us once a large-size transmission is 18945 * possible. 18946 */ 18947 TCP_STAT(tcp_mdt_legacy_small); 18948 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 18949 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 18950 tail_unsent, xmit_tail, local_time, 18951 mdt_thres)) <= 0) { 18952 /* burst count reached, or alloc failed */ 18953 IRE_REFRELE(ire); 18954 return (err); 18955 } 18956 18957 /* tcp_send() may have sent everything, so check */ 18958 if (*usable <= 0) { 18959 IRE_REFRELE(ire); 18960 return (0); 18961 } 18962 18963 TCP_STAT(tcp_mdt_legacy_ret); 18964 /* 18965 * We may have delivered the Multidata, so make sure 18966 * to re-initialize before the next round. 18967 */ 18968 md_mp_head = NULL; 18969 obsegs = obbytes = 0; 18970 num_burst_seg = tcp->tcp_snd_burst; 18971 PREP_NEW_MULTIDATA(); 18972 18973 /* are we starting from the beginning of data block? */ 18974 if (*tail_unsent == 0) { 18975 *xmit_tail = (*xmit_tail)->b_cont; 18976 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 18977 (uintptr_t)INT_MAX); 18978 *tail_unsent = (int)MBLKL(*xmit_tail); 18979 } 18980 } 18981 18982 /* 18983 * max_pld limits the number of mblks in tcp's transmit 18984 * queue that can be added to a Multidata message. Once 18985 * this counter reaches zero, no more additional mblks 18986 * can be added to it. What happens afterwards depends 18987 * on whether or not we are set to chain the Multidata 18988 * messages. If we are to link them together, reset 18989 * max_pld to its original value (tcp_mdt_max_pld) and 18990 * prepare to create a new Multidata message which will 18991 * get linked to md_mp_head. Else, leave it alone and 18992 * let the inner loop break on its own. 18993 */ 18994 if (tcp_mdt_chain && max_pld == 0) 18995 PREP_NEW_MULTIDATA(); 18996 18997 /* adding a payload buffer; re-initialize values */ 18998 if (add_buffer) 18999 PREP_NEW_PBUF(); 19000 19001 /* 19002 * If we don't have a Multidata, either because we just 19003 * (re)entered this outer loop, or after we branched off 19004 * to tcp_send above, setup the Multidata and header 19005 * buffer to be used. 19006 */ 19007 if (md_mp == NULL) { 19008 int md_hbuflen; 19009 uint32_t start, stuff; 19010 19011 /* 19012 * Calculate Multidata header buffer size large enough 19013 * to hold all of the headers that can possibly be 19014 * sent at this moment. We'd rather over-estimate 19015 * the size than running out of space; this is okay 19016 * since this buffer is small anyway. 19017 */ 19018 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19019 19020 /* 19021 * Start and stuff offset for partial hardware 19022 * checksum offload; these are currently for IPv4. 19023 * For full checksum offload, they are set to zero. 19024 */ 19025 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19026 if (af == AF_INET) { 19027 start = IP_SIMPLE_HDR_LENGTH; 19028 stuff = IP_SIMPLE_HDR_LENGTH + 19029 TCP_CHECKSUM_OFFSET; 19030 } else { 19031 start = IPV6_HDR_LEN; 19032 stuff = IPV6_HDR_LEN + 19033 TCP_CHECKSUM_OFFSET; 19034 } 19035 } else { 19036 start = stuff = 0; 19037 } 19038 19039 /* 19040 * Create the header buffer, Multidata, as well as 19041 * any necessary attributes (destination address, 19042 * SAP and hardware checksum offload) that should 19043 * be associated with the Multidata message. 19044 */ 19045 ASSERT(cur_hdr_off == 0); 19046 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19047 ((md_hbuf->b_wptr += md_hbuflen), 19048 (mmd = mmd_alloc(md_hbuf, &md_mp, 19049 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19050 /* fastpath mblk */ 19051 (af == AF_INET) ? ire->ire_dlureq_mp : 19052 ire->ire_nce->nce_res_mp, 19053 /* hardware checksum enabled */ 19054 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19055 /* hardware checksum offsets */ 19056 start, stuff, 0, 19057 /* hardware checksum flag */ 19058 hwcksum_flags) != 0)) { 19059 legacy_send: 19060 if (md_mp != NULL) { 19061 /* Unlink message from the chain */ 19062 if (md_mp_head != NULL) { 19063 err = (intptr_t)rmvb(md_mp_head, 19064 md_mp); 19065 /* 19066 * We can't assert that rmvb 19067 * did not return -1, since we 19068 * may get here before linkb 19069 * happens. We do, however, 19070 * check if we just removed the 19071 * only element in the list. 19072 */ 19073 if (err == 0) 19074 md_mp_head = NULL; 19075 } 19076 /* md_hbuf gets freed automatically */ 19077 TCP_STAT(tcp_mdt_discarded); 19078 freeb(md_mp); 19079 } else { 19080 /* Either allocb or mmd_alloc failed */ 19081 TCP_STAT(tcp_mdt_allocfail); 19082 if (md_hbuf != NULL) 19083 freeb(md_hbuf); 19084 } 19085 19086 /* send down what we've got so far */ 19087 if (md_mp_head != NULL) { 19088 tcp_multisend_data(tcp, ire, ill, 19089 md_mp_head, obsegs, obbytes, 19090 &rconfirm); 19091 } 19092 legacy_send_no_md: 19093 if (ire != NULL) 19094 IRE_REFRELE(ire); 19095 /* 19096 * Too bad; let the legacy path handle this. 19097 * We specify INT_MAX for the threshold, since 19098 * we gave up with the Multidata processings 19099 * and let the old path have it all. 19100 */ 19101 TCP_STAT(tcp_mdt_legacy_all); 19102 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19103 tcp_tcp_hdr_len, num_sack_blk, usable, 19104 snxt, tail_unsent, xmit_tail, local_time, 19105 INT_MAX)); 19106 } 19107 19108 /* link to any existing ones, if applicable */ 19109 TCP_STAT(tcp_mdt_allocd); 19110 if (md_mp_head == NULL) { 19111 md_mp_head = md_mp; 19112 } else if (tcp_mdt_chain) { 19113 TCP_STAT(tcp_mdt_linked); 19114 linkb(md_mp_head, md_mp); 19115 } 19116 } 19117 19118 ASSERT(md_mp_head != NULL); 19119 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19120 ASSERT(md_mp != NULL && mmd != NULL); 19121 ASSERT(md_hbuf != NULL); 19122 19123 /* 19124 * Packetize the transmittable portion of the data block; 19125 * each data block is essentially added to the Multidata 19126 * as a payload buffer. We also deal with adding more 19127 * than one payload buffers, which happens when the remaining 19128 * packetized portion of the current payload buffer is less 19129 * than MSS, while the next data block in transmit queue 19130 * has enough data to make up for one. This "spillover" 19131 * case essentially creates a split-packet, where portions 19132 * of the packet's payload fragments may span across two 19133 * virtually discontiguous address blocks. 19134 */ 19135 seg_len = mss; 19136 do { 19137 len = seg_len; 19138 19139 ASSERT(len > 0); 19140 ASSERT(max_pld >= 0); 19141 ASSERT(!add_buffer || cur_pld_off == 0); 19142 19143 /* 19144 * First time around for this payload buffer; note 19145 * in the case of a spillover, the following has 19146 * been done prior to adding the split-packet 19147 * descriptor to Multidata, and we don't want to 19148 * repeat the process. 19149 */ 19150 if (add_buffer) { 19151 ASSERT(mmd != NULL); 19152 ASSERT(md_pbuf == NULL); 19153 ASSERT(md_pbuf_nxt == NULL); 19154 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19155 19156 /* 19157 * Have we reached the limit? We'd get to 19158 * this case when we're not chaining the 19159 * Multidata messages together, and since 19160 * we're done, terminate this loop. 19161 */ 19162 if (max_pld == 0) 19163 break; /* done */ 19164 19165 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19166 TCP_STAT(tcp_mdt_allocfail); 19167 goto legacy_send; /* out_of_mem */ 19168 } 19169 19170 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19171 zc_cap != NULL) { 19172 if (!ip_md_zcopy_attr(mmd, NULL, 19173 zc_cap->ill_zerocopy_flags)) { 19174 freeb(md_pbuf); 19175 TCP_STAT(tcp_mdt_allocfail); 19176 /* out_of_mem */ 19177 goto legacy_send; 19178 } 19179 zcopy = B_TRUE; 19180 } 19181 19182 md_pbuf->b_rptr += base_pld_off; 19183 19184 /* 19185 * Add a payload buffer to the Multidata; this 19186 * operation must not fail, or otherwise our 19187 * logic in this routine is broken. There 19188 * is no memory allocation done by the 19189 * routine, so any returned failure simply 19190 * tells us that we've done something wrong. 19191 * 19192 * A failure tells us that either we're adding 19193 * the same payload buffer more than once, or 19194 * we're trying to add more buffers than 19195 * allowed (max_pld calculation is wrong). 19196 * None of the above cases should happen, and 19197 * we panic because either there's horrible 19198 * heap corruption, and/or programming mistake. 19199 */ 19200 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19201 if (pbuf_idx < 0) { 19202 cmn_err(CE_PANIC, "tcp_multisend: " 19203 "payload buffer logic error " 19204 "detected for tcp %p mmd %p " 19205 "pbuf %p (%d)\n", 19206 (void *)tcp, (void *)mmd, 19207 (void *)md_pbuf, pbuf_idx); 19208 } 19209 19210 ASSERT(max_pld > 0); 19211 --max_pld; 19212 add_buffer = B_FALSE; 19213 } 19214 19215 ASSERT(md_mp_head != NULL); 19216 ASSERT(md_pbuf != NULL); 19217 ASSERT(md_pbuf_nxt == NULL); 19218 ASSERT(pbuf_idx != -1); 19219 ASSERT(pbuf_idx_nxt == -1); 19220 ASSERT(*usable > 0); 19221 19222 /* 19223 * We spillover to the next payload buffer only 19224 * if all of the following is true: 19225 * 19226 * 1. There is not enough data on the current 19227 * payload buffer to make up `len', 19228 * 2. We are allowed to send `len', 19229 * 3. The next payload buffer length is large 19230 * enough to accomodate `spill'. 19231 */ 19232 if ((spill = len - *tail_unsent) > 0 && 19233 *usable >= len && 19234 MBLKL((*xmit_tail)->b_cont) >= spill && 19235 max_pld > 0) { 19236 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19237 if (md_pbuf_nxt == NULL) { 19238 TCP_STAT(tcp_mdt_allocfail); 19239 goto legacy_send; /* out_of_mem */ 19240 } 19241 19242 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19243 zc_cap != NULL) { 19244 if (!ip_md_zcopy_attr(mmd, NULL, 19245 zc_cap->ill_zerocopy_flags)) { 19246 freeb(md_pbuf_nxt); 19247 TCP_STAT(tcp_mdt_allocfail); 19248 /* out_of_mem */ 19249 goto legacy_send; 19250 } 19251 zcopy = B_TRUE; 19252 } 19253 19254 /* 19255 * See comments above on the first call to 19256 * mmd_addpldbuf for explanation on the panic. 19257 */ 19258 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19259 if (pbuf_idx_nxt < 0) { 19260 panic("tcp_multisend: " 19261 "next payload buffer logic error " 19262 "detected for tcp %p mmd %p " 19263 "pbuf %p (%d)\n", 19264 (void *)tcp, (void *)mmd, 19265 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19266 } 19267 19268 ASSERT(max_pld > 0); 19269 --max_pld; 19270 } else if (spill > 0) { 19271 /* 19272 * If there's a spillover, but the following 19273 * xmit_tail couldn't give us enough octets 19274 * to reach "len", then stop the current 19275 * Multidata creation and let the legacy 19276 * tcp_send() path take over. We don't want 19277 * to send the tiny segment as part of this 19278 * Multidata for performance reasons; instead, 19279 * we let the legacy path deal with grouping 19280 * it with the subsequent small mblks. 19281 */ 19282 if (*usable >= len && 19283 MBLKL((*xmit_tail)->b_cont) < spill) { 19284 max_pld = 0; 19285 break; /* done */ 19286 } 19287 19288 /* 19289 * We can't spillover, and we are near 19290 * the end of the current payload buffer, 19291 * so send what's left. 19292 */ 19293 ASSERT(*tail_unsent > 0); 19294 len = *tail_unsent; 19295 } 19296 19297 /* tail_unsent is negated if there is a spillover */ 19298 *tail_unsent -= len; 19299 *usable -= len; 19300 ASSERT(*usable >= 0); 19301 19302 if (*usable < mss) 19303 seg_len = *usable; 19304 /* 19305 * Sender SWS avoidance; see comments in tcp_send(); 19306 * everything else is the same, except that we only 19307 * do this here if there is no more data to be sent 19308 * following the current xmit_tail. We don't check 19309 * for 1-byte urgent data because we shouldn't get 19310 * here if TCP_URG_VALID is set. 19311 */ 19312 if (*usable > 0 && *usable < mss && 19313 ((md_pbuf_nxt == NULL && 19314 (*xmit_tail)->b_cont == NULL) || 19315 (md_pbuf_nxt != NULL && 19316 (*xmit_tail)->b_cont->b_cont == NULL)) && 19317 seg_len < (tcp->tcp_max_swnd >> 1) && 19318 (tcp->tcp_unsent - 19319 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19320 !tcp->tcp_zero_win_probe) { 19321 if ((*snxt + len) == tcp->tcp_snxt && 19322 (*snxt + len) == tcp->tcp_suna) { 19323 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19324 } 19325 done = B_TRUE; 19326 } 19327 19328 /* 19329 * Prime pump for IP's checksumming on our behalf; 19330 * include the adjustment for a source route if any. 19331 * Do this only for software/partial hardware checksum 19332 * offload, as this field gets zeroed out later for 19333 * the full hardware checksum offload case. 19334 */ 19335 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19336 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19337 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19338 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19339 } 19340 19341 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19342 *snxt += len; 19343 19344 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19345 /* 19346 * We set the PUSH bit only if TCP has no more buffered 19347 * data to be transmitted (or if sender SWS avoidance 19348 * takes place), as opposed to setting it for every 19349 * last packet in the burst. 19350 */ 19351 if (done || 19352 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19353 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19354 19355 /* 19356 * Set FIN bit if this is our last segment; snxt 19357 * already includes its length, and it will not 19358 * be adjusted after this point. 19359 */ 19360 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19361 *snxt == tcp->tcp_fss) { 19362 if (!tcp->tcp_fin_acked) { 19363 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19364 BUMP_MIB(&tcp_mib, tcpOutControl); 19365 } 19366 if (!tcp->tcp_fin_sent) { 19367 tcp->tcp_fin_sent = B_TRUE; 19368 /* 19369 * tcp state must be ESTABLISHED 19370 * in order for us to get here in 19371 * the first place. 19372 */ 19373 tcp->tcp_state = TCPS_FIN_WAIT_1; 19374 19375 /* 19376 * Upon returning from this routine, 19377 * tcp_wput_data() will set tcp_snxt 19378 * to be equal to snxt + tcp_fin_sent. 19379 * This is essentially the same as 19380 * setting it to tcp_fss + 1. 19381 */ 19382 } 19383 } 19384 19385 tcp->tcp_last_sent_len = (ushort_t)len; 19386 19387 len += tcp_hdr_len; 19388 if (tcp->tcp_ipversion == IPV4_VERSION) 19389 tcp->tcp_ipha->ipha_length = htons(len); 19390 else 19391 tcp->tcp_ip6h->ip6_plen = htons(len - 19392 ((char *)&tcp->tcp_ip6h[1] - 19393 tcp->tcp_iphc)); 19394 19395 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19396 19397 /* setup header fragment */ 19398 PDESC_HDR_ADD(pkt_info, 19399 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19400 tcp->tcp_mdt_hdr_head, /* head room */ 19401 tcp_hdr_len, /* len */ 19402 tcp->tcp_mdt_hdr_tail); /* tail room */ 19403 19404 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 19405 hdr_frag_sz); 19406 ASSERT(MBLKIN(md_hbuf, 19407 (pkt_info->hdr_base - md_hbuf->b_rptr), 19408 PDESC_HDRSIZE(pkt_info))); 19409 19410 /* setup first payload fragment */ 19411 PDESC_PLD_INIT(pkt_info); 19412 PDESC_PLD_SPAN_ADD(pkt_info, 19413 pbuf_idx, /* index */ 19414 md_pbuf->b_rptr + cur_pld_off, /* start */ 19415 tcp->tcp_last_sent_len); /* len */ 19416 19417 /* create a split-packet in case of a spillover */ 19418 if (md_pbuf_nxt != NULL) { 19419 ASSERT(spill > 0); 19420 ASSERT(pbuf_idx_nxt > pbuf_idx); 19421 ASSERT(!add_buffer); 19422 19423 md_pbuf = md_pbuf_nxt; 19424 md_pbuf_nxt = NULL; 19425 pbuf_idx = pbuf_idx_nxt; 19426 pbuf_idx_nxt = -1; 19427 cur_pld_off = spill; 19428 19429 /* trim out first payload fragment */ 19430 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 19431 19432 /* setup second payload fragment */ 19433 PDESC_PLD_SPAN_ADD(pkt_info, 19434 pbuf_idx, /* index */ 19435 md_pbuf->b_rptr, /* start */ 19436 spill); /* len */ 19437 19438 if ((*xmit_tail)->b_next == NULL) { 19439 /* 19440 * Store the lbolt used for RTT 19441 * estimation. We can only record one 19442 * timestamp per mblk so we do it when 19443 * we reach the end of the payload 19444 * buffer. Also we only take a new 19445 * timestamp sample when the previous 19446 * timed data from the same mblk has 19447 * been ack'ed. 19448 */ 19449 (*xmit_tail)->b_prev = local_time; 19450 (*xmit_tail)->b_next = 19451 (mblk_t *)(uintptr_t)first_snxt; 19452 } 19453 19454 first_snxt = *snxt - spill; 19455 19456 /* 19457 * Advance xmit_tail; usable could be 0 by 19458 * the time we got here, but we made sure 19459 * above that we would only spillover to 19460 * the next data block if usable includes 19461 * the spilled-over amount prior to the 19462 * subtraction. Therefore, we are sure 19463 * that xmit_tail->b_cont can't be NULL. 19464 */ 19465 ASSERT((*xmit_tail)->b_cont != NULL); 19466 *xmit_tail = (*xmit_tail)->b_cont; 19467 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19468 (uintptr_t)INT_MAX); 19469 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 19470 } else { 19471 cur_pld_off += tcp->tcp_last_sent_len; 19472 } 19473 19474 /* 19475 * Fill in the header using the template header, and 19476 * add options such as time-stamp, ECN and/or SACK, 19477 * as needed. 19478 */ 19479 tcp_fill_header(tcp, pkt_info->hdr_rptr, 19480 (clock_t)local_time, num_sack_blk); 19481 19482 /* take care of some IP header businesses */ 19483 if (af == AF_INET) { 19484 ipha = (ipha_t *)pkt_info->hdr_rptr; 19485 19486 ASSERT(OK_32PTR((uchar_t *)ipha)); 19487 ASSERT(PDESC_HDRL(pkt_info) >= 19488 IP_SIMPLE_HDR_LENGTH); 19489 ASSERT(ipha->ipha_version_and_hdr_length == 19490 IP_SIMPLE_HDR_VERSION); 19491 19492 /* 19493 * Assign ident value for current packet; see 19494 * related comments in ip_wput_ire() about the 19495 * contract private interface with clustering 19496 * group. 19497 */ 19498 clusterwide = B_FALSE; 19499 if (cl_inet_ipident != NULL) { 19500 ASSERT(cl_inet_isclusterwide != NULL); 19501 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19502 AF_INET, 19503 (uint8_t *)(uintptr_t)src)) { 19504 ipha->ipha_ident = 19505 (*cl_inet_ipident) 19506 (IPPROTO_IP, AF_INET, 19507 (uint8_t *)(uintptr_t)src, 19508 (uint8_t *)(uintptr_t)dst); 19509 clusterwide = B_TRUE; 19510 } 19511 } 19512 19513 if (!clusterwide) { 19514 ipha->ipha_ident = (uint16_t) 19515 atomic_add_32_nv( 19516 &ire->ire_ident, 1); 19517 } 19518 #ifndef _BIG_ENDIAN 19519 ipha->ipha_ident = (ipha->ipha_ident << 8) | 19520 (ipha->ipha_ident >> 8); 19521 #endif 19522 } else { 19523 ip6h = (ip6_t *)pkt_info->hdr_rptr; 19524 19525 ASSERT(OK_32PTR((uchar_t *)ip6h)); 19526 ASSERT(IPVER(ip6h) == IPV6_VERSION); 19527 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 19528 ASSERT(PDESC_HDRL(pkt_info) >= 19529 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 19530 TCP_CHECKSUM_SIZE)); 19531 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 19532 19533 if (tcp->tcp_ip_forward_progress) { 19534 rconfirm = B_TRUE; 19535 tcp->tcp_ip_forward_progress = B_FALSE; 19536 } 19537 } 19538 19539 /* at least one payload span, and at most two */ 19540 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 19541 19542 /* add the packet descriptor to Multidata */ 19543 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 19544 KM_NOSLEEP)) == NULL) { 19545 /* 19546 * Any failure other than ENOMEM indicates 19547 * that we have passed in invalid pkt_info 19548 * or parameters to mmd_addpdesc, which must 19549 * not happen. 19550 * 19551 * EINVAL is a result of failure on boundary 19552 * checks against the pkt_info contents. It 19553 * should not happen, and we panic because 19554 * either there's horrible heap corruption, 19555 * and/or programming mistake. 19556 */ 19557 if (err != ENOMEM) { 19558 cmn_err(CE_PANIC, "tcp_multisend: " 19559 "pdesc logic error detected for " 19560 "tcp %p mmd %p pinfo %p (%d)\n", 19561 (void *)tcp, (void *)mmd, 19562 (void *)pkt_info, err); 19563 } 19564 TCP_STAT(tcp_mdt_addpdescfail); 19565 goto legacy_send; /* out_of_mem */ 19566 } 19567 ASSERT(pkt != NULL); 19568 19569 /* calculate IP header and TCP checksums */ 19570 if (af == AF_INET) { 19571 /* calculate pseudo-header checksum */ 19572 cksum = (dst >> 16) + (dst & 0xFFFF) + 19573 (src >> 16) + (src & 0xFFFF); 19574 19575 /* offset for TCP header checksum */ 19576 up = IPH_TCPH_CHECKSUMP(ipha, 19577 IP_SIMPLE_HDR_LENGTH); 19578 } else { 19579 up = (uint16_t *)&ip6h->ip6_src; 19580 19581 /* calculate pseudo-header checksum */ 19582 cksum = up[0] + up[1] + up[2] + up[3] + 19583 up[4] + up[5] + up[6] + up[7] + 19584 up[8] + up[9] + up[10] + up[11] + 19585 up[12] + up[13] + up[14] + up[15]; 19586 19587 /* Fold the initial sum */ 19588 cksum = (cksum & 0xffff) + (cksum >> 16); 19589 19590 up = (uint16_t *)(((uchar_t *)ip6h) + 19591 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 19592 } 19593 19594 if (hwcksum_flags & HCK_FULLCKSUM) { 19595 /* clear checksum field for hardware */ 19596 *up = 0; 19597 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 19598 uint32_t sum; 19599 19600 /* pseudo-header checksumming */ 19601 sum = *up + cksum + IP_TCP_CSUM_COMP; 19602 sum = (sum & 0xFFFF) + (sum >> 16); 19603 *up = (sum & 0xFFFF) + (sum >> 16); 19604 } else { 19605 /* software checksumming */ 19606 TCP_STAT(tcp_out_sw_cksum); 19607 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 19608 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 19609 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 19610 cksum + IP_TCP_CSUM_COMP); 19611 if (*up == 0) 19612 *up = 0xFFFF; 19613 } 19614 19615 /* IPv4 header checksum */ 19616 if (af == AF_INET) { 19617 ipha->ipha_fragment_offset_and_flags |= 19618 (uint32_t)htons(ire->ire_frag_flag); 19619 19620 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 19621 ipha->ipha_hdr_checksum = 0; 19622 } else { 19623 IP_HDR_CKSUM(ipha, cksum, 19624 ((uint32_t *)ipha)[0], 19625 ((uint16_t *)ipha)[4]); 19626 } 19627 } 19628 19629 /* advance header offset */ 19630 cur_hdr_off += hdr_frag_sz; 19631 19632 obbytes += tcp->tcp_last_sent_len; 19633 ++obsegs; 19634 } while (!done && *usable > 0 && --num_burst_seg > 0 && 19635 *tail_unsent > 0); 19636 19637 if ((*xmit_tail)->b_next == NULL) { 19638 /* 19639 * Store the lbolt used for RTT estimation. We can only 19640 * record one timestamp per mblk so we do it when we 19641 * reach the end of the payload buffer. Also we only 19642 * take a new timestamp sample when the previous timed 19643 * data from the same mblk has been ack'ed. 19644 */ 19645 (*xmit_tail)->b_prev = local_time; 19646 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 19647 } 19648 19649 ASSERT(*tail_unsent >= 0); 19650 if (*tail_unsent > 0) { 19651 /* 19652 * We got here because we broke out of the above 19653 * loop due to of one of the following cases: 19654 * 19655 * 1. len < adjusted MSS (i.e. small), 19656 * 2. Sender SWS avoidance, 19657 * 3. max_pld is zero. 19658 * 19659 * We are done for this Multidata, so trim our 19660 * last payload buffer (if any) accordingly. 19661 */ 19662 if (md_pbuf != NULL) 19663 md_pbuf->b_wptr -= *tail_unsent; 19664 } else if (*usable > 0) { 19665 *xmit_tail = (*xmit_tail)->b_cont; 19666 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19667 (uintptr_t)INT_MAX); 19668 *tail_unsent = (int)MBLKL(*xmit_tail); 19669 add_buffer = B_TRUE; 19670 } 19671 } while (!done && *usable > 0 && num_burst_seg > 0 && 19672 (tcp_mdt_chain || max_pld > 0)); 19673 19674 /* send everything down */ 19675 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 19676 &rconfirm); 19677 19678 #undef PREP_NEW_MULTIDATA 19679 #undef PREP_NEW_PBUF 19680 #undef IPVER 19681 19682 IRE_REFRELE(ire); 19683 return (0); 19684 } 19685 19686 /* 19687 * A wrapper function for sending one or more Multidata messages down to 19688 * the module below ip; this routine does not release the reference of the 19689 * IRE (caller does that). This routine is analogous to tcp_send_data(). 19690 */ 19691 static void 19692 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 19693 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 19694 { 19695 uint64_t delta; 19696 nce_t *nce; 19697 19698 ASSERT(ire != NULL && ill != NULL); 19699 ASSERT(ire->ire_stq != NULL); 19700 ASSERT(md_mp_head != NULL); 19701 ASSERT(rconfirm != NULL); 19702 19703 /* adjust MIBs and IRE timestamp */ 19704 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 19705 tcp->tcp_obsegs += obsegs; 19706 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 19707 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 19708 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 19709 19710 if (tcp->tcp_ipversion == IPV4_VERSION) { 19711 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 19712 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 19713 } else { 19714 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 19715 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 19716 } 19717 19718 ire->ire_ob_pkt_count += obsegs; 19719 if (ire->ire_ipif != NULL) 19720 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 19721 ire->ire_last_used_time = lbolt; 19722 19723 /* send it down */ 19724 putnext(ire->ire_stq, md_mp_head); 19725 19726 /* we're done for TCP/IPv4 */ 19727 if (tcp->tcp_ipversion == IPV4_VERSION) 19728 return; 19729 19730 nce = ire->ire_nce; 19731 19732 ASSERT(nce != NULL); 19733 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 19734 ASSERT(nce->nce_state != ND_INCOMPLETE); 19735 19736 /* reachability confirmation? */ 19737 if (*rconfirm) { 19738 nce->nce_last = TICK_TO_MSEC(lbolt64); 19739 if (nce->nce_state != ND_REACHABLE) { 19740 mutex_enter(&nce->nce_lock); 19741 nce->nce_state = ND_REACHABLE; 19742 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 19743 mutex_exit(&nce->nce_lock); 19744 (void) untimeout(nce->nce_timeout_id); 19745 if (ip_debug > 2) { 19746 /* ip1dbg */ 19747 pr_addr_dbg("tcp_multisend_data: state " 19748 "for %s changed to REACHABLE\n", 19749 AF_INET6, &ire->ire_addr_v6); 19750 } 19751 } 19752 /* reset transport reachability confirmation */ 19753 *rconfirm = B_FALSE; 19754 } 19755 19756 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 19757 ip1dbg(("tcp_multisend_data: delta = %" PRId64 19758 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 19759 19760 if (delta > (uint64_t)ill->ill_reachable_time) { 19761 mutex_enter(&nce->nce_lock); 19762 switch (nce->nce_state) { 19763 case ND_REACHABLE: 19764 case ND_STALE: 19765 /* 19766 * ND_REACHABLE is identical to ND_STALE in this 19767 * specific case. If reachable time has expired for 19768 * this neighbor (delta is greater than reachable 19769 * time), conceptually, the neighbor cache is no 19770 * longer in REACHABLE state, but already in STALE 19771 * state. So the correct transition here is to 19772 * ND_DELAY. 19773 */ 19774 nce->nce_state = ND_DELAY; 19775 mutex_exit(&nce->nce_lock); 19776 NDP_RESTART_TIMER(nce, delay_first_probe_time); 19777 if (ip_debug > 3) { 19778 /* ip2dbg */ 19779 pr_addr_dbg("tcp_multisend_data: state " 19780 "for %s changed to DELAY\n", 19781 AF_INET6, &ire->ire_addr_v6); 19782 } 19783 break; 19784 case ND_DELAY: 19785 case ND_PROBE: 19786 mutex_exit(&nce->nce_lock); 19787 /* Timers have already started */ 19788 break; 19789 case ND_UNREACHABLE: 19790 /* 19791 * ndp timer has detected that this nce is 19792 * unreachable and initiated deleting this nce 19793 * and all its associated IREs. This is a race 19794 * where we found the ire before it was deleted 19795 * and have just sent out a packet using this 19796 * unreachable nce. 19797 */ 19798 mutex_exit(&nce->nce_lock); 19799 break; 19800 default: 19801 ASSERT(0); 19802 } 19803 } 19804 } 19805 19806 /* 19807 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 19808 * scheme, and returns one of the following: 19809 * 19810 * -1 = failed allocation. 19811 * 0 = success; burst count reached, or usable send window is too small, 19812 * and that we'd rather wait until later before sending again. 19813 * 1 = success; we are called from tcp_multisend(), and both usable send 19814 * window and tail_unsent are greater than the MDT threshold, and thus 19815 * Multidata Transmit should be used instead. 19816 */ 19817 static int 19818 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19819 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19820 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19821 const int mdt_thres) 19822 { 19823 int num_burst_seg = tcp->tcp_snd_burst; 19824 19825 for (;;) { 19826 struct datab *db; 19827 tcph_t *tcph; 19828 uint32_t sum; 19829 mblk_t *mp, *mp1; 19830 uchar_t *rptr; 19831 int len; 19832 19833 /* 19834 * If we're called by tcp_multisend(), and the amount of 19835 * sendable data as well as the size of current xmit_tail 19836 * is beyond the MDT threshold, return to the caller and 19837 * let the large data transmit be done using MDT. 19838 */ 19839 if (*usable > 0 && *usable > mdt_thres && 19840 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 19841 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 19842 ASSERT(tcp->tcp_mdt); 19843 return (1); /* success; do large send */ 19844 } 19845 19846 if (num_burst_seg-- == 0) 19847 break; /* success; burst count reached */ 19848 19849 len = mss; 19850 if (len > *usable) { 19851 len = *usable; 19852 if (len <= 0) { 19853 /* Terminate the loop */ 19854 break; /* success; too small */ 19855 } 19856 /* 19857 * Sender silly-window avoidance. 19858 * Ignore this if we are going to send a 19859 * zero window probe out. 19860 * 19861 * TODO: force data into microscopic window? 19862 * ==> (!pushed || (unsent > usable)) 19863 */ 19864 if (len < (tcp->tcp_max_swnd >> 1) && 19865 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 19866 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 19867 len == 1) && (! tcp->tcp_zero_win_probe)) { 19868 /* 19869 * If the retransmit timer is not running 19870 * we start it so that we will retransmit 19871 * in the case when the the receiver has 19872 * decremented the window. 19873 */ 19874 if (*snxt == tcp->tcp_snxt && 19875 *snxt == tcp->tcp_suna) { 19876 /* 19877 * We are not supposed to send 19878 * anything. So let's wait a little 19879 * bit longer before breaking SWS 19880 * avoidance. 19881 * 19882 * What should the value be? 19883 * Suggestion: MAX(init rexmit time, 19884 * tcp->tcp_rto) 19885 */ 19886 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19887 } 19888 break; /* success; too small */ 19889 } 19890 } 19891 19892 tcph = tcp->tcp_tcph; 19893 19894 *usable -= len; /* Approximate - can be adjusted later */ 19895 if (*usable > 0) 19896 tcph->th_flags[0] = TH_ACK; 19897 else 19898 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 19899 19900 /* 19901 * Prime pump for IP's checksumming on our behalf 19902 * Include the adjustment for a source route if any. 19903 */ 19904 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19905 sum = (sum >> 16) + (sum & 0xFFFF); 19906 U16_TO_ABE16(sum, tcph->th_sum); 19907 19908 U32_TO_ABE32(*snxt, tcph->th_seq); 19909 19910 /* 19911 * Branch off to tcp_xmit_mp() if any of the VALID bits is 19912 * set. For the case when TCP_FSS_VALID is the only valid 19913 * bit (normal active close), branch off only when we think 19914 * that the FIN flag needs to be set. Note for this case, 19915 * that (snxt + len) may not reflect the actual seg_len, 19916 * as len may be further reduced in tcp_xmit_mp(). If len 19917 * gets modified, we will end up here again. 19918 */ 19919 if (tcp->tcp_valid_bits != 0 && 19920 (tcp->tcp_valid_bits != TCP_FSS_VALID || 19921 ((*snxt + len) == tcp->tcp_fss))) { 19922 uchar_t *prev_rptr; 19923 uint32_t prev_snxt = tcp->tcp_snxt; 19924 19925 if (*tail_unsent == 0) { 19926 ASSERT((*xmit_tail)->b_cont != NULL); 19927 *xmit_tail = (*xmit_tail)->b_cont; 19928 prev_rptr = (*xmit_tail)->b_rptr; 19929 *tail_unsent = (int)((*xmit_tail)->b_wptr - 19930 (*xmit_tail)->b_rptr); 19931 } else { 19932 prev_rptr = (*xmit_tail)->b_rptr; 19933 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 19934 *tail_unsent; 19935 } 19936 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 19937 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 19938 /* Restore tcp_snxt so we get amount sent right. */ 19939 tcp->tcp_snxt = prev_snxt; 19940 if (prev_rptr == (*xmit_tail)->b_rptr) { 19941 /* 19942 * If the previous timestamp is still in use, 19943 * don't stomp on it. 19944 */ 19945 if ((*xmit_tail)->b_next == NULL) { 19946 (*xmit_tail)->b_prev = local_time; 19947 (*xmit_tail)->b_next = 19948 (mblk_t *)(uintptr_t)(*snxt); 19949 } 19950 } else 19951 (*xmit_tail)->b_rptr = prev_rptr; 19952 19953 if (mp == NULL) 19954 return (-1); 19955 mp1 = mp->b_cont; 19956 19957 tcp->tcp_last_sent_len = (ushort_t)len; 19958 while (mp1->b_cont) { 19959 *xmit_tail = (*xmit_tail)->b_cont; 19960 (*xmit_tail)->b_prev = local_time; 19961 (*xmit_tail)->b_next = 19962 (mblk_t *)(uintptr_t)(*snxt); 19963 mp1 = mp1->b_cont; 19964 } 19965 *snxt += len; 19966 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 19967 BUMP_LOCAL(tcp->tcp_obsegs); 19968 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 19969 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 19970 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 19971 tcp_send_data(tcp, q, mp); 19972 continue; 19973 } 19974 19975 *snxt += len; /* Adjust later if we don't send all of len */ 19976 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 19977 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 19978 19979 if (*tail_unsent) { 19980 /* Are the bytes above us in flight? */ 19981 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 19982 if (rptr != (*xmit_tail)->b_rptr) { 19983 *tail_unsent -= len; 19984 tcp->tcp_last_sent_len = (ushort_t)len; 19985 len += tcp_hdr_len; 19986 if (tcp->tcp_ipversion == IPV4_VERSION) 19987 tcp->tcp_ipha->ipha_length = htons(len); 19988 else 19989 tcp->tcp_ip6h->ip6_plen = 19990 htons(len - 19991 ((char *)&tcp->tcp_ip6h[1] - 19992 tcp->tcp_iphc)); 19993 mp = dupb(*xmit_tail); 19994 if (!mp) 19995 return (-1); /* out_of_mem */ 19996 mp->b_rptr = rptr; 19997 /* 19998 * If the old timestamp is no longer in use, 19999 * sample a new timestamp now. 20000 */ 20001 if ((*xmit_tail)->b_next == NULL) { 20002 (*xmit_tail)->b_prev = local_time; 20003 (*xmit_tail)->b_next = 20004 (mblk_t *)(uintptr_t)(*snxt-len); 20005 } 20006 goto must_alloc; 20007 } 20008 } else { 20009 *xmit_tail = (*xmit_tail)->b_cont; 20010 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20011 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20012 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20013 (*xmit_tail)->b_rptr); 20014 } 20015 20016 (*xmit_tail)->b_prev = local_time; 20017 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20018 20019 *tail_unsent -= len; 20020 tcp->tcp_last_sent_len = (ushort_t)len; 20021 20022 len += tcp_hdr_len; 20023 if (tcp->tcp_ipversion == IPV4_VERSION) 20024 tcp->tcp_ipha->ipha_length = htons(len); 20025 else 20026 tcp->tcp_ip6h->ip6_plen = htons(len - 20027 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20028 20029 mp = dupb(*xmit_tail); 20030 if (!mp) 20031 return (-1); /* out_of_mem */ 20032 20033 len = tcp_hdr_len; 20034 /* 20035 * There are four reasons to allocate a new hdr mblk: 20036 * 1) The bytes above us are in use by another packet 20037 * 2) We don't have good alignment 20038 * 3) The mblk is being shared 20039 * 4) We don't have enough room for a header 20040 */ 20041 rptr = mp->b_rptr - len; 20042 if (!OK_32PTR(rptr) || 20043 ((db = mp->b_datap), db->db_ref != 2) || 20044 rptr < db->db_base) { 20045 /* NOTE: we assume allocb returns an OK_32PTR */ 20046 20047 must_alloc:; 20048 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20049 tcp_wroff_xtra, BPRI_MED); 20050 if (!mp1) { 20051 freemsg(mp); 20052 return (-1); /* out_of_mem */ 20053 } 20054 mp1->b_cont = mp; 20055 mp = mp1; 20056 /* Leave room for Link Level header */ 20057 len = tcp_hdr_len; 20058 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20059 mp->b_wptr = &rptr[len]; 20060 } 20061 20062 /* 20063 * Fill in the header using the template header, and add 20064 * options such as time-stamp, ECN and/or SACK, as needed. 20065 */ 20066 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20067 20068 mp->b_rptr = rptr; 20069 20070 if (*tail_unsent) { 20071 int spill = *tail_unsent; 20072 20073 mp1 = mp->b_cont; 20074 if (!mp1) 20075 mp1 = mp; 20076 20077 /* 20078 * If we're a little short, tack on more mblks until 20079 * there is no more spillover. 20080 */ 20081 while (spill < 0) { 20082 mblk_t *nmp; 20083 int nmpsz; 20084 20085 nmp = (*xmit_tail)->b_cont; 20086 nmpsz = MBLKL(nmp); 20087 20088 /* 20089 * Excess data in mblk; can we split it? 20090 * If MDT is enabled for the connection, 20091 * keep on splitting as this is a transient 20092 * send path. 20093 */ 20094 if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { 20095 /* 20096 * Don't split if stream head was 20097 * told to break up larger writes 20098 * into smaller ones. 20099 */ 20100 if (tcp->tcp_maxpsz > 0) 20101 break; 20102 20103 /* 20104 * Next mblk is less than SMSS/2 20105 * rounded up to nearest 64-byte; 20106 * let it get sent as part of the 20107 * next segment. 20108 */ 20109 if (tcp->tcp_localnet && 20110 !tcp->tcp_cork && 20111 (nmpsz < roundup((mss >> 1), 64))) 20112 break; 20113 } 20114 20115 *xmit_tail = nmp; 20116 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 20117 /* Stash for rtt use later */ 20118 (*xmit_tail)->b_prev = local_time; 20119 (*xmit_tail)->b_next = 20120 (mblk_t *)(uintptr_t)(*snxt - len); 20121 mp1->b_cont = dupb(*xmit_tail); 20122 mp1 = mp1->b_cont; 20123 20124 spill += nmpsz; 20125 if (mp1 == NULL) { 20126 *tail_unsent = spill; 20127 freemsg(mp); 20128 return (-1); /* out_of_mem */ 20129 } 20130 } 20131 20132 /* Trim back any surplus on the last mblk */ 20133 if (spill >= 0) { 20134 mp1->b_wptr -= spill; 20135 *tail_unsent = spill; 20136 } else { 20137 /* 20138 * We did not send everything we could in 20139 * order to remain within the b_cont limit. 20140 */ 20141 *usable -= spill; 20142 *snxt += spill; 20143 tcp->tcp_last_sent_len += spill; 20144 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 20145 /* 20146 * Adjust the checksum 20147 */ 20148 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20149 sum += spill; 20150 sum = (sum >> 16) + (sum & 0xFFFF); 20151 U16_TO_ABE16(sum, tcph->th_sum); 20152 if (tcp->tcp_ipversion == IPV4_VERSION) { 20153 sum = ntohs( 20154 ((ipha_t *)rptr)->ipha_length) + 20155 spill; 20156 ((ipha_t *)rptr)->ipha_length = 20157 htons(sum); 20158 } else { 20159 sum = ntohs( 20160 ((ip6_t *)rptr)->ip6_plen) + 20161 spill; 20162 ((ip6_t *)rptr)->ip6_plen = 20163 htons(sum); 20164 } 20165 *tail_unsent = 0; 20166 } 20167 } 20168 if (tcp->tcp_ip_forward_progress) { 20169 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20170 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 20171 tcp->tcp_ip_forward_progress = B_FALSE; 20172 } 20173 20174 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20175 tcp_send_data(tcp, q, mp); 20176 BUMP_LOCAL(tcp->tcp_obsegs); 20177 } 20178 20179 return (0); 20180 } 20181 20182 /* Unlink and return any mblk that looks like it contains a MDT info */ 20183 static mblk_t * 20184 tcp_mdt_info_mp(mblk_t *mp) 20185 { 20186 mblk_t *prev_mp; 20187 20188 for (;;) { 20189 prev_mp = mp; 20190 /* no more to process? */ 20191 if ((mp = mp->b_cont) == NULL) 20192 break; 20193 20194 switch (DB_TYPE(mp)) { 20195 case M_CTL: 20196 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 20197 continue; 20198 ASSERT(prev_mp != NULL); 20199 prev_mp->b_cont = mp->b_cont; 20200 mp->b_cont = NULL; 20201 return (mp); 20202 default: 20203 break; 20204 } 20205 } 20206 return (mp); 20207 } 20208 20209 /* MDT info update routine, called when IP notifies us about MDT */ 20210 static void 20211 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 20212 { 20213 boolean_t prev_state; 20214 20215 /* 20216 * IP is telling us to abort MDT on this connection? We know 20217 * this because the capability is only turned off when IP 20218 * encounters some pathological cases, e.g. link-layer change 20219 * where the new driver doesn't support MDT, or in situation 20220 * where MDT usage on the link-layer has been switched off. 20221 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 20222 * if the link-layer doesn't support MDT, and if it does, it 20223 * will indicate that the feature is to be turned on. 20224 */ 20225 prev_state = tcp->tcp_mdt; 20226 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 20227 if (!tcp->tcp_mdt && !first) { 20228 TCP_STAT(tcp_mdt_conn_halted3); 20229 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 20230 (void *)tcp->tcp_connp)); 20231 } 20232 20233 /* 20234 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 20235 * so disable MDT otherwise. The checks are done here 20236 * and in tcp_wput_data(). 20237 */ 20238 if (tcp->tcp_mdt && 20239 (tcp->tcp_ipversion == IPV4_VERSION && 20240 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20241 (tcp->tcp_ipversion == IPV6_VERSION && 20242 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 20243 tcp->tcp_mdt = B_FALSE; 20244 20245 if (tcp->tcp_mdt) { 20246 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 20247 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 20248 "version (%d), expected version is %d", 20249 mdt_capab->ill_mdt_version, MDT_VERSION_2); 20250 tcp->tcp_mdt = B_FALSE; 20251 return; 20252 } 20253 20254 /* 20255 * We need the driver to be able to handle at least three 20256 * spans per packet in order for tcp MDT to be utilized. 20257 * The first is for the header portion, while the rest are 20258 * needed to handle a packet that straddles across two 20259 * virtually non-contiguous buffers; a typical tcp packet 20260 * therefore consists of only two spans. Note that we take 20261 * a zero as "don't care". 20262 */ 20263 if (mdt_capab->ill_mdt_span_limit > 0 && 20264 mdt_capab->ill_mdt_span_limit < 3) { 20265 tcp->tcp_mdt = B_FALSE; 20266 return; 20267 } 20268 20269 /* a zero means driver wants default value */ 20270 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 20271 tcp_mdt_max_pbufs); 20272 if (tcp->tcp_mdt_max_pld == 0) 20273 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 20274 20275 /* ensure 32-bit alignment */ 20276 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 20277 mdt_capab->ill_mdt_hdr_head), 4); 20278 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 20279 mdt_capab->ill_mdt_hdr_tail), 4); 20280 20281 if (!first && !prev_state) { 20282 TCP_STAT(tcp_mdt_conn_resumed2); 20283 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 20284 (void *)tcp->tcp_connp)); 20285 } 20286 } 20287 } 20288 20289 static void 20290 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) 20291 { 20292 conn_t *connp = tcp->tcp_connp; 20293 20294 ASSERT(ire != NULL); 20295 20296 /* 20297 * We may be in the fastpath here, and although we essentially do 20298 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, 20299 * we try to keep things as brief as possible. After all, these 20300 * are only best-effort checks, and we do more thorough ones prior 20301 * to calling tcp_multisend(). 20302 */ 20303 if (ip_multidata_outbound && check_mdt && 20304 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 20305 ill != NULL && ILL_MDT_CAPABLE(ill) && 20306 !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 20307 !(ire->ire_flags & RTF_MULTIRT) && 20308 !IPP_ENABLED(IPP_LOCAL_OUT) && 20309 CONN_IS_MD_FASTPATH(connp)) { 20310 /* Remember the result */ 20311 connp->conn_mdt_ok = B_TRUE; 20312 20313 ASSERT(ill->ill_mdt_capab != NULL); 20314 if (!ill->ill_mdt_capab->ill_mdt_on) { 20315 /* 20316 * If MDT has been previously turned off in the past, 20317 * and we currently can do MDT (due to IPQoS policy 20318 * removal, etc.) then enable it for this interface. 20319 */ 20320 ill->ill_mdt_capab->ill_mdt_on = 1; 20321 ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " 20322 "interface %s\n", (void *)connp, ill->ill_name)); 20323 } 20324 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 20325 } 20326 20327 /* 20328 * The goal is to reduce the number of generated tcp segments by 20329 * setting the maxpsz multiplier to 0; this will have an affect on 20330 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 20331 * into each packet, up to SMSS bytes. Doing this reduces the number 20332 * of outbound segments and incoming ACKs, thus allowing for better 20333 * network and system performance. In contrast the legacy behavior 20334 * may result in sending less than SMSS size, because the last mblk 20335 * for some packets may have more data than needed to make up SMSS, 20336 * and the legacy code refused to "split" it. 20337 * 20338 * We apply the new behavior on following situations: 20339 * 20340 * 1) Loopback connections, 20341 * 2) Connections in which the remote peer is not on local subnet, 20342 * 3) Local subnet connections over the bge interface (see below). 20343 * 20344 * Ideally, we would like this behavior to apply for interfaces other 20345 * than bge. However, doing so would negatively impact drivers which 20346 * perform dynamic mapping and unmapping of DMA resources, which are 20347 * increased by setting the maxpsz multiplier to 0 (more mblks per 20348 * packet will be generated by tcp). The bge driver does not suffer 20349 * from this, as it copies the mblks into pre-mapped buffers, and 20350 * therefore does not require more I/O resources than before. 20351 * 20352 * Otherwise, this behavior is present on all network interfaces when 20353 * the destination endpoint is non-local, since reducing the number 20354 * of packets in general is good for the network. 20355 * 20356 * TODO We need to remove this hard-coded conditional for bge once 20357 * a better "self-tuning" mechanism, or a way to comprehend 20358 * the driver transmit strategy is devised. Until the solution 20359 * is found and well understood, we live with this hack. 20360 */ 20361 if (!tcp_static_maxpsz && 20362 (tcp->tcp_loopback || !tcp->tcp_localnet || 20363 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 20364 /* override the default value */ 20365 tcp->tcp_maxpsz = 0; 20366 20367 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 20368 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 20369 ill != NULL ? ill->ill_name : ipif_loopback_name)); 20370 } 20371 20372 /* set the stream head parameters accordingly */ 20373 (void) tcp_maxpsz_set(tcp, B_TRUE); 20374 } 20375 20376 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 20377 static void 20378 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 20379 { 20380 uchar_t fval = *mp->b_rptr; 20381 mblk_t *tail; 20382 queue_t *q = tcp->tcp_wq; 20383 20384 /* TODO: How should flush interact with urgent data? */ 20385 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 20386 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 20387 /* 20388 * Flush only data that has not yet been put on the wire. If 20389 * we flush data that we have already transmitted, life, as we 20390 * know it, may come to an end. 20391 */ 20392 tail = tcp->tcp_xmit_tail; 20393 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 20394 tcp->tcp_xmit_tail_unsent = 0; 20395 tcp->tcp_unsent = 0; 20396 if (tail->b_wptr != tail->b_rptr) 20397 tail = tail->b_cont; 20398 if (tail) { 20399 mblk_t **excess = &tcp->tcp_xmit_head; 20400 for (;;) { 20401 mblk_t *mp1 = *excess; 20402 if (mp1 == tail) 20403 break; 20404 tcp->tcp_xmit_tail = mp1; 20405 tcp->tcp_xmit_last = mp1; 20406 excess = &mp1->b_cont; 20407 } 20408 *excess = NULL; 20409 tcp_close_mpp(&tail); 20410 if (tcp->tcp_snd_zcopy_aware) 20411 tcp_zcopy_notify(tcp); 20412 } 20413 /* 20414 * We have no unsent data, so unsent must be less than 20415 * tcp_xmit_lowater, so re-enable flow. 20416 */ 20417 if (tcp->tcp_flow_stopped) { 20418 tcp_clrqfull(tcp); 20419 } 20420 } 20421 /* 20422 * TODO: you can't just flush these, you have to increase rwnd for one 20423 * thing. For another, how should urgent data interact? 20424 */ 20425 if (fval & FLUSHR) { 20426 *mp->b_rptr = fval & ~FLUSHW; 20427 /* XXX */ 20428 qreply(q, mp); 20429 return; 20430 } 20431 freemsg(mp); 20432 } 20433 20434 /* 20435 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 20436 * messages. 20437 */ 20438 static void 20439 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 20440 { 20441 mblk_t *mp1; 20442 STRUCT_HANDLE(strbuf, sb); 20443 uint16_t port; 20444 queue_t *q = tcp->tcp_wq; 20445 in6_addr_t v6addr; 20446 ipaddr_t v4addr; 20447 uint32_t flowinfo = 0; 20448 int addrlen; 20449 20450 /* Make sure it is one of ours. */ 20451 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20452 case TI_GETMYNAME: 20453 case TI_GETPEERNAME: 20454 break; 20455 default: 20456 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20457 return; 20458 } 20459 switch (mi_copy_state(q, mp, &mp1)) { 20460 case -1: 20461 return; 20462 case MI_COPY_CASE(MI_COPY_IN, 1): 20463 break; 20464 case MI_COPY_CASE(MI_COPY_OUT, 1): 20465 /* Copy out the strbuf. */ 20466 mi_copyout(q, mp); 20467 return; 20468 case MI_COPY_CASE(MI_COPY_OUT, 2): 20469 /* All done. */ 20470 mi_copy_done(q, mp, 0); 20471 return; 20472 default: 20473 mi_copy_done(q, mp, EPROTO); 20474 return; 20475 } 20476 /* Check alignment of the strbuf */ 20477 if (!OK_32PTR(mp1->b_rptr)) { 20478 mi_copy_done(q, mp, EINVAL); 20479 return; 20480 } 20481 20482 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 20483 (void *)mp1->b_rptr); 20484 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 20485 20486 if (STRUCT_FGET(sb, maxlen) < addrlen) { 20487 mi_copy_done(q, mp, EINVAL); 20488 return; 20489 } 20490 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20491 case TI_GETMYNAME: 20492 if (tcp->tcp_family == AF_INET) { 20493 if (tcp->tcp_ipversion == IPV4_VERSION) { 20494 v4addr = tcp->tcp_ipha->ipha_src; 20495 } else { 20496 /* can't return an address in this case */ 20497 v4addr = 0; 20498 } 20499 } else { 20500 /* tcp->tcp_family == AF_INET6 */ 20501 if (tcp->tcp_ipversion == IPV4_VERSION) { 20502 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 20503 &v6addr); 20504 } else { 20505 v6addr = tcp->tcp_ip6h->ip6_src; 20506 } 20507 } 20508 port = tcp->tcp_lport; 20509 break; 20510 case TI_GETPEERNAME: 20511 if (tcp->tcp_family == AF_INET) { 20512 if (tcp->tcp_ipversion == IPV4_VERSION) { 20513 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 20514 v4addr); 20515 } else { 20516 /* can't return an address in this case */ 20517 v4addr = 0; 20518 } 20519 } else { 20520 /* tcp->tcp_family == AF_INET6) */ 20521 v6addr = tcp->tcp_remote_v6; 20522 if (tcp->tcp_ipversion == IPV6_VERSION) { 20523 /* 20524 * No flowinfo if tcp->tcp_ipversion is v4. 20525 * 20526 * flowinfo was already initialized to zero 20527 * where it was declared above, so only 20528 * set it if ipversion is v6. 20529 */ 20530 flowinfo = tcp->tcp_ip6h->ip6_vcf & 20531 ~IPV6_VERS_AND_FLOW_MASK; 20532 } 20533 } 20534 port = tcp->tcp_fport; 20535 break; 20536 default: 20537 mi_copy_done(q, mp, EPROTO); 20538 return; 20539 } 20540 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 20541 if (!mp1) 20542 return; 20543 20544 if (tcp->tcp_family == AF_INET) { 20545 sin_t *sin; 20546 20547 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 20548 sin = (sin_t *)mp1->b_rptr; 20549 mp1->b_wptr = (uchar_t *)&sin[1]; 20550 *sin = sin_null; 20551 sin->sin_family = AF_INET; 20552 sin->sin_addr.s_addr = v4addr; 20553 sin->sin_port = port; 20554 } else { 20555 /* tcp->tcp_family == AF_INET6 */ 20556 sin6_t *sin6; 20557 20558 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 20559 sin6 = (sin6_t *)mp1->b_rptr; 20560 mp1->b_wptr = (uchar_t *)&sin6[1]; 20561 *sin6 = sin6_null; 20562 sin6->sin6_family = AF_INET6; 20563 sin6->sin6_flowinfo = flowinfo; 20564 sin6->sin6_addr = v6addr; 20565 sin6->sin6_port = port; 20566 } 20567 /* Copy out the address */ 20568 mi_copyout(q, mp); 20569 } 20570 20571 /* 20572 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 20573 * messages. 20574 */ 20575 /* ARGSUSED */ 20576 static void 20577 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 20578 { 20579 conn_t *connp = (conn_t *)arg; 20580 tcp_t *tcp = connp->conn_tcp; 20581 queue_t *q = tcp->tcp_wq; 20582 struct iocblk *iocp; 20583 20584 ASSERT(DB_TYPE(mp) == M_IOCTL); 20585 /* 20586 * Try and ASSERT the minimum possible references on the 20587 * conn early enough. Since we are executing on write side, 20588 * the connection is obviously not detached and that means 20589 * there is a ref each for TCP and IP. Since we are behind 20590 * the squeue, the minimum references needed are 3. If the 20591 * conn is in classifier hash list, there should be an 20592 * extra ref for that (we check both the possibilities). 20593 */ 20594 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20595 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20596 20597 iocp = (struct iocblk *)mp->b_rptr; 20598 switch (iocp->ioc_cmd) { 20599 case TCP_IOC_DEFAULT_Q: 20600 /* Wants to be the default wq. */ 20601 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 20602 iocp->ioc_error = EPERM; 20603 iocp->ioc_count = 0; 20604 mp->b_datap->db_type = M_IOCACK; 20605 qreply(q, mp); 20606 return; 20607 } 20608 tcp_def_q_set(tcp, mp); 20609 return; 20610 case _SIOCSOCKFALLBACK: 20611 /* 20612 * Either sockmod is about to be popped and the socket 20613 * would now be treated as a plain stream, or a module 20614 * is about to be pushed so we could no longer use read- 20615 * side synchronous streams for fused loopback tcp. 20616 * Drain any queued data and disable direct sockfs 20617 * interface from now on. 20618 */ 20619 if (!tcp->tcp_issocket) { 20620 DB_TYPE(mp) = M_IOCNAK; 20621 iocp->ioc_error = EINVAL; 20622 } else { 20623 #ifdef _ILP32 20624 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 20625 #else 20626 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 20627 #endif 20628 /* 20629 * Insert this socket into the acceptor hash. 20630 * We might need it for T_CONN_RES message 20631 */ 20632 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 20633 20634 if (tcp->tcp_fused) { 20635 /* 20636 * This is a fused loopback tcp; disable 20637 * read-side synchronous streams interface 20638 * and drain any queued data. It is okay 20639 * to do this for non-synchronous streams 20640 * fused tcp as well. 20641 */ 20642 tcp_fuse_disable_pair(tcp, B_FALSE); 20643 } 20644 tcp->tcp_issocket = B_FALSE; 20645 TCP_STAT(tcp_sock_fallback); 20646 20647 DB_TYPE(mp) = M_IOCACK; 20648 iocp->ioc_error = 0; 20649 } 20650 iocp->ioc_count = 0; 20651 iocp->ioc_rval = 0; 20652 qreply(q, mp); 20653 return; 20654 } 20655 CALL_IP_WPUT(connp, q, mp); 20656 } 20657 20658 /* 20659 * This routine is called by tcp_wput() to handle all TPI requests. 20660 */ 20661 /* ARGSUSED */ 20662 static void 20663 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 20664 { 20665 conn_t *connp = (conn_t *)arg; 20666 tcp_t *tcp = connp->conn_tcp; 20667 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 20668 uchar_t *rptr; 20669 t_scalar_t type; 20670 int len; 20671 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 20672 20673 /* 20674 * Try and ASSERT the minimum possible references on the 20675 * conn early enough. Since we are executing on write side, 20676 * the connection is obviously not detached and that means 20677 * there is a ref each for TCP and IP. Since we are behind 20678 * the squeue, the minimum references needed are 3. If the 20679 * conn is in classifier hash list, there should be an 20680 * extra ref for that (we check both the possibilities). 20681 */ 20682 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20683 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20684 20685 rptr = mp->b_rptr; 20686 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 20687 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 20688 type = ((union T_primitives *)rptr)->type; 20689 if (type == T_EXDATA_REQ) { 20690 uint32_t msize = msgdsize(mp->b_cont); 20691 20692 len = msize - 1; 20693 if (len < 0) { 20694 freemsg(mp); 20695 return; 20696 } 20697 /* 20698 * Try to force urgent data out on the wire. 20699 * Even if we have unsent data this will 20700 * at least send the urgent flag. 20701 * XXX does not handle more flag correctly. 20702 */ 20703 len += tcp->tcp_unsent; 20704 len += tcp->tcp_snxt; 20705 tcp->tcp_urg = len; 20706 tcp->tcp_valid_bits |= TCP_URG_VALID; 20707 20708 /* Bypass tcp protocol for fused tcp loopback */ 20709 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 20710 return; 20711 } else if (type != T_DATA_REQ) { 20712 goto non_urgent_data; 20713 } 20714 /* TODO: options, flags, ... from user */ 20715 /* Set length to zero for reclamation below */ 20716 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 20717 freeb(mp); 20718 return; 20719 } else { 20720 if (tcp->tcp_debug) { 20721 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20722 "tcp_wput_proto, dropping one..."); 20723 } 20724 freemsg(mp); 20725 return; 20726 } 20727 20728 non_urgent_data: 20729 20730 switch ((int)tprim->type) { 20731 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 20732 /* 20733 * save the kssl_ent_t from the next block, and convert this 20734 * back to a normal bind_req. 20735 */ 20736 if (mp->b_cont != NULL) { 20737 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 20738 20739 if (tcp->tcp_kssl_ent != NULL) { 20740 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 20741 KSSL_NO_PROXY); 20742 tcp->tcp_kssl_ent = NULL; 20743 } 20744 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 20745 sizeof (kssl_ent_t)); 20746 kssl_hold_ent(tcp->tcp_kssl_ent); 20747 freemsg(mp->b_cont); 20748 mp->b_cont = NULL; 20749 } 20750 tprim->type = T_BIND_REQ; 20751 20752 /* FALLTHROUGH */ 20753 case O_T_BIND_REQ: /* bind request */ 20754 case T_BIND_REQ: /* new semantics bind request */ 20755 tcp_bind(tcp, mp); 20756 break; 20757 case T_UNBIND_REQ: /* unbind request */ 20758 tcp_unbind(tcp, mp); 20759 break; 20760 case O_T_CONN_RES: /* old connection response XXX */ 20761 case T_CONN_RES: /* connection response */ 20762 tcp_accept(tcp, mp); 20763 break; 20764 case T_CONN_REQ: /* connection request */ 20765 tcp_connect(tcp, mp); 20766 break; 20767 case T_DISCON_REQ: /* disconnect request */ 20768 tcp_disconnect(tcp, mp); 20769 break; 20770 case T_CAPABILITY_REQ: 20771 tcp_capability_req(tcp, mp); /* capability request */ 20772 break; 20773 case T_INFO_REQ: /* information request */ 20774 tcp_info_req(tcp, mp); 20775 break; 20776 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 20777 /* Only IP is allowed to return meaningful value */ 20778 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 20779 break; 20780 case T_OPTMGMT_REQ: 20781 /* 20782 * Note: no support for snmpcom_req() through new 20783 * T_OPTMGMT_REQ. See comments in ip.c 20784 */ 20785 /* Only IP is allowed to return meaningful value */ 20786 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 20787 break; 20788 20789 case T_UNITDATA_REQ: /* unitdata request */ 20790 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 20791 break; 20792 case T_ORDREL_REQ: /* orderly release req */ 20793 freemsg(mp); 20794 20795 if (tcp->tcp_fused) 20796 tcp_unfuse(tcp); 20797 20798 if (tcp_xmit_end(tcp) != 0) { 20799 /* 20800 * We were crossing FINs and got a reset from 20801 * the other side. Just ignore it. 20802 */ 20803 if (tcp->tcp_debug) { 20804 (void) strlog(TCP_MOD_ID, 0, 1, 20805 SL_ERROR|SL_TRACE, 20806 "tcp_wput_proto, T_ORDREL_REQ out of " 20807 "state %s", 20808 tcp_display(tcp, NULL, 20809 DISP_ADDR_AND_PORT)); 20810 } 20811 } 20812 break; 20813 case T_ADDR_REQ: 20814 tcp_addr_req(tcp, mp); 20815 break; 20816 default: 20817 if (tcp->tcp_debug) { 20818 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20819 "tcp_wput_proto, bogus TPI msg, type %d", 20820 tprim->type); 20821 } 20822 /* 20823 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 20824 * to recover. 20825 */ 20826 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 20827 break; 20828 } 20829 } 20830 20831 /* 20832 * The TCP write service routine should never be called... 20833 */ 20834 /* ARGSUSED */ 20835 static void 20836 tcp_wsrv(queue_t *q) 20837 { 20838 TCP_STAT(tcp_wsrv_called); 20839 } 20840 20841 /* Non overlapping byte exchanger */ 20842 static void 20843 tcp_xchg(uchar_t *a, uchar_t *b, int len) 20844 { 20845 uchar_t uch; 20846 20847 while (len-- > 0) { 20848 uch = a[len]; 20849 a[len] = b[len]; 20850 b[len] = uch; 20851 } 20852 } 20853 20854 /* 20855 * Send out a control packet on the tcp connection specified. This routine 20856 * is typically called where we need a simple ACK or RST generated. 20857 */ 20858 static void 20859 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 20860 { 20861 uchar_t *rptr; 20862 tcph_t *tcph; 20863 ipha_t *ipha = NULL; 20864 ip6_t *ip6h = NULL; 20865 uint32_t sum; 20866 int tcp_hdr_len; 20867 int tcp_ip_hdr_len; 20868 mblk_t *mp; 20869 20870 /* 20871 * Save sum for use in source route later. 20872 */ 20873 ASSERT(tcp != NULL); 20874 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 20875 tcp_hdr_len = tcp->tcp_hdr_len; 20876 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 20877 20878 /* If a text string is passed in with the request, pass it to strlog. */ 20879 if (str != NULL && tcp->tcp_debug) { 20880 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 20881 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 20882 str, seq, ack, ctl); 20883 } 20884 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 20885 BPRI_MED); 20886 if (mp == NULL) { 20887 return; 20888 } 20889 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20890 mp->b_rptr = rptr; 20891 mp->b_wptr = &rptr[tcp_hdr_len]; 20892 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 20893 20894 if (tcp->tcp_ipversion == IPV4_VERSION) { 20895 ipha = (ipha_t *)rptr; 20896 ipha->ipha_length = htons(tcp_hdr_len); 20897 } else { 20898 ip6h = (ip6_t *)rptr; 20899 ASSERT(tcp != NULL); 20900 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 20901 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20902 } 20903 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 20904 tcph->th_flags[0] = (uint8_t)ctl; 20905 if (ctl & TH_RST) { 20906 BUMP_MIB(&tcp_mib, tcpOutRsts); 20907 BUMP_MIB(&tcp_mib, tcpOutControl); 20908 /* 20909 * Don't send TSopt w/ TH_RST packets per RFC 1323. 20910 */ 20911 if (tcp->tcp_snd_ts_ok && 20912 tcp->tcp_state > TCPS_SYN_SENT) { 20913 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 20914 *(mp->b_wptr) = TCPOPT_EOL; 20915 if (tcp->tcp_ipversion == IPV4_VERSION) { 20916 ipha->ipha_length = htons(tcp_hdr_len - 20917 TCPOPT_REAL_TS_LEN); 20918 } else { 20919 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 20920 TCPOPT_REAL_TS_LEN); 20921 } 20922 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 20923 sum -= TCPOPT_REAL_TS_LEN; 20924 } 20925 } 20926 if (ctl & TH_ACK) { 20927 if (tcp->tcp_snd_ts_ok) { 20928 U32_TO_BE32(lbolt, 20929 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 20930 U32_TO_BE32(tcp->tcp_ts_recent, 20931 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 20932 } 20933 20934 /* Update the latest receive window size in TCP header. */ 20935 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 20936 tcph->th_win); 20937 tcp->tcp_rack = ack; 20938 tcp->tcp_rack_cnt = 0; 20939 BUMP_MIB(&tcp_mib, tcpOutAck); 20940 } 20941 BUMP_LOCAL(tcp->tcp_obsegs); 20942 U32_TO_BE32(seq, tcph->th_seq); 20943 U32_TO_BE32(ack, tcph->th_ack); 20944 /* 20945 * Include the adjustment for a source route if any. 20946 */ 20947 sum = (sum >> 16) + (sum & 0xFFFF); 20948 U16_TO_BE16(sum, tcph->th_sum); 20949 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20950 tcp_send_data(tcp, tcp->tcp_wq, mp); 20951 } 20952 20953 /* 20954 * If this routine returns B_TRUE, TCP can generate a RST in response 20955 * to a segment. If it returns B_FALSE, TCP should not respond. 20956 */ 20957 static boolean_t 20958 tcp_send_rst_chk(void) 20959 { 20960 clock_t now; 20961 20962 /* 20963 * TCP needs to protect itself from generating too many RSTs. 20964 * This can be a DoS attack by sending us random segments 20965 * soliciting RSTs. 20966 * 20967 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 20968 * in each 1 second interval. In this way, TCP still generate 20969 * RSTs in normal cases but when under attack, the impact is 20970 * limited. 20971 */ 20972 if (tcp_rst_sent_rate_enabled != 0) { 20973 now = lbolt; 20974 /* lbolt can wrap around. */ 20975 if ((tcp_last_rst_intrvl > now) || 20976 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 20977 tcp_last_rst_intrvl = now; 20978 tcp_rst_cnt = 1; 20979 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 20980 return (B_FALSE); 20981 } 20982 } 20983 return (B_TRUE); 20984 } 20985 20986 /* 20987 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 20988 */ 20989 static void 20990 tcp_ip_ire_mark_advice(tcp_t *tcp) 20991 { 20992 mblk_t *mp; 20993 ipic_t *ipic; 20994 20995 if (tcp->tcp_ipversion == IPV4_VERSION) { 20996 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 20997 &ipic); 20998 } else { 20999 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21000 &ipic); 21001 } 21002 if (mp == NULL) 21003 return; 21004 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21005 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21006 } 21007 21008 /* 21009 * Return an IP advice ioctl mblk and set ipic to be the pointer 21010 * to the advice structure. 21011 */ 21012 static mblk_t * 21013 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21014 { 21015 struct iocblk *ioc; 21016 mblk_t *mp, *mp1; 21017 21018 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21019 if (mp == NULL) 21020 return (NULL); 21021 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21022 *ipic = (ipic_t *)mp->b_rptr; 21023 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21024 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21025 21026 bcopy(addr, *ipic + 1, addr_len); 21027 21028 (*ipic)->ipic_addr_length = addr_len; 21029 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21030 21031 mp1 = mkiocb(IP_IOCTL); 21032 if (mp1 == NULL) { 21033 freemsg(mp); 21034 return (NULL); 21035 } 21036 mp1->b_cont = mp; 21037 ioc = (struct iocblk *)mp1->b_rptr; 21038 ioc->ioc_count = sizeof (ipic_t) + addr_len; 21039 21040 return (mp1); 21041 } 21042 21043 /* 21044 * Generate a reset based on an inbound packet for which there is no active 21045 * tcp state that we can find. 21046 * 21047 * IPSEC NOTE : Try to send the reply with the same protection as it came 21048 * in. We still have the ipsec_mp that the packet was attached to. Thus 21049 * the packet will go out at the same level of protection as it came in by 21050 * converting the IPSEC_IN to IPSEC_OUT. 21051 */ 21052 static void 21053 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 21054 uint32_t ack, int ctl, uint_t ip_hdr_len) 21055 { 21056 ipha_t *ipha = NULL; 21057 ip6_t *ip6h = NULL; 21058 ushort_t len; 21059 tcph_t *tcph; 21060 int i; 21061 mblk_t *ipsec_mp; 21062 boolean_t mctl_present; 21063 ipic_t *ipic; 21064 ipaddr_t v4addr; 21065 in6_addr_t v6addr; 21066 int addr_len; 21067 void *addr; 21068 queue_t *q = tcp_g_q; 21069 tcp_t *tcp = Q_TO_TCP(q); 21070 21071 if (!tcp_send_rst_chk()) { 21072 tcp_rst_unsent++; 21073 freemsg(mp); 21074 return; 21075 } 21076 21077 if (mp->b_datap->db_type == M_CTL) { 21078 ipsec_mp = mp; 21079 mp = mp->b_cont; 21080 mctl_present = B_TRUE; 21081 } else { 21082 ipsec_mp = mp; 21083 mctl_present = B_FALSE; 21084 } 21085 21086 if (str && q && tcp_dbg) { 21087 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21088 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 21089 "flags 0x%x", 21090 str, seq, ack, ctl); 21091 } 21092 if (mp->b_datap->db_ref != 1) { 21093 mblk_t *mp1 = copyb(mp); 21094 freemsg(mp); 21095 mp = mp1; 21096 if (!mp) { 21097 if (mctl_present) 21098 freeb(ipsec_mp); 21099 return; 21100 } else { 21101 if (mctl_present) { 21102 ipsec_mp->b_cont = mp; 21103 } else { 21104 ipsec_mp = mp; 21105 } 21106 } 21107 } else if (mp->b_cont) { 21108 freemsg(mp->b_cont); 21109 mp->b_cont = NULL; 21110 } 21111 /* 21112 * We skip reversing source route here. 21113 * (for now we replace all IP options with EOL) 21114 */ 21115 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21116 ipha = (ipha_t *)mp->b_rptr; 21117 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 21118 mp->b_rptr[i] = IPOPT_EOL; 21119 /* 21120 * Make sure that src address isn't flagrantly invalid. 21121 * Not all broadcast address checking for the src address 21122 * is possible, since we don't know the netmask of the src 21123 * addr. No check for destination address is done, since 21124 * IP will not pass up a packet with a broadcast dest 21125 * address to TCP. Similar checks are done below for IPv6. 21126 */ 21127 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 21128 CLASSD(ipha->ipha_src)) { 21129 freemsg(ipsec_mp); 21130 BUMP_MIB(&ip_mib, ipInDiscards); 21131 return; 21132 } 21133 } else { 21134 ip6h = (ip6_t *)mp->b_rptr; 21135 21136 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 21137 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 21138 freemsg(ipsec_mp); 21139 BUMP_MIB(&ip6_mib, ipv6InDiscards); 21140 return; 21141 } 21142 21143 /* Remove any extension headers assuming partial overlay */ 21144 if (ip_hdr_len > IPV6_HDR_LEN) { 21145 uint8_t *to; 21146 21147 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 21148 ovbcopy(ip6h, to, IPV6_HDR_LEN); 21149 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 21150 ip_hdr_len = IPV6_HDR_LEN; 21151 ip6h = (ip6_t *)mp->b_rptr; 21152 ip6h->ip6_nxt = IPPROTO_TCP; 21153 } 21154 } 21155 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 21156 if (tcph->th_flags[0] & TH_RST) { 21157 freemsg(ipsec_mp); 21158 return; 21159 } 21160 tcph->th_offset_and_rsrvd[0] = (5 << 4); 21161 len = ip_hdr_len + sizeof (tcph_t); 21162 mp->b_wptr = &mp->b_rptr[len]; 21163 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21164 ipha->ipha_length = htons(len); 21165 /* Swap addresses */ 21166 v4addr = ipha->ipha_src; 21167 ipha->ipha_src = ipha->ipha_dst; 21168 ipha->ipha_dst = v4addr; 21169 ipha->ipha_ident = 0; 21170 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 21171 addr_len = IP_ADDR_LEN; 21172 addr = &v4addr; 21173 } else { 21174 /* No ip6i_t in this case */ 21175 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 21176 /* Swap addresses */ 21177 v6addr = ip6h->ip6_src; 21178 ip6h->ip6_src = ip6h->ip6_dst; 21179 ip6h->ip6_dst = v6addr; 21180 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 21181 addr_len = IPV6_ADDR_LEN; 21182 addr = &v6addr; 21183 } 21184 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 21185 U32_TO_BE32(ack, tcph->th_ack); 21186 U32_TO_BE32(seq, tcph->th_seq); 21187 U16_TO_BE16(0, tcph->th_win); 21188 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 21189 tcph->th_flags[0] = (uint8_t)ctl; 21190 if (ctl & TH_RST) { 21191 BUMP_MIB(&tcp_mib, tcpOutRsts); 21192 BUMP_MIB(&tcp_mib, tcpOutControl); 21193 } 21194 if (mctl_present) { 21195 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21196 21197 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21198 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 21199 return; 21200 } 21201 } 21202 /* 21203 * NOTE: one might consider tracing a TCP packet here, but 21204 * this function has no active TCP state nd no tcp structure 21205 * which has trace buffer. If we traced here, we would have 21206 * to keep a local trace buffer in tcp_record_trace(). 21207 */ 21208 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 21209 21210 /* 21211 * Tell IP to mark the IRE used for this destination temporary. 21212 * This way, we can limit our exposure to DoS attack because IP 21213 * creates an IRE for each destination. If there are too many, 21214 * the time to do any routing lookup will be extremely long. And 21215 * the lookup can be in interrupt context. 21216 * 21217 * Note that in normal circumstances, this marking should not 21218 * affect anything. It would be nice if only 1 message is 21219 * needed to inform IP that the IRE created for this RST should 21220 * not be added to the cache table. But there is currently 21221 * not such communication mechanism between TCP and IP. So 21222 * the best we can do now is to send the advice ioctl to IP 21223 * to mark the IRE temporary. 21224 */ 21225 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 21226 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21227 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21228 } 21229 } 21230 21231 /* 21232 * Initiate closedown sequence on an active connection. (May be called as 21233 * writer.) Return value zero for OK return, non-zero for error return. 21234 */ 21235 static int 21236 tcp_xmit_end(tcp_t *tcp) 21237 { 21238 ipic_t *ipic; 21239 mblk_t *mp; 21240 21241 if (tcp->tcp_state < TCPS_SYN_RCVD || 21242 tcp->tcp_state > TCPS_CLOSE_WAIT) { 21243 /* 21244 * Invalid state, only states TCPS_SYN_RCVD, 21245 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 21246 */ 21247 return (-1); 21248 } 21249 21250 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 21251 tcp->tcp_valid_bits |= TCP_FSS_VALID; 21252 /* 21253 * If there is nothing more unsent, send the FIN now. 21254 * Otherwise, it will go out with the last segment. 21255 */ 21256 if (tcp->tcp_unsent == 0) { 21257 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21258 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 21259 21260 if (mp) { 21261 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21262 tcp_send_data(tcp, tcp->tcp_wq, mp); 21263 } else { 21264 /* 21265 * Couldn't allocate msg. Pretend we got it out. 21266 * Wait for rexmit timeout. 21267 */ 21268 tcp->tcp_snxt = tcp->tcp_fss + 1; 21269 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21270 } 21271 21272 /* 21273 * If needed, update tcp_rexmit_snxt as tcp_snxt is 21274 * changed. 21275 */ 21276 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 21277 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 21278 } 21279 } else { 21280 /* 21281 * If tcp->tcp_cork is set, then the data will not get sent, 21282 * so we have to check that and unset it first. 21283 */ 21284 if (tcp->tcp_cork) 21285 tcp->tcp_cork = B_FALSE; 21286 tcp_wput_data(tcp, NULL, B_FALSE); 21287 } 21288 21289 /* 21290 * If TCP does not get enough samples of RTT or tcp_rtt_updates 21291 * is 0, don't update the cache. 21292 */ 21293 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 21294 return (0); 21295 21296 /* 21297 * NOTE: should not update if source routes i.e. if tcp_remote if 21298 * different from the destination. 21299 */ 21300 if (tcp->tcp_ipversion == IPV4_VERSION) { 21301 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 21302 return (0); 21303 } 21304 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21305 &ipic); 21306 } else { 21307 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 21308 &tcp->tcp_ip6h->ip6_dst))) { 21309 return (0); 21310 } 21311 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21312 &ipic); 21313 } 21314 21315 /* Record route attributes in the IRE for use by future connections. */ 21316 if (mp == NULL) 21317 return (0); 21318 21319 /* 21320 * We do not have a good algorithm to update ssthresh at this time. 21321 * So don't do any update. 21322 */ 21323 ipic->ipic_rtt = tcp->tcp_rtt_sa; 21324 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 21325 21326 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21327 return (0); 21328 } 21329 21330 /* 21331 * Generate a "no listener here" RST in response to an "unknown" segment. 21332 * Note that we are reusing the incoming mp to construct the outgoing 21333 * RST. 21334 */ 21335 void 21336 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len) 21337 { 21338 uchar_t *rptr; 21339 uint32_t seg_len; 21340 tcph_t *tcph; 21341 uint32_t seg_seq; 21342 uint32_t seg_ack; 21343 uint_t flags; 21344 mblk_t *ipsec_mp; 21345 ipha_t *ipha; 21346 ip6_t *ip6h; 21347 boolean_t mctl_present = B_FALSE; 21348 boolean_t check = B_TRUE; 21349 boolean_t policy_present; 21350 21351 TCP_STAT(tcp_no_listener); 21352 21353 ipsec_mp = mp; 21354 21355 if (mp->b_datap->db_type == M_CTL) { 21356 ipsec_in_t *ii; 21357 21358 mctl_present = B_TRUE; 21359 mp = mp->b_cont; 21360 21361 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21362 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21363 if (ii->ipsec_in_dont_check) { 21364 check = B_FALSE; 21365 if (!ii->ipsec_in_secure) { 21366 freeb(ipsec_mp); 21367 mctl_present = B_FALSE; 21368 ipsec_mp = mp; 21369 } 21370 } 21371 } 21372 21373 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21374 policy_present = ipsec_inbound_v4_policy_present; 21375 ipha = (ipha_t *)mp->b_rptr; 21376 ip6h = NULL; 21377 } else { 21378 policy_present = ipsec_inbound_v6_policy_present; 21379 ipha = NULL; 21380 ip6h = (ip6_t *)mp->b_rptr; 21381 } 21382 21383 if (check && policy_present) { 21384 /* 21385 * The conn_t parameter is NULL because we already know 21386 * nobody's home. 21387 */ 21388 ipsec_mp = ipsec_check_global_policy( 21389 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 21390 if (ipsec_mp == NULL) 21391 return; 21392 } 21393 21394 21395 rptr = mp->b_rptr; 21396 21397 tcph = (tcph_t *)&rptr[ip_hdr_len]; 21398 seg_seq = BE32_TO_U32(tcph->th_seq); 21399 seg_ack = BE32_TO_U32(tcph->th_ack); 21400 flags = tcph->th_flags[0]; 21401 21402 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 21403 if (flags & TH_RST) { 21404 freemsg(ipsec_mp); 21405 } else if (flags & TH_ACK) { 21406 tcp_xmit_early_reset("no tcp, reset", 21407 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len); 21408 } else { 21409 if (flags & TH_SYN) { 21410 seg_len++; 21411 } else { 21412 /* 21413 * Here we violate the RFC. Note that a normal 21414 * TCP will never send a segment without the ACK 21415 * flag, except for RST or SYN segment. This 21416 * segment is neither. Just drop it on the 21417 * floor. 21418 */ 21419 freemsg(ipsec_mp); 21420 tcp_rst_unsent++; 21421 return; 21422 } 21423 21424 tcp_xmit_early_reset("no tcp, reset/ack", 21425 ipsec_mp, 0, seg_seq + seg_len, 21426 TH_RST | TH_ACK, ip_hdr_len); 21427 } 21428 } 21429 21430 /* 21431 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 21432 * ip and tcp header ready to pass down to IP. If the mp passed in is 21433 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 21434 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 21435 * otherwise it will dup partial mblks.) 21436 * Otherwise, an appropriate ACK packet will be generated. This 21437 * routine is not usually called to send new data for the first time. It 21438 * is mostly called out of the timer for retransmits, and to generate ACKs. 21439 * 21440 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 21441 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 21442 * of the original mblk chain will be returned in *offset and *end_mp. 21443 */ 21444 static mblk_t * 21445 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 21446 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 21447 boolean_t rexmit) 21448 { 21449 int data_length; 21450 int32_t off = 0; 21451 uint_t flags; 21452 mblk_t *mp1; 21453 mblk_t *mp2; 21454 uchar_t *rptr; 21455 tcph_t *tcph; 21456 int32_t num_sack_blk = 0; 21457 int32_t sack_opt_len = 0; 21458 21459 /* Allocate for our maximum TCP header + link-level */ 21460 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21461 BPRI_MED); 21462 if (!mp1) 21463 return (NULL); 21464 data_length = 0; 21465 21466 /* 21467 * Note that tcp_mss has been adjusted to take into account the 21468 * timestamp option if applicable. Because SACK options do not 21469 * appear in every TCP segments and they are of variable lengths, 21470 * they cannot be included in tcp_mss. Thus we need to calculate 21471 * the actual segment length when we need to send a segment which 21472 * includes SACK options. 21473 */ 21474 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21475 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21476 tcp->tcp_num_sack_blk); 21477 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21478 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21479 if (max_to_send + sack_opt_len > tcp->tcp_mss) 21480 max_to_send -= sack_opt_len; 21481 } 21482 21483 if (offset != NULL) { 21484 off = *offset; 21485 /* We use offset as an indicator that end_mp is not NULL. */ 21486 *end_mp = NULL; 21487 } 21488 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 21489 /* This could be faster with cooperation from downstream */ 21490 if (mp2 != mp1 && !sendall && 21491 data_length + (int)(mp->b_wptr - mp->b_rptr) > 21492 max_to_send) 21493 /* 21494 * Don't send the next mblk since the whole mblk 21495 * does not fit. 21496 */ 21497 break; 21498 mp2->b_cont = dupb(mp); 21499 mp2 = mp2->b_cont; 21500 if (!mp2) { 21501 freemsg(mp1); 21502 return (NULL); 21503 } 21504 mp2->b_rptr += off; 21505 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 21506 (uintptr_t)INT_MAX); 21507 21508 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 21509 if (data_length > max_to_send) { 21510 mp2->b_wptr -= data_length - max_to_send; 21511 data_length = max_to_send; 21512 off = mp2->b_wptr - mp->b_rptr; 21513 break; 21514 } else { 21515 off = 0; 21516 } 21517 } 21518 if (offset != NULL) { 21519 *offset = off; 21520 *end_mp = mp; 21521 } 21522 if (seg_len != NULL) { 21523 *seg_len = data_length; 21524 } 21525 21526 /* Update the latest receive window size in TCP header. */ 21527 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21528 tcp->tcp_tcph->th_win); 21529 21530 rptr = mp1->b_rptr + tcp_wroff_xtra; 21531 mp1->b_rptr = rptr; 21532 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 21533 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21534 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21535 U32_TO_ABE32(seq, tcph->th_seq); 21536 21537 /* 21538 * Use tcp_unsent to determine if the PUSH bit should be used assumes 21539 * that this function was called from tcp_wput_data. Thus, when called 21540 * to retransmit data the setting of the PUSH bit may appear some 21541 * what random in that it might get set when it should not. This 21542 * should not pose any performance issues. 21543 */ 21544 if (data_length != 0 && (tcp->tcp_unsent == 0 || 21545 tcp->tcp_unsent == data_length)) { 21546 flags = TH_ACK | TH_PUSH; 21547 } else { 21548 flags = TH_ACK; 21549 } 21550 21551 if (tcp->tcp_ecn_ok) { 21552 if (tcp->tcp_ecn_echo_on) 21553 flags |= TH_ECE; 21554 21555 /* 21556 * Only set ECT bit and ECN_CWR if a segment contains new data. 21557 * There is no TCP flow control for non-data segments, and 21558 * only data segment is transmitted reliably. 21559 */ 21560 if (data_length > 0 && !rexmit) { 21561 SET_ECT(tcp, rptr); 21562 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 21563 flags |= TH_CWR; 21564 tcp->tcp_ecn_cwr_sent = B_TRUE; 21565 } 21566 } 21567 } 21568 21569 if (tcp->tcp_valid_bits) { 21570 uint32_t u1; 21571 21572 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 21573 seq == tcp->tcp_iss) { 21574 uchar_t *wptr; 21575 21576 /* 21577 * If TCP_ISS_VALID and the seq number is tcp_iss, 21578 * TCP can only be in SYN-SENT, SYN-RCVD or 21579 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 21580 * our SYN is not ack'ed but the app closes this 21581 * TCP connection. 21582 */ 21583 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 21584 tcp->tcp_state == TCPS_SYN_RCVD || 21585 tcp->tcp_state == TCPS_FIN_WAIT_1); 21586 21587 /* 21588 * Tack on the MSS option. It is always needed 21589 * for both active and passive open. 21590 * 21591 * MSS option value should be interface MTU - MIN 21592 * TCP/IP header according to RFC 793 as it means 21593 * the maximum segment size TCP can receive. But 21594 * to get around some broken middle boxes/end hosts 21595 * out there, we allow the option value to be the 21596 * same as the MSS option size on the peer side. 21597 * In this way, the other side will not send 21598 * anything larger than they can receive. 21599 * 21600 * Note that for SYN_SENT state, the ndd param 21601 * tcp_use_smss_as_mss_opt has no effect as we 21602 * don't know the peer's MSS option value. So 21603 * the only case we need to take care of is in 21604 * SYN_RCVD state, which is done later. 21605 */ 21606 wptr = mp1->b_wptr; 21607 wptr[0] = TCPOPT_MAXSEG; 21608 wptr[1] = TCPOPT_MAXSEG_LEN; 21609 wptr += 2; 21610 u1 = tcp->tcp_if_mtu - 21611 (tcp->tcp_ipversion == IPV4_VERSION ? 21612 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 21613 TCP_MIN_HEADER_LENGTH; 21614 U16_TO_BE16(u1, wptr); 21615 mp1->b_wptr = wptr + 2; 21616 /* Update the offset to cover the additional word */ 21617 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21618 21619 /* 21620 * Note that the following way of filling in 21621 * TCP options are not optimal. Some NOPs can 21622 * be saved. But there is no need at this time 21623 * to optimize it. When it is needed, we will 21624 * do it. 21625 */ 21626 switch (tcp->tcp_state) { 21627 case TCPS_SYN_SENT: 21628 flags = TH_SYN; 21629 21630 if (tcp->tcp_snd_ts_ok) { 21631 uint32_t llbolt = (uint32_t)lbolt; 21632 21633 wptr = mp1->b_wptr; 21634 wptr[0] = TCPOPT_NOP; 21635 wptr[1] = TCPOPT_NOP; 21636 wptr[2] = TCPOPT_TSTAMP; 21637 wptr[3] = TCPOPT_TSTAMP_LEN; 21638 wptr += 4; 21639 U32_TO_BE32(llbolt, wptr); 21640 wptr += 4; 21641 ASSERT(tcp->tcp_ts_recent == 0); 21642 U32_TO_BE32(0L, wptr); 21643 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 21644 tcph->th_offset_and_rsrvd[0] += 21645 (3 << 4); 21646 } 21647 21648 /* 21649 * Set up all the bits to tell other side 21650 * we are ECN capable. 21651 */ 21652 if (tcp->tcp_ecn_ok) { 21653 flags |= (TH_ECE | TH_CWR); 21654 } 21655 break; 21656 case TCPS_SYN_RCVD: 21657 flags |= TH_SYN; 21658 21659 /* 21660 * Reset the MSS option value to be SMSS 21661 * We should probably add back the bytes 21662 * for timestamp option and IPsec. We 21663 * don't do that as this is a workaround 21664 * for broken middle boxes/end hosts, it 21665 * is better for us to be more cautious. 21666 * They may not take these things into 21667 * account in their SMSS calculation. Thus 21668 * the peer's calculated SMSS may be smaller 21669 * than what it can be. This should be OK. 21670 */ 21671 if (tcp_use_smss_as_mss_opt) { 21672 u1 = tcp->tcp_mss; 21673 U16_TO_BE16(u1, wptr); 21674 } 21675 21676 /* 21677 * If the other side is ECN capable, reply 21678 * that we are also ECN capable. 21679 */ 21680 if (tcp->tcp_ecn_ok) 21681 flags |= TH_ECE; 21682 break; 21683 default: 21684 /* 21685 * The above ASSERT() makes sure that this 21686 * must be FIN-WAIT-1 state. Our SYN has 21687 * not been ack'ed so retransmit it. 21688 */ 21689 flags |= TH_SYN; 21690 break; 21691 } 21692 21693 if (tcp->tcp_snd_ws_ok) { 21694 wptr = mp1->b_wptr; 21695 wptr[0] = TCPOPT_NOP; 21696 wptr[1] = TCPOPT_WSCALE; 21697 wptr[2] = TCPOPT_WS_LEN; 21698 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 21699 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 21700 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21701 } 21702 21703 if (tcp->tcp_snd_sack_ok) { 21704 wptr = mp1->b_wptr; 21705 wptr[0] = TCPOPT_NOP; 21706 wptr[1] = TCPOPT_NOP; 21707 wptr[2] = TCPOPT_SACK_PERMITTED; 21708 wptr[3] = TCPOPT_SACK_OK_LEN; 21709 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 21710 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21711 } 21712 21713 /* allocb() of adequate mblk assures space */ 21714 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 21715 (uintptr_t)INT_MAX); 21716 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 21717 /* 21718 * Get IP set to checksum on our behalf 21719 * Include the adjustment for a source route if any. 21720 */ 21721 u1 += tcp->tcp_sum; 21722 u1 = (u1 >> 16) + (u1 & 0xFFFF); 21723 U16_TO_BE16(u1, tcph->th_sum); 21724 BUMP_MIB(&tcp_mib, tcpOutControl); 21725 } 21726 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 21727 (seq + data_length) == tcp->tcp_fss) { 21728 if (!tcp->tcp_fin_acked) { 21729 flags |= TH_FIN; 21730 BUMP_MIB(&tcp_mib, tcpOutControl); 21731 } 21732 if (!tcp->tcp_fin_sent) { 21733 tcp->tcp_fin_sent = B_TRUE; 21734 switch (tcp->tcp_state) { 21735 case TCPS_SYN_RCVD: 21736 case TCPS_ESTABLISHED: 21737 tcp->tcp_state = TCPS_FIN_WAIT_1; 21738 break; 21739 case TCPS_CLOSE_WAIT: 21740 tcp->tcp_state = TCPS_LAST_ACK; 21741 break; 21742 } 21743 if (tcp->tcp_suna == tcp->tcp_snxt) 21744 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21745 tcp->tcp_snxt = tcp->tcp_fss + 1; 21746 } 21747 } 21748 /* 21749 * Note the trick here. u1 is unsigned. When tcp_urg 21750 * is smaller than seq, u1 will become a very huge value. 21751 * So the comparison will fail. Also note that tcp_urp 21752 * should be positive, see RFC 793 page 17. 21753 */ 21754 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 21755 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 21756 u1 < (uint32_t)(64 * 1024)) { 21757 flags |= TH_URG; 21758 BUMP_MIB(&tcp_mib, tcpOutUrg); 21759 U32_TO_ABE16(u1, tcph->th_urp); 21760 } 21761 } 21762 tcph->th_flags[0] = (uchar_t)flags; 21763 tcp->tcp_rack = tcp->tcp_rnxt; 21764 tcp->tcp_rack_cnt = 0; 21765 21766 if (tcp->tcp_snd_ts_ok) { 21767 if (tcp->tcp_state != TCPS_SYN_SENT) { 21768 uint32_t llbolt = (uint32_t)lbolt; 21769 21770 U32_TO_BE32(llbolt, 21771 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21772 U32_TO_BE32(tcp->tcp_ts_recent, 21773 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21774 } 21775 } 21776 21777 if (num_sack_blk > 0) { 21778 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 21779 sack_blk_t *tmp; 21780 int32_t i; 21781 21782 wptr[0] = TCPOPT_NOP; 21783 wptr[1] = TCPOPT_NOP; 21784 wptr[2] = TCPOPT_SACK; 21785 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 21786 sizeof (sack_blk_t); 21787 wptr += TCPOPT_REAL_SACK_LEN; 21788 21789 tmp = tcp->tcp_sack_list; 21790 for (i = 0; i < num_sack_blk; i++) { 21791 U32_TO_BE32(tmp[i].begin, wptr); 21792 wptr += sizeof (tcp_seq); 21793 U32_TO_BE32(tmp[i].end, wptr); 21794 wptr += sizeof (tcp_seq); 21795 } 21796 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 21797 } 21798 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21799 data_length += (int)(mp1->b_wptr - rptr); 21800 if (tcp->tcp_ipversion == IPV4_VERSION) { 21801 ((ipha_t *)rptr)->ipha_length = htons(data_length); 21802 } else { 21803 ip6_t *ip6 = (ip6_t *)(rptr + 21804 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 21805 sizeof (ip6i_t) : 0)); 21806 21807 ip6->ip6_plen = htons(data_length - 21808 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21809 } 21810 21811 /* 21812 * Prime pump for IP 21813 * Include the adjustment for a source route if any. 21814 */ 21815 data_length -= tcp->tcp_ip_hdr_len; 21816 data_length += tcp->tcp_sum; 21817 data_length = (data_length >> 16) + (data_length & 0xFFFF); 21818 U16_TO_ABE16(data_length, tcph->th_sum); 21819 if (tcp->tcp_ip_forward_progress) { 21820 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21821 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 21822 tcp->tcp_ip_forward_progress = B_FALSE; 21823 } 21824 return (mp1); 21825 } 21826 21827 /* This function handles the push timeout. */ 21828 void 21829 tcp_push_timer(void *arg) 21830 { 21831 conn_t *connp = (conn_t *)arg; 21832 tcp_t *tcp = connp->conn_tcp; 21833 21834 TCP_DBGSTAT(tcp_push_timer_cnt); 21835 21836 ASSERT(tcp->tcp_listener == NULL); 21837 21838 /* 21839 * We need to stop synchronous streams temporarily to prevent a race 21840 * with tcp_fuse_rrw() or tcp_fusion rinfop(). It is safe to access 21841 * tcp_rcv_list here because those entry points will return right 21842 * away when synchronous streams is stopped. 21843 */ 21844 TCP_FUSE_SYNCSTR_STOP(tcp); 21845 tcp->tcp_push_tid = 0; 21846 if ((tcp->tcp_rcv_list != NULL) && 21847 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 21848 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21849 TCP_FUSE_SYNCSTR_RESUME(tcp); 21850 } 21851 21852 /* 21853 * This function handles delayed ACK timeout. 21854 */ 21855 static void 21856 tcp_ack_timer(void *arg) 21857 { 21858 conn_t *connp = (conn_t *)arg; 21859 tcp_t *tcp = connp->conn_tcp; 21860 mblk_t *mp; 21861 21862 TCP_DBGSTAT(tcp_ack_timer_cnt); 21863 21864 tcp->tcp_ack_tid = 0; 21865 21866 if (tcp->tcp_fused) 21867 return; 21868 21869 /* 21870 * Do not send ACK if there is no outstanding unack'ed data. 21871 */ 21872 if (tcp->tcp_rnxt == tcp->tcp_rack) { 21873 return; 21874 } 21875 21876 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 21877 /* 21878 * Make sure we don't allow deferred ACKs to result in 21879 * timer-based ACKing. If we have held off an ACK 21880 * when there was more than an mss here, and the timer 21881 * goes off, we have to worry about the possibility 21882 * that the sender isn't doing slow-start, or is out 21883 * of step with us for some other reason. We fall 21884 * permanently back in the direction of 21885 * ACK-every-other-packet as suggested in RFC 1122. 21886 */ 21887 if (tcp->tcp_rack_abs_max > 2) 21888 tcp->tcp_rack_abs_max--; 21889 tcp->tcp_rack_cur_max = 2; 21890 } 21891 mp = tcp_ack_mp(tcp); 21892 21893 if (mp != NULL) { 21894 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21895 BUMP_LOCAL(tcp->tcp_obsegs); 21896 BUMP_MIB(&tcp_mib, tcpOutAck); 21897 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 21898 tcp_send_data(tcp, tcp->tcp_wq, mp); 21899 } 21900 } 21901 21902 21903 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 21904 static mblk_t * 21905 tcp_ack_mp(tcp_t *tcp) 21906 { 21907 uint32_t seq_no; 21908 21909 /* 21910 * There are a few cases to be considered while setting the sequence no. 21911 * Essentially, we can come here while processing an unacceptable pkt 21912 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 21913 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 21914 * If we are here for a zero window probe, stick with suna. In all 21915 * other cases, we check if suna + swnd encompasses snxt and set 21916 * the sequence number to snxt, if so. If snxt falls outside the 21917 * window (the receiver probably shrunk its window), we will go with 21918 * suna + swnd, otherwise the sequence no will be unacceptable to the 21919 * receiver. 21920 */ 21921 if (tcp->tcp_zero_win_probe) { 21922 seq_no = tcp->tcp_suna; 21923 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 21924 ASSERT(tcp->tcp_swnd == 0); 21925 seq_no = tcp->tcp_snxt; 21926 } else { 21927 seq_no = SEQ_GT(tcp->tcp_snxt, 21928 (tcp->tcp_suna + tcp->tcp_swnd)) ? 21929 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 21930 } 21931 21932 if (tcp->tcp_valid_bits) { 21933 /* 21934 * For the complex case where we have to send some 21935 * controls (FIN or SYN), let tcp_xmit_mp do it. 21936 */ 21937 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 21938 NULL, B_FALSE)); 21939 } else { 21940 /* Generate a simple ACK */ 21941 int data_length; 21942 uchar_t *rptr; 21943 tcph_t *tcph; 21944 mblk_t *mp1; 21945 int32_t tcp_hdr_len; 21946 int32_t tcp_tcp_hdr_len; 21947 int32_t num_sack_blk = 0; 21948 int32_t sack_opt_len; 21949 21950 /* 21951 * Allocate space for TCP + IP headers 21952 * and link-level header 21953 */ 21954 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21955 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21956 tcp->tcp_num_sack_blk); 21957 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21958 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21959 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 21960 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 21961 } else { 21962 tcp_hdr_len = tcp->tcp_hdr_len; 21963 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 21964 } 21965 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 21966 if (!mp1) 21967 return (NULL); 21968 21969 /* Update the latest receive window size in TCP header. */ 21970 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21971 tcp->tcp_tcph->th_win); 21972 /* copy in prototype TCP + IP header */ 21973 rptr = mp1->b_rptr + tcp_wroff_xtra; 21974 mp1->b_rptr = rptr; 21975 mp1->b_wptr = rptr + tcp_hdr_len; 21976 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21977 21978 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21979 21980 /* Set the TCP sequence number. */ 21981 U32_TO_ABE32(seq_no, tcph->th_seq); 21982 21983 /* Set up the TCP flag field. */ 21984 tcph->th_flags[0] = (uchar_t)TH_ACK; 21985 if (tcp->tcp_ecn_echo_on) 21986 tcph->th_flags[0] |= TH_ECE; 21987 21988 tcp->tcp_rack = tcp->tcp_rnxt; 21989 tcp->tcp_rack_cnt = 0; 21990 21991 /* fill in timestamp option if in use */ 21992 if (tcp->tcp_snd_ts_ok) { 21993 uint32_t llbolt = (uint32_t)lbolt; 21994 21995 U32_TO_BE32(llbolt, 21996 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21997 U32_TO_BE32(tcp->tcp_ts_recent, 21998 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21999 } 22000 22001 /* Fill in SACK options */ 22002 if (num_sack_blk > 0) { 22003 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22004 sack_blk_t *tmp; 22005 int32_t i; 22006 22007 wptr[0] = TCPOPT_NOP; 22008 wptr[1] = TCPOPT_NOP; 22009 wptr[2] = TCPOPT_SACK; 22010 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22011 sizeof (sack_blk_t); 22012 wptr += TCPOPT_REAL_SACK_LEN; 22013 22014 tmp = tcp->tcp_sack_list; 22015 for (i = 0; i < num_sack_blk; i++) { 22016 U32_TO_BE32(tmp[i].begin, wptr); 22017 wptr += sizeof (tcp_seq); 22018 U32_TO_BE32(tmp[i].end, wptr); 22019 wptr += sizeof (tcp_seq); 22020 } 22021 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 22022 << 4); 22023 } 22024 22025 if (tcp->tcp_ipversion == IPV4_VERSION) { 22026 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 22027 } else { 22028 /* Check for ip6i_t header in sticky hdrs */ 22029 ip6_t *ip6 = (ip6_t *)(rptr + 22030 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22031 sizeof (ip6i_t) : 0)); 22032 22033 ip6->ip6_plen = htons(tcp_hdr_len - 22034 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22035 } 22036 22037 /* 22038 * Prime pump for checksum calculation in IP. Include the 22039 * adjustment for a source route if any. 22040 */ 22041 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 22042 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22043 U16_TO_ABE16(data_length, tcph->th_sum); 22044 22045 if (tcp->tcp_ip_forward_progress) { 22046 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22047 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22048 tcp->tcp_ip_forward_progress = B_FALSE; 22049 } 22050 return (mp1); 22051 } 22052 } 22053 22054 /* 22055 * To create a temporary tcp structure for inserting into bind hash list. 22056 * The parameter is assumed to be in network byte order, ready for use. 22057 */ 22058 /* ARGSUSED */ 22059 static tcp_t * 22060 tcp_alloc_temp_tcp(in_port_t port) 22061 { 22062 conn_t *connp; 22063 tcp_t *tcp; 22064 22065 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 22066 if (connp == NULL) 22067 return (NULL); 22068 22069 tcp = connp->conn_tcp; 22070 22071 /* 22072 * Only initialize the necessary info in those structures. Note 22073 * that since INADDR_ANY is all 0, we do not need to set 22074 * tcp_bound_source to INADDR_ANY here. 22075 */ 22076 tcp->tcp_state = TCPS_BOUND; 22077 tcp->tcp_lport = port; 22078 tcp->tcp_exclbind = 1; 22079 tcp->tcp_reserved_port = 1; 22080 22081 /* Just for place holding... */ 22082 tcp->tcp_ipversion = IPV4_VERSION; 22083 22084 return (tcp); 22085 } 22086 22087 /* 22088 * To remove a port range specified by lo_port and hi_port from the 22089 * reserved port ranges. This is one of the three public functions of 22090 * the reserved port interface. Note that a port range has to be removed 22091 * as a whole. Ports in a range cannot be removed individually. 22092 * 22093 * Params: 22094 * in_port_t lo_port: the beginning port of the reserved port range to 22095 * be deleted. 22096 * in_port_t hi_port: the ending port of the reserved port range to 22097 * be deleted. 22098 * 22099 * Return: 22100 * B_TRUE if the deletion is successful, B_FALSE otherwise. 22101 */ 22102 boolean_t 22103 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 22104 { 22105 int i, j; 22106 int size; 22107 tcp_t **temp_tcp_array; 22108 tcp_t *tcp; 22109 22110 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22111 22112 /* First make sure that the port ranage is indeed reserved. */ 22113 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22114 if (tcp_reserved_port[i].lo_port == lo_port) { 22115 hi_port = tcp_reserved_port[i].hi_port; 22116 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 22117 break; 22118 } 22119 } 22120 if (i == tcp_reserved_port_array_size) { 22121 rw_exit(&tcp_reserved_port_lock); 22122 return (B_FALSE); 22123 } 22124 22125 /* 22126 * Remove the range from the array. This simple loop is possible 22127 * because port ranges are inserted in ascending order. 22128 */ 22129 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 22130 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 22131 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 22132 tcp_reserved_port[j].temp_tcp_array = 22133 tcp_reserved_port[j+1].temp_tcp_array; 22134 } 22135 22136 /* Remove all the temporary tcp structures. */ 22137 size = hi_port - lo_port + 1; 22138 while (size > 0) { 22139 tcp = temp_tcp_array[size - 1]; 22140 ASSERT(tcp != NULL); 22141 tcp_bind_hash_remove(tcp); 22142 CONN_DEC_REF(tcp->tcp_connp); 22143 size--; 22144 } 22145 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 22146 tcp_reserved_port_array_size--; 22147 rw_exit(&tcp_reserved_port_lock); 22148 return (B_TRUE); 22149 } 22150 22151 /* 22152 * Macro to remove temporary tcp structure from the bind hash list. The 22153 * first parameter is the list of tcp to be removed. The second parameter 22154 * is the number of tcps in the array. 22155 */ 22156 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 22157 { \ 22158 while ((num) > 0) { \ 22159 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 22160 tf_t *tbf; \ 22161 tcp_t *tcpnext; \ 22162 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 22163 mutex_enter(&tbf->tf_lock); \ 22164 tcpnext = tcp->tcp_bind_hash; \ 22165 if (tcpnext) { \ 22166 tcpnext->tcp_ptpbhn = \ 22167 tcp->tcp_ptpbhn; \ 22168 } \ 22169 *tcp->tcp_ptpbhn = tcpnext; \ 22170 mutex_exit(&tbf->tf_lock); \ 22171 kmem_free(tcp, sizeof (tcp_t)); \ 22172 (tcp_array)[(num) - 1] = NULL; \ 22173 (num)--; \ 22174 } \ 22175 } 22176 22177 /* 22178 * The public interface for other modules to call to reserve a port range 22179 * in TCP. The caller passes in how large a port range it wants. TCP 22180 * will try to find a range and return it via lo_port and hi_port. This is 22181 * used by NCA's nca_conn_init. 22182 * NCA can only be used in the global zone so this only affects the global 22183 * zone's ports. 22184 * 22185 * Params: 22186 * int size: the size of the port range to be reserved. 22187 * in_port_t *lo_port (referenced): returns the beginning port of the 22188 * reserved port range added. 22189 * in_port_t *hi_port (referenced): returns the ending port of the 22190 * reserved port range added. 22191 * 22192 * Return: 22193 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 22194 */ 22195 boolean_t 22196 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 22197 { 22198 tcp_t *tcp; 22199 tcp_t *tmp_tcp; 22200 tcp_t **temp_tcp_array; 22201 tf_t *tbf; 22202 in_port_t net_port; 22203 in_port_t port; 22204 int32_t cur_size; 22205 int i, j; 22206 boolean_t used; 22207 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 22208 zoneid_t zoneid = GLOBAL_ZONEID; 22209 22210 /* Sanity check. */ 22211 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 22212 return (B_FALSE); 22213 } 22214 22215 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22216 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 22217 rw_exit(&tcp_reserved_port_lock); 22218 return (B_FALSE); 22219 } 22220 22221 /* 22222 * Find the starting port to try. Since the port ranges are ordered 22223 * in the reserved port array, we can do a simple search here. 22224 */ 22225 *lo_port = TCP_SMALLEST_RESERVED_PORT; 22226 *hi_port = TCP_LARGEST_RESERVED_PORT; 22227 for (i = 0; i < tcp_reserved_port_array_size; 22228 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 22229 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 22230 *hi_port = tcp_reserved_port[i].lo_port - 1; 22231 break; 22232 } 22233 } 22234 /* No available port range. */ 22235 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 22236 rw_exit(&tcp_reserved_port_lock); 22237 return (B_FALSE); 22238 } 22239 22240 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 22241 if (temp_tcp_array == NULL) { 22242 rw_exit(&tcp_reserved_port_lock); 22243 return (B_FALSE); 22244 } 22245 22246 /* Go thru the port range to see if some ports are already bound. */ 22247 for (port = *lo_port, cur_size = 0; 22248 cur_size < size && port <= *hi_port; 22249 cur_size++, port++) { 22250 used = B_FALSE; 22251 net_port = htons(port); 22252 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 22253 mutex_enter(&tbf->tf_lock); 22254 for (tcp = tbf->tf_tcp; tcp != NULL; 22255 tcp = tcp->tcp_bind_hash) { 22256 if (zoneid == tcp->tcp_connp->conn_zoneid && 22257 net_port == tcp->tcp_lport) { 22258 /* 22259 * A port is already bound. Search again 22260 * starting from port + 1. Release all 22261 * temporary tcps. 22262 */ 22263 mutex_exit(&tbf->tf_lock); 22264 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22265 *lo_port = port + 1; 22266 cur_size = -1; 22267 used = B_TRUE; 22268 break; 22269 } 22270 } 22271 if (!used) { 22272 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 22273 /* 22274 * Allocation failure. Just fail the request. 22275 * Need to remove all those temporary tcp 22276 * structures. 22277 */ 22278 mutex_exit(&tbf->tf_lock); 22279 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22280 rw_exit(&tcp_reserved_port_lock); 22281 kmem_free(temp_tcp_array, 22282 (hi_port - lo_port + 1) * 22283 sizeof (tcp_t *)); 22284 return (B_FALSE); 22285 } 22286 temp_tcp_array[cur_size] = tmp_tcp; 22287 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 22288 mutex_exit(&tbf->tf_lock); 22289 } 22290 } 22291 22292 /* 22293 * The current range is not large enough. We can actually do another 22294 * search if this search is done between 2 reserved port ranges. But 22295 * for first release, we just stop here and return saying that no port 22296 * range is available. 22297 */ 22298 if (cur_size < size) { 22299 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22300 rw_exit(&tcp_reserved_port_lock); 22301 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 22302 return (B_FALSE); 22303 } 22304 *hi_port = port - 1; 22305 22306 /* 22307 * Insert range into array in ascending order. Since this function 22308 * must not be called often, we choose to use the simplest method. 22309 * The above array should not consume excessive stack space as 22310 * the size must be very small. If in future releases, we find 22311 * that we should provide more reserved port ranges, this function 22312 * has to be modified to be more efficient. 22313 */ 22314 if (tcp_reserved_port_array_size == 0) { 22315 tcp_reserved_port[0].lo_port = *lo_port; 22316 tcp_reserved_port[0].hi_port = *hi_port; 22317 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 22318 } else { 22319 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 22320 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 22321 tmp_ports[j].lo_port = *lo_port; 22322 tmp_ports[j].hi_port = *hi_port; 22323 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22324 j++; 22325 } 22326 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 22327 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 22328 tmp_ports[j].temp_tcp_array = 22329 tcp_reserved_port[i].temp_tcp_array; 22330 } 22331 if (j == i) { 22332 tmp_ports[j].lo_port = *lo_port; 22333 tmp_ports[j].hi_port = *hi_port; 22334 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22335 } 22336 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 22337 } 22338 tcp_reserved_port_array_size++; 22339 rw_exit(&tcp_reserved_port_lock); 22340 return (B_TRUE); 22341 } 22342 22343 /* 22344 * Check to see if a port is in any reserved port range. 22345 * 22346 * Params: 22347 * in_port_t port: the port to be verified. 22348 * 22349 * Return: 22350 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 22351 */ 22352 boolean_t 22353 tcp_reserved_port_check(in_port_t port) 22354 { 22355 int i; 22356 22357 rw_enter(&tcp_reserved_port_lock, RW_READER); 22358 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22359 if (port >= tcp_reserved_port[i].lo_port || 22360 port <= tcp_reserved_port[i].hi_port) { 22361 rw_exit(&tcp_reserved_port_lock); 22362 return (B_TRUE); 22363 } 22364 } 22365 rw_exit(&tcp_reserved_port_lock); 22366 return (B_FALSE); 22367 } 22368 22369 /* 22370 * To list all reserved port ranges. This is the function to handle 22371 * ndd tcp_reserved_port_list. 22372 */ 22373 /* ARGSUSED */ 22374 static int 22375 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22376 { 22377 int i; 22378 22379 rw_enter(&tcp_reserved_port_lock, RW_READER); 22380 if (tcp_reserved_port_array_size > 0) 22381 (void) mi_mpprintf(mp, "The following ports are reserved:"); 22382 else 22383 (void) mi_mpprintf(mp, "No port is reserved."); 22384 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22385 (void) mi_mpprintf(mp, "%d-%d", 22386 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 22387 } 22388 rw_exit(&tcp_reserved_port_lock); 22389 return (0); 22390 } 22391 22392 /* 22393 * Hash list insertion routine for tcp_t structures. 22394 * Inserts entries with the ones bound to a specific IP address first 22395 * followed by those bound to INADDR_ANY. 22396 */ 22397 static void 22398 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 22399 { 22400 tcp_t **tcpp; 22401 tcp_t *tcpnext; 22402 22403 if (tcp->tcp_ptpbhn != NULL) { 22404 ASSERT(!caller_holds_lock); 22405 tcp_bind_hash_remove(tcp); 22406 } 22407 tcpp = &tbf->tf_tcp; 22408 if (!caller_holds_lock) { 22409 mutex_enter(&tbf->tf_lock); 22410 } else { 22411 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 22412 } 22413 tcpnext = tcpp[0]; 22414 if (tcpnext) { 22415 /* 22416 * If the new tcp bound to the INADDR_ANY address 22417 * and the first one in the list is not bound to 22418 * INADDR_ANY we skip all entries until we find the 22419 * first one bound to INADDR_ANY. 22420 * This makes sure that applications binding to a 22421 * specific address get preference over those binding to 22422 * INADDR_ANY. 22423 */ 22424 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 22425 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 22426 while ((tcpnext = tcpp[0]) != NULL && 22427 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 22428 tcpp = &(tcpnext->tcp_bind_hash); 22429 if (tcpnext) 22430 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22431 } else 22432 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22433 } 22434 tcp->tcp_bind_hash = tcpnext; 22435 tcp->tcp_ptpbhn = tcpp; 22436 tcpp[0] = tcp; 22437 if (!caller_holds_lock) 22438 mutex_exit(&tbf->tf_lock); 22439 } 22440 22441 /* 22442 * Hash list removal routine for tcp_t structures. 22443 */ 22444 static void 22445 tcp_bind_hash_remove(tcp_t *tcp) 22446 { 22447 tcp_t *tcpnext; 22448 kmutex_t *lockp; 22449 22450 if (tcp->tcp_ptpbhn == NULL) 22451 return; 22452 22453 /* 22454 * Extract the lock pointer in case there are concurrent 22455 * hash_remove's for this instance. 22456 */ 22457 ASSERT(tcp->tcp_lport != 0); 22458 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 22459 22460 ASSERT(lockp != NULL); 22461 mutex_enter(lockp); 22462 if (tcp->tcp_ptpbhn) { 22463 tcpnext = tcp->tcp_bind_hash; 22464 if (tcpnext) { 22465 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 22466 tcp->tcp_bind_hash = NULL; 22467 } 22468 *tcp->tcp_ptpbhn = tcpnext; 22469 tcp->tcp_ptpbhn = NULL; 22470 } 22471 mutex_exit(lockp); 22472 } 22473 22474 22475 /* 22476 * Hash list lookup routine for tcp_t structures. 22477 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 22478 */ 22479 static tcp_t * 22480 tcp_acceptor_hash_lookup(t_uscalar_t id) 22481 { 22482 tf_t *tf; 22483 tcp_t *tcp; 22484 22485 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22486 mutex_enter(&tf->tf_lock); 22487 for (tcp = tf->tf_tcp; tcp != NULL; 22488 tcp = tcp->tcp_acceptor_hash) { 22489 if (tcp->tcp_acceptor_id == id) { 22490 CONN_INC_REF(tcp->tcp_connp); 22491 mutex_exit(&tf->tf_lock); 22492 return (tcp); 22493 } 22494 } 22495 mutex_exit(&tf->tf_lock); 22496 return (NULL); 22497 } 22498 22499 22500 /* 22501 * Hash list insertion routine for tcp_t structures. 22502 */ 22503 void 22504 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 22505 { 22506 tf_t *tf; 22507 tcp_t **tcpp; 22508 tcp_t *tcpnext; 22509 22510 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22511 22512 if (tcp->tcp_ptpahn != NULL) 22513 tcp_acceptor_hash_remove(tcp); 22514 tcpp = &tf->tf_tcp; 22515 mutex_enter(&tf->tf_lock); 22516 tcpnext = tcpp[0]; 22517 if (tcpnext) 22518 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 22519 tcp->tcp_acceptor_hash = tcpnext; 22520 tcp->tcp_ptpahn = tcpp; 22521 tcpp[0] = tcp; 22522 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 22523 mutex_exit(&tf->tf_lock); 22524 } 22525 22526 /* 22527 * Hash list removal routine for tcp_t structures. 22528 */ 22529 static void 22530 tcp_acceptor_hash_remove(tcp_t *tcp) 22531 { 22532 tcp_t *tcpnext; 22533 kmutex_t *lockp; 22534 22535 /* 22536 * Extract the lock pointer in case there are concurrent 22537 * hash_remove's for this instance. 22538 */ 22539 lockp = tcp->tcp_acceptor_lockp; 22540 22541 if (tcp->tcp_ptpahn == NULL) 22542 return; 22543 22544 ASSERT(lockp != NULL); 22545 mutex_enter(lockp); 22546 if (tcp->tcp_ptpahn) { 22547 tcpnext = tcp->tcp_acceptor_hash; 22548 if (tcpnext) { 22549 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 22550 tcp->tcp_acceptor_hash = NULL; 22551 } 22552 *tcp->tcp_ptpahn = tcpnext; 22553 tcp->tcp_ptpahn = NULL; 22554 } 22555 mutex_exit(lockp); 22556 tcp->tcp_acceptor_lockp = NULL; 22557 } 22558 22559 /* ARGSUSED */ 22560 static int 22561 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 22562 { 22563 int error = 0; 22564 int retval; 22565 char *end; 22566 22567 tcp_hsp_t *hsp; 22568 tcp_hsp_t *hspprev; 22569 22570 ipaddr_t addr = 0; /* Address we're looking for */ 22571 in6_addr_t v6addr; /* Address we're looking for */ 22572 uint32_t hash; /* Hash of that address */ 22573 22574 /* 22575 * If the following variables are still zero after parsing the input 22576 * string, the user didn't specify them and we don't change them in 22577 * the HSP. 22578 */ 22579 22580 ipaddr_t mask = 0; /* Subnet mask */ 22581 in6_addr_t v6mask; 22582 long sendspace = 0; /* Send buffer size */ 22583 long recvspace = 0; /* Receive buffer size */ 22584 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 22585 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 22586 22587 rw_enter(&tcp_hsp_lock, RW_WRITER); 22588 22589 /* Parse and validate address */ 22590 if (af == AF_INET) { 22591 retval = inet_pton(af, value, &addr); 22592 if (retval == 1) 22593 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 22594 } else if (af == AF_INET6) { 22595 retval = inet_pton(af, value, &v6addr); 22596 } else { 22597 error = EINVAL; 22598 goto done; 22599 } 22600 if (retval == 0) { 22601 error = EINVAL; 22602 goto done; 22603 } 22604 22605 while ((*value) && *value != ' ') 22606 value++; 22607 22608 /* Parse individual keywords, set variables if found */ 22609 while (*value) { 22610 /* Skip leading blanks */ 22611 22612 while (*value == ' ' || *value == '\t') 22613 value++; 22614 22615 /* If at end of string, we're done */ 22616 22617 if (!*value) 22618 break; 22619 22620 /* We have a word, figure out what it is */ 22621 22622 if (strncmp("mask", value, 4) == 0) { 22623 value += 4; 22624 while (*value == ' ' || *value == '\t') 22625 value++; 22626 /* Parse subnet mask */ 22627 if (af == AF_INET) { 22628 retval = inet_pton(af, value, &mask); 22629 if (retval == 1) { 22630 V4MASK_TO_V6(mask, v6mask); 22631 } 22632 } else if (af == AF_INET6) { 22633 retval = inet_pton(af, value, &v6mask); 22634 } 22635 if (retval != 1) { 22636 error = EINVAL; 22637 goto done; 22638 } 22639 while ((*value) && *value != ' ') 22640 value++; 22641 } else if (strncmp("sendspace", value, 9) == 0) { 22642 value += 9; 22643 22644 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 22645 sendspace < TCP_XMIT_HIWATER || 22646 sendspace >= (1L<<30)) { 22647 error = EINVAL; 22648 goto done; 22649 } 22650 value = end; 22651 } else if (strncmp("recvspace", value, 9) == 0) { 22652 value += 9; 22653 22654 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 22655 recvspace < TCP_RECV_HIWATER || 22656 recvspace >= (1L<<30)) { 22657 error = EINVAL; 22658 goto done; 22659 } 22660 value = end; 22661 } else if (strncmp("timestamp", value, 9) == 0) { 22662 value += 9; 22663 22664 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 22665 timestamp < 0 || timestamp > 1) { 22666 error = EINVAL; 22667 goto done; 22668 } 22669 22670 /* 22671 * We increment timestamp so we know it's been set; 22672 * this is undone when we put it in the HSP 22673 */ 22674 timestamp++; 22675 value = end; 22676 } else if (strncmp("delete", value, 6) == 0) { 22677 value += 6; 22678 delete = B_TRUE; 22679 } else { 22680 error = EINVAL; 22681 goto done; 22682 } 22683 } 22684 22685 /* Hash address for lookup */ 22686 22687 hash = TCP_HSP_HASH(addr); 22688 22689 if (delete) { 22690 /* 22691 * Note that deletes don't return an error if the thing 22692 * we're trying to delete isn't there. 22693 */ 22694 if (tcp_hsp_hash == NULL) 22695 goto done; 22696 hsp = tcp_hsp_hash[hash]; 22697 22698 if (hsp) { 22699 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 22700 &v6addr)) { 22701 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 22702 mi_free((char *)hsp); 22703 } else { 22704 hspprev = hsp; 22705 while ((hsp = hsp->tcp_hsp_next) != NULL) { 22706 if (IN6_ARE_ADDR_EQUAL( 22707 &hsp->tcp_hsp_addr_v6, &v6addr)) { 22708 hspprev->tcp_hsp_next = 22709 hsp->tcp_hsp_next; 22710 mi_free((char *)hsp); 22711 break; 22712 } 22713 hspprev = hsp; 22714 } 22715 } 22716 } 22717 } else { 22718 /* 22719 * We're adding/modifying an HSP. If we haven't already done 22720 * so, allocate the hash table. 22721 */ 22722 22723 if (!tcp_hsp_hash) { 22724 tcp_hsp_hash = (tcp_hsp_t **) 22725 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 22726 if (!tcp_hsp_hash) { 22727 error = EINVAL; 22728 goto done; 22729 } 22730 } 22731 22732 /* Get head of hash chain */ 22733 22734 hsp = tcp_hsp_hash[hash]; 22735 22736 /* Try to find pre-existing hsp on hash chain */ 22737 /* Doesn't handle CIDR prefixes. */ 22738 while (hsp) { 22739 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 22740 break; 22741 hsp = hsp->tcp_hsp_next; 22742 } 22743 22744 /* 22745 * If we didn't, create one with default values and put it 22746 * at head of hash chain 22747 */ 22748 22749 if (!hsp) { 22750 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 22751 if (!hsp) { 22752 error = EINVAL; 22753 goto done; 22754 } 22755 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 22756 tcp_hsp_hash[hash] = hsp; 22757 } 22758 22759 /* Set values that the user asked us to change */ 22760 22761 hsp->tcp_hsp_addr_v6 = v6addr; 22762 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 22763 hsp->tcp_hsp_vers = IPV4_VERSION; 22764 else 22765 hsp->tcp_hsp_vers = IPV6_VERSION; 22766 hsp->tcp_hsp_subnet_v6 = v6mask; 22767 if (sendspace > 0) 22768 hsp->tcp_hsp_sendspace = sendspace; 22769 if (recvspace > 0) 22770 hsp->tcp_hsp_recvspace = recvspace; 22771 if (timestamp > 0) 22772 hsp->tcp_hsp_tstamp = timestamp - 1; 22773 } 22774 22775 done: 22776 rw_exit(&tcp_hsp_lock); 22777 return (error); 22778 } 22779 22780 /* Set callback routine passed to nd_load by tcp_param_register. */ 22781 /* ARGSUSED */ 22782 static int 22783 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 22784 { 22785 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 22786 } 22787 /* ARGSUSED */ 22788 static int 22789 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22790 cred_t *cr) 22791 { 22792 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 22793 } 22794 22795 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 22796 /* ARGSUSED */ 22797 static int 22798 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22799 { 22800 tcp_hsp_t *hsp; 22801 int i; 22802 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 22803 22804 rw_enter(&tcp_hsp_lock, RW_READER); 22805 (void) mi_mpprintf(mp, 22806 "Hash HSP " MI_COL_HDRPAD_STR 22807 "Address Subnet Mask Send Receive TStamp"); 22808 if (tcp_hsp_hash) { 22809 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 22810 hsp = tcp_hsp_hash[i]; 22811 while (hsp) { 22812 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 22813 (void) inet_ntop(AF_INET, 22814 &hsp->tcp_hsp_addr, 22815 addrbuf, sizeof (addrbuf)); 22816 (void) inet_ntop(AF_INET, 22817 &hsp->tcp_hsp_subnet, 22818 subnetbuf, sizeof (subnetbuf)); 22819 } else { 22820 (void) inet_ntop(AF_INET6, 22821 &hsp->tcp_hsp_addr_v6, 22822 addrbuf, sizeof (addrbuf)); 22823 (void) inet_ntop(AF_INET6, 22824 &hsp->tcp_hsp_subnet_v6, 22825 subnetbuf, sizeof (subnetbuf)); 22826 } 22827 (void) mi_mpprintf(mp, 22828 " %03d " MI_COL_PTRFMT_STR 22829 "%s %s %010d %010d %d", 22830 i, 22831 (void *)hsp, 22832 addrbuf, 22833 subnetbuf, 22834 hsp->tcp_hsp_sendspace, 22835 hsp->tcp_hsp_recvspace, 22836 hsp->tcp_hsp_tstamp); 22837 22838 hsp = hsp->tcp_hsp_next; 22839 } 22840 } 22841 } 22842 rw_exit(&tcp_hsp_lock); 22843 return (0); 22844 } 22845 22846 22847 /* Data for fast netmask macro used by tcp_hsp_lookup */ 22848 22849 static ipaddr_t netmasks[] = { 22850 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 22851 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 22852 }; 22853 22854 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 22855 22856 /* 22857 * XXX This routine should go away and instead we should use the metrics 22858 * associated with the routes to determine the default sndspace and rcvspace. 22859 */ 22860 static tcp_hsp_t * 22861 tcp_hsp_lookup(ipaddr_t addr) 22862 { 22863 tcp_hsp_t *hsp = NULL; 22864 22865 /* Quick check without acquiring the lock. */ 22866 if (tcp_hsp_hash == NULL) 22867 return (NULL); 22868 22869 rw_enter(&tcp_hsp_lock, RW_READER); 22870 22871 /* This routine finds the best-matching HSP for address addr. */ 22872 22873 if (tcp_hsp_hash) { 22874 int i; 22875 ipaddr_t srchaddr; 22876 tcp_hsp_t *hsp_net; 22877 22878 /* We do three passes: host, network, and subnet. */ 22879 22880 srchaddr = addr; 22881 22882 for (i = 1; i <= 3; i++) { 22883 /* Look for exact match on srchaddr */ 22884 22885 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 22886 while (hsp) { 22887 if (hsp->tcp_hsp_vers == IPV4_VERSION && 22888 hsp->tcp_hsp_addr == srchaddr) 22889 break; 22890 hsp = hsp->tcp_hsp_next; 22891 } 22892 ASSERT(hsp == NULL || 22893 hsp->tcp_hsp_vers == IPV4_VERSION); 22894 22895 /* 22896 * If this is the first pass: 22897 * If we found a match, great, return it. 22898 * If not, search for the network on the second pass. 22899 */ 22900 22901 if (i == 1) 22902 if (hsp) 22903 break; 22904 else 22905 { 22906 srchaddr = addr & netmask(addr); 22907 continue; 22908 } 22909 22910 /* 22911 * If this is the second pass: 22912 * If we found a match, but there's a subnet mask, 22913 * save the match but try again using the subnet 22914 * mask on the third pass. 22915 * Otherwise, return whatever we found. 22916 */ 22917 22918 if (i == 2) { 22919 if (hsp && hsp->tcp_hsp_subnet) { 22920 hsp_net = hsp; 22921 srchaddr = addr & hsp->tcp_hsp_subnet; 22922 continue; 22923 } else { 22924 break; 22925 } 22926 } 22927 22928 /* 22929 * This must be the third pass. If we didn't find 22930 * anything, return the saved network HSP instead. 22931 */ 22932 22933 if (!hsp) 22934 hsp = hsp_net; 22935 } 22936 } 22937 22938 rw_exit(&tcp_hsp_lock); 22939 return (hsp); 22940 } 22941 22942 /* 22943 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 22944 * match lookup. 22945 */ 22946 static tcp_hsp_t * 22947 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 22948 { 22949 tcp_hsp_t *hsp = NULL; 22950 22951 /* Quick check without acquiring the lock. */ 22952 if (tcp_hsp_hash == NULL) 22953 return (NULL); 22954 22955 rw_enter(&tcp_hsp_lock, RW_READER); 22956 22957 /* This routine finds the best-matching HSP for address addr. */ 22958 22959 if (tcp_hsp_hash) { 22960 int i; 22961 in6_addr_t v6srchaddr; 22962 tcp_hsp_t *hsp_net; 22963 22964 /* We do three passes: host, network, and subnet. */ 22965 22966 v6srchaddr = *v6addr; 22967 22968 for (i = 1; i <= 3; i++) { 22969 /* Look for exact match on srchaddr */ 22970 22971 hsp = tcp_hsp_hash[TCP_HSP_HASH( 22972 V4_PART_OF_V6(v6srchaddr))]; 22973 while (hsp) { 22974 if (hsp->tcp_hsp_vers == IPV6_VERSION && 22975 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 22976 &v6srchaddr)) 22977 break; 22978 hsp = hsp->tcp_hsp_next; 22979 } 22980 22981 /* 22982 * If this is the first pass: 22983 * If we found a match, great, return it. 22984 * If not, search for the network on the second pass. 22985 */ 22986 22987 if (i == 1) 22988 if (hsp) 22989 break; 22990 else { 22991 /* Assume a 64 bit mask */ 22992 v6srchaddr.s6_addr32[0] = 22993 v6addr->s6_addr32[0]; 22994 v6srchaddr.s6_addr32[1] = 22995 v6addr->s6_addr32[1]; 22996 v6srchaddr.s6_addr32[2] = 0; 22997 v6srchaddr.s6_addr32[3] = 0; 22998 continue; 22999 } 23000 23001 /* 23002 * If this is the second pass: 23003 * If we found a match, but there's a subnet mask, 23004 * save the match but try again using the subnet 23005 * mask on the third pass. 23006 * Otherwise, return whatever we found. 23007 */ 23008 23009 if (i == 2) { 23010 ASSERT(hsp == NULL || 23011 hsp->tcp_hsp_vers == IPV6_VERSION); 23012 if (hsp && 23013 !IN6_IS_ADDR_UNSPECIFIED( 23014 &hsp->tcp_hsp_subnet_v6)) { 23015 hsp_net = hsp; 23016 V6_MASK_COPY(*v6addr, 23017 hsp->tcp_hsp_subnet_v6, v6srchaddr); 23018 continue; 23019 } else { 23020 break; 23021 } 23022 } 23023 23024 /* 23025 * This must be the third pass. If we didn't find 23026 * anything, return the saved network HSP instead. 23027 */ 23028 23029 if (!hsp) 23030 hsp = hsp_net; 23031 } 23032 } 23033 23034 rw_exit(&tcp_hsp_lock); 23035 return (hsp); 23036 } 23037 23038 /* 23039 * Type three generator adapted from the random() function in 4.4 BSD: 23040 */ 23041 23042 /* 23043 * Copyright (c) 1983, 1993 23044 * The Regents of the University of California. All rights reserved. 23045 * 23046 * Redistribution and use in source and binary forms, with or without 23047 * modification, are permitted provided that the following conditions 23048 * are met: 23049 * 1. Redistributions of source code must retain the above copyright 23050 * notice, this list of conditions and the following disclaimer. 23051 * 2. Redistributions in binary form must reproduce the above copyright 23052 * notice, this list of conditions and the following disclaimer in the 23053 * documentation and/or other materials provided with the distribution. 23054 * 3. All advertising materials mentioning features or use of this software 23055 * must display the following acknowledgement: 23056 * This product includes software developed by the University of 23057 * California, Berkeley and its contributors. 23058 * 4. Neither the name of the University nor the names of its contributors 23059 * may be used to endorse or promote products derived from this software 23060 * without specific prior written permission. 23061 * 23062 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23063 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23064 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23065 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23066 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23067 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23068 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23069 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23070 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23071 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23072 * SUCH DAMAGE. 23073 */ 23074 23075 /* Type 3 -- x**31 + x**3 + 1 */ 23076 #define DEG_3 31 23077 #define SEP_3 3 23078 23079 23080 /* Protected by tcp_random_lock */ 23081 static int tcp_randtbl[DEG_3 + 1]; 23082 23083 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23084 static int *tcp_random_rptr = &tcp_randtbl[1]; 23085 23086 static int *tcp_random_state = &tcp_randtbl[1]; 23087 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23088 23089 kmutex_t tcp_random_lock; 23090 23091 void 23092 tcp_random_init(void) 23093 { 23094 int i; 23095 hrtime_t hrt; 23096 time_t wallclock; 23097 uint64_t result; 23098 23099 /* 23100 * Use high-res timer and current time for seed. Gethrtime() returns 23101 * a longlong, which may contain resolution down to nanoseconds. 23102 * The current time will either be a 32-bit or a 64-bit quantity. 23103 * XOR the two together in a 64-bit result variable. 23104 * Convert the result to a 32-bit value by multiplying the high-order 23105 * 32-bits by the low-order 32-bits. 23106 */ 23107 23108 hrt = gethrtime(); 23109 (void) drv_getparm(TIME, &wallclock); 23110 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23111 mutex_enter(&tcp_random_lock); 23112 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23113 (result & 0xffffffff); 23114 23115 for (i = 1; i < DEG_3; i++) 23116 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23117 + 12345; 23118 tcp_random_fptr = &tcp_random_state[SEP_3]; 23119 tcp_random_rptr = &tcp_random_state[0]; 23120 mutex_exit(&tcp_random_lock); 23121 for (i = 0; i < 10 * DEG_3; i++) 23122 (void) tcp_random(); 23123 } 23124 23125 /* 23126 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23127 * This range is selected to be approximately centered on TCP_ISS / 2, 23128 * and easy to compute. We get this value by generating a 32-bit random 23129 * number, selecting out the high-order 17 bits, and then adding one so 23130 * that we never return zero. 23131 */ 23132 int 23133 tcp_random(void) 23134 { 23135 int i; 23136 23137 mutex_enter(&tcp_random_lock); 23138 *tcp_random_fptr += *tcp_random_rptr; 23139 23140 /* 23141 * The high-order bits are more random than the low-order bits, 23142 * so we select out the high-order 17 bits and add one so that 23143 * we never return zero. 23144 */ 23145 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23146 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23147 tcp_random_fptr = tcp_random_state; 23148 ++tcp_random_rptr; 23149 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23150 tcp_random_rptr = tcp_random_state; 23151 23152 mutex_exit(&tcp_random_lock); 23153 return (i); 23154 } 23155 23156 /* 23157 * XXX This will go away when TPI is extended to send 23158 * info reqs to sockfs/timod ..... 23159 * Given a queue, set the max packet size for the write 23160 * side of the queue below stream head. This value is 23161 * cached on the stream head. 23162 * Returns 1 on success, 0 otherwise. 23163 */ 23164 static int 23165 setmaxps(queue_t *q, int maxpsz) 23166 { 23167 struct stdata *stp; 23168 queue_t *wq; 23169 stp = STREAM(q); 23170 23171 /* 23172 * At this point change of a queue parameter is not allowed 23173 * when a multiplexor is sitting on top. 23174 */ 23175 if (stp->sd_flag & STPLEX) 23176 return (0); 23177 23178 claimstr(stp->sd_wrq); 23179 wq = stp->sd_wrq->q_next; 23180 ASSERT(wq != NULL); 23181 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 23182 releasestr(stp->sd_wrq); 23183 return (1); 23184 } 23185 23186 static int 23187 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23188 int *t_errorp, int *sys_errorp) 23189 { 23190 int error; 23191 int is_absreq_failure; 23192 t_scalar_t *opt_lenp; 23193 t_scalar_t opt_offset; 23194 int prim_type; 23195 struct T_conn_req *tcreqp; 23196 struct T_conn_res *tcresp; 23197 cred_t *cr; 23198 23199 cr = DB_CREDDEF(mp, tcp->tcp_cred); 23200 23201 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23202 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23203 prim_type == T_CONN_RES); 23204 23205 switch (prim_type) { 23206 case T_CONN_REQ: 23207 tcreqp = (struct T_conn_req *)mp->b_rptr; 23208 opt_offset = tcreqp->OPT_offset; 23209 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23210 break; 23211 case O_T_CONN_RES: 23212 case T_CONN_RES: 23213 tcresp = (struct T_conn_res *)mp->b_rptr; 23214 opt_offset = tcresp->OPT_offset; 23215 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23216 break; 23217 } 23218 23219 *t_errorp = 0; 23220 *sys_errorp = 0; 23221 *do_disconnectp = 0; 23222 23223 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23224 opt_offset, cr, &tcp_opt_obj, 23225 NULL, &is_absreq_failure); 23226 23227 switch (error) { 23228 case 0: /* no error */ 23229 ASSERT(is_absreq_failure == 0); 23230 return (0); 23231 case ENOPROTOOPT: 23232 *t_errorp = TBADOPT; 23233 break; 23234 case EACCES: 23235 *t_errorp = TACCES; 23236 break; 23237 default: 23238 *t_errorp = TSYSERR; *sys_errorp = error; 23239 break; 23240 } 23241 if (is_absreq_failure != 0) { 23242 /* 23243 * The connection request should get the local ack 23244 * T_OK_ACK and then a T_DISCON_IND. 23245 */ 23246 *do_disconnectp = 1; 23247 } 23248 return (-1); 23249 } 23250 23251 /* 23252 * Split this function out so that if the secret changes, I'm okay. 23253 * 23254 * Initialize the tcp_iss_cookie and tcp_iss_key. 23255 */ 23256 23257 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23258 23259 static void 23260 tcp_iss_key_init(uint8_t *phrase, int len) 23261 { 23262 struct { 23263 int32_t current_time; 23264 uint32_t randnum; 23265 uint16_t pad; 23266 uint8_t ether[6]; 23267 uint8_t passwd[PASSWD_SIZE]; 23268 } tcp_iss_cookie; 23269 time_t t; 23270 23271 /* 23272 * Start with the current absolute time. 23273 */ 23274 (void) drv_getparm(TIME, &t); 23275 tcp_iss_cookie.current_time = t; 23276 23277 /* 23278 * XXX - Need a more random number per RFC 1750, not this crap. 23279 * OTOH, if what follows is pretty random, then I'm in better shape. 23280 */ 23281 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23282 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23283 23284 /* 23285 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23286 * as a good template. 23287 */ 23288 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23289 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23290 23291 /* 23292 * The pass-phrase. Normally this is supplied by user-called NDD. 23293 */ 23294 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23295 23296 /* 23297 * See 4010593 if this section becomes a problem again, 23298 * but the local ethernet address is useful here. 23299 */ 23300 (void) localetheraddr(NULL, 23301 (struct ether_addr *)&tcp_iss_cookie.ether); 23302 23303 /* 23304 * Hash 'em all together. The MD5Final is called per-connection. 23305 */ 23306 mutex_enter(&tcp_iss_key_lock); 23307 MD5Init(&tcp_iss_key); 23308 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 23309 sizeof (tcp_iss_cookie)); 23310 mutex_exit(&tcp_iss_key_lock); 23311 } 23312 23313 /* 23314 * Set the RFC 1948 pass phrase 23315 */ 23316 /* ARGSUSED */ 23317 static int 23318 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23319 cred_t *cr) 23320 { 23321 /* 23322 * Basically, value contains a new pass phrase. Pass it along! 23323 */ 23324 tcp_iss_key_init((uint8_t *)value, strlen(value)); 23325 return (0); 23326 } 23327 23328 /* ARGSUSED */ 23329 static int 23330 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23331 { 23332 bzero(buf, sizeof (tcp_sack_info_t)); 23333 return (0); 23334 } 23335 23336 /* ARGSUSED */ 23337 static int 23338 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23339 { 23340 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23341 return (0); 23342 } 23343 23344 void 23345 tcp_ddi_init(void) 23346 { 23347 int i; 23348 23349 /* Initialize locks */ 23350 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 23351 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23352 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23353 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23354 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23355 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 23356 23357 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23358 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 23359 MUTEX_DEFAULT, NULL); 23360 } 23361 23362 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23363 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 23364 MUTEX_DEFAULT, NULL); 23365 } 23366 23367 /* TCP's IPsec code calls the packet dropper. */ 23368 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 23369 23370 if (!tcp_g_nd) { 23371 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 23372 nd_free(&tcp_g_nd); 23373 } 23374 } 23375 23376 /* 23377 * Note: To really walk the device tree you need the devinfo 23378 * pointer to your device which is only available after probe/attach. 23379 * The following is safe only because it uses ddi_root_node() 23380 */ 23381 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23382 tcp_opt_obj.odb_opt_arr_cnt); 23383 23384 tcp_timercache = kmem_cache_create("tcp_timercache", 23385 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23386 NULL, NULL, NULL, NULL, NULL, 0); 23387 23388 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23389 sizeof (tcp_sack_info_t), 0, 23390 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23391 23392 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23393 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23394 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23395 23396 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 23397 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 23398 23399 ip_squeue_init(tcp_squeue_add); 23400 23401 /* Initialize the random number generator */ 23402 tcp_random_init(); 23403 23404 /* 23405 * Initialize RFC 1948 secret values. This will probably be reset once 23406 * by the boot scripts. 23407 * 23408 * Use NULL name, as the name is caught by the new lockstats. 23409 * 23410 * Initialize with some random, non-guessable string, like the global 23411 * T_INFO_ACK. 23412 */ 23413 23414 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23415 sizeof (tcp_g_t_info_ack)); 23416 23417 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 23418 "net", KSTAT_TYPE_NAMED, 23419 sizeof (tcp_statistics) / sizeof (kstat_named_t), 23420 KSTAT_FLAG_VIRTUAL)) != NULL) { 23421 tcp_kstat->ks_data = &tcp_statistics; 23422 kstat_install(tcp_kstat); 23423 } 23424 23425 tcp_kstat_init(); 23426 } 23427 23428 void 23429 tcp_ddi_destroy(void) 23430 { 23431 int i; 23432 23433 nd_free(&tcp_g_nd); 23434 23435 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23436 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 23437 } 23438 23439 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23440 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 23441 } 23442 23443 mutex_destroy(&tcp_iss_key_lock); 23444 rw_destroy(&tcp_hsp_lock); 23445 mutex_destroy(&tcp_g_q_lock); 23446 mutex_destroy(&tcp_random_lock); 23447 mutex_destroy(&tcp_epriv_port_lock); 23448 rw_destroy(&tcp_reserved_port_lock); 23449 23450 ip_drop_unregister(&tcp_dropper); 23451 23452 kmem_cache_destroy(tcp_timercache); 23453 kmem_cache_destroy(tcp_sack_info_cache); 23454 kmem_cache_destroy(tcp_iphc_cache); 23455 23456 tcp_kstat_fini(); 23457 } 23458 23459 /* 23460 * Generate ISS, taking into account NDD changes may happen halfway through. 23461 * (If the iss is not zero, set it.) 23462 */ 23463 23464 static void 23465 tcp_iss_init(tcp_t *tcp) 23466 { 23467 MD5_CTX context; 23468 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 23469 uint32_t answer[4]; 23470 23471 tcp_iss_incr_extra += (ISS_INCR >> 1); 23472 tcp->tcp_iss = tcp_iss_incr_extra; 23473 switch (tcp_strong_iss) { 23474 case 2: 23475 mutex_enter(&tcp_iss_key_lock); 23476 context = tcp_iss_key; 23477 mutex_exit(&tcp_iss_key_lock); 23478 arg.ports = tcp->tcp_ports; 23479 if (tcp->tcp_ipversion == IPV4_VERSION) { 23480 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 23481 &arg.src); 23482 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 23483 &arg.dst); 23484 } else { 23485 arg.src = tcp->tcp_ip6h->ip6_src; 23486 arg.dst = tcp->tcp_ip6h->ip6_dst; 23487 } 23488 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 23489 MD5Final((uchar_t *)answer, &context); 23490 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 23491 /* 23492 * Now that we've hashed into a unique per-connection sequence 23493 * space, add a random increment per strong_iss == 1. So I 23494 * guess we'll have to... 23495 */ 23496 /* FALLTHRU */ 23497 case 1: 23498 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 23499 break; 23500 default: 23501 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 23502 break; 23503 } 23504 tcp->tcp_valid_bits = TCP_ISS_VALID; 23505 tcp->tcp_fss = tcp->tcp_iss - 1; 23506 tcp->tcp_suna = tcp->tcp_iss; 23507 tcp->tcp_snxt = tcp->tcp_iss + 1; 23508 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23509 tcp->tcp_csuna = tcp->tcp_snxt; 23510 } 23511 23512 /* 23513 * Exported routine for extracting active tcp connection status. 23514 * 23515 * This is used by the Solaris Cluster Networking software to 23516 * gather a list of connections that need to be forwarded to 23517 * specific nodes in the cluster when configuration changes occur. 23518 * 23519 * The callback is invoked for each tcp_t structure. Returning 23520 * non-zero from the callback routine terminates the search. 23521 */ 23522 int 23523 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 23524 { 23525 tcp_t *tcp; 23526 cl_tcp_info_t cl_tcpi; 23527 connf_t *connfp; 23528 conn_t *connp; 23529 int i; 23530 23531 ASSERT(callback != NULL); 23532 23533 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 23534 23535 connfp = &ipcl_globalhash_fanout[i]; 23536 connp = NULL; 23537 23538 while ((connp = 23539 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 23540 23541 tcp = connp->conn_tcp; 23542 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 23543 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 23544 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 23545 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 23546 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 23547 /* 23548 * The macros tcp_laddr and tcp_faddr give the IPv4 23549 * addresses. They are copied implicitly below as 23550 * mapped addresses. 23551 */ 23552 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 23553 if (tcp->tcp_ipversion == IPV4_VERSION) { 23554 cl_tcpi.cl_tcpi_faddr = 23555 tcp->tcp_ipha->ipha_dst; 23556 } else { 23557 cl_tcpi.cl_tcpi_faddr_v6 = 23558 tcp->tcp_ip6h->ip6_dst; 23559 } 23560 23561 /* 23562 * If the callback returns non-zero 23563 * we terminate the traversal. 23564 */ 23565 if ((*callback)(&cl_tcpi, arg) != 0) { 23566 CONN_DEC_REF(tcp->tcp_connp); 23567 return (1); 23568 } 23569 } 23570 } 23571 23572 return (0); 23573 } 23574 23575 /* 23576 * Macros used for accessing the different types of sockaddr 23577 * structures inside a tcp_ioc_abort_conn_t. 23578 */ 23579 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 23580 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 23581 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 23582 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 23583 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 23584 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 23585 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 23586 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 23587 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 23588 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 23589 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 23590 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 23591 23592 /* 23593 * Return the correct error code to mimic the behavior 23594 * of a connection reset. 23595 */ 23596 #define TCP_AC_GET_ERRCODE(state, err) { \ 23597 switch ((state)) { \ 23598 case TCPS_SYN_SENT: \ 23599 case TCPS_SYN_RCVD: \ 23600 (err) = ECONNREFUSED; \ 23601 break; \ 23602 case TCPS_ESTABLISHED: \ 23603 case TCPS_FIN_WAIT_1: \ 23604 case TCPS_FIN_WAIT_2: \ 23605 case TCPS_CLOSE_WAIT: \ 23606 (err) = ECONNRESET; \ 23607 break; \ 23608 case TCPS_CLOSING: \ 23609 case TCPS_LAST_ACK: \ 23610 case TCPS_TIME_WAIT: \ 23611 (err) = 0; \ 23612 break; \ 23613 default: \ 23614 (err) = ENXIO; \ 23615 } \ 23616 } 23617 23618 /* 23619 * Check if a tcp structure matches the info in acp. 23620 */ 23621 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 23622 (((acp)->ac_local.ss_family == AF_INET) ? \ 23623 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 23624 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 23625 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 23626 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 23627 (TCP_AC_V4LPORT((acp)) == 0 || \ 23628 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 23629 (TCP_AC_V4RPORT((acp)) == 0 || \ 23630 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 23631 (acp)->ac_start <= (tcp)->tcp_state && \ 23632 (acp)->ac_end >= (tcp)->tcp_state) : \ 23633 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 23634 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 23635 &(tcp)->tcp_ip_src_v6)) && \ 23636 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 23637 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 23638 &(tcp)->tcp_remote_v6)) && \ 23639 (TCP_AC_V6LPORT((acp)) == 0 || \ 23640 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 23641 (TCP_AC_V6RPORT((acp)) == 0 || \ 23642 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 23643 (acp)->ac_start <= (tcp)->tcp_state && \ 23644 (acp)->ac_end >= (tcp)->tcp_state)) 23645 23646 #define TCP_AC_MATCH(acp, tcp) \ 23647 (((acp)->ac_zoneid == ALL_ZONES || \ 23648 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 23649 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 23650 23651 /* 23652 * Build a message containing a tcp_ioc_abort_conn_t structure 23653 * which is filled in with information from acp and tp. 23654 */ 23655 static mblk_t * 23656 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 23657 { 23658 mblk_t *mp; 23659 tcp_ioc_abort_conn_t *tacp; 23660 23661 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 23662 if (mp == NULL) 23663 return (NULL); 23664 23665 mp->b_datap->db_type = M_CTL; 23666 23667 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 23668 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 23669 sizeof (uint32_t)); 23670 23671 tacp->ac_start = acp->ac_start; 23672 tacp->ac_end = acp->ac_end; 23673 tacp->ac_zoneid = acp->ac_zoneid; 23674 23675 if (acp->ac_local.ss_family == AF_INET) { 23676 tacp->ac_local.ss_family = AF_INET; 23677 tacp->ac_remote.ss_family = AF_INET; 23678 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 23679 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 23680 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 23681 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 23682 } else { 23683 tacp->ac_local.ss_family = AF_INET6; 23684 tacp->ac_remote.ss_family = AF_INET6; 23685 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 23686 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 23687 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 23688 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 23689 } 23690 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 23691 return (mp); 23692 } 23693 23694 /* 23695 * Print a tcp_ioc_abort_conn_t structure. 23696 */ 23697 static void 23698 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 23699 { 23700 char lbuf[128]; 23701 char rbuf[128]; 23702 sa_family_t af; 23703 in_port_t lport, rport; 23704 ushort_t logflags; 23705 23706 af = acp->ac_local.ss_family; 23707 23708 if (af == AF_INET) { 23709 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 23710 lbuf, 128); 23711 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 23712 rbuf, 128); 23713 lport = ntohs(TCP_AC_V4LPORT(acp)); 23714 rport = ntohs(TCP_AC_V4RPORT(acp)); 23715 } else { 23716 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 23717 lbuf, 128); 23718 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 23719 rbuf, 128); 23720 lport = ntohs(TCP_AC_V6LPORT(acp)); 23721 rport = ntohs(TCP_AC_V6RPORT(acp)); 23722 } 23723 23724 logflags = SL_TRACE | SL_NOTE; 23725 /* 23726 * Don't print this message to the console if the operation was done 23727 * to a non-global zone. 23728 */ 23729 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 23730 logflags |= SL_CONSOLE; 23731 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 23732 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 23733 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 23734 acp->ac_start, acp->ac_end); 23735 } 23736 23737 /* 23738 * Called inside tcp_rput when a message built using 23739 * tcp_ioctl_abort_build_msg is put into a queue. 23740 * Note that when we get here there is no wildcard in acp any more. 23741 */ 23742 static void 23743 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 23744 { 23745 tcp_ioc_abort_conn_t *acp; 23746 23747 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 23748 if (tcp->tcp_state <= acp->ac_end) { 23749 /* 23750 * If we get here, we are already on the correct 23751 * squeue. This ioctl follows the following path 23752 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 23753 * ->tcp_ioctl_abort->squeue_fill (if on a 23754 * different squeue) 23755 */ 23756 int errcode; 23757 23758 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 23759 (void) tcp_clean_death(tcp, errcode, 26); 23760 } 23761 freemsg(mp); 23762 } 23763 23764 /* 23765 * Abort all matching connections on a hash chain. 23766 */ 23767 static int 23768 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 23769 boolean_t exact) 23770 { 23771 int nmatch, err = 0; 23772 tcp_t *tcp; 23773 MBLKP mp, last, listhead = NULL; 23774 conn_t *tconnp; 23775 connf_t *connfp = &ipcl_conn_fanout[index]; 23776 23777 startover: 23778 nmatch = 0; 23779 23780 mutex_enter(&connfp->connf_lock); 23781 for (tconnp = connfp->connf_head; tconnp != NULL; 23782 tconnp = tconnp->conn_next) { 23783 tcp = tconnp->conn_tcp; 23784 if (TCP_AC_MATCH(acp, tcp)) { 23785 CONN_INC_REF(tcp->tcp_connp); 23786 mp = tcp_ioctl_abort_build_msg(acp, tcp); 23787 if (mp == NULL) { 23788 err = ENOMEM; 23789 CONN_DEC_REF(tcp->tcp_connp); 23790 break; 23791 } 23792 mp->b_prev = (mblk_t *)tcp; 23793 23794 if (listhead == NULL) { 23795 listhead = mp; 23796 last = mp; 23797 } else { 23798 last->b_next = mp; 23799 last = mp; 23800 } 23801 nmatch++; 23802 if (exact) 23803 break; 23804 } 23805 23806 /* Avoid holding lock for too long. */ 23807 if (nmatch >= 500) 23808 break; 23809 } 23810 mutex_exit(&connfp->connf_lock); 23811 23812 /* Pass mp into the correct tcp */ 23813 while ((mp = listhead) != NULL) { 23814 listhead = listhead->b_next; 23815 tcp = (tcp_t *)mp->b_prev; 23816 mp->b_next = mp->b_prev = NULL; 23817 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 23818 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 23819 } 23820 23821 *count += nmatch; 23822 if (nmatch >= 500 && err == 0) 23823 goto startover; 23824 return (err); 23825 } 23826 23827 /* 23828 * Abort all connections that matches the attributes specified in acp. 23829 */ 23830 static int 23831 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 23832 { 23833 sa_family_t af; 23834 uint32_t ports; 23835 uint16_t *pports; 23836 int err = 0, count = 0; 23837 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 23838 int index = -1; 23839 ushort_t logflags; 23840 23841 af = acp->ac_local.ss_family; 23842 23843 if (af == AF_INET) { 23844 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 23845 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 23846 pports = (uint16_t *)&ports; 23847 pports[1] = TCP_AC_V4LPORT(acp); 23848 pports[0] = TCP_AC_V4RPORT(acp); 23849 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 23850 } 23851 } else { 23852 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 23853 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 23854 pports = (uint16_t *)&ports; 23855 pports[1] = TCP_AC_V6LPORT(acp); 23856 pports[0] = TCP_AC_V6RPORT(acp); 23857 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 23858 } 23859 } 23860 23861 /* 23862 * For cases where remote addr, local port, and remote port are non- 23863 * wildcards, tcp_ioctl_abort_bucket will only be called once. 23864 */ 23865 if (index != -1) { 23866 err = tcp_ioctl_abort_bucket(acp, index, 23867 &count, exact); 23868 } else { 23869 /* 23870 * loop through all entries for wildcard case 23871 */ 23872 for (index = 0; index < ipcl_conn_fanout_size; index++) { 23873 err = tcp_ioctl_abort_bucket(acp, index, 23874 &count, exact); 23875 if (err != 0) 23876 break; 23877 } 23878 } 23879 23880 logflags = SL_TRACE | SL_NOTE; 23881 /* 23882 * Don't print this message to the console if the operation was done 23883 * to a non-global zone. 23884 */ 23885 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 23886 logflags |= SL_CONSOLE; 23887 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 23888 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 23889 if (err == 0 && count == 0) 23890 err = ENOENT; 23891 return (err); 23892 } 23893 23894 /* 23895 * Process the TCP_IOC_ABORT_CONN ioctl request. 23896 */ 23897 static void 23898 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 23899 { 23900 int err; 23901 IOCP iocp; 23902 MBLKP mp1; 23903 sa_family_t laf, raf; 23904 tcp_ioc_abort_conn_t *acp; 23905 zone_t *zptr; 23906 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 23907 23908 iocp = (IOCP)mp->b_rptr; 23909 23910 if ((mp1 = mp->b_cont) == NULL || 23911 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 23912 err = EINVAL; 23913 goto out; 23914 } 23915 23916 /* check permissions */ 23917 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 23918 err = EPERM; 23919 goto out; 23920 } 23921 23922 if (mp1->b_cont != NULL) { 23923 freemsg(mp1->b_cont); 23924 mp1->b_cont = NULL; 23925 } 23926 23927 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 23928 laf = acp->ac_local.ss_family; 23929 raf = acp->ac_remote.ss_family; 23930 23931 /* check that a zone with the supplied zoneid exists */ 23932 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 23933 zptr = zone_find_by_id(zoneid); 23934 if (zptr != NULL) { 23935 zone_rele(zptr); 23936 } else { 23937 err = EINVAL; 23938 goto out; 23939 } 23940 } 23941 23942 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 23943 acp->ac_start > acp->ac_end || laf != raf || 23944 (laf != AF_INET && laf != AF_INET6)) { 23945 err = EINVAL; 23946 goto out; 23947 } 23948 23949 tcp_ioctl_abort_dump(acp); 23950 err = tcp_ioctl_abort(acp); 23951 23952 out: 23953 if (mp1 != NULL) { 23954 freemsg(mp1); 23955 mp->b_cont = NULL; 23956 } 23957 23958 if (err != 0) 23959 miocnak(q, mp, 0, err); 23960 else 23961 miocack(q, mp, 0, 0); 23962 } 23963 23964 /* 23965 * tcp_time_wait_processing() handles processing of incoming packets when 23966 * the tcp is in the TIME_WAIT state. 23967 * A TIME_WAIT tcp that has an associated open TCP stream is never put 23968 * on the time wait list. 23969 */ 23970 void 23971 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 23972 uint32_t seg_ack, int seg_len, tcph_t *tcph) 23973 { 23974 int32_t bytes_acked; 23975 int32_t gap; 23976 int32_t rgap; 23977 tcp_opt_t tcpopt; 23978 uint_t flags; 23979 uint32_t new_swnd = 0; 23980 conn_t *connp; 23981 23982 BUMP_LOCAL(tcp->tcp_ibsegs); 23983 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 23984 23985 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 23986 new_swnd = BE16_TO_U16(tcph->th_win) << 23987 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 23988 if (tcp->tcp_snd_ts_ok) { 23989 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 23990 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 23991 tcp->tcp_rnxt, TH_ACK); 23992 goto done; 23993 } 23994 } 23995 gap = seg_seq - tcp->tcp_rnxt; 23996 rgap = tcp->tcp_rwnd - (gap + seg_len); 23997 if (gap < 0) { 23998 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 23999 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 24000 (seg_len > -gap ? -gap : seg_len)); 24001 seg_len += gap; 24002 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24003 if (flags & TH_RST) { 24004 goto done; 24005 } 24006 if ((flags & TH_FIN) && seg_len == -1) { 24007 /* 24008 * When TCP receives a duplicate FIN in 24009 * TIME_WAIT state, restart the 2 MSL timer. 24010 * See page 73 in RFC 793. Make sure this TCP 24011 * is already on the TIME_WAIT list. If not, 24012 * just restart the timer. 24013 */ 24014 if (TCP_IS_DETACHED(tcp)) { 24015 tcp_time_wait_remove(tcp, NULL); 24016 tcp_time_wait_append(tcp); 24017 TCP_DBGSTAT(tcp_rput_time_wait); 24018 } else { 24019 ASSERT(tcp != NULL); 24020 TCP_TIMER_RESTART(tcp, 24021 tcp_time_wait_interval); 24022 } 24023 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24024 tcp->tcp_rnxt, TH_ACK); 24025 goto done; 24026 } 24027 flags |= TH_ACK_NEEDED; 24028 seg_len = 0; 24029 goto process_ack; 24030 } 24031 24032 /* Fix seg_seq, and chew the gap off the front. */ 24033 seg_seq = tcp->tcp_rnxt; 24034 } 24035 24036 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24037 /* 24038 * Make sure that when we accept the connection, pick 24039 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24040 * old connection. 24041 * 24042 * The next ISS generated is equal to tcp_iss_incr_extra 24043 * + ISS_INCR/2 + other components depending on the 24044 * value of tcp_strong_iss. We pre-calculate the new 24045 * ISS here and compare with tcp_snxt to determine if 24046 * we need to make adjustment to tcp_iss_incr_extra. 24047 * 24048 * The above calculation is ugly and is a 24049 * waste of CPU cycles... 24050 */ 24051 uint32_t new_iss = tcp_iss_incr_extra; 24052 int32_t adj; 24053 24054 switch (tcp_strong_iss) { 24055 case 2: { 24056 /* Add time and MD5 components. */ 24057 uint32_t answer[4]; 24058 struct { 24059 uint32_t ports; 24060 in6_addr_t src; 24061 in6_addr_t dst; 24062 } arg; 24063 MD5_CTX context; 24064 24065 mutex_enter(&tcp_iss_key_lock); 24066 context = tcp_iss_key; 24067 mutex_exit(&tcp_iss_key_lock); 24068 arg.ports = tcp->tcp_ports; 24069 /* We use MAPPED addresses in tcp_iss_init */ 24070 arg.src = tcp->tcp_ip_src_v6; 24071 if (tcp->tcp_ipversion == IPV4_VERSION) { 24072 IN6_IPADDR_TO_V4MAPPED( 24073 tcp->tcp_ipha->ipha_dst, 24074 &arg.dst); 24075 } else { 24076 arg.dst = 24077 tcp->tcp_ip6h->ip6_dst; 24078 } 24079 MD5Update(&context, (uchar_t *)&arg, 24080 sizeof (arg)); 24081 MD5Final((uchar_t *)answer, &context); 24082 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24083 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24084 break; 24085 } 24086 case 1: 24087 /* Add time component and min random (i.e. 1). */ 24088 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24089 break; 24090 default: 24091 /* Add only time component. */ 24092 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24093 break; 24094 } 24095 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24096 /* 24097 * New ISS not guaranteed to be ISS_INCR/2 24098 * ahead of the current tcp_snxt, so add the 24099 * difference to tcp_iss_incr_extra. 24100 */ 24101 tcp_iss_incr_extra += adj; 24102 } 24103 /* 24104 * If tcp_clean_death() can not perform the task now, 24105 * drop the SYN packet and let the other side re-xmit. 24106 * Otherwise pass the SYN packet back in, since the 24107 * old tcp state has been cleaned up or freed. 24108 */ 24109 if (tcp_clean_death(tcp, 0, 27) == -1) 24110 goto done; 24111 /* 24112 * We will come back to tcp_rput_data 24113 * on the global queue. Packets destined 24114 * for the global queue will be checked 24115 * with global policy. But the policy for 24116 * this packet has already been checked as 24117 * this was destined for the detached 24118 * connection. We need to bypass policy 24119 * check this time by attaching a dummy 24120 * ipsec_in with ipsec_in_dont_check set. 24121 */ 24122 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 24123 NULL) { 24124 TCP_STAT(tcp_time_wait_syn_success); 24125 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24126 return; 24127 } 24128 goto done; 24129 } 24130 24131 /* 24132 * rgap is the amount of stuff received out of window. A negative 24133 * value is the amount out of window. 24134 */ 24135 if (rgap < 0) { 24136 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 24137 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 24138 /* Fix seg_len and make sure there is something left. */ 24139 seg_len += rgap; 24140 if (seg_len <= 0) { 24141 if (flags & TH_RST) { 24142 goto done; 24143 } 24144 flags |= TH_ACK_NEEDED; 24145 seg_len = 0; 24146 goto process_ack; 24147 } 24148 } 24149 /* 24150 * Check whether we can update tcp_ts_recent. This test is 24151 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24152 * Extensions for High Performance: An Update", Internet Draft. 24153 */ 24154 if (tcp->tcp_snd_ts_ok && 24155 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24156 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24157 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24158 tcp->tcp_last_rcv_lbolt = lbolt64; 24159 } 24160 24161 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24162 /* Always ack out of order packets */ 24163 flags |= TH_ACK_NEEDED; 24164 seg_len = 0; 24165 } else if (seg_len > 0) { 24166 BUMP_MIB(&tcp_mib, tcpInClosed); 24167 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 24168 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 24169 } 24170 if (flags & TH_RST) { 24171 (void) tcp_clean_death(tcp, 0, 28); 24172 goto done; 24173 } 24174 if (flags & TH_SYN) { 24175 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24176 TH_RST|TH_ACK); 24177 /* 24178 * Do not delete the TCP structure if it is in 24179 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24180 */ 24181 goto done; 24182 } 24183 process_ack: 24184 if (flags & TH_ACK) { 24185 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24186 if (bytes_acked <= 0) { 24187 if (bytes_acked == 0 && seg_len == 0 && 24188 new_swnd == tcp->tcp_swnd) 24189 BUMP_MIB(&tcp_mib, tcpInDupAck); 24190 } else { 24191 /* Acks something not sent */ 24192 flags |= TH_ACK_NEEDED; 24193 } 24194 } 24195 if (flags & TH_ACK_NEEDED) { 24196 /* 24197 * Time to send an ack for some reason. 24198 */ 24199 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24200 tcp->tcp_rnxt, TH_ACK); 24201 } 24202 done: 24203 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24204 DB_CKSUMSTART(mp) = 0; 24205 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24206 TCP_STAT(tcp_time_wait_syn_fail); 24207 } 24208 freemsg(mp); 24209 } 24210 24211 /* 24212 * Return zero if the buffers are identical in length and content. 24213 * This is used for comparing extension header buffers. 24214 * Note that an extension header would be declared different 24215 * even if all that changed was the next header value in that header i.e. 24216 * what really changed is the next extension header. 24217 */ 24218 static boolean_t 24219 tcp_cmpbuf(void *a, uint_t alen, boolean_t b_valid, void *b, uint_t blen) 24220 { 24221 if (!b_valid) 24222 blen = 0; 24223 24224 if (alen != blen) 24225 return (B_TRUE); 24226 if (alen == 0) 24227 return (B_FALSE); /* Both zero length */ 24228 return (bcmp(a, b, alen)); 24229 } 24230 24231 /* 24232 * Preallocate memory for tcp_savebuf(). Returns B_TRUE if ok. 24233 * Return B_FALSE if memory allocation fails - don't change any state! 24234 */ 24235 static boolean_t 24236 tcp_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24237 void *src, uint_t srclen) 24238 { 24239 void *dst; 24240 24241 if (!src_valid) 24242 srclen = 0; 24243 24244 ASSERT(*dstlenp == 0); 24245 if (src != NULL && srclen != 0) { 24246 dst = mi_alloc(srclen, BPRI_MED); 24247 if (dst == NULL) 24248 return (B_FALSE); 24249 } else { 24250 dst = NULL; 24251 } 24252 if (*dstp != NULL) { 24253 mi_free(*dstp); 24254 *dstp = NULL; 24255 *dstlenp = 0; 24256 } 24257 *dstp = dst; 24258 if (dst != NULL) 24259 *dstlenp = srclen; 24260 else 24261 *dstlenp = 0; 24262 return (B_TRUE); 24263 } 24264 24265 /* 24266 * Replace what is in *dst, *dstlen with the source. 24267 * Assumes tcp_allocbuf has already been called. 24268 */ 24269 static void 24270 tcp_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24271 void *src, uint_t srclen) 24272 { 24273 if (!src_valid) 24274 srclen = 0; 24275 24276 ASSERT(*dstlenp == srclen); 24277 if (src != NULL && srclen != 0) { 24278 bcopy(src, *dstp, srclen); 24279 } 24280 } 24281 24282 /* 24283 * Allocate a T_SVR4_OPTMGMT_REQ. 24284 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 24285 * that tcp_rput_other can drop the acks. 24286 */ 24287 static mblk_t * 24288 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 24289 { 24290 mblk_t *mp; 24291 struct T_optmgmt_req *tor; 24292 struct opthdr *oh; 24293 uint_t size; 24294 char *optptr; 24295 24296 size = sizeof (*tor) + sizeof (*oh) + optlen; 24297 mp = allocb(size, BPRI_MED); 24298 if (mp == NULL) 24299 return (NULL); 24300 24301 mp->b_wptr += size; 24302 mp->b_datap->db_type = M_PROTO; 24303 tor = (struct T_optmgmt_req *)mp->b_rptr; 24304 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 24305 tor->MGMT_flags = T_NEGOTIATE; 24306 tor->OPT_length = sizeof (*oh) + optlen; 24307 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 24308 24309 oh = (struct opthdr *)&tor[1]; 24310 oh->level = level; 24311 oh->name = cmd; 24312 oh->len = optlen; 24313 if (optlen != 0) { 24314 optptr = (char *)&oh[1]; 24315 bcopy(opt, optptr, optlen); 24316 } 24317 return (mp); 24318 } 24319 24320 /* 24321 * TCP Timers Implementation. 24322 */ 24323 timeout_id_t 24324 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24325 { 24326 mblk_t *mp; 24327 tcp_timer_t *tcpt; 24328 tcp_t *tcp = connp->conn_tcp; 24329 24330 ASSERT(connp->conn_sqp != NULL); 24331 24332 TCP_DBGSTAT(tcp_timeout_calls); 24333 24334 if (tcp->tcp_timercache == NULL) { 24335 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24336 } else { 24337 TCP_DBGSTAT(tcp_timeout_cached_alloc); 24338 mp = tcp->tcp_timercache; 24339 tcp->tcp_timercache = mp->b_next; 24340 mp->b_next = NULL; 24341 ASSERT(mp->b_wptr == NULL); 24342 } 24343 24344 CONN_INC_REF(connp); 24345 tcpt = (tcp_timer_t *)mp->b_rptr; 24346 tcpt->connp = connp; 24347 tcpt->tcpt_proc = f; 24348 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 24349 return ((timeout_id_t)mp); 24350 } 24351 24352 static void 24353 tcp_timer_callback(void *arg) 24354 { 24355 mblk_t *mp = (mblk_t *)arg; 24356 tcp_timer_t *tcpt; 24357 conn_t *connp; 24358 24359 tcpt = (tcp_timer_t *)mp->b_rptr; 24360 connp = tcpt->connp; 24361 squeue_fill(connp->conn_sqp, mp, 24362 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 24363 } 24364 24365 static void 24366 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24367 { 24368 tcp_timer_t *tcpt; 24369 conn_t *connp = (conn_t *)arg; 24370 tcp_t *tcp = connp->conn_tcp; 24371 24372 tcpt = (tcp_timer_t *)mp->b_rptr; 24373 ASSERT(connp == tcpt->connp); 24374 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24375 24376 /* 24377 * If the TCP has reached the closed state, don't proceed any 24378 * further. This TCP logically does not exist on the system. 24379 * tcpt_proc could for example access queues, that have already 24380 * been qprocoff'ed off. Also see comments at the start of tcp_input 24381 */ 24382 if (tcp->tcp_state != TCPS_CLOSED) { 24383 (*tcpt->tcpt_proc)(connp); 24384 } else { 24385 tcp->tcp_timer_tid = 0; 24386 } 24387 tcp_timer_free(connp->conn_tcp, mp); 24388 } 24389 24390 /* 24391 * There is potential race with untimeout and the handler firing at the same 24392 * time. The mblock may be freed by the handler while we are trying to use 24393 * it. But since both should execute on the same squeue, this race should not 24394 * occur. 24395 */ 24396 clock_t 24397 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24398 { 24399 mblk_t *mp = (mblk_t *)id; 24400 tcp_timer_t *tcpt; 24401 clock_t delta; 24402 24403 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 24404 24405 if (mp == NULL) 24406 return (-1); 24407 24408 tcpt = (tcp_timer_t *)mp->b_rptr; 24409 ASSERT(tcpt->connp == connp); 24410 24411 delta = untimeout(tcpt->tcpt_tid); 24412 24413 if (delta >= 0) { 24414 TCP_DBGSTAT(tcp_timeout_canceled); 24415 tcp_timer_free(connp->conn_tcp, mp); 24416 CONN_DEC_REF(connp); 24417 } 24418 24419 return (delta); 24420 } 24421 24422 /* 24423 * Allocate space for the timer event. The allocation looks like mblk, but it is 24424 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24425 * 24426 * Dealing with failures: If we can't allocate from the timer cache we try 24427 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24428 * points to b_rptr. 24429 * If we can't allocate anything using allocb_tryhard(), we perform a last 24430 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24431 * save the actual allocation size in b_datap. 24432 */ 24433 mblk_t * 24434 tcp_timermp_alloc(int kmflags) 24435 { 24436 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 24437 kmflags & ~KM_PANIC); 24438 24439 if (mp != NULL) { 24440 mp->b_next = mp->b_prev = NULL; 24441 mp->b_rptr = (uchar_t *)(&mp[1]); 24442 mp->b_wptr = NULL; 24443 mp->b_datap = NULL; 24444 mp->b_queue = NULL; 24445 } else if (kmflags & KM_PANIC) { 24446 /* 24447 * Failed to allocate memory for the timer. Try allocating from 24448 * dblock caches. 24449 */ 24450 TCP_STAT(tcp_timermp_allocfail); 24451 mp = allocb_tryhard(sizeof (tcp_timer_t)); 24452 if (mp == NULL) { 24453 size_t size = 0; 24454 /* 24455 * Memory is really low. Try tryhard allocation. 24456 */ 24457 TCP_STAT(tcp_timermp_allocdblfail); 24458 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 24459 sizeof (tcp_timer_t), &size, kmflags); 24460 mp->b_rptr = (uchar_t *)(&mp[1]); 24461 mp->b_next = mp->b_prev = NULL; 24462 mp->b_wptr = (uchar_t *)-1; 24463 mp->b_datap = (dblk_t *)size; 24464 mp->b_queue = NULL; 24465 } 24466 ASSERT(mp->b_wptr != NULL); 24467 } 24468 TCP_DBGSTAT(tcp_timermp_alloced); 24469 24470 return (mp); 24471 } 24472 24473 /* 24474 * Free per-tcp timer cache. 24475 * It can only contain entries from tcp_timercache. 24476 */ 24477 void 24478 tcp_timermp_free(tcp_t *tcp) 24479 { 24480 mblk_t *mp; 24481 24482 while ((mp = tcp->tcp_timercache) != NULL) { 24483 ASSERT(mp->b_wptr == NULL); 24484 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 24485 kmem_cache_free(tcp_timercache, mp); 24486 } 24487 } 24488 24489 /* 24490 * Free timer event. Put it on the per-tcp timer cache if there is not too many 24491 * events there already (currently at most two events are cached). 24492 * If the event is not allocated from the timer cache, free it right away. 24493 */ 24494 static void 24495 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 24496 { 24497 mblk_t *mp1 = tcp->tcp_timercache; 24498 24499 if (mp->b_wptr != NULL) { 24500 /* 24501 * This allocation is not from a timer cache, free it right 24502 * away. 24503 */ 24504 if (mp->b_wptr != (uchar_t *)-1) 24505 freeb(mp); 24506 else 24507 kmem_free(mp, (size_t)mp->b_datap); 24508 } else if (mp1 == NULL || mp1->b_next == NULL) { 24509 /* Cache this timer block for future allocations */ 24510 mp->b_rptr = (uchar_t *)(&mp[1]); 24511 mp->b_next = mp1; 24512 tcp->tcp_timercache = mp; 24513 } else { 24514 kmem_cache_free(tcp_timercache, mp); 24515 TCP_DBGSTAT(tcp_timermp_freed); 24516 } 24517 } 24518 24519 /* 24520 * End of TCP Timers implementation. 24521 */ 24522 24523 /* 24524 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 24525 * on the specified backing STREAMS q. Note, the caller may make the 24526 * decision to call based on the tcp_t.tcp_flow_stopped value which 24527 * when check outside the q's lock is only an advisory check ... 24528 */ 24529 24530 void 24531 tcp_setqfull(tcp_t *tcp) 24532 { 24533 queue_t *q = tcp->tcp_wq; 24534 24535 if (!(q->q_flag & QFULL)) { 24536 mutex_enter(QLOCK(q)); 24537 if (!(q->q_flag & QFULL)) { 24538 /* still need to set QFULL */ 24539 q->q_flag |= QFULL; 24540 tcp->tcp_flow_stopped = B_TRUE; 24541 mutex_exit(QLOCK(q)); 24542 TCP_STAT(tcp_flwctl_on); 24543 } else { 24544 mutex_exit(QLOCK(q)); 24545 } 24546 } 24547 } 24548 24549 void 24550 tcp_clrqfull(tcp_t *tcp) 24551 { 24552 queue_t *q = tcp->tcp_wq; 24553 24554 if (q->q_flag & QFULL) { 24555 mutex_enter(QLOCK(q)); 24556 if (q->q_flag & QFULL) { 24557 q->q_flag &= ~QFULL; 24558 tcp->tcp_flow_stopped = B_FALSE; 24559 mutex_exit(QLOCK(q)); 24560 if (q->q_flag & QWANTW) 24561 qbackenable(q, 0); 24562 } else { 24563 mutex_exit(QLOCK(q)); 24564 } 24565 } 24566 } 24567 24568 /* 24569 * TCP Kstats implementation 24570 */ 24571 static void 24572 tcp_kstat_init(void) 24573 { 24574 tcp_named_kstat_t template = { 24575 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 24576 { "rtoMin", KSTAT_DATA_INT32, 0 }, 24577 { "rtoMax", KSTAT_DATA_INT32, 0 }, 24578 { "maxConn", KSTAT_DATA_INT32, 0 }, 24579 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 24580 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 24581 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 24582 { "estabResets", KSTAT_DATA_UINT32, 0 }, 24583 { "currEstab", KSTAT_DATA_UINT32, 0 }, 24584 { "inSegs", KSTAT_DATA_UINT32, 0 }, 24585 { "outSegs", KSTAT_DATA_UINT32, 0 }, 24586 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 24587 { "connTableSize", KSTAT_DATA_INT32, 0 }, 24588 { "outRsts", KSTAT_DATA_UINT32, 0 }, 24589 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 24590 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 24591 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 24592 { "outAck", KSTAT_DATA_UINT32, 0 }, 24593 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 24594 { "outUrg", KSTAT_DATA_UINT32, 0 }, 24595 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 24596 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 24597 { "outControl", KSTAT_DATA_UINT32, 0 }, 24598 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 24599 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 24600 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 24601 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 24602 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 24603 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 24604 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 24605 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 24606 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 24607 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 24608 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 24609 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 24610 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 24611 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 24612 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 24613 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 24614 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 24615 { "inClosed", KSTAT_DATA_UINT32, 0 }, 24616 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 24617 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 24618 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 24619 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 24620 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 24621 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 24622 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 24623 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 24624 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 24625 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 24626 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 24627 { "connTableSize6", KSTAT_DATA_INT32, 0 } 24628 }; 24629 24630 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 24631 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 24632 24633 if (tcp_mibkp == NULL) 24634 return; 24635 24636 template.rtoAlgorithm.value.ui32 = 4; 24637 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 24638 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 24639 template.maxConn.value.i32 = -1; 24640 24641 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 24642 24643 tcp_mibkp->ks_update = tcp_kstat_update; 24644 24645 kstat_install(tcp_mibkp); 24646 } 24647 24648 static void 24649 tcp_kstat_fini(void) 24650 { 24651 24652 if (tcp_mibkp != NULL) { 24653 kstat_delete(tcp_mibkp); 24654 tcp_mibkp = NULL; 24655 } 24656 } 24657 24658 static int 24659 tcp_kstat_update(kstat_t *kp, int rw) 24660 { 24661 tcp_named_kstat_t *tcpkp; 24662 tcp_t *tcp; 24663 connf_t *connfp; 24664 conn_t *connp; 24665 int i; 24666 24667 if (!kp || !kp->ks_data) 24668 return (EIO); 24669 24670 if (rw == KSTAT_WRITE) 24671 return (EACCES); 24672 24673 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 24674 24675 tcpkp->currEstab.value.ui32 = 0; 24676 24677 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24678 connfp = &ipcl_globalhash_fanout[i]; 24679 connp = NULL; 24680 while ((connp = 24681 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24682 tcp = connp->conn_tcp; 24683 switch (tcp_snmp_state(tcp)) { 24684 case MIB2_TCP_established: 24685 case MIB2_TCP_closeWait: 24686 tcpkp->currEstab.value.ui32++; 24687 break; 24688 } 24689 } 24690 } 24691 24692 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 24693 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 24694 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 24695 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 24696 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 24697 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 24698 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 24699 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 24700 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 24701 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 24702 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 24703 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 24704 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 24705 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 24706 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 24707 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 24708 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 24709 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 24710 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 24711 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 24712 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 24713 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 24714 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 24715 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 24716 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 24717 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 24718 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 24719 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 24720 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 24721 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 24722 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 24723 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 24724 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 24725 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 24726 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 24727 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 24728 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 24729 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 24730 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 24731 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 24732 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 24733 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 24734 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 24735 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 24736 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 24737 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 24738 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 24739 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 24740 24741 return (0); 24742 } 24743 24744 void 24745 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 24746 { 24747 uint16_t hdr_len; 24748 ipha_t *ipha; 24749 uint8_t *nexthdrp; 24750 tcph_t *tcph; 24751 24752 /* Already has an eager */ 24753 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24754 TCP_STAT(tcp_reinput_syn); 24755 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 24756 connp, SQTAG_TCP_REINPUT_EAGER); 24757 return; 24758 } 24759 24760 switch (IPH_HDR_VERSION(mp->b_rptr)) { 24761 case IPV4_VERSION: 24762 ipha = (ipha_t *)mp->b_rptr; 24763 hdr_len = IPH_HDR_LENGTH(ipha); 24764 break; 24765 case IPV6_VERSION: 24766 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 24767 &hdr_len, &nexthdrp)) { 24768 CONN_DEC_REF(connp); 24769 freemsg(mp); 24770 return; 24771 } 24772 break; 24773 } 24774 24775 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 24776 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 24777 mp->b_datap->db_struioflag |= STRUIO_EAGER; 24778 DB_CKSUMSTART(mp) = (intptr_t)sqp; 24779 } 24780 24781 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 24782 SQTAG_TCP_REINPUT); 24783 } 24784 24785 static squeue_func_t 24786 tcp_squeue_switch(int val) 24787 { 24788 squeue_func_t rval = squeue_fill; 24789 24790 switch (val) { 24791 case 1: 24792 rval = squeue_enter_nodrain; 24793 break; 24794 case 2: 24795 rval = squeue_enter; 24796 break; 24797 default: 24798 break; 24799 } 24800 return (rval); 24801 } 24802 24803 static void 24804 tcp_squeue_add(squeue_t *sqp) 24805 { 24806 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 24807 sizeof (tcp_squeue_priv_t), KM_SLEEP); 24808 24809 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 24810 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 24811 sqp, TCP_TIME_WAIT_DELAY); 24812 if (tcp_free_list_max_cnt == 0) { 24813 int tcp_ncpus = ((boot_max_ncpus == -1) ? 24814 max_ncpus : boot_max_ncpus); 24815 24816 /* 24817 * Limit number of entries to 1% of availble memory / tcp_ncpus 24818 */ 24819 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 24820 (tcp_ncpus * sizeof (tcp_t) * 100); 24821 } 24822 tcp_time_wait->tcp_free_list_cnt = 0; 24823 } 24824