1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 61 #include <sys/errno.h> 62 #include <sys/signal.h> 63 #include <sys/socket.h> 64 #include <sys/sockio.h> 65 #include <sys/isa_defs.h> 66 #include <sys/md5.h> 67 #include <sys/random.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/mi.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 #include <inet/tcp_trace.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <sys/sdt.h> 105 #include <rpc/pmap_prot.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 129 * squeue_fill). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. ip_tcpopen() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 extern major_t TCP6_MAJ; 237 238 /* 239 * Values for squeue switch: 240 * 1: squeue_enter_nodrain 241 * 2: squeue_enter 242 * 3: squeue_fill 243 */ 244 int tcp_squeue_close = 2; 245 int tcp_squeue_wput = 2; 246 247 squeue_func_t tcp_squeue_close_proc; 248 squeue_func_t tcp_squeue_wput_proc; 249 250 /* 251 * This controls how tiny a write must be before we try to copy it 252 * into the the mblk on the tail of the transmit queue. Not much 253 * speedup is observed for values larger than sixteen. Zero will 254 * disable the optimisation. 255 */ 256 int tcp_tx_pull_len = 16; 257 258 /* 259 * TCP Statistics. 260 * 261 * How TCP statistics work. 262 * 263 * There are two types of statistics invoked by two macros. 264 * 265 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 266 * supposed to be used in non MT-hot paths of the code. 267 * 268 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 269 * supposed to be used for DEBUG purposes and may be used on a hot path. 270 * 271 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 272 * (use "kstat tcp" to get them). 273 * 274 * There is also additional debugging facility that marks tcp_clean_death() 275 * instances and saves them in tcp_t structure. It is triggered by 276 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 277 * tcp_clean_death() calls that counts the number of times each tag was hit. It 278 * is triggered by TCP_CLD_COUNTERS define. 279 * 280 * How to add new counters. 281 * 282 * 1) Add a field in the tcp_stat structure describing your counter. 283 * 2) Add a line in tcp_statistics with the name of the counter. 284 * 285 * IMPORTANT!! - make sure that both are in sync !! 286 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 287 * 288 * Please avoid using private counters which are not kstat-exported. 289 * 290 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 291 * in tcp_t structure. 292 * 293 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 294 */ 295 296 #ifndef TCP_DEBUG_COUNTER 297 #ifdef DEBUG 298 #define TCP_DEBUG_COUNTER 1 299 #else 300 #define TCP_DEBUG_COUNTER 0 301 #endif 302 #endif 303 304 #define TCP_CLD_COUNTERS 0 305 306 #define TCP_TAG_CLEAN_DEATH 1 307 #define TCP_MAX_CLEAN_DEATH_TAG 32 308 309 #ifdef lint 310 static int _lint_dummy_; 311 #endif 312 313 #if TCP_CLD_COUNTERS 314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 315 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 316 #elif defined(lint) 317 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 318 #else 319 #define TCP_CLD_STAT(x) 320 #endif 321 322 #if TCP_DEBUG_COUNTER 323 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 324 #elif defined(lint) 325 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(x) 328 #endif 329 330 tcp_stat_t tcp_statistics = { 331 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 332 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 333 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 334 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 335 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 336 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 337 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 338 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 339 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 340 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 341 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 342 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 343 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 344 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 345 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 346 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 347 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 348 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 349 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 350 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 351 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 352 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 353 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 354 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 355 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 356 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 357 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 358 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 359 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 360 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 361 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 362 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 363 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 364 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 365 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 366 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 367 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 368 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 369 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 370 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 371 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 372 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 373 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 374 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 375 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 376 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 377 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 378 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 379 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 380 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 381 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 382 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 383 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 384 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 385 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 386 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 387 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 388 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 389 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 390 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 391 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 392 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 395 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 396 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 397 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 398 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 399 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 400 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 401 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 402 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 403 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 404 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 405 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 406 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 407 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 408 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 409 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 410 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 411 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 412 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 413 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 414 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 415 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 416 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 417 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 418 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 419 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 420 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 421 }; 422 423 static kstat_t *tcp_kstat; 424 425 /* 426 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 427 * tcp write side. 428 */ 429 #define CALL_IP_WPUT(connp, q, mp) { \ 430 ASSERT(((q)->q_flag & QREADR) == 0); \ 431 TCP_DBGSTAT(tcp_ip_output); \ 432 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 433 } 434 435 /* Macros for timestamp comparisons */ 436 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 437 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 438 439 /* 440 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 441 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 442 * by adding three components: a time component which grows by 1 every 4096 443 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 444 * a per-connection component which grows by 125000 for every new connection; 445 * and an "extra" component that grows by a random amount centered 446 * approximately on 64000. This causes the the ISS generator to cycle every 447 * 4.89 hours if no TCP connections are made, and faster if connections are 448 * made. 449 * 450 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 451 * components: a time component which grows by 250000 every second; and 452 * a per-connection component which grows by 125000 for every new connections. 453 * 454 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 455 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 456 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 457 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 458 * password. 459 */ 460 #define ISS_INCR 250000 461 #define ISS_NSEC_SHT 12 462 463 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 464 static kmutex_t tcp_iss_key_lock; 465 static MD5_CTX tcp_iss_key; 466 static sin_t sin_null; /* Zero address for quick clears */ 467 static sin6_t sin6_null; /* Zero address for quick clears */ 468 469 /* Packet dropper for TCP IPsec policy drops. */ 470 static ipdropper_t tcp_dropper; 471 472 /* 473 * This implementation follows the 4.3BSD interpretation of the urgent 474 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 475 * incompatible changes in protocols like telnet and rlogin. 476 */ 477 #define TCP_OLD_URP_INTERPRETATION 1 478 479 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 480 (TCP_IS_DETACHED(tcp) && \ 481 (!(tcp)->tcp_hard_binding)) 482 483 /* 484 * TCP reassembly macros. We hide starting and ending sequence numbers in 485 * b_next and b_prev of messages on the reassembly queue. The messages are 486 * chained using b_cont. These macros are used in tcp_reass() so we don't 487 * have to see the ugly casts and assignments. 488 */ 489 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 490 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 491 (mblk_t *)(uintptr_t)(u)) 492 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 493 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 494 (mblk_t *)(uintptr_t)(u)) 495 496 /* 497 * Implementation of TCP Timers. 498 * ============================= 499 * 500 * INTERFACE: 501 * 502 * There are two basic functions dealing with tcp timers: 503 * 504 * timeout_id_t tcp_timeout(connp, func, time) 505 * clock_t tcp_timeout_cancel(connp, timeout_id) 506 * TCP_TIMER_RESTART(tcp, intvl) 507 * 508 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 509 * after 'time' ticks passed. The function called by timeout() must adhere to 510 * the same restrictions as a driver soft interrupt handler - it must not sleep 511 * or call other functions that might sleep. The value returned is the opaque 512 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 513 * cancel the request. The call to tcp_timeout() may fail in which case it 514 * returns zero. This is different from the timeout(9F) function which never 515 * fails. 516 * 517 * The call-back function 'func' always receives 'connp' as its single 518 * argument. It is always executed in the squeue corresponding to the tcp 519 * structure. The tcp structure is guaranteed to be present at the time the 520 * call-back is called. 521 * 522 * NOTE: The call-back function 'func' is never called if tcp is in 523 * the TCPS_CLOSED state. 524 * 525 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 526 * request. locks acquired by the call-back routine should not be held across 527 * the call to tcp_timeout_cancel() or a deadlock may result. 528 * 529 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 530 * Otherwise, it returns an integer value greater than or equal to 0. In 531 * particular, if the call-back function is already placed on the squeue, it can 532 * not be canceled. 533 * 534 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 535 * within squeue context corresponding to the tcp instance. Since the 536 * call-back is also called via the same squeue, there are no race 537 * conditions described in untimeout(9F) manual page since all calls are 538 * strictly serialized. 539 * 540 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 541 * stored in tcp_timer_tid and starts a new one using 542 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 543 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 544 * field. 545 * 546 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 547 * call-back may still be called, so it is possible tcp_timer() will be 548 * called several times. This should not be a problem since tcp_timer() 549 * should always check the tcp instance state. 550 * 551 * 552 * IMPLEMENTATION: 553 * 554 * TCP timers are implemented using three-stage process. The call to 555 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 556 * when the timer expires. The tcp_timer_callback() arranges the call of the 557 * tcp_timer_handler() function via squeue corresponding to the tcp 558 * instance. The tcp_timer_handler() calls actual requested timeout call-back 559 * and passes tcp instance as an argument to it. Information is passed between 560 * stages using the tcp_timer_t structure which contains the connp pointer, the 561 * tcp call-back to call and the timeout id returned by the timeout(9F). 562 * 563 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 564 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 565 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 566 * returns the pointer to this mblk. 567 * 568 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 569 * looks like a normal mblk without actual dblk attached to it. 570 * 571 * To optimize performance each tcp instance holds a small cache of timer 572 * mblocks. In the current implementation it caches up to two timer mblocks per 573 * tcp instance. The cache is preserved over tcp frees and is only freed when 574 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 575 * timer processing happens on a corresponding squeue, the cache manipulation 576 * does not require any locks. Experiments show that majority of timer mblocks 577 * allocations are satisfied from the tcp cache and do not involve kmem calls. 578 * 579 * The tcp_timeout() places a refhold on the connp instance which guarantees 580 * that it will be present at the time the call-back function fires. The 581 * tcp_timer_handler() drops the reference after calling the call-back, so the 582 * call-back function does not need to manipulate the references explicitly. 583 */ 584 585 typedef struct tcp_timer_s { 586 conn_t *connp; 587 void (*tcpt_proc)(void *); 588 timeout_id_t tcpt_tid; 589 } tcp_timer_t; 590 591 static kmem_cache_t *tcp_timercache; 592 kmem_cache_t *tcp_sack_info_cache; 593 kmem_cache_t *tcp_iphc_cache; 594 595 /* 596 * For scalability, we must not run a timer for every TCP connection 597 * in TIME_WAIT state. To see why, consider (for time wait interval of 598 * 4 minutes): 599 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 600 * 601 * This list is ordered by time, so you need only delete from the head 602 * until you get to entries which aren't old enough to delete yet. 603 * The list consists of only the detached TIME_WAIT connections. 604 * 605 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 606 * becomes detached TIME_WAIT (either by changing the state and already 607 * being detached or the other way around). This means that the TIME_WAIT 608 * state can be extended (up to doubled) if the connection doesn't become 609 * detached for a long time. 610 * 611 * The list manipulations (including tcp_time_wait_next/prev) 612 * are protected by the tcp_time_wait_lock. The content of the 613 * detached TIME_WAIT connections is protected by the normal perimeters. 614 */ 615 616 typedef struct tcp_squeue_priv_s { 617 kmutex_t tcp_time_wait_lock; 618 /* Protects the next 3 globals */ 619 timeout_id_t tcp_time_wait_tid; 620 tcp_t *tcp_time_wait_head; 621 tcp_t *tcp_time_wait_tail; 622 tcp_t *tcp_free_list; 623 uint_t tcp_free_list_cnt; 624 } tcp_squeue_priv_t; 625 626 /* 627 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 628 * Running it every 5 seconds seems to give the best results. 629 */ 630 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 631 632 /* 633 * To prevent memory hog, limit the number of entries in tcp_free_list 634 * to 1% of available memory / number of cpus 635 */ 636 uint_t tcp_free_list_max_cnt = 0; 637 638 #define TCP_XMIT_LOWATER 4096 639 #define TCP_XMIT_HIWATER 49152 640 #define TCP_RECV_LOWATER 2048 641 #define TCP_RECV_HIWATER 49152 642 643 /* 644 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 645 */ 646 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 647 648 #define TIDUSZ 4096 /* transport interface data unit size */ 649 650 /* 651 * Bind hash list size and has function. It has to be a power of 2 for 652 * hashing. 653 */ 654 #define TCP_BIND_FANOUT_SIZE 512 655 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 656 /* 657 * Size of listen and acceptor hash list. It has to be a power of 2 for 658 * hashing. 659 */ 660 #define TCP_FANOUT_SIZE 256 661 662 #ifdef _ILP32 663 #define TCP_ACCEPTOR_HASH(accid) \ 664 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 665 #else 666 #define TCP_ACCEPTOR_HASH(accid) \ 667 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 668 #endif /* _ILP32 */ 669 670 #define IP_ADDR_CACHE_SIZE 2048 671 #define IP_ADDR_CACHE_HASH(faddr) \ 672 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 673 674 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 675 #define TCP_HSP_HASH_SIZE 256 676 677 #define TCP_HSP_HASH(addr) \ 678 (((addr>>24) ^ (addr >>16) ^ \ 679 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 680 681 /* 682 * TCP options struct returned from tcp_parse_options. 683 */ 684 typedef struct tcp_opt_s { 685 uint32_t tcp_opt_mss; 686 uint32_t tcp_opt_wscale; 687 uint32_t tcp_opt_ts_val; 688 uint32_t tcp_opt_ts_ecr; 689 tcp_t *tcp; 690 } tcp_opt_t; 691 692 /* 693 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 694 */ 695 696 #ifdef _BIG_ENDIAN 697 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 698 (TCPOPT_TSTAMP << 8) | 10) 699 #else 700 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 701 (TCPOPT_NOP << 8) | TCPOPT_NOP) 702 #endif 703 704 /* 705 * Flags returned from tcp_parse_options. 706 */ 707 #define TCP_OPT_MSS_PRESENT 1 708 #define TCP_OPT_WSCALE_PRESENT 2 709 #define TCP_OPT_TSTAMP_PRESENT 4 710 #define TCP_OPT_SACK_OK_PRESENT 8 711 #define TCP_OPT_SACK_PRESENT 16 712 713 /* TCP option length */ 714 #define TCPOPT_NOP_LEN 1 715 #define TCPOPT_MAXSEG_LEN 4 716 #define TCPOPT_WS_LEN 3 717 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 718 #define TCPOPT_TSTAMP_LEN 10 719 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 720 #define TCPOPT_SACK_OK_LEN 2 721 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 722 #define TCPOPT_REAL_SACK_LEN 4 723 #define TCPOPT_MAX_SACK_LEN 36 724 #define TCPOPT_HEADER_LEN 2 725 726 /* TCP cwnd burst factor. */ 727 #define TCP_CWND_INFINITE 65535 728 #define TCP_CWND_SS 3 729 #define TCP_CWND_NORMAL 5 730 731 /* Maximum TCP initial cwin (start/restart). */ 732 #define TCP_MAX_INIT_CWND 8 733 734 /* 735 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 736 * either tcp_slow_start_initial or tcp_slow_start_after idle 737 * depending on the caller. If the upper layer has not used the 738 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 739 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 740 * If the upper layer has changed set the tcp_init_cwnd, just use 741 * it to calculate the tcp_cwnd. 742 */ 743 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 744 { \ 745 if ((tcp)->tcp_init_cwnd == 0) { \ 746 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 747 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 748 } else { \ 749 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 750 } \ 751 tcp->tcp_cwnd_cnt = 0; \ 752 } 753 754 /* TCP Timer control structure */ 755 typedef struct tcpt_s { 756 pfv_t tcpt_pfv; /* The routine we are to call */ 757 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 758 } tcpt_t; 759 760 /* Host Specific Parameter structure */ 761 typedef struct tcp_hsp { 762 struct tcp_hsp *tcp_hsp_next; 763 in6_addr_t tcp_hsp_addr_v6; 764 in6_addr_t tcp_hsp_subnet_v6; 765 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 766 int32_t tcp_hsp_sendspace; 767 int32_t tcp_hsp_recvspace; 768 int32_t tcp_hsp_tstamp; 769 } tcp_hsp_t; 770 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 771 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 772 773 /* 774 * Functions called directly via squeue having a prototype of edesc_t. 775 */ 776 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 777 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 778 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 779 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 780 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 781 void tcp_input(void *arg, mblk_t *mp, void *arg2); 782 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 783 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 784 void tcp_output(void *arg, mblk_t *mp, void *arg2); 785 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 786 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 787 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 788 789 790 /* Prototype for TCP functions */ 791 static void tcp_random_init(void); 792 int tcp_random(void); 793 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 794 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 795 tcp_t *eager); 796 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 797 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 798 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 799 boolean_t user_specified); 800 static void tcp_closei_local(tcp_t *tcp); 801 static void tcp_close_detached(tcp_t *tcp); 802 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 803 mblk_t *idmp, mblk_t **defermp); 804 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 805 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 806 in_port_t dstport, uint_t srcid); 807 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 808 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 809 uint32_t scope_id); 810 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 811 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 812 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 813 static char *tcp_display(tcp_t *tcp, char *, char); 814 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 815 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 816 static void tcp_eager_unlink(tcp_t *tcp); 817 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 818 int unixerr); 819 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 820 int tlierr, int unixerr); 821 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 822 cred_t *cr); 823 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 824 char *value, caddr_t cp, cred_t *cr); 825 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 826 char *value, caddr_t cp, cred_t *cr); 827 static int tcp_tpistate(tcp_t *tcp); 828 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 829 int caller_holds_lock); 830 static void tcp_bind_hash_remove(tcp_t *tcp); 831 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 832 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 833 static void tcp_acceptor_hash_remove(tcp_t *tcp); 834 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 835 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 836 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 837 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 838 static int tcp_header_init_ipv4(tcp_t *tcp); 839 static int tcp_header_init_ipv6(tcp_t *tcp); 840 int tcp_init(tcp_t *tcp, queue_t *q); 841 static int tcp_init_values(tcp_t *tcp); 842 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 843 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 844 t_scalar_t addr_length); 845 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 846 static void tcp_ip_notify(tcp_t *tcp); 847 static mblk_t *tcp_ire_mp(mblk_t *mp); 848 static void tcp_iss_init(tcp_t *tcp); 849 static void tcp_keepalive_killer(void *arg); 850 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 851 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 852 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 853 int *do_disconnectp, int *t_errorp, int *sys_errorp); 854 static boolean_t tcp_allow_connopt_set(int level, int name); 855 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 856 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 857 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 858 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 859 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 860 mblk_t *mblk); 861 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 862 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 863 uchar_t *ptr, uint_t len); 864 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 865 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 866 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 867 caddr_t cp, cred_t *cr); 868 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 869 caddr_t cp, cred_t *cr); 870 static void tcp_iss_key_init(uint8_t *phrase, int len); 871 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 872 caddr_t cp, cred_t *cr); 873 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 874 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 875 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 876 static void tcp_reinit(tcp_t *tcp); 877 static void tcp_reinit_values(tcp_t *tcp); 878 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 879 tcp_t *thisstream, cred_t *cr); 880 881 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 882 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 883 static boolean_t tcp_send_rst_chk(void); 884 static void tcp_ss_rexmit(tcp_t *tcp); 885 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 886 static void tcp_process_options(tcp_t *, tcph_t *); 887 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 888 static void tcp_rsrv(queue_t *q); 889 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 890 static int tcp_snmp_state(tcp_t *tcp); 891 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 892 cred_t *cr); 893 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 894 cred_t *cr); 895 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 896 cred_t *cr); 897 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 898 cred_t *cr); 899 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 900 cred_t *cr); 901 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 902 caddr_t cp, cred_t *cr); 903 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 904 caddr_t cp, cred_t *cr); 905 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 906 cred_t *cr); 907 static void tcp_timer(void *arg); 908 static void tcp_timer_callback(void *); 909 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 910 boolean_t random); 911 static in_port_t tcp_get_next_priv_port(const tcp_t *); 912 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 913 void tcp_wput_accept(queue_t *q, mblk_t *mp); 914 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 915 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 916 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 917 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 918 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 919 const int num_sack_blk, int *usable, uint_t *snxt, 920 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 921 const int mdt_thres); 922 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 923 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 924 const int num_sack_blk, int *usable, uint_t *snxt, 925 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 926 const int mdt_thres); 927 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 928 int num_sack_blk); 929 static void tcp_wsrv(queue_t *q); 930 static int tcp_xmit_end(tcp_t *tcp); 931 static void tcp_ack_timer(void *arg); 932 static mblk_t *tcp_ack_mp(tcp_t *tcp); 933 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 934 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 935 zoneid_t zoneid); 936 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 937 uint32_t ack, int ctl); 938 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 939 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 940 static int setmaxps(queue_t *q, int maxpsz); 941 static void tcp_set_rto(tcp_t *, time_t); 942 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 943 boolean_t, boolean_t); 944 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 945 boolean_t ipsec_mctl); 946 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 947 char *opt, int optlen); 948 static int tcp_build_hdrs(queue_t *, tcp_t *); 949 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 950 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 951 tcph_t *tcph); 952 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 953 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 954 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 955 boolean_t tcp_reserved_port_check(in_port_t); 956 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 957 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 958 static mblk_t *tcp_mdt_info_mp(mblk_t *); 959 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 960 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 961 const boolean_t, const uint32_t, const uint32_t, 962 const uint32_t, const uint32_t); 963 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 964 const uint_t, const uint_t, boolean_t *); 965 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 966 extern mblk_t *tcp_timermp_alloc(int); 967 extern void tcp_timermp_free(tcp_t *); 968 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 969 static void tcp_stop_lingering(tcp_t *tcp); 970 static void tcp_close_linger_timeout(void *arg); 971 void tcp_ddi_init(void); 972 void tcp_ddi_destroy(void); 973 static void tcp_kstat_init(void); 974 static void tcp_kstat_fini(void); 975 static int tcp_kstat_update(kstat_t *kp, int rw); 976 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 977 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 978 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 979 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 980 tcph_t *tcph, mblk_t *idmp); 981 static squeue_func_t tcp_squeue_switch(int); 982 983 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 984 static int tcp_close(queue_t *, int); 985 static int tcpclose_accept(queue_t *); 986 static int tcp_modclose(queue_t *); 987 static void tcp_wput_mod(queue_t *, mblk_t *); 988 989 static void tcp_squeue_add(squeue_t *); 990 static boolean_t tcp_zcopy_check(tcp_t *); 991 static void tcp_zcopy_notify(tcp_t *); 992 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 993 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 994 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 995 996 extern void tcp_kssl_input(tcp_t *, mblk_t *); 997 998 /* 999 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 1000 * 1001 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 1002 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 1003 * (defined in tcp.h) needs to be filled in and passed into the kernel 1004 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 1005 * structure contains the four-tuple of a TCP connection and a range of TCP 1006 * states (specified by ac_start and ac_end). The use of wildcard addresses 1007 * and ports is allowed. Connections with a matching four tuple and a state 1008 * within the specified range will be aborted. The valid states for the 1009 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1010 * inclusive. 1011 * 1012 * An application which has its connection aborted by this ioctl will receive 1013 * an error that is dependent on the connection state at the time of the abort. 1014 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1015 * though a RST packet has been received. If the connection state is equal to 1016 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1017 * and all resources associated with the connection will be freed. 1018 */ 1019 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1020 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1021 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1022 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1023 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1024 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1025 boolean_t); 1026 1027 static struct module_info tcp_rinfo = { 1028 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1029 }; 1030 1031 static struct module_info tcp_winfo = { 1032 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1033 }; 1034 1035 /* 1036 * Entry points for TCP as a module. It only allows SNMP requests 1037 * to pass through. 1038 */ 1039 struct qinit tcp_mod_rinit = { 1040 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1041 }; 1042 1043 struct qinit tcp_mod_winit = { 1044 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1045 &tcp_rinfo 1046 }; 1047 1048 /* 1049 * Entry points for TCP as a device. The normal case which supports 1050 * the TCP functionality. 1051 */ 1052 struct qinit tcp_rinit = { 1053 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1054 }; 1055 1056 struct qinit tcp_winit = { 1057 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1058 }; 1059 1060 /* Initial entry point for TCP in socket mode. */ 1061 struct qinit tcp_sock_winit = { 1062 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1063 }; 1064 1065 /* 1066 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1067 * an accept. Avoid allocating data structures since eager has already 1068 * been created. 1069 */ 1070 struct qinit tcp_acceptor_rinit = { 1071 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1072 }; 1073 1074 struct qinit tcp_acceptor_winit = { 1075 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1076 }; 1077 1078 /* 1079 * Entry points for TCP loopback (read side only) 1080 */ 1081 struct qinit tcp_loopback_rinit = { 1082 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1083 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1084 }; 1085 1086 struct streamtab tcpinfo = { 1087 &tcp_rinit, &tcp_winit 1088 }; 1089 1090 extern squeue_func_t tcp_squeue_wput_proc; 1091 extern squeue_func_t tcp_squeue_timer_proc; 1092 1093 /* Protected by tcp_g_q_lock */ 1094 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1095 kmutex_t tcp_g_q_lock; 1096 1097 /* Protected by tcp_hsp_lock */ 1098 /* 1099 * XXX The host param mechanism should go away and instead we should use 1100 * the metrics associated with the routes to determine the default sndspace 1101 * and rcvspace. 1102 */ 1103 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1104 krwlock_t tcp_hsp_lock; 1105 1106 /* 1107 * Extra privileged ports. In host byte order. 1108 * Protected by tcp_epriv_port_lock. 1109 */ 1110 #define TCP_NUM_EPRIV_PORTS 64 1111 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1112 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1113 kmutex_t tcp_epriv_port_lock; 1114 1115 /* 1116 * The smallest anonymous port in the privileged port range which TCP 1117 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1118 */ 1119 static in_port_t tcp_min_anonpriv_port = 512; 1120 1121 /* Only modified during _init and _fini thus no locking is needed. */ 1122 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1123 1124 /* Hint not protected by any lock */ 1125 static uint_t tcp_next_port_to_try; 1126 1127 1128 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1129 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1130 1131 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1132 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1133 1134 /* 1135 * TCP has a private interface for other kernel modules to reserve a 1136 * port range for them to use. Once reserved, TCP will not use any ports 1137 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1138 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1139 * has to be verified. 1140 * 1141 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1142 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1143 * range is [port a, port b] inclusive. And each port range is between 1144 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1145 * 1146 * Note that the default anonymous port range starts from 32768. There is 1147 * no port "collision" between that and the reserved port range. If there 1148 * is port collision (because the default smallest anonymous port is lowered 1149 * or some apps specifically bind to ports in the reserved port range), the 1150 * system may not be able to reserve a port range even there are enough 1151 * unbound ports as a reserved port range contains consecutive ports . 1152 */ 1153 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1154 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1155 #define TCP_SMALLEST_RESERVED_PORT 10240 1156 #define TCP_LARGEST_RESERVED_PORT 20480 1157 1158 /* Structure to represent those reserved port ranges. */ 1159 typedef struct tcp_rport_s { 1160 in_port_t lo_port; 1161 in_port_t hi_port; 1162 tcp_t **temp_tcp_array; 1163 } tcp_rport_t; 1164 1165 /* The reserved port array. */ 1166 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1167 1168 /* Locks to protect the tcp_reserved_ports array. */ 1169 static krwlock_t tcp_reserved_port_lock; 1170 1171 /* The number of ranges in the array. */ 1172 uint32_t tcp_reserved_port_array_size = 0; 1173 1174 /* 1175 * MIB-2 stuff for SNMP 1176 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1177 */ 1178 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1179 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1180 1181 boolean_t tcp_icmp_source_quench = B_FALSE; 1182 /* 1183 * Following assumes TPI alignment requirements stay along 32 bit 1184 * boundaries 1185 */ 1186 #define ROUNDUP32(x) \ 1187 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1188 1189 /* Template for response to info request. */ 1190 static struct T_info_ack tcp_g_t_info_ack = { 1191 T_INFO_ACK, /* PRIM_type */ 1192 0, /* TSDU_size */ 1193 T_INFINITE, /* ETSDU_size */ 1194 T_INVALID, /* CDATA_size */ 1195 T_INVALID, /* DDATA_size */ 1196 sizeof (sin_t), /* ADDR_size */ 1197 0, /* OPT_size - not initialized here */ 1198 TIDUSZ, /* TIDU_size */ 1199 T_COTS_ORD, /* SERV_type */ 1200 TCPS_IDLE, /* CURRENT_state */ 1201 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1202 }; 1203 1204 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1205 T_INFO_ACK, /* PRIM_type */ 1206 0, /* TSDU_size */ 1207 T_INFINITE, /* ETSDU_size */ 1208 T_INVALID, /* CDATA_size */ 1209 T_INVALID, /* DDATA_size */ 1210 sizeof (sin6_t), /* ADDR_size */ 1211 0, /* OPT_size - not initialized here */ 1212 TIDUSZ, /* TIDU_size */ 1213 T_COTS_ORD, /* SERV_type */ 1214 TCPS_IDLE, /* CURRENT_state */ 1215 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1216 }; 1217 1218 #define MS 1L 1219 #define SECONDS (1000 * MS) 1220 #define MINUTES (60 * SECONDS) 1221 #define HOURS (60 * MINUTES) 1222 #define DAYS (24 * HOURS) 1223 1224 #define PARAM_MAX (~(uint32_t)0) 1225 1226 /* Max size IP datagram is 64k - 1 */ 1227 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1228 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1229 /* Max of the above */ 1230 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1231 1232 /* Largest TCP port number */ 1233 #define TCP_MAX_PORT (64 * 1024 - 1) 1234 1235 /* 1236 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1237 * layer header. It has to be a multiple of 4. 1238 */ 1239 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1240 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1241 1242 /* 1243 * All of these are alterable, within the min/max values given, at run time. 1244 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1245 * per the TCP spec. 1246 */ 1247 /* BEGIN CSTYLED */ 1248 tcpparam_t tcp_param_arr[] = { 1249 /*min max value name */ 1250 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1251 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1252 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1253 { 1, 1024, 1, "tcp_conn_req_min" }, 1254 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1255 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1256 { 0, 10, 0, "tcp_debug" }, 1257 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1258 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1259 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1260 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1261 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1262 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1263 { 1, 255, 64, "tcp_ipv4_ttl"}, 1264 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1265 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1266 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1267 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1268 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1269 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1270 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1271 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1272 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1273 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1274 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1275 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1276 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1277 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1278 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1279 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1280 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1281 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1282 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1283 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1284 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1285 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1286 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1287 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1288 /* 1289 * Question: What default value should I set for tcp_strong_iss? 1290 */ 1291 { 0, 2, 1, "tcp_strong_iss"}, 1292 { 0, 65536, 20, "tcp_rtt_updates"}, 1293 { 0, 1, 1, "tcp_wscale_always"}, 1294 { 0, 1, 0, "tcp_tstamp_always"}, 1295 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1296 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1297 { 0, 16, 2, "tcp_deferred_acks_max"}, 1298 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1299 { 1, 4, 4, "tcp_slow_start_initial"}, 1300 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1301 { 0, 2, 2, "tcp_sack_permitted"}, 1302 { 0, 1, 0, "tcp_trace"}, 1303 { 0, 1, 1, "tcp_compression_enabled"}, 1304 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1305 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1306 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1307 { 0, 1, 0, "tcp_rev_src_routes"}, 1308 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1309 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1310 { 0, 16, 8, "tcp_local_dacks_max"}, 1311 { 0, 2, 1, "tcp_ecn_permitted"}, 1312 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1313 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1314 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1315 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1316 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1317 }; 1318 /* END CSTYLED */ 1319 1320 /* 1321 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1322 * each header fragment in the header buffer. Each parameter value has 1323 * to be a multiple of 4 (32-bit aligned). 1324 */ 1325 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1326 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1327 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1328 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1329 1330 /* 1331 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1332 * the maximum number of payload buffers associated per Multidata. 1333 */ 1334 static tcpparam_t tcp_mdt_max_pbufs_param = 1335 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1336 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1337 1338 /* Round up the value to the nearest mss. */ 1339 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1340 1341 /* 1342 * Set ECN capable transport (ECT) code point in IP header. 1343 * 1344 * Note that there are 2 ECT code points '01' and '10', which are called 1345 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1346 * point ECT(0) for TCP as described in RFC 2481. 1347 */ 1348 #define SET_ECT(tcp, iph) \ 1349 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1350 /* We need to clear the code point first. */ \ 1351 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1352 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1353 } else { \ 1354 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1355 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1356 } 1357 1358 /* 1359 * The format argument to pass to tcp_display(). 1360 * DISP_PORT_ONLY means that the returned string has only port info. 1361 * DISP_ADDR_AND_PORT means that the returned string also contains the 1362 * remote and local IP address. 1363 */ 1364 #define DISP_PORT_ONLY 1 1365 #define DISP_ADDR_AND_PORT 2 1366 1367 /* 1368 * This controls the rate some ndd info report functions can be used 1369 * by non-privileged users. It stores the last time such info is 1370 * requested. When those report functions are called again, this 1371 * is checked with the current time and compare with the ndd param 1372 * tcp_ndd_get_info_interval. 1373 */ 1374 static clock_t tcp_last_ndd_get_info_time = 0; 1375 #define NDD_TOO_QUICK_MSG \ 1376 "ndd get info rate too high for non-privileged users, try again " \ 1377 "later.\n" 1378 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1379 1380 #define IS_VMLOANED_MBLK(mp) \ 1381 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1382 1383 /* 1384 * These two variables control the rate for TCP to generate RSTs in 1385 * response to segments not belonging to any connections. We limit 1386 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1387 * each 1 second interval. This is to protect TCP against DoS attack. 1388 */ 1389 static clock_t tcp_last_rst_intrvl; 1390 static uint32_t tcp_rst_cnt; 1391 1392 /* The number of RST not sent because of the rate limit. */ 1393 static uint32_t tcp_rst_unsent; 1394 1395 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1396 boolean_t tcp_mdt_chain = B_TRUE; 1397 1398 /* 1399 * MDT threshold in the form of effective send MSS multiplier; we take 1400 * the MDT path if the amount of unsent data exceeds the threshold value 1401 * (default threshold is 1*SMSS). 1402 */ 1403 uint_t tcp_mdt_smss_threshold = 1; 1404 1405 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1406 1407 /* 1408 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1409 * tunable settable via NDD. Otherwise, the per-connection behavior is 1410 * determined dynamically during tcp_adapt_ire(), which is the default. 1411 */ 1412 boolean_t tcp_static_maxpsz = B_FALSE; 1413 1414 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1415 uint32_t tcp_random_anon_port = 1; 1416 1417 /* 1418 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1419 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1420 * data, TCP will not respond with an ACK. RFC 793 requires that 1421 * TCP responds with an ACK for such a bogus ACK. By not following 1422 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1423 * an attacker successfully spoofs an acceptable segment to our 1424 * peer; or when our peer is "confused." 1425 */ 1426 uint32_t tcp_drop_ack_unsent_cnt = 10; 1427 1428 /* 1429 * Hook functions to enable cluster networking 1430 * On non-clustered systems these vectors must always be NULL. 1431 */ 1432 1433 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1434 uint8_t *laddrp, in_port_t lport) = NULL; 1435 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1436 uint8_t *laddrp, in_port_t lport) = NULL; 1437 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1438 uint8_t *laddrp, in_port_t lport, 1439 uint8_t *faddrp, in_port_t fport) = NULL; 1440 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1441 uint8_t *laddrp, in_port_t lport, 1442 uint8_t *faddrp, in_port_t fport) = NULL; 1443 1444 /* 1445 * The following are defined in ip.c 1446 */ 1447 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1448 uint8_t *laddrp); 1449 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1450 uint8_t *laddrp, uint8_t *faddrp); 1451 1452 #define CL_INET_CONNECT(tcp) { \ 1453 if (cl_inet_connect != NULL) { \ 1454 /* \ 1455 * Running in cluster mode - register active connection \ 1456 * information \ 1457 */ \ 1458 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1459 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1460 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1461 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1462 (in_port_t)(tcp)->tcp_lport, \ 1463 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1464 (in_port_t)(tcp)->tcp_fport); \ 1465 } \ 1466 } else { \ 1467 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1468 &(tcp)->tcp_ip6h->ip6_src)) {\ 1469 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1470 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1471 (in_port_t)(tcp)->tcp_lport, \ 1472 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1473 (in_port_t)(tcp)->tcp_fport); \ 1474 } \ 1475 } \ 1476 } \ 1477 } 1478 1479 #define CL_INET_DISCONNECT(tcp) { \ 1480 if (cl_inet_disconnect != NULL) { \ 1481 /* \ 1482 * Running in cluster mode - deregister active \ 1483 * connection information \ 1484 */ \ 1485 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1486 if ((tcp)->tcp_ip_src != 0) { \ 1487 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1488 AF_INET, \ 1489 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1490 (in_port_t)(tcp)->tcp_lport, \ 1491 (uint8_t *) \ 1492 (&((tcp)->tcp_ipha->ipha_dst)),\ 1493 (in_port_t)(tcp)->tcp_fport); \ 1494 } \ 1495 } else { \ 1496 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1497 &(tcp)->tcp_ip_src_v6)) { \ 1498 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1499 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1500 (in_port_t)(tcp)->tcp_lport, \ 1501 (uint8_t *) \ 1502 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1503 (in_port_t)(tcp)->tcp_fport); \ 1504 } \ 1505 } \ 1506 } \ 1507 } 1508 1509 /* 1510 * Cluster networking hook for traversing current connection list. 1511 * This routine is used to extract the current list of live connections 1512 * which must continue to to be dispatched to this node. 1513 */ 1514 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1515 1516 /* 1517 * Figure out the value of window scale opton. Note that the rwnd is 1518 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1519 * We cannot find the scale value and then do a round up of tcp_rwnd 1520 * because the scale value may not be correct after that. 1521 * 1522 * Set the compiler flag to make this function inline. 1523 */ 1524 static void 1525 tcp_set_ws_value(tcp_t *tcp) 1526 { 1527 int i; 1528 uint32_t rwnd = tcp->tcp_rwnd; 1529 1530 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1531 i++, rwnd >>= 1) 1532 ; 1533 tcp->tcp_rcv_ws = i; 1534 } 1535 1536 /* 1537 * Remove a connection from the list of detached TIME_WAIT connections. 1538 */ 1539 static void 1540 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1541 { 1542 boolean_t locked = B_FALSE; 1543 1544 if (tcp_time_wait == NULL) { 1545 tcp_time_wait = *((tcp_squeue_priv_t **) 1546 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1547 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1548 locked = B_TRUE; 1549 } 1550 1551 if (tcp->tcp_time_wait_expire == 0) { 1552 ASSERT(tcp->tcp_time_wait_next == NULL); 1553 ASSERT(tcp->tcp_time_wait_prev == NULL); 1554 if (locked) 1555 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1556 return; 1557 } 1558 ASSERT(TCP_IS_DETACHED(tcp)); 1559 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1560 1561 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1562 ASSERT(tcp->tcp_time_wait_prev == NULL); 1563 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1564 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1565 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1566 NULL; 1567 } else { 1568 tcp_time_wait->tcp_time_wait_tail = NULL; 1569 } 1570 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1571 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1572 ASSERT(tcp->tcp_time_wait_next == NULL); 1573 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1574 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1575 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1576 } else { 1577 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1578 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1579 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1580 tcp->tcp_time_wait_next; 1581 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1582 tcp->tcp_time_wait_prev; 1583 } 1584 tcp->tcp_time_wait_next = NULL; 1585 tcp->tcp_time_wait_prev = NULL; 1586 tcp->tcp_time_wait_expire = 0; 1587 1588 if (locked) 1589 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1590 } 1591 1592 /* 1593 * Add a connection to the list of detached TIME_WAIT connections 1594 * and set its time to expire. 1595 */ 1596 static void 1597 tcp_time_wait_append(tcp_t *tcp) 1598 { 1599 tcp_squeue_priv_t *tcp_time_wait = 1600 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1601 SQPRIVATE_TCP)); 1602 1603 tcp_timers_stop(tcp); 1604 1605 /* Freed above */ 1606 ASSERT(tcp->tcp_timer_tid == 0); 1607 ASSERT(tcp->tcp_ack_tid == 0); 1608 1609 /* must have happened at the time of detaching the tcp */ 1610 ASSERT(tcp->tcp_ptpahn == NULL); 1611 ASSERT(tcp->tcp_flow_stopped == 0); 1612 ASSERT(tcp->tcp_time_wait_next == NULL); 1613 ASSERT(tcp->tcp_time_wait_prev == NULL); 1614 ASSERT(tcp->tcp_time_wait_expire == NULL); 1615 ASSERT(tcp->tcp_listener == NULL); 1616 1617 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1618 /* 1619 * The value computed below in tcp->tcp_time_wait_expire may 1620 * appear negative or wrap around. That is ok since our 1621 * interest is only in the difference between the current lbolt 1622 * value and tcp->tcp_time_wait_expire. But the value should not 1623 * be zero, since it means the tcp is not in the TIME_WAIT list. 1624 * The corresponding comparison in tcp_time_wait_collector() uses 1625 * modular arithmetic. 1626 */ 1627 tcp->tcp_time_wait_expire += 1628 drv_usectohz(tcp_time_wait_interval * 1000); 1629 if (tcp->tcp_time_wait_expire == 0) 1630 tcp->tcp_time_wait_expire = 1; 1631 1632 ASSERT(TCP_IS_DETACHED(tcp)); 1633 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1634 ASSERT(tcp->tcp_time_wait_next == NULL); 1635 ASSERT(tcp->tcp_time_wait_prev == NULL); 1636 TCP_DBGSTAT(tcp_time_wait); 1637 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1638 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1639 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1640 tcp_time_wait->tcp_time_wait_head = tcp; 1641 } else { 1642 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1643 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1644 TCPS_TIME_WAIT); 1645 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1646 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1647 } 1648 tcp_time_wait->tcp_time_wait_tail = tcp; 1649 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1650 } 1651 1652 /* ARGSUSED */ 1653 void 1654 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1655 { 1656 conn_t *connp = (conn_t *)arg; 1657 tcp_t *tcp = connp->conn_tcp; 1658 1659 ASSERT(tcp != NULL); 1660 if (tcp->tcp_state == TCPS_CLOSED) { 1661 return; 1662 } 1663 1664 ASSERT((tcp->tcp_family == AF_INET && 1665 tcp->tcp_ipversion == IPV4_VERSION) || 1666 (tcp->tcp_family == AF_INET6 && 1667 (tcp->tcp_ipversion == IPV4_VERSION || 1668 tcp->tcp_ipversion == IPV6_VERSION))); 1669 ASSERT(!tcp->tcp_listener); 1670 1671 TCP_STAT(tcp_time_wait_reap); 1672 ASSERT(TCP_IS_DETACHED(tcp)); 1673 1674 /* 1675 * Because they have no upstream client to rebind or tcp_close() 1676 * them later, we axe the connection here and now. 1677 */ 1678 tcp_close_detached(tcp); 1679 } 1680 1681 void 1682 tcp_cleanup(tcp_t *tcp) 1683 { 1684 mblk_t *mp; 1685 char *tcp_iphc; 1686 int tcp_iphc_len; 1687 int tcp_hdr_grown; 1688 tcp_sack_info_t *tcp_sack_info; 1689 conn_t *connp = tcp->tcp_connp; 1690 1691 tcp_bind_hash_remove(tcp); 1692 tcp_free(tcp); 1693 1694 /* Release any SSL context */ 1695 if (tcp->tcp_kssl_ent != NULL) { 1696 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1697 tcp->tcp_kssl_ent = NULL; 1698 } 1699 1700 if (tcp->tcp_kssl_ctx != NULL) { 1701 kssl_release_ctx(tcp->tcp_kssl_ctx); 1702 tcp->tcp_kssl_ctx = NULL; 1703 } 1704 tcp->tcp_kssl_pending = B_FALSE; 1705 1706 conn_delete_ire(connp, NULL); 1707 if (connp->conn_flags & IPCL_TCPCONN) { 1708 if (connp->conn_latch != NULL) 1709 IPLATCH_REFRELE(connp->conn_latch); 1710 if (connp->conn_policy != NULL) 1711 IPPH_REFRELE(connp->conn_policy); 1712 } 1713 1714 /* 1715 * Since we will bzero the entire structure, we need to 1716 * remove it and reinsert it in global hash list. We 1717 * know the walkers can't get to this conn because we 1718 * had set CONDEMNED flag earlier and checked reference 1719 * under conn_lock so walker won't pick it and when we 1720 * go the ipcl_globalhash_remove() below, no walker 1721 * can get to it. 1722 */ 1723 ipcl_globalhash_remove(connp); 1724 1725 /* Save some state */ 1726 mp = tcp->tcp_timercache; 1727 1728 tcp_sack_info = tcp->tcp_sack_info; 1729 tcp_iphc = tcp->tcp_iphc; 1730 tcp_iphc_len = tcp->tcp_iphc_len; 1731 tcp_hdr_grown = tcp->tcp_hdr_grown; 1732 1733 if (connp->conn_cred != NULL) 1734 crfree(connp->conn_cred); 1735 if (connp->conn_peercred != NULL) 1736 crfree(connp->conn_peercred); 1737 bzero(connp, sizeof (conn_t)); 1738 bzero(tcp, sizeof (tcp_t)); 1739 1740 /* restore the state */ 1741 tcp->tcp_timercache = mp; 1742 1743 tcp->tcp_sack_info = tcp_sack_info; 1744 tcp->tcp_iphc = tcp_iphc; 1745 tcp->tcp_iphc_len = tcp_iphc_len; 1746 tcp->tcp_hdr_grown = tcp_hdr_grown; 1747 1748 1749 tcp->tcp_connp = connp; 1750 1751 connp->conn_tcp = tcp; 1752 connp->conn_flags = IPCL_TCPCONN; 1753 connp->conn_state_flags = CONN_INCIPIENT; 1754 connp->conn_ulp = IPPROTO_TCP; 1755 connp->conn_ref = 1; 1756 1757 ipcl_globalhash_insert(connp); 1758 } 1759 1760 /* 1761 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1762 * is done forwards from the head. 1763 */ 1764 /* ARGSUSED */ 1765 void 1766 tcp_time_wait_collector(void *arg) 1767 { 1768 tcp_t *tcp; 1769 clock_t now; 1770 mblk_t *mp; 1771 conn_t *connp; 1772 kmutex_t *lock; 1773 1774 squeue_t *sqp = (squeue_t *)arg; 1775 tcp_squeue_priv_t *tcp_time_wait = 1776 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1777 1778 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1779 tcp_time_wait->tcp_time_wait_tid = 0; 1780 1781 if (tcp_time_wait->tcp_free_list != NULL && 1782 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1783 TCP_STAT(tcp_freelist_cleanup); 1784 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1785 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1786 CONN_DEC_REF(tcp->tcp_connp); 1787 } 1788 tcp_time_wait->tcp_free_list_cnt = 0; 1789 } 1790 1791 /* 1792 * In order to reap time waits reliably, we should use a 1793 * source of time that is not adjustable by the user -- hence 1794 * the call to ddi_get_lbolt(). 1795 */ 1796 now = ddi_get_lbolt(); 1797 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1798 /* 1799 * Compare times using modular arithmetic, since 1800 * lbolt can wrapover. 1801 */ 1802 if ((now - tcp->tcp_time_wait_expire) < 0) { 1803 break; 1804 } 1805 1806 tcp_time_wait_remove(tcp, tcp_time_wait); 1807 1808 connp = tcp->tcp_connp; 1809 ASSERT(connp->conn_fanout != NULL); 1810 lock = &connp->conn_fanout->connf_lock; 1811 /* 1812 * This is essentially a TW reclaim fast path optimization for 1813 * performance where the timewait collector checks under the 1814 * fanout lock (so that no one else can get access to the 1815 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1816 * the classifier hash list. If ref count is indeed 2, we can 1817 * just remove the conn under the fanout lock and avoid 1818 * cleaning up the conn under the squeue, provided that 1819 * clustering callbacks are not enabled. If clustering is 1820 * enabled, we need to make the clustering callback before 1821 * setting the CONDEMNED flag and after dropping all locks and 1822 * so we forego this optimization and fall back to the slow 1823 * path. Also please see the comments in tcp_closei_local 1824 * regarding the refcnt logic. 1825 * 1826 * Since we are holding the tcp_time_wait_lock, its better 1827 * not to block on the fanout_lock because other connections 1828 * can't add themselves to time_wait list. So we do a 1829 * tryenter instead of mutex_enter. 1830 */ 1831 if (mutex_tryenter(lock)) { 1832 mutex_enter(&connp->conn_lock); 1833 if ((connp->conn_ref == 2) && 1834 (cl_inet_disconnect == NULL)) { 1835 ipcl_hash_remove_locked(connp, 1836 connp->conn_fanout); 1837 /* 1838 * Set the CONDEMNED flag now itself so that 1839 * the refcnt cannot increase due to any 1840 * walker. But we have still not cleaned up 1841 * conn_ire_cache. This is still ok since 1842 * we are going to clean it up in tcp_cleanup 1843 * immediately and any interface unplumb 1844 * thread will wait till the ire is blown away 1845 */ 1846 connp->conn_state_flags |= CONN_CONDEMNED; 1847 mutex_exit(lock); 1848 mutex_exit(&connp->conn_lock); 1849 if (tcp_time_wait->tcp_free_list_cnt < 1850 tcp_free_list_max_cnt) { 1851 /* Add to head of tcp_free_list */ 1852 mutex_exit( 1853 &tcp_time_wait->tcp_time_wait_lock); 1854 tcp_cleanup(tcp); 1855 mutex_enter( 1856 &tcp_time_wait->tcp_time_wait_lock); 1857 tcp->tcp_time_wait_next = 1858 tcp_time_wait->tcp_free_list; 1859 tcp_time_wait->tcp_free_list = tcp; 1860 tcp_time_wait->tcp_free_list_cnt++; 1861 continue; 1862 } else { 1863 /* Do not add to tcp_free_list */ 1864 mutex_exit( 1865 &tcp_time_wait->tcp_time_wait_lock); 1866 tcp_bind_hash_remove(tcp); 1867 conn_delete_ire(tcp->tcp_connp, NULL); 1868 CONN_DEC_REF(tcp->tcp_connp); 1869 } 1870 } else { 1871 CONN_INC_REF_LOCKED(connp); 1872 mutex_exit(lock); 1873 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1874 mutex_exit(&connp->conn_lock); 1875 /* 1876 * We can reuse the closemp here since conn has 1877 * detached (otherwise we wouldn't even be in 1878 * time_wait list). 1879 */ 1880 mp = &tcp->tcp_closemp; 1881 squeue_fill(connp->conn_sqp, mp, 1882 tcp_timewait_output, connp, 1883 SQTAG_TCP_TIMEWAIT); 1884 } 1885 } else { 1886 mutex_enter(&connp->conn_lock); 1887 CONN_INC_REF_LOCKED(connp); 1888 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1889 mutex_exit(&connp->conn_lock); 1890 /* 1891 * We can reuse the closemp here since conn has 1892 * detached (otherwise we wouldn't even be in 1893 * time_wait list). 1894 */ 1895 mp = &tcp->tcp_closemp; 1896 squeue_fill(connp->conn_sqp, mp, 1897 tcp_timewait_output, connp, 0); 1898 } 1899 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1900 } 1901 1902 if (tcp_time_wait->tcp_free_list != NULL) 1903 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1904 1905 tcp_time_wait->tcp_time_wait_tid = 1906 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1907 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1908 } 1909 1910 /* 1911 * Reply to a clients T_CONN_RES TPI message. This function 1912 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1913 * on the acceptor STREAM and processed in tcp_wput_accept(). 1914 * Read the block comment on top of tcp_conn_request(). 1915 */ 1916 static void 1917 tcp_accept(tcp_t *listener, mblk_t *mp) 1918 { 1919 tcp_t *acceptor; 1920 tcp_t *eager; 1921 tcp_t *tcp; 1922 struct T_conn_res *tcr; 1923 t_uscalar_t acceptor_id; 1924 t_scalar_t seqnum; 1925 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1926 mblk_t *ok_mp; 1927 mblk_t *mp1; 1928 1929 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1930 tcp_err_ack(listener, mp, TPROTO, 0); 1931 return; 1932 } 1933 tcr = (struct T_conn_res *)mp->b_rptr; 1934 1935 /* 1936 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1937 * read side queue of the streams device underneath us i.e. the 1938 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1939 * look it up in the queue_hash. Under LP64 it sends down the 1940 * minor_t of the accepting endpoint. 1941 * 1942 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1943 * fanout hash lock is held. 1944 * This prevents any thread from entering the acceptor queue from 1945 * below (since it has not been hard bound yet i.e. any inbound 1946 * packets will arrive on the listener or default tcp queue and 1947 * go through tcp_lookup). 1948 * The CONN_INC_REF will prevent the acceptor from closing. 1949 * 1950 * XXX It is still possible for a tli application to send down data 1951 * on the accepting stream while another thread calls t_accept. 1952 * This should not be a problem for well-behaved applications since 1953 * the T_OK_ACK is sent after the queue swapping is completed. 1954 * 1955 * If the accepting fd is the same as the listening fd, avoid 1956 * queue hash lookup since that will return an eager listener in a 1957 * already established state. 1958 */ 1959 acceptor_id = tcr->ACCEPTOR_id; 1960 mutex_enter(&listener->tcp_eager_lock); 1961 if (listener->tcp_acceptor_id == acceptor_id) { 1962 eager = listener->tcp_eager_next_q; 1963 /* only count how many T_CONN_INDs so don't count q0 */ 1964 if ((listener->tcp_conn_req_cnt_q != 1) || 1965 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1966 mutex_exit(&listener->tcp_eager_lock); 1967 tcp_err_ack(listener, mp, TBADF, 0); 1968 return; 1969 } 1970 if (listener->tcp_conn_req_cnt_q0 != 0) { 1971 /* Throw away all the eagers on q0. */ 1972 tcp_eager_cleanup(listener, 1); 1973 } 1974 if (listener->tcp_syn_defense) { 1975 listener->tcp_syn_defense = B_FALSE; 1976 if (listener->tcp_ip_addr_cache != NULL) { 1977 kmem_free(listener->tcp_ip_addr_cache, 1978 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1979 listener->tcp_ip_addr_cache = NULL; 1980 } 1981 } 1982 /* 1983 * Transfer tcp_conn_req_max to the eager so that when 1984 * a disconnect occurs we can revert the endpoint to the 1985 * listen state. 1986 */ 1987 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1988 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1989 /* 1990 * Get a reference on the acceptor just like the 1991 * tcp_acceptor_hash_lookup below. 1992 */ 1993 acceptor = listener; 1994 CONN_INC_REF(acceptor->tcp_connp); 1995 } else { 1996 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 1997 if (acceptor == NULL) { 1998 if (listener->tcp_debug) { 1999 (void) strlog(TCP_MOD_ID, 0, 1, 2000 SL_ERROR|SL_TRACE, 2001 "tcp_accept: did not find acceptor 0x%x\n", 2002 acceptor_id); 2003 } 2004 mutex_exit(&listener->tcp_eager_lock); 2005 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2006 return; 2007 } 2008 /* 2009 * Verify acceptor state. The acceptable states for an acceptor 2010 * include TCPS_IDLE and TCPS_BOUND. 2011 */ 2012 switch (acceptor->tcp_state) { 2013 case TCPS_IDLE: 2014 /* FALLTHRU */ 2015 case TCPS_BOUND: 2016 break; 2017 default: 2018 CONN_DEC_REF(acceptor->tcp_connp); 2019 mutex_exit(&listener->tcp_eager_lock); 2020 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2021 return; 2022 } 2023 } 2024 2025 /* The listener must be in TCPS_LISTEN */ 2026 if (listener->tcp_state != TCPS_LISTEN) { 2027 CONN_DEC_REF(acceptor->tcp_connp); 2028 mutex_exit(&listener->tcp_eager_lock); 2029 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2030 return; 2031 } 2032 2033 /* 2034 * Rendezvous with an eager connection request packet hanging off 2035 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2036 * tcp structure when the connection packet arrived in 2037 * tcp_conn_request(). 2038 */ 2039 seqnum = tcr->SEQ_number; 2040 eager = listener; 2041 do { 2042 eager = eager->tcp_eager_next_q; 2043 if (eager == NULL) { 2044 CONN_DEC_REF(acceptor->tcp_connp); 2045 mutex_exit(&listener->tcp_eager_lock); 2046 tcp_err_ack(listener, mp, TBADSEQ, 0); 2047 return; 2048 } 2049 } while (eager->tcp_conn_req_seqnum != seqnum); 2050 mutex_exit(&listener->tcp_eager_lock); 2051 2052 /* 2053 * At this point, both acceptor and listener have 2 ref 2054 * that they begin with. Acceptor has one additional ref 2055 * we placed in lookup while listener has 3 additional 2056 * ref for being behind the squeue (tcp_accept() is 2057 * done on listener's squeue); being in classifier hash; 2058 * and eager's ref on listener. 2059 */ 2060 ASSERT(listener->tcp_connp->conn_ref >= 5); 2061 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2062 2063 /* 2064 * The eager at this point is set in its own squeue and 2065 * could easily have been killed (tcp_accept_finish will 2066 * deal with that) because of a TH_RST so we can only 2067 * ASSERT for a single ref. 2068 */ 2069 ASSERT(eager->tcp_connp->conn_ref >= 1); 2070 2071 /* Pre allocate the stroptions mblk also */ 2072 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2073 if (opt_mp == NULL) { 2074 CONN_DEC_REF(acceptor->tcp_connp); 2075 CONN_DEC_REF(eager->tcp_connp); 2076 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2077 return; 2078 } 2079 DB_TYPE(opt_mp) = M_SETOPTS; 2080 opt_mp->b_wptr += sizeof (struct stroptions); 2081 2082 /* 2083 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2084 * from listener to acceptor. The message is chained on opt_mp 2085 * which will be sent onto eager's squeue. 2086 */ 2087 if (listener->tcp_bound_if != 0) { 2088 /* allocate optmgmt req */ 2089 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2090 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2091 sizeof (int)); 2092 if (mp1 != NULL) 2093 linkb(opt_mp, mp1); 2094 } 2095 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2096 uint_t on = 1; 2097 2098 /* allocate optmgmt req */ 2099 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2100 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2101 if (mp1 != NULL) 2102 linkb(opt_mp, mp1); 2103 } 2104 2105 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2106 if ((mp1 = copymsg(mp)) == NULL) { 2107 CONN_DEC_REF(acceptor->tcp_connp); 2108 CONN_DEC_REF(eager->tcp_connp); 2109 freemsg(opt_mp); 2110 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2111 return; 2112 } 2113 2114 tcr = (struct T_conn_res *)mp1->b_rptr; 2115 2116 /* 2117 * This is an expanded version of mi_tpi_ok_ack_alloc() 2118 * which allocates a larger mblk and appends the new 2119 * local address to the ok_ack. The address is copied by 2120 * soaccept() for getsockname(). 2121 */ 2122 { 2123 int extra; 2124 2125 extra = (eager->tcp_family == AF_INET) ? 2126 sizeof (sin_t) : sizeof (sin6_t); 2127 2128 /* 2129 * Try to re-use mp, if possible. Otherwise, allocate 2130 * an mblk and return it as ok_mp. In any case, mp 2131 * is no longer usable upon return. 2132 */ 2133 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2134 CONN_DEC_REF(acceptor->tcp_connp); 2135 CONN_DEC_REF(eager->tcp_connp); 2136 freemsg(opt_mp); 2137 /* Original mp has been freed by now, so use mp1 */ 2138 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2139 return; 2140 } 2141 2142 mp = NULL; /* We should never use mp after this point */ 2143 2144 switch (extra) { 2145 case sizeof (sin_t): { 2146 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2147 2148 ok_mp->b_wptr += extra; 2149 sin->sin_family = AF_INET; 2150 sin->sin_port = eager->tcp_lport; 2151 sin->sin_addr.s_addr = 2152 eager->tcp_ipha->ipha_src; 2153 break; 2154 } 2155 case sizeof (sin6_t): { 2156 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2157 2158 ok_mp->b_wptr += extra; 2159 sin6->sin6_family = AF_INET6; 2160 sin6->sin6_port = eager->tcp_lport; 2161 if (eager->tcp_ipversion == IPV4_VERSION) { 2162 sin6->sin6_flowinfo = 0; 2163 IN6_IPADDR_TO_V4MAPPED( 2164 eager->tcp_ipha->ipha_src, 2165 &sin6->sin6_addr); 2166 } else { 2167 ASSERT(eager->tcp_ip6h != NULL); 2168 sin6->sin6_flowinfo = 2169 eager->tcp_ip6h->ip6_vcf & 2170 ~IPV6_VERS_AND_FLOW_MASK; 2171 sin6->sin6_addr = 2172 eager->tcp_ip6h->ip6_src; 2173 } 2174 break; 2175 } 2176 default: 2177 break; 2178 } 2179 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2180 } 2181 2182 /* 2183 * If there are no options we know that the T_CONN_RES will 2184 * succeed. However, we can't send the T_OK_ACK upstream until 2185 * the tcp_accept_swap is done since it would be dangerous to 2186 * let the application start using the new fd prior to the swap. 2187 */ 2188 tcp_accept_swap(listener, acceptor, eager); 2189 2190 /* 2191 * tcp_accept_swap unlinks eager from listener but does not drop 2192 * the eager's reference on the listener. 2193 */ 2194 ASSERT(eager->tcp_listener == NULL); 2195 ASSERT(listener->tcp_connp->conn_ref >= 5); 2196 2197 /* 2198 * The eager is now associated with its own queue. Insert in 2199 * the hash so that the connection can be reused for a future 2200 * T_CONN_RES. 2201 */ 2202 tcp_acceptor_hash_insert(acceptor_id, eager); 2203 2204 /* 2205 * We now do the processing of options with T_CONN_RES. 2206 * We delay till now since we wanted to have queue to pass to 2207 * option processing routines that points back to the right 2208 * instance structure which does not happen until after 2209 * tcp_accept_swap(). 2210 * 2211 * Note: 2212 * The sanity of the logic here assumes that whatever options 2213 * are appropriate to inherit from listner=>eager are done 2214 * before this point, and whatever were to be overridden (or not) 2215 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2216 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2217 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2218 * This may not be true at this point in time but can be fixed 2219 * independently. This option processing code starts with 2220 * the instantiated acceptor instance and the final queue at 2221 * this point. 2222 */ 2223 2224 if (tcr->OPT_length != 0) { 2225 /* Options to process */ 2226 int t_error = 0; 2227 int sys_error = 0; 2228 int do_disconnect = 0; 2229 2230 if (tcp_conprim_opt_process(eager, mp1, 2231 &do_disconnect, &t_error, &sys_error) < 0) { 2232 eager->tcp_accept_error = 1; 2233 if (do_disconnect) { 2234 /* 2235 * An option failed which does not allow 2236 * connection to be accepted. 2237 * 2238 * We allow T_CONN_RES to succeed and 2239 * put a T_DISCON_IND on the eager queue. 2240 */ 2241 ASSERT(t_error == 0 && sys_error == 0); 2242 eager->tcp_send_discon_ind = 1; 2243 } else { 2244 ASSERT(t_error != 0); 2245 freemsg(ok_mp); 2246 /* 2247 * Original mp was either freed or set 2248 * to ok_mp above, so use mp1 instead. 2249 */ 2250 tcp_err_ack(listener, mp1, t_error, sys_error); 2251 goto finish; 2252 } 2253 } 2254 /* 2255 * Most likely success in setting options (except if 2256 * eager->tcp_send_discon_ind set). 2257 * mp1 option buffer represented by OPT_length/offset 2258 * potentially modified and contains results of setting 2259 * options at this point 2260 */ 2261 } 2262 2263 /* We no longer need mp1, since all options processing has passed */ 2264 freemsg(mp1); 2265 2266 putnext(listener->tcp_rq, ok_mp); 2267 2268 mutex_enter(&listener->tcp_eager_lock); 2269 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2270 tcp_t *tail; 2271 mblk_t *conn_ind; 2272 2273 /* 2274 * This path should not be executed if listener and 2275 * acceptor streams are the same. 2276 */ 2277 ASSERT(listener != acceptor); 2278 2279 tcp = listener->tcp_eager_prev_q0; 2280 /* 2281 * listener->tcp_eager_prev_q0 points to the TAIL of the 2282 * deferred T_conn_ind queue. We need to get to the head of 2283 * the queue in order to send up T_conn_ind the same order as 2284 * how the 3WHS is completed. 2285 */ 2286 while (tcp != listener) { 2287 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2288 break; 2289 else 2290 tcp = tcp->tcp_eager_prev_q0; 2291 } 2292 ASSERT(tcp != listener); 2293 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2294 ASSERT(conn_ind != NULL); 2295 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2296 2297 /* Move from q0 to q */ 2298 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2299 listener->tcp_conn_req_cnt_q0--; 2300 listener->tcp_conn_req_cnt_q++; 2301 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2302 tcp->tcp_eager_prev_q0; 2303 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2304 tcp->tcp_eager_next_q0; 2305 tcp->tcp_eager_prev_q0 = NULL; 2306 tcp->tcp_eager_next_q0 = NULL; 2307 tcp->tcp_conn_def_q0 = B_FALSE; 2308 2309 /* 2310 * Insert at end of the queue because sockfs sends 2311 * down T_CONN_RES in chronological order. Leaving 2312 * the older conn indications at front of the queue 2313 * helps reducing search time. 2314 */ 2315 tail = listener->tcp_eager_last_q; 2316 if (tail != NULL) 2317 tail->tcp_eager_next_q = tcp; 2318 else 2319 listener->tcp_eager_next_q = tcp; 2320 listener->tcp_eager_last_q = tcp; 2321 tcp->tcp_eager_next_q = NULL; 2322 mutex_exit(&listener->tcp_eager_lock); 2323 putnext(tcp->tcp_rq, conn_ind); 2324 } else { 2325 mutex_exit(&listener->tcp_eager_lock); 2326 } 2327 2328 /* 2329 * Done with the acceptor - free it 2330 * 2331 * Note: from this point on, no access to listener should be made 2332 * as listener can be equal to acceptor. 2333 */ 2334 finish: 2335 ASSERT(acceptor->tcp_detached); 2336 acceptor->tcp_rq = tcp_g_q; 2337 acceptor->tcp_wq = WR(tcp_g_q); 2338 (void) tcp_clean_death(acceptor, 0, 2); 2339 CONN_DEC_REF(acceptor->tcp_connp); 2340 2341 /* 2342 * In case we already received a FIN we have to make tcp_rput send 2343 * the ordrel_ind. This will also send up a window update if the window 2344 * has opened up. 2345 * 2346 * In the normal case of a successful connection acceptance 2347 * we give the O_T_BIND_REQ to the read side put procedure as an 2348 * indication that this was just accepted. This tells tcp_rput to 2349 * pass up any data queued in tcp_rcv_list. 2350 * 2351 * In the fringe case where options sent with T_CONN_RES failed and 2352 * we required, we would be indicating a T_DISCON_IND to blow 2353 * away this connection. 2354 */ 2355 2356 /* 2357 * XXX: we currently have a problem if XTI application closes the 2358 * acceptor stream in between. This problem exists in on10-gate also 2359 * and is well know but nothing can be done short of major rewrite 2360 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2361 * eager same squeue as listener (we can distinguish non socket 2362 * listeners at the time of handling a SYN in tcp_conn_request) 2363 * and do most of the work that tcp_accept_finish does here itself 2364 * and then get behind the acceptor squeue to access the acceptor 2365 * queue. 2366 */ 2367 /* 2368 * We already have a ref on tcp so no need to do one before squeue_fill 2369 */ 2370 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2371 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2372 } 2373 2374 /* 2375 * Swap information between the eager and acceptor for a TLI/XTI client. 2376 * The sockfs accept is done on the acceptor stream and control goes 2377 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2378 * called. In either case, both the eager and listener are in their own 2379 * perimeter (squeue) and the code has to deal with potential race. 2380 * 2381 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2382 */ 2383 static void 2384 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2385 { 2386 conn_t *econnp, *aconnp; 2387 2388 ASSERT(eager->tcp_rq == listener->tcp_rq); 2389 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2390 ASSERT(!eager->tcp_hard_bound); 2391 ASSERT(!TCP_IS_SOCKET(acceptor)); 2392 ASSERT(!TCP_IS_SOCKET(eager)); 2393 ASSERT(!TCP_IS_SOCKET(listener)); 2394 2395 acceptor->tcp_detached = B_TRUE; 2396 /* 2397 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2398 * the acceptor id. 2399 */ 2400 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2401 2402 /* remove eager from listen list... */ 2403 mutex_enter(&listener->tcp_eager_lock); 2404 tcp_eager_unlink(eager); 2405 ASSERT(eager->tcp_eager_next_q == NULL && 2406 eager->tcp_eager_last_q == NULL); 2407 ASSERT(eager->tcp_eager_next_q0 == NULL && 2408 eager->tcp_eager_prev_q0 == NULL); 2409 mutex_exit(&listener->tcp_eager_lock); 2410 eager->tcp_rq = acceptor->tcp_rq; 2411 eager->tcp_wq = acceptor->tcp_wq; 2412 2413 econnp = eager->tcp_connp; 2414 aconnp = acceptor->tcp_connp; 2415 2416 eager->tcp_rq->q_ptr = econnp; 2417 eager->tcp_wq->q_ptr = econnp; 2418 2419 /* 2420 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2421 * which might be a different squeue from our peer TCP instance. 2422 * For TCP Fusion, the peer expects that whenever tcp_detached is 2423 * clear, our TCP queues point to the acceptor's queues. Thus, use 2424 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2425 * above reach global visibility prior to the clearing of tcp_detached. 2426 */ 2427 membar_producer(); 2428 eager->tcp_detached = B_FALSE; 2429 2430 ASSERT(eager->tcp_ack_tid == 0); 2431 2432 econnp->conn_dev = aconnp->conn_dev; 2433 if (eager->tcp_cred != NULL) 2434 crfree(eager->tcp_cred); 2435 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2436 aconnp->conn_cred = NULL; 2437 2438 econnp->conn_zoneid = aconnp->conn_zoneid; 2439 econnp->conn_allzones = aconnp->conn_allzones; 2440 2441 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2442 aconnp->conn_mac_exempt = B_FALSE; 2443 2444 ASSERT(aconnp->conn_peercred == NULL); 2445 2446 /* Do the IPC initialization */ 2447 CONN_INC_REF(econnp); 2448 2449 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2450 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2451 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2452 econnp->conn_ulp = aconnp->conn_ulp; 2453 2454 /* Done with old IPC. Drop its ref on its connp */ 2455 CONN_DEC_REF(aconnp); 2456 } 2457 2458 2459 /* 2460 * Adapt to the information, such as rtt and rtt_sd, provided from the 2461 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2462 * 2463 * Checks for multicast and broadcast destination address. 2464 * Returns zero on failure; non-zero if ok. 2465 * 2466 * Note that the MSS calculation here is based on the info given in 2467 * the IRE. We do not do any calculation based on TCP options. They 2468 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2469 * knows which options to use. 2470 * 2471 * Note on how TCP gets its parameters for a connection. 2472 * 2473 * When a tcp_t structure is allocated, it gets all the default parameters. 2474 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2475 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2476 * default. But if there is an associated tcp_host_param, it will override 2477 * the metrics. 2478 * 2479 * An incoming SYN with a multicast or broadcast destination address, is dropped 2480 * in 1 of 2 places. 2481 * 2482 * 1. If the packet was received over the wire it is dropped in 2483 * ip_rput_process_broadcast() 2484 * 2485 * 2. If the packet was received through internal IP loopback, i.e. the packet 2486 * was generated and received on the same machine, it is dropped in 2487 * ip_wput_local() 2488 * 2489 * An incoming SYN with a multicast or broadcast source address is always 2490 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2491 * reject an attempt to connect to a broadcast or multicast (destination) 2492 * address. 2493 */ 2494 static int 2495 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2496 { 2497 tcp_hsp_t *hsp; 2498 ire_t *ire; 2499 ire_t *sire = NULL; 2500 iulp_t *ire_uinfo = NULL; 2501 uint32_t mss_max; 2502 uint32_t mss; 2503 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2504 conn_t *connp = tcp->tcp_connp; 2505 boolean_t ire_cacheable = B_FALSE; 2506 zoneid_t zoneid = connp->conn_zoneid; 2507 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2508 MATCH_IRE_SECATTR; 2509 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2510 ill_t *ill = NULL; 2511 boolean_t incoming = (ire_mp == NULL); 2512 2513 ASSERT(connp->conn_ire_cache == NULL); 2514 2515 if (tcp->tcp_ipversion == IPV4_VERSION) { 2516 2517 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2518 BUMP_MIB(&ip_mib, ipInDiscards); 2519 return (0); 2520 } 2521 /* 2522 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2523 * for the destination with the nexthop as gateway. 2524 * ire_ctable_lookup() is used because this particular 2525 * ire, if it exists, will be marked private. 2526 * If that is not available, use the interface ire 2527 * for the nexthop. 2528 * 2529 * TSol: tcp_update_label will detect label mismatches based 2530 * only on the destination's label, but that would not 2531 * detect label mismatches based on the security attributes 2532 * of routes or next hop gateway. Hence we need to pass the 2533 * label to ire_ftable_lookup below in order to locate the 2534 * right prefix (and/or) ire cache. Similarly we also need 2535 * pass the label to the ire_cache_lookup below to locate 2536 * the right ire that also matches on the label. 2537 */ 2538 if (tcp->tcp_connp->conn_nexthop_set) { 2539 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2540 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2541 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2542 if (ire == NULL) { 2543 ire = ire_ftable_lookup( 2544 tcp->tcp_connp->conn_nexthop_v4, 2545 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2546 tsl, match_flags); 2547 if (ire == NULL) 2548 return (0); 2549 } else { 2550 ire_uinfo = &ire->ire_uinfo; 2551 } 2552 } else { 2553 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2554 zoneid, tsl); 2555 if (ire != NULL) { 2556 ire_cacheable = B_TRUE; 2557 ire_uinfo = (ire_mp != NULL) ? 2558 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2559 &ire->ire_uinfo; 2560 2561 } else { 2562 if (ire_mp == NULL) { 2563 ire = ire_ftable_lookup( 2564 tcp->tcp_connp->conn_rem, 2565 0, 0, 0, NULL, &sire, zoneid, 0, 2566 tsl, (MATCH_IRE_RECURSIVE | 2567 MATCH_IRE_DEFAULT)); 2568 if (ire == NULL) 2569 return (0); 2570 ire_uinfo = (sire != NULL) ? 2571 &sire->ire_uinfo : 2572 &ire->ire_uinfo; 2573 } else { 2574 ire = (ire_t *)ire_mp->b_rptr; 2575 ire_uinfo = 2576 &((ire_t *) 2577 ire_mp->b_rptr)->ire_uinfo; 2578 } 2579 } 2580 } 2581 ASSERT(ire != NULL); 2582 2583 if ((ire->ire_src_addr == INADDR_ANY) || 2584 (ire->ire_type & IRE_BROADCAST)) { 2585 /* 2586 * ire->ire_mp is non null when ire_mp passed in is used 2587 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2588 */ 2589 if (ire->ire_mp == NULL) 2590 ire_refrele(ire); 2591 if (sire != NULL) 2592 ire_refrele(sire); 2593 return (0); 2594 } 2595 2596 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2597 ipaddr_t src_addr; 2598 2599 /* 2600 * ip_bind_connected() has stored the correct source 2601 * address in conn_src. 2602 */ 2603 src_addr = tcp->tcp_connp->conn_src; 2604 tcp->tcp_ipha->ipha_src = src_addr; 2605 /* 2606 * Copy of the src addr. in tcp_t is needed 2607 * for the lookup funcs. 2608 */ 2609 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2610 } 2611 /* 2612 * Set the fragment bit so that IP will tell us if the MTU 2613 * should change. IP tells us the latest setting of 2614 * ip_path_mtu_discovery through ire_frag_flag. 2615 */ 2616 if (ip_path_mtu_discovery) { 2617 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2618 htons(IPH_DF); 2619 } 2620 /* 2621 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2622 * for IP_NEXTHOP. No cache ire has been found for the 2623 * destination and we are working with the nexthop's 2624 * interface ire. Since we need to forward all packets 2625 * to the nexthop first, we "blindly" set tcp_localnet 2626 * to false, eventhough the destination may also be 2627 * onlink. 2628 */ 2629 if (ire_uinfo == NULL) 2630 tcp->tcp_localnet = 0; 2631 else 2632 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2633 } else { 2634 /* 2635 * For incoming connection ire_mp = NULL 2636 * For outgoing connection ire_mp != NULL 2637 * Technically we should check conn_incoming_ill 2638 * when ire_mp is NULL and conn_outgoing_ill when 2639 * ire_mp is non-NULL. But this is performance 2640 * critical path and for IPV*_BOUND_IF, outgoing 2641 * and incoming ill are always set to the same value. 2642 */ 2643 ill_t *dst_ill = NULL; 2644 ipif_t *dst_ipif = NULL; 2645 2646 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2647 2648 if (connp->conn_outgoing_ill != NULL) { 2649 /* Outgoing or incoming path */ 2650 int err; 2651 2652 dst_ill = conn_get_held_ill(connp, 2653 &connp->conn_outgoing_ill, &err); 2654 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2655 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2656 return (0); 2657 } 2658 match_flags |= MATCH_IRE_ILL; 2659 dst_ipif = dst_ill->ill_ipif; 2660 } 2661 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2662 0, 0, dst_ipif, zoneid, tsl, match_flags); 2663 2664 if (ire != NULL) { 2665 ire_cacheable = B_TRUE; 2666 ire_uinfo = (ire_mp != NULL) ? 2667 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2668 &ire->ire_uinfo; 2669 } else { 2670 if (ire_mp == NULL) { 2671 ire = ire_ftable_lookup_v6( 2672 &tcp->tcp_connp->conn_remv6, 2673 0, 0, 0, dst_ipif, &sire, zoneid, 2674 0, tsl, match_flags); 2675 if (ire == NULL) { 2676 if (dst_ill != NULL) 2677 ill_refrele(dst_ill); 2678 return (0); 2679 } 2680 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2681 &ire->ire_uinfo; 2682 } else { 2683 ire = (ire_t *)ire_mp->b_rptr; 2684 ire_uinfo = 2685 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2686 } 2687 } 2688 if (dst_ill != NULL) 2689 ill_refrele(dst_ill); 2690 2691 ASSERT(ire != NULL); 2692 ASSERT(ire_uinfo != NULL); 2693 2694 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2695 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2696 /* 2697 * ire->ire_mp is non null when ire_mp passed in is used 2698 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2699 */ 2700 if (ire->ire_mp == NULL) 2701 ire_refrele(ire); 2702 if (sire != NULL) 2703 ire_refrele(sire); 2704 return (0); 2705 } 2706 2707 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2708 in6_addr_t src_addr; 2709 2710 /* 2711 * ip_bind_connected_v6() has stored the correct source 2712 * address per IPv6 addr. selection policy in 2713 * conn_src_v6. 2714 */ 2715 src_addr = tcp->tcp_connp->conn_srcv6; 2716 2717 tcp->tcp_ip6h->ip6_src = src_addr; 2718 /* 2719 * Copy of the src addr. in tcp_t is needed 2720 * for the lookup funcs. 2721 */ 2722 tcp->tcp_ip_src_v6 = src_addr; 2723 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2724 &connp->conn_srcv6)); 2725 } 2726 tcp->tcp_localnet = 2727 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2728 } 2729 2730 /* 2731 * This allows applications to fail quickly when connections are made 2732 * to dead hosts. Hosts can be labeled dead by adding a reject route 2733 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2734 */ 2735 if ((ire->ire_flags & RTF_REJECT) && 2736 (ire->ire_flags & RTF_PRIVATE)) 2737 goto error; 2738 2739 /* 2740 * Make use of the cached rtt and rtt_sd values to calculate the 2741 * initial RTO. Note that they are already initialized in 2742 * tcp_init_values(). 2743 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2744 * IP_NEXTHOP, but instead are using the interface ire for the 2745 * nexthop, then we do not use the ire_uinfo from that ire to 2746 * do any initializations. 2747 */ 2748 if (ire_uinfo != NULL) { 2749 if (ire_uinfo->iulp_rtt != 0) { 2750 clock_t rto; 2751 2752 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2753 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2754 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2755 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2756 2757 if (rto > tcp_rexmit_interval_max) { 2758 tcp->tcp_rto = tcp_rexmit_interval_max; 2759 } else if (rto < tcp_rexmit_interval_min) { 2760 tcp->tcp_rto = tcp_rexmit_interval_min; 2761 } else { 2762 tcp->tcp_rto = rto; 2763 } 2764 } 2765 if (ire_uinfo->iulp_ssthresh != 0) 2766 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2767 else 2768 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2769 if (ire_uinfo->iulp_spipe > 0) { 2770 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2771 tcp_max_buf); 2772 if (tcp_snd_lowat_fraction != 0) 2773 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2774 tcp_snd_lowat_fraction; 2775 (void) tcp_maxpsz_set(tcp, B_TRUE); 2776 } 2777 /* 2778 * Note that up till now, acceptor always inherits receive 2779 * window from the listener. But if there is a metrics 2780 * associated with a host, we should use that instead of 2781 * inheriting it from listener. Thus we need to pass this 2782 * info back to the caller. 2783 */ 2784 if (ire_uinfo->iulp_rpipe > 0) { 2785 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2786 } 2787 2788 if (ire_uinfo->iulp_rtomax > 0) { 2789 tcp->tcp_second_timer_threshold = 2790 ire_uinfo->iulp_rtomax; 2791 } 2792 2793 /* 2794 * Use the metric option settings, iulp_tstamp_ok and 2795 * iulp_wscale_ok, only for active open. What this means 2796 * is that if the other side uses timestamp or window 2797 * scale option, TCP will also use those options. That 2798 * is for passive open. If the application sets a 2799 * large window, window scale is enabled regardless of 2800 * the value in iulp_wscale_ok. This is the behavior 2801 * since 2.6. So we keep it. 2802 * The only case left in passive open processing is the 2803 * check for SACK. 2804 * For ECN, it should probably be like SACK. But the 2805 * current value is binary, so we treat it like the other 2806 * cases. The metric only controls active open.For passive 2807 * open, the ndd param, tcp_ecn_permitted, controls the 2808 * behavior. 2809 */ 2810 if (!tcp_detached) { 2811 /* 2812 * The if check means that the following can only 2813 * be turned on by the metrics only IRE, but not off. 2814 */ 2815 if (ire_uinfo->iulp_tstamp_ok) 2816 tcp->tcp_snd_ts_ok = B_TRUE; 2817 if (ire_uinfo->iulp_wscale_ok) 2818 tcp->tcp_snd_ws_ok = B_TRUE; 2819 if (ire_uinfo->iulp_sack == 2) 2820 tcp->tcp_snd_sack_ok = B_TRUE; 2821 if (ire_uinfo->iulp_ecn_ok) 2822 tcp->tcp_ecn_ok = B_TRUE; 2823 } else { 2824 /* 2825 * Passive open. 2826 * 2827 * As above, the if check means that SACK can only be 2828 * turned on by the metric only IRE. 2829 */ 2830 if (ire_uinfo->iulp_sack > 0) { 2831 tcp->tcp_snd_sack_ok = B_TRUE; 2832 } 2833 } 2834 } 2835 2836 2837 /* 2838 * XXX: Note that currently, ire_max_frag can be as small as 68 2839 * because of PMTUd. So tcp_mss may go to negative if combined 2840 * length of all those options exceeds 28 bytes. But because 2841 * of the tcp_mss_min check below, we may not have a problem if 2842 * tcp_mss_min is of a reasonable value. The default is 1 so 2843 * the negative problem still exists. And the check defeats PMTUd. 2844 * In fact, if PMTUd finds that the MSS should be smaller than 2845 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2846 * value. 2847 * 2848 * We do not deal with that now. All those problems related to 2849 * PMTUd will be fixed later. 2850 */ 2851 ASSERT(ire->ire_max_frag != 0); 2852 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2853 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2854 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2855 mss = MIN(mss, IPV6_MIN_MTU); 2856 } 2857 } 2858 2859 /* Sanity check for MSS value. */ 2860 if (tcp->tcp_ipversion == IPV4_VERSION) 2861 mss_max = tcp_mss_max_ipv4; 2862 else 2863 mss_max = tcp_mss_max_ipv6; 2864 2865 if (tcp->tcp_ipversion == IPV6_VERSION && 2866 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2867 /* 2868 * After receiving an ICMPv6 "packet too big" message with a 2869 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2870 * will insert a 8-byte fragment header in every packet; we 2871 * reduce the MSS by that amount here. 2872 */ 2873 mss -= sizeof (ip6_frag_t); 2874 } 2875 2876 if (tcp->tcp_ipsec_overhead == 0) 2877 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2878 2879 mss -= tcp->tcp_ipsec_overhead; 2880 2881 if (mss < tcp_mss_min) 2882 mss = tcp_mss_min; 2883 if (mss > mss_max) 2884 mss = mss_max; 2885 2886 /* Note that this is the maximum MSS, excluding all options. */ 2887 tcp->tcp_mss = mss; 2888 2889 /* 2890 * Initialize the ISS here now that we have the full connection ID. 2891 * The RFC 1948 method of initial sequence number generation requires 2892 * knowledge of the full connection ID before setting the ISS. 2893 */ 2894 2895 tcp_iss_init(tcp); 2896 2897 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2898 tcp->tcp_loopback = B_TRUE; 2899 2900 if (tcp->tcp_ipversion == IPV4_VERSION) { 2901 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2902 } else { 2903 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2904 } 2905 2906 if (hsp != NULL) { 2907 /* Only modify if we're going to make them bigger */ 2908 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2909 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2910 if (tcp_snd_lowat_fraction != 0) 2911 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2912 tcp_snd_lowat_fraction; 2913 } 2914 2915 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2916 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2917 } 2918 2919 /* Copy timestamp flag only for active open */ 2920 if (!tcp_detached) 2921 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2922 } 2923 2924 if (sire != NULL) 2925 IRE_REFRELE(sire); 2926 2927 /* 2928 * If we got an IRE_CACHE and an ILL, go through their properties; 2929 * otherwise, this is deferred until later when we have an IRE_CACHE. 2930 */ 2931 if (tcp->tcp_loopback || 2932 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2933 /* 2934 * For incoming, see if this tcp may be MDT-capable. For 2935 * outgoing, this process has been taken care of through 2936 * tcp_rput_other. 2937 */ 2938 tcp_ire_ill_check(tcp, ire, ill, incoming); 2939 tcp->tcp_ire_ill_check_done = B_TRUE; 2940 } 2941 2942 mutex_enter(&connp->conn_lock); 2943 /* 2944 * Make sure that conn is not marked incipient 2945 * for incoming connections. A blind 2946 * removal of incipient flag is cheaper than 2947 * check and removal. 2948 */ 2949 connp->conn_state_flags &= ~CONN_INCIPIENT; 2950 2951 /* Must not cache forwarding table routes. */ 2952 if (ire_cacheable) { 2953 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2954 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2955 connp->conn_ire_cache = ire; 2956 IRE_UNTRACE_REF(ire); 2957 rw_exit(&ire->ire_bucket->irb_lock); 2958 mutex_exit(&connp->conn_lock); 2959 return (1); 2960 } 2961 rw_exit(&ire->ire_bucket->irb_lock); 2962 } 2963 mutex_exit(&connp->conn_lock); 2964 2965 if (ire->ire_mp == NULL) 2966 ire_refrele(ire); 2967 return (1); 2968 2969 error: 2970 if (ire->ire_mp == NULL) 2971 ire_refrele(ire); 2972 if (sire != NULL) 2973 ire_refrele(sire); 2974 return (0); 2975 } 2976 2977 /* 2978 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2979 * O_T_BIND_REQ/T_BIND_REQ message. 2980 */ 2981 static void 2982 tcp_bind(tcp_t *tcp, mblk_t *mp) 2983 { 2984 sin_t *sin; 2985 sin6_t *sin6; 2986 mblk_t *mp1; 2987 in_port_t requested_port; 2988 in_port_t allocated_port; 2989 struct T_bind_req *tbr; 2990 boolean_t bind_to_req_port_only; 2991 boolean_t backlog_update = B_FALSE; 2992 boolean_t user_specified; 2993 in6_addr_t v6addr; 2994 ipaddr_t v4addr; 2995 uint_t origipversion; 2996 int err; 2997 queue_t *q = tcp->tcp_wq; 2998 conn_t *connp; 2999 mlp_type_t addrtype, mlptype; 3000 zone_t *zone; 3001 cred_t *cr; 3002 in_port_t mlp_port; 3003 3004 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3005 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3006 if (tcp->tcp_debug) { 3007 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3008 "tcp_bind: bad req, len %u", 3009 (uint_t)(mp->b_wptr - mp->b_rptr)); 3010 } 3011 tcp_err_ack(tcp, mp, TPROTO, 0); 3012 return; 3013 } 3014 /* Make sure the largest address fits */ 3015 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3016 if (mp1 == NULL) { 3017 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3018 return; 3019 } 3020 mp = mp1; 3021 tbr = (struct T_bind_req *)mp->b_rptr; 3022 if (tcp->tcp_state >= TCPS_BOUND) { 3023 if ((tcp->tcp_state == TCPS_BOUND || 3024 tcp->tcp_state == TCPS_LISTEN) && 3025 tcp->tcp_conn_req_max != tbr->CONIND_number && 3026 tbr->CONIND_number > 0) { 3027 /* 3028 * Handle listen() increasing CONIND_number. 3029 * This is more "liberal" then what the TPI spec 3030 * requires but is needed to avoid a t_unbind 3031 * when handling listen() since the port number 3032 * might be "stolen" between the unbind and bind. 3033 */ 3034 backlog_update = B_TRUE; 3035 goto do_bind; 3036 } 3037 if (tcp->tcp_debug) { 3038 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3039 "tcp_bind: bad state, %d", tcp->tcp_state); 3040 } 3041 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3042 return; 3043 } 3044 origipversion = tcp->tcp_ipversion; 3045 3046 switch (tbr->ADDR_length) { 3047 case 0: /* request for a generic port */ 3048 tbr->ADDR_offset = sizeof (struct T_bind_req); 3049 if (tcp->tcp_family == AF_INET) { 3050 tbr->ADDR_length = sizeof (sin_t); 3051 sin = (sin_t *)&tbr[1]; 3052 *sin = sin_null; 3053 sin->sin_family = AF_INET; 3054 mp->b_wptr = (uchar_t *)&sin[1]; 3055 tcp->tcp_ipversion = IPV4_VERSION; 3056 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3057 } else { 3058 ASSERT(tcp->tcp_family == AF_INET6); 3059 tbr->ADDR_length = sizeof (sin6_t); 3060 sin6 = (sin6_t *)&tbr[1]; 3061 *sin6 = sin6_null; 3062 sin6->sin6_family = AF_INET6; 3063 mp->b_wptr = (uchar_t *)&sin6[1]; 3064 tcp->tcp_ipversion = IPV6_VERSION; 3065 V6_SET_ZERO(v6addr); 3066 } 3067 requested_port = 0; 3068 break; 3069 3070 case sizeof (sin_t): /* Complete IPv4 address */ 3071 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3072 sizeof (sin_t)); 3073 if (sin == NULL || !OK_32PTR((char *)sin)) { 3074 if (tcp->tcp_debug) { 3075 (void) strlog(TCP_MOD_ID, 0, 1, 3076 SL_ERROR|SL_TRACE, 3077 "tcp_bind: bad address parameter, " 3078 "offset %d, len %d", 3079 tbr->ADDR_offset, tbr->ADDR_length); 3080 } 3081 tcp_err_ack(tcp, mp, TPROTO, 0); 3082 return; 3083 } 3084 /* 3085 * With sockets sockfs will accept bogus sin_family in 3086 * bind() and replace it with the family used in the socket 3087 * call. 3088 */ 3089 if (sin->sin_family != AF_INET || 3090 tcp->tcp_family != AF_INET) { 3091 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3092 return; 3093 } 3094 requested_port = ntohs(sin->sin_port); 3095 tcp->tcp_ipversion = IPV4_VERSION; 3096 v4addr = sin->sin_addr.s_addr; 3097 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3098 break; 3099 3100 case sizeof (sin6_t): /* Complete IPv6 address */ 3101 sin6 = (sin6_t *)mi_offset_param(mp, 3102 tbr->ADDR_offset, sizeof (sin6_t)); 3103 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3104 if (tcp->tcp_debug) { 3105 (void) strlog(TCP_MOD_ID, 0, 1, 3106 SL_ERROR|SL_TRACE, 3107 "tcp_bind: bad IPv6 address parameter, " 3108 "offset %d, len %d", tbr->ADDR_offset, 3109 tbr->ADDR_length); 3110 } 3111 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3112 return; 3113 } 3114 if (sin6->sin6_family != AF_INET6 || 3115 tcp->tcp_family != AF_INET6) { 3116 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3117 return; 3118 } 3119 requested_port = ntohs(sin6->sin6_port); 3120 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3121 IPV4_VERSION : IPV6_VERSION; 3122 v6addr = sin6->sin6_addr; 3123 break; 3124 3125 default: 3126 if (tcp->tcp_debug) { 3127 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3128 "tcp_bind: bad address length, %d", 3129 tbr->ADDR_length); 3130 } 3131 tcp_err_ack(tcp, mp, TBADADDR, 0); 3132 return; 3133 } 3134 tcp->tcp_bound_source_v6 = v6addr; 3135 3136 /* Check for change in ipversion */ 3137 if (origipversion != tcp->tcp_ipversion) { 3138 ASSERT(tcp->tcp_family == AF_INET6); 3139 err = tcp->tcp_ipversion == IPV6_VERSION ? 3140 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3141 if (err) { 3142 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3143 return; 3144 } 3145 } 3146 3147 /* 3148 * Initialize family specific fields. Copy of the src addr. 3149 * in tcp_t is needed for the lookup funcs. 3150 */ 3151 if (tcp->tcp_ipversion == IPV6_VERSION) { 3152 tcp->tcp_ip6h->ip6_src = v6addr; 3153 } else { 3154 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3155 } 3156 tcp->tcp_ip_src_v6 = v6addr; 3157 3158 /* 3159 * For O_T_BIND_REQ: 3160 * Verify that the target port/addr is available, or choose 3161 * another. 3162 * For T_BIND_REQ: 3163 * Verify that the target port/addr is available or fail. 3164 * In both cases when it succeeds the tcp is inserted in the 3165 * bind hash table. This ensures that the operation is atomic 3166 * under the lock on the hash bucket. 3167 */ 3168 bind_to_req_port_only = requested_port != 0 && 3169 tbr->PRIM_type != O_T_BIND_REQ; 3170 /* 3171 * Get a valid port (within the anonymous range and should not 3172 * be a privileged one) to use if the user has not given a port. 3173 * If multiple threads are here, they may all start with 3174 * with the same initial port. But, it should be fine as long as 3175 * tcp_bindi will ensure that no two threads will be assigned 3176 * the same port. 3177 * 3178 * NOTE: XXX If a privileged process asks for an anonymous port, we 3179 * still check for ports only in the range > tcp_smallest_non_priv_port, 3180 * unless TCP_ANONPRIVBIND option is set. 3181 */ 3182 mlptype = mlptSingle; 3183 mlp_port = requested_port; 3184 if (requested_port == 0) { 3185 requested_port = tcp->tcp_anon_priv_bind ? 3186 tcp_get_next_priv_port(tcp) : 3187 tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 3188 if (requested_port == 0) { 3189 tcp_err_ack(tcp, mp, TNOADDR, 0); 3190 return; 3191 } 3192 user_specified = B_FALSE; 3193 3194 /* 3195 * If the user went through one of the RPC interfaces to create 3196 * this socket and RPC is MLP in this zone, then give him an 3197 * anonymous MLP. 3198 */ 3199 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3200 connp = tcp->tcp_connp; 3201 if (connp->conn_anon_mlp && is_system_labeled()) { 3202 zone = crgetzone(cr); 3203 addrtype = tsol_mlp_addr_type(zone->zone_id, 3204 IPV6_VERSION, &v6addr); 3205 if (addrtype == mlptSingle) { 3206 tcp_err_ack(tcp, mp, TNOADDR, 0); 3207 return; 3208 } 3209 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3210 PMAPPORT, addrtype); 3211 mlp_port = PMAPPORT; 3212 } 3213 } else { 3214 int i; 3215 boolean_t priv = B_FALSE; 3216 3217 /* 3218 * If the requested_port is in the well-known privileged range, 3219 * verify that the stream was opened by a privileged user. 3220 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3221 * but instead the code relies on: 3222 * - the fact that the address of the array and its size never 3223 * changes 3224 * - the atomic assignment of the elements of the array 3225 */ 3226 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3227 if (requested_port < tcp_smallest_nonpriv_port) { 3228 priv = B_TRUE; 3229 } else { 3230 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3231 if (requested_port == 3232 tcp_g_epriv_ports[i]) { 3233 priv = B_TRUE; 3234 break; 3235 } 3236 } 3237 } 3238 if (priv) { 3239 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3240 if (tcp->tcp_debug) { 3241 (void) strlog(TCP_MOD_ID, 0, 1, 3242 SL_ERROR|SL_TRACE, 3243 "tcp_bind: no priv for port %d", 3244 requested_port); 3245 } 3246 tcp_err_ack(tcp, mp, TACCES, 0); 3247 return; 3248 } 3249 } 3250 user_specified = B_TRUE; 3251 3252 connp = tcp->tcp_connp; 3253 if (is_system_labeled()) { 3254 zone = crgetzone(cr); 3255 addrtype = tsol_mlp_addr_type(zone->zone_id, 3256 IPV6_VERSION, &v6addr); 3257 if (addrtype == mlptSingle) { 3258 tcp_err_ack(tcp, mp, TNOADDR, 0); 3259 return; 3260 } 3261 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3262 requested_port, addrtype); 3263 } 3264 } 3265 3266 if (mlptype != mlptSingle) { 3267 if (secpolicy_net_bindmlp(cr) != 0) { 3268 if (tcp->tcp_debug) { 3269 (void) strlog(TCP_MOD_ID, 0, 1, 3270 SL_ERROR|SL_TRACE, 3271 "tcp_bind: no priv for multilevel port %d", 3272 requested_port); 3273 } 3274 tcp_err_ack(tcp, mp, TACCES, 0); 3275 return; 3276 } 3277 3278 /* 3279 * If we're specifically binding a shared IP address and the 3280 * port is MLP on shared addresses, then check to see if this 3281 * zone actually owns the MLP. Reject if not. 3282 */ 3283 if (mlptype == mlptShared && addrtype == mlptShared) { 3284 zoneid_t mlpzone; 3285 3286 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3287 htons(mlp_port)); 3288 if (connp->conn_zoneid != mlpzone) { 3289 if (tcp->tcp_debug) { 3290 (void) strlog(TCP_MOD_ID, 0, 1, 3291 SL_ERROR|SL_TRACE, 3292 "tcp_bind: attempt to bind port " 3293 "%d on shared addr in zone %d " 3294 "(should be %d)", 3295 mlp_port, connp->conn_zoneid, 3296 mlpzone); 3297 } 3298 tcp_err_ack(tcp, mp, TACCES, 0); 3299 return; 3300 } 3301 } 3302 3303 if (!user_specified) { 3304 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3305 requested_port, B_TRUE); 3306 if (err != 0) { 3307 if (tcp->tcp_debug) { 3308 (void) strlog(TCP_MOD_ID, 0, 1, 3309 SL_ERROR|SL_TRACE, 3310 "tcp_bind: cannot establish anon " 3311 "MLP for port %d", 3312 requested_port); 3313 } 3314 tcp_err_ack(tcp, mp, TSYSERR, err); 3315 return; 3316 } 3317 connp->conn_anon_port = B_TRUE; 3318 } 3319 connp->conn_mlp_type = mlptype; 3320 } 3321 3322 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3323 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3324 3325 if (allocated_port == 0) { 3326 connp->conn_mlp_type = mlptSingle; 3327 if (connp->conn_anon_port) { 3328 connp->conn_anon_port = B_FALSE; 3329 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3330 requested_port, B_FALSE); 3331 } 3332 if (bind_to_req_port_only) { 3333 if (tcp->tcp_debug) { 3334 (void) strlog(TCP_MOD_ID, 0, 1, 3335 SL_ERROR|SL_TRACE, 3336 "tcp_bind: requested addr busy"); 3337 } 3338 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3339 } else { 3340 /* If we are out of ports, fail the bind. */ 3341 if (tcp->tcp_debug) { 3342 (void) strlog(TCP_MOD_ID, 0, 1, 3343 SL_ERROR|SL_TRACE, 3344 "tcp_bind: out of ports?"); 3345 } 3346 tcp_err_ack(tcp, mp, TNOADDR, 0); 3347 } 3348 return; 3349 } 3350 ASSERT(tcp->tcp_state == TCPS_BOUND); 3351 do_bind: 3352 if (!backlog_update) { 3353 if (tcp->tcp_family == AF_INET) 3354 sin->sin_port = htons(allocated_port); 3355 else 3356 sin6->sin6_port = htons(allocated_port); 3357 } 3358 if (tcp->tcp_family == AF_INET) { 3359 if (tbr->CONIND_number != 0) { 3360 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3361 sizeof (sin_t)); 3362 } else { 3363 /* Just verify the local IP address */ 3364 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3365 } 3366 } else { 3367 if (tbr->CONIND_number != 0) { 3368 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3369 sizeof (sin6_t)); 3370 } else { 3371 /* Just verify the local IP address */ 3372 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3373 IPV6_ADDR_LEN); 3374 } 3375 } 3376 if (mp1 == NULL) { 3377 if (connp->conn_anon_port) { 3378 connp->conn_anon_port = B_FALSE; 3379 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3380 requested_port, B_FALSE); 3381 } 3382 connp->conn_mlp_type = mlptSingle; 3383 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3384 return; 3385 } 3386 3387 tbr->PRIM_type = T_BIND_ACK; 3388 mp->b_datap->db_type = M_PCPROTO; 3389 3390 /* Chain in the reply mp for tcp_rput() */ 3391 mp1->b_cont = mp; 3392 mp = mp1; 3393 3394 tcp->tcp_conn_req_max = tbr->CONIND_number; 3395 if (tcp->tcp_conn_req_max) { 3396 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3397 tcp->tcp_conn_req_max = tcp_conn_req_min; 3398 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3399 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3400 /* 3401 * If this is a listener, do not reset the eager list 3402 * and other stuffs. Note that we don't check if the 3403 * existing eager list meets the new tcp_conn_req_max 3404 * requirement. 3405 */ 3406 if (tcp->tcp_state != TCPS_LISTEN) { 3407 tcp->tcp_state = TCPS_LISTEN; 3408 /* Initialize the chain. Don't need the eager_lock */ 3409 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3410 tcp->tcp_second_ctimer_threshold = 3411 tcp_ip_abort_linterval; 3412 } 3413 } 3414 3415 /* 3416 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3417 * processing continues in tcp_rput_other(). 3418 */ 3419 if (tcp->tcp_family == AF_INET6) { 3420 ASSERT(tcp->tcp_connp->conn_af_isv6); 3421 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3422 } else { 3423 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3424 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3425 } 3426 /* 3427 * If the bind cannot complete immediately 3428 * IP will arrange to call tcp_rput_other 3429 * when the bind completes. 3430 */ 3431 if (mp != NULL) { 3432 tcp_rput_other(tcp, mp); 3433 } else { 3434 /* 3435 * Bind will be resumed later. Need to ensure 3436 * that conn doesn't disappear when that happens. 3437 * This will be decremented in ip_resume_tcp_bind(). 3438 */ 3439 CONN_INC_REF(tcp->tcp_connp); 3440 } 3441 } 3442 3443 3444 /* 3445 * If the "bind_to_req_port_only" parameter is set, if the requested port 3446 * number is available, return it, If not return 0 3447 * 3448 * If "bind_to_req_port_only" parameter is not set and 3449 * If the requested port number is available, return it. If not, return 3450 * the first anonymous port we happen across. If no anonymous ports are 3451 * available, return 0. addr is the requested local address, if any. 3452 * 3453 * In either case, when succeeding update the tcp_t to record the port number 3454 * and insert it in the bind hash table. 3455 * 3456 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3457 * without setting SO_REUSEADDR. This is needed so that they 3458 * can be viewed as two independent transport protocols. 3459 */ 3460 static in_port_t 3461 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3462 int reuseaddr, boolean_t quick_connect, 3463 boolean_t bind_to_req_port_only, boolean_t user_specified) 3464 { 3465 /* number of times we have run around the loop */ 3466 int count = 0; 3467 /* maximum number of times to run around the loop */ 3468 int loopmax; 3469 conn_t *connp = tcp->tcp_connp; 3470 zoneid_t zoneid = connp->conn_zoneid; 3471 3472 /* 3473 * Lookup for free addresses is done in a loop and "loopmax" 3474 * influences how long we spin in the loop 3475 */ 3476 if (bind_to_req_port_only) { 3477 /* 3478 * If the requested port is busy, don't bother to look 3479 * for a new one. Setting loop maximum count to 1 has 3480 * that effect. 3481 */ 3482 loopmax = 1; 3483 } else { 3484 /* 3485 * If the requested port is busy, look for a free one 3486 * in the anonymous port range. 3487 * Set loopmax appropriately so that one does not look 3488 * forever in the case all of the anonymous ports are in use. 3489 */ 3490 if (tcp->tcp_anon_priv_bind) { 3491 /* 3492 * loopmax = 3493 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3494 */ 3495 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3496 } else { 3497 loopmax = (tcp_largest_anon_port - 3498 tcp_smallest_anon_port + 1); 3499 } 3500 } 3501 do { 3502 uint16_t lport; 3503 tf_t *tbf; 3504 tcp_t *ltcp; 3505 conn_t *lconnp; 3506 3507 lport = htons(port); 3508 3509 /* 3510 * Ensure that the tcp_t is not currently in the bind hash. 3511 * Hold the lock on the hash bucket to ensure that 3512 * the duplicate check plus the insertion is an atomic 3513 * operation. 3514 * 3515 * This function does an inline lookup on the bind hash list 3516 * Make sure that we access only members of tcp_t 3517 * and that we don't look at tcp_tcp, since we are not 3518 * doing a CONN_INC_REF. 3519 */ 3520 tcp_bind_hash_remove(tcp); 3521 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3522 mutex_enter(&tbf->tf_lock); 3523 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3524 ltcp = ltcp->tcp_bind_hash) { 3525 boolean_t not_socket; 3526 boolean_t exclbind; 3527 3528 if (lport != ltcp->tcp_lport) 3529 continue; 3530 3531 lconnp = ltcp->tcp_connp; 3532 3533 /* 3534 * On a labeled system, we must treat bindings to ports 3535 * on shared IP addresses by sockets with MAC exemption 3536 * privilege as being in all zones, as there's 3537 * otherwise no way to identify the right receiver. 3538 */ 3539 if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) && 3540 !lconnp->conn_mac_exempt && 3541 !connp->conn_mac_exempt) 3542 continue; 3543 3544 /* 3545 * If TCP_EXCLBIND is set for either the bound or 3546 * binding endpoint, the semantics of bind 3547 * is changed according to the following. 3548 * 3549 * spec = specified address (v4 or v6) 3550 * unspec = unspecified address (v4 or v6) 3551 * A = specified addresses are different for endpoints 3552 * 3553 * bound bind to allowed 3554 * ------------------------------------- 3555 * unspec unspec no 3556 * unspec spec no 3557 * spec unspec no 3558 * spec spec yes if A 3559 * 3560 * For labeled systems, SO_MAC_EXEMPT behaves the same 3561 * as TCP_EXCLBIND, except that zoneid is ignored. 3562 * 3563 * Note: 3564 * 3565 * 1. Because of TLI semantics, an endpoint can go 3566 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3567 * TCPS_BOUND, depending on whether it is originally 3568 * a listener or not. That is why we need to check 3569 * for states greater than or equal to TCPS_BOUND 3570 * here. 3571 * 3572 * 2. Ideally, we should only check for state equals 3573 * to TCPS_LISTEN. And the following check should be 3574 * added. 3575 * 3576 * if (ltcp->tcp_state == TCPS_LISTEN || 3577 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3578 * ... 3579 * } 3580 * 3581 * The semantics will be changed to this. If the 3582 * endpoint on the list is in state not equal to 3583 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3584 * set, let the bind succeed. 3585 * 3586 * Because of (1), we cannot do that for TLI 3587 * endpoints. But we can do that for socket endpoints. 3588 * If in future, we can change this going back 3589 * semantics, we can use the above check for TLI also. 3590 */ 3591 not_socket = !(TCP_IS_SOCKET(ltcp) && 3592 TCP_IS_SOCKET(tcp)); 3593 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3594 3595 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3596 (exclbind && (not_socket || 3597 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3598 if (V6_OR_V4_INADDR_ANY( 3599 ltcp->tcp_bound_source_v6) || 3600 V6_OR_V4_INADDR_ANY(*laddr) || 3601 IN6_ARE_ADDR_EQUAL(laddr, 3602 <cp->tcp_bound_source_v6)) { 3603 break; 3604 } 3605 continue; 3606 } 3607 3608 /* 3609 * Check ipversion to allow IPv4 and IPv6 sockets to 3610 * have disjoint port number spaces, if *_EXCLBIND 3611 * is not set and only if the application binds to a 3612 * specific port. We use the same autoassigned port 3613 * number space for IPv4 and IPv6 sockets. 3614 */ 3615 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3616 bind_to_req_port_only) 3617 continue; 3618 3619 /* 3620 * Ideally, we should make sure that the source 3621 * address, remote address, and remote port in the 3622 * four tuple for this tcp-connection is unique. 3623 * However, trying to find out the local source 3624 * address would require too much code duplication 3625 * with IP, since IP needs needs to have that code 3626 * to support userland TCP implementations. 3627 */ 3628 if (quick_connect && 3629 (ltcp->tcp_state > TCPS_LISTEN) && 3630 ((tcp->tcp_fport != ltcp->tcp_fport) || 3631 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3632 <cp->tcp_remote_v6))) 3633 continue; 3634 3635 if (!reuseaddr) { 3636 /* 3637 * No socket option SO_REUSEADDR. 3638 * If existing port is bound to 3639 * a non-wildcard IP address 3640 * and the requesting stream is 3641 * bound to a distinct 3642 * different IP addresses 3643 * (non-wildcard, also), keep 3644 * going. 3645 */ 3646 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3647 !V6_OR_V4_INADDR_ANY( 3648 ltcp->tcp_bound_source_v6) && 3649 !IN6_ARE_ADDR_EQUAL(laddr, 3650 <cp->tcp_bound_source_v6)) 3651 continue; 3652 if (ltcp->tcp_state >= TCPS_BOUND) { 3653 /* 3654 * This port is being used and 3655 * its state is >= TCPS_BOUND, 3656 * so we can't bind to it. 3657 */ 3658 break; 3659 } 3660 } else { 3661 /* 3662 * socket option SO_REUSEADDR is set on the 3663 * binding tcp_t. 3664 * 3665 * If two streams are bound to 3666 * same IP address or both addr 3667 * and bound source are wildcards 3668 * (INADDR_ANY), we want to stop 3669 * searching. 3670 * We have found a match of IP source 3671 * address and source port, which is 3672 * refused regardless of the 3673 * SO_REUSEADDR setting, so we break. 3674 */ 3675 if (IN6_ARE_ADDR_EQUAL(laddr, 3676 <cp->tcp_bound_source_v6) && 3677 (ltcp->tcp_state == TCPS_LISTEN || 3678 ltcp->tcp_state == TCPS_BOUND)) 3679 break; 3680 } 3681 } 3682 if (ltcp != NULL) { 3683 /* The port number is busy */ 3684 mutex_exit(&tbf->tf_lock); 3685 } else { 3686 /* 3687 * This port is ours. Insert in fanout and mark as 3688 * bound to prevent others from getting the port 3689 * number. 3690 */ 3691 tcp->tcp_state = TCPS_BOUND; 3692 tcp->tcp_lport = htons(port); 3693 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3694 3695 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3696 tcp->tcp_lport)] == tbf); 3697 tcp_bind_hash_insert(tbf, tcp, 1); 3698 3699 mutex_exit(&tbf->tf_lock); 3700 3701 /* 3702 * We don't want tcp_next_port_to_try to "inherit" 3703 * a port number supplied by the user in a bind. 3704 */ 3705 if (user_specified) 3706 return (port); 3707 3708 /* 3709 * This is the only place where tcp_next_port_to_try 3710 * is updated. After the update, it may or may not 3711 * be in the valid range. 3712 */ 3713 if (!tcp->tcp_anon_priv_bind) 3714 tcp_next_port_to_try = port + 1; 3715 return (port); 3716 } 3717 3718 if (tcp->tcp_anon_priv_bind) { 3719 port = tcp_get_next_priv_port(tcp); 3720 } else { 3721 if (count == 0 && user_specified) { 3722 /* 3723 * We may have to return an anonymous port. So 3724 * get one to start with. 3725 */ 3726 port = 3727 tcp_update_next_port(tcp_next_port_to_try, 3728 tcp, B_TRUE); 3729 user_specified = B_FALSE; 3730 } else { 3731 port = tcp_update_next_port(port + 1, tcp, 3732 B_FALSE); 3733 } 3734 } 3735 if (port == 0) 3736 break; 3737 3738 /* 3739 * Don't let this loop run forever in the case where 3740 * all of the anonymous ports are in use. 3741 */ 3742 } while (++count < loopmax); 3743 return (0); 3744 } 3745 3746 /* 3747 * We are dying for some reason. Try to do it gracefully. (May be called 3748 * as writer.) 3749 * 3750 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3751 * done by a service procedure). 3752 * TBD - Should the return value distinguish between the tcp_t being 3753 * freed and it being reinitialized? 3754 */ 3755 static int 3756 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3757 { 3758 mblk_t *mp; 3759 queue_t *q; 3760 3761 TCP_CLD_STAT(tag); 3762 3763 #if TCP_TAG_CLEAN_DEATH 3764 tcp->tcp_cleandeathtag = tag; 3765 #endif 3766 3767 if (tcp->tcp_fused) 3768 tcp_unfuse(tcp); 3769 3770 if (tcp->tcp_linger_tid != 0 && 3771 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3772 tcp_stop_lingering(tcp); 3773 } 3774 3775 ASSERT(tcp != NULL); 3776 ASSERT((tcp->tcp_family == AF_INET && 3777 tcp->tcp_ipversion == IPV4_VERSION) || 3778 (tcp->tcp_family == AF_INET6 && 3779 (tcp->tcp_ipversion == IPV4_VERSION || 3780 tcp->tcp_ipversion == IPV6_VERSION))); 3781 3782 if (TCP_IS_DETACHED(tcp)) { 3783 if (tcp->tcp_hard_binding) { 3784 /* 3785 * Its an eager that we are dealing with. We close the 3786 * eager but in case a conn_ind has already gone to the 3787 * listener, let tcp_accept_finish() send a discon_ind 3788 * to the listener and drop the last reference. If the 3789 * listener doesn't even know about the eager i.e. the 3790 * conn_ind hasn't gone up, blow away the eager and drop 3791 * the last reference as well. If the conn_ind has gone 3792 * up, state should be BOUND. tcp_accept_finish 3793 * will figure out that the connection has received a 3794 * RST and will send a DISCON_IND to the application. 3795 */ 3796 tcp_closei_local(tcp); 3797 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 3798 CONN_DEC_REF(tcp->tcp_connp); 3799 } else { 3800 tcp->tcp_state = TCPS_BOUND; 3801 } 3802 } else { 3803 tcp_close_detached(tcp); 3804 } 3805 return (0); 3806 } 3807 3808 TCP_STAT(tcp_clean_death_nondetached); 3809 3810 /* 3811 * If T_ORDREL_IND has not been sent yet (done when service routine 3812 * is run) postpone cleaning up the endpoint until service routine 3813 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3814 * client_errno since tcp_close uses the client_errno field. 3815 */ 3816 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3817 if (err != 0) 3818 tcp->tcp_client_errno = err; 3819 3820 tcp->tcp_deferred_clean_death = B_TRUE; 3821 return (-1); 3822 } 3823 3824 q = tcp->tcp_rq; 3825 3826 /* Trash all inbound data */ 3827 flushq(q, FLUSHALL); 3828 3829 /* 3830 * If we are at least part way open and there is error 3831 * (err==0 implies no error) 3832 * notify our client by a T_DISCON_IND. 3833 */ 3834 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3835 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3836 !TCP_IS_SOCKET(tcp)) { 3837 /* 3838 * Send M_FLUSH according to TPI. Because sockets will 3839 * (and must) ignore FLUSHR we do that only for TPI 3840 * endpoints and sockets in STREAMS mode. 3841 */ 3842 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3843 } 3844 if (tcp->tcp_debug) { 3845 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3846 "tcp_clean_death: discon err %d", err); 3847 } 3848 mp = mi_tpi_discon_ind(NULL, err, 0); 3849 if (mp != NULL) { 3850 putnext(q, mp); 3851 } else { 3852 if (tcp->tcp_debug) { 3853 (void) strlog(TCP_MOD_ID, 0, 1, 3854 SL_ERROR|SL_TRACE, 3855 "tcp_clean_death, sending M_ERROR"); 3856 } 3857 (void) putnextctl1(q, M_ERROR, EPROTO); 3858 } 3859 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3860 /* SYN_SENT or SYN_RCVD */ 3861 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3862 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3863 /* ESTABLISHED or CLOSE_WAIT */ 3864 BUMP_MIB(&tcp_mib, tcpEstabResets); 3865 } 3866 } 3867 3868 tcp_reinit(tcp); 3869 return (-1); 3870 } 3871 3872 /* 3873 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3874 * to expire, stop the wait and finish the close. 3875 */ 3876 static void 3877 tcp_stop_lingering(tcp_t *tcp) 3878 { 3879 clock_t delta = 0; 3880 3881 tcp->tcp_linger_tid = 0; 3882 if (tcp->tcp_state > TCPS_LISTEN) { 3883 tcp_acceptor_hash_remove(tcp); 3884 if (tcp->tcp_flow_stopped) { 3885 tcp_clrqfull(tcp); 3886 } 3887 3888 if (tcp->tcp_timer_tid != 0) { 3889 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3890 tcp->tcp_timer_tid = 0; 3891 } 3892 /* 3893 * Need to cancel those timers which will not be used when 3894 * TCP is detached. This has to be done before the tcp_wq 3895 * is set to the global queue. 3896 */ 3897 tcp_timers_stop(tcp); 3898 3899 3900 tcp->tcp_detached = B_TRUE; 3901 tcp->tcp_rq = tcp_g_q; 3902 tcp->tcp_wq = WR(tcp_g_q); 3903 3904 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3905 tcp_time_wait_append(tcp); 3906 TCP_DBGSTAT(tcp_detach_time_wait); 3907 goto finish; 3908 } 3909 3910 /* 3911 * If delta is zero the timer event wasn't executed and was 3912 * successfully canceled. In this case we need to restart it 3913 * with the minimal delta possible. 3914 */ 3915 if (delta >= 0) { 3916 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3917 delta ? delta : 1); 3918 } 3919 } else { 3920 tcp_closei_local(tcp); 3921 CONN_DEC_REF(tcp->tcp_connp); 3922 } 3923 finish: 3924 /* Signal closing thread that it can complete close */ 3925 mutex_enter(&tcp->tcp_closelock); 3926 tcp->tcp_detached = B_TRUE; 3927 tcp->tcp_rq = tcp_g_q; 3928 tcp->tcp_wq = WR(tcp_g_q); 3929 tcp->tcp_closed = 1; 3930 cv_signal(&tcp->tcp_closecv); 3931 mutex_exit(&tcp->tcp_closelock); 3932 } 3933 3934 /* 3935 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3936 * expires. 3937 */ 3938 static void 3939 tcp_close_linger_timeout(void *arg) 3940 { 3941 conn_t *connp = (conn_t *)arg; 3942 tcp_t *tcp = connp->conn_tcp; 3943 3944 tcp->tcp_client_errno = ETIMEDOUT; 3945 tcp_stop_lingering(tcp); 3946 } 3947 3948 static int 3949 tcp_close(queue_t *q, int flags) 3950 { 3951 conn_t *connp = Q_TO_CONN(q); 3952 tcp_t *tcp = connp->conn_tcp; 3953 mblk_t *mp = &tcp->tcp_closemp; 3954 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3955 boolean_t linger_interrupted = B_FALSE; 3956 mblk_t *bp; 3957 3958 ASSERT(WR(q)->q_next == NULL); 3959 ASSERT(connp->conn_ref >= 2); 3960 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 3961 3962 /* 3963 * We are being closed as /dev/tcp or /dev/tcp6. 3964 * 3965 * Mark the conn as closing. ill_pending_mp_add will not 3966 * add any mp to the pending mp list, after this conn has 3967 * started closing. Same for sq_pending_mp_add 3968 */ 3969 mutex_enter(&connp->conn_lock); 3970 connp->conn_state_flags |= CONN_CLOSING; 3971 if (connp->conn_oper_pending_ill != NULL) 3972 conn_ioctl_cleanup_reqd = B_TRUE; 3973 CONN_INC_REF_LOCKED(connp); 3974 mutex_exit(&connp->conn_lock); 3975 tcp->tcp_closeflags = (uint8_t)flags; 3976 ASSERT(connp->conn_ref >= 3); 3977 3978 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 3979 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 3980 3981 mutex_enter(&tcp->tcp_closelock); 3982 while (!tcp->tcp_closed) { 3983 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3984 /* 3985 * We got interrupted. Check if we are lingering, 3986 * if yes, post a message to stop and wait until 3987 * tcp_closed is set. If we aren't lingering, 3988 * just go back around. 3989 */ 3990 if (tcp->tcp_linger && 3991 tcp->tcp_lingertime > 0 && 3992 !linger_interrupted) { 3993 mutex_exit(&tcp->tcp_closelock); 3994 /* Entering squeue, bump ref count. */ 3995 CONN_INC_REF(connp); 3996 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3997 squeue_enter(connp->conn_sqp, bp, 3998 tcp_linger_interrupted, connp, 3999 SQTAG_IP_TCP_CLOSE); 4000 linger_interrupted = B_TRUE; 4001 mutex_enter(&tcp->tcp_closelock); 4002 } 4003 } 4004 } 4005 mutex_exit(&tcp->tcp_closelock); 4006 4007 /* 4008 * In the case of listener streams that have eagers in the q or q0 4009 * we wait for the eagers to drop their reference to us. tcp_rq and 4010 * tcp_wq of the eagers point to our queues. By waiting for the 4011 * refcnt to drop to 1, we are sure that the eagers have cleaned 4012 * up their queue pointers and also dropped their references to us. 4013 */ 4014 if (tcp->tcp_wait_for_eagers) { 4015 mutex_enter(&connp->conn_lock); 4016 while (connp->conn_ref != 1) { 4017 cv_wait(&connp->conn_cv, &connp->conn_lock); 4018 } 4019 mutex_exit(&connp->conn_lock); 4020 } 4021 /* 4022 * ioctl cleanup. The mp is queued in the 4023 * ill_pending_mp or in the sq_pending_mp. 4024 */ 4025 if (conn_ioctl_cleanup_reqd) 4026 conn_ioctl_cleanup(connp); 4027 4028 qprocsoff(q); 4029 inet_minor_free(ip_minor_arena, connp->conn_dev); 4030 4031 tcp->tcp_cpid = -1; 4032 4033 /* 4034 * Drop IP's reference on the conn. This is the last reference 4035 * on the connp if the state was less than established. If the 4036 * connection has gone into timewait state, then we will have 4037 * one ref for the TCP and one more ref (total of two) for the 4038 * classifier connected hash list (a timewait connections stays 4039 * in connected hash till closed). 4040 * 4041 * We can't assert the references because there might be other 4042 * transient reference places because of some walkers or queued 4043 * packets in squeue for the timewait state. 4044 */ 4045 CONN_DEC_REF(connp); 4046 q->q_ptr = WR(q)->q_ptr = NULL; 4047 return (0); 4048 } 4049 4050 static int 4051 tcpclose_accept(queue_t *q) 4052 { 4053 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4054 4055 /* 4056 * We had opened an acceptor STREAM for sockfs which is 4057 * now being closed due to some error. 4058 */ 4059 qprocsoff(q); 4060 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4061 q->q_ptr = WR(q)->q_ptr = NULL; 4062 return (0); 4063 } 4064 4065 /* 4066 * Called by tcp_close() routine via squeue when lingering is 4067 * interrupted by a signal. 4068 */ 4069 4070 /* ARGSUSED */ 4071 static void 4072 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4073 { 4074 conn_t *connp = (conn_t *)arg; 4075 tcp_t *tcp = connp->conn_tcp; 4076 4077 freeb(mp); 4078 if (tcp->tcp_linger_tid != 0 && 4079 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4080 tcp_stop_lingering(tcp); 4081 tcp->tcp_client_errno = EINTR; 4082 } 4083 } 4084 4085 /* 4086 * Called by streams close routine via squeues when our client blows off her 4087 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4088 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4089 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4090 * acked. 4091 * 4092 * NOTE: tcp_close potentially returns error when lingering. 4093 * However, the stream head currently does not pass these errors 4094 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4095 * errors to the application (from tsleep()) and not errors 4096 * like ECONNRESET caused by receiving a reset packet. 4097 */ 4098 4099 /* ARGSUSED */ 4100 static void 4101 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4102 { 4103 char *msg; 4104 conn_t *connp = (conn_t *)arg; 4105 tcp_t *tcp = connp->conn_tcp; 4106 clock_t delta = 0; 4107 4108 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4109 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4110 4111 /* Cancel any pending timeout */ 4112 if (tcp->tcp_ordrelid != 0) { 4113 if (tcp->tcp_timeout) { 4114 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4115 } 4116 tcp->tcp_ordrelid = 0; 4117 tcp->tcp_timeout = B_FALSE; 4118 } 4119 4120 mutex_enter(&tcp->tcp_eager_lock); 4121 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4122 /* Cleanup for listener */ 4123 tcp_eager_cleanup(tcp, 0); 4124 tcp->tcp_wait_for_eagers = 1; 4125 } 4126 mutex_exit(&tcp->tcp_eager_lock); 4127 4128 connp->conn_mdt_ok = B_FALSE; 4129 tcp->tcp_mdt = B_FALSE; 4130 4131 msg = NULL; 4132 switch (tcp->tcp_state) { 4133 case TCPS_CLOSED: 4134 case TCPS_IDLE: 4135 case TCPS_BOUND: 4136 case TCPS_LISTEN: 4137 break; 4138 case TCPS_SYN_SENT: 4139 msg = "tcp_close, during connect"; 4140 break; 4141 case TCPS_SYN_RCVD: 4142 /* 4143 * Close during the connect 3-way handshake 4144 * but here there may or may not be pending data 4145 * already on queue. Process almost same as in 4146 * the ESTABLISHED state. 4147 */ 4148 /* FALLTHRU */ 4149 default: 4150 if (tcp->tcp_fused) 4151 tcp_unfuse(tcp); 4152 4153 /* 4154 * If SO_LINGER has set a zero linger time, abort the 4155 * connection with a reset. 4156 */ 4157 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4158 msg = "tcp_close, zero lingertime"; 4159 break; 4160 } 4161 4162 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4163 /* 4164 * Abort connection if there is unread data queued. 4165 */ 4166 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4167 msg = "tcp_close, unread data"; 4168 break; 4169 } 4170 /* 4171 * tcp_hard_bound is now cleared thus all packets go through 4172 * tcp_lookup. This fact is used by tcp_detach below. 4173 * 4174 * We have done a qwait() above which could have possibly 4175 * drained more messages in turn causing transition to a 4176 * different state. Check whether we have to do the rest 4177 * of the processing or not. 4178 */ 4179 if (tcp->tcp_state <= TCPS_LISTEN) 4180 break; 4181 4182 /* 4183 * Transmit the FIN before detaching the tcp_t. 4184 * After tcp_detach returns this queue/perimeter 4185 * no longer owns the tcp_t thus others can modify it. 4186 */ 4187 (void) tcp_xmit_end(tcp); 4188 4189 /* 4190 * If lingering on close then wait until the fin is acked, 4191 * the SO_LINGER time passes, or a reset is sent/received. 4192 */ 4193 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4194 !(tcp->tcp_fin_acked) && 4195 tcp->tcp_state >= TCPS_ESTABLISHED) { 4196 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4197 tcp->tcp_client_errno = EWOULDBLOCK; 4198 } else if (tcp->tcp_client_errno == 0) { 4199 4200 ASSERT(tcp->tcp_linger_tid == 0); 4201 4202 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4203 tcp_close_linger_timeout, 4204 tcp->tcp_lingertime * hz); 4205 4206 /* tcp_close_linger_timeout will finish close */ 4207 if (tcp->tcp_linger_tid == 0) 4208 tcp->tcp_client_errno = ENOSR; 4209 else 4210 return; 4211 } 4212 4213 /* 4214 * Check if we need to detach or just close 4215 * the instance. 4216 */ 4217 if (tcp->tcp_state <= TCPS_LISTEN) 4218 break; 4219 } 4220 4221 /* 4222 * Make sure that no other thread will access the tcp_rq of 4223 * this instance (through lookups etc.) as tcp_rq will go 4224 * away shortly. 4225 */ 4226 tcp_acceptor_hash_remove(tcp); 4227 4228 if (tcp->tcp_flow_stopped) { 4229 tcp_clrqfull(tcp); 4230 } 4231 4232 if (tcp->tcp_timer_tid != 0) { 4233 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4234 tcp->tcp_timer_tid = 0; 4235 } 4236 /* 4237 * Need to cancel those timers which will not be used when 4238 * TCP is detached. This has to be done before the tcp_wq 4239 * is set to the global queue. 4240 */ 4241 tcp_timers_stop(tcp); 4242 4243 tcp->tcp_detached = B_TRUE; 4244 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4245 tcp_time_wait_append(tcp); 4246 TCP_DBGSTAT(tcp_detach_time_wait); 4247 ASSERT(connp->conn_ref >= 3); 4248 goto finish; 4249 } 4250 4251 /* 4252 * If delta is zero the timer event wasn't executed and was 4253 * successfully canceled. In this case we need to restart it 4254 * with the minimal delta possible. 4255 */ 4256 if (delta >= 0) 4257 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4258 delta ? delta : 1); 4259 4260 ASSERT(connp->conn_ref >= 3); 4261 goto finish; 4262 } 4263 4264 /* Detach did not complete. Still need to remove q from stream. */ 4265 if (msg) { 4266 if (tcp->tcp_state == TCPS_ESTABLISHED || 4267 tcp->tcp_state == TCPS_CLOSE_WAIT) 4268 BUMP_MIB(&tcp_mib, tcpEstabResets); 4269 if (tcp->tcp_state == TCPS_SYN_SENT || 4270 tcp->tcp_state == TCPS_SYN_RCVD) 4271 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4272 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4273 } 4274 4275 tcp_closei_local(tcp); 4276 CONN_DEC_REF(connp); 4277 ASSERT(connp->conn_ref >= 2); 4278 4279 finish: 4280 /* 4281 * Although packets are always processed on the correct 4282 * tcp's perimeter and access is serialized via squeue's, 4283 * IP still needs a queue when sending packets in time_wait 4284 * state so use WR(tcp_g_q) till ip_output() can be 4285 * changed to deal with just connp. For read side, we 4286 * could have set tcp_rq to NULL but there are some cases 4287 * in tcp_rput_data() from early days of this code which 4288 * do a putnext without checking if tcp is closed. Those 4289 * need to be identified before both tcp_rq and tcp_wq 4290 * can be set to NULL and tcp_q_q can disappear forever. 4291 */ 4292 mutex_enter(&tcp->tcp_closelock); 4293 /* 4294 * Don't change the queues in the case of a listener that has 4295 * eagers in its q or q0. It could surprise the eagers. 4296 * Instead wait for the eagers outside the squeue. 4297 */ 4298 if (!tcp->tcp_wait_for_eagers) { 4299 tcp->tcp_detached = B_TRUE; 4300 tcp->tcp_rq = tcp_g_q; 4301 tcp->tcp_wq = WR(tcp_g_q); 4302 } 4303 4304 /* Signal tcp_close() to finish closing. */ 4305 tcp->tcp_closed = 1; 4306 cv_signal(&tcp->tcp_closecv); 4307 mutex_exit(&tcp->tcp_closelock); 4308 } 4309 4310 4311 /* 4312 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4313 * Some stream heads get upset if they see these later on as anything but NULL. 4314 */ 4315 static void 4316 tcp_close_mpp(mblk_t **mpp) 4317 { 4318 mblk_t *mp; 4319 4320 if ((mp = *mpp) != NULL) { 4321 do { 4322 mp->b_next = NULL; 4323 mp->b_prev = NULL; 4324 } while ((mp = mp->b_cont) != NULL); 4325 4326 mp = *mpp; 4327 *mpp = NULL; 4328 freemsg(mp); 4329 } 4330 } 4331 4332 /* Do detached close. */ 4333 static void 4334 tcp_close_detached(tcp_t *tcp) 4335 { 4336 if (tcp->tcp_fused) 4337 tcp_unfuse(tcp); 4338 4339 /* 4340 * Clustering code serializes TCP disconnect callbacks and 4341 * cluster tcp list walks by blocking a TCP disconnect callback 4342 * if a cluster tcp list walk is in progress. This ensures 4343 * accurate accounting of TCPs in the cluster code even though 4344 * the TCP list walk itself is not atomic. 4345 */ 4346 tcp_closei_local(tcp); 4347 CONN_DEC_REF(tcp->tcp_connp); 4348 } 4349 4350 /* 4351 * Stop all TCP timers, and free the timer mblks if requested. 4352 */ 4353 void 4354 tcp_timers_stop(tcp_t *tcp) 4355 { 4356 if (tcp->tcp_timer_tid != 0) { 4357 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4358 tcp->tcp_timer_tid = 0; 4359 } 4360 if (tcp->tcp_ka_tid != 0) { 4361 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4362 tcp->tcp_ka_tid = 0; 4363 } 4364 if (tcp->tcp_ack_tid != 0) { 4365 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4366 tcp->tcp_ack_tid = 0; 4367 } 4368 if (tcp->tcp_push_tid != 0) { 4369 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4370 tcp->tcp_push_tid = 0; 4371 } 4372 } 4373 4374 /* 4375 * The tcp_t is going away. Remove it from all lists and set it 4376 * to TCPS_CLOSED. The freeing up of memory is deferred until 4377 * tcp_inactive. This is needed since a thread in tcp_rput might have 4378 * done a CONN_INC_REF on this structure before it was removed from the 4379 * hashes. 4380 */ 4381 static void 4382 tcp_closei_local(tcp_t *tcp) 4383 { 4384 ire_t *ire; 4385 conn_t *connp = tcp->tcp_connp; 4386 4387 if (!TCP_IS_SOCKET(tcp)) 4388 tcp_acceptor_hash_remove(tcp); 4389 4390 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4391 tcp->tcp_ibsegs = 0; 4392 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4393 tcp->tcp_obsegs = 0; 4394 4395 /* 4396 * If we are an eager connection hanging off a listener that 4397 * hasn't formally accepted the connection yet, get off his 4398 * list and blow off any data that we have accumulated. 4399 */ 4400 if (tcp->tcp_listener != NULL) { 4401 tcp_t *listener = tcp->tcp_listener; 4402 mutex_enter(&listener->tcp_eager_lock); 4403 /* 4404 * tcp_eager_conn_ind == NULL means that the 4405 * conn_ind has already gone to listener. At 4406 * this point, eager will be closed but we 4407 * leave it in listeners eager list so that 4408 * if listener decides to close without doing 4409 * accept, we can clean this up. In tcp_wput_accept 4410 * we take case of the case of accept on closed 4411 * eager. 4412 */ 4413 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4414 tcp_eager_unlink(tcp); 4415 mutex_exit(&listener->tcp_eager_lock); 4416 /* 4417 * We don't want to have any pointers to the 4418 * listener queue, after we have released our 4419 * reference on the listener 4420 */ 4421 tcp->tcp_rq = tcp_g_q; 4422 tcp->tcp_wq = WR(tcp_g_q); 4423 CONN_DEC_REF(listener->tcp_connp); 4424 } else { 4425 mutex_exit(&listener->tcp_eager_lock); 4426 } 4427 } 4428 4429 /* Stop all the timers */ 4430 tcp_timers_stop(tcp); 4431 4432 if (tcp->tcp_state == TCPS_LISTEN) { 4433 if (tcp->tcp_ip_addr_cache) { 4434 kmem_free((void *)tcp->tcp_ip_addr_cache, 4435 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4436 tcp->tcp_ip_addr_cache = NULL; 4437 } 4438 } 4439 if (tcp->tcp_flow_stopped) 4440 tcp_clrqfull(tcp); 4441 4442 tcp_bind_hash_remove(tcp); 4443 /* 4444 * If the tcp_time_wait_collector (which runs outside the squeue) 4445 * is trying to remove this tcp from the time wait list, we will 4446 * block in tcp_time_wait_remove while trying to acquire the 4447 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4448 * requires the ipcl_hash_remove to be ordered after the 4449 * tcp_time_wait_remove for the refcnt checks to work correctly. 4450 */ 4451 if (tcp->tcp_state == TCPS_TIME_WAIT) 4452 tcp_time_wait_remove(tcp, NULL); 4453 CL_INET_DISCONNECT(tcp); 4454 ipcl_hash_remove(connp); 4455 4456 /* 4457 * Delete the cached ire in conn_ire_cache and also mark 4458 * the conn as CONDEMNED 4459 */ 4460 mutex_enter(&connp->conn_lock); 4461 connp->conn_state_flags |= CONN_CONDEMNED; 4462 ire = connp->conn_ire_cache; 4463 connp->conn_ire_cache = NULL; 4464 mutex_exit(&connp->conn_lock); 4465 if (ire != NULL) 4466 IRE_REFRELE_NOTR(ire); 4467 4468 /* Need to cleanup any pending ioctls */ 4469 ASSERT(tcp->tcp_time_wait_next == NULL); 4470 ASSERT(tcp->tcp_time_wait_prev == NULL); 4471 ASSERT(tcp->tcp_time_wait_expire == 0); 4472 tcp->tcp_state = TCPS_CLOSED; 4473 4474 /* Release any SSL context */ 4475 if (tcp->tcp_kssl_ent != NULL) { 4476 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4477 tcp->tcp_kssl_ent = NULL; 4478 } 4479 if (tcp->tcp_kssl_ctx != NULL) { 4480 kssl_release_ctx(tcp->tcp_kssl_ctx); 4481 tcp->tcp_kssl_ctx = NULL; 4482 } 4483 tcp->tcp_kssl_pending = B_FALSE; 4484 } 4485 4486 /* 4487 * tcp is dying (called from ipcl_conn_destroy and error cases). 4488 * Free the tcp_t in either case. 4489 */ 4490 void 4491 tcp_free(tcp_t *tcp) 4492 { 4493 mblk_t *mp; 4494 ip6_pkt_t *ipp; 4495 4496 ASSERT(tcp != NULL); 4497 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4498 4499 tcp->tcp_rq = NULL; 4500 tcp->tcp_wq = NULL; 4501 4502 tcp_close_mpp(&tcp->tcp_xmit_head); 4503 tcp_close_mpp(&tcp->tcp_reass_head); 4504 if (tcp->tcp_rcv_list != NULL) { 4505 /* Free b_next chain */ 4506 tcp_close_mpp(&tcp->tcp_rcv_list); 4507 } 4508 if ((mp = tcp->tcp_urp_mp) != NULL) { 4509 freemsg(mp); 4510 } 4511 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4512 freemsg(mp); 4513 } 4514 4515 if (tcp->tcp_fused_sigurg_mp != NULL) { 4516 freeb(tcp->tcp_fused_sigurg_mp); 4517 tcp->tcp_fused_sigurg_mp = NULL; 4518 } 4519 4520 if (tcp->tcp_sack_info != NULL) { 4521 if (tcp->tcp_notsack_list != NULL) { 4522 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4523 } 4524 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4525 } 4526 4527 if (tcp->tcp_hopopts != NULL) { 4528 mi_free(tcp->tcp_hopopts); 4529 tcp->tcp_hopopts = NULL; 4530 tcp->tcp_hopoptslen = 0; 4531 } 4532 ASSERT(tcp->tcp_hopoptslen == 0); 4533 if (tcp->tcp_dstopts != NULL) { 4534 mi_free(tcp->tcp_dstopts); 4535 tcp->tcp_dstopts = NULL; 4536 tcp->tcp_dstoptslen = 0; 4537 } 4538 ASSERT(tcp->tcp_dstoptslen == 0); 4539 if (tcp->tcp_rtdstopts != NULL) { 4540 mi_free(tcp->tcp_rtdstopts); 4541 tcp->tcp_rtdstopts = NULL; 4542 tcp->tcp_rtdstoptslen = 0; 4543 } 4544 ASSERT(tcp->tcp_rtdstoptslen == 0); 4545 if (tcp->tcp_rthdr != NULL) { 4546 mi_free(tcp->tcp_rthdr); 4547 tcp->tcp_rthdr = NULL; 4548 tcp->tcp_rthdrlen = 0; 4549 } 4550 ASSERT(tcp->tcp_rthdrlen == 0); 4551 4552 ipp = &tcp->tcp_sticky_ipp; 4553 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4554 IPPF_RTHDR)) 4555 ip6_pkt_free(ipp); 4556 4557 /* 4558 * Free memory associated with the tcp/ip header template. 4559 */ 4560 4561 if (tcp->tcp_iphc != NULL) 4562 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4563 4564 /* 4565 * Following is really a blowing away a union. 4566 * It happens to have exactly two members of identical size 4567 * the following code is enough. 4568 */ 4569 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4570 4571 if (tcp->tcp_tracebuf != NULL) { 4572 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4573 tcp->tcp_tracebuf = NULL; 4574 } 4575 } 4576 4577 4578 /* 4579 * Put a connection confirmation message upstream built from the 4580 * address information within 'iph' and 'tcph'. Report our success or failure. 4581 */ 4582 static boolean_t 4583 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4584 mblk_t **defermp) 4585 { 4586 sin_t sin; 4587 sin6_t sin6; 4588 mblk_t *mp; 4589 char *optp = NULL; 4590 int optlen = 0; 4591 cred_t *cr; 4592 4593 if (defermp != NULL) 4594 *defermp = NULL; 4595 4596 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4597 /* 4598 * Return in T_CONN_CON results of option negotiation through 4599 * the T_CONN_REQ. Note: If there is an real end-to-end option 4600 * negotiation, then what is received from remote end needs 4601 * to be taken into account but there is no such thing (yet?) 4602 * in our TCP/IP. 4603 * Note: We do not use mi_offset_param() here as 4604 * tcp_opts_conn_req contents do not directly come from 4605 * an application and are either generated in kernel or 4606 * from user input that was already verified. 4607 */ 4608 mp = tcp->tcp_conn.tcp_opts_conn_req; 4609 optp = (char *)(mp->b_rptr + 4610 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4611 optlen = (int) 4612 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4613 } 4614 4615 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4616 ipha_t *ipha = (ipha_t *)iphdr; 4617 4618 /* packet is IPv4 */ 4619 if (tcp->tcp_family == AF_INET) { 4620 sin = sin_null; 4621 sin.sin_addr.s_addr = ipha->ipha_src; 4622 sin.sin_port = *(uint16_t *)tcph->th_lport; 4623 sin.sin_family = AF_INET; 4624 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4625 (int)sizeof (sin_t), optp, optlen); 4626 } else { 4627 sin6 = sin6_null; 4628 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4629 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4630 sin6.sin6_family = AF_INET6; 4631 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4632 (int)sizeof (sin6_t), optp, optlen); 4633 4634 } 4635 } else { 4636 ip6_t *ip6h = (ip6_t *)iphdr; 4637 4638 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4639 ASSERT(tcp->tcp_family == AF_INET6); 4640 sin6 = sin6_null; 4641 sin6.sin6_addr = ip6h->ip6_src; 4642 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4643 sin6.sin6_family = AF_INET6; 4644 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4645 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4646 (int)sizeof (sin6_t), optp, optlen); 4647 } 4648 4649 if (!mp) 4650 return (B_FALSE); 4651 4652 if ((cr = DB_CRED(idmp)) != NULL) { 4653 mblk_setcred(mp, cr); 4654 DB_CPID(mp) = DB_CPID(idmp); 4655 } 4656 4657 if (defermp == NULL) 4658 putnext(tcp->tcp_rq, mp); 4659 else 4660 *defermp = mp; 4661 4662 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4663 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4664 return (B_TRUE); 4665 } 4666 4667 /* 4668 * Defense for the SYN attack - 4669 * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest 4670 * one that doesn't have the dontdrop bit set. 4671 * 2. Don't drop a SYN request before its first timeout. This gives every 4672 * request at least til the first timeout to complete its 3-way handshake. 4673 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4674 * requests currently on the queue that has timed out. This will be used 4675 * as an indicator of whether an attack is under way, so that appropriate 4676 * actions can be taken. (It's incremented in tcp_timer() and decremented 4677 * either when eager goes into ESTABLISHED, or gets freed up.) 4678 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4679 * # of timeout drops back to <= q0len/32 => SYN alert off 4680 */ 4681 static boolean_t 4682 tcp_drop_q0(tcp_t *tcp) 4683 { 4684 tcp_t *eager; 4685 4686 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4687 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4688 /* 4689 * New one is added after next_q0 so prev_q0 points to the oldest 4690 * Also do not drop any established connections that are deferred on 4691 * q0 due to q being full 4692 */ 4693 4694 eager = tcp->tcp_eager_prev_q0; 4695 while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { 4696 eager = eager->tcp_eager_prev_q0; 4697 if (eager == tcp) { 4698 eager = tcp->tcp_eager_prev_q0; 4699 break; 4700 } 4701 } 4702 if (eager->tcp_syn_rcvd_timeout == 0) 4703 return (B_FALSE); 4704 4705 if (tcp->tcp_debug) { 4706 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4707 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4708 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4709 tcp->tcp_conn_req_cnt_q0, 4710 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4711 } 4712 4713 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4714 4715 /* 4716 * need to do refhold here because the selected eager could 4717 * be removed by someone else if we release the eager lock. 4718 */ 4719 CONN_INC_REF(eager->tcp_connp); 4720 mutex_exit(&tcp->tcp_eager_lock); 4721 4722 /* Mark the IRE created for this SYN request temporary */ 4723 tcp_ip_ire_mark_advice(eager); 4724 (void) tcp_clean_death(eager, ETIMEDOUT, 5); 4725 CONN_DEC_REF(eager->tcp_connp); 4726 4727 mutex_enter(&tcp->tcp_eager_lock); 4728 return (B_TRUE); 4729 } 4730 4731 int 4732 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4733 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4734 { 4735 tcp_t *ltcp = lconnp->conn_tcp; 4736 tcp_t *tcp = connp->conn_tcp; 4737 mblk_t *tpi_mp; 4738 ipha_t *ipha; 4739 ip6_t *ip6h; 4740 sin6_t sin6; 4741 in6_addr_t v6dst; 4742 int err; 4743 int ifindex = 0; 4744 cred_t *cr; 4745 4746 if (ipvers == IPV4_VERSION) { 4747 ipha = (ipha_t *)mp->b_rptr; 4748 4749 connp->conn_send = ip_output; 4750 connp->conn_recv = tcp_input; 4751 4752 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4753 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4754 4755 sin6 = sin6_null; 4756 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4757 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4758 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4759 sin6.sin6_family = AF_INET6; 4760 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4761 lconnp->conn_zoneid); 4762 if (tcp->tcp_recvdstaddr) { 4763 sin6_t sin6d; 4764 4765 sin6d = sin6_null; 4766 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4767 &sin6d.sin6_addr); 4768 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4769 sin6d.sin6_family = AF_INET; 4770 tpi_mp = mi_tpi_extconn_ind(NULL, 4771 (char *)&sin6d, sizeof (sin6_t), 4772 (char *)&tcp, 4773 (t_scalar_t)sizeof (intptr_t), 4774 (char *)&sin6d, sizeof (sin6_t), 4775 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4776 } else { 4777 tpi_mp = mi_tpi_conn_ind(NULL, 4778 (char *)&sin6, sizeof (sin6_t), 4779 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4780 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4781 } 4782 } else { 4783 ip6h = (ip6_t *)mp->b_rptr; 4784 4785 connp->conn_send = ip_output_v6; 4786 connp->conn_recv = tcp_input; 4787 4788 connp->conn_srcv6 = ip6h->ip6_dst; 4789 connp->conn_remv6 = ip6h->ip6_src; 4790 4791 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4792 ifindex = (int)DB_CKSUMSTUFF(mp); 4793 DB_CKSUMSTUFF(mp) = 0; 4794 4795 sin6 = sin6_null; 4796 sin6.sin6_addr = ip6h->ip6_src; 4797 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4798 sin6.sin6_family = AF_INET6; 4799 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4800 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4801 lconnp->conn_zoneid); 4802 4803 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4804 /* Pass up the scope_id of remote addr */ 4805 sin6.sin6_scope_id = ifindex; 4806 } else { 4807 sin6.sin6_scope_id = 0; 4808 } 4809 if (tcp->tcp_recvdstaddr) { 4810 sin6_t sin6d; 4811 4812 sin6d = sin6_null; 4813 sin6.sin6_addr = ip6h->ip6_dst; 4814 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4815 sin6d.sin6_family = AF_INET; 4816 tpi_mp = mi_tpi_extconn_ind(NULL, 4817 (char *)&sin6d, sizeof (sin6_t), 4818 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4819 (char *)&sin6d, sizeof (sin6_t), 4820 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4821 } else { 4822 tpi_mp = mi_tpi_conn_ind(NULL, 4823 (char *)&sin6, sizeof (sin6_t), 4824 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4825 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4826 } 4827 } 4828 4829 if (tpi_mp == NULL) 4830 return (ENOMEM); 4831 4832 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4833 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4834 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4835 connp->conn_fully_bound = B_FALSE; 4836 4837 if (tcp_trace) 4838 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4839 4840 /* Inherit information from the "parent" */ 4841 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4842 tcp->tcp_family = ltcp->tcp_family; 4843 tcp->tcp_wq = ltcp->tcp_wq; 4844 tcp->tcp_rq = ltcp->tcp_rq; 4845 tcp->tcp_mss = tcp_mss_def_ipv6; 4846 tcp->tcp_detached = B_TRUE; 4847 if ((err = tcp_init_values(tcp)) != 0) { 4848 freemsg(tpi_mp); 4849 return (err); 4850 } 4851 4852 if (ipvers == IPV4_VERSION) { 4853 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4854 freemsg(tpi_mp); 4855 return (err); 4856 } 4857 ASSERT(tcp->tcp_ipha != NULL); 4858 } else { 4859 /* ifindex must be already set */ 4860 ASSERT(ifindex != 0); 4861 4862 if (ltcp->tcp_bound_if != 0) { 4863 /* 4864 * Set newtcp's bound_if equal to 4865 * listener's value. If ifindex is 4866 * not the same as ltcp->tcp_bound_if, 4867 * it must be a packet for the ipmp group 4868 * of interfaces 4869 */ 4870 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4871 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4872 tcp->tcp_bound_if = ifindex; 4873 } 4874 4875 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4876 tcp->tcp_recvifindex = 0; 4877 tcp->tcp_recvhops = 0xffffffffU; 4878 ASSERT(tcp->tcp_ip6h != NULL); 4879 } 4880 4881 tcp->tcp_lport = ltcp->tcp_lport; 4882 4883 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4884 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4885 /* 4886 * Listener had options of some sort; eager inherits. 4887 * Free up the eager template and allocate one 4888 * of the right size. 4889 */ 4890 if (tcp->tcp_hdr_grown) { 4891 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4892 } else { 4893 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4894 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4895 } 4896 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4897 KM_NOSLEEP); 4898 if (tcp->tcp_iphc == NULL) { 4899 tcp->tcp_iphc_len = 0; 4900 freemsg(tpi_mp); 4901 return (ENOMEM); 4902 } 4903 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4904 tcp->tcp_hdr_grown = B_TRUE; 4905 } 4906 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4907 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4908 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4909 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4910 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4911 4912 /* 4913 * Copy the IP+TCP header template from listener to eager 4914 */ 4915 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4916 if (tcp->tcp_ipversion == IPV6_VERSION) { 4917 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4918 IPPROTO_RAW) { 4919 tcp->tcp_ip6h = 4920 (ip6_t *)(tcp->tcp_iphc + 4921 sizeof (ip6i_t)); 4922 } else { 4923 tcp->tcp_ip6h = 4924 (ip6_t *)(tcp->tcp_iphc); 4925 } 4926 tcp->tcp_ipha = NULL; 4927 } else { 4928 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4929 tcp->tcp_ip6h = NULL; 4930 } 4931 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4932 tcp->tcp_ip_hdr_len); 4933 } else { 4934 /* 4935 * only valid case when ipversion of listener and 4936 * eager differ is when listener is IPv6 and 4937 * eager is IPv4. 4938 * Eager header template has been initialized to the 4939 * maximum v4 header sizes, which includes space for 4940 * TCP and IP options. 4941 */ 4942 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4943 (tcp->tcp_ipversion == IPV4_VERSION)); 4944 ASSERT(tcp->tcp_iphc_len >= 4945 TCP_MAX_COMBINED_HEADER_LENGTH); 4946 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4947 /* copy IP header fields individually */ 4948 tcp->tcp_ipha->ipha_ttl = 4949 ltcp->tcp_ip6h->ip6_hops; 4950 bcopy(ltcp->tcp_tcph->th_lport, 4951 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4952 } 4953 4954 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4955 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4956 sizeof (in_port_t)); 4957 4958 if (ltcp->tcp_lport == 0) { 4959 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4960 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4961 sizeof (in_port_t)); 4962 } 4963 4964 if (tcp->tcp_ipversion == IPV4_VERSION) { 4965 ASSERT(ipha != NULL); 4966 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4967 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4968 4969 /* Source routing option copyover (reverse it) */ 4970 if (tcp_rev_src_routes) 4971 tcp_opt_reverse(tcp, ipha); 4972 } else { 4973 ASSERT(ip6h != NULL); 4974 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4975 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4976 } 4977 4978 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4979 /* 4980 * If the SYN contains a credential, it's a loopback packet; attach 4981 * the credential to the TPI message. 4982 */ 4983 if ((cr = DB_CRED(idmp)) != NULL) { 4984 mblk_setcred(tpi_mp, cr); 4985 DB_CPID(tpi_mp) = DB_CPID(idmp); 4986 } 4987 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4988 4989 /* Inherit the listener's SSL protection state */ 4990 4991 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4992 kssl_hold_ent(tcp->tcp_kssl_ent); 4993 tcp->tcp_kssl_pending = B_TRUE; 4994 } 4995 4996 return (0); 4997 } 4998 4999 5000 int 5001 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5002 tcph_t *tcph, mblk_t *idmp) 5003 { 5004 tcp_t *ltcp = lconnp->conn_tcp; 5005 tcp_t *tcp = connp->conn_tcp; 5006 sin_t sin; 5007 mblk_t *tpi_mp = NULL; 5008 int err; 5009 cred_t *cr; 5010 5011 sin = sin_null; 5012 sin.sin_addr.s_addr = ipha->ipha_src; 5013 sin.sin_port = *(uint16_t *)tcph->th_lport; 5014 sin.sin_family = AF_INET; 5015 if (ltcp->tcp_recvdstaddr) { 5016 sin_t sind; 5017 5018 sind = sin_null; 5019 sind.sin_addr.s_addr = ipha->ipha_dst; 5020 sind.sin_port = *(uint16_t *)tcph->th_fport; 5021 sind.sin_family = AF_INET; 5022 tpi_mp = mi_tpi_extconn_ind(NULL, 5023 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5024 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5025 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5026 } else { 5027 tpi_mp = mi_tpi_conn_ind(NULL, 5028 (char *)&sin, sizeof (sin_t), 5029 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5030 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5031 } 5032 5033 if (tpi_mp == NULL) { 5034 return (ENOMEM); 5035 } 5036 5037 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5038 connp->conn_send = ip_output; 5039 connp->conn_recv = tcp_input; 5040 connp->conn_fully_bound = B_FALSE; 5041 5042 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5043 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5044 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5045 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5046 5047 if (tcp_trace) { 5048 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5049 } 5050 5051 /* Inherit information from the "parent" */ 5052 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5053 tcp->tcp_family = ltcp->tcp_family; 5054 tcp->tcp_wq = ltcp->tcp_wq; 5055 tcp->tcp_rq = ltcp->tcp_rq; 5056 tcp->tcp_mss = tcp_mss_def_ipv4; 5057 tcp->tcp_detached = B_TRUE; 5058 if ((err = tcp_init_values(tcp)) != 0) { 5059 freemsg(tpi_mp); 5060 return (err); 5061 } 5062 5063 /* 5064 * Let's make sure that eager tcp template has enough space to 5065 * copy IPv4 listener's tcp template. Since the conn_t structure is 5066 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5067 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5068 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5069 * extension headers or with ip6i_t struct). Note that bcopy() below 5070 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5071 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5072 */ 5073 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5074 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5075 5076 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5077 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5078 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5079 tcp->tcp_ttl = ltcp->tcp_ttl; 5080 tcp->tcp_tos = ltcp->tcp_tos; 5081 5082 /* Copy the IP+TCP header template from listener to eager */ 5083 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5084 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5085 tcp->tcp_ip6h = NULL; 5086 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5087 tcp->tcp_ip_hdr_len); 5088 5089 /* Initialize the IP addresses and Ports */ 5090 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5091 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5092 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5093 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5094 5095 /* Source routing option copyover (reverse it) */ 5096 if (tcp_rev_src_routes) 5097 tcp_opt_reverse(tcp, ipha); 5098 5099 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5100 5101 /* 5102 * If the SYN contains a credential, it's a loopback packet; attach 5103 * the credential to the TPI message. 5104 */ 5105 if ((cr = DB_CRED(idmp)) != NULL) { 5106 mblk_setcred(tpi_mp, cr); 5107 DB_CPID(tpi_mp) = DB_CPID(idmp); 5108 } 5109 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5110 5111 /* Inherit the listener's SSL protection state */ 5112 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5113 kssl_hold_ent(tcp->tcp_kssl_ent); 5114 tcp->tcp_kssl_pending = B_TRUE; 5115 } 5116 5117 return (0); 5118 } 5119 5120 /* 5121 * sets up conn for ipsec. 5122 * if the first mblk is M_CTL it is consumed and mpp is updated. 5123 * in case of error mpp is freed. 5124 */ 5125 conn_t * 5126 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5127 { 5128 conn_t *connp = tcp->tcp_connp; 5129 conn_t *econnp; 5130 squeue_t *new_sqp; 5131 mblk_t *first_mp = *mpp; 5132 mblk_t *mp = *mpp; 5133 boolean_t mctl_present = B_FALSE; 5134 uint_t ipvers; 5135 5136 econnp = tcp_get_conn(sqp); 5137 if (econnp == NULL) { 5138 freemsg(first_mp); 5139 return (NULL); 5140 } 5141 if (DB_TYPE(mp) == M_CTL) { 5142 if (mp->b_cont == NULL || 5143 mp->b_cont->b_datap->db_type != M_DATA) { 5144 freemsg(first_mp); 5145 return (NULL); 5146 } 5147 mp = mp->b_cont; 5148 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5149 freemsg(first_mp); 5150 return (NULL); 5151 } 5152 5153 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5154 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5155 mctl_present = B_TRUE; 5156 } else { 5157 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5158 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5159 } 5160 5161 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5162 DB_CKSUMSTART(mp) = 0; 5163 5164 ASSERT(OK_32PTR(mp->b_rptr)); 5165 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5166 if (ipvers == IPV4_VERSION) { 5167 uint16_t *up; 5168 uint32_t ports; 5169 ipha_t *ipha; 5170 5171 ipha = (ipha_t *)mp->b_rptr; 5172 up = (uint16_t *)((uchar_t *)ipha + 5173 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5174 ports = *(uint32_t *)up; 5175 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5176 ipha->ipha_dst, ipha->ipha_src, ports); 5177 } else { 5178 uint16_t *up; 5179 uint32_t ports; 5180 uint16_t ip_hdr_len; 5181 uint8_t *nexthdrp; 5182 ip6_t *ip6h; 5183 tcph_t *tcph; 5184 5185 ip6h = (ip6_t *)mp->b_rptr; 5186 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5187 ip_hdr_len = IPV6_HDR_LEN; 5188 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5189 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5190 CONN_DEC_REF(econnp); 5191 freemsg(first_mp); 5192 return (NULL); 5193 } 5194 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5195 up = (uint16_t *)tcph->th_lport; 5196 ports = *(uint32_t *)up; 5197 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5198 ip6h->ip6_dst, ip6h->ip6_src, ports); 5199 } 5200 5201 /* 5202 * The caller already ensured that there is a sqp present. 5203 */ 5204 econnp->conn_sqp = new_sqp; 5205 5206 if (connp->conn_policy != NULL) { 5207 ipsec_in_t *ii; 5208 ii = (ipsec_in_t *)(first_mp->b_rptr); 5209 ASSERT(ii->ipsec_in_policy == NULL); 5210 IPPH_REFHOLD(connp->conn_policy); 5211 ii->ipsec_in_policy = connp->conn_policy; 5212 5213 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5214 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5215 CONN_DEC_REF(econnp); 5216 freemsg(first_mp); 5217 return (NULL); 5218 } 5219 } 5220 5221 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5222 CONN_DEC_REF(econnp); 5223 freemsg(first_mp); 5224 return (NULL); 5225 } 5226 5227 /* 5228 * If we know we have some policy, pass the "IPSEC" 5229 * options size TCP uses this adjust the MSS. 5230 */ 5231 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5232 if (mctl_present) { 5233 freeb(first_mp); 5234 *mpp = mp; 5235 } 5236 5237 return (econnp); 5238 } 5239 5240 /* 5241 * tcp_get_conn/tcp_free_conn 5242 * 5243 * tcp_get_conn is used to get a clean tcp connection structure. 5244 * It tries to reuse the connections put on the freelist by the 5245 * time_wait_collector failing which it goes to kmem_cache. This 5246 * way has two benefits compared to just allocating from and 5247 * freeing to kmem_cache. 5248 * 1) The time_wait_collector can free (which includes the cleanup) 5249 * outside the squeue. So when the interrupt comes, we have a clean 5250 * connection sitting in the freelist. Obviously, this buys us 5251 * performance. 5252 * 5253 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5254 * has multiple disadvantages - tying up the squeue during alloc, and the 5255 * fact that IPSec policy initialization has to happen here which 5256 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5257 * But allocating the conn/tcp in IP land is also not the best since 5258 * we can't check the 'q' and 'q0' which are protected by squeue and 5259 * blindly allocate memory which might have to be freed here if we are 5260 * not allowed to accept the connection. By using the freelist and 5261 * putting the conn/tcp back in freelist, we don't pay a penalty for 5262 * allocating memory without checking 'q/q0' and freeing it if we can't 5263 * accept the connection. 5264 * 5265 * Care should be taken to put the conn back in the same squeue's freelist 5266 * from which it was allocated. Best results are obtained if conn is 5267 * allocated from listener's squeue and freed to the same. Time wait 5268 * collector will free up the freelist is the connection ends up sitting 5269 * there for too long. 5270 */ 5271 void * 5272 tcp_get_conn(void *arg) 5273 { 5274 tcp_t *tcp = NULL; 5275 conn_t *connp = NULL; 5276 squeue_t *sqp = (squeue_t *)arg; 5277 tcp_squeue_priv_t *tcp_time_wait; 5278 5279 tcp_time_wait = 5280 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5281 5282 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5283 tcp = tcp_time_wait->tcp_free_list; 5284 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5285 if (tcp != NULL) { 5286 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5287 tcp_time_wait->tcp_free_list_cnt--; 5288 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5289 tcp->tcp_time_wait_next = NULL; 5290 connp = tcp->tcp_connp; 5291 connp->conn_flags |= IPCL_REUSED; 5292 return ((void *)connp); 5293 } 5294 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5295 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5296 return (NULL); 5297 return ((void *)connp); 5298 } 5299 5300 /* 5301 * Update the cached label for the given tcp_t. This should be called once per 5302 * connection, and before any packets are sent or tcp_process_options is 5303 * invoked. Returns B_FALSE if the correct label could not be constructed. 5304 */ 5305 static boolean_t 5306 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5307 { 5308 conn_t *connp = tcp->tcp_connp; 5309 5310 if (tcp->tcp_ipversion == IPV4_VERSION) { 5311 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5312 int added; 5313 5314 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5315 connp->conn_mac_exempt) != 0) 5316 return (B_FALSE); 5317 5318 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5319 if (added == -1) 5320 return (B_FALSE); 5321 tcp->tcp_hdr_len += added; 5322 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5323 tcp->tcp_ip_hdr_len += added; 5324 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5325 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5326 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5327 tcp->tcp_hdr_len); 5328 if (added == -1) 5329 return (B_FALSE); 5330 tcp->tcp_hdr_len += added; 5331 tcp->tcp_tcph = (tcph_t *) 5332 ((uchar_t *)tcp->tcp_tcph + added); 5333 tcp->tcp_ip_hdr_len += added; 5334 } 5335 } else { 5336 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5337 5338 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5339 connp->conn_mac_exempt) != 0) 5340 return (B_FALSE); 5341 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5342 &tcp->tcp_label_len, optbuf) != 0) 5343 return (B_FALSE); 5344 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5345 return (B_FALSE); 5346 } 5347 5348 connp->conn_ulp_labeled = 1; 5349 5350 return (B_TRUE); 5351 } 5352 5353 /* BEGIN CSTYLED */ 5354 /* 5355 * 5356 * The sockfs ACCEPT path: 5357 * ======================= 5358 * 5359 * The eager is now established in its own perimeter as soon as SYN is 5360 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5361 * completes the accept processing on the acceptor STREAM. The sending 5362 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5363 * listener but a TLI/XTI listener completes the accept processing 5364 * on the listener perimeter. 5365 * 5366 * Common control flow for 3 way handshake: 5367 * ---------------------------------------- 5368 * 5369 * incoming SYN (listener perimeter) -> tcp_rput_data() 5370 * -> tcp_conn_request() 5371 * 5372 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5373 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5374 * 5375 * Sockfs ACCEPT Path: 5376 * ------------------- 5377 * 5378 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5379 * as STREAM entry point) 5380 * 5381 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5382 * 5383 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5384 * association (we are not behind eager's squeue but sockfs is protecting us 5385 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5386 * is changed to point at tcp_wput(). 5387 * 5388 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5389 * listener (done on listener's perimeter). 5390 * 5391 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5392 * accept. 5393 * 5394 * TLI/XTI client ACCEPT path: 5395 * --------------------------- 5396 * 5397 * soaccept() sends T_CONN_RES on the listener STREAM. 5398 * 5399 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5400 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5401 * 5402 * Locks: 5403 * ====== 5404 * 5405 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5406 * and listeners->tcp_eager_next_q. 5407 * 5408 * Referencing: 5409 * ============ 5410 * 5411 * 1) We start out in tcp_conn_request by eager placing a ref on 5412 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5413 * 5414 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5415 * doing so we place a ref on the eager. This ref is finally dropped at the 5416 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5417 * reference is dropped by the squeue framework. 5418 * 5419 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5420 * 5421 * The reference must be released by the same entity that added the reference 5422 * In the above scheme, the eager is the entity that adds and releases the 5423 * references. Note that tcp_accept_finish executes in the squeue of the eager 5424 * (albeit after it is attached to the acceptor stream). Though 1. executes 5425 * in the listener's squeue, the eager is nascent at this point and the 5426 * reference can be considered to have been added on behalf of the eager. 5427 * 5428 * Eager getting a Reset or listener closing: 5429 * ========================================== 5430 * 5431 * Once the listener and eager are linked, the listener never does the unlink. 5432 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5433 * a message on all eager perimeter. The eager then does the unlink, clears 5434 * any pointers to the listener's queue and drops the reference to the 5435 * listener. The listener waits in tcp_close outside the squeue until its 5436 * refcount has dropped to 1. This ensures that the listener has waited for 5437 * all eagers to clear their association with the listener. 5438 * 5439 * Similarly, if eager decides to go away, it can unlink itself and close. 5440 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5441 * the reference to eager is still valid because of the extra ref we put 5442 * in tcp_send_conn_ind. 5443 * 5444 * Listener can always locate the eager under the protection 5445 * of the listener->tcp_eager_lock, and then do a refhold 5446 * on the eager during the accept processing. 5447 * 5448 * The acceptor stream accesses the eager in the accept processing 5449 * based on the ref placed on eager before sending T_conn_ind. 5450 * The only entity that can negate this refhold is a listener close 5451 * which is mutually exclusive with an active acceptor stream. 5452 * 5453 * Eager's reference on the listener 5454 * =================================== 5455 * 5456 * If the accept happens (even on a closed eager) the eager drops its 5457 * reference on the listener at the start of tcp_accept_finish. If the 5458 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5459 * the reference is dropped in tcp_closei_local. If the listener closes, 5460 * the reference is dropped in tcp_eager_kill. In all cases the reference 5461 * is dropped while executing in the eager's context (squeue). 5462 */ 5463 /* END CSTYLED */ 5464 5465 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5466 5467 /* 5468 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5469 * tcp_rput_data will not see any SYN packets. 5470 */ 5471 /* ARGSUSED */ 5472 void 5473 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5474 { 5475 tcph_t *tcph; 5476 uint32_t seg_seq; 5477 tcp_t *eager; 5478 uint_t ipvers; 5479 ipha_t *ipha; 5480 ip6_t *ip6h; 5481 int err; 5482 conn_t *econnp = NULL; 5483 squeue_t *new_sqp; 5484 mblk_t *mp1; 5485 uint_t ip_hdr_len; 5486 conn_t *connp = (conn_t *)arg; 5487 tcp_t *tcp = connp->conn_tcp; 5488 ire_t *ire; 5489 cred_t *credp; 5490 5491 if (tcp->tcp_state != TCPS_LISTEN) 5492 goto error2; 5493 5494 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5495 5496 mutex_enter(&tcp->tcp_eager_lock); 5497 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5498 mutex_exit(&tcp->tcp_eager_lock); 5499 TCP_STAT(tcp_listendrop); 5500 BUMP_MIB(&tcp_mib, tcpListenDrop); 5501 if (tcp->tcp_debug) { 5502 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5503 "tcp_conn_request: listen backlog (max=%d) " 5504 "overflow (%d pending) on %s", 5505 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5506 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5507 } 5508 goto error2; 5509 } 5510 5511 if (tcp->tcp_conn_req_cnt_q0 >= 5512 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5513 /* 5514 * Q0 is full. Drop a pending half-open req from the queue 5515 * to make room for the new SYN req. Also mark the time we 5516 * drop a SYN. 5517 * 5518 * A more aggressive defense against SYN attack will 5519 * be to set the "tcp_syn_defense" flag now. 5520 */ 5521 TCP_STAT(tcp_listendropq0); 5522 tcp->tcp_last_rcv_lbolt = lbolt64; 5523 if (!tcp_drop_q0(tcp)) { 5524 mutex_exit(&tcp->tcp_eager_lock); 5525 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5526 if (tcp->tcp_debug) { 5527 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5528 "tcp_conn_request: listen half-open queue " 5529 "(max=%d) full (%d pending) on %s", 5530 tcp_conn_req_max_q0, 5531 tcp->tcp_conn_req_cnt_q0, 5532 tcp_display(tcp, NULL, 5533 DISP_PORT_ONLY)); 5534 } 5535 goto error2; 5536 } 5537 } 5538 mutex_exit(&tcp->tcp_eager_lock); 5539 5540 /* 5541 * IP adds STRUIO_EAGER and ensures that the received packet is 5542 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5543 * link local address. If IPSec is enabled, db_struioflag has 5544 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5545 * otherwise an error case if neither of them is set. 5546 */ 5547 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5548 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5549 DB_CKSUMSTART(mp) = 0; 5550 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5551 econnp = (conn_t *)tcp_get_conn(arg2); 5552 if (econnp == NULL) 5553 goto error2; 5554 econnp->conn_sqp = new_sqp; 5555 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5556 /* 5557 * mp is updated in tcp_get_ipsec_conn(). 5558 */ 5559 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5560 if (econnp == NULL) { 5561 /* 5562 * mp freed by tcp_get_ipsec_conn. 5563 */ 5564 return; 5565 } 5566 } else { 5567 goto error2; 5568 } 5569 5570 ASSERT(DB_TYPE(mp) == M_DATA); 5571 5572 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5573 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5574 ASSERT(OK_32PTR(mp->b_rptr)); 5575 if (ipvers == IPV4_VERSION) { 5576 ipha = (ipha_t *)mp->b_rptr; 5577 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5578 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5579 } else { 5580 ip6h = (ip6_t *)mp->b_rptr; 5581 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5582 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5583 } 5584 5585 if (tcp->tcp_family == AF_INET) { 5586 ASSERT(ipvers == IPV4_VERSION); 5587 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5588 } else { 5589 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5590 } 5591 5592 if (err) 5593 goto error3; 5594 5595 eager = econnp->conn_tcp; 5596 5597 /* Inherit various TCP parameters from the listener */ 5598 eager->tcp_naglim = tcp->tcp_naglim; 5599 eager->tcp_first_timer_threshold = 5600 tcp->tcp_first_timer_threshold; 5601 eager->tcp_second_timer_threshold = 5602 tcp->tcp_second_timer_threshold; 5603 5604 eager->tcp_first_ctimer_threshold = 5605 tcp->tcp_first_ctimer_threshold; 5606 eager->tcp_second_ctimer_threshold = 5607 tcp->tcp_second_ctimer_threshold; 5608 5609 /* 5610 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5611 * If it does not, the eager's receive window will be set to the 5612 * listener's receive window later in this function. 5613 */ 5614 eager->tcp_rwnd = 0; 5615 5616 /* 5617 * Inherit listener's tcp_init_cwnd. Need to do this before 5618 * calling tcp_process_options() where tcp_mss_set() is called 5619 * to set the initial cwnd. 5620 */ 5621 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5622 5623 /* 5624 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5625 * zone id before the accept is completed in tcp_wput_accept(). 5626 */ 5627 econnp->conn_zoneid = connp->conn_zoneid; 5628 econnp->conn_allzones = connp->conn_allzones; 5629 5630 /* Copy nexthop information from listener to eager */ 5631 if (connp->conn_nexthop_set) { 5632 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5633 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5634 } 5635 5636 /* 5637 * TSOL: tsol_input_proc() needs the eager's cred before the 5638 * eager is accepted 5639 */ 5640 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5641 crhold(credp); 5642 5643 /* 5644 * If the caller has the process-wide flag set, then default to MAC 5645 * exempt mode. This allows read-down to unlabeled hosts. 5646 */ 5647 if (getpflags(NET_MAC_AWARE, credp) != 0) 5648 econnp->conn_mac_exempt = B_TRUE; 5649 5650 if (is_system_labeled()) { 5651 cred_t *cr; 5652 5653 if (connp->conn_mlp_type != mlptSingle) { 5654 cr = econnp->conn_peercred = DB_CRED(mp); 5655 if (cr != NULL) 5656 crhold(cr); 5657 else 5658 cr = econnp->conn_cred; 5659 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5660 econnp, cred_t *, cr) 5661 } else { 5662 cr = econnp->conn_cred; 5663 DTRACE_PROBE2(syn_accept, conn_t *, 5664 econnp, cred_t *, cr) 5665 } 5666 5667 if (!tcp_update_label(eager, cr)) { 5668 DTRACE_PROBE3( 5669 tx__ip__log__error__connrequest__tcp, 5670 char *, "eager connp(1) label on SYN mp(2) failed", 5671 conn_t *, econnp, mblk_t *, mp); 5672 goto error3; 5673 } 5674 } 5675 5676 eager->tcp_hard_binding = B_TRUE; 5677 5678 tcp_bind_hash_insert(&tcp_bind_fanout[ 5679 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5680 5681 CL_INET_CONNECT(eager); 5682 5683 /* 5684 * No need to check for multicast destination since ip will only pass 5685 * up multicasts to those that have expressed interest 5686 * TODO: what about rejecting broadcasts? 5687 * Also check that source is not a multicast or broadcast address. 5688 */ 5689 eager->tcp_state = TCPS_SYN_RCVD; 5690 5691 5692 /* 5693 * There should be no ire in the mp as we are being called after 5694 * receiving the SYN. 5695 */ 5696 ASSERT(tcp_ire_mp(mp) == NULL); 5697 5698 /* 5699 * Adapt our mss, ttl, ... according to information provided in IRE. 5700 */ 5701 5702 if (tcp_adapt_ire(eager, NULL) == 0) { 5703 /* Undo the bind_hash_insert */ 5704 tcp_bind_hash_remove(eager); 5705 goto error3; 5706 } 5707 5708 /* Process all TCP options. */ 5709 tcp_process_options(eager, tcph); 5710 5711 /* Is the other end ECN capable? */ 5712 if (tcp_ecn_permitted >= 1 && 5713 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5714 eager->tcp_ecn_ok = B_TRUE; 5715 } 5716 5717 /* 5718 * listener->tcp_rq->q_hiwat should be the default window size or a 5719 * window size changed via SO_RCVBUF option. First round up the 5720 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5721 * scale option value if needed. Call tcp_rwnd_set() to finish the 5722 * setting. 5723 * 5724 * Note if there is a rpipe metric associated with the remote host, 5725 * we should not inherit receive window size from listener. 5726 */ 5727 eager->tcp_rwnd = MSS_ROUNDUP( 5728 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5729 eager->tcp_rwnd), eager->tcp_mss); 5730 if (eager->tcp_snd_ws_ok) 5731 tcp_set_ws_value(eager); 5732 /* 5733 * Note that this is the only place tcp_rwnd_set() is called for 5734 * accepting a connection. We need to call it here instead of 5735 * after the 3-way handshake because we need to tell the other 5736 * side our rwnd in the SYN-ACK segment. 5737 */ 5738 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5739 5740 /* 5741 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5742 * via soaccept()->soinheritoptions() which essentially applies 5743 * all the listener options to the new STREAM. The options that we 5744 * need to take care of are: 5745 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5746 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5747 * SO_SNDBUF, SO_RCVBUF. 5748 * 5749 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5750 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5751 * tcp_maxpsz_set() gets called later from 5752 * tcp_accept_finish(), the option takes effect. 5753 * 5754 */ 5755 /* Set the TCP options */ 5756 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5757 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5758 eager->tcp_oobinline = tcp->tcp_oobinline; 5759 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5760 eager->tcp_broadcast = tcp->tcp_broadcast; 5761 eager->tcp_useloopback = tcp->tcp_useloopback; 5762 eager->tcp_dontroute = tcp->tcp_dontroute; 5763 eager->tcp_linger = tcp->tcp_linger; 5764 eager->tcp_lingertime = tcp->tcp_lingertime; 5765 if (tcp->tcp_ka_enabled) 5766 eager->tcp_ka_enabled = 1; 5767 5768 /* Set the IP options */ 5769 econnp->conn_broadcast = connp->conn_broadcast; 5770 econnp->conn_loopback = connp->conn_loopback; 5771 econnp->conn_dontroute = connp->conn_dontroute; 5772 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5773 5774 /* Put a ref on the listener for the eager. */ 5775 CONN_INC_REF(connp); 5776 mutex_enter(&tcp->tcp_eager_lock); 5777 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5778 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5779 tcp->tcp_eager_next_q0 = eager; 5780 eager->tcp_eager_prev_q0 = tcp; 5781 5782 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5783 eager->tcp_listener = tcp; 5784 eager->tcp_saved_listener = tcp; 5785 5786 /* 5787 * Tag this detached tcp vector for later retrieval 5788 * by our listener client in tcp_accept(). 5789 */ 5790 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5791 tcp->tcp_conn_req_cnt_q0++; 5792 if (++tcp->tcp_conn_req_seqnum == -1) { 5793 /* 5794 * -1 is "special" and defined in TPI as something 5795 * that should never be used in T_CONN_IND 5796 */ 5797 ++tcp->tcp_conn_req_seqnum; 5798 } 5799 mutex_exit(&tcp->tcp_eager_lock); 5800 5801 if (tcp->tcp_syn_defense) { 5802 /* Don't drop the SYN that comes from a good IP source */ 5803 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5804 if (addr_cache != NULL && eager->tcp_remote == 5805 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5806 eager->tcp_dontdrop = B_TRUE; 5807 } 5808 } 5809 5810 /* 5811 * We need to insert the eager in its own perimeter but as soon 5812 * as we do that, we expose the eager to the classifier and 5813 * should not touch any field outside the eager's perimeter. 5814 * So do all the work necessary before inserting the eager 5815 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5816 * will succeed but undo everything if it fails. 5817 */ 5818 seg_seq = ABE32_TO_U32(tcph->th_seq); 5819 eager->tcp_irs = seg_seq; 5820 eager->tcp_rack = seg_seq; 5821 eager->tcp_rnxt = seg_seq + 1; 5822 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5823 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5824 eager->tcp_state = TCPS_SYN_RCVD; 5825 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5826 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5827 if (mp1 == NULL) 5828 goto error1; 5829 DB_CPID(mp1) = tcp->tcp_cpid; 5830 5831 /* 5832 * We need to start the rto timer. In normal case, we start 5833 * the timer after sending the packet on the wire (or at 5834 * least believing that packet was sent by waiting for 5835 * CALL_IP_WPUT() to return). Since this is the first packet 5836 * being sent on the wire for the eager, our initial tcp_rto 5837 * is at least tcp_rexmit_interval_min which is a fairly 5838 * large value to allow the algorithm to adjust slowly to large 5839 * fluctuations of RTT during first few transmissions. 5840 * 5841 * Starting the timer first and then sending the packet in this 5842 * case shouldn't make much difference since tcp_rexmit_interval_min 5843 * is of the order of several 100ms and starting the timer 5844 * first and then sending the packet will result in difference 5845 * of few micro seconds. 5846 * 5847 * Without this optimization, we are forced to hold the fanout 5848 * lock across the ipcl_bind_insert() and sending the packet 5849 * so that we don't race against an incoming packet (maybe RST) 5850 * for this eager. 5851 */ 5852 5853 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5854 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5855 5856 5857 /* 5858 * Insert the eager in its own perimeter now. We are ready to deal 5859 * with any packets on eager. 5860 */ 5861 if (eager->tcp_ipversion == IPV4_VERSION) { 5862 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5863 goto error; 5864 } 5865 } else { 5866 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5867 goto error; 5868 } 5869 } 5870 5871 /* mark conn as fully-bound */ 5872 econnp->conn_fully_bound = B_TRUE; 5873 5874 /* Send the SYN-ACK */ 5875 tcp_send_data(eager, eager->tcp_wq, mp1); 5876 freemsg(mp); 5877 5878 return; 5879 error: 5880 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 5881 freemsg(mp1); 5882 error1: 5883 /* Undo what we did above */ 5884 mutex_enter(&tcp->tcp_eager_lock); 5885 tcp_eager_unlink(eager); 5886 mutex_exit(&tcp->tcp_eager_lock); 5887 /* Drop eager's reference on the listener */ 5888 CONN_DEC_REF(connp); 5889 5890 /* 5891 * Delete the cached ire in conn_ire_cache and also mark 5892 * the conn as CONDEMNED 5893 */ 5894 mutex_enter(&econnp->conn_lock); 5895 econnp->conn_state_flags |= CONN_CONDEMNED; 5896 ire = econnp->conn_ire_cache; 5897 econnp->conn_ire_cache = NULL; 5898 mutex_exit(&econnp->conn_lock); 5899 if (ire != NULL) 5900 IRE_REFRELE_NOTR(ire); 5901 5902 /* 5903 * tcp_accept_comm inserts the eager to the bind_hash 5904 * we need to remove it from the hash if ipcl_conn_insert 5905 * fails. 5906 */ 5907 tcp_bind_hash_remove(eager); 5908 /* Drop the eager ref placed in tcp_open_detached */ 5909 CONN_DEC_REF(econnp); 5910 5911 /* 5912 * If a connection already exists, send the mp to that connections so 5913 * that it can be appropriately dealt with. 5914 */ 5915 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 5916 if (!IPCL_IS_CONNECTED(econnp)) { 5917 /* 5918 * Something bad happened. ipcl_conn_insert() 5919 * failed because a connection already existed 5920 * in connected hash but we can't find it 5921 * anymore (someone blew it away). Just 5922 * free this message and hopefully remote 5923 * will retransmit at which time the SYN can be 5924 * treated as a new connection or dealth with 5925 * a TH_RST if a connection already exists. 5926 */ 5927 freemsg(mp); 5928 } else { 5929 squeue_fill(econnp->conn_sqp, mp, tcp_input, 5930 econnp, SQTAG_TCP_CONN_REQ); 5931 } 5932 } else { 5933 /* Nobody wants this packet */ 5934 freemsg(mp); 5935 } 5936 return; 5937 error2: 5938 freemsg(mp); 5939 return; 5940 error3: 5941 CONN_DEC_REF(econnp); 5942 freemsg(mp); 5943 } 5944 5945 /* 5946 * In an ideal case of vertical partition in NUMA architecture, its 5947 * beneficial to have the listener and all the incoming connections 5948 * tied to the same squeue. The other constraint is that incoming 5949 * connections should be tied to the squeue attached to interrupted 5950 * CPU for obvious locality reason so this leaves the listener to 5951 * be tied to the same squeue. Our only problem is that when listener 5952 * is binding, the CPU that will get interrupted by the NIC whose 5953 * IP address the listener is binding to is not even known. So 5954 * the code below allows us to change that binding at the time the 5955 * CPU is interrupted by virtue of incoming connection's squeue. 5956 * 5957 * This is usefull only in case of a listener bound to a specific IP 5958 * address. For other kind of listeners, they get bound the 5959 * very first time and there is no attempt to rebind them. 5960 */ 5961 void 5962 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5963 { 5964 conn_t *connp = (conn_t *)arg; 5965 squeue_t *sqp = (squeue_t *)arg2; 5966 squeue_t *new_sqp; 5967 uint32_t conn_flags; 5968 5969 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5970 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5971 } else { 5972 goto done; 5973 } 5974 5975 if (connp->conn_fanout == NULL) 5976 goto done; 5977 5978 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5979 mutex_enter(&connp->conn_fanout->connf_lock); 5980 mutex_enter(&connp->conn_lock); 5981 /* 5982 * No one from read or write side can access us now 5983 * except for already queued packets on this squeue. 5984 * But since we haven't changed the squeue yet, they 5985 * can't execute. If they are processed after we have 5986 * changed the squeue, they are sent back to the 5987 * correct squeue down below. 5988 */ 5989 if (connp->conn_sqp != new_sqp) { 5990 while (connp->conn_sqp != new_sqp) 5991 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5992 } 5993 5994 do { 5995 conn_flags = connp->conn_flags; 5996 conn_flags |= IPCL_FULLY_BOUND; 5997 (void) cas32(&connp->conn_flags, connp->conn_flags, 5998 conn_flags); 5999 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6000 6001 mutex_exit(&connp->conn_fanout->connf_lock); 6002 mutex_exit(&connp->conn_lock); 6003 } 6004 6005 done: 6006 if (connp->conn_sqp != sqp) { 6007 CONN_INC_REF(connp); 6008 squeue_fill(connp->conn_sqp, mp, 6009 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6010 } else { 6011 tcp_conn_request(connp, mp, sqp); 6012 } 6013 } 6014 6015 /* 6016 * Successful connect request processing begins when our client passes 6017 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6018 * our T_OK_ACK reply message upstream. The control flow looks like this: 6019 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6020 * upstream <- tcp_rput() <- IP 6021 * After various error checks are completed, tcp_connect() lays 6022 * the target address and port into the composite header template, 6023 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6024 * request followed by an IRE request, and passes the three mblk message 6025 * down to IP looking like this: 6026 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6027 * Processing continues in tcp_rput() when we receive the following message: 6028 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6029 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6030 * to fire off the connection request, and then passes the T_OK_ACK mblk 6031 * upstream that we filled in below. There are, of course, numerous 6032 * error conditions along the way which truncate the processing described 6033 * above. 6034 */ 6035 static void 6036 tcp_connect(tcp_t *tcp, mblk_t *mp) 6037 { 6038 sin_t *sin; 6039 sin6_t *sin6; 6040 queue_t *q = tcp->tcp_wq; 6041 struct T_conn_req *tcr; 6042 ipaddr_t *dstaddrp; 6043 in_port_t dstport; 6044 uint_t srcid; 6045 6046 tcr = (struct T_conn_req *)mp->b_rptr; 6047 6048 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6049 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6050 tcp_err_ack(tcp, mp, TPROTO, 0); 6051 return; 6052 } 6053 6054 /* 6055 * Determine packet type based on type of address passed in 6056 * the request should contain an IPv4 or IPv6 address. 6057 * Make sure that address family matches the type of 6058 * family of the the address passed down 6059 */ 6060 switch (tcr->DEST_length) { 6061 default: 6062 tcp_err_ack(tcp, mp, TBADADDR, 0); 6063 return; 6064 6065 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6066 /* 6067 * XXX: The check for valid DEST_length was not there 6068 * in earlier releases and some buggy 6069 * TLI apps (e.g Sybase) got away with not feeding 6070 * in sin_zero part of address. 6071 * We allow that bug to keep those buggy apps humming. 6072 * Test suites require the check on DEST_length. 6073 * We construct a new mblk with valid DEST_length 6074 * free the original so the rest of the code does 6075 * not have to keep track of this special shorter 6076 * length address case. 6077 */ 6078 mblk_t *nmp; 6079 struct T_conn_req *ntcr; 6080 sin_t *nsin; 6081 6082 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6083 tcr->OPT_length, BPRI_HI); 6084 if (nmp == NULL) { 6085 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6086 return; 6087 } 6088 ntcr = (struct T_conn_req *)nmp->b_rptr; 6089 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6090 ntcr->PRIM_type = T_CONN_REQ; 6091 ntcr->DEST_length = sizeof (sin_t); 6092 ntcr->DEST_offset = sizeof (struct T_conn_req); 6093 6094 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6095 *nsin = sin_null; 6096 /* Get pointer to shorter address to copy from original mp */ 6097 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6098 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6099 if (sin == NULL || !OK_32PTR((char *)sin)) { 6100 freemsg(nmp); 6101 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6102 return; 6103 } 6104 nsin->sin_family = sin->sin_family; 6105 nsin->sin_port = sin->sin_port; 6106 nsin->sin_addr = sin->sin_addr; 6107 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6108 nmp->b_wptr = (uchar_t *)&nsin[1]; 6109 if (tcr->OPT_length != 0) { 6110 ntcr->OPT_length = tcr->OPT_length; 6111 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6112 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6113 (uchar_t *)ntcr + ntcr->OPT_offset, 6114 tcr->OPT_length); 6115 nmp->b_wptr += tcr->OPT_length; 6116 } 6117 freemsg(mp); /* original mp freed */ 6118 mp = nmp; /* re-initialize original variables */ 6119 tcr = ntcr; 6120 } 6121 /* FALLTHRU */ 6122 6123 case sizeof (sin_t): 6124 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6125 sizeof (sin_t)); 6126 if (sin == NULL || !OK_32PTR((char *)sin)) { 6127 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6128 return; 6129 } 6130 if (tcp->tcp_family != AF_INET || 6131 sin->sin_family != AF_INET) { 6132 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6133 return; 6134 } 6135 if (sin->sin_port == 0) { 6136 tcp_err_ack(tcp, mp, TBADADDR, 0); 6137 return; 6138 } 6139 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6140 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6141 return; 6142 } 6143 6144 break; 6145 6146 case sizeof (sin6_t): 6147 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6148 sizeof (sin6_t)); 6149 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6150 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6151 return; 6152 } 6153 if (tcp->tcp_family != AF_INET6 || 6154 sin6->sin6_family != AF_INET6) { 6155 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6156 return; 6157 } 6158 if (sin6->sin6_port == 0) { 6159 tcp_err_ack(tcp, mp, TBADADDR, 0); 6160 return; 6161 } 6162 break; 6163 } 6164 /* 6165 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6166 * should key on their sequence number and cut them loose. 6167 */ 6168 6169 /* 6170 * If options passed in, feed it for verification and handling 6171 */ 6172 if (tcr->OPT_length != 0) { 6173 mblk_t *ok_mp; 6174 mblk_t *discon_mp; 6175 mblk_t *conn_opts_mp; 6176 int t_error, sys_error, do_disconnect; 6177 6178 conn_opts_mp = NULL; 6179 6180 if (tcp_conprim_opt_process(tcp, mp, 6181 &do_disconnect, &t_error, &sys_error) < 0) { 6182 if (do_disconnect) { 6183 ASSERT(t_error == 0 && sys_error == 0); 6184 discon_mp = mi_tpi_discon_ind(NULL, 6185 ECONNREFUSED, 0); 6186 if (!discon_mp) { 6187 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6188 TSYSERR, ENOMEM); 6189 return; 6190 } 6191 ok_mp = mi_tpi_ok_ack_alloc(mp); 6192 if (!ok_mp) { 6193 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6194 TSYSERR, ENOMEM); 6195 return; 6196 } 6197 qreply(q, ok_mp); 6198 qreply(q, discon_mp); /* no flush! */ 6199 } else { 6200 ASSERT(t_error != 0); 6201 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6202 sys_error); 6203 } 6204 return; 6205 } 6206 /* 6207 * Success in setting options, the mp option buffer represented 6208 * by OPT_length/offset has been potentially modified and 6209 * contains results of option processing. We copy it in 6210 * another mp to save it for potentially influencing returning 6211 * it in T_CONN_CONN. 6212 */ 6213 if (tcr->OPT_length != 0) { /* there are resulting options */ 6214 conn_opts_mp = copyb(mp); 6215 if (!conn_opts_mp) { 6216 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6217 TSYSERR, ENOMEM); 6218 return; 6219 } 6220 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6221 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6222 /* 6223 * Note: 6224 * These resulting option negotiation can include any 6225 * end-to-end negotiation options but there no such 6226 * thing (yet?) in our TCP/IP. 6227 */ 6228 } 6229 } 6230 6231 /* 6232 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6233 * make sure that the template IP header in the tcp structure is an 6234 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6235 * need to this before we call tcp_bindi() so that the port lookup 6236 * code will look for ports in the correct port space (IPv4 and 6237 * IPv6 have separate port spaces). 6238 */ 6239 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6240 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6241 int err = 0; 6242 6243 err = tcp_header_init_ipv4(tcp); 6244 if (err != 0) { 6245 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6246 goto connect_failed; 6247 } 6248 if (tcp->tcp_lport != 0) 6249 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6250 } 6251 6252 switch (tcp->tcp_state) { 6253 case TCPS_IDLE: 6254 /* 6255 * We support quick connect, refer to comments in 6256 * tcp_connect_*() 6257 */ 6258 /* FALLTHRU */ 6259 case TCPS_BOUND: 6260 case TCPS_LISTEN: 6261 if (tcp->tcp_family == AF_INET6) { 6262 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6263 tcp_connect_ipv6(tcp, mp, 6264 &sin6->sin6_addr, 6265 sin6->sin6_port, sin6->sin6_flowinfo, 6266 sin6->__sin6_src_id, sin6->sin6_scope_id); 6267 return; 6268 } 6269 /* 6270 * Destination adress is mapped IPv6 address. 6271 * Source bound address should be unspecified or 6272 * IPv6 mapped address as well. 6273 */ 6274 if (!IN6_IS_ADDR_UNSPECIFIED( 6275 &tcp->tcp_bound_source_v6) && 6276 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6277 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6278 EADDRNOTAVAIL); 6279 break; 6280 } 6281 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6282 dstport = sin6->sin6_port; 6283 srcid = sin6->__sin6_src_id; 6284 } else { 6285 dstaddrp = &sin->sin_addr.s_addr; 6286 dstport = sin->sin_port; 6287 srcid = 0; 6288 } 6289 6290 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6291 return; 6292 default: 6293 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6294 break; 6295 } 6296 /* 6297 * Note: Code below is the "failure" case 6298 */ 6299 /* return error ack and blow away saved option results if any */ 6300 connect_failed: 6301 if (mp != NULL) 6302 putnext(tcp->tcp_rq, mp); 6303 else { 6304 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6305 TSYSERR, ENOMEM); 6306 } 6307 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6308 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6309 } 6310 6311 /* 6312 * Handle connect to IPv4 destinations, including connections for AF_INET6 6313 * sockets connecting to IPv4 mapped IPv6 destinations. 6314 */ 6315 static void 6316 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6317 uint_t srcid) 6318 { 6319 tcph_t *tcph; 6320 mblk_t *mp1; 6321 ipaddr_t dstaddr = *dstaddrp; 6322 int32_t oldstate; 6323 uint16_t lport; 6324 6325 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6326 6327 /* Check for attempt to connect to INADDR_ANY */ 6328 if (dstaddr == INADDR_ANY) { 6329 /* 6330 * SunOS 4.x and 4.3 BSD allow an application 6331 * to connect a TCP socket to INADDR_ANY. 6332 * When they do this, the kernel picks the 6333 * address of one interface and uses it 6334 * instead. The kernel usually ends up 6335 * picking the address of the loopback 6336 * interface. This is an undocumented feature. 6337 * However, we provide the same thing here 6338 * in order to have source and binary 6339 * compatibility with SunOS 4.x. 6340 * Update the T_CONN_REQ (sin/sin6) since it is used to 6341 * generate the T_CONN_CON. 6342 */ 6343 dstaddr = htonl(INADDR_LOOPBACK); 6344 *dstaddrp = dstaddr; 6345 } 6346 6347 /* Handle __sin6_src_id if socket not bound to an IP address */ 6348 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6349 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6350 tcp->tcp_connp->conn_zoneid); 6351 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6352 tcp->tcp_ipha->ipha_src); 6353 } 6354 6355 /* 6356 * Don't let an endpoint connect to itself. Note that 6357 * the test here does not catch the case where the 6358 * source IP addr was left unspecified by the user. In 6359 * this case, the source addr is set in tcp_adapt_ire() 6360 * using the reply to the T_BIND message that we send 6361 * down to IP here and the check is repeated in tcp_rput_other. 6362 */ 6363 if (dstaddr == tcp->tcp_ipha->ipha_src && 6364 dstport == tcp->tcp_lport) { 6365 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6366 goto failed; 6367 } 6368 6369 tcp->tcp_ipha->ipha_dst = dstaddr; 6370 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6371 6372 /* 6373 * Massage a source route if any putting the first hop 6374 * in iph_dst. Compute a starting value for the checksum which 6375 * takes into account that the original iph_dst should be 6376 * included in the checksum but that ip will include the 6377 * first hop in the source route in the tcp checksum. 6378 */ 6379 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6380 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6381 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6382 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6383 if ((int)tcp->tcp_sum < 0) 6384 tcp->tcp_sum--; 6385 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6386 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6387 (tcp->tcp_sum >> 16)); 6388 tcph = tcp->tcp_tcph; 6389 *(uint16_t *)tcph->th_fport = dstport; 6390 tcp->tcp_fport = dstport; 6391 6392 oldstate = tcp->tcp_state; 6393 /* 6394 * At this point the remote destination address and remote port fields 6395 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6396 * have to see which state tcp was in so we can take apropriate action. 6397 */ 6398 if (oldstate == TCPS_IDLE) { 6399 /* 6400 * We support a quick connect capability here, allowing 6401 * clients to transition directly from IDLE to SYN_SENT 6402 * tcp_bindi will pick an unused port, insert the connection 6403 * in the bind hash and transition to BOUND state. 6404 */ 6405 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6406 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6407 B_FALSE, B_FALSE); 6408 if (lport == 0) { 6409 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6410 goto failed; 6411 } 6412 } 6413 tcp->tcp_state = TCPS_SYN_SENT; 6414 6415 /* 6416 * TODO: allow data with connect requests 6417 * by unlinking M_DATA trailers here and 6418 * linking them in behind the T_OK_ACK mblk. 6419 * The tcp_rput() bind ack handler would then 6420 * feed them to tcp_wput_data() rather than call 6421 * tcp_timer(). 6422 */ 6423 mp = mi_tpi_ok_ack_alloc(mp); 6424 if (!mp) { 6425 tcp->tcp_state = oldstate; 6426 goto failed; 6427 } 6428 if (tcp->tcp_family == AF_INET) { 6429 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6430 sizeof (ipa_conn_t)); 6431 } else { 6432 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6433 sizeof (ipa6_conn_t)); 6434 } 6435 if (mp1) { 6436 /* Hang onto the T_OK_ACK for later. */ 6437 linkb(mp1, mp); 6438 mblk_setcred(mp1, tcp->tcp_cred); 6439 if (tcp->tcp_family == AF_INET) 6440 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6441 else { 6442 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6443 &tcp->tcp_sticky_ipp); 6444 } 6445 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6446 tcp->tcp_active_open = 1; 6447 /* 6448 * If the bind cannot complete immediately 6449 * IP will arrange to call tcp_rput_other 6450 * when the bind completes. 6451 */ 6452 if (mp1 != NULL) 6453 tcp_rput_other(tcp, mp1); 6454 return; 6455 } 6456 /* Error case */ 6457 tcp->tcp_state = oldstate; 6458 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6459 6460 failed: 6461 /* return error ack and blow away saved option results if any */ 6462 if (mp != NULL) 6463 putnext(tcp->tcp_rq, mp); 6464 else { 6465 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6466 TSYSERR, ENOMEM); 6467 } 6468 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6469 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6470 6471 } 6472 6473 /* 6474 * Handle connect to IPv6 destinations. 6475 */ 6476 static void 6477 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6478 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6479 { 6480 tcph_t *tcph; 6481 mblk_t *mp1; 6482 ip6_rthdr_t *rth; 6483 int32_t oldstate; 6484 uint16_t lport; 6485 6486 ASSERT(tcp->tcp_family == AF_INET6); 6487 6488 /* 6489 * If we're here, it means that the destination address is a native 6490 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6491 * reason why it might not be IPv6 is if the socket was bound to an 6492 * IPv4-mapped IPv6 address. 6493 */ 6494 if (tcp->tcp_ipversion != IPV6_VERSION) { 6495 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6496 goto failed; 6497 } 6498 6499 /* 6500 * Interpret a zero destination to mean loopback. 6501 * Update the T_CONN_REQ (sin/sin6) since it is used to 6502 * generate the T_CONN_CON. 6503 */ 6504 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6505 *dstaddrp = ipv6_loopback; 6506 } 6507 6508 /* Handle __sin6_src_id if socket not bound to an IP address */ 6509 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6510 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6511 tcp->tcp_connp->conn_zoneid); 6512 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6513 } 6514 6515 /* 6516 * Take care of the scope_id now and add ip6i_t 6517 * if ip6i_t is not already allocated through TCP 6518 * sticky options. At this point tcp_ip6h does not 6519 * have dst info, thus use dstaddrp. 6520 */ 6521 if (scope_id != 0 && 6522 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6523 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6524 ip6i_t *ip6i; 6525 6526 ipp->ipp_ifindex = scope_id; 6527 ip6i = (ip6i_t *)tcp->tcp_iphc; 6528 6529 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6530 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6531 /* Already allocated */ 6532 ip6i->ip6i_flags |= IP6I_IFINDEX; 6533 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6534 ipp->ipp_fields |= IPPF_SCOPE_ID; 6535 } else { 6536 int reterr; 6537 6538 ipp->ipp_fields |= IPPF_SCOPE_ID; 6539 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6540 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6541 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6542 if (reterr != 0) 6543 goto failed; 6544 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6545 } 6546 } 6547 6548 /* 6549 * Don't let an endpoint connect to itself. Note that 6550 * the test here does not catch the case where the 6551 * source IP addr was left unspecified by the user. In 6552 * this case, the source addr is set in tcp_adapt_ire() 6553 * using the reply to the T_BIND message that we send 6554 * down to IP here and the check is repeated in tcp_rput_other. 6555 */ 6556 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6557 (dstport == tcp->tcp_lport)) { 6558 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6559 goto failed; 6560 } 6561 6562 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6563 tcp->tcp_remote_v6 = *dstaddrp; 6564 tcp->tcp_ip6h->ip6_vcf = 6565 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6566 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6567 6568 6569 /* 6570 * Massage a routing header (if present) putting the first hop 6571 * in ip6_dst. Compute a starting value for the checksum which 6572 * takes into account that the original ip6_dst should be 6573 * included in the checksum but that ip will include the 6574 * first hop in the source route in the tcp checksum. 6575 */ 6576 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6577 if (rth != NULL) { 6578 6579 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6580 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6581 (tcp->tcp_sum >> 16)); 6582 } else { 6583 tcp->tcp_sum = 0; 6584 } 6585 6586 tcph = tcp->tcp_tcph; 6587 *(uint16_t *)tcph->th_fport = dstport; 6588 tcp->tcp_fport = dstport; 6589 6590 oldstate = tcp->tcp_state; 6591 /* 6592 * At this point the remote destination address and remote port fields 6593 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6594 * have to see which state tcp was in so we can take apropriate action. 6595 */ 6596 if (oldstate == TCPS_IDLE) { 6597 /* 6598 * We support a quick connect capability here, allowing 6599 * clients to transition directly from IDLE to SYN_SENT 6600 * tcp_bindi will pick an unused port, insert the connection 6601 * in the bind hash and transition to BOUND state. 6602 */ 6603 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6604 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6605 B_FALSE, B_FALSE); 6606 if (lport == 0) { 6607 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6608 goto failed; 6609 } 6610 } 6611 tcp->tcp_state = TCPS_SYN_SENT; 6612 /* 6613 * TODO: allow data with connect requests 6614 * by unlinking M_DATA trailers here and 6615 * linking them in behind the T_OK_ACK mblk. 6616 * The tcp_rput() bind ack handler would then 6617 * feed them to tcp_wput_data() rather than call 6618 * tcp_timer(). 6619 */ 6620 mp = mi_tpi_ok_ack_alloc(mp); 6621 if (!mp) { 6622 tcp->tcp_state = oldstate; 6623 goto failed; 6624 } 6625 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6626 if (mp1) { 6627 /* Hang onto the T_OK_ACK for later. */ 6628 linkb(mp1, mp); 6629 mblk_setcred(mp1, tcp->tcp_cred); 6630 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6631 &tcp->tcp_sticky_ipp); 6632 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6633 tcp->tcp_active_open = 1; 6634 /* ip_bind_v6() may return ACK or ERROR */ 6635 if (mp1 != NULL) 6636 tcp_rput_other(tcp, mp1); 6637 return; 6638 } 6639 /* Error case */ 6640 tcp->tcp_state = oldstate; 6641 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6642 6643 failed: 6644 /* return error ack and blow away saved option results if any */ 6645 if (mp != NULL) 6646 putnext(tcp->tcp_rq, mp); 6647 else { 6648 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6649 TSYSERR, ENOMEM); 6650 } 6651 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6652 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6653 } 6654 6655 /* 6656 * We need a stream q for detached closing tcp connections 6657 * to use. Our client hereby indicates that this q is the 6658 * one to use. 6659 */ 6660 static void 6661 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6662 { 6663 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6664 queue_t *q = tcp->tcp_wq; 6665 6666 mp->b_datap->db_type = M_IOCACK; 6667 iocp->ioc_count = 0; 6668 mutex_enter(&tcp_g_q_lock); 6669 if (tcp_g_q != NULL) { 6670 mutex_exit(&tcp_g_q_lock); 6671 iocp->ioc_error = EALREADY; 6672 } else { 6673 mblk_t *mp1; 6674 6675 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6676 if (mp1 == NULL) { 6677 mutex_exit(&tcp_g_q_lock); 6678 iocp->ioc_error = ENOMEM; 6679 } else { 6680 tcp_g_q = tcp->tcp_rq; 6681 mutex_exit(&tcp_g_q_lock); 6682 iocp->ioc_error = 0; 6683 iocp->ioc_rval = 0; 6684 /* 6685 * We are passing tcp_sticky_ipp as NULL 6686 * as it is not useful for tcp_default queue 6687 */ 6688 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6689 if (mp1 != NULL) 6690 tcp_rput_other(tcp, mp1); 6691 } 6692 } 6693 qreply(q, mp); 6694 } 6695 6696 /* 6697 * Our client hereby directs us to reject the connection request 6698 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6699 * of sending the appropriate RST, not an ICMP error. 6700 */ 6701 static void 6702 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6703 { 6704 tcp_t *ltcp = NULL; 6705 t_scalar_t seqnum; 6706 conn_t *connp; 6707 6708 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6709 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6710 tcp_err_ack(tcp, mp, TPROTO, 0); 6711 return; 6712 } 6713 6714 /* 6715 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6716 * when the stream is in BOUND state. Do not send a reset, 6717 * since the destination IP address is not valid, and it can 6718 * be the initialized value of all zeros (broadcast address). 6719 * 6720 * If TCP has sent down a bind request to IP and has not 6721 * received the reply, reject the request. Otherwise, TCP 6722 * will be confused. 6723 */ 6724 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6725 if (tcp->tcp_debug) { 6726 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6727 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6728 } 6729 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6730 return; 6731 } 6732 6733 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6734 6735 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6736 6737 /* 6738 * According to TPI, for non-listeners, ignore seqnum 6739 * and disconnect. 6740 * Following interpretation of -1 seqnum is historical 6741 * and implied TPI ? (TPI only states that for T_CONN_IND, 6742 * a valid seqnum should not be -1). 6743 * 6744 * -1 means disconnect everything 6745 * regardless even on a listener. 6746 */ 6747 6748 int old_state = tcp->tcp_state; 6749 6750 /* 6751 * The connection can't be on the tcp_time_wait_head list 6752 * since it is not detached. 6753 */ 6754 ASSERT(tcp->tcp_time_wait_next == NULL); 6755 ASSERT(tcp->tcp_time_wait_prev == NULL); 6756 ASSERT(tcp->tcp_time_wait_expire == 0); 6757 ltcp = NULL; 6758 /* 6759 * If it used to be a listener, check to make sure no one else 6760 * has taken the port before switching back to LISTEN state. 6761 */ 6762 if (tcp->tcp_ipversion == IPV4_VERSION) { 6763 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6764 tcp->tcp_ipha->ipha_src, 6765 tcp->tcp_connp->conn_zoneid); 6766 if (connp != NULL) 6767 ltcp = connp->conn_tcp; 6768 } else { 6769 /* Allow tcp_bound_if listeners? */ 6770 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6771 &tcp->tcp_ip6h->ip6_src, 0, 6772 tcp->tcp_connp->conn_zoneid); 6773 if (connp != NULL) 6774 ltcp = connp->conn_tcp; 6775 } 6776 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6777 tcp->tcp_state = TCPS_LISTEN; 6778 } else if (old_state > TCPS_BOUND) { 6779 tcp->tcp_conn_req_max = 0; 6780 tcp->tcp_state = TCPS_BOUND; 6781 } 6782 if (ltcp != NULL) 6783 CONN_DEC_REF(ltcp->tcp_connp); 6784 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6785 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6786 } else if (old_state == TCPS_ESTABLISHED || 6787 old_state == TCPS_CLOSE_WAIT) { 6788 BUMP_MIB(&tcp_mib, tcpEstabResets); 6789 } 6790 6791 if (tcp->tcp_fused) 6792 tcp_unfuse(tcp); 6793 6794 mutex_enter(&tcp->tcp_eager_lock); 6795 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6796 (tcp->tcp_conn_req_cnt_q != 0)) { 6797 tcp_eager_cleanup(tcp, 0); 6798 } 6799 mutex_exit(&tcp->tcp_eager_lock); 6800 6801 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6802 tcp->tcp_rnxt, TH_RST | TH_ACK); 6803 6804 tcp_reinit(tcp); 6805 6806 if (old_state >= TCPS_ESTABLISHED) { 6807 /* Send M_FLUSH according to TPI */ 6808 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6809 } 6810 mp = mi_tpi_ok_ack_alloc(mp); 6811 if (mp) 6812 putnext(tcp->tcp_rq, mp); 6813 return; 6814 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6815 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6816 return; 6817 } 6818 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6819 /* Send M_FLUSH according to TPI */ 6820 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6821 } 6822 mp = mi_tpi_ok_ack_alloc(mp); 6823 if (mp) 6824 putnext(tcp->tcp_rq, mp); 6825 } 6826 6827 /* 6828 * Diagnostic routine used to return a string associated with the tcp state. 6829 * Note that if the caller does not supply a buffer, it will use an internal 6830 * static string. This means that if multiple threads call this function at 6831 * the same time, output can be corrupted... Note also that this function 6832 * does not check the size of the supplied buffer. The caller has to make 6833 * sure that it is big enough. 6834 */ 6835 static char * 6836 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6837 { 6838 char buf1[30]; 6839 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6840 char *buf; 6841 char *cp; 6842 in6_addr_t local, remote; 6843 char local_addrbuf[INET6_ADDRSTRLEN]; 6844 char remote_addrbuf[INET6_ADDRSTRLEN]; 6845 6846 if (sup_buf != NULL) 6847 buf = sup_buf; 6848 else 6849 buf = priv_buf; 6850 6851 if (tcp == NULL) 6852 return ("NULL_TCP"); 6853 switch (tcp->tcp_state) { 6854 case TCPS_CLOSED: 6855 cp = "TCP_CLOSED"; 6856 break; 6857 case TCPS_IDLE: 6858 cp = "TCP_IDLE"; 6859 break; 6860 case TCPS_BOUND: 6861 cp = "TCP_BOUND"; 6862 break; 6863 case TCPS_LISTEN: 6864 cp = "TCP_LISTEN"; 6865 break; 6866 case TCPS_SYN_SENT: 6867 cp = "TCP_SYN_SENT"; 6868 break; 6869 case TCPS_SYN_RCVD: 6870 cp = "TCP_SYN_RCVD"; 6871 break; 6872 case TCPS_ESTABLISHED: 6873 cp = "TCP_ESTABLISHED"; 6874 break; 6875 case TCPS_CLOSE_WAIT: 6876 cp = "TCP_CLOSE_WAIT"; 6877 break; 6878 case TCPS_FIN_WAIT_1: 6879 cp = "TCP_FIN_WAIT_1"; 6880 break; 6881 case TCPS_CLOSING: 6882 cp = "TCP_CLOSING"; 6883 break; 6884 case TCPS_LAST_ACK: 6885 cp = "TCP_LAST_ACK"; 6886 break; 6887 case TCPS_FIN_WAIT_2: 6888 cp = "TCP_FIN_WAIT_2"; 6889 break; 6890 case TCPS_TIME_WAIT: 6891 cp = "TCP_TIME_WAIT"; 6892 break; 6893 default: 6894 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6895 cp = buf1; 6896 break; 6897 } 6898 switch (format) { 6899 case DISP_ADDR_AND_PORT: 6900 if (tcp->tcp_ipversion == IPV4_VERSION) { 6901 /* 6902 * Note that we use the remote address in the tcp_b 6903 * structure. This means that it will print out 6904 * the real destination address, not the next hop's 6905 * address if source routing is used. 6906 */ 6907 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6908 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6909 6910 } else { 6911 local = tcp->tcp_ip_src_v6; 6912 remote = tcp->tcp_remote_v6; 6913 } 6914 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6915 sizeof (local_addrbuf)); 6916 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6917 sizeof (remote_addrbuf)); 6918 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6919 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6920 ntohs(tcp->tcp_fport), cp); 6921 break; 6922 case DISP_PORT_ONLY: 6923 default: 6924 (void) mi_sprintf(buf, "[%u, %u] %s", 6925 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6926 break; 6927 } 6928 6929 return (buf); 6930 } 6931 6932 /* 6933 * Called via squeue to get on to eager's perimeter to send a 6934 * TH_RST. The listener wants the eager to disappear either 6935 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 6936 * being called. 6937 */ 6938 /* ARGSUSED */ 6939 void 6940 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6941 { 6942 conn_t *econnp = (conn_t *)arg; 6943 tcp_t *eager = econnp->conn_tcp; 6944 tcp_t *listener = eager->tcp_listener; 6945 6946 /* 6947 * We could be called because listener is closing. Since 6948 * the eager is using listener's queue's, its not safe. 6949 * Better use the default queue just to send the TH_RST 6950 * out. 6951 */ 6952 eager->tcp_rq = tcp_g_q; 6953 eager->tcp_wq = WR(tcp_g_q); 6954 6955 if (eager->tcp_state > TCPS_LISTEN) { 6956 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6957 eager, eager->tcp_snxt, 0, TH_RST); 6958 } 6959 6960 /* We are here because listener wants this eager gone */ 6961 if (listener != NULL) { 6962 mutex_enter(&listener->tcp_eager_lock); 6963 tcp_eager_unlink(eager); 6964 if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { 6965 /* 6966 * The eager has sent a conn_ind up to the 6967 * listener but listener decides to close 6968 * instead. We need to drop the extra ref 6969 * placed on eager in tcp_rput_data() before 6970 * sending the conn_ind to listener. 6971 */ 6972 CONN_DEC_REF(econnp); 6973 } 6974 mutex_exit(&listener->tcp_eager_lock); 6975 CONN_DEC_REF(listener->tcp_connp); 6976 } 6977 6978 if (eager->tcp_state > TCPS_BOUND) 6979 tcp_close_detached(eager); 6980 } 6981 6982 /* 6983 * Reset any eager connection hanging off this listener marked 6984 * with 'seqnum' and then reclaim it's resources. 6985 */ 6986 static boolean_t 6987 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6988 { 6989 tcp_t *eager; 6990 mblk_t *mp; 6991 6992 TCP_STAT(tcp_eager_blowoff_calls); 6993 eager = listener; 6994 mutex_enter(&listener->tcp_eager_lock); 6995 do { 6996 eager = eager->tcp_eager_next_q; 6997 if (eager == NULL) { 6998 mutex_exit(&listener->tcp_eager_lock); 6999 return (B_FALSE); 7000 } 7001 } while (eager->tcp_conn_req_seqnum != seqnum); 7002 CONN_INC_REF(eager->tcp_connp); 7003 mutex_exit(&listener->tcp_eager_lock); 7004 mp = &eager->tcp_closemp; 7005 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7006 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7007 return (B_TRUE); 7008 } 7009 7010 /* 7011 * Reset any eager connection hanging off this listener 7012 * and then reclaim it's resources. 7013 */ 7014 static void 7015 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7016 { 7017 tcp_t *eager; 7018 mblk_t *mp; 7019 7020 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7021 7022 if (!q0_only) { 7023 /* First cleanup q */ 7024 TCP_STAT(tcp_eager_blowoff_q); 7025 eager = listener->tcp_eager_next_q; 7026 while (eager != NULL) { 7027 CONN_INC_REF(eager->tcp_connp); 7028 mp = &eager->tcp_closemp; 7029 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7030 tcp_eager_kill, eager->tcp_connp, 7031 SQTAG_TCP_EAGER_CLEANUP); 7032 eager = eager->tcp_eager_next_q; 7033 } 7034 } 7035 /* Then cleanup q0 */ 7036 TCP_STAT(tcp_eager_blowoff_q0); 7037 eager = listener->tcp_eager_next_q0; 7038 while (eager != listener) { 7039 CONN_INC_REF(eager->tcp_connp); 7040 mp = &eager->tcp_closemp; 7041 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7042 tcp_eager_kill, eager->tcp_connp, 7043 SQTAG_TCP_EAGER_CLEANUP_Q0); 7044 eager = eager->tcp_eager_next_q0; 7045 } 7046 } 7047 7048 /* 7049 * If we are an eager connection hanging off a listener that hasn't 7050 * formally accepted the connection yet, get off his list and blow off 7051 * any data that we have accumulated. 7052 */ 7053 static void 7054 tcp_eager_unlink(tcp_t *tcp) 7055 { 7056 tcp_t *listener = tcp->tcp_listener; 7057 7058 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7059 ASSERT(listener != NULL); 7060 if (tcp->tcp_eager_next_q0 != NULL) { 7061 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7062 7063 /* Remove the eager tcp from q0 */ 7064 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7065 tcp->tcp_eager_prev_q0; 7066 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7067 tcp->tcp_eager_next_q0; 7068 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7069 listener->tcp_conn_req_cnt_q0--; 7070 7071 tcp->tcp_eager_next_q0 = NULL; 7072 tcp->tcp_eager_prev_q0 = NULL; 7073 7074 if (tcp->tcp_syn_rcvd_timeout != 0) { 7075 /* we have timed out before */ 7076 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7077 listener->tcp_syn_rcvd_timeout--; 7078 } 7079 } else { 7080 tcp_t **tcpp = &listener->tcp_eager_next_q; 7081 tcp_t *prev = NULL; 7082 7083 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7084 if (tcpp[0] == tcp) { 7085 if (listener->tcp_eager_last_q == tcp) { 7086 /* 7087 * If we are unlinking the last 7088 * element on the list, adjust 7089 * tail pointer. Set tail pointer 7090 * to nil when list is empty. 7091 */ 7092 ASSERT(tcp->tcp_eager_next_q == NULL); 7093 if (listener->tcp_eager_last_q == 7094 listener->tcp_eager_next_q) { 7095 listener->tcp_eager_last_q = 7096 NULL; 7097 } else { 7098 /* 7099 * We won't get here if there 7100 * is only one eager in the 7101 * list. 7102 */ 7103 ASSERT(prev != NULL); 7104 listener->tcp_eager_last_q = 7105 prev; 7106 } 7107 } 7108 tcpp[0] = tcp->tcp_eager_next_q; 7109 tcp->tcp_eager_next_q = NULL; 7110 tcp->tcp_eager_last_q = NULL; 7111 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7112 listener->tcp_conn_req_cnt_q--; 7113 break; 7114 } 7115 prev = tcpp[0]; 7116 } 7117 } 7118 tcp->tcp_listener = NULL; 7119 } 7120 7121 /* Shorthand to generate and send TPI error acks to our client */ 7122 static void 7123 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7124 { 7125 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7126 putnext(tcp->tcp_rq, mp); 7127 } 7128 7129 /* Shorthand to generate and send TPI error acks to our client */ 7130 static void 7131 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7132 int t_error, int sys_error) 7133 { 7134 struct T_error_ack *teackp; 7135 7136 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7137 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7138 teackp = (struct T_error_ack *)mp->b_rptr; 7139 teackp->ERROR_prim = primitive; 7140 teackp->TLI_error = t_error; 7141 teackp->UNIX_error = sys_error; 7142 putnext(tcp->tcp_rq, mp); 7143 } 7144 } 7145 7146 /* 7147 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7148 * but instead the code relies on: 7149 * - the fact that the address of the array and its size never changes 7150 * - the atomic assignment of the elements of the array 7151 */ 7152 /* ARGSUSED */ 7153 static int 7154 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7155 { 7156 int i; 7157 7158 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7159 if (tcp_g_epriv_ports[i] != 0) 7160 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 7161 } 7162 return (0); 7163 } 7164 7165 /* 7166 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7167 * threads from changing it at the same time. 7168 */ 7169 /* ARGSUSED */ 7170 static int 7171 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7172 cred_t *cr) 7173 { 7174 long new_value; 7175 int i; 7176 7177 /* 7178 * Fail the request if the new value does not lie within the 7179 * port number limits. 7180 */ 7181 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7182 new_value <= 0 || new_value >= 65536) { 7183 return (EINVAL); 7184 } 7185 7186 mutex_enter(&tcp_epriv_port_lock); 7187 /* Check if the value is already in the list */ 7188 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7189 if (new_value == tcp_g_epriv_ports[i]) { 7190 mutex_exit(&tcp_epriv_port_lock); 7191 return (EEXIST); 7192 } 7193 } 7194 /* Find an empty slot */ 7195 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7196 if (tcp_g_epriv_ports[i] == 0) 7197 break; 7198 } 7199 if (i == tcp_g_num_epriv_ports) { 7200 mutex_exit(&tcp_epriv_port_lock); 7201 return (EOVERFLOW); 7202 } 7203 /* Set the new value */ 7204 tcp_g_epriv_ports[i] = (uint16_t)new_value; 7205 mutex_exit(&tcp_epriv_port_lock); 7206 return (0); 7207 } 7208 7209 /* 7210 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7211 * threads from changing it at the same time. 7212 */ 7213 /* ARGSUSED */ 7214 static int 7215 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7216 cred_t *cr) 7217 { 7218 long new_value; 7219 int i; 7220 7221 /* 7222 * Fail the request if the new value does not lie within the 7223 * port number limits. 7224 */ 7225 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7226 new_value >= 65536) { 7227 return (EINVAL); 7228 } 7229 7230 mutex_enter(&tcp_epriv_port_lock); 7231 /* Check that the value is already in the list */ 7232 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7233 if (tcp_g_epriv_ports[i] == new_value) 7234 break; 7235 } 7236 if (i == tcp_g_num_epriv_ports) { 7237 mutex_exit(&tcp_epriv_port_lock); 7238 return (ESRCH); 7239 } 7240 /* Clear the value */ 7241 tcp_g_epriv_ports[i] = 0; 7242 mutex_exit(&tcp_epriv_port_lock); 7243 return (0); 7244 } 7245 7246 /* Return the TPI/TLI equivalent of our current tcp_state */ 7247 static int 7248 tcp_tpistate(tcp_t *tcp) 7249 { 7250 switch (tcp->tcp_state) { 7251 case TCPS_IDLE: 7252 return (TS_UNBND); 7253 case TCPS_LISTEN: 7254 /* 7255 * Return whether there are outstanding T_CONN_IND waiting 7256 * for the matching T_CONN_RES. Therefore don't count q0. 7257 */ 7258 if (tcp->tcp_conn_req_cnt_q > 0) 7259 return (TS_WRES_CIND); 7260 else 7261 return (TS_IDLE); 7262 case TCPS_BOUND: 7263 return (TS_IDLE); 7264 case TCPS_SYN_SENT: 7265 return (TS_WCON_CREQ); 7266 case TCPS_SYN_RCVD: 7267 /* 7268 * Note: assumption: this has to the active open SYN_RCVD. 7269 * The passive instance is detached in SYN_RCVD stage of 7270 * incoming connection processing so we cannot get request 7271 * for T_info_ack on it. 7272 */ 7273 return (TS_WACK_CRES); 7274 case TCPS_ESTABLISHED: 7275 return (TS_DATA_XFER); 7276 case TCPS_CLOSE_WAIT: 7277 return (TS_WREQ_ORDREL); 7278 case TCPS_FIN_WAIT_1: 7279 return (TS_WIND_ORDREL); 7280 case TCPS_FIN_WAIT_2: 7281 return (TS_WIND_ORDREL); 7282 7283 case TCPS_CLOSING: 7284 case TCPS_LAST_ACK: 7285 case TCPS_TIME_WAIT: 7286 case TCPS_CLOSED: 7287 /* 7288 * Following TS_WACK_DREQ7 is a rendition of "not 7289 * yet TS_IDLE" TPI state. There is no best match to any 7290 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7291 * choose a value chosen that will map to TLI/XTI level 7292 * state of TSTATECHNG (state is process of changing) which 7293 * captures what this dummy state represents. 7294 */ 7295 return (TS_WACK_DREQ7); 7296 default: 7297 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7298 tcp->tcp_state, tcp_display(tcp, NULL, 7299 DISP_PORT_ONLY)); 7300 return (TS_UNBND); 7301 } 7302 } 7303 7304 static void 7305 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7306 { 7307 if (tcp->tcp_family == AF_INET6) 7308 *tia = tcp_g_t_info_ack_v6; 7309 else 7310 *tia = tcp_g_t_info_ack; 7311 tia->CURRENT_state = tcp_tpistate(tcp); 7312 tia->OPT_size = tcp_max_optsize; 7313 if (tcp->tcp_mss == 0) { 7314 /* Not yet set - tcp_open does not set mss */ 7315 if (tcp->tcp_ipversion == IPV4_VERSION) 7316 tia->TIDU_size = tcp_mss_def_ipv4; 7317 else 7318 tia->TIDU_size = tcp_mss_def_ipv6; 7319 } else { 7320 tia->TIDU_size = tcp->tcp_mss; 7321 } 7322 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7323 } 7324 7325 /* 7326 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7327 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7328 * tcp_g_t_info_ack. The current state of the stream is copied from 7329 * tcp_state. 7330 */ 7331 static void 7332 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7333 { 7334 t_uscalar_t cap_bits1; 7335 struct T_capability_ack *tcap; 7336 7337 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7338 freemsg(mp); 7339 return; 7340 } 7341 7342 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7343 7344 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7345 mp->b_datap->db_type, T_CAPABILITY_ACK); 7346 if (mp == NULL) 7347 return; 7348 7349 tcap = (struct T_capability_ack *)mp->b_rptr; 7350 tcap->CAP_bits1 = 0; 7351 7352 if (cap_bits1 & TC1_INFO) { 7353 tcp_copy_info(&tcap->INFO_ack, tcp); 7354 tcap->CAP_bits1 |= TC1_INFO; 7355 } 7356 7357 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7358 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7359 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7360 } 7361 7362 putnext(tcp->tcp_rq, mp); 7363 } 7364 7365 /* 7366 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7367 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7368 * The current state of the stream is copied from tcp_state. 7369 */ 7370 static void 7371 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7372 { 7373 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7374 T_INFO_ACK); 7375 if (!mp) { 7376 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7377 return; 7378 } 7379 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7380 putnext(tcp->tcp_rq, mp); 7381 } 7382 7383 /* Respond to the TPI addr request */ 7384 static void 7385 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7386 { 7387 sin_t *sin; 7388 mblk_t *ackmp; 7389 struct T_addr_ack *taa; 7390 7391 /* Make it large enough for worst case */ 7392 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7393 2 * sizeof (sin6_t), 1); 7394 if (ackmp == NULL) { 7395 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7396 return; 7397 } 7398 7399 if (tcp->tcp_ipversion == IPV6_VERSION) { 7400 tcp_addr_req_ipv6(tcp, ackmp); 7401 return; 7402 } 7403 taa = (struct T_addr_ack *)ackmp->b_rptr; 7404 7405 bzero(taa, sizeof (struct T_addr_ack)); 7406 ackmp->b_wptr = (uchar_t *)&taa[1]; 7407 7408 taa->PRIM_type = T_ADDR_ACK; 7409 ackmp->b_datap->db_type = M_PCPROTO; 7410 7411 /* 7412 * Note: Following code assumes 32 bit alignment of basic 7413 * data structures like sin_t and struct T_addr_ack. 7414 */ 7415 if (tcp->tcp_state >= TCPS_BOUND) { 7416 /* 7417 * Fill in local address 7418 */ 7419 taa->LOCADDR_length = sizeof (sin_t); 7420 taa->LOCADDR_offset = sizeof (*taa); 7421 7422 sin = (sin_t *)&taa[1]; 7423 7424 /* Fill zeroes and then intialize non-zero fields */ 7425 *sin = sin_null; 7426 7427 sin->sin_family = AF_INET; 7428 7429 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7430 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7431 7432 ackmp->b_wptr = (uchar_t *)&sin[1]; 7433 7434 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7435 /* 7436 * Fill in Remote address 7437 */ 7438 taa->REMADDR_length = sizeof (sin_t); 7439 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7440 taa->LOCADDR_length); 7441 7442 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7443 *sin = sin_null; 7444 sin->sin_family = AF_INET; 7445 sin->sin_addr.s_addr = tcp->tcp_remote; 7446 sin->sin_port = tcp->tcp_fport; 7447 7448 ackmp->b_wptr = (uchar_t *)&sin[1]; 7449 } 7450 } 7451 putnext(tcp->tcp_rq, ackmp); 7452 } 7453 7454 /* Assumes that tcp_addr_req gets enough space and alignment */ 7455 static void 7456 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7457 { 7458 sin6_t *sin6; 7459 struct T_addr_ack *taa; 7460 7461 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7462 ASSERT(OK_32PTR(ackmp->b_rptr)); 7463 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7464 2 * sizeof (sin6_t)); 7465 7466 taa = (struct T_addr_ack *)ackmp->b_rptr; 7467 7468 bzero(taa, sizeof (struct T_addr_ack)); 7469 ackmp->b_wptr = (uchar_t *)&taa[1]; 7470 7471 taa->PRIM_type = T_ADDR_ACK; 7472 ackmp->b_datap->db_type = M_PCPROTO; 7473 7474 /* 7475 * Note: Following code assumes 32 bit alignment of basic 7476 * data structures like sin6_t and struct T_addr_ack. 7477 */ 7478 if (tcp->tcp_state >= TCPS_BOUND) { 7479 /* 7480 * Fill in local address 7481 */ 7482 taa->LOCADDR_length = sizeof (sin6_t); 7483 taa->LOCADDR_offset = sizeof (*taa); 7484 7485 sin6 = (sin6_t *)&taa[1]; 7486 *sin6 = sin6_null; 7487 7488 sin6->sin6_family = AF_INET6; 7489 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7490 sin6->sin6_port = tcp->tcp_lport; 7491 7492 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7493 7494 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7495 /* 7496 * Fill in Remote address 7497 */ 7498 taa->REMADDR_length = sizeof (sin6_t); 7499 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7500 taa->LOCADDR_length); 7501 7502 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7503 *sin6 = sin6_null; 7504 sin6->sin6_family = AF_INET6; 7505 sin6->sin6_flowinfo = 7506 tcp->tcp_ip6h->ip6_vcf & 7507 ~IPV6_VERS_AND_FLOW_MASK; 7508 sin6->sin6_addr = tcp->tcp_remote_v6; 7509 sin6->sin6_port = tcp->tcp_fport; 7510 7511 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7512 } 7513 } 7514 putnext(tcp->tcp_rq, ackmp); 7515 } 7516 7517 /* 7518 * Handle reinitialization of a tcp structure. 7519 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7520 */ 7521 static void 7522 tcp_reinit(tcp_t *tcp) 7523 { 7524 mblk_t *mp; 7525 int err; 7526 7527 TCP_STAT(tcp_reinit_calls); 7528 7529 /* tcp_reinit should never be called for detached tcp_t's */ 7530 ASSERT(tcp->tcp_listener == NULL); 7531 ASSERT((tcp->tcp_family == AF_INET && 7532 tcp->tcp_ipversion == IPV4_VERSION) || 7533 (tcp->tcp_family == AF_INET6 && 7534 (tcp->tcp_ipversion == IPV4_VERSION || 7535 tcp->tcp_ipversion == IPV6_VERSION))); 7536 7537 /* Cancel outstanding timers */ 7538 tcp_timers_stop(tcp); 7539 7540 /* 7541 * Reset everything in the state vector, after updating global 7542 * MIB data from instance counters. 7543 */ 7544 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 7545 tcp->tcp_ibsegs = 0; 7546 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 7547 tcp->tcp_obsegs = 0; 7548 7549 tcp_close_mpp(&tcp->tcp_xmit_head); 7550 if (tcp->tcp_snd_zcopy_aware) 7551 tcp_zcopy_notify(tcp); 7552 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7553 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7554 if (tcp->tcp_flow_stopped && 7555 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7556 tcp_clrqfull(tcp); 7557 } 7558 tcp_close_mpp(&tcp->tcp_reass_head); 7559 tcp->tcp_reass_tail = NULL; 7560 if (tcp->tcp_rcv_list != NULL) { 7561 /* Free b_next chain */ 7562 tcp_close_mpp(&tcp->tcp_rcv_list); 7563 tcp->tcp_rcv_last_head = NULL; 7564 tcp->tcp_rcv_last_tail = NULL; 7565 tcp->tcp_rcv_cnt = 0; 7566 } 7567 tcp->tcp_rcv_last_tail = NULL; 7568 7569 if ((mp = tcp->tcp_urp_mp) != NULL) { 7570 freemsg(mp); 7571 tcp->tcp_urp_mp = NULL; 7572 } 7573 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7574 freemsg(mp); 7575 tcp->tcp_urp_mark_mp = NULL; 7576 } 7577 if (tcp->tcp_fused_sigurg_mp != NULL) { 7578 freeb(tcp->tcp_fused_sigurg_mp); 7579 tcp->tcp_fused_sigurg_mp = NULL; 7580 } 7581 7582 /* 7583 * Following is a union with two members which are 7584 * identical types and size so the following cleanup 7585 * is enough. 7586 */ 7587 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7588 7589 CL_INET_DISCONNECT(tcp); 7590 7591 /* 7592 * The connection can't be on the tcp_time_wait_head list 7593 * since it is not detached. 7594 */ 7595 ASSERT(tcp->tcp_time_wait_next == NULL); 7596 ASSERT(tcp->tcp_time_wait_prev == NULL); 7597 ASSERT(tcp->tcp_time_wait_expire == 0); 7598 7599 if (tcp->tcp_kssl_pending) { 7600 tcp->tcp_kssl_pending = B_FALSE; 7601 7602 /* Don't reset if the initialized by bind. */ 7603 if (tcp->tcp_kssl_ent != NULL) { 7604 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7605 KSSL_NO_PROXY); 7606 } 7607 } 7608 if (tcp->tcp_kssl_ctx != NULL) { 7609 kssl_release_ctx(tcp->tcp_kssl_ctx); 7610 tcp->tcp_kssl_ctx = NULL; 7611 } 7612 7613 /* 7614 * Reset/preserve other values 7615 */ 7616 tcp_reinit_values(tcp); 7617 ipcl_hash_remove(tcp->tcp_connp); 7618 conn_delete_ire(tcp->tcp_connp, NULL); 7619 7620 if (tcp->tcp_conn_req_max != 0) { 7621 /* 7622 * This is the case when a TLI program uses the same 7623 * transport end point to accept a connection. This 7624 * makes the TCP both a listener and acceptor. When 7625 * this connection is closed, we need to set the state 7626 * back to TCPS_LISTEN. Make sure that the eager list 7627 * is reinitialized. 7628 * 7629 * Note that this stream is still bound to the four 7630 * tuples of the previous connection in IP. If a new 7631 * SYN with different foreign address comes in, IP will 7632 * not find it and will send it to the global queue. In 7633 * the global queue, TCP will do a tcp_lookup_listener() 7634 * to find this stream. This works because this stream 7635 * is only removed from connected hash. 7636 * 7637 */ 7638 tcp->tcp_state = TCPS_LISTEN; 7639 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7640 tcp->tcp_connp->conn_recv = tcp_conn_request; 7641 if (tcp->tcp_family == AF_INET6) { 7642 ASSERT(tcp->tcp_connp->conn_af_isv6); 7643 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7644 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7645 } else { 7646 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7647 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7648 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7649 } 7650 } else { 7651 tcp->tcp_state = TCPS_BOUND; 7652 } 7653 7654 /* 7655 * Initialize to default values 7656 * Can't fail since enough header template space already allocated 7657 * at open(). 7658 */ 7659 err = tcp_init_values(tcp); 7660 ASSERT(err == 0); 7661 /* Restore state in tcp_tcph */ 7662 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7663 if (tcp->tcp_ipversion == IPV4_VERSION) 7664 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7665 else 7666 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7667 /* 7668 * Copy of the src addr. in tcp_t is needed in tcp_t 7669 * since the lookup funcs can only lookup on tcp_t 7670 */ 7671 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7672 7673 ASSERT(tcp->tcp_ptpbhn != NULL); 7674 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7675 tcp->tcp_rwnd = tcp_recv_hiwat; 7676 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7677 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7678 } 7679 7680 /* 7681 * Force values to zero that need be zero. 7682 * Do not touch values asociated with the BOUND or LISTEN state 7683 * since the connection will end up in that state after the reinit. 7684 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7685 * structure! 7686 */ 7687 static void 7688 tcp_reinit_values(tcp) 7689 tcp_t *tcp; 7690 { 7691 #ifndef lint 7692 #define DONTCARE(x) 7693 #define PRESERVE(x) 7694 #else 7695 #define DONTCARE(x) ((x) = (x)) 7696 #define PRESERVE(x) ((x) = (x)) 7697 #endif /* lint */ 7698 7699 PRESERVE(tcp->tcp_bind_hash); 7700 PRESERVE(tcp->tcp_ptpbhn); 7701 PRESERVE(tcp->tcp_acceptor_hash); 7702 PRESERVE(tcp->tcp_ptpahn); 7703 7704 /* Should be ASSERT NULL on these with new code! */ 7705 ASSERT(tcp->tcp_time_wait_next == NULL); 7706 ASSERT(tcp->tcp_time_wait_prev == NULL); 7707 ASSERT(tcp->tcp_time_wait_expire == 0); 7708 PRESERVE(tcp->tcp_state); 7709 PRESERVE(tcp->tcp_rq); 7710 PRESERVE(tcp->tcp_wq); 7711 7712 ASSERT(tcp->tcp_xmit_head == NULL); 7713 ASSERT(tcp->tcp_xmit_last == NULL); 7714 ASSERT(tcp->tcp_unsent == 0); 7715 ASSERT(tcp->tcp_xmit_tail == NULL); 7716 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7717 7718 tcp->tcp_snxt = 0; /* Displayed in mib */ 7719 tcp->tcp_suna = 0; /* Displayed in mib */ 7720 tcp->tcp_swnd = 0; 7721 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7722 7723 ASSERT(tcp->tcp_ibsegs == 0); 7724 ASSERT(tcp->tcp_obsegs == 0); 7725 7726 if (tcp->tcp_iphc != NULL) { 7727 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7728 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7729 } 7730 7731 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7732 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7733 DONTCARE(tcp->tcp_ipha); 7734 DONTCARE(tcp->tcp_ip6h); 7735 DONTCARE(tcp->tcp_ip_hdr_len); 7736 DONTCARE(tcp->tcp_tcph); 7737 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7738 tcp->tcp_valid_bits = 0; 7739 7740 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7741 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7742 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7743 tcp->tcp_last_rcv_lbolt = 0; 7744 7745 tcp->tcp_init_cwnd = 0; 7746 7747 tcp->tcp_urp_last_valid = 0; 7748 tcp->tcp_hard_binding = 0; 7749 tcp->tcp_hard_bound = 0; 7750 PRESERVE(tcp->tcp_cred); 7751 PRESERVE(tcp->tcp_cpid); 7752 PRESERVE(tcp->tcp_exclbind); 7753 7754 tcp->tcp_fin_acked = 0; 7755 tcp->tcp_fin_rcvd = 0; 7756 tcp->tcp_fin_sent = 0; 7757 tcp->tcp_ordrel_done = 0; 7758 7759 tcp->tcp_debug = 0; 7760 tcp->tcp_dontroute = 0; 7761 tcp->tcp_broadcast = 0; 7762 7763 tcp->tcp_useloopback = 0; 7764 tcp->tcp_reuseaddr = 0; 7765 tcp->tcp_oobinline = 0; 7766 tcp->tcp_dgram_errind = 0; 7767 7768 tcp->tcp_detached = 0; 7769 tcp->tcp_bind_pending = 0; 7770 tcp->tcp_unbind_pending = 0; 7771 tcp->tcp_deferred_clean_death = 0; 7772 7773 tcp->tcp_snd_ws_ok = B_FALSE; 7774 tcp->tcp_snd_ts_ok = B_FALSE; 7775 tcp->tcp_linger = 0; 7776 tcp->tcp_ka_enabled = 0; 7777 tcp->tcp_zero_win_probe = 0; 7778 7779 tcp->tcp_loopback = 0; 7780 tcp->tcp_localnet = 0; 7781 tcp->tcp_syn_defense = 0; 7782 tcp->tcp_set_timer = 0; 7783 7784 tcp->tcp_active_open = 0; 7785 ASSERT(tcp->tcp_timeout == B_FALSE); 7786 tcp->tcp_rexmit = B_FALSE; 7787 tcp->tcp_xmit_zc_clean = B_FALSE; 7788 7789 tcp->tcp_snd_sack_ok = B_FALSE; 7790 PRESERVE(tcp->tcp_recvdstaddr); 7791 tcp->tcp_hwcksum = B_FALSE; 7792 7793 tcp->tcp_ire_ill_check_done = B_FALSE; 7794 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7795 7796 tcp->tcp_mdt = B_FALSE; 7797 tcp->tcp_mdt_hdr_head = 0; 7798 tcp->tcp_mdt_hdr_tail = 0; 7799 7800 tcp->tcp_conn_def_q0 = 0; 7801 tcp->tcp_ip_forward_progress = B_FALSE; 7802 tcp->tcp_anon_priv_bind = 0; 7803 tcp->tcp_ecn_ok = B_FALSE; 7804 7805 tcp->tcp_cwr = B_FALSE; 7806 tcp->tcp_ecn_echo_on = B_FALSE; 7807 7808 if (tcp->tcp_sack_info != NULL) { 7809 if (tcp->tcp_notsack_list != NULL) { 7810 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7811 } 7812 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7813 tcp->tcp_sack_info = NULL; 7814 } 7815 7816 tcp->tcp_rcv_ws = 0; 7817 tcp->tcp_snd_ws = 0; 7818 tcp->tcp_ts_recent = 0; 7819 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7820 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7821 tcp->tcp_if_mtu = 0; 7822 7823 ASSERT(tcp->tcp_reass_head == NULL); 7824 ASSERT(tcp->tcp_reass_tail == NULL); 7825 7826 tcp->tcp_cwnd_cnt = 0; 7827 7828 ASSERT(tcp->tcp_rcv_list == NULL); 7829 ASSERT(tcp->tcp_rcv_last_head == NULL); 7830 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7831 ASSERT(tcp->tcp_rcv_cnt == 0); 7832 7833 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7834 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7835 tcp->tcp_csuna = 0; 7836 7837 tcp->tcp_rto = 0; /* Displayed in MIB */ 7838 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7839 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7840 tcp->tcp_rtt_update = 0; 7841 7842 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7843 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7844 7845 tcp->tcp_rack = 0; /* Displayed in mib */ 7846 tcp->tcp_rack_cnt = 0; 7847 tcp->tcp_rack_cur_max = 0; 7848 tcp->tcp_rack_abs_max = 0; 7849 7850 tcp->tcp_max_swnd = 0; 7851 7852 ASSERT(tcp->tcp_listener == NULL); 7853 7854 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7855 7856 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7857 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7858 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7859 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7860 7861 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7862 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7863 PRESERVE(tcp->tcp_conn_req_max); 7864 PRESERVE(tcp->tcp_conn_req_seqnum); 7865 7866 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7867 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7868 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7869 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7870 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7871 7872 tcp->tcp_lingertime = 0; 7873 7874 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7875 ASSERT(tcp->tcp_urp_mp == NULL); 7876 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7877 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7878 7879 ASSERT(tcp->tcp_eager_next_q == NULL); 7880 ASSERT(tcp->tcp_eager_last_q == NULL); 7881 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7882 tcp->tcp_eager_prev_q0 == NULL) || 7883 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7884 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7885 7886 tcp->tcp_client_errno = 0; 7887 7888 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7889 7890 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7891 7892 PRESERVE(tcp->tcp_bound_source_v6); 7893 tcp->tcp_last_sent_len = 0; 7894 tcp->tcp_dupack_cnt = 0; 7895 7896 tcp->tcp_fport = 0; /* Displayed in MIB */ 7897 PRESERVE(tcp->tcp_lport); 7898 7899 PRESERVE(tcp->tcp_acceptor_lockp); 7900 7901 ASSERT(tcp->tcp_ordrelid == 0); 7902 PRESERVE(tcp->tcp_acceptor_id); 7903 DONTCARE(tcp->tcp_ipsec_overhead); 7904 7905 /* 7906 * If tcp_tracing flag is ON (i.e. We have a trace buffer 7907 * in tcp structure and now tracing), Re-initialize all 7908 * members of tcp_traceinfo. 7909 */ 7910 if (tcp->tcp_tracebuf != NULL) { 7911 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 7912 } 7913 7914 PRESERVE(tcp->tcp_family); 7915 if (tcp->tcp_family == AF_INET6) { 7916 tcp->tcp_ipversion = IPV6_VERSION; 7917 tcp->tcp_mss = tcp_mss_def_ipv6; 7918 } else { 7919 tcp->tcp_ipversion = IPV4_VERSION; 7920 tcp->tcp_mss = tcp_mss_def_ipv4; 7921 } 7922 7923 tcp->tcp_bound_if = 0; 7924 tcp->tcp_ipv6_recvancillary = 0; 7925 tcp->tcp_recvifindex = 0; 7926 tcp->tcp_recvhops = 0; 7927 tcp->tcp_closed = 0; 7928 tcp->tcp_cleandeathtag = 0; 7929 if (tcp->tcp_hopopts != NULL) { 7930 mi_free(tcp->tcp_hopopts); 7931 tcp->tcp_hopopts = NULL; 7932 tcp->tcp_hopoptslen = 0; 7933 } 7934 ASSERT(tcp->tcp_hopoptslen == 0); 7935 if (tcp->tcp_dstopts != NULL) { 7936 mi_free(tcp->tcp_dstopts); 7937 tcp->tcp_dstopts = NULL; 7938 tcp->tcp_dstoptslen = 0; 7939 } 7940 ASSERT(tcp->tcp_dstoptslen == 0); 7941 if (tcp->tcp_rtdstopts != NULL) { 7942 mi_free(tcp->tcp_rtdstopts); 7943 tcp->tcp_rtdstopts = NULL; 7944 tcp->tcp_rtdstoptslen = 0; 7945 } 7946 ASSERT(tcp->tcp_rtdstoptslen == 0); 7947 if (tcp->tcp_rthdr != NULL) { 7948 mi_free(tcp->tcp_rthdr); 7949 tcp->tcp_rthdr = NULL; 7950 tcp->tcp_rthdrlen = 0; 7951 } 7952 ASSERT(tcp->tcp_rthdrlen == 0); 7953 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7954 7955 /* Reset fusion-related fields */ 7956 tcp->tcp_fused = B_FALSE; 7957 tcp->tcp_unfusable = B_FALSE; 7958 tcp->tcp_fused_sigurg = B_FALSE; 7959 tcp->tcp_direct_sockfs = B_FALSE; 7960 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7961 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7962 tcp->tcp_loopback_peer = NULL; 7963 tcp->tcp_fuse_rcv_hiwater = 0; 7964 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7965 tcp->tcp_fuse_rcv_unread_cnt = 0; 7966 7967 tcp->tcp_in_ack_unsent = 0; 7968 tcp->tcp_cork = B_FALSE; 7969 7970 PRESERVE(tcp->tcp_squeue_bytes); 7971 7972 ASSERT(tcp->tcp_kssl_ctx == NULL); 7973 ASSERT(!tcp->tcp_kssl_pending); 7974 PRESERVE(tcp->tcp_kssl_ent); 7975 7976 #undef DONTCARE 7977 #undef PRESERVE 7978 } 7979 7980 /* 7981 * Allocate necessary resources and initialize state vector. 7982 * Guaranteed not to fail so that when an error is returned, 7983 * the caller doesn't need to do any additional cleanup. 7984 */ 7985 int 7986 tcp_init(tcp_t *tcp, queue_t *q) 7987 { 7988 int err; 7989 7990 tcp->tcp_rq = q; 7991 tcp->tcp_wq = WR(q); 7992 tcp->tcp_state = TCPS_IDLE; 7993 if ((err = tcp_init_values(tcp)) != 0) 7994 tcp_timers_stop(tcp); 7995 return (err); 7996 } 7997 7998 static int 7999 tcp_init_values(tcp_t *tcp) 8000 { 8001 int err; 8002 8003 ASSERT((tcp->tcp_family == AF_INET && 8004 tcp->tcp_ipversion == IPV4_VERSION) || 8005 (tcp->tcp_family == AF_INET6 && 8006 (tcp->tcp_ipversion == IPV4_VERSION || 8007 tcp->tcp_ipversion == IPV6_VERSION))); 8008 8009 /* 8010 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8011 * will be close to tcp_rexmit_interval_initial. By doing this, we 8012 * allow the algorithm to adjust slowly to large fluctuations of RTT 8013 * during first few transmissions of a connection as seen in slow 8014 * links. 8015 */ 8016 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 8017 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 8018 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8019 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8020 tcp_conn_grace_period; 8021 if (tcp->tcp_rto < tcp_rexmit_interval_min) 8022 tcp->tcp_rto = tcp_rexmit_interval_min; 8023 tcp->tcp_timer_backoff = 0; 8024 tcp->tcp_ms_we_have_waited = 0; 8025 tcp->tcp_last_recv_time = lbolt; 8026 tcp->tcp_cwnd_max = tcp_cwnd_max_; 8027 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8028 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8029 8030 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 8031 8032 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 8033 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 8034 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 8035 /* 8036 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8037 * passive open. 8038 */ 8039 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 8040 8041 tcp->tcp_naglim = tcp_naglim_def; 8042 8043 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8044 8045 tcp->tcp_mdt_hdr_head = 0; 8046 tcp->tcp_mdt_hdr_tail = 0; 8047 8048 /* Reset fusion-related fields */ 8049 tcp->tcp_fused = B_FALSE; 8050 tcp->tcp_unfusable = B_FALSE; 8051 tcp->tcp_fused_sigurg = B_FALSE; 8052 tcp->tcp_direct_sockfs = B_FALSE; 8053 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8054 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8055 tcp->tcp_loopback_peer = NULL; 8056 tcp->tcp_fuse_rcv_hiwater = 0; 8057 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8058 tcp->tcp_fuse_rcv_unread_cnt = 0; 8059 8060 /* Initialize the header template */ 8061 if (tcp->tcp_ipversion == IPV4_VERSION) { 8062 err = tcp_header_init_ipv4(tcp); 8063 } else { 8064 err = tcp_header_init_ipv6(tcp); 8065 } 8066 if (err) 8067 return (err); 8068 8069 /* 8070 * Init the window scale to the max so tcp_rwnd_set() won't pare 8071 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8072 */ 8073 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8074 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 8075 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 8076 8077 tcp->tcp_cork = B_FALSE; 8078 /* 8079 * Init the tcp_debug option. This value determines whether TCP 8080 * calls strlog() to print out debug messages. Doing this 8081 * initialization here means that this value is not inherited thru 8082 * tcp_reinit(). 8083 */ 8084 tcp->tcp_debug = tcp_dbg; 8085 8086 tcp->tcp_ka_interval = tcp_keepalive_interval; 8087 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 8088 8089 return (0); 8090 } 8091 8092 /* 8093 * Initialize the IPv4 header. Loses any record of any IP options. 8094 */ 8095 static int 8096 tcp_header_init_ipv4(tcp_t *tcp) 8097 { 8098 tcph_t *tcph; 8099 uint32_t sum; 8100 conn_t *connp; 8101 8102 /* 8103 * This is a simple initialization. If there's 8104 * already a template, it should never be too small, 8105 * so reuse it. Otherwise, allocate space for the new one. 8106 */ 8107 if (tcp->tcp_iphc == NULL) { 8108 ASSERT(tcp->tcp_iphc_len == 0); 8109 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8110 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8111 if (tcp->tcp_iphc == NULL) { 8112 tcp->tcp_iphc_len = 0; 8113 return (ENOMEM); 8114 } 8115 } 8116 8117 /* options are gone; may need a new label */ 8118 connp = tcp->tcp_connp; 8119 connp->conn_mlp_type = mlptSingle; 8120 connp->conn_ulp_labeled = !is_system_labeled(); 8121 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8122 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8123 tcp->tcp_ip6h = NULL; 8124 tcp->tcp_ipversion = IPV4_VERSION; 8125 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8126 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8127 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8128 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8129 tcp->tcp_ipha->ipha_version_and_hdr_length 8130 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8131 tcp->tcp_ipha->ipha_ident = 0; 8132 8133 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 8134 tcp->tcp_tos = 0; 8135 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8136 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 8137 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8138 8139 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8140 tcp->tcp_tcph = tcph; 8141 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8142 /* 8143 * IP wants our header length in the checksum field to 8144 * allow it to perform a single pseudo-header+checksum 8145 * calculation on behalf of TCP. 8146 * Include the adjustment for a source route once IP_OPTIONS is set. 8147 */ 8148 sum = sizeof (tcph_t) + tcp->tcp_sum; 8149 sum = (sum >> 16) + (sum & 0xFFFF); 8150 U16_TO_ABE16(sum, tcph->th_sum); 8151 return (0); 8152 } 8153 8154 /* 8155 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8156 */ 8157 static int 8158 tcp_header_init_ipv6(tcp_t *tcp) 8159 { 8160 tcph_t *tcph; 8161 uint32_t sum; 8162 conn_t *connp; 8163 8164 /* 8165 * This is a simple initialization. If there's 8166 * already a template, it should never be too small, 8167 * so reuse it. Otherwise, allocate space for the new one. 8168 * Ensure that there is enough space to "downgrade" the tcp_t 8169 * to an IPv4 tcp_t. This requires having space for a full load 8170 * of IPv4 options, as well as a full load of TCP options 8171 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8172 * than a v6 header and a TCP header with a full load of TCP options 8173 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8174 * We want to avoid reallocation in the "downgraded" case when 8175 * processing outbound IPv4 options. 8176 */ 8177 if (tcp->tcp_iphc == NULL) { 8178 ASSERT(tcp->tcp_iphc_len == 0); 8179 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8180 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8181 if (tcp->tcp_iphc == NULL) { 8182 tcp->tcp_iphc_len = 0; 8183 return (ENOMEM); 8184 } 8185 } 8186 8187 /* options are gone; may need a new label */ 8188 connp = tcp->tcp_connp; 8189 connp->conn_mlp_type = mlptSingle; 8190 connp->conn_ulp_labeled = !is_system_labeled(); 8191 8192 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8193 tcp->tcp_ipversion = IPV6_VERSION; 8194 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8195 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8196 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8197 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8198 tcp->tcp_ipha = NULL; 8199 8200 /* Initialize the header template */ 8201 8202 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8203 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8204 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8205 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 8206 8207 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8208 tcp->tcp_tcph = tcph; 8209 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8210 /* 8211 * IP wants our header length in the checksum field to 8212 * allow it to perform a single psuedo-header+checksum 8213 * calculation on behalf of TCP. 8214 * Include the adjustment for a source route when IPV6_RTHDR is set. 8215 */ 8216 sum = sizeof (tcph_t) + tcp->tcp_sum; 8217 sum = (sum >> 16) + (sum & 0xFFFF); 8218 U16_TO_ABE16(sum, tcph->th_sum); 8219 return (0); 8220 } 8221 8222 /* At minimum we need 4 bytes in the TCP header for the lookup */ 8223 #define ICMP_MIN_TCP_HDR 12 8224 8225 /* 8226 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8227 * passed up by IP. The message is always received on the correct tcp_t. 8228 * Assumes that IP has pulled up everything up to and including the ICMP header. 8229 */ 8230 void 8231 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8232 { 8233 icmph_t *icmph; 8234 ipha_t *ipha; 8235 int iph_hdr_length; 8236 tcph_t *tcph; 8237 boolean_t ipsec_mctl = B_FALSE; 8238 boolean_t secure; 8239 mblk_t *first_mp = mp; 8240 uint32_t new_mss; 8241 uint32_t ratio; 8242 size_t mp_size = MBLKL(mp); 8243 uint32_t seg_ack; 8244 uint32_t seg_seq; 8245 8246 /* Assume IP provides aligned packets - otherwise toss */ 8247 if (!OK_32PTR(mp->b_rptr)) { 8248 freemsg(mp); 8249 return; 8250 } 8251 8252 /* 8253 * Since ICMP errors are normal data marked with M_CTL when sent 8254 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8255 * packets starting with an ipsec_info_t, see ipsec_info.h. 8256 */ 8257 if ((mp_size == sizeof (ipsec_info_t)) && 8258 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8259 ASSERT(mp->b_cont != NULL); 8260 mp = mp->b_cont; 8261 /* IP should have done this */ 8262 ASSERT(OK_32PTR(mp->b_rptr)); 8263 mp_size = MBLKL(mp); 8264 ipsec_mctl = B_TRUE; 8265 } 8266 8267 /* 8268 * Verify that we have a complete outer IP header. If not, drop it. 8269 */ 8270 if (mp_size < sizeof (ipha_t)) { 8271 noticmpv4: 8272 freemsg(first_mp); 8273 return; 8274 } 8275 8276 ipha = (ipha_t *)mp->b_rptr; 8277 /* 8278 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8279 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8280 */ 8281 switch (IPH_HDR_VERSION(ipha)) { 8282 case IPV6_VERSION: 8283 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8284 return; 8285 case IPV4_VERSION: 8286 break; 8287 default: 8288 goto noticmpv4; 8289 } 8290 8291 /* Skip past the outer IP and ICMP headers */ 8292 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8293 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8294 /* 8295 * If we don't have the correct outer IP header length or if the ULP 8296 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8297 * send it upstream. 8298 */ 8299 if (iph_hdr_length < sizeof (ipha_t) || 8300 ipha->ipha_protocol != IPPROTO_ICMP || 8301 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8302 goto noticmpv4; 8303 } 8304 ipha = (ipha_t *)&icmph[1]; 8305 8306 /* Skip past the inner IP and find the ULP header */ 8307 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8308 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8309 /* 8310 * If we don't have the correct inner IP header length or if the ULP 8311 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8312 * bytes of TCP header, drop it. 8313 */ 8314 if (iph_hdr_length < sizeof (ipha_t) || 8315 ipha->ipha_protocol != IPPROTO_TCP || 8316 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8317 goto noticmpv4; 8318 } 8319 8320 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8321 if (ipsec_mctl) { 8322 secure = ipsec_in_is_secure(first_mp); 8323 } else { 8324 secure = B_FALSE; 8325 } 8326 if (secure) { 8327 /* 8328 * If we are willing to accept this in clear 8329 * we don't have to verify policy. 8330 */ 8331 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8332 if (!tcp_check_policy(tcp, first_mp, 8333 ipha, NULL, secure, ipsec_mctl)) { 8334 /* 8335 * tcp_check_policy called 8336 * ip_drop_packet() on failure. 8337 */ 8338 return; 8339 } 8340 } 8341 } 8342 } else if (ipsec_mctl) { 8343 /* 8344 * This is a hard_bound connection. IP has already 8345 * verified policy. We don't have to do it again. 8346 */ 8347 freeb(first_mp); 8348 first_mp = mp; 8349 ipsec_mctl = B_FALSE; 8350 } 8351 8352 seg_ack = ABE32_TO_U32(tcph->th_ack); 8353 seg_seq = ABE32_TO_U32(tcph->th_seq); 8354 /* 8355 * TCP SHOULD check that the TCP sequence number contained in 8356 * payload of the ICMP error message is within the range 8357 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8358 */ 8359 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 8360 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8361 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8362 /* 8363 * If the ICMP message is bogus, should we kill the 8364 * connection, or should we just drop the bogus ICMP 8365 * message? It would probably make more sense to just 8366 * drop the message so that if this one managed to get 8367 * in, the real connection should not suffer. 8368 */ 8369 goto noticmpv4; 8370 } 8371 8372 switch (icmph->icmph_type) { 8373 case ICMP_DEST_UNREACHABLE: 8374 switch (icmph->icmph_code) { 8375 case ICMP_FRAGMENTATION_NEEDED: 8376 /* 8377 * Reduce the MSS based on the new MTU. This will 8378 * eliminate any fragmentation locally. 8379 * N.B. There may well be some funny side-effects on 8380 * the local send policy and the remote receive policy. 8381 * Pending further research, we provide 8382 * tcp_ignore_path_mtu just in case this proves 8383 * disastrous somewhere. 8384 * 8385 * After updating the MSS, retransmit part of the 8386 * dropped segment using the new mss by calling 8387 * tcp_wput_data(). Need to adjust all those 8388 * params to make sure tcp_wput_data() work properly. 8389 */ 8390 if (tcp_ignore_path_mtu) 8391 break; 8392 8393 /* 8394 * Decrease the MSS by time stamp options 8395 * IP options and IPSEC options. tcp_hdr_len 8396 * includes time stamp option and IP option 8397 * length. 8398 */ 8399 8400 new_mss = ntohs(icmph->icmph_du_mtu) - 8401 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8402 8403 /* 8404 * Only update the MSS if the new one is 8405 * smaller than the previous one. This is 8406 * to avoid problems when getting multiple 8407 * ICMP errors for the same MTU. 8408 */ 8409 if (new_mss >= tcp->tcp_mss) 8410 break; 8411 8412 /* 8413 * Stop doing PMTU if new_mss is less than 68 8414 * or less than tcp_mss_min. 8415 * The value 68 comes from rfc 1191. 8416 */ 8417 if (new_mss < MAX(68, tcp_mss_min)) 8418 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8419 0; 8420 8421 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8422 ASSERT(ratio >= 1); 8423 tcp_mss_set(tcp, new_mss); 8424 8425 /* 8426 * Make sure we have something to 8427 * send. 8428 */ 8429 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8430 (tcp->tcp_xmit_head != NULL)) { 8431 /* 8432 * Shrink tcp_cwnd in 8433 * proportion to the old MSS/new MSS. 8434 */ 8435 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8436 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8437 (tcp->tcp_unsent == 0)) { 8438 tcp->tcp_rexmit_max = tcp->tcp_fss; 8439 } else { 8440 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8441 } 8442 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8443 tcp->tcp_rexmit = B_TRUE; 8444 tcp->tcp_dupack_cnt = 0; 8445 tcp->tcp_snd_burst = TCP_CWND_SS; 8446 tcp_ss_rexmit(tcp); 8447 } 8448 break; 8449 case ICMP_PORT_UNREACHABLE: 8450 case ICMP_PROTOCOL_UNREACHABLE: 8451 switch (tcp->tcp_state) { 8452 case TCPS_SYN_SENT: 8453 case TCPS_SYN_RCVD: 8454 /* 8455 * ICMP can snipe away incipient 8456 * TCP connections as long as 8457 * seq number is same as initial 8458 * send seq number. 8459 */ 8460 if (seg_seq == tcp->tcp_iss) { 8461 (void) tcp_clean_death(tcp, 8462 ECONNREFUSED, 6); 8463 } 8464 break; 8465 } 8466 break; 8467 case ICMP_HOST_UNREACHABLE: 8468 case ICMP_NET_UNREACHABLE: 8469 /* Record the error in case we finally time out. */ 8470 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8471 tcp->tcp_client_errno = EHOSTUNREACH; 8472 else 8473 tcp->tcp_client_errno = ENETUNREACH; 8474 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8475 if (tcp->tcp_listener != NULL && 8476 tcp->tcp_listener->tcp_syn_defense) { 8477 /* 8478 * Ditch the half-open connection if we 8479 * suspect a SYN attack is under way. 8480 */ 8481 tcp_ip_ire_mark_advice(tcp); 8482 (void) tcp_clean_death(tcp, 8483 tcp->tcp_client_errno, 7); 8484 } 8485 } 8486 break; 8487 default: 8488 break; 8489 } 8490 break; 8491 case ICMP_SOURCE_QUENCH: { 8492 /* 8493 * use a global boolean to control 8494 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8495 * The default is false. 8496 */ 8497 if (tcp_icmp_source_quench) { 8498 /* 8499 * Reduce the sending rate as if we got a 8500 * retransmit timeout 8501 */ 8502 uint32_t npkt; 8503 8504 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8505 tcp->tcp_mss; 8506 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8507 tcp->tcp_cwnd = tcp->tcp_mss; 8508 tcp->tcp_cwnd_cnt = 0; 8509 } 8510 break; 8511 } 8512 } 8513 freemsg(first_mp); 8514 } 8515 8516 /* 8517 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8518 * error messages passed up by IP. 8519 * Assumes that IP has pulled up all the extension headers as well 8520 * as the ICMPv6 header. 8521 */ 8522 static void 8523 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8524 { 8525 icmp6_t *icmp6; 8526 ip6_t *ip6h; 8527 uint16_t iph_hdr_length; 8528 tcpha_t *tcpha; 8529 uint8_t *nexthdrp; 8530 uint32_t new_mss; 8531 uint32_t ratio; 8532 boolean_t secure; 8533 mblk_t *first_mp = mp; 8534 size_t mp_size; 8535 uint32_t seg_ack; 8536 uint32_t seg_seq; 8537 8538 /* 8539 * The caller has determined if this is an IPSEC_IN packet and 8540 * set ipsec_mctl appropriately (see tcp_icmp_error). 8541 */ 8542 if (ipsec_mctl) 8543 mp = mp->b_cont; 8544 8545 mp_size = MBLKL(mp); 8546 8547 /* 8548 * Verify that we have a complete IP header. If not, send it upstream. 8549 */ 8550 if (mp_size < sizeof (ip6_t)) { 8551 noticmpv6: 8552 freemsg(first_mp); 8553 return; 8554 } 8555 8556 /* 8557 * Verify this is an ICMPV6 packet, else send it upstream. 8558 */ 8559 ip6h = (ip6_t *)mp->b_rptr; 8560 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8561 iph_hdr_length = IPV6_HDR_LEN; 8562 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8563 &nexthdrp) || 8564 *nexthdrp != IPPROTO_ICMPV6) { 8565 goto noticmpv6; 8566 } 8567 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8568 ip6h = (ip6_t *)&icmp6[1]; 8569 /* 8570 * Verify if we have a complete ICMP and inner IP header. 8571 */ 8572 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8573 goto noticmpv6; 8574 8575 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8576 goto noticmpv6; 8577 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8578 /* 8579 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8580 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8581 * packet. 8582 */ 8583 if ((*nexthdrp != IPPROTO_TCP) || 8584 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8585 goto noticmpv6; 8586 } 8587 8588 /* 8589 * ICMP errors come on the right queue or come on 8590 * listener/global queue for detached connections and 8591 * get switched to the right queue. If it comes on the 8592 * right queue, policy check has already been done by IP 8593 * and thus free the first_mp without verifying the policy. 8594 * If it has come for a non-hard bound connection, we need 8595 * to verify policy as IP may not have done it. 8596 */ 8597 if (!tcp->tcp_hard_bound) { 8598 if (ipsec_mctl) { 8599 secure = ipsec_in_is_secure(first_mp); 8600 } else { 8601 secure = B_FALSE; 8602 } 8603 if (secure) { 8604 /* 8605 * If we are willing to accept this in clear 8606 * we don't have to verify policy. 8607 */ 8608 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8609 if (!tcp_check_policy(tcp, first_mp, 8610 NULL, ip6h, secure, ipsec_mctl)) { 8611 /* 8612 * tcp_check_policy called 8613 * ip_drop_packet() on failure. 8614 */ 8615 return; 8616 } 8617 } 8618 } 8619 } else if (ipsec_mctl) { 8620 /* 8621 * This is a hard_bound connection. IP has already 8622 * verified policy. We don't have to do it again. 8623 */ 8624 freeb(first_mp); 8625 first_mp = mp; 8626 ipsec_mctl = B_FALSE; 8627 } 8628 8629 seg_ack = ntohl(tcpha->tha_ack); 8630 seg_seq = ntohl(tcpha->tha_seq); 8631 /* 8632 * TCP SHOULD check that the TCP sequence number contained in 8633 * payload of the ICMP error message is within the range 8634 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8635 */ 8636 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8637 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8638 /* 8639 * If the ICMP message is bogus, should we kill the 8640 * connection, or should we just drop the bogus ICMP 8641 * message? It would probably make more sense to just 8642 * drop the message so that if this one managed to get 8643 * in, the real connection should not suffer. 8644 */ 8645 goto noticmpv6; 8646 } 8647 8648 switch (icmp6->icmp6_type) { 8649 case ICMP6_PACKET_TOO_BIG: 8650 /* 8651 * Reduce the MSS based on the new MTU. This will 8652 * eliminate any fragmentation locally. 8653 * N.B. There may well be some funny side-effects on 8654 * the local send policy and the remote receive policy. 8655 * Pending further research, we provide 8656 * tcp_ignore_path_mtu just in case this proves 8657 * disastrous somewhere. 8658 * 8659 * After updating the MSS, retransmit part of the 8660 * dropped segment using the new mss by calling 8661 * tcp_wput_data(). Need to adjust all those 8662 * params to make sure tcp_wput_data() work properly. 8663 */ 8664 if (tcp_ignore_path_mtu) 8665 break; 8666 8667 /* 8668 * Decrease the MSS by time stamp options 8669 * IP options and IPSEC options. tcp_hdr_len 8670 * includes time stamp option and IP option 8671 * length. 8672 */ 8673 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8674 tcp->tcp_ipsec_overhead; 8675 8676 /* 8677 * Only update the MSS if the new one is 8678 * smaller than the previous one. This is 8679 * to avoid problems when getting multiple 8680 * ICMP errors for the same MTU. 8681 */ 8682 if (new_mss >= tcp->tcp_mss) 8683 break; 8684 8685 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8686 ASSERT(ratio >= 1); 8687 tcp_mss_set(tcp, new_mss); 8688 8689 /* 8690 * Make sure we have something to 8691 * send. 8692 */ 8693 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8694 (tcp->tcp_xmit_head != NULL)) { 8695 /* 8696 * Shrink tcp_cwnd in 8697 * proportion to the old MSS/new MSS. 8698 */ 8699 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8700 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8701 (tcp->tcp_unsent == 0)) { 8702 tcp->tcp_rexmit_max = tcp->tcp_fss; 8703 } else { 8704 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8705 } 8706 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8707 tcp->tcp_rexmit = B_TRUE; 8708 tcp->tcp_dupack_cnt = 0; 8709 tcp->tcp_snd_burst = TCP_CWND_SS; 8710 tcp_ss_rexmit(tcp); 8711 } 8712 break; 8713 8714 case ICMP6_DST_UNREACH: 8715 switch (icmp6->icmp6_code) { 8716 case ICMP6_DST_UNREACH_NOPORT: 8717 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8718 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8719 (seg_seq == tcp->tcp_iss)) { 8720 (void) tcp_clean_death(tcp, 8721 ECONNREFUSED, 8); 8722 } 8723 break; 8724 8725 case ICMP6_DST_UNREACH_ADMIN: 8726 case ICMP6_DST_UNREACH_NOROUTE: 8727 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8728 case ICMP6_DST_UNREACH_ADDR: 8729 /* Record the error in case we finally time out. */ 8730 tcp->tcp_client_errno = EHOSTUNREACH; 8731 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8732 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8733 (seg_seq == tcp->tcp_iss)) { 8734 if (tcp->tcp_listener != NULL && 8735 tcp->tcp_listener->tcp_syn_defense) { 8736 /* 8737 * Ditch the half-open connection if we 8738 * suspect a SYN attack is under way. 8739 */ 8740 tcp_ip_ire_mark_advice(tcp); 8741 (void) tcp_clean_death(tcp, 8742 tcp->tcp_client_errno, 9); 8743 } 8744 } 8745 8746 8747 break; 8748 default: 8749 break; 8750 } 8751 break; 8752 8753 case ICMP6_PARAM_PROB: 8754 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8755 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8756 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8757 (uchar_t *)nexthdrp) { 8758 if (tcp->tcp_state == TCPS_SYN_SENT || 8759 tcp->tcp_state == TCPS_SYN_RCVD) { 8760 (void) tcp_clean_death(tcp, 8761 ECONNREFUSED, 10); 8762 } 8763 break; 8764 } 8765 break; 8766 8767 case ICMP6_TIME_EXCEEDED: 8768 default: 8769 break; 8770 } 8771 freemsg(first_mp); 8772 } 8773 8774 /* 8775 * IP recognizes seven kinds of bind requests: 8776 * 8777 * - A zero-length address binds only to the protocol number. 8778 * 8779 * - A 4-byte address is treated as a request to 8780 * validate that the address is a valid local IPv4 8781 * address, appropriate for an application to bind to. 8782 * IP does the verification, but does not make any note 8783 * of the address at this time. 8784 * 8785 * - A 16-byte address contains is treated as a request 8786 * to validate a local IPv6 address, as the 4-byte 8787 * address case above. 8788 * 8789 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8790 * use it for the inbound fanout of packets. 8791 * 8792 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8793 * use it for the inbound fanout of packets. 8794 * 8795 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8796 * information consisting of local and remote addresses 8797 * and ports. In this case, the addresses are both 8798 * validated as appropriate for this operation, and, if 8799 * so, the information is retained for use in the 8800 * inbound fanout. 8801 * 8802 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8803 * fanout information, like the 12-byte case above. 8804 * 8805 * IP will also fill in the IRE request mblk with information 8806 * regarding our peer. In all cases, we notify IP of our protocol 8807 * type by appending a single protocol byte to the bind request. 8808 */ 8809 static mblk_t * 8810 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8811 { 8812 char *cp; 8813 mblk_t *mp; 8814 struct T_bind_req *tbr; 8815 ipa_conn_t *ac; 8816 ipa6_conn_t *ac6; 8817 sin_t *sin; 8818 sin6_t *sin6; 8819 8820 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8821 ASSERT((tcp->tcp_family == AF_INET && 8822 tcp->tcp_ipversion == IPV4_VERSION) || 8823 (tcp->tcp_family == AF_INET6 && 8824 (tcp->tcp_ipversion == IPV4_VERSION || 8825 tcp->tcp_ipversion == IPV6_VERSION))); 8826 8827 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 8828 if (!mp) 8829 return (mp); 8830 mp->b_datap->db_type = M_PROTO; 8831 tbr = (struct T_bind_req *)mp->b_rptr; 8832 tbr->PRIM_type = bind_prim; 8833 tbr->ADDR_offset = sizeof (*tbr); 8834 tbr->CONIND_number = 0; 8835 tbr->ADDR_length = addr_length; 8836 cp = (char *)&tbr[1]; 8837 switch (addr_length) { 8838 case sizeof (ipa_conn_t): 8839 ASSERT(tcp->tcp_family == AF_INET); 8840 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8841 8842 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8843 if (mp->b_cont == NULL) { 8844 freemsg(mp); 8845 return (NULL); 8846 } 8847 mp->b_cont->b_wptr += sizeof (ire_t); 8848 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8849 8850 /* cp known to be 32 bit aligned */ 8851 ac = (ipa_conn_t *)cp; 8852 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 8853 ac->ac_faddr = tcp->tcp_remote; 8854 ac->ac_fport = tcp->tcp_fport; 8855 ac->ac_lport = tcp->tcp_lport; 8856 tcp->tcp_hard_binding = 1; 8857 break; 8858 8859 case sizeof (ipa6_conn_t): 8860 ASSERT(tcp->tcp_family == AF_INET6); 8861 8862 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8863 if (mp->b_cont == NULL) { 8864 freemsg(mp); 8865 return (NULL); 8866 } 8867 mp->b_cont->b_wptr += sizeof (ire_t); 8868 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8869 8870 /* cp known to be 32 bit aligned */ 8871 ac6 = (ipa6_conn_t *)cp; 8872 if (tcp->tcp_ipversion == IPV4_VERSION) { 8873 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 8874 &ac6->ac6_laddr); 8875 } else { 8876 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 8877 } 8878 ac6->ac6_faddr = tcp->tcp_remote_v6; 8879 ac6->ac6_fport = tcp->tcp_fport; 8880 ac6->ac6_lport = tcp->tcp_lport; 8881 tcp->tcp_hard_binding = 1; 8882 break; 8883 8884 case sizeof (sin_t): 8885 /* 8886 * NOTE: IPV6_ADDR_LEN also has same size. 8887 * Use family to discriminate. 8888 */ 8889 if (tcp->tcp_family == AF_INET) { 8890 sin = (sin_t *)cp; 8891 8892 *sin = sin_null; 8893 sin->sin_family = AF_INET; 8894 sin->sin_addr.s_addr = tcp->tcp_bound_source; 8895 sin->sin_port = tcp->tcp_lport; 8896 break; 8897 } else { 8898 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 8899 } 8900 break; 8901 8902 case sizeof (sin6_t): 8903 ASSERT(tcp->tcp_family == AF_INET6); 8904 sin6 = (sin6_t *)cp; 8905 8906 *sin6 = sin6_null; 8907 sin6->sin6_family = AF_INET6; 8908 sin6->sin6_addr = tcp->tcp_bound_source_v6; 8909 sin6->sin6_port = tcp->tcp_lport; 8910 break; 8911 8912 case IP_ADDR_LEN: 8913 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8914 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 8915 break; 8916 8917 } 8918 /* Add protocol number to end */ 8919 cp[addr_length] = (char)IPPROTO_TCP; 8920 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 8921 return (mp); 8922 } 8923 8924 /* 8925 * Notify IP that we are having trouble with this connection. IP should 8926 * blow the IRE away and start over. 8927 */ 8928 static void 8929 tcp_ip_notify(tcp_t *tcp) 8930 { 8931 struct iocblk *iocp; 8932 ipid_t *ipid; 8933 mblk_t *mp; 8934 8935 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8936 if (tcp->tcp_ipversion == IPV6_VERSION) 8937 return; 8938 8939 mp = mkiocb(IP_IOCTL); 8940 if (mp == NULL) 8941 return; 8942 8943 iocp = (struct iocblk *)mp->b_rptr; 8944 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8945 8946 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8947 if (!mp->b_cont) { 8948 freeb(mp); 8949 return; 8950 } 8951 8952 ipid = (ipid_t *)mp->b_cont->b_rptr; 8953 mp->b_cont->b_wptr += iocp->ioc_count; 8954 bzero(ipid, sizeof (*ipid)); 8955 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8956 ipid->ipid_ire_type = IRE_CACHE; 8957 ipid->ipid_addr_offset = sizeof (ipid_t); 8958 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8959 /* 8960 * Note: in the case of source routing we want to blow away the 8961 * route to the first source route hop. 8962 */ 8963 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8964 sizeof (tcp->tcp_ipha->ipha_dst)); 8965 8966 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8967 } 8968 8969 /* Unlink and return any mblk that looks like it contains an ire */ 8970 static mblk_t * 8971 tcp_ire_mp(mblk_t *mp) 8972 { 8973 mblk_t *prev_mp; 8974 8975 for (;;) { 8976 prev_mp = mp; 8977 mp = mp->b_cont; 8978 if (mp == NULL) 8979 break; 8980 switch (DB_TYPE(mp)) { 8981 case IRE_DB_TYPE: 8982 case IRE_DB_REQ_TYPE: 8983 if (prev_mp != NULL) 8984 prev_mp->b_cont = mp->b_cont; 8985 mp->b_cont = NULL; 8986 return (mp); 8987 default: 8988 break; 8989 } 8990 } 8991 return (mp); 8992 } 8993 8994 /* 8995 * Timer callback routine for keepalive probe. We do a fake resend of 8996 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8997 * check to see if we have heard anything from the other end for the last 8998 * RTO period. If we have, set the timer to expire for another 8999 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9000 * RTO << 1 and check again when it expires. Keep exponentially increasing 9001 * the timeout if we have not heard from the other side. If for more than 9002 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9003 * kill the connection unless the keepalive abort threshold is 0. In 9004 * that case, we will probe "forever." 9005 */ 9006 static void 9007 tcp_keepalive_killer(void *arg) 9008 { 9009 mblk_t *mp; 9010 conn_t *connp = (conn_t *)arg; 9011 tcp_t *tcp = connp->conn_tcp; 9012 int32_t firetime; 9013 int32_t idletime; 9014 int32_t ka_intrvl; 9015 9016 tcp->tcp_ka_tid = 0; 9017 9018 if (tcp->tcp_fused) 9019 return; 9020 9021 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 9022 ka_intrvl = tcp->tcp_ka_interval; 9023 9024 /* 9025 * Keepalive probe should only be sent if the application has not 9026 * done a close on the connection. 9027 */ 9028 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9029 return; 9030 } 9031 /* Timer fired too early, restart it. */ 9032 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9033 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9034 MSEC_TO_TICK(ka_intrvl)); 9035 return; 9036 } 9037 9038 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9039 /* 9040 * If we have not heard from the other side for a long 9041 * time, kill the connection unless the keepalive abort 9042 * threshold is 0. In that case, we will probe "forever." 9043 */ 9044 if (tcp->tcp_ka_abort_thres != 0 && 9045 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9046 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 9047 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9048 tcp->tcp_client_errno : ETIMEDOUT, 11); 9049 return; 9050 } 9051 9052 if (tcp->tcp_snxt == tcp->tcp_suna && 9053 idletime >= ka_intrvl) { 9054 /* Fake resend of last ACKed byte. */ 9055 mblk_t *mp1 = allocb(1, BPRI_LO); 9056 9057 if (mp1 != NULL) { 9058 *mp1->b_wptr++ = '\0'; 9059 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9060 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9061 freeb(mp1); 9062 /* 9063 * if allocation failed, fall through to start the 9064 * timer back. 9065 */ 9066 if (mp != NULL) { 9067 TCP_RECORD_TRACE(tcp, mp, 9068 TCP_TRACE_SEND_PKT); 9069 tcp_send_data(tcp, tcp->tcp_wq, mp); 9070 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 9071 if (tcp->tcp_ka_last_intrvl != 0) { 9072 /* 9073 * We should probe again at least 9074 * in ka_intrvl, but not more than 9075 * tcp_rexmit_interval_max. 9076 */ 9077 firetime = MIN(ka_intrvl - 1, 9078 tcp->tcp_ka_last_intrvl << 1); 9079 if (firetime > tcp_rexmit_interval_max) 9080 firetime = 9081 tcp_rexmit_interval_max; 9082 } else { 9083 firetime = tcp->tcp_rto; 9084 } 9085 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9086 tcp_keepalive_killer, 9087 MSEC_TO_TICK(firetime)); 9088 tcp->tcp_ka_last_intrvl = firetime; 9089 return; 9090 } 9091 } 9092 } else { 9093 tcp->tcp_ka_last_intrvl = 0; 9094 } 9095 9096 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9097 if ((firetime = ka_intrvl - idletime) < 0) { 9098 firetime = ka_intrvl; 9099 } 9100 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9101 MSEC_TO_TICK(firetime)); 9102 } 9103 9104 int 9105 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9106 { 9107 queue_t *q = tcp->tcp_rq; 9108 int32_t mss = tcp->tcp_mss; 9109 int maxpsz; 9110 9111 if (TCP_IS_DETACHED(tcp)) 9112 return (mss); 9113 9114 if (tcp->tcp_fused) { 9115 maxpsz = tcp_fuse_maxpsz_set(tcp); 9116 mss = INFPSZ; 9117 } else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { 9118 /* 9119 * Set the sd_qn_maxpsz according to the socket send buffer 9120 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9121 * instruct the stream head to copyin user data into contiguous 9122 * kernel-allocated buffers without breaking it up into smaller 9123 * chunks. We round up the buffer size to the nearest SMSS. 9124 */ 9125 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9126 if (tcp->tcp_kssl_ctx == NULL) 9127 mss = INFPSZ; 9128 else 9129 mss = SSL3_MAX_RECORD_LEN; 9130 } else { 9131 /* 9132 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9133 * (and a multiple of the mss). This instructs the stream 9134 * head to break down larger than SMSS writes into SMSS- 9135 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9136 */ 9137 maxpsz = tcp->tcp_maxpsz * mss; 9138 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9139 maxpsz = tcp->tcp_xmit_hiwater/2; 9140 /* Round up to nearest mss */ 9141 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9142 } 9143 } 9144 (void) setmaxps(q, maxpsz); 9145 tcp->tcp_wq->q_maxpsz = maxpsz; 9146 9147 if (set_maxblk) 9148 (void) mi_set_sth_maxblk(q, mss); 9149 9150 return (mss); 9151 } 9152 9153 /* 9154 * Extract option values from a tcp header. We put any found values into the 9155 * tcpopt struct and return a bitmask saying which options were found. 9156 */ 9157 static int 9158 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9159 { 9160 uchar_t *endp; 9161 int len; 9162 uint32_t mss; 9163 uchar_t *up = (uchar_t *)tcph; 9164 int found = 0; 9165 int32_t sack_len; 9166 tcp_seq sack_begin, sack_end; 9167 tcp_t *tcp; 9168 9169 endp = up + TCP_HDR_LENGTH(tcph); 9170 up += TCP_MIN_HEADER_LENGTH; 9171 while (up < endp) { 9172 len = endp - up; 9173 switch (*up) { 9174 case TCPOPT_EOL: 9175 break; 9176 9177 case TCPOPT_NOP: 9178 up++; 9179 continue; 9180 9181 case TCPOPT_MAXSEG: 9182 if (len < TCPOPT_MAXSEG_LEN || 9183 up[1] != TCPOPT_MAXSEG_LEN) 9184 break; 9185 9186 mss = BE16_TO_U16(up+2); 9187 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9188 tcpopt->tcp_opt_mss = mss; 9189 found |= TCP_OPT_MSS_PRESENT; 9190 9191 up += TCPOPT_MAXSEG_LEN; 9192 continue; 9193 9194 case TCPOPT_WSCALE: 9195 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9196 break; 9197 9198 if (up[2] > TCP_MAX_WINSHIFT) 9199 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9200 else 9201 tcpopt->tcp_opt_wscale = up[2]; 9202 found |= TCP_OPT_WSCALE_PRESENT; 9203 9204 up += TCPOPT_WS_LEN; 9205 continue; 9206 9207 case TCPOPT_SACK_PERMITTED: 9208 if (len < TCPOPT_SACK_OK_LEN || 9209 up[1] != TCPOPT_SACK_OK_LEN) 9210 break; 9211 found |= TCP_OPT_SACK_OK_PRESENT; 9212 up += TCPOPT_SACK_OK_LEN; 9213 continue; 9214 9215 case TCPOPT_SACK: 9216 if (len <= 2 || up[1] <= 2 || len < up[1]) 9217 break; 9218 9219 /* If TCP is not interested in SACK blks... */ 9220 if ((tcp = tcpopt->tcp) == NULL) { 9221 up += up[1]; 9222 continue; 9223 } 9224 sack_len = up[1] - TCPOPT_HEADER_LEN; 9225 up += TCPOPT_HEADER_LEN; 9226 9227 /* 9228 * If the list is empty, allocate one and assume 9229 * nothing is sack'ed. 9230 */ 9231 ASSERT(tcp->tcp_sack_info != NULL); 9232 if (tcp->tcp_notsack_list == NULL) { 9233 tcp_notsack_update(&(tcp->tcp_notsack_list), 9234 tcp->tcp_suna, tcp->tcp_snxt, 9235 &(tcp->tcp_num_notsack_blk), 9236 &(tcp->tcp_cnt_notsack_list)); 9237 9238 /* 9239 * Make sure tcp_notsack_list is not NULL. 9240 * This happens when kmem_alloc(KM_NOSLEEP) 9241 * returns NULL. 9242 */ 9243 if (tcp->tcp_notsack_list == NULL) { 9244 up += sack_len; 9245 continue; 9246 } 9247 tcp->tcp_fack = tcp->tcp_suna; 9248 } 9249 9250 while (sack_len > 0) { 9251 if (up + 8 > endp) { 9252 up = endp; 9253 break; 9254 } 9255 sack_begin = BE32_TO_U32(up); 9256 up += 4; 9257 sack_end = BE32_TO_U32(up); 9258 up += 4; 9259 sack_len -= 8; 9260 /* 9261 * Bounds checking. Make sure the SACK 9262 * info is within tcp_suna and tcp_snxt. 9263 * If this SACK blk is out of bound, ignore 9264 * it but continue to parse the following 9265 * blks. 9266 */ 9267 if (SEQ_LEQ(sack_end, sack_begin) || 9268 SEQ_LT(sack_begin, tcp->tcp_suna) || 9269 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9270 continue; 9271 } 9272 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9273 sack_begin, sack_end, 9274 &(tcp->tcp_num_notsack_blk), 9275 &(tcp->tcp_cnt_notsack_list)); 9276 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9277 tcp->tcp_fack = sack_end; 9278 } 9279 } 9280 found |= TCP_OPT_SACK_PRESENT; 9281 continue; 9282 9283 case TCPOPT_TSTAMP: 9284 if (len < TCPOPT_TSTAMP_LEN || 9285 up[1] != TCPOPT_TSTAMP_LEN) 9286 break; 9287 9288 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9289 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9290 9291 found |= TCP_OPT_TSTAMP_PRESENT; 9292 9293 up += TCPOPT_TSTAMP_LEN; 9294 continue; 9295 9296 default: 9297 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9298 break; 9299 up += up[1]; 9300 continue; 9301 } 9302 break; 9303 } 9304 return (found); 9305 } 9306 9307 /* 9308 * Set the mss associated with a particular tcp based on its current value, 9309 * and a new one passed in. Observe minimums and maximums, and reset 9310 * other state variables that we want to view as multiples of mss. 9311 * 9312 * This function is called in various places mainly because 9313 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9314 * other side's SYN/SYN-ACK packet arrives. 9315 * 2) PMTUd may get us a new MSS. 9316 * 3) If the other side stops sending us timestamp option, we need to 9317 * increase the MSS size to use the extra bytes available. 9318 */ 9319 static void 9320 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9321 { 9322 uint32_t mss_max; 9323 9324 if (tcp->tcp_ipversion == IPV4_VERSION) 9325 mss_max = tcp_mss_max_ipv4; 9326 else 9327 mss_max = tcp_mss_max_ipv6; 9328 9329 if (mss < tcp_mss_min) 9330 mss = tcp_mss_min; 9331 if (mss > mss_max) 9332 mss = mss_max; 9333 /* 9334 * Unless naglim has been set by our client to 9335 * a non-mss value, force naglim to track mss. 9336 * This can help to aggregate small writes. 9337 */ 9338 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9339 tcp->tcp_naglim = mss; 9340 /* 9341 * TCP should be able to buffer at least 4 MSS data for obvious 9342 * performance reason. 9343 */ 9344 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9345 tcp->tcp_xmit_hiwater = mss << 2; 9346 9347 /* 9348 * Check if we need to apply the tcp_init_cwnd here. If 9349 * it is set and the MSS gets bigger (should not happen 9350 * normally), we need to adjust the resulting tcp_cwnd properly. 9351 * The new tcp_cwnd should not get bigger. 9352 */ 9353 if (tcp->tcp_init_cwnd == 0) { 9354 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9355 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9356 } else { 9357 if (tcp->tcp_mss < mss) { 9358 tcp->tcp_cwnd = MAX(1, 9359 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9360 } else { 9361 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9362 } 9363 } 9364 tcp->tcp_mss = mss; 9365 tcp->tcp_cwnd_cnt = 0; 9366 (void) tcp_maxpsz_set(tcp, B_TRUE); 9367 } 9368 9369 static int 9370 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9371 { 9372 tcp_t *tcp = NULL; 9373 conn_t *connp; 9374 int err; 9375 dev_t conn_dev; 9376 zoneid_t zoneid = getzoneid(); 9377 9378 /* 9379 * Special case for install: miniroot needs to be able to access files 9380 * via NFS as though it were always in the global zone. 9381 */ 9382 if (credp == kcred && nfs_global_client_only != 0) 9383 zoneid = GLOBAL_ZONEID; 9384 9385 if (q->q_ptr != NULL) 9386 return (0); 9387 9388 if (sflag == MODOPEN) { 9389 /* 9390 * This is a special case. The purpose of a modopen 9391 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9392 * through for MIB browsers. Everything else is failed. 9393 */ 9394 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9395 9396 if (connp == NULL) 9397 return (ENOMEM); 9398 9399 connp->conn_flags |= IPCL_TCPMOD; 9400 connp->conn_cred = credp; 9401 connp->conn_zoneid = zoneid; 9402 q->q_ptr = WR(q)->q_ptr = connp; 9403 crhold(credp); 9404 q->q_qinfo = &tcp_mod_rinit; 9405 WR(q)->q_qinfo = &tcp_mod_winit; 9406 qprocson(q); 9407 return (0); 9408 } 9409 9410 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9411 return (EBUSY); 9412 9413 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9414 9415 if (flag & SO_ACCEPTOR) { 9416 q->q_qinfo = &tcp_acceptor_rinit; 9417 q->q_ptr = (void *)conn_dev; 9418 WR(q)->q_qinfo = &tcp_acceptor_winit; 9419 WR(q)->q_ptr = (void *)conn_dev; 9420 qprocson(q); 9421 return (0); 9422 } 9423 9424 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9425 if (connp == NULL) { 9426 inet_minor_free(ip_minor_arena, conn_dev); 9427 q->q_ptr = NULL; 9428 return (ENOSR); 9429 } 9430 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9431 tcp = connp->conn_tcp; 9432 9433 q->q_ptr = WR(q)->q_ptr = connp; 9434 if (getmajor(*devp) == TCP6_MAJ) { 9435 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9436 connp->conn_send = ip_output_v6; 9437 connp->conn_af_isv6 = B_TRUE; 9438 connp->conn_pkt_isv6 = B_TRUE; 9439 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9440 tcp->tcp_ipversion = IPV6_VERSION; 9441 tcp->tcp_family = AF_INET6; 9442 tcp->tcp_mss = tcp_mss_def_ipv6; 9443 } else { 9444 connp->conn_flags |= IPCL_TCP4; 9445 connp->conn_send = ip_output; 9446 connp->conn_af_isv6 = B_FALSE; 9447 connp->conn_pkt_isv6 = B_FALSE; 9448 tcp->tcp_ipversion = IPV4_VERSION; 9449 tcp->tcp_family = AF_INET; 9450 tcp->tcp_mss = tcp_mss_def_ipv4; 9451 } 9452 9453 /* 9454 * TCP keeps a copy of cred for cache locality reasons but 9455 * we put a reference only once. If connp->conn_cred 9456 * becomes invalid, tcp_cred should also be set to NULL. 9457 */ 9458 tcp->tcp_cred = connp->conn_cred = credp; 9459 crhold(connp->conn_cred); 9460 tcp->tcp_cpid = curproc->p_pid; 9461 connp->conn_zoneid = zoneid; 9462 connp->conn_mlp_type = mlptSingle; 9463 connp->conn_ulp_labeled = !is_system_labeled(); 9464 9465 /* 9466 * If the caller has the process-wide flag set, then default to MAC 9467 * exempt mode. This allows read-down to unlabeled hosts. 9468 */ 9469 if (getpflags(NET_MAC_AWARE, credp) != 0) 9470 connp->conn_mac_exempt = B_TRUE; 9471 9472 connp->conn_dev = conn_dev; 9473 9474 ASSERT(q->q_qinfo == &tcp_rinit); 9475 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9476 9477 if (flag & SO_SOCKSTR) { 9478 /* 9479 * No need to insert a socket in tcp acceptor hash. 9480 * If it was a socket acceptor stream, we dealt with 9481 * it above. A socket listener can never accept a 9482 * connection and doesn't need acceptor_id. 9483 */ 9484 connp->conn_flags |= IPCL_SOCKET; 9485 tcp->tcp_issocket = 1; 9486 WR(q)->q_qinfo = &tcp_sock_winit; 9487 } else { 9488 #ifdef _ILP32 9489 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9490 #else 9491 tcp->tcp_acceptor_id = conn_dev; 9492 #endif /* _ILP32 */ 9493 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9494 } 9495 9496 if (tcp_trace) 9497 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9498 9499 err = tcp_init(tcp, q); 9500 if (err != 0) { 9501 inet_minor_free(ip_minor_arena, connp->conn_dev); 9502 tcp_acceptor_hash_remove(tcp); 9503 CONN_DEC_REF(connp); 9504 q->q_ptr = WR(q)->q_ptr = NULL; 9505 return (err); 9506 } 9507 9508 RD(q)->q_hiwat = tcp_recv_hiwat; 9509 tcp->tcp_rwnd = tcp_recv_hiwat; 9510 9511 /* Non-zero default values */ 9512 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9513 /* 9514 * Put the ref for TCP. Ref for IP was already put 9515 * by ipcl_conn_create. Also Make the conn_t globally 9516 * visible to walkers 9517 */ 9518 mutex_enter(&connp->conn_lock); 9519 CONN_INC_REF_LOCKED(connp); 9520 ASSERT(connp->conn_ref == 2); 9521 connp->conn_state_flags &= ~CONN_INCIPIENT; 9522 mutex_exit(&connp->conn_lock); 9523 9524 qprocson(q); 9525 return (0); 9526 } 9527 9528 /* 9529 * Some TCP options can be "set" by requesting them in the option 9530 * buffer. This is needed for XTI feature test though we do not 9531 * allow it in general. We interpret that this mechanism is more 9532 * applicable to OSI protocols and need not be allowed in general. 9533 * This routine filters out options for which it is not allowed (most) 9534 * and lets through those (few) for which it is. [ The XTI interface 9535 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9536 * ever implemented will have to be allowed here ]. 9537 */ 9538 static boolean_t 9539 tcp_allow_connopt_set(int level, int name) 9540 { 9541 9542 switch (level) { 9543 case IPPROTO_TCP: 9544 switch (name) { 9545 case TCP_NODELAY: 9546 return (B_TRUE); 9547 default: 9548 return (B_FALSE); 9549 } 9550 /*NOTREACHED*/ 9551 default: 9552 return (B_FALSE); 9553 } 9554 /*NOTREACHED*/ 9555 } 9556 9557 /* 9558 * This routine gets default values of certain options whose default 9559 * values are maintained by protocol specific code 9560 */ 9561 /* ARGSUSED */ 9562 int 9563 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9564 { 9565 int32_t *i1 = (int32_t *)ptr; 9566 9567 switch (level) { 9568 case IPPROTO_TCP: 9569 switch (name) { 9570 case TCP_NOTIFY_THRESHOLD: 9571 *i1 = tcp_ip_notify_interval; 9572 break; 9573 case TCP_ABORT_THRESHOLD: 9574 *i1 = tcp_ip_abort_interval; 9575 break; 9576 case TCP_CONN_NOTIFY_THRESHOLD: 9577 *i1 = tcp_ip_notify_cinterval; 9578 break; 9579 case TCP_CONN_ABORT_THRESHOLD: 9580 *i1 = tcp_ip_abort_cinterval; 9581 break; 9582 default: 9583 return (-1); 9584 } 9585 break; 9586 case IPPROTO_IP: 9587 switch (name) { 9588 case IP_TTL: 9589 *i1 = tcp_ipv4_ttl; 9590 break; 9591 default: 9592 return (-1); 9593 } 9594 break; 9595 case IPPROTO_IPV6: 9596 switch (name) { 9597 case IPV6_UNICAST_HOPS: 9598 *i1 = tcp_ipv6_hoplimit; 9599 break; 9600 default: 9601 return (-1); 9602 } 9603 break; 9604 default: 9605 return (-1); 9606 } 9607 return (sizeof (int)); 9608 } 9609 9610 9611 /* 9612 * TCP routine to get the values of options. 9613 */ 9614 int 9615 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9616 { 9617 int *i1 = (int *)ptr; 9618 conn_t *connp = Q_TO_CONN(q); 9619 tcp_t *tcp = connp->conn_tcp; 9620 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9621 9622 switch (level) { 9623 case SOL_SOCKET: 9624 switch (name) { 9625 case SO_LINGER: { 9626 struct linger *lgr = (struct linger *)ptr; 9627 9628 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9629 lgr->l_linger = tcp->tcp_lingertime; 9630 } 9631 return (sizeof (struct linger)); 9632 case SO_DEBUG: 9633 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9634 break; 9635 case SO_KEEPALIVE: 9636 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9637 break; 9638 case SO_DONTROUTE: 9639 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9640 break; 9641 case SO_USELOOPBACK: 9642 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9643 break; 9644 case SO_BROADCAST: 9645 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9646 break; 9647 case SO_REUSEADDR: 9648 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9649 break; 9650 case SO_OOBINLINE: 9651 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9652 break; 9653 case SO_DGRAM_ERRIND: 9654 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9655 break; 9656 case SO_TYPE: 9657 *i1 = SOCK_STREAM; 9658 break; 9659 case SO_SNDBUF: 9660 *i1 = tcp->tcp_xmit_hiwater; 9661 break; 9662 case SO_RCVBUF: 9663 *i1 = RD(q)->q_hiwat; 9664 break; 9665 case SO_SND_COPYAVOID: 9666 *i1 = tcp->tcp_snd_zcopy_on ? 9667 SO_SND_COPYAVOID : 0; 9668 break; 9669 case SO_ALLZONES: 9670 *i1 = connp->conn_allzones ? 1 : 0; 9671 break; 9672 case SO_ANON_MLP: 9673 *i1 = connp->conn_anon_mlp; 9674 break; 9675 case SO_MAC_EXEMPT: 9676 *i1 = connp->conn_mac_exempt; 9677 break; 9678 case SO_EXCLBIND: 9679 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9680 break; 9681 default: 9682 return (-1); 9683 } 9684 break; 9685 case IPPROTO_TCP: 9686 switch (name) { 9687 case TCP_NODELAY: 9688 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9689 break; 9690 case TCP_MAXSEG: 9691 *i1 = tcp->tcp_mss; 9692 break; 9693 case TCP_NOTIFY_THRESHOLD: 9694 *i1 = (int)tcp->tcp_first_timer_threshold; 9695 break; 9696 case TCP_ABORT_THRESHOLD: 9697 *i1 = tcp->tcp_second_timer_threshold; 9698 break; 9699 case TCP_CONN_NOTIFY_THRESHOLD: 9700 *i1 = tcp->tcp_first_ctimer_threshold; 9701 break; 9702 case TCP_CONN_ABORT_THRESHOLD: 9703 *i1 = tcp->tcp_second_ctimer_threshold; 9704 break; 9705 case TCP_RECVDSTADDR: 9706 *i1 = tcp->tcp_recvdstaddr; 9707 break; 9708 case TCP_ANONPRIVBIND: 9709 *i1 = tcp->tcp_anon_priv_bind; 9710 break; 9711 case TCP_EXCLBIND: 9712 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9713 break; 9714 case TCP_INIT_CWND: 9715 *i1 = tcp->tcp_init_cwnd; 9716 break; 9717 case TCP_KEEPALIVE_THRESHOLD: 9718 *i1 = tcp->tcp_ka_interval; 9719 break; 9720 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9721 *i1 = tcp->tcp_ka_abort_thres; 9722 break; 9723 case TCP_CORK: 9724 *i1 = tcp->tcp_cork; 9725 break; 9726 default: 9727 return (-1); 9728 } 9729 break; 9730 case IPPROTO_IP: 9731 if (tcp->tcp_family != AF_INET) 9732 return (-1); 9733 switch (name) { 9734 case IP_OPTIONS: 9735 case T_IP_OPTIONS: { 9736 /* 9737 * This is compatible with BSD in that in only return 9738 * the reverse source route with the final destination 9739 * as the last entry. The first 4 bytes of the option 9740 * will contain the final destination. 9741 */ 9742 int opt_len; 9743 9744 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9745 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9746 ASSERT(opt_len >= 0); 9747 /* Caller ensures enough space */ 9748 if (opt_len > 0) { 9749 /* 9750 * TODO: Do we have to handle getsockopt on an 9751 * initiator as well? 9752 */ 9753 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9754 } 9755 return (0); 9756 } 9757 case IP_TOS: 9758 case T_IP_TOS: 9759 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9760 break; 9761 case IP_TTL: 9762 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9763 break; 9764 case IP_NEXTHOP: 9765 /* Handled at IP level */ 9766 return (-EINVAL); 9767 default: 9768 return (-1); 9769 } 9770 break; 9771 case IPPROTO_IPV6: 9772 /* 9773 * IPPROTO_IPV6 options are only supported for sockets 9774 * that are using IPv6 on the wire. 9775 */ 9776 if (tcp->tcp_ipversion != IPV6_VERSION) { 9777 return (-1); 9778 } 9779 switch (name) { 9780 case IPV6_UNICAST_HOPS: 9781 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9782 break; /* goto sizeof (int) option return */ 9783 case IPV6_BOUND_IF: 9784 /* Zero if not set */ 9785 *i1 = tcp->tcp_bound_if; 9786 break; /* goto sizeof (int) option return */ 9787 case IPV6_RECVPKTINFO: 9788 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9789 *i1 = 1; 9790 else 9791 *i1 = 0; 9792 break; /* goto sizeof (int) option return */ 9793 case IPV6_RECVTCLASS: 9794 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9795 *i1 = 1; 9796 else 9797 *i1 = 0; 9798 break; /* goto sizeof (int) option return */ 9799 case IPV6_RECVHOPLIMIT: 9800 if (tcp->tcp_ipv6_recvancillary & 9801 TCP_IPV6_RECVHOPLIMIT) 9802 *i1 = 1; 9803 else 9804 *i1 = 0; 9805 break; /* goto sizeof (int) option return */ 9806 case IPV6_RECVHOPOPTS: 9807 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9808 *i1 = 1; 9809 else 9810 *i1 = 0; 9811 break; /* goto sizeof (int) option return */ 9812 case IPV6_RECVDSTOPTS: 9813 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9814 *i1 = 1; 9815 else 9816 *i1 = 0; 9817 break; /* goto sizeof (int) option return */ 9818 case _OLD_IPV6_RECVDSTOPTS: 9819 if (tcp->tcp_ipv6_recvancillary & 9820 TCP_OLD_IPV6_RECVDSTOPTS) 9821 *i1 = 1; 9822 else 9823 *i1 = 0; 9824 break; /* goto sizeof (int) option return */ 9825 case IPV6_RECVRTHDR: 9826 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9827 *i1 = 1; 9828 else 9829 *i1 = 0; 9830 break; /* goto sizeof (int) option return */ 9831 case IPV6_RECVRTHDRDSTOPTS: 9832 if (tcp->tcp_ipv6_recvancillary & 9833 TCP_IPV6_RECVRTDSTOPTS) 9834 *i1 = 1; 9835 else 9836 *i1 = 0; 9837 break; /* goto sizeof (int) option return */ 9838 case IPV6_PKTINFO: { 9839 /* XXX assumes that caller has room for max size! */ 9840 struct in6_pktinfo *pkti; 9841 9842 pkti = (struct in6_pktinfo *)ptr; 9843 if (ipp->ipp_fields & IPPF_IFINDEX) 9844 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9845 else 9846 pkti->ipi6_ifindex = 0; 9847 if (ipp->ipp_fields & IPPF_ADDR) 9848 pkti->ipi6_addr = ipp->ipp_addr; 9849 else 9850 pkti->ipi6_addr = ipv6_all_zeros; 9851 return (sizeof (struct in6_pktinfo)); 9852 } 9853 case IPV6_TCLASS: 9854 if (ipp->ipp_fields & IPPF_TCLASS) 9855 *i1 = ipp->ipp_tclass; 9856 else 9857 *i1 = IPV6_FLOW_TCLASS( 9858 IPV6_DEFAULT_VERS_AND_FLOW); 9859 break; /* goto sizeof (int) option return */ 9860 case IPV6_NEXTHOP: { 9861 sin6_t *sin6 = (sin6_t *)ptr; 9862 9863 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9864 return (0); 9865 *sin6 = sin6_null; 9866 sin6->sin6_family = AF_INET6; 9867 sin6->sin6_addr = ipp->ipp_nexthop; 9868 return (sizeof (sin6_t)); 9869 } 9870 case IPV6_HOPOPTS: 9871 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9872 return (0); 9873 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9874 return (0); 9875 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9876 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9877 if (tcp->tcp_label_len > 0) { 9878 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9879 ptr[1] = (ipp->ipp_hopoptslen - 9880 tcp->tcp_label_len + 7) / 8 - 1; 9881 } 9882 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9883 case IPV6_RTHDRDSTOPTS: 9884 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9885 return (0); 9886 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9887 return (ipp->ipp_rtdstoptslen); 9888 case IPV6_RTHDR: 9889 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9890 return (0); 9891 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9892 return (ipp->ipp_rthdrlen); 9893 case IPV6_DSTOPTS: 9894 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9895 return (0); 9896 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9897 return (ipp->ipp_dstoptslen); 9898 case IPV6_SRC_PREFERENCES: 9899 return (ip6_get_src_preferences(connp, 9900 (uint32_t *)ptr)); 9901 case IPV6_PATHMTU: { 9902 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9903 9904 if (tcp->tcp_state < TCPS_ESTABLISHED) 9905 return (-1); 9906 9907 return (ip_fill_mtuinfo(&connp->conn_remv6, 9908 connp->conn_fport, mtuinfo)); 9909 } 9910 default: 9911 return (-1); 9912 } 9913 break; 9914 default: 9915 return (-1); 9916 } 9917 return (sizeof (int)); 9918 } 9919 9920 /* 9921 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9922 * Parameters are assumed to be verified by the caller. 9923 */ 9924 /* ARGSUSED */ 9925 int 9926 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9927 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9928 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9929 { 9930 conn_t *connp = Q_TO_CONN(q); 9931 tcp_t *tcp = connp->conn_tcp; 9932 int *i1 = (int *)invalp; 9933 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9934 boolean_t checkonly; 9935 int reterr; 9936 9937 switch (optset_context) { 9938 case SETFN_OPTCOM_CHECKONLY: 9939 checkonly = B_TRUE; 9940 /* 9941 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9942 * inlen != 0 implies value supplied and 9943 * we have to "pretend" to set it. 9944 * inlen == 0 implies that there is no 9945 * value part in T_CHECK request and just validation 9946 * done elsewhere should be enough, we just return here. 9947 */ 9948 if (inlen == 0) { 9949 *outlenp = 0; 9950 return (0); 9951 } 9952 break; 9953 case SETFN_OPTCOM_NEGOTIATE: 9954 checkonly = B_FALSE; 9955 break; 9956 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9957 case SETFN_CONN_NEGOTIATE: 9958 checkonly = B_FALSE; 9959 /* 9960 * Negotiating local and "association-related" options 9961 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9962 * primitives is allowed by XTI, but we choose 9963 * to not implement this style negotiation for Internet 9964 * protocols (We interpret it is a must for OSI world but 9965 * optional for Internet protocols) for all options. 9966 * [ Will do only for the few options that enable test 9967 * suites that our XTI implementation of this feature 9968 * works for transports that do allow it ] 9969 */ 9970 if (!tcp_allow_connopt_set(level, name)) { 9971 *outlenp = 0; 9972 return (EINVAL); 9973 } 9974 break; 9975 default: 9976 /* 9977 * We should never get here 9978 */ 9979 *outlenp = 0; 9980 return (EINVAL); 9981 } 9982 9983 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9984 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9985 9986 /* 9987 * For TCP, we should have no ancillary data sent down 9988 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9989 * has to be zero. 9990 */ 9991 ASSERT(thisdg_attrs == NULL); 9992 9993 /* 9994 * For fixed length options, no sanity check 9995 * of passed in length is done. It is assumed *_optcom_req() 9996 * routines do the right thing. 9997 */ 9998 9999 switch (level) { 10000 case SOL_SOCKET: 10001 switch (name) { 10002 case SO_LINGER: { 10003 struct linger *lgr = (struct linger *)invalp; 10004 10005 if (!checkonly) { 10006 if (lgr->l_onoff) { 10007 tcp->tcp_linger = 1; 10008 tcp->tcp_lingertime = lgr->l_linger; 10009 } else { 10010 tcp->tcp_linger = 0; 10011 tcp->tcp_lingertime = 0; 10012 } 10013 /* struct copy */ 10014 *(struct linger *)outvalp = *lgr; 10015 } else { 10016 if (!lgr->l_onoff) { 10017 ((struct linger *)outvalp)->l_onoff = 0; 10018 ((struct linger *)outvalp)->l_linger = 0; 10019 } else { 10020 /* struct copy */ 10021 *(struct linger *)outvalp = *lgr; 10022 } 10023 } 10024 *outlenp = sizeof (struct linger); 10025 return (0); 10026 } 10027 case SO_DEBUG: 10028 if (!checkonly) 10029 tcp->tcp_debug = onoff; 10030 break; 10031 case SO_KEEPALIVE: 10032 if (checkonly) { 10033 /* T_CHECK case */ 10034 break; 10035 } 10036 10037 if (!onoff) { 10038 if (tcp->tcp_ka_enabled) { 10039 if (tcp->tcp_ka_tid != 0) { 10040 (void) TCP_TIMER_CANCEL(tcp, 10041 tcp->tcp_ka_tid); 10042 tcp->tcp_ka_tid = 0; 10043 } 10044 tcp->tcp_ka_enabled = 0; 10045 } 10046 break; 10047 } 10048 if (!tcp->tcp_ka_enabled) { 10049 /* Crank up the keepalive timer */ 10050 tcp->tcp_ka_last_intrvl = 0; 10051 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10052 tcp_keepalive_killer, 10053 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10054 tcp->tcp_ka_enabled = 1; 10055 } 10056 break; 10057 case SO_DONTROUTE: 10058 /* 10059 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10060 * only of interest to IP. We track them here only so 10061 * that we can report their current value. 10062 */ 10063 if (!checkonly) { 10064 tcp->tcp_dontroute = onoff; 10065 tcp->tcp_connp->conn_dontroute = onoff; 10066 } 10067 break; 10068 case SO_USELOOPBACK: 10069 if (!checkonly) { 10070 tcp->tcp_useloopback = onoff; 10071 tcp->tcp_connp->conn_loopback = onoff; 10072 } 10073 break; 10074 case SO_BROADCAST: 10075 if (!checkonly) { 10076 tcp->tcp_broadcast = onoff; 10077 tcp->tcp_connp->conn_broadcast = onoff; 10078 } 10079 break; 10080 case SO_REUSEADDR: 10081 if (!checkonly) { 10082 tcp->tcp_reuseaddr = onoff; 10083 tcp->tcp_connp->conn_reuseaddr = onoff; 10084 } 10085 break; 10086 case SO_OOBINLINE: 10087 if (!checkonly) 10088 tcp->tcp_oobinline = onoff; 10089 break; 10090 case SO_DGRAM_ERRIND: 10091 if (!checkonly) 10092 tcp->tcp_dgram_errind = onoff; 10093 break; 10094 case SO_SNDBUF: { 10095 tcp_t *peer_tcp; 10096 10097 if (*i1 > tcp_max_buf) { 10098 *outlenp = 0; 10099 return (ENOBUFS); 10100 } 10101 if (checkonly) 10102 break; 10103 10104 tcp->tcp_xmit_hiwater = *i1; 10105 if (tcp_snd_lowat_fraction != 0) 10106 tcp->tcp_xmit_lowater = 10107 tcp->tcp_xmit_hiwater / 10108 tcp_snd_lowat_fraction; 10109 (void) tcp_maxpsz_set(tcp, B_TRUE); 10110 /* 10111 * If we are flow-controlled, recheck the condition. 10112 * There are apps that increase SO_SNDBUF size when 10113 * flow-controlled (EWOULDBLOCK), and expect the flow 10114 * control condition to be lifted right away. 10115 * 10116 * For the fused tcp loopback case, in order to avoid 10117 * a race with the peer's tcp_fuse_rrw() we need to 10118 * hold its fuse_lock while accessing tcp_flow_stopped. 10119 */ 10120 peer_tcp = tcp->tcp_loopback_peer; 10121 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 10122 if (tcp->tcp_fused) 10123 mutex_enter(&peer_tcp->tcp_fuse_lock); 10124 10125 if (tcp->tcp_flow_stopped && 10126 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10127 tcp_clrqfull(tcp); 10128 } 10129 if (tcp->tcp_fused) 10130 mutex_exit(&peer_tcp->tcp_fuse_lock); 10131 break; 10132 } 10133 case SO_RCVBUF: 10134 if (*i1 > tcp_max_buf) { 10135 *outlenp = 0; 10136 return (ENOBUFS); 10137 } 10138 /* Silently ignore zero */ 10139 if (!checkonly && *i1 != 0) { 10140 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10141 (void) tcp_rwnd_set(tcp, *i1); 10142 } 10143 /* 10144 * XXX should we return the rwnd here 10145 * and tcp_opt_get ? 10146 */ 10147 break; 10148 case SO_SND_COPYAVOID: 10149 if (!checkonly) { 10150 /* we only allow enable at most once for now */ 10151 if (tcp->tcp_loopback || 10152 (!tcp->tcp_snd_zcopy_aware && 10153 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10154 *outlenp = 0; 10155 return (EOPNOTSUPP); 10156 } 10157 tcp->tcp_snd_zcopy_aware = 1; 10158 } 10159 break; 10160 case SO_ALLZONES: 10161 /* Handled at the IP level */ 10162 return (-EINVAL); 10163 case SO_ANON_MLP: 10164 if (!checkonly) { 10165 mutex_enter(&connp->conn_lock); 10166 connp->conn_anon_mlp = onoff; 10167 mutex_exit(&connp->conn_lock); 10168 } 10169 break; 10170 case SO_MAC_EXEMPT: 10171 if (secpolicy_net_mac_aware(cr) != 0 || 10172 IPCL_IS_BOUND(connp)) 10173 return (EACCES); 10174 if (!checkonly) { 10175 mutex_enter(&connp->conn_lock); 10176 connp->conn_mac_exempt = onoff; 10177 mutex_exit(&connp->conn_lock); 10178 } 10179 break; 10180 case SO_EXCLBIND: 10181 if (!checkonly) 10182 tcp->tcp_exclbind = onoff; 10183 break; 10184 default: 10185 *outlenp = 0; 10186 return (EINVAL); 10187 } 10188 break; 10189 case IPPROTO_TCP: 10190 switch (name) { 10191 case TCP_NODELAY: 10192 if (!checkonly) 10193 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10194 break; 10195 case TCP_NOTIFY_THRESHOLD: 10196 if (!checkonly) 10197 tcp->tcp_first_timer_threshold = *i1; 10198 break; 10199 case TCP_ABORT_THRESHOLD: 10200 if (!checkonly) 10201 tcp->tcp_second_timer_threshold = *i1; 10202 break; 10203 case TCP_CONN_NOTIFY_THRESHOLD: 10204 if (!checkonly) 10205 tcp->tcp_first_ctimer_threshold = *i1; 10206 break; 10207 case TCP_CONN_ABORT_THRESHOLD: 10208 if (!checkonly) 10209 tcp->tcp_second_ctimer_threshold = *i1; 10210 break; 10211 case TCP_RECVDSTADDR: 10212 if (tcp->tcp_state > TCPS_LISTEN) 10213 return (EOPNOTSUPP); 10214 if (!checkonly) 10215 tcp->tcp_recvdstaddr = onoff; 10216 break; 10217 case TCP_ANONPRIVBIND: 10218 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10219 *outlenp = 0; 10220 return (reterr); 10221 } 10222 if (!checkonly) { 10223 tcp->tcp_anon_priv_bind = onoff; 10224 } 10225 break; 10226 case TCP_EXCLBIND: 10227 if (!checkonly) 10228 tcp->tcp_exclbind = onoff; 10229 break; /* goto sizeof (int) option return */ 10230 case TCP_INIT_CWND: { 10231 uint32_t init_cwnd = *((uint32_t *)invalp); 10232 10233 if (checkonly) 10234 break; 10235 10236 /* 10237 * Only allow socket with network configuration 10238 * privilege to set the initial cwnd to be larger 10239 * than allowed by RFC 3390. 10240 */ 10241 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10242 tcp->tcp_init_cwnd = init_cwnd; 10243 break; 10244 } 10245 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 10246 *outlenp = 0; 10247 return (reterr); 10248 } 10249 if (init_cwnd > TCP_MAX_INIT_CWND) { 10250 *outlenp = 0; 10251 return (EINVAL); 10252 } 10253 tcp->tcp_init_cwnd = init_cwnd; 10254 break; 10255 } 10256 case TCP_KEEPALIVE_THRESHOLD: 10257 if (checkonly) 10258 break; 10259 10260 if (*i1 < tcp_keepalive_interval_low || 10261 *i1 > tcp_keepalive_interval_high) { 10262 *outlenp = 0; 10263 return (EINVAL); 10264 } 10265 if (*i1 != tcp->tcp_ka_interval) { 10266 tcp->tcp_ka_interval = *i1; 10267 /* 10268 * Check if we need to restart the 10269 * keepalive timer. 10270 */ 10271 if (tcp->tcp_ka_tid != 0) { 10272 ASSERT(tcp->tcp_ka_enabled); 10273 (void) TCP_TIMER_CANCEL(tcp, 10274 tcp->tcp_ka_tid); 10275 tcp->tcp_ka_last_intrvl = 0; 10276 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10277 tcp_keepalive_killer, 10278 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10279 } 10280 } 10281 break; 10282 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10283 if (!checkonly) { 10284 if (*i1 < tcp_keepalive_abort_interval_low || 10285 *i1 > tcp_keepalive_abort_interval_high) { 10286 *outlenp = 0; 10287 return (EINVAL); 10288 } 10289 tcp->tcp_ka_abort_thres = *i1; 10290 } 10291 break; 10292 case TCP_CORK: 10293 if (!checkonly) { 10294 /* 10295 * if tcp->tcp_cork was set and is now 10296 * being unset, we have to make sure that 10297 * the remaining data gets sent out. Also 10298 * unset tcp->tcp_cork so that tcp_wput_data() 10299 * can send data even if it is less than mss 10300 */ 10301 if (tcp->tcp_cork && onoff == 0 && 10302 tcp->tcp_unsent > 0) { 10303 tcp->tcp_cork = B_FALSE; 10304 tcp_wput_data(tcp, NULL, B_FALSE); 10305 } 10306 tcp->tcp_cork = onoff; 10307 } 10308 break; 10309 default: 10310 *outlenp = 0; 10311 return (EINVAL); 10312 } 10313 break; 10314 case IPPROTO_IP: 10315 if (tcp->tcp_family != AF_INET) { 10316 *outlenp = 0; 10317 return (ENOPROTOOPT); 10318 } 10319 switch (name) { 10320 case IP_OPTIONS: 10321 case T_IP_OPTIONS: 10322 reterr = tcp_opt_set_header(tcp, checkonly, 10323 invalp, inlen); 10324 if (reterr) { 10325 *outlenp = 0; 10326 return (reterr); 10327 } 10328 /* OK return - copy input buffer into output buffer */ 10329 if (invalp != outvalp) { 10330 /* don't trust bcopy for identical src/dst */ 10331 bcopy(invalp, outvalp, inlen); 10332 } 10333 *outlenp = inlen; 10334 return (0); 10335 case IP_TOS: 10336 case T_IP_TOS: 10337 if (!checkonly) { 10338 tcp->tcp_ipha->ipha_type_of_service = 10339 (uchar_t)*i1; 10340 tcp->tcp_tos = (uchar_t)*i1; 10341 } 10342 break; 10343 case IP_TTL: 10344 if (!checkonly) { 10345 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10346 tcp->tcp_ttl = (uchar_t)*i1; 10347 } 10348 break; 10349 case IP_BOUND_IF: 10350 case IP_NEXTHOP: 10351 /* Handled at the IP level */ 10352 return (-EINVAL); 10353 case IP_SEC_OPT: 10354 /* 10355 * We should not allow policy setting after 10356 * we start listening for connections. 10357 */ 10358 if (tcp->tcp_state == TCPS_LISTEN) { 10359 return (EINVAL); 10360 } else { 10361 /* Handled at the IP level */ 10362 return (-EINVAL); 10363 } 10364 default: 10365 *outlenp = 0; 10366 return (EINVAL); 10367 } 10368 break; 10369 case IPPROTO_IPV6: { 10370 ip6_pkt_t *ipp; 10371 10372 /* 10373 * IPPROTO_IPV6 options are only supported for sockets 10374 * that are using IPv6 on the wire. 10375 */ 10376 if (tcp->tcp_ipversion != IPV6_VERSION) { 10377 *outlenp = 0; 10378 return (ENOPROTOOPT); 10379 } 10380 /* 10381 * Only sticky options; no ancillary data 10382 */ 10383 ASSERT(thisdg_attrs == NULL); 10384 ipp = &tcp->tcp_sticky_ipp; 10385 10386 switch (name) { 10387 case IPV6_UNICAST_HOPS: 10388 /* -1 means use default */ 10389 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10390 *outlenp = 0; 10391 return (EINVAL); 10392 } 10393 if (!checkonly) { 10394 if (*i1 == -1) { 10395 tcp->tcp_ip6h->ip6_hops = 10396 ipp->ipp_unicast_hops = 10397 (uint8_t)tcp_ipv6_hoplimit; 10398 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10399 /* Pass modified value to IP. */ 10400 *i1 = tcp->tcp_ip6h->ip6_hops; 10401 } else { 10402 tcp->tcp_ip6h->ip6_hops = 10403 ipp->ipp_unicast_hops = 10404 (uint8_t)*i1; 10405 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10406 } 10407 reterr = tcp_build_hdrs(q, tcp); 10408 if (reterr != 0) 10409 return (reterr); 10410 } 10411 break; 10412 case IPV6_BOUND_IF: 10413 if (!checkonly) { 10414 int error = 0; 10415 10416 tcp->tcp_bound_if = *i1; 10417 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10418 B_TRUE, checkonly, level, name, mblk); 10419 if (error != 0) { 10420 *outlenp = 0; 10421 return (error); 10422 } 10423 } 10424 break; 10425 /* 10426 * Set boolean switches for ancillary data delivery 10427 */ 10428 case IPV6_RECVPKTINFO: 10429 if (!checkonly) { 10430 if (onoff) 10431 tcp->tcp_ipv6_recvancillary |= 10432 TCP_IPV6_RECVPKTINFO; 10433 else 10434 tcp->tcp_ipv6_recvancillary &= 10435 ~TCP_IPV6_RECVPKTINFO; 10436 /* Force it to be sent up with the next msg */ 10437 tcp->tcp_recvifindex = 0; 10438 } 10439 break; 10440 case IPV6_RECVTCLASS: 10441 if (!checkonly) { 10442 if (onoff) 10443 tcp->tcp_ipv6_recvancillary |= 10444 TCP_IPV6_RECVTCLASS; 10445 else 10446 tcp->tcp_ipv6_recvancillary &= 10447 ~TCP_IPV6_RECVTCLASS; 10448 } 10449 break; 10450 case IPV6_RECVHOPLIMIT: 10451 if (!checkonly) { 10452 if (onoff) 10453 tcp->tcp_ipv6_recvancillary |= 10454 TCP_IPV6_RECVHOPLIMIT; 10455 else 10456 tcp->tcp_ipv6_recvancillary &= 10457 ~TCP_IPV6_RECVHOPLIMIT; 10458 /* Force it to be sent up with the next msg */ 10459 tcp->tcp_recvhops = 0xffffffffU; 10460 } 10461 break; 10462 case IPV6_RECVHOPOPTS: 10463 if (!checkonly) { 10464 if (onoff) 10465 tcp->tcp_ipv6_recvancillary |= 10466 TCP_IPV6_RECVHOPOPTS; 10467 else 10468 tcp->tcp_ipv6_recvancillary &= 10469 ~TCP_IPV6_RECVHOPOPTS; 10470 } 10471 break; 10472 case IPV6_RECVDSTOPTS: 10473 if (!checkonly) { 10474 if (onoff) 10475 tcp->tcp_ipv6_recvancillary |= 10476 TCP_IPV6_RECVDSTOPTS; 10477 else 10478 tcp->tcp_ipv6_recvancillary &= 10479 ~TCP_IPV6_RECVDSTOPTS; 10480 } 10481 break; 10482 case _OLD_IPV6_RECVDSTOPTS: 10483 if (!checkonly) { 10484 if (onoff) 10485 tcp->tcp_ipv6_recvancillary |= 10486 TCP_OLD_IPV6_RECVDSTOPTS; 10487 else 10488 tcp->tcp_ipv6_recvancillary &= 10489 ~TCP_OLD_IPV6_RECVDSTOPTS; 10490 } 10491 break; 10492 case IPV6_RECVRTHDR: 10493 if (!checkonly) { 10494 if (onoff) 10495 tcp->tcp_ipv6_recvancillary |= 10496 TCP_IPV6_RECVRTHDR; 10497 else 10498 tcp->tcp_ipv6_recvancillary &= 10499 ~TCP_IPV6_RECVRTHDR; 10500 } 10501 break; 10502 case IPV6_RECVRTHDRDSTOPTS: 10503 if (!checkonly) { 10504 if (onoff) 10505 tcp->tcp_ipv6_recvancillary |= 10506 TCP_IPV6_RECVRTDSTOPTS; 10507 else 10508 tcp->tcp_ipv6_recvancillary &= 10509 ~TCP_IPV6_RECVRTDSTOPTS; 10510 } 10511 break; 10512 case IPV6_PKTINFO: 10513 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10514 return (EINVAL); 10515 if (checkonly) 10516 break; 10517 10518 if (inlen == 0) { 10519 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10520 } else { 10521 struct in6_pktinfo *pkti; 10522 10523 pkti = (struct in6_pktinfo *)invalp; 10524 /* 10525 * RFC 3542 states that ipi6_addr must be 10526 * the unspecified address when setting the 10527 * IPV6_PKTINFO sticky socket option on a 10528 * TCP socket. 10529 */ 10530 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10531 return (EINVAL); 10532 /* 10533 * ip6_set_pktinfo() validates the source 10534 * address and interface index. 10535 */ 10536 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10537 pkti, mblk); 10538 if (reterr != 0) 10539 return (reterr); 10540 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10541 ipp->ipp_addr = pkti->ipi6_addr; 10542 if (ipp->ipp_ifindex != 0) 10543 ipp->ipp_fields |= IPPF_IFINDEX; 10544 else 10545 ipp->ipp_fields &= ~IPPF_IFINDEX; 10546 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10547 ipp->ipp_fields |= IPPF_ADDR; 10548 else 10549 ipp->ipp_fields &= ~IPPF_ADDR; 10550 } 10551 reterr = tcp_build_hdrs(q, tcp); 10552 if (reterr != 0) 10553 return (reterr); 10554 break; 10555 case IPV6_TCLASS: 10556 if (inlen != 0 && inlen != sizeof (int)) 10557 return (EINVAL); 10558 if (checkonly) 10559 break; 10560 10561 if (inlen == 0) { 10562 ipp->ipp_fields &= ~IPPF_TCLASS; 10563 } else { 10564 if (*i1 > 255 || *i1 < -1) 10565 return (EINVAL); 10566 if (*i1 == -1) { 10567 ipp->ipp_tclass = 0; 10568 *i1 = 0; 10569 } else { 10570 ipp->ipp_tclass = *i1; 10571 } 10572 ipp->ipp_fields |= IPPF_TCLASS; 10573 } 10574 reterr = tcp_build_hdrs(q, tcp); 10575 if (reterr != 0) 10576 return (reterr); 10577 break; 10578 case IPV6_NEXTHOP: 10579 /* 10580 * IP will verify that the nexthop is reachable 10581 * and fail for sticky options. 10582 */ 10583 if (inlen != 0 && inlen != sizeof (sin6_t)) 10584 return (EINVAL); 10585 if (checkonly) 10586 break; 10587 10588 if (inlen == 0) { 10589 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10590 } else { 10591 sin6_t *sin6 = (sin6_t *)invalp; 10592 10593 if (sin6->sin6_family != AF_INET6) 10594 return (EAFNOSUPPORT); 10595 if (IN6_IS_ADDR_V4MAPPED( 10596 &sin6->sin6_addr)) 10597 return (EADDRNOTAVAIL); 10598 ipp->ipp_nexthop = sin6->sin6_addr; 10599 if (!IN6_IS_ADDR_UNSPECIFIED( 10600 &ipp->ipp_nexthop)) 10601 ipp->ipp_fields |= IPPF_NEXTHOP; 10602 else 10603 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10604 } 10605 reterr = tcp_build_hdrs(q, tcp); 10606 if (reterr != 0) 10607 return (reterr); 10608 break; 10609 case IPV6_HOPOPTS: { 10610 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10611 10612 /* 10613 * Sanity checks - minimum size, size a multiple of 10614 * eight bytes, and matching size passed in. 10615 */ 10616 if (inlen != 0 && 10617 inlen != (8 * (hopts->ip6h_len + 1))) 10618 return (EINVAL); 10619 10620 if (checkonly) 10621 break; 10622 10623 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10624 (uchar_t **)&ipp->ipp_hopopts, 10625 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10626 if (reterr != 0) 10627 return (reterr); 10628 if (ipp->ipp_hopoptslen == 0) 10629 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10630 else 10631 ipp->ipp_fields |= IPPF_HOPOPTS; 10632 reterr = tcp_build_hdrs(q, tcp); 10633 if (reterr != 0) 10634 return (reterr); 10635 break; 10636 } 10637 case IPV6_RTHDRDSTOPTS: { 10638 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10639 10640 /* 10641 * Sanity checks - minimum size, size a multiple of 10642 * eight bytes, and matching size passed in. 10643 */ 10644 if (inlen != 0 && 10645 inlen != (8 * (dopts->ip6d_len + 1))) 10646 return (EINVAL); 10647 10648 if (checkonly) 10649 break; 10650 10651 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10652 (uchar_t **)&ipp->ipp_rtdstopts, 10653 &ipp->ipp_rtdstoptslen, 0); 10654 if (reterr != 0) 10655 return (reterr); 10656 if (ipp->ipp_rtdstoptslen == 0) 10657 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10658 else 10659 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10660 reterr = tcp_build_hdrs(q, tcp); 10661 if (reterr != 0) 10662 return (reterr); 10663 break; 10664 } 10665 case IPV6_DSTOPTS: { 10666 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10667 10668 /* 10669 * Sanity checks - minimum size, size a multiple of 10670 * eight bytes, and matching size passed in. 10671 */ 10672 if (inlen != 0 && 10673 inlen != (8 * (dopts->ip6d_len + 1))) 10674 return (EINVAL); 10675 10676 if (checkonly) 10677 break; 10678 10679 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10680 (uchar_t **)&ipp->ipp_dstopts, 10681 &ipp->ipp_dstoptslen, 0); 10682 if (reterr != 0) 10683 return (reterr); 10684 if (ipp->ipp_dstoptslen == 0) 10685 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10686 else 10687 ipp->ipp_fields |= IPPF_DSTOPTS; 10688 reterr = tcp_build_hdrs(q, tcp); 10689 if (reterr != 0) 10690 return (reterr); 10691 break; 10692 } 10693 case IPV6_RTHDR: { 10694 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10695 10696 /* 10697 * Sanity checks - minimum size, size a multiple of 10698 * eight bytes, and matching size passed in. 10699 */ 10700 if (inlen != 0 && 10701 inlen != (8 * (rt->ip6r_len + 1))) 10702 return (EINVAL); 10703 10704 if (checkonly) 10705 break; 10706 10707 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10708 (uchar_t **)&ipp->ipp_rthdr, 10709 &ipp->ipp_rthdrlen, 0); 10710 if (reterr != 0) 10711 return (reterr); 10712 if (ipp->ipp_rthdrlen == 0) 10713 ipp->ipp_fields &= ~IPPF_RTHDR; 10714 else 10715 ipp->ipp_fields |= IPPF_RTHDR; 10716 reterr = tcp_build_hdrs(q, tcp); 10717 if (reterr != 0) 10718 return (reterr); 10719 break; 10720 } 10721 case IPV6_V6ONLY: 10722 if (!checkonly) 10723 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10724 break; 10725 case IPV6_USE_MIN_MTU: 10726 if (inlen != sizeof (int)) 10727 return (EINVAL); 10728 10729 if (*i1 < -1 || *i1 > 1) 10730 return (EINVAL); 10731 10732 if (checkonly) 10733 break; 10734 10735 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10736 ipp->ipp_use_min_mtu = *i1; 10737 break; 10738 case IPV6_BOUND_PIF: 10739 /* Handled at the IP level */ 10740 return (-EINVAL); 10741 case IPV6_SEC_OPT: 10742 /* 10743 * We should not allow policy setting after 10744 * we start listening for connections. 10745 */ 10746 if (tcp->tcp_state == TCPS_LISTEN) { 10747 return (EINVAL); 10748 } else { 10749 /* Handled at the IP level */ 10750 return (-EINVAL); 10751 } 10752 case IPV6_SRC_PREFERENCES: 10753 if (inlen != sizeof (uint32_t)) 10754 return (EINVAL); 10755 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10756 *(uint32_t *)invalp); 10757 if (reterr != 0) { 10758 *outlenp = 0; 10759 return (reterr); 10760 } 10761 break; 10762 default: 10763 *outlenp = 0; 10764 return (EINVAL); 10765 } 10766 break; 10767 } /* end IPPROTO_IPV6 */ 10768 default: 10769 *outlenp = 0; 10770 return (EINVAL); 10771 } 10772 /* 10773 * Common case of OK return with outval same as inval 10774 */ 10775 if (invalp != outvalp) { 10776 /* don't trust bcopy for identical src/dst */ 10777 (void) bcopy(invalp, outvalp, inlen); 10778 } 10779 *outlenp = inlen; 10780 return (0); 10781 } 10782 10783 /* 10784 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10785 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10786 * headers, and the maximum size tcp header (to avoid reallocation 10787 * on the fly for additional tcp options). 10788 * Returns failure if can't allocate memory. 10789 */ 10790 static int 10791 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10792 { 10793 char *hdrs; 10794 uint_t hdrs_len; 10795 ip6i_t *ip6i; 10796 char buf[TCP_MAX_HDR_LENGTH]; 10797 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10798 in6_addr_t src, dst; 10799 10800 /* 10801 * save the existing tcp header and source/dest IP addresses 10802 */ 10803 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10804 src = tcp->tcp_ip6h->ip6_src; 10805 dst = tcp->tcp_ip6h->ip6_dst; 10806 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10807 ASSERT(hdrs_len != 0); 10808 if (hdrs_len > tcp->tcp_iphc_len) { 10809 /* Need to reallocate */ 10810 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10811 if (hdrs == NULL) 10812 return (ENOMEM); 10813 if (tcp->tcp_iphc != NULL) { 10814 if (tcp->tcp_hdr_grown) { 10815 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10816 } else { 10817 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10818 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10819 } 10820 tcp->tcp_iphc_len = 0; 10821 } 10822 ASSERT(tcp->tcp_iphc_len == 0); 10823 tcp->tcp_iphc = hdrs; 10824 tcp->tcp_iphc_len = hdrs_len; 10825 tcp->tcp_hdr_grown = B_TRUE; 10826 } 10827 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10828 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10829 10830 /* Set header fields not in ipp */ 10831 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10832 ip6i = (ip6i_t *)tcp->tcp_iphc; 10833 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10834 } else { 10835 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10836 } 10837 /* 10838 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10839 * 10840 * tcp->tcp_tcp_hdr_len doesn't change here. 10841 */ 10842 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10843 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10844 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10845 10846 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10847 10848 tcp->tcp_ip6h->ip6_src = src; 10849 tcp->tcp_ip6h->ip6_dst = dst; 10850 10851 /* 10852 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10853 * the default value for TCP. 10854 */ 10855 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10856 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 10857 10858 /* 10859 * If we're setting extension headers after a connection 10860 * has been established, and if we have a routing header 10861 * among the extension headers, call ip_massage_options_v6 to 10862 * manipulate the routing header/ip6_dst set the checksum 10863 * difference in the tcp header template. 10864 * (This happens in tcp_connect_ipv6 if the routing header 10865 * is set prior to the connect.) 10866 * Set the tcp_sum to zero first in case we've cleared a 10867 * routing header or don't have one at all. 10868 */ 10869 tcp->tcp_sum = 0; 10870 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10871 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10872 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10873 (uint8_t *)tcp->tcp_tcph); 10874 if (rth != NULL) { 10875 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10876 rth); 10877 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10878 (tcp->tcp_sum >> 16)); 10879 } 10880 } 10881 10882 /* Try to get everything in a single mblk */ 10883 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 10884 return (0); 10885 } 10886 10887 /* 10888 * Transfer any source route option from ipha to buf/dst in reversed form. 10889 */ 10890 static int 10891 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10892 { 10893 ipoptp_t opts; 10894 uchar_t *opt; 10895 uint8_t optval; 10896 uint8_t optlen; 10897 uint32_t len = 0; 10898 10899 for (optval = ipoptp_first(&opts, ipha); 10900 optval != IPOPT_EOL; 10901 optval = ipoptp_next(&opts)) { 10902 opt = opts.ipoptp_cur; 10903 optlen = opts.ipoptp_len; 10904 switch (optval) { 10905 int off1, off2; 10906 case IPOPT_SSRR: 10907 case IPOPT_LSRR: 10908 10909 /* Reverse source route */ 10910 /* 10911 * First entry should be the next to last one in the 10912 * current source route (the last entry is our 10913 * address.) 10914 * The last entry should be the final destination. 10915 */ 10916 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10917 buf[IPOPT_OLEN] = (uint8_t)optlen; 10918 off1 = IPOPT_MINOFF_SR - 1; 10919 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10920 if (off2 < 0) { 10921 /* No entries in source route */ 10922 break; 10923 } 10924 bcopy(opt + off2, dst, IP_ADDR_LEN); 10925 /* 10926 * Note: use src since ipha has not had its src 10927 * and dst reversed (it is in the state it was 10928 * received. 10929 */ 10930 bcopy(&ipha->ipha_src, buf + off2, 10931 IP_ADDR_LEN); 10932 off2 -= IP_ADDR_LEN; 10933 10934 while (off2 > 0) { 10935 bcopy(opt + off2, buf + off1, 10936 IP_ADDR_LEN); 10937 off1 += IP_ADDR_LEN; 10938 off2 -= IP_ADDR_LEN; 10939 } 10940 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10941 buf += optlen; 10942 len += optlen; 10943 break; 10944 } 10945 } 10946 done: 10947 /* Pad the resulting options */ 10948 while (len & 0x3) { 10949 *buf++ = IPOPT_EOL; 10950 len++; 10951 } 10952 return (len); 10953 } 10954 10955 10956 /* 10957 * Extract and revert a source route from ipha (if any) 10958 * and then update the relevant fields in both tcp_t and the standard header. 10959 */ 10960 static void 10961 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 10962 { 10963 char buf[TCP_MAX_HDR_LENGTH]; 10964 uint_t tcph_len; 10965 int len; 10966 10967 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 10968 len = IPH_HDR_LENGTH(ipha); 10969 if (len == IP_SIMPLE_HDR_LENGTH) 10970 /* Nothing to do */ 10971 return; 10972 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 10973 (len & 0x3)) 10974 return; 10975 10976 tcph_len = tcp->tcp_tcp_hdr_len; 10977 bcopy(tcp->tcp_tcph, buf, tcph_len); 10978 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 10979 (tcp->tcp_ipha->ipha_dst & 0xffff); 10980 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 10981 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 10982 len += IP_SIMPLE_HDR_LENGTH; 10983 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 10984 (tcp->tcp_ipha->ipha_dst & 0xffff)); 10985 if ((int)tcp->tcp_sum < 0) 10986 tcp->tcp_sum--; 10987 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 10988 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 10989 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 10990 bcopy(buf, tcp->tcp_tcph, tcph_len); 10991 tcp->tcp_ip_hdr_len = len; 10992 tcp->tcp_ipha->ipha_version_and_hdr_length = 10993 (IP_VERSION << 4) | (len >> 2); 10994 len += tcph_len; 10995 tcp->tcp_hdr_len = len; 10996 } 10997 10998 /* 10999 * Copy the standard header into its new location, 11000 * lay in the new options and then update the relevant 11001 * fields in both tcp_t and the standard header. 11002 */ 11003 static int 11004 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11005 { 11006 uint_t tcph_len; 11007 uint8_t *ip_optp; 11008 tcph_t *new_tcph; 11009 11010 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11011 return (EINVAL); 11012 11013 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11014 return (EINVAL); 11015 11016 if (checkonly) { 11017 /* 11018 * do not really set, just pretend to - T_CHECK 11019 */ 11020 return (0); 11021 } 11022 11023 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11024 if (tcp->tcp_label_len > 0) { 11025 int padlen; 11026 uint8_t opt; 11027 11028 /* convert list termination to no-ops */ 11029 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11030 ip_optp += ip_optp[IPOPT_OLEN]; 11031 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11032 while (--padlen >= 0) 11033 *ip_optp++ = opt; 11034 } 11035 tcph_len = tcp->tcp_tcp_hdr_len; 11036 new_tcph = (tcph_t *)(ip_optp + len); 11037 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11038 tcp->tcp_tcph = new_tcph; 11039 bcopy(ptr, ip_optp, len); 11040 11041 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11042 11043 tcp->tcp_ip_hdr_len = len; 11044 tcp->tcp_ipha->ipha_version_and_hdr_length = 11045 (IP_VERSION << 4) | (len >> 2); 11046 tcp->tcp_hdr_len = len + tcph_len; 11047 if (!TCP_IS_DETACHED(tcp)) { 11048 /* Always allocate room for all options. */ 11049 (void) mi_set_sth_wroff(tcp->tcp_rq, 11050 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 11051 } 11052 return (0); 11053 } 11054 11055 /* Get callback routine passed to nd_load by tcp_param_register */ 11056 /* ARGSUSED */ 11057 static int 11058 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11059 { 11060 tcpparam_t *tcppa = (tcpparam_t *)cp; 11061 11062 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11063 return (0); 11064 } 11065 11066 /* 11067 * Walk through the param array specified registering each element with the 11068 * named dispatch handler. 11069 */ 11070 static boolean_t 11071 tcp_param_register(tcpparam_t *tcppa, int cnt) 11072 { 11073 for (; cnt-- > 0; tcppa++) { 11074 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11075 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 11076 tcp_param_get, tcp_param_set, 11077 (caddr_t)tcppa)) { 11078 nd_free(&tcp_g_nd); 11079 return (B_FALSE); 11080 } 11081 } 11082 } 11083 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 11084 tcp_param_get, tcp_param_set_aligned, 11085 (caddr_t)&tcp_wroff_xtra_param)) { 11086 nd_free(&tcp_g_nd); 11087 return (B_FALSE); 11088 } 11089 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 11090 tcp_param_get, tcp_param_set_aligned, 11091 (caddr_t)&tcp_mdt_head_param)) { 11092 nd_free(&tcp_g_nd); 11093 return (B_FALSE); 11094 } 11095 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 11096 tcp_param_get, tcp_param_set_aligned, 11097 (caddr_t)&tcp_mdt_tail_param)) { 11098 nd_free(&tcp_g_nd); 11099 return (B_FALSE); 11100 } 11101 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 11102 tcp_param_get, tcp_param_set, 11103 (caddr_t)&tcp_mdt_max_pbufs_param)) { 11104 nd_free(&tcp_g_nd); 11105 return (B_FALSE); 11106 } 11107 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 11108 tcp_extra_priv_ports_get, NULL, NULL)) { 11109 nd_free(&tcp_g_nd); 11110 return (B_FALSE); 11111 } 11112 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 11113 NULL, tcp_extra_priv_ports_add, NULL)) { 11114 nd_free(&tcp_g_nd); 11115 return (B_FALSE); 11116 } 11117 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 11118 NULL, tcp_extra_priv_ports_del, NULL)) { 11119 nd_free(&tcp_g_nd); 11120 return (B_FALSE); 11121 } 11122 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 11123 NULL)) { 11124 nd_free(&tcp_g_nd); 11125 return (B_FALSE); 11126 } 11127 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 11128 NULL, NULL)) { 11129 nd_free(&tcp_g_nd); 11130 return (B_FALSE); 11131 } 11132 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 11133 NULL, NULL)) { 11134 nd_free(&tcp_g_nd); 11135 return (B_FALSE); 11136 } 11137 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 11138 NULL, NULL)) { 11139 nd_free(&tcp_g_nd); 11140 return (B_FALSE); 11141 } 11142 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 11143 NULL, NULL)) { 11144 nd_free(&tcp_g_nd); 11145 return (B_FALSE); 11146 } 11147 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 11148 tcp_host_param_set, NULL)) { 11149 nd_free(&tcp_g_nd); 11150 return (B_FALSE); 11151 } 11152 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 11153 tcp_host_param_set_ipv6, NULL)) { 11154 nd_free(&tcp_g_nd); 11155 return (B_FALSE); 11156 } 11157 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 11158 NULL)) { 11159 nd_free(&tcp_g_nd); 11160 return (B_FALSE); 11161 } 11162 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 11163 tcp_reserved_port_list, NULL, NULL)) { 11164 nd_free(&tcp_g_nd); 11165 return (B_FALSE); 11166 } 11167 /* 11168 * Dummy ndd variables - only to convey obsolescence information 11169 * through printing of their name (no get or set routines) 11170 * XXX Remove in future releases ? 11171 */ 11172 if (!nd_load(&tcp_g_nd, 11173 "tcp_close_wait_interval(obsoleted - " 11174 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11175 nd_free(&tcp_g_nd); 11176 return (B_FALSE); 11177 } 11178 return (B_TRUE); 11179 } 11180 11181 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11182 /* ARGSUSED */ 11183 static int 11184 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11185 cred_t *cr) 11186 { 11187 long new_value; 11188 tcpparam_t *tcppa = (tcpparam_t *)cp; 11189 11190 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11191 new_value < tcppa->tcp_param_min || 11192 new_value > tcppa->tcp_param_max) { 11193 return (EINVAL); 11194 } 11195 /* 11196 * Need to make sure new_value is a multiple of 4. If it is not, 11197 * round it up. For future 64 bit requirement, we actually make it 11198 * a multiple of 8. 11199 */ 11200 if (new_value & 0x7) { 11201 new_value = (new_value & ~0x7) + 0x8; 11202 } 11203 tcppa->tcp_param_val = new_value; 11204 return (0); 11205 } 11206 11207 /* Set callback routine passed to nd_load by tcp_param_register */ 11208 /* ARGSUSED */ 11209 static int 11210 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11211 { 11212 long new_value; 11213 tcpparam_t *tcppa = (tcpparam_t *)cp; 11214 11215 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11216 new_value < tcppa->tcp_param_min || 11217 new_value > tcppa->tcp_param_max) { 11218 return (EINVAL); 11219 } 11220 tcppa->tcp_param_val = new_value; 11221 return (0); 11222 } 11223 11224 /* 11225 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11226 * is filled, return as much as we can. The message passed in may be 11227 * multi-part, chained using b_cont. "start" is the starting sequence 11228 * number for this piece. 11229 */ 11230 static mblk_t * 11231 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11232 { 11233 uint32_t end; 11234 mblk_t *mp1; 11235 mblk_t *mp2; 11236 mblk_t *next_mp; 11237 uint32_t u1; 11238 11239 /* Walk through all the new pieces. */ 11240 do { 11241 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11242 (uintptr_t)INT_MAX); 11243 end = start + (int)(mp->b_wptr - mp->b_rptr); 11244 next_mp = mp->b_cont; 11245 if (start == end) { 11246 /* Empty. Blast it. */ 11247 freeb(mp); 11248 continue; 11249 } 11250 mp->b_cont = NULL; 11251 TCP_REASS_SET_SEQ(mp, start); 11252 TCP_REASS_SET_END(mp, end); 11253 mp1 = tcp->tcp_reass_tail; 11254 if (!mp1) { 11255 tcp->tcp_reass_tail = mp; 11256 tcp->tcp_reass_head = mp; 11257 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11258 UPDATE_MIB(&tcp_mib, 11259 tcpInDataUnorderBytes, end - start); 11260 continue; 11261 } 11262 /* New stuff completely beyond tail? */ 11263 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11264 /* Link it on end. */ 11265 mp1->b_cont = mp; 11266 tcp->tcp_reass_tail = mp; 11267 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11268 UPDATE_MIB(&tcp_mib, 11269 tcpInDataUnorderBytes, end - start); 11270 continue; 11271 } 11272 mp1 = tcp->tcp_reass_head; 11273 u1 = TCP_REASS_SEQ(mp1); 11274 /* New stuff at the front? */ 11275 if (SEQ_LT(start, u1)) { 11276 /* Yes... Check for overlap. */ 11277 mp->b_cont = mp1; 11278 tcp->tcp_reass_head = mp; 11279 tcp_reass_elim_overlap(tcp, mp); 11280 continue; 11281 } 11282 /* 11283 * The new piece fits somewhere between the head and tail. 11284 * We find our slot, where mp1 precedes us and mp2 trails. 11285 */ 11286 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11287 u1 = TCP_REASS_SEQ(mp2); 11288 if (SEQ_LEQ(start, u1)) 11289 break; 11290 } 11291 /* Link ourselves in */ 11292 mp->b_cont = mp2; 11293 mp1->b_cont = mp; 11294 11295 /* Trim overlap with following mblk(s) first */ 11296 tcp_reass_elim_overlap(tcp, mp); 11297 11298 /* Trim overlap with preceding mblk */ 11299 tcp_reass_elim_overlap(tcp, mp1); 11300 11301 } while (start = end, mp = next_mp); 11302 mp1 = tcp->tcp_reass_head; 11303 /* Anything ready to go? */ 11304 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11305 return (NULL); 11306 /* Eat what we can off the queue */ 11307 for (;;) { 11308 mp = mp1->b_cont; 11309 end = TCP_REASS_END(mp1); 11310 TCP_REASS_SET_SEQ(mp1, 0); 11311 TCP_REASS_SET_END(mp1, 0); 11312 if (!mp) { 11313 tcp->tcp_reass_tail = NULL; 11314 break; 11315 } 11316 if (end != TCP_REASS_SEQ(mp)) { 11317 mp1->b_cont = NULL; 11318 break; 11319 } 11320 mp1 = mp; 11321 } 11322 mp1 = tcp->tcp_reass_head; 11323 tcp->tcp_reass_head = mp; 11324 return (mp1); 11325 } 11326 11327 /* Eliminate any overlap that mp may have over later mblks */ 11328 static void 11329 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11330 { 11331 uint32_t end; 11332 mblk_t *mp1; 11333 uint32_t u1; 11334 11335 end = TCP_REASS_END(mp); 11336 while ((mp1 = mp->b_cont) != NULL) { 11337 u1 = TCP_REASS_SEQ(mp1); 11338 if (!SEQ_GT(end, u1)) 11339 break; 11340 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11341 mp->b_wptr -= end - u1; 11342 TCP_REASS_SET_END(mp, u1); 11343 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11344 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11345 break; 11346 } 11347 mp->b_cont = mp1->b_cont; 11348 TCP_REASS_SET_SEQ(mp1, 0); 11349 TCP_REASS_SET_END(mp1, 0); 11350 freeb(mp1); 11351 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11352 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11353 } 11354 if (!mp1) 11355 tcp->tcp_reass_tail = mp; 11356 } 11357 11358 /* 11359 * Send up all messages queued on tcp_rcv_list. 11360 */ 11361 static uint_t 11362 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11363 { 11364 mblk_t *mp; 11365 uint_t ret = 0; 11366 uint_t thwin; 11367 #ifdef DEBUG 11368 uint_t cnt = 0; 11369 #endif 11370 /* Can't drain on an eager connection */ 11371 if (tcp->tcp_listener != NULL) 11372 return (ret); 11373 11374 /* 11375 * Handle two cases here: we are currently fused or we were 11376 * previously fused and have some urgent data to be delivered 11377 * upstream. The latter happens because we either ran out of 11378 * memory or were detached and therefore sending the SIGURG was 11379 * deferred until this point. In either case we pass control 11380 * over to tcp_fuse_rcv_drain() since it may need to complete 11381 * some work. 11382 */ 11383 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11384 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11385 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11386 &tcp->tcp_fused_sigurg_mp)) 11387 return (ret); 11388 } 11389 11390 while ((mp = tcp->tcp_rcv_list) != NULL) { 11391 tcp->tcp_rcv_list = mp->b_next; 11392 mp->b_next = NULL; 11393 #ifdef DEBUG 11394 cnt += msgdsize(mp); 11395 #endif 11396 /* Does this need SSL processing first? */ 11397 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11398 tcp_kssl_input(tcp, mp); 11399 continue; 11400 } 11401 putnext(q, mp); 11402 } 11403 ASSERT(cnt == tcp->tcp_rcv_cnt); 11404 tcp->tcp_rcv_last_head = NULL; 11405 tcp->tcp_rcv_last_tail = NULL; 11406 tcp->tcp_rcv_cnt = 0; 11407 11408 /* Learn the latest rwnd information that we sent to the other side. */ 11409 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11410 << tcp->tcp_rcv_ws; 11411 /* This is peer's calculated send window (our receive window). */ 11412 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11413 /* 11414 * Increase the receive window to max. But we need to do receiver 11415 * SWS avoidance. This means that we need to check the increase of 11416 * of receive window is at least 1 MSS. 11417 */ 11418 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11419 /* 11420 * If the window that the other side knows is less than max 11421 * deferred acks segments, send an update immediately. 11422 */ 11423 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11424 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11425 ret = TH_ACK_NEEDED; 11426 } 11427 tcp->tcp_rwnd = q->q_hiwat; 11428 } 11429 /* No need for the push timer now. */ 11430 if (tcp->tcp_push_tid != 0) { 11431 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11432 tcp->tcp_push_tid = 0; 11433 } 11434 return (ret); 11435 } 11436 11437 /* 11438 * Queue data on tcp_rcv_list which is a b_next chain. 11439 * tcp_rcv_last_head/tail is the last element of this chain. 11440 * Each element of the chain is a b_cont chain. 11441 * 11442 * M_DATA messages are added to the current element. 11443 * Other messages are added as new (b_next) elements. 11444 */ 11445 void 11446 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11447 { 11448 ASSERT(seg_len == msgdsize(mp)); 11449 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11450 11451 if (tcp->tcp_rcv_list == NULL) { 11452 ASSERT(tcp->tcp_rcv_last_head == NULL); 11453 tcp->tcp_rcv_list = mp; 11454 tcp->tcp_rcv_last_head = mp; 11455 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11456 tcp->tcp_rcv_last_tail->b_cont = mp; 11457 } else { 11458 tcp->tcp_rcv_last_head->b_next = mp; 11459 tcp->tcp_rcv_last_head = mp; 11460 } 11461 11462 while (mp->b_cont) 11463 mp = mp->b_cont; 11464 11465 tcp->tcp_rcv_last_tail = mp; 11466 tcp->tcp_rcv_cnt += seg_len; 11467 tcp->tcp_rwnd -= seg_len; 11468 } 11469 11470 /* 11471 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11472 * 11473 * This is the default entry function into TCP on the read side. TCP is 11474 * always entered via squeue i.e. using squeue's for mutual exclusion. 11475 * When classifier does a lookup to find the tcp, it also puts a reference 11476 * on the conn structure associated so the tcp is guaranteed to exist 11477 * when we come here. We still need to check the state because it might 11478 * as well has been closed. The squeue processing function i.e. squeue_enter, 11479 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11480 * CONN_DEC_REF. 11481 * 11482 * Apart from the default entry point, IP also sends packets directly to 11483 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11484 * connections. 11485 */ 11486 void 11487 tcp_input(void *arg, mblk_t *mp, void *arg2) 11488 { 11489 conn_t *connp = (conn_t *)arg; 11490 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11491 11492 /* arg2 is the sqp */ 11493 ASSERT(arg2 != NULL); 11494 ASSERT(mp != NULL); 11495 11496 /* 11497 * Don't accept any input on a closed tcp as this TCP logically does 11498 * not exist on the system. Don't proceed further with this TCP. 11499 * For eg. this packet could trigger another close of this tcp 11500 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11501 * tcp_clean_death / tcp_closei_local must be called at most once 11502 * on a TCP. In this case we need to refeed the packet into the 11503 * classifier and figure out where the packet should go. Need to 11504 * preserve the recv_ill somehow. Until we figure that out, for 11505 * now just drop the packet if we can't classify the packet. 11506 */ 11507 if (tcp->tcp_state == TCPS_CLOSED || 11508 tcp->tcp_state == TCPS_BOUND) { 11509 conn_t *new_connp; 11510 11511 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11512 if (new_connp != NULL) { 11513 tcp_reinput(new_connp, mp, arg2); 11514 return; 11515 } 11516 /* We failed to classify. For now just drop the packet */ 11517 freemsg(mp); 11518 return; 11519 } 11520 11521 if (DB_TYPE(mp) == M_DATA) 11522 tcp_rput_data(connp, mp, arg2); 11523 else 11524 tcp_rput_common(tcp, mp); 11525 } 11526 11527 /* 11528 * The read side put procedure. 11529 * The packets passed up by ip are assume to be aligned according to 11530 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11531 */ 11532 static void 11533 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11534 { 11535 /* 11536 * tcp_rput_data() does not expect M_CTL except for the case 11537 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11538 * type. Need to make sure that any other M_CTLs don't make 11539 * it to tcp_rput_data since it is not expecting any and doesn't 11540 * check for it. 11541 */ 11542 if (DB_TYPE(mp) == M_CTL) { 11543 switch (*(uint32_t *)(mp->b_rptr)) { 11544 case TCP_IOC_ABORT_CONN: 11545 /* 11546 * Handle connection abort request. 11547 */ 11548 tcp_ioctl_abort_handler(tcp, mp); 11549 return; 11550 case IPSEC_IN: 11551 /* 11552 * Only secure icmp arrive in TCP and they 11553 * don't go through data path. 11554 */ 11555 tcp_icmp_error(tcp, mp); 11556 return; 11557 case IN_PKTINFO: 11558 /* 11559 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11560 * sockets that are receiving IPv4 traffic. tcp 11561 */ 11562 ASSERT(tcp->tcp_family == AF_INET6); 11563 ASSERT(tcp->tcp_ipv6_recvancillary & 11564 TCP_IPV6_RECVPKTINFO); 11565 tcp_rput_data(tcp->tcp_connp, mp, 11566 tcp->tcp_connp->conn_sqp); 11567 return; 11568 case MDT_IOC_INFO_UPDATE: 11569 /* 11570 * Handle Multidata information update; the 11571 * following routine will free the message. 11572 */ 11573 if (tcp->tcp_connp->conn_mdt_ok) { 11574 tcp_mdt_update(tcp, 11575 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11576 B_FALSE); 11577 } 11578 freemsg(mp); 11579 return; 11580 default: 11581 break; 11582 } 11583 } 11584 11585 /* No point processing the message if tcp is already closed */ 11586 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11587 freemsg(mp); 11588 return; 11589 } 11590 11591 tcp_rput_other(tcp, mp); 11592 } 11593 11594 11595 /* The minimum of smoothed mean deviation in RTO calculation. */ 11596 #define TCP_SD_MIN 400 11597 11598 /* 11599 * Set RTO for this connection. The formula is from Jacobson and Karels' 11600 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11601 * are the same as those in Appendix A.2 of that paper. 11602 * 11603 * m = new measurement 11604 * sa = smoothed RTT average (8 * average estimates). 11605 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11606 */ 11607 static void 11608 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11609 { 11610 long m = TICK_TO_MSEC(rtt); 11611 clock_t sa = tcp->tcp_rtt_sa; 11612 clock_t sv = tcp->tcp_rtt_sd; 11613 clock_t rto; 11614 11615 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11616 tcp->tcp_rtt_update++; 11617 11618 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11619 if (sa != 0) { 11620 /* 11621 * Update average estimator: 11622 * new rtt = 7/8 old rtt + 1/8 Error 11623 */ 11624 11625 /* m is now Error in estimate. */ 11626 m -= sa >> 3; 11627 if ((sa += m) <= 0) { 11628 /* 11629 * Don't allow the smoothed average to be negative. 11630 * We use 0 to denote reinitialization of the 11631 * variables. 11632 */ 11633 sa = 1; 11634 } 11635 11636 /* 11637 * Update deviation estimator: 11638 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11639 */ 11640 if (m < 0) 11641 m = -m; 11642 m -= sv >> 2; 11643 sv += m; 11644 } else { 11645 /* 11646 * This follows BSD's implementation. So the reinitialized 11647 * RTO is 3 * m. We cannot go less than 2 because if the 11648 * link is bandwidth dominated, doubling the window size 11649 * during slow start means doubling the RTT. We want to be 11650 * more conservative when we reinitialize our estimates. 3 11651 * is just a convenient number. 11652 */ 11653 sa = m << 3; 11654 sv = m << 1; 11655 } 11656 if (sv < TCP_SD_MIN) { 11657 /* 11658 * We do not know that if sa captures the delay ACK 11659 * effect as in a long train of segments, a receiver 11660 * does not delay its ACKs. So set the minimum of sv 11661 * to be TCP_SD_MIN, which is default to 400 ms, twice 11662 * of BSD DATO. That means the minimum of mean 11663 * deviation is 100 ms. 11664 * 11665 */ 11666 sv = TCP_SD_MIN; 11667 } 11668 tcp->tcp_rtt_sa = sa; 11669 tcp->tcp_rtt_sd = sv; 11670 /* 11671 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11672 * 11673 * Add tcp_rexmit_interval extra in case of extreme environment 11674 * where the algorithm fails to work. The default value of 11675 * tcp_rexmit_interval_extra should be 0. 11676 * 11677 * As we use a finer grained clock than BSD and update 11678 * RTO for every ACKs, add in another .25 of RTT to the 11679 * deviation of RTO to accomodate burstiness of 1/4 of 11680 * window size. 11681 */ 11682 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11683 11684 if (rto > tcp_rexmit_interval_max) { 11685 tcp->tcp_rto = tcp_rexmit_interval_max; 11686 } else if (rto < tcp_rexmit_interval_min) { 11687 tcp->tcp_rto = tcp_rexmit_interval_min; 11688 } else { 11689 tcp->tcp_rto = rto; 11690 } 11691 11692 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11693 tcp->tcp_timer_backoff = 0; 11694 } 11695 11696 /* 11697 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11698 * send queue which starts at the given seq. no. 11699 * 11700 * Parameters: 11701 * tcp_t *tcp: the tcp instance pointer. 11702 * uint32_t seq: the starting seq. no of the requested segment. 11703 * int32_t *off: after the execution, *off will be the offset to 11704 * the returned mblk which points to the requested seq no. 11705 * It is the caller's responsibility to send in a non-null off. 11706 * 11707 * Return: 11708 * A mblk_t pointer pointing to the requested segment in send queue. 11709 */ 11710 static mblk_t * 11711 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11712 { 11713 int32_t cnt; 11714 mblk_t *mp; 11715 11716 /* Defensive coding. Make sure we don't send incorrect data. */ 11717 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11718 return (NULL); 11719 11720 cnt = seq - tcp->tcp_suna; 11721 mp = tcp->tcp_xmit_head; 11722 while (cnt > 0 && mp != NULL) { 11723 cnt -= mp->b_wptr - mp->b_rptr; 11724 if (cnt < 0) { 11725 cnt += mp->b_wptr - mp->b_rptr; 11726 break; 11727 } 11728 mp = mp->b_cont; 11729 } 11730 ASSERT(mp != NULL); 11731 *off = cnt; 11732 return (mp); 11733 } 11734 11735 /* 11736 * This function handles all retransmissions if SACK is enabled for this 11737 * connection. First it calculates how many segments can be retransmitted 11738 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11739 * segments. A segment is eligible if sack_cnt for that segment is greater 11740 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11741 * all eligible segments, it checks to see if TCP can send some new segments 11742 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11743 * 11744 * Parameters: 11745 * tcp_t *tcp: the tcp structure of the connection. 11746 * uint_t *flags: in return, appropriate value will be set for 11747 * tcp_rput_data(). 11748 */ 11749 static void 11750 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11751 { 11752 notsack_blk_t *notsack_blk; 11753 int32_t usable_swnd; 11754 int32_t mss; 11755 uint32_t seg_len; 11756 mblk_t *xmit_mp; 11757 11758 ASSERT(tcp->tcp_sack_info != NULL); 11759 ASSERT(tcp->tcp_notsack_list != NULL); 11760 ASSERT(tcp->tcp_rexmit == B_FALSE); 11761 11762 /* Defensive coding in case there is a bug... */ 11763 if (tcp->tcp_notsack_list == NULL) { 11764 return; 11765 } 11766 notsack_blk = tcp->tcp_notsack_list; 11767 mss = tcp->tcp_mss; 11768 11769 /* 11770 * Limit the num of outstanding data in the network to be 11771 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11772 */ 11773 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11774 11775 /* At least retransmit 1 MSS of data. */ 11776 if (usable_swnd <= 0) { 11777 usable_swnd = mss; 11778 } 11779 11780 /* Make sure no new RTT samples will be taken. */ 11781 tcp->tcp_csuna = tcp->tcp_snxt; 11782 11783 notsack_blk = tcp->tcp_notsack_list; 11784 while (usable_swnd > 0) { 11785 mblk_t *snxt_mp, *tmp_mp; 11786 tcp_seq begin = tcp->tcp_sack_snxt; 11787 tcp_seq end; 11788 int32_t off; 11789 11790 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11791 if (SEQ_GT(notsack_blk->end, begin) && 11792 (notsack_blk->sack_cnt >= 11793 tcp_dupack_fast_retransmit)) { 11794 end = notsack_blk->end; 11795 if (SEQ_LT(begin, notsack_blk->begin)) { 11796 begin = notsack_blk->begin; 11797 } 11798 break; 11799 } 11800 } 11801 /* 11802 * All holes are filled. Manipulate tcp_cwnd to send more 11803 * if we can. Note that after the SACK recovery, tcp_cwnd is 11804 * set to tcp_cwnd_ssthresh. 11805 */ 11806 if (notsack_blk == NULL) { 11807 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11808 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11809 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11810 ASSERT(tcp->tcp_cwnd > 0); 11811 return; 11812 } else { 11813 usable_swnd = usable_swnd / mss; 11814 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11815 MAX(usable_swnd * mss, mss); 11816 *flags |= TH_XMIT_NEEDED; 11817 return; 11818 } 11819 } 11820 11821 /* 11822 * Note that we may send more than usable_swnd allows here 11823 * because of round off, but no more than 1 MSS of data. 11824 */ 11825 seg_len = end - begin; 11826 if (seg_len > mss) 11827 seg_len = mss; 11828 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11829 ASSERT(snxt_mp != NULL); 11830 /* This should not happen. Defensive coding again... */ 11831 if (snxt_mp == NULL) { 11832 return; 11833 } 11834 11835 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11836 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11837 if (xmit_mp == NULL) 11838 return; 11839 11840 usable_swnd -= seg_len; 11841 tcp->tcp_pipe += seg_len; 11842 tcp->tcp_sack_snxt = begin + seg_len; 11843 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 11844 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11845 11846 /* 11847 * Update the send timestamp to avoid false retransmission. 11848 */ 11849 snxt_mp->b_prev = (mblk_t *)lbolt; 11850 11851 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11852 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 11853 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 11854 /* 11855 * Update tcp_rexmit_max to extend this SACK recovery phase. 11856 * This happens when new data sent during fast recovery is 11857 * also lost. If TCP retransmits those new data, it needs 11858 * to extend SACK recover phase to avoid starting another 11859 * fast retransmit/recovery unnecessarily. 11860 */ 11861 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11862 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11863 } 11864 } 11865 } 11866 11867 /* 11868 * This function handles policy checking at TCP level for non-hard_bound/ 11869 * detached connections. 11870 */ 11871 static boolean_t 11872 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11873 boolean_t secure, boolean_t mctl_present) 11874 { 11875 ipsec_latch_t *ipl = NULL; 11876 ipsec_action_t *act = NULL; 11877 mblk_t *data_mp; 11878 ipsec_in_t *ii; 11879 const char *reason; 11880 kstat_named_t *counter; 11881 11882 ASSERT(mctl_present || !secure); 11883 11884 ASSERT((ipha == NULL && ip6h != NULL) || 11885 (ip6h == NULL && ipha != NULL)); 11886 11887 /* 11888 * We don't necessarily have an ipsec_in_act action to verify 11889 * policy because of assymetrical policy where we have only 11890 * outbound policy and no inbound policy (possible with global 11891 * policy). 11892 */ 11893 if (!secure) { 11894 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 11895 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 11896 return (B_TRUE); 11897 ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, 11898 "tcp_check_policy", ipha, ip6h, secure); 11899 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11900 &ipdrops_tcp_clear, &tcp_dropper); 11901 return (B_FALSE); 11902 } 11903 11904 /* 11905 * We have a secure packet. 11906 */ 11907 if (act == NULL) { 11908 ipsec_log_policy_failure(tcp->tcp_wq, 11909 IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, 11910 secure); 11911 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11912 &ipdrops_tcp_secure, &tcp_dropper); 11913 return (B_FALSE); 11914 } 11915 11916 /* 11917 * XXX This whole routine is currently incorrect. ipl should 11918 * be set to the latch pointer, but is currently not set, so 11919 * we initialize it to NULL to avoid picking up random garbage. 11920 */ 11921 if (ipl == NULL) 11922 return (B_TRUE); 11923 11924 data_mp = first_mp->b_cont; 11925 11926 ii = (ipsec_in_t *)first_mp->b_rptr; 11927 11928 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 11929 &counter)) { 11930 BUMP_MIB(&ip_mib, ipsecInSucceeded); 11931 return (B_TRUE); 11932 } 11933 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 11934 "tcp inbound policy mismatch: %s, packet dropped\n", 11935 reason); 11936 BUMP_MIB(&ip_mib, ipsecInFailed); 11937 11938 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 11939 return (B_FALSE); 11940 } 11941 11942 /* 11943 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 11944 * retransmission after a timeout. 11945 * 11946 * To limit the number of duplicate segments, we limit the number of segment 11947 * to be sent in one time to tcp_snd_burst, the burst variable. 11948 */ 11949 static void 11950 tcp_ss_rexmit(tcp_t *tcp) 11951 { 11952 uint32_t snxt; 11953 uint32_t smax; 11954 int32_t win; 11955 int32_t mss; 11956 int32_t off; 11957 int32_t burst = tcp->tcp_snd_burst; 11958 mblk_t *snxt_mp; 11959 11960 /* 11961 * Note that tcp_rexmit can be set even though TCP has retransmitted 11962 * all unack'ed segments. 11963 */ 11964 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 11965 smax = tcp->tcp_rexmit_max; 11966 snxt = tcp->tcp_rexmit_nxt; 11967 if (SEQ_LT(snxt, tcp->tcp_suna)) { 11968 snxt = tcp->tcp_suna; 11969 } 11970 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 11971 win -= snxt - tcp->tcp_suna; 11972 mss = tcp->tcp_mss; 11973 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 11974 11975 while (SEQ_LT(snxt, smax) && (win > 0) && 11976 (burst > 0) && (snxt_mp != NULL)) { 11977 mblk_t *xmit_mp; 11978 mblk_t *old_snxt_mp = snxt_mp; 11979 uint32_t cnt = mss; 11980 11981 if (win < cnt) { 11982 cnt = win; 11983 } 11984 if (SEQ_GT(snxt + cnt, smax)) { 11985 cnt = smax - snxt; 11986 } 11987 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 11988 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 11989 if (xmit_mp == NULL) 11990 return; 11991 11992 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11993 11994 snxt += cnt; 11995 win -= cnt; 11996 /* 11997 * Update the send timestamp to avoid false 11998 * retransmission. 11999 */ 12000 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12001 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12002 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 12003 12004 tcp->tcp_rexmit_nxt = snxt; 12005 burst--; 12006 } 12007 /* 12008 * If we have transmitted all we have at the time 12009 * we started the retranmission, we can leave 12010 * the rest of the job to tcp_wput_data(). But we 12011 * need to check the send window first. If the 12012 * win is not 0, go on with tcp_wput_data(). 12013 */ 12014 if (SEQ_LT(snxt, smax) || win == 0) { 12015 return; 12016 } 12017 } 12018 /* Only call tcp_wput_data() if there is data to be sent. */ 12019 if (tcp->tcp_unsent) { 12020 tcp_wput_data(tcp, NULL, B_FALSE); 12021 } 12022 } 12023 12024 /* 12025 * Process all TCP option in SYN segment. Note that this function should 12026 * be called after tcp_adapt_ire() is called so that the necessary info 12027 * from IRE is already set in the tcp structure. 12028 * 12029 * This function sets up the correct tcp_mss value according to the 12030 * MSS option value and our header size. It also sets up the window scale 12031 * and timestamp values, and initialize SACK info blocks. But it does not 12032 * change receive window size after setting the tcp_mss value. The caller 12033 * should do the appropriate change. 12034 */ 12035 void 12036 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12037 { 12038 int options; 12039 tcp_opt_t tcpopt; 12040 uint32_t mss_max; 12041 char *tmp_tcph; 12042 12043 tcpopt.tcp = NULL; 12044 options = tcp_parse_options(tcph, &tcpopt); 12045 12046 /* 12047 * Process MSS option. Note that MSS option value does not account 12048 * for IP or TCP options. This means that it is equal to MTU - minimum 12049 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12050 * IPv6. 12051 */ 12052 if (!(options & TCP_OPT_MSS_PRESENT)) { 12053 if (tcp->tcp_ipversion == IPV4_VERSION) 12054 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 12055 else 12056 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 12057 } else { 12058 if (tcp->tcp_ipversion == IPV4_VERSION) 12059 mss_max = tcp_mss_max_ipv4; 12060 else 12061 mss_max = tcp_mss_max_ipv6; 12062 if (tcpopt.tcp_opt_mss < tcp_mss_min) 12063 tcpopt.tcp_opt_mss = tcp_mss_min; 12064 else if (tcpopt.tcp_opt_mss > mss_max) 12065 tcpopt.tcp_opt_mss = mss_max; 12066 } 12067 12068 /* Process Window Scale option. */ 12069 if (options & TCP_OPT_WSCALE_PRESENT) { 12070 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12071 tcp->tcp_snd_ws_ok = B_TRUE; 12072 } else { 12073 tcp->tcp_snd_ws = B_FALSE; 12074 tcp->tcp_snd_ws_ok = B_FALSE; 12075 tcp->tcp_rcv_ws = B_FALSE; 12076 } 12077 12078 /* Process Timestamp option. */ 12079 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12080 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12081 tmp_tcph = (char *)tcp->tcp_tcph; 12082 12083 tcp->tcp_snd_ts_ok = B_TRUE; 12084 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12085 tcp->tcp_last_rcv_lbolt = lbolt64; 12086 ASSERT(OK_32PTR(tmp_tcph)); 12087 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12088 12089 /* Fill in our template header with basic timestamp option. */ 12090 tmp_tcph += tcp->tcp_tcp_hdr_len; 12091 tmp_tcph[0] = TCPOPT_NOP; 12092 tmp_tcph[1] = TCPOPT_NOP; 12093 tmp_tcph[2] = TCPOPT_TSTAMP; 12094 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12095 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12096 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12097 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12098 } else { 12099 tcp->tcp_snd_ts_ok = B_FALSE; 12100 } 12101 12102 /* 12103 * Process SACK options. If SACK is enabled for this connection, 12104 * then allocate the SACK info structure. Note the following ways 12105 * when tcp_snd_sack_ok is set to true. 12106 * 12107 * For active connection: in tcp_adapt_ire() called in 12108 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12109 * is checked. 12110 * 12111 * For passive connection: in tcp_adapt_ire() called in 12112 * tcp_accept_comm(). 12113 * 12114 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12115 * That check makes sure that if we did not send a SACK OK option, 12116 * we will not enable SACK for this connection even though the other 12117 * side sends us SACK OK option. For active connection, the SACK 12118 * info structure has already been allocated. So we need to free 12119 * it if SACK is disabled. 12120 */ 12121 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12122 (tcp->tcp_snd_sack_ok || 12123 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12124 /* This should be true only in the passive case. */ 12125 if (tcp->tcp_sack_info == NULL) { 12126 ASSERT(TCP_IS_DETACHED(tcp)); 12127 tcp->tcp_sack_info = 12128 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12129 } 12130 if (tcp->tcp_sack_info == NULL) { 12131 tcp->tcp_snd_sack_ok = B_FALSE; 12132 } else { 12133 tcp->tcp_snd_sack_ok = B_TRUE; 12134 if (tcp->tcp_snd_ts_ok) { 12135 tcp->tcp_max_sack_blk = 3; 12136 } else { 12137 tcp->tcp_max_sack_blk = 4; 12138 } 12139 } 12140 } else { 12141 /* 12142 * Resetting tcp_snd_sack_ok to B_FALSE so that 12143 * no SACK info will be used for this 12144 * connection. This assumes that SACK usage 12145 * permission is negotiated. This may need 12146 * to be changed once this is clarified. 12147 */ 12148 if (tcp->tcp_sack_info != NULL) { 12149 ASSERT(tcp->tcp_notsack_list == NULL); 12150 kmem_cache_free(tcp_sack_info_cache, 12151 tcp->tcp_sack_info); 12152 tcp->tcp_sack_info = NULL; 12153 } 12154 tcp->tcp_snd_sack_ok = B_FALSE; 12155 } 12156 12157 /* 12158 * Now we know the exact TCP/IP header length, subtract 12159 * that from tcp_mss to get our side's MSS. 12160 */ 12161 tcp->tcp_mss -= tcp->tcp_hdr_len; 12162 /* 12163 * Here we assume that the other side's header size will be equal to 12164 * our header size. We calculate the real MSS accordingly. Need to 12165 * take into additional stuffs IPsec puts in. 12166 * 12167 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12168 */ 12169 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12170 ((tcp->tcp_ipversion == IPV4_VERSION ? 12171 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12172 12173 /* 12174 * Set MSS to the smaller one of both ends of the connection. 12175 * We should not have called tcp_mss_set() before, but our 12176 * side of the MSS should have been set to a proper value 12177 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12178 * STREAM head parameters properly. 12179 * 12180 * If we have a larger-than-16-bit window but the other side 12181 * didn't want to do window scale, tcp_rwnd_set() will take 12182 * care of that. 12183 */ 12184 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 12185 } 12186 12187 /* 12188 * Sends the T_CONN_IND to the listener. The caller calls this 12189 * functions via squeue to get inside the listener's perimeter 12190 * once the 3 way hand shake is done a T_CONN_IND needs to be 12191 * sent. As an optimization, the caller can call this directly 12192 * if listener's perimeter is same as eager's. 12193 */ 12194 /* ARGSUSED */ 12195 void 12196 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12197 { 12198 conn_t *lconnp = (conn_t *)arg; 12199 tcp_t *listener = lconnp->conn_tcp; 12200 tcp_t *tcp; 12201 struct T_conn_ind *conn_ind; 12202 ipaddr_t *addr_cache; 12203 boolean_t need_send_conn_ind = B_FALSE; 12204 12205 /* retrieve the eager */ 12206 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12207 ASSERT(conn_ind->OPT_offset != 0 && 12208 conn_ind->OPT_length == sizeof (intptr_t)); 12209 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12210 conn_ind->OPT_length); 12211 12212 /* 12213 * TLI/XTI applications will get confused by 12214 * sending eager as an option since it violates 12215 * the option semantics. So remove the eager as 12216 * option since TLI/XTI app doesn't need it anyway. 12217 */ 12218 if (!TCP_IS_SOCKET(listener)) { 12219 conn_ind->OPT_length = 0; 12220 conn_ind->OPT_offset = 0; 12221 } 12222 if (listener->tcp_state == TCPS_CLOSED || 12223 TCP_IS_DETACHED(listener)) { 12224 /* 12225 * If listener has closed, it would have caused a 12226 * a cleanup/blowoff to happen for the eager. We 12227 * just need to return. 12228 */ 12229 freemsg(mp); 12230 return; 12231 } 12232 12233 12234 /* 12235 * if the conn_req_q is full defer passing up the 12236 * T_CONN_IND until space is availabe after t_accept() 12237 * processing 12238 */ 12239 mutex_enter(&listener->tcp_eager_lock); 12240 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12241 tcp_t *tail; 12242 12243 /* 12244 * The eager already has an extra ref put in tcp_rput_data 12245 * so that it stays till accept comes back even though it 12246 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12247 */ 12248 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12249 listener->tcp_conn_req_cnt_q0--; 12250 listener->tcp_conn_req_cnt_q++; 12251 12252 /* Move from SYN_RCVD to ESTABLISHED list */ 12253 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12254 tcp->tcp_eager_prev_q0; 12255 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12256 tcp->tcp_eager_next_q0; 12257 tcp->tcp_eager_prev_q0 = NULL; 12258 tcp->tcp_eager_next_q0 = NULL; 12259 12260 /* 12261 * Insert at end of the queue because sockfs 12262 * sends down T_CONN_RES in chronological 12263 * order. Leaving the older conn indications 12264 * at front of the queue helps reducing search 12265 * time. 12266 */ 12267 tail = listener->tcp_eager_last_q; 12268 if (tail != NULL) 12269 tail->tcp_eager_next_q = tcp; 12270 else 12271 listener->tcp_eager_next_q = tcp; 12272 listener->tcp_eager_last_q = tcp; 12273 tcp->tcp_eager_next_q = NULL; 12274 /* 12275 * Delay sending up the T_conn_ind until we are 12276 * done with the eager. Once we have have sent up 12277 * the T_conn_ind, the accept can potentially complete 12278 * any time and release the refhold we have on the eager. 12279 */ 12280 need_send_conn_ind = B_TRUE; 12281 } else { 12282 /* 12283 * Defer connection on q0 and set deferred 12284 * connection bit true 12285 */ 12286 tcp->tcp_conn_def_q0 = B_TRUE; 12287 12288 /* take tcp out of q0 ... */ 12289 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12290 tcp->tcp_eager_next_q0; 12291 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12292 tcp->tcp_eager_prev_q0; 12293 12294 /* ... and place it at the end of q0 */ 12295 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12296 tcp->tcp_eager_next_q0 = listener; 12297 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12298 listener->tcp_eager_prev_q0 = tcp; 12299 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12300 } 12301 12302 /* we have timed out before */ 12303 if (tcp->tcp_syn_rcvd_timeout != 0) { 12304 tcp->tcp_syn_rcvd_timeout = 0; 12305 listener->tcp_syn_rcvd_timeout--; 12306 if (listener->tcp_syn_defense && 12307 listener->tcp_syn_rcvd_timeout <= 12308 (tcp_conn_req_max_q0 >> 5) && 12309 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12310 listener->tcp_last_rcv_lbolt)) { 12311 /* 12312 * Turn off the defense mode if we 12313 * believe the SYN attack is over. 12314 */ 12315 listener->tcp_syn_defense = B_FALSE; 12316 if (listener->tcp_ip_addr_cache) { 12317 kmem_free((void *)listener->tcp_ip_addr_cache, 12318 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12319 listener->tcp_ip_addr_cache = NULL; 12320 } 12321 } 12322 } 12323 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12324 if (addr_cache != NULL) { 12325 /* 12326 * We have finished a 3-way handshake with this 12327 * remote host. This proves the IP addr is good. 12328 * Cache it! 12329 */ 12330 addr_cache[IP_ADDR_CACHE_HASH( 12331 tcp->tcp_remote)] = tcp->tcp_remote; 12332 } 12333 mutex_exit(&listener->tcp_eager_lock); 12334 if (need_send_conn_ind) 12335 putnext(listener->tcp_rq, mp); 12336 } 12337 12338 mblk_t * 12339 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12340 uint_t *ifindexp, ip6_pkt_t *ippp) 12341 { 12342 in_pktinfo_t *pinfo; 12343 ip6_t *ip6h; 12344 uchar_t *rptr; 12345 mblk_t *first_mp = mp; 12346 boolean_t mctl_present = B_FALSE; 12347 uint_t ifindex = 0; 12348 ip6_pkt_t ipp; 12349 uint_t ipvers; 12350 uint_t ip_hdr_len; 12351 12352 rptr = mp->b_rptr; 12353 ASSERT(OK_32PTR(rptr)); 12354 ASSERT(tcp != NULL); 12355 ipp.ipp_fields = 0; 12356 12357 switch DB_TYPE(mp) { 12358 case M_CTL: 12359 mp = mp->b_cont; 12360 if (mp == NULL) { 12361 freemsg(first_mp); 12362 return (NULL); 12363 } 12364 if (DB_TYPE(mp) != M_DATA) { 12365 freemsg(first_mp); 12366 return (NULL); 12367 } 12368 mctl_present = B_TRUE; 12369 break; 12370 case M_DATA: 12371 break; 12372 default: 12373 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12374 freemsg(mp); 12375 return (NULL); 12376 } 12377 ipvers = IPH_HDR_VERSION(rptr); 12378 if (ipvers == IPV4_VERSION) { 12379 if (tcp == NULL) { 12380 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12381 goto done; 12382 } 12383 12384 ipp.ipp_fields |= IPPF_HOPLIMIT; 12385 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12386 12387 /* 12388 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12389 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12390 */ 12391 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12392 mctl_present) { 12393 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12394 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12395 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12396 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12397 ipp.ipp_fields |= IPPF_IFINDEX; 12398 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12399 ifindex = pinfo->in_pkt_ifindex; 12400 } 12401 freeb(first_mp); 12402 mctl_present = B_FALSE; 12403 } 12404 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12405 } else { 12406 ip6h = (ip6_t *)rptr; 12407 12408 ASSERT(ipvers == IPV6_VERSION); 12409 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12410 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12411 ipp.ipp_hoplimit = ip6h->ip6_hops; 12412 12413 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12414 uint8_t nexthdrp; 12415 12416 /* Look for ifindex information */ 12417 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12418 ip6i_t *ip6i = (ip6i_t *)ip6h; 12419 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12420 BUMP_MIB(&ip_mib, tcpInErrs); 12421 freemsg(first_mp); 12422 return (NULL); 12423 } 12424 12425 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12426 ASSERT(ip6i->ip6i_ifindex != 0); 12427 ipp.ipp_fields |= IPPF_IFINDEX; 12428 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12429 ifindex = ip6i->ip6i_ifindex; 12430 } 12431 rptr = (uchar_t *)&ip6i[1]; 12432 mp->b_rptr = rptr; 12433 if (rptr == mp->b_wptr) { 12434 mblk_t *mp1; 12435 mp1 = mp->b_cont; 12436 freeb(mp); 12437 mp = mp1; 12438 rptr = mp->b_rptr; 12439 } 12440 if (MBLKL(mp) < IPV6_HDR_LEN + 12441 sizeof (tcph_t)) { 12442 BUMP_MIB(&ip_mib, tcpInErrs); 12443 freemsg(first_mp); 12444 return (NULL); 12445 } 12446 ip6h = (ip6_t *)rptr; 12447 } 12448 12449 /* 12450 * Find any potentially interesting extension headers 12451 * as well as the length of the IPv6 + extension 12452 * headers. 12453 */ 12454 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12455 /* Verify if this is a TCP packet */ 12456 if (nexthdrp != IPPROTO_TCP) { 12457 BUMP_MIB(&ip_mib, tcpInErrs); 12458 freemsg(first_mp); 12459 return (NULL); 12460 } 12461 } else { 12462 ip_hdr_len = IPV6_HDR_LEN; 12463 } 12464 } 12465 12466 done: 12467 if (ipversp != NULL) 12468 *ipversp = ipvers; 12469 if (ip_hdr_lenp != NULL) 12470 *ip_hdr_lenp = ip_hdr_len; 12471 if (ippp != NULL) 12472 *ippp = ipp; 12473 if (ifindexp != NULL) 12474 *ifindexp = ifindex; 12475 if (mctl_present) { 12476 freeb(first_mp); 12477 } 12478 return (mp); 12479 } 12480 12481 /* 12482 * Handle M_DATA messages from IP. Its called directly from IP via 12483 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12484 * in this path. 12485 * 12486 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12487 * v4 and v6), we are called through tcp_input() and a M_CTL can 12488 * be present for options but tcp_find_pktinfo() deals with it. We 12489 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12490 * 12491 * The first argument is always the connp/tcp to which the mp belongs. 12492 * There are no exceptions to this rule. The caller has already put 12493 * a reference on this connp/tcp and once tcp_rput_data() returns, 12494 * the squeue will do the refrele. 12495 * 12496 * The TH_SYN for the listener directly go to tcp_conn_request via 12497 * squeue. 12498 * 12499 * sqp: NULL = recursive, sqp != NULL means called from squeue 12500 */ 12501 void 12502 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12503 { 12504 int32_t bytes_acked; 12505 int32_t gap; 12506 mblk_t *mp1; 12507 uint_t flags; 12508 uint32_t new_swnd = 0; 12509 uchar_t *iphdr; 12510 uchar_t *rptr; 12511 int32_t rgap; 12512 uint32_t seg_ack; 12513 int seg_len; 12514 uint_t ip_hdr_len; 12515 uint32_t seg_seq; 12516 tcph_t *tcph; 12517 int urp; 12518 tcp_opt_t tcpopt; 12519 uint_t ipvers; 12520 ip6_pkt_t ipp; 12521 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12522 uint32_t cwnd; 12523 uint32_t add; 12524 int npkt; 12525 int mss; 12526 conn_t *connp = (conn_t *)arg; 12527 squeue_t *sqp = (squeue_t *)arg2; 12528 tcp_t *tcp = connp->conn_tcp; 12529 12530 /* 12531 * RST from fused tcp loopback peer should trigger an unfuse. 12532 */ 12533 if (tcp->tcp_fused) { 12534 TCP_STAT(tcp_fusion_aborted); 12535 tcp_unfuse(tcp); 12536 } 12537 12538 iphdr = mp->b_rptr; 12539 rptr = mp->b_rptr; 12540 ASSERT(OK_32PTR(rptr)); 12541 12542 /* 12543 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12544 * processing here. For rest call tcp_find_pktinfo to fill up the 12545 * necessary information. 12546 */ 12547 if (IPCL_IS_TCP4(connp)) { 12548 ipvers = IPV4_VERSION; 12549 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12550 } else { 12551 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12552 NULL, &ipp); 12553 if (mp == NULL) { 12554 TCP_STAT(tcp_rput_v6_error); 12555 return; 12556 } 12557 iphdr = mp->b_rptr; 12558 rptr = mp->b_rptr; 12559 } 12560 ASSERT(DB_TYPE(mp) == M_DATA); 12561 12562 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12563 seg_seq = ABE32_TO_U32(tcph->th_seq); 12564 seg_ack = ABE32_TO_U32(tcph->th_ack); 12565 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12566 seg_len = (int)(mp->b_wptr - rptr) - 12567 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12568 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12569 do { 12570 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12571 (uintptr_t)INT_MAX); 12572 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12573 } while ((mp1 = mp1->b_cont) != NULL && 12574 mp1->b_datap->db_type == M_DATA); 12575 } 12576 12577 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12578 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12579 seg_len, tcph); 12580 return; 12581 } 12582 12583 if (sqp != NULL) { 12584 /* 12585 * This is the correct place to update tcp_last_recv_time. Note 12586 * that it is also updated for tcp structure that belongs to 12587 * global and listener queues which do not really need updating. 12588 * But that should not cause any harm. And it is updated for 12589 * all kinds of incoming segments, not only for data segments. 12590 */ 12591 tcp->tcp_last_recv_time = lbolt; 12592 } 12593 12594 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12595 12596 BUMP_LOCAL(tcp->tcp_ibsegs); 12597 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12598 12599 if ((flags & TH_URG) && sqp != NULL) { 12600 /* 12601 * TCP can't handle urgent pointers that arrive before 12602 * the connection has been accept()ed since it can't 12603 * buffer OOB data. Discard segment if this happens. 12604 * 12605 * Nor can it reassemble urgent pointers, so discard 12606 * if it's not the next segment expected. 12607 * 12608 * Otherwise, collapse chain into one mblk (discard if 12609 * that fails). This makes sure the headers, retransmitted 12610 * data, and new data all are in the same mblk. 12611 */ 12612 ASSERT(mp != NULL); 12613 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12614 freemsg(mp); 12615 return; 12616 } 12617 /* Update pointers into message */ 12618 iphdr = rptr = mp->b_rptr; 12619 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12620 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12621 /* 12622 * Since we can't handle any data with this urgent 12623 * pointer that is out of sequence, we expunge 12624 * the data. This allows us to still register 12625 * the urgent mark and generate the M_PCSIG, 12626 * which we can do. 12627 */ 12628 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12629 seg_len = 0; 12630 } 12631 } 12632 12633 switch (tcp->tcp_state) { 12634 case TCPS_SYN_SENT: 12635 if (flags & TH_ACK) { 12636 /* 12637 * Note that our stack cannot send data before a 12638 * connection is established, therefore the 12639 * following check is valid. Otherwise, it has 12640 * to be changed. 12641 */ 12642 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12643 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12644 freemsg(mp); 12645 if (flags & TH_RST) 12646 return; 12647 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12648 tcp, seg_ack, 0, TH_RST); 12649 return; 12650 } 12651 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12652 } 12653 if (flags & TH_RST) { 12654 freemsg(mp); 12655 if (flags & TH_ACK) 12656 (void) tcp_clean_death(tcp, 12657 ECONNREFUSED, 13); 12658 return; 12659 } 12660 if (!(flags & TH_SYN)) { 12661 freemsg(mp); 12662 return; 12663 } 12664 12665 /* Process all TCP options. */ 12666 tcp_process_options(tcp, tcph); 12667 /* 12668 * The following changes our rwnd to be a multiple of the 12669 * MIN(peer MSS, our MSS) for performance reason. 12670 */ 12671 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12672 tcp->tcp_mss)); 12673 12674 /* Is the other end ECN capable? */ 12675 if (tcp->tcp_ecn_ok) { 12676 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12677 tcp->tcp_ecn_ok = B_FALSE; 12678 } 12679 } 12680 /* 12681 * Clear ECN flags because it may interfere with later 12682 * processing. 12683 */ 12684 flags &= ~(TH_ECE|TH_CWR); 12685 12686 tcp->tcp_irs = seg_seq; 12687 tcp->tcp_rack = seg_seq; 12688 tcp->tcp_rnxt = seg_seq + 1; 12689 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12690 if (!TCP_IS_DETACHED(tcp)) { 12691 /* Allocate room for SACK options if needed. */ 12692 if (tcp->tcp_snd_sack_ok) { 12693 (void) mi_set_sth_wroff(tcp->tcp_rq, 12694 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12695 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12696 } else { 12697 (void) mi_set_sth_wroff(tcp->tcp_rq, 12698 tcp->tcp_hdr_len + 12699 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12700 } 12701 } 12702 if (flags & TH_ACK) { 12703 /* 12704 * If we can't get the confirmation upstream, pretend 12705 * we didn't even see this one. 12706 * 12707 * XXX: how can we pretend we didn't see it if we 12708 * have updated rnxt et. al. 12709 * 12710 * For loopback we defer sending up the T_CONN_CON 12711 * until after some checks below. 12712 */ 12713 mp1 = NULL; 12714 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12715 tcp->tcp_loopback ? &mp1 : NULL)) { 12716 freemsg(mp); 12717 return; 12718 } 12719 /* SYN was acked - making progress */ 12720 if (tcp->tcp_ipversion == IPV6_VERSION) 12721 tcp->tcp_ip_forward_progress = B_TRUE; 12722 12723 /* One for the SYN */ 12724 tcp->tcp_suna = tcp->tcp_iss + 1; 12725 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12726 tcp->tcp_state = TCPS_ESTABLISHED; 12727 12728 /* 12729 * If SYN was retransmitted, need to reset all 12730 * retransmission info. This is because this 12731 * segment will be treated as a dup ACK. 12732 */ 12733 if (tcp->tcp_rexmit) { 12734 tcp->tcp_rexmit = B_FALSE; 12735 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12736 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12737 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12738 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12739 tcp->tcp_ms_we_have_waited = 0; 12740 12741 /* 12742 * Set tcp_cwnd back to 1 MSS, per 12743 * recommendation from 12744 * draft-floyd-incr-init-win-01.txt, 12745 * Increasing TCP's Initial Window. 12746 */ 12747 tcp->tcp_cwnd = tcp->tcp_mss; 12748 } 12749 12750 tcp->tcp_swl1 = seg_seq; 12751 tcp->tcp_swl2 = seg_ack; 12752 12753 new_swnd = BE16_TO_U16(tcph->th_win); 12754 tcp->tcp_swnd = new_swnd; 12755 if (new_swnd > tcp->tcp_max_swnd) 12756 tcp->tcp_max_swnd = new_swnd; 12757 12758 /* 12759 * Always send the three-way handshake ack immediately 12760 * in order to make the connection complete as soon as 12761 * possible on the accepting host. 12762 */ 12763 flags |= TH_ACK_NEEDED; 12764 12765 /* 12766 * Special case for loopback. At this point we have 12767 * received SYN-ACK from the remote endpoint. In 12768 * order to ensure that both endpoints reach the 12769 * fused state prior to any data exchange, the final 12770 * ACK needs to be sent before we indicate T_CONN_CON 12771 * to the module upstream. 12772 */ 12773 if (tcp->tcp_loopback) { 12774 mblk_t *ack_mp; 12775 12776 ASSERT(!tcp->tcp_unfusable); 12777 ASSERT(mp1 != NULL); 12778 /* 12779 * For loopback, we always get a pure SYN-ACK 12780 * and only need to send back the final ACK 12781 * with no data (this is because the other 12782 * tcp is ours and we don't do T/TCP). This 12783 * final ACK triggers the passive side to 12784 * perform fusion in ESTABLISHED state. 12785 */ 12786 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12787 if (tcp->tcp_ack_tid != 0) { 12788 (void) TCP_TIMER_CANCEL(tcp, 12789 tcp->tcp_ack_tid); 12790 tcp->tcp_ack_tid = 0; 12791 } 12792 TCP_RECORD_TRACE(tcp, ack_mp, 12793 TCP_TRACE_SEND_PKT); 12794 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12795 BUMP_LOCAL(tcp->tcp_obsegs); 12796 BUMP_MIB(&tcp_mib, tcpOutAck); 12797 12798 /* Send up T_CONN_CON */ 12799 putnext(tcp->tcp_rq, mp1); 12800 12801 freemsg(mp); 12802 return; 12803 } 12804 /* 12805 * Forget fusion; we need to handle more 12806 * complex cases below. Send the deferred 12807 * T_CONN_CON message upstream and proceed 12808 * as usual. Mark this tcp as not capable 12809 * of fusion. 12810 */ 12811 TCP_STAT(tcp_fusion_unfusable); 12812 tcp->tcp_unfusable = B_TRUE; 12813 putnext(tcp->tcp_rq, mp1); 12814 } 12815 12816 /* 12817 * Check to see if there is data to be sent. If 12818 * yes, set the transmit flag. Then check to see 12819 * if received data processing needs to be done. 12820 * If not, go straight to xmit_check. This short 12821 * cut is OK as we don't support T/TCP. 12822 */ 12823 if (tcp->tcp_unsent) 12824 flags |= TH_XMIT_NEEDED; 12825 12826 if (seg_len == 0 && !(flags & TH_URG)) { 12827 freemsg(mp); 12828 goto xmit_check; 12829 } 12830 12831 flags &= ~TH_SYN; 12832 seg_seq++; 12833 break; 12834 } 12835 tcp->tcp_state = TCPS_SYN_RCVD; 12836 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 12837 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 12838 if (mp1) { 12839 DB_CPID(mp1) = tcp->tcp_cpid; 12840 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 12841 tcp_send_data(tcp, tcp->tcp_wq, mp1); 12842 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12843 } 12844 freemsg(mp); 12845 return; 12846 case TCPS_SYN_RCVD: 12847 if (flags & TH_ACK) { 12848 /* 12849 * In this state, a SYN|ACK packet is either bogus 12850 * because the other side must be ACKing our SYN which 12851 * indicates it has seen the ACK for their SYN and 12852 * shouldn't retransmit it or we're crossing SYNs 12853 * on active open. 12854 */ 12855 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 12856 freemsg(mp); 12857 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 12858 tcp, seg_ack, 0, TH_RST); 12859 return; 12860 } 12861 /* 12862 * NOTE: RFC 793 pg. 72 says this should be 12863 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 12864 * but that would mean we have an ack that ignored 12865 * our SYN. 12866 */ 12867 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 12868 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12869 freemsg(mp); 12870 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 12871 tcp, seg_ack, 0, TH_RST); 12872 return; 12873 } 12874 } 12875 break; 12876 case TCPS_LISTEN: 12877 /* 12878 * Only a TLI listener can come through this path when a 12879 * acceptor is going back to be a listener and a packet 12880 * for the acceptor hits the classifier. For a socket 12881 * listener, this can never happen because a listener 12882 * can never accept connection on itself and hence a 12883 * socket acceptor can not go back to being a listener. 12884 */ 12885 ASSERT(!TCP_IS_SOCKET(tcp)); 12886 /*FALLTHRU*/ 12887 case TCPS_CLOSED: 12888 case TCPS_BOUND: { 12889 conn_t *new_connp; 12890 12891 new_connp = ipcl_classify(mp, connp->conn_zoneid); 12892 if (new_connp != NULL) { 12893 tcp_reinput(new_connp, mp, connp->conn_sqp); 12894 return; 12895 } 12896 /* We failed to classify. For now just drop the packet */ 12897 freemsg(mp); 12898 return; 12899 } 12900 case TCPS_IDLE: 12901 /* 12902 * Handle the case where the tcp_clean_death() has happened 12903 * on a connection (application hasn't closed yet) but a packet 12904 * was already queued on squeue before tcp_clean_death() 12905 * was processed. Calling tcp_clean_death() twice on same 12906 * connection can result in weird behaviour. 12907 */ 12908 freemsg(mp); 12909 return; 12910 default: 12911 break; 12912 } 12913 12914 /* 12915 * Already on the correct queue/perimeter. 12916 * If this is a detached connection and not an eager 12917 * connection hanging off a listener then new data 12918 * (past the FIN) will cause a reset. 12919 * We do a special check here where it 12920 * is out of the main line, rather than check 12921 * if we are detached every time we see new 12922 * data down below. 12923 */ 12924 if (TCP_IS_DETACHED_NONEAGER(tcp) && 12925 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 12926 BUMP_MIB(&tcp_mib, tcpInClosed); 12927 TCP_RECORD_TRACE(tcp, 12928 mp, TCP_TRACE_RECV_PKT); 12929 12930 freemsg(mp); 12931 /* 12932 * This could be an SSL closure alert. We're detached so just 12933 * acknowledge it this last time. 12934 */ 12935 if (tcp->tcp_kssl_ctx != NULL) { 12936 kssl_release_ctx(tcp->tcp_kssl_ctx); 12937 tcp->tcp_kssl_ctx = NULL; 12938 12939 tcp->tcp_rnxt += seg_len; 12940 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12941 flags |= TH_ACK_NEEDED; 12942 goto ack_check; 12943 } 12944 12945 tcp_xmit_ctl("new data when detached", tcp, 12946 tcp->tcp_snxt, 0, TH_RST); 12947 (void) tcp_clean_death(tcp, EPROTO, 12); 12948 return; 12949 } 12950 12951 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12952 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 12953 new_swnd = BE16_TO_U16(tcph->th_win) << 12954 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 12955 mss = tcp->tcp_mss; 12956 12957 if (tcp->tcp_snd_ts_ok) { 12958 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 12959 /* 12960 * This segment is not acceptable. 12961 * Drop it and send back an ACK. 12962 */ 12963 freemsg(mp); 12964 flags |= TH_ACK_NEEDED; 12965 goto ack_check; 12966 } 12967 } else if (tcp->tcp_snd_sack_ok) { 12968 ASSERT(tcp->tcp_sack_info != NULL); 12969 tcpopt.tcp = tcp; 12970 /* 12971 * SACK info in already updated in tcp_parse_options. Ignore 12972 * all other TCP options... 12973 */ 12974 (void) tcp_parse_options(tcph, &tcpopt); 12975 } 12976 try_again:; 12977 gap = seg_seq - tcp->tcp_rnxt; 12978 rgap = tcp->tcp_rwnd - (gap + seg_len); 12979 /* 12980 * gap is the amount of sequence space between what we expect to see 12981 * and what we got for seg_seq. A positive value for gap means 12982 * something got lost. A negative value means we got some old stuff. 12983 */ 12984 if (gap < 0) { 12985 /* Old stuff present. Is the SYN in there? */ 12986 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 12987 (seg_len != 0)) { 12988 flags &= ~TH_SYN; 12989 seg_seq++; 12990 urp--; 12991 /* Recompute the gaps after noting the SYN. */ 12992 goto try_again; 12993 } 12994 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 12995 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 12996 (seg_len > -gap ? -gap : seg_len)); 12997 /* Remove the old stuff from seg_len. */ 12998 seg_len += gap; 12999 /* 13000 * Anything left? 13001 * Make sure to check for unack'd FIN when rest of data 13002 * has been previously ack'd. 13003 */ 13004 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13005 /* 13006 * Resets are only valid if they lie within our offered 13007 * window. If the RST bit is set, we just ignore this 13008 * segment. 13009 */ 13010 if (flags & TH_RST) { 13011 freemsg(mp); 13012 return; 13013 } 13014 13015 /* 13016 * The arriving of dup data packets indicate that we 13017 * may have postponed an ack for too long, or the other 13018 * side's RTT estimate is out of shape. Start acking 13019 * more often. 13020 */ 13021 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13022 tcp->tcp_rack_cnt >= 1 && 13023 tcp->tcp_rack_abs_max > 2) { 13024 tcp->tcp_rack_abs_max--; 13025 } 13026 tcp->tcp_rack_cur_max = 1; 13027 13028 /* 13029 * This segment is "unacceptable". None of its 13030 * sequence space lies within our advertized window. 13031 * 13032 * Adjust seg_len to the original value for tracing. 13033 */ 13034 seg_len -= gap; 13035 if (tcp->tcp_debug) { 13036 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13037 "tcp_rput: unacceptable, gap %d, rgap %d, " 13038 "flags 0x%x, seg_seq %u, seg_ack %u, " 13039 "seg_len %d, rnxt %u, snxt %u, %s", 13040 gap, rgap, flags, seg_seq, seg_ack, 13041 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13042 tcp_display(tcp, NULL, 13043 DISP_ADDR_AND_PORT)); 13044 } 13045 13046 /* 13047 * Arrange to send an ACK in response to the 13048 * unacceptable segment per RFC 793 page 69. There 13049 * is only one small difference between ours and the 13050 * acceptability test in the RFC - we accept ACK-only 13051 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13052 * will be generated. 13053 * 13054 * Note that we have to ACK an ACK-only packet at least 13055 * for stacks that send 0-length keep-alives with 13056 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13057 * section 4.2.3.6. As long as we don't ever generate 13058 * an unacceptable packet in response to an incoming 13059 * packet that is unacceptable, it should not cause 13060 * "ACK wars". 13061 */ 13062 flags |= TH_ACK_NEEDED; 13063 13064 /* 13065 * Continue processing this segment in order to use the 13066 * ACK information it contains, but skip all other 13067 * sequence-number processing. Processing the ACK 13068 * information is necessary in order to 13069 * re-synchronize connections that may have lost 13070 * synchronization. 13071 * 13072 * We clear seg_len and flag fields related to 13073 * sequence number processing as they are not 13074 * to be trusted for an unacceptable segment. 13075 */ 13076 seg_len = 0; 13077 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13078 goto process_ack; 13079 } 13080 13081 /* Fix seg_seq, and chew the gap off the front. */ 13082 seg_seq = tcp->tcp_rnxt; 13083 urp += gap; 13084 do { 13085 mblk_t *mp2; 13086 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13087 (uintptr_t)UINT_MAX); 13088 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13089 if (gap > 0) { 13090 mp->b_rptr = mp->b_wptr - gap; 13091 break; 13092 } 13093 mp2 = mp; 13094 mp = mp->b_cont; 13095 freeb(mp2); 13096 } while (gap < 0); 13097 /* 13098 * If the urgent data has already been acknowledged, we 13099 * should ignore TH_URG below 13100 */ 13101 if (urp < 0) 13102 flags &= ~TH_URG; 13103 } 13104 /* 13105 * rgap is the amount of stuff received out of window. A negative 13106 * value is the amount out of window. 13107 */ 13108 if (rgap < 0) { 13109 mblk_t *mp2; 13110 13111 if (tcp->tcp_rwnd == 0) { 13112 BUMP_MIB(&tcp_mib, tcpInWinProbe); 13113 } else { 13114 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 13115 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 13116 } 13117 13118 /* 13119 * seg_len does not include the FIN, so if more than 13120 * just the FIN is out of window, we act like we don't 13121 * see it. (If just the FIN is out of window, rgap 13122 * will be zero and we will go ahead and acknowledge 13123 * the FIN.) 13124 */ 13125 flags &= ~TH_FIN; 13126 13127 /* Fix seg_len and make sure there is something left. */ 13128 seg_len += rgap; 13129 if (seg_len <= 0) { 13130 /* 13131 * Resets are only valid if they lie within our offered 13132 * window. If the RST bit is set, we just ignore this 13133 * segment. 13134 */ 13135 if (flags & TH_RST) { 13136 freemsg(mp); 13137 return; 13138 } 13139 13140 /* Per RFC 793, we need to send back an ACK. */ 13141 flags |= TH_ACK_NEEDED; 13142 13143 /* 13144 * Send SIGURG as soon as possible i.e. even 13145 * if the TH_URG was delivered in a window probe 13146 * packet (which will be unacceptable). 13147 * 13148 * We generate a signal if none has been generated 13149 * for this connection or if this is a new urgent 13150 * byte. Also send a zero-length "unmarked" message 13151 * to inform SIOCATMARK that this is not the mark. 13152 * 13153 * tcp_urp_last_valid is cleared when the T_exdata_ind 13154 * is sent up. This plus the check for old data 13155 * (gap >= 0) handles the wraparound of the sequence 13156 * number space without having to always track the 13157 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13158 * this max in its rcv_up variable). 13159 * 13160 * This prevents duplicate SIGURGS due to a "late" 13161 * zero-window probe when the T_EXDATA_IND has already 13162 * been sent up. 13163 */ 13164 if ((flags & TH_URG) && 13165 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13166 tcp->tcp_urp_last))) { 13167 mp1 = allocb(0, BPRI_MED); 13168 if (mp1 == NULL) { 13169 freemsg(mp); 13170 return; 13171 } 13172 if (!TCP_IS_DETACHED(tcp) && 13173 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13174 SIGURG)) { 13175 /* Try again on the rexmit. */ 13176 freemsg(mp1); 13177 freemsg(mp); 13178 return; 13179 } 13180 /* 13181 * If the next byte would be the mark 13182 * then mark with MARKNEXT else mark 13183 * with NOTMARKNEXT. 13184 */ 13185 if (gap == 0 && urp == 0) 13186 mp1->b_flag |= MSGMARKNEXT; 13187 else 13188 mp1->b_flag |= MSGNOTMARKNEXT; 13189 freemsg(tcp->tcp_urp_mark_mp); 13190 tcp->tcp_urp_mark_mp = mp1; 13191 flags |= TH_SEND_URP_MARK; 13192 tcp->tcp_urp_last_valid = B_TRUE; 13193 tcp->tcp_urp_last = urp + seg_seq; 13194 } 13195 /* 13196 * If this is a zero window probe, continue to 13197 * process the ACK part. But we need to set seg_len 13198 * to 0 to avoid data processing. Otherwise just 13199 * drop the segment and send back an ACK. 13200 */ 13201 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13202 flags &= ~(TH_SYN | TH_URG); 13203 seg_len = 0; 13204 goto process_ack; 13205 } else { 13206 freemsg(mp); 13207 goto ack_check; 13208 } 13209 } 13210 /* Pitch out of window stuff off the end. */ 13211 rgap = seg_len; 13212 mp2 = mp; 13213 do { 13214 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13215 (uintptr_t)INT_MAX); 13216 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13217 if (rgap < 0) { 13218 mp2->b_wptr += rgap; 13219 if ((mp1 = mp2->b_cont) != NULL) { 13220 mp2->b_cont = NULL; 13221 freemsg(mp1); 13222 } 13223 break; 13224 } 13225 } while ((mp2 = mp2->b_cont) != NULL); 13226 } 13227 ok:; 13228 /* 13229 * TCP should check ECN info for segments inside the window only. 13230 * Therefore the check should be done here. 13231 */ 13232 if (tcp->tcp_ecn_ok) { 13233 if (flags & TH_CWR) { 13234 tcp->tcp_ecn_echo_on = B_FALSE; 13235 } 13236 /* 13237 * Note that both ECN_CE and CWR can be set in the 13238 * same segment. In this case, we once again turn 13239 * on ECN_ECHO. 13240 */ 13241 if (tcp->tcp_ipversion == IPV4_VERSION) { 13242 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13243 13244 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13245 tcp->tcp_ecn_echo_on = B_TRUE; 13246 } 13247 } else { 13248 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13249 13250 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13251 htonl(IPH_ECN_CE << 20)) { 13252 tcp->tcp_ecn_echo_on = B_TRUE; 13253 } 13254 } 13255 } 13256 13257 /* 13258 * Check whether we can update tcp_ts_recent. This test is 13259 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13260 * Extensions for High Performance: An Update", Internet Draft. 13261 */ 13262 if (tcp->tcp_snd_ts_ok && 13263 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13264 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13265 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13266 tcp->tcp_last_rcv_lbolt = lbolt64; 13267 } 13268 13269 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13270 /* 13271 * FIN in an out of order segment. We record this in 13272 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13273 * Clear the FIN so that any check on FIN flag will fail. 13274 * Remember that FIN also counts in the sequence number 13275 * space. So we need to ack out of order FIN only segments. 13276 */ 13277 if (flags & TH_FIN) { 13278 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13279 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13280 flags &= ~TH_FIN; 13281 flags |= TH_ACK_NEEDED; 13282 } 13283 if (seg_len > 0) { 13284 /* Fill in the SACK blk list. */ 13285 if (tcp->tcp_snd_sack_ok) { 13286 ASSERT(tcp->tcp_sack_info != NULL); 13287 tcp_sack_insert(tcp->tcp_sack_list, 13288 seg_seq, seg_seq + seg_len, 13289 &(tcp->tcp_num_sack_blk)); 13290 } 13291 13292 /* 13293 * Attempt reassembly and see if we have something 13294 * ready to go. 13295 */ 13296 mp = tcp_reass(tcp, mp, seg_seq); 13297 /* Always ack out of order packets */ 13298 flags |= TH_ACK_NEEDED | TH_PUSH; 13299 if (mp) { 13300 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13301 (uintptr_t)INT_MAX); 13302 seg_len = mp->b_cont ? msgdsize(mp) : 13303 (int)(mp->b_wptr - mp->b_rptr); 13304 seg_seq = tcp->tcp_rnxt; 13305 /* 13306 * A gap is filled and the seq num and len 13307 * of the gap match that of a previously 13308 * received FIN, put the FIN flag back in. 13309 */ 13310 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13311 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13312 flags |= TH_FIN; 13313 tcp->tcp_valid_bits &= 13314 ~TCP_OFO_FIN_VALID; 13315 } 13316 } else { 13317 /* 13318 * Keep going even with NULL mp. 13319 * There may be a useful ACK or something else 13320 * we don't want to miss. 13321 * 13322 * But TCP should not perform fast retransmit 13323 * because of the ack number. TCP uses 13324 * seg_len == 0 to determine if it is a pure 13325 * ACK. And this is not a pure ACK. 13326 */ 13327 seg_len = 0; 13328 ofo_seg = B_TRUE; 13329 } 13330 } 13331 } else if (seg_len > 0) { 13332 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13333 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13334 /* 13335 * If an out of order FIN was received before, and the seq 13336 * num and len of the new segment match that of the FIN, 13337 * put the FIN flag back in. 13338 */ 13339 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13340 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13341 flags |= TH_FIN; 13342 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13343 } 13344 } 13345 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13346 if (flags & TH_RST) { 13347 freemsg(mp); 13348 switch (tcp->tcp_state) { 13349 case TCPS_SYN_RCVD: 13350 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13351 break; 13352 case TCPS_ESTABLISHED: 13353 case TCPS_FIN_WAIT_1: 13354 case TCPS_FIN_WAIT_2: 13355 case TCPS_CLOSE_WAIT: 13356 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13357 break; 13358 case TCPS_CLOSING: 13359 case TCPS_LAST_ACK: 13360 (void) tcp_clean_death(tcp, 0, 16); 13361 break; 13362 default: 13363 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13364 (void) tcp_clean_death(tcp, ENXIO, 17); 13365 break; 13366 } 13367 return; 13368 } 13369 if (flags & TH_SYN) { 13370 /* 13371 * See RFC 793, Page 71 13372 * 13373 * The seq number must be in the window as it should 13374 * be "fixed" above. If it is outside window, it should 13375 * be already rejected. Note that we allow seg_seq to be 13376 * rnxt + rwnd because we want to accept 0 window probe. 13377 */ 13378 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13379 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13380 freemsg(mp); 13381 /* 13382 * If the ACK flag is not set, just use our snxt as the 13383 * seq number of the RST segment. 13384 */ 13385 if (!(flags & TH_ACK)) { 13386 seg_ack = tcp->tcp_snxt; 13387 } 13388 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13389 TH_RST|TH_ACK); 13390 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13391 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13392 return; 13393 } 13394 /* 13395 * urp could be -1 when the urp field in the packet is 0 13396 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13397 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13398 */ 13399 if (flags & TH_URG && urp >= 0) { 13400 if (!tcp->tcp_urp_last_valid || 13401 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13402 /* 13403 * If we haven't generated the signal yet for this 13404 * urgent pointer value, do it now. Also, send up a 13405 * zero-length M_DATA indicating whether or not this is 13406 * the mark. The latter is not needed when a 13407 * T_EXDATA_IND is sent up. However, if there are 13408 * allocation failures this code relies on the sender 13409 * retransmitting and the socket code for determining 13410 * the mark should not block waiting for the peer to 13411 * transmit. Thus, for simplicity we always send up the 13412 * mark indication. 13413 */ 13414 mp1 = allocb(0, BPRI_MED); 13415 if (mp1 == NULL) { 13416 freemsg(mp); 13417 return; 13418 } 13419 if (!TCP_IS_DETACHED(tcp) && 13420 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13421 /* Try again on the rexmit. */ 13422 freemsg(mp1); 13423 freemsg(mp); 13424 return; 13425 } 13426 /* 13427 * Mark with NOTMARKNEXT for now. 13428 * The code below will change this to MARKNEXT 13429 * if we are at the mark. 13430 * 13431 * If there are allocation failures (e.g. in dupmsg 13432 * below) the next time tcp_rput_data sees the urgent 13433 * segment it will send up the MSG*MARKNEXT message. 13434 */ 13435 mp1->b_flag |= MSGNOTMARKNEXT; 13436 freemsg(tcp->tcp_urp_mark_mp); 13437 tcp->tcp_urp_mark_mp = mp1; 13438 flags |= TH_SEND_URP_MARK; 13439 #ifdef DEBUG 13440 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13441 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13442 "last %x, %s", 13443 seg_seq, urp, tcp->tcp_urp_last, 13444 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13445 #endif /* DEBUG */ 13446 tcp->tcp_urp_last_valid = B_TRUE; 13447 tcp->tcp_urp_last = urp + seg_seq; 13448 } else if (tcp->tcp_urp_mark_mp != NULL) { 13449 /* 13450 * An allocation failure prevented the previous 13451 * tcp_rput_data from sending up the allocated 13452 * MSG*MARKNEXT message - send it up this time 13453 * around. 13454 */ 13455 flags |= TH_SEND_URP_MARK; 13456 } 13457 13458 /* 13459 * If the urgent byte is in this segment, make sure that it is 13460 * all by itself. This makes it much easier to deal with the 13461 * possibility of an allocation failure on the T_exdata_ind. 13462 * Note that seg_len is the number of bytes in the segment, and 13463 * urp is the offset into the segment of the urgent byte. 13464 * urp < seg_len means that the urgent byte is in this segment. 13465 */ 13466 if (urp < seg_len) { 13467 if (seg_len != 1) { 13468 uint32_t tmp_rnxt; 13469 /* 13470 * Break it up and feed it back in. 13471 * Re-attach the IP header. 13472 */ 13473 mp->b_rptr = iphdr; 13474 if (urp > 0) { 13475 /* 13476 * There is stuff before the urgent 13477 * byte. 13478 */ 13479 mp1 = dupmsg(mp); 13480 if (!mp1) { 13481 /* 13482 * Trim from urgent byte on. 13483 * The rest will come back. 13484 */ 13485 (void) adjmsg(mp, 13486 urp - seg_len); 13487 tcp_rput_data(connp, 13488 mp, NULL); 13489 return; 13490 } 13491 (void) adjmsg(mp1, urp - seg_len); 13492 /* Feed this piece back in. */ 13493 tmp_rnxt = tcp->tcp_rnxt; 13494 tcp_rput_data(connp, mp1, NULL); 13495 /* 13496 * If the data passed back in was not 13497 * processed (ie: bad ACK) sending 13498 * the remainder back in will cause a 13499 * loop. In this case, drop the 13500 * packet and let the sender try 13501 * sending a good packet. 13502 */ 13503 if (tmp_rnxt == tcp->tcp_rnxt) { 13504 freemsg(mp); 13505 return; 13506 } 13507 } 13508 if (urp != seg_len - 1) { 13509 uint32_t tmp_rnxt; 13510 /* 13511 * There is stuff after the urgent 13512 * byte. 13513 */ 13514 mp1 = dupmsg(mp); 13515 if (!mp1) { 13516 /* 13517 * Trim everything beyond the 13518 * urgent byte. The rest will 13519 * come back. 13520 */ 13521 (void) adjmsg(mp, 13522 urp + 1 - seg_len); 13523 tcp_rput_data(connp, 13524 mp, NULL); 13525 return; 13526 } 13527 (void) adjmsg(mp1, urp + 1 - seg_len); 13528 tmp_rnxt = tcp->tcp_rnxt; 13529 tcp_rput_data(connp, mp1, NULL); 13530 /* 13531 * If the data passed back in was not 13532 * processed (ie: bad ACK) sending 13533 * the remainder back in will cause a 13534 * loop. In this case, drop the 13535 * packet and let the sender try 13536 * sending a good packet. 13537 */ 13538 if (tmp_rnxt == tcp->tcp_rnxt) { 13539 freemsg(mp); 13540 return; 13541 } 13542 } 13543 tcp_rput_data(connp, mp, NULL); 13544 return; 13545 } 13546 /* 13547 * This segment contains only the urgent byte. We 13548 * have to allocate the T_exdata_ind, if we can. 13549 */ 13550 if (!tcp->tcp_urp_mp) { 13551 struct T_exdata_ind *tei; 13552 mp1 = allocb(sizeof (struct T_exdata_ind), 13553 BPRI_MED); 13554 if (!mp1) { 13555 /* 13556 * Sigh... It'll be back. 13557 * Generate any MSG*MARK message now. 13558 */ 13559 freemsg(mp); 13560 seg_len = 0; 13561 if (flags & TH_SEND_URP_MARK) { 13562 13563 13564 ASSERT(tcp->tcp_urp_mark_mp); 13565 tcp->tcp_urp_mark_mp->b_flag &= 13566 ~MSGNOTMARKNEXT; 13567 tcp->tcp_urp_mark_mp->b_flag |= 13568 MSGMARKNEXT; 13569 } 13570 goto ack_check; 13571 } 13572 mp1->b_datap->db_type = M_PROTO; 13573 tei = (struct T_exdata_ind *)mp1->b_rptr; 13574 tei->PRIM_type = T_EXDATA_IND; 13575 tei->MORE_flag = 0; 13576 mp1->b_wptr = (uchar_t *)&tei[1]; 13577 tcp->tcp_urp_mp = mp1; 13578 #ifdef DEBUG 13579 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13580 "tcp_rput: allocated exdata_ind %s", 13581 tcp_display(tcp, NULL, 13582 DISP_PORT_ONLY)); 13583 #endif /* DEBUG */ 13584 /* 13585 * There is no need to send a separate MSG*MARK 13586 * message since the T_EXDATA_IND will be sent 13587 * now. 13588 */ 13589 flags &= ~TH_SEND_URP_MARK; 13590 freemsg(tcp->tcp_urp_mark_mp); 13591 tcp->tcp_urp_mark_mp = NULL; 13592 } 13593 /* 13594 * Now we are all set. On the next putnext upstream, 13595 * tcp_urp_mp will be non-NULL and will get prepended 13596 * to what has to be this piece containing the urgent 13597 * byte. If for any reason we abort this segment below, 13598 * if it comes back, we will have this ready, or it 13599 * will get blown off in close. 13600 */ 13601 } else if (urp == seg_len) { 13602 /* 13603 * The urgent byte is the next byte after this sequence 13604 * number. If there is data it is marked with 13605 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13606 * since it is not needed. Otherwise, if the code 13607 * above just allocated a zero-length tcp_urp_mark_mp 13608 * message, that message is tagged with MSGMARKNEXT. 13609 * Sending up these MSGMARKNEXT messages makes 13610 * SIOCATMARK work correctly even though 13611 * the T_EXDATA_IND will not be sent up until the 13612 * urgent byte arrives. 13613 */ 13614 if (seg_len != 0) { 13615 flags |= TH_MARKNEXT_NEEDED; 13616 freemsg(tcp->tcp_urp_mark_mp); 13617 tcp->tcp_urp_mark_mp = NULL; 13618 flags &= ~TH_SEND_URP_MARK; 13619 } else if (tcp->tcp_urp_mark_mp != NULL) { 13620 flags |= TH_SEND_URP_MARK; 13621 tcp->tcp_urp_mark_mp->b_flag &= 13622 ~MSGNOTMARKNEXT; 13623 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13624 } 13625 #ifdef DEBUG 13626 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13627 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13628 seg_len, flags, 13629 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13630 #endif /* DEBUG */ 13631 } else { 13632 /* Data left until we hit mark */ 13633 #ifdef DEBUG 13634 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13635 "tcp_rput: URP %d bytes left, %s", 13636 urp - seg_len, tcp_display(tcp, NULL, 13637 DISP_PORT_ONLY)); 13638 #endif /* DEBUG */ 13639 } 13640 } 13641 13642 process_ack: 13643 if (!(flags & TH_ACK)) { 13644 freemsg(mp); 13645 goto xmit_check; 13646 } 13647 } 13648 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13649 13650 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13651 tcp->tcp_ip_forward_progress = B_TRUE; 13652 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13653 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13654 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13655 /* 3-way handshake complete - pass up the T_CONN_IND */ 13656 tcp_t *listener = tcp->tcp_listener; 13657 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13658 13659 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13660 /* 13661 * We are here means eager is fine but it can 13662 * get a TH_RST at any point between now and till 13663 * accept completes and disappear. We need to 13664 * ensure that reference to eager is valid after 13665 * we get out of eager's perimeter. So we do 13666 * an extra refhold. 13667 */ 13668 CONN_INC_REF(connp); 13669 13670 /* 13671 * The listener also exists because of the refhold 13672 * done in tcp_conn_request. Its possible that it 13673 * might have closed. We will check that once we 13674 * get inside listeners context. 13675 */ 13676 CONN_INC_REF(listener->tcp_connp); 13677 if (listener->tcp_connp->conn_sqp == 13678 connp->conn_sqp) { 13679 tcp_send_conn_ind(listener->tcp_connp, mp, 13680 listener->tcp_connp->conn_sqp); 13681 CONN_DEC_REF(listener->tcp_connp); 13682 } else if (!tcp->tcp_loopback) { 13683 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13684 tcp_send_conn_ind, 13685 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13686 } else { 13687 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13688 tcp_send_conn_ind, listener->tcp_connp, 13689 SQTAG_TCP_CONN_IND); 13690 } 13691 } 13692 13693 if (tcp->tcp_active_open) { 13694 /* 13695 * We are seeing the final ack in the three way 13696 * hand shake of a active open'ed connection 13697 * so we must send up a T_CONN_CON 13698 */ 13699 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13700 freemsg(mp); 13701 return; 13702 } 13703 /* 13704 * Don't fuse the loopback endpoints for 13705 * simultaneous active opens. 13706 */ 13707 if (tcp->tcp_loopback) { 13708 TCP_STAT(tcp_fusion_unfusable); 13709 tcp->tcp_unfusable = B_TRUE; 13710 } 13711 } 13712 13713 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13714 bytes_acked--; 13715 /* SYN was acked - making progress */ 13716 if (tcp->tcp_ipversion == IPV6_VERSION) 13717 tcp->tcp_ip_forward_progress = B_TRUE; 13718 13719 /* 13720 * If SYN was retransmitted, need to reset all 13721 * retransmission info as this segment will be 13722 * treated as a dup ACK. 13723 */ 13724 if (tcp->tcp_rexmit) { 13725 tcp->tcp_rexmit = B_FALSE; 13726 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13727 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13728 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13729 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13730 tcp->tcp_ms_we_have_waited = 0; 13731 tcp->tcp_cwnd = mss; 13732 } 13733 13734 /* 13735 * We set the send window to zero here. 13736 * This is needed if there is data to be 13737 * processed already on the queue. 13738 * Later (at swnd_update label), the 13739 * "new_swnd > tcp_swnd" condition is satisfied 13740 * the XMIT_NEEDED flag is set in the current 13741 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13742 * called if there is already data on queue in 13743 * this state. 13744 */ 13745 tcp->tcp_swnd = 0; 13746 13747 if (new_swnd > tcp->tcp_max_swnd) 13748 tcp->tcp_max_swnd = new_swnd; 13749 tcp->tcp_swl1 = seg_seq; 13750 tcp->tcp_swl2 = seg_ack; 13751 tcp->tcp_state = TCPS_ESTABLISHED; 13752 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13753 13754 /* Fuse when both sides are in ESTABLISHED state */ 13755 if (tcp->tcp_loopback && do_tcp_fusion) 13756 tcp_fuse(tcp, iphdr, tcph); 13757 13758 } 13759 /* This code follows 4.4BSD-Lite2 mostly. */ 13760 if (bytes_acked < 0) 13761 goto est; 13762 13763 /* 13764 * If TCP is ECN capable and the congestion experience bit is 13765 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13766 * done once per window (or more loosely, per RTT). 13767 */ 13768 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13769 tcp->tcp_cwr = B_FALSE; 13770 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13771 if (!tcp->tcp_cwr) { 13772 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13773 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13774 tcp->tcp_cwnd = npkt * mss; 13775 /* 13776 * If the cwnd is 0, use the timer to clock out 13777 * new segments. This is required by the ECN spec. 13778 */ 13779 if (npkt == 0) { 13780 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13781 /* 13782 * This makes sure that when the ACK comes 13783 * back, we will increase tcp_cwnd by 1 MSS. 13784 */ 13785 tcp->tcp_cwnd_cnt = 0; 13786 } 13787 tcp->tcp_cwr = B_TRUE; 13788 /* 13789 * This marks the end of the current window of in 13790 * flight data. That is why we don't use 13791 * tcp_suna + tcp_swnd. Only data in flight can 13792 * provide ECN info. 13793 */ 13794 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13795 tcp->tcp_ecn_cwr_sent = B_FALSE; 13796 } 13797 } 13798 13799 mp1 = tcp->tcp_xmit_head; 13800 if (bytes_acked == 0) { 13801 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 13802 int dupack_cnt; 13803 13804 BUMP_MIB(&tcp_mib, tcpInDupAck); 13805 /* 13806 * Fast retransmit. When we have seen exactly three 13807 * identical ACKs while we have unacked data 13808 * outstanding we take it as a hint that our peer 13809 * dropped something. 13810 * 13811 * If TCP is retransmitting, don't do fast retransmit. 13812 */ 13813 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 13814 ! tcp->tcp_rexmit) { 13815 /* Do Limited Transmit */ 13816 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 13817 tcp_dupack_fast_retransmit) { 13818 /* 13819 * RFC 3042 13820 * 13821 * What we need to do is temporarily 13822 * increase tcp_cwnd so that new 13823 * data can be sent if it is allowed 13824 * by the receive window (tcp_rwnd). 13825 * tcp_wput_data() will take care of 13826 * the rest. 13827 * 13828 * If the connection is SACK capable, 13829 * only do limited xmit when there 13830 * is SACK info. 13831 * 13832 * Note how tcp_cwnd is incremented. 13833 * The first dup ACK will increase 13834 * it by 1 MSS. The second dup ACK 13835 * will increase it by 2 MSS. This 13836 * means that only 1 new segment will 13837 * be sent for each dup ACK. 13838 */ 13839 if (tcp->tcp_unsent > 0 && 13840 (!tcp->tcp_snd_sack_ok || 13841 (tcp->tcp_snd_sack_ok && 13842 tcp->tcp_notsack_list != NULL))) { 13843 tcp->tcp_cwnd += mss << 13844 (tcp->tcp_dupack_cnt - 1); 13845 flags |= TH_LIMIT_XMIT; 13846 } 13847 } else if (dupack_cnt == 13848 tcp_dupack_fast_retransmit) { 13849 13850 /* 13851 * If we have reduced tcp_ssthresh 13852 * because of ECN, do not reduce it again 13853 * unless it is already one window of data 13854 * away. After one window of data, tcp_cwr 13855 * should then be cleared. Note that 13856 * for non ECN capable connection, tcp_cwr 13857 * should always be false. 13858 * 13859 * Adjust cwnd since the duplicate 13860 * ack indicates that a packet was 13861 * dropped (due to congestion.) 13862 */ 13863 if (!tcp->tcp_cwr) { 13864 npkt = ((tcp->tcp_snxt - 13865 tcp->tcp_suna) >> 1) / mss; 13866 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13867 mss; 13868 tcp->tcp_cwnd = (npkt + 13869 tcp->tcp_dupack_cnt) * mss; 13870 } 13871 if (tcp->tcp_ecn_ok) { 13872 tcp->tcp_cwr = B_TRUE; 13873 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13874 tcp->tcp_ecn_cwr_sent = B_FALSE; 13875 } 13876 13877 /* 13878 * We do Hoe's algorithm. Refer to her 13879 * paper "Improving the Start-up Behavior 13880 * of a Congestion Control Scheme for TCP," 13881 * appeared in SIGCOMM'96. 13882 * 13883 * Save highest seq no we have sent so far. 13884 * Be careful about the invisible FIN byte. 13885 */ 13886 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13887 (tcp->tcp_unsent == 0)) { 13888 tcp->tcp_rexmit_max = tcp->tcp_fss; 13889 } else { 13890 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13891 } 13892 13893 /* 13894 * Do not allow bursty traffic during. 13895 * fast recovery. Refer to Fall and Floyd's 13896 * paper "Simulation-based Comparisons of 13897 * Tahoe, Reno and SACK TCP" (in CCR?) 13898 * This is a best current practise. 13899 */ 13900 tcp->tcp_snd_burst = TCP_CWND_SS; 13901 13902 /* 13903 * For SACK: 13904 * Calculate tcp_pipe, which is the 13905 * estimated number of bytes in 13906 * network. 13907 * 13908 * tcp_fack is the highest sack'ed seq num 13909 * TCP has received. 13910 * 13911 * tcp_pipe is explained in the above quoted 13912 * Fall and Floyd's paper. tcp_fack is 13913 * explained in Mathis and Mahdavi's 13914 * "Forward Acknowledgment: Refining TCP 13915 * Congestion Control" in SIGCOMM '96. 13916 */ 13917 if (tcp->tcp_snd_sack_ok) { 13918 ASSERT(tcp->tcp_sack_info != NULL); 13919 if (tcp->tcp_notsack_list != NULL) { 13920 tcp->tcp_pipe = tcp->tcp_snxt - 13921 tcp->tcp_fack; 13922 tcp->tcp_sack_snxt = seg_ack; 13923 flags |= TH_NEED_SACK_REXMIT; 13924 } else { 13925 /* 13926 * Always initialize tcp_pipe 13927 * even though we don't have 13928 * any SACK info. If later 13929 * we get SACK info and 13930 * tcp_pipe is not initialized, 13931 * funny things will happen. 13932 */ 13933 tcp->tcp_pipe = 13934 tcp->tcp_cwnd_ssthresh; 13935 } 13936 } else { 13937 flags |= TH_REXMIT_NEEDED; 13938 } /* tcp_snd_sack_ok */ 13939 13940 } else { 13941 /* 13942 * Here we perform congestion 13943 * avoidance, but NOT slow start. 13944 * This is known as the Fast 13945 * Recovery Algorithm. 13946 */ 13947 if (tcp->tcp_snd_sack_ok && 13948 tcp->tcp_notsack_list != NULL) { 13949 flags |= TH_NEED_SACK_REXMIT; 13950 tcp->tcp_pipe -= mss; 13951 if (tcp->tcp_pipe < 0) 13952 tcp->tcp_pipe = 0; 13953 } else { 13954 /* 13955 * We know that one more packet has 13956 * left the pipe thus we can update 13957 * cwnd. 13958 */ 13959 cwnd = tcp->tcp_cwnd + mss; 13960 if (cwnd > tcp->tcp_cwnd_max) 13961 cwnd = tcp->tcp_cwnd_max; 13962 tcp->tcp_cwnd = cwnd; 13963 if (tcp->tcp_unsent > 0) 13964 flags |= TH_XMIT_NEEDED; 13965 } 13966 } 13967 } 13968 } else if (tcp->tcp_zero_win_probe) { 13969 /* 13970 * If the window has opened, need to arrange 13971 * to send additional data. 13972 */ 13973 if (new_swnd != 0) { 13974 /* tcp_suna != tcp_snxt */ 13975 /* Packet contains a window update */ 13976 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 13977 tcp->tcp_zero_win_probe = 0; 13978 tcp->tcp_timer_backoff = 0; 13979 tcp->tcp_ms_we_have_waited = 0; 13980 13981 /* 13982 * Transmit starting with tcp_suna since 13983 * the one byte probe is not ack'ed. 13984 * If TCP has sent more than one identical 13985 * probe, tcp_rexmit will be set. That means 13986 * tcp_ss_rexmit() will send out the one 13987 * byte along with new data. Otherwise, 13988 * fake the retransmission. 13989 */ 13990 flags |= TH_XMIT_NEEDED; 13991 if (!tcp->tcp_rexmit) { 13992 tcp->tcp_rexmit = B_TRUE; 13993 tcp->tcp_dupack_cnt = 0; 13994 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13995 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 13996 } 13997 } 13998 } 13999 goto swnd_update; 14000 } 14001 14002 /* 14003 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14004 * If the ACK value acks something that we have not yet sent, it might 14005 * be an old duplicate segment. Send an ACK to re-synchronize the 14006 * other side. 14007 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14008 * state is handled above, so we can always just drop the segment and 14009 * send an ACK here. 14010 * 14011 * Should we send ACKs in response to ACK only segments? 14012 */ 14013 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14014 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 14015 /* drop the received segment */ 14016 freemsg(mp); 14017 14018 /* 14019 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14020 * greater than 0, check if the number of such 14021 * bogus ACks is greater than that count. If yes, 14022 * don't send back any ACK. This prevents TCP from 14023 * getting into an ACK storm if somehow an attacker 14024 * successfully spoofs an acceptable segment to our 14025 * peer. 14026 */ 14027 if (tcp_drop_ack_unsent_cnt > 0 && 14028 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14029 TCP_STAT(tcp_in_ack_unsent_drop); 14030 return; 14031 } 14032 mp = tcp_ack_mp(tcp); 14033 if (mp != NULL) { 14034 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14035 BUMP_LOCAL(tcp->tcp_obsegs); 14036 BUMP_MIB(&tcp_mib, tcpOutAck); 14037 tcp_send_data(tcp, tcp->tcp_wq, mp); 14038 } 14039 return; 14040 } 14041 14042 /* 14043 * TCP gets a new ACK, update the notsack'ed list to delete those 14044 * blocks that are covered by this ACK. 14045 */ 14046 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14047 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14048 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14049 } 14050 14051 /* 14052 * If we got an ACK after fast retransmit, check to see 14053 * if it is a partial ACK. If it is not and the congestion 14054 * window was inflated to account for the other side's 14055 * cached packets, retract it. If it is, do Hoe's algorithm. 14056 */ 14057 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 14058 ASSERT(tcp->tcp_rexmit == B_FALSE); 14059 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14060 tcp->tcp_dupack_cnt = 0; 14061 /* 14062 * Restore the orig tcp_cwnd_ssthresh after 14063 * fast retransmit phase. 14064 */ 14065 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14066 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14067 } 14068 tcp->tcp_rexmit_max = seg_ack; 14069 tcp->tcp_cwnd_cnt = 0; 14070 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14071 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14072 14073 /* 14074 * Remove all notsack info to avoid confusion with 14075 * the next fast retrasnmit/recovery phase. 14076 */ 14077 if (tcp->tcp_snd_sack_ok && 14078 tcp->tcp_notsack_list != NULL) { 14079 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14080 } 14081 } else { 14082 if (tcp->tcp_snd_sack_ok && 14083 tcp->tcp_notsack_list != NULL) { 14084 flags |= TH_NEED_SACK_REXMIT; 14085 tcp->tcp_pipe -= mss; 14086 if (tcp->tcp_pipe < 0) 14087 tcp->tcp_pipe = 0; 14088 } else { 14089 /* 14090 * Hoe's algorithm: 14091 * 14092 * Retransmit the unack'ed segment and 14093 * restart fast recovery. Note that we 14094 * need to scale back tcp_cwnd to the 14095 * original value when we started fast 14096 * recovery. This is to prevent overly 14097 * aggressive behaviour in sending new 14098 * segments. 14099 */ 14100 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14101 tcp_dupack_fast_retransmit * mss; 14102 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14103 flags |= TH_REXMIT_NEEDED; 14104 } 14105 } 14106 } else { 14107 tcp->tcp_dupack_cnt = 0; 14108 if (tcp->tcp_rexmit) { 14109 /* 14110 * TCP is retranmitting. If the ACK ack's all 14111 * outstanding data, update tcp_rexmit_max and 14112 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14113 * to the correct value. 14114 * 14115 * Note that SEQ_LEQ() is used. This is to avoid 14116 * unnecessary fast retransmit caused by dup ACKs 14117 * received when TCP does slow start retransmission 14118 * after a time out. During this phase, TCP may 14119 * send out segments which are already received. 14120 * This causes dup ACKs to be sent back. 14121 */ 14122 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14123 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14124 tcp->tcp_rexmit_nxt = seg_ack; 14125 } 14126 if (seg_ack != tcp->tcp_rexmit_max) { 14127 flags |= TH_XMIT_NEEDED; 14128 } 14129 } else { 14130 tcp->tcp_rexmit = B_FALSE; 14131 tcp->tcp_xmit_zc_clean = B_FALSE; 14132 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14133 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14134 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14135 } 14136 tcp->tcp_ms_we_have_waited = 0; 14137 } 14138 } 14139 14140 BUMP_MIB(&tcp_mib, tcpInAckSegs); 14141 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 14142 tcp->tcp_suna = seg_ack; 14143 if (tcp->tcp_zero_win_probe != 0) { 14144 tcp->tcp_zero_win_probe = 0; 14145 tcp->tcp_timer_backoff = 0; 14146 } 14147 14148 /* 14149 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14150 * Note that it cannot be the SYN being ack'ed. The code flow 14151 * will not reach here. 14152 */ 14153 if (mp1 == NULL) { 14154 goto fin_acked; 14155 } 14156 14157 /* 14158 * Update the congestion window. 14159 * 14160 * If TCP is not ECN capable or TCP is ECN capable but the 14161 * congestion experience bit is not set, increase the tcp_cwnd as 14162 * usual. 14163 */ 14164 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14165 cwnd = tcp->tcp_cwnd; 14166 add = mss; 14167 14168 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14169 /* 14170 * This is to prevent an increase of less than 1 MSS of 14171 * tcp_cwnd. With partial increase, tcp_wput_data() 14172 * may send out tinygrams in order to preserve mblk 14173 * boundaries. 14174 * 14175 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14176 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14177 * increased by 1 MSS for every RTTs. 14178 */ 14179 if (tcp->tcp_cwnd_cnt <= 0) { 14180 tcp->tcp_cwnd_cnt = cwnd + add; 14181 } else { 14182 tcp->tcp_cwnd_cnt -= add; 14183 add = 0; 14184 } 14185 } 14186 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14187 } 14188 14189 /* See if the latest urgent data has been acknowledged */ 14190 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14191 SEQ_GT(seg_ack, tcp->tcp_urg)) 14192 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14193 14194 /* Can we update the RTT estimates? */ 14195 if (tcp->tcp_snd_ts_ok) { 14196 /* Ignore zero timestamp echo-reply. */ 14197 if (tcpopt.tcp_opt_ts_ecr != 0) { 14198 tcp_set_rto(tcp, (int32_t)lbolt - 14199 (int32_t)tcpopt.tcp_opt_ts_ecr); 14200 } 14201 14202 /* If needed, restart the timer. */ 14203 if (tcp->tcp_set_timer == 1) { 14204 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14205 tcp->tcp_set_timer = 0; 14206 } 14207 /* 14208 * Update tcp_csuna in case the other side stops sending 14209 * us timestamps. 14210 */ 14211 tcp->tcp_csuna = tcp->tcp_snxt; 14212 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14213 /* 14214 * An ACK sequence we haven't seen before, so get the RTT 14215 * and update the RTO. But first check if the timestamp is 14216 * valid to use. 14217 */ 14218 if ((mp1->b_next != NULL) && 14219 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14220 tcp_set_rto(tcp, (int32_t)lbolt - 14221 (int32_t)(intptr_t)mp1->b_prev); 14222 else 14223 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14224 14225 /* Remeber the last sequence to be ACKed */ 14226 tcp->tcp_csuna = seg_ack; 14227 if (tcp->tcp_set_timer == 1) { 14228 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14229 tcp->tcp_set_timer = 0; 14230 } 14231 } else { 14232 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14233 } 14234 14235 /* Eat acknowledged bytes off the xmit queue. */ 14236 for (;;) { 14237 mblk_t *mp2; 14238 uchar_t *wptr; 14239 14240 wptr = mp1->b_wptr; 14241 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14242 bytes_acked -= (int)(wptr - mp1->b_rptr); 14243 if (bytes_acked < 0) { 14244 mp1->b_rptr = wptr + bytes_acked; 14245 /* 14246 * Set a new timestamp if all the bytes timed by the 14247 * old timestamp have been ack'ed. 14248 */ 14249 if (SEQ_GT(seg_ack, 14250 (uint32_t)(uintptr_t)(mp1->b_next))) { 14251 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14252 mp1->b_next = NULL; 14253 } 14254 break; 14255 } 14256 mp1->b_next = NULL; 14257 mp1->b_prev = NULL; 14258 mp2 = mp1; 14259 mp1 = mp1->b_cont; 14260 14261 /* 14262 * This notification is required for some zero-copy 14263 * clients to maintain a copy semantic. After the data 14264 * is ack'ed, client is safe to modify or reuse the buffer. 14265 */ 14266 if (tcp->tcp_snd_zcopy_aware && 14267 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14268 tcp_zcopy_notify(tcp); 14269 freeb(mp2); 14270 if (bytes_acked == 0) { 14271 if (mp1 == NULL) { 14272 /* Everything is ack'ed, clear the tail. */ 14273 tcp->tcp_xmit_tail = NULL; 14274 /* 14275 * Cancel the timer unless we are still 14276 * waiting for an ACK for the FIN packet. 14277 */ 14278 if (tcp->tcp_timer_tid != 0 && 14279 tcp->tcp_snxt == tcp->tcp_suna) { 14280 (void) TCP_TIMER_CANCEL(tcp, 14281 tcp->tcp_timer_tid); 14282 tcp->tcp_timer_tid = 0; 14283 } 14284 goto pre_swnd_update; 14285 } 14286 if (mp2 != tcp->tcp_xmit_tail) 14287 break; 14288 tcp->tcp_xmit_tail = mp1; 14289 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14290 (uintptr_t)INT_MAX); 14291 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14292 mp1->b_rptr); 14293 break; 14294 } 14295 if (mp1 == NULL) { 14296 /* 14297 * More was acked but there is nothing more 14298 * outstanding. This means that the FIN was 14299 * just acked or that we're talking to a clown. 14300 */ 14301 fin_acked: 14302 ASSERT(tcp->tcp_fin_sent); 14303 tcp->tcp_xmit_tail = NULL; 14304 if (tcp->tcp_fin_sent) { 14305 /* FIN was acked - making progress */ 14306 if (tcp->tcp_ipversion == IPV6_VERSION && 14307 !tcp->tcp_fin_acked) 14308 tcp->tcp_ip_forward_progress = B_TRUE; 14309 tcp->tcp_fin_acked = B_TRUE; 14310 if (tcp->tcp_linger_tid != 0 && 14311 TCP_TIMER_CANCEL(tcp, 14312 tcp->tcp_linger_tid) >= 0) { 14313 tcp_stop_lingering(tcp); 14314 } 14315 } else { 14316 /* 14317 * We should never get here because 14318 * we have already checked that the 14319 * number of bytes ack'ed should be 14320 * smaller than or equal to what we 14321 * have sent so far (it is the 14322 * acceptability check of the ACK). 14323 * We can only get here if the send 14324 * queue is corrupted. 14325 * 14326 * Terminate the connection and 14327 * panic the system. It is better 14328 * for us to panic instead of 14329 * continuing to avoid other disaster. 14330 */ 14331 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14332 tcp->tcp_rnxt, TH_RST|TH_ACK); 14333 panic("Memory corruption " 14334 "detected for connection %s.", 14335 tcp_display(tcp, NULL, 14336 DISP_ADDR_AND_PORT)); 14337 /*NOTREACHED*/ 14338 } 14339 goto pre_swnd_update; 14340 } 14341 ASSERT(mp2 != tcp->tcp_xmit_tail); 14342 } 14343 if (tcp->tcp_unsent) { 14344 flags |= TH_XMIT_NEEDED; 14345 } 14346 pre_swnd_update: 14347 tcp->tcp_xmit_head = mp1; 14348 swnd_update: 14349 /* 14350 * The following check is different from most other implementations. 14351 * For bi-directional transfer, when segments are dropped, the 14352 * "normal" check will not accept a window update in those 14353 * retransmitted segemnts. Failing to do that, TCP may send out 14354 * segments which are outside receiver's window. As TCP accepts 14355 * the ack in those retransmitted segments, if the window update in 14356 * the same segment is not accepted, TCP will incorrectly calculates 14357 * that it can send more segments. This can create a deadlock 14358 * with the receiver if its window becomes zero. 14359 */ 14360 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14361 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14362 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14363 /* 14364 * The criteria for update is: 14365 * 14366 * 1. the segment acknowledges some data. Or 14367 * 2. the segment is new, i.e. it has a higher seq num. Or 14368 * 3. the segment is not old and the advertised window is 14369 * larger than the previous advertised window. 14370 */ 14371 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14372 flags |= TH_XMIT_NEEDED; 14373 tcp->tcp_swnd = new_swnd; 14374 if (new_swnd > tcp->tcp_max_swnd) 14375 tcp->tcp_max_swnd = new_swnd; 14376 tcp->tcp_swl1 = seg_seq; 14377 tcp->tcp_swl2 = seg_ack; 14378 } 14379 est: 14380 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14381 14382 switch (tcp->tcp_state) { 14383 case TCPS_FIN_WAIT_1: 14384 if (tcp->tcp_fin_acked) { 14385 tcp->tcp_state = TCPS_FIN_WAIT_2; 14386 /* 14387 * We implement the non-standard BSD/SunOS 14388 * FIN_WAIT_2 flushing algorithm. 14389 * If there is no user attached to this 14390 * TCP endpoint, then this TCP struct 14391 * could hang around forever in FIN_WAIT_2 14392 * state if the peer forgets to send us 14393 * a FIN. To prevent this, we wait only 14394 * 2*MSL (a convenient time value) for 14395 * the FIN to arrive. If it doesn't show up, 14396 * we flush the TCP endpoint. This algorithm, 14397 * though a violation of RFC-793, has worked 14398 * for over 10 years in BSD systems. 14399 * Note: SunOS 4.x waits 675 seconds before 14400 * flushing the FIN_WAIT_2 connection. 14401 */ 14402 TCP_TIMER_RESTART(tcp, 14403 tcp_fin_wait_2_flush_interval); 14404 } 14405 break; 14406 case TCPS_FIN_WAIT_2: 14407 break; /* Shutdown hook? */ 14408 case TCPS_LAST_ACK: 14409 freemsg(mp); 14410 if (tcp->tcp_fin_acked) { 14411 (void) tcp_clean_death(tcp, 0, 19); 14412 return; 14413 } 14414 goto xmit_check; 14415 case TCPS_CLOSING: 14416 if (tcp->tcp_fin_acked) { 14417 tcp->tcp_state = TCPS_TIME_WAIT; 14418 /* 14419 * Unconditionally clear the exclusive binding 14420 * bit so this TIME-WAIT connection won't 14421 * interfere with new ones. 14422 */ 14423 tcp->tcp_exclbind = 0; 14424 if (!TCP_IS_DETACHED(tcp)) { 14425 TCP_TIMER_RESTART(tcp, 14426 tcp_time_wait_interval); 14427 } else { 14428 tcp_time_wait_append(tcp); 14429 TCP_DBGSTAT(tcp_rput_time_wait); 14430 } 14431 } 14432 /*FALLTHRU*/ 14433 case TCPS_CLOSE_WAIT: 14434 freemsg(mp); 14435 goto xmit_check; 14436 default: 14437 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14438 break; 14439 } 14440 } 14441 if (flags & TH_FIN) { 14442 /* Make sure we ack the fin */ 14443 flags |= TH_ACK_NEEDED; 14444 if (!tcp->tcp_fin_rcvd) { 14445 tcp->tcp_fin_rcvd = B_TRUE; 14446 tcp->tcp_rnxt++; 14447 tcph = tcp->tcp_tcph; 14448 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14449 14450 /* 14451 * Generate the ordrel_ind at the end unless we 14452 * are an eager guy. 14453 * In the eager case tcp_rsrv will do this when run 14454 * after tcp_accept is done. 14455 */ 14456 if (tcp->tcp_listener == NULL && 14457 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14458 flags |= TH_ORDREL_NEEDED; 14459 switch (tcp->tcp_state) { 14460 case TCPS_SYN_RCVD: 14461 case TCPS_ESTABLISHED: 14462 tcp->tcp_state = TCPS_CLOSE_WAIT; 14463 /* Keepalive? */ 14464 break; 14465 case TCPS_FIN_WAIT_1: 14466 if (!tcp->tcp_fin_acked) { 14467 tcp->tcp_state = TCPS_CLOSING; 14468 break; 14469 } 14470 /* FALLTHRU */ 14471 case TCPS_FIN_WAIT_2: 14472 tcp->tcp_state = TCPS_TIME_WAIT; 14473 /* 14474 * Unconditionally clear the exclusive binding 14475 * bit so this TIME-WAIT connection won't 14476 * interfere with new ones. 14477 */ 14478 tcp->tcp_exclbind = 0; 14479 if (!TCP_IS_DETACHED(tcp)) { 14480 TCP_TIMER_RESTART(tcp, 14481 tcp_time_wait_interval); 14482 } else { 14483 tcp_time_wait_append(tcp); 14484 TCP_DBGSTAT(tcp_rput_time_wait); 14485 } 14486 if (seg_len) { 14487 /* 14488 * implies data piggybacked on FIN. 14489 * break to handle data. 14490 */ 14491 break; 14492 } 14493 freemsg(mp); 14494 goto ack_check; 14495 } 14496 } 14497 } 14498 if (mp == NULL) 14499 goto xmit_check; 14500 if (seg_len == 0) { 14501 freemsg(mp); 14502 goto xmit_check; 14503 } 14504 if (mp->b_rptr == mp->b_wptr) { 14505 /* 14506 * The header has been consumed, so we remove the 14507 * zero-length mblk here. 14508 */ 14509 mp1 = mp; 14510 mp = mp->b_cont; 14511 freeb(mp1); 14512 } 14513 tcph = tcp->tcp_tcph; 14514 tcp->tcp_rack_cnt++; 14515 { 14516 uint32_t cur_max; 14517 14518 cur_max = tcp->tcp_rack_cur_max; 14519 if (tcp->tcp_rack_cnt >= cur_max) { 14520 /* 14521 * We have more unacked data than we should - send 14522 * an ACK now. 14523 */ 14524 flags |= TH_ACK_NEEDED; 14525 cur_max++; 14526 if (cur_max > tcp->tcp_rack_abs_max) 14527 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14528 else 14529 tcp->tcp_rack_cur_max = cur_max; 14530 } else if (TCP_IS_DETACHED(tcp)) { 14531 /* We don't have an ACK timer for detached TCP. */ 14532 flags |= TH_ACK_NEEDED; 14533 } else if (seg_len < mss) { 14534 /* 14535 * If we get a segment that is less than an mss, and we 14536 * already have unacknowledged data, and the amount 14537 * unacknowledged is not a multiple of mss, then we 14538 * better generate an ACK now. Otherwise, this may be 14539 * the tail piece of a transaction, and we would rather 14540 * wait for the response. 14541 */ 14542 uint32_t udif; 14543 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14544 (uintptr_t)INT_MAX); 14545 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14546 if (udif && (udif % mss)) 14547 flags |= TH_ACK_NEEDED; 14548 else 14549 flags |= TH_ACK_TIMER_NEEDED; 14550 } else { 14551 /* Start delayed ack timer */ 14552 flags |= TH_ACK_TIMER_NEEDED; 14553 } 14554 } 14555 tcp->tcp_rnxt += seg_len; 14556 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14557 14558 /* Update SACK list */ 14559 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14560 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14561 &(tcp->tcp_num_sack_blk)); 14562 } 14563 14564 if (tcp->tcp_urp_mp) { 14565 tcp->tcp_urp_mp->b_cont = mp; 14566 mp = tcp->tcp_urp_mp; 14567 tcp->tcp_urp_mp = NULL; 14568 /* Ready for a new signal. */ 14569 tcp->tcp_urp_last_valid = B_FALSE; 14570 #ifdef DEBUG 14571 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14572 "tcp_rput: sending exdata_ind %s", 14573 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14574 #endif /* DEBUG */ 14575 } 14576 14577 /* 14578 * Check for ancillary data changes compared to last segment. 14579 */ 14580 if (tcp->tcp_ipv6_recvancillary != 0) { 14581 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14582 if (mp == NULL) 14583 return; 14584 } 14585 14586 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14587 /* 14588 * Side queue inbound data until the accept happens. 14589 * tcp_accept/tcp_rput drains this when the accept happens. 14590 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14591 * T_EXDATA_IND) it is queued on b_next. 14592 * XXX Make urgent data use this. Requires: 14593 * Removing tcp_listener check for TH_URG 14594 * Making M_PCPROTO and MARK messages skip the eager case 14595 */ 14596 14597 if (tcp->tcp_kssl_pending) { 14598 tcp_kssl_input(tcp, mp); 14599 } else { 14600 tcp_rcv_enqueue(tcp, mp, seg_len); 14601 } 14602 } else { 14603 if (mp->b_datap->db_type != M_DATA || 14604 (flags & TH_MARKNEXT_NEEDED)) { 14605 if (tcp->tcp_rcv_list != NULL) { 14606 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14607 } 14608 ASSERT(tcp->tcp_rcv_list == NULL || 14609 tcp->tcp_fused_sigurg); 14610 if (flags & TH_MARKNEXT_NEEDED) { 14611 #ifdef DEBUG 14612 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14613 "tcp_rput: sending MSGMARKNEXT %s", 14614 tcp_display(tcp, NULL, 14615 DISP_PORT_ONLY)); 14616 #endif /* DEBUG */ 14617 mp->b_flag |= MSGMARKNEXT; 14618 flags &= ~TH_MARKNEXT_NEEDED; 14619 } 14620 14621 /* Does this need SSL processing first? */ 14622 if ((tcp->tcp_kssl_ctx != NULL) && 14623 (DB_TYPE(mp) == M_DATA)) { 14624 tcp_kssl_input(tcp, mp); 14625 } else { 14626 putnext(tcp->tcp_rq, mp); 14627 if (!canputnext(tcp->tcp_rq)) 14628 tcp->tcp_rwnd -= seg_len; 14629 } 14630 } else if ((flags & (TH_PUSH|TH_FIN)) || 14631 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14632 if (tcp->tcp_rcv_list != NULL) { 14633 /* 14634 * Enqueue the new segment first and then 14635 * call tcp_rcv_drain() to send all data 14636 * up. The other way to do this is to 14637 * send all queued data up and then call 14638 * putnext() to send the new segment up. 14639 * This way can remove the else part later 14640 * on. 14641 * 14642 * We don't this to avoid one more call to 14643 * canputnext() as tcp_rcv_drain() needs to 14644 * call canputnext(). 14645 */ 14646 tcp_rcv_enqueue(tcp, mp, seg_len); 14647 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14648 } else { 14649 /* Does this need SSL processing first? */ 14650 if ((tcp->tcp_kssl_ctx != NULL) && 14651 (DB_TYPE(mp) == M_DATA)) { 14652 tcp_kssl_input(tcp, mp); 14653 } else { 14654 putnext(tcp->tcp_rq, mp); 14655 if (!canputnext(tcp->tcp_rq)) 14656 tcp->tcp_rwnd -= seg_len; 14657 } 14658 } 14659 } else { 14660 /* 14661 * Enqueue all packets when processing an mblk 14662 * from the co queue and also enqueue normal packets. 14663 */ 14664 tcp_rcv_enqueue(tcp, mp, seg_len); 14665 } 14666 /* 14667 * Make sure the timer is running if we have data waiting 14668 * for a push bit. This provides resiliency against 14669 * implementations that do not correctly generate push bits. 14670 */ 14671 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 14672 /* 14673 * The connection may be closed at this point, so don't 14674 * do anything for a detached tcp. 14675 */ 14676 if (!TCP_IS_DETACHED(tcp)) 14677 tcp->tcp_push_tid = TCP_TIMER(tcp, 14678 tcp_push_timer, 14679 MSEC_TO_TICK(tcp_push_timer_interval)); 14680 } 14681 } 14682 xmit_check: 14683 /* Is there anything left to do? */ 14684 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14685 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14686 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14687 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14688 goto done; 14689 14690 /* Any transmit work to do and a non-zero window? */ 14691 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14692 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14693 if (flags & TH_REXMIT_NEEDED) { 14694 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14695 14696 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14697 if (snd_size > mss) 14698 snd_size = mss; 14699 if (snd_size > tcp->tcp_swnd) 14700 snd_size = tcp->tcp_swnd; 14701 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14702 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14703 B_TRUE); 14704 14705 if (mp1 != NULL) { 14706 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14707 tcp->tcp_csuna = tcp->tcp_snxt; 14708 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14709 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14710 TCP_RECORD_TRACE(tcp, mp1, 14711 TCP_TRACE_SEND_PKT); 14712 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14713 } 14714 } 14715 if (flags & TH_NEED_SACK_REXMIT) { 14716 tcp_sack_rxmit(tcp, &flags); 14717 } 14718 /* 14719 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14720 * out new segment. Note that tcp_rexmit should not be 14721 * set, otherwise TH_LIMIT_XMIT should not be set. 14722 */ 14723 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14724 if (!tcp->tcp_rexmit) { 14725 tcp_wput_data(tcp, NULL, B_FALSE); 14726 } else { 14727 tcp_ss_rexmit(tcp); 14728 } 14729 } 14730 /* 14731 * Adjust tcp_cwnd back to normal value after sending 14732 * new data segments. 14733 */ 14734 if (flags & TH_LIMIT_XMIT) { 14735 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14736 /* 14737 * This will restart the timer. Restarting the 14738 * timer is used to avoid a timeout before the 14739 * limited transmitted segment's ACK gets back. 14740 */ 14741 if (tcp->tcp_xmit_head != NULL) 14742 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14743 } 14744 14745 /* Anything more to do? */ 14746 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14747 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14748 goto done; 14749 } 14750 ack_check: 14751 if (flags & TH_SEND_URP_MARK) { 14752 ASSERT(tcp->tcp_urp_mark_mp); 14753 /* 14754 * Send up any queued data and then send the mark message 14755 */ 14756 if (tcp->tcp_rcv_list != NULL) { 14757 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14758 } 14759 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14760 14761 mp1 = tcp->tcp_urp_mark_mp; 14762 tcp->tcp_urp_mark_mp = NULL; 14763 #ifdef DEBUG 14764 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14765 "tcp_rput: sending zero-length %s %s", 14766 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14767 "MSGNOTMARKNEXT"), 14768 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14769 #endif /* DEBUG */ 14770 putnext(tcp->tcp_rq, mp1); 14771 flags &= ~TH_SEND_URP_MARK; 14772 } 14773 if (flags & TH_ACK_NEEDED) { 14774 /* 14775 * Time to send an ack for some reason. 14776 */ 14777 mp1 = tcp_ack_mp(tcp); 14778 14779 if (mp1 != NULL) { 14780 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14781 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14782 BUMP_LOCAL(tcp->tcp_obsegs); 14783 BUMP_MIB(&tcp_mib, tcpOutAck); 14784 } 14785 if (tcp->tcp_ack_tid != 0) { 14786 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14787 tcp->tcp_ack_tid = 0; 14788 } 14789 } 14790 if (flags & TH_ACK_TIMER_NEEDED) { 14791 /* 14792 * Arrange for deferred ACK or push wait timeout. 14793 * Start timer if it is not already running. 14794 */ 14795 if (tcp->tcp_ack_tid == 0) { 14796 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14797 MSEC_TO_TICK(tcp->tcp_localnet ? 14798 (clock_t)tcp_local_dack_interval : 14799 (clock_t)tcp_deferred_ack_interval)); 14800 } 14801 } 14802 if (flags & TH_ORDREL_NEEDED) { 14803 /* 14804 * Send up the ordrel_ind unless we are an eager guy. 14805 * In the eager case tcp_rsrv will do this when run 14806 * after tcp_accept is done. 14807 */ 14808 ASSERT(tcp->tcp_listener == NULL); 14809 if (tcp->tcp_rcv_list != NULL) { 14810 /* 14811 * Push any mblk(s) enqueued from co processing. 14812 */ 14813 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14814 } 14815 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14816 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 14817 tcp->tcp_ordrel_done = B_TRUE; 14818 putnext(tcp->tcp_rq, mp1); 14819 if (tcp->tcp_deferred_clean_death) { 14820 /* 14821 * tcp_clean_death was deferred 14822 * for T_ORDREL_IND - do it now 14823 */ 14824 (void) tcp_clean_death(tcp, 14825 tcp->tcp_client_errno, 20); 14826 tcp->tcp_deferred_clean_death = B_FALSE; 14827 } 14828 } else { 14829 /* 14830 * Run the orderly release in the 14831 * service routine. 14832 */ 14833 qenable(tcp->tcp_rq); 14834 /* 14835 * Caveat(XXX): The machine may be so 14836 * overloaded that tcp_rsrv() is not scheduled 14837 * until after the endpoint has transitioned 14838 * to TCPS_TIME_WAIT 14839 * and tcp_time_wait_interval expires. Then 14840 * tcp_timer() will blow away state in tcp_t 14841 * and T_ORDREL_IND will never be delivered 14842 * upstream. Unlikely but potentially 14843 * a problem. 14844 */ 14845 } 14846 } 14847 done: 14848 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14849 } 14850 14851 /* 14852 * This function does PAWS protection check. Returns B_TRUE if the 14853 * segment passes the PAWS test, else returns B_FALSE. 14854 */ 14855 boolean_t 14856 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 14857 { 14858 uint8_t flags; 14859 int options; 14860 uint8_t *up; 14861 14862 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 14863 /* 14864 * If timestamp option is aligned nicely, get values inline, 14865 * otherwise call general routine to parse. Only do that 14866 * if timestamp is the only option. 14867 */ 14868 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 14869 TCPOPT_REAL_TS_LEN && 14870 OK_32PTR((up = ((uint8_t *)tcph) + 14871 TCP_MIN_HEADER_LENGTH)) && 14872 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 14873 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 14874 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 14875 14876 options = TCP_OPT_TSTAMP_PRESENT; 14877 } else { 14878 if (tcp->tcp_snd_sack_ok) { 14879 tcpoptp->tcp = tcp; 14880 } else { 14881 tcpoptp->tcp = NULL; 14882 } 14883 options = tcp_parse_options(tcph, tcpoptp); 14884 } 14885 14886 if (options & TCP_OPT_TSTAMP_PRESENT) { 14887 /* 14888 * Do PAWS per RFC 1323 section 4.2. Accept RST 14889 * regardless of the timestamp, page 18 RFC 1323.bis. 14890 */ 14891 if ((flags & TH_RST) == 0 && 14892 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 14893 tcp->tcp_ts_recent)) { 14894 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 14895 PAWS_TIMEOUT)) { 14896 /* This segment is not acceptable. */ 14897 return (B_FALSE); 14898 } else { 14899 /* 14900 * Connection has been idle for 14901 * too long. Reset the timestamp 14902 * and assume the segment is valid. 14903 */ 14904 tcp->tcp_ts_recent = 14905 tcpoptp->tcp_opt_ts_val; 14906 } 14907 } 14908 } else { 14909 /* 14910 * If we don't get a timestamp on every packet, we 14911 * figure we can't really trust 'em, so we stop sending 14912 * and parsing them. 14913 */ 14914 tcp->tcp_snd_ts_ok = B_FALSE; 14915 14916 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14917 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14918 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 14919 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 14920 if (tcp->tcp_snd_sack_ok) { 14921 ASSERT(tcp->tcp_sack_info != NULL); 14922 tcp->tcp_max_sack_blk = 4; 14923 } 14924 } 14925 return (B_TRUE); 14926 } 14927 14928 /* 14929 * Attach ancillary data to a received TCP segments for the 14930 * ancillary pieces requested by the application that are 14931 * different than they were in the previous data segment. 14932 * 14933 * Save the "current" values once memory allocation is ok so that 14934 * when memory allocation fails we can just wait for the next data segment. 14935 */ 14936 static mblk_t * 14937 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 14938 { 14939 struct T_optdata_ind *todi; 14940 int optlen; 14941 uchar_t *optptr; 14942 struct T_opthdr *toh; 14943 uint_t addflag; /* Which pieces to add */ 14944 mblk_t *mp1; 14945 14946 optlen = 0; 14947 addflag = 0; 14948 /* If app asked for pktinfo and the index has changed ... */ 14949 if ((ipp->ipp_fields & IPPF_IFINDEX) && 14950 ipp->ipp_ifindex != tcp->tcp_recvifindex && 14951 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 14952 optlen += sizeof (struct T_opthdr) + 14953 sizeof (struct in6_pktinfo); 14954 addflag |= TCP_IPV6_RECVPKTINFO; 14955 } 14956 /* If app asked for hoplimit and it has changed ... */ 14957 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 14958 ipp->ipp_hoplimit != tcp->tcp_recvhops && 14959 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 14960 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14961 addflag |= TCP_IPV6_RECVHOPLIMIT; 14962 } 14963 /* If app asked for tclass and it has changed ... */ 14964 if ((ipp->ipp_fields & IPPF_TCLASS) && 14965 ipp->ipp_tclass != tcp->tcp_recvtclass && 14966 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 14967 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14968 addflag |= TCP_IPV6_RECVTCLASS; 14969 } 14970 /* 14971 * If app asked for hopbyhop headers and it has changed ... 14972 * For security labels, note that (1) security labels can't change on 14973 * a connected socket at all, (2) we're connected to at most one peer, 14974 * (3) if anything changes, then it must be some other extra option. 14975 */ 14976 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 14977 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 14978 (ipp->ipp_fields & IPPF_HOPOPTS), 14979 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 14980 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 14981 tcp->tcp_label_len; 14982 addflag |= TCP_IPV6_RECVHOPOPTS; 14983 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 14984 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 14985 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 14986 return (mp); 14987 } 14988 /* If app asked for dst headers before routing headers ... */ 14989 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 14990 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 14991 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14992 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 14993 optlen += sizeof (struct T_opthdr) + 14994 ipp->ipp_rtdstoptslen; 14995 addflag |= TCP_IPV6_RECVRTDSTOPTS; 14996 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 14997 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 14998 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 14999 return (mp); 15000 } 15001 /* If app asked for routing headers and it has changed ... */ 15002 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15003 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15004 (ipp->ipp_fields & IPPF_RTHDR), 15005 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15006 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15007 addflag |= TCP_IPV6_RECVRTHDR; 15008 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15009 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15010 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15011 return (mp); 15012 } 15013 /* If app asked for dest headers and it has changed ... */ 15014 if ((tcp->tcp_ipv6_recvancillary & 15015 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15016 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15017 (ipp->ipp_fields & IPPF_DSTOPTS), 15018 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15019 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15020 addflag |= TCP_IPV6_RECVDSTOPTS; 15021 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15022 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15023 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15024 return (mp); 15025 } 15026 15027 if (optlen == 0) { 15028 /* Nothing to add */ 15029 return (mp); 15030 } 15031 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15032 if (mp1 == NULL) { 15033 /* 15034 * Defer sending ancillary data until the next TCP segment 15035 * arrives. 15036 */ 15037 return (mp); 15038 } 15039 mp1->b_cont = mp; 15040 mp = mp1; 15041 mp->b_wptr += sizeof (*todi) + optlen; 15042 mp->b_datap->db_type = M_PROTO; 15043 todi = (struct T_optdata_ind *)mp->b_rptr; 15044 todi->PRIM_type = T_OPTDATA_IND; 15045 todi->DATA_flag = 1; /* MORE data */ 15046 todi->OPT_length = optlen; 15047 todi->OPT_offset = sizeof (*todi); 15048 optptr = (uchar_t *)&todi[1]; 15049 /* 15050 * If app asked for pktinfo and the index has changed ... 15051 * Note that the local address never changes for the connection. 15052 */ 15053 if (addflag & TCP_IPV6_RECVPKTINFO) { 15054 struct in6_pktinfo *pkti; 15055 15056 toh = (struct T_opthdr *)optptr; 15057 toh->level = IPPROTO_IPV6; 15058 toh->name = IPV6_PKTINFO; 15059 toh->len = sizeof (*toh) + sizeof (*pkti); 15060 toh->status = 0; 15061 optptr += sizeof (*toh); 15062 pkti = (struct in6_pktinfo *)optptr; 15063 if (tcp->tcp_ipversion == IPV6_VERSION) 15064 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15065 else 15066 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15067 &pkti->ipi6_addr); 15068 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15069 optptr += sizeof (*pkti); 15070 ASSERT(OK_32PTR(optptr)); 15071 /* Save as "last" value */ 15072 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15073 } 15074 /* If app asked for hoplimit and it has changed ... */ 15075 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15076 toh = (struct T_opthdr *)optptr; 15077 toh->level = IPPROTO_IPV6; 15078 toh->name = IPV6_HOPLIMIT; 15079 toh->len = sizeof (*toh) + sizeof (uint_t); 15080 toh->status = 0; 15081 optptr += sizeof (*toh); 15082 *(uint_t *)optptr = ipp->ipp_hoplimit; 15083 optptr += sizeof (uint_t); 15084 ASSERT(OK_32PTR(optptr)); 15085 /* Save as "last" value */ 15086 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15087 } 15088 /* If app asked for tclass and it has changed ... */ 15089 if (addflag & TCP_IPV6_RECVTCLASS) { 15090 toh = (struct T_opthdr *)optptr; 15091 toh->level = IPPROTO_IPV6; 15092 toh->name = IPV6_TCLASS; 15093 toh->len = sizeof (*toh) + sizeof (uint_t); 15094 toh->status = 0; 15095 optptr += sizeof (*toh); 15096 *(uint_t *)optptr = ipp->ipp_tclass; 15097 optptr += sizeof (uint_t); 15098 ASSERT(OK_32PTR(optptr)); 15099 /* Save as "last" value */ 15100 tcp->tcp_recvtclass = ipp->ipp_tclass; 15101 } 15102 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15103 toh = (struct T_opthdr *)optptr; 15104 toh->level = IPPROTO_IPV6; 15105 toh->name = IPV6_HOPOPTS; 15106 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15107 tcp->tcp_label_len; 15108 toh->status = 0; 15109 optptr += sizeof (*toh); 15110 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15111 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15112 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15113 ASSERT(OK_32PTR(optptr)); 15114 /* Save as last value */ 15115 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15116 (ipp->ipp_fields & IPPF_HOPOPTS), 15117 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15118 } 15119 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15120 toh = (struct T_opthdr *)optptr; 15121 toh->level = IPPROTO_IPV6; 15122 toh->name = IPV6_RTHDRDSTOPTS; 15123 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15124 toh->status = 0; 15125 optptr += sizeof (*toh); 15126 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15127 optptr += ipp->ipp_rtdstoptslen; 15128 ASSERT(OK_32PTR(optptr)); 15129 /* Save as last value */ 15130 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15131 &tcp->tcp_rtdstoptslen, 15132 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15133 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15134 } 15135 if (addflag & TCP_IPV6_RECVRTHDR) { 15136 toh = (struct T_opthdr *)optptr; 15137 toh->level = IPPROTO_IPV6; 15138 toh->name = IPV6_RTHDR; 15139 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15140 toh->status = 0; 15141 optptr += sizeof (*toh); 15142 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15143 optptr += ipp->ipp_rthdrlen; 15144 ASSERT(OK_32PTR(optptr)); 15145 /* Save as last value */ 15146 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15147 (ipp->ipp_fields & IPPF_RTHDR), 15148 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15149 } 15150 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15151 toh = (struct T_opthdr *)optptr; 15152 toh->level = IPPROTO_IPV6; 15153 toh->name = IPV6_DSTOPTS; 15154 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15155 toh->status = 0; 15156 optptr += sizeof (*toh); 15157 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15158 optptr += ipp->ipp_dstoptslen; 15159 ASSERT(OK_32PTR(optptr)); 15160 /* Save as last value */ 15161 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15162 (ipp->ipp_fields & IPPF_DSTOPTS), 15163 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15164 } 15165 ASSERT(optptr == mp->b_wptr); 15166 return (mp); 15167 } 15168 15169 15170 /* 15171 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15172 * or a "bad" IRE detected by tcp_adapt_ire. 15173 * We can't tell if the failure was due to the laddr or the faddr 15174 * thus we clear out all addresses and ports. 15175 */ 15176 static void 15177 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15178 { 15179 queue_t *q = tcp->tcp_rq; 15180 tcph_t *tcph; 15181 struct T_error_ack *tea; 15182 conn_t *connp = tcp->tcp_connp; 15183 15184 15185 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15186 15187 if (mp->b_cont) { 15188 freemsg(mp->b_cont); 15189 mp->b_cont = NULL; 15190 } 15191 tea = (struct T_error_ack *)mp->b_rptr; 15192 switch (tea->PRIM_type) { 15193 case T_BIND_ACK: 15194 /* 15195 * Need to unbind with classifier since we were just told that 15196 * our bind succeeded. 15197 */ 15198 tcp->tcp_hard_bound = B_FALSE; 15199 tcp->tcp_hard_binding = B_FALSE; 15200 15201 ipcl_hash_remove(connp); 15202 /* Reuse the mblk if possible */ 15203 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15204 sizeof (*tea)); 15205 mp->b_rptr = mp->b_datap->db_base; 15206 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15207 tea = (struct T_error_ack *)mp->b_rptr; 15208 tea->PRIM_type = T_ERROR_ACK; 15209 tea->TLI_error = TSYSERR; 15210 tea->UNIX_error = error; 15211 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15212 tea->ERROR_prim = T_CONN_REQ; 15213 } else { 15214 tea->ERROR_prim = O_T_BIND_REQ; 15215 } 15216 break; 15217 15218 case T_ERROR_ACK: 15219 if (tcp->tcp_state >= TCPS_SYN_SENT) 15220 tea->ERROR_prim = T_CONN_REQ; 15221 break; 15222 default: 15223 panic("tcp_bind_failed: unexpected TPI type"); 15224 /*NOTREACHED*/ 15225 } 15226 15227 tcp->tcp_state = TCPS_IDLE; 15228 if (tcp->tcp_ipversion == IPV4_VERSION) 15229 tcp->tcp_ipha->ipha_src = 0; 15230 else 15231 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15232 /* 15233 * Copy of the src addr. in tcp_t is needed since 15234 * the lookup funcs. can only look at tcp_t 15235 */ 15236 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15237 15238 tcph = tcp->tcp_tcph; 15239 tcph->th_lport[0] = 0; 15240 tcph->th_lport[1] = 0; 15241 tcp_bind_hash_remove(tcp); 15242 bzero(&connp->u_port, sizeof (connp->u_port)); 15243 /* blow away saved option results if any */ 15244 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15245 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15246 15247 conn_delete_ire(tcp->tcp_connp, NULL); 15248 putnext(q, mp); 15249 } 15250 15251 /* 15252 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15253 * messages. 15254 */ 15255 void 15256 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15257 { 15258 mblk_t *mp1; 15259 uchar_t *rptr = mp->b_rptr; 15260 queue_t *q = tcp->tcp_rq; 15261 struct T_error_ack *tea; 15262 uint32_t mss; 15263 mblk_t *syn_mp; 15264 mblk_t *mdti; 15265 int retval; 15266 mblk_t *ire_mp; 15267 15268 switch (mp->b_datap->db_type) { 15269 case M_PROTO: 15270 case M_PCPROTO: 15271 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15272 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15273 break; 15274 tea = (struct T_error_ack *)rptr; 15275 switch (tea->PRIM_type) { 15276 case T_BIND_ACK: 15277 /* 15278 * Adapt Multidata information, if any. The 15279 * following tcp_mdt_update routine will free 15280 * the message. 15281 */ 15282 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15283 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15284 b_rptr)->mdt_capab, B_TRUE); 15285 freemsg(mdti); 15286 } 15287 15288 /* Get the IRE, if we had requested for it */ 15289 ire_mp = tcp_ire_mp(mp); 15290 15291 if (tcp->tcp_hard_binding) { 15292 tcp->tcp_hard_binding = B_FALSE; 15293 tcp->tcp_hard_bound = B_TRUE; 15294 CL_INET_CONNECT(tcp); 15295 } else { 15296 if (ire_mp != NULL) 15297 freeb(ire_mp); 15298 goto after_syn_sent; 15299 } 15300 15301 retval = tcp_adapt_ire(tcp, ire_mp); 15302 if (ire_mp != NULL) 15303 freeb(ire_mp); 15304 if (retval == 0) { 15305 tcp_bind_failed(tcp, mp, 15306 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15307 ENETUNREACH : EADDRNOTAVAIL)); 15308 return; 15309 } 15310 /* 15311 * Don't let an endpoint connect to itself. 15312 * Also checked in tcp_connect() but that 15313 * check can't handle the case when the 15314 * local IP address is INADDR_ANY. 15315 */ 15316 if (tcp->tcp_ipversion == IPV4_VERSION) { 15317 if ((tcp->tcp_ipha->ipha_dst == 15318 tcp->tcp_ipha->ipha_src) && 15319 (BE16_EQL(tcp->tcp_tcph->th_lport, 15320 tcp->tcp_tcph->th_fport))) { 15321 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15322 return; 15323 } 15324 } else { 15325 if (IN6_ARE_ADDR_EQUAL( 15326 &tcp->tcp_ip6h->ip6_dst, 15327 &tcp->tcp_ip6h->ip6_src) && 15328 (BE16_EQL(tcp->tcp_tcph->th_lport, 15329 tcp->tcp_tcph->th_fport))) { 15330 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15331 return; 15332 } 15333 } 15334 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15335 /* 15336 * This should not be possible! Just for 15337 * defensive coding... 15338 */ 15339 if (tcp->tcp_state != TCPS_SYN_SENT) 15340 goto after_syn_sent; 15341 15342 if (is_system_labeled() && 15343 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15344 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15345 return; 15346 } 15347 15348 ASSERT(q == tcp->tcp_rq); 15349 /* 15350 * tcp_adapt_ire() does not adjust 15351 * for TCP/IP header length. 15352 */ 15353 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15354 15355 /* 15356 * Just make sure our rwnd is at 15357 * least tcp_recv_hiwat_mss * MSS 15358 * large, and round up to the nearest 15359 * MSS. 15360 * 15361 * We do the round up here because 15362 * we need to get the interface 15363 * MTU first before we can do the 15364 * round up. 15365 */ 15366 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15367 tcp_recv_hiwat_minmss * mss); 15368 q->q_hiwat = tcp->tcp_rwnd; 15369 tcp_set_ws_value(tcp); 15370 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15371 tcp->tcp_tcph->th_win); 15372 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15373 tcp->tcp_snd_ws_ok = B_TRUE; 15374 15375 /* 15376 * Set tcp_snd_ts_ok to true 15377 * so that tcp_xmit_mp will 15378 * include the timestamp 15379 * option in the SYN segment. 15380 */ 15381 if (tcp_tstamp_always || 15382 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15383 tcp->tcp_snd_ts_ok = B_TRUE; 15384 } 15385 15386 /* 15387 * tcp_snd_sack_ok can be set in 15388 * tcp_adapt_ire() if the sack metric 15389 * is set. So check it here also. 15390 */ 15391 if (tcp_sack_permitted == 2 || 15392 tcp->tcp_snd_sack_ok) { 15393 if (tcp->tcp_sack_info == NULL) { 15394 tcp->tcp_sack_info = 15395 kmem_cache_alloc(tcp_sack_info_cache, 15396 KM_SLEEP); 15397 } 15398 tcp->tcp_snd_sack_ok = B_TRUE; 15399 } 15400 15401 /* 15402 * Should we use ECN? Note that the current 15403 * default value (SunOS 5.9) of tcp_ecn_permitted 15404 * is 1. The reason for doing this is that there 15405 * are equipments out there that will drop ECN 15406 * enabled IP packets. Setting it to 1 avoids 15407 * compatibility problems. 15408 */ 15409 if (tcp_ecn_permitted == 2) 15410 tcp->tcp_ecn_ok = B_TRUE; 15411 15412 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15413 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15414 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15415 if (syn_mp) { 15416 cred_t *cr; 15417 pid_t pid; 15418 15419 /* 15420 * Obtain the credential from the 15421 * thread calling connect(); the credential 15422 * lives on in the second mblk which 15423 * originated from T_CONN_REQ and is echoed 15424 * with the T_BIND_ACK from ip. If none 15425 * can be found, default to the creator 15426 * of the socket. 15427 */ 15428 if (mp->b_cont == NULL || 15429 (cr = DB_CRED(mp->b_cont)) == NULL) { 15430 cr = tcp->tcp_cred; 15431 pid = tcp->tcp_cpid; 15432 } else { 15433 pid = DB_CPID(mp->b_cont); 15434 } 15435 15436 TCP_RECORD_TRACE(tcp, syn_mp, 15437 TCP_TRACE_SEND_PKT); 15438 mblk_setcred(syn_mp, cr); 15439 DB_CPID(syn_mp) = pid; 15440 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15441 } 15442 after_syn_sent: 15443 /* 15444 * A trailer mblk indicates a waiting client upstream. 15445 * We complete here the processing begun in 15446 * either tcp_bind() or tcp_connect() by passing 15447 * upstream the reply message they supplied. 15448 */ 15449 mp1 = mp; 15450 mp = mp->b_cont; 15451 freeb(mp1); 15452 if (mp) 15453 break; 15454 return; 15455 case T_ERROR_ACK: 15456 if (tcp->tcp_debug) { 15457 (void) strlog(TCP_MOD_ID, 0, 1, 15458 SL_TRACE|SL_ERROR, 15459 "tcp_rput_other: case T_ERROR_ACK, " 15460 "ERROR_prim == %d", 15461 tea->ERROR_prim); 15462 } 15463 switch (tea->ERROR_prim) { 15464 case O_T_BIND_REQ: 15465 case T_BIND_REQ: 15466 tcp_bind_failed(tcp, mp, 15467 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15468 ENETUNREACH : EADDRNOTAVAIL)); 15469 return; 15470 case T_UNBIND_REQ: 15471 tcp->tcp_hard_binding = B_FALSE; 15472 tcp->tcp_hard_bound = B_FALSE; 15473 if (mp->b_cont) { 15474 freemsg(mp->b_cont); 15475 mp->b_cont = NULL; 15476 } 15477 if (tcp->tcp_unbind_pending) 15478 tcp->tcp_unbind_pending = 0; 15479 else { 15480 /* From tcp_ip_unbind() - free */ 15481 freemsg(mp); 15482 return; 15483 } 15484 break; 15485 case T_SVR4_OPTMGMT_REQ: 15486 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15487 /* T_OPTMGMT_REQ generated by TCP */ 15488 printf("T_SVR4_OPTMGMT_REQ failed " 15489 "%d/%d - dropped (cnt %d)\n", 15490 tea->TLI_error, tea->UNIX_error, 15491 tcp->tcp_drop_opt_ack_cnt); 15492 freemsg(mp); 15493 tcp->tcp_drop_opt_ack_cnt--; 15494 return; 15495 } 15496 break; 15497 } 15498 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15499 tcp->tcp_drop_opt_ack_cnt > 0) { 15500 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15501 "- dropped (cnt %d)\n", 15502 tea->TLI_error, tea->UNIX_error, 15503 tcp->tcp_drop_opt_ack_cnt); 15504 freemsg(mp); 15505 tcp->tcp_drop_opt_ack_cnt--; 15506 return; 15507 } 15508 break; 15509 case T_OPTMGMT_ACK: 15510 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15511 /* T_OPTMGMT_REQ generated by TCP */ 15512 freemsg(mp); 15513 tcp->tcp_drop_opt_ack_cnt--; 15514 return; 15515 } 15516 break; 15517 default: 15518 break; 15519 } 15520 break; 15521 case M_CTL: 15522 /* 15523 * ICMP messages. 15524 */ 15525 tcp_icmp_error(tcp, mp); 15526 return; 15527 case M_FLUSH: 15528 if (*rptr & FLUSHR) 15529 flushq(q, FLUSHDATA); 15530 break; 15531 default: 15532 break; 15533 } 15534 /* 15535 * Make sure we set this bit before sending the ACK for 15536 * bind. Otherwise accept could possibly run and free 15537 * this tcp struct. 15538 */ 15539 putnext(q, mp); 15540 } 15541 15542 /* 15543 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15544 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15545 * tcp_rsrv() try again. 15546 */ 15547 static void 15548 tcp_ordrel_kick(void *arg) 15549 { 15550 conn_t *connp = (conn_t *)arg; 15551 tcp_t *tcp = connp->conn_tcp; 15552 15553 tcp->tcp_ordrelid = 0; 15554 tcp->tcp_timeout = B_FALSE; 15555 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15556 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15557 qenable(tcp->tcp_rq); 15558 } 15559 } 15560 15561 /* ARGSUSED */ 15562 static void 15563 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15564 { 15565 conn_t *connp = (conn_t *)arg; 15566 tcp_t *tcp = connp->conn_tcp; 15567 queue_t *q = tcp->tcp_rq; 15568 uint_t thwin; 15569 15570 freeb(mp); 15571 15572 TCP_STAT(tcp_rsrv_calls); 15573 15574 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15575 return; 15576 } 15577 15578 if (tcp->tcp_fused) { 15579 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15580 15581 ASSERT(tcp->tcp_fused); 15582 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15583 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15584 ASSERT(!TCP_IS_DETACHED(tcp)); 15585 ASSERT(tcp->tcp_connp->conn_sqp == 15586 peer_tcp->tcp_connp->conn_sqp); 15587 15588 /* 15589 * Normally we would not get backenabled in synchronous 15590 * streams mode, but in case this happens, we need to plug 15591 * synchronous streams during our drain to prevent a race 15592 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15593 */ 15594 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15595 if (tcp->tcp_rcv_list != NULL) 15596 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15597 15598 tcp_clrqfull(peer_tcp); 15599 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15600 TCP_STAT(tcp_fusion_backenabled); 15601 return; 15602 } 15603 15604 if (canputnext(q)) { 15605 tcp->tcp_rwnd = q->q_hiwat; 15606 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15607 << tcp->tcp_rcv_ws; 15608 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15609 /* 15610 * Send back a window update immediately if TCP is above 15611 * ESTABLISHED state and the increase of the rcv window 15612 * that the other side knows is at least 1 MSS after flow 15613 * control is lifted. 15614 */ 15615 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15616 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15617 tcp_xmit_ctl(NULL, tcp, 15618 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15619 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15620 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15621 } 15622 } 15623 /* Handle a failure to allocate a T_ORDREL_IND here */ 15624 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15625 ASSERT(tcp->tcp_listener == NULL); 15626 if (tcp->tcp_rcv_list != NULL) { 15627 (void) tcp_rcv_drain(q, tcp); 15628 } 15629 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15630 mp = mi_tpi_ordrel_ind(); 15631 if (mp) { 15632 tcp->tcp_ordrel_done = B_TRUE; 15633 putnext(q, mp); 15634 if (tcp->tcp_deferred_clean_death) { 15635 /* 15636 * tcp_clean_death was deferred for 15637 * T_ORDREL_IND - do it now 15638 */ 15639 tcp->tcp_deferred_clean_death = B_FALSE; 15640 (void) tcp_clean_death(tcp, 15641 tcp->tcp_client_errno, 22); 15642 } 15643 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15644 /* 15645 * If there isn't already a timer running 15646 * start one. Use a 4 second 15647 * timer as a fallback since it can't fail. 15648 */ 15649 tcp->tcp_timeout = B_TRUE; 15650 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15651 MSEC_TO_TICK(4000)); 15652 } 15653 } 15654 } 15655 15656 /* 15657 * The read side service routine is called mostly when we get back-enabled as a 15658 * result of flow control relief. Since we don't actually queue anything in 15659 * TCP, we have no data to send out of here. What we do is clear the receive 15660 * window, and send out a window update. 15661 * This routine is also called to drive an orderly release message upstream 15662 * if the attempt in tcp_rput failed. 15663 */ 15664 static void 15665 tcp_rsrv(queue_t *q) 15666 { 15667 conn_t *connp = Q_TO_CONN(q); 15668 tcp_t *tcp = connp->conn_tcp; 15669 mblk_t *mp; 15670 15671 /* No code does a putq on the read side */ 15672 ASSERT(q->q_first == NULL); 15673 15674 /* Nothing to do for the default queue */ 15675 if (q == tcp_g_q) { 15676 return; 15677 } 15678 15679 mp = allocb(0, BPRI_HI); 15680 if (mp == NULL) { 15681 /* 15682 * We are under memory pressure. Return for now and we 15683 * we will be called again later. 15684 */ 15685 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15686 /* 15687 * If there isn't already a timer running 15688 * start one. Use a 4 second 15689 * timer as a fallback since it can't fail. 15690 */ 15691 tcp->tcp_timeout = B_TRUE; 15692 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15693 MSEC_TO_TICK(4000)); 15694 } 15695 return; 15696 } 15697 CONN_INC_REF(connp); 15698 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15699 SQTAG_TCP_RSRV); 15700 } 15701 15702 /* 15703 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15704 * We do not allow the receive window to shrink. After setting rwnd, 15705 * set the flow control hiwat of the stream. 15706 * 15707 * This function is called in 2 cases: 15708 * 15709 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15710 * connection (passive open) and in tcp_rput_data() for active connect. 15711 * This is called after tcp_mss_set() when the desired MSS value is known. 15712 * This makes sure that our window size is a mutiple of the other side's 15713 * MSS. 15714 * 2) Handling SO_RCVBUF option. 15715 * 15716 * It is ASSUMED that the requested size is a multiple of the current MSS. 15717 * 15718 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15719 * user requests so. 15720 */ 15721 static int 15722 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15723 { 15724 uint32_t mss = tcp->tcp_mss; 15725 uint32_t old_max_rwnd; 15726 uint32_t max_transmittable_rwnd; 15727 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15728 15729 if (tcp->tcp_fused) { 15730 size_t sth_hiwat; 15731 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15732 15733 ASSERT(peer_tcp != NULL); 15734 /* 15735 * Record the stream head's high water mark for 15736 * this endpoint; this is used for flow-control 15737 * purposes in tcp_fuse_output(). 15738 */ 15739 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15740 if (!tcp_detached) 15741 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15742 15743 /* 15744 * In the fusion case, the maxpsz stream head value of 15745 * our peer is set according to its send buffer size 15746 * and our receive buffer size; since the latter may 15747 * have changed we need to update the peer's maxpsz. 15748 */ 15749 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15750 return (rwnd); 15751 } 15752 15753 if (tcp_detached) 15754 old_max_rwnd = tcp->tcp_rwnd; 15755 else 15756 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15757 15758 /* 15759 * Insist on a receive window that is at least 15760 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15761 * funny TCP interactions of Nagle algorithm, SWS avoidance 15762 * and delayed acknowledgement. 15763 */ 15764 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15765 15766 /* 15767 * If window size info has already been exchanged, TCP should not 15768 * shrink the window. Shrinking window is doable if done carefully. 15769 * We may add that support later. But so far there is not a real 15770 * need to do that. 15771 */ 15772 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15773 /* MSS may have changed, do a round up again. */ 15774 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15775 } 15776 15777 /* 15778 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15779 * can be applied even before the window scale option is decided. 15780 */ 15781 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15782 if (rwnd > max_transmittable_rwnd) { 15783 rwnd = max_transmittable_rwnd - 15784 (max_transmittable_rwnd % mss); 15785 if (rwnd < mss) 15786 rwnd = max_transmittable_rwnd; 15787 /* 15788 * If we're over the limit we may have to back down tcp_rwnd. 15789 * The increment below won't work for us. So we set all three 15790 * here and the increment below will have no effect. 15791 */ 15792 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15793 } 15794 if (tcp->tcp_localnet) { 15795 tcp->tcp_rack_abs_max = 15796 MIN(tcp_local_dacks_max, rwnd / mss / 2); 15797 } else { 15798 /* 15799 * For a remote host on a different subnet (through a router), 15800 * we ack every other packet to be conforming to RFC1122. 15801 * tcp_deferred_acks_max is default to 2. 15802 */ 15803 tcp->tcp_rack_abs_max = 15804 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 15805 } 15806 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15807 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15808 else 15809 tcp->tcp_rack_cur_max = 0; 15810 /* 15811 * Increment the current rwnd by the amount the maximum grew (we 15812 * can not overwrite it since we might be in the middle of a 15813 * connection.) 15814 */ 15815 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15816 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15817 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15818 tcp->tcp_cwnd_max = rwnd; 15819 15820 if (tcp_detached) 15821 return (rwnd); 15822 /* 15823 * We set the maximum receive window into rq->q_hiwat. 15824 * This is not actually used for flow control. 15825 */ 15826 tcp->tcp_rq->q_hiwat = rwnd; 15827 /* 15828 * Set the Stream head high water mark. This doesn't have to be 15829 * here, since we are simply using default values, but we would 15830 * prefer to choose these values algorithmically, with a likely 15831 * relationship to rwnd. 15832 */ 15833 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 15834 return (rwnd); 15835 } 15836 15837 /* 15838 * Return SNMP stuff in buffer in mpdata. 15839 */ 15840 int 15841 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15842 { 15843 mblk_t *mpdata; 15844 mblk_t *mp_conn_ctl = NULL; 15845 mblk_t *mp_conn_tail; 15846 mblk_t *mp_attr_ctl = NULL; 15847 mblk_t *mp_attr_tail; 15848 mblk_t *mp6_conn_ctl = NULL; 15849 mblk_t *mp6_conn_tail; 15850 mblk_t *mp6_attr_ctl = NULL; 15851 mblk_t *mp6_attr_tail; 15852 struct opthdr *optp; 15853 mib2_tcpConnEntry_t tce; 15854 mib2_tcp6ConnEntry_t tce6; 15855 mib2_transportMLPEntry_t mlp; 15856 connf_t *connfp; 15857 conn_t *connp; 15858 int i; 15859 boolean_t ispriv; 15860 zoneid_t zoneid; 15861 int v4_conn_idx; 15862 int v6_conn_idx; 15863 15864 if (mpctl == NULL || 15865 (mpdata = mpctl->b_cont) == NULL || 15866 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15867 (mp_attr_ctl = copymsg(mpctl)) == NULL || 15868 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 15869 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 15870 freemsg(mp_conn_ctl); 15871 freemsg(mp_attr_ctl); 15872 freemsg(mp6_conn_ctl); 15873 freemsg(mp6_attr_ctl); 15874 return (0); 15875 } 15876 15877 /* build table of connections -- need count in fixed part */ 15878 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 15879 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 15880 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 15881 SET_MIB(tcp_mib.tcpMaxConn, -1); 15882 SET_MIB(tcp_mib.tcpCurrEstab, 0); 15883 15884 ispriv = 15885 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15886 zoneid = Q_TO_CONN(q)->conn_zoneid; 15887 15888 v4_conn_idx = v6_conn_idx = 0; 15889 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 15890 15891 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15892 15893 connfp = &ipcl_globalhash_fanout[i]; 15894 15895 connp = NULL; 15896 15897 while ((connp = 15898 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15899 tcp_t *tcp; 15900 boolean_t needattr; 15901 15902 if (connp->conn_zoneid != zoneid) 15903 continue; /* not in this zone */ 15904 15905 tcp = connp->conn_tcp; 15906 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 15907 tcp->tcp_ibsegs = 0; 15908 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 15909 tcp->tcp_obsegs = 0; 15910 15911 tce6.tcp6ConnState = tce.tcpConnState = 15912 tcp_snmp_state(tcp); 15913 if (tce.tcpConnState == MIB2_TCP_established || 15914 tce.tcpConnState == MIB2_TCP_closeWait) 15915 BUMP_MIB(&tcp_mib, tcpCurrEstab); 15916 15917 needattr = B_FALSE; 15918 bzero(&mlp, sizeof (mlp)); 15919 if (connp->conn_mlp_type != mlptSingle) { 15920 if (connp->conn_mlp_type == mlptShared || 15921 connp->conn_mlp_type == mlptBoth) 15922 mlp.tme_flags |= MIB2_TMEF_SHARED; 15923 if (connp->conn_mlp_type == mlptPrivate || 15924 connp->conn_mlp_type == mlptBoth) 15925 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 15926 needattr = B_TRUE; 15927 } 15928 if (connp->conn_peercred != NULL) { 15929 ts_label_t *tsl; 15930 15931 tsl = crgetlabel(connp->conn_peercred); 15932 mlp.tme_doi = label2doi(tsl); 15933 mlp.tme_label = *label2bslabel(tsl); 15934 needattr = B_TRUE; 15935 } 15936 15937 /* Create a message to report on IPv6 entries */ 15938 if (tcp->tcp_ipversion == IPV6_VERSION) { 15939 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15940 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15941 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15942 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15943 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15944 /* Don't want just anybody seeing these... */ 15945 if (ispriv) { 15946 tce6.tcp6ConnEntryInfo.ce_snxt = 15947 tcp->tcp_snxt; 15948 tce6.tcp6ConnEntryInfo.ce_suna = 15949 tcp->tcp_suna; 15950 tce6.tcp6ConnEntryInfo.ce_rnxt = 15951 tcp->tcp_rnxt; 15952 tce6.tcp6ConnEntryInfo.ce_rack = 15953 tcp->tcp_rack; 15954 } else { 15955 /* 15956 * Netstat, unfortunately, uses this to 15957 * get send/receive queue sizes. How to fix? 15958 * Why not compute the difference only? 15959 */ 15960 tce6.tcp6ConnEntryInfo.ce_snxt = 15961 tcp->tcp_snxt - tcp->tcp_suna; 15962 tce6.tcp6ConnEntryInfo.ce_suna = 0; 15963 tce6.tcp6ConnEntryInfo.ce_rnxt = 15964 tcp->tcp_rnxt - tcp->tcp_rack; 15965 tce6.tcp6ConnEntryInfo.ce_rack = 0; 15966 } 15967 15968 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15969 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15970 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 15971 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 15972 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 15973 15974 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 15975 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 15976 15977 mlp.tme_connidx = v6_conn_idx++; 15978 if (needattr) 15979 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 15980 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 15981 } 15982 /* 15983 * Create an IPv4 table entry for IPv4 entries and also 15984 * for IPv6 entries which are bound to in6addr_any 15985 * but don't have IPV6_V6ONLY set. 15986 * (i.e. anything an IPv4 peer could connect to) 15987 */ 15988 if (tcp->tcp_ipversion == IPV4_VERSION || 15989 (tcp->tcp_state <= TCPS_LISTEN && 15990 !tcp->tcp_connp->conn_ipv6_v6only && 15991 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 15992 if (tcp->tcp_ipversion == IPV6_VERSION) { 15993 tce.tcpConnRemAddress = INADDR_ANY; 15994 tce.tcpConnLocalAddress = INADDR_ANY; 15995 } else { 15996 tce.tcpConnRemAddress = 15997 tcp->tcp_remote; 15998 tce.tcpConnLocalAddress = 15999 tcp->tcp_ip_src; 16000 } 16001 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16002 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16003 /* Don't want just anybody seeing these... */ 16004 if (ispriv) { 16005 tce.tcpConnEntryInfo.ce_snxt = 16006 tcp->tcp_snxt; 16007 tce.tcpConnEntryInfo.ce_suna = 16008 tcp->tcp_suna; 16009 tce.tcpConnEntryInfo.ce_rnxt = 16010 tcp->tcp_rnxt; 16011 tce.tcpConnEntryInfo.ce_rack = 16012 tcp->tcp_rack; 16013 } else { 16014 /* 16015 * Netstat, unfortunately, uses this to 16016 * get send/receive queue sizes. How 16017 * to fix? 16018 * Why not compute the difference only? 16019 */ 16020 tce.tcpConnEntryInfo.ce_snxt = 16021 tcp->tcp_snxt - tcp->tcp_suna; 16022 tce.tcpConnEntryInfo.ce_suna = 0; 16023 tce.tcpConnEntryInfo.ce_rnxt = 16024 tcp->tcp_rnxt - tcp->tcp_rack; 16025 tce.tcpConnEntryInfo.ce_rack = 0; 16026 } 16027 16028 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16029 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16030 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16031 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16032 tce.tcpConnEntryInfo.ce_state = 16033 tcp->tcp_state; 16034 16035 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16036 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16037 16038 mlp.tme_connidx = v4_conn_idx++; 16039 if (needattr) 16040 (void) snmp_append_data2( 16041 mp_attr_ctl->b_cont, 16042 &mp_attr_tail, (char *)&mlp, 16043 sizeof (mlp)); 16044 } 16045 } 16046 } 16047 16048 /* fixed length structure for IPv4 and IPv6 counters */ 16049 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16050 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 16051 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16052 optp->level = MIB2_TCP; 16053 optp->name = 0; 16054 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 16055 optp->len = msgdsize(mpdata); 16056 qreply(q, mpctl); 16057 16058 /* table of connections... */ 16059 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16060 sizeof (struct T_optmgmt_ack)]; 16061 optp->level = MIB2_TCP; 16062 optp->name = MIB2_TCP_CONN; 16063 optp->len = msgdsize(mp_conn_ctl->b_cont); 16064 qreply(q, mp_conn_ctl); 16065 16066 /* table of MLP attributes... */ 16067 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16068 sizeof (struct T_optmgmt_ack)]; 16069 optp->level = MIB2_TCP; 16070 optp->name = EXPER_XPORT_MLP; 16071 optp->len = msgdsize(mp_attr_ctl->b_cont); 16072 if (optp->len == 0) 16073 freemsg(mp_attr_ctl); 16074 else 16075 qreply(q, mp_attr_ctl); 16076 16077 /* table of IPv6 connections... */ 16078 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16079 sizeof (struct T_optmgmt_ack)]; 16080 optp->level = MIB2_TCP6; 16081 optp->name = MIB2_TCP6_CONN; 16082 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16083 qreply(q, mp6_conn_ctl); 16084 16085 /* table of IPv6 MLP attributes... */ 16086 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16087 sizeof (struct T_optmgmt_ack)]; 16088 optp->level = MIB2_TCP6; 16089 optp->name = EXPER_XPORT_MLP; 16090 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16091 if (optp->len == 0) 16092 freemsg(mp6_attr_ctl); 16093 else 16094 qreply(q, mp6_attr_ctl); 16095 return (1); 16096 } 16097 16098 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16099 /* ARGSUSED */ 16100 int 16101 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16102 { 16103 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16104 16105 switch (level) { 16106 case MIB2_TCP: 16107 switch (name) { 16108 case 13: 16109 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16110 return (0); 16111 /* TODO: delete entry defined by tce */ 16112 return (1); 16113 default: 16114 return (0); 16115 } 16116 default: 16117 return (1); 16118 } 16119 } 16120 16121 /* Translate TCP state to MIB2 TCP state. */ 16122 static int 16123 tcp_snmp_state(tcp_t *tcp) 16124 { 16125 if (tcp == NULL) 16126 return (0); 16127 16128 switch (tcp->tcp_state) { 16129 case TCPS_CLOSED: 16130 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16131 case TCPS_BOUND: 16132 return (MIB2_TCP_closed); 16133 case TCPS_LISTEN: 16134 return (MIB2_TCP_listen); 16135 case TCPS_SYN_SENT: 16136 return (MIB2_TCP_synSent); 16137 case TCPS_SYN_RCVD: 16138 return (MIB2_TCP_synReceived); 16139 case TCPS_ESTABLISHED: 16140 return (MIB2_TCP_established); 16141 case TCPS_CLOSE_WAIT: 16142 return (MIB2_TCP_closeWait); 16143 case TCPS_FIN_WAIT_1: 16144 return (MIB2_TCP_finWait1); 16145 case TCPS_CLOSING: 16146 return (MIB2_TCP_closing); 16147 case TCPS_LAST_ACK: 16148 return (MIB2_TCP_lastAck); 16149 case TCPS_FIN_WAIT_2: 16150 return (MIB2_TCP_finWait2); 16151 case TCPS_TIME_WAIT: 16152 return (MIB2_TCP_timeWait); 16153 default: 16154 return (0); 16155 } 16156 } 16157 16158 static char tcp_report_header[] = 16159 "TCP " MI_COL_HDRPAD_STR 16160 "zone dest snxt suna " 16161 "swnd rnxt rack rwnd rto mss w sw rw t " 16162 "recent [lport,fport] state"; 16163 16164 /* 16165 * TCP status report triggered via the Named Dispatch mechanism. 16166 */ 16167 /* ARGSUSED */ 16168 static void 16169 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16170 cred_t *cr) 16171 { 16172 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16173 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 16174 char cflag; 16175 in6_addr_t v6dst; 16176 char buf[80]; 16177 uint_t print_len, buf_len; 16178 16179 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16180 if (buf_len <= 0) 16181 return; 16182 16183 if (hashval >= 0) 16184 (void) sprintf(hash, "%03d ", hashval); 16185 else 16186 hash[0] = '\0'; 16187 16188 /* 16189 * Note that we use the remote address in the tcp_b structure. 16190 * This means that it will print out the real destination address, 16191 * not the next hop's address if source routing is used. This 16192 * avoid the confusion on the output because user may not 16193 * know that source routing is used for a connection. 16194 */ 16195 if (tcp->tcp_ipversion == IPV4_VERSION) { 16196 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16197 } else { 16198 v6dst = tcp->tcp_remote_v6; 16199 } 16200 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16201 /* 16202 * the ispriv checks are so that normal users cannot determine 16203 * sequence number information using NDD. 16204 */ 16205 16206 if (TCP_IS_DETACHED(tcp)) 16207 cflag = '*'; 16208 else 16209 cflag = ' '; 16210 print_len = snprintf((char *)mp->b_wptr, buf_len, 16211 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16212 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16213 hash, 16214 (void *)tcp, 16215 tcp->tcp_connp->conn_zoneid, 16216 addrbuf, 16217 (ispriv) ? tcp->tcp_snxt : 0, 16218 (ispriv) ? tcp->tcp_suna : 0, 16219 tcp->tcp_swnd, 16220 (ispriv) ? tcp->tcp_rnxt : 0, 16221 (ispriv) ? tcp->tcp_rack : 0, 16222 tcp->tcp_rwnd, 16223 tcp->tcp_rto, 16224 tcp->tcp_mss, 16225 tcp->tcp_snd_ws_ok, 16226 tcp->tcp_snd_ws, 16227 tcp->tcp_rcv_ws, 16228 tcp->tcp_snd_ts_ok, 16229 tcp->tcp_ts_recent, 16230 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16231 if (print_len < buf_len) { 16232 ((mblk_t *)mp)->b_wptr += print_len; 16233 } else { 16234 ((mblk_t *)mp)->b_wptr += buf_len; 16235 } 16236 } 16237 16238 /* 16239 * TCP status report (for listeners only) triggered via the Named Dispatch 16240 * mechanism. 16241 */ 16242 /* ARGSUSED */ 16243 static void 16244 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16245 { 16246 char addrbuf[INET6_ADDRSTRLEN]; 16247 in6_addr_t v6dst; 16248 uint_t print_len, buf_len; 16249 16250 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16251 if (buf_len <= 0) 16252 return; 16253 16254 if (tcp->tcp_ipversion == IPV4_VERSION) { 16255 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16256 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16257 } else { 16258 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16259 addrbuf, sizeof (addrbuf)); 16260 } 16261 print_len = snprintf((char *)mp->b_wptr, buf_len, 16262 "%03d " 16263 MI_COL_PTRFMT_STR 16264 "%d %s %05u %08u %d/%d/%d%c\n", 16265 hashval, (void *)tcp, 16266 tcp->tcp_connp->conn_zoneid, 16267 addrbuf, 16268 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16269 tcp->tcp_conn_req_seqnum, 16270 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16271 tcp->tcp_conn_req_max, 16272 tcp->tcp_syn_defense ? '*' : ' '); 16273 if (print_len < buf_len) { 16274 ((mblk_t *)mp)->b_wptr += print_len; 16275 } else { 16276 ((mblk_t *)mp)->b_wptr += buf_len; 16277 } 16278 } 16279 16280 /* TCP status report triggered via the Named Dispatch mechanism. */ 16281 /* ARGSUSED */ 16282 static int 16283 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16284 { 16285 tcp_t *tcp; 16286 int i; 16287 conn_t *connp; 16288 connf_t *connfp; 16289 zoneid_t zoneid; 16290 16291 /* 16292 * Because of the ndd constraint, at most we can have 64K buffer 16293 * to put in all TCP info. So to be more efficient, just 16294 * allocate a 64K buffer here, assuming we need that large buffer. 16295 * This may be a problem as any user can read tcp_status. Therefore 16296 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16297 * This should be OK as normal users should not do this too often. 16298 */ 16299 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16300 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16301 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16302 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16303 return (0); 16304 } 16305 } 16306 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16307 /* The following may work even if we cannot get a large buf. */ 16308 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16309 return (0); 16310 } 16311 16312 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16313 16314 zoneid = Q_TO_CONN(q)->conn_zoneid; 16315 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16316 16317 connfp = &ipcl_globalhash_fanout[i]; 16318 16319 connp = NULL; 16320 16321 while ((connp = 16322 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16323 tcp = connp->conn_tcp; 16324 if (zoneid != GLOBAL_ZONEID && 16325 zoneid != connp->conn_zoneid) 16326 continue; 16327 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16328 cr); 16329 } 16330 16331 } 16332 16333 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16334 return (0); 16335 } 16336 16337 /* TCP status report triggered via the Named Dispatch mechanism. */ 16338 /* ARGSUSED */ 16339 static int 16340 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16341 { 16342 tf_t *tbf; 16343 tcp_t *tcp; 16344 int i; 16345 zoneid_t zoneid; 16346 16347 /* Refer to comments in tcp_status_report(). */ 16348 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16349 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16350 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16351 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16352 return (0); 16353 } 16354 } 16355 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16356 /* The following may work even if we cannot get a large buf. */ 16357 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16358 return (0); 16359 } 16360 16361 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16362 16363 zoneid = Q_TO_CONN(q)->conn_zoneid; 16364 16365 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16366 tbf = &tcp_bind_fanout[i]; 16367 mutex_enter(&tbf->tf_lock); 16368 for (tcp = tbf->tf_tcp; tcp != NULL; 16369 tcp = tcp->tcp_bind_hash) { 16370 if (zoneid != GLOBAL_ZONEID && 16371 zoneid != tcp->tcp_connp->conn_zoneid) 16372 continue; 16373 CONN_INC_REF(tcp->tcp_connp); 16374 tcp_report_item(mp->b_cont, tcp, i, 16375 Q_TO_TCP(q), cr); 16376 CONN_DEC_REF(tcp->tcp_connp); 16377 } 16378 mutex_exit(&tbf->tf_lock); 16379 } 16380 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16381 return (0); 16382 } 16383 16384 /* TCP status report triggered via the Named Dispatch mechanism. */ 16385 /* ARGSUSED */ 16386 static int 16387 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16388 { 16389 connf_t *connfp; 16390 conn_t *connp; 16391 tcp_t *tcp; 16392 int i; 16393 zoneid_t zoneid; 16394 16395 /* Refer to comments in tcp_status_report(). */ 16396 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16397 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16398 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16399 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16400 return (0); 16401 } 16402 } 16403 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16404 /* The following may work even if we cannot get a large buf. */ 16405 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16406 return (0); 16407 } 16408 16409 (void) mi_mpprintf(mp, 16410 " TCP " MI_COL_HDRPAD_STR 16411 "zone IP addr port seqnum backlog (q0/q/max)"); 16412 16413 zoneid = Q_TO_CONN(q)->conn_zoneid; 16414 16415 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16416 connfp = &ipcl_bind_fanout[i]; 16417 connp = NULL; 16418 while ((connp = 16419 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16420 tcp = connp->conn_tcp; 16421 if (zoneid != GLOBAL_ZONEID && 16422 zoneid != connp->conn_zoneid) 16423 continue; 16424 tcp_report_listener(mp->b_cont, tcp, i); 16425 } 16426 } 16427 16428 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16429 return (0); 16430 } 16431 16432 /* TCP status report triggered via the Named Dispatch mechanism. */ 16433 /* ARGSUSED */ 16434 static int 16435 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16436 { 16437 connf_t *connfp; 16438 conn_t *connp; 16439 tcp_t *tcp; 16440 int i; 16441 zoneid_t zoneid; 16442 16443 /* Refer to comments in tcp_status_report(). */ 16444 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16445 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16446 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16447 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16448 return (0); 16449 } 16450 } 16451 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16452 /* The following may work even if we cannot get a large buf. */ 16453 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16454 return (0); 16455 } 16456 16457 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16458 ipcl_conn_fanout_size); 16459 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16460 16461 zoneid = Q_TO_CONN(q)->conn_zoneid; 16462 16463 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16464 connfp = &ipcl_conn_fanout[i]; 16465 connp = NULL; 16466 while ((connp = 16467 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16468 tcp = connp->conn_tcp; 16469 if (zoneid != GLOBAL_ZONEID && 16470 zoneid != connp->conn_zoneid) 16471 continue; 16472 tcp_report_item(mp->b_cont, tcp, i, 16473 Q_TO_TCP(q), cr); 16474 } 16475 } 16476 16477 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16478 return (0); 16479 } 16480 16481 /* TCP status report triggered via the Named Dispatch mechanism. */ 16482 /* ARGSUSED */ 16483 static int 16484 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16485 { 16486 tf_t *tf; 16487 tcp_t *tcp; 16488 int i; 16489 zoneid_t zoneid; 16490 16491 /* Refer to comments in tcp_status_report(). */ 16492 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16493 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16494 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16495 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16496 return (0); 16497 } 16498 } 16499 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16500 /* The following may work even if we cannot get a large buf. */ 16501 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16502 return (0); 16503 } 16504 16505 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16506 16507 zoneid = Q_TO_CONN(q)->conn_zoneid; 16508 16509 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16510 tf = &tcp_acceptor_fanout[i]; 16511 mutex_enter(&tf->tf_lock); 16512 for (tcp = tf->tf_tcp; tcp != NULL; 16513 tcp = tcp->tcp_acceptor_hash) { 16514 if (zoneid != GLOBAL_ZONEID && 16515 zoneid != tcp->tcp_connp->conn_zoneid) 16516 continue; 16517 tcp_report_item(mp->b_cont, tcp, i, 16518 Q_TO_TCP(q), cr); 16519 } 16520 mutex_exit(&tf->tf_lock); 16521 } 16522 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16523 return (0); 16524 } 16525 16526 /* 16527 * tcp_timer is the timer service routine. It handles the retransmission, 16528 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16529 * from the state of the tcp instance what kind of action needs to be done 16530 * at the time it is called. 16531 */ 16532 static void 16533 tcp_timer(void *arg) 16534 { 16535 mblk_t *mp; 16536 clock_t first_threshold; 16537 clock_t second_threshold; 16538 clock_t ms; 16539 uint32_t mss; 16540 conn_t *connp = (conn_t *)arg; 16541 tcp_t *tcp = connp->conn_tcp; 16542 16543 tcp->tcp_timer_tid = 0; 16544 16545 if (tcp->tcp_fused) 16546 return; 16547 16548 first_threshold = tcp->tcp_first_timer_threshold; 16549 second_threshold = tcp->tcp_second_timer_threshold; 16550 switch (tcp->tcp_state) { 16551 case TCPS_IDLE: 16552 case TCPS_BOUND: 16553 case TCPS_LISTEN: 16554 return; 16555 case TCPS_SYN_RCVD: { 16556 tcp_t *listener = tcp->tcp_listener; 16557 16558 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16559 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16560 /* it's our first timeout */ 16561 tcp->tcp_syn_rcvd_timeout = 1; 16562 mutex_enter(&listener->tcp_eager_lock); 16563 listener->tcp_syn_rcvd_timeout++; 16564 if (!listener->tcp_syn_defense && 16565 (listener->tcp_syn_rcvd_timeout > 16566 (tcp_conn_req_max_q0 >> 2)) && 16567 (tcp_conn_req_max_q0 > 200)) { 16568 /* We may be under attack. Put on a defense. */ 16569 listener->tcp_syn_defense = B_TRUE; 16570 cmn_err(CE_WARN, "High TCP connect timeout " 16571 "rate! System (port %d) may be under a " 16572 "SYN flood attack!", 16573 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16574 16575 listener->tcp_ip_addr_cache = kmem_zalloc( 16576 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16577 KM_NOSLEEP); 16578 } 16579 mutex_exit(&listener->tcp_eager_lock); 16580 } 16581 } 16582 /* FALLTHRU */ 16583 case TCPS_SYN_SENT: 16584 first_threshold = tcp->tcp_first_ctimer_threshold; 16585 second_threshold = tcp->tcp_second_ctimer_threshold; 16586 break; 16587 case TCPS_ESTABLISHED: 16588 case TCPS_FIN_WAIT_1: 16589 case TCPS_CLOSING: 16590 case TCPS_CLOSE_WAIT: 16591 case TCPS_LAST_ACK: 16592 /* If we have data to rexmit */ 16593 if (tcp->tcp_suna != tcp->tcp_snxt) { 16594 clock_t time_to_wait; 16595 16596 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16597 if (!tcp->tcp_xmit_head) 16598 break; 16599 time_to_wait = lbolt - 16600 (clock_t)tcp->tcp_xmit_head->b_prev; 16601 time_to_wait = tcp->tcp_rto - 16602 TICK_TO_MSEC(time_to_wait); 16603 /* 16604 * If the timer fires too early, 1 clock tick earlier, 16605 * restart the timer. 16606 */ 16607 if (time_to_wait > msec_per_tick) { 16608 TCP_STAT(tcp_timer_fire_early); 16609 TCP_TIMER_RESTART(tcp, time_to_wait); 16610 return; 16611 } 16612 /* 16613 * When we probe zero windows, we force the swnd open. 16614 * If our peer acks with a closed window swnd will be 16615 * set to zero by tcp_rput(). As long as we are 16616 * receiving acks tcp_rput will 16617 * reset 'tcp_ms_we_have_waited' so as not to trip the 16618 * first and second interval actions. NOTE: the timer 16619 * interval is allowed to continue its exponential 16620 * backoff. 16621 */ 16622 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16623 if (tcp->tcp_debug) { 16624 (void) strlog(TCP_MOD_ID, 0, 1, 16625 SL_TRACE, "tcp_timer: zero win"); 16626 } 16627 } else { 16628 /* 16629 * After retransmission, we need to do 16630 * slow start. Set the ssthresh to one 16631 * half of current effective window and 16632 * cwnd to one MSS. Also reset 16633 * tcp_cwnd_cnt. 16634 * 16635 * Note that if tcp_ssthresh is reduced because 16636 * of ECN, do not reduce it again unless it is 16637 * already one window of data away (tcp_cwr 16638 * should then be cleared) or this is a 16639 * timeout for a retransmitted segment. 16640 */ 16641 uint32_t npkt; 16642 16643 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16644 npkt = ((tcp->tcp_timer_backoff ? 16645 tcp->tcp_cwnd_ssthresh : 16646 tcp->tcp_snxt - 16647 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16648 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16649 tcp->tcp_mss; 16650 } 16651 tcp->tcp_cwnd = tcp->tcp_mss; 16652 tcp->tcp_cwnd_cnt = 0; 16653 if (tcp->tcp_ecn_ok) { 16654 tcp->tcp_cwr = B_TRUE; 16655 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16656 tcp->tcp_ecn_cwr_sent = B_FALSE; 16657 } 16658 } 16659 break; 16660 } 16661 /* 16662 * We have something to send yet we cannot send. The 16663 * reason can be: 16664 * 16665 * 1. Zero send window: we need to do zero window probe. 16666 * 2. Zero cwnd: because of ECN, we need to "clock out 16667 * segments. 16668 * 3. SWS avoidance: receiver may have shrunk window, 16669 * reset our knowledge. 16670 * 16671 * Note that condition 2 can happen with either 1 or 16672 * 3. But 1 and 3 are exclusive. 16673 */ 16674 if (tcp->tcp_unsent != 0) { 16675 if (tcp->tcp_cwnd == 0) { 16676 /* 16677 * Set tcp_cwnd to 1 MSS so that a 16678 * new segment can be sent out. We 16679 * are "clocking out" new data when 16680 * the network is really congested. 16681 */ 16682 ASSERT(tcp->tcp_ecn_ok); 16683 tcp->tcp_cwnd = tcp->tcp_mss; 16684 } 16685 if (tcp->tcp_swnd == 0) { 16686 /* Extend window for zero window probe */ 16687 tcp->tcp_swnd++; 16688 tcp->tcp_zero_win_probe = B_TRUE; 16689 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16690 } else { 16691 /* 16692 * Handle timeout from sender SWS avoidance. 16693 * Reset our knowledge of the max send window 16694 * since the receiver might have reduced its 16695 * receive buffer. Avoid setting tcp_max_swnd 16696 * to one since that will essentially disable 16697 * the SWS checks. 16698 * 16699 * Note that since we don't have a SWS 16700 * state variable, if the timeout is set 16701 * for ECN but not for SWS, this 16702 * code will also be executed. This is 16703 * fine as tcp_max_swnd is updated 16704 * constantly and it will not affect 16705 * anything. 16706 */ 16707 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16708 } 16709 tcp_wput_data(tcp, NULL, B_FALSE); 16710 return; 16711 } 16712 /* Is there a FIN that needs to be to re retransmitted? */ 16713 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16714 !tcp->tcp_fin_acked) 16715 break; 16716 /* Nothing to do, return without restarting timer. */ 16717 TCP_STAT(tcp_timer_fire_miss); 16718 return; 16719 case TCPS_FIN_WAIT_2: 16720 /* 16721 * User closed the TCP endpoint and peer ACK'ed our FIN. 16722 * We waited some time for for peer's FIN, but it hasn't 16723 * arrived. We flush the connection now to avoid 16724 * case where the peer has rebooted. 16725 */ 16726 if (TCP_IS_DETACHED(tcp)) { 16727 (void) tcp_clean_death(tcp, 0, 23); 16728 } else { 16729 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16730 } 16731 return; 16732 case TCPS_TIME_WAIT: 16733 (void) tcp_clean_death(tcp, 0, 24); 16734 return; 16735 default: 16736 if (tcp->tcp_debug) { 16737 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16738 "tcp_timer: strange state (%d) %s", 16739 tcp->tcp_state, tcp_display(tcp, NULL, 16740 DISP_PORT_ONLY)); 16741 } 16742 return; 16743 } 16744 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16745 /* 16746 * For zero window probe, we need to send indefinitely, 16747 * unless we have not heard from the other side for some 16748 * time... 16749 */ 16750 if ((tcp->tcp_zero_win_probe == 0) || 16751 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16752 second_threshold)) { 16753 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 16754 /* 16755 * If TCP is in SYN_RCVD state, send back a 16756 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16757 * should be zero in TCPS_SYN_RCVD state. 16758 */ 16759 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16760 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16761 "in SYN_RCVD", 16762 tcp, tcp->tcp_snxt, 16763 tcp->tcp_rnxt, TH_RST | TH_ACK); 16764 } 16765 (void) tcp_clean_death(tcp, 16766 tcp->tcp_client_errno ? 16767 tcp->tcp_client_errno : ETIMEDOUT, 25); 16768 return; 16769 } else { 16770 /* 16771 * Set tcp_ms_we_have_waited to second_threshold 16772 * so that in next timeout, we will do the above 16773 * check (lbolt - tcp_last_recv_time). This is 16774 * also to avoid overflow. 16775 * 16776 * We don't need to decrement tcp_timer_backoff 16777 * to avoid overflow because it will be decremented 16778 * later if new timeout value is greater than 16779 * tcp_rexmit_interval_max. In the case when 16780 * tcp_rexmit_interval_max is greater than 16781 * second_threshold, it means that we will wait 16782 * longer than second_threshold to send the next 16783 * window probe. 16784 */ 16785 tcp->tcp_ms_we_have_waited = second_threshold; 16786 } 16787 } else if (ms > first_threshold) { 16788 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16789 tcp->tcp_xmit_head != NULL) { 16790 tcp->tcp_xmit_head = 16791 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16792 } 16793 /* 16794 * We have been retransmitting for too long... The RTT 16795 * we calculated is probably incorrect. Reinitialize it. 16796 * Need to compensate for 0 tcp_rtt_sa. Reset 16797 * tcp_rtt_update so that we won't accidentally cache a 16798 * bad value. But only do this if this is not a zero 16799 * window probe. 16800 */ 16801 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16802 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16803 (tcp->tcp_rtt_sa >> 5); 16804 tcp->tcp_rtt_sa = 0; 16805 tcp_ip_notify(tcp); 16806 tcp->tcp_rtt_update = 0; 16807 } 16808 } 16809 tcp->tcp_timer_backoff++; 16810 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16811 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16812 tcp_rexmit_interval_min) { 16813 /* 16814 * This means the original RTO is tcp_rexmit_interval_min. 16815 * So we will use tcp_rexmit_interval_min as the RTO value 16816 * and do the backoff. 16817 */ 16818 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 16819 } else { 16820 ms <<= tcp->tcp_timer_backoff; 16821 } 16822 if (ms > tcp_rexmit_interval_max) { 16823 ms = tcp_rexmit_interval_max; 16824 /* 16825 * ms is at max, decrement tcp_timer_backoff to avoid 16826 * overflow. 16827 */ 16828 tcp->tcp_timer_backoff--; 16829 } 16830 tcp->tcp_ms_we_have_waited += ms; 16831 if (tcp->tcp_zero_win_probe == 0) { 16832 tcp->tcp_rto = ms; 16833 } 16834 TCP_TIMER_RESTART(tcp, ms); 16835 /* 16836 * This is after a timeout and tcp_rto is backed off. Set 16837 * tcp_set_timer to 1 so that next time RTO is updated, we will 16838 * restart the timer with a correct value. 16839 */ 16840 tcp->tcp_set_timer = 1; 16841 mss = tcp->tcp_snxt - tcp->tcp_suna; 16842 if (mss > tcp->tcp_mss) 16843 mss = tcp->tcp_mss; 16844 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16845 mss = tcp->tcp_swnd; 16846 16847 if ((mp = tcp->tcp_xmit_head) != NULL) 16848 mp->b_prev = (mblk_t *)lbolt; 16849 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16850 B_TRUE); 16851 16852 /* 16853 * When slow start after retransmission begins, start with 16854 * this seq no. tcp_rexmit_max marks the end of special slow 16855 * start phase. tcp_snd_burst controls how many segments 16856 * can be sent because of an ack. 16857 */ 16858 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16859 tcp->tcp_snd_burst = TCP_CWND_SS; 16860 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16861 (tcp->tcp_unsent == 0)) { 16862 tcp->tcp_rexmit_max = tcp->tcp_fss; 16863 } else { 16864 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16865 } 16866 tcp->tcp_rexmit = B_TRUE; 16867 tcp->tcp_dupack_cnt = 0; 16868 16869 /* 16870 * Remove all rexmit SACK blk to start from fresh. 16871 */ 16872 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16873 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16874 tcp->tcp_num_notsack_blk = 0; 16875 tcp->tcp_cnt_notsack_list = 0; 16876 } 16877 if (mp == NULL) { 16878 return; 16879 } 16880 /* Attach credentials to retransmitted initial SYNs. */ 16881 if (tcp->tcp_state == TCPS_SYN_SENT) { 16882 mblk_setcred(mp, tcp->tcp_cred); 16883 DB_CPID(mp) = tcp->tcp_cpid; 16884 } 16885 16886 tcp->tcp_csuna = tcp->tcp_snxt; 16887 BUMP_MIB(&tcp_mib, tcpRetransSegs); 16888 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 16889 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 16890 tcp_send_data(tcp, tcp->tcp_wq, mp); 16891 16892 } 16893 16894 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16895 static void 16896 tcp_unbind(tcp_t *tcp, mblk_t *mp) 16897 { 16898 conn_t *connp; 16899 16900 switch (tcp->tcp_state) { 16901 case TCPS_BOUND: 16902 case TCPS_LISTEN: 16903 break; 16904 default: 16905 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 16906 return; 16907 } 16908 16909 /* 16910 * Need to clean up all the eagers since after the unbind, segments 16911 * will no longer be delivered to this listener stream. 16912 */ 16913 mutex_enter(&tcp->tcp_eager_lock); 16914 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16915 tcp_eager_cleanup(tcp, 0); 16916 } 16917 mutex_exit(&tcp->tcp_eager_lock); 16918 16919 if (tcp->tcp_ipversion == IPV4_VERSION) { 16920 tcp->tcp_ipha->ipha_src = 0; 16921 } else { 16922 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16923 } 16924 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16925 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16926 tcp_bind_hash_remove(tcp); 16927 tcp->tcp_state = TCPS_IDLE; 16928 tcp->tcp_mdt = B_FALSE; 16929 /* Send M_FLUSH according to TPI */ 16930 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16931 connp = tcp->tcp_connp; 16932 connp->conn_mdt_ok = B_FALSE; 16933 ipcl_hash_remove(connp); 16934 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16935 mp = mi_tpi_ok_ack_alloc(mp); 16936 putnext(tcp->tcp_rq, mp); 16937 } 16938 16939 /* 16940 * Don't let port fall into the privileged range. 16941 * Since the extra privileged ports can be arbitrary we also 16942 * ensure that we exclude those from consideration. 16943 * tcp_g_epriv_ports is not sorted thus we loop over it until 16944 * there are no changes. 16945 * 16946 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16947 * but instead the code relies on: 16948 * - the fact that the address of the array and its size never changes 16949 * - the atomic assignment of the elements of the array 16950 * 16951 * Returns 0 if there are no more ports available. 16952 * 16953 * TS note: skip multilevel ports. 16954 */ 16955 static in_port_t 16956 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16957 { 16958 int i; 16959 boolean_t restart = B_FALSE; 16960 16961 if (random && tcp_random_anon_port != 0) { 16962 (void) random_get_pseudo_bytes((uint8_t *)&port, 16963 sizeof (in_port_t)); 16964 /* 16965 * Unless changed by a sys admin, the smallest anon port 16966 * is 32768 and the largest anon port is 65535. It is 16967 * very likely (50%) for the random port to be smaller 16968 * than the smallest anon port. When that happens, 16969 * add port % (anon port range) to the smallest anon 16970 * port to get the random port. It should fall into the 16971 * valid anon port range. 16972 */ 16973 if (port < tcp_smallest_anon_port) { 16974 port = tcp_smallest_anon_port + 16975 port % (tcp_largest_anon_port - 16976 tcp_smallest_anon_port); 16977 } 16978 } 16979 16980 retry: 16981 if (port < tcp_smallest_anon_port) 16982 port = (in_port_t)tcp_smallest_anon_port; 16983 16984 if (port > tcp_largest_anon_port) { 16985 if (restart) 16986 return (0); 16987 restart = B_TRUE; 16988 port = (in_port_t)tcp_smallest_anon_port; 16989 } 16990 16991 if (port < tcp_smallest_nonpriv_port) 16992 port = (in_port_t)tcp_smallest_nonpriv_port; 16993 16994 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 16995 if (port == tcp_g_epriv_ports[i]) { 16996 port++; 16997 /* 16998 * Make sure whether the port is in the 16999 * valid range. 17000 */ 17001 goto retry; 17002 } 17003 } 17004 if (is_system_labeled() && 17005 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17006 IPPROTO_TCP, B_TRUE)) != 0) { 17007 port = i; 17008 goto retry; 17009 } 17010 return (port); 17011 } 17012 17013 /* 17014 * Return the next anonymous port in the privileged port range for 17015 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17016 * downwards. This is the same behavior as documented in the userland 17017 * library call rresvport(3N). 17018 * 17019 * TS note: skip multilevel ports. 17020 */ 17021 static in_port_t 17022 tcp_get_next_priv_port(const tcp_t *tcp) 17023 { 17024 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17025 in_port_t nextport; 17026 boolean_t restart = B_FALSE; 17027 17028 retry: 17029 if (next_priv_port < tcp_min_anonpriv_port || 17030 next_priv_port >= IPPORT_RESERVED) { 17031 next_priv_port = IPPORT_RESERVED - 1; 17032 if (restart) 17033 return (0); 17034 restart = B_TRUE; 17035 } 17036 if (is_system_labeled() && 17037 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17038 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17039 next_priv_port = nextport; 17040 goto retry; 17041 } 17042 return (next_priv_port--); 17043 } 17044 17045 /* The write side r/w procedure. */ 17046 17047 #if CCS_STATS 17048 struct { 17049 struct { 17050 int64_t count, bytes; 17051 } tot, hit; 17052 } wrw_stats; 17053 #endif 17054 17055 /* 17056 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17057 * messages. 17058 */ 17059 /* ARGSUSED */ 17060 static void 17061 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17062 { 17063 conn_t *connp = (conn_t *)arg; 17064 tcp_t *tcp = connp->conn_tcp; 17065 queue_t *q = tcp->tcp_wq; 17066 17067 ASSERT(DB_TYPE(mp) != M_IOCTL); 17068 /* 17069 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17070 * Once the close starts, streamhead and sockfs will not let any data 17071 * packets come down (close ensures that there are no threads using the 17072 * queue and no new threads will come down) but since qprocsoff() 17073 * hasn't happened yet, a M_FLUSH or some non data message might 17074 * get reflected back (in response to our own FLUSHRW) and get 17075 * processed after tcp_close() is done. The conn would still be valid 17076 * because a ref would have added but we need to check the state 17077 * before actually processing the packet. 17078 */ 17079 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17080 freemsg(mp); 17081 return; 17082 } 17083 17084 switch (DB_TYPE(mp)) { 17085 case M_IOCDATA: 17086 tcp_wput_iocdata(tcp, mp); 17087 break; 17088 case M_FLUSH: 17089 tcp_wput_flush(tcp, mp); 17090 break; 17091 default: 17092 CALL_IP_WPUT(connp, q, mp); 17093 break; 17094 } 17095 } 17096 17097 /* 17098 * The TCP fast path write put procedure. 17099 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17100 */ 17101 /* ARGSUSED */ 17102 void 17103 tcp_output(void *arg, mblk_t *mp, void *arg2) 17104 { 17105 int len; 17106 int hdrlen; 17107 int plen; 17108 mblk_t *mp1; 17109 uchar_t *rptr; 17110 uint32_t snxt; 17111 tcph_t *tcph; 17112 struct datab *db; 17113 uint32_t suna; 17114 uint32_t mss; 17115 ipaddr_t *dst; 17116 ipaddr_t *src; 17117 uint32_t sum; 17118 int usable; 17119 conn_t *connp = (conn_t *)arg; 17120 tcp_t *tcp = connp->conn_tcp; 17121 uint32_t msize; 17122 17123 /* 17124 * Try and ASSERT the minimum possible references on the 17125 * conn early enough. Since we are executing on write side, 17126 * the connection is obviously not detached and that means 17127 * there is a ref each for TCP and IP. Since we are behind 17128 * the squeue, the minimum references needed are 3. If the 17129 * conn is in classifier hash list, there should be an 17130 * extra ref for that (we check both the possibilities). 17131 */ 17132 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17133 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17134 17135 ASSERT(DB_TYPE(mp) == M_DATA); 17136 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17137 17138 mutex_enter(&connp->conn_lock); 17139 tcp->tcp_squeue_bytes -= msize; 17140 mutex_exit(&connp->conn_lock); 17141 17142 /* Bypass tcp protocol for fused tcp loopback */ 17143 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17144 return; 17145 17146 mss = tcp->tcp_mss; 17147 if (tcp->tcp_xmit_zc_clean) 17148 mp = tcp_zcopy_backoff(tcp, mp, 0); 17149 17150 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17151 len = (int)(mp->b_wptr - mp->b_rptr); 17152 17153 /* 17154 * Criteria for fast path: 17155 * 17156 * 1. no unsent data 17157 * 2. single mblk in request 17158 * 3. connection established 17159 * 4. data in mblk 17160 * 5. len <= mss 17161 * 6. no tcp_valid bits 17162 */ 17163 if ((tcp->tcp_unsent != 0) || 17164 (tcp->tcp_cork) || 17165 (mp->b_cont != NULL) || 17166 (tcp->tcp_state != TCPS_ESTABLISHED) || 17167 (len == 0) || 17168 (len > mss) || 17169 (tcp->tcp_valid_bits != 0)) { 17170 tcp_wput_data(tcp, mp, B_FALSE); 17171 return; 17172 } 17173 17174 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17175 ASSERT(tcp->tcp_fin_sent == 0); 17176 17177 /* queue new packet onto retransmission queue */ 17178 if (tcp->tcp_xmit_head == NULL) { 17179 tcp->tcp_xmit_head = mp; 17180 } else { 17181 tcp->tcp_xmit_last->b_cont = mp; 17182 } 17183 tcp->tcp_xmit_last = mp; 17184 tcp->tcp_xmit_tail = mp; 17185 17186 /* find out how much we can send */ 17187 /* BEGIN CSTYLED */ 17188 /* 17189 * un-acked usable 17190 * |--------------|-----------------| 17191 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17192 */ 17193 /* END CSTYLED */ 17194 17195 /* start sending from tcp_snxt */ 17196 snxt = tcp->tcp_snxt; 17197 17198 /* 17199 * Check to see if this connection has been idled for some 17200 * time and no ACK is expected. If it is, we need to slow 17201 * start again to get back the connection's "self-clock" as 17202 * described in VJ's paper. 17203 * 17204 * Refer to the comment in tcp_mss_set() for the calculation 17205 * of tcp_cwnd after idle. 17206 */ 17207 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17208 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17209 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 17210 } 17211 17212 usable = tcp->tcp_swnd; /* tcp window size */ 17213 if (usable > tcp->tcp_cwnd) 17214 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17215 usable -= snxt; /* subtract stuff already sent */ 17216 suna = tcp->tcp_suna; 17217 usable += suna; 17218 /* usable can be < 0 if the congestion window is smaller */ 17219 if (len > usable) { 17220 /* Can't send complete M_DATA in one shot */ 17221 goto slow; 17222 } 17223 17224 if (tcp->tcp_flow_stopped && 17225 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17226 tcp_clrqfull(tcp); 17227 } 17228 17229 /* 17230 * determine if anything to send (Nagle). 17231 * 17232 * 1. len < tcp_mss (i.e. small) 17233 * 2. unacknowledged data present 17234 * 3. len < nagle limit 17235 * 4. last packet sent < nagle limit (previous packet sent) 17236 */ 17237 if ((len < mss) && (snxt != suna) && 17238 (len < (int)tcp->tcp_naglim) && 17239 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17240 /* 17241 * This was the first unsent packet and normally 17242 * mss < xmit_hiwater so there is no need to worry 17243 * about flow control. The next packet will go 17244 * through the flow control check in tcp_wput_data(). 17245 */ 17246 /* leftover work from above */ 17247 tcp->tcp_unsent = len; 17248 tcp->tcp_xmit_tail_unsent = len; 17249 17250 return; 17251 } 17252 17253 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17254 17255 if (snxt == suna) { 17256 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17257 } 17258 17259 /* we have always sent something */ 17260 tcp->tcp_rack_cnt = 0; 17261 17262 tcp->tcp_snxt = snxt + len; 17263 tcp->tcp_rack = tcp->tcp_rnxt; 17264 17265 if ((mp1 = dupb(mp)) == 0) 17266 goto no_memory; 17267 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17268 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17269 17270 /* adjust tcp header information */ 17271 tcph = tcp->tcp_tcph; 17272 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17273 17274 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17275 sum = (sum >> 16) + (sum & 0xFFFF); 17276 U16_TO_ABE16(sum, tcph->th_sum); 17277 17278 U32_TO_ABE32(snxt, tcph->th_seq); 17279 17280 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 17281 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 17282 BUMP_LOCAL(tcp->tcp_obsegs); 17283 17284 /* Update the latest receive window size in TCP header. */ 17285 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17286 tcph->th_win); 17287 17288 tcp->tcp_last_sent_len = (ushort_t)len; 17289 17290 plen = len + tcp->tcp_hdr_len; 17291 17292 if (tcp->tcp_ipversion == IPV4_VERSION) { 17293 tcp->tcp_ipha->ipha_length = htons(plen); 17294 } else { 17295 tcp->tcp_ip6h->ip6_plen = htons(plen - 17296 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17297 } 17298 17299 /* see if we need to allocate a mblk for the headers */ 17300 hdrlen = tcp->tcp_hdr_len; 17301 rptr = mp1->b_rptr - hdrlen; 17302 db = mp1->b_datap; 17303 if ((db->db_ref != 2) || rptr < db->db_base || 17304 (!OK_32PTR(rptr))) { 17305 /* NOTE: we assume allocb returns an OK_32PTR */ 17306 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17307 tcp_wroff_xtra, BPRI_MED); 17308 if (!mp) { 17309 freemsg(mp1); 17310 goto no_memory; 17311 } 17312 mp->b_cont = mp1; 17313 mp1 = mp; 17314 /* Leave room for Link Level header */ 17315 /* hdrlen = tcp->tcp_hdr_len; */ 17316 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 17317 mp1->b_wptr = &rptr[hdrlen]; 17318 } 17319 mp1->b_rptr = rptr; 17320 17321 /* Fill in the timestamp option. */ 17322 if (tcp->tcp_snd_ts_ok) { 17323 U32_TO_BE32((uint32_t)lbolt, 17324 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17325 U32_TO_BE32(tcp->tcp_ts_recent, 17326 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17327 } else { 17328 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17329 } 17330 17331 /* copy header into outgoing packet */ 17332 dst = (ipaddr_t *)rptr; 17333 src = (ipaddr_t *)tcp->tcp_iphc; 17334 dst[0] = src[0]; 17335 dst[1] = src[1]; 17336 dst[2] = src[2]; 17337 dst[3] = src[3]; 17338 dst[4] = src[4]; 17339 dst[5] = src[5]; 17340 dst[6] = src[6]; 17341 dst[7] = src[7]; 17342 dst[8] = src[8]; 17343 dst[9] = src[9]; 17344 if (hdrlen -= 40) { 17345 hdrlen >>= 2; 17346 dst += 10; 17347 src += 10; 17348 do { 17349 *dst++ = *src++; 17350 } while (--hdrlen); 17351 } 17352 17353 /* 17354 * Set the ECN info in the TCP header. Note that this 17355 * is not the template header. 17356 */ 17357 if (tcp->tcp_ecn_ok) { 17358 SET_ECT(tcp, rptr); 17359 17360 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17361 if (tcp->tcp_ecn_echo_on) 17362 tcph->th_flags[0] |= TH_ECE; 17363 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17364 tcph->th_flags[0] |= TH_CWR; 17365 tcp->tcp_ecn_cwr_sent = B_TRUE; 17366 } 17367 } 17368 17369 if (tcp->tcp_ip_forward_progress) { 17370 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17371 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17372 tcp->tcp_ip_forward_progress = B_FALSE; 17373 } 17374 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17375 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17376 return; 17377 17378 /* 17379 * If we ran out of memory, we pretend to have sent the packet 17380 * and that it was lost on the wire. 17381 */ 17382 no_memory: 17383 return; 17384 17385 slow: 17386 /* leftover work from above */ 17387 tcp->tcp_unsent = len; 17388 tcp->tcp_xmit_tail_unsent = len; 17389 tcp_wput_data(tcp, NULL, B_FALSE); 17390 } 17391 17392 /* 17393 * The function called through squeue to get behind eager's perimeter to 17394 * finish the accept processing. 17395 */ 17396 /* ARGSUSED */ 17397 void 17398 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17399 { 17400 conn_t *connp = (conn_t *)arg; 17401 tcp_t *tcp = connp->conn_tcp; 17402 queue_t *q = tcp->tcp_rq; 17403 mblk_t *mp1; 17404 mblk_t *stropt_mp = mp; 17405 struct stroptions *stropt; 17406 uint_t thwin; 17407 17408 /* 17409 * Drop the eager's ref on the listener, that was placed when 17410 * this eager began life in tcp_conn_request. 17411 */ 17412 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17413 17414 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17415 /* 17416 * Someone blewoff the eager before we could finish 17417 * the accept. 17418 * 17419 * The only reason eager exists it because we put in 17420 * a ref on it when conn ind went up. We need to send 17421 * a disconnect indication up while the last reference 17422 * on the eager will be dropped by the squeue when we 17423 * return. 17424 */ 17425 ASSERT(tcp->tcp_listener == NULL); 17426 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17427 struct T_discon_ind *tdi; 17428 17429 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17430 /* 17431 * Let us reuse the incoming mblk to avoid memory 17432 * allocation failure problems. We know that the 17433 * size of the incoming mblk i.e. stroptions is greater 17434 * than sizeof T_discon_ind. So the reallocb below 17435 * can't fail. 17436 */ 17437 freemsg(mp->b_cont); 17438 mp->b_cont = NULL; 17439 ASSERT(DB_REF(mp) == 1); 17440 mp = reallocb(mp, sizeof (struct T_discon_ind), 17441 B_FALSE); 17442 ASSERT(mp != NULL); 17443 DB_TYPE(mp) = M_PROTO; 17444 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17445 tdi = (struct T_discon_ind *)mp->b_rptr; 17446 if (tcp->tcp_issocket) { 17447 tdi->DISCON_reason = ECONNREFUSED; 17448 tdi->SEQ_number = 0; 17449 } else { 17450 tdi->DISCON_reason = ENOPROTOOPT; 17451 tdi->SEQ_number = 17452 tcp->tcp_conn_req_seqnum; 17453 } 17454 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17455 putnext(q, mp); 17456 } else { 17457 freemsg(mp); 17458 } 17459 if (tcp->tcp_hard_binding) { 17460 tcp->tcp_hard_binding = B_FALSE; 17461 tcp->tcp_hard_bound = B_TRUE; 17462 } 17463 tcp->tcp_detached = B_FALSE; 17464 return; 17465 } 17466 17467 mp1 = stropt_mp->b_cont; 17468 stropt_mp->b_cont = NULL; 17469 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17470 stropt = (struct stroptions *)stropt_mp->b_rptr; 17471 17472 while (mp1 != NULL) { 17473 mp = mp1; 17474 mp1 = mp1->b_cont; 17475 mp->b_cont = NULL; 17476 tcp->tcp_drop_opt_ack_cnt++; 17477 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17478 } 17479 mp = NULL; 17480 17481 /* 17482 * For a loopback connection with tcp_direct_sockfs on, note that 17483 * we don't have to protect tcp_rcv_list yet because synchronous 17484 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17485 * possibly race with us. 17486 */ 17487 17488 /* 17489 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17490 * properly. This is the first time we know of the acceptor' 17491 * queue. So we do it here. 17492 */ 17493 if (tcp->tcp_rcv_list == NULL) { 17494 /* 17495 * Recv queue is empty, tcp_rwnd should not have changed. 17496 * That means it should be equal to the listener's tcp_rwnd. 17497 */ 17498 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17499 } else { 17500 #ifdef DEBUG 17501 uint_t cnt = 0; 17502 17503 mp1 = tcp->tcp_rcv_list; 17504 while ((mp = mp1) != NULL) { 17505 mp1 = mp->b_next; 17506 cnt += msgdsize(mp); 17507 } 17508 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17509 #endif 17510 /* There is some data, add them back to get the max. */ 17511 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17512 } 17513 17514 stropt->so_flags = SO_HIWAT; 17515 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17516 17517 stropt->so_flags |= SO_MAXBLK; 17518 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17519 17520 /* 17521 * This is the first time we run on the correct 17522 * queue after tcp_accept. So fix all the q parameters 17523 * here. 17524 */ 17525 /* Allocate room for SACK options if needed. */ 17526 stropt->so_flags |= SO_WROFF; 17527 if (tcp->tcp_fused) { 17528 ASSERT(tcp->tcp_loopback); 17529 ASSERT(tcp->tcp_loopback_peer != NULL); 17530 /* 17531 * For fused tcp loopback, set the stream head's write 17532 * offset value to zero since we won't be needing any room 17533 * for TCP/IP headers. This would also improve performance 17534 * since it would reduce the amount of work done by kmem. 17535 * Non-fused tcp loopback case is handled separately below. 17536 */ 17537 stropt->so_wroff = 0; 17538 /* 17539 * Record the stream head's high water mark for this endpoint; 17540 * this is used for flow-control purposes in tcp_fuse_output(). 17541 */ 17542 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17543 /* 17544 * Update the peer's transmit parameters according to 17545 * our recently calculated high water mark value. 17546 */ 17547 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17548 } else if (tcp->tcp_snd_sack_ok) { 17549 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17550 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17551 } else { 17552 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17553 tcp_wroff_xtra); 17554 } 17555 17556 /* 17557 * If this is endpoint is handling SSL, then reserve extra 17558 * offset and space at the end. 17559 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17560 * overriding the previous setting. The extra cost of signing and 17561 * encrypting multiple MSS-size records (12 of them with Ethernet), 17562 * instead of a single contiguous one by the stream head 17563 * largely outweighs the statistical reduction of ACKs, when 17564 * applicable. The peer will also save on decyption and verification 17565 * costs. 17566 */ 17567 if (tcp->tcp_kssl_ctx != NULL) { 17568 stropt->so_wroff += SSL3_WROFFSET; 17569 17570 stropt->so_flags |= SO_TAIL; 17571 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17572 17573 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17574 } 17575 17576 /* Send the options up */ 17577 putnext(q, stropt_mp); 17578 17579 /* 17580 * Pass up any data and/or a fin that has been received. 17581 * 17582 * Adjust receive window in case it had decreased 17583 * (because there is data <=> tcp_rcv_list != NULL) 17584 * while the connection was detached. Note that 17585 * in case the eager was flow-controlled, w/o this 17586 * code, the rwnd may never open up again! 17587 */ 17588 if (tcp->tcp_rcv_list != NULL) { 17589 /* We drain directly in case of fused tcp loopback */ 17590 if (!tcp->tcp_fused && canputnext(q)) { 17591 tcp->tcp_rwnd = q->q_hiwat; 17592 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17593 << tcp->tcp_rcv_ws; 17594 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17595 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17596 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17597 tcp_xmit_ctl(NULL, 17598 tcp, (tcp->tcp_swnd == 0) ? 17599 tcp->tcp_suna : tcp->tcp_snxt, 17600 tcp->tcp_rnxt, TH_ACK); 17601 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17602 } 17603 17604 } 17605 (void) tcp_rcv_drain(q, tcp); 17606 17607 /* 17608 * For fused tcp loopback, back-enable peer endpoint 17609 * if it's currently flow-controlled. 17610 */ 17611 if (tcp->tcp_fused && 17612 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17613 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17614 17615 ASSERT(peer_tcp != NULL); 17616 ASSERT(peer_tcp->tcp_fused); 17617 17618 tcp_clrqfull(peer_tcp); 17619 TCP_STAT(tcp_fusion_backenabled); 17620 } 17621 } 17622 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17623 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17624 mp = mi_tpi_ordrel_ind(); 17625 if (mp) { 17626 tcp->tcp_ordrel_done = B_TRUE; 17627 putnext(q, mp); 17628 if (tcp->tcp_deferred_clean_death) { 17629 /* 17630 * tcp_clean_death was deferred 17631 * for T_ORDREL_IND - do it now 17632 */ 17633 (void) tcp_clean_death(tcp, 17634 tcp->tcp_client_errno, 21); 17635 tcp->tcp_deferred_clean_death = B_FALSE; 17636 } 17637 } else { 17638 /* 17639 * Run the orderly release in the 17640 * service routine. 17641 */ 17642 qenable(q); 17643 } 17644 } 17645 if (tcp->tcp_hard_binding) { 17646 tcp->tcp_hard_binding = B_FALSE; 17647 tcp->tcp_hard_bound = B_TRUE; 17648 } 17649 17650 tcp->tcp_detached = B_FALSE; 17651 17652 /* We can enable synchronous streams now */ 17653 if (tcp->tcp_fused) { 17654 tcp_fuse_syncstr_enable_pair(tcp); 17655 } 17656 17657 if (tcp->tcp_ka_enabled) { 17658 tcp->tcp_ka_last_intrvl = 0; 17659 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17660 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17661 } 17662 17663 /* 17664 * At this point, eager is fully established and will 17665 * have the following references - 17666 * 17667 * 2 references for connection to exist (1 for TCP and 1 for IP). 17668 * 1 reference for the squeue which will be dropped by the squeue as 17669 * soon as this function returns. 17670 * There will be 1 additonal reference for being in classifier 17671 * hash list provided something bad hasn't happened. 17672 */ 17673 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17674 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17675 } 17676 17677 /* 17678 * The function called through squeue to get behind listener's perimeter to 17679 * send a deffered conn_ind. 17680 */ 17681 /* ARGSUSED */ 17682 void 17683 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17684 { 17685 conn_t *connp = (conn_t *)arg; 17686 tcp_t *listener = connp->conn_tcp; 17687 17688 if (listener->tcp_state == TCPS_CLOSED || 17689 TCP_IS_DETACHED(listener)) { 17690 /* 17691 * If listener has closed, it would have caused a 17692 * a cleanup/blowoff to happen for the eager. 17693 */ 17694 tcp_t *tcp; 17695 struct T_conn_ind *conn_ind; 17696 17697 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17698 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17699 conn_ind->OPT_length); 17700 /* 17701 * We need to drop the ref on eager that was put 17702 * tcp_rput_data() before trying to send the conn_ind 17703 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17704 * and tcp_wput_accept() is sending this deferred conn_ind but 17705 * listener is closed so we drop the ref. 17706 */ 17707 CONN_DEC_REF(tcp->tcp_connp); 17708 freemsg(mp); 17709 return; 17710 } 17711 putnext(listener->tcp_rq, mp); 17712 } 17713 17714 17715 /* 17716 * This is the STREAMS entry point for T_CONN_RES coming down on 17717 * Acceptor STREAM when sockfs listener does accept processing. 17718 * Read the block comment on top pf tcp_conn_request(). 17719 */ 17720 void 17721 tcp_wput_accept(queue_t *q, mblk_t *mp) 17722 { 17723 queue_t *rq = RD(q); 17724 struct T_conn_res *conn_res; 17725 tcp_t *eager; 17726 tcp_t *listener; 17727 struct T_ok_ack *ok; 17728 t_scalar_t PRIM_type; 17729 mblk_t *opt_mp; 17730 conn_t *econnp; 17731 17732 ASSERT(DB_TYPE(mp) == M_PROTO); 17733 17734 conn_res = (struct T_conn_res *)mp->b_rptr; 17735 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17736 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17737 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17738 if (mp != NULL) 17739 putnext(rq, mp); 17740 return; 17741 } 17742 switch (conn_res->PRIM_type) { 17743 case O_T_CONN_RES: 17744 case T_CONN_RES: 17745 /* 17746 * We pass up an err ack if allocb fails. This will 17747 * cause sockfs to issue a T_DISCON_REQ which will cause 17748 * tcp_eager_blowoff to be called. sockfs will then call 17749 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17750 * we need to do the allocb up here because we have to 17751 * make sure rq->q_qinfo->qi_qclose still points to the 17752 * correct function (tcpclose_accept) in case allocb 17753 * fails. 17754 */ 17755 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17756 if (opt_mp == NULL) { 17757 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17758 if (mp != NULL) 17759 putnext(rq, mp); 17760 return; 17761 } 17762 17763 bcopy(mp->b_rptr + conn_res->OPT_offset, 17764 &eager, conn_res->OPT_length); 17765 PRIM_type = conn_res->PRIM_type; 17766 mp->b_datap->db_type = M_PCPROTO; 17767 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17768 ok = (struct T_ok_ack *)mp->b_rptr; 17769 ok->PRIM_type = T_OK_ACK; 17770 ok->CORRECT_prim = PRIM_type; 17771 econnp = eager->tcp_connp; 17772 econnp->conn_dev = (dev_t)q->q_ptr; 17773 eager->tcp_rq = rq; 17774 eager->tcp_wq = q; 17775 rq->q_ptr = econnp; 17776 rq->q_qinfo = &tcp_rinit; 17777 q->q_ptr = econnp; 17778 q->q_qinfo = &tcp_winit; 17779 listener = eager->tcp_listener; 17780 eager->tcp_issocket = B_TRUE; 17781 17782 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17783 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 17784 17785 /* Put the ref for IP */ 17786 CONN_INC_REF(econnp); 17787 17788 /* 17789 * We should have minimum of 3 references on the conn 17790 * at this point. One each for TCP and IP and one for 17791 * the T_conn_ind that was sent up when the 3-way handshake 17792 * completed. In the normal case we would also have another 17793 * reference (making a total of 4) for the conn being in the 17794 * classifier hash list. However the eager could have received 17795 * an RST subsequently and tcp_closei_local could have removed 17796 * the eager from the classifier hash list, hence we can't 17797 * assert that reference. 17798 */ 17799 ASSERT(econnp->conn_ref >= 3); 17800 17801 /* 17802 * Send the new local address also up to sockfs. There 17803 * should already be enough space in the mp that came 17804 * down from soaccept(). 17805 */ 17806 if (eager->tcp_family == AF_INET) { 17807 sin_t *sin; 17808 17809 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17810 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17811 sin = (sin_t *)mp->b_wptr; 17812 mp->b_wptr += sizeof (sin_t); 17813 sin->sin_family = AF_INET; 17814 sin->sin_port = eager->tcp_lport; 17815 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17816 } else { 17817 sin6_t *sin6; 17818 17819 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17820 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17821 sin6 = (sin6_t *)mp->b_wptr; 17822 mp->b_wptr += sizeof (sin6_t); 17823 sin6->sin6_family = AF_INET6; 17824 sin6->sin6_port = eager->tcp_lport; 17825 if (eager->tcp_ipversion == IPV4_VERSION) { 17826 sin6->sin6_flowinfo = 0; 17827 IN6_IPADDR_TO_V4MAPPED( 17828 eager->tcp_ipha->ipha_src, 17829 &sin6->sin6_addr); 17830 } else { 17831 ASSERT(eager->tcp_ip6h != NULL); 17832 sin6->sin6_flowinfo = 17833 eager->tcp_ip6h->ip6_vcf & 17834 ~IPV6_VERS_AND_FLOW_MASK; 17835 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17836 } 17837 sin6->sin6_scope_id = 0; 17838 sin6->__sin6_src_id = 0; 17839 } 17840 17841 putnext(rq, mp); 17842 17843 opt_mp->b_datap->db_type = M_SETOPTS; 17844 opt_mp->b_wptr += sizeof (struct stroptions); 17845 17846 /* 17847 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17848 * from listener to acceptor. The message is chained on the 17849 * bind_mp which tcp_rput_other will send down to IP. 17850 */ 17851 if (listener->tcp_bound_if != 0) { 17852 /* allocate optmgmt req */ 17853 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17854 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 17855 sizeof (int)); 17856 if (mp != NULL) 17857 linkb(opt_mp, mp); 17858 } 17859 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17860 uint_t on = 1; 17861 17862 /* allocate optmgmt req */ 17863 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17864 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 17865 if (mp != NULL) 17866 linkb(opt_mp, mp); 17867 } 17868 17869 17870 mutex_enter(&listener->tcp_eager_lock); 17871 17872 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17873 17874 tcp_t *tail; 17875 tcp_t *tcp; 17876 mblk_t *mp1; 17877 17878 tcp = listener->tcp_eager_prev_q0; 17879 /* 17880 * listener->tcp_eager_prev_q0 points to the TAIL of the 17881 * deferred T_conn_ind queue. We need to get to the head 17882 * of the queue in order to send up T_conn_ind the same 17883 * order as how the 3WHS is completed. 17884 */ 17885 while (tcp != listener) { 17886 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17887 !tcp->tcp_kssl_pending) 17888 break; 17889 else 17890 tcp = tcp->tcp_eager_prev_q0; 17891 } 17892 /* None of the pending eagers can be sent up now */ 17893 if (tcp == listener) 17894 goto no_more_eagers; 17895 17896 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17897 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17898 /* Move from q0 to q */ 17899 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17900 listener->tcp_conn_req_cnt_q0--; 17901 listener->tcp_conn_req_cnt_q++; 17902 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17903 tcp->tcp_eager_prev_q0; 17904 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17905 tcp->tcp_eager_next_q0; 17906 tcp->tcp_eager_prev_q0 = NULL; 17907 tcp->tcp_eager_next_q0 = NULL; 17908 tcp->tcp_conn_def_q0 = B_FALSE; 17909 17910 /* 17911 * Insert at end of the queue because sockfs sends 17912 * down T_CONN_RES in chronological order. Leaving 17913 * the older conn indications at front of the queue 17914 * helps reducing search time. 17915 */ 17916 tail = listener->tcp_eager_last_q; 17917 if (tail != NULL) { 17918 tail->tcp_eager_next_q = tcp; 17919 } else { 17920 listener->tcp_eager_next_q = tcp; 17921 } 17922 listener->tcp_eager_last_q = tcp; 17923 tcp->tcp_eager_next_q = NULL; 17924 17925 /* Need to get inside the listener perimeter */ 17926 CONN_INC_REF(listener->tcp_connp); 17927 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 17928 tcp_send_pending, listener->tcp_connp, 17929 SQTAG_TCP_SEND_PENDING); 17930 } 17931 no_more_eagers: 17932 tcp_eager_unlink(eager); 17933 mutex_exit(&listener->tcp_eager_lock); 17934 17935 /* 17936 * At this point, the eager is detached from the listener 17937 * but we still have an extra refs on eager (apart from the 17938 * usual tcp references). The ref was placed in tcp_rput_data 17939 * before sending the conn_ind in tcp_send_conn_ind. 17940 * The ref will be dropped in tcp_accept_finish(). 17941 */ 17942 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 17943 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 17944 return; 17945 default: 17946 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17947 if (mp != NULL) 17948 putnext(rq, mp); 17949 return; 17950 } 17951 } 17952 17953 void 17954 tcp_wput(queue_t *q, mblk_t *mp) 17955 { 17956 conn_t *connp = Q_TO_CONN(q); 17957 tcp_t *tcp; 17958 void (*output_proc)(); 17959 t_scalar_t type; 17960 uchar_t *rptr; 17961 struct iocblk *iocp; 17962 uint32_t msize; 17963 17964 ASSERT(connp->conn_ref >= 2); 17965 17966 switch (DB_TYPE(mp)) { 17967 case M_DATA: 17968 tcp = connp->conn_tcp; 17969 ASSERT(tcp != NULL); 17970 17971 msize = msgdsize(mp); 17972 17973 mutex_enter(&connp->conn_lock); 17974 CONN_INC_REF_LOCKED(connp); 17975 17976 tcp->tcp_squeue_bytes += msize; 17977 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 17978 mutex_exit(&connp->conn_lock); 17979 tcp_setqfull(tcp); 17980 } else 17981 mutex_exit(&connp->conn_lock); 17982 17983 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17984 tcp_output, connp, SQTAG_TCP_OUTPUT); 17985 return; 17986 case M_PROTO: 17987 case M_PCPROTO: 17988 /* 17989 * if it is a snmp message, don't get behind the squeue 17990 */ 17991 tcp = connp->conn_tcp; 17992 rptr = mp->b_rptr; 17993 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 17994 type = ((union T_primitives *)rptr)->type; 17995 } else { 17996 if (tcp->tcp_debug) { 17997 (void) strlog(TCP_MOD_ID, 0, 1, 17998 SL_ERROR|SL_TRACE, 17999 "tcp_wput_proto, dropping one..."); 18000 } 18001 freemsg(mp); 18002 return; 18003 } 18004 if (type == T_SVR4_OPTMGMT_REQ) { 18005 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18006 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 18007 cr)) { 18008 /* 18009 * This was a SNMP request 18010 */ 18011 return; 18012 } else { 18013 output_proc = tcp_wput_proto; 18014 } 18015 } else { 18016 output_proc = tcp_wput_proto; 18017 } 18018 break; 18019 case M_IOCTL: 18020 /* 18021 * Most ioctls can be processed right away without going via 18022 * squeues - process them right here. Those that do require 18023 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18024 * are processed by tcp_wput_ioctl(). 18025 */ 18026 iocp = (struct iocblk *)mp->b_rptr; 18027 tcp = connp->conn_tcp; 18028 18029 switch (iocp->ioc_cmd) { 18030 case TCP_IOC_ABORT_CONN: 18031 tcp_ioctl_abort_conn(q, mp); 18032 return; 18033 case TI_GETPEERNAME: 18034 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18035 iocp->ioc_error = ENOTCONN; 18036 iocp->ioc_count = 0; 18037 mp->b_datap->db_type = M_IOCACK; 18038 qreply(q, mp); 18039 return; 18040 } 18041 /* FALLTHRU */ 18042 case TI_GETMYNAME: 18043 mi_copyin(q, mp, NULL, 18044 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18045 return; 18046 case ND_SET: 18047 /* nd_getset does the necessary checks */ 18048 case ND_GET: 18049 if (!nd_getset(q, tcp_g_nd, mp)) { 18050 CALL_IP_WPUT(connp, q, mp); 18051 return; 18052 } 18053 qreply(q, mp); 18054 return; 18055 case TCP_IOC_DEFAULT_Q: 18056 /* 18057 * Wants to be the default wq. Check the credentials 18058 * first, the rest is executed via squeue. 18059 */ 18060 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 18061 iocp->ioc_error = EPERM; 18062 iocp->ioc_count = 0; 18063 mp->b_datap->db_type = M_IOCACK; 18064 qreply(q, mp); 18065 return; 18066 } 18067 output_proc = tcp_wput_ioctl; 18068 break; 18069 default: 18070 output_proc = tcp_wput_ioctl; 18071 break; 18072 } 18073 break; 18074 default: 18075 output_proc = tcp_wput_nondata; 18076 break; 18077 } 18078 18079 CONN_INC_REF(connp); 18080 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18081 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18082 } 18083 18084 /* 18085 * Initial STREAMS write side put() procedure for sockets. It tries to 18086 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18087 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18088 * are handled by tcp_wput() as usual. 18089 * 18090 * All further messages will also be handled by tcp_wput() because we cannot 18091 * be sure that the above short cut is safe later. 18092 */ 18093 static void 18094 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18095 { 18096 conn_t *connp = Q_TO_CONN(wq); 18097 tcp_t *tcp = connp->conn_tcp; 18098 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18099 18100 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18101 wq->q_qinfo = &tcp_winit; 18102 18103 ASSERT(IPCL_IS_TCP(connp)); 18104 ASSERT(TCP_IS_SOCKET(tcp)); 18105 18106 if (DB_TYPE(mp) == M_PCPROTO && 18107 MBLKL(mp) == sizeof (struct T_capability_req) && 18108 car->PRIM_type == T_CAPABILITY_REQ) { 18109 tcp_capability_req(tcp, mp); 18110 return; 18111 } 18112 18113 tcp_wput(wq, mp); 18114 } 18115 18116 static boolean_t 18117 tcp_zcopy_check(tcp_t *tcp) 18118 { 18119 conn_t *connp = tcp->tcp_connp; 18120 ire_t *ire; 18121 boolean_t zc_enabled = B_FALSE; 18122 18123 if (do_tcpzcopy == 2) 18124 zc_enabled = B_TRUE; 18125 else if (tcp->tcp_ipversion == IPV4_VERSION && 18126 IPCL_IS_CONNECTED(connp) && 18127 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18128 connp->conn_dontroute == 0 && 18129 !connp->conn_nexthop_set && 18130 connp->conn_xmit_if_ill == NULL && 18131 connp->conn_nofailover_ill == NULL && 18132 do_tcpzcopy == 1) { 18133 /* 18134 * the checks above closely resemble the fast path checks 18135 * in tcp_send_data(). 18136 */ 18137 mutex_enter(&connp->conn_lock); 18138 ire = connp->conn_ire_cache; 18139 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18140 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18141 IRE_REFHOLD(ire); 18142 if (ire->ire_stq != NULL) { 18143 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18144 18145 zc_enabled = ill && (ill->ill_capabilities & 18146 ILL_CAPAB_ZEROCOPY) && 18147 (ill->ill_zerocopy_capab-> 18148 ill_zerocopy_flags != 0); 18149 } 18150 IRE_REFRELE(ire); 18151 } 18152 mutex_exit(&connp->conn_lock); 18153 } 18154 tcp->tcp_snd_zcopy_on = zc_enabled; 18155 if (!TCP_IS_DETACHED(tcp)) { 18156 if (zc_enabled) { 18157 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18158 TCP_STAT(tcp_zcopy_on); 18159 } else { 18160 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18161 TCP_STAT(tcp_zcopy_off); 18162 } 18163 } 18164 return (zc_enabled); 18165 } 18166 18167 static mblk_t * 18168 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18169 { 18170 if (do_tcpzcopy == 2) 18171 return (bp); 18172 else if (tcp->tcp_snd_zcopy_on) { 18173 tcp->tcp_snd_zcopy_on = B_FALSE; 18174 if (!TCP_IS_DETACHED(tcp)) { 18175 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18176 TCP_STAT(tcp_zcopy_disable); 18177 } 18178 } 18179 return (tcp_zcopy_backoff(tcp, bp, 0)); 18180 } 18181 18182 /* 18183 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18184 * the original desballoca'ed segmapped mblk. 18185 */ 18186 static mblk_t * 18187 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18188 { 18189 mblk_t *head, *tail, *nbp; 18190 if (IS_VMLOANED_MBLK(bp)) { 18191 TCP_STAT(tcp_zcopy_backoff); 18192 if ((head = copyb(bp)) == NULL) { 18193 /* fail to backoff; leave it for the next backoff */ 18194 tcp->tcp_xmit_zc_clean = B_FALSE; 18195 return (bp); 18196 } 18197 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18198 if (fix_xmitlist) 18199 tcp_zcopy_notify(tcp); 18200 else 18201 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18202 } 18203 nbp = bp->b_cont; 18204 if (fix_xmitlist) { 18205 head->b_prev = bp->b_prev; 18206 head->b_next = bp->b_next; 18207 if (tcp->tcp_xmit_tail == bp) 18208 tcp->tcp_xmit_tail = head; 18209 } 18210 bp->b_next = NULL; 18211 bp->b_prev = NULL; 18212 freeb(bp); 18213 } else { 18214 head = bp; 18215 nbp = bp->b_cont; 18216 } 18217 tail = head; 18218 while (nbp) { 18219 if (IS_VMLOANED_MBLK(nbp)) { 18220 TCP_STAT(tcp_zcopy_backoff); 18221 if ((tail->b_cont = copyb(nbp)) == NULL) { 18222 tcp->tcp_xmit_zc_clean = B_FALSE; 18223 tail->b_cont = nbp; 18224 return (head); 18225 } 18226 tail = tail->b_cont; 18227 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18228 if (fix_xmitlist) 18229 tcp_zcopy_notify(tcp); 18230 else 18231 tail->b_datap->db_struioflag |= 18232 STRUIO_ZCNOTIFY; 18233 } 18234 bp = nbp; 18235 nbp = nbp->b_cont; 18236 if (fix_xmitlist) { 18237 tail->b_prev = bp->b_prev; 18238 tail->b_next = bp->b_next; 18239 if (tcp->tcp_xmit_tail == bp) 18240 tcp->tcp_xmit_tail = tail; 18241 } 18242 bp->b_next = NULL; 18243 bp->b_prev = NULL; 18244 freeb(bp); 18245 } else { 18246 tail->b_cont = nbp; 18247 tail = nbp; 18248 nbp = nbp->b_cont; 18249 } 18250 } 18251 if (fix_xmitlist) { 18252 tcp->tcp_xmit_last = tail; 18253 tcp->tcp_xmit_zc_clean = B_TRUE; 18254 } 18255 return (head); 18256 } 18257 18258 static void 18259 tcp_zcopy_notify(tcp_t *tcp) 18260 { 18261 struct stdata *stp; 18262 18263 if (tcp->tcp_detached) 18264 return; 18265 stp = STREAM(tcp->tcp_rq); 18266 mutex_enter(&stp->sd_lock); 18267 stp->sd_flag |= STZCNOTIFY; 18268 cv_broadcast(&stp->sd_zcopy_wait); 18269 mutex_exit(&stp->sd_lock); 18270 } 18271 18272 static void 18273 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18274 { 18275 ipha_t *ipha; 18276 ipaddr_t src; 18277 ipaddr_t dst; 18278 uint32_t cksum; 18279 ire_t *ire; 18280 uint16_t *up; 18281 ill_t *ill; 18282 conn_t *connp = tcp->tcp_connp; 18283 uint32_t hcksum_txflags = 0; 18284 mblk_t *ire_fp_mp; 18285 uint_t ire_fp_mp_len; 18286 18287 ASSERT(DB_TYPE(mp) == M_DATA); 18288 18289 if (DB_CRED(mp) == NULL) 18290 mblk_setcred(mp, CONN_CRED(connp)); 18291 18292 ipha = (ipha_t *)mp->b_rptr; 18293 src = ipha->ipha_src; 18294 dst = ipha->ipha_dst; 18295 18296 /* 18297 * Drop off fast path for IPv6 and also if options are present or 18298 * we need to resolve a TS label. 18299 */ 18300 if (tcp->tcp_ipversion != IPV4_VERSION || 18301 !IPCL_IS_CONNECTED(connp) || 18302 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18303 connp->conn_dontroute || 18304 connp->conn_nexthop_set || 18305 connp->conn_xmit_if_ill != NULL || 18306 connp->conn_nofailover_ill != NULL || 18307 !connp->conn_ulp_labeled || 18308 ipha->ipha_ident == IP_HDR_INCLUDED || 18309 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18310 IPP_ENABLED(IPP_LOCAL_OUT)) { 18311 if (tcp->tcp_snd_zcopy_aware) 18312 mp = tcp_zcopy_disable(tcp, mp); 18313 TCP_STAT(tcp_ip_send); 18314 CALL_IP_WPUT(connp, q, mp); 18315 return; 18316 } 18317 18318 mutex_enter(&connp->conn_lock); 18319 ire = connp->conn_ire_cache; 18320 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18321 if (ire != NULL && ire->ire_addr == dst && 18322 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18323 IRE_REFHOLD(ire); 18324 mutex_exit(&connp->conn_lock); 18325 } else { 18326 boolean_t cached = B_FALSE; 18327 18328 /* force a recheck later on */ 18329 tcp->tcp_ire_ill_check_done = B_FALSE; 18330 18331 TCP_DBGSTAT(tcp_ire_null1); 18332 connp->conn_ire_cache = NULL; 18333 mutex_exit(&connp->conn_lock); 18334 if (ire != NULL) 18335 IRE_REFRELE_NOTR(ire); 18336 ire = ire_cache_lookup(dst, connp->conn_zoneid, 18337 MBLK_GETLABEL(mp)); 18338 if (ire == NULL) { 18339 if (tcp->tcp_snd_zcopy_aware) 18340 mp = tcp_zcopy_backoff(tcp, mp, 0); 18341 TCP_STAT(tcp_ire_null); 18342 CALL_IP_WPUT(connp, q, mp); 18343 return; 18344 } 18345 IRE_REFHOLD_NOTR(ire); 18346 /* 18347 * Since we are inside the squeue, there cannot be another 18348 * thread in TCP trying to set the conn_ire_cache now. The 18349 * check for IRE_MARK_CONDEMNED ensures that an interface 18350 * unplumb thread has not yet started cleaning up the conns. 18351 * Hence we don't need to grab the conn lock. 18352 */ 18353 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18354 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18355 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18356 connp->conn_ire_cache = ire; 18357 cached = B_TRUE; 18358 } 18359 rw_exit(&ire->ire_bucket->irb_lock); 18360 } 18361 18362 /* 18363 * We can continue to use the ire but since it was 18364 * not cached, we should drop the extra reference. 18365 */ 18366 if (!cached) 18367 IRE_REFRELE_NOTR(ire); 18368 18369 /* 18370 * Rampart note: no need to select a new label here, since 18371 * labels are not allowed to change during the life of a TCP 18372 * connection. 18373 */ 18374 } 18375 18376 /* 18377 * The following if case identifies whether or not 18378 * we are forced to take the slowpath. 18379 */ 18380 if (ire->ire_flags & RTF_MULTIRT || 18381 ire->ire_stq == NULL || 18382 ire->ire_max_frag < ntohs(ipha->ipha_length) || 18383 (ire->ire_nce != NULL && 18384 (ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18385 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 18386 if (tcp->tcp_snd_zcopy_aware) 18387 mp = tcp_zcopy_disable(tcp, mp); 18388 TCP_STAT(tcp_ip_ire_send); 18389 IRE_REFRELE(ire); 18390 CALL_IP_WPUT(connp, q, mp); 18391 return; 18392 } 18393 18394 ill = ire_to_ill(ire); 18395 if (connp->conn_outgoing_ill != NULL) { 18396 ill_t *conn_outgoing_ill = NULL; 18397 /* 18398 * Choose a good ill in the group to send the packets on. 18399 */ 18400 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18401 ill = ire_to_ill(ire); 18402 } 18403 ASSERT(ill != NULL); 18404 18405 if (!tcp->tcp_ire_ill_check_done) { 18406 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18407 tcp->tcp_ire_ill_check_done = B_TRUE; 18408 } 18409 18410 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18411 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18412 #ifndef _BIG_ENDIAN 18413 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18414 #endif 18415 18416 /* 18417 * Check to see if we need to re-enable MDT for this connection 18418 * because it was previously disabled due to changes in the ill; 18419 * note that by doing it here, this re-enabling only applies when 18420 * the packet is not dispatched through CALL_IP_WPUT(). 18421 * 18422 * That means for IPv4, it is worth re-enabling MDT for the fastpath 18423 * case, since that's how we ended up here. For IPv6, we do the 18424 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18425 */ 18426 if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18427 /* 18428 * Restore MDT for this connection, so that next time around 18429 * it is eligible to go through tcp_multisend() path again. 18430 */ 18431 TCP_STAT(tcp_mdt_conn_resumed1); 18432 tcp->tcp_mdt = B_TRUE; 18433 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18434 "interface %s\n", (void *)connp, ill->ill_name)); 18435 } 18436 18437 if (tcp->tcp_snd_zcopy_aware) { 18438 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18439 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18440 mp = tcp_zcopy_disable(tcp, mp); 18441 /* 18442 * we shouldn't need to reset ipha as the mp containing 18443 * ipha should never be a zero-copy mp. 18444 */ 18445 } 18446 18447 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18448 ASSERT(ill->ill_hcksum_capab != NULL); 18449 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18450 } 18451 18452 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18453 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18454 18455 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18456 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18457 18458 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18459 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18460 18461 /* Software checksum? */ 18462 if (DB_CKSUMFLAGS(mp) == 0) { 18463 TCP_STAT(tcp_out_sw_cksum); 18464 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18465 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18466 } 18467 18468 ipha->ipha_fragment_offset_and_flags |= 18469 (uint32_t)htons(ire->ire_frag_flag); 18470 18471 /* Calculate IP header checksum if hardware isn't capable */ 18472 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18473 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18474 ((uint16_t *)ipha)[4]); 18475 } 18476 18477 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18478 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18479 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18480 18481 UPDATE_OB_PKT_COUNT(ire); 18482 ire->ire_last_used_time = lbolt; 18483 BUMP_MIB(&ip_mib, ipOutRequests); 18484 18485 if (ILL_DLS_CAPABLE(ill)) { 18486 /* 18487 * Send the packet directly to DLD, where it may be queued 18488 * depending on the availability of transmit resources at 18489 * the media layer. 18490 */ 18491 IP_DLS_ILL_TX(ill, ipha, mp); 18492 } else { 18493 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 18494 DTRACE_PROBE4(ip4__physical__out__start, 18495 ill_t *, NULL, ill_t *, out_ill, 18496 ipha_t *, ipha, mblk_t *, mp); 18497 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 18498 NULL, out_ill, ipha, mp, mp); 18499 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18500 if (mp != NULL) 18501 putnext(ire->ire_stq, mp); 18502 } 18503 IRE_REFRELE(ire); 18504 } 18505 18506 /* 18507 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18508 * if the receiver shrinks the window, i.e. moves the right window to the 18509 * left, the we should not send new data, but should retransmit normally the 18510 * old unacked data between suna and suna + swnd. We might has sent data 18511 * that is now outside the new window, pretend that we didn't send it. 18512 */ 18513 static void 18514 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18515 { 18516 uint32_t snxt = tcp->tcp_snxt; 18517 mblk_t *xmit_tail; 18518 int32_t offset; 18519 18520 ASSERT(shrunk_count > 0); 18521 18522 /* Pretend we didn't send the data outside the window */ 18523 snxt -= shrunk_count; 18524 18525 /* Get the mblk and the offset in it per the shrunk window */ 18526 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18527 18528 ASSERT(xmit_tail != NULL); 18529 18530 /* Reset all the values per the now shrunk window */ 18531 tcp->tcp_snxt = snxt; 18532 tcp->tcp_xmit_tail = xmit_tail; 18533 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18534 offset; 18535 tcp->tcp_unsent += shrunk_count; 18536 18537 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18538 /* 18539 * Make sure the timer is running so that we will probe a zero 18540 * window. 18541 */ 18542 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18543 } 18544 18545 18546 /* 18547 * The TCP normal data output path. 18548 * NOTE: the logic of the fast path is duplicated from this function. 18549 */ 18550 static void 18551 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18552 { 18553 int len; 18554 mblk_t *local_time; 18555 mblk_t *mp1; 18556 uint32_t snxt; 18557 int tail_unsent; 18558 int tcpstate; 18559 int usable = 0; 18560 mblk_t *xmit_tail; 18561 queue_t *q = tcp->tcp_wq; 18562 int32_t mss; 18563 int32_t num_sack_blk = 0; 18564 int32_t tcp_hdr_len; 18565 int32_t tcp_tcp_hdr_len; 18566 int mdt_thres; 18567 int rc; 18568 18569 tcpstate = tcp->tcp_state; 18570 if (mp == NULL) { 18571 /* 18572 * tcp_wput_data() with NULL mp should only be called when 18573 * there is unsent data. 18574 */ 18575 ASSERT(tcp->tcp_unsent > 0); 18576 /* Really tacky... but we need this for detached closes. */ 18577 len = tcp->tcp_unsent; 18578 goto data_null; 18579 } 18580 18581 #if CCS_STATS 18582 wrw_stats.tot.count++; 18583 wrw_stats.tot.bytes += msgdsize(mp); 18584 #endif 18585 ASSERT(mp->b_datap->db_type == M_DATA); 18586 /* 18587 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18588 * or before a connection attempt has begun. 18589 */ 18590 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18591 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18592 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18593 #ifdef DEBUG 18594 cmn_err(CE_WARN, 18595 "tcp_wput_data: data after ordrel, %s", 18596 tcp_display(tcp, NULL, 18597 DISP_ADDR_AND_PORT)); 18598 #else 18599 if (tcp->tcp_debug) { 18600 (void) strlog(TCP_MOD_ID, 0, 1, 18601 SL_TRACE|SL_ERROR, 18602 "tcp_wput_data: data after ordrel, %s\n", 18603 tcp_display(tcp, NULL, 18604 DISP_ADDR_AND_PORT)); 18605 } 18606 #endif /* DEBUG */ 18607 } 18608 if (tcp->tcp_snd_zcopy_aware && 18609 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18610 tcp_zcopy_notify(tcp); 18611 freemsg(mp); 18612 if (tcp->tcp_flow_stopped && 18613 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18614 tcp_clrqfull(tcp); 18615 } 18616 return; 18617 } 18618 18619 /* Strip empties */ 18620 for (;;) { 18621 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18622 (uintptr_t)INT_MAX); 18623 len = (int)(mp->b_wptr - mp->b_rptr); 18624 if (len > 0) 18625 break; 18626 mp1 = mp; 18627 mp = mp->b_cont; 18628 freeb(mp1); 18629 if (!mp) { 18630 return; 18631 } 18632 } 18633 18634 /* If we are the first on the list ... */ 18635 if (tcp->tcp_xmit_head == NULL) { 18636 tcp->tcp_xmit_head = mp; 18637 tcp->tcp_xmit_tail = mp; 18638 tcp->tcp_xmit_tail_unsent = len; 18639 } else { 18640 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18641 struct datab *dp; 18642 18643 mp1 = tcp->tcp_xmit_last; 18644 if (len < tcp_tx_pull_len && 18645 (dp = mp1->b_datap)->db_ref == 1 && 18646 dp->db_lim - mp1->b_wptr >= len) { 18647 ASSERT(len > 0); 18648 ASSERT(!mp1->b_cont); 18649 if (len == 1) { 18650 *mp1->b_wptr++ = *mp->b_rptr; 18651 } else { 18652 bcopy(mp->b_rptr, mp1->b_wptr, len); 18653 mp1->b_wptr += len; 18654 } 18655 if (mp1 == tcp->tcp_xmit_tail) 18656 tcp->tcp_xmit_tail_unsent += len; 18657 mp1->b_cont = mp->b_cont; 18658 if (tcp->tcp_snd_zcopy_aware && 18659 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18660 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18661 freeb(mp); 18662 mp = mp1; 18663 } else { 18664 tcp->tcp_xmit_last->b_cont = mp; 18665 } 18666 len += tcp->tcp_unsent; 18667 } 18668 18669 /* Tack on however many more positive length mblks we have */ 18670 if ((mp1 = mp->b_cont) != NULL) { 18671 do { 18672 int tlen; 18673 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18674 (uintptr_t)INT_MAX); 18675 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18676 if (tlen <= 0) { 18677 mp->b_cont = mp1->b_cont; 18678 freeb(mp1); 18679 } else { 18680 len += tlen; 18681 mp = mp1; 18682 } 18683 } while ((mp1 = mp->b_cont) != NULL); 18684 } 18685 tcp->tcp_xmit_last = mp; 18686 tcp->tcp_unsent = len; 18687 18688 if (urgent) 18689 usable = 1; 18690 18691 data_null: 18692 snxt = tcp->tcp_snxt; 18693 xmit_tail = tcp->tcp_xmit_tail; 18694 tail_unsent = tcp->tcp_xmit_tail_unsent; 18695 18696 /* 18697 * Note that tcp_mss has been adjusted to take into account the 18698 * timestamp option if applicable. Because SACK options do not 18699 * appear in every TCP segments and they are of variable lengths, 18700 * they cannot be included in tcp_mss. Thus we need to calculate 18701 * the actual segment length when we need to send a segment which 18702 * includes SACK options. 18703 */ 18704 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18705 int32_t opt_len; 18706 18707 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18708 tcp->tcp_num_sack_blk); 18709 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18710 2 + TCPOPT_HEADER_LEN; 18711 mss = tcp->tcp_mss - opt_len; 18712 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18713 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18714 } else { 18715 mss = tcp->tcp_mss; 18716 tcp_hdr_len = tcp->tcp_hdr_len; 18717 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18718 } 18719 18720 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18721 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18722 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 18723 } 18724 if (tcpstate == TCPS_SYN_RCVD) { 18725 /* 18726 * The three-way connection establishment handshake is not 18727 * complete yet. We want to queue the data for transmission 18728 * after entering ESTABLISHED state (RFC793). A jump to 18729 * "done" label effectively leaves data on the queue. 18730 */ 18731 goto done; 18732 } else { 18733 int usable_r; 18734 18735 /* 18736 * In the special case when cwnd is zero, which can only 18737 * happen if the connection is ECN capable, return now. 18738 * New segments is sent using tcp_timer(). The timer 18739 * is set in tcp_rput_data(). 18740 */ 18741 if (tcp->tcp_cwnd == 0) { 18742 /* 18743 * Note that tcp_cwnd is 0 before 3-way handshake is 18744 * finished. 18745 */ 18746 ASSERT(tcp->tcp_ecn_ok || 18747 tcp->tcp_state < TCPS_ESTABLISHED); 18748 return; 18749 } 18750 18751 /* NOTE: trouble if xmitting while SYN not acked? */ 18752 usable_r = snxt - tcp->tcp_suna; 18753 usable_r = tcp->tcp_swnd - usable_r; 18754 18755 /* 18756 * Check if the receiver has shrunk the window. If 18757 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18758 * cannot be set as there is unsent data, so FIN cannot 18759 * be sent out. Otherwise, we need to take into account 18760 * of FIN as it consumes an "invisible" sequence number. 18761 */ 18762 ASSERT(tcp->tcp_fin_sent == 0); 18763 if (usable_r < 0) { 18764 /* 18765 * The receiver has shrunk the window and we have sent 18766 * -usable_r date beyond the window, re-adjust. 18767 * 18768 * If TCP window scaling is enabled, there can be 18769 * round down error as the advertised receive window 18770 * is actually right shifted n bits. This means that 18771 * the lower n bits info is wiped out. It will look 18772 * like the window is shrunk. Do a check here to 18773 * see if the shrunk amount is actually within the 18774 * error in window calculation. If it is, just 18775 * return. Note that this check is inside the 18776 * shrunk window check. This makes sure that even 18777 * though tcp_process_shrunk_swnd() is not called, 18778 * we will stop further processing. 18779 */ 18780 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18781 tcp_process_shrunk_swnd(tcp, -usable_r); 18782 } 18783 return; 18784 } 18785 18786 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18787 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18788 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18789 18790 /* usable = MIN(usable, unsent) */ 18791 if (usable_r > len) 18792 usable_r = len; 18793 18794 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18795 if (usable_r > 0) { 18796 usable = usable_r; 18797 } else { 18798 /* Bypass all other unnecessary processing. */ 18799 goto done; 18800 } 18801 } 18802 18803 local_time = (mblk_t *)lbolt; 18804 18805 /* 18806 * "Our" Nagle Algorithm. This is not the same as in the old 18807 * BSD. This is more in line with the true intent of Nagle. 18808 * 18809 * The conditions are: 18810 * 1. The amount of unsent data (or amount of data which can be 18811 * sent, whichever is smaller) is less than Nagle limit. 18812 * 2. The last sent size is also less than Nagle limit. 18813 * 3. There is unack'ed data. 18814 * 4. Urgent pointer is not set. Send urgent data ignoring the 18815 * Nagle algorithm. This reduces the probability that urgent 18816 * bytes get "merged" together. 18817 * 5. The app has not closed the connection. This eliminates the 18818 * wait time of the receiving side waiting for the last piece of 18819 * (small) data. 18820 * 18821 * If all are satisified, exit without sending anything. Note 18822 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18823 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18824 * 4095). 18825 */ 18826 if (usable < (int)tcp->tcp_naglim && 18827 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18828 snxt != tcp->tcp_suna && 18829 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18830 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18831 goto done; 18832 } 18833 18834 if (tcp->tcp_cork) { 18835 /* 18836 * if the tcp->tcp_cork option is set, then we have to force 18837 * TCP not to send partial segment (smaller than MSS bytes). 18838 * We are calculating the usable now based on full mss and 18839 * will save the rest of remaining data for later. 18840 */ 18841 if (usable < mss) 18842 goto done; 18843 usable = (usable / mss) * mss; 18844 } 18845 18846 /* Update the latest receive window size in TCP header. */ 18847 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18848 tcp->tcp_tcph->th_win); 18849 18850 /* 18851 * Determine if it's worthwhile to attempt MDT, based on: 18852 * 18853 * 1. Simple TCP/IP{v4,v6} (no options). 18854 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18855 * 3. If the TCP connection is in ESTABLISHED state. 18856 * 4. The TCP is not detached. 18857 * 18858 * If any of the above conditions have changed during the 18859 * connection, stop using MDT and restore the stream head 18860 * parameters accordingly. 18861 */ 18862 if (tcp->tcp_mdt && 18863 ((tcp->tcp_ipversion == IPV4_VERSION && 18864 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 18865 (tcp->tcp_ipversion == IPV6_VERSION && 18866 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 18867 tcp->tcp_state != TCPS_ESTABLISHED || 18868 TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || 18869 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 18870 IPP_ENABLED(IPP_LOCAL_OUT))) { 18871 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 18872 tcp->tcp_mdt = B_FALSE; 18873 18874 /* Anything other than detached is considered pathological */ 18875 if (!TCP_IS_DETACHED(tcp)) { 18876 TCP_STAT(tcp_mdt_conn_halted1); 18877 (void) tcp_maxpsz_set(tcp, B_TRUE); 18878 } 18879 } 18880 18881 /* Use MDT if sendable amount is greater than the threshold */ 18882 if (tcp->tcp_mdt && 18883 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 18884 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 18885 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 18886 (tcp->tcp_valid_bits == 0 || 18887 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 18888 ASSERT(tcp->tcp_connp->conn_mdt_ok); 18889 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18890 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18891 local_time, mdt_thres); 18892 } else { 18893 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18894 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18895 local_time, INT_MAX); 18896 } 18897 18898 /* Pretend that all we were trying to send really got sent */ 18899 if (rc < 0 && tail_unsent < 0) { 18900 do { 18901 xmit_tail = xmit_tail->b_cont; 18902 xmit_tail->b_prev = local_time; 18903 ASSERT((uintptr_t)(xmit_tail->b_wptr - 18904 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 18905 tail_unsent += (int)(xmit_tail->b_wptr - 18906 xmit_tail->b_rptr); 18907 } while (tail_unsent < 0); 18908 } 18909 done:; 18910 tcp->tcp_xmit_tail = xmit_tail; 18911 tcp->tcp_xmit_tail_unsent = tail_unsent; 18912 len = tcp->tcp_snxt - snxt; 18913 if (len) { 18914 /* 18915 * If new data was sent, need to update the notsack 18916 * list, which is, afterall, data blocks that have 18917 * not been sack'ed by the receiver. New data is 18918 * not sack'ed. 18919 */ 18920 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 18921 /* len is a negative value. */ 18922 tcp->tcp_pipe -= len; 18923 tcp_notsack_update(&(tcp->tcp_notsack_list), 18924 tcp->tcp_snxt, snxt, 18925 &(tcp->tcp_num_notsack_blk), 18926 &(tcp->tcp_cnt_notsack_list)); 18927 } 18928 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 18929 tcp->tcp_rack = tcp->tcp_rnxt; 18930 tcp->tcp_rack_cnt = 0; 18931 if ((snxt + len) == tcp->tcp_suna) { 18932 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18933 } 18934 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 18935 /* 18936 * Didn't send anything. Make sure the timer is running 18937 * so that we will probe a zero window. 18938 */ 18939 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18940 } 18941 /* Note that len is the amount we just sent but with a negative sign */ 18942 tcp->tcp_unsent += len; 18943 if (tcp->tcp_flow_stopped) { 18944 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18945 tcp_clrqfull(tcp); 18946 } 18947 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 18948 tcp_setqfull(tcp); 18949 } 18950 } 18951 18952 /* 18953 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 18954 * outgoing TCP header with the template header, as well as other 18955 * options such as time-stamp, ECN and/or SACK. 18956 */ 18957 static void 18958 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 18959 { 18960 tcph_t *tcp_tmpl, *tcp_h; 18961 uint32_t *dst, *src; 18962 int hdrlen; 18963 18964 ASSERT(OK_32PTR(rptr)); 18965 18966 /* Template header */ 18967 tcp_tmpl = tcp->tcp_tcph; 18968 18969 /* Header of outgoing packet */ 18970 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18971 18972 /* dst and src are opaque 32-bit fields, used for copying */ 18973 dst = (uint32_t *)rptr; 18974 src = (uint32_t *)tcp->tcp_iphc; 18975 hdrlen = tcp->tcp_hdr_len; 18976 18977 /* Fill time-stamp option if needed */ 18978 if (tcp->tcp_snd_ts_ok) { 18979 U32_TO_BE32((uint32_t)now, 18980 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 18981 U32_TO_BE32(tcp->tcp_ts_recent, 18982 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 18983 } else { 18984 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18985 } 18986 18987 /* 18988 * Copy the template header; is this really more efficient than 18989 * calling bcopy()? For simple IPv4/TCP, it may be the case, 18990 * but perhaps not for other scenarios. 18991 */ 18992 dst[0] = src[0]; 18993 dst[1] = src[1]; 18994 dst[2] = src[2]; 18995 dst[3] = src[3]; 18996 dst[4] = src[4]; 18997 dst[5] = src[5]; 18998 dst[6] = src[6]; 18999 dst[7] = src[7]; 19000 dst[8] = src[8]; 19001 dst[9] = src[9]; 19002 if (hdrlen -= 40) { 19003 hdrlen >>= 2; 19004 dst += 10; 19005 src += 10; 19006 do { 19007 *dst++ = *src++; 19008 } while (--hdrlen); 19009 } 19010 19011 /* 19012 * Set the ECN info in the TCP header if it is not a zero 19013 * window probe. Zero window probe is only sent in 19014 * tcp_wput_data() and tcp_timer(). 19015 */ 19016 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19017 SET_ECT(tcp, rptr); 19018 19019 if (tcp->tcp_ecn_echo_on) 19020 tcp_h->th_flags[0] |= TH_ECE; 19021 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19022 tcp_h->th_flags[0] |= TH_CWR; 19023 tcp->tcp_ecn_cwr_sent = B_TRUE; 19024 } 19025 } 19026 19027 /* Fill in SACK options */ 19028 if (num_sack_blk > 0) { 19029 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19030 sack_blk_t *tmp; 19031 int32_t i; 19032 19033 wptr[0] = TCPOPT_NOP; 19034 wptr[1] = TCPOPT_NOP; 19035 wptr[2] = TCPOPT_SACK; 19036 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19037 sizeof (sack_blk_t); 19038 wptr += TCPOPT_REAL_SACK_LEN; 19039 19040 tmp = tcp->tcp_sack_list; 19041 for (i = 0; i < num_sack_blk; i++) { 19042 U32_TO_BE32(tmp[i].begin, wptr); 19043 wptr += sizeof (tcp_seq); 19044 U32_TO_BE32(tmp[i].end, wptr); 19045 wptr += sizeof (tcp_seq); 19046 } 19047 tcp_h->th_offset_and_rsrvd[0] += 19048 ((num_sack_blk * 2 + 1) << 4); 19049 } 19050 } 19051 19052 /* 19053 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19054 * the destination address and SAP attribute, and if necessary, the 19055 * hardware checksum offload attribute to a Multidata message. 19056 */ 19057 static int 19058 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19059 const uint32_t start, const uint32_t stuff, const uint32_t end, 19060 const uint32_t flags) 19061 { 19062 /* Add global destination address & SAP attribute */ 19063 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19064 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19065 "destination address+SAP\n")); 19066 19067 if (dlmp != NULL) 19068 TCP_STAT(tcp_mdt_allocfail); 19069 return (-1); 19070 } 19071 19072 /* Add global hwcksum attribute */ 19073 if (hwcksum && 19074 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19075 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19076 "checksum attribute\n")); 19077 19078 TCP_STAT(tcp_mdt_allocfail); 19079 return (-1); 19080 } 19081 19082 return (0); 19083 } 19084 19085 /* 19086 * Smaller and private version of pdescinfo_t used specifically for TCP, 19087 * which allows for only two payload spans per packet. 19088 */ 19089 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19090 19091 /* 19092 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19093 * scheme, and returns one the following: 19094 * 19095 * -1 = failed allocation. 19096 * 0 = success; burst count reached, or usable send window is too small, 19097 * and that we'd rather wait until later before sending again. 19098 */ 19099 static int 19100 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19101 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19102 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19103 const int mdt_thres) 19104 { 19105 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19106 multidata_t *mmd; 19107 uint_t obsegs, obbytes, hdr_frag_sz; 19108 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19109 int num_burst_seg, max_pld; 19110 pdesc_t *pkt; 19111 tcp_pdescinfo_t tcp_pkt_info; 19112 pdescinfo_t *pkt_info; 19113 int pbuf_idx, pbuf_idx_nxt; 19114 int seg_len, len, spill, af; 19115 boolean_t add_buffer, zcopy, clusterwide; 19116 boolean_t buf_trunked = B_FALSE; 19117 boolean_t rconfirm = B_FALSE; 19118 boolean_t done = B_FALSE; 19119 uint32_t cksum; 19120 uint32_t hwcksum_flags; 19121 ire_t *ire; 19122 ill_t *ill; 19123 ipha_t *ipha; 19124 ip6_t *ip6h; 19125 ipaddr_t src, dst; 19126 ill_zerocopy_capab_t *zc_cap = NULL; 19127 uint16_t *up; 19128 int err; 19129 conn_t *connp; 19130 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19131 uchar_t *pld_start; 19132 19133 #ifdef _BIG_ENDIAN 19134 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19135 #else 19136 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19137 #endif 19138 19139 #define PREP_NEW_MULTIDATA() { \ 19140 mmd = NULL; \ 19141 md_mp = md_hbuf = NULL; \ 19142 cur_hdr_off = 0; \ 19143 max_pld = tcp->tcp_mdt_max_pld; \ 19144 pbuf_idx = pbuf_idx_nxt = -1; \ 19145 add_buffer = B_TRUE; \ 19146 zcopy = B_FALSE; \ 19147 } 19148 19149 #define PREP_NEW_PBUF() { \ 19150 md_pbuf = md_pbuf_nxt = NULL; \ 19151 pbuf_idx = pbuf_idx_nxt = -1; \ 19152 cur_pld_off = 0; \ 19153 first_snxt = *snxt; \ 19154 ASSERT(*tail_unsent > 0); \ 19155 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19156 } 19157 19158 ASSERT(mdt_thres >= mss); 19159 ASSERT(*usable > 0 && *usable > mdt_thres); 19160 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19161 ASSERT(!TCP_IS_DETACHED(tcp)); 19162 ASSERT(tcp->tcp_valid_bits == 0 || 19163 tcp->tcp_valid_bits == TCP_FSS_VALID); 19164 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19165 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19166 (tcp->tcp_ipversion == IPV6_VERSION && 19167 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19168 19169 connp = tcp->tcp_connp; 19170 ASSERT(connp != NULL); 19171 ASSERT(CONN_IS_MD_FASTPATH(connp)); 19172 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19173 19174 /* 19175 * Note that tcp will only declare at most 2 payload spans per 19176 * packet, which is much lower than the maximum allowable number 19177 * of packet spans per Multidata. For this reason, we use the 19178 * privately declared and smaller descriptor info structure, in 19179 * order to save some stack space. 19180 */ 19181 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19182 19183 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19184 if (af == AF_INET) { 19185 dst = tcp->tcp_ipha->ipha_dst; 19186 src = tcp->tcp_ipha->ipha_src; 19187 ASSERT(!CLASSD(dst)); 19188 } 19189 ASSERT(af == AF_INET || 19190 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19191 19192 obsegs = obbytes = 0; 19193 num_burst_seg = tcp->tcp_snd_burst; 19194 md_mp_head = NULL; 19195 PREP_NEW_MULTIDATA(); 19196 19197 /* 19198 * Before we go on further, make sure there is an IRE that we can 19199 * use, and that the ILL supports MDT. Otherwise, there's no point 19200 * in proceeding any further, and we should just hand everything 19201 * off to the legacy path. 19202 */ 19203 mutex_enter(&connp->conn_lock); 19204 ire = connp->conn_ire_cache; 19205 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19206 if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || 19207 (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 19208 &tcp->tcp_ip6h->ip6_dst))) && 19209 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19210 IRE_REFHOLD(ire); 19211 mutex_exit(&connp->conn_lock); 19212 } else { 19213 boolean_t cached = B_FALSE; 19214 ts_label_t *tsl; 19215 19216 /* force a recheck later on */ 19217 tcp->tcp_ire_ill_check_done = B_FALSE; 19218 19219 TCP_DBGSTAT(tcp_ire_null1); 19220 connp->conn_ire_cache = NULL; 19221 mutex_exit(&connp->conn_lock); 19222 19223 /* Release the old ire */ 19224 if (ire != NULL) 19225 IRE_REFRELE_NOTR(ire); 19226 19227 tsl = crgetlabel(CONN_CRED(connp)); 19228 ire = (af == AF_INET) ? 19229 ire_cache_lookup(dst, connp->conn_zoneid, tsl) : 19230 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19231 connp->conn_zoneid, tsl); 19232 19233 if (ire == NULL) { 19234 TCP_STAT(tcp_ire_null); 19235 goto legacy_send_no_md; 19236 } 19237 19238 IRE_REFHOLD_NOTR(ire); 19239 /* 19240 * Since we are inside the squeue, there cannot be another 19241 * thread in TCP trying to set the conn_ire_cache now. The 19242 * check for IRE_MARK_CONDEMNED ensures that an interface 19243 * unplumb thread has not yet started cleaning up the conns. 19244 * Hence we don't need to grab the conn lock. 19245 */ 19246 if (!(connp->conn_state_flags & CONN_CLOSING)) { 19247 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19248 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19249 connp->conn_ire_cache = ire; 19250 cached = B_TRUE; 19251 } 19252 rw_exit(&ire->ire_bucket->irb_lock); 19253 } 19254 19255 /* 19256 * We can continue to use the ire but since it was not 19257 * cached, we should drop the extra reference. 19258 */ 19259 if (!cached) 19260 IRE_REFRELE_NOTR(ire); 19261 } 19262 19263 ASSERT(ire != NULL); 19264 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19265 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19266 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19267 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19268 /* 19269 * If we do support loopback for MDT (which requires modifications 19270 * to the receiving paths), the following assertions should go away, 19271 * and we would be sending the Multidata to loopback conn later on. 19272 */ 19273 ASSERT(!IRE_IS_LOCAL(ire)); 19274 ASSERT(ire->ire_stq != NULL); 19275 19276 ill = ire_to_ill(ire); 19277 ASSERT(ill != NULL); 19278 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19279 19280 if (!tcp->tcp_ire_ill_check_done) { 19281 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19282 tcp->tcp_ire_ill_check_done = B_TRUE; 19283 } 19284 19285 /* 19286 * If the underlying interface conditions have changed, or if the 19287 * new interface does not support MDT, go back to legacy path. 19288 */ 19289 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19290 /* don't go through this path anymore for this connection */ 19291 TCP_STAT(tcp_mdt_conn_halted2); 19292 tcp->tcp_mdt = B_FALSE; 19293 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19294 "interface %s\n", (void *)connp, ill->ill_name)); 19295 /* IRE will be released prior to returning */ 19296 goto legacy_send_no_md; 19297 } 19298 19299 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19300 zc_cap = ill->ill_zerocopy_capab; 19301 19302 /* 19303 * Check if we can take tcp fast-path. Note that "incomplete" 19304 * ire's (where the link-layer for next hop is not resolved 19305 * or where the fast-path header in nce_fp_mp is not available 19306 * yet) are sent down the legacy (slow) path. 19307 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19308 */ 19309 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19310 /* IRE will be released prior to returning */ 19311 goto legacy_send_no_md; 19312 } 19313 19314 /* go to legacy path if interface doesn't support zerocopy */ 19315 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19316 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19317 /* IRE will be released prior to returning */ 19318 goto legacy_send_no_md; 19319 } 19320 19321 /* does the interface support hardware checksum offload? */ 19322 hwcksum_flags = 0; 19323 if (ILL_HCKSUM_CAPABLE(ill) && 19324 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19325 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19326 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19327 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19328 HCKSUM_IPHDRCKSUM) 19329 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19330 19331 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19332 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19333 hwcksum_flags |= HCK_FULLCKSUM; 19334 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19335 HCKSUM_INET_PARTIAL) 19336 hwcksum_flags |= HCK_PARTIALCKSUM; 19337 } 19338 19339 /* 19340 * Each header fragment consists of the leading extra space, 19341 * followed by the TCP/IP header, and the trailing extra space. 19342 * We make sure that each header fragment begins on a 32-bit 19343 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19344 * aligned in tcp_mdt_update). 19345 */ 19346 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19347 tcp->tcp_mdt_hdr_tail), 4); 19348 19349 /* are we starting from the beginning of data block? */ 19350 if (*tail_unsent == 0) { 19351 *xmit_tail = (*xmit_tail)->b_cont; 19352 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19353 *tail_unsent = (int)MBLKL(*xmit_tail); 19354 } 19355 19356 /* 19357 * Here we create one or more Multidata messages, each made up of 19358 * one header buffer and up to N payload buffers. This entire 19359 * operation is done within two loops: 19360 * 19361 * The outer loop mostly deals with creating the Multidata message, 19362 * as well as the header buffer that gets added to it. It also 19363 * links the Multidata messages together such that all of them can 19364 * be sent down to the lower layer in a single putnext call; this 19365 * linking behavior depends on the tcp_mdt_chain tunable. 19366 * 19367 * The inner loop takes an existing Multidata message, and adds 19368 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19369 * packetizes those buffers by filling up the corresponding header 19370 * buffer fragments with the proper IP and TCP headers, and by 19371 * describing the layout of each packet in the packet descriptors 19372 * that get added to the Multidata. 19373 */ 19374 do { 19375 /* 19376 * If usable send window is too small, or data blocks in 19377 * transmit list are smaller than our threshold (i.e. app 19378 * performs large writes followed by small ones), we hand 19379 * off the control over to the legacy path. Note that we'll 19380 * get back the control once it encounters a large block. 19381 */ 19382 if (*usable < mss || (*tail_unsent <= mdt_thres && 19383 (*xmit_tail)->b_cont != NULL && 19384 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19385 /* send down what we've got so far */ 19386 if (md_mp_head != NULL) { 19387 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19388 obsegs, obbytes, &rconfirm); 19389 } 19390 /* 19391 * Pass control over to tcp_send(), but tell it to 19392 * return to us once a large-size transmission is 19393 * possible. 19394 */ 19395 TCP_STAT(tcp_mdt_legacy_small); 19396 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19397 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19398 tail_unsent, xmit_tail, local_time, 19399 mdt_thres)) <= 0) { 19400 /* burst count reached, or alloc failed */ 19401 IRE_REFRELE(ire); 19402 return (err); 19403 } 19404 19405 /* tcp_send() may have sent everything, so check */ 19406 if (*usable <= 0) { 19407 IRE_REFRELE(ire); 19408 return (0); 19409 } 19410 19411 TCP_STAT(tcp_mdt_legacy_ret); 19412 /* 19413 * We may have delivered the Multidata, so make sure 19414 * to re-initialize before the next round. 19415 */ 19416 md_mp_head = NULL; 19417 obsegs = obbytes = 0; 19418 num_burst_seg = tcp->tcp_snd_burst; 19419 PREP_NEW_MULTIDATA(); 19420 19421 /* are we starting from the beginning of data block? */ 19422 if (*tail_unsent == 0) { 19423 *xmit_tail = (*xmit_tail)->b_cont; 19424 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19425 (uintptr_t)INT_MAX); 19426 *tail_unsent = (int)MBLKL(*xmit_tail); 19427 } 19428 } 19429 19430 /* 19431 * max_pld limits the number of mblks in tcp's transmit 19432 * queue that can be added to a Multidata message. Once 19433 * this counter reaches zero, no more additional mblks 19434 * can be added to it. What happens afterwards depends 19435 * on whether or not we are set to chain the Multidata 19436 * messages. If we are to link them together, reset 19437 * max_pld to its original value (tcp_mdt_max_pld) and 19438 * prepare to create a new Multidata message which will 19439 * get linked to md_mp_head. Else, leave it alone and 19440 * let the inner loop break on its own. 19441 */ 19442 if (tcp_mdt_chain && max_pld == 0) 19443 PREP_NEW_MULTIDATA(); 19444 19445 /* adding a payload buffer; re-initialize values */ 19446 if (add_buffer) 19447 PREP_NEW_PBUF(); 19448 19449 /* 19450 * If we don't have a Multidata, either because we just 19451 * (re)entered this outer loop, or after we branched off 19452 * to tcp_send above, setup the Multidata and header 19453 * buffer to be used. 19454 */ 19455 if (md_mp == NULL) { 19456 int md_hbuflen; 19457 uint32_t start, stuff; 19458 19459 /* 19460 * Calculate Multidata header buffer size large enough 19461 * to hold all of the headers that can possibly be 19462 * sent at this moment. We'd rather over-estimate 19463 * the size than running out of space; this is okay 19464 * since this buffer is small anyway. 19465 */ 19466 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19467 19468 /* 19469 * Start and stuff offset for partial hardware 19470 * checksum offload; these are currently for IPv4. 19471 * For full checksum offload, they are set to zero. 19472 */ 19473 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19474 if (af == AF_INET) { 19475 start = IP_SIMPLE_HDR_LENGTH; 19476 stuff = IP_SIMPLE_HDR_LENGTH + 19477 TCP_CHECKSUM_OFFSET; 19478 } else { 19479 start = IPV6_HDR_LEN; 19480 stuff = IPV6_HDR_LEN + 19481 TCP_CHECKSUM_OFFSET; 19482 } 19483 } else { 19484 start = stuff = 0; 19485 } 19486 19487 /* 19488 * Create the header buffer, Multidata, as well as 19489 * any necessary attributes (destination address, 19490 * SAP and hardware checksum offload) that should 19491 * be associated with the Multidata message. 19492 */ 19493 ASSERT(cur_hdr_off == 0); 19494 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19495 ((md_hbuf->b_wptr += md_hbuflen), 19496 (mmd = mmd_alloc(md_hbuf, &md_mp, 19497 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19498 /* fastpath mblk */ 19499 ire->ire_nce->nce_res_mp, 19500 /* hardware checksum enabled */ 19501 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19502 /* hardware checksum offsets */ 19503 start, stuff, 0, 19504 /* hardware checksum flag */ 19505 hwcksum_flags) != 0)) { 19506 legacy_send: 19507 if (md_mp != NULL) { 19508 /* Unlink message from the chain */ 19509 if (md_mp_head != NULL) { 19510 err = (intptr_t)rmvb(md_mp_head, 19511 md_mp); 19512 /* 19513 * We can't assert that rmvb 19514 * did not return -1, since we 19515 * may get here before linkb 19516 * happens. We do, however, 19517 * check if we just removed the 19518 * only element in the list. 19519 */ 19520 if (err == 0) 19521 md_mp_head = NULL; 19522 } 19523 /* md_hbuf gets freed automatically */ 19524 TCP_STAT(tcp_mdt_discarded); 19525 freeb(md_mp); 19526 } else { 19527 /* Either allocb or mmd_alloc failed */ 19528 TCP_STAT(tcp_mdt_allocfail); 19529 if (md_hbuf != NULL) 19530 freeb(md_hbuf); 19531 } 19532 19533 /* send down what we've got so far */ 19534 if (md_mp_head != NULL) { 19535 tcp_multisend_data(tcp, ire, ill, 19536 md_mp_head, obsegs, obbytes, 19537 &rconfirm); 19538 } 19539 legacy_send_no_md: 19540 if (ire != NULL) 19541 IRE_REFRELE(ire); 19542 /* 19543 * Too bad; let the legacy path handle this. 19544 * We specify INT_MAX for the threshold, since 19545 * we gave up with the Multidata processings 19546 * and let the old path have it all. 19547 */ 19548 TCP_STAT(tcp_mdt_legacy_all); 19549 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19550 tcp_tcp_hdr_len, num_sack_blk, usable, 19551 snxt, tail_unsent, xmit_tail, local_time, 19552 INT_MAX)); 19553 } 19554 19555 /* link to any existing ones, if applicable */ 19556 TCP_STAT(tcp_mdt_allocd); 19557 if (md_mp_head == NULL) { 19558 md_mp_head = md_mp; 19559 } else if (tcp_mdt_chain) { 19560 TCP_STAT(tcp_mdt_linked); 19561 linkb(md_mp_head, md_mp); 19562 } 19563 } 19564 19565 ASSERT(md_mp_head != NULL); 19566 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19567 ASSERT(md_mp != NULL && mmd != NULL); 19568 ASSERT(md_hbuf != NULL); 19569 19570 /* 19571 * Packetize the transmittable portion of the data block; 19572 * each data block is essentially added to the Multidata 19573 * as a payload buffer. We also deal with adding more 19574 * than one payload buffers, which happens when the remaining 19575 * packetized portion of the current payload buffer is less 19576 * than MSS, while the next data block in transmit queue 19577 * has enough data to make up for one. This "spillover" 19578 * case essentially creates a split-packet, where portions 19579 * of the packet's payload fragments may span across two 19580 * virtually discontiguous address blocks. 19581 */ 19582 seg_len = mss; 19583 do { 19584 len = seg_len; 19585 19586 ASSERT(len > 0); 19587 ASSERT(max_pld >= 0); 19588 ASSERT(!add_buffer || cur_pld_off == 0); 19589 19590 /* 19591 * First time around for this payload buffer; note 19592 * in the case of a spillover, the following has 19593 * been done prior to adding the split-packet 19594 * descriptor to Multidata, and we don't want to 19595 * repeat the process. 19596 */ 19597 if (add_buffer) { 19598 ASSERT(mmd != NULL); 19599 ASSERT(md_pbuf == NULL); 19600 ASSERT(md_pbuf_nxt == NULL); 19601 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19602 19603 /* 19604 * Have we reached the limit? We'd get to 19605 * this case when we're not chaining the 19606 * Multidata messages together, and since 19607 * we're done, terminate this loop. 19608 */ 19609 if (max_pld == 0) 19610 break; /* done */ 19611 19612 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19613 TCP_STAT(tcp_mdt_allocfail); 19614 goto legacy_send; /* out_of_mem */ 19615 } 19616 19617 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19618 zc_cap != NULL) { 19619 if (!ip_md_zcopy_attr(mmd, NULL, 19620 zc_cap->ill_zerocopy_flags)) { 19621 freeb(md_pbuf); 19622 TCP_STAT(tcp_mdt_allocfail); 19623 /* out_of_mem */ 19624 goto legacy_send; 19625 } 19626 zcopy = B_TRUE; 19627 } 19628 19629 md_pbuf->b_rptr += base_pld_off; 19630 19631 /* 19632 * Add a payload buffer to the Multidata; this 19633 * operation must not fail, or otherwise our 19634 * logic in this routine is broken. There 19635 * is no memory allocation done by the 19636 * routine, so any returned failure simply 19637 * tells us that we've done something wrong. 19638 * 19639 * A failure tells us that either we're adding 19640 * the same payload buffer more than once, or 19641 * we're trying to add more buffers than 19642 * allowed (max_pld calculation is wrong). 19643 * None of the above cases should happen, and 19644 * we panic because either there's horrible 19645 * heap corruption, and/or programming mistake. 19646 */ 19647 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19648 if (pbuf_idx < 0) { 19649 cmn_err(CE_PANIC, "tcp_multisend: " 19650 "payload buffer logic error " 19651 "detected for tcp %p mmd %p " 19652 "pbuf %p (%d)\n", 19653 (void *)tcp, (void *)mmd, 19654 (void *)md_pbuf, pbuf_idx); 19655 } 19656 19657 ASSERT(max_pld > 0); 19658 --max_pld; 19659 add_buffer = B_FALSE; 19660 } 19661 19662 ASSERT(md_mp_head != NULL); 19663 ASSERT(md_pbuf != NULL); 19664 ASSERT(md_pbuf_nxt == NULL); 19665 ASSERT(pbuf_idx != -1); 19666 ASSERT(pbuf_idx_nxt == -1); 19667 ASSERT(*usable > 0); 19668 19669 /* 19670 * We spillover to the next payload buffer only 19671 * if all of the following is true: 19672 * 19673 * 1. There is not enough data on the current 19674 * payload buffer to make up `len', 19675 * 2. We are allowed to send `len', 19676 * 3. The next payload buffer length is large 19677 * enough to accomodate `spill'. 19678 */ 19679 if ((spill = len - *tail_unsent) > 0 && 19680 *usable >= len && 19681 MBLKL((*xmit_tail)->b_cont) >= spill && 19682 max_pld > 0) { 19683 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19684 if (md_pbuf_nxt == NULL) { 19685 TCP_STAT(tcp_mdt_allocfail); 19686 goto legacy_send; /* out_of_mem */ 19687 } 19688 19689 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19690 zc_cap != NULL) { 19691 if (!ip_md_zcopy_attr(mmd, NULL, 19692 zc_cap->ill_zerocopy_flags)) { 19693 freeb(md_pbuf_nxt); 19694 TCP_STAT(tcp_mdt_allocfail); 19695 /* out_of_mem */ 19696 goto legacy_send; 19697 } 19698 zcopy = B_TRUE; 19699 } 19700 19701 /* 19702 * See comments above on the first call to 19703 * mmd_addpldbuf for explanation on the panic. 19704 */ 19705 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19706 if (pbuf_idx_nxt < 0) { 19707 panic("tcp_multisend: " 19708 "next payload buffer logic error " 19709 "detected for tcp %p mmd %p " 19710 "pbuf %p (%d)\n", 19711 (void *)tcp, (void *)mmd, 19712 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19713 } 19714 19715 ASSERT(max_pld > 0); 19716 --max_pld; 19717 } else if (spill > 0) { 19718 /* 19719 * If there's a spillover, but the following 19720 * xmit_tail couldn't give us enough octets 19721 * to reach "len", then stop the current 19722 * Multidata creation and let the legacy 19723 * tcp_send() path take over. We don't want 19724 * to send the tiny segment as part of this 19725 * Multidata for performance reasons; instead, 19726 * we let the legacy path deal with grouping 19727 * it with the subsequent small mblks. 19728 */ 19729 if (*usable >= len && 19730 MBLKL((*xmit_tail)->b_cont) < spill) { 19731 max_pld = 0; 19732 break; /* done */ 19733 } 19734 19735 /* 19736 * We can't spillover, and we are near 19737 * the end of the current payload buffer, 19738 * so send what's left. 19739 */ 19740 ASSERT(*tail_unsent > 0); 19741 len = *tail_unsent; 19742 } 19743 19744 /* tail_unsent is negated if there is a spillover */ 19745 *tail_unsent -= len; 19746 *usable -= len; 19747 ASSERT(*usable >= 0); 19748 19749 if (*usable < mss) 19750 seg_len = *usable; 19751 /* 19752 * Sender SWS avoidance; see comments in tcp_send(); 19753 * everything else is the same, except that we only 19754 * do this here if there is no more data to be sent 19755 * following the current xmit_tail. We don't check 19756 * for 1-byte urgent data because we shouldn't get 19757 * here if TCP_URG_VALID is set. 19758 */ 19759 if (*usable > 0 && *usable < mss && 19760 ((md_pbuf_nxt == NULL && 19761 (*xmit_tail)->b_cont == NULL) || 19762 (md_pbuf_nxt != NULL && 19763 (*xmit_tail)->b_cont->b_cont == NULL)) && 19764 seg_len < (tcp->tcp_max_swnd >> 1) && 19765 (tcp->tcp_unsent - 19766 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19767 !tcp->tcp_zero_win_probe) { 19768 if ((*snxt + len) == tcp->tcp_snxt && 19769 (*snxt + len) == tcp->tcp_suna) { 19770 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19771 } 19772 done = B_TRUE; 19773 } 19774 19775 /* 19776 * Prime pump for IP's checksumming on our behalf; 19777 * include the adjustment for a source route if any. 19778 * Do this only for software/partial hardware checksum 19779 * offload, as this field gets zeroed out later for 19780 * the full hardware checksum offload case. 19781 */ 19782 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19783 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19784 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19785 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19786 } 19787 19788 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19789 *snxt += len; 19790 19791 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19792 /* 19793 * We set the PUSH bit only if TCP has no more buffered 19794 * data to be transmitted (or if sender SWS avoidance 19795 * takes place), as opposed to setting it for every 19796 * last packet in the burst. 19797 */ 19798 if (done || 19799 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19800 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19801 19802 /* 19803 * Set FIN bit if this is our last segment; snxt 19804 * already includes its length, and it will not 19805 * be adjusted after this point. 19806 */ 19807 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19808 *snxt == tcp->tcp_fss) { 19809 if (!tcp->tcp_fin_acked) { 19810 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19811 BUMP_MIB(&tcp_mib, tcpOutControl); 19812 } 19813 if (!tcp->tcp_fin_sent) { 19814 tcp->tcp_fin_sent = B_TRUE; 19815 /* 19816 * tcp state must be ESTABLISHED 19817 * in order for us to get here in 19818 * the first place. 19819 */ 19820 tcp->tcp_state = TCPS_FIN_WAIT_1; 19821 19822 /* 19823 * Upon returning from this routine, 19824 * tcp_wput_data() will set tcp_snxt 19825 * to be equal to snxt + tcp_fin_sent. 19826 * This is essentially the same as 19827 * setting it to tcp_fss + 1. 19828 */ 19829 } 19830 } 19831 19832 tcp->tcp_last_sent_len = (ushort_t)len; 19833 19834 len += tcp_hdr_len; 19835 if (tcp->tcp_ipversion == IPV4_VERSION) 19836 tcp->tcp_ipha->ipha_length = htons(len); 19837 else 19838 tcp->tcp_ip6h->ip6_plen = htons(len - 19839 ((char *)&tcp->tcp_ip6h[1] - 19840 tcp->tcp_iphc)); 19841 19842 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19843 19844 /* setup header fragment */ 19845 PDESC_HDR_ADD(pkt_info, 19846 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19847 tcp->tcp_mdt_hdr_head, /* head room */ 19848 tcp_hdr_len, /* len */ 19849 tcp->tcp_mdt_hdr_tail); /* tail room */ 19850 19851 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 19852 hdr_frag_sz); 19853 ASSERT(MBLKIN(md_hbuf, 19854 (pkt_info->hdr_base - md_hbuf->b_rptr), 19855 PDESC_HDRSIZE(pkt_info))); 19856 19857 /* setup first payload fragment */ 19858 PDESC_PLD_INIT(pkt_info); 19859 PDESC_PLD_SPAN_ADD(pkt_info, 19860 pbuf_idx, /* index */ 19861 md_pbuf->b_rptr + cur_pld_off, /* start */ 19862 tcp->tcp_last_sent_len); /* len */ 19863 19864 /* create a split-packet in case of a spillover */ 19865 if (md_pbuf_nxt != NULL) { 19866 ASSERT(spill > 0); 19867 ASSERT(pbuf_idx_nxt > pbuf_idx); 19868 ASSERT(!add_buffer); 19869 19870 md_pbuf = md_pbuf_nxt; 19871 md_pbuf_nxt = NULL; 19872 pbuf_idx = pbuf_idx_nxt; 19873 pbuf_idx_nxt = -1; 19874 cur_pld_off = spill; 19875 19876 /* trim out first payload fragment */ 19877 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 19878 19879 /* setup second payload fragment */ 19880 PDESC_PLD_SPAN_ADD(pkt_info, 19881 pbuf_idx, /* index */ 19882 md_pbuf->b_rptr, /* start */ 19883 spill); /* len */ 19884 19885 if ((*xmit_tail)->b_next == NULL) { 19886 /* 19887 * Store the lbolt used for RTT 19888 * estimation. We can only record one 19889 * timestamp per mblk so we do it when 19890 * we reach the end of the payload 19891 * buffer. Also we only take a new 19892 * timestamp sample when the previous 19893 * timed data from the same mblk has 19894 * been ack'ed. 19895 */ 19896 (*xmit_tail)->b_prev = local_time; 19897 (*xmit_tail)->b_next = 19898 (mblk_t *)(uintptr_t)first_snxt; 19899 } 19900 19901 first_snxt = *snxt - spill; 19902 19903 /* 19904 * Advance xmit_tail; usable could be 0 by 19905 * the time we got here, but we made sure 19906 * above that we would only spillover to 19907 * the next data block if usable includes 19908 * the spilled-over amount prior to the 19909 * subtraction. Therefore, we are sure 19910 * that xmit_tail->b_cont can't be NULL. 19911 */ 19912 ASSERT((*xmit_tail)->b_cont != NULL); 19913 *xmit_tail = (*xmit_tail)->b_cont; 19914 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19915 (uintptr_t)INT_MAX); 19916 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 19917 } else { 19918 cur_pld_off += tcp->tcp_last_sent_len; 19919 } 19920 19921 /* 19922 * Fill in the header using the template header, and 19923 * add options such as time-stamp, ECN and/or SACK, 19924 * as needed. 19925 */ 19926 tcp_fill_header(tcp, pkt_info->hdr_rptr, 19927 (clock_t)local_time, num_sack_blk); 19928 19929 /* take care of some IP header businesses */ 19930 if (af == AF_INET) { 19931 ipha = (ipha_t *)pkt_info->hdr_rptr; 19932 19933 ASSERT(OK_32PTR((uchar_t *)ipha)); 19934 ASSERT(PDESC_HDRL(pkt_info) >= 19935 IP_SIMPLE_HDR_LENGTH); 19936 ASSERT(ipha->ipha_version_and_hdr_length == 19937 IP_SIMPLE_HDR_VERSION); 19938 19939 /* 19940 * Assign ident value for current packet; see 19941 * related comments in ip_wput_ire() about the 19942 * contract private interface with clustering 19943 * group. 19944 */ 19945 clusterwide = B_FALSE; 19946 if (cl_inet_ipident != NULL) { 19947 ASSERT(cl_inet_isclusterwide != NULL); 19948 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19949 AF_INET, 19950 (uint8_t *)(uintptr_t)src)) { 19951 ipha->ipha_ident = 19952 (*cl_inet_ipident) 19953 (IPPROTO_IP, AF_INET, 19954 (uint8_t *)(uintptr_t)src, 19955 (uint8_t *)(uintptr_t)dst); 19956 clusterwide = B_TRUE; 19957 } 19958 } 19959 19960 if (!clusterwide) { 19961 ipha->ipha_ident = (uint16_t) 19962 atomic_add_32_nv( 19963 &ire->ire_ident, 1); 19964 } 19965 #ifndef _BIG_ENDIAN 19966 ipha->ipha_ident = (ipha->ipha_ident << 8) | 19967 (ipha->ipha_ident >> 8); 19968 #endif 19969 } else { 19970 ip6h = (ip6_t *)pkt_info->hdr_rptr; 19971 19972 ASSERT(OK_32PTR((uchar_t *)ip6h)); 19973 ASSERT(IPVER(ip6h) == IPV6_VERSION); 19974 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 19975 ASSERT(PDESC_HDRL(pkt_info) >= 19976 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 19977 TCP_CHECKSUM_SIZE)); 19978 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 19979 19980 if (tcp->tcp_ip_forward_progress) { 19981 rconfirm = B_TRUE; 19982 tcp->tcp_ip_forward_progress = B_FALSE; 19983 } 19984 } 19985 19986 /* at least one payload span, and at most two */ 19987 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 19988 19989 /* add the packet descriptor to Multidata */ 19990 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 19991 KM_NOSLEEP)) == NULL) { 19992 /* 19993 * Any failure other than ENOMEM indicates 19994 * that we have passed in invalid pkt_info 19995 * or parameters to mmd_addpdesc, which must 19996 * not happen. 19997 * 19998 * EINVAL is a result of failure on boundary 19999 * checks against the pkt_info contents. It 20000 * should not happen, and we panic because 20001 * either there's horrible heap corruption, 20002 * and/or programming mistake. 20003 */ 20004 if (err != ENOMEM) { 20005 cmn_err(CE_PANIC, "tcp_multisend: " 20006 "pdesc logic error detected for " 20007 "tcp %p mmd %p pinfo %p (%d)\n", 20008 (void *)tcp, (void *)mmd, 20009 (void *)pkt_info, err); 20010 } 20011 TCP_STAT(tcp_mdt_addpdescfail); 20012 goto legacy_send; /* out_of_mem */ 20013 } 20014 ASSERT(pkt != NULL); 20015 20016 /* calculate IP header and TCP checksums */ 20017 if (af == AF_INET) { 20018 /* calculate pseudo-header checksum */ 20019 cksum = (dst >> 16) + (dst & 0xFFFF) + 20020 (src >> 16) + (src & 0xFFFF); 20021 20022 /* offset for TCP header checksum */ 20023 up = IPH_TCPH_CHECKSUMP(ipha, 20024 IP_SIMPLE_HDR_LENGTH); 20025 } else { 20026 up = (uint16_t *)&ip6h->ip6_src; 20027 20028 /* calculate pseudo-header checksum */ 20029 cksum = up[0] + up[1] + up[2] + up[3] + 20030 up[4] + up[5] + up[6] + up[7] + 20031 up[8] + up[9] + up[10] + up[11] + 20032 up[12] + up[13] + up[14] + up[15]; 20033 20034 /* Fold the initial sum */ 20035 cksum = (cksum & 0xffff) + (cksum >> 16); 20036 20037 up = (uint16_t *)(((uchar_t *)ip6h) + 20038 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20039 } 20040 20041 if (hwcksum_flags & HCK_FULLCKSUM) { 20042 /* clear checksum field for hardware */ 20043 *up = 0; 20044 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20045 uint32_t sum; 20046 20047 /* pseudo-header checksumming */ 20048 sum = *up + cksum + IP_TCP_CSUM_COMP; 20049 sum = (sum & 0xFFFF) + (sum >> 16); 20050 *up = (sum & 0xFFFF) + (sum >> 16); 20051 } else { 20052 /* software checksumming */ 20053 TCP_STAT(tcp_out_sw_cksum); 20054 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 20055 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20056 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20057 cksum + IP_TCP_CSUM_COMP); 20058 if (*up == 0) 20059 *up = 0xFFFF; 20060 } 20061 20062 /* IPv4 header checksum */ 20063 if (af == AF_INET) { 20064 ipha->ipha_fragment_offset_and_flags |= 20065 (uint32_t)htons(ire->ire_frag_flag); 20066 20067 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20068 ipha->ipha_hdr_checksum = 0; 20069 } else { 20070 IP_HDR_CKSUM(ipha, cksum, 20071 ((uint32_t *)ipha)[0], 20072 ((uint16_t *)ipha)[4]); 20073 } 20074 } 20075 20076 if (af == AF_INET && HOOKS4_INTERESTED_PHYSICAL_OUT|| 20077 af == AF_INET6 && HOOKS6_INTERESTED_PHYSICAL_OUT) { 20078 /* build header(IP/TCP) mblk for this segment */ 20079 if ((mp = dupb(md_hbuf)) == NULL) 20080 goto legacy_send; 20081 20082 mp->b_rptr = pkt_info->hdr_rptr; 20083 mp->b_wptr = pkt_info->hdr_wptr; 20084 20085 /* build payload mblk for this segment */ 20086 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20087 freemsg(mp); 20088 goto legacy_send; 20089 } 20090 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20091 mp1->b_rptr = mp1->b_wptr - 20092 tcp->tcp_last_sent_len; 20093 linkb(mp, mp1); 20094 20095 pld_start = mp1->b_rptr; 20096 20097 if (af == AF_INET) { 20098 DTRACE_PROBE4( 20099 ip4__physical__out__start, 20100 ill_t *, NULL, 20101 ill_t *, ill, 20102 ipha_t *, ipha, 20103 mblk_t *, mp); 20104 FW_HOOKS(ip4_physical_out_event, 20105 ipv4firewall_physical_out, 20106 NULL, ill, ipha, mp, mp); 20107 DTRACE_PROBE1( 20108 ip4__physical__out__end, 20109 mblk_t *, mp); 20110 } else { 20111 DTRACE_PROBE4( 20112 ip6__physical__out_start, 20113 ill_t *, NULL, 20114 ill_t *, ill, 20115 ip6_t *, ip6h, 20116 mblk_t *, mp); 20117 FW_HOOKS6(ip6_physical_out_event, 20118 ipv6firewall_physical_out, 20119 NULL, ill, ip6h, mp, mp); 20120 DTRACE_PROBE1( 20121 ip6__physical__out__end, 20122 mblk_t *, mp); 20123 } 20124 20125 if (buf_trunked && mp != NULL) { 20126 /* 20127 * Need to pass it to normal path. 20128 */ 20129 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20130 } else if (mp == NULL || 20131 mp->b_rptr != pkt_info->hdr_rptr || 20132 mp->b_wptr != pkt_info->hdr_wptr || 20133 (mp1 = mp->b_cont) == NULL || 20134 mp1->b_rptr != pld_start || 20135 mp1->b_wptr != pld_start + 20136 tcp->tcp_last_sent_len || 20137 mp1->b_cont != NULL) { 20138 /* 20139 * Need to pass all packets of this 20140 * buffer to normal path, either when 20141 * packet is blocked, or when boundary 20142 * of header buffer or payload buffer 20143 * has been changed by FW_HOOKS[6]. 20144 */ 20145 buf_trunked = B_TRUE; 20146 if (md_mp_head != NULL) { 20147 err = (intptr_t)rmvb(md_mp_head, 20148 md_mp); 20149 if (err == 0) 20150 md_mp_head = NULL; 20151 } 20152 20153 /* send down what we've got so far */ 20154 if (md_mp_head != NULL) { 20155 tcp_multisend_data(tcp, ire, 20156 ill, md_mp_head, obsegs, 20157 obbytes, &rconfirm); 20158 } 20159 md_mp_head = NULL; 20160 20161 if (mp != NULL) 20162 CALL_IP_WPUT(tcp->tcp_connp, 20163 q, mp); 20164 20165 mp1 = fw_mp_head; 20166 do { 20167 mp = mp1; 20168 mp1 = mp1->b_next; 20169 mp->b_next = NULL; 20170 mp->b_prev = NULL; 20171 CALL_IP_WPUT(tcp->tcp_connp, 20172 q, mp); 20173 } while (mp1 != NULL); 20174 20175 fw_mp_head = NULL; 20176 } else { 20177 if (fw_mp_head == NULL) 20178 fw_mp_head = mp; 20179 else 20180 fw_mp_head->b_prev->b_next = mp; 20181 fw_mp_head->b_prev = mp; 20182 } 20183 } 20184 20185 /* advance header offset */ 20186 cur_hdr_off += hdr_frag_sz; 20187 20188 obbytes += tcp->tcp_last_sent_len; 20189 ++obsegs; 20190 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20191 *tail_unsent > 0); 20192 20193 if ((*xmit_tail)->b_next == NULL) { 20194 /* 20195 * Store the lbolt used for RTT estimation. We can only 20196 * record one timestamp per mblk so we do it when we 20197 * reach the end of the payload buffer. Also we only 20198 * take a new timestamp sample when the previous timed 20199 * data from the same mblk has been ack'ed. 20200 */ 20201 (*xmit_tail)->b_prev = local_time; 20202 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20203 } 20204 20205 ASSERT(*tail_unsent >= 0); 20206 if (*tail_unsent > 0) { 20207 /* 20208 * We got here because we broke out of the above 20209 * loop due to of one of the following cases: 20210 * 20211 * 1. len < adjusted MSS (i.e. small), 20212 * 2. Sender SWS avoidance, 20213 * 3. max_pld is zero. 20214 * 20215 * We are done for this Multidata, so trim our 20216 * last payload buffer (if any) accordingly. 20217 */ 20218 if (md_pbuf != NULL) 20219 md_pbuf->b_wptr -= *tail_unsent; 20220 } else if (*usable > 0) { 20221 *xmit_tail = (*xmit_tail)->b_cont; 20222 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20223 (uintptr_t)INT_MAX); 20224 *tail_unsent = (int)MBLKL(*xmit_tail); 20225 add_buffer = B_TRUE; 20226 } 20227 20228 while (fw_mp_head) { 20229 mp = fw_mp_head; 20230 fw_mp_head = fw_mp_head->b_next; 20231 mp->b_prev = mp->b_next = NULL; 20232 freemsg(mp); 20233 } 20234 if (buf_trunked) { 20235 TCP_STAT(tcp_mdt_discarded); 20236 freeb(md_mp); 20237 buf_trunked = B_FALSE; 20238 } 20239 } while (!done && *usable > 0 && num_burst_seg > 0 && 20240 (tcp_mdt_chain || max_pld > 0)); 20241 20242 if (md_mp_head != NULL) { 20243 /* send everything down */ 20244 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20245 &rconfirm); 20246 } 20247 20248 #undef PREP_NEW_MULTIDATA 20249 #undef PREP_NEW_PBUF 20250 #undef IPVER 20251 20252 IRE_REFRELE(ire); 20253 return (0); 20254 } 20255 20256 /* 20257 * A wrapper function for sending one or more Multidata messages down to 20258 * the module below ip; this routine does not release the reference of the 20259 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20260 */ 20261 static void 20262 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20263 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20264 { 20265 uint64_t delta; 20266 nce_t *nce; 20267 20268 ASSERT(ire != NULL && ill != NULL); 20269 ASSERT(ire->ire_stq != NULL); 20270 ASSERT(md_mp_head != NULL); 20271 ASSERT(rconfirm != NULL); 20272 20273 /* adjust MIBs and IRE timestamp */ 20274 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20275 tcp->tcp_obsegs += obsegs; 20276 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 20277 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 20278 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 20279 20280 if (tcp->tcp_ipversion == IPV4_VERSION) { 20281 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 20282 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 20283 } else { 20284 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 20285 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 20286 } 20287 20288 ire->ire_ob_pkt_count += obsegs; 20289 if (ire->ire_ipif != NULL) 20290 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20291 ire->ire_last_used_time = lbolt; 20292 20293 /* send it down */ 20294 putnext(ire->ire_stq, md_mp_head); 20295 20296 /* we're done for TCP/IPv4 */ 20297 if (tcp->tcp_ipversion == IPV4_VERSION) 20298 return; 20299 20300 nce = ire->ire_nce; 20301 20302 ASSERT(nce != NULL); 20303 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20304 ASSERT(nce->nce_state != ND_INCOMPLETE); 20305 20306 /* reachability confirmation? */ 20307 if (*rconfirm) { 20308 nce->nce_last = TICK_TO_MSEC(lbolt64); 20309 if (nce->nce_state != ND_REACHABLE) { 20310 mutex_enter(&nce->nce_lock); 20311 nce->nce_state = ND_REACHABLE; 20312 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20313 mutex_exit(&nce->nce_lock); 20314 (void) untimeout(nce->nce_timeout_id); 20315 if (ip_debug > 2) { 20316 /* ip1dbg */ 20317 pr_addr_dbg("tcp_multisend_data: state " 20318 "for %s changed to REACHABLE\n", 20319 AF_INET6, &ire->ire_addr_v6); 20320 } 20321 } 20322 /* reset transport reachability confirmation */ 20323 *rconfirm = B_FALSE; 20324 } 20325 20326 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20327 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20328 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20329 20330 if (delta > (uint64_t)ill->ill_reachable_time) { 20331 mutex_enter(&nce->nce_lock); 20332 switch (nce->nce_state) { 20333 case ND_REACHABLE: 20334 case ND_STALE: 20335 /* 20336 * ND_REACHABLE is identical to ND_STALE in this 20337 * specific case. If reachable time has expired for 20338 * this neighbor (delta is greater than reachable 20339 * time), conceptually, the neighbor cache is no 20340 * longer in REACHABLE state, but already in STALE 20341 * state. So the correct transition here is to 20342 * ND_DELAY. 20343 */ 20344 nce->nce_state = ND_DELAY; 20345 mutex_exit(&nce->nce_lock); 20346 NDP_RESTART_TIMER(nce, delay_first_probe_time); 20347 if (ip_debug > 3) { 20348 /* ip2dbg */ 20349 pr_addr_dbg("tcp_multisend_data: state " 20350 "for %s changed to DELAY\n", 20351 AF_INET6, &ire->ire_addr_v6); 20352 } 20353 break; 20354 case ND_DELAY: 20355 case ND_PROBE: 20356 mutex_exit(&nce->nce_lock); 20357 /* Timers have already started */ 20358 break; 20359 case ND_UNREACHABLE: 20360 /* 20361 * ndp timer has detected that this nce is 20362 * unreachable and initiated deleting this nce 20363 * and all its associated IREs. This is a race 20364 * where we found the ire before it was deleted 20365 * and have just sent out a packet using this 20366 * unreachable nce. 20367 */ 20368 mutex_exit(&nce->nce_lock); 20369 break; 20370 default: 20371 ASSERT(0); 20372 } 20373 } 20374 } 20375 20376 /* 20377 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20378 * scheme, and returns one of the following: 20379 * 20380 * -1 = failed allocation. 20381 * 0 = success; burst count reached, or usable send window is too small, 20382 * and that we'd rather wait until later before sending again. 20383 * 1 = success; we are called from tcp_multisend(), and both usable send 20384 * window and tail_unsent are greater than the MDT threshold, and thus 20385 * Multidata Transmit should be used instead. 20386 */ 20387 static int 20388 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20389 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20390 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20391 const int mdt_thres) 20392 { 20393 int num_burst_seg = tcp->tcp_snd_burst; 20394 20395 for (;;) { 20396 struct datab *db; 20397 tcph_t *tcph; 20398 uint32_t sum; 20399 mblk_t *mp, *mp1; 20400 uchar_t *rptr; 20401 int len; 20402 20403 /* 20404 * If we're called by tcp_multisend(), and the amount of 20405 * sendable data as well as the size of current xmit_tail 20406 * is beyond the MDT threshold, return to the caller and 20407 * let the large data transmit be done using MDT. 20408 */ 20409 if (*usable > 0 && *usable > mdt_thres && 20410 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20411 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20412 ASSERT(tcp->tcp_mdt); 20413 return (1); /* success; do large send */ 20414 } 20415 20416 if (num_burst_seg-- == 0) 20417 break; /* success; burst count reached */ 20418 20419 len = mss; 20420 if (len > *usable) { 20421 len = *usable; 20422 if (len <= 0) { 20423 /* Terminate the loop */ 20424 break; /* success; too small */ 20425 } 20426 /* 20427 * Sender silly-window avoidance. 20428 * Ignore this if we are going to send a 20429 * zero window probe out. 20430 * 20431 * TODO: force data into microscopic window? 20432 * ==> (!pushed || (unsent > usable)) 20433 */ 20434 if (len < (tcp->tcp_max_swnd >> 1) && 20435 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20436 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20437 len == 1) && (! tcp->tcp_zero_win_probe)) { 20438 /* 20439 * If the retransmit timer is not running 20440 * we start it so that we will retransmit 20441 * in the case when the the receiver has 20442 * decremented the window. 20443 */ 20444 if (*snxt == tcp->tcp_snxt && 20445 *snxt == tcp->tcp_suna) { 20446 /* 20447 * We are not supposed to send 20448 * anything. So let's wait a little 20449 * bit longer before breaking SWS 20450 * avoidance. 20451 * 20452 * What should the value be? 20453 * Suggestion: MAX(init rexmit time, 20454 * tcp->tcp_rto) 20455 */ 20456 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20457 } 20458 break; /* success; too small */ 20459 } 20460 } 20461 20462 tcph = tcp->tcp_tcph; 20463 20464 *usable -= len; /* Approximate - can be adjusted later */ 20465 if (*usable > 0) 20466 tcph->th_flags[0] = TH_ACK; 20467 else 20468 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20469 20470 /* 20471 * Prime pump for IP's checksumming on our behalf 20472 * Include the adjustment for a source route if any. 20473 */ 20474 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20475 sum = (sum >> 16) + (sum & 0xFFFF); 20476 U16_TO_ABE16(sum, tcph->th_sum); 20477 20478 U32_TO_ABE32(*snxt, tcph->th_seq); 20479 20480 /* 20481 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20482 * set. For the case when TCP_FSS_VALID is the only valid 20483 * bit (normal active close), branch off only when we think 20484 * that the FIN flag needs to be set. Note for this case, 20485 * that (snxt + len) may not reflect the actual seg_len, 20486 * as len may be further reduced in tcp_xmit_mp(). If len 20487 * gets modified, we will end up here again. 20488 */ 20489 if (tcp->tcp_valid_bits != 0 && 20490 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20491 ((*snxt + len) == tcp->tcp_fss))) { 20492 uchar_t *prev_rptr; 20493 uint32_t prev_snxt = tcp->tcp_snxt; 20494 20495 if (*tail_unsent == 0) { 20496 ASSERT((*xmit_tail)->b_cont != NULL); 20497 *xmit_tail = (*xmit_tail)->b_cont; 20498 prev_rptr = (*xmit_tail)->b_rptr; 20499 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20500 (*xmit_tail)->b_rptr); 20501 } else { 20502 prev_rptr = (*xmit_tail)->b_rptr; 20503 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20504 *tail_unsent; 20505 } 20506 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20507 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20508 /* Restore tcp_snxt so we get amount sent right. */ 20509 tcp->tcp_snxt = prev_snxt; 20510 if (prev_rptr == (*xmit_tail)->b_rptr) { 20511 /* 20512 * If the previous timestamp is still in use, 20513 * don't stomp on it. 20514 */ 20515 if ((*xmit_tail)->b_next == NULL) { 20516 (*xmit_tail)->b_prev = local_time; 20517 (*xmit_tail)->b_next = 20518 (mblk_t *)(uintptr_t)(*snxt); 20519 } 20520 } else 20521 (*xmit_tail)->b_rptr = prev_rptr; 20522 20523 if (mp == NULL) 20524 return (-1); 20525 mp1 = mp->b_cont; 20526 20527 tcp->tcp_last_sent_len = (ushort_t)len; 20528 while (mp1->b_cont) { 20529 *xmit_tail = (*xmit_tail)->b_cont; 20530 (*xmit_tail)->b_prev = local_time; 20531 (*xmit_tail)->b_next = 20532 (mblk_t *)(uintptr_t)(*snxt); 20533 mp1 = mp1->b_cont; 20534 } 20535 *snxt += len; 20536 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20537 BUMP_LOCAL(tcp->tcp_obsegs); 20538 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20539 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20540 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20541 tcp_send_data(tcp, q, mp); 20542 continue; 20543 } 20544 20545 *snxt += len; /* Adjust later if we don't send all of len */ 20546 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20547 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20548 20549 if (*tail_unsent) { 20550 /* Are the bytes above us in flight? */ 20551 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20552 if (rptr != (*xmit_tail)->b_rptr) { 20553 *tail_unsent -= len; 20554 tcp->tcp_last_sent_len = (ushort_t)len; 20555 len += tcp_hdr_len; 20556 if (tcp->tcp_ipversion == IPV4_VERSION) 20557 tcp->tcp_ipha->ipha_length = htons(len); 20558 else 20559 tcp->tcp_ip6h->ip6_plen = 20560 htons(len - 20561 ((char *)&tcp->tcp_ip6h[1] - 20562 tcp->tcp_iphc)); 20563 mp = dupb(*xmit_tail); 20564 if (!mp) 20565 return (-1); /* out_of_mem */ 20566 mp->b_rptr = rptr; 20567 /* 20568 * If the old timestamp is no longer in use, 20569 * sample a new timestamp now. 20570 */ 20571 if ((*xmit_tail)->b_next == NULL) { 20572 (*xmit_tail)->b_prev = local_time; 20573 (*xmit_tail)->b_next = 20574 (mblk_t *)(uintptr_t)(*snxt-len); 20575 } 20576 goto must_alloc; 20577 } 20578 } else { 20579 *xmit_tail = (*xmit_tail)->b_cont; 20580 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20581 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20582 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20583 (*xmit_tail)->b_rptr); 20584 } 20585 20586 (*xmit_tail)->b_prev = local_time; 20587 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20588 20589 *tail_unsent -= len; 20590 tcp->tcp_last_sent_len = (ushort_t)len; 20591 20592 len += tcp_hdr_len; 20593 if (tcp->tcp_ipversion == IPV4_VERSION) 20594 tcp->tcp_ipha->ipha_length = htons(len); 20595 else 20596 tcp->tcp_ip6h->ip6_plen = htons(len - 20597 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20598 20599 mp = dupb(*xmit_tail); 20600 if (!mp) 20601 return (-1); /* out_of_mem */ 20602 20603 len = tcp_hdr_len; 20604 /* 20605 * There are four reasons to allocate a new hdr mblk: 20606 * 1) The bytes above us are in use by another packet 20607 * 2) We don't have good alignment 20608 * 3) The mblk is being shared 20609 * 4) We don't have enough room for a header 20610 */ 20611 rptr = mp->b_rptr - len; 20612 if (!OK_32PTR(rptr) || 20613 ((db = mp->b_datap), db->db_ref != 2) || 20614 rptr < db->db_base) { 20615 /* NOTE: we assume allocb returns an OK_32PTR */ 20616 20617 must_alloc:; 20618 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20619 tcp_wroff_xtra, BPRI_MED); 20620 if (!mp1) { 20621 freemsg(mp); 20622 return (-1); /* out_of_mem */ 20623 } 20624 mp1->b_cont = mp; 20625 mp = mp1; 20626 /* Leave room for Link Level header */ 20627 len = tcp_hdr_len; 20628 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20629 mp->b_wptr = &rptr[len]; 20630 } 20631 20632 /* 20633 * Fill in the header using the template header, and add 20634 * options such as time-stamp, ECN and/or SACK, as needed. 20635 */ 20636 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20637 20638 mp->b_rptr = rptr; 20639 20640 if (*tail_unsent) { 20641 int spill = *tail_unsent; 20642 20643 mp1 = mp->b_cont; 20644 if (!mp1) 20645 mp1 = mp; 20646 20647 /* 20648 * If we're a little short, tack on more mblks until 20649 * there is no more spillover. 20650 */ 20651 while (spill < 0) { 20652 mblk_t *nmp; 20653 int nmpsz; 20654 20655 nmp = (*xmit_tail)->b_cont; 20656 nmpsz = MBLKL(nmp); 20657 20658 /* 20659 * Excess data in mblk; can we split it? 20660 * If MDT is enabled for the connection, 20661 * keep on splitting as this is a transient 20662 * send path. 20663 */ 20664 if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { 20665 /* 20666 * Don't split if stream head was 20667 * told to break up larger writes 20668 * into smaller ones. 20669 */ 20670 if (tcp->tcp_maxpsz > 0) 20671 break; 20672 20673 /* 20674 * Next mblk is less than SMSS/2 20675 * rounded up to nearest 64-byte; 20676 * let it get sent as part of the 20677 * next segment. 20678 */ 20679 if (tcp->tcp_localnet && 20680 !tcp->tcp_cork && 20681 (nmpsz < roundup((mss >> 1), 64))) 20682 break; 20683 } 20684 20685 *xmit_tail = nmp; 20686 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 20687 /* Stash for rtt use later */ 20688 (*xmit_tail)->b_prev = local_time; 20689 (*xmit_tail)->b_next = 20690 (mblk_t *)(uintptr_t)(*snxt - len); 20691 mp1->b_cont = dupb(*xmit_tail); 20692 mp1 = mp1->b_cont; 20693 20694 spill += nmpsz; 20695 if (mp1 == NULL) { 20696 *tail_unsent = spill; 20697 freemsg(mp); 20698 return (-1); /* out_of_mem */ 20699 } 20700 } 20701 20702 /* Trim back any surplus on the last mblk */ 20703 if (spill >= 0) { 20704 mp1->b_wptr -= spill; 20705 *tail_unsent = spill; 20706 } else { 20707 /* 20708 * We did not send everything we could in 20709 * order to remain within the b_cont limit. 20710 */ 20711 *usable -= spill; 20712 *snxt += spill; 20713 tcp->tcp_last_sent_len += spill; 20714 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 20715 /* 20716 * Adjust the checksum 20717 */ 20718 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20719 sum += spill; 20720 sum = (sum >> 16) + (sum & 0xFFFF); 20721 U16_TO_ABE16(sum, tcph->th_sum); 20722 if (tcp->tcp_ipversion == IPV4_VERSION) { 20723 sum = ntohs( 20724 ((ipha_t *)rptr)->ipha_length) + 20725 spill; 20726 ((ipha_t *)rptr)->ipha_length = 20727 htons(sum); 20728 } else { 20729 sum = ntohs( 20730 ((ip6_t *)rptr)->ip6_plen) + 20731 spill; 20732 ((ip6_t *)rptr)->ip6_plen = 20733 htons(sum); 20734 } 20735 *tail_unsent = 0; 20736 } 20737 } 20738 if (tcp->tcp_ip_forward_progress) { 20739 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20740 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 20741 tcp->tcp_ip_forward_progress = B_FALSE; 20742 } 20743 20744 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20745 tcp_send_data(tcp, q, mp); 20746 BUMP_LOCAL(tcp->tcp_obsegs); 20747 } 20748 20749 return (0); 20750 } 20751 20752 /* Unlink and return any mblk that looks like it contains a MDT info */ 20753 static mblk_t * 20754 tcp_mdt_info_mp(mblk_t *mp) 20755 { 20756 mblk_t *prev_mp; 20757 20758 for (;;) { 20759 prev_mp = mp; 20760 /* no more to process? */ 20761 if ((mp = mp->b_cont) == NULL) 20762 break; 20763 20764 switch (DB_TYPE(mp)) { 20765 case M_CTL: 20766 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 20767 continue; 20768 ASSERT(prev_mp != NULL); 20769 prev_mp->b_cont = mp->b_cont; 20770 mp->b_cont = NULL; 20771 return (mp); 20772 default: 20773 break; 20774 } 20775 } 20776 return (mp); 20777 } 20778 20779 /* MDT info update routine, called when IP notifies us about MDT */ 20780 static void 20781 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 20782 { 20783 boolean_t prev_state; 20784 20785 /* 20786 * IP is telling us to abort MDT on this connection? We know 20787 * this because the capability is only turned off when IP 20788 * encounters some pathological cases, e.g. link-layer change 20789 * where the new driver doesn't support MDT, or in situation 20790 * where MDT usage on the link-layer has been switched off. 20791 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 20792 * if the link-layer doesn't support MDT, and if it does, it 20793 * will indicate that the feature is to be turned on. 20794 */ 20795 prev_state = tcp->tcp_mdt; 20796 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 20797 if (!tcp->tcp_mdt && !first) { 20798 TCP_STAT(tcp_mdt_conn_halted3); 20799 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 20800 (void *)tcp->tcp_connp)); 20801 } 20802 20803 /* 20804 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 20805 * so disable MDT otherwise. The checks are done here 20806 * and in tcp_wput_data(). 20807 */ 20808 if (tcp->tcp_mdt && 20809 (tcp->tcp_ipversion == IPV4_VERSION && 20810 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20811 (tcp->tcp_ipversion == IPV6_VERSION && 20812 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 20813 tcp->tcp_mdt = B_FALSE; 20814 20815 if (tcp->tcp_mdt) { 20816 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 20817 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 20818 "version (%d), expected version is %d", 20819 mdt_capab->ill_mdt_version, MDT_VERSION_2); 20820 tcp->tcp_mdt = B_FALSE; 20821 return; 20822 } 20823 20824 /* 20825 * We need the driver to be able to handle at least three 20826 * spans per packet in order for tcp MDT to be utilized. 20827 * The first is for the header portion, while the rest are 20828 * needed to handle a packet that straddles across two 20829 * virtually non-contiguous buffers; a typical tcp packet 20830 * therefore consists of only two spans. Note that we take 20831 * a zero as "don't care". 20832 */ 20833 if (mdt_capab->ill_mdt_span_limit > 0 && 20834 mdt_capab->ill_mdt_span_limit < 3) { 20835 tcp->tcp_mdt = B_FALSE; 20836 return; 20837 } 20838 20839 /* a zero means driver wants default value */ 20840 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 20841 tcp_mdt_max_pbufs); 20842 if (tcp->tcp_mdt_max_pld == 0) 20843 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 20844 20845 /* ensure 32-bit alignment */ 20846 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 20847 mdt_capab->ill_mdt_hdr_head), 4); 20848 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 20849 mdt_capab->ill_mdt_hdr_tail), 4); 20850 20851 if (!first && !prev_state) { 20852 TCP_STAT(tcp_mdt_conn_resumed2); 20853 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 20854 (void *)tcp->tcp_connp)); 20855 } 20856 } 20857 } 20858 20859 static void 20860 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) 20861 { 20862 conn_t *connp = tcp->tcp_connp; 20863 20864 ASSERT(ire != NULL); 20865 20866 /* 20867 * We may be in the fastpath here, and although we essentially do 20868 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, 20869 * we try to keep things as brief as possible. After all, these 20870 * are only best-effort checks, and we do more thorough ones prior 20871 * to calling tcp_multisend(). 20872 */ 20873 if (ip_multidata_outbound && check_mdt && 20874 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 20875 ill != NULL && ILL_MDT_CAPABLE(ill) && 20876 !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 20877 !(ire->ire_flags & RTF_MULTIRT) && 20878 !IPP_ENABLED(IPP_LOCAL_OUT) && 20879 CONN_IS_MD_FASTPATH(connp)) { 20880 /* Remember the result */ 20881 connp->conn_mdt_ok = B_TRUE; 20882 20883 ASSERT(ill->ill_mdt_capab != NULL); 20884 if (!ill->ill_mdt_capab->ill_mdt_on) { 20885 /* 20886 * If MDT has been previously turned off in the past, 20887 * and we currently can do MDT (due to IPQoS policy 20888 * removal, etc.) then enable it for this interface. 20889 */ 20890 ill->ill_mdt_capab->ill_mdt_on = 1; 20891 ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " 20892 "interface %s\n", (void *)connp, ill->ill_name)); 20893 } 20894 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 20895 } 20896 20897 /* 20898 * The goal is to reduce the number of generated tcp segments by 20899 * setting the maxpsz multiplier to 0; this will have an affect on 20900 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 20901 * into each packet, up to SMSS bytes. Doing this reduces the number 20902 * of outbound segments and incoming ACKs, thus allowing for better 20903 * network and system performance. In contrast the legacy behavior 20904 * may result in sending less than SMSS size, because the last mblk 20905 * for some packets may have more data than needed to make up SMSS, 20906 * and the legacy code refused to "split" it. 20907 * 20908 * We apply the new behavior on following situations: 20909 * 20910 * 1) Loopback connections, 20911 * 2) Connections in which the remote peer is not on local subnet, 20912 * 3) Local subnet connections over the bge interface (see below). 20913 * 20914 * Ideally, we would like this behavior to apply for interfaces other 20915 * than bge. However, doing so would negatively impact drivers which 20916 * perform dynamic mapping and unmapping of DMA resources, which are 20917 * increased by setting the maxpsz multiplier to 0 (more mblks per 20918 * packet will be generated by tcp). The bge driver does not suffer 20919 * from this, as it copies the mblks into pre-mapped buffers, and 20920 * therefore does not require more I/O resources than before. 20921 * 20922 * Otherwise, this behavior is present on all network interfaces when 20923 * the destination endpoint is non-local, since reducing the number 20924 * of packets in general is good for the network. 20925 * 20926 * TODO We need to remove this hard-coded conditional for bge once 20927 * a better "self-tuning" mechanism, or a way to comprehend 20928 * the driver transmit strategy is devised. Until the solution 20929 * is found and well understood, we live with this hack. 20930 */ 20931 if (!tcp_static_maxpsz && 20932 (tcp->tcp_loopback || !tcp->tcp_localnet || 20933 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 20934 /* override the default value */ 20935 tcp->tcp_maxpsz = 0; 20936 20937 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 20938 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 20939 ill != NULL ? ill->ill_name : ipif_loopback_name)); 20940 } 20941 20942 /* set the stream head parameters accordingly */ 20943 (void) tcp_maxpsz_set(tcp, B_TRUE); 20944 } 20945 20946 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 20947 static void 20948 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 20949 { 20950 uchar_t fval = *mp->b_rptr; 20951 mblk_t *tail; 20952 queue_t *q = tcp->tcp_wq; 20953 20954 /* TODO: How should flush interact with urgent data? */ 20955 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 20956 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 20957 /* 20958 * Flush only data that has not yet been put on the wire. If 20959 * we flush data that we have already transmitted, life, as we 20960 * know it, may come to an end. 20961 */ 20962 tail = tcp->tcp_xmit_tail; 20963 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 20964 tcp->tcp_xmit_tail_unsent = 0; 20965 tcp->tcp_unsent = 0; 20966 if (tail->b_wptr != tail->b_rptr) 20967 tail = tail->b_cont; 20968 if (tail) { 20969 mblk_t **excess = &tcp->tcp_xmit_head; 20970 for (;;) { 20971 mblk_t *mp1 = *excess; 20972 if (mp1 == tail) 20973 break; 20974 tcp->tcp_xmit_tail = mp1; 20975 tcp->tcp_xmit_last = mp1; 20976 excess = &mp1->b_cont; 20977 } 20978 *excess = NULL; 20979 tcp_close_mpp(&tail); 20980 if (tcp->tcp_snd_zcopy_aware) 20981 tcp_zcopy_notify(tcp); 20982 } 20983 /* 20984 * We have no unsent data, so unsent must be less than 20985 * tcp_xmit_lowater, so re-enable flow. 20986 */ 20987 if (tcp->tcp_flow_stopped) { 20988 tcp_clrqfull(tcp); 20989 } 20990 } 20991 /* 20992 * TODO: you can't just flush these, you have to increase rwnd for one 20993 * thing. For another, how should urgent data interact? 20994 */ 20995 if (fval & FLUSHR) { 20996 *mp->b_rptr = fval & ~FLUSHW; 20997 /* XXX */ 20998 qreply(q, mp); 20999 return; 21000 } 21001 freemsg(mp); 21002 } 21003 21004 /* 21005 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21006 * messages. 21007 */ 21008 static void 21009 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21010 { 21011 mblk_t *mp1; 21012 STRUCT_HANDLE(strbuf, sb); 21013 uint16_t port; 21014 queue_t *q = tcp->tcp_wq; 21015 in6_addr_t v6addr; 21016 ipaddr_t v4addr; 21017 uint32_t flowinfo = 0; 21018 int addrlen; 21019 21020 /* Make sure it is one of ours. */ 21021 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21022 case TI_GETMYNAME: 21023 case TI_GETPEERNAME: 21024 break; 21025 default: 21026 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21027 return; 21028 } 21029 switch (mi_copy_state(q, mp, &mp1)) { 21030 case -1: 21031 return; 21032 case MI_COPY_CASE(MI_COPY_IN, 1): 21033 break; 21034 case MI_COPY_CASE(MI_COPY_OUT, 1): 21035 /* Copy out the strbuf. */ 21036 mi_copyout(q, mp); 21037 return; 21038 case MI_COPY_CASE(MI_COPY_OUT, 2): 21039 /* All done. */ 21040 mi_copy_done(q, mp, 0); 21041 return; 21042 default: 21043 mi_copy_done(q, mp, EPROTO); 21044 return; 21045 } 21046 /* Check alignment of the strbuf */ 21047 if (!OK_32PTR(mp1->b_rptr)) { 21048 mi_copy_done(q, mp, EINVAL); 21049 return; 21050 } 21051 21052 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21053 (void *)mp1->b_rptr); 21054 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21055 21056 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21057 mi_copy_done(q, mp, EINVAL); 21058 return; 21059 } 21060 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21061 case TI_GETMYNAME: 21062 if (tcp->tcp_family == AF_INET) { 21063 if (tcp->tcp_ipversion == IPV4_VERSION) { 21064 v4addr = tcp->tcp_ipha->ipha_src; 21065 } else { 21066 /* can't return an address in this case */ 21067 v4addr = 0; 21068 } 21069 } else { 21070 /* tcp->tcp_family == AF_INET6 */ 21071 if (tcp->tcp_ipversion == IPV4_VERSION) { 21072 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21073 &v6addr); 21074 } else { 21075 v6addr = tcp->tcp_ip6h->ip6_src; 21076 } 21077 } 21078 port = tcp->tcp_lport; 21079 break; 21080 case TI_GETPEERNAME: 21081 if (tcp->tcp_family == AF_INET) { 21082 if (tcp->tcp_ipversion == IPV4_VERSION) { 21083 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21084 v4addr); 21085 } else { 21086 /* can't return an address in this case */ 21087 v4addr = 0; 21088 } 21089 } else { 21090 /* tcp->tcp_family == AF_INET6) */ 21091 v6addr = tcp->tcp_remote_v6; 21092 if (tcp->tcp_ipversion == IPV6_VERSION) { 21093 /* 21094 * No flowinfo if tcp->tcp_ipversion is v4. 21095 * 21096 * flowinfo was already initialized to zero 21097 * where it was declared above, so only 21098 * set it if ipversion is v6. 21099 */ 21100 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21101 ~IPV6_VERS_AND_FLOW_MASK; 21102 } 21103 } 21104 port = tcp->tcp_fport; 21105 break; 21106 default: 21107 mi_copy_done(q, mp, EPROTO); 21108 return; 21109 } 21110 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21111 if (!mp1) 21112 return; 21113 21114 if (tcp->tcp_family == AF_INET) { 21115 sin_t *sin; 21116 21117 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21118 sin = (sin_t *)mp1->b_rptr; 21119 mp1->b_wptr = (uchar_t *)&sin[1]; 21120 *sin = sin_null; 21121 sin->sin_family = AF_INET; 21122 sin->sin_addr.s_addr = v4addr; 21123 sin->sin_port = port; 21124 } else { 21125 /* tcp->tcp_family == AF_INET6 */ 21126 sin6_t *sin6; 21127 21128 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 21129 sin6 = (sin6_t *)mp1->b_rptr; 21130 mp1->b_wptr = (uchar_t *)&sin6[1]; 21131 *sin6 = sin6_null; 21132 sin6->sin6_family = AF_INET6; 21133 sin6->sin6_flowinfo = flowinfo; 21134 sin6->sin6_addr = v6addr; 21135 sin6->sin6_port = port; 21136 } 21137 /* Copy out the address */ 21138 mi_copyout(q, mp); 21139 } 21140 21141 /* 21142 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21143 * messages. 21144 */ 21145 /* ARGSUSED */ 21146 static void 21147 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21148 { 21149 conn_t *connp = (conn_t *)arg; 21150 tcp_t *tcp = connp->conn_tcp; 21151 queue_t *q = tcp->tcp_wq; 21152 struct iocblk *iocp; 21153 21154 ASSERT(DB_TYPE(mp) == M_IOCTL); 21155 /* 21156 * Try and ASSERT the minimum possible references on the 21157 * conn early enough. Since we are executing on write side, 21158 * the connection is obviously not detached and that means 21159 * there is a ref each for TCP and IP. Since we are behind 21160 * the squeue, the minimum references needed are 3. If the 21161 * conn is in classifier hash list, there should be an 21162 * extra ref for that (we check both the possibilities). 21163 */ 21164 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21165 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21166 21167 iocp = (struct iocblk *)mp->b_rptr; 21168 switch (iocp->ioc_cmd) { 21169 case TCP_IOC_DEFAULT_Q: 21170 /* Wants to be the default wq. */ 21171 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 21172 iocp->ioc_error = EPERM; 21173 iocp->ioc_count = 0; 21174 mp->b_datap->db_type = M_IOCACK; 21175 qreply(q, mp); 21176 return; 21177 } 21178 tcp_def_q_set(tcp, mp); 21179 return; 21180 case _SIOCSOCKFALLBACK: 21181 /* 21182 * Either sockmod is about to be popped and the socket 21183 * would now be treated as a plain stream, or a module 21184 * is about to be pushed so we could no longer use read- 21185 * side synchronous streams for fused loopback tcp. 21186 * Drain any queued data and disable direct sockfs 21187 * interface from now on. 21188 */ 21189 if (!tcp->tcp_issocket) { 21190 DB_TYPE(mp) = M_IOCNAK; 21191 iocp->ioc_error = EINVAL; 21192 } else { 21193 #ifdef _ILP32 21194 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 21195 #else 21196 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21197 #endif 21198 /* 21199 * Insert this socket into the acceptor hash. 21200 * We might need it for T_CONN_RES message 21201 */ 21202 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21203 21204 if (tcp->tcp_fused) { 21205 /* 21206 * This is a fused loopback tcp; disable 21207 * read-side synchronous streams interface 21208 * and drain any queued data. It is okay 21209 * to do this for non-synchronous streams 21210 * fused tcp as well. 21211 */ 21212 tcp_fuse_disable_pair(tcp, B_FALSE); 21213 } 21214 tcp->tcp_issocket = B_FALSE; 21215 TCP_STAT(tcp_sock_fallback); 21216 21217 DB_TYPE(mp) = M_IOCACK; 21218 iocp->ioc_error = 0; 21219 } 21220 iocp->ioc_count = 0; 21221 iocp->ioc_rval = 0; 21222 qreply(q, mp); 21223 return; 21224 } 21225 CALL_IP_WPUT(connp, q, mp); 21226 } 21227 21228 /* 21229 * This routine is called by tcp_wput() to handle all TPI requests. 21230 */ 21231 /* ARGSUSED */ 21232 static void 21233 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21234 { 21235 conn_t *connp = (conn_t *)arg; 21236 tcp_t *tcp = connp->conn_tcp; 21237 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21238 uchar_t *rptr; 21239 t_scalar_t type; 21240 int len; 21241 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 21242 21243 /* 21244 * Try and ASSERT the minimum possible references on the 21245 * conn early enough. Since we are executing on write side, 21246 * the connection is obviously not detached and that means 21247 * there is a ref each for TCP and IP. Since we are behind 21248 * the squeue, the minimum references needed are 3. If the 21249 * conn is in classifier hash list, there should be an 21250 * extra ref for that (we check both the possibilities). 21251 */ 21252 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21253 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21254 21255 rptr = mp->b_rptr; 21256 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21257 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21258 type = ((union T_primitives *)rptr)->type; 21259 if (type == T_EXDATA_REQ) { 21260 uint32_t msize = msgdsize(mp->b_cont); 21261 21262 len = msize - 1; 21263 if (len < 0) { 21264 freemsg(mp); 21265 return; 21266 } 21267 /* 21268 * Try to force urgent data out on the wire. 21269 * Even if we have unsent data this will 21270 * at least send the urgent flag. 21271 * XXX does not handle more flag correctly. 21272 */ 21273 len += tcp->tcp_unsent; 21274 len += tcp->tcp_snxt; 21275 tcp->tcp_urg = len; 21276 tcp->tcp_valid_bits |= TCP_URG_VALID; 21277 21278 /* Bypass tcp protocol for fused tcp loopback */ 21279 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21280 return; 21281 } else if (type != T_DATA_REQ) { 21282 goto non_urgent_data; 21283 } 21284 /* TODO: options, flags, ... from user */ 21285 /* Set length to zero for reclamation below */ 21286 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21287 freeb(mp); 21288 return; 21289 } else { 21290 if (tcp->tcp_debug) { 21291 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21292 "tcp_wput_proto, dropping one..."); 21293 } 21294 freemsg(mp); 21295 return; 21296 } 21297 21298 non_urgent_data: 21299 21300 switch ((int)tprim->type) { 21301 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21302 /* 21303 * save the kssl_ent_t from the next block, and convert this 21304 * back to a normal bind_req. 21305 */ 21306 if (mp->b_cont != NULL) { 21307 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21308 21309 if (tcp->tcp_kssl_ent != NULL) { 21310 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21311 KSSL_NO_PROXY); 21312 tcp->tcp_kssl_ent = NULL; 21313 } 21314 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21315 sizeof (kssl_ent_t)); 21316 kssl_hold_ent(tcp->tcp_kssl_ent); 21317 freemsg(mp->b_cont); 21318 mp->b_cont = NULL; 21319 } 21320 tprim->type = T_BIND_REQ; 21321 21322 /* FALLTHROUGH */ 21323 case O_T_BIND_REQ: /* bind request */ 21324 case T_BIND_REQ: /* new semantics bind request */ 21325 tcp_bind(tcp, mp); 21326 break; 21327 case T_UNBIND_REQ: /* unbind request */ 21328 tcp_unbind(tcp, mp); 21329 break; 21330 case O_T_CONN_RES: /* old connection response XXX */ 21331 case T_CONN_RES: /* connection response */ 21332 tcp_accept(tcp, mp); 21333 break; 21334 case T_CONN_REQ: /* connection request */ 21335 tcp_connect(tcp, mp); 21336 break; 21337 case T_DISCON_REQ: /* disconnect request */ 21338 tcp_disconnect(tcp, mp); 21339 break; 21340 case T_CAPABILITY_REQ: 21341 tcp_capability_req(tcp, mp); /* capability request */ 21342 break; 21343 case T_INFO_REQ: /* information request */ 21344 tcp_info_req(tcp, mp); 21345 break; 21346 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21347 /* Only IP is allowed to return meaningful value */ 21348 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21349 break; 21350 case T_OPTMGMT_REQ: 21351 /* 21352 * Note: no support for snmpcom_req() through new 21353 * T_OPTMGMT_REQ. See comments in ip.c 21354 */ 21355 /* Only IP is allowed to return meaningful value */ 21356 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21357 break; 21358 21359 case T_UNITDATA_REQ: /* unitdata request */ 21360 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21361 break; 21362 case T_ORDREL_REQ: /* orderly release req */ 21363 freemsg(mp); 21364 21365 if (tcp->tcp_fused) 21366 tcp_unfuse(tcp); 21367 21368 if (tcp_xmit_end(tcp) != 0) { 21369 /* 21370 * We were crossing FINs and got a reset from 21371 * the other side. Just ignore it. 21372 */ 21373 if (tcp->tcp_debug) { 21374 (void) strlog(TCP_MOD_ID, 0, 1, 21375 SL_ERROR|SL_TRACE, 21376 "tcp_wput_proto, T_ORDREL_REQ out of " 21377 "state %s", 21378 tcp_display(tcp, NULL, 21379 DISP_ADDR_AND_PORT)); 21380 } 21381 } 21382 break; 21383 case T_ADDR_REQ: 21384 tcp_addr_req(tcp, mp); 21385 break; 21386 default: 21387 if (tcp->tcp_debug) { 21388 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21389 "tcp_wput_proto, bogus TPI msg, type %d", 21390 tprim->type); 21391 } 21392 /* 21393 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21394 * to recover. 21395 */ 21396 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21397 break; 21398 } 21399 } 21400 21401 /* 21402 * The TCP write service routine should never be called... 21403 */ 21404 /* ARGSUSED */ 21405 static void 21406 tcp_wsrv(queue_t *q) 21407 { 21408 TCP_STAT(tcp_wsrv_called); 21409 } 21410 21411 /* Non overlapping byte exchanger */ 21412 static void 21413 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21414 { 21415 uchar_t uch; 21416 21417 while (len-- > 0) { 21418 uch = a[len]; 21419 a[len] = b[len]; 21420 b[len] = uch; 21421 } 21422 } 21423 21424 /* 21425 * Send out a control packet on the tcp connection specified. This routine 21426 * is typically called where we need a simple ACK or RST generated. 21427 */ 21428 static void 21429 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21430 { 21431 uchar_t *rptr; 21432 tcph_t *tcph; 21433 ipha_t *ipha = NULL; 21434 ip6_t *ip6h = NULL; 21435 uint32_t sum; 21436 int tcp_hdr_len; 21437 int tcp_ip_hdr_len; 21438 mblk_t *mp; 21439 21440 /* 21441 * Save sum for use in source route later. 21442 */ 21443 ASSERT(tcp != NULL); 21444 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21445 tcp_hdr_len = tcp->tcp_hdr_len; 21446 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21447 21448 /* If a text string is passed in with the request, pass it to strlog. */ 21449 if (str != NULL && tcp->tcp_debug) { 21450 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21451 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21452 str, seq, ack, ctl); 21453 } 21454 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21455 BPRI_MED); 21456 if (mp == NULL) { 21457 return; 21458 } 21459 rptr = &mp->b_rptr[tcp_wroff_xtra]; 21460 mp->b_rptr = rptr; 21461 mp->b_wptr = &rptr[tcp_hdr_len]; 21462 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21463 21464 if (tcp->tcp_ipversion == IPV4_VERSION) { 21465 ipha = (ipha_t *)rptr; 21466 ipha->ipha_length = htons(tcp_hdr_len); 21467 } else { 21468 ip6h = (ip6_t *)rptr; 21469 ASSERT(tcp != NULL); 21470 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21471 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21472 } 21473 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21474 tcph->th_flags[0] = (uint8_t)ctl; 21475 if (ctl & TH_RST) { 21476 BUMP_MIB(&tcp_mib, tcpOutRsts); 21477 BUMP_MIB(&tcp_mib, tcpOutControl); 21478 /* 21479 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21480 */ 21481 if (tcp->tcp_snd_ts_ok && 21482 tcp->tcp_state > TCPS_SYN_SENT) { 21483 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21484 *(mp->b_wptr) = TCPOPT_EOL; 21485 if (tcp->tcp_ipversion == IPV4_VERSION) { 21486 ipha->ipha_length = htons(tcp_hdr_len - 21487 TCPOPT_REAL_TS_LEN); 21488 } else { 21489 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21490 TCPOPT_REAL_TS_LEN); 21491 } 21492 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21493 sum -= TCPOPT_REAL_TS_LEN; 21494 } 21495 } 21496 if (ctl & TH_ACK) { 21497 if (tcp->tcp_snd_ts_ok) { 21498 U32_TO_BE32(lbolt, 21499 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21500 U32_TO_BE32(tcp->tcp_ts_recent, 21501 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21502 } 21503 21504 /* Update the latest receive window size in TCP header. */ 21505 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21506 tcph->th_win); 21507 tcp->tcp_rack = ack; 21508 tcp->tcp_rack_cnt = 0; 21509 BUMP_MIB(&tcp_mib, tcpOutAck); 21510 } 21511 BUMP_LOCAL(tcp->tcp_obsegs); 21512 U32_TO_BE32(seq, tcph->th_seq); 21513 U32_TO_BE32(ack, tcph->th_ack); 21514 /* 21515 * Include the adjustment for a source route if any. 21516 */ 21517 sum = (sum >> 16) + (sum & 0xFFFF); 21518 U16_TO_BE16(sum, tcph->th_sum); 21519 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21520 tcp_send_data(tcp, tcp->tcp_wq, mp); 21521 } 21522 21523 /* 21524 * If this routine returns B_TRUE, TCP can generate a RST in response 21525 * to a segment. If it returns B_FALSE, TCP should not respond. 21526 */ 21527 static boolean_t 21528 tcp_send_rst_chk(void) 21529 { 21530 clock_t now; 21531 21532 /* 21533 * TCP needs to protect itself from generating too many RSTs. 21534 * This can be a DoS attack by sending us random segments 21535 * soliciting RSTs. 21536 * 21537 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21538 * in each 1 second interval. In this way, TCP still generate 21539 * RSTs in normal cases but when under attack, the impact is 21540 * limited. 21541 */ 21542 if (tcp_rst_sent_rate_enabled != 0) { 21543 now = lbolt; 21544 /* lbolt can wrap around. */ 21545 if ((tcp_last_rst_intrvl > now) || 21546 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 21547 tcp_last_rst_intrvl = now; 21548 tcp_rst_cnt = 1; 21549 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 21550 return (B_FALSE); 21551 } 21552 } 21553 return (B_TRUE); 21554 } 21555 21556 /* 21557 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21558 */ 21559 static void 21560 tcp_ip_ire_mark_advice(tcp_t *tcp) 21561 { 21562 mblk_t *mp; 21563 ipic_t *ipic; 21564 21565 if (tcp->tcp_ipversion == IPV4_VERSION) { 21566 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21567 &ipic); 21568 } else { 21569 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21570 &ipic); 21571 } 21572 if (mp == NULL) 21573 return; 21574 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21575 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21576 } 21577 21578 /* 21579 * Return an IP advice ioctl mblk and set ipic to be the pointer 21580 * to the advice structure. 21581 */ 21582 static mblk_t * 21583 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21584 { 21585 struct iocblk *ioc; 21586 mblk_t *mp, *mp1; 21587 21588 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21589 if (mp == NULL) 21590 return (NULL); 21591 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21592 *ipic = (ipic_t *)mp->b_rptr; 21593 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21594 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21595 21596 bcopy(addr, *ipic + 1, addr_len); 21597 21598 (*ipic)->ipic_addr_length = addr_len; 21599 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21600 21601 mp1 = mkiocb(IP_IOCTL); 21602 if (mp1 == NULL) { 21603 freemsg(mp); 21604 return (NULL); 21605 } 21606 mp1->b_cont = mp; 21607 ioc = (struct iocblk *)mp1->b_rptr; 21608 ioc->ioc_count = sizeof (ipic_t) + addr_len; 21609 21610 return (mp1); 21611 } 21612 21613 /* 21614 * Generate a reset based on an inbound packet for which there is no active 21615 * tcp state that we can find. 21616 * 21617 * IPSEC NOTE : Try to send the reply with the same protection as it came 21618 * in. We still have the ipsec_mp that the packet was attached to. Thus 21619 * the packet will go out at the same level of protection as it came in by 21620 * converting the IPSEC_IN to IPSEC_OUT. 21621 */ 21622 static void 21623 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 21624 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid) 21625 { 21626 ipha_t *ipha = NULL; 21627 ip6_t *ip6h = NULL; 21628 ushort_t len; 21629 tcph_t *tcph; 21630 int i; 21631 mblk_t *ipsec_mp; 21632 boolean_t mctl_present; 21633 ipic_t *ipic; 21634 ipaddr_t v4addr; 21635 in6_addr_t v6addr; 21636 int addr_len; 21637 void *addr; 21638 queue_t *q = tcp_g_q; 21639 tcp_t *tcp = Q_TO_TCP(q); 21640 cred_t *cr; 21641 mblk_t *nmp; 21642 21643 if (!tcp_send_rst_chk()) { 21644 tcp_rst_unsent++; 21645 freemsg(mp); 21646 return; 21647 } 21648 21649 if (mp->b_datap->db_type == M_CTL) { 21650 ipsec_mp = mp; 21651 mp = mp->b_cont; 21652 mctl_present = B_TRUE; 21653 } else { 21654 ipsec_mp = mp; 21655 mctl_present = B_FALSE; 21656 } 21657 21658 if (str && q && tcp_dbg) { 21659 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21660 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 21661 "flags 0x%x", 21662 str, seq, ack, ctl); 21663 } 21664 if (mp->b_datap->db_ref != 1) { 21665 mblk_t *mp1 = copyb(mp); 21666 freemsg(mp); 21667 mp = mp1; 21668 if (!mp) { 21669 if (mctl_present) 21670 freeb(ipsec_mp); 21671 return; 21672 } else { 21673 if (mctl_present) { 21674 ipsec_mp->b_cont = mp; 21675 } else { 21676 ipsec_mp = mp; 21677 } 21678 } 21679 } else if (mp->b_cont) { 21680 freemsg(mp->b_cont); 21681 mp->b_cont = NULL; 21682 } 21683 /* 21684 * We skip reversing source route here. 21685 * (for now we replace all IP options with EOL) 21686 */ 21687 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21688 ipha = (ipha_t *)mp->b_rptr; 21689 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 21690 mp->b_rptr[i] = IPOPT_EOL; 21691 /* 21692 * Make sure that src address isn't flagrantly invalid. 21693 * Not all broadcast address checking for the src address 21694 * is possible, since we don't know the netmask of the src 21695 * addr. No check for destination address is done, since 21696 * IP will not pass up a packet with a broadcast dest 21697 * address to TCP. Similar checks are done below for IPv6. 21698 */ 21699 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 21700 CLASSD(ipha->ipha_src)) { 21701 freemsg(ipsec_mp); 21702 BUMP_MIB(&ip_mib, ipInDiscards); 21703 return; 21704 } 21705 } else { 21706 ip6h = (ip6_t *)mp->b_rptr; 21707 21708 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 21709 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 21710 freemsg(ipsec_mp); 21711 BUMP_MIB(&ip6_mib, ipv6InDiscards); 21712 return; 21713 } 21714 21715 /* Remove any extension headers assuming partial overlay */ 21716 if (ip_hdr_len > IPV6_HDR_LEN) { 21717 uint8_t *to; 21718 21719 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 21720 ovbcopy(ip6h, to, IPV6_HDR_LEN); 21721 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 21722 ip_hdr_len = IPV6_HDR_LEN; 21723 ip6h = (ip6_t *)mp->b_rptr; 21724 ip6h->ip6_nxt = IPPROTO_TCP; 21725 } 21726 } 21727 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 21728 if (tcph->th_flags[0] & TH_RST) { 21729 freemsg(ipsec_mp); 21730 return; 21731 } 21732 tcph->th_offset_and_rsrvd[0] = (5 << 4); 21733 len = ip_hdr_len + sizeof (tcph_t); 21734 mp->b_wptr = &mp->b_rptr[len]; 21735 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21736 ipha->ipha_length = htons(len); 21737 /* Swap addresses */ 21738 v4addr = ipha->ipha_src; 21739 ipha->ipha_src = ipha->ipha_dst; 21740 ipha->ipha_dst = v4addr; 21741 ipha->ipha_ident = 0; 21742 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 21743 addr_len = IP_ADDR_LEN; 21744 addr = &v4addr; 21745 } else { 21746 /* No ip6i_t in this case */ 21747 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 21748 /* Swap addresses */ 21749 v6addr = ip6h->ip6_src; 21750 ip6h->ip6_src = ip6h->ip6_dst; 21751 ip6h->ip6_dst = v6addr; 21752 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 21753 addr_len = IPV6_ADDR_LEN; 21754 addr = &v6addr; 21755 } 21756 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 21757 U32_TO_BE32(ack, tcph->th_ack); 21758 U32_TO_BE32(seq, tcph->th_seq); 21759 U16_TO_BE16(0, tcph->th_win); 21760 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 21761 tcph->th_flags[0] = (uint8_t)ctl; 21762 if (ctl & TH_RST) { 21763 BUMP_MIB(&tcp_mib, tcpOutRsts); 21764 BUMP_MIB(&tcp_mib, tcpOutControl); 21765 } 21766 21767 /* IP trusts us to set up labels when required. */ 21768 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 21769 crgetlabel(cr) != NULL) { 21770 int err, adjust; 21771 21772 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 21773 err = tsol_check_label(cr, &mp, &adjust, 21774 tcp->tcp_connp->conn_mac_exempt); 21775 else 21776 err = tsol_check_label_v6(cr, &mp, &adjust, 21777 tcp->tcp_connp->conn_mac_exempt); 21778 if (mctl_present) 21779 ipsec_mp->b_cont = mp; 21780 else 21781 ipsec_mp = mp; 21782 if (err != 0) { 21783 freemsg(ipsec_mp); 21784 return; 21785 } 21786 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21787 ipha = (ipha_t *)mp->b_rptr; 21788 adjust += ntohs(ipha->ipha_length); 21789 ipha->ipha_length = htons(adjust); 21790 } else { 21791 ip6h = (ip6_t *)mp->b_rptr; 21792 } 21793 } 21794 21795 if (mctl_present) { 21796 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21797 21798 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21799 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 21800 return; 21801 } 21802 } 21803 if (zoneid == ALL_ZONES) 21804 zoneid = GLOBAL_ZONEID; 21805 21806 /* Add the zoneid so ip_output routes it properly */ 21807 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) { 21808 freemsg(ipsec_mp); 21809 return; 21810 } 21811 ipsec_mp = nmp; 21812 21813 /* 21814 * NOTE: one might consider tracing a TCP packet here, but 21815 * this function has no active TCP state and no tcp structure 21816 * that has a trace buffer. If we traced here, we would have 21817 * to keep a local trace buffer in tcp_record_trace(). 21818 * 21819 * TSol note: The mblk that contains the incoming packet was 21820 * reused by tcp_xmit_listener_reset, so it already contains 21821 * the right credentials and we don't need to call mblk_setcred. 21822 * Also the conn's cred is not right since it is associated 21823 * with tcp_g_q. 21824 */ 21825 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 21826 21827 /* 21828 * Tell IP to mark the IRE used for this destination temporary. 21829 * This way, we can limit our exposure to DoS attack because IP 21830 * creates an IRE for each destination. If there are too many, 21831 * the time to do any routing lookup will be extremely long. And 21832 * the lookup can be in interrupt context. 21833 * 21834 * Note that in normal circumstances, this marking should not 21835 * affect anything. It would be nice if only 1 message is 21836 * needed to inform IP that the IRE created for this RST should 21837 * not be added to the cache table. But there is currently 21838 * not such communication mechanism between TCP and IP. So 21839 * the best we can do now is to send the advice ioctl to IP 21840 * to mark the IRE temporary. 21841 */ 21842 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 21843 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21844 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21845 } 21846 } 21847 21848 /* 21849 * Initiate closedown sequence on an active connection. (May be called as 21850 * writer.) Return value zero for OK return, non-zero for error return. 21851 */ 21852 static int 21853 tcp_xmit_end(tcp_t *tcp) 21854 { 21855 ipic_t *ipic; 21856 mblk_t *mp; 21857 21858 if (tcp->tcp_state < TCPS_SYN_RCVD || 21859 tcp->tcp_state > TCPS_CLOSE_WAIT) { 21860 /* 21861 * Invalid state, only states TCPS_SYN_RCVD, 21862 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 21863 */ 21864 return (-1); 21865 } 21866 21867 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 21868 tcp->tcp_valid_bits |= TCP_FSS_VALID; 21869 /* 21870 * If there is nothing more unsent, send the FIN now. 21871 * Otherwise, it will go out with the last segment. 21872 */ 21873 if (tcp->tcp_unsent == 0) { 21874 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21875 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 21876 21877 if (mp) { 21878 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21879 tcp_send_data(tcp, tcp->tcp_wq, mp); 21880 } else { 21881 /* 21882 * Couldn't allocate msg. Pretend we got it out. 21883 * Wait for rexmit timeout. 21884 */ 21885 tcp->tcp_snxt = tcp->tcp_fss + 1; 21886 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21887 } 21888 21889 /* 21890 * If needed, update tcp_rexmit_snxt as tcp_snxt is 21891 * changed. 21892 */ 21893 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 21894 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 21895 } 21896 } else { 21897 /* 21898 * If tcp->tcp_cork is set, then the data will not get sent, 21899 * so we have to check that and unset it first. 21900 */ 21901 if (tcp->tcp_cork) 21902 tcp->tcp_cork = B_FALSE; 21903 tcp_wput_data(tcp, NULL, B_FALSE); 21904 } 21905 21906 /* 21907 * If TCP does not get enough samples of RTT or tcp_rtt_updates 21908 * is 0, don't update the cache. 21909 */ 21910 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 21911 return (0); 21912 21913 /* 21914 * NOTE: should not update if source routes i.e. if tcp_remote if 21915 * different from the destination. 21916 */ 21917 if (tcp->tcp_ipversion == IPV4_VERSION) { 21918 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 21919 return (0); 21920 } 21921 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21922 &ipic); 21923 } else { 21924 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 21925 &tcp->tcp_ip6h->ip6_dst))) { 21926 return (0); 21927 } 21928 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21929 &ipic); 21930 } 21931 21932 /* Record route attributes in the IRE for use by future connections. */ 21933 if (mp == NULL) 21934 return (0); 21935 21936 /* 21937 * We do not have a good algorithm to update ssthresh at this time. 21938 * So don't do any update. 21939 */ 21940 ipic->ipic_rtt = tcp->tcp_rtt_sa; 21941 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 21942 21943 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21944 return (0); 21945 } 21946 21947 /* 21948 * Generate a "no listener here" RST in response to an "unknown" segment. 21949 * Note that we are reusing the incoming mp to construct the outgoing 21950 * RST. 21951 */ 21952 void 21953 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid) 21954 { 21955 uchar_t *rptr; 21956 uint32_t seg_len; 21957 tcph_t *tcph; 21958 uint32_t seg_seq; 21959 uint32_t seg_ack; 21960 uint_t flags; 21961 mblk_t *ipsec_mp; 21962 ipha_t *ipha; 21963 ip6_t *ip6h; 21964 boolean_t mctl_present = B_FALSE; 21965 boolean_t check = B_TRUE; 21966 boolean_t policy_present; 21967 21968 TCP_STAT(tcp_no_listener); 21969 21970 ipsec_mp = mp; 21971 21972 if (mp->b_datap->db_type == M_CTL) { 21973 ipsec_in_t *ii; 21974 21975 mctl_present = B_TRUE; 21976 mp = mp->b_cont; 21977 21978 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21979 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21980 if (ii->ipsec_in_dont_check) { 21981 check = B_FALSE; 21982 if (!ii->ipsec_in_secure) { 21983 freeb(ipsec_mp); 21984 mctl_present = B_FALSE; 21985 ipsec_mp = mp; 21986 } 21987 } 21988 } 21989 21990 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21991 policy_present = ipsec_inbound_v4_policy_present; 21992 ipha = (ipha_t *)mp->b_rptr; 21993 ip6h = NULL; 21994 } else { 21995 policy_present = ipsec_inbound_v6_policy_present; 21996 ipha = NULL; 21997 ip6h = (ip6_t *)mp->b_rptr; 21998 } 21999 22000 if (check && policy_present) { 22001 /* 22002 * The conn_t parameter is NULL because we already know 22003 * nobody's home. 22004 */ 22005 ipsec_mp = ipsec_check_global_policy( 22006 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 22007 if (ipsec_mp == NULL) 22008 return; 22009 } 22010 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22011 DTRACE_PROBE2( 22012 tx__ip__log__error__nolistener__tcp, 22013 char *, "Could not reply with RST to mp(1)", 22014 mblk_t *, mp); 22015 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22016 freemsg(ipsec_mp); 22017 return; 22018 } 22019 22020 rptr = mp->b_rptr; 22021 22022 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22023 seg_seq = BE32_TO_U32(tcph->th_seq); 22024 seg_ack = BE32_TO_U32(tcph->th_ack); 22025 flags = tcph->th_flags[0]; 22026 22027 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22028 if (flags & TH_RST) { 22029 freemsg(ipsec_mp); 22030 } else if (flags & TH_ACK) { 22031 tcp_xmit_early_reset("no tcp, reset", 22032 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid); 22033 } else { 22034 if (flags & TH_SYN) { 22035 seg_len++; 22036 } else { 22037 /* 22038 * Here we violate the RFC. Note that a normal 22039 * TCP will never send a segment without the ACK 22040 * flag, except for RST or SYN segment. This 22041 * segment is neither. Just drop it on the 22042 * floor. 22043 */ 22044 freemsg(ipsec_mp); 22045 tcp_rst_unsent++; 22046 return; 22047 } 22048 22049 tcp_xmit_early_reset("no tcp, reset/ack", 22050 ipsec_mp, 0, seg_seq + seg_len, 22051 TH_RST | TH_ACK, ip_hdr_len, zoneid); 22052 } 22053 } 22054 22055 /* 22056 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22057 * ip and tcp header ready to pass down to IP. If the mp passed in is 22058 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22059 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22060 * otherwise it will dup partial mblks.) 22061 * Otherwise, an appropriate ACK packet will be generated. This 22062 * routine is not usually called to send new data for the first time. It 22063 * is mostly called out of the timer for retransmits, and to generate ACKs. 22064 * 22065 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22066 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22067 * of the original mblk chain will be returned in *offset and *end_mp. 22068 */ 22069 mblk_t * 22070 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22071 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22072 boolean_t rexmit) 22073 { 22074 int data_length; 22075 int32_t off = 0; 22076 uint_t flags; 22077 mblk_t *mp1; 22078 mblk_t *mp2; 22079 uchar_t *rptr; 22080 tcph_t *tcph; 22081 int32_t num_sack_blk = 0; 22082 int32_t sack_opt_len = 0; 22083 22084 /* Allocate for our maximum TCP header + link-level */ 22085 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 22086 BPRI_MED); 22087 if (!mp1) 22088 return (NULL); 22089 data_length = 0; 22090 22091 /* 22092 * Note that tcp_mss has been adjusted to take into account the 22093 * timestamp option if applicable. Because SACK options do not 22094 * appear in every TCP segments and they are of variable lengths, 22095 * they cannot be included in tcp_mss. Thus we need to calculate 22096 * the actual segment length when we need to send a segment which 22097 * includes SACK options. 22098 */ 22099 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22100 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22101 tcp->tcp_num_sack_blk); 22102 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22103 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22104 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22105 max_to_send -= sack_opt_len; 22106 } 22107 22108 if (offset != NULL) { 22109 off = *offset; 22110 /* We use offset as an indicator that end_mp is not NULL. */ 22111 *end_mp = NULL; 22112 } 22113 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22114 /* This could be faster with cooperation from downstream */ 22115 if (mp2 != mp1 && !sendall && 22116 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22117 max_to_send) 22118 /* 22119 * Don't send the next mblk since the whole mblk 22120 * does not fit. 22121 */ 22122 break; 22123 mp2->b_cont = dupb(mp); 22124 mp2 = mp2->b_cont; 22125 if (!mp2) { 22126 freemsg(mp1); 22127 return (NULL); 22128 } 22129 mp2->b_rptr += off; 22130 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22131 (uintptr_t)INT_MAX); 22132 22133 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22134 if (data_length > max_to_send) { 22135 mp2->b_wptr -= data_length - max_to_send; 22136 data_length = max_to_send; 22137 off = mp2->b_wptr - mp->b_rptr; 22138 break; 22139 } else { 22140 off = 0; 22141 } 22142 } 22143 if (offset != NULL) { 22144 *offset = off; 22145 *end_mp = mp; 22146 } 22147 if (seg_len != NULL) { 22148 *seg_len = data_length; 22149 } 22150 22151 /* Update the latest receive window size in TCP header. */ 22152 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22153 tcp->tcp_tcph->th_win); 22154 22155 rptr = mp1->b_rptr + tcp_wroff_xtra; 22156 mp1->b_rptr = rptr; 22157 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22158 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22159 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22160 U32_TO_ABE32(seq, tcph->th_seq); 22161 22162 /* 22163 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22164 * that this function was called from tcp_wput_data. Thus, when called 22165 * to retransmit data the setting of the PUSH bit may appear some 22166 * what random in that it might get set when it should not. This 22167 * should not pose any performance issues. 22168 */ 22169 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22170 tcp->tcp_unsent == data_length)) { 22171 flags = TH_ACK | TH_PUSH; 22172 } else { 22173 flags = TH_ACK; 22174 } 22175 22176 if (tcp->tcp_ecn_ok) { 22177 if (tcp->tcp_ecn_echo_on) 22178 flags |= TH_ECE; 22179 22180 /* 22181 * Only set ECT bit and ECN_CWR if a segment contains new data. 22182 * There is no TCP flow control for non-data segments, and 22183 * only data segment is transmitted reliably. 22184 */ 22185 if (data_length > 0 && !rexmit) { 22186 SET_ECT(tcp, rptr); 22187 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22188 flags |= TH_CWR; 22189 tcp->tcp_ecn_cwr_sent = B_TRUE; 22190 } 22191 } 22192 } 22193 22194 if (tcp->tcp_valid_bits) { 22195 uint32_t u1; 22196 22197 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22198 seq == tcp->tcp_iss) { 22199 uchar_t *wptr; 22200 22201 /* 22202 * If TCP_ISS_VALID and the seq number is tcp_iss, 22203 * TCP can only be in SYN-SENT, SYN-RCVD or 22204 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22205 * our SYN is not ack'ed but the app closes this 22206 * TCP connection. 22207 */ 22208 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22209 tcp->tcp_state == TCPS_SYN_RCVD || 22210 tcp->tcp_state == TCPS_FIN_WAIT_1); 22211 22212 /* 22213 * Tack on the MSS option. It is always needed 22214 * for both active and passive open. 22215 * 22216 * MSS option value should be interface MTU - MIN 22217 * TCP/IP header according to RFC 793 as it means 22218 * the maximum segment size TCP can receive. But 22219 * to get around some broken middle boxes/end hosts 22220 * out there, we allow the option value to be the 22221 * same as the MSS option size on the peer side. 22222 * In this way, the other side will not send 22223 * anything larger than they can receive. 22224 * 22225 * Note that for SYN_SENT state, the ndd param 22226 * tcp_use_smss_as_mss_opt has no effect as we 22227 * don't know the peer's MSS option value. So 22228 * the only case we need to take care of is in 22229 * SYN_RCVD state, which is done later. 22230 */ 22231 wptr = mp1->b_wptr; 22232 wptr[0] = TCPOPT_MAXSEG; 22233 wptr[1] = TCPOPT_MAXSEG_LEN; 22234 wptr += 2; 22235 u1 = tcp->tcp_if_mtu - 22236 (tcp->tcp_ipversion == IPV4_VERSION ? 22237 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22238 TCP_MIN_HEADER_LENGTH; 22239 U16_TO_BE16(u1, wptr); 22240 mp1->b_wptr = wptr + 2; 22241 /* Update the offset to cover the additional word */ 22242 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22243 22244 /* 22245 * Note that the following way of filling in 22246 * TCP options are not optimal. Some NOPs can 22247 * be saved. But there is no need at this time 22248 * to optimize it. When it is needed, we will 22249 * do it. 22250 */ 22251 switch (tcp->tcp_state) { 22252 case TCPS_SYN_SENT: 22253 flags = TH_SYN; 22254 22255 if (tcp->tcp_snd_ts_ok) { 22256 uint32_t llbolt = (uint32_t)lbolt; 22257 22258 wptr = mp1->b_wptr; 22259 wptr[0] = TCPOPT_NOP; 22260 wptr[1] = TCPOPT_NOP; 22261 wptr[2] = TCPOPT_TSTAMP; 22262 wptr[3] = TCPOPT_TSTAMP_LEN; 22263 wptr += 4; 22264 U32_TO_BE32(llbolt, wptr); 22265 wptr += 4; 22266 ASSERT(tcp->tcp_ts_recent == 0); 22267 U32_TO_BE32(0L, wptr); 22268 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22269 tcph->th_offset_and_rsrvd[0] += 22270 (3 << 4); 22271 } 22272 22273 /* 22274 * Set up all the bits to tell other side 22275 * we are ECN capable. 22276 */ 22277 if (tcp->tcp_ecn_ok) { 22278 flags |= (TH_ECE | TH_CWR); 22279 } 22280 break; 22281 case TCPS_SYN_RCVD: 22282 flags |= TH_SYN; 22283 22284 /* 22285 * Reset the MSS option value to be SMSS 22286 * We should probably add back the bytes 22287 * for timestamp option and IPsec. We 22288 * don't do that as this is a workaround 22289 * for broken middle boxes/end hosts, it 22290 * is better for us to be more cautious. 22291 * They may not take these things into 22292 * account in their SMSS calculation. Thus 22293 * the peer's calculated SMSS may be smaller 22294 * than what it can be. This should be OK. 22295 */ 22296 if (tcp_use_smss_as_mss_opt) { 22297 u1 = tcp->tcp_mss; 22298 U16_TO_BE16(u1, wptr); 22299 } 22300 22301 /* 22302 * If the other side is ECN capable, reply 22303 * that we are also ECN capable. 22304 */ 22305 if (tcp->tcp_ecn_ok) 22306 flags |= TH_ECE; 22307 break; 22308 default: 22309 /* 22310 * The above ASSERT() makes sure that this 22311 * must be FIN-WAIT-1 state. Our SYN has 22312 * not been ack'ed so retransmit it. 22313 */ 22314 flags |= TH_SYN; 22315 break; 22316 } 22317 22318 if (tcp->tcp_snd_ws_ok) { 22319 wptr = mp1->b_wptr; 22320 wptr[0] = TCPOPT_NOP; 22321 wptr[1] = TCPOPT_WSCALE; 22322 wptr[2] = TCPOPT_WS_LEN; 22323 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22324 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22325 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22326 } 22327 22328 if (tcp->tcp_snd_sack_ok) { 22329 wptr = mp1->b_wptr; 22330 wptr[0] = TCPOPT_NOP; 22331 wptr[1] = TCPOPT_NOP; 22332 wptr[2] = TCPOPT_SACK_PERMITTED; 22333 wptr[3] = TCPOPT_SACK_OK_LEN; 22334 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22335 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22336 } 22337 22338 /* allocb() of adequate mblk assures space */ 22339 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22340 (uintptr_t)INT_MAX); 22341 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22342 /* 22343 * Get IP set to checksum on our behalf 22344 * Include the adjustment for a source route if any. 22345 */ 22346 u1 += tcp->tcp_sum; 22347 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22348 U16_TO_BE16(u1, tcph->th_sum); 22349 BUMP_MIB(&tcp_mib, tcpOutControl); 22350 } 22351 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22352 (seq + data_length) == tcp->tcp_fss) { 22353 if (!tcp->tcp_fin_acked) { 22354 flags |= TH_FIN; 22355 BUMP_MIB(&tcp_mib, tcpOutControl); 22356 } 22357 if (!tcp->tcp_fin_sent) { 22358 tcp->tcp_fin_sent = B_TRUE; 22359 switch (tcp->tcp_state) { 22360 case TCPS_SYN_RCVD: 22361 case TCPS_ESTABLISHED: 22362 tcp->tcp_state = TCPS_FIN_WAIT_1; 22363 break; 22364 case TCPS_CLOSE_WAIT: 22365 tcp->tcp_state = TCPS_LAST_ACK; 22366 break; 22367 } 22368 if (tcp->tcp_suna == tcp->tcp_snxt) 22369 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22370 tcp->tcp_snxt = tcp->tcp_fss + 1; 22371 } 22372 } 22373 /* 22374 * Note the trick here. u1 is unsigned. When tcp_urg 22375 * is smaller than seq, u1 will become a very huge value. 22376 * So the comparison will fail. Also note that tcp_urp 22377 * should be positive, see RFC 793 page 17. 22378 */ 22379 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22380 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22381 u1 < (uint32_t)(64 * 1024)) { 22382 flags |= TH_URG; 22383 BUMP_MIB(&tcp_mib, tcpOutUrg); 22384 U32_TO_ABE16(u1, tcph->th_urp); 22385 } 22386 } 22387 tcph->th_flags[0] = (uchar_t)flags; 22388 tcp->tcp_rack = tcp->tcp_rnxt; 22389 tcp->tcp_rack_cnt = 0; 22390 22391 if (tcp->tcp_snd_ts_ok) { 22392 if (tcp->tcp_state != TCPS_SYN_SENT) { 22393 uint32_t llbolt = (uint32_t)lbolt; 22394 22395 U32_TO_BE32(llbolt, 22396 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22397 U32_TO_BE32(tcp->tcp_ts_recent, 22398 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22399 } 22400 } 22401 22402 if (num_sack_blk > 0) { 22403 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22404 sack_blk_t *tmp; 22405 int32_t i; 22406 22407 wptr[0] = TCPOPT_NOP; 22408 wptr[1] = TCPOPT_NOP; 22409 wptr[2] = TCPOPT_SACK; 22410 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22411 sizeof (sack_blk_t); 22412 wptr += TCPOPT_REAL_SACK_LEN; 22413 22414 tmp = tcp->tcp_sack_list; 22415 for (i = 0; i < num_sack_blk; i++) { 22416 U32_TO_BE32(tmp[i].begin, wptr); 22417 wptr += sizeof (tcp_seq); 22418 U32_TO_BE32(tmp[i].end, wptr); 22419 wptr += sizeof (tcp_seq); 22420 } 22421 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22422 } 22423 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22424 data_length += (int)(mp1->b_wptr - rptr); 22425 if (tcp->tcp_ipversion == IPV4_VERSION) { 22426 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22427 } else { 22428 ip6_t *ip6 = (ip6_t *)(rptr + 22429 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22430 sizeof (ip6i_t) : 0)); 22431 22432 ip6->ip6_plen = htons(data_length - 22433 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22434 } 22435 22436 /* 22437 * Prime pump for IP 22438 * Include the adjustment for a source route if any. 22439 */ 22440 data_length -= tcp->tcp_ip_hdr_len; 22441 data_length += tcp->tcp_sum; 22442 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22443 U16_TO_ABE16(data_length, tcph->th_sum); 22444 if (tcp->tcp_ip_forward_progress) { 22445 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22446 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22447 tcp->tcp_ip_forward_progress = B_FALSE; 22448 } 22449 return (mp1); 22450 } 22451 22452 /* This function handles the push timeout. */ 22453 void 22454 tcp_push_timer(void *arg) 22455 { 22456 conn_t *connp = (conn_t *)arg; 22457 tcp_t *tcp = connp->conn_tcp; 22458 22459 TCP_DBGSTAT(tcp_push_timer_cnt); 22460 22461 ASSERT(tcp->tcp_listener == NULL); 22462 22463 /* 22464 * We need to plug synchronous streams during our drain to prevent 22465 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 22466 */ 22467 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 22468 tcp->tcp_push_tid = 0; 22469 if ((tcp->tcp_rcv_list != NULL) && 22470 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 22471 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22472 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 22473 } 22474 22475 /* 22476 * This function handles delayed ACK timeout. 22477 */ 22478 static void 22479 tcp_ack_timer(void *arg) 22480 { 22481 conn_t *connp = (conn_t *)arg; 22482 tcp_t *tcp = connp->conn_tcp; 22483 mblk_t *mp; 22484 22485 TCP_DBGSTAT(tcp_ack_timer_cnt); 22486 22487 tcp->tcp_ack_tid = 0; 22488 22489 if (tcp->tcp_fused) 22490 return; 22491 22492 /* 22493 * Do not send ACK if there is no outstanding unack'ed data. 22494 */ 22495 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22496 return; 22497 } 22498 22499 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22500 /* 22501 * Make sure we don't allow deferred ACKs to result in 22502 * timer-based ACKing. If we have held off an ACK 22503 * when there was more than an mss here, and the timer 22504 * goes off, we have to worry about the possibility 22505 * that the sender isn't doing slow-start, or is out 22506 * of step with us for some other reason. We fall 22507 * permanently back in the direction of 22508 * ACK-every-other-packet as suggested in RFC 1122. 22509 */ 22510 if (tcp->tcp_rack_abs_max > 2) 22511 tcp->tcp_rack_abs_max--; 22512 tcp->tcp_rack_cur_max = 2; 22513 } 22514 mp = tcp_ack_mp(tcp); 22515 22516 if (mp != NULL) { 22517 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22518 BUMP_LOCAL(tcp->tcp_obsegs); 22519 BUMP_MIB(&tcp_mib, tcpOutAck); 22520 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 22521 tcp_send_data(tcp, tcp->tcp_wq, mp); 22522 } 22523 } 22524 22525 22526 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 22527 static mblk_t * 22528 tcp_ack_mp(tcp_t *tcp) 22529 { 22530 uint32_t seq_no; 22531 22532 /* 22533 * There are a few cases to be considered while setting the sequence no. 22534 * Essentially, we can come here while processing an unacceptable pkt 22535 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 22536 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 22537 * If we are here for a zero window probe, stick with suna. In all 22538 * other cases, we check if suna + swnd encompasses snxt and set 22539 * the sequence number to snxt, if so. If snxt falls outside the 22540 * window (the receiver probably shrunk its window), we will go with 22541 * suna + swnd, otherwise the sequence no will be unacceptable to the 22542 * receiver. 22543 */ 22544 if (tcp->tcp_zero_win_probe) { 22545 seq_no = tcp->tcp_suna; 22546 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 22547 ASSERT(tcp->tcp_swnd == 0); 22548 seq_no = tcp->tcp_snxt; 22549 } else { 22550 seq_no = SEQ_GT(tcp->tcp_snxt, 22551 (tcp->tcp_suna + tcp->tcp_swnd)) ? 22552 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 22553 } 22554 22555 if (tcp->tcp_valid_bits) { 22556 /* 22557 * For the complex case where we have to send some 22558 * controls (FIN or SYN), let tcp_xmit_mp do it. 22559 */ 22560 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 22561 NULL, B_FALSE)); 22562 } else { 22563 /* Generate a simple ACK */ 22564 int data_length; 22565 uchar_t *rptr; 22566 tcph_t *tcph; 22567 mblk_t *mp1; 22568 int32_t tcp_hdr_len; 22569 int32_t tcp_tcp_hdr_len; 22570 int32_t num_sack_blk = 0; 22571 int32_t sack_opt_len; 22572 22573 /* 22574 * Allocate space for TCP + IP headers 22575 * and link-level header 22576 */ 22577 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22578 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22579 tcp->tcp_num_sack_blk); 22580 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22581 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22582 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 22583 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 22584 } else { 22585 tcp_hdr_len = tcp->tcp_hdr_len; 22586 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 22587 } 22588 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 22589 if (!mp1) 22590 return (NULL); 22591 22592 /* Update the latest receive window size in TCP header. */ 22593 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22594 tcp->tcp_tcph->th_win); 22595 /* copy in prototype TCP + IP header */ 22596 rptr = mp1->b_rptr + tcp_wroff_xtra; 22597 mp1->b_rptr = rptr; 22598 mp1->b_wptr = rptr + tcp_hdr_len; 22599 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22600 22601 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22602 22603 /* Set the TCP sequence number. */ 22604 U32_TO_ABE32(seq_no, tcph->th_seq); 22605 22606 /* Set up the TCP flag field. */ 22607 tcph->th_flags[0] = (uchar_t)TH_ACK; 22608 if (tcp->tcp_ecn_echo_on) 22609 tcph->th_flags[0] |= TH_ECE; 22610 22611 tcp->tcp_rack = tcp->tcp_rnxt; 22612 tcp->tcp_rack_cnt = 0; 22613 22614 /* fill in timestamp option if in use */ 22615 if (tcp->tcp_snd_ts_ok) { 22616 uint32_t llbolt = (uint32_t)lbolt; 22617 22618 U32_TO_BE32(llbolt, 22619 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22620 U32_TO_BE32(tcp->tcp_ts_recent, 22621 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22622 } 22623 22624 /* Fill in SACK options */ 22625 if (num_sack_blk > 0) { 22626 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22627 sack_blk_t *tmp; 22628 int32_t i; 22629 22630 wptr[0] = TCPOPT_NOP; 22631 wptr[1] = TCPOPT_NOP; 22632 wptr[2] = TCPOPT_SACK; 22633 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22634 sizeof (sack_blk_t); 22635 wptr += TCPOPT_REAL_SACK_LEN; 22636 22637 tmp = tcp->tcp_sack_list; 22638 for (i = 0; i < num_sack_blk; i++) { 22639 U32_TO_BE32(tmp[i].begin, wptr); 22640 wptr += sizeof (tcp_seq); 22641 U32_TO_BE32(tmp[i].end, wptr); 22642 wptr += sizeof (tcp_seq); 22643 } 22644 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 22645 << 4); 22646 } 22647 22648 if (tcp->tcp_ipversion == IPV4_VERSION) { 22649 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 22650 } else { 22651 /* Check for ip6i_t header in sticky hdrs */ 22652 ip6_t *ip6 = (ip6_t *)(rptr + 22653 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22654 sizeof (ip6i_t) : 0)); 22655 22656 ip6->ip6_plen = htons(tcp_hdr_len - 22657 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22658 } 22659 22660 /* 22661 * Prime pump for checksum calculation in IP. Include the 22662 * adjustment for a source route if any. 22663 */ 22664 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 22665 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22666 U16_TO_ABE16(data_length, tcph->th_sum); 22667 22668 if (tcp->tcp_ip_forward_progress) { 22669 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22670 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22671 tcp->tcp_ip_forward_progress = B_FALSE; 22672 } 22673 return (mp1); 22674 } 22675 } 22676 22677 /* 22678 * To create a temporary tcp structure for inserting into bind hash list. 22679 * The parameter is assumed to be in network byte order, ready for use. 22680 */ 22681 /* ARGSUSED */ 22682 static tcp_t * 22683 tcp_alloc_temp_tcp(in_port_t port) 22684 { 22685 conn_t *connp; 22686 tcp_t *tcp; 22687 22688 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 22689 if (connp == NULL) 22690 return (NULL); 22691 22692 tcp = connp->conn_tcp; 22693 22694 /* 22695 * Only initialize the necessary info in those structures. Note 22696 * that since INADDR_ANY is all 0, we do not need to set 22697 * tcp_bound_source to INADDR_ANY here. 22698 */ 22699 tcp->tcp_state = TCPS_BOUND; 22700 tcp->tcp_lport = port; 22701 tcp->tcp_exclbind = 1; 22702 tcp->tcp_reserved_port = 1; 22703 22704 /* Just for place holding... */ 22705 tcp->tcp_ipversion = IPV4_VERSION; 22706 22707 return (tcp); 22708 } 22709 22710 /* 22711 * To remove a port range specified by lo_port and hi_port from the 22712 * reserved port ranges. This is one of the three public functions of 22713 * the reserved port interface. Note that a port range has to be removed 22714 * as a whole. Ports in a range cannot be removed individually. 22715 * 22716 * Params: 22717 * in_port_t lo_port: the beginning port of the reserved port range to 22718 * be deleted. 22719 * in_port_t hi_port: the ending port of the reserved port range to 22720 * be deleted. 22721 * 22722 * Return: 22723 * B_TRUE if the deletion is successful, B_FALSE otherwise. 22724 */ 22725 boolean_t 22726 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 22727 { 22728 int i, j; 22729 int size; 22730 tcp_t **temp_tcp_array; 22731 tcp_t *tcp; 22732 22733 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22734 22735 /* First make sure that the port ranage is indeed reserved. */ 22736 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22737 if (tcp_reserved_port[i].lo_port == lo_port) { 22738 hi_port = tcp_reserved_port[i].hi_port; 22739 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 22740 break; 22741 } 22742 } 22743 if (i == tcp_reserved_port_array_size) { 22744 rw_exit(&tcp_reserved_port_lock); 22745 return (B_FALSE); 22746 } 22747 22748 /* 22749 * Remove the range from the array. This simple loop is possible 22750 * because port ranges are inserted in ascending order. 22751 */ 22752 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 22753 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 22754 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 22755 tcp_reserved_port[j].temp_tcp_array = 22756 tcp_reserved_port[j+1].temp_tcp_array; 22757 } 22758 22759 /* Remove all the temporary tcp structures. */ 22760 size = hi_port - lo_port + 1; 22761 while (size > 0) { 22762 tcp = temp_tcp_array[size - 1]; 22763 ASSERT(tcp != NULL); 22764 tcp_bind_hash_remove(tcp); 22765 CONN_DEC_REF(tcp->tcp_connp); 22766 size--; 22767 } 22768 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 22769 tcp_reserved_port_array_size--; 22770 rw_exit(&tcp_reserved_port_lock); 22771 return (B_TRUE); 22772 } 22773 22774 /* 22775 * Macro to remove temporary tcp structure from the bind hash list. The 22776 * first parameter is the list of tcp to be removed. The second parameter 22777 * is the number of tcps in the array. 22778 */ 22779 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 22780 { \ 22781 while ((num) > 0) { \ 22782 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 22783 tf_t *tbf; \ 22784 tcp_t *tcpnext; \ 22785 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 22786 mutex_enter(&tbf->tf_lock); \ 22787 tcpnext = tcp->tcp_bind_hash; \ 22788 if (tcpnext) { \ 22789 tcpnext->tcp_ptpbhn = \ 22790 tcp->tcp_ptpbhn; \ 22791 } \ 22792 *tcp->tcp_ptpbhn = tcpnext; \ 22793 mutex_exit(&tbf->tf_lock); \ 22794 kmem_free(tcp, sizeof (tcp_t)); \ 22795 (tcp_array)[(num) - 1] = NULL; \ 22796 (num)--; \ 22797 } \ 22798 } 22799 22800 /* 22801 * The public interface for other modules to call to reserve a port range 22802 * in TCP. The caller passes in how large a port range it wants. TCP 22803 * will try to find a range and return it via lo_port and hi_port. This is 22804 * used by NCA's nca_conn_init. 22805 * NCA can only be used in the global zone so this only affects the global 22806 * zone's ports. 22807 * 22808 * Params: 22809 * int size: the size of the port range to be reserved. 22810 * in_port_t *lo_port (referenced): returns the beginning port of the 22811 * reserved port range added. 22812 * in_port_t *hi_port (referenced): returns the ending port of the 22813 * reserved port range added. 22814 * 22815 * Return: 22816 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 22817 */ 22818 boolean_t 22819 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 22820 { 22821 tcp_t *tcp; 22822 tcp_t *tmp_tcp; 22823 tcp_t **temp_tcp_array; 22824 tf_t *tbf; 22825 in_port_t net_port; 22826 in_port_t port; 22827 int32_t cur_size; 22828 int i, j; 22829 boolean_t used; 22830 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 22831 zoneid_t zoneid = GLOBAL_ZONEID; 22832 22833 /* Sanity check. */ 22834 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 22835 return (B_FALSE); 22836 } 22837 22838 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22839 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 22840 rw_exit(&tcp_reserved_port_lock); 22841 return (B_FALSE); 22842 } 22843 22844 /* 22845 * Find the starting port to try. Since the port ranges are ordered 22846 * in the reserved port array, we can do a simple search here. 22847 */ 22848 *lo_port = TCP_SMALLEST_RESERVED_PORT; 22849 *hi_port = TCP_LARGEST_RESERVED_PORT; 22850 for (i = 0; i < tcp_reserved_port_array_size; 22851 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 22852 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 22853 *hi_port = tcp_reserved_port[i].lo_port - 1; 22854 break; 22855 } 22856 } 22857 /* No available port range. */ 22858 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 22859 rw_exit(&tcp_reserved_port_lock); 22860 return (B_FALSE); 22861 } 22862 22863 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 22864 if (temp_tcp_array == NULL) { 22865 rw_exit(&tcp_reserved_port_lock); 22866 return (B_FALSE); 22867 } 22868 22869 /* Go thru the port range to see if some ports are already bound. */ 22870 for (port = *lo_port, cur_size = 0; 22871 cur_size < size && port <= *hi_port; 22872 cur_size++, port++) { 22873 used = B_FALSE; 22874 net_port = htons(port); 22875 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 22876 mutex_enter(&tbf->tf_lock); 22877 for (tcp = tbf->tf_tcp; tcp != NULL; 22878 tcp = tcp->tcp_bind_hash) { 22879 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 22880 net_port == tcp->tcp_lport) { 22881 /* 22882 * A port is already bound. Search again 22883 * starting from port + 1. Release all 22884 * temporary tcps. 22885 */ 22886 mutex_exit(&tbf->tf_lock); 22887 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22888 *lo_port = port + 1; 22889 cur_size = -1; 22890 used = B_TRUE; 22891 break; 22892 } 22893 } 22894 if (!used) { 22895 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 22896 /* 22897 * Allocation failure. Just fail the request. 22898 * Need to remove all those temporary tcp 22899 * structures. 22900 */ 22901 mutex_exit(&tbf->tf_lock); 22902 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22903 rw_exit(&tcp_reserved_port_lock); 22904 kmem_free(temp_tcp_array, 22905 (hi_port - lo_port + 1) * 22906 sizeof (tcp_t *)); 22907 return (B_FALSE); 22908 } 22909 temp_tcp_array[cur_size] = tmp_tcp; 22910 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 22911 mutex_exit(&tbf->tf_lock); 22912 } 22913 } 22914 22915 /* 22916 * The current range is not large enough. We can actually do another 22917 * search if this search is done between 2 reserved port ranges. But 22918 * for first release, we just stop here and return saying that no port 22919 * range is available. 22920 */ 22921 if (cur_size < size) { 22922 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22923 rw_exit(&tcp_reserved_port_lock); 22924 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 22925 return (B_FALSE); 22926 } 22927 *hi_port = port - 1; 22928 22929 /* 22930 * Insert range into array in ascending order. Since this function 22931 * must not be called often, we choose to use the simplest method. 22932 * The above array should not consume excessive stack space as 22933 * the size must be very small. If in future releases, we find 22934 * that we should provide more reserved port ranges, this function 22935 * has to be modified to be more efficient. 22936 */ 22937 if (tcp_reserved_port_array_size == 0) { 22938 tcp_reserved_port[0].lo_port = *lo_port; 22939 tcp_reserved_port[0].hi_port = *hi_port; 22940 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 22941 } else { 22942 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 22943 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 22944 tmp_ports[j].lo_port = *lo_port; 22945 tmp_ports[j].hi_port = *hi_port; 22946 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22947 j++; 22948 } 22949 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 22950 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 22951 tmp_ports[j].temp_tcp_array = 22952 tcp_reserved_port[i].temp_tcp_array; 22953 } 22954 if (j == i) { 22955 tmp_ports[j].lo_port = *lo_port; 22956 tmp_ports[j].hi_port = *hi_port; 22957 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22958 } 22959 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 22960 } 22961 tcp_reserved_port_array_size++; 22962 rw_exit(&tcp_reserved_port_lock); 22963 return (B_TRUE); 22964 } 22965 22966 /* 22967 * Check to see if a port is in any reserved port range. 22968 * 22969 * Params: 22970 * in_port_t port: the port to be verified. 22971 * 22972 * Return: 22973 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 22974 */ 22975 boolean_t 22976 tcp_reserved_port_check(in_port_t port) 22977 { 22978 int i; 22979 22980 rw_enter(&tcp_reserved_port_lock, RW_READER); 22981 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22982 if (port >= tcp_reserved_port[i].lo_port || 22983 port <= tcp_reserved_port[i].hi_port) { 22984 rw_exit(&tcp_reserved_port_lock); 22985 return (B_TRUE); 22986 } 22987 } 22988 rw_exit(&tcp_reserved_port_lock); 22989 return (B_FALSE); 22990 } 22991 22992 /* 22993 * To list all reserved port ranges. This is the function to handle 22994 * ndd tcp_reserved_port_list. 22995 */ 22996 /* ARGSUSED */ 22997 static int 22998 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22999 { 23000 int i; 23001 23002 rw_enter(&tcp_reserved_port_lock, RW_READER); 23003 if (tcp_reserved_port_array_size > 0) 23004 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23005 else 23006 (void) mi_mpprintf(mp, "No port is reserved."); 23007 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23008 (void) mi_mpprintf(mp, "%d-%d", 23009 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 23010 } 23011 rw_exit(&tcp_reserved_port_lock); 23012 return (0); 23013 } 23014 23015 /* 23016 * Hash list insertion routine for tcp_t structures. 23017 * Inserts entries with the ones bound to a specific IP address first 23018 * followed by those bound to INADDR_ANY. 23019 */ 23020 static void 23021 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23022 { 23023 tcp_t **tcpp; 23024 tcp_t *tcpnext; 23025 23026 if (tcp->tcp_ptpbhn != NULL) { 23027 ASSERT(!caller_holds_lock); 23028 tcp_bind_hash_remove(tcp); 23029 } 23030 tcpp = &tbf->tf_tcp; 23031 if (!caller_holds_lock) { 23032 mutex_enter(&tbf->tf_lock); 23033 } else { 23034 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23035 } 23036 tcpnext = tcpp[0]; 23037 if (tcpnext) { 23038 /* 23039 * If the new tcp bound to the INADDR_ANY address 23040 * and the first one in the list is not bound to 23041 * INADDR_ANY we skip all entries until we find the 23042 * first one bound to INADDR_ANY. 23043 * This makes sure that applications binding to a 23044 * specific address get preference over those binding to 23045 * INADDR_ANY. 23046 */ 23047 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23048 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23049 while ((tcpnext = tcpp[0]) != NULL && 23050 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23051 tcpp = &(tcpnext->tcp_bind_hash); 23052 if (tcpnext) 23053 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23054 } else 23055 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23056 } 23057 tcp->tcp_bind_hash = tcpnext; 23058 tcp->tcp_ptpbhn = tcpp; 23059 tcpp[0] = tcp; 23060 if (!caller_holds_lock) 23061 mutex_exit(&tbf->tf_lock); 23062 } 23063 23064 /* 23065 * Hash list removal routine for tcp_t structures. 23066 */ 23067 static void 23068 tcp_bind_hash_remove(tcp_t *tcp) 23069 { 23070 tcp_t *tcpnext; 23071 kmutex_t *lockp; 23072 23073 if (tcp->tcp_ptpbhn == NULL) 23074 return; 23075 23076 /* 23077 * Extract the lock pointer in case there are concurrent 23078 * hash_remove's for this instance. 23079 */ 23080 ASSERT(tcp->tcp_lport != 0); 23081 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23082 23083 ASSERT(lockp != NULL); 23084 mutex_enter(lockp); 23085 if (tcp->tcp_ptpbhn) { 23086 tcpnext = tcp->tcp_bind_hash; 23087 if (tcpnext) { 23088 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23089 tcp->tcp_bind_hash = NULL; 23090 } 23091 *tcp->tcp_ptpbhn = tcpnext; 23092 tcp->tcp_ptpbhn = NULL; 23093 } 23094 mutex_exit(lockp); 23095 } 23096 23097 23098 /* 23099 * Hash list lookup routine for tcp_t structures. 23100 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23101 */ 23102 static tcp_t * 23103 tcp_acceptor_hash_lookup(t_uscalar_t id) 23104 { 23105 tf_t *tf; 23106 tcp_t *tcp; 23107 23108 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23109 mutex_enter(&tf->tf_lock); 23110 for (tcp = tf->tf_tcp; tcp != NULL; 23111 tcp = tcp->tcp_acceptor_hash) { 23112 if (tcp->tcp_acceptor_id == id) { 23113 CONN_INC_REF(tcp->tcp_connp); 23114 mutex_exit(&tf->tf_lock); 23115 return (tcp); 23116 } 23117 } 23118 mutex_exit(&tf->tf_lock); 23119 return (NULL); 23120 } 23121 23122 23123 /* 23124 * Hash list insertion routine for tcp_t structures. 23125 */ 23126 void 23127 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23128 { 23129 tf_t *tf; 23130 tcp_t **tcpp; 23131 tcp_t *tcpnext; 23132 23133 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23134 23135 if (tcp->tcp_ptpahn != NULL) 23136 tcp_acceptor_hash_remove(tcp); 23137 tcpp = &tf->tf_tcp; 23138 mutex_enter(&tf->tf_lock); 23139 tcpnext = tcpp[0]; 23140 if (tcpnext) 23141 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23142 tcp->tcp_acceptor_hash = tcpnext; 23143 tcp->tcp_ptpahn = tcpp; 23144 tcpp[0] = tcp; 23145 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23146 mutex_exit(&tf->tf_lock); 23147 } 23148 23149 /* 23150 * Hash list removal routine for tcp_t structures. 23151 */ 23152 static void 23153 tcp_acceptor_hash_remove(tcp_t *tcp) 23154 { 23155 tcp_t *tcpnext; 23156 kmutex_t *lockp; 23157 23158 /* 23159 * Extract the lock pointer in case there are concurrent 23160 * hash_remove's for this instance. 23161 */ 23162 lockp = tcp->tcp_acceptor_lockp; 23163 23164 if (tcp->tcp_ptpahn == NULL) 23165 return; 23166 23167 ASSERT(lockp != NULL); 23168 mutex_enter(lockp); 23169 if (tcp->tcp_ptpahn) { 23170 tcpnext = tcp->tcp_acceptor_hash; 23171 if (tcpnext) { 23172 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23173 tcp->tcp_acceptor_hash = NULL; 23174 } 23175 *tcp->tcp_ptpahn = tcpnext; 23176 tcp->tcp_ptpahn = NULL; 23177 } 23178 mutex_exit(lockp); 23179 tcp->tcp_acceptor_lockp = NULL; 23180 } 23181 23182 /* ARGSUSED */ 23183 static int 23184 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 23185 { 23186 int error = 0; 23187 int retval; 23188 char *end; 23189 23190 tcp_hsp_t *hsp; 23191 tcp_hsp_t *hspprev; 23192 23193 ipaddr_t addr = 0; /* Address we're looking for */ 23194 in6_addr_t v6addr; /* Address we're looking for */ 23195 uint32_t hash; /* Hash of that address */ 23196 23197 /* 23198 * If the following variables are still zero after parsing the input 23199 * string, the user didn't specify them and we don't change them in 23200 * the HSP. 23201 */ 23202 23203 ipaddr_t mask = 0; /* Subnet mask */ 23204 in6_addr_t v6mask; 23205 long sendspace = 0; /* Send buffer size */ 23206 long recvspace = 0; /* Receive buffer size */ 23207 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 23208 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 23209 23210 rw_enter(&tcp_hsp_lock, RW_WRITER); 23211 23212 /* Parse and validate address */ 23213 if (af == AF_INET) { 23214 retval = inet_pton(af, value, &addr); 23215 if (retval == 1) 23216 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 23217 } else if (af == AF_INET6) { 23218 retval = inet_pton(af, value, &v6addr); 23219 } else { 23220 error = EINVAL; 23221 goto done; 23222 } 23223 if (retval == 0) { 23224 error = EINVAL; 23225 goto done; 23226 } 23227 23228 while ((*value) && *value != ' ') 23229 value++; 23230 23231 /* Parse individual keywords, set variables if found */ 23232 while (*value) { 23233 /* Skip leading blanks */ 23234 23235 while (*value == ' ' || *value == '\t') 23236 value++; 23237 23238 /* If at end of string, we're done */ 23239 23240 if (!*value) 23241 break; 23242 23243 /* We have a word, figure out what it is */ 23244 23245 if (strncmp("mask", value, 4) == 0) { 23246 value += 4; 23247 while (*value == ' ' || *value == '\t') 23248 value++; 23249 /* Parse subnet mask */ 23250 if (af == AF_INET) { 23251 retval = inet_pton(af, value, &mask); 23252 if (retval == 1) { 23253 V4MASK_TO_V6(mask, v6mask); 23254 } 23255 } else if (af == AF_INET6) { 23256 retval = inet_pton(af, value, &v6mask); 23257 } 23258 if (retval != 1) { 23259 error = EINVAL; 23260 goto done; 23261 } 23262 while ((*value) && *value != ' ') 23263 value++; 23264 } else if (strncmp("sendspace", value, 9) == 0) { 23265 value += 9; 23266 23267 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 23268 sendspace < TCP_XMIT_HIWATER || 23269 sendspace >= (1L<<30)) { 23270 error = EINVAL; 23271 goto done; 23272 } 23273 value = end; 23274 } else if (strncmp("recvspace", value, 9) == 0) { 23275 value += 9; 23276 23277 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 23278 recvspace < TCP_RECV_HIWATER || 23279 recvspace >= (1L<<30)) { 23280 error = EINVAL; 23281 goto done; 23282 } 23283 value = end; 23284 } else if (strncmp("timestamp", value, 9) == 0) { 23285 value += 9; 23286 23287 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 23288 timestamp < 0 || timestamp > 1) { 23289 error = EINVAL; 23290 goto done; 23291 } 23292 23293 /* 23294 * We increment timestamp so we know it's been set; 23295 * this is undone when we put it in the HSP 23296 */ 23297 timestamp++; 23298 value = end; 23299 } else if (strncmp("delete", value, 6) == 0) { 23300 value += 6; 23301 delete = B_TRUE; 23302 } else { 23303 error = EINVAL; 23304 goto done; 23305 } 23306 } 23307 23308 /* Hash address for lookup */ 23309 23310 hash = TCP_HSP_HASH(addr); 23311 23312 if (delete) { 23313 /* 23314 * Note that deletes don't return an error if the thing 23315 * we're trying to delete isn't there. 23316 */ 23317 if (tcp_hsp_hash == NULL) 23318 goto done; 23319 hsp = tcp_hsp_hash[hash]; 23320 23321 if (hsp) { 23322 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23323 &v6addr)) { 23324 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 23325 mi_free((char *)hsp); 23326 } else { 23327 hspprev = hsp; 23328 while ((hsp = hsp->tcp_hsp_next) != NULL) { 23329 if (IN6_ARE_ADDR_EQUAL( 23330 &hsp->tcp_hsp_addr_v6, &v6addr)) { 23331 hspprev->tcp_hsp_next = 23332 hsp->tcp_hsp_next; 23333 mi_free((char *)hsp); 23334 break; 23335 } 23336 hspprev = hsp; 23337 } 23338 } 23339 } 23340 } else { 23341 /* 23342 * We're adding/modifying an HSP. If we haven't already done 23343 * so, allocate the hash table. 23344 */ 23345 23346 if (!tcp_hsp_hash) { 23347 tcp_hsp_hash = (tcp_hsp_t **) 23348 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 23349 if (!tcp_hsp_hash) { 23350 error = EINVAL; 23351 goto done; 23352 } 23353 } 23354 23355 /* Get head of hash chain */ 23356 23357 hsp = tcp_hsp_hash[hash]; 23358 23359 /* Try to find pre-existing hsp on hash chain */ 23360 /* Doesn't handle CIDR prefixes. */ 23361 while (hsp) { 23362 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 23363 break; 23364 hsp = hsp->tcp_hsp_next; 23365 } 23366 23367 /* 23368 * If we didn't, create one with default values and put it 23369 * at head of hash chain 23370 */ 23371 23372 if (!hsp) { 23373 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 23374 if (!hsp) { 23375 error = EINVAL; 23376 goto done; 23377 } 23378 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 23379 tcp_hsp_hash[hash] = hsp; 23380 } 23381 23382 /* Set values that the user asked us to change */ 23383 23384 hsp->tcp_hsp_addr_v6 = v6addr; 23385 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 23386 hsp->tcp_hsp_vers = IPV4_VERSION; 23387 else 23388 hsp->tcp_hsp_vers = IPV6_VERSION; 23389 hsp->tcp_hsp_subnet_v6 = v6mask; 23390 if (sendspace > 0) 23391 hsp->tcp_hsp_sendspace = sendspace; 23392 if (recvspace > 0) 23393 hsp->tcp_hsp_recvspace = recvspace; 23394 if (timestamp > 0) 23395 hsp->tcp_hsp_tstamp = timestamp - 1; 23396 } 23397 23398 done: 23399 rw_exit(&tcp_hsp_lock); 23400 return (error); 23401 } 23402 23403 /* Set callback routine passed to nd_load by tcp_param_register. */ 23404 /* ARGSUSED */ 23405 static int 23406 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 23407 { 23408 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 23409 } 23410 /* ARGSUSED */ 23411 static int 23412 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23413 cred_t *cr) 23414 { 23415 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 23416 } 23417 23418 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 23419 /* ARGSUSED */ 23420 static int 23421 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23422 { 23423 tcp_hsp_t *hsp; 23424 int i; 23425 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 23426 23427 rw_enter(&tcp_hsp_lock, RW_READER); 23428 (void) mi_mpprintf(mp, 23429 "Hash HSP " MI_COL_HDRPAD_STR 23430 "Address Subnet Mask Send Receive TStamp"); 23431 if (tcp_hsp_hash) { 23432 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 23433 hsp = tcp_hsp_hash[i]; 23434 while (hsp) { 23435 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 23436 (void) inet_ntop(AF_INET, 23437 &hsp->tcp_hsp_addr, 23438 addrbuf, sizeof (addrbuf)); 23439 (void) inet_ntop(AF_INET, 23440 &hsp->tcp_hsp_subnet, 23441 subnetbuf, sizeof (subnetbuf)); 23442 } else { 23443 (void) inet_ntop(AF_INET6, 23444 &hsp->tcp_hsp_addr_v6, 23445 addrbuf, sizeof (addrbuf)); 23446 (void) inet_ntop(AF_INET6, 23447 &hsp->tcp_hsp_subnet_v6, 23448 subnetbuf, sizeof (subnetbuf)); 23449 } 23450 (void) mi_mpprintf(mp, 23451 " %03d " MI_COL_PTRFMT_STR 23452 "%s %s %010d %010d %d", 23453 i, 23454 (void *)hsp, 23455 addrbuf, 23456 subnetbuf, 23457 hsp->tcp_hsp_sendspace, 23458 hsp->tcp_hsp_recvspace, 23459 hsp->tcp_hsp_tstamp); 23460 23461 hsp = hsp->tcp_hsp_next; 23462 } 23463 } 23464 } 23465 rw_exit(&tcp_hsp_lock); 23466 return (0); 23467 } 23468 23469 23470 /* Data for fast netmask macro used by tcp_hsp_lookup */ 23471 23472 static ipaddr_t netmasks[] = { 23473 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 23474 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 23475 }; 23476 23477 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 23478 23479 /* 23480 * XXX This routine should go away and instead we should use the metrics 23481 * associated with the routes to determine the default sndspace and rcvspace. 23482 */ 23483 static tcp_hsp_t * 23484 tcp_hsp_lookup(ipaddr_t addr) 23485 { 23486 tcp_hsp_t *hsp = NULL; 23487 23488 /* Quick check without acquiring the lock. */ 23489 if (tcp_hsp_hash == NULL) 23490 return (NULL); 23491 23492 rw_enter(&tcp_hsp_lock, RW_READER); 23493 23494 /* This routine finds the best-matching HSP for address addr. */ 23495 23496 if (tcp_hsp_hash) { 23497 int i; 23498 ipaddr_t srchaddr; 23499 tcp_hsp_t *hsp_net; 23500 23501 /* We do three passes: host, network, and subnet. */ 23502 23503 srchaddr = addr; 23504 23505 for (i = 1; i <= 3; i++) { 23506 /* Look for exact match on srchaddr */ 23507 23508 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 23509 while (hsp) { 23510 if (hsp->tcp_hsp_vers == IPV4_VERSION && 23511 hsp->tcp_hsp_addr == srchaddr) 23512 break; 23513 hsp = hsp->tcp_hsp_next; 23514 } 23515 ASSERT(hsp == NULL || 23516 hsp->tcp_hsp_vers == IPV4_VERSION); 23517 23518 /* 23519 * If this is the first pass: 23520 * If we found a match, great, return it. 23521 * If not, search for the network on the second pass. 23522 */ 23523 23524 if (i == 1) 23525 if (hsp) 23526 break; 23527 else 23528 { 23529 srchaddr = addr & netmask(addr); 23530 continue; 23531 } 23532 23533 /* 23534 * If this is the second pass: 23535 * If we found a match, but there's a subnet mask, 23536 * save the match but try again using the subnet 23537 * mask on the third pass. 23538 * Otherwise, return whatever we found. 23539 */ 23540 23541 if (i == 2) { 23542 if (hsp && hsp->tcp_hsp_subnet) { 23543 hsp_net = hsp; 23544 srchaddr = addr & hsp->tcp_hsp_subnet; 23545 continue; 23546 } else { 23547 break; 23548 } 23549 } 23550 23551 /* 23552 * This must be the third pass. If we didn't find 23553 * anything, return the saved network HSP instead. 23554 */ 23555 23556 if (!hsp) 23557 hsp = hsp_net; 23558 } 23559 } 23560 23561 rw_exit(&tcp_hsp_lock); 23562 return (hsp); 23563 } 23564 23565 /* 23566 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 23567 * match lookup. 23568 */ 23569 static tcp_hsp_t * 23570 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 23571 { 23572 tcp_hsp_t *hsp = NULL; 23573 23574 /* Quick check without acquiring the lock. */ 23575 if (tcp_hsp_hash == NULL) 23576 return (NULL); 23577 23578 rw_enter(&tcp_hsp_lock, RW_READER); 23579 23580 /* This routine finds the best-matching HSP for address addr. */ 23581 23582 if (tcp_hsp_hash) { 23583 int i; 23584 in6_addr_t v6srchaddr; 23585 tcp_hsp_t *hsp_net; 23586 23587 /* We do three passes: host, network, and subnet. */ 23588 23589 v6srchaddr = *v6addr; 23590 23591 for (i = 1; i <= 3; i++) { 23592 /* Look for exact match on srchaddr */ 23593 23594 hsp = tcp_hsp_hash[TCP_HSP_HASH( 23595 V4_PART_OF_V6(v6srchaddr))]; 23596 while (hsp) { 23597 if (hsp->tcp_hsp_vers == IPV6_VERSION && 23598 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23599 &v6srchaddr)) 23600 break; 23601 hsp = hsp->tcp_hsp_next; 23602 } 23603 23604 /* 23605 * If this is the first pass: 23606 * If we found a match, great, return it. 23607 * If not, search for the network on the second pass. 23608 */ 23609 23610 if (i == 1) 23611 if (hsp) 23612 break; 23613 else { 23614 /* Assume a 64 bit mask */ 23615 v6srchaddr.s6_addr32[0] = 23616 v6addr->s6_addr32[0]; 23617 v6srchaddr.s6_addr32[1] = 23618 v6addr->s6_addr32[1]; 23619 v6srchaddr.s6_addr32[2] = 0; 23620 v6srchaddr.s6_addr32[3] = 0; 23621 continue; 23622 } 23623 23624 /* 23625 * If this is the second pass: 23626 * If we found a match, but there's a subnet mask, 23627 * save the match but try again using the subnet 23628 * mask on the third pass. 23629 * Otherwise, return whatever we found. 23630 */ 23631 23632 if (i == 2) { 23633 ASSERT(hsp == NULL || 23634 hsp->tcp_hsp_vers == IPV6_VERSION); 23635 if (hsp && 23636 !IN6_IS_ADDR_UNSPECIFIED( 23637 &hsp->tcp_hsp_subnet_v6)) { 23638 hsp_net = hsp; 23639 V6_MASK_COPY(*v6addr, 23640 hsp->tcp_hsp_subnet_v6, v6srchaddr); 23641 continue; 23642 } else { 23643 break; 23644 } 23645 } 23646 23647 /* 23648 * This must be the third pass. If we didn't find 23649 * anything, return the saved network HSP instead. 23650 */ 23651 23652 if (!hsp) 23653 hsp = hsp_net; 23654 } 23655 } 23656 23657 rw_exit(&tcp_hsp_lock); 23658 return (hsp); 23659 } 23660 23661 /* 23662 * Type three generator adapted from the random() function in 4.4 BSD: 23663 */ 23664 23665 /* 23666 * Copyright (c) 1983, 1993 23667 * The Regents of the University of California. All rights reserved. 23668 * 23669 * Redistribution and use in source and binary forms, with or without 23670 * modification, are permitted provided that the following conditions 23671 * are met: 23672 * 1. Redistributions of source code must retain the above copyright 23673 * notice, this list of conditions and the following disclaimer. 23674 * 2. Redistributions in binary form must reproduce the above copyright 23675 * notice, this list of conditions and the following disclaimer in the 23676 * documentation and/or other materials provided with the distribution. 23677 * 3. All advertising materials mentioning features or use of this software 23678 * must display the following acknowledgement: 23679 * This product includes software developed by the University of 23680 * California, Berkeley and its contributors. 23681 * 4. Neither the name of the University nor the names of its contributors 23682 * may be used to endorse or promote products derived from this software 23683 * without specific prior written permission. 23684 * 23685 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23686 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23687 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23688 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23689 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23690 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23691 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23692 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23693 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23694 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23695 * SUCH DAMAGE. 23696 */ 23697 23698 /* Type 3 -- x**31 + x**3 + 1 */ 23699 #define DEG_3 31 23700 #define SEP_3 3 23701 23702 23703 /* Protected by tcp_random_lock */ 23704 static int tcp_randtbl[DEG_3 + 1]; 23705 23706 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23707 static int *tcp_random_rptr = &tcp_randtbl[1]; 23708 23709 static int *tcp_random_state = &tcp_randtbl[1]; 23710 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23711 23712 kmutex_t tcp_random_lock; 23713 23714 void 23715 tcp_random_init(void) 23716 { 23717 int i; 23718 hrtime_t hrt; 23719 time_t wallclock; 23720 uint64_t result; 23721 23722 /* 23723 * Use high-res timer and current time for seed. Gethrtime() returns 23724 * a longlong, which may contain resolution down to nanoseconds. 23725 * The current time will either be a 32-bit or a 64-bit quantity. 23726 * XOR the two together in a 64-bit result variable. 23727 * Convert the result to a 32-bit value by multiplying the high-order 23728 * 32-bits by the low-order 32-bits. 23729 */ 23730 23731 hrt = gethrtime(); 23732 (void) drv_getparm(TIME, &wallclock); 23733 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23734 mutex_enter(&tcp_random_lock); 23735 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23736 (result & 0xffffffff); 23737 23738 for (i = 1; i < DEG_3; i++) 23739 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23740 + 12345; 23741 tcp_random_fptr = &tcp_random_state[SEP_3]; 23742 tcp_random_rptr = &tcp_random_state[0]; 23743 mutex_exit(&tcp_random_lock); 23744 for (i = 0; i < 10 * DEG_3; i++) 23745 (void) tcp_random(); 23746 } 23747 23748 /* 23749 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23750 * This range is selected to be approximately centered on TCP_ISS / 2, 23751 * and easy to compute. We get this value by generating a 32-bit random 23752 * number, selecting out the high-order 17 bits, and then adding one so 23753 * that we never return zero. 23754 */ 23755 int 23756 tcp_random(void) 23757 { 23758 int i; 23759 23760 mutex_enter(&tcp_random_lock); 23761 *tcp_random_fptr += *tcp_random_rptr; 23762 23763 /* 23764 * The high-order bits are more random than the low-order bits, 23765 * so we select out the high-order 17 bits and add one so that 23766 * we never return zero. 23767 */ 23768 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23769 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23770 tcp_random_fptr = tcp_random_state; 23771 ++tcp_random_rptr; 23772 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23773 tcp_random_rptr = tcp_random_state; 23774 23775 mutex_exit(&tcp_random_lock); 23776 return (i); 23777 } 23778 23779 /* 23780 * XXX This will go away when TPI is extended to send 23781 * info reqs to sockfs/timod ..... 23782 * Given a queue, set the max packet size for the write 23783 * side of the queue below stream head. This value is 23784 * cached on the stream head. 23785 * Returns 1 on success, 0 otherwise. 23786 */ 23787 static int 23788 setmaxps(queue_t *q, int maxpsz) 23789 { 23790 struct stdata *stp; 23791 queue_t *wq; 23792 stp = STREAM(q); 23793 23794 /* 23795 * At this point change of a queue parameter is not allowed 23796 * when a multiplexor is sitting on top. 23797 */ 23798 if (stp->sd_flag & STPLEX) 23799 return (0); 23800 23801 claimstr(stp->sd_wrq); 23802 wq = stp->sd_wrq->q_next; 23803 ASSERT(wq != NULL); 23804 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 23805 releasestr(stp->sd_wrq); 23806 return (1); 23807 } 23808 23809 static int 23810 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23811 int *t_errorp, int *sys_errorp) 23812 { 23813 int error; 23814 int is_absreq_failure; 23815 t_scalar_t *opt_lenp; 23816 t_scalar_t opt_offset; 23817 int prim_type; 23818 struct T_conn_req *tcreqp; 23819 struct T_conn_res *tcresp; 23820 cred_t *cr; 23821 23822 cr = DB_CREDDEF(mp, tcp->tcp_cred); 23823 23824 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23825 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23826 prim_type == T_CONN_RES); 23827 23828 switch (prim_type) { 23829 case T_CONN_REQ: 23830 tcreqp = (struct T_conn_req *)mp->b_rptr; 23831 opt_offset = tcreqp->OPT_offset; 23832 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23833 break; 23834 case O_T_CONN_RES: 23835 case T_CONN_RES: 23836 tcresp = (struct T_conn_res *)mp->b_rptr; 23837 opt_offset = tcresp->OPT_offset; 23838 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23839 break; 23840 } 23841 23842 *t_errorp = 0; 23843 *sys_errorp = 0; 23844 *do_disconnectp = 0; 23845 23846 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23847 opt_offset, cr, &tcp_opt_obj, 23848 NULL, &is_absreq_failure); 23849 23850 switch (error) { 23851 case 0: /* no error */ 23852 ASSERT(is_absreq_failure == 0); 23853 return (0); 23854 case ENOPROTOOPT: 23855 *t_errorp = TBADOPT; 23856 break; 23857 case EACCES: 23858 *t_errorp = TACCES; 23859 break; 23860 default: 23861 *t_errorp = TSYSERR; *sys_errorp = error; 23862 break; 23863 } 23864 if (is_absreq_failure != 0) { 23865 /* 23866 * The connection request should get the local ack 23867 * T_OK_ACK and then a T_DISCON_IND. 23868 */ 23869 *do_disconnectp = 1; 23870 } 23871 return (-1); 23872 } 23873 23874 /* 23875 * Split this function out so that if the secret changes, I'm okay. 23876 * 23877 * Initialize the tcp_iss_cookie and tcp_iss_key. 23878 */ 23879 23880 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23881 23882 static void 23883 tcp_iss_key_init(uint8_t *phrase, int len) 23884 { 23885 struct { 23886 int32_t current_time; 23887 uint32_t randnum; 23888 uint16_t pad; 23889 uint8_t ether[6]; 23890 uint8_t passwd[PASSWD_SIZE]; 23891 } tcp_iss_cookie; 23892 time_t t; 23893 23894 /* 23895 * Start with the current absolute time. 23896 */ 23897 (void) drv_getparm(TIME, &t); 23898 tcp_iss_cookie.current_time = t; 23899 23900 /* 23901 * XXX - Need a more random number per RFC 1750, not this crap. 23902 * OTOH, if what follows is pretty random, then I'm in better shape. 23903 */ 23904 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23905 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23906 23907 /* 23908 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23909 * as a good template. 23910 */ 23911 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23912 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23913 23914 /* 23915 * The pass-phrase. Normally this is supplied by user-called NDD. 23916 */ 23917 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23918 23919 /* 23920 * See 4010593 if this section becomes a problem again, 23921 * but the local ethernet address is useful here. 23922 */ 23923 (void) localetheraddr(NULL, 23924 (struct ether_addr *)&tcp_iss_cookie.ether); 23925 23926 /* 23927 * Hash 'em all together. The MD5Final is called per-connection. 23928 */ 23929 mutex_enter(&tcp_iss_key_lock); 23930 MD5Init(&tcp_iss_key); 23931 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 23932 sizeof (tcp_iss_cookie)); 23933 mutex_exit(&tcp_iss_key_lock); 23934 } 23935 23936 /* 23937 * Set the RFC 1948 pass phrase 23938 */ 23939 /* ARGSUSED */ 23940 static int 23941 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23942 cred_t *cr) 23943 { 23944 /* 23945 * Basically, value contains a new pass phrase. Pass it along! 23946 */ 23947 tcp_iss_key_init((uint8_t *)value, strlen(value)); 23948 return (0); 23949 } 23950 23951 /* ARGSUSED */ 23952 static int 23953 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23954 { 23955 bzero(buf, sizeof (tcp_sack_info_t)); 23956 return (0); 23957 } 23958 23959 /* ARGSUSED */ 23960 static int 23961 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23962 { 23963 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23964 return (0); 23965 } 23966 23967 void 23968 tcp_ddi_init(void) 23969 { 23970 int i; 23971 23972 /* Initialize locks */ 23973 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 23974 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23975 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23976 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23977 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23978 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 23979 23980 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23981 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 23982 MUTEX_DEFAULT, NULL); 23983 } 23984 23985 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23986 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 23987 MUTEX_DEFAULT, NULL); 23988 } 23989 23990 /* TCP's IPsec code calls the packet dropper. */ 23991 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 23992 23993 if (!tcp_g_nd) { 23994 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 23995 nd_free(&tcp_g_nd); 23996 } 23997 } 23998 23999 /* 24000 * Note: To really walk the device tree you need the devinfo 24001 * pointer to your device which is only available after probe/attach. 24002 * The following is safe only because it uses ddi_root_node() 24003 */ 24004 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24005 tcp_opt_obj.odb_opt_arr_cnt); 24006 24007 tcp_timercache = kmem_cache_create("tcp_timercache", 24008 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24009 NULL, NULL, NULL, NULL, NULL, 0); 24010 24011 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24012 sizeof (tcp_sack_info_t), 0, 24013 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24014 24015 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24016 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24017 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24018 24019 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 24020 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 24021 24022 ip_squeue_init(tcp_squeue_add); 24023 24024 /* Initialize the random number generator */ 24025 tcp_random_init(); 24026 24027 /* 24028 * Initialize RFC 1948 secret values. This will probably be reset once 24029 * by the boot scripts. 24030 * 24031 * Use NULL name, as the name is caught by the new lockstats. 24032 * 24033 * Initialize with some random, non-guessable string, like the global 24034 * T_INFO_ACK. 24035 */ 24036 24037 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24038 sizeof (tcp_g_t_info_ack)); 24039 24040 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 24041 "net", KSTAT_TYPE_NAMED, 24042 sizeof (tcp_statistics) / sizeof (kstat_named_t), 24043 KSTAT_FLAG_VIRTUAL)) != NULL) { 24044 tcp_kstat->ks_data = &tcp_statistics; 24045 kstat_install(tcp_kstat); 24046 } 24047 24048 tcp_kstat_init(); 24049 } 24050 24051 void 24052 tcp_ddi_destroy(void) 24053 { 24054 int i; 24055 24056 nd_free(&tcp_g_nd); 24057 24058 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24059 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 24060 } 24061 24062 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24063 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 24064 } 24065 24066 mutex_destroy(&tcp_iss_key_lock); 24067 rw_destroy(&tcp_hsp_lock); 24068 mutex_destroy(&tcp_g_q_lock); 24069 mutex_destroy(&tcp_random_lock); 24070 mutex_destroy(&tcp_epriv_port_lock); 24071 rw_destroy(&tcp_reserved_port_lock); 24072 24073 ip_drop_unregister(&tcp_dropper); 24074 24075 kmem_cache_destroy(tcp_timercache); 24076 kmem_cache_destroy(tcp_sack_info_cache); 24077 kmem_cache_destroy(tcp_iphc_cache); 24078 24079 tcp_kstat_fini(); 24080 } 24081 24082 /* 24083 * Generate ISS, taking into account NDD changes may happen halfway through. 24084 * (If the iss is not zero, set it.) 24085 */ 24086 24087 static void 24088 tcp_iss_init(tcp_t *tcp) 24089 { 24090 MD5_CTX context; 24091 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24092 uint32_t answer[4]; 24093 24094 tcp_iss_incr_extra += (ISS_INCR >> 1); 24095 tcp->tcp_iss = tcp_iss_incr_extra; 24096 switch (tcp_strong_iss) { 24097 case 2: 24098 mutex_enter(&tcp_iss_key_lock); 24099 context = tcp_iss_key; 24100 mutex_exit(&tcp_iss_key_lock); 24101 arg.ports = tcp->tcp_ports; 24102 if (tcp->tcp_ipversion == IPV4_VERSION) { 24103 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24104 &arg.src); 24105 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24106 &arg.dst); 24107 } else { 24108 arg.src = tcp->tcp_ip6h->ip6_src; 24109 arg.dst = tcp->tcp_ip6h->ip6_dst; 24110 } 24111 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24112 MD5Final((uchar_t *)answer, &context); 24113 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24114 /* 24115 * Now that we've hashed into a unique per-connection sequence 24116 * space, add a random increment per strong_iss == 1. So I 24117 * guess we'll have to... 24118 */ 24119 /* FALLTHRU */ 24120 case 1: 24121 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24122 break; 24123 default: 24124 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24125 break; 24126 } 24127 tcp->tcp_valid_bits = TCP_ISS_VALID; 24128 tcp->tcp_fss = tcp->tcp_iss - 1; 24129 tcp->tcp_suna = tcp->tcp_iss; 24130 tcp->tcp_snxt = tcp->tcp_iss + 1; 24131 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24132 tcp->tcp_csuna = tcp->tcp_snxt; 24133 } 24134 24135 /* 24136 * Exported routine for extracting active tcp connection status. 24137 * 24138 * This is used by the Solaris Cluster Networking software to 24139 * gather a list of connections that need to be forwarded to 24140 * specific nodes in the cluster when configuration changes occur. 24141 * 24142 * The callback is invoked for each tcp_t structure. Returning 24143 * non-zero from the callback routine terminates the search. 24144 */ 24145 int 24146 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 24147 { 24148 tcp_t *tcp; 24149 cl_tcp_info_t cl_tcpi; 24150 connf_t *connfp; 24151 conn_t *connp; 24152 int i; 24153 24154 ASSERT(callback != NULL); 24155 24156 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24157 24158 connfp = &ipcl_globalhash_fanout[i]; 24159 connp = NULL; 24160 24161 while ((connp = 24162 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24163 24164 tcp = connp->conn_tcp; 24165 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24166 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24167 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24168 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24169 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24170 /* 24171 * The macros tcp_laddr and tcp_faddr give the IPv4 24172 * addresses. They are copied implicitly below as 24173 * mapped addresses. 24174 */ 24175 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24176 if (tcp->tcp_ipversion == IPV4_VERSION) { 24177 cl_tcpi.cl_tcpi_faddr = 24178 tcp->tcp_ipha->ipha_dst; 24179 } else { 24180 cl_tcpi.cl_tcpi_faddr_v6 = 24181 tcp->tcp_ip6h->ip6_dst; 24182 } 24183 24184 /* 24185 * If the callback returns non-zero 24186 * we terminate the traversal. 24187 */ 24188 if ((*callback)(&cl_tcpi, arg) != 0) { 24189 CONN_DEC_REF(tcp->tcp_connp); 24190 return (1); 24191 } 24192 } 24193 } 24194 24195 return (0); 24196 } 24197 24198 /* 24199 * Macros used for accessing the different types of sockaddr 24200 * structures inside a tcp_ioc_abort_conn_t. 24201 */ 24202 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24203 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24204 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24205 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24206 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24207 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24208 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24209 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24210 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24211 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24212 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24213 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24214 24215 /* 24216 * Return the correct error code to mimic the behavior 24217 * of a connection reset. 24218 */ 24219 #define TCP_AC_GET_ERRCODE(state, err) { \ 24220 switch ((state)) { \ 24221 case TCPS_SYN_SENT: \ 24222 case TCPS_SYN_RCVD: \ 24223 (err) = ECONNREFUSED; \ 24224 break; \ 24225 case TCPS_ESTABLISHED: \ 24226 case TCPS_FIN_WAIT_1: \ 24227 case TCPS_FIN_WAIT_2: \ 24228 case TCPS_CLOSE_WAIT: \ 24229 (err) = ECONNRESET; \ 24230 break; \ 24231 case TCPS_CLOSING: \ 24232 case TCPS_LAST_ACK: \ 24233 case TCPS_TIME_WAIT: \ 24234 (err) = 0; \ 24235 break; \ 24236 default: \ 24237 (err) = ENXIO; \ 24238 } \ 24239 } 24240 24241 /* 24242 * Check if a tcp structure matches the info in acp. 24243 */ 24244 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24245 (((acp)->ac_local.ss_family == AF_INET) ? \ 24246 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24247 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24248 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24249 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24250 (TCP_AC_V4LPORT((acp)) == 0 || \ 24251 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24252 (TCP_AC_V4RPORT((acp)) == 0 || \ 24253 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24254 (acp)->ac_start <= (tcp)->tcp_state && \ 24255 (acp)->ac_end >= (tcp)->tcp_state) : \ 24256 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24257 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24258 &(tcp)->tcp_ip_src_v6)) && \ 24259 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24260 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24261 &(tcp)->tcp_remote_v6)) && \ 24262 (TCP_AC_V6LPORT((acp)) == 0 || \ 24263 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24264 (TCP_AC_V6RPORT((acp)) == 0 || \ 24265 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24266 (acp)->ac_start <= (tcp)->tcp_state && \ 24267 (acp)->ac_end >= (tcp)->tcp_state)) 24268 24269 #define TCP_AC_MATCH(acp, tcp) \ 24270 (((acp)->ac_zoneid == ALL_ZONES || \ 24271 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24272 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24273 24274 /* 24275 * Build a message containing a tcp_ioc_abort_conn_t structure 24276 * which is filled in with information from acp and tp. 24277 */ 24278 static mblk_t * 24279 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24280 { 24281 mblk_t *mp; 24282 tcp_ioc_abort_conn_t *tacp; 24283 24284 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24285 if (mp == NULL) 24286 return (NULL); 24287 24288 mp->b_datap->db_type = M_CTL; 24289 24290 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24291 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24292 sizeof (uint32_t)); 24293 24294 tacp->ac_start = acp->ac_start; 24295 tacp->ac_end = acp->ac_end; 24296 tacp->ac_zoneid = acp->ac_zoneid; 24297 24298 if (acp->ac_local.ss_family == AF_INET) { 24299 tacp->ac_local.ss_family = AF_INET; 24300 tacp->ac_remote.ss_family = AF_INET; 24301 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24302 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24303 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24304 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24305 } else { 24306 tacp->ac_local.ss_family = AF_INET6; 24307 tacp->ac_remote.ss_family = AF_INET6; 24308 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24309 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24310 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24311 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24312 } 24313 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24314 return (mp); 24315 } 24316 24317 /* 24318 * Print a tcp_ioc_abort_conn_t structure. 24319 */ 24320 static void 24321 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24322 { 24323 char lbuf[128]; 24324 char rbuf[128]; 24325 sa_family_t af; 24326 in_port_t lport, rport; 24327 ushort_t logflags; 24328 24329 af = acp->ac_local.ss_family; 24330 24331 if (af == AF_INET) { 24332 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24333 lbuf, 128); 24334 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24335 rbuf, 128); 24336 lport = ntohs(TCP_AC_V4LPORT(acp)); 24337 rport = ntohs(TCP_AC_V4RPORT(acp)); 24338 } else { 24339 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24340 lbuf, 128); 24341 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24342 rbuf, 128); 24343 lport = ntohs(TCP_AC_V6LPORT(acp)); 24344 rport = ntohs(TCP_AC_V6RPORT(acp)); 24345 } 24346 24347 logflags = SL_TRACE | SL_NOTE; 24348 /* 24349 * Don't print this message to the console if the operation was done 24350 * to a non-global zone. 24351 */ 24352 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24353 logflags |= SL_CONSOLE; 24354 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24355 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24356 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24357 acp->ac_start, acp->ac_end); 24358 } 24359 24360 /* 24361 * Called inside tcp_rput when a message built using 24362 * tcp_ioctl_abort_build_msg is put into a queue. 24363 * Note that when we get here there is no wildcard in acp any more. 24364 */ 24365 static void 24366 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24367 { 24368 tcp_ioc_abort_conn_t *acp; 24369 24370 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24371 if (tcp->tcp_state <= acp->ac_end) { 24372 /* 24373 * If we get here, we are already on the correct 24374 * squeue. This ioctl follows the following path 24375 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24376 * ->tcp_ioctl_abort->squeue_fill (if on a 24377 * different squeue) 24378 */ 24379 int errcode; 24380 24381 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24382 (void) tcp_clean_death(tcp, errcode, 26); 24383 } 24384 freemsg(mp); 24385 } 24386 24387 /* 24388 * Abort all matching connections on a hash chain. 24389 */ 24390 static int 24391 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24392 boolean_t exact) 24393 { 24394 int nmatch, err = 0; 24395 tcp_t *tcp; 24396 MBLKP mp, last, listhead = NULL; 24397 conn_t *tconnp; 24398 connf_t *connfp = &ipcl_conn_fanout[index]; 24399 24400 startover: 24401 nmatch = 0; 24402 24403 mutex_enter(&connfp->connf_lock); 24404 for (tconnp = connfp->connf_head; tconnp != NULL; 24405 tconnp = tconnp->conn_next) { 24406 tcp = tconnp->conn_tcp; 24407 if (TCP_AC_MATCH(acp, tcp)) { 24408 CONN_INC_REF(tcp->tcp_connp); 24409 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24410 if (mp == NULL) { 24411 err = ENOMEM; 24412 CONN_DEC_REF(tcp->tcp_connp); 24413 break; 24414 } 24415 mp->b_prev = (mblk_t *)tcp; 24416 24417 if (listhead == NULL) { 24418 listhead = mp; 24419 last = mp; 24420 } else { 24421 last->b_next = mp; 24422 last = mp; 24423 } 24424 nmatch++; 24425 if (exact) 24426 break; 24427 } 24428 24429 /* Avoid holding lock for too long. */ 24430 if (nmatch >= 500) 24431 break; 24432 } 24433 mutex_exit(&connfp->connf_lock); 24434 24435 /* Pass mp into the correct tcp */ 24436 while ((mp = listhead) != NULL) { 24437 listhead = listhead->b_next; 24438 tcp = (tcp_t *)mp->b_prev; 24439 mp->b_next = mp->b_prev = NULL; 24440 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 24441 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 24442 } 24443 24444 *count += nmatch; 24445 if (nmatch >= 500 && err == 0) 24446 goto startover; 24447 return (err); 24448 } 24449 24450 /* 24451 * Abort all connections that matches the attributes specified in acp. 24452 */ 24453 static int 24454 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 24455 { 24456 sa_family_t af; 24457 uint32_t ports; 24458 uint16_t *pports; 24459 int err = 0, count = 0; 24460 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24461 int index = -1; 24462 ushort_t logflags; 24463 24464 af = acp->ac_local.ss_family; 24465 24466 if (af == AF_INET) { 24467 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24468 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24469 pports = (uint16_t *)&ports; 24470 pports[1] = TCP_AC_V4LPORT(acp); 24471 pports[0] = TCP_AC_V4RPORT(acp); 24472 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24473 } 24474 } else { 24475 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24476 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24477 pports = (uint16_t *)&ports; 24478 pports[1] = TCP_AC_V6LPORT(acp); 24479 pports[0] = TCP_AC_V6RPORT(acp); 24480 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24481 } 24482 } 24483 24484 /* 24485 * For cases where remote addr, local port, and remote port are non- 24486 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24487 */ 24488 if (index != -1) { 24489 err = tcp_ioctl_abort_bucket(acp, index, 24490 &count, exact); 24491 } else { 24492 /* 24493 * loop through all entries for wildcard case 24494 */ 24495 for (index = 0; index < ipcl_conn_fanout_size; index++) { 24496 err = tcp_ioctl_abort_bucket(acp, index, 24497 &count, exact); 24498 if (err != 0) 24499 break; 24500 } 24501 } 24502 24503 logflags = SL_TRACE | SL_NOTE; 24504 /* 24505 * Don't print this message to the console if the operation was done 24506 * to a non-global zone. 24507 */ 24508 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24509 logflags |= SL_CONSOLE; 24510 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24511 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24512 if (err == 0 && count == 0) 24513 err = ENOENT; 24514 return (err); 24515 } 24516 24517 /* 24518 * Process the TCP_IOC_ABORT_CONN ioctl request. 24519 */ 24520 static void 24521 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24522 { 24523 int err; 24524 IOCP iocp; 24525 MBLKP mp1; 24526 sa_family_t laf, raf; 24527 tcp_ioc_abort_conn_t *acp; 24528 zone_t *zptr; 24529 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 24530 24531 iocp = (IOCP)mp->b_rptr; 24532 24533 if ((mp1 = mp->b_cont) == NULL || 24534 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24535 err = EINVAL; 24536 goto out; 24537 } 24538 24539 /* check permissions */ 24540 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 24541 err = EPERM; 24542 goto out; 24543 } 24544 24545 if (mp1->b_cont != NULL) { 24546 freemsg(mp1->b_cont); 24547 mp1->b_cont = NULL; 24548 } 24549 24550 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24551 laf = acp->ac_local.ss_family; 24552 raf = acp->ac_remote.ss_family; 24553 24554 /* check that a zone with the supplied zoneid exists */ 24555 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24556 zptr = zone_find_by_id(zoneid); 24557 if (zptr != NULL) { 24558 zone_rele(zptr); 24559 } else { 24560 err = EINVAL; 24561 goto out; 24562 } 24563 } 24564 24565 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24566 acp->ac_start > acp->ac_end || laf != raf || 24567 (laf != AF_INET && laf != AF_INET6)) { 24568 err = EINVAL; 24569 goto out; 24570 } 24571 24572 tcp_ioctl_abort_dump(acp); 24573 err = tcp_ioctl_abort(acp); 24574 24575 out: 24576 if (mp1 != NULL) { 24577 freemsg(mp1); 24578 mp->b_cont = NULL; 24579 } 24580 24581 if (err != 0) 24582 miocnak(q, mp, 0, err); 24583 else 24584 miocack(q, mp, 0, 0); 24585 } 24586 24587 /* 24588 * tcp_time_wait_processing() handles processing of incoming packets when 24589 * the tcp is in the TIME_WAIT state. 24590 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24591 * on the time wait list. 24592 */ 24593 void 24594 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24595 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24596 { 24597 int32_t bytes_acked; 24598 int32_t gap; 24599 int32_t rgap; 24600 tcp_opt_t tcpopt; 24601 uint_t flags; 24602 uint32_t new_swnd = 0; 24603 conn_t *connp; 24604 24605 BUMP_LOCAL(tcp->tcp_ibsegs); 24606 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 24607 24608 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24609 new_swnd = BE16_TO_U16(tcph->th_win) << 24610 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24611 if (tcp->tcp_snd_ts_ok) { 24612 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24613 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24614 tcp->tcp_rnxt, TH_ACK); 24615 goto done; 24616 } 24617 } 24618 gap = seg_seq - tcp->tcp_rnxt; 24619 rgap = tcp->tcp_rwnd - (gap + seg_len); 24620 if (gap < 0) { 24621 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 24622 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 24623 (seg_len > -gap ? -gap : seg_len)); 24624 seg_len += gap; 24625 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24626 if (flags & TH_RST) { 24627 goto done; 24628 } 24629 if ((flags & TH_FIN) && seg_len == -1) { 24630 /* 24631 * When TCP receives a duplicate FIN in 24632 * TIME_WAIT state, restart the 2 MSL timer. 24633 * See page 73 in RFC 793. Make sure this TCP 24634 * is already on the TIME_WAIT list. If not, 24635 * just restart the timer. 24636 */ 24637 if (TCP_IS_DETACHED(tcp)) { 24638 tcp_time_wait_remove(tcp, NULL); 24639 tcp_time_wait_append(tcp); 24640 TCP_DBGSTAT(tcp_rput_time_wait); 24641 } else { 24642 ASSERT(tcp != NULL); 24643 TCP_TIMER_RESTART(tcp, 24644 tcp_time_wait_interval); 24645 } 24646 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24647 tcp->tcp_rnxt, TH_ACK); 24648 goto done; 24649 } 24650 flags |= TH_ACK_NEEDED; 24651 seg_len = 0; 24652 goto process_ack; 24653 } 24654 24655 /* Fix seg_seq, and chew the gap off the front. */ 24656 seg_seq = tcp->tcp_rnxt; 24657 } 24658 24659 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24660 /* 24661 * Make sure that when we accept the connection, pick 24662 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24663 * old connection. 24664 * 24665 * The next ISS generated is equal to tcp_iss_incr_extra 24666 * + ISS_INCR/2 + other components depending on the 24667 * value of tcp_strong_iss. We pre-calculate the new 24668 * ISS here and compare with tcp_snxt to determine if 24669 * we need to make adjustment to tcp_iss_incr_extra. 24670 * 24671 * The above calculation is ugly and is a 24672 * waste of CPU cycles... 24673 */ 24674 uint32_t new_iss = tcp_iss_incr_extra; 24675 int32_t adj; 24676 24677 switch (tcp_strong_iss) { 24678 case 2: { 24679 /* Add time and MD5 components. */ 24680 uint32_t answer[4]; 24681 struct { 24682 uint32_t ports; 24683 in6_addr_t src; 24684 in6_addr_t dst; 24685 } arg; 24686 MD5_CTX context; 24687 24688 mutex_enter(&tcp_iss_key_lock); 24689 context = tcp_iss_key; 24690 mutex_exit(&tcp_iss_key_lock); 24691 arg.ports = tcp->tcp_ports; 24692 /* We use MAPPED addresses in tcp_iss_init */ 24693 arg.src = tcp->tcp_ip_src_v6; 24694 if (tcp->tcp_ipversion == IPV4_VERSION) { 24695 IN6_IPADDR_TO_V4MAPPED( 24696 tcp->tcp_ipha->ipha_dst, 24697 &arg.dst); 24698 } else { 24699 arg.dst = 24700 tcp->tcp_ip6h->ip6_dst; 24701 } 24702 MD5Update(&context, (uchar_t *)&arg, 24703 sizeof (arg)); 24704 MD5Final((uchar_t *)answer, &context); 24705 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24706 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24707 break; 24708 } 24709 case 1: 24710 /* Add time component and min random (i.e. 1). */ 24711 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24712 break; 24713 default: 24714 /* Add only time component. */ 24715 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24716 break; 24717 } 24718 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24719 /* 24720 * New ISS not guaranteed to be ISS_INCR/2 24721 * ahead of the current tcp_snxt, so add the 24722 * difference to tcp_iss_incr_extra. 24723 */ 24724 tcp_iss_incr_extra += adj; 24725 } 24726 /* 24727 * If tcp_clean_death() can not perform the task now, 24728 * drop the SYN packet and let the other side re-xmit. 24729 * Otherwise pass the SYN packet back in, since the 24730 * old tcp state has been cleaned up or freed. 24731 */ 24732 if (tcp_clean_death(tcp, 0, 27) == -1) 24733 goto done; 24734 /* 24735 * We will come back to tcp_rput_data 24736 * on the global queue. Packets destined 24737 * for the global queue will be checked 24738 * with global policy. But the policy for 24739 * this packet has already been checked as 24740 * this was destined for the detached 24741 * connection. We need to bypass policy 24742 * check this time by attaching a dummy 24743 * ipsec_in with ipsec_in_dont_check set. 24744 */ 24745 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 24746 NULL) { 24747 TCP_STAT(tcp_time_wait_syn_success); 24748 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24749 return; 24750 } 24751 goto done; 24752 } 24753 24754 /* 24755 * rgap is the amount of stuff received out of window. A negative 24756 * value is the amount out of window. 24757 */ 24758 if (rgap < 0) { 24759 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 24760 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 24761 /* Fix seg_len and make sure there is something left. */ 24762 seg_len += rgap; 24763 if (seg_len <= 0) { 24764 if (flags & TH_RST) { 24765 goto done; 24766 } 24767 flags |= TH_ACK_NEEDED; 24768 seg_len = 0; 24769 goto process_ack; 24770 } 24771 } 24772 /* 24773 * Check whether we can update tcp_ts_recent. This test is 24774 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24775 * Extensions for High Performance: An Update", Internet Draft. 24776 */ 24777 if (tcp->tcp_snd_ts_ok && 24778 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24779 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24780 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24781 tcp->tcp_last_rcv_lbolt = lbolt64; 24782 } 24783 24784 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24785 /* Always ack out of order packets */ 24786 flags |= TH_ACK_NEEDED; 24787 seg_len = 0; 24788 } else if (seg_len > 0) { 24789 BUMP_MIB(&tcp_mib, tcpInClosed); 24790 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 24791 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 24792 } 24793 if (flags & TH_RST) { 24794 (void) tcp_clean_death(tcp, 0, 28); 24795 goto done; 24796 } 24797 if (flags & TH_SYN) { 24798 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24799 TH_RST|TH_ACK); 24800 /* 24801 * Do not delete the TCP structure if it is in 24802 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24803 */ 24804 goto done; 24805 } 24806 process_ack: 24807 if (flags & TH_ACK) { 24808 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24809 if (bytes_acked <= 0) { 24810 if (bytes_acked == 0 && seg_len == 0 && 24811 new_swnd == tcp->tcp_swnd) 24812 BUMP_MIB(&tcp_mib, tcpInDupAck); 24813 } else { 24814 /* Acks something not sent */ 24815 flags |= TH_ACK_NEEDED; 24816 } 24817 } 24818 if (flags & TH_ACK_NEEDED) { 24819 /* 24820 * Time to send an ack for some reason. 24821 */ 24822 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24823 tcp->tcp_rnxt, TH_ACK); 24824 } 24825 done: 24826 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24827 DB_CKSUMSTART(mp) = 0; 24828 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24829 TCP_STAT(tcp_time_wait_syn_fail); 24830 } 24831 freemsg(mp); 24832 } 24833 24834 /* 24835 * Allocate a T_SVR4_OPTMGMT_REQ. 24836 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 24837 * that tcp_rput_other can drop the acks. 24838 */ 24839 static mblk_t * 24840 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 24841 { 24842 mblk_t *mp; 24843 struct T_optmgmt_req *tor; 24844 struct opthdr *oh; 24845 uint_t size; 24846 char *optptr; 24847 24848 size = sizeof (*tor) + sizeof (*oh) + optlen; 24849 mp = allocb(size, BPRI_MED); 24850 if (mp == NULL) 24851 return (NULL); 24852 24853 mp->b_wptr += size; 24854 mp->b_datap->db_type = M_PROTO; 24855 tor = (struct T_optmgmt_req *)mp->b_rptr; 24856 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 24857 tor->MGMT_flags = T_NEGOTIATE; 24858 tor->OPT_length = sizeof (*oh) + optlen; 24859 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 24860 24861 oh = (struct opthdr *)&tor[1]; 24862 oh->level = level; 24863 oh->name = cmd; 24864 oh->len = optlen; 24865 if (optlen != 0) { 24866 optptr = (char *)&oh[1]; 24867 bcopy(opt, optptr, optlen); 24868 } 24869 return (mp); 24870 } 24871 24872 /* 24873 * TCP Timers Implementation. 24874 */ 24875 timeout_id_t 24876 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24877 { 24878 mblk_t *mp; 24879 tcp_timer_t *tcpt; 24880 tcp_t *tcp = connp->conn_tcp; 24881 24882 ASSERT(connp->conn_sqp != NULL); 24883 24884 TCP_DBGSTAT(tcp_timeout_calls); 24885 24886 if (tcp->tcp_timercache == NULL) { 24887 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24888 } else { 24889 TCP_DBGSTAT(tcp_timeout_cached_alloc); 24890 mp = tcp->tcp_timercache; 24891 tcp->tcp_timercache = mp->b_next; 24892 mp->b_next = NULL; 24893 ASSERT(mp->b_wptr == NULL); 24894 } 24895 24896 CONN_INC_REF(connp); 24897 tcpt = (tcp_timer_t *)mp->b_rptr; 24898 tcpt->connp = connp; 24899 tcpt->tcpt_proc = f; 24900 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 24901 return ((timeout_id_t)mp); 24902 } 24903 24904 static void 24905 tcp_timer_callback(void *arg) 24906 { 24907 mblk_t *mp = (mblk_t *)arg; 24908 tcp_timer_t *tcpt; 24909 conn_t *connp; 24910 24911 tcpt = (tcp_timer_t *)mp->b_rptr; 24912 connp = tcpt->connp; 24913 squeue_fill(connp->conn_sqp, mp, 24914 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 24915 } 24916 24917 static void 24918 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24919 { 24920 tcp_timer_t *tcpt; 24921 conn_t *connp = (conn_t *)arg; 24922 tcp_t *tcp = connp->conn_tcp; 24923 24924 tcpt = (tcp_timer_t *)mp->b_rptr; 24925 ASSERT(connp == tcpt->connp); 24926 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24927 24928 /* 24929 * If the TCP has reached the closed state, don't proceed any 24930 * further. This TCP logically does not exist on the system. 24931 * tcpt_proc could for example access queues, that have already 24932 * been qprocoff'ed off. Also see comments at the start of tcp_input 24933 */ 24934 if (tcp->tcp_state != TCPS_CLOSED) { 24935 (*tcpt->tcpt_proc)(connp); 24936 } else { 24937 tcp->tcp_timer_tid = 0; 24938 } 24939 tcp_timer_free(connp->conn_tcp, mp); 24940 } 24941 24942 /* 24943 * There is potential race with untimeout and the handler firing at the same 24944 * time. The mblock may be freed by the handler while we are trying to use 24945 * it. But since both should execute on the same squeue, this race should not 24946 * occur. 24947 */ 24948 clock_t 24949 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24950 { 24951 mblk_t *mp = (mblk_t *)id; 24952 tcp_timer_t *tcpt; 24953 clock_t delta; 24954 24955 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 24956 24957 if (mp == NULL) 24958 return (-1); 24959 24960 tcpt = (tcp_timer_t *)mp->b_rptr; 24961 ASSERT(tcpt->connp == connp); 24962 24963 delta = untimeout(tcpt->tcpt_tid); 24964 24965 if (delta >= 0) { 24966 TCP_DBGSTAT(tcp_timeout_canceled); 24967 tcp_timer_free(connp->conn_tcp, mp); 24968 CONN_DEC_REF(connp); 24969 } 24970 24971 return (delta); 24972 } 24973 24974 /* 24975 * Allocate space for the timer event. The allocation looks like mblk, but it is 24976 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24977 * 24978 * Dealing with failures: If we can't allocate from the timer cache we try 24979 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24980 * points to b_rptr. 24981 * If we can't allocate anything using allocb_tryhard(), we perform a last 24982 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24983 * save the actual allocation size in b_datap. 24984 */ 24985 mblk_t * 24986 tcp_timermp_alloc(int kmflags) 24987 { 24988 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 24989 kmflags & ~KM_PANIC); 24990 24991 if (mp != NULL) { 24992 mp->b_next = mp->b_prev = NULL; 24993 mp->b_rptr = (uchar_t *)(&mp[1]); 24994 mp->b_wptr = NULL; 24995 mp->b_datap = NULL; 24996 mp->b_queue = NULL; 24997 } else if (kmflags & KM_PANIC) { 24998 /* 24999 * Failed to allocate memory for the timer. Try allocating from 25000 * dblock caches. 25001 */ 25002 TCP_STAT(tcp_timermp_allocfail); 25003 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25004 if (mp == NULL) { 25005 size_t size = 0; 25006 /* 25007 * Memory is really low. Try tryhard allocation. 25008 */ 25009 TCP_STAT(tcp_timermp_allocdblfail); 25010 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25011 sizeof (tcp_timer_t), &size, kmflags); 25012 mp->b_rptr = (uchar_t *)(&mp[1]); 25013 mp->b_next = mp->b_prev = NULL; 25014 mp->b_wptr = (uchar_t *)-1; 25015 mp->b_datap = (dblk_t *)size; 25016 mp->b_queue = NULL; 25017 } 25018 ASSERT(mp->b_wptr != NULL); 25019 } 25020 TCP_DBGSTAT(tcp_timermp_alloced); 25021 25022 return (mp); 25023 } 25024 25025 /* 25026 * Free per-tcp timer cache. 25027 * It can only contain entries from tcp_timercache. 25028 */ 25029 void 25030 tcp_timermp_free(tcp_t *tcp) 25031 { 25032 mblk_t *mp; 25033 25034 while ((mp = tcp->tcp_timercache) != NULL) { 25035 ASSERT(mp->b_wptr == NULL); 25036 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25037 kmem_cache_free(tcp_timercache, mp); 25038 } 25039 } 25040 25041 /* 25042 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25043 * events there already (currently at most two events are cached). 25044 * If the event is not allocated from the timer cache, free it right away. 25045 */ 25046 static void 25047 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25048 { 25049 mblk_t *mp1 = tcp->tcp_timercache; 25050 25051 if (mp->b_wptr != NULL) { 25052 /* 25053 * This allocation is not from a timer cache, free it right 25054 * away. 25055 */ 25056 if (mp->b_wptr != (uchar_t *)-1) 25057 freeb(mp); 25058 else 25059 kmem_free(mp, (size_t)mp->b_datap); 25060 } else if (mp1 == NULL || mp1->b_next == NULL) { 25061 /* Cache this timer block for future allocations */ 25062 mp->b_rptr = (uchar_t *)(&mp[1]); 25063 mp->b_next = mp1; 25064 tcp->tcp_timercache = mp; 25065 } else { 25066 kmem_cache_free(tcp_timercache, mp); 25067 TCP_DBGSTAT(tcp_timermp_freed); 25068 } 25069 } 25070 25071 /* 25072 * End of TCP Timers implementation. 25073 */ 25074 25075 /* 25076 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25077 * on the specified backing STREAMS q. Note, the caller may make the 25078 * decision to call based on the tcp_t.tcp_flow_stopped value which 25079 * when check outside the q's lock is only an advisory check ... 25080 */ 25081 25082 void 25083 tcp_setqfull(tcp_t *tcp) 25084 { 25085 queue_t *q = tcp->tcp_wq; 25086 25087 if (!(q->q_flag & QFULL)) { 25088 mutex_enter(QLOCK(q)); 25089 if (!(q->q_flag & QFULL)) { 25090 /* still need to set QFULL */ 25091 q->q_flag |= QFULL; 25092 tcp->tcp_flow_stopped = B_TRUE; 25093 mutex_exit(QLOCK(q)); 25094 TCP_STAT(tcp_flwctl_on); 25095 } else { 25096 mutex_exit(QLOCK(q)); 25097 } 25098 } 25099 } 25100 25101 void 25102 tcp_clrqfull(tcp_t *tcp) 25103 { 25104 queue_t *q = tcp->tcp_wq; 25105 25106 if (q->q_flag & QFULL) { 25107 mutex_enter(QLOCK(q)); 25108 if (q->q_flag & QFULL) { 25109 q->q_flag &= ~QFULL; 25110 tcp->tcp_flow_stopped = B_FALSE; 25111 mutex_exit(QLOCK(q)); 25112 if (q->q_flag & QWANTW) 25113 qbackenable(q, 0); 25114 } else { 25115 mutex_exit(QLOCK(q)); 25116 } 25117 } 25118 } 25119 25120 /* 25121 * TCP Kstats implementation 25122 */ 25123 static void 25124 tcp_kstat_init(void) 25125 { 25126 tcp_named_kstat_t template = { 25127 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25128 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25129 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25130 { "maxConn", KSTAT_DATA_INT32, 0 }, 25131 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25132 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25133 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25134 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25135 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25136 { "inSegs", KSTAT_DATA_UINT32, 0 }, 25137 { "outSegs", KSTAT_DATA_UINT32, 0 }, 25138 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25139 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25140 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25141 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25142 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25143 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25144 { "outAck", KSTAT_DATA_UINT32, 0 }, 25145 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25146 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25147 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25148 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25149 { "outControl", KSTAT_DATA_UINT32, 0 }, 25150 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25151 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25152 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25153 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25154 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25155 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25156 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25157 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25158 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25159 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25160 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25161 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25162 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25163 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25164 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25165 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25166 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25167 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25168 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25169 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25170 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25171 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25172 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25173 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25174 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25175 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25176 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25177 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25178 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25179 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25180 }; 25181 25182 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 25183 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 25184 25185 if (tcp_mibkp == NULL) 25186 return; 25187 25188 template.rtoAlgorithm.value.ui32 = 4; 25189 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 25190 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 25191 template.maxConn.value.i32 = -1; 25192 25193 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 25194 25195 tcp_mibkp->ks_update = tcp_kstat_update; 25196 25197 kstat_install(tcp_mibkp); 25198 } 25199 25200 static void 25201 tcp_kstat_fini(void) 25202 { 25203 25204 if (tcp_mibkp != NULL) { 25205 kstat_delete(tcp_mibkp); 25206 tcp_mibkp = NULL; 25207 } 25208 } 25209 25210 static int 25211 tcp_kstat_update(kstat_t *kp, int rw) 25212 { 25213 tcp_named_kstat_t *tcpkp; 25214 tcp_t *tcp; 25215 connf_t *connfp; 25216 conn_t *connp; 25217 int i; 25218 25219 if (!kp || !kp->ks_data) 25220 return (EIO); 25221 25222 if (rw == KSTAT_WRITE) 25223 return (EACCES); 25224 25225 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25226 25227 tcpkp->currEstab.value.ui32 = 0; 25228 25229 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25230 connfp = &ipcl_globalhash_fanout[i]; 25231 connp = NULL; 25232 while ((connp = 25233 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25234 tcp = connp->conn_tcp; 25235 switch (tcp_snmp_state(tcp)) { 25236 case MIB2_TCP_established: 25237 case MIB2_TCP_closeWait: 25238 tcpkp->currEstab.value.ui32++; 25239 break; 25240 } 25241 } 25242 } 25243 25244 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 25245 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 25246 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 25247 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 25248 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 25249 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 25250 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 25251 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 25252 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 25253 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 25254 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 25255 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 25256 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 25257 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 25258 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 25259 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 25260 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 25261 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 25262 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 25263 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 25264 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 25265 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 25266 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 25267 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 25268 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 25269 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 25270 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 25271 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 25272 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 25273 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 25274 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 25275 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 25276 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 25277 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 25278 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 25279 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 25280 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 25281 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 25282 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 25283 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 25284 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 25285 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 25286 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 25287 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 25288 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 25289 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 25290 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 25291 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 25292 25293 return (0); 25294 } 25295 25296 void 25297 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25298 { 25299 uint16_t hdr_len; 25300 ipha_t *ipha; 25301 uint8_t *nexthdrp; 25302 tcph_t *tcph; 25303 25304 /* Already has an eager */ 25305 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25306 TCP_STAT(tcp_reinput_syn); 25307 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 25308 connp, SQTAG_TCP_REINPUT_EAGER); 25309 return; 25310 } 25311 25312 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25313 case IPV4_VERSION: 25314 ipha = (ipha_t *)mp->b_rptr; 25315 hdr_len = IPH_HDR_LENGTH(ipha); 25316 break; 25317 case IPV6_VERSION: 25318 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25319 &hdr_len, &nexthdrp)) { 25320 CONN_DEC_REF(connp); 25321 freemsg(mp); 25322 return; 25323 } 25324 break; 25325 } 25326 25327 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25328 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25329 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25330 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25331 } 25332 25333 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 25334 SQTAG_TCP_REINPUT); 25335 } 25336 25337 static squeue_func_t 25338 tcp_squeue_switch(int val) 25339 { 25340 squeue_func_t rval = squeue_fill; 25341 25342 switch (val) { 25343 case 1: 25344 rval = squeue_enter_nodrain; 25345 break; 25346 case 2: 25347 rval = squeue_enter; 25348 break; 25349 default: 25350 break; 25351 } 25352 return (rval); 25353 } 25354 25355 static void 25356 tcp_squeue_add(squeue_t *sqp) 25357 { 25358 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25359 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25360 25361 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25362 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 25363 sqp, TCP_TIME_WAIT_DELAY); 25364 if (tcp_free_list_max_cnt == 0) { 25365 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25366 max_ncpus : boot_max_ncpus); 25367 25368 /* 25369 * Limit number of entries to 1% of availble memory / tcp_ncpus 25370 */ 25371 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25372 (tcp_ncpus * sizeof (tcp_t) * 100); 25373 } 25374 tcp_time_wait->tcp_free_list_cnt = 0; 25375 } 25376