1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/ethernet.h> 51 #include <sys/cpuvar.h> 52 #include <sys/dlpi.h> 53 #include <sys/multidata.h> 54 #include <sys/multidata_impl.h> 55 #include <sys/pattr.h> 56 #include <sys/policy.h> 57 #include <sys/zone.h> 58 59 #include <sys/errno.h> 60 #include <sys/signal.h> 61 #include <sys/socket.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <netinet/in.h> 67 #include <netinet/tcp.h> 68 #include <netinet/ip6.h> 69 #include <netinet/icmp6.h> 70 #include <net/if.h> 71 #include <net/route.h> 72 #include <inet/ipsec_impl.h> 73 74 #include <inet/common.h> 75 #include <inet/ip.h> 76 #include <inet/ip_impl.h> 77 #include <inet/ip6.h> 78 #include <inet/ip_ndp.h> 79 #include <inet/mi.h> 80 #include <inet/mib2.h> 81 #include <inet/nd.h> 82 #include <inet/optcom.h> 83 #include <inet/snmpcom.h> 84 #include <inet/kstatcom.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipsec_info.h> 89 #include <inet/ipdrop.h> 90 #include <inet/tcp_trace.h> 91 92 #include <inet/ipclassifier.h> 93 #include <inet/ip_ire.h> 94 #include <inet/ip_if.h> 95 #include <inet/ipp_common.h> 96 #include <sys/squeue.h> 97 #include <inet/kssl/ksslapi.h> 98 99 /* 100 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 101 * 102 * (Read the detailed design doc in PSARC case directory) 103 * 104 * The entire tcp state is contained in tcp_t and conn_t structure 105 * which are allocated in tandem using ipcl_conn_create() and passing 106 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 107 * the references on the tcp_t. The tcp_t structure is never compressed 108 * and packets always land on the correct TCP perimeter from the time 109 * eager is created till the time tcp_t dies (as such the old mentat 110 * TCP global queue is not used for detached state and no IPSEC checking 111 * is required). The global queue is still allocated to send out resets 112 * for connection which have no listeners and IP directly calls 113 * tcp_xmit_listeners_reset() which does any policy check. 114 * 115 * Protection and Synchronisation mechanism: 116 * 117 * The tcp data structure does not use any kind of lock for protecting 118 * its state but instead uses 'squeues' for mutual exclusion from various 119 * read and write side threads. To access a tcp member, the thread should 120 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 121 * squeue_fill). Since the squeues allow a direct function call, caller 122 * can pass any tcp function having prototype of edesc_t as argument 123 * (different from traditional STREAMs model where packets come in only 124 * designated entry points). The list of functions that can be directly 125 * called via squeue are listed before the usual function prototype. 126 * 127 * Referencing: 128 * 129 * TCP is MT-Hot and we use a reference based scheme to make sure that the 130 * tcp structure doesn't disappear when its needed. When the application 131 * creates an outgoing connection or accepts an incoming connection, we 132 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 133 * The IP reference is just a symbolic reference since ip_tcpclose() 134 * looks at tcp structure after tcp_close_output() returns which could 135 * have dropped the last TCP reference. So as long as the connection is 136 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 137 * conn_t. The classifier puts its own reference when the connection is 138 * inserted in listen or connected hash. Anytime a thread needs to enter 139 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 140 * on write side or by doing a classify on read side and then puts a 141 * reference on the conn before doing squeue_enter/tryenter/fill. For 142 * read side, the classifier itself puts the reference under fanout lock 143 * to make sure that tcp can't disappear before it gets processed. The 144 * squeue will drop this reference automatically so the called function 145 * doesn't have to do a DEC_REF. 146 * 147 * Opening a new connection: 148 * 149 * The outgoing connection open is pretty simple. ip_tcpopen() does the 150 * work in creating the conn/tcp structure and initializing it. The 151 * squeue assignment is done based on the CPU the application 152 * is running on. So for outbound connections, processing is always done 153 * on application CPU which might be different from the incoming CPU 154 * being interrupted by the NIC. An optimal way would be to figure out 155 * the NIC <-> CPU binding at listen time, and assign the outgoing 156 * connection to the squeue attached to the CPU that will be interrupted 157 * for incoming packets (we know the NIC based on the bind IP address). 158 * This might seem like a problem if more data is going out but the 159 * fact is that in most cases the transmit is ACK driven transmit where 160 * the outgoing data normally sits on TCP's xmit queue waiting to be 161 * transmitted. 162 * 163 * Accepting a connection: 164 * 165 * This is a more interesting case because of various races involved in 166 * establishing a eager in its own perimeter. Read the meta comment on 167 * top of tcp_conn_request(). But briefly, the squeue is picked by 168 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 169 * 170 * Closing a connection: 171 * 172 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 173 * via squeue to do the close and mark the tcp as detached if the connection 174 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 175 * reference but tcp_close() drop IP's reference always. So if tcp was 176 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 177 * and 1 because it is in classifier's connected hash. This is the condition 178 * we use to determine that its OK to clean up the tcp outside of squeue 179 * when time wait expires (check the ref under fanout and conn_lock and 180 * if it is 2, remove it from fanout hash and kill it). 181 * 182 * Although close just drops the necessary references and marks the 183 * tcp_detached state, tcp_close needs to know the tcp_detached has been 184 * set (under squeue) before letting the STREAM go away (because a 185 * inbound packet might attempt to go up the STREAM while the close 186 * has happened and tcp_detached is not set). So a special lock and 187 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 188 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 189 * tcp_detached. 190 * 191 * Special provisions and fast paths: 192 * 193 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 194 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 195 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 196 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 197 * check to send packets directly to tcp_rput_data via squeue. Everyone 198 * else comes through tcp_input() on the read side. 199 * 200 * We also make special provisions for sockfs by marking tcp_issocket 201 * whenever we have only sockfs on top of TCP. This allows us to skip 202 * putting the tcp in acceptor hash since a sockfs listener can never 203 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 204 * since eager has already been allocated and the accept now happens 205 * on acceptor STREAM. There is a big blob of comment on top of 206 * tcp_conn_request explaining the new accept. When socket is POP'd, 207 * sockfs sends us an ioctl to mark the fact and we go back to old 208 * behaviour. Once tcp_issocket is unset, its never set for the 209 * life of that connection. 210 * 211 * IPsec notes : 212 * 213 * Since a packet is always executed on the correct TCP perimeter 214 * all IPsec processing is defered to IP including checking new 215 * connections and setting IPSEC policies for new connection. The 216 * only exception is tcp_xmit_listeners_reset() which is called 217 * directly from IP and needs to policy check to see if TH_RST 218 * can be sent out. 219 */ 220 221 222 extern major_t TCP6_MAJ; 223 224 /* 225 * Values for squeue switch: 226 * 1: squeue_enter_nodrain 227 * 2: squeue_enter 228 * 3: squeue_fill 229 */ 230 int tcp_squeue_close = 2; 231 int tcp_squeue_wput = 2; 232 233 squeue_func_t tcp_squeue_close_proc; 234 squeue_func_t tcp_squeue_wput_proc; 235 236 /* 237 * This controls how tiny a write must be before we try to copy it 238 * into the the mblk on the tail of the transmit queue. Not much 239 * speedup is observed for values larger than sixteen. Zero will 240 * disable the optimisation. 241 */ 242 int tcp_tx_pull_len = 16; 243 244 /* 245 * TCP Statistics. 246 * 247 * How TCP statistics work. 248 * 249 * There are two types of statistics invoked by two macros. 250 * 251 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 252 * supposed to be used in non MT-hot paths of the code. 253 * 254 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 255 * supposed to be used for DEBUG purposes and may be used on a hot path. 256 * 257 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 258 * (use "kstat tcp" to get them). 259 * 260 * There is also additional debugging facility that marks tcp_clean_death() 261 * instances and saves them in tcp_t structure. It is triggered by 262 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 263 * tcp_clean_death() calls that counts the number of times each tag was hit. It 264 * is triggered by TCP_CLD_COUNTERS define. 265 * 266 * How to add new counters. 267 * 268 * 1) Add a field in the tcp_stat structure describing your counter. 269 * 2) Add a line in tcp_statistics with the name of the counter. 270 * 271 * IMPORTANT!! - make sure that both are in sync !! 272 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 273 * 274 * Please avoid using private counters which are not kstat-exported. 275 * 276 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 277 * in tcp_t structure. 278 * 279 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 280 */ 281 282 #ifndef TCP_DEBUG_COUNTER 283 #ifdef DEBUG 284 #define TCP_DEBUG_COUNTER 1 285 #else 286 #define TCP_DEBUG_COUNTER 0 287 #endif 288 #endif 289 290 #define TCP_CLD_COUNTERS 0 291 292 #define TCP_TAG_CLEAN_DEATH 1 293 #define TCP_MAX_CLEAN_DEATH_TAG 32 294 295 #ifdef lint 296 static int _lint_dummy_; 297 #endif 298 299 #if TCP_CLD_COUNTERS 300 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 301 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 302 #elif defined(lint) 303 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 304 #else 305 #define TCP_CLD_STAT(x) 306 #endif 307 308 #if TCP_DEBUG_COUNTER 309 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 310 #elif defined(lint) 311 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 312 #else 313 #define TCP_DBGSTAT(x) 314 #endif 315 316 tcp_stat_t tcp_statistics = { 317 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 318 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 319 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 320 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 321 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 322 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 323 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 324 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 325 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 326 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 327 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 328 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 329 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 330 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 331 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 332 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 333 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 334 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 335 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 336 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 337 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 338 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 339 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 340 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 341 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 342 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 343 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 344 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 345 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 346 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 347 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 348 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 349 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 350 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 351 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 352 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 353 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 354 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 355 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 356 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 357 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 358 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 359 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 360 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 361 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 362 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 363 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 364 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 365 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 366 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 367 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 368 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 369 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 370 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 371 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 372 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 373 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 374 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 375 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 376 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 377 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 378 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 379 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 380 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 381 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 382 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 383 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 384 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 385 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 386 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 387 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 388 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 389 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 390 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 391 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 392 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 395 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 396 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 397 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 398 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 399 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 400 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 401 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 402 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 403 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 404 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 405 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 406 }; 407 408 static kstat_t *tcp_kstat; 409 410 /* 411 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 412 * tcp write side. 413 */ 414 #define CALL_IP_WPUT(connp, q, mp) { \ 415 ASSERT(((q)->q_flag & QREADR) == 0); \ 416 TCP_DBGSTAT(tcp_ip_output); \ 417 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 418 } 419 420 /* Macros for timestamp comparisons */ 421 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 422 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 423 424 /* 425 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 426 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 427 * by adding three components: a time component which grows by 1 every 4096 428 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 429 * a per-connection component which grows by 125000 for every new connection; 430 * and an "extra" component that grows by a random amount centered 431 * approximately on 64000. This causes the the ISS generator to cycle every 432 * 4.89 hours if no TCP connections are made, and faster if connections are 433 * made. 434 * 435 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 436 * components: a time component which grows by 250000 every second; and 437 * a per-connection component which grows by 125000 for every new connections. 438 * 439 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 440 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 441 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 442 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 443 * password. 444 */ 445 #define ISS_INCR 250000 446 #define ISS_NSEC_SHT 12 447 448 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 449 static kmutex_t tcp_iss_key_lock; 450 static MD5_CTX tcp_iss_key; 451 static sin_t sin_null; /* Zero address for quick clears */ 452 static sin6_t sin6_null; /* Zero address for quick clears */ 453 454 /* Packet dropper for TCP IPsec policy drops. */ 455 static ipdropper_t tcp_dropper; 456 457 /* 458 * This implementation follows the 4.3BSD interpretation of the urgent 459 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 460 * incompatible changes in protocols like telnet and rlogin. 461 */ 462 #define TCP_OLD_URP_INTERPRETATION 1 463 464 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 465 (TCP_IS_DETACHED(tcp) && \ 466 (!(tcp)->tcp_hard_binding)) 467 468 /* 469 * TCP reassembly macros. We hide starting and ending sequence numbers in 470 * b_next and b_prev of messages on the reassembly queue. The messages are 471 * chained using b_cont. These macros are used in tcp_reass() so we don't 472 * have to see the ugly casts and assignments. 473 */ 474 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 475 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 476 (mblk_t *)(uintptr_t)(u)) 477 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 478 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 479 (mblk_t *)(uintptr_t)(u)) 480 481 /* 482 * Implementation of TCP Timers. 483 * ============================= 484 * 485 * INTERFACE: 486 * 487 * There are two basic functions dealing with tcp timers: 488 * 489 * timeout_id_t tcp_timeout(connp, func, time) 490 * clock_t tcp_timeout_cancel(connp, timeout_id) 491 * TCP_TIMER_RESTART(tcp, intvl) 492 * 493 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 494 * after 'time' ticks passed. The function called by timeout() must adhere to 495 * the same restrictions as a driver soft interrupt handler - it must not sleep 496 * or call other functions that might sleep. The value returned is the opaque 497 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 498 * cancel the request. The call to tcp_timeout() may fail in which case it 499 * returns zero. This is different from the timeout(9F) function which never 500 * fails. 501 * 502 * The call-back function 'func' always receives 'connp' as its single 503 * argument. It is always executed in the squeue corresponding to the tcp 504 * structure. The tcp structure is guaranteed to be present at the time the 505 * call-back is called. 506 * 507 * NOTE: The call-back function 'func' is never called if tcp is in 508 * the TCPS_CLOSED state. 509 * 510 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 511 * request. locks acquired by the call-back routine should not be held across 512 * the call to tcp_timeout_cancel() or a deadlock may result. 513 * 514 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 515 * Otherwise, it returns an integer value greater than or equal to 0. In 516 * particular, if the call-back function is already placed on the squeue, it can 517 * not be canceled. 518 * 519 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 520 * within squeue context corresponding to the tcp instance. Since the 521 * call-back is also called via the same squeue, there are no race 522 * conditions described in untimeout(9F) manual page since all calls are 523 * strictly serialized. 524 * 525 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 526 * stored in tcp_timer_tid and starts a new one using 527 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 528 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 529 * field. 530 * 531 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 532 * call-back may still be called, so it is possible tcp_timer() will be 533 * called several times. This should not be a problem since tcp_timer() 534 * should always check the tcp instance state. 535 * 536 * 537 * IMPLEMENTATION: 538 * 539 * TCP timers are implemented using three-stage process. The call to 540 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 541 * when the timer expires. The tcp_timer_callback() arranges the call of the 542 * tcp_timer_handler() function via squeue corresponding to the tcp 543 * instance. The tcp_timer_handler() calls actual requested timeout call-back 544 * and passes tcp instance as an argument to it. Information is passed between 545 * stages using the tcp_timer_t structure which contains the connp pointer, the 546 * tcp call-back to call and the timeout id returned by the timeout(9F). 547 * 548 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 549 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 550 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 551 * returns the pointer to this mblk. 552 * 553 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 554 * looks like a normal mblk without actual dblk attached to it. 555 * 556 * To optimize performance each tcp instance holds a small cache of timer 557 * mblocks. In the current implementation it caches up to two timer mblocks per 558 * tcp instance. The cache is preserved over tcp frees and is only freed when 559 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 560 * timer processing happens on a corresponding squeue, the cache manipulation 561 * does not require any locks. Experiments show that majority of timer mblocks 562 * allocations are satisfied from the tcp cache and do not involve kmem calls. 563 * 564 * The tcp_timeout() places a refhold on the connp instance which guarantees 565 * that it will be present at the time the call-back function fires. The 566 * tcp_timer_handler() drops the reference after calling the call-back, so the 567 * call-back function does not need to manipulate the references explicitly. 568 */ 569 570 typedef struct tcp_timer_s { 571 conn_t *connp; 572 void (*tcpt_proc)(void *); 573 timeout_id_t tcpt_tid; 574 } tcp_timer_t; 575 576 static kmem_cache_t *tcp_timercache; 577 kmem_cache_t *tcp_sack_info_cache; 578 kmem_cache_t *tcp_iphc_cache; 579 580 /* 581 * For scalability, we must not run a timer for every TCP connection 582 * in TIME_WAIT state. To see why, consider (for time wait interval of 583 * 4 minutes): 584 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 585 * 586 * This list is ordered by time, so you need only delete from the head 587 * until you get to entries which aren't old enough to delete yet. 588 * The list consists of only the detached TIME_WAIT connections. 589 * 590 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 591 * becomes detached TIME_WAIT (either by changing the state and already 592 * being detached or the other way around). This means that the TIME_WAIT 593 * state can be extended (up to doubled) if the connection doesn't become 594 * detached for a long time. 595 * 596 * The list manipulations (including tcp_time_wait_next/prev) 597 * are protected by the tcp_time_wait_lock. The content of the 598 * detached TIME_WAIT connections is protected by the normal perimeters. 599 */ 600 601 typedef struct tcp_squeue_priv_s { 602 kmutex_t tcp_time_wait_lock; 603 /* Protects the next 3 globals */ 604 timeout_id_t tcp_time_wait_tid; 605 tcp_t *tcp_time_wait_head; 606 tcp_t *tcp_time_wait_tail; 607 tcp_t *tcp_free_list; 608 } tcp_squeue_priv_t; 609 610 /* 611 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 612 * Running it every 5 seconds seems to give the best results. 613 */ 614 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 615 616 617 #define TCP_XMIT_LOWATER 4096 618 #define TCP_XMIT_HIWATER 49152 619 #define TCP_RECV_LOWATER 2048 620 #define TCP_RECV_HIWATER 49152 621 622 /* 623 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 624 */ 625 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 626 627 #define TIDUSZ 4096 /* transport interface data unit size */ 628 629 /* 630 * Bind hash list size and has function. It has to be a power of 2 for 631 * hashing. 632 */ 633 #define TCP_BIND_FANOUT_SIZE 512 634 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 635 /* 636 * Size of listen and acceptor hash list. It has to be a power of 2 for 637 * hashing. 638 */ 639 #define TCP_FANOUT_SIZE 256 640 641 #ifdef _ILP32 642 #define TCP_ACCEPTOR_HASH(accid) \ 643 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 644 #else 645 #define TCP_ACCEPTOR_HASH(accid) \ 646 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 647 #endif /* _ILP32 */ 648 649 #define IP_ADDR_CACHE_SIZE 2048 650 #define IP_ADDR_CACHE_HASH(faddr) \ 651 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 652 653 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 654 #define TCP_HSP_HASH_SIZE 256 655 656 #define TCP_HSP_HASH(addr) \ 657 (((addr>>24) ^ (addr >>16) ^ \ 658 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 659 660 /* 661 * TCP options struct returned from tcp_parse_options. 662 */ 663 typedef struct tcp_opt_s { 664 uint32_t tcp_opt_mss; 665 uint32_t tcp_opt_wscale; 666 uint32_t tcp_opt_ts_val; 667 uint32_t tcp_opt_ts_ecr; 668 tcp_t *tcp; 669 } tcp_opt_t; 670 671 /* 672 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 673 */ 674 675 #ifdef _BIG_ENDIAN 676 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 677 (TCPOPT_TSTAMP << 8) | 10) 678 #else 679 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 680 (TCPOPT_NOP << 8) | TCPOPT_NOP) 681 #endif 682 683 /* 684 * Flags returned from tcp_parse_options. 685 */ 686 #define TCP_OPT_MSS_PRESENT 1 687 #define TCP_OPT_WSCALE_PRESENT 2 688 #define TCP_OPT_TSTAMP_PRESENT 4 689 #define TCP_OPT_SACK_OK_PRESENT 8 690 #define TCP_OPT_SACK_PRESENT 16 691 692 /* TCP option length */ 693 #define TCPOPT_NOP_LEN 1 694 #define TCPOPT_MAXSEG_LEN 4 695 #define TCPOPT_WS_LEN 3 696 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 697 #define TCPOPT_TSTAMP_LEN 10 698 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 699 #define TCPOPT_SACK_OK_LEN 2 700 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 701 #define TCPOPT_REAL_SACK_LEN 4 702 #define TCPOPT_MAX_SACK_LEN 36 703 #define TCPOPT_HEADER_LEN 2 704 705 /* TCP cwnd burst factor. */ 706 #define TCP_CWND_INFINITE 65535 707 #define TCP_CWND_SS 3 708 #define TCP_CWND_NORMAL 5 709 710 /* Maximum TCP initial cwin (start/restart). */ 711 #define TCP_MAX_INIT_CWND 8 712 713 /* 714 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 715 * either tcp_slow_start_initial or tcp_slow_start_after idle 716 * depending on the caller. If the upper layer has not used the 717 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 718 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 719 * If the upper layer has changed set the tcp_init_cwnd, just use 720 * it to calculate the tcp_cwnd. 721 */ 722 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 723 { \ 724 if ((tcp)->tcp_init_cwnd == 0) { \ 725 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 726 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 727 } else { \ 728 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 729 } \ 730 tcp->tcp_cwnd_cnt = 0; \ 731 } 732 733 /* TCP Timer control structure */ 734 typedef struct tcpt_s { 735 pfv_t tcpt_pfv; /* The routine we are to call */ 736 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 737 } tcpt_t; 738 739 /* Host Specific Parameter structure */ 740 typedef struct tcp_hsp { 741 struct tcp_hsp *tcp_hsp_next; 742 in6_addr_t tcp_hsp_addr_v6; 743 in6_addr_t tcp_hsp_subnet_v6; 744 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 745 int32_t tcp_hsp_sendspace; 746 int32_t tcp_hsp_recvspace; 747 int32_t tcp_hsp_tstamp; 748 } tcp_hsp_t; 749 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 750 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 751 752 /* 753 * Functions called directly via squeue having a prototype of edesc_t. 754 */ 755 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 756 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 757 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 758 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 759 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 760 void tcp_input(void *arg, mblk_t *mp, void *arg2); 761 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 762 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 763 void tcp_output(void *arg, mblk_t *mp, void *arg2); 764 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 765 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 766 767 768 /* Prototype for TCP functions */ 769 static void tcp_random_init(void); 770 int tcp_random(void); 771 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 772 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 773 tcp_t *eager); 774 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 775 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 776 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 777 boolean_t user_specified); 778 static void tcp_closei_local(tcp_t *tcp); 779 static void tcp_close_detached(tcp_t *tcp); 780 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 781 mblk_t *idmp, mblk_t **defermp); 782 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 783 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 784 in_port_t dstport, uint_t srcid); 785 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 786 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 787 uint32_t scope_id); 788 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 789 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 790 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 791 static char *tcp_display(tcp_t *tcp, char *, char); 792 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 793 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 794 static void tcp_eager_unlink(tcp_t *tcp); 795 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 796 int unixerr); 797 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 798 int tlierr, int unixerr); 799 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 800 cred_t *cr); 801 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 802 char *value, caddr_t cp, cred_t *cr); 803 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 804 char *value, caddr_t cp, cred_t *cr); 805 static int tcp_tpistate(tcp_t *tcp); 806 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 807 int caller_holds_lock); 808 static void tcp_bind_hash_remove(tcp_t *tcp); 809 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 810 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 811 static void tcp_acceptor_hash_remove(tcp_t *tcp); 812 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 813 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 814 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 815 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 816 static int tcp_header_init_ipv4(tcp_t *tcp); 817 static int tcp_header_init_ipv6(tcp_t *tcp); 818 int tcp_init(tcp_t *tcp, queue_t *q); 819 static int tcp_init_values(tcp_t *tcp); 820 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 821 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 822 t_scalar_t addr_length); 823 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 824 static void tcp_ip_notify(tcp_t *tcp); 825 static mblk_t *tcp_ire_mp(mblk_t *mp); 826 static void tcp_iss_init(tcp_t *tcp); 827 static void tcp_keepalive_killer(void *arg); 828 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 829 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 830 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 831 int *do_disconnectp, int *t_errorp, int *sys_errorp); 832 static boolean_t tcp_allow_connopt_set(int level, int name); 833 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 834 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 835 static int tcp_opt_get_user(ipha_t *ipha, uchar_t *ptr); 836 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 837 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 838 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 839 mblk_t *mblk); 840 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 841 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 842 uchar_t *ptr, uint_t len); 843 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 844 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 845 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 846 caddr_t cp, cred_t *cr); 847 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 848 caddr_t cp, cred_t *cr); 849 static void tcp_iss_key_init(uint8_t *phrase, int len); 850 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 851 caddr_t cp, cred_t *cr); 852 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 853 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 854 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 855 static void tcp_reinit(tcp_t *tcp); 856 static void tcp_reinit_values(tcp_t *tcp); 857 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 858 tcp_t *thisstream, cred_t *cr); 859 860 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 861 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 862 static boolean_t tcp_send_rst_chk(void); 863 static void tcp_ss_rexmit(tcp_t *tcp); 864 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 865 static void tcp_process_options(tcp_t *, tcph_t *); 866 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 867 static void tcp_rsrv(queue_t *q); 868 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 869 static int tcp_snmp_state(tcp_t *tcp); 870 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 871 cred_t *cr); 872 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 873 cred_t *cr); 874 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 875 cred_t *cr); 876 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 877 cred_t *cr); 878 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 879 cred_t *cr); 880 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 881 caddr_t cp, cred_t *cr); 882 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 883 caddr_t cp, cred_t *cr); 884 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 885 cred_t *cr); 886 static void tcp_timer(void *arg); 887 static void tcp_timer_callback(void *); 888 static in_port_t tcp_update_next_port(in_port_t port, boolean_t random); 889 static in_port_t tcp_get_next_priv_port(void); 890 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 891 void tcp_wput_accept(queue_t *q, mblk_t *mp); 892 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 893 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 894 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 895 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 896 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 897 const int num_sack_blk, int *usable, uint_t *snxt, 898 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 899 const int mdt_thres); 900 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 901 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 902 const int num_sack_blk, int *usable, uint_t *snxt, 903 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 904 const int mdt_thres); 905 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 906 int num_sack_blk); 907 static void tcp_wsrv(queue_t *q); 908 static int tcp_xmit_end(tcp_t *tcp); 909 void tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len); 910 static mblk_t *tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, 911 int32_t *offset, mblk_t **end_mp, uint32_t seq, 912 boolean_t sendall, uint32_t *seg_len, boolean_t rexmit); 913 static void tcp_ack_timer(void *arg); 914 static mblk_t *tcp_ack_mp(tcp_t *tcp); 915 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 916 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len); 917 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 918 uint32_t ack, int ctl); 919 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 920 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 921 static int setmaxps(queue_t *q, int maxpsz); 922 static void tcp_set_rto(tcp_t *, time_t); 923 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 924 boolean_t, boolean_t); 925 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 926 boolean_t ipsec_mctl); 927 static boolean_t tcp_cmpbuf(void *a, uint_t alen, 928 boolean_t b_valid, void *b, uint_t blen); 929 static boolean_t tcp_allocbuf(void **dstp, uint_t *dstlenp, 930 boolean_t src_valid, void *src, uint_t srclen); 931 static void tcp_savebuf(void **dstp, uint_t *dstlenp, 932 boolean_t src_valid, void *src, uint_t srclen); 933 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 934 char *opt, int optlen); 935 static int tcp_pkt_set(uchar_t *, uint_t, uchar_t **, uint_t *); 936 static int tcp_build_hdrs(queue_t *, tcp_t *); 937 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 938 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 939 tcph_t *tcph); 940 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 941 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 942 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 943 boolean_t tcp_reserved_port_check(in_port_t); 944 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 945 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 946 static mblk_t *tcp_mdt_info_mp(mblk_t *); 947 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 948 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 949 const boolean_t, const uint32_t, const uint32_t, 950 const uint32_t, const uint32_t); 951 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 952 const uint_t, const uint_t, boolean_t *); 953 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 954 extern mblk_t *tcp_timermp_alloc(int); 955 extern void tcp_timermp_free(tcp_t *); 956 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 957 static void tcp_stop_lingering(tcp_t *tcp); 958 static void tcp_close_linger_timeout(void *arg); 959 void tcp_ddi_init(void); 960 void tcp_ddi_destroy(void); 961 static void tcp_kstat_init(void); 962 static void tcp_kstat_fini(void); 963 static int tcp_kstat_update(kstat_t *kp, int rw); 964 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 965 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 966 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 967 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 968 tcph_t *tcph, mblk_t *idmp); 969 static squeue_func_t tcp_squeue_switch(int); 970 971 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 972 static int tcp_close(queue_t *, int); 973 static int tcpclose_accept(queue_t *); 974 static int tcp_modclose(queue_t *); 975 static void tcp_wput_mod(queue_t *, mblk_t *); 976 977 static void tcp_squeue_add(squeue_t *); 978 static boolean_t tcp_zcopy_check(tcp_t *); 979 static void tcp_zcopy_notify(tcp_t *); 980 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 981 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 982 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 983 984 extern void tcp_kssl_input(tcp_t *, mblk_t *); 985 986 /* 987 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 988 * 989 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 990 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 991 * (defined in tcp.h) needs to be filled in and passed into the kernel 992 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 993 * structure contains the four-tuple of a TCP connection and a range of TCP 994 * states (specified by ac_start and ac_end). The use of wildcard addresses 995 * and ports is allowed. Connections with a matching four tuple and a state 996 * within the specified range will be aborted. The valid states for the 997 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 998 * inclusive. 999 * 1000 * An application which has its connection aborted by this ioctl will receive 1001 * an error that is dependent on the connection state at the time of the abort. 1002 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1003 * though a RST packet has been received. If the connection state is equal to 1004 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1005 * and all resources associated with the connection will be freed. 1006 */ 1007 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1008 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1009 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1010 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1011 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1012 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1013 boolean_t); 1014 1015 static struct module_info tcp_rinfo = { 1016 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1017 }; 1018 1019 static struct module_info tcp_winfo = { 1020 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1021 }; 1022 1023 /* 1024 * Entry points for TCP as a module. It only allows SNMP requests 1025 * to pass through. 1026 */ 1027 struct qinit tcp_mod_rinit = { 1028 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1029 }; 1030 1031 struct qinit tcp_mod_winit = { 1032 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1033 &tcp_rinfo 1034 }; 1035 1036 /* 1037 * Entry points for TCP as a device. The normal case which supports 1038 * the TCP functionality. 1039 */ 1040 struct qinit tcp_rinit = { 1041 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1042 }; 1043 1044 struct qinit tcp_winit = { 1045 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1046 }; 1047 1048 /* Initial entry point for TCP in socket mode. */ 1049 struct qinit tcp_sock_winit = { 1050 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1051 }; 1052 1053 /* 1054 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1055 * an accept. Avoid allocating data structures since eager has already 1056 * been created. 1057 */ 1058 struct qinit tcp_acceptor_rinit = { 1059 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1060 }; 1061 1062 struct qinit tcp_acceptor_winit = { 1063 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1064 }; 1065 1066 /* 1067 * Entry points for TCP loopback (read side only) 1068 */ 1069 struct qinit tcp_loopback_rinit = { 1070 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1071 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1072 }; 1073 1074 struct streamtab tcpinfo = { 1075 &tcp_rinit, &tcp_winit 1076 }; 1077 1078 extern squeue_func_t tcp_squeue_wput_proc; 1079 extern squeue_func_t tcp_squeue_timer_proc; 1080 1081 /* Protected by tcp_g_q_lock */ 1082 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1083 kmutex_t tcp_g_q_lock; 1084 1085 /* Protected by tcp_hsp_lock */ 1086 /* 1087 * XXX The host param mechanism should go away and instead we should use 1088 * the metrics associated with the routes to determine the default sndspace 1089 * and rcvspace. 1090 */ 1091 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1092 krwlock_t tcp_hsp_lock; 1093 1094 /* 1095 * Extra privileged ports. In host byte order. 1096 * Protected by tcp_epriv_port_lock. 1097 */ 1098 #define TCP_NUM_EPRIV_PORTS 64 1099 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1100 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1101 kmutex_t tcp_epriv_port_lock; 1102 1103 /* 1104 * The smallest anonymous port in the priviledged port range which TCP 1105 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1106 */ 1107 static in_port_t tcp_min_anonpriv_port = 512; 1108 1109 /* Only modified during _init and _fini thus no locking is needed. */ 1110 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1111 1112 /* Hint not protected by any lock */ 1113 static uint_t tcp_next_port_to_try; 1114 1115 1116 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1117 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1118 1119 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1120 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1121 1122 /* 1123 * TCP has a private interface for other kernel modules to reserve a 1124 * port range for them to use. Once reserved, TCP will not use any ports 1125 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1126 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1127 * has to be verified. 1128 * 1129 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1130 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1131 * range is [port a, port b] inclusive. And each port range is between 1132 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1133 * 1134 * Note that the default anonymous port range starts from 32768. There is 1135 * no port "collision" between that and the reserved port range. If there 1136 * is port collision (because the default smallest anonymous port is lowered 1137 * or some apps specifically bind to ports in the reserved port range), the 1138 * system may not be able to reserve a port range even there are enough 1139 * unbound ports as a reserved port range contains consecutive ports . 1140 */ 1141 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1142 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1143 #define TCP_SMALLEST_RESERVED_PORT 10240 1144 #define TCP_LARGEST_RESERVED_PORT 20480 1145 1146 /* Structure to represent those reserved port ranges. */ 1147 typedef struct tcp_rport_s { 1148 in_port_t lo_port; 1149 in_port_t hi_port; 1150 tcp_t **temp_tcp_array; 1151 } tcp_rport_t; 1152 1153 /* The reserved port array. */ 1154 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1155 1156 /* Locks to protect the tcp_reserved_ports array. */ 1157 static krwlock_t tcp_reserved_port_lock; 1158 1159 /* The number of ranges in the array. */ 1160 uint32_t tcp_reserved_port_array_size = 0; 1161 1162 /* 1163 * MIB-2 stuff for SNMP 1164 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1165 */ 1166 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1167 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1168 1169 boolean_t tcp_icmp_source_quench = B_FALSE; 1170 /* 1171 * Following assumes TPI alignment requirements stay along 32 bit 1172 * boundaries 1173 */ 1174 #define ROUNDUP32(x) \ 1175 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1176 1177 /* Template for response to info request. */ 1178 static struct T_info_ack tcp_g_t_info_ack = { 1179 T_INFO_ACK, /* PRIM_type */ 1180 0, /* TSDU_size */ 1181 T_INFINITE, /* ETSDU_size */ 1182 T_INVALID, /* CDATA_size */ 1183 T_INVALID, /* DDATA_size */ 1184 sizeof (sin_t), /* ADDR_size */ 1185 0, /* OPT_size - not initialized here */ 1186 TIDUSZ, /* TIDU_size */ 1187 T_COTS_ORD, /* SERV_type */ 1188 TCPS_IDLE, /* CURRENT_state */ 1189 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1190 }; 1191 1192 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1193 T_INFO_ACK, /* PRIM_type */ 1194 0, /* TSDU_size */ 1195 T_INFINITE, /* ETSDU_size */ 1196 T_INVALID, /* CDATA_size */ 1197 T_INVALID, /* DDATA_size */ 1198 sizeof (sin6_t), /* ADDR_size */ 1199 0, /* OPT_size - not initialized here */ 1200 TIDUSZ, /* TIDU_size */ 1201 T_COTS_ORD, /* SERV_type */ 1202 TCPS_IDLE, /* CURRENT_state */ 1203 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1204 }; 1205 1206 #define MS 1L 1207 #define SECONDS (1000 * MS) 1208 #define MINUTES (60 * SECONDS) 1209 #define HOURS (60 * MINUTES) 1210 #define DAYS (24 * HOURS) 1211 1212 #define PARAM_MAX (~(uint32_t)0) 1213 1214 /* Max size IP datagram is 64k - 1 */ 1215 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1216 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1217 /* Max of the above */ 1218 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1219 1220 /* Largest TCP port number */ 1221 #define TCP_MAX_PORT (64 * 1024 - 1) 1222 1223 /* 1224 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1225 * layer header. It has to be a multiple of 4. 1226 */ 1227 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1228 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1229 1230 /* 1231 * All of these are alterable, within the min/max values given, at run time. 1232 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1233 * per the TCP spec. 1234 */ 1235 /* BEGIN CSTYLED */ 1236 tcpparam_t tcp_param_arr[] = { 1237 /*min max value name */ 1238 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1239 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1240 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1241 { 1, 1024, 1, "tcp_conn_req_min" }, 1242 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1243 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1244 { 0, 10, 0, "tcp_debug" }, 1245 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1246 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1247 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1248 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1249 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1250 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1251 { 1, 255, 64, "tcp_ipv4_ttl"}, 1252 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1253 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1254 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1255 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1256 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1257 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1258 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1259 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1260 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1261 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1262 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1263 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1264 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1265 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1266 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1267 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1268 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1269 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1270 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1271 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1272 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1273 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1274 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1275 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1276 /* 1277 * Question: What default value should I set for tcp_strong_iss? 1278 */ 1279 { 0, 2, 1, "tcp_strong_iss"}, 1280 { 0, 65536, 20, "tcp_rtt_updates"}, 1281 { 0, 1, 1, "tcp_wscale_always"}, 1282 { 0, 1, 0, "tcp_tstamp_always"}, 1283 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1284 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1285 { 0, 16, 2, "tcp_deferred_acks_max"}, 1286 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1287 { 1, 4, 4, "tcp_slow_start_initial"}, 1288 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1289 { 0, 2, 2, "tcp_sack_permitted"}, 1290 { 0, 1, 0, "tcp_trace"}, 1291 { 0, 1, 1, "tcp_compression_enabled"}, 1292 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1293 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1294 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1295 { 0, 1, 0, "tcp_rev_src_routes"}, 1296 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1297 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1298 { 0, 16, 8, "tcp_local_dacks_max"}, 1299 { 0, 2, 1, "tcp_ecn_permitted"}, 1300 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1301 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1302 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1303 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1304 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1305 }; 1306 /* END CSTYLED */ 1307 1308 /* 1309 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1310 * each header fragment in the header buffer. Each parameter value has 1311 * to be a multiple of 4 (32-bit aligned). 1312 */ 1313 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1314 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1315 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1316 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1317 1318 /* 1319 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1320 * the maximum number of payload buffers associated per Multidata. 1321 */ 1322 static tcpparam_t tcp_mdt_max_pbufs_param = 1323 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1324 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1325 1326 /* Round up the value to the nearest mss. */ 1327 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1328 1329 /* 1330 * Set ECN capable transport (ECT) code point in IP header. 1331 * 1332 * Note that there are 2 ECT code points '01' and '10', which are called 1333 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1334 * point ECT(0) for TCP as described in RFC 2481. 1335 */ 1336 #define SET_ECT(tcp, iph) \ 1337 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1338 /* We need to clear the code point first. */ \ 1339 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1340 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1341 } else { \ 1342 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1343 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1344 } 1345 1346 /* 1347 * The format argument to pass to tcp_display(). 1348 * DISP_PORT_ONLY means that the returned string has only port info. 1349 * DISP_ADDR_AND_PORT means that the returned string also contains the 1350 * remote and local IP address. 1351 */ 1352 #define DISP_PORT_ONLY 1 1353 #define DISP_ADDR_AND_PORT 2 1354 1355 /* 1356 * This controls the rate some ndd info report functions can be used 1357 * by non-priviledged users. It stores the last time such info is 1358 * requested. When those report functions are called again, this 1359 * is checked with the current time and compare with the ndd param 1360 * tcp_ndd_get_info_interval. 1361 */ 1362 static clock_t tcp_last_ndd_get_info_time = 0; 1363 #define NDD_TOO_QUICK_MSG \ 1364 "ndd get info rate too high for non-priviledged users, try again " \ 1365 "later.\n" 1366 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1367 1368 #define IS_VMLOANED_MBLK(mp) \ 1369 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1370 1371 /* 1372 * These two variables control the rate for TCP to generate RSTs in 1373 * response to segments not belonging to any connections. We limit 1374 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1375 * each 1 second interval. This is to protect TCP against DoS attack. 1376 */ 1377 static clock_t tcp_last_rst_intrvl; 1378 static uint32_t tcp_rst_cnt; 1379 1380 /* The number of RST not sent because of the rate limit. */ 1381 static uint32_t tcp_rst_unsent; 1382 1383 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1384 boolean_t tcp_mdt_chain = B_TRUE; 1385 1386 /* 1387 * MDT threshold in the form of effective send MSS multiplier; we take 1388 * the MDT path if the amount of unsent data exceeds the threshold value 1389 * (default threshold is 1*SMSS). 1390 */ 1391 uint_t tcp_mdt_smss_threshold = 1; 1392 1393 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1394 1395 /* 1396 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1397 * tunable settable via NDD. Otherwise, the per-connection behavior is 1398 * determined dynamically during tcp_adapt_ire(), which is the default. 1399 */ 1400 boolean_t tcp_static_maxpsz = B_FALSE; 1401 1402 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1403 uint32_t tcp_random_anon_port = 1; 1404 1405 /* 1406 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1407 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1408 * data, TCP will not respond with an ACK. RFC 793 requires that 1409 * TCP responds with an ACK for such a bogus ACK. By not following 1410 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1411 * an attacker successfully spoofs an acceptable segment to our 1412 * peer; or when our peer is "confused." 1413 */ 1414 uint32_t tcp_drop_ack_unsent_cnt = 10; 1415 1416 /* 1417 * Hook functions to enable cluster networking 1418 * On non-clustered systems these vectors must always be NULL. 1419 */ 1420 1421 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1422 uint8_t *laddrp, in_port_t lport) = NULL; 1423 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1424 uint8_t *laddrp, in_port_t lport) = NULL; 1425 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1426 uint8_t *laddrp, in_port_t lport, 1427 uint8_t *faddrp, in_port_t fport) = NULL; 1428 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1429 uint8_t *laddrp, in_port_t lport, 1430 uint8_t *faddrp, in_port_t fport) = NULL; 1431 1432 /* 1433 * The following are defined in ip.c 1434 */ 1435 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1436 uint8_t *laddrp); 1437 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1438 uint8_t *laddrp, uint8_t *faddrp); 1439 1440 #define CL_INET_CONNECT(tcp) { \ 1441 if (cl_inet_connect != NULL) { \ 1442 /* \ 1443 * Running in cluster mode - register active connection \ 1444 * information \ 1445 */ \ 1446 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1447 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1448 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1449 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1450 (in_port_t)(tcp)->tcp_lport, \ 1451 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1452 (in_port_t)(tcp)->tcp_fport); \ 1453 } \ 1454 } else { \ 1455 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1456 &(tcp)->tcp_ip6h->ip6_src)) {\ 1457 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1458 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1459 (in_port_t)(tcp)->tcp_lport, \ 1460 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1461 (in_port_t)(tcp)->tcp_fport); \ 1462 } \ 1463 } \ 1464 } \ 1465 } 1466 1467 #define CL_INET_DISCONNECT(tcp) { \ 1468 if (cl_inet_disconnect != NULL) { \ 1469 /* \ 1470 * Running in cluster mode - deregister active \ 1471 * connection information \ 1472 */ \ 1473 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1474 if ((tcp)->tcp_ip_src != 0) { \ 1475 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1476 AF_INET, \ 1477 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1478 (in_port_t)(tcp)->tcp_lport, \ 1479 (uint8_t *) \ 1480 (&((tcp)->tcp_ipha->ipha_dst)),\ 1481 (in_port_t)(tcp)->tcp_fport); \ 1482 } \ 1483 } else { \ 1484 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1485 &(tcp)->tcp_ip_src_v6)) { \ 1486 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1487 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1488 (in_port_t)(tcp)->tcp_lport, \ 1489 (uint8_t *) \ 1490 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1491 (in_port_t)(tcp)->tcp_fport); \ 1492 } \ 1493 } \ 1494 } \ 1495 } 1496 1497 /* 1498 * Cluster networking hook for traversing current connection list. 1499 * This routine is used to extract the current list of live connections 1500 * which must continue to to be dispatched to this node. 1501 */ 1502 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1503 1504 /* 1505 * Figure out the value of window scale opton. Note that the rwnd is 1506 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1507 * We cannot find the scale value and then do a round up of tcp_rwnd 1508 * because the scale value may not be correct after that. 1509 * 1510 * Set the compiler flag to make this function inline. 1511 */ 1512 static void 1513 tcp_set_ws_value(tcp_t *tcp) 1514 { 1515 int i; 1516 uint32_t rwnd = tcp->tcp_rwnd; 1517 1518 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1519 i++, rwnd >>= 1) 1520 ; 1521 tcp->tcp_rcv_ws = i; 1522 } 1523 1524 /* 1525 * Remove a connection from the list of detached TIME_WAIT connections. 1526 */ 1527 static void 1528 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1529 { 1530 boolean_t locked = B_FALSE; 1531 1532 if (tcp_time_wait == NULL) { 1533 tcp_time_wait = *((tcp_squeue_priv_t **) 1534 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1535 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1536 locked = B_TRUE; 1537 } 1538 1539 if (tcp->tcp_time_wait_expire == 0) { 1540 ASSERT(tcp->tcp_time_wait_next == NULL); 1541 ASSERT(tcp->tcp_time_wait_prev == NULL); 1542 if (locked) 1543 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1544 return; 1545 } 1546 ASSERT(TCP_IS_DETACHED(tcp)); 1547 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1548 1549 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1550 ASSERT(tcp->tcp_time_wait_prev == NULL); 1551 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1552 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1553 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1554 NULL; 1555 } else { 1556 tcp_time_wait->tcp_time_wait_tail = NULL; 1557 } 1558 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1559 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1560 ASSERT(tcp->tcp_time_wait_next == NULL); 1561 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1562 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1563 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1564 } else { 1565 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1566 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1567 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1568 tcp->tcp_time_wait_next; 1569 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1570 tcp->tcp_time_wait_prev; 1571 } 1572 tcp->tcp_time_wait_next = NULL; 1573 tcp->tcp_time_wait_prev = NULL; 1574 tcp->tcp_time_wait_expire = 0; 1575 1576 if (locked) 1577 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1578 } 1579 1580 /* 1581 * Add a connection to the list of detached TIME_WAIT connections 1582 * and set its time to expire. 1583 */ 1584 static void 1585 tcp_time_wait_append(tcp_t *tcp) 1586 { 1587 tcp_squeue_priv_t *tcp_time_wait = 1588 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1589 SQPRIVATE_TCP)); 1590 1591 tcp_timers_stop(tcp); 1592 1593 /* Freed above */ 1594 ASSERT(tcp->tcp_timer_tid == 0); 1595 ASSERT(tcp->tcp_ack_tid == 0); 1596 1597 /* must have happened at the time of detaching the tcp */ 1598 ASSERT(tcp->tcp_ptpahn == NULL); 1599 ASSERT(tcp->tcp_flow_stopped == 0); 1600 ASSERT(tcp->tcp_time_wait_next == NULL); 1601 ASSERT(tcp->tcp_time_wait_prev == NULL); 1602 ASSERT(tcp->tcp_time_wait_expire == NULL); 1603 ASSERT(tcp->tcp_listener == NULL); 1604 1605 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1606 /* 1607 * The value computed below in tcp->tcp_time_wait_expire may 1608 * appear negative or wrap around. That is ok since our 1609 * interest is only in the difference between the current lbolt 1610 * value and tcp->tcp_time_wait_expire. But the value should not 1611 * be zero, since it means the tcp is not in the TIME_WAIT list. 1612 * The corresponding comparison in tcp_time_wait_collector() uses 1613 * modular arithmetic. 1614 */ 1615 tcp->tcp_time_wait_expire += 1616 drv_usectohz(tcp_time_wait_interval * 1000); 1617 if (tcp->tcp_time_wait_expire == 0) 1618 tcp->tcp_time_wait_expire = 1; 1619 1620 ASSERT(TCP_IS_DETACHED(tcp)); 1621 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1622 ASSERT(tcp->tcp_time_wait_next == NULL); 1623 ASSERT(tcp->tcp_time_wait_prev == NULL); 1624 TCP_DBGSTAT(tcp_time_wait); 1625 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1626 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1627 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1628 tcp_time_wait->tcp_time_wait_head = tcp; 1629 } else { 1630 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1631 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1632 TCPS_TIME_WAIT); 1633 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1634 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1635 } 1636 tcp_time_wait->tcp_time_wait_tail = tcp; 1637 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1638 } 1639 1640 /* ARGSUSED */ 1641 void 1642 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1643 { 1644 conn_t *connp = (conn_t *)arg; 1645 tcp_t *tcp = connp->conn_tcp; 1646 1647 ASSERT(tcp != NULL); 1648 if (tcp->tcp_state == TCPS_CLOSED) { 1649 return; 1650 } 1651 1652 ASSERT((tcp->tcp_family == AF_INET && 1653 tcp->tcp_ipversion == IPV4_VERSION) || 1654 (tcp->tcp_family == AF_INET6 && 1655 (tcp->tcp_ipversion == IPV4_VERSION || 1656 tcp->tcp_ipversion == IPV6_VERSION))); 1657 ASSERT(!tcp->tcp_listener); 1658 1659 TCP_STAT(tcp_time_wait_reap); 1660 ASSERT(TCP_IS_DETACHED(tcp)); 1661 1662 /* 1663 * Because they have no upstream client to rebind or tcp_close() 1664 * them later, we axe the connection here and now. 1665 */ 1666 tcp_close_detached(tcp); 1667 } 1668 1669 void 1670 tcp_cleanup(tcp_t *tcp) 1671 { 1672 mblk_t *mp; 1673 char *tcp_iphc; 1674 int tcp_iphc_len; 1675 int tcp_hdr_grown; 1676 tcp_sack_info_t *tcp_sack_info; 1677 conn_t *connp = tcp->tcp_connp; 1678 1679 tcp_bind_hash_remove(tcp); 1680 tcp_free(tcp); 1681 1682 /* Release any SSL context */ 1683 if (tcp->tcp_kssl_ent != NULL) { 1684 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1685 tcp->tcp_kssl_ent = NULL; 1686 } 1687 1688 if (tcp->tcp_kssl_ctx != NULL) { 1689 kssl_release_ctx(tcp->tcp_kssl_ctx); 1690 tcp->tcp_kssl_ctx = NULL; 1691 } 1692 tcp->tcp_kssl_pending = B_FALSE; 1693 1694 conn_delete_ire(connp, NULL); 1695 if (connp->conn_flags & IPCL_TCPCONN) { 1696 if (connp->conn_latch != NULL) 1697 IPLATCH_REFRELE(connp->conn_latch); 1698 if (connp->conn_policy != NULL) 1699 IPPH_REFRELE(connp->conn_policy); 1700 } 1701 1702 /* 1703 * Since we will bzero the entire structure, we need to 1704 * remove it and reinsert it in global hash list. We 1705 * know the walkers can't get to this conn because we 1706 * had set CONDEMNED flag earlier and checked reference 1707 * under conn_lock so walker won't pick it and when we 1708 * go the ipcl_globalhash_remove() below, no walker 1709 * can get to it. 1710 */ 1711 ipcl_globalhash_remove(connp); 1712 1713 /* Save some state */ 1714 mp = tcp->tcp_timercache; 1715 1716 tcp_sack_info = tcp->tcp_sack_info; 1717 tcp_iphc = tcp->tcp_iphc; 1718 tcp_iphc_len = tcp->tcp_iphc_len; 1719 tcp_hdr_grown = tcp->tcp_hdr_grown; 1720 1721 bzero(connp, sizeof (conn_t)); 1722 bzero(tcp, sizeof (tcp_t)); 1723 1724 /* restore the state */ 1725 tcp->tcp_timercache = mp; 1726 1727 tcp->tcp_sack_info = tcp_sack_info; 1728 tcp->tcp_iphc = tcp_iphc; 1729 tcp->tcp_iphc_len = tcp_iphc_len; 1730 tcp->tcp_hdr_grown = tcp_hdr_grown; 1731 1732 1733 tcp->tcp_connp = connp; 1734 1735 connp->conn_tcp = tcp; 1736 connp->conn_flags = IPCL_TCPCONN; 1737 connp->conn_state_flags = CONN_INCIPIENT; 1738 connp->conn_ulp = IPPROTO_TCP; 1739 connp->conn_ref = 1; 1740 1741 ipcl_globalhash_insert(connp); 1742 } 1743 1744 /* 1745 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1746 * is done forwards from the head. 1747 */ 1748 /* ARGSUSED */ 1749 void 1750 tcp_time_wait_collector(void *arg) 1751 { 1752 tcp_t *tcp; 1753 clock_t now; 1754 mblk_t *mp; 1755 conn_t *connp; 1756 kmutex_t *lock; 1757 1758 squeue_t *sqp = (squeue_t *)arg; 1759 tcp_squeue_priv_t *tcp_time_wait = 1760 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1761 1762 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1763 tcp_time_wait->tcp_time_wait_tid = 0; 1764 1765 if (tcp_time_wait->tcp_free_list != NULL && 1766 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1767 TCP_STAT(tcp_freelist_cleanup); 1768 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1769 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1770 CONN_DEC_REF(tcp->tcp_connp); 1771 } 1772 } 1773 1774 /* 1775 * In order to reap time waits reliably, we should use a 1776 * source of time that is not adjustable by the user -- hence 1777 * the call to ddi_get_lbolt(). 1778 */ 1779 now = ddi_get_lbolt(); 1780 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1781 /* 1782 * Compare times using modular arithmetic, since 1783 * lbolt can wrapover. 1784 */ 1785 if ((now - tcp->tcp_time_wait_expire) < 0) { 1786 break; 1787 } 1788 1789 tcp_time_wait_remove(tcp, tcp_time_wait); 1790 1791 connp = tcp->tcp_connp; 1792 ASSERT(connp->conn_fanout != NULL); 1793 lock = &connp->conn_fanout->connf_lock; 1794 /* 1795 * This is essentially a TW reclaim fast path optimization for 1796 * performance where the timewait collector checks under the 1797 * fanout lock (so that no one else can get access to the 1798 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1799 * the classifier hash list. If ref count is indeed 2, we can 1800 * just remove the conn under the fanout lock and avoid 1801 * cleaning up the conn under the squeue, provided that 1802 * clustering callbacks are not enabled. If clustering is 1803 * enabled, we need to make the clustering callback before 1804 * setting the CONDEMNED flag and after dropping all locks and 1805 * so we forego this optimization and fall back to the slow 1806 * path. Also please see the comments in tcp_closei_local 1807 * regarding the refcnt logic. 1808 * 1809 * Since we are holding the tcp_time_wait_lock, its better 1810 * not to block on the fanout_lock because other connections 1811 * can't add themselves to time_wait list. So we do a 1812 * tryenter instead of mutex_enter. 1813 */ 1814 if (mutex_tryenter(lock)) { 1815 mutex_enter(&connp->conn_lock); 1816 if ((connp->conn_ref == 2) && 1817 (cl_inet_disconnect == NULL)) { 1818 ipcl_hash_remove_locked(connp, 1819 connp->conn_fanout); 1820 /* 1821 * Set the CONDEMNED flag now itself so that 1822 * the refcnt cannot increase due to any 1823 * walker. But we have still not cleaned up 1824 * conn_ire_cache. This is still ok since 1825 * we are going to clean it up in tcp_cleanup 1826 * immediately and any interface unplumb 1827 * thread will wait till the ire is blown away 1828 */ 1829 connp->conn_state_flags |= CONN_CONDEMNED; 1830 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1831 mutex_exit(lock); 1832 mutex_exit(&connp->conn_lock); 1833 tcp_cleanup(tcp); 1834 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1835 tcp->tcp_time_wait_next = 1836 tcp_time_wait->tcp_free_list; 1837 tcp_time_wait->tcp_free_list = tcp; 1838 continue; 1839 } else { 1840 CONN_INC_REF_LOCKED(connp); 1841 mutex_exit(lock); 1842 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1843 mutex_exit(&connp->conn_lock); 1844 /* 1845 * We can reuse the closemp here since conn has 1846 * detached (otherwise we wouldn't even be in 1847 * time_wait list). 1848 */ 1849 mp = &tcp->tcp_closemp; 1850 squeue_fill(connp->conn_sqp, mp, 1851 tcp_timewait_output, connp, 1852 SQTAG_TCP_TIMEWAIT); 1853 } 1854 } else { 1855 mutex_enter(&connp->conn_lock); 1856 CONN_INC_REF_LOCKED(connp); 1857 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1858 mutex_exit(&connp->conn_lock); 1859 /* 1860 * We can reuse the closemp here since conn has 1861 * detached (otherwise we wouldn't even be in 1862 * time_wait list). 1863 */ 1864 mp = &tcp->tcp_closemp; 1865 squeue_fill(connp->conn_sqp, mp, 1866 tcp_timewait_output, connp, 0); 1867 } 1868 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1869 } 1870 1871 if (tcp_time_wait->tcp_free_list != NULL) 1872 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1873 1874 tcp_time_wait->tcp_time_wait_tid = 1875 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1876 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1877 } 1878 1879 /* 1880 * Reply to a clients T_CONN_RES TPI message. This function 1881 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1882 * on the acceptor STREAM and processed in tcp_wput_accept(). 1883 * Read the block comment on top of tcp_conn_request(). 1884 */ 1885 static void 1886 tcp_accept(tcp_t *listener, mblk_t *mp) 1887 { 1888 tcp_t *acceptor; 1889 tcp_t *eager; 1890 tcp_t *tcp; 1891 struct T_conn_res *tcr; 1892 t_uscalar_t acceptor_id; 1893 t_scalar_t seqnum; 1894 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1895 mblk_t *ok_mp; 1896 mblk_t *mp1; 1897 1898 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1899 tcp_err_ack(listener, mp, TPROTO, 0); 1900 return; 1901 } 1902 tcr = (struct T_conn_res *)mp->b_rptr; 1903 1904 /* 1905 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1906 * read side queue of the streams device underneath us i.e. the 1907 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1908 * look it up in the queue_hash. Under LP64 it sends down the 1909 * minor_t of the accepting endpoint. 1910 * 1911 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1912 * fanout hash lock is held. 1913 * This prevents any thread from entering the acceptor queue from 1914 * below (since it has not been hard bound yet i.e. any inbound 1915 * packets will arrive on the listener or default tcp queue and 1916 * go through tcp_lookup). 1917 * The CONN_INC_REF will prevent the acceptor from closing. 1918 * 1919 * XXX It is still possible for a tli application to send down data 1920 * on the accepting stream while another thread calls t_accept. 1921 * This should not be a problem for well-behaved applications since 1922 * the T_OK_ACK is sent after the queue swapping is completed. 1923 * 1924 * If the accepting fd is the same as the listening fd, avoid 1925 * queue hash lookup since that will return an eager listener in a 1926 * already established state. 1927 */ 1928 acceptor_id = tcr->ACCEPTOR_id; 1929 mutex_enter(&listener->tcp_eager_lock); 1930 if (listener->tcp_acceptor_id == acceptor_id) { 1931 eager = listener->tcp_eager_next_q; 1932 /* only count how many T_CONN_INDs so don't count q0 */ 1933 if ((listener->tcp_conn_req_cnt_q != 1) || 1934 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1935 mutex_exit(&listener->tcp_eager_lock); 1936 tcp_err_ack(listener, mp, TBADF, 0); 1937 return; 1938 } 1939 if (listener->tcp_conn_req_cnt_q0 != 0) { 1940 /* Throw away all the eagers on q0. */ 1941 tcp_eager_cleanup(listener, 1); 1942 } 1943 if (listener->tcp_syn_defense) { 1944 listener->tcp_syn_defense = B_FALSE; 1945 if (listener->tcp_ip_addr_cache != NULL) { 1946 kmem_free(listener->tcp_ip_addr_cache, 1947 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1948 listener->tcp_ip_addr_cache = NULL; 1949 } 1950 } 1951 /* 1952 * Transfer tcp_conn_req_max to the eager so that when 1953 * a disconnect occurs we can revert the endpoint to the 1954 * listen state. 1955 */ 1956 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1957 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1958 /* 1959 * Get a reference on the acceptor just like the 1960 * tcp_acceptor_hash_lookup below. 1961 */ 1962 acceptor = listener; 1963 CONN_INC_REF(acceptor->tcp_connp); 1964 } else { 1965 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 1966 if (acceptor == NULL) { 1967 if (listener->tcp_debug) { 1968 (void) strlog(TCP_MOD_ID, 0, 1, 1969 SL_ERROR|SL_TRACE, 1970 "tcp_accept: did not find acceptor 0x%x\n", 1971 acceptor_id); 1972 } 1973 mutex_exit(&listener->tcp_eager_lock); 1974 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1975 return; 1976 } 1977 /* 1978 * Verify acceptor state. The acceptable states for an acceptor 1979 * include TCPS_IDLE and TCPS_BOUND. 1980 */ 1981 switch (acceptor->tcp_state) { 1982 case TCPS_IDLE: 1983 /* FALLTHRU */ 1984 case TCPS_BOUND: 1985 break; 1986 default: 1987 CONN_DEC_REF(acceptor->tcp_connp); 1988 mutex_exit(&listener->tcp_eager_lock); 1989 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1990 return; 1991 } 1992 } 1993 1994 /* The listener must be in TCPS_LISTEN */ 1995 if (listener->tcp_state != TCPS_LISTEN) { 1996 CONN_DEC_REF(acceptor->tcp_connp); 1997 mutex_exit(&listener->tcp_eager_lock); 1998 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1999 return; 2000 } 2001 2002 /* 2003 * Rendezvous with an eager connection request packet hanging off 2004 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2005 * tcp structure when the connection packet arrived in 2006 * tcp_conn_request(). 2007 */ 2008 seqnum = tcr->SEQ_number; 2009 eager = listener; 2010 do { 2011 eager = eager->tcp_eager_next_q; 2012 if (eager == NULL) { 2013 CONN_DEC_REF(acceptor->tcp_connp); 2014 mutex_exit(&listener->tcp_eager_lock); 2015 tcp_err_ack(listener, mp, TBADSEQ, 0); 2016 return; 2017 } 2018 } while (eager->tcp_conn_req_seqnum != seqnum); 2019 mutex_exit(&listener->tcp_eager_lock); 2020 2021 /* 2022 * At this point, both acceptor and listener have 2 ref 2023 * that they begin with. Acceptor has one additional ref 2024 * we placed in lookup while listener has 3 additional 2025 * ref for being behind the squeue (tcp_accept() is 2026 * done on listener's squeue); being in classifier hash; 2027 * and eager's ref on listener. 2028 */ 2029 ASSERT(listener->tcp_connp->conn_ref >= 5); 2030 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2031 2032 /* 2033 * The eager at this point is set in its own squeue and 2034 * could easily have been killed (tcp_accept_finish will 2035 * deal with that) because of a TH_RST so we can only 2036 * ASSERT for a single ref. 2037 */ 2038 ASSERT(eager->tcp_connp->conn_ref >= 1); 2039 2040 /* Pre allocate the stroptions mblk also */ 2041 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2042 if (opt_mp == NULL) { 2043 CONN_DEC_REF(acceptor->tcp_connp); 2044 CONN_DEC_REF(eager->tcp_connp); 2045 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2046 return; 2047 } 2048 DB_TYPE(opt_mp) = M_SETOPTS; 2049 opt_mp->b_wptr += sizeof (struct stroptions); 2050 2051 /* 2052 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2053 * from listener to acceptor. The message is chained on opt_mp 2054 * which will be sent onto eager's squeue. 2055 */ 2056 if (listener->tcp_bound_if != 0) { 2057 /* allocate optmgmt req */ 2058 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2059 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2060 sizeof (int)); 2061 if (mp1 != NULL) 2062 linkb(opt_mp, mp1); 2063 } 2064 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2065 uint_t on = 1; 2066 2067 /* allocate optmgmt req */ 2068 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2069 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2070 if (mp1 != NULL) 2071 linkb(opt_mp, mp1); 2072 } 2073 2074 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2075 if ((mp1 = copymsg(mp)) == NULL) { 2076 CONN_DEC_REF(acceptor->tcp_connp); 2077 CONN_DEC_REF(eager->tcp_connp); 2078 freemsg(opt_mp); 2079 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2080 return; 2081 } 2082 2083 tcr = (struct T_conn_res *)mp1->b_rptr; 2084 2085 /* 2086 * This is an expanded version of mi_tpi_ok_ack_alloc() 2087 * which allocates a larger mblk and appends the new 2088 * local address to the ok_ack. The address is copied by 2089 * soaccept() for getsockname(). 2090 */ 2091 { 2092 int extra; 2093 2094 extra = (eager->tcp_family == AF_INET) ? 2095 sizeof (sin_t) : sizeof (sin6_t); 2096 2097 /* 2098 * Try to re-use mp, if possible. Otherwise, allocate 2099 * an mblk and return it as ok_mp. In any case, mp 2100 * is no longer usable upon return. 2101 */ 2102 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2103 CONN_DEC_REF(acceptor->tcp_connp); 2104 CONN_DEC_REF(eager->tcp_connp); 2105 freemsg(opt_mp); 2106 /* Original mp has been freed by now, so use mp1 */ 2107 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2108 return; 2109 } 2110 2111 mp = NULL; /* We should never use mp after this point */ 2112 2113 switch (extra) { 2114 case sizeof (sin_t): { 2115 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2116 2117 ok_mp->b_wptr += extra; 2118 sin->sin_family = AF_INET; 2119 sin->sin_port = eager->tcp_lport; 2120 sin->sin_addr.s_addr = 2121 eager->tcp_ipha->ipha_src; 2122 break; 2123 } 2124 case sizeof (sin6_t): { 2125 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2126 2127 ok_mp->b_wptr += extra; 2128 sin6->sin6_family = AF_INET6; 2129 sin6->sin6_port = eager->tcp_lport; 2130 if (eager->tcp_ipversion == IPV4_VERSION) { 2131 sin6->sin6_flowinfo = 0; 2132 IN6_IPADDR_TO_V4MAPPED( 2133 eager->tcp_ipha->ipha_src, 2134 &sin6->sin6_addr); 2135 } else { 2136 ASSERT(eager->tcp_ip6h != NULL); 2137 sin6->sin6_flowinfo = 2138 eager->tcp_ip6h->ip6_vcf & 2139 ~IPV6_VERS_AND_FLOW_MASK; 2140 sin6->sin6_addr = 2141 eager->tcp_ip6h->ip6_src; 2142 } 2143 break; 2144 } 2145 default: 2146 break; 2147 } 2148 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2149 } 2150 2151 /* 2152 * If there are no options we know that the T_CONN_RES will 2153 * succeed. However, we can't send the T_OK_ACK upstream until 2154 * the tcp_accept_swap is done since it would be dangerous to 2155 * let the application start using the new fd prior to the swap. 2156 */ 2157 tcp_accept_swap(listener, acceptor, eager); 2158 2159 /* 2160 * tcp_accept_swap unlinks eager from listener but does not drop 2161 * the eager's reference on the listener. 2162 */ 2163 ASSERT(eager->tcp_listener == NULL); 2164 ASSERT(listener->tcp_connp->conn_ref >= 5); 2165 2166 /* 2167 * The eager is now associated with its own queue. Insert in 2168 * the hash so that the connection can be reused for a future 2169 * T_CONN_RES. 2170 */ 2171 tcp_acceptor_hash_insert(acceptor_id, eager); 2172 2173 /* 2174 * We now do the processing of options with T_CONN_RES. 2175 * We delay till now since we wanted to have queue to pass to 2176 * option processing routines that points back to the right 2177 * instance structure which does not happen until after 2178 * tcp_accept_swap(). 2179 * 2180 * Note: 2181 * The sanity of the logic here assumes that whatever options 2182 * are appropriate to inherit from listner=>eager are done 2183 * before this point, and whatever were to be overridden (or not) 2184 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2185 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2186 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2187 * This may not be true at this point in time but can be fixed 2188 * independently. This option processing code starts with 2189 * the instantiated acceptor instance and the final queue at 2190 * this point. 2191 */ 2192 2193 if (tcr->OPT_length != 0) { 2194 /* Options to process */ 2195 int t_error = 0; 2196 int sys_error = 0; 2197 int do_disconnect = 0; 2198 2199 if (tcp_conprim_opt_process(eager, mp1, 2200 &do_disconnect, &t_error, &sys_error) < 0) { 2201 eager->tcp_accept_error = 1; 2202 if (do_disconnect) { 2203 /* 2204 * An option failed which does not allow 2205 * connection to be accepted. 2206 * 2207 * We allow T_CONN_RES to succeed and 2208 * put a T_DISCON_IND on the eager queue. 2209 */ 2210 ASSERT(t_error == 0 && sys_error == 0); 2211 eager->tcp_send_discon_ind = 1; 2212 } else { 2213 ASSERT(t_error != 0); 2214 freemsg(ok_mp); 2215 /* 2216 * Original mp was either freed or set 2217 * to ok_mp above, so use mp1 instead. 2218 */ 2219 tcp_err_ack(listener, mp1, t_error, sys_error); 2220 goto finish; 2221 } 2222 } 2223 /* 2224 * Most likely success in setting options (except if 2225 * eager->tcp_send_discon_ind set). 2226 * mp1 option buffer represented by OPT_length/offset 2227 * potentially modified and contains results of setting 2228 * options at this point 2229 */ 2230 } 2231 2232 /* We no longer need mp1, since all options processing has passed */ 2233 freemsg(mp1); 2234 2235 putnext(listener->tcp_rq, ok_mp); 2236 2237 mutex_enter(&listener->tcp_eager_lock); 2238 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2239 tcp_t *tail; 2240 mblk_t *conn_ind; 2241 2242 /* 2243 * This path should not be executed if listener and 2244 * acceptor streams are the same. 2245 */ 2246 ASSERT(listener != acceptor); 2247 2248 tcp = listener->tcp_eager_prev_q0; 2249 /* 2250 * listener->tcp_eager_prev_q0 points to the TAIL of the 2251 * deferred T_conn_ind queue. We need to get to the head of 2252 * the queue in order to send up T_conn_ind the same order as 2253 * how the 3WHS is completed. 2254 */ 2255 while (tcp != listener) { 2256 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2257 break; 2258 else 2259 tcp = tcp->tcp_eager_prev_q0; 2260 } 2261 ASSERT(tcp != listener); 2262 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2263 ASSERT(conn_ind != NULL); 2264 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2265 2266 /* Move from q0 to q */ 2267 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2268 listener->tcp_conn_req_cnt_q0--; 2269 listener->tcp_conn_req_cnt_q++; 2270 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2271 tcp->tcp_eager_prev_q0; 2272 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2273 tcp->tcp_eager_next_q0; 2274 tcp->tcp_eager_prev_q0 = NULL; 2275 tcp->tcp_eager_next_q0 = NULL; 2276 tcp->tcp_conn_def_q0 = B_FALSE; 2277 2278 /* 2279 * Insert at end of the queue because sockfs sends 2280 * down T_CONN_RES in chronological order. Leaving 2281 * the older conn indications at front of the queue 2282 * helps reducing search time. 2283 */ 2284 tail = listener->tcp_eager_last_q; 2285 if (tail != NULL) 2286 tail->tcp_eager_next_q = tcp; 2287 else 2288 listener->tcp_eager_next_q = tcp; 2289 listener->tcp_eager_last_q = tcp; 2290 tcp->tcp_eager_next_q = NULL; 2291 mutex_exit(&listener->tcp_eager_lock); 2292 putnext(tcp->tcp_rq, conn_ind); 2293 } else { 2294 mutex_exit(&listener->tcp_eager_lock); 2295 } 2296 2297 /* 2298 * Done with the acceptor - free it 2299 * 2300 * Note: from this point on, no access to listener should be made 2301 * as listener can be equal to acceptor. 2302 */ 2303 finish: 2304 ASSERT(acceptor->tcp_detached); 2305 acceptor->tcp_rq = tcp_g_q; 2306 acceptor->tcp_wq = WR(tcp_g_q); 2307 (void) tcp_clean_death(acceptor, 0, 2); 2308 CONN_DEC_REF(acceptor->tcp_connp); 2309 2310 /* 2311 * In case we already received a FIN we have to make tcp_rput send 2312 * the ordrel_ind. This will also send up a window update if the window 2313 * has opened up. 2314 * 2315 * In the normal case of a successful connection acceptance 2316 * we give the O_T_BIND_REQ to the read side put procedure as an 2317 * indication that this was just accepted. This tells tcp_rput to 2318 * pass up any data queued in tcp_rcv_list. 2319 * 2320 * In the fringe case where options sent with T_CONN_RES failed and 2321 * we required, we would be indicating a T_DISCON_IND to blow 2322 * away this connection. 2323 */ 2324 2325 /* 2326 * XXX: we currently have a problem if XTI application closes the 2327 * acceptor stream in between. This problem exists in on10-gate also 2328 * and is well know but nothing can be done short of major rewrite 2329 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2330 * eager same squeue as listener (we can distinguish non socket 2331 * listeners at the time of handling a SYN in tcp_conn_request) 2332 * and do most of the work that tcp_accept_finish does here itself 2333 * and then get behind the acceptor squeue to access the acceptor 2334 * queue. 2335 */ 2336 /* 2337 * We already have a ref on tcp so no need to do one before squeue_fill 2338 */ 2339 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2340 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2341 } 2342 2343 /* 2344 * Swap information between the eager and acceptor for a TLI/XTI client. 2345 * The sockfs accept is done on the acceptor stream and control goes 2346 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2347 * called. In either case, both the eager and listener are in their own 2348 * perimeter (squeue) and the code has to deal with potential race. 2349 * 2350 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2351 */ 2352 static void 2353 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2354 { 2355 conn_t *econnp, *aconnp; 2356 2357 ASSERT(eager->tcp_rq == listener->tcp_rq); 2358 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2359 ASSERT(!eager->tcp_hard_bound); 2360 ASSERT(!TCP_IS_SOCKET(acceptor)); 2361 ASSERT(!TCP_IS_SOCKET(eager)); 2362 ASSERT(!TCP_IS_SOCKET(listener)); 2363 2364 acceptor->tcp_detached = B_TRUE; 2365 /* 2366 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2367 * the acceptor id. 2368 */ 2369 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2370 2371 /* remove eager from listen list... */ 2372 mutex_enter(&listener->tcp_eager_lock); 2373 tcp_eager_unlink(eager); 2374 ASSERT(eager->tcp_eager_next_q == NULL && 2375 eager->tcp_eager_last_q == NULL); 2376 ASSERT(eager->tcp_eager_next_q0 == NULL && 2377 eager->tcp_eager_prev_q0 == NULL); 2378 mutex_exit(&listener->tcp_eager_lock); 2379 eager->tcp_rq = acceptor->tcp_rq; 2380 eager->tcp_wq = acceptor->tcp_wq; 2381 2382 econnp = eager->tcp_connp; 2383 aconnp = acceptor->tcp_connp; 2384 2385 eager->tcp_rq->q_ptr = econnp; 2386 eager->tcp_wq->q_ptr = econnp; 2387 eager->tcp_detached = B_FALSE; 2388 2389 ASSERT(eager->tcp_ack_tid == 0); 2390 2391 econnp->conn_dev = aconnp->conn_dev; 2392 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2393 econnp->conn_zoneid = aconnp->conn_zoneid; 2394 aconnp->conn_cred = NULL; 2395 2396 /* Do the IPC initialization */ 2397 CONN_INC_REF(econnp); 2398 2399 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2400 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2401 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2402 econnp->conn_ulp = aconnp->conn_ulp; 2403 2404 /* Done with old IPC. Drop its ref on its connp */ 2405 CONN_DEC_REF(aconnp); 2406 } 2407 2408 2409 /* 2410 * Adapt to the information, such as rtt and rtt_sd, provided from the 2411 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2412 * 2413 * Checks for multicast and broadcast destination address. 2414 * Returns zero on failure; non-zero if ok. 2415 * 2416 * Note that the MSS calculation here is based on the info given in 2417 * the IRE. We do not do any calculation based on TCP options. They 2418 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2419 * knows which options to use. 2420 * 2421 * Note on how TCP gets its parameters for a connection. 2422 * 2423 * When a tcp_t structure is allocated, it gets all the default parameters. 2424 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2425 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2426 * default. But if there is an associated tcp_host_param, it will override 2427 * the metrics. 2428 * 2429 * An incoming SYN with a multicast or broadcast destination address, is dropped 2430 * in 1 of 2 places. 2431 * 2432 * 1. If the packet was received over the wire it is dropped in 2433 * ip_rput_process_broadcast() 2434 * 2435 * 2. If the packet was received through internal IP loopback, i.e. the packet 2436 * was generated and received on the same machine, it is dropped in 2437 * ip_wput_local() 2438 * 2439 * An incoming SYN with a multicast or broadcast source address is always 2440 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2441 * reject an attempt to connect to a broadcast or multicast (destination) 2442 * address. 2443 */ 2444 static int 2445 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2446 { 2447 tcp_hsp_t *hsp; 2448 ire_t *ire; 2449 ire_t *sire = NULL; 2450 iulp_t *ire_uinfo; 2451 uint32_t mss_max; 2452 uint32_t mss; 2453 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2454 conn_t *connp = tcp->tcp_connp; 2455 boolean_t ire_cacheable = B_FALSE; 2456 zoneid_t zoneid = connp->conn_zoneid; 2457 ill_t *ill = NULL; 2458 boolean_t incoming = (ire_mp == NULL); 2459 2460 ASSERT(connp->conn_ire_cache == NULL); 2461 2462 if (tcp->tcp_ipversion == IPV4_VERSION) { 2463 2464 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2465 BUMP_MIB(&ip_mib, ipInDiscards); 2466 return (0); 2467 } 2468 2469 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, zoneid); 2470 if (ire != NULL) { 2471 ire_cacheable = B_TRUE; 2472 ire_uinfo = (ire_mp != NULL) ? 2473 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2474 &ire->ire_uinfo; 2475 2476 } else { 2477 if (ire_mp == NULL) { 2478 ire = ire_ftable_lookup( 2479 tcp->tcp_connp->conn_rem, 2480 0, 0, 0, NULL, &sire, zoneid, 0, 2481 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 2482 if (ire == NULL) 2483 return (0); 2484 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2485 &ire->ire_uinfo; 2486 } else { 2487 ire = (ire_t *)ire_mp->b_rptr; 2488 ire_uinfo = 2489 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2490 } 2491 } 2492 ASSERT(ire != NULL); 2493 ASSERT(ire_uinfo != NULL); 2494 2495 if ((ire->ire_src_addr == INADDR_ANY) || 2496 (ire->ire_type & IRE_BROADCAST)) { 2497 /* 2498 * ire->ire_mp is non null when ire_mp passed in is used 2499 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2500 */ 2501 if (ire->ire_mp == NULL) 2502 ire_refrele(ire); 2503 if (sire != NULL) 2504 ire_refrele(sire); 2505 return (0); 2506 } 2507 2508 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2509 ipaddr_t src_addr; 2510 2511 /* 2512 * ip_bind_connected() has stored the correct source 2513 * address in conn_src. 2514 */ 2515 src_addr = tcp->tcp_connp->conn_src; 2516 tcp->tcp_ipha->ipha_src = src_addr; 2517 /* 2518 * Copy of the src addr. in tcp_t is needed 2519 * for the lookup funcs. 2520 */ 2521 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2522 } 2523 /* 2524 * Set the fragment bit so that IP will tell us if the MTU 2525 * should change. IP tells us the latest setting of 2526 * ip_path_mtu_discovery through ire_frag_flag. 2527 */ 2528 if (ip_path_mtu_discovery) { 2529 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2530 htons(IPH_DF); 2531 } 2532 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2533 } else { 2534 /* 2535 * For incoming connection ire_mp = NULL 2536 * For outgoing connection ire_mp != NULL 2537 * Technically we should check conn_incoming_ill 2538 * when ire_mp is NULL and conn_outgoing_ill when 2539 * ire_mp is non-NULL. But this is performance 2540 * critical path and for IPV*_BOUND_IF, outgoing 2541 * and incoming ill are always set to the same value. 2542 */ 2543 ill_t *dst_ill = NULL; 2544 ipif_t *dst_ipif = NULL; 2545 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT; 2546 2547 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2548 2549 if (connp->conn_outgoing_ill != NULL) { 2550 /* Outgoing or incoming path */ 2551 int err; 2552 2553 dst_ill = conn_get_held_ill(connp, 2554 &connp->conn_outgoing_ill, &err); 2555 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2556 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2557 return (0); 2558 } 2559 match_flags |= MATCH_IRE_ILL; 2560 dst_ipif = dst_ill->ill_ipif; 2561 } 2562 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2563 0, 0, dst_ipif, zoneid, match_flags); 2564 2565 if (ire != NULL) { 2566 ire_cacheable = B_TRUE; 2567 ire_uinfo = (ire_mp != NULL) ? 2568 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2569 &ire->ire_uinfo; 2570 } else { 2571 if (ire_mp == NULL) { 2572 ire = ire_ftable_lookup_v6( 2573 &tcp->tcp_connp->conn_remv6, 2574 0, 0, 0, dst_ipif, &sire, zoneid, 2575 0, match_flags); 2576 if (ire == NULL) { 2577 if (dst_ill != NULL) 2578 ill_refrele(dst_ill); 2579 return (0); 2580 } 2581 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2582 &ire->ire_uinfo; 2583 } else { 2584 ire = (ire_t *)ire_mp->b_rptr; 2585 ire_uinfo = 2586 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2587 } 2588 } 2589 if (dst_ill != NULL) 2590 ill_refrele(dst_ill); 2591 2592 ASSERT(ire != NULL); 2593 ASSERT(ire_uinfo != NULL); 2594 2595 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2596 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2597 /* 2598 * ire->ire_mp is non null when ire_mp passed in is used 2599 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2600 */ 2601 if (ire->ire_mp == NULL) 2602 ire_refrele(ire); 2603 if (sire != NULL) 2604 ire_refrele(sire); 2605 return (0); 2606 } 2607 2608 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2609 in6_addr_t src_addr; 2610 2611 /* 2612 * ip_bind_connected_v6() has stored the correct source 2613 * address per IPv6 addr. selection policy in 2614 * conn_src_v6. 2615 */ 2616 src_addr = tcp->tcp_connp->conn_srcv6; 2617 2618 tcp->tcp_ip6h->ip6_src = src_addr; 2619 /* 2620 * Copy of the src addr. in tcp_t is needed 2621 * for the lookup funcs. 2622 */ 2623 tcp->tcp_ip_src_v6 = src_addr; 2624 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2625 &connp->conn_srcv6)); 2626 } 2627 tcp->tcp_localnet = 2628 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2629 } 2630 2631 /* 2632 * This allows applications to fail quickly when connections are made 2633 * to dead hosts. Hosts can be labeled dead by adding a reject route 2634 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2635 */ 2636 if ((ire->ire_flags & RTF_REJECT) && 2637 (ire->ire_flags & RTF_PRIVATE)) 2638 goto error; 2639 2640 /* 2641 * Make use of the cached rtt and rtt_sd values to calculate the 2642 * initial RTO. Note that they are already initialized in 2643 * tcp_init_values(). 2644 */ 2645 if (ire_uinfo->iulp_rtt != 0) { 2646 clock_t rto; 2647 2648 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2649 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2650 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2651 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2652 2653 if (rto > tcp_rexmit_interval_max) { 2654 tcp->tcp_rto = tcp_rexmit_interval_max; 2655 } else if (rto < tcp_rexmit_interval_min) { 2656 tcp->tcp_rto = tcp_rexmit_interval_min; 2657 } else { 2658 tcp->tcp_rto = rto; 2659 } 2660 } 2661 if (ire_uinfo->iulp_ssthresh != 0) 2662 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2663 else 2664 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2665 if (ire_uinfo->iulp_spipe > 0) { 2666 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2667 tcp_max_buf); 2668 if (tcp_snd_lowat_fraction != 0) 2669 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2670 tcp_snd_lowat_fraction; 2671 (void) tcp_maxpsz_set(tcp, B_TRUE); 2672 } 2673 /* 2674 * Note that up till now, acceptor always inherits receive 2675 * window from the listener. But if there is a metrics associated 2676 * with a host, we should use that instead of inheriting it from 2677 * listener. Thus we need to pass this info back to the caller. 2678 */ 2679 if (ire_uinfo->iulp_rpipe > 0) { 2680 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2681 } else { 2682 /* 2683 * For passive open, set tcp_rwnd to 0 so that the caller 2684 * knows that there is no rpipe metric for this connection. 2685 */ 2686 if (tcp_detached) 2687 tcp->tcp_rwnd = 0; 2688 } 2689 if (ire_uinfo->iulp_rtomax > 0) { 2690 tcp->tcp_second_timer_threshold = ire_uinfo->iulp_rtomax; 2691 } 2692 2693 /* 2694 * Use the metric option settings, iulp_tstamp_ok and iulp_wscale_ok, 2695 * only for active open. What this means is that if the other side 2696 * uses timestamp or window scale option, TCP will also use those 2697 * options. That is for passive open. If the application sets a 2698 * large window, window scale is enabled regardless of the value in 2699 * iulp_wscale_ok. This is the behavior since 2.6. So we keep it. 2700 * The only case left in passive open processing is the check for SACK. 2701 * 2702 * For ECN, it should probably be like SACK. But the current 2703 * value is binary, so we treat it like the other cases. The 2704 * metric only controls active open. For passive open, the ndd 2705 * param, tcp_ecn_permitted, controls the behavior. 2706 */ 2707 if (!tcp_detached) { 2708 /* 2709 * The if check means that the following can only be turned 2710 * on by the metrics only IRE, but not off. 2711 */ 2712 if (ire_uinfo->iulp_tstamp_ok) 2713 tcp->tcp_snd_ts_ok = B_TRUE; 2714 if (ire_uinfo->iulp_wscale_ok) 2715 tcp->tcp_snd_ws_ok = B_TRUE; 2716 if (ire_uinfo->iulp_sack == 2) 2717 tcp->tcp_snd_sack_ok = B_TRUE; 2718 if (ire_uinfo->iulp_ecn_ok) 2719 tcp->tcp_ecn_ok = B_TRUE; 2720 } else { 2721 /* 2722 * Passive open. 2723 * 2724 * As above, the if check means that SACK can only be 2725 * turned on by the metric only IRE. 2726 */ 2727 if (ire_uinfo->iulp_sack > 0) { 2728 tcp->tcp_snd_sack_ok = B_TRUE; 2729 } 2730 } 2731 2732 /* 2733 * XXX: Note that currently, ire_max_frag can be as small as 68 2734 * because of PMTUd. So tcp_mss may go to negative if combined 2735 * length of all those options exceeds 28 bytes. But because 2736 * of the tcp_mss_min check below, we may not have a problem if 2737 * tcp_mss_min is of a reasonable value. The default is 1 so 2738 * the negative problem still exists. And the check defeats PMTUd. 2739 * In fact, if PMTUd finds that the MSS should be smaller than 2740 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2741 * value. 2742 * 2743 * We do not deal with that now. All those problems related to 2744 * PMTUd will be fixed later. 2745 */ 2746 ASSERT(ire->ire_max_frag != 0); 2747 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2748 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2749 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2750 mss = MIN(mss, IPV6_MIN_MTU); 2751 } 2752 } 2753 2754 /* Sanity check for MSS value. */ 2755 if (tcp->tcp_ipversion == IPV4_VERSION) 2756 mss_max = tcp_mss_max_ipv4; 2757 else 2758 mss_max = tcp_mss_max_ipv6; 2759 2760 if (tcp->tcp_ipversion == IPV6_VERSION && 2761 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2762 /* 2763 * After receiving an ICMPv6 "packet too big" message with a 2764 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2765 * will insert a 8-byte fragment header in every packet; we 2766 * reduce the MSS by that amount here. 2767 */ 2768 mss -= sizeof (ip6_frag_t); 2769 } 2770 2771 if (tcp->tcp_ipsec_overhead == 0) 2772 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2773 2774 mss -= tcp->tcp_ipsec_overhead; 2775 2776 if (mss < tcp_mss_min) 2777 mss = tcp_mss_min; 2778 if (mss > mss_max) 2779 mss = mss_max; 2780 2781 /* Note that this is the maximum MSS, excluding all options. */ 2782 tcp->tcp_mss = mss; 2783 2784 /* 2785 * Initialize the ISS here now that we have the full connection ID. 2786 * The RFC 1948 method of initial sequence number generation requires 2787 * knowledge of the full connection ID before setting the ISS. 2788 */ 2789 2790 tcp_iss_init(tcp); 2791 2792 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2793 tcp->tcp_loopback = B_TRUE; 2794 2795 if (tcp->tcp_ipversion == IPV4_VERSION) { 2796 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2797 } else { 2798 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2799 } 2800 2801 if (hsp != NULL) { 2802 /* Only modify if we're going to make them bigger */ 2803 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2804 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2805 if (tcp_snd_lowat_fraction != 0) 2806 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2807 tcp_snd_lowat_fraction; 2808 } 2809 2810 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2811 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2812 } 2813 2814 /* Copy timestamp flag only for active open */ 2815 if (!tcp_detached) 2816 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2817 } 2818 2819 if (sire != NULL) 2820 IRE_REFRELE(sire); 2821 2822 /* 2823 * If we got an IRE_CACHE and an ILL, go through their properties; 2824 * otherwise, this is deferred until later when we have an IRE_CACHE. 2825 */ 2826 if (tcp->tcp_loopback || 2827 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2828 /* 2829 * For incoming, see if this tcp may be MDT-capable. For 2830 * outgoing, this process has been taken care of through 2831 * tcp_rput_other. 2832 */ 2833 tcp_ire_ill_check(tcp, ire, ill, incoming); 2834 tcp->tcp_ire_ill_check_done = B_TRUE; 2835 } 2836 2837 mutex_enter(&connp->conn_lock); 2838 /* 2839 * Make sure that conn is not marked incipient 2840 * for incoming connections. A blind 2841 * removal of incipient flag is cheaper than 2842 * check and removal. 2843 */ 2844 connp->conn_state_flags &= ~CONN_INCIPIENT; 2845 2846 /* Must not cache forwarding table routes. */ 2847 if (ire_cacheable) { 2848 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2849 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2850 connp->conn_ire_cache = ire; 2851 IRE_UNTRACE_REF(ire); 2852 rw_exit(&ire->ire_bucket->irb_lock); 2853 mutex_exit(&connp->conn_lock); 2854 return (1); 2855 } 2856 rw_exit(&ire->ire_bucket->irb_lock); 2857 } 2858 mutex_exit(&connp->conn_lock); 2859 2860 if (ire->ire_mp == NULL) 2861 ire_refrele(ire); 2862 return (1); 2863 2864 error: 2865 if (ire->ire_mp == NULL) 2866 ire_refrele(ire); 2867 if (sire != NULL) 2868 ire_refrele(sire); 2869 return (0); 2870 } 2871 2872 /* 2873 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2874 * O_T_BIND_REQ/T_BIND_REQ message. 2875 */ 2876 static void 2877 tcp_bind(tcp_t *tcp, mblk_t *mp) 2878 { 2879 sin_t *sin; 2880 sin6_t *sin6; 2881 mblk_t *mp1; 2882 in_port_t requested_port; 2883 in_port_t allocated_port; 2884 struct T_bind_req *tbr; 2885 boolean_t bind_to_req_port_only; 2886 boolean_t backlog_update = B_FALSE; 2887 boolean_t user_specified; 2888 in6_addr_t v6addr; 2889 ipaddr_t v4addr; 2890 uint_t origipversion; 2891 int err; 2892 queue_t *q = tcp->tcp_wq; 2893 2894 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2895 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2896 if (tcp->tcp_debug) { 2897 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2898 "tcp_bind: bad req, len %u", 2899 (uint_t)(mp->b_wptr - mp->b_rptr)); 2900 } 2901 tcp_err_ack(tcp, mp, TPROTO, 0); 2902 return; 2903 } 2904 /* Make sure the largest address fits */ 2905 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 2906 if (mp1 == NULL) { 2907 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2908 return; 2909 } 2910 mp = mp1; 2911 tbr = (struct T_bind_req *)mp->b_rptr; 2912 if (tcp->tcp_state >= TCPS_BOUND) { 2913 if ((tcp->tcp_state == TCPS_BOUND || 2914 tcp->tcp_state == TCPS_LISTEN) && 2915 tcp->tcp_conn_req_max != tbr->CONIND_number && 2916 tbr->CONIND_number > 0) { 2917 /* 2918 * Handle listen() increasing CONIND_number. 2919 * This is more "liberal" then what the TPI spec 2920 * requires but is needed to avoid a t_unbind 2921 * when handling listen() since the port number 2922 * might be "stolen" between the unbind and bind. 2923 */ 2924 backlog_update = B_TRUE; 2925 goto do_bind; 2926 } 2927 if (tcp->tcp_debug) { 2928 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2929 "tcp_bind: bad state, %d", tcp->tcp_state); 2930 } 2931 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 2932 return; 2933 } 2934 origipversion = tcp->tcp_ipversion; 2935 2936 switch (tbr->ADDR_length) { 2937 case 0: /* request for a generic port */ 2938 tbr->ADDR_offset = sizeof (struct T_bind_req); 2939 if (tcp->tcp_family == AF_INET) { 2940 tbr->ADDR_length = sizeof (sin_t); 2941 sin = (sin_t *)&tbr[1]; 2942 *sin = sin_null; 2943 sin->sin_family = AF_INET; 2944 mp->b_wptr = (uchar_t *)&sin[1]; 2945 tcp->tcp_ipversion = IPV4_VERSION; 2946 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 2947 } else { 2948 ASSERT(tcp->tcp_family == AF_INET6); 2949 tbr->ADDR_length = sizeof (sin6_t); 2950 sin6 = (sin6_t *)&tbr[1]; 2951 *sin6 = sin6_null; 2952 sin6->sin6_family = AF_INET6; 2953 mp->b_wptr = (uchar_t *)&sin6[1]; 2954 tcp->tcp_ipversion = IPV6_VERSION; 2955 V6_SET_ZERO(v6addr); 2956 } 2957 requested_port = 0; 2958 break; 2959 2960 case sizeof (sin_t): /* Complete IPv4 address */ 2961 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 2962 sizeof (sin_t)); 2963 if (sin == NULL || !OK_32PTR((char *)sin)) { 2964 if (tcp->tcp_debug) { 2965 (void) strlog(TCP_MOD_ID, 0, 1, 2966 SL_ERROR|SL_TRACE, 2967 "tcp_bind: bad address parameter, " 2968 "offset %d, len %d", 2969 tbr->ADDR_offset, tbr->ADDR_length); 2970 } 2971 tcp_err_ack(tcp, mp, TPROTO, 0); 2972 return; 2973 } 2974 /* 2975 * With sockets sockfs will accept bogus sin_family in 2976 * bind() and replace it with the family used in the socket 2977 * call. 2978 */ 2979 if (sin->sin_family != AF_INET || 2980 tcp->tcp_family != AF_INET) { 2981 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 2982 return; 2983 } 2984 requested_port = ntohs(sin->sin_port); 2985 tcp->tcp_ipversion = IPV4_VERSION; 2986 v4addr = sin->sin_addr.s_addr; 2987 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 2988 break; 2989 2990 case sizeof (sin6_t): /* Complete IPv6 address */ 2991 sin6 = (sin6_t *)mi_offset_param(mp, 2992 tbr->ADDR_offset, sizeof (sin6_t)); 2993 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 2994 if (tcp->tcp_debug) { 2995 (void) strlog(TCP_MOD_ID, 0, 1, 2996 SL_ERROR|SL_TRACE, 2997 "tcp_bind: bad IPv6 address parameter, " 2998 "offset %d, len %d", tbr->ADDR_offset, 2999 tbr->ADDR_length); 3000 } 3001 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3002 return; 3003 } 3004 if (sin6->sin6_family != AF_INET6 || 3005 tcp->tcp_family != AF_INET6) { 3006 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3007 return; 3008 } 3009 requested_port = ntohs(sin6->sin6_port); 3010 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3011 IPV4_VERSION : IPV6_VERSION; 3012 v6addr = sin6->sin6_addr; 3013 break; 3014 3015 default: 3016 if (tcp->tcp_debug) { 3017 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3018 "tcp_bind: bad address length, %d", 3019 tbr->ADDR_length); 3020 } 3021 tcp_err_ack(tcp, mp, TBADADDR, 0); 3022 return; 3023 } 3024 tcp->tcp_bound_source_v6 = v6addr; 3025 3026 /* Check for change in ipversion */ 3027 if (origipversion != tcp->tcp_ipversion) { 3028 ASSERT(tcp->tcp_family == AF_INET6); 3029 err = tcp->tcp_ipversion == IPV6_VERSION ? 3030 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3031 if (err) { 3032 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3033 return; 3034 } 3035 } 3036 3037 /* 3038 * Initialize family specific fields. Copy of the src addr. 3039 * in tcp_t is needed for the lookup funcs. 3040 */ 3041 if (tcp->tcp_ipversion == IPV6_VERSION) { 3042 tcp->tcp_ip6h->ip6_src = v6addr; 3043 } else { 3044 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3045 } 3046 tcp->tcp_ip_src_v6 = v6addr; 3047 3048 /* 3049 * For O_T_BIND_REQ: 3050 * Verify that the target port/addr is available, or choose 3051 * another. 3052 * For T_BIND_REQ: 3053 * Verify that the target port/addr is available or fail. 3054 * In both cases when it succeeds the tcp is inserted in the 3055 * bind hash table. This ensures that the operation is atomic 3056 * under the lock on the hash bucket. 3057 */ 3058 bind_to_req_port_only = requested_port != 0 && 3059 tbr->PRIM_type != O_T_BIND_REQ; 3060 /* 3061 * Get a valid port (within the anonymous range and should not 3062 * be a privileged one) to use if the user has not given a port. 3063 * If multiple threads are here, they may all start with 3064 * with the same initial port. But, it should be fine as long as 3065 * tcp_bindi will ensure that no two threads will be assigned 3066 * the same port. 3067 * 3068 * NOTE: XXX If a privileged process asks for an anonymous port, we 3069 * still check for ports only in the range > tcp_smallest_non_priv_port, 3070 * unless TCP_ANONPRIVBIND option is set. 3071 */ 3072 if (requested_port == 0) { 3073 requested_port = tcp->tcp_anon_priv_bind ? 3074 tcp_get_next_priv_port() : 3075 tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 3076 user_specified = B_FALSE; 3077 } else { 3078 int i; 3079 boolean_t priv = B_FALSE; 3080 /* 3081 * If the requested_port is in the well-known privileged range, 3082 * verify that the stream was opened by a privileged user. 3083 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3084 * but instead the code relies on: 3085 * - the fact that the address of the array and its size never 3086 * changes 3087 * - the atomic assignment of the elements of the array 3088 */ 3089 if (requested_port < tcp_smallest_nonpriv_port) { 3090 priv = B_TRUE; 3091 } else { 3092 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3093 if (requested_port == 3094 tcp_g_epriv_ports[i]) { 3095 priv = B_TRUE; 3096 break; 3097 } 3098 } 3099 } 3100 if (priv) { 3101 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 3102 3103 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3104 if (tcp->tcp_debug) { 3105 (void) strlog(TCP_MOD_ID, 0, 1, 3106 SL_ERROR|SL_TRACE, 3107 "tcp_bind: no priv for port %d", 3108 requested_port); 3109 } 3110 tcp_err_ack(tcp, mp, TACCES, 0); 3111 return; 3112 } 3113 } 3114 user_specified = B_TRUE; 3115 } 3116 3117 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3118 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3119 3120 if (allocated_port == 0) { 3121 if (bind_to_req_port_only) { 3122 if (tcp->tcp_debug) { 3123 (void) strlog(TCP_MOD_ID, 0, 1, 3124 SL_ERROR|SL_TRACE, 3125 "tcp_bind: requested addr busy"); 3126 } 3127 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3128 } else { 3129 /* If we are out of ports, fail the bind. */ 3130 if (tcp->tcp_debug) { 3131 (void) strlog(TCP_MOD_ID, 0, 1, 3132 SL_ERROR|SL_TRACE, 3133 "tcp_bind: out of ports?"); 3134 } 3135 tcp_err_ack(tcp, mp, TNOADDR, 0); 3136 } 3137 return; 3138 } 3139 ASSERT(tcp->tcp_state == TCPS_BOUND); 3140 do_bind: 3141 if (!backlog_update) { 3142 if (tcp->tcp_family == AF_INET) 3143 sin->sin_port = htons(allocated_port); 3144 else 3145 sin6->sin6_port = htons(allocated_port); 3146 } 3147 if (tcp->tcp_family == AF_INET) { 3148 if (tbr->CONIND_number != 0) { 3149 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3150 sizeof (sin_t)); 3151 } else { 3152 /* Just verify the local IP address */ 3153 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3154 } 3155 } else { 3156 if (tbr->CONIND_number != 0) { 3157 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3158 sizeof (sin6_t)); 3159 } else { 3160 /* Just verify the local IP address */ 3161 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3162 IPV6_ADDR_LEN); 3163 } 3164 } 3165 if (!mp1) { 3166 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3167 return; 3168 } 3169 3170 tbr->PRIM_type = T_BIND_ACK; 3171 mp->b_datap->db_type = M_PCPROTO; 3172 3173 /* Chain in the reply mp for tcp_rput() */ 3174 mp1->b_cont = mp; 3175 mp = mp1; 3176 3177 tcp->tcp_conn_req_max = tbr->CONIND_number; 3178 if (tcp->tcp_conn_req_max) { 3179 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3180 tcp->tcp_conn_req_max = tcp_conn_req_min; 3181 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3182 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3183 /* 3184 * If this is a listener, do not reset the eager list 3185 * and other stuffs. Note that we don't check if the 3186 * existing eager list meets the new tcp_conn_req_max 3187 * requirement. 3188 */ 3189 if (tcp->tcp_state != TCPS_LISTEN) { 3190 tcp->tcp_state = TCPS_LISTEN; 3191 /* Initialize the chain. Don't need the eager_lock */ 3192 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3193 tcp->tcp_second_ctimer_threshold = 3194 tcp_ip_abort_linterval; 3195 } 3196 } 3197 3198 /* 3199 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3200 * processing continues in tcp_rput_other(). 3201 */ 3202 if (tcp->tcp_family == AF_INET6) { 3203 ASSERT(tcp->tcp_connp->conn_af_isv6); 3204 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3205 } else { 3206 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3207 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3208 } 3209 /* 3210 * If the bind cannot complete immediately 3211 * IP will arrange to call tcp_rput_other 3212 * when the bind completes. 3213 */ 3214 if (mp != NULL) { 3215 tcp_rput_other(tcp, mp); 3216 } else { 3217 /* 3218 * Bind will be resumed later. Need to ensure 3219 * that conn doesn't disappear when that happens. 3220 * This will be decremented in ip_resume_tcp_bind(). 3221 */ 3222 CONN_INC_REF(tcp->tcp_connp); 3223 } 3224 } 3225 3226 3227 /* 3228 * If the "bind_to_req_port_only" parameter is set, if the requested port 3229 * number is available, return it, If not return 0 3230 * 3231 * If "bind_to_req_port_only" parameter is not set and 3232 * If the requested port number is available, return it. If not, return 3233 * the first anonymous port we happen across. If no anonymous ports are 3234 * available, return 0. addr is the requested local address, if any. 3235 * 3236 * In either case, when succeeding update the tcp_t to record the port number 3237 * and insert it in the bind hash table. 3238 * 3239 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3240 * without setting SO_REUSEADDR. This is needed so that they 3241 * can be viewed as two independent transport protocols. 3242 */ 3243 static in_port_t 3244 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3245 int reuseaddr, boolean_t quick_connect, 3246 boolean_t bind_to_req_port_only, boolean_t user_specified) 3247 { 3248 /* number of times we have run around the loop */ 3249 int count = 0; 3250 /* maximum number of times to run around the loop */ 3251 int loopmax; 3252 zoneid_t zoneid = tcp->tcp_connp->conn_zoneid; 3253 3254 /* 3255 * Lookup for free addresses is done in a loop and "loopmax" 3256 * influences how long we spin in the loop 3257 */ 3258 if (bind_to_req_port_only) { 3259 /* 3260 * If the requested port is busy, don't bother to look 3261 * for a new one. Setting loop maximum count to 1 has 3262 * that effect. 3263 */ 3264 loopmax = 1; 3265 } else { 3266 /* 3267 * If the requested port is busy, look for a free one 3268 * in the anonymous port range. 3269 * Set loopmax appropriately so that one does not look 3270 * forever in the case all of the anonymous ports are in use. 3271 */ 3272 if (tcp->tcp_anon_priv_bind) { 3273 /* 3274 * loopmax = 3275 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3276 */ 3277 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3278 } else { 3279 loopmax = (tcp_largest_anon_port - 3280 tcp_smallest_anon_port + 1); 3281 } 3282 } 3283 do { 3284 uint16_t lport; 3285 tf_t *tbf; 3286 tcp_t *ltcp; 3287 3288 lport = htons(port); 3289 3290 /* 3291 * Ensure that the tcp_t is not currently in the bind hash. 3292 * Hold the lock on the hash bucket to ensure that 3293 * the duplicate check plus the insertion is an atomic 3294 * operation. 3295 * 3296 * This function does an inline lookup on the bind hash list 3297 * Make sure that we access only members of tcp_t 3298 * and that we don't look at tcp_tcp, since we are not 3299 * doing a CONN_INC_REF. 3300 */ 3301 tcp_bind_hash_remove(tcp); 3302 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3303 mutex_enter(&tbf->tf_lock); 3304 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3305 ltcp = ltcp->tcp_bind_hash) { 3306 if (lport != ltcp->tcp_lport || 3307 ltcp->tcp_connp->conn_zoneid != zoneid) { 3308 continue; 3309 } 3310 3311 /* 3312 * If TCP_EXCLBIND is set for either the bound or 3313 * binding endpoint, the semantics of bind 3314 * is changed according to the following. 3315 * 3316 * spec = specified address (v4 or v6) 3317 * unspec = unspecified address (v4 or v6) 3318 * A = specified addresses are different for endpoints 3319 * 3320 * bound bind to allowed 3321 * ------------------------------------- 3322 * unspec unspec no 3323 * unspec spec no 3324 * spec unspec no 3325 * spec spec yes if A 3326 * 3327 * Note: 3328 * 3329 * 1. Because of TLI semantics, an endpoint can go 3330 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3331 * TCPS_BOUND, depending on whether it is originally 3332 * a listener or not. That is why we need to check 3333 * for states greater than or equal to TCPS_BOUND 3334 * here. 3335 * 3336 * 2. Ideally, we should only check for state equals 3337 * to TCPS_LISTEN. And the following check should be 3338 * added. 3339 * 3340 * if (ltcp->tcp_state == TCPS_LISTEN || 3341 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3342 * ... 3343 * } 3344 * 3345 * The semantics will be changed to this. If the 3346 * endpoint on the list is in state not equal to 3347 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3348 * set, let the bind succeed. 3349 * 3350 * But because of (1), we cannot do that now. If 3351 * in future, we can change this going back semantics, 3352 * we can add the above check. 3353 */ 3354 if (ltcp->tcp_exclbind || tcp->tcp_exclbind) { 3355 if (V6_OR_V4_INADDR_ANY( 3356 ltcp->tcp_bound_source_v6) || 3357 V6_OR_V4_INADDR_ANY(*laddr) || 3358 IN6_ARE_ADDR_EQUAL(laddr, 3359 <cp->tcp_bound_source_v6)) { 3360 break; 3361 } 3362 continue; 3363 } 3364 3365 /* 3366 * Check ipversion to allow IPv4 and IPv6 sockets to 3367 * have disjoint port number spaces, if *_EXCLBIND 3368 * is not set and only if the application binds to a 3369 * specific port. We use the same autoassigned port 3370 * number space for IPv4 and IPv6 sockets. 3371 */ 3372 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3373 bind_to_req_port_only) 3374 continue; 3375 3376 /* 3377 * Ideally, we should make sure that the source 3378 * address, remote address, and remote port in the 3379 * four tuple for this tcp-connection is unique. 3380 * However, trying to find out the local source 3381 * address would require too much code duplication 3382 * with IP, since IP needs needs to have that code 3383 * to support userland TCP implementations. 3384 */ 3385 if (quick_connect && 3386 (ltcp->tcp_state > TCPS_LISTEN) && 3387 ((tcp->tcp_fport != ltcp->tcp_fport) || 3388 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3389 <cp->tcp_remote_v6))) 3390 continue; 3391 3392 if (!reuseaddr) { 3393 /* 3394 * No socket option SO_REUSEADDR. 3395 * If existing port is bound to 3396 * a non-wildcard IP address 3397 * and the requesting stream is 3398 * bound to a distinct 3399 * different IP addresses 3400 * (non-wildcard, also), keep 3401 * going. 3402 */ 3403 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3404 !V6_OR_V4_INADDR_ANY( 3405 ltcp->tcp_bound_source_v6) && 3406 !IN6_ARE_ADDR_EQUAL(laddr, 3407 <cp->tcp_bound_source_v6)) 3408 continue; 3409 if (ltcp->tcp_state >= TCPS_BOUND) { 3410 /* 3411 * This port is being used and 3412 * its state is >= TCPS_BOUND, 3413 * so we can't bind to it. 3414 */ 3415 break; 3416 } 3417 } else { 3418 /* 3419 * socket option SO_REUSEADDR is set on the 3420 * binding tcp_t. 3421 * 3422 * If two streams are bound to 3423 * same IP address or both addr 3424 * and bound source are wildcards 3425 * (INADDR_ANY), we want to stop 3426 * searching. 3427 * We have found a match of IP source 3428 * address and source port, which is 3429 * refused regardless of the 3430 * SO_REUSEADDR setting, so we break. 3431 */ 3432 if (IN6_ARE_ADDR_EQUAL(laddr, 3433 <cp->tcp_bound_source_v6) && 3434 (ltcp->tcp_state == TCPS_LISTEN || 3435 ltcp->tcp_state == TCPS_BOUND)) 3436 break; 3437 } 3438 } 3439 if (ltcp != NULL) { 3440 /* The port number is busy */ 3441 mutex_exit(&tbf->tf_lock); 3442 } else { 3443 /* 3444 * This port is ours. Insert in fanout and mark as 3445 * bound to prevent others from getting the port 3446 * number. 3447 */ 3448 tcp->tcp_state = TCPS_BOUND; 3449 tcp->tcp_lport = htons(port); 3450 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3451 3452 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3453 tcp->tcp_lport)] == tbf); 3454 tcp_bind_hash_insert(tbf, tcp, 1); 3455 3456 mutex_exit(&tbf->tf_lock); 3457 3458 /* 3459 * We don't want tcp_next_port_to_try to "inherit" 3460 * a port number supplied by the user in a bind. 3461 */ 3462 if (user_specified) 3463 return (port); 3464 3465 /* 3466 * This is the only place where tcp_next_port_to_try 3467 * is updated. After the update, it may or may not 3468 * be in the valid range. 3469 */ 3470 if (!tcp->tcp_anon_priv_bind) 3471 tcp_next_port_to_try = port + 1; 3472 return (port); 3473 } 3474 3475 if (tcp->tcp_anon_priv_bind) { 3476 port = tcp_get_next_priv_port(); 3477 } else { 3478 if (count == 0 && user_specified) { 3479 /* 3480 * We may have to return an anonymous port. So 3481 * get one to start with. 3482 */ 3483 port = 3484 tcp_update_next_port(tcp_next_port_to_try, 3485 B_TRUE); 3486 user_specified = B_FALSE; 3487 } else { 3488 port = tcp_update_next_port(port + 1, B_FALSE); 3489 } 3490 } 3491 3492 /* 3493 * Don't let this loop run forever in the case where 3494 * all of the anonymous ports are in use. 3495 */ 3496 } while (++count < loopmax); 3497 return (0); 3498 } 3499 3500 /* 3501 * We are dying for some reason. Try to do it gracefully. (May be called 3502 * as writer.) 3503 * 3504 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3505 * done by a service procedure). 3506 * TBD - Should the return value distinguish between the tcp_t being 3507 * freed and it being reinitialized? 3508 */ 3509 static int 3510 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3511 { 3512 mblk_t *mp; 3513 queue_t *q; 3514 3515 TCP_CLD_STAT(tag); 3516 3517 #if TCP_TAG_CLEAN_DEATH 3518 tcp->tcp_cleandeathtag = tag; 3519 #endif 3520 3521 if (tcp->tcp_linger_tid != 0 && 3522 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3523 tcp_stop_lingering(tcp); 3524 } 3525 3526 ASSERT(tcp != NULL); 3527 ASSERT((tcp->tcp_family == AF_INET && 3528 tcp->tcp_ipversion == IPV4_VERSION) || 3529 (tcp->tcp_family == AF_INET6 && 3530 (tcp->tcp_ipversion == IPV4_VERSION || 3531 tcp->tcp_ipversion == IPV6_VERSION))); 3532 3533 if (TCP_IS_DETACHED(tcp)) { 3534 if (tcp->tcp_hard_binding) { 3535 /* 3536 * Its an eager that we are dealing with. We close the 3537 * eager but in case a conn_ind has already gone to the 3538 * listener, let tcp_accept_finish() send a discon_ind 3539 * to the listener and drop the last reference. If the 3540 * listener doesn't even know about the eager i.e. the 3541 * conn_ind hasn't gone up, blow away the eager and drop 3542 * the last reference as well. If the conn_ind has gone 3543 * up, state should be BOUND. tcp_accept_finish 3544 * will figure out that the connection has received a 3545 * RST and will send a DISCON_IND to the application. 3546 */ 3547 tcp_closei_local(tcp); 3548 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 3549 CONN_DEC_REF(tcp->tcp_connp); 3550 } else { 3551 tcp->tcp_state = TCPS_BOUND; 3552 } 3553 } else { 3554 tcp_close_detached(tcp); 3555 } 3556 return (0); 3557 } 3558 3559 TCP_STAT(tcp_clean_death_nondetached); 3560 3561 /* 3562 * If T_ORDREL_IND has not been sent yet (done when service routine 3563 * is run) postpone cleaning up the endpoint until service routine 3564 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3565 * client_errno since tcp_close uses the client_errno field. 3566 */ 3567 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3568 if (err != 0) 3569 tcp->tcp_client_errno = err; 3570 3571 tcp->tcp_deferred_clean_death = B_TRUE; 3572 return (-1); 3573 } 3574 3575 q = tcp->tcp_rq; 3576 3577 /* Trash all inbound data */ 3578 flushq(q, FLUSHALL); 3579 3580 /* 3581 * If we are at least part way open and there is error 3582 * (err==0 implies no error) 3583 * notify our client by a T_DISCON_IND. 3584 */ 3585 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3586 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3587 !TCP_IS_SOCKET(tcp)) { 3588 /* 3589 * Send M_FLUSH according to TPI. Because sockets will 3590 * (and must) ignore FLUSHR we do that only for TPI 3591 * endpoints and sockets in STREAMS mode. 3592 */ 3593 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3594 } 3595 if (tcp->tcp_debug) { 3596 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3597 "tcp_clean_death: discon err %d", err); 3598 } 3599 mp = mi_tpi_discon_ind(NULL, err, 0); 3600 if (mp != NULL) { 3601 putnext(q, mp); 3602 } else { 3603 if (tcp->tcp_debug) { 3604 (void) strlog(TCP_MOD_ID, 0, 1, 3605 SL_ERROR|SL_TRACE, 3606 "tcp_clean_death, sending M_ERROR"); 3607 } 3608 (void) putnextctl1(q, M_ERROR, EPROTO); 3609 } 3610 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3611 /* SYN_SENT or SYN_RCVD */ 3612 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3613 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3614 /* ESTABLISHED or CLOSE_WAIT */ 3615 BUMP_MIB(&tcp_mib, tcpEstabResets); 3616 } 3617 } 3618 3619 tcp_reinit(tcp); 3620 return (-1); 3621 } 3622 3623 /* 3624 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3625 * to expire, stop the wait and finish the close. 3626 */ 3627 static void 3628 tcp_stop_lingering(tcp_t *tcp) 3629 { 3630 clock_t delta = 0; 3631 3632 tcp->tcp_linger_tid = 0; 3633 if (tcp->tcp_state > TCPS_LISTEN) { 3634 tcp_acceptor_hash_remove(tcp); 3635 if (tcp->tcp_flow_stopped) { 3636 tcp_clrqfull(tcp); 3637 } 3638 3639 if (tcp->tcp_timer_tid != 0) { 3640 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3641 tcp->tcp_timer_tid = 0; 3642 } 3643 /* 3644 * Need to cancel those timers which will not be used when 3645 * TCP is detached. This has to be done before the tcp_wq 3646 * is set to the global queue. 3647 */ 3648 tcp_timers_stop(tcp); 3649 3650 3651 tcp->tcp_detached = B_TRUE; 3652 tcp->tcp_rq = tcp_g_q; 3653 tcp->tcp_wq = WR(tcp_g_q); 3654 3655 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3656 tcp_time_wait_append(tcp); 3657 TCP_DBGSTAT(tcp_detach_time_wait); 3658 goto finish; 3659 } 3660 3661 /* 3662 * If delta is zero the timer event wasn't executed and was 3663 * successfully canceled. In this case we need to restart it 3664 * with the minimal delta possible. 3665 */ 3666 if (delta >= 0) { 3667 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3668 delta ? delta : 1); 3669 } 3670 } else { 3671 tcp_closei_local(tcp); 3672 CONN_DEC_REF(tcp->tcp_connp); 3673 } 3674 finish: 3675 /* Signal closing thread that it can complete close */ 3676 mutex_enter(&tcp->tcp_closelock); 3677 tcp->tcp_detached = B_TRUE; 3678 tcp->tcp_rq = tcp_g_q; 3679 tcp->tcp_wq = WR(tcp_g_q); 3680 tcp->tcp_closed = 1; 3681 cv_signal(&tcp->tcp_closecv); 3682 mutex_exit(&tcp->tcp_closelock); 3683 } 3684 3685 /* 3686 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3687 * expires. 3688 */ 3689 static void 3690 tcp_close_linger_timeout(void *arg) 3691 { 3692 conn_t *connp = (conn_t *)arg; 3693 tcp_t *tcp = connp->conn_tcp; 3694 3695 tcp->tcp_client_errno = ETIMEDOUT; 3696 tcp_stop_lingering(tcp); 3697 } 3698 3699 static int 3700 tcp_close(queue_t *q, int flags) 3701 { 3702 conn_t *connp = Q_TO_CONN(q); 3703 tcp_t *tcp = connp->conn_tcp; 3704 mblk_t *mp = &tcp->tcp_closemp; 3705 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3706 3707 ASSERT(WR(q)->q_next == NULL); 3708 ASSERT(connp->conn_ref >= 2); 3709 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 3710 3711 /* 3712 * We are being closed as /dev/tcp or /dev/tcp6. 3713 * 3714 * Mark the conn as closing. ill_pending_mp_add will not 3715 * add any mp to the pending mp list, after this conn has 3716 * started closing. Same for sq_pending_mp_add 3717 */ 3718 mutex_enter(&connp->conn_lock); 3719 connp->conn_state_flags |= CONN_CLOSING; 3720 if (connp->conn_oper_pending_ill != NULL) 3721 conn_ioctl_cleanup_reqd = B_TRUE; 3722 CONN_INC_REF_LOCKED(connp); 3723 mutex_exit(&connp->conn_lock); 3724 tcp->tcp_closeflags = (uint8_t)flags; 3725 ASSERT(connp->conn_ref >= 3); 3726 3727 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 3728 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 3729 3730 mutex_enter(&tcp->tcp_closelock); 3731 3732 while (!tcp->tcp_closed) 3733 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3734 mutex_exit(&tcp->tcp_closelock); 3735 /* 3736 * In the case of listener streams that have eagers in the q or q0 3737 * we wait for the eagers to drop their reference to us. tcp_rq and 3738 * tcp_wq of the eagers point to our queues. By waiting for the 3739 * refcnt to drop to 1, we are sure that the eagers have cleaned 3740 * up their queue pointers and also dropped their references to us. 3741 */ 3742 if (tcp->tcp_wait_for_eagers) { 3743 mutex_enter(&connp->conn_lock); 3744 while (connp->conn_ref != 1) { 3745 cv_wait(&connp->conn_cv, &connp->conn_lock); 3746 } 3747 mutex_exit(&connp->conn_lock); 3748 } 3749 /* 3750 * ioctl cleanup. The mp is queued in the 3751 * ill_pending_mp or in the sq_pending_mp. 3752 */ 3753 if (conn_ioctl_cleanup_reqd) 3754 conn_ioctl_cleanup(connp); 3755 3756 qprocsoff(q); 3757 inet_minor_free(ip_minor_arena, connp->conn_dev); 3758 3759 ASSERT(connp->conn_cred != NULL); 3760 crfree(connp->conn_cred); 3761 tcp->tcp_cred = connp->conn_cred = NULL; 3762 tcp->tcp_cpid = -1; 3763 3764 /* 3765 * Drop IP's reference on the conn. This is the last reference 3766 * on the connp if the state was less than established. If the 3767 * connection has gone into timewait state, then we will have 3768 * one ref for the TCP and one more ref (total of two) for the 3769 * classifier connected hash list (a timewait connections stays 3770 * in connected hash till closed). 3771 * 3772 * We can't assert the references because there might be other 3773 * transient reference places because of some walkers or queued 3774 * packets in squeue for the timewait state. 3775 */ 3776 CONN_DEC_REF(connp); 3777 q->q_ptr = WR(q)->q_ptr = NULL; 3778 return (0); 3779 } 3780 3781 static int 3782 tcpclose_accept(queue_t *q) 3783 { 3784 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3785 3786 /* 3787 * We had opened an acceptor STREAM for sockfs which is 3788 * now being closed due to some error. 3789 */ 3790 qprocsoff(q); 3791 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 3792 q->q_ptr = WR(q)->q_ptr = NULL; 3793 return (0); 3794 } 3795 3796 3797 /* 3798 * Called by streams close routine via squeues when our client blows off her 3799 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3800 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3801 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3802 * acked. 3803 * 3804 * NOTE: tcp_close potentially returns error when lingering. 3805 * However, the stream head currently does not pass these errors 3806 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3807 * errors to the application (from tsleep()) and not errors 3808 * like ECONNRESET caused by receiving a reset packet. 3809 */ 3810 3811 /* ARGSUSED */ 3812 static void 3813 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3814 { 3815 char *msg; 3816 conn_t *connp = (conn_t *)arg; 3817 tcp_t *tcp = connp->conn_tcp; 3818 clock_t delta = 0; 3819 3820 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3821 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3822 3823 /* Cancel any pending timeout */ 3824 if (tcp->tcp_ordrelid != 0) { 3825 if (tcp->tcp_timeout) { 3826 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 3827 } 3828 tcp->tcp_ordrelid = 0; 3829 tcp->tcp_timeout = B_FALSE; 3830 } 3831 3832 mutex_enter(&tcp->tcp_eager_lock); 3833 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3834 /* Cleanup for listener */ 3835 tcp_eager_cleanup(tcp, 0); 3836 tcp->tcp_wait_for_eagers = 1; 3837 } 3838 mutex_exit(&tcp->tcp_eager_lock); 3839 3840 connp->conn_mdt_ok = B_FALSE; 3841 tcp->tcp_mdt = B_FALSE; 3842 3843 msg = NULL; 3844 switch (tcp->tcp_state) { 3845 case TCPS_CLOSED: 3846 case TCPS_IDLE: 3847 case TCPS_BOUND: 3848 case TCPS_LISTEN: 3849 break; 3850 case TCPS_SYN_SENT: 3851 msg = "tcp_close, during connect"; 3852 break; 3853 case TCPS_SYN_RCVD: 3854 /* 3855 * Close during the connect 3-way handshake 3856 * but here there may or may not be pending data 3857 * already on queue. Process almost same as in 3858 * the ESTABLISHED state. 3859 */ 3860 /* FALLTHRU */ 3861 default: 3862 if (tcp->tcp_fused) 3863 tcp_unfuse(tcp); 3864 3865 /* 3866 * If SO_LINGER has set a zero linger time, abort the 3867 * connection with a reset. 3868 */ 3869 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3870 msg = "tcp_close, zero lingertime"; 3871 break; 3872 } 3873 3874 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3875 /* 3876 * Abort connection if there is unread data queued. 3877 */ 3878 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3879 msg = "tcp_close, unread data"; 3880 break; 3881 } 3882 /* 3883 * tcp_hard_bound is now cleared thus all packets go through 3884 * tcp_lookup. This fact is used by tcp_detach below. 3885 * 3886 * We have done a qwait() above which could have possibly 3887 * drained more messages in turn causing transition to a 3888 * different state. Check whether we have to do the rest 3889 * of the processing or not. 3890 */ 3891 if (tcp->tcp_state <= TCPS_LISTEN) 3892 break; 3893 3894 /* 3895 * Transmit the FIN before detaching the tcp_t. 3896 * After tcp_detach returns this queue/perimeter 3897 * no longer owns the tcp_t thus others can modify it. 3898 */ 3899 (void) tcp_xmit_end(tcp); 3900 3901 /* 3902 * If lingering on close then wait until the fin is acked, 3903 * the SO_LINGER time passes, or a reset is sent/received. 3904 */ 3905 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3906 !(tcp->tcp_fin_acked) && 3907 tcp->tcp_state >= TCPS_ESTABLISHED) { 3908 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3909 tcp->tcp_client_errno = EWOULDBLOCK; 3910 } else if (tcp->tcp_client_errno == 0) { 3911 3912 ASSERT(tcp->tcp_linger_tid == 0); 3913 3914 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3915 tcp_close_linger_timeout, 3916 tcp->tcp_lingertime * hz); 3917 3918 /* tcp_close_linger_timeout will finish close */ 3919 if (tcp->tcp_linger_tid == 0) 3920 tcp->tcp_client_errno = ENOSR; 3921 else 3922 return; 3923 } 3924 3925 /* 3926 * Check if we need to detach or just close 3927 * the instance. 3928 */ 3929 if (tcp->tcp_state <= TCPS_LISTEN) 3930 break; 3931 } 3932 3933 /* 3934 * Make sure that no other thread will access the tcp_rq of 3935 * this instance (through lookups etc.) as tcp_rq will go 3936 * away shortly. 3937 */ 3938 tcp_acceptor_hash_remove(tcp); 3939 3940 if (tcp->tcp_flow_stopped) { 3941 tcp_clrqfull(tcp); 3942 } 3943 3944 if (tcp->tcp_timer_tid != 0) { 3945 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3946 tcp->tcp_timer_tid = 0; 3947 } 3948 /* 3949 * Need to cancel those timers which will not be used when 3950 * TCP is detached. This has to be done before the tcp_wq 3951 * is set to the global queue. 3952 */ 3953 tcp_timers_stop(tcp); 3954 3955 tcp->tcp_detached = B_TRUE; 3956 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3957 tcp_time_wait_append(tcp); 3958 TCP_DBGSTAT(tcp_detach_time_wait); 3959 ASSERT(connp->conn_ref >= 3); 3960 goto finish; 3961 } 3962 3963 /* 3964 * If delta is zero the timer event wasn't executed and was 3965 * successfully canceled. In this case we need to restart it 3966 * with the minimal delta possible. 3967 */ 3968 if (delta >= 0) 3969 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3970 delta ? delta : 1); 3971 3972 ASSERT(connp->conn_ref >= 3); 3973 goto finish; 3974 } 3975 3976 /* Detach did not complete. Still need to remove q from stream. */ 3977 if (msg) { 3978 if (tcp->tcp_state == TCPS_ESTABLISHED || 3979 tcp->tcp_state == TCPS_CLOSE_WAIT) 3980 BUMP_MIB(&tcp_mib, tcpEstabResets); 3981 if (tcp->tcp_state == TCPS_SYN_SENT || 3982 tcp->tcp_state == TCPS_SYN_RCVD) 3983 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3984 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3985 } 3986 3987 tcp_closei_local(tcp); 3988 CONN_DEC_REF(connp); 3989 ASSERT(connp->conn_ref >= 2); 3990 3991 finish: 3992 /* 3993 * Although packets are always processed on the correct 3994 * tcp's perimeter and access is serialized via squeue's, 3995 * IP still needs a queue when sending packets in time_wait 3996 * state so use WR(tcp_g_q) till ip_output() can be 3997 * changed to deal with just connp. For read side, we 3998 * could have set tcp_rq to NULL but there are some cases 3999 * in tcp_rput_data() from early days of this code which 4000 * do a putnext without checking if tcp is closed. Those 4001 * need to be identified before both tcp_rq and tcp_wq 4002 * can be set to NULL and tcp_q_q can disappear forever. 4003 */ 4004 mutex_enter(&tcp->tcp_closelock); 4005 /* 4006 * Don't change the queues in the case of a listener that has 4007 * eagers in its q or q0. It could surprise the eagers. 4008 * Instead wait for the eagers outside the squeue. 4009 */ 4010 if (!tcp->tcp_wait_for_eagers) { 4011 tcp->tcp_detached = B_TRUE; 4012 tcp->tcp_rq = tcp_g_q; 4013 tcp->tcp_wq = WR(tcp_g_q); 4014 } 4015 4016 /* Signal tcp_close() to finish closing. */ 4017 tcp->tcp_closed = 1; 4018 cv_signal(&tcp->tcp_closecv); 4019 mutex_exit(&tcp->tcp_closelock); 4020 } 4021 4022 4023 /* 4024 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4025 * Some stream heads get upset if they see these later on as anything but NULL. 4026 */ 4027 static void 4028 tcp_close_mpp(mblk_t **mpp) 4029 { 4030 mblk_t *mp; 4031 4032 if ((mp = *mpp) != NULL) { 4033 do { 4034 mp->b_next = NULL; 4035 mp->b_prev = NULL; 4036 } while ((mp = mp->b_cont) != NULL); 4037 4038 mp = *mpp; 4039 *mpp = NULL; 4040 freemsg(mp); 4041 } 4042 } 4043 4044 /* Do detached close. */ 4045 static void 4046 tcp_close_detached(tcp_t *tcp) 4047 { 4048 if (tcp->tcp_fused) 4049 tcp_unfuse(tcp); 4050 4051 /* 4052 * Clustering code serializes TCP disconnect callbacks and 4053 * cluster tcp list walks by blocking a TCP disconnect callback 4054 * if a cluster tcp list walk is in progress. This ensures 4055 * accurate accounting of TCPs in the cluster code even though 4056 * the TCP list walk itself is not atomic. 4057 */ 4058 tcp_closei_local(tcp); 4059 CONN_DEC_REF(tcp->tcp_connp); 4060 } 4061 4062 /* 4063 * Stop all TCP timers, and free the timer mblks if requested. 4064 */ 4065 void 4066 tcp_timers_stop(tcp_t *tcp) 4067 { 4068 if (tcp->tcp_timer_tid != 0) { 4069 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4070 tcp->tcp_timer_tid = 0; 4071 } 4072 if (tcp->tcp_ka_tid != 0) { 4073 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4074 tcp->tcp_ka_tid = 0; 4075 } 4076 if (tcp->tcp_ack_tid != 0) { 4077 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4078 tcp->tcp_ack_tid = 0; 4079 } 4080 if (tcp->tcp_push_tid != 0) { 4081 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4082 tcp->tcp_push_tid = 0; 4083 } 4084 } 4085 4086 /* 4087 * The tcp_t is going away. Remove it from all lists and set it 4088 * to TCPS_CLOSED. The freeing up of memory is deferred until 4089 * tcp_inactive. This is needed since a thread in tcp_rput might have 4090 * done a CONN_INC_REF on this structure before it was removed from the 4091 * hashes. 4092 */ 4093 static void 4094 tcp_closei_local(tcp_t *tcp) 4095 { 4096 ire_t *ire; 4097 conn_t *connp = tcp->tcp_connp; 4098 4099 if (!TCP_IS_SOCKET(tcp)) 4100 tcp_acceptor_hash_remove(tcp); 4101 4102 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4103 tcp->tcp_ibsegs = 0; 4104 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4105 tcp->tcp_obsegs = 0; 4106 4107 /* 4108 * If we are an eager connection hanging off a listener that 4109 * hasn't formally accepted the connection yet, get off his 4110 * list and blow off any data that we have accumulated. 4111 */ 4112 if (tcp->tcp_listener != NULL) { 4113 tcp_t *listener = tcp->tcp_listener; 4114 mutex_enter(&listener->tcp_eager_lock); 4115 /* 4116 * tcp_eager_conn_ind == NULL means that the 4117 * conn_ind has already gone to listener. At 4118 * this point, eager will be closed but we 4119 * leave it in listeners eager list so that 4120 * if listener decides to close without doing 4121 * accept, we can clean this up. In tcp_wput_accept 4122 * we take case of the case of accept on closed 4123 * eager. 4124 */ 4125 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4126 tcp_eager_unlink(tcp); 4127 mutex_exit(&listener->tcp_eager_lock); 4128 /* 4129 * We don't want to have any pointers to the 4130 * listener queue, after we have released our 4131 * reference on the listener 4132 */ 4133 tcp->tcp_rq = tcp_g_q; 4134 tcp->tcp_wq = WR(tcp_g_q); 4135 CONN_DEC_REF(listener->tcp_connp); 4136 } else { 4137 mutex_exit(&listener->tcp_eager_lock); 4138 } 4139 } 4140 4141 /* Stop all the timers */ 4142 tcp_timers_stop(tcp); 4143 4144 if (tcp->tcp_state == TCPS_LISTEN) { 4145 if (tcp->tcp_ip_addr_cache) { 4146 kmem_free((void *)tcp->tcp_ip_addr_cache, 4147 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4148 tcp->tcp_ip_addr_cache = NULL; 4149 } 4150 } 4151 if (tcp->tcp_flow_stopped) 4152 tcp_clrqfull(tcp); 4153 4154 tcp_bind_hash_remove(tcp); 4155 /* 4156 * If the tcp_time_wait_collector (which runs outside the squeue) 4157 * is trying to remove this tcp from the time wait list, we will 4158 * block in tcp_time_wait_remove while trying to acquire the 4159 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4160 * requires the ipcl_hash_remove to be ordered after the 4161 * tcp_time_wait_remove for the refcnt checks to work correctly. 4162 */ 4163 if (tcp->tcp_state == TCPS_TIME_WAIT) 4164 tcp_time_wait_remove(tcp, NULL); 4165 CL_INET_DISCONNECT(tcp); 4166 ipcl_hash_remove(connp); 4167 4168 /* 4169 * Delete the cached ire in conn_ire_cache and also mark 4170 * the conn as CONDEMNED 4171 */ 4172 mutex_enter(&connp->conn_lock); 4173 connp->conn_state_flags |= CONN_CONDEMNED; 4174 ire = connp->conn_ire_cache; 4175 connp->conn_ire_cache = NULL; 4176 mutex_exit(&connp->conn_lock); 4177 if (ire != NULL) 4178 IRE_REFRELE_NOTR(ire); 4179 4180 /* Need to cleanup any pending ioctls */ 4181 ASSERT(tcp->tcp_time_wait_next == NULL); 4182 ASSERT(tcp->tcp_time_wait_prev == NULL); 4183 ASSERT(tcp->tcp_time_wait_expire == 0); 4184 tcp->tcp_state = TCPS_CLOSED; 4185 4186 /* Release any SSL context */ 4187 if (tcp->tcp_kssl_ent != NULL) { 4188 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4189 tcp->tcp_kssl_ent = NULL; 4190 } 4191 if (tcp->tcp_kssl_ctx != NULL) { 4192 kssl_release_ctx(tcp->tcp_kssl_ctx); 4193 tcp->tcp_kssl_ctx = NULL; 4194 } 4195 tcp->tcp_kssl_pending = B_FALSE; 4196 } 4197 4198 /* 4199 * tcp is dying (called from ipcl_conn_destroy and error cases). 4200 * Free the tcp_t in either case. 4201 */ 4202 void 4203 tcp_free(tcp_t *tcp) 4204 { 4205 mblk_t *mp; 4206 ip6_pkt_t *ipp; 4207 4208 ASSERT(tcp != NULL); 4209 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4210 4211 tcp->tcp_rq = NULL; 4212 tcp->tcp_wq = NULL; 4213 4214 tcp_close_mpp(&tcp->tcp_xmit_head); 4215 tcp_close_mpp(&tcp->tcp_reass_head); 4216 if (tcp->tcp_rcv_list != NULL) { 4217 /* Free b_next chain */ 4218 tcp_close_mpp(&tcp->tcp_rcv_list); 4219 } 4220 if ((mp = tcp->tcp_urp_mp) != NULL) { 4221 freemsg(mp); 4222 } 4223 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4224 freemsg(mp); 4225 } 4226 4227 if (tcp->tcp_fused_sigurg_mp != NULL) { 4228 freeb(tcp->tcp_fused_sigurg_mp); 4229 tcp->tcp_fused_sigurg_mp = NULL; 4230 } 4231 4232 if (tcp->tcp_sack_info != NULL) { 4233 if (tcp->tcp_notsack_list != NULL) { 4234 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4235 } 4236 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4237 } 4238 4239 if (tcp->tcp_hopopts != NULL) { 4240 mi_free(tcp->tcp_hopopts); 4241 tcp->tcp_hopopts = NULL; 4242 tcp->tcp_hopoptslen = 0; 4243 } 4244 ASSERT(tcp->tcp_hopoptslen == 0); 4245 if (tcp->tcp_dstopts != NULL) { 4246 mi_free(tcp->tcp_dstopts); 4247 tcp->tcp_dstopts = NULL; 4248 tcp->tcp_dstoptslen = 0; 4249 } 4250 ASSERT(tcp->tcp_dstoptslen == 0); 4251 if (tcp->tcp_rtdstopts != NULL) { 4252 mi_free(tcp->tcp_rtdstopts); 4253 tcp->tcp_rtdstopts = NULL; 4254 tcp->tcp_rtdstoptslen = 0; 4255 } 4256 ASSERT(tcp->tcp_rtdstoptslen == 0); 4257 if (tcp->tcp_rthdr != NULL) { 4258 mi_free(tcp->tcp_rthdr); 4259 tcp->tcp_rthdr = NULL; 4260 tcp->tcp_rthdrlen = 0; 4261 } 4262 ASSERT(tcp->tcp_rthdrlen == 0); 4263 4264 ipp = &tcp->tcp_sticky_ipp; 4265 if ((ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | 4266 IPPF_DSTOPTS | IPPF_RTHDR)) != 0) { 4267 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 4268 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 4269 ipp->ipp_hopopts = NULL; 4270 ipp->ipp_hopoptslen = 0; 4271 } 4272 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 4273 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 4274 ipp->ipp_rtdstopts = NULL; 4275 ipp->ipp_rtdstoptslen = 0; 4276 } 4277 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 4278 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 4279 ipp->ipp_dstopts = NULL; 4280 ipp->ipp_dstoptslen = 0; 4281 } 4282 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 4283 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 4284 ipp->ipp_rthdr = NULL; 4285 ipp->ipp_rthdrlen = 0; 4286 } 4287 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | 4288 IPPF_DSTOPTS | IPPF_RTHDR); 4289 } 4290 4291 /* 4292 * Free memory associated with the tcp/ip header template. 4293 */ 4294 4295 if (tcp->tcp_iphc != NULL) 4296 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4297 4298 /* 4299 * Following is really a blowing away a union. 4300 * It happens to have exactly two members of identical size 4301 * the following code is enough. 4302 */ 4303 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4304 4305 if (tcp->tcp_tracebuf != NULL) { 4306 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4307 tcp->tcp_tracebuf = NULL; 4308 } 4309 } 4310 4311 4312 /* 4313 * Put a connection confirmation message upstream built from the 4314 * address information within 'iph' and 'tcph'. Report our success or failure. 4315 */ 4316 static boolean_t 4317 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4318 mblk_t **defermp) 4319 { 4320 sin_t sin; 4321 sin6_t sin6; 4322 mblk_t *mp; 4323 char *optp = NULL; 4324 int optlen = 0; 4325 cred_t *cr; 4326 4327 if (defermp != NULL) 4328 *defermp = NULL; 4329 4330 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4331 /* 4332 * Return in T_CONN_CON results of option negotiation through 4333 * the T_CONN_REQ. Note: If there is an real end-to-end option 4334 * negotiation, then what is received from remote end needs 4335 * to be taken into account but there is no such thing (yet?) 4336 * in our TCP/IP. 4337 * Note: We do not use mi_offset_param() here as 4338 * tcp_opts_conn_req contents do not directly come from 4339 * an application and are either generated in kernel or 4340 * from user input that was already verified. 4341 */ 4342 mp = tcp->tcp_conn.tcp_opts_conn_req; 4343 optp = (char *)(mp->b_rptr + 4344 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4345 optlen = (int) 4346 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4347 } 4348 4349 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4350 ipha_t *ipha = (ipha_t *)iphdr; 4351 4352 /* packet is IPv4 */ 4353 if (tcp->tcp_family == AF_INET) { 4354 sin = sin_null; 4355 sin.sin_addr.s_addr = ipha->ipha_src; 4356 sin.sin_port = *(uint16_t *)tcph->th_lport; 4357 sin.sin_family = AF_INET; 4358 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4359 (int)sizeof (sin_t), optp, optlen); 4360 } else { 4361 sin6 = sin6_null; 4362 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4363 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4364 sin6.sin6_family = AF_INET6; 4365 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4366 (int)sizeof (sin6_t), optp, optlen); 4367 4368 } 4369 } else { 4370 ip6_t *ip6h = (ip6_t *)iphdr; 4371 4372 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4373 ASSERT(tcp->tcp_family == AF_INET6); 4374 sin6 = sin6_null; 4375 sin6.sin6_addr = ip6h->ip6_src; 4376 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4377 sin6.sin6_family = AF_INET6; 4378 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4379 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4380 (int)sizeof (sin6_t), optp, optlen); 4381 } 4382 4383 if (!mp) 4384 return (B_FALSE); 4385 4386 if ((cr = DB_CRED(idmp)) != NULL) { 4387 mblk_setcred(mp, cr); 4388 DB_CPID(mp) = DB_CPID(idmp); 4389 } 4390 4391 if (defermp == NULL) 4392 putnext(tcp->tcp_rq, mp); 4393 else 4394 *defermp = mp; 4395 4396 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4397 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4398 return (B_TRUE); 4399 } 4400 4401 /* 4402 * Defense for the SYN attack - 4403 * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest 4404 * one that doesn't have the dontdrop bit set. 4405 * 2. Don't drop a SYN request before its first timeout. This gives every 4406 * request at least til the first timeout to complete its 3-way handshake. 4407 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4408 * requests currently on the queue that has timed out. This will be used 4409 * as an indicator of whether an attack is under way, so that appropriate 4410 * actions can be taken. (It's incremented in tcp_timer() and decremented 4411 * either when eager goes into ESTABLISHED, or gets freed up.) 4412 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4413 * # of timeout drops back to <= q0len/32 => SYN alert off 4414 */ 4415 static boolean_t 4416 tcp_drop_q0(tcp_t *tcp) 4417 { 4418 tcp_t *eager; 4419 4420 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4421 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4422 /* 4423 * New one is added after next_q0 so prev_q0 points to the oldest 4424 * Also do not drop any established connections that are deferred on 4425 * q0 due to q being full 4426 */ 4427 4428 eager = tcp->tcp_eager_prev_q0; 4429 while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { 4430 eager = eager->tcp_eager_prev_q0; 4431 if (eager == tcp) { 4432 eager = tcp->tcp_eager_prev_q0; 4433 break; 4434 } 4435 } 4436 if (eager->tcp_syn_rcvd_timeout == 0) 4437 return (B_FALSE); 4438 4439 if (tcp->tcp_debug) { 4440 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4441 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4442 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4443 tcp->tcp_conn_req_cnt_q0, 4444 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4445 } 4446 4447 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4448 4449 /* 4450 * need to do refhold here because the selected eager could 4451 * be removed by someone else if we release the eager lock. 4452 */ 4453 CONN_INC_REF(eager->tcp_connp); 4454 mutex_exit(&tcp->tcp_eager_lock); 4455 4456 /* Mark the IRE created for this SYN request temporary */ 4457 tcp_ip_ire_mark_advice(eager); 4458 (void) tcp_clean_death(eager, ETIMEDOUT, 5); 4459 CONN_DEC_REF(eager->tcp_connp); 4460 4461 mutex_enter(&tcp->tcp_eager_lock); 4462 return (B_TRUE); 4463 } 4464 4465 int 4466 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4467 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4468 { 4469 tcp_t *ltcp = lconnp->conn_tcp; 4470 tcp_t *tcp = connp->conn_tcp; 4471 mblk_t *tpi_mp; 4472 ipha_t *ipha; 4473 ip6_t *ip6h; 4474 sin6_t sin6; 4475 in6_addr_t v6dst; 4476 int err; 4477 int ifindex = 0; 4478 cred_t *cr; 4479 4480 if (ipvers == IPV4_VERSION) { 4481 ipha = (ipha_t *)mp->b_rptr; 4482 4483 connp->conn_send = ip_output; 4484 connp->conn_recv = tcp_input; 4485 4486 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4487 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4488 4489 sin6 = sin6_null; 4490 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4491 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4492 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4493 sin6.sin6_family = AF_INET6; 4494 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4495 lconnp->conn_zoneid); 4496 if (tcp->tcp_recvdstaddr) { 4497 sin6_t sin6d; 4498 4499 sin6d = sin6_null; 4500 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4501 &sin6d.sin6_addr); 4502 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4503 sin6d.sin6_family = AF_INET; 4504 tpi_mp = mi_tpi_extconn_ind(NULL, 4505 (char *)&sin6d, sizeof (sin6_t), 4506 (char *)&tcp, 4507 (t_scalar_t)sizeof (intptr_t), 4508 (char *)&sin6d, sizeof (sin6_t), 4509 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4510 } else { 4511 tpi_mp = mi_tpi_conn_ind(NULL, 4512 (char *)&sin6, sizeof (sin6_t), 4513 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4514 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4515 } 4516 } else { 4517 ip6h = (ip6_t *)mp->b_rptr; 4518 4519 connp->conn_send = ip_output_v6; 4520 connp->conn_recv = tcp_input; 4521 4522 connp->conn_srcv6 = ip6h->ip6_dst; 4523 connp->conn_remv6 = ip6h->ip6_src; 4524 4525 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4526 ifindex = (int)DB_CKSUMSTUFF(mp); 4527 DB_CKSUMSTUFF(mp) = 0; 4528 4529 sin6 = sin6_null; 4530 sin6.sin6_addr = ip6h->ip6_src; 4531 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4532 sin6.sin6_family = AF_INET6; 4533 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4534 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4535 lconnp->conn_zoneid); 4536 4537 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4538 /* Pass up the scope_id of remote addr */ 4539 sin6.sin6_scope_id = ifindex; 4540 } else { 4541 sin6.sin6_scope_id = 0; 4542 } 4543 if (tcp->tcp_recvdstaddr) { 4544 sin6_t sin6d; 4545 4546 sin6d = sin6_null; 4547 sin6.sin6_addr = ip6h->ip6_dst; 4548 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4549 sin6d.sin6_family = AF_INET; 4550 tpi_mp = mi_tpi_extconn_ind(NULL, 4551 (char *)&sin6d, sizeof (sin6_t), 4552 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4553 (char *)&sin6d, sizeof (sin6_t), 4554 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4555 } else { 4556 tpi_mp = mi_tpi_conn_ind(NULL, 4557 (char *)&sin6, sizeof (sin6_t), 4558 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4559 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4560 } 4561 } 4562 4563 if (tpi_mp == NULL) 4564 return (ENOMEM); 4565 4566 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4567 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4568 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4569 connp->conn_fully_bound = B_FALSE; 4570 4571 if (tcp_trace) 4572 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4573 4574 /* Inherit information from the "parent" */ 4575 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4576 tcp->tcp_family = ltcp->tcp_family; 4577 tcp->tcp_wq = ltcp->tcp_wq; 4578 tcp->tcp_rq = ltcp->tcp_rq; 4579 tcp->tcp_mss = tcp_mss_def_ipv6; 4580 tcp->tcp_detached = B_TRUE; 4581 if ((err = tcp_init_values(tcp)) != 0) { 4582 freemsg(tpi_mp); 4583 return (err); 4584 } 4585 4586 if (ipvers == IPV4_VERSION) { 4587 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4588 freemsg(tpi_mp); 4589 return (err); 4590 } 4591 ASSERT(tcp->tcp_ipha != NULL); 4592 } else { 4593 /* ifindex must be already set */ 4594 ASSERT(ifindex != 0); 4595 4596 if (ltcp->tcp_bound_if != 0) { 4597 /* 4598 * Set newtcp's bound_if equal to 4599 * listener's value. If ifindex is 4600 * not the same as ltcp->tcp_bound_if, 4601 * it must be a packet for the ipmp group 4602 * of interfaces 4603 */ 4604 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4605 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4606 tcp->tcp_bound_if = ifindex; 4607 } 4608 4609 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4610 tcp->tcp_recvifindex = 0; 4611 tcp->tcp_recvhops = 0xffffffffU; 4612 ASSERT(tcp->tcp_ip6h != NULL); 4613 } 4614 4615 tcp->tcp_lport = ltcp->tcp_lport; 4616 4617 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4618 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4619 /* 4620 * Listener had options of some sort; eager inherits. 4621 * Free up the eager template and allocate one 4622 * of the right size. 4623 */ 4624 if (tcp->tcp_hdr_grown) { 4625 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4626 } else { 4627 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4628 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4629 } 4630 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4631 KM_NOSLEEP); 4632 if (tcp->tcp_iphc == NULL) { 4633 tcp->tcp_iphc_len = 0; 4634 freemsg(tpi_mp); 4635 return (ENOMEM); 4636 } 4637 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4638 tcp->tcp_hdr_grown = B_TRUE; 4639 } 4640 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4641 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4642 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4643 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4644 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4645 4646 /* 4647 * Copy the IP+TCP header template from listener to eager 4648 */ 4649 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4650 if (tcp->tcp_ipversion == IPV6_VERSION) { 4651 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4652 IPPROTO_RAW) { 4653 tcp->tcp_ip6h = 4654 (ip6_t *)(tcp->tcp_iphc + 4655 sizeof (ip6i_t)); 4656 } else { 4657 tcp->tcp_ip6h = 4658 (ip6_t *)(tcp->tcp_iphc); 4659 } 4660 tcp->tcp_ipha = NULL; 4661 } else { 4662 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4663 tcp->tcp_ip6h = NULL; 4664 } 4665 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4666 tcp->tcp_ip_hdr_len); 4667 } else { 4668 /* 4669 * only valid case when ipversion of listener and 4670 * eager differ is when listener is IPv6 and 4671 * eager is IPv4. 4672 * Eager header template has been initialized to the 4673 * maximum v4 header sizes, which includes space for 4674 * TCP and IP options. 4675 */ 4676 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4677 (tcp->tcp_ipversion == IPV4_VERSION)); 4678 ASSERT(tcp->tcp_iphc_len >= 4679 TCP_MAX_COMBINED_HEADER_LENGTH); 4680 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4681 /* copy IP header fields individually */ 4682 tcp->tcp_ipha->ipha_ttl = 4683 ltcp->tcp_ip6h->ip6_hops; 4684 bcopy(ltcp->tcp_tcph->th_lport, 4685 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4686 } 4687 4688 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4689 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4690 sizeof (in_port_t)); 4691 4692 if (ltcp->tcp_lport == 0) { 4693 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4694 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4695 sizeof (in_port_t)); 4696 } 4697 4698 if (tcp->tcp_ipversion == IPV4_VERSION) { 4699 ASSERT(ipha != NULL); 4700 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4701 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4702 4703 /* Source routing option copyover (reverse it) */ 4704 if (tcp_rev_src_routes) 4705 tcp_opt_reverse(tcp, ipha); 4706 } else { 4707 ASSERT(ip6h != NULL); 4708 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4709 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4710 } 4711 4712 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4713 /* 4714 * If the SYN contains a credential, it's a loopback packet; attach 4715 * the credential to the TPI message. 4716 */ 4717 if ((cr = DB_CRED(idmp)) != NULL) { 4718 mblk_setcred(tpi_mp, cr); 4719 DB_CPID(tpi_mp) = DB_CPID(idmp); 4720 } 4721 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4722 4723 /* Inherit the listener's SSL protection state */ 4724 4725 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4726 kssl_hold_ent(tcp->tcp_kssl_ent); 4727 tcp->tcp_kssl_pending = B_TRUE; 4728 } 4729 4730 return (0); 4731 } 4732 4733 4734 int 4735 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4736 tcph_t *tcph, mblk_t *idmp) 4737 { 4738 tcp_t *ltcp = lconnp->conn_tcp; 4739 tcp_t *tcp = connp->conn_tcp; 4740 sin_t sin; 4741 mblk_t *tpi_mp = NULL; 4742 int err; 4743 cred_t *cr; 4744 4745 sin = sin_null; 4746 sin.sin_addr.s_addr = ipha->ipha_src; 4747 sin.sin_port = *(uint16_t *)tcph->th_lport; 4748 sin.sin_family = AF_INET; 4749 if (ltcp->tcp_recvdstaddr) { 4750 sin_t sind; 4751 4752 sind = sin_null; 4753 sind.sin_addr.s_addr = ipha->ipha_dst; 4754 sind.sin_port = *(uint16_t *)tcph->th_fport; 4755 sind.sin_family = AF_INET; 4756 tpi_mp = mi_tpi_extconn_ind(NULL, 4757 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4758 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4759 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4760 } else { 4761 tpi_mp = mi_tpi_conn_ind(NULL, 4762 (char *)&sin, sizeof (sin_t), 4763 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4764 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4765 } 4766 4767 if (tpi_mp == NULL) { 4768 return (ENOMEM); 4769 } 4770 4771 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4772 connp->conn_send = ip_output; 4773 connp->conn_recv = tcp_input; 4774 connp->conn_fully_bound = B_FALSE; 4775 4776 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4777 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4778 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4779 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4780 4781 if (tcp_trace) { 4782 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4783 } 4784 4785 /* Inherit information from the "parent" */ 4786 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4787 tcp->tcp_family = ltcp->tcp_family; 4788 tcp->tcp_wq = ltcp->tcp_wq; 4789 tcp->tcp_rq = ltcp->tcp_rq; 4790 tcp->tcp_mss = tcp_mss_def_ipv4; 4791 tcp->tcp_detached = B_TRUE; 4792 if ((err = tcp_init_values(tcp)) != 0) { 4793 freemsg(tpi_mp); 4794 return (err); 4795 } 4796 4797 /* 4798 * Let's make sure that eager tcp template has enough space to 4799 * copy IPv4 listener's tcp template. Since the conn_t structure is 4800 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4801 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4802 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4803 * extension headers or with ip6i_t struct). Note that bcopy() below 4804 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4805 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4806 */ 4807 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4808 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4809 4810 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4811 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4812 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4813 tcp->tcp_ttl = ltcp->tcp_ttl; 4814 tcp->tcp_tos = ltcp->tcp_tos; 4815 4816 /* Copy the IP+TCP header template from listener to eager */ 4817 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4818 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4819 tcp->tcp_ip6h = NULL; 4820 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4821 tcp->tcp_ip_hdr_len); 4822 4823 /* Initialize the IP addresses and Ports */ 4824 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4825 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4826 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4827 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4828 4829 /* Source routing option copyover (reverse it) */ 4830 if (tcp_rev_src_routes) 4831 tcp_opt_reverse(tcp, ipha); 4832 4833 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4834 4835 /* 4836 * If the SYN contains a credential, it's a loopback packet; attach 4837 * the credential to the TPI message. 4838 */ 4839 if ((cr = DB_CRED(idmp)) != NULL) { 4840 mblk_setcred(tpi_mp, cr); 4841 DB_CPID(tpi_mp) = DB_CPID(idmp); 4842 } 4843 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4844 4845 /* Inherit the listener's SSL protection state */ 4846 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4847 kssl_hold_ent(tcp->tcp_kssl_ent); 4848 tcp->tcp_kssl_pending = B_TRUE; 4849 } 4850 4851 return (0); 4852 } 4853 4854 /* 4855 * sets up conn for ipsec. 4856 * if the first mblk is M_CTL it is consumed and mpp is updated. 4857 * in case of error mpp is freed. 4858 */ 4859 conn_t * 4860 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4861 { 4862 conn_t *connp = tcp->tcp_connp; 4863 conn_t *econnp; 4864 squeue_t *new_sqp; 4865 mblk_t *first_mp = *mpp; 4866 mblk_t *mp = *mpp; 4867 boolean_t mctl_present = B_FALSE; 4868 uint_t ipvers; 4869 4870 econnp = tcp_get_conn(sqp); 4871 if (econnp == NULL) { 4872 freemsg(first_mp); 4873 return (NULL); 4874 } 4875 if (DB_TYPE(mp) == M_CTL) { 4876 if (mp->b_cont == NULL || 4877 mp->b_cont->b_datap->db_type != M_DATA) { 4878 freemsg(first_mp); 4879 return (NULL); 4880 } 4881 mp = mp->b_cont; 4882 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4883 freemsg(first_mp); 4884 return (NULL); 4885 } 4886 4887 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4888 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4889 mctl_present = B_TRUE; 4890 } else { 4891 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4892 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4893 } 4894 4895 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4896 DB_CKSUMSTART(mp) = 0; 4897 4898 ASSERT(OK_32PTR(mp->b_rptr)); 4899 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4900 if (ipvers == IPV4_VERSION) { 4901 uint16_t *up; 4902 uint32_t ports; 4903 ipha_t *ipha; 4904 4905 ipha = (ipha_t *)mp->b_rptr; 4906 up = (uint16_t *)((uchar_t *)ipha + 4907 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4908 ports = *(uint32_t *)up; 4909 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4910 ipha->ipha_dst, ipha->ipha_src, ports); 4911 } else { 4912 uint16_t *up; 4913 uint32_t ports; 4914 uint16_t ip_hdr_len; 4915 uint8_t *nexthdrp; 4916 ip6_t *ip6h; 4917 tcph_t *tcph; 4918 4919 ip6h = (ip6_t *)mp->b_rptr; 4920 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4921 ip_hdr_len = IPV6_HDR_LEN; 4922 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4923 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4924 CONN_DEC_REF(econnp); 4925 freemsg(first_mp); 4926 return (NULL); 4927 } 4928 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4929 up = (uint16_t *)tcph->th_lport; 4930 ports = *(uint32_t *)up; 4931 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4932 ip6h->ip6_dst, ip6h->ip6_src, ports); 4933 } 4934 4935 /* 4936 * The caller already ensured that there is a sqp present. 4937 */ 4938 econnp->conn_sqp = new_sqp; 4939 4940 if (connp->conn_policy != NULL) { 4941 ipsec_in_t *ii; 4942 ii = (ipsec_in_t *)(first_mp->b_rptr); 4943 ASSERT(ii->ipsec_in_policy == NULL); 4944 IPPH_REFHOLD(connp->conn_policy); 4945 ii->ipsec_in_policy = connp->conn_policy; 4946 4947 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4948 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4949 CONN_DEC_REF(econnp); 4950 freemsg(first_mp); 4951 return (NULL); 4952 } 4953 } 4954 4955 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4956 CONN_DEC_REF(econnp); 4957 freemsg(first_mp); 4958 return (NULL); 4959 } 4960 4961 /* 4962 * If we know we have some policy, pass the "IPSEC" 4963 * options size TCP uses this adjust the MSS. 4964 */ 4965 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 4966 if (mctl_present) { 4967 freeb(first_mp); 4968 *mpp = mp; 4969 } 4970 4971 return (econnp); 4972 } 4973 4974 /* 4975 * tcp_get_conn/tcp_free_conn 4976 * 4977 * tcp_get_conn is used to get a clean tcp connection structure. 4978 * It tries to reuse the connections put on the freelist by the 4979 * time_wait_collector failing which it goes to kmem_cache. This 4980 * way has two benefits compared to just allocating from and 4981 * freeing to kmem_cache. 4982 * 1) The time_wait_collector can free (which includes the cleanup) 4983 * outside the squeue. So when the interrupt comes, we have a clean 4984 * connection sitting in the freelist. Obviously, this buys us 4985 * performance. 4986 * 4987 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 4988 * has multiple disadvantages - tying up the squeue during alloc, and the 4989 * fact that IPSec policy initialization has to happen here which 4990 * requires us sending a M_CTL and checking for it i.e. real ugliness. 4991 * But allocating the conn/tcp in IP land is also not the best since 4992 * we can't check the 'q' and 'q0' which are protected by squeue and 4993 * blindly allocate memory which might have to be freed here if we are 4994 * not allowed to accept the connection. By using the freelist and 4995 * putting the conn/tcp back in freelist, we don't pay a penalty for 4996 * allocating memory without checking 'q/q0' and freeing it if we can't 4997 * accept the connection. 4998 * 4999 * Care should be taken to put the conn back in the same squeue's freelist 5000 * from which it was allocated. Best results are obtained if conn is 5001 * allocated from listener's squeue and freed to the same. Time wait 5002 * collector will free up the freelist is the connection ends up sitting 5003 * there for too long. 5004 */ 5005 void * 5006 tcp_get_conn(void *arg) 5007 { 5008 tcp_t *tcp = NULL; 5009 conn_t *connp = NULL; 5010 squeue_t *sqp = (squeue_t *)arg; 5011 tcp_squeue_priv_t *tcp_time_wait; 5012 5013 tcp_time_wait = 5014 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5015 5016 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5017 tcp = tcp_time_wait->tcp_free_list; 5018 if (tcp != NULL) { 5019 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5020 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5021 tcp->tcp_time_wait_next = NULL; 5022 connp = tcp->tcp_connp; 5023 connp->conn_flags |= IPCL_REUSED; 5024 return ((void *)connp); 5025 } 5026 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5027 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5028 return (NULL); 5029 return ((void *)connp); 5030 } 5031 5032 /* BEGIN CSTYLED */ 5033 /* 5034 * 5035 * The sockfs ACCEPT path: 5036 * ======================= 5037 * 5038 * The eager is now established in its own perimeter as soon as SYN is 5039 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5040 * completes the accept processing on the acceptor STREAM. The sending 5041 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5042 * listener but a TLI/XTI listener completes the accept processing 5043 * on the listener perimeter. 5044 * 5045 * Common control flow for 3 way handshake: 5046 * ---------------------------------------- 5047 * 5048 * incoming SYN (listener perimeter) -> tcp_rput_data() 5049 * -> tcp_conn_request() 5050 * 5051 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5052 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5053 * 5054 * Sockfs ACCEPT Path: 5055 * ------------------- 5056 * 5057 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5058 * as STREAM entry point) 5059 * 5060 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5061 * 5062 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5063 * association (we are not behind eager's squeue but sockfs is protecting us 5064 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5065 * is changed to point at tcp_wput(). 5066 * 5067 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5068 * listener (done on listener's perimeter). 5069 * 5070 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5071 * accept. 5072 * 5073 * TLI/XTI client ACCEPT path: 5074 * --------------------------- 5075 * 5076 * soaccept() sends T_CONN_RES on the listener STREAM. 5077 * 5078 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5079 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5080 * 5081 * Locks: 5082 * ====== 5083 * 5084 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5085 * and listeners->tcp_eager_next_q. 5086 * 5087 * Referencing: 5088 * ============ 5089 * 5090 * 1) We start out in tcp_conn_request by eager placing a ref on 5091 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5092 * 5093 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5094 * doing so we place a ref on the eager. This ref is finally dropped at the 5095 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5096 * reference is dropped by the squeue framework. 5097 * 5098 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5099 * 5100 * The reference must be released by the same entity that added the reference 5101 * In the above scheme, the eager is the entity that adds and releases the 5102 * references. Note that tcp_accept_finish executes in the squeue of the eager 5103 * (albeit after it is attached to the acceptor stream). Though 1. executes 5104 * in the listener's squeue, the eager is nascent at this point and the 5105 * reference can be considered to have been added on behalf of the eager. 5106 * 5107 * Eager getting a Reset or listener closing: 5108 * ========================================== 5109 * 5110 * Once the listener and eager are linked, the listener never does the unlink. 5111 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5112 * a message on all eager perimeter. The eager then does the unlink, clears 5113 * any pointers to the listener's queue and drops the reference to the 5114 * listener. The listener waits in tcp_close outside the squeue until its 5115 * refcount has dropped to 1. This ensures that the listener has waited for 5116 * all eagers to clear their association with the listener. 5117 * 5118 * Similarly, if eager decides to go away, it can unlink itself and close. 5119 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5120 * the reference to eager is still valid because of the extra ref we put 5121 * in tcp_send_conn_ind. 5122 * 5123 * Listener can always locate the eager under the protection 5124 * of the listener->tcp_eager_lock, and then do a refhold 5125 * on the eager during the accept processing. 5126 * 5127 * The acceptor stream accesses the eager in the accept processing 5128 * based on the ref placed on eager before sending T_conn_ind. 5129 * The only entity that can negate this refhold is a listener close 5130 * which is mutually exclusive with an active acceptor stream. 5131 * 5132 * Eager's reference on the listener 5133 * =================================== 5134 * 5135 * If the accept happens (even on a closed eager) the eager drops its 5136 * reference on the listener at the start of tcp_accept_finish. If the 5137 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5138 * the reference is dropped in tcp_closei_local. If the listener closes, 5139 * the reference is dropped in tcp_eager_kill. In all cases the reference 5140 * is dropped while executing in the eager's context (squeue). 5141 */ 5142 /* END CSTYLED */ 5143 5144 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5145 5146 /* 5147 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5148 * tcp_rput_data will not see any SYN packets. 5149 */ 5150 /* ARGSUSED */ 5151 void 5152 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5153 { 5154 tcph_t *tcph; 5155 uint32_t seg_seq; 5156 tcp_t *eager; 5157 uint_t ipvers; 5158 ipha_t *ipha; 5159 ip6_t *ip6h; 5160 int err; 5161 conn_t *econnp = NULL; 5162 squeue_t *new_sqp; 5163 mblk_t *mp1; 5164 uint_t ip_hdr_len; 5165 conn_t *connp = (conn_t *)arg; 5166 tcp_t *tcp = connp->conn_tcp; 5167 ire_t *ire; 5168 5169 if (tcp->tcp_state != TCPS_LISTEN) 5170 goto error2; 5171 5172 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5173 5174 mutex_enter(&tcp->tcp_eager_lock); 5175 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5176 mutex_exit(&tcp->tcp_eager_lock); 5177 TCP_STAT(tcp_listendrop); 5178 BUMP_MIB(&tcp_mib, tcpListenDrop); 5179 if (tcp->tcp_debug) { 5180 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5181 "tcp_conn_request: listen backlog (max=%d) " 5182 "overflow (%d pending) on %s", 5183 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5184 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5185 } 5186 goto error2; 5187 } 5188 5189 if (tcp->tcp_conn_req_cnt_q0 >= 5190 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5191 /* 5192 * Q0 is full. Drop a pending half-open req from the queue 5193 * to make room for the new SYN req. Also mark the time we 5194 * drop a SYN. 5195 * 5196 * A more aggressive defense against SYN attack will 5197 * be to set the "tcp_syn_defense" flag now. 5198 */ 5199 TCP_STAT(tcp_listendropq0); 5200 tcp->tcp_last_rcv_lbolt = lbolt64; 5201 if (!tcp_drop_q0(tcp)) { 5202 mutex_exit(&tcp->tcp_eager_lock); 5203 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5204 if (tcp->tcp_debug) { 5205 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5206 "tcp_conn_request: listen half-open queue " 5207 "(max=%d) full (%d pending) on %s", 5208 tcp_conn_req_max_q0, 5209 tcp->tcp_conn_req_cnt_q0, 5210 tcp_display(tcp, NULL, 5211 DISP_PORT_ONLY)); 5212 } 5213 goto error2; 5214 } 5215 } 5216 mutex_exit(&tcp->tcp_eager_lock); 5217 5218 /* 5219 * IP adds STRUIO_EAGER and ensures that the received packet is 5220 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5221 * link local address. If IPSec is enabled, db_struioflag has 5222 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5223 * otherwise an error case if neither of them is set. 5224 */ 5225 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5226 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5227 DB_CKSUMSTART(mp) = 0; 5228 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5229 econnp = (conn_t *)tcp_get_conn(arg2); 5230 if (econnp == NULL) 5231 goto error2; 5232 econnp->conn_sqp = new_sqp; 5233 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5234 /* 5235 * mp is updated in tcp_get_ipsec_conn(). 5236 */ 5237 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5238 if (econnp == NULL) { 5239 /* 5240 * mp freed by tcp_get_ipsec_conn. 5241 */ 5242 return; 5243 } 5244 } else { 5245 goto error2; 5246 } 5247 5248 ASSERT(DB_TYPE(mp) == M_DATA); 5249 5250 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5251 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5252 ASSERT(OK_32PTR(mp->b_rptr)); 5253 if (ipvers == IPV4_VERSION) { 5254 ipha = (ipha_t *)mp->b_rptr; 5255 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5256 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5257 } else { 5258 ip6h = (ip6_t *)mp->b_rptr; 5259 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5260 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5261 } 5262 5263 if (tcp->tcp_family == AF_INET) { 5264 ASSERT(ipvers == IPV4_VERSION); 5265 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5266 } else { 5267 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5268 } 5269 5270 if (err) 5271 goto error3; 5272 5273 eager = econnp->conn_tcp; 5274 5275 /* Inherit various TCP parameters from the listener */ 5276 eager->tcp_naglim = tcp->tcp_naglim; 5277 eager->tcp_first_timer_threshold = 5278 tcp->tcp_first_timer_threshold; 5279 eager->tcp_second_timer_threshold = 5280 tcp->tcp_second_timer_threshold; 5281 5282 eager->tcp_first_ctimer_threshold = 5283 tcp->tcp_first_ctimer_threshold; 5284 eager->tcp_second_ctimer_threshold = 5285 tcp->tcp_second_ctimer_threshold; 5286 5287 /* 5288 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5289 * zone id before the accept is completed in tcp_wput_accept(). 5290 */ 5291 econnp->conn_zoneid = connp->conn_zoneid; 5292 5293 eager->tcp_hard_binding = B_TRUE; 5294 5295 tcp_bind_hash_insert(&tcp_bind_fanout[ 5296 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5297 5298 CL_INET_CONNECT(eager); 5299 5300 /* 5301 * No need to check for multicast destination since ip will only pass 5302 * up multicasts to those that have expressed interest 5303 * TODO: what about rejecting broadcasts? 5304 * Also check that source is not a multicast or broadcast address. 5305 */ 5306 eager->tcp_state = TCPS_SYN_RCVD; 5307 5308 5309 /* 5310 * There should be no ire in the mp as we are being called after 5311 * receiving the SYN. 5312 */ 5313 ASSERT(tcp_ire_mp(mp) == NULL); 5314 5315 /* 5316 * Adapt our mss, ttl, ... according to information provided in IRE. 5317 */ 5318 5319 if (tcp_adapt_ire(eager, NULL) == 0) { 5320 /* Undo the bind_hash_insert */ 5321 tcp_bind_hash_remove(eager); 5322 goto error3; 5323 } 5324 5325 /* Process all TCP options. */ 5326 tcp_process_options(eager, tcph); 5327 5328 /* Is the other end ECN capable? */ 5329 if (tcp_ecn_permitted >= 1 && 5330 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5331 eager->tcp_ecn_ok = B_TRUE; 5332 } 5333 5334 /* 5335 * listener->tcp_rq->q_hiwat should be the default window size or a 5336 * window size changed via SO_RCVBUF option. First round up the 5337 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5338 * scale option value if needed. Call tcp_rwnd_set() to finish the 5339 * setting. 5340 * 5341 * Note if there is a rpipe metric associated with the remote host, 5342 * we should not inherit receive window size from listener. 5343 */ 5344 eager->tcp_rwnd = MSS_ROUNDUP( 5345 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5346 eager->tcp_rwnd), eager->tcp_mss); 5347 if (eager->tcp_snd_ws_ok) 5348 tcp_set_ws_value(eager); 5349 /* 5350 * Note that this is the only place tcp_rwnd_set() is called for 5351 * accepting a connection. We need to call it here instead of 5352 * after the 3-way handshake because we need to tell the other 5353 * side our rwnd in the SYN-ACK segment. 5354 */ 5355 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5356 5357 /* 5358 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5359 * via soaccept()->soinheritoptions() which essentially applies 5360 * all the listener options to the new STREAM. The options that we 5361 * need to take care of are: 5362 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5363 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5364 * SO_SNDBUF, SO_RCVBUF. 5365 * 5366 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5367 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5368 * tcp_maxpsz_set() gets called later from 5369 * tcp_accept_finish(), the option takes effect. 5370 * 5371 */ 5372 /* Set the TCP options */ 5373 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5374 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5375 eager->tcp_oobinline = tcp->tcp_oobinline; 5376 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5377 eager->tcp_broadcast = tcp->tcp_broadcast; 5378 eager->tcp_useloopback = tcp->tcp_useloopback; 5379 eager->tcp_dontroute = tcp->tcp_dontroute; 5380 eager->tcp_linger = tcp->tcp_linger; 5381 eager->tcp_lingertime = tcp->tcp_lingertime; 5382 if (tcp->tcp_ka_enabled) 5383 eager->tcp_ka_enabled = 1; 5384 5385 /* Set the IP options */ 5386 econnp->conn_broadcast = connp->conn_broadcast; 5387 econnp->conn_loopback = connp->conn_loopback; 5388 econnp->conn_dontroute = connp->conn_dontroute; 5389 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5390 5391 /* Put a ref on the listener for the eager. */ 5392 CONN_INC_REF(connp); 5393 mutex_enter(&tcp->tcp_eager_lock); 5394 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5395 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5396 tcp->tcp_eager_next_q0 = eager; 5397 eager->tcp_eager_prev_q0 = tcp; 5398 5399 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5400 eager->tcp_listener = tcp; 5401 eager->tcp_saved_listener = tcp; 5402 5403 /* 5404 * Tag this detached tcp vector for later retrieval 5405 * by our listener client in tcp_accept(). 5406 */ 5407 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5408 tcp->tcp_conn_req_cnt_q0++; 5409 if (++tcp->tcp_conn_req_seqnum == -1) { 5410 /* 5411 * -1 is "special" and defined in TPI as something 5412 * that should never be used in T_CONN_IND 5413 */ 5414 ++tcp->tcp_conn_req_seqnum; 5415 } 5416 mutex_exit(&tcp->tcp_eager_lock); 5417 5418 if (tcp->tcp_syn_defense) { 5419 /* Don't drop the SYN that comes from a good IP source */ 5420 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5421 if (addr_cache != NULL && eager->tcp_remote == 5422 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5423 eager->tcp_dontdrop = B_TRUE; 5424 } 5425 } 5426 5427 /* 5428 * We need to insert the eager in its own perimeter but as soon 5429 * as we do that, we expose the eager to the classifier and 5430 * should not touch any field outside the eager's perimeter. 5431 * So do all the work necessary before inserting the eager 5432 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5433 * will succeed but undo everything if it fails. 5434 */ 5435 seg_seq = ABE32_TO_U32(tcph->th_seq); 5436 eager->tcp_irs = seg_seq; 5437 eager->tcp_rack = seg_seq; 5438 eager->tcp_rnxt = seg_seq + 1; 5439 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5440 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5441 eager->tcp_state = TCPS_SYN_RCVD; 5442 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5443 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5444 if (mp1 == NULL) 5445 goto error1; 5446 mblk_setcred(mp1, tcp->tcp_cred); 5447 DB_CPID(mp1) = tcp->tcp_cpid; 5448 5449 /* 5450 * We need to start the rto timer. In normal case, we start 5451 * the timer after sending the packet on the wire (or at 5452 * least believing that packet was sent by waiting for 5453 * CALL_IP_WPUT() to return). Since this is the first packet 5454 * being sent on the wire for the eager, our initial tcp_rto 5455 * is at least tcp_rexmit_interval_min which is a fairly 5456 * large value to allow the algorithm to adjust slowly to large 5457 * fluctuations of RTT during first few transmissions. 5458 * 5459 * Starting the timer first and then sending the packet in this 5460 * case shouldn't make much difference since tcp_rexmit_interval_min 5461 * is of the order of several 100ms and starting the timer 5462 * first and then sending the packet will result in difference 5463 * of few micro seconds. 5464 * 5465 * Without this optimization, we are forced to hold the fanout 5466 * lock across the ipcl_bind_insert() and sending the packet 5467 * so that we don't race against an incoming packet (maybe RST) 5468 * for this eager. 5469 */ 5470 5471 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5472 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5473 5474 5475 /* 5476 * Insert the eager in its own perimeter now. We are ready to deal 5477 * with any packets on eager. 5478 */ 5479 if (eager->tcp_ipversion == IPV4_VERSION) { 5480 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5481 goto error; 5482 } 5483 } else { 5484 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5485 goto error; 5486 } 5487 } 5488 5489 /* mark conn as fully-bound */ 5490 econnp->conn_fully_bound = B_TRUE; 5491 5492 /* Send the SYN-ACK */ 5493 tcp_send_data(eager, eager->tcp_wq, mp1); 5494 freemsg(mp); 5495 5496 return; 5497 error: 5498 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 5499 freemsg(mp1); 5500 error1: 5501 /* Undo what we did above */ 5502 mutex_enter(&tcp->tcp_eager_lock); 5503 tcp_eager_unlink(eager); 5504 mutex_exit(&tcp->tcp_eager_lock); 5505 /* Drop eager's reference on the listener */ 5506 CONN_DEC_REF(connp); 5507 5508 /* 5509 * Delete the cached ire in conn_ire_cache and also mark 5510 * the conn as CONDEMNED 5511 */ 5512 mutex_enter(&econnp->conn_lock); 5513 econnp->conn_state_flags |= CONN_CONDEMNED; 5514 ire = econnp->conn_ire_cache; 5515 econnp->conn_ire_cache = NULL; 5516 mutex_exit(&econnp->conn_lock); 5517 if (ire != NULL) 5518 IRE_REFRELE_NOTR(ire); 5519 5520 /* 5521 * tcp_accept_comm inserts the eager to the bind_hash 5522 * we need to remove it from the hash if ipcl_conn_insert 5523 * fails. 5524 */ 5525 tcp_bind_hash_remove(eager); 5526 /* Drop the eager ref placed in tcp_open_detached */ 5527 CONN_DEC_REF(econnp); 5528 5529 /* 5530 * If a connection already exists, send the mp to that connections so 5531 * that it can be appropriately dealt with. 5532 */ 5533 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 5534 if (!IPCL_IS_CONNECTED(econnp)) { 5535 /* 5536 * Something bad happened. ipcl_conn_insert() 5537 * failed because a connection already existed 5538 * in connected hash but we can't find it 5539 * anymore (someone blew it away). Just 5540 * free this message and hopefully remote 5541 * will retransmit at which time the SYN can be 5542 * treated as a new connection or dealth with 5543 * a TH_RST if a connection already exists. 5544 */ 5545 freemsg(mp); 5546 } else { 5547 squeue_fill(econnp->conn_sqp, mp, tcp_input, 5548 econnp, SQTAG_TCP_CONN_REQ); 5549 } 5550 } else { 5551 /* Nobody wants this packet */ 5552 freemsg(mp); 5553 } 5554 return; 5555 error2: 5556 freemsg(mp); 5557 return; 5558 error3: 5559 CONN_DEC_REF(econnp); 5560 freemsg(mp); 5561 } 5562 5563 /* 5564 * In an ideal case of vertical partition in NUMA architecture, its 5565 * beneficial to have the listener and all the incoming connections 5566 * tied to the same squeue. The other constraint is that incoming 5567 * connections should be tied to the squeue attached to interrupted 5568 * CPU for obvious locality reason so this leaves the listener to 5569 * be tied to the same squeue. Our only problem is that when listener 5570 * is binding, the CPU that will get interrupted by the NIC whose 5571 * IP address the listener is binding to is not even known. So 5572 * the code below allows us to change that binding at the time the 5573 * CPU is interrupted by virtue of incoming connection's squeue. 5574 * 5575 * This is usefull only in case of a listener bound to a specific IP 5576 * address. For other kind of listeners, they get bound the 5577 * very first time and there is no attempt to rebind them. 5578 */ 5579 void 5580 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5581 { 5582 conn_t *connp = (conn_t *)arg; 5583 squeue_t *sqp = (squeue_t *)arg2; 5584 squeue_t *new_sqp; 5585 uint32_t conn_flags; 5586 5587 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5588 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5589 } else { 5590 goto done; 5591 } 5592 5593 if (connp->conn_fanout == NULL) 5594 goto done; 5595 5596 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5597 mutex_enter(&connp->conn_fanout->connf_lock); 5598 mutex_enter(&connp->conn_lock); 5599 /* 5600 * No one from read or write side can access us now 5601 * except for already queued packets on this squeue. 5602 * But since we haven't changed the squeue yet, they 5603 * can't execute. If they are processed after we have 5604 * changed the squeue, they are sent back to the 5605 * correct squeue down below. 5606 */ 5607 if (connp->conn_sqp != new_sqp) { 5608 while (connp->conn_sqp != new_sqp) 5609 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5610 } 5611 5612 do { 5613 conn_flags = connp->conn_flags; 5614 conn_flags |= IPCL_FULLY_BOUND; 5615 (void) cas32(&connp->conn_flags, connp->conn_flags, 5616 conn_flags); 5617 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5618 5619 mutex_exit(&connp->conn_fanout->connf_lock); 5620 mutex_exit(&connp->conn_lock); 5621 } 5622 5623 done: 5624 if (connp->conn_sqp != sqp) { 5625 CONN_INC_REF(connp); 5626 squeue_fill(connp->conn_sqp, mp, 5627 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 5628 } else { 5629 tcp_conn_request(connp, mp, sqp); 5630 } 5631 } 5632 5633 /* 5634 * Successful connect request processing begins when our client passes 5635 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5636 * our T_OK_ACK reply message upstream. The control flow looks like this: 5637 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 5638 * upstream <- tcp_rput() <- IP 5639 * After various error checks are completed, tcp_connect() lays 5640 * the target address and port into the composite header template, 5641 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5642 * request followed by an IRE request, and passes the three mblk message 5643 * down to IP looking like this: 5644 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5645 * Processing continues in tcp_rput() when we receive the following message: 5646 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5647 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5648 * to fire off the connection request, and then passes the T_OK_ACK mblk 5649 * upstream that we filled in below. There are, of course, numerous 5650 * error conditions along the way which truncate the processing described 5651 * above. 5652 */ 5653 static void 5654 tcp_connect(tcp_t *tcp, mblk_t *mp) 5655 { 5656 sin_t *sin; 5657 sin6_t *sin6; 5658 queue_t *q = tcp->tcp_wq; 5659 struct T_conn_req *tcr; 5660 ipaddr_t *dstaddrp; 5661 in_port_t dstport; 5662 uint_t srcid; 5663 5664 tcr = (struct T_conn_req *)mp->b_rptr; 5665 5666 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5667 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5668 tcp_err_ack(tcp, mp, TPROTO, 0); 5669 return; 5670 } 5671 5672 /* 5673 * Determine packet type based on type of address passed in 5674 * the request should contain an IPv4 or IPv6 address. 5675 * Make sure that address family matches the type of 5676 * family of the the address passed down 5677 */ 5678 switch (tcr->DEST_length) { 5679 default: 5680 tcp_err_ack(tcp, mp, TBADADDR, 0); 5681 return; 5682 5683 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5684 /* 5685 * XXX: The check for valid DEST_length was not there 5686 * in earlier releases and some buggy 5687 * TLI apps (e.g Sybase) got away with not feeding 5688 * in sin_zero part of address. 5689 * We allow that bug to keep those buggy apps humming. 5690 * Test suites require the check on DEST_length. 5691 * We construct a new mblk with valid DEST_length 5692 * free the original so the rest of the code does 5693 * not have to keep track of this special shorter 5694 * length address case. 5695 */ 5696 mblk_t *nmp; 5697 struct T_conn_req *ntcr; 5698 sin_t *nsin; 5699 5700 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5701 tcr->OPT_length, BPRI_HI); 5702 if (nmp == NULL) { 5703 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5704 return; 5705 } 5706 ntcr = (struct T_conn_req *)nmp->b_rptr; 5707 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5708 ntcr->PRIM_type = T_CONN_REQ; 5709 ntcr->DEST_length = sizeof (sin_t); 5710 ntcr->DEST_offset = sizeof (struct T_conn_req); 5711 5712 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5713 *nsin = sin_null; 5714 /* Get pointer to shorter address to copy from original mp */ 5715 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5716 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5717 if (sin == NULL || !OK_32PTR((char *)sin)) { 5718 freemsg(nmp); 5719 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5720 return; 5721 } 5722 nsin->sin_family = sin->sin_family; 5723 nsin->sin_port = sin->sin_port; 5724 nsin->sin_addr = sin->sin_addr; 5725 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5726 nmp->b_wptr = (uchar_t *)&nsin[1]; 5727 if (tcr->OPT_length != 0) { 5728 ntcr->OPT_length = tcr->OPT_length; 5729 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5730 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5731 (uchar_t *)ntcr + ntcr->OPT_offset, 5732 tcr->OPT_length); 5733 nmp->b_wptr += tcr->OPT_length; 5734 } 5735 freemsg(mp); /* original mp freed */ 5736 mp = nmp; /* re-initialize original variables */ 5737 tcr = ntcr; 5738 } 5739 /* FALLTHRU */ 5740 5741 case sizeof (sin_t): 5742 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5743 sizeof (sin_t)); 5744 if (sin == NULL || !OK_32PTR((char *)sin)) { 5745 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5746 return; 5747 } 5748 if (tcp->tcp_family != AF_INET || 5749 sin->sin_family != AF_INET) { 5750 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5751 return; 5752 } 5753 if (sin->sin_port == 0) { 5754 tcp_err_ack(tcp, mp, TBADADDR, 0); 5755 return; 5756 } 5757 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 5758 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5759 return; 5760 } 5761 5762 break; 5763 5764 case sizeof (sin6_t): 5765 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 5766 sizeof (sin6_t)); 5767 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 5768 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5769 return; 5770 } 5771 if (tcp->tcp_family != AF_INET6 || 5772 sin6->sin6_family != AF_INET6) { 5773 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5774 return; 5775 } 5776 if (sin6->sin6_port == 0) { 5777 tcp_err_ack(tcp, mp, TBADADDR, 0); 5778 return; 5779 } 5780 break; 5781 } 5782 /* 5783 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5784 * should key on their sequence number and cut them loose. 5785 */ 5786 5787 /* 5788 * If options passed in, feed it for verification and handling 5789 */ 5790 if (tcr->OPT_length != 0) { 5791 mblk_t *ok_mp; 5792 mblk_t *discon_mp; 5793 mblk_t *conn_opts_mp; 5794 int t_error, sys_error, do_disconnect; 5795 5796 conn_opts_mp = NULL; 5797 5798 if (tcp_conprim_opt_process(tcp, mp, 5799 &do_disconnect, &t_error, &sys_error) < 0) { 5800 if (do_disconnect) { 5801 ASSERT(t_error == 0 && sys_error == 0); 5802 discon_mp = mi_tpi_discon_ind(NULL, 5803 ECONNREFUSED, 0); 5804 if (!discon_mp) { 5805 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5806 TSYSERR, ENOMEM); 5807 return; 5808 } 5809 ok_mp = mi_tpi_ok_ack_alloc(mp); 5810 if (!ok_mp) { 5811 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5812 TSYSERR, ENOMEM); 5813 return; 5814 } 5815 qreply(q, ok_mp); 5816 qreply(q, discon_mp); /* no flush! */ 5817 } else { 5818 ASSERT(t_error != 0); 5819 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5820 sys_error); 5821 } 5822 return; 5823 } 5824 /* 5825 * Success in setting options, the mp option buffer represented 5826 * by OPT_length/offset has been potentially modified and 5827 * contains results of option processing. We copy it in 5828 * another mp to save it for potentially influencing returning 5829 * it in T_CONN_CONN. 5830 */ 5831 if (tcr->OPT_length != 0) { /* there are resulting options */ 5832 conn_opts_mp = copyb(mp); 5833 if (!conn_opts_mp) { 5834 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5835 TSYSERR, ENOMEM); 5836 return; 5837 } 5838 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5839 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5840 /* 5841 * Note: 5842 * These resulting option negotiation can include any 5843 * end-to-end negotiation options but there no such 5844 * thing (yet?) in our TCP/IP. 5845 */ 5846 } 5847 } 5848 5849 /* 5850 * If we're connecting to an IPv4-mapped IPv6 address, we need to 5851 * make sure that the template IP header in the tcp structure is an 5852 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 5853 * need to this before we call tcp_bindi() so that the port lookup 5854 * code will look for ports in the correct port space (IPv4 and 5855 * IPv6 have separate port spaces). 5856 */ 5857 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 5858 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 5859 int err = 0; 5860 5861 err = tcp_header_init_ipv4(tcp); 5862 if (err != 0) { 5863 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 5864 goto connect_failed; 5865 } 5866 if (tcp->tcp_lport != 0) 5867 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 5868 } 5869 5870 switch (tcp->tcp_state) { 5871 case TCPS_IDLE: 5872 /* 5873 * We support quick connect, refer to comments in 5874 * tcp_connect_*() 5875 */ 5876 /* FALLTHRU */ 5877 case TCPS_BOUND: 5878 case TCPS_LISTEN: 5879 if (tcp->tcp_family == AF_INET6) { 5880 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 5881 tcp_connect_ipv6(tcp, mp, 5882 &sin6->sin6_addr, 5883 sin6->sin6_port, sin6->sin6_flowinfo, 5884 sin6->__sin6_src_id, sin6->sin6_scope_id); 5885 return; 5886 } 5887 /* 5888 * Destination adress is mapped IPv6 address. 5889 * Source bound address should be unspecified or 5890 * IPv6 mapped address as well. 5891 */ 5892 if (!IN6_IS_ADDR_UNSPECIFIED( 5893 &tcp->tcp_bound_source_v6) && 5894 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 5895 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 5896 EADDRNOTAVAIL); 5897 break; 5898 } 5899 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 5900 dstport = sin6->sin6_port; 5901 srcid = sin6->__sin6_src_id; 5902 } else { 5903 dstaddrp = &sin->sin_addr.s_addr; 5904 dstport = sin->sin_port; 5905 srcid = 0; 5906 } 5907 5908 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 5909 return; 5910 default: 5911 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 5912 break; 5913 } 5914 /* 5915 * Note: Code below is the "failure" case 5916 */ 5917 /* return error ack and blow away saved option results if any */ 5918 connect_failed: 5919 if (mp != NULL) 5920 putnext(tcp->tcp_rq, mp); 5921 else { 5922 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5923 TSYSERR, ENOMEM); 5924 } 5925 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 5926 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 5927 } 5928 5929 /* 5930 * Handle connect to IPv4 destinations, including connections for AF_INET6 5931 * sockets connecting to IPv4 mapped IPv6 destinations. 5932 */ 5933 static void 5934 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 5935 uint_t srcid) 5936 { 5937 tcph_t *tcph; 5938 mblk_t *mp1; 5939 ipaddr_t dstaddr = *dstaddrp; 5940 int32_t oldstate; 5941 uint16_t lport; 5942 5943 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 5944 5945 /* Check for attempt to connect to INADDR_ANY */ 5946 if (dstaddr == INADDR_ANY) { 5947 /* 5948 * SunOS 4.x and 4.3 BSD allow an application 5949 * to connect a TCP socket to INADDR_ANY. 5950 * When they do this, the kernel picks the 5951 * address of one interface and uses it 5952 * instead. The kernel usually ends up 5953 * picking the address of the loopback 5954 * interface. This is an undocumented feature. 5955 * However, we provide the same thing here 5956 * in order to have source and binary 5957 * compatibility with SunOS 4.x. 5958 * Update the T_CONN_REQ (sin/sin6) since it is used to 5959 * generate the T_CONN_CON. 5960 */ 5961 dstaddr = htonl(INADDR_LOOPBACK); 5962 *dstaddrp = dstaddr; 5963 } 5964 5965 /* Handle __sin6_src_id if socket not bound to an IP address */ 5966 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 5967 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 5968 tcp->tcp_connp->conn_zoneid); 5969 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 5970 tcp->tcp_ipha->ipha_src); 5971 } 5972 5973 /* 5974 * Don't let an endpoint connect to itself. Note that 5975 * the test here does not catch the case where the 5976 * source IP addr was left unspecified by the user. In 5977 * this case, the source addr is set in tcp_adapt_ire() 5978 * using the reply to the T_BIND message that we send 5979 * down to IP here and the check is repeated in tcp_rput_other. 5980 */ 5981 if (dstaddr == tcp->tcp_ipha->ipha_src && 5982 dstport == tcp->tcp_lport) { 5983 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 5984 goto failed; 5985 } 5986 5987 tcp->tcp_ipha->ipha_dst = dstaddr; 5988 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 5989 5990 /* 5991 * Massage a source route if any putting the first hop 5992 * in iph_dst. Compute a starting value for the checksum which 5993 * takes into account that the original iph_dst should be 5994 * included in the checksum but that ip will include the 5995 * first hop in the source route in the tcp checksum. 5996 */ 5997 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 5998 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 5999 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6000 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6001 if ((int)tcp->tcp_sum < 0) 6002 tcp->tcp_sum--; 6003 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6004 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6005 (tcp->tcp_sum >> 16)); 6006 tcph = tcp->tcp_tcph; 6007 *(uint16_t *)tcph->th_fport = dstport; 6008 tcp->tcp_fport = dstport; 6009 6010 oldstate = tcp->tcp_state; 6011 /* 6012 * At this point the remote destination address and remote port fields 6013 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6014 * have to see which state tcp was in so we can take apropriate action. 6015 */ 6016 if (oldstate == TCPS_IDLE) { 6017 /* 6018 * We support a quick connect capability here, allowing 6019 * clients to transition directly from IDLE to SYN_SENT 6020 * tcp_bindi will pick an unused port, insert the connection 6021 * in the bind hash and transition to BOUND state. 6022 */ 6023 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 6024 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6025 B_FALSE, B_FALSE); 6026 if (lport == 0) { 6027 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6028 goto failed; 6029 } 6030 } 6031 tcp->tcp_state = TCPS_SYN_SENT; 6032 6033 /* 6034 * TODO: allow data with connect requests 6035 * by unlinking M_DATA trailers here and 6036 * linking them in behind the T_OK_ACK mblk. 6037 * The tcp_rput() bind ack handler would then 6038 * feed them to tcp_wput_data() rather than call 6039 * tcp_timer(). 6040 */ 6041 mp = mi_tpi_ok_ack_alloc(mp); 6042 if (!mp) { 6043 tcp->tcp_state = oldstate; 6044 goto failed; 6045 } 6046 if (tcp->tcp_family == AF_INET) { 6047 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6048 sizeof (ipa_conn_t)); 6049 } else { 6050 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6051 sizeof (ipa6_conn_t)); 6052 } 6053 if (mp1) { 6054 /* Hang onto the T_OK_ACK for later. */ 6055 linkb(mp1, mp); 6056 if (tcp->tcp_family == AF_INET) 6057 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6058 else { 6059 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6060 &tcp->tcp_sticky_ipp); 6061 } 6062 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6063 tcp->tcp_active_open = 1; 6064 /* 6065 * If the bind cannot complete immediately 6066 * IP will arrange to call tcp_rput_other 6067 * when the bind completes. 6068 */ 6069 if (mp1 != NULL) 6070 tcp_rput_other(tcp, mp1); 6071 return; 6072 } 6073 /* Error case */ 6074 tcp->tcp_state = oldstate; 6075 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6076 6077 failed: 6078 /* return error ack and blow away saved option results if any */ 6079 if (mp != NULL) 6080 putnext(tcp->tcp_rq, mp); 6081 else { 6082 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6083 TSYSERR, ENOMEM); 6084 } 6085 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6086 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6087 6088 } 6089 6090 /* 6091 * Handle connect to IPv6 destinations. 6092 */ 6093 static void 6094 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6095 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6096 { 6097 tcph_t *tcph; 6098 mblk_t *mp1; 6099 ip6_rthdr_t *rth; 6100 int32_t oldstate; 6101 uint16_t lport; 6102 6103 ASSERT(tcp->tcp_family == AF_INET6); 6104 6105 /* 6106 * If we're here, it means that the destination address is a native 6107 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6108 * reason why it might not be IPv6 is if the socket was bound to an 6109 * IPv4-mapped IPv6 address. 6110 */ 6111 if (tcp->tcp_ipversion != IPV6_VERSION) { 6112 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6113 goto failed; 6114 } 6115 6116 /* 6117 * Interpret a zero destination to mean loopback. 6118 * Update the T_CONN_REQ (sin/sin6) since it is used to 6119 * generate the T_CONN_CON. 6120 */ 6121 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6122 *dstaddrp = ipv6_loopback; 6123 } 6124 6125 /* Handle __sin6_src_id if socket not bound to an IP address */ 6126 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6127 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6128 tcp->tcp_connp->conn_zoneid); 6129 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6130 } 6131 6132 /* 6133 * Take care of the scope_id now and add ip6i_t 6134 * if ip6i_t is not already allocated through TCP 6135 * sticky options. At this point tcp_ip6h does not 6136 * have dst info, thus use dstaddrp. 6137 */ 6138 if (scope_id != 0 && 6139 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6140 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6141 ip6i_t *ip6i; 6142 6143 ipp->ipp_ifindex = scope_id; 6144 ip6i = (ip6i_t *)tcp->tcp_iphc; 6145 6146 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6147 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6148 /* Already allocated */ 6149 ip6i->ip6i_flags |= IP6I_IFINDEX; 6150 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6151 ipp->ipp_fields |= IPPF_SCOPE_ID; 6152 } else { 6153 int reterr; 6154 6155 ipp->ipp_fields |= IPPF_SCOPE_ID; 6156 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6157 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6158 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6159 if (reterr != 0) 6160 goto failed; 6161 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6162 } 6163 } 6164 6165 /* 6166 * Don't let an endpoint connect to itself. Note that 6167 * the test here does not catch the case where the 6168 * source IP addr was left unspecified by the user. In 6169 * this case, the source addr is set in tcp_adapt_ire() 6170 * using the reply to the T_BIND message that we send 6171 * down to IP here and the check is repeated in tcp_rput_other. 6172 */ 6173 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6174 (dstport == tcp->tcp_lport)) { 6175 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6176 goto failed; 6177 } 6178 6179 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6180 tcp->tcp_remote_v6 = *dstaddrp; 6181 tcp->tcp_ip6h->ip6_vcf = 6182 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6183 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6184 6185 6186 /* 6187 * Massage a routing header (if present) putting the first hop 6188 * in ip6_dst. Compute a starting value for the checksum which 6189 * takes into account that the original ip6_dst should be 6190 * included in the checksum but that ip will include the 6191 * first hop in the source route in the tcp checksum. 6192 */ 6193 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6194 if (rth != NULL) { 6195 6196 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6197 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6198 (tcp->tcp_sum >> 16)); 6199 } else { 6200 tcp->tcp_sum = 0; 6201 } 6202 6203 tcph = tcp->tcp_tcph; 6204 *(uint16_t *)tcph->th_fport = dstport; 6205 tcp->tcp_fport = dstport; 6206 6207 oldstate = tcp->tcp_state; 6208 /* 6209 * At this point the remote destination address and remote port fields 6210 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6211 * have to see which state tcp was in so we can take apropriate action. 6212 */ 6213 if (oldstate == TCPS_IDLE) { 6214 /* 6215 * We support a quick connect capability here, allowing 6216 * clients to transition directly from IDLE to SYN_SENT 6217 * tcp_bindi will pick an unused port, insert the connection 6218 * in the bind hash and transition to BOUND state. 6219 */ 6220 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 6221 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6222 B_FALSE, B_FALSE); 6223 if (lport == 0) { 6224 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6225 goto failed; 6226 } 6227 } 6228 tcp->tcp_state = TCPS_SYN_SENT; 6229 /* 6230 * TODO: allow data with connect requests 6231 * by unlinking M_DATA trailers here and 6232 * linking them in behind the T_OK_ACK mblk. 6233 * The tcp_rput() bind ack handler would then 6234 * feed them to tcp_wput_data() rather than call 6235 * tcp_timer(). 6236 */ 6237 mp = mi_tpi_ok_ack_alloc(mp); 6238 if (!mp) { 6239 tcp->tcp_state = oldstate; 6240 goto failed; 6241 } 6242 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6243 if (mp1) { 6244 /* Hang onto the T_OK_ACK for later. */ 6245 linkb(mp1, mp); 6246 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6247 &tcp->tcp_sticky_ipp); 6248 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6249 tcp->tcp_active_open = 1; 6250 /* ip_bind_v6() may return ACK or ERROR */ 6251 if (mp1 != NULL) 6252 tcp_rput_other(tcp, mp1); 6253 return; 6254 } 6255 /* Error case */ 6256 tcp->tcp_state = oldstate; 6257 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6258 6259 failed: 6260 /* return error ack and blow away saved option results if any */ 6261 if (mp != NULL) 6262 putnext(tcp->tcp_rq, mp); 6263 else { 6264 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6265 TSYSERR, ENOMEM); 6266 } 6267 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6268 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6269 } 6270 6271 /* 6272 * We need a stream q for detached closing tcp connections 6273 * to use. Our client hereby indicates that this q is the 6274 * one to use. 6275 */ 6276 static void 6277 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6278 { 6279 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6280 queue_t *q = tcp->tcp_wq; 6281 6282 mp->b_datap->db_type = M_IOCACK; 6283 iocp->ioc_count = 0; 6284 mutex_enter(&tcp_g_q_lock); 6285 if (tcp_g_q != NULL) { 6286 mutex_exit(&tcp_g_q_lock); 6287 iocp->ioc_error = EALREADY; 6288 } else { 6289 mblk_t *mp1; 6290 6291 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6292 if (mp1 == NULL) { 6293 mutex_exit(&tcp_g_q_lock); 6294 iocp->ioc_error = ENOMEM; 6295 } else { 6296 tcp_g_q = tcp->tcp_rq; 6297 mutex_exit(&tcp_g_q_lock); 6298 iocp->ioc_error = 0; 6299 iocp->ioc_rval = 0; 6300 /* 6301 * We are passing tcp_sticky_ipp as NULL 6302 * as it is not useful for tcp_default queue 6303 */ 6304 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6305 if (mp1 != NULL) 6306 tcp_rput_other(tcp, mp1); 6307 } 6308 } 6309 qreply(q, mp); 6310 } 6311 6312 /* 6313 * Our client hereby directs us to reject the connection request 6314 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6315 * of sending the appropriate RST, not an ICMP error. 6316 */ 6317 static void 6318 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6319 { 6320 tcp_t *ltcp = NULL; 6321 t_scalar_t seqnum; 6322 conn_t *connp; 6323 6324 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6325 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6326 tcp_err_ack(tcp, mp, TPROTO, 0); 6327 return; 6328 } 6329 6330 /* 6331 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6332 * when the stream is in BOUND state. Do not send a reset, 6333 * since the destination IP address is not valid, and it can 6334 * be the initialized value of all zeros (broadcast address). 6335 * 6336 * If TCP has sent down a bind request to IP and has not 6337 * received the reply, reject the request. Otherwise, TCP 6338 * will be confused. 6339 */ 6340 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6341 if (tcp->tcp_debug) { 6342 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6343 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6344 } 6345 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6346 return; 6347 } 6348 6349 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6350 6351 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6352 6353 /* 6354 * According to TPI, for non-listeners, ignore seqnum 6355 * and disconnect. 6356 * Following interpretation of -1 seqnum is historical 6357 * and implied TPI ? (TPI only states that for T_CONN_IND, 6358 * a valid seqnum should not be -1). 6359 * 6360 * -1 means disconnect everything 6361 * regardless even on a listener. 6362 */ 6363 6364 int old_state = tcp->tcp_state; 6365 6366 /* 6367 * The connection can't be on the tcp_time_wait_head list 6368 * since it is not detached. 6369 */ 6370 ASSERT(tcp->tcp_time_wait_next == NULL); 6371 ASSERT(tcp->tcp_time_wait_prev == NULL); 6372 ASSERT(tcp->tcp_time_wait_expire == 0); 6373 ltcp = NULL; 6374 /* 6375 * If it used to be a listener, check to make sure no one else 6376 * has taken the port before switching back to LISTEN state. 6377 */ 6378 if (tcp->tcp_ipversion == IPV4_VERSION) { 6379 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6380 tcp->tcp_ipha->ipha_src, 6381 tcp->tcp_connp->conn_zoneid); 6382 if (connp != NULL) 6383 ltcp = connp->conn_tcp; 6384 } else { 6385 /* Allow tcp_bound_if listeners? */ 6386 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6387 &tcp->tcp_ip6h->ip6_src, 0, 6388 tcp->tcp_connp->conn_zoneid); 6389 if (connp != NULL) 6390 ltcp = connp->conn_tcp; 6391 } 6392 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6393 tcp->tcp_state = TCPS_LISTEN; 6394 } else if (old_state > TCPS_BOUND) { 6395 tcp->tcp_conn_req_max = 0; 6396 tcp->tcp_state = TCPS_BOUND; 6397 } 6398 if (ltcp != NULL) 6399 CONN_DEC_REF(ltcp->tcp_connp); 6400 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6401 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6402 } else if (old_state == TCPS_ESTABLISHED || 6403 old_state == TCPS_CLOSE_WAIT) { 6404 BUMP_MIB(&tcp_mib, tcpEstabResets); 6405 } 6406 6407 if (tcp->tcp_fused) 6408 tcp_unfuse(tcp); 6409 6410 mutex_enter(&tcp->tcp_eager_lock); 6411 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6412 (tcp->tcp_conn_req_cnt_q != 0)) { 6413 tcp_eager_cleanup(tcp, 0); 6414 } 6415 mutex_exit(&tcp->tcp_eager_lock); 6416 6417 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6418 tcp->tcp_rnxt, TH_RST | TH_ACK); 6419 6420 tcp_reinit(tcp); 6421 6422 if (old_state >= TCPS_ESTABLISHED) { 6423 /* Send M_FLUSH according to TPI */ 6424 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6425 } 6426 mp = mi_tpi_ok_ack_alloc(mp); 6427 if (mp) 6428 putnext(tcp->tcp_rq, mp); 6429 return; 6430 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6431 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6432 return; 6433 } 6434 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6435 /* Send M_FLUSH according to TPI */ 6436 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6437 } 6438 mp = mi_tpi_ok_ack_alloc(mp); 6439 if (mp) 6440 putnext(tcp->tcp_rq, mp); 6441 } 6442 6443 /* 6444 * Diagnostic routine used to return a string associated with the tcp state. 6445 * Note that if the caller does not supply a buffer, it will use an internal 6446 * static string. This means that if multiple threads call this function at 6447 * the same time, output can be corrupted... Note also that this function 6448 * does not check the size of the supplied buffer. The caller has to make 6449 * sure that it is big enough. 6450 */ 6451 static char * 6452 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6453 { 6454 char buf1[30]; 6455 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6456 char *buf; 6457 char *cp; 6458 in6_addr_t local, remote; 6459 char local_addrbuf[INET6_ADDRSTRLEN]; 6460 char remote_addrbuf[INET6_ADDRSTRLEN]; 6461 6462 if (sup_buf != NULL) 6463 buf = sup_buf; 6464 else 6465 buf = priv_buf; 6466 6467 if (tcp == NULL) 6468 return ("NULL_TCP"); 6469 switch (tcp->tcp_state) { 6470 case TCPS_CLOSED: 6471 cp = "TCP_CLOSED"; 6472 break; 6473 case TCPS_IDLE: 6474 cp = "TCP_IDLE"; 6475 break; 6476 case TCPS_BOUND: 6477 cp = "TCP_BOUND"; 6478 break; 6479 case TCPS_LISTEN: 6480 cp = "TCP_LISTEN"; 6481 break; 6482 case TCPS_SYN_SENT: 6483 cp = "TCP_SYN_SENT"; 6484 break; 6485 case TCPS_SYN_RCVD: 6486 cp = "TCP_SYN_RCVD"; 6487 break; 6488 case TCPS_ESTABLISHED: 6489 cp = "TCP_ESTABLISHED"; 6490 break; 6491 case TCPS_CLOSE_WAIT: 6492 cp = "TCP_CLOSE_WAIT"; 6493 break; 6494 case TCPS_FIN_WAIT_1: 6495 cp = "TCP_FIN_WAIT_1"; 6496 break; 6497 case TCPS_CLOSING: 6498 cp = "TCP_CLOSING"; 6499 break; 6500 case TCPS_LAST_ACK: 6501 cp = "TCP_LAST_ACK"; 6502 break; 6503 case TCPS_FIN_WAIT_2: 6504 cp = "TCP_FIN_WAIT_2"; 6505 break; 6506 case TCPS_TIME_WAIT: 6507 cp = "TCP_TIME_WAIT"; 6508 break; 6509 default: 6510 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6511 cp = buf1; 6512 break; 6513 } 6514 switch (format) { 6515 case DISP_ADDR_AND_PORT: 6516 if (tcp->tcp_ipversion == IPV4_VERSION) { 6517 /* 6518 * Note that we use the remote address in the tcp_b 6519 * structure. This means that it will print out 6520 * the real destination address, not the next hop's 6521 * address if source routing is used. 6522 */ 6523 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6524 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6525 6526 } else { 6527 local = tcp->tcp_ip_src_v6; 6528 remote = tcp->tcp_remote_v6; 6529 } 6530 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6531 sizeof (local_addrbuf)); 6532 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6533 sizeof (remote_addrbuf)); 6534 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6535 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6536 ntohs(tcp->tcp_fport), cp); 6537 break; 6538 case DISP_PORT_ONLY: 6539 default: 6540 (void) mi_sprintf(buf, "[%u, %u] %s", 6541 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6542 break; 6543 } 6544 6545 return (buf); 6546 } 6547 6548 /* 6549 * Called via squeue to get on to eager's perimeter to send a 6550 * TH_RST. The listener wants the eager to disappear either 6551 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 6552 * being called. 6553 */ 6554 /* ARGSUSED */ 6555 void 6556 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6557 { 6558 conn_t *econnp = (conn_t *)arg; 6559 tcp_t *eager = econnp->conn_tcp; 6560 tcp_t *listener = eager->tcp_listener; 6561 6562 /* 6563 * We could be called because listener is closing. Since 6564 * the eager is using listener's queue's, its not safe. 6565 * Better use the default queue just to send the TH_RST 6566 * out. 6567 */ 6568 eager->tcp_rq = tcp_g_q; 6569 eager->tcp_wq = WR(tcp_g_q); 6570 6571 if (eager->tcp_state > TCPS_LISTEN) { 6572 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6573 eager, eager->tcp_snxt, 0, TH_RST); 6574 } 6575 6576 /* We are here because listener wants this eager gone */ 6577 if (listener != NULL) { 6578 mutex_enter(&listener->tcp_eager_lock); 6579 tcp_eager_unlink(eager); 6580 if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { 6581 /* 6582 * The eager has sent a conn_ind up to the 6583 * listener but listener decides to close 6584 * instead. We need to drop the extra ref 6585 * placed on eager in tcp_rput_data() before 6586 * sending the conn_ind to listener. 6587 */ 6588 CONN_DEC_REF(econnp); 6589 } 6590 mutex_exit(&listener->tcp_eager_lock); 6591 CONN_DEC_REF(listener->tcp_connp); 6592 } 6593 6594 if (eager->tcp_state > TCPS_BOUND) 6595 tcp_close_detached(eager); 6596 } 6597 6598 /* 6599 * Reset any eager connection hanging off this listener marked 6600 * with 'seqnum' and then reclaim it's resources. 6601 */ 6602 static boolean_t 6603 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6604 { 6605 tcp_t *eager; 6606 mblk_t *mp; 6607 6608 TCP_STAT(tcp_eager_blowoff_calls); 6609 eager = listener; 6610 mutex_enter(&listener->tcp_eager_lock); 6611 do { 6612 eager = eager->tcp_eager_next_q; 6613 if (eager == NULL) { 6614 mutex_exit(&listener->tcp_eager_lock); 6615 return (B_FALSE); 6616 } 6617 } while (eager->tcp_conn_req_seqnum != seqnum); 6618 CONN_INC_REF(eager->tcp_connp); 6619 mutex_exit(&listener->tcp_eager_lock); 6620 mp = &eager->tcp_closemp; 6621 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6622 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 6623 return (B_TRUE); 6624 } 6625 6626 /* 6627 * Reset any eager connection hanging off this listener 6628 * and then reclaim it's resources. 6629 */ 6630 static void 6631 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6632 { 6633 tcp_t *eager; 6634 mblk_t *mp; 6635 6636 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6637 6638 if (!q0_only) { 6639 /* First cleanup q */ 6640 TCP_STAT(tcp_eager_blowoff_q); 6641 eager = listener->tcp_eager_next_q; 6642 while (eager != NULL) { 6643 CONN_INC_REF(eager->tcp_connp); 6644 mp = &eager->tcp_closemp; 6645 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6646 tcp_eager_kill, eager->tcp_connp, 6647 SQTAG_TCP_EAGER_CLEANUP); 6648 eager = eager->tcp_eager_next_q; 6649 } 6650 } 6651 /* Then cleanup q0 */ 6652 TCP_STAT(tcp_eager_blowoff_q0); 6653 eager = listener->tcp_eager_next_q0; 6654 while (eager != listener) { 6655 CONN_INC_REF(eager->tcp_connp); 6656 mp = &eager->tcp_closemp; 6657 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6658 tcp_eager_kill, eager->tcp_connp, 6659 SQTAG_TCP_EAGER_CLEANUP_Q0); 6660 eager = eager->tcp_eager_next_q0; 6661 } 6662 } 6663 6664 /* 6665 * If we are an eager connection hanging off a listener that hasn't 6666 * formally accepted the connection yet, get off his list and blow off 6667 * any data that we have accumulated. 6668 */ 6669 static void 6670 tcp_eager_unlink(tcp_t *tcp) 6671 { 6672 tcp_t *listener = tcp->tcp_listener; 6673 6674 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6675 ASSERT(listener != NULL); 6676 if (tcp->tcp_eager_next_q0 != NULL) { 6677 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6678 6679 /* Remove the eager tcp from q0 */ 6680 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6681 tcp->tcp_eager_prev_q0; 6682 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6683 tcp->tcp_eager_next_q0; 6684 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6685 listener->tcp_conn_req_cnt_q0--; 6686 6687 tcp->tcp_eager_next_q0 = NULL; 6688 tcp->tcp_eager_prev_q0 = NULL; 6689 6690 if (tcp->tcp_syn_rcvd_timeout != 0) { 6691 /* we have timed out before */ 6692 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6693 listener->tcp_syn_rcvd_timeout--; 6694 } 6695 } else { 6696 tcp_t **tcpp = &listener->tcp_eager_next_q; 6697 tcp_t *prev = NULL; 6698 6699 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6700 if (tcpp[0] == tcp) { 6701 if (listener->tcp_eager_last_q == tcp) { 6702 /* 6703 * If we are unlinking the last 6704 * element on the list, adjust 6705 * tail pointer. Set tail pointer 6706 * to nil when list is empty. 6707 */ 6708 ASSERT(tcp->tcp_eager_next_q == NULL); 6709 if (listener->tcp_eager_last_q == 6710 listener->tcp_eager_next_q) { 6711 listener->tcp_eager_last_q = 6712 NULL; 6713 } else { 6714 /* 6715 * We won't get here if there 6716 * is only one eager in the 6717 * list. 6718 */ 6719 ASSERT(prev != NULL); 6720 listener->tcp_eager_last_q = 6721 prev; 6722 } 6723 } 6724 tcpp[0] = tcp->tcp_eager_next_q; 6725 tcp->tcp_eager_next_q = NULL; 6726 tcp->tcp_eager_last_q = NULL; 6727 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6728 listener->tcp_conn_req_cnt_q--; 6729 break; 6730 } 6731 prev = tcpp[0]; 6732 } 6733 } 6734 tcp->tcp_listener = NULL; 6735 } 6736 6737 /* Shorthand to generate and send TPI error acks to our client */ 6738 static void 6739 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6740 { 6741 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6742 putnext(tcp->tcp_rq, mp); 6743 } 6744 6745 /* Shorthand to generate and send TPI error acks to our client */ 6746 static void 6747 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6748 int t_error, int sys_error) 6749 { 6750 struct T_error_ack *teackp; 6751 6752 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6753 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6754 teackp = (struct T_error_ack *)mp->b_rptr; 6755 teackp->ERROR_prim = primitive; 6756 teackp->TLI_error = t_error; 6757 teackp->UNIX_error = sys_error; 6758 putnext(tcp->tcp_rq, mp); 6759 } 6760 } 6761 6762 /* 6763 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6764 * but instead the code relies on: 6765 * - the fact that the address of the array and its size never changes 6766 * - the atomic assignment of the elements of the array 6767 */ 6768 /* ARGSUSED */ 6769 static int 6770 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6771 { 6772 int i; 6773 6774 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6775 if (tcp_g_epriv_ports[i] != 0) 6776 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 6777 } 6778 return (0); 6779 } 6780 6781 /* 6782 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6783 * threads from changing it at the same time. 6784 */ 6785 /* ARGSUSED */ 6786 static int 6787 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6788 cred_t *cr) 6789 { 6790 long new_value; 6791 int i; 6792 6793 /* 6794 * Fail the request if the new value does not lie within the 6795 * port number limits. 6796 */ 6797 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6798 new_value <= 0 || new_value >= 65536) { 6799 return (EINVAL); 6800 } 6801 6802 mutex_enter(&tcp_epriv_port_lock); 6803 /* Check if the value is already in the list */ 6804 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6805 if (new_value == tcp_g_epriv_ports[i]) { 6806 mutex_exit(&tcp_epriv_port_lock); 6807 return (EEXIST); 6808 } 6809 } 6810 /* Find an empty slot */ 6811 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6812 if (tcp_g_epriv_ports[i] == 0) 6813 break; 6814 } 6815 if (i == tcp_g_num_epriv_ports) { 6816 mutex_exit(&tcp_epriv_port_lock); 6817 return (EOVERFLOW); 6818 } 6819 /* Set the new value */ 6820 tcp_g_epriv_ports[i] = (uint16_t)new_value; 6821 mutex_exit(&tcp_epriv_port_lock); 6822 return (0); 6823 } 6824 6825 /* 6826 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6827 * threads from changing it at the same time. 6828 */ 6829 /* ARGSUSED */ 6830 static int 6831 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6832 cred_t *cr) 6833 { 6834 long new_value; 6835 int i; 6836 6837 /* 6838 * Fail the request if the new value does not lie within the 6839 * port number limits. 6840 */ 6841 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 6842 new_value >= 65536) { 6843 return (EINVAL); 6844 } 6845 6846 mutex_enter(&tcp_epriv_port_lock); 6847 /* Check that the value is already in the list */ 6848 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6849 if (tcp_g_epriv_ports[i] == new_value) 6850 break; 6851 } 6852 if (i == tcp_g_num_epriv_ports) { 6853 mutex_exit(&tcp_epriv_port_lock); 6854 return (ESRCH); 6855 } 6856 /* Clear the value */ 6857 tcp_g_epriv_ports[i] = 0; 6858 mutex_exit(&tcp_epriv_port_lock); 6859 return (0); 6860 } 6861 6862 /* Return the TPI/TLI equivalent of our current tcp_state */ 6863 static int 6864 tcp_tpistate(tcp_t *tcp) 6865 { 6866 switch (tcp->tcp_state) { 6867 case TCPS_IDLE: 6868 return (TS_UNBND); 6869 case TCPS_LISTEN: 6870 /* 6871 * Return whether there are outstanding T_CONN_IND waiting 6872 * for the matching T_CONN_RES. Therefore don't count q0. 6873 */ 6874 if (tcp->tcp_conn_req_cnt_q > 0) 6875 return (TS_WRES_CIND); 6876 else 6877 return (TS_IDLE); 6878 case TCPS_BOUND: 6879 return (TS_IDLE); 6880 case TCPS_SYN_SENT: 6881 return (TS_WCON_CREQ); 6882 case TCPS_SYN_RCVD: 6883 /* 6884 * Note: assumption: this has to the active open SYN_RCVD. 6885 * The passive instance is detached in SYN_RCVD stage of 6886 * incoming connection processing so we cannot get request 6887 * for T_info_ack on it. 6888 */ 6889 return (TS_WACK_CRES); 6890 case TCPS_ESTABLISHED: 6891 return (TS_DATA_XFER); 6892 case TCPS_CLOSE_WAIT: 6893 return (TS_WREQ_ORDREL); 6894 case TCPS_FIN_WAIT_1: 6895 return (TS_WIND_ORDREL); 6896 case TCPS_FIN_WAIT_2: 6897 return (TS_WIND_ORDREL); 6898 6899 case TCPS_CLOSING: 6900 case TCPS_LAST_ACK: 6901 case TCPS_TIME_WAIT: 6902 case TCPS_CLOSED: 6903 /* 6904 * Following TS_WACK_DREQ7 is a rendition of "not 6905 * yet TS_IDLE" TPI state. There is no best match to any 6906 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6907 * choose a value chosen that will map to TLI/XTI level 6908 * state of TSTATECHNG (state is process of changing) which 6909 * captures what this dummy state represents. 6910 */ 6911 return (TS_WACK_DREQ7); 6912 default: 6913 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6914 tcp->tcp_state, tcp_display(tcp, NULL, 6915 DISP_PORT_ONLY)); 6916 return (TS_UNBND); 6917 } 6918 } 6919 6920 static void 6921 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6922 { 6923 if (tcp->tcp_family == AF_INET6) 6924 *tia = tcp_g_t_info_ack_v6; 6925 else 6926 *tia = tcp_g_t_info_ack; 6927 tia->CURRENT_state = tcp_tpistate(tcp); 6928 tia->OPT_size = tcp_max_optsize; 6929 if (tcp->tcp_mss == 0) { 6930 /* Not yet set - tcp_open does not set mss */ 6931 if (tcp->tcp_ipversion == IPV4_VERSION) 6932 tia->TIDU_size = tcp_mss_def_ipv4; 6933 else 6934 tia->TIDU_size = tcp_mss_def_ipv6; 6935 } else { 6936 tia->TIDU_size = tcp->tcp_mss; 6937 } 6938 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6939 } 6940 6941 /* 6942 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6943 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6944 * tcp_g_t_info_ack. The current state of the stream is copied from 6945 * tcp_state. 6946 */ 6947 static void 6948 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6949 { 6950 t_uscalar_t cap_bits1; 6951 struct T_capability_ack *tcap; 6952 6953 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6954 freemsg(mp); 6955 return; 6956 } 6957 6958 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6959 6960 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6961 mp->b_datap->db_type, T_CAPABILITY_ACK); 6962 if (mp == NULL) 6963 return; 6964 6965 tcap = (struct T_capability_ack *)mp->b_rptr; 6966 tcap->CAP_bits1 = 0; 6967 6968 if (cap_bits1 & TC1_INFO) { 6969 tcp_copy_info(&tcap->INFO_ack, tcp); 6970 tcap->CAP_bits1 |= TC1_INFO; 6971 } 6972 6973 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6974 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6975 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6976 } 6977 6978 putnext(tcp->tcp_rq, mp); 6979 } 6980 6981 /* 6982 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6983 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6984 * The current state of the stream is copied from tcp_state. 6985 */ 6986 static void 6987 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6988 { 6989 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6990 T_INFO_ACK); 6991 if (!mp) { 6992 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6993 return; 6994 } 6995 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6996 putnext(tcp->tcp_rq, mp); 6997 } 6998 6999 /* Respond to the TPI addr request */ 7000 static void 7001 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7002 { 7003 sin_t *sin; 7004 mblk_t *ackmp; 7005 struct T_addr_ack *taa; 7006 7007 /* Make it large enough for worst case */ 7008 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7009 2 * sizeof (sin6_t), 1); 7010 if (ackmp == NULL) { 7011 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7012 return; 7013 } 7014 7015 if (tcp->tcp_ipversion == IPV6_VERSION) { 7016 tcp_addr_req_ipv6(tcp, ackmp); 7017 return; 7018 } 7019 taa = (struct T_addr_ack *)ackmp->b_rptr; 7020 7021 bzero(taa, sizeof (struct T_addr_ack)); 7022 ackmp->b_wptr = (uchar_t *)&taa[1]; 7023 7024 taa->PRIM_type = T_ADDR_ACK; 7025 ackmp->b_datap->db_type = M_PCPROTO; 7026 7027 /* 7028 * Note: Following code assumes 32 bit alignment of basic 7029 * data structures like sin_t and struct T_addr_ack. 7030 */ 7031 if (tcp->tcp_state >= TCPS_BOUND) { 7032 /* 7033 * Fill in local address 7034 */ 7035 taa->LOCADDR_length = sizeof (sin_t); 7036 taa->LOCADDR_offset = sizeof (*taa); 7037 7038 sin = (sin_t *)&taa[1]; 7039 7040 /* Fill zeroes and then intialize non-zero fields */ 7041 *sin = sin_null; 7042 7043 sin->sin_family = AF_INET; 7044 7045 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7046 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7047 7048 ackmp->b_wptr = (uchar_t *)&sin[1]; 7049 7050 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7051 /* 7052 * Fill in Remote address 7053 */ 7054 taa->REMADDR_length = sizeof (sin_t); 7055 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7056 taa->LOCADDR_length); 7057 7058 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7059 *sin = sin_null; 7060 sin->sin_family = AF_INET; 7061 sin->sin_addr.s_addr = tcp->tcp_remote; 7062 sin->sin_port = tcp->tcp_fport; 7063 7064 ackmp->b_wptr = (uchar_t *)&sin[1]; 7065 } 7066 } 7067 putnext(tcp->tcp_rq, ackmp); 7068 } 7069 7070 /* Assumes that tcp_addr_req gets enough space and alignment */ 7071 static void 7072 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7073 { 7074 sin6_t *sin6; 7075 struct T_addr_ack *taa; 7076 7077 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7078 ASSERT(OK_32PTR(ackmp->b_rptr)); 7079 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7080 2 * sizeof (sin6_t)); 7081 7082 taa = (struct T_addr_ack *)ackmp->b_rptr; 7083 7084 bzero(taa, sizeof (struct T_addr_ack)); 7085 ackmp->b_wptr = (uchar_t *)&taa[1]; 7086 7087 taa->PRIM_type = T_ADDR_ACK; 7088 ackmp->b_datap->db_type = M_PCPROTO; 7089 7090 /* 7091 * Note: Following code assumes 32 bit alignment of basic 7092 * data structures like sin6_t and struct T_addr_ack. 7093 */ 7094 if (tcp->tcp_state >= TCPS_BOUND) { 7095 /* 7096 * Fill in local address 7097 */ 7098 taa->LOCADDR_length = sizeof (sin6_t); 7099 taa->LOCADDR_offset = sizeof (*taa); 7100 7101 sin6 = (sin6_t *)&taa[1]; 7102 *sin6 = sin6_null; 7103 7104 sin6->sin6_family = AF_INET6; 7105 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7106 sin6->sin6_port = tcp->tcp_lport; 7107 7108 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7109 7110 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7111 /* 7112 * Fill in Remote address 7113 */ 7114 taa->REMADDR_length = sizeof (sin6_t); 7115 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7116 taa->LOCADDR_length); 7117 7118 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7119 *sin6 = sin6_null; 7120 sin6->sin6_family = AF_INET6; 7121 sin6->sin6_flowinfo = 7122 tcp->tcp_ip6h->ip6_vcf & 7123 ~IPV6_VERS_AND_FLOW_MASK; 7124 sin6->sin6_addr = tcp->tcp_remote_v6; 7125 sin6->sin6_port = tcp->tcp_fport; 7126 7127 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7128 } 7129 } 7130 putnext(tcp->tcp_rq, ackmp); 7131 } 7132 7133 /* 7134 * Handle reinitialization of a tcp structure. 7135 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7136 */ 7137 static void 7138 tcp_reinit(tcp_t *tcp) 7139 { 7140 mblk_t *mp; 7141 int err; 7142 7143 TCP_STAT(tcp_reinit_calls); 7144 7145 /* tcp_reinit should never be called for detached tcp_t's */ 7146 ASSERT(tcp->tcp_listener == NULL); 7147 ASSERT((tcp->tcp_family == AF_INET && 7148 tcp->tcp_ipversion == IPV4_VERSION) || 7149 (tcp->tcp_family == AF_INET6 && 7150 (tcp->tcp_ipversion == IPV4_VERSION || 7151 tcp->tcp_ipversion == IPV6_VERSION))); 7152 7153 /* Cancel outstanding timers */ 7154 tcp_timers_stop(tcp); 7155 7156 /* 7157 * Reset everything in the state vector, after updating global 7158 * MIB data from instance counters. 7159 */ 7160 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 7161 tcp->tcp_ibsegs = 0; 7162 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 7163 tcp->tcp_obsegs = 0; 7164 7165 tcp_close_mpp(&tcp->tcp_xmit_head); 7166 if (tcp->tcp_snd_zcopy_aware) 7167 tcp_zcopy_notify(tcp); 7168 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7169 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7170 if (tcp->tcp_flow_stopped && 7171 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7172 tcp_clrqfull(tcp); 7173 } 7174 tcp_close_mpp(&tcp->tcp_reass_head); 7175 tcp->tcp_reass_tail = NULL; 7176 if (tcp->tcp_rcv_list != NULL) { 7177 /* Free b_next chain */ 7178 tcp_close_mpp(&tcp->tcp_rcv_list); 7179 tcp->tcp_rcv_last_head = NULL; 7180 tcp->tcp_rcv_last_tail = NULL; 7181 tcp->tcp_rcv_cnt = 0; 7182 } 7183 tcp->tcp_rcv_last_tail = NULL; 7184 7185 if ((mp = tcp->tcp_urp_mp) != NULL) { 7186 freemsg(mp); 7187 tcp->tcp_urp_mp = NULL; 7188 } 7189 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7190 freemsg(mp); 7191 tcp->tcp_urp_mark_mp = NULL; 7192 } 7193 if (tcp->tcp_fused_sigurg_mp != NULL) { 7194 freeb(tcp->tcp_fused_sigurg_mp); 7195 tcp->tcp_fused_sigurg_mp = NULL; 7196 } 7197 7198 /* 7199 * Following is a union with two members which are 7200 * identical types and size so the following cleanup 7201 * is enough. 7202 */ 7203 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7204 7205 CL_INET_DISCONNECT(tcp); 7206 7207 /* 7208 * The connection can't be on the tcp_time_wait_head list 7209 * since it is not detached. 7210 */ 7211 ASSERT(tcp->tcp_time_wait_next == NULL); 7212 ASSERT(tcp->tcp_time_wait_prev == NULL); 7213 ASSERT(tcp->tcp_time_wait_expire == 0); 7214 7215 if (tcp->tcp_kssl_pending) { 7216 tcp->tcp_kssl_pending = B_FALSE; 7217 7218 /* Don't reset if the initialized by bind. */ 7219 if (tcp->tcp_kssl_ent != NULL) { 7220 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7221 KSSL_NO_PROXY); 7222 } 7223 } 7224 if (tcp->tcp_kssl_ctx != NULL) { 7225 kssl_release_ctx(tcp->tcp_kssl_ctx); 7226 tcp->tcp_kssl_ctx = NULL; 7227 } 7228 7229 /* 7230 * Reset/preserve other values 7231 */ 7232 tcp_reinit_values(tcp); 7233 ipcl_hash_remove(tcp->tcp_connp); 7234 conn_delete_ire(tcp->tcp_connp, NULL); 7235 7236 if (tcp->tcp_conn_req_max != 0) { 7237 /* 7238 * This is the case when a TLI program uses the same 7239 * transport end point to accept a connection. This 7240 * makes the TCP both a listener and acceptor. When 7241 * this connection is closed, we need to set the state 7242 * back to TCPS_LISTEN. Make sure that the eager list 7243 * is reinitialized. 7244 * 7245 * Note that this stream is still bound to the four 7246 * tuples of the previous connection in IP. If a new 7247 * SYN with different foreign address comes in, IP will 7248 * not find it and will send it to the global queue. In 7249 * the global queue, TCP will do a tcp_lookup_listener() 7250 * to find this stream. This works because this stream 7251 * is only removed from connected hash. 7252 * 7253 */ 7254 tcp->tcp_state = TCPS_LISTEN; 7255 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7256 tcp->tcp_connp->conn_recv = tcp_conn_request; 7257 if (tcp->tcp_family == AF_INET6) { 7258 ASSERT(tcp->tcp_connp->conn_af_isv6); 7259 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7260 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7261 } else { 7262 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7263 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7264 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7265 } 7266 } else { 7267 tcp->tcp_state = TCPS_BOUND; 7268 } 7269 7270 /* 7271 * Initialize to default values 7272 * Can't fail since enough header template space already allocated 7273 * at open(). 7274 */ 7275 err = tcp_init_values(tcp); 7276 ASSERT(err == 0); 7277 /* Restore state in tcp_tcph */ 7278 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7279 if (tcp->tcp_ipversion == IPV4_VERSION) 7280 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7281 else 7282 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7283 /* 7284 * Copy of the src addr. in tcp_t is needed in tcp_t 7285 * since the lookup funcs can only lookup on tcp_t 7286 */ 7287 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7288 7289 ASSERT(tcp->tcp_ptpbhn != NULL); 7290 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7291 tcp->tcp_rwnd = tcp_recv_hiwat; 7292 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7293 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7294 } 7295 7296 /* 7297 * Force values to zero that need be zero. 7298 * Do not touch values asociated with the BOUND or LISTEN state 7299 * since the connection will end up in that state after the reinit. 7300 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7301 * structure! 7302 */ 7303 static void 7304 tcp_reinit_values(tcp) 7305 tcp_t *tcp; 7306 { 7307 #ifndef lint 7308 #define DONTCARE(x) 7309 #define PRESERVE(x) 7310 #else 7311 #define DONTCARE(x) ((x) = (x)) 7312 #define PRESERVE(x) ((x) = (x)) 7313 #endif /* lint */ 7314 7315 PRESERVE(tcp->tcp_bind_hash); 7316 PRESERVE(tcp->tcp_ptpbhn); 7317 PRESERVE(tcp->tcp_acceptor_hash); 7318 PRESERVE(tcp->tcp_ptpahn); 7319 7320 /* Should be ASSERT NULL on these with new code! */ 7321 ASSERT(tcp->tcp_time_wait_next == NULL); 7322 ASSERT(tcp->tcp_time_wait_prev == NULL); 7323 ASSERT(tcp->tcp_time_wait_expire == 0); 7324 PRESERVE(tcp->tcp_state); 7325 PRESERVE(tcp->tcp_rq); 7326 PRESERVE(tcp->tcp_wq); 7327 7328 ASSERT(tcp->tcp_xmit_head == NULL); 7329 ASSERT(tcp->tcp_xmit_last == NULL); 7330 ASSERT(tcp->tcp_unsent == 0); 7331 ASSERT(tcp->tcp_xmit_tail == NULL); 7332 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7333 7334 tcp->tcp_snxt = 0; /* Displayed in mib */ 7335 tcp->tcp_suna = 0; /* Displayed in mib */ 7336 tcp->tcp_swnd = 0; 7337 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7338 7339 ASSERT(tcp->tcp_ibsegs == 0); 7340 ASSERT(tcp->tcp_obsegs == 0); 7341 7342 if (tcp->tcp_iphc != NULL) { 7343 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7344 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7345 } 7346 7347 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7348 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7349 DONTCARE(tcp->tcp_ipha); 7350 DONTCARE(tcp->tcp_ip6h); 7351 DONTCARE(tcp->tcp_ip_hdr_len); 7352 DONTCARE(tcp->tcp_tcph); 7353 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7354 tcp->tcp_valid_bits = 0; 7355 7356 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7357 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7358 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7359 tcp->tcp_last_rcv_lbolt = 0; 7360 7361 tcp->tcp_init_cwnd = 0; 7362 7363 tcp->tcp_urp_last_valid = 0; 7364 tcp->tcp_hard_binding = 0; 7365 tcp->tcp_hard_bound = 0; 7366 PRESERVE(tcp->tcp_cred); 7367 PRESERVE(tcp->tcp_cpid); 7368 PRESERVE(tcp->tcp_exclbind); 7369 7370 tcp->tcp_fin_acked = 0; 7371 tcp->tcp_fin_rcvd = 0; 7372 tcp->tcp_fin_sent = 0; 7373 tcp->tcp_ordrel_done = 0; 7374 7375 tcp->tcp_debug = 0; 7376 tcp->tcp_dontroute = 0; 7377 tcp->tcp_broadcast = 0; 7378 7379 tcp->tcp_useloopback = 0; 7380 tcp->tcp_reuseaddr = 0; 7381 tcp->tcp_oobinline = 0; 7382 tcp->tcp_dgram_errind = 0; 7383 7384 tcp->tcp_detached = 0; 7385 tcp->tcp_bind_pending = 0; 7386 tcp->tcp_unbind_pending = 0; 7387 tcp->tcp_deferred_clean_death = 0; 7388 7389 tcp->tcp_snd_ws_ok = B_FALSE; 7390 tcp->tcp_snd_ts_ok = B_FALSE; 7391 tcp->tcp_linger = 0; 7392 tcp->tcp_ka_enabled = 0; 7393 tcp->tcp_zero_win_probe = 0; 7394 7395 tcp->tcp_loopback = 0; 7396 tcp->tcp_localnet = 0; 7397 tcp->tcp_syn_defense = 0; 7398 tcp->tcp_set_timer = 0; 7399 7400 tcp->tcp_active_open = 0; 7401 ASSERT(tcp->tcp_timeout == B_FALSE); 7402 tcp->tcp_rexmit = B_FALSE; 7403 tcp->tcp_xmit_zc_clean = B_FALSE; 7404 7405 tcp->tcp_snd_sack_ok = B_FALSE; 7406 PRESERVE(tcp->tcp_recvdstaddr); 7407 tcp->tcp_hwcksum = B_FALSE; 7408 7409 tcp->tcp_ire_ill_check_done = B_FALSE; 7410 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7411 7412 tcp->tcp_mdt = B_FALSE; 7413 tcp->tcp_mdt_hdr_head = 0; 7414 tcp->tcp_mdt_hdr_tail = 0; 7415 7416 tcp->tcp_conn_def_q0 = 0; 7417 tcp->tcp_ip_forward_progress = B_FALSE; 7418 tcp->tcp_anon_priv_bind = 0; 7419 tcp->tcp_ecn_ok = B_FALSE; 7420 7421 tcp->tcp_cwr = B_FALSE; 7422 tcp->tcp_ecn_echo_on = B_FALSE; 7423 7424 if (tcp->tcp_sack_info != NULL) { 7425 if (tcp->tcp_notsack_list != NULL) { 7426 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7427 } 7428 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7429 tcp->tcp_sack_info = NULL; 7430 } 7431 7432 tcp->tcp_rcv_ws = 0; 7433 tcp->tcp_snd_ws = 0; 7434 tcp->tcp_ts_recent = 0; 7435 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7436 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7437 tcp->tcp_if_mtu = 0; 7438 7439 ASSERT(tcp->tcp_reass_head == NULL); 7440 ASSERT(tcp->tcp_reass_tail == NULL); 7441 7442 tcp->tcp_cwnd_cnt = 0; 7443 7444 ASSERT(tcp->tcp_rcv_list == NULL); 7445 ASSERT(tcp->tcp_rcv_last_head == NULL); 7446 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7447 ASSERT(tcp->tcp_rcv_cnt == 0); 7448 7449 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7450 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7451 tcp->tcp_csuna = 0; 7452 7453 tcp->tcp_rto = 0; /* Displayed in MIB */ 7454 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7455 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7456 tcp->tcp_rtt_update = 0; 7457 7458 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7459 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7460 7461 tcp->tcp_rack = 0; /* Displayed in mib */ 7462 tcp->tcp_rack_cnt = 0; 7463 tcp->tcp_rack_cur_max = 0; 7464 tcp->tcp_rack_abs_max = 0; 7465 7466 tcp->tcp_max_swnd = 0; 7467 7468 ASSERT(tcp->tcp_listener == NULL); 7469 7470 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7471 7472 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7473 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7474 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7475 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7476 7477 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7478 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7479 PRESERVE(tcp->tcp_conn_req_max); 7480 PRESERVE(tcp->tcp_conn_req_seqnum); 7481 7482 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7483 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7484 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7485 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7486 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7487 7488 tcp->tcp_lingertime = 0; 7489 7490 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7491 ASSERT(tcp->tcp_urp_mp == NULL); 7492 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7493 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7494 7495 ASSERT(tcp->tcp_eager_next_q == NULL); 7496 ASSERT(tcp->tcp_eager_last_q == NULL); 7497 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7498 tcp->tcp_eager_prev_q0 == NULL) || 7499 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7500 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7501 7502 tcp->tcp_client_errno = 0; 7503 7504 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7505 7506 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7507 7508 PRESERVE(tcp->tcp_bound_source_v6); 7509 tcp->tcp_last_sent_len = 0; 7510 tcp->tcp_dupack_cnt = 0; 7511 7512 tcp->tcp_fport = 0; /* Displayed in MIB */ 7513 PRESERVE(tcp->tcp_lport); 7514 7515 PRESERVE(tcp->tcp_acceptor_lockp); 7516 7517 ASSERT(tcp->tcp_ordrelid == 0); 7518 PRESERVE(tcp->tcp_acceptor_id); 7519 DONTCARE(tcp->tcp_ipsec_overhead); 7520 7521 /* 7522 * If tcp_tracing flag is ON (i.e. We have a trace buffer 7523 * in tcp structure and now tracing), Re-initialize all 7524 * members of tcp_traceinfo. 7525 */ 7526 if (tcp->tcp_tracebuf != NULL) { 7527 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 7528 } 7529 7530 PRESERVE(tcp->tcp_family); 7531 if (tcp->tcp_family == AF_INET6) { 7532 tcp->tcp_ipversion = IPV6_VERSION; 7533 tcp->tcp_mss = tcp_mss_def_ipv6; 7534 } else { 7535 tcp->tcp_ipversion = IPV4_VERSION; 7536 tcp->tcp_mss = tcp_mss_def_ipv4; 7537 } 7538 7539 tcp->tcp_bound_if = 0; 7540 tcp->tcp_ipv6_recvancillary = 0; 7541 tcp->tcp_recvifindex = 0; 7542 tcp->tcp_recvhops = 0; 7543 tcp->tcp_closed = 0; 7544 tcp->tcp_cleandeathtag = 0; 7545 if (tcp->tcp_hopopts != NULL) { 7546 mi_free(tcp->tcp_hopopts); 7547 tcp->tcp_hopopts = NULL; 7548 tcp->tcp_hopoptslen = 0; 7549 } 7550 ASSERT(tcp->tcp_hopoptslen == 0); 7551 if (tcp->tcp_dstopts != NULL) { 7552 mi_free(tcp->tcp_dstopts); 7553 tcp->tcp_dstopts = NULL; 7554 tcp->tcp_dstoptslen = 0; 7555 } 7556 ASSERT(tcp->tcp_dstoptslen == 0); 7557 if (tcp->tcp_rtdstopts != NULL) { 7558 mi_free(tcp->tcp_rtdstopts); 7559 tcp->tcp_rtdstopts = NULL; 7560 tcp->tcp_rtdstoptslen = 0; 7561 } 7562 ASSERT(tcp->tcp_rtdstoptslen == 0); 7563 if (tcp->tcp_rthdr != NULL) { 7564 mi_free(tcp->tcp_rthdr); 7565 tcp->tcp_rthdr = NULL; 7566 tcp->tcp_rthdrlen = 0; 7567 } 7568 ASSERT(tcp->tcp_rthdrlen == 0); 7569 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7570 7571 /* Reset fusion-related fields */ 7572 tcp->tcp_fused = B_FALSE; 7573 tcp->tcp_unfusable = B_FALSE; 7574 tcp->tcp_fused_sigurg = B_FALSE; 7575 tcp->tcp_direct_sockfs = B_FALSE; 7576 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7577 tcp->tcp_loopback_peer = NULL; 7578 tcp->tcp_fuse_rcv_hiwater = 0; 7579 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7580 tcp->tcp_fuse_rcv_unread_cnt = 0; 7581 7582 tcp->tcp_in_ack_unsent = 0; 7583 tcp->tcp_cork = B_FALSE; 7584 7585 PRESERVE(tcp->tcp_squeue_bytes); 7586 7587 ASSERT(tcp->tcp_kssl_ctx == NULL); 7588 ASSERT(!tcp->tcp_kssl_pending); 7589 PRESERVE(tcp->tcp_kssl_ent); 7590 7591 #undef DONTCARE 7592 #undef PRESERVE 7593 } 7594 7595 /* 7596 * Allocate necessary resources and initialize state vector. 7597 * Guaranteed not to fail so that when an error is returned, 7598 * the caller doesn't need to do any additional cleanup. 7599 */ 7600 int 7601 tcp_init(tcp_t *tcp, queue_t *q) 7602 { 7603 int err; 7604 7605 tcp->tcp_rq = q; 7606 tcp->tcp_wq = WR(q); 7607 tcp->tcp_state = TCPS_IDLE; 7608 if ((err = tcp_init_values(tcp)) != 0) 7609 tcp_timers_stop(tcp); 7610 return (err); 7611 } 7612 7613 static int 7614 tcp_init_values(tcp_t *tcp) 7615 { 7616 int err; 7617 7618 ASSERT((tcp->tcp_family == AF_INET && 7619 tcp->tcp_ipversion == IPV4_VERSION) || 7620 (tcp->tcp_family == AF_INET6 && 7621 (tcp->tcp_ipversion == IPV4_VERSION || 7622 tcp->tcp_ipversion == IPV6_VERSION))); 7623 7624 /* 7625 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7626 * will be close to tcp_rexmit_interval_initial. By doing this, we 7627 * allow the algorithm to adjust slowly to large fluctuations of RTT 7628 * during first few transmissions of a connection as seen in slow 7629 * links. 7630 */ 7631 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 7632 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 7633 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7634 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7635 tcp_conn_grace_period; 7636 if (tcp->tcp_rto < tcp_rexmit_interval_min) 7637 tcp->tcp_rto = tcp_rexmit_interval_min; 7638 tcp->tcp_timer_backoff = 0; 7639 tcp->tcp_ms_we_have_waited = 0; 7640 tcp->tcp_last_recv_time = lbolt; 7641 tcp->tcp_cwnd_max = tcp_cwnd_max_; 7642 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7643 7644 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 7645 7646 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 7647 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 7648 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 7649 /* 7650 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7651 * passive open. 7652 */ 7653 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 7654 7655 tcp->tcp_naglim = tcp_naglim_def; 7656 7657 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7658 7659 tcp->tcp_mdt_hdr_head = 0; 7660 tcp->tcp_mdt_hdr_tail = 0; 7661 7662 /* Reset fusion-related fields */ 7663 tcp->tcp_fused = B_FALSE; 7664 tcp->tcp_unfusable = B_FALSE; 7665 tcp->tcp_fused_sigurg = B_FALSE; 7666 tcp->tcp_direct_sockfs = B_FALSE; 7667 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7668 tcp->tcp_loopback_peer = NULL; 7669 tcp->tcp_fuse_rcv_hiwater = 0; 7670 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7671 tcp->tcp_fuse_rcv_unread_cnt = 0; 7672 7673 /* Initialize the header template */ 7674 if (tcp->tcp_ipversion == IPV4_VERSION) { 7675 err = tcp_header_init_ipv4(tcp); 7676 } else { 7677 err = tcp_header_init_ipv6(tcp); 7678 } 7679 if (err) 7680 return (err); 7681 7682 /* 7683 * Init the window scale to the max so tcp_rwnd_set() won't pare 7684 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7685 */ 7686 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7687 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 7688 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 7689 7690 tcp->tcp_cork = B_FALSE; 7691 /* 7692 * Init the tcp_debug option. This value determines whether TCP 7693 * calls strlog() to print out debug messages. Doing this 7694 * initialization here means that this value is not inherited thru 7695 * tcp_reinit(). 7696 */ 7697 tcp->tcp_debug = tcp_dbg; 7698 7699 tcp->tcp_ka_interval = tcp_keepalive_interval; 7700 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 7701 7702 return (0); 7703 } 7704 7705 /* 7706 * Initialize the IPv4 header. Loses any record of any IP options. 7707 */ 7708 static int 7709 tcp_header_init_ipv4(tcp_t *tcp) 7710 { 7711 tcph_t *tcph; 7712 uint32_t sum; 7713 7714 /* 7715 * This is a simple initialization. If there's 7716 * already a template, it should never be too small, 7717 * so reuse it. Otherwise, allocate space for the new one. 7718 */ 7719 if (tcp->tcp_iphc == NULL) { 7720 ASSERT(tcp->tcp_iphc_len == 0); 7721 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7722 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7723 if (tcp->tcp_iphc == NULL) { 7724 tcp->tcp_iphc_len = 0; 7725 return (ENOMEM); 7726 } 7727 } 7728 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7729 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 7730 tcp->tcp_ip6h = NULL; 7731 tcp->tcp_ipversion = IPV4_VERSION; 7732 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 7733 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 7734 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 7735 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 7736 tcp->tcp_ipha->ipha_version_and_hdr_length 7737 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 7738 tcp->tcp_ipha->ipha_ident = 0; 7739 7740 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 7741 tcp->tcp_tos = 0; 7742 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7743 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 7744 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 7745 7746 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 7747 tcp->tcp_tcph = tcph; 7748 tcph->th_offset_and_rsrvd[0] = (5 << 4); 7749 /* 7750 * IP wants our header length in the checksum field to 7751 * allow it to perform a single pseudo-header+checksum 7752 * calculation on behalf of TCP. 7753 * Include the adjustment for a source route once IP_OPTIONS is set. 7754 */ 7755 sum = sizeof (tcph_t) + tcp->tcp_sum; 7756 sum = (sum >> 16) + (sum & 0xFFFF); 7757 U16_TO_ABE16(sum, tcph->th_sum); 7758 return (0); 7759 } 7760 7761 /* 7762 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 7763 */ 7764 static int 7765 tcp_header_init_ipv6(tcp_t *tcp) 7766 { 7767 tcph_t *tcph; 7768 uint32_t sum; 7769 7770 /* 7771 * This is a simple initialization. If there's 7772 * already a template, it should never be too small, 7773 * so reuse it. Otherwise, allocate space for the new one. 7774 * Ensure that there is enough space to "downgrade" the tcp_t 7775 * to an IPv4 tcp_t. This requires having space for a full load 7776 * of IPv4 options, as well as a full load of TCP options 7777 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 7778 * than a v6 header and a TCP header with a full load of TCP options 7779 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 7780 * We want to avoid reallocation in the "downgraded" case when 7781 * processing outbound IPv4 options. 7782 */ 7783 if (tcp->tcp_iphc == NULL) { 7784 ASSERT(tcp->tcp_iphc_len == 0); 7785 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7786 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7787 if (tcp->tcp_iphc == NULL) { 7788 tcp->tcp_iphc_len = 0; 7789 return (ENOMEM); 7790 } 7791 } 7792 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7793 tcp->tcp_ipversion = IPV6_VERSION; 7794 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 7795 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 7796 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 7797 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 7798 tcp->tcp_ipha = NULL; 7799 7800 /* Initialize the header template */ 7801 7802 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7803 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 7804 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 7805 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 7806 7807 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 7808 tcp->tcp_tcph = tcph; 7809 tcph->th_offset_and_rsrvd[0] = (5 << 4); 7810 /* 7811 * IP wants our header length in the checksum field to 7812 * allow it to perform a single psuedo-header+checksum 7813 * calculation on behalf of TCP. 7814 * Include the adjustment for a source route when IPV6_RTHDR is set. 7815 */ 7816 sum = sizeof (tcph_t) + tcp->tcp_sum; 7817 sum = (sum >> 16) + (sum & 0xFFFF); 7818 U16_TO_ABE16(sum, tcph->th_sum); 7819 return (0); 7820 } 7821 7822 /* At minimum we need 4 bytes in the TCP header for the lookup */ 7823 #define ICMP_MIN_TCP_HDR 4 7824 7825 /* 7826 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 7827 * passed up by IP. The message is always received on the correct tcp_t. 7828 * Assumes that IP has pulled up everything up to and including the ICMP header. 7829 */ 7830 void 7831 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 7832 { 7833 icmph_t *icmph; 7834 ipha_t *ipha; 7835 int iph_hdr_length; 7836 tcph_t *tcph; 7837 boolean_t ipsec_mctl = B_FALSE; 7838 boolean_t secure; 7839 mblk_t *first_mp = mp; 7840 uint32_t new_mss; 7841 uint32_t ratio; 7842 size_t mp_size = MBLKL(mp); 7843 uint32_t seg_ack; 7844 uint32_t seg_seq; 7845 7846 /* Assume IP provides aligned packets - otherwise toss */ 7847 if (!OK_32PTR(mp->b_rptr)) { 7848 freemsg(mp); 7849 return; 7850 } 7851 7852 /* 7853 * Since ICMP errors are normal data marked with M_CTL when sent 7854 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 7855 * packets starting with an ipsec_info_t, see ipsec_info.h. 7856 */ 7857 if ((mp_size == sizeof (ipsec_info_t)) && 7858 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 7859 ASSERT(mp->b_cont != NULL); 7860 mp = mp->b_cont; 7861 /* IP should have done this */ 7862 ASSERT(OK_32PTR(mp->b_rptr)); 7863 mp_size = MBLKL(mp); 7864 ipsec_mctl = B_TRUE; 7865 } 7866 7867 /* 7868 * Verify that we have a complete outer IP header. If not, drop it. 7869 */ 7870 if (mp_size < sizeof (ipha_t)) { 7871 noticmpv4: 7872 freemsg(first_mp); 7873 return; 7874 } 7875 7876 ipha = (ipha_t *)mp->b_rptr; 7877 /* 7878 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 7879 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 7880 */ 7881 switch (IPH_HDR_VERSION(ipha)) { 7882 case IPV6_VERSION: 7883 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 7884 return; 7885 case IPV4_VERSION: 7886 break; 7887 default: 7888 goto noticmpv4; 7889 } 7890 7891 /* Skip past the outer IP and ICMP headers */ 7892 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7893 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 7894 /* 7895 * If we don't have the correct outer IP header length or if the ULP 7896 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 7897 * send it upstream. 7898 */ 7899 if (iph_hdr_length < sizeof (ipha_t) || 7900 ipha->ipha_protocol != IPPROTO_ICMP || 7901 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 7902 goto noticmpv4; 7903 } 7904 ipha = (ipha_t *)&icmph[1]; 7905 7906 /* Skip past the inner IP and find the ULP header */ 7907 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7908 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 7909 /* 7910 * If we don't have the correct inner IP header length or if the ULP 7911 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 7912 * bytes of TCP header, drop it. 7913 */ 7914 if (iph_hdr_length < sizeof (ipha_t) || 7915 ipha->ipha_protocol != IPPROTO_TCP || 7916 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 7917 goto noticmpv4; 7918 } 7919 7920 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 7921 if (ipsec_mctl) { 7922 secure = ipsec_in_is_secure(first_mp); 7923 } else { 7924 secure = B_FALSE; 7925 } 7926 if (secure) { 7927 /* 7928 * If we are willing to accept this in clear 7929 * we don't have to verify policy. 7930 */ 7931 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 7932 if (!tcp_check_policy(tcp, first_mp, 7933 ipha, NULL, secure, ipsec_mctl)) { 7934 /* 7935 * tcp_check_policy called 7936 * ip_drop_packet() on failure. 7937 */ 7938 return; 7939 } 7940 } 7941 } 7942 } else if (ipsec_mctl) { 7943 /* 7944 * This is a hard_bound connection. IP has already 7945 * verified policy. We don't have to do it again. 7946 */ 7947 freeb(first_mp); 7948 first_mp = mp; 7949 ipsec_mctl = B_FALSE; 7950 } 7951 7952 seg_ack = ABE32_TO_U32(tcph->th_ack); 7953 seg_seq = ABE32_TO_U32(tcph->th_seq); 7954 /* 7955 * TCP SHOULD check that the TCP sequence number contained in 7956 * payload of the ICMP error message is within the range 7957 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 7958 */ 7959 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 7960 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 7961 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 7962 /* 7963 * If the ICMP message is bogus, should we kill the 7964 * connection, or should we just drop the bogus ICMP 7965 * message? It would probably make more sense to just 7966 * drop the message so that if this one managed to get 7967 * in, the real connection should not suffer. 7968 */ 7969 goto noticmpv4; 7970 } 7971 7972 switch (icmph->icmph_type) { 7973 case ICMP_DEST_UNREACHABLE: 7974 switch (icmph->icmph_code) { 7975 case ICMP_FRAGMENTATION_NEEDED: 7976 /* 7977 * Reduce the MSS based on the new MTU. This will 7978 * eliminate any fragmentation locally. 7979 * N.B. There may well be some funny side-effects on 7980 * the local send policy and the remote receive policy. 7981 * Pending further research, we provide 7982 * tcp_ignore_path_mtu just in case this proves 7983 * disastrous somewhere. 7984 * 7985 * After updating the MSS, retransmit part of the 7986 * dropped segment using the new mss by calling 7987 * tcp_wput_data(). Need to adjust all those 7988 * params to make sure tcp_wput_data() work properly. 7989 */ 7990 if (tcp_ignore_path_mtu) 7991 break; 7992 7993 /* 7994 * Decrease the MSS by time stamp options 7995 * IP options and IPSEC options. tcp_hdr_len 7996 * includes time stamp option and IP option 7997 * length. 7998 */ 7999 8000 new_mss = ntohs(icmph->icmph_du_mtu) - 8001 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8002 8003 /* 8004 * Only update the MSS if the new one is 8005 * smaller than the previous one. This is 8006 * to avoid problems when getting multiple 8007 * ICMP errors for the same MTU. 8008 */ 8009 if (new_mss >= tcp->tcp_mss) 8010 break; 8011 8012 /* 8013 * Stop doing PMTU if new_mss is less than 68 8014 * or less than tcp_mss_min. 8015 * The value 68 comes from rfc 1191. 8016 */ 8017 if (new_mss < MAX(68, tcp_mss_min)) 8018 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8019 0; 8020 8021 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8022 ASSERT(ratio >= 1); 8023 tcp_mss_set(tcp, new_mss); 8024 8025 /* 8026 * Make sure we have something to 8027 * send. 8028 */ 8029 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8030 (tcp->tcp_xmit_head != NULL)) { 8031 /* 8032 * Shrink tcp_cwnd in 8033 * proportion to the old MSS/new MSS. 8034 */ 8035 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8036 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8037 (tcp->tcp_unsent == 0)) { 8038 tcp->tcp_rexmit_max = tcp->tcp_fss; 8039 } else { 8040 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8041 } 8042 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8043 tcp->tcp_rexmit = B_TRUE; 8044 tcp->tcp_dupack_cnt = 0; 8045 tcp->tcp_snd_burst = TCP_CWND_SS; 8046 tcp_ss_rexmit(tcp); 8047 } 8048 break; 8049 case ICMP_PORT_UNREACHABLE: 8050 case ICMP_PROTOCOL_UNREACHABLE: 8051 switch (tcp->tcp_state) { 8052 case TCPS_SYN_SENT: 8053 case TCPS_SYN_RCVD: 8054 /* 8055 * ICMP can snipe away incipient 8056 * TCP connections as long as 8057 * seq number is same as initial 8058 * send seq number. 8059 */ 8060 if (seg_seq == tcp->tcp_iss) { 8061 (void) tcp_clean_death(tcp, 8062 ECONNREFUSED, 6); 8063 } 8064 break; 8065 } 8066 break; 8067 case ICMP_HOST_UNREACHABLE: 8068 case ICMP_NET_UNREACHABLE: 8069 /* Record the error in case we finally time out. */ 8070 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8071 tcp->tcp_client_errno = EHOSTUNREACH; 8072 else 8073 tcp->tcp_client_errno = ENETUNREACH; 8074 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8075 if (tcp->tcp_listener != NULL && 8076 tcp->tcp_listener->tcp_syn_defense) { 8077 /* 8078 * Ditch the half-open connection if we 8079 * suspect a SYN attack is under way. 8080 */ 8081 tcp_ip_ire_mark_advice(tcp); 8082 (void) tcp_clean_death(tcp, 8083 tcp->tcp_client_errno, 7); 8084 } 8085 } 8086 break; 8087 default: 8088 break; 8089 } 8090 break; 8091 case ICMP_SOURCE_QUENCH: { 8092 /* 8093 * use a global boolean to control 8094 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8095 * The default is false. 8096 */ 8097 if (tcp_icmp_source_quench) { 8098 /* 8099 * Reduce the sending rate as if we got a 8100 * retransmit timeout 8101 */ 8102 uint32_t npkt; 8103 8104 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8105 tcp->tcp_mss; 8106 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8107 tcp->tcp_cwnd = tcp->tcp_mss; 8108 tcp->tcp_cwnd_cnt = 0; 8109 } 8110 break; 8111 } 8112 } 8113 freemsg(first_mp); 8114 } 8115 8116 /* 8117 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8118 * error messages passed up by IP. 8119 * Assumes that IP has pulled up all the extension headers as well 8120 * as the ICMPv6 header. 8121 */ 8122 static void 8123 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8124 { 8125 icmp6_t *icmp6; 8126 ip6_t *ip6h; 8127 uint16_t iph_hdr_length; 8128 tcpha_t *tcpha; 8129 uint8_t *nexthdrp; 8130 uint32_t new_mss; 8131 uint32_t ratio; 8132 boolean_t secure; 8133 mblk_t *first_mp = mp; 8134 size_t mp_size; 8135 uint32_t seg_ack; 8136 uint32_t seg_seq; 8137 8138 /* 8139 * The caller has determined if this is an IPSEC_IN packet and 8140 * set ipsec_mctl appropriately (see tcp_icmp_error). 8141 */ 8142 if (ipsec_mctl) 8143 mp = mp->b_cont; 8144 8145 mp_size = MBLKL(mp); 8146 8147 /* 8148 * Verify that we have a complete IP header. If not, send it upstream. 8149 */ 8150 if (mp_size < sizeof (ip6_t)) { 8151 noticmpv6: 8152 freemsg(first_mp); 8153 return; 8154 } 8155 8156 /* 8157 * Verify this is an ICMPV6 packet, else send it upstream. 8158 */ 8159 ip6h = (ip6_t *)mp->b_rptr; 8160 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8161 iph_hdr_length = IPV6_HDR_LEN; 8162 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8163 &nexthdrp) || 8164 *nexthdrp != IPPROTO_ICMPV6) { 8165 goto noticmpv6; 8166 } 8167 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8168 ip6h = (ip6_t *)&icmp6[1]; 8169 /* 8170 * Verify if we have a complete ICMP and inner IP header. 8171 */ 8172 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8173 goto noticmpv6; 8174 8175 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8176 goto noticmpv6; 8177 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8178 /* 8179 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8180 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8181 * packet. 8182 */ 8183 if ((*nexthdrp != IPPROTO_TCP) || 8184 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8185 goto noticmpv6; 8186 } 8187 8188 /* 8189 * ICMP errors come on the right queue or come on 8190 * listener/global queue for detached connections and 8191 * get switched to the right queue. If it comes on the 8192 * right queue, policy check has already been done by IP 8193 * and thus free the first_mp without verifying the policy. 8194 * If it has come for a non-hard bound connection, we need 8195 * to verify policy as IP may not have done it. 8196 */ 8197 if (!tcp->tcp_hard_bound) { 8198 if (ipsec_mctl) { 8199 secure = ipsec_in_is_secure(first_mp); 8200 } else { 8201 secure = B_FALSE; 8202 } 8203 if (secure) { 8204 /* 8205 * If we are willing to accept this in clear 8206 * we don't have to verify policy. 8207 */ 8208 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8209 if (!tcp_check_policy(tcp, first_mp, 8210 NULL, ip6h, secure, ipsec_mctl)) { 8211 /* 8212 * tcp_check_policy called 8213 * ip_drop_packet() on failure. 8214 */ 8215 return; 8216 } 8217 } 8218 } 8219 } else if (ipsec_mctl) { 8220 /* 8221 * This is a hard_bound connection. IP has already 8222 * verified policy. We don't have to do it again. 8223 */ 8224 freeb(first_mp); 8225 first_mp = mp; 8226 ipsec_mctl = B_FALSE; 8227 } 8228 8229 seg_ack = ntohl(tcpha->tha_ack); 8230 seg_seq = ntohl(tcpha->tha_seq); 8231 /* 8232 * TCP SHOULD check that the TCP sequence number contained in 8233 * payload of the ICMP error message is within the range 8234 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8235 */ 8236 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8237 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8238 /* 8239 * If the ICMP message is bogus, should we kill the 8240 * connection, or should we just drop the bogus ICMP 8241 * message? It would probably make more sense to just 8242 * drop the message so that if this one managed to get 8243 * in, the real connection should not suffer. 8244 */ 8245 goto noticmpv6; 8246 } 8247 8248 switch (icmp6->icmp6_type) { 8249 case ICMP6_PACKET_TOO_BIG: 8250 /* 8251 * Reduce the MSS based on the new MTU. This will 8252 * eliminate any fragmentation locally. 8253 * N.B. There may well be some funny side-effects on 8254 * the local send policy and the remote receive policy. 8255 * Pending further research, we provide 8256 * tcp_ignore_path_mtu just in case this proves 8257 * disastrous somewhere. 8258 * 8259 * After updating the MSS, retransmit part of the 8260 * dropped segment using the new mss by calling 8261 * tcp_wput_data(). Need to adjust all those 8262 * params to make sure tcp_wput_data() work properly. 8263 */ 8264 if (tcp_ignore_path_mtu) 8265 break; 8266 8267 /* 8268 * Decrease the MSS by time stamp options 8269 * IP options and IPSEC options. tcp_hdr_len 8270 * includes time stamp option and IP option 8271 * length. 8272 */ 8273 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8274 tcp->tcp_ipsec_overhead; 8275 8276 /* 8277 * Only update the MSS if the new one is 8278 * smaller than the previous one. This is 8279 * to avoid problems when getting multiple 8280 * ICMP errors for the same MTU. 8281 */ 8282 if (new_mss >= tcp->tcp_mss) 8283 break; 8284 8285 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8286 ASSERT(ratio >= 1); 8287 tcp_mss_set(tcp, new_mss); 8288 8289 /* 8290 * Make sure we have something to 8291 * send. 8292 */ 8293 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8294 (tcp->tcp_xmit_head != NULL)) { 8295 /* 8296 * Shrink tcp_cwnd in 8297 * proportion to the old MSS/new MSS. 8298 */ 8299 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8300 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8301 (tcp->tcp_unsent == 0)) { 8302 tcp->tcp_rexmit_max = tcp->tcp_fss; 8303 } else { 8304 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8305 } 8306 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8307 tcp->tcp_rexmit = B_TRUE; 8308 tcp->tcp_dupack_cnt = 0; 8309 tcp->tcp_snd_burst = TCP_CWND_SS; 8310 tcp_ss_rexmit(tcp); 8311 } 8312 break; 8313 8314 case ICMP6_DST_UNREACH: 8315 switch (icmp6->icmp6_code) { 8316 case ICMP6_DST_UNREACH_NOPORT: 8317 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8318 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8319 (tcpha->tha_seq == tcp->tcp_iss)) { 8320 (void) tcp_clean_death(tcp, 8321 ECONNREFUSED, 8); 8322 } 8323 break; 8324 8325 case ICMP6_DST_UNREACH_ADMIN: 8326 case ICMP6_DST_UNREACH_NOROUTE: 8327 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8328 case ICMP6_DST_UNREACH_ADDR: 8329 /* Record the error in case we finally time out. */ 8330 tcp->tcp_client_errno = EHOSTUNREACH; 8331 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8332 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8333 (tcpha->tha_seq == tcp->tcp_iss)) { 8334 if (tcp->tcp_listener != NULL && 8335 tcp->tcp_listener->tcp_syn_defense) { 8336 /* 8337 * Ditch the half-open connection if we 8338 * suspect a SYN attack is under way. 8339 */ 8340 tcp_ip_ire_mark_advice(tcp); 8341 (void) tcp_clean_death(tcp, 8342 tcp->tcp_client_errno, 9); 8343 } 8344 } 8345 8346 8347 break; 8348 default: 8349 break; 8350 } 8351 break; 8352 8353 case ICMP6_PARAM_PROB: 8354 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8355 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8356 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8357 (uchar_t *)nexthdrp) { 8358 if (tcp->tcp_state == TCPS_SYN_SENT || 8359 tcp->tcp_state == TCPS_SYN_RCVD) { 8360 (void) tcp_clean_death(tcp, 8361 ECONNREFUSED, 10); 8362 } 8363 break; 8364 } 8365 break; 8366 8367 case ICMP6_TIME_EXCEEDED: 8368 default: 8369 break; 8370 } 8371 freemsg(first_mp); 8372 } 8373 8374 /* 8375 * IP recognizes seven kinds of bind requests: 8376 * 8377 * - A zero-length address binds only to the protocol number. 8378 * 8379 * - A 4-byte address is treated as a request to 8380 * validate that the address is a valid local IPv4 8381 * address, appropriate for an application to bind to. 8382 * IP does the verification, but does not make any note 8383 * of the address at this time. 8384 * 8385 * - A 16-byte address contains is treated as a request 8386 * to validate a local IPv6 address, as the 4-byte 8387 * address case above. 8388 * 8389 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8390 * use it for the inbound fanout of packets. 8391 * 8392 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8393 * use it for the inbound fanout of packets. 8394 * 8395 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8396 * information consisting of local and remote addresses 8397 * and ports. In this case, the addresses are both 8398 * validated as appropriate for this operation, and, if 8399 * so, the information is retained for use in the 8400 * inbound fanout. 8401 * 8402 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8403 * fanout information, like the 12-byte case above. 8404 * 8405 * IP will also fill in the IRE request mblk with information 8406 * regarding our peer. In all cases, we notify IP of our protocol 8407 * type by appending a single protocol byte to the bind request. 8408 */ 8409 static mblk_t * 8410 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8411 { 8412 char *cp; 8413 mblk_t *mp; 8414 struct T_bind_req *tbr; 8415 ipa_conn_t *ac; 8416 ipa6_conn_t *ac6; 8417 sin_t *sin; 8418 sin6_t *sin6; 8419 8420 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8421 ASSERT((tcp->tcp_family == AF_INET && 8422 tcp->tcp_ipversion == IPV4_VERSION) || 8423 (tcp->tcp_family == AF_INET6 && 8424 (tcp->tcp_ipversion == IPV4_VERSION || 8425 tcp->tcp_ipversion == IPV6_VERSION))); 8426 8427 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 8428 if (!mp) 8429 return (mp); 8430 mp->b_datap->db_type = M_PROTO; 8431 tbr = (struct T_bind_req *)mp->b_rptr; 8432 tbr->PRIM_type = bind_prim; 8433 tbr->ADDR_offset = sizeof (*tbr); 8434 tbr->CONIND_number = 0; 8435 tbr->ADDR_length = addr_length; 8436 cp = (char *)&tbr[1]; 8437 switch (addr_length) { 8438 case sizeof (ipa_conn_t): 8439 ASSERT(tcp->tcp_family == AF_INET); 8440 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8441 8442 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8443 if (mp->b_cont == NULL) { 8444 freemsg(mp); 8445 return (NULL); 8446 } 8447 mp->b_cont->b_wptr += sizeof (ire_t); 8448 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8449 8450 /* cp known to be 32 bit aligned */ 8451 ac = (ipa_conn_t *)cp; 8452 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 8453 ac->ac_faddr = tcp->tcp_remote; 8454 ac->ac_fport = tcp->tcp_fport; 8455 ac->ac_lport = tcp->tcp_lport; 8456 tcp->tcp_hard_binding = 1; 8457 break; 8458 8459 case sizeof (ipa6_conn_t): 8460 ASSERT(tcp->tcp_family == AF_INET6); 8461 8462 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8463 if (mp->b_cont == NULL) { 8464 freemsg(mp); 8465 return (NULL); 8466 } 8467 mp->b_cont->b_wptr += sizeof (ire_t); 8468 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8469 8470 /* cp known to be 32 bit aligned */ 8471 ac6 = (ipa6_conn_t *)cp; 8472 if (tcp->tcp_ipversion == IPV4_VERSION) { 8473 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 8474 &ac6->ac6_laddr); 8475 } else { 8476 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 8477 } 8478 ac6->ac6_faddr = tcp->tcp_remote_v6; 8479 ac6->ac6_fport = tcp->tcp_fport; 8480 ac6->ac6_lport = tcp->tcp_lport; 8481 tcp->tcp_hard_binding = 1; 8482 break; 8483 8484 case sizeof (sin_t): 8485 /* 8486 * NOTE: IPV6_ADDR_LEN also has same size. 8487 * Use family to discriminate. 8488 */ 8489 if (tcp->tcp_family == AF_INET) { 8490 sin = (sin_t *)cp; 8491 8492 *sin = sin_null; 8493 sin->sin_family = AF_INET; 8494 sin->sin_addr.s_addr = tcp->tcp_bound_source; 8495 sin->sin_port = tcp->tcp_lport; 8496 break; 8497 } else { 8498 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 8499 } 8500 break; 8501 8502 case sizeof (sin6_t): 8503 ASSERT(tcp->tcp_family == AF_INET6); 8504 sin6 = (sin6_t *)cp; 8505 8506 *sin6 = sin6_null; 8507 sin6->sin6_family = AF_INET6; 8508 sin6->sin6_addr = tcp->tcp_bound_source_v6; 8509 sin6->sin6_port = tcp->tcp_lport; 8510 break; 8511 8512 case IP_ADDR_LEN: 8513 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8514 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 8515 break; 8516 8517 } 8518 /* Add protocol number to end */ 8519 cp[addr_length] = (char)IPPROTO_TCP; 8520 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 8521 return (mp); 8522 } 8523 8524 /* 8525 * Notify IP that we are having trouble with this connection. IP should 8526 * blow the IRE away and start over. 8527 */ 8528 static void 8529 tcp_ip_notify(tcp_t *tcp) 8530 { 8531 struct iocblk *iocp; 8532 ipid_t *ipid; 8533 mblk_t *mp; 8534 8535 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8536 if (tcp->tcp_ipversion == IPV6_VERSION) 8537 return; 8538 8539 mp = mkiocb(IP_IOCTL); 8540 if (mp == NULL) 8541 return; 8542 8543 iocp = (struct iocblk *)mp->b_rptr; 8544 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8545 8546 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8547 if (!mp->b_cont) { 8548 freeb(mp); 8549 return; 8550 } 8551 8552 ipid = (ipid_t *)mp->b_cont->b_rptr; 8553 mp->b_cont->b_wptr += iocp->ioc_count; 8554 bzero(ipid, sizeof (*ipid)); 8555 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8556 ipid->ipid_ire_type = IRE_CACHE; 8557 ipid->ipid_addr_offset = sizeof (ipid_t); 8558 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8559 /* 8560 * Note: in the case of source routing we want to blow away the 8561 * route to the first source route hop. 8562 */ 8563 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8564 sizeof (tcp->tcp_ipha->ipha_dst)); 8565 8566 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8567 } 8568 8569 /* Unlink and return any mblk that looks like it contains an ire */ 8570 static mblk_t * 8571 tcp_ire_mp(mblk_t *mp) 8572 { 8573 mblk_t *prev_mp; 8574 8575 for (;;) { 8576 prev_mp = mp; 8577 mp = mp->b_cont; 8578 if (mp == NULL) 8579 break; 8580 switch (DB_TYPE(mp)) { 8581 case IRE_DB_TYPE: 8582 case IRE_DB_REQ_TYPE: 8583 if (prev_mp != NULL) 8584 prev_mp->b_cont = mp->b_cont; 8585 mp->b_cont = NULL; 8586 return (mp); 8587 default: 8588 break; 8589 } 8590 } 8591 return (mp); 8592 } 8593 8594 /* 8595 * Timer callback routine for keepalive probe. We do a fake resend of 8596 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8597 * check to see if we have heard anything from the other end for the last 8598 * RTO period. If we have, set the timer to expire for another 8599 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8600 * RTO << 1 and check again when it expires. Keep exponentially increasing 8601 * the timeout if we have not heard from the other side. If for more than 8602 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8603 * kill the connection unless the keepalive abort threshold is 0. In 8604 * that case, we will probe "forever." 8605 */ 8606 static void 8607 tcp_keepalive_killer(void *arg) 8608 { 8609 mblk_t *mp; 8610 conn_t *connp = (conn_t *)arg; 8611 tcp_t *tcp = connp->conn_tcp; 8612 int32_t firetime; 8613 int32_t idletime; 8614 int32_t ka_intrvl; 8615 8616 tcp->tcp_ka_tid = 0; 8617 8618 if (tcp->tcp_fused) 8619 return; 8620 8621 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 8622 ka_intrvl = tcp->tcp_ka_interval; 8623 8624 /* 8625 * Keepalive probe should only be sent if the application has not 8626 * done a close on the connection. 8627 */ 8628 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8629 return; 8630 } 8631 /* Timer fired too early, restart it. */ 8632 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8633 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8634 MSEC_TO_TICK(ka_intrvl)); 8635 return; 8636 } 8637 8638 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8639 /* 8640 * If we have not heard from the other side for a long 8641 * time, kill the connection unless the keepalive abort 8642 * threshold is 0. In that case, we will probe "forever." 8643 */ 8644 if (tcp->tcp_ka_abort_thres != 0 && 8645 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8646 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 8647 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8648 tcp->tcp_client_errno : ETIMEDOUT, 11); 8649 return; 8650 } 8651 8652 if (tcp->tcp_snxt == tcp->tcp_suna && 8653 idletime >= ka_intrvl) { 8654 /* Fake resend of last ACKed byte. */ 8655 mblk_t *mp1 = allocb(1, BPRI_LO); 8656 8657 if (mp1 != NULL) { 8658 *mp1->b_wptr++ = '\0'; 8659 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8660 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8661 freeb(mp1); 8662 /* 8663 * if allocation failed, fall through to start the 8664 * timer back. 8665 */ 8666 if (mp != NULL) { 8667 TCP_RECORD_TRACE(tcp, mp, 8668 TCP_TRACE_SEND_PKT); 8669 tcp_send_data(tcp, tcp->tcp_wq, mp); 8670 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 8671 if (tcp->tcp_ka_last_intrvl != 0) { 8672 /* 8673 * We should probe again at least 8674 * in ka_intrvl, but not more than 8675 * tcp_rexmit_interval_max. 8676 */ 8677 firetime = MIN(ka_intrvl - 1, 8678 tcp->tcp_ka_last_intrvl << 1); 8679 if (firetime > tcp_rexmit_interval_max) 8680 firetime = 8681 tcp_rexmit_interval_max; 8682 } else { 8683 firetime = tcp->tcp_rto; 8684 } 8685 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8686 tcp_keepalive_killer, 8687 MSEC_TO_TICK(firetime)); 8688 tcp->tcp_ka_last_intrvl = firetime; 8689 return; 8690 } 8691 } 8692 } else { 8693 tcp->tcp_ka_last_intrvl = 0; 8694 } 8695 8696 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8697 if ((firetime = ka_intrvl - idletime) < 0) { 8698 firetime = ka_intrvl; 8699 } 8700 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8701 MSEC_TO_TICK(firetime)); 8702 } 8703 8704 int 8705 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8706 { 8707 queue_t *q = tcp->tcp_rq; 8708 int32_t mss = tcp->tcp_mss; 8709 int maxpsz; 8710 8711 if (TCP_IS_DETACHED(tcp)) 8712 return (mss); 8713 8714 if (tcp->tcp_fused) { 8715 maxpsz = tcp_fuse_maxpsz_set(tcp); 8716 mss = INFPSZ; 8717 } else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { 8718 /* 8719 * Set the sd_qn_maxpsz according to the socket send buffer 8720 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8721 * instruct the stream head to copyin user data into contiguous 8722 * kernel-allocated buffers without breaking it up into smaller 8723 * chunks. We round up the buffer size to the nearest SMSS. 8724 */ 8725 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8726 if (tcp->tcp_kssl_ctx == NULL) 8727 mss = INFPSZ; 8728 else 8729 mss = SSL3_MAX_RECORD_LEN; 8730 } else { 8731 /* 8732 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8733 * (and a multiple of the mss). This instructs the stream 8734 * head to break down larger than SMSS writes into SMSS- 8735 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8736 */ 8737 maxpsz = tcp->tcp_maxpsz * mss; 8738 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8739 maxpsz = tcp->tcp_xmit_hiwater/2; 8740 /* Round up to nearest mss */ 8741 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8742 } 8743 } 8744 (void) setmaxps(q, maxpsz); 8745 tcp->tcp_wq->q_maxpsz = maxpsz; 8746 8747 if (set_maxblk) 8748 (void) mi_set_sth_maxblk(q, mss); 8749 8750 return (mss); 8751 } 8752 8753 /* 8754 * Extract option values from a tcp header. We put any found values into the 8755 * tcpopt struct and return a bitmask saying which options were found. 8756 */ 8757 static int 8758 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8759 { 8760 uchar_t *endp; 8761 int len; 8762 uint32_t mss; 8763 uchar_t *up = (uchar_t *)tcph; 8764 int found = 0; 8765 int32_t sack_len; 8766 tcp_seq sack_begin, sack_end; 8767 tcp_t *tcp; 8768 8769 endp = up + TCP_HDR_LENGTH(tcph); 8770 up += TCP_MIN_HEADER_LENGTH; 8771 while (up < endp) { 8772 len = endp - up; 8773 switch (*up) { 8774 case TCPOPT_EOL: 8775 break; 8776 8777 case TCPOPT_NOP: 8778 up++; 8779 continue; 8780 8781 case TCPOPT_MAXSEG: 8782 if (len < TCPOPT_MAXSEG_LEN || 8783 up[1] != TCPOPT_MAXSEG_LEN) 8784 break; 8785 8786 mss = BE16_TO_U16(up+2); 8787 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8788 tcpopt->tcp_opt_mss = mss; 8789 found |= TCP_OPT_MSS_PRESENT; 8790 8791 up += TCPOPT_MAXSEG_LEN; 8792 continue; 8793 8794 case TCPOPT_WSCALE: 8795 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 8796 break; 8797 8798 if (up[2] > TCP_MAX_WINSHIFT) 8799 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 8800 else 8801 tcpopt->tcp_opt_wscale = up[2]; 8802 found |= TCP_OPT_WSCALE_PRESENT; 8803 8804 up += TCPOPT_WS_LEN; 8805 continue; 8806 8807 case TCPOPT_SACK_PERMITTED: 8808 if (len < TCPOPT_SACK_OK_LEN || 8809 up[1] != TCPOPT_SACK_OK_LEN) 8810 break; 8811 found |= TCP_OPT_SACK_OK_PRESENT; 8812 up += TCPOPT_SACK_OK_LEN; 8813 continue; 8814 8815 case TCPOPT_SACK: 8816 if (len <= 2 || up[1] <= 2 || len < up[1]) 8817 break; 8818 8819 /* If TCP is not interested in SACK blks... */ 8820 if ((tcp = tcpopt->tcp) == NULL) { 8821 up += up[1]; 8822 continue; 8823 } 8824 sack_len = up[1] - TCPOPT_HEADER_LEN; 8825 up += TCPOPT_HEADER_LEN; 8826 8827 /* 8828 * If the list is empty, allocate one and assume 8829 * nothing is sack'ed. 8830 */ 8831 ASSERT(tcp->tcp_sack_info != NULL); 8832 if (tcp->tcp_notsack_list == NULL) { 8833 tcp_notsack_update(&(tcp->tcp_notsack_list), 8834 tcp->tcp_suna, tcp->tcp_snxt, 8835 &(tcp->tcp_num_notsack_blk), 8836 &(tcp->tcp_cnt_notsack_list)); 8837 8838 /* 8839 * Make sure tcp_notsack_list is not NULL. 8840 * This happens when kmem_alloc(KM_NOSLEEP) 8841 * returns NULL. 8842 */ 8843 if (tcp->tcp_notsack_list == NULL) { 8844 up += sack_len; 8845 continue; 8846 } 8847 tcp->tcp_fack = tcp->tcp_suna; 8848 } 8849 8850 while (sack_len > 0) { 8851 if (up + 8 > endp) { 8852 up = endp; 8853 break; 8854 } 8855 sack_begin = BE32_TO_U32(up); 8856 up += 4; 8857 sack_end = BE32_TO_U32(up); 8858 up += 4; 8859 sack_len -= 8; 8860 /* 8861 * Bounds checking. Make sure the SACK 8862 * info is within tcp_suna and tcp_snxt. 8863 * If this SACK blk is out of bound, ignore 8864 * it but continue to parse the following 8865 * blks. 8866 */ 8867 if (SEQ_LEQ(sack_end, sack_begin) || 8868 SEQ_LT(sack_begin, tcp->tcp_suna) || 8869 SEQ_GT(sack_end, tcp->tcp_snxt)) { 8870 continue; 8871 } 8872 tcp_notsack_insert(&(tcp->tcp_notsack_list), 8873 sack_begin, sack_end, 8874 &(tcp->tcp_num_notsack_blk), 8875 &(tcp->tcp_cnt_notsack_list)); 8876 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 8877 tcp->tcp_fack = sack_end; 8878 } 8879 } 8880 found |= TCP_OPT_SACK_PRESENT; 8881 continue; 8882 8883 case TCPOPT_TSTAMP: 8884 if (len < TCPOPT_TSTAMP_LEN || 8885 up[1] != TCPOPT_TSTAMP_LEN) 8886 break; 8887 8888 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 8889 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 8890 8891 found |= TCP_OPT_TSTAMP_PRESENT; 8892 8893 up += TCPOPT_TSTAMP_LEN; 8894 continue; 8895 8896 default: 8897 if (len <= 1 || len < (int)up[1] || up[1] == 0) 8898 break; 8899 up += up[1]; 8900 continue; 8901 } 8902 break; 8903 } 8904 return (found); 8905 } 8906 8907 /* 8908 * Set the mss associated with a particular tcp based on its current value, 8909 * and a new one passed in. Observe minimums and maximums, and reset 8910 * other state variables that we want to view as multiples of mss. 8911 * 8912 * This function is called in various places mainly because 8913 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 8914 * other side's SYN/SYN-ACK packet arrives. 8915 * 2) PMTUd may get us a new MSS. 8916 * 3) If the other side stops sending us timestamp option, we need to 8917 * increase the MSS size to use the extra bytes available. 8918 */ 8919 static void 8920 tcp_mss_set(tcp_t *tcp, uint32_t mss) 8921 { 8922 uint32_t mss_max; 8923 8924 if (tcp->tcp_ipversion == IPV4_VERSION) 8925 mss_max = tcp_mss_max_ipv4; 8926 else 8927 mss_max = tcp_mss_max_ipv6; 8928 8929 if (mss < tcp_mss_min) 8930 mss = tcp_mss_min; 8931 if (mss > mss_max) 8932 mss = mss_max; 8933 /* 8934 * Unless naglim has been set by our client to 8935 * a non-mss value, force naglim to track mss. 8936 * This can help to aggregate small writes. 8937 */ 8938 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 8939 tcp->tcp_naglim = mss; 8940 /* 8941 * TCP should be able to buffer at least 4 MSS data for obvious 8942 * performance reason. 8943 */ 8944 if ((mss << 2) > tcp->tcp_xmit_hiwater) 8945 tcp->tcp_xmit_hiwater = mss << 2; 8946 8947 /* 8948 * Check if we need to apply the tcp_init_cwnd here. If 8949 * it is set and the MSS gets bigger (should not happen 8950 * normally), we need to adjust the resulting tcp_cwnd properly. 8951 * The new tcp_cwnd should not get bigger. 8952 */ 8953 if (tcp->tcp_init_cwnd == 0) { 8954 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 8955 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 8956 } else { 8957 if (tcp->tcp_mss < mss) { 8958 tcp->tcp_cwnd = MAX(1, 8959 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 8960 } else { 8961 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 8962 } 8963 } 8964 tcp->tcp_mss = mss; 8965 tcp->tcp_cwnd_cnt = 0; 8966 (void) tcp_maxpsz_set(tcp, B_TRUE); 8967 } 8968 8969 static int 8970 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8971 { 8972 tcp_t *tcp = NULL; 8973 conn_t *connp; 8974 int err; 8975 dev_t conn_dev; 8976 zoneid_t zoneid = getzoneid(); 8977 8978 /* 8979 * Special case for install: miniroot needs to be able to access files 8980 * via NFS as though it were always in the global zone. 8981 */ 8982 if (credp == kcred && nfs_global_client_only != 0) 8983 zoneid = GLOBAL_ZONEID; 8984 8985 if (q->q_ptr != NULL) 8986 return (0); 8987 8988 if (sflag == MODOPEN) { 8989 /* 8990 * This is a special case. The purpose of a modopen 8991 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 8992 * through for MIB browsers. Everything else is failed. 8993 */ 8994 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 8995 8996 if (connp == NULL) 8997 return (ENOMEM); 8998 8999 connp->conn_flags |= IPCL_TCPMOD; 9000 connp->conn_cred = credp; 9001 connp->conn_zoneid = zoneid; 9002 q->q_ptr = WR(q)->q_ptr = connp; 9003 crhold(credp); 9004 q->q_qinfo = &tcp_mod_rinit; 9005 WR(q)->q_qinfo = &tcp_mod_winit; 9006 qprocson(q); 9007 return (0); 9008 } 9009 9010 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9011 return (EBUSY); 9012 9013 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9014 9015 if (flag & SO_ACCEPTOR) { 9016 q->q_qinfo = &tcp_acceptor_rinit; 9017 q->q_ptr = (void *)conn_dev; 9018 WR(q)->q_qinfo = &tcp_acceptor_winit; 9019 WR(q)->q_ptr = (void *)conn_dev; 9020 qprocson(q); 9021 return (0); 9022 } 9023 9024 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9025 if (connp == NULL) { 9026 inet_minor_free(ip_minor_arena, conn_dev); 9027 q->q_ptr = NULL; 9028 return (ENOSR); 9029 } 9030 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9031 tcp = connp->conn_tcp; 9032 9033 q->q_ptr = WR(q)->q_ptr = connp; 9034 if (getmajor(*devp) == TCP6_MAJ) { 9035 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9036 connp->conn_send = ip_output_v6; 9037 connp->conn_af_isv6 = B_TRUE; 9038 connp->conn_pkt_isv6 = B_TRUE; 9039 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9040 tcp->tcp_ipversion = IPV6_VERSION; 9041 tcp->tcp_family = AF_INET6; 9042 tcp->tcp_mss = tcp_mss_def_ipv6; 9043 } else { 9044 connp->conn_flags |= IPCL_TCP4; 9045 connp->conn_send = ip_output; 9046 connp->conn_af_isv6 = B_FALSE; 9047 connp->conn_pkt_isv6 = B_FALSE; 9048 tcp->tcp_ipversion = IPV4_VERSION; 9049 tcp->tcp_family = AF_INET; 9050 tcp->tcp_mss = tcp_mss_def_ipv4; 9051 } 9052 9053 /* 9054 * TCP keeps a copy of cred for cache locality reasons but 9055 * we put a reference only once. If connp->conn_cred 9056 * becomes invalid, tcp_cred should also be set to NULL. 9057 */ 9058 tcp->tcp_cred = connp->conn_cred = credp; 9059 crhold(connp->conn_cred); 9060 tcp->tcp_cpid = curproc->p_pid; 9061 connp->conn_zoneid = zoneid; 9062 9063 connp->conn_dev = conn_dev; 9064 9065 ASSERT(q->q_qinfo == &tcp_rinit); 9066 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9067 9068 if (flag & SO_SOCKSTR) { 9069 /* 9070 * No need to insert a socket in tcp acceptor hash. 9071 * If it was a socket acceptor stream, we dealt with 9072 * it above. A socket listener can never accept a 9073 * connection and doesn't need acceptor_id. 9074 */ 9075 connp->conn_flags |= IPCL_SOCKET; 9076 tcp->tcp_issocket = 1; 9077 WR(q)->q_qinfo = &tcp_sock_winit; 9078 } else { 9079 #ifdef _ILP32 9080 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9081 #else 9082 tcp->tcp_acceptor_id = conn_dev; 9083 #endif /* _ILP32 */ 9084 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9085 } 9086 9087 if (tcp_trace) 9088 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9089 9090 err = tcp_init(tcp, q); 9091 if (err != 0) { 9092 inet_minor_free(ip_minor_arena, connp->conn_dev); 9093 tcp_acceptor_hash_remove(tcp); 9094 CONN_DEC_REF(connp); 9095 q->q_ptr = WR(q)->q_ptr = NULL; 9096 return (err); 9097 } 9098 9099 RD(q)->q_hiwat = tcp_recv_hiwat; 9100 tcp->tcp_rwnd = tcp_recv_hiwat; 9101 9102 /* Non-zero default values */ 9103 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9104 /* 9105 * Put the ref for TCP. Ref for IP was already put 9106 * by ipcl_conn_create. Also Make the conn_t globally 9107 * visible to walkers 9108 */ 9109 mutex_enter(&connp->conn_lock); 9110 CONN_INC_REF_LOCKED(connp); 9111 ASSERT(connp->conn_ref == 2); 9112 connp->conn_state_flags &= ~CONN_INCIPIENT; 9113 mutex_exit(&connp->conn_lock); 9114 9115 qprocson(q); 9116 return (0); 9117 } 9118 9119 /* 9120 * Some TCP options can be "set" by requesting them in the option 9121 * buffer. This is needed for XTI feature test though we do not 9122 * allow it in general. We interpret that this mechanism is more 9123 * applicable to OSI protocols and need not be allowed in general. 9124 * This routine filters out options for which it is not allowed (most) 9125 * and lets through those (few) for which it is. [ The XTI interface 9126 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9127 * ever implemented will have to be allowed here ]. 9128 */ 9129 static boolean_t 9130 tcp_allow_connopt_set(int level, int name) 9131 { 9132 9133 switch (level) { 9134 case IPPROTO_TCP: 9135 switch (name) { 9136 case TCP_NODELAY: 9137 return (B_TRUE); 9138 default: 9139 return (B_FALSE); 9140 } 9141 /*NOTREACHED*/ 9142 default: 9143 return (B_FALSE); 9144 } 9145 /*NOTREACHED*/ 9146 } 9147 9148 /* 9149 * This routine gets default values of certain options whose default 9150 * values are maintained by protocol specific code 9151 */ 9152 /* ARGSUSED */ 9153 int 9154 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9155 { 9156 int32_t *i1 = (int32_t *)ptr; 9157 9158 switch (level) { 9159 case IPPROTO_TCP: 9160 switch (name) { 9161 case TCP_NOTIFY_THRESHOLD: 9162 *i1 = tcp_ip_notify_interval; 9163 break; 9164 case TCP_ABORT_THRESHOLD: 9165 *i1 = tcp_ip_abort_interval; 9166 break; 9167 case TCP_CONN_NOTIFY_THRESHOLD: 9168 *i1 = tcp_ip_notify_cinterval; 9169 break; 9170 case TCP_CONN_ABORT_THRESHOLD: 9171 *i1 = tcp_ip_abort_cinterval; 9172 break; 9173 default: 9174 return (-1); 9175 } 9176 break; 9177 case IPPROTO_IP: 9178 switch (name) { 9179 case IP_TTL: 9180 *i1 = tcp_ipv4_ttl; 9181 break; 9182 default: 9183 return (-1); 9184 } 9185 break; 9186 case IPPROTO_IPV6: 9187 switch (name) { 9188 case IPV6_UNICAST_HOPS: 9189 *i1 = tcp_ipv6_hoplimit; 9190 break; 9191 default: 9192 return (-1); 9193 } 9194 break; 9195 default: 9196 return (-1); 9197 } 9198 return (sizeof (int)); 9199 } 9200 9201 9202 /* 9203 * TCP routine to get the values of options. 9204 */ 9205 int 9206 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9207 { 9208 int *i1 = (int *)ptr; 9209 conn_t *connp = Q_TO_CONN(q); 9210 tcp_t *tcp = connp->conn_tcp; 9211 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9212 9213 switch (level) { 9214 case SOL_SOCKET: 9215 switch (name) { 9216 case SO_LINGER: { 9217 struct linger *lgr = (struct linger *)ptr; 9218 9219 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9220 lgr->l_linger = tcp->tcp_lingertime; 9221 } 9222 return (sizeof (struct linger)); 9223 case SO_DEBUG: 9224 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9225 break; 9226 case SO_KEEPALIVE: 9227 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9228 break; 9229 case SO_DONTROUTE: 9230 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9231 break; 9232 case SO_USELOOPBACK: 9233 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9234 break; 9235 case SO_BROADCAST: 9236 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9237 break; 9238 case SO_REUSEADDR: 9239 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9240 break; 9241 case SO_OOBINLINE: 9242 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9243 break; 9244 case SO_DGRAM_ERRIND: 9245 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9246 break; 9247 case SO_TYPE: 9248 *i1 = SOCK_STREAM; 9249 break; 9250 case SO_SNDBUF: 9251 *i1 = tcp->tcp_xmit_hiwater; 9252 break; 9253 case SO_RCVBUF: 9254 *i1 = RD(q)->q_hiwat; 9255 break; 9256 case SO_SND_COPYAVOID: 9257 *i1 = tcp->tcp_snd_zcopy_on ? 9258 SO_SND_COPYAVOID : 0; 9259 break; 9260 default: 9261 return (-1); 9262 } 9263 break; 9264 case IPPROTO_TCP: 9265 switch (name) { 9266 case TCP_NODELAY: 9267 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9268 break; 9269 case TCP_MAXSEG: 9270 *i1 = tcp->tcp_mss; 9271 break; 9272 case TCP_NOTIFY_THRESHOLD: 9273 *i1 = (int)tcp->tcp_first_timer_threshold; 9274 break; 9275 case TCP_ABORT_THRESHOLD: 9276 *i1 = tcp->tcp_second_timer_threshold; 9277 break; 9278 case TCP_CONN_NOTIFY_THRESHOLD: 9279 *i1 = tcp->tcp_first_ctimer_threshold; 9280 break; 9281 case TCP_CONN_ABORT_THRESHOLD: 9282 *i1 = tcp->tcp_second_ctimer_threshold; 9283 break; 9284 case TCP_RECVDSTADDR: 9285 *i1 = tcp->tcp_recvdstaddr; 9286 break; 9287 case TCP_ANONPRIVBIND: 9288 *i1 = tcp->tcp_anon_priv_bind; 9289 break; 9290 case TCP_EXCLBIND: 9291 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9292 break; 9293 case TCP_INIT_CWND: 9294 *i1 = tcp->tcp_init_cwnd; 9295 break; 9296 case TCP_KEEPALIVE_THRESHOLD: 9297 *i1 = tcp->tcp_ka_interval; 9298 break; 9299 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9300 *i1 = tcp->tcp_ka_abort_thres; 9301 break; 9302 case TCP_CORK: 9303 *i1 = tcp->tcp_cork; 9304 break; 9305 default: 9306 return (-1); 9307 } 9308 break; 9309 case IPPROTO_IP: 9310 if (tcp->tcp_family != AF_INET) 9311 return (-1); 9312 switch (name) { 9313 case IP_OPTIONS: 9314 case T_IP_OPTIONS: { 9315 /* 9316 * This is compatible with BSD in that in only return 9317 * the reverse source route with the final destination 9318 * as the last entry. The first 4 bytes of the option 9319 * will contain the final destination. 9320 */ 9321 char *opt_ptr; 9322 int opt_len; 9323 opt_ptr = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 9324 opt_len = (char *)tcp->tcp_tcph - opt_ptr; 9325 /* Caller ensures enough space */ 9326 if (opt_len > 0) { 9327 /* 9328 * TODO: Do we have to handle getsockopt on an 9329 * initiator as well? 9330 */ 9331 return (tcp_opt_get_user(tcp->tcp_ipha, ptr)); 9332 } 9333 return (0); 9334 } 9335 case IP_TOS: 9336 case T_IP_TOS: 9337 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9338 break; 9339 case IP_TTL: 9340 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9341 break; 9342 default: 9343 return (-1); 9344 } 9345 break; 9346 case IPPROTO_IPV6: 9347 /* 9348 * IPPROTO_IPV6 options are only supported for sockets 9349 * that are using IPv6 on the wire. 9350 */ 9351 if (tcp->tcp_ipversion != IPV6_VERSION) { 9352 return (-1); 9353 } 9354 switch (name) { 9355 case IPV6_UNICAST_HOPS: 9356 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9357 break; /* goto sizeof (int) option return */ 9358 case IPV6_BOUND_IF: 9359 /* Zero if not set */ 9360 *i1 = tcp->tcp_bound_if; 9361 break; /* goto sizeof (int) option return */ 9362 case IPV6_RECVPKTINFO: 9363 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9364 *i1 = 1; 9365 else 9366 *i1 = 0; 9367 break; /* goto sizeof (int) option return */ 9368 case IPV6_RECVTCLASS: 9369 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9370 *i1 = 1; 9371 else 9372 *i1 = 0; 9373 break; /* goto sizeof (int) option return */ 9374 case IPV6_RECVHOPLIMIT: 9375 if (tcp->tcp_ipv6_recvancillary & 9376 TCP_IPV6_RECVHOPLIMIT) 9377 *i1 = 1; 9378 else 9379 *i1 = 0; 9380 break; /* goto sizeof (int) option return */ 9381 case IPV6_RECVHOPOPTS: 9382 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9383 *i1 = 1; 9384 else 9385 *i1 = 0; 9386 break; /* goto sizeof (int) option return */ 9387 case IPV6_RECVDSTOPTS: 9388 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9389 *i1 = 1; 9390 else 9391 *i1 = 0; 9392 break; /* goto sizeof (int) option return */ 9393 case _OLD_IPV6_RECVDSTOPTS: 9394 if (tcp->tcp_ipv6_recvancillary & 9395 TCP_OLD_IPV6_RECVDSTOPTS) 9396 *i1 = 1; 9397 else 9398 *i1 = 0; 9399 break; /* goto sizeof (int) option return */ 9400 case IPV6_RECVRTHDR: 9401 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9402 *i1 = 1; 9403 else 9404 *i1 = 0; 9405 break; /* goto sizeof (int) option return */ 9406 case IPV6_RECVRTHDRDSTOPTS: 9407 if (tcp->tcp_ipv6_recvancillary & 9408 TCP_IPV6_RECVRTDSTOPTS) 9409 *i1 = 1; 9410 else 9411 *i1 = 0; 9412 break; /* goto sizeof (int) option return */ 9413 case IPV6_PKTINFO: { 9414 /* XXX assumes that caller has room for max size! */ 9415 struct in6_pktinfo *pkti; 9416 9417 pkti = (struct in6_pktinfo *)ptr; 9418 if (ipp->ipp_fields & IPPF_IFINDEX) 9419 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9420 else 9421 pkti->ipi6_ifindex = 0; 9422 if (ipp->ipp_fields & IPPF_ADDR) 9423 pkti->ipi6_addr = ipp->ipp_addr; 9424 else 9425 pkti->ipi6_addr = ipv6_all_zeros; 9426 return (sizeof (struct in6_pktinfo)); 9427 } 9428 case IPV6_TCLASS: 9429 if (ipp->ipp_fields & IPPF_TCLASS) 9430 *i1 = ipp->ipp_tclass; 9431 else 9432 *i1 = IPV6_FLOW_TCLASS( 9433 IPV6_DEFAULT_VERS_AND_FLOW); 9434 break; /* goto sizeof (int) option return */ 9435 case IPV6_NEXTHOP: { 9436 sin6_t *sin6 = (sin6_t *)ptr; 9437 9438 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9439 return (0); 9440 *sin6 = sin6_null; 9441 sin6->sin6_family = AF_INET6; 9442 sin6->sin6_addr = ipp->ipp_nexthop; 9443 return (sizeof (sin6_t)); 9444 } 9445 case IPV6_HOPOPTS: 9446 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9447 return (0); 9448 bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen); 9449 return (ipp->ipp_hopoptslen); 9450 case IPV6_RTHDRDSTOPTS: 9451 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9452 return (0); 9453 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9454 return (ipp->ipp_rtdstoptslen); 9455 case IPV6_RTHDR: 9456 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9457 return (0); 9458 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9459 return (ipp->ipp_rthdrlen); 9460 case IPV6_DSTOPTS: 9461 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9462 return (0); 9463 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9464 return (ipp->ipp_dstoptslen); 9465 case IPV6_SRC_PREFERENCES: 9466 return (ip6_get_src_preferences(connp, 9467 (uint32_t *)ptr)); 9468 case IPV6_PATHMTU: { 9469 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9470 9471 if (tcp->tcp_state < TCPS_ESTABLISHED) 9472 return (-1); 9473 9474 return (ip_fill_mtuinfo(&connp->conn_remv6, 9475 connp->conn_fport, mtuinfo)); 9476 } 9477 default: 9478 return (-1); 9479 } 9480 break; 9481 default: 9482 return (-1); 9483 } 9484 return (sizeof (int)); 9485 } 9486 9487 /* 9488 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9489 * Parameters are assumed to be verified by the caller. 9490 */ 9491 /* ARGSUSED */ 9492 int 9493 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9494 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9495 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9496 { 9497 tcp_t *tcp = Q_TO_TCP(q); 9498 int *i1 = (int *)invalp; 9499 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9500 boolean_t checkonly; 9501 int reterr; 9502 9503 switch (optset_context) { 9504 case SETFN_OPTCOM_CHECKONLY: 9505 checkonly = B_TRUE; 9506 /* 9507 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9508 * inlen != 0 implies value supplied and 9509 * we have to "pretend" to set it. 9510 * inlen == 0 implies that there is no 9511 * value part in T_CHECK request and just validation 9512 * done elsewhere should be enough, we just return here. 9513 */ 9514 if (inlen == 0) { 9515 *outlenp = 0; 9516 return (0); 9517 } 9518 break; 9519 case SETFN_OPTCOM_NEGOTIATE: 9520 checkonly = B_FALSE; 9521 break; 9522 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9523 case SETFN_CONN_NEGOTIATE: 9524 checkonly = B_FALSE; 9525 /* 9526 * Negotiating local and "association-related" options 9527 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9528 * primitives is allowed by XTI, but we choose 9529 * to not implement this style negotiation for Internet 9530 * protocols (We interpret it is a must for OSI world but 9531 * optional for Internet protocols) for all options. 9532 * [ Will do only for the few options that enable test 9533 * suites that our XTI implementation of this feature 9534 * works for transports that do allow it ] 9535 */ 9536 if (!tcp_allow_connopt_set(level, name)) { 9537 *outlenp = 0; 9538 return (EINVAL); 9539 } 9540 break; 9541 default: 9542 /* 9543 * We should never get here 9544 */ 9545 *outlenp = 0; 9546 return (EINVAL); 9547 } 9548 9549 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9550 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9551 9552 /* 9553 * For TCP, we should have no ancillary data sent down 9554 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9555 * has to be zero. 9556 */ 9557 ASSERT(thisdg_attrs == NULL); 9558 9559 /* 9560 * For fixed length options, no sanity check 9561 * of passed in length is done. It is assumed *_optcom_req() 9562 * routines do the right thing. 9563 */ 9564 9565 switch (level) { 9566 case SOL_SOCKET: 9567 switch (name) { 9568 case SO_LINGER: { 9569 struct linger *lgr = (struct linger *)invalp; 9570 9571 if (!checkonly) { 9572 if (lgr->l_onoff) { 9573 tcp->tcp_linger = 1; 9574 tcp->tcp_lingertime = lgr->l_linger; 9575 } else { 9576 tcp->tcp_linger = 0; 9577 tcp->tcp_lingertime = 0; 9578 } 9579 /* struct copy */ 9580 *(struct linger *)outvalp = *lgr; 9581 } else { 9582 if (!lgr->l_onoff) { 9583 ((struct linger *)outvalp)->l_onoff = 0; 9584 ((struct linger *)outvalp)->l_linger = 0; 9585 } else { 9586 /* struct copy */ 9587 *(struct linger *)outvalp = *lgr; 9588 } 9589 } 9590 *outlenp = sizeof (struct linger); 9591 return (0); 9592 } 9593 case SO_DEBUG: 9594 if (!checkonly) 9595 tcp->tcp_debug = onoff; 9596 break; 9597 case SO_KEEPALIVE: 9598 if (checkonly) { 9599 /* T_CHECK case */ 9600 break; 9601 } 9602 9603 if (!onoff) { 9604 if (tcp->tcp_ka_enabled) { 9605 if (tcp->tcp_ka_tid != 0) { 9606 (void) TCP_TIMER_CANCEL(tcp, 9607 tcp->tcp_ka_tid); 9608 tcp->tcp_ka_tid = 0; 9609 } 9610 tcp->tcp_ka_enabled = 0; 9611 } 9612 break; 9613 } 9614 if (!tcp->tcp_ka_enabled) { 9615 /* Crank up the keepalive timer */ 9616 tcp->tcp_ka_last_intrvl = 0; 9617 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9618 tcp_keepalive_killer, 9619 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9620 tcp->tcp_ka_enabled = 1; 9621 } 9622 break; 9623 case SO_DONTROUTE: 9624 /* 9625 * SO_DONTROUTE, SO_USELOOPBACK and SO_BROADCAST are 9626 * only of interest to IP. We track them here only so 9627 * that we can report their current value. 9628 */ 9629 if (!checkonly) { 9630 tcp->tcp_dontroute = onoff; 9631 tcp->tcp_connp->conn_dontroute = onoff; 9632 } 9633 break; 9634 case SO_USELOOPBACK: 9635 if (!checkonly) { 9636 tcp->tcp_useloopback = onoff; 9637 tcp->tcp_connp->conn_loopback = onoff; 9638 } 9639 break; 9640 case SO_BROADCAST: 9641 if (!checkonly) { 9642 tcp->tcp_broadcast = onoff; 9643 tcp->tcp_connp->conn_broadcast = onoff; 9644 } 9645 break; 9646 case SO_REUSEADDR: 9647 if (!checkonly) { 9648 tcp->tcp_reuseaddr = onoff; 9649 tcp->tcp_connp->conn_reuseaddr = onoff; 9650 } 9651 break; 9652 case SO_OOBINLINE: 9653 if (!checkonly) 9654 tcp->tcp_oobinline = onoff; 9655 break; 9656 case SO_DGRAM_ERRIND: 9657 if (!checkonly) 9658 tcp->tcp_dgram_errind = onoff; 9659 break; 9660 case SO_SNDBUF: { 9661 tcp_t *peer_tcp; 9662 9663 if (*i1 > tcp_max_buf) { 9664 *outlenp = 0; 9665 return (ENOBUFS); 9666 } 9667 if (checkonly) 9668 break; 9669 9670 tcp->tcp_xmit_hiwater = *i1; 9671 if (tcp_snd_lowat_fraction != 0) 9672 tcp->tcp_xmit_lowater = 9673 tcp->tcp_xmit_hiwater / 9674 tcp_snd_lowat_fraction; 9675 (void) tcp_maxpsz_set(tcp, B_TRUE); 9676 /* 9677 * If we are flow-controlled, recheck the condition. 9678 * There are apps that increase SO_SNDBUF size when 9679 * flow-controlled (EWOULDBLOCK), and expect the flow 9680 * control condition to be lifted right away. 9681 * 9682 * For the fused tcp loopback case, in order to avoid 9683 * a race with the peer's tcp_fuse_rrw() we need to 9684 * hold its fuse_lock while accessing tcp_flow_stopped. 9685 */ 9686 peer_tcp = tcp->tcp_loopback_peer; 9687 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 9688 if (tcp->tcp_fused) 9689 mutex_enter(&peer_tcp->tcp_fuse_lock); 9690 9691 if (tcp->tcp_flow_stopped && 9692 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 9693 tcp_clrqfull(tcp); 9694 } 9695 if (tcp->tcp_fused) 9696 mutex_exit(&peer_tcp->tcp_fuse_lock); 9697 break; 9698 } 9699 case SO_RCVBUF: 9700 if (*i1 > tcp_max_buf) { 9701 *outlenp = 0; 9702 return (ENOBUFS); 9703 } 9704 /* Silently ignore zero */ 9705 if (!checkonly && *i1 != 0) { 9706 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 9707 (void) tcp_rwnd_set(tcp, *i1); 9708 } 9709 /* 9710 * XXX should we return the rwnd here 9711 * and tcp_opt_get ? 9712 */ 9713 break; 9714 case SO_SND_COPYAVOID: 9715 if (!checkonly) { 9716 /* we only allow enable at most once for now */ 9717 if (tcp->tcp_loopback || 9718 (!tcp->tcp_snd_zcopy_aware && 9719 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 9720 *outlenp = 0; 9721 return (EOPNOTSUPP); 9722 } 9723 tcp->tcp_snd_zcopy_aware = 1; 9724 } 9725 break; 9726 default: 9727 *outlenp = 0; 9728 return (EINVAL); 9729 } 9730 break; 9731 case IPPROTO_TCP: 9732 switch (name) { 9733 case TCP_NODELAY: 9734 if (!checkonly) 9735 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 9736 break; 9737 case TCP_NOTIFY_THRESHOLD: 9738 if (!checkonly) 9739 tcp->tcp_first_timer_threshold = *i1; 9740 break; 9741 case TCP_ABORT_THRESHOLD: 9742 if (!checkonly) 9743 tcp->tcp_second_timer_threshold = *i1; 9744 break; 9745 case TCP_CONN_NOTIFY_THRESHOLD: 9746 if (!checkonly) 9747 tcp->tcp_first_ctimer_threshold = *i1; 9748 break; 9749 case TCP_CONN_ABORT_THRESHOLD: 9750 if (!checkonly) 9751 tcp->tcp_second_ctimer_threshold = *i1; 9752 break; 9753 case TCP_RECVDSTADDR: 9754 if (tcp->tcp_state > TCPS_LISTEN) 9755 return (EOPNOTSUPP); 9756 if (!checkonly) 9757 tcp->tcp_recvdstaddr = onoff; 9758 break; 9759 case TCP_ANONPRIVBIND: 9760 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 9761 *outlenp = 0; 9762 return (reterr); 9763 } 9764 if (!checkonly) { 9765 tcp->tcp_anon_priv_bind = onoff; 9766 } 9767 break; 9768 case TCP_EXCLBIND: 9769 if (!checkonly) 9770 tcp->tcp_exclbind = onoff; 9771 break; /* goto sizeof (int) option return */ 9772 case TCP_INIT_CWND: { 9773 uint32_t init_cwnd = *((uint32_t *)invalp); 9774 9775 if (checkonly) 9776 break; 9777 9778 /* 9779 * Only allow socket with network configuration 9780 * privilege to set the initial cwnd to be larger 9781 * than allowed by RFC 3390. 9782 */ 9783 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 9784 tcp->tcp_init_cwnd = init_cwnd; 9785 break; 9786 } 9787 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 9788 *outlenp = 0; 9789 return (reterr); 9790 } 9791 if (init_cwnd > TCP_MAX_INIT_CWND) { 9792 *outlenp = 0; 9793 return (EINVAL); 9794 } 9795 tcp->tcp_init_cwnd = init_cwnd; 9796 break; 9797 } 9798 case TCP_KEEPALIVE_THRESHOLD: 9799 if (checkonly) 9800 break; 9801 9802 if (*i1 < tcp_keepalive_interval_low || 9803 *i1 > tcp_keepalive_interval_high) { 9804 *outlenp = 0; 9805 return (EINVAL); 9806 } 9807 if (*i1 != tcp->tcp_ka_interval) { 9808 tcp->tcp_ka_interval = *i1; 9809 /* 9810 * Check if we need to restart the 9811 * keepalive timer. 9812 */ 9813 if (tcp->tcp_ka_tid != 0) { 9814 ASSERT(tcp->tcp_ka_enabled); 9815 (void) TCP_TIMER_CANCEL(tcp, 9816 tcp->tcp_ka_tid); 9817 tcp->tcp_ka_last_intrvl = 0; 9818 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9819 tcp_keepalive_killer, 9820 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9821 } 9822 } 9823 break; 9824 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9825 if (!checkonly) { 9826 if (*i1 < tcp_keepalive_abort_interval_low || 9827 *i1 > tcp_keepalive_abort_interval_high) { 9828 *outlenp = 0; 9829 return (EINVAL); 9830 } 9831 tcp->tcp_ka_abort_thres = *i1; 9832 } 9833 break; 9834 case TCP_CORK: 9835 if (!checkonly) { 9836 /* 9837 * if tcp->tcp_cork was set and is now 9838 * being unset, we have to make sure that 9839 * the remaining data gets sent out. Also 9840 * unset tcp->tcp_cork so that tcp_wput_data() 9841 * can send data even if it is less than mss 9842 */ 9843 if (tcp->tcp_cork && onoff == 0 && 9844 tcp->tcp_unsent > 0) { 9845 tcp->tcp_cork = B_FALSE; 9846 tcp_wput_data(tcp, NULL, B_FALSE); 9847 } 9848 tcp->tcp_cork = onoff; 9849 } 9850 break; 9851 default: 9852 *outlenp = 0; 9853 return (EINVAL); 9854 } 9855 break; 9856 case IPPROTO_IP: 9857 if (tcp->tcp_family != AF_INET) { 9858 *outlenp = 0; 9859 return (ENOPROTOOPT); 9860 } 9861 switch (name) { 9862 case IP_OPTIONS: 9863 case T_IP_OPTIONS: 9864 reterr = tcp_opt_set_header(tcp, checkonly, 9865 invalp, inlen); 9866 if (reterr) { 9867 *outlenp = 0; 9868 return (reterr); 9869 } 9870 /* OK return - copy input buffer into output buffer */ 9871 if (invalp != outvalp) { 9872 /* don't trust bcopy for identical src/dst */ 9873 bcopy(invalp, outvalp, inlen); 9874 } 9875 *outlenp = inlen; 9876 return (0); 9877 case IP_TOS: 9878 case T_IP_TOS: 9879 if (!checkonly) { 9880 tcp->tcp_ipha->ipha_type_of_service = 9881 (uchar_t)*i1; 9882 tcp->tcp_tos = (uchar_t)*i1; 9883 } 9884 break; 9885 case IP_TTL: 9886 if (!checkonly) { 9887 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 9888 tcp->tcp_ttl = (uchar_t)*i1; 9889 } 9890 break; 9891 case IP_BOUND_IF: 9892 /* Handled at the IP level */ 9893 return (-EINVAL); 9894 case IP_SEC_OPT: 9895 /* 9896 * We should not allow policy setting after 9897 * we start listening for connections. 9898 */ 9899 if (tcp->tcp_state == TCPS_LISTEN) { 9900 return (EINVAL); 9901 } else { 9902 /* Handled at the IP level */ 9903 return (-EINVAL); 9904 } 9905 default: 9906 *outlenp = 0; 9907 return (EINVAL); 9908 } 9909 break; 9910 case IPPROTO_IPV6: { 9911 ip6_pkt_t *ipp; 9912 9913 /* 9914 * IPPROTO_IPV6 options are only supported for sockets 9915 * that are using IPv6 on the wire. 9916 */ 9917 if (tcp->tcp_ipversion != IPV6_VERSION) { 9918 *outlenp = 0; 9919 return (ENOPROTOOPT); 9920 } 9921 /* 9922 * Only sticky options; no ancillary data 9923 */ 9924 ASSERT(thisdg_attrs == NULL); 9925 ipp = &tcp->tcp_sticky_ipp; 9926 9927 switch (name) { 9928 case IPV6_UNICAST_HOPS: 9929 /* -1 means use default */ 9930 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 9931 *outlenp = 0; 9932 return (EINVAL); 9933 } 9934 if (!checkonly) { 9935 if (*i1 == -1) { 9936 tcp->tcp_ip6h->ip6_hops = 9937 ipp->ipp_unicast_hops = 9938 (uint8_t)tcp_ipv6_hoplimit; 9939 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 9940 /* Pass modified value to IP. */ 9941 *i1 = tcp->tcp_ip6h->ip6_hops; 9942 } else { 9943 tcp->tcp_ip6h->ip6_hops = 9944 ipp->ipp_unicast_hops = 9945 (uint8_t)*i1; 9946 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 9947 } 9948 reterr = tcp_build_hdrs(q, tcp); 9949 if (reterr != 0) 9950 return (reterr); 9951 } 9952 break; 9953 case IPV6_BOUND_IF: 9954 if (!checkonly) { 9955 int error = 0; 9956 9957 tcp->tcp_bound_if = *i1; 9958 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 9959 B_TRUE, checkonly, level, name, mblk); 9960 if (error != 0) { 9961 *outlenp = 0; 9962 return (error); 9963 } 9964 } 9965 break; 9966 /* 9967 * Set boolean switches for ancillary data delivery 9968 */ 9969 case IPV6_RECVPKTINFO: 9970 if (!checkonly) { 9971 if (onoff) 9972 tcp->tcp_ipv6_recvancillary |= 9973 TCP_IPV6_RECVPKTINFO; 9974 else 9975 tcp->tcp_ipv6_recvancillary &= 9976 ~TCP_IPV6_RECVPKTINFO; 9977 /* Force it to be sent up with the next msg */ 9978 tcp->tcp_recvifindex = 0; 9979 } 9980 break; 9981 case IPV6_RECVTCLASS: 9982 if (!checkonly) { 9983 if (onoff) 9984 tcp->tcp_ipv6_recvancillary |= 9985 TCP_IPV6_RECVTCLASS; 9986 else 9987 tcp->tcp_ipv6_recvancillary &= 9988 ~TCP_IPV6_RECVTCLASS; 9989 } 9990 break; 9991 case IPV6_RECVHOPLIMIT: 9992 if (!checkonly) { 9993 if (onoff) 9994 tcp->tcp_ipv6_recvancillary |= 9995 TCP_IPV6_RECVHOPLIMIT; 9996 else 9997 tcp->tcp_ipv6_recvancillary &= 9998 ~TCP_IPV6_RECVHOPLIMIT; 9999 /* Force it to be sent up with the next msg */ 10000 tcp->tcp_recvhops = 0xffffffffU; 10001 } 10002 break; 10003 case IPV6_RECVHOPOPTS: 10004 if (!checkonly) { 10005 if (onoff) 10006 tcp->tcp_ipv6_recvancillary |= 10007 TCP_IPV6_RECVHOPOPTS; 10008 else 10009 tcp->tcp_ipv6_recvancillary &= 10010 ~TCP_IPV6_RECVHOPOPTS; 10011 } 10012 break; 10013 case IPV6_RECVDSTOPTS: 10014 if (!checkonly) { 10015 if (onoff) 10016 tcp->tcp_ipv6_recvancillary |= 10017 TCP_IPV6_RECVDSTOPTS; 10018 else 10019 tcp->tcp_ipv6_recvancillary &= 10020 ~TCP_IPV6_RECVDSTOPTS; 10021 } 10022 break; 10023 case _OLD_IPV6_RECVDSTOPTS: 10024 if (!checkonly) { 10025 if (onoff) 10026 tcp->tcp_ipv6_recvancillary |= 10027 TCP_OLD_IPV6_RECVDSTOPTS; 10028 else 10029 tcp->tcp_ipv6_recvancillary &= 10030 ~TCP_OLD_IPV6_RECVDSTOPTS; 10031 } 10032 break; 10033 case IPV6_RECVRTHDR: 10034 if (!checkonly) { 10035 if (onoff) 10036 tcp->tcp_ipv6_recvancillary |= 10037 TCP_IPV6_RECVRTHDR; 10038 else 10039 tcp->tcp_ipv6_recvancillary &= 10040 ~TCP_IPV6_RECVRTHDR; 10041 } 10042 break; 10043 case IPV6_RECVRTHDRDSTOPTS: 10044 if (!checkonly) { 10045 if (onoff) 10046 tcp->tcp_ipv6_recvancillary |= 10047 TCP_IPV6_RECVRTDSTOPTS; 10048 else 10049 tcp->tcp_ipv6_recvancillary &= 10050 ~TCP_IPV6_RECVRTDSTOPTS; 10051 } 10052 break; 10053 case IPV6_PKTINFO: 10054 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10055 return (EINVAL); 10056 if (checkonly) 10057 break; 10058 10059 if (inlen == 0) { 10060 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10061 } else { 10062 struct in6_pktinfo *pkti; 10063 10064 pkti = (struct in6_pktinfo *)invalp; 10065 /* 10066 * RFC 3542 states that ipi6_addr must be 10067 * the unspecified address when setting the 10068 * IPV6_PKTINFO sticky socket option on a 10069 * TCP socket. 10070 */ 10071 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10072 return (EINVAL); 10073 /* 10074 * ip6_set_pktinfo() validates the source 10075 * address and interface index. 10076 */ 10077 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10078 pkti, mblk); 10079 if (reterr != 0) 10080 return (reterr); 10081 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10082 ipp->ipp_addr = pkti->ipi6_addr; 10083 if (ipp->ipp_ifindex != 0) 10084 ipp->ipp_fields |= IPPF_IFINDEX; 10085 else 10086 ipp->ipp_fields &= ~IPPF_IFINDEX; 10087 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10088 ipp->ipp_fields |= IPPF_ADDR; 10089 else 10090 ipp->ipp_fields &= ~IPPF_ADDR; 10091 } 10092 reterr = tcp_build_hdrs(q, tcp); 10093 if (reterr != 0) 10094 return (reterr); 10095 break; 10096 case IPV6_TCLASS: 10097 if (inlen != 0 && inlen != sizeof (int)) 10098 return (EINVAL); 10099 if (checkonly) 10100 break; 10101 10102 if (inlen == 0) { 10103 ipp->ipp_fields &= ~IPPF_TCLASS; 10104 } else { 10105 if (*i1 > 255 || *i1 < -1) 10106 return (EINVAL); 10107 if (*i1 == -1) { 10108 ipp->ipp_tclass = 0; 10109 *i1 = 0; 10110 } else { 10111 ipp->ipp_tclass = *i1; 10112 } 10113 ipp->ipp_fields |= IPPF_TCLASS; 10114 } 10115 reterr = tcp_build_hdrs(q, tcp); 10116 if (reterr != 0) 10117 return (reterr); 10118 break; 10119 case IPV6_NEXTHOP: 10120 /* 10121 * IP will verify that the nexthop is reachable 10122 * and fail for sticky options. 10123 */ 10124 if (inlen != 0 && inlen != sizeof (sin6_t)) 10125 return (EINVAL); 10126 if (checkonly) 10127 break; 10128 10129 if (inlen == 0) { 10130 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10131 } else { 10132 sin6_t *sin6 = (sin6_t *)invalp; 10133 10134 if (sin6->sin6_family != AF_INET6) 10135 return (EAFNOSUPPORT); 10136 if (IN6_IS_ADDR_V4MAPPED( 10137 &sin6->sin6_addr)) 10138 return (EADDRNOTAVAIL); 10139 ipp->ipp_nexthop = sin6->sin6_addr; 10140 if (!IN6_IS_ADDR_UNSPECIFIED( 10141 &ipp->ipp_nexthop)) 10142 ipp->ipp_fields |= IPPF_NEXTHOP; 10143 else 10144 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10145 } 10146 reterr = tcp_build_hdrs(q, tcp); 10147 if (reterr != 0) 10148 return (reterr); 10149 break; 10150 case IPV6_HOPOPTS: { 10151 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10152 /* 10153 * Sanity checks - minimum size, size a multiple of 10154 * eight bytes, and matching size passed in. 10155 */ 10156 if (inlen != 0 && 10157 inlen != (8 * (hopts->ip6h_len + 1))) 10158 return (EINVAL); 10159 10160 if (checkonly) 10161 break; 10162 10163 if (inlen == 0) { 10164 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 10165 kmem_free(ipp->ipp_hopopts, 10166 ipp->ipp_hopoptslen); 10167 ipp->ipp_hopopts = NULL; 10168 ipp->ipp_hopoptslen = 0; 10169 } 10170 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10171 } else { 10172 reterr = tcp_pkt_set(invalp, inlen, 10173 (uchar_t **)&ipp->ipp_hopopts, 10174 &ipp->ipp_hopoptslen); 10175 if (reterr != 0) 10176 return (reterr); 10177 ipp->ipp_fields |= IPPF_HOPOPTS; 10178 } 10179 reterr = tcp_build_hdrs(q, tcp); 10180 if (reterr != 0) 10181 return (reterr); 10182 break; 10183 } 10184 case IPV6_RTHDRDSTOPTS: { 10185 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10186 10187 /* 10188 * Sanity checks - minimum size, size a multiple of 10189 * eight bytes, and matching size passed in. 10190 */ 10191 if (inlen != 0 && 10192 inlen != (8 * (dopts->ip6d_len + 1))) 10193 return (EINVAL); 10194 10195 if (checkonly) 10196 break; 10197 10198 if (inlen == 0) { 10199 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 10200 kmem_free(ipp->ipp_rtdstopts, 10201 ipp->ipp_rtdstoptslen); 10202 ipp->ipp_rtdstopts = NULL; 10203 ipp->ipp_rtdstoptslen = 0; 10204 } 10205 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10206 } else { 10207 reterr = tcp_pkt_set(invalp, inlen, 10208 (uchar_t **)&ipp->ipp_rtdstopts, 10209 &ipp->ipp_rtdstoptslen); 10210 if (reterr != 0) 10211 return (reterr); 10212 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10213 } 10214 reterr = tcp_build_hdrs(q, tcp); 10215 if (reterr != 0) 10216 return (reterr); 10217 break; 10218 } 10219 case IPV6_DSTOPTS: { 10220 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10221 10222 /* 10223 * Sanity checks - minimum size, size a multiple of 10224 * eight bytes, and matching size passed in. 10225 */ 10226 if (inlen != 0 && 10227 inlen != (8 * (dopts->ip6d_len + 1))) 10228 return (EINVAL); 10229 10230 if (checkonly) 10231 break; 10232 10233 if (inlen == 0) { 10234 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 10235 kmem_free(ipp->ipp_dstopts, 10236 ipp->ipp_dstoptslen); 10237 ipp->ipp_dstopts = NULL; 10238 ipp->ipp_dstoptslen = 0; 10239 } 10240 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10241 } else { 10242 reterr = tcp_pkt_set(invalp, inlen, 10243 (uchar_t **)&ipp->ipp_dstopts, 10244 &ipp->ipp_dstoptslen); 10245 if (reterr != 0) 10246 return (reterr); 10247 ipp->ipp_fields |= IPPF_DSTOPTS; 10248 } 10249 reterr = tcp_build_hdrs(q, tcp); 10250 if (reterr != 0) 10251 return (reterr); 10252 break; 10253 } 10254 case IPV6_RTHDR: { 10255 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10256 10257 /* 10258 * Sanity checks - minimum size, size a multiple of 10259 * eight bytes, and matching size passed in. 10260 */ 10261 if (inlen != 0 && 10262 inlen != (8 * (rt->ip6r_len + 1))) 10263 return (EINVAL); 10264 10265 if (checkonly) 10266 break; 10267 10268 if (inlen == 0) { 10269 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 10270 kmem_free(ipp->ipp_rthdr, 10271 ipp->ipp_rthdrlen); 10272 ipp->ipp_rthdr = NULL; 10273 ipp->ipp_rthdrlen = 0; 10274 } 10275 ipp->ipp_fields &= ~IPPF_RTHDR; 10276 } else { 10277 reterr = tcp_pkt_set(invalp, inlen, 10278 (uchar_t **)&ipp->ipp_rthdr, 10279 &ipp->ipp_rthdrlen); 10280 if (reterr != 0) 10281 return (reterr); 10282 ipp->ipp_fields |= IPPF_RTHDR; 10283 } 10284 reterr = tcp_build_hdrs(q, tcp); 10285 if (reterr != 0) 10286 return (reterr); 10287 break; 10288 } 10289 case IPV6_V6ONLY: 10290 if (!checkonly) 10291 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10292 break; 10293 case IPV6_USE_MIN_MTU: 10294 if (inlen != sizeof (int)) 10295 return (EINVAL); 10296 10297 if (*i1 < -1 || *i1 > 1) 10298 return (EINVAL); 10299 10300 if (checkonly) 10301 break; 10302 10303 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10304 ipp->ipp_use_min_mtu = *i1; 10305 break; 10306 case IPV6_BOUND_PIF: 10307 /* Handled at the IP level */ 10308 return (-EINVAL); 10309 case IPV6_SEC_OPT: 10310 /* 10311 * We should not allow policy setting after 10312 * we start listening for connections. 10313 */ 10314 if (tcp->tcp_state == TCPS_LISTEN) { 10315 return (EINVAL); 10316 } else { 10317 /* Handled at the IP level */ 10318 return (-EINVAL); 10319 } 10320 case IPV6_SRC_PREFERENCES: 10321 if (inlen != sizeof (uint32_t)) 10322 return (EINVAL); 10323 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10324 *(uint32_t *)invalp); 10325 if (reterr != 0) { 10326 *outlenp = 0; 10327 return (reterr); 10328 } 10329 break; 10330 default: 10331 *outlenp = 0; 10332 return (EINVAL); 10333 } 10334 break; 10335 } /* end IPPROTO_IPV6 */ 10336 default: 10337 *outlenp = 0; 10338 return (EINVAL); 10339 } 10340 /* 10341 * Common case of OK return with outval same as inval 10342 */ 10343 if (invalp != outvalp) { 10344 /* don't trust bcopy for identical src/dst */ 10345 (void) bcopy(invalp, outvalp, inlen); 10346 } 10347 *outlenp = inlen; 10348 return (0); 10349 } 10350 10351 /* 10352 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10353 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10354 * headers, and the maximum size tcp header (to avoid reallocation 10355 * on the fly for additional tcp options). 10356 * Returns failure if can't allocate memory. 10357 */ 10358 static int 10359 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10360 { 10361 char *hdrs; 10362 uint_t hdrs_len; 10363 ip6i_t *ip6i; 10364 char buf[TCP_MAX_HDR_LENGTH]; 10365 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10366 in6_addr_t src, dst; 10367 10368 /* 10369 * save the existing tcp header and source/dest IP addresses 10370 */ 10371 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10372 src = tcp->tcp_ip6h->ip6_src; 10373 dst = tcp->tcp_ip6h->ip6_dst; 10374 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10375 ASSERT(hdrs_len != 0); 10376 if (hdrs_len > tcp->tcp_iphc_len) { 10377 /* Need to reallocate */ 10378 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10379 if (hdrs == NULL) 10380 return (ENOMEM); 10381 if (tcp->tcp_iphc != NULL) { 10382 if (tcp->tcp_hdr_grown) { 10383 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10384 } else { 10385 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10386 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10387 } 10388 tcp->tcp_iphc_len = 0; 10389 } 10390 ASSERT(tcp->tcp_iphc_len == 0); 10391 tcp->tcp_iphc = hdrs; 10392 tcp->tcp_iphc_len = hdrs_len; 10393 tcp->tcp_hdr_grown = B_TRUE; 10394 } 10395 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10396 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10397 10398 /* Set header fields not in ipp */ 10399 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10400 ip6i = (ip6i_t *)tcp->tcp_iphc; 10401 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10402 } else { 10403 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10404 } 10405 /* 10406 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10407 * 10408 * tcp->tcp_tcp_hdr_len doesn't change here. 10409 */ 10410 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10411 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10412 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10413 10414 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10415 10416 tcp->tcp_ip6h->ip6_src = src; 10417 tcp->tcp_ip6h->ip6_dst = dst; 10418 10419 /* 10420 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10421 * the default value for TCP. 10422 */ 10423 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10424 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 10425 10426 /* 10427 * If we're setting extension headers after a connection 10428 * has been established, and if we have a routing header 10429 * among the extension headers, call ip_massage_options_v6 to 10430 * manipulate the routing header/ip6_dst set the checksum 10431 * difference in the tcp header template. 10432 * (This happens in tcp_connect_ipv6 if the routing header 10433 * is set prior to the connect.) 10434 * Set the tcp_sum to zero first in case we've cleared a 10435 * routing header or don't have one at all. 10436 */ 10437 tcp->tcp_sum = 0; 10438 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10439 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10440 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10441 (uint8_t *)tcp->tcp_tcph); 10442 if (rth != NULL) { 10443 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10444 rth); 10445 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10446 (tcp->tcp_sum >> 16)); 10447 } 10448 } 10449 10450 /* Try to get everything in a single mblk */ 10451 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 10452 return (0); 10453 } 10454 10455 /* 10456 * Set optbuf and optlen for the option. 10457 * Allocate memory (if not already present). 10458 * Otherwise just point optbuf and optlen at invalp and inlen. 10459 * Returns failure if memory can not be allocated. 10460 */ 10461 static int 10462 tcp_pkt_set(uchar_t *invalp, uint_t inlen, uchar_t **optbufp, uint_t *optlenp) 10463 { 10464 uchar_t *optbuf; 10465 10466 if (inlen == *optlenp) { 10467 /* Unchanged length - no need to realocate */ 10468 bcopy(invalp, *optbufp, inlen); 10469 return (0); 10470 } 10471 if (inlen != 0) { 10472 /* Allocate new buffer before free */ 10473 optbuf = kmem_alloc(inlen, KM_NOSLEEP); 10474 if (optbuf == NULL) 10475 return (ENOMEM); 10476 } else { 10477 optbuf = NULL; 10478 } 10479 /* Free old buffer */ 10480 if (*optlenp != 0) 10481 kmem_free(*optbufp, *optlenp); 10482 10483 bcopy(invalp, optbuf, inlen); 10484 *optbufp = optbuf; 10485 *optlenp = inlen; 10486 return (0); 10487 } 10488 10489 10490 /* 10491 * Use the outgoing IP header to create an IP_OPTIONS option the way 10492 * it was passed down from the application. 10493 */ 10494 static int 10495 tcp_opt_get_user(ipha_t *ipha, uchar_t *buf) 10496 { 10497 ipoptp_t opts; 10498 uchar_t *opt; 10499 uint8_t optval; 10500 uint8_t optlen; 10501 uint32_t len = 0; 10502 uchar_t *buf1 = buf; 10503 10504 buf += IP_ADDR_LEN; /* Leave room for final destination */ 10505 len += IP_ADDR_LEN; 10506 bzero(buf1, IP_ADDR_LEN); 10507 10508 for (optval = ipoptp_first(&opts, ipha); 10509 optval != IPOPT_EOL; 10510 optval = ipoptp_next(&opts)) { 10511 opt = opts.ipoptp_cur; 10512 optlen = opts.ipoptp_len; 10513 switch (optval) { 10514 int off; 10515 case IPOPT_SSRR: 10516 case IPOPT_LSRR: 10517 10518 /* 10519 * Insert ipha_dst as the first entry in the source 10520 * route and move down the entries on step. 10521 * The last entry gets placed at buf1. 10522 */ 10523 buf[IPOPT_OPTVAL] = optval; 10524 buf[IPOPT_OLEN] = optlen; 10525 buf[IPOPT_OFFSET] = optlen; 10526 10527 off = optlen - IP_ADDR_LEN; 10528 if (off < 0) { 10529 /* No entries in source route */ 10530 break; 10531 } 10532 /* Last entry in source route */ 10533 bcopy(opt + off, buf1, IP_ADDR_LEN); 10534 off -= IP_ADDR_LEN; 10535 10536 while (off > 0) { 10537 bcopy(opt + off, 10538 buf + off + IP_ADDR_LEN, 10539 IP_ADDR_LEN); 10540 off -= IP_ADDR_LEN; 10541 } 10542 /* ipha_dst into first slot */ 10543 bcopy(&ipha->ipha_dst, 10544 buf + off + IP_ADDR_LEN, 10545 IP_ADDR_LEN); 10546 buf += optlen; 10547 len += optlen; 10548 break; 10549 default: 10550 bcopy(opt, buf, optlen); 10551 buf += optlen; 10552 len += optlen; 10553 break; 10554 } 10555 } 10556 done: 10557 /* Pad the resulting options */ 10558 while (len & 0x3) { 10559 *buf++ = IPOPT_EOL; 10560 len++; 10561 } 10562 return (len); 10563 } 10564 10565 /* 10566 * Transfer any source route option from ipha to buf/dst in reversed form. 10567 */ 10568 static int 10569 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10570 { 10571 ipoptp_t opts; 10572 uchar_t *opt; 10573 uint8_t optval; 10574 uint8_t optlen; 10575 uint32_t len = 0; 10576 10577 for (optval = ipoptp_first(&opts, ipha); 10578 optval != IPOPT_EOL; 10579 optval = ipoptp_next(&opts)) { 10580 opt = opts.ipoptp_cur; 10581 optlen = opts.ipoptp_len; 10582 switch (optval) { 10583 int off1, off2; 10584 case IPOPT_SSRR: 10585 case IPOPT_LSRR: 10586 10587 /* Reverse source route */ 10588 /* 10589 * First entry should be the next to last one in the 10590 * current source route (the last entry is our 10591 * address.) 10592 * The last entry should be the final destination. 10593 */ 10594 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10595 buf[IPOPT_OLEN] = (uint8_t)optlen; 10596 off1 = IPOPT_MINOFF_SR - 1; 10597 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10598 if (off2 < 0) { 10599 /* No entries in source route */ 10600 break; 10601 } 10602 bcopy(opt + off2, dst, IP_ADDR_LEN); 10603 /* 10604 * Note: use src since ipha has not had its src 10605 * and dst reversed (it is in the state it was 10606 * received. 10607 */ 10608 bcopy(&ipha->ipha_src, buf + off2, 10609 IP_ADDR_LEN); 10610 off2 -= IP_ADDR_LEN; 10611 10612 while (off2 > 0) { 10613 bcopy(opt + off2, buf + off1, 10614 IP_ADDR_LEN); 10615 off1 += IP_ADDR_LEN; 10616 off2 -= IP_ADDR_LEN; 10617 } 10618 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10619 buf += optlen; 10620 len += optlen; 10621 break; 10622 } 10623 } 10624 done: 10625 /* Pad the resulting options */ 10626 while (len & 0x3) { 10627 *buf++ = IPOPT_EOL; 10628 len++; 10629 } 10630 return (len); 10631 } 10632 10633 10634 /* 10635 * Extract and revert a source route from ipha (if any) 10636 * and then update the relevant fields in both tcp_t and the standard header. 10637 */ 10638 static void 10639 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 10640 { 10641 char buf[TCP_MAX_HDR_LENGTH]; 10642 uint_t tcph_len; 10643 int len; 10644 10645 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 10646 len = IPH_HDR_LENGTH(ipha); 10647 if (len == IP_SIMPLE_HDR_LENGTH) 10648 /* Nothing to do */ 10649 return; 10650 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 10651 (len & 0x3)) 10652 return; 10653 10654 tcph_len = tcp->tcp_tcp_hdr_len; 10655 bcopy(tcp->tcp_tcph, buf, tcph_len); 10656 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 10657 (tcp->tcp_ipha->ipha_dst & 0xffff); 10658 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 10659 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 10660 len += IP_SIMPLE_HDR_LENGTH; 10661 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 10662 (tcp->tcp_ipha->ipha_dst & 0xffff)); 10663 if ((int)tcp->tcp_sum < 0) 10664 tcp->tcp_sum--; 10665 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 10666 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 10667 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 10668 bcopy(buf, tcp->tcp_tcph, tcph_len); 10669 tcp->tcp_ip_hdr_len = len; 10670 tcp->tcp_ipha->ipha_version_and_hdr_length = 10671 (IP_VERSION << 4) | (len >> 2); 10672 len += tcph_len; 10673 tcp->tcp_hdr_len = len; 10674 } 10675 10676 /* 10677 * Copy the standard header into its new location, 10678 * lay in the new options and then update the relevant 10679 * fields in both tcp_t and the standard header. 10680 */ 10681 static int 10682 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 10683 { 10684 uint_t tcph_len; 10685 char *ip_optp; 10686 tcph_t *new_tcph; 10687 10688 if (checkonly) { 10689 /* 10690 * do not really set, just pretend to - T_CHECK 10691 */ 10692 if (len != 0) { 10693 /* 10694 * there is value supplied, validate it as if 10695 * for a real set operation. 10696 */ 10697 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10698 return (EINVAL); 10699 } 10700 return (0); 10701 } 10702 10703 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10704 return (EINVAL); 10705 10706 ip_optp = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 10707 tcph_len = tcp->tcp_tcp_hdr_len; 10708 new_tcph = (tcph_t *)(ip_optp + len); 10709 ovbcopy((char *)tcp->tcp_tcph, (char *)new_tcph, tcph_len); 10710 tcp->tcp_tcph = new_tcph; 10711 bcopy(ptr, ip_optp, len); 10712 10713 len += IP_SIMPLE_HDR_LENGTH; 10714 10715 tcp->tcp_ip_hdr_len = len; 10716 tcp->tcp_ipha->ipha_version_and_hdr_length = 10717 (IP_VERSION << 4) | (len >> 2); 10718 len += tcph_len; 10719 tcp->tcp_hdr_len = len; 10720 if (!TCP_IS_DETACHED(tcp)) { 10721 /* Always allocate room for all options. */ 10722 (void) mi_set_sth_wroff(tcp->tcp_rq, 10723 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 10724 } 10725 return (0); 10726 } 10727 10728 /* Get callback routine passed to nd_load by tcp_param_register */ 10729 /* ARGSUSED */ 10730 static int 10731 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 10732 { 10733 tcpparam_t *tcppa = (tcpparam_t *)cp; 10734 10735 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 10736 return (0); 10737 } 10738 10739 /* 10740 * Walk through the param array specified registering each element with the 10741 * named dispatch handler. 10742 */ 10743 static boolean_t 10744 tcp_param_register(tcpparam_t *tcppa, int cnt) 10745 { 10746 for (; cnt-- > 0; tcppa++) { 10747 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 10748 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 10749 tcp_param_get, tcp_param_set, 10750 (caddr_t)tcppa)) { 10751 nd_free(&tcp_g_nd); 10752 return (B_FALSE); 10753 } 10754 } 10755 } 10756 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 10757 tcp_param_get, tcp_param_set_aligned, 10758 (caddr_t)&tcp_wroff_xtra_param)) { 10759 nd_free(&tcp_g_nd); 10760 return (B_FALSE); 10761 } 10762 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 10763 tcp_param_get, tcp_param_set_aligned, 10764 (caddr_t)&tcp_mdt_head_param)) { 10765 nd_free(&tcp_g_nd); 10766 return (B_FALSE); 10767 } 10768 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 10769 tcp_param_get, tcp_param_set_aligned, 10770 (caddr_t)&tcp_mdt_tail_param)) { 10771 nd_free(&tcp_g_nd); 10772 return (B_FALSE); 10773 } 10774 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 10775 tcp_param_get, tcp_param_set, 10776 (caddr_t)&tcp_mdt_max_pbufs_param)) { 10777 nd_free(&tcp_g_nd); 10778 return (B_FALSE); 10779 } 10780 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 10781 tcp_extra_priv_ports_get, NULL, NULL)) { 10782 nd_free(&tcp_g_nd); 10783 return (B_FALSE); 10784 } 10785 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 10786 NULL, tcp_extra_priv_ports_add, NULL)) { 10787 nd_free(&tcp_g_nd); 10788 return (B_FALSE); 10789 } 10790 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 10791 NULL, tcp_extra_priv_ports_del, NULL)) { 10792 nd_free(&tcp_g_nd); 10793 return (B_FALSE); 10794 } 10795 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 10796 NULL)) { 10797 nd_free(&tcp_g_nd); 10798 return (B_FALSE); 10799 } 10800 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 10801 NULL, NULL)) { 10802 nd_free(&tcp_g_nd); 10803 return (B_FALSE); 10804 } 10805 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 10806 NULL, NULL)) { 10807 nd_free(&tcp_g_nd); 10808 return (B_FALSE); 10809 } 10810 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 10811 NULL, NULL)) { 10812 nd_free(&tcp_g_nd); 10813 return (B_FALSE); 10814 } 10815 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 10816 NULL, NULL)) { 10817 nd_free(&tcp_g_nd); 10818 return (B_FALSE); 10819 } 10820 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 10821 tcp_host_param_set, NULL)) { 10822 nd_free(&tcp_g_nd); 10823 return (B_FALSE); 10824 } 10825 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 10826 tcp_host_param_set_ipv6, NULL)) { 10827 nd_free(&tcp_g_nd); 10828 return (B_FALSE); 10829 } 10830 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 10831 NULL)) { 10832 nd_free(&tcp_g_nd); 10833 return (B_FALSE); 10834 } 10835 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 10836 tcp_reserved_port_list, NULL, NULL)) { 10837 nd_free(&tcp_g_nd); 10838 return (B_FALSE); 10839 } 10840 /* 10841 * Dummy ndd variables - only to convey obsolescence information 10842 * through printing of their name (no get or set routines) 10843 * XXX Remove in future releases ? 10844 */ 10845 if (!nd_load(&tcp_g_nd, 10846 "tcp_close_wait_interval(obsoleted - " 10847 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 10848 nd_free(&tcp_g_nd); 10849 return (B_FALSE); 10850 } 10851 return (B_TRUE); 10852 } 10853 10854 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 10855 /* ARGSUSED */ 10856 static int 10857 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 10858 cred_t *cr) 10859 { 10860 long new_value; 10861 tcpparam_t *tcppa = (tcpparam_t *)cp; 10862 10863 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10864 new_value < tcppa->tcp_param_min || 10865 new_value > tcppa->tcp_param_max) { 10866 return (EINVAL); 10867 } 10868 /* 10869 * Need to make sure new_value is a multiple of 4. If it is not, 10870 * round it up. For future 64 bit requirement, we actually make it 10871 * a multiple of 8. 10872 */ 10873 if (new_value & 0x7) { 10874 new_value = (new_value & ~0x7) + 0x8; 10875 } 10876 tcppa->tcp_param_val = new_value; 10877 return (0); 10878 } 10879 10880 /* Set callback routine passed to nd_load by tcp_param_register */ 10881 /* ARGSUSED */ 10882 static int 10883 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 10884 { 10885 long new_value; 10886 tcpparam_t *tcppa = (tcpparam_t *)cp; 10887 10888 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10889 new_value < tcppa->tcp_param_min || 10890 new_value > tcppa->tcp_param_max) { 10891 return (EINVAL); 10892 } 10893 tcppa->tcp_param_val = new_value; 10894 return (0); 10895 } 10896 10897 /* 10898 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 10899 * is filled, return as much as we can. The message passed in may be 10900 * multi-part, chained using b_cont. "start" is the starting sequence 10901 * number for this piece. 10902 */ 10903 static mblk_t * 10904 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 10905 { 10906 uint32_t end; 10907 mblk_t *mp1; 10908 mblk_t *mp2; 10909 mblk_t *next_mp; 10910 uint32_t u1; 10911 10912 /* Walk through all the new pieces. */ 10913 do { 10914 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10915 (uintptr_t)INT_MAX); 10916 end = start + (int)(mp->b_wptr - mp->b_rptr); 10917 next_mp = mp->b_cont; 10918 if (start == end) { 10919 /* Empty. Blast it. */ 10920 freeb(mp); 10921 continue; 10922 } 10923 mp->b_cont = NULL; 10924 TCP_REASS_SET_SEQ(mp, start); 10925 TCP_REASS_SET_END(mp, end); 10926 mp1 = tcp->tcp_reass_tail; 10927 if (!mp1) { 10928 tcp->tcp_reass_tail = mp; 10929 tcp->tcp_reass_head = mp; 10930 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 10931 UPDATE_MIB(&tcp_mib, 10932 tcpInDataUnorderBytes, end - start); 10933 continue; 10934 } 10935 /* New stuff completely beyond tail? */ 10936 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 10937 /* Link it on end. */ 10938 mp1->b_cont = mp; 10939 tcp->tcp_reass_tail = mp; 10940 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 10941 UPDATE_MIB(&tcp_mib, 10942 tcpInDataUnorderBytes, end - start); 10943 continue; 10944 } 10945 mp1 = tcp->tcp_reass_head; 10946 u1 = TCP_REASS_SEQ(mp1); 10947 /* New stuff at the front? */ 10948 if (SEQ_LT(start, u1)) { 10949 /* Yes... Check for overlap. */ 10950 mp->b_cont = mp1; 10951 tcp->tcp_reass_head = mp; 10952 tcp_reass_elim_overlap(tcp, mp); 10953 continue; 10954 } 10955 /* 10956 * The new piece fits somewhere between the head and tail. 10957 * We find our slot, where mp1 precedes us and mp2 trails. 10958 */ 10959 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 10960 u1 = TCP_REASS_SEQ(mp2); 10961 if (SEQ_LEQ(start, u1)) 10962 break; 10963 } 10964 /* Link ourselves in */ 10965 mp->b_cont = mp2; 10966 mp1->b_cont = mp; 10967 10968 /* Trim overlap with following mblk(s) first */ 10969 tcp_reass_elim_overlap(tcp, mp); 10970 10971 /* Trim overlap with preceding mblk */ 10972 tcp_reass_elim_overlap(tcp, mp1); 10973 10974 } while (start = end, mp = next_mp); 10975 mp1 = tcp->tcp_reass_head; 10976 /* Anything ready to go? */ 10977 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 10978 return (NULL); 10979 /* Eat what we can off the queue */ 10980 for (;;) { 10981 mp = mp1->b_cont; 10982 end = TCP_REASS_END(mp1); 10983 TCP_REASS_SET_SEQ(mp1, 0); 10984 TCP_REASS_SET_END(mp1, 0); 10985 if (!mp) { 10986 tcp->tcp_reass_tail = NULL; 10987 break; 10988 } 10989 if (end != TCP_REASS_SEQ(mp)) { 10990 mp1->b_cont = NULL; 10991 break; 10992 } 10993 mp1 = mp; 10994 } 10995 mp1 = tcp->tcp_reass_head; 10996 tcp->tcp_reass_head = mp; 10997 return (mp1); 10998 } 10999 11000 /* Eliminate any overlap that mp may have over later mblks */ 11001 static void 11002 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11003 { 11004 uint32_t end; 11005 mblk_t *mp1; 11006 uint32_t u1; 11007 11008 end = TCP_REASS_END(mp); 11009 while ((mp1 = mp->b_cont) != NULL) { 11010 u1 = TCP_REASS_SEQ(mp1); 11011 if (!SEQ_GT(end, u1)) 11012 break; 11013 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11014 mp->b_wptr -= end - u1; 11015 TCP_REASS_SET_END(mp, u1); 11016 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11017 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11018 break; 11019 } 11020 mp->b_cont = mp1->b_cont; 11021 TCP_REASS_SET_SEQ(mp1, 0); 11022 TCP_REASS_SET_END(mp1, 0); 11023 freeb(mp1); 11024 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11025 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11026 } 11027 if (!mp1) 11028 tcp->tcp_reass_tail = mp; 11029 } 11030 11031 /* 11032 * Send up all messages queued on tcp_rcv_list. 11033 */ 11034 static uint_t 11035 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11036 { 11037 mblk_t *mp; 11038 uint_t ret = 0; 11039 uint_t thwin; 11040 #ifdef DEBUG 11041 uint_t cnt = 0; 11042 #endif 11043 /* Can't drain on an eager connection */ 11044 if (tcp->tcp_listener != NULL) 11045 return (ret); 11046 11047 /* 11048 * Handle two cases here: we are currently fused or we were 11049 * previously fused and have some urgent data to be delivered 11050 * upstream. The latter happens because we either ran out of 11051 * memory or were detached and therefore sending the SIGURG was 11052 * deferred until this point. In either case we pass control 11053 * over to tcp_fuse_rcv_drain() since it may need to complete 11054 * some work. 11055 */ 11056 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11057 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11058 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11059 &tcp->tcp_fused_sigurg_mp)) 11060 return (ret); 11061 } 11062 11063 while ((mp = tcp->tcp_rcv_list) != NULL) { 11064 tcp->tcp_rcv_list = mp->b_next; 11065 mp->b_next = NULL; 11066 #ifdef DEBUG 11067 cnt += msgdsize(mp); 11068 #endif 11069 /* Does this need SSL processing first? */ 11070 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11071 tcp_kssl_input(tcp, mp); 11072 continue; 11073 } 11074 putnext(q, mp); 11075 } 11076 ASSERT(cnt == tcp->tcp_rcv_cnt); 11077 tcp->tcp_rcv_last_head = NULL; 11078 tcp->tcp_rcv_last_tail = NULL; 11079 tcp->tcp_rcv_cnt = 0; 11080 11081 /* Learn the latest rwnd information that we sent to the other side. */ 11082 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11083 << tcp->tcp_rcv_ws; 11084 /* This is peer's calculated send window (our receive window). */ 11085 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11086 /* 11087 * Increase the receive window to max. But we need to do receiver 11088 * SWS avoidance. This means that we need to check the increase of 11089 * of receive window is at least 1 MSS. 11090 */ 11091 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11092 /* 11093 * If the window that the other side knows is less than max 11094 * deferred acks segments, send an update immediately. 11095 */ 11096 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11097 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11098 ret = TH_ACK_NEEDED; 11099 } 11100 tcp->tcp_rwnd = q->q_hiwat; 11101 } 11102 /* No need for the push timer now. */ 11103 if (tcp->tcp_push_tid != 0) { 11104 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11105 tcp->tcp_push_tid = 0; 11106 } 11107 return (ret); 11108 } 11109 11110 /* 11111 * Queue data on tcp_rcv_list which is a b_next chain. 11112 * tcp_rcv_last_head/tail is the last element of this chain. 11113 * Each element of the chain is a b_cont chain. 11114 * 11115 * M_DATA messages are added to the current element. 11116 * Other messages are added as new (b_next) elements. 11117 */ 11118 void 11119 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11120 { 11121 ASSERT(seg_len == msgdsize(mp)); 11122 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11123 11124 if (tcp->tcp_rcv_list == NULL) { 11125 ASSERT(tcp->tcp_rcv_last_head == NULL); 11126 tcp->tcp_rcv_list = mp; 11127 tcp->tcp_rcv_last_head = mp; 11128 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11129 tcp->tcp_rcv_last_tail->b_cont = mp; 11130 } else { 11131 tcp->tcp_rcv_last_head->b_next = mp; 11132 tcp->tcp_rcv_last_head = mp; 11133 } 11134 11135 while (mp->b_cont) 11136 mp = mp->b_cont; 11137 11138 tcp->tcp_rcv_last_tail = mp; 11139 tcp->tcp_rcv_cnt += seg_len; 11140 tcp->tcp_rwnd -= seg_len; 11141 } 11142 11143 /* 11144 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11145 * 11146 * This is the default entry function into TCP on the read side. TCP is 11147 * always entered via squeue i.e. using squeue's for mutual exclusion. 11148 * When classifier does a lookup to find the tcp, it also puts a reference 11149 * on the conn structure associated so the tcp is guaranteed to exist 11150 * when we come here. We still need to check the state because it might 11151 * as well has been closed. The squeue processing function i.e. squeue_enter, 11152 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11153 * CONN_DEC_REF. 11154 * 11155 * Apart from the default entry point, IP also sends packets directly to 11156 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11157 * connections. 11158 */ 11159 void 11160 tcp_input(void *arg, mblk_t *mp, void *arg2) 11161 { 11162 conn_t *connp = (conn_t *)arg; 11163 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11164 11165 /* arg2 is the sqp */ 11166 ASSERT(arg2 != NULL); 11167 ASSERT(mp != NULL); 11168 11169 /* 11170 * Don't accept any input on a closed tcp as this TCP logically does 11171 * not exist on the system. Don't proceed further with this TCP. 11172 * For eg. this packet could trigger another close of this tcp 11173 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11174 * tcp_clean_death / tcp_closei_local must be called at most once 11175 * on a TCP. In this case we need to refeed the packet into the 11176 * classifier and figure out where the packet should go. Need to 11177 * preserve the recv_ill somehow. Until we figure that out, for 11178 * now just drop the packet if we can't classify the packet. 11179 */ 11180 if (tcp->tcp_state == TCPS_CLOSED || 11181 tcp->tcp_state == TCPS_BOUND) { 11182 conn_t *new_connp; 11183 11184 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11185 if (new_connp != NULL) { 11186 tcp_reinput(new_connp, mp, arg2); 11187 return; 11188 } 11189 /* We failed to classify. For now just drop the packet */ 11190 freemsg(mp); 11191 return; 11192 } 11193 11194 if (DB_TYPE(mp) == M_DATA) 11195 tcp_rput_data(connp, mp, arg2); 11196 else 11197 tcp_rput_common(tcp, mp); 11198 } 11199 11200 /* 11201 * The read side put procedure. 11202 * The packets passed up by ip are assume to be aligned according to 11203 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11204 */ 11205 static void 11206 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11207 { 11208 /* 11209 * tcp_rput_data() does not expect M_CTL except for the case 11210 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11211 * type. Need to make sure that any other M_CTLs don't make 11212 * it to tcp_rput_data since it is not expecting any and doesn't 11213 * check for it. 11214 */ 11215 if (DB_TYPE(mp) == M_CTL) { 11216 switch (*(uint32_t *)(mp->b_rptr)) { 11217 case TCP_IOC_ABORT_CONN: 11218 /* 11219 * Handle connection abort request. 11220 */ 11221 tcp_ioctl_abort_handler(tcp, mp); 11222 return; 11223 case IPSEC_IN: 11224 /* 11225 * Only secure icmp arrive in TCP and they 11226 * don't go through data path. 11227 */ 11228 tcp_icmp_error(tcp, mp); 11229 return; 11230 case IN_PKTINFO: 11231 /* 11232 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11233 * sockets that are receiving IPv4 traffic. tcp 11234 */ 11235 ASSERT(tcp->tcp_family == AF_INET6); 11236 ASSERT(tcp->tcp_ipv6_recvancillary & 11237 TCP_IPV6_RECVPKTINFO); 11238 tcp_rput_data(tcp->tcp_connp, mp, 11239 tcp->tcp_connp->conn_sqp); 11240 return; 11241 case MDT_IOC_INFO_UPDATE: 11242 /* 11243 * Handle Multidata information update; the 11244 * following routine will free the message. 11245 */ 11246 if (tcp->tcp_connp->conn_mdt_ok) { 11247 tcp_mdt_update(tcp, 11248 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11249 B_FALSE); 11250 } 11251 freemsg(mp); 11252 return; 11253 default: 11254 break; 11255 } 11256 } 11257 11258 /* No point processing the message if tcp is already closed */ 11259 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11260 freemsg(mp); 11261 return; 11262 } 11263 11264 tcp_rput_other(tcp, mp); 11265 } 11266 11267 11268 /* The minimum of smoothed mean deviation in RTO calculation. */ 11269 #define TCP_SD_MIN 400 11270 11271 /* 11272 * Set RTO for this connection. The formula is from Jacobson and Karels' 11273 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11274 * are the same as those in Appendix A.2 of that paper. 11275 * 11276 * m = new measurement 11277 * sa = smoothed RTT average (8 * average estimates). 11278 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11279 */ 11280 static void 11281 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11282 { 11283 long m = TICK_TO_MSEC(rtt); 11284 clock_t sa = tcp->tcp_rtt_sa; 11285 clock_t sv = tcp->tcp_rtt_sd; 11286 clock_t rto; 11287 11288 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11289 tcp->tcp_rtt_update++; 11290 11291 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11292 if (sa != 0) { 11293 /* 11294 * Update average estimator: 11295 * new rtt = 7/8 old rtt + 1/8 Error 11296 */ 11297 11298 /* m is now Error in estimate. */ 11299 m -= sa >> 3; 11300 if ((sa += m) <= 0) { 11301 /* 11302 * Don't allow the smoothed average to be negative. 11303 * We use 0 to denote reinitialization of the 11304 * variables. 11305 */ 11306 sa = 1; 11307 } 11308 11309 /* 11310 * Update deviation estimator: 11311 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11312 */ 11313 if (m < 0) 11314 m = -m; 11315 m -= sv >> 2; 11316 sv += m; 11317 } else { 11318 /* 11319 * This follows BSD's implementation. So the reinitialized 11320 * RTO is 3 * m. We cannot go less than 2 because if the 11321 * link is bandwidth dominated, doubling the window size 11322 * during slow start means doubling the RTT. We want to be 11323 * more conservative when we reinitialize our estimates. 3 11324 * is just a convenient number. 11325 */ 11326 sa = m << 3; 11327 sv = m << 1; 11328 } 11329 if (sv < TCP_SD_MIN) { 11330 /* 11331 * We do not know that if sa captures the delay ACK 11332 * effect as in a long train of segments, a receiver 11333 * does not delay its ACKs. So set the minimum of sv 11334 * to be TCP_SD_MIN, which is default to 400 ms, twice 11335 * of BSD DATO. That means the minimum of mean 11336 * deviation is 100 ms. 11337 * 11338 */ 11339 sv = TCP_SD_MIN; 11340 } 11341 tcp->tcp_rtt_sa = sa; 11342 tcp->tcp_rtt_sd = sv; 11343 /* 11344 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11345 * 11346 * Add tcp_rexmit_interval extra in case of extreme environment 11347 * where the algorithm fails to work. The default value of 11348 * tcp_rexmit_interval_extra should be 0. 11349 * 11350 * As we use a finer grained clock than BSD and update 11351 * RTO for every ACKs, add in another .25 of RTT to the 11352 * deviation of RTO to accomodate burstiness of 1/4 of 11353 * window size. 11354 */ 11355 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11356 11357 if (rto > tcp_rexmit_interval_max) { 11358 tcp->tcp_rto = tcp_rexmit_interval_max; 11359 } else if (rto < tcp_rexmit_interval_min) { 11360 tcp->tcp_rto = tcp_rexmit_interval_min; 11361 } else { 11362 tcp->tcp_rto = rto; 11363 } 11364 11365 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11366 tcp->tcp_timer_backoff = 0; 11367 } 11368 11369 /* 11370 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11371 * send queue which starts at the given seq. no. 11372 * 11373 * Parameters: 11374 * tcp_t *tcp: the tcp instance pointer. 11375 * uint32_t seq: the starting seq. no of the requested segment. 11376 * int32_t *off: after the execution, *off will be the offset to 11377 * the returned mblk which points to the requested seq no. 11378 * It is the caller's responsibility to send in a non-null off. 11379 * 11380 * Return: 11381 * A mblk_t pointer pointing to the requested segment in send queue. 11382 */ 11383 static mblk_t * 11384 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11385 { 11386 int32_t cnt; 11387 mblk_t *mp; 11388 11389 /* Defensive coding. Make sure we don't send incorrect data. */ 11390 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11391 return (NULL); 11392 11393 cnt = seq - tcp->tcp_suna; 11394 mp = tcp->tcp_xmit_head; 11395 while (cnt > 0 && mp != NULL) { 11396 cnt -= mp->b_wptr - mp->b_rptr; 11397 if (cnt < 0) { 11398 cnt += mp->b_wptr - mp->b_rptr; 11399 break; 11400 } 11401 mp = mp->b_cont; 11402 } 11403 ASSERT(mp != NULL); 11404 *off = cnt; 11405 return (mp); 11406 } 11407 11408 /* 11409 * This function handles all retransmissions if SACK is enabled for this 11410 * connection. First it calculates how many segments can be retransmitted 11411 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11412 * segments. A segment is eligible if sack_cnt for that segment is greater 11413 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11414 * all eligible segments, it checks to see if TCP can send some new segments 11415 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11416 * 11417 * Parameters: 11418 * tcp_t *tcp: the tcp structure of the connection. 11419 * uint_t *flags: in return, appropriate value will be set for 11420 * tcp_rput_data(). 11421 */ 11422 static void 11423 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11424 { 11425 notsack_blk_t *notsack_blk; 11426 int32_t usable_swnd; 11427 int32_t mss; 11428 uint32_t seg_len; 11429 mblk_t *xmit_mp; 11430 11431 ASSERT(tcp->tcp_sack_info != NULL); 11432 ASSERT(tcp->tcp_notsack_list != NULL); 11433 ASSERT(tcp->tcp_rexmit == B_FALSE); 11434 11435 /* Defensive coding in case there is a bug... */ 11436 if (tcp->tcp_notsack_list == NULL) { 11437 return; 11438 } 11439 notsack_blk = tcp->tcp_notsack_list; 11440 mss = tcp->tcp_mss; 11441 11442 /* 11443 * Limit the num of outstanding data in the network to be 11444 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11445 */ 11446 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11447 11448 /* At least retransmit 1 MSS of data. */ 11449 if (usable_swnd <= 0) { 11450 usable_swnd = mss; 11451 } 11452 11453 /* Make sure no new RTT samples will be taken. */ 11454 tcp->tcp_csuna = tcp->tcp_snxt; 11455 11456 notsack_blk = tcp->tcp_notsack_list; 11457 while (usable_swnd > 0) { 11458 mblk_t *snxt_mp, *tmp_mp; 11459 tcp_seq begin = tcp->tcp_sack_snxt; 11460 tcp_seq end; 11461 int32_t off; 11462 11463 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11464 if (SEQ_GT(notsack_blk->end, begin) && 11465 (notsack_blk->sack_cnt >= 11466 tcp_dupack_fast_retransmit)) { 11467 end = notsack_blk->end; 11468 if (SEQ_LT(begin, notsack_blk->begin)) { 11469 begin = notsack_blk->begin; 11470 } 11471 break; 11472 } 11473 } 11474 /* 11475 * All holes are filled. Manipulate tcp_cwnd to send more 11476 * if we can. Note that after the SACK recovery, tcp_cwnd is 11477 * set to tcp_cwnd_ssthresh. 11478 */ 11479 if (notsack_blk == NULL) { 11480 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11481 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11482 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11483 ASSERT(tcp->tcp_cwnd > 0); 11484 return; 11485 } else { 11486 usable_swnd = usable_swnd / mss; 11487 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11488 MAX(usable_swnd * mss, mss); 11489 *flags |= TH_XMIT_NEEDED; 11490 return; 11491 } 11492 } 11493 11494 /* 11495 * Note that we may send more than usable_swnd allows here 11496 * because of round off, but no more than 1 MSS of data. 11497 */ 11498 seg_len = end - begin; 11499 if (seg_len > mss) 11500 seg_len = mss; 11501 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11502 ASSERT(snxt_mp != NULL); 11503 /* This should not happen. Defensive coding again... */ 11504 if (snxt_mp == NULL) { 11505 return; 11506 } 11507 11508 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11509 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11510 if (xmit_mp == NULL) 11511 return; 11512 11513 usable_swnd -= seg_len; 11514 tcp->tcp_pipe += seg_len; 11515 tcp->tcp_sack_snxt = begin + seg_len; 11516 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 11517 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11518 11519 /* 11520 * Update the send timestamp to avoid false retransmission. 11521 */ 11522 snxt_mp->b_prev = (mblk_t *)lbolt; 11523 11524 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11525 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 11526 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 11527 /* 11528 * Update tcp_rexmit_max to extend this SACK recovery phase. 11529 * This happens when new data sent during fast recovery is 11530 * also lost. If TCP retransmits those new data, it needs 11531 * to extend SACK recover phase to avoid starting another 11532 * fast retransmit/recovery unnecessarily. 11533 */ 11534 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11535 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11536 } 11537 } 11538 } 11539 11540 /* 11541 * This function handles policy checking at TCP level for non-hard_bound/ 11542 * detached connections. 11543 */ 11544 static boolean_t 11545 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11546 boolean_t secure, boolean_t mctl_present) 11547 { 11548 ipsec_latch_t *ipl = NULL; 11549 ipsec_action_t *act = NULL; 11550 mblk_t *data_mp; 11551 ipsec_in_t *ii; 11552 const char *reason; 11553 kstat_named_t *counter; 11554 11555 ASSERT(mctl_present || !secure); 11556 11557 ASSERT((ipha == NULL && ip6h != NULL) || 11558 (ip6h == NULL && ipha != NULL)); 11559 11560 /* 11561 * We don't necessarily have an ipsec_in_act action to verify 11562 * policy because of assymetrical policy where we have only 11563 * outbound policy and no inbound policy (possible with global 11564 * policy). 11565 */ 11566 if (!secure) { 11567 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 11568 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 11569 return (B_TRUE); 11570 ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, 11571 "tcp_check_policy", ipha, ip6h, secure); 11572 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11573 &ipdrops_tcp_clear, &tcp_dropper); 11574 return (B_FALSE); 11575 } 11576 11577 /* 11578 * We have a secure packet. 11579 */ 11580 if (act == NULL) { 11581 ipsec_log_policy_failure(tcp->tcp_wq, 11582 IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, 11583 secure); 11584 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11585 &ipdrops_tcp_secure, &tcp_dropper); 11586 return (B_FALSE); 11587 } 11588 11589 /* 11590 * XXX This whole routine is currently incorrect. ipl should 11591 * be set to the latch pointer, but is currently not set, so 11592 * we initialize it to NULL to avoid picking up random garbage. 11593 */ 11594 if (ipl == NULL) 11595 return (B_TRUE); 11596 11597 data_mp = first_mp->b_cont; 11598 11599 ii = (ipsec_in_t *)first_mp->b_rptr; 11600 11601 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 11602 &counter)) { 11603 BUMP_MIB(&ip_mib, ipsecInSucceeded); 11604 return (B_TRUE); 11605 } 11606 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 11607 "tcp inbound policy mismatch: %s, packet dropped\n", 11608 reason); 11609 BUMP_MIB(&ip_mib, ipsecInFailed); 11610 11611 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 11612 return (B_FALSE); 11613 } 11614 11615 /* 11616 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 11617 * retransmission after a timeout. 11618 * 11619 * To limit the number of duplicate segments, we limit the number of segment 11620 * to be sent in one time to tcp_snd_burst, the burst variable. 11621 */ 11622 static void 11623 tcp_ss_rexmit(tcp_t *tcp) 11624 { 11625 uint32_t snxt; 11626 uint32_t smax; 11627 int32_t win; 11628 int32_t mss; 11629 int32_t off; 11630 int32_t burst = tcp->tcp_snd_burst; 11631 mblk_t *snxt_mp; 11632 11633 /* 11634 * Note that tcp_rexmit can be set even though TCP has retransmitted 11635 * all unack'ed segments. 11636 */ 11637 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 11638 smax = tcp->tcp_rexmit_max; 11639 snxt = tcp->tcp_rexmit_nxt; 11640 if (SEQ_LT(snxt, tcp->tcp_suna)) { 11641 snxt = tcp->tcp_suna; 11642 } 11643 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 11644 win -= snxt - tcp->tcp_suna; 11645 mss = tcp->tcp_mss; 11646 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 11647 11648 while (SEQ_LT(snxt, smax) && (win > 0) && 11649 (burst > 0) && (snxt_mp != NULL)) { 11650 mblk_t *xmit_mp; 11651 mblk_t *old_snxt_mp = snxt_mp; 11652 uint32_t cnt = mss; 11653 11654 if (win < cnt) { 11655 cnt = win; 11656 } 11657 if (SEQ_GT(snxt + cnt, smax)) { 11658 cnt = smax - snxt; 11659 } 11660 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 11661 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 11662 if (xmit_mp == NULL) 11663 return; 11664 11665 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11666 11667 snxt += cnt; 11668 win -= cnt; 11669 /* 11670 * Update the send timestamp to avoid false 11671 * retransmission. 11672 */ 11673 old_snxt_mp->b_prev = (mblk_t *)lbolt; 11674 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11675 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 11676 11677 tcp->tcp_rexmit_nxt = snxt; 11678 burst--; 11679 } 11680 /* 11681 * If we have transmitted all we have at the time 11682 * we started the retranmission, we can leave 11683 * the rest of the job to tcp_wput_data(). But we 11684 * need to check the send window first. If the 11685 * win is not 0, go on with tcp_wput_data(). 11686 */ 11687 if (SEQ_LT(snxt, smax) || win == 0) { 11688 return; 11689 } 11690 } 11691 /* Only call tcp_wput_data() if there is data to be sent. */ 11692 if (tcp->tcp_unsent) { 11693 tcp_wput_data(tcp, NULL, B_FALSE); 11694 } 11695 } 11696 11697 /* 11698 * Process all TCP option in SYN segment. Note that this function should 11699 * be called after tcp_adapt_ire() is called so that the necessary info 11700 * from IRE is already set in the tcp structure. 11701 * 11702 * This function sets up the correct tcp_mss value according to the 11703 * MSS option value and our header size. It also sets up the window scale 11704 * and timestamp values, and initialize SACK info blocks. But it does not 11705 * change receive window size after setting the tcp_mss value. The caller 11706 * should do the appropriate change. 11707 */ 11708 void 11709 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 11710 { 11711 int options; 11712 tcp_opt_t tcpopt; 11713 uint32_t mss_max; 11714 char *tmp_tcph; 11715 11716 tcpopt.tcp = NULL; 11717 options = tcp_parse_options(tcph, &tcpopt); 11718 11719 /* 11720 * Process MSS option. Note that MSS option value does not account 11721 * for IP or TCP options. This means that it is equal to MTU - minimum 11722 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 11723 * IPv6. 11724 */ 11725 if (!(options & TCP_OPT_MSS_PRESENT)) { 11726 if (tcp->tcp_ipversion == IPV4_VERSION) 11727 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 11728 else 11729 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 11730 } else { 11731 if (tcp->tcp_ipversion == IPV4_VERSION) 11732 mss_max = tcp_mss_max_ipv4; 11733 else 11734 mss_max = tcp_mss_max_ipv6; 11735 if (tcpopt.tcp_opt_mss < tcp_mss_min) 11736 tcpopt.tcp_opt_mss = tcp_mss_min; 11737 else if (tcpopt.tcp_opt_mss > mss_max) 11738 tcpopt.tcp_opt_mss = mss_max; 11739 } 11740 11741 /* Process Window Scale option. */ 11742 if (options & TCP_OPT_WSCALE_PRESENT) { 11743 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 11744 tcp->tcp_snd_ws_ok = B_TRUE; 11745 } else { 11746 tcp->tcp_snd_ws = B_FALSE; 11747 tcp->tcp_snd_ws_ok = B_FALSE; 11748 tcp->tcp_rcv_ws = B_FALSE; 11749 } 11750 11751 /* Process Timestamp option. */ 11752 if ((options & TCP_OPT_TSTAMP_PRESENT) && 11753 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 11754 tmp_tcph = (char *)tcp->tcp_tcph; 11755 11756 tcp->tcp_snd_ts_ok = B_TRUE; 11757 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 11758 tcp->tcp_last_rcv_lbolt = lbolt64; 11759 ASSERT(OK_32PTR(tmp_tcph)); 11760 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 11761 11762 /* Fill in our template header with basic timestamp option. */ 11763 tmp_tcph += tcp->tcp_tcp_hdr_len; 11764 tmp_tcph[0] = TCPOPT_NOP; 11765 tmp_tcph[1] = TCPOPT_NOP; 11766 tmp_tcph[2] = TCPOPT_TSTAMP; 11767 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 11768 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 11769 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 11770 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 11771 } else { 11772 tcp->tcp_snd_ts_ok = B_FALSE; 11773 } 11774 11775 /* 11776 * Process SACK options. If SACK is enabled for this connection, 11777 * then allocate the SACK info structure. Note the following ways 11778 * when tcp_snd_sack_ok is set to true. 11779 * 11780 * For active connection: in tcp_adapt_ire() called in 11781 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 11782 * is checked. 11783 * 11784 * For passive connection: in tcp_adapt_ire() called in 11785 * tcp_accept_comm(). 11786 * 11787 * That's the reason why the extra TCP_IS_DETACHED() check is there. 11788 * That check makes sure that if we did not send a SACK OK option, 11789 * we will not enable SACK for this connection even though the other 11790 * side sends us SACK OK option. For active connection, the SACK 11791 * info structure has already been allocated. So we need to free 11792 * it if SACK is disabled. 11793 */ 11794 if ((options & TCP_OPT_SACK_OK_PRESENT) && 11795 (tcp->tcp_snd_sack_ok || 11796 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 11797 /* This should be true only in the passive case. */ 11798 if (tcp->tcp_sack_info == NULL) { 11799 ASSERT(TCP_IS_DETACHED(tcp)); 11800 tcp->tcp_sack_info = 11801 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 11802 } 11803 if (tcp->tcp_sack_info == NULL) { 11804 tcp->tcp_snd_sack_ok = B_FALSE; 11805 } else { 11806 tcp->tcp_snd_sack_ok = B_TRUE; 11807 if (tcp->tcp_snd_ts_ok) { 11808 tcp->tcp_max_sack_blk = 3; 11809 } else { 11810 tcp->tcp_max_sack_blk = 4; 11811 } 11812 } 11813 } else { 11814 /* 11815 * Resetting tcp_snd_sack_ok to B_FALSE so that 11816 * no SACK info will be used for this 11817 * connection. This assumes that SACK usage 11818 * permission is negotiated. This may need 11819 * to be changed once this is clarified. 11820 */ 11821 if (tcp->tcp_sack_info != NULL) { 11822 ASSERT(tcp->tcp_notsack_list == NULL); 11823 kmem_cache_free(tcp_sack_info_cache, 11824 tcp->tcp_sack_info); 11825 tcp->tcp_sack_info = NULL; 11826 } 11827 tcp->tcp_snd_sack_ok = B_FALSE; 11828 } 11829 11830 /* 11831 * Now we know the exact TCP/IP header length, subtract 11832 * that from tcp_mss to get our side's MSS. 11833 */ 11834 tcp->tcp_mss -= tcp->tcp_hdr_len; 11835 /* 11836 * Here we assume that the other side's header size will be equal to 11837 * our header size. We calculate the real MSS accordingly. Need to 11838 * take into additional stuffs IPsec puts in. 11839 * 11840 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 11841 */ 11842 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 11843 ((tcp->tcp_ipversion == IPV4_VERSION ? 11844 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 11845 11846 /* 11847 * Set MSS to the smaller one of both ends of the connection. 11848 * We should not have called tcp_mss_set() before, but our 11849 * side of the MSS should have been set to a proper value 11850 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 11851 * STREAM head parameters properly. 11852 * 11853 * If we have a larger-than-16-bit window but the other side 11854 * didn't want to do window scale, tcp_rwnd_set() will take 11855 * care of that. 11856 */ 11857 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 11858 } 11859 11860 /* 11861 * Sends the T_CONN_IND to the listener. The caller calls this 11862 * functions via squeue to get inside the listener's perimeter 11863 * once the 3 way hand shake is done a T_CONN_IND needs to be 11864 * sent. As an optimization, the caller can call this directly 11865 * if listener's perimeter is same as eager's. 11866 */ 11867 /* ARGSUSED */ 11868 void 11869 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 11870 { 11871 conn_t *lconnp = (conn_t *)arg; 11872 tcp_t *listener = lconnp->conn_tcp; 11873 tcp_t *tcp; 11874 struct T_conn_ind *conn_ind; 11875 ipaddr_t *addr_cache; 11876 boolean_t need_send_conn_ind = B_FALSE; 11877 11878 /* retrieve the eager */ 11879 conn_ind = (struct T_conn_ind *)mp->b_rptr; 11880 ASSERT(conn_ind->OPT_offset != 0 && 11881 conn_ind->OPT_length == sizeof (intptr_t)); 11882 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 11883 conn_ind->OPT_length); 11884 11885 /* 11886 * TLI/XTI applications will get confused by 11887 * sending eager as an option since it violates 11888 * the option semantics. So remove the eager as 11889 * option since TLI/XTI app doesn't need it anyway. 11890 */ 11891 if (!TCP_IS_SOCKET(listener)) { 11892 conn_ind->OPT_length = 0; 11893 conn_ind->OPT_offset = 0; 11894 } 11895 if (listener->tcp_state == TCPS_CLOSED || 11896 TCP_IS_DETACHED(listener)) { 11897 /* 11898 * If listener has closed, it would have caused a 11899 * a cleanup/blowoff to happen for the eager. We 11900 * just need to return. 11901 */ 11902 freemsg(mp); 11903 return; 11904 } 11905 11906 11907 /* 11908 * if the conn_req_q is full defer passing up the 11909 * T_CONN_IND until space is availabe after t_accept() 11910 * processing 11911 */ 11912 mutex_enter(&listener->tcp_eager_lock); 11913 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 11914 tcp_t *tail; 11915 11916 /* 11917 * The eager already has an extra ref put in tcp_rput_data 11918 * so that it stays till accept comes back even though it 11919 * might get into TCPS_CLOSED as a result of a TH_RST etc. 11920 */ 11921 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 11922 listener->tcp_conn_req_cnt_q0--; 11923 listener->tcp_conn_req_cnt_q++; 11924 11925 /* Move from SYN_RCVD to ESTABLISHED list */ 11926 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 11927 tcp->tcp_eager_prev_q0; 11928 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 11929 tcp->tcp_eager_next_q0; 11930 tcp->tcp_eager_prev_q0 = NULL; 11931 tcp->tcp_eager_next_q0 = NULL; 11932 11933 /* 11934 * Insert at end of the queue because sockfs 11935 * sends down T_CONN_RES in chronological 11936 * order. Leaving the older conn indications 11937 * at front of the queue helps reducing search 11938 * time. 11939 */ 11940 tail = listener->tcp_eager_last_q; 11941 if (tail != NULL) 11942 tail->tcp_eager_next_q = tcp; 11943 else 11944 listener->tcp_eager_next_q = tcp; 11945 listener->tcp_eager_last_q = tcp; 11946 tcp->tcp_eager_next_q = NULL; 11947 /* 11948 * Delay sending up the T_conn_ind until we are 11949 * done with the eager. Once we have have sent up 11950 * the T_conn_ind, the accept can potentially complete 11951 * any time and release the refhold we have on the eager. 11952 */ 11953 need_send_conn_ind = B_TRUE; 11954 } else { 11955 /* 11956 * Defer connection on q0 and set deferred 11957 * connection bit true 11958 */ 11959 tcp->tcp_conn_def_q0 = B_TRUE; 11960 11961 /* take tcp out of q0 ... */ 11962 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 11963 tcp->tcp_eager_next_q0; 11964 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 11965 tcp->tcp_eager_prev_q0; 11966 11967 /* ... and place it at the end of q0 */ 11968 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 11969 tcp->tcp_eager_next_q0 = listener; 11970 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 11971 listener->tcp_eager_prev_q0 = tcp; 11972 tcp->tcp_conn.tcp_eager_conn_ind = mp; 11973 } 11974 11975 /* we have timed out before */ 11976 if (tcp->tcp_syn_rcvd_timeout != 0) { 11977 tcp->tcp_syn_rcvd_timeout = 0; 11978 listener->tcp_syn_rcvd_timeout--; 11979 if (listener->tcp_syn_defense && 11980 listener->tcp_syn_rcvd_timeout <= 11981 (tcp_conn_req_max_q0 >> 5) && 11982 10*MINUTES < TICK_TO_MSEC(lbolt64 - 11983 listener->tcp_last_rcv_lbolt)) { 11984 /* 11985 * Turn off the defense mode if we 11986 * believe the SYN attack is over. 11987 */ 11988 listener->tcp_syn_defense = B_FALSE; 11989 if (listener->tcp_ip_addr_cache) { 11990 kmem_free((void *)listener->tcp_ip_addr_cache, 11991 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 11992 listener->tcp_ip_addr_cache = NULL; 11993 } 11994 } 11995 } 11996 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 11997 if (addr_cache != NULL) { 11998 /* 11999 * We have finished a 3-way handshake with this 12000 * remote host. This proves the IP addr is good. 12001 * Cache it! 12002 */ 12003 addr_cache[IP_ADDR_CACHE_HASH( 12004 tcp->tcp_remote)] = tcp->tcp_remote; 12005 } 12006 mutex_exit(&listener->tcp_eager_lock); 12007 if (need_send_conn_ind) 12008 putnext(listener->tcp_rq, mp); 12009 } 12010 12011 mblk_t * 12012 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12013 uint_t *ifindexp, ip6_pkt_t *ippp) 12014 { 12015 in_pktinfo_t *pinfo; 12016 ip6_t *ip6h; 12017 uchar_t *rptr; 12018 mblk_t *first_mp = mp; 12019 boolean_t mctl_present = B_FALSE; 12020 uint_t ifindex = 0; 12021 ip6_pkt_t ipp; 12022 uint_t ipvers; 12023 uint_t ip_hdr_len; 12024 12025 rptr = mp->b_rptr; 12026 ASSERT(OK_32PTR(rptr)); 12027 ASSERT(tcp != NULL); 12028 ipp.ipp_fields = 0; 12029 12030 switch DB_TYPE(mp) { 12031 case M_CTL: 12032 mp = mp->b_cont; 12033 if (mp == NULL) { 12034 freemsg(first_mp); 12035 return (NULL); 12036 } 12037 if (DB_TYPE(mp) != M_DATA) { 12038 freemsg(first_mp); 12039 return (NULL); 12040 } 12041 mctl_present = B_TRUE; 12042 break; 12043 case M_DATA: 12044 break; 12045 default: 12046 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12047 freemsg(mp); 12048 return (NULL); 12049 } 12050 ipvers = IPH_HDR_VERSION(rptr); 12051 if (ipvers == IPV4_VERSION) { 12052 if (tcp == NULL) { 12053 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12054 goto done; 12055 } 12056 12057 ipp.ipp_fields |= IPPF_HOPLIMIT; 12058 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12059 12060 /* 12061 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12062 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12063 */ 12064 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12065 mctl_present) { 12066 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12067 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12068 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12069 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12070 ipp.ipp_fields |= IPPF_IFINDEX; 12071 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12072 ifindex = pinfo->in_pkt_ifindex; 12073 } 12074 freeb(first_mp); 12075 mctl_present = B_FALSE; 12076 } 12077 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12078 } else { 12079 ip6h = (ip6_t *)rptr; 12080 12081 ASSERT(ipvers == IPV6_VERSION); 12082 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12083 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12084 ipp.ipp_hoplimit = ip6h->ip6_hops; 12085 12086 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12087 uint8_t nexthdrp; 12088 12089 /* Look for ifindex information */ 12090 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12091 ip6i_t *ip6i = (ip6i_t *)ip6h; 12092 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12093 BUMP_MIB(&ip_mib, tcpInErrs); 12094 freemsg(first_mp); 12095 return (NULL); 12096 } 12097 12098 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12099 ASSERT(ip6i->ip6i_ifindex != 0); 12100 ipp.ipp_fields |= IPPF_IFINDEX; 12101 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12102 ifindex = ip6i->ip6i_ifindex; 12103 } 12104 rptr = (uchar_t *)&ip6i[1]; 12105 mp->b_rptr = rptr; 12106 if (rptr == mp->b_wptr) { 12107 mblk_t *mp1; 12108 mp1 = mp->b_cont; 12109 freeb(mp); 12110 mp = mp1; 12111 rptr = mp->b_rptr; 12112 } 12113 if (MBLKL(mp) < IPV6_HDR_LEN + 12114 sizeof (tcph_t)) { 12115 BUMP_MIB(&ip_mib, tcpInErrs); 12116 freemsg(first_mp); 12117 return (NULL); 12118 } 12119 ip6h = (ip6_t *)rptr; 12120 } 12121 12122 /* 12123 * Find any potentially interesting extension headers 12124 * as well as the length of the IPv6 + extension 12125 * headers. 12126 */ 12127 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12128 /* Verify if this is a TCP packet */ 12129 if (nexthdrp != IPPROTO_TCP) { 12130 BUMP_MIB(&ip_mib, tcpInErrs); 12131 freemsg(first_mp); 12132 return (NULL); 12133 } 12134 } else { 12135 ip_hdr_len = IPV6_HDR_LEN; 12136 } 12137 } 12138 12139 done: 12140 if (ipversp != NULL) 12141 *ipversp = ipvers; 12142 if (ip_hdr_lenp != NULL) 12143 *ip_hdr_lenp = ip_hdr_len; 12144 if (ippp != NULL) 12145 *ippp = ipp; 12146 if (ifindexp != NULL) 12147 *ifindexp = ifindex; 12148 if (mctl_present) { 12149 freeb(first_mp); 12150 } 12151 return (mp); 12152 } 12153 12154 /* 12155 * Handle M_DATA messages from IP. Its called directly from IP via 12156 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12157 * in this path. 12158 * 12159 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12160 * v4 and v6), we are called through tcp_input() and a M_CTL can 12161 * be present for options but tcp_find_pktinfo() deals with it. We 12162 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12163 * 12164 * The first argument is always the connp/tcp to which the mp belongs. 12165 * There are no exceptions to this rule. The caller has already put 12166 * a reference on this connp/tcp and once tcp_rput_data() returns, 12167 * the squeue will do the refrele. 12168 * 12169 * The TH_SYN for the listener directly go to tcp_conn_request via 12170 * squeue. 12171 * 12172 * sqp: NULL = recursive, sqp != NULL means called from squeue 12173 */ 12174 void 12175 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12176 { 12177 int32_t bytes_acked; 12178 int32_t gap; 12179 mblk_t *mp1; 12180 uint_t flags; 12181 uint32_t new_swnd = 0; 12182 uchar_t *iphdr; 12183 uchar_t *rptr; 12184 int32_t rgap; 12185 uint32_t seg_ack; 12186 int seg_len; 12187 uint_t ip_hdr_len; 12188 uint32_t seg_seq; 12189 tcph_t *tcph; 12190 int urp; 12191 tcp_opt_t tcpopt; 12192 uint_t ipvers; 12193 ip6_pkt_t ipp; 12194 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12195 uint32_t cwnd; 12196 uint32_t add; 12197 int npkt; 12198 int mss; 12199 conn_t *connp = (conn_t *)arg; 12200 squeue_t *sqp = (squeue_t *)arg2; 12201 tcp_t *tcp = connp->conn_tcp; 12202 12203 /* 12204 * RST from fused tcp loopback peer should trigger an unfuse. 12205 */ 12206 if (tcp->tcp_fused) { 12207 TCP_STAT(tcp_fusion_aborted); 12208 tcp_unfuse(tcp); 12209 } 12210 12211 iphdr = mp->b_rptr; 12212 rptr = mp->b_rptr; 12213 ASSERT(OK_32PTR(rptr)); 12214 12215 /* 12216 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12217 * processing here. For rest call tcp_find_pktinfo to fill up the 12218 * necessary information. 12219 */ 12220 if (IPCL_IS_TCP4(connp)) { 12221 ipvers = IPV4_VERSION; 12222 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12223 } else { 12224 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12225 NULL, &ipp); 12226 if (mp == NULL) { 12227 TCP_STAT(tcp_rput_v6_error); 12228 return; 12229 } 12230 iphdr = mp->b_rptr; 12231 rptr = mp->b_rptr; 12232 } 12233 ASSERT(DB_TYPE(mp) == M_DATA); 12234 12235 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12236 seg_seq = ABE32_TO_U32(tcph->th_seq); 12237 seg_ack = ABE32_TO_U32(tcph->th_ack); 12238 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12239 seg_len = (int)(mp->b_wptr - rptr) - 12240 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12241 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12242 do { 12243 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12244 (uintptr_t)INT_MAX); 12245 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12246 } while ((mp1 = mp1->b_cont) != NULL && 12247 mp1->b_datap->db_type == M_DATA); 12248 } 12249 12250 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12251 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12252 seg_len, tcph); 12253 return; 12254 } 12255 12256 if (sqp != NULL) { 12257 /* 12258 * This is the correct place to update tcp_last_recv_time. Note 12259 * that it is also updated for tcp structure that belongs to 12260 * global and listener queues which do not really need updating. 12261 * But that should not cause any harm. And it is updated for 12262 * all kinds of incoming segments, not only for data segments. 12263 */ 12264 tcp->tcp_last_recv_time = lbolt; 12265 } 12266 12267 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12268 12269 BUMP_LOCAL(tcp->tcp_ibsegs); 12270 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12271 12272 if ((flags & TH_URG) && sqp != NULL) { 12273 /* 12274 * TCP can't handle urgent pointers that arrive before 12275 * the connection has been accept()ed since it can't 12276 * buffer OOB data. Discard segment if this happens. 12277 * 12278 * Nor can it reassemble urgent pointers, so discard 12279 * if it's not the next segment expected. 12280 * 12281 * Otherwise, collapse chain into one mblk (discard if 12282 * that fails). This makes sure the headers, retransmitted 12283 * data, and new data all are in the same mblk. 12284 */ 12285 ASSERT(mp != NULL); 12286 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12287 freemsg(mp); 12288 return; 12289 } 12290 /* Update pointers into message */ 12291 iphdr = rptr = mp->b_rptr; 12292 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12293 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12294 /* 12295 * Since we can't handle any data with this urgent 12296 * pointer that is out of sequence, we expunge 12297 * the data. This allows us to still register 12298 * the urgent mark and generate the M_PCSIG, 12299 * which we can do. 12300 */ 12301 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12302 seg_len = 0; 12303 } 12304 } 12305 12306 switch (tcp->tcp_state) { 12307 case TCPS_SYN_SENT: 12308 if (flags & TH_ACK) { 12309 /* 12310 * Note that our stack cannot send data before a 12311 * connection is established, therefore the 12312 * following check is valid. Otherwise, it has 12313 * to be changed. 12314 */ 12315 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12316 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12317 freemsg(mp); 12318 if (flags & TH_RST) 12319 return; 12320 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12321 tcp, seg_ack, 0, TH_RST); 12322 return; 12323 } 12324 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12325 } 12326 if (flags & TH_RST) { 12327 freemsg(mp); 12328 if (flags & TH_ACK) 12329 (void) tcp_clean_death(tcp, 12330 ECONNREFUSED, 13); 12331 return; 12332 } 12333 if (!(flags & TH_SYN)) { 12334 freemsg(mp); 12335 return; 12336 } 12337 12338 /* Process all TCP options. */ 12339 tcp_process_options(tcp, tcph); 12340 /* 12341 * The following changes our rwnd to be a multiple of the 12342 * MIN(peer MSS, our MSS) for performance reason. 12343 */ 12344 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12345 tcp->tcp_mss)); 12346 12347 /* Is the other end ECN capable? */ 12348 if (tcp->tcp_ecn_ok) { 12349 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12350 tcp->tcp_ecn_ok = B_FALSE; 12351 } 12352 } 12353 /* 12354 * Clear ECN flags because it may interfere with later 12355 * processing. 12356 */ 12357 flags &= ~(TH_ECE|TH_CWR); 12358 12359 tcp->tcp_irs = seg_seq; 12360 tcp->tcp_rack = seg_seq; 12361 tcp->tcp_rnxt = seg_seq + 1; 12362 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12363 if (!TCP_IS_DETACHED(tcp)) { 12364 /* Allocate room for SACK options if needed. */ 12365 if (tcp->tcp_snd_sack_ok) { 12366 (void) mi_set_sth_wroff(tcp->tcp_rq, 12367 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12368 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12369 } else { 12370 (void) mi_set_sth_wroff(tcp->tcp_rq, 12371 tcp->tcp_hdr_len + 12372 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12373 } 12374 } 12375 if (flags & TH_ACK) { 12376 /* 12377 * If we can't get the confirmation upstream, pretend 12378 * we didn't even see this one. 12379 * 12380 * XXX: how can we pretend we didn't see it if we 12381 * have updated rnxt et. al. 12382 * 12383 * For loopback we defer sending up the T_CONN_CON 12384 * until after some checks below. 12385 */ 12386 mp1 = NULL; 12387 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12388 tcp->tcp_loopback ? &mp1 : NULL)) { 12389 freemsg(mp); 12390 return; 12391 } 12392 /* SYN was acked - making progress */ 12393 if (tcp->tcp_ipversion == IPV6_VERSION) 12394 tcp->tcp_ip_forward_progress = B_TRUE; 12395 12396 /* One for the SYN */ 12397 tcp->tcp_suna = tcp->tcp_iss + 1; 12398 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12399 tcp->tcp_state = TCPS_ESTABLISHED; 12400 12401 /* 12402 * If SYN was retransmitted, need to reset all 12403 * retransmission info. This is because this 12404 * segment will be treated as a dup ACK. 12405 */ 12406 if (tcp->tcp_rexmit) { 12407 tcp->tcp_rexmit = B_FALSE; 12408 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12409 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12410 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12411 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12412 tcp->tcp_ms_we_have_waited = 0; 12413 12414 /* 12415 * Set tcp_cwnd back to 1 MSS, per 12416 * recommendation from 12417 * draft-floyd-incr-init-win-01.txt, 12418 * Increasing TCP's Initial Window. 12419 */ 12420 tcp->tcp_cwnd = tcp->tcp_mss; 12421 } 12422 12423 tcp->tcp_swl1 = seg_seq; 12424 tcp->tcp_swl2 = seg_ack; 12425 12426 new_swnd = BE16_TO_U16(tcph->th_win); 12427 tcp->tcp_swnd = new_swnd; 12428 if (new_swnd > tcp->tcp_max_swnd) 12429 tcp->tcp_max_swnd = new_swnd; 12430 12431 /* 12432 * Always send the three-way handshake ack immediately 12433 * in order to make the connection complete as soon as 12434 * possible on the accepting host. 12435 */ 12436 flags |= TH_ACK_NEEDED; 12437 12438 /* 12439 * Special case for loopback. At this point we have 12440 * received SYN-ACK from the remote endpoint. In 12441 * order to ensure that both endpoints reach the 12442 * fused state prior to any data exchange, the final 12443 * ACK needs to be sent before we indicate T_CONN_CON 12444 * to the module upstream. 12445 */ 12446 if (tcp->tcp_loopback) { 12447 mblk_t *ack_mp; 12448 12449 ASSERT(!tcp->tcp_unfusable); 12450 ASSERT(mp1 != NULL); 12451 /* 12452 * For loopback, we always get a pure SYN-ACK 12453 * and only need to send back the final ACK 12454 * with no data (this is because the other 12455 * tcp is ours and we don't do T/TCP). This 12456 * final ACK triggers the passive side to 12457 * perform fusion in ESTABLISHED state. 12458 */ 12459 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12460 if (tcp->tcp_ack_tid != 0) { 12461 (void) TCP_TIMER_CANCEL(tcp, 12462 tcp->tcp_ack_tid); 12463 tcp->tcp_ack_tid = 0; 12464 } 12465 TCP_RECORD_TRACE(tcp, ack_mp, 12466 TCP_TRACE_SEND_PKT); 12467 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12468 BUMP_LOCAL(tcp->tcp_obsegs); 12469 BUMP_MIB(&tcp_mib, tcpOutAck); 12470 12471 /* Send up T_CONN_CON */ 12472 putnext(tcp->tcp_rq, mp1); 12473 12474 freemsg(mp); 12475 return; 12476 } 12477 /* 12478 * Forget fusion; we need to handle more 12479 * complex cases below. Send the deferred 12480 * T_CONN_CON message upstream and proceed 12481 * as usual. Mark this tcp as not capable 12482 * of fusion. 12483 */ 12484 TCP_STAT(tcp_fusion_unfusable); 12485 tcp->tcp_unfusable = B_TRUE; 12486 putnext(tcp->tcp_rq, mp1); 12487 } 12488 12489 /* 12490 * Check to see if there is data to be sent. If 12491 * yes, set the transmit flag. Then check to see 12492 * if received data processing needs to be done. 12493 * If not, go straight to xmit_check. This short 12494 * cut is OK as we don't support T/TCP. 12495 */ 12496 if (tcp->tcp_unsent) 12497 flags |= TH_XMIT_NEEDED; 12498 12499 if (seg_len == 0 && !(flags & TH_URG)) { 12500 freemsg(mp); 12501 goto xmit_check; 12502 } 12503 12504 flags &= ~TH_SYN; 12505 seg_seq++; 12506 break; 12507 } 12508 tcp->tcp_state = TCPS_SYN_RCVD; 12509 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 12510 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 12511 if (mp1) { 12512 mblk_setcred(mp1, tcp->tcp_cred); 12513 DB_CPID(mp1) = tcp->tcp_cpid; 12514 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 12515 tcp_send_data(tcp, tcp->tcp_wq, mp1); 12516 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12517 } 12518 freemsg(mp); 12519 return; 12520 case TCPS_SYN_RCVD: 12521 if (flags & TH_ACK) { 12522 /* 12523 * In this state, a SYN|ACK packet is either bogus 12524 * because the other side must be ACKing our SYN which 12525 * indicates it has seen the ACK for their SYN and 12526 * shouldn't retransmit it or we're crossing SYNs 12527 * on active open. 12528 */ 12529 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 12530 freemsg(mp); 12531 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 12532 tcp, seg_ack, 0, TH_RST); 12533 return; 12534 } 12535 /* 12536 * NOTE: RFC 793 pg. 72 says this should be 12537 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 12538 * but that would mean we have an ack that ignored 12539 * our SYN. 12540 */ 12541 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 12542 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12543 freemsg(mp); 12544 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 12545 tcp, seg_ack, 0, TH_RST); 12546 return; 12547 } 12548 } 12549 break; 12550 case TCPS_LISTEN: 12551 /* 12552 * Only a TLI listener can come through this path when a 12553 * acceptor is going back to be a listener and a packet 12554 * for the acceptor hits the classifier. For a socket 12555 * listener, this can never happen because a listener 12556 * can never accept connection on itself and hence a 12557 * socket acceptor can not go back to being a listener. 12558 */ 12559 ASSERT(!TCP_IS_SOCKET(tcp)); 12560 /*FALLTHRU*/ 12561 case TCPS_CLOSED: 12562 case TCPS_BOUND: { 12563 conn_t *new_connp; 12564 12565 new_connp = ipcl_classify(mp, connp->conn_zoneid); 12566 if (new_connp != NULL) { 12567 tcp_reinput(new_connp, mp, connp->conn_sqp); 12568 return; 12569 } 12570 /* We failed to classify. For now just drop the packet */ 12571 freemsg(mp); 12572 return; 12573 } 12574 case TCPS_IDLE: 12575 /* 12576 * Handle the case where the tcp_clean_death() has happened 12577 * on a connection (application hasn't closed yet) but a packet 12578 * was already queued on squeue before tcp_clean_death() 12579 * was processed. Calling tcp_clean_death() twice on same 12580 * connection can result in weird behaviour. 12581 */ 12582 freemsg(mp); 12583 return; 12584 default: 12585 break; 12586 } 12587 12588 /* 12589 * Already on the correct queue/perimeter. 12590 * If this is a detached connection and not an eager 12591 * connection hanging off a listener then new data 12592 * (past the FIN) will cause a reset. 12593 * We do a special check here where it 12594 * is out of the main line, rather than check 12595 * if we are detached every time we see new 12596 * data down below. 12597 */ 12598 if (TCP_IS_DETACHED_NONEAGER(tcp) && 12599 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 12600 BUMP_MIB(&tcp_mib, tcpInClosed); 12601 TCP_RECORD_TRACE(tcp, 12602 mp, TCP_TRACE_RECV_PKT); 12603 12604 freemsg(mp); 12605 /* 12606 * This could be an SSL closure alert. We're detached so just 12607 * acknowledge it this last time. 12608 */ 12609 if (tcp->tcp_kssl_ctx != NULL) { 12610 kssl_release_ctx(tcp->tcp_kssl_ctx); 12611 tcp->tcp_kssl_ctx = NULL; 12612 12613 tcp->tcp_rnxt += seg_len; 12614 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12615 flags |= TH_ACK_NEEDED; 12616 goto ack_check; 12617 } 12618 12619 tcp_xmit_ctl("new data when detached", tcp, 12620 tcp->tcp_snxt, 0, TH_RST); 12621 (void) tcp_clean_death(tcp, EPROTO, 12); 12622 return; 12623 } 12624 12625 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12626 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 12627 new_swnd = BE16_TO_U16(tcph->th_win) << 12628 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 12629 mss = tcp->tcp_mss; 12630 12631 if (tcp->tcp_snd_ts_ok) { 12632 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 12633 /* 12634 * This segment is not acceptable. 12635 * Drop it and send back an ACK. 12636 */ 12637 freemsg(mp); 12638 flags |= TH_ACK_NEEDED; 12639 goto ack_check; 12640 } 12641 } else if (tcp->tcp_snd_sack_ok) { 12642 ASSERT(tcp->tcp_sack_info != NULL); 12643 tcpopt.tcp = tcp; 12644 /* 12645 * SACK info in already updated in tcp_parse_options. Ignore 12646 * all other TCP options... 12647 */ 12648 (void) tcp_parse_options(tcph, &tcpopt); 12649 } 12650 try_again:; 12651 gap = seg_seq - tcp->tcp_rnxt; 12652 rgap = tcp->tcp_rwnd - (gap + seg_len); 12653 /* 12654 * gap is the amount of sequence space between what we expect to see 12655 * and what we got for seg_seq. A positive value for gap means 12656 * something got lost. A negative value means we got some old stuff. 12657 */ 12658 if (gap < 0) { 12659 /* Old stuff present. Is the SYN in there? */ 12660 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 12661 (seg_len != 0)) { 12662 flags &= ~TH_SYN; 12663 seg_seq++; 12664 urp--; 12665 /* Recompute the gaps after noting the SYN. */ 12666 goto try_again; 12667 } 12668 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 12669 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 12670 (seg_len > -gap ? -gap : seg_len)); 12671 /* Remove the old stuff from seg_len. */ 12672 seg_len += gap; 12673 /* 12674 * Anything left? 12675 * Make sure to check for unack'd FIN when rest of data 12676 * has been previously ack'd. 12677 */ 12678 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 12679 /* 12680 * Resets are only valid if they lie within our offered 12681 * window. If the RST bit is set, we just ignore this 12682 * segment. 12683 */ 12684 if (flags & TH_RST) { 12685 freemsg(mp); 12686 return; 12687 } 12688 12689 /* 12690 * The arriving of dup data packets indicate that we 12691 * may have postponed an ack for too long, or the other 12692 * side's RTT estimate is out of shape. Start acking 12693 * more often. 12694 */ 12695 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 12696 tcp->tcp_rack_cnt >= 1 && 12697 tcp->tcp_rack_abs_max > 2) { 12698 tcp->tcp_rack_abs_max--; 12699 } 12700 tcp->tcp_rack_cur_max = 1; 12701 12702 /* 12703 * This segment is "unacceptable". None of its 12704 * sequence space lies within our advertized window. 12705 * 12706 * Adjust seg_len to the original value for tracing. 12707 */ 12708 seg_len -= gap; 12709 if (tcp->tcp_debug) { 12710 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12711 "tcp_rput: unacceptable, gap %d, rgap %d, " 12712 "flags 0x%x, seg_seq %u, seg_ack %u, " 12713 "seg_len %d, rnxt %u, snxt %u, %s", 12714 gap, rgap, flags, seg_seq, seg_ack, 12715 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 12716 tcp_display(tcp, NULL, 12717 DISP_ADDR_AND_PORT)); 12718 } 12719 12720 /* 12721 * Arrange to send an ACK in response to the 12722 * unacceptable segment per RFC 793 page 69. There 12723 * is only one small difference between ours and the 12724 * acceptability test in the RFC - we accept ACK-only 12725 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 12726 * will be generated. 12727 * 12728 * Note that we have to ACK an ACK-only packet at least 12729 * for stacks that send 0-length keep-alives with 12730 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 12731 * section 4.2.3.6. As long as we don't ever generate 12732 * an unacceptable packet in response to an incoming 12733 * packet that is unacceptable, it should not cause 12734 * "ACK wars". 12735 */ 12736 flags |= TH_ACK_NEEDED; 12737 12738 /* 12739 * Continue processing this segment in order to use the 12740 * ACK information it contains, but skip all other 12741 * sequence-number processing. Processing the ACK 12742 * information is necessary in order to 12743 * re-synchronize connections that may have lost 12744 * synchronization. 12745 * 12746 * We clear seg_len and flag fields related to 12747 * sequence number processing as they are not 12748 * to be trusted for an unacceptable segment. 12749 */ 12750 seg_len = 0; 12751 flags &= ~(TH_SYN | TH_FIN | TH_URG); 12752 goto process_ack; 12753 } 12754 12755 /* Fix seg_seq, and chew the gap off the front. */ 12756 seg_seq = tcp->tcp_rnxt; 12757 urp += gap; 12758 do { 12759 mblk_t *mp2; 12760 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 12761 (uintptr_t)UINT_MAX); 12762 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 12763 if (gap > 0) { 12764 mp->b_rptr = mp->b_wptr - gap; 12765 break; 12766 } 12767 mp2 = mp; 12768 mp = mp->b_cont; 12769 freeb(mp2); 12770 } while (gap < 0); 12771 /* 12772 * If the urgent data has already been acknowledged, we 12773 * should ignore TH_URG below 12774 */ 12775 if (urp < 0) 12776 flags &= ~TH_URG; 12777 } 12778 /* 12779 * rgap is the amount of stuff received out of window. A negative 12780 * value is the amount out of window. 12781 */ 12782 if (rgap < 0) { 12783 mblk_t *mp2; 12784 12785 if (tcp->tcp_rwnd == 0) { 12786 BUMP_MIB(&tcp_mib, tcpInWinProbe); 12787 } else { 12788 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 12789 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 12790 } 12791 12792 /* 12793 * seg_len does not include the FIN, so if more than 12794 * just the FIN is out of window, we act like we don't 12795 * see it. (If just the FIN is out of window, rgap 12796 * will be zero and we will go ahead and acknowledge 12797 * the FIN.) 12798 */ 12799 flags &= ~TH_FIN; 12800 12801 /* Fix seg_len and make sure there is something left. */ 12802 seg_len += rgap; 12803 if (seg_len <= 0) { 12804 /* 12805 * Resets are only valid if they lie within our offered 12806 * window. If the RST bit is set, we just ignore this 12807 * segment. 12808 */ 12809 if (flags & TH_RST) { 12810 freemsg(mp); 12811 return; 12812 } 12813 12814 /* Per RFC 793, we need to send back an ACK. */ 12815 flags |= TH_ACK_NEEDED; 12816 12817 /* 12818 * Send SIGURG as soon as possible i.e. even 12819 * if the TH_URG was delivered in a window probe 12820 * packet (which will be unacceptable). 12821 * 12822 * We generate a signal if none has been generated 12823 * for this connection or if this is a new urgent 12824 * byte. Also send a zero-length "unmarked" message 12825 * to inform SIOCATMARK that this is not the mark. 12826 * 12827 * tcp_urp_last_valid is cleared when the T_exdata_ind 12828 * is sent up. This plus the check for old data 12829 * (gap >= 0) handles the wraparound of the sequence 12830 * number space without having to always track the 12831 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 12832 * this max in its rcv_up variable). 12833 * 12834 * This prevents duplicate SIGURGS due to a "late" 12835 * zero-window probe when the T_EXDATA_IND has already 12836 * been sent up. 12837 */ 12838 if ((flags & TH_URG) && 12839 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 12840 tcp->tcp_urp_last))) { 12841 mp1 = allocb(0, BPRI_MED); 12842 if (mp1 == NULL) { 12843 freemsg(mp); 12844 return; 12845 } 12846 if (!TCP_IS_DETACHED(tcp) && 12847 !putnextctl1(tcp->tcp_rq, M_PCSIG, 12848 SIGURG)) { 12849 /* Try again on the rexmit. */ 12850 freemsg(mp1); 12851 freemsg(mp); 12852 return; 12853 } 12854 /* 12855 * If the next byte would be the mark 12856 * then mark with MARKNEXT else mark 12857 * with NOTMARKNEXT. 12858 */ 12859 if (gap == 0 && urp == 0) 12860 mp1->b_flag |= MSGMARKNEXT; 12861 else 12862 mp1->b_flag |= MSGNOTMARKNEXT; 12863 freemsg(tcp->tcp_urp_mark_mp); 12864 tcp->tcp_urp_mark_mp = mp1; 12865 flags |= TH_SEND_URP_MARK; 12866 tcp->tcp_urp_last_valid = B_TRUE; 12867 tcp->tcp_urp_last = urp + seg_seq; 12868 } 12869 /* 12870 * If this is a zero window probe, continue to 12871 * process the ACK part. But we need to set seg_len 12872 * to 0 to avoid data processing. Otherwise just 12873 * drop the segment and send back an ACK. 12874 */ 12875 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 12876 flags &= ~(TH_SYN | TH_URG); 12877 seg_len = 0; 12878 goto process_ack; 12879 } else { 12880 freemsg(mp); 12881 goto ack_check; 12882 } 12883 } 12884 /* Pitch out of window stuff off the end. */ 12885 rgap = seg_len; 12886 mp2 = mp; 12887 do { 12888 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 12889 (uintptr_t)INT_MAX); 12890 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 12891 if (rgap < 0) { 12892 mp2->b_wptr += rgap; 12893 if ((mp1 = mp2->b_cont) != NULL) { 12894 mp2->b_cont = NULL; 12895 freemsg(mp1); 12896 } 12897 break; 12898 } 12899 } while ((mp2 = mp2->b_cont) != NULL); 12900 } 12901 ok:; 12902 /* 12903 * TCP should check ECN info for segments inside the window only. 12904 * Therefore the check should be done here. 12905 */ 12906 if (tcp->tcp_ecn_ok) { 12907 if (flags & TH_CWR) { 12908 tcp->tcp_ecn_echo_on = B_FALSE; 12909 } 12910 /* 12911 * Note that both ECN_CE and CWR can be set in the 12912 * same segment. In this case, we once again turn 12913 * on ECN_ECHO. 12914 */ 12915 if (tcp->tcp_ipversion == IPV4_VERSION) { 12916 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 12917 12918 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 12919 tcp->tcp_ecn_echo_on = B_TRUE; 12920 } 12921 } else { 12922 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 12923 12924 if ((vcf & htonl(IPH_ECN_CE << 20)) == 12925 htonl(IPH_ECN_CE << 20)) { 12926 tcp->tcp_ecn_echo_on = B_TRUE; 12927 } 12928 } 12929 } 12930 12931 /* 12932 * Check whether we can update tcp_ts_recent. This test is 12933 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 12934 * Extensions for High Performance: An Update", Internet Draft. 12935 */ 12936 if (tcp->tcp_snd_ts_ok && 12937 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 12938 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 12939 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12940 tcp->tcp_last_rcv_lbolt = lbolt64; 12941 } 12942 12943 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 12944 /* 12945 * FIN in an out of order segment. We record this in 12946 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 12947 * Clear the FIN so that any check on FIN flag will fail. 12948 * Remember that FIN also counts in the sequence number 12949 * space. So we need to ack out of order FIN only segments. 12950 */ 12951 if (flags & TH_FIN) { 12952 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 12953 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 12954 flags &= ~TH_FIN; 12955 flags |= TH_ACK_NEEDED; 12956 } 12957 if (seg_len > 0) { 12958 /* Fill in the SACK blk list. */ 12959 if (tcp->tcp_snd_sack_ok) { 12960 ASSERT(tcp->tcp_sack_info != NULL); 12961 tcp_sack_insert(tcp->tcp_sack_list, 12962 seg_seq, seg_seq + seg_len, 12963 &(tcp->tcp_num_sack_blk)); 12964 } 12965 12966 /* 12967 * Attempt reassembly and see if we have something 12968 * ready to go. 12969 */ 12970 mp = tcp_reass(tcp, mp, seg_seq); 12971 /* Always ack out of order packets */ 12972 flags |= TH_ACK_NEEDED | TH_PUSH; 12973 if (mp) { 12974 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 12975 (uintptr_t)INT_MAX); 12976 seg_len = mp->b_cont ? msgdsize(mp) : 12977 (int)(mp->b_wptr - mp->b_rptr); 12978 seg_seq = tcp->tcp_rnxt; 12979 /* 12980 * A gap is filled and the seq num and len 12981 * of the gap match that of a previously 12982 * received FIN, put the FIN flag back in. 12983 */ 12984 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 12985 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 12986 flags |= TH_FIN; 12987 tcp->tcp_valid_bits &= 12988 ~TCP_OFO_FIN_VALID; 12989 } 12990 } else { 12991 /* 12992 * Keep going even with NULL mp. 12993 * There may be a useful ACK or something else 12994 * we don't want to miss. 12995 * 12996 * But TCP should not perform fast retransmit 12997 * because of the ack number. TCP uses 12998 * seg_len == 0 to determine if it is a pure 12999 * ACK. And this is not a pure ACK. 13000 */ 13001 seg_len = 0; 13002 ofo_seg = B_TRUE; 13003 } 13004 } 13005 } else if (seg_len > 0) { 13006 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13007 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13008 /* 13009 * If an out of order FIN was received before, and the seq 13010 * num and len of the new segment match that of the FIN, 13011 * put the FIN flag back in. 13012 */ 13013 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13014 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13015 flags |= TH_FIN; 13016 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13017 } 13018 } 13019 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13020 if (flags & TH_RST) { 13021 freemsg(mp); 13022 switch (tcp->tcp_state) { 13023 case TCPS_SYN_RCVD: 13024 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13025 break; 13026 case TCPS_ESTABLISHED: 13027 case TCPS_FIN_WAIT_1: 13028 case TCPS_FIN_WAIT_2: 13029 case TCPS_CLOSE_WAIT: 13030 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13031 break; 13032 case TCPS_CLOSING: 13033 case TCPS_LAST_ACK: 13034 (void) tcp_clean_death(tcp, 0, 16); 13035 break; 13036 default: 13037 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13038 (void) tcp_clean_death(tcp, ENXIO, 17); 13039 break; 13040 } 13041 return; 13042 } 13043 if (flags & TH_SYN) { 13044 /* 13045 * See RFC 793, Page 71 13046 * 13047 * The seq number must be in the window as it should 13048 * be "fixed" above. If it is outside window, it should 13049 * be already rejected. Note that we allow seg_seq to be 13050 * rnxt + rwnd because we want to accept 0 window probe. 13051 */ 13052 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13053 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13054 freemsg(mp); 13055 /* 13056 * If the ACK flag is not set, just use our snxt as the 13057 * seq number of the RST segment. 13058 */ 13059 if (!(flags & TH_ACK)) { 13060 seg_ack = tcp->tcp_snxt; 13061 } 13062 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13063 TH_RST|TH_ACK); 13064 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13065 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13066 return; 13067 } 13068 /* 13069 * urp could be -1 when the urp field in the packet is 0 13070 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13071 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13072 */ 13073 if (flags & TH_URG && urp >= 0) { 13074 if (!tcp->tcp_urp_last_valid || 13075 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13076 /* 13077 * If we haven't generated the signal yet for this 13078 * urgent pointer value, do it now. Also, send up a 13079 * zero-length M_DATA indicating whether or not this is 13080 * the mark. The latter is not needed when a 13081 * T_EXDATA_IND is sent up. However, if there are 13082 * allocation failures this code relies on the sender 13083 * retransmitting and the socket code for determining 13084 * the mark should not block waiting for the peer to 13085 * transmit. Thus, for simplicity we always send up the 13086 * mark indication. 13087 */ 13088 mp1 = allocb(0, BPRI_MED); 13089 if (mp1 == NULL) { 13090 freemsg(mp); 13091 return; 13092 } 13093 if (!TCP_IS_DETACHED(tcp) && 13094 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13095 /* Try again on the rexmit. */ 13096 freemsg(mp1); 13097 freemsg(mp); 13098 return; 13099 } 13100 /* 13101 * Mark with NOTMARKNEXT for now. 13102 * The code below will change this to MARKNEXT 13103 * if we are at the mark. 13104 * 13105 * If there are allocation failures (e.g. in dupmsg 13106 * below) the next time tcp_rput_data sees the urgent 13107 * segment it will send up the MSG*MARKNEXT message. 13108 */ 13109 mp1->b_flag |= MSGNOTMARKNEXT; 13110 freemsg(tcp->tcp_urp_mark_mp); 13111 tcp->tcp_urp_mark_mp = mp1; 13112 flags |= TH_SEND_URP_MARK; 13113 #ifdef DEBUG 13114 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13115 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13116 "last %x, %s", 13117 seg_seq, urp, tcp->tcp_urp_last, 13118 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13119 #endif /* DEBUG */ 13120 tcp->tcp_urp_last_valid = B_TRUE; 13121 tcp->tcp_urp_last = urp + seg_seq; 13122 } else if (tcp->tcp_urp_mark_mp != NULL) { 13123 /* 13124 * An allocation failure prevented the previous 13125 * tcp_rput_data from sending up the allocated 13126 * MSG*MARKNEXT message - send it up this time 13127 * around. 13128 */ 13129 flags |= TH_SEND_URP_MARK; 13130 } 13131 13132 /* 13133 * If the urgent byte is in this segment, make sure that it is 13134 * all by itself. This makes it much easier to deal with the 13135 * possibility of an allocation failure on the T_exdata_ind. 13136 * Note that seg_len is the number of bytes in the segment, and 13137 * urp is the offset into the segment of the urgent byte. 13138 * urp < seg_len means that the urgent byte is in this segment. 13139 */ 13140 if (urp < seg_len) { 13141 if (seg_len != 1) { 13142 uint32_t tmp_rnxt; 13143 /* 13144 * Break it up and feed it back in. 13145 * Re-attach the IP header. 13146 */ 13147 mp->b_rptr = iphdr; 13148 if (urp > 0) { 13149 /* 13150 * There is stuff before the urgent 13151 * byte. 13152 */ 13153 mp1 = dupmsg(mp); 13154 if (!mp1) { 13155 /* 13156 * Trim from urgent byte on. 13157 * The rest will come back. 13158 */ 13159 (void) adjmsg(mp, 13160 urp - seg_len); 13161 tcp_rput_data(connp, 13162 mp, NULL); 13163 return; 13164 } 13165 (void) adjmsg(mp1, urp - seg_len); 13166 /* Feed this piece back in. */ 13167 tmp_rnxt = tcp->tcp_rnxt; 13168 tcp_rput_data(connp, mp1, NULL); 13169 /* 13170 * If the data passed back in was not 13171 * processed (ie: bad ACK) sending 13172 * the remainder back in will cause a 13173 * loop. In this case, drop the 13174 * packet and let the sender try 13175 * sending a good packet. 13176 */ 13177 if (tmp_rnxt == tcp->tcp_rnxt) { 13178 freemsg(mp); 13179 return; 13180 } 13181 } 13182 if (urp != seg_len - 1) { 13183 uint32_t tmp_rnxt; 13184 /* 13185 * There is stuff after the urgent 13186 * byte. 13187 */ 13188 mp1 = dupmsg(mp); 13189 if (!mp1) { 13190 /* 13191 * Trim everything beyond the 13192 * urgent byte. The rest will 13193 * come back. 13194 */ 13195 (void) adjmsg(mp, 13196 urp + 1 - seg_len); 13197 tcp_rput_data(connp, 13198 mp, NULL); 13199 return; 13200 } 13201 (void) adjmsg(mp1, urp + 1 - seg_len); 13202 tmp_rnxt = tcp->tcp_rnxt; 13203 tcp_rput_data(connp, mp1, NULL); 13204 /* 13205 * If the data passed back in was not 13206 * processed (ie: bad ACK) sending 13207 * the remainder back in will cause a 13208 * loop. In this case, drop the 13209 * packet and let the sender try 13210 * sending a good packet. 13211 */ 13212 if (tmp_rnxt == tcp->tcp_rnxt) { 13213 freemsg(mp); 13214 return; 13215 } 13216 } 13217 tcp_rput_data(connp, mp, NULL); 13218 return; 13219 } 13220 /* 13221 * This segment contains only the urgent byte. We 13222 * have to allocate the T_exdata_ind, if we can. 13223 */ 13224 if (!tcp->tcp_urp_mp) { 13225 struct T_exdata_ind *tei; 13226 mp1 = allocb(sizeof (struct T_exdata_ind), 13227 BPRI_MED); 13228 if (!mp1) { 13229 /* 13230 * Sigh... It'll be back. 13231 * Generate any MSG*MARK message now. 13232 */ 13233 freemsg(mp); 13234 seg_len = 0; 13235 if (flags & TH_SEND_URP_MARK) { 13236 13237 13238 ASSERT(tcp->tcp_urp_mark_mp); 13239 tcp->tcp_urp_mark_mp->b_flag &= 13240 ~MSGNOTMARKNEXT; 13241 tcp->tcp_urp_mark_mp->b_flag |= 13242 MSGMARKNEXT; 13243 } 13244 goto ack_check; 13245 } 13246 mp1->b_datap->db_type = M_PROTO; 13247 tei = (struct T_exdata_ind *)mp1->b_rptr; 13248 tei->PRIM_type = T_EXDATA_IND; 13249 tei->MORE_flag = 0; 13250 mp1->b_wptr = (uchar_t *)&tei[1]; 13251 tcp->tcp_urp_mp = mp1; 13252 #ifdef DEBUG 13253 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13254 "tcp_rput: allocated exdata_ind %s", 13255 tcp_display(tcp, NULL, 13256 DISP_PORT_ONLY)); 13257 #endif /* DEBUG */ 13258 /* 13259 * There is no need to send a separate MSG*MARK 13260 * message since the T_EXDATA_IND will be sent 13261 * now. 13262 */ 13263 flags &= ~TH_SEND_URP_MARK; 13264 freemsg(tcp->tcp_urp_mark_mp); 13265 tcp->tcp_urp_mark_mp = NULL; 13266 } 13267 /* 13268 * Now we are all set. On the next putnext upstream, 13269 * tcp_urp_mp will be non-NULL and will get prepended 13270 * to what has to be this piece containing the urgent 13271 * byte. If for any reason we abort this segment below, 13272 * if it comes back, we will have this ready, or it 13273 * will get blown off in close. 13274 */ 13275 } else if (urp == seg_len) { 13276 /* 13277 * The urgent byte is the next byte after this sequence 13278 * number. If there is data it is marked with 13279 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13280 * since it is not needed. Otherwise, if the code 13281 * above just allocated a zero-length tcp_urp_mark_mp 13282 * message, that message is tagged with MSGMARKNEXT. 13283 * Sending up these MSGMARKNEXT messages makes 13284 * SIOCATMARK work correctly even though 13285 * the T_EXDATA_IND will not be sent up until the 13286 * urgent byte arrives. 13287 */ 13288 if (seg_len != 0) { 13289 flags |= TH_MARKNEXT_NEEDED; 13290 freemsg(tcp->tcp_urp_mark_mp); 13291 tcp->tcp_urp_mark_mp = NULL; 13292 flags &= ~TH_SEND_URP_MARK; 13293 } else if (tcp->tcp_urp_mark_mp != NULL) { 13294 flags |= TH_SEND_URP_MARK; 13295 tcp->tcp_urp_mark_mp->b_flag &= 13296 ~MSGNOTMARKNEXT; 13297 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13298 } 13299 #ifdef DEBUG 13300 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13301 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13302 seg_len, flags, 13303 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13304 #endif /* DEBUG */ 13305 } else { 13306 /* Data left until we hit mark */ 13307 #ifdef DEBUG 13308 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13309 "tcp_rput: URP %d bytes left, %s", 13310 urp - seg_len, tcp_display(tcp, NULL, 13311 DISP_PORT_ONLY)); 13312 #endif /* DEBUG */ 13313 } 13314 } 13315 13316 process_ack: 13317 if (!(flags & TH_ACK)) { 13318 freemsg(mp); 13319 goto xmit_check; 13320 } 13321 } 13322 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13323 13324 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13325 tcp->tcp_ip_forward_progress = B_TRUE; 13326 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13327 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13328 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13329 /* 3-way handshake complete - pass up the T_CONN_IND */ 13330 tcp_t *listener = tcp->tcp_listener; 13331 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13332 13333 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13334 /* 13335 * We are here means eager is fine but it can 13336 * get a TH_RST at any point between now and till 13337 * accept completes and disappear. We need to 13338 * ensure that reference to eager is valid after 13339 * we get out of eager's perimeter. So we do 13340 * an extra refhold. 13341 */ 13342 CONN_INC_REF(connp); 13343 13344 /* 13345 * The listener also exists because of the refhold 13346 * done in tcp_conn_request. Its possible that it 13347 * might have closed. We will check that once we 13348 * get inside listeners context. 13349 */ 13350 CONN_INC_REF(listener->tcp_connp); 13351 if (listener->tcp_connp->conn_sqp == 13352 connp->conn_sqp) { 13353 tcp_send_conn_ind(listener->tcp_connp, mp, 13354 listener->tcp_connp->conn_sqp); 13355 CONN_DEC_REF(listener->tcp_connp); 13356 } else if (!tcp->tcp_loopback) { 13357 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13358 tcp_send_conn_ind, 13359 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13360 } else { 13361 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13362 tcp_send_conn_ind, listener->tcp_connp, 13363 SQTAG_TCP_CONN_IND); 13364 } 13365 } 13366 13367 if (tcp->tcp_active_open) { 13368 /* 13369 * We are seeing the final ack in the three way 13370 * hand shake of a active open'ed connection 13371 * so we must send up a T_CONN_CON 13372 */ 13373 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13374 freemsg(mp); 13375 return; 13376 } 13377 /* 13378 * Don't fuse the loopback endpoints for 13379 * simultaneous active opens. 13380 */ 13381 if (tcp->tcp_loopback) { 13382 TCP_STAT(tcp_fusion_unfusable); 13383 tcp->tcp_unfusable = B_TRUE; 13384 } 13385 } 13386 13387 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13388 bytes_acked--; 13389 /* SYN was acked - making progress */ 13390 if (tcp->tcp_ipversion == IPV6_VERSION) 13391 tcp->tcp_ip_forward_progress = B_TRUE; 13392 13393 /* 13394 * If SYN was retransmitted, need to reset all 13395 * retransmission info as this segment will be 13396 * treated as a dup ACK. 13397 */ 13398 if (tcp->tcp_rexmit) { 13399 tcp->tcp_rexmit = B_FALSE; 13400 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13401 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13402 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13403 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13404 tcp->tcp_ms_we_have_waited = 0; 13405 tcp->tcp_cwnd = mss; 13406 } 13407 13408 /* 13409 * We set the send window to zero here. 13410 * This is needed if there is data to be 13411 * processed already on the queue. 13412 * Later (at swnd_update label), the 13413 * "new_swnd > tcp_swnd" condition is satisfied 13414 * the XMIT_NEEDED flag is set in the current 13415 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13416 * called if there is already data on queue in 13417 * this state. 13418 */ 13419 tcp->tcp_swnd = 0; 13420 13421 if (new_swnd > tcp->tcp_max_swnd) 13422 tcp->tcp_max_swnd = new_swnd; 13423 tcp->tcp_swl1 = seg_seq; 13424 tcp->tcp_swl2 = seg_ack; 13425 tcp->tcp_state = TCPS_ESTABLISHED; 13426 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13427 13428 /* Fuse when both sides are in ESTABLISHED state */ 13429 if (tcp->tcp_loopback && do_tcp_fusion) 13430 tcp_fuse(tcp, iphdr, tcph); 13431 13432 } 13433 /* This code follows 4.4BSD-Lite2 mostly. */ 13434 if (bytes_acked < 0) 13435 goto est; 13436 13437 /* 13438 * If TCP is ECN capable and the congestion experience bit is 13439 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13440 * done once per window (or more loosely, per RTT). 13441 */ 13442 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13443 tcp->tcp_cwr = B_FALSE; 13444 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13445 if (!tcp->tcp_cwr) { 13446 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13447 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13448 tcp->tcp_cwnd = npkt * mss; 13449 /* 13450 * If the cwnd is 0, use the timer to clock out 13451 * new segments. This is required by the ECN spec. 13452 */ 13453 if (npkt == 0) { 13454 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13455 /* 13456 * This makes sure that when the ACK comes 13457 * back, we will increase tcp_cwnd by 1 MSS. 13458 */ 13459 tcp->tcp_cwnd_cnt = 0; 13460 } 13461 tcp->tcp_cwr = B_TRUE; 13462 /* 13463 * This marks the end of the current window of in 13464 * flight data. That is why we don't use 13465 * tcp_suna + tcp_swnd. Only data in flight can 13466 * provide ECN info. 13467 */ 13468 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13469 tcp->tcp_ecn_cwr_sent = B_FALSE; 13470 } 13471 } 13472 13473 mp1 = tcp->tcp_xmit_head; 13474 if (bytes_acked == 0) { 13475 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 13476 int dupack_cnt; 13477 13478 BUMP_MIB(&tcp_mib, tcpInDupAck); 13479 /* 13480 * Fast retransmit. When we have seen exactly three 13481 * identical ACKs while we have unacked data 13482 * outstanding we take it as a hint that our peer 13483 * dropped something. 13484 * 13485 * If TCP is retransmitting, don't do fast retransmit. 13486 */ 13487 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 13488 ! tcp->tcp_rexmit) { 13489 /* Do Limited Transmit */ 13490 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 13491 tcp_dupack_fast_retransmit) { 13492 /* 13493 * RFC 3042 13494 * 13495 * What we need to do is temporarily 13496 * increase tcp_cwnd so that new 13497 * data can be sent if it is allowed 13498 * by the receive window (tcp_rwnd). 13499 * tcp_wput_data() will take care of 13500 * the rest. 13501 * 13502 * If the connection is SACK capable, 13503 * only do limited xmit when there 13504 * is SACK info. 13505 * 13506 * Note how tcp_cwnd is incremented. 13507 * The first dup ACK will increase 13508 * it by 1 MSS. The second dup ACK 13509 * will increase it by 2 MSS. This 13510 * means that only 1 new segment will 13511 * be sent for each dup ACK. 13512 */ 13513 if (tcp->tcp_unsent > 0 && 13514 (!tcp->tcp_snd_sack_ok || 13515 (tcp->tcp_snd_sack_ok && 13516 tcp->tcp_notsack_list != NULL))) { 13517 tcp->tcp_cwnd += mss << 13518 (tcp->tcp_dupack_cnt - 1); 13519 flags |= TH_LIMIT_XMIT; 13520 } 13521 } else if (dupack_cnt == 13522 tcp_dupack_fast_retransmit) { 13523 13524 /* 13525 * If we have reduced tcp_ssthresh 13526 * because of ECN, do not reduce it again 13527 * unless it is already one window of data 13528 * away. After one window of data, tcp_cwr 13529 * should then be cleared. Note that 13530 * for non ECN capable connection, tcp_cwr 13531 * should always be false. 13532 * 13533 * Adjust cwnd since the duplicate 13534 * ack indicates that a packet was 13535 * dropped (due to congestion.) 13536 */ 13537 if (!tcp->tcp_cwr) { 13538 npkt = ((tcp->tcp_snxt - 13539 tcp->tcp_suna) >> 1) / mss; 13540 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13541 mss; 13542 tcp->tcp_cwnd = (npkt + 13543 tcp->tcp_dupack_cnt) * mss; 13544 } 13545 if (tcp->tcp_ecn_ok) { 13546 tcp->tcp_cwr = B_TRUE; 13547 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13548 tcp->tcp_ecn_cwr_sent = B_FALSE; 13549 } 13550 13551 /* 13552 * We do Hoe's algorithm. Refer to her 13553 * paper "Improving the Start-up Behavior 13554 * of a Congestion Control Scheme for TCP," 13555 * appeared in SIGCOMM'96. 13556 * 13557 * Save highest seq no we have sent so far. 13558 * Be careful about the invisible FIN byte. 13559 */ 13560 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13561 (tcp->tcp_unsent == 0)) { 13562 tcp->tcp_rexmit_max = tcp->tcp_fss; 13563 } else { 13564 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13565 } 13566 13567 /* 13568 * Do not allow bursty traffic during. 13569 * fast recovery. Refer to Fall and Floyd's 13570 * paper "Simulation-based Comparisons of 13571 * Tahoe, Reno and SACK TCP" (in CCR?) 13572 * This is a best current practise. 13573 */ 13574 tcp->tcp_snd_burst = TCP_CWND_SS; 13575 13576 /* 13577 * For SACK: 13578 * Calculate tcp_pipe, which is the 13579 * estimated number of bytes in 13580 * network. 13581 * 13582 * tcp_fack is the highest sack'ed seq num 13583 * TCP has received. 13584 * 13585 * tcp_pipe is explained in the above quoted 13586 * Fall and Floyd's paper. tcp_fack is 13587 * explained in Mathis and Mahdavi's 13588 * "Forward Acknowledgment: Refining TCP 13589 * Congestion Control" in SIGCOMM '96. 13590 */ 13591 if (tcp->tcp_snd_sack_ok) { 13592 ASSERT(tcp->tcp_sack_info != NULL); 13593 if (tcp->tcp_notsack_list != NULL) { 13594 tcp->tcp_pipe = tcp->tcp_snxt - 13595 tcp->tcp_fack; 13596 tcp->tcp_sack_snxt = seg_ack; 13597 flags |= TH_NEED_SACK_REXMIT; 13598 } else { 13599 /* 13600 * Always initialize tcp_pipe 13601 * even though we don't have 13602 * any SACK info. If later 13603 * we get SACK info and 13604 * tcp_pipe is not initialized, 13605 * funny things will happen. 13606 */ 13607 tcp->tcp_pipe = 13608 tcp->tcp_cwnd_ssthresh; 13609 } 13610 } else { 13611 flags |= TH_REXMIT_NEEDED; 13612 } /* tcp_snd_sack_ok */ 13613 13614 } else { 13615 /* 13616 * Here we perform congestion 13617 * avoidance, but NOT slow start. 13618 * This is known as the Fast 13619 * Recovery Algorithm. 13620 */ 13621 if (tcp->tcp_snd_sack_ok && 13622 tcp->tcp_notsack_list != NULL) { 13623 flags |= TH_NEED_SACK_REXMIT; 13624 tcp->tcp_pipe -= mss; 13625 if (tcp->tcp_pipe < 0) 13626 tcp->tcp_pipe = 0; 13627 } else { 13628 /* 13629 * We know that one more packet has 13630 * left the pipe thus we can update 13631 * cwnd. 13632 */ 13633 cwnd = tcp->tcp_cwnd + mss; 13634 if (cwnd > tcp->tcp_cwnd_max) 13635 cwnd = tcp->tcp_cwnd_max; 13636 tcp->tcp_cwnd = cwnd; 13637 if (tcp->tcp_unsent > 0) 13638 flags |= TH_XMIT_NEEDED; 13639 } 13640 } 13641 } 13642 } else if (tcp->tcp_zero_win_probe) { 13643 /* 13644 * If the window has opened, need to arrange 13645 * to send additional data. 13646 */ 13647 if (new_swnd != 0) { 13648 /* tcp_suna != tcp_snxt */ 13649 /* Packet contains a window update */ 13650 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 13651 tcp->tcp_zero_win_probe = 0; 13652 tcp->tcp_timer_backoff = 0; 13653 tcp->tcp_ms_we_have_waited = 0; 13654 13655 /* 13656 * Transmit starting with tcp_suna since 13657 * the one byte probe is not ack'ed. 13658 * If TCP has sent more than one identical 13659 * probe, tcp_rexmit will be set. That means 13660 * tcp_ss_rexmit() will send out the one 13661 * byte along with new data. Otherwise, 13662 * fake the retransmission. 13663 */ 13664 flags |= TH_XMIT_NEEDED; 13665 if (!tcp->tcp_rexmit) { 13666 tcp->tcp_rexmit = B_TRUE; 13667 tcp->tcp_dupack_cnt = 0; 13668 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13669 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 13670 } 13671 } 13672 } 13673 goto swnd_update; 13674 } 13675 13676 /* 13677 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 13678 * If the ACK value acks something that we have not yet sent, it might 13679 * be an old duplicate segment. Send an ACK to re-synchronize the 13680 * other side. 13681 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 13682 * state is handled above, so we can always just drop the segment and 13683 * send an ACK here. 13684 * 13685 * Should we send ACKs in response to ACK only segments? 13686 */ 13687 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13688 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 13689 /* drop the received segment */ 13690 freemsg(mp); 13691 13692 /* 13693 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 13694 * greater than 0, check if the number of such 13695 * bogus ACks is greater than that count. If yes, 13696 * don't send back any ACK. This prevents TCP from 13697 * getting into an ACK storm if somehow an attacker 13698 * successfully spoofs an acceptable segment to our 13699 * peer. 13700 */ 13701 if (tcp_drop_ack_unsent_cnt > 0 && 13702 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 13703 TCP_STAT(tcp_in_ack_unsent_drop); 13704 return; 13705 } 13706 mp = tcp_ack_mp(tcp); 13707 if (mp != NULL) { 13708 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 13709 BUMP_LOCAL(tcp->tcp_obsegs); 13710 BUMP_MIB(&tcp_mib, tcpOutAck); 13711 tcp_send_data(tcp, tcp->tcp_wq, mp); 13712 } 13713 return; 13714 } 13715 13716 /* 13717 * TCP gets a new ACK, update the notsack'ed list to delete those 13718 * blocks that are covered by this ACK. 13719 */ 13720 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 13721 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 13722 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 13723 } 13724 13725 /* 13726 * If we got an ACK after fast retransmit, check to see 13727 * if it is a partial ACK. If it is not and the congestion 13728 * window was inflated to account for the other side's 13729 * cached packets, retract it. If it is, do Hoe's algorithm. 13730 */ 13731 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 13732 ASSERT(tcp->tcp_rexmit == B_FALSE); 13733 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 13734 tcp->tcp_dupack_cnt = 0; 13735 /* 13736 * Restore the orig tcp_cwnd_ssthresh after 13737 * fast retransmit phase. 13738 */ 13739 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 13740 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 13741 } 13742 tcp->tcp_rexmit_max = seg_ack; 13743 tcp->tcp_cwnd_cnt = 0; 13744 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13745 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13746 13747 /* 13748 * Remove all notsack info to avoid confusion with 13749 * the next fast retrasnmit/recovery phase. 13750 */ 13751 if (tcp->tcp_snd_sack_ok && 13752 tcp->tcp_notsack_list != NULL) { 13753 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 13754 } 13755 } else { 13756 if (tcp->tcp_snd_sack_ok && 13757 tcp->tcp_notsack_list != NULL) { 13758 flags |= TH_NEED_SACK_REXMIT; 13759 tcp->tcp_pipe -= mss; 13760 if (tcp->tcp_pipe < 0) 13761 tcp->tcp_pipe = 0; 13762 } else { 13763 /* 13764 * Hoe's algorithm: 13765 * 13766 * Retransmit the unack'ed segment and 13767 * restart fast recovery. Note that we 13768 * need to scale back tcp_cwnd to the 13769 * original value when we started fast 13770 * recovery. This is to prevent overly 13771 * aggressive behaviour in sending new 13772 * segments. 13773 */ 13774 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 13775 tcp_dupack_fast_retransmit * mss; 13776 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 13777 flags |= TH_REXMIT_NEEDED; 13778 } 13779 } 13780 } else { 13781 tcp->tcp_dupack_cnt = 0; 13782 if (tcp->tcp_rexmit) { 13783 /* 13784 * TCP is retranmitting. If the ACK ack's all 13785 * outstanding data, update tcp_rexmit_max and 13786 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 13787 * to the correct value. 13788 * 13789 * Note that SEQ_LEQ() is used. This is to avoid 13790 * unnecessary fast retransmit caused by dup ACKs 13791 * received when TCP does slow start retransmission 13792 * after a time out. During this phase, TCP may 13793 * send out segments which are already received. 13794 * This causes dup ACKs to be sent back. 13795 */ 13796 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 13797 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 13798 tcp->tcp_rexmit_nxt = seg_ack; 13799 } 13800 if (seg_ack != tcp->tcp_rexmit_max) { 13801 flags |= TH_XMIT_NEEDED; 13802 } 13803 } else { 13804 tcp->tcp_rexmit = B_FALSE; 13805 tcp->tcp_xmit_zc_clean = B_FALSE; 13806 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13807 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13808 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13809 } 13810 tcp->tcp_ms_we_have_waited = 0; 13811 } 13812 } 13813 13814 BUMP_MIB(&tcp_mib, tcpInAckSegs); 13815 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 13816 tcp->tcp_suna = seg_ack; 13817 if (tcp->tcp_zero_win_probe != 0) { 13818 tcp->tcp_zero_win_probe = 0; 13819 tcp->tcp_timer_backoff = 0; 13820 } 13821 13822 /* 13823 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 13824 * Note that it cannot be the SYN being ack'ed. The code flow 13825 * will not reach here. 13826 */ 13827 if (mp1 == NULL) { 13828 goto fin_acked; 13829 } 13830 13831 /* 13832 * Update the congestion window. 13833 * 13834 * If TCP is not ECN capable or TCP is ECN capable but the 13835 * congestion experience bit is not set, increase the tcp_cwnd as 13836 * usual. 13837 */ 13838 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 13839 cwnd = tcp->tcp_cwnd; 13840 add = mss; 13841 13842 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 13843 /* 13844 * This is to prevent an increase of less than 1 MSS of 13845 * tcp_cwnd. With partial increase, tcp_wput_data() 13846 * may send out tinygrams in order to preserve mblk 13847 * boundaries. 13848 * 13849 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 13850 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 13851 * increased by 1 MSS for every RTTs. 13852 */ 13853 if (tcp->tcp_cwnd_cnt <= 0) { 13854 tcp->tcp_cwnd_cnt = cwnd + add; 13855 } else { 13856 tcp->tcp_cwnd_cnt -= add; 13857 add = 0; 13858 } 13859 } 13860 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 13861 } 13862 13863 /* See if the latest urgent data has been acknowledged */ 13864 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 13865 SEQ_GT(seg_ack, tcp->tcp_urg)) 13866 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 13867 13868 /* Can we update the RTT estimates? */ 13869 if (tcp->tcp_snd_ts_ok) { 13870 /* Ignore zero timestamp echo-reply. */ 13871 if (tcpopt.tcp_opt_ts_ecr != 0) { 13872 tcp_set_rto(tcp, (int32_t)lbolt - 13873 (int32_t)tcpopt.tcp_opt_ts_ecr); 13874 } 13875 13876 /* If needed, restart the timer. */ 13877 if (tcp->tcp_set_timer == 1) { 13878 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13879 tcp->tcp_set_timer = 0; 13880 } 13881 /* 13882 * Update tcp_csuna in case the other side stops sending 13883 * us timestamps. 13884 */ 13885 tcp->tcp_csuna = tcp->tcp_snxt; 13886 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 13887 /* 13888 * An ACK sequence we haven't seen before, so get the RTT 13889 * and update the RTO. But first check if the timestamp is 13890 * valid to use. 13891 */ 13892 if ((mp1->b_next != NULL) && 13893 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 13894 tcp_set_rto(tcp, (int32_t)lbolt - 13895 (int32_t)(intptr_t)mp1->b_prev); 13896 else 13897 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 13898 13899 /* Remeber the last sequence to be ACKed */ 13900 tcp->tcp_csuna = seg_ack; 13901 if (tcp->tcp_set_timer == 1) { 13902 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13903 tcp->tcp_set_timer = 0; 13904 } 13905 } else { 13906 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 13907 } 13908 13909 /* Eat acknowledged bytes off the xmit queue. */ 13910 for (;;) { 13911 mblk_t *mp2; 13912 uchar_t *wptr; 13913 13914 wptr = mp1->b_wptr; 13915 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 13916 bytes_acked -= (int)(wptr - mp1->b_rptr); 13917 if (bytes_acked < 0) { 13918 mp1->b_rptr = wptr + bytes_acked; 13919 /* 13920 * Set a new timestamp if all the bytes timed by the 13921 * old timestamp have been ack'ed. 13922 */ 13923 if (SEQ_GT(seg_ack, 13924 (uint32_t)(uintptr_t)(mp1->b_next))) { 13925 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 13926 mp1->b_next = NULL; 13927 } 13928 break; 13929 } 13930 mp1->b_next = NULL; 13931 mp1->b_prev = NULL; 13932 mp2 = mp1; 13933 mp1 = mp1->b_cont; 13934 13935 /* 13936 * This notification is required for some zero-copy 13937 * clients to maintain a copy semantic. After the data 13938 * is ack'ed, client is safe to modify or reuse the buffer. 13939 */ 13940 if (tcp->tcp_snd_zcopy_aware && 13941 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 13942 tcp_zcopy_notify(tcp); 13943 freeb(mp2); 13944 if (bytes_acked == 0) { 13945 if (mp1 == NULL) { 13946 /* Everything is ack'ed, clear the tail. */ 13947 tcp->tcp_xmit_tail = NULL; 13948 /* 13949 * Cancel the timer unless we are still 13950 * waiting for an ACK for the FIN packet. 13951 */ 13952 if (tcp->tcp_timer_tid != 0 && 13953 tcp->tcp_snxt == tcp->tcp_suna) { 13954 (void) TCP_TIMER_CANCEL(tcp, 13955 tcp->tcp_timer_tid); 13956 tcp->tcp_timer_tid = 0; 13957 } 13958 goto pre_swnd_update; 13959 } 13960 if (mp2 != tcp->tcp_xmit_tail) 13961 break; 13962 tcp->tcp_xmit_tail = mp1; 13963 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 13964 (uintptr_t)INT_MAX); 13965 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 13966 mp1->b_rptr); 13967 break; 13968 } 13969 if (mp1 == NULL) { 13970 /* 13971 * More was acked but there is nothing more 13972 * outstanding. This means that the FIN was 13973 * just acked or that we're talking to a clown. 13974 */ 13975 fin_acked: 13976 ASSERT(tcp->tcp_fin_sent); 13977 tcp->tcp_xmit_tail = NULL; 13978 if (tcp->tcp_fin_sent) { 13979 /* FIN was acked - making progress */ 13980 if (tcp->tcp_ipversion == IPV6_VERSION && 13981 !tcp->tcp_fin_acked) 13982 tcp->tcp_ip_forward_progress = B_TRUE; 13983 tcp->tcp_fin_acked = B_TRUE; 13984 if (tcp->tcp_linger_tid != 0 && 13985 TCP_TIMER_CANCEL(tcp, 13986 tcp->tcp_linger_tid) >= 0) { 13987 tcp_stop_lingering(tcp); 13988 } 13989 } else { 13990 /* 13991 * We should never get here because 13992 * we have already checked that the 13993 * number of bytes ack'ed should be 13994 * smaller than or equal to what we 13995 * have sent so far (it is the 13996 * acceptability check of the ACK). 13997 * We can only get here if the send 13998 * queue is corrupted. 13999 * 14000 * Terminate the connection and 14001 * panic the system. It is better 14002 * for us to panic instead of 14003 * continuing to avoid other disaster. 14004 */ 14005 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14006 tcp->tcp_rnxt, TH_RST|TH_ACK); 14007 panic("Memory corruption " 14008 "detected for connection %s.", 14009 tcp_display(tcp, NULL, 14010 DISP_ADDR_AND_PORT)); 14011 /*NOTREACHED*/ 14012 } 14013 goto pre_swnd_update; 14014 } 14015 ASSERT(mp2 != tcp->tcp_xmit_tail); 14016 } 14017 if (tcp->tcp_unsent) { 14018 flags |= TH_XMIT_NEEDED; 14019 } 14020 pre_swnd_update: 14021 tcp->tcp_xmit_head = mp1; 14022 swnd_update: 14023 /* 14024 * The following check is different from most other implementations. 14025 * For bi-directional transfer, when segments are dropped, the 14026 * "normal" check will not accept a window update in those 14027 * retransmitted segemnts. Failing to do that, TCP may send out 14028 * segments which are outside receiver's window. As TCP accepts 14029 * the ack in those retransmitted segments, if the window update in 14030 * the same segment is not accepted, TCP will incorrectly calculates 14031 * that it can send more segments. This can create a deadlock 14032 * with the receiver if its window becomes zero. 14033 */ 14034 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14035 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14036 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14037 /* 14038 * The criteria for update is: 14039 * 14040 * 1. the segment acknowledges some data. Or 14041 * 2. the segment is new, i.e. it has a higher seq num. Or 14042 * 3. the segment is not old and the advertised window is 14043 * larger than the previous advertised window. 14044 */ 14045 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14046 flags |= TH_XMIT_NEEDED; 14047 tcp->tcp_swnd = new_swnd; 14048 if (new_swnd > tcp->tcp_max_swnd) 14049 tcp->tcp_max_swnd = new_swnd; 14050 tcp->tcp_swl1 = seg_seq; 14051 tcp->tcp_swl2 = seg_ack; 14052 } 14053 est: 14054 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14055 14056 switch (tcp->tcp_state) { 14057 case TCPS_FIN_WAIT_1: 14058 if (tcp->tcp_fin_acked) { 14059 tcp->tcp_state = TCPS_FIN_WAIT_2; 14060 /* 14061 * We implement the non-standard BSD/SunOS 14062 * FIN_WAIT_2 flushing algorithm. 14063 * If there is no user attached to this 14064 * TCP endpoint, then this TCP struct 14065 * could hang around forever in FIN_WAIT_2 14066 * state if the peer forgets to send us 14067 * a FIN. To prevent this, we wait only 14068 * 2*MSL (a convenient time value) for 14069 * the FIN to arrive. If it doesn't show up, 14070 * we flush the TCP endpoint. This algorithm, 14071 * though a violation of RFC-793, has worked 14072 * for over 10 years in BSD systems. 14073 * Note: SunOS 4.x waits 675 seconds before 14074 * flushing the FIN_WAIT_2 connection. 14075 */ 14076 TCP_TIMER_RESTART(tcp, 14077 tcp_fin_wait_2_flush_interval); 14078 } 14079 break; 14080 case TCPS_FIN_WAIT_2: 14081 break; /* Shutdown hook? */ 14082 case TCPS_LAST_ACK: 14083 freemsg(mp); 14084 if (tcp->tcp_fin_acked) { 14085 (void) tcp_clean_death(tcp, 0, 19); 14086 return; 14087 } 14088 goto xmit_check; 14089 case TCPS_CLOSING: 14090 if (tcp->tcp_fin_acked) { 14091 tcp->tcp_state = TCPS_TIME_WAIT; 14092 if (!TCP_IS_DETACHED(tcp)) { 14093 TCP_TIMER_RESTART(tcp, 14094 tcp_time_wait_interval); 14095 } else { 14096 tcp_time_wait_append(tcp); 14097 TCP_DBGSTAT(tcp_rput_time_wait); 14098 } 14099 } 14100 /*FALLTHRU*/ 14101 case TCPS_CLOSE_WAIT: 14102 freemsg(mp); 14103 goto xmit_check; 14104 default: 14105 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14106 break; 14107 } 14108 } 14109 if (flags & TH_FIN) { 14110 /* Make sure we ack the fin */ 14111 flags |= TH_ACK_NEEDED; 14112 if (!tcp->tcp_fin_rcvd) { 14113 tcp->tcp_fin_rcvd = B_TRUE; 14114 tcp->tcp_rnxt++; 14115 tcph = tcp->tcp_tcph; 14116 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14117 14118 /* 14119 * Generate the ordrel_ind at the end unless we 14120 * are an eager guy. 14121 * In the eager case tcp_rsrv will do this when run 14122 * after tcp_accept is done. 14123 */ 14124 if (tcp->tcp_listener == NULL && 14125 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14126 flags |= TH_ORDREL_NEEDED; 14127 switch (tcp->tcp_state) { 14128 case TCPS_SYN_RCVD: 14129 case TCPS_ESTABLISHED: 14130 tcp->tcp_state = TCPS_CLOSE_WAIT; 14131 /* Keepalive? */ 14132 break; 14133 case TCPS_FIN_WAIT_1: 14134 if (!tcp->tcp_fin_acked) { 14135 tcp->tcp_state = TCPS_CLOSING; 14136 break; 14137 } 14138 /* FALLTHRU */ 14139 case TCPS_FIN_WAIT_2: 14140 tcp->tcp_state = TCPS_TIME_WAIT; 14141 if (!TCP_IS_DETACHED(tcp)) { 14142 TCP_TIMER_RESTART(tcp, 14143 tcp_time_wait_interval); 14144 } else { 14145 tcp_time_wait_append(tcp); 14146 TCP_DBGSTAT(tcp_rput_time_wait); 14147 } 14148 if (seg_len) { 14149 /* 14150 * implies data piggybacked on FIN. 14151 * break to handle data. 14152 */ 14153 break; 14154 } 14155 freemsg(mp); 14156 goto ack_check; 14157 } 14158 } 14159 } 14160 if (mp == NULL) 14161 goto xmit_check; 14162 if (seg_len == 0) { 14163 freemsg(mp); 14164 goto xmit_check; 14165 } 14166 if (mp->b_rptr == mp->b_wptr) { 14167 /* 14168 * The header has been consumed, so we remove the 14169 * zero-length mblk here. 14170 */ 14171 mp1 = mp; 14172 mp = mp->b_cont; 14173 freeb(mp1); 14174 } 14175 tcph = tcp->tcp_tcph; 14176 tcp->tcp_rack_cnt++; 14177 { 14178 uint32_t cur_max; 14179 14180 cur_max = tcp->tcp_rack_cur_max; 14181 if (tcp->tcp_rack_cnt >= cur_max) { 14182 /* 14183 * We have more unacked data than we should - send 14184 * an ACK now. 14185 */ 14186 flags |= TH_ACK_NEEDED; 14187 cur_max++; 14188 if (cur_max > tcp->tcp_rack_abs_max) 14189 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14190 else 14191 tcp->tcp_rack_cur_max = cur_max; 14192 } else if (TCP_IS_DETACHED(tcp)) { 14193 /* We don't have an ACK timer for detached TCP. */ 14194 flags |= TH_ACK_NEEDED; 14195 } else if (seg_len < mss) { 14196 /* 14197 * If we get a segment that is less than an mss, and we 14198 * already have unacknowledged data, and the amount 14199 * unacknowledged is not a multiple of mss, then we 14200 * better generate an ACK now. Otherwise, this may be 14201 * the tail piece of a transaction, and we would rather 14202 * wait for the response. 14203 */ 14204 uint32_t udif; 14205 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14206 (uintptr_t)INT_MAX); 14207 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14208 if (udif && (udif % mss)) 14209 flags |= TH_ACK_NEEDED; 14210 else 14211 flags |= TH_ACK_TIMER_NEEDED; 14212 } else { 14213 /* Start delayed ack timer */ 14214 flags |= TH_ACK_TIMER_NEEDED; 14215 } 14216 } 14217 tcp->tcp_rnxt += seg_len; 14218 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14219 14220 /* Update SACK list */ 14221 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14222 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14223 &(tcp->tcp_num_sack_blk)); 14224 } 14225 14226 if (tcp->tcp_urp_mp) { 14227 tcp->tcp_urp_mp->b_cont = mp; 14228 mp = tcp->tcp_urp_mp; 14229 tcp->tcp_urp_mp = NULL; 14230 /* Ready for a new signal. */ 14231 tcp->tcp_urp_last_valid = B_FALSE; 14232 #ifdef DEBUG 14233 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14234 "tcp_rput: sending exdata_ind %s", 14235 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14236 #endif /* DEBUG */ 14237 } 14238 14239 /* 14240 * Check for ancillary data changes compared to last segment. 14241 */ 14242 if (tcp->tcp_ipv6_recvancillary != 0) { 14243 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14244 if (mp == NULL) 14245 return; 14246 } 14247 14248 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14249 /* 14250 * Side queue inbound data until the accept happens. 14251 * tcp_accept/tcp_rput drains this when the accept happens. 14252 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14253 * T_EXDATA_IND) it is queued on b_next. 14254 * XXX Make urgent data use this. Requires: 14255 * Removing tcp_listener check for TH_URG 14256 * Making M_PCPROTO and MARK messages skip the eager case 14257 */ 14258 14259 if (tcp->tcp_kssl_pending) { 14260 tcp_kssl_input(tcp, mp); 14261 } else { 14262 tcp_rcv_enqueue(tcp, mp, seg_len); 14263 } 14264 } else { 14265 if (mp->b_datap->db_type != M_DATA || 14266 (flags & TH_MARKNEXT_NEEDED)) { 14267 if (tcp->tcp_rcv_list != NULL) { 14268 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14269 } 14270 ASSERT(tcp->tcp_rcv_list == NULL || 14271 tcp->tcp_fused_sigurg); 14272 if (flags & TH_MARKNEXT_NEEDED) { 14273 #ifdef DEBUG 14274 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14275 "tcp_rput: sending MSGMARKNEXT %s", 14276 tcp_display(tcp, NULL, 14277 DISP_PORT_ONLY)); 14278 #endif /* DEBUG */ 14279 mp->b_flag |= MSGMARKNEXT; 14280 flags &= ~TH_MARKNEXT_NEEDED; 14281 } 14282 14283 /* Does this need SSL processing first? */ 14284 if ((tcp->tcp_kssl_ctx != NULL) && 14285 (DB_TYPE(mp) == M_DATA)) { 14286 tcp_kssl_input(tcp, mp); 14287 } else { 14288 putnext(tcp->tcp_rq, mp); 14289 if (!canputnext(tcp->tcp_rq)) 14290 tcp->tcp_rwnd -= seg_len; 14291 } 14292 } else if (((flags & (TH_PUSH|TH_FIN)) || 14293 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) && 14294 (sqp != NULL)) { 14295 if (tcp->tcp_rcv_list != NULL) { 14296 /* 14297 * Enqueue the new segment first and then 14298 * call tcp_rcv_drain() to send all data 14299 * up. The other way to do this is to 14300 * send all queued data up and then call 14301 * putnext() to send the new segment up. 14302 * This way can remove the else part later 14303 * on. 14304 * 14305 * We don't this to avoid one more call to 14306 * canputnext() as tcp_rcv_drain() needs to 14307 * call canputnext(). 14308 */ 14309 tcp_rcv_enqueue(tcp, mp, seg_len); 14310 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14311 } else { 14312 /* Does this need SSL processing first? */ 14313 if ((tcp->tcp_kssl_ctx != NULL) && 14314 (DB_TYPE(mp) == M_DATA)) { 14315 tcp_kssl_input(tcp, mp); 14316 } else { 14317 putnext(tcp->tcp_rq, mp); 14318 if (!canputnext(tcp->tcp_rq)) 14319 tcp->tcp_rwnd -= seg_len; 14320 } 14321 } 14322 } else { 14323 /* 14324 * Enqueue all packets when processing an mblk 14325 * from the co queue and also enqueue normal packets. 14326 */ 14327 tcp_rcv_enqueue(tcp, mp, seg_len); 14328 } 14329 /* 14330 * Make sure the timer is running if we have data waiting 14331 * for a push bit. This provides resiliency against 14332 * implementations that do not correctly generate push bits. 14333 */ 14334 if ((sqp != NULL) && tcp->tcp_rcv_list != NULL && 14335 tcp->tcp_push_tid == 0) { 14336 /* 14337 * The connection may be closed at this point, so don't 14338 * do anything for a detached tcp. 14339 */ 14340 if (!TCP_IS_DETACHED(tcp)) 14341 tcp->tcp_push_tid = TCP_TIMER(tcp, 14342 tcp_push_timer, 14343 MSEC_TO_TICK(tcp_push_timer_interval)); 14344 } 14345 } 14346 xmit_check: 14347 /* Is there anything left to do? */ 14348 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14349 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14350 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14351 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14352 goto done; 14353 14354 /* Any transmit work to do and a non-zero window? */ 14355 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14356 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14357 if (flags & TH_REXMIT_NEEDED) { 14358 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14359 14360 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14361 if (snd_size > mss) 14362 snd_size = mss; 14363 if (snd_size > tcp->tcp_swnd) 14364 snd_size = tcp->tcp_swnd; 14365 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14366 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14367 B_TRUE); 14368 14369 if (mp1 != NULL) { 14370 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14371 tcp->tcp_csuna = tcp->tcp_snxt; 14372 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14373 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14374 TCP_RECORD_TRACE(tcp, mp1, 14375 TCP_TRACE_SEND_PKT); 14376 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14377 } 14378 } 14379 if (flags & TH_NEED_SACK_REXMIT) { 14380 tcp_sack_rxmit(tcp, &flags); 14381 } 14382 /* 14383 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14384 * out new segment. Note that tcp_rexmit should not be 14385 * set, otherwise TH_LIMIT_XMIT should not be set. 14386 */ 14387 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14388 if (!tcp->tcp_rexmit) { 14389 tcp_wput_data(tcp, NULL, B_FALSE); 14390 } else { 14391 tcp_ss_rexmit(tcp); 14392 } 14393 } 14394 /* 14395 * Adjust tcp_cwnd back to normal value after sending 14396 * new data segments. 14397 */ 14398 if (flags & TH_LIMIT_XMIT) { 14399 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14400 /* 14401 * This will restart the timer. Restarting the 14402 * timer is used to avoid a timeout before the 14403 * limited transmitted segment's ACK gets back. 14404 */ 14405 if (tcp->tcp_xmit_head != NULL) 14406 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14407 } 14408 14409 /* Anything more to do? */ 14410 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14411 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14412 goto done; 14413 } 14414 ack_check: 14415 if (flags & TH_SEND_URP_MARK) { 14416 ASSERT(tcp->tcp_urp_mark_mp); 14417 /* 14418 * Send up any queued data and then send the mark message 14419 */ 14420 if (tcp->tcp_rcv_list != NULL) { 14421 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14422 } 14423 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14424 14425 mp1 = tcp->tcp_urp_mark_mp; 14426 tcp->tcp_urp_mark_mp = NULL; 14427 #ifdef DEBUG 14428 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14429 "tcp_rput: sending zero-length %s %s", 14430 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14431 "MSGNOTMARKNEXT"), 14432 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14433 #endif /* DEBUG */ 14434 putnext(tcp->tcp_rq, mp1); 14435 flags &= ~TH_SEND_URP_MARK; 14436 } 14437 if (flags & TH_ACK_NEEDED) { 14438 /* 14439 * Time to send an ack for some reason. 14440 */ 14441 mp1 = tcp_ack_mp(tcp); 14442 14443 if (mp1 != NULL) { 14444 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14445 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14446 BUMP_LOCAL(tcp->tcp_obsegs); 14447 BUMP_MIB(&tcp_mib, tcpOutAck); 14448 } 14449 if (tcp->tcp_ack_tid != 0) { 14450 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14451 tcp->tcp_ack_tid = 0; 14452 } 14453 } 14454 if (flags & TH_ACK_TIMER_NEEDED) { 14455 /* 14456 * Arrange for deferred ACK or push wait timeout. 14457 * Start timer if it is not already running. 14458 */ 14459 if (tcp->tcp_ack_tid == 0) { 14460 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14461 MSEC_TO_TICK(tcp->tcp_localnet ? 14462 (clock_t)tcp_local_dack_interval : 14463 (clock_t)tcp_deferred_ack_interval)); 14464 } 14465 } 14466 if (flags & TH_ORDREL_NEEDED) { 14467 /* 14468 * Send up the ordrel_ind unless we are an eager guy. 14469 * In the eager case tcp_rsrv will do this when run 14470 * after tcp_accept is done. 14471 */ 14472 ASSERT(tcp->tcp_listener == NULL); 14473 if (tcp->tcp_rcv_list != NULL) { 14474 /* 14475 * Push any mblk(s) enqueued from co processing. 14476 */ 14477 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14478 } 14479 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14480 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 14481 tcp->tcp_ordrel_done = B_TRUE; 14482 putnext(tcp->tcp_rq, mp1); 14483 if (tcp->tcp_deferred_clean_death) { 14484 /* 14485 * tcp_clean_death was deferred 14486 * for T_ORDREL_IND - do it now 14487 */ 14488 (void) tcp_clean_death(tcp, 14489 tcp->tcp_client_errno, 20); 14490 tcp->tcp_deferred_clean_death = B_FALSE; 14491 } 14492 } else { 14493 /* 14494 * Run the orderly release in the 14495 * service routine. 14496 */ 14497 qenable(tcp->tcp_rq); 14498 /* 14499 * Caveat(XXX): The machine may be so 14500 * overloaded that tcp_rsrv() is not scheduled 14501 * until after the endpoint has transitioned 14502 * to TCPS_TIME_WAIT 14503 * and tcp_time_wait_interval expires. Then 14504 * tcp_timer() will blow away state in tcp_t 14505 * and T_ORDREL_IND will never be delivered 14506 * upstream. Unlikely but potentially 14507 * a problem. 14508 */ 14509 } 14510 } 14511 done: 14512 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14513 } 14514 14515 /* 14516 * This function does PAWS protection check. Returns B_TRUE if the 14517 * segment passes the PAWS test, else returns B_FALSE. 14518 */ 14519 boolean_t 14520 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 14521 { 14522 uint8_t flags; 14523 int options; 14524 uint8_t *up; 14525 14526 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 14527 /* 14528 * If timestamp option is aligned nicely, get values inline, 14529 * otherwise call general routine to parse. Only do that 14530 * if timestamp is the only option. 14531 */ 14532 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 14533 TCPOPT_REAL_TS_LEN && 14534 OK_32PTR((up = ((uint8_t *)tcph) + 14535 TCP_MIN_HEADER_LENGTH)) && 14536 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 14537 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 14538 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 14539 14540 options = TCP_OPT_TSTAMP_PRESENT; 14541 } else { 14542 if (tcp->tcp_snd_sack_ok) { 14543 tcpoptp->tcp = tcp; 14544 } else { 14545 tcpoptp->tcp = NULL; 14546 } 14547 options = tcp_parse_options(tcph, tcpoptp); 14548 } 14549 14550 if (options & TCP_OPT_TSTAMP_PRESENT) { 14551 /* 14552 * Do PAWS per RFC 1323 section 4.2. Accept RST 14553 * regardless of the timestamp, page 18 RFC 1323.bis. 14554 */ 14555 if ((flags & TH_RST) == 0 && 14556 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 14557 tcp->tcp_ts_recent)) { 14558 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 14559 PAWS_TIMEOUT)) { 14560 /* This segment is not acceptable. */ 14561 return (B_FALSE); 14562 } else { 14563 /* 14564 * Connection has been idle for 14565 * too long. Reset the timestamp 14566 * and assume the segment is valid. 14567 */ 14568 tcp->tcp_ts_recent = 14569 tcpoptp->tcp_opt_ts_val; 14570 } 14571 } 14572 } else { 14573 /* 14574 * If we don't get a timestamp on every packet, we 14575 * figure we can't really trust 'em, so we stop sending 14576 * and parsing them. 14577 */ 14578 tcp->tcp_snd_ts_ok = B_FALSE; 14579 14580 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14581 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14582 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 14583 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 14584 if (tcp->tcp_snd_sack_ok) { 14585 ASSERT(tcp->tcp_sack_info != NULL); 14586 tcp->tcp_max_sack_blk = 4; 14587 } 14588 } 14589 return (B_TRUE); 14590 } 14591 14592 /* 14593 * Attach ancillary data to a received TCP segments for the 14594 * ancillary pieces requested by the application that are 14595 * different than they were in the previous data segment. 14596 * 14597 * Save the "current" values once memory allocation is ok so that 14598 * when memory allocation fails we can just wait for the next data segment. 14599 */ 14600 static mblk_t * 14601 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 14602 { 14603 struct T_optdata_ind *todi; 14604 int optlen; 14605 uchar_t *optptr; 14606 struct T_opthdr *toh; 14607 uint_t addflag; /* Which pieces to add */ 14608 mblk_t *mp1; 14609 14610 optlen = 0; 14611 addflag = 0; 14612 /* If app asked for pktinfo and the index has changed ... */ 14613 if ((ipp->ipp_fields & IPPF_IFINDEX) && 14614 ipp->ipp_ifindex != tcp->tcp_recvifindex && 14615 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 14616 optlen += sizeof (struct T_opthdr) + 14617 sizeof (struct in6_pktinfo); 14618 addflag |= TCP_IPV6_RECVPKTINFO; 14619 } 14620 /* If app asked for hoplimit and it has changed ... */ 14621 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 14622 ipp->ipp_hoplimit != tcp->tcp_recvhops && 14623 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 14624 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14625 addflag |= TCP_IPV6_RECVHOPLIMIT; 14626 } 14627 /* If app asked for tclass and it has changed ... */ 14628 if ((ipp->ipp_fields & IPPF_TCLASS) && 14629 ipp->ipp_tclass != tcp->tcp_recvtclass && 14630 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 14631 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14632 addflag |= TCP_IPV6_RECVTCLASS; 14633 } 14634 /* If app asked for hopbyhop headers and it has changed ... */ 14635 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 14636 tcp_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 14637 (ipp->ipp_fields & IPPF_HOPOPTS), 14638 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 14639 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 14640 addflag |= TCP_IPV6_RECVHOPOPTS; 14641 if (!tcp_allocbuf((void **)&tcp->tcp_hopopts, 14642 &tcp->tcp_hopoptslen, 14643 (ipp->ipp_fields & IPPF_HOPOPTS), 14644 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 14645 return (mp); 14646 } 14647 /* If app asked for dst headers before routing headers ... */ 14648 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 14649 tcp_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 14650 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14651 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 14652 optlen += sizeof (struct T_opthdr) + 14653 ipp->ipp_rtdstoptslen; 14654 addflag |= TCP_IPV6_RECVRTDSTOPTS; 14655 if (!tcp_allocbuf((void **)&tcp->tcp_rtdstopts, 14656 &tcp->tcp_rtdstoptslen, 14657 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14658 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 14659 return (mp); 14660 } 14661 /* If app asked for routing headers and it has changed ... */ 14662 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 14663 tcp_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 14664 (ipp->ipp_fields & IPPF_RTHDR), 14665 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 14666 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 14667 addflag |= TCP_IPV6_RECVRTHDR; 14668 if (!tcp_allocbuf((void **)&tcp->tcp_rthdr, 14669 &tcp->tcp_rthdrlen, 14670 (ipp->ipp_fields & IPPF_RTHDR), 14671 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 14672 return (mp); 14673 } 14674 /* If app asked for dest headers and it has changed ... */ 14675 if ((tcp->tcp_ipv6_recvancillary & 14676 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 14677 tcp_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 14678 (ipp->ipp_fields & IPPF_DSTOPTS), 14679 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 14680 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 14681 addflag |= TCP_IPV6_RECVDSTOPTS; 14682 if (!tcp_allocbuf((void **)&tcp->tcp_dstopts, 14683 &tcp->tcp_dstoptslen, 14684 (ipp->ipp_fields & IPPF_DSTOPTS), 14685 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 14686 return (mp); 14687 } 14688 14689 if (optlen == 0) { 14690 /* Nothing to add */ 14691 return (mp); 14692 } 14693 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 14694 if (mp1 == NULL) { 14695 /* 14696 * Defer sending ancillary data until the next TCP segment 14697 * arrives. 14698 */ 14699 return (mp); 14700 } 14701 mp1->b_cont = mp; 14702 mp = mp1; 14703 mp->b_wptr += sizeof (*todi) + optlen; 14704 mp->b_datap->db_type = M_PROTO; 14705 todi = (struct T_optdata_ind *)mp->b_rptr; 14706 todi->PRIM_type = T_OPTDATA_IND; 14707 todi->DATA_flag = 1; /* MORE data */ 14708 todi->OPT_length = optlen; 14709 todi->OPT_offset = sizeof (*todi); 14710 optptr = (uchar_t *)&todi[1]; 14711 /* 14712 * If app asked for pktinfo and the index has changed ... 14713 * Note that the local address never changes for the connection. 14714 */ 14715 if (addflag & TCP_IPV6_RECVPKTINFO) { 14716 struct in6_pktinfo *pkti; 14717 14718 toh = (struct T_opthdr *)optptr; 14719 toh->level = IPPROTO_IPV6; 14720 toh->name = IPV6_PKTINFO; 14721 toh->len = sizeof (*toh) + sizeof (*pkti); 14722 toh->status = 0; 14723 optptr += sizeof (*toh); 14724 pkti = (struct in6_pktinfo *)optptr; 14725 if (tcp->tcp_ipversion == IPV6_VERSION) 14726 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 14727 else 14728 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 14729 &pkti->ipi6_addr); 14730 pkti->ipi6_ifindex = ipp->ipp_ifindex; 14731 optptr += sizeof (*pkti); 14732 ASSERT(OK_32PTR(optptr)); 14733 /* Save as "last" value */ 14734 tcp->tcp_recvifindex = ipp->ipp_ifindex; 14735 } 14736 /* If app asked for hoplimit and it has changed ... */ 14737 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 14738 toh = (struct T_opthdr *)optptr; 14739 toh->level = IPPROTO_IPV6; 14740 toh->name = IPV6_HOPLIMIT; 14741 toh->len = sizeof (*toh) + sizeof (uint_t); 14742 toh->status = 0; 14743 optptr += sizeof (*toh); 14744 *(uint_t *)optptr = ipp->ipp_hoplimit; 14745 optptr += sizeof (uint_t); 14746 ASSERT(OK_32PTR(optptr)); 14747 /* Save as "last" value */ 14748 tcp->tcp_recvhops = ipp->ipp_hoplimit; 14749 } 14750 /* If app asked for tclass and it has changed ... */ 14751 if (addflag & TCP_IPV6_RECVTCLASS) { 14752 toh = (struct T_opthdr *)optptr; 14753 toh->level = IPPROTO_IPV6; 14754 toh->name = IPV6_TCLASS; 14755 toh->len = sizeof (*toh) + sizeof (uint_t); 14756 toh->status = 0; 14757 optptr += sizeof (*toh); 14758 *(uint_t *)optptr = ipp->ipp_tclass; 14759 optptr += sizeof (uint_t); 14760 ASSERT(OK_32PTR(optptr)); 14761 /* Save as "last" value */ 14762 tcp->tcp_recvtclass = ipp->ipp_tclass; 14763 } 14764 if (addflag & TCP_IPV6_RECVHOPOPTS) { 14765 toh = (struct T_opthdr *)optptr; 14766 toh->level = IPPROTO_IPV6; 14767 toh->name = IPV6_HOPOPTS; 14768 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 14769 toh->status = 0; 14770 optptr += sizeof (*toh); 14771 bcopy(ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 14772 optptr += ipp->ipp_hopoptslen; 14773 ASSERT(OK_32PTR(optptr)); 14774 /* Save as last value */ 14775 tcp_savebuf((void **)&tcp->tcp_hopopts, 14776 &tcp->tcp_hopoptslen, 14777 (ipp->ipp_fields & IPPF_HOPOPTS), 14778 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14779 } 14780 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 14781 toh = (struct T_opthdr *)optptr; 14782 toh->level = IPPROTO_IPV6; 14783 toh->name = IPV6_RTHDRDSTOPTS; 14784 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 14785 toh->status = 0; 14786 optptr += sizeof (*toh); 14787 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 14788 optptr += ipp->ipp_rtdstoptslen; 14789 ASSERT(OK_32PTR(optptr)); 14790 /* Save as last value */ 14791 tcp_savebuf((void **)&tcp->tcp_rtdstopts, 14792 &tcp->tcp_rtdstoptslen, 14793 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14794 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 14795 } 14796 if (addflag & TCP_IPV6_RECVRTHDR) { 14797 toh = (struct T_opthdr *)optptr; 14798 toh->level = IPPROTO_IPV6; 14799 toh->name = IPV6_RTHDR; 14800 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 14801 toh->status = 0; 14802 optptr += sizeof (*toh); 14803 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 14804 optptr += ipp->ipp_rthdrlen; 14805 ASSERT(OK_32PTR(optptr)); 14806 /* Save as last value */ 14807 tcp_savebuf((void **)&tcp->tcp_rthdr, 14808 &tcp->tcp_rthdrlen, 14809 (ipp->ipp_fields & IPPF_RTHDR), 14810 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14811 } 14812 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 14813 toh = (struct T_opthdr *)optptr; 14814 toh->level = IPPROTO_IPV6; 14815 toh->name = IPV6_DSTOPTS; 14816 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 14817 toh->status = 0; 14818 optptr += sizeof (*toh); 14819 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 14820 optptr += ipp->ipp_dstoptslen; 14821 ASSERT(OK_32PTR(optptr)); 14822 /* Save as last value */ 14823 tcp_savebuf((void **)&tcp->tcp_dstopts, 14824 &tcp->tcp_dstoptslen, 14825 (ipp->ipp_fields & IPPF_DSTOPTS), 14826 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14827 } 14828 ASSERT(optptr == mp->b_wptr); 14829 return (mp); 14830 } 14831 14832 14833 /* 14834 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 14835 * or a "bad" IRE detected by tcp_adapt_ire. 14836 * We can't tell if the failure was due to the laddr or the faddr 14837 * thus we clear out all addresses and ports. 14838 */ 14839 static void 14840 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 14841 { 14842 queue_t *q = tcp->tcp_rq; 14843 tcph_t *tcph; 14844 struct T_error_ack *tea; 14845 conn_t *connp = tcp->tcp_connp; 14846 14847 14848 ASSERT(mp->b_datap->db_type == M_PCPROTO); 14849 14850 if (mp->b_cont) { 14851 freemsg(mp->b_cont); 14852 mp->b_cont = NULL; 14853 } 14854 tea = (struct T_error_ack *)mp->b_rptr; 14855 switch (tea->PRIM_type) { 14856 case T_BIND_ACK: 14857 /* 14858 * Need to unbind with classifier since we were just told that 14859 * our bind succeeded. 14860 */ 14861 tcp->tcp_hard_bound = B_FALSE; 14862 tcp->tcp_hard_binding = B_FALSE; 14863 14864 ipcl_hash_remove(connp); 14865 /* Reuse the mblk if possible */ 14866 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 14867 sizeof (*tea)); 14868 mp->b_rptr = mp->b_datap->db_base; 14869 mp->b_wptr = mp->b_rptr + sizeof (*tea); 14870 tea = (struct T_error_ack *)mp->b_rptr; 14871 tea->PRIM_type = T_ERROR_ACK; 14872 tea->TLI_error = TSYSERR; 14873 tea->UNIX_error = error; 14874 if (tcp->tcp_state >= TCPS_SYN_SENT) { 14875 tea->ERROR_prim = T_CONN_REQ; 14876 } else { 14877 tea->ERROR_prim = O_T_BIND_REQ; 14878 } 14879 break; 14880 14881 case T_ERROR_ACK: 14882 if (tcp->tcp_state >= TCPS_SYN_SENT) 14883 tea->ERROR_prim = T_CONN_REQ; 14884 break; 14885 default: 14886 panic("tcp_bind_failed: unexpected TPI type"); 14887 /*NOTREACHED*/ 14888 } 14889 14890 tcp->tcp_state = TCPS_IDLE; 14891 if (tcp->tcp_ipversion == IPV4_VERSION) 14892 tcp->tcp_ipha->ipha_src = 0; 14893 else 14894 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 14895 /* 14896 * Copy of the src addr. in tcp_t is needed since 14897 * the lookup funcs. can only look at tcp_t 14898 */ 14899 V6_SET_ZERO(tcp->tcp_ip_src_v6); 14900 14901 tcph = tcp->tcp_tcph; 14902 tcph->th_lport[0] = 0; 14903 tcph->th_lport[1] = 0; 14904 tcp_bind_hash_remove(tcp); 14905 bzero(&connp->u_port, sizeof (connp->u_port)); 14906 /* blow away saved option results if any */ 14907 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 14908 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 14909 14910 conn_delete_ire(tcp->tcp_connp, NULL); 14911 putnext(q, mp); 14912 } 14913 14914 /* 14915 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 14916 * messages. 14917 */ 14918 void 14919 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 14920 { 14921 mblk_t *mp1; 14922 uchar_t *rptr = mp->b_rptr; 14923 queue_t *q = tcp->tcp_rq; 14924 struct T_error_ack *tea; 14925 uint32_t mss; 14926 mblk_t *syn_mp; 14927 mblk_t *mdti; 14928 int retval; 14929 mblk_t *ire_mp; 14930 14931 switch (mp->b_datap->db_type) { 14932 case M_PROTO: 14933 case M_PCPROTO: 14934 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 14935 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 14936 break; 14937 tea = (struct T_error_ack *)rptr; 14938 switch (tea->PRIM_type) { 14939 case T_BIND_ACK: 14940 /* 14941 * Adapt Multidata information, if any. The 14942 * following tcp_mdt_update routine will free 14943 * the message. 14944 */ 14945 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 14946 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 14947 b_rptr)->mdt_capab, B_TRUE); 14948 freemsg(mdti); 14949 } 14950 14951 /* Get the IRE, if we had requested for it */ 14952 ire_mp = tcp_ire_mp(mp); 14953 14954 if (tcp->tcp_hard_binding) { 14955 tcp->tcp_hard_binding = B_FALSE; 14956 tcp->tcp_hard_bound = B_TRUE; 14957 CL_INET_CONNECT(tcp); 14958 } else { 14959 if (ire_mp != NULL) 14960 freeb(ire_mp); 14961 goto after_syn_sent; 14962 } 14963 14964 retval = tcp_adapt_ire(tcp, ire_mp); 14965 if (ire_mp != NULL) 14966 freeb(ire_mp); 14967 if (retval == 0) { 14968 tcp_bind_failed(tcp, mp, 14969 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 14970 ENETUNREACH : EADDRNOTAVAIL)); 14971 return; 14972 } 14973 /* 14974 * Don't let an endpoint connect to itself. 14975 * Also checked in tcp_connect() but that 14976 * check can't handle the case when the 14977 * local IP address is INADDR_ANY. 14978 */ 14979 if (tcp->tcp_ipversion == IPV4_VERSION) { 14980 if ((tcp->tcp_ipha->ipha_dst == 14981 tcp->tcp_ipha->ipha_src) && 14982 (BE16_EQL(tcp->tcp_tcph->th_lport, 14983 tcp->tcp_tcph->th_fport))) { 14984 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 14985 return; 14986 } 14987 } else { 14988 if (IN6_ARE_ADDR_EQUAL( 14989 &tcp->tcp_ip6h->ip6_dst, 14990 &tcp->tcp_ip6h->ip6_src) && 14991 (BE16_EQL(tcp->tcp_tcph->th_lport, 14992 tcp->tcp_tcph->th_fport))) { 14993 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 14994 return; 14995 } 14996 } 14997 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 14998 /* 14999 * This should not be possible! Just for 15000 * defensive coding... 15001 */ 15002 if (tcp->tcp_state != TCPS_SYN_SENT) 15003 goto after_syn_sent; 15004 15005 ASSERT(q == tcp->tcp_rq); 15006 /* 15007 * tcp_adapt_ire() does not adjust 15008 * for TCP/IP header length. 15009 */ 15010 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15011 15012 /* 15013 * Just make sure our rwnd is at 15014 * least tcp_recv_hiwat_mss * MSS 15015 * large, and round up to the nearest 15016 * MSS. 15017 * 15018 * We do the round up here because 15019 * we need to get the interface 15020 * MTU first before we can do the 15021 * round up. 15022 */ 15023 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15024 tcp_recv_hiwat_minmss * mss); 15025 q->q_hiwat = tcp->tcp_rwnd; 15026 tcp_set_ws_value(tcp); 15027 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15028 tcp->tcp_tcph->th_win); 15029 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15030 tcp->tcp_snd_ws_ok = B_TRUE; 15031 15032 /* 15033 * Set tcp_snd_ts_ok to true 15034 * so that tcp_xmit_mp will 15035 * include the timestamp 15036 * option in the SYN segment. 15037 */ 15038 if (tcp_tstamp_always || 15039 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15040 tcp->tcp_snd_ts_ok = B_TRUE; 15041 } 15042 15043 /* 15044 * tcp_snd_sack_ok can be set in 15045 * tcp_adapt_ire() if the sack metric 15046 * is set. So check it here also. 15047 */ 15048 if (tcp_sack_permitted == 2 || 15049 tcp->tcp_snd_sack_ok) { 15050 if (tcp->tcp_sack_info == NULL) { 15051 tcp->tcp_sack_info = 15052 kmem_cache_alloc(tcp_sack_info_cache, 15053 KM_SLEEP); 15054 } 15055 tcp->tcp_snd_sack_ok = B_TRUE; 15056 } 15057 15058 /* 15059 * Should we use ECN? Note that the current 15060 * default value (SunOS 5.9) of tcp_ecn_permitted 15061 * is 1. The reason for doing this is that there 15062 * are equipments out there that will drop ECN 15063 * enabled IP packets. Setting it to 1 avoids 15064 * compatibility problems. 15065 */ 15066 if (tcp_ecn_permitted == 2) 15067 tcp->tcp_ecn_ok = B_TRUE; 15068 15069 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15070 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15071 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15072 if (syn_mp) { 15073 cred_t *cr; 15074 pid_t pid; 15075 15076 /* 15077 * Obtain the credential from the 15078 * thread calling connect(); the credential 15079 * lives on in the second mblk which 15080 * originated from T_CONN_REQ and is echoed 15081 * with the T_BIND_ACK from ip. If none 15082 * can be found, default to the creator 15083 * of the socket. 15084 */ 15085 if (mp->b_cont == NULL || 15086 (cr = DB_CRED(mp->b_cont)) == NULL) { 15087 cr = tcp->tcp_cred; 15088 pid = tcp->tcp_cpid; 15089 } else { 15090 pid = DB_CPID(mp->b_cont); 15091 } 15092 15093 TCP_RECORD_TRACE(tcp, syn_mp, 15094 TCP_TRACE_SEND_PKT); 15095 mblk_setcred(syn_mp, cr); 15096 DB_CPID(syn_mp) = pid; 15097 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15098 } 15099 after_syn_sent: 15100 /* 15101 * A trailer mblk indicates a waiting client upstream. 15102 * We complete here the processing begun in 15103 * either tcp_bind() or tcp_connect() by passing 15104 * upstream the reply message they supplied. 15105 */ 15106 mp1 = mp; 15107 mp = mp->b_cont; 15108 freeb(mp1); 15109 if (mp) 15110 break; 15111 return; 15112 case T_ERROR_ACK: 15113 if (tcp->tcp_debug) { 15114 (void) strlog(TCP_MOD_ID, 0, 1, 15115 SL_TRACE|SL_ERROR, 15116 "tcp_rput_other: case T_ERROR_ACK, " 15117 "ERROR_prim == %d", 15118 tea->ERROR_prim); 15119 } 15120 switch (tea->ERROR_prim) { 15121 case O_T_BIND_REQ: 15122 case T_BIND_REQ: 15123 tcp_bind_failed(tcp, mp, 15124 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15125 ENETUNREACH : EADDRNOTAVAIL)); 15126 return; 15127 case T_UNBIND_REQ: 15128 tcp->tcp_hard_binding = B_FALSE; 15129 tcp->tcp_hard_bound = B_FALSE; 15130 if (mp->b_cont) { 15131 freemsg(mp->b_cont); 15132 mp->b_cont = NULL; 15133 } 15134 if (tcp->tcp_unbind_pending) 15135 tcp->tcp_unbind_pending = 0; 15136 else { 15137 /* From tcp_ip_unbind() - free */ 15138 freemsg(mp); 15139 return; 15140 } 15141 break; 15142 case T_SVR4_OPTMGMT_REQ: 15143 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15144 /* T_OPTMGMT_REQ generated by TCP */ 15145 printf("T_SVR4_OPTMGMT_REQ failed " 15146 "%d/%d - dropped (cnt %d)\n", 15147 tea->TLI_error, tea->UNIX_error, 15148 tcp->tcp_drop_opt_ack_cnt); 15149 freemsg(mp); 15150 tcp->tcp_drop_opt_ack_cnt--; 15151 return; 15152 } 15153 break; 15154 } 15155 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15156 tcp->tcp_drop_opt_ack_cnt > 0) { 15157 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15158 "- dropped (cnt %d)\n", 15159 tea->TLI_error, tea->UNIX_error, 15160 tcp->tcp_drop_opt_ack_cnt); 15161 freemsg(mp); 15162 tcp->tcp_drop_opt_ack_cnt--; 15163 return; 15164 } 15165 break; 15166 case T_OPTMGMT_ACK: 15167 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15168 /* T_OPTMGMT_REQ generated by TCP */ 15169 freemsg(mp); 15170 tcp->tcp_drop_opt_ack_cnt--; 15171 return; 15172 } 15173 break; 15174 default: 15175 break; 15176 } 15177 break; 15178 case M_CTL: 15179 /* 15180 * ICMP messages. 15181 */ 15182 tcp_icmp_error(tcp, mp); 15183 return; 15184 case M_FLUSH: 15185 if (*rptr & FLUSHR) 15186 flushq(q, FLUSHDATA); 15187 break; 15188 default: 15189 break; 15190 } 15191 /* 15192 * Make sure we set this bit before sending the ACK for 15193 * bind. Otherwise accept could possibly run and free 15194 * this tcp struct. 15195 */ 15196 putnext(q, mp); 15197 } 15198 15199 /* 15200 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15201 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15202 * tcp_rsrv() try again. 15203 */ 15204 static void 15205 tcp_ordrel_kick(void *arg) 15206 { 15207 conn_t *connp = (conn_t *)arg; 15208 tcp_t *tcp = connp->conn_tcp; 15209 15210 tcp->tcp_ordrelid = 0; 15211 tcp->tcp_timeout = B_FALSE; 15212 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15213 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15214 qenable(tcp->tcp_rq); 15215 } 15216 } 15217 15218 /* ARGSUSED */ 15219 static void 15220 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15221 { 15222 conn_t *connp = (conn_t *)arg; 15223 tcp_t *tcp = connp->conn_tcp; 15224 queue_t *q = tcp->tcp_rq; 15225 uint_t thwin; 15226 15227 freeb(mp); 15228 15229 TCP_STAT(tcp_rsrv_calls); 15230 15231 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15232 return; 15233 } 15234 15235 if (tcp->tcp_fused) { 15236 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15237 15238 ASSERT(tcp->tcp_fused); 15239 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15240 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15241 ASSERT(!TCP_IS_DETACHED(tcp)); 15242 ASSERT(tcp->tcp_connp->conn_sqp == 15243 peer_tcp->tcp_connp->conn_sqp); 15244 15245 /* 15246 * Normally we would not get backenabled in synchronous 15247 * streams mode, but in case this happens, we need to stop 15248 * synchronous streams temporarily to prevent a race with 15249 * tcp_fuse_rrw() or tcp_fuse_rinfop(). It is safe to access 15250 * tcp_rcv_list here because those entry points will return 15251 * right away when synchronous streams is stopped. 15252 */ 15253 TCP_FUSE_SYNCSTR_STOP(tcp); 15254 if (tcp->tcp_rcv_list != NULL) 15255 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15256 15257 tcp_clrqfull(peer_tcp); 15258 TCP_FUSE_SYNCSTR_RESUME(tcp); 15259 TCP_STAT(tcp_fusion_backenabled); 15260 return; 15261 } 15262 15263 if (canputnext(q)) { 15264 tcp->tcp_rwnd = q->q_hiwat; 15265 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15266 << tcp->tcp_rcv_ws; 15267 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15268 /* 15269 * Send back a window update immediately if TCP is above 15270 * ESTABLISHED state and the increase of the rcv window 15271 * that the other side knows is at least 1 MSS after flow 15272 * control is lifted. 15273 */ 15274 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15275 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15276 tcp_xmit_ctl(NULL, tcp, 15277 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15278 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15279 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15280 } 15281 } 15282 /* Handle a failure to allocate a T_ORDREL_IND here */ 15283 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15284 ASSERT(tcp->tcp_listener == NULL); 15285 if (tcp->tcp_rcv_list != NULL) { 15286 (void) tcp_rcv_drain(q, tcp); 15287 } 15288 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15289 mp = mi_tpi_ordrel_ind(); 15290 if (mp) { 15291 tcp->tcp_ordrel_done = B_TRUE; 15292 putnext(q, mp); 15293 if (tcp->tcp_deferred_clean_death) { 15294 /* 15295 * tcp_clean_death was deferred for 15296 * T_ORDREL_IND - do it now 15297 */ 15298 tcp->tcp_deferred_clean_death = B_FALSE; 15299 (void) tcp_clean_death(tcp, 15300 tcp->tcp_client_errno, 22); 15301 } 15302 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15303 /* 15304 * If there isn't already a timer running 15305 * start one. Use a 4 second 15306 * timer as a fallback since it can't fail. 15307 */ 15308 tcp->tcp_timeout = B_TRUE; 15309 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15310 MSEC_TO_TICK(4000)); 15311 } 15312 } 15313 } 15314 15315 /* 15316 * The read side service routine is called mostly when we get back-enabled as a 15317 * result of flow control relief. Since we don't actually queue anything in 15318 * TCP, we have no data to send out of here. What we do is clear the receive 15319 * window, and send out a window update. 15320 * This routine is also called to drive an orderly release message upstream 15321 * if the attempt in tcp_rput failed. 15322 */ 15323 static void 15324 tcp_rsrv(queue_t *q) 15325 { 15326 conn_t *connp = Q_TO_CONN(q); 15327 tcp_t *tcp = connp->conn_tcp; 15328 mblk_t *mp; 15329 15330 /* No code does a putq on the read side */ 15331 ASSERT(q->q_first == NULL); 15332 15333 /* Nothing to do for the default queue */ 15334 if (q == tcp_g_q) { 15335 return; 15336 } 15337 15338 mp = allocb(0, BPRI_HI); 15339 if (mp == NULL) { 15340 /* 15341 * We are under memory pressure. Return for now and we 15342 * we will be called again later. 15343 */ 15344 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15345 /* 15346 * If there isn't already a timer running 15347 * start one. Use a 4 second 15348 * timer as a fallback since it can't fail. 15349 */ 15350 tcp->tcp_timeout = B_TRUE; 15351 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15352 MSEC_TO_TICK(4000)); 15353 } 15354 return; 15355 } 15356 CONN_INC_REF(connp); 15357 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15358 SQTAG_TCP_RSRV); 15359 } 15360 15361 /* 15362 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15363 * We do not allow the receive window to shrink. After setting rwnd, 15364 * set the flow control hiwat of the stream. 15365 * 15366 * This function is called in 2 cases: 15367 * 15368 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15369 * connection (passive open) and in tcp_rput_data() for active connect. 15370 * This is called after tcp_mss_set() when the desired MSS value is known. 15371 * This makes sure that our window size is a mutiple of the other side's 15372 * MSS. 15373 * 2) Handling SO_RCVBUF option. 15374 * 15375 * It is ASSUMED that the requested size is a multiple of the current MSS. 15376 * 15377 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15378 * user requests so. 15379 */ 15380 static int 15381 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15382 { 15383 uint32_t mss = tcp->tcp_mss; 15384 uint32_t old_max_rwnd; 15385 uint32_t max_transmittable_rwnd; 15386 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15387 15388 if (tcp->tcp_fused) { 15389 size_t sth_hiwat; 15390 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15391 15392 ASSERT(peer_tcp != NULL); 15393 /* 15394 * Record the stream head's high water mark for 15395 * this endpoint; this is used for flow-control 15396 * purposes in tcp_fuse_output(). 15397 */ 15398 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15399 if (!tcp_detached) 15400 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15401 15402 /* 15403 * In the fusion case, the maxpsz stream head value of 15404 * our peer is set according to its send buffer size 15405 * and our receive buffer size; since the latter may 15406 * have changed we need to update the peer's maxpsz. 15407 */ 15408 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15409 return (rwnd); 15410 } 15411 15412 if (tcp_detached) 15413 old_max_rwnd = tcp->tcp_rwnd; 15414 else 15415 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15416 15417 /* 15418 * Insist on a receive window that is at least 15419 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15420 * funny TCP interactions of Nagle algorithm, SWS avoidance 15421 * and delayed acknowledgement. 15422 */ 15423 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15424 15425 /* 15426 * If window size info has already been exchanged, TCP should not 15427 * shrink the window. Shrinking window is doable if done carefully. 15428 * We may add that support later. But so far there is not a real 15429 * need to do that. 15430 */ 15431 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15432 /* MSS may have changed, do a round up again. */ 15433 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15434 } 15435 15436 /* 15437 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15438 * can be applied even before the window scale option is decided. 15439 */ 15440 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15441 if (rwnd > max_transmittable_rwnd) { 15442 rwnd = max_transmittable_rwnd - 15443 (max_transmittable_rwnd % mss); 15444 if (rwnd < mss) 15445 rwnd = max_transmittable_rwnd; 15446 /* 15447 * If we're over the limit we may have to back down tcp_rwnd. 15448 * The increment below won't work for us. So we set all three 15449 * here and the increment below will have no effect. 15450 */ 15451 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15452 } 15453 if (tcp->tcp_localnet) { 15454 tcp->tcp_rack_abs_max = 15455 MIN(tcp_local_dacks_max, rwnd / mss / 2); 15456 } else { 15457 /* 15458 * For a remote host on a different subnet (through a router), 15459 * we ack every other packet to be conforming to RFC1122. 15460 * tcp_deferred_acks_max is default to 2. 15461 */ 15462 tcp->tcp_rack_abs_max = 15463 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 15464 } 15465 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15466 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15467 else 15468 tcp->tcp_rack_cur_max = 0; 15469 /* 15470 * Increment the current rwnd by the amount the maximum grew (we 15471 * can not overwrite it since we might be in the middle of a 15472 * connection.) 15473 */ 15474 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15475 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15476 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15477 tcp->tcp_cwnd_max = rwnd; 15478 15479 if (tcp_detached) 15480 return (rwnd); 15481 /* 15482 * We set the maximum receive window into rq->q_hiwat. 15483 * This is not actually used for flow control. 15484 */ 15485 tcp->tcp_rq->q_hiwat = rwnd; 15486 /* 15487 * Set the Stream head high water mark. This doesn't have to be 15488 * here, since we are simply using default values, but we would 15489 * prefer to choose these values algorithmically, with a likely 15490 * relationship to rwnd. 15491 */ 15492 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 15493 return (rwnd); 15494 } 15495 15496 /* 15497 * Return SNMP stuff in buffer in mpdata. 15498 */ 15499 int 15500 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15501 { 15502 mblk_t *mpdata; 15503 mblk_t *mp_conn_ctl = NULL; 15504 mblk_t *mp_conn_data; 15505 mblk_t *mp6_conn_ctl = NULL; 15506 mblk_t *mp6_conn_data; 15507 mblk_t *mp_conn_tail = NULL; 15508 mblk_t *mp6_conn_tail = NULL; 15509 struct opthdr *optp; 15510 mib2_tcpConnEntry_t tce; 15511 mib2_tcp6ConnEntry_t tce6; 15512 connf_t *connfp; 15513 conn_t *connp; 15514 int i; 15515 boolean_t ispriv; 15516 zoneid_t zoneid; 15517 15518 if (mpctl == NULL || 15519 (mpdata = mpctl->b_cont) == NULL || 15520 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15521 (mp6_conn_ctl = copymsg(mpctl)) == NULL) { 15522 if (mp_conn_ctl != NULL) 15523 freemsg(mp_conn_ctl); 15524 if (mp6_conn_ctl != NULL) 15525 freemsg(mp6_conn_ctl); 15526 return (0); 15527 } 15528 15529 /* build table of connections -- need count in fixed part */ 15530 mp_conn_data = mp_conn_ctl->b_cont; 15531 mp6_conn_data = mp6_conn_ctl->b_cont; 15532 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 15533 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 15534 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 15535 SET_MIB(tcp_mib.tcpMaxConn, -1); 15536 SET_MIB(tcp_mib.tcpCurrEstab, 0); 15537 15538 ispriv = 15539 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15540 zoneid = Q_TO_CONN(q)->conn_zoneid; 15541 15542 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15543 15544 connfp = &ipcl_globalhash_fanout[i]; 15545 15546 connp = NULL; 15547 15548 while ((connp = 15549 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15550 tcp_t *tcp; 15551 15552 if (connp->conn_zoneid != zoneid) 15553 continue; /* not in this zone */ 15554 15555 tcp = connp->conn_tcp; 15556 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 15557 tcp->tcp_ibsegs = 0; 15558 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 15559 tcp->tcp_obsegs = 0; 15560 15561 tce6.tcp6ConnState = tce.tcpConnState = 15562 tcp_snmp_state(tcp); 15563 if (tce.tcpConnState == MIB2_TCP_established || 15564 tce.tcpConnState == MIB2_TCP_closeWait) 15565 BUMP_MIB(&tcp_mib, tcpCurrEstab); 15566 15567 /* Create a message to report on IPv6 entries */ 15568 if (tcp->tcp_ipversion == IPV6_VERSION) { 15569 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15570 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15571 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15572 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15573 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15574 /* Don't want just anybody seeing these... */ 15575 if (ispriv) { 15576 tce6.tcp6ConnEntryInfo.ce_snxt = 15577 tcp->tcp_snxt; 15578 tce6.tcp6ConnEntryInfo.ce_suna = 15579 tcp->tcp_suna; 15580 tce6.tcp6ConnEntryInfo.ce_rnxt = 15581 tcp->tcp_rnxt; 15582 tce6.tcp6ConnEntryInfo.ce_rack = 15583 tcp->tcp_rack; 15584 } else { 15585 /* 15586 * Netstat, unfortunately, uses this to 15587 * get send/receive queue sizes. How to fix? 15588 * Why not compute the difference only? 15589 */ 15590 tce6.tcp6ConnEntryInfo.ce_snxt = 15591 tcp->tcp_snxt - tcp->tcp_suna; 15592 tce6.tcp6ConnEntryInfo.ce_suna = 0; 15593 tce6.tcp6ConnEntryInfo.ce_rnxt = 15594 tcp->tcp_rnxt - tcp->tcp_rack; 15595 tce6.tcp6ConnEntryInfo.ce_rack = 0; 15596 } 15597 15598 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15599 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15600 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 15601 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 15602 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 15603 (void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail, 15604 (char *)&tce6, sizeof (tce6)); 15605 } 15606 /* 15607 * Create an IPv4 table entry for IPv4 entries and also 15608 * for IPv6 entries which are bound to in6addr_any 15609 * but don't have IPV6_V6ONLY set. 15610 * (i.e. anything an IPv4 peer could connect to) 15611 */ 15612 if (tcp->tcp_ipversion == IPV4_VERSION || 15613 (tcp->tcp_state <= TCPS_LISTEN && 15614 !tcp->tcp_connp->conn_ipv6_v6only && 15615 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 15616 if (tcp->tcp_ipversion == IPV6_VERSION) { 15617 tce.tcpConnRemAddress = INADDR_ANY; 15618 tce.tcpConnLocalAddress = INADDR_ANY; 15619 } else { 15620 tce.tcpConnRemAddress = 15621 tcp->tcp_remote; 15622 tce.tcpConnLocalAddress = 15623 tcp->tcp_ip_src; 15624 } 15625 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 15626 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 15627 /* Don't want just anybody seeing these... */ 15628 if (ispriv) { 15629 tce.tcpConnEntryInfo.ce_snxt = 15630 tcp->tcp_snxt; 15631 tce.tcpConnEntryInfo.ce_suna = 15632 tcp->tcp_suna; 15633 tce.tcpConnEntryInfo.ce_rnxt = 15634 tcp->tcp_rnxt; 15635 tce.tcpConnEntryInfo.ce_rack = 15636 tcp->tcp_rack; 15637 } else { 15638 /* 15639 * Netstat, unfortunately, uses this to 15640 * get send/receive queue sizes. How 15641 * to fix? 15642 * Why not compute the difference only? 15643 */ 15644 tce.tcpConnEntryInfo.ce_snxt = 15645 tcp->tcp_snxt - tcp->tcp_suna; 15646 tce.tcpConnEntryInfo.ce_suna = 0; 15647 tce.tcpConnEntryInfo.ce_rnxt = 15648 tcp->tcp_rnxt - tcp->tcp_rack; 15649 tce.tcpConnEntryInfo.ce_rack = 0; 15650 } 15651 15652 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15653 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15654 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 15655 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 15656 tce.tcpConnEntryInfo.ce_state = 15657 tcp->tcp_state; 15658 (void) snmp_append_data2(mp_conn_data, 15659 &mp_conn_tail, (char *)&tce, sizeof (tce)); 15660 } 15661 } 15662 } 15663 15664 /* fixed length structure for IPv4 and IPv6 counters */ 15665 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 15666 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 15667 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 15668 optp->level = MIB2_TCP; 15669 optp->name = 0; 15670 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 15671 optp->len = msgdsize(mpdata); 15672 qreply(q, mpctl); 15673 15674 /* table of connections... */ 15675 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 15676 sizeof (struct T_optmgmt_ack)]; 15677 optp->level = MIB2_TCP; 15678 optp->name = MIB2_TCP_CONN; 15679 optp->len = msgdsize(mp_conn_data); 15680 qreply(q, mp_conn_ctl); 15681 15682 /* table of IPv6 connections... */ 15683 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 15684 sizeof (struct T_optmgmt_ack)]; 15685 optp->level = MIB2_TCP6; 15686 optp->name = MIB2_TCP6_CONN; 15687 optp->len = msgdsize(mp6_conn_data); 15688 qreply(q, mp6_conn_ctl); 15689 return (1); 15690 } 15691 15692 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 15693 /* ARGSUSED */ 15694 int 15695 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 15696 { 15697 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 15698 15699 switch (level) { 15700 case MIB2_TCP: 15701 switch (name) { 15702 case 13: 15703 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 15704 return (0); 15705 /* TODO: delete entry defined by tce */ 15706 return (1); 15707 default: 15708 return (0); 15709 } 15710 default: 15711 return (1); 15712 } 15713 } 15714 15715 /* Translate TCP state to MIB2 TCP state. */ 15716 static int 15717 tcp_snmp_state(tcp_t *tcp) 15718 { 15719 if (tcp == NULL) 15720 return (0); 15721 15722 switch (tcp->tcp_state) { 15723 case TCPS_CLOSED: 15724 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 15725 case TCPS_BOUND: 15726 return (MIB2_TCP_closed); 15727 case TCPS_LISTEN: 15728 return (MIB2_TCP_listen); 15729 case TCPS_SYN_SENT: 15730 return (MIB2_TCP_synSent); 15731 case TCPS_SYN_RCVD: 15732 return (MIB2_TCP_synReceived); 15733 case TCPS_ESTABLISHED: 15734 return (MIB2_TCP_established); 15735 case TCPS_CLOSE_WAIT: 15736 return (MIB2_TCP_closeWait); 15737 case TCPS_FIN_WAIT_1: 15738 return (MIB2_TCP_finWait1); 15739 case TCPS_CLOSING: 15740 return (MIB2_TCP_closing); 15741 case TCPS_LAST_ACK: 15742 return (MIB2_TCP_lastAck); 15743 case TCPS_FIN_WAIT_2: 15744 return (MIB2_TCP_finWait2); 15745 case TCPS_TIME_WAIT: 15746 return (MIB2_TCP_timeWait); 15747 default: 15748 return (0); 15749 } 15750 } 15751 15752 static char tcp_report_header[] = 15753 "TCP " MI_COL_HDRPAD_STR 15754 "zone dest snxt suna " 15755 "swnd rnxt rack rwnd rto mss w sw rw t " 15756 "recent [lport,fport] state"; 15757 15758 /* 15759 * TCP status report triggered via the Named Dispatch mechanism. 15760 */ 15761 /* ARGSUSED */ 15762 static void 15763 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 15764 cred_t *cr) 15765 { 15766 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 15767 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 15768 char cflag; 15769 in6_addr_t v6dst; 15770 char buf[80]; 15771 uint_t print_len, buf_len; 15772 15773 buf_len = mp->b_datap->db_lim - mp->b_wptr; 15774 if (buf_len <= 0) 15775 return; 15776 15777 if (hashval >= 0) 15778 (void) sprintf(hash, "%03d ", hashval); 15779 else 15780 hash[0] = '\0'; 15781 15782 /* 15783 * Note that we use the remote address in the tcp_b structure. 15784 * This means that it will print out the real destination address, 15785 * not the next hop's address if source routing is used. This 15786 * avoid the confusion on the output because user may not 15787 * know that source routing is used for a connection. 15788 */ 15789 if (tcp->tcp_ipversion == IPV4_VERSION) { 15790 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 15791 } else { 15792 v6dst = tcp->tcp_remote_v6; 15793 } 15794 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 15795 /* 15796 * the ispriv checks are so that normal users cannot determine 15797 * sequence number information using NDD. 15798 */ 15799 15800 if (TCP_IS_DETACHED(tcp)) 15801 cflag = '*'; 15802 else 15803 cflag = ' '; 15804 print_len = snprintf((char *)mp->b_wptr, buf_len, 15805 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 15806 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 15807 hash, 15808 (void *)tcp, 15809 tcp->tcp_connp->conn_zoneid, 15810 addrbuf, 15811 (ispriv) ? tcp->tcp_snxt : 0, 15812 (ispriv) ? tcp->tcp_suna : 0, 15813 tcp->tcp_swnd, 15814 (ispriv) ? tcp->tcp_rnxt : 0, 15815 (ispriv) ? tcp->tcp_rack : 0, 15816 tcp->tcp_rwnd, 15817 tcp->tcp_rto, 15818 tcp->tcp_mss, 15819 tcp->tcp_snd_ws_ok, 15820 tcp->tcp_snd_ws, 15821 tcp->tcp_rcv_ws, 15822 tcp->tcp_snd_ts_ok, 15823 tcp->tcp_ts_recent, 15824 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 15825 if (print_len < buf_len) { 15826 ((mblk_t *)mp)->b_wptr += print_len; 15827 } else { 15828 ((mblk_t *)mp)->b_wptr += buf_len; 15829 } 15830 } 15831 15832 /* 15833 * TCP status report (for listeners only) triggered via the Named Dispatch 15834 * mechanism. 15835 */ 15836 /* ARGSUSED */ 15837 static void 15838 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 15839 { 15840 char addrbuf[INET6_ADDRSTRLEN]; 15841 in6_addr_t v6dst; 15842 uint_t print_len, buf_len; 15843 15844 buf_len = mp->b_datap->db_lim - mp->b_wptr; 15845 if (buf_len <= 0) 15846 return; 15847 15848 if (tcp->tcp_ipversion == IPV4_VERSION) { 15849 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 15850 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 15851 } else { 15852 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 15853 addrbuf, sizeof (addrbuf)); 15854 } 15855 print_len = snprintf((char *)mp->b_wptr, buf_len, 15856 "%03d " 15857 MI_COL_PTRFMT_STR 15858 "%d %s %05u %08u %d/%d/%d%c\n", 15859 hashval, (void *)tcp, 15860 tcp->tcp_connp->conn_zoneid, 15861 addrbuf, 15862 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 15863 tcp->tcp_conn_req_seqnum, 15864 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 15865 tcp->tcp_conn_req_max, 15866 tcp->tcp_syn_defense ? '*' : ' '); 15867 if (print_len < buf_len) { 15868 ((mblk_t *)mp)->b_wptr += print_len; 15869 } else { 15870 ((mblk_t *)mp)->b_wptr += buf_len; 15871 } 15872 } 15873 15874 /* TCP status report triggered via the Named Dispatch mechanism. */ 15875 /* ARGSUSED */ 15876 static int 15877 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15878 { 15879 tcp_t *tcp; 15880 int i; 15881 conn_t *connp; 15882 connf_t *connfp; 15883 zoneid_t zoneid; 15884 15885 /* 15886 * Because of the ndd constraint, at most we can have 64K buffer 15887 * to put in all TCP info. So to be more efficient, just 15888 * allocate a 64K buffer here, assuming we need that large buffer. 15889 * This may be a problem as any user can read tcp_status. Therefore 15890 * we limit the rate of doing this using tcp_ndd_get_info_interval. 15891 * This should be OK as normal users should not do this too often. 15892 */ 15893 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15894 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15895 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15896 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15897 return (0); 15898 } 15899 } 15900 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15901 /* The following may work even if we cannot get a large buf. */ 15902 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15903 return (0); 15904 } 15905 15906 (void) mi_mpprintf(mp, "%s", tcp_report_header); 15907 15908 zoneid = Q_TO_CONN(q)->conn_zoneid; 15909 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15910 15911 connfp = &ipcl_globalhash_fanout[i]; 15912 15913 connp = NULL; 15914 15915 while ((connp = 15916 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15917 tcp = connp->conn_tcp; 15918 if (zoneid != GLOBAL_ZONEID && 15919 zoneid != connp->conn_zoneid) 15920 continue; 15921 tcp_report_item(mp->b_cont, tcp, -1, tcp, 15922 cr); 15923 } 15924 15925 } 15926 15927 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15928 return (0); 15929 } 15930 15931 /* TCP status report triggered via the Named Dispatch mechanism. */ 15932 /* ARGSUSED */ 15933 static int 15934 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15935 { 15936 tf_t *tbf; 15937 tcp_t *tcp; 15938 int i; 15939 zoneid_t zoneid; 15940 15941 /* Refer to comments in tcp_status_report(). */ 15942 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15943 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15944 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15945 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15946 return (0); 15947 } 15948 } 15949 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15950 /* The following may work even if we cannot get a large buf. */ 15951 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15952 return (0); 15953 } 15954 15955 (void) mi_mpprintf(mp, " %s", tcp_report_header); 15956 15957 zoneid = Q_TO_CONN(q)->conn_zoneid; 15958 15959 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 15960 tbf = &tcp_bind_fanout[i]; 15961 mutex_enter(&tbf->tf_lock); 15962 for (tcp = tbf->tf_tcp; tcp != NULL; 15963 tcp = tcp->tcp_bind_hash) { 15964 if (zoneid != GLOBAL_ZONEID && 15965 zoneid != tcp->tcp_connp->conn_zoneid) 15966 continue; 15967 CONN_INC_REF(tcp->tcp_connp); 15968 tcp_report_item(mp->b_cont, tcp, i, 15969 Q_TO_TCP(q), cr); 15970 CONN_DEC_REF(tcp->tcp_connp); 15971 } 15972 mutex_exit(&tbf->tf_lock); 15973 } 15974 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15975 return (0); 15976 } 15977 15978 /* TCP status report triggered via the Named Dispatch mechanism. */ 15979 /* ARGSUSED */ 15980 static int 15981 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15982 { 15983 connf_t *connfp; 15984 conn_t *connp; 15985 tcp_t *tcp; 15986 int i; 15987 zoneid_t zoneid; 15988 15989 /* Refer to comments in tcp_status_report(). */ 15990 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15991 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15992 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15993 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15994 return (0); 15995 } 15996 } 15997 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15998 /* The following may work even if we cannot get a large buf. */ 15999 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16000 return (0); 16001 } 16002 16003 (void) mi_mpprintf(mp, 16004 " TCP " MI_COL_HDRPAD_STR 16005 "zone IP addr port seqnum backlog (q0/q/max)"); 16006 16007 zoneid = Q_TO_CONN(q)->conn_zoneid; 16008 16009 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16010 connfp = &ipcl_bind_fanout[i]; 16011 connp = NULL; 16012 while ((connp = 16013 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16014 tcp = connp->conn_tcp; 16015 if (zoneid != GLOBAL_ZONEID && 16016 zoneid != connp->conn_zoneid) 16017 continue; 16018 tcp_report_listener(mp->b_cont, tcp, i); 16019 } 16020 } 16021 16022 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16023 return (0); 16024 } 16025 16026 /* TCP status report triggered via the Named Dispatch mechanism. */ 16027 /* ARGSUSED */ 16028 static int 16029 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16030 { 16031 connf_t *connfp; 16032 conn_t *connp; 16033 tcp_t *tcp; 16034 int i; 16035 zoneid_t zoneid; 16036 16037 /* Refer to comments in tcp_status_report(). */ 16038 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16039 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16040 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16041 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16042 return (0); 16043 } 16044 } 16045 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16046 /* The following may work even if we cannot get a large buf. */ 16047 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16048 return (0); 16049 } 16050 16051 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16052 ipcl_conn_fanout_size); 16053 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16054 16055 zoneid = Q_TO_CONN(q)->conn_zoneid; 16056 16057 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16058 connfp = &ipcl_conn_fanout[i]; 16059 connp = NULL; 16060 while ((connp = 16061 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16062 tcp = connp->conn_tcp; 16063 if (zoneid != GLOBAL_ZONEID && 16064 zoneid != connp->conn_zoneid) 16065 continue; 16066 tcp_report_item(mp->b_cont, tcp, i, 16067 Q_TO_TCP(q), cr); 16068 } 16069 } 16070 16071 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16072 return (0); 16073 } 16074 16075 /* TCP status report triggered via the Named Dispatch mechanism. */ 16076 /* ARGSUSED */ 16077 static int 16078 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16079 { 16080 tf_t *tf; 16081 tcp_t *tcp; 16082 int i; 16083 zoneid_t zoneid; 16084 16085 /* Refer to comments in tcp_status_report(). */ 16086 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16087 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16088 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16089 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16090 return (0); 16091 } 16092 } 16093 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16094 /* The following may work even if we cannot get a large buf. */ 16095 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16096 return (0); 16097 } 16098 16099 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16100 16101 zoneid = Q_TO_CONN(q)->conn_zoneid; 16102 16103 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16104 tf = &tcp_acceptor_fanout[i]; 16105 mutex_enter(&tf->tf_lock); 16106 for (tcp = tf->tf_tcp; tcp != NULL; 16107 tcp = tcp->tcp_acceptor_hash) { 16108 if (zoneid != GLOBAL_ZONEID && 16109 zoneid != tcp->tcp_connp->conn_zoneid) 16110 continue; 16111 tcp_report_item(mp->b_cont, tcp, i, 16112 Q_TO_TCP(q), cr); 16113 } 16114 mutex_exit(&tf->tf_lock); 16115 } 16116 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16117 return (0); 16118 } 16119 16120 /* 16121 * tcp_timer is the timer service routine. It handles the retransmission, 16122 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16123 * from the state of the tcp instance what kind of action needs to be done 16124 * at the time it is called. 16125 */ 16126 static void 16127 tcp_timer(void *arg) 16128 { 16129 mblk_t *mp; 16130 clock_t first_threshold; 16131 clock_t second_threshold; 16132 clock_t ms; 16133 uint32_t mss; 16134 conn_t *connp = (conn_t *)arg; 16135 tcp_t *tcp = connp->conn_tcp; 16136 16137 tcp->tcp_timer_tid = 0; 16138 16139 if (tcp->tcp_fused) 16140 return; 16141 16142 first_threshold = tcp->tcp_first_timer_threshold; 16143 second_threshold = tcp->tcp_second_timer_threshold; 16144 switch (tcp->tcp_state) { 16145 case TCPS_IDLE: 16146 case TCPS_BOUND: 16147 case TCPS_LISTEN: 16148 return; 16149 case TCPS_SYN_RCVD: { 16150 tcp_t *listener = tcp->tcp_listener; 16151 16152 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16153 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16154 /* it's our first timeout */ 16155 tcp->tcp_syn_rcvd_timeout = 1; 16156 mutex_enter(&listener->tcp_eager_lock); 16157 listener->tcp_syn_rcvd_timeout++; 16158 if (!listener->tcp_syn_defense && 16159 (listener->tcp_syn_rcvd_timeout > 16160 (tcp_conn_req_max_q0 >> 2)) && 16161 (tcp_conn_req_max_q0 > 200)) { 16162 /* We may be under attack. Put on a defense. */ 16163 listener->tcp_syn_defense = B_TRUE; 16164 cmn_err(CE_WARN, "High TCP connect timeout " 16165 "rate! System (port %d) may be under a " 16166 "SYN flood attack!", 16167 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16168 16169 listener->tcp_ip_addr_cache = kmem_zalloc( 16170 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16171 KM_NOSLEEP); 16172 } 16173 mutex_exit(&listener->tcp_eager_lock); 16174 } 16175 } 16176 /* FALLTHRU */ 16177 case TCPS_SYN_SENT: 16178 first_threshold = tcp->tcp_first_ctimer_threshold; 16179 second_threshold = tcp->tcp_second_ctimer_threshold; 16180 break; 16181 case TCPS_ESTABLISHED: 16182 case TCPS_FIN_WAIT_1: 16183 case TCPS_CLOSING: 16184 case TCPS_CLOSE_WAIT: 16185 case TCPS_LAST_ACK: 16186 /* If we have data to rexmit */ 16187 if (tcp->tcp_suna != tcp->tcp_snxt) { 16188 clock_t time_to_wait; 16189 16190 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16191 if (!tcp->tcp_xmit_head) 16192 break; 16193 time_to_wait = lbolt - 16194 (clock_t)tcp->tcp_xmit_head->b_prev; 16195 time_to_wait = tcp->tcp_rto - 16196 TICK_TO_MSEC(time_to_wait); 16197 /* 16198 * If the timer fires too early, 1 clock tick earlier, 16199 * restart the timer. 16200 */ 16201 if (time_to_wait > msec_per_tick) { 16202 TCP_STAT(tcp_timer_fire_early); 16203 TCP_TIMER_RESTART(tcp, time_to_wait); 16204 return; 16205 } 16206 /* 16207 * When we probe zero windows, we force the swnd open. 16208 * If our peer acks with a closed window swnd will be 16209 * set to zero by tcp_rput(). As long as we are 16210 * receiving acks tcp_rput will 16211 * reset 'tcp_ms_we_have_waited' so as not to trip the 16212 * first and second interval actions. NOTE: the timer 16213 * interval is allowed to continue its exponential 16214 * backoff. 16215 */ 16216 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16217 if (tcp->tcp_debug) { 16218 (void) strlog(TCP_MOD_ID, 0, 1, 16219 SL_TRACE, "tcp_timer: zero win"); 16220 } 16221 } else { 16222 /* 16223 * After retransmission, we need to do 16224 * slow start. Set the ssthresh to one 16225 * half of current effective window and 16226 * cwnd to one MSS. Also reset 16227 * tcp_cwnd_cnt. 16228 * 16229 * Note that if tcp_ssthresh is reduced because 16230 * of ECN, do not reduce it again unless it is 16231 * already one window of data away (tcp_cwr 16232 * should then be cleared) or this is a 16233 * timeout for a retransmitted segment. 16234 */ 16235 uint32_t npkt; 16236 16237 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16238 npkt = ((tcp->tcp_timer_backoff ? 16239 tcp->tcp_cwnd_ssthresh : 16240 tcp->tcp_snxt - 16241 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16242 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16243 tcp->tcp_mss; 16244 } 16245 tcp->tcp_cwnd = tcp->tcp_mss; 16246 tcp->tcp_cwnd_cnt = 0; 16247 if (tcp->tcp_ecn_ok) { 16248 tcp->tcp_cwr = B_TRUE; 16249 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16250 tcp->tcp_ecn_cwr_sent = B_FALSE; 16251 } 16252 } 16253 break; 16254 } 16255 /* 16256 * We have something to send yet we cannot send. The 16257 * reason can be: 16258 * 16259 * 1. Zero send window: we need to do zero window probe. 16260 * 2. Zero cwnd: because of ECN, we need to "clock out 16261 * segments. 16262 * 3. SWS avoidance: receiver may have shrunk window, 16263 * reset our knowledge. 16264 * 16265 * Note that condition 2 can happen with either 1 or 16266 * 3. But 1 and 3 are exclusive. 16267 */ 16268 if (tcp->tcp_unsent != 0) { 16269 if (tcp->tcp_cwnd == 0) { 16270 /* 16271 * Set tcp_cwnd to 1 MSS so that a 16272 * new segment can be sent out. We 16273 * are "clocking out" new data when 16274 * the network is really congested. 16275 */ 16276 ASSERT(tcp->tcp_ecn_ok); 16277 tcp->tcp_cwnd = tcp->tcp_mss; 16278 } 16279 if (tcp->tcp_swnd == 0) { 16280 /* Extend window for zero window probe */ 16281 tcp->tcp_swnd++; 16282 tcp->tcp_zero_win_probe = B_TRUE; 16283 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16284 } else { 16285 /* 16286 * Handle timeout from sender SWS avoidance. 16287 * Reset our knowledge of the max send window 16288 * since the receiver might have reduced its 16289 * receive buffer. Avoid setting tcp_max_swnd 16290 * to one since that will essentially disable 16291 * the SWS checks. 16292 * 16293 * Note that since we don't have a SWS 16294 * state variable, if the timeout is set 16295 * for ECN but not for SWS, this 16296 * code will also be executed. This is 16297 * fine as tcp_max_swnd is updated 16298 * constantly and it will not affect 16299 * anything. 16300 */ 16301 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16302 } 16303 tcp_wput_data(tcp, NULL, B_FALSE); 16304 return; 16305 } 16306 /* Is there a FIN that needs to be to re retransmitted? */ 16307 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16308 !tcp->tcp_fin_acked) 16309 break; 16310 /* Nothing to do, return without restarting timer. */ 16311 TCP_STAT(tcp_timer_fire_miss); 16312 return; 16313 case TCPS_FIN_WAIT_2: 16314 /* 16315 * User closed the TCP endpoint and peer ACK'ed our FIN. 16316 * We waited some time for for peer's FIN, but it hasn't 16317 * arrived. We flush the connection now to avoid 16318 * case where the peer has rebooted. 16319 */ 16320 if (TCP_IS_DETACHED(tcp)) { 16321 (void) tcp_clean_death(tcp, 0, 23); 16322 } else { 16323 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16324 } 16325 return; 16326 case TCPS_TIME_WAIT: 16327 (void) tcp_clean_death(tcp, 0, 24); 16328 return; 16329 default: 16330 if (tcp->tcp_debug) { 16331 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16332 "tcp_timer: strange state (%d) %s", 16333 tcp->tcp_state, tcp_display(tcp, NULL, 16334 DISP_PORT_ONLY)); 16335 } 16336 return; 16337 } 16338 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16339 /* 16340 * For zero window probe, we need to send indefinitely, 16341 * unless we have not heard from the other side for some 16342 * time... 16343 */ 16344 if ((tcp->tcp_zero_win_probe == 0) || 16345 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16346 second_threshold)) { 16347 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 16348 /* 16349 * If TCP is in SYN_RCVD state, send back a 16350 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16351 * should be zero in TCPS_SYN_RCVD state. 16352 */ 16353 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16354 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16355 "in SYN_RCVD", 16356 tcp, tcp->tcp_snxt, 16357 tcp->tcp_rnxt, TH_RST | TH_ACK); 16358 } 16359 (void) tcp_clean_death(tcp, 16360 tcp->tcp_client_errno ? 16361 tcp->tcp_client_errno : ETIMEDOUT, 25); 16362 return; 16363 } else { 16364 /* 16365 * Set tcp_ms_we_have_waited to second_threshold 16366 * so that in next timeout, we will do the above 16367 * check (lbolt - tcp_last_recv_time). This is 16368 * also to avoid overflow. 16369 * 16370 * We don't need to decrement tcp_timer_backoff 16371 * to avoid overflow because it will be decremented 16372 * later if new timeout value is greater than 16373 * tcp_rexmit_interval_max. In the case when 16374 * tcp_rexmit_interval_max is greater than 16375 * second_threshold, it means that we will wait 16376 * longer than second_threshold to send the next 16377 * window probe. 16378 */ 16379 tcp->tcp_ms_we_have_waited = second_threshold; 16380 } 16381 } else if (ms > first_threshold) { 16382 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16383 tcp->tcp_xmit_head != NULL) { 16384 tcp->tcp_xmit_head = 16385 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16386 } 16387 /* 16388 * We have been retransmitting for too long... The RTT 16389 * we calculated is probably incorrect. Reinitialize it. 16390 * Need to compensate for 0 tcp_rtt_sa. Reset 16391 * tcp_rtt_update so that we won't accidentally cache a 16392 * bad value. But only do this if this is not a zero 16393 * window probe. 16394 */ 16395 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16396 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16397 (tcp->tcp_rtt_sa >> 5); 16398 tcp->tcp_rtt_sa = 0; 16399 tcp_ip_notify(tcp); 16400 tcp->tcp_rtt_update = 0; 16401 } 16402 } 16403 tcp->tcp_timer_backoff++; 16404 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16405 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16406 tcp_rexmit_interval_min) { 16407 /* 16408 * This means the original RTO is tcp_rexmit_interval_min. 16409 * So we will use tcp_rexmit_interval_min as the RTO value 16410 * and do the backoff. 16411 */ 16412 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 16413 } else { 16414 ms <<= tcp->tcp_timer_backoff; 16415 } 16416 if (ms > tcp_rexmit_interval_max) { 16417 ms = tcp_rexmit_interval_max; 16418 /* 16419 * ms is at max, decrement tcp_timer_backoff to avoid 16420 * overflow. 16421 */ 16422 tcp->tcp_timer_backoff--; 16423 } 16424 tcp->tcp_ms_we_have_waited += ms; 16425 if (tcp->tcp_zero_win_probe == 0) { 16426 tcp->tcp_rto = ms; 16427 } 16428 TCP_TIMER_RESTART(tcp, ms); 16429 /* 16430 * This is after a timeout and tcp_rto is backed off. Set 16431 * tcp_set_timer to 1 so that next time RTO is updated, we will 16432 * restart the timer with a correct value. 16433 */ 16434 tcp->tcp_set_timer = 1; 16435 mss = tcp->tcp_snxt - tcp->tcp_suna; 16436 if (mss > tcp->tcp_mss) 16437 mss = tcp->tcp_mss; 16438 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16439 mss = tcp->tcp_swnd; 16440 16441 if ((mp = tcp->tcp_xmit_head) != NULL) 16442 mp->b_prev = (mblk_t *)lbolt; 16443 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16444 B_TRUE); 16445 16446 /* 16447 * When slow start after retransmission begins, start with 16448 * this seq no. tcp_rexmit_max marks the end of special slow 16449 * start phase. tcp_snd_burst controls how many segments 16450 * can be sent because of an ack. 16451 */ 16452 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16453 tcp->tcp_snd_burst = TCP_CWND_SS; 16454 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16455 (tcp->tcp_unsent == 0)) { 16456 tcp->tcp_rexmit_max = tcp->tcp_fss; 16457 } else { 16458 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16459 } 16460 tcp->tcp_rexmit = B_TRUE; 16461 tcp->tcp_dupack_cnt = 0; 16462 16463 /* 16464 * Remove all rexmit SACK blk to start from fresh. 16465 */ 16466 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16467 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16468 tcp->tcp_num_notsack_blk = 0; 16469 tcp->tcp_cnt_notsack_list = 0; 16470 } 16471 if (mp == NULL) { 16472 return; 16473 } 16474 /* Attach credentials to retransmitted initial SYNs. */ 16475 if (tcp->tcp_state == TCPS_SYN_SENT) { 16476 mblk_setcred(mp, tcp->tcp_cred); 16477 DB_CPID(mp) = tcp->tcp_cpid; 16478 } 16479 16480 tcp->tcp_csuna = tcp->tcp_snxt; 16481 BUMP_MIB(&tcp_mib, tcpRetransSegs); 16482 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 16483 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 16484 tcp_send_data(tcp, tcp->tcp_wq, mp); 16485 16486 } 16487 16488 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16489 static void 16490 tcp_unbind(tcp_t *tcp, mblk_t *mp) 16491 { 16492 conn_t *connp; 16493 16494 switch (tcp->tcp_state) { 16495 case TCPS_BOUND: 16496 case TCPS_LISTEN: 16497 break; 16498 default: 16499 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 16500 return; 16501 } 16502 16503 /* 16504 * Need to clean up all the eagers since after the unbind, segments 16505 * will no longer be delivered to this listener stream. 16506 */ 16507 mutex_enter(&tcp->tcp_eager_lock); 16508 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16509 tcp_eager_cleanup(tcp, 0); 16510 } 16511 mutex_exit(&tcp->tcp_eager_lock); 16512 16513 if (tcp->tcp_ipversion == IPV4_VERSION) { 16514 tcp->tcp_ipha->ipha_src = 0; 16515 } else { 16516 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16517 } 16518 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16519 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16520 tcp_bind_hash_remove(tcp); 16521 tcp->tcp_state = TCPS_IDLE; 16522 tcp->tcp_mdt = B_FALSE; 16523 /* Send M_FLUSH according to TPI */ 16524 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16525 connp = tcp->tcp_connp; 16526 connp->conn_mdt_ok = B_FALSE; 16527 ipcl_hash_remove(connp); 16528 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16529 mp = mi_tpi_ok_ack_alloc(mp); 16530 putnext(tcp->tcp_rq, mp); 16531 } 16532 16533 /* 16534 * Don't let port fall into the privileged range. 16535 * Since the extra privileged ports can be arbitrary we also 16536 * ensure that we exclude those from consideration. 16537 * tcp_g_epriv_ports is not sorted thus we loop over it until 16538 * there are no changes. 16539 * 16540 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16541 * but instead the code relies on: 16542 * - the fact that the address of the array and its size never changes 16543 * - the atomic assignment of the elements of the array 16544 */ 16545 static in_port_t 16546 tcp_update_next_port(in_port_t port, boolean_t random) 16547 { 16548 int i; 16549 16550 if (random && tcp_random_anon_port != 0) { 16551 (void) random_get_pseudo_bytes((uint8_t *)&port, 16552 sizeof (in_port_t)); 16553 /* 16554 * Unless changed by a sys admin, the smallest anon port 16555 * is 32768 and the largest anon port is 65535. It is 16556 * very likely (50%) for the random port to be smaller 16557 * than the smallest anon port. When that happens, 16558 * add port % (anon port range) to the smallest anon 16559 * port to get the random port. It should fall into the 16560 * valid anon port range. 16561 */ 16562 if (port < tcp_smallest_anon_port) { 16563 port = tcp_smallest_anon_port + 16564 port % (tcp_largest_anon_port - 16565 tcp_smallest_anon_port); 16566 } 16567 } 16568 16569 retry: 16570 if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port) 16571 port = (in_port_t)tcp_smallest_anon_port; 16572 16573 if (port < tcp_smallest_nonpriv_port) 16574 port = (in_port_t)tcp_smallest_nonpriv_port; 16575 16576 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 16577 if (port == tcp_g_epriv_ports[i]) { 16578 port++; 16579 /* 16580 * Make sure whether the port is in the 16581 * valid range. 16582 * 16583 * XXX Note that if tcp_g_epriv_ports contains 16584 * all the anonymous ports this will be an 16585 * infinite loop. 16586 */ 16587 goto retry; 16588 } 16589 } 16590 return (port); 16591 } 16592 16593 /* 16594 * Return the next anonymous port in the priviledged port range for 16595 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16596 * downwards. This is the same behavior as documented in the userland 16597 * library call rresvport(3N). 16598 */ 16599 static in_port_t 16600 tcp_get_next_priv_port(void) 16601 { 16602 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16603 16604 if (next_priv_port < tcp_min_anonpriv_port) { 16605 next_priv_port = IPPORT_RESERVED - 1; 16606 } 16607 return (next_priv_port--); 16608 } 16609 16610 /* The write side r/w procedure. */ 16611 16612 #if CCS_STATS 16613 struct { 16614 struct { 16615 int64_t count, bytes; 16616 } tot, hit; 16617 } wrw_stats; 16618 #endif 16619 16620 /* 16621 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16622 * messages. 16623 */ 16624 /* ARGSUSED */ 16625 static void 16626 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16627 { 16628 conn_t *connp = (conn_t *)arg; 16629 tcp_t *tcp = connp->conn_tcp; 16630 queue_t *q = tcp->tcp_wq; 16631 16632 ASSERT(DB_TYPE(mp) != M_IOCTL); 16633 /* 16634 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16635 * Once the close starts, streamhead and sockfs will not let any data 16636 * packets come down (close ensures that there are no threads using the 16637 * queue and no new threads will come down) but since qprocsoff() 16638 * hasn't happened yet, a M_FLUSH or some non data message might 16639 * get reflected back (in response to our own FLUSHRW) and get 16640 * processed after tcp_close() is done. The conn would still be valid 16641 * because a ref would have added but we need to check the state 16642 * before actually processing the packet. 16643 */ 16644 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16645 freemsg(mp); 16646 return; 16647 } 16648 16649 switch (DB_TYPE(mp)) { 16650 case M_IOCDATA: 16651 tcp_wput_iocdata(tcp, mp); 16652 break; 16653 case M_FLUSH: 16654 tcp_wput_flush(tcp, mp); 16655 break; 16656 default: 16657 CALL_IP_WPUT(connp, q, mp); 16658 break; 16659 } 16660 } 16661 16662 /* 16663 * The TCP fast path write put procedure. 16664 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16665 */ 16666 /* ARGSUSED */ 16667 void 16668 tcp_output(void *arg, mblk_t *mp, void *arg2) 16669 { 16670 int len; 16671 int hdrlen; 16672 int plen; 16673 mblk_t *mp1; 16674 uchar_t *rptr; 16675 uint32_t snxt; 16676 tcph_t *tcph; 16677 struct datab *db; 16678 uint32_t suna; 16679 uint32_t mss; 16680 ipaddr_t *dst; 16681 ipaddr_t *src; 16682 uint32_t sum; 16683 int usable; 16684 conn_t *connp = (conn_t *)arg; 16685 tcp_t *tcp = connp->conn_tcp; 16686 uint32_t msize; 16687 16688 /* 16689 * Try and ASSERT the minimum possible references on the 16690 * conn early enough. Since we are executing on write side, 16691 * the connection is obviously not detached and that means 16692 * there is a ref each for TCP and IP. Since we are behind 16693 * the squeue, the minimum references needed are 3. If the 16694 * conn is in classifier hash list, there should be an 16695 * extra ref for that (we check both the possibilities). 16696 */ 16697 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16698 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16699 16700 /* Bypass tcp protocol for fused tcp loopback */ 16701 if (tcp->tcp_fused) { 16702 msize = msgdsize(mp); 16703 mutex_enter(&connp->conn_lock); 16704 tcp->tcp_squeue_bytes -= msize; 16705 mutex_exit(&connp->conn_lock); 16706 16707 if (tcp_fuse_output(tcp, mp, msize)) 16708 return; 16709 } 16710 16711 mss = tcp->tcp_mss; 16712 if (tcp->tcp_xmit_zc_clean) 16713 mp = tcp_zcopy_backoff(tcp, mp, 0); 16714 16715 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16716 len = (int)(mp->b_wptr - mp->b_rptr); 16717 16718 /* 16719 * Criteria for fast path: 16720 * 16721 * 1. no unsent data 16722 * 2. single mblk in request 16723 * 3. connection established 16724 * 4. data in mblk 16725 * 5. len <= mss 16726 * 6. no tcp_valid bits 16727 */ 16728 if ((tcp->tcp_unsent != 0) || 16729 (tcp->tcp_cork) || 16730 (mp->b_cont != NULL) || 16731 (tcp->tcp_state != TCPS_ESTABLISHED) || 16732 (len == 0) || 16733 (len > mss) || 16734 (tcp->tcp_valid_bits != 0)) { 16735 msize = msgdsize(mp); 16736 mutex_enter(&connp->conn_lock); 16737 tcp->tcp_squeue_bytes -= msize; 16738 mutex_exit(&connp->conn_lock); 16739 16740 tcp_wput_data(tcp, mp, B_FALSE); 16741 return; 16742 } 16743 16744 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16745 ASSERT(tcp->tcp_fin_sent == 0); 16746 16747 mutex_enter(&connp->conn_lock); 16748 tcp->tcp_squeue_bytes -= len; 16749 mutex_exit(&connp->conn_lock); 16750 16751 /* queue new packet onto retransmission queue */ 16752 if (tcp->tcp_xmit_head == NULL) { 16753 tcp->tcp_xmit_head = mp; 16754 } else { 16755 tcp->tcp_xmit_last->b_cont = mp; 16756 } 16757 tcp->tcp_xmit_last = mp; 16758 tcp->tcp_xmit_tail = mp; 16759 16760 /* find out how much we can send */ 16761 /* BEGIN CSTYLED */ 16762 /* 16763 * un-acked usable 16764 * |--------------|-----------------| 16765 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16766 */ 16767 /* END CSTYLED */ 16768 16769 /* start sending from tcp_snxt */ 16770 snxt = tcp->tcp_snxt; 16771 16772 /* 16773 * Check to see if this connection has been idled for some 16774 * time and no ACK is expected. If it is, we need to slow 16775 * start again to get back the connection's "self-clock" as 16776 * described in VJ's paper. 16777 * 16778 * Refer to the comment in tcp_mss_set() for the calculation 16779 * of tcp_cwnd after idle. 16780 */ 16781 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16782 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16783 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 16784 } 16785 16786 usable = tcp->tcp_swnd; /* tcp window size */ 16787 if (usable > tcp->tcp_cwnd) 16788 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16789 usable -= snxt; /* subtract stuff already sent */ 16790 suna = tcp->tcp_suna; 16791 usable += suna; 16792 /* usable can be < 0 if the congestion window is smaller */ 16793 if (len > usable) { 16794 /* Can't send complete M_DATA in one shot */ 16795 goto slow; 16796 } 16797 16798 if (tcp->tcp_flow_stopped && 16799 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 16800 tcp_clrqfull(tcp); 16801 } 16802 16803 /* 16804 * determine if anything to send (Nagle). 16805 * 16806 * 1. len < tcp_mss (i.e. small) 16807 * 2. unacknowledged data present 16808 * 3. len < nagle limit 16809 * 4. last packet sent < nagle limit (previous packet sent) 16810 */ 16811 if ((len < mss) && (snxt != suna) && 16812 (len < (int)tcp->tcp_naglim) && 16813 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 16814 /* 16815 * This was the first unsent packet and normally 16816 * mss < xmit_hiwater so there is no need to worry 16817 * about flow control. The next packet will go 16818 * through the flow control check in tcp_wput_data(). 16819 */ 16820 /* leftover work from above */ 16821 tcp->tcp_unsent = len; 16822 tcp->tcp_xmit_tail_unsent = len; 16823 16824 return; 16825 } 16826 16827 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 16828 16829 if (snxt == suna) { 16830 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16831 } 16832 16833 /* we have always sent something */ 16834 tcp->tcp_rack_cnt = 0; 16835 16836 tcp->tcp_snxt = snxt + len; 16837 tcp->tcp_rack = tcp->tcp_rnxt; 16838 16839 if ((mp1 = dupb(mp)) == 0) 16840 goto no_memory; 16841 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 16842 mp->b_next = (mblk_t *)(uintptr_t)snxt; 16843 16844 /* adjust tcp header information */ 16845 tcph = tcp->tcp_tcph; 16846 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 16847 16848 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 16849 sum = (sum >> 16) + (sum & 0xFFFF); 16850 U16_TO_ABE16(sum, tcph->th_sum); 16851 16852 U32_TO_ABE32(snxt, tcph->th_seq); 16853 16854 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 16855 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 16856 BUMP_LOCAL(tcp->tcp_obsegs); 16857 16858 /* Update the latest receive window size in TCP header. */ 16859 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 16860 tcph->th_win); 16861 16862 tcp->tcp_last_sent_len = (ushort_t)len; 16863 16864 plen = len + tcp->tcp_hdr_len; 16865 16866 if (tcp->tcp_ipversion == IPV4_VERSION) { 16867 tcp->tcp_ipha->ipha_length = htons(plen); 16868 } else { 16869 tcp->tcp_ip6h->ip6_plen = htons(plen - 16870 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 16871 } 16872 16873 /* see if we need to allocate a mblk for the headers */ 16874 hdrlen = tcp->tcp_hdr_len; 16875 rptr = mp1->b_rptr - hdrlen; 16876 db = mp1->b_datap; 16877 if ((db->db_ref != 2) || rptr < db->db_base || 16878 (!OK_32PTR(rptr))) { 16879 /* NOTE: we assume allocb returns an OK_32PTR */ 16880 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 16881 tcp_wroff_xtra, BPRI_MED); 16882 if (!mp) { 16883 freemsg(mp1); 16884 goto no_memory; 16885 } 16886 mp->b_cont = mp1; 16887 mp1 = mp; 16888 /* Leave room for Link Level header */ 16889 /* hdrlen = tcp->tcp_hdr_len; */ 16890 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 16891 mp1->b_wptr = &rptr[hdrlen]; 16892 } 16893 mp1->b_rptr = rptr; 16894 16895 /* Fill in the timestamp option. */ 16896 if (tcp->tcp_snd_ts_ok) { 16897 U32_TO_BE32((uint32_t)lbolt, 16898 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 16899 U32_TO_BE32(tcp->tcp_ts_recent, 16900 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 16901 } else { 16902 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 16903 } 16904 16905 /* copy header into outgoing packet */ 16906 dst = (ipaddr_t *)rptr; 16907 src = (ipaddr_t *)tcp->tcp_iphc; 16908 dst[0] = src[0]; 16909 dst[1] = src[1]; 16910 dst[2] = src[2]; 16911 dst[3] = src[3]; 16912 dst[4] = src[4]; 16913 dst[5] = src[5]; 16914 dst[6] = src[6]; 16915 dst[7] = src[7]; 16916 dst[8] = src[8]; 16917 dst[9] = src[9]; 16918 if (hdrlen -= 40) { 16919 hdrlen >>= 2; 16920 dst += 10; 16921 src += 10; 16922 do { 16923 *dst++ = *src++; 16924 } while (--hdrlen); 16925 } 16926 16927 /* 16928 * Set the ECN info in the TCP header. Note that this 16929 * is not the template header. 16930 */ 16931 if (tcp->tcp_ecn_ok) { 16932 SET_ECT(tcp, rptr); 16933 16934 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 16935 if (tcp->tcp_ecn_echo_on) 16936 tcph->th_flags[0] |= TH_ECE; 16937 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 16938 tcph->th_flags[0] |= TH_CWR; 16939 tcp->tcp_ecn_cwr_sent = B_TRUE; 16940 } 16941 } 16942 16943 if (tcp->tcp_ip_forward_progress) { 16944 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 16945 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 16946 tcp->tcp_ip_forward_progress = B_FALSE; 16947 } 16948 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 16949 tcp_send_data(tcp, tcp->tcp_wq, mp1); 16950 return; 16951 16952 /* 16953 * If we ran out of memory, we pretend to have sent the packet 16954 * and that it was lost on the wire. 16955 */ 16956 no_memory: 16957 return; 16958 16959 slow: 16960 /* leftover work from above */ 16961 tcp->tcp_unsent = len; 16962 tcp->tcp_xmit_tail_unsent = len; 16963 tcp_wput_data(tcp, NULL, B_FALSE); 16964 } 16965 16966 /* 16967 * The function called through squeue to get behind eager's perimeter to 16968 * finish the accept processing. 16969 */ 16970 /* ARGSUSED */ 16971 void 16972 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 16973 { 16974 conn_t *connp = (conn_t *)arg; 16975 tcp_t *tcp = connp->conn_tcp; 16976 queue_t *q = tcp->tcp_rq; 16977 mblk_t *mp1; 16978 mblk_t *stropt_mp = mp; 16979 struct stroptions *stropt; 16980 uint_t thwin; 16981 16982 /* 16983 * Drop the eager's ref on the listener, that was placed when 16984 * this eager began life in tcp_conn_request. 16985 */ 16986 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 16987 16988 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 16989 /* 16990 * Someone blewoff the eager before we could finish 16991 * the accept. 16992 * 16993 * The only reason eager exists it because we put in 16994 * a ref on it when conn ind went up. We need to send 16995 * a disconnect indication up while the last reference 16996 * on the eager will be dropped by the squeue when we 16997 * return. 16998 */ 16999 ASSERT(tcp->tcp_listener == NULL); 17000 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17001 struct T_discon_ind *tdi; 17002 17003 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17004 /* 17005 * Let us reuse the incoming mblk to avoid memory 17006 * allocation failure problems. We know that the 17007 * size of the incoming mblk i.e. stroptions is greater 17008 * than sizeof T_discon_ind. So the reallocb below 17009 * can't fail. 17010 */ 17011 freemsg(mp->b_cont); 17012 mp->b_cont = NULL; 17013 ASSERT(DB_REF(mp) == 1); 17014 mp = reallocb(mp, sizeof (struct T_discon_ind), 17015 B_FALSE); 17016 ASSERT(mp != NULL); 17017 DB_TYPE(mp) = M_PROTO; 17018 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17019 tdi = (struct T_discon_ind *)mp->b_rptr; 17020 if (tcp->tcp_issocket) { 17021 tdi->DISCON_reason = ECONNREFUSED; 17022 tdi->SEQ_number = 0; 17023 } else { 17024 tdi->DISCON_reason = ENOPROTOOPT; 17025 tdi->SEQ_number = 17026 tcp->tcp_conn_req_seqnum; 17027 } 17028 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17029 putnext(q, mp); 17030 } else { 17031 freemsg(mp); 17032 } 17033 if (tcp->tcp_hard_binding) { 17034 tcp->tcp_hard_binding = B_FALSE; 17035 tcp->tcp_hard_bound = B_TRUE; 17036 } 17037 tcp->tcp_detached = B_FALSE; 17038 return; 17039 } 17040 17041 mp1 = stropt_mp->b_cont; 17042 stropt_mp->b_cont = NULL; 17043 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17044 stropt = (struct stroptions *)stropt_mp->b_rptr; 17045 17046 while (mp1 != NULL) { 17047 mp = mp1; 17048 mp1 = mp1->b_cont; 17049 mp->b_cont = NULL; 17050 tcp->tcp_drop_opt_ack_cnt++; 17051 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17052 } 17053 mp = NULL; 17054 17055 /* 17056 * For a loopback connection with tcp_direct_sockfs on, note that 17057 * we don't have to protect tcp_rcv_list yet because synchronous 17058 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17059 * possibly race with us. 17060 */ 17061 17062 /* 17063 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17064 * properly. This is the first time we know of the acceptor' 17065 * queue. So we do it here. 17066 */ 17067 if (tcp->tcp_rcv_list == NULL) { 17068 /* 17069 * Recv queue is empty, tcp_rwnd should not have changed. 17070 * That means it should be equal to the listener's tcp_rwnd. 17071 */ 17072 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17073 } else { 17074 #ifdef DEBUG 17075 uint_t cnt = 0; 17076 17077 mp1 = tcp->tcp_rcv_list; 17078 while ((mp = mp1) != NULL) { 17079 mp1 = mp->b_next; 17080 cnt += msgdsize(mp); 17081 } 17082 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17083 #endif 17084 /* There is some data, add them back to get the max. */ 17085 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17086 } 17087 17088 stropt->so_flags = SO_HIWAT; 17089 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17090 17091 stropt->so_flags |= SO_MAXBLK; 17092 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17093 17094 /* 17095 * This is the first time we run on the correct 17096 * queue after tcp_accept. So fix all the q parameters 17097 * here. 17098 */ 17099 /* Allocate room for SACK options if needed. */ 17100 stropt->so_flags |= SO_WROFF; 17101 if (tcp->tcp_fused) { 17102 ASSERT(tcp->tcp_loopback); 17103 ASSERT(tcp->tcp_loopback_peer != NULL); 17104 /* 17105 * For fused tcp loopback, set the stream head's write 17106 * offset value to zero since we won't be needing any room 17107 * for TCP/IP headers. This would also improve performance 17108 * since it would reduce the amount of work done by kmem. 17109 * Non-fused tcp loopback case is handled separately below. 17110 */ 17111 stropt->so_wroff = 0; 17112 /* 17113 * Record the stream head's high water mark for this endpoint; 17114 * this is used for flow-control purposes in tcp_fuse_output(). 17115 */ 17116 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17117 /* 17118 * Update the peer's transmit parameters according to 17119 * our recently calculated high water mark value. 17120 */ 17121 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17122 } else if (tcp->tcp_snd_sack_ok) { 17123 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17124 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17125 } else { 17126 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17127 tcp_wroff_xtra); 17128 } 17129 17130 /* 17131 * If this is endpoint is handling SSL, then reserve extra 17132 * offset and space at the end. 17133 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17134 * overriding the previous setting. The extra cost of signing and 17135 * encrypting multiple MSS-size records (12 of them with Ethernet), 17136 * instead of a single contiguous one by the stream head 17137 * largely outweighs the statistical reduction of ACKs, when 17138 * applicable. The peer will also save on decyption and verification 17139 * costs. 17140 */ 17141 if (tcp->tcp_kssl_ctx != NULL) { 17142 stropt->so_wroff += SSL3_WROFFSET; 17143 17144 stropt->so_flags |= SO_TAIL; 17145 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17146 17147 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17148 } 17149 17150 /* Send the options up */ 17151 putnext(q, stropt_mp); 17152 17153 /* 17154 * Pass up any data and/or a fin that has been received. 17155 * 17156 * Adjust receive window in case it had decreased 17157 * (because there is data <=> tcp_rcv_list != NULL) 17158 * while the connection was detached. Note that 17159 * in case the eager was flow-controlled, w/o this 17160 * code, the rwnd may never open up again! 17161 */ 17162 if (tcp->tcp_rcv_list != NULL) { 17163 /* We drain directly in case of fused tcp loopback */ 17164 if (!tcp->tcp_fused && canputnext(q)) { 17165 tcp->tcp_rwnd = q->q_hiwat; 17166 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17167 << tcp->tcp_rcv_ws; 17168 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17169 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17170 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17171 tcp_xmit_ctl(NULL, 17172 tcp, (tcp->tcp_swnd == 0) ? 17173 tcp->tcp_suna : tcp->tcp_snxt, 17174 tcp->tcp_rnxt, TH_ACK); 17175 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17176 } 17177 17178 } 17179 (void) tcp_rcv_drain(q, tcp); 17180 17181 /* 17182 * For fused tcp loopback, back-enable peer endpoint 17183 * if it's currently flow-controlled. 17184 */ 17185 if (tcp->tcp_fused && 17186 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17187 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17188 17189 ASSERT(peer_tcp != NULL); 17190 ASSERT(peer_tcp->tcp_fused); 17191 17192 tcp_clrqfull(peer_tcp); 17193 TCP_STAT(tcp_fusion_backenabled); 17194 } 17195 } 17196 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17197 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17198 mp = mi_tpi_ordrel_ind(); 17199 if (mp) { 17200 tcp->tcp_ordrel_done = B_TRUE; 17201 putnext(q, mp); 17202 if (tcp->tcp_deferred_clean_death) { 17203 /* 17204 * tcp_clean_death was deferred 17205 * for T_ORDREL_IND - do it now 17206 */ 17207 (void) tcp_clean_death(tcp, 17208 tcp->tcp_client_errno, 21); 17209 tcp->tcp_deferred_clean_death = B_FALSE; 17210 } 17211 } else { 17212 /* 17213 * Run the orderly release in the 17214 * service routine. 17215 */ 17216 qenable(q); 17217 } 17218 } 17219 if (tcp->tcp_hard_binding) { 17220 tcp->tcp_hard_binding = B_FALSE; 17221 tcp->tcp_hard_bound = B_TRUE; 17222 } 17223 17224 tcp->tcp_detached = B_FALSE; 17225 17226 /* We can enable synchronous streams now */ 17227 if (tcp->tcp_fused) { 17228 tcp_fuse_syncstr_enable_pair(tcp); 17229 } 17230 17231 if (tcp->tcp_ka_enabled) { 17232 tcp->tcp_ka_last_intrvl = 0; 17233 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17234 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17235 } 17236 17237 /* 17238 * At this point, eager is fully established and will 17239 * have the following references - 17240 * 17241 * 2 references for connection to exist (1 for TCP and 1 for IP). 17242 * 1 reference for the squeue which will be dropped by the squeue as 17243 * soon as this function returns. 17244 * There will be 1 additonal reference for being in classifier 17245 * hash list provided something bad hasn't happened. 17246 */ 17247 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17248 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17249 } 17250 17251 /* 17252 * The function called through squeue to get behind listener's perimeter to 17253 * send a deffered conn_ind. 17254 */ 17255 /* ARGSUSED */ 17256 void 17257 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17258 { 17259 conn_t *connp = (conn_t *)arg; 17260 tcp_t *listener = connp->conn_tcp; 17261 17262 if (listener->tcp_state == TCPS_CLOSED || 17263 TCP_IS_DETACHED(listener)) { 17264 /* 17265 * If listener has closed, it would have caused a 17266 * a cleanup/blowoff to happen for the eager. 17267 */ 17268 tcp_t *tcp; 17269 struct T_conn_ind *conn_ind; 17270 17271 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17272 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17273 conn_ind->OPT_length); 17274 /* 17275 * We need to drop the ref on eager that was put 17276 * tcp_rput_data() before trying to send the conn_ind 17277 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17278 * and tcp_wput_accept() is sending this deferred conn_ind but 17279 * listener is closed so we drop the ref. 17280 */ 17281 CONN_DEC_REF(tcp->tcp_connp); 17282 freemsg(mp); 17283 return; 17284 } 17285 putnext(listener->tcp_rq, mp); 17286 } 17287 17288 17289 /* 17290 * This is the STREAMS entry point for T_CONN_RES coming down on 17291 * Acceptor STREAM when sockfs listener does accept processing. 17292 * Read the block comment on top pf tcp_conn_request(). 17293 */ 17294 void 17295 tcp_wput_accept(queue_t *q, mblk_t *mp) 17296 { 17297 queue_t *rq = RD(q); 17298 struct T_conn_res *conn_res; 17299 tcp_t *eager; 17300 tcp_t *listener; 17301 struct T_ok_ack *ok; 17302 t_scalar_t PRIM_type; 17303 mblk_t *opt_mp; 17304 conn_t *econnp; 17305 17306 ASSERT(DB_TYPE(mp) == M_PROTO); 17307 17308 conn_res = (struct T_conn_res *)mp->b_rptr; 17309 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17310 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17311 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17312 if (mp != NULL) 17313 putnext(rq, mp); 17314 return; 17315 } 17316 switch (conn_res->PRIM_type) { 17317 case O_T_CONN_RES: 17318 case T_CONN_RES: 17319 /* 17320 * We pass up an err ack if allocb fails. This will 17321 * cause sockfs to issue a T_DISCON_REQ which will cause 17322 * tcp_eager_blowoff to be called. sockfs will then call 17323 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17324 * we need to do the allocb up here because we have to 17325 * make sure rq->q_qinfo->qi_qclose still points to the 17326 * correct function (tcpclose_accept) in case allocb 17327 * fails. 17328 */ 17329 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17330 if (opt_mp == NULL) { 17331 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17332 if (mp != NULL) 17333 putnext(rq, mp); 17334 return; 17335 } 17336 17337 bcopy(mp->b_rptr + conn_res->OPT_offset, 17338 &eager, conn_res->OPT_length); 17339 PRIM_type = conn_res->PRIM_type; 17340 mp->b_datap->db_type = M_PCPROTO; 17341 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17342 ok = (struct T_ok_ack *)mp->b_rptr; 17343 ok->PRIM_type = T_OK_ACK; 17344 ok->CORRECT_prim = PRIM_type; 17345 econnp = eager->tcp_connp; 17346 econnp->conn_dev = (dev_t)q->q_ptr; 17347 eager->tcp_rq = rq; 17348 eager->tcp_wq = q; 17349 rq->q_ptr = econnp; 17350 rq->q_qinfo = &tcp_rinit; 17351 q->q_ptr = econnp; 17352 q->q_qinfo = &tcp_winit; 17353 listener = eager->tcp_listener; 17354 eager->tcp_issocket = B_TRUE; 17355 eager->tcp_cred = econnp->conn_cred = 17356 listener->tcp_connp->conn_cred; 17357 crhold(econnp->conn_cred); 17358 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17359 17360 /* Put the ref for IP */ 17361 CONN_INC_REF(econnp); 17362 17363 /* 17364 * We should have minimum of 3 references on the conn 17365 * at this point. One each for TCP and IP and one for 17366 * the T_conn_ind that was sent up when the 3-way handshake 17367 * completed. In the normal case we would also have another 17368 * reference (making a total of 4) for the conn being in the 17369 * classifier hash list. However the eager could have received 17370 * an RST subsequently and tcp_closei_local could have removed 17371 * the eager from the classifier hash list, hence we can't 17372 * assert that reference. 17373 */ 17374 ASSERT(econnp->conn_ref >= 3); 17375 17376 /* 17377 * Send the new local address also up to sockfs. There 17378 * should already be enough space in the mp that came 17379 * down from soaccept(). 17380 */ 17381 if (eager->tcp_family == AF_INET) { 17382 sin_t *sin; 17383 17384 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17385 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17386 sin = (sin_t *)mp->b_wptr; 17387 mp->b_wptr += sizeof (sin_t); 17388 sin->sin_family = AF_INET; 17389 sin->sin_port = eager->tcp_lport; 17390 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17391 } else { 17392 sin6_t *sin6; 17393 17394 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17395 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17396 sin6 = (sin6_t *)mp->b_wptr; 17397 mp->b_wptr += sizeof (sin6_t); 17398 sin6->sin6_family = AF_INET6; 17399 sin6->sin6_port = eager->tcp_lport; 17400 if (eager->tcp_ipversion == IPV4_VERSION) { 17401 sin6->sin6_flowinfo = 0; 17402 IN6_IPADDR_TO_V4MAPPED( 17403 eager->tcp_ipha->ipha_src, 17404 &sin6->sin6_addr); 17405 } else { 17406 ASSERT(eager->tcp_ip6h != NULL); 17407 sin6->sin6_flowinfo = 17408 eager->tcp_ip6h->ip6_vcf & 17409 ~IPV6_VERS_AND_FLOW_MASK; 17410 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17411 } 17412 sin6->sin6_scope_id = 0; 17413 sin6->__sin6_src_id = 0; 17414 } 17415 17416 putnext(rq, mp); 17417 17418 opt_mp->b_datap->db_type = M_SETOPTS; 17419 opt_mp->b_wptr += sizeof (struct stroptions); 17420 17421 /* 17422 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17423 * from listener to acceptor. The message is chained on the 17424 * bind_mp which tcp_rput_other will send down to IP. 17425 */ 17426 if (listener->tcp_bound_if != 0) { 17427 /* allocate optmgmt req */ 17428 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17429 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 17430 sizeof (int)); 17431 if (mp != NULL) 17432 linkb(opt_mp, mp); 17433 } 17434 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17435 uint_t on = 1; 17436 17437 /* allocate optmgmt req */ 17438 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17439 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 17440 if (mp != NULL) 17441 linkb(opt_mp, mp); 17442 } 17443 17444 17445 mutex_enter(&listener->tcp_eager_lock); 17446 17447 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17448 17449 tcp_t *tail; 17450 tcp_t *tcp; 17451 mblk_t *mp1; 17452 17453 tcp = listener->tcp_eager_prev_q0; 17454 /* 17455 * listener->tcp_eager_prev_q0 points to the TAIL of the 17456 * deferred T_conn_ind queue. We need to get to the head 17457 * of the queue in order to send up T_conn_ind the same 17458 * order as how the 3WHS is completed. 17459 */ 17460 while (tcp != listener) { 17461 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17462 !tcp->tcp_kssl_pending) 17463 break; 17464 else 17465 tcp = tcp->tcp_eager_prev_q0; 17466 } 17467 /* None of the pending eagers can be sent up now */ 17468 if (tcp == listener) 17469 goto no_more_eagers; 17470 17471 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17472 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17473 /* Move from q0 to q */ 17474 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17475 listener->tcp_conn_req_cnt_q0--; 17476 listener->tcp_conn_req_cnt_q++; 17477 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17478 tcp->tcp_eager_prev_q0; 17479 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17480 tcp->tcp_eager_next_q0; 17481 tcp->tcp_eager_prev_q0 = NULL; 17482 tcp->tcp_eager_next_q0 = NULL; 17483 tcp->tcp_conn_def_q0 = B_FALSE; 17484 17485 /* 17486 * Insert at end of the queue because sockfs sends 17487 * down T_CONN_RES in chronological order. Leaving 17488 * the older conn indications at front of the queue 17489 * helps reducing search time. 17490 */ 17491 tail = listener->tcp_eager_last_q; 17492 if (tail != NULL) { 17493 tail->tcp_eager_next_q = tcp; 17494 } else { 17495 listener->tcp_eager_next_q = tcp; 17496 } 17497 listener->tcp_eager_last_q = tcp; 17498 tcp->tcp_eager_next_q = NULL; 17499 17500 /* Need to get inside the listener perimeter */ 17501 CONN_INC_REF(listener->tcp_connp); 17502 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 17503 tcp_send_pending, listener->tcp_connp, 17504 SQTAG_TCP_SEND_PENDING); 17505 } 17506 no_more_eagers: 17507 tcp_eager_unlink(eager); 17508 mutex_exit(&listener->tcp_eager_lock); 17509 17510 /* 17511 * At this point, the eager is detached from the listener 17512 * but we still have an extra refs on eager (apart from the 17513 * usual tcp references). The ref was placed in tcp_rput_data 17514 * before sending the conn_ind in tcp_send_conn_ind. 17515 * The ref will be dropped in tcp_accept_finish(). 17516 */ 17517 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 17518 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 17519 return; 17520 default: 17521 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17522 if (mp != NULL) 17523 putnext(rq, mp); 17524 return; 17525 } 17526 } 17527 17528 void 17529 tcp_wput(queue_t *q, mblk_t *mp) 17530 { 17531 conn_t *connp = Q_TO_CONN(q); 17532 tcp_t *tcp; 17533 void (*output_proc)(); 17534 t_scalar_t type; 17535 uchar_t *rptr; 17536 struct iocblk *iocp; 17537 uint32_t msize; 17538 17539 ASSERT(connp->conn_ref >= 2); 17540 17541 switch (DB_TYPE(mp)) { 17542 case M_DATA: 17543 tcp = connp->conn_tcp; 17544 ASSERT(tcp != NULL); 17545 17546 msize = msgdsize(mp); 17547 17548 mutex_enter(&connp->conn_lock); 17549 CONN_INC_REF_LOCKED(connp); 17550 17551 tcp->tcp_squeue_bytes += msize; 17552 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 17553 mutex_exit(&connp->conn_lock); 17554 tcp_setqfull(tcp); 17555 } else 17556 mutex_exit(&connp->conn_lock); 17557 17558 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17559 tcp_output, connp, SQTAG_TCP_OUTPUT); 17560 return; 17561 case M_PROTO: 17562 case M_PCPROTO: 17563 /* 17564 * if it is a snmp message, don't get behind the squeue 17565 */ 17566 tcp = connp->conn_tcp; 17567 rptr = mp->b_rptr; 17568 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 17569 type = ((union T_primitives *)rptr)->type; 17570 } else { 17571 if (tcp->tcp_debug) { 17572 (void) strlog(TCP_MOD_ID, 0, 1, 17573 SL_ERROR|SL_TRACE, 17574 "tcp_wput_proto, dropping one..."); 17575 } 17576 freemsg(mp); 17577 return; 17578 } 17579 if (type == T_SVR4_OPTMGMT_REQ) { 17580 cred_t *cr = DB_CREDDEF(mp, 17581 tcp->tcp_cred); 17582 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 17583 cr)) { 17584 /* 17585 * This was a SNMP request 17586 */ 17587 return; 17588 } else { 17589 output_proc = tcp_wput_proto; 17590 } 17591 } else { 17592 output_proc = tcp_wput_proto; 17593 } 17594 break; 17595 case M_IOCTL: 17596 /* 17597 * Most ioctls can be processed right away without going via 17598 * squeues - process them right here. Those that do require 17599 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 17600 * are processed by tcp_wput_ioctl(). 17601 */ 17602 iocp = (struct iocblk *)mp->b_rptr; 17603 tcp = connp->conn_tcp; 17604 17605 switch (iocp->ioc_cmd) { 17606 case TCP_IOC_ABORT_CONN: 17607 tcp_ioctl_abort_conn(q, mp); 17608 return; 17609 case TI_GETPEERNAME: 17610 if (tcp->tcp_state < TCPS_SYN_RCVD) { 17611 iocp->ioc_error = ENOTCONN; 17612 iocp->ioc_count = 0; 17613 mp->b_datap->db_type = M_IOCACK; 17614 qreply(q, mp); 17615 return; 17616 } 17617 /* FALLTHRU */ 17618 case TI_GETMYNAME: 17619 mi_copyin(q, mp, NULL, 17620 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 17621 return; 17622 case ND_SET: 17623 /* nd_getset does the necessary checks */ 17624 case ND_GET: 17625 if (!nd_getset(q, tcp_g_nd, mp)) { 17626 CALL_IP_WPUT(connp, q, mp); 17627 return; 17628 } 17629 qreply(q, mp); 17630 return; 17631 case TCP_IOC_DEFAULT_Q: 17632 /* 17633 * Wants to be the default wq. Check the credentials 17634 * first, the rest is executed via squeue. 17635 */ 17636 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 17637 iocp->ioc_error = EPERM; 17638 iocp->ioc_count = 0; 17639 mp->b_datap->db_type = M_IOCACK; 17640 qreply(q, mp); 17641 return; 17642 } 17643 output_proc = tcp_wput_ioctl; 17644 break; 17645 default: 17646 output_proc = tcp_wput_ioctl; 17647 break; 17648 } 17649 break; 17650 default: 17651 output_proc = tcp_wput_nondata; 17652 break; 17653 } 17654 17655 CONN_INC_REF(connp); 17656 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17657 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 17658 } 17659 17660 /* 17661 * Initial STREAMS write side put() procedure for sockets. It tries to 17662 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 17663 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 17664 * are handled by tcp_wput() as usual. 17665 * 17666 * All further messages will also be handled by tcp_wput() because we cannot 17667 * be sure that the above short cut is safe later. 17668 */ 17669 static void 17670 tcp_wput_sock(queue_t *wq, mblk_t *mp) 17671 { 17672 conn_t *connp = Q_TO_CONN(wq); 17673 tcp_t *tcp = connp->conn_tcp; 17674 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 17675 17676 ASSERT(wq->q_qinfo == &tcp_sock_winit); 17677 wq->q_qinfo = &tcp_winit; 17678 17679 ASSERT(IPCL_IS_TCP(connp)); 17680 ASSERT(TCP_IS_SOCKET(tcp)); 17681 17682 if (DB_TYPE(mp) == M_PCPROTO && 17683 MBLKL(mp) == sizeof (struct T_capability_req) && 17684 car->PRIM_type == T_CAPABILITY_REQ) { 17685 tcp_capability_req(tcp, mp); 17686 return; 17687 } 17688 17689 tcp_wput(wq, mp); 17690 } 17691 17692 static boolean_t 17693 tcp_zcopy_check(tcp_t *tcp) 17694 { 17695 conn_t *connp = tcp->tcp_connp; 17696 ire_t *ire; 17697 boolean_t zc_enabled = B_FALSE; 17698 17699 if (do_tcpzcopy == 2) 17700 zc_enabled = B_TRUE; 17701 else if (tcp->tcp_ipversion == IPV4_VERSION && 17702 IPCL_IS_CONNECTED(connp) && 17703 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 17704 connp->conn_dontroute == 0 && 17705 connp->conn_xmit_if_ill == NULL && 17706 connp->conn_nofailover_ill == NULL && 17707 do_tcpzcopy == 1) { 17708 /* 17709 * the checks above closely resemble the fast path checks 17710 * in tcp_send_data(). 17711 */ 17712 mutex_enter(&connp->conn_lock); 17713 ire = connp->conn_ire_cache; 17714 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 17715 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17716 IRE_REFHOLD(ire); 17717 if (ire->ire_stq != NULL) { 17718 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 17719 17720 zc_enabled = ill && (ill->ill_capabilities & 17721 ILL_CAPAB_ZEROCOPY) && 17722 (ill->ill_zerocopy_capab-> 17723 ill_zerocopy_flags != 0); 17724 } 17725 IRE_REFRELE(ire); 17726 } 17727 mutex_exit(&connp->conn_lock); 17728 } 17729 tcp->tcp_snd_zcopy_on = zc_enabled; 17730 if (!TCP_IS_DETACHED(tcp)) { 17731 if (zc_enabled) { 17732 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 17733 TCP_STAT(tcp_zcopy_on); 17734 } else { 17735 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 17736 TCP_STAT(tcp_zcopy_off); 17737 } 17738 } 17739 return (zc_enabled); 17740 } 17741 17742 static mblk_t * 17743 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 17744 { 17745 if (do_tcpzcopy == 2) 17746 return (bp); 17747 else if (tcp->tcp_snd_zcopy_on) { 17748 tcp->tcp_snd_zcopy_on = B_FALSE; 17749 if (!TCP_IS_DETACHED(tcp)) { 17750 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 17751 TCP_STAT(tcp_zcopy_disable); 17752 } 17753 } 17754 return (tcp_zcopy_backoff(tcp, bp, 0)); 17755 } 17756 17757 /* 17758 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 17759 * the original desballoca'ed segmapped mblk. 17760 */ 17761 static mblk_t * 17762 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 17763 { 17764 mblk_t *head, *tail, *nbp; 17765 if (IS_VMLOANED_MBLK(bp)) { 17766 TCP_STAT(tcp_zcopy_backoff); 17767 if ((head = copyb(bp)) == NULL) { 17768 /* fail to backoff; leave it for the next backoff */ 17769 tcp->tcp_xmit_zc_clean = B_FALSE; 17770 return (bp); 17771 } 17772 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 17773 if (fix_xmitlist) 17774 tcp_zcopy_notify(tcp); 17775 else 17776 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 17777 } 17778 nbp = bp->b_cont; 17779 if (fix_xmitlist) { 17780 head->b_prev = bp->b_prev; 17781 head->b_next = bp->b_next; 17782 if (tcp->tcp_xmit_tail == bp) 17783 tcp->tcp_xmit_tail = head; 17784 } 17785 bp->b_next = NULL; 17786 bp->b_prev = NULL; 17787 freeb(bp); 17788 } else { 17789 head = bp; 17790 nbp = bp->b_cont; 17791 } 17792 tail = head; 17793 while (nbp) { 17794 if (IS_VMLOANED_MBLK(nbp)) { 17795 TCP_STAT(tcp_zcopy_backoff); 17796 if ((tail->b_cont = copyb(nbp)) == NULL) { 17797 tcp->tcp_xmit_zc_clean = B_FALSE; 17798 tail->b_cont = nbp; 17799 return (head); 17800 } 17801 tail = tail->b_cont; 17802 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 17803 if (fix_xmitlist) 17804 tcp_zcopy_notify(tcp); 17805 else 17806 tail->b_datap->db_struioflag |= 17807 STRUIO_ZCNOTIFY; 17808 } 17809 bp = nbp; 17810 nbp = nbp->b_cont; 17811 if (fix_xmitlist) { 17812 tail->b_prev = bp->b_prev; 17813 tail->b_next = bp->b_next; 17814 if (tcp->tcp_xmit_tail == bp) 17815 tcp->tcp_xmit_tail = tail; 17816 } 17817 bp->b_next = NULL; 17818 bp->b_prev = NULL; 17819 freeb(bp); 17820 } else { 17821 tail->b_cont = nbp; 17822 tail = nbp; 17823 nbp = nbp->b_cont; 17824 } 17825 } 17826 if (fix_xmitlist) { 17827 tcp->tcp_xmit_last = tail; 17828 tcp->tcp_xmit_zc_clean = B_TRUE; 17829 } 17830 return (head); 17831 } 17832 17833 static void 17834 tcp_zcopy_notify(tcp_t *tcp) 17835 { 17836 struct stdata *stp; 17837 17838 if (tcp->tcp_detached) 17839 return; 17840 stp = STREAM(tcp->tcp_rq); 17841 mutex_enter(&stp->sd_lock); 17842 stp->sd_flag |= STZCNOTIFY; 17843 cv_broadcast(&stp->sd_zcopy_wait); 17844 mutex_exit(&stp->sd_lock); 17845 } 17846 17847 static void 17848 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 17849 { 17850 ipha_t *ipha; 17851 ipaddr_t src; 17852 ipaddr_t dst; 17853 uint32_t cksum; 17854 ire_t *ire; 17855 uint16_t *up; 17856 ill_t *ill; 17857 conn_t *connp = tcp->tcp_connp; 17858 uint32_t hcksum_txflags = 0; 17859 mblk_t *ire_fp_mp; 17860 uint_t ire_fp_mp_len; 17861 17862 ASSERT(DB_TYPE(mp) == M_DATA); 17863 17864 ipha = (ipha_t *)mp->b_rptr; 17865 src = ipha->ipha_src; 17866 dst = ipha->ipha_dst; 17867 17868 /* 17869 * Drop off slow path for IPv6 and also if options are present. 17870 */ 17871 if (tcp->tcp_ipversion != IPV4_VERSION || 17872 !IPCL_IS_CONNECTED(connp) || 17873 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 17874 connp->conn_dontroute || 17875 connp->conn_xmit_if_ill != NULL || 17876 connp->conn_nofailover_ill != NULL || 17877 ipha->ipha_ident == IP_HDR_INCLUDED || 17878 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 17879 IPP_ENABLED(IPP_LOCAL_OUT)) { 17880 if (tcp->tcp_snd_zcopy_aware) 17881 mp = tcp_zcopy_disable(tcp, mp); 17882 TCP_STAT(tcp_ip_send); 17883 CALL_IP_WPUT(connp, q, mp); 17884 return; 17885 } 17886 17887 mutex_enter(&connp->conn_lock); 17888 ire = connp->conn_ire_cache; 17889 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 17890 if (ire != NULL && ire->ire_addr == dst && 17891 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17892 IRE_REFHOLD(ire); 17893 mutex_exit(&connp->conn_lock); 17894 } else { 17895 boolean_t cached = B_FALSE; 17896 17897 /* force a recheck later on */ 17898 tcp->tcp_ire_ill_check_done = B_FALSE; 17899 17900 TCP_DBGSTAT(tcp_ire_null1); 17901 connp->conn_ire_cache = NULL; 17902 mutex_exit(&connp->conn_lock); 17903 if (ire != NULL) 17904 IRE_REFRELE_NOTR(ire); 17905 ire = ire_cache_lookup(dst, connp->conn_zoneid); 17906 if (ire == NULL) { 17907 if (tcp->tcp_snd_zcopy_aware) 17908 mp = tcp_zcopy_backoff(tcp, mp, 0); 17909 TCP_STAT(tcp_ire_null); 17910 CALL_IP_WPUT(connp, q, mp); 17911 return; 17912 } 17913 IRE_REFHOLD_NOTR(ire); 17914 /* 17915 * Since we are inside the squeue, there cannot be another 17916 * thread in TCP trying to set the conn_ire_cache now. The 17917 * check for IRE_MARK_CONDEMNED ensures that an interface 17918 * unplumb thread has not yet started cleaning up the conns. 17919 * Hence we don't need to grab the conn lock. 17920 */ 17921 if (!(connp->conn_state_flags & CONN_CLOSING)) { 17922 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 17923 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17924 connp->conn_ire_cache = ire; 17925 cached = B_TRUE; 17926 } 17927 rw_exit(&ire->ire_bucket->irb_lock); 17928 } 17929 17930 /* 17931 * We can continue to use the ire but since it was 17932 * not cached, we should drop the extra reference. 17933 */ 17934 if (!cached) 17935 IRE_REFRELE_NOTR(ire); 17936 } 17937 17938 if (ire->ire_flags & RTF_MULTIRT || 17939 ire->ire_stq == NULL || 17940 ire->ire_max_frag < ntohs(ipha->ipha_length) || 17941 (ire_fp_mp = ire->ire_fp_mp) == NULL || 17942 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 17943 if (tcp->tcp_snd_zcopy_aware) 17944 mp = tcp_zcopy_disable(tcp, mp); 17945 TCP_STAT(tcp_ip_ire_send); 17946 IRE_REFRELE(ire); 17947 CALL_IP_WPUT(connp, q, mp); 17948 return; 17949 } 17950 17951 ill = ire_to_ill(ire); 17952 if (connp->conn_outgoing_ill != NULL) { 17953 ill_t *conn_outgoing_ill = NULL; 17954 /* 17955 * Choose a good ill in the group to send the packets on. 17956 */ 17957 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 17958 ill = ire_to_ill(ire); 17959 } 17960 ASSERT(ill != NULL); 17961 17962 if (!tcp->tcp_ire_ill_check_done) { 17963 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 17964 tcp->tcp_ire_ill_check_done = B_TRUE; 17965 } 17966 17967 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 17968 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 17969 #ifndef _BIG_ENDIAN 17970 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 17971 #endif 17972 17973 /* 17974 * Check to see if we need to re-enable MDT for this connection 17975 * because it was previously disabled due to changes in the ill; 17976 * note that by doing it here, this re-enabling only applies when 17977 * the packet is not dispatched through CALL_IP_WPUT(). 17978 * 17979 * That means for IPv4, it is worth re-enabling MDT for the fastpath 17980 * case, since that's how we ended up here. For IPv6, we do the 17981 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 17982 */ 17983 if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 17984 /* 17985 * Restore MDT for this connection, so that next time around 17986 * it is eligible to go through tcp_multisend() path again. 17987 */ 17988 TCP_STAT(tcp_mdt_conn_resumed1); 17989 tcp->tcp_mdt = B_TRUE; 17990 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 17991 "interface %s\n", (void *)connp, ill->ill_name)); 17992 } 17993 17994 if (tcp->tcp_snd_zcopy_aware) { 17995 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 17996 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 17997 mp = tcp_zcopy_disable(tcp, mp); 17998 /* 17999 * we shouldn't need to reset ipha as the mp containing 18000 * ipha should never be a zero-copy mp. 18001 */ 18002 } 18003 18004 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18005 ASSERT(ill->ill_hcksum_capab != NULL); 18006 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18007 } 18008 18009 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18010 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18011 18012 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18013 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18014 18015 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18016 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18017 18018 /* Software checksum? */ 18019 if (DB_CKSUMFLAGS(mp) == 0) { 18020 TCP_STAT(tcp_out_sw_cksum); 18021 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18022 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18023 } 18024 18025 ipha->ipha_fragment_offset_and_flags |= 18026 (uint32_t)htons(ire->ire_frag_flag); 18027 18028 /* Calculate IP header checksum if hardware isn't capable */ 18029 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18030 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18031 ((uint16_t *)ipha)[4]); 18032 } 18033 18034 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18035 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18036 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18037 18038 UPDATE_OB_PKT_COUNT(ire); 18039 ire->ire_last_used_time = lbolt; 18040 BUMP_MIB(&ip_mib, ipOutRequests); 18041 18042 if (ILL_POLL_CAPABLE(ill)) { 18043 /* 18044 * Send the packet directly to DLD, where it may be queued 18045 * depending on the availability of transmit resources at 18046 * the media layer. 18047 */ 18048 IP_POLL_ILL_TX(ill, mp); 18049 } else { 18050 putnext(ire->ire_stq, mp); 18051 } 18052 IRE_REFRELE(ire); 18053 } 18054 18055 /* 18056 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18057 * if the receiver shrinks the window, i.e. moves the right window to the 18058 * left, the we should not send new data, but should retransmit normally the 18059 * old unacked data between suna and suna + swnd. We might has sent data 18060 * that is now outside the new window, pretend that we didn't send it. 18061 */ 18062 static void 18063 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18064 { 18065 uint32_t snxt = tcp->tcp_snxt; 18066 mblk_t *xmit_tail; 18067 int32_t offset; 18068 18069 ASSERT(shrunk_count > 0); 18070 18071 /* Pretend we didn't send the data outside the window */ 18072 snxt -= shrunk_count; 18073 18074 /* Get the mblk and the offset in it per the shrunk window */ 18075 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18076 18077 ASSERT(xmit_tail != NULL); 18078 18079 /* Reset all the values per the now shrunk window */ 18080 tcp->tcp_snxt = snxt; 18081 tcp->tcp_xmit_tail = xmit_tail; 18082 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18083 offset; 18084 tcp->tcp_unsent += shrunk_count; 18085 18086 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18087 /* 18088 * Make sure the timer is running so that we will probe a zero 18089 * window. 18090 */ 18091 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18092 } 18093 18094 18095 /* 18096 * The TCP normal data output path. 18097 * NOTE: the logic of the fast path is duplicated from this function. 18098 */ 18099 static void 18100 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18101 { 18102 int len; 18103 mblk_t *local_time; 18104 mblk_t *mp1; 18105 uint32_t snxt; 18106 int tail_unsent; 18107 int tcpstate; 18108 int usable = 0; 18109 mblk_t *xmit_tail; 18110 queue_t *q = tcp->tcp_wq; 18111 int32_t mss; 18112 int32_t num_sack_blk = 0; 18113 int32_t tcp_hdr_len; 18114 int32_t tcp_tcp_hdr_len; 18115 int mdt_thres; 18116 int rc; 18117 18118 tcpstate = tcp->tcp_state; 18119 if (mp == NULL) { 18120 /* 18121 * tcp_wput_data() with NULL mp should only be called when 18122 * there is unsent data. 18123 */ 18124 ASSERT(tcp->tcp_unsent > 0); 18125 /* Really tacky... but we need this for detached closes. */ 18126 len = tcp->tcp_unsent; 18127 goto data_null; 18128 } 18129 18130 #if CCS_STATS 18131 wrw_stats.tot.count++; 18132 wrw_stats.tot.bytes += msgdsize(mp); 18133 #endif 18134 ASSERT(mp->b_datap->db_type == M_DATA); 18135 /* 18136 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18137 * or before a connection attempt has begun. 18138 */ 18139 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18140 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18141 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18142 #ifdef DEBUG 18143 cmn_err(CE_WARN, 18144 "tcp_wput_data: data after ordrel, %s", 18145 tcp_display(tcp, NULL, 18146 DISP_ADDR_AND_PORT)); 18147 #else 18148 if (tcp->tcp_debug) { 18149 (void) strlog(TCP_MOD_ID, 0, 1, 18150 SL_TRACE|SL_ERROR, 18151 "tcp_wput_data: data after ordrel, %s\n", 18152 tcp_display(tcp, NULL, 18153 DISP_ADDR_AND_PORT)); 18154 } 18155 #endif /* DEBUG */ 18156 } 18157 if (tcp->tcp_snd_zcopy_aware && 18158 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18159 tcp_zcopy_notify(tcp); 18160 freemsg(mp); 18161 if (tcp->tcp_flow_stopped && 18162 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18163 tcp_clrqfull(tcp); 18164 } 18165 return; 18166 } 18167 18168 /* Strip empties */ 18169 for (;;) { 18170 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18171 (uintptr_t)INT_MAX); 18172 len = (int)(mp->b_wptr - mp->b_rptr); 18173 if (len > 0) 18174 break; 18175 mp1 = mp; 18176 mp = mp->b_cont; 18177 freeb(mp1); 18178 if (!mp) { 18179 return; 18180 } 18181 } 18182 18183 /* If we are the first on the list ... */ 18184 if (tcp->tcp_xmit_head == NULL) { 18185 tcp->tcp_xmit_head = mp; 18186 tcp->tcp_xmit_tail = mp; 18187 tcp->tcp_xmit_tail_unsent = len; 18188 } else { 18189 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18190 struct datab *dp; 18191 18192 mp1 = tcp->tcp_xmit_last; 18193 if (len < tcp_tx_pull_len && 18194 (dp = mp1->b_datap)->db_ref == 1 && 18195 dp->db_lim - mp1->b_wptr >= len) { 18196 ASSERT(len > 0); 18197 ASSERT(!mp1->b_cont); 18198 if (len == 1) { 18199 *mp1->b_wptr++ = *mp->b_rptr; 18200 } else { 18201 bcopy(mp->b_rptr, mp1->b_wptr, len); 18202 mp1->b_wptr += len; 18203 } 18204 if (mp1 == tcp->tcp_xmit_tail) 18205 tcp->tcp_xmit_tail_unsent += len; 18206 mp1->b_cont = mp->b_cont; 18207 if (tcp->tcp_snd_zcopy_aware && 18208 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18209 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18210 freeb(mp); 18211 mp = mp1; 18212 } else { 18213 tcp->tcp_xmit_last->b_cont = mp; 18214 } 18215 len += tcp->tcp_unsent; 18216 } 18217 18218 /* Tack on however many more positive length mblks we have */ 18219 if ((mp1 = mp->b_cont) != NULL) { 18220 do { 18221 int tlen; 18222 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18223 (uintptr_t)INT_MAX); 18224 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18225 if (tlen <= 0) { 18226 mp->b_cont = mp1->b_cont; 18227 freeb(mp1); 18228 } else { 18229 len += tlen; 18230 mp = mp1; 18231 } 18232 } while ((mp1 = mp->b_cont) != NULL); 18233 } 18234 tcp->tcp_xmit_last = mp; 18235 tcp->tcp_unsent = len; 18236 18237 if (urgent) 18238 usable = 1; 18239 18240 data_null: 18241 snxt = tcp->tcp_snxt; 18242 xmit_tail = tcp->tcp_xmit_tail; 18243 tail_unsent = tcp->tcp_xmit_tail_unsent; 18244 18245 /* 18246 * Note that tcp_mss has been adjusted to take into account the 18247 * timestamp option if applicable. Because SACK options do not 18248 * appear in every TCP segments and they are of variable lengths, 18249 * they cannot be included in tcp_mss. Thus we need to calculate 18250 * the actual segment length when we need to send a segment which 18251 * includes SACK options. 18252 */ 18253 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18254 int32_t opt_len; 18255 18256 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18257 tcp->tcp_num_sack_blk); 18258 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18259 2 + TCPOPT_HEADER_LEN; 18260 mss = tcp->tcp_mss - opt_len; 18261 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18262 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18263 } else { 18264 mss = tcp->tcp_mss; 18265 tcp_hdr_len = tcp->tcp_hdr_len; 18266 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18267 } 18268 18269 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18270 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18271 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 18272 } 18273 if (tcpstate == TCPS_SYN_RCVD) { 18274 /* 18275 * The three-way connection establishment handshake is not 18276 * complete yet. We want to queue the data for transmission 18277 * after entering ESTABLISHED state (RFC793). A jump to 18278 * "done" label effectively leaves data on the queue. 18279 */ 18280 goto done; 18281 } else { 18282 int usable_r = tcp->tcp_swnd; 18283 18284 /* 18285 * In the special case when cwnd is zero, which can only 18286 * happen if the connection is ECN capable, return now. 18287 * New segments is sent using tcp_timer(). The timer 18288 * is set in tcp_rput_data(). 18289 */ 18290 if (tcp->tcp_cwnd == 0) { 18291 /* 18292 * Note that tcp_cwnd is 0 before 3-way handshake is 18293 * finished. 18294 */ 18295 ASSERT(tcp->tcp_ecn_ok || 18296 tcp->tcp_state < TCPS_ESTABLISHED); 18297 return; 18298 } 18299 18300 /* NOTE: trouble if xmitting while SYN not acked? */ 18301 usable_r -= snxt; 18302 usable_r += tcp->tcp_suna; 18303 18304 /* 18305 * Check if the receiver has shrunk the window. If 18306 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18307 * cannot be set as there is unsent data, so FIN cannot 18308 * be sent out. Otherwise, we need to take into account 18309 * of FIN as it consumes an "invisible" sequence number. 18310 */ 18311 ASSERT(tcp->tcp_fin_sent == 0); 18312 if (usable_r < 0) { 18313 /* 18314 * The receiver has shrunk the window and we have sent 18315 * -usable_r date beyond the window, re-adjust. 18316 * 18317 * If TCP window scaling is enabled, there can be 18318 * round down error as the advertised receive window 18319 * is actually right shifted n bits. This means that 18320 * the lower n bits info is wiped out. It will look 18321 * like the window is shrunk. Do a check here to 18322 * see if the shrunk amount is actually within the 18323 * error in window calculation. If it is, just 18324 * return. Note that this check is inside the 18325 * shrunk window check. This makes sure that even 18326 * though tcp_process_shrunk_swnd() is not called, 18327 * we will stop further processing. 18328 */ 18329 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18330 tcp_process_shrunk_swnd(tcp, -usable_r); 18331 } 18332 return; 18333 } 18334 18335 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18336 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18337 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18338 18339 /* usable = MIN(usable, unsent) */ 18340 if (usable_r > len) 18341 usable_r = len; 18342 18343 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18344 if (usable_r > 0) { 18345 usable = usable_r; 18346 } else { 18347 /* Bypass all other unnecessary processing. */ 18348 goto done; 18349 } 18350 } 18351 18352 local_time = (mblk_t *)lbolt; 18353 18354 /* 18355 * "Our" Nagle Algorithm. This is not the same as in the old 18356 * BSD. This is more in line with the true intent of Nagle. 18357 * 18358 * The conditions are: 18359 * 1. The amount of unsent data (or amount of data which can be 18360 * sent, whichever is smaller) is less than Nagle limit. 18361 * 2. The last sent size is also less than Nagle limit. 18362 * 3. There is unack'ed data. 18363 * 4. Urgent pointer is not set. Send urgent data ignoring the 18364 * Nagle algorithm. This reduces the probability that urgent 18365 * bytes get "merged" together. 18366 * 5. The app has not closed the connection. This eliminates the 18367 * wait time of the receiving side waiting for the last piece of 18368 * (small) data. 18369 * 18370 * If all are satisified, exit without sending anything. Note 18371 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18372 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18373 * 4095). 18374 */ 18375 if (usable < (int)tcp->tcp_naglim && 18376 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18377 snxt != tcp->tcp_suna && 18378 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18379 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18380 goto done; 18381 } 18382 18383 if (tcp->tcp_cork) { 18384 /* 18385 * if the tcp->tcp_cork option is set, then we have to force 18386 * TCP not to send partial segment (smaller than MSS bytes). 18387 * We are calculating the usable now based on full mss and 18388 * will save the rest of remaining data for later. 18389 */ 18390 if (usable < mss) 18391 goto done; 18392 usable = (usable / mss) * mss; 18393 } 18394 18395 /* Update the latest receive window size in TCP header. */ 18396 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18397 tcp->tcp_tcph->th_win); 18398 18399 /* 18400 * Determine if it's worthwhile to attempt MDT, based on: 18401 * 18402 * 1. Simple TCP/IP{v4,v6} (no options). 18403 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18404 * 3. If the TCP connection is in ESTABLISHED state. 18405 * 4. The TCP is not detached. 18406 * 18407 * If any of the above conditions have changed during the 18408 * connection, stop using MDT and restore the stream head 18409 * parameters accordingly. 18410 */ 18411 if (tcp->tcp_mdt && 18412 ((tcp->tcp_ipversion == IPV4_VERSION && 18413 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 18414 (tcp->tcp_ipversion == IPV6_VERSION && 18415 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 18416 tcp->tcp_state != TCPS_ESTABLISHED || 18417 TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || 18418 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 18419 IPP_ENABLED(IPP_LOCAL_OUT))) { 18420 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 18421 tcp->tcp_mdt = B_FALSE; 18422 18423 /* Anything other than detached is considered pathological */ 18424 if (!TCP_IS_DETACHED(tcp)) { 18425 TCP_STAT(tcp_mdt_conn_halted1); 18426 (void) tcp_maxpsz_set(tcp, B_TRUE); 18427 } 18428 } 18429 18430 /* Use MDT if sendable amount is greater than the threshold */ 18431 if (tcp->tcp_mdt && 18432 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 18433 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 18434 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 18435 (tcp->tcp_valid_bits == 0 || 18436 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 18437 ASSERT(tcp->tcp_connp->conn_mdt_ok); 18438 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18439 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18440 local_time, mdt_thres); 18441 } else { 18442 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18443 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18444 local_time, INT_MAX); 18445 } 18446 18447 /* Pretend that all we were trying to send really got sent */ 18448 if (rc < 0 && tail_unsent < 0) { 18449 do { 18450 xmit_tail = xmit_tail->b_cont; 18451 xmit_tail->b_prev = local_time; 18452 ASSERT((uintptr_t)(xmit_tail->b_wptr - 18453 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 18454 tail_unsent += (int)(xmit_tail->b_wptr - 18455 xmit_tail->b_rptr); 18456 } while (tail_unsent < 0); 18457 } 18458 done:; 18459 tcp->tcp_xmit_tail = xmit_tail; 18460 tcp->tcp_xmit_tail_unsent = tail_unsent; 18461 len = tcp->tcp_snxt - snxt; 18462 if (len) { 18463 /* 18464 * If new data was sent, need to update the notsack 18465 * list, which is, afterall, data blocks that have 18466 * not been sack'ed by the receiver. New data is 18467 * not sack'ed. 18468 */ 18469 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 18470 /* len is a negative value. */ 18471 tcp->tcp_pipe -= len; 18472 tcp_notsack_update(&(tcp->tcp_notsack_list), 18473 tcp->tcp_snxt, snxt, 18474 &(tcp->tcp_num_notsack_blk), 18475 &(tcp->tcp_cnt_notsack_list)); 18476 } 18477 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 18478 tcp->tcp_rack = tcp->tcp_rnxt; 18479 tcp->tcp_rack_cnt = 0; 18480 if ((snxt + len) == tcp->tcp_suna) { 18481 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18482 } 18483 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 18484 /* 18485 * Didn't send anything. Make sure the timer is running 18486 * so that we will probe a zero window. 18487 */ 18488 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18489 } 18490 /* Note that len is the amount we just sent but with a negative sign */ 18491 tcp->tcp_unsent += len; 18492 if (tcp->tcp_flow_stopped) { 18493 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18494 tcp_clrqfull(tcp); 18495 } 18496 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 18497 tcp_setqfull(tcp); 18498 } 18499 } 18500 18501 /* 18502 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 18503 * outgoing TCP header with the template header, as well as other 18504 * options such as time-stamp, ECN and/or SACK. 18505 */ 18506 static void 18507 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 18508 { 18509 tcph_t *tcp_tmpl, *tcp_h; 18510 uint32_t *dst, *src; 18511 int hdrlen; 18512 18513 ASSERT(OK_32PTR(rptr)); 18514 18515 /* Template header */ 18516 tcp_tmpl = tcp->tcp_tcph; 18517 18518 /* Header of outgoing packet */ 18519 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18520 18521 /* dst and src are opaque 32-bit fields, used for copying */ 18522 dst = (uint32_t *)rptr; 18523 src = (uint32_t *)tcp->tcp_iphc; 18524 hdrlen = tcp->tcp_hdr_len; 18525 18526 /* Fill time-stamp option if needed */ 18527 if (tcp->tcp_snd_ts_ok) { 18528 U32_TO_BE32((uint32_t)now, 18529 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 18530 U32_TO_BE32(tcp->tcp_ts_recent, 18531 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 18532 } else { 18533 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18534 } 18535 18536 /* 18537 * Copy the template header; is this really more efficient than 18538 * calling bcopy()? For simple IPv4/TCP, it may be the case, 18539 * but perhaps not for other scenarios. 18540 */ 18541 dst[0] = src[0]; 18542 dst[1] = src[1]; 18543 dst[2] = src[2]; 18544 dst[3] = src[3]; 18545 dst[4] = src[4]; 18546 dst[5] = src[5]; 18547 dst[6] = src[6]; 18548 dst[7] = src[7]; 18549 dst[8] = src[8]; 18550 dst[9] = src[9]; 18551 if (hdrlen -= 40) { 18552 hdrlen >>= 2; 18553 dst += 10; 18554 src += 10; 18555 do { 18556 *dst++ = *src++; 18557 } while (--hdrlen); 18558 } 18559 18560 /* 18561 * Set the ECN info in the TCP header if it is not a zero 18562 * window probe. Zero window probe is only sent in 18563 * tcp_wput_data() and tcp_timer(). 18564 */ 18565 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 18566 SET_ECT(tcp, rptr); 18567 18568 if (tcp->tcp_ecn_echo_on) 18569 tcp_h->th_flags[0] |= TH_ECE; 18570 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18571 tcp_h->th_flags[0] |= TH_CWR; 18572 tcp->tcp_ecn_cwr_sent = B_TRUE; 18573 } 18574 } 18575 18576 /* Fill in SACK options */ 18577 if (num_sack_blk > 0) { 18578 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 18579 sack_blk_t *tmp; 18580 int32_t i; 18581 18582 wptr[0] = TCPOPT_NOP; 18583 wptr[1] = TCPOPT_NOP; 18584 wptr[2] = TCPOPT_SACK; 18585 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18586 sizeof (sack_blk_t); 18587 wptr += TCPOPT_REAL_SACK_LEN; 18588 18589 tmp = tcp->tcp_sack_list; 18590 for (i = 0; i < num_sack_blk; i++) { 18591 U32_TO_BE32(tmp[i].begin, wptr); 18592 wptr += sizeof (tcp_seq); 18593 U32_TO_BE32(tmp[i].end, wptr); 18594 wptr += sizeof (tcp_seq); 18595 } 18596 tcp_h->th_offset_and_rsrvd[0] += 18597 ((num_sack_blk * 2 + 1) << 4); 18598 } 18599 } 18600 18601 /* 18602 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 18603 * the destination address and SAP attribute, and if necessary, the 18604 * hardware checksum offload attribute to a Multidata message. 18605 */ 18606 static int 18607 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 18608 const uint32_t start, const uint32_t stuff, const uint32_t end, 18609 const uint32_t flags) 18610 { 18611 /* Add global destination address & SAP attribute */ 18612 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 18613 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 18614 "destination address+SAP\n")); 18615 18616 if (dlmp != NULL) 18617 TCP_STAT(tcp_mdt_allocfail); 18618 return (-1); 18619 } 18620 18621 /* Add global hwcksum attribute */ 18622 if (hwcksum && 18623 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 18624 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 18625 "checksum attribute\n")); 18626 18627 TCP_STAT(tcp_mdt_allocfail); 18628 return (-1); 18629 } 18630 18631 return (0); 18632 } 18633 18634 /* 18635 * Smaller and private version of pdescinfo_t used specifically for TCP, 18636 * which allows for only two payload spans per packet. 18637 */ 18638 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 18639 18640 /* 18641 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 18642 * scheme, and returns one the following: 18643 * 18644 * -1 = failed allocation. 18645 * 0 = success; burst count reached, or usable send window is too small, 18646 * and that we'd rather wait until later before sending again. 18647 */ 18648 static int 18649 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 18650 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 18651 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 18652 const int mdt_thres) 18653 { 18654 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 18655 multidata_t *mmd; 18656 uint_t obsegs, obbytes, hdr_frag_sz; 18657 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 18658 int num_burst_seg, max_pld; 18659 pdesc_t *pkt; 18660 tcp_pdescinfo_t tcp_pkt_info; 18661 pdescinfo_t *pkt_info; 18662 int pbuf_idx, pbuf_idx_nxt; 18663 int seg_len, len, spill, af; 18664 boolean_t add_buffer, zcopy, clusterwide; 18665 boolean_t rconfirm = B_FALSE; 18666 boolean_t done = B_FALSE; 18667 uint32_t cksum; 18668 uint32_t hwcksum_flags; 18669 ire_t *ire; 18670 ill_t *ill; 18671 ipha_t *ipha; 18672 ip6_t *ip6h; 18673 ipaddr_t src, dst; 18674 ill_zerocopy_capab_t *zc_cap = NULL; 18675 uint16_t *up; 18676 int err; 18677 18678 #ifdef _BIG_ENDIAN 18679 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 18680 #else 18681 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 18682 #endif 18683 18684 #define PREP_NEW_MULTIDATA() { \ 18685 mmd = NULL; \ 18686 md_mp = md_hbuf = NULL; \ 18687 cur_hdr_off = 0; \ 18688 max_pld = tcp->tcp_mdt_max_pld; \ 18689 pbuf_idx = pbuf_idx_nxt = -1; \ 18690 add_buffer = B_TRUE; \ 18691 zcopy = B_FALSE; \ 18692 } 18693 18694 #define PREP_NEW_PBUF() { \ 18695 md_pbuf = md_pbuf_nxt = NULL; \ 18696 pbuf_idx = pbuf_idx_nxt = -1; \ 18697 cur_pld_off = 0; \ 18698 first_snxt = *snxt; \ 18699 ASSERT(*tail_unsent > 0); \ 18700 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 18701 } 18702 18703 ASSERT(mdt_thres >= mss); 18704 ASSERT(*usable > 0 && *usable > mdt_thres); 18705 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 18706 ASSERT(!TCP_IS_DETACHED(tcp)); 18707 ASSERT(tcp->tcp_valid_bits == 0 || 18708 tcp->tcp_valid_bits == TCP_FSS_VALID); 18709 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 18710 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 18711 (tcp->tcp_ipversion == IPV6_VERSION && 18712 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 18713 ASSERT(tcp->tcp_connp != NULL); 18714 ASSERT(CONN_IS_MD_FASTPATH(tcp->tcp_connp)); 18715 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp)); 18716 18717 /* 18718 * Note that tcp will only declare at most 2 payload spans per 18719 * packet, which is much lower than the maximum allowable number 18720 * of packet spans per Multidata. For this reason, we use the 18721 * privately declared and smaller descriptor info structure, in 18722 * order to save some stack space. 18723 */ 18724 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 18725 18726 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 18727 if (af == AF_INET) { 18728 dst = tcp->tcp_ipha->ipha_dst; 18729 src = tcp->tcp_ipha->ipha_src; 18730 ASSERT(!CLASSD(dst)); 18731 } 18732 ASSERT(af == AF_INET || 18733 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 18734 18735 obsegs = obbytes = 0; 18736 num_burst_seg = tcp->tcp_snd_burst; 18737 md_mp_head = NULL; 18738 PREP_NEW_MULTIDATA(); 18739 18740 /* 18741 * Before we go on further, make sure there is an IRE that we can 18742 * use, and that the ILL supports MDT. Otherwise, there's no point 18743 * in proceeding any further, and we should just hand everything 18744 * off to the legacy path. 18745 */ 18746 mutex_enter(&tcp->tcp_connp->conn_lock); 18747 ire = tcp->tcp_connp->conn_ire_cache; 18748 ASSERT(!(tcp->tcp_connp->conn_state_flags & CONN_INCIPIENT)); 18749 if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || 18750 (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 18751 &tcp->tcp_ip6h->ip6_dst))) && 18752 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18753 IRE_REFHOLD(ire); 18754 mutex_exit(&tcp->tcp_connp->conn_lock); 18755 } else { 18756 boolean_t cached = B_FALSE; 18757 18758 /* force a recheck later on */ 18759 tcp->tcp_ire_ill_check_done = B_FALSE; 18760 18761 TCP_DBGSTAT(tcp_ire_null1); 18762 tcp->tcp_connp->conn_ire_cache = NULL; 18763 mutex_exit(&tcp->tcp_connp->conn_lock); 18764 18765 /* Release the old ire */ 18766 if (ire != NULL) 18767 IRE_REFRELE_NOTR(ire); 18768 18769 ire = (af == AF_INET) ? 18770 ire_cache_lookup(dst, tcp->tcp_connp->conn_zoneid) : 18771 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18772 tcp->tcp_connp->conn_zoneid); 18773 18774 if (ire == NULL) { 18775 TCP_STAT(tcp_ire_null); 18776 goto legacy_send_no_md; 18777 } 18778 18779 IRE_REFHOLD_NOTR(ire); 18780 /* 18781 * Since we are inside the squeue, there cannot be another 18782 * thread in TCP trying to set the conn_ire_cache now. The 18783 * check for IRE_MARK_CONDEMNED ensures that an interface 18784 * unplumb thread has not yet started cleaning up the conns. 18785 * Hence we don't need to grab the conn lock. 18786 */ 18787 if (!(tcp->tcp_connp->conn_state_flags & CONN_CLOSING)) { 18788 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18789 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18790 tcp->tcp_connp->conn_ire_cache = ire; 18791 cached = B_TRUE; 18792 } 18793 rw_exit(&ire->ire_bucket->irb_lock); 18794 } 18795 18796 /* 18797 * We can continue to use the ire but since it was not 18798 * cached, we should drop the extra reference. 18799 */ 18800 if (!cached) 18801 IRE_REFRELE_NOTR(ire); 18802 } 18803 18804 ASSERT(ire != NULL); 18805 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 18806 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 18807 ASSERT(af == AF_INET || ire->ire_nce != NULL); 18808 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18809 /* 18810 * If we do support loopback for MDT (which requires modifications 18811 * to the receiving paths), the following assertions should go away, 18812 * and we would be sending the Multidata to loopback conn later on. 18813 */ 18814 ASSERT(!IRE_IS_LOCAL(ire)); 18815 ASSERT(ire->ire_stq != NULL); 18816 18817 ill = ire_to_ill(ire); 18818 ASSERT(ill != NULL); 18819 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 18820 18821 if (!tcp->tcp_ire_ill_check_done) { 18822 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18823 tcp->tcp_ire_ill_check_done = B_TRUE; 18824 } 18825 18826 /* 18827 * If the underlying interface conditions have changed, or if the 18828 * new interface does not support MDT, go back to legacy path. 18829 */ 18830 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 18831 /* don't go through this path anymore for this connection */ 18832 TCP_STAT(tcp_mdt_conn_halted2); 18833 tcp->tcp_mdt = B_FALSE; 18834 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 18835 "interface %s\n", (void *)tcp->tcp_connp, ill->ill_name)); 18836 /* IRE will be released prior to returning */ 18837 goto legacy_send_no_md; 18838 } 18839 18840 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 18841 zc_cap = ill->ill_zerocopy_capab; 18842 18843 /* go to legacy path if interface doesn't support zerocopy */ 18844 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 18845 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 18846 /* IRE will be released prior to returning */ 18847 goto legacy_send_no_md; 18848 } 18849 18850 /* does the interface support hardware checksum offload? */ 18851 hwcksum_flags = 0; 18852 if (ILL_HCKSUM_CAPABLE(ill) && 18853 (ill->ill_hcksum_capab->ill_hcksum_txflags & 18854 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 18855 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 18856 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18857 HCKSUM_IPHDRCKSUM) 18858 hwcksum_flags = HCK_IPV4_HDRCKSUM; 18859 18860 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18861 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 18862 hwcksum_flags |= HCK_FULLCKSUM; 18863 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18864 HCKSUM_INET_PARTIAL) 18865 hwcksum_flags |= HCK_PARTIALCKSUM; 18866 } 18867 18868 /* 18869 * Each header fragment consists of the leading extra space, 18870 * followed by the TCP/IP header, and the trailing extra space. 18871 * We make sure that each header fragment begins on a 32-bit 18872 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 18873 * aligned in tcp_mdt_update). 18874 */ 18875 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 18876 tcp->tcp_mdt_hdr_tail), 4); 18877 18878 /* are we starting from the beginning of data block? */ 18879 if (*tail_unsent == 0) { 18880 *xmit_tail = (*xmit_tail)->b_cont; 18881 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 18882 *tail_unsent = (int)MBLKL(*xmit_tail); 18883 } 18884 18885 /* 18886 * Here we create one or more Multidata messages, each made up of 18887 * one header buffer and up to N payload buffers. This entire 18888 * operation is done within two loops: 18889 * 18890 * The outer loop mostly deals with creating the Multidata message, 18891 * as well as the header buffer that gets added to it. It also 18892 * links the Multidata messages together such that all of them can 18893 * be sent down to the lower layer in a single putnext call; this 18894 * linking behavior depends on the tcp_mdt_chain tunable. 18895 * 18896 * The inner loop takes an existing Multidata message, and adds 18897 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 18898 * packetizes those buffers by filling up the corresponding header 18899 * buffer fragments with the proper IP and TCP headers, and by 18900 * describing the layout of each packet in the packet descriptors 18901 * that get added to the Multidata. 18902 */ 18903 do { 18904 /* 18905 * If usable send window is too small, or data blocks in 18906 * transmit list are smaller than our threshold (i.e. app 18907 * performs large writes followed by small ones), we hand 18908 * off the control over to the legacy path. Note that we'll 18909 * get back the control once it encounters a large block. 18910 */ 18911 if (*usable < mss || (*tail_unsent <= mdt_thres && 18912 (*xmit_tail)->b_cont != NULL && 18913 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 18914 /* send down what we've got so far */ 18915 if (md_mp_head != NULL) { 18916 tcp_multisend_data(tcp, ire, ill, md_mp_head, 18917 obsegs, obbytes, &rconfirm); 18918 } 18919 /* 18920 * Pass control over to tcp_send(), but tell it to 18921 * return to us once a large-size transmission is 18922 * possible. 18923 */ 18924 TCP_STAT(tcp_mdt_legacy_small); 18925 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 18926 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 18927 tail_unsent, xmit_tail, local_time, 18928 mdt_thres)) <= 0) { 18929 /* burst count reached, or alloc failed */ 18930 IRE_REFRELE(ire); 18931 return (err); 18932 } 18933 18934 /* tcp_send() may have sent everything, so check */ 18935 if (*usable <= 0) { 18936 IRE_REFRELE(ire); 18937 return (0); 18938 } 18939 18940 TCP_STAT(tcp_mdt_legacy_ret); 18941 /* 18942 * We may have delivered the Multidata, so make sure 18943 * to re-initialize before the next round. 18944 */ 18945 md_mp_head = NULL; 18946 obsegs = obbytes = 0; 18947 num_burst_seg = tcp->tcp_snd_burst; 18948 PREP_NEW_MULTIDATA(); 18949 18950 /* are we starting from the beginning of data block? */ 18951 if (*tail_unsent == 0) { 18952 *xmit_tail = (*xmit_tail)->b_cont; 18953 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 18954 (uintptr_t)INT_MAX); 18955 *tail_unsent = (int)MBLKL(*xmit_tail); 18956 } 18957 } 18958 18959 /* 18960 * max_pld limits the number of mblks in tcp's transmit 18961 * queue that can be added to a Multidata message. Once 18962 * this counter reaches zero, no more additional mblks 18963 * can be added to it. What happens afterwards depends 18964 * on whether or not we are set to chain the Multidata 18965 * messages. If we are to link them together, reset 18966 * max_pld to its original value (tcp_mdt_max_pld) and 18967 * prepare to create a new Multidata message which will 18968 * get linked to md_mp_head. Else, leave it alone and 18969 * let the inner loop break on its own. 18970 */ 18971 if (tcp_mdt_chain && max_pld == 0) 18972 PREP_NEW_MULTIDATA(); 18973 18974 /* adding a payload buffer; re-initialize values */ 18975 if (add_buffer) 18976 PREP_NEW_PBUF(); 18977 18978 /* 18979 * If we don't have a Multidata, either because we just 18980 * (re)entered this outer loop, or after we branched off 18981 * to tcp_send above, setup the Multidata and header 18982 * buffer to be used. 18983 */ 18984 if (md_mp == NULL) { 18985 int md_hbuflen; 18986 uint32_t start, stuff; 18987 18988 /* 18989 * Calculate Multidata header buffer size large enough 18990 * to hold all of the headers that can possibly be 18991 * sent at this moment. We'd rather over-estimate 18992 * the size than running out of space; this is okay 18993 * since this buffer is small anyway. 18994 */ 18995 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 18996 18997 /* 18998 * Start and stuff offset for partial hardware 18999 * checksum offload; these are currently for IPv4. 19000 * For full checksum offload, they are set to zero. 19001 */ 19002 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19003 if (af == AF_INET) { 19004 start = IP_SIMPLE_HDR_LENGTH; 19005 stuff = IP_SIMPLE_HDR_LENGTH + 19006 TCP_CHECKSUM_OFFSET; 19007 } else { 19008 start = IPV6_HDR_LEN; 19009 stuff = IPV6_HDR_LEN + 19010 TCP_CHECKSUM_OFFSET; 19011 } 19012 } else { 19013 start = stuff = 0; 19014 } 19015 19016 /* 19017 * Create the header buffer, Multidata, as well as 19018 * any necessary attributes (destination address, 19019 * SAP and hardware checksum offload) that should 19020 * be associated with the Multidata message. 19021 */ 19022 ASSERT(cur_hdr_off == 0); 19023 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19024 ((md_hbuf->b_wptr += md_hbuflen), 19025 (mmd = mmd_alloc(md_hbuf, &md_mp, 19026 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19027 /* fastpath mblk */ 19028 (af == AF_INET) ? ire->ire_dlureq_mp : 19029 ire->ire_nce->nce_res_mp, 19030 /* hardware checksum enabled */ 19031 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19032 /* hardware checksum offsets */ 19033 start, stuff, 0, 19034 /* hardware checksum flag */ 19035 hwcksum_flags) != 0)) { 19036 legacy_send: 19037 if (md_mp != NULL) { 19038 /* Unlink message from the chain */ 19039 if (md_mp_head != NULL) { 19040 err = (intptr_t)rmvb(md_mp_head, 19041 md_mp); 19042 /* 19043 * We can't assert that rmvb 19044 * did not return -1, since we 19045 * may get here before linkb 19046 * happens. We do, however, 19047 * check if we just removed the 19048 * only element in the list. 19049 */ 19050 if (err == 0) 19051 md_mp_head = NULL; 19052 } 19053 /* md_hbuf gets freed automatically */ 19054 TCP_STAT(tcp_mdt_discarded); 19055 freeb(md_mp); 19056 } else { 19057 /* Either allocb or mmd_alloc failed */ 19058 TCP_STAT(tcp_mdt_allocfail); 19059 if (md_hbuf != NULL) 19060 freeb(md_hbuf); 19061 } 19062 19063 /* send down what we've got so far */ 19064 if (md_mp_head != NULL) { 19065 tcp_multisend_data(tcp, ire, ill, 19066 md_mp_head, obsegs, obbytes, 19067 &rconfirm); 19068 } 19069 legacy_send_no_md: 19070 if (ire != NULL) 19071 IRE_REFRELE(ire); 19072 /* 19073 * Too bad; let the legacy path handle this. 19074 * We specify INT_MAX for the threshold, since 19075 * we gave up with the Multidata processings 19076 * and let the old path have it all. 19077 */ 19078 TCP_STAT(tcp_mdt_legacy_all); 19079 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19080 tcp_tcp_hdr_len, num_sack_blk, usable, 19081 snxt, tail_unsent, xmit_tail, local_time, 19082 INT_MAX)); 19083 } 19084 19085 /* link to any existing ones, if applicable */ 19086 TCP_STAT(tcp_mdt_allocd); 19087 if (md_mp_head == NULL) { 19088 md_mp_head = md_mp; 19089 } else if (tcp_mdt_chain) { 19090 TCP_STAT(tcp_mdt_linked); 19091 linkb(md_mp_head, md_mp); 19092 } 19093 } 19094 19095 ASSERT(md_mp_head != NULL); 19096 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19097 ASSERT(md_mp != NULL && mmd != NULL); 19098 ASSERT(md_hbuf != NULL); 19099 19100 /* 19101 * Packetize the transmittable portion of the data block; 19102 * each data block is essentially added to the Multidata 19103 * as a payload buffer. We also deal with adding more 19104 * than one payload buffers, which happens when the remaining 19105 * packetized portion of the current payload buffer is less 19106 * than MSS, while the next data block in transmit queue 19107 * has enough data to make up for one. This "spillover" 19108 * case essentially creates a split-packet, where portions 19109 * of the packet's payload fragments may span across two 19110 * virtually discontiguous address blocks. 19111 */ 19112 seg_len = mss; 19113 do { 19114 len = seg_len; 19115 19116 ASSERT(len > 0); 19117 ASSERT(max_pld >= 0); 19118 ASSERT(!add_buffer || cur_pld_off == 0); 19119 19120 /* 19121 * First time around for this payload buffer; note 19122 * in the case of a spillover, the following has 19123 * been done prior to adding the split-packet 19124 * descriptor to Multidata, and we don't want to 19125 * repeat the process. 19126 */ 19127 if (add_buffer) { 19128 ASSERT(mmd != NULL); 19129 ASSERT(md_pbuf == NULL); 19130 ASSERT(md_pbuf_nxt == NULL); 19131 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19132 19133 /* 19134 * Have we reached the limit? We'd get to 19135 * this case when we're not chaining the 19136 * Multidata messages together, and since 19137 * we're done, terminate this loop. 19138 */ 19139 if (max_pld == 0) 19140 break; /* done */ 19141 19142 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19143 TCP_STAT(tcp_mdt_allocfail); 19144 goto legacy_send; /* out_of_mem */ 19145 } 19146 19147 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19148 zc_cap != NULL) { 19149 if (!ip_md_zcopy_attr(mmd, NULL, 19150 zc_cap->ill_zerocopy_flags)) { 19151 freeb(md_pbuf); 19152 TCP_STAT(tcp_mdt_allocfail); 19153 /* out_of_mem */ 19154 goto legacy_send; 19155 } 19156 zcopy = B_TRUE; 19157 } 19158 19159 md_pbuf->b_rptr += base_pld_off; 19160 19161 /* 19162 * Add a payload buffer to the Multidata; this 19163 * operation must not fail, or otherwise our 19164 * logic in this routine is broken. There 19165 * is no memory allocation done by the 19166 * routine, so any returned failure simply 19167 * tells us that we've done something wrong. 19168 * 19169 * A failure tells us that either we're adding 19170 * the same payload buffer more than once, or 19171 * we're trying to add more buffers than 19172 * allowed (max_pld calculation is wrong). 19173 * None of the above cases should happen, and 19174 * we panic because either there's horrible 19175 * heap corruption, and/or programming mistake. 19176 */ 19177 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19178 if (pbuf_idx < 0) { 19179 cmn_err(CE_PANIC, "tcp_multisend: " 19180 "payload buffer logic error " 19181 "detected for tcp %p mmd %p " 19182 "pbuf %p (%d)\n", 19183 (void *)tcp, (void *)mmd, 19184 (void *)md_pbuf, pbuf_idx); 19185 } 19186 19187 ASSERT(max_pld > 0); 19188 --max_pld; 19189 add_buffer = B_FALSE; 19190 } 19191 19192 ASSERT(md_mp_head != NULL); 19193 ASSERT(md_pbuf != NULL); 19194 ASSERT(md_pbuf_nxt == NULL); 19195 ASSERT(pbuf_idx != -1); 19196 ASSERT(pbuf_idx_nxt == -1); 19197 ASSERT(*usable > 0); 19198 19199 /* 19200 * We spillover to the next payload buffer only 19201 * if all of the following is true: 19202 * 19203 * 1. There is not enough data on the current 19204 * payload buffer to make up `len', 19205 * 2. We are allowed to send `len', 19206 * 3. The next payload buffer length is large 19207 * enough to accomodate `spill'. 19208 */ 19209 if ((spill = len - *tail_unsent) > 0 && 19210 *usable >= len && 19211 MBLKL((*xmit_tail)->b_cont) >= spill && 19212 max_pld > 0) { 19213 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19214 if (md_pbuf_nxt == NULL) { 19215 TCP_STAT(tcp_mdt_allocfail); 19216 goto legacy_send; /* out_of_mem */ 19217 } 19218 19219 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19220 zc_cap != NULL) { 19221 if (!ip_md_zcopy_attr(mmd, NULL, 19222 zc_cap->ill_zerocopy_flags)) { 19223 freeb(md_pbuf_nxt); 19224 TCP_STAT(tcp_mdt_allocfail); 19225 /* out_of_mem */ 19226 goto legacy_send; 19227 } 19228 zcopy = B_TRUE; 19229 } 19230 19231 /* 19232 * See comments above on the first call to 19233 * mmd_addpldbuf for explanation on the panic. 19234 */ 19235 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19236 if (pbuf_idx_nxt < 0) { 19237 panic("tcp_multisend: " 19238 "next payload buffer logic error " 19239 "detected for tcp %p mmd %p " 19240 "pbuf %p (%d)\n", 19241 (void *)tcp, (void *)mmd, 19242 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19243 } 19244 19245 ASSERT(max_pld > 0); 19246 --max_pld; 19247 } else if (spill > 0) { 19248 /* 19249 * If there's a spillover, but the following 19250 * xmit_tail couldn't give us enough octets 19251 * to reach "len", then stop the current 19252 * Multidata creation and let the legacy 19253 * tcp_send() path take over. We don't want 19254 * to send the tiny segment as part of this 19255 * Multidata for performance reasons; instead, 19256 * we let the legacy path deal with grouping 19257 * it with the subsequent small mblks. 19258 */ 19259 if (*usable >= len && 19260 MBLKL((*xmit_tail)->b_cont) < spill) { 19261 max_pld = 0; 19262 break; /* done */ 19263 } 19264 19265 /* 19266 * We can't spillover, and we are near 19267 * the end of the current payload buffer, 19268 * so send what's left. 19269 */ 19270 ASSERT(*tail_unsent > 0); 19271 len = *tail_unsent; 19272 } 19273 19274 /* tail_unsent is negated if there is a spillover */ 19275 *tail_unsent -= len; 19276 *usable -= len; 19277 ASSERT(*usable >= 0); 19278 19279 if (*usable < mss) 19280 seg_len = *usable; 19281 /* 19282 * Sender SWS avoidance; see comments in tcp_send(); 19283 * everything else is the same, except that we only 19284 * do this here if there is no more data to be sent 19285 * following the current xmit_tail. We don't check 19286 * for 1-byte urgent data because we shouldn't get 19287 * here if TCP_URG_VALID is set. 19288 */ 19289 if (*usable > 0 && *usable < mss && 19290 ((md_pbuf_nxt == NULL && 19291 (*xmit_tail)->b_cont == NULL) || 19292 (md_pbuf_nxt != NULL && 19293 (*xmit_tail)->b_cont->b_cont == NULL)) && 19294 seg_len < (tcp->tcp_max_swnd >> 1) && 19295 (tcp->tcp_unsent - 19296 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19297 !tcp->tcp_zero_win_probe) { 19298 if ((*snxt + len) == tcp->tcp_snxt && 19299 (*snxt + len) == tcp->tcp_suna) { 19300 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19301 } 19302 done = B_TRUE; 19303 } 19304 19305 /* 19306 * Prime pump for IP's checksumming on our behalf; 19307 * include the adjustment for a source route if any. 19308 * Do this only for software/partial hardware checksum 19309 * offload, as this field gets zeroed out later for 19310 * the full hardware checksum offload case. 19311 */ 19312 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19313 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19314 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19315 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19316 } 19317 19318 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19319 *snxt += len; 19320 19321 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19322 /* 19323 * We set the PUSH bit only if TCP has no more buffered 19324 * data to be transmitted (or if sender SWS avoidance 19325 * takes place), as opposed to setting it for every 19326 * last packet in the burst. 19327 */ 19328 if (done || 19329 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19330 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19331 19332 /* 19333 * Set FIN bit if this is our last segment; snxt 19334 * already includes its length, and it will not 19335 * be adjusted after this point. 19336 */ 19337 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19338 *snxt == tcp->tcp_fss) { 19339 if (!tcp->tcp_fin_acked) { 19340 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19341 BUMP_MIB(&tcp_mib, tcpOutControl); 19342 } 19343 if (!tcp->tcp_fin_sent) { 19344 tcp->tcp_fin_sent = B_TRUE; 19345 /* 19346 * tcp state must be ESTABLISHED 19347 * in order for us to get here in 19348 * the first place. 19349 */ 19350 tcp->tcp_state = TCPS_FIN_WAIT_1; 19351 19352 /* 19353 * Upon returning from this routine, 19354 * tcp_wput_data() will set tcp_snxt 19355 * to be equal to snxt + tcp_fin_sent. 19356 * This is essentially the same as 19357 * setting it to tcp_fss + 1. 19358 */ 19359 } 19360 } 19361 19362 tcp->tcp_last_sent_len = (ushort_t)len; 19363 19364 len += tcp_hdr_len; 19365 if (tcp->tcp_ipversion == IPV4_VERSION) 19366 tcp->tcp_ipha->ipha_length = htons(len); 19367 else 19368 tcp->tcp_ip6h->ip6_plen = htons(len - 19369 ((char *)&tcp->tcp_ip6h[1] - 19370 tcp->tcp_iphc)); 19371 19372 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19373 19374 /* setup header fragment */ 19375 PDESC_HDR_ADD(pkt_info, 19376 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19377 tcp->tcp_mdt_hdr_head, /* head room */ 19378 tcp_hdr_len, /* len */ 19379 tcp->tcp_mdt_hdr_tail); /* tail room */ 19380 19381 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 19382 hdr_frag_sz); 19383 ASSERT(MBLKIN(md_hbuf, 19384 (pkt_info->hdr_base - md_hbuf->b_rptr), 19385 PDESC_HDRSIZE(pkt_info))); 19386 19387 /* setup first payload fragment */ 19388 PDESC_PLD_INIT(pkt_info); 19389 PDESC_PLD_SPAN_ADD(pkt_info, 19390 pbuf_idx, /* index */ 19391 md_pbuf->b_rptr + cur_pld_off, /* start */ 19392 tcp->tcp_last_sent_len); /* len */ 19393 19394 /* create a split-packet in case of a spillover */ 19395 if (md_pbuf_nxt != NULL) { 19396 ASSERT(spill > 0); 19397 ASSERT(pbuf_idx_nxt > pbuf_idx); 19398 ASSERT(!add_buffer); 19399 19400 md_pbuf = md_pbuf_nxt; 19401 md_pbuf_nxt = NULL; 19402 pbuf_idx = pbuf_idx_nxt; 19403 pbuf_idx_nxt = -1; 19404 cur_pld_off = spill; 19405 19406 /* trim out first payload fragment */ 19407 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 19408 19409 /* setup second payload fragment */ 19410 PDESC_PLD_SPAN_ADD(pkt_info, 19411 pbuf_idx, /* index */ 19412 md_pbuf->b_rptr, /* start */ 19413 spill); /* len */ 19414 19415 if ((*xmit_tail)->b_next == NULL) { 19416 /* 19417 * Store the lbolt used for RTT 19418 * estimation. We can only record one 19419 * timestamp per mblk so we do it when 19420 * we reach the end of the payload 19421 * buffer. Also we only take a new 19422 * timestamp sample when the previous 19423 * timed data from the same mblk has 19424 * been ack'ed. 19425 */ 19426 (*xmit_tail)->b_prev = local_time; 19427 (*xmit_tail)->b_next = 19428 (mblk_t *)(uintptr_t)first_snxt; 19429 } 19430 19431 first_snxt = *snxt - spill; 19432 19433 /* 19434 * Advance xmit_tail; usable could be 0 by 19435 * the time we got here, but we made sure 19436 * above that we would only spillover to 19437 * the next data block if usable includes 19438 * the spilled-over amount prior to the 19439 * subtraction. Therefore, we are sure 19440 * that xmit_tail->b_cont can't be NULL. 19441 */ 19442 ASSERT((*xmit_tail)->b_cont != NULL); 19443 *xmit_tail = (*xmit_tail)->b_cont; 19444 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19445 (uintptr_t)INT_MAX); 19446 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 19447 } else { 19448 cur_pld_off += tcp->tcp_last_sent_len; 19449 } 19450 19451 /* 19452 * Fill in the header using the template header, and 19453 * add options such as time-stamp, ECN and/or SACK, 19454 * as needed. 19455 */ 19456 tcp_fill_header(tcp, pkt_info->hdr_rptr, 19457 (clock_t)local_time, num_sack_blk); 19458 19459 /* take care of some IP header businesses */ 19460 if (af == AF_INET) { 19461 ipha = (ipha_t *)pkt_info->hdr_rptr; 19462 19463 ASSERT(OK_32PTR((uchar_t *)ipha)); 19464 ASSERT(PDESC_HDRL(pkt_info) >= 19465 IP_SIMPLE_HDR_LENGTH); 19466 ASSERT(ipha->ipha_version_and_hdr_length == 19467 IP_SIMPLE_HDR_VERSION); 19468 19469 /* 19470 * Assign ident value for current packet; see 19471 * related comments in ip_wput_ire() about the 19472 * contract private interface with clustering 19473 * group. 19474 */ 19475 clusterwide = B_FALSE; 19476 if (cl_inet_ipident != NULL) { 19477 ASSERT(cl_inet_isclusterwide != NULL); 19478 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19479 AF_INET, 19480 (uint8_t *)(uintptr_t)src)) { 19481 ipha->ipha_ident = 19482 (*cl_inet_ipident) 19483 (IPPROTO_IP, AF_INET, 19484 (uint8_t *)(uintptr_t)src, 19485 (uint8_t *)(uintptr_t)dst); 19486 clusterwide = B_TRUE; 19487 } 19488 } 19489 19490 if (!clusterwide) { 19491 ipha->ipha_ident = (uint16_t) 19492 atomic_add_32_nv( 19493 &ire->ire_ident, 1); 19494 } 19495 #ifndef _BIG_ENDIAN 19496 ipha->ipha_ident = (ipha->ipha_ident << 8) | 19497 (ipha->ipha_ident >> 8); 19498 #endif 19499 } else { 19500 ip6h = (ip6_t *)pkt_info->hdr_rptr; 19501 19502 ASSERT(OK_32PTR((uchar_t *)ip6h)); 19503 ASSERT(IPVER(ip6h) == IPV6_VERSION); 19504 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 19505 ASSERT(PDESC_HDRL(pkt_info) >= 19506 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 19507 TCP_CHECKSUM_SIZE)); 19508 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 19509 19510 if (tcp->tcp_ip_forward_progress) { 19511 rconfirm = B_TRUE; 19512 tcp->tcp_ip_forward_progress = B_FALSE; 19513 } 19514 } 19515 19516 /* at least one payload span, and at most two */ 19517 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 19518 19519 /* add the packet descriptor to Multidata */ 19520 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 19521 KM_NOSLEEP)) == NULL) { 19522 /* 19523 * Any failure other than ENOMEM indicates 19524 * that we have passed in invalid pkt_info 19525 * or parameters to mmd_addpdesc, which must 19526 * not happen. 19527 * 19528 * EINVAL is a result of failure on boundary 19529 * checks against the pkt_info contents. It 19530 * should not happen, and we panic because 19531 * either there's horrible heap corruption, 19532 * and/or programming mistake. 19533 */ 19534 if (err != ENOMEM) { 19535 cmn_err(CE_PANIC, "tcp_multisend: " 19536 "pdesc logic error detected for " 19537 "tcp %p mmd %p pinfo %p (%d)\n", 19538 (void *)tcp, (void *)mmd, 19539 (void *)pkt_info, err); 19540 } 19541 TCP_STAT(tcp_mdt_addpdescfail); 19542 goto legacy_send; /* out_of_mem */ 19543 } 19544 ASSERT(pkt != NULL); 19545 19546 /* calculate IP header and TCP checksums */ 19547 if (af == AF_INET) { 19548 /* calculate pseudo-header checksum */ 19549 cksum = (dst >> 16) + (dst & 0xFFFF) + 19550 (src >> 16) + (src & 0xFFFF); 19551 19552 /* offset for TCP header checksum */ 19553 up = IPH_TCPH_CHECKSUMP(ipha, 19554 IP_SIMPLE_HDR_LENGTH); 19555 } else { 19556 up = (uint16_t *)&ip6h->ip6_src; 19557 19558 /* calculate pseudo-header checksum */ 19559 cksum = up[0] + up[1] + up[2] + up[3] + 19560 up[4] + up[5] + up[6] + up[7] + 19561 up[8] + up[9] + up[10] + up[11] + 19562 up[12] + up[13] + up[14] + up[15]; 19563 19564 /* Fold the initial sum */ 19565 cksum = (cksum & 0xffff) + (cksum >> 16); 19566 19567 up = (uint16_t *)(((uchar_t *)ip6h) + 19568 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 19569 } 19570 19571 if (hwcksum_flags & HCK_FULLCKSUM) { 19572 /* clear checksum field for hardware */ 19573 *up = 0; 19574 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 19575 uint32_t sum; 19576 19577 /* pseudo-header checksumming */ 19578 sum = *up + cksum + IP_TCP_CSUM_COMP; 19579 sum = (sum & 0xFFFF) + (sum >> 16); 19580 *up = (sum & 0xFFFF) + (sum >> 16); 19581 } else { 19582 /* software checksumming */ 19583 TCP_STAT(tcp_out_sw_cksum); 19584 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 19585 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 19586 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 19587 cksum + IP_TCP_CSUM_COMP); 19588 if (*up == 0) 19589 *up = 0xFFFF; 19590 } 19591 19592 /* IPv4 header checksum */ 19593 if (af == AF_INET) { 19594 ipha->ipha_fragment_offset_and_flags |= 19595 (uint32_t)htons(ire->ire_frag_flag); 19596 19597 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 19598 ipha->ipha_hdr_checksum = 0; 19599 } else { 19600 IP_HDR_CKSUM(ipha, cksum, 19601 ((uint32_t *)ipha)[0], 19602 ((uint16_t *)ipha)[4]); 19603 } 19604 } 19605 19606 /* advance header offset */ 19607 cur_hdr_off += hdr_frag_sz; 19608 19609 obbytes += tcp->tcp_last_sent_len; 19610 ++obsegs; 19611 } while (!done && *usable > 0 && --num_burst_seg > 0 && 19612 *tail_unsent > 0); 19613 19614 if ((*xmit_tail)->b_next == NULL) { 19615 /* 19616 * Store the lbolt used for RTT estimation. We can only 19617 * record one timestamp per mblk so we do it when we 19618 * reach the end of the payload buffer. Also we only 19619 * take a new timestamp sample when the previous timed 19620 * data from the same mblk has been ack'ed. 19621 */ 19622 (*xmit_tail)->b_prev = local_time; 19623 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 19624 } 19625 19626 ASSERT(*tail_unsent >= 0); 19627 if (*tail_unsent > 0) { 19628 /* 19629 * We got here because we broke out of the above 19630 * loop due to of one of the following cases: 19631 * 19632 * 1. len < adjusted MSS (i.e. small), 19633 * 2. Sender SWS avoidance, 19634 * 3. max_pld is zero. 19635 * 19636 * We are done for this Multidata, so trim our 19637 * last payload buffer (if any) accordingly. 19638 */ 19639 if (md_pbuf != NULL) 19640 md_pbuf->b_wptr -= *tail_unsent; 19641 } else if (*usable > 0) { 19642 *xmit_tail = (*xmit_tail)->b_cont; 19643 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19644 (uintptr_t)INT_MAX); 19645 *tail_unsent = (int)MBLKL(*xmit_tail); 19646 add_buffer = B_TRUE; 19647 } 19648 } while (!done && *usable > 0 && num_burst_seg > 0 && 19649 (tcp_mdt_chain || max_pld > 0)); 19650 19651 /* send everything down */ 19652 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 19653 &rconfirm); 19654 19655 #undef PREP_NEW_MULTIDATA 19656 #undef PREP_NEW_PBUF 19657 #undef IPVER 19658 19659 IRE_REFRELE(ire); 19660 return (0); 19661 } 19662 19663 /* 19664 * A wrapper function for sending one or more Multidata messages down to 19665 * the module below ip; this routine does not release the reference of the 19666 * IRE (caller does that). This routine is analogous to tcp_send_data(). 19667 */ 19668 static void 19669 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 19670 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 19671 { 19672 uint64_t delta; 19673 nce_t *nce; 19674 19675 ASSERT(ire != NULL && ill != NULL); 19676 ASSERT(ire->ire_stq != NULL); 19677 ASSERT(md_mp_head != NULL); 19678 ASSERT(rconfirm != NULL); 19679 19680 /* adjust MIBs and IRE timestamp */ 19681 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 19682 tcp->tcp_obsegs += obsegs; 19683 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 19684 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 19685 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 19686 19687 if (tcp->tcp_ipversion == IPV4_VERSION) { 19688 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 19689 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 19690 } else { 19691 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 19692 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 19693 } 19694 19695 ire->ire_ob_pkt_count += obsegs; 19696 if (ire->ire_ipif != NULL) 19697 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 19698 ire->ire_last_used_time = lbolt; 19699 19700 /* send it down */ 19701 putnext(ire->ire_stq, md_mp_head); 19702 19703 /* we're done for TCP/IPv4 */ 19704 if (tcp->tcp_ipversion == IPV4_VERSION) 19705 return; 19706 19707 nce = ire->ire_nce; 19708 19709 ASSERT(nce != NULL); 19710 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 19711 ASSERT(nce->nce_state != ND_INCOMPLETE); 19712 19713 /* reachability confirmation? */ 19714 if (*rconfirm) { 19715 nce->nce_last = TICK_TO_MSEC(lbolt64); 19716 if (nce->nce_state != ND_REACHABLE) { 19717 mutex_enter(&nce->nce_lock); 19718 nce->nce_state = ND_REACHABLE; 19719 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 19720 mutex_exit(&nce->nce_lock); 19721 (void) untimeout(nce->nce_timeout_id); 19722 if (ip_debug > 2) { 19723 /* ip1dbg */ 19724 pr_addr_dbg("tcp_multisend_data: state " 19725 "for %s changed to REACHABLE\n", 19726 AF_INET6, &ire->ire_addr_v6); 19727 } 19728 } 19729 /* reset transport reachability confirmation */ 19730 *rconfirm = B_FALSE; 19731 } 19732 19733 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 19734 ip1dbg(("tcp_multisend_data: delta = %" PRId64 19735 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 19736 19737 if (delta > (uint64_t)ill->ill_reachable_time) { 19738 mutex_enter(&nce->nce_lock); 19739 switch (nce->nce_state) { 19740 case ND_REACHABLE: 19741 case ND_STALE: 19742 /* 19743 * ND_REACHABLE is identical to ND_STALE in this 19744 * specific case. If reachable time has expired for 19745 * this neighbor (delta is greater than reachable 19746 * time), conceptually, the neighbor cache is no 19747 * longer in REACHABLE state, but already in STALE 19748 * state. So the correct transition here is to 19749 * ND_DELAY. 19750 */ 19751 nce->nce_state = ND_DELAY; 19752 mutex_exit(&nce->nce_lock); 19753 NDP_RESTART_TIMER(nce, delay_first_probe_time); 19754 if (ip_debug > 3) { 19755 /* ip2dbg */ 19756 pr_addr_dbg("tcp_multisend_data: state " 19757 "for %s changed to DELAY\n", 19758 AF_INET6, &ire->ire_addr_v6); 19759 } 19760 break; 19761 case ND_DELAY: 19762 case ND_PROBE: 19763 mutex_exit(&nce->nce_lock); 19764 /* Timers have already started */ 19765 break; 19766 case ND_UNREACHABLE: 19767 /* 19768 * ndp timer has detected that this nce is 19769 * unreachable and initiated deleting this nce 19770 * and all its associated IREs. This is a race 19771 * where we found the ire before it was deleted 19772 * and have just sent out a packet using this 19773 * unreachable nce. 19774 */ 19775 mutex_exit(&nce->nce_lock); 19776 break; 19777 default: 19778 ASSERT(0); 19779 } 19780 } 19781 } 19782 19783 /* 19784 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 19785 * scheme, and returns one of the following: 19786 * 19787 * -1 = failed allocation. 19788 * 0 = success; burst count reached, or usable send window is too small, 19789 * and that we'd rather wait until later before sending again. 19790 * 1 = success; we are called from tcp_multisend(), and both usable send 19791 * window and tail_unsent are greater than the MDT threshold, and thus 19792 * Multidata Transmit should be used instead. 19793 */ 19794 static int 19795 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19796 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19797 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19798 const int mdt_thres) 19799 { 19800 int num_burst_seg = tcp->tcp_snd_burst; 19801 19802 for (;;) { 19803 struct datab *db; 19804 tcph_t *tcph; 19805 uint32_t sum; 19806 mblk_t *mp, *mp1; 19807 uchar_t *rptr; 19808 int len; 19809 19810 /* 19811 * If we're called by tcp_multisend(), and the amount of 19812 * sendable data as well as the size of current xmit_tail 19813 * is beyond the MDT threshold, return to the caller and 19814 * let the large data transmit be done using MDT. 19815 */ 19816 if (*usable > 0 && *usable > mdt_thres && 19817 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 19818 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 19819 ASSERT(tcp->tcp_mdt); 19820 return (1); /* success; do large send */ 19821 } 19822 19823 if (num_burst_seg-- == 0) 19824 break; /* success; burst count reached */ 19825 19826 len = mss; 19827 if (len > *usable) { 19828 len = *usable; 19829 if (len <= 0) { 19830 /* Terminate the loop */ 19831 break; /* success; too small */ 19832 } 19833 /* 19834 * Sender silly-window avoidance. 19835 * Ignore this if we are going to send a 19836 * zero window probe out. 19837 * 19838 * TODO: force data into microscopic window? 19839 * ==> (!pushed || (unsent > usable)) 19840 */ 19841 if (len < (tcp->tcp_max_swnd >> 1) && 19842 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 19843 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 19844 len == 1) && (! tcp->tcp_zero_win_probe)) { 19845 /* 19846 * If the retransmit timer is not running 19847 * we start it so that we will retransmit 19848 * in the case when the the receiver has 19849 * decremented the window. 19850 */ 19851 if (*snxt == tcp->tcp_snxt && 19852 *snxt == tcp->tcp_suna) { 19853 /* 19854 * We are not supposed to send 19855 * anything. So let's wait a little 19856 * bit longer before breaking SWS 19857 * avoidance. 19858 * 19859 * What should the value be? 19860 * Suggestion: MAX(init rexmit time, 19861 * tcp->tcp_rto) 19862 */ 19863 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19864 } 19865 break; /* success; too small */ 19866 } 19867 } 19868 19869 tcph = tcp->tcp_tcph; 19870 19871 *usable -= len; /* Approximate - can be adjusted later */ 19872 if (*usable > 0) 19873 tcph->th_flags[0] = TH_ACK; 19874 else 19875 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 19876 19877 /* 19878 * Prime pump for IP's checksumming on our behalf 19879 * Include the adjustment for a source route if any. 19880 */ 19881 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19882 sum = (sum >> 16) + (sum & 0xFFFF); 19883 U16_TO_ABE16(sum, tcph->th_sum); 19884 19885 U32_TO_ABE32(*snxt, tcph->th_seq); 19886 19887 /* 19888 * Branch off to tcp_xmit_mp() if any of the VALID bits is 19889 * set. For the case when TCP_FSS_VALID is the only valid 19890 * bit (normal active close), branch off only when we think 19891 * that the FIN flag needs to be set. Note for this case, 19892 * that (snxt + len) may not reflect the actual seg_len, 19893 * as len may be further reduced in tcp_xmit_mp(). If len 19894 * gets modified, we will end up here again. 19895 */ 19896 if (tcp->tcp_valid_bits != 0 && 19897 (tcp->tcp_valid_bits != TCP_FSS_VALID || 19898 ((*snxt + len) == tcp->tcp_fss))) { 19899 uchar_t *prev_rptr; 19900 uint32_t prev_snxt = tcp->tcp_snxt; 19901 19902 if (*tail_unsent == 0) { 19903 ASSERT((*xmit_tail)->b_cont != NULL); 19904 *xmit_tail = (*xmit_tail)->b_cont; 19905 prev_rptr = (*xmit_tail)->b_rptr; 19906 *tail_unsent = (int)((*xmit_tail)->b_wptr - 19907 (*xmit_tail)->b_rptr); 19908 } else { 19909 prev_rptr = (*xmit_tail)->b_rptr; 19910 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 19911 *tail_unsent; 19912 } 19913 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 19914 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 19915 /* Restore tcp_snxt so we get amount sent right. */ 19916 tcp->tcp_snxt = prev_snxt; 19917 if (prev_rptr == (*xmit_tail)->b_rptr) { 19918 /* 19919 * If the previous timestamp is still in use, 19920 * don't stomp on it. 19921 */ 19922 if ((*xmit_tail)->b_next == NULL) { 19923 (*xmit_tail)->b_prev = local_time; 19924 (*xmit_tail)->b_next = 19925 (mblk_t *)(uintptr_t)(*snxt); 19926 } 19927 } else 19928 (*xmit_tail)->b_rptr = prev_rptr; 19929 19930 if (mp == NULL) 19931 return (-1); 19932 mp1 = mp->b_cont; 19933 19934 tcp->tcp_last_sent_len = (ushort_t)len; 19935 while (mp1->b_cont) { 19936 *xmit_tail = (*xmit_tail)->b_cont; 19937 (*xmit_tail)->b_prev = local_time; 19938 (*xmit_tail)->b_next = 19939 (mblk_t *)(uintptr_t)(*snxt); 19940 mp1 = mp1->b_cont; 19941 } 19942 *snxt += len; 19943 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 19944 BUMP_LOCAL(tcp->tcp_obsegs); 19945 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 19946 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 19947 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 19948 tcp_send_data(tcp, q, mp); 19949 continue; 19950 } 19951 19952 *snxt += len; /* Adjust later if we don't send all of len */ 19953 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 19954 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 19955 19956 if (*tail_unsent) { 19957 /* Are the bytes above us in flight? */ 19958 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 19959 if (rptr != (*xmit_tail)->b_rptr) { 19960 *tail_unsent -= len; 19961 tcp->tcp_last_sent_len = (ushort_t)len; 19962 len += tcp_hdr_len; 19963 if (tcp->tcp_ipversion == IPV4_VERSION) 19964 tcp->tcp_ipha->ipha_length = htons(len); 19965 else 19966 tcp->tcp_ip6h->ip6_plen = 19967 htons(len - 19968 ((char *)&tcp->tcp_ip6h[1] - 19969 tcp->tcp_iphc)); 19970 mp = dupb(*xmit_tail); 19971 if (!mp) 19972 return (-1); /* out_of_mem */ 19973 mp->b_rptr = rptr; 19974 /* 19975 * If the old timestamp is no longer in use, 19976 * sample a new timestamp now. 19977 */ 19978 if ((*xmit_tail)->b_next == NULL) { 19979 (*xmit_tail)->b_prev = local_time; 19980 (*xmit_tail)->b_next = 19981 (mblk_t *)(uintptr_t)(*snxt-len); 19982 } 19983 goto must_alloc; 19984 } 19985 } else { 19986 *xmit_tail = (*xmit_tail)->b_cont; 19987 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 19988 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 19989 *tail_unsent = (int)((*xmit_tail)->b_wptr - 19990 (*xmit_tail)->b_rptr); 19991 } 19992 19993 (*xmit_tail)->b_prev = local_time; 19994 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 19995 19996 *tail_unsent -= len; 19997 tcp->tcp_last_sent_len = (ushort_t)len; 19998 19999 len += tcp_hdr_len; 20000 if (tcp->tcp_ipversion == IPV4_VERSION) 20001 tcp->tcp_ipha->ipha_length = htons(len); 20002 else 20003 tcp->tcp_ip6h->ip6_plen = htons(len - 20004 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20005 20006 mp = dupb(*xmit_tail); 20007 if (!mp) 20008 return (-1); /* out_of_mem */ 20009 20010 len = tcp_hdr_len; 20011 /* 20012 * There are four reasons to allocate a new hdr mblk: 20013 * 1) The bytes above us are in use by another packet 20014 * 2) We don't have good alignment 20015 * 3) The mblk is being shared 20016 * 4) We don't have enough room for a header 20017 */ 20018 rptr = mp->b_rptr - len; 20019 if (!OK_32PTR(rptr) || 20020 ((db = mp->b_datap), db->db_ref != 2) || 20021 rptr < db->db_base) { 20022 /* NOTE: we assume allocb returns an OK_32PTR */ 20023 20024 must_alloc:; 20025 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20026 tcp_wroff_xtra, BPRI_MED); 20027 if (!mp1) { 20028 freemsg(mp); 20029 return (-1); /* out_of_mem */ 20030 } 20031 mp1->b_cont = mp; 20032 mp = mp1; 20033 /* Leave room for Link Level header */ 20034 len = tcp_hdr_len; 20035 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20036 mp->b_wptr = &rptr[len]; 20037 } 20038 20039 /* 20040 * Fill in the header using the template header, and add 20041 * options such as time-stamp, ECN and/or SACK, as needed. 20042 */ 20043 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20044 20045 mp->b_rptr = rptr; 20046 20047 if (*tail_unsent) { 20048 int spill = *tail_unsent; 20049 20050 mp1 = mp->b_cont; 20051 if (!mp1) 20052 mp1 = mp; 20053 20054 /* 20055 * If we're a little short, tack on more mblks until 20056 * there is no more spillover. 20057 */ 20058 while (spill < 0) { 20059 mblk_t *nmp; 20060 int nmpsz; 20061 20062 nmp = (*xmit_tail)->b_cont; 20063 nmpsz = MBLKL(nmp); 20064 20065 /* 20066 * Excess data in mblk; can we split it? 20067 * If MDT is enabled for the connection, 20068 * keep on splitting as this is a transient 20069 * send path. 20070 */ 20071 if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { 20072 /* 20073 * Don't split if stream head was 20074 * told to break up larger writes 20075 * into smaller ones. 20076 */ 20077 if (tcp->tcp_maxpsz > 0) 20078 break; 20079 20080 /* 20081 * Next mblk is less than SMSS/2 20082 * rounded up to nearest 64-byte; 20083 * let it get sent as part of the 20084 * next segment. 20085 */ 20086 if (tcp->tcp_localnet && 20087 !tcp->tcp_cork && 20088 (nmpsz < roundup((mss >> 1), 64))) 20089 break; 20090 } 20091 20092 *xmit_tail = nmp; 20093 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 20094 /* Stash for rtt use later */ 20095 (*xmit_tail)->b_prev = local_time; 20096 (*xmit_tail)->b_next = 20097 (mblk_t *)(uintptr_t)(*snxt - len); 20098 mp1->b_cont = dupb(*xmit_tail); 20099 mp1 = mp1->b_cont; 20100 20101 spill += nmpsz; 20102 if (mp1 == NULL) { 20103 *tail_unsent = spill; 20104 freemsg(mp); 20105 return (-1); /* out_of_mem */ 20106 } 20107 } 20108 20109 /* Trim back any surplus on the last mblk */ 20110 if (spill >= 0) { 20111 mp1->b_wptr -= spill; 20112 *tail_unsent = spill; 20113 } else { 20114 /* 20115 * We did not send everything we could in 20116 * order to remain within the b_cont limit. 20117 */ 20118 *usable -= spill; 20119 *snxt += spill; 20120 tcp->tcp_last_sent_len += spill; 20121 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 20122 /* 20123 * Adjust the checksum 20124 */ 20125 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20126 sum += spill; 20127 sum = (sum >> 16) + (sum & 0xFFFF); 20128 U16_TO_ABE16(sum, tcph->th_sum); 20129 if (tcp->tcp_ipversion == IPV4_VERSION) { 20130 sum = ntohs( 20131 ((ipha_t *)rptr)->ipha_length) + 20132 spill; 20133 ((ipha_t *)rptr)->ipha_length = 20134 htons(sum); 20135 } else { 20136 sum = ntohs( 20137 ((ip6_t *)rptr)->ip6_plen) + 20138 spill; 20139 ((ip6_t *)rptr)->ip6_plen = 20140 htons(sum); 20141 } 20142 *tail_unsent = 0; 20143 } 20144 } 20145 if (tcp->tcp_ip_forward_progress) { 20146 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20147 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 20148 tcp->tcp_ip_forward_progress = B_FALSE; 20149 } 20150 20151 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20152 tcp_send_data(tcp, q, mp); 20153 BUMP_LOCAL(tcp->tcp_obsegs); 20154 } 20155 20156 return (0); 20157 } 20158 20159 /* Unlink and return any mblk that looks like it contains a MDT info */ 20160 static mblk_t * 20161 tcp_mdt_info_mp(mblk_t *mp) 20162 { 20163 mblk_t *prev_mp; 20164 20165 for (;;) { 20166 prev_mp = mp; 20167 /* no more to process? */ 20168 if ((mp = mp->b_cont) == NULL) 20169 break; 20170 20171 switch (DB_TYPE(mp)) { 20172 case M_CTL: 20173 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 20174 continue; 20175 ASSERT(prev_mp != NULL); 20176 prev_mp->b_cont = mp->b_cont; 20177 mp->b_cont = NULL; 20178 return (mp); 20179 default: 20180 break; 20181 } 20182 } 20183 return (mp); 20184 } 20185 20186 /* MDT info update routine, called when IP notifies us about MDT */ 20187 static void 20188 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 20189 { 20190 boolean_t prev_state; 20191 20192 /* 20193 * IP is telling us to abort MDT on this connection? We know 20194 * this because the capability is only turned off when IP 20195 * encounters some pathological cases, e.g. link-layer change 20196 * where the new driver doesn't support MDT, or in situation 20197 * where MDT usage on the link-layer has been switched off. 20198 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 20199 * if the link-layer doesn't support MDT, and if it does, it 20200 * will indicate that the feature is to be turned on. 20201 */ 20202 prev_state = tcp->tcp_mdt; 20203 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 20204 if (!tcp->tcp_mdt && !first) { 20205 TCP_STAT(tcp_mdt_conn_halted3); 20206 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 20207 (void *)tcp->tcp_connp)); 20208 } 20209 20210 /* 20211 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 20212 * so disable MDT otherwise. The checks are done here 20213 * and in tcp_wput_data(). 20214 */ 20215 if (tcp->tcp_mdt && 20216 (tcp->tcp_ipversion == IPV4_VERSION && 20217 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20218 (tcp->tcp_ipversion == IPV6_VERSION && 20219 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 20220 tcp->tcp_mdt = B_FALSE; 20221 20222 if (tcp->tcp_mdt) { 20223 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 20224 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 20225 "version (%d), expected version is %d", 20226 mdt_capab->ill_mdt_version, MDT_VERSION_2); 20227 tcp->tcp_mdt = B_FALSE; 20228 return; 20229 } 20230 20231 /* 20232 * We need the driver to be able to handle at least three 20233 * spans per packet in order for tcp MDT to be utilized. 20234 * The first is for the header portion, while the rest are 20235 * needed to handle a packet that straddles across two 20236 * virtually non-contiguous buffers; a typical tcp packet 20237 * therefore consists of only two spans. Note that we take 20238 * a zero as "don't care". 20239 */ 20240 if (mdt_capab->ill_mdt_span_limit > 0 && 20241 mdt_capab->ill_mdt_span_limit < 3) { 20242 tcp->tcp_mdt = B_FALSE; 20243 return; 20244 } 20245 20246 /* a zero means driver wants default value */ 20247 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 20248 tcp_mdt_max_pbufs); 20249 if (tcp->tcp_mdt_max_pld == 0) 20250 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 20251 20252 /* ensure 32-bit alignment */ 20253 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 20254 mdt_capab->ill_mdt_hdr_head), 4); 20255 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 20256 mdt_capab->ill_mdt_hdr_tail), 4); 20257 20258 if (!first && !prev_state) { 20259 TCP_STAT(tcp_mdt_conn_resumed2); 20260 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 20261 (void *)tcp->tcp_connp)); 20262 } 20263 } 20264 } 20265 20266 static void 20267 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) 20268 { 20269 conn_t *connp = tcp->tcp_connp; 20270 20271 ASSERT(ire != NULL); 20272 20273 /* 20274 * We may be in the fastpath here, and although we essentially do 20275 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, 20276 * we try to keep things as brief as possible. After all, these 20277 * are only best-effort checks, and we do more thorough ones prior 20278 * to calling tcp_multisend(). 20279 */ 20280 if (ip_multidata_outbound && check_mdt && 20281 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 20282 ill != NULL && ILL_MDT_CAPABLE(ill) && 20283 !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 20284 !(ire->ire_flags & RTF_MULTIRT) && 20285 !IPP_ENABLED(IPP_LOCAL_OUT) && 20286 CONN_IS_MD_FASTPATH(connp)) { 20287 /* Remember the result */ 20288 connp->conn_mdt_ok = B_TRUE; 20289 20290 ASSERT(ill->ill_mdt_capab != NULL); 20291 if (!ill->ill_mdt_capab->ill_mdt_on) { 20292 /* 20293 * If MDT has been previously turned off in the past, 20294 * and we currently can do MDT (due to IPQoS policy 20295 * removal, etc.) then enable it for this interface. 20296 */ 20297 ill->ill_mdt_capab->ill_mdt_on = 1; 20298 ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " 20299 "interface %s\n", (void *)connp, ill->ill_name)); 20300 } 20301 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 20302 } 20303 20304 /* 20305 * The goal is to reduce the number of generated tcp segments by 20306 * setting the maxpsz multiplier to 0; this will have an affect on 20307 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 20308 * into each packet, up to SMSS bytes. Doing this reduces the number 20309 * of outbound segments and incoming ACKs, thus allowing for better 20310 * network and system performance. In contrast the legacy behavior 20311 * may result in sending less than SMSS size, because the last mblk 20312 * for some packets may have more data than needed to make up SMSS, 20313 * and the legacy code refused to "split" it. 20314 * 20315 * We apply the new behavior on following situations: 20316 * 20317 * 1) Loopback connections, 20318 * 2) Connections in which the remote peer is not on local subnet, 20319 * 3) Local subnet connections over the bge interface (see below). 20320 * 20321 * Ideally, we would like this behavior to apply for interfaces other 20322 * than bge. However, doing so would negatively impact drivers which 20323 * perform dynamic mapping and unmapping of DMA resources, which are 20324 * increased by setting the maxpsz multiplier to 0 (more mblks per 20325 * packet will be generated by tcp). The bge driver does not suffer 20326 * from this, as it copies the mblks into pre-mapped buffers, and 20327 * therefore does not require more I/O resources than before. 20328 * 20329 * Otherwise, this behavior is present on all network interfaces when 20330 * the destination endpoint is non-local, since reducing the number 20331 * of packets in general is good for the network. 20332 * 20333 * TODO We need to remove this hard-coded conditional for bge once 20334 * a better "self-tuning" mechanism, or a way to comprehend 20335 * the driver transmit strategy is devised. Until the solution 20336 * is found and well understood, we live with this hack. 20337 */ 20338 if (!tcp_static_maxpsz && 20339 (tcp->tcp_loopback || !tcp->tcp_localnet || 20340 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 20341 /* override the default value */ 20342 tcp->tcp_maxpsz = 0; 20343 20344 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 20345 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 20346 ill != NULL ? ill->ill_name : ipif_loopback_name)); 20347 } 20348 20349 /* set the stream head parameters accordingly */ 20350 (void) tcp_maxpsz_set(tcp, B_TRUE); 20351 } 20352 20353 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 20354 static void 20355 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 20356 { 20357 uchar_t fval = *mp->b_rptr; 20358 mblk_t *tail; 20359 queue_t *q = tcp->tcp_wq; 20360 20361 /* TODO: How should flush interact with urgent data? */ 20362 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 20363 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 20364 /* 20365 * Flush only data that has not yet been put on the wire. If 20366 * we flush data that we have already transmitted, life, as we 20367 * know it, may come to an end. 20368 */ 20369 tail = tcp->tcp_xmit_tail; 20370 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 20371 tcp->tcp_xmit_tail_unsent = 0; 20372 tcp->tcp_unsent = 0; 20373 if (tail->b_wptr != tail->b_rptr) 20374 tail = tail->b_cont; 20375 if (tail) { 20376 mblk_t **excess = &tcp->tcp_xmit_head; 20377 for (;;) { 20378 mblk_t *mp1 = *excess; 20379 if (mp1 == tail) 20380 break; 20381 tcp->tcp_xmit_tail = mp1; 20382 tcp->tcp_xmit_last = mp1; 20383 excess = &mp1->b_cont; 20384 } 20385 *excess = NULL; 20386 tcp_close_mpp(&tail); 20387 if (tcp->tcp_snd_zcopy_aware) 20388 tcp_zcopy_notify(tcp); 20389 } 20390 /* 20391 * We have no unsent data, so unsent must be less than 20392 * tcp_xmit_lowater, so re-enable flow. 20393 */ 20394 if (tcp->tcp_flow_stopped) { 20395 tcp_clrqfull(tcp); 20396 } 20397 } 20398 /* 20399 * TODO: you can't just flush these, you have to increase rwnd for one 20400 * thing. For another, how should urgent data interact? 20401 */ 20402 if (fval & FLUSHR) { 20403 *mp->b_rptr = fval & ~FLUSHW; 20404 /* XXX */ 20405 qreply(q, mp); 20406 return; 20407 } 20408 freemsg(mp); 20409 } 20410 20411 /* 20412 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 20413 * messages. 20414 */ 20415 static void 20416 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 20417 { 20418 mblk_t *mp1; 20419 STRUCT_HANDLE(strbuf, sb); 20420 uint16_t port; 20421 queue_t *q = tcp->tcp_wq; 20422 in6_addr_t v6addr; 20423 ipaddr_t v4addr; 20424 uint32_t flowinfo = 0; 20425 int addrlen; 20426 20427 /* Make sure it is one of ours. */ 20428 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20429 case TI_GETMYNAME: 20430 case TI_GETPEERNAME: 20431 break; 20432 default: 20433 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20434 return; 20435 } 20436 switch (mi_copy_state(q, mp, &mp1)) { 20437 case -1: 20438 return; 20439 case MI_COPY_CASE(MI_COPY_IN, 1): 20440 break; 20441 case MI_COPY_CASE(MI_COPY_OUT, 1): 20442 /* Copy out the strbuf. */ 20443 mi_copyout(q, mp); 20444 return; 20445 case MI_COPY_CASE(MI_COPY_OUT, 2): 20446 /* All done. */ 20447 mi_copy_done(q, mp, 0); 20448 return; 20449 default: 20450 mi_copy_done(q, mp, EPROTO); 20451 return; 20452 } 20453 /* Check alignment of the strbuf */ 20454 if (!OK_32PTR(mp1->b_rptr)) { 20455 mi_copy_done(q, mp, EINVAL); 20456 return; 20457 } 20458 20459 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 20460 (void *)mp1->b_rptr); 20461 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 20462 20463 if (STRUCT_FGET(sb, maxlen) < addrlen) { 20464 mi_copy_done(q, mp, EINVAL); 20465 return; 20466 } 20467 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20468 case TI_GETMYNAME: 20469 if (tcp->tcp_family == AF_INET) { 20470 if (tcp->tcp_ipversion == IPV4_VERSION) { 20471 v4addr = tcp->tcp_ipha->ipha_src; 20472 } else { 20473 /* can't return an address in this case */ 20474 v4addr = 0; 20475 } 20476 } else { 20477 /* tcp->tcp_family == AF_INET6 */ 20478 if (tcp->tcp_ipversion == IPV4_VERSION) { 20479 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 20480 &v6addr); 20481 } else { 20482 v6addr = tcp->tcp_ip6h->ip6_src; 20483 } 20484 } 20485 port = tcp->tcp_lport; 20486 break; 20487 case TI_GETPEERNAME: 20488 if (tcp->tcp_family == AF_INET) { 20489 if (tcp->tcp_ipversion == IPV4_VERSION) { 20490 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 20491 v4addr); 20492 } else { 20493 /* can't return an address in this case */ 20494 v4addr = 0; 20495 } 20496 } else { 20497 /* tcp->tcp_family == AF_INET6) */ 20498 v6addr = tcp->tcp_remote_v6; 20499 if (tcp->tcp_ipversion == IPV6_VERSION) { 20500 /* 20501 * No flowinfo if tcp->tcp_ipversion is v4. 20502 * 20503 * flowinfo was already initialized to zero 20504 * where it was declared above, so only 20505 * set it if ipversion is v6. 20506 */ 20507 flowinfo = tcp->tcp_ip6h->ip6_vcf & 20508 ~IPV6_VERS_AND_FLOW_MASK; 20509 } 20510 } 20511 port = tcp->tcp_fport; 20512 break; 20513 default: 20514 mi_copy_done(q, mp, EPROTO); 20515 return; 20516 } 20517 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 20518 if (!mp1) 20519 return; 20520 20521 if (tcp->tcp_family == AF_INET) { 20522 sin_t *sin; 20523 20524 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 20525 sin = (sin_t *)mp1->b_rptr; 20526 mp1->b_wptr = (uchar_t *)&sin[1]; 20527 *sin = sin_null; 20528 sin->sin_family = AF_INET; 20529 sin->sin_addr.s_addr = v4addr; 20530 sin->sin_port = port; 20531 } else { 20532 /* tcp->tcp_family == AF_INET6 */ 20533 sin6_t *sin6; 20534 20535 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 20536 sin6 = (sin6_t *)mp1->b_rptr; 20537 mp1->b_wptr = (uchar_t *)&sin6[1]; 20538 *sin6 = sin6_null; 20539 sin6->sin6_family = AF_INET6; 20540 sin6->sin6_flowinfo = flowinfo; 20541 sin6->sin6_addr = v6addr; 20542 sin6->sin6_port = port; 20543 } 20544 /* Copy out the address */ 20545 mi_copyout(q, mp); 20546 } 20547 20548 /* 20549 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 20550 * messages. 20551 */ 20552 /* ARGSUSED */ 20553 static void 20554 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 20555 { 20556 conn_t *connp = (conn_t *)arg; 20557 tcp_t *tcp = connp->conn_tcp; 20558 queue_t *q = tcp->tcp_wq; 20559 struct iocblk *iocp; 20560 20561 ASSERT(DB_TYPE(mp) == M_IOCTL); 20562 /* 20563 * Try and ASSERT the minimum possible references on the 20564 * conn early enough. Since we are executing on write side, 20565 * the connection is obviously not detached and that means 20566 * there is a ref each for TCP and IP. Since we are behind 20567 * the squeue, the minimum references needed are 3. If the 20568 * conn is in classifier hash list, there should be an 20569 * extra ref for that (we check both the possibilities). 20570 */ 20571 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20572 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20573 20574 iocp = (struct iocblk *)mp->b_rptr; 20575 switch (iocp->ioc_cmd) { 20576 case TCP_IOC_DEFAULT_Q: 20577 /* Wants to be the default wq. */ 20578 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 20579 iocp->ioc_error = EPERM; 20580 iocp->ioc_count = 0; 20581 mp->b_datap->db_type = M_IOCACK; 20582 qreply(q, mp); 20583 return; 20584 } 20585 tcp_def_q_set(tcp, mp); 20586 return; 20587 case _SIOCSOCKFALLBACK: 20588 /* 20589 * Either sockmod is about to be popped and the socket 20590 * would now be treated as a plain stream, or a module 20591 * is about to be pushed so we could no longer use read- 20592 * side synchronous streams for fused loopback tcp. 20593 * Drain any queued data and disable direct sockfs 20594 * interface from now on. 20595 */ 20596 if (!tcp->tcp_issocket) { 20597 DB_TYPE(mp) = M_IOCNAK; 20598 iocp->ioc_error = EINVAL; 20599 } else { 20600 #ifdef _ILP32 20601 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 20602 #else 20603 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 20604 #endif 20605 /* 20606 * Insert this socket into the acceptor hash. 20607 * We might need it for T_CONN_RES message 20608 */ 20609 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 20610 20611 if (tcp->tcp_fused) { 20612 /* 20613 * This is a fused loopback tcp; disable 20614 * read-side synchronous streams interface 20615 * and drain any queued data. It is okay 20616 * to do this for non-synchronous streams 20617 * fused tcp as well. 20618 */ 20619 tcp_fuse_disable_pair(tcp, B_FALSE); 20620 } 20621 tcp->tcp_issocket = B_FALSE; 20622 TCP_STAT(tcp_sock_fallback); 20623 20624 DB_TYPE(mp) = M_IOCACK; 20625 iocp->ioc_error = 0; 20626 } 20627 iocp->ioc_count = 0; 20628 iocp->ioc_rval = 0; 20629 qreply(q, mp); 20630 return; 20631 } 20632 CALL_IP_WPUT(connp, q, mp); 20633 } 20634 20635 /* 20636 * This routine is called by tcp_wput() to handle all TPI requests. 20637 */ 20638 /* ARGSUSED */ 20639 static void 20640 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 20641 { 20642 conn_t *connp = (conn_t *)arg; 20643 tcp_t *tcp = connp->conn_tcp; 20644 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 20645 uchar_t *rptr; 20646 t_scalar_t type; 20647 int len; 20648 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 20649 20650 /* 20651 * Try and ASSERT the minimum possible references on the 20652 * conn early enough. Since we are executing on write side, 20653 * the connection is obviously not detached and that means 20654 * there is a ref each for TCP and IP. Since we are behind 20655 * the squeue, the minimum references needed are 3. If the 20656 * conn is in classifier hash list, there should be an 20657 * extra ref for that (we check both the possibilities). 20658 */ 20659 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20660 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20661 20662 rptr = mp->b_rptr; 20663 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 20664 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 20665 type = ((union T_primitives *)rptr)->type; 20666 if (type == T_EXDATA_REQ) { 20667 uint32_t msize = msgdsize(mp->b_cont); 20668 20669 len = msize - 1; 20670 if (len < 0) { 20671 freemsg(mp); 20672 return; 20673 } 20674 /* 20675 * Try to force urgent data out on the wire. 20676 * Even if we have unsent data this will 20677 * at least send the urgent flag. 20678 * XXX does not handle more flag correctly. 20679 */ 20680 len += tcp->tcp_unsent; 20681 len += tcp->tcp_snxt; 20682 tcp->tcp_urg = len; 20683 tcp->tcp_valid_bits |= TCP_URG_VALID; 20684 20685 /* Bypass tcp protocol for fused tcp loopback */ 20686 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 20687 return; 20688 } else if (type != T_DATA_REQ) { 20689 goto non_urgent_data; 20690 } 20691 /* TODO: options, flags, ... from user */ 20692 /* Set length to zero for reclamation below */ 20693 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 20694 freeb(mp); 20695 return; 20696 } else { 20697 if (tcp->tcp_debug) { 20698 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20699 "tcp_wput_proto, dropping one..."); 20700 } 20701 freemsg(mp); 20702 return; 20703 } 20704 20705 non_urgent_data: 20706 20707 switch ((int)tprim->type) { 20708 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 20709 /* 20710 * save the kssl_ent_t from the next block, and convert this 20711 * back to a normal bind_req. 20712 */ 20713 if (mp->b_cont != NULL) { 20714 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 20715 20716 if (tcp->tcp_kssl_ent != NULL) { 20717 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 20718 KSSL_NO_PROXY); 20719 tcp->tcp_kssl_ent = NULL; 20720 } 20721 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 20722 sizeof (kssl_ent_t)); 20723 kssl_hold_ent(tcp->tcp_kssl_ent); 20724 freemsg(mp->b_cont); 20725 mp->b_cont = NULL; 20726 } 20727 tprim->type = T_BIND_REQ; 20728 20729 /* FALLTHROUGH */ 20730 case O_T_BIND_REQ: /* bind request */ 20731 case T_BIND_REQ: /* new semantics bind request */ 20732 tcp_bind(tcp, mp); 20733 break; 20734 case T_UNBIND_REQ: /* unbind request */ 20735 tcp_unbind(tcp, mp); 20736 break; 20737 case O_T_CONN_RES: /* old connection response XXX */ 20738 case T_CONN_RES: /* connection response */ 20739 tcp_accept(tcp, mp); 20740 break; 20741 case T_CONN_REQ: /* connection request */ 20742 tcp_connect(tcp, mp); 20743 break; 20744 case T_DISCON_REQ: /* disconnect request */ 20745 tcp_disconnect(tcp, mp); 20746 break; 20747 case T_CAPABILITY_REQ: 20748 tcp_capability_req(tcp, mp); /* capability request */ 20749 break; 20750 case T_INFO_REQ: /* information request */ 20751 tcp_info_req(tcp, mp); 20752 break; 20753 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 20754 /* Only IP is allowed to return meaningful value */ 20755 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 20756 break; 20757 case T_OPTMGMT_REQ: 20758 /* 20759 * Note: no support for snmpcom_req() through new 20760 * T_OPTMGMT_REQ. See comments in ip.c 20761 */ 20762 /* Only IP is allowed to return meaningful value */ 20763 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 20764 break; 20765 20766 case T_UNITDATA_REQ: /* unitdata request */ 20767 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 20768 break; 20769 case T_ORDREL_REQ: /* orderly release req */ 20770 freemsg(mp); 20771 20772 if (tcp->tcp_fused) 20773 tcp_unfuse(tcp); 20774 20775 if (tcp_xmit_end(tcp) != 0) { 20776 /* 20777 * We were crossing FINs and got a reset from 20778 * the other side. Just ignore it. 20779 */ 20780 if (tcp->tcp_debug) { 20781 (void) strlog(TCP_MOD_ID, 0, 1, 20782 SL_ERROR|SL_TRACE, 20783 "tcp_wput_proto, T_ORDREL_REQ out of " 20784 "state %s", 20785 tcp_display(tcp, NULL, 20786 DISP_ADDR_AND_PORT)); 20787 } 20788 } 20789 break; 20790 case T_ADDR_REQ: 20791 tcp_addr_req(tcp, mp); 20792 break; 20793 default: 20794 if (tcp->tcp_debug) { 20795 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20796 "tcp_wput_proto, bogus TPI msg, type %d", 20797 tprim->type); 20798 } 20799 /* 20800 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 20801 * to recover. 20802 */ 20803 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 20804 break; 20805 } 20806 } 20807 20808 /* 20809 * The TCP write service routine should never be called... 20810 */ 20811 /* ARGSUSED */ 20812 static void 20813 tcp_wsrv(queue_t *q) 20814 { 20815 TCP_STAT(tcp_wsrv_called); 20816 } 20817 20818 /* Non overlapping byte exchanger */ 20819 static void 20820 tcp_xchg(uchar_t *a, uchar_t *b, int len) 20821 { 20822 uchar_t uch; 20823 20824 while (len-- > 0) { 20825 uch = a[len]; 20826 a[len] = b[len]; 20827 b[len] = uch; 20828 } 20829 } 20830 20831 /* 20832 * Send out a control packet on the tcp connection specified. This routine 20833 * is typically called where we need a simple ACK or RST generated. 20834 */ 20835 static void 20836 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 20837 { 20838 uchar_t *rptr; 20839 tcph_t *tcph; 20840 ipha_t *ipha = NULL; 20841 ip6_t *ip6h = NULL; 20842 uint32_t sum; 20843 int tcp_hdr_len; 20844 int tcp_ip_hdr_len; 20845 mblk_t *mp; 20846 20847 /* 20848 * Save sum for use in source route later. 20849 */ 20850 ASSERT(tcp != NULL); 20851 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 20852 tcp_hdr_len = tcp->tcp_hdr_len; 20853 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 20854 20855 /* If a text string is passed in with the request, pass it to strlog. */ 20856 if (str != NULL && tcp->tcp_debug) { 20857 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 20858 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 20859 str, seq, ack, ctl); 20860 } 20861 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 20862 BPRI_MED); 20863 if (mp == NULL) { 20864 return; 20865 } 20866 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20867 mp->b_rptr = rptr; 20868 mp->b_wptr = &rptr[tcp_hdr_len]; 20869 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 20870 20871 if (tcp->tcp_ipversion == IPV4_VERSION) { 20872 ipha = (ipha_t *)rptr; 20873 ipha->ipha_length = htons(tcp_hdr_len); 20874 } else { 20875 ip6h = (ip6_t *)rptr; 20876 ASSERT(tcp != NULL); 20877 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 20878 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20879 } 20880 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 20881 tcph->th_flags[0] = (uint8_t)ctl; 20882 if (ctl & TH_RST) { 20883 BUMP_MIB(&tcp_mib, tcpOutRsts); 20884 BUMP_MIB(&tcp_mib, tcpOutControl); 20885 /* 20886 * Don't send TSopt w/ TH_RST packets per RFC 1323. 20887 */ 20888 if (tcp->tcp_snd_ts_ok && 20889 tcp->tcp_state > TCPS_SYN_SENT) { 20890 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 20891 *(mp->b_wptr) = TCPOPT_EOL; 20892 if (tcp->tcp_ipversion == IPV4_VERSION) { 20893 ipha->ipha_length = htons(tcp_hdr_len - 20894 TCPOPT_REAL_TS_LEN); 20895 } else { 20896 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 20897 TCPOPT_REAL_TS_LEN); 20898 } 20899 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 20900 sum -= TCPOPT_REAL_TS_LEN; 20901 } 20902 } 20903 if (ctl & TH_ACK) { 20904 if (tcp->tcp_snd_ts_ok) { 20905 U32_TO_BE32(lbolt, 20906 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 20907 U32_TO_BE32(tcp->tcp_ts_recent, 20908 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 20909 } 20910 20911 /* Update the latest receive window size in TCP header. */ 20912 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 20913 tcph->th_win); 20914 tcp->tcp_rack = ack; 20915 tcp->tcp_rack_cnt = 0; 20916 BUMP_MIB(&tcp_mib, tcpOutAck); 20917 } 20918 BUMP_LOCAL(tcp->tcp_obsegs); 20919 U32_TO_BE32(seq, tcph->th_seq); 20920 U32_TO_BE32(ack, tcph->th_ack); 20921 /* 20922 * Include the adjustment for a source route if any. 20923 */ 20924 sum = (sum >> 16) + (sum & 0xFFFF); 20925 U16_TO_BE16(sum, tcph->th_sum); 20926 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20927 tcp_send_data(tcp, tcp->tcp_wq, mp); 20928 } 20929 20930 /* 20931 * If this routine returns B_TRUE, TCP can generate a RST in response 20932 * to a segment. If it returns B_FALSE, TCP should not respond. 20933 */ 20934 static boolean_t 20935 tcp_send_rst_chk(void) 20936 { 20937 clock_t now; 20938 20939 /* 20940 * TCP needs to protect itself from generating too many RSTs. 20941 * This can be a DoS attack by sending us random segments 20942 * soliciting RSTs. 20943 * 20944 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 20945 * in each 1 second interval. In this way, TCP still generate 20946 * RSTs in normal cases but when under attack, the impact is 20947 * limited. 20948 */ 20949 if (tcp_rst_sent_rate_enabled != 0) { 20950 now = lbolt; 20951 /* lbolt can wrap around. */ 20952 if ((tcp_last_rst_intrvl > now) || 20953 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 20954 tcp_last_rst_intrvl = now; 20955 tcp_rst_cnt = 1; 20956 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 20957 return (B_FALSE); 20958 } 20959 } 20960 return (B_TRUE); 20961 } 20962 20963 /* 20964 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 20965 */ 20966 static void 20967 tcp_ip_ire_mark_advice(tcp_t *tcp) 20968 { 20969 mblk_t *mp; 20970 ipic_t *ipic; 20971 20972 if (tcp->tcp_ipversion == IPV4_VERSION) { 20973 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 20974 &ipic); 20975 } else { 20976 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 20977 &ipic); 20978 } 20979 if (mp == NULL) 20980 return; 20981 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 20982 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 20983 } 20984 20985 /* 20986 * Return an IP advice ioctl mblk and set ipic to be the pointer 20987 * to the advice structure. 20988 */ 20989 static mblk_t * 20990 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 20991 { 20992 struct iocblk *ioc; 20993 mblk_t *mp, *mp1; 20994 20995 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 20996 if (mp == NULL) 20997 return (NULL); 20998 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 20999 *ipic = (ipic_t *)mp->b_rptr; 21000 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21001 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21002 21003 bcopy(addr, *ipic + 1, addr_len); 21004 21005 (*ipic)->ipic_addr_length = addr_len; 21006 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21007 21008 mp1 = mkiocb(IP_IOCTL); 21009 if (mp1 == NULL) { 21010 freemsg(mp); 21011 return (NULL); 21012 } 21013 mp1->b_cont = mp; 21014 ioc = (struct iocblk *)mp1->b_rptr; 21015 ioc->ioc_count = sizeof (ipic_t) + addr_len; 21016 21017 return (mp1); 21018 } 21019 21020 /* 21021 * Generate a reset based on an inbound packet for which there is no active 21022 * tcp state that we can find. 21023 * 21024 * IPSEC NOTE : Try to send the reply with the same protection as it came 21025 * in. We still have the ipsec_mp that the packet was attached to. Thus 21026 * the packet will go out at the same level of protection as it came in by 21027 * converting the IPSEC_IN to IPSEC_OUT. 21028 */ 21029 static void 21030 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 21031 uint32_t ack, int ctl, uint_t ip_hdr_len) 21032 { 21033 ipha_t *ipha = NULL; 21034 ip6_t *ip6h = NULL; 21035 ushort_t len; 21036 tcph_t *tcph; 21037 int i; 21038 mblk_t *ipsec_mp; 21039 boolean_t mctl_present; 21040 ipic_t *ipic; 21041 ipaddr_t v4addr; 21042 in6_addr_t v6addr; 21043 int addr_len; 21044 void *addr; 21045 queue_t *q = tcp_g_q; 21046 tcp_t *tcp = Q_TO_TCP(q); 21047 21048 if (!tcp_send_rst_chk()) { 21049 tcp_rst_unsent++; 21050 freemsg(mp); 21051 return; 21052 } 21053 21054 if (mp->b_datap->db_type == M_CTL) { 21055 ipsec_mp = mp; 21056 mp = mp->b_cont; 21057 mctl_present = B_TRUE; 21058 } else { 21059 ipsec_mp = mp; 21060 mctl_present = B_FALSE; 21061 } 21062 21063 if (str && q && tcp_dbg) { 21064 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21065 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 21066 "flags 0x%x", 21067 str, seq, ack, ctl); 21068 } 21069 if (mp->b_datap->db_ref != 1) { 21070 mblk_t *mp1 = copyb(mp); 21071 freemsg(mp); 21072 mp = mp1; 21073 if (!mp) { 21074 if (mctl_present) 21075 freeb(ipsec_mp); 21076 return; 21077 } else { 21078 if (mctl_present) { 21079 ipsec_mp->b_cont = mp; 21080 } else { 21081 ipsec_mp = mp; 21082 } 21083 } 21084 } else if (mp->b_cont) { 21085 freemsg(mp->b_cont); 21086 mp->b_cont = NULL; 21087 } 21088 /* 21089 * We skip reversing source route here. 21090 * (for now we replace all IP options with EOL) 21091 */ 21092 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21093 ipha = (ipha_t *)mp->b_rptr; 21094 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 21095 mp->b_rptr[i] = IPOPT_EOL; 21096 /* 21097 * Make sure that src address isn't flagrantly invalid. 21098 * Not all broadcast address checking for the src address 21099 * is possible, since we don't know the netmask of the src 21100 * addr. No check for destination address is done, since 21101 * IP will not pass up a packet with a broadcast dest 21102 * address to TCP. Similar checks are done below for IPv6. 21103 */ 21104 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 21105 CLASSD(ipha->ipha_src)) { 21106 freemsg(ipsec_mp); 21107 BUMP_MIB(&ip_mib, ipInDiscards); 21108 return; 21109 } 21110 } else { 21111 ip6h = (ip6_t *)mp->b_rptr; 21112 21113 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 21114 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 21115 freemsg(ipsec_mp); 21116 BUMP_MIB(&ip6_mib, ipv6InDiscards); 21117 return; 21118 } 21119 21120 /* Remove any extension headers assuming partial overlay */ 21121 if (ip_hdr_len > IPV6_HDR_LEN) { 21122 uint8_t *to; 21123 21124 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 21125 ovbcopy(ip6h, to, IPV6_HDR_LEN); 21126 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 21127 ip_hdr_len = IPV6_HDR_LEN; 21128 ip6h = (ip6_t *)mp->b_rptr; 21129 ip6h->ip6_nxt = IPPROTO_TCP; 21130 } 21131 } 21132 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 21133 if (tcph->th_flags[0] & TH_RST) { 21134 freemsg(ipsec_mp); 21135 return; 21136 } 21137 tcph->th_offset_and_rsrvd[0] = (5 << 4); 21138 len = ip_hdr_len + sizeof (tcph_t); 21139 mp->b_wptr = &mp->b_rptr[len]; 21140 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21141 ipha->ipha_length = htons(len); 21142 /* Swap addresses */ 21143 v4addr = ipha->ipha_src; 21144 ipha->ipha_src = ipha->ipha_dst; 21145 ipha->ipha_dst = v4addr; 21146 ipha->ipha_ident = 0; 21147 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 21148 addr_len = IP_ADDR_LEN; 21149 addr = &v4addr; 21150 } else { 21151 /* No ip6i_t in this case */ 21152 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 21153 /* Swap addresses */ 21154 v6addr = ip6h->ip6_src; 21155 ip6h->ip6_src = ip6h->ip6_dst; 21156 ip6h->ip6_dst = v6addr; 21157 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 21158 addr_len = IPV6_ADDR_LEN; 21159 addr = &v6addr; 21160 } 21161 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 21162 U32_TO_BE32(ack, tcph->th_ack); 21163 U32_TO_BE32(seq, tcph->th_seq); 21164 U16_TO_BE16(0, tcph->th_win); 21165 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 21166 tcph->th_flags[0] = (uint8_t)ctl; 21167 if (ctl & TH_RST) { 21168 BUMP_MIB(&tcp_mib, tcpOutRsts); 21169 BUMP_MIB(&tcp_mib, tcpOutControl); 21170 } 21171 if (mctl_present) { 21172 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21173 21174 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21175 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 21176 return; 21177 } 21178 } 21179 /* 21180 * NOTE: one might consider tracing a TCP packet here, but 21181 * this function has no active TCP state nd no tcp structure 21182 * which has trace buffer. If we traced here, we would have 21183 * to keep a local trace buffer in tcp_record_trace(). 21184 */ 21185 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 21186 21187 /* 21188 * Tell IP to mark the IRE used for this destination temporary. 21189 * This way, we can limit our exposure to DoS attack because IP 21190 * creates an IRE for each destination. If there are too many, 21191 * the time to do any routing lookup will be extremely long. And 21192 * the lookup can be in interrupt context. 21193 * 21194 * Note that in normal circumstances, this marking should not 21195 * affect anything. It would be nice if only 1 message is 21196 * needed to inform IP that the IRE created for this RST should 21197 * not be added to the cache table. But there is currently 21198 * not such communication mechanism between TCP and IP. So 21199 * the best we can do now is to send the advice ioctl to IP 21200 * to mark the IRE temporary. 21201 */ 21202 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 21203 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21204 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21205 } 21206 } 21207 21208 /* 21209 * Initiate closedown sequence on an active connection. (May be called as 21210 * writer.) Return value zero for OK return, non-zero for error return. 21211 */ 21212 static int 21213 tcp_xmit_end(tcp_t *tcp) 21214 { 21215 ipic_t *ipic; 21216 mblk_t *mp; 21217 21218 if (tcp->tcp_state < TCPS_SYN_RCVD || 21219 tcp->tcp_state > TCPS_CLOSE_WAIT) { 21220 /* 21221 * Invalid state, only states TCPS_SYN_RCVD, 21222 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 21223 */ 21224 return (-1); 21225 } 21226 21227 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 21228 tcp->tcp_valid_bits |= TCP_FSS_VALID; 21229 /* 21230 * If there is nothing more unsent, send the FIN now. 21231 * Otherwise, it will go out with the last segment. 21232 */ 21233 if (tcp->tcp_unsent == 0) { 21234 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21235 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 21236 21237 if (mp) { 21238 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21239 tcp_send_data(tcp, tcp->tcp_wq, mp); 21240 } else { 21241 /* 21242 * Couldn't allocate msg. Pretend we got it out. 21243 * Wait for rexmit timeout. 21244 */ 21245 tcp->tcp_snxt = tcp->tcp_fss + 1; 21246 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21247 } 21248 21249 /* 21250 * If needed, update tcp_rexmit_snxt as tcp_snxt is 21251 * changed. 21252 */ 21253 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 21254 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 21255 } 21256 } else { 21257 /* 21258 * If tcp->tcp_cork is set, then the data will not get sent, 21259 * so we have to check that and unset it first. 21260 */ 21261 if (tcp->tcp_cork) 21262 tcp->tcp_cork = B_FALSE; 21263 tcp_wput_data(tcp, NULL, B_FALSE); 21264 } 21265 21266 /* 21267 * If TCP does not get enough samples of RTT or tcp_rtt_updates 21268 * is 0, don't update the cache. 21269 */ 21270 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 21271 return (0); 21272 21273 /* 21274 * NOTE: should not update if source routes i.e. if tcp_remote if 21275 * different from the destination. 21276 */ 21277 if (tcp->tcp_ipversion == IPV4_VERSION) { 21278 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 21279 return (0); 21280 } 21281 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21282 &ipic); 21283 } else { 21284 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 21285 &tcp->tcp_ip6h->ip6_dst))) { 21286 return (0); 21287 } 21288 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21289 &ipic); 21290 } 21291 21292 /* Record route attributes in the IRE for use by future connections. */ 21293 if (mp == NULL) 21294 return (0); 21295 21296 /* 21297 * We do not have a good algorithm to update ssthresh at this time. 21298 * So don't do any update. 21299 */ 21300 ipic->ipic_rtt = tcp->tcp_rtt_sa; 21301 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 21302 21303 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21304 return (0); 21305 } 21306 21307 /* 21308 * Generate a "no listener here" RST in response to an "unknown" segment. 21309 * Note that we are reusing the incoming mp to construct the outgoing 21310 * RST. 21311 */ 21312 void 21313 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len) 21314 { 21315 uchar_t *rptr; 21316 uint32_t seg_len; 21317 tcph_t *tcph; 21318 uint32_t seg_seq; 21319 uint32_t seg_ack; 21320 uint_t flags; 21321 mblk_t *ipsec_mp; 21322 ipha_t *ipha; 21323 ip6_t *ip6h; 21324 boolean_t mctl_present = B_FALSE; 21325 boolean_t check = B_TRUE; 21326 boolean_t policy_present; 21327 21328 TCP_STAT(tcp_no_listener); 21329 21330 ipsec_mp = mp; 21331 21332 if (mp->b_datap->db_type == M_CTL) { 21333 ipsec_in_t *ii; 21334 21335 mctl_present = B_TRUE; 21336 mp = mp->b_cont; 21337 21338 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21339 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21340 if (ii->ipsec_in_dont_check) { 21341 check = B_FALSE; 21342 if (!ii->ipsec_in_secure) { 21343 freeb(ipsec_mp); 21344 mctl_present = B_FALSE; 21345 ipsec_mp = mp; 21346 } 21347 } 21348 } 21349 21350 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21351 policy_present = ipsec_inbound_v4_policy_present; 21352 ipha = (ipha_t *)mp->b_rptr; 21353 ip6h = NULL; 21354 } else { 21355 policy_present = ipsec_inbound_v6_policy_present; 21356 ipha = NULL; 21357 ip6h = (ip6_t *)mp->b_rptr; 21358 } 21359 21360 if (check && policy_present) { 21361 /* 21362 * The conn_t parameter is NULL because we already know 21363 * nobody's home. 21364 */ 21365 ipsec_mp = ipsec_check_global_policy( 21366 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 21367 if (ipsec_mp == NULL) 21368 return; 21369 } 21370 21371 21372 rptr = mp->b_rptr; 21373 21374 tcph = (tcph_t *)&rptr[ip_hdr_len]; 21375 seg_seq = BE32_TO_U32(tcph->th_seq); 21376 seg_ack = BE32_TO_U32(tcph->th_ack); 21377 flags = tcph->th_flags[0]; 21378 21379 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 21380 if (flags & TH_RST) { 21381 freemsg(ipsec_mp); 21382 } else if (flags & TH_ACK) { 21383 tcp_xmit_early_reset("no tcp, reset", 21384 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len); 21385 } else { 21386 if (flags & TH_SYN) { 21387 seg_len++; 21388 } else { 21389 /* 21390 * Here we violate the RFC. Note that a normal 21391 * TCP will never send a segment without the ACK 21392 * flag, except for RST or SYN segment. This 21393 * segment is neither. Just drop it on the 21394 * floor. 21395 */ 21396 freemsg(ipsec_mp); 21397 tcp_rst_unsent++; 21398 return; 21399 } 21400 21401 tcp_xmit_early_reset("no tcp, reset/ack", 21402 ipsec_mp, 0, seg_seq + seg_len, 21403 TH_RST | TH_ACK, ip_hdr_len); 21404 } 21405 } 21406 21407 /* 21408 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 21409 * ip and tcp header ready to pass down to IP. If the mp passed in is 21410 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 21411 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 21412 * otherwise it will dup partial mblks.) 21413 * Otherwise, an appropriate ACK packet will be generated. This 21414 * routine is not usually called to send new data for the first time. It 21415 * is mostly called out of the timer for retransmits, and to generate ACKs. 21416 * 21417 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 21418 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 21419 * of the original mblk chain will be returned in *offset and *end_mp. 21420 */ 21421 static mblk_t * 21422 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 21423 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 21424 boolean_t rexmit) 21425 { 21426 int data_length; 21427 int32_t off = 0; 21428 uint_t flags; 21429 mblk_t *mp1; 21430 mblk_t *mp2; 21431 uchar_t *rptr; 21432 tcph_t *tcph; 21433 int32_t num_sack_blk = 0; 21434 int32_t sack_opt_len = 0; 21435 21436 /* Allocate for our maximum TCP header + link-level */ 21437 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21438 BPRI_MED); 21439 if (!mp1) 21440 return (NULL); 21441 data_length = 0; 21442 21443 /* 21444 * Note that tcp_mss has been adjusted to take into account the 21445 * timestamp option if applicable. Because SACK options do not 21446 * appear in every TCP segments and they are of variable lengths, 21447 * they cannot be included in tcp_mss. Thus we need to calculate 21448 * the actual segment length when we need to send a segment which 21449 * includes SACK options. 21450 */ 21451 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21452 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21453 tcp->tcp_num_sack_blk); 21454 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21455 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21456 if (max_to_send + sack_opt_len > tcp->tcp_mss) 21457 max_to_send -= sack_opt_len; 21458 } 21459 21460 if (offset != NULL) { 21461 off = *offset; 21462 /* We use offset as an indicator that end_mp is not NULL. */ 21463 *end_mp = NULL; 21464 } 21465 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 21466 /* This could be faster with cooperation from downstream */ 21467 if (mp2 != mp1 && !sendall && 21468 data_length + (int)(mp->b_wptr - mp->b_rptr) > 21469 max_to_send) 21470 /* 21471 * Don't send the next mblk since the whole mblk 21472 * does not fit. 21473 */ 21474 break; 21475 mp2->b_cont = dupb(mp); 21476 mp2 = mp2->b_cont; 21477 if (!mp2) { 21478 freemsg(mp1); 21479 return (NULL); 21480 } 21481 mp2->b_rptr += off; 21482 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 21483 (uintptr_t)INT_MAX); 21484 21485 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 21486 if (data_length > max_to_send) { 21487 mp2->b_wptr -= data_length - max_to_send; 21488 data_length = max_to_send; 21489 off = mp2->b_wptr - mp->b_rptr; 21490 break; 21491 } else { 21492 off = 0; 21493 } 21494 } 21495 if (offset != NULL) { 21496 *offset = off; 21497 *end_mp = mp; 21498 } 21499 if (seg_len != NULL) { 21500 *seg_len = data_length; 21501 } 21502 21503 /* Update the latest receive window size in TCP header. */ 21504 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21505 tcp->tcp_tcph->th_win); 21506 21507 rptr = mp1->b_rptr + tcp_wroff_xtra; 21508 mp1->b_rptr = rptr; 21509 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 21510 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21511 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21512 U32_TO_ABE32(seq, tcph->th_seq); 21513 21514 /* 21515 * Use tcp_unsent to determine if the PUSH bit should be used assumes 21516 * that this function was called from tcp_wput_data. Thus, when called 21517 * to retransmit data the setting of the PUSH bit may appear some 21518 * what random in that it might get set when it should not. This 21519 * should not pose any performance issues. 21520 */ 21521 if (data_length != 0 && (tcp->tcp_unsent == 0 || 21522 tcp->tcp_unsent == data_length)) { 21523 flags = TH_ACK | TH_PUSH; 21524 } else { 21525 flags = TH_ACK; 21526 } 21527 21528 if (tcp->tcp_ecn_ok) { 21529 if (tcp->tcp_ecn_echo_on) 21530 flags |= TH_ECE; 21531 21532 /* 21533 * Only set ECT bit and ECN_CWR if a segment contains new data. 21534 * There is no TCP flow control for non-data segments, and 21535 * only data segment is transmitted reliably. 21536 */ 21537 if (data_length > 0 && !rexmit) { 21538 SET_ECT(tcp, rptr); 21539 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 21540 flags |= TH_CWR; 21541 tcp->tcp_ecn_cwr_sent = B_TRUE; 21542 } 21543 } 21544 } 21545 21546 if (tcp->tcp_valid_bits) { 21547 uint32_t u1; 21548 21549 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 21550 seq == tcp->tcp_iss) { 21551 uchar_t *wptr; 21552 21553 /* 21554 * If TCP_ISS_VALID and the seq number is tcp_iss, 21555 * TCP can only be in SYN-SENT, SYN-RCVD or 21556 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 21557 * our SYN is not ack'ed but the app closes this 21558 * TCP connection. 21559 */ 21560 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 21561 tcp->tcp_state == TCPS_SYN_RCVD || 21562 tcp->tcp_state == TCPS_FIN_WAIT_1); 21563 21564 /* 21565 * Tack on the MSS option. It is always needed 21566 * for both active and passive open. 21567 * 21568 * MSS option value should be interface MTU - MIN 21569 * TCP/IP header according to RFC 793 as it means 21570 * the maximum segment size TCP can receive. But 21571 * to get around some broken middle boxes/end hosts 21572 * out there, we allow the option value to be the 21573 * same as the MSS option size on the peer side. 21574 * In this way, the other side will not send 21575 * anything larger than they can receive. 21576 * 21577 * Note that for SYN_SENT state, the ndd param 21578 * tcp_use_smss_as_mss_opt has no effect as we 21579 * don't know the peer's MSS option value. So 21580 * the only case we need to take care of is in 21581 * SYN_RCVD state, which is done later. 21582 */ 21583 wptr = mp1->b_wptr; 21584 wptr[0] = TCPOPT_MAXSEG; 21585 wptr[1] = TCPOPT_MAXSEG_LEN; 21586 wptr += 2; 21587 u1 = tcp->tcp_if_mtu - 21588 (tcp->tcp_ipversion == IPV4_VERSION ? 21589 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 21590 TCP_MIN_HEADER_LENGTH; 21591 U16_TO_BE16(u1, wptr); 21592 mp1->b_wptr = wptr + 2; 21593 /* Update the offset to cover the additional word */ 21594 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21595 21596 /* 21597 * Note that the following way of filling in 21598 * TCP options are not optimal. Some NOPs can 21599 * be saved. But there is no need at this time 21600 * to optimize it. When it is needed, we will 21601 * do it. 21602 */ 21603 switch (tcp->tcp_state) { 21604 case TCPS_SYN_SENT: 21605 flags = TH_SYN; 21606 21607 if (tcp->tcp_snd_ts_ok) { 21608 uint32_t llbolt = (uint32_t)lbolt; 21609 21610 wptr = mp1->b_wptr; 21611 wptr[0] = TCPOPT_NOP; 21612 wptr[1] = TCPOPT_NOP; 21613 wptr[2] = TCPOPT_TSTAMP; 21614 wptr[3] = TCPOPT_TSTAMP_LEN; 21615 wptr += 4; 21616 U32_TO_BE32(llbolt, wptr); 21617 wptr += 4; 21618 ASSERT(tcp->tcp_ts_recent == 0); 21619 U32_TO_BE32(0L, wptr); 21620 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 21621 tcph->th_offset_and_rsrvd[0] += 21622 (3 << 4); 21623 } 21624 21625 /* 21626 * Set up all the bits to tell other side 21627 * we are ECN capable. 21628 */ 21629 if (tcp->tcp_ecn_ok) { 21630 flags |= (TH_ECE | TH_CWR); 21631 } 21632 break; 21633 case TCPS_SYN_RCVD: 21634 flags |= TH_SYN; 21635 21636 /* 21637 * Reset the MSS option value to be SMSS 21638 * We should probably add back the bytes 21639 * for timestamp option and IPsec. We 21640 * don't do that as this is a workaround 21641 * for broken middle boxes/end hosts, it 21642 * is better for us to be more cautious. 21643 * They may not take these things into 21644 * account in their SMSS calculation. Thus 21645 * the peer's calculated SMSS may be smaller 21646 * than what it can be. This should be OK. 21647 */ 21648 if (tcp_use_smss_as_mss_opt) { 21649 u1 = tcp->tcp_mss; 21650 U16_TO_BE16(u1, wptr); 21651 } 21652 21653 /* 21654 * If the other side is ECN capable, reply 21655 * that we are also ECN capable. 21656 */ 21657 if (tcp->tcp_ecn_ok) 21658 flags |= TH_ECE; 21659 break; 21660 default: 21661 /* 21662 * The above ASSERT() makes sure that this 21663 * must be FIN-WAIT-1 state. Our SYN has 21664 * not been ack'ed so retransmit it. 21665 */ 21666 flags |= TH_SYN; 21667 break; 21668 } 21669 21670 if (tcp->tcp_snd_ws_ok) { 21671 wptr = mp1->b_wptr; 21672 wptr[0] = TCPOPT_NOP; 21673 wptr[1] = TCPOPT_WSCALE; 21674 wptr[2] = TCPOPT_WS_LEN; 21675 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 21676 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 21677 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21678 } 21679 21680 if (tcp->tcp_snd_sack_ok) { 21681 wptr = mp1->b_wptr; 21682 wptr[0] = TCPOPT_NOP; 21683 wptr[1] = TCPOPT_NOP; 21684 wptr[2] = TCPOPT_SACK_PERMITTED; 21685 wptr[3] = TCPOPT_SACK_OK_LEN; 21686 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 21687 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21688 } 21689 21690 /* allocb() of adequate mblk assures space */ 21691 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 21692 (uintptr_t)INT_MAX); 21693 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 21694 /* 21695 * Get IP set to checksum on our behalf 21696 * Include the adjustment for a source route if any. 21697 */ 21698 u1 += tcp->tcp_sum; 21699 u1 = (u1 >> 16) + (u1 & 0xFFFF); 21700 U16_TO_BE16(u1, tcph->th_sum); 21701 BUMP_MIB(&tcp_mib, tcpOutControl); 21702 } 21703 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 21704 (seq + data_length) == tcp->tcp_fss) { 21705 if (!tcp->tcp_fin_acked) { 21706 flags |= TH_FIN; 21707 BUMP_MIB(&tcp_mib, tcpOutControl); 21708 } 21709 if (!tcp->tcp_fin_sent) { 21710 tcp->tcp_fin_sent = B_TRUE; 21711 switch (tcp->tcp_state) { 21712 case TCPS_SYN_RCVD: 21713 case TCPS_ESTABLISHED: 21714 tcp->tcp_state = TCPS_FIN_WAIT_1; 21715 break; 21716 case TCPS_CLOSE_WAIT: 21717 tcp->tcp_state = TCPS_LAST_ACK; 21718 break; 21719 } 21720 if (tcp->tcp_suna == tcp->tcp_snxt) 21721 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21722 tcp->tcp_snxt = tcp->tcp_fss + 1; 21723 } 21724 } 21725 /* 21726 * Note the trick here. u1 is unsigned. When tcp_urg 21727 * is smaller than seq, u1 will become a very huge value. 21728 * So the comparison will fail. Also note that tcp_urp 21729 * should be positive, see RFC 793 page 17. 21730 */ 21731 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 21732 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 21733 u1 < (uint32_t)(64 * 1024)) { 21734 flags |= TH_URG; 21735 BUMP_MIB(&tcp_mib, tcpOutUrg); 21736 U32_TO_ABE16(u1, tcph->th_urp); 21737 } 21738 } 21739 tcph->th_flags[0] = (uchar_t)flags; 21740 tcp->tcp_rack = tcp->tcp_rnxt; 21741 tcp->tcp_rack_cnt = 0; 21742 21743 if (tcp->tcp_snd_ts_ok) { 21744 if (tcp->tcp_state != TCPS_SYN_SENT) { 21745 uint32_t llbolt = (uint32_t)lbolt; 21746 21747 U32_TO_BE32(llbolt, 21748 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21749 U32_TO_BE32(tcp->tcp_ts_recent, 21750 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21751 } 21752 } 21753 21754 if (num_sack_blk > 0) { 21755 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 21756 sack_blk_t *tmp; 21757 int32_t i; 21758 21759 wptr[0] = TCPOPT_NOP; 21760 wptr[1] = TCPOPT_NOP; 21761 wptr[2] = TCPOPT_SACK; 21762 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 21763 sizeof (sack_blk_t); 21764 wptr += TCPOPT_REAL_SACK_LEN; 21765 21766 tmp = tcp->tcp_sack_list; 21767 for (i = 0; i < num_sack_blk; i++) { 21768 U32_TO_BE32(tmp[i].begin, wptr); 21769 wptr += sizeof (tcp_seq); 21770 U32_TO_BE32(tmp[i].end, wptr); 21771 wptr += sizeof (tcp_seq); 21772 } 21773 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 21774 } 21775 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21776 data_length += (int)(mp1->b_wptr - rptr); 21777 if (tcp->tcp_ipversion == IPV4_VERSION) { 21778 ((ipha_t *)rptr)->ipha_length = htons(data_length); 21779 } else { 21780 ip6_t *ip6 = (ip6_t *)(rptr + 21781 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 21782 sizeof (ip6i_t) : 0)); 21783 21784 ip6->ip6_plen = htons(data_length - 21785 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21786 } 21787 21788 /* 21789 * Prime pump for IP 21790 * Include the adjustment for a source route if any. 21791 */ 21792 data_length -= tcp->tcp_ip_hdr_len; 21793 data_length += tcp->tcp_sum; 21794 data_length = (data_length >> 16) + (data_length & 0xFFFF); 21795 U16_TO_ABE16(data_length, tcph->th_sum); 21796 if (tcp->tcp_ip_forward_progress) { 21797 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21798 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 21799 tcp->tcp_ip_forward_progress = B_FALSE; 21800 } 21801 return (mp1); 21802 } 21803 21804 /* This function handles the push timeout. */ 21805 void 21806 tcp_push_timer(void *arg) 21807 { 21808 conn_t *connp = (conn_t *)arg; 21809 tcp_t *tcp = connp->conn_tcp; 21810 21811 TCP_DBGSTAT(tcp_push_timer_cnt); 21812 21813 ASSERT(tcp->tcp_listener == NULL); 21814 21815 /* 21816 * We need to stop synchronous streams temporarily to prevent a race 21817 * with tcp_fuse_rrw() or tcp_fusion rinfop(). It is safe to access 21818 * tcp_rcv_list here because those entry points will return right 21819 * away when synchronous streams is stopped. 21820 */ 21821 TCP_FUSE_SYNCSTR_STOP(tcp); 21822 tcp->tcp_push_tid = 0; 21823 if ((tcp->tcp_rcv_list != NULL) && 21824 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 21825 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21826 TCP_FUSE_SYNCSTR_RESUME(tcp); 21827 } 21828 21829 /* 21830 * This function handles delayed ACK timeout. 21831 */ 21832 static void 21833 tcp_ack_timer(void *arg) 21834 { 21835 conn_t *connp = (conn_t *)arg; 21836 tcp_t *tcp = connp->conn_tcp; 21837 mblk_t *mp; 21838 21839 TCP_DBGSTAT(tcp_ack_timer_cnt); 21840 21841 tcp->tcp_ack_tid = 0; 21842 21843 if (tcp->tcp_fused) 21844 return; 21845 21846 /* 21847 * Do not send ACK if there is no outstanding unack'ed data. 21848 */ 21849 if (tcp->tcp_rnxt == tcp->tcp_rack) { 21850 return; 21851 } 21852 21853 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 21854 /* 21855 * Make sure we don't allow deferred ACKs to result in 21856 * timer-based ACKing. If we have held off an ACK 21857 * when there was more than an mss here, and the timer 21858 * goes off, we have to worry about the possibility 21859 * that the sender isn't doing slow-start, or is out 21860 * of step with us for some other reason. We fall 21861 * permanently back in the direction of 21862 * ACK-every-other-packet as suggested in RFC 1122. 21863 */ 21864 if (tcp->tcp_rack_abs_max > 2) 21865 tcp->tcp_rack_abs_max--; 21866 tcp->tcp_rack_cur_max = 2; 21867 } 21868 mp = tcp_ack_mp(tcp); 21869 21870 if (mp != NULL) { 21871 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21872 BUMP_LOCAL(tcp->tcp_obsegs); 21873 BUMP_MIB(&tcp_mib, tcpOutAck); 21874 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 21875 tcp_send_data(tcp, tcp->tcp_wq, mp); 21876 } 21877 } 21878 21879 21880 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 21881 static mblk_t * 21882 tcp_ack_mp(tcp_t *tcp) 21883 { 21884 uint32_t seq_no; 21885 21886 /* 21887 * There are a few cases to be considered while setting the sequence no. 21888 * Essentially, we can come here while processing an unacceptable pkt 21889 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 21890 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 21891 * If we are here for a zero window probe, stick with suna. In all 21892 * other cases, we check if suna + swnd encompasses snxt and set 21893 * the sequence number to snxt, if so. If snxt falls outside the 21894 * window (the receiver probably shrunk its window), we will go with 21895 * suna + swnd, otherwise the sequence no will be unacceptable to the 21896 * receiver. 21897 */ 21898 if (tcp->tcp_zero_win_probe) { 21899 seq_no = tcp->tcp_suna; 21900 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 21901 ASSERT(tcp->tcp_swnd == 0); 21902 seq_no = tcp->tcp_snxt; 21903 } else { 21904 seq_no = SEQ_GT(tcp->tcp_snxt, 21905 (tcp->tcp_suna + tcp->tcp_swnd)) ? 21906 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 21907 } 21908 21909 if (tcp->tcp_valid_bits) { 21910 /* 21911 * For the complex case where we have to send some 21912 * controls (FIN or SYN), let tcp_xmit_mp do it. 21913 */ 21914 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 21915 NULL, B_FALSE)); 21916 } else { 21917 /* Generate a simple ACK */ 21918 int data_length; 21919 uchar_t *rptr; 21920 tcph_t *tcph; 21921 mblk_t *mp1; 21922 int32_t tcp_hdr_len; 21923 int32_t tcp_tcp_hdr_len; 21924 int32_t num_sack_blk = 0; 21925 int32_t sack_opt_len; 21926 21927 /* 21928 * Allocate space for TCP + IP headers 21929 * and link-level header 21930 */ 21931 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21932 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21933 tcp->tcp_num_sack_blk); 21934 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21935 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21936 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 21937 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 21938 } else { 21939 tcp_hdr_len = tcp->tcp_hdr_len; 21940 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 21941 } 21942 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 21943 if (!mp1) 21944 return (NULL); 21945 21946 /* Update the latest receive window size in TCP header. */ 21947 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21948 tcp->tcp_tcph->th_win); 21949 /* copy in prototype TCP + IP header */ 21950 rptr = mp1->b_rptr + tcp_wroff_xtra; 21951 mp1->b_rptr = rptr; 21952 mp1->b_wptr = rptr + tcp_hdr_len; 21953 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21954 21955 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21956 21957 /* Set the TCP sequence number. */ 21958 U32_TO_ABE32(seq_no, tcph->th_seq); 21959 21960 /* Set up the TCP flag field. */ 21961 tcph->th_flags[0] = (uchar_t)TH_ACK; 21962 if (tcp->tcp_ecn_echo_on) 21963 tcph->th_flags[0] |= TH_ECE; 21964 21965 tcp->tcp_rack = tcp->tcp_rnxt; 21966 tcp->tcp_rack_cnt = 0; 21967 21968 /* fill in timestamp option if in use */ 21969 if (tcp->tcp_snd_ts_ok) { 21970 uint32_t llbolt = (uint32_t)lbolt; 21971 21972 U32_TO_BE32(llbolt, 21973 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21974 U32_TO_BE32(tcp->tcp_ts_recent, 21975 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21976 } 21977 21978 /* Fill in SACK options */ 21979 if (num_sack_blk > 0) { 21980 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 21981 sack_blk_t *tmp; 21982 int32_t i; 21983 21984 wptr[0] = TCPOPT_NOP; 21985 wptr[1] = TCPOPT_NOP; 21986 wptr[2] = TCPOPT_SACK; 21987 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 21988 sizeof (sack_blk_t); 21989 wptr += TCPOPT_REAL_SACK_LEN; 21990 21991 tmp = tcp->tcp_sack_list; 21992 for (i = 0; i < num_sack_blk; i++) { 21993 U32_TO_BE32(tmp[i].begin, wptr); 21994 wptr += sizeof (tcp_seq); 21995 U32_TO_BE32(tmp[i].end, wptr); 21996 wptr += sizeof (tcp_seq); 21997 } 21998 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 21999 << 4); 22000 } 22001 22002 if (tcp->tcp_ipversion == IPV4_VERSION) { 22003 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 22004 } else { 22005 /* Check for ip6i_t header in sticky hdrs */ 22006 ip6_t *ip6 = (ip6_t *)(rptr + 22007 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22008 sizeof (ip6i_t) : 0)); 22009 22010 ip6->ip6_plen = htons(tcp_hdr_len - 22011 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22012 } 22013 22014 /* 22015 * Prime pump for checksum calculation in IP. Include the 22016 * adjustment for a source route if any. 22017 */ 22018 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 22019 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22020 U16_TO_ABE16(data_length, tcph->th_sum); 22021 22022 if (tcp->tcp_ip_forward_progress) { 22023 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22024 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22025 tcp->tcp_ip_forward_progress = B_FALSE; 22026 } 22027 return (mp1); 22028 } 22029 } 22030 22031 /* 22032 * To create a temporary tcp structure for inserting into bind hash list. 22033 * The parameter is assumed to be in network byte order, ready for use. 22034 */ 22035 /* ARGSUSED */ 22036 static tcp_t * 22037 tcp_alloc_temp_tcp(in_port_t port) 22038 { 22039 conn_t *connp; 22040 tcp_t *tcp; 22041 22042 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 22043 if (connp == NULL) 22044 return (NULL); 22045 22046 tcp = connp->conn_tcp; 22047 22048 /* 22049 * Only initialize the necessary info in those structures. Note 22050 * that since INADDR_ANY is all 0, we do not need to set 22051 * tcp_bound_source to INADDR_ANY here. 22052 */ 22053 tcp->tcp_state = TCPS_BOUND; 22054 tcp->tcp_lport = port; 22055 tcp->tcp_exclbind = 1; 22056 tcp->tcp_reserved_port = 1; 22057 22058 /* Just for place holding... */ 22059 tcp->tcp_ipversion = IPV4_VERSION; 22060 22061 return (tcp); 22062 } 22063 22064 /* 22065 * To remove a port range specified by lo_port and hi_port from the 22066 * reserved port ranges. This is one of the three public functions of 22067 * the reserved port interface. Note that a port range has to be removed 22068 * as a whole. Ports in a range cannot be removed individually. 22069 * 22070 * Params: 22071 * in_port_t lo_port: the beginning port of the reserved port range to 22072 * be deleted. 22073 * in_port_t hi_port: the ending port of the reserved port range to 22074 * be deleted. 22075 * 22076 * Return: 22077 * B_TRUE if the deletion is successful, B_FALSE otherwise. 22078 */ 22079 boolean_t 22080 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 22081 { 22082 int i, j; 22083 int size; 22084 tcp_t **temp_tcp_array; 22085 tcp_t *tcp; 22086 22087 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22088 22089 /* First make sure that the port ranage is indeed reserved. */ 22090 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22091 if (tcp_reserved_port[i].lo_port == lo_port) { 22092 hi_port = tcp_reserved_port[i].hi_port; 22093 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 22094 break; 22095 } 22096 } 22097 if (i == tcp_reserved_port_array_size) { 22098 rw_exit(&tcp_reserved_port_lock); 22099 return (B_FALSE); 22100 } 22101 22102 /* 22103 * Remove the range from the array. This simple loop is possible 22104 * because port ranges are inserted in ascending order. 22105 */ 22106 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 22107 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 22108 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 22109 tcp_reserved_port[j].temp_tcp_array = 22110 tcp_reserved_port[j+1].temp_tcp_array; 22111 } 22112 22113 /* Remove all the temporary tcp structures. */ 22114 size = hi_port - lo_port + 1; 22115 while (size > 0) { 22116 tcp = temp_tcp_array[size - 1]; 22117 ASSERT(tcp != NULL); 22118 tcp_bind_hash_remove(tcp); 22119 CONN_DEC_REF(tcp->tcp_connp); 22120 size--; 22121 } 22122 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 22123 tcp_reserved_port_array_size--; 22124 rw_exit(&tcp_reserved_port_lock); 22125 return (B_TRUE); 22126 } 22127 22128 /* 22129 * Macro to remove temporary tcp structure from the bind hash list. The 22130 * first parameter is the list of tcp to be removed. The second parameter 22131 * is the number of tcps in the array. 22132 */ 22133 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 22134 { \ 22135 while ((num) > 0) { \ 22136 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 22137 tf_t *tbf; \ 22138 tcp_t *tcpnext; \ 22139 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 22140 mutex_enter(&tbf->tf_lock); \ 22141 tcpnext = tcp->tcp_bind_hash; \ 22142 if (tcpnext) { \ 22143 tcpnext->tcp_ptpbhn = \ 22144 tcp->tcp_ptpbhn; \ 22145 } \ 22146 *tcp->tcp_ptpbhn = tcpnext; \ 22147 mutex_exit(&tbf->tf_lock); \ 22148 kmem_free(tcp, sizeof (tcp_t)); \ 22149 (tcp_array)[(num) - 1] = NULL; \ 22150 (num)--; \ 22151 } \ 22152 } 22153 22154 /* 22155 * The public interface for other modules to call to reserve a port range 22156 * in TCP. The caller passes in how large a port range it wants. TCP 22157 * will try to find a range and return it via lo_port and hi_port. This is 22158 * used by NCA's nca_conn_init. 22159 * NCA can only be used in the global zone so this only affects the global 22160 * zone's ports. 22161 * 22162 * Params: 22163 * int size: the size of the port range to be reserved. 22164 * in_port_t *lo_port (referenced): returns the beginning port of the 22165 * reserved port range added. 22166 * in_port_t *hi_port (referenced): returns the ending port of the 22167 * reserved port range added. 22168 * 22169 * Return: 22170 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 22171 */ 22172 boolean_t 22173 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 22174 { 22175 tcp_t *tcp; 22176 tcp_t *tmp_tcp; 22177 tcp_t **temp_tcp_array; 22178 tf_t *tbf; 22179 in_port_t net_port; 22180 in_port_t port; 22181 int32_t cur_size; 22182 int i, j; 22183 boolean_t used; 22184 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 22185 zoneid_t zoneid = GLOBAL_ZONEID; 22186 22187 /* Sanity check. */ 22188 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 22189 return (B_FALSE); 22190 } 22191 22192 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22193 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 22194 rw_exit(&tcp_reserved_port_lock); 22195 return (B_FALSE); 22196 } 22197 22198 /* 22199 * Find the starting port to try. Since the port ranges are ordered 22200 * in the reserved port array, we can do a simple search here. 22201 */ 22202 *lo_port = TCP_SMALLEST_RESERVED_PORT; 22203 *hi_port = TCP_LARGEST_RESERVED_PORT; 22204 for (i = 0; i < tcp_reserved_port_array_size; 22205 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 22206 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 22207 *hi_port = tcp_reserved_port[i].lo_port - 1; 22208 break; 22209 } 22210 } 22211 /* No available port range. */ 22212 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 22213 rw_exit(&tcp_reserved_port_lock); 22214 return (B_FALSE); 22215 } 22216 22217 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 22218 if (temp_tcp_array == NULL) { 22219 rw_exit(&tcp_reserved_port_lock); 22220 return (B_FALSE); 22221 } 22222 22223 /* Go thru the port range to see if some ports are already bound. */ 22224 for (port = *lo_port, cur_size = 0; 22225 cur_size < size && port <= *hi_port; 22226 cur_size++, port++) { 22227 used = B_FALSE; 22228 net_port = htons(port); 22229 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 22230 mutex_enter(&tbf->tf_lock); 22231 for (tcp = tbf->tf_tcp; tcp != NULL; 22232 tcp = tcp->tcp_bind_hash) { 22233 if (zoneid == tcp->tcp_connp->conn_zoneid && 22234 net_port == tcp->tcp_lport) { 22235 /* 22236 * A port is already bound. Search again 22237 * starting from port + 1. Release all 22238 * temporary tcps. 22239 */ 22240 mutex_exit(&tbf->tf_lock); 22241 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22242 *lo_port = port + 1; 22243 cur_size = -1; 22244 used = B_TRUE; 22245 break; 22246 } 22247 } 22248 if (!used) { 22249 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 22250 /* 22251 * Allocation failure. Just fail the request. 22252 * Need to remove all those temporary tcp 22253 * structures. 22254 */ 22255 mutex_exit(&tbf->tf_lock); 22256 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22257 rw_exit(&tcp_reserved_port_lock); 22258 kmem_free(temp_tcp_array, 22259 (hi_port - lo_port + 1) * 22260 sizeof (tcp_t *)); 22261 return (B_FALSE); 22262 } 22263 temp_tcp_array[cur_size] = tmp_tcp; 22264 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 22265 mutex_exit(&tbf->tf_lock); 22266 } 22267 } 22268 22269 /* 22270 * The current range is not large enough. We can actually do another 22271 * search if this search is done between 2 reserved port ranges. But 22272 * for first release, we just stop here and return saying that no port 22273 * range is available. 22274 */ 22275 if (cur_size < size) { 22276 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22277 rw_exit(&tcp_reserved_port_lock); 22278 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 22279 return (B_FALSE); 22280 } 22281 *hi_port = port - 1; 22282 22283 /* 22284 * Insert range into array in ascending order. Since this function 22285 * must not be called often, we choose to use the simplest method. 22286 * The above array should not consume excessive stack space as 22287 * the size must be very small. If in future releases, we find 22288 * that we should provide more reserved port ranges, this function 22289 * has to be modified to be more efficient. 22290 */ 22291 if (tcp_reserved_port_array_size == 0) { 22292 tcp_reserved_port[0].lo_port = *lo_port; 22293 tcp_reserved_port[0].hi_port = *hi_port; 22294 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 22295 } else { 22296 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 22297 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 22298 tmp_ports[j].lo_port = *lo_port; 22299 tmp_ports[j].hi_port = *hi_port; 22300 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22301 j++; 22302 } 22303 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 22304 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 22305 tmp_ports[j].temp_tcp_array = 22306 tcp_reserved_port[i].temp_tcp_array; 22307 } 22308 if (j == i) { 22309 tmp_ports[j].lo_port = *lo_port; 22310 tmp_ports[j].hi_port = *hi_port; 22311 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22312 } 22313 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 22314 } 22315 tcp_reserved_port_array_size++; 22316 rw_exit(&tcp_reserved_port_lock); 22317 return (B_TRUE); 22318 } 22319 22320 /* 22321 * Check to see if a port is in any reserved port range. 22322 * 22323 * Params: 22324 * in_port_t port: the port to be verified. 22325 * 22326 * Return: 22327 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 22328 */ 22329 boolean_t 22330 tcp_reserved_port_check(in_port_t port) 22331 { 22332 int i; 22333 22334 rw_enter(&tcp_reserved_port_lock, RW_READER); 22335 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22336 if (port >= tcp_reserved_port[i].lo_port || 22337 port <= tcp_reserved_port[i].hi_port) { 22338 rw_exit(&tcp_reserved_port_lock); 22339 return (B_TRUE); 22340 } 22341 } 22342 rw_exit(&tcp_reserved_port_lock); 22343 return (B_FALSE); 22344 } 22345 22346 /* 22347 * To list all reserved port ranges. This is the function to handle 22348 * ndd tcp_reserved_port_list. 22349 */ 22350 /* ARGSUSED */ 22351 static int 22352 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22353 { 22354 int i; 22355 22356 rw_enter(&tcp_reserved_port_lock, RW_READER); 22357 if (tcp_reserved_port_array_size > 0) 22358 (void) mi_mpprintf(mp, "The following ports are reserved:"); 22359 else 22360 (void) mi_mpprintf(mp, "No port is reserved."); 22361 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22362 (void) mi_mpprintf(mp, "%d-%d", 22363 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 22364 } 22365 rw_exit(&tcp_reserved_port_lock); 22366 return (0); 22367 } 22368 22369 /* 22370 * Hash list insertion routine for tcp_t structures. 22371 * Inserts entries with the ones bound to a specific IP address first 22372 * followed by those bound to INADDR_ANY. 22373 */ 22374 static void 22375 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 22376 { 22377 tcp_t **tcpp; 22378 tcp_t *tcpnext; 22379 22380 if (tcp->tcp_ptpbhn != NULL) { 22381 ASSERT(!caller_holds_lock); 22382 tcp_bind_hash_remove(tcp); 22383 } 22384 tcpp = &tbf->tf_tcp; 22385 if (!caller_holds_lock) { 22386 mutex_enter(&tbf->tf_lock); 22387 } else { 22388 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 22389 } 22390 tcpnext = tcpp[0]; 22391 if (tcpnext) { 22392 /* 22393 * If the new tcp bound to the INADDR_ANY address 22394 * and the first one in the list is not bound to 22395 * INADDR_ANY we skip all entries until we find the 22396 * first one bound to INADDR_ANY. 22397 * This makes sure that applications binding to a 22398 * specific address get preference over those binding to 22399 * INADDR_ANY. 22400 */ 22401 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 22402 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 22403 while ((tcpnext = tcpp[0]) != NULL && 22404 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 22405 tcpp = &(tcpnext->tcp_bind_hash); 22406 if (tcpnext) 22407 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22408 } else 22409 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22410 } 22411 tcp->tcp_bind_hash = tcpnext; 22412 tcp->tcp_ptpbhn = tcpp; 22413 tcpp[0] = tcp; 22414 if (!caller_holds_lock) 22415 mutex_exit(&tbf->tf_lock); 22416 } 22417 22418 /* 22419 * Hash list removal routine for tcp_t structures. 22420 */ 22421 static void 22422 tcp_bind_hash_remove(tcp_t *tcp) 22423 { 22424 tcp_t *tcpnext; 22425 kmutex_t *lockp; 22426 22427 if (tcp->tcp_ptpbhn == NULL) 22428 return; 22429 22430 /* 22431 * Extract the lock pointer in case there are concurrent 22432 * hash_remove's for this instance. 22433 */ 22434 ASSERT(tcp->tcp_lport != 0); 22435 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 22436 22437 ASSERT(lockp != NULL); 22438 mutex_enter(lockp); 22439 if (tcp->tcp_ptpbhn) { 22440 tcpnext = tcp->tcp_bind_hash; 22441 if (tcpnext) { 22442 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 22443 tcp->tcp_bind_hash = NULL; 22444 } 22445 *tcp->tcp_ptpbhn = tcpnext; 22446 tcp->tcp_ptpbhn = NULL; 22447 } 22448 mutex_exit(lockp); 22449 } 22450 22451 22452 /* 22453 * Hash list lookup routine for tcp_t structures. 22454 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 22455 */ 22456 static tcp_t * 22457 tcp_acceptor_hash_lookup(t_uscalar_t id) 22458 { 22459 tf_t *tf; 22460 tcp_t *tcp; 22461 22462 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22463 mutex_enter(&tf->tf_lock); 22464 for (tcp = tf->tf_tcp; tcp != NULL; 22465 tcp = tcp->tcp_acceptor_hash) { 22466 if (tcp->tcp_acceptor_id == id) { 22467 CONN_INC_REF(tcp->tcp_connp); 22468 mutex_exit(&tf->tf_lock); 22469 return (tcp); 22470 } 22471 } 22472 mutex_exit(&tf->tf_lock); 22473 return (NULL); 22474 } 22475 22476 22477 /* 22478 * Hash list insertion routine for tcp_t structures. 22479 */ 22480 void 22481 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 22482 { 22483 tf_t *tf; 22484 tcp_t **tcpp; 22485 tcp_t *tcpnext; 22486 22487 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22488 22489 if (tcp->tcp_ptpahn != NULL) 22490 tcp_acceptor_hash_remove(tcp); 22491 tcpp = &tf->tf_tcp; 22492 mutex_enter(&tf->tf_lock); 22493 tcpnext = tcpp[0]; 22494 if (tcpnext) 22495 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 22496 tcp->tcp_acceptor_hash = tcpnext; 22497 tcp->tcp_ptpahn = tcpp; 22498 tcpp[0] = tcp; 22499 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 22500 mutex_exit(&tf->tf_lock); 22501 } 22502 22503 /* 22504 * Hash list removal routine for tcp_t structures. 22505 */ 22506 static void 22507 tcp_acceptor_hash_remove(tcp_t *tcp) 22508 { 22509 tcp_t *tcpnext; 22510 kmutex_t *lockp; 22511 22512 /* 22513 * Extract the lock pointer in case there are concurrent 22514 * hash_remove's for this instance. 22515 */ 22516 lockp = tcp->tcp_acceptor_lockp; 22517 22518 if (tcp->tcp_ptpahn == NULL) 22519 return; 22520 22521 ASSERT(lockp != NULL); 22522 mutex_enter(lockp); 22523 if (tcp->tcp_ptpahn) { 22524 tcpnext = tcp->tcp_acceptor_hash; 22525 if (tcpnext) { 22526 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 22527 tcp->tcp_acceptor_hash = NULL; 22528 } 22529 *tcp->tcp_ptpahn = tcpnext; 22530 tcp->tcp_ptpahn = NULL; 22531 } 22532 mutex_exit(lockp); 22533 tcp->tcp_acceptor_lockp = NULL; 22534 } 22535 22536 /* ARGSUSED */ 22537 static int 22538 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 22539 { 22540 int error = 0; 22541 int retval; 22542 char *end; 22543 22544 tcp_hsp_t *hsp; 22545 tcp_hsp_t *hspprev; 22546 22547 ipaddr_t addr = 0; /* Address we're looking for */ 22548 in6_addr_t v6addr; /* Address we're looking for */ 22549 uint32_t hash; /* Hash of that address */ 22550 22551 /* 22552 * If the following variables are still zero after parsing the input 22553 * string, the user didn't specify them and we don't change them in 22554 * the HSP. 22555 */ 22556 22557 ipaddr_t mask = 0; /* Subnet mask */ 22558 in6_addr_t v6mask; 22559 long sendspace = 0; /* Send buffer size */ 22560 long recvspace = 0; /* Receive buffer size */ 22561 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 22562 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 22563 22564 rw_enter(&tcp_hsp_lock, RW_WRITER); 22565 22566 /* Parse and validate address */ 22567 if (af == AF_INET) { 22568 retval = inet_pton(af, value, &addr); 22569 if (retval == 1) 22570 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 22571 } else if (af == AF_INET6) { 22572 retval = inet_pton(af, value, &v6addr); 22573 } else { 22574 error = EINVAL; 22575 goto done; 22576 } 22577 if (retval == 0) { 22578 error = EINVAL; 22579 goto done; 22580 } 22581 22582 while ((*value) && *value != ' ') 22583 value++; 22584 22585 /* Parse individual keywords, set variables if found */ 22586 while (*value) { 22587 /* Skip leading blanks */ 22588 22589 while (*value == ' ' || *value == '\t') 22590 value++; 22591 22592 /* If at end of string, we're done */ 22593 22594 if (!*value) 22595 break; 22596 22597 /* We have a word, figure out what it is */ 22598 22599 if (strncmp("mask", value, 4) == 0) { 22600 value += 4; 22601 while (*value == ' ' || *value == '\t') 22602 value++; 22603 /* Parse subnet mask */ 22604 if (af == AF_INET) { 22605 retval = inet_pton(af, value, &mask); 22606 if (retval == 1) { 22607 V4MASK_TO_V6(mask, v6mask); 22608 } 22609 } else if (af == AF_INET6) { 22610 retval = inet_pton(af, value, &v6mask); 22611 } 22612 if (retval != 1) { 22613 error = EINVAL; 22614 goto done; 22615 } 22616 while ((*value) && *value != ' ') 22617 value++; 22618 } else if (strncmp("sendspace", value, 9) == 0) { 22619 value += 9; 22620 22621 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 22622 sendspace < TCP_XMIT_HIWATER || 22623 sendspace >= (1L<<30)) { 22624 error = EINVAL; 22625 goto done; 22626 } 22627 value = end; 22628 } else if (strncmp("recvspace", value, 9) == 0) { 22629 value += 9; 22630 22631 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 22632 recvspace < TCP_RECV_HIWATER || 22633 recvspace >= (1L<<30)) { 22634 error = EINVAL; 22635 goto done; 22636 } 22637 value = end; 22638 } else if (strncmp("timestamp", value, 9) == 0) { 22639 value += 9; 22640 22641 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 22642 timestamp < 0 || timestamp > 1) { 22643 error = EINVAL; 22644 goto done; 22645 } 22646 22647 /* 22648 * We increment timestamp so we know it's been set; 22649 * this is undone when we put it in the HSP 22650 */ 22651 timestamp++; 22652 value = end; 22653 } else if (strncmp("delete", value, 6) == 0) { 22654 value += 6; 22655 delete = B_TRUE; 22656 } else { 22657 error = EINVAL; 22658 goto done; 22659 } 22660 } 22661 22662 /* Hash address for lookup */ 22663 22664 hash = TCP_HSP_HASH(addr); 22665 22666 if (delete) { 22667 /* 22668 * Note that deletes don't return an error if the thing 22669 * we're trying to delete isn't there. 22670 */ 22671 if (tcp_hsp_hash == NULL) 22672 goto done; 22673 hsp = tcp_hsp_hash[hash]; 22674 22675 if (hsp) { 22676 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 22677 &v6addr)) { 22678 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 22679 mi_free((char *)hsp); 22680 } else { 22681 hspprev = hsp; 22682 while ((hsp = hsp->tcp_hsp_next) != NULL) { 22683 if (IN6_ARE_ADDR_EQUAL( 22684 &hsp->tcp_hsp_addr_v6, &v6addr)) { 22685 hspprev->tcp_hsp_next = 22686 hsp->tcp_hsp_next; 22687 mi_free((char *)hsp); 22688 break; 22689 } 22690 hspprev = hsp; 22691 } 22692 } 22693 } 22694 } else { 22695 /* 22696 * We're adding/modifying an HSP. If we haven't already done 22697 * so, allocate the hash table. 22698 */ 22699 22700 if (!tcp_hsp_hash) { 22701 tcp_hsp_hash = (tcp_hsp_t **) 22702 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 22703 if (!tcp_hsp_hash) { 22704 error = EINVAL; 22705 goto done; 22706 } 22707 } 22708 22709 /* Get head of hash chain */ 22710 22711 hsp = tcp_hsp_hash[hash]; 22712 22713 /* Try to find pre-existing hsp on hash chain */ 22714 /* Doesn't handle CIDR prefixes. */ 22715 while (hsp) { 22716 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 22717 break; 22718 hsp = hsp->tcp_hsp_next; 22719 } 22720 22721 /* 22722 * If we didn't, create one with default values and put it 22723 * at head of hash chain 22724 */ 22725 22726 if (!hsp) { 22727 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 22728 if (!hsp) { 22729 error = EINVAL; 22730 goto done; 22731 } 22732 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 22733 tcp_hsp_hash[hash] = hsp; 22734 } 22735 22736 /* Set values that the user asked us to change */ 22737 22738 hsp->tcp_hsp_addr_v6 = v6addr; 22739 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 22740 hsp->tcp_hsp_vers = IPV4_VERSION; 22741 else 22742 hsp->tcp_hsp_vers = IPV6_VERSION; 22743 hsp->tcp_hsp_subnet_v6 = v6mask; 22744 if (sendspace > 0) 22745 hsp->tcp_hsp_sendspace = sendspace; 22746 if (recvspace > 0) 22747 hsp->tcp_hsp_recvspace = recvspace; 22748 if (timestamp > 0) 22749 hsp->tcp_hsp_tstamp = timestamp - 1; 22750 } 22751 22752 done: 22753 rw_exit(&tcp_hsp_lock); 22754 return (error); 22755 } 22756 22757 /* Set callback routine passed to nd_load by tcp_param_register. */ 22758 /* ARGSUSED */ 22759 static int 22760 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 22761 { 22762 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 22763 } 22764 /* ARGSUSED */ 22765 static int 22766 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22767 cred_t *cr) 22768 { 22769 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 22770 } 22771 22772 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 22773 /* ARGSUSED */ 22774 static int 22775 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22776 { 22777 tcp_hsp_t *hsp; 22778 int i; 22779 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 22780 22781 rw_enter(&tcp_hsp_lock, RW_READER); 22782 (void) mi_mpprintf(mp, 22783 "Hash HSP " MI_COL_HDRPAD_STR 22784 "Address Subnet Mask Send Receive TStamp"); 22785 if (tcp_hsp_hash) { 22786 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 22787 hsp = tcp_hsp_hash[i]; 22788 while (hsp) { 22789 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 22790 (void) inet_ntop(AF_INET, 22791 &hsp->tcp_hsp_addr, 22792 addrbuf, sizeof (addrbuf)); 22793 (void) inet_ntop(AF_INET, 22794 &hsp->tcp_hsp_subnet, 22795 subnetbuf, sizeof (subnetbuf)); 22796 } else { 22797 (void) inet_ntop(AF_INET6, 22798 &hsp->tcp_hsp_addr_v6, 22799 addrbuf, sizeof (addrbuf)); 22800 (void) inet_ntop(AF_INET6, 22801 &hsp->tcp_hsp_subnet_v6, 22802 subnetbuf, sizeof (subnetbuf)); 22803 } 22804 (void) mi_mpprintf(mp, 22805 " %03d " MI_COL_PTRFMT_STR 22806 "%s %s %010d %010d %d", 22807 i, 22808 (void *)hsp, 22809 addrbuf, 22810 subnetbuf, 22811 hsp->tcp_hsp_sendspace, 22812 hsp->tcp_hsp_recvspace, 22813 hsp->tcp_hsp_tstamp); 22814 22815 hsp = hsp->tcp_hsp_next; 22816 } 22817 } 22818 } 22819 rw_exit(&tcp_hsp_lock); 22820 return (0); 22821 } 22822 22823 22824 /* Data for fast netmask macro used by tcp_hsp_lookup */ 22825 22826 static ipaddr_t netmasks[] = { 22827 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 22828 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 22829 }; 22830 22831 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 22832 22833 /* 22834 * XXX This routine should go away and instead we should use the metrics 22835 * associated with the routes to determine the default sndspace and rcvspace. 22836 */ 22837 static tcp_hsp_t * 22838 tcp_hsp_lookup(ipaddr_t addr) 22839 { 22840 tcp_hsp_t *hsp = NULL; 22841 22842 /* Quick check without acquiring the lock. */ 22843 if (tcp_hsp_hash == NULL) 22844 return (NULL); 22845 22846 rw_enter(&tcp_hsp_lock, RW_READER); 22847 22848 /* This routine finds the best-matching HSP for address addr. */ 22849 22850 if (tcp_hsp_hash) { 22851 int i; 22852 ipaddr_t srchaddr; 22853 tcp_hsp_t *hsp_net; 22854 22855 /* We do three passes: host, network, and subnet. */ 22856 22857 srchaddr = addr; 22858 22859 for (i = 1; i <= 3; i++) { 22860 /* Look for exact match on srchaddr */ 22861 22862 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 22863 while (hsp) { 22864 if (hsp->tcp_hsp_vers == IPV4_VERSION && 22865 hsp->tcp_hsp_addr == srchaddr) 22866 break; 22867 hsp = hsp->tcp_hsp_next; 22868 } 22869 ASSERT(hsp == NULL || 22870 hsp->tcp_hsp_vers == IPV4_VERSION); 22871 22872 /* 22873 * If this is the first pass: 22874 * If we found a match, great, return it. 22875 * If not, search for the network on the second pass. 22876 */ 22877 22878 if (i == 1) 22879 if (hsp) 22880 break; 22881 else 22882 { 22883 srchaddr = addr & netmask(addr); 22884 continue; 22885 } 22886 22887 /* 22888 * If this is the second pass: 22889 * If we found a match, but there's a subnet mask, 22890 * save the match but try again using the subnet 22891 * mask on the third pass. 22892 * Otherwise, return whatever we found. 22893 */ 22894 22895 if (i == 2) { 22896 if (hsp && hsp->tcp_hsp_subnet) { 22897 hsp_net = hsp; 22898 srchaddr = addr & hsp->tcp_hsp_subnet; 22899 continue; 22900 } else { 22901 break; 22902 } 22903 } 22904 22905 /* 22906 * This must be the third pass. If we didn't find 22907 * anything, return the saved network HSP instead. 22908 */ 22909 22910 if (!hsp) 22911 hsp = hsp_net; 22912 } 22913 } 22914 22915 rw_exit(&tcp_hsp_lock); 22916 return (hsp); 22917 } 22918 22919 /* 22920 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 22921 * match lookup. 22922 */ 22923 static tcp_hsp_t * 22924 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 22925 { 22926 tcp_hsp_t *hsp = NULL; 22927 22928 /* Quick check without acquiring the lock. */ 22929 if (tcp_hsp_hash == NULL) 22930 return (NULL); 22931 22932 rw_enter(&tcp_hsp_lock, RW_READER); 22933 22934 /* This routine finds the best-matching HSP for address addr. */ 22935 22936 if (tcp_hsp_hash) { 22937 int i; 22938 in6_addr_t v6srchaddr; 22939 tcp_hsp_t *hsp_net; 22940 22941 /* We do three passes: host, network, and subnet. */ 22942 22943 v6srchaddr = *v6addr; 22944 22945 for (i = 1; i <= 3; i++) { 22946 /* Look for exact match on srchaddr */ 22947 22948 hsp = tcp_hsp_hash[TCP_HSP_HASH( 22949 V4_PART_OF_V6(v6srchaddr))]; 22950 while (hsp) { 22951 if (hsp->tcp_hsp_vers == IPV6_VERSION && 22952 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 22953 &v6srchaddr)) 22954 break; 22955 hsp = hsp->tcp_hsp_next; 22956 } 22957 22958 /* 22959 * If this is the first pass: 22960 * If we found a match, great, return it. 22961 * If not, search for the network on the second pass. 22962 */ 22963 22964 if (i == 1) 22965 if (hsp) 22966 break; 22967 else { 22968 /* Assume a 64 bit mask */ 22969 v6srchaddr.s6_addr32[0] = 22970 v6addr->s6_addr32[0]; 22971 v6srchaddr.s6_addr32[1] = 22972 v6addr->s6_addr32[1]; 22973 v6srchaddr.s6_addr32[2] = 0; 22974 v6srchaddr.s6_addr32[3] = 0; 22975 continue; 22976 } 22977 22978 /* 22979 * If this is the second pass: 22980 * If we found a match, but there's a subnet mask, 22981 * save the match but try again using the subnet 22982 * mask on the third pass. 22983 * Otherwise, return whatever we found. 22984 */ 22985 22986 if (i == 2) { 22987 ASSERT(hsp == NULL || 22988 hsp->tcp_hsp_vers == IPV6_VERSION); 22989 if (hsp && 22990 !IN6_IS_ADDR_UNSPECIFIED( 22991 &hsp->tcp_hsp_subnet_v6)) { 22992 hsp_net = hsp; 22993 V6_MASK_COPY(*v6addr, 22994 hsp->tcp_hsp_subnet_v6, v6srchaddr); 22995 continue; 22996 } else { 22997 break; 22998 } 22999 } 23000 23001 /* 23002 * This must be the third pass. If we didn't find 23003 * anything, return the saved network HSP instead. 23004 */ 23005 23006 if (!hsp) 23007 hsp = hsp_net; 23008 } 23009 } 23010 23011 rw_exit(&tcp_hsp_lock); 23012 return (hsp); 23013 } 23014 23015 /* 23016 * Type three generator adapted from the random() function in 4.4 BSD: 23017 */ 23018 23019 /* 23020 * Copyright (c) 1983, 1993 23021 * The Regents of the University of California. All rights reserved. 23022 * 23023 * Redistribution and use in source and binary forms, with or without 23024 * modification, are permitted provided that the following conditions 23025 * are met: 23026 * 1. Redistributions of source code must retain the above copyright 23027 * notice, this list of conditions and the following disclaimer. 23028 * 2. Redistributions in binary form must reproduce the above copyright 23029 * notice, this list of conditions and the following disclaimer in the 23030 * documentation and/or other materials provided with the distribution. 23031 * 3. All advertising materials mentioning features or use of this software 23032 * must display the following acknowledgement: 23033 * This product includes software developed by the University of 23034 * California, Berkeley and its contributors. 23035 * 4. Neither the name of the University nor the names of its contributors 23036 * may be used to endorse or promote products derived from this software 23037 * without specific prior written permission. 23038 * 23039 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23040 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23041 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23042 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23043 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23044 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23045 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23046 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23047 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23048 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23049 * SUCH DAMAGE. 23050 */ 23051 23052 /* Type 3 -- x**31 + x**3 + 1 */ 23053 #define DEG_3 31 23054 #define SEP_3 3 23055 23056 23057 /* Protected by tcp_random_lock */ 23058 static int tcp_randtbl[DEG_3 + 1]; 23059 23060 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23061 static int *tcp_random_rptr = &tcp_randtbl[1]; 23062 23063 static int *tcp_random_state = &tcp_randtbl[1]; 23064 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23065 23066 kmutex_t tcp_random_lock; 23067 23068 void 23069 tcp_random_init(void) 23070 { 23071 int i; 23072 hrtime_t hrt; 23073 time_t wallclock; 23074 uint64_t result; 23075 23076 /* 23077 * Use high-res timer and current time for seed. Gethrtime() returns 23078 * a longlong, which may contain resolution down to nanoseconds. 23079 * The current time will either be a 32-bit or a 64-bit quantity. 23080 * XOR the two together in a 64-bit result variable. 23081 * Convert the result to a 32-bit value by multiplying the high-order 23082 * 32-bits by the low-order 32-bits. 23083 */ 23084 23085 hrt = gethrtime(); 23086 (void) drv_getparm(TIME, &wallclock); 23087 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23088 mutex_enter(&tcp_random_lock); 23089 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23090 (result & 0xffffffff); 23091 23092 for (i = 1; i < DEG_3; i++) 23093 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23094 + 12345; 23095 tcp_random_fptr = &tcp_random_state[SEP_3]; 23096 tcp_random_rptr = &tcp_random_state[0]; 23097 mutex_exit(&tcp_random_lock); 23098 for (i = 0; i < 10 * DEG_3; i++) 23099 (void) tcp_random(); 23100 } 23101 23102 /* 23103 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23104 * This range is selected to be approximately centered on TCP_ISS / 2, 23105 * and easy to compute. We get this value by generating a 32-bit random 23106 * number, selecting out the high-order 17 bits, and then adding one so 23107 * that we never return zero. 23108 */ 23109 int 23110 tcp_random(void) 23111 { 23112 int i; 23113 23114 mutex_enter(&tcp_random_lock); 23115 *tcp_random_fptr += *tcp_random_rptr; 23116 23117 /* 23118 * The high-order bits are more random than the low-order bits, 23119 * so we select out the high-order 17 bits and add one so that 23120 * we never return zero. 23121 */ 23122 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23123 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23124 tcp_random_fptr = tcp_random_state; 23125 ++tcp_random_rptr; 23126 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23127 tcp_random_rptr = tcp_random_state; 23128 23129 mutex_exit(&tcp_random_lock); 23130 return (i); 23131 } 23132 23133 /* 23134 * XXX This will go away when TPI is extended to send 23135 * info reqs to sockfs/timod ..... 23136 * Given a queue, set the max packet size for the write 23137 * side of the queue below stream head. This value is 23138 * cached on the stream head. 23139 * Returns 1 on success, 0 otherwise. 23140 */ 23141 static int 23142 setmaxps(queue_t *q, int maxpsz) 23143 { 23144 struct stdata *stp; 23145 queue_t *wq; 23146 stp = STREAM(q); 23147 23148 /* 23149 * At this point change of a queue parameter is not allowed 23150 * when a multiplexor is sitting on top. 23151 */ 23152 if (stp->sd_flag & STPLEX) 23153 return (0); 23154 23155 claimstr(stp->sd_wrq); 23156 wq = stp->sd_wrq->q_next; 23157 ASSERT(wq != NULL); 23158 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 23159 releasestr(stp->sd_wrq); 23160 return (1); 23161 } 23162 23163 static int 23164 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23165 int *t_errorp, int *sys_errorp) 23166 { 23167 int error; 23168 int is_absreq_failure; 23169 t_scalar_t *opt_lenp; 23170 t_scalar_t opt_offset; 23171 int prim_type; 23172 struct T_conn_req *tcreqp; 23173 struct T_conn_res *tcresp; 23174 cred_t *cr; 23175 23176 cr = DB_CREDDEF(mp, tcp->tcp_cred); 23177 23178 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23179 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23180 prim_type == T_CONN_RES); 23181 23182 switch (prim_type) { 23183 case T_CONN_REQ: 23184 tcreqp = (struct T_conn_req *)mp->b_rptr; 23185 opt_offset = tcreqp->OPT_offset; 23186 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23187 break; 23188 case O_T_CONN_RES: 23189 case T_CONN_RES: 23190 tcresp = (struct T_conn_res *)mp->b_rptr; 23191 opt_offset = tcresp->OPT_offset; 23192 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23193 break; 23194 } 23195 23196 *t_errorp = 0; 23197 *sys_errorp = 0; 23198 *do_disconnectp = 0; 23199 23200 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23201 opt_offset, cr, &tcp_opt_obj, 23202 NULL, &is_absreq_failure); 23203 23204 switch (error) { 23205 case 0: /* no error */ 23206 ASSERT(is_absreq_failure == 0); 23207 return (0); 23208 case ENOPROTOOPT: 23209 *t_errorp = TBADOPT; 23210 break; 23211 case EACCES: 23212 *t_errorp = TACCES; 23213 break; 23214 default: 23215 *t_errorp = TSYSERR; *sys_errorp = error; 23216 break; 23217 } 23218 if (is_absreq_failure != 0) { 23219 /* 23220 * The connection request should get the local ack 23221 * T_OK_ACK and then a T_DISCON_IND. 23222 */ 23223 *do_disconnectp = 1; 23224 } 23225 return (-1); 23226 } 23227 23228 /* 23229 * Split this function out so that if the secret changes, I'm okay. 23230 * 23231 * Initialize the tcp_iss_cookie and tcp_iss_key. 23232 */ 23233 23234 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23235 23236 static void 23237 tcp_iss_key_init(uint8_t *phrase, int len) 23238 { 23239 struct { 23240 int32_t current_time; 23241 uint32_t randnum; 23242 uint16_t pad; 23243 uint8_t ether[6]; 23244 uint8_t passwd[PASSWD_SIZE]; 23245 } tcp_iss_cookie; 23246 time_t t; 23247 23248 /* 23249 * Start with the current absolute time. 23250 */ 23251 (void) drv_getparm(TIME, &t); 23252 tcp_iss_cookie.current_time = t; 23253 23254 /* 23255 * XXX - Need a more random number per RFC 1750, not this crap. 23256 * OTOH, if what follows is pretty random, then I'm in better shape. 23257 */ 23258 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23259 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23260 23261 /* 23262 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23263 * as a good template. 23264 */ 23265 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23266 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23267 23268 /* 23269 * The pass-phrase. Normally this is supplied by user-called NDD. 23270 */ 23271 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23272 23273 /* 23274 * See 4010593 if this section becomes a problem again, 23275 * but the local ethernet address is useful here. 23276 */ 23277 (void) localetheraddr(NULL, 23278 (struct ether_addr *)&tcp_iss_cookie.ether); 23279 23280 /* 23281 * Hash 'em all together. The MD5Final is called per-connection. 23282 */ 23283 mutex_enter(&tcp_iss_key_lock); 23284 MD5Init(&tcp_iss_key); 23285 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 23286 sizeof (tcp_iss_cookie)); 23287 mutex_exit(&tcp_iss_key_lock); 23288 } 23289 23290 /* 23291 * Set the RFC 1948 pass phrase 23292 */ 23293 /* ARGSUSED */ 23294 static int 23295 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23296 cred_t *cr) 23297 { 23298 /* 23299 * Basically, value contains a new pass phrase. Pass it along! 23300 */ 23301 tcp_iss_key_init((uint8_t *)value, strlen(value)); 23302 return (0); 23303 } 23304 23305 /* ARGSUSED */ 23306 static int 23307 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23308 { 23309 bzero(buf, sizeof (tcp_sack_info_t)); 23310 return (0); 23311 } 23312 23313 /* ARGSUSED */ 23314 static int 23315 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23316 { 23317 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23318 return (0); 23319 } 23320 23321 void 23322 tcp_ddi_init(void) 23323 { 23324 int i; 23325 23326 /* Initialize locks */ 23327 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 23328 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23329 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23330 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23331 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23332 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 23333 23334 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23335 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 23336 MUTEX_DEFAULT, NULL); 23337 } 23338 23339 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23340 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 23341 MUTEX_DEFAULT, NULL); 23342 } 23343 23344 /* TCP's IPsec code calls the packet dropper. */ 23345 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 23346 23347 if (!tcp_g_nd) { 23348 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 23349 nd_free(&tcp_g_nd); 23350 } 23351 } 23352 23353 /* 23354 * Note: To really walk the device tree you need the devinfo 23355 * pointer to your device which is only available after probe/attach. 23356 * The following is safe only because it uses ddi_root_node() 23357 */ 23358 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23359 tcp_opt_obj.odb_opt_arr_cnt); 23360 23361 tcp_timercache = kmem_cache_create("tcp_timercache", 23362 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23363 NULL, NULL, NULL, NULL, NULL, 0); 23364 23365 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23366 sizeof (tcp_sack_info_t), 0, 23367 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23368 23369 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23370 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23371 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23372 23373 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 23374 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 23375 23376 ip_squeue_init(tcp_squeue_add); 23377 23378 /* Initialize the random number generator */ 23379 tcp_random_init(); 23380 23381 /* 23382 * Initialize RFC 1948 secret values. This will probably be reset once 23383 * by the boot scripts. 23384 * 23385 * Use NULL name, as the name is caught by the new lockstats. 23386 * 23387 * Initialize with some random, non-guessable string, like the global 23388 * T_INFO_ACK. 23389 */ 23390 23391 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23392 sizeof (tcp_g_t_info_ack)); 23393 23394 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 23395 "net", KSTAT_TYPE_NAMED, 23396 sizeof (tcp_statistics) / sizeof (kstat_named_t), 23397 KSTAT_FLAG_VIRTUAL)) != NULL) { 23398 tcp_kstat->ks_data = &tcp_statistics; 23399 kstat_install(tcp_kstat); 23400 } 23401 23402 tcp_kstat_init(); 23403 } 23404 23405 void 23406 tcp_ddi_destroy(void) 23407 { 23408 int i; 23409 23410 nd_free(&tcp_g_nd); 23411 23412 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23413 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 23414 } 23415 23416 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23417 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 23418 } 23419 23420 mutex_destroy(&tcp_iss_key_lock); 23421 rw_destroy(&tcp_hsp_lock); 23422 mutex_destroy(&tcp_g_q_lock); 23423 mutex_destroy(&tcp_random_lock); 23424 mutex_destroy(&tcp_epriv_port_lock); 23425 rw_destroy(&tcp_reserved_port_lock); 23426 23427 ip_drop_unregister(&tcp_dropper); 23428 23429 kmem_cache_destroy(tcp_timercache); 23430 kmem_cache_destroy(tcp_sack_info_cache); 23431 kmem_cache_destroy(tcp_iphc_cache); 23432 23433 tcp_kstat_fini(); 23434 } 23435 23436 /* 23437 * Generate ISS, taking into account NDD changes may happen halfway through. 23438 * (If the iss is not zero, set it.) 23439 */ 23440 23441 static void 23442 tcp_iss_init(tcp_t *tcp) 23443 { 23444 MD5_CTX context; 23445 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 23446 uint32_t answer[4]; 23447 23448 tcp_iss_incr_extra += (ISS_INCR >> 1); 23449 tcp->tcp_iss = tcp_iss_incr_extra; 23450 switch (tcp_strong_iss) { 23451 case 2: 23452 mutex_enter(&tcp_iss_key_lock); 23453 context = tcp_iss_key; 23454 mutex_exit(&tcp_iss_key_lock); 23455 arg.ports = tcp->tcp_ports; 23456 if (tcp->tcp_ipversion == IPV4_VERSION) { 23457 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 23458 &arg.src); 23459 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 23460 &arg.dst); 23461 } else { 23462 arg.src = tcp->tcp_ip6h->ip6_src; 23463 arg.dst = tcp->tcp_ip6h->ip6_dst; 23464 } 23465 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 23466 MD5Final((uchar_t *)answer, &context); 23467 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 23468 /* 23469 * Now that we've hashed into a unique per-connection sequence 23470 * space, add a random increment per strong_iss == 1. So I 23471 * guess we'll have to... 23472 */ 23473 /* FALLTHRU */ 23474 case 1: 23475 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 23476 break; 23477 default: 23478 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 23479 break; 23480 } 23481 tcp->tcp_valid_bits = TCP_ISS_VALID; 23482 tcp->tcp_fss = tcp->tcp_iss - 1; 23483 tcp->tcp_suna = tcp->tcp_iss; 23484 tcp->tcp_snxt = tcp->tcp_iss + 1; 23485 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23486 tcp->tcp_csuna = tcp->tcp_snxt; 23487 } 23488 23489 /* 23490 * Exported routine for extracting active tcp connection status. 23491 * 23492 * This is used by the Solaris Cluster Networking software to 23493 * gather a list of connections that need to be forwarded to 23494 * specific nodes in the cluster when configuration changes occur. 23495 * 23496 * The callback is invoked for each tcp_t structure. Returning 23497 * non-zero from the callback routine terminates the search. 23498 */ 23499 int 23500 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 23501 { 23502 tcp_t *tcp; 23503 cl_tcp_info_t cl_tcpi; 23504 connf_t *connfp; 23505 conn_t *connp; 23506 int i; 23507 23508 ASSERT(callback != NULL); 23509 23510 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 23511 23512 connfp = &ipcl_globalhash_fanout[i]; 23513 connp = NULL; 23514 23515 while ((connp = 23516 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 23517 23518 tcp = connp->conn_tcp; 23519 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 23520 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 23521 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 23522 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 23523 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 23524 /* 23525 * The macros tcp_laddr and tcp_faddr give the IPv4 23526 * addresses. They are copied implicitly below as 23527 * mapped addresses. 23528 */ 23529 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 23530 if (tcp->tcp_ipversion == IPV4_VERSION) { 23531 cl_tcpi.cl_tcpi_faddr = 23532 tcp->tcp_ipha->ipha_dst; 23533 } else { 23534 cl_tcpi.cl_tcpi_faddr_v6 = 23535 tcp->tcp_ip6h->ip6_dst; 23536 } 23537 23538 /* 23539 * If the callback returns non-zero 23540 * we terminate the traversal. 23541 */ 23542 if ((*callback)(&cl_tcpi, arg) != 0) { 23543 CONN_DEC_REF(tcp->tcp_connp); 23544 return (1); 23545 } 23546 } 23547 } 23548 23549 return (0); 23550 } 23551 23552 /* 23553 * Macros used for accessing the different types of sockaddr 23554 * structures inside a tcp_ioc_abort_conn_t. 23555 */ 23556 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 23557 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 23558 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 23559 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 23560 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 23561 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 23562 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 23563 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 23564 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 23565 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 23566 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 23567 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 23568 23569 /* 23570 * Return the correct error code to mimic the behavior 23571 * of a connection reset. 23572 */ 23573 #define TCP_AC_GET_ERRCODE(state, err) { \ 23574 switch ((state)) { \ 23575 case TCPS_SYN_SENT: \ 23576 case TCPS_SYN_RCVD: \ 23577 (err) = ECONNREFUSED; \ 23578 break; \ 23579 case TCPS_ESTABLISHED: \ 23580 case TCPS_FIN_WAIT_1: \ 23581 case TCPS_FIN_WAIT_2: \ 23582 case TCPS_CLOSE_WAIT: \ 23583 (err) = ECONNRESET; \ 23584 break; \ 23585 case TCPS_CLOSING: \ 23586 case TCPS_LAST_ACK: \ 23587 case TCPS_TIME_WAIT: \ 23588 (err) = 0; \ 23589 break; \ 23590 default: \ 23591 (err) = ENXIO; \ 23592 } \ 23593 } 23594 23595 /* 23596 * Check if a tcp structure matches the info in acp. 23597 */ 23598 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 23599 (((acp)->ac_local.ss_family == AF_INET) ? \ 23600 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 23601 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 23602 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 23603 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 23604 (TCP_AC_V4LPORT((acp)) == 0 || \ 23605 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 23606 (TCP_AC_V4RPORT((acp)) == 0 || \ 23607 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 23608 (acp)->ac_start <= (tcp)->tcp_state && \ 23609 (acp)->ac_end >= (tcp)->tcp_state) : \ 23610 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 23611 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 23612 &(tcp)->tcp_ip_src_v6)) && \ 23613 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 23614 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 23615 &(tcp)->tcp_remote_v6)) && \ 23616 (TCP_AC_V6LPORT((acp)) == 0 || \ 23617 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 23618 (TCP_AC_V6RPORT((acp)) == 0 || \ 23619 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 23620 (acp)->ac_start <= (tcp)->tcp_state && \ 23621 (acp)->ac_end >= (tcp)->tcp_state)) 23622 23623 #define TCP_AC_MATCH(acp, tcp) \ 23624 (((acp)->ac_zoneid == ALL_ZONES || \ 23625 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 23626 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 23627 23628 /* 23629 * Build a message containing a tcp_ioc_abort_conn_t structure 23630 * which is filled in with information from acp and tp. 23631 */ 23632 static mblk_t * 23633 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 23634 { 23635 mblk_t *mp; 23636 tcp_ioc_abort_conn_t *tacp; 23637 23638 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 23639 if (mp == NULL) 23640 return (NULL); 23641 23642 mp->b_datap->db_type = M_CTL; 23643 23644 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 23645 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 23646 sizeof (uint32_t)); 23647 23648 tacp->ac_start = acp->ac_start; 23649 tacp->ac_end = acp->ac_end; 23650 tacp->ac_zoneid = acp->ac_zoneid; 23651 23652 if (acp->ac_local.ss_family == AF_INET) { 23653 tacp->ac_local.ss_family = AF_INET; 23654 tacp->ac_remote.ss_family = AF_INET; 23655 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 23656 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 23657 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 23658 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 23659 } else { 23660 tacp->ac_local.ss_family = AF_INET6; 23661 tacp->ac_remote.ss_family = AF_INET6; 23662 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 23663 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 23664 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 23665 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 23666 } 23667 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 23668 return (mp); 23669 } 23670 23671 /* 23672 * Print a tcp_ioc_abort_conn_t structure. 23673 */ 23674 static void 23675 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 23676 { 23677 char lbuf[128]; 23678 char rbuf[128]; 23679 sa_family_t af; 23680 in_port_t lport, rport; 23681 ushort_t logflags; 23682 23683 af = acp->ac_local.ss_family; 23684 23685 if (af == AF_INET) { 23686 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 23687 lbuf, 128); 23688 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 23689 rbuf, 128); 23690 lport = ntohs(TCP_AC_V4LPORT(acp)); 23691 rport = ntohs(TCP_AC_V4RPORT(acp)); 23692 } else { 23693 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 23694 lbuf, 128); 23695 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 23696 rbuf, 128); 23697 lport = ntohs(TCP_AC_V6LPORT(acp)); 23698 rport = ntohs(TCP_AC_V6RPORT(acp)); 23699 } 23700 23701 logflags = SL_TRACE | SL_NOTE; 23702 /* 23703 * Don't print this message to the console if the operation was done 23704 * to a non-global zone. 23705 */ 23706 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 23707 logflags |= SL_CONSOLE; 23708 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 23709 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 23710 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 23711 acp->ac_start, acp->ac_end); 23712 } 23713 23714 /* 23715 * Called inside tcp_rput when a message built using 23716 * tcp_ioctl_abort_build_msg is put into a queue. 23717 * Note that when we get here there is no wildcard in acp any more. 23718 */ 23719 static void 23720 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 23721 { 23722 tcp_ioc_abort_conn_t *acp; 23723 23724 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 23725 if (tcp->tcp_state <= acp->ac_end) { 23726 /* 23727 * If we get here, we are already on the correct 23728 * squeue. This ioctl follows the following path 23729 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 23730 * ->tcp_ioctl_abort->squeue_fill (if on a 23731 * different squeue) 23732 */ 23733 int errcode; 23734 23735 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 23736 (void) tcp_clean_death(tcp, errcode, 26); 23737 } 23738 freemsg(mp); 23739 } 23740 23741 /* 23742 * Abort all matching connections on a hash chain. 23743 */ 23744 static int 23745 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 23746 boolean_t exact) 23747 { 23748 int nmatch, err = 0; 23749 tcp_t *tcp; 23750 MBLKP mp, last, listhead = NULL; 23751 conn_t *tconnp; 23752 connf_t *connfp = &ipcl_conn_fanout[index]; 23753 23754 startover: 23755 nmatch = 0; 23756 23757 mutex_enter(&connfp->connf_lock); 23758 for (tconnp = connfp->connf_head; tconnp != NULL; 23759 tconnp = tconnp->conn_next) { 23760 tcp = tconnp->conn_tcp; 23761 if (TCP_AC_MATCH(acp, tcp)) { 23762 CONN_INC_REF(tcp->tcp_connp); 23763 mp = tcp_ioctl_abort_build_msg(acp, tcp); 23764 if (mp == NULL) { 23765 err = ENOMEM; 23766 CONN_DEC_REF(tcp->tcp_connp); 23767 break; 23768 } 23769 mp->b_prev = (mblk_t *)tcp; 23770 23771 if (listhead == NULL) { 23772 listhead = mp; 23773 last = mp; 23774 } else { 23775 last->b_next = mp; 23776 last = mp; 23777 } 23778 nmatch++; 23779 if (exact) 23780 break; 23781 } 23782 23783 /* Avoid holding lock for too long. */ 23784 if (nmatch >= 500) 23785 break; 23786 } 23787 mutex_exit(&connfp->connf_lock); 23788 23789 /* Pass mp into the correct tcp */ 23790 while ((mp = listhead) != NULL) { 23791 listhead = listhead->b_next; 23792 tcp = (tcp_t *)mp->b_prev; 23793 mp->b_next = mp->b_prev = NULL; 23794 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 23795 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 23796 } 23797 23798 *count += nmatch; 23799 if (nmatch >= 500 && err == 0) 23800 goto startover; 23801 return (err); 23802 } 23803 23804 /* 23805 * Abort all connections that matches the attributes specified in acp. 23806 */ 23807 static int 23808 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 23809 { 23810 sa_family_t af; 23811 uint32_t ports; 23812 uint16_t *pports; 23813 int err = 0, count = 0; 23814 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 23815 int index = -1; 23816 ushort_t logflags; 23817 23818 af = acp->ac_local.ss_family; 23819 23820 if (af == AF_INET) { 23821 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 23822 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 23823 pports = (uint16_t *)&ports; 23824 pports[1] = TCP_AC_V4LPORT(acp); 23825 pports[0] = TCP_AC_V4RPORT(acp); 23826 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 23827 } 23828 } else { 23829 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 23830 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 23831 pports = (uint16_t *)&ports; 23832 pports[1] = TCP_AC_V6LPORT(acp); 23833 pports[0] = TCP_AC_V6RPORT(acp); 23834 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 23835 } 23836 } 23837 23838 /* 23839 * For cases where remote addr, local port, and remote port are non- 23840 * wildcards, tcp_ioctl_abort_bucket will only be called once. 23841 */ 23842 if (index != -1) { 23843 err = tcp_ioctl_abort_bucket(acp, index, 23844 &count, exact); 23845 } else { 23846 /* 23847 * loop through all entries for wildcard case 23848 */ 23849 for (index = 0; index < ipcl_conn_fanout_size; index++) { 23850 err = tcp_ioctl_abort_bucket(acp, index, 23851 &count, exact); 23852 if (err != 0) 23853 break; 23854 } 23855 } 23856 23857 logflags = SL_TRACE | SL_NOTE; 23858 /* 23859 * Don't print this message to the console if the operation was done 23860 * to a non-global zone. 23861 */ 23862 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 23863 logflags |= SL_CONSOLE; 23864 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 23865 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 23866 if (err == 0 && count == 0) 23867 err = ENOENT; 23868 return (err); 23869 } 23870 23871 /* 23872 * Process the TCP_IOC_ABORT_CONN ioctl request. 23873 */ 23874 static void 23875 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 23876 { 23877 int err; 23878 IOCP iocp; 23879 MBLKP mp1; 23880 sa_family_t laf, raf; 23881 tcp_ioc_abort_conn_t *acp; 23882 zone_t *zptr; 23883 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 23884 23885 iocp = (IOCP)mp->b_rptr; 23886 23887 if ((mp1 = mp->b_cont) == NULL || 23888 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 23889 err = EINVAL; 23890 goto out; 23891 } 23892 23893 /* check permissions */ 23894 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 23895 err = EPERM; 23896 goto out; 23897 } 23898 23899 if (mp1->b_cont != NULL) { 23900 freemsg(mp1->b_cont); 23901 mp1->b_cont = NULL; 23902 } 23903 23904 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 23905 laf = acp->ac_local.ss_family; 23906 raf = acp->ac_remote.ss_family; 23907 23908 /* check that a zone with the supplied zoneid exists */ 23909 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 23910 zptr = zone_find_by_id(zoneid); 23911 if (zptr != NULL) { 23912 zone_rele(zptr); 23913 } else { 23914 err = EINVAL; 23915 goto out; 23916 } 23917 } 23918 23919 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 23920 acp->ac_start > acp->ac_end || laf != raf || 23921 (laf != AF_INET && laf != AF_INET6)) { 23922 err = EINVAL; 23923 goto out; 23924 } 23925 23926 tcp_ioctl_abort_dump(acp); 23927 err = tcp_ioctl_abort(acp); 23928 23929 out: 23930 if (mp1 != NULL) { 23931 freemsg(mp1); 23932 mp->b_cont = NULL; 23933 } 23934 23935 if (err != 0) 23936 miocnak(q, mp, 0, err); 23937 else 23938 miocack(q, mp, 0, 0); 23939 } 23940 23941 /* 23942 * tcp_time_wait_processing() handles processing of incoming packets when 23943 * the tcp is in the TIME_WAIT state. 23944 * A TIME_WAIT tcp that has an associated open TCP stream is never put 23945 * on the time wait list. 23946 */ 23947 void 23948 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 23949 uint32_t seg_ack, int seg_len, tcph_t *tcph) 23950 { 23951 int32_t bytes_acked; 23952 int32_t gap; 23953 int32_t rgap; 23954 tcp_opt_t tcpopt; 23955 uint_t flags; 23956 uint32_t new_swnd = 0; 23957 conn_t *connp; 23958 23959 BUMP_LOCAL(tcp->tcp_ibsegs); 23960 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 23961 23962 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 23963 new_swnd = BE16_TO_U16(tcph->th_win) << 23964 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 23965 if (tcp->tcp_snd_ts_ok) { 23966 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 23967 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 23968 tcp->tcp_rnxt, TH_ACK); 23969 goto done; 23970 } 23971 } 23972 gap = seg_seq - tcp->tcp_rnxt; 23973 rgap = tcp->tcp_rwnd - (gap + seg_len); 23974 if (gap < 0) { 23975 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 23976 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 23977 (seg_len > -gap ? -gap : seg_len)); 23978 seg_len += gap; 23979 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 23980 if (flags & TH_RST) { 23981 goto done; 23982 } 23983 if ((flags & TH_FIN) && seg_len == -1) { 23984 /* 23985 * When TCP receives a duplicate FIN in 23986 * TIME_WAIT state, restart the 2 MSL timer. 23987 * See page 73 in RFC 793. Make sure this TCP 23988 * is already on the TIME_WAIT list. If not, 23989 * just restart the timer. 23990 */ 23991 if (TCP_IS_DETACHED(tcp)) { 23992 tcp_time_wait_remove(tcp, NULL); 23993 tcp_time_wait_append(tcp); 23994 TCP_DBGSTAT(tcp_rput_time_wait); 23995 } else { 23996 ASSERT(tcp != NULL); 23997 TCP_TIMER_RESTART(tcp, 23998 tcp_time_wait_interval); 23999 } 24000 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24001 tcp->tcp_rnxt, TH_ACK); 24002 goto done; 24003 } 24004 flags |= TH_ACK_NEEDED; 24005 seg_len = 0; 24006 goto process_ack; 24007 } 24008 24009 /* Fix seg_seq, and chew the gap off the front. */ 24010 seg_seq = tcp->tcp_rnxt; 24011 } 24012 24013 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24014 /* 24015 * Make sure that when we accept the connection, pick 24016 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24017 * old connection. 24018 * 24019 * The next ISS generated is equal to tcp_iss_incr_extra 24020 * + ISS_INCR/2 + other components depending on the 24021 * value of tcp_strong_iss. We pre-calculate the new 24022 * ISS here and compare with tcp_snxt to determine if 24023 * we need to make adjustment to tcp_iss_incr_extra. 24024 * 24025 * The above calculation is ugly and is a 24026 * waste of CPU cycles... 24027 */ 24028 uint32_t new_iss = tcp_iss_incr_extra; 24029 int32_t adj; 24030 24031 switch (tcp_strong_iss) { 24032 case 2: { 24033 /* Add time and MD5 components. */ 24034 uint32_t answer[4]; 24035 struct { 24036 uint32_t ports; 24037 in6_addr_t src; 24038 in6_addr_t dst; 24039 } arg; 24040 MD5_CTX context; 24041 24042 mutex_enter(&tcp_iss_key_lock); 24043 context = tcp_iss_key; 24044 mutex_exit(&tcp_iss_key_lock); 24045 arg.ports = tcp->tcp_ports; 24046 /* We use MAPPED addresses in tcp_iss_init */ 24047 arg.src = tcp->tcp_ip_src_v6; 24048 if (tcp->tcp_ipversion == IPV4_VERSION) { 24049 IN6_IPADDR_TO_V4MAPPED( 24050 tcp->tcp_ipha->ipha_dst, 24051 &arg.dst); 24052 } else { 24053 arg.dst = 24054 tcp->tcp_ip6h->ip6_dst; 24055 } 24056 MD5Update(&context, (uchar_t *)&arg, 24057 sizeof (arg)); 24058 MD5Final((uchar_t *)answer, &context); 24059 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24060 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24061 break; 24062 } 24063 case 1: 24064 /* Add time component and min random (i.e. 1). */ 24065 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24066 break; 24067 default: 24068 /* Add only time component. */ 24069 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24070 break; 24071 } 24072 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24073 /* 24074 * New ISS not guaranteed to be ISS_INCR/2 24075 * ahead of the current tcp_snxt, so add the 24076 * difference to tcp_iss_incr_extra. 24077 */ 24078 tcp_iss_incr_extra += adj; 24079 } 24080 /* 24081 * If tcp_clean_death() can not perform the task now, 24082 * drop the SYN packet and let the other side re-xmit. 24083 * Otherwise pass the SYN packet back in, since the 24084 * old tcp state has been cleaned up or freed. 24085 */ 24086 if (tcp_clean_death(tcp, 0, 27) == -1) 24087 goto done; 24088 /* 24089 * We will come back to tcp_rput_data 24090 * on the global queue. Packets destined 24091 * for the global queue will be checked 24092 * with global policy. But the policy for 24093 * this packet has already been checked as 24094 * this was destined for the detached 24095 * connection. We need to bypass policy 24096 * check this time by attaching a dummy 24097 * ipsec_in with ipsec_in_dont_check set. 24098 */ 24099 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 24100 NULL) { 24101 TCP_STAT(tcp_time_wait_syn_success); 24102 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24103 return; 24104 } 24105 goto done; 24106 } 24107 24108 /* 24109 * rgap is the amount of stuff received out of window. A negative 24110 * value is the amount out of window. 24111 */ 24112 if (rgap < 0) { 24113 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 24114 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 24115 /* Fix seg_len and make sure there is something left. */ 24116 seg_len += rgap; 24117 if (seg_len <= 0) { 24118 if (flags & TH_RST) { 24119 goto done; 24120 } 24121 flags |= TH_ACK_NEEDED; 24122 seg_len = 0; 24123 goto process_ack; 24124 } 24125 } 24126 /* 24127 * Check whether we can update tcp_ts_recent. This test is 24128 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24129 * Extensions for High Performance: An Update", Internet Draft. 24130 */ 24131 if (tcp->tcp_snd_ts_ok && 24132 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24133 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24134 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24135 tcp->tcp_last_rcv_lbolt = lbolt64; 24136 } 24137 24138 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24139 /* Always ack out of order packets */ 24140 flags |= TH_ACK_NEEDED; 24141 seg_len = 0; 24142 } else if (seg_len > 0) { 24143 BUMP_MIB(&tcp_mib, tcpInClosed); 24144 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 24145 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 24146 } 24147 if (flags & TH_RST) { 24148 (void) tcp_clean_death(tcp, 0, 28); 24149 goto done; 24150 } 24151 if (flags & TH_SYN) { 24152 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24153 TH_RST|TH_ACK); 24154 /* 24155 * Do not delete the TCP structure if it is in 24156 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24157 */ 24158 goto done; 24159 } 24160 process_ack: 24161 if (flags & TH_ACK) { 24162 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24163 if (bytes_acked <= 0) { 24164 if (bytes_acked == 0 && seg_len == 0 && 24165 new_swnd == tcp->tcp_swnd) 24166 BUMP_MIB(&tcp_mib, tcpInDupAck); 24167 } else { 24168 /* Acks something not sent */ 24169 flags |= TH_ACK_NEEDED; 24170 } 24171 } 24172 if (flags & TH_ACK_NEEDED) { 24173 /* 24174 * Time to send an ack for some reason. 24175 */ 24176 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24177 tcp->tcp_rnxt, TH_ACK); 24178 } 24179 done: 24180 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24181 DB_CKSUMSTART(mp) = 0; 24182 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24183 TCP_STAT(tcp_time_wait_syn_fail); 24184 } 24185 freemsg(mp); 24186 } 24187 24188 /* 24189 * Return zero if the buffers are identical in length and content. 24190 * This is used for comparing extension header buffers. 24191 * Note that an extension header would be declared different 24192 * even if all that changed was the next header value in that header i.e. 24193 * what really changed is the next extension header. 24194 */ 24195 static boolean_t 24196 tcp_cmpbuf(void *a, uint_t alen, boolean_t b_valid, void *b, uint_t blen) 24197 { 24198 if (!b_valid) 24199 blen = 0; 24200 24201 if (alen != blen) 24202 return (B_TRUE); 24203 if (alen == 0) 24204 return (B_FALSE); /* Both zero length */ 24205 return (bcmp(a, b, alen)); 24206 } 24207 24208 /* 24209 * Preallocate memory for tcp_savebuf(). Returns B_TRUE if ok. 24210 * Return B_FALSE if memory allocation fails - don't change any state! 24211 */ 24212 static boolean_t 24213 tcp_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24214 void *src, uint_t srclen) 24215 { 24216 void *dst; 24217 24218 if (!src_valid) 24219 srclen = 0; 24220 24221 ASSERT(*dstlenp == 0); 24222 if (src != NULL && srclen != 0) { 24223 dst = mi_alloc(srclen, BPRI_MED); 24224 if (dst == NULL) 24225 return (B_FALSE); 24226 } else { 24227 dst = NULL; 24228 } 24229 if (*dstp != NULL) { 24230 mi_free(*dstp); 24231 *dstp = NULL; 24232 *dstlenp = 0; 24233 } 24234 *dstp = dst; 24235 if (dst != NULL) 24236 *dstlenp = srclen; 24237 else 24238 *dstlenp = 0; 24239 return (B_TRUE); 24240 } 24241 24242 /* 24243 * Replace what is in *dst, *dstlen with the source. 24244 * Assumes tcp_allocbuf has already been called. 24245 */ 24246 static void 24247 tcp_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24248 void *src, uint_t srclen) 24249 { 24250 if (!src_valid) 24251 srclen = 0; 24252 24253 ASSERT(*dstlenp == srclen); 24254 if (src != NULL && srclen != 0) { 24255 bcopy(src, *dstp, srclen); 24256 } 24257 } 24258 24259 /* 24260 * Allocate a T_SVR4_OPTMGMT_REQ. 24261 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 24262 * that tcp_rput_other can drop the acks. 24263 */ 24264 static mblk_t * 24265 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 24266 { 24267 mblk_t *mp; 24268 struct T_optmgmt_req *tor; 24269 struct opthdr *oh; 24270 uint_t size; 24271 char *optptr; 24272 24273 size = sizeof (*tor) + sizeof (*oh) + optlen; 24274 mp = allocb(size, BPRI_MED); 24275 if (mp == NULL) 24276 return (NULL); 24277 24278 mp->b_wptr += size; 24279 mp->b_datap->db_type = M_PROTO; 24280 tor = (struct T_optmgmt_req *)mp->b_rptr; 24281 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 24282 tor->MGMT_flags = T_NEGOTIATE; 24283 tor->OPT_length = sizeof (*oh) + optlen; 24284 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 24285 24286 oh = (struct opthdr *)&tor[1]; 24287 oh->level = level; 24288 oh->name = cmd; 24289 oh->len = optlen; 24290 if (optlen != 0) { 24291 optptr = (char *)&oh[1]; 24292 bcopy(opt, optptr, optlen); 24293 } 24294 return (mp); 24295 } 24296 24297 /* 24298 * TCP Timers Implementation. 24299 */ 24300 timeout_id_t 24301 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24302 { 24303 mblk_t *mp; 24304 tcp_timer_t *tcpt; 24305 tcp_t *tcp = connp->conn_tcp; 24306 24307 ASSERT(connp->conn_sqp != NULL); 24308 24309 TCP_DBGSTAT(tcp_timeout_calls); 24310 24311 if (tcp->tcp_timercache == NULL) { 24312 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24313 } else { 24314 TCP_DBGSTAT(tcp_timeout_cached_alloc); 24315 mp = tcp->tcp_timercache; 24316 tcp->tcp_timercache = mp->b_next; 24317 mp->b_next = NULL; 24318 ASSERT(mp->b_wptr == NULL); 24319 } 24320 24321 CONN_INC_REF(connp); 24322 tcpt = (tcp_timer_t *)mp->b_rptr; 24323 tcpt->connp = connp; 24324 tcpt->tcpt_proc = f; 24325 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 24326 return ((timeout_id_t)mp); 24327 } 24328 24329 static void 24330 tcp_timer_callback(void *arg) 24331 { 24332 mblk_t *mp = (mblk_t *)arg; 24333 tcp_timer_t *tcpt; 24334 conn_t *connp; 24335 24336 tcpt = (tcp_timer_t *)mp->b_rptr; 24337 connp = tcpt->connp; 24338 squeue_fill(connp->conn_sqp, mp, 24339 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 24340 } 24341 24342 static void 24343 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24344 { 24345 tcp_timer_t *tcpt; 24346 conn_t *connp = (conn_t *)arg; 24347 tcp_t *tcp = connp->conn_tcp; 24348 24349 tcpt = (tcp_timer_t *)mp->b_rptr; 24350 ASSERT(connp == tcpt->connp); 24351 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24352 24353 /* 24354 * If the TCP has reached the closed state, don't proceed any 24355 * further. This TCP logically does not exist on the system. 24356 * tcpt_proc could for example access queues, that have already 24357 * been qprocoff'ed off. Also see comments at the start of tcp_input 24358 */ 24359 if (tcp->tcp_state != TCPS_CLOSED) { 24360 (*tcpt->tcpt_proc)(connp); 24361 } else { 24362 tcp->tcp_timer_tid = 0; 24363 } 24364 tcp_timer_free(connp->conn_tcp, mp); 24365 } 24366 24367 /* 24368 * There is potential race with untimeout and the handler firing at the same 24369 * time. The mblock may be freed by the handler while we are trying to use 24370 * it. But since both should execute on the same squeue, this race should not 24371 * occur. 24372 */ 24373 clock_t 24374 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24375 { 24376 mblk_t *mp = (mblk_t *)id; 24377 tcp_timer_t *tcpt; 24378 clock_t delta; 24379 24380 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 24381 24382 if (mp == NULL) 24383 return (-1); 24384 24385 tcpt = (tcp_timer_t *)mp->b_rptr; 24386 ASSERT(tcpt->connp == connp); 24387 24388 delta = untimeout(tcpt->tcpt_tid); 24389 24390 if (delta >= 0) { 24391 TCP_DBGSTAT(tcp_timeout_canceled); 24392 tcp_timer_free(connp->conn_tcp, mp); 24393 CONN_DEC_REF(connp); 24394 } 24395 24396 return (delta); 24397 } 24398 24399 /* 24400 * Allocate space for the timer event. The allocation looks like mblk, but it is 24401 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24402 * 24403 * Dealing with failures: If we can't allocate from the timer cache we try 24404 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24405 * points to b_rptr. 24406 * If we can't allocate anything using allocb_tryhard(), we perform a last 24407 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24408 * save the actual allocation size in b_datap. 24409 */ 24410 mblk_t * 24411 tcp_timermp_alloc(int kmflags) 24412 { 24413 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 24414 kmflags & ~KM_PANIC); 24415 24416 if (mp != NULL) { 24417 mp->b_next = mp->b_prev = NULL; 24418 mp->b_rptr = (uchar_t *)(&mp[1]); 24419 mp->b_wptr = NULL; 24420 mp->b_datap = NULL; 24421 mp->b_queue = NULL; 24422 } else if (kmflags & KM_PANIC) { 24423 /* 24424 * Failed to allocate memory for the timer. Try allocating from 24425 * dblock caches. 24426 */ 24427 TCP_STAT(tcp_timermp_allocfail); 24428 mp = allocb_tryhard(sizeof (tcp_timer_t)); 24429 if (mp == NULL) { 24430 size_t size = 0; 24431 /* 24432 * Memory is really low. Try tryhard allocation. 24433 */ 24434 TCP_STAT(tcp_timermp_allocdblfail); 24435 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 24436 sizeof (tcp_timer_t), &size, kmflags); 24437 mp->b_rptr = (uchar_t *)(&mp[1]); 24438 mp->b_next = mp->b_prev = NULL; 24439 mp->b_wptr = (uchar_t *)-1; 24440 mp->b_datap = (dblk_t *)size; 24441 mp->b_queue = NULL; 24442 } 24443 ASSERT(mp->b_wptr != NULL); 24444 } 24445 TCP_DBGSTAT(tcp_timermp_alloced); 24446 24447 return (mp); 24448 } 24449 24450 /* 24451 * Free per-tcp timer cache. 24452 * It can only contain entries from tcp_timercache. 24453 */ 24454 void 24455 tcp_timermp_free(tcp_t *tcp) 24456 { 24457 mblk_t *mp; 24458 24459 while ((mp = tcp->tcp_timercache) != NULL) { 24460 ASSERT(mp->b_wptr == NULL); 24461 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 24462 kmem_cache_free(tcp_timercache, mp); 24463 } 24464 } 24465 24466 /* 24467 * Free timer event. Put it on the per-tcp timer cache if there is not too many 24468 * events there already (currently at most two events are cached). 24469 * If the event is not allocated from the timer cache, free it right away. 24470 */ 24471 static void 24472 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 24473 { 24474 mblk_t *mp1 = tcp->tcp_timercache; 24475 24476 if (mp->b_wptr != NULL) { 24477 /* 24478 * This allocation is not from a timer cache, free it right 24479 * away. 24480 */ 24481 if (mp->b_wptr != (uchar_t *)-1) 24482 freeb(mp); 24483 else 24484 kmem_free(mp, (size_t)mp->b_datap); 24485 } else if (mp1 == NULL || mp1->b_next == NULL) { 24486 /* Cache this timer block for future allocations */ 24487 mp->b_rptr = (uchar_t *)(&mp[1]); 24488 mp->b_next = mp1; 24489 tcp->tcp_timercache = mp; 24490 } else { 24491 kmem_cache_free(tcp_timercache, mp); 24492 TCP_DBGSTAT(tcp_timermp_freed); 24493 } 24494 } 24495 24496 /* 24497 * End of TCP Timers implementation. 24498 */ 24499 24500 /* 24501 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 24502 * on the specified backing STREAMS q. Note, the caller may make the 24503 * decision to call based on the tcp_t.tcp_flow_stopped value which 24504 * when check outside the q's lock is only an advisory check ... 24505 */ 24506 24507 void 24508 tcp_setqfull(tcp_t *tcp) 24509 { 24510 queue_t *q = tcp->tcp_wq; 24511 24512 if (!(q->q_flag & QFULL)) { 24513 mutex_enter(QLOCK(q)); 24514 if (!(q->q_flag & QFULL)) { 24515 /* still need to set QFULL */ 24516 q->q_flag |= QFULL; 24517 tcp->tcp_flow_stopped = B_TRUE; 24518 mutex_exit(QLOCK(q)); 24519 TCP_STAT(tcp_flwctl_on); 24520 } else { 24521 mutex_exit(QLOCK(q)); 24522 } 24523 } 24524 } 24525 24526 void 24527 tcp_clrqfull(tcp_t *tcp) 24528 { 24529 queue_t *q = tcp->tcp_wq; 24530 24531 if (q->q_flag & QFULL) { 24532 mutex_enter(QLOCK(q)); 24533 if (q->q_flag & QFULL) { 24534 q->q_flag &= ~QFULL; 24535 tcp->tcp_flow_stopped = B_FALSE; 24536 mutex_exit(QLOCK(q)); 24537 if (q->q_flag & QWANTW) 24538 qbackenable(q, 0); 24539 } else { 24540 mutex_exit(QLOCK(q)); 24541 } 24542 } 24543 } 24544 24545 /* 24546 * TCP Kstats implementation 24547 */ 24548 static void 24549 tcp_kstat_init(void) 24550 { 24551 tcp_named_kstat_t template = { 24552 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 24553 { "rtoMin", KSTAT_DATA_INT32, 0 }, 24554 { "rtoMax", KSTAT_DATA_INT32, 0 }, 24555 { "maxConn", KSTAT_DATA_INT32, 0 }, 24556 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 24557 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 24558 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 24559 { "estabResets", KSTAT_DATA_UINT32, 0 }, 24560 { "currEstab", KSTAT_DATA_UINT32, 0 }, 24561 { "inSegs", KSTAT_DATA_UINT32, 0 }, 24562 { "outSegs", KSTAT_DATA_UINT32, 0 }, 24563 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 24564 { "connTableSize", KSTAT_DATA_INT32, 0 }, 24565 { "outRsts", KSTAT_DATA_UINT32, 0 }, 24566 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 24567 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 24568 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 24569 { "outAck", KSTAT_DATA_UINT32, 0 }, 24570 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 24571 { "outUrg", KSTAT_DATA_UINT32, 0 }, 24572 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 24573 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 24574 { "outControl", KSTAT_DATA_UINT32, 0 }, 24575 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 24576 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 24577 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 24578 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 24579 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 24580 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 24581 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 24582 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 24583 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 24584 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 24585 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 24586 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 24587 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 24588 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 24589 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 24590 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 24591 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 24592 { "inClosed", KSTAT_DATA_UINT32, 0 }, 24593 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 24594 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 24595 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 24596 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 24597 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 24598 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 24599 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 24600 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 24601 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 24602 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 24603 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 24604 { "connTableSize6", KSTAT_DATA_INT32, 0 } 24605 }; 24606 24607 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 24608 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 24609 24610 if (tcp_mibkp == NULL) 24611 return; 24612 24613 template.rtoAlgorithm.value.ui32 = 4; 24614 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 24615 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 24616 template.maxConn.value.i32 = -1; 24617 24618 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 24619 24620 tcp_mibkp->ks_update = tcp_kstat_update; 24621 24622 kstat_install(tcp_mibkp); 24623 } 24624 24625 static void 24626 tcp_kstat_fini(void) 24627 { 24628 24629 if (tcp_mibkp != NULL) { 24630 kstat_delete(tcp_mibkp); 24631 tcp_mibkp = NULL; 24632 } 24633 } 24634 24635 static int 24636 tcp_kstat_update(kstat_t *kp, int rw) 24637 { 24638 tcp_named_kstat_t *tcpkp; 24639 tcp_t *tcp; 24640 connf_t *connfp; 24641 conn_t *connp; 24642 int i; 24643 24644 if (!kp || !kp->ks_data) 24645 return (EIO); 24646 24647 if (rw == KSTAT_WRITE) 24648 return (EACCES); 24649 24650 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 24651 24652 tcpkp->currEstab.value.ui32 = 0; 24653 24654 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24655 connfp = &ipcl_globalhash_fanout[i]; 24656 connp = NULL; 24657 while ((connp = 24658 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24659 tcp = connp->conn_tcp; 24660 switch (tcp_snmp_state(tcp)) { 24661 case MIB2_TCP_established: 24662 case MIB2_TCP_closeWait: 24663 tcpkp->currEstab.value.ui32++; 24664 break; 24665 } 24666 } 24667 } 24668 24669 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 24670 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 24671 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 24672 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 24673 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 24674 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 24675 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 24676 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 24677 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 24678 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 24679 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 24680 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 24681 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 24682 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 24683 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 24684 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 24685 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 24686 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 24687 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 24688 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 24689 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 24690 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 24691 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 24692 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 24693 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 24694 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 24695 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 24696 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 24697 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 24698 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 24699 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 24700 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 24701 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 24702 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 24703 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 24704 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 24705 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 24706 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 24707 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 24708 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 24709 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 24710 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 24711 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 24712 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 24713 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 24714 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 24715 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 24716 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 24717 24718 return (0); 24719 } 24720 24721 void 24722 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 24723 { 24724 uint16_t hdr_len; 24725 ipha_t *ipha; 24726 uint8_t *nexthdrp; 24727 tcph_t *tcph; 24728 24729 /* Already has an eager */ 24730 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24731 TCP_STAT(tcp_reinput_syn); 24732 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 24733 connp, SQTAG_TCP_REINPUT_EAGER); 24734 return; 24735 } 24736 24737 switch (IPH_HDR_VERSION(mp->b_rptr)) { 24738 case IPV4_VERSION: 24739 ipha = (ipha_t *)mp->b_rptr; 24740 hdr_len = IPH_HDR_LENGTH(ipha); 24741 break; 24742 case IPV6_VERSION: 24743 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 24744 &hdr_len, &nexthdrp)) { 24745 CONN_DEC_REF(connp); 24746 freemsg(mp); 24747 return; 24748 } 24749 break; 24750 } 24751 24752 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 24753 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 24754 mp->b_datap->db_struioflag |= STRUIO_EAGER; 24755 DB_CKSUMSTART(mp) = (intptr_t)sqp; 24756 } 24757 24758 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 24759 SQTAG_TCP_REINPUT); 24760 } 24761 24762 static squeue_func_t 24763 tcp_squeue_switch(int val) 24764 { 24765 squeue_func_t rval = squeue_fill; 24766 24767 switch (val) { 24768 case 1: 24769 rval = squeue_enter_nodrain; 24770 break; 24771 case 2: 24772 rval = squeue_enter; 24773 break; 24774 default: 24775 break; 24776 } 24777 return (rval); 24778 } 24779 24780 static void 24781 tcp_squeue_add(squeue_t *sqp) 24782 { 24783 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 24784 sizeof (tcp_squeue_priv_t), KM_SLEEP); 24785 24786 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 24787 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 24788 sqp, TCP_TIME_WAIT_DELAY); 24789 } 24790