1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/ethernet.h> 51 #include <sys/cpuvar.h> 52 #include <sys/dlpi.h> 53 #include <sys/multidata.h> 54 #include <sys/multidata_impl.h> 55 #include <sys/pattr.h> 56 #include <sys/policy.h> 57 #include <sys/zone.h> 58 59 #include <sys/errno.h> 60 #include <sys/signal.h> 61 #include <sys/socket.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <netinet/in.h> 67 #include <netinet/tcp.h> 68 #include <netinet/ip6.h> 69 #include <netinet/icmp6.h> 70 #include <net/if.h> 71 #include <net/route.h> 72 #include <inet/ipsec_impl.h> 73 74 #include <inet/common.h> 75 #include <inet/ip.h> 76 #include <inet/ip_impl.h> 77 #include <inet/ip6.h> 78 #include <inet/ip_ndp.h> 79 #include <inet/mi.h> 80 #include <inet/mib2.h> 81 #include <inet/nd.h> 82 #include <inet/optcom.h> 83 #include <inet/snmpcom.h> 84 #include <inet/kstatcom.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipsec_info.h> 89 #include <inet/ipdrop.h> 90 #include <inet/tcp_trace.h> 91 92 #include <inet/ipclassifier.h> 93 #include <inet/ip_ire.h> 94 #include <inet/ip_if.h> 95 #include <inet/ipp_common.h> 96 #include <sys/squeue.h> 97 98 /* 99 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 100 * 101 * (Read the detailed design doc in PSARC case directory) 102 * 103 * The entire tcp state is contained in tcp_t and conn_t structure 104 * which are allocated in tandem using ipcl_conn_create() and passing 105 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 106 * the references on the tcp_t. The tcp_t structure is never compressed 107 * and packets always land on the correct TCP perimeter from the time 108 * eager is created till the time tcp_t dies (as such the old mentat 109 * TCP global queue is not used for detached state and no IPSEC checking 110 * is required). The global queue is still allocated to send out resets 111 * for connection which have no listeners and IP directly calls 112 * tcp_xmit_listeners_reset() which does any policy check. 113 * 114 * Protection and Synchronisation mechanism: 115 * 116 * The tcp data structure does not use any kind of lock for protecting 117 * its state but instead uses 'squeues' for mutual exclusion from various 118 * read and write side threads. To access a tcp member, the thread should 119 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 120 * squeue_fill). Since the squeues allow a direct function call, caller 121 * can pass any tcp function having prototype of edesc_t as argument 122 * (different from traditional STREAMs model where packets come in only 123 * designated entry points). The list of functions that can be directly 124 * called via squeue are listed before the usual function prototype. 125 * 126 * Referencing: 127 * 128 * TCP is MT-Hot and we use a reference based scheme to make sure that the 129 * tcp structure doesn't disappear when its needed. When the application 130 * creates an outgoing connection or accepts an incoming connection, we 131 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 132 * The IP reference is just a symbolic reference since ip_tcpclose() 133 * looks at tcp structure after tcp_close_output() returns which could 134 * have dropped the last TCP reference. So as long as the connection is 135 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 136 * conn_t. The classifier puts its own reference when the connection is 137 * inserted in listen or connected hash. Anytime a thread needs to enter 138 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 139 * on write side or by doing a classify on read side and then puts a 140 * reference on the conn before doing squeue_enter/tryenter/fill. For 141 * read side, the classifier itself puts the reference under fanout lock 142 * to make sure that tcp can't disappear before it gets processed. The 143 * squeue will drop this reference automatically so the called function 144 * doesn't have to do a DEC_REF. 145 * 146 * Opening a new connection: 147 * 148 * The outgoing connection open is pretty simple. ip_tcpopen() does the 149 * work in creating the conn/tcp structure and initializing it. The 150 * squeue assignment is done based on the CPU the application 151 * is running on. So for outbound connections, processing is always done 152 * on application CPU which might be different from the incoming CPU 153 * being interrupted by the NIC. An optimal way would be to figure out 154 * the NIC <-> CPU binding at listen time, and assign the outgoing 155 * connection to the squeue attached to the CPU that will be interrupted 156 * for incoming packets (we know the NIC based on the bind IP address). 157 * This might seem like a problem if more data is going out but the 158 * fact is that in most cases the transmit is ACK driven transmit where 159 * the outgoing data normally sits on TCP's xmit queue waiting to be 160 * transmitted. 161 * 162 * Accepting a connection: 163 * 164 * This is a more interesting case because of various races involved in 165 * establishing a eager in its own perimeter. Read the meta comment on 166 * top of tcp_conn_request(). But briefly, the squeue is picked by 167 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 168 * 169 * Closing a connection: 170 * 171 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 172 * via squeue to do the close and mark the tcp as detached if the connection 173 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 174 * reference but tcp_close() drop IP's reference always. So if tcp was 175 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 176 * and 1 because it is in classifier's connected hash. This is the condition 177 * we use to determine that its OK to clean up the tcp outside of squeue 178 * when time wait expires (check the ref under fanout and conn_lock and 179 * if it is 2, remove it from fanout hash and kill it). 180 * 181 * Although close just drops the necessary references and marks the 182 * tcp_detached state, tcp_close needs to know the tcp_detached has been 183 * set (under squeue) before letting the STREAM go away (because a 184 * inbound packet might attempt to go up the STREAM while the close 185 * has happened and tcp_detached is not set). So a special lock and 186 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 187 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 188 * tcp_detached. 189 * 190 * Special provisions and fast paths: 191 * 192 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 193 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 194 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 195 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 196 * check to send packets directly to tcp_rput_data via squeue. Everyone 197 * else comes through tcp_input() on the read side. 198 * 199 * We also make special provisions for sockfs by marking tcp_issocket 200 * whenever we have only sockfs on top of TCP. This allows us to skip 201 * putting the tcp in acceptor hash since a sockfs listener can never 202 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 203 * since eager has already been allocated and the accept now happens 204 * on acceptor STREAM. There is a big blob of comment on top of 205 * tcp_conn_request explaining the new accept. When socket is POP'd, 206 * sockfs sends us an ioctl to mark the fact and we go back to old 207 * behaviour. Once tcp_issocket is unset, its never set for the 208 * life of that connection. 209 * 210 * IPsec notes : 211 * 212 * Since a packet is always executed on the correct TCP perimeter 213 * all IPsec processing is defered to IP including checking new 214 * connections and setting IPSEC policies for new connection. The 215 * only exception is tcp_xmit_listeners_reset() which is called 216 * directly from IP and needs to policy check to see if TH_RST 217 * can be sent out. 218 */ 219 220 221 extern major_t TCP6_MAJ; 222 223 /* 224 * Values for squeue switch: 225 * 1: squeue_enter_nodrain 226 * 2: squeue_enter 227 * 3: squeue_fill 228 */ 229 int tcp_squeue_close = 2; 230 int tcp_squeue_wput = 2; 231 232 squeue_func_t tcp_squeue_close_proc; 233 squeue_func_t tcp_squeue_wput_proc; 234 235 /* 236 * This controls how tiny a write must be before we try to copy it 237 * into the the mblk on the tail of the transmit queue. Not much 238 * speedup is observed for values larger than sixteen. Zero will 239 * disable the optimisation. 240 */ 241 int tcp_tx_pull_len = 16; 242 243 /* 244 * TCP Statistics. 245 * 246 * How TCP statistics work. 247 * 248 * There are two types of statistics invoked by two macros. 249 * 250 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 251 * supposed to be used in non MT-hot paths of the code. 252 * 253 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 254 * supposed to be used for DEBUG purposes and may be used on a hot path. 255 * 256 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 257 * (use "kstat tcp" to get them). 258 * 259 * There is also additional debugging facility that marks tcp_clean_death() 260 * instances and saves them in tcp_t structure. It is triggered by 261 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 262 * tcp_clean_death() calls that counts the number of times each tag was hit. It 263 * is triggered by TCP_CLD_COUNTERS define. 264 * 265 * How to add new counters. 266 * 267 * 1) Add a field in the tcp_stat structure describing your counter. 268 * 2) Add a line in tcp_statistics with the name of the counter. 269 * 270 * IMPORTANT!! - make sure that both are in sync !! 271 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 272 * 273 * Please avoid using private counters which are not kstat-exported. 274 * 275 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 276 * in tcp_t structure. 277 * 278 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 279 */ 280 281 #ifndef TCP_DEBUG_COUNTER 282 #ifdef DEBUG 283 #define TCP_DEBUG_COUNTER 1 284 #else 285 #define TCP_DEBUG_COUNTER 0 286 #endif 287 #endif 288 289 #define TCP_CLD_COUNTERS 0 290 291 #define TCP_TAG_CLEAN_DEATH 1 292 #define TCP_MAX_CLEAN_DEATH_TAG 32 293 294 #ifdef lint 295 static int _lint_dummy_; 296 #endif 297 298 #if TCP_CLD_COUNTERS 299 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 300 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 301 #elif defined(lint) 302 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 303 #else 304 #define TCP_CLD_STAT(x) 305 #endif 306 307 #if TCP_DEBUG_COUNTER 308 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 309 #elif defined(lint) 310 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 311 #else 312 #define TCP_DBGSTAT(x) 313 #endif 314 315 tcp_stat_t tcp_statistics = { 316 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 317 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 318 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 319 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 320 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 321 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 322 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 323 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 324 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 325 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 326 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 327 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 328 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 329 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 330 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 331 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 332 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 333 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 334 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 335 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 336 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 337 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 338 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 339 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 340 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 341 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 342 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 343 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 344 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 345 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 346 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 347 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 348 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 349 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 350 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 351 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 352 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 353 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 354 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 355 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 356 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 357 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 358 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 359 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 360 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 361 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 362 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 363 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 364 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 365 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 366 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 367 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 368 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 369 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 370 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 371 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 372 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 373 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 374 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 375 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 376 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 377 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 378 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 379 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 380 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 381 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 382 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 383 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 384 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 385 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 386 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 387 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 388 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 389 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 390 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 391 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 392 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 394 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 395 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 396 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 397 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 398 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 399 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 400 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 401 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 402 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 403 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 404 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 405 }; 406 407 static kstat_t *tcp_kstat; 408 409 /* 410 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 411 * tcp write side. 412 */ 413 #define CALL_IP_WPUT(connp, q, mp) { \ 414 ASSERT(((q)->q_flag & QREADR) == 0); \ 415 TCP_DBGSTAT(tcp_ip_output); \ 416 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 417 } 418 419 /* Macros for timestamp comparisons */ 420 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 421 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 422 423 /* 424 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 425 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 426 * by adding three components: a time component which grows by 1 every 4096 427 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 428 * a per-connection component which grows by 125000 for every new connection; 429 * and an "extra" component that grows by a random amount centered 430 * approximately on 64000. This causes the the ISS generator to cycle every 431 * 4.89 hours if no TCP connections are made, and faster if connections are 432 * made. 433 * 434 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 435 * components: a time component which grows by 250000 every second; and 436 * a per-connection component which grows by 125000 for every new connections. 437 * 438 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 439 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 440 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 441 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 442 * password. 443 */ 444 #define ISS_INCR 250000 445 #define ISS_NSEC_SHT 12 446 447 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 448 static kmutex_t tcp_iss_key_lock; 449 static MD5_CTX tcp_iss_key; 450 static sin_t sin_null; /* Zero address for quick clears */ 451 static sin6_t sin6_null; /* Zero address for quick clears */ 452 453 /* Packet dropper for TCP IPsec policy drops. */ 454 static ipdropper_t tcp_dropper; 455 456 /* 457 * This implementation follows the 4.3BSD interpretation of the urgent 458 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 459 * incompatible changes in protocols like telnet and rlogin. 460 */ 461 #define TCP_OLD_URP_INTERPRETATION 1 462 463 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 464 (TCP_IS_DETACHED(tcp) && \ 465 (!(tcp)->tcp_hard_binding)) 466 467 /* 468 * TCP reassembly macros. We hide starting and ending sequence numbers in 469 * b_next and b_prev of messages on the reassembly queue. The messages are 470 * chained using b_cont. These macros are used in tcp_reass() so we don't 471 * have to see the ugly casts and assignments. 472 */ 473 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 474 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 475 (mblk_t *)(uintptr_t)(u)) 476 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 477 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 478 (mblk_t *)(uintptr_t)(u)) 479 480 /* 481 * Implementation of TCP Timers. 482 * ============================= 483 * 484 * INTERFACE: 485 * 486 * There are two basic functions dealing with tcp timers: 487 * 488 * timeout_id_t tcp_timeout(connp, func, time) 489 * clock_t tcp_timeout_cancel(connp, timeout_id) 490 * TCP_TIMER_RESTART(tcp, intvl) 491 * 492 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 493 * after 'time' ticks passed. The function called by timeout() must adhere to 494 * the same restrictions as a driver soft interrupt handler - it must not sleep 495 * or call other functions that might sleep. The value returned is the opaque 496 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 497 * cancel the request. The call to tcp_timeout() may fail in which case it 498 * returns zero. This is different from the timeout(9F) function which never 499 * fails. 500 * 501 * The call-back function 'func' always receives 'connp' as its single 502 * argument. It is always executed in the squeue corresponding to the tcp 503 * structure. The tcp structure is guaranteed to be present at the time the 504 * call-back is called. 505 * 506 * NOTE: The call-back function 'func' is never called if tcp is in 507 * the TCPS_CLOSED state. 508 * 509 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 510 * request. locks acquired by the call-back routine should not be held across 511 * the call to tcp_timeout_cancel() or a deadlock may result. 512 * 513 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 514 * Otherwise, it returns an integer value greater than or equal to 0. In 515 * particular, if the call-back function is already placed on the squeue, it can 516 * not be canceled. 517 * 518 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 519 * within squeue context corresponding to the tcp instance. Since the 520 * call-back is also called via the same squeue, there are no race 521 * conditions described in untimeout(9F) manual page since all calls are 522 * strictly serialized. 523 * 524 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 525 * stored in tcp_timer_tid and starts a new one using 526 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 527 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 528 * field. 529 * 530 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 531 * call-back may still be called, so it is possible tcp_timer() will be 532 * called several times. This should not be a problem since tcp_timer() 533 * should always check the tcp instance state. 534 * 535 * 536 * IMPLEMENTATION: 537 * 538 * TCP timers are implemented using three-stage process. The call to 539 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 540 * when the timer expires. The tcp_timer_callback() arranges the call of the 541 * tcp_timer_handler() function via squeue corresponding to the tcp 542 * instance. The tcp_timer_handler() calls actual requested timeout call-back 543 * and passes tcp instance as an argument to it. Information is passed between 544 * stages using the tcp_timer_t structure which contains the connp pointer, the 545 * tcp call-back to call and the timeout id returned by the timeout(9F). 546 * 547 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 548 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 549 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 550 * returns the pointer to this mblk. 551 * 552 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 553 * looks like a normal mblk without actual dblk attached to it. 554 * 555 * To optimize performance each tcp instance holds a small cache of timer 556 * mblocks. In the current implementation it caches up to two timer mblocks per 557 * tcp instance. The cache is preserved over tcp frees and is only freed when 558 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 559 * timer processing happens on a corresponding squeue, the cache manipulation 560 * does not require any locks. Experiments show that majority of timer mblocks 561 * allocations are satisfied from the tcp cache and do not involve kmem calls. 562 * 563 * The tcp_timeout() places a refhold on the connp instance which guarantees 564 * that it will be present at the time the call-back function fires. The 565 * tcp_timer_handler() drops the reference after calling the call-back, so the 566 * call-back function does not need to manipulate the references explicitly. 567 */ 568 569 typedef struct tcp_timer_s { 570 conn_t *connp; 571 void (*tcpt_proc)(void *); 572 timeout_id_t tcpt_tid; 573 } tcp_timer_t; 574 575 static kmem_cache_t *tcp_timercache; 576 kmem_cache_t *tcp_sack_info_cache; 577 kmem_cache_t *tcp_iphc_cache; 578 579 /* 580 * For scalability, we must not run a timer for every TCP connection 581 * in TIME_WAIT state. To see why, consider (for time wait interval of 582 * 4 minutes): 583 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 584 * 585 * This list is ordered by time, so you need only delete from the head 586 * until you get to entries which aren't old enough to delete yet. 587 * The list consists of only the detached TIME_WAIT connections. 588 * 589 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 590 * becomes detached TIME_WAIT (either by changing the state and already 591 * being detached or the other way around). This means that the TIME_WAIT 592 * state can be extended (up to doubled) if the connection doesn't become 593 * detached for a long time. 594 * 595 * The list manipulations (including tcp_time_wait_next/prev) 596 * are protected by the tcp_time_wait_lock. The content of the 597 * detached TIME_WAIT connections is protected by the normal perimeters. 598 */ 599 600 typedef struct tcp_squeue_priv_s { 601 kmutex_t tcp_time_wait_lock; 602 /* Protects the next 3 globals */ 603 timeout_id_t tcp_time_wait_tid; 604 tcp_t *tcp_time_wait_head; 605 tcp_t *tcp_time_wait_tail; 606 tcp_t *tcp_free_list; 607 } tcp_squeue_priv_t; 608 609 /* 610 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 611 * Running it every 5 seconds seems to give the best results. 612 */ 613 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 614 615 616 #define TCP_XMIT_LOWATER 4096 617 #define TCP_XMIT_HIWATER 49152 618 #define TCP_RECV_LOWATER 2048 619 #define TCP_RECV_HIWATER 49152 620 621 /* 622 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 623 */ 624 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 625 626 #define TIDUSZ 4096 /* transport interface data unit size */ 627 628 /* 629 * Bind hash list size and has function. It has to be a power of 2 for 630 * hashing. 631 */ 632 #define TCP_BIND_FANOUT_SIZE 512 633 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 634 /* 635 * Size of listen and acceptor hash list. It has to be a power of 2 for 636 * hashing. 637 */ 638 #define TCP_FANOUT_SIZE 256 639 640 #ifdef _ILP32 641 #define TCP_ACCEPTOR_HASH(accid) \ 642 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 643 #else 644 #define TCP_ACCEPTOR_HASH(accid) \ 645 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 646 #endif /* _ILP32 */ 647 648 #define IP_ADDR_CACHE_SIZE 2048 649 #define IP_ADDR_CACHE_HASH(faddr) \ 650 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 651 652 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 653 #define TCP_HSP_HASH_SIZE 256 654 655 #define TCP_HSP_HASH(addr) \ 656 (((addr>>24) ^ (addr >>16) ^ \ 657 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 658 659 /* 660 * TCP options struct returned from tcp_parse_options. 661 */ 662 typedef struct tcp_opt_s { 663 uint32_t tcp_opt_mss; 664 uint32_t tcp_opt_wscale; 665 uint32_t tcp_opt_ts_val; 666 uint32_t tcp_opt_ts_ecr; 667 tcp_t *tcp; 668 } tcp_opt_t; 669 670 /* 671 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 672 */ 673 674 #ifdef _BIG_ENDIAN 675 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 676 (TCPOPT_TSTAMP << 8) | 10) 677 #else 678 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 679 (TCPOPT_NOP << 8) | TCPOPT_NOP) 680 #endif 681 682 /* 683 * Flags returned from tcp_parse_options. 684 */ 685 #define TCP_OPT_MSS_PRESENT 1 686 #define TCP_OPT_WSCALE_PRESENT 2 687 #define TCP_OPT_TSTAMP_PRESENT 4 688 #define TCP_OPT_SACK_OK_PRESENT 8 689 #define TCP_OPT_SACK_PRESENT 16 690 691 /* TCP option length */ 692 #define TCPOPT_NOP_LEN 1 693 #define TCPOPT_MAXSEG_LEN 4 694 #define TCPOPT_WS_LEN 3 695 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 696 #define TCPOPT_TSTAMP_LEN 10 697 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 698 #define TCPOPT_SACK_OK_LEN 2 699 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 700 #define TCPOPT_REAL_SACK_LEN 4 701 #define TCPOPT_MAX_SACK_LEN 36 702 #define TCPOPT_HEADER_LEN 2 703 704 /* TCP cwnd burst factor. */ 705 #define TCP_CWND_INFINITE 65535 706 #define TCP_CWND_SS 3 707 #define TCP_CWND_NORMAL 5 708 709 /* Maximum TCP initial cwin (start/restart). */ 710 #define TCP_MAX_INIT_CWND 8 711 712 /* 713 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 714 * either tcp_slow_start_initial or tcp_slow_start_after idle 715 * depending on the caller. If the upper layer has not used the 716 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 717 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 718 * If the upper layer has changed set the tcp_init_cwnd, just use 719 * it to calculate the tcp_cwnd. 720 */ 721 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 722 { \ 723 if ((tcp)->tcp_init_cwnd == 0) { \ 724 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 725 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 726 } else { \ 727 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 728 } \ 729 tcp->tcp_cwnd_cnt = 0; \ 730 } 731 732 /* TCP Timer control structure */ 733 typedef struct tcpt_s { 734 pfv_t tcpt_pfv; /* The routine we are to call */ 735 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 736 } tcpt_t; 737 738 /* Host Specific Parameter structure */ 739 typedef struct tcp_hsp { 740 struct tcp_hsp *tcp_hsp_next; 741 in6_addr_t tcp_hsp_addr_v6; 742 in6_addr_t tcp_hsp_subnet_v6; 743 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 744 int32_t tcp_hsp_sendspace; 745 int32_t tcp_hsp_recvspace; 746 int32_t tcp_hsp_tstamp; 747 } tcp_hsp_t; 748 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 749 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 750 751 /* 752 * Functions called directly via squeue having a prototype of edesc_t. 753 */ 754 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 755 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 756 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 757 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 758 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 759 void tcp_input(void *arg, mblk_t *mp, void *arg2); 760 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 761 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 762 static void tcp_output(void *arg, mblk_t *mp, void *arg2); 763 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 764 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 765 766 767 /* Prototype for TCP functions */ 768 static void tcp_random_init(void); 769 int tcp_random(void); 770 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 771 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 772 tcp_t *eager); 773 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 774 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 775 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 776 boolean_t user_specified); 777 static void tcp_closei_local(tcp_t *tcp); 778 static void tcp_close_detached(tcp_t *tcp); 779 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 780 mblk_t *idmp, mblk_t **defermp); 781 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 782 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 783 in_port_t dstport, uint_t srcid); 784 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 785 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 786 uint32_t scope_id); 787 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 788 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 789 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 790 static char *tcp_display(tcp_t *tcp, char *, char); 791 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 792 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 793 static void tcp_eager_unlink(tcp_t *tcp); 794 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 795 int unixerr); 796 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 797 int tlierr, int unixerr); 798 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 799 cred_t *cr); 800 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 801 char *value, caddr_t cp, cred_t *cr); 802 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 803 char *value, caddr_t cp, cred_t *cr); 804 static int tcp_tpistate(tcp_t *tcp); 805 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 806 int caller_holds_lock); 807 static void tcp_bind_hash_remove(tcp_t *tcp); 808 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 809 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 810 static void tcp_acceptor_hash_remove(tcp_t *tcp); 811 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 812 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 813 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 814 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 815 static int tcp_header_init_ipv4(tcp_t *tcp); 816 static int tcp_header_init_ipv6(tcp_t *tcp); 817 int tcp_init(tcp_t *tcp, queue_t *q); 818 static int tcp_init_values(tcp_t *tcp); 819 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 820 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 821 t_scalar_t addr_length); 822 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 823 static void tcp_ip_notify(tcp_t *tcp); 824 static mblk_t *tcp_ire_mp(mblk_t *mp); 825 static void tcp_iss_init(tcp_t *tcp); 826 static void tcp_keepalive_killer(void *arg); 827 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 828 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 829 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 830 int *do_disconnectp, int *t_errorp, int *sys_errorp); 831 static boolean_t tcp_allow_connopt_set(int level, int name); 832 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 833 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 834 static int tcp_opt_get_user(ipha_t *ipha, uchar_t *ptr); 835 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 836 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 837 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 838 mblk_t *mblk); 839 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 840 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 841 uchar_t *ptr, uint_t len); 842 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 843 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 844 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 845 caddr_t cp, cred_t *cr); 846 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static void tcp_iss_key_init(uint8_t *phrase, int len); 849 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 850 caddr_t cp, cred_t *cr); 851 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 852 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 853 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 854 static void tcp_reinit(tcp_t *tcp); 855 static void tcp_reinit_values(tcp_t *tcp); 856 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 857 tcp_t *thisstream, cred_t *cr); 858 859 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 860 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 861 static boolean_t tcp_send_rst_chk(void); 862 static void tcp_ss_rexmit(tcp_t *tcp); 863 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 864 static void tcp_process_options(tcp_t *, tcph_t *); 865 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 866 static void tcp_rsrv(queue_t *q); 867 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 868 static int tcp_snmp_state(tcp_t *tcp); 869 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 870 cred_t *cr); 871 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 872 cred_t *cr); 873 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 874 cred_t *cr); 875 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 876 cred_t *cr); 877 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 878 cred_t *cr); 879 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 880 caddr_t cp, cred_t *cr); 881 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 882 caddr_t cp, cred_t *cr); 883 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 884 cred_t *cr); 885 static void tcp_timer(void *arg); 886 static void tcp_timer_callback(void *); 887 static in_port_t tcp_update_next_port(in_port_t port, boolean_t random); 888 static in_port_t tcp_get_next_priv_port(void); 889 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 890 void tcp_wput_accept(queue_t *q, mblk_t *mp); 891 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 892 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 893 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 894 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 895 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 896 const int num_sack_blk, int *usable, uint_t *snxt, 897 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 898 const int mdt_thres); 899 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 900 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 901 const int num_sack_blk, int *usable, uint_t *snxt, 902 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 903 const int mdt_thres); 904 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 905 int num_sack_blk); 906 static void tcp_wsrv(queue_t *q); 907 static int tcp_xmit_end(tcp_t *tcp); 908 void tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len); 909 static mblk_t *tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, 910 int32_t *offset, mblk_t **end_mp, uint32_t seq, 911 boolean_t sendall, uint32_t *seg_len, boolean_t rexmit); 912 static void tcp_ack_timer(void *arg); 913 static mblk_t *tcp_ack_mp(tcp_t *tcp); 914 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 915 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len); 916 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 917 uint32_t ack, int ctl); 918 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 919 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 920 static int setmaxps(queue_t *q, int maxpsz); 921 static void tcp_set_rto(tcp_t *, time_t); 922 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 923 boolean_t, boolean_t); 924 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 925 boolean_t ipsec_mctl); 926 static boolean_t tcp_cmpbuf(void *a, uint_t alen, 927 boolean_t b_valid, void *b, uint_t blen); 928 static boolean_t tcp_allocbuf(void **dstp, uint_t *dstlenp, 929 boolean_t src_valid, void *src, uint_t srclen); 930 static void tcp_savebuf(void **dstp, uint_t *dstlenp, 931 boolean_t src_valid, void *src, uint_t srclen); 932 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 933 char *opt, int optlen); 934 static int tcp_pkt_set(uchar_t *, uint_t, uchar_t **, uint_t *); 935 static int tcp_build_hdrs(queue_t *, tcp_t *); 936 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 937 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 938 tcph_t *tcph); 939 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 940 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 941 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 942 boolean_t tcp_reserved_port_check(in_port_t); 943 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 944 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 945 static mblk_t *tcp_mdt_info_mp(mblk_t *); 946 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 947 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 948 const boolean_t, const uint32_t, const uint32_t, 949 const uint32_t, const uint32_t); 950 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 951 const uint_t, const uint_t, boolean_t *); 952 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 953 extern mblk_t *tcp_timermp_alloc(int); 954 extern void tcp_timermp_free(tcp_t *); 955 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 956 static void tcp_stop_lingering(tcp_t *tcp); 957 static void tcp_close_linger_timeout(void *arg); 958 void tcp_ddi_init(void); 959 void tcp_ddi_destroy(void); 960 static void tcp_kstat_init(void); 961 static void tcp_kstat_fini(void); 962 static int tcp_kstat_update(kstat_t *kp, int rw); 963 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 964 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 965 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 966 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 967 tcph_t *tcph, mblk_t *idmp); 968 static squeue_func_t tcp_squeue_switch(int); 969 970 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 971 static int tcp_close(queue_t *, int); 972 static int tcpclose_accept(queue_t *); 973 static int tcp_modclose(queue_t *); 974 static void tcp_wput_mod(queue_t *, mblk_t *); 975 976 static void tcp_squeue_add(squeue_t *); 977 static boolean_t tcp_zcopy_check(tcp_t *); 978 static void tcp_zcopy_notify(tcp_t *); 979 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 980 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 981 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 982 983 /* 984 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 985 * 986 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 987 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 988 * (defined in tcp.h) needs to be filled in and passed into the kernel 989 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 990 * structure contains the four-tuple of a TCP connection and a range of TCP 991 * states (specified by ac_start and ac_end). The use of wildcard addresses 992 * and ports is allowed. Connections with a matching four tuple and a state 993 * within the specified range will be aborted. The valid states for the 994 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 995 * inclusive. 996 * 997 * An application which has its connection aborted by this ioctl will receive 998 * an error that is dependent on the connection state at the time of the abort. 999 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1000 * though a RST packet has been received. If the connection state is equal to 1001 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1002 * and all resources associated with the connection will be freed. 1003 */ 1004 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1005 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1006 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1007 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1008 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1009 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1010 boolean_t); 1011 1012 static struct module_info tcp_rinfo = { 1013 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1014 }; 1015 1016 static struct module_info tcp_winfo = { 1017 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1018 }; 1019 1020 /* 1021 * Entry points for TCP as a module. It only allows SNMP requests 1022 * to pass through. 1023 */ 1024 struct qinit tcp_mod_rinit = { 1025 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1026 }; 1027 1028 struct qinit tcp_mod_winit = { 1029 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1030 &tcp_rinfo 1031 }; 1032 1033 /* 1034 * Entry points for TCP as a device. The normal case which supports 1035 * the TCP functionality. 1036 */ 1037 struct qinit tcp_rinit = { 1038 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1039 }; 1040 1041 struct qinit tcp_winit = { 1042 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1043 }; 1044 1045 /* Initial entry point for TCP in socket mode. */ 1046 struct qinit tcp_sock_winit = { 1047 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1048 }; 1049 1050 /* 1051 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1052 * an accept. Avoid allocating data structures since eager has already 1053 * been created. 1054 */ 1055 struct qinit tcp_acceptor_rinit = { 1056 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1057 }; 1058 1059 struct qinit tcp_acceptor_winit = { 1060 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1061 }; 1062 1063 /* 1064 * Entry points for TCP loopback (read side only) 1065 */ 1066 struct qinit tcp_loopback_rinit = { 1067 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1068 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1069 }; 1070 1071 struct streamtab tcpinfo = { 1072 &tcp_rinit, &tcp_winit 1073 }; 1074 1075 extern squeue_func_t tcp_squeue_wput_proc; 1076 extern squeue_func_t tcp_squeue_timer_proc; 1077 1078 /* Protected by tcp_g_q_lock */ 1079 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1080 kmutex_t tcp_g_q_lock; 1081 1082 /* Protected by tcp_hsp_lock */ 1083 /* 1084 * XXX The host param mechanism should go away and instead we should use 1085 * the metrics associated with the routes to determine the default sndspace 1086 * and rcvspace. 1087 */ 1088 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1089 krwlock_t tcp_hsp_lock; 1090 1091 /* 1092 * Extra privileged ports. In host byte order. 1093 * Protected by tcp_epriv_port_lock. 1094 */ 1095 #define TCP_NUM_EPRIV_PORTS 64 1096 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1097 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1098 kmutex_t tcp_epriv_port_lock; 1099 1100 /* 1101 * The smallest anonymous port in the priviledged port range which TCP 1102 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1103 */ 1104 static in_port_t tcp_min_anonpriv_port = 512; 1105 1106 /* Only modified during _init and _fini thus no locking is needed. */ 1107 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1108 1109 /* Hint not protected by any lock */ 1110 static uint_t tcp_next_port_to_try; 1111 1112 1113 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1114 static tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1115 1116 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1117 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1118 1119 /* 1120 * TCP has a private interface for other kernel modules to reserve a 1121 * port range for them to use. Once reserved, TCP will not use any ports 1122 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1123 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1124 * has to be verified. 1125 * 1126 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1127 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1128 * range is [port a, port b] inclusive. And each port range is between 1129 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1130 * 1131 * Note that the default anonymous port range starts from 32768. There is 1132 * no port "collision" between that and the reserved port range. If there 1133 * is port collision (because the default smallest anonymous port is lowered 1134 * or some apps specifically bind to ports in the reserved port range), the 1135 * system may not be able to reserve a port range even there are enough 1136 * unbound ports as a reserved port range contains consecutive ports . 1137 */ 1138 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1139 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1140 #define TCP_SMALLEST_RESERVED_PORT 10240 1141 #define TCP_LARGEST_RESERVED_PORT 20480 1142 1143 /* Structure to represent those reserved port ranges. */ 1144 typedef struct tcp_rport_s { 1145 in_port_t lo_port; 1146 in_port_t hi_port; 1147 tcp_t **temp_tcp_array; 1148 } tcp_rport_t; 1149 1150 /* The reserved port array. */ 1151 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1152 1153 /* Locks to protect the tcp_reserved_ports array. */ 1154 static krwlock_t tcp_reserved_port_lock; 1155 1156 /* The number of ranges in the array. */ 1157 uint32_t tcp_reserved_port_array_size = 0; 1158 1159 /* 1160 * MIB-2 stuff for SNMP 1161 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1162 */ 1163 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1164 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1165 1166 boolean_t tcp_icmp_source_quench = B_FALSE; 1167 /* 1168 * Following assumes TPI alignment requirements stay along 32 bit 1169 * boundaries 1170 */ 1171 #define ROUNDUP32(x) \ 1172 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1173 1174 /* Template for response to info request. */ 1175 static struct T_info_ack tcp_g_t_info_ack = { 1176 T_INFO_ACK, /* PRIM_type */ 1177 0, /* TSDU_size */ 1178 T_INFINITE, /* ETSDU_size */ 1179 T_INVALID, /* CDATA_size */ 1180 T_INVALID, /* DDATA_size */ 1181 sizeof (sin_t), /* ADDR_size */ 1182 0, /* OPT_size - not initialized here */ 1183 TIDUSZ, /* TIDU_size */ 1184 T_COTS_ORD, /* SERV_type */ 1185 TCPS_IDLE, /* CURRENT_state */ 1186 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1187 }; 1188 1189 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1190 T_INFO_ACK, /* PRIM_type */ 1191 0, /* TSDU_size */ 1192 T_INFINITE, /* ETSDU_size */ 1193 T_INVALID, /* CDATA_size */ 1194 T_INVALID, /* DDATA_size */ 1195 sizeof (sin6_t), /* ADDR_size */ 1196 0, /* OPT_size - not initialized here */ 1197 TIDUSZ, /* TIDU_size */ 1198 T_COTS_ORD, /* SERV_type */ 1199 TCPS_IDLE, /* CURRENT_state */ 1200 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1201 }; 1202 1203 #define MS 1L 1204 #define SECONDS (1000 * MS) 1205 #define MINUTES (60 * SECONDS) 1206 #define HOURS (60 * MINUTES) 1207 #define DAYS (24 * HOURS) 1208 1209 #define PARAM_MAX (~(uint32_t)0) 1210 1211 /* Max size IP datagram is 64k - 1 */ 1212 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1213 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1214 /* Max of the above */ 1215 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1216 1217 /* Largest TCP port number */ 1218 #define TCP_MAX_PORT (64 * 1024 - 1) 1219 1220 /* 1221 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1222 * layer header. It has to be a multiple of 4. 1223 */ 1224 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1225 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1226 1227 /* 1228 * All of these are alterable, within the min/max values given, at run time. 1229 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1230 * per the TCP spec. 1231 */ 1232 /* BEGIN CSTYLED */ 1233 tcpparam_t tcp_param_arr[] = { 1234 /*min max value name */ 1235 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1236 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1237 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1238 { 1, 1024, 1, "tcp_conn_req_min" }, 1239 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1240 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1241 { 0, 10, 0, "tcp_debug" }, 1242 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1243 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1244 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1245 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1246 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1247 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1248 { 1, 255, 64, "tcp_ipv4_ttl"}, 1249 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1250 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1251 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1252 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1253 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1254 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1255 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1256 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1257 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1258 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1259 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1260 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1261 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1262 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1263 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1264 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1265 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1266 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1267 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1268 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1269 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1270 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1271 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1272 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1273 /* 1274 * Question: What default value should I set for tcp_strong_iss? 1275 */ 1276 { 0, 2, 1, "tcp_strong_iss"}, 1277 { 0, 65536, 20, "tcp_rtt_updates"}, 1278 { 0, 1, 1, "tcp_wscale_always"}, 1279 { 0, 1, 0, "tcp_tstamp_always"}, 1280 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1281 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1282 { 0, 16, 2, "tcp_deferred_acks_max"}, 1283 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1284 { 1, 4, 4, "tcp_slow_start_initial"}, 1285 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1286 { 0, 2, 2, "tcp_sack_permitted"}, 1287 { 0, 1, 0, "tcp_trace"}, 1288 { 0, 1, 1, "tcp_compression_enabled"}, 1289 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1290 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1291 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1292 { 0, 1, 0, "tcp_rev_src_routes"}, 1293 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1294 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1295 { 0, 16, 8, "tcp_local_dacks_max"}, 1296 { 0, 2, 1, "tcp_ecn_permitted"}, 1297 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1298 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1299 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1300 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1301 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1302 }; 1303 /* END CSTYLED */ 1304 1305 /* 1306 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1307 * each header fragment in the header buffer. Each parameter value has 1308 * to be a multiple of 4 (32-bit aligned). 1309 */ 1310 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1311 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1312 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1313 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1314 1315 /* 1316 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1317 * the maximum number of payload buffers associated per Multidata. 1318 */ 1319 static tcpparam_t tcp_mdt_max_pbufs_param = 1320 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1321 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1322 1323 /* Round up the value to the nearest mss. */ 1324 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1325 1326 /* 1327 * Set ECN capable transport (ECT) code point in IP header. 1328 * 1329 * Note that there are 2 ECT code points '01' and '10', which are called 1330 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1331 * point ECT(0) for TCP as described in RFC 2481. 1332 */ 1333 #define SET_ECT(tcp, iph) \ 1334 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1335 /* We need to clear the code point first. */ \ 1336 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1337 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1338 } else { \ 1339 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1340 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1341 } 1342 1343 /* 1344 * The format argument to pass to tcp_display(). 1345 * DISP_PORT_ONLY means that the returned string has only port info. 1346 * DISP_ADDR_AND_PORT means that the returned string also contains the 1347 * remote and local IP address. 1348 */ 1349 #define DISP_PORT_ONLY 1 1350 #define DISP_ADDR_AND_PORT 2 1351 1352 /* 1353 * This controls the rate some ndd info report functions can be used 1354 * by non-priviledged users. It stores the last time such info is 1355 * requested. When those report functions are called again, this 1356 * is checked with the current time and compare with the ndd param 1357 * tcp_ndd_get_info_interval. 1358 */ 1359 static clock_t tcp_last_ndd_get_info_time = 0; 1360 #define NDD_TOO_QUICK_MSG \ 1361 "ndd get info rate too high for non-priviledged users, try again " \ 1362 "later.\n" 1363 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1364 1365 #define IS_VMLOANED_MBLK(mp) \ 1366 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1367 1368 /* 1369 * These two variables control the rate for TCP to generate RSTs in 1370 * response to segments not belonging to any connections. We limit 1371 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1372 * each 1 second interval. This is to protect TCP against DoS attack. 1373 */ 1374 static clock_t tcp_last_rst_intrvl; 1375 static uint32_t tcp_rst_cnt; 1376 1377 /* The number of RST not sent because of the rate limit. */ 1378 static uint32_t tcp_rst_unsent; 1379 1380 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1381 boolean_t tcp_mdt_chain = B_TRUE; 1382 1383 /* 1384 * MDT threshold in the form of effective send MSS multiplier; we take 1385 * the MDT path if the amount of unsent data exceeds the threshold value 1386 * (default threshold is 1*SMSS). 1387 */ 1388 uint_t tcp_mdt_smss_threshold = 1; 1389 1390 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1391 1392 /* 1393 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1394 * tunable settable via NDD. Otherwise, the per-connection behavior is 1395 * determined dynamically during tcp_adapt_ire(), which is the default. 1396 */ 1397 boolean_t tcp_static_maxpsz = B_FALSE; 1398 1399 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1400 uint32_t tcp_random_anon_port = 1; 1401 1402 /* 1403 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1404 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1405 * data, TCP will not respond with an ACK. RFC 793 requires that 1406 * TCP responds with an ACK for such a bogus ACK. By not following 1407 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1408 * an attacker successfully spoofs an acceptable segment to our 1409 * peer; or when our peer is "confused." 1410 */ 1411 uint32_t tcp_drop_ack_unsent_cnt = 10; 1412 1413 /* 1414 * Hook functions to enable cluster networking 1415 * On non-clustered systems these vectors must always be NULL. 1416 */ 1417 1418 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1419 uint8_t *laddrp, in_port_t lport) = NULL; 1420 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1421 uint8_t *laddrp, in_port_t lport) = NULL; 1422 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1423 uint8_t *laddrp, in_port_t lport, 1424 uint8_t *faddrp, in_port_t fport) = NULL; 1425 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1426 uint8_t *laddrp, in_port_t lport, 1427 uint8_t *faddrp, in_port_t fport) = NULL; 1428 1429 /* 1430 * The following are defined in ip.c 1431 */ 1432 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1433 uint8_t *laddrp); 1434 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1435 uint8_t *laddrp, uint8_t *faddrp); 1436 1437 #define CL_INET_CONNECT(tcp) { \ 1438 if (cl_inet_connect != NULL) { \ 1439 /* \ 1440 * Running in cluster mode - register active connection \ 1441 * information \ 1442 */ \ 1443 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1444 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1445 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1446 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1447 (in_port_t)(tcp)->tcp_lport, \ 1448 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1449 (in_port_t)(tcp)->tcp_fport); \ 1450 } \ 1451 } else { \ 1452 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1453 &(tcp)->tcp_ip6h->ip6_src)) {\ 1454 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1455 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1456 (in_port_t)(tcp)->tcp_lport, \ 1457 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1458 (in_port_t)(tcp)->tcp_fport); \ 1459 } \ 1460 } \ 1461 } \ 1462 } 1463 1464 #define CL_INET_DISCONNECT(tcp) { \ 1465 if (cl_inet_disconnect != NULL) { \ 1466 /* \ 1467 * Running in cluster mode - deregister active \ 1468 * connection information \ 1469 */ \ 1470 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1471 if ((tcp)->tcp_ip_src != 0) { \ 1472 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1473 AF_INET, \ 1474 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1475 (in_port_t)(tcp)->tcp_lport, \ 1476 (uint8_t *) \ 1477 (&((tcp)->tcp_ipha->ipha_dst)),\ 1478 (in_port_t)(tcp)->tcp_fport); \ 1479 } \ 1480 } else { \ 1481 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1482 &(tcp)->tcp_ip_src_v6)) { \ 1483 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1484 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1485 (in_port_t)(tcp)->tcp_lport, \ 1486 (uint8_t *) \ 1487 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1488 (in_port_t)(tcp)->tcp_fport); \ 1489 } \ 1490 } \ 1491 } \ 1492 } 1493 1494 /* 1495 * Cluster networking hook for traversing current connection list. 1496 * This routine is used to extract the current list of live connections 1497 * which must continue to to be dispatched to this node. 1498 */ 1499 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1500 1501 /* 1502 * Figure out the value of window scale opton. Note that the rwnd is 1503 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1504 * We cannot find the scale value and then do a round up of tcp_rwnd 1505 * because the scale value may not be correct after that. 1506 * 1507 * Set the compiler flag to make this function inline. 1508 */ 1509 static void 1510 tcp_set_ws_value(tcp_t *tcp) 1511 { 1512 int i; 1513 uint32_t rwnd = tcp->tcp_rwnd; 1514 1515 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1516 i++, rwnd >>= 1) 1517 ; 1518 tcp->tcp_rcv_ws = i; 1519 } 1520 1521 /* 1522 * Remove a connection from the list of detached TIME_WAIT connections. 1523 */ 1524 static void 1525 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1526 { 1527 boolean_t locked = B_FALSE; 1528 1529 if (tcp_time_wait == NULL) { 1530 tcp_time_wait = *((tcp_squeue_priv_t **) 1531 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1532 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1533 locked = B_TRUE; 1534 } 1535 1536 if (tcp->tcp_time_wait_expire == 0) { 1537 ASSERT(tcp->tcp_time_wait_next == NULL); 1538 ASSERT(tcp->tcp_time_wait_prev == NULL); 1539 if (locked) 1540 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1541 return; 1542 } 1543 ASSERT(TCP_IS_DETACHED(tcp)); 1544 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1545 1546 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1547 ASSERT(tcp->tcp_time_wait_prev == NULL); 1548 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1549 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1550 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1551 NULL; 1552 } else { 1553 tcp_time_wait->tcp_time_wait_tail = NULL; 1554 } 1555 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1556 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1557 ASSERT(tcp->tcp_time_wait_next == NULL); 1558 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1559 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1560 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1561 } else { 1562 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1563 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1564 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1565 tcp->tcp_time_wait_next; 1566 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1567 tcp->tcp_time_wait_prev; 1568 } 1569 tcp->tcp_time_wait_next = NULL; 1570 tcp->tcp_time_wait_prev = NULL; 1571 tcp->tcp_time_wait_expire = 0; 1572 1573 if (locked) 1574 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1575 } 1576 1577 /* 1578 * Add a connection to the list of detached TIME_WAIT connections 1579 * and set its time to expire. 1580 */ 1581 static void 1582 tcp_time_wait_append(tcp_t *tcp) 1583 { 1584 tcp_squeue_priv_t *tcp_time_wait = 1585 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1586 SQPRIVATE_TCP)); 1587 1588 tcp_timers_stop(tcp); 1589 1590 /* Freed above */ 1591 ASSERT(tcp->tcp_timer_tid == 0); 1592 ASSERT(tcp->tcp_ack_tid == 0); 1593 1594 /* must have happened at the time of detaching the tcp */ 1595 ASSERT(tcp->tcp_ptpahn == NULL); 1596 ASSERT(tcp->tcp_flow_stopped == 0); 1597 ASSERT(tcp->tcp_time_wait_next == NULL); 1598 ASSERT(tcp->tcp_time_wait_prev == NULL); 1599 ASSERT(tcp->tcp_time_wait_expire == NULL); 1600 ASSERT(tcp->tcp_listener == NULL); 1601 1602 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1603 /* 1604 * The value computed below in tcp->tcp_time_wait_expire may 1605 * appear negative or wrap around. That is ok since our 1606 * interest is only in the difference between the current lbolt 1607 * value and tcp->tcp_time_wait_expire. But the value should not 1608 * be zero, since it means the tcp is not in the TIME_WAIT list. 1609 * The corresponding comparison in tcp_time_wait_collector() uses 1610 * modular arithmetic. 1611 */ 1612 tcp->tcp_time_wait_expire += 1613 drv_usectohz(tcp_time_wait_interval * 1000); 1614 if (tcp->tcp_time_wait_expire == 0) 1615 tcp->tcp_time_wait_expire = 1; 1616 1617 ASSERT(TCP_IS_DETACHED(tcp)); 1618 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1619 ASSERT(tcp->tcp_time_wait_next == NULL); 1620 ASSERT(tcp->tcp_time_wait_prev == NULL); 1621 TCP_DBGSTAT(tcp_time_wait); 1622 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1623 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1624 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1625 tcp_time_wait->tcp_time_wait_head = tcp; 1626 } else { 1627 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1628 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1629 TCPS_TIME_WAIT); 1630 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1631 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1632 } 1633 tcp_time_wait->tcp_time_wait_tail = tcp; 1634 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1635 } 1636 1637 /* ARGSUSED */ 1638 void 1639 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1640 { 1641 conn_t *connp = (conn_t *)arg; 1642 tcp_t *tcp = connp->conn_tcp; 1643 1644 ASSERT(tcp != NULL); 1645 if (tcp->tcp_state == TCPS_CLOSED) { 1646 return; 1647 } 1648 1649 ASSERT((tcp->tcp_family == AF_INET && 1650 tcp->tcp_ipversion == IPV4_VERSION) || 1651 (tcp->tcp_family == AF_INET6 && 1652 (tcp->tcp_ipversion == IPV4_VERSION || 1653 tcp->tcp_ipversion == IPV6_VERSION))); 1654 ASSERT(!tcp->tcp_listener); 1655 1656 TCP_STAT(tcp_time_wait_reap); 1657 ASSERT(TCP_IS_DETACHED(tcp)); 1658 1659 /* 1660 * Because they have no upstream client to rebind or tcp_close() 1661 * them later, we axe the connection here and now. 1662 */ 1663 tcp_close_detached(tcp); 1664 } 1665 1666 void 1667 tcp_cleanup(tcp_t *tcp) 1668 { 1669 mblk_t *mp; 1670 char *tcp_iphc; 1671 int tcp_iphc_len; 1672 int tcp_hdr_grown; 1673 tcp_sack_info_t *tcp_sack_info; 1674 conn_t *connp = tcp->tcp_connp; 1675 1676 tcp_bind_hash_remove(tcp); 1677 tcp_free(tcp); 1678 1679 conn_delete_ire(connp, NULL); 1680 if (connp->conn_flags & IPCL_TCPCONN) { 1681 if (connp->conn_latch != NULL) 1682 IPLATCH_REFRELE(connp->conn_latch); 1683 if (connp->conn_policy != NULL) 1684 IPPH_REFRELE(connp->conn_policy); 1685 } 1686 1687 /* 1688 * Since we will bzero the entire structure, we need to 1689 * remove it and reinsert it in global hash list. We 1690 * know the walkers can't get to this conn because we 1691 * had set CONDEMNED flag earlier and checked reference 1692 * under conn_lock so walker won't pick it and when we 1693 * go the ipcl_globalhash_remove() below, no walker 1694 * can get to it. 1695 */ 1696 ipcl_globalhash_remove(connp); 1697 1698 /* Save some state */ 1699 mp = tcp->tcp_timercache; 1700 1701 tcp_sack_info = tcp->tcp_sack_info; 1702 tcp_iphc = tcp->tcp_iphc; 1703 tcp_iphc_len = tcp->tcp_iphc_len; 1704 tcp_hdr_grown = tcp->tcp_hdr_grown; 1705 1706 bzero(connp, sizeof (conn_t)); 1707 bzero(tcp, sizeof (tcp_t)); 1708 1709 /* restore the state */ 1710 tcp->tcp_timercache = mp; 1711 1712 tcp->tcp_sack_info = tcp_sack_info; 1713 tcp->tcp_iphc = tcp_iphc; 1714 tcp->tcp_iphc_len = tcp_iphc_len; 1715 tcp->tcp_hdr_grown = tcp_hdr_grown; 1716 1717 1718 tcp->tcp_connp = connp; 1719 1720 connp->conn_tcp = tcp; 1721 connp->conn_flags = IPCL_TCPCONN; 1722 connp->conn_state_flags = CONN_INCIPIENT; 1723 connp->conn_ulp = IPPROTO_TCP; 1724 connp->conn_ref = 1; 1725 1726 ipcl_globalhash_insert(connp); 1727 } 1728 1729 /* 1730 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1731 * is done forwards from the head. 1732 */ 1733 /* ARGSUSED */ 1734 void 1735 tcp_time_wait_collector(void *arg) 1736 { 1737 tcp_t *tcp; 1738 clock_t now; 1739 mblk_t *mp; 1740 conn_t *connp; 1741 kmutex_t *lock; 1742 1743 squeue_t *sqp = (squeue_t *)arg; 1744 tcp_squeue_priv_t *tcp_time_wait = 1745 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1746 1747 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1748 tcp_time_wait->tcp_time_wait_tid = 0; 1749 1750 if (tcp_time_wait->tcp_free_list != NULL && 1751 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1752 TCP_STAT(tcp_freelist_cleanup); 1753 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1754 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1755 CONN_DEC_REF(tcp->tcp_connp); 1756 } 1757 } 1758 1759 /* 1760 * In order to reap time waits reliably, we should use a 1761 * source of time that is not adjustable by the user -- hence 1762 * the call to ddi_get_lbolt(). 1763 */ 1764 now = ddi_get_lbolt(); 1765 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1766 /* 1767 * Compare times using modular arithmetic, since 1768 * lbolt can wrapover. 1769 */ 1770 if ((now - tcp->tcp_time_wait_expire) < 0) { 1771 break; 1772 } 1773 1774 tcp_time_wait_remove(tcp, tcp_time_wait); 1775 1776 connp = tcp->tcp_connp; 1777 ASSERT(connp->conn_fanout != NULL); 1778 lock = &connp->conn_fanout->connf_lock; 1779 /* 1780 * This is essentially a TW reclaim fast path optimization for 1781 * performance where the timewait collector checks under the 1782 * fanout lock (so that no one else can get access to the 1783 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1784 * the classifier hash list. If ref count is indeed 2, we can 1785 * just remove the conn under the fanout lock and avoid 1786 * cleaning up the conn under the squeue, provided that 1787 * clustering callbacks are not enabled. If clustering is 1788 * enabled, we need to make the clustering callback before 1789 * setting the CONDEMNED flag and after dropping all locks and 1790 * so we forego this optimization and fall back to the slow 1791 * path. Also please see the comments in tcp_closei_local 1792 * regarding the refcnt logic. 1793 * 1794 * Since we are holding the tcp_time_wait_lock, its better 1795 * not to block on the fanout_lock because other connections 1796 * can't add themselves to time_wait list. So we do a 1797 * tryenter instead of mutex_enter. 1798 */ 1799 if (mutex_tryenter(lock)) { 1800 mutex_enter(&connp->conn_lock); 1801 if ((connp->conn_ref == 2) && 1802 (cl_inet_disconnect == NULL)) { 1803 ipcl_hash_remove_locked(connp, 1804 connp->conn_fanout); 1805 /* 1806 * Set the CONDEMNED flag now itself so that 1807 * the refcnt cannot increase due to any 1808 * walker. But we have still not cleaned up 1809 * conn_ire_cache. This is still ok since 1810 * we are going to clean it up in tcp_cleanup 1811 * immediately and any interface unplumb 1812 * thread will wait till the ire is blown away 1813 */ 1814 connp->conn_state_flags |= CONN_CONDEMNED; 1815 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1816 mutex_exit(lock); 1817 mutex_exit(&connp->conn_lock); 1818 tcp_cleanup(tcp); 1819 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1820 tcp->tcp_time_wait_next = 1821 tcp_time_wait->tcp_free_list; 1822 tcp_time_wait->tcp_free_list = tcp; 1823 continue; 1824 } else { 1825 CONN_INC_REF_LOCKED(connp); 1826 mutex_exit(lock); 1827 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1828 mutex_exit(&connp->conn_lock); 1829 /* 1830 * We can reuse the closemp here since conn has 1831 * detached (otherwise we wouldn't even be in 1832 * time_wait list). 1833 */ 1834 mp = &tcp->tcp_closemp; 1835 squeue_fill(connp->conn_sqp, mp, 1836 tcp_timewait_output, connp, 1837 SQTAG_TCP_TIMEWAIT); 1838 } 1839 } else { 1840 mutex_enter(&connp->conn_lock); 1841 CONN_INC_REF_LOCKED(connp); 1842 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1843 mutex_exit(&connp->conn_lock); 1844 /* 1845 * We can reuse the closemp here since conn has 1846 * detached (otherwise we wouldn't even be in 1847 * time_wait list). 1848 */ 1849 mp = &tcp->tcp_closemp; 1850 squeue_fill(connp->conn_sqp, mp, 1851 tcp_timewait_output, connp, 0); 1852 } 1853 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1854 } 1855 1856 if (tcp_time_wait->tcp_free_list != NULL) 1857 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1858 1859 tcp_time_wait->tcp_time_wait_tid = 1860 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1861 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1862 } 1863 1864 /* 1865 * Reply to a clients T_CONN_RES TPI message. This function 1866 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1867 * on the acceptor STREAM and processed in tcp_wput_accept(). 1868 * Read the block comment on top of tcp_conn_request(). 1869 */ 1870 static void 1871 tcp_accept(tcp_t *listener, mblk_t *mp) 1872 { 1873 tcp_t *acceptor; 1874 tcp_t *eager; 1875 tcp_t *tcp; 1876 struct T_conn_res *tcr; 1877 t_uscalar_t acceptor_id; 1878 t_scalar_t seqnum; 1879 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1880 mblk_t *ok_mp; 1881 mblk_t *mp1; 1882 1883 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1884 tcp_err_ack(listener, mp, TPROTO, 0); 1885 return; 1886 } 1887 tcr = (struct T_conn_res *)mp->b_rptr; 1888 1889 /* 1890 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1891 * read side queue of the streams device underneath us i.e. the 1892 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1893 * look it up in the queue_hash. Under LP64 it sends down the 1894 * minor_t of the accepting endpoint. 1895 * 1896 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1897 * fanout hash lock is held. 1898 * This prevents any thread from entering the acceptor queue from 1899 * below (since it has not been hard bound yet i.e. any inbound 1900 * packets will arrive on the listener or default tcp queue and 1901 * go through tcp_lookup). 1902 * The CONN_INC_REF will prevent the acceptor from closing. 1903 * 1904 * XXX It is still possible for a tli application to send down data 1905 * on the accepting stream while another thread calls t_accept. 1906 * This should not be a problem for well-behaved applications since 1907 * the T_OK_ACK is sent after the queue swapping is completed. 1908 * 1909 * If the accepting fd is the same as the listening fd, avoid 1910 * queue hash lookup since that will return an eager listener in a 1911 * already established state. 1912 */ 1913 acceptor_id = tcr->ACCEPTOR_id; 1914 mutex_enter(&listener->tcp_eager_lock); 1915 if (listener->tcp_acceptor_id == acceptor_id) { 1916 eager = listener->tcp_eager_next_q; 1917 /* only count how many T_CONN_INDs so don't count q0 */ 1918 if ((listener->tcp_conn_req_cnt_q != 1) || 1919 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1920 mutex_exit(&listener->tcp_eager_lock); 1921 tcp_err_ack(listener, mp, TBADF, 0); 1922 return; 1923 } 1924 if (listener->tcp_conn_req_cnt_q0 != 0) { 1925 /* Throw away all the eagers on q0. */ 1926 tcp_eager_cleanup(listener, 1); 1927 } 1928 if (listener->tcp_syn_defense) { 1929 listener->tcp_syn_defense = B_FALSE; 1930 if (listener->tcp_ip_addr_cache != NULL) { 1931 kmem_free(listener->tcp_ip_addr_cache, 1932 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1933 listener->tcp_ip_addr_cache = NULL; 1934 } 1935 } 1936 /* 1937 * Transfer tcp_conn_req_max to the eager so that when 1938 * a disconnect occurs we can revert the endpoint to the 1939 * listen state. 1940 */ 1941 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1942 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1943 /* 1944 * Get a reference on the acceptor just like the 1945 * tcp_acceptor_hash_lookup below. 1946 */ 1947 acceptor = listener; 1948 CONN_INC_REF(acceptor->tcp_connp); 1949 } else { 1950 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 1951 if (acceptor == NULL) { 1952 if (listener->tcp_debug) { 1953 (void) strlog(TCP_MOD_ID, 0, 1, 1954 SL_ERROR|SL_TRACE, 1955 "tcp_accept: did not find acceptor 0x%x\n", 1956 acceptor_id); 1957 } 1958 mutex_exit(&listener->tcp_eager_lock); 1959 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1960 return; 1961 } 1962 /* 1963 * Verify acceptor state. The acceptable states for an acceptor 1964 * include TCPS_IDLE and TCPS_BOUND. 1965 */ 1966 switch (acceptor->tcp_state) { 1967 case TCPS_IDLE: 1968 /* FALLTHRU */ 1969 case TCPS_BOUND: 1970 break; 1971 default: 1972 CONN_DEC_REF(acceptor->tcp_connp); 1973 mutex_exit(&listener->tcp_eager_lock); 1974 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1975 return; 1976 } 1977 } 1978 1979 /* The listener must be in TCPS_LISTEN */ 1980 if (listener->tcp_state != TCPS_LISTEN) { 1981 CONN_DEC_REF(acceptor->tcp_connp); 1982 mutex_exit(&listener->tcp_eager_lock); 1983 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1984 return; 1985 } 1986 1987 /* 1988 * Rendezvous with an eager connection request packet hanging off 1989 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 1990 * tcp structure when the connection packet arrived in 1991 * tcp_conn_request(). 1992 */ 1993 seqnum = tcr->SEQ_number; 1994 eager = listener; 1995 do { 1996 eager = eager->tcp_eager_next_q; 1997 if (eager == NULL) { 1998 CONN_DEC_REF(acceptor->tcp_connp); 1999 mutex_exit(&listener->tcp_eager_lock); 2000 tcp_err_ack(listener, mp, TBADSEQ, 0); 2001 return; 2002 } 2003 } while (eager->tcp_conn_req_seqnum != seqnum); 2004 mutex_exit(&listener->tcp_eager_lock); 2005 2006 /* 2007 * At this point, both acceptor and listener have 2 ref 2008 * that they begin with. Acceptor has one additional ref 2009 * we placed in lookup while listener has 3 additional 2010 * ref for being behind the squeue (tcp_accept() is 2011 * done on listener's squeue); being in classifier hash; 2012 * and eager's ref on listener. 2013 */ 2014 ASSERT(listener->tcp_connp->conn_ref >= 5); 2015 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2016 2017 /* 2018 * The eager at this point is set in its own squeue and 2019 * could easily have been killed (tcp_accept_finish will 2020 * deal with that) because of a TH_RST so we can only 2021 * ASSERT for a single ref. 2022 */ 2023 ASSERT(eager->tcp_connp->conn_ref >= 1); 2024 2025 /* Pre allocate the stroptions mblk also */ 2026 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2027 if (opt_mp == NULL) { 2028 CONN_DEC_REF(acceptor->tcp_connp); 2029 CONN_DEC_REF(eager->tcp_connp); 2030 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2031 return; 2032 } 2033 DB_TYPE(opt_mp) = M_SETOPTS; 2034 opt_mp->b_wptr += sizeof (struct stroptions); 2035 2036 /* 2037 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2038 * from listener to acceptor. The message is chained on opt_mp 2039 * which will be sent onto eager's squeue. 2040 */ 2041 if (listener->tcp_bound_if != 0) { 2042 /* allocate optmgmt req */ 2043 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2044 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2045 sizeof (int)); 2046 if (mp1 != NULL) 2047 linkb(opt_mp, mp1); 2048 } 2049 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2050 uint_t on = 1; 2051 2052 /* allocate optmgmt req */ 2053 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2054 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2055 if (mp1 != NULL) 2056 linkb(opt_mp, mp1); 2057 } 2058 2059 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2060 if ((mp1 = copymsg(mp)) == NULL) { 2061 CONN_DEC_REF(acceptor->tcp_connp); 2062 CONN_DEC_REF(eager->tcp_connp); 2063 freemsg(opt_mp); 2064 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2065 return; 2066 } 2067 2068 tcr = (struct T_conn_res *)mp1->b_rptr; 2069 2070 /* 2071 * This is an expanded version of mi_tpi_ok_ack_alloc() 2072 * which allocates a larger mblk and appends the new 2073 * local address to the ok_ack. The address is copied by 2074 * soaccept() for getsockname(). 2075 */ 2076 { 2077 int extra; 2078 2079 extra = (eager->tcp_family == AF_INET) ? 2080 sizeof (sin_t) : sizeof (sin6_t); 2081 2082 /* 2083 * Try to re-use mp, if possible. Otherwise, allocate 2084 * an mblk and return it as ok_mp. In any case, mp 2085 * is no longer usable upon return. 2086 */ 2087 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2088 CONN_DEC_REF(acceptor->tcp_connp); 2089 CONN_DEC_REF(eager->tcp_connp); 2090 freemsg(opt_mp); 2091 /* Original mp has been freed by now, so use mp1 */ 2092 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2093 return; 2094 } 2095 2096 mp = NULL; /* We should never use mp after this point */ 2097 2098 switch (extra) { 2099 case sizeof (sin_t): { 2100 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2101 2102 ok_mp->b_wptr += extra; 2103 sin->sin_family = AF_INET; 2104 sin->sin_port = eager->tcp_lport; 2105 sin->sin_addr.s_addr = 2106 eager->tcp_ipha->ipha_src; 2107 break; 2108 } 2109 case sizeof (sin6_t): { 2110 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2111 2112 ok_mp->b_wptr += extra; 2113 sin6->sin6_family = AF_INET6; 2114 sin6->sin6_port = eager->tcp_lport; 2115 if (eager->tcp_ipversion == IPV4_VERSION) { 2116 sin6->sin6_flowinfo = 0; 2117 IN6_IPADDR_TO_V4MAPPED( 2118 eager->tcp_ipha->ipha_src, 2119 &sin6->sin6_addr); 2120 } else { 2121 ASSERT(eager->tcp_ip6h != NULL); 2122 sin6->sin6_flowinfo = 2123 eager->tcp_ip6h->ip6_vcf & 2124 ~IPV6_VERS_AND_FLOW_MASK; 2125 sin6->sin6_addr = 2126 eager->tcp_ip6h->ip6_src; 2127 } 2128 break; 2129 } 2130 default: 2131 break; 2132 } 2133 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2134 } 2135 2136 /* 2137 * If there are no options we know that the T_CONN_RES will 2138 * succeed. However, we can't send the T_OK_ACK upstream until 2139 * the tcp_accept_swap is done since it would be dangerous to 2140 * let the application start using the new fd prior to the swap. 2141 */ 2142 tcp_accept_swap(listener, acceptor, eager); 2143 2144 /* 2145 * tcp_accept_swap unlinks eager from listener but does not drop 2146 * the eager's reference on the listener. 2147 */ 2148 ASSERT(eager->tcp_listener == NULL); 2149 ASSERT(listener->tcp_connp->conn_ref >= 5); 2150 2151 /* 2152 * The eager is now associated with its own queue. Insert in 2153 * the hash so that the connection can be reused for a future 2154 * T_CONN_RES. 2155 */ 2156 tcp_acceptor_hash_insert(acceptor_id, eager); 2157 2158 /* 2159 * We now do the processing of options with T_CONN_RES. 2160 * We delay till now since we wanted to have queue to pass to 2161 * option processing routines that points back to the right 2162 * instance structure which does not happen until after 2163 * tcp_accept_swap(). 2164 * 2165 * Note: 2166 * The sanity of the logic here assumes that whatever options 2167 * are appropriate to inherit from listner=>eager are done 2168 * before this point, and whatever were to be overridden (or not) 2169 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2170 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2171 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2172 * This may not be true at this point in time but can be fixed 2173 * independently. This option processing code starts with 2174 * the instantiated acceptor instance and the final queue at 2175 * this point. 2176 */ 2177 2178 if (tcr->OPT_length != 0) { 2179 /* Options to process */ 2180 int t_error = 0; 2181 int sys_error = 0; 2182 int do_disconnect = 0; 2183 2184 if (tcp_conprim_opt_process(eager, mp1, 2185 &do_disconnect, &t_error, &sys_error) < 0) { 2186 eager->tcp_accept_error = 1; 2187 if (do_disconnect) { 2188 /* 2189 * An option failed which does not allow 2190 * connection to be accepted. 2191 * 2192 * We allow T_CONN_RES to succeed and 2193 * put a T_DISCON_IND on the eager queue. 2194 */ 2195 ASSERT(t_error == 0 && sys_error == 0); 2196 eager->tcp_send_discon_ind = 1; 2197 } else { 2198 ASSERT(t_error != 0); 2199 freemsg(ok_mp); 2200 /* 2201 * Original mp was either freed or set 2202 * to ok_mp above, so use mp1 instead. 2203 */ 2204 tcp_err_ack(listener, mp1, t_error, sys_error); 2205 goto finish; 2206 } 2207 } 2208 /* 2209 * Most likely success in setting options (except if 2210 * eager->tcp_send_discon_ind set). 2211 * mp1 option buffer represented by OPT_length/offset 2212 * potentially modified and contains results of setting 2213 * options at this point 2214 */ 2215 } 2216 2217 /* We no longer need mp1, since all options processing has passed */ 2218 freemsg(mp1); 2219 2220 putnext(listener->tcp_rq, ok_mp); 2221 2222 mutex_enter(&listener->tcp_eager_lock); 2223 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2224 tcp_t *tail; 2225 mblk_t *conn_ind; 2226 2227 /* 2228 * This path should not be executed if listener and 2229 * acceptor streams are the same. 2230 */ 2231 ASSERT(listener != acceptor); 2232 2233 tcp = listener->tcp_eager_prev_q0; 2234 /* 2235 * listener->tcp_eager_prev_q0 points to the TAIL of the 2236 * deferred T_conn_ind queue. We need to get to the head of 2237 * the queue in order to send up T_conn_ind the same order as 2238 * how the 3WHS is completed. 2239 */ 2240 while (tcp != listener) { 2241 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2242 break; 2243 else 2244 tcp = tcp->tcp_eager_prev_q0; 2245 } 2246 ASSERT(tcp != listener); 2247 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2248 ASSERT(conn_ind != NULL); 2249 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2250 2251 /* Move from q0 to q */ 2252 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2253 listener->tcp_conn_req_cnt_q0--; 2254 listener->tcp_conn_req_cnt_q++; 2255 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2256 tcp->tcp_eager_prev_q0; 2257 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2258 tcp->tcp_eager_next_q0; 2259 tcp->tcp_eager_prev_q0 = NULL; 2260 tcp->tcp_eager_next_q0 = NULL; 2261 tcp->tcp_conn_def_q0 = B_FALSE; 2262 2263 /* 2264 * Insert at end of the queue because sockfs sends 2265 * down T_CONN_RES in chronological order. Leaving 2266 * the older conn indications at front of the queue 2267 * helps reducing search time. 2268 */ 2269 tail = listener->tcp_eager_last_q; 2270 if (tail != NULL) 2271 tail->tcp_eager_next_q = tcp; 2272 else 2273 listener->tcp_eager_next_q = tcp; 2274 listener->tcp_eager_last_q = tcp; 2275 tcp->tcp_eager_next_q = NULL; 2276 mutex_exit(&listener->tcp_eager_lock); 2277 putnext(tcp->tcp_rq, conn_ind); 2278 } else { 2279 mutex_exit(&listener->tcp_eager_lock); 2280 } 2281 2282 /* 2283 * Done with the acceptor - free it 2284 * 2285 * Note: from this point on, no access to listener should be made 2286 * as listener can be equal to acceptor. 2287 */ 2288 finish: 2289 ASSERT(acceptor->tcp_detached); 2290 acceptor->tcp_rq = tcp_g_q; 2291 acceptor->tcp_wq = WR(tcp_g_q); 2292 (void) tcp_clean_death(acceptor, 0, 2); 2293 CONN_DEC_REF(acceptor->tcp_connp); 2294 2295 /* 2296 * In case we already received a FIN we have to make tcp_rput send 2297 * the ordrel_ind. This will also send up a window update if the window 2298 * has opened up. 2299 * 2300 * In the normal case of a successful connection acceptance 2301 * we give the O_T_BIND_REQ to the read side put procedure as an 2302 * indication that this was just accepted. This tells tcp_rput to 2303 * pass up any data queued in tcp_rcv_list. 2304 * 2305 * In the fringe case where options sent with T_CONN_RES failed and 2306 * we required, we would be indicating a T_DISCON_IND to blow 2307 * away this connection. 2308 */ 2309 2310 /* 2311 * XXX: we currently have a problem if XTI application closes the 2312 * acceptor stream in between. This problem exists in on10-gate also 2313 * and is well know but nothing can be done short of major rewrite 2314 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2315 * eager same squeue as listener (we can distinguish non socket 2316 * listeners at the time of handling a SYN in tcp_conn_request) 2317 * and do most of the work that tcp_accept_finish does here itself 2318 * and then get behind the acceptor squeue to access the acceptor 2319 * queue. 2320 */ 2321 /* 2322 * We already have a ref on tcp so no need to do one before squeue_fill 2323 */ 2324 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2325 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2326 } 2327 2328 /* 2329 * Swap information between the eager and acceptor for a TLI/XTI client. 2330 * The sockfs accept is done on the acceptor stream and control goes 2331 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2332 * called. In either case, both the eager and listener are in their own 2333 * perimeter (squeue) and the code has to deal with potential race. 2334 * 2335 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2336 */ 2337 static void 2338 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2339 { 2340 conn_t *econnp, *aconnp; 2341 2342 ASSERT(eager->tcp_rq == listener->tcp_rq); 2343 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2344 ASSERT(!eager->tcp_hard_bound); 2345 ASSERT(!TCP_IS_SOCKET(acceptor)); 2346 ASSERT(!TCP_IS_SOCKET(eager)); 2347 ASSERT(!TCP_IS_SOCKET(listener)); 2348 2349 acceptor->tcp_detached = B_TRUE; 2350 /* 2351 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2352 * the acceptor id. 2353 */ 2354 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2355 2356 /* remove eager from listen list... */ 2357 mutex_enter(&listener->tcp_eager_lock); 2358 tcp_eager_unlink(eager); 2359 ASSERT(eager->tcp_eager_next_q == NULL && 2360 eager->tcp_eager_last_q == NULL); 2361 ASSERT(eager->tcp_eager_next_q0 == NULL && 2362 eager->tcp_eager_prev_q0 == NULL); 2363 mutex_exit(&listener->tcp_eager_lock); 2364 eager->tcp_rq = acceptor->tcp_rq; 2365 eager->tcp_wq = acceptor->tcp_wq; 2366 2367 econnp = eager->tcp_connp; 2368 aconnp = acceptor->tcp_connp; 2369 2370 eager->tcp_rq->q_ptr = econnp; 2371 eager->tcp_wq->q_ptr = econnp; 2372 eager->tcp_detached = B_FALSE; 2373 2374 ASSERT(eager->tcp_ack_tid == 0); 2375 2376 econnp->conn_dev = aconnp->conn_dev; 2377 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2378 econnp->conn_zoneid = aconnp->conn_zoneid; 2379 aconnp->conn_cred = NULL; 2380 2381 /* Do the IPC initialization */ 2382 CONN_INC_REF(econnp); 2383 2384 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2385 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2386 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2387 econnp->conn_ulp = aconnp->conn_ulp; 2388 2389 /* Done with old IPC. Drop its ref on its connp */ 2390 CONN_DEC_REF(aconnp); 2391 } 2392 2393 2394 /* 2395 * Adapt to the information, such as rtt and rtt_sd, provided from the 2396 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2397 * 2398 * Checks for multicast and broadcast destination address. 2399 * Returns zero on failure; non-zero if ok. 2400 * 2401 * Note that the MSS calculation here is based on the info given in 2402 * the IRE. We do not do any calculation based on TCP options. They 2403 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2404 * knows which options to use. 2405 * 2406 * Note on how TCP gets its parameters for a connection. 2407 * 2408 * When a tcp_t structure is allocated, it gets all the default parameters. 2409 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2410 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2411 * default. But if there is an associated tcp_host_param, it will override 2412 * the metrics. 2413 * 2414 * An incoming SYN with a multicast or broadcast destination address, is dropped 2415 * in 1 of 2 places. 2416 * 2417 * 1. If the packet was received over the wire it is dropped in 2418 * ip_rput_process_broadcast() 2419 * 2420 * 2. If the packet was received through internal IP loopback, i.e. the packet 2421 * was generated and received on the same machine, it is dropped in 2422 * ip_wput_local() 2423 * 2424 * An incoming SYN with a multicast or broadcast source address is always 2425 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2426 * reject an attempt to connect to a broadcast or multicast (destination) 2427 * address. 2428 */ 2429 static int 2430 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2431 { 2432 tcp_hsp_t *hsp; 2433 ire_t *ire; 2434 ire_t *sire = NULL; 2435 iulp_t *ire_uinfo; 2436 uint32_t mss_max; 2437 uint32_t mss; 2438 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2439 conn_t *connp = tcp->tcp_connp; 2440 boolean_t ire_cacheable = B_FALSE; 2441 zoneid_t zoneid = connp->conn_zoneid; 2442 ill_t *ill = NULL; 2443 boolean_t incoming = (ire_mp == NULL); 2444 2445 ASSERT(connp->conn_ire_cache == NULL); 2446 2447 if (tcp->tcp_ipversion == IPV4_VERSION) { 2448 2449 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2450 BUMP_MIB(&ip_mib, ipInDiscards); 2451 return (0); 2452 } 2453 2454 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, zoneid); 2455 if (ire != NULL) { 2456 ire_cacheable = B_TRUE; 2457 ire_uinfo = (ire_mp != NULL) ? 2458 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2459 &ire->ire_uinfo; 2460 2461 } else { 2462 if (ire_mp == NULL) { 2463 ire = ire_ftable_lookup( 2464 tcp->tcp_connp->conn_rem, 2465 0, 0, 0, NULL, &sire, zoneid, 0, 2466 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 2467 if (ire == NULL) 2468 return (0); 2469 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2470 &ire->ire_uinfo; 2471 } else { 2472 ire = (ire_t *)ire_mp->b_rptr; 2473 ire_uinfo = 2474 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2475 } 2476 } 2477 ASSERT(ire != NULL); 2478 ASSERT(ire_uinfo != NULL); 2479 2480 if ((ire->ire_src_addr == INADDR_ANY) || 2481 (ire->ire_type & IRE_BROADCAST)) { 2482 /* 2483 * ire->ire_mp is non null when ire_mp passed in is used 2484 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2485 */ 2486 if (ire->ire_mp == NULL) 2487 ire_refrele(ire); 2488 if (sire != NULL) 2489 ire_refrele(sire); 2490 return (0); 2491 } 2492 2493 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2494 ipaddr_t src_addr; 2495 2496 /* 2497 * ip_bind_connected() has stored the correct source 2498 * address in conn_src. 2499 */ 2500 src_addr = tcp->tcp_connp->conn_src; 2501 tcp->tcp_ipha->ipha_src = src_addr; 2502 /* 2503 * Copy of the src addr. in tcp_t is needed 2504 * for the lookup funcs. 2505 */ 2506 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2507 } 2508 /* 2509 * Set the fragment bit so that IP will tell us if the MTU 2510 * should change. IP tells us the latest setting of 2511 * ip_path_mtu_discovery through ire_frag_flag. 2512 */ 2513 if (ip_path_mtu_discovery) { 2514 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2515 htons(IPH_DF); 2516 } 2517 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2518 } else { 2519 /* 2520 * For incoming connection ire_mp = NULL 2521 * For outgoing connection ire_mp != NULL 2522 * Technically we should check conn_incoming_ill 2523 * when ire_mp is NULL and conn_outgoing_ill when 2524 * ire_mp is non-NULL. But this is performance 2525 * critical path and for IPV*_BOUND_IF, outgoing 2526 * and incoming ill are always set to the same value. 2527 */ 2528 ill_t *dst_ill = NULL; 2529 ipif_t *dst_ipif = NULL; 2530 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT; 2531 2532 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2533 2534 if (connp->conn_outgoing_ill != NULL) { 2535 /* Outgoing or incoming path */ 2536 int err; 2537 2538 dst_ill = conn_get_held_ill(connp, 2539 &connp->conn_outgoing_ill, &err); 2540 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2541 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2542 return (0); 2543 } 2544 match_flags |= MATCH_IRE_ILL; 2545 dst_ipif = dst_ill->ill_ipif; 2546 } 2547 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2548 0, 0, dst_ipif, zoneid, match_flags); 2549 2550 if (ire != NULL) { 2551 ire_cacheable = B_TRUE; 2552 ire_uinfo = (ire_mp != NULL) ? 2553 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2554 &ire->ire_uinfo; 2555 } else { 2556 if (ire_mp == NULL) { 2557 ire = ire_ftable_lookup_v6( 2558 &tcp->tcp_connp->conn_remv6, 2559 0, 0, 0, dst_ipif, &sire, zoneid, 2560 0, match_flags); 2561 if (ire == NULL) { 2562 if (dst_ill != NULL) 2563 ill_refrele(dst_ill); 2564 return (0); 2565 } 2566 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2567 &ire->ire_uinfo; 2568 } else { 2569 ire = (ire_t *)ire_mp->b_rptr; 2570 ire_uinfo = 2571 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2572 } 2573 } 2574 if (dst_ill != NULL) 2575 ill_refrele(dst_ill); 2576 2577 ASSERT(ire != NULL); 2578 ASSERT(ire_uinfo != NULL); 2579 2580 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2581 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2582 /* 2583 * ire->ire_mp is non null when ire_mp passed in is used 2584 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2585 */ 2586 if (ire->ire_mp == NULL) 2587 ire_refrele(ire); 2588 if (sire != NULL) 2589 ire_refrele(sire); 2590 return (0); 2591 } 2592 2593 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2594 in6_addr_t src_addr; 2595 2596 /* 2597 * ip_bind_connected_v6() has stored the correct source 2598 * address per IPv6 addr. selection policy in 2599 * conn_src_v6. 2600 */ 2601 src_addr = tcp->tcp_connp->conn_srcv6; 2602 2603 tcp->tcp_ip6h->ip6_src = src_addr; 2604 /* 2605 * Copy of the src addr. in tcp_t is needed 2606 * for the lookup funcs. 2607 */ 2608 tcp->tcp_ip_src_v6 = src_addr; 2609 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2610 &connp->conn_srcv6)); 2611 } 2612 tcp->tcp_localnet = 2613 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2614 } 2615 2616 /* 2617 * This allows applications to fail quickly when connections are made 2618 * to dead hosts. Hosts can be labeled dead by adding a reject route 2619 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2620 */ 2621 if ((ire->ire_flags & RTF_REJECT) && 2622 (ire->ire_flags & RTF_PRIVATE)) 2623 goto error; 2624 2625 /* 2626 * Make use of the cached rtt and rtt_sd values to calculate the 2627 * initial RTO. Note that they are already initialized in 2628 * tcp_init_values(). 2629 */ 2630 if (ire_uinfo->iulp_rtt != 0) { 2631 clock_t rto; 2632 2633 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2634 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2635 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2636 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2637 2638 if (rto > tcp_rexmit_interval_max) { 2639 tcp->tcp_rto = tcp_rexmit_interval_max; 2640 } else if (rto < tcp_rexmit_interval_min) { 2641 tcp->tcp_rto = tcp_rexmit_interval_min; 2642 } else { 2643 tcp->tcp_rto = rto; 2644 } 2645 } 2646 if (ire_uinfo->iulp_ssthresh != 0) 2647 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2648 else 2649 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2650 if (ire_uinfo->iulp_spipe > 0) { 2651 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2652 tcp_max_buf); 2653 if (tcp_snd_lowat_fraction != 0) 2654 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2655 tcp_snd_lowat_fraction; 2656 (void) tcp_maxpsz_set(tcp, B_TRUE); 2657 } 2658 /* 2659 * Note that up till now, acceptor always inherits receive 2660 * window from the listener. But if there is a metrics associated 2661 * with a host, we should use that instead of inheriting it from 2662 * listener. Thus we need to pass this info back to the caller. 2663 */ 2664 if (ire_uinfo->iulp_rpipe > 0) { 2665 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2666 } else { 2667 /* 2668 * For passive open, set tcp_rwnd to 0 so that the caller 2669 * knows that there is no rpipe metric for this connection. 2670 */ 2671 if (tcp_detached) 2672 tcp->tcp_rwnd = 0; 2673 } 2674 if (ire_uinfo->iulp_rtomax > 0) { 2675 tcp->tcp_second_timer_threshold = ire_uinfo->iulp_rtomax; 2676 } 2677 2678 /* 2679 * Use the metric option settings, iulp_tstamp_ok and iulp_wscale_ok, 2680 * only for active open. What this means is that if the other side 2681 * uses timestamp or window scale option, TCP will also use those 2682 * options. That is for passive open. If the application sets a 2683 * large window, window scale is enabled regardless of the value in 2684 * iulp_wscale_ok. This is the behavior since 2.6. So we keep it. 2685 * The only case left in passive open processing is the check for SACK. 2686 * 2687 * For ECN, it should probably be like SACK. But the current 2688 * value is binary, so we treat it like the other cases. The 2689 * metric only controls active open. For passive open, the ndd 2690 * param, tcp_ecn_permitted, controls the behavior. 2691 */ 2692 if (!tcp_detached) { 2693 /* 2694 * The if check means that the following can only be turned 2695 * on by the metrics only IRE, but not off. 2696 */ 2697 if (ire_uinfo->iulp_tstamp_ok) 2698 tcp->tcp_snd_ts_ok = B_TRUE; 2699 if (ire_uinfo->iulp_wscale_ok) 2700 tcp->tcp_snd_ws_ok = B_TRUE; 2701 if (ire_uinfo->iulp_sack == 2) 2702 tcp->tcp_snd_sack_ok = B_TRUE; 2703 if (ire_uinfo->iulp_ecn_ok) 2704 tcp->tcp_ecn_ok = B_TRUE; 2705 } else { 2706 /* 2707 * Passive open. 2708 * 2709 * As above, the if check means that SACK can only be 2710 * turned on by the metric only IRE. 2711 */ 2712 if (ire_uinfo->iulp_sack > 0) { 2713 tcp->tcp_snd_sack_ok = B_TRUE; 2714 } 2715 } 2716 2717 /* 2718 * XXX: Note that currently, ire_max_frag can be as small as 68 2719 * because of PMTUd. So tcp_mss may go to negative if combined 2720 * length of all those options exceeds 28 bytes. But because 2721 * of the tcp_mss_min check below, we may not have a problem if 2722 * tcp_mss_min is of a reasonable value. The default is 1 so 2723 * the negative problem still exists. And the check defeats PMTUd. 2724 * In fact, if PMTUd finds that the MSS should be smaller than 2725 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2726 * value. 2727 * 2728 * We do not deal with that now. All those problems related to 2729 * PMTUd will be fixed later. 2730 */ 2731 ASSERT(ire->ire_max_frag != 0); 2732 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2733 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2734 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2735 mss = MIN(mss, IPV6_MIN_MTU); 2736 } 2737 } 2738 2739 /* Sanity check for MSS value. */ 2740 if (tcp->tcp_ipversion == IPV4_VERSION) 2741 mss_max = tcp_mss_max_ipv4; 2742 else 2743 mss_max = tcp_mss_max_ipv6; 2744 2745 if (tcp->tcp_ipversion == IPV6_VERSION && 2746 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2747 /* 2748 * After receiving an ICMPv6 "packet too big" message with a 2749 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2750 * will insert a 8-byte fragment header in every packet; we 2751 * reduce the MSS by that amount here. 2752 */ 2753 mss -= sizeof (ip6_frag_t); 2754 } 2755 2756 if (tcp->tcp_ipsec_overhead == 0) 2757 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2758 2759 mss -= tcp->tcp_ipsec_overhead; 2760 2761 if (mss < tcp_mss_min) 2762 mss = tcp_mss_min; 2763 if (mss > mss_max) 2764 mss = mss_max; 2765 2766 /* Note that this is the maximum MSS, excluding all options. */ 2767 tcp->tcp_mss = mss; 2768 2769 /* 2770 * Initialize the ISS here now that we have the full connection ID. 2771 * The RFC 1948 method of initial sequence number generation requires 2772 * knowledge of the full connection ID before setting the ISS. 2773 */ 2774 2775 tcp_iss_init(tcp); 2776 2777 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2778 tcp->tcp_loopback = B_TRUE; 2779 2780 if (tcp->tcp_ipversion == IPV4_VERSION) { 2781 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2782 } else { 2783 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2784 } 2785 2786 if (hsp != NULL) { 2787 /* Only modify if we're going to make them bigger */ 2788 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2789 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2790 if (tcp_snd_lowat_fraction != 0) 2791 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2792 tcp_snd_lowat_fraction; 2793 } 2794 2795 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2796 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2797 } 2798 2799 /* Copy timestamp flag only for active open */ 2800 if (!tcp_detached) 2801 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2802 } 2803 2804 if (sire != NULL) 2805 IRE_REFRELE(sire); 2806 2807 /* 2808 * If we got an IRE_CACHE and an ILL, go through their properties; 2809 * otherwise, this is deferred until later when we have an IRE_CACHE. 2810 */ 2811 if (tcp->tcp_loopback || 2812 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2813 /* 2814 * For incoming, see if this tcp may be MDT-capable. For 2815 * outgoing, this process has been taken care of through 2816 * tcp_rput_other. 2817 */ 2818 tcp_ire_ill_check(tcp, ire, ill, incoming); 2819 tcp->tcp_ire_ill_check_done = B_TRUE; 2820 } 2821 2822 mutex_enter(&connp->conn_lock); 2823 /* 2824 * Make sure that conn is not marked incipient 2825 * for incoming connections. A blind 2826 * removal of incipient flag is cheaper than 2827 * check and removal. 2828 */ 2829 connp->conn_state_flags &= ~CONN_INCIPIENT; 2830 2831 /* Must not cache forwarding table routes. */ 2832 if (ire_cacheable) { 2833 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2834 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2835 connp->conn_ire_cache = ire; 2836 IRE_UNTRACE_REF(ire); 2837 rw_exit(&ire->ire_bucket->irb_lock); 2838 mutex_exit(&connp->conn_lock); 2839 return (1); 2840 } 2841 rw_exit(&ire->ire_bucket->irb_lock); 2842 } 2843 mutex_exit(&connp->conn_lock); 2844 2845 if (ire->ire_mp == NULL) 2846 ire_refrele(ire); 2847 return (1); 2848 2849 error: 2850 if (ire->ire_mp == NULL) 2851 ire_refrele(ire); 2852 if (sire != NULL) 2853 ire_refrele(sire); 2854 return (0); 2855 } 2856 2857 /* 2858 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2859 * O_T_BIND_REQ/T_BIND_REQ message. 2860 */ 2861 static void 2862 tcp_bind(tcp_t *tcp, mblk_t *mp) 2863 { 2864 sin_t *sin; 2865 sin6_t *sin6; 2866 mblk_t *mp1; 2867 in_port_t requested_port; 2868 in_port_t allocated_port; 2869 struct T_bind_req *tbr; 2870 boolean_t bind_to_req_port_only; 2871 boolean_t backlog_update = B_FALSE; 2872 boolean_t user_specified; 2873 in6_addr_t v6addr; 2874 ipaddr_t v4addr; 2875 uint_t origipversion; 2876 int err; 2877 queue_t *q = tcp->tcp_wq; 2878 2879 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2880 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2881 if (tcp->tcp_debug) { 2882 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2883 "tcp_bind: bad req, len %u", 2884 (uint_t)(mp->b_wptr - mp->b_rptr)); 2885 } 2886 tcp_err_ack(tcp, mp, TPROTO, 0); 2887 return; 2888 } 2889 /* Make sure the largest address fits */ 2890 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 2891 if (mp1 == NULL) { 2892 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2893 return; 2894 } 2895 mp = mp1; 2896 tbr = (struct T_bind_req *)mp->b_rptr; 2897 if (tcp->tcp_state >= TCPS_BOUND) { 2898 if ((tcp->tcp_state == TCPS_BOUND || 2899 tcp->tcp_state == TCPS_LISTEN) && 2900 tcp->tcp_conn_req_max != tbr->CONIND_number && 2901 tbr->CONIND_number > 0) { 2902 /* 2903 * Handle listen() increasing CONIND_number. 2904 * This is more "liberal" then what the TPI spec 2905 * requires but is needed to avoid a t_unbind 2906 * when handling listen() since the port number 2907 * might be "stolen" between the unbind and bind. 2908 */ 2909 backlog_update = B_TRUE; 2910 goto do_bind; 2911 } 2912 if (tcp->tcp_debug) { 2913 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2914 "tcp_bind: bad state, %d", tcp->tcp_state); 2915 } 2916 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 2917 return; 2918 } 2919 origipversion = tcp->tcp_ipversion; 2920 2921 switch (tbr->ADDR_length) { 2922 case 0: /* request for a generic port */ 2923 tbr->ADDR_offset = sizeof (struct T_bind_req); 2924 if (tcp->tcp_family == AF_INET) { 2925 tbr->ADDR_length = sizeof (sin_t); 2926 sin = (sin_t *)&tbr[1]; 2927 *sin = sin_null; 2928 sin->sin_family = AF_INET; 2929 mp->b_wptr = (uchar_t *)&sin[1]; 2930 tcp->tcp_ipversion = IPV4_VERSION; 2931 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 2932 } else { 2933 ASSERT(tcp->tcp_family == AF_INET6); 2934 tbr->ADDR_length = sizeof (sin6_t); 2935 sin6 = (sin6_t *)&tbr[1]; 2936 *sin6 = sin6_null; 2937 sin6->sin6_family = AF_INET6; 2938 mp->b_wptr = (uchar_t *)&sin6[1]; 2939 tcp->tcp_ipversion = IPV6_VERSION; 2940 V6_SET_ZERO(v6addr); 2941 } 2942 requested_port = 0; 2943 break; 2944 2945 case sizeof (sin_t): /* Complete IPv4 address */ 2946 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 2947 sizeof (sin_t)); 2948 if (sin == NULL || !OK_32PTR((char *)sin)) { 2949 if (tcp->tcp_debug) { 2950 (void) strlog(TCP_MOD_ID, 0, 1, 2951 SL_ERROR|SL_TRACE, 2952 "tcp_bind: bad address parameter, " 2953 "offset %d, len %d", 2954 tbr->ADDR_offset, tbr->ADDR_length); 2955 } 2956 tcp_err_ack(tcp, mp, TPROTO, 0); 2957 return; 2958 } 2959 /* 2960 * With sockets sockfs will accept bogus sin_family in 2961 * bind() and replace it with the family used in the socket 2962 * call. 2963 */ 2964 if (sin->sin_family != AF_INET || 2965 tcp->tcp_family != AF_INET) { 2966 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 2967 return; 2968 } 2969 requested_port = ntohs(sin->sin_port); 2970 tcp->tcp_ipversion = IPV4_VERSION; 2971 v4addr = sin->sin_addr.s_addr; 2972 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 2973 break; 2974 2975 case sizeof (sin6_t): /* Complete IPv6 address */ 2976 sin6 = (sin6_t *)mi_offset_param(mp, 2977 tbr->ADDR_offset, sizeof (sin6_t)); 2978 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 2979 if (tcp->tcp_debug) { 2980 (void) strlog(TCP_MOD_ID, 0, 1, 2981 SL_ERROR|SL_TRACE, 2982 "tcp_bind: bad IPv6 address parameter, " 2983 "offset %d, len %d", tbr->ADDR_offset, 2984 tbr->ADDR_length); 2985 } 2986 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2987 return; 2988 } 2989 if (sin6->sin6_family != AF_INET6 || 2990 tcp->tcp_family != AF_INET6) { 2991 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 2992 return; 2993 } 2994 requested_port = ntohs(sin6->sin6_port); 2995 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 2996 IPV4_VERSION : IPV6_VERSION; 2997 v6addr = sin6->sin6_addr; 2998 break; 2999 3000 default: 3001 if (tcp->tcp_debug) { 3002 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3003 "tcp_bind: bad address length, %d", 3004 tbr->ADDR_length); 3005 } 3006 tcp_err_ack(tcp, mp, TBADADDR, 0); 3007 return; 3008 } 3009 tcp->tcp_bound_source_v6 = v6addr; 3010 3011 /* Check for change in ipversion */ 3012 if (origipversion != tcp->tcp_ipversion) { 3013 ASSERT(tcp->tcp_family == AF_INET6); 3014 err = tcp->tcp_ipversion == IPV6_VERSION ? 3015 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3016 if (err) { 3017 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3018 return; 3019 } 3020 } 3021 3022 /* 3023 * Initialize family specific fields. Copy of the src addr. 3024 * in tcp_t is needed for the lookup funcs. 3025 */ 3026 if (tcp->tcp_ipversion == IPV6_VERSION) { 3027 tcp->tcp_ip6h->ip6_src = v6addr; 3028 } else { 3029 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3030 } 3031 tcp->tcp_ip_src_v6 = v6addr; 3032 3033 /* 3034 * For O_T_BIND_REQ: 3035 * Verify that the target port/addr is available, or choose 3036 * another. 3037 * For T_BIND_REQ: 3038 * Verify that the target port/addr is available or fail. 3039 * In both cases when it succeeds the tcp is inserted in the 3040 * bind hash table. This ensures that the operation is atomic 3041 * under the lock on the hash bucket. 3042 */ 3043 bind_to_req_port_only = requested_port != 0 && 3044 tbr->PRIM_type != O_T_BIND_REQ; 3045 /* 3046 * Get a valid port (within the anonymous range and should not 3047 * be a privileged one) to use if the user has not given a port. 3048 * If multiple threads are here, they may all start with 3049 * with the same initial port. But, it should be fine as long as 3050 * tcp_bindi will ensure that no two threads will be assigned 3051 * the same port. 3052 * 3053 * NOTE: XXX If a privileged process asks for an anonymous port, we 3054 * still check for ports only in the range > tcp_smallest_non_priv_port, 3055 * unless TCP_ANONPRIVBIND option is set. 3056 */ 3057 if (requested_port == 0) { 3058 requested_port = tcp->tcp_anon_priv_bind ? 3059 tcp_get_next_priv_port() : 3060 tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 3061 user_specified = B_FALSE; 3062 } else { 3063 int i; 3064 boolean_t priv = B_FALSE; 3065 /* 3066 * If the requested_port is in the well-known privileged range, 3067 * verify that the stream was opened by a privileged user. 3068 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3069 * but instead the code relies on: 3070 * - the fact that the address of the array and its size never 3071 * changes 3072 * - the atomic assignment of the elements of the array 3073 */ 3074 if (requested_port < tcp_smallest_nonpriv_port) { 3075 priv = B_TRUE; 3076 } else { 3077 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3078 if (requested_port == 3079 tcp_g_epriv_ports[i]) { 3080 priv = B_TRUE; 3081 break; 3082 } 3083 } 3084 } 3085 if (priv) { 3086 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 3087 3088 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3089 if (tcp->tcp_debug) { 3090 (void) strlog(TCP_MOD_ID, 0, 1, 3091 SL_ERROR|SL_TRACE, 3092 "tcp_bind: no priv for port %d", 3093 requested_port); 3094 } 3095 tcp_err_ack(tcp, mp, TACCES, 0); 3096 return; 3097 } 3098 } 3099 user_specified = B_TRUE; 3100 } 3101 3102 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3103 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3104 3105 if (allocated_port == 0) { 3106 if (bind_to_req_port_only) { 3107 if (tcp->tcp_debug) { 3108 (void) strlog(TCP_MOD_ID, 0, 1, 3109 SL_ERROR|SL_TRACE, 3110 "tcp_bind: requested addr busy"); 3111 } 3112 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3113 } else { 3114 /* If we are out of ports, fail the bind. */ 3115 if (tcp->tcp_debug) { 3116 (void) strlog(TCP_MOD_ID, 0, 1, 3117 SL_ERROR|SL_TRACE, 3118 "tcp_bind: out of ports?"); 3119 } 3120 tcp_err_ack(tcp, mp, TNOADDR, 0); 3121 } 3122 return; 3123 } 3124 ASSERT(tcp->tcp_state == TCPS_BOUND); 3125 do_bind: 3126 if (!backlog_update) { 3127 if (tcp->tcp_family == AF_INET) 3128 sin->sin_port = htons(allocated_port); 3129 else 3130 sin6->sin6_port = htons(allocated_port); 3131 } 3132 if (tcp->tcp_family == AF_INET) { 3133 if (tbr->CONIND_number != 0) { 3134 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3135 sizeof (sin_t)); 3136 } else { 3137 /* Just verify the local IP address */ 3138 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3139 } 3140 } else { 3141 if (tbr->CONIND_number != 0) { 3142 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3143 sizeof (sin6_t)); 3144 } else { 3145 /* Just verify the local IP address */ 3146 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3147 IPV6_ADDR_LEN); 3148 } 3149 } 3150 if (!mp1) { 3151 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3152 return; 3153 } 3154 3155 tbr->PRIM_type = T_BIND_ACK; 3156 mp->b_datap->db_type = M_PCPROTO; 3157 3158 /* Chain in the reply mp for tcp_rput() */ 3159 mp1->b_cont = mp; 3160 mp = mp1; 3161 3162 tcp->tcp_conn_req_max = tbr->CONIND_number; 3163 if (tcp->tcp_conn_req_max) { 3164 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3165 tcp->tcp_conn_req_max = tcp_conn_req_min; 3166 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3167 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3168 /* 3169 * If this is a listener, do not reset the eager list 3170 * and other stuffs. Note that we don't check if the 3171 * existing eager list meets the new tcp_conn_req_max 3172 * requirement. 3173 */ 3174 if (tcp->tcp_state != TCPS_LISTEN) { 3175 tcp->tcp_state = TCPS_LISTEN; 3176 /* Initialize the chain. Don't need the eager_lock */ 3177 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3178 tcp->tcp_second_ctimer_threshold = 3179 tcp_ip_abort_linterval; 3180 } 3181 } 3182 3183 /* 3184 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3185 * processing continues in tcp_rput_other(). 3186 */ 3187 if (tcp->tcp_family == AF_INET6) { 3188 ASSERT(tcp->tcp_connp->conn_af_isv6); 3189 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3190 } else { 3191 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3192 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3193 } 3194 /* 3195 * If the bind cannot complete immediately 3196 * IP will arrange to call tcp_rput_other 3197 * when the bind completes. 3198 */ 3199 if (mp != NULL) { 3200 tcp_rput_other(tcp, mp); 3201 } else { 3202 /* 3203 * Bind will be resumed later. Need to ensure 3204 * that conn doesn't disappear when that happens. 3205 * This will be decremented in ip_resume_tcp_bind(). 3206 */ 3207 CONN_INC_REF(tcp->tcp_connp); 3208 } 3209 } 3210 3211 3212 /* 3213 * If the "bind_to_req_port_only" parameter is set, if the requested port 3214 * number is available, return it, If not return 0 3215 * 3216 * If "bind_to_req_port_only" parameter is not set and 3217 * If the requested port number is available, return it. If not, return 3218 * the first anonymous port we happen across. If no anonymous ports are 3219 * available, return 0. addr is the requested local address, if any. 3220 * 3221 * In either case, when succeeding update the tcp_t to record the port number 3222 * and insert it in the bind hash table. 3223 * 3224 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3225 * without setting SO_REUSEADDR. This is needed so that they 3226 * can be viewed as two independent transport protocols. 3227 */ 3228 static in_port_t 3229 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3230 int reuseaddr, boolean_t quick_connect, 3231 boolean_t bind_to_req_port_only, boolean_t user_specified) 3232 { 3233 /* number of times we have run around the loop */ 3234 int count = 0; 3235 /* maximum number of times to run around the loop */ 3236 int loopmax; 3237 zoneid_t zoneid = tcp->tcp_connp->conn_zoneid; 3238 3239 /* 3240 * Lookup for free addresses is done in a loop and "loopmax" 3241 * influences how long we spin in the loop 3242 */ 3243 if (bind_to_req_port_only) { 3244 /* 3245 * If the requested port is busy, don't bother to look 3246 * for a new one. Setting loop maximum count to 1 has 3247 * that effect. 3248 */ 3249 loopmax = 1; 3250 } else { 3251 /* 3252 * If the requested port is busy, look for a free one 3253 * in the anonymous port range. 3254 * Set loopmax appropriately so that one does not look 3255 * forever in the case all of the anonymous ports are in use. 3256 */ 3257 if (tcp->tcp_anon_priv_bind) { 3258 /* 3259 * loopmax = 3260 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3261 */ 3262 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3263 } else { 3264 loopmax = (tcp_largest_anon_port - 3265 tcp_smallest_anon_port + 1); 3266 } 3267 } 3268 do { 3269 uint16_t lport; 3270 tf_t *tbf; 3271 tcp_t *ltcp; 3272 3273 lport = htons(port); 3274 3275 /* 3276 * Ensure that the tcp_t is not currently in the bind hash. 3277 * Hold the lock on the hash bucket to ensure that 3278 * the duplicate check plus the insertion is an atomic 3279 * operation. 3280 * 3281 * This function does an inline lookup on the bind hash list 3282 * Make sure that we access only members of tcp_t 3283 * and that we don't look at tcp_tcp, since we are not 3284 * doing a CONN_INC_REF. 3285 */ 3286 tcp_bind_hash_remove(tcp); 3287 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3288 mutex_enter(&tbf->tf_lock); 3289 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3290 ltcp = ltcp->tcp_bind_hash) { 3291 if (lport != ltcp->tcp_lport || 3292 ltcp->tcp_connp->conn_zoneid != zoneid) { 3293 continue; 3294 } 3295 3296 /* 3297 * If TCP_EXCLBIND is set for either the bound or 3298 * binding endpoint, the semantics of bind 3299 * is changed according to the following. 3300 * 3301 * spec = specified address (v4 or v6) 3302 * unspec = unspecified address (v4 or v6) 3303 * A = specified addresses are different for endpoints 3304 * 3305 * bound bind to allowed 3306 * ------------------------------------- 3307 * unspec unspec no 3308 * unspec spec no 3309 * spec unspec no 3310 * spec spec yes if A 3311 * 3312 * Note: 3313 * 3314 * 1. Because of TLI semantics, an endpoint can go 3315 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3316 * TCPS_BOUND, depending on whether it is originally 3317 * a listener or not. That is why we need to check 3318 * for states greater than or equal to TCPS_BOUND 3319 * here. 3320 * 3321 * 2. Ideally, we should only check for state equals 3322 * to TCPS_LISTEN. And the following check should be 3323 * added. 3324 * 3325 * if (ltcp->tcp_state == TCPS_LISTEN || 3326 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3327 * ... 3328 * } 3329 * 3330 * The semantics will be changed to this. If the 3331 * endpoint on the list is in state not equal to 3332 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3333 * set, let the bind succeed. 3334 * 3335 * But because of (1), we cannot do that now. If 3336 * in future, we can change this going back semantics, 3337 * we can add the above check. 3338 */ 3339 if (ltcp->tcp_exclbind || tcp->tcp_exclbind) { 3340 if (V6_OR_V4_INADDR_ANY( 3341 ltcp->tcp_bound_source_v6) || 3342 V6_OR_V4_INADDR_ANY(*laddr) || 3343 IN6_ARE_ADDR_EQUAL(laddr, 3344 <cp->tcp_bound_source_v6)) { 3345 break; 3346 } 3347 continue; 3348 } 3349 3350 /* 3351 * Check ipversion to allow IPv4 and IPv6 sockets to 3352 * have disjoint port number spaces, if *_EXCLBIND 3353 * is not set and only if the application binds to a 3354 * specific port. We use the same autoassigned port 3355 * number space for IPv4 and IPv6 sockets. 3356 */ 3357 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3358 bind_to_req_port_only) 3359 continue; 3360 3361 /* 3362 * Ideally, we should make sure that the source 3363 * address, remote address, and remote port in the 3364 * four tuple for this tcp-connection is unique. 3365 * However, trying to find out the local source 3366 * address would require too much code duplication 3367 * with IP, since IP needs needs to have that code 3368 * to support userland TCP implementations. 3369 */ 3370 if (quick_connect && 3371 (ltcp->tcp_state > TCPS_LISTEN) && 3372 ((tcp->tcp_fport != ltcp->tcp_fport) || 3373 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3374 <cp->tcp_remote_v6))) 3375 continue; 3376 3377 if (!reuseaddr) { 3378 /* 3379 * No socket option SO_REUSEADDR. 3380 * If existing port is bound to 3381 * a non-wildcard IP address 3382 * and the requesting stream is 3383 * bound to a distinct 3384 * different IP addresses 3385 * (non-wildcard, also), keep 3386 * going. 3387 */ 3388 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3389 !V6_OR_V4_INADDR_ANY( 3390 ltcp->tcp_bound_source_v6) && 3391 !IN6_ARE_ADDR_EQUAL(laddr, 3392 <cp->tcp_bound_source_v6)) 3393 continue; 3394 if (ltcp->tcp_state >= TCPS_BOUND) { 3395 /* 3396 * This port is being used and 3397 * its state is >= TCPS_BOUND, 3398 * so we can't bind to it. 3399 */ 3400 break; 3401 } 3402 } else { 3403 /* 3404 * socket option SO_REUSEADDR is set on the 3405 * binding tcp_t. 3406 * 3407 * If two streams are bound to 3408 * same IP address or both addr 3409 * and bound source are wildcards 3410 * (INADDR_ANY), we want to stop 3411 * searching. 3412 * We have found a match of IP source 3413 * address and source port, which is 3414 * refused regardless of the 3415 * SO_REUSEADDR setting, so we break. 3416 */ 3417 if (IN6_ARE_ADDR_EQUAL(laddr, 3418 <cp->tcp_bound_source_v6) && 3419 (ltcp->tcp_state == TCPS_LISTEN || 3420 ltcp->tcp_state == TCPS_BOUND)) 3421 break; 3422 } 3423 } 3424 if (ltcp != NULL) { 3425 /* The port number is busy */ 3426 mutex_exit(&tbf->tf_lock); 3427 } else { 3428 /* 3429 * This port is ours. Insert in fanout and mark as 3430 * bound to prevent others from getting the port 3431 * number. 3432 */ 3433 tcp->tcp_state = TCPS_BOUND; 3434 tcp->tcp_lport = htons(port); 3435 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3436 3437 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3438 tcp->tcp_lport)] == tbf); 3439 tcp_bind_hash_insert(tbf, tcp, 1); 3440 3441 mutex_exit(&tbf->tf_lock); 3442 3443 /* 3444 * We don't want tcp_next_port_to_try to "inherit" 3445 * a port number supplied by the user in a bind. 3446 */ 3447 if (user_specified) 3448 return (port); 3449 3450 /* 3451 * This is the only place where tcp_next_port_to_try 3452 * is updated. After the update, it may or may not 3453 * be in the valid range. 3454 */ 3455 if (!tcp->tcp_anon_priv_bind) 3456 tcp_next_port_to_try = port + 1; 3457 return (port); 3458 } 3459 3460 if (tcp->tcp_anon_priv_bind) { 3461 port = tcp_get_next_priv_port(); 3462 } else { 3463 if (count == 0 && user_specified) { 3464 /* 3465 * We may have to return an anonymous port. So 3466 * get one to start with. 3467 */ 3468 port = 3469 tcp_update_next_port(tcp_next_port_to_try, 3470 B_TRUE); 3471 user_specified = B_FALSE; 3472 } else { 3473 port = tcp_update_next_port(port + 1, B_FALSE); 3474 } 3475 } 3476 3477 /* 3478 * Don't let this loop run forever in the case where 3479 * all of the anonymous ports are in use. 3480 */ 3481 } while (++count < loopmax); 3482 return (0); 3483 } 3484 3485 /* 3486 * We are dying for some reason. Try to do it gracefully. (May be called 3487 * as writer.) 3488 * 3489 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3490 * done by a service procedure). 3491 * TBD - Should the return value distinguish between the tcp_t being 3492 * freed and it being reinitialized? 3493 */ 3494 static int 3495 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3496 { 3497 mblk_t *mp; 3498 queue_t *q; 3499 3500 TCP_CLD_STAT(tag); 3501 3502 #if TCP_TAG_CLEAN_DEATH 3503 tcp->tcp_cleandeathtag = tag; 3504 #endif 3505 3506 if (tcp->tcp_linger_tid != 0 && 3507 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3508 tcp_stop_lingering(tcp); 3509 } 3510 3511 ASSERT(tcp != NULL); 3512 ASSERT((tcp->tcp_family == AF_INET && 3513 tcp->tcp_ipversion == IPV4_VERSION) || 3514 (tcp->tcp_family == AF_INET6 && 3515 (tcp->tcp_ipversion == IPV4_VERSION || 3516 tcp->tcp_ipversion == IPV6_VERSION))); 3517 3518 if (TCP_IS_DETACHED(tcp)) { 3519 if (tcp->tcp_hard_binding) { 3520 /* 3521 * Its an eager that we are dealing with. We close the 3522 * eager but in case a conn_ind has already gone to the 3523 * listener, let tcp_accept_finish() send a discon_ind 3524 * to the listener and drop the last reference. If the 3525 * listener doesn't even know about the eager i.e. the 3526 * conn_ind hasn't gone up, blow away the eager and drop 3527 * the last reference as well. If the conn_ind has gone 3528 * up, state should be BOUND. tcp_accept_finish 3529 * will figure out that the connection has received a 3530 * RST and will send a DISCON_IND to the application. 3531 */ 3532 tcp_closei_local(tcp); 3533 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 3534 CONN_DEC_REF(tcp->tcp_connp); 3535 } else { 3536 tcp->tcp_state = TCPS_BOUND; 3537 } 3538 } else { 3539 tcp_close_detached(tcp); 3540 } 3541 return (0); 3542 } 3543 3544 TCP_STAT(tcp_clean_death_nondetached); 3545 3546 /* 3547 * If T_ORDREL_IND has not been sent yet (done when service routine 3548 * is run) postpone cleaning up the endpoint until service routine 3549 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3550 * client_errno since tcp_close uses the client_errno field. 3551 */ 3552 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3553 if (err != 0) 3554 tcp->tcp_client_errno = err; 3555 3556 tcp->tcp_deferred_clean_death = B_TRUE; 3557 return (-1); 3558 } 3559 3560 q = tcp->tcp_rq; 3561 3562 /* Trash all inbound data */ 3563 flushq(q, FLUSHALL); 3564 3565 /* 3566 * If we are at least part way open and there is error 3567 * (err==0 implies no error) 3568 * notify our client by a T_DISCON_IND. 3569 */ 3570 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3571 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3572 !TCP_IS_SOCKET(tcp)) { 3573 /* 3574 * Send M_FLUSH according to TPI. Because sockets will 3575 * (and must) ignore FLUSHR we do that only for TPI 3576 * endpoints and sockets in STREAMS mode. 3577 */ 3578 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3579 } 3580 if (tcp->tcp_debug) { 3581 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3582 "tcp_clean_death: discon err %d", err); 3583 } 3584 mp = mi_tpi_discon_ind(NULL, err, 0); 3585 if (mp != NULL) { 3586 putnext(q, mp); 3587 } else { 3588 if (tcp->tcp_debug) { 3589 (void) strlog(TCP_MOD_ID, 0, 1, 3590 SL_ERROR|SL_TRACE, 3591 "tcp_clean_death, sending M_ERROR"); 3592 } 3593 (void) putnextctl1(q, M_ERROR, EPROTO); 3594 } 3595 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3596 /* SYN_SENT or SYN_RCVD */ 3597 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3598 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3599 /* ESTABLISHED or CLOSE_WAIT */ 3600 BUMP_MIB(&tcp_mib, tcpEstabResets); 3601 } 3602 } 3603 3604 tcp_reinit(tcp); 3605 return (-1); 3606 } 3607 3608 /* 3609 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3610 * to expire, stop the wait and finish the close. 3611 */ 3612 static void 3613 tcp_stop_lingering(tcp_t *tcp) 3614 { 3615 clock_t delta = 0; 3616 3617 tcp->tcp_linger_tid = 0; 3618 if (tcp->tcp_state > TCPS_LISTEN) { 3619 tcp_acceptor_hash_remove(tcp); 3620 if (tcp->tcp_flow_stopped) { 3621 tcp_clrqfull(tcp); 3622 } 3623 3624 if (tcp->tcp_timer_tid != 0) { 3625 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3626 tcp->tcp_timer_tid = 0; 3627 } 3628 /* 3629 * Need to cancel those timers which will not be used when 3630 * TCP is detached. This has to be done before the tcp_wq 3631 * is set to the global queue. 3632 */ 3633 tcp_timers_stop(tcp); 3634 3635 3636 tcp->tcp_detached = B_TRUE; 3637 tcp->tcp_rq = tcp_g_q; 3638 tcp->tcp_wq = WR(tcp_g_q); 3639 3640 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3641 tcp_time_wait_append(tcp); 3642 TCP_DBGSTAT(tcp_detach_time_wait); 3643 goto finish; 3644 } 3645 3646 /* 3647 * If delta is zero the timer event wasn't executed and was 3648 * successfully canceled. In this case we need to restart it 3649 * with the minimal delta possible. 3650 */ 3651 if (delta >= 0) { 3652 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3653 delta ? delta : 1); 3654 } 3655 } else { 3656 tcp_closei_local(tcp); 3657 CONN_DEC_REF(tcp->tcp_connp); 3658 } 3659 finish: 3660 /* Signal closing thread that it can complete close */ 3661 mutex_enter(&tcp->tcp_closelock); 3662 tcp->tcp_detached = B_TRUE; 3663 tcp->tcp_rq = tcp_g_q; 3664 tcp->tcp_wq = WR(tcp_g_q); 3665 tcp->tcp_closed = 1; 3666 cv_signal(&tcp->tcp_closecv); 3667 mutex_exit(&tcp->tcp_closelock); 3668 } 3669 3670 /* 3671 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3672 * expires. 3673 */ 3674 static void 3675 tcp_close_linger_timeout(void *arg) 3676 { 3677 conn_t *connp = (conn_t *)arg; 3678 tcp_t *tcp = connp->conn_tcp; 3679 3680 tcp->tcp_client_errno = ETIMEDOUT; 3681 tcp_stop_lingering(tcp); 3682 } 3683 3684 static int 3685 tcp_close(queue_t *q, int flags) 3686 { 3687 conn_t *connp = Q_TO_CONN(q); 3688 tcp_t *tcp = connp->conn_tcp; 3689 mblk_t *mp = &tcp->tcp_closemp; 3690 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3691 3692 ASSERT(WR(q)->q_next == NULL); 3693 ASSERT(connp->conn_ref >= 2); 3694 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 3695 3696 /* 3697 * We are being closed as /dev/tcp or /dev/tcp6. 3698 * 3699 * Mark the conn as closing. ill_pending_mp_add will not 3700 * add any mp to the pending mp list, after this conn has 3701 * started closing. Same for sq_pending_mp_add 3702 */ 3703 mutex_enter(&connp->conn_lock); 3704 connp->conn_state_flags |= CONN_CLOSING; 3705 if (connp->conn_oper_pending_ill != NULL) 3706 conn_ioctl_cleanup_reqd = B_TRUE; 3707 CONN_INC_REF_LOCKED(connp); 3708 mutex_exit(&connp->conn_lock); 3709 tcp->tcp_closeflags = (uint8_t)flags; 3710 ASSERT(connp->conn_ref >= 3); 3711 3712 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 3713 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 3714 3715 mutex_enter(&tcp->tcp_closelock); 3716 while (!tcp->tcp_closed) 3717 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3718 mutex_exit(&tcp->tcp_closelock); 3719 /* 3720 * In the case of listener streams that have eagers in the q or q0 3721 * we wait for the eagers to drop their reference to us. tcp_rq and 3722 * tcp_wq of the eagers point to our queues. By waiting for the 3723 * refcnt to drop to 1, we are sure that the eagers have cleaned 3724 * up their queue pointers and also dropped their references to us. 3725 */ 3726 if (tcp->tcp_wait_for_eagers) { 3727 mutex_enter(&connp->conn_lock); 3728 while (connp->conn_ref != 1) { 3729 cv_wait(&connp->conn_cv, &connp->conn_lock); 3730 } 3731 mutex_exit(&connp->conn_lock); 3732 } 3733 /* 3734 * ioctl cleanup. The mp is queued in the 3735 * ill_pending_mp or in the sq_pending_mp. 3736 */ 3737 if (conn_ioctl_cleanup_reqd) 3738 conn_ioctl_cleanup(connp); 3739 3740 qprocsoff(q); 3741 inet_minor_free(ip_minor_arena, connp->conn_dev); 3742 3743 ASSERT(connp->conn_cred != NULL); 3744 crfree(connp->conn_cred); 3745 tcp->tcp_cred = connp->conn_cred = NULL; 3746 tcp->tcp_cpid = -1; 3747 3748 /* 3749 * Drop IP's reference on the conn. This is the last reference 3750 * on the connp if the state was less than established. If the 3751 * connection has gone into timewait state, then we will have 3752 * one ref for the TCP and one more ref (total of two) for the 3753 * classifier connected hash list (a timewait connections stays 3754 * in connected hash till closed). 3755 * 3756 * We can't assert the references because there might be other 3757 * transient reference places because of some walkers or queued 3758 * packets in squeue for the timewait state. 3759 */ 3760 CONN_DEC_REF(connp); 3761 q->q_ptr = WR(q)->q_ptr = NULL; 3762 return (0); 3763 } 3764 3765 static int 3766 tcpclose_accept(queue_t *q) 3767 { 3768 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3769 3770 /* 3771 * We had opened an acceptor STREAM for sockfs which is 3772 * now being closed due to some error. 3773 */ 3774 qprocsoff(q); 3775 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 3776 q->q_ptr = WR(q)->q_ptr = NULL; 3777 return (0); 3778 } 3779 3780 3781 /* 3782 * Called by streams close routine via squeues when our client blows off her 3783 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3784 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3785 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3786 * acked. 3787 * 3788 * NOTE: tcp_close potentially returns error when lingering. 3789 * However, the stream head currently does not pass these errors 3790 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3791 * errors to the application (from tsleep()) and not errors 3792 * like ECONNRESET caused by receiving a reset packet. 3793 */ 3794 3795 /* ARGSUSED */ 3796 static void 3797 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3798 { 3799 char *msg; 3800 conn_t *connp = (conn_t *)arg; 3801 tcp_t *tcp = connp->conn_tcp; 3802 clock_t delta = 0; 3803 3804 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3805 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3806 3807 /* Cancel any pending timeout */ 3808 if (tcp->tcp_ordrelid != 0) { 3809 if (tcp->tcp_timeout) { 3810 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 3811 } 3812 tcp->tcp_ordrelid = 0; 3813 tcp->tcp_timeout = B_FALSE; 3814 } 3815 3816 mutex_enter(&tcp->tcp_eager_lock); 3817 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3818 /* Cleanup for listener */ 3819 tcp_eager_cleanup(tcp, 0); 3820 tcp->tcp_wait_for_eagers = 1; 3821 } 3822 mutex_exit(&tcp->tcp_eager_lock); 3823 3824 connp->conn_mdt_ok = B_FALSE; 3825 tcp->tcp_mdt = B_FALSE; 3826 3827 msg = NULL; 3828 switch (tcp->tcp_state) { 3829 case TCPS_CLOSED: 3830 case TCPS_IDLE: 3831 case TCPS_BOUND: 3832 case TCPS_LISTEN: 3833 break; 3834 case TCPS_SYN_SENT: 3835 msg = "tcp_close, during connect"; 3836 break; 3837 case TCPS_SYN_RCVD: 3838 /* 3839 * Close during the connect 3-way handshake 3840 * but here there may or may not be pending data 3841 * already on queue. Process almost same as in 3842 * the ESTABLISHED state. 3843 */ 3844 /* FALLTHRU */ 3845 default: 3846 if (tcp->tcp_fused) 3847 tcp_unfuse(tcp); 3848 3849 /* 3850 * If SO_LINGER has set a zero linger time, abort the 3851 * connection with a reset. 3852 */ 3853 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3854 msg = "tcp_close, zero lingertime"; 3855 break; 3856 } 3857 3858 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3859 /* 3860 * Abort connection if there is unread data queued. 3861 */ 3862 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3863 msg = "tcp_close, unread data"; 3864 break; 3865 } 3866 /* 3867 * tcp_hard_bound is now cleared thus all packets go through 3868 * tcp_lookup. This fact is used by tcp_detach below. 3869 * 3870 * We have done a qwait() above which could have possibly 3871 * drained more messages in turn causing transition to a 3872 * different state. Check whether we have to do the rest 3873 * of the processing or not. 3874 */ 3875 if (tcp->tcp_state <= TCPS_LISTEN) 3876 break; 3877 3878 /* 3879 * Transmit the FIN before detaching the tcp_t. 3880 * After tcp_detach returns this queue/perimeter 3881 * no longer owns the tcp_t thus others can modify it. 3882 */ 3883 (void) tcp_xmit_end(tcp); 3884 3885 /* 3886 * If lingering on close then wait until the fin is acked, 3887 * the SO_LINGER time passes, or a reset is sent/received. 3888 */ 3889 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3890 !(tcp->tcp_fin_acked) && 3891 tcp->tcp_state >= TCPS_ESTABLISHED) { 3892 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3893 tcp->tcp_client_errno = EWOULDBLOCK; 3894 } else if (tcp->tcp_client_errno == 0) { 3895 3896 ASSERT(tcp->tcp_linger_tid == 0); 3897 3898 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3899 tcp_close_linger_timeout, 3900 tcp->tcp_lingertime * hz); 3901 3902 /* tcp_close_linger_timeout will finish close */ 3903 if (tcp->tcp_linger_tid == 0) 3904 tcp->tcp_client_errno = ENOSR; 3905 else 3906 return; 3907 } 3908 3909 /* 3910 * Check if we need to detach or just close 3911 * the instance. 3912 */ 3913 if (tcp->tcp_state <= TCPS_LISTEN) 3914 break; 3915 } 3916 3917 /* 3918 * Make sure that no other thread will access the tcp_rq of 3919 * this instance (through lookups etc.) as tcp_rq will go 3920 * away shortly. 3921 */ 3922 tcp_acceptor_hash_remove(tcp); 3923 3924 if (tcp->tcp_flow_stopped) { 3925 tcp_clrqfull(tcp); 3926 } 3927 3928 if (tcp->tcp_timer_tid != 0) { 3929 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3930 tcp->tcp_timer_tid = 0; 3931 } 3932 /* 3933 * Need to cancel those timers which will not be used when 3934 * TCP is detached. This has to be done before the tcp_wq 3935 * is set to the global queue. 3936 */ 3937 tcp_timers_stop(tcp); 3938 3939 tcp->tcp_detached = B_TRUE; 3940 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3941 tcp_time_wait_append(tcp); 3942 TCP_DBGSTAT(tcp_detach_time_wait); 3943 ASSERT(connp->conn_ref >= 3); 3944 goto finish; 3945 } 3946 3947 /* 3948 * If delta is zero the timer event wasn't executed and was 3949 * successfully canceled. In this case we need to restart it 3950 * with the minimal delta possible. 3951 */ 3952 if (delta >= 0) 3953 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3954 delta ? delta : 1); 3955 3956 ASSERT(connp->conn_ref >= 3); 3957 goto finish; 3958 } 3959 3960 /* Detach did not complete. Still need to remove q from stream. */ 3961 if (msg) { 3962 if (tcp->tcp_state == TCPS_ESTABLISHED || 3963 tcp->tcp_state == TCPS_CLOSE_WAIT) 3964 BUMP_MIB(&tcp_mib, tcpEstabResets); 3965 if (tcp->tcp_state == TCPS_SYN_SENT || 3966 tcp->tcp_state == TCPS_SYN_RCVD) 3967 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3968 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3969 } 3970 3971 tcp_closei_local(tcp); 3972 CONN_DEC_REF(connp); 3973 ASSERT(connp->conn_ref >= 2); 3974 3975 finish: 3976 /* 3977 * Although packets are always processed on the correct 3978 * tcp's perimeter and access is serialized via squeue's, 3979 * IP still needs a queue when sending packets in time_wait 3980 * state so use WR(tcp_g_q) till ip_output() can be 3981 * changed to deal with just connp. For read side, we 3982 * could have set tcp_rq to NULL but there are some cases 3983 * in tcp_rput_data() from early days of this code which 3984 * do a putnext without checking if tcp is closed. Those 3985 * need to be identified before both tcp_rq and tcp_wq 3986 * can be set to NULL and tcp_q_q can disappear forever. 3987 */ 3988 mutex_enter(&tcp->tcp_closelock); 3989 /* 3990 * Don't change the queues in the case of a listener that has 3991 * eagers in its q or q0. It could surprise the eagers. 3992 * Instead wait for the eagers outside the squeue. 3993 */ 3994 if (!tcp->tcp_wait_for_eagers) { 3995 tcp->tcp_detached = B_TRUE; 3996 tcp->tcp_rq = tcp_g_q; 3997 tcp->tcp_wq = WR(tcp_g_q); 3998 } 3999 /* Signal tcp_close() to finish closing. */ 4000 tcp->tcp_closed = 1; 4001 cv_signal(&tcp->tcp_closecv); 4002 mutex_exit(&tcp->tcp_closelock); 4003 } 4004 4005 4006 /* 4007 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4008 * Some stream heads get upset if they see these later on as anything but NULL. 4009 */ 4010 static void 4011 tcp_close_mpp(mblk_t **mpp) 4012 { 4013 mblk_t *mp; 4014 4015 if ((mp = *mpp) != NULL) { 4016 do { 4017 mp->b_next = NULL; 4018 mp->b_prev = NULL; 4019 } while ((mp = mp->b_cont) != NULL); 4020 4021 mp = *mpp; 4022 *mpp = NULL; 4023 freemsg(mp); 4024 } 4025 } 4026 4027 /* Do detached close. */ 4028 static void 4029 tcp_close_detached(tcp_t *tcp) 4030 { 4031 if (tcp->tcp_fused) 4032 tcp_unfuse(tcp); 4033 4034 /* 4035 * Clustering code serializes TCP disconnect callbacks and 4036 * cluster tcp list walks by blocking a TCP disconnect callback 4037 * if a cluster tcp list walk is in progress. This ensures 4038 * accurate accounting of TCPs in the cluster code even though 4039 * the TCP list walk itself is not atomic. 4040 */ 4041 tcp_closei_local(tcp); 4042 CONN_DEC_REF(tcp->tcp_connp); 4043 } 4044 4045 /* 4046 * Stop all TCP timers, and free the timer mblks if requested. 4047 */ 4048 void 4049 tcp_timers_stop(tcp_t *tcp) 4050 { 4051 if (tcp->tcp_timer_tid != 0) { 4052 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4053 tcp->tcp_timer_tid = 0; 4054 } 4055 if (tcp->tcp_ka_tid != 0) { 4056 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4057 tcp->tcp_ka_tid = 0; 4058 } 4059 if (tcp->tcp_ack_tid != 0) { 4060 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4061 tcp->tcp_ack_tid = 0; 4062 } 4063 if (tcp->tcp_push_tid != 0) { 4064 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4065 tcp->tcp_push_tid = 0; 4066 } 4067 } 4068 4069 /* 4070 * The tcp_t is going away. Remove it from all lists and set it 4071 * to TCPS_CLOSED. The freeing up of memory is deferred until 4072 * tcp_inactive. This is needed since a thread in tcp_rput might have 4073 * done a CONN_INC_REF on this structure before it was removed from the 4074 * hashes. 4075 */ 4076 static void 4077 tcp_closei_local(tcp_t *tcp) 4078 { 4079 ire_t *ire; 4080 conn_t *connp = tcp->tcp_connp; 4081 4082 if (!TCP_IS_SOCKET(tcp)) 4083 tcp_acceptor_hash_remove(tcp); 4084 4085 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4086 tcp->tcp_ibsegs = 0; 4087 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4088 tcp->tcp_obsegs = 0; 4089 /* 4090 * If we are an eager connection hanging off a listener that 4091 * hasn't formally accepted the connection yet, get off his 4092 * list and blow off any data that we have accumulated. 4093 */ 4094 if (tcp->tcp_listener != NULL) { 4095 tcp_t *listener = tcp->tcp_listener; 4096 mutex_enter(&listener->tcp_eager_lock); 4097 /* 4098 * tcp_eager_conn_ind == NULL means that the 4099 * conn_ind has already gone to listener. At 4100 * this point, eager will be closed but we 4101 * leave it in listeners eager list so that 4102 * if listener decides to close without doing 4103 * accept, we can clean this up. In tcp_wput_accept 4104 * we take case of the case of accept on closed 4105 * eager. 4106 */ 4107 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4108 tcp_eager_unlink(tcp); 4109 mutex_exit(&listener->tcp_eager_lock); 4110 /* 4111 * We don't want to have any pointers to the 4112 * listener queue, after we have released our 4113 * reference on the listener 4114 */ 4115 tcp->tcp_rq = tcp_g_q; 4116 tcp->tcp_wq = WR(tcp_g_q); 4117 CONN_DEC_REF(listener->tcp_connp); 4118 } else { 4119 mutex_exit(&listener->tcp_eager_lock); 4120 } 4121 } 4122 4123 /* Stop all the timers */ 4124 tcp_timers_stop(tcp); 4125 4126 if (tcp->tcp_state == TCPS_LISTEN) { 4127 if (tcp->tcp_ip_addr_cache) { 4128 kmem_free((void *)tcp->tcp_ip_addr_cache, 4129 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4130 tcp->tcp_ip_addr_cache = NULL; 4131 } 4132 } 4133 if (tcp->tcp_flow_stopped) 4134 tcp_clrqfull(tcp); 4135 4136 tcp_bind_hash_remove(tcp); 4137 /* 4138 * If the tcp_time_wait_collector (which runs outside the squeue) 4139 * is trying to remove this tcp from the time wait list, we will 4140 * block in tcp_time_wait_remove while trying to acquire the 4141 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4142 * requires the ipcl_hash_remove to be ordered after the 4143 * tcp_time_wait_remove for the refcnt checks to work correctly. 4144 */ 4145 if (tcp->tcp_state == TCPS_TIME_WAIT) 4146 tcp_time_wait_remove(tcp, NULL); 4147 CL_INET_DISCONNECT(tcp); 4148 ipcl_hash_remove(connp); 4149 4150 /* 4151 * Delete the cached ire in conn_ire_cache and also mark 4152 * the conn as CONDEMNED 4153 */ 4154 mutex_enter(&connp->conn_lock); 4155 connp->conn_state_flags |= CONN_CONDEMNED; 4156 ire = connp->conn_ire_cache; 4157 connp->conn_ire_cache = NULL; 4158 mutex_exit(&connp->conn_lock); 4159 if (ire != NULL) 4160 IRE_REFRELE_NOTR(ire); 4161 4162 /* Need to cleanup any pending ioctls */ 4163 ASSERT(tcp->tcp_time_wait_next == NULL); 4164 ASSERT(tcp->tcp_time_wait_prev == NULL); 4165 ASSERT(tcp->tcp_time_wait_expire == 0); 4166 tcp->tcp_state = TCPS_CLOSED; 4167 } 4168 4169 /* 4170 * tcp is dying (called from ipcl_conn_destroy and error cases). 4171 * Free the tcp_t in either case. 4172 */ 4173 void 4174 tcp_free(tcp_t *tcp) 4175 { 4176 mblk_t *mp; 4177 ip6_pkt_t *ipp; 4178 4179 ASSERT(tcp != NULL); 4180 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4181 4182 tcp->tcp_rq = NULL; 4183 tcp->tcp_wq = NULL; 4184 4185 tcp_close_mpp(&tcp->tcp_xmit_head); 4186 tcp_close_mpp(&tcp->tcp_reass_head); 4187 if (tcp->tcp_rcv_list != NULL) { 4188 /* Free b_next chain */ 4189 tcp_close_mpp(&tcp->tcp_rcv_list); 4190 } 4191 if ((mp = tcp->tcp_urp_mp) != NULL) { 4192 freemsg(mp); 4193 } 4194 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4195 freemsg(mp); 4196 } 4197 4198 if (tcp->tcp_fused_sigurg_mp != NULL) { 4199 freeb(tcp->tcp_fused_sigurg_mp); 4200 tcp->tcp_fused_sigurg_mp = NULL; 4201 } 4202 4203 if (tcp->tcp_sack_info != NULL) { 4204 if (tcp->tcp_notsack_list != NULL) { 4205 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4206 } 4207 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4208 } 4209 4210 if (tcp->tcp_hopopts != NULL) { 4211 mi_free(tcp->tcp_hopopts); 4212 tcp->tcp_hopopts = NULL; 4213 tcp->tcp_hopoptslen = 0; 4214 } 4215 ASSERT(tcp->tcp_hopoptslen == 0); 4216 if (tcp->tcp_dstopts != NULL) { 4217 mi_free(tcp->tcp_dstopts); 4218 tcp->tcp_dstopts = NULL; 4219 tcp->tcp_dstoptslen = 0; 4220 } 4221 ASSERT(tcp->tcp_dstoptslen == 0); 4222 if (tcp->tcp_rtdstopts != NULL) { 4223 mi_free(tcp->tcp_rtdstopts); 4224 tcp->tcp_rtdstopts = NULL; 4225 tcp->tcp_rtdstoptslen = 0; 4226 } 4227 ASSERT(tcp->tcp_rtdstoptslen == 0); 4228 if (tcp->tcp_rthdr != NULL) { 4229 mi_free(tcp->tcp_rthdr); 4230 tcp->tcp_rthdr = NULL; 4231 tcp->tcp_rthdrlen = 0; 4232 } 4233 ASSERT(tcp->tcp_rthdrlen == 0); 4234 4235 ipp = &tcp->tcp_sticky_ipp; 4236 if ((ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | 4237 IPPF_DSTOPTS | IPPF_RTHDR)) != 0) { 4238 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 4239 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 4240 ipp->ipp_hopopts = NULL; 4241 ipp->ipp_hopoptslen = 0; 4242 } 4243 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 4244 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 4245 ipp->ipp_rtdstopts = NULL; 4246 ipp->ipp_rtdstoptslen = 0; 4247 } 4248 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 4249 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 4250 ipp->ipp_dstopts = NULL; 4251 ipp->ipp_dstoptslen = 0; 4252 } 4253 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 4254 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 4255 ipp->ipp_rthdr = NULL; 4256 ipp->ipp_rthdrlen = 0; 4257 } 4258 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | 4259 IPPF_DSTOPTS | IPPF_RTHDR); 4260 } 4261 4262 /* 4263 * Free memory associated with the tcp/ip header template. 4264 */ 4265 4266 if (tcp->tcp_iphc != NULL) 4267 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4268 4269 /* 4270 * Following is really a blowing away a union. 4271 * It happens to have exactly two members of identical size 4272 * the following code is enough. 4273 */ 4274 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4275 4276 if (tcp->tcp_tracebuf != NULL) { 4277 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4278 tcp->tcp_tracebuf = NULL; 4279 } 4280 } 4281 4282 4283 /* 4284 * Put a connection confirmation message upstream built from the 4285 * address information within 'iph' and 'tcph'. Report our success or failure. 4286 */ 4287 static boolean_t 4288 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4289 mblk_t **defermp) 4290 { 4291 sin_t sin; 4292 sin6_t sin6; 4293 mblk_t *mp; 4294 char *optp = NULL; 4295 int optlen = 0; 4296 cred_t *cr; 4297 4298 if (defermp != NULL) 4299 *defermp = NULL; 4300 4301 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4302 /* 4303 * Return in T_CONN_CON results of option negotiation through 4304 * the T_CONN_REQ. Note: If there is an real end-to-end option 4305 * negotiation, then what is received from remote end needs 4306 * to be taken into account but there is no such thing (yet?) 4307 * in our TCP/IP. 4308 * Note: We do not use mi_offset_param() here as 4309 * tcp_opts_conn_req contents do not directly come from 4310 * an application and are either generated in kernel or 4311 * from user input that was already verified. 4312 */ 4313 mp = tcp->tcp_conn.tcp_opts_conn_req; 4314 optp = (char *)(mp->b_rptr + 4315 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4316 optlen = (int) 4317 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4318 } 4319 4320 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4321 ipha_t *ipha = (ipha_t *)iphdr; 4322 4323 /* packet is IPv4 */ 4324 if (tcp->tcp_family == AF_INET) { 4325 sin = sin_null; 4326 sin.sin_addr.s_addr = ipha->ipha_src; 4327 sin.sin_port = *(uint16_t *)tcph->th_lport; 4328 sin.sin_family = AF_INET; 4329 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4330 (int)sizeof (sin_t), optp, optlen); 4331 } else { 4332 sin6 = sin6_null; 4333 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4334 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4335 sin6.sin6_family = AF_INET6; 4336 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4337 (int)sizeof (sin6_t), optp, optlen); 4338 4339 } 4340 } else { 4341 ip6_t *ip6h = (ip6_t *)iphdr; 4342 4343 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4344 ASSERT(tcp->tcp_family == AF_INET6); 4345 sin6 = sin6_null; 4346 sin6.sin6_addr = ip6h->ip6_src; 4347 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4348 sin6.sin6_family = AF_INET6; 4349 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4350 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4351 (int)sizeof (sin6_t), optp, optlen); 4352 } 4353 4354 if (!mp) 4355 return (B_FALSE); 4356 4357 if ((cr = DB_CRED(idmp)) != NULL) { 4358 mblk_setcred(mp, cr); 4359 DB_CPID(mp) = DB_CPID(idmp); 4360 } 4361 4362 if (defermp == NULL) 4363 putnext(tcp->tcp_rq, mp); 4364 else 4365 *defermp = mp; 4366 4367 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4368 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4369 return (B_TRUE); 4370 } 4371 4372 /* 4373 * Defense for the SYN attack - 4374 * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest 4375 * one that doesn't have the dontdrop bit set. 4376 * 2. Don't drop a SYN request before its first timeout. This gives every 4377 * request at least til the first timeout to complete its 3-way handshake. 4378 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4379 * requests currently on the queue that has timed out. This will be used 4380 * as an indicator of whether an attack is under way, so that appropriate 4381 * actions can be taken. (It's incremented in tcp_timer() and decremented 4382 * either when eager goes into ESTABLISHED, or gets freed up.) 4383 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4384 * # of timeout drops back to <= q0len/32 => SYN alert off 4385 */ 4386 static boolean_t 4387 tcp_drop_q0(tcp_t *tcp) 4388 { 4389 tcp_t *eager; 4390 4391 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4392 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4393 /* 4394 * New one is added after next_q0 so prev_q0 points to the oldest 4395 * Also do not drop any established connections that are deferred on 4396 * q0 due to q being full 4397 */ 4398 4399 eager = tcp->tcp_eager_prev_q0; 4400 while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { 4401 eager = eager->tcp_eager_prev_q0; 4402 if (eager == tcp) { 4403 eager = tcp->tcp_eager_prev_q0; 4404 break; 4405 } 4406 } 4407 if (eager->tcp_syn_rcvd_timeout == 0) 4408 return (B_FALSE); 4409 4410 if (tcp->tcp_debug) { 4411 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4412 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4413 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4414 tcp->tcp_conn_req_cnt_q0, 4415 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4416 } 4417 4418 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4419 4420 /* 4421 * need to do refhold here because the selected eager could 4422 * be removed by someone else if we release the eager lock. 4423 */ 4424 CONN_INC_REF(eager->tcp_connp); 4425 mutex_exit(&tcp->tcp_eager_lock); 4426 4427 /* Mark the IRE created for this SYN request temporary */ 4428 tcp_ip_ire_mark_advice(eager); 4429 (void) tcp_clean_death(eager, ETIMEDOUT, 5); 4430 CONN_DEC_REF(eager->tcp_connp); 4431 4432 mutex_enter(&tcp->tcp_eager_lock); 4433 return (B_TRUE); 4434 } 4435 4436 int 4437 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4438 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4439 { 4440 tcp_t *ltcp = lconnp->conn_tcp; 4441 tcp_t *tcp = connp->conn_tcp; 4442 mblk_t *tpi_mp; 4443 ipha_t *ipha; 4444 ip6_t *ip6h; 4445 sin6_t sin6; 4446 in6_addr_t v6dst; 4447 int err; 4448 int ifindex = 0; 4449 cred_t *cr; 4450 4451 if (ipvers == IPV4_VERSION) { 4452 ipha = (ipha_t *)mp->b_rptr; 4453 4454 connp->conn_send = ip_output; 4455 connp->conn_recv = tcp_input; 4456 4457 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4458 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4459 4460 sin6 = sin6_null; 4461 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4462 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4463 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4464 sin6.sin6_family = AF_INET6; 4465 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4466 lconnp->conn_zoneid); 4467 if (tcp->tcp_recvdstaddr) { 4468 sin6_t sin6d; 4469 4470 sin6d = sin6_null; 4471 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4472 &sin6d.sin6_addr); 4473 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4474 sin6d.sin6_family = AF_INET; 4475 tpi_mp = mi_tpi_extconn_ind(NULL, 4476 (char *)&sin6d, sizeof (sin6_t), 4477 (char *)&tcp, 4478 (t_scalar_t)sizeof (intptr_t), 4479 (char *)&sin6d, sizeof (sin6_t), 4480 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4481 } else { 4482 tpi_mp = mi_tpi_conn_ind(NULL, 4483 (char *)&sin6, sizeof (sin6_t), 4484 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4485 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4486 } 4487 } else { 4488 ip6h = (ip6_t *)mp->b_rptr; 4489 4490 connp->conn_send = ip_output_v6; 4491 connp->conn_recv = tcp_input; 4492 4493 connp->conn_srcv6 = ip6h->ip6_dst; 4494 connp->conn_remv6 = ip6h->ip6_src; 4495 4496 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4497 ifindex = (int)DB_CKSUMSTUFF(mp); 4498 DB_CKSUMSTUFF(mp) = 0; 4499 4500 sin6 = sin6_null; 4501 sin6.sin6_addr = ip6h->ip6_src; 4502 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4503 sin6.sin6_family = AF_INET6; 4504 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4505 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4506 lconnp->conn_zoneid); 4507 4508 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4509 /* Pass up the scope_id of remote addr */ 4510 sin6.sin6_scope_id = ifindex; 4511 } else { 4512 sin6.sin6_scope_id = 0; 4513 } 4514 if (tcp->tcp_recvdstaddr) { 4515 sin6_t sin6d; 4516 4517 sin6d = sin6_null; 4518 sin6.sin6_addr = ip6h->ip6_dst; 4519 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4520 sin6d.sin6_family = AF_INET; 4521 tpi_mp = mi_tpi_extconn_ind(NULL, 4522 (char *)&sin6d, sizeof (sin6_t), 4523 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4524 (char *)&sin6d, sizeof (sin6_t), 4525 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4526 } else { 4527 tpi_mp = mi_tpi_conn_ind(NULL, 4528 (char *)&sin6, sizeof (sin6_t), 4529 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4530 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4531 } 4532 } 4533 4534 if (tpi_mp == NULL) 4535 return (ENOMEM); 4536 4537 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4538 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4539 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4540 connp->conn_fully_bound = B_FALSE; 4541 4542 if (tcp_trace) 4543 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4544 4545 /* Inherit information from the "parent" */ 4546 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4547 tcp->tcp_family = ltcp->tcp_family; 4548 tcp->tcp_wq = ltcp->tcp_wq; 4549 tcp->tcp_rq = ltcp->tcp_rq; 4550 tcp->tcp_mss = tcp_mss_def_ipv6; 4551 tcp->tcp_detached = B_TRUE; 4552 if ((err = tcp_init_values(tcp)) != 0) { 4553 freemsg(tpi_mp); 4554 return (err); 4555 } 4556 4557 if (ipvers == IPV4_VERSION) { 4558 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4559 freemsg(tpi_mp); 4560 return (err); 4561 } 4562 ASSERT(tcp->tcp_ipha != NULL); 4563 } else { 4564 /* ifindex must be already set */ 4565 ASSERT(ifindex != 0); 4566 4567 if (ltcp->tcp_bound_if != 0) { 4568 /* 4569 * Set newtcp's bound_if equal to 4570 * listener's value. If ifindex is 4571 * not the same as ltcp->tcp_bound_if, 4572 * it must be a packet for the ipmp group 4573 * of interfaces 4574 */ 4575 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4576 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4577 tcp->tcp_bound_if = ifindex; 4578 } 4579 4580 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4581 tcp->tcp_recvifindex = 0; 4582 tcp->tcp_recvhops = 0xffffffffU; 4583 ASSERT(tcp->tcp_ip6h != NULL); 4584 } 4585 4586 tcp->tcp_lport = ltcp->tcp_lport; 4587 4588 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4589 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4590 /* 4591 * Listener had options of some sort; eager inherits. 4592 * Free up the eager template and allocate one 4593 * of the right size. 4594 */ 4595 if (tcp->tcp_hdr_grown) { 4596 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4597 } else { 4598 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4599 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4600 } 4601 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4602 KM_NOSLEEP); 4603 if (tcp->tcp_iphc == NULL) { 4604 tcp->tcp_iphc_len = 0; 4605 freemsg(tpi_mp); 4606 return (ENOMEM); 4607 } 4608 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4609 tcp->tcp_hdr_grown = B_TRUE; 4610 } 4611 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4612 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4613 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4614 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4615 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4616 4617 /* 4618 * Copy the IP+TCP header template from listener to eager 4619 */ 4620 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4621 if (tcp->tcp_ipversion == IPV6_VERSION) { 4622 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4623 IPPROTO_RAW) { 4624 tcp->tcp_ip6h = 4625 (ip6_t *)(tcp->tcp_iphc + 4626 sizeof (ip6i_t)); 4627 } else { 4628 tcp->tcp_ip6h = 4629 (ip6_t *)(tcp->tcp_iphc); 4630 } 4631 tcp->tcp_ipha = NULL; 4632 } else { 4633 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4634 tcp->tcp_ip6h = NULL; 4635 } 4636 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4637 tcp->tcp_ip_hdr_len); 4638 } else { 4639 /* 4640 * only valid case when ipversion of listener and 4641 * eager differ is when listener is IPv6 and 4642 * eager is IPv4. 4643 * Eager header template has been initialized to the 4644 * maximum v4 header sizes, which includes space for 4645 * TCP and IP options. 4646 */ 4647 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4648 (tcp->tcp_ipversion == IPV4_VERSION)); 4649 ASSERT(tcp->tcp_iphc_len >= 4650 TCP_MAX_COMBINED_HEADER_LENGTH); 4651 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4652 /* copy IP header fields individually */ 4653 tcp->tcp_ipha->ipha_ttl = 4654 ltcp->tcp_ip6h->ip6_hops; 4655 bcopy(ltcp->tcp_tcph->th_lport, 4656 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4657 } 4658 4659 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4660 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4661 sizeof (in_port_t)); 4662 4663 if (ltcp->tcp_lport == 0) { 4664 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4665 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4666 sizeof (in_port_t)); 4667 } 4668 4669 if (tcp->tcp_ipversion == IPV4_VERSION) { 4670 ASSERT(ipha != NULL); 4671 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4672 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4673 4674 /* Source routing option copyover (reverse it) */ 4675 if (tcp_rev_src_routes) 4676 tcp_opt_reverse(tcp, ipha); 4677 } else { 4678 ASSERT(ip6h != NULL); 4679 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4680 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4681 } 4682 4683 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4684 /* 4685 * If the SYN contains a credential, it's a loopback packet; attach 4686 * the credential to the TPI message. 4687 */ 4688 if ((cr = DB_CRED(idmp)) != NULL) { 4689 mblk_setcred(tpi_mp, cr); 4690 DB_CPID(tpi_mp) = DB_CPID(idmp); 4691 } 4692 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4693 4694 return (0); 4695 } 4696 4697 4698 int 4699 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4700 tcph_t *tcph, mblk_t *idmp) 4701 { 4702 tcp_t *ltcp = lconnp->conn_tcp; 4703 tcp_t *tcp = connp->conn_tcp; 4704 sin_t sin; 4705 mblk_t *tpi_mp = NULL; 4706 int err; 4707 cred_t *cr; 4708 4709 sin = sin_null; 4710 sin.sin_addr.s_addr = ipha->ipha_src; 4711 sin.sin_port = *(uint16_t *)tcph->th_lport; 4712 sin.sin_family = AF_INET; 4713 if (ltcp->tcp_recvdstaddr) { 4714 sin_t sind; 4715 4716 sind = sin_null; 4717 sind.sin_addr.s_addr = ipha->ipha_dst; 4718 sind.sin_port = *(uint16_t *)tcph->th_fport; 4719 sind.sin_family = AF_INET; 4720 tpi_mp = mi_tpi_extconn_ind(NULL, 4721 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4722 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4723 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4724 } else { 4725 tpi_mp = mi_tpi_conn_ind(NULL, 4726 (char *)&sin, sizeof (sin_t), 4727 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4728 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4729 } 4730 4731 if (tpi_mp == NULL) { 4732 return (ENOMEM); 4733 } 4734 4735 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4736 connp->conn_send = ip_output; 4737 connp->conn_recv = tcp_input; 4738 connp->conn_fully_bound = B_FALSE; 4739 4740 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4741 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4742 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4743 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4744 4745 if (tcp_trace) { 4746 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4747 } 4748 4749 /* Inherit information from the "parent" */ 4750 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4751 tcp->tcp_family = ltcp->tcp_family; 4752 tcp->tcp_wq = ltcp->tcp_wq; 4753 tcp->tcp_rq = ltcp->tcp_rq; 4754 tcp->tcp_mss = tcp_mss_def_ipv4; 4755 tcp->tcp_detached = B_TRUE; 4756 if ((err = tcp_init_values(tcp)) != 0) { 4757 freemsg(tpi_mp); 4758 return (err); 4759 } 4760 4761 /* 4762 * Let's make sure that eager tcp template has enough space to 4763 * copy IPv4 listener's tcp template. Since the conn_t structure is 4764 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4765 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4766 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4767 * extension headers or with ip6i_t struct). Note that bcopy() below 4768 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4769 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4770 */ 4771 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4772 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4773 4774 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4775 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4776 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4777 tcp->tcp_ttl = ltcp->tcp_ttl; 4778 tcp->tcp_tos = ltcp->tcp_tos; 4779 4780 /* Copy the IP+TCP header template from listener to eager */ 4781 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4782 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4783 tcp->tcp_ip6h = NULL; 4784 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4785 tcp->tcp_ip_hdr_len); 4786 4787 /* Initialize the IP addresses and Ports */ 4788 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4789 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4790 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4791 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4792 4793 /* Source routing option copyover (reverse it) */ 4794 if (tcp_rev_src_routes) 4795 tcp_opt_reverse(tcp, ipha); 4796 4797 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4798 4799 /* 4800 * If the SYN contains a credential, it's a loopback packet; attach 4801 * the credential to the TPI message. 4802 */ 4803 if ((cr = DB_CRED(idmp)) != NULL) { 4804 mblk_setcred(tpi_mp, cr); 4805 DB_CPID(tpi_mp) = DB_CPID(idmp); 4806 } 4807 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4808 4809 return (0); 4810 } 4811 4812 /* 4813 * sets up conn for ipsec. 4814 * if the first mblk is M_CTL it is consumed and mpp is updated. 4815 * in case of error mpp is freed. 4816 */ 4817 conn_t * 4818 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4819 { 4820 conn_t *connp = tcp->tcp_connp; 4821 conn_t *econnp; 4822 squeue_t *new_sqp; 4823 mblk_t *first_mp = *mpp; 4824 mblk_t *mp = *mpp; 4825 boolean_t mctl_present = B_FALSE; 4826 uint_t ipvers; 4827 4828 econnp = tcp_get_conn(sqp); 4829 if (econnp == NULL) { 4830 freemsg(first_mp); 4831 return (NULL); 4832 } 4833 if (DB_TYPE(mp) == M_CTL) { 4834 if (mp->b_cont == NULL || 4835 mp->b_cont->b_datap->db_type != M_DATA) { 4836 freemsg(first_mp); 4837 return (NULL); 4838 } 4839 mp = mp->b_cont; 4840 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4841 freemsg(first_mp); 4842 return (NULL); 4843 } 4844 4845 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4846 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4847 mctl_present = B_TRUE; 4848 } else { 4849 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4850 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4851 } 4852 4853 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4854 DB_CKSUMSTART(mp) = 0; 4855 4856 ASSERT(OK_32PTR(mp->b_rptr)); 4857 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4858 if (ipvers == IPV4_VERSION) { 4859 uint16_t *up; 4860 uint32_t ports; 4861 ipha_t *ipha; 4862 4863 ipha = (ipha_t *)mp->b_rptr; 4864 up = (uint16_t *)((uchar_t *)ipha + 4865 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4866 ports = *(uint32_t *)up; 4867 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4868 ipha->ipha_dst, ipha->ipha_src, ports); 4869 } else { 4870 uint16_t *up; 4871 uint32_t ports; 4872 uint16_t ip_hdr_len; 4873 uint8_t *nexthdrp; 4874 ip6_t *ip6h; 4875 tcph_t *tcph; 4876 4877 ip6h = (ip6_t *)mp->b_rptr; 4878 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4879 ip_hdr_len = IPV6_HDR_LEN; 4880 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4881 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4882 CONN_DEC_REF(econnp); 4883 freemsg(first_mp); 4884 return (NULL); 4885 } 4886 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4887 up = (uint16_t *)tcph->th_lport; 4888 ports = *(uint32_t *)up; 4889 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4890 ip6h->ip6_dst, ip6h->ip6_src, ports); 4891 } 4892 4893 /* 4894 * The caller already ensured that there is a sqp present. 4895 */ 4896 econnp->conn_sqp = new_sqp; 4897 4898 if (connp->conn_policy != NULL) { 4899 ipsec_in_t *ii; 4900 ii = (ipsec_in_t *)(first_mp->b_rptr); 4901 ASSERT(ii->ipsec_in_policy == NULL); 4902 IPPH_REFHOLD(connp->conn_policy); 4903 ii->ipsec_in_policy = connp->conn_policy; 4904 4905 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4906 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4907 CONN_DEC_REF(econnp); 4908 freemsg(first_mp); 4909 return (NULL); 4910 } 4911 } 4912 4913 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4914 CONN_DEC_REF(econnp); 4915 freemsg(first_mp); 4916 return (NULL); 4917 } 4918 4919 /* 4920 * If we know we have some policy, pass the "IPSEC" 4921 * options size TCP uses this adjust the MSS. 4922 */ 4923 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 4924 if (mctl_present) { 4925 freeb(first_mp); 4926 *mpp = mp; 4927 } 4928 4929 return (econnp); 4930 } 4931 4932 /* 4933 * tcp_get_conn/tcp_free_conn 4934 * 4935 * tcp_get_conn is used to get a clean tcp connection structure. 4936 * It tries to reuse the connections put on the freelist by the 4937 * time_wait_collector failing which it goes to kmem_cache. This 4938 * way has two benefits compared to just allocating from and 4939 * freeing to kmem_cache. 4940 * 1) The time_wait_collector can free (which includes the cleanup) 4941 * outside the squeue. So when the interrupt comes, we have a clean 4942 * connection sitting in the freelist. Obviously, this buys us 4943 * performance. 4944 * 4945 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 4946 * has multiple disadvantages - tying up the squeue during alloc, and the 4947 * fact that IPSec policy initialization has to happen here which 4948 * requires us sending a M_CTL and checking for it i.e. real ugliness. 4949 * But allocating the conn/tcp in IP land is also not the best since 4950 * we can't check the 'q' and 'q0' which are protected by squeue and 4951 * blindly allocate memory which might have to be freed here if we are 4952 * not allowed to accept the connection. By using the freelist and 4953 * putting the conn/tcp back in freelist, we don't pay a penalty for 4954 * allocating memory without checking 'q/q0' and freeing it if we can't 4955 * accept the connection. 4956 * 4957 * Care should be taken to put the conn back in the same squeue's freelist 4958 * from which it was allocated. Best results are obtained if conn is 4959 * allocated from listener's squeue and freed to the same. Time wait 4960 * collector will free up the freelist is the connection ends up sitting 4961 * there for too long. 4962 */ 4963 void * 4964 tcp_get_conn(void *arg) 4965 { 4966 tcp_t *tcp = NULL; 4967 conn_t *connp = NULL; 4968 squeue_t *sqp = (squeue_t *)arg; 4969 tcp_squeue_priv_t *tcp_time_wait; 4970 4971 tcp_time_wait = 4972 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 4973 4974 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 4975 tcp = tcp_time_wait->tcp_free_list; 4976 if (tcp != NULL) { 4977 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 4978 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4979 tcp->tcp_time_wait_next = NULL; 4980 connp = tcp->tcp_connp; 4981 connp->conn_flags |= IPCL_REUSED; 4982 return ((void *)connp); 4983 } 4984 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 4985 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 4986 return (NULL); 4987 return ((void *)connp); 4988 } 4989 4990 /* BEGIN CSTYLED */ 4991 /* 4992 * 4993 * The sockfs ACCEPT path: 4994 * ======================= 4995 * 4996 * The eager is now established in its own perimeter as soon as SYN is 4997 * received in tcp_conn_request(). When sockfs receives conn_ind, it 4998 * completes the accept processing on the acceptor STREAM. The sending 4999 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5000 * listener but a TLI/XTI listener completes the accept processing 5001 * on the listener perimeter. 5002 * 5003 * Common control flow for 3 way handshake: 5004 * ---------------------------------------- 5005 * 5006 * incoming SYN (listener perimeter) -> tcp_rput_data() 5007 * -> tcp_conn_request() 5008 * 5009 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5010 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5011 * 5012 * Sockfs ACCEPT Path: 5013 * ------------------- 5014 * 5015 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5016 * as STREAM entry point) 5017 * 5018 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5019 * 5020 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5021 * association (we are not behind eager's squeue but sockfs is protecting us 5022 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5023 * is changed to point at tcp_wput(). 5024 * 5025 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5026 * listener (done on listener's perimeter). 5027 * 5028 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5029 * accept. 5030 * 5031 * TLI/XTI client ACCEPT path: 5032 * --------------------------- 5033 * 5034 * soaccept() sends T_CONN_RES on the listener STREAM. 5035 * 5036 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5037 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5038 * 5039 * Locks: 5040 * ====== 5041 * 5042 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5043 * and listeners->tcp_eager_next_q. 5044 * 5045 * Referencing: 5046 * ============ 5047 * 5048 * 1) We start out in tcp_conn_request by eager placing a ref on 5049 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5050 * 5051 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5052 * doing so we place a ref on the eager. This ref is finally dropped at the 5053 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5054 * reference is dropped by the squeue framework. 5055 * 5056 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5057 * 5058 * The reference must be released by the same entity that added the reference 5059 * In the above scheme, the eager is the entity that adds and releases the 5060 * references. Note that tcp_accept_finish executes in the squeue of the eager 5061 * (albeit after it is attached to the acceptor stream). Though 1. executes 5062 * in the listener's squeue, the eager is nascent at this point and the 5063 * reference can be considered to have been added on behalf of the eager. 5064 * 5065 * Eager getting a Reset or listener closing: 5066 * ========================================== 5067 * 5068 * Once the listener and eager are linked, the listener never does the unlink. 5069 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5070 * a message on all eager perimeter. The eager then does the unlink, clears 5071 * any pointers to the listener's queue and drops the reference to the 5072 * listener. The listener waits in tcp_close outside the squeue until its 5073 * refcount has dropped to 1. This ensures that the listener has waited for 5074 * all eagers to clear their association with the listener. 5075 * 5076 * Similarly, if eager decides to go away, it can unlink itself and close. 5077 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5078 * the reference to eager is still valid because of the extra ref we put 5079 * in tcp_send_conn_ind. 5080 * 5081 * Listener can always locate the eager under the protection 5082 * of the listener->tcp_eager_lock, and then do a refhold 5083 * on the eager during the accept processing. 5084 * 5085 * The acceptor stream accesses the eager in the accept processing 5086 * based on the ref placed on eager before sending T_conn_ind. 5087 * The only entity that can negate this refhold is a listener close 5088 * which is mutually exclusive with an active acceptor stream. 5089 * 5090 * Eager's reference on the listener 5091 * =================================== 5092 * 5093 * If the accept happens (even on a closed eager) the eager drops its 5094 * reference on the listener at the start of tcp_accept_finish. If the 5095 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5096 * the reference is dropped in tcp_closei_local. If the listener closes, 5097 * the reference is dropped in tcp_eager_kill. In all cases the reference 5098 * is dropped while executing in the eager's context (squeue). 5099 */ 5100 /* END CSTYLED */ 5101 5102 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5103 5104 /* 5105 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5106 * tcp_rput_data will not see any SYN packets. 5107 */ 5108 /* ARGSUSED */ 5109 void 5110 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5111 { 5112 tcph_t *tcph; 5113 uint32_t seg_seq; 5114 tcp_t *eager; 5115 uint_t ipvers; 5116 ipha_t *ipha; 5117 ip6_t *ip6h; 5118 int err; 5119 conn_t *econnp = NULL; 5120 squeue_t *new_sqp; 5121 mblk_t *mp1; 5122 uint_t ip_hdr_len; 5123 conn_t *connp = (conn_t *)arg; 5124 tcp_t *tcp = connp->conn_tcp; 5125 ire_t *ire; 5126 5127 if (tcp->tcp_state != TCPS_LISTEN) 5128 goto error2; 5129 5130 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5131 5132 mutex_enter(&tcp->tcp_eager_lock); 5133 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5134 mutex_exit(&tcp->tcp_eager_lock); 5135 TCP_STAT(tcp_listendrop); 5136 BUMP_MIB(&tcp_mib, tcpListenDrop); 5137 if (tcp->tcp_debug) { 5138 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5139 "tcp_conn_request: listen backlog (max=%d) " 5140 "overflow (%d pending) on %s", 5141 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5142 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5143 } 5144 goto error2; 5145 } 5146 5147 if (tcp->tcp_conn_req_cnt_q0 >= 5148 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5149 /* 5150 * Q0 is full. Drop a pending half-open req from the queue 5151 * to make room for the new SYN req. Also mark the time we 5152 * drop a SYN. 5153 * 5154 * A more aggressive defense against SYN attack will 5155 * be to set the "tcp_syn_defense" flag now. 5156 */ 5157 TCP_STAT(tcp_listendropq0); 5158 tcp->tcp_last_rcv_lbolt = lbolt64; 5159 if (!tcp_drop_q0(tcp)) { 5160 mutex_exit(&tcp->tcp_eager_lock); 5161 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5162 if (tcp->tcp_debug) { 5163 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5164 "tcp_conn_request: listen half-open queue " 5165 "(max=%d) full (%d pending) on %s", 5166 tcp_conn_req_max_q0, 5167 tcp->tcp_conn_req_cnt_q0, 5168 tcp_display(tcp, NULL, 5169 DISP_PORT_ONLY)); 5170 } 5171 goto error2; 5172 } 5173 } 5174 mutex_exit(&tcp->tcp_eager_lock); 5175 5176 /* 5177 * IP adds STRUIO_EAGER and ensures that the received packet is 5178 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5179 * link local address. If IPSec is enabled, db_struioflag has 5180 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5181 * otherwise an error case if neither of them is set. 5182 */ 5183 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5184 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5185 DB_CKSUMSTART(mp) = 0; 5186 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5187 econnp = (conn_t *)tcp_get_conn(arg2); 5188 if (econnp == NULL) 5189 goto error2; 5190 econnp->conn_sqp = new_sqp; 5191 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5192 /* 5193 * mp is updated in tcp_get_ipsec_conn(). 5194 */ 5195 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5196 if (econnp == NULL) { 5197 /* 5198 * mp freed by tcp_get_ipsec_conn. 5199 */ 5200 return; 5201 } 5202 } else { 5203 goto error2; 5204 } 5205 5206 ASSERT(DB_TYPE(mp) == M_DATA); 5207 5208 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5209 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5210 ASSERT(OK_32PTR(mp->b_rptr)); 5211 if (ipvers == IPV4_VERSION) { 5212 ipha = (ipha_t *)mp->b_rptr; 5213 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5214 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5215 } else { 5216 ip6h = (ip6_t *)mp->b_rptr; 5217 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5218 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5219 } 5220 5221 if (tcp->tcp_family == AF_INET) { 5222 ASSERT(ipvers == IPV4_VERSION); 5223 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5224 } else { 5225 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5226 } 5227 5228 if (err) 5229 goto error3; 5230 5231 eager = econnp->conn_tcp; 5232 5233 /* Inherit various TCP parameters from the listener */ 5234 eager->tcp_naglim = tcp->tcp_naglim; 5235 eager->tcp_first_timer_threshold = 5236 tcp->tcp_first_timer_threshold; 5237 eager->tcp_second_timer_threshold = 5238 tcp->tcp_second_timer_threshold; 5239 5240 eager->tcp_first_ctimer_threshold = 5241 tcp->tcp_first_ctimer_threshold; 5242 eager->tcp_second_ctimer_threshold = 5243 tcp->tcp_second_ctimer_threshold; 5244 5245 /* 5246 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5247 * zone id before the accept is completed in tcp_wput_accept(). 5248 */ 5249 econnp->conn_zoneid = connp->conn_zoneid; 5250 5251 eager->tcp_hard_binding = B_TRUE; 5252 5253 tcp_bind_hash_insert(&tcp_bind_fanout[ 5254 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5255 5256 CL_INET_CONNECT(eager); 5257 5258 /* 5259 * No need to check for multicast destination since ip will only pass 5260 * up multicasts to those that have expressed interest 5261 * TODO: what about rejecting broadcasts? 5262 * Also check that source is not a multicast or broadcast address. 5263 */ 5264 eager->tcp_state = TCPS_SYN_RCVD; 5265 5266 5267 /* 5268 * There should be no ire in the mp as we are being called after 5269 * receiving the SYN. 5270 */ 5271 ASSERT(tcp_ire_mp(mp) == NULL); 5272 5273 /* 5274 * Adapt our mss, ttl, ... according to information provided in IRE. 5275 */ 5276 5277 if (tcp_adapt_ire(eager, NULL) == 0) { 5278 /* Undo the bind_hash_insert */ 5279 tcp_bind_hash_remove(eager); 5280 goto error3; 5281 } 5282 5283 /* Process all TCP options. */ 5284 tcp_process_options(eager, tcph); 5285 5286 /* Is the other end ECN capable? */ 5287 if (tcp_ecn_permitted >= 1 && 5288 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5289 eager->tcp_ecn_ok = B_TRUE; 5290 } 5291 5292 /* 5293 * listener->tcp_rq->q_hiwat should be the default window size or a 5294 * window size changed via SO_RCVBUF option. First round up the 5295 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5296 * scale option value if needed. Call tcp_rwnd_set() to finish the 5297 * setting. 5298 * 5299 * Note if there is a rpipe metric associated with the remote host, 5300 * we should not inherit receive window size from listener. 5301 */ 5302 eager->tcp_rwnd = MSS_ROUNDUP( 5303 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5304 eager->tcp_rwnd), eager->tcp_mss); 5305 if (eager->tcp_snd_ws_ok) 5306 tcp_set_ws_value(eager); 5307 /* 5308 * Note that this is the only place tcp_rwnd_set() is called for 5309 * accepting a connection. We need to call it here instead of 5310 * after the 3-way handshake because we need to tell the other 5311 * side our rwnd in the SYN-ACK segment. 5312 */ 5313 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5314 5315 /* 5316 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5317 * via soaccept()->soinheritoptions() which essentially applies 5318 * all the listener options to the new STREAM. The options that we 5319 * need to take care of are: 5320 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5321 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5322 * SO_SNDBUF, SO_RCVBUF. 5323 * 5324 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5325 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5326 * tcp_maxpsz_set() gets called later from 5327 * tcp_accept_finish(), the option takes effect. 5328 * 5329 */ 5330 /* Set the TCP options */ 5331 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5332 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5333 eager->tcp_oobinline = tcp->tcp_oobinline; 5334 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5335 eager->tcp_broadcast = tcp->tcp_broadcast; 5336 eager->tcp_useloopback = tcp->tcp_useloopback; 5337 eager->tcp_dontroute = tcp->tcp_dontroute; 5338 eager->tcp_linger = tcp->tcp_linger; 5339 eager->tcp_lingertime = tcp->tcp_lingertime; 5340 if (tcp->tcp_ka_enabled) 5341 eager->tcp_ka_enabled = 1; 5342 5343 /* Set the IP options */ 5344 econnp->conn_broadcast = connp->conn_broadcast; 5345 econnp->conn_loopback = connp->conn_loopback; 5346 econnp->conn_dontroute = connp->conn_dontroute; 5347 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5348 5349 /* Put a ref on the listener for the eager. */ 5350 CONN_INC_REF(connp); 5351 mutex_enter(&tcp->tcp_eager_lock); 5352 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5353 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5354 tcp->tcp_eager_next_q0 = eager; 5355 eager->tcp_eager_prev_q0 = tcp; 5356 5357 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5358 eager->tcp_listener = tcp; 5359 eager->tcp_saved_listener = tcp; 5360 5361 /* 5362 * Tag this detached tcp vector for later retrieval 5363 * by our listener client in tcp_accept(). 5364 */ 5365 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5366 tcp->tcp_conn_req_cnt_q0++; 5367 if (++tcp->tcp_conn_req_seqnum == -1) { 5368 /* 5369 * -1 is "special" and defined in TPI as something 5370 * that should never be used in T_CONN_IND 5371 */ 5372 ++tcp->tcp_conn_req_seqnum; 5373 } 5374 mutex_exit(&tcp->tcp_eager_lock); 5375 5376 if (tcp->tcp_syn_defense) { 5377 /* Don't drop the SYN that comes from a good IP source */ 5378 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5379 if (addr_cache != NULL && eager->tcp_remote == 5380 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5381 eager->tcp_dontdrop = B_TRUE; 5382 } 5383 } 5384 5385 /* 5386 * We need to insert the eager in its own perimeter but as soon 5387 * as we do that, we expose the eager to the classifier and 5388 * should not touch any field outside the eager's perimeter. 5389 * So do all the work necessary before inserting the eager 5390 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5391 * will succeed but undo everything if it fails. 5392 */ 5393 seg_seq = ABE32_TO_U32(tcph->th_seq); 5394 eager->tcp_irs = seg_seq; 5395 eager->tcp_rack = seg_seq; 5396 eager->tcp_rnxt = seg_seq + 1; 5397 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5398 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5399 eager->tcp_state = TCPS_SYN_RCVD; 5400 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5401 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5402 if (mp1 == NULL) 5403 goto error1; 5404 mblk_setcred(mp1, tcp->tcp_cred); 5405 DB_CPID(mp1) = tcp->tcp_cpid; 5406 5407 /* 5408 * We need to start the rto timer. In normal case, we start 5409 * the timer after sending the packet on the wire (or at 5410 * least believing that packet was sent by waiting for 5411 * CALL_IP_WPUT() to return). Since this is the first packet 5412 * being sent on the wire for the eager, our initial tcp_rto 5413 * is at least tcp_rexmit_interval_min which is a fairly 5414 * large value to allow the algorithm to adjust slowly to large 5415 * fluctuations of RTT during first few transmissions. 5416 * 5417 * Starting the timer first and then sending the packet in this 5418 * case shouldn't make much difference since tcp_rexmit_interval_min 5419 * is of the order of several 100ms and starting the timer 5420 * first and then sending the packet will result in difference 5421 * of few micro seconds. 5422 * 5423 * Without this optimization, we are forced to hold the fanout 5424 * lock across the ipcl_bind_insert() and sending the packet 5425 * so that we don't race against an incoming packet (maybe RST) 5426 * for this eager. 5427 */ 5428 5429 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5430 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5431 5432 5433 /* 5434 * Insert the eager in its own perimeter now. We are ready to deal 5435 * with any packets on eager. 5436 */ 5437 if (eager->tcp_ipversion == IPV4_VERSION) { 5438 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5439 goto error; 5440 } 5441 } else { 5442 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5443 goto error; 5444 } 5445 } 5446 5447 /* mark conn as fully-bound */ 5448 econnp->conn_fully_bound = B_TRUE; 5449 5450 /* Send the SYN-ACK */ 5451 tcp_send_data(eager, eager->tcp_wq, mp1); 5452 freemsg(mp); 5453 5454 return; 5455 error: 5456 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 5457 freemsg(mp1); 5458 error1: 5459 /* Undo what we did above */ 5460 mutex_enter(&tcp->tcp_eager_lock); 5461 tcp_eager_unlink(eager); 5462 mutex_exit(&tcp->tcp_eager_lock); 5463 /* Drop eager's reference on the listener */ 5464 CONN_DEC_REF(connp); 5465 5466 /* 5467 * Delete the cached ire in conn_ire_cache and also mark 5468 * the conn as CONDEMNED 5469 */ 5470 mutex_enter(&econnp->conn_lock); 5471 econnp->conn_state_flags |= CONN_CONDEMNED; 5472 ire = econnp->conn_ire_cache; 5473 econnp->conn_ire_cache = NULL; 5474 mutex_exit(&econnp->conn_lock); 5475 if (ire != NULL) 5476 IRE_REFRELE_NOTR(ire); 5477 5478 /* 5479 * tcp_accept_comm inserts the eager to the bind_hash 5480 * we need to remove it from the hash if ipcl_conn_insert 5481 * fails. 5482 */ 5483 tcp_bind_hash_remove(eager); 5484 /* Drop the eager ref placed in tcp_open_detached */ 5485 CONN_DEC_REF(econnp); 5486 5487 /* 5488 * If a connection already exists, send the mp to that connections so 5489 * that it can be appropriately dealt with. 5490 */ 5491 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 5492 if (!IPCL_IS_CONNECTED(econnp)) { 5493 /* 5494 * Something bad happened. ipcl_conn_insert() 5495 * failed because a connection already existed 5496 * in connected hash but we can't find it 5497 * anymore (someone blew it away). Just 5498 * free this message and hopefully remote 5499 * will retransmit at which time the SYN can be 5500 * treated as a new connection or dealth with 5501 * a TH_RST if a connection already exists. 5502 */ 5503 freemsg(mp); 5504 } else { 5505 squeue_fill(econnp->conn_sqp, mp, tcp_input, 5506 econnp, SQTAG_TCP_CONN_REQ); 5507 } 5508 } else { 5509 /* Nobody wants this packet */ 5510 freemsg(mp); 5511 } 5512 return; 5513 error2: 5514 freemsg(mp); 5515 return; 5516 error3: 5517 CONN_DEC_REF(econnp); 5518 freemsg(mp); 5519 } 5520 5521 /* 5522 * In an ideal case of vertical partition in NUMA architecture, its 5523 * beneficial to have the listener and all the incoming connections 5524 * tied to the same squeue. The other constraint is that incoming 5525 * connections should be tied to the squeue attached to interrupted 5526 * CPU for obvious locality reason so this leaves the listener to 5527 * be tied to the same squeue. Our only problem is that when listener 5528 * is binding, the CPU that will get interrupted by the NIC whose 5529 * IP address the listener is binding to is not even known. So 5530 * the code below allows us to change that binding at the time the 5531 * CPU is interrupted by virtue of incoming connection's squeue. 5532 * 5533 * This is usefull only in case of a listener bound to a specific IP 5534 * address. For other kind of listeners, they get bound the 5535 * very first time and there is no attempt to rebind them. 5536 */ 5537 void 5538 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5539 { 5540 conn_t *connp = (conn_t *)arg; 5541 squeue_t *sqp = (squeue_t *)arg2; 5542 squeue_t *new_sqp; 5543 uint32_t conn_flags; 5544 5545 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5546 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5547 } else { 5548 goto done; 5549 } 5550 5551 if (connp->conn_fanout == NULL) 5552 goto done; 5553 5554 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5555 mutex_enter(&connp->conn_fanout->connf_lock); 5556 mutex_enter(&connp->conn_lock); 5557 /* 5558 * No one from read or write side can access us now 5559 * except for already queued packets on this squeue. 5560 * But since we haven't changed the squeue yet, they 5561 * can't execute. If they are processed after we have 5562 * changed the squeue, they are sent back to the 5563 * correct squeue down below. 5564 */ 5565 if (connp->conn_sqp != new_sqp) { 5566 while (connp->conn_sqp != new_sqp) 5567 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5568 } 5569 5570 do { 5571 conn_flags = connp->conn_flags; 5572 conn_flags |= IPCL_FULLY_BOUND; 5573 (void) cas32(&connp->conn_flags, connp->conn_flags, 5574 conn_flags); 5575 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5576 5577 mutex_exit(&connp->conn_fanout->connf_lock); 5578 mutex_exit(&connp->conn_lock); 5579 } 5580 5581 done: 5582 if (connp->conn_sqp != sqp) { 5583 CONN_INC_REF(connp); 5584 squeue_fill(connp->conn_sqp, mp, 5585 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 5586 } else { 5587 tcp_conn_request(connp, mp, sqp); 5588 } 5589 } 5590 5591 /* 5592 * Successful connect request processing begins when our client passes 5593 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5594 * our T_OK_ACK reply message upstream. The control flow looks like this: 5595 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 5596 * upstream <- tcp_rput() <- IP 5597 * After various error checks are completed, tcp_connect() lays 5598 * the target address and port into the composite header template, 5599 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5600 * request followed by an IRE request, and passes the three mblk message 5601 * down to IP looking like this: 5602 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5603 * Processing continues in tcp_rput() when we receive the following message: 5604 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5605 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5606 * to fire off the connection request, and then passes the T_OK_ACK mblk 5607 * upstream that we filled in below. There are, of course, numerous 5608 * error conditions along the way which truncate the processing described 5609 * above. 5610 */ 5611 static void 5612 tcp_connect(tcp_t *tcp, mblk_t *mp) 5613 { 5614 sin_t *sin; 5615 sin6_t *sin6; 5616 queue_t *q = tcp->tcp_wq; 5617 struct T_conn_req *tcr; 5618 ipaddr_t *dstaddrp; 5619 in_port_t dstport; 5620 uint_t srcid; 5621 5622 tcr = (struct T_conn_req *)mp->b_rptr; 5623 5624 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5625 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5626 tcp_err_ack(tcp, mp, TPROTO, 0); 5627 return; 5628 } 5629 5630 /* 5631 * Determine packet type based on type of address passed in 5632 * the request should contain an IPv4 or IPv6 address. 5633 * Make sure that address family matches the type of 5634 * family of the the address passed down 5635 */ 5636 switch (tcr->DEST_length) { 5637 default: 5638 tcp_err_ack(tcp, mp, TBADADDR, 0); 5639 return; 5640 5641 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5642 /* 5643 * XXX: The check for valid DEST_length was not there 5644 * in earlier releases and some buggy 5645 * TLI apps (e.g Sybase) got away with not feeding 5646 * in sin_zero part of address. 5647 * We allow that bug to keep those buggy apps humming. 5648 * Test suites require the check on DEST_length. 5649 * We construct a new mblk with valid DEST_length 5650 * free the original so the rest of the code does 5651 * not have to keep track of this special shorter 5652 * length address case. 5653 */ 5654 mblk_t *nmp; 5655 struct T_conn_req *ntcr; 5656 sin_t *nsin; 5657 5658 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5659 tcr->OPT_length, BPRI_HI); 5660 if (nmp == NULL) { 5661 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5662 return; 5663 } 5664 ntcr = (struct T_conn_req *)nmp->b_rptr; 5665 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5666 ntcr->PRIM_type = T_CONN_REQ; 5667 ntcr->DEST_length = sizeof (sin_t); 5668 ntcr->DEST_offset = sizeof (struct T_conn_req); 5669 5670 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5671 *nsin = sin_null; 5672 /* Get pointer to shorter address to copy from original mp */ 5673 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5674 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5675 if (sin == NULL || !OK_32PTR((char *)sin)) { 5676 freemsg(nmp); 5677 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5678 return; 5679 } 5680 nsin->sin_family = sin->sin_family; 5681 nsin->sin_port = sin->sin_port; 5682 nsin->sin_addr = sin->sin_addr; 5683 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5684 nmp->b_wptr = (uchar_t *)&nsin[1]; 5685 if (tcr->OPT_length != 0) { 5686 ntcr->OPT_length = tcr->OPT_length; 5687 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5688 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5689 (uchar_t *)ntcr + ntcr->OPT_offset, 5690 tcr->OPT_length); 5691 nmp->b_wptr += tcr->OPT_length; 5692 } 5693 freemsg(mp); /* original mp freed */ 5694 mp = nmp; /* re-initialize original variables */ 5695 tcr = ntcr; 5696 } 5697 /* FALLTHRU */ 5698 5699 case sizeof (sin_t): 5700 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5701 sizeof (sin_t)); 5702 if (sin == NULL || !OK_32PTR((char *)sin)) { 5703 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5704 return; 5705 } 5706 if (tcp->tcp_family != AF_INET || 5707 sin->sin_family != AF_INET) { 5708 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5709 return; 5710 } 5711 if (sin->sin_port == 0) { 5712 tcp_err_ack(tcp, mp, TBADADDR, 0); 5713 return; 5714 } 5715 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 5716 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5717 return; 5718 } 5719 5720 break; 5721 5722 case sizeof (sin6_t): 5723 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 5724 sizeof (sin6_t)); 5725 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 5726 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5727 return; 5728 } 5729 if (tcp->tcp_family != AF_INET6 || 5730 sin6->sin6_family != AF_INET6) { 5731 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5732 return; 5733 } 5734 if (sin6->sin6_port == 0) { 5735 tcp_err_ack(tcp, mp, TBADADDR, 0); 5736 return; 5737 } 5738 break; 5739 } 5740 /* 5741 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5742 * should key on their sequence number and cut them loose. 5743 */ 5744 5745 /* 5746 * If options passed in, feed it for verification and handling 5747 */ 5748 if (tcr->OPT_length != 0) { 5749 mblk_t *ok_mp; 5750 mblk_t *discon_mp; 5751 mblk_t *conn_opts_mp; 5752 int t_error, sys_error, do_disconnect; 5753 5754 conn_opts_mp = NULL; 5755 5756 if (tcp_conprim_opt_process(tcp, mp, 5757 &do_disconnect, &t_error, &sys_error) < 0) { 5758 if (do_disconnect) { 5759 ASSERT(t_error == 0 && sys_error == 0); 5760 discon_mp = mi_tpi_discon_ind(NULL, 5761 ECONNREFUSED, 0); 5762 if (!discon_mp) { 5763 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5764 TSYSERR, ENOMEM); 5765 return; 5766 } 5767 ok_mp = mi_tpi_ok_ack_alloc(mp); 5768 if (!ok_mp) { 5769 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5770 TSYSERR, ENOMEM); 5771 return; 5772 } 5773 qreply(q, ok_mp); 5774 qreply(q, discon_mp); /* no flush! */ 5775 } else { 5776 ASSERT(t_error != 0); 5777 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5778 sys_error); 5779 } 5780 return; 5781 } 5782 /* 5783 * Success in setting options, the mp option buffer represented 5784 * by OPT_length/offset has been potentially modified and 5785 * contains results of option processing. We copy it in 5786 * another mp to save it for potentially influencing returning 5787 * it in T_CONN_CONN. 5788 */ 5789 if (tcr->OPT_length != 0) { /* there are resulting options */ 5790 conn_opts_mp = copyb(mp); 5791 if (!conn_opts_mp) { 5792 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5793 TSYSERR, ENOMEM); 5794 return; 5795 } 5796 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5797 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5798 /* 5799 * Note: 5800 * These resulting option negotiation can include any 5801 * end-to-end negotiation options but there no such 5802 * thing (yet?) in our TCP/IP. 5803 */ 5804 } 5805 } 5806 5807 /* 5808 * If we're connecting to an IPv4-mapped IPv6 address, we need to 5809 * make sure that the template IP header in the tcp structure is an 5810 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 5811 * need to this before we call tcp_bindi() so that the port lookup 5812 * code will look for ports in the correct port space (IPv4 and 5813 * IPv6 have separate port spaces). 5814 */ 5815 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 5816 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 5817 int err = 0; 5818 5819 err = tcp_header_init_ipv4(tcp); 5820 if (err != 0) { 5821 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 5822 goto connect_failed; 5823 } 5824 if (tcp->tcp_lport != 0) 5825 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 5826 } 5827 5828 switch (tcp->tcp_state) { 5829 case TCPS_IDLE: 5830 /* 5831 * We support quick connect, refer to comments in 5832 * tcp_connect_*() 5833 */ 5834 /* FALLTHRU */ 5835 case TCPS_BOUND: 5836 case TCPS_LISTEN: 5837 if (tcp->tcp_family == AF_INET6) { 5838 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 5839 tcp_connect_ipv6(tcp, mp, 5840 &sin6->sin6_addr, 5841 sin6->sin6_port, sin6->sin6_flowinfo, 5842 sin6->__sin6_src_id, sin6->sin6_scope_id); 5843 return; 5844 } 5845 /* 5846 * Destination adress is mapped IPv6 address. 5847 * Source bound address should be unspecified or 5848 * IPv6 mapped address as well. 5849 */ 5850 if (!IN6_IS_ADDR_UNSPECIFIED( 5851 &tcp->tcp_bound_source_v6) && 5852 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 5853 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 5854 EADDRNOTAVAIL); 5855 break; 5856 } 5857 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 5858 dstport = sin6->sin6_port; 5859 srcid = sin6->__sin6_src_id; 5860 } else { 5861 dstaddrp = &sin->sin_addr.s_addr; 5862 dstport = sin->sin_port; 5863 srcid = 0; 5864 } 5865 5866 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 5867 return; 5868 default: 5869 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 5870 break; 5871 } 5872 /* 5873 * Note: Code below is the "failure" case 5874 */ 5875 /* return error ack and blow away saved option results if any */ 5876 connect_failed: 5877 if (mp != NULL) 5878 putnext(tcp->tcp_rq, mp); 5879 else { 5880 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5881 TSYSERR, ENOMEM); 5882 } 5883 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 5884 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 5885 } 5886 5887 /* 5888 * Handle connect to IPv4 destinations, including connections for AF_INET6 5889 * sockets connecting to IPv4 mapped IPv6 destinations. 5890 */ 5891 static void 5892 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 5893 uint_t srcid) 5894 { 5895 tcph_t *tcph; 5896 mblk_t *mp1; 5897 ipaddr_t dstaddr = *dstaddrp; 5898 int32_t oldstate; 5899 uint16_t lport; 5900 5901 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 5902 5903 /* Check for attempt to connect to INADDR_ANY */ 5904 if (dstaddr == INADDR_ANY) { 5905 /* 5906 * SunOS 4.x and 4.3 BSD allow an application 5907 * to connect a TCP socket to INADDR_ANY. 5908 * When they do this, the kernel picks the 5909 * address of one interface and uses it 5910 * instead. The kernel usually ends up 5911 * picking the address of the loopback 5912 * interface. This is an undocumented feature. 5913 * However, we provide the same thing here 5914 * in order to have source and binary 5915 * compatibility with SunOS 4.x. 5916 * Update the T_CONN_REQ (sin/sin6) since it is used to 5917 * generate the T_CONN_CON. 5918 */ 5919 dstaddr = htonl(INADDR_LOOPBACK); 5920 *dstaddrp = dstaddr; 5921 } 5922 5923 /* Handle __sin6_src_id if socket not bound to an IP address */ 5924 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 5925 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 5926 tcp->tcp_connp->conn_zoneid); 5927 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 5928 tcp->tcp_ipha->ipha_src); 5929 } 5930 5931 /* 5932 * Don't let an endpoint connect to itself. Note that 5933 * the test here does not catch the case where the 5934 * source IP addr was left unspecified by the user. In 5935 * this case, the source addr is set in tcp_adapt_ire() 5936 * using the reply to the T_BIND message that we send 5937 * down to IP here and the check is repeated in tcp_rput_other. 5938 */ 5939 if (dstaddr == tcp->tcp_ipha->ipha_src && 5940 dstport == tcp->tcp_lport) { 5941 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 5942 goto failed; 5943 } 5944 5945 tcp->tcp_ipha->ipha_dst = dstaddr; 5946 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 5947 5948 /* 5949 * Massage a source route if any putting the first hop 5950 * in iph_dst. Compute a starting value for the checksum which 5951 * takes into account that the original iph_dst should be 5952 * included in the checksum but that ip will include the 5953 * first hop in the source route in the tcp checksum. 5954 */ 5955 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 5956 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 5957 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 5958 (tcp->tcp_ipha->ipha_dst & 0xffff)); 5959 if ((int)tcp->tcp_sum < 0) 5960 tcp->tcp_sum--; 5961 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 5962 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 5963 (tcp->tcp_sum >> 16)); 5964 tcph = tcp->tcp_tcph; 5965 *(uint16_t *)tcph->th_fport = dstport; 5966 tcp->tcp_fport = dstport; 5967 5968 oldstate = tcp->tcp_state; 5969 /* 5970 * At this point the remote destination address and remote port fields 5971 * in the tcp-four-tuple have been filled in the tcp structure. Now we 5972 * have to see which state tcp was in so we can take apropriate action. 5973 */ 5974 if (oldstate == TCPS_IDLE) { 5975 /* 5976 * We support a quick connect capability here, allowing 5977 * clients to transition directly from IDLE to SYN_SENT 5978 * tcp_bindi will pick an unused port, insert the connection 5979 * in the bind hash and transition to BOUND state. 5980 */ 5981 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 5982 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 5983 B_FALSE, B_FALSE); 5984 if (lport == 0) { 5985 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 5986 goto failed; 5987 } 5988 } 5989 tcp->tcp_state = TCPS_SYN_SENT; 5990 5991 /* 5992 * TODO: allow data with connect requests 5993 * by unlinking M_DATA trailers here and 5994 * linking them in behind the T_OK_ACK mblk. 5995 * The tcp_rput() bind ack handler would then 5996 * feed them to tcp_wput_data() rather than call 5997 * tcp_timer(). 5998 */ 5999 mp = mi_tpi_ok_ack_alloc(mp); 6000 if (!mp) { 6001 tcp->tcp_state = oldstate; 6002 goto failed; 6003 } 6004 if (tcp->tcp_family == AF_INET) { 6005 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6006 sizeof (ipa_conn_t)); 6007 } else { 6008 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6009 sizeof (ipa6_conn_t)); 6010 } 6011 if (mp1) { 6012 /* Hang onto the T_OK_ACK for later. */ 6013 linkb(mp1, mp); 6014 if (tcp->tcp_family == AF_INET) 6015 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6016 else { 6017 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6018 &tcp->tcp_sticky_ipp); 6019 } 6020 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6021 tcp->tcp_active_open = 1; 6022 /* 6023 * If the bind cannot complete immediately 6024 * IP will arrange to call tcp_rput_other 6025 * when the bind completes. 6026 */ 6027 if (mp1 != NULL) 6028 tcp_rput_other(tcp, mp1); 6029 return; 6030 } 6031 /* Error case */ 6032 tcp->tcp_state = oldstate; 6033 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6034 6035 failed: 6036 /* return error ack and blow away saved option results if any */ 6037 if (mp != NULL) 6038 putnext(tcp->tcp_rq, mp); 6039 else { 6040 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6041 TSYSERR, ENOMEM); 6042 } 6043 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6044 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6045 6046 } 6047 6048 /* 6049 * Handle connect to IPv6 destinations. 6050 */ 6051 static void 6052 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6053 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6054 { 6055 tcph_t *tcph; 6056 mblk_t *mp1; 6057 ip6_rthdr_t *rth; 6058 int32_t oldstate; 6059 uint16_t lport; 6060 6061 ASSERT(tcp->tcp_family == AF_INET6); 6062 6063 /* 6064 * If we're here, it means that the destination address is a native 6065 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6066 * reason why it might not be IPv6 is if the socket was bound to an 6067 * IPv4-mapped IPv6 address. 6068 */ 6069 if (tcp->tcp_ipversion != IPV6_VERSION) { 6070 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6071 goto failed; 6072 } 6073 6074 /* 6075 * Interpret a zero destination to mean loopback. 6076 * Update the T_CONN_REQ (sin/sin6) since it is used to 6077 * generate the T_CONN_CON. 6078 */ 6079 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6080 *dstaddrp = ipv6_loopback; 6081 } 6082 6083 /* Handle __sin6_src_id if socket not bound to an IP address */ 6084 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6085 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6086 tcp->tcp_connp->conn_zoneid); 6087 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6088 } 6089 6090 /* 6091 * Take care of the scope_id now and add ip6i_t 6092 * if ip6i_t is not already allocated through TCP 6093 * sticky options. At this point tcp_ip6h does not 6094 * have dst info, thus use dstaddrp. 6095 */ 6096 if (scope_id != 0 && 6097 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6098 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6099 ip6i_t *ip6i; 6100 6101 ipp->ipp_ifindex = scope_id; 6102 ip6i = (ip6i_t *)tcp->tcp_iphc; 6103 6104 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6105 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6106 /* Already allocated */ 6107 ip6i->ip6i_flags |= IP6I_IFINDEX; 6108 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6109 ipp->ipp_fields |= IPPF_SCOPE_ID; 6110 } else { 6111 int reterr; 6112 6113 ipp->ipp_fields |= IPPF_SCOPE_ID; 6114 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6115 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6116 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6117 if (reterr != 0) 6118 goto failed; 6119 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6120 } 6121 } 6122 6123 /* 6124 * Don't let an endpoint connect to itself. Note that 6125 * the test here does not catch the case where the 6126 * source IP addr was left unspecified by the user. In 6127 * this case, the source addr is set in tcp_adapt_ire() 6128 * using the reply to the T_BIND message that we send 6129 * down to IP here and the check is repeated in tcp_rput_other. 6130 */ 6131 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6132 (dstport == tcp->tcp_lport)) { 6133 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6134 goto failed; 6135 } 6136 6137 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6138 tcp->tcp_remote_v6 = *dstaddrp; 6139 tcp->tcp_ip6h->ip6_vcf = 6140 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6141 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6142 6143 6144 /* 6145 * Massage a routing header (if present) putting the first hop 6146 * in ip6_dst. Compute a starting value for the checksum which 6147 * takes into account that the original ip6_dst should be 6148 * included in the checksum but that ip will include the 6149 * first hop in the source route in the tcp checksum. 6150 */ 6151 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6152 if (rth != NULL) { 6153 6154 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6155 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6156 (tcp->tcp_sum >> 16)); 6157 } else { 6158 tcp->tcp_sum = 0; 6159 } 6160 6161 tcph = tcp->tcp_tcph; 6162 *(uint16_t *)tcph->th_fport = dstport; 6163 tcp->tcp_fport = dstport; 6164 6165 oldstate = tcp->tcp_state; 6166 /* 6167 * At this point the remote destination address and remote port fields 6168 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6169 * have to see which state tcp was in so we can take apropriate action. 6170 */ 6171 if (oldstate == TCPS_IDLE) { 6172 /* 6173 * We support a quick connect capability here, allowing 6174 * clients to transition directly from IDLE to SYN_SENT 6175 * tcp_bindi will pick an unused port, insert the connection 6176 * in the bind hash and transition to BOUND state. 6177 */ 6178 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 6179 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6180 B_FALSE, B_FALSE); 6181 if (lport == 0) { 6182 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6183 goto failed; 6184 } 6185 } 6186 tcp->tcp_state = TCPS_SYN_SENT; 6187 /* 6188 * TODO: allow data with connect requests 6189 * by unlinking M_DATA trailers here and 6190 * linking them in behind the T_OK_ACK mblk. 6191 * The tcp_rput() bind ack handler would then 6192 * feed them to tcp_wput_data() rather than call 6193 * tcp_timer(). 6194 */ 6195 mp = mi_tpi_ok_ack_alloc(mp); 6196 if (!mp) { 6197 tcp->tcp_state = oldstate; 6198 goto failed; 6199 } 6200 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6201 if (mp1) { 6202 /* Hang onto the T_OK_ACK for later. */ 6203 linkb(mp1, mp); 6204 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6205 &tcp->tcp_sticky_ipp); 6206 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6207 tcp->tcp_active_open = 1; 6208 /* ip_bind_v6() may return ACK or ERROR */ 6209 if (mp1 != NULL) 6210 tcp_rput_other(tcp, mp1); 6211 return; 6212 } 6213 /* Error case */ 6214 tcp->tcp_state = oldstate; 6215 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6216 6217 failed: 6218 /* return error ack and blow away saved option results if any */ 6219 if (mp != NULL) 6220 putnext(tcp->tcp_rq, mp); 6221 else { 6222 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6223 TSYSERR, ENOMEM); 6224 } 6225 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6226 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6227 } 6228 6229 /* 6230 * We need a stream q for detached closing tcp connections 6231 * to use. Our client hereby indicates that this q is the 6232 * one to use. 6233 */ 6234 static void 6235 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6236 { 6237 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6238 queue_t *q = tcp->tcp_wq; 6239 6240 mp->b_datap->db_type = M_IOCACK; 6241 iocp->ioc_count = 0; 6242 mutex_enter(&tcp_g_q_lock); 6243 if (tcp_g_q != NULL) { 6244 mutex_exit(&tcp_g_q_lock); 6245 iocp->ioc_error = EALREADY; 6246 } else { 6247 mblk_t *mp1; 6248 6249 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6250 if (mp1 == NULL) { 6251 mutex_exit(&tcp_g_q_lock); 6252 iocp->ioc_error = ENOMEM; 6253 } else { 6254 tcp_g_q = tcp->tcp_rq; 6255 mutex_exit(&tcp_g_q_lock); 6256 iocp->ioc_error = 0; 6257 iocp->ioc_rval = 0; 6258 /* 6259 * We are passing tcp_sticky_ipp as NULL 6260 * as it is not useful for tcp_default queue 6261 */ 6262 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6263 if (mp1 != NULL) 6264 tcp_rput_other(tcp, mp1); 6265 } 6266 } 6267 qreply(q, mp); 6268 } 6269 6270 /* 6271 * Our client hereby directs us to reject the connection request 6272 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6273 * of sending the appropriate RST, not an ICMP error. 6274 */ 6275 static void 6276 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6277 { 6278 tcp_t *ltcp = NULL; 6279 t_scalar_t seqnum; 6280 conn_t *connp; 6281 6282 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6283 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6284 tcp_err_ack(tcp, mp, TPROTO, 0); 6285 return; 6286 } 6287 6288 /* 6289 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6290 * when the stream is in BOUND state. Do not send a reset, 6291 * since the destination IP address is not valid, and it can 6292 * be the initialized value of all zeros (broadcast address). 6293 * 6294 * If TCP has sent down a bind request to IP and has not 6295 * received the reply, reject the request. Otherwise, TCP 6296 * will be confused. 6297 */ 6298 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6299 if (tcp->tcp_debug) { 6300 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6301 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6302 } 6303 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6304 return; 6305 } 6306 6307 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6308 6309 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6310 6311 /* 6312 * According to TPI, for non-listeners, ignore seqnum 6313 * and disconnect. 6314 * Following interpretation of -1 seqnum is historical 6315 * and implied TPI ? (TPI only states that for T_CONN_IND, 6316 * a valid seqnum should not be -1). 6317 * 6318 * -1 means disconnect everything 6319 * regardless even on a listener. 6320 */ 6321 6322 int old_state = tcp->tcp_state; 6323 6324 /* 6325 * The connection can't be on the tcp_time_wait_head list 6326 * since it is not detached. 6327 */ 6328 ASSERT(tcp->tcp_time_wait_next == NULL); 6329 ASSERT(tcp->tcp_time_wait_prev == NULL); 6330 ASSERT(tcp->tcp_time_wait_expire == 0); 6331 ltcp = NULL; 6332 /* 6333 * If it used to be a listener, check to make sure no one else 6334 * has taken the port before switching back to LISTEN state. 6335 */ 6336 if (tcp->tcp_ipversion == IPV4_VERSION) { 6337 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6338 tcp->tcp_ipha->ipha_src, 6339 tcp->tcp_connp->conn_zoneid); 6340 if (connp != NULL) 6341 ltcp = connp->conn_tcp; 6342 } else { 6343 /* Allow tcp_bound_if listeners? */ 6344 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6345 &tcp->tcp_ip6h->ip6_src, 0, 6346 tcp->tcp_connp->conn_zoneid); 6347 if (connp != NULL) 6348 ltcp = connp->conn_tcp; 6349 } 6350 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6351 tcp->tcp_state = TCPS_LISTEN; 6352 } else if (old_state > TCPS_BOUND) { 6353 tcp->tcp_conn_req_max = 0; 6354 tcp->tcp_state = TCPS_BOUND; 6355 } 6356 if (ltcp != NULL) 6357 CONN_DEC_REF(ltcp->tcp_connp); 6358 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6359 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6360 } else if (old_state == TCPS_ESTABLISHED || 6361 old_state == TCPS_CLOSE_WAIT) { 6362 BUMP_MIB(&tcp_mib, tcpEstabResets); 6363 } 6364 6365 if (tcp->tcp_fused) 6366 tcp_unfuse(tcp); 6367 6368 mutex_enter(&tcp->tcp_eager_lock); 6369 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6370 (tcp->tcp_conn_req_cnt_q != 0)) { 6371 tcp_eager_cleanup(tcp, 0); 6372 } 6373 mutex_exit(&tcp->tcp_eager_lock); 6374 6375 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6376 tcp->tcp_rnxt, TH_RST | TH_ACK); 6377 6378 tcp_reinit(tcp); 6379 6380 if (old_state >= TCPS_ESTABLISHED) { 6381 /* Send M_FLUSH according to TPI */ 6382 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6383 } 6384 mp = mi_tpi_ok_ack_alloc(mp); 6385 if (mp) 6386 putnext(tcp->tcp_rq, mp); 6387 return; 6388 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6389 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6390 return; 6391 } 6392 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6393 /* Send M_FLUSH according to TPI */ 6394 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6395 } 6396 mp = mi_tpi_ok_ack_alloc(mp); 6397 if (mp) 6398 putnext(tcp->tcp_rq, mp); 6399 } 6400 6401 /* 6402 * Diagnostic routine used to return a string associated with the tcp state. 6403 * Note that if the caller does not supply a buffer, it will use an internal 6404 * static string. This means that if multiple threads call this function at 6405 * the same time, output can be corrupted... Note also that this function 6406 * does not check the size of the supplied buffer. The caller has to make 6407 * sure that it is big enough. 6408 */ 6409 static char * 6410 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6411 { 6412 char buf1[30]; 6413 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6414 char *buf; 6415 char *cp; 6416 in6_addr_t local, remote; 6417 char local_addrbuf[INET6_ADDRSTRLEN]; 6418 char remote_addrbuf[INET6_ADDRSTRLEN]; 6419 6420 if (sup_buf != NULL) 6421 buf = sup_buf; 6422 else 6423 buf = priv_buf; 6424 6425 if (tcp == NULL) 6426 return ("NULL_TCP"); 6427 switch (tcp->tcp_state) { 6428 case TCPS_CLOSED: 6429 cp = "TCP_CLOSED"; 6430 break; 6431 case TCPS_IDLE: 6432 cp = "TCP_IDLE"; 6433 break; 6434 case TCPS_BOUND: 6435 cp = "TCP_BOUND"; 6436 break; 6437 case TCPS_LISTEN: 6438 cp = "TCP_LISTEN"; 6439 break; 6440 case TCPS_SYN_SENT: 6441 cp = "TCP_SYN_SENT"; 6442 break; 6443 case TCPS_SYN_RCVD: 6444 cp = "TCP_SYN_RCVD"; 6445 break; 6446 case TCPS_ESTABLISHED: 6447 cp = "TCP_ESTABLISHED"; 6448 break; 6449 case TCPS_CLOSE_WAIT: 6450 cp = "TCP_CLOSE_WAIT"; 6451 break; 6452 case TCPS_FIN_WAIT_1: 6453 cp = "TCP_FIN_WAIT_1"; 6454 break; 6455 case TCPS_CLOSING: 6456 cp = "TCP_CLOSING"; 6457 break; 6458 case TCPS_LAST_ACK: 6459 cp = "TCP_LAST_ACK"; 6460 break; 6461 case TCPS_FIN_WAIT_2: 6462 cp = "TCP_FIN_WAIT_2"; 6463 break; 6464 case TCPS_TIME_WAIT: 6465 cp = "TCP_TIME_WAIT"; 6466 break; 6467 default: 6468 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6469 cp = buf1; 6470 break; 6471 } 6472 switch (format) { 6473 case DISP_ADDR_AND_PORT: 6474 if (tcp->tcp_ipversion == IPV4_VERSION) { 6475 /* 6476 * Note that we use the remote address in the tcp_b 6477 * structure. This means that it will print out 6478 * the real destination address, not the next hop's 6479 * address if source routing is used. 6480 */ 6481 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6482 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6483 6484 } else { 6485 local = tcp->tcp_ip_src_v6; 6486 remote = tcp->tcp_remote_v6; 6487 } 6488 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6489 sizeof (local_addrbuf)); 6490 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6491 sizeof (remote_addrbuf)); 6492 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6493 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6494 ntohs(tcp->tcp_fport), cp); 6495 break; 6496 case DISP_PORT_ONLY: 6497 default: 6498 (void) mi_sprintf(buf, "[%u, %u] %s", 6499 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6500 break; 6501 } 6502 6503 return (buf); 6504 } 6505 6506 /* 6507 * Called via squeue to get on to eager's perimeter to send a 6508 * TH_RST. The listener wants the eager to disappear either 6509 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 6510 * being called. 6511 */ 6512 /* ARGSUSED */ 6513 void 6514 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6515 { 6516 conn_t *econnp = (conn_t *)arg; 6517 tcp_t *eager = econnp->conn_tcp; 6518 tcp_t *listener = eager->tcp_listener; 6519 6520 /* 6521 * We could be called because listener is closing. Since 6522 * the eager is using listener's queue's, its not safe. 6523 * Better use the default queue just to send the TH_RST 6524 * out. 6525 */ 6526 eager->tcp_rq = tcp_g_q; 6527 eager->tcp_wq = WR(tcp_g_q); 6528 6529 if (eager->tcp_state > TCPS_LISTEN) { 6530 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6531 eager, eager->tcp_snxt, 0, TH_RST); 6532 } 6533 6534 /* We are here because listener wants this eager gone */ 6535 if (listener != NULL) { 6536 mutex_enter(&listener->tcp_eager_lock); 6537 tcp_eager_unlink(eager); 6538 if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { 6539 /* 6540 * The eager has sent a conn_ind up to the 6541 * listener but listener decides to close 6542 * instead. We need to drop the extra ref 6543 * placed on eager in tcp_rput_data() before 6544 * sending the conn_ind to listener. 6545 */ 6546 CONN_DEC_REF(econnp); 6547 } 6548 mutex_exit(&listener->tcp_eager_lock); 6549 CONN_DEC_REF(listener->tcp_connp); 6550 } 6551 6552 if (eager->tcp_state > TCPS_BOUND) 6553 tcp_close_detached(eager); 6554 } 6555 6556 /* 6557 * Reset any eager connection hanging off this listener marked 6558 * with 'seqnum' and then reclaim it's resources. 6559 */ 6560 static boolean_t 6561 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6562 { 6563 tcp_t *eager; 6564 mblk_t *mp; 6565 6566 TCP_STAT(tcp_eager_blowoff_calls); 6567 eager = listener; 6568 mutex_enter(&listener->tcp_eager_lock); 6569 do { 6570 eager = eager->tcp_eager_next_q; 6571 if (eager == NULL) { 6572 mutex_exit(&listener->tcp_eager_lock); 6573 return (B_FALSE); 6574 } 6575 } while (eager->tcp_conn_req_seqnum != seqnum); 6576 CONN_INC_REF(eager->tcp_connp); 6577 mutex_exit(&listener->tcp_eager_lock); 6578 mp = &eager->tcp_closemp; 6579 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6580 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 6581 return (B_TRUE); 6582 } 6583 6584 /* 6585 * Reset any eager connection hanging off this listener 6586 * and then reclaim it's resources. 6587 */ 6588 static void 6589 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6590 { 6591 tcp_t *eager; 6592 mblk_t *mp; 6593 6594 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6595 6596 if (!q0_only) { 6597 /* First cleanup q */ 6598 TCP_STAT(tcp_eager_blowoff_q); 6599 eager = listener->tcp_eager_next_q; 6600 while (eager != NULL) { 6601 CONN_INC_REF(eager->tcp_connp); 6602 mp = &eager->tcp_closemp; 6603 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6604 tcp_eager_kill, eager->tcp_connp, 6605 SQTAG_TCP_EAGER_CLEANUP); 6606 eager = eager->tcp_eager_next_q; 6607 } 6608 } 6609 /* Then cleanup q0 */ 6610 TCP_STAT(tcp_eager_blowoff_q0); 6611 eager = listener->tcp_eager_next_q0; 6612 while (eager != listener) { 6613 CONN_INC_REF(eager->tcp_connp); 6614 mp = &eager->tcp_closemp; 6615 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6616 tcp_eager_kill, eager->tcp_connp, 6617 SQTAG_TCP_EAGER_CLEANUP_Q0); 6618 eager = eager->tcp_eager_next_q0; 6619 } 6620 } 6621 6622 /* 6623 * If we are an eager connection hanging off a listener that hasn't 6624 * formally accepted the connection yet, get off his list and blow off 6625 * any data that we have accumulated. 6626 */ 6627 static void 6628 tcp_eager_unlink(tcp_t *tcp) 6629 { 6630 tcp_t *listener = tcp->tcp_listener; 6631 6632 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6633 ASSERT(listener != NULL); 6634 if (tcp->tcp_eager_next_q0 != NULL) { 6635 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6636 6637 /* Remove the eager tcp from q0 */ 6638 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6639 tcp->tcp_eager_prev_q0; 6640 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6641 tcp->tcp_eager_next_q0; 6642 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6643 listener->tcp_conn_req_cnt_q0--; 6644 6645 tcp->tcp_eager_next_q0 = NULL; 6646 tcp->tcp_eager_prev_q0 = NULL; 6647 6648 if (tcp->tcp_syn_rcvd_timeout != 0) { 6649 /* we have timed out before */ 6650 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6651 listener->tcp_syn_rcvd_timeout--; 6652 } 6653 } else { 6654 tcp_t **tcpp = &listener->tcp_eager_next_q; 6655 tcp_t *prev = NULL; 6656 6657 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6658 if (tcpp[0] == tcp) { 6659 if (listener->tcp_eager_last_q == tcp) { 6660 /* 6661 * If we are unlinking the last 6662 * element on the list, adjust 6663 * tail pointer. Set tail pointer 6664 * to nil when list is empty. 6665 */ 6666 ASSERT(tcp->tcp_eager_next_q == NULL); 6667 if (listener->tcp_eager_last_q == 6668 listener->tcp_eager_next_q) { 6669 listener->tcp_eager_last_q = 6670 NULL; 6671 } else { 6672 /* 6673 * We won't get here if there 6674 * is only one eager in the 6675 * list. 6676 */ 6677 ASSERT(prev != NULL); 6678 listener->tcp_eager_last_q = 6679 prev; 6680 } 6681 } 6682 tcpp[0] = tcp->tcp_eager_next_q; 6683 tcp->tcp_eager_next_q = NULL; 6684 tcp->tcp_eager_last_q = NULL; 6685 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6686 listener->tcp_conn_req_cnt_q--; 6687 break; 6688 } 6689 prev = tcpp[0]; 6690 } 6691 } 6692 tcp->tcp_listener = NULL; 6693 } 6694 6695 /* Shorthand to generate and send TPI error acks to our client */ 6696 static void 6697 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6698 { 6699 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6700 putnext(tcp->tcp_rq, mp); 6701 } 6702 6703 /* Shorthand to generate and send TPI error acks to our client */ 6704 static void 6705 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6706 int t_error, int sys_error) 6707 { 6708 struct T_error_ack *teackp; 6709 6710 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6711 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6712 teackp = (struct T_error_ack *)mp->b_rptr; 6713 teackp->ERROR_prim = primitive; 6714 teackp->TLI_error = t_error; 6715 teackp->UNIX_error = sys_error; 6716 putnext(tcp->tcp_rq, mp); 6717 } 6718 } 6719 6720 /* 6721 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6722 * but instead the code relies on: 6723 * - the fact that the address of the array and its size never changes 6724 * - the atomic assignment of the elements of the array 6725 */ 6726 /* ARGSUSED */ 6727 static int 6728 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6729 { 6730 int i; 6731 6732 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6733 if (tcp_g_epriv_ports[i] != 0) 6734 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 6735 } 6736 return (0); 6737 } 6738 6739 /* 6740 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6741 * threads from changing it at the same time. 6742 */ 6743 /* ARGSUSED */ 6744 static int 6745 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6746 cred_t *cr) 6747 { 6748 long new_value; 6749 int i; 6750 6751 /* 6752 * Fail the request if the new value does not lie within the 6753 * port number limits. 6754 */ 6755 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6756 new_value <= 0 || new_value >= 65536) { 6757 return (EINVAL); 6758 } 6759 6760 mutex_enter(&tcp_epriv_port_lock); 6761 /* Check if the value is already in the list */ 6762 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6763 if (new_value == tcp_g_epriv_ports[i]) { 6764 mutex_exit(&tcp_epriv_port_lock); 6765 return (EEXIST); 6766 } 6767 } 6768 /* Find an empty slot */ 6769 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6770 if (tcp_g_epriv_ports[i] == 0) 6771 break; 6772 } 6773 if (i == tcp_g_num_epriv_ports) { 6774 mutex_exit(&tcp_epriv_port_lock); 6775 return (EOVERFLOW); 6776 } 6777 /* Set the new value */ 6778 tcp_g_epriv_ports[i] = (uint16_t)new_value; 6779 mutex_exit(&tcp_epriv_port_lock); 6780 return (0); 6781 } 6782 6783 /* 6784 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6785 * threads from changing it at the same time. 6786 */ 6787 /* ARGSUSED */ 6788 static int 6789 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6790 cred_t *cr) 6791 { 6792 long new_value; 6793 int i; 6794 6795 /* 6796 * Fail the request if the new value does not lie within the 6797 * port number limits. 6798 */ 6799 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 6800 new_value >= 65536) { 6801 return (EINVAL); 6802 } 6803 6804 mutex_enter(&tcp_epriv_port_lock); 6805 /* Check that the value is already in the list */ 6806 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6807 if (tcp_g_epriv_ports[i] == new_value) 6808 break; 6809 } 6810 if (i == tcp_g_num_epriv_ports) { 6811 mutex_exit(&tcp_epriv_port_lock); 6812 return (ESRCH); 6813 } 6814 /* Clear the value */ 6815 tcp_g_epriv_ports[i] = 0; 6816 mutex_exit(&tcp_epriv_port_lock); 6817 return (0); 6818 } 6819 6820 /* Return the TPI/TLI equivalent of our current tcp_state */ 6821 static int 6822 tcp_tpistate(tcp_t *tcp) 6823 { 6824 switch (tcp->tcp_state) { 6825 case TCPS_IDLE: 6826 return (TS_UNBND); 6827 case TCPS_LISTEN: 6828 /* 6829 * Return whether there are outstanding T_CONN_IND waiting 6830 * for the matching T_CONN_RES. Therefore don't count q0. 6831 */ 6832 if (tcp->tcp_conn_req_cnt_q > 0) 6833 return (TS_WRES_CIND); 6834 else 6835 return (TS_IDLE); 6836 case TCPS_BOUND: 6837 return (TS_IDLE); 6838 case TCPS_SYN_SENT: 6839 return (TS_WCON_CREQ); 6840 case TCPS_SYN_RCVD: 6841 /* 6842 * Note: assumption: this has to the active open SYN_RCVD. 6843 * The passive instance is detached in SYN_RCVD stage of 6844 * incoming connection processing so we cannot get request 6845 * for T_info_ack on it. 6846 */ 6847 return (TS_WACK_CRES); 6848 case TCPS_ESTABLISHED: 6849 return (TS_DATA_XFER); 6850 case TCPS_CLOSE_WAIT: 6851 return (TS_WREQ_ORDREL); 6852 case TCPS_FIN_WAIT_1: 6853 return (TS_WIND_ORDREL); 6854 case TCPS_FIN_WAIT_2: 6855 return (TS_WIND_ORDREL); 6856 6857 case TCPS_CLOSING: 6858 case TCPS_LAST_ACK: 6859 case TCPS_TIME_WAIT: 6860 case TCPS_CLOSED: 6861 /* 6862 * Following TS_WACK_DREQ7 is a rendition of "not 6863 * yet TS_IDLE" TPI state. There is no best match to any 6864 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6865 * choose a value chosen that will map to TLI/XTI level 6866 * state of TSTATECHNG (state is process of changing) which 6867 * captures what this dummy state represents. 6868 */ 6869 return (TS_WACK_DREQ7); 6870 default: 6871 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6872 tcp->tcp_state, tcp_display(tcp, NULL, 6873 DISP_PORT_ONLY)); 6874 return (TS_UNBND); 6875 } 6876 } 6877 6878 static void 6879 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 6880 { 6881 if (tcp->tcp_family == AF_INET6) 6882 *tia = tcp_g_t_info_ack_v6; 6883 else 6884 *tia = tcp_g_t_info_ack; 6885 tia->CURRENT_state = tcp_tpistate(tcp); 6886 tia->OPT_size = tcp_max_optsize; 6887 if (tcp->tcp_mss == 0) { 6888 /* Not yet set - tcp_open does not set mss */ 6889 if (tcp->tcp_ipversion == IPV4_VERSION) 6890 tia->TIDU_size = tcp_mss_def_ipv4; 6891 else 6892 tia->TIDU_size = tcp_mss_def_ipv6; 6893 } else { 6894 tia->TIDU_size = tcp->tcp_mss; 6895 } 6896 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 6897 } 6898 6899 /* 6900 * This routine responds to T_CAPABILITY_REQ messages. It is called by 6901 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 6902 * tcp_g_t_info_ack. The current state of the stream is copied from 6903 * tcp_state. 6904 */ 6905 static void 6906 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 6907 { 6908 t_uscalar_t cap_bits1; 6909 struct T_capability_ack *tcap; 6910 6911 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 6912 freemsg(mp); 6913 return; 6914 } 6915 6916 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 6917 6918 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 6919 mp->b_datap->db_type, T_CAPABILITY_ACK); 6920 if (mp == NULL) 6921 return; 6922 6923 tcap = (struct T_capability_ack *)mp->b_rptr; 6924 tcap->CAP_bits1 = 0; 6925 6926 if (cap_bits1 & TC1_INFO) { 6927 tcp_copy_info(&tcap->INFO_ack, tcp); 6928 tcap->CAP_bits1 |= TC1_INFO; 6929 } 6930 6931 if (cap_bits1 & TC1_ACCEPTOR_ID) { 6932 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 6933 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 6934 } 6935 6936 putnext(tcp->tcp_rq, mp); 6937 } 6938 6939 /* 6940 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 6941 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 6942 * The current state of the stream is copied from tcp_state. 6943 */ 6944 static void 6945 tcp_info_req(tcp_t *tcp, mblk_t *mp) 6946 { 6947 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 6948 T_INFO_ACK); 6949 if (!mp) { 6950 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6951 return; 6952 } 6953 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 6954 putnext(tcp->tcp_rq, mp); 6955 } 6956 6957 /* Respond to the TPI addr request */ 6958 static void 6959 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 6960 { 6961 sin_t *sin; 6962 mblk_t *ackmp; 6963 struct T_addr_ack *taa; 6964 6965 /* Make it large enough for worst case */ 6966 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 6967 2 * sizeof (sin6_t), 1); 6968 if (ackmp == NULL) { 6969 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6970 return; 6971 } 6972 6973 if (tcp->tcp_ipversion == IPV6_VERSION) { 6974 tcp_addr_req_ipv6(tcp, ackmp); 6975 return; 6976 } 6977 taa = (struct T_addr_ack *)ackmp->b_rptr; 6978 6979 bzero(taa, sizeof (struct T_addr_ack)); 6980 ackmp->b_wptr = (uchar_t *)&taa[1]; 6981 6982 taa->PRIM_type = T_ADDR_ACK; 6983 ackmp->b_datap->db_type = M_PCPROTO; 6984 6985 /* 6986 * Note: Following code assumes 32 bit alignment of basic 6987 * data structures like sin_t and struct T_addr_ack. 6988 */ 6989 if (tcp->tcp_state >= TCPS_BOUND) { 6990 /* 6991 * Fill in local address 6992 */ 6993 taa->LOCADDR_length = sizeof (sin_t); 6994 taa->LOCADDR_offset = sizeof (*taa); 6995 6996 sin = (sin_t *)&taa[1]; 6997 6998 /* Fill zeroes and then intialize non-zero fields */ 6999 *sin = sin_null; 7000 7001 sin->sin_family = AF_INET; 7002 7003 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7004 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7005 7006 ackmp->b_wptr = (uchar_t *)&sin[1]; 7007 7008 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7009 /* 7010 * Fill in Remote address 7011 */ 7012 taa->REMADDR_length = sizeof (sin_t); 7013 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7014 taa->LOCADDR_length); 7015 7016 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7017 *sin = sin_null; 7018 sin->sin_family = AF_INET; 7019 sin->sin_addr.s_addr = tcp->tcp_remote; 7020 sin->sin_port = tcp->tcp_fport; 7021 7022 ackmp->b_wptr = (uchar_t *)&sin[1]; 7023 } 7024 } 7025 putnext(tcp->tcp_rq, ackmp); 7026 } 7027 7028 /* Assumes that tcp_addr_req gets enough space and alignment */ 7029 static void 7030 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7031 { 7032 sin6_t *sin6; 7033 struct T_addr_ack *taa; 7034 7035 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7036 ASSERT(OK_32PTR(ackmp->b_rptr)); 7037 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7038 2 * sizeof (sin6_t)); 7039 7040 taa = (struct T_addr_ack *)ackmp->b_rptr; 7041 7042 bzero(taa, sizeof (struct T_addr_ack)); 7043 ackmp->b_wptr = (uchar_t *)&taa[1]; 7044 7045 taa->PRIM_type = T_ADDR_ACK; 7046 ackmp->b_datap->db_type = M_PCPROTO; 7047 7048 /* 7049 * Note: Following code assumes 32 bit alignment of basic 7050 * data structures like sin6_t and struct T_addr_ack. 7051 */ 7052 if (tcp->tcp_state >= TCPS_BOUND) { 7053 /* 7054 * Fill in local address 7055 */ 7056 taa->LOCADDR_length = sizeof (sin6_t); 7057 taa->LOCADDR_offset = sizeof (*taa); 7058 7059 sin6 = (sin6_t *)&taa[1]; 7060 *sin6 = sin6_null; 7061 7062 sin6->sin6_family = AF_INET6; 7063 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7064 sin6->sin6_port = tcp->tcp_lport; 7065 7066 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7067 7068 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7069 /* 7070 * Fill in Remote address 7071 */ 7072 taa->REMADDR_length = sizeof (sin6_t); 7073 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7074 taa->LOCADDR_length); 7075 7076 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7077 *sin6 = sin6_null; 7078 sin6->sin6_family = AF_INET6; 7079 sin6->sin6_flowinfo = 7080 tcp->tcp_ip6h->ip6_vcf & 7081 ~IPV6_VERS_AND_FLOW_MASK; 7082 sin6->sin6_addr = tcp->tcp_remote_v6; 7083 sin6->sin6_port = tcp->tcp_fport; 7084 7085 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7086 } 7087 } 7088 putnext(tcp->tcp_rq, ackmp); 7089 } 7090 7091 /* 7092 * Handle reinitialization of a tcp structure. 7093 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7094 */ 7095 static void 7096 tcp_reinit(tcp_t *tcp) 7097 { 7098 mblk_t *mp; 7099 int err; 7100 7101 TCP_STAT(tcp_reinit_calls); 7102 7103 /* tcp_reinit should never be called for detached tcp_t's */ 7104 ASSERT(tcp->tcp_listener == NULL); 7105 ASSERT((tcp->tcp_family == AF_INET && 7106 tcp->tcp_ipversion == IPV4_VERSION) || 7107 (tcp->tcp_family == AF_INET6 && 7108 (tcp->tcp_ipversion == IPV4_VERSION || 7109 tcp->tcp_ipversion == IPV6_VERSION))); 7110 7111 /* Cancel outstanding timers */ 7112 tcp_timers_stop(tcp); 7113 7114 /* 7115 * Reset everything in the state vector, after updating global 7116 * MIB data from instance counters. 7117 */ 7118 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 7119 tcp->tcp_ibsegs = 0; 7120 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 7121 tcp->tcp_obsegs = 0; 7122 7123 tcp_close_mpp(&tcp->tcp_xmit_head); 7124 if (tcp->tcp_snd_zcopy_aware) 7125 tcp_zcopy_notify(tcp); 7126 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7127 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7128 if (tcp->tcp_flow_stopped && 7129 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7130 tcp_clrqfull(tcp); 7131 } 7132 tcp_close_mpp(&tcp->tcp_reass_head); 7133 tcp->tcp_reass_tail = NULL; 7134 if (tcp->tcp_rcv_list != NULL) { 7135 /* Free b_next chain */ 7136 tcp_close_mpp(&tcp->tcp_rcv_list); 7137 tcp->tcp_rcv_last_head = NULL; 7138 tcp->tcp_rcv_last_tail = NULL; 7139 tcp->tcp_rcv_cnt = 0; 7140 } 7141 tcp->tcp_rcv_last_tail = NULL; 7142 7143 if ((mp = tcp->tcp_urp_mp) != NULL) { 7144 freemsg(mp); 7145 tcp->tcp_urp_mp = NULL; 7146 } 7147 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7148 freemsg(mp); 7149 tcp->tcp_urp_mark_mp = NULL; 7150 } 7151 if (tcp->tcp_fused_sigurg_mp != NULL) { 7152 freeb(tcp->tcp_fused_sigurg_mp); 7153 tcp->tcp_fused_sigurg_mp = NULL; 7154 } 7155 7156 /* 7157 * Following is a union with two members which are 7158 * identical types and size so the following cleanup 7159 * is enough. 7160 */ 7161 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7162 7163 CL_INET_DISCONNECT(tcp); 7164 7165 /* 7166 * The connection can't be on the tcp_time_wait_head list 7167 * since it is not detached. 7168 */ 7169 ASSERT(tcp->tcp_time_wait_next == NULL); 7170 ASSERT(tcp->tcp_time_wait_prev == NULL); 7171 ASSERT(tcp->tcp_time_wait_expire == 0); 7172 7173 /* 7174 * Reset/preserve other values 7175 */ 7176 tcp_reinit_values(tcp); 7177 ipcl_hash_remove(tcp->tcp_connp); 7178 conn_delete_ire(tcp->tcp_connp, NULL); 7179 7180 if (tcp->tcp_conn_req_max != 0) { 7181 /* 7182 * This is the case when a TLI program uses the same 7183 * transport end point to accept a connection. This 7184 * makes the TCP both a listener and acceptor. When 7185 * this connection is closed, we need to set the state 7186 * back to TCPS_LISTEN. Make sure that the eager list 7187 * is reinitialized. 7188 * 7189 * Note that this stream is still bound to the four 7190 * tuples of the previous connection in IP. If a new 7191 * SYN with different foreign address comes in, IP will 7192 * not find it and will send it to the global queue. In 7193 * the global queue, TCP will do a tcp_lookup_listener() 7194 * to find this stream. This works because this stream 7195 * is only removed from connected hash. 7196 * 7197 */ 7198 tcp->tcp_state = TCPS_LISTEN; 7199 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7200 tcp->tcp_connp->conn_recv = tcp_conn_request; 7201 if (tcp->tcp_family == AF_INET6) { 7202 ASSERT(tcp->tcp_connp->conn_af_isv6); 7203 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7204 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7205 } else { 7206 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7207 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7208 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7209 } 7210 } else { 7211 tcp->tcp_state = TCPS_BOUND; 7212 } 7213 7214 /* 7215 * Initialize to default values 7216 * Can't fail since enough header template space already allocated 7217 * at open(). 7218 */ 7219 err = tcp_init_values(tcp); 7220 ASSERT(err == 0); 7221 /* Restore state in tcp_tcph */ 7222 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7223 if (tcp->tcp_ipversion == IPV4_VERSION) 7224 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7225 else 7226 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7227 /* 7228 * Copy of the src addr. in tcp_t is needed in tcp_t 7229 * since the lookup funcs can only lookup on tcp_t 7230 */ 7231 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7232 7233 ASSERT(tcp->tcp_ptpbhn != NULL); 7234 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7235 tcp->tcp_rwnd = tcp_recv_hiwat; 7236 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7237 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7238 } 7239 7240 /* 7241 * Force values to zero that need be zero. 7242 * Do not touch values asociated with the BOUND or LISTEN state 7243 * since the connection will end up in that state after the reinit. 7244 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7245 * structure! 7246 */ 7247 static void 7248 tcp_reinit_values(tcp) 7249 tcp_t *tcp; 7250 { 7251 #ifndef lint 7252 #define DONTCARE(x) 7253 #define PRESERVE(x) 7254 #else 7255 #define DONTCARE(x) ((x) = (x)) 7256 #define PRESERVE(x) ((x) = (x)) 7257 #endif /* lint */ 7258 7259 PRESERVE(tcp->tcp_bind_hash); 7260 PRESERVE(tcp->tcp_ptpbhn); 7261 PRESERVE(tcp->tcp_acceptor_hash); 7262 PRESERVE(tcp->tcp_ptpahn); 7263 7264 /* Should be ASSERT NULL on these with new code! */ 7265 ASSERT(tcp->tcp_time_wait_next == NULL); 7266 ASSERT(tcp->tcp_time_wait_prev == NULL); 7267 ASSERT(tcp->tcp_time_wait_expire == 0); 7268 PRESERVE(tcp->tcp_state); 7269 PRESERVE(tcp->tcp_rq); 7270 PRESERVE(tcp->tcp_wq); 7271 7272 ASSERT(tcp->tcp_xmit_head == NULL); 7273 ASSERT(tcp->tcp_xmit_last == NULL); 7274 ASSERT(tcp->tcp_unsent == 0); 7275 ASSERT(tcp->tcp_xmit_tail == NULL); 7276 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7277 7278 tcp->tcp_snxt = 0; /* Displayed in mib */ 7279 tcp->tcp_suna = 0; /* Displayed in mib */ 7280 tcp->tcp_swnd = 0; 7281 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7282 7283 ASSERT(tcp->tcp_ibsegs == 0); 7284 ASSERT(tcp->tcp_obsegs == 0); 7285 7286 if (tcp->tcp_iphc != NULL) { 7287 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7288 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7289 } 7290 7291 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7292 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7293 DONTCARE(tcp->tcp_ipha); 7294 DONTCARE(tcp->tcp_ip6h); 7295 DONTCARE(tcp->tcp_ip_hdr_len); 7296 DONTCARE(tcp->tcp_tcph); 7297 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7298 tcp->tcp_valid_bits = 0; 7299 7300 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7301 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7302 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7303 tcp->tcp_last_rcv_lbolt = 0; 7304 7305 tcp->tcp_init_cwnd = 0; 7306 7307 tcp->tcp_urp_last_valid = 0; 7308 tcp->tcp_hard_binding = 0; 7309 tcp->tcp_hard_bound = 0; 7310 PRESERVE(tcp->tcp_cred); 7311 PRESERVE(tcp->tcp_cpid); 7312 PRESERVE(tcp->tcp_exclbind); 7313 7314 tcp->tcp_fin_acked = 0; 7315 tcp->tcp_fin_rcvd = 0; 7316 tcp->tcp_fin_sent = 0; 7317 tcp->tcp_ordrel_done = 0; 7318 7319 tcp->tcp_debug = 0; 7320 tcp->tcp_dontroute = 0; 7321 tcp->tcp_broadcast = 0; 7322 7323 tcp->tcp_useloopback = 0; 7324 tcp->tcp_reuseaddr = 0; 7325 tcp->tcp_oobinline = 0; 7326 tcp->tcp_dgram_errind = 0; 7327 7328 tcp->tcp_detached = 0; 7329 tcp->tcp_bind_pending = 0; 7330 tcp->tcp_unbind_pending = 0; 7331 tcp->tcp_deferred_clean_death = 0; 7332 7333 tcp->tcp_snd_ws_ok = B_FALSE; 7334 tcp->tcp_snd_ts_ok = B_FALSE; 7335 tcp->tcp_linger = 0; 7336 tcp->tcp_ka_enabled = 0; 7337 tcp->tcp_zero_win_probe = 0; 7338 7339 tcp->tcp_loopback = 0; 7340 tcp->tcp_localnet = 0; 7341 tcp->tcp_syn_defense = 0; 7342 tcp->tcp_set_timer = 0; 7343 7344 tcp->tcp_active_open = 0; 7345 ASSERT(tcp->tcp_timeout == B_FALSE); 7346 tcp->tcp_rexmit = B_FALSE; 7347 tcp->tcp_xmit_zc_clean = B_FALSE; 7348 7349 tcp->tcp_snd_sack_ok = B_FALSE; 7350 PRESERVE(tcp->tcp_recvdstaddr); 7351 tcp->tcp_hwcksum = B_FALSE; 7352 7353 tcp->tcp_ire_ill_check_done = B_FALSE; 7354 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7355 7356 tcp->tcp_mdt = B_FALSE; 7357 tcp->tcp_mdt_hdr_head = 0; 7358 tcp->tcp_mdt_hdr_tail = 0; 7359 7360 tcp->tcp_conn_def_q0 = 0; 7361 tcp->tcp_ip_forward_progress = B_FALSE; 7362 tcp->tcp_anon_priv_bind = 0; 7363 tcp->tcp_ecn_ok = B_FALSE; 7364 7365 tcp->tcp_cwr = B_FALSE; 7366 tcp->tcp_ecn_echo_on = B_FALSE; 7367 7368 if (tcp->tcp_sack_info != NULL) { 7369 if (tcp->tcp_notsack_list != NULL) { 7370 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7371 } 7372 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7373 tcp->tcp_sack_info = NULL; 7374 } 7375 7376 tcp->tcp_rcv_ws = 0; 7377 tcp->tcp_snd_ws = 0; 7378 tcp->tcp_ts_recent = 0; 7379 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7380 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7381 tcp->tcp_if_mtu = 0; 7382 7383 ASSERT(tcp->tcp_reass_head == NULL); 7384 ASSERT(tcp->tcp_reass_tail == NULL); 7385 7386 tcp->tcp_cwnd_cnt = 0; 7387 7388 ASSERT(tcp->tcp_rcv_list == NULL); 7389 ASSERT(tcp->tcp_rcv_last_head == NULL); 7390 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7391 ASSERT(tcp->tcp_rcv_cnt == 0); 7392 7393 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7394 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7395 tcp->tcp_csuna = 0; 7396 7397 tcp->tcp_rto = 0; /* Displayed in MIB */ 7398 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7399 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7400 tcp->tcp_rtt_update = 0; 7401 7402 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7403 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7404 7405 tcp->tcp_rack = 0; /* Displayed in mib */ 7406 tcp->tcp_rack_cnt = 0; 7407 tcp->tcp_rack_cur_max = 0; 7408 tcp->tcp_rack_abs_max = 0; 7409 7410 tcp->tcp_max_swnd = 0; 7411 7412 ASSERT(tcp->tcp_listener == NULL); 7413 7414 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7415 7416 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7417 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7418 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7419 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7420 7421 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7422 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7423 PRESERVE(tcp->tcp_conn_req_max); 7424 PRESERVE(tcp->tcp_conn_req_seqnum); 7425 7426 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7427 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7428 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7429 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7430 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7431 7432 tcp->tcp_lingertime = 0; 7433 7434 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7435 ASSERT(tcp->tcp_urp_mp == NULL); 7436 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7437 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7438 7439 ASSERT(tcp->tcp_eager_next_q == NULL); 7440 ASSERT(tcp->tcp_eager_last_q == NULL); 7441 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7442 tcp->tcp_eager_prev_q0 == NULL) || 7443 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7444 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7445 7446 tcp->tcp_client_errno = 0; 7447 7448 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7449 7450 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7451 7452 PRESERVE(tcp->tcp_bound_source_v6); 7453 tcp->tcp_last_sent_len = 0; 7454 tcp->tcp_dupack_cnt = 0; 7455 7456 tcp->tcp_fport = 0; /* Displayed in MIB */ 7457 PRESERVE(tcp->tcp_lport); 7458 7459 PRESERVE(tcp->tcp_acceptor_lockp); 7460 7461 ASSERT(tcp->tcp_ordrelid == 0); 7462 PRESERVE(tcp->tcp_acceptor_id); 7463 DONTCARE(tcp->tcp_ipsec_overhead); 7464 7465 /* 7466 * If tcp_tracing flag is ON (i.e. We have a trace buffer 7467 * in tcp structure and now tracing), Re-initialize all 7468 * members of tcp_traceinfo. 7469 */ 7470 if (tcp->tcp_tracebuf != NULL) { 7471 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 7472 } 7473 7474 PRESERVE(tcp->tcp_family); 7475 if (tcp->tcp_family == AF_INET6) { 7476 tcp->tcp_ipversion = IPV6_VERSION; 7477 tcp->tcp_mss = tcp_mss_def_ipv6; 7478 } else { 7479 tcp->tcp_ipversion = IPV4_VERSION; 7480 tcp->tcp_mss = tcp_mss_def_ipv4; 7481 } 7482 7483 tcp->tcp_bound_if = 0; 7484 tcp->tcp_ipv6_recvancillary = 0; 7485 tcp->tcp_recvifindex = 0; 7486 tcp->tcp_recvhops = 0; 7487 tcp->tcp_closed = 0; 7488 tcp->tcp_cleandeathtag = 0; 7489 if (tcp->tcp_hopopts != NULL) { 7490 mi_free(tcp->tcp_hopopts); 7491 tcp->tcp_hopopts = NULL; 7492 tcp->tcp_hopoptslen = 0; 7493 } 7494 ASSERT(tcp->tcp_hopoptslen == 0); 7495 if (tcp->tcp_dstopts != NULL) { 7496 mi_free(tcp->tcp_dstopts); 7497 tcp->tcp_dstopts = NULL; 7498 tcp->tcp_dstoptslen = 0; 7499 } 7500 ASSERT(tcp->tcp_dstoptslen == 0); 7501 if (tcp->tcp_rtdstopts != NULL) { 7502 mi_free(tcp->tcp_rtdstopts); 7503 tcp->tcp_rtdstopts = NULL; 7504 tcp->tcp_rtdstoptslen = 0; 7505 } 7506 ASSERT(tcp->tcp_rtdstoptslen == 0); 7507 if (tcp->tcp_rthdr != NULL) { 7508 mi_free(tcp->tcp_rthdr); 7509 tcp->tcp_rthdr = NULL; 7510 tcp->tcp_rthdrlen = 0; 7511 } 7512 ASSERT(tcp->tcp_rthdrlen == 0); 7513 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7514 7515 /* Reset fusion-related fields */ 7516 tcp->tcp_fused = B_FALSE; 7517 tcp->tcp_unfusable = B_FALSE; 7518 tcp->tcp_fused_sigurg = B_FALSE; 7519 tcp->tcp_direct_sockfs = B_FALSE; 7520 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7521 tcp->tcp_loopback_peer = NULL; 7522 tcp->tcp_fuse_rcv_hiwater = 0; 7523 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7524 tcp->tcp_fuse_rcv_unread_cnt = 0; 7525 7526 tcp->tcp_in_ack_unsent = 0; 7527 tcp->tcp_cork = B_FALSE; 7528 7529 PRESERVE(tcp->tcp_squeue_bytes); 7530 7531 #undef DONTCARE 7532 #undef PRESERVE 7533 } 7534 7535 /* 7536 * Allocate necessary resources and initialize state vector. 7537 * Guaranteed not to fail so that when an error is returned, 7538 * the caller doesn't need to do any additional cleanup. 7539 */ 7540 int 7541 tcp_init(tcp_t *tcp, queue_t *q) 7542 { 7543 int err; 7544 7545 tcp->tcp_rq = q; 7546 tcp->tcp_wq = WR(q); 7547 tcp->tcp_state = TCPS_IDLE; 7548 if ((err = tcp_init_values(tcp)) != 0) 7549 tcp_timers_stop(tcp); 7550 return (err); 7551 } 7552 7553 static int 7554 tcp_init_values(tcp_t *tcp) 7555 { 7556 int err; 7557 7558 ASSERT((tcp->tcp_family == AF_INET && 7559 tcp->tcp_ipversion == IPV4_VERSION) || 7560 (tcp->tcp_family == AF_INET6 && 7561 (tcp->tcp_ipversion == IPV4_VERSION || 7562 tcp->tcp_ipversion == IPV6_VERSION))); 7563 7564 /* 7565 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7566 * will be close to tcp_rexmit_interval_initial. By doing this, we 7567 * allow the algorithm to adjust slowly to large fluctuations of RTT 7568 * during first few transmissions of a connection as seen in slow 7569 * links. 7570 */ 7571 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 7572 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 7573 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7574 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7575 tcp_conn_grace_period; 7576 if (tcp->tcp_rto < tcp_rexmit_interval_min) 7577 tcp->tcp_rto = tcp_rexmit_interval_min; 7578 tcp->tcp_timer_backoff = 0; 7579 tcp->tcp_ms_we_have_waited = 0; 7580 tcp->tcp_last_recv_time = lbolt; 7581 tcp->tcp_cwnd_max = tcp_cwnd_max_; 7582 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7583 7584 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 7585 7586 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 7587 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 7588 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 7589 /* 7590 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7591 * passive open. 7592 */ 7593 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 7594 7595 tcp->tcp_naglim = tcp_naglim_def; 7596 7597 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7598 7599 tcp->tcp_mdt_hdr_head = 0; 7600 tcp->tcp_mdt_hdr_tail = 0; 7601 7602 /* Reset fusion-related fields */ 7603 tcp->tcp_fused = B_FALSE; 7604 tcp->tcp_unfusable = B_FALSE; 7605 tcp->tcp_fused_sigurg = B_FALSE; 7606 tcp->tcp_direct_sockfs = B_FALSE; 7607 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7608 tcp->tcp_loopback_peer = NULL; 7609 tcp->tcp_fuse_rcv_hiwater = 0; 7610 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7611 tcp->tcp_fuse_rcv_unread_cnt = 0; 7612 7613 /* Initialize the header template */ 7614 if (tcp->tcp_ipversion == IPV4_VERSION) { 7615 err = tcp_header_init_ipv4(tcp); 7616 } else { 7617 err = tcp_header_init_ipv6(tcp); 7618 } 7619 if (err) 7620 return (err); 7621 7622 /* 7623 * Init the window scale to the max so tcp_rwnd_set() won't pare 7624 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7625 */ 7626 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7627 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 7628 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 7629 7630 tcp->tcp_cork = B_FALSE; 7631 /* 7632 * Init the tcp_debug option. This value determines whether TCP 7633 * calls strlog() to print out debug messages. Doing this 7634 * initialization here means that this value is not inherited thru 7635 * tcp_reinit(). 7636 */ 7637 tcp->tcp_debug = tcp_dbg; 7638 7639 tcp->tcp_ka_interval = tcp_keepalive_interval; 7640 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 7641 7642 return (0); 7643 } 7644 7645 /* 7646 * Initialize the IPv4 header. Loses any record of any IP options. 7647 */ 7648 static int 7649 tcp_header_init_ipv4(tcp_t *tcp) 7650 { 7651 tcph_t *tcph; 7652 uint32_t sum; 7653 7654 /* 7655 * This is a simple initialization. If there's 7656 * already a template, it should never be too small, 7657 * so reuse it. Otherwise, allocate space for the new one. 7658 */ 7659 if (tcp->tcp_iphc == NULL) { 7660 ASSERT(tcp->tcp_iphc_len == 0); 7661 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7662 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7663 if (tcp->tcp_iphc == NULL) { 7664 tcp->tcp_iphc_len = 0; 7665 return (ENOMEM); 7666 } 7667 } 7668 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7669 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 7670 tcp->tcp_ip6h = NULL; 7671 tcp->tcp_ipversion = IPV4_VERSION; 7672 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 7673 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 7674 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 7675 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 7676 tcp->tcp_ipha->ipha_version_and_hdr_length 7677 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 7678 tcp->tcp_ipha->ipha_ident = 0; 7679 7680 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 7681 tcp->tcp_tos = 0; 7682 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7683 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 7684 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 7685 7686 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 7687 tcp->tcp_tcph = tcph; 7688 tcph->th_offset_and_rsrvd[0] = (5 << 4); 7689 /* 7690 * IP wants our header length in the checksum field to 7691 * allow it to perform a single pseudo-header+checksum 7692 * calculation on behalf of TCP. 7693 * Include the adjustment for a source route once IP_OPTIONS is set. 7694 */ 7695 sum = sizeof (tcph_t) + tcp->tcp_sum; 7696 sum = (sum >> 16) + (sum & 0xFFFF); 7697 U16_TO_ABE16(sum, tcph->th_sum); 7698 return (0); 7699 } 7700 7701 /* 7702 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 7703 */ 7704 static int 7705 tcp_header_init_ipv6(tcp_t *tcp) 7706 { 7707 tcph_t *tcph; 7708 uint32_t sum; 7709 7710 /* 7711 * This is a simple initialization. If there's 7712 * already a template, it should never be too small, 7713 * so reuse it. Otherwise, allocate space for the new one. 7714 * Ensure that there is enough space to "downgrade" the tcp_t 7715 * to an IPv4 tcp_t. This requires having space for a full load 7716 * of IPv4 options, as well as a full load of TCP options 7717 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 7718 * than a v6 header and a TCP header with a full load of TCP options 7719 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 7720 * We want to avoid reallocation in the "downgraded" case when 7721 * processing outbound IPv4 options. 7722 */ 7723 if (tcp->tcp_iphc == NULL) { 7724 ASSERT(tcp->tcp_iphc_len == 0); 7725 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7726 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7727 if (tcp->tcp_iphc == NULL) { 7728 tcp->tcp_iphc_len = 0; 7729 return (ENOMEM); 7730 } 7731 } 7732 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7733 tcp->tcp_ipversion = IPV6_VERSION; 7734 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 7735 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 7736 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 7737 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 7738 tcp->tcp_ipha = NULL; 7739 7740 /* Initialize the header template */ 7741 7742 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7743 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 7744 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 7745 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 7746 7747 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 7748 tcp->tcp_tcph = tcph; 7749 tcph->th_offset_and_rsrvd[0] = (5 << 4); 7750 /* 7751 * IP wants our header length in the checksum field to 7752 * allow it to perform a single psuedo-header+checksum 7753 * calculation on behalf of TCP. 7754 * Include the adjustment for a source route when IPV6_RTHDR is set. 7755 */ 7756 sum = sizeof (tcph_t) + tcp->tcp_sum; 7757 sum = (sum >> 16) + (sum & 0xFFFF); 7758 U16_TO_ABE16(sum, tcph->th_sum); 7759 return (0); 7760 } 7761 7762 /* At minimum we need 4 bytes in the TCP header for the lookup */ 7763 #define ICMP_MIN_TCP_HDR 4 7764 7765 /* 7766 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 7767 * passed up by IP. The message is always received on the correct tcp_t. 7768 * Assumes that IP has pulled up everything up to and including the ICMP header. 7769 */ 7770 void 7771 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 7772 { 7773 icmph_t *icmph; 7774 ipha_t *ipha; 7775 int iph_hdr_length; 7776 tcph_t *tcph; 7777 boolean_t ipsec_mctl = B_FALSE; 7778 boolean_t secure; 7779 mblk_t *first_mp = mp; 7780 uint32_t new_mss; 7781 uint32_t ratio; 7782 size_t mp_size = MBLKL(mp); 7783 uint32_t seg_ack; 7784 uint32_t seg_seq; 7785 7786 /* Assume IP provides aligned packets - otherwise toss */ 7787 if (!OK_32PTR(mp->b_rptr)) { 7788 freemsg(mp); 7789 return; 7790 } 7791 7792 /* 7793 * Since ICMP errors are normal data marked with M_CTL when sent 7794 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 7795 * packets starting with an ipsec_info_t, see ipsec_info.h. 7796 */ 7797 if ((mp_size == sizeof (ipsec_info_t)) && 7798 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 7799 ASSERT(mp->b_cont != NULL); 7800 mp = mp->b_cont; 7801 /* IP should have done this */ 7802 ASSERT(OK_32PTR(mp->b_rptr)); 7803 mp_size = MBLKL(mp); 7804 ipsec_mctl = B_TRUE; 7805 } 7806 7807 /* 7808 * Verify that we have a complete outer IP header. If not, drop it. 7809 */ 7810 if (mp_size < sizeof (ipha_t)) { 7811 noticmpv4: 7812 freemsg(first_mp); 7813 return; 7814 } 7815 7816 ipha = (ipha_t *)mp->b_rptr; 7817 /* 7818 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 7819 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 7820 */ 7821 switch (IPH_HDR_VERSION(ipha)) { 7822 case IPV6_VERSION: 7823 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 7824 return; 7825 case IPV4_VERSION: 7826 break; 7827 default: 7828 goto noticmpv4; 7829 } 7830 7831 /* Skip past the outer IP and ICMP headers */ 7832 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7833 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 7834 /* 7835 * If we don't have the correct outer IP header length or if the ULP 7836 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 7837 * send it upstream. 7838 */ 7839 if (iph_hdr_length < sizeof (ipha_t) || 7840 ipha->ipha_protocol != IPPROTO_ICMP || 7841 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 7842 goto noticmpv4; 7843 } 7844 ipha = (ipha_t *)&icmph[1]; 7845 7846 /* Skip past the inner IP and find the ULP header */ 7847 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7848 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 7849 /* 7850 * If we don't have the correct inner IP header length or if the ULP 7851 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 7852 * bytes of TCP header, drop it. 7853 */ 7854 if (iph_hdr_length < sizeof (ipha_t) || 7855 ipha->ipha_protocol != IPPROTO_TCP || 7856 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 7857 goto noticmpv4; 7858 } 7859 7860 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 7861 if (ipsec_mctl) { 7862 secure = ipsec_in_is_secure(first_mp); 7863 } else { 7864 secure = B_FALSE; 7865 } 7866 if (secure) { 7867 /* 7868 * If we are willing to accept this in clear 7869 * we don't have to verify policy. 7870 */ 7871 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 7872 if (!tcp_check_policy(tcp, first_mp, 7873 ipha, NULL, secure, ipsec_mctl)) { 7874 /* 7875 * tcp_check_policy called 7876 * ip_drop_packet() on failure. 7877 */ 7878 return; 7879 } 7880 } 7881 } 7882 } else if (ipsec_mctl) { 7883 /* 7884 * This is a hard_bound connection. IP has already 7885 * verified policy. We don't have to do it again. 7886 */ 7887 freeb(first_mp); 7888 first_mp = mp; 7889 ipsec_mctl = B_FALSE; 7890 } 7891 7892 seg_ack = ABE32_TO_U32(tcph->th_ack); 7893 seg_seq = ABE32_TO_U32(tcph->th_seq); 7894 /* 7895 * TCP SHOULD check that the TCP sequence number contained in 7896 * payload of the ICMP error message is within the range 7897 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 7898 */ 7899 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 7900 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 7901 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 7902 /* 7903 * If the ICMP message is bogus, should we kill the 7904 * connection, or should we just drop the bogus ICMP 7905 * message? It would probably make more sense to just 7906 * drop the message so that if this one managed to get 7907 * in, the real connection should not suffer. 7908 */ 7909 goto noticmpv4; 7910 } 7911 7912 switch (icmph->icmph_type) { 7913 case ICMP_DEST_UNREACHABLE: 7914 switch (icmph->icmph_code) { 7915 case ICMP_FRAGMENTATION_NEEDED: 7916 /* 7917 * Reduce the MSS based on the new MTU. This will 7918 * eliminate any fragmentation locally. 7919 * N.B. There may well be some funny side-effects on 7920 * the local send policy and the remote receive policy. 7921 * Pending further research, we provide 7922 * tcp_ignore_path_mtu just in case this proves 7923 * disastrous somewhere. 7924 * 7925 * After updating the MSS, retransmit part of the 7926 * dropped segment using the new mss by calling 7927 * tcp_wput_data(). Need to adjust all those 7928 * params to make sure tcp_wput_data() work properly. 7929 */ 7930 if (tcp_ignore_path_mtu) 7931 break; 7932 7933 /* 7934 * Decrease the MSS by time stamp options 7935 * IP options and IPSEC options. tcp_hdr_len 7936 * includes time stamp option and IP option 7937 * length. 7938 */ 7939 7940 new_mss = ntohs(icmph->icmph_du_mtu) - 7941 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 7942 7943 /* 7944 * Only update the MSS if the new one is 7945 * smaller than the previous one. This is 7946 * to avoid problems when getting multiple 7947 * ICMP errors for the same MTU. 7948 */ 7949 if (new_mss >= tcp->tcp_mss) 7950 break; 7951 7952 /* 7953 * Stop doing PMTU if new_mss is less than 68 7954 * or less than tcp_mss_min. 7955 * The value 68 comes from rfc 1191. 7956 */ 7957 if (new_mss < MAX(68, tcp_mss_min)) 7958 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 7959 0; 7960 7961 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 7962 ASSERT(ratio >= 1); 7963 tcp_mss_set(tcp, new_mss); 7964 7965 /* 7966 * Make sure we have something to 7967 * send. 7968 */ 7969 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 7970 (tcp->tcp_xmit_head != NULL)) { 7971 /* 7972 * Shrink tcp_cwnd in 7973 * proportion to the old MSS/new MSS. 7974 */ 7975 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 7976 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 7977 (tcp->tcp_unsent == 0)) { 7978 tcp->tcp_rexmit_max = tcp->tcp_fss; 7979 } else { 7980 tcp->tcp_rexmit_max = tcp->tcp_snxt; 7981 } 7982 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 7983 tcp->tcp_rexmit = B_TRUE; 7984 tcp->tcp_dupack_cnt = 0; 7985 tcp->tcp_snd_burst = TCP_CWND_SS; 7986 tcp_ss_rexmit(tcp); 7987 } 7988 break; 7989 case ICMP_PORT_UNREACHABLE: 7990 case ICMP_PROTOCOL_UNREACHABLE: 7991 switch (tcp->tcp_state) { 7992 case TCPS_SYN_SENT: 7993 case TCPS_SYN_RCVD: 7994 /* 7995 * ICMP can snipe away incipient 7996 * TCP connections as long as 7997 * seq number is same as initial 7998 * send seq number. 7999 */ 8000 if (seg_seq == tcp->tcp_iss) { 8001 (void) tcp_clean_death(tcp, 8002 ECONNREFUSED, 6); 8003 } 8004 break; 8005 } 8006 break; 8007 case ICMP_HOST_UNREACHABLE: 8008 case ICMP_NET_UNREACHABLE: 8009 /* Record the error in case we finally time out. */ 8010 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8011 tcp->tcp_client_errno = EHOSTUNREACH; 8012 else 8013 tcp->tcp_client_errno = ENETUNREACH; 8014 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8015 if (tcp->tcp_listener != NULL && 8016 tcp->tcp_listener->tcp_syn_defense) { 8017 /* 8018 * Ditch the half-open connection if we 8019 * suspect a SYN attack is under way. 8020 */ 8021 tcp_ip_ire_mark_advice(tcp); 8022 (void) tcp_clean_death(tcp, 8023 tcp->tcp_client_errno, 7); 8024 } 8025 } 8026 break; 8027 default: 8028 break; 8029 } 8030 break; 8031 case ICMP_SOURCE_QUENCH: { 8032 /* 8033 * use a global boolean to control 8034 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8035 * The default is false. 8036 */ 8037 if (tcp_icmp_source_quench) { 8038 /* 8039 * Reduce the sending rate as if we got a 8040 * retransmit timeout 8041 */ 8042 uint32_t npkt; 8043 8044 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8045 tcp->tcp_mss; 8046 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8047 tcp->tcp_cwnd = tcp->tcp_mss; 8048 tcp->tcp_cwnd_cnt = 0; 8049 } 8050 break; 8051 } 8052 } 8053 freemsg(first_mp); 8054 } 8055 8056 /* 8057 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8058 * error messages passed up by IP. 8059 * Assumes that IP has pulled up all the extension headers as well 8060 * as the ICMPv6 header. 8061 */ 8062 static void 8063 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8064 { 8065 icmp6_t *icmp6; 8066 ip6_t *ip6h; 8067 uint16_t iph_hdr_length; 8068 tcpha_t *tcpha; 8069 uint8_t *nexthdrp; 8070 uint32_t new_mss; 8071 uint32_t ratio; 8072 boolean_t secure; 8073 mblk_t *first_mp = mp; 8074 size_t mp_size; 8075 uint32_t seg_ack; 8076 uint32_t seg_seq; 8077 8078 /* 8079 * The caller has determined if this is an IPSEC_IN packet and 8080 * set ipsec_mctl appropriately (see tcp_icmp_error). 8081 */ 8082 if (ipsec_mctl) 8083 mp = mp->b_cont; 8084 8085 mp_size = MBLKL(mp); 8086 8087 /* 8088 * Verify that we have a complete IP header. If not, send it upstream. 8089 */ 8090 if (mp_size < sizeof (ip6_t)) { 8091 noticmpv6: 8092 freemsg(first_mp); 8093 return; 8094 } 8095 8096 /* 8097 * Verify this is an ICMPV6 packet, else send it upstream. 8098 */ 8099 ip6h = (ip6_t *)mp->b_rptr; 8100 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8101 iph_hdr_length = IPV6_HDR_LEN; 8102 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8103 &nexthdrp) || 8104 *nexthdrp != IPPROTO_ICMPV6) { 8105 goto noticmpv6; 8106 } 8107 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8108 ip6h = (ip6_t *)&icmp6[1]; 8109 /* 8110 * Verify if we have a complete ICMP and inner IP header. 8111 */ 8112 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8113 goto noticmpv6; 8114 8115 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8116 goto noticmpv6; 8117 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8118 /* 8119 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8120 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8121 * packet. 8122 */ 8123 if ((*nexthdrp != IPPROTO_TCP) || 8124 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8125 goto noticmpv6; 8126 } 8127 8128 /* 8129 * ICMP errors come on the right queue or come on 8130 * listener/global queue for detached connections and 8131 * get switched to the right queue. If it comes on the 8132 * right queue, policy check has already been done by IP 8133 * and thus free the first_mp without verifying the policy. 8134 * If it has come for a non-hard bound connection, we need 8135 * to verify policy as IP may not have done it. 8136 */ 8137 if (!tcp->tcp_hard_bound) { 8138 if (ipsec_mctl) { 8139 secure = ipsec_in_is_secure(first_mp); 8140 } else { 8141 secure = B_FALSE; 8142 } 8143 if (secure) { 8144 /* 8145 * If we are willing to accept this in clear 8146 * we don't have to verify policy. 8147 */ 8148 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8149 if (!tcp_check_policy(tcp, first_mp, 8150 NULL, ip6h, secure, ipsec_mctl)) { 8151 /* 8152 * tcp_check_policy called 8153 * ip_drop_packet() on failure. 8154 */ 8155 return; 8156 } 8157 } 8158 } 8159 } else if (ipsec_mctl) { 8160 /* 8161 * This is a hard_bound connection. IP has already 8162 * verified policy. We don't have to do it again. 8163 */ 8164 freeb(first_mp); 8165 first_mp = mp; 8166 ipsec_mctl = B_FALSE; 8167 } 8168 8169 seg_ack = ntohl(tcpha->tha_ack); 8170 seg_seq = ntohl(tcpha->tha_seq); 8171 /* 8172 * TCP SHOULD check that the TCP sequence number contained in 8173 * payload of the ICMP error message is within the range 8174 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8175 */ 8176 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8177 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8178 /* 8179 * If the ICMP message is bogus, should we kill the 8180 * connection, or should we just drop the bogus ICMP 8181 * message? It would probably make more sense to just 8182 * drop the message so that if this one managed to get 8183 * in, the real connection should not suffer. 8184 */ 8185 goto noticmpv6; 8186 } 8187 8188 switch (icmp6->icmp6_type) { 8189 case ICMP6_PACKET_TOO_BIG: 8190 /* 8191 * Reduce the MSS based on the new MTU. This will 8192 * eliminate any fragmentation locally. 8193 * N.B. There may well be some funny side-effects on 8194 * the local send policy and the remote receive policy. 8195 * Pending further research, we provide 8196 * tcp_ignore_path_mtu just in case this proves 8197 * disastrous somewhere. 8198 * 8199 * After updating the MSS, retransmit part of the 8200 * dropped segment using the new mss by calling 8201 * tcp_wput_data(). Need to adjust all those 8202 * params to make sure tcp_wput_data() work properly. 8203 */ 8204 if (tcp_ignore_path_mtu) 8205 break; 8206 8207 /* 8208 * Decrease the MSS by time stamp options 8209 * IP options and IPSEC options. tcp_hdr_len 8210 * includes time stamp option and IP option 8211 * length. 8212 */ 8213 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8214 tcp->tcp_ipsec_overhead; 8215 8216 /* 8217 * Only update the MSS if the new one is 8218 * smaller than the previous one. This is 8219 * to avoid problems when getting multiple 8220 * ICMP errors for the same MTU. 8221 */ 8222 if (new_mss >= tcp->tcp_mss) 8223 break; 8224 8225 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8226 ASSERT(ratio >= 1); 8227 tcp_mss_set(tcp, new_mss); 8228 8229 /* 8230 * Make sure we have something to 8231 * send. 8232 */ 8233 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8234 (tcp->tcp_xmit_head != NULL)) { 8235 /* 8236 * Shrink tcp_cwnd in 8237 * proportion to the old MSS/new MSS. 8238 */ 8239 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8240 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8241 (tcp->tcp_unsent == 0)) { 8242 tcp->tcp_rexmit_max = tcp->tcp_fss; 8243 } else { 8244 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8245 } 8246 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8247 tcp->tcp_rexmit = B_TRUE; 8248 tcp->tcp_dupack_cnt = 0; 8249 tcp->tcp_snd_burst = TCP_CWND_SS; 8250 tcp_ss_rexmit(tcp); 8251 } 8252 break; 8253 8254 case ICMP6_DST_UNREACH: 8255 switch (icmp6->icmp6_code) { 8256 case ICMP6_DST_UNREACH_NOPORT: 8257 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8258 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8259 (tcpha->tha_seq == tcp->tcp_iss)) { 8260 (void) tcp_clean_death(tcp, 8261 ECONNREFUSED, 8); 8262 } 8263 break; 8264 8265 case ICMP6_DST_UNREACH_ADMIN: 8266 case ICMP6_DST_UNREACH_NOROUTE: 8267 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8268 case ICMP6_DST_UNREACH_ADDR: 8269 /* Record the error in case we finally time out. */ 8270 tcp->tcp_client_errno = EHOSTUNREACH; 8271 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8272 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8273 (tcpha->tha_seq == tcp->tcp_iss)) { 8274 if (tcp->tcp_listener != NULL && 8275 tcp->tcp_listener->tcp_syn_defense) { 8276 /* 8277 * Ditch the half-open connection if we 8278 * suspect a SYN attack is under way. 8279 */ 8280 tcp_ip_ire_mark_advice(tcp); 8281 (void) tcp_clean_death(tcp, 8282 tcp->tcp_client_errno, 9); 8283 } 8284 } 8285 8286 8287 break; 8288 default: 8289 break; 8290 } 8291 break; 8292 8293 case ICMP6_PARAM_PROB: 8294 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8295 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8296 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8297 (uchar_t *)nexthdrp) { 8298 if (tcp->tcp_state == TCPS_SYN_SENT || 8299 tcp->tcp_state == TCPS_SYN_RCVD) { 8300 (void) tcp_clean_death(tcp, 8301 ECONNREFUSED, 10); 8302 } 8303 break; 8304 } 8305 break; 8306 8307 case ICMP6_TIME_EXCEEDED: 8308 default: 8309 break; 8310 } 8311 freemsg(first_mp); 8312 } 8313 8314 /* 8315 * IP recognizes seven kinds of bind requests: 8316 * 8317 * - A zero-length address binds only to the protocol number. 8318 * 8319 * - A 4-byte address is treated as a request to 8320 * validate that the address is a valid local IPv4 8321 * address, appropriate for an application to bind to. 8322 * IP does the verification, but does not make any note 8323 * of the address at this time. 8324 * 8325 * - A 16-byte address contains is treated as a request 8326 * to validate a local IPv6 address, as the 4-byte 8327 * address case above. 8328 * 8329 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8330 * use it for the inbound fanout of packets. 8331 * 8332 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8333 * use it for the inbound fanout of packets. 8334 * 8335 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8336 * information consisting of local and remote addresses 8337 * and ports. In this case, the addresses are both 8338 * validated as appropriate for this operation, and, if 8339 * so, the information is retained for use in the 8340 * inbound fanout. 8341 * 8342 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8343 * fanout information, like the 12-byte case above. 8344 * 8345 * IP will also fill in the IRE request mblk with information 8346 * regarding our peer. In all cases, we notify IP of our protocol 8347 * type by appending a single protocol byte to the bind request. 8348 */ 8349 static mblk_t * 8350 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8351 { 8352 char *cp; 8353 mblk_t *mp; 8354 struct T_bind_req *tbr; 8355 ipa_conn_t *ac; 8356 ipa6_conn_t *ac6; 8357 sin_t *sin; 8358 sin6_t *sin6; 8359 8360 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8361 ASSERT((tcp->tcp_family == AF_INET && 8362 tcp->tcp_ipversion == IPV4_VERSION) || 8363 (tcp->tcp_family == AF_INET6 && 8364 (tcp->tcp_ipversion == IPV4_VERSION || 8365 tcp->tcp_ipversion == IPV6_VERSION))); 8366 8367 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 8368 if (!mp) 8369 return (mp); 8370 mp->b_datap->db_type = M_PROTO; 8371 tbr = (struct T_bind_req *)mp->b_rptr; 8372 tbr->PRIM_type = bind_prim; 8373 tbr->ADDR_offset = sizeof (*tbr); 8374 tbr->CONIND_number = 0; 8375 tbr->ADDR_length = addr_length; 8376 cp = (char *)&tbr[1]; 8377 switch (addr_length) { 8378 case sizeof (ipa_conn_t): 8379 ASSERT(tcp->tcp_family == AF_INET); 8380 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8381 8382 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8383 if (mp->b_cont == NULL) { 8384 freemsg(mp); 8385 return (NULL); 8386 } 8387 mp->b_cont->b_wptr += sizeof (ire_t); 8388 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8389 8390 /* cp known to be 32 bit aligned */ 8391 ac = (ipa_conn_t *)cp; 8392 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 8393 ac->ac_faddr = tcp->tcp_remote; 8394 ac->ac_fport = tcp->tcp_fport; 8395 ac->ac_lport = tcp->tcp_lport; 8396 tcp->tcp_hard_binding = 1; 8397 break; 8398 8399 case sizeof (ipa6_conn_t): 8400 ASSERT(tcp->tcp_family == AF_INET6); 8401 8402 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8403 if (mp->b_cont == NULL) { 8404 freemsg(mp); 8405 return (NULL); 8406 } 8407 mp->b_cont->b_wptr += sizeof (ire_t); 8408 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8409 8410 /* cp known to be 32 bit aligned */ 8411 ac6 = (ipa6_conn_t *)cp; 8412 if (tcp->tcp_ipversion == IPV4_VERSION) { 8413 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 8414 &ac6->ac6_laddr); 8415 } else { 8416 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 8417 } 8418 ac6->ac6_faddr = tcp->tcp_remote_v6; 8419 ac6->ac6_fport = tcp->tcp_fport; 8420 ac6->ac6_lport = tcp->tcp_lport; 8421 tcp->tcp_hard_binding = 1; 8422 break; 8423 8424 case sizeof (sin_t): 8425 /* 8426 * NOTE: IPV6_ADDR_LEN also has same size. 8427 * Use family to discriminate. 8428 */ 8429 if (tcp->tcp_family == AF_INET) { 8430 sin = (sin_t *)cp; 8431 8432 *sin = sin_null; 8433 sin->sin_family = AF_INET; 8434 sin->sin_addr.s_addr = tcp->tcp_bound_source; 8435 sin->sin_port = tcp->tcp_lport; 8436 break; 8437 } else { 8438 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 8439 } 8440 break; 8441 8442 case sizeof (sin6_t): 8443 ASSERT(tcp->tcp_family == AF_INET6); 8444 sin6 = (sin6_t *)cp; 8445 8446 *sin6 = sin6_null; 8447 sin6->sin6_family = AF_INET6; 8448 sin6->sin6_addr = tcp->tcp_bound_source_v6; 8449 sin6->sin6_port = tcp->tcp_lport; 8450 break; 8451 8452 case IP_ADDR_LEN: 8453 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8454 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 8455 break; 8456 8457 } 8458 /* Add protocol number to end */ 8459 cp[addr_length] = (char)IPPROTO_TCP; 8460 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 8461 return (mp); 8462 } 8463 8464 /* 8465 * Notify IP that we are having trouble with this connection. IP should 8466 * blow the IRE away and start over. 8467 */ 8468 static void 8469 tcp_ip_notify(tcp_t *tcp) 8470 { 8471 struct iocblk *iocp; 8472 ipid_t *ipid; 8473 mblk_t *mp; 8474 8475 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8476 if (tcp->tcp_ipversion == IPV6_VERSION) 8477 return; 8478 8479 mp = mkiocb(IP_IOCTL); 8480 if (mp == NULL) 8481 return; 8482 8483 iocp = (struct iocblk *)mp->b_rptr; 8484 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8485 8486 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8487 if (!mp->b_cont) { 8488 freeb(mp); 8489 return; 8490 } 8491 8492 ipid = (ipid_t *)mp->b_cont->b_rptr; 8493 mp->b_cont->b_wptr += iocp->ioc_count; 8494 bzero(ipid, sizeof (*ipid)); 8495 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8496 ipid->ipid_ire_type = IRE_CACHE; 8497 ipid->ipid_addr_offset = sizeof (ipid_t); 8498 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8499 /* 8500 * Note: in the case of source routing we want to blow away the 8501 * route to the first source route hop. 8502 */ 8503 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8504 sizeof (tcp->tcp_ipha->ipha_dst)); 8505 8506 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8507 } 8508 8509 /* Unlink and return any mblk that looks like it contains an ire */ 8510 static mblk_t * 8511 tcp_ire_mp(mblk_t *mp) 8512 { 8513 mblk_t *prev_mp; 8514 8515 for (;;) { 8516 prev_mp = mp; 8517 mp = mp->b_cont; 8518 if (mp == NULL) 8519 break; 8520 switch (DB_TYPE(mp)) { 8521 case IRE_DB_TYPE: 8522 case IRE_DB_REQ_TYPE: 8523 if (prev_mp != NULL) 8524 prev_mp->b_cont = mp->b_cont; 8525 mp->b_cont = NULL; 8526 return (mp); 8527 default: 8528 break; 8529 } 8530 } 8531 return (mp); 8532 } 8533 8534 /* 8535 * Timer callback routine for keepalive probe. We do a fake resend of 8536 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8537 * check to see if we have heard anything from the other end for the last 8538 * RTO period. If we have, set the timer to expire for another 8539 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8540 * RTO << 1 and check again when it expires. Keep exponentially increasing 8541 * the timeout if we have not heard from the other side. If for more than 8542 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8543 * kill the connection unless the keepalive abort threshold is 0. In 8544 * that case, we will probe "forever." 8545 */ 8546 static void 8547 tcp_keepalive_killer(void *arg) 8548 { 8549 mblk_t *mp; 8550 conn_t *connp = (conn_t *)arg; 8551 tcp_t *tcp = connp->conn_tcp; 8552 int32_t firetime; 8553 int32_t idletime; 8554 int32_t ka_intrvl; 8555 8556 tcp->tcp_ka_tid = 0; 8557 8558 if (tcp->tcp_fused) 8559 return; 8560 8561 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 8562 ka_intrvl = tcp->tcp_ka_interval; 8563 8564 /* 8565 * Keepalive probe should only be sent if the application has not 8566 * done a close on the connection. 8567 */ 8568 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8569 return; 8570 } 8571 /* Timer fired too early, restart it. */ 8572 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8573 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8574 MSEC_TO_TICK(ka_intrvl)); 8575 return; 8576 } 8577 8578 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8579 /* 8580 * If we have not heard from the other side for a long 8581 * time, kill the connection unless the keepalive abort 8582 * threshold is 0. In that case, we will probe "forever." 8583 */ 8584 if (tcp->tcp_ka_abort_thres != 0 && 8585 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8586 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 8587 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8588 tcp->tcp_client_errno : ETIMEDOUT, 11); 8589 return; 8590 } 8591 8592 if (tcp->tcp_snxt == tcp->tcp_suna && 8593 idletime >= ka_intrvl) { 8594 /* Fake resend of last ACKed byte. */ 8595 mblk_t *mp1 = allocb(1, BPRI_LO); 8596 8597 if (mp1 != NULL) { 8598 *mp1->b_wptr++ = '\0'; 8599 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8600 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8601 freeb(mp1); 8602 /* 8603 * if allocation failed, fall through to start the 8604 * timer back. 8605 */ 8606 if (mp != NULL) { 8607 TCP_RECORD_TRACE(tcp, mp, 8608 TCP_TRACE_SEND_PKT); 8609 tcp_send_data(tcp, tcp->tcp_wq, mp); 8610 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 8611 if (tcp->tcp_ka_last_intrvl != 0) { 8612 /* 8613 * We should probe again at least 8614 * in ka_intrvl, but not more than 8615 * tcp_rexmit_interval_max. 8616 */ 8617 firetime = MIN(ka_intrvl - 1, 8618 tcp->tcp_ka_last_intrvl << 1); 8619 if (firetime > tcp_rexmit_interval_max) 8620 firetime = 8621 tcp_rexmit_interval_max; 8622 } else { 8623 firetime = tcp->tcp_rto; 8624 } 8625 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8626 tcp_keepalive_killer, 8627 MSEC_TO_TICK(firetime)); 8628 tcp->tcp_ka_last_intrvl = firetime; 8629 return; 8630 } 8631 } 8632 } else { 8633 tcp->tcp_ka_last_intrvl = 0; 8634 } 8635 8636 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8637 if ((firetime = ka_intrvl - idletime) < 0) { 8638 firetime = ka_intrvl; 8639 } 8640 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8641 MSEC_TO_TICK(firetime)); 8642 } 8643 8644 int 8645 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8646 { 8647 queue_t *q = tcp->tcp_rq; 8648 int32_t mss = tcp->tcp_mss; 8649 int maxpsz; 8650 8651 if (TCP_IS_DETACHED(tcp)) 8652 return (mss); 8653 8654 if (tcp->tcp_fused) { 8655 maxpsz = tcp_fuse_maxpsz_set(tcp); 8656 mss = INFPSZ; 8657 } else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { 8658 /* 8659 * Set the sd_qn_maxpsz according to the socket send buffer 8660 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8661 * instruct the stream head to copyin user data into contiguous 8662 * kernel-allocated buffers without breaking it up into smaller 8663 * chunks. We round up the buffer size to the nearest SMSS. 8664 */ 8665 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8666 mss = INFPSZ; 8667 } else { 8668 /* 8669 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8670 * (and a multiple of the mss). This instructs the stream 8671 * head to break down larger than SMSS writes into SMSS- 8672 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8673 */ 8674 maxpsz = tcp->tcp_maxpsz * mss; 8675 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8676 maxpsz = tcp->tcp_xmit_hiwater/2; 8677 /* Round up to nearest mss */ 8678 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8679 } 8680 } 8681 (void) setmaxps(q, maxpsz); 8682 tcp->tcp_wq->q_maxpsz = maxpsz; 8683 8684 if (set_maxblk) 8685 (void) mi_set_sth_maxblk(q, mss); 8686 8687 return (mss); 8688 } 8689 8690 /* 8691 * Extract option values from a tcp header. We put any found values into the 8692 * tcpopt struct and return a bitmask saying which options were found. 8693 */ 8694 static int 8695 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8696 { 8697 uchar_t *endp; 8698 int len; 8699 uint32_t mss; 8700 uchar_t *up = (uchar_t *)tcph; 8701 int found = 0; 8702 int32_t sack_len; 8703 tcp_seq sack_begin, sack_end; 8704 tcp_t *tcp; 8705 8706 endp = up + TCP_HDR_LENGTH(tcph); 8707 up += TCP_MIN_HEADER_LENGTH; 8708 while (up < endp) { 8709 len = endp - up; 8710 switch (*up) { 8711 case TCPOPT_EOL: 8712 break; 8713 8714 case TCPOPT_NOP: 8715 up++; 8716 continue; 8717 8718 case TCPOPT_MAXSEG: 8719 if (len < TCPOPT_MAXSEG_LEN || 8720 up[1] != TCPOPT_MAXSEG_LEN) 8721 break; 8722 8723 mss = BE16_TO_U16(up+2); 8724 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8725 tcpopt->tcp_opt_mss = mss; 8726 found |= TCP_OPT_MSS_PRESENT; 8727 8728 up += TCPOPT_MAXSEG_LEN; 8729 continue; 8730 8731 case TCPOPT_WSCALE: 8732 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 8733 break; 8734 8735 if (up[2] > TCP_MAX_WINSHIFT) 8736 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 8737 else 8738 tcpopt->tcp_opt_wscale = up[2]; 8739 found |= TCP_OPT_WSCALE_PRESENT; 8740 8741 up += TCPOPT_WS_LEN; 8742 continue; 8743 8744 case TCPOPT_SACK_PERMITTED: 8745 if (len < TCPOPT_SACK_OK_LEN || 8746 up[1] != TCPOPT_SACK_OK_LEN) 8747 break; 8748 found |= TCP_OPT_SACK_OK_PRESENT; 8749 up += TCPOPT_SACK_OK_LEN; 8750 continue; 8751 8752 case TCPOPT_SACK: 8753 if (len <= 2 || up[1] <= 2 || len < up[1]) 8754 break; 8755 8756 /* If TCP is not interested in SACK blks... */ 8757 if ((tcp = tcpopt->tcp) == NULL) { 8758 up += up[1]; 8759 continue; 8760 } 8761 sack_len = up[1] - TCPOPT_HEADER_LEN; 8762 up += TCPOPT_HEADER_LEN; 8763 8764 /* 8765 * If the list is empty, allocate one and assume 8766 * nothing is sack'ed. 8767 */ 8768 ASSERT(tcp->tcp_sack_info != NULL); 8769 if (tcp->tcp_notsack_list == NULL) { 8770 tcp_notsack_update(&(tcp->tcp_notsack_list), 8771 tcp->tcp_suna, tcp->tcp_snxt, 8772 &(tcp->tcp_num_notsack_blk), 8773 &(tcp->tcp_cnt_notsack_list)); 8774 8775 /* 8776 * Make sure tcp_notsack_list is not NULL. 8777 * This happens when kmem_alloc(KM_NOSLEEP) 8778 * returns NULL. 8779 */ 8780 if (tcp->tcp_notsack_list == NULL) { 8781 up += sack_len; 8782 continue; 8783 } 8784 tcp->tcp_fack = tcp->tcp_suna; 8785 } 8786 8787 while (sack_len > 0) { 8788 if (up + 8 > endp) { 8789 up = endp; 8790 break; 8791 } 8792 sack_begin = BE32_TO_U32(up); 8793 up += 4; 8794 sack_end = BE32_TO_U32(up); 8795 up += 4; 8796 sack_len -= 8; 8797 /* 8798 * Bounds checking. Make sure the SACK 8799 * info is within tcp_suna and tcp_snxt. 8800 * If this SACK blk is out of bound, ignore 8801 * it but continue to parse the following 8802 * blks. 8803 */ 8804 if (SEQ_LEQ(sack_end, sack_begin) || 8805 SEQ_LT(sack_begin, tcp->tcp_suna) || 8806 SEQ_GT(sack_end, tcp->tcp_snxt)) { 8807 continue; 8808 } 8809 tcp_notsack_insert(&(tcp->tcp_notsack_list), 8810 sack_begin, sack_end, 8811 &(tcp->tcp_num_notsack_blk), 8812 &(tcp->tcp_cnt_notsack_list)); 8813 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 8814 tcp->tcp_fack = sack_end; 8815 } 8816 } 8817 found |= TCP_OPT_SACK_PRESENT; 8818 continue; 8819 8820 case TCPOPT_TSTAMP: 8821 if (len < TCPOPT_TSTAMP_LEN || 8822 up[1] != TCPOPT_TSTAMP_LEN) 8823 break; 8824 8825 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 8826 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 8827 8828 found |= TCP_OPT_TSTAMP_PRESENT; 8829 8830 up += TCPOPT_TSTAMP_LEN; 8831 continue; 8832 8833 default: 8834 if (len <= 1 || len < (int)up[1] || up[1] == 0) 8835 break; 8836 up += up[1]; 8837 continue; 8838 } 8839 break; 8840 } 8841 return (found); 8842 } 8843 8844 /* 8845 * Set the mss associated with a particular tcp based on its current value, 8846 * and a new one passed in. Observe minimums and maximums, and reset 8847 * other state variables that we want to view as multiples of mss. 8848 * 8849 * This function is called in various places mainly because 8850 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 8851 * other side's SYN/SYN-ACK packet arrives. 8852 * 2) PMTUd may get us a new MSS. 8853 * 3) If the other side stops sending us timestamp option, we need to 8854 * increase the MSS size to use the extra bytes available. 8855 */ 8856 static void 8857 tcp_mss_set(tcp_t *tcp, uint32_t mss) 8858 { 8859 uint32_t mss_max; 8860 8861 if (tcp->tcp_ipversion == IPV4_VERSION) 8862 mss_max = tcp_mss_max_ipv4; 8863 else 8864 mss_max = tcp_mss_max_ipv6; 8865 8866 if (mss < tcp_mss_min) 8867 mss = tcp_mss_min; 8868 if (mss > mss_max) 8869 mss = mss_max; 8870 /* 8871 * Unless naglim has been set by our client to 8872 * a non-mss value, force naglim to track mss. 8873 * This can help to aggregate small writes. 8874 */ 8875 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 8876 tcp->tcp_naglim = mss; 8877 /* 8878 * TCP should be able to buffer at least 4 MSS data for obvious 8879 * performance reason. 8880 */ 8881 if ((mss << 2) > tcp->tcp_xmit_hiwater) 8882 tcp->tcp_xmit_hiwater = mss << 2; 8883 8884 /* 8885 * Check if we need to apply the tcp_init_cwnd here. If 8886 * it is set and the MSS gets bigger (should not happen 8887 * normally), we need to adjust the resulting tcp_cwnd properly. 8888 * The new tcp_cwnd should not get bigger. 8889 */ 8890 if (tcp->tcp_init_cwnd == 0) { 8891 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 8892 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 8893 } else { 8894 if (tcp->tcp_mss < mss) { 8895 tcp->tcp_cwnd = MAX(1, 8896 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 8897 } else { 8898 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 8899 } 8900 } 8901 tcp->tcp_mss = mss; 8902 tcp->tcp_cwnd_cnt = 0; 8903 (void) tcp_maxpsz_set(tcp, B_TRUE); 8904 } 8905 8906 static int 8907 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8908 { 8909 tcp_t *tcp = NULL; 8910 conn_t *connp; 8911 int err; 8912 dev_t conn_dev; 8913 zoneid_t zoneid = getzoneid(); 8914 8915 /* 8916 * Special case for install: miniroot needs to be able to access files 8917 * via NFS as though it were always in the global zone. 8918 */ 8919 if (credp == kcred && nfs_global_client_only != 0) 8920 zoneid = GLOBAL_ZONEID; 8921 8922 if (q->q_ptr != NULL) 8923 return (0); 8924 8925 if (sflag == MODOPEN) { 8926 /* 8927 * This is a special case. The purpose of a modopen 8928 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 8929 * through for MIB browsers. Everything else is failed. 8930 */ 8931 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 8932 8933 if (connp == NULL) 8934 return (ENOMEM); 8935 8936 connp->conn_flags |= IPCL_TCPMOD; 8937 connp->conn_cred = credp; 8938 connp->conn_zoneid = zoneid; 8939 q->q_ptr = WR(q)->q_ptr = connp; 8940 crhold(credp); 8941 q->q_qinfo = &tcp_mod_rinit; 8942 WR(q)->q_qinfo = &tcp_mod_winit; 8943 qprocson(q); 8944 return (0); 8945 } 8946 8947 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 8948 return (EBUSY); 8949 8950 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 8951 8952 if (flag & SO_ACCEPTOR) { 8953 q->q_qinfo = &tcp_acceptor_rinit; 8954 q->q_ptr = (void *)conn_dev; 8955 WR(q)->q_qinfo = &tcp_acceptor_winit; 8956 WR(q)->q_ptr = (void *)conn_dev; 8957 qprocson(q); 8958 return (0); 8959 } 8960 8961 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 8962 if (connp == NULL) { 8963 inet_minor_free(ip_minor_arena, conn_dev); 8964 q->q_ptr = NULL; 8965 return (ENOSR); 8966 } 8967 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 8968 tcp = connp->conn_tcp; 8969 8970 q->q_ptr = WR(q)->q_ptr = connp; 8971 if (getmajor(*devp) == TCP6_MAJ) { 8972 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 8973 connp->conn_send = ip_output_v6; 8974 connp->conn_af_isv6 = B_TRUE; 8975 connp->conn_pkt_isv6 = B_TRUE; 8976 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 8977 tcp->tcp_ipversion = IPV6_VERSION; 8978 tcp->tcp_family = AF_INET6; 8979 tcp->tcp_mss = tcp_mss_def_ipv6; 8980 } else { 8981 connp->conn_flags |= IPCL_TCP4; 8982 connp->conn_send = ip_output; 8983 connp->conn_af_isv6 = B_FALSE; 8984 connp->conn_pkt_isv6 = B_FALSE; 8985 tcp->tcp_ipversion = IPV4_VERSION; 8986 tcp->tcp_family = AF_INET; 8987 tcp->tcp_mss = tcp_mss_def_ipv4; 8988 } 8989 8990 /* 8991 * TCP keeps a copy of cred for cache locality reasons but 8992 * we put a reference only once. If connp->conn_cred 8993 * becomes invalid, tcp_cred should also be set to NULL. 8994 */ 8995 tcp->tcp_cred = connp->conn_cred = credp; 8996 crhold(connp->conn_cred); 8997 tcp->tcp_cpid = curproc->p_pid; 8998 connp->conn_zoneid = zoneid; 8999 9000 connp->conn_dev = conn_dev; 9001 9002 ASSERT(q->q_qinfo == &tcp_rinit); 9003 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9004 9005 if (flag & SO_SOCKSTR) { 9006 /* 9007 * No need to insert a socket in tcp acceptor hash. 9008 * If it was a socket acceptor stream, we dealt with 9009 * it above. A socket listener can never accept a 9010 * connection and doesn't need acceptor_id. 9011 */ 9012 connp->conn_flags |= IPCL_SOCKET; 9013 tcp->tcp_issocket = 1; 9014 WR(q)->q_qinfo = &tcp_sock_winit; 9015 } else { 9016 #ifdef _ILP32 9017 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9018 #else 9019 tcp->tcp_acceptor_id = conn_dev; 9020 #endif /* _ILP32 */ 9021 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9022 } 9023 9024 if (tcp_trace) 9025 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9026 9027 err = tcp_init(tcp, q); 9028 if (err != 0) { 9029 inet_minor_free(ip_minor_arena, connp->conn_dev); 9030 tcp_acceptor_hash_remove(tcp); 9031 CONN_DEC_REF(connp); 9032 q->q_ptr = WR(q)->q_ptr = NULL; 9033 return (err); 9034 } 9035 9036 RD(q)->q_hiwat = tcp_recv_hiwat; 9037 tcp->tcp_rwnd = tcp_recv_hiwat; 9038 9039 /* Non-zero default values */ 9040 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9041 /* 9042 * Put the ref for TCP. Ref for IP was already put 9043 * by ipcl_conn_create. Also Make the conn_t globally 9044 * visible to walkers 9045 */ 9046 mutex_enter(&connp->conn_lock); 9047 CONN_INC_REF_LOCKED(connp); 9048 ASSERT(connp->conn_ref == 2); 9049 connp->conn_state_flags &= ~CONN_INCIPIENT; 9050 mutex_exit(&connp->conn_lock); 9051 9052 qprocson(q); 9053 return (0); 9054 } 9055 9056 /* 9057 * Some TCP options can be "set" by requesting them in the option 9058 * buffer. This is needed for XTI feature test though we do not 9059 * allow it in general. We interpret that this mechanism is more 9060 * applicable to OSI protocols and need not be allowed in general. 9061 * This routine filters out options for which it is not allowed (most) 9062 * and lets through those (few) for which it is. [ The XTI interface 9063 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9064 * ever implemented will have to be allowed here ]. 9065 */ 9066 static boolean_t 9067 tcp_allow_connopt_set(int level, int name) 9068 { 9069 9070 switch (level) { 9071 case IPPROTO_TCP: 9072 switch (name) { 9073 case TCP_NODELAY: 9074 return (B_TRUE); 9075 default: 9076 return (B_FALSE); 9077 } 9078 /*NOTREACHED*/ 9079 default: 9080 return (B_FALSE); 9081 } 9082 /*NOTREACHED*/ 9083 } 9084 9085 /* 9086 * This routine gets default values of certain options whose default 9087 * values are maintained by protocol specific code 9088 */ 9089 /* ARGSUSED */ 9090 int 9091 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9092 { 9093 int32_t *i1 = (int32_t *)ptr; 9094 9095 switch (level) { 9096 case IPPROTO_TCP: 9097 switch (name) { 9098 case TCP_NOTIFY_THRESHOLD: 9099 *i1 = tcp_ip_notify_interval; 9100 break; 9101 case TCP_ABORT_THRESHOLD: 9102 *i1 = tcp_ip_abort_interval; 9103 break; 9104 case TCP_CONN_NOTIFY_THRESHOLD: 9105 *i1 = tcp_ip_notify_cinterval; 9106 break; 9107 case TCP_CONN_ABORT_THRESHOLD: 9108 *i1 = tcp_ip_abort_cinterval; 9109 break; 9110 default: 9111 return (-1); 9112 } 9113 break; 9114 case IPPROTO_IP: 9115 switch (name) { 9116 case IP_TTL: 9117 *i1 = tcp_ipv4_ttl; 9118 break; 9119 default: 9120 return (-1); 9121 } 9122 break; 9123 case IPPROTO_IPV6: 9124 switch (name) { 9125 case IPV6_UNICAST_HOPS: 9126 *i1 = tcp_ipv6_hoplimit; 9127 break; 9128 default: 9129 return (-1); 9130 } 9131 break; 9132 default: 9133 return (-1); 9134 } 9135 return (sizeof (int)); 9136 } 9137 9138 9139 /* 9140 * TCP routine to get the values of options. 9141 */ 9142 int 9143 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9144 { 9145 int *i1 = (int *)ptr; 9146 conn_t *connp = Q_TO_CONN(q); 9147 tcp_t *tcp = connp->conn_tcp; 9148 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9149 9150 switch (level) { 9151 case SOL_SOCKET: 9152 switch (name) { 9153 case SO_LINGER: { 9154 struct linger *lgr = (struct linger *)ptr; 9155 9156 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9157 lgr->l_linger = tcp->tcp_lingertime; 9158 } 9159 return (sizeof (struct linger)); 9160 case SO_DEBUG: 9161 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9162 break; 9163 case SO_KEEPALIVE: 9164 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9165 break; 9166 case SO_DONTROUTE: 9167 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9168 break; 9169 case SO_USELOOPBACK: 9170 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9171 break; 9172 case SO_BROADCAST: 9173 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9174 break; 9175 case SO_REUSEADDR: 9176 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9177 break; 9178 case SO_OOBINLINE: 9179 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9180 break; 9181 case SO_DGRAM_ERRIND: 9182 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9183 break; 9184 case SO_TYPE: 9185 *i1 = SOCK_STREAM; 9186 break; 9187 case SO_SNDBUF: 9188 *i1 = tcp->tcp_xmit_hiwater; 9189 break; 9190 case SO_RCVBUF: 9191 *i1 = RD(q)->q_hiwat; 9192 break; 9193 case SO_SND_COPYAVOID: 9194 *i1 = tcp->tcp_snd_zcopy_on ? 9195 SO_SND_COPYAVOID : 0; 9196 break; 9197 default: 9198 return (-1); 9199 } 9200 break; 9201 case IPPROTO_TCP: 9202 switch (name) { 9203 case TCP_NODELAY: 9204 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9205 break; 9206 case TCP_MAXSEG: 9207 *i1 = tcp->tcp_mss; 9208 break; 9209 case TCP_NOTIFY_THRESHOLD: 9210 *i1 = (int)tcp->tcp_first_timer_threshold; 9211 break; 9212 case TCP_ABORT_THRESHOLD: 9213 *i1 = tcp->tcp_second_timer_threshold; 9214 break; 9215 case TCP_CONN_NOTIFY_THRESHOLD: 9216 *i1 = tcp->tcp_first_ctimer_threshold; 9217 break; 9218 case TCP_CONN_ABORT_THRESHOLD: 9219 *i1 = tcp->tcp_second_ctimer_threshold; 9220 break; 9221 case TCP_RECVDSTADDR: 9222 *i1 = tcp->tcp_recvdstaddr; 9223 break; 9224 case TCP_ANONPRIVBIND: 9225 *i1 = tcp->tcp_anon_priv_bind; 9226 break; 9227 case TCP_EXCLBIND: 9228 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9229 break; 9230 case TCP_INIT_CWND: 9231 *i1 = tcp->tcp_init_cwnd; 9232 break; 9233 case TCP_KEEPALIVE_THRESHOLD: 9234 *i1 = tcp->tcp_ka_interval; 9235 break; 9236 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9237 *i1 = tcp->tcp_ka_abort_thres; 9238 break; 9239 case TCP_CORK: 9240 *i1 = tcp->tcp_cork; 9241 break; 9242 default: 9243 return (-1); 9244 } 9245 break; 9246 case IPPROTO_IP: 9247 if (tcp->tcp_family != AF_INET) 9248 return (-1); 9249 switch (name) { 9250 case IP_OPTIONS: 9251 case T_IP_OPTIONS: { 9252 /* 9253 * This is compatible with BSD in that in only return 9254 * the reverse source route with the final destination 9255 * as the last entry. The first 4 bytes of the option 9256 * will contain the final destination. 9257 */ 9258 char *opt_ptr; 9259 int opt_len; 9260 opt_ptr = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 9261 opt_len = (char *)tcp->tcp_tcph - opt_ptr; 9262 /* Caller ensures enough space */ 9263 if (opt_len > 0) { 9264 /* 9265 * TODO: Do we have to handle getsockopt on an 9266 * initiator as well? 9267 */ 9268 return (tcp_opt_get_user(tcp->tcp_ipha, ptr)); 9269 } 9270 return (0); 9271 } 9272 case IP_TOS: 9273 case T_IP_TOS: 9274 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9275 break; 9276 case IP_TTL: 9277 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9278 break; 9279 default: 9280 return (-1); 9281 } 9282 break; 9283 case IPPROTO_IPV6: 9284 /* 9285 * IPPROTO_IPV6 options are only supported for sockets 9286 * that are using IPv6 on the wire. 9287 */ 9288 if (tcp->tcp_ipversion != IPV6_VERSION) { 9289 return (-1); 9290 } 9291 switch (name) { 9292 case IPV6_UNICAST_HOPS: 9293 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9294 break; /* goto sizeof (int) option return */ 9295 case IPV6_BOUND_IF: 9296 /* Zero if not set */ 9297 *i1 = tcp->tcp_bound_if; 9298 break; /* goto sizeof (int) option return */ 9299 case IPV6_RECVPKTINFO: 9300 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9301 *i1 = 1; 9302 else 9303 *i1 = 0; 9304 break; /* goto sizeof (int) option return */ 9305 case IPV6_RECVTCLASS: 9306 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9307 *i1 = 1; 9308 else 9309 *i1 = 0; 9310 break; /* goto sizeof (int) option return */ 9311 case IPV6_RECVHOPLIMIT: 9312 if (tcp->tcp_ipv6_recvancillary & 9313 TCP_IPV6_RECVHOPLIMIT) 9314 *i1 = 1; 9315 else 9316 *i1 = 0; 9317 break; /* goto sizeof (int) option return */ 9318 case IPV6_RECVHOPOPTS: 9319 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9320 *i1 = 1; 9321 else 9322 *i1 = 0; 9323 break; /* goto sizeof (int) option return */ 9324 case IPV6_RECVDSTOPTS: 9325 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9326 *i1 = 1; 9327 else 9328 *i1 = 0; 9329 break; /* goto sizeof (int) option return */ 9330 case _OLD_IPV6_RECVDSTOPTS: 9331 if (tcp->tcp_ipv6_recvancillary & 9332 TCP_OLD_IPV6_RECVDSTOPTS) 9333 *i1 = 1; 9334 else 9335 *i1 = 0; 9336 break; /* goto sizeof (int) option return */ 9337 case IPV6_RECVRTHDR: 9338 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9339 *i1 = 1; 9340 else 9341 *i1 = 0; 9342 break; /* goto sizeof (int) option return */ 9343 case IPV6_RECVRTHDRDSTOPTS: 9344 if (tcp->tcp_ipv6_recvancillary & 9345 TCP_IPV6_RECVRTDSTOPTS) 9346 *i1 = 1; 9347 else 9348 *i1 = 0; 9349 break; /* goto sizeof (int) option return */ 9350 case IPV6_PKTINFO: { 9351 /* XXX assumes that caller has room for max size! */ 9352 struct in6_pktinfo *pkti; 9353 9354 pkti = (struct in6_pktinfo *)ptr; 9355 if (ipp->ipp_fields & IPPF_IFINDEX) 9356 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9357 else 9358 pkti->ipi6_ifindex = 0; 9359 if (ipp->ipp_fields & IPPF_ADDR) 9360 pkti->ipi6_addr = ipp->ipp_addr; 9361 else 9362 pkti->ipi6_addr = ipv6_all_zeros; 9363 return (sizeof (struct in6_pktinfo)); 9364 } 9365 case IPV6_TCLASS: 9366 if (ipp->ipp_fields & IPPF_TCLASS) 9367 *i1 = ipp->ipp_tclass; 9368 else 9369 *i1 = IPV6_FLOW_TCLASS( 9370 IPV6_DEFAULT_VERS_AND_FLOW); 9371 break; /* goto sizeof (int) option return */ 9372 case IPV6_NEXTHOP: { 9373 sin6_t *sin6 = (sin6_t *)ptr; 9374 9375 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9376 return (0); 9377 *sin6 = sin6_null; 9378 sin6->sin6_family = AF_INET6; 9379 sin6->sin6_addr = ipp->ipp_nexthop; 9380 return (sizeof (sin6_t)); 9381 } 9382 case IPV6_HOPOPTS: 9383 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9384 return (0); 9385 bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen); 9386 return (ipp->ipp_hopoptslen); 9387 case IPV6_RTHDRDSTOPTS: 9388 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9389 return (0); 9390 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9391 return (ipp->ipp_rtdstoptslen); 9392 case IPV6_RTHDR: 9393 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9394 return (0); 9395 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9396 return (ipp->ipp_rthdrlen); 9397 case IPV6_DSTOPTS: 9398 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9399 return (0); 9400 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9401 return (ipp->ipp_dstoptslen); 9402 case IPV6_SRC_PREFERENCES: 9403 return (ip6_get_src_preferences(connp, 9404 (uint32_t *)ptr)); 9405 case IPV6_PATHMTU: { 9406 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9407 9408 if (tcp->tcp_state < TCPS_ESTABLISHED) 9409 return (-1); 9410 9411 return (ip_fill_mtuinfo(&connp->conn_remv6, 9412 connp->conn_fport, mtuinfo)); 9413 } 9414 default: 9415 return (-1); 9416 } 9417 break; 9418 default: 9419 return (-1); 9420 } 9421 return (sizeof (int)); 9422 } 9423 9424 /* 9425 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9426 * Parameters are assumed to be verified by the caller. 9427 */ 9428 /* ARGSUSED */ 9429 int 9430 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9431 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9432 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9433 { 9434 tcp_t *tcp = Q_TO_TCP(q); 9435 int *i1 = (int *)invalp; 9436 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9437 boolean_t checkonly; 9438 int reterr; 9439 9440 switch (optset_context) { 9441 case SETFN_OPTCOM_CHECKONLY: 9442 checkonly = B_TRUE; 9443 /* 9444 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9445 * inlen != 0 implies value supplied and 9446 * we have to "pretend" to set it. 9447 * inlen == 0 implies that there is no 9448 * value part in T_CHECK request and just validation 9449 * done elsewhere should be enough, we just return here. 9450 */ 9451 if (inlen == 0) { 9452 *outlenp = 0; 9453 return (0); 9454 } 9455 break; 9456 case SETFN_OPTCOM_NEGOTIATE: 9457 checkonly = B_FALSE; 9458 break; 9459 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9460 case SETFN_CONN_NEGOTIATE: 9461 checkonly = B_FALSE; 9462 /* 9463 * Negotiating local and "association-related" options 9464 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9465 * primitives is allowed by XTI, but we choose 9466 * to not implement this style negotiation for Internet 9467 * protocols (We interpret it is a must for OSI world but 9468 * optional for Internet protocols) for all options. 9469 * [ Will do only for the few options that enable test 9470 * suites that our XTI implementation of this feature 9471 * works for transports that do allow it ] 9472 */ 9473 if (!tcp_allow_connopt_set(level, name)) { 9474 *outlenp = 0; 9475 return (EINVAL); 9476 } 9477 break; 9478 default: 9479 /* 9480 * We should never get here 9481 */ 9482 *outlenp = 0; 9483 return (EINVAL); 9484 } 9485 9486 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9487 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9488 9489 /* 9490 * For TCP, we should have no ancillary data sent down 9491 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9492 * has to be zero. 9493 */ 9494 ASSERT(thisdg_attrs == NULL); 9495 9496 /* 9497 * For fixed length options, no sanity check 9498 * of passed in length is done. It is assumed *_optcom_req() 9499 * routines do the right thing. 9500 */ 9501 9502 switch (level) { 9503 case SOL_SOCKET: 9504 switch (name) { 9505 case SO_LINGER: { 9506 struct linger *lgr = (struct linger *)invalp; 9507 9508 if (!checkonly) { 9509 if (lgr->l_onoff) { 9510 tcp->tcp_linger = 1; 9511 tcp->tcp_lingertime = lgr->l_linger; 9512 } else { 9513 tcp->tcp_linger = 0; 9514 tcp->tcp_lingertime = 0; 9515 } 9516 /* struct copy */ 9517 *(struct linger *)outvalp = *lgr; 9518 } else { 9519 if (!lgr->l_onoff) { 9520 ((struct linger *)outvalp)->l_onoff = 0; 9521 ((struct linger *)outvalp)->l_linger = 0; 9522 } else { 9523 /* struct copy */ 9524 *(struct linger *)outvalp = *lgr; 9525 } 9526 } 9527 *outlenp = sizeof (struct linger); 9528 return (0); 9529 } 9530 case SO_DEBUG: 9531 if (!checkonly) 9532 tcp->tcp_debug = onoff; 9533 break; 9534 case SO_KEEPALIVE: 9535 if (checkonly) { 9536 /* T_CHECK case */ 9537 break; 9538 } 9539 9540 if (!onoff) { 9541 if (tcp->tcp_ka_enabled) { 9542 if (tcp->tcp_ka_tid != 0) { 9543 (void) TCP_TIMER_CANCEL(tcp, 9544 tcp->tcp_ka_tid); 9545 tcp->tcp_ka_tid = 0; 9546 } 9547 tcp->tcp_ka_enabled = 0; 9548 } 9549 break; 9550 } 9551 if (!tcp->tcp_ka_enabled) { 9552 /* Crank up the keepalive timer */ 9553 tcp->tcp_ka_last_intrvl = 0; 9554 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9555 tcp_keepalive_killer, 9556 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9557 tcp->tcp_ka_enabled = 1; 9558 } 9559 break; 9560 case SO_DONTROUTE: 9561 /* 9562 * SO_DONTROUTE, SO_USELOOPBACK and SO_BROADCAST are 9563 * only of interest to IP. We track them here only so 9564 * that we can report their current value. 9565 */ 9566 if (!checkonly) { 9567 tcp->tcp_dontroute = onoff; 9568 tcp->tcp_connp->conn_dontroute = onoff; 9569 } 9570 break; 9571 case SO_USELOOPBACK: 9572 if (!checkonly) { 9573 tcp->tcp_useloopback = onoff; 9574 tcp->tcp_connp->conn_loopback = onoff; 9575 } 9576 break; 9577 case SO_BROADCAST: 9578 if (!checkonly) { 9579 tcp->tcp_broadcast = onoff; 9580 tcp->tcp_connp->conn_broadcast = onoff; 9581 } 9582 break; 9583 case SO_REUSEADDR: 9584 if (!checkonly) { 9585 tcp->tcp_reuseaddr = onoff; 9586 tcp->tcp_connp->conn_reuseaddr = onoff; 9587 } 9588 break; 9589 case SO_OOBINLINE: 9590 if (!checkonly) 9591 tcp->tcp_oobinline = onoff; 9592 break; 9593 case SO_DGRAM_ERRIND: 9594 if (!checkonly) 9595 tcp->tcp_dgram_errind = onoff; 9596 break; 9597 case SO_SNDBUF: { 9598 tcp_t *peer_tcp; 9599 9600 if (*i1 > tcp_max_buf) { 9601 *outlenp = 0; 9602 return (ENOBUFS); 9603 } 9604 if (checkonly) 9605 break; 9606 9607 tcp->tcp_xmit_hiwater = *i1; 9608 if (tcp_snd_lowat_fraction != 0) 9609 tcp->tcp_xmit_lowater = 9610 tcp->tcp_xmit_hiwater / 9611 tcp_snd_lowat_fraction; 9612 (void) tcp_maxpsz_set(tcp, B_TRUE); 9613 /* 9614 * If we are flow-controlled, recheck the condition. 9615 * There are apps that increase SO_SNDBUF size when 9616 * flow-controlled (EWOULDBLOCK), and expect the flow 9617 * control condition to be lifted right away. 9618 * 9619 * For the fused tcp loopback case, in order to avoid 9620 * a race with the peer's tcp_fuse_rrw() we need to 9621 * hold its fuse_lock while accessing tcp_flow_stopped. 9622 */ 9623 peer_tcp = tcp->tcp_loopback_peer; 9624 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 9625 if (tcp->tcp_fused) 9626 mutex_enter(&peer_tcp->tcp_fuse_lock); 9627 9628 if (tcp->tcp_flow_stopped && 9629 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 9630 tcp_clrqfull(tcp); 9631 } 9632 if (tcp->tcp_fused) 9633 mutex_exit(&peer_tcp->tcp_fuse_lock); 9634 break; 9635 } 9636 case SO_RCVBUF: 9637 if (*i1 > tcp_max_buf) { 9638 *outlenp = 0; 9639 return (ENOBUFS); 9640 } 9641 /* Silently ignore zero */ 9642 if (!checkonly && *i1 != 0) { 9643 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 9644 (void) tcp_rwnd_set(tcp, *i1); 9645 } 9646 /* 9647 * XXX should we return the rwnd here 9648 * and tcp_opt_get ? 9649 */ 9650 break; 9651 case SO_SND_COPYAVOID: 9652 if (!checkonly) { 9653 /* we only allow enable at most once for now */ 9654 if (tcp->tcp_loopback || 9655 (!tcp->tcp_snd_zcopy_aware && 9656 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 9657 *outlenp = 0; 9658 return (EOPNOTSUPP); 9659 } 9660 tcp->tcp_snd_zcopy_aware = 1; 9661 } 9662 break; 9663 default: 9664 *outlenp = 0; 9665 return (EINVAL); 9666 } 9667 break; 9668 case IPPROTO_TCP: 9669 switch (name) { 9670 case TCP_NODELAY: 9671 if (!checkonly) 9672 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 9673 break; 9674 case TCP_NOTIFY_THRESHOLD: 9675 if (!checkonly) 9676 tcp->tcp_first_timer_threshold = *i1; 9677 break; 9678 case TCP_ABORT_THRESHOLD: 9679 if (!checkonly) 9680 tcp->tcp_second_timer_threshold = *i1; 9681 break; 9682 case TCP_CONN_NOTIFY_THRESHOLD: 9683 if (!checkonly) 9684 tcp->tcp_first_ctimer_threshold = *i1; 9685 break; 9686 case TCP_CONN_ABORT_THRESHOLD: 9687 if (!checkonly) 9688 tcp->tcp_second_ctimer_threshold = *i1; 9689 break; 9690 case TCP_RECVDSTADDR: 9691 if (tcp->tcp_state > TCPS_LISTEN) 9692 return (EOPNOTSUPP); 9693 if (!checkonly) 9694 tcp->tcp_recvdstaddr = onoff; 9695 break; 9696 case TCP_ANONPRIVBIND: 9697 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 9698 *outlenp = 0; 9699 return (reterr); 9700 } 9701 if (!checkonly) { 9702 tcp->tcp_anon_priv_bind = onoff; 9703 } 9704 break; 9705 case TCP_EXCLBIND: 9706 if (!checkonly) 9707 tcp->tcp_exclbind = onoff; 9708 break; /* goto sizeof (int) option return */ 9709 case TCP_INIT_CWND: { 9710 uint32_t init_cwnd = *((uint32_t *)invalp); 9711 9712 if (checkonly) 9713 break; 9714 9715 /* 9716 * Only allow socket with network configuration 9717 * privilege to set the initial cwnd to be larger 9718 * than allowed by RFC 3390. 9719 */ 9720 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 9721 tcp->tcp_init_cwnd = init_cwnd; 9722 break; 9723 } 9724 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 9725 *outlenp = 0; 9726 return (reterr); 9727 } 9728 if (init_cwnd > TCP_MAX_INIT_CWND) { 9729 *outlenp = 0; 9730 return (EINVAL); 9731 } 9732 tcp->tcp_init_cwnd = init_cwnd; 9733 break; 9734 } 9735 case TCP_KEEPALIVE_THRESHOLD: 9736 if (checkonly) 9737 break; 9738 9739 if (*i1 < tcp_keepalive_interval_low || 9740 *i1 > tcp_keepalive_interval_high) { 9741 *outlenp = 0; 9742 return (EINVAL); 9743 } 9744 if (*i1 != tcp->tcp_ka_interval) { 9745 tcp->tcp_ka_interval = *i1; 9746 /* 9747 * Check if we need to restart the 9748 * keepalive timer. 9749 */ 9750 if (tcp->tcp_ka_tid != 0) { 9751 ASSERT(tcp->tcp_ka_enabled); 9752 (void) TCP_TIMER_CANCEL(tcp, 9753 tcp->tcp_ka_tid); 9754 tcp->tcp_ka_last_intrvl = 0; 9755 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9756 tcp_keepalive_killer, 9757 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9758 } 9759 } 9760 break; 9761 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9762 if (!checkonly) { 9763 if (*i1 < tcp_keepalive_abort_interval_low || 9764 *i1 > tcp_keepalive_abort_interval_high) { 9765 *outlenp = 0; 9766 return (EINVAL); 9767 } 9768 tcp->tcp_ka_abort_thres = *i1; 9769 } 9770 break; 9771 case TCP_CORK: 9772 if (!checkonly) { 9773 /* 9774 * if tcp->tcp_cork was set and is now 9775 * being unset, we have to make sure that 9776 * the remaining data gets sent out. Also 9777 * unset tcp->tcp_cork so that tcp_wput_data() 9778 * can send data even if it is less than mss 9779 */ 9780 if (tcp->tcp_cork && onoff == 0 && 9781 tcp->tcp_unsent > 0) { 9782 tcp->tcp_cork = B_FALSE; 9783 tcp_wput_data(tcp, NULL, B_FALSE); 9784 } 9785 tcp->tcp_cork = onoff; 9786 } 9787 break; 9788 default: 9789 *outlenp = 0; 9790 return (EINVAL); 9791 } 9792 break; 9793 case IPPROTO_IP: 9794 if (tcp->tcp_family != AF_INET) { 9795 *outlenp = 0; 9796 return (ENOPROTOOPT); 9797 } 9798 switch (name) { 9799 case IP_OPTIONS: 9800 case T_IP_OPTIONS: 9801 reterr = tcp_opt_set_header(tcp, checkonly, 9802 invalp, inlen); 9803 if (reterr) { 9804 *outlenp = 0; 9805 return (reterr); 9806 } 9807 /* OK return - copy input buffer into output buffer */ 9808 if (invalp != outvalp) { 9809 /* don't trust bcopy for identical src/dst */ 9810 bcopy(invalp, outvalp, inlen); 9811 } 9812 *outlenp = inlen; 9813 return (0); 9814 case IP_TOS: 9815 case T_IP_TOS: 9816 if (!checkonly) { 9817 tcp->tcp_ipha->ipha_type_of_service = 9818 (uchar_t)*i1; 9819 tcp->tcp_tos = (uchar_t)*i1; 9820 } 9821 break; 9822 case IP_TTL: 9823 if (!checkonly) { 9824 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 9825 tcp->tcp_ttl = (uchar_t)*i1; 9826 } 9827 break; 9828 case IP_BOUND_IF: 9829 /* Handled at the IP level */ 9830 return (-EINVAL); 9831 case IP_SEC_OPT: 9832 /* 9833 * We should not allow policy setting after 9834 * we start listening for connections. 9835 */ 9836 if (tcp->tcp_state == TCPS_LISTEN) { 9837 return (EINVAL); 9838 } else { 9839 /* Handled at the IP level */ 9840 return (-EINVAL); 9841 } 9842 default: 9843 *outlenp = 0; 9844 return (EINVAL); 9845 } 9846 break; 9847 case IPPROTO_IPV6: { 9848 ip6_pkt_t *ipp; 9849 9850 /* 9851 * IPPROTO_IPV6 options are only supported for sockets 9852 * that are using IPv6 on the wire. 9853 */ 9854 if (tcp->tcp_ipversion != IPV6_VERSION) { 9855 *outlenp = 0; 9856 return (ENOPROTOOPT); 9857 } 9858 /* 9859 * Only sticky options; no ancillary data 9860 */ 9861 ASSERT(thisdg_attrs == NULL); 9862 ipp = &tcp->tcp_sticky_ipp; 9863 9864 switch (name) { 9865 case IPV6_UNICAST_HOPS: 9866 /* -1 means use default */ 9867 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 9868 *outlenp = 0; 9869 return (EINVAL); 9870 } 9871 if (!checkonly) { 9872 if (*i1 == -1) { 9873 tcp->tcp_ip6h->ip6_hops = 9874 ipp->ipp_unicast_hops = 9875 (uint8_t)tcp_ipv6_hoplimit; 9876 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 9877 /* Pass modified value to IP. */ 9878 *i1 = tcp->tcp_ip6h->ip6_hops; 9879 } else { 9880 tcp->tcp_ip6h->ip6_hops = 9881 ipp->ipp_unicast_hops = 9882 (uint8_t)*i1; 9883 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 9884 } 9885 reterr = tcp_build_hdrs(q, tcp); 9886 if (reterr != 0) 9887 return (reterr); 9888 } 9889 break; 9890 case IPV6_BOUND_IF: 9891 if (!checkonly) { 9892 int error = 0; 9893 9894 tcp->tcp_bound_if = *i1; 9895 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 9896 B_TRUE, checkonly, level, name, mblk); 9897 if (error != 0) { 9898 *outlenp = 0; 9899 return (error); 9900 } 9901 } 9902 break; 9903 /* 9904 * Set boolean switches for ancillary data delivery 9905 */ 9906 case IPV6_RECVPKTINFO: 9907 if (!checkonly) { 9908 if (onoff) 9909 tcp->tcp_ipv6_recvancillary |= 9910 TCP_IPV6_RECVPKTINFO; 9911 else 9912 tcp->tcp_ipv6_recvancillary &= 9913 ~TCP_IPV6_RECVPKTINFO; 9914 /* Force it to be sent up with the next msg */ 9915 tcp->tcp_recvifindex = 0; 9916 } 9917 break; 9918 case IPV6_RECVTCLASS: 9919 if (!checkonly) { 9920 if (onoff) 9921 tcp->tcp_ipv6_recvancillary |= 9922 TCP_IPV6_RECVTCLASS; 9923 else 9924 tcp->tcp_ipv6_recvancillary &= 9925 ~TCP_IPV6_RECVTCLASS; 9926 } 9927 break; 9928 case IPV6_RECVHOPLIMIT: 9929 if (!checkonly) { 9930 if (onoff) 9931 tcp->tcp_ipv6_recvancillary |= 9932 TCP_IPV6_RECVHOPLIMIT; 9933 else 9934 tcp->tcp_ipv6_recvancillary &= 9935 ~TCP_IPV6_RECVHOPLIMIT; 9936 /* Force it to be sent up with the next msg */ 9937 tcp->tcp_recvhops = 0xffffffffU; 9938 } 9939 break; 9940 case IPV6_RECVHOPOPTS: 9941 if (!checkonly) { 9942 if (onoff) 9943 tcp->tcp_ipv6_recvancillary |= 9944 TCP_IPV6_RECVHOPOPTS; 9945 else 9946 tcp->tcp_ipv6_recvancillary &= 9947 ~TCP_IPV6_RECVHOPOPTS; 9948 } 9949 break; 9950 case IPV6_RECVDSTOPTS: 9951 if (!checkonly) { 9952 if (onoff) 9953 tcp->tcp_ipv6_recvancillary |= 9954 TCP_IPV6_RECVDSTOPTS; 9955 else 9956 tcp->tcp_ipv6_recvancillary &= 9957 ~TCP_IPV6_RECVDSTOPTS; 9958 } 9959 break; 9960 case _OLD_IPV6_RECVDSTOPTS: 9961 if (!checkonly) { 9962 if (onoff) 9963 tcp->tcp_ipv6_recvancillary |= 9964 TCP_OLD_IPV6_RECVDSTOPTS; 9965 else 9966 tcp->tcp_ipv6_recvancillary &= 9967 ~TCP_OLD_IPV6_RECVDSTOPTS; 9968 } 9969 break; 9970 case IPV6_RECVRTHDR: 9971 if (!checkonly) { 9972 if (onoff) 9973 tcp->tcp_ipv6_recvancillary |= 9974 TCP_IPV6_RECVRTHDR; 9975 else 9976 tcp->tcp_ipv6_recvancillary &= 9977 ~TCP_IPV6_RECVRTHDR; 9978 } 9979 break; 9980 case IPV6_RECVRTHDRDSTOPTS: 9981 if (!checkonly) { 9982 if (onoff) 9983 tcp->tcp_ipv6_recvancillary |= 9984 TCP_IPV6_RECVRTDSTOPTS; 9985 else 9986 tcp->tcp_ipv6_recvancillary &= 9987 ~TCP_IPV6_RECVRTDSTOPTS; 9988 } 9989 break; 9990 case IPV6_PKTINFO: 9991 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 9992 return (EINVAL); 9993 if (checkonly) 9994 break; 9995 9996 if (inlen == 0) { 9997 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 9998 } else { 9999 struct in6_pktinfo *pkti; 10000 10001 pkti = (struct in6_pktinfo *)invalp; 10002 /* 10003 * RFC 3542 states that ipi6_addr must be 10004 * the unspecified address when setting the 10005 * IPV6_PKTINFO sticky socket option on a 10006 * TCP socket. 10007 */ 10008 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10009 return (EINVAL); 10010 /* 10011 * ip6_set_pktinfo() validates the source 10012 * address and interface index. 10013 */ 10014 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10015 pkti, mblk); 10016 if (reterr != 0) 10017 return (reterr); 10018 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10019 ipp->ipp_addr = pkti->ipi6_addr; 10020 if (ipp->ipp_ifindex != 0) 10021 ipp->ipp_fields |= IPPF_IFINDEX; 10022 else 10023 ipp->ipp_fields &= ~IPPF_IFINDEX; 10024 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10025 ipp->ipp_fields |= IPPF_ADDR; 10026 else 10027 ipp->ipp_fields &= ~IPPF_ADDR; 10028 } 10029 reterr = tcp_build_hdrs(q, tcp); 10030 if (reterr != 0) 10031 return (reterr); 10032 break; 10033 case IPV6_TCLASS: 10034 if (inlen != 0 && inlen != sizeof (int)) 10035 return (EINVAL); 10036 if (checkonly) 10037 break; 10038 10039 if (inlen == 0) { 10040 ipp->ipp_fields &= ~IPPF_TCLASS; 10041 } else { 10042 if (*i1 > 255 || *i1 < -1) 10043 return (EINVAL); 10044 if (*i1 == -1) { 10045 ipp->ipp_tclass = 0; 10046 *i1 = 0; 10047 } else { 10048 ipp->ipp_tclass = *i1; 10049 } 10050 ipp->ipp_fields |= IPPF_TCLASS; 10051 } 10052 reterr = tcp_build_hdrs(q, tcp); 10053 if (reterr != 0) 10054 return (reterr); 10055 break; 10056 case IPV6_NEXTHOP: 10057 /* 10058 * IP will verify that the nexthop is reachable 10059 * and fail for sticky options. 10060 */ 10061 if (inlen != 0 && inlen != sizeof (sin6_t)) 10062 return (EINVAL); 10063 if (checkonly) 10064 break; 10065 10066 if (inlen == 0) { 10067 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10068 } else { 10069 sin6_t *sin6 = (sin6_t *)invalp; 10070 10071 if (sin6->sin6_family != AF_INET6) 10072 return (EAFNOSUPPORT); 10073 if (IN6_IS_ADDR_V4MAPPED( 10074 &sin6->sin6_addr)) 10075 return (EADDRNOTAVAIL); 10076 ipp->ipp_nexthop = sin6->sin6_addr; 10077 if (!IN6_IS_ADDR_UNSPECIFIED( 10078 &ipp->ipp_nexthop)) 10079 ipp->ipp_fields |= IPPF_NEXTHOP; 10080 else 10081 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10082 } 10083 reterr = tcp_build_hdrs(q, tcp); 10084 if (reterr != 0) 10085 return (reterr); 10086 break; 10087 case IPV6_HOPOPTS: { 10088 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10089 /* 10090 * Sanity checks - minimum size, size a multiple of 10091 * eight bytes, and matching size passed in. 10092 */ 10093 if (inlen != 0 && 10094 inlen != (8 * (hopts->ip6h_len + 1))) 10095 return (EINVAL); 10096 10097 if (checkonly) 10098 break; 10099 10100 if (inlen == 0) { 10101 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 10102 kmem_free(ipp->ipp_hopopts, 10103 ipp->ipp_hopoptslen); 10104 ipp->ipp_hopopts = NULL; 10105 ipp->ipp_hopoptslen = 0; 10106 } 10107 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10108 } else { 10109 reterr = tcp_pkt_set(invalp, inlen, 10110 (uchar_t **)&ipp->ipp_hopopts, 10111 &ipp->ipp_hopoptslen); 10112 if (reterr != 0) 10113 return (reterr); 10114 ipp->ipp_fields |= IPPF_HOPOPTS; 10115 } 10116 reterr = tcp_build_hdrs(q, tcp); 10117 if (reterr != 0) 10118 return (reterr); 10119 break; 10120 } 10121 case IPV6_RTHDRDSTOPTS: { 10122 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10123 10124 /* 10125 * Sanity checks - minimum size, size a multiple of 10126 * eight bytes, and matching size passed in. 10127 */ 10128 if (inlen != 0 && 10129 inlen != (8 * (dopts->ip6d_len + 1))) 10130 return (EINVAL); 10131 10132 if (checkonly) 10133 break; 10134 10135 if (inlen == 0) { 10136 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 10137 kmem_free(ipp->ipp_rtdstopts, 10138 ipp->ipp_rtdstoptslen); 10139 ipp->ipp_rtdstopts = NULL; 10140 ipp->ipp_rtdstoptslen = 0; 10141 } 10142 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10143 } else { 10144 reterr = tcp_pkt_set(invalp, inlen, 10145 (uchar_t **)&ipp->ipp_rtdstopts, 10146 &ipp->ipp_rtdstoptslen); 10147 if (reterr != 0) 10148 return (reterr); 10149 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10150 } 10151 reterr = tcp_build_hdrs(q, tcp); 10152 if (reterr != 0) 10153 return (reterr); 10154 break; 10155 } 10156 case IPV6_DSTOPTS: { 10157 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10158 10159 /* 10160 * Sanity checks - minimum size, size a multiple of 10161 * eight bytes, and matching size passed in. 10162 */ 10163 if (inlen != 0 && 10164 inlen != (8 * (dopts->ip6d_len + 1))) 10165 return (EINVAL); 10166 10167 if (checkonly) 10168 break; 10169 10170 if (inlen == 0) { 10171 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 10172 kmem_free(ipp->ipp_dstopts, 10173 ipp->ipp_dstoptslen); 10174 ipp->ipp_dstopts = NULL; 10175 ipp->ipp_dstoptslen = 0; 10176 } 10177 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10178 } else { 10179 reterr = tcp_pkt_set(invalp, inlen, 10180 (uchar_t **)&ipp->ipp_dstopts, 10181 &ipp->ipp_dstoptslen); 10182 if (reterr != 0) 10183 return (reterr); 10184 ipp->ipp_fields |= IPPF_DSTOPTS; 10185 } 10186 reterr = tcp_build_hdrs(q, tcp); 10187 if (reterr != 0) 10188 return (reterr); 10189 break; 10190 } 10191 case IPV6_RTHDR: { 10192 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10193 10194 /* 10195 * Sanity checks - minimum size, size a multiple of 10196 * eight bytes, and matching size passed in. 10197 */ 10198 if (inlen != 0 && 10199 inlen != (8 * (rt->ip6r_len + 1))) 10200 return (EINVAL); 10201 10202 if (checkonly) 10203 break; 10204 10205 if (inlen == 0) { 10206 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 10207 kmem_free(ipp->ipp_rthdr, 10208 ipp->ipp_rthdrlen); 10209 ipp->ipp_rthdr = NULL; 10210 ipp->ipp_rthdrlen = 0; 10211 } 10212 ipp->ipp_fields &= ~IPPF_RTHDR; 10213 } else { 10214 reterr = tcp_pkt_set(invalp, inlen, 10215 (uchar_t **)&ipp->ipp_rthdr, 10216 &ipp->ipp_rthdrlen); 10217 if (reterr != 0) 10218 return (reterr); 10219 ipp->ipp_fields |= IPPF_RTHDR; 10220 } 10221 reterr = tcp_build_hdrs(q, tcp); 10222 if (reterr != 0) 10223 return (reterr); 10224 break; 10225 } 10226 case IPV6_V6ONLY: 10227 if (!checkonly) 10228 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10229 break; 10230 case IPV6_USE_MIN_MTU: 10231 if (inlen != sizeof (int)) 10232 return (EINVAL); 10233 10234 if (*i1 < -1 || *i1 > 1) 10235 return (EINVAL); 10236 10237 if (checkonly) 10238 break; 10239 10240 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10241 ipp->ipp_use_min_mtu = *i1; 10242 break; 10243 case IPV6_BOUND_PIF: 10244 /* Handled at the IP level */ 10245 return (-EINVAL); 10246 case IPV6_SEC_OPT: 10247 /* 10248 * We should not allow policy setting after 10249 * we start listening for connections. 10250 */ 10251 if (tcp->tcp_state == TCPS_LISTEN) { 10252 return (EINVAL); 10253 } else { 10254 /* Handled at the IP level */ 10255 return (-EINVAL); 10256 } 10257 case IPV6_SRC_PREFERENCES: 10258 if (inlen != sizeof (uint32_t)) 10259 return (EINVAL); 10260 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10261 *(uint32_t *)invalp); 10262 if (reterr != 0) { 10263 *outlenp = 0; 10264 return (reterr); 10265 } 10266 break; 10267 default: 10268 *outlenp = 0; 10269 return (EINVAL); 10270 } 10271 break; 10272 } /* end IPPROTO_IPV6 */ 10273 default: 10274 *outlenp = 0; 10275 return (EINVAL); 10276 } 10277 /* 10278 * Common case of OK return with outval same as inval 10279 */ 10280 if (invalp != outvalp) { 10281 /* don't trust bcopy for identical src/dst */ 10282 (void) bcopy(invalp, outvalp, inlen); 10283 } 10284 *outlenp = inlen; 10285 return (0); 10286 } 10287 10288 /* 10289 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10290 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10291 * headers, and the maximum size tcp header (to avoid reallocation 10292 * on the fly for additional tcp options). 10293 * Returns failure if can't allocate memory. 10294 */ 10295 static int 10296 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10297 { 10298 char *hdrs; 10299 uint_t hdrs_len; 10300 ip6i_t *ip6i; 10301 char buf[TCP_MAX_HDR_LENGTH]; 10302 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10303 in6_addr_t src, dst; 10304 10305 /* 10306 * save the existing tcp header and source/dest IP addresses 10307 */ 10308 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10309 src = tcp->tcp_ip6h->ip6_src; 10310 dst = tcp->tcp_ip6h->ip6_dst; 10311 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10312 ASSERT(hdrs_len != 0); 10313 if (hdrs_len > tcp->tcp_iphc_len) { 10314 /* Need to reallocate */ 10315 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10316 if (hdrs == NULL) 10317 return (ENOMEM); 10318 if (tcp->tcp_iphc != NULL) { 10319 if (tcp->tcp_hdr_grown) { 10320 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10321 } else { 10322 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10323 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10324 } 10325 tcp->tcp_iphc_len = 0; 10326 } 10327 ASSERT(tcp->tcp_iphc_len == 0); 10328 tcp->tcp_iphc = hdrs; 10329 tcp->tcp_iphc_len = hdrs_len; 10330 tcp->tcp_hdr_grown = B_TRUE; 10331 } 10332 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10333 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10334 10335 /* Set header fields not in ipp */ 10336 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10337 ip6i = (ip6i_t *)tcp->tcp_iphc; 10338 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10339 } else { 10340 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10341 } 10342 /* 10343 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10344 * 10345 * tcp->tcp_tcp_hdr_len doesn't change here. 10346 */ 10347 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10348 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10349 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10350 10351 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10352 10353 tcp->tcp_ip6h->ip6_src = src; 10354 tcp->tcp_ip6h->ip6_dst = dst; 10355 10356 /* 10357 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10358 * the default value for TCP. 10359 */ 10360 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10361 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 10362 10363 /* 10364 * If we're setting extension headers after a connection 10365 * has been established, and if we have a routing header 10366 * among the extension headers, call ip_massage_options_v6 to 10367 * manipulate the routing header/ip6_dst set the checksum 10368 * difference in the tcp header template. 10369 * (This happens in tcp_connect_ipv6 if the routing header 10370 * is set prior to the connect.) 10371 * Set the tcp_sum to zero first in case we've cleared a 10372 * routing header or don't have one at all. 10373 */ 10374 tcp->tcp_sum = 0; 10375 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10376 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10377 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10378 (uint8_t *)tcp->tcp_tcph); 10379 if (rth != NULL) { 10380 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10381 rth); 10382 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10383 (tcp->tcp_sum >> 16)); 10384 } 10385 } 10386 10387 /* Try to get everything in a single mblk */ 10388 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 10389 return (0); 10390 } 10391 10392 /* 10393 * Set optbuf and optlen for the option. 10394 * Allocate memory (if not already present). 10395 * Otherwise just point optbuf and optlen at invalp and inlen. 10396 * Returns failure if memory can not be allocated. 10397 */ 10398 static int 10399 tcp_pkt_set(uchar_t *invalp, uint_t inlen, uchar_t **optbufp, uint_t *optlenp) 10400 { 10401 uchar_t *optbuf; 10402 10403 if (inlen == *optlenp) { 10404 /* Unchanged length - no need to realocate */ 10405 bcopy(invalp, *optbufp, inlen); 10406 return (0); 10407 } 10408 if (inlen != 0) { 10409 /* Allocate new buffer before free */ 10410 optbuf = kmem_alloc(inlen, KM_NOSLEEP); 10411 if (optbuf == NULL) 10412 return (ENOMEM); 10413 } else { 10414 optbuf = NULL; 10415 } 10416 /* Free old buffer */ 10417 if (*optlenp != 0) 10418 kmem_free(*optbufp, *optlenp); 10419 10420 bcopy(invalp, optbuf, inlen); 10421 *optbufp = optbuf; 10422 *optlenp = inlen; 10423 return (0); 10424 } 10425 10426 10427 /* 10428 * Use the outgoing IP header to create an IP_OPTIONS option the way 10429 * it was passed down from the application. 10430 */ 10431 static int 10432 tcp_opt_get_user(ipha_t *ipha, uchar_t *buf) 10433 { 10434 ipoptp_t opts; 10435 uchar_t *opt; 10436 uint8_t optval; 10437 uint8_t optlen; 10438 uint32_t len = 0; 10439 uchar_t *buf1 = buf; 10440 10441 buf += IP_ADDR_LEN; /* Leave room for final destination */ 10442 len += IP_ADDR_LEN; 10443 bzero(buf1, IP_ADDR_LEN); 10444 10445 for (optval = ipoptp_first(&opts, ipha); 10446 optval != IPOPT_EOL; 10447 optval = ipoptp_next(&opts)) { 10448 opt = opts.ipoptp_cur; 10449 optlen = opts.ipoptp_len; 10450 switch (optval) { 10451 int off; 10452 case IPOPT_SSRR: 10453 case IPOPT_LSRR: 10454 10455 /* 10456 * Insert ipha_dst as the first entry in the source 10457 * route and move down the entries on step. 10458 * The last entry gets placed at buf1. 10459 */ 10460 buf[IPOPT_OPTVAL] = optval; 10461 buf[IPOPT_OLEN] = optlen; 10462 buf[IPOPT_OFFSET] = optlen; 10463 10464 off = optlen - IP_ADDR_LEN; 10465 if (off < 0) { 10466 /* No entries in source route */ 10467 break; 10468 } 10469 /* Last entry in source route */ 10470 bcopy(opt + off, buf1, IP_ADDR_LEN); 10471 off -= IP_ADDR_LEN; 10472 10473 while (off > 0) { 10474 bcopy(opt + off, 10475 buf + off + IP_ADDR_LEN, 10476 IP_ADDR_LEN); 10477 off -= IP_ADDR_LEN; 10478 } 10479 /* ipha_dst into first slot */ 10480 bcopy(&ipha->ipha_dst, 10481 buf + off + IP_ADDR_LEN, 10482 IP_ADDR_LEN); 10483 buf += optlen; 10484 len += optlen; 10485 break; 10486 default: 10487 bcopy(opt, buf, optlen); 10488 buf += optlen; 10489 len += optlen; 10490 break; 10491 } 10492 } 10493 done: 10494 /* Pad the resulting options */ 10495 while (len & 0x3) { 10496 *buf++ = IPOPT_EOL; 10497 len++; 10498 } 10499 return (len); 10500 } 10501 10502 /* 10503 * Transfer any source route option from ipha to buf/dst in reversed form. 10504 */ 10505 static int 10506 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10507 { 10508 ipoptp_t opts; 10509 uchar_t *opt; 10510 uint8_t optval; 10511 uint8_t optlen; 10512 uint32_t len = 0; 10513 10514 for (optval = ipoptp_first(&opts, ipha); 10515 optval != IPOPT_EOL; 10516 optval = ipoptp_next(&opts)) { 10517 opt = opts.ipoptp_cur; 10518 optlen = opts.ipoptp_len; 10519 switch (optval) { 10520 int off1, off2; 10521 case IPOPT_SSRR: 10522 case IPOPT_LSRR: 10523 10524 /* Reverse source route */ 10525 /* 10526 * First entry should be the next to last one in the 10527 * current source route (the last entry is our 10528 * address.) 10529 * The last entry should be the final destination. 10530 */ 10531 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10532 buf[IPOPT_OLEN] = (uint8_t)optlen; 10533 off1 = IPOPT_MINOFF_SR - 1; 10534 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10535 if (off2 < 0) { 10536 /* No entries in source route */ 10537 break; 10538 } 10539 bcopy(opt + off2, dst, IP_ADDR_LEN); 10540 /* 10541 * Note: use src since ipha has not had its src 10542 * and dst reversed (it is in the state it was 10543 * received. 10544 */ 10545 bcopy(&ipha->ipha_src, buf + off2, 10546 IP_ADDR_LEN); 10547 off2 -= IP_ADDR_LEN; 10548 10549 while (off2 > 0) { 10550 bcopy(opt + off2, buf + off1, 10551 IP_ADDR_LEN); 10552 off1 += IP_ADDR_LEN; 10553 off2 -= IP_ADDR_LEN; 10554 } 10555 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10556 buf += optlen; 10557 len += optlen; 10558 break; 10559 } 10560 } 10561 done: 10562 /* Pad the resulting options */ 10563 while (len & 0x3) { 10564 *buf++ = IPOPT_EOL; 10565 len++; 10566 } 10567 return (len); 10568 } 10569 10570 10571 /* 10572 * Extract and revert a source route from ipha (if any) 10573 * and then update the relevant fields in both tcp_t and the standard header. 10574 */ 10575 static void 10576 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 10577 { 10578 char buf[TCP_MAX_HDR_LENGTH]; 10579 uint_t tcph_len; 10580 int len; 10581 10582 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 10583 len = IPH_HDR_LENGTH(ipha); 10584 if (len == IP_SIMPLE_HDR_LENGTH) 10585 /* Nothing to do */ 10586 return; 10587 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 10588 (len & 0x3)) 10589 return; 10590 10591 tcph_len = tcp->tcp_tcp_hdr_len; 10592 bcopy(tcp->tcp_tcph, buf, tcph_len); 10593 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 10594 (tcp->tcp_ipha->ipha_dst & 0xffff); 10595 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 10596 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 10597 len += IP_SIMPLE_HDR_LENGTH; 10598 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 10599 (tcp->tcp_ipha->ipha_dst & 0xffff)); 10600 if ((int)tcp->tcp_sum < 0) 10601 tcp->tcp_sum--; 10602 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 10603 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 10604 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 10605 bcopy(buf, tcp->tcp_tcph, tcph_len); 10606 tcp->tcp_ip_hdr_len = len; 10607 tcp->tcp_ipha->ipha_version_and_hdr_length = 10608 (IP_VERSION << 4) | (len >> 2); 10609 len += tcph_len; 10610 tcp->tcp_hdr_len = len; 10611 } 10612 10613 /* 10614 * Copy the standard header into its new location, 10615 * lay in the new options and then update the relevant 10616 * fields in both tcp_t and the standard header. 10617 */ 10618 static int 10619 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 10620 { 10621 uint_t tcph_len; 10622 char *ip_optp; 10623 tcph_t *new_tcph; 10624 10625 if (checkonly) { 10626 /* 10627 * do not really set, just pretend to - T_CHECK 10628 */ 10629 if (len != 0) { 10630 /* 10631 * there is value supplied, validate it as if 10632 * for a real set operation. 10633 */ 10634 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10635 return (EINVAL); 10636 } 10637 return (0); 10638 } 10639 10640 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10641 return (EINVAL); 10642 10643 ip_optp = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 10644 tcph_len = tcp->tcp_tcp_hdr_len; 10645 new_tcph = (tcph_t *)(ip_optp + len); 10646 ovbcopy((char *)tcp->tcp_tcph, (char *)new_tcph, tcph_len); 10647 tcp->tcp_tcph = new_tcph; 10648 bcopy(ptr, ip_optp, len); 10649 10650 len += IP_SIMPLE_HDR_LENGTH; 10651 10652 tcp->tcp_ip_hdr_len = len; 10653 tcp->tcp_ipha->ipha_version_and_hdr_length = 10654 (IP_VERSION << 4) | (len >> 2); 10655 len += tcph_len; 10656 tcp->tcp_hdr_len = len; 10657 if (!TCP_IS_DETACHED(tcp)) { 10658 /* Always allocate room for all options. */ 10659 (void) mi_set_sth_wroff(tcp->tcp_rq, 10660 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 10661 } 10662 return (0); 10663 } 10664 10665 /* Get callback routine passed to nd_load by tcp_param_register */ 10666 /* ARGSUSED */ 10667 static int 10668 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 10669 { 10670 tcpparam_t *tcppa = (tcpparam_t *)cp; 10671 10672 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 10673 return (0); 10674 } 10675 10676 /* 10677 * Walk through the param array specified registering each element with the 10678 * named dispatch handler. 10679 */ 10680 static boolean_t 10681 tcp_param_register(tcpparam_t *tcppa, int cnt) 10682 { 10683 for (; cnt-- > 0; tcppa++) { 10684 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 10685 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 10686 tcp_param_get, tcp_param_set, 10687 (caddr_t)tcppa)) { 10688 nd_free(&tcp_g_nd); 10689 return (B_FALSE); 10690 } 10691 } 10692 } 10693 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 10694 tcp_param_get, tcp_param_set_aligned, 10695 (caddr_t)&tcp_wroff_xtra_param)) { 10696 nd_free(&tcp_g_nd); 10697 return (B_FALSE); 10698 } 10699 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 10700 tcp_param_get, tcp_param_set_aligned, 10701 (caddr_t)&tcp_mdt_head_param)) { 10702 nd_free(&tcp_g_nd); 10703 return (B_FALSE); 10704 } 10705 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 10706 tcp_param_get, tcp_param_set_aligned, 10707 (caddr_t)&tcp_mdt_tail_param)) { 10708 nd_free(&tcp_g_nd); 10709 return (B_FALSE); 10710 } 10711 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 10712 tcp_param_get, tcp_param_set, 10713 (caddr_t)&tcp_mdt_max_pbufs_param)) { 10714 nd_free(&tcp_g_nd); 10715 return (B_FALSE); 10716 } 10717 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 10718 tcp_extra_priv_ports_get, NULL, NULL)) { 10719 nd_free(&tcp_g_nd); 10720 return (B_FALSE); 10721 } 10722 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 10723 NULL, tcp_extra_priv_ports_add, NULL)) { 10724 nd_free(&tcp_g_nd); 10725 return (B_FALSE); 10726 } 10727 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 10728 NULL, tcp_extra_priv_ports_del, NULL)) { 10729 nd_free(&tcp_g_nd); 10730 return (B_FALSE); 10731 } 10732 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 10733 NULL)) { 10734 nd_free(&tcp_g_nd); 10735 return (B_FALSE); 10736 } 10737 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 10738 NULL, NULL)) { 10739 nd_free(&tcp_g_nd); 10740 return (B_FALSE); 10741 } 10742 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 10743 NULL, NULL)) { 10744 nd_free(&tcp_g_nd); 10745 return (B_FALSE); 10746 } 10747 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 10748 NULL, NULL)) { 10749 nd_free(&tcp_g_nd); 10750 return (B_FALSE); 10751 } 10752 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 10753 NULL, NULL)) { 10754 nd_free(&tcp_g_nd); 10755 return (B_FALSE); 10756 } 10757 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 10758 tcp_host_param_set, NULL)) { 10759 nd_free(&tcp_g_nd); 10760 return (B_FALSE); 10761 } 10762 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 10763 tcp_host_param_set_ipv6, NULL)) { 10764 nd_free(&tcp_g_nd); 10765 return (B_FALSE); 10766 } 10767 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 10768 NULL)) { 10769 nd_free(&tcp_g_nd); 10770 return (B_FALSE); 10771 } 10772 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 10773 tcp_reserved_port_list, NULL, NULL)) { 10774 nd_free(&tcp_g_nd); 10775 return (B_FALSE); 10776 } 10777 /* 10778 * Dummy ndd variables - only to convey obsolescence information 10779 * through printing of their name (no get or set routines) 10780 * XXX Remove in future releases ? 10781 */ 10782 if (!nd_load(&tcp_g_nd, 10783 "tcp_close_wait_interval(obsoleted - " 10784 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 10785 nd_free(&tcp_g_nd); 10786 return (B_FALSE); 10787 } 10788 return (B_TRUE); 10789 } 10790 10791 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 10792 /* ARGSUSED */ 10793 static int 10794 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 10795 cred_t *cr) 10796 { 10797 long new_value; 10798 tcpparam_t *tcppa = (tcpparam_t *)cp; 10799 10800 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10801 new_value < tcppa->tcp_param_min || 10802 new_value > tcppa->tcp_param_max) { 10803 return (EINVAL); 10804 } 10805 /* 10806 * Need to make sure new_value is a multiple of 4. If it is not, 10807 * round it up. For future 64 bit requirement, we actually make it 10808 * a multiple of 8. 10809 */ 10810 if (new_value & 0x7) { 10811 new_value = (new_value & ~0x7) + 0x8; 10812 } 10813 tcppa->tcp_param_val = new_value; 10814 return (0); 10815 } 10816 10817 /* Set callback routine passed to nd_load by tcp_param_register */ 10818 /* ARGSUSED */ 10819 static int 10820 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 10821 { 10822 long new_value; 10823 tcpparam_t *tcppa = (tcpparam_t *)cp; 10824 10825 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10826 new_value < tcppa->tcp_param_min || 10827 new_value > tcppa->tcp_param_max) { 10828 return (EINVAL); 10829 } 10830 tcppa->tcp_param_val = new_value; 10831 return (0); 10832 } 10833 10834 /* 10835 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 10836 * is filled, return as much as we can. The message passed in may be 10837 * multi-part, chained using b_cont. "start" is the starting sequence 10838 * number for this piece. 10839 */ 10840 static mblk_t * 10841 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 10842 { 10843 uint32_t end; 10844 mblk_t *mp1; 10845 mblk_t *mp2; 10846 mblk_t *next_mp; 10847 uint32_t u1; 10848 10849 /* Walk through all the new pieces. */ 10850 do { 10851 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 10852 (uintptr_t)INT_MAX); 10853 end = start + (int)(mp->b_wptr - mp->b_rptr); 10854 next_mp = mp->b_cont; 10855 if (start == end) { 10856 /* Empty. Blast it. */ 10857 freeb(mp); 10858 continue; 10859 } 10860 mp->b_cont = NULL; 10861 TCP_REASS_SET_SEQ(mp, start); 10862 TCP_REASS_SET_END(mp, end); 10863 mp1 = tcp->tcp_reass_tail; 10864 if (!mp1) { 10865 tcp->tcp_reass_tail = mp; 10866 tcp->tcp_reass_head = mp; 10867 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 10868 UPDATE_MIB(&tcp_mib, 10869 tcpInDataUnorderBytes, end - start); 10870 continue; 10871 } 10872 /* New stuff completely beyond tail? */ 10873 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 10874 /* Link it on end. */ 10875 mp1->b_cont = mp; 10876 tcp->tcp_reass_tail = mp; 10877 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 10878 UPDATE_MIB(&tcp_mib, 10879 tcpInDataUnorderBytes, end - start); 10880 continue; 10881 } 10882 mp1 = tcp->tcp_reass_head; 10883 u1 = TCP_REASS_SEQ(mp1); 10884 /* New stuff at the front? */ 10885 if (SEQ_LT(start, u1)) { 10886 /* Yes... Check for overlap. */ 10887 mp->b_cont = mp1; 10888 tcp->tcp_reass_head = mp; 10889 tcp_reass_elim_overlap(tcp, mp); 10890 continue; 10891 } 10892 /* 10893 * The new piece fits somewhere between the head and tail. 10894 * We find our slot, where mp1 precedes us and mp2 trails. 10895 */ 10896 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 10897 u1 = TCP_REASS_SEQ(mp2); 10898 if (SEQ_LEQ(start, u1)) 10899 break; 10900 } 10901 /* Link ourselves in */ 10902 mp->b_cont = mp2; 10903 mp1->b_cont = mp; 10904 10905 /* Trim overlap with following mblk(s) first */ 10906 tcp_reass_elim_overlap(tcp, mp); 10907 10908 /* Trim overlap with preceding mblk */ 10909 tcp_reass_elim_overlap(tcp, mp1); 10910 10911 } while (start = end, mp = next_mp); 10912 mp1 = tcp->tcp_reass_head; 10913 /* Anything ready to go? */ 10914 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 10915 return (NULL); 10916 /* Eat what we can off the queue */ 10917 for (;;) { 10918 mp = mp1->b_cont; 10919 end = TCP_REASS_END(mp1); 10920 TCP_REASS_SET_SEQ(mp1, 0); 10921 TCP_REASS_SET_END(mp1, 0); 10922 if (!mp) { 10923 tcp->tcp_reass_tail = NULL; 10924 break; 10925 } 10926 if (end != TCP_REASS_SEQ(mp)) { 10927 mp1->b_cont = NULL; 10928 break; 10929 } 10930 mp1 = mp; 10931 } 10932 mp1 = tcp->tcp_reass_head; 10933 tcp->tcp_reass_head = mp; 10934 return (mp1); 10935 } 10936 10937 /* Eliminate any overlap that mp may have over later mblks */ 10938 static void 10939 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 10940 { 10941 uint32_t end; 10942 mblk_t *mp1; 10943 uint32_t u1; 10944 10945 end = TCP_REASS_END(mp); 10946 while ((mp1 = mp->b_cont) != NULL) { 10947 u1 = TCP_REASS_SEQ(mp1); 10948 if (!SEQ_GT(end, u1)) 10949 break; 10950 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 10951 mp->b_wptr -= end - u1; 10952 TCP_REASS_SET_END(mp, u1); 10953 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 10954 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 10955 break; 10956 } 10957 mp->b_cont = mp1->b_cont; 10958 TCP_REASS_SET_SEQ(mp1, 0); 10959 TCP_REASS_SET_END(mp1, 0); 10960 freeb(mp1); 10961 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 10962 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 10963 } 10964 if (!mp1) 10965 tcp->tcp_reass_tail = mp; 10966 } 10967 10968 /* 10969 * Send up all messages queued on tcp_rcv_list. 10970 */ 10971 static uint_t 10972 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 10973 { 10974 mblk_t *mp; 10975 uint_t ret = 0; 10976 uint_t thwin; 10977 #ifdef DEBUG 10978 uint_t cnt = 0; 10979 #endif 10980 /* Can't drain on an eager connection */ 10981 if (tcp->tcp_listener != NULL) 10982 return (ret); 10983 10984 /* 10985 * Handle two cases here: we are currently fused or we were 10986 * previously fused and have some urgent data to be delivered 10987 * upstream. The latter happens because we either ran out of 10988 * memory or were detached and therefore sending the SIGURG was 10989 * deferred until this point. In either case we pass control 10990 * over to tcp_fuse_rcv_drain() since it may need to complete 10991 * some work. 10992 */ 10993 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 10994 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 10995 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 10996 &tcp->tcp_fused_sigurg_mp)) 10997 return (ret); 10998 } 10999 11000 while ((mp = tcp->tcp_rcv_list) != NULL) { 11001 tcp->tcp_rcv_list = mp->b_next; 11002 mp->b_next = NULL; 11003 #ifdef DEBUG 11004 cnt += msgdsize(mp); 11005 #endif 11006 putnext(q, mp); 11007 } 11008 ASSERT(cnt == tcp->tcp_rcv_cnt); 11009 tcp->tcp_rcv_last_head = NULL; 11010 tcp->tcp_rcv_last_tail = NULL; 11011 tcp->tcp_rcv_cnt = 0; 11012 11013 /* Learn the latest rwnd information that we sent to the other side. */ 11014 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11015 << tcp->tcp_rcv_ws; 11016 /* This is peer's calculated send window (our receive window). */ 11017 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11018 /* 11019 * Increase the receive window to max. But we need to do receiver 11020 * SWS avoidance. This means that we need to check the increase of 11021 * of receive window is at least 1 MSS. 11022 */ 11023 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11024 /* 11025 * If the window that the other side knows is less than max 11026 * deferred acks segments, send an update immediately. 11027 */ 11028 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11029 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11030 ret = TH_ACK_NEEDED; 11031 } 11032 tcp->tcp_rwnd = q->q_hiwat; 11033 } 11034 /* No need for the push timer now. */ 11035 if (tcp->tcp_push_tid != 0) { 11036 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11037 tcp->tcp_push_tid = 0; 11038 } 11039 return (ret); 11040 } 11041 11042 /* 11043 * Queue data on tcp_rcv_list which is a b_next chain. 11044 * tcp_rcv_last_head/tail is the last element of this chain. 11045 * Each element of the chain is a b_cont chain. 11046 * 11047 * M_DATA messages are added to the current element. 11048 * Other messages are added as new (b_next) elements. 11049 */ 11050 void 11051 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11052 { 11053 ASSERT(seg_len == msgdsize(mp)); 11054 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11055 11056 if (tcp->tcp_rcv_list == NULL) { 11057 ASSERT(tcp->tcp_rcv_last_head == NULL); 11058 tcp->tcp_rcv_list = mp; 11059 tcp->tcp_rcv_last_head = mp; 11060 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11061 tcp->tcp_rcv_last_tail->b_cont = mp; 11062 } else { 11063 tcp->tcp_rcv_last_head->b_next = mp; 11064 tcp->tcp_rcv_last_head = mp; 11065 } 11066 11067 while (mp->b_cont) 11068 mp = mp->b_cont; 11069 11070 tcp->tcp_rcv_last_tail = mp; 11071 tcp->tcp_rcv_cnt += seg_len; 11072 tcp->tcp_rwnd -= seg_len; 11073 } 11074 11075 /* 11076 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11077 * 11078 * This is the default entry function into TCP on the read side. TCP is 11079 * always entered via squeue i.e. using squeue's for mutual exclusion. 11080 * When classifier does a lookup to find the tcp, it also puts a reference 11081 * on the conn structure associated so the tcp is guaranteed to exist 11082 * when we come here. We still need to check the state because it might 11083 * as well has been closed. The squeue processing function i.e. squeue_enter, 11084 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11085 * CONN_DEC_REF. 11086 * 11087 * Apart from the default entry point, IP also sends packets directly to 11088 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11089 * connections. 11090 */ 11091 void 11092 tcp_input(void *arg, mblk_t *mp, void *arg2) 11093 { 11094 conn_t *connp = (conn_t *)arg; 11095 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11096 11097 /* arg2 is the sqp */ 11098 ASSERT(arg2 != NULL); 11099 ASSERT(mp != NULL); 11100 11101 /* 11102 * Don't accept any input on a closed tcp as this TCP logically does 11103 * not exist on the system. Don't proceed further with this TCP. 11104 * For eg. this packet could trigger another close of this tcp 11105 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11106 * tcp_clean_death / tcp_closei_local must be called at most once 11107 * on a TCP. In this case we need to refeed the packet into the 11108 * classifier and figure out where the packet should go. Need to 11109 * preserve the recv_ill somehow. Until we figure that out, for 11110 * now just drop the packet if we can't classify the packet. 11111 */ 11112 if (tcp->tcp_state == TCPS_CLOSED || 11113 tcp->tcp_state == TCPS_BOUND) { 11114 conn_t *new_connp; 11115 11116 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11117 if (new_connp != NULL) { 11118 tcp_reinput(new_connp, mp, arg2); 11119 return; 11120 } 11121 /* We failed to classify. For now just drop the packet */ 11122 freemsg(mp); 11123 return; 11124 } 11125 11126 if (DB_TYPE(mp) == M_DATA) 11127 tcp_rput_data(connp, mp, arg2); 11128 else 11129 tcp_rput_common(tcp, mp); 11130 } 11131 11132 /* 11133 * The read side put procedure. 11134 * The packets passed up by ip are assume to be aligned according to 11135 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11136 */ 11137 static void 11138 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11139 { 11140 /* 11141 * tcp_rput_data() does not expect M_CTL except for the case 11142 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11143 * type. Need to make sure that any other M_CTLs don't make 11144 * it to tcp_rput_data since it is not expecting any and doesn't 11145 * check for it. 11146 */ 11147 if (DB_TYPE(mp) == M_CTL) { 11148 switch (*(uint32_t *)(mp->b_rptr)) { 11149 case TCP_IOC_ABORT_CONN: 11150 /* 11151 * Handle connection abort request. 11152 */ 11153 tcp_ioctl_abort_handler(tcp, mp); 11154 return; 11155 case IPSEC_IN: 11156 /* 11157 * Only secure icmp arrive in TCP and they 11158 * don't go through data path. 11159 */ 11160 tcp_icmp_error(tcp, mp); 11161 return; 11162 case IN_PKTINFO: 11163 /* 11164 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11165 * sockets that are receiving IPv4 traffic. tcp 11166 */ 11167 ASSERT(tcp->tcp_family == AF_INET6); 11168 ASSERT(tcp->tcp_ipv6_recvancillary & 11169 TCP_IPV6_RECVPKTINFO); 11170 tcp_rput_data(tcp->tcp_connp, mp, 11171 tcp->tcp_connp->conn_sqp); 11172 return; 11173 case MDT_IOC_INFO_UPDATE: 11174 /* 11175 * Handle Multidata information update; the 11176 * following routine will free the message. 11177 */ 11178 if (tcp->tcp_connp->conn_mdt_ok) { 11179 tcp_mdt_update(tcp, 11180 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11181 B_FALSE); 11182 } 11183 freemsg(mp); 11184 return; 11185 default: 11186 break; 11187 } 11188 } 11189 11190 /* No point processing the message if tcp is already closed */ 11191 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11192 freemsg(mp); 11193 return; 11194 } 11195 11196 tcp_rput_other(tcp, mp); 11197 } 11198 11199 11200 /* The minimum of smoothed mean deviation in RTO calculation. */ 11201 #define TCP_SD_MIN 400 11202 11203 /* 11204 * Set RTO for this connection. The formula is from Jacobson and Karels' 11205 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11206 * are the same as those in Appendix A.2 of that paper. 11207 * 11208 * m = new measurement 11209 * sa = smoothed RTT average (8 * average estimates). 11210 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11211 */ 11212 static void 11213 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11214 { 11215 long m = TICK_TO_MSEC(rtt); 11216 clock_t sa = tcp->tcp_rtt_sa; 11217 clock_t sv = tcp->tcp_rtt_sd; 11218 clock_t rto; 11219 11220 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11221 tcp->tcp_rtt_update++; 11222 11223 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11224 if (sa != 0) { 11225 /* 11226 * Update average estimator: 11227 * new rtt = 7/8 old rtt + 1/8 Error 11228 */ 11229 11230 /* m is now Error in estimate. */ 11231 m -= sa >> 3; 11232 if ((sa += m) <= 0) { 11233 /* 11234 * Don't allow the smoothed average to be negative. 11235 * We use 0 to denote reinitialization of the 11236 * variables. 11237 */ 11238 sa = 1; 11239 } 11240 11241 /* 11242 * Update deviation estimator: 11243 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11244 */ 11245 if (m < 0) 11246 m = -m; 11247 m -= sv >> 2; 11248 sv += m; 11249 } else { 11250 /* 11251 * This follows BSD's implementation. So the reinitialized 11252 * RTO is 3 * m. We cannot go less than 2 because if the 11253 * link is bandwidth dominated, doubling the window size 11254 * during slow start means doubling the RTT. We want to be 11255 * more conservative when we reinitialize our estimates. 3 11256 * is just a convenient number. 11257 */ 11258 sa = m << 3; 11259 sv = m << 1; 11260 } 11261 if (sv < TCP_SD_MIN) { 11262 /* 11263 * We do not know that if sa captures the delay ACK 11264 * effect as in a long train of segments, a receiver 11265 * does not delay its ACKs. So set the minimum of sv 11266 * to be TCP_SD_MIN, which is default to 400 ms, twice 11267 * of BSD DATO. That means the minimum of mean 11268 * deviation is 100 ms. 11269 * 11270 */ 11271 sv = TCP_SD_MIN; 11272 } 11273 tcp->tcp_rtt_sa = sa; 11274 tcp->tcp_rtt_sd = sv; 11275 /* 11276 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11277 * 11278 * Add tcp_rexmit_interval extra in case of extreme environment 11279 * where the algorithm fails to work. The default value of 11280 * tcp_rexmit_interval_extra should be 0. 11281 * 11282 * As we use a finer grained clock than BSD and update 11283 * RTO for every ACKs, add in another .25 of RTT to the 11284 * deviation of RTO to accomodate burstiness of 1/4 of 11285 * window size. 11286 */ 11287 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11288 11289 if (rto > tcp_rexmit_interval_max) { 11290 tcp->tcp_rto = tcp_rexmit_interval_max; 11291 } else if (rto < tcp_rexmit_interval_min) { 11292 tcp->tcp_rto = tcp_rexmit_interval_min; 11293 } else { 11294 tcp->tcp_rto = rto; 11295 } 11296 11297 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11298 tcp->tcp_timer_backoff = 0; 11299 } 11300 11301 /* 11302 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11303 * send queue which starts at the given seq. no. 11304 * 11305 * Parameters: 11306 * tcp_t *tcp: the tcp instance pointer. 11307 * uint32_t seq: the starting seq. no of the requested segment. 11308 * int32_t *off: after the execution, *off will be the offset to 11309 * the returned mblk which points to the requested seq no. 11310 * It is the caller's responsibility to send in a non-null off. 11311 * 11312 * Return: 11313 * A mblk_t pointer pointing to the requested segment in send queue. 11314 */ 11315 static mblk_t * 11316 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11317 { 11318 int32_t cnt; 11319 mblk_t *mp; 11320 11321 /* Defensive coding. Make sure we don't send incorrect data. */ 11322 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11323 return (NULL); 11324 11325 cnt = seq - tcp->tcp_suna; 11326 mp = tcp->tcp_xmit_head; 11327 while (cnt > 0 && mp != NULL) { 11328 cnt -= mp->b_wptr - mp->b_rptr; 11329 if (cnt < 0) { 11330 cnt += mp->b_wptr - mp->b_rptr; 11331 break; 11332 } 11333 mp = mp->b_cont; 11334 } 11335 ASSERT(mp != NULL); 11336 *off = cnt; 11337 return (mp); 11338 } 11339 11340 /* 11341 * This function handles all retransmissions if SACK is enabled for this 11342 * connection. First it calculates how many segments can be retransmitted 11343 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11344 * segments. A segment is eligible if sack_cnt for that segment is greater 11345 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11346 * all eligible segments, it checks to see if TCP can send some new segments 11347 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11348 * 11349 * Parameters: 11350 * tcp_t *tcp: the tcp structure of the connection. 11351 * uint_t *flags: in return, appropriate value will be set for 11352 * tcp_rput_data(). 11353 */ 11354 static void 11355 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11356 { 11357 notsack_blk_t *notsack_blk; 11358 int32_t usable_swnd; 11359 int32_t mss; 11360 uint32_t seg_len; 11361 mblk_t *xmit_mp; 11362 11363 ASSERT(tcp->tcp_sack_info != NULL); 11364 ASSERT(tcp->tcp_notsack_list != NULL); 11365 ASSERT(tcp->tcp_rexmit == B_FALSE); 11366 11367 /* Defensive coding in case there is a bug... */ 11368 if (tcp->tcp_notsack_list == NULL) { 11369 return; 11370 } 11371 notsack_blk = tcp->tcp_notsack_list; 11372 mss = tcp->tcp_mss; 11373 11374 /* 11375 * Limit the num of outstanding data in the network to be 11376 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11377 */ 11378 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11379 11380 /* At least retransmit 1 MSS of data. */ 11381 if (usable_swnd <= 0) { 11382 usable_swnd = mss; 11383 } 11384 11385 /* Make sure no new RTT samples will be taken. */ 11386 tcp->tcp_csuna = tcp->tcp_snxt; 11387 11388 notsack_blk = tcp->tcp_notsack_list; 11389 while (usable_swnd > 0) { 11390 mblk_t *snxt_mp, *tmp_mp; 11391 tcp_seq begin = tcp->tcp_sack_snxt; 11392 tcp_seq end; 11393 int32_t off; 11394 11395 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11396 if (SEQ_GT(notsack_blk->end, begin) && 11397 (notsack_blk->sack_cnt >= 11398 tcp_dupack_fast_retransmit)) { 11399 end = notsack_blk->end; 11400 if (SEQ_LT(begin, notsack_blk->begin)) { 11401 begin = notsack_blk->begin; 11402 } 11403 break; 11404 } 11405 } 11406 /* 11407 * All holes are filled. Manipulate tcp_cwnd to send more 11408 * if we can. Note that after the SACK recovery, tcp_cwnd is 11409 * set to tcp_cwnd_ssthresh. 11410 */ 11411 if (notsack_blk == NULL) { 11412 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11413 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11414 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11415 ASSERT(tcp->tcp_cwnd > 0); 11416 return; 11417 } else { 11418 usable_swnd = usable_swnd / mss; 11419 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11420 MAX(usable_swnd * mss, mss); 11421 *flags |= TH_XMIT_NEEDED; 11422 return; 11423 } 11424 } 11425 11426 /* 11427 * Note that we may send more than usable_swnd allows here 11428 * because of round off, but no more than 1 MSS of data. 11429 */ 11430 seg_len = end - begin; 11431 if (seg_len > mss) 11432 seg_len = mss; 11433 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11434 ASSERT(snxt_mp != NULL); 11435 /* This should not happen. Defensive coding again... */ 11436 if (snxt_mp == NULL) { 11437 return; 11438 } 11439 11440 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11441 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11442 if (xmit_mp == NULL) 11443 return; 11444 11445 usable_swnd -= seg_len; 11446 tcp->tcp_pipe += seg_len; 11447 tcp->tcp_sack_snxt = begin + seg_len; 11448 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 11449 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11450 11451 /* 11452 * Update the send timestamp to avoid false retransmission. 11453 */ 11454 snxt_mp->b_prev = (mblk_t *)lbolt; 11455 11456 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11457 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 11458 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 11459 /* 11460 * Update tcp_rexmit_max to extend this SACK recovery phase. 11461 * This happens when new data sent during fast recovery is 11462 * also lost. If TCP retransmits those new data, it needs 11463 * to extend SACK recover phase to avoid starting another 11464 * fast retransmit/recovery unnecessarily. 11465 */ 11466 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11467 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11468 } 11469 } 11470 } 11471 11472 /* 11473 * This function handles policy checking at TCP level for non-hard_bound/ 11474 * detached connections. 11475 */ 11476 static boolean_t 11477 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11478 boolean_t secure, boolean_t mctl_present) 11479 { 11480 ipsec_latch_t *ipl = NULL; 11481 ipsec_action_t *act = NULL; 11482 mblk_t *data_mp; 11483 ipsec_in_t *ii; 11484 const char *reason; 11485 kstat_named_t *counter; 11486 11487 ASSERT(mctl_present || !secure); 11488 11489 ASSERT((ipha == NULL && ip6h != NULL) || 11490 (ip6h == NULL && ipha != NULL)); 11491 11492 /* 11493 * We don't necessarily have an ipsec_in_act action to verify 11494 * policy because of assymetrical policy where we have only 11495 * outbound policy and no inbound policy (possible with global 11496 * policy). 11497 */ 11498 if (!secure) { 11499 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 11500 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 11501 return (B_TRUE); 11502 ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, 11503 "tcp_check_policy", ipha, ip6h, secure); 11504 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11505 &ipdrops_tcp_clear, &tcp_dropper); 11506 return (B_FALSE); 11507 } 11508 11509 /* 11510 * We have a secure packet. 11511 */ 11512 if (act == NULL) { 11513 ipsec_log_policy_failure(tcp->tcp_wq, 11514 IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, 11515 secure); 11516 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11517 &ipdrops_tcp_secure, &tcp_dropper); 11518 return (B_FALSE); 11519 } 11520 11521 /* 11522 * XXX This whole routine is currently incorrect. ipl should 11523 * be set to the latch pointer, but is currently not set, so 11524 * we initialize it to NULL to avoid picking up random garbage. 11525 */ 11526 if (ipl == NULL) 11527 return (B_TRUE); 11528 11529 data_mp = first_mp->b_cont; 11530 11531 ii = (ipsec_in_t *)first_mp->b_rptr; 11532 11533 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 11534 &counter)) { 11535 BUMP_MIB(&ip_mib, ipsecInSucceeded); 11536 return (B_TRUE); 11537 } 11538 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 11539 "tcp inbound policy mismatch: %s, packet dropped\n", 11540 reason); 11541 BUMP_MIB(&ip_mib, ipsecInFailed); 11542 11543 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 11544 return (B_FALSE); 11545 } 11546 11547 /* 11548 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 11549 * retransmission after a timeout. 11550 * 11551 * To limit the number of duplicate segments, we limit the number of segment 11552 * to be sent in one time to tcp_snd_burst, the burst variable. 11553 */ 11554 static void 11555 tcp_ss_rexmit(tcp_t *tcp) 11556 { 11557 uint32_t snxt; 11558 uint32_t smax; 11559 int32_t win; 11560 int32_t mss; 11561 int32_t off; 11562 int32_t burst = tcp->tcp_snd_burst; 11563 mblk_t *snxt_mp; 11564 11565 /* 11566 * Note that tcp_rexmit can be set even though TCP has retransmitted 11567 * all unack'ed segments. 11568 */ 11569 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 11570 smax = tcp->tcp_rexmit_max; 11571 snxt = tcp->tcp_rexmit_nxt; 11572 if (SEQ_LT(snxt, tcp->tcp_suna)) { 11573 snxt = tcp->tcp_suna; 11574 } 11575 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 11576 win -= snxt - tcp->tcp_suna; 11577 mss = tcp->tcp_mss; 11578 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 11579 11580 while (SEQ_LT(snxt, smax) && (win > 0) && 11581 (burst > 0) && (snxt_mp != NULL)) { 11582 mblk_t *xmit_mp; 11583 mblk_t *old_snxt_mp = snxt_mp; 11584 uint32_t cnt = mss; 11585 11586 if (win < cnt) { 11587 cnt = win; 11588 } 11589 if (SEQ_GT(snxt + cnt, smax)) { 11590 cnt = smax - snxt; 11591 } 11592 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 11593 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 11594 if (xmit_mp == NULL) 11595 return; 11596 11597 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11598 11599 snxt += cnt; 11600 win -= cnt; 11601 /* 11602 * Update the send timestamp to avoid false 11603 * retransmission. 11604 */ 11605 old_snxt_mp->b_prev = (mblk_t *)lbolt; 11606 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11607 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 11608 11609 tcp->tcp_rexmit_nxt = snxt; 11610 burst--; 11611 } 11612 /* 11613 * If we have transmitted all we have at the time 11614 * we started the retranmission, we can leave 11615 * the rest of the job to tcp_wput_data(). But we 11616 * need to check the send window first. If the 11617 * win is not 0, go on with tcp_wput_data(). 11618 */ 11619 if (SEQ_LT(snxt, smax) || win == 0) { 11620 return; 11621 } 11622 } 11623 /* Only call tcp_wput_data() if there is data to be sent. */ 11624 if (tcp->tcp_unsent) { 11625 tcp_wput_data(tcp, NULL, B_FALSE); 11626 } 11627 } 11628 11629 /* 11630 * Process all TCP option in SYN segment. Note that this function should 11631 * be called after tcp_adapt_ire() is called so that the necessary info 11632 * from IRE is already set in the tcp structure. 11633 * 11634 * This function sets up the correct tcp_mss value according to the 11635 * MSS option value and our header size. It also sets up the window scale 11636 * and timestamp values, and initialize SACK info blocks. But it does not 11637 * change receive window size after setting the tcp_mss value. The caller 11638 * should do the appropriate change. 11639 */ 11640 void 11641 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 11642 { 11643 int options; 11644 tcp_opt_t tcpopt; 11645 uint32_t mss_max; 11646 char *tmp_tcph; 11647 11648 tcpopt.tcp = NULL; 11649 options = tcp_parse_options(tcph, &tcpopt); 11650 11651 /* 11652 * Process MSS option. Note that MSS option value does not account 11653 * for IP or TCP options. This means that it is equal to MTU - minimum 11654 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 11655 * IPv6. 11656 */ 11657 if (!(options & TCP_OPT_MSS_PRESENT)) { 11658 if (tcp->tcp_ipversion == IPV4_VERSION) 11659 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 11660 else 11661 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 11662 } else { 11663 if (tcp->tcp_ipversion == IPV4_VERSION) 11664 mss_max = tcp_mss_max_ipv4; 11665 else 11666 mss_max = tcp_mss_max_ipv6; 11667 if (tcpopt.tcp_opt_mss < tcp_mss_min) 11668 tcpopt.tcp_opt_mss = tcp_mss_min; 11669 else if (tcpopt.tcp_opt_mss > mss_max) 11670 tcpopt.tcp_opt_mss = mss_max; 11671 } 11672 11673 /* Process Window Scale option. */ 11674 if (options & TCP_OPT_WSCALE_PRESENT) { 11675 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 11676 tcp->tcp_snd_ws_ok = B_TRUE; 11677 } else { 11678 tcp->tcp_snd_ws = B_FALSE; 11679 tcp->tcp_snd_ws_ok = B_FALSE; 11680 tcp->tcp_rcv_ws = B_FALSE; 11681 } 11682 11683 /* Process Timestamp option. */ 11684 if ((options & TCP_OPT_TSTAMP_PRESENT) && 11685 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 11686 tmp_tcph = (char *)tcp->tcp_tcph; 11687 11688 tcp->tcp_snd_ts_ok = B_TRUE; 11689 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 11690 tcp->tcp_last_rcv_lbolt = lbolt64; 11691 ASSERT(OK_32PTR(tmp_tcph)); 11692 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 11693 11694 /* Fill in our template header with basic timestamp option. */ 11695 tmp_tcph += tcp->tcp_tcp_hdr_len; 11696 tmp_tcph[0] = TCPOPT_NOP; 11697 tmp_tcph[1] = TCPOPT_NOP; 11698 tmp_tcph[2] = TCPOPT_TSTAMP; 11699 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 11700 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 11701 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 11702 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 11703 } else { 11704 tcp->tcp_snd_ts_ok = B_FALSE; 11705 } 11706 11707 /* 11708 * Process SACK options. If SACK is enabled for this connection, 11709 * then allocate the SACK info structure. Note the following ways 11710 * when tcp_snd_sack_ok is set to true. 11711 * 11712 * For active connection: in tcp_adapt_ire() called in 11713 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 11714 * is checked. 11715 * 11716 * For passive connection: in tcp_adapt_ire() called in 11717 * tcp_accept_comm(). 11718 * 11719 * That's the reason why the extra TCP_IS_DETACHED() check is there. 11720 * That check makes sure that if we did not send a SACK OK option, 11721 * we will not enable SACK for this connection even though the other 11722 * side sends us SACK OK option. For active connection, the SACK 11723 * info structure has already been allocated. So we need to free 11724 * it if SACK is disabled. 11725 */ 11726 if ((options & TCP_OPT_SACK_OK_PRESENT) && 11727 (tcp->tcp_snd_sack_ok || 11728 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 11729 /* This should be true only in the passive case. */ 11730 if (tcp->tcp_sack_info == NULL) { 11731 ASSERT(TCP_IS_DETACHED(tcp)); 11732 tcp->tcp_sack_info = 11733 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 11734 } 11735 if (tcp->tcp_sack_info == NULL) { 11736 tcp->tcp_snd_sack_ok = B_FALSE; 11737 } else { 11738 tcp->tcp_snd_sack_ok = B_TRUE; 11739 if (tcp->tcp_snd_ts_ok) { 11740 tcp->tcp_max_sack_blk = 3; 11741 } else { 11742 tcp->tcp_max_sack_blk = 4; 11743 } 11744 } 11745 } else { 11746 /* 11747 * Resetting tcp_snd_sack_ok to B_FALSE so that 11748 * no SACK info will be used for this 11749 * connection. This assumes that SACK usage 11750 * permission is negotiated. This may need 11751 * to be changed once this is clarified. 11752 */ 11753 if (tcp->tcp_sack_info != NULL) { 11754 ASSERT(tcp->tcp_notsack_list == NULL); 11755 kmem_cache_free(tcp_sack_info_cache, 11756 tcp->tcp_sack_info); 11757 tcp->tcp_sack_info = NULL; 11758 } 11759 tcp->tcp_snd_sack_ok = B_FALSE; 11760 } 11761 11762 /* 11763 * Now we know the exact TCP/IP header length, subtract 11764 * that from tcp_mss to get our side's MSS. 11765 */ 11766 tcp->tcp_mss -= tcp->tcp_hdr_len; 11767 /* 11768 * Here we assume that the other side's header size will be equal to 11769 * our header size. We calculate the real MSS accordingly. Need to 11770 * take into additional stuffs IPsec puts in. 11771 * 11772 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 11773 */ 11774 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 11775 ((tcp->tcp_ipversion == IPV4_VERSION ? 11776 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 11777 11778 /* 11779 * Set MSS to the smaller one of both ends of the connection. 11780 * We should not have called tcp_mss_set() before, but our 11781 * side of the MSS should have been set to a proper value 11782 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 11783 * STREAM head parameters properly. 11784 * 11785 * If we have a larger-than-16-bit window but the other side 11786 * didn't want to do window scale, tcp_rwnd_set() will take 11787 * care of that. 11788 */ 11789 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 11790 } 11791 11792 /* 11793 * Sends the T_CONN_IND to the listener. The caller calls this 11794 * functions via squeue to get inside the listener's perimeter 11795 * once the 3 way hand shake is done a T_CONN_IND needs to be 11796 * sent. As an optimization, the caller can call this directly 11797 * if listener's perimeter is same as eager's. 11798 */ 11799 /* ARGSUSED */ 11800 void 11801 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 11802 { 11803 conn_t *lconnp = (conn_t *)arg; 11804 tcp_t *listener = lconnp->conn_tcp; 11805 tcp_t *tcp; 11806 struct T_conn_ind *conn_ind; 11807 ipaddr_t *addr_cache; 11808 boolean_t need_send_conn_ind = B_FALSE; 11809 11810 /* retrieve the eager */ 11811 conn_ind = (struct T_conn_ind *)mp->b_rptr; 11812 ASSERT(conn_ind->OPT_offset != 0 && 11813 conn_ind->OPT_length == sizeof (intptr_t)); 11814 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 11815 conn_ind->OPT_length); 11816 11817 /* 11818 * TLI/XTI applications will get confused by 11819 * sending eager as an option since it violates 11820 * the option semantics. So remove the eager as 11821 * option since TLI/XTI app doesn't need it anyway. 11822 */ 11823 if (!TCP_IS_SOCKET(listener)) { 11824 conn_ind->OPT_length = 0; 11825 conn_ind->OPT_offset = 0; 11826 } 11827 if (listener->tcp_state == TCPS_CLOSED || 11828 TCP_IS_DETACHED(listener)) { 11829 /* 11830 * If listener has closed, it would have caused a 11831 * a cleanup/blowoff to happen for the eager. We 11832 * just need to return. 11833 */ 11834 freemsg(mp); 11835 return; 11836 } 11837 11838 11839 /* 11840 * if the conn_req_q is full defer passing up the 11841 * T_CONN_IND until space is availabe after t_accept() 11842 * processing 11843 */ 11844 mutex_enter(&listener->tcp_eager_lock); 11845 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 11846 tcp_t *tail; 11847 11848 /* 11849 * The eager already has an extra ref put in tcp_rput_data 11850 * so that it stays till accept comes back even though it 11851 * might get into TCPS_CLOSED as a result of a TH_RST etc. 11852 */ 11853 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 11854 listener->tcp_conn_req_cnt_q0--; 11855 listener->tcp_conn_req_cnt_q++; 11856 11857 /* Move from SYN_RCVD to ESTABLISHED list */ 11858 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 11859 tcp->tcp_eager_prev_q0; 11860 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 11861 tcp->tcp_eager_next_q0; 11862 tcp->tcp_eager_prev_q0 = NULL; 11863 tcp->tcp_eager_next_q0 = NULL; 11864 11865 /* 11866 * Insert at end of the queue because sockfs 11867 * sends down T_CONN_RES in chronological 11868 * order. Leaving the older conn indications 11869 * at front of the queue helps reducing search 11870 * time. 11871 */ 11872 tail = listener->tcp_eager_last_q; 11873 if (tail != NULL) 11874 tail->tcp_eager_next_q = tcp; 11875 else 11876 listener->tcp_eager_next_q = tcp; 11877 listener->tcp_eager_last_q = tcp; 11878 tcp->tcp_eager_next_q = NULL; 11879 /* 11880 * Delay sending up the T_conn_ind until we are 11881 * done with the eager. Once we have have sent up 11882 * the T_conn_ind, the accept can potentially complete 11883 * any time and release the refhold we have on the eager. 11884 */ 11885 need_send_conn_ind = B_TRUE; 11886 } else { 11887 /* 11888 * Defer connection on q0 and set deferred 11889 * connection bit true 11890 */ 11891 tcp->tcp_conn_def_q0 = B_TRUE; 11892 11893 /* take tcp out of q0 ... */ 11894 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 11895 tcp->tcp_eager_next_q0; 11896 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 11897 tcp->tcp_eager_prev_q0; 11898 11899 /* ... and place it at the end of q0 */ 11900 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 11901 tcp->tcp_eager_next_q0 = listener; 11902 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 11903 listener->tcp_eager_prev_q0 = tcp; 11904 tcp->tcp_conn.tcp_eager_conn_ind = mp; 11905 } 11906 11907 /* we have timed out before */ 11908 if (tcp->tcp_syn_rcvd_timeout != 0) { 11909 tcp->tcp_syn_rcvd_timeout = 0; 11910 listener->tcp_syn_rcvd_timeout--; 11911 if (listener->tcp_syn_defense && 11912 listener->tcp_syn_rcvd_timeout <= 11913 (tcp_conn_req_max_q0 >> 5) && 11914 10*MINUTES < TICK_TO_MSEC(lbolt64 - 11915 listener->tcp_last_rcv_lbolt)) { 11916 /* 11917 * Turn off the defense mode if we 11918 * believe the SYN attack is over. 11919 */ 11920 listener->tcp_syn_defense = B_FALSE; 11921 if (listener->tcp_ip_addr_cache) { 11922 kmem_free((void *)listener->tcp_ip_addr_cache, 11923 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 11924 listener->tcp_ip_addr_cache = NULL; 11925 } 11926 } 11927 } 11928 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 11929 if (addr_cache != NULL) { 11930 /* 11931 * We have finished a 3-way handshake with this 11932 * remote host. This proves the IP addr is good. 11933 * Cache it! 11934 */ 11935 addr_cache[IP_ADDR_CACHE_HASH( 11936 tcp->tcp_remote)] = tcp->tcp_remote; 11937 } 11938 mutex_exit(&listener->tcp_eager_lock); 11939 if (need_send_conn_ind) 11940 putnext(listener->tcp_rq, mp); 11941 } 11942 11943 mblk_t * 11944 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 11945 uint_t *ifindexp, ip6_pkt_t *ippp) 11946 { 11947 in_pktinfo_t *pinfo; 11948 ip6_t *ip6h; 11949 uchar_t *rptr; 11950 mblk_t *first_mp = mp; 11951 boolean_t mctl_present = B_FALSE; 11952 uint_t ifindex = 0; 11953 ip6_pkt_t ipp; 11954 uint_t ipvers; 11955 uint_t ip_hdr_len; 11956 11957 rptr = mp->b_rptr; 11958 ASSERT(OK_32PTR(rptr)); 11959 ASSERT(tcp != NULL); 11960 ipp.ipp_fields = 0; 11961 11962 switch DB_TYPE(mp) { 11963 case M_CTL: 11964 mp = mp->b_cont; 11965 if (mp == NULL) { 11966 freemsg(first_mp); 11967 return (NULL); 11968 } 11969 if (DB_TYPE(mp) != M_DATA) { 11970 freemsg(first_mp); 11971 return (NULL); 11972 } 11973 mctl_present = B_TRUE; 11974 break; 11975 case M_DATA: 11976 break; 11977 default: 11978 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 11979 freemsg(mp); 11980 return (NULL); 11981 } 11982 ipvers = IPH_HDR_VERSION(rptr); 11983 if (ipvers == IPV4_VERSION) { 11984 if (tcp == NULL) { 11985 ip_hdr_len = IPH_HDR_LENGTH(rptr); 11986 goto done; 11987 } 11988 11989 ipp.ipp_fields |= IPPF_HOPLIMIT; 11990 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 11991 11992 /* 11993 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 11994 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 11995 */ 11996 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 11997 mctl_present) { 11998 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 11999 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12000 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12001 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12002 ipp.ipp_fields |= IPPF_IFINDEX; 12003 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12004 ifindex = pinfo->in_pkt_ifindex; 12005 } 12006 freeb(first_mp); 12007 mctl_present = B_FALSE; 12008 } 12009 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12010 } else { 12011 ip6h = (ip6_t *)rptr; 12012 12013 ASSERT(ipvers == IPV6_VERSION); 12014 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12015 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12016 ipp.ipp_hoplimit = ip6h->ip6_hops; 12017 12018 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12019 uint8_t nexthdrp; 12020 12021 /* Look for ifindex information */ 12022 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12023 ip6i_t *ip6i = (ip6i_t *)ip6h; 12024 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12025 BUMP_MIB(&ip_mib, tcpInErrs); 12026 freemsg(first_mp); 12027 return (NULL); 12028 } 12029 12030 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12031 ASSERT(ip6i->ip6i_ifindex != 0); 12032 ipp.ipp_fields |= IPPF_IFINDEX; 12033 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12034 ifindex = ip6i->ip6i_ifindex; 12035 } 12036 rptr = (uchar_t *)&ip6i[1]; 12037 mp->b_rptr = rptr; 12038 if (rptr == mp->b_wptr) { 12039 mblk_t *mp1; 12040 mp1 = mp->b_cont; 12041 freeb(mp); 12042 mp = mp1; 12043 rptr = mp->b_rptr; 12044 } 12045 if (MBLKL(mp) < IPV6_HDR_LEN + 12046 sizeof (tcph_t)) { 12047 BUMP_MIB(&ip_mib, tcpInErrs); 12048 freemsg(first_mp); 12049 return (NULL); 12050 } 12051 ip6h = (ip6_t *)rptr; 12052 } 12053 12054 /* 12055 * Find any potentially interesting extension headers 12056 * as well as the length of the IPv6 + extension 12057 * headers. 12058 */ 12059 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12060 /* Verify if this is a TCP packet */ 12061 if (nexthdrp != IPPROTO_TCP) { 12062 BUMP_MIB(&ip_mib, tcpInErrs); 12063 freemsg(first_mp); 12064 return (NULL); 12065 } 12066 } else { 12067 ip_hdr_len = IPV6_HDR_LEN; 12068 } 12069 } 12070 12071 done: 12072 if (ipversp != NULL) 12073 *ipversp = ipvers; 12074 if (ip_hdr_lenp != NULL) 12075 *ip_hdr_lenp = ip_hdr_len; 12076 if (ippp != NULL) 12077 *ippp = ipp; 12078 if (ifindexp != NULL) 12079 *ifindexp = ifindex; 12080 if (mctl_present) { 12081 freeb(first_mp); 12082 } 12083 return (mp); 12084 } 12085 12086 /* 12087 * Handle M_DATA messages from IP. Its called directly from IP via 12088 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12089 * in this path. 12090 * 12091 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12092 * v4 and v6), we are called through tcp_input() and a M_CTL can 12093 * be present for options but tcp_find_pktinfo() deals with it. We 12094 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12095 * 12096 * The first argument is always the connp/tcp to which the mp belongs. 12097 * There are no exceptions to this rule. The caller has already put 12098 * a reference on this connp/tcp and once tcp_rput_data() returns, 12099 * the squeue will do the refrele. 12100 * 12101 * The TH_SYN for the listener directly go to tcp_conn_request via 12102 * squeue. 12103 * 12104 * sqp: NULL = recursive, sqp != NULL means called from squeue 12105 */ 12106 void 12107 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12108 { 12109 int32_t bytes_acked; 12110 int32_t gap; 12111 mblk_t *mp1; 12112 uint_t flags; 12113 uint32_t new_swnd = 0; 12114 uchar_t *iphdr; 12115 uchar_t *rptr; 12116 int32_t rgap; 12117 uint32_t seg_ack; 12118 int seg_len; 12119 uint_t ip_hdr_len; 12120 uint32_t seg_seq; 12121 tcph_t *tcph; 12122 int urp; 12123 tcp_opt_t tcpopt; 12124 uint_t ipvers; 12125 ip6_pkt_t ipp; 12126 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12127 uint32_t cwnd; 12128 uint32_t add; 12129 int npkt; 12130 int mss; 12131 conn_t *connp = (conn_t *)arg; 12132 squeue_t *sqp = (squeue_t *)arg2; 12133 tcp_t *tcp = connp->conn_tcp; 12134 12135 /* 12136 * RST from fused tcp loopback peer should trigger an unfuse. 12137 */ 12138 if (tcp->tcp_fused) { 12139 TCP_STAT(tcp_fusion_aborted); 12140 tcp_unfuse(tcp); 12141 } 12142 12143 iphdr = mp->b_rptr; 12144 rptr = mp->b_rptr; 12145 ASSERT(OK_32PTR(rptr)); 12146 12147 /* 12148 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12149 * processing here. For rest call tcp_find_pktinfo to fill up the 12150 * necessary information. 12151 */ 12152 if (IPCL_IS_TCP4(connp)) { 12153 ipvers = IPV4_VERSION; 12154 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12155 } else { 12156 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12157 NULL, &ipp); 12158 if (mp == NULL) { 12159 TCP_STAT(tcp_rput_v6_error); 12160 return; 12161 } 12162 iphdr = mp->b_rptr; 12163 rptr = mp->b_rptr; 12164 } 12165 ASSERT(DB_TYPE(mp) == M_DATA); 12166 12167 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12168 seg_seq = ABE32_TO_U32(tcph->th_seq); 12169 seg_ack = ABE32_TO_U32(tcph->th_ack); 12170 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12171 seg_len = (int)(mp->b_wptr - rptr) - 12172 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12173 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12174 do { 12175 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12176 (uintptr_t)INT_MAX); 12177 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12178 } while ((mp1 = mp1->b_cont) != NULL && 12179 mp1->b_datap->db_type == M_DATA); 12180 } 12181 12182 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12183 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12184 seg_len, tcph); 12185 return; 12186 } 12187 12188 if (sqp != NULL) { 12189 /* 12190 * This is the correct place to update tcp_last_recv_time. Note 12191 * that it is also updated for tcp structure that belongs to 12192 * global and listener queues which do not really need updating. 12193 * But that should not cause any harm. And it is updated for 12194 * all kinds of incoming segments, not only for data segments. 12195 */ 12196 tcp->tcp_last_recv_time = lbolt; 12197 } 12198 12199 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12200 12201 BUMP_LOCAL(tcp->tcp_ibsegs); 12202 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12203 12204 if ((flags & TH_URG) && sqp != NULL) { 12205 /* 12206 * TCP can't handle urgent pointers that arrive before 12207 * the connection has been accept()ed since it can't 12208 * buffer OOB data. Discard segment if this happens. 12209 * 12210 * Nor can it reassemble urgent pointers, so discard 12211 * if it's not the next segment expected. 12212 * 12213 * Otherwise, collapse chain into one mblk (discard if 12214 * that fails). This makes sure the headers, retransmitted 12215 * data, and new data all are in the same mblk. 12216 */ 12217 ASSERT(mp != NULL); 12218 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12219 freemsg(mp); 12220 return; 12221 } 12222 /* Update pointers into message */ 12223 iphdr = rptr = mp->b_rptr; 12224 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12225 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12226 /* 12227 * Since we can't handle any data with this urgent 12228 * pointer that is out of sequence, we expunge 12229 * the data. This allows us to still register 12230 * the urgent mark and generate the M_PCSIG, 12231 * which we can do. 12232 */ 12233 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12234 seg_len = 0; 12235 } 12236 } 12237 12238 switch (tcp->tcp_state) { 12239 case TCPS_SYN_SENT: 12240 if (flags & TH_ACK) { 12241 /* 12242 * Note that our stack cannot send data before a 12243 * connection is established, therefore the 12244 * following check is valid. Otherwise, it has 12245 * to be changed. 12246 */ 12247 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12248 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12249 freemsg(mp); 12250 if (flags & TH_RST) 12251 return; 12252 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12253 tcp, seg_ack, 0, TH_RST); 12254 return; 12255 } 12256 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12257 } 12258 if (flags & TH_RST) { 12259 freemsg(mp); 12260 if (flags & TH_ACK) 12261 (void) tcp_clean_death(tcp, 12262 ECONNREFUSED, 13); 12263 return; 12264 } 12265 if (!(flags & TH_SYN)) { 12266 freemsg(mp); 12267 return; 12268 } 12269 12270 /* Process all TCP options. */ 12271 tcp_process_options(tcp, tcph); 12272 /* 12273 * The following changes our rwnd to be a multiple of the 12274 * MIN(peer MSS, our MSS) for performance reason. 12275 */ 12276 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12277 tcp->tcp_mss)); 12278 12279 /* Is the other end ECN capable? */ 12280 if (tcp->tcp_ecn_ok) { 12281 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12282 tcp->tcp_ecn_ok = B_FALSE; 12283 } 12284 } 12285 /* 12286 * Clear ECN flags because it may interfere with later 12287 * processing. 12288 */ 12289 flags &= ~(TH_ECE|TH_CWR); 12290 12291 tcp->tcp_irs = seg_seq; 12292 tcp->tcp_rack = seg_seq; 12293 tcp->tcp_rnxt = seg_seq + 1; 12294 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12295 if (!TCP_IS_DETACHED(tcp)) { 12296 /* Allocate room for SACK options if needed. */ 12297 if (tcp->tcp_snd_sack_ok) { 12298 (void) mi_set_sth_wroff(tcp->tcp_rq, 12299 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12300 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12301 } else { 12302 (void) mi_set_sth_wroff(tcp->tcp_rq, 12303 tcp->tcp_hdr_len + 12304 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12305 } 12306 } 12307 if (flags & TH_ACK) { 12308 /* 12309 * If we can't get the confirmation upstream, pretend 12310 * we didn't even see this one. 12311 * 12312 * XXX: how can we pretend we didn't see it if we 12313 * have updated rnxt et. al. 12314 * 12315 * For loopback we defer sending up the T_CONN_CON 12316 * until after some checks below. 12317 */ 12318 mp1 = NULL; 12319 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12320 tcp->tcp_loopback ? &mp1 : NULL)) { 12321 freemsg(mp); 12322 return; 12323 } 12324 /* SYN was acked - making progress */ 12325 if (tcp->tcp_ipversion == IPV6_VERSION) 12326 tcp->tcp_ip_forward_progress = B_TRUE; 12327 12328 /* One for the SYN */ 12329 tcp->tcp_suna = tcp->tcp_iss + 1; 12330 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12331 tcp->tcp_state = TCPS_ESTABLISHED; 12332 12333 /* 12334 * If SYN was retransmitted, need to reset all 12335 * retransmission info. This is because this 12336 * segment will be treated as a dup ACK. 12337 */ 12338 if (tcp->tcp_rexmit) { 12339 tcp->tcp_rexmit = B_FALSE; 12340 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12341 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12342 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12343 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12344 tcp->tcp_ms_we_have_waited = 0; 12345 12346 /* 12347 * Set tcp_cwnd back to 1 MSS, per 12348 * recommendation from 12349 * draft-floyd-incr-init-win-01.txt, 12350 * Increasing TCP's Initial Window. 12351 */ 12352 tcp->tcp_cwnd = tcp->tcp_mss; 12353 } 12354 12355 tcp->tcp_swl1 = seg_seq; 12356 tcp->tcp_swl2 = seg_ack; 12357 12358 new_swnd = BE16_TO_U16(tcph->th_win); 12359 tcp->tcp_swnd = new_swnd; 12360 if (new_swnd > tcp->tcp_max_swnd) 12361 tcp->tcp_max_swnd = new_swnd; 12362 12363 /* 12364 * Always send the three-way handshake ack immediately 12365 * in order to make the connection complete as soon as 12366 * possible on the accepting host. 12367 */ 12368 flags |= TH_ACK_NEEDED; 12369 12370 /* 12371 * Special case for loopback. At this point we have 12372 * received SYN-ACK from the remote endpoint. In 12373 * order to ensure that both endpoints reach the 12374 * fused state prior to any data exchange, the final 12375 * ACK needs to be sent before we indicate T_CONN_CON 12376 * to the module upstream. 12377 */ 12378 if (tcp->tcp_loopback) { 12379 mblk_t *ack_mp; 12380 12381 ASSERT(!tcp->tcp_unfusable); 12382 ASSERT(mp1 != NULL); 12383 /* 12384 * For loopback, we always get a pure SYN-ACK 12385 * and only need to send back the final ACK 12386 * with no data (this is because the other 12387 * tcp is ours and we don't do T/TCP). This 12388 * final ACK triggers the passive side to 12389 * perform fusion in ESTABLISHED state. 12390 */ 12391 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12392 if (tcp->tcp_ack_tid != 0) { 12393 (void) TCP_TIMER_CANCEL(tcp, 12394 tcp->tcp_ack_tid); 12395 tcp->tcp_ack_tid = 0; 12396 } 12397 TCP_RECORD_TRACE(tcp, ack_mp, 12398 TCP_TRACE_SEND_PKT); 12399 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12400 BUMP_LOCAL(tcp->tcp_obsegs); 12401 BUMP_MIB(&tcp_mib, tcpOutAck); 12402 12403 /* Send up T_CONN_CON */ 12404 putnext(tcp->tcp_rq, mp1); 12405 12406 freemsg(mp); 12407 return; 12408 } 12409 /* 12410 * Forget fusion; we need to handle more 12411 * complex cases below. Send the deferred 12412 * T_CONN_CON message upstream and proceed 12413 * as usual. Mark this tcp as not capable 12414 * of fusion. 12415 */ 12416 TCP_STAT(tcp_fusion_unfusable); 12417 tcp->tcp_unfusable = B_TRUE; 12418 putnext(tcp->tcp_rq, mp1); 12419 } 12420 12421 /* 12422 * Check to see if there is data to be sent. If 12423 * yes, set the transmit flag. Then check to see 12424 * if received data processing needs to be done. 12425 * If not, go straight to xmit_check. This short 12426 * cut is OK as we don't support T/TCP. 12427 */ 12428 if (tcp->tcp_unsent) 12429 flags |= TH_XMIT_NEEDED; 12430 12431 if (seg_len == 0 && !(flags & TH_URG)) { 12432 freemsg(mp); 12433 goto xmit_check; 12434 } 12435 12436 flags &= ~TH_SYN; 12437 seg_seq++; 12438 break; 12439 } 12440 tcp->tcp_state = TCPS_SYN_RCVD; 12441 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 12442 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 12443 if (mp1) { 12444 mblk_setcred(mp1, tcp->tcp_cred); 12445 DB_CPID(mp1) = tcp->tcp_cpid; 12446 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 12447 tcp_send_data(tcp, tcp->tcp_wq, mp1); 12448 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12449 } 12450 freemsg(mp); 12451 return; 12452 case TCPS_SYN_RCVD: 12453 if (flags & TH_ACK) { 12454 /* 12455 * In this state, a SYN|ACK packet is either bogus 12456 * because the other side must be ACKing our SYN which 12457 * indicates it has seen the ACK for their SYN and 12458 * shouldn't retransmit it or we're crossing SYNs 12459 * on active open. 12460 */ 12461 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 12462 freemsg(mp); 12463 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 12464 tcp, seg_ack, 0, TH_RST); 12465 return; 12466 } 12467 /* 12468 * NOTE: RFC 793 pg. 72 says this should be 12469 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 12470 * but that would mean we have an ack that ignored 12471 * our SYN. 12472 */ 12473 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 12474 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12475 freemsg(mp); 12476 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 12477 tcp, seg_ack, 0, TH_RST); 12478 return; 12479 } 12480 } 12481 break; 12482 case TCPS_LISTEN: 12483 /* 12484 * Only a TLI listener can come through this path when a 12485 * acceptor is going back to be a listener and a packet 12486 * for the acceptor hits the classifier. For a socket 12487 * listener, this can never happen because a listener 12488 * can never accept connection on itself and hence a 12489 * socket acceptor can not go back to being a listener. 12490 */ 12491 ASSERT(!TCP_IS_SOCKET(tcp)); 12492 /*FALLTHRU*/ 12493 case TCPS_CLOSED: 12494 case TCPS_BOUND: { 12495 conn_t *new_connp; 12496 12497 new_connp = ipcl_classify(mp, connp->conn_zoneid); 12498 if (new_connp != NULL) { 12499 tcp_reinput(new_connp, mp, connp->conn_sqp); 12500 return; 12501 } 12502 /* We failed to classify. For now just drop the packet */ 12503 freemsg(mp); 12504 return; 12505 } 12506 case TCPS_IDLE: 12507 /* 12508 * Handle the case where the tcp_clean_death() has happened 12509 * on a connection (application hasn't closed yet) but a packet 12510 * was already queued on squeue before tcp_clean_death() 12511 * was processed. Calling tcp_clean_death() twice on same 12512 * connection can result in weird behaviour. 12513 */ 12514 freemsg(mp); 12515 return; 12516 default: 12517 break; 12518 } 12519 12520 /* 12521 * Already on the correct queue/perimeter. 12522 * If this is a detached connection and not an eager 12523 * connection hanging off a listener then new data 12524 * (past the FIN) will cause a reset. 12525 * We do a special check here where it 12526 * is out of the main line, rather than check 12527 * if we are detached every time we see new 12528 * data down below. 12529 */ 12530 if (TCP_IS_DETACHED_NONEAGER(tcp) && 12531 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 12532 BUMP_MIB(&tcp_mib, tcpInClosed); 12533 TCP_RECORD_TRACE(tcp, 12534 mp, TCP_TRACE_RECV_PKT); 12535 freemsg(mp); 12536 tcp_xmit_ctl("new data when detached", tcp, 12537 tcp->tcp_snxt, 0, TH_RST); 12538 (void) tcp_clean_death(tcp, EPROTO, 12); 12539 return; 12540 } 12541 12542 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12543 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 12544 new_swnd = BE16_TO_U16(tcph->th_win) << 12545 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 12546 mss = tcp->tcp_mss; 12547 12548 if (tcp->tcp_snd_ts_ok) { 12549 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 12550 /* 12551 * This segment is not acceptable. 12552 * Drop it and send back an ACK. 12553 */ 12554 freemsg(mp); 12555 flags |= TH_ACK_NEEDED; 12556 goto ack_check; 12557 } 12558 } else if (tcp->tcp_snd_sack_ok) { 12559 ASSERT(tcp->tcp_sack_info != NULL); 12560 tcpopt.tcp = tcp; 12561 /* 12562 * SACK info in already updated in tcp_parse_options. Ignore 12563 * all other TCP options... 12564 */ 12565 (void) tcp_parse_options(tcph, &tcpopt); 12566 } 12567 try_again:; 12568 gap = seg_seq - tcp->tcp_rnxt; 12569 rgap = tcp->tcp_rwnd - (gap + seg_len); 12570 /* 12571 * gap is the amount of sequence space between what we expect to see 12572 * and what we got for seg_seq. A positive value for gap means 12573 * something got lost. A negative value means we got some old stuff. 12574 */ 12575 if (gap < 0) { 12576 /* Old stuff present. Is the SYN in there? */ 12577 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 12578 (seg_len != 0)) { 12579 flags &= ~TH_SYN; 12580 seg_seq++; 12581 urp--; 12582 /* Recompute the gaps after noting the SYN. */ 12583 goto try_again; 12584 } 12585 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 12586 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 12587 (seg_len > -gap ? -gap : seg_len)); 12588 /* Remove the old stuff from seg_len. */ 12589 seg_len += gap; 12590 /* 12591 * Anything left? 12592 * Make sure to check for unack'd FIN when rest of data 12593 * has been previously ack'd. 12594 */ 12595 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 12596 /* 12597 * Resets are only valid if they lie within our offered 12598 * window. If the RST bit is set, we just ignore this 12599 * segment. 12600 */ 12601 if (flags & TH_RST) { 12602 freemsg(mp); 12603 return; 12604 } 12605 12606 /* 12607 * The arriving of dup data packets indicate that we 12608 * may have postponed an ack for too long, or the other 12609 * side's RTT estimate is out of shape. Start acking 12610 * more often. 12611 */ 12612 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 12613 tcp->tcp_rack_cnt >= 1 && 12614 tcp->tcp_rack_abs_max > 2) { 12615 tcp->tcp_rack_abs_max--; 12616 } 12617 tcp->tcp_rack_cur_max = 1; 12618 12619 /* 12620 * This segment is "unacceptable". None of its 12621 * sequence space lies within our advertized window. 12622 * 12623 * Adjust seg_len to the original value for tracing. 12624 */ 12625 seg_len -= gap; 12626 if (tcp->tcp_debug) { 12627 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12628 "tcp_rput: unacceptable, gap %d, rgap %d, " 12629 "flags 0x%x, seg_seq %u, seg_ack %u, " 12630 "seg_len %d, rnxt %u, snxt %u, %s", 12631 gap, rgap, flags, seg_seq, seg_ack, 12632 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 12633 tcp_display(tcp, NULL, 12634 DISP_ADDR_AND_PORT)); 12635 } 12636 12637 /* 12638 * Arrange to send an ACK in response to the 12639 * unacceptable segment per RFC 793 page 69. There 12640 * is only one small difference between ours and the 12641 * acceptability test in the RFC - we accept ACK-only 12642 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 12643 * will be generated. 12644 * 12645 * Note that we have to ACK an ACK-only packet at least 12646 * for stacks that send 0-length keep-alives with 12647 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 12648 * section 4.2.3.6. As long as we don't ever generate 12649 * an unacceptable packet in response to an incoming 12650 * packet that is unacceptable, it should not cause 12651 * "ACK wars". 12652 */ 12653 flags |= TH_ACK_NEEDED; 12654 12655 /* 12656 * Continue processing this segment in order to use the 12657 * ACK information it contains, but skip all other 12658 * sequence-number processing. Processing the ACK 12659 * information is necessary in order to 12660 * re-synchronize connections that may have lost 12661 * synchronization. 12662 * 12663 * We clear seg_len and flag fields related to 12664 * sequence number processing as they are not 12665 * to be trusted for an unacceptable segment. 12666 */ 12667 seg_len = 0; 12668 flags &= ~(TH_SYN | TH_FIN | TH_URG); 12669 goto process_ack; 12670 } 12671 12672 /* Fix seg_seq, and chew the gap off the front. */ 12673 seg_seq = tcp->tcp_rnxt; 12674 urp += gap; 12675 do { 12676 mblk_t *mp2; 12677 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 12678 (uintptr_t)UINT_MAX); 12679 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 12680 if (gap > 0) { 12681 mp->b_rptr = mp->b_wptr - gap; 12682 break; 12683 } 12684 mp2 = mp; 12685 mp = mp->b_cont; 12686 freeb(mp2); 12687 } while (gap < 0); 12688 /* 12689 * If the urgent data has already been acknowledged, we 12690 * should ignore TH_URG below 12691 */ 12692 if (urp < 0) 12693 flags &= ~TH_URG; 12694 } 12695 /* 12696 * rgap is the amount of stuff received out of window. A negative 12697 * value is the amount out of window. 12698 */ 12699 if (rgap < 0) { 12700 mblk_t *mp2; 12701 12702 if (tcp->tcp_rwnd == 0) { 12703 BUMP_MIB(&tcp_mib, tcpInWinProbe); 12704 } else { 12705 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 12706 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 12707 } 12708 12709 /* 12710 * seg_len does not include the FIN, so if more than 12711 * just the FIN is out of window, we act like we don't 12712 * see it. (If just the FIN is out of window, rgap 12713 * will be zero and we will go ahead and acknowledge 12714 * the FIN.) 12715 */ 12716 flags &= ~TH_FIN; 12717 12718 /* Fix seg_len and make sure there is something left. */ 12719 seg_len += rgap; 12720 if (seg_len <= 0) { 12721 /* 12722 * Resets are only valid if they lie within our offered 12723 * window. If the RST bit is set, we just ignore this 12724 * segment. 12725 */ 12726 if (flags & TH_RST) { 12727 freemsg(mp); 12728 return; 12729 } 12730 12731 /* Per RFC 793, we need to send back an ACK. */ 12732 flags |= TH_ACK_NEEDED; 12733 12734 /* 12735 * Send SIGURG as soon as possible i.e. even 12736 * if the TH_URG was delivered in a window probe 12737 * packet (which will be unacceptable). 12738 * 12739 * We generate a signal if none has been generated 12740 * for this connection or if this is a new urgent 12741 * byte. Also send a zero-length "unmarked" message 12742 * to inform SIOCATMARK that this is not the mark. 12743 * 12744 * tcp_urp_last_valid is cleared when the T_exdata_ind 12745 * is sent up. This plus the check for old data 12746 * (gap >= 0) handles the wraparound of the sequence 12747 * number space without having to always track the 12748 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 12749 * this max in its rcv_up variable). 12750 * 12751 * This prevents duplicate SIGURGS due to a "late" 12752 * zero-window probe when the T_EXDATA_IND has already 12753 * been sent up. 12754 */ 12755 if ((flags & TH_URG) && 12756 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 12757 tcp->tcp_urp_last))) { 12758 mp1 = allocb(0, BPRI_MED); 12759 if (mp1 == NULL) { 12760 freemsg(mp); 12761 return; 12762 } 12763 if (!TCP_IS_DETACHED(tcp) && 12764 !putnextctl1(tcp->tcp_rq, M_PCSIG, 12765 SIGURG)) { 12766 /* Try again on the rexmit. */ 12767 freemsg(mp1); 12768 freemsg(mp); 12769 return; 12770 } 12771 /* 12772 * If the next byte would be the mark 12773 * then mark with MARKNEXT else mark 12774 * with NOTMARKNEXT. 12775 */ 12776 if (gap == 0 && urp == 0) 12777 mp1->b_flag |= MSGMARKNEXT; 12778 else 12779 mp1->b_flag |= MSGNOTMARKNEXT; 12780 freemsg(tcp->tcp_urp_mark_mp); 12781 tcp->tcp_urp_mark_mp = mp1; 12782 flags |= TH_SEND_URP_MARK; 12783 tcp->tcp_urp_last_valid = B_TRUE; 12784 tcp->tcp_urp_last = urp + seg_seq; 12785 } 12786 /* 12787 * If this is a zero window probe, continue to 12788 * process the ACK part. But we need to set seg_len 12789 * to 0 to avoid data processing. Otherwise just 12790 * drop the segment and send back an ACK. 12791 */ 12792 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 12793 flags &= ~(TH_SYN | TH_URG); 12794 seg_len = 0; 12795 goto process_ack; 12796 } else { 12797 freemsg(mp); 12798 goto ack_check; 12799 } 12800 } 12801 /* Pitch out of window stuff off the end. */ 12802 rgap = seg_len; 12803 mp2 = mp; 12804 do { 12805 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 12806 (uintptr_t)INT_MAX); 12807 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 12808 if (rgap < 0) { 12809 mp2->b_wptr += rgap; 12810 if ((mp1 = mp2->b_cont) != NULL) { 12811 mp2->b_cont = NULL; 12812 freemsg(mp1); 12813 } 12814 break; 12815 } 12816 } while ((mp2 = mp2->b_cont) != NULL); 12817 } 12818 ok:; 12819 /* 12820 * TCP should check ECN info for segments inside the window only. 12821 * Therefore the check should be done here. 12822 */ 12823 if (tcp->tcp_ecn_ok) { 12824 if (flags & TH_CWR) { 12825 tcp->tcp_ecn_echo_on = B_FALSE; 12826 } 12827 /* 12828 * Note that both ECN_CE and CWR can be set in the 12829 * same segment. In this case, we once again turn 12830 * on ECN_ECHO. 12831 */ 12832 if (tcp->tcp_ipversion == IPV4_VERSION) { 12833 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 12834 12835 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 12836 tcp->tcp_ecn_echo_on = B_TRUE; 12837 } 12838 } else { 12839 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 12840 12841 if ((vcf & htonl(IPH_ECN_CE << 20)) == 12842 htonl(IPH_ECN_CE << 20)) { 12843 tcp->tcp_ecn_echo_on = B_TRUE; 12844 } 12845 } 12846 } 12847 12848 /* 12849 * Check whether we can update tcp_ts_recent. This test is 12850 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 12851 * Extensions for High Performance: An Update", Internet Draft. 12852 */ 12853 if (tcp->tcp_snd_ts_ok && 12854 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 12855 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 12856 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12857 tcp->tcp_last_rcv_lbolt = lbolt64; 12858 } 12859 12860 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 12861 /* 12862 * FIN in an out of order segment. We record this in 12863 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 12864 * Clear the FIN so that any check on FIN flag will fail. 12865 * Remember that FIN also counts in the sequence number 12866 * space. So we need to ack out of order FIN only segments. 12867 */ 12868 if (flags & TH_FIN) { 12869 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 12870 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 12871 flags &= ~TH_FIN; 12872 flags |= TH_ACK_NEEDED; 12873 } 12874 if (seg_len > 0) { 12875 /* Fill in the SACK blk list. */ 12876 if (tcp->tcp_snd_sack_ok) { 12877 ASSERT(tcp->tcp_sack_info != NULL); 12878 tcp_sack_insert(tcp->tcp_sack_list, 12879 seg_seq, seg_seq + seg_len, 12880 &(tcp->tcp_num_sack_blk)); 12881 } 12882 12883 /* 12884 * Attempt reassembly and see if we have something 12885 * ready to go. 12886 */ 12887 mp = tcp_reass(tcp, mp, seg_seq); 12888 /* Always ack out of order packets */ 12889 flags |= TH_ACK_NEEDED | TH_PUSH; 12890 if (mp) { 12891 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 12892 (uintptr_t)INT_MAX); 12893 seg_len = mp->b_cont ? msgdsize(mp) : 12894 (int)(mp->b_wptr - mp->b_rptr); 12895 seg_seq = tcp->tcp_rnxt; 12896 /* 12897 * A gap is filled and the seq num and len 12898 * of the gap match that of a previously 12899 * received FIN, put the FIN flag back in. 12900 */ 12901 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 12902 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 12903 flags |= TH_FIN; 12904 tcp->tcp_valid_bits &= 12905 ~TCP_OFO_FIN_VALID; 12906 } 12907 } else { 12908 /* 12909 * Keep going even with NULL mp. 12910 * There may be a useful ACK or something else 12911 * we don't want to miss. 12912 * 12913 * But TCP should not perform fast retransmit 12914 * because of the ack number. TCP uses 12915 * seg_len == 0 to determine if it is a pure 12916 * ACK. And this is not a pure ACK. 12917 */ 12918 seg_len = 0; 12919 ofo_seg = B_TRUE; 12920 } 12921 } 12922 } else if (seg_len > 0) { 12923 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 12924 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 12925 /* 12926 * If an out of order FIN was received before, and the seq 12927 * num and len of the new segment match that of the FIN, 12928 * put the FIN flag back in. 12929 */ 12930 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 12931 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 12932 flags |= TH_FIN; 12933 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 12934 } 12935 } 12936 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 12937 if (flags & TH_RST) { 12938 freemsg(mp); 12939 switch (tcp->tcp_state) { 12940 case TCPS_SYN_RCVD: 12941 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 12942 break; 12943 case TCPS_ESTABLISHED: 12944 case TCPS_FIN_WAIT_1: 12945 case TCPS_FIN_WAIT_2: 12946 case TCPS_CLOSE_WAIT: 12947 (void) tcp_clean_death(tcp, ECONNRESET, 15); 12948 break; 12949 case TCPS_CLOSING: 12950 case TCPS_LAST_ACK: 12951 (void) tcp_clean_death(tcp, 0, 16); 12952 break; 12953 default: 12954 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 12955 (void) tcp_clean_death(tcp, ENXIO, 17); 12956 break; 12957 } 12958 return; 12959 } 12960 if (flags & TH_SYN) { 12961 /* 12962 * See RFC 793, Page 71 12963 * 12964 * The seq number must be in the window as it should 12965 * be "fixed" above. If it is outside window, it should 12966 * be already rejected. Note that we allow seg_seq to be 12967 * rnxt + rwnd because we want to accept 0 window probe. 12968 */ 12969 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 12970 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 12971 freemsg(mp); 12972 /* 12973 * If the ACK flag is not set, just use our snxt as the 12974 * seq number of the RST segment. 12975 */ 12976 if (!(flags & TH_ACK)) { 12977 seg_ack = tcp->tcp_snxt; 12978 } 12979 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 12980 TH_RST|TH_ACK); 12981 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 12982 (void) tcp_clean_death(tcp, ECONNRESET, 18); 12983 return; 12984 } 12985 /* 12986 * urp could be -1 when the urp field in the packet is 0 12987 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 12988 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 12989 */ 12990 if (flags & TH_URG && urp >= 0) { 12991 if (!tcp->tcp_urp_last_valid || 12992 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 12993 /* 12994 * If we haven't generated the signal yet for this 12995 * urgent pointer value, do it now. Also, send up a 12996 * zero-length M_DATA indicating whether or not this is 12997 * the mark. The latter is not needed when a 12998 * T_EXDATA_IND is sent up. However, if there are 12999 * allocation failures this code relies on the sender 13000 * retransmitting and the socket code for determining 13001 * the mark should not block waiting for the peer to 13002 * transmit. Thus, for simplicity we always send up the 13003 * mark indication. 13004 */ 13005 mp1 = allocb(0, BPRI_MED); 13006 if (mp1 == NULL) { 13007 freemsg(mp); 13008 return; 13009 } 13010 if (!TCP_IS_DETACHED(tcp) && 13011 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13012 /* Try again on the rexmit. */ 13013 freemsg(mp1); 13014 freemsg(mp); 13015 return; 13016 } 13017 /* 13018 * Mark with NOTMARKNEXT for now. 13019 * The code below will change this to MARKNEXT 13020 * if we are at the mark. 13021 * 13022 * If there are allocation failures (e.g. in dupmsg 13023 * below) the next time tcp_rput_data sees the urgent 13024 * segment it will send up the MSG*MARKNEXT message. 13025 */ 13026 mp1->b_flag |= MSGNOTMARKNEXT; 13027 freemsg(tcp->tcp_urp_mark_mp); 13028 tcp->tcp_urp_mark_mp = mp1; 13029 flags |= TH_SEND_URP_MARK; 13030 #ifdef DEBUG 13031 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13032 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13033 "last %x, %s", 13034 seg_seq, urp, tcp->tcp_urp_last, 13035 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13036 #endif /* DEBUG */ 13037 tcp->tcp_urp_last_valid = B_TRUE; 13038 tcp->tcp_urp_last = urp + seg_seq; 13039 } else if (tcp->tcp_urp_mark_mp != NULL) { 13040 /* 13041 * An allocation failure prevented the previous 13042 * tcp_rput_data from sending up the allocated 13043 * MSG*MARKNEXT message - send it up this time 13044 * around. 13045 */ 13046 flags |= TH_SEND_URP_MARK; 13047 } 13048 13049 /* 13050 * If the urgent byte is in this segment, make sure that it is 13051 * all by itself. This makes it much easier to deal with the 13052 * possibility of an allocation failure on the T_exdata_ind. 13053 * Note that seg_len is the number of bytes in the segment, and 13054 * urp is the offset into the segment of the urgent byte. 13055 * urp < seg_len means that the urgent byte is in this segment. 13056 */ 13057 if (urp < seg_len) { 13058 if (seg_len != 1) { 13059 uint32_t tmp_rnxt; 13060 /* 13061 * Break it up and feed it back in. 13062 * Re-attach the IP header. 13063 */ 13064 mp->b_rptr = iphdr; 13065 if (urp > 0) { 13066 /* 13067 * There is stuff before the urgent 13068 * byte. 13069 */ 13070 mp1 = dupmsg(mp); 13071 if (!mp1) { 13072 /* 13073 * Trim from urgent byte on. 13074 * The rest will come back. 13075 */ 13076 (void) adjmsg(mp, 13077 urp - seg_len); 13078 tcp_rput_data(connp, 13079 mp, NULL); 13080 return; 13081 } 13082 (void) adjmsg(mp1, urp - seg_len); 13083 /* Feed this piece back in. */ 13084 tmp_rnxt = tcp->tcp_rnxt; 13085 tcp_rput_data(connp, mp1, NULL); 13086 /* 13087 * If the data passed back in was not 13088 * processed (ie: bad ACK) sending 13089 * the remainder back in will cause a 13090 * loop. In this case, drop the 13091 * packet and let the sender try 13092 * sending a good packet. 13093 */ 13094 if (tmp_rnxt == tcp->tcp_rnxt) { 13095 freemsg(mp); 13096 return; 13097 } 13098 } 13099 if (urp != seg_len - 1) { 13100 uint32_t tmp_rnxt; 13101 /* 13102 * There is stuff after the urgent 13103 * byte. 13104 */ 13105 mp1 = dupmsg(mp); 13106 if (!mp1) { 13107 /* 13108 * Trim everything beyond the 13109 * urgent byte. The rest will 13110 * come back. 13111 */ 13112 (void) adjmsg(mp, 13113 urp + 1 - seg_len); 13114 tcp_rput_data(connp, 13115 mp, NULL); 13116 return; 13117 } 13118 (void) adjmsg(mp1, urp + 1 - seg_len); 13119 tmp_rnxt = tcp->tcp_rnxt; 13120 tcp_rput_data(connp, mp1, NULL); 13121 /* 13122 * If the data passed back in was not 13123 * processed (ie: bad ACK) sending 13124 * the remainder back in will cause a 13125 * loop. In this case, drop the 13126 * packet and let the sender try 13127 * sending a good packet. 13128 */ 13129 if (tmp_rnxt == tcp->tcp_rnxt) { 13130 freemsg(mp); 13131 return; 13132 } 13133 } 13134 tcp_rput_data(connp, mp, NULL); 13135 return; 13136 } 13137 /* 13138 * This segment contains only the urgent byte. We 13139 * have to allocate the T_exdata_ind, if we can. 13140 */ 13141 if (!tcp->tcp_urp_mp) { 13142 struct T_exdata_ind *tei; 13143 mp1 = allocb(sizeof (struct T_exdata_ind), 13144 BPRI_MED); 13145 if (!mp1) { 13146 /* 13147 * Sigh... It'll be back. 13148 * Generate any MSG*MARK message now. 13149 */ 13150 freemsg(mp); 13151 seg_len = 0; 13152 if (flags & TH_SEND_URP_MARK) { 13153 13154 13155 ASSERT(tcp->tcp_urp_mark_mp); 13156 tcp->tcp_urp_mark_mp->b_flag &= 13157 ~MSGNOTMARKNEXT; 13158 tcp->tcp_urp_mark_mp->b_flag |= 13159 MSGMARKNEXT; 13160 } 13161 goto ack_check; 13162 } 13163 mp1->b_datap->db_type = M_PROTO; 13164 tei = (struct T_exdata_ind *)mp1->b_rptr; 13165 tei->PRIM_type = T_EXDATA_IND; 13166 tei->MORE_flag = 0; 13167 mp1->b_wptr = (uchar_t *)&tei[1]; 13168 tcp->tcp_urp_mp = mp1; 13169 #ifdef DEBUG 13170 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13171 "tcp_rput: allocated exdata_ind %s", 13172 tcp_display(tcp, NULL, 13173 DISP_PORT_ONLY)); 13174 #endif /* DEBUG */ 13175 /* 13176 * There is no need to send a separate MSG*MARK 13177 * message since the T_EXDATA_IND will be sent 13178 * now. 13179 */ 13180 flags &= ~TH_SEND_URP_MARK; 13181 freemsg(tcp->tcp_urp_mark_mp); 13182 tcp->tcp_urp_mark_mp = NULL; 13183 } 13184 /* 13185 * Now we are all set. On the next putnext upstream, 13186 * tcp_urp_mp will be non-NULL and will get prepended 13187 * to what has to be this piece containing the urgent 13188 * byte. If for any reason we abort this segment below, 13189 * if it comes back, we will have this ready, or it 13190 * will get blown off in close. 13191 */ 13192 } else if (urp == seg_len) { 13193 /* 13194 * The urgent byte is the next byte after this sequence 13195 * number. If there is data it is marked with 13196 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13197 * since it is not needed. Otherwise, if the code 13198 * above just allocated a zero-length tcp_urp_mark_mp 13199 * message, that message is tagged with MSGMARKNEXT. 13200 * Sending up these MSGMARKNEXT messages makes 13201 * SIOCATMARK work correctly even though 13202 * the T_EXDATA_IND will not be sent up until the 13203 * urgent byte arrives. 13204 */ 13205 if (seg_len != 0) { 13206 flags |= TH_MARKNEXT_NEEDED; 13207 freemsg(tcp->tcp_urp_mark_mp); 13208 tcp->tcp_urp_mark_mp = NULL; 13209 flags &= ~TH_SEND_URP_MARK; 13210 } else if (tcp->tcp_urp_mark_mp != NULL) { 13211 flags |= TH_SEND_URP_MARK; 13212 tcp->tcp_urp_mark_mp->b_flag &= 13213 ~MSGNOTMARKNEXT; 13214 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13215 } 13216 #ifdef DEBUG 13217 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13218 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13219 seg_len, flags, 13220 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13221 #endif /* DEBUG */ 13222 } else { 13223 /* Data left until we hit mark */ 13224 #ifdef DEBUG 13225 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13226 "tcp_rput: URP %d bytes left, %s", 13227 urp - seg_len, tcp_display(tcp, NULL, 13228 DISP_PORT_ONLY)); 13229 #endif /* DEBUG */ 13230 } 13231 } 13232 13233 process_ack: 13234 if (!(flags & TH_ACK)) { 13235 freemsg(mp); 13236 goto xmit_check; 13237 } 13238 } 13239 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13240 13241 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13242 tcp->tcp_ip_forward_progress = B_TRUE; 13243 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13244 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 13245 /* 3-way handshake complete - pass up the T_CONN_IND */ 13246 tcp_t *listener = tcp->tcp_listener; 13247 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13248 13249 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13250 /* 13251 * We are here means eager is fine but it can 13252 * get a TH_RST at any point between now and till 13253 * accept completes and disappear. We need to 13254 * ensure that reference to eager is valid after 13255 * we get out of eager's perimeter. So we do 13256 * an extra refhold. 13257 */ 13258 CONN_INC_REF(connp); 13259 13260 /* 13261 * The listener also exists because of the refhold 13262 * done in tcp_conn_request. Its possible that it 13263 * might have closed. We will check that once we 13264 * get inside listeners context. 13265 */ 13266 CONN_INC_REF(listener->tcp_connp); 13267 if (listener->tcp_connp->conn_sqp == 13268 connp->conn_sqp) { 13269 tcp_send_conn_ind(listener->tcp_connp, mp, 13270 listener->tcp_connp->conn_sqp); 13271 CONN_DEC_REF(listener->tcp_connp); 13272 } else if (!tcp->tcp_loopback) { 13273 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13274 tcp_send_conn_ind, 13275 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13276 } else { 13277 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13278 tcp_send_conn_ind, listener->tcp_connp, 13279 SQTAG_TCP_CONN_IND); 13280 } 13281 } 13282 13283 if (tcp->tcp_active_open) { 13284 /* 13285 * We are seeing the final ack in the three way 13286 * hand shake of a active open'ed connection 13287 * so we must send up a T_CONN_CON 13288 */ 13289 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13290 freemsg(mp); 13291 return; 13292 } 13293 /* 13294 * Don't fuse the loopback endpoints for 13295 * simultaneous active opens. 13296 */ 13297 if (tcp->tcp_loopback) { 13298 TCP_STAT(tcp_fusion_unfusable); 13299 tcp->tcp_unfusable = B_TRUE; 13300 } 13301 } 13302 13303 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13304 bytes_acked--; 13305 /* SYN was acked - making progress */ 13306 if (tcp->tcp_ipversion == IPV6_VERSION) 13307 tcp->tcp_ip_forward_progress = B_TRUE; 13308 13309 /* 13310 * If SYN was retransmitted, need to reset all 13311 * retransmission info as this segment will be 13312 * treated as a dup ACK. 13313 */ 13314 if (tcp->tcp_rexmit) { 13315 tcp->tcp_rexmit = B_FALSE; 13316 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13317 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13318 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13319 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13320 tcp->tcp_ms_we_have_waited = 0; 13321 tcp->tcp_cwnd = mss; 13322 } 13323 13324 /* 13325 * We set the send window to zero here. 13326 * This is needed if there is data to be 13327 * processed already on the queue. 13328 * Later (at swnd_update label), the 13329 * "new_swnd > tcp_swnd" condition is satisfied 13330 * the XMIT_NEEDED flag is set in the current 13331 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13332 * called if there is already data on queue in 13333 * this state. 13334 */ 13335 tcp->tcp_swnd = 0; 13336 13337 if (new_swnd > tcp->tcp_max_swnd) 13338 tcp->tcp_max_swnd = new_swnd; 13339 tcp->tcp_swl1 = seg_seq; 13340 tcp->tcp_swl2 = seg_ack; 13341 tcp->tcp_state = TCPS_ESTABLISHED; 13342 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13343 13344 /* Fuse when both sides are in ESTABLISHED state */ 13345 if (tcp->tcp_loopback && do_tcp_fusion) 13346 tcp_fuse(tcp, iphdr, tcph); 13347 13348 } 13349 /* This code follows 4.4BSD-Lite2 mostly. */ 13350 if (bytes_acked < 0) 13351 goto est; 13352 13353 /* 13354 * If TCP is ECN capable and the congestion experience bit is 13355 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13356 * done once per window (or more loosely, per RTT). 13357 */ 13358 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13359 tcp->tcp_cwr = B_FALSE; 13360 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13361 if (!tcp->tcp_cwr) { 13362 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13363 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13364 tcp->tcp_cwnd = npkt * mss; 13365 /* 13366 * If the cwnd is 0, use the timer to clock out 13367 * new segments. This is required by the ECN spec. 13368 */ 13369 if (npkt == 0) { 13370 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13371 /* 13372 * This makes sure that when the ACK comes 13373 * back, we will increase tcp_cwnd by 1 MSS. 13374 */ 13375 tcp->tcp_cwnd_cnt = 0; 13376 } 13377 tcp->tcp_cwr = B_TRUE; 13378 /* 13379 * This marks the end of the current window of in 13380 * flight data. That is why we don't use 13381 * tcp_suna + tcp_swnd. Only data in flight can 13382 * provide ECN info. 13383 */ 13384 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13385 tcp->tcp_ecn_cwr_sent = B_FALSE; 13386 } 13387 } 13388 13389 mp1 = tcp->tcp_xmit_head; 13390 if (bytes_acked == 0) { 13391 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 13392 int dupack_cnt; 13393 13394 BUMP_MIB(&tcp_mib, tcpInDupAck); 13395 /* 13396 * Fast retransmit. When we have seen exactly three 13397 * identical ACKs while we have unacked data 13398 * outstanding we take it as a hint that our peer 13399 * dropped something. 13400 * 13401 * If TCP is retransmitting, don't do fast retransmit. 13402 */ 13403 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 13404 ! tcp->tcp_rexmit) { 13405 /* Do Limited Transmit */ 13406 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 13407 tcp_dupack_fast_retransmit) { 13408 /* 13409 * RFC 3042 13410 * 13411 * What we need to do is temporarily 13412 * increase tcp_cwnd so that new 13413 * data can be sent if it is allowed 13414 * by the receive window (tcp_rwnd). 13415 * tcp_wput_data() will take care of 13416 * the rest. 13417 * 13418 * If the connection is SACK capable, 13419 * only do limited xmit when there 13420 * is SACK info. 13421 * 13422 * Note how tcp_cwnd is incremented. 13423 * The first dup ACK will increase 13424 * it by 1 MSS. The second dup ACK 13425 * will increase it by 2 MSS. This 13426 * means that only 1 new segment will 13427 * be sent for each dup ACK. 13428 */ 13429 if (tcp->tcp_unsent > 0 && 13430 (!tcp->tcp_snd_sack_ok || 13431 (tcp->tcp_snd_sack_ok && 13432 tcp->tcp_notsack_list != NULL))) { 13433 tcp->tcp_cwnd += mss << 13434 (tcp->tcp_dupack_cnt - 1); 13435 flags |= TH_LIMIT_XMIT; 13436 } 13437 } else if (dupack_cnt == 13438 tcp_dupack_fast_retransmit) { 13439 13440 /* 13441 * If we have reduced tcp_ssthresh 13442 * because of ECN, do not reduce it again 13443 * unless it is already one window of data 13444 * away. After one window of data, tcp_cwr 13445 * should then be cleared. Note that 13446 * for non ECN capable connection, tcp_cwr 13447 * should always be false. 13448 * 13449 * Adjust cwnd since the duplicate 13450 * ack indicates that a packet was 13451 * dropped (due to congestion.) 13452 */ 13453 if (!tcp->tcp_cwr) { 13454 npkt = ((tcp->tcp_snxt - 13455 tcp->tcp_suna) >> 1) / mss; 13456 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13457 mss; 13458 tcp->tcp_cwnd = (npkt + 13459 tcp->tcp_dupack_cnt) * mss; 13460 } 13461 if (tcp->tcp_ecn_ok) { 13462 tcp->tcp_cwr = B_TRUE; 13463 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13464 tcp->tcp_ecn_cwr_sent = B_FALSE; 13465 } 13466 13467 /* 13468 * We do Hoe's algorithm. Refer to her 13469 * paper "Improving the Start-up Behavior 13470 * of a Congestion Control Scheme for TCP," 13471 * appeared in SIGCOMM'96. 13472 * 13473 * Save highest seq no we have sent so far. 13474 * Be careful about the invisible FIN byte. 13475 */ 13476 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13477 (tcp->tcp_unsent == 0)) { 13478 tcp->tcp_rexmit_max = tcp->tcp_fss; 13479 } else { 13480 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13481 } 13482 13483 /* 13484 * Do not allow bursty traffic during. 13485 * fast recovery. Refer to Fall and Floyd's 13486 * paper "Simulation-based Comparisons of 13487 * Tahoe, Reno and SACK TCP" (in CCR?) 13488 * This is a best current practise. 13489 */ 13490 tcp->tcp_snd_burst = TCP_CWND_SS; 13491 13492 /* 13493 * For SACK: 13494 * Calculate tcp_pipe, which is the 13495 * estimated number of bytes in 13496 * network. 13497 * 13498 * tcp_fack is the highest sack'ed seq num 13499 * TCP has received. 13500 * 13501 * tcp_pipe is explained in the above quoted 13502 * Fall and Floyd's paper. tcp_fack is 13503 * explained in Mathis and Mahdavi's 13504 * "Forward Acknowledgment: Refining TCP 13505 * Congestion Control" in SIGCOMM '96. 13506 */ 13507 if (tcp->tcp_snd_sack_ok) { 13508 ASSERT(tcp->tcp_sack_info != NULL); 13509 if (tcp->tcp_notsack_list != NULL) { 13510 tcp->tcp_pipe = tcp->tcp_snxt - 13511 tcp->tcp_fack; 13512 tcp->tcp_sack_snxt = seg_ack; 13513 flags |= TH_NEED_SACK_REXMIT; 13514 } else { 13515 /* 13516 * Always initialize tcp_pipe 13517 * even though we don't have 13518 * any SACK info. If later 13519 * we get SACK info and 13520 * tcp_pipe is not initialized, 13521 * funny things will happen. 13522 */ 13523 tcp->tcp_pipe = 13524 tcp->tcp_cwnd_ssthresh; 13525 } 13526 } else { 13527 flags |= TH_REXMIT_NEEDED; 13528 } /* tcp_snd_sack_ok */ 13529 13530 } else { 13531 /* 13532 * Here we perform congestion 13533 * avoidance, but NOT slow start. 13534 * This is known as the Fast 13535 * Recovery Algorithm. 13536 */ 13537 if (tcp->tcp_snd_sack_ok && 13538 tcp->tcp_notsack_list != NULL) { 13539 flags |= TH_NEED_SACK_REXMIT; 13540 tcp->tcp_pipe -= mss; 13541 if (tcp->tcp_pipe < 0) 13542 tcp->tcp_pipe = 0; 13543 } else { 13544 /* 13545 * We know that one more packet has 13546 * left the pipe thus we can update 13547 * cwnd. 13548 */ 13549 cwnd = tcp->tcp_cwnd + mss; 13550 if (cwnd > tcp->tcp_cwnd_max) 13551 cwnd = tcp->tcp_cwnd_max; 13552 tcp->tcp_cwnd = cwnd; 13553 if (tcp->tcp_unsent > 0) 13554 flags |= TH_XMIT_NEEDED; 13555 } 13556 } 13557 } 13558 } else if (tcp->tcp_zero_win_probe) { 13559 /* 13560 * If the window has opened, need to arrange 13561 * to send additional data. 13562 */ 13563 if (new_swnd != 0) { 13564 /* tcp_suna != tcp_snxt */ 13565 /* Packet contains a window update */ 13566 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 13567 tcp->tcp_zero_win_probe = 0; 13568 tcp->tcp_timer_backoff = 0; 13569 tcp->tcp_ms_we_have_waited = 0; 13570 13571 /* 13572 * Transmit starting with tcp_suna since 13573 * the one byte probe is not ack'ed. 13574 * If TCP has sent more than one identical 13575 * probe, tcp_rexmit will be set. That means 13576 * tcp_ss_rexmit() will send out the one 13577 * byte along with new data. Otherwise, 13578 * fake the retransmission. 13579 */ 13580 flags |= TH_XMIT_NEEDED; 13581 if (!tcp->tcp_rexmit) { 13582 tcp->tcp_rexmit = B_TRUE; 13583 tcp->tcp_dupack_cnt = 0; 13584 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13585 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 13586 } 13587 } 13588 } 13589 goto swnd_update; 13590 } 13591 13592 /* 13593 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 13594 * If the ACK value acks something that we have not yet sent, it might 13595 * be an old duplicate segment. Send an ACK to re-synchronize the 13596 * other side. 13597 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 13598 * state is handled above, so we can always just drop the segment and 13599 * send an ACK here. 13600 * 13601 * Should we send ACKs in response to ACK only segments? 13602 */ 13603 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13604 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 13605 /* drop the received segment */ 13606 freemsg(mp); 13607 13608 /* 13609 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 13610 * greater than 0, check if the number of such 13611 * bogus ACks is greater than that count. If yes, 13612 * don't send back any ACK. This prevents TCP from 13613 * getting into an ACK storm if somehow an attacker 13614 * successfully spoofs an acceptable segment to our 13615 * peer. 13616 */ 13617 if (tcp_drop_ack_unsent_cnt > 0 && 13618 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 13619 TCP_STAT(tcp_in_ack_unsent_drop); 13620 return; 13621 } 13622 mp = tcp_ack_mp(tcp); 13623 if (mp != NULL) { 13624 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 13625 BUMP_LOCAL(tcp->tcp_obsegs); 13626 BUMP_MIB(&tcp_mib, tcpOutAck); 13627 tcp_send_data(tcp, tcp->tcp_wq, mp); 13628 } 13629 return; 13630 } 13631 13632 /* 13633 * TCP gets a new ACK, update the notsack'ed list to delete those 13634 * blocks that are covered by this ACK. 13635 */ 13636 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 13637 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 13638 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 13639 } 13640 13641 /* 13642 * If we got an ACK after fast retransmit, check to see 13643 * if it is a partial ACK. If it is not and the congestion 13644 * window was inflated to account for the other side's 13645 * cached packets, retract it. If it is, do Hoe's algorithm. 13646 */ 13647 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 13648 ASSERT(tcp->tcp_rexmit == B_FALSE); 13649 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 13650 tcp->tcp_dupack_cnt = 0; 13651 /* 13652 * Restore the orig tcp_cwnd_ssthresh after 13653 * fast retransmit phase. 13654 */ 13655 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 13656 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 13657 } 13658 tcp->tcp_rexmit_max = seg_ack; 13659 tcp->tcp_cwnd_cnt = 0; 13660 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13661 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13662 13663 /* 13664 * Remove all notsack info to avoid confusion with 13665 * the next fast retrasnmit/recovery phase. 13666 */ 13667 if (tcp->tcp_snd_sack_ok && 13668 tcp->tcp_notsack_list != NULL) { 13669 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 13670 } 13671 } else { 13672 if (tcp->tcp_snd_sack_ok && 13673 tcp->tcp_notsack_list != NULL) { 13674 flags |= TH_NEED_SACK_REXMIT; 13675 tcp->tcp_pipe -= mss; 13676 if (tcp->tcp_pipe < 0) 13677 tcp->tcp_pipe = 0; 13678 } else { 13679 /* 13680 * Hoe's algorithm: 13681 * 13682 * Retransmit the unack'ed segment and 13683 * restart fast recovery. Note that we 13684 * need to scale back tcp_cwnd to the 13685 * original value when we started fast 13686 * recovery. This is to prevent overly 13687 * aggressive behaviour in sending new 13688 * segments. 13689 */ 13690 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 13691 tcp_dupack_fast_retransmit * mss; 13692 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 13693 flags |= TH_REXMIT_NEEDED; 13694 } 13695 } 13696 } else { 13697 tcp->tcp_dupack_cnt = 0; 13698 if (tcp->tcp_rexmit) { 13699 /* 13700 * TCP is retranmitting. If the ACK ack's all 13701 * outstanding data, update tcp_rexmit_max and 13702 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 13703 * to the correct value. 13704 * 13705 * Note that SEQ_LEQ() is used. This is to avoid 13706 * unnecessary fast retransmit caused by dup ACKs 13707 * received when TCP does slow start retransmission 13708 * after a time out. During this phase, TCP may 13709 * send out segments which are already received. 13710 * This causes dup ACKs to be sent back. 13711 */ 13712 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 13713 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 13714 tcp->tcp_rexmit_nxt = seg_ack; 13715 } 13716 if (seg_ack != tcp->tcp_rexmit_max) { 13717 flags |= TH_XMIT_NEEDED; 13718 } 13719 } else { 13720 tcp->tcp_rexmit = B_FALSE; 13721 tcp->tcp_xmit_zc_clean = B_FALSE; 13722 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13723 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13724 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13725 } 13726 tcp->tcp_ms_we_have_waited = 0; 13727 } 13728 } 13729 13730 BUMP_MIB(&tcp_mib, tcpInAckSegs); 13731 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 13732 tcp->tcp_suna = seg_ack; 13733 if (tcp->tcp_zero_win_probe != 0) { 13734 tcp->tcp_zero_win_probe = 0; 13735 tcp->tcp_timer_backoff = 0; 13736 } 13737 13738 /* 13739 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 13740 * Note that it cannot be the SYN being ack'ed. The code flow 13741 * will not reach here. 13742 */ 13743 if (mp1 == NULL) { 13744 goto fin_acked; 13745 } 13746 13747 /* 13748 * Update the congestion window. 13749 * 13750 * If TCP is not ECN capable or TCP is ECN capable but the 13751 * congestion experience bit is not set, increase the tcp_cwnd as 13752 * usual. 13753 */ 13754 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 13755 cwnd = tcp->tcp_cwnd; 13756 add = mss; 13757 13758 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 13759 /* 13760 * This is to prevent an increase of less than 1 MSS of 13761 * tcp_cwnd. With partial increase, tcp_wput_data() 13762 * may send out tinygrams in order to preserve mblk 13763 * boundaries. 13764 * 13765 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 13766 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 13767 * increased by 1 MSS for every RTTs. 13768 */ 13769 if (tcp->tcp_cwnd_cnt <= 0) { 13770 tcp->tcp_cwnd_cnt = cwnd + add; 13771 } else { 13772 tcp->tcp_cwnd_cnt -= add; 13773 add = 0; 13774 } 13775 } 13776 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 13777 } 13778 13779 /* See if the latest urgent data has been acknowledged */ 13780 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 13781 SEQ_GT(seg_ack, tcp->tcp_urg)) 13782 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 13783 13784 /* Can we update the RTT estimates? */ 13785 if (tcp->tcp_snd_ts_ok) { 13786 /* Ignore zero timestamp echo-reply. */ 13787 if (tcpopt.tcp_opt_ts_ecr != 0) { 13788 tcp_set_rto(tcp, (int32_t)lbolt - 13789 (int32_t)tcpopt.tcp_opt_ts_ecr); 13790 } 13791 13792 /* If needed, restart the timer. */ 13793 if (tcp->tcp_set_timer == 1) { 13794 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13795 tcp->tcp_set_timer = 0; 13796 } 13797 /* 13798 * Update tcp_csuna in case the other side stops sending 13799 * us timestamps. 13800 */ 13801 tcp->tcp_csuna = tcp->tcp_snxt; 13802 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 13803 /* 13804 * An ACK sequence we haven't seen before, so get the RTT 13805 * and update the RTO. But first check if the timestamp is 13806 * valid to use. 13807 */ 13808 if ((mp1->b_next != NULL) && 13809 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 13810 tcp_set_rto(tcp, (int32_t)lbolt - 13811 (int32_t)(intptr_t)mp1->b_prev); 13812 else 13813 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 13814 13815 /* Remeber the last sequence to be ACKed */ 13816 tcp->tcp_csuna = seg_ack; 13817 if (tcp->tcp_set_timer == 1) { 13818 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13819 tcp->tcp_set_timer = 0; 13820 } 13821 } else { 13822 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 13823 } 13824 13825 /* Eat acknowledged bytes off the xmit queue. */ 13826 for (;;) { 13827 mblk_t *mp2; 13828 uchar_t *wptr; 13829 13830 wptr = mp1->b_wptr; 13831 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 13832 bytes_acked -= (int)(wptr - mp1->b_rptr); 13833 if (bytes_acked < 0) { 13834 mp1->b_rptr = wptr + bytes_acked; 13835 /* 13836 * Set a new timestamp if all the bytes timed by the 13837 * old timestamp have been ack'ed. 13838 */ 13839 if (SEQ_GT(seg_ack, 13840 (uint32_t)(uintptr_t)(mp1->b_next))) { 13841 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 13842 mp1->b_next = NULL; 13843 } 13844 break; 13845 } 13846 mp1->b_next = NULL; 13847 mp1->b_prev = NULL; 13848 mp2 = mp1; 13849 mp1 = mp1->b_cont; 13850 13851 /* 13852 * This notification is required for some zero-copy 13853 * clients to maintain a copy semantic. After the data 13854 * is ack'ed, client is safe to modify or reuse the buffer. 13855 */ 13856 if (tcp->tcp_snd_zcopy_aware && 13857 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 13858 tcp_zcopy_notify(tcp); 13859 freeb(mp2); 13860 if (bytes_acked == 0) { 13861 if (mp1 == NULL) { 13862 /* Everything is ack'ed, clear the tail. */ 13863 tcp->tcp_xmit_tail = NULL; 13864 /* 13865 * Cancel the timer unless we are still 13866 * waiting for an ACK for the FIN packet. 13867 */ 13868 if (tcp->tcp_timer_tid != 0 && 13869 tcp->tcp_snxt == tcp->tcp_suna) { 13870 (void) TCP_TIMER_CANCEL(tcp, 13871 tcp->tcp_timer_tid); 13872 tcp->tcp_timer_tid = 0; 13873 } 13874 goto pre_swnd_update; 13875 } 13876 if (mp2 != tcp->tcp_xmit_tail) 13877 break; 13878 tcp->tcp_xmit_tail = mp1; 13879 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 13880 (uintptr_t)INT_MAX); 13881 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 13882 mp1->b_rptr); 13883 break; 13884 } 13885 if (mp1 == NULL) { 13886 /* 13887 * More was acked but there is nothing more 13888 * outstanding. This means that the FIN was 13889 * just acked or that we're talking to a clown. 13890 */ 13891 fin_acked: 13892 ASSERT(tcp->tcp_fin_sent); 13893 tcp->tcp_xmit_tail = NULL; 13894 if (tcp->tcp_fin_sent) { 13895 /* FIN was acked - making progress */ 13896 if (tcp->tcp_ipversion == IPV6_VERSION && 13897 !tcp->tcp_fin_acked) 13898 tcp->tcp_ip_forward_progress = B_TRUE; 13899 tcp->tcp_fin_acked = B_TRUE; 13900 if (tcp->tcp_linger_tid != 0 && 13901 TCP_TIMER_CANCEL(tcp, 13902 tcp->tcp_linger_tid) >= 0) { 13903 tcp_stop_lingering(tcp); 13904 } 13905 } else { 13906 /* 13907 * We should never get here because 13908 * we have already checked that the 13909 * number of bytes ack'ed should be 13910 * smaller than or equal to what we 13911 * have sent so far (it is the 13912 * acceptability check of the ACK). 13913 * We can only get here if the send 13914 * queue is corrupted. 13915 * 13916 * Terminate the connection and 13917 * panic the system. It is better 13918 * for us to panic instead of 13919 * continuing to avoid other disaster. 13920 */ 13921 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 13922 tcp->tcp_rnxt, TH_RST|TH_ACK); 13923 panic("Memory corruption " 13924 "detected for connection %s.", 13925 tcp_display(tcp, NULL, 13926 DISP_ADDR_AND_PORT)); 13927 /*NOTREACHED*/ 13928 } 13929 goto pre_swnd_update; 13930 } 13931 ASSERT(mp2 != tcp->tcp_xmit_tail); 13932 } 13933 if (tcp->tcp_unsent) { 13934 flags |= TH_XMIT_NEEDED; 13935 } 13936 pre_swnd_update: 13937 tcp->tcp_xmit_head = mp1; 13938 swnd_update: 13939 /* 13940 * The following check is different from most other implementations. 13941 * For bi-directional transfer, when segments are dropped, the 13942 * "normal" check will not accept a window update in those 13943 * retransmitted segemnts. Failing to do that, TCP may send out 13944 * segments which are outside receiver's window. As TCP accepts 13945 * the ack in those retransmitted segments, if the window update in 13946 * the same segment is not accepted, TCP will incorrectly calculates 13947 * that it can send more segments. This can create a deadlock 13948 * with the receiver if its window becomes zero. 13949 */ 13950 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 13951 SEQ_LT(tcp->tcp_swl1, seg_seq) || 13952 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 13953 /* 13954 * The criteria for update is: 13955 * 13956 * 1. the segment acknowledges some data. Or 13957 * 2. the segment is new, i.e. it has a higher seq num. Or 13958 * 3. the segment is not old and the advertised window is 13959 * larger than the previous advertised window. 13960 */ 13961 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 13962 flags |= TH_XMIT_NEEDED; 13963 tcp->tcp_swnd = new_swnd; 13964 if (new_swnd > tcp->tcp_max_swnd) 13965 tcp->tcp_max_swnd = new_swnd; 13966 tcp->tcp_swl1 = seg_seq; 13967 tcp->tcp_swl2 = seg_ack; 13968 } 13969 est: 13970 if (tcp->tcp_state > TCPS_ESTABLISHED) { 13971 switch (tcp->tcp_state) { 13972 case TCPS_FIN_WAIT_1: 13973 if (tcp->tcp_fin_acked) { 13974 tcp->tcp_state = TCPS_FIN_WAIT_2; 13975 /* 13976 * We implement the non-standard BSD/SunOS 13977 * FIN_WAIT_2 flushing algorithm. 13978 * If there is no user attached to this 13979 * TCP endpoint, then this TCP struct 13980 * could hang around forever in FIN_WAIT_2 13981 * state if the peer forgets to send us 13982 * a FIN. To prevent this, we wait only 13983 * 2*MSL (a convenient time value) for 13984 * the FIN to arrive. If it doesn't show up, 13985 * we flush the TCP endpoint. This algorithm, 13986 * though a violation of RFC-793, has worked 13987 * for over 10 years in BSD systems. 13988 * Note: SunOS 4.x waits 675 seconds before 13989 * flushing the FIN_WAIT_2 connection. 13990 */ 13991 TCP_TIMER_RESTART(tcp, 13992 tcp_fin_wait_2_flush_interval); 13993 } 13994 break; 13995 case TCPS_FIN_WAIT_2: 13996 break; /* Shutdown hook? */ 13997 case TCPS_LAST_ACK: 13998 freemsg(mp); 13999 if (tcp->tcp_fin_acked) { 14000 (void) tcp_clean_death(tcp, 0, 19); 14001 return; 14002 } 14003 goto xmit_check; 14004 case TCPS_CLOSING: 14005 if (tcp->tcp_fin_acked) { 14006 tcp->tcp_state = TCPS_TIME_WAIT; 14007 if (!TCP_IS_DETACHED(tcp)) { 14008 TCP_TIMER_RESTART(tcp, 14009 tcp_time_wait_interval); 14010 } else { 14011 tcp_time_wait_append(tcp); 14012 TCP_DBGSTAT(tcp_rput_time_wait); 14013 } 14014 } 14015 /*FALLTHRU*/ 14016 case TCPS_CLOSE_WAIT: 14017 freemsg(mp); 14018 goto xmit_check; 14019 default: 14020 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14021 break; 14022 } 14023 } 14024 if (flags & TH_FIN) { 14025 /* Make sure we ack the fin */ 14026 flags |= TH_ACK_NEEDED; 14027 if (!tcp->tcp_fin_rcvd) { 14028 tcp->tcp_fin_rcvd = B_TRUE; 14029 tcp->tcp_rnxt++; 14030 tcph = tcp->tcp_tcph; 14031 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14032 14033 /* 14034 * Generate the ordrel_ind at the end unless we 14035 * are an eager guy. 14036 * In the eager case tcp_rsrv will do this when run 14037 * after tcp_accept is done. 14038 */ 14039 if (tcp->tcp_listener == NULL && 14040 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14041 flags |= TH_ORDREL_NEEDED; 14042 switch (tcp->tcp_state) { 14043 case TCPS_SYN_RCVD: 14044 case TCPS_ESTABLISHED: 14045 tcp->tcp_state = TCPS_CLOSE_WAIT; 14046 /* Keepalive? */ 14047 break; 14048 case TCPS_FIN_WAIT_1: 14049 if (!tcp->tcp_fin_acked) { 14050 tcp->tcp_state = TCPS_CLOSING; 14051 break; 14052 } 14053 /* FALLTHRU */ 14054 case TCPS_FIN_WAIT_2: 14055 tcp->tcp_state = TCPS_TIME_WAIT; 14056 if (!TCP_IS_DETACHED(tcp)) { 14057 TCP_TIMER_RESTART(tcp, 14058 tcp_time_wait_interval); 14059 } else { 14060 tcp_time_wait_append(tcp); 14061 TCP_DBGSTAT(tcp_rput_time_wait); 14062 } 14063 if (seg_len) { 14064 /* 14065 * implies data piggybacked on FIN. 14066 * break to handle data. 14067 */ 14068 break; 14069 } 14070 freemsg(mp); 14071 goto ack_check; 14072 } 14073 } 14074 } 14075 if (mp == NULL) 14076 goto xmit_check; 14077 if (seg_len == 0) { 14078 freemsg(mp); 14079 goto xmit_check; 14080 } 14081 if (mp->b_rptr == mp->b_wptr) { 14082 /* 14083 * The header has been consumed, so we remove the 14084 * zero-length mblk here. 14085 */ 14086 mp1 = mp; 14087 mp = mp->b_cont; 14088 freeb(mp1); 14089 } 14090 tcph = tcp->tcp_tcph; 14091 tcp->tcp_rack_cnt++; 14092 { 14093 uint32_t cur_max; 14094 14095 cur_max = tcp->tcp_rack_cur_max; 14096 if (tcp->tcp_rack_cnt >= cur_max) { 14097 /* 14098 * We have more unacked data than we should - send 14099 * an ACK now. 14100 */ 14101 flags |= TH_ACK_NEEDED; 14102 cur_max++; 14103 if (cur_max > tcp->tcp_rack_abs_max) 14104 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14105 else 14106 tcp->tcp_rack_cur_max = cur_max; 14107 } else if (TCP_IS_DETACHED(tcp)) { 14108 /* We don't have an ACK timer for detached TCP. */ 14109 flags |= TH_ACK_NEEDED; 14110 } else if (seg_len < mss) { 14111 /* 14112 * If we get a segment that is less than an mss, and we 14113 * already have unacknowledged data, and the amount 14114 * unacknowledged is not a multiple of mss, then we 14115 * better generate an ACK now. Otherwise, this may be 14116 * the tail piece of a transaction, and we would rather 14117 * wait for the response. 14118 */ 14119 uint32_t udif; 14120 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14121 (uintptr_t)INT_MAX); 14122 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14123 if (udif && (udif % mss)) 14124 flags |= TH_ACK_NEEDED; 14125 else 14126 flags |= TH_ACK_TIMER_NEEDED; 14127 } else { 14128 /* Start delayed ack timer */ 14129 flags |= TH_ACK_TIMER_NEEDED; 14130 } 14131 } 14132 tcp->tcp_rnxt += seg_len; 14133 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14134 14135 /* Update SACK list */ 14136 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14137 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14138 &(tcp->tcp_num_sack_blk)); 14139 } 14140 14141 if (tcp->tcp_urp_mp) { 14142 tcp->tcp_urp_mp->b_cont = mp; 14143 mp = tcp->tcp_urp_mp; 14144 tcp->tcp_urp_mp = NULL; 14145 /* Ready for a new signal. */ 14146 tcp->tcp_urp_last_valid = B_FALSE; 14147 #ifdef DEBUG 14148 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14149 "tcp_rput: sending exdata_ind %s", 14150 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14151 #endif /* DEBUG */ 14152 } 14153 14154 /* 14155 * Check for ancillary data changes compared to last segment. 14156 */ 14157 if (tcp->tcp_ipv6_recvancillary != 0) { 14158 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14159 if (mp == NULL) 14160 return; 14161 } 14162 14163 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14164 /* 14165 * Side queue inbound data until the accept happens. 14166 * tcp_accept/tcp_rput drains this when the accept happens. 14167 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14168 * T_EXDATA_IND) it is queued on b_next. 14169 * XXX Make urgent data use this. Requires: 14170 * Removing tcp_listener check for TH_URG 14171 * Making M_PCPROTO and MARK messages skip the eager case 14172 */ 14173 tcp_rcv_enqueue(tcp, mp, seg_len); 14174 } else { 14175 if (mp->b_datap->db_type != M_DATA || 14176 (flags & TH_MARKNEXT_NEEDED)) { 14177 if (tcp->tcp_rcv_list != NULL) { 14178 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14179 } 14180 ASSERT(tcp->tcp_rcv_list == NULL || 14181 tcp->tcp_fused_sigurg); 14182 if (flags & TH_MARKNEXT_NEEDED) { 14183 #ifdef DEBUG 14184 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14185 "tcp_rput: sending MSGMARKNEXT %s", 14186 tcp_display(tcp, NULL, 14187 DISP_PORT_ONLY)); 14188 #endif /* DEBUG */ 14189 mp->b_flag |= MSGMARKNEXT; 14190 flags &= ~TH_MARKNEXT_NEEDED; 14191 } 14192 putnext(tcp->tcp_rq, mp); 14193 if (!canputnext(tcp->tcp_rq)) 14194 tcp->tcp_rwnd -= seg_len; 14195 } else if (((flags & (TH_PUSH|TH_FIN)) || 14196 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) && 14197 (sqp != NULL)) { 14198 if (tcp->tcp_rcv_list != NULL) { 14199 /* 14200 * Enqueue the new segment first and then 14201 * call tcp_rcv_drain() to send all data 14202 * up. The other way to do this is to 14203 * send all queued data up and then call 14204 * putnext() to send the new segment up. 14205 * This way can remove the else part later 14206 * on. 14207 * 14208 * We don't this to avoid one more call to 14209 * canputnext() as tcp_rcv_drain() needs to 14210 * call canputnext(). 14211 */ 14212 tcp_rcv_enqueue(tcp, mp, seg_len); 14213 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14214 } else { 14215 putnext(tcp->tcp_rq, mp); 14216 if (!canputnext(tcp->tcp_rq)) 14217 tcp->tcp_rwnd -= seg_len; 14218 } 14219 } else { 14220 /* 14221 * Enqueue all packets when processing an mblk 14222 * from the co queue and also enqueue normal packets. 14223 */ 14224 tcp_rcv_enqueue(tcp, mp, seg_len); 14225 } 14226 /* 14227 * Make sure the timer is running if we have data waiting 14228 * for a push bit. This provides resiliency against 14229 * implementations that do not correctly generate push bits. 14230 */ 14231 if ((sqp != NULL) && tcp->tcp_rcv_list != NULL && 14232 tcp->tcp_push_tid == 0) { 14233 /* 14234 * The connection may be closed at this point, so don't 14235 * do anything for a detached tcp. 14236 */ 14237 if (!TCP_IS_DETACHED(tcp)) 14238 tcp->tcp_push_tid = TCP_TIMER(tcp, 14239 tcp_push_timer, 14240 MSEC_TO_TICK(tcp_push_timer_interval)); 14241 } 14242 } 14243 xmit_check: 14244 /* Is there anything left to do? */ 14245 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14246 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14247 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14248 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14249 goto done; 14250 14251 /* Any transmit work to do and a non-zero window? */ 14252 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14253 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14254 if (flags & TH_REXMIT_NEEDED) { 14255 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14256 14257 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14258 if (snd_size > mss) 14259 snd_size = mss; 14260 if (snd_size > tcp->tcp_swnd) 14261 snd_size = tcp->tcp_swnd; 14262 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14263 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14264 B_TRUE); 14265 14266 if (mp1 != NULL) { 14267 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14268 tcp->tcp_csuna = tcp->tcp_snxt; 14269 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14270 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14271 TCP_RECORD_TRACE(tcp, mp1, 14272 TCP_TRACE_SEND_PKT); 14273 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14274 } 14275 } 14276 if (flags & TH_NEED_SACK_REXMIT) { 14277 tcp_sack_rxmit(tcp, &flags); 14278 } 14279 /* 14280 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14281 * out new segment. Note that tcp_rexmit should not be 14282 * set, otherwise TH_LIMIT_XMIT should not be set. 14283 */ 14284 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14285 if (!tcp->tcp_rexmit) { 14286 tcp_wput_data(tcp, NULL, B_FALSE); 14287 } else { 14288 tcp_ss_rexmit(tcp); 14289 } 14290 } 14291 /* 14292 * Adjust tcp_cwnd back to normal value after sending 14293 * new data segments. 14294 */ 14295 if (flags & TH_LIMIT_XMIT) { 14296 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14297 /* 14298 * This will restart the timer. Restarting the 14299 * timer is used to avoid a timeout before the 14300 * limited transmitted segment's ACK gets back. 14301 */ 14302 if (tcp->tcp_xmit_head != NULL) 14303 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14304 } 14305 14306 /* Anything more to do? */ 14307 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14308 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14309 goto done; 14310 } 14311 ack_check: 14312 if (flags & TH_SEND_URP_MARK) { 14313 ASSERT(tcp->tcp_urp_mark_mp); 14314 /* 14315 * Send up any queued data and then send the mark message 14316 */ 14317 if (tcp->tcp_rcv_list != NULL) { 14318 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14319 } 14320 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14321 14322 mp1 = tcp->tcp_urp_mark_mp; 14323 tcp->tcp_urp_mark_mp = NULL; 14324 #ifdef DEBUG 14325 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14326 "tcp_rput: sending zero-length %s %s", 14327 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14328 "MSGNOTMARKNEXT"), 14329 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14330 #endif /* DEBUG */ 14331 putnext(tcp->tcp_rq, mp1); 14332 flags &= ~TH_SEND_URP_MARK; 14333 } 14334 if (flags & TH_ACK_NEEDED) { 14335 /* 14336 * Time to send an ack for some reason. 14337 */ 14338 mp1 = tcp_ack_mp(tcp); 14339 14340 if (mp1 != NULL) { 14341 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14342 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14343 BUMP_LOCAL(tcp->tcp_obsegs); 14344 BUMP_MIB(&tcp_mib, tcpOutAck); 14345 } 14346 if (tcp->tcp_ack_tid != 0) { 14347 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14348 tcp->tcp_ack_tid = 0; 14349 } 14350 } 14351 if (flags & TH_ACK_TIMER_NEEDED) { 14352 /* 14353 * Arrange for deferred ACK or push wait timeout. 14354 * Start timer if it is not already running. 14355 */ 14356 if (tcp->tcp_ack_tid == 0) { 14357 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14358 MSEC_TO_TICK(tcp->tcp_localnet ? 14359 (clock_t)tcp_local_dack_interval : 14360 (clock_t)tcp_deferred_ack_interval)); 14361 } 14362 } 14363 if (flags & TH_ORDREL_NEEDED) { 14364 /* 14365 * Send up the ordrel_ind unless we are an eager guy. 14366 * In the eager case tcp_rsrv will do this when run 14367 * after tcp_accept is done. 14368 */ 14369 ASSERT(tcp->tcp_listener == NULL); 14370 if (tcp->tcp_rcv_list != NULL) { 14371 /* 14372 * Push any mblk(s) enqueued from co processing. 14373 */ 14374 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14375 } 14376 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14377 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 14378 tcp->tcp_ordrel_done = B_TRUE; 14379 putnext(tcp->tcp_rq, mp1); 14380 if (tcp->tcp_deferred_clean_death) { 14381 /* 14382 * tcp_clean_death was deferred 14383 * for T_ORDREL_IND - do it now 14384 */ 14385 (void) tcp_clean_death(tcp, 14386 tcp->tcp_client_errno, 20); 14387 tcp->tcp_deferred_clean_death = B_FALSE; 14388 } 14389 } else { 14390 /* 14391 * Run the orderly release in the 14392 * service routine. 14393 */ 14394 qenable(tcp->tcp_rq); 14395 /* 14396 * Caveat(XXX): The machine may be so 14397 * overloaded that tcp_rsrv() is not scheduled 14398 * until after the endpoint has transitioned 14399 * to TCPS_TIME_WAIT 14400 * and tcp_time_wait_interval expires. Then 14401 * tcp_timer() will blow away state in tcp_t 14402 * and T_ORDREL_IND will never be delivered 14403 * upstream. Unlikely but potentially 14404 * a problem. 14405 */ 14406 } 14407 } 14408 done: 14409 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14410 } 14411 14412 /* 14413 * This function does PAWS protection check. Returns B_TRUE if the 14414 * segment passes the PAWS test, else returns B_FALSE. 14415 */ 14416 boolean_t 14417 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 14418 { 14419 uint8_t flags; 14420 int options; 14421 uint8_t *up; 14422 14423 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 14424 /* 14425 * If timestamp option is aligned nicely, get values inline, 14426 * otherwise call general routine to parse. Only do that 14427 * if timestamp is the only option. 14428 */ 14429 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 14430 TCPOPT_REAL_TS_LEN && 14431 OK_32PTR((up = ((uint8_t *)tcph) + 14432 TCP_MIN_HEADER_LENGTH)) && 14433 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 14434 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 14435 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 14436 14437 options = TCP_OPT_TSTAMP_PRESENT; 14438 } else { 14439 if (tcp->tcp_snd_sack_ok) { 14440 tcpoptp->tcp = tcp; 14441 } else { 14442 tcpoptp->tcp = NULL; 14443 } 14444 options = tcp_parse_options(tcph, tcpoptp); 14445 } 14446 14447 if (options & TCP_OPT_TSTAMP_PRESENT) { 14448 /* 14449 * Do PAWS per RFC 1323 section 4.2. Accept RST 14450 * regardless of the timestamp, page 18 RFC 1323.bis. 14451 */ 14452 if ((flags & TH_RST) == 0 && 14453 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 14454 tcp->tcp_ts_recent)) { 14455 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 14456 PAWS_TIMEOUT)) { 14457 /* This segment is not acceptable. */ 14458 return (B_FALSE); 14459 } else { 14460 /* 14461 * Connection has been idle for 14462 * too long. Reset the timestamp 14463 * and assume the segment is valid. 14464 */ 14465 tcp->tcp_ts_recent = 14466 tcpoptp->tcp_opt_ts_val; 14467 } 14468 } 14469 } else { 14470 /* 14471 * If we don't get a timestamp on every packet, we 14472 * figure we can't really trust 'em, so we stop sending 14473 * and parsing them. 14474 */ 14475 tcp->tcp_snd_ts_ok = B_FALSE; 14476 14477 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14478 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14479 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 14480 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 14481 if (tcp->tcp_snd_sack_ok) { 14482 ASSERT(tcp->tcp_sack_info != NULL); 14483 tcp->tcp_max_sack_blk = 4; 14484 } 14485 } 14486 return (B_TRUE); 14487 } 14488 14489 /* 14490 * Attach ancillary data to a received TCP segments for the 14491 * ancillary pieces requested by the application that are 14492 * different than they were in the previous data segment. 14493 * 14494 * Save the "current" values once memory allocation is ok so that 14495 * when memory allocation fails we can just wait for the next data segment. 14496 */ 14497 static mblk_t * 14498 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 14499 { 14500 struct T_optdata_ind *todi; 14501 int optlen; 14502 uchar_t *optptr; 14503 struct T_opthdr *toh; 14504 uint_t addflag; /* Which pieces to add */ 14505 mblk_t *mp1; 14506 14507 optlen = 0; 14508 addflag = 0; 14509 /* If app asked for pktinfo and the index has changed ... */ 14510 if ((ipp->ipp_fields & IPPF_IFINDEX) && 14511 ipp->ipp_ifindex != tcp->tcp_recvifindex && 14512 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 14513 optlen += sizeof (struct T_opthdr) + 14514 sizeof (struct in6_pktinfo); 14515 addflag |= TCP_IPV6_RECVPKTINFO; 14516 } 14517 /* If app asked for hoplimit and it has changed ... */ 14518 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 14519 ipp->ipp_hoplimit != tcp->tcp_recvhops && 14520 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 14521 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14522 addflag |= TCP_IPV6_RECVHOPLIMIT; 14523 } 14524 /* If app asked for tclass and it has changed ... */ 14525 if ((ipp->ipp_fields & IPPF_TCLASS) && 14526 ipp->ipp_tclass != tcp->tcp_recvtclass && 14527 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 14528 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14529 addflag |= TCP_IPV6_RECVTCLASS; 14530 } 14531 /* If app asked for hopbyhop headers and it has changed ... */ 14532 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 14533 tcp_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 14534 (ipp->ipp_fields & IPPF_HOPOPTS), 14535 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 14536 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 14537 addflag |= TCP_IPV6_RECVHOPOPTS; 14538 if (!tcp_allocbuf((void **)&tcp->tcp_hopopts, 14539 &tcp->tcp_hopoptslen, 14540 (ipp->ipp_fields & IPPF_HOPOPTS), 14541 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 14542 return (mp); 14543 } 14544 /* If app asked for dst headers before routing headers ... */ 14545 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 14546 tcp_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 14547 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14548 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 14549 optlen += sizeof (struct T_opthdr) + 14550 ipp->ipp_rtdstoptslen; 14551 addflag |= TCP_IPV6_RECVRTDSTOPTS; 14552 if (!tcp_allocbuf((void **)&tcp->tcp_rtdstopts, 14553 &tcp->tcp_rtdstoptslen, 14554 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14555 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 14556 return (mp); 14557 } 14558 /* If app asked for routing headers and it has changed ... */ 14559 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 14560 tcp_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 14561 (ipp->ipp_fields & IPPF_RTHDR), 14562 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 14563 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 14564 addflag |= TCP_IPV6_RECVRTHDR; 14565 if (!tcp_allocbuf((void **)&tcp->tcp_rthdr, 14566 &tcp->tcp_rthdrlen, 14567 (ipp->ipp_fields & IPPF_RTHDR), 14568 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 14569 return (mp); 14570 } 14571 /* If app asked for dest headers and it has changed ... */ 14572 if ((tcp->tcp_ipv6_recvancillary & 14573 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 14574 tcp_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 14575 (ipp->ipp_fields & IPPF_DSTOPTS), 14576 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 14577 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 14578 addflag |= TCP_IPV6_RECVDSTOPTS; 14579 if (!tcp_allocbuf((void **)&tcp->tcp_dstopts, 14580 &tcp->tcp_dstoptslen, 14581 (ipp->ipp_fields & IPPF_DSTOPTS), 14582 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 14583 return (mp); 14584 } 14585 14586 if (optlen == 0) { 14587 /* Nothing to add */ 14588 return (mp); 14589 } 14590 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 14591 if (mp1 == NULL) { 14592 /* 14593 * Defer sending ancillary data until the next TCP segment 14594 * arrives. 14595 */ 14596 return (mp); 14597 } 14598 mp1->b_cont = mp; 14599 mp = mp1; 14600 mp->b_wptr += sizeof (*todi) + optlen; 14601 mp->b_datap->db_type = M_PROTO; 14602 todi = (struct T_optdata_ind *)mp->b_rptr; 14603 todi->PRIM_type = T_OPTDATA_IND; 14604 todi->DATA_flag = 1; /* MORE data */ 14605 todi->OPT_length = optlen; 14606 todi->OPT_offset = sizeof (*todi); 14607 optptr = (uchar_t *)&todi[1]; 14608 /* 14609 * If app asked for pktinfo and the index has changed ... 14610 * Note that the local address never changes for the connection. 14611 */ 14612 if (addflag & TCP_IPV6_RECVPKTINFO) { 14613 struct in6_pktinfo *pkti; 14614 14615 toh = (struct T_opthdr *)optptr; 14616 toh->level = IPPROTO_IPV6; 14617 toh->name = IPV6_PKTINFO; 14618 toh->len = sizeof (*toh) + sizeof (*pkti); 14619 toh->status = 0; 14620 optptr += sizeof (*toh); 14621 pkti = (struct in6_pktinfo *)optptr; 14622 if (tcp->tcp_ipversion == IPV6_VERSION) 14623 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 14624 else 14625 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 14626 &pkti->ipi6_addr); 14627 pkti->ipi6_ifindex = ipp->ipp_ifindex; 14628 optptr += sizeof (*pkti); 14629 ASSERT(OK_32PTR(optptr)); 14630 /* Save as "last" value */ 14631 tcp->tcp_recvifindex = ipp->ipp_ifindex; 14632 } 14633 /* If app asked for hoplimit and it has changed ... */ 14634 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 14635 toh = (struct T_opthdr *)optptr; 14636 toh->level = IPPROTO_IPV6; 14637 toh->name = IPV6_HOPLIMIT; 14638 toh->len = sizeof (*toh) + sizeof (uint_t); 14639 toh->status = 0; 14640 optptr += sizeof (*toh); 14641 *(uint_t *)optptr = ipp->ipp_hoplimit; 14642 optptr += sizeof (uint_t); 14643 ASSERT(OK_32PTR(optptr)); 14644 /* Save as "last" value */ 14645 tcp->tcp_recvhops = ipp->ipp_hoplimit; 14646 } 14647 /* If app asked for tclass and it has changed ... */ 14648 if (addflag & TCP_IPV6_RECVTCLASS) { 14649 toh = (struct T_opthdr *)optptr; 14650 toh->level = IPPROTO_IPV6; 14651 toh->name = IPV6_TCLASS; 14652 toh->len = sizeof (*toh) + sizeof (uint_t); 14653 toh->status = 0; 14654 optptr += sizeof (*toh); 14655 *(uint_t *)optptr = ipp->ipp_tclass; 14656 optptr += sizeof (uint_t); 14657 ASSERT(OK_32PTR(optptr)); 14658 /* Save as "last" value */ 14659 tcp->tcp_recvtclass = ipp->ipp_tclass; 14660 } 14661 if (addflag & TCP_IPV6_RECVHOPOPTS) { 14662 toh = (struct T_opthdr *)optptr; 14663 toh->level = IPPROTO_IPV6; 14664 toh->name = IPV6_HOPOPTS; 14665 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 14666 toh->status = 0; 14667 optptr += sizeof (*toh); 14668 bcopy(ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 14669 optptr += ipp->ipp_hopoptslen; 14670 ASSERT(OK_32PTR(optptr)); 14671 /* Save as last value */ 14672 tcp_savebuf((void **)&tcp->tcp_hopopts, 14673 &tcp->tcp_hopoptslen, 14674 (ipp->ipp_fields & IPPF_HOPOPTS), 14675 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14676 } 14677 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 14678 toh = (struct T_opthdr *)optptr; 14679 toh->level = IPPROTO_IPV6; 14680 toh->name = IPV6_RTHDRDSTOPTS; 14681 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 14682 toh->status = 0; 14683 optptr += sizeof (*toh); 14684 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 14685 optptr += ipp->ipp_rtdstoptslen; 14686 ASSERT(OK_32PTR(optptr)); 14687 /* Save as last value */ 14688 tcp_savebuf((void **)&tcp->tcp_rtdstopts, 14689 &tcp->tcp_rtdstoptslen, 14690 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14691 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 14692 } 14693 if (addflag & TCP_IPV6_RECVRTHDR) { 14694 toh = (struct T_opthdr *)optptr; 14695 toh->level = IPPROTO_IPV6; 14696 toh->name = IPV6_RTHDR; 14697 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 14698 toh->status = 0; 14699 optptr += sizeof (*toh); 14700 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 14701 optptr += ipp->ipp_rthdrlen; 14702 ASSERT(OK_32PTR(optptr)); 14703 /* Save as last value */ 14704 tcp_savebuf((void **)&tcp->tcp_rthdr, 14705 &tcp->tcp_rthdrlen, 14706 (ipp->ipp_fields & IPPF_RTHDR), 14707 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14708 } 14709 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 14710 toh = (struct T_opthdr *)optptr; 14711 toh->level = IPPROTO_IPV6; 14712 toh->name = IPV6_DSTOPTS; 14713 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 14714 toh->status = 0; 14715 optptr += sizeof (*toh); 14716 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 14717 optptr += ipp->ipp_dstoptslen; 14718 ASSERT(OK_32PTR(optptr)); 14719 /* Save as last value */ 14720 tcp_savebuf((void **)&tcp->tcp_dstopts, 14721 &tcp->tcp_dstoptslen, 14722 (ipp->ipp_fields & IPPF_DSTOPTS), 14723 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14724 } 14725 ASSERT(optptr == mp->b_wptr); 14726 return (mp); 14727 } 14728 14729 14730 /* 14731 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 14732 * or a "bad" IRE detected by tcp_adapt_ire. 14733 * We can't tell if the failure was due to the laddr or the faddr 14734 * thus we clear out all addresses and ports. 14735 */ 14736 static void 14737 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 14738 { 14739 queue_t *q = tcp->tcp_rq; 14740 tcph_t *tcph; 14741 struct T_error_ack *tea; 14742 conn_t *connp = tcp->tcp_connp; 14743 14744 14745 ASSERT(mp->b_datap->db_type == M_PCPROTO); 14746 14747 if (mp->b_cont) { 14748 freemsg(mp->b_cont); 14749 mp->b_cont = NULL; 14750 } 14751 tea = (struct T_error_ack *)mp->b_rptr; 14752 switch (tea->PRIM_type) { 14753 case T_BIND_ACK: 14754 /* 14755 * Need to unbind with classifier since we were just told that 14756 * our bind succeeded. 14757 */ 14758 tcp->tcp_hard_bound = B_FALSE; 14759 tcp->tcp_hard_binding = B_FALSE; 14760 14761 ipcl_hash_remove(connp); 14762 /* Reuse the mblk if possible */ 14763 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 14764 sizeof (*tea)); 14765 mp->b_rptr = mp->b_datap->db_base; 14766 mp->b_wptr = mp->b_rptr + sizeof (*tea); 14767 tea = (struct T_error_ack *)mp->b_rptr; 14768 tea->PRIM_type = T_ERROR_ACK; 14769 tea->TLI_error = TSYSERR; 14770 tea->UNIX_error = error; 14771 if (tcp->tcp_state >= TCPS_SYN_SENT) { 14772 tea->ERROR_prim = T_CONN_REQ; 14773 } else { 14774 tea->ERROR_prim = O_T_BIND_REQ; 14775 } 14776 break; 14777 14778 case T_ERROR_ACK: 14779 if (tcp->tcp_state >= TCPS_SYN_SENT) 14780 tea->ERROR_prim = T_CONN_REQ; 14781 break; 14782 default: 14783 panic("tcp_bind_failed: unexpected TPI type"); 14784 /*NOTREACHED*/ 14785 } 14786 14787 tcp->tcp_state = TCPS_IDLE; 14788 if (tcp->tcp_ipversion == IPV4_VERSION) 14789 tcp->tcp_ipha->ipha_src = 0; 14790 else 14791 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 14792 /* 14793 * Copy of the src addr. in tcp_t is needed since 14794 * the lookup funcs. can only look at tcp_t 14795 */ 14796 V6_SET_ZERO(tcp->tcp_ip_src_v6); 14797 14798 tcph = tcp->tcp_tcph; 14799 tcph->th_lport[0] = 0; 14800 tcph->th_lport[1] = 0; 14801 tcp_bind_hash_remove(tcp); 14802 bzero(&connp->u_port, sizeof (connp->u_port)); 14803 /* blow away saved option results if any */ 14804 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 14805 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 14806 14807 conn_delete_ire(tcp->tcp_connp, NULL); 14808 putnext(q, mp); 14809 } 14810 14811 /* 14812 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 14813 * messages. 14814 */ 14815 void 14816 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 14817 { 14818 mblk_t *mp1; 14819 uchar_t *rptr = mp->b_rptr; 14820 queue_t *q = tcp->tcp_rq; 14821 struct T_error_ack *tea; 14822 uint32_t mss; 14823 mblk_t *syn_mp; 14824 mblk_t *mdti; 14825 int retval; 14826 mblk_t *ire_mp; 14827 14828 switch (mp->b_datap->db_type) { 14829 case M_PROTO: 14830 case M_PCPROTO: 14831 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 14832 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 14833 break; 14834 tea = (struct T_error_ack *)rptr; 14835 switch (tea->PRIM_type) { 14836 case T_BIND_ACK: 14837 /* 14838 * Adapt Multidata information, if any. The 14839 * following tcp_mdt_update routine will free 14840 * the message. 14841 */ 14842 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 14843 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 14844 b_rptr)->mdt_capab, B_TRUE); 14845 freemsg(mdti); 14846 } 14847 14848 /* Get the IRE, if we had requested for it */ 14849 ire_mp = tcp_ire_mp(mp); 14850 14851 if (tcp->tcp_hard_binding) { 14852 tcp->tcp_hard_binding = B_FALSE; 14853 tcp->tcp_hard_bound = B_TRUE; 14854 CL_INET_CONNECT(tcp); 14855 } else { 14856 if (ire_mp != NULL) 14857 freeb(ire_mp); 14858 goto after_syn_sent; 14859 } 14860 14861 retval = tcp_adapt_ire(tcp, ire_mp); 14862 if (ire_mp != NULL) 14863 freeb(ire_mp); 14864 if (retval == 0) { 14865 tcp_bind_failed(tcp, mp, 14866 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 14867 ENETUNREACH : EADDRNOTAVAIL)); 14868 return; 14869 } 14870 /* 14871 * Don't let an endpoint connect to itself. 14872 * Also checked in tcp_connect() but that 14873 * check can't handle the case when the 14874 * local IP address is INADDR_ANY. 14875 */ 14876 if (tcp->tcp_ipversion == IPV4_VERSION) { 14877 if ((tcp->tcp_ipha->ipha_dst == 14878 tcp->tcp_ipha->ipha_src) && 14879 (BE16_EQL(tcp->tcp_tcph->th_lport, 14880 tcp->tcp_tcph->th_fport))) { 14881 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 14882 return; 14883 } 14884 } else { 14885 if (IN6_ARE_ADDR_EQUAL( 14886 &tcp->tcp_ip6h->ip6_dst, 14887 &tcp->tcp_ip6h->ip6_src) && 14888 (BE16_EQL(tcp->tcp_tcph->th_lport, 14889 tcp->tcp_tcph->th_fport))) { 14890 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 14891 return; 14892 } 14893 } 14894 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 14895 /* 14896 * This should not be possible! Just for 14897 * defensive coding... 14898 */ 14899 if (tcp->tcp_state != TCPS_SYN_SENT) 14900 goto after_syn_sent; 14901 14902 ASSERT(q == tcp->tcp_rq); 14903 /* 14904 * tcp_adapt_ire() does not adjust 14905 * for TCP/IP header length. 14906 */ 14907 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 14908 14909 /* 14910 * Just make sure our rwnd is at 14911 * least tcp_recv_hiwat_mss * MSS 14912 * large, and round up to the nearest 14913 * MSS. 14914 * 14915 * We do the round up here because 14916 * we need to get the interface 14917 * MTU first before we can do the 14918 * round up. 14919 */ 14920 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 14921 tcp_recv_hiwat_minmss * mss); 14922 q->q_hiwat = tcp->tcp_rwnd; 14923 tcp_set_ws_value(tcp); 14924 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 14925 tcp->tcp_tcph->th_win); 14926 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 14927 tcp->tcp_snd_ws_ok = B_TRUE; 14928 14929 /* 14930 * Set tcp_snd_ts_ok to true 14931 * so that tcp_xmit_mp will 14932 * include the timestamp 14933 * option in the SYN segment. 14934 */ 14935 if (tcp_tstamp_always || 14936 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 14937 tcp->tcp_snd_ts_ok = B_TRUE; 14938 } 14939 14940 /* 14941 * tcp_snd_sack_ok can be set in 14942 * tcp_adapt_ire() if the sack metric 14943 * is set. So check it here also. 14944 */ 14945 if (tcp_sack_permitted == 2 || 14946 tcp->tcp_snd_sack_ok) { 14947 if (tcp->tcp_sack_info == NULL) { 14948 tcp->tcp_sack_info = 14949 kmem_cache_alloc(tcp_sack_info_cache, 14950 KM_SLEEP); 14951 } 14952 tcp->tcp_snd_sack_ok = B_TRUE; 14953 } 14954 14955 /* 14956 * Should we use ECN? Note that the current 14957 * default value (SunOS 5.9) of tcp_ecn_permitted 14958 * is 1. The reason for doing this is that there 14959 * are equipments out there that will drop ECN 14960 * enabled IP packets. Setting it to 1 avoids 14961 * compatibility problems. 14962 */ 14963 if (tcp_ecn_permitted == 2) 14964 tcp->tcp_ecn_ok = B_TRUE; 14965 14966 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14967 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 14968 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 14969 if (syn_mp) { 14970 cred_t *cr; 14971 pid_t pid; 14972 14973 /* 14974 * Obtain the credential from the 14975 * thread calling connect(); the credential 14976 * lives on in the second mblk which 14977 * originated from T_CONN_REQ and is echoed 14978 * with the T_BIND_ACK from ip. If none 14979 * can be found, default to the creator 14980 * of the socket. 14981 */ 14982 if (mp->b_cont == NULL || 14983 (cr = DB_CRED(mp->b_cont)) == NULL) { 14984 cr = tcp->tcp_cred; 14985 pid = tcp->tcp_cpid; 14986 } else { 14987 pid = DB_CPID(mp->b_cont); 14988 } 14989 14990 TCP_RECORD_TRACE(tcp, syn_mp, 14991 TCP_TRACE_SEND_PKT); 14992 mblk_setcred(syn_mp, cr); 14993 DB_CPID(syn_mp) = pid; 14994 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 14995 } 14996 after_syn_sent: 14997 /* 14998 * A trailer mblk indicates a waiting client upstream. 14999 * We complete here the processing begun in 15000 * either tcp_bind() or tcp_connect() by passing 15001 * upstream the reply message they supplied. 15002 */ 15003 mp1 = mp; 15004 mp = mp->b_cont; 15005 freeb(mp1); 15006 if (mp) 15007 break; 15008 return; 15009 case T_ERROR_ACK: 15010 if (tcp->tcp_debug) { 15011 (void) strlog(TCP_MOD_ID, 0, 1, 15012 SL_TRACE|SL_ERROR, 15013 "tcp_rput_other: case T_ERROR_ACK, " 15014 "ERROR_prim == %d", 15015 tea->ERROR_prim); 15016 } 15017 switch (tea->ERROR_prim) { 15018 case O_T_BIND_REQ: 15019 case T_BIND_REQ: 15020 tcp_bind_failed(tcp, mp, 15021 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15022 ENETUNREACH : EADDRNOTAVAIL)); 15023 return; 15024 case T_UNBIND_REQ: 15025 tcp->tcp_hard_binding = B_FALSE; 15026 tcp->tcp_hard_bound = B_FALSE; 15027 if (mp->b_cont) { 15028 freemsg(mp->b_cont); 15029 mp->b_cont = NULL; 15030 } 15031 if (tcp->tcp_unbind_pending) 15032 tcp->tcp_unbind_pending = 0; 15033 else { 15034 /* From tcp_ip_unbind() - free */ 15035 freemsg(mp); 15036 return; 15037 } 15038 break; 15039 case T_SVR4_OPTMGMT_REQ: 15040 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15041 /* T_OPTMGMT_REQ generated by TCP */ 15042 printf("T_SVR4_OPTMGMT_REQ failed " 15043 "%d/%d - dropped (cnt %d)\n", 15044 tea->TLI_error, tea->UNIX_error, 15045 tcp->tcp_drop_opt_ack_cnt); 15046 freemsg(mp); 15047 tcp->tcp_drop_opt_ack_cnt--; 15048 return; 15049 } 15050 break; 15051 } 15052 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15053 tcp->tcp_drop_opt_ack_cnt > 0) { 15054 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15055 "- dropped (cnt %d)\n", 15056 tea->TLI_error, tea->UNIX_error, 15057 tcp->tcp_drop_opt_ack_cnt); 15058 freemsg(mp); 15059 tcp->tcp_drop_opt_ack_cnt--; 15060 return; 15061 } 15062 break; 15063 case T_OPTMGMT_ACK: 15064 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15065 /* T_OPTMGMT_REQ generated by TCP */ 15066 freemsg(mp); 15067 tcp->tcp_drop_opt_ack_cnt--; 15068 return; 15069 } 15070 break; 15071 default: 15072 break; 15073 } 15074 break; 15075 case M_CTL: 15076 /* 15077 * ICMP messages. 15078 */ 15079 tcp_icmp_error(tcp, mp); 15080 return; 15081 case M_FLUSH: 15082 if (*rptr & FLUSHR) 15083 flushq(q, FLUSHDATA); 15084 break; 15085 default: 15086 break; 15087 } 15088 /* 15089 * Make sure we set this bit before sending the ACK for 15090 * bind. Otherwise accept could possibly run and free 15091 * this tcp struct. 15092 */ 15093 putnext(q, mp); 15094 } 15095 15096 /* 15097 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15098 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15099 * tcp_rsrv() try again. 15100 */ 15101 static void 15102 tcp_ordrel_kick(void *arg) 15103 { 15104 conn_t *connp = (conn_t *)arg; 15105 tcp_t *tcp = connp->conn_tcp; 15106 15107 tcp->tcp_ordrelid = 0; 15108 tcp->tcp_timeout = B_FALSE; 15109 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15110 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15111 qenable(tcp->tcp_rq); 15112 } 15113 } 15114 15115 /* ARGSUSED */ 15116 static void 15117 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15118 { 15119 conn_t *connp = (conn_t *)arg; 15120 tcp_t *tcp = connp->conn_tcp; 15121 queue_t *q = tcp->tcp_rq; 15122 uint_t thwin; 15123 15124 freeb(mp); 15125 15126 TCP_STAT(tcp_rsrv_calls); 15127 15128 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15129 return; 15130 } 15131 15132 if (tcp->tcp_fused) { 15133 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15134 15135 ASSERT(tcp->tcp_fused); 15136 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15137 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15138 ASSERT(!TCP_IS_DETACHED(tcp)); 15139 ASSERT(tcp->tcp_connp->conn_sqp == 15140 peer_tcp->tcp_connp->conn_sqp); 15141 15142 /* 15143 * Normally we would not get backenabled in synchronous 15144 * streams mode, but in case this happens, we need to stop 15145 * synchronous streams temporarily to prevent a race with 15146 * tcp_fuse_rrw() or tcp_fuse_rinfop(). It is safe to access 15147 * tcp_rcv_list here because those entry points will return 15148 * right away when synchronous streams is stopped. 15149 */ 15150 TCP_FUSE_SYNCSTR_STOP(tcp); 15151 if (tcp->tcp_rcv_list != NULL) 15152 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15153 15154 tcp_clrqfull(peer_tcp); 15155 TCP_FUSE_SYNCSTR_RESUME(tcp); 15156 TCP_STAT(tcp_fusion_backenabled); 15157 return; 15158 } 15159 15160 if (canputnext(q)) { 15161 tcp->tcp_rwnd = q->q_hiwat; 15162 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15163 << tcp->tcp_rcv_ws; 15164 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15165 /* 15166 * Send back a window update immediately if TCP is above 15167 * ESTABLISHED state and the increase of the rcv window 15168 * that the other side knows is at least 1 MSS after flow 15169 * control is lifted. 15170 */ 15171 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15172 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15173 tcp_xmit_ctl(NULL, tcp, 15174 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15175 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15176 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15177 } 15178 } 15179 /* Handle a failure to allocate a T_ORDREL_IND here */ 15180 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15181 ASSERT(tcp->tcp_listener == NULL); 15182 if (tcp->tcp_rcv_list != NULL) { 15183 (void) tcp_rcv_drain(q, tcp); 15184 } 15185 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15186 mp = mi_tpi_ordrel_ind(); 15187 if (mp) { 15188 tcp->tcp_ordrel_done = B_TRUE; 15189 putnext(q, mp); 15190 if (tcp->tcp_deferred_clean_death) { 15191 /* 15192 * tcp_clean_death was deferred for 15193 * T_ORDREL_IND - do it now 15194 */ 15195 tcp->tcp_deferred_clean_death = B_FALSE; 15196 (void) tcp_clean_death(tcp, 15197 tcp->tcp_client_errno, 22); 15198 } 15199 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15200 /* 15201 * If there isn't already a timer running 15202 * start one. Use a 4 second 15203 * timer as a fallback since it can't fail. 15204 */ 15205 tcp->tcp_timeout = B_TRUE; 15206 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15207 MSEC_TO_TICK(4000)); 15208 } 15209 } 15210 } 15211 15212 /* 15213 * The read side service routine is called mostly when we get back-enabled as a 15214 * result of flow control relief. Since we don't actually queue anything in 15215 * TCP, we have no data to send out of here. What we do is clear the receive 15216 * window, and send out a window update. 15217 * This routine is also called to drive an orderly release message upstream 15218 * if the attempt in tcp_rput failed. 15219 */ 15220 static void 15221 tcp_rsrv(queue_t *q) 15222 { 15223 conn_t *connp = Q_TO_CONN(q); 15224 tcp_t *tcp = connp->conn_tcp; 15225 mblk_t *mp; 15226 15227 /* No code does a putq on the read side */ 15228 ASSERT(q->q_first == NULL); 15229 15230 /* Nothing to do for the default queue */ 15231 if (q == tcp_g_q) { 15232 return; 15233 } 15234 15235 mp = allocb(0, BPRI_HI); 15236 if (mp == NULL) { 15237 /* 15238 * We are under memory pressure. Return for now and we 15239 * we will be called again later. 15240 */ 15241 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15242 /* 15243 * If there isn't already a timer running 15244 * start one. Use a 4 second 15245 * timer as a fallback since it can't fail. 15246 */ 15247 tcp->tcp_timeout = B_TRUE; 15248 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15249 MSEC_TO_TICK(4000)); 15250 } 15251 return; 15252 } 15253 CONN_INC_REF(connp); 15254 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15255 SQTAG_TCP_RSRV); 15256 } 15257 15258 /* 15259 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15260 * We do not allow the receive window to shrink. After setting rwnd, 15261 * set the flow control hiwat of the stream. 15262 * 15263 * This function is called in 2 cases: 15264 * 15265 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15266 * connection (passive open) and in tcp_rput_data() for active connect. 15267 * This is called after tcp_mss_set() when the desired MSS value is known. 15268 * This makes sure that our window size is a mutiple of the other side's 15269 * MSS. 15270 * 2) Handling SO_RCVBUF option. 15271 * 15272 * It is ASSUMED that the requested size is a multiple of the current MSS. 15273 * 15274 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15275 * user requests so. 15276 */ 15277 static int 15278 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15279 { 15280 uint32_t mss = tcp->tcp_mss; 15281 uint32_t old_max_rwnd; 15282 uint32_t max_transmittable_rwnd; 15283 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15284 15285 if (tcp->tcp_fused) { 15286 size_t sth_hiwat; 15287 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15288 15289 ASSERT(peer_tcp != NULL); 15290 /* 15291 * Record the stream head's high water mark for 15292 * this endpoint; this is used for flow-control 15293 * purposes in tcp_fuse_output(). 15294 */ 15295 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15296 if (!tcp_detached) 15297 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15298 15299 /* 15300 * In the fusion case, the maxpsz stream head value of 15301 * our peer is set according to its send buffer size 15302 * and our receive buffer size; since the latter may 15303 * have changed we need to update the peer's maxpsz. 15304 */ 15305 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15306 return (rwnd); 15307 } 15308 15309 if (tcp_detached) 15310 old_max_rwnd = tcp->tcp_rwnd; 15311 else 15312 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15313 15314 /* 15315 * Insist on a receive window that is at least 15316 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15317 * funny TCP interactions of Nagle algorithm, SWS avoidance 15318 * and delayed acknowledgement. 15319 */ 15320 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15321 15322 /* 15323 * If window size info has already been exchanged, TCP should not 15324 * shrink the window. Shrinking window is doable if done carefully. 15325 * We may add that support later. But so far there is not a real 15326 * need to do that. 15327 */ 15328 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15329 /* MSS may have changed, do a round up again. */ 15330 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15331 } 15332 15333 /* 15334 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15335 * can be applied even before the window scale option is decided. 15336 */ 15337 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15338 if (rwnd > max_transmittable_rwnd) { 15339 rwnd = max_transmittable_rwnd - 15340 (max_transmittable_rwnd % mss); 15341 if (rwnd < mss) 15342 rwnd = max_transmittable_rwnd; 15343 /* 15344 * If we're over the limit we may have to back down tcp_rwnd. 15345 * The increment below won't work for us. So we set all three 15346 * here and the increment below will have no effect. 15347 */ 15348 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15349 } 15350 if (tcp->tcp_localnet) { 15351 tcp->tcp_rack_abs_max = 15352 MIN(tcp_local_dacks_max, rwnd / mss / 2); 15353 } else { 15354 /* 15355 * For a remote host on a different subnet (through a router), 15356 * we ack every other packet to be conforming to RFC1122. 15357 * tcp_deferred_acks_max is default to 2. 15358 */ 15359 tcp->tcp_rack_abs_max = 15360 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 15361 } 15362 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15363 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15364 else 15365 tcp->tcp_rack_cur_max = 0; 15366 /* 15367 * Increment the current rwnd by the amount the maximum grew (we 15368 * can not overwrite it since we might be in the middle of a 15369 * connection.) 15370 */ 15371 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15372 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15373 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15374 tcp->tcp_cwnd_max = rwnd; 15375 15376 if (tcp_detached) 15377 return (rwnd); 15378 /* 15379 * We set the maximum receive window into rq->q_hiwat. 15380 * This is not actually used for flow control. 15381 */ 15382 tcp->tcp_rq->q_hiwat = rwnd; 15383 /* 15384 * Set the Stream head high water mark. This doesn't have to be 15385 * here, since we are simply using default values, but we would 15386 * prefer to choose these values algorithmically, with a likely 15387 * relationship to rwnd. 15388 */ 15389 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 15390 return (rwnd); 15391 } 15392 15393 /* 15394 * Return SNMP stuff in buffer in mpdata. 15395 */ 15396 int 15397 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15398 { 15399 mblk_t *mpdata; 15400 mblk_t *mp_conn_ctl = NULL; 15401 mblk_t *mp_conn_data; 15402 mblk_t *mp6_conn_ctl = NULL; 15403 mblk_t *mp6_conn_data; 15404 mblk_t *mp_conn_tail = NULL; 15405 mblk_t *mp6_conn_tail = NULL; 15406 struct opthdr *optp; 15407 mib2_tcpConnEntry_t tce; 15408 mib2_tcp6ConnEntry_t tce6; 15409 connf_t *connfp; 15410 conn_t *connp; 15411 int i; 15412 boolean_t ispriv; 15413 zoneid_t zoneid; 15414 15415 if (mpctl == NULL || 15416 (mpdata = mpctl->b_cont) == NULL || 15417 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15418 (mp6_conn_ctl = copymsg(mpctl)) == NULL) { 15419 if (mp_conn_ctl != NULL) 15420 freemsg(mp_conn_ctl); 15421 if (mp6_conn_ctl != NULL) 15422 freemsg(mp6_conn_ctl); 15423 return (0); 15424 } 15425 15426 /* build table of connections -- need count in fixed part */ 15427 mp_conn_data = mp_conn_ctl->b_cont; 15428 mp6_conn_data = mp6_conn_ctl->b_cont; 15429 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 15430 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 15431 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 15432 SET_MIB(tcp_mib.tcpMaxConn, -1); 15433 SET_MIB(tcp_mib.tcpCurrEstab, 0); 15434 15435 ispriv = 15436 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15437 zoneid = Q_TO_CONN(q)->conn_zoneid; 15438 15439 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15440 15441 connfp = &ipcl_globalhash_fanout[i]; 15442 15443 connp = NULL; 15444 15445 while ((connp = 15446 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15447 tcp_t *tcp; 15448 15449 if (connp->conn_zoneid != zoneid) 15450 continue; /* not in this zone */ 15451 15452 tcp = connp->conn_tcp; 15453 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 15454 tcp->tcp_ibsegs = 0; 15455 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 15456 tcp->tcp_obsegs = 0; 15457 15458 tce6.tcp6ConnState = tce.tcpConnState = 15459 tcp_snmp_state(tcp); 15460 if (tce.tcpConnState == MIB2_TCP_established || 15461 tce.tcpConnState == MIB2_TCP_closeWait) 15462 BUMP_MIB(&tcp_mib, tcpCurrEstab); 15463 15464 /* Create a message to report on IPv6 entries */ 15465 if (tcp->tcp_ipversion == IPV6_VERSION) { 15466 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15467 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15468 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15469 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15470 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15471 /* Don't want just anybody seeing these... */ 15472 if (ispriv) { 15473 tce6.tcp6ConnEntryInfo.ce_snxt = 15474 tcp->tcp_snxt; 15475 tce6.tcp6ConnEntryInfo.ce_suna = 15476 tcp->tcp_suna; 15477 tce6.tcp6ConnEntryInfo.ce_rnxt = 15478 tcp->tcp_rnxt; 15479 tce6.tcp6ConnEntryInfo.ce_rack = 15480 tcp->tcp_rack; 15481 } else { 15482 /* 15483 * Netstat, unfortunately, uses this to 15484 * get send/receive queue sizes. How to fix? 15485 * Why not compute the difference only? 15486 */ 15487 tce6.tcp6ConnEntryInfo.ce_snxt = 15488 tcp->tcp_snxt - tcp->tcp_suna; 15489 tce6.tcp6ConnEntryInfo.ce_suna = 0; 15490 tce6.tcp6ConnEntryInfo.ce_rnxt = 15491 tcp->tcp_rnxt - tcp->tcp_rack; 15492 tce6.tcp6ConnEntryInfo.ce_rack = 0; 15493 } 15494 15495 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15496 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15497 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 15498 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 15499 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 15500 (void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail, 15501 (char *)&tce6, sizeof (tce6)); 15502 } 15503 /* 15504 * Create an IPv4 table entry for IPv4 entries and also 15505 * for IPv6 entries which are bound to in6addr_any 15506 * but don't have IPV6_V6ONLY set. 15507 * (i.e. anything an IPv4 peer could connect to) 15508 */ 15509 if (tcp->tcp_ipversion == IPV4_VERSION || 15510 (tcp->tcp_state <= TCPS_LISTEN && 15511 !tcp->tcp_connp->conn_ipv6_v6only && 15512 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 15513 if (tcp->tcp_ipversion == IPV6_VERSION) { 15514 tce.tcpConnRemAddress = INADDR_ANY; 15515 tce.tcpConnLocalAddress = INADDR_ANY; 15516 } else { 15517 tce.tcpConnRemAddress = 15518 tcp->tcp_remote; 15519 tce.tcpConnLocalAddress = 15520 tcp->tcp_ip_src; 15521 } 15522 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 15523 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 15524 /* Don't want just anybody seeing these... */ 15525 if (ispriv) { 15526 tce.tcpConnEntryInfo.ce_snxt = 15527 tcp->tcp_snxt; 15528 tce.tcpConnEntryInfo.ce_suna = 15529 tcp->tcp_suna; 15530 tce.tcpConnEntryInfo.ce_rnxt = 15531 tcp->tcp_rnxt; 15532 tce.tcpConnEntryInfo.ce_rack = 15533 tcp->tcp_rack; 15534 } else { 15535 /* 15536 * Netstat, unfortunately, uses this to 15537 * get send/receive queue sizes. How 15538 * to fix? 15539 * Why not compute the difference only? 15540 */ 15541 tce.tcpConnEntryInfo.ce_snxt = 15542 tcp->tcp_snxt - tcp->tcp_suna; 15543 tce.tcpConnEntryInfo.ce_suna = 0; 15544 tce.tcpConnEntryInfo.ce_rnxt = 15545 tcp->tcp_rnxt - tcp->tcp_rack; 15546 tce.tcpConnEntryInfo.ce_rack = 0; 15547 } 15548 15549 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15550 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15551 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 15552 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 15553 tce.tcpConnEntryInfo.ce_state = 15554 tcp->tcp_state; 15555 (void) snmp_append_data2(mp_conn_data, 15556 &mp_conn_tail, (char *)&tce, sizeof (tce)); 15557 } 15558 } 15559 } 15560 15561 /* fixed length structure for IPv4 and IPv6 counters */ 15562 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 15563 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 15564 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 15565 optp->level = MIB2_TCP; 15566 optp->name = 0; 15567 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 15568 optp->len = msgdsize(mpdata); 15569 qreply(q, mpctl); 15570 15571 /* table of connections... */ 15572 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 15573 sizeof (struct T_optmgmt_ack)]; 15574 optp->level = MIB2_TCP; 15575 optp->name = MIB2_TCP_CONN; 15576 optp->len = msgdsize(mp_conn_data); 15577 qreply(q, mp_conn_ctl); 15578 15579 /* table of IPv6 connections... */ 15580 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 15581 sizeof (struct T_optmgmt_ack)]; 15582 optp->level = MIB2_TCP6; 15583 optp->name = MIB2_TCP6_CONN; 15584 optp->len = msgdsize(mp6_conn_data); 15585 qreply(q, mp6_conn_ctl); 15586 return (1); 15587 } 15588 15589 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 15590 /* ARGSUSED */ 15591 int 15592 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 15593 { 15594 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 15595 15596 switch (level) { 15597 case MIB2_TCP: 15598 switch (name) { 15599 case 13: 15600 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 15601 return (0); 15602 /* TODO: delete entry defined by tce */ 15603 return (1); 15604 default: 15605 return (0); 15606 } 15607 default: 15608 return (1); 15609 } 15610 } 15611 15612 /* Translate TCP state to MIB2 TCP state. */ 15613 static int 15614 tcp_snmp_state(tcp_t *tcp) 15615 { 15616 if (tcp == NULL) 15617 return (0); 15618 15619 switch (tcp->tcp_state) { 15620 case TCPS_CLOSED: 15621 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 15622 case TCPS_BOUND: 15623 return (MIB2_TCP_closed); 15624 case TCPS_LISTEN: 15625 return (MIB2_TCP_listen); 15626 case TCPS_SYN_SENT: 15627 return (MIB2_TCP_synSent); 15628 case TCPS_SYN_RCVD: 15629 return (MIB2_TCP_synReceived); 15630 case TCPS_ESTABLISHED: 15631 return (MIB2_TCP_established); 15632 case TCPS_CLOSE_WAIT: 15633 return (MIB2_TCP_closeWait); 15634 case TCPS_FIN_WAIT_1: 15635 return (MIB2_TCP_finWait1); 15636 case TCPS_CLOSING: 15637 return (MIB2_TCP_closing); 15638 case TCPS_LAST_ACK: 15639 return (MIB2_TCP_lastAck); 15640 case TCPS_FIN_WAIT_2: 15641 return (MIB2_TCP_finWait2); 15642 case TCPS_TIME_WAIT: 15643 return (MIB2_TCP_timeWait); 15644 default: 15645 return (0); 15646 } 15647 } 15648 15649 static char tcp_report_header[] = 15650 "TCP " MI_COL_HDRPAD_STR 15651 "zone dest snxt suna " 15652 "swnd rnxt rack rwnd rto mss w sw rw t " 15653 "recent [lport,fport] state"; 15654 15655 /* 15656 * TCP status report triggered via the Named Dispatch mechanism. 15657 */ 15658 /* ARGSUSED */ 15659 static void 15660 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 15661 cred_t *cr) 15662 { 15663 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 15664 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 15665 char cflag; 15666 in6_addr_t v6dst; 15667 char buf[80]; 15668 uint_t print_len, buf_len; 15669 15670 buf_len = mp->b_datap->db_lim - mp->b_wptr; 15671 if (buf_len <= 0) 15672 return; 15673 15674 if (hashval >= 0) 15675 (void) sprintf(hash, "%03d ", hashval); 15676 else 15677 hash[0] = '\0'; 15678 15679 /* 15680 * Note that we use the remote address in the tcp_b structure. 15681 * This means that it will print out the real destination address, 15682 * not the next hop's address if source routing is used. This 15683 * avoid the confusion on the output because user may not 15684 * know that source routing is used for a connection. 15685 */ 15686 if (tcp->tcp_ipversion == IPV4_VERSION) { 15687 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 15688 } else { 15689 v6dst = tcp->tcp_remote_v6; 15690 } 15691 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 15692 /* 15693 * the ispriv checks are so that normal users cannot determine 15694 * sequence number information using NDD. 15695 */ 15696 15697 if (TCP_IS_DETACHED(tcp)) 15698 cflag = '*'; 15699 else 15700 cflag = ' '; 15701 print_len = snprintf((char *)mp->b_wptr, buf_len, 15702 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 15703 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 15704 hash, 15705 (void *)tcp, 15706 tcp->tcp_connp->conn_zoneid, 15707 addrbuf, 15708 (ispriv) ? tcp->tcp_snxt : 0, 15709 (ispriv) ? tcp->tcp_suna : 0, 15710 tcp->tcp_swnd, 15711 (ispriv) ? tcp->tcp_rnxt : 0, 15712 (ispriv) ? tcp->tcp_rack : 0, 15713 tcp->tcp_rwnd, 15714 tcp->tcp_rto, 15715 tcp->tcp_mss, 15716 tcp->tcp_snd_ws_ok, 15717 tcp->tcp_snd_ws, 15718 tcp->tcp_rcv_ws, 15719 tcp->tcp_snd_ts_ok, 15720 tcp->tcp_ts_recent, 15721 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 15722 if (print_len < buf_len) { 15723 ((mblk_t *)mp)->b_wptr += print_len; 15724 } else { 15725 ((mblk_t *)mp)->b_wptr += buf_len; 15726 } 15727 } 15728 15729 /* 15730 * TCP status report (for listeners only) triggered via the Named Dispatch 15731 * mechanism. 15732 */ 15733 /* ARGSUSED */ 15734 static void 15735 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 15736 { 15737 char addrbuf[INET6_ADDRSTRLEN]; 15738 in6_addr_t v6dst; 15739 uint_t print_len, buf_len; 15740 15741 buf_len = mp->b_datap->db_lim - mp->b_wptr; 15742 if (buf_len <= 0) 15743 return; 15744 15745 if (tcp->tcp_ipversion == IPV4_VERSION) { 15746 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 15747 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 15748 } else { 15749 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 15750 addrbuf, sizeof (addrbuf)); 15751 } 15752 print_len = snprintf((char *)mp->b_wptr, buf_len, 15753 "%03d " 15754 MI_COL_PTRFMT_STR 15755 "%d %s %05u %08u %d/%d/%d%c\n", 15756 hashval, (void *)tcp, 15757 tcp->tcp_connp->conn_zoneid, 15758 addrbuf, 15759 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 15760 tcp->tcp_conn_req_seqnum, 15761 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 15762 tcp->tcp_conn_req_max, 15763 tcp->tcp_syn_defense ? '*' : ' '); 15764 if (print_len < buf_len) { 15765 ((mblk_t *)mp)->b_wptr += print_len; 15766 } else { 15767 ((mblk_t *)mp)->b_wptr += buf_len; 15768 } 15769 } 15770 15771 /* TCP status report triggered via the Named Dispatch mechanism. */ 15772 /* ARGSUSED */ 15773 static int 15774 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15775 { 15776 tcp_t *tcp; 15777 int i; 15778 conn_t *connp; 15779 connf_t *connfp; 15780 zoneid_t zoneid; 15781 15782 /* 15783 * Because of the ndd constraint, at most we can have 64K buffer 15784 * to put in all TCP info. So to be more efficient, just 15785 * allocate a 64K buffer here, assuming we need that large buffer. 15786 * This may be a problem as any user can read tcp_status. Therefore 15787 * we limit the rate of doing this using tcp_ndd_get_info_interval. 15788 * This should be OK as normal users should not do this too often. 15789 */ 15790 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15791 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15792 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15793 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15794 return (0); 15795 } 15796 } 15797 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15798 /* The following may work even if we cannot get a large buf. */ 15799 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15800 return (0); 15801 } 15802 15803 (void) mi_mpprintf(mp, "%s", tcp_report_header); 15804 15805 zoneid = Q_TO_CONN(q)->conn_zoneid; 15806 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15807 15808 connfp = &ipcl_globalhash_fanout[i]; 15809 15810 connp = NULL; 15811 15812 while ((connp = 15813 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15814 tcp = connp->conn_tcp; 15815 if (zoneid != GLOBAL_ZONEID && 15816 zoneid != connp->conn_zoneid) 15817 continue; 15818 tcp_report_item(mp->b_cont, tcp, -1, tcp, 15819 cr); 15820 } 15821 15822 } 15823 15824 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15825 return (0); 15826 } 15827 15828 /* TCP status report triggered via the Named Dispatch mechanism. */ 15829 /* ARGSUSED */ 15830 static int 15831 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15832 { 15833 tf_t *tbf; 15834 tcp_t *tcp; 15835 int i; 15836 zoneid_t zoneid; 15837 15838 /* Refer to comments in tcp_status_report(). */ 15839 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15840 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15841 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15842 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15843 return (0); 15844 } 15845 } 15846 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15847 /* The following may work even if we cannot get a large buf. */ 15848 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15849 return (0); 15850 } 15851 15852 (void) mi_mpprintf(mp, " %s", tcp_report_header); 15853 15854 zoneid = Q_TO_CONN(q)->conn_zoneid; 15855 15856 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 15857 tbf = &tcp_bind_fanout[i]; 15858 mutex_enter(&tbf->tf_lock); 15859 for (tcp = tbf->tf_tcp; tcp != NULL; 15860 tcp = tcp->tcp_bind_hash) { 15861 if (zoneid != GLOBAL_ZONEID && 15862 zoneid != tcp->tcp_connp->conn_zoneid) 15863 continue; 15864 CONN_INC_REF(tcp->tcp_connp); 15865 tcp_report_item(mp->b_cont, tcp, i, 15866 Q_TO_TCP(q), cr); 15867 CONN_DEC_REF(tcp->tcp_connp); 15868 } 15869 mutex_exit(&tbf->tf_lock); 15870 } 15871 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15872 return (0); 15873 } 15874 15875 /* TCP status report triggered via the Named Dispatch mechanism. */ 15876 /* ARGSUSED */ 15877 static int 15878 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15879 { 15880 connf_t *connfp; 15881 conn_t *connp; 15882 tcp_t *tcp; 15883 int i; 15884 zoneid_t zoneid; 15885 15886 /* Refer to comments in tcp_status_report(). */ 15887 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15888 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15889 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15890 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15891 return (0); 15892 } 15893 } 15894 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15895 /* The following may work even if we cannot get a large buf. */ 15896 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15897 return (0); 15898 } 15899 15900 (void) mi_mpprintf(mp, 15901 " TCP " MI_COL_HDRPAD_STR 15902 "zone IP addr port seqnum backlog (q0/q/max)"); 15903 15904 zoneid = Q_TO_CONN(q)->conn_zoneid; 15905 15906 for (i = 0; i < ipcl_bind_fanout_size; i++) { 15907 connfp = &ipcl_bind_fanout[i]; 15908 connp = NULL; 15909 while ((connp = 15910 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15911 tcp = connp->conn_tcp; 15912 if (zoneid != GLOBAL_ZONEID && 15913 zoneid != connp->conn_zoneid) 15914 continue; 15915 tcp_report_listener(mp->b_cont, tcp, i); 15916 } 15917 } 15918 15919 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15920 return (0); 15921 } 15922 15923 /* TCP status report triggered via the Named Dispatch mechanism. */ 15924 /* ARGSUSED */ 15925 static int 15926 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15927 { 15928 connf_t *connfp; 15929 conn_t *connp; 15930 tcp_t *tcp; 15931 int i; 15932 zoneid_t zoneid; 15933 15934 /* Refer to comments in tcp_status_report(). */ 15935 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15936 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15937 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15938 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15939 return (0); 15940 } 15941 } 15942 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15943 /* The following may work even if we cannot get a large buf. */ 15944 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15945 return (0); 15946 } 15947 15948 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 15949 ipcl_conn_fanout_size); 15950 (void) mi_mpprintf(mp, " %s", tcp_report_header); 15951 15952 zoneid = Q_TO_CONN(q)->conn_zoneid; 15953 15954 for (i = 0; i < ipcl_conn_fanout_size; i++) { 15955 connfp = &ipcl_conn_fanout[i]; 15956 connp = NULL; 15957 while ((connp = 15958 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15959 tcp = connp->conn_tcp; 15960 if (zoneid != GLOBAL_ZONEID && 15961 zoneid != connp->conn_zoneid) 15962 continue; 15963 tcp_report_item(mp->b_cont, tcp, i, 15964 Q_TO_TCP(q), cr); 15965 } 15966 } 15967 15968 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 15969 return (0); 15970 } 15971 15972 /* TCP status report triggered via the Named Dispatch mechanism. */ 15973 /* ARGSUSED */ 15974 static int 15975 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15976 { 15977 tf_t *tf; 15978 tcp_t *tcp; 15979 int i; 15980 zoneid_t zoneid; 15981 15982 /* Refer to comments in tcp_status_report(). */ 15983 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15984 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15985 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15986 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15987 return (0); 15988 } 15989 } 15990 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15991 /* The following may work even if we cannot get a large buf. */ 15992 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15993 return (0); 15994 } 15995 15996 (void) mi_mpprintf(mp, " %s", tcp_report_header); 15997 15998 zoneid = Q_TO_CONN(q)->conn_zoneid; 15999 16000 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16001 tf = &tcp_acceptor_fanout[i]; 16002 mutex_enter(&tf->tf_lock); 16003 for (tcp = tf->tf_tcp; tcp != NULL; 16004 tcp = tcp->tcp_acceptor_hash) { 16005 if (zoneid != GLOBAL_ZONEID && 16006 zoneid != tcp->tcp_connp->conn_zoneid) 16007 continue; 16008 tcp_report_item(mp->b_cont, tcp, i, 16009 Q_TO_TCP(q), cr); 16010 } 16011 mutex_exit(&tf->tf_lock); 16012 } 16013 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16014 return (0); 16015 } 16016 16017 /* 16018 * tcp_timer is the timer service routine. It handles the retransmission, 16019 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16020 * from the state of the tcp instance what kind of action needs to be done 16021 * at the time it is called. 16022 */ 16023 static void 16024 tcp_timer(void *arg) 16025 { 16026 mblk_t *mp; 16027 clock_t first_threshold; 16028 clock_t second_threshold; 16029 clock_t ms; 16030 uint32_t mss; 16031 conn_t *connp = (conn_t *)arg; 16032 tcp_t *tcp = connp->conn_tcp; 16033 16034 tcp->tcp_timer_tid = 0; 16035 16036 if (tcp->tcp_fused) 16037 return; 16038 16039 first_threshold = tcp->tcp_first_timer_threshold; 16040 second_threshold = tcp->tcp_second_timer_threshold; 16041 switch (tcp->tcp_state) { 16042 case TCPS_IDLE: 16043 case TCPS_BOUND: 16044 case TCPS_LISTEN: 16045 return; 16046 case TCPS_SYN_RCVD: { 16047 tcp_t *listener = tcp->tcp_listener; 16048 16049 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16050 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16051 /* it's our first timeout */ 16052 tcp->tcp_syn_rcvd_timeout = 1; 16053 mutex_enter(&listener->tcp_eager_lock); 16054 listener->tcp_syn_rcvd_timeout++; 16055 if (!listener->tcp_syn_defense && 16056 (listener->tcp_syn_rcvd_timeout > 16057 (tcp_conn_req_max_q0 >> 2)) && 16058 (tcp_conn_req_max_q0 > 200)) { 16059 /* We may be under attack. Put on a defense. */ 16060 listener->tcp_syn_defense = B_TRUE; 16061 cmn_err(CE_WARN, "High TCP connect timeout " 16062 "rate! System (port %d) may be under a " 16063 "SYN flood attack!", 16064 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16065 16066 listener->tcp_ip_addr_cache = kmem_zalloc( 16067 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16068 KM_NOSLEEP); 16069 } 16070 mutex_exit(&listener->tcp_eager_lock); 16071 } 16072 } 16073 /* FALLTHRU */ 16074 case TCPS_SYN_SENT: 16075 first_threshold = tcp->tcp_first_ctimer_threshold; 16076 second_threshold = tcp->tcp_second_ctimer_threshold; 16077 break; 16078 case TCPS_ESTABLISHED: 16079 case TCPS_FIN_WAIT_1: 16080 case TCPS_CLOSING: 16081 case TCPS_CLOSE_WAIT: 16082 case TCPS_LAST_ACK: 16083 /* If we have data to rexmit */ 16084 if (tcp->tcp_suna != tcp->tcp_snxt) { 16085 clock_t time_to_wait; 16086 16087 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16088 if (!tcp->tcp_xmit_head) 16089 break; 16090 time_to_wait = lbolt - 16091 (clock_t)tcp->tcp_xmit_head->b_prev; 16092 time_to_wait = tcp->tcp_rto - 16093 TICK_TO_MSEC(time_to_wait); 16094 /* 16095 * If the timer fires too early, 1 clock tick earlier, 16096 * restart the timer. 16097 */ 16098 if (time_to_wait > msec_per_tick) { 16099 TCP_STAT(tcp_timer_fire_early); 16100 TCP_TIMER_RESTART(tcp, time_to_wait); 16101 return; 16102 } 16103 /* 16104 * When we probe zero windows, we force the swnd open. 16105 * If our peer acks with a closed window swnd will be 16106 * set to zero by tcp_rput(). As long as we are 16107 * receiving acks tcp_rput will 16108 * reset 'tcp_ms_we_have_waited' so as not to trip the 16109 * first and second interval actions. NOTE: the timer 16110 * interval is allowed to continue its exponential 16111 * backoff. 16112 */ 16113 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16114 if (tcp->tcp_debug) { 16115 (void) strlog(TCP_MOD_ID, 0, 1, 16116 SL_TRACE, "tcp_timer: zero win"); 16117 } 16118 } else { 16119 /* 16120 * After retransmission, we need to do 16121 * slow start. Set the ssthresh to one 16122 * half of current effective window and 16123 * cwnd to one MSS. Also reset 16124 * tcp_cwnd_cnt. 16125 * 16126 * Note that if tcp_ssthresh is reduced because 16127 * of ECN, do not reduce it again unless it is 16128 * already one window of data away (tcp_cwr 16129 * should then be cleared) or this is a 16130 * timeout for a retransmitted segment. 16131 */ 16132 uint32_t npkt; 16133 16134 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16135 npkt = ((tcp->tcp_timer_backoff ? 16136 tcp->tcp_cwnd_ssthresh : 16137 tcp->tcp_snxt - 16138 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16139 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16140 tcp->tcp_mss; 16141 } 16142 tcp->tcp_cwnd = tcp->tcp_mss; 16143 tcp->tcp_cwnd_cnt = 0; 16144 if (tcp->tcp_ecn_ok) { 16145 tcp->tcp_cwr = B_TRUE; 16146 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16147 tcp->tcp_ecn_cwr_sent = B_FALSE; 16148 } 16149 } 16150 break; 16151 } 16152 /* 16153 * We have something to send yet we cannot send. The 16154 * reason can be: 16155 * 16156 * 1. Zero send window: we need to do zero window probe. 16157 * 2. Zero cwnd: because of ECN, we need to "clock out 16158 * segments. 16159 * 3. SWS avoidance: receiver may have shrunk window, 16160 * reset our knowledge. 16161 * 16162 * Note that condition 2 can happen with either 1 or 16163 * 3. But 1 and 3 are exclusive. 16164 */ 16165 if (tcp->tcp_unsent != 0) { 16166 if (tcp->tcp_cwnd == 0) { 16167 /* 16168 * Set tcp_cwnd to 1 MSS so that a 16169 * new segment can be sent out. We 16170 * are "clocking out" new data when 16171 * the network is really congested. 16172 */ 16173 ASSERT(tcp->tcp_ecn_ok); 16174 tcp->tcp_cwnd = tcp->tcp_mss; 16175 } 16176 if (tcp->tcp_swnd == 0) { 16177 /* Extend window for zero window probe */ 16178 tcp->tcp_swnd++; 16179 tcp->tcp_zero_win_probe = B_TRUE; 16180 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16181 } else { 16182 /* 16183 * Handle timeout from sender SWS avoidance. 16184 * Reset our knowledge of the max send window 16185 * since the receiver might have reduced its 16186 * receive buffer. Avoid setting tcp_max_swnd 16187 * to one since that will essentially disable 16188 * the SWS checks. 16189 * 16190 * Note that since we don't have a SWS 16191 * state variable, if the timeout is set 16192 * for ECN but not for SWS, this 16193 * code will also be executed. This is 16194 * fine as tcp_max_swnd is updated 16195 * constantly and it will not affect 16196 * anything. 16197 */ 16198 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16199 } 16200 tcp_wput_data(tcp, NULL, B_FALSE); 16201 return; 16202 } 16203 /* Is there a FIN that needs to be to re retransmitted? */ 16204 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16205 !tcp->tcp_fin_acked) 16206 break; 16207 /* Nothing to do, return without restarting timer. */ 16208 TCP_STAT(tcp_timer_fire_miss); 16209 return; 16210 case TCPS_FIN_WAIT_2: 16211 /* 16212 * User closed the TCP endpoint and peer ACK'ed our FIN. 16213 * We waited some time for for peer's FIN, but it hasn't 16214 * arrived. We flush the connection now to avoid 16215 * case where the peer has rebooted. 16216 */ 16217 if (TCP_IS_DETACHED(tcp)) { 16218 (void) tcp_clean_death(tcp, 0, 23); 16219 } else { 16220 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16221 } 16222 return; 16223 case TCPS_TIME_WAIT: 16224 (void) tcp_clean_death(tcp, 0, 24); 16225 return; 16226 default: 16227 if (tcp->tcp_debug) { 16228 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16229 "tcp_timer: strange state (%d) %s", 16230 tcp->tcp_state, tcp_display(tcp, NULL, 16231 DISP_PORT_ONLY)); 16232 } 16233 return; 16234 } 16235 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16236 /* 16237 * For zero window probe, we need to send indefinitely, 16238 * unless we have not heard from the other side for some 16239 * time... 16240 */ 16241 if ((tcp->tcp_zero_win_probe == 0) || 16242 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16243 second_threshold)) { 16244 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 16245 /* 16246 * If TCP is in SYN_RCVD state, send back a 16247 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16248 * should be zero in TCPS_SYN_RCVD state. 16249 */ 16250 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16251 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16252 "in SYN_RCVD", 16253 tcp, tcp->tcp_snxt, 16254 tcp->tcp_rnxt, TH_RST | TH_ACK); 16255 } 16256 (void) tcp_clean_death(tcp, 16257 tcp->tcp_client_errno ? 16258 tcp->tcp_client_errno : ETIMEDOUT, 25); 16259 return; 16260 } else { 16261 /* 16262 * Set tcp_ms_we_have_waited to second_threshold 16263 * so that in next timeout, we will do the above 16264 * check (lbolt - tcp_last_recv_time). This is 16265 * also to avoid overflow. 16266 * 16267 * We don't need to decrement tcp_timer_backoff 16268 * to avoid overflow because it will be decremented 16269 * later if new timeout value is greater than 16270 * tcp_rexmit_interval_max. In the case when 16271 * tcp_rexmit_interval_max is greater than 16272 * second_threshold, it means that we will wait 16273 * longer than second_threshold to send the next 16274 * window probe. 16275 */ 16276 tcp->tcp_ms_we_have_waited = second_threshold; 16277 } 16278 } else if (ms > first_threshold) { 16279 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16280 tcp->tcp_xmit_head != NULL) { 16281 tcp->tcp_xmit_head = 16282 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16283 } 16284 /* 16285 * We have been retransmitting for too long... The RTT 16286 * we calculated is probably incorrect. Reinitialize it. 16287 * Need to compensate for 0 tcp_rtt_sa. Reset 16288 * tcp_rtt_update so that we won't accidentally cache a 16289 * bad value. But only do this if this is not a zero 16290 * window probe. 16291 */ 16292 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16293 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16294 (tcp->tcp_rtt_sa >> 5); 16295 tcp->tcp_rtt_sa = 0; 16296 tcp_ip_notify(tcp); 16297 tcp->tcp_rtt_update = 0; 16298 } 16299 } 16300 tcp->tcp_timer_backoff++; 16301 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16302 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16303 tcp_rexmit_interval_min) { 16304 /* 16305 * This means the original RTO is tcp_rexmit_interval_min. 16306 * So we will use tcp_rexmit_interval_min as the RTO value 16307 * and do the backoff. 16308 */ 16309 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 16310 } else { 16311 ms <<= tcp->tcp_timer_backoff; 16312 } 16313 if (ms > tcp_rexmit_interval_max) { 16314 ms = tcp_rexmit_interval_max; 16315 /* 16316 * ms is at max, decrement tcp_timer_backoff to avoid 16317 * overflow. 16318 */ 16319 tcp->tcp_timer_backoff--; 16320 } 16321 tcp->tcp_ms_we_have_waited += ms; 16322 if (tcp->tcp_zero_win_probe == 0) { 16323 tcp->tcp_rto = ms; 16324 } 16325 TCP_TIMER_RESTART(tcp, ms); 16326 /* 16327 * This is after a timeout and tcp_rto is backed off. Set 16328 * tcp_set_timer to 1 so that next time RTO is updated, we will 16329 * restart the timer with a correct value. 16330 */ 16331 tcp->tcp_set_timer = 1; 16332 mss = tcp->tcp_snxt - tcp->tcp_suna; 16333 if (mss > tcp->tcp_mss) 16334 mss = tcp->tcp_mss; 16335 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16336 mss = tcp->tcp_swnd; 16337 16338 if ((mp = tcp->tcp_xmit_head) != NULL) 16339 mp->b_prev = (mblk_t *)lbolt; 16340 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16341 B_TRUE); 16342 16343 /* 16344 * When slow start after retransmission begins, start with 16345 * this seq no. tcp_rexmit_max marks the end of special slow 16346 * start phase. tcp_snd_burst controls how many segments 16347 * can be sent because of an ack. 16348 */ 16349 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16350 tcp->tcp_snd_burst = TCP_CWND_SS; 16351 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16352 (tcp->tcp_unsent == 0)) { 16353 tcp->tcp_rexmit_max = tcp->tcp_fss; 16354 } else { 16355 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16356 } 16357 tcp->tcp_rexmit = B_TRUE; 16358 tcp->tcp_dupack_cnt = 0; 16359 16360 /* 16361 * Remove all rexmit SACK blk to start from fresh. 16362 */ 16363 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16364 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16365 tcp->tcp_num_notsack_blk = 0; 16366 tcp->tcp_cnt_notsack_list = 0; 16367 } 16368 if (mp == NULL) { 16369 return; 16370 } 16371 /* Attach credentials to retransmitted initial SYNs. */ 16372 if (tcp->tcp_state == TCPS_SYN_SENT) { 16373 mblk_setcred(mp, tcp->tcp_cred); 16374 DB_CPID(mp) = tcp->tcp_cpid; 16375 } 16376 16377 tcp->tcp_csuna = tcp->tcp_snxt; 16378 BUMP_MIB(&tcp_mib, tcpRetransSegs); 16379 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 16380 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 16381 tcp_send_data(tcp, tcp->tcp_wq, mp); 16382 16383 } 16384 16385 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16386 static void 16387 tcp_unbind(tcp_t *tcp, mblk_t *mp) 16388 { 16389 conn_t *connp; 16390 16391 switch (tcp->tcp_state) { 16392 case TCPS_BOUND: 16393 case TCPS_LISTEN: 16394 break; 16395 default: 16396 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 16397 return; 16398 } 16399 16400 /* 16401 * Need to clean up all the eagers since after the unbind, segments 16402 * will no longer be delivered to this listener stream. 16403 */ 16404 mutex_enter(&tcp->tcp_eager_lock); 16405 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16406 tcp_eager_cleanup(tcp, 0); 16407 } 16408 mutex_exit(&tcp->tcp_eager_lock); 16409 16410 if (tcp->tcp_ipversion == IPV4_VERSION) { 16411 tcp->tcp_ipha->ipha_src = 0; 16412 } else { 16413 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16414 } 16415 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16416 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16417 tcp_bind_hash_remove(tcp); 16418 tcp->tcp_state = TCPS_IDLE; 16419 tcp->tcp_mdt = B_FALSE; 16420 /* Send M_FLUSH according to TPI */ 16421 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16422 connp = tcp->tcp_connp; 16423 connp->conn_mdt_ok = B_FALSE; 16424 ipcl_hash_remove(connp); 16425 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16426 mp = mi_tpi_ok_ack_alloc(mp); 16427 putnext(tcp->tcp_rq, mp); 16428 } 16429 16430 /* 16431 * Don't let port fall into the privileged range. 16432 * Since the extra privileged ports can be arbitrary we also 16433 * ensure that we exclude those from consideration. 16434 * tcp_g_epriv_ports is not sorted thus we loop over it until 16435 * there are no changes. 16436 * 16437 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16438 * but instead the code relies on: 16439 * - the fact that the address of the array and its size never changes 16440 * - the atomic assignment of the elements of the array 16441 */ 16442 static in_port_t 16443 tcp_update_next_port(in_port_t port, boolean_t random) 16444 { 16445 int i; 16446 16447 if (random && tcp_random_anon_port != 0) { 16448 (void) random_get_pseudo_bytes((uint8_t *)&port, 16449 sizeof (in_port_t)); 16450 /* 16451 * Unless changed by a sys admin, the smallest anon port 16452 * is 32768 and the largest anon port is 65535. It is 16453 * very likely (50%) for the random port to be smaller 16454 * than the smallest anon port. When that happens, 16455 * add port % (anon port range) to the smallest anon 16456 * port to get the random port. It should fall into the 16457 * valid anon port range. 16458 */ 16459 if (port < tcp_smallest_anon_port) { 16460 port = tcp_smallest_anon_port + 16461 port % (tcp_largest_anon_port - 16462 tcp_smallest_anon_port); 16463 } 16464 } 16465 16466 retry: 16467 if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port) 16468 port = (in_port_t)tcp_smallest_anon_port; 16469 16470 if (port < tcp_smallest_nonpriv_port) 16471 port = (in_port_t)tcp_smallest_nonpriv_port; 16472 16473 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 16474 if (port == tcp_g_epriv_ports[i]) { 16475 port++; 16476 /* 16477 * Make sure whether the port is in the 16478 * valid range. 16479 * 16480 * XXX Note that if tcp_g_epriv_ports contains 16481 * all the anonymous ports this will be an 16482 * infinite loop. 16483 */ 16484 goto retry; 16485 } 16486 } 16487 return (port); 16488 } 16489 16490 /* 16491 * Return the next anonymous port in the priviledged port range for 16492 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16493 * downwards. This is the same behavior as documented in the userland 16494 * library call rresvport(3N). 16495 */ 16496 static in_port_t 16497 tcp_get_next_priv_port(void) 16498 { 16499 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16500 16501 if (next_priv_port < tcp_min_anonpriv_port) { 16502 next_priv_port = IPPORT_RESERVED - 1; 16503 } 16504 return (next_priv_port--); 16505 } 16506 16507 /* The write side r/w procedure. */ 16508 16509 #if CCS_STATS 16510 struct { 16511 struct { 16512 int64_t count, bytes; 16513 } tot, hit; 16514 } wrw_stats; 16515 #endif 16516 16517 /* 16518 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16519 * messages. 16520 */ 16521 /* ARGSUSED */ 16522 static void 16523 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16524 { 16525 conn_t *connp = (conn_t *)arg; 16526 tcp_t *tcp = connp->conn_tcp; 16527 queue_t *q = tcp->tcp_wq; 16528 16529 ASSERT(DB_TYPE(mp) != M_IOCTL); 16530 /* 16531 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16532 * Once the close starts, streamhead and sockfs will not let any data 16533 * packets come down (close ensures that there are no threads using the 16534 * queue and no new threads will come down) but since qprocsoff() 16535 * hasn't happened yet, a M_FLUSH or some non data message might 16536 * get reflected back (in response to our own FLUSHRW) and get 16537 * processed after tcp_close() is done. The conn would still be valid 16538 * because a ref would have added but we need to check the state 16539 * before actually processing the packet. 16540 */ 16541 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16542 freemsg(mp); 16543 return; 16544 } 16545 16546 switch (DB_TYPE(mp)) { 16547 case M_IOCDATA: 16548 tcp_wput_iocdata(tcp, mp); 16549 break; 16550 case M_FLUSH: 16551 tcp_wput_flush(tcp, mp); 16552 break; 16553 default: 16554 CALL_IP_WPUT(connp, q, mp); 16555 break; 16556 } 16557 } 16558 16559 /* 16560 * The TCP fast path write put procedure. 16561 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16562 */ 16563 /* ARGSUSED */ 16564 static void 16565 tcp_output(void *arg, mblk_t *mp, void *arg2) 16566 { 16567 int len; 16568 int hdrlen; 16569 int plen; 16570 mblk_t *mp1; 16571 uchar_t *rptr; 16572 uint32_t snxt; 16573 tcph_t *tcph; 16574 struct datab *db; 16575 uint32_t suna; 16576 uint32_t mss; 16577 ipaddr_t *dst; 16578 ipaddr_t *src; 16579 uint32_t sum; 16580 int usable; 16581 conn_t *connp = (conn_t *)arg; 16582 tcp_t *tcp = connp->conn_tcp; 16583 uint32_t msize; 16584 16585 /* 16586 * Try and ASSERT the minimum possible references on the 16587 * conn early enough. Since we are executing on write side, 16588 * the connection is obviously not detached and that means 16589 * there is a ref each for TCP and IP. Since we are behind 16590 * the squeue, the minimum references needed are 3. If the 16591 * conn is in classifier hash list, there should be an 16592 * extra ref for that (we check both the possibilities). 16593 */ 16594 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16595 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16596 16597 /* Bypass tcp protocol for fused tcp loopback */ 16598 if (tcp->tcp_fused) { 16599 msize = msgdsize(mp); 16600 mutex_enter(&connp->conn_lock); 16601 tcp->tcp_squeue_bytes -= msize; 16602 mutex_exit(&connp->conn_lock); 16603 16604 if (tcp_fuse_output(tcp, mp, msize)) 16605 return; 16606 } 16607 16608 mss = tcp->tcp_mss; 16609 if (tcp->tcp_xmit_zc_clean) 16610 mp = tcp_zcopy_backoff(tcp, mp, 0); 16611 16612 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16613 len = (int)(mp->b_wptr - mp->b_rptr); 16614 16615 /* 16616 * Criteria for fast path: 16617 * 16618 * 1. no unsent data 16619 * 2. single mblk in request 16620 * 3. connection established 16621 * 4. data in mblk 16622 * 5. len <= mss 16623 * 6. no tcp_valid bits 16624 */ 16625 if ((tcp->tcp_unsent != 0) || 16626 (tcp->tcp_cork) || 16627 (mp->b_cont != NULL) || 16628 (tcp->tcp_state != TCPS_ESTABLISHED) || 16629 (len == 0) || 16630 (len > mss) || 16631 (tcp->tcp_valid_bits != 0)) { 16632 msize = msgdsize(mp); 16633 mutex_enter(&connp->conn_lock); 16634 tcp->tcp_squeue_bytes -= msize; 16635 mutex_exit(&connp->conn_lock); 16636 16637 tcp_wput_data(tcp, mp, B_FALSE); 16638 return; 16639 } 16640 16641 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16642 ASSERT(tcp->tcp_fin_sent == 0); 16643 16644 mutex_enter(&connp->conn_lock); 16645 tcp->tcp_squeue_bytes -= len; 16646 mutex_exit(&connp->conn_lock); 16647 16648 /* queue new packet onto retransmission queue */ 16649 if (tcp->tcp_xmit_head == NULL) { 16650 tcp->tcp_xmit_head = mp; 16651 } else { 16652 tcp->tcp_xmit_last->b_cont = mp; 16653 } 16654 tcp->tcp_xmit_last = mp; 16655 tcp->tcp_xmit_tail = mp; 16656 16657 /* find out how much we can send */ 16658 /* BEGIN CSTYLED */ 16659 /* 16660 * un-acked usable 16661 * |--------------|-----------------| 16662 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16663 */ 16664 /* END CSTYLED */ 16665 16666 /* start sending from tcp_snxt */ 16667 snxt = tcp->tcp_snxt; 16668 16669 /* 16670 * Check to see if this connection has been idled for some 16671 * time and no ACK is expected. If it is, we need to slow 16672 * start again to get back the connection's "self-clock" as 16673 * described in VJ's paper. 16674 * 16675 * Refer to the comment in tcp_mss_set() for the calculation 16676 * of tcp_cwnd after idle. 16677 */ 16678 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16679 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16680 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 16681 } 16682 16683 usable = tcp->tcp_swnd; /* tcp window size */ 16684 if (usable > tcp->tcp_cwnd) 16685 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16686 usable -= snxt; /* subtract stuff already sent */ 16687 suna = tcp->tcp_suna; 16688 usable += suna; 16689 /* usable can be < 0 if the congestion window is smaller */ 16690 if (len > usable) { 16691 /* Can't send complete M_DATA in one shot */ 16692 goto slow; 16693 } 16694 16695 if (tcp->tcp_flow_stopped && 16696 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 16697 tcp_clrqfull(tcp); 16698 } 16699 16700 /* 16701 * determine if anything to send (Nagle). 16702 * 16703 * 1. len < tcp_mss (i.e. small) 16704 * 2. unacknowledged data present 16705 * 3. len < nagle limit 16706 * 4. last packet sent < nagle limit (previous packet sent) 16707 */ 16708 if ((len < mss) && (snxt != suna) && 16709 (len < (int)tcp->tcp_naglim) && 16710 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 16711 /* 16712 * This was the first unsent packet and normally 16713 * mss < xmit_hiwater so there is no need to worry 16714 * about flow control. The next packet will go 16715 * through the flow control check in tcp_wput_data(). 16716 */ 16717 /* leftover work from above */ 16718 tcp->tcp_unsent = len; 16719 tcp->tcp_xmit_tail_unsent = len; 16720 16721 return; 16722 } 16723 16724 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 16725 16726 if (snxt == suna) { 16727 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16728 } 16729 16730 /* we have always sent something */ 16731 tcp->tcp_rack_cnt = 0; 16732 16733 tcp->tcp_snxt = snxt + len; 16734 tcp->tcp_rack = tcp->tcp_rnxt; 16735 16736 if ((mp1 = dupb(mp)) == 0) 16737 goto no_memory; 16738 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 16739 mp->b_next = (mblk_t *)(uintptr_t)snxt; 16740 16741 /* adjust tcp header information */ 16742 tcph = tcp->tcp_tcph; 16743 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 16744 16745 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 16746 sum = (sum >> 16) + (sum & 0xFFFF); 16747 U16_TO_ABE16(sum, tcph->th_sum); 16748 16749 U32_TO_ABE32(snxt, tcph->th_seq); 16750 16751 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 16752 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 16753 BUMP_LOCAL(tcp->tcp_obsegs); 16754 16755 /* Update the latest receive window size in TCP header. */ 16756 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 16757 tcph->th_win); 16758 16759 tcp->tcp_last_sent_len = (ushort_t)len; 16760 16761 plen = len + tcp->tcp_hdr_len; 16762 16763 if (tcp->tcp_ipversion == IPV4_VERSION) { 16764 tcp->tcp_ipha->ipha_length = htons(plen); 16765 } else { 16766 tcp->tcp_ip6h->ip6_plen = htons(plen - 16767 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 16768 } 16769 16770 /* see if we need to allocate a mblk for the headers */ 16771 hdrlen = tcp->tcp_hdr_len; 16772 rptr = mp1->b_rptr - hdrlen; 16773 db = mp1->b_datap; 16774 if ((db->db_ref != 2) || rptr < db->db_base || 16775 (!OK_32PTR(rptr))) { 16776 /* NOTE: we assume allocb returns an OK_32PTR */ 16777 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 16778 tcp_wroff_xtra, BPRI_MED); 16779 if (!mp) { 16780 freemsg(mp1); 16781 goto no_memory; 16782 } 16783 mp->b_cont = mp1; 16784 mp1 = mp; 16785 /* Leave room for Link Level header */ 16786 /* hdrlen = tcp->tcp_hdr_len; */ 16787 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 16788 mp1->b_wptr = &rptr[hdrlen]; 16789 } 16790 mp1->b_rptr = rptr; 16791 16792 /* Fill in the timestamp option. */ 16793 if (tcp->tcp_snd_ts_ok) { 16794 U32_TO_BE32((uint32_t)lbolt, 16795 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 16796 U32_TO_BE32(tcp->tcp_ts_recent, 16797 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 16798 } else { 16799 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 16800 } 16801 16802 /* copy header into outgoing packet */ 16803 dst = (ipaddr_t *)rptr; 16804 src = (ipaddr_t *)tcp->tcp_iphc; 16805 dst[0] = src[0]; 16806 dst[1] = src[1]; 16807 dst[2] = src[2]; 16808 dst[3] = src[3]; 16809 dst[4] = src[4]; 16810 dst[5] = src[5]; 16811 dst[6] = src[6]; 16812 dst[7] = src[7]; 16813 dst[8] = src[8]; 16814 dst[9] = src[9]; 16815 if (hdrlen -= 40) { 16816 hdrlen >>= 2; 16817 dst += 10; 16818 src += 10; 16819 do { 16820 *dst++ = *src++; 16821 } while (--hdrlen); 16822 } 16823 16824 /* 16825 * Set the ECN info in the TCP header. Note that this 16826 * is not the template header. 16827 */ 16828 if (tcp->tcp_ecn_ok) { 16829 SET_ECT(tcp, rptr); 16830 16831 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 16832 if (tcp->tcp_ecn_echo_on) 16833 tcph->th_flags[0] |= TH_ECE; 16834 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 16835 tcph->th_flags[0] |= TH_CWR; 16836 tcp->tcp_ecn_cwr_sent = B_TRUE; 16837 } 16838 } 16839 16840 if (tcp->tcp_ip_forward_progress) { 16841 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 16842 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 16843 tcp->tcp_ip_forward_progress = B_FALSE; 16844 } 16845 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 16846 tcp_send_data(tcp, tcp->tcp_wq, mp1); 16847 return; 16848 16849 /* 16850 * If we ran out of memory, we pretend to have sent the packet 16851 * and that it was lost on the wire. 16852 */ 16853 no_memory: 16854 return; 16855 16856 slow: 16857 /* leftover work from above */ 16858 tcp->tcp_unsent = len; 16859 tcp->tcp_xmit_tail_unsent = len; 16860 tcp_wput_data(tcp, NULL, B_FALSE); 16861 } 16862 16863 /* 16864 * The function called through squeue to get behind eager's perimeter to 16865 * finish the accept processing. 16866 */ 16867 /* ARGSUSED */ 16868 void 16869 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 16870 { 16871 conn_t *connp = (conn_t *)arg; 16872 tcp_t *tcp = connp->conn_tcp; 16873 queue_t *q = tcp->tcp_rq; 16874 mblk_t *mp1; 16875 mblk_t *stropt_mp = mp; 16876 struct stroptions *stropt; 16877 uint_t thwin; 16878 16879 /* 16880 * Drop the eager's ref on the listener, that was placed when 16881 * this eager began life in tcp_conn_request. 16882 */ 16883 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 16884 16885 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 16886 /* 16887 * Someone blewoff the eager before we could finish 16888 * the accept. 16889 * 16890 * The only reason eager exists it because we put in 16891 * a ref on it when conn ind went up. We need to send 16892 * a disconnect indication up while the last reference 16893 * on the eager will be dropped by the squeue when we 16894 * return. 16895 */ 16896 ASSERT(tcp->tcp_listener == NULL); 16897 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 16898 struct T_discon_ind *tdi; 16899 16900 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 16901 /* 16902 * Let us reuse the incoming mblk to avoid memory 16903 * allocation failure problems. We know that the 16904 * size of the incoming mblk i.e. stroptions is greater 16905 * than sizeof T_discon_ind. So the reallocb below 16906 * can't fail. 16907 */ 16908 freemsg(mp->b_cont); 16909 mp->b_cont = NULL; 16910 ASSERT(DB_REF(mp) == 1); 16911 mp = reallocb(mp, sizeof (struct T_discon_ind), 16912 B_FALSE); 16913 ASSERT(mp != NULL); 16914 DB_TYPE(mp) = M_PROTO; 16915 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 16916 tdi = (struct T_discon_ind *)mp->b_rptr; 16917 if (tcp->tcp_issocket) { 16918 tdi->DISCON_reason = ECONNREFUSED; 16919 tdi->SEQ_number = 0; 16920 } else { 16921 tdi->DISCON_reason = ENOPROTOOPT; 16922 tdi->SEQ_number = 16923 tcp->tcp_conn_req_seqnum; 16924 } 16925 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 16926 putnext(q, mp); 16927 } else { 16928 freemsg(mp); 16929 } 16930 if (tcp->tcp_hard_binding) { 16931 tcp->tcp_hard_binding = B_FALSE; 16932 tcp->tcp_hard_bound = B_TRUE; 16933 } 16934 tcp->tcp_detached = B_FALSE; 16935 return; 16936 } 16937 16938 mp1 = stropt_mp->b_cont; 16939 stropt_mp->b_cont = NULL; 16940 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 16941 stropt = (struct stroptions *)stropt_mp->b_rptr; 16942 16943 while (mp1 != NULL) { 16944 mp = mp1; 16945 mp1 = mp1->b_cont; 16946 mp->b_cont = NULL; 16947 tcp->tcp_drop_opt_ack_cnt++; 16948 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 16949 } 16950 mp = NULL; 16951 16952 /* 16953 * For a loopback connection with tcp_direct_sockfs on, note that 16954 * we don't have to protect tcp_rcv_list yet because synchronous 16955 * streams has not yet been enabled and tcp_fuse_rrw() cannot 16956 * possibly race with us. 16957 */ 16958 16959 /* 16960 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 16961 * properly. This is the first time we know of the acceptor' 16962 * queue. So we do it here. 16963 */ 16964 if (tcp->tcp_rcv_list == NULL) { 16965 /* 16966 * Recv queue is empty, tcp_rwnd should not have changed. 16967 * That means it should be equal to the listener's tcp_rwnd. 16968 */ 16969 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 16970 } else { 16971 #ifdef DEBUG 16972 uint_t cnt = 0; 16973 16974 mp1 = tcp->tcp_rcv_list; 16975 while ((mp = mp1) != NULL) { 16976 mp1 = mp->b_next; 16977 cnt += msgdsize(mp); 16978 } 16979 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 16980 #endif 16981 /* There is some data, add them back to get the max. */ 16982 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 16983 } 16984 16985 stropt->so_flags = SO_HIWAT; 16986 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 16987 16988 stropt->so_flags |= SO_MAXBLK; 16989 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 16990 16991 /* 16992 * This is the first time we run on the correct 16993 * queue after tcp_accept. So fix all the q parameters 16994 * here. 16995 */ 16996 /* Allocate room for SACK options if needed. */ 16997 stropt->so_flags |= SO_WROFF; 16998 if (tcp->tcp_fused) { 16999 ASSERT(tcp->tcp_loopback); 17000 ASSERT(tcp->tcp_loopback_peer != NULL); 17001 /* 17002 * For fused tcp loopback, set the stream head's write 17003 * offset value to zero since we won't be needing any room 17004 * for TCP/IP headers. This would also improve performance 17005 * since it would reduce the amount of work done by kmem. 17006 * Non-fused tcp loopback case is handled separately below. 17007 */ 17008 stropt->so_wroff = 0; 17009 /* 17010 * Record the stream head's high water mark for this endpoint; 17011 * this is used for flow-control purposes in tcp_fuse_output(). 17012 */ 17013 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17014 /* 17015 * Update the peer's transmit parameters according to 17016 * our recently calculated high water mark value. 17017 */ 17018 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17019 } else if (tcp->tcp_snd_sack_ok) { 17020 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17021 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17022 } else { 17023 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17024 tcp_wroff_xtra); 17025 } 17026 17027 /* Send the options up */ 17028 putnext(q, stropt_mp); 17029 17030 /* 17031 * Pass up any data and/or a fin that has been received. 17032 * 17033 * Adjust receive window in case it had decreased 17034 * (because there is data <=> tcp_rcv_list != NULL) 17035 * while the connection was detached. Note that 17036 * in case the eager was flow-controlled, w/o this 17037 * code, the rwnd may never open up again! 17038 */ 17039 if (tcp->tcp_rcv_list != NULL) { 17040 /* We drain directly in case of fused tcp loopback */ 17041 if (!tcp->tcp_fused && canputnext(q)) { 17042 tcp->tcp_rwnd = q->q_hiwat; 17043 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17044 << tcp->tcp_rcv_ws; 17045 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17046 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17047 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17048 tcp_xmit_ctl(NULL, 17049 tcp, (tcp->tcp_swnd == 0) ? 17050 tcp->tcp_suna : tcp->tcp_snxt, 17051 tcp->tcp_rnxt, TH_ACK); 17052 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17053 } 17054 17055 } 17056 (void) tcp_rcv_drain(q, tcp); 17057 17058 /* 17059 * For fused tcp loopback, back-enable peer endpoint 17060 * if it's currently flow-controlled. 17061 */ 17062 if (tcp->tcp_fused && 17063 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17064 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17065 17066 ASSERT(peer_tcp != NULL); 17067 ASSERT(peer_tcp->tcp_fused); 17068 17069 tcp_clrqfull(peer_tcp); 17070 TCP_STAT(tcp_fusion_backenabled); 17071 } 17072 } 17073 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17074 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17075 mp = mi_tpi_ordrel_ind(); 17076 if (mp) { 17077 tcp->tcp_ordrel_done = B_TRUE; 17078 putnext(q, mp); 17079 if (tcp->tcp_deferred_clean_death) { 17080 /* 17081 * tcp_clean_death was deferred 17082 * for T_ORDREL_IND - do it now 17083 */ 17084 (void) tcp_clean_death(tcp, 17085 tcp->tcp_client_errno, 21); 17086 tcp->tcp_deferred_clean_death = B_FALSE; 17087 } 17088 } else { 17089 /* 17090 * Run the orderly release in the 17091 * service routine. 17092 */ 17093 qenable(q); 17094 } 17095 } 17096 if (tcp->tcp_hard_binding) { 17097 tcp->tcp_hard_binding = B_FALSE; 17098 tcp->tcp_hard_bound = B_TRUE; 17099 } 17100 17101 tcp->tcp_detached = B_FALSE; 17102 17103 /* We can enable synchronous streams now */ 17104 if (tcp->tcp_fused) { 17105 tcp_fuse_syncstr_enable_pair(tcp); 17106 } 17107 17108 if (tcp->tcp_ka_enabled) { 17109 tcp->tcp_ka_last_intrvl = 0; 17110 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17111 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17112 } 17113 17114 /* 17115 * At this point, eager is fully established and will 17116 * have the following references - 17117 * 17118 * 2 references for connection to exist (1 for TCP and 1 for IP). 17119 * 1 reference for the squeue which will be dropped by the squeue as 17120 * soon as this function returns. 17121 * There will be 1 additonal reference for being in classifier 17122 * hash list provided something bad hasn't happened. 17123 */ 17124 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17125 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17126 } 17127 17128 /* 17129 * The function called through squeue to get behind listener's perimeter to 17130 * send a deffered conn_ind. 17131 */ 17132 /* ARGSUSED */ 17133 void 17134 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17135 { 17136 conn_t *connp = (conn_t *)arg; 17137 tcp_t *listener = connp->conn_tcp; 17138 17139 if (listener->tcp_state == TCPS_CLOSED || 17140 TCP_IS_DETACHED(listener)) { 17141 /* 17142 * If listener has closed, it would have caused a 17143 * a cleanup/blowoff to happen for the eager. 17144 */ 17145 tcp_t *tcp; 17146 struct T_conn_ind *conn_ind; 17147 17148 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17149 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17150 conn_ind->OPT_length); 17151 /* 17152 * We need to drop the ref on eager that was put 17153 * tcp_rput_data() before trying to send the conn_ind 17154 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17155 * and tcp_wput_accept() is sending this deferred conn_ind but 17156 * listener is closed so we drop the ref. 17157 */ 17158 CONN_DEC_REF(tcp->tcp_connp); 17159 freemsg(mp); 17160 return; 17161 } 17162 putnext(listener->tcp_rq, mp); 17163 } 17164 17165 17166 /* 17167 * This is the STREAMS entry point for T_CONN_RES coming down on 17168 * Acceptor STREAM when sockfs listener does accept processing. 17169 * Read the block comment on top pf tcp_conn_request(). 17170 */ 17171 void 17172 tcp_wput_accept(queue_t *q, mblk_t *mp) 17173 { 17174 queue_t *rq = RD(q); 17175 struct T_conn_res *conn_res; 17176 tcp_t *eager; 17177 tcp_t *listener; 17178 struct T_ok_ack *ok; 17179 t_scalar_t PRIM_type; 17180 mblk_t *opt_mp; 17181 conn_t *econnp; 17182 17183 ASSERT(DB_TYPE(mp) == M_PROTO); 17184 17185 conn_res = (struct T_conn_res *)mp->b_rptr; 17186 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17187 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17188 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17189 if (mp != NULL) 17190 putnext(rq, mp); 17191 return; 17192 } 17193 switch (conn_res->PRIM_type) { 17194 case O_T_CONN_RES: 17195 case T_CONN_RES: 17196 /* 17197 * We pass up an err ack if allocb fails. This will 17198 * cause sockfs to issue a T_DISCON_REQ which will cause 17199 * tcp_eager_blowoff to be called. sockfs will then call 17200 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17201 * we need to do the allocb up here because we have to 17202 * make sure rq->q_qinfo->qi_qclose still points to the 17203 * correct function (tcpclose_accept) in case allocb 17204 * fails. 17205 */ 17206 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17207 if (opt_mp == NULL) { 17208 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17209 if (mp != NULL) 17210 putnext(rq, mp); 17211 return; 17212 } 17213 17214 bcopy(mp->b_rptr + conn_res->OPT_offset, 17215 &eager, conn_res->OPT_length); 17216 PRIM_type = conn_res->PRIM_type; 17217 mp->b_datap->db_type = M_PCPROTO; 17218 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17219 ok = (struct T_ok_ack *)mp->b_rptr; 17220 ok->PRIM_type = T_OK_ACK; 17221 ok->CORRECT_prim = PRIM_type; 17222 econnp = eager->tcp_connp; 17223 econnp->conn_dev = (dev_t)q->q_ptr; 17224 eager->tcp_rq = rq; 17225 eager->tcp_wq = q; 17226 rq->q_ptr = econnp; 17227 rq->q_qinfo = &tcp_rinit; 17228 q->q_ptr = econnp; 17229 q->q_qinfo = &tcp_winit; 17230 listener = eager->tcp_listener; 17231 eager->tcp_issocket = B_TRUE; 17232 eager->tcp_cred = econnp->conn_cred = 17233 listener->tcp_connp->conn_cred; 17234 crhold(econnp->conn_cred); 17235 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17236 17237 /* Put the ref for IP */ 17238 CONN_INC_REF(econnp); 17239 17240 /* 17241 * We should have minimum of 3 references on the conn 17242 * at this point. One each for TCP and IP and one for 17243 * the T_conn_ind that was sent up when the 3-way handshake 17244 * completed. In the normal case we would also have another 17245 * reference (making a total of 4) for the conn being in the 17246 * classifier hash list. However the eager could have received 17247 * an RST subsequently and tcp_closei_local could have removed 17248 * the eager from the classifier hash list, hence we can't 17249 * assert that reference. 17250 */ 17251 ASSERT(econnp->conn_ref >= 3); 17252 17253 /* 17254 * Send the new local address also up to sockfs. There 17255 * should already be enough space in the mp that came 17256 * down from soaccept(). 17257 */ 17258 if (eager->tcp_family == AF_INET) { 17259 sin_t *sin; 17260 17261 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17262 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17263 sin = (sin_t *)mp->b_wptr; 17264 mp->b_wptr += sizeof (sin_t); 17265 sin->sin_family = AF_INET; 17266 sin->sin_port = eager->tcp_lport; 17267 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17268 } else { 17269 sin6_t *sin6; 17270 17271 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17272 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17273 sin6 = (sin6_t *)mp->b_wptr; 17274 mp->b_wptr += sizeof (sin6_t); 17275 sin6->sin6_family = AF_INET6; 17276 sin6->sin6_port = eager->tcp_lport; 17277 if (eager->tcp_ipversion == IPV4_VERSION) { 17278 sin6->sin6_flowinfo = 0; 17279 IN6_IPADDR_TO_V4MAPPED( 17280 eager->tcp_ipha->ipha_src, 17281 &sin6->sin6_addr); 17282 } else { 17283 ASSERT(eager->tcp_ip6h != NULL); 17284 sin6->sin6_flowinfo = 17285 eager->tcp_ip6h->ip6_vcf & 17286 ~IPV6_VERS_AND_FLOW_MASK; 17287 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17288 } 17289 sin6->sin6_scope_id = 0; 17290 sin6->__sin6_src_id = 0; 17291 } 17292 17293 putnext(rq, mp); 17294 17295 opt_mp->b_datap->db_type = M_SETOPTS; 17296 opt_mp->b_wptr += sizeof (struct stroptions); 17297 17298 /* 17299 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17300 * from listener to acceptor. The message is chained on the 17301 * bind_mp which tcp_rput_other will send down to IP. 17302 */ 17303 if (listener->tcp_bound_if != 0) { 17304 /* allocate optmgmt req */ 17305 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17306 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 17307 sizeof (int)); 17308 if (mp != NULL) 17309 linkb(opt_mp, mp); 17310 } 17311 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17312 uint_t on = 1; 17313 17314 /* allocate optmgmt req */ 17315 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17316 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 17317 if (mp != NULL) 17318 linkb(opt_mp, mp); 17319 } 17320 17321 17322 mutex_enter(&listener->tcp_eager_lock); 17323 17324 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17325 17326 tcp_t *tail; 17327 tcp_t *tcp; 17328 mblk_t *mp1; 17329 17330 tcp = listener->tcp_eager_prev_q0; 17331 /* 17332 * listener->tcp_eager_prev_q0 points to the TAIL of the 17333 * deferred T_conn_ind queue. We need to get to the head 17334 * of the queue in order to send up T_conn_ind the same 17335 * order as how the 3WHS is completed. 17336 */ 17337 while (tcp != listener) { 17338 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 17339 break; 17340 else 17341 tcp = tcp->tcp_eager_prev_q0; 17342 } 17343 ASSERT(tcp != listener); 17344 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17345 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17346 /* Move from q0 to q */ 17347 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17348 listener->tcp_conn_req_cnt_q0--; 17349 listener->tcp_conn_req_cnt_q++; 17350 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17351 tcp->tcp_eager_prev_q0; 17352 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17353 tcp->tcp_eager_next_q0; 17354 tcp->tcp_eager_prev_q0 = NULL; 17355 tcp->tcp_eager_next_q0 = NULL; 17356 tcp->tcp_conn_def_q0 = B_FALSE; 17357 17358 /* 17359 * Insert at end of the queue because sockfs sends 17360 * down T_CONN_RES in chronological order. Leaving 17361 * the older conn indications at front of the queue 17362 * helps reducing search time. 17363 */ 17364 tail = listener->tcp_eager_last_q; 17365 if (tail != NULL) { 17366 tail->tcp_eager_next_q = tcp; 17367 } else { 17368 listener->tcp_eager_next_q = tcp; 17369 } 17370 listener->tcp_eager_last_q = tcp; 17371 tcp->tcp_eager_next_q = NULL; 17372 17373 /* Need to get inside the listener perimeter */ 17374 CONN_INC_REF(listener->tcp_connp); 17375 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 17376 tcp_send_pending, listener->tcp_connp, 17377 SQTAG_TCP_SEND_PENDING); 17378 } 17379 tcp_eager_unlink(eager); 17380 mutex_exit(&listener->tcp_eager_lock); 17381 17382 /* 17383 * At this point, the eager is detached from the listener 17384 * but we still have an extra refs on eager (apart from the 17385 * usual tcp references). The ref was placed in tcp_rput_data 17386 * before sending the conn_ind in tcp_send_conn_ind. 17387 * The ref will be dropped in tcp_accept_finish(). 17388 */ 17389 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 17390 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 17391 return; 17392 default: 17393 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17394 if (mp != NULL) 17395 putnext(rq, mp); 17396 return; 17397 } 17398 } 17399 17400 void 17401 tcp_wput(queue_t *q, mblk_t *mp) 17402 { 17403 conn_t *connp = Q_TO_CONN(q); 17404 tcp_t *tcp; 17405 void (*output_proc)(); 17406 t_scalar_t type; 17407 uchar_t *rptr; 17408 struct iocblk *iocp; 17409 uint32_t msize; 17410 17411 ASSERT(connp->conn_ref >= 2); 17412 17413 switch (DB_TYPE(mp)) { 17414 case M_DATA: 17415 tcp = connp->conn_tcp; 17416 ASSERT(tcp != NULL); 17417 17418 msize = msgdsize(mp); 17419 17420 mutex_enter(&connp->conn_lock); 17421 CONN_INC_REF_LOCKED(connp); 17422 17423 tcp->tcp_squeue_bytes += msize; 17424 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 17425 mutex_exit(&connp->conn_lock); 17426 tcp_setqfull(tcp); 17427 } else 17428 mutex_exit(&connp->conn_lock); 17429 17430 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17431 tcp_output, connp, SQTAG_TCP_OUTPUT); 17432 return; 17433 case M_PROTO: 17434 case M_PCPROTO: 17435 /* 17436 * if it is a snmp message, don't get behind the squeue 17437 */ 17438 tcp = connp->conn_tcp; 17439 rptr = mp->b_rptr; 17440 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 17441 type = ((union T_primitives *)rptr)->type; 17442 } else { 17443 if (tcp->tcp_debug) { 17444 (void) strlog(TCP_MOD_ID, 0, 1, 17445 SL_ERROR|SL_TRACE, 17446 "tcp_wput_proto, dropping one..."); 17447 } 17448 freemsg(mp); 17449 return; 17450 } 17451 if (type == T_SVR4_OPTMGMT_REQ) { 17452 cred_t *cr = DB_CREDDEF(mp, 17453 tcp->tcp_cred); 17454 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 17455 cr)) { 17456 /* 17457 * This was a SNMP request 17458 */ 17459 return; 17460 } else { 17461 output_proc = tcp_wput_proto; 17462 } 17463 } else { 17464 output_proc = tcp_wput_proto; 17465 } 17466 break; 17467 case M_IOCTL: 17468 /* 17469 * Most ioctls can be processed right away without going via 17470 * squeues - process them right here. Those that do require 17471 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 17472 * are processed by tcp_wput_ioctl(). 17473 */ 17474 iocp = (struct iocblk *)mp->b_rptr; 17475 tcp = connp->conn_tcp; 17476 17477 switch (iocp->ioc_cmd) { 17478 case TCP_IOC_ABORT_CONN: 17479 tcp_ioctl_abort_conn(q, mp); 17480 return; 17481 case TI_GETPEERNAME: 17482 if (tcp->tcp_state < TCPS_SYN_RCVD) { 17483 iocp->ioc_error = ENOTCONN; 17484 iocp->ioc_count = 0; 17485 mp->b_datap->db_type = M_IOCACK; 17486 qreply(q, mp); 17487 return; 17488 } 17489 /* FALLTHRU */ 17490 case TI_GETMYNAME: 17491 mi_copyin(q, mp, NULL, 17492 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 17493 return; 17494 case ND_SET: 17495 /* nd_getset does the necessary checks */ 17496 case ND_GET: 17497 if (!nd_getset(q, tcp_g_nd, mp)) { 17498 CALL_IP_WPUT(connp, q, mp); 17499 return; 17500 } 17501 qreply(q, mp); 17502 return; 17503 case TCP_IOC_DEFAULT_Q: 17504 /* 17505 * Wants to be the default wq. Check the credentials 17506 * first, the rest is executed via squeue. 17507 */ 17508 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 17509 iocp->ioc_error = EPERM; 17510 iocp->ioc_count = 0; 17511 mp->b_datap->db_type = M_IOCACK; 17512 qreply(q, mp); 17513 return; 17514 } 17515 output_proc = tcp_wput_ioctl; 17516 break; 17517 default: 17518 output_proc = tcp_wput_ioctl; 17519 break; 17520 } 17521 break; 17522 default: 17523 output_proc = tcp_wput_nondata; 17524 break; 17525 } 17526 17527 CONN_INC_REF(connp); 17528 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17529 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 17530 } 17531 17532 /* 17533 * Initial STREAMS write side put() procedure for sockets. It tries to 17534 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 17535 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 17536 * are handled by tcp_wput() as usual. 17537 * 17538 * All further messages will also be handled by tcp_wput() because we cannot 17539 * be sure that the above short cut is safe later. 17540 */ 17541 static void 17542 tcp_wput_sock(queue_t *wq, mblk_t *mp) 17543 { 17544 conn_t *connp = Q_TO_CONN(wq); 17545 tcp_t *tcp = connp->conn_tcp; 17546 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 17547 17548 ASSERT(wq->q_qinfo == &tcp_sock_winit); 17549 wq->q_qinfo = &tcp_winit; 17550 17551 ASSERT(IPCL_IS_TCP(connp)); 17552 ASSERT(TCP_IS_SOCKET(tcp)); 17553 17554 if (DB_TYPE(mp) == M_PCPROTO && 17555 MBLKL(mp) == sizeof (struct T_capability_req) && 17556 car->PRIM_type == T_CAPABILITY_REQ) { 17557 tcp_capability_req(tcp, mp); 17558 return; 17559 } 17560 17561 tcp_wput(wq, mp); 17562 } 17563 17564 static boolean_t 17565 tcp_zcopy_check(tcp_t *tcp) 17566 { 17567 conn_t *connp = tcp->tcp_connp; 17568 ire_t *ire; 17569 boolean_t zc_enabled = B_FALSE; 17570 17571 if (do_tcpzcopy == 2) 17572 zc_enabled = B_TRUE; 17573 else if (tcp->tcp_ipversion == IPV4_VERSION && 17574 IPCL_IS_CONNECTED(connp) && 17575 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 17576 connp->conn_dontroute == 0 && 17577 connp->conn_xmit_if_ill == NULL && 17578 connp->conn_nofailover_ill == NULL && 17579 do_tcpzcopy == 1) { 17580 /* 17581 * the checks above closely resemble the fast path checks 17582 * in tcp_send_data(). 17583 */ 17584 mutex_enter(&connp->conn_lock); 17585 ire = connp->conn_ire_cache; 17586 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 17587 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17588 IRE_REFHOLD(ire); 17589 if (ire->ire_stq != NULL) { 17590 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 17591 17592 zc_enabled = ill && (ill->ill_capabilities & 17593 ILL_CAPAB_ZEROCOPY) && 17594 (ill->ill_zerocopy_capab-> 17595 ill_zerocopy_flags != 0); 17596 } 17597 IRE_REFRELE(ire); 17598 } 17599 mutex_exit(&connp->conn_lock); 17600 } 17601 tcp->tcp_snd_zcopy_on = zc_enabled; 17602 if (!TCP_IS_DETACHED(tcp)) { 17603 if (zc_enabled) { 17604 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 17605 TCP_STAT(tcp_zcopy_on); 17606 } else { 17607 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 17608 TCP_STAT(tcp_zcopy_off); 17609 } 17610 } 17611 return (zc_enabled); 17612 } 17613 17614 static mblk_t * 17615 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 17616 { 17617 if (do_tcpzcopy == 2) 17618 return (bp); 17619 else if (tcp->tcp_snd_zcopy_on) { 17620 tcp->tcp_snd_zcopy_on = B_FALSE; 17621 if (!TCP_IS_DETACHED(tcp)) { 17622 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 17623 TCP_STAT(tcp_zcopy_disable); 17624 } 17625 } 17626 return (tcp_zcopy_backoff(tcp, bp, 0)); 17627 } 17628 17629 /* 17630 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 17631 * the original desballoca'ed segmapped mblk. 17632 */ 17633 static mblk_t * 17634 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 17635 { 17636 mblk_t *head, *tail, *nbp; 17637 if (IS_VMLOANED_MBLK(bp)) { 17638 TCP_STAT(tcp_zcopy_backoff); 17639 if ((head = copyb(bp)) == NULL) { 17640 /* fail to backoff; leave it for the next backoff */ 17641 tcp->tcp_xmit_zc_clean = B_FALSE; 17642 return (bp); 17643 } 17644 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 17645 if (fix_xmitlist) 17646 tcp_zcopy_notify(tcp); 17647 else 17648 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 17649 } 17650 nbp = bp->b_cont; 17651 if (fix_xmitlist) { 17652 head->b_prev = bp->b_prev; 17653 head->b_next = bp->b_next; 17654 if (tcp->tcp_xmit_tail == bp) 17655 tcp->tcp_xmit_tail = head; 17656 } 17657 bp->b_next = NULL; 17658 bp->b_prev = NULL; 17659 freeb(bp); 17660 } else { 17661 head = bp; 17662 nbp = bp->b_cont; 17663 } 17664 tail = head; 17665 while (nbp) { 17666 if (IS_VMLOANED_MBLK(nbp)) { 17667 TCP_STAT(tcp_zcopy_backoff); 17668 if ((tail->b_cont = copyb(nbp)) == NULL) { 17669 tcp->tcp_xmit_zc_clean = B_FALSE; 17670 tail->b_cont = nbp; 17671 return (head); 17672 } 17673 tail = tail->b_cont; 17674 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 17675 if (fix_xmitlist) 17676 tcp_zcopy_notify(tcp); 17677 else 17678 tail->b_datap->db_struioflag |= 17679 STRUIO_ZCNOTIFY; 17680 } 17681 bp = nbp; 17682 nbp = nbp->b_cont; 17683 if (fix_xmitlist) { 17684 tail->b_prev = bp->b_prev; 17685 tail->b_next = bp->b_next; 17686 if (tcp->tcp_xmit_tail == bp) 17687 tcp->tcp_xmit_tail = tail; 17688 } 17689 bp->b_next = NULL; 17690 bp->b_prev = NULL; 17691 freeb(bp); 17692 } else { 17693 tail->b_cont = nbp; 17694 tail = nbp; 17695 nbp = nbp->b_cont; 17696 } 17697 } 17698 if (fix_xmitlist) { 17699 tcp->tcp_xmit_last = tail; 17700 tcp->tcp_xmit_zc_clean = B_TRUE; 17701 } 17702 return (head); 17703 } 17704 17705 static void 17706 tcp_zcopy_notify(tcp_t *tcp) 17707 { 17708 struct stdata *stp; 17709 17710 if (tcp->tcp_detached) 17711 return; 17712 stp = STREAM(tcp->tcp_rq); 17713 mutex_enter(&stp->sd_lock); 17714 stp->sd_flag |= STZCNOTIFY; 17715 cv_broadcast(&stp->sd_zcopy_wait); 17716 mutex_exit(&stp->sd_lock); 17717 } 17718 17719 static void 17720 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 17721 { 17722 ipha_t *ipha; 17723 ipaddr_t src; 17724 ipaddr_t dst; 17725 uint32_t cksum; 17726 ire_t *ire; 17727 uint16_t *up; 17728 ill_t *ill; 17729 conn_t *connp = tcp->tcp_connp; 17730 uint32_t hcksum_txflags = 0; 17731 mblk_t *ire_fp_mp; 17732 uint_t ire_fp_mp_len; 17733 17734 ASSERT(DB_TYPE(mp) == M_DATA); 17735 17736 ipha = (ipha_t *)mp->b_rptr; 17737 src = ipha->ipha_src; 17738 dst = ipha->ipha_dst; 17739 17740 /* 17741 * Drop off slow path for IPv6 and also if options are present. 17742 */ 17743 if (tcp->tcp_ipversion != IPV4_VERSION || 17744 !IPCL_IS_CONNECTED(connp) || 17745 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 17746 connp->conn_dontroute || 17747 connp->conn_xmit_if_ill != NULL || 17748 connp->conn_nofailover_ill != NULL || 17749 ipha->ipha_ident == IP_HDR_INCLUDED || 17750 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 17751 IPP_ENABLED(IPP_LOCAL_OUT)) { 17752 if (tcp->tcp_snd_zcopy_aware) 17753 mp = tcp_zcopy_disable(tcp, mp); 17754 TCP_STAT(tcp_ip_send); 17755 CALL_IP_WPUT(connp, q, mp); 17756 return; 17757 } 17758 17759 mutex_enter(&connp->conn_lock); 17760 ire = connp->conn_ire_cache; 17761 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 17762 if (ire != NULL && ire->ire_addr == dst && 17763 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17764 IRE_REFHOLD(ire); 17765 mutex_exit(&connp->conn_lock); 17766 } else { 17767 boolean_t cached = B_FALSE; 17768 17769 /* force a recheck later on */ 17770 tcp->tcp_ire_ill_check_done = B_FALSE; 17771 17772 TCP_DBGSTAT(tcp_ire_null1); 17773 connp->conn_ire_cache = NULL; 17774 mutex_exit(&connp->conn_lock); 17775 if (ire != NULL) 17776 IRE_REFRELE_NOTR(ire); 17777 ire = ire_cache_lookup(dst, connp->conn_zoneid); 17778 if (ire == NULL) { 17779 if (tcp->tcp_snd_zcopy_aware) 17780 mp = tcp_zcopy_backoff(tcp, mp, 0); 17781 TCP_STAT(tcp_ire_null); 17782 CALL_IP_WPUT(connp, q, mp); 17783 return; 17784 } 17785 IRE_REFHOLD_NOTR(ire); 17786 /* 17787 * Since we are inside the squeue, there cannot be another 17788 * thread in TCP trying to set the conn_ire_cache now. The 17789 * check for IRE_MARK_CONDEMNED ensures that an interface 17790 * unplumb thread has not yet started cleaning up the conns. 17791 * Hence we don't need to grab the conn lock. 17792 */ 17793 if (!(connp->conn_state_flags & CONN_CLOSING)) { 17794 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 17795 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17796 connp->conn_ire_cache = ire; 17797 cached = B_TRUE; 17798 } 17799 rw_exit(&ire->ire_bucket->irb_lock); 17800 } 17801 17802 /* 17803 * We can continue to use the ire but since it was 17804 * not cached, we should drop the extra reference. 17805 */ 17806 if (!cached) 17807 IRE_REFRELE_NOTR(ire); 17808 } 17809 17810 if (ire->ire_flags & RTF_MULTIRT || 17811 ire->ire_stq == NULL || 17812 ire->ire_max_frag < ntohs(ipha->ipha_length) || 17813 (ire_fp_mp = ire->ire_fp_mp) == NULL || 17814 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 17815 if (tcp->tcp_snd_zcopy_aware) 17816 mp = tcp_zcopy_disable(tcp, mp); 17817 TCP_STAT(tcp_ip_ire_send); 17818 IRE_REFRELE(ire); 17819 CALL_IP_WPUT(connp, q, mp); 17820 return; 17821 } 17822 17823 ill = ire_to_ill(ire); 17824 if (connp->conn_outgoing_ill != NULL) { 17825 ill_t *conn_outgoing_ill = NULL; 17826 /* 17827 * Choose a good ill in the group to send the packets on. 17828 */ 17829 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 17830 ill = ire_to_ill(ire); 17831 } 17832 ASSERT(ill != NULL); 17833 17834 if (!tcp->tcp_ire_ill_check_done) { 17835 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 17836 tcp->tcp_ire_ill_check_done = B_TRUE; 17837 } 17838 17839 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 17840 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 17841 #ifndef _BIG_ENDIAN 17842 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 17843 #endif 17844 17845 /* 17846 * Check to see if we need to re-enable MDT for this connection 17847 * because it was previously disabled due to changes in the ill; 17848 * note that by doing it here, this re-enabling only applies when 17849 * the packet is not dispatched through CALL_IP_WPUT(). 17850 * 17851 * That means for IPv4, it is worth re-enabling MDT for the fastpath 17852 * case, since that's how we ended up here. For IPv6, we do the 17853 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 17854 */ 17855 if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 17856 /* 17857 * Restore MDT for this connection, so that next time around 17858 * it is eligible to go through tcp_multisend() path again. 17859 */ 17860 TCP_STAT(tcp_mdt_conn_resumed1); 17861 tcp->tcp_mdt = B_TRUE; 17862 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 17863 "interface %s\n", (void *)connp, ill->ill_name)); 17864 } 17865 17866 if (tcp->tcp_snd_zcopy_aware) { 17867 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 17868 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 17869 mp = tcp_zcopy_disable(tcp, mp); 17870 /* 17871 * we shouldn't need to reset ipha as the mp containing 17872 * ipha should never be a zero-copy mp. 17873 */ 17874 } 17875 17876 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 17877 ASSERT(ill->ill_hcksum_capab != NULL); 17878 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 17879 } 17880 17881 /* pseudo-header checksum (do it in parts for IP header checksum) */ 17882 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 17883 17884 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 17885 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 17886 17887 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 17888 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 17889 17890 /* Software checksum? */ 17891 if (DB_CKSUMFLAGS(mp) == 0) { 17892 TCP_STAT(tcp_out_sw_cksum); 17893 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 17894 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 17895 } 17896 17897 ipha->ipha_fragment_offset_and_flags |= 17898 (uint32_t)htons(ire->ire_frag_flag); 17899 17900 /* Calculate IP header checksum if hardware isn't capable */ 17901 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 17902 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 17903 ((uint16_t *)ipha)[4]); 17904 } 17905 17906 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 17907 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 17908 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 17909 17910 UPDATE_OB_PKT_COUNT(ire); 17911 ire->ire_last_used_time = lbolt; 17912 BUMP_MIB(&ip_mib, ipOutRequests); 17913 17914 if (ILL_POLL_CAPABLE(ill)) { 17915 /* 17916 * Send the packet directly to DLD, where it may be queued 17917 * depending on the availability of transmit resources at 17918 * the media layer. 17919 */ 17920 IP_POLL_ILL_TX(ill, mp); 17921 } else { 17922 putnext(ire->ire_stq, mp); 17923 } 17924 IRE_REFRELE(ire); 17925 } 17926 17927 /* 17928 * This handles the case when the receiver has shrunk its win. Per RFC 1122 17929 * if the receiver shrinks the window, i.e. moves the right window to the 17930 * left, the we should not send new data, but should retransmit normally the 17931 * old unacked data between suna and suna + swnd. We might has sent data 17932 * that is now outside the new window, pretend that we didn't send it. 17933 */ 17934 static void 17935 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 17936 { 17937 uint32_t snxt = tcp->tcp_snxt; 17938 mblk_t *xmit_tail; 17939 int32_t offset; 17940 17941 ASSERT(shrunk_count > 0); 17942 17943 /* Pretend we didn't send the data outside the window */ 17944 snxt -= shrunk_count; 17945 17946 /* Get the mblk and the offset in it per the shrunk window */ 17947 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 17948 17949 ASSERT(xmit_tail != NULL); 17950 17951 /* Reset all the values per the now shrunk window */ 17952 tcp->tcp_snxt = snxt; 17953 tcp->tcp_xmit_tail = xmit_tail; 17954 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 17955 offset; 17956 tcp->tcp_unsent += shrunk_count; 17957 17958 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 17959 /* 17960 * Make sure the timer is running so that we will probe a zero 17961 * window. 17962 */ 17963 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17964 } 17965 17966 17967 /* 17968 * The TCP normal data output path. 17969 * NOTE: the logic of the fast path is duplicated from this function. 17970 */ 17971 static void 17972 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 17973 { 17974 int len; 17975 mblk_t *local_time; 17976 mblk_t *mp1; 17977 uint32_t snxt; 17978 int tail_unsent; 17979 int tcpstate; 17980 int usable = 0; 17981 mblk_t *xmit_tail; 17982 queue_t *q = tcp->tcp_wq; 17983 int32_t mss; 17984 int32_t num_sack_blk = 0; 17985 int32_t tcp_hdr_len; 17986 int32_t tcp_tcp_hdr_len; 17987 int mdt_thres; 17988 int rc; 17989 17990 tcpstate = tcp->tcp_state; 17991 if (mp == NULL) { 17992 /* 17993 * tcp_wput_data() with NULL mp should only be called when 17994 * there is unsent data. 17995 */ 17996 ASSERT(tcp->tcp_unsent > 0); 17997 /* Really tacky... but we need this for detached closes. */ 17998 len = tcp->tcp_unsent; 17999 goto data_null; 18000 } 18001 18002 #if CCS_STATS 18003 wrw_stats.tot.count++; 18004 wrw_stats.tot.bytes += msgdsize(mp); 18005 #endif 18006 ASSERT(mp->b_datap->db_type == M_DATA); 18007 /* 18008 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18009 * or before a connection attempt has begun. 18010 */ 18011 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18012 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18013 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18014 #ifdef DEBUG 18015 cmn_err(CE_WARN, 18016 "tcp_wput_data: data after ordrel, %s", 18017 tcp_display(tcp, NULL, 18018 DISP_ADDR_AND_PORT)); 18019 #else 18020 if (tcp->tcp_debug) { 18021 (void) strlog(TCP_MOD_ID, 0, 1, 18022 SL_TRACE|SL_ERROR, 18023 "tcp_wput_data: data after ordrel, %s\n", 18024 tcp_display(tcp, NULL, 18025 DISP_ADDR_AND_PORT)); 18026 } 18027 #endif /* DEBUG */ 18028 } 18029 if (tcp->tcp_snd_zcopy_aware && 18030 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18031 tcp_zcopy_notify(tcp); 18032 freemsg(mp); 18033 if (tcp->tcp_flow_stopped && 18034 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18035 tcp_clrqfull(tcp); 18036 } 18037 return; 18038 } 18039 18040 /* Strip empties */ 18041 for (;;) { 18042 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18043 (uintptr_t)INT_MAX); 18044 len = (int)(mp->b_wptr - mp->b_rptr); 18045 if (len > 0) 18046 break; 18047 mp1 = mp; 18048 mp = mp->b_cont; 18049 freeb(mp1); 18050 if (!mp) { 18051 return; 18052 } 18053 } 18054 18055 /* If we are the first on the list ... */ 18056 if (tcp->tcp_xmit_head == NULL) { 18057 tcp->tcp_xmit_head = mp; 18058 tcp->tcp_xmit_tail = mp; 18059 tcp->tcp_xmit_tail_unsent = len; 18060 } else { 18061 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18062 struct datab *dp; 18063 18064 mp1 = tcp->tcp_xmit_last; 18065 if (len < tcp_tx_pull_len && 18066 (dp = mp1->b_datap)->db_ref == 1 && 18067 dp->db_lim - mp1->b_wptr >= len) { 18068 ASSERT(len > 0); 18069 ASSERT(!mp1->b_cont); 18070 if (len == 1) { 18071 *mp1->b_wptr++ = *mp->b_rptr; 18072 } else { 18073 bcopy(mp->b_rptr, mp1->b_wptr, len); 18074 mp1->b_wptr += len; 18075 } 18076 if (mp1 == tcp->tcp_xmit_tail) 18077 tcp->tcp_xmit_tail_unsent += len; 18078 mp1->b_cont = mp->b_cont; 18079 if (tcp->tcp_snd_zcopy_aware && 18080 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18081 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18082 freeb(mp); 18083 mp = mp1; 18084 } else { 18085 tcp->tcp_xmit_last->b_cont = mp; 18086 } 18087 len += tcp->tcp_unsent; 18088 } 18089 18090 /* Tack on however many more positive length mblks we have */ 18091 if ((mp1 = mp->b_cont) != NULL) { 18092 do { 18093 int tlen; 18094 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18095 (uintptr_t)INT_MAX); 18096 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18097 if (tlen <= 0) { 18098 mp->b_cont = mp1->b_cont; 18099 freeb(mp1); 18100 } else { 18101 len += tlen; 18102 mp = mp1; 18103 } 18104 } while ((mp1 = mp->b_cont) != NULL); 18105 } 18106 tcp->tcp_xmit_last = mp; 18107 tcp->tcp_unsent = len; 18108 18109 if (urgent) 18110 usable = 1; 18111 18112 data_null: 18113 snxt = tcp->tcp_snxt; 18114 xmit_tail = tcp->tcp_xmit_tail; 18115 tail_unsent = tcp->tcp_xmit_tail_unsent; 18116 18117 /* 18118 * Note that tcp_mss has been adjusted to take into account the 18119 * timestamp option if applicable. Because SACK options do not 18120 * appear in every TCP segments and they are of variable lengths, 18121 * they cannot be included in tcp_mss. Thus we need to calculate 18122 * the actual segment length when we need to send a segment which 18123 * includes SACK options. 18124 */ 18125 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18126 int32_t opt_len; 18127 18128 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18129 tcp->tcp_num_sack_blk); 18130 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18131 2 + TCPOPT_HEADER_LEN; 18132 mss = tcp->tcp_mss - opt_len; 18133 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18134 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18135 } else { 18136 mss = tcp->tcp_mss; 18137 tcp_hdr_len = tcp->tcp_hdr_len; 18138 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18139 } 18140 18141 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18142 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18143 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 18144 } 18145 if (tcpstate == TCPS_SYN_RCVD) { 18146 /* 18147 * The three-way connection establishment handshake is not 18148 * complete yet. We want to queue the data for transmission 18149 * after entering ESTABLISHED state (RFC793). A jump to 18150 * "done" label effectively leaves data on the queue. 18151 */ 18152 goto done; 18153 } else { 18154 int usable_r = tcp->tcp_swnd; 18155 18156 /* 18157 * In the special case when cwnd is zero, which can only 18158 * happen if the connection is ECN capable, return now. 18159 * New segments is sent using tcp_timer(). The timer 18160 * is set in tcp_rput_data(). 18161 */ 18162 if (tcp->tcp_cwnd == 0) { 18163 /* 18164 * Note that tcp_cwnd is 0 before 3-way handshake is 18165 * finished. 18166 */ 18167 ASSERT(tcp->tcp_ecn_ok || 18168 tcp->tcp_state < TCPS_ESTABLISHED); 18169 return; 18170 } 18171 18172 /* NOTE: trouble if xmitting while SYN not acked? */ 18173 usable_r -= snxt; 18174 usable_r += tcp->tcp_suna; 18175 18176 /* 18177 * Check if the receiver has shrunk the window. If 18178 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18179 * cannot be set as there is unsent data, so FIN cannot 18180 * be sent out. Otherwise, we need to take into account 18181 * of FIN as it consumes an "invisible" sequence number. 18182 */ 18183 ASSERT(tcp->tcp_fin_sent == 0); 18184 if (usable_r < 0) { 18185 /* 18186 * The receiver has shrunk the window and we have sent 18187 * -usable_r date beyond the window, re-adjust. 18188 * 18189 * If TCP window scaling is enabled, there can be 18190 * round down error as the advertised receive window 18191 * is actually right shifted n bits. This means that 18192 * the lower n bits info is wiped out. It will look 18193 * like the window is shrunk. Do a check here to 18194 * see if the shrunk amount is actually within the 18195 * error in window calculation. If it is, just 18196 * return. Note that this check is inside the 18197 * shrunk window check. This makes sure that even 18198 * though tcp_process_shrunk_swnd() is not called, 18199 * we will stop further processing. 18200 */ 18201 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18202 tcp_process_shrunk_swnd(tcp, -usable_r); 18203 } 18204 return; 18205 } 18206 18207 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18208 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18209 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18210 18211 /* usable = MIN(usable, unsent) */ 18212 if (usable_r > len) 18213 usable_r = len; 18214 18215 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18216 if (usable_r > 0) { 18217 usable = usable_r; 18218 } else { 18219 /* Bypass all other unnecessary processing. */ 18220 goto done; 18221 } 18222 } 18223 18224 local_time = (mblk_t *)lbolt; 18225 18226 /* 18227 * "Our" Nagle Algorithm. This is not the same as in the old 18228 * BSD. This is more in line with the true intent of Nagle. 18229 * 18230 * The conditions are: 18231 * 1. The amount of unsent data (or amount of data which can be 18232 * sent, whichever is smaller) is less than Nagle limit. 18233 * 2. The last sent size is also less than Nagle limit. 18234 * 3. There is unack'ed data. 18235 * 4. Urgent pointer is not set. Send urgent data ignoring the 18236 * Nagle algorithm. This reduces the probability that urgent 18237 * bytes get "merged" together. 18238 * 5. The app has not closed the connection. This eliminates the 18239 * wait time of the receiving side waiting for the last piece of 18240 * (small) data. 18241 * 18242 * If all are satisified, exit without sending anything. Note 18243 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18244 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18245 * 4095). 18246 */ 18247 if (usable < (int)tcp->tcp_naglim && 18248 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18249 snxt != tcp->tcp_suna && 18250 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18251 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18252 goto done; 18253 } 18254 18255 if (tcp->tcp_cork) { 18256 /* 18257 * if the tcp->tcp_cork option is set, then we have to force 18258 * TCP not to send partial segment (smaller than MSS bytes). 18259 * We are calculating the usable now based on full mss and 18260 * will save the rest of remaining data for later. 18261 */ 18262 if (usable < mss) 18263 goto done; 18264 usable = (usable / mss) * mss; 18265 } 18266 18267 /* Update the latest receive window size in TCP header. */ 18268 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18269 tcp->tcp_tcph->th_win); 18270 18271 /* 18272 * Determine if it's worthwhile to attempt MDT, based on: 18273 * 18274 * 1. Simple TCP/IP{v4,v6} (no options). 18275 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18276 * 3. If the TCP connection is in ESTABLISHED state. 18277 * 4. The TCP is not detached. 18278 * 18279 * If any of the above conditions have changed during the 18280 * connection, stop using MDT and restore the stream head 18281 * parameters accordingly. 18282 */ 18283 if (tcp->tcp_mdt && 18284 ((tcp->tcp_ipversion == IPV4_VERSION && 18285 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 18286 (tcp->tcp_ipversion == IPV6_VERSION && 18287 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 18288 tcp->tcp_state != TCPS_ESTABLISHED || 18289 TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || 18290 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 18291 IPP_ENABLED(IPP_LOCAL_OUT))) { 18292 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 18293 tcp->tcp_mdt = B_FALSE; 18294 18295 /* Anything other than detached is considered pathological */ 18296 if (!TCP_IS_DETACHED(tcp)) { 18297 TCP_STAT(tcp_mdt_conn_halted1); 18298 (void) tcp_maxpsz_set(tcp, B_TRUE); 18299 } 18300 } 18301 18302 /* Use MDT if sendable amount is greater than the threshold */ 18303 if (tcp->tcp_mdt && 18304 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 18305 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 18306 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 18307 (tcp->tcp_valid_bits == 0 || 18308 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 18309 ASSERT(tcp->tcp_connp->conn_mdt_ok); 18310 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18311 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18312 local_time, mdt_thres); 18313 } else { 18314 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18315 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18316 local_time, INT_MAX); 18317 } 18318 18319 /* Pretend that all we were trying to send really got sent */ 18320 if (rc < 0 && tail_unsent < 0) { 18321 do { 18322 xmit_tail = xmit_tail->b_cont; 18323 xmit_tail->b_prev = local_time; 18324 ASSERT((uintptr_t)(xmit_tail->b_wptr - 18325 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 18326 tail_unsent += (int)(xmit_tail->b_wptr - 18327 xmit_tail->b_rptr); 18328 } while (tail_unsent < 0); 18329 } 18330 done:; 18331 tcp->tcp_xmit_tail = xmit_tail; 18332 tcp->tcp_xmit_tail_unsent = tail_unsent; 18333 len = tcp->tcp_snxt - snxt; 18334 if (len) { 18335 /* 18336 * If new data was sent, need to update the notsack 18337 * list, which is, afterall, data blocks that have 18338 * not been sack'ed by the receiver. New data is 18339 * not sack'ed. 18340 */ 18341 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 18342 /* len is a negative value. */ 18343 tcp->tcp_pipe -= len; 18344 tcp_notsack_update(&(tcp->tcp_notsack_list), 18345 tcp->tcp_snxt, snxt, 18346 &(tcp->tcp_num_notsack_blk), 18347 &(tcp->tcp_cnt_notsack_list)); 18348 } 18349 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 18350 tcp->tcp_rack = tcp->tcp_rnxt; 18351 tcp->tcp_rack_cnt = 0; 18352 if ((snxt + len) == tcp->tcp_suna) { 18353 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18354 } 18355 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 18356 /* 18357 * Didn't send anything. Make sure the timer is running 18358 * so that we will probe a zero window. 18359 */ 18360 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18361 } 18362 /* Note that len is the amount we just sent but with a negative sign */ 18363 tcp->tcp_unsent += len; 18364 if (tcp->tcp_flow_stopped) { 18365 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18366 tcp_clrqfull(tcp); 18367 } 18368 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 18369 tcp_setqfull(tcp); 18370 } 18371 } 18372 18373 /* 18374 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 18375 * outgoing TCP header with the template header, as well as other 18376 * options such as time-stamp, ECN and/or SACK. 18377 */ 18378 static void 18379 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 18380 { 18381 tcph_t *tcp_tmpl, *tcp_h; 18382 uint32_t *dst, *src; 18383 int hdrlen; 18384 18385 ASSERT(OK_32PTR(rptr)); 18386 18387 /* Template header */ 18388 tcp_tmpl = tcp->tcp_tcph; 18389 18390 /* Header of outgoing packet */ 18391 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18392 18393 /* dst and src are opaque 32-bit fields, used for copying */ 18394 dst = (uint32_t *)rptr; 18395 src = (uint32_t *)tcp->tcp_iphc; 18396 hdrlen = tcp->tcp_hdr_len; 18397 18398 /* Fill time-stamp option if needed */ 18399 if (tcp->tcp_snd_ts_ok) { 18400 U32_TO_BE32((uint32_t)now, 18401 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 18402 U32_TO_BE32(tcp->tcp_ts_recent, 18403 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 18404 } else { 18405 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18406 } 18407 18408 /* 18409 * Copy the template header; is this really more efficient than 18410 * calling bcopy()? For simple IPv4/TCP, it may be the case, 18411 * but perhaps not for other scenarios. 18412 */ 18413 dst[0] = src[0]; 18414 dst[1] = src[1]; 18415 dst[2] = src[2]; 18416 dst[3] = src[3]; 18417 dst[4] = src[4]; 18418 dst[5] = src[5]; 18419 dst[6] = src[6]; 18420 dst[7] = src[7]; 18421 dst[8] = src[8]; 18422 dst[9] = src[9]; 18423 if (hdrlen -= 40) { 18424 hdrlen >>= 2; 18425 dst += 10; 18426 src += 10; 18427 do { 18428 *dst++ = *src++; 18429 } while (--hdrlen); 18430 } 18431 18432 /* 18433 * Set the ECN info in the TCP header if it is not a zero 18434 * window probe. Zero window probe is only sent in 18435 * tcp_wput_data() and tcp_timer(). 18436 */ 18437 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 18438 SET_ECT(tcp, rptr); 18439 18440 if (tcp->tcp_ecn_echo_on) 18441 tcp_h->th_flags[0] |= TH_ECE; 18442 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18443 tcp_h->th_flags[0] |= TH_CWR; 18444 tcp->tcp_ecn_cwr_sent = B_TRUE; 18445 } 18446 } 18447 18448 /* Fill in SACK options */ 18449 if (num_sack_blk > 0) { 18450 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 18451 sack_blk_t *tmp; 18452 int32_t i; 18453 18454 wptr[0] = TCPOPT_NOP; 18455 wptr[1] = TCPOPT_NOP; 18456 wptr[2] = TCPOPT_SACK; 18457 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18458 sizeof (sack_blk_t); 18459 wptr += TCPOPT_REAL_SACK_LEN; 18460 18461 tmp = tcp->tcp_sack_list; 18462 for (i = 0; i < num_sack_blk; i++) { 18463 U32_TO_BE32(tmp[i].begin, wptr); 18464 wptr += sizeof (tcp_seq); 18465 U32_TO_BE32(tmp[i].end, wptr); 18466 wptr += sizeof (tcp_seq); 18467 } 18468 tcp_h->th_offset_and_rsrvd[0] += 18469 ((num_sack_blk * 2 + 1) << 4); 18470 } 18471 } 18472 18473 /* 18474 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 18475 * the destination address and SAP attribute, and if necessary, the 18476 * hardware checksum offload attribute to a Multidata message. 18477 */ 18478 static int 18479 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 18480 const uint32_t start, const uint32_t stuff, const uint32_t end, 18481 const uint32_t flags) 18482 { 18483 /* Add global destination address & SAP attribute */ 18484 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 18485 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 18486 "destination address+SAP\n")); 18487 18488 if (dlmp != NULL) 18489 TCP_STAT(tcp_mdt_allocfail); 18490 return (-1); 18491 } 18492 18493 /* Add global hwcksum attribute */ 18494 if (hwcksum && 18495 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 18496 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 18497 "checksum attribute\n")); 18498 18499 TCP_STAT(tcp_mdt_allocfail); 18500 return (-1); 18501 } 18502 18503 return (0); 18504 } 18505 18506 /* 18507 * Smaller and private version of pdescinfo_t used specifically for TCP, 18508 * which allows for only two payload spans per packet. 18509 */ 18510 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 18511 18512 /* 18513 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 18514 * scheme, and returns one the following: 18515 * 18516 * -1 = failed allocation. 18517 * 0 = success; burst count reached, or usable send window is too small, 18518 * and that we'd rather wait until later before sending again. 18519 */ 18520 static int 18521 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 18522 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 18523 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 18524 const int mdt_thres) 18525 { 18526 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 18527 multidata_t *mmd; 18528 uint_t obsegs, obbytes, hdr_frag_sz; 18529 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 18530 int num_burst_seg, max_pld; 18531 pdesc_t *pkt; 18532 tcp_pdescinfo_t tcp_pkt_info; 18533 pdescinfo_t *pkt_info; 18534 int pbuf_idx, pbuf_idx_nxt; 18535 int seg_len, len, spill, af; 18536 boolean_t add_buffer, zcopy, clusterwide; 18537 boolean_t rconfirm = B_FALSE; 18538 boolean_t done = B_FALSE; 18539 uint32_t cksum; 18540 uint32_t hwcksum_flags; 18541 ire_t *ire; 18542 ill_t *ill; 18543 ipha_t *ipha; 18544 ip6_t *ip6h; 18545 ipaddr_t src, dst; 18546 ill_zerocopy_capab_t *zc_cap = NULL; 18547 uint16_t *up; 18548 int err; 18549 18550 #ifdef _BIG_ENDIAN 18551 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 18552 #else 18553 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 18554 #endif 18555 18556 #define PREP_NEW_MULTIDATA() { \ 18557 mmd = NULL; \ 18558 md_mp = md_hbuf = NULL; \ 18559 cur_hdr_off = 0; \ 18560 max_pld = tcp->tcp_mdt_max_pld; \ 18561 pbuf_idx = pbuf_idx_nxt = -1; \ 18562 add_buffer = B_TRUE; \ 18563 zcopy = B_FALSE; \ 18564 } 18565 18566 #define PREP_NEW_PBUF() { \ 18567 md_pbuf = md_pbuf_nxt = NULL; \ 18568 pbuf_idx = pbuf_idx_nxt = -1; \ 18569 cur_pld_off = 0; \ 18570 first_snxt = *snxt; \ 18571 ASSERT(*tail_unsent > 0); \ 18572 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 18573 } 18574 18575 ASSERT(mdt_thres >= mss); 18576 ASSERT(*usable > 0 && *usable > mdt_thres); 18577 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 18578 ASSERT(!TCP_IS_DETACHED(tcp)); 18579 ASSERT(tcp->tcp_valid_bits == 0 || 18580 tcp->tcp_valid_bits == TCP_FSS_VALID); 18581 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 18582 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 18583 (tcp->tcp_ipversion == IPV6_VERSION && 18584 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 18585 ASSERT(tcp->tcp_connp != NULL); 18586 ASSERT(CONN_IS_MD_FASTPATH(tcp->tcp_connp)); 18587 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp)); 18588 18589 /* 18590 * Note that tcp will only declare at most 2 payload spans per 18591 * packet, which is much lower than the maximum allowable number 18592 * of packet spans per Multidata. For this reason, we use the 18593 * privately declared and smaller descriptor info structure, in 18594 * order to save some stack space. 18595 */ 18596 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 18597 18598 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 18599 if (af == AF_INET) { 18600 dst = tcp->tcp_ipha->ipha_dst; 18601 src = tcp->tcp_ipha->ipha_src; 18602 ASSERT(!CLASSD(dst)); 18603 } 18604 ASSERT(af == AF_INET || 18605 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 18606 18607 obsegs = obbytes = 0; 18608 num_burst_seg = tcp->tcp_snd_burst; 18609 md_mp_head = NULL; 18610 PREP_NEW_MULTIDATA(); 18611 18612 /* 18613 * Before we go on further, make sure there is an IRE that we can 18614 * use, and that the ILL supports MDT. Otherwise, there's no point 18615 * in proceeding any further, and we should just hand everything 18616 * off to the legacy path. 18617 */ 18618 mutex_enter(&tcp->tcp_connp->conn_lock); 18619 ire = tcp->tcp_connp->conn_ire_cache; 18620 ASSERT(!(tcp->tcp_connp->conn_state_flags & CONN_INCIPIENT)); 18621 if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || 18622 (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 18623 &tcp->tcp_ip6h->ip6_dst))) && 18624 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18625 IRE_REFHOLD(ire); 18626 mutex_exit(&tcp->tcp_connp->conn_lock); 18627 } else { 18628 boolean_t cached = B_FALSE; 18629 18630 /* force a recheck later on */ 18631 tcp->tcp_ire_ill_check_done = B_FALSE; 18632 18633 TCP_DBGSTAT(tcp_ire_null1); 18634 tcp->tcp_connp->conn_ire_cache = NULL; 18635 mutex_exit(&tcp->tcp_connp->conn_lock); 18636 18637 /* Release the old ire */ 18638 if (ire != NULL) 18639 IRE_REFRELE_NOTR(ire); 18640 18641 ire = (af == AF_INET) ? 18642 ire_cache_lookup(dst, tcp->tcp_connp->conn_zoneid) : 18643 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18644 tcp->tcp_connp->conn_zoneid); 18645 18646 if (ire == NULL) { 18647 TCP_STAT(tcp_ire_null); 18648 goto legacy_send_no_md; 18649 } 18650 18651 IRE_REFHOLD_NOTR(ire); 18652 /* 18653 * Since we are inside the squeue, there cannot be another 18654 * thread in TCP trying to set the conn_ire_cache now. The 18655 * check for IRE_MARK_CONDEMNED ensures that an interface 18656 * unplumb thread has not yet started cleaning up the conns. 18657 * Hence we don't need to grab the conn lock. 18658 */ 18659 if (!(tcp->tcp_connp->conn_state_flags & CONN_CLOSING)) { 18660 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18661 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18662 tcp->tcp_connp->conn_ire_cache = ire; 18663 cached = B_TRUE; 18664 } 18665 rw_exit(&ire->ire_bucket->irb_lock); 18666 } 18667 18668 /* 18669 * We can continue to use the ire but since it was not 18670 * cached, we should drop the extra reference. 18671 */ 18672 if (!cached) 18673 IRE_REFRELE_NOTR(ire); 18674 } 18675 18676 ASSERT(ire != NULL); 18677 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 18678 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 18679 ASSERT(af == AF_INET || ire->ire_nce != NULL); 18680 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18681 /* 18682 * If we do support loopback for MDT (which requires modifications 18683 * to the receiving paths), the following assertions should go away, 18684 * and we would be sending the Multidata to loopback conn later on. 18685 */ 18686 ASSERT(!IRE_IS_LOCAL(ire)); 18687 ASSERT(ire->ire_stq != NULL); 18688 18689 ill = ire_to_ill(ire); 18690 ASSERT(ill != NULL); 18691 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 18692 18693 if (!tcp->tcp_ire_ill_check_done) { 18694 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18695 tcp->tcp_ire_ill_check_done = B_TRUE; 18696 } 18697 18698 /* 18699 * If the underlying interface conditions have changed, or if the 18700 * new interface does not support MDT, go back to legacy path. 18701 */ 18702 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 18703 /* don't go through this path anymore for this connection */ 18704 TCP_STAT(tcp_mdt_conn_halted2); 18705 tcp->tcp_mdt = B_FALSE; 18706 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 18707 "interface %s\n", (void *)tcp->tcp_connp, ill->ill_name)); 18708 /* IRE will be released prior to returning */ 18709 goto legacy_send_no_md; 18710 } 18711 18712 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 18713 zc_cap = ill->ill_zerocopy_capab; 18714 18715 /* go to legacy path if interface doesn't support zerocopy */ 18716 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 18717 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 18718 /* IRE will be released prior to returning */ 18719 goto legacy_send_no_md; 18720 } 18721 18722 /* does the interface support hardware checksum offload? */ 18723 hwcksum_flags = 0; 18724 if (ILL_HCKSUM_CAPABLE(ill) && 18725 (ill->ill_hcksum_capab->ill_hcksum_txflags & 18726 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 18727 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 18728 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18729 HCKSUM_IPHDRCKSUM) 18730 hwcksum_flags = HCK_IPV4_HDRCKSUM; 18731 18732 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18733 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 18734 hwcksum_flags |= HCK_FULLCKSUM; 18735 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18736 HCKSUM_INET_PARTIAL) 18737 hwcksum_flags |= HCK_PARTIALCKSUM; 18738 } 18739 18740 /* 18741 * Each header fragment consists of the leading extra space, 18742 * followed by the TCP/IP header, and the trailing extra space. 18743 * We make sure that each header fragment begins on a 32-bit 18744 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 18745 * aligned in tcp_mdt_update). 18746 */ 18747 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 18748 tcp->tcp_mdt_hdr_tail), 4); 18749 18750 /* are we starting from the beginning of data block? */ 18751 if (*tail_unsent == 0) { 18752 *xmit_tail = (*xmit_tail)->b_cont; 18753 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 18754 *tail_unsent = (int)MBLKL(*xmit_tail); 18755 } 18756 18757 /* 18758 * Here we create one or more Multidata messages, each made up of 18759 * one header buffer and up to N payload buffers. This entire 18760 * operation is done within two loops: 18761 * 18762 * The outer loop mostly deals with creating the Multidata message, 18763 * as well as the header buffer that gets added to it. It also 18764 * links the Multidata messages together such that all of them can 18765 * be sent down to the lower layer in a single putnext call; this 18766 * linking behavior depends on the tcp_mdt_chain tunable. 18767 * 18768 * The inner loop takes an existing Multidata message, and adds 18769 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 18770 * packetizes those buffers by filling up the corresponding header 18771 * buffer fragments with the proper IP and TCP headers, and by 18772 * describing the layout of each packet in the packet descriptors 18773 * that get added to the Multidata. 18774 */ 18775 do { 18776 /* 18777 * If usable send window is too small, or data blocks in 18778 * transmit list are smaller than our threshold (i.e. app 18779 * performs large writes followed by small ones), we hand 18780 * off the control over to the legacy path. Note that we'll 18781 * get back the control once it encounters a large block. 18782 */ 18783 if (*usable < mss || (*tail_unsent <= mdt_thres && 18784 (*xmit_tail)->b_cont != NULL && 18785 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 18786 /* send down what we've got so far */ 18787 if (md_mp_head != NULL) { 18788 tcp_multisend_data(tcp, ire, ill, md_mp_head, 18789 obsegs, obbytes, &rconfirm); 18790 } 18791 /* 18792 * Pass control over to tcp_send(), but tell it to 18793 * return to us once a large-size transmission is 18794 * possible. 18795 */ 18796 TCP_STAT(tcp_mdt_legacy_small); 18797 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 18798 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 18799 tail_unsent, xmit_tail, local_time, 18800 mdt_thres)) <= 0) { 18801 /* burst count reached, or alloc failed */ 18802 IRE_REFRELE(ire); 18803 return (err); 18804 } 18805 18806 /* tcp_send() may have sent everything, so check */ 18807 if (*usable <= 0) { 18808 IRE_REFRELE(ire); 18809 return (0); 18810 } 18811 18812 TCP_STAT(tcp_mdt_legacy_ret); 18813 /* 18814 * We may have delivered the Multidata, so make sure 18815 * to re-initialize before the next round. 18816 */ 18817 md_mp_head = NULL; 18818 obsegs = obbytes = 0; 18819 num_burst_seg = tcp->tcp_snd_burst; 18820 PREP_NEW_MULTIDATA(); 18821 18822 /* are we starting from the beginning of data block? */ 18823 if (*tail_unsent == 0) { 18824 *xmit_tail = (*xmit_tail)->b_cont; 18825 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 18826 (uintptr_t)INT_MAX); 18827 *tail_unsent = (int)MBLKL(*xmit_tail); 18828 } 18829 } 18830 18831 /* 18832 * max_pld limits the number of mblks in tcp's transmit 18833 * queue that can be added to a Multidata message. Once 18834 * this counter reaches zero, no more additional mblks 18835 * can be added to it. What happens afterwards depends 18836 * on whether or not we are set to chain the Multidata 18837 * messages. If we are to link them together, reset 18838 * max_pld to its original value (tcp_mdt_max_pld) and 18839 * prepare to create a new Multidata message which will 18840 * get linked to md_mp_head. Else, leave it alone and 18841 * let the inner loop break on its own. 18842 */ 18843 if (tcp_mdt_chain && max_pld == 0) 18844 PREP_NEW_MULTIDATA(); 18845 18846 /* adding a payload buffer; re-initialize values */ 18847 if (add_buffer) 18848 PREP_NEW_PBUF(); 18849 18850 /* 18851 * If we don't have a Multidata, either because we just 18852 * (re)entered this outer loop, or after we branched off 18853 * to tcp_send above, setup the Multidata and header 18854 * buffer to be used. 18855 */ 18856 if (md_mp == NULL) { 18857 int md_hbuflen; 18858 uint32_t start, stuff; 18859 18860 /* 18861 * Calculate Multidata header buffer size large enough 18862 * to hold all of the headers that can possibly be 18863 * sent at this moment. We'd rather over-estimate 18864 * the size than running out of space; this is okay 18865 * since this buffer is small anyway. 18866 */ 18867 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 18868 18869 /* 18870 * Start and stuff offset for partial hardware 18871 * checksum offload; these are currently for IPv4. 18872 * For full checksum offload, they are set to zero. 18873 */ 18874 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 18875 if (af == AF_INET) { 18876 start = IP_SIMPLE_HDR_LENGTH; 18877 stuff = IP_SIMPLE_HDR_LENGTH + 18878 TCP_CHECKSUM_OFFSET; 18879 } else { 18880 start = IPV6_HDR_LEN; 18881 stuff = IPV6_HDR_LEN + 18882 TCP_CHECKSUM_OFFSET; 18883 } 18884 } else { 18885 start = stuff = 0; 18886 } 18887 18888 /* 18889 * Create the header buffer, Multidata, as well as 18890 * any necessary attributes (destination address, 18891 * SAP and hardware checksum offload) that should 18892 * be associated with the Multidata message. 18893 */ 18894 ASSERT(cur_hdr_off == 0); 18895 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 18896 ((md_hbuf->b_wptr += md_hbuflen), 18897 (mmd = mmd_alloc(md_hbuf, &md_mp, 18898 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 18899 /* fastpath mblk */ 18900 (af == AF_INET) ? ire->ire_dlureq_mp : 18901 ire->ire_nce->nce_res_mp, 18902 /* hardware checksum enabled */ 18903 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 18904 /* hardware checksum offsets */ 18905 start, stuff, 0, 18906 /* hardware checksum flag */ 18907 hwcksum_flags) != 0)) { 18908 legacy_send: 18909 if (md_mp != NULL) { 18910 /* Unlink message from the chain */ 18911 if (md_mp_head != NULL) { 18912 err = (intptr_t)rmvb(md_mp_head, 18913 md_mp); 18914 /* 18915 * We can't assert that rmvb 18916 * did not return -1, since we 18917 * may get here before linkb 18918 * happens. We do, however, 18919 * check if we just removed the 18920 * only element in the list. 18921 */ 18922 if (err == 0) 18923 md_mp_head = NULL; 18924 } 18925 /* md_hbuf gets freed automatically */ 18926 TCP_STAT(tcp_mdt_discarded); 18927 freeb(md_mp); 18928 } else { 18929 /* Either allocb or mmd_alloc failed */ 18930 TCP_STAT(tcp_mdt_allocfail); 18931 if (md_hbuf != NULL) 18932 freeb(md_hbuf); 18933 } 18934 18935 /* send down what we've got so far */ 18936 if (md_mp_head != NULL) { 18937 tcp_multisend_data(tcp, ire, ill, 18938 md_mp_head, obsegs, obbytes, 18939 &rconfirm); 18940 } 18941 legacy_send_no_md: 18942 if (ire != NULL) 18943 IRE_REFRELE(ire); 18944 /* 18945 * Too bad; let the legacy path handle this. 18946 * We specify INT_MAX for the threshold, since 18947 * we gave up with the Multidata processings 18948 * and let the old path have it all. 18949 */ 18950 TCP_STAT(tcp_mdt_legacy_all); 18951 return (tcp_send(q, tcp, mss, tcp_hdr_len, 18952 tcp_tcp_hdr_len, num_sack_blk, usable, 18953 snxt, tail_unsent, xmit_tail, local_time, 18954 INT_MAX)); 18955 } 18956 18957 /* link to any existing ones, if applicable */ 18958 TCP_STAT(tcp_mdt_allocd); 18959 if (md_mp_head == NULL) { 18960 md_mp_head = md_mp; 18961 } else if (tcp_mdt_chain) { 18962 TCP_STAT(tcp_mdt_linked); 18963 linkb(md_mp_head, md_mp); 18964 } 18965 } 18966 18967 ASSERT(md_mp_head != NULL); 18968 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 18969 ASSERT(md_mp != NULL && mmd != NULL); 18970 ASSERT(md_hbuf != NULL); 18971 18972 /* 18973 * Packetize the transmittable portion of the data block; 18974 * each data block is essentially added to the Multidata 18975 * as a payload buffer. We also deal with adding more 18976 * than one payload buffers, which happens when the remaining 18977 * packetized portion of the current payload buffer is less 18978 * than MSS, while the next data block in transmit queue 18979 * has enough data to make up for one. This "spillover" 18980 * case essentially creates a split-packet, where portions 18981 * of the packet's payload fragments may span across two 18982 * virtually discontiguous address blocks. 18983 */ 18984 seg_len = mss; 18985 do { 18986 len = seg_len; 18987 18988 ASSERT(len > 0); 18989 ASSERT(max_pld >= 0); 18990 ASSERT(!add_buffer || cur_pld_off == 0); 18991 18992 /* 18993 * First time around for this payload buffer; note 18994 * in the case of a spillover, the following has 18995 * been done prior to adding the split-packet 18996 * descriptor to Multidata, and we don't want to 18997 * repeat the process. 18998 */ 18999 if (add_buffer) { 19000 ASSERT(mmd != NULL); 19001 ASSERT(md_pbuf == NULL); 19002 ASSERT(md_pbuf_nxt == NULL); 19003 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19004 19005 /* 19006 * Have we reached the limit? We'd get to 19007 * this case when we're not chaining the 19008 * Multidata messages together, and since 19009 * we're done, terminate this loop. 19010 */ 19011 if (max_pld == 0) 19012 break; /* done */ 19013 19014 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19015 TCP_STAT(tcp_mdt_allocfail); 19016 goto legacy_send; /* out_of_mem */ 19017 } 19018 19019 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19020 zc_cap != NULL) { 19021 if (!ip_md_zcopy_attr(mmd, NULL, 19022 zc_cap->ill_zerocopy_flags)) { 19023 freeb(md_pbuf); 19024 TCP_STAT(tcp_mdt_allocfail); 19025 /* out_of_mem */ 19026 goto legacy_send; 19027 } 19028 zcopy = B_TRUE; 19029 } 19030 19031 md_pbuf->b_rptr += base_pld_off; 19032 19033 /* 19034 * Add a payload buffer to the Multidata; this 19035 * operation must not fail, or otherwise our 19036 * logic in this routine is broken. There 19037 * is no memory allocation done by the 19038 * routine, so any returned failure simply 19039 * tells us that we've done something wrong. 19040 * 19041 * A failure tells us that either we're adding 19042 * the same payload buffer more than once, or 19043 * we're trying to add more buffers than 19044 * allowed (max_pld calculation is wrong). 19045 * None of the above cases should happen, and 19046 * we panic because either there's horrible 19047 * heap corruption, and/or programming mistake. 19048 */ 19049 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19050 if (pbuf_idx < 0) { 19051 cmn_err(CE_PANIC, "tcp_multisend: " 19052 "payload buffer logic error " 19053 "detected for tcp %p mmd %p " 19054 "pbuf %p (%d)\n", 19055 (void *)tcp, (void *)mmd, 19056 (void *)md_pbuf, pbuf_idx); 19057 } 19058 19059 ASSERT(max_pld > 0); 19060 --max_pld; 19061 add_buffer = B_FALSE; 19062 } 19063 19064 ASSERT(md_mp_head != NULL); 19065 ASSERT(md_pbuf != NULL); 19066 ASSERT(md_pbuf_nxt == NULL); 19067 ASSERT(pbuf_idx != -1); 19068 ASSERT(pbuf_idx_nxt == -1); 19069 ASSERT(*usable > 0); 19070 19071 /* 19072 * We spillover to the next payload buffer only 19073 * if all of the following is true: 19074 * 19075 * 1. There is not enough data on the current 19076 * payload buffer to make up `len', 19077 * 2. We are allowed to send `len', 19078 * 3. The next payload buffer length is large 19079 * enough to accomodate `spill'. 19080 */ 19081 if ((spill = len - *tail_unsent) > 0 && 19082 *usable >= len && 19083 MBLKL((*xmit_tail)->b_cont) >= spill && 19084 max_pld > 0) { 19085 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19086 if (md_pbuf_nxt == NULL) { 19087 TCP_STAT(tcp_mdt_allocfail); 19088 goto legacy_send; /* out_of_mem */ 19089 } 19090 19091 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19092 zc_cap != NULL) { 19093 if (!ip_md_zcopy_attr(mmd, NULL, 19094 zc_cap->ill_zerocopy_flags)) { 19095 freeb(md_pbuf_nxt); 19096 TCP_STAT(tcp_mdt_allocfail); 19097 /* out_of_mem */ 19098 goto legacy_send; 19099 } 19100 zcopy = B_TRUE; 19101 } 19102 19103 /* 19104 * See comments above on the first call to 19105 * mmd_addpldbuf for explanation on the panic. 19106 */ 19107 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19108 if (pbuf_idx_nxt < 0) { 19109 panic("tcp_multisend: " 19110 "next payload buffer logic error " 19111 "detected for tcp %p mmd %p " 19112 "pbuf %p (%d)\n", 19113 (void *)tcp, (void *)mmd, 19114 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19115 } 19116 19117 ASSERT(max_pld > 0); 19118 --max_pld; 19119 } else if (spill > 0) { 19120 /* 19121 * If there's a spillover, but the following 19122 * xmit_tail couldn't give us enough octets 19123 * to reach "len", then stop the current 19124 * Multidata creation and let the legacy 19125 * tcp_send() path take over. We don't want 19126 * to send the tiny segment as part of this 19127 * Multidata for performance reasons; instead, 19128 * we let the legacy path deal with grouping 19129 * it with the subsequent small mblks. 19130 */ 19131 if (*usable >= len && 19132 MBLKL((*xmit_tail)->b_cont) < spill) { 19133 max_pld = 0; 19134 break; /* done */ 19135 } 19136 19137 /* 19138 * We can't spillover, and we are near 19139 * the end of the current payload buffer, 19140 * so send what's left. 19141 */ 19142 ASSERT(*tail_unsent > 0); 19143 len = *tail_unsent; 19144 } 19145 19146 /* tail_unsent is negated if there is a spillover */ 19147 *tail_unsent -= len; 19148 *usable -= len; 19149 ASSERT(*usable >= 0); 19150 19151 if (*usable < mss) 19152 seg_len = *usable; 19153 /* 19154 * Sender SWS avoidance; see comments in tcp_send(); 19155 * everything else is the same, except that we only 19156 * do this here if there is no more data to be sent 19157 * following the current xmit_tail. We don't check 19158 * for 1-byte urgent data because we shouldn't get 19159 * here if TCP_URG_VALID is set. 19160 */ 19161 if (*usable > 0 && *usable < mss && 19162 ((md_pbuf_nxt == NULL && 19163 (*xmit_tail)->b_cont == NULL) || 19164 (md_pbuf_nxt != NULL && 19165 (*xmit_tail)->b_cont->b_cont == NULL)) && 19166 seg_len < (tcp->tcp_max_swnd >> 1) && 19167 (tcp->tcp_unsent - 19168 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19169 !tcp->tcp_zero_win_probe) { 19170 if ((*snxt + len) == tcp->tcp_snxt && 19171 (*snxt + len) == tcp->tcp_suna) { 19172 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19173 } 19174 done = B_TRUE; 19175 } 19176 19177 /* 19178 * Prime pump for IP's checksumming on our behalf; 19179 * include the adjustment for a source route if any. 19180 * Do this only for software/partial hardware checksum 19181 * offload, as this field gets zeroed out later for 19182 * the full hardware checksum offload case. 19183 */ 19184 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19185 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19186 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19187 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19188 } 19189 19190 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19191 *snxt += len; 19192 19193 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19194 /* 19195 * We set the PUSH bit only if TCP has no more buffered 19196 * data to be transmitted (or if sender SWS avoidance 19197 * takes place), as opposed to setting it for every 19198 * last packet in the burst. 19199 */ 19200 if (done || 19201 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19202 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19203 19204 /* 19205 * Set FIN bit if this is our last segment; snxt 19206 * already includes its length, and it will not 19207 * be adjusted after this point. 19208 */ 19209 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19210 *snxt == tcp->tcp_fss) { 19211 if (!tcp->tcp_fin_acked) { 19212 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19213 BUMP_MIB(&tcp_mib, tcpOutControl); 19214 } 19215 if (!tcp->tcp_fin_sent) { 19216 tcp->tcp_fin_sent = B_TRUE; 19217 /* 19218 * tcp state must be ESTABLISHED 19219 * in order for us to get here in 19220 * the first place. 19221 */ 19222 tcp->tcp_state = TCPS_FIN_WAIT_1; 19223 19224 /* 19225 * Upon returning from this routine, 19226 * tcp_wput_data() will set tcp_snxt 19227 * to be equal to snxt + tcp_fin_sent. 19228 * This is essentially the same as 19229 * setting it to tcp_fss + 1. 19230 */ 19231 } 19232 } 19233 19234 tcp->tcp_last_sent_len = (ushort_t)len; 19235 19236 len += tcp_hdr_len; 19237 if (tcp->tcp_ipversion == IPV4_VERSION) 19238 tcp->tcp_ipha->ipha_length = htons(len); 19239 else 19240 tcp->tcp_ip6h->ip6_plen = htons(len - 19241 ((char *)&tcp->tcp_ip6h[1] - 19242 tcp->tcp_iphc)); 19243 19244 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19245 19246 /* setup header fragment */ 19247 PDESC_HDR_ADD(pkt_info, 19248 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19249 tcp->tcp_mdt_hdr_head, /* head room */ 19250 tcp_hdr_len, /* len */ 19251 tcp->tcp_mdt_hdr_tail); /* tail room */ 19252 19253 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 19254 hdr_frag_sz); 19255 ASSERT(MBLKIN(md_hbuf, 19256 (pkt_info->hdr_base - md_hbuf->b_rptr), 19257 PDESC_HDRSIZE(pkt_info))); 19258 19259 /* setup first payload fragment */ 19260 PDESC_PLD_INIT(pkt_info); 19261 PDESC_PLD_SPAN_ADD(pkt_info, 19262 pbuf_idx, /* index */ 19263 md_pbuf->b_rptr + cur_pld_off, /* start */ 19264 tcp->tcp_last_sent_len); /* len */ 19265 19266 /* create a split-packet in case of a spillover */ 19267 if (md_pbuf_nxt != NULL) { 19268 ASSERT(spill > 0); 19269 ASSERT(pbuf_idx_nxt > pbuf_idx); 19270 ASSERT(!add_buffer); 19271 19272 md_pbuf = md_pbuf_nxt; 19273 md_pbuf_nxt = NULL; 19274 pbuf_idx = pbuf_idx_nxt; 19275 pbuf_idx_nxt = -1; 19276 cur_pld_off = spill; 19277 19278 /* trim out first payload fragment */ 19279 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 19280 19281 /* setup second payload fragment */ 19282 PDESC_PLD_SPAN_ADD(pkt_info, 19283 pbuf_idx, /* index */ 19284 md_pbuf->b_rptr, /* start */ 19285 spill); /* len */ 19286 19287 if ((*xmit_tail)->b_next == NULL) { 19288 /* 19289 * Store the lbolt used for RTT 19290 * estimation. We can only record one 19291 * timestamp per mblk so we do it when 19292 * we reach the end of the payload 19293 * buffer. Also we only take a new 19294 * timestamp sample when the previous 19295 * timed data from the same mblk has 19296 * been ack'ed. 19297 */ 19298 (*xmit_tail)->b_prev = local_time; 19299 (*xmit_tail)->b_next = 19300 (mblk_t *)(uintptr_t)first_snxt; 19301 } 19302 19303 first_snxt = *snxt - spill; 19304 19305 /* 19306 * Advance xmit_tail; usable could be 0 by 19307 * the time we got here, but we made sure 19308 * above that we would only spillover to 19309 * the next data block if usable includes 19310 * the spilled-over amount prior to the 19311 * subtraction. Therefore, we are sure 19312 * that xmit_tail->b_cont can't be NULL. 19313 */ 19314 ASSERT((*xmit_tail)->b_cont != NULL); 19315 *xmit_tail = (*xmit_tail)->b_cont; 19316 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19317 (uintptr_t)INT_MAX); 19318 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 19319 } else { 19320 cur_pld_off += tcp->tcp_last_sent_len; 19321 } 19322 19323 /* 19324 * Fill in the header using the template header, and 19325 * add options such as time-stamp, ECN and/or SACK, 19326 * as needed. 19327 */ 19328 tcp_fill_header(tcp, pkt_info->hdr_rptr, 19329 (clock_t)local_time, num_sack_blk); 19330 19331 /* take care of some IP header businesses */ 19332 if (af == AF_INET) { 19333 ipha = (ipha_t *)pkt_info->hdr_rptr; 19334 19335 ASSERT(OK_32PTR((uchar_t *)ipha)); 19336 ASSERT(PDESC_HDRL(pkt_info) >= 19337 IP_SIMPLE_HDR_LENGTH); 19338 ASSERT(ipha->ipha_version_and_hdr_length == 19339 IP_SIMPLE_HDR_VERSION); 19340 19341 /* 19342 * Assign ident value for current packet; see 19343 * related comments in ip_wput_ire() about the 19344 * contract private interface with clustering 19345 * group. 19346 */ 19347 clusterwide = B_FALSE; 19348 if (cl_inet_ipident != NULL) { 19349 ASSERT(cl_inet_isclusterwide != NULL); 19350 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19351 AF_INET, 19352 (uint8_t *)(uintptr_t)src)) { 19353 ipha->ipha_ident = 19354 (*cl_inet_ipident) 19355 (IPPROTO_IP, AF_INET, 19356 (uint8_t *)(uintptr_t)src, 19357 (uint8_t *)(uintptr_t)dst); 19358 clusterwide = B_TRUE; 19359 } 19360 } 19361 19362 if (!clusterwide) { 19363 ipha->ipha_ident = (uint16_t) 19364 atomic_add_32_nv( 19365 &ire->ire_ident, 1); 19366 } 19367 #ifndef _BIG_ENDIAN 19368 ipha->ipha_ident = (ipha->ipha_ident << 8) | 19369 (ipha->ipha_ident >> 8); 19370 #endif 19371 } else { 19372 ip6h = (ip6_t *)pkt_info->hdr_rptr; 19373 19374 ASSERT(OK_32PTR((uchar_t *)ip6h)); 19375 ASSERT(IPVER(ip6h) == IPV6_VERSION); 19376 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 19377 ASSERT(PDESC_HDRL(pkt_info) >= 19378 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 19379 TCP_CHECKSUM_SIZE)); 19380 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 19381 19382 if (tcp->tcp_ip_forward_progress) { 19383 rconfirm = B_TRUE; 19384 tcp->tcp_ip_forward_progress = B_FALSE; 19385 } 19386 } 19387 19388 /* at least one payload span, and at most two */ 19389 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 19390 19391 /* add the packet descriptor to Multidata */ 19392 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 19393 KM_NOSLEEP)) == NULL) { 19394 /* 19395 * Any failure other than ENOMEM indicates 19396 * that we have passed in invalid pkt_info 19397 * or parameters to mmd_addpdesc, which must 19398 * not happen. 19399 * 19400 * EINVAL is a result of failure on boundary 19401 * checks against the pkt_info contents. It 19402 * should not happen, and we panic because 19403 * either there's horrible heap corruption, 19404 * and/or programming mistake. 19405 */ 19406 if (err != ENOMEM) { 19407 cmn_err(CE_PANIC, "tcp_multisend: " 19408 "pdesc logic error detected for " 19409 "tcp %p mmd %p pinfo %p (%d)\n", 19410 (void *)tcp, (void *)mmd, 19411 (void *)pkt_info, err); 19412 } 19413 TCP_STAT(tcp_mdt_addpdescfail); 19414 goto legacy_send; /* out_of_mem */ 19415 } 19416 ASSERT(pkt != NULL); 19417 19418 /* calculate IP header and TCP checksums */ 19419 if (af == AF_INET) { 19420 /* calculate pseudo-header checksum */ 19421 cksum = (dst >> 16) + (dst & 0xFFFF) + 19422 (src >> 16) + (src & 0xFFFF); 19423 19424 /* offset for TCP header checksum */ 19425 up = IPH_TCPH_CHECKSUMP(ipha, 19426 IP_SIMPLE_HDR_LENGTH); 19427 } else { 19428 up = (uint16_t *)&ip6h->ip6_src; 19429 19430 /* calculate pseudo-header checksum */ 19431 cksum = up[0] + up[1] + up[2] + up[3] + 19432 up[4] + up[5] + up[6] + up[7] + 19433 up[8] + up[9] + up[10] + up[11] + 19434 up[12] + up[13] + up[14] + up[15]; 19435 19436 /* Fold the initial sum */ 19437 cksum = (cksum & 0xffff) + (cksum >> 16); 19438 19439 up = (uint16_t *)(((uchar_t *)ip6h) + 19440 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 19441 } 19442 19443 if (hwcksum_flags & HCK_FULLCKSUM) { 19444 /* clear checksum field for hardware */ 19445 *up = 0; 19446 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 19447 uint32_t sum; 19448 19449 /* pseudo-header checksumming */ 19450 sum = *up + cksum + IP_TCP_CSUM_COMP; 19451 sum = (sum & 0xFFFF) + (sum >> 16); 19452 *up = (sum & 0xFFFF) + (sum >> 16); 19453 } else { 19454 /* software checksumming */ 19455 TCP_STAT(tcp_out_sw_cksum); 19456 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 19457 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 19458 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 19459 cksum + IP_TCP_CSUM_COMP); 19460 if (*up == 0) 19461 *up = 0xFFFF; 19462 } 19463 19464 /* IPv4 header checksum */ 19465 if (af == AF_INET) { 19466 ipha->ipha_fragment_offset_and_flags |= 19467 (uint32_t)htons(ire->ire_frag_flag); 19468 19469 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 19470 ipha->ipha_hdr_checksum = 0; 19471 } else { 19472 IP_HDR_CKSUM(ipha, cksum, 19473 ((uint32_t *)ipha)[0], 19474 ((uint16_t *)ipha)[4]); 19475 } 19476 } 19477 19478 /* advance header offset */ 19479 cur_hdr_off += hdr_frag_sz; 19480 19481 obbytes += tcp->tcp_last_sent_len; 19482 ++obsegs; 19483 } while (!done && *usable > 0 && --num_burst_seg > 0 && 19484 *tail_unsent > 0); 19485 19486 if ((*xmit_tail)->b_next == NULL) { 19487 /* 19488 * Store the lbolt used for RTT estimation. We can only 19489 * record one timestamp per mblk so we do it when we 19490 * reach the end of the payload buffer. Also we only 19491 * take a new timestamp sample when the previous timed 19492 * data from the same mblk has been ack'ed. 19493 */ 19494 (*xmit_tail)->b_prev = local_time; 19495 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 19496 } 19497 19498 ASSERT(*tail_unsent >= 0); 19499 if (*tail_unsent > 0) { 19500 /* 19501 * We got here because we broke out of the above 19502 * loop due to of one of the following cases: 19503 * 19504 * 1. len < adjusted MSS (i.e. small), 19505 * 2. Sender SWS avoidance, 19506 * 3. max_pld is zero. 19507 * 19508 * We are done for this Multidata, so trim our 19509 * last payload buffer (if any) accordingly. 19510 */ 19511 if (md_pbuf != NULL) 19512 md_pbuf->b_wptr -= *tail_unsent; 19513 } else if (*usable > 0) { 19514 *xmit_tail = (*xmit_tail)->b_cont; 19515 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19516 (uintptr_t)INT_MAX); 19517 *tail_unsent = (int)MBLKL(*xmit_tail); 19518 add_buffer = B_TRUE; 19519 } 19520 } while (!done && *usable > 0 && num_burst_seg > 0 && 19521 (tcp_mdt_chain || max_pld > 0)); 19522 19523 /* send everything down */ 19524 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 19525 &rconfirm); 19526 19527 #undef PREP_NEW_MULTIDATA 19528 #undef PREP_NEW_PBUF 19529 #undef IPVER 19530 19531 IRE_REFRELE(ire); 19532 return (0); 19533 } 19534 19535 /* 19536 * A wrapper function for sending one or more Multidata messages down to 19537 * the module below ip; this routine does not release the reference of the 19538 * IRE (caller does that). This routine is analogous to tcp_send_data(). 19539 */ 19540 static void 19541 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 19542 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 19543 { 19544 uint64_t delta; 19545 nce_t *nce; 19546 19547 ASSERT(ire != NULL && ill != NULL); 19548 ASSERT(ire->ire_stq != NULL); 19549 ASSERT(md_mp_head != NULL); 19550 ASSERT(rconfirm != NULL); 19551 19552 /* adjust MIBs and IRE timestamp */ 19553 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 19554 tcp->tcp_obsegs += obsegs; 19555 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 19556 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 19557 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 19558 19559 if (tcp->tcp_ipversion == IPV4_VERSION) { 19560 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 19561 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 19562 } else { 19563 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 19564 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 19565 } 19566 19567 ire->ire_ob_pkt_count += obsegs; 19568 if (ire->ire_ipif != NULL) 19569 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 19570 ire->ire_last_used_time = lbolt; 19571 19572 /* send it down */ 19573 putnext(ire->ire_stq, md_mp_head); 19574 19575 /* we're done for TCP/IPv4 */ 19576 if (tcp->tcp_ipversion == IPV4_VERSION) 19577 return; 19578 19579 nce = ire->ire_nce; 19580 19581 ASSERT(nce != NULL); 19582 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 19583 ASSERT(nce->nce_state != ND_INCOMPLETE); 19584 19585 /* reachability confirmation? */ 19586 if (*rconfirm) { 19587 nce->nce_last = TICK_TO_MSEC(lbolt64); 19588 if (nce->nce_state != ND_REACHABLE) { 19589 mutex_enter(&nce->nce_lock); 19590 nce->nce_state = ND_REACHABLE; 19591 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 19592 mutex_exit(&nce->nce_lock); 19593 (void) untimeout(nce->nce_timeout_id); 19594 if (ip_debug > 2) { 19595 /* ip1dbg */ 19596 pr_addr_dbg("tcp_multisend_data: state " 19597 "for %s changed to REACHABLE\n", 19598 AF_INET6, &ire->ire_addr_v6); 19599 } 19600 } 19601 /* reset transport reachability confirmation */ 19602 *rconfirm = B_FALSE; 19603 } 19604 19605 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 19606 ip1dbg(("tcp_multisend_data: delta = %" PRId64 19607 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 19608 19609 if (delta > (uint64_t)ill->ill_reachable_time) { 19610 mutex_enter(&nce->nce_lock); 19611 switch (nce->nce_state) { 19612 case ND_REACHABLE: 19613 case ND_STALE: 19614 /* 19615 * ND_REACHABLE is identical to ND_STALE in this 19616 * specific case. If reachable time has expired for 19617 * this neighbor (delta is greater than reachable 19618 * time), conceptually, the neighbor cache is no 19619 * longer in REACHABLE state, but already in STALE 19620 * state. So the correct transition here is to 19621 * ND_DELAY. 19622 */ 19623 nce->nce_state = ND_DELAY; 19624 mutex_exit(&nce->nce_lock); 19625 NDP_RESTART_TIMER(nce, delay_first_probe_time); 19626 if (ip_debug > 3) { 19627 /* ip2dbg */ 19628 pr_addr_dbg("tcp_multisend_data: state " 19629 "for %s changed to DELAY\n", 19630 AF_INET6, &ire->ire_addr_v6); 19631 } 19632 break; 19633 case ND_DELAY: 19634 case ND_PROBE: 19635 mutex_exit(&nce->nce_lock); 19636 /* Timers have already started */ 19637 break; 19638 case ND_UNREACHABLE: 19639 /* 19640 * ndp timer has detected that this nce is 19641 * unreachable and initiated deleting this nce 19642 * and all its associated IREs. This is a race 19643 * where we found the ire before it was deleted 19644 * and have just sent out a packet using this 19645 * unreachable nce. 19646 */ 19647 mutex_exit(&nce->nce_lock); 19648 break; 19649 default: 19650 ASSERT(0); 19651 } 19652 } 19653 } 19654 19655 /* 19656 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 19657 * scheme, and returns one of the following: 19658 * 19659 * -1 = failed allocation. 19660 * 0 = success; burst count reached, or usable send window is too small, 19661 * and that we'd rather wait until later before sending again. 19662 * 1 = success; we are called from tcp_multisend(), and both usable send 19663 * window and tail_unsent are greater than the MDT threshold, and thus 19664 * Multidata Transmit should be used instead. 19665 */ 19666 static int 19667 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19668 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19669 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19670 const int mdt_thres) 19671 { 19672 int num_burst_seg = tcp->tcp_snd_burst; 19673 19674 for (;;) { 19675 struct datab *db; 19676 tcph_t *tcph; 19677 uint32_t sum; 19678 mblk_t *mp, *mp1; 19679 uchar_t *rptr; 19680 int len; 19681 19682 /* 19683 * If we're called by tcp_multisend(), and the amount of 19684 * sendable data as well as the size of current xmit_tail 19685 * is beyond the MDT threshold, return to the caller and 19686 * let the large data transmit be done using MDT. 19687 */ 19688 if (*usable > 0 && *usable > mdt_thres && 19689 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 19690 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 19691 ASSERT(tcp->tcp_mdt); 19692 return (1); /* success; do large send */ 19693 } 19694 19695 if (num_burst_seg-- == 0) 19696 break; /* success; burst count reached */ 19697 19698 len = mss; 19699 if (len > *usable) { 19700 len = *usable; 19701 if (len <= 0) { 19702 /* Terminate the loop */ 19703 break; /* success; too small */ 19704 } 19705 /* 19706 * Sender silly-window avoidance. 19707 * Ignore this if we are going to send a 19708 * zero window probe out. 19709 * 19710 * TODO: force data into microscopic window? 19711 * ==> (!pushed || (unsent > usable)) 19712 */ 19713 if (len < (tcp->tcp_max_swnd >> 1) && 19714 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 19715 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 19716 len == 1) && (! tcp->tcp_zero_win_probe)) { 19717 /* 19718 * If the retransmit timer is not running 19719 * we start it so that we will retransmit 19720 * in the case when the the receiver has 19721 * decremented the window. 19722 */ 19723 if (*snxt == tcp->tcp_snxt && 19724 *snxt == tcp->tcp_suna) { 19725 /* 19726 * We are not supposed to send 19727 * anything. So let's wait a little 19728 * bit longer before breaking SWS 19729 * avoidance. 19730 * 19731 * What should the value be? 19732 * Suggestion: MAX(init rexmit time, 19733 * tcp->tcp_rto) 19734 */ 19735 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19736 } 19737 break; /* success; too small */ 19738 } 19739 } 19740 19741 tcph = tcp->tcp_tcph; 19742 19743 *usable -= len; /* Approximate - can be adjusted later */ 19744 if (*usable > 0) 19745 tcph->th_flags[0] = TH_ACK; 19746 else 19747 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 19748 19749 /* 19750 * Prime pump for IP's checksumming on our behalf 19751 * Include the adjustment for a source route if any. 19752 */ 19753 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19754 sum = (sum >> 16) + (sum & 0xFFFF); 19755 U16_TO_ABE16(sum, tcph->th_sum); 19756 19757 U32_TO_ABE32(*snxt, tcph->th_seq); 19758 19759 /* 19760 * Branch off to tcp_xmit_mp() if any of the VALID bits is 19761 * set. For the case when TCP_FSS_VALID is the only valid 19762 * bit (normal active close), branch off only when we think 19763 * that the FIN flag needs to be set. Note for this case, 19764 * that (snxt + len) may not reflect the actual seg_len, 19765 * as len may be further reduced in tcp_xmit_mp(). If len 19766 * gets modified, we will end up here again. 19767 */ 19768 if (tcp->tcp_valid_bits != 0 && 19769 (tcp->tcp_valid_bits != TCP_FSS_VALID || 19770 ((*snxt + len) == tcp->tcp_fss))) { 19771 uchar_t *prev_rptr; 19772 uint32_t prev_snxt = tcp->tcp_snxt; 19773 19774 if (*tail_unsent == 0) { 19775 ASSERT((*xmit_tail)->b_cont != NULL); 19776 *xmit_tail = (*xmit_tail)->b_cont; 19777 prev_rptr = (*xmit_tail)->b_rptr; 19778 *tail_unsent = (int)((*xmit_tail)->b_wptr - 19779 (*xmit_tail)->b_rptr); 19780 } else { 19781 prev_rptr = (*xmit_tail)->b_rptr; 19782 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 19783 *tail_unsent; 19784 } 19785 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 19786 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 19787 /* Restore tcp_snxt so we get amount sent right. */ 19788 tcp->tcp_snxt = prev_snxt; 19789 if (prev_rptr == (*xmit_tail)->b_rptr) { 19790 /* 19791 * If the previous timestamp is still in use, 19792 * don't stomp on it. 19793 */ 19794 if ((*xmit_tail)->b_next == NULL) { 19795 (*xmit_tail)->b_prev = local_time; 19796 (*xmit_tail)->b_next = 19797 (mblk_t *)(uintptr_t)(*snxt); 19798 } 19799 } else 19800 (*xmit_tail)->b_rptr = prev_rptr; 19801 19802 if (mp == NULL) 19803 return (-1); 19804 mp1 = mp->b_cont; 19805 19806 tcp->tcp_last_sent_len = (ushort_t)len; 19807 while (mp1->b_cont) { 19808 *xmit_tail = (*xmit_tail)->b_cont; 19809 (*xmit_tail)->b_prev = local_time; 19810 (*xmit_tail)->b_next = 19811 (mblk_t *)(uintptr_t)(*snxt); 19812 mp1 = mp1->b_cont; 19813 } 19814 *snxt += len; 19815 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 19816 BUMP_LOCAL(tcp->tcp_obsegs); 19817 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 19818 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 19819 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 19820 tcp_send_data(tcp, q, mp); 19821 continue; 19822 } 19823 19824 *snxt += len; /* Adjust later if we don't send all of len */ 19825 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 19826 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 19827 19828 if (*tail_unsent) { 19829 /* Are the bytes above us in flight? */ 19830 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 19831 if (rptr != (*xmit_tail)->b_rptr) { 19832 *tail_unsent -= len; 19833 tcp->tcp_last_sent_len = (ushort_t)len; 19834 len += tcp_hdr_len; 19835 if (tcp->tcp_ipversion == IPV4_VERSION) 19836 tcp->tcp_ipha->ipha_length = htons(len); 19837 else 19838 tcp->tcp_ip6h->ip6_plen = 19839 htons(len - 19840 ((char *)&tcp->tcp_ip6h[1] - 19841 tcp->tcp_iphc)); 19842 mp = dupb(*xmit_tail); 19843 if (!mp) 19844 return (-1); /* out_of_mem */ 19845 mp->b_rptr = rptr; 19846 /* 19847 * If the old timestamp is no longer in use, 19848 * sample a new timestamp now. 19849 */ 19850 if ((*xmit_tail)->b_next == NULL) { 19851 (*xmit_tail)->b_prev = local_time; 19852 (*xmit_tail)->b_next = 19853 (mblk_t *)(uintptr_t)(*snxt-len); 19854 } 19855 goto must_alloc; 19856 } 19857 } else { 19858 *xmit_tail = (*xmit_tail)->b_cont; 19859 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 19860 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 19861 *tail_unsent = (int)((*xmit_tail)->b_wptr - 19862 (*xmit_tail)->b_rptr); 19863 } 19864 19865 (*xmit_tail)->b_prev = local_time; 19866 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 19867 19868 *tail_unsent -= len; 19869 tcp->tcp_last_sent_len = (ushort_t)len; 19870 19871 len += tcp_hdr_len; 19872 if (tcp->tcp_ipversion == IPV4_VERSION) 19873 tcp->tcp_ipha->ipha_length = htons(len); 19874 else 19875 tcp->tcp_ip6h->ip6_plen = htons(len - 19876 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 19877 19878 mp = dupb(*xmit_tail); 19879 if (!mp) 19880 return (-1); /* out_of_mem */ 19881 19882 len = tcp_hdr_len; 19883 /* 19884 * There are four reasons to allocate a new hdr mblk: 19885 * 1) The bytes above us are in use by another packet 19886 * 2) We don't have good alignment 19887 * 3) The mblk is being shared 19888 * 4) We don't have enough room for a header 19889 */ 19890 rptr = mp->b_rptr - len; 19891 if (!OK_32PTR(rptr) || 19892 ((db = mp->b_datap), db->db_ref != 2) || 19893 rptr < db->db_base) { 19894 /* NOTE: we assume allocb returns an OK_32PTR */ 19895 19896 must_alloc:; 19897 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 19898 tcp_wroff_xtra, BPRI_MED); 19899 if (!mp1) { 19900 freemsg(mp); 19901 return (-1); /* out_of_mem */ 19902 } 19903 mp1->b_cont = mp; 19904 mp = mp1; 19905 /* Leave room for Link Level header */ 19906 len = tcp_hdr_len; 19907 rptr = &mp->b_rptr[tcp_wroff_xtra]; 19908 mp->b_wptr = &rptr[len]; 19909 } 19910 19911 /* 19912 * Fill in the header using the template header, and add 19913 * options such as time-stamp, ECN and/or SACK, as needed. 19914 */ 19915 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 19916 19917 mp->b_rptr = rptr; 19918 19919 if (*tail_unsent) { 19920 int spill = *tail_unsent; 19921 19922 mp1 = mp->b_cont; 19923 if (!mp1) 19924 mp1 = mp; 19925 19926 /* 19927 * If we're a little short, tack on more mblks until 19928 * there is no more spillover. 19929 */ 19930 while (spill < 0) { 19931 mblk_t *nmp; 19932 int nmpsz; 19933 19934 nmp = (*xmit_tail)->b_cont; 19935 nmpsz = MBLKL(nmp); 19936 19937 /* 19938 * Excess data in mblk; can we split it? 19939 * If MDT is enabled for the connection, 19940 * keep on splitting as this is a transient 19941 * send path. 19942 */ 19943 if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { 19944 /* 19945 * Don't split if stream head was 19946 * told to break up larger writes 19947 * into smaller ones. 19948 */ 19949 if (tcp->tcp_maxpsz > 0) 19950 break; 19951 19952 /* 19953 * Next mblk is less than SMSS/2 19954 * rounded up to nearest 64-byte; 19955 * let it get sent as part of the 19956 * next segment. 19957 */ 19958 if (tcp->tcp_localnet && 19959 !tcp->tcp_cork && 19960 (nmpsz < roundup((mss >> 1), 64))) 19961 break; 19962 } 19963 19964 *xmit_tail = nmp; 19965 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 19966 /* Stash for rtt use later */ 19967 (*xmit_tail)->b_prev = local_time; 19968 (*xmit_tail)->b_next = 19969 (mblk_t *)(uintptr_t)(*snxt - len); 19970 mp1->b_cont = dupb(*xmit_tail); 19971 mp1 = mp1->b_cont; 19972 19973 spill += nmpsz; 19974 if (mp1 == NULL) { 19975 *tail_unsent = spill; 19976 freemsg(mp); 19977 return (-1); /* out_of_mem */ 19978 } 19979 } 19980 19981 /* Trim back any surplus on the last mblk */ 19982 if (spill >= 0) { 19983 mp1->b_wptr -= spill; 19984 *tail_unsent = spill; 19985 } else { 19986 /* 19987 * We did not send everything we could in 19988 * order to remain within the b_cont limit. 19989 */ 19990 *usable -= spill; 19991 *snxt += spill; 19992 tcp->tcp_last_sent_len += spill; 19993 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 19994 /* 19995 * Adjust the checksum 19996 */ 19997 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19998 sum += spill; 19999 sum = (sum >> 16) + (sum & 0xFFFF); 20000 U16_TO_ABE16(sum, tcph->th_sum); 20001 if (tcp->tcp_ipversion == IPV4_VERSION) { 20002 sum = ntohs( 20003 ((ipha_t *)rptr)->ipha_length) + 20004 spill; 20005 ((ipha_t *)rptr)->ipha_length = 20006 htons(sum); 20007 } else { 20008 sum = ntohs( 20009 ((ip6_t *)rptr)->ip6_plen) + 20010 spill; 20011 ((ip6_t *)rptr)->ip6_plen = 20012 htons(sum); 20013 } 20014 *tail_unsent = 0; 20015 } 20016 } 20017 if (tcp->tcp_ip_forward_progress) { 20018 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20019 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 20020 tcp->tcp_ip_forward_progress = B_FALSE; 20021 } 20022 20023 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20024 tcp_send_data(tcp, q, mp); 20025 BUMP_LOCAL(tcp->tcp_obsegs); 20026 } 20027 20028 return (0); 20029 } 20030 20031 /* Unlink and return any mblk that looks like it contains a MDT info */ 20032 static mblk_t * 20033 tcp_mdt_info_mp(mblk_t *mp) 20034 { 20035 mblk_t *prev_mp; 20036 20037 for (;;) { 20038 prev_mp = mp; 20039 /* no more to process? */ 20040 if ((mp = mp->b_cont) == NULL) 20041 break; 20042 20043 switch (DB_TYPE(mp)) { 20044 case M_CTL: 20045 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 20046 continue; 20047 ASSERT(prev_mp != NULL); 20048 prev_mp->b_cont = mp->b_cont; 20049 mp->b_cont = NULL; 20050 return (mp); 20051 default: 20052 break; 20053 } 20054 } 20055 return (mp); 20056 } 20057 20058 /* MDT info update routine, called when IP notifies us about MDT */ 20059 static void 20060 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 20061 { 20062 boolean_t prev_state; 20063 20064 /* 20065 * IP is telling us to abort MDT on this connection? We know 20066 * this because the capability is only turned off when IP 20067 * encounters some pathological cases, e.g. link-layer change 20068 * where the new driver doesn't support MDT, or in situation 20069 * where MDT usage on the link-layer has been switched off. 20070 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 20071 * if the link-layer doesn't support MDT, and if it does, it 20072 * will indicate that the feature is to be turned on. 20073 */ 20074 prev_state = tcp->tcp_mdt; 20075 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 20076 if (!tcp->tcp_mdt && !first) { 20077 TCP_STAT(tcp_mdt_conn_halted3); 20078 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 20079 (void *)tcp->tcp_connp)); 20080 } 20081 20082 /* 20083 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 20084 * so disable MDT otherwise. The checks are done here 20085 * and in tcp_wput_data(). 20086 */ 20087 if (tcp->tcp_mdt && 20088 (tcp->tcp_ipversion == IPV4_VERSION && 20089 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20090 (tcp->tcp_ipversion == IPV6_VERSION && 20091 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 20092 tcp->tcp_mdt = B_FALSE; 20093 20094 if (tcp->tcp_mdt) { 20095 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 20096 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 20097 "version (%d), expected version is %d", 20098 mdt_capab->ill_mdt_version, MDT_VERSION_2); 20099 tcp->tcp_mdt = B_FALSE; 20100 return; 20101 } 20102 20103 /* 20104 * We need the driver to be able to handle at least three 20105 * spans per packet in order for tcp MDT to be utilized. 20106 * The first is for the header portion, while the rest are 20107 * needed to handle a packet that straddles across two 20108 * virtually non-contiguous buffers; a typical tcp packet 20109 * therefore consists of only two spans. Note that we take 20110 * a zero as "don't care". 20111 */ 20112 if (mdt_capab->ill_mdt_span_limit > 0 && 20113 mdt_capab->ill_mdt_span_limit < 3) { 20114 tcp->tcp_mdt = B_FALSE; 20115 return; 20116 } 20117 20118 /* a zero means driver wants default value */ 20119 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 20120 tcp_mdt_max_pbufs); 20121 if (tcp->tcp_mdt_max_pld == 0) 20122 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 20123 20124 /* ensure 32-bit alignment */ 20125 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 20126 mdt_capab->ill_mdt_hdr_head), 4); 20127 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 20128 mdt_capab->ill_mdt_hdr_tail), 4); 20129 20130 if (!first && !prev_state) { 20131 TCP_STAT(tcp_mdt_conn_resumed2); 20132 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 20133 (void *)tcp->tcp_connp)); 20134 } 20135 } 20136 } 20137 20138 static void 20139 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) 20140 { 20141 conn_t *connp = tcp->tcp_connp; 20142 20143 ASSERT(ire != NULL); 20144 20145 /* 20146 * We may be in the fastpath here, and although we essentially do 20147 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, 20148 * we try to keep things as brief as possible. After all, these 20149 * are only best-effort checks, and we do more thorough ones prior 20150 * to calling tcp_multisend(). 20151 */ 20152 if (ip_multidata_outbound && check_mdt && 20153 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 20154 ill != NULL && ILL_MDT_CAPABLE(ill) && 20155 !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 20156 !(ire->ire_flags & RTF_MULTIRT) && 20157 !IPP_ENABLED(IPP_LOCAL_OUT) && 20158 CONN_IS_MD_FASTPATH(connp)) { 20159 /* Remember the result */ 20160 connp->conn_mdt_ok = B_TRUE; 20161 20162 ASSERT(ill->ill_mdt_capab != NULL); 20163 if (!ill->ill_mdt_capab->ill_mdt_on) { 20164 /* 20165 * If MDT has been previously turned off in the past, 20166 * and we currently can do MDT (due to IPQoS policy 20167 * removal, etc.) then enable it for this interface. 20168 */ 20169 ill->ill_mdt_capab->ill_mdt_on = 1; 20170 ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " 20171 "interface %s\n", (void *)connp, ill->ill_name)); 20172 } 20173 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 20174 } 20175 20176 /* 20177 * The goal is to reduce the number of generated tcp segments by 20178 * setting the maxpsz multiplier to 0; this will have an affect on 20179 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 20180 * into each packet, up to SMSS bytes. Doing this reduces the number 20181 * of outbound segments and incoming ACKs, thus allowing for better 20182 * network and system performance. In contrast the legacy behavior 20183 * may result in sending less than SMSS size, because the last mblk 20184 * for some packets may have more data than needed to make up SMSS, 20185 * and the legacy code refused to "split" it. 20186 * 20187 * We apply the new behavior on following situations: 20188 * 20189 * 1) Loopback connections, 20190 * 2) Connections in which the remote peer is not on local subnet, 20191 * 3) Local subnet connections over the bge interface (see below). 20192 * 20193 * Ideally, we would like this behavior to apply for interfaces other 20194 * than bge. However, doing so would negatively impact drivers which 20195 * perform dynamic mapping and unmapping of DMA resources, which are 20196 * increased by setting the maxpsz multiplier to 0 (more mblks per 20197 * packet will be generated by tcp). The bge driver does not suffer 20198 * from this, as it copies the mblks into pre-mapped buffers, and 20199 * therefore does not require more I/O resources than before. 20200 * 20201 * Otherwise, this behavior is present on all network interfaces when 20202 * the destination endpoint is non-local, since reducing the number 20203 * of packets in general is good for the network. 20204 * 20205 * TODO We need to remove this hard-coded conditional for bge once 20206 * a better "self-tuning" mechanism, or a way to comprehend 20207 * the driver transmit strategy is devised. Until the solution 20208 * is found and well understood, we live with this hack. 20209 */ 20210 if (!tcp_static_maxpsz && 20211 (tcp->tcp_loopback || !tcp->tcp_localnet || 20212 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 20213 /* override the default value */ 20214 tcp->tcp_maxpsz = 0; 20215 20216 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 20217 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 20218 ill != NULL ? ill->ill_name : ipif_loopback_name)); 20219 } 20220 20221 /* set the stream head parameters accordingly */ 20222 (void) tcp_maxpsz_set(tcp, B_TRUE); 20223 } 20224 20225 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 20226 static void 20227 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 20228 { 20229 uchar_t fval = *mp->b_rptr; 20230 mblk_t *tail; 20231 queue_t *q = tcp->tcp_wq; 20232 20233 /* TODO: How should flush interact with urgent data? */ 20234 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 20235 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 20236 /* 20237 * Flush only data that has not yet been put on the wire. If 20238 * we flush data that we have already transmitted, life, as we 20239 * know it, may come to an end. 20240 */ 20241 tail = tcp->tcp_xmit_tail; 20242 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 20243 tcp->tcp_xmit_tail_unsent = 0; 20244 tcp->tcp_unsent = 0; 20245 if (tail->b_wptr != tail->b_rptr) 20246 tail = tail->b_cont; 20247 if (tail) { 20248 mblk_t **excess = &tcp->tcp_xmit_head; 20249 for (;;) { 20250 mblk_t *mp1 = *excess; 20251 if (mp1 == tail) 20252 break; 20253 tcp->tcp_xmit_tail = mp1; 20254 tcp->tcp_xmit_last = mp1; 20255 excess = &mp1->b_cont; 20256 } 20257 *excess = NULL; 20258 tcp_close_mpp(&tail); 20259 if (tcp->tcp_snd_zcopy_aware) 20260 tcp_zcopy_notify(tcp); 20261 } 20262 /* 20263 * We have no unsent data, so unsent must be less than 20264 * tcp_xmit_lowater, so re-enable flow. 20265 */ 20266 if (tcp->tcp_flow_stopped) { 20267 tcp_clrqfull(tcp); 20268 } 20269 } 20270 /* 20271 * TODO: you can't just flush these, you have to increase rwnd for one 20272 * thing. For another, how should urgent data interact? 20273 */ 20274 if (fval & FLUSHR) { 20275 *mp->b_rptr = fval & ~FLUSHW; 20276 /* XXX */ 20277 qreply(q, mp); 20278 return; 20279 } 20280 freemsg(mp); 20281 } 20282 20283 /* 20284 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 20285 * messages. 20286 */ 20287 static void 20288 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 20289 { 20290 mblk_t *mp1; 20291 STRUCT_HANDLE(strbuf, sb); 20292 uint16_t port; 20293 queue_t *q = tcp->tcp_wq; 20294 in6_addr_t v6addr; 20295 ipaddr_t v4addr; 20296 uint32_t flowinfo = 0; 20297 int addrlen; 20298 20299 /* Make sure it is one of ours. */ 20300 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20301 case TI_GETMYNAME: 20302 case TI_GETPEERNAME: 20303 break; 20304 default: 20305 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20306 return; 20307 } 20308 switch (mi_copy_state(q, mp, &mp1)) { 20309 case -1: 20310 return; 20311 case MI_COPY_CASE(MI_COPY_IN, 1): 20312 break; 20313 case MI_COPY_CASE(MI_COPY_OUT, 1): 20314 /* Copy out the strbuf. */ 20315 mi_copyout(q, mp); 20316 return; 20317 case MI_COPY_CASE(MI_COPY_OUT, 2): 20318 /* All done. */ 20319 mi_copy_done(q, mp, 0); 20320 return; 20321 default: 20322 mi_copy_done(q, mp, EPROTO); 20323 return; 20324 } 20325 /* Check alignment of the strbuf */ 20326 if (!OK_32PTR(mp1->b_rptr)) { 20327 mi_copy_done(q, mp, EINVAL); 20328 return; 20329 } 20330 20331 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 20332 (void *)mp1->b_rptr); 20333 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 20334 20335 if (STRUCT_FGET(sb, maxlen) < addrlen) { 20336 mi_copy_done(q, mp, EINVAL); 20337 return; 20338 } 20339 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20340 case TI_GETMYNAME: 20341 if (tcp->tcp_family == AF_INET) { 20342 if (tcp->tcp_ipversion == IPV4_VERSION) { 20343 v4addr = tcp->tcp_ipha->ipha_src; 20344 } else { 20345 /* can't return an address in this case */ 20346 v4addr = 0; 20347 } 20348 } else { 20349 /* tcp->tcp_family == AF_INET6 */ 20350 if (tcp->tcp_ipversion == IPV4_VERSION) { 20351 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 20352 &v6addr); 20353 } else { 20354 v6addr = tcp->tcp_ip6h->ip6_src; 20355 } 20356 } 20357 port = tcp->tcp_lport; 20358 break; 20359 case TI_GETPEERNAME: 20360 if (tcp->tcp_family == AF_INET) { 20361 if (tcp->tcp_ipversion == IPV4_VERSION) { 20362 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 20363 v4addr); 20364 } else { 20365 /* can't return an address in this case */ 20366 v4addr = 0; 20367 } 20368 } else { 20369 /* tcp->tcp_family == AF_INET6) */ 20370 v6addr = tcp->tcp_remote_v6; 20371 if (tcp->tcp_ipversion == IPV6_VERSION) { 20372 /* 20373 * No flowinfo if tcp->tcp_ipversion is v4. 20374 * 20375 * flowinfo was already initialized to zero 20376 * where it was declared above, so only 20377 * set it if ipversion is v6. 20378 */ 20379 flowinfo = tcp->tcp_ip6h->ip6_vcf & 20380 ~IPV6_VERS_AND_FLOW_MASK; 20381 } 20382 } 20383 port = tcp->tcp_fport; 20384 break; 20385 default: 20386 mi_copy_done(q, mp, EPROTO); 20387 return; 20388 } 20389 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 20390 if (!mp1) 20391 return; 20392 20393 if (tcp->tcp_family == AF_INET) { 20394 sin_t *sin; 20395 20396 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 20397 sin = (sin_t *)mp1->b_rptr; 20398 mp1->b_wptr = (uchar_t *)&sin[1]; 20399 *sin = sin_null; 20400 sin->sin_family = AF_INET; 20401 sin->sin_addr.s_addr = v4addr; 20402 sin->sin_port = port; 20403 } else { 20404 /* tcp->tcp_family == AF_INET6 */ 20405 sin6_t *sin6; 20406 20407 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 20408 sin6 = (sin6_t *)mp1->b_rptr; 20409 mp1->b_wptr = (uchar_t *)&sin6[1]; 20410 *sin6 = sin6_null; 20411 sin6->sin6_family = AF_INET6; 20412 sin6->sin6_flowinfo = flowinfo; 20413 sin6->sin6_addr = v6addr; 20414 sin6->sin6_port = port; 20415 } 20416 /* Copy out the address */ 20417 mi_copyout(q, mp); 20418 } 20419 20420 /* 20421 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 20422 * messages. 20423 */ 20424 /* ARGSUSED */ 20425 static void 20426 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 20427 { 20428 conn_t *connp = (conn_t *)arg; 20429 tcp_t *tcp = connp->conn_tcp; 20430 queue_t *q = tcp->tcp_wq; 20431 struct iocblk *iocp; 20432 20433 ASSERT(DB_TYPE(mp) == M_IOCTL); 20434 /* 20435 * Try and ASSERT the minimum possible references on the 20436 * conn early enough. Since we are executing on write side, 20437 * the connection is obviously not detached and that means 20438 * there is a ref each for TCP and IP. Since we are behind 20439 * the squeue, the minimum references needed are 3. If the 20440 * conn is in classifier hash list, there should be an 20441 * extra ref for that (we check both the possibilities). 20442 */ 20443 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20444 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20445 20446 iocp = (struct iocblk *)mp->b_rptr; 20447 switch (iocp->ioc_cmd) { 20448 case TCP_IOC_DEFAULT_Q: 20449 /* Wants to be the default wq. */ 20450 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 20451 iocp->ioc_error = EPERM; 20452 iocp->ioc_count = 0; 20453 mp->b_datap->db_type = M_IOCACK; 20454 qreply(q, mp); 20455 return; 20456 } 20457 tcp_def_q_set(tcp, mp); 20458 return; 20459 case _SIOCSOCKFALLBACK: 20460 /* 20461 * Either sockmod is about to be popped and the socket 20462 * would now be treated as a plain stream, or a module 20463 * is about to be pushed so we could no longer use read- 20464 * side synchronous streams for fused loopback tcp. 20465 * Drain any queued data and disable direct sockfs 20466 * interface from now on. 20467 */ 20468 if (!tcp->tcp_issocket) { 20469 DB_TYPE(mp) = M_IOCNAK; 20470 iocp->ioc_error = EINVAL; 20471 } else { 20472 #ifdef _ILP32 20473 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 20474 #else 20475 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 20476 #endif 20477 /* 20478 * Insert this socket into the acceptor hash. 20479 * We might need it for T_CONN_RES message 20480 */ 20481 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 20482 20483 if (tcp->tcp_fused) { 20484 /* 20485 * This is a fused loopback tcp; disable 20486 * read-side synchronous streams interface 20487 * and drain any queued data. It is okay 20488 * to do this for non-synchronous streams 20489 * fused tcp as well. 20490 */ 20491 tcp_fuse_disable_pair(tcp, B_FALSE); 20492 } 20493 tcp->tcp_issocket = B_FALSE; 20494 TCP_STAT(tcp_sock_fallback); 20495 20496 DB_TYPE(mp) = M_IOCACK; 20497 iocp->ioc_error = 0; 20498 } 20499 iocp->ioc_count = 0; 20500 iocp->ioc_rval = 0; 20501 qreply(q, mp); 20502 return; 20503 } 20504 CALL_IP_WPUT(connp, q, mp); 20505 } 20506 20507 /* 20508 * This routine is called by tcp_wput() to handle all TPI requests. 20509 */ 20510 /* ARGSUSED */ 20511 static void 20512 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 20513 { 20514 conn_t *connp = (conn_t *)arg; 20515 tcp_t *tcp = connp->conn_tcp; 20516 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 20517 uchar_t *rptr; 20518 t_scalar_t type; 20519 int len; 20520 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 20521 20522 /* 20523 * Try and ASSERT the minimum possible references on the 20524 * conn early enough. Since we are executing on write side, 20525 * the connection is obviously not detached and that means 20526 * there is a ref each for TCP and IP. Since we are behind 20527 * the squeue, the minimum references needed are 3. If the 20528 * conn is in classifier hash list, there should be an 20529 * extra ref for that (we check both the possibilities). 20530 */ 20531 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20532 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20533 20534 rptr = mp->b_rptr; 20535 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 20536 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 20537 type = ((union T_primitives *)rptr)->type; 20538 if (type == T_EXDATA_REQ) { 20539 uint32_t msize = msgdsize(mp->b_cont); 20540 20541 len = msize - 1; 20542 if (len < 0) { 20543 freemsg(mp); 20544 return; 20545 } 20546 /* 20547 * Try to force urgent data out on the wire. 20548 * Even if we have unsent data this will 20549 * at least send the urgent flag. 20550 * XXX does not handle more flag correctly. 20551 */ 20552 len += tcp->tcp_unsent; 20553 len += tcp->tcp_snxt; 20554 tcp->tcp_urg = len; 20555 tcp->tcp_valid_bits |= TCP_URG_VALID; 20556 20557 /* Bypass tcp protocol for fused tcp loopback */ 20558 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 20559 return; 20560 } else if (type != T_DATA_REQ) { 20561 goto non_urgent_data; 20562 } 20563 /* TODO: options, flags, ... from user */ 20564 /* Set length to zero for reclamation below */ 20565 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 20566 freeb(mp); 20567 return; 20568 } else { 20569 if (tcp->tcp_debug) { 20570 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20571 "tcp_wput_proto, dropping one..."); 20572 } 20573 freemsg(mp); 20574 return; 20575 } 20576 20577 non_urgent_data: 20578 20579 switch ((int)tprim->type) { 20580 case O_T_BIND_REQ: /* bind request */ 20581 case T_BIND_REQ: /* new semantics bind request */ 20582 tcp_bind(tcp, mp); 20583 break; 20584 case T_UNBIND_REQ: /* unbind request */ 20585 tcp_unbind(tcp, mp); 20586 break; 20587 case O_T_CONN_RES: /* old connection response XXX */ 20588 case T_CONN_RES: /* connection response */ 20589 tcp_accept(tcp, mp); 20590 break; 20591 case T_CONN_REQ: /* connection request */ 20592 tcp_connect(tcp, mp); 20593 break; 20594 case T_DISCON_REQ: /* disconnect request */ 20595 tcp_disconnect(tcp, mp); 20596 break; 20597 case T_CAPABILITY_REQ: 20598 tcp_capability_req(tcp, mp); /* capability request */ 20599 break; 20600 case T_INFO_REQ: /* information request */ 20601 tcp_info_req(tcp, mp); 20602 break; 20603 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 20604 /* Only IP is allowed to return meaningful value */ 20605 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 20606 break; 20607 case T_OPTMGMT_REQ: 20608 /* 20609 * Note: no support for snmpcom_req() through new 20610 * T_OPTMGMT_REQ. See comments in ip.c 20611 */ 20612 /* Only IP is allowed to return meaningful value */ 20613 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 20614 break; 20615 20616 case T_UNITDATA_REQ: /* unitdata request */ 20617 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 20618 break; 20619 case T_ORDREL_REQ: /* orderly release req */ 20620 freemsg(mp); 20621 20622 if (tcp->tcp_fused) 20623 tcp_unfuse(tcp); 20624 20625 if (tcp_xmit_end(tcp) != 0) { 20626 /* 20627 * We were crossing FINs and got a reset from 20628 * the other side. Just ignore it. 20629 */ 20630 if (tcp->tcp_debug) { 20631 (void) strlog(TCP_MOD_ID, 0, 1, 20632 SL_ERROR|SL_TRACE, 20633 "tcp_wput_proto, T_ORDREL_REQ out of " 20634 "state %s", 20635 tcp_display(tcp, NULL, 20636 DISP_ADDR_AND_PORT)); 20637 } 20638 } 20639 break; 20640 case T_ADDR_REQ: 20641 tcp_addr_req(tcp, mp); 20642 break; 20643 default: 20644 if (tcp->tcp_debug) { 20645 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20646 "tcp_wput_proto, bogus TPI msg, type %d", 20647 tprim->type); 20648 } 20649 /* 20650 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 20651 * to recover. 20652 */ 20653 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 20654 break; 20655 } 20656 } 20657 20658 /* 20659 * The TCP write service routine should never be called... 20660 */ 20661 /* ARGSUSED */ 20662 static void 20663 tcp_wsrv(queue_t *q) 20664 { 20665 TCP_STAT(tcp_wsrv_called); 20666 } 20667 20668 /* Non overlapping byte exchanger */ 20669 static void 20670 tcp_xchg(uchar_t *a, uchar_t *b, int len) 20671 { 20672 uchar_t uch; 20673 20674 while (len-- > 0) { 20675 uch = a[len]; 20676 a[len] = b[len]; 20677 b[len] = uch; 20678 } 20679 } 20680 20681 /* 20682 * Send out a control packet on the tcp connection specified. This routine 20683 * is typically called where we need a simple ACK or RST generated. 20684 */ 20685 static void 20686 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 20687 { 20688 uchar_t *rptr; 20689 tcph_t *tcph; 20690 ipha_t *ipha = NULL; 20691 ip6_t *ip6h = NULL; 20692 uint32_t sum; 20693 int tcp_hdr_len; 20694 int tcp_ip_hdr_len; 20695 mblk_t *mp; 20696 20697 /* 20698 * Save sum for use in source route later. 20699 */ 20700 ASSERT(tcp != NULL); 20701 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 20702 tcp_hdr_len = tcp->tcp_hdr_len; 20703 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 20704 20705 /* If a text string is passed in with the request, pass it to strlog. */ 20706 if (str != NULL && tcp->tcp_debug) { 20707 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 20708 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 20709 str, seq, ack, ctl); 20710 } 20711 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 20712 BPRI_MED); 20713 if (mp == NULL) { 20714 return; 20715 } 20716 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20717 mp->b_rptr = rptr; 20718 mp->b_wptr = &rptr[tcp_hdr_len]; 20719 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 20720 20721 if (tcp->tcp_ipversion == IPV4_VERSION) { 20722 ipha = (ipha_t *)rptr; 20723 ipha->ipha_length = htons(tcp_hdr_len); 20724 } else { 20725 ip6h = (ip6_t *)rptr; 20726 ASSERT(tcp != NULL); 20727 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 20728 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20729 } 20730 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 20731 tcph->th_flags[0] = (uint8_t)ctl; 20732 if (ctl & TH_RST) { 20733 BUMP_MIB(&tcp_mib, tcpOutRsts); 20734 BUMP_MIB(&tcp_mib, tcpOutControl); 20735 /* 20736 * Don't send TSopt w/ TH_RST packets per RFC 1323. 20737 */ 20738 if (tcp->tcp_snd_ts_ok && 20739 tcp->tcp_state > TCPS_SYN_SENT) { 20740 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 20741 *(mp->b_wptr) = TCPOPT_EOL; 20742 if (tcp->tcp_ipversion == IPV4_VERSION) { 20743 ipha->ipha_length = htons(tcp_hdr_len - 20744 TCPOPT_REAL_TS_LEN); 20745 } else { 20746 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 20747 TCPOPT_REAL_TS_LEN); 20748 } 20749 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 20750 sum -= TCPOPT_REAL_TS_LEN; 20751 } 20752 } 20753 if (ctl & TH_ACK) { 20754 if (tcp->tcp_snd_ts_ok) { 20755 U32_TO_BE32(lbolt, 20756 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 20757 U32_TO_BE32(tcp->tcp_ts_recent, 20758 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 20759 } 20760 20761 /* Update the latest receive window size in TCP header. */ 20762 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 20763 tcph->th_win); 20764 tcp->tcp_rack = ack; 20765 tcp->tcp_rack_cnt = 0; 20766 BUMP_MIB(&tcp_mib, tcpOutAck); 20767 } 20768 BUMP_LOCAL(tcp->tcp_obsegs); 20769 U32_TO_BE32(seq, tcph->th_seq); 20770 U32_TO_BE32(ack, tcph->th_ack); 20771 /* 20772 * Include the adjustment for a source route if any. 20773 */ 20774 sum = (sum >> 16) + (sum & 0xFFFF); 20775 U16_TO_BE16(sum, tcph->th_sum); 20776 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20777 tcp_send_data(tcp, tcp->tcp_wq, mp); 20778 } 20779 20780 /* 20781 * If this routine returns B_TRUE, TCP can generate a RST in response 20782 * to a segment. If it returns B_FALSE, TCP should not respond. 20783 */ 20784 static boolean_t 20785 tcp_send_rst_chk(void) 20786 { 20787 clock_t now; 20788 20789 /* 20790 * TCP needs to protect itself from generating too many RSTs. 20791 * This can be a DoS attack by sending us random segments 20792 * soliciting RSTs. 20793 * 20794 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 20795 * in each 1 second interval. In this way, TCP still generate 20796 * RSTs in normal cases but when under attack, the impact is 20797 * limited. 20798 */ 20799 if (tcp_rst_sent_rate_enabled != 0) { 20800 now = lbolt; 20801 /* lbolt can wrap around. */ 20802 if ((tcp_last_rst_intrvl > now) || 20803 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 20804 tcp_last_rst_intrvl = now; 20805 tcp_rst_cnt = 1; 20806 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 20807 return (B_FALSE); 20808 } 20809 } 20810 return (B_TRUE); 20811 } 20812 20813 /* 20814 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 20815 */ 20816 static void 20817 tcp_ip_ire_mark_advice(tcp_t *tcp) 20818 { 20819 mblk_t *mp; 20820 ipic_t *ipic; 20821 20822 if (tcp->tcp_ipversion == IPV4_VERSION) { 20823 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 20824 &ipic); 20825 } else { 20826 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 20827 &ipic); 20828 } 20829 if (mp == NULL) 20830 return; 20831 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 20832 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 20833 } 20834 20835 /* 20836 * Return an IP advice ioctl mblk and set ipic to be the pointer 20837 * to the advice structure. 20838 */ 20839 static mblk_t * 20840 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 20841 { 20842 struct iocblk *ioc; 20843 mblk_t *mp, *mp1; 20844 20845 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 20846 if (mp == NULL) 20847 return (NULL); 20848 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 20849 *ipic = (ipic_t *)mp->b_rptr; 20850 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 20851 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 20852 20853 bcopy(addr, *ipic + 1, addr_len); 20854 20855 (*ipic)->ipic_addr_length = addr_len; 20856 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 20857 20858 mp1 = mkiocb(IP_IOCTL); 20859 if (mp1 == NULL) { 20860 freemsg(mp); 20861 return (NULL); 20862 } 20863 mp1->b_cont = mp; 20864 ioc = (struct iocblk *)mp1->b_rptr; 20865 ioc->ioc_count = sizeof (ipic_t) + addr_len; 20866 20867 return (mp1); 20868 } 20869 20870 /* 20871 * Generate a reset based on an inbound packet for which there is no active 20872 * tcp state that we can find. 20873 * 20874 * IPSEC NOTE : Try to send the reply with the same protection as it came 20875 * in. We still have the ipsec_mp that the packet was attached to. Thus 20876 * the packet will go out at the same level of protection as it came in by 20877 * converting the IPSEC_IN to IPSEC_OUT. 20878 */ 20879 static void 20880 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 20881 uint32_t ack, int ctl, uint_t ip_hdr_len) 20882 { 20883 ipha_t *ipha = NULL; 20884 ip6_t *ip6h = NULL; 20885 ushort_t len; 20886 tcph_t *tcph; 20887 int i; 20888 mblk_t *ipsec_mp; 20889 boolean_t mctl_present; 20890 ipic_t *ipic; 20891 ipaddr_t v4addr; 20892 in6_addr_t v6addr; 20893 int addr_len; 20894 void *addr; 20895 queue_t *q = tcp_g_q; 20896 tcp_t *tcp = Q_TO_TCP(q); 20897 20898 if (!tcp_send_rst_chk()) { 20899 tcp_rst_unsent++; 20900 freemsg(mp); 20901 return; 20902 } 20903 20904 if (mp->b_datap->db_type == M_CTL) { 20905 ipsec_mp = mp; 20906 mp = mp->b_cont; 20907 mctl_present = B_TRUE; 20908 } else { 20909 ipsec_mp = mp; 20910 mctl_present = B_FALSE; 20911 } 20912 20913 if (str && q && tcp_dbg) { 20914 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 20915 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 20916 "flags 0x%x", 20917 str, seq, ack, ctl); 20918 } 20919 if (mp->b_datap->db_ref != 1) { 20920 mblk_t *mp1 = copyb(mp); 20921 freemsg(mp); 20922 mp = mp1; 20923 if (!mp) { 20924 if (mctl_present) 20925 freeb(ipsec_mp); 20926 return; 20927 } else { 20928 if (mctl_present) { 20929 ipsec_mp->b_cont = mp; 20930 } else { 20931 ipsec_mp = mp; 20932 } 20933 } 20934 } else if (mp->b_cont) { 20935 freemsg(mp->b_cont); 20936 mp->b_cont = NULL; 20937 } 20938 /* 20939 * We skip reversing source route here. 20940 * (for now we replace all IP options with EOL) 20941 */ 20942 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 20943 ipha = (ipha_t *)mp->b_rptr; 20944 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 20945 mp->b_rptr[i] = IPOPT_EOL; 20946 /* 20947 * Make sure that src address isn't flagrantly invalid. 20948 * Not all broadcast address checking for the src address 20949 * is possible, since we don't know the netmask of the src 20950 * addr. No check for destination address is done, since 20951 * IP will not pass up a packet with a broadcast dest 20952 * address to TCP. Similar checks are done below for IPv6. 20953 */ 20954 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 20955 CLASSD(ipha->ipha_src)) { 20956 freemsg(ipsec_mp); 20957 BUMP_MIB(&ip_mib, ipInDiscards); 20958 return; 20959 } 20960 } else { 20961 ip6h = (ip6_t *)mp->b_rptr; 20962 20963 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 20964 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 20965 freemsg(ipsec_mp); 20966 BUMP_MIB(&ip6_mib, ipv6InDiscards); 20967 return; 20968 } 20969 20970 /* Remove any extension headers assuming partial overlay */ 20971 if (ip_hdr_len > IPV6_HDR_LEN) { 20972 uint8_t *to; 20973 20974 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 20975 ovbcopy(ip6h, to, IPV6_HDR_LEN); 20976 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 20977 ip_hdr_len = IPV6_HDR_LEN; 20978 ip6h = (ip6_t *)mp->b_rptr; 20979 ip6h->ip6_nxt = IPPROTO_TCP; 20980 } 20981 } 20982 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 20983 if (tcph->th_flags[0] & TH_RST) { 20984 freemsg(ipsec_mp); 20985 return; 20986 } 20987 tcph->th_offset_and_rsrvd[0] = (5 << 4); 20988 len = ip_hdr_len + sizeof (tcph_t); 20989 mp->b_wptr = &mp->b_rptr[len]; 20990 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 20991 ipha->ipha_length = htons(len); 20992 /* Swap addresses */ 20993 v4addr = ipha->ipha_src; 20994 ipha->ipha_src = ipha->ipha_dst; 20995 ipha->ipha_dst = v4addr; 20996 ipha->ipha_ident = 0; 20997 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 20998 addr_len = IP_ADDR_LEN; 20999 addr = &v4addr; 21000 } else { 21001 /* No ip6i_t in this case */ 21002 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 21003 /* Swap addresses */ 21004 v6addr = ip6h->ip6_src; 21005 ip6h->ip6_src = ip6h->ip6_dst; 21006 ip6h->ip6_dst = v6addr; 21007 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 21008 addr_len = IPV6_ADDR_LEN; 21009 addr = &v6addr; 21010 } 21011 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 21012 U32_TO_BE32(ack, tcph->th_ack); 21013 U32_TO_BE32(seq, tcph->th_seq); 21014 U16_TO_BE16(0, tcph->th_win); 21015 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 21016 tcph->th_flags[0] = (uint8_t)ctl; 21017 if (ctl & TH_RST) { 21018 BUMP_MIB(&tcp_mib, tcpOutRsts); 21019 BUMP_MIB(&tcp_mib, tcpOutControl); 21020 } 21021 if (mctl_present) { 21022 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21023 21024 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21025 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 21026 return; 21027 } 21028 } 21029 /* 21030 * NOTE: one might consider tracing a TCP packet here, but 21031 * this function has no active TCP state nd no tcp structure 21032 * which has trace buffer. If we traced here, we would have 21033 * to keep a local trace buffer in tcp_record_trace(). 21034 */ 21035 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 21036 21037 /* 21038 * Tell IP to mark the IRE used for this destination temporary. 21039 * This way, we can limit our exposure to DoS attack because IP 21040 * creates an IRE for each destination. If there are too many, 21041 * the time to do any routing lookup will be extremely long. And 21042 * the lookup can be in interrupt context. 21043 * 21044 * Note that in normal circumstances, this marking should not 21045 * affect anything. It would be nice if only 1 message is 21046 * needed to inform IP that the IRE created for this RST should 21047 * not be added to the cache table. But there is currently 21048 * not such communication mechanism between TCP and IP. So 21049 * the best we can do now is to send the advice ioctl to IP 21050 * to mark the IRE temporary. 21051 */ 21052 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 21053 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21054 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21055 } 21056 } 21057 21058 /* 21059 * Initiate closedown sequence on an active connection. (May be called as 21060 * writer.) Return value zero for OK return, non-zero for error return. 21061 */ 21062 static int 21063 tcp_xmit_end(tcp_t *tcp) 21064 { 21065 ipic_t *ipic; 21066 mblk_t *mp; 21067 21068 if (tcp->tcp_state < TCPS_SYN_RCVD || 21069 tcp->tcp_state > TCPS_CLOSE_WAIT) { 21070 /* 21071 * Invalid state, only states TCPS_SYN_RCVD, 21072 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 21073 */ 21074 return (-1); 21075 } 21076 21077 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 21078 tcp->tcp_valid_bits |= TCP_FSS_VALID; 21079 /* 21080 * If there is nothing more unsent, send the FIN now. 21081 * Otherwise, it will go out with the last segment. 21082 */ 21083 if (tcp->tcp_unsent == 0) { 21084 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21085 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 21086 21087 if (mp) { 21088 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21089 tcp_send_data(tcp, tcp->tcp_wq, mp); 21090 } else { 21091 /* 21092 * Couldn't allocate msg. Pretend we got it out. 21093 * Wait for rexmit timeout. 21094 */ 21095 tcp->tcp_snxt = tcp->tcp_fss + 1; 21096 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21097 } 21098 21099 /* 21100 * If needed, update tcp_rexmit_snxt as tcp_snxt is 21101 * changed. 21102 */ 21103 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 21104 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 21105 } 21106 } else { 21107 /* 21108 * If tcp->tcp_cork is set, then the data will not get sent, 21109 * so we have to check that and unset it first. 21110 */ 21111 if (tcp->tcp_cork) 21112 tcp->tcp_cork = B_FALSE; 21113 tcp_wput_data(tcp, NULL, B_FALSE); 21114 } 21115 21116 /* 21117 * If TCP does not get enough samples of RTT or tcp_rtt_updates 21118 * is 0, don't update the cache. 21119 */ 21120 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 21121 return (0); 21122 21123 /* 21124 * NOTE: should not update if source routes i.e. if tcp_remote if 21125 * different from the destination. 21126 */ 21127 if (tcp->tcp_ipversion == IPV4_VERSION) { 21128 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 21129 return (0); 21130 } 21131 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21132 &ipic); 21133 } else { 21134 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 21135 &tcp->tcp_ip6h->ip6_dst))) { 21136 return (0); 21137 } 21138 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21139 &ipic); 21140 } 21141 21142 /* Record route attributes in the IRE for use by future connections. */ 21143 if (mp == NULL) 21144 return (0); 21145 21146 /* 21147 * We do not have a good algorithm to update ssthresh at this time. 21148 * So don't do any update. 21149 */ 21150 ipic->ipic_rtt = tcp->tcp_rtt_sa; 21151 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 21152 21153 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21154 return (0); 21155 } 21156 21157 /* 21158 * Generate a "no listener here" RST in response to an "unknown" segment. 21159 * Note that we are reusing the incoming mp to construct the outgoing 21160 * RST. 21161 */ 21162 void 21163 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len) 21164 { 21165 uchar_t *rptr; 21166 uint32_t seg_len; 21167 tcph_t *tcph; 21168 uint32_t seg_seq; 21169 uint32_t seg_ack; 21170 uint_t flags; 21171 mblk_t *ipsec_mp; 21172 ipha_t *ipha; 21173 ip6_t *ip6h; 21174 boolean_t mctl_present = B_FALSE; 21175 boolean_t check = B_TRUE; 21176 boolean_t policy_present; 21177 21178 TCP_STAT(tcp_no_listener); 21179 21180 ipsec_mp = mp; 21181 21182 if (mp->b_datap->db_type == M_CTL) { 21183 ipsec_in_t *ii; 21184 21185 mctl_present = B_TRUE; 21186 mp = mp->b_cont; 21187 21188 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21189 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21190 if (ii->ipsec_in_dont_check) { 21191 check = B_FALSE; 21192 if (!ii->ipsec_in_secure) { 21193 freeb(ipsec_mp); 21194 mctl_present = B_FALSE; 21195 ipsec_mp = mp; 21196 } 21197 } 21198 } 21199 21200 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21201 policy_present = ipsec_inbound_v4_policy_present; 21202 ipha = (ipha_t *)mp->b_rptr; 21203 ip6h = NULL; 21204 } else { 21205 policy_present = ipsec_inbound_v6_policy_present; 21206 ipha = NULL; 21207 ip6h = (ip6_t *)mp->b_rptr; 21208 } 21209 21210 if (check && policy_present) { 21211 /* 21212 * The conn_t parameter is NULL because we already know 21213 * nobody's home. 21214 */ 21215 ipsec_mp = ipsec_check_global_policy( 21216 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 21217 if (ipsec_mp == NULL) 21218 return; 21219 } 21220 21221 21222 rptr = mp->b_rptr; 21223 21224 tcph = (tcph_t *)&rptr[ip_hdr_len]; 21225 seg_seq = BE32_TO_U32(tcph->th_seq); 21226 seg_ack = BE32_TO_U32(tcph->th_ack); 21227 flags = tcph->th_flags[0]; 21228 21229 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 21230 if (flags & TH_RST) { 21231 freemsg(ipsec_mp); 21232 } else if (flags & TH_ACK) { 21233 tcp_xmit_early_reset("no tcp, reset", 21234 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len); 21235 } else { 21236 if (flags & TH_SYN) { 21237 seg_len++; 21238 } else { 21239 /* 21240 * Here we violate the RFC. Note that a normal 21241 * TCP will never send a segment without the ACK 21242 * flag, except for RST or SYN segment. This 21243 * segment is neither. Just drop it on the 21244 * floor. 21245 */ 21246 freemsg(ipsec_mp); 21247 tcp_rst_unsent++; 21248 return; 21249 } 21250 21251 tcp_xmit_early_reset("no tcp, reset/ack", 21252 ipsec_mp, 0, seg_seq + seg_len, 21253 TH_RST | TH_ACK, ip_hdr_len); 21254 } 21255 } 21256 21257 /* 21258 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 21259 * ip and tcp header ready to pass down to IP. If the mp passed in is 21260 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 21261 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 21262 * otherwise it will dup partial mblks.) 21263 * Otherwise, an appropriate ACK packet will be generated. This 21264 * routine is not usually called to send new data for the first time. It 21265 * is mostly called out of the timer for retransmits, and to generate ACKs. 21266 * 21267 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 21268 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 21269 * of the original mblk chain will be returned in *offset and *end_mp. 21270 */ 21271 static mblk_t * 21272 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 21273 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 21274 boolean_t rexmit) 21275 { 21276 int data_length; 21277 int32_t off = 0; 21278 uint_t flags; 21279 mblk_t *mp1; 21280 mblk_t *mp2; 21281 uchar_t *rptr; 21282 tcph_t *tcph; 21283 int32_t num_sack_blk = 0; 21284 int32_t sack_opt_len = 0; 21285 21286 /* Allocate for our maximum TCP header + link-level */ 21287 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21288 BPRI_MED); 21289 if (!mp1) 21290 return (NULL); 21291 data_length = 0; 21292 21293 /* 21294 * Note that tcp_mss has been adjusted to take into account the 21295 * timestamp option if applicable. Because SACK options do not 21296 * appear in every TCP segments and they are of variable lengths, 21297 * they cannot be included in tcp_mss. Thus we need to calculate 21298 * the actual segment length when we need to send a segment which 21299 * includes SACK options. 21300 */ 21301 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21302 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21303 tcp->tcp_num_sack_blk); 21304 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21305 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21306 if (max_to_send + sack_opt_len > tcp->tcp_mss) 21307 max_to_send -= sack_opt_len; 21308 } 21309 21310 if (offset != NULL) { 21311 off = *offset; 21312 /* We use offset as an indicator that end_mp is not NULL. */ 21313 *end_mp = NULL; 21314 } 21315 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 21316 /* This could be faster with cooperation from downstream */ 21317 if (mp2 != mp1 && !sendall && 21318 data_length + (int)(mp->b_wptr - mp->b_rptr) > 21319 max_to_send) 21320 /* 21321 * Don't send the next mblk since the whole mblk 21322 * does not fit. 21323 */ 21324 break; 21325 mp2->b_cont = dupb(mp); 21326 mp2 = mp2->b_cont; 21327 if (!mp2) { 21328 freemsg(mp1); 21329 return (NULL); 21330 } 21331 mp2->b_rptr += off; 21332 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 21333 (uintptr_t)INT_MAX); 21334 21335 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 21336 if (data_length > max_to_send) { 21337 mp2->b_wptr -= data_length - max_to_send; 21338 data_length = max_to_send; 21339 off = mp2->b_wptr - mp->b_rptr; 21340 break; 21341 } else { 21342 off = 0; 21343 } 21344 } 21345 if (offset != NULL) { 21346 *offset = off; 21347 *end_mp = mp; 21348 } 21349 if (seg_len != NULL) { 21350 *seg_len = data_length; 21351 } 21352 21353 /* Update the latest receive window size in TCP header. */ 21354 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21355 tcp->tcp_tcph->th_win); 21356 21357 rptr = mp1->b_rptr + tcp_wroff_xtra; 21358 mp1->b_rptr = rptr; 21359 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 21360 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21361 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21362 U32_TO_ABE32(seq, tcph->th_seq); 21363 21364 /* 21365 * Use tcp_unsent to determine if the PUSH bit should be used assumes 21366 * that this function was called from tcp_wput_data. Thus, when called 21367 * to retransmit data the setting of the PUSH bit may appear some 21368 * what random in that it might get set when it should not. This 21369 * should not pose any performance issues. 21370 */ 21371 if (data_length != 0 && (tcp->tcp_unsent == 0 || 21372 tcp->tcp_unsent == data_length)) { 21373 flags = TH_ACK | TH_PUSH; 21374 } else { 21375 flags = TH_ACK; 21376 } 21377 21378 if (tcp->tcp_ecn_ok) { 21379 if (tcp->tcp_ecn_echo_on) 21380 flags |= TH_ECE; 21381 21382 /* 21383 * Only set ECT bit and ECN_CWR if a segment contains new data. 21384 * There is no TCP flow control for non-data segments, and 21385 * only data segment is transmitted reliably. 21386 */ 21387 if (data_length > 0 && !rexmit) { 21388 SET_ECT(tcp, rptr); 21389 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 21390 flags |= TH_CWR; 21391 tcp->tcp_ecn_cwr_sent = B_TRUE; 21392 } 21393 } 21394 } 21395 21396 if (tcp->tcp_valid_bits) { 21397 uint32_t u1; 21398 21399 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 21400 seq == tcp->tcp_iss) { 21401 uchar_t *wptr; 21402 21403 /* 21404 * If TCP_ISS_VALID and the seq number is tcp_iss, 21405 * TCP can only be in SYN-SENT, SYN-RCVD or 21406 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 21407 * our SYN is not ack'ed but the app closes this 21408 * TCP connection. 21409 */ 21410 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 21411 tcp->tcp_state == TCPS_SYN_RCVD || 21412 tcp->tcp_state == TCPS_FIN_WAIT_1); 21413 21414 /* 21415 * Tack on the MSS option. It is always needed 21416 * for both active and passive open. 21417 * 21418 * MSS option value should be interface MTU - MIN 21419 * TCP/IP header according to RFC 793 as it means 21420 * the maximum segment size TCP can receive. But 21421 * to get around some broken middle boxes/end hosts 21422 * out there, we allow the option value to be the 21423 * same as the MSS option size on the peer side. 21424 * In this way, the other side will not send 21425 * anything larger than they can receive. 21426 * 21427 * Note that for SYN_SENT state, the ndd param 21428 * tcp_use_smss_as_mss_opt has no effect as we 21429 * don't know the peer's MSS option value. So 21430 * the only case we need to take care of is in 21431 * SYN_RCVD state, which is done later. 21432 */ 21433 wptr = mp1->b_wptr; 21434 wptr[0] = TCPOPT_MAXSEG; 21435 wptr[1] = TCPOPT_MAXSEG_LEN; 21436 wptr += 2; 21437 u1 = tcp->tcp_if_mtu - 21438 (tcp->tcp_ipversion == IPV4_VERSION ? 21439 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 21440 TCP_MIN_HEADER_LENGTH; 21441 U16_TO_BE16(u1, wptr); 21442 mp1->b_wptr = wptr + 2; 21443 /* Update the offset to cover the additional word */ 21444 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21445 21446 /* 21447 * Note that the following way of filling in 21448 * TCP options are not optimal. Some NOPs can 21449 * be saved. But there is no need at this time 21450 * to optimize it. When it is needed, we will 21451 * do it. 21452 */ 21453 switch (tcp->tcp_state) { 21454 case TCPS_SYN_SENT: 21455 flags = TH_SYN; 21456 21457 if (tcp->tcp_snd_ts_ok) { 21458 uint32_t llbolt = (uint32_t)lbolt; 21459 21460 wptr = mp1->b_wptr; 21461 wptr[0] = TCPOPT_NOP; 21462 wptr[1] = TCPOPT_NOP; 21463 wptr[2] = TCPOPT_TSTAMP; 21464 wptr[3] = TCPOPT_TSTAMP_LEN; 21465 wptr += 4; 21466 U32_TO_BE32(llbolt, wptr); 21467 wptr += 4; 21468 ASSERT(tcp->tcp_ts_recent == 0); 21469 U32_TO_BE32(0L, wptr); 21470 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 21471 tcph->th_offset_and_rsrvd[0] += 21472 (3 << 4); 21473 } 21474 21475 /* 21476 * Set up all the bits to tell other side 21477 * we are ECN capable. 21478 */ 21479 if (tcp->tcp_ecn_ok) { 21480 flags |= (TH_ECE | TH_CWR); 21481 } 21482 break; 21483 case TCPS_SYN_RCVD: 21484 flags |= TH_SYN; 21485 21486 /* 21487 * Reset the MSS option value to be SMSS 21488 * We should probably add back the bytes 21489 * for timestamp option and IPsec. We 21490 * don't do that as this is a workaround 21491 * for broken middle boxes/end hosts, it 21492 * is better for us to be more cautious. 21493 * They may not take these things into 21494 * account in their SMSS calculation. Thus 21495 * the peer's calculated SMSS may be smaller 21496 * than what it can be. This should be OK. 21497 */ 21498 if (tcp_use_smss_as_mss_opt) { 21499 u1 = tcp->tcp_mss; 21500 U16_TO_BE16(u1, wptr); 21501 } 21502 21503 /* 21504 * If the other side is ECN capable, reply 21505 * that we are also ECN capable. 21506 */ 21507 if (tcp->tcp_ecn_ok) 21508 flags |= TH_ECE; 21509 break; 21510 default: 21511 /* 21512 * The above ASSERT() makes sure that this 21513 * must be FIN-WAIT-1 state. Our SYN has 21514 * not been ack'ed so retransmit it. 21515 */ 21516 flags |= TH_SYN; 21517 break; 21518 } 21519 21520 if (tcp->tcp_snd_ws_ok) { 21521 wptr = mp1->b_wptr; 21522 wptr[0] = TCPOPT_NOP; 21523 wptr[1] = TCPOPT_WSCALE; 21524 wptr[2] = TCPOPT_WS_LEN; 21525 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 21526 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 21527 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21528 } 21529 21530 if (tcp->tcp_snd_sack_ok) { 21531 wptr = mp1->b_wptr; 21532 wptr[0] = TCPOPT_NOP; 21533 wptr[1] = TCPOPT_NOP; 21534 wptr[2] = TCPOPT_SACK_PERMITTED; 21535 wptr[3] = TCPOPT_SACK_OK_LEN; 21536 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 21537 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21538 } 21539 21540 /* allocb() of adequate mblk assures space */ 21541 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 21542 (uintptr_t)INT_MAX); 21543 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 21544 /* 21545 * Get IP set to checksum on our behalf 21546 * Include the adjustment for a source route if any. 21547 */ 21548 u1 += tcp->tcp_sum; 21549 u1 = (u1 >> 16) + (u1 & 0xFFFF); 21550 U16_TO_BE16(u1, tcph->th_sum); 21551 BUMP_MIB(&tcp_mib, tcpOutControl); 21552 } 21553 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 21554 (seq + data_length) == tcp->tcp_fss) { 21555 if (!tcp->tcp_fin_acked) { 21556 flags |= TH_FIN; 21557 BUMP_MIB(&tcp_mib, tcpOutControl); 21558 } 21559 if (!tcp->tcp_fin_sent) { 21560 tcp->tcp_fin_sent = B_TRUE; 21561 switch (tcp->tcp_state) { 21562 case TCPS_SYN_RCVD: 21563 case TCPS_ESTABLISHED: 21564 tcp->tcp_state = TCPS_FIN_WAIT_1; 21565 break; 21566 case TCPS_CLOSE_WAIT: 21567 tcp->tcp_state = TCPS_LAST_ACK; 21568 break; 21569 } 21570 if (tcp->tcp_suna == tcp->tcp_snxt) 21571 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21572 tcp->tcp_snxt = tcp->tcp_fss + 1; 21573 } 21574 } 21575 /* 21576 * Note the trick here. u1 is unsigned. When tcp_urg 21577 * is smaller than seq, u1 will become a very huge value. 21578 * So the comparison will fail. Also note that tcp_urp 21579 * should be positive, see RFC 793 page 17. 21580 */ 21581 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 21582 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 21583 u1 < (uint32_t)(64 * 1024)) { 21584 flags |= TH_URG; 21585 BUMP_MIB(&tcp_mib, tcpOutUrg); 21586 U32_TO_ABE16(u1, tcph->th_urp); 21587 } 21588 } 21589 tcph->th_flags[0] = (uchar_t)flags; 21590 tcp->tcp_rack = tcp->tcp_rnxt; 21591 tcp->tcp_rack_cnt = 0; 21592 21593 if (tcp->tcp_snd_ts_ok) { 21594 if (tcp->tcp_state != TCPS_SYN_SENT) { 21595 uint32_t llbolt = (uint32_t)lbolt; 21596 21597 U32_TO_BE32(llbolt, 21598 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21599 U32_TO_BE32(tcp->tcp_ts_recent, 21600 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21601 } 21602 } 21603 21604 if (num_sack_blk > 0) { 21605 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 21606 sack_blk_t *tmp; 21607 int32_t i; 21608 21609 wptr[0] = TCPOPT_NOP; 21610 wptr[1] = TCPOPT_NOP; 21611 wptr[2] = TCPOPT_SACK; 21612 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 21613 sizeof (sack_blk_t); 21614 wptr += TCPOPT_REAL_SACK_LEN; 21615 21616 tmp = tcp->tcp_sack_list; 21617 for (i = 0; i < num_sack_blk; i++) { 21618 U32_TO_BE32(tmp[i].begin, wptr); 21619 wptr += sizeof (tcp_seq); 21620 U32_TO_BE32(tmp[i].end, wptr); 21621 wptr += sizeof (tcp_seq); 21622 } 21623 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 21624 } 21625 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21626 data_length += (int)(mp1->b_wptr - rptr); 21627 if (tcp->tcp_ipversion == IPV4_VERSION) { 21628 ((ipha_t *)rptr)->ipha_length = htons(data_length); 21629 } else { 21630 ip6_t *ip6 = (ip6_t *)(rptr + 21631 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 21632 sizeof (ip6i_t) : 0)); 21633 21634 ip6->ip6_plen = htons(data_length - 21635 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21636 } 21637 21638 /* 21639 * Prime pump for IP 21640 * Include the adjustment for a source route if any. 21641 */ 21642 data_length -= tcp->tcp_ip_hdr_len; 21643 data_length += tcp->tcp_sum; 21644 data_length = (data_length >> 16) + (data_length & 0xFFFF); 21645 U16_TO_ABE16(data_length, tcph->th_sum); 21646 if (tcp->tcp_ip_forward_progress) { 21647 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21648 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 21649 tcp->tcp_ip_forward_progress = B_FALSE; 21650 } 21651 return (mp1); 21652 } 21653 21654 /* This function handles the push timeout. */ 21655 void 21656 tcp_push_timer(void *arg) 21657 { 21658 conn_t *connp = (conn_t *)arg; 21659 tcp_t *tcp = connp->conn_tcp; 21660 21661 TCP_DBGSTAT(tcp_push_timer_cnt); 21662 21663 ASSERT(tcp->tcp_listener == NULL); 21664 21665 /* 21666 * We need to stop synchronous streams temporarily to prevent a race 21667 * with tcp_fuse_rrw() or tcp_fusion rinfop(). It is safe to access 21668 * tcp_rcv_list here because those entry points will return right 21669 * away when synchronous streams is stopped. 21670 */ 21671 TCP_FUSE_SYNCSTR_STOP(tcp); 21672 tcp->tcp_push_tid = 0; 21673 if ((tcp->tcp_rcv_list != NULL) && 21674 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 21675 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21676 TCP_FUSE_SYNCSTR_RESUME(tcp); 21677 } 21678 21679 /* 21680 * This function handles delayed ACK timeout. 21681 */ 21682 static void 21683 tcp_ack_timer(void *arg) 21684 { 21685 conn_t *connp = (conn_t *)arg; 21686 tcp_t *tcp = connp->conn_tcp; 21687 mblk_t *mp; 21688 21689 TCP_DBGSTAT(tcp_ack_timer_cnt); 21690 21691 tcp->tcp_ack_tid = 0; 21692 21693 if (tcp->tcp_fused) 21694 return; 21695 21696 /* 21697 * Do not send ACK if there is no outstanding unack'ed data. 21698 */ 21699 if (tcp->tcp_rnxt == tcp->tcp_rack) { 21700 return; 21701 } 21702 21703 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 21704 /* 21705 * Make sure we don't allow deferred ACKs to result in 21706 * timer-based ACKing. If we have held off an ACK 21707 * when there was more than an mss here, and the timer 21708 * goes off, we have to worry about the possibility 21709 * that the sender isn't doing slow-start, or is out 21710 * of step with us for some other reason. We fall 21711 * permanently back in the direction of 21712 * ACK-every-other-packet as suggested in RFC 1122. 21713 */ 21714 if (tcp->tcp_rack_abs_max > 2) 21715 tcp->tcp_rack_abs_max--; 21716 tcp->tcp_rack_cur_max = 2; 21717 } 21718 mp = tcp_ack_mp(tcp); 21719 21720 if (mp != NULL) { 21721 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21722 BUMP_LOCAL(tcp->tcp_obsegs); 21723 BUMP_MIB(&tcp_mib, tcpOutAck); 21724 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 21725 tcp_send_data(tcp, tcp->tcp_wq, mp); 21726 } 21727 } 21728 21729 21730 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 21731 static mblk_t * 21732 tcp_ack_mp(tcp_t *tcp) 21733 { 21734 uint32_t seq_no; 21735 21736 /* 21737 * There are a few cases to be considered while setting the sequence no. 21738 * Essentially, we can come here while processing an unacceptable pkt 21739 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 21740 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 21741 * If we are here for a zero window probe, stick with suna. In all 21742 * other cases, we check if suna + swnd encompasses snxt and set 21743 * the sequence number to snxt, if so. If snxt falls outside the 21744 * window (the receiver probably shrunk its window), we will go with 21745 * suna + swnd, otherwise the sequence no will be unacceptable to the 21746 * receiver. 21747 */ 21748 if (tcp->tcp_zero_win_probe) { 21749 seq_no = tcp->tcp_suna; 21750 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 21751 ASSERT(tcp->tcp_swnd == 0); 21752 seq_no = tcp->tcp_snxt; 21753 } else { 21754 seq_no = SEQ_GT(tcp->tcp_snxt, 21755 (tcp->tcp_suna + tcp->tcp_swnd)) ? 21756 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 21757 } 21758 21759 if (tcp->tcp_valid_bits) { 21760 /* 21761 * For the complex case where we have to send some 21762 * controls (FIN or SYN), let tcp_xmit_mp do it. 21763 */ 21764 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 21765 NULL, B_FALSE)); 21766 } else { 21767 /* Generate a simple ACK */ 21768 int data_length; 21769 uchar_t *rptr; 21770 tcph_t *tcph; 21771 mblk_t *mp1; 21772 int32_t tcp_hdr_len; 21773 int32_t tcp_tcp_hdr_len; 21774 int32_t num_sack_blk = 0; 21775 int32_t sack_opt_len; 21776 21777 /* 21778 * Allocate space for TCP + IP headers 21779 * and link-level header 21780 */ 21781 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21782 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21783 tcp->tcp_num_sack_blk); 21784 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21785 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21786 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 21787 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 21788 } else { 21789 tcp_hdr_len = tcp->tcp_hdr_len; 21790 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 21791 } 21792 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 21793 if (!mp1) 21794 return (NULL); 21795 21796 /* Update the latest receive window size in TCP header. */ 21797 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21798 tcp->tcp_tcph->th_win); 21799 /* copy in prototype TCP + IP header */ 21800 rptr = mp1->b_rptr + tcp_wroff_xtra; 21801 mp1->b_rptr = rptr; 21802 mp1->b_wptr = rptr + tcp_hdr_len; 21803 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21804 21805 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21806 21807 /* Set the TCP sequence number. */ 21808 U32_TO_ABE32(seq_no, tcph->th_seq); 21809 21810 /* Set up the TCP flag field. */ 21811 tcph->th_flags[0] = (uchar_t)TH_ACK; 21812 if (tcp->tcp_ecn_echo_on) 21813 tcph->th_flags[0] |= TH_ECE; 21814 21815 tcp->tcp_rack = tcp->tcp_rnxt; 21816 tcp->tcp_rack_cnt = 0; 21817 21818 /* fill in timestamp option if in use */ 21819 if (tcp->tcp_snd_ts_ok) { 21820 uint32_t llbolt = (uint32_t)lbolt; 21821 21822 U32_TO_BE32(llbolt, 21823 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21824 U32_TO_BE32(tcp->tcp_ts_recent, 21825 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21826 } 21827 21828 /* Fill in SACK options */ 21829 if (num_sack_blk > 0) { 21830 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 21831 sack_blk_t *tmp; 21832 int32_t i; 21833 21834 wptr[0] = TCPOPT_NOP; 21835 wptr[1] = TCPOPT_NOP; 21836 wptr[2] = TCPOPT_SACK; 21837 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 21838 sizeof (sack_blk_t); 21839 wptr += TCPOPT_REAL_SACK_LEN; 21840 21841 tmp = tcp->tcp_sack_list; 21842 for (i = 0; i < num_sack_blk; i++) { 21843 U32_TO_BE32(tmp[i].begin, wptr); 21844 wptr += sizeof (tcp_seq); 21845 U32_TO_BE32(tmp[i].end, wptr); 21846 wptr += sizeof (tcp_seq); 21847 } 21848 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 21849 << 4); 21850 } 21851 21852 if (tcp->tcp_ipversion == IPV4_VERSION) { 21853 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 21854 } else { 21855 /* Check for ip6i_t header in sticky hdrs */ 21856 ip6_t *ip6 = (ip6_t *)(rptr + 21857 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 21858 sizeof (ip6i_t) : 0)); 21859 21860 ip6->ip6_plen = htons(tcp_hdr_len - 21861 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21862 } 21863 21864 /* 21865 * Prime pump for checksum calculation in IP. Include the 21866 * adjustment for a source route if any. 21867 */ 21868 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 21869 data_length = (data_length >> 16) + (data_length & 0xFFFF); 21870 U16_TO_ABE16(data_length, tcph->th_sum); 21871 21872 if (tcp->tcp_ip_forward_progress) { 21873 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21874 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 21875 tcp->tcp_ip_forward_progress = B_FALSE; 21876 } 21877 return (mp1); 21878 } 21879 } 21880 21881 /* 21882 * To create a temporary tcp structure for inserting into bind hash list. 21883 * The parameter is assumed to be in network byte order, ready for use. 21884 */ 21885 /* ARGSUSED */ 21886 static tcp_t * 21887 tcp_alloc_temp_tcp(in_port_t port) 21888 { 21889 conn_t *connp; 21890 tcp_t *tcp; 21891 21892 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 21893 if (connp == NULL) 21894 return (NULL); 21895 21896 tcp = connp->conn_tcp; 21897 21898 /* 21899 * Only initialize the necessary info in those structures. Note 21900 * that since INADDR_ANY is all 0, we do not need to set 21901 * tcp_bound_source to INADDR_ANY here. 21902 */ 21903 tcp->tcp_state = TCPS_BOUND; 21904 tcp->tcp_lport = port; 21905 tcp->tcp_exclbind = 1; 21906 tcp->tcp_reserved_port = 1; 21907 21908 /* Just for place holding... */ 21909 tcp->tcp_ipversion = IPV4_VERSION; 21910 21911 return (tcp); 21912 } 21913 21914 /* 21915 * To remove a port range specified by lo_port and hi_port from the 21916 * reserved port ranges. This is one of the three public functions of 21917 * the reserved port interface. Note that a port range has to be removed 21918 * as a whole. Ports in a range cannot be removed individually. 21919 * 21920 * Params: 21921 * in_port_t lo_port: the beginning port of the reserved port range to 21922 * be deleted. 21923 * in_port_t hi_port: the ending port of the reserved port range to 21924 * be deleted. 21925 * 21926 * Return: 21927 * B_TRUE if the deletion is successful, B_FALSE otherwise. 21928 */ 21929 boolean_t 21930 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 21931 { 21932 int i, j; 21933 int size; 21934 tcp_t **temp_tcp_array; 21935 tcp_t *tcp; 21936 21937 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 21938 21939 /* First make sure that the port ranage is indeed reserved. */ 21940 for (i = 0; i < tcp_reserved_port_array_size; i++) { 21941 if (tcp_reserved_port[i].lo_port == lo_port) { 21942 hi_port = tcp_reserved_port[i].hi_port; 21943 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 21944 break; 21945 } 21946 } 21947 if (i == tcp_reserved_port_array_size) { 21948 rw_exit(&tcp_reserved_port_lock); 21949 return (B_FALSE); 21950 } 21951 21952 /* 21953 * Remove the range from the array. This simple loop is possible 21954 * because port ranges are inserted in ascending order. 21955 */ 21956 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 21957 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 21958 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 21959 tcp_reserved_port[j].temp_tcp_array = 21960 tcp_reserved_port[j+1].temp_tcp_array; 21961 } 21962 21963 /* Remove all the temporary tcp structures. */ 21964 size = hi_port - lo_port + 1; 21965 while (size > 0) { 21966 tcp = temp_tcp_array[size - 1]; 21967 ASSERT(tcp != NULL); 21968 tcp_bind_hash_remove(tcp); 21969 CONN_DEC_REF(tcp->tcp_connp); 21970 size--; 21971 } 21972 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 21973 tcp_reserved_port_array_size--; 21974 rw_exit(&tcp_reserved_port_lock); 21975 return (B_TRUE); 21976 } 21977 21978 /* 21979 * Macro to remove temporary tcp structure from the bind hash list. The 21980 * first parameter is the list of tcp to be removed. The second parameter 21981 * is the number of tcps in the array. 21982 */ 21983 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 21984 { \ 21985 while ((num) > 0) { \ 21986 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 21987 tf_t *tbf; \ 21988 tcp_t *tcpnext; \ 21989 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 21990 mutex_enter(&tbf->tf_lock); \ 21991 tcpnext = tcp->tcp_bind_hash; \ 21992 if (tcpnext) { \ 21993 tcpnext->tcp_ptpbhn = \ 21994 tcp->tcp_ptpbhn; \ 21995 } \ 21996 *tcp->tcp_ptpbhn = tcpnext; \ 21997 mutex_exit(&tbf->tf_lock); \ 21998 kmem_free(tcp, sizeof (tcp_t)); \ 21999 (tcp_array)[(num) - 1] = NULL; \ 22000 (num)--; \ 22001 } \ 22002 } 22003 22004 /* 22005 * The public interface for other modules to call to reserve a port range 22006 * in TCP. The caller passes in how large a port range it wants. TCP 22007 * will try to find a range and return it via lo_port and hi_port. This is 22008 * used by NCA's nca_conn_init. 22009 * NCA can only be used in the global zone so this only affects the global 22010 * zone's ports. 22011 * 22012 * Params: 22013 * int size: the size of the port range to be reserved. 22014 * in_port_t *lo_port (referenced): returns the beginning port of the 22015 * reserved port range added. 22016 * in_port_t *hi_port (referenced): returns the ending port of the 22017 * reserved port range added. 22018 * 22019 * Return: 22020 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 22021 */ 22022 boolean_t 22023 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 22024 { 22025 tcp_t *tcp; 22026 tcp_t *tmp_tcp; 22027 tcp_t **temp_tcp_array; 22028 tf_t *tbf; 22029 in_port_t net_port; 22030 in_port_t port; 22031 int32_t cur_size; 22032 int i, j; 22033 boolean_t used; 22034 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 22035 zoneid_t zoneid = GLOBAL_ZONEID; 22036 22037 /* Sanity check. */ 22038 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 22039 return (B_FALSE); 22040 } 22041 22042 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22043 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 22044 rw_exit(&tcp_reserved_port_lock); 22045 return (B_FALSE); 22046 } 22047 22048 /* 22049 * Find the starting port to try. Since the port ranges are ordered 22050 * in the reserved port array, we can do a simple search here. 22051 */ 22052 *lo_port = TCP_SMALLEST_RESERVED_PORT; 22053 *hi_port = TCP_LARGEST_RESERVED_PORT; 22054 for (i = 0; i < tcp_reserved_port_array_size; 22055 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 22056 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 22057 *hi_port = tcp_reserved_port[i].lo_port - 1; 22058 break; 22059 } 22060 } 22061 /* No available port range. */ 22062 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 22063 rw_exit(&tcp_reserved_port_lock); 22064 return (B_FALSE); 22065 } 22066 22067 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 22068 if (temp_tcp_array == NULL) { 22069 rw_exit(&tcp_reserved_port_lock); 22070 return (B_FALSE); 22071 } 22072 22073 /* Go thru the port range to see if some ports are already bound. */ 22074 for (port = *lo_port, cur_size = 0; 22075 cur_size < size && port <= *hi_port; 22076 cur_size++, port++) { 22077 used = B_FALSE; 22078 net_port = htons(port); 22079 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 22080 mutex_enter(&tbf->tf_lock); 22081 for (tcp = tbf->tf_tcp; tcp != NULL; 22082 tcp = tcp->tcp_bind_hash) { 22083 if (zoneid == tcp->tcp_connp->conn_zoneid && 22084 net_port == tcp->tcp_lport) { 22085 /* 22086 * A port is already bound. Search again 22087 * starting from port + 1. Release all 22088 * temporary tcps. 22089 */ 22090 mutex_exit(&tbf->tf_lock); 22091 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22092 *lo_port = port + 1; 22093 cur_size = -1; 22094 used = B_TRUE; 22095 break; 22096 } 22097 } 22098 if (!used) { 22099 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 22100 /* 22101 * Allocation failure. Just fail the request. 22102 * Need to remove all those temporary tcp 22103 * structures. 22104 */ 22105 mutex_exit(&tbf->tf_lock); 22106 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22107 rw_exit(&tcp_reserved_port_lock); 22108 kmem_free(temp_tcp_array, 22109 (hi_port - lo_port + 1) * 22110 sizeof (tcp_t *)); 22111 return (B_FALSE); 22112 } 22113 temp_tcp_array[cur_size] = tmp_tcp; 22114 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 22115 mutex_exit(&tbf->tf_lock); 22116 } 22117 } 22118 22119 /* 22120 * The current range is not large enough. We can actually do another 22121 * search if this search is done between 2 reserved port ranges. But 22122 * for first release, we just stop here and return saying that no port 22123 * range is available. 22124 */ 22125 if (cur_size < size) { 22126 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22127 rw_exit(&tcp_reserved_port_lock); 22128 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 22129 return (B_FALSE); 22130 } 22131 *hi_port = port - 1; 22132 22133 /* 22134 * Insert range into array in ascending order. Since this function 22135 * must not be called often, we choose to use the simplest method. 22136 * The above array should not consume excessive stack space as 22137 * the size must be very small. If in future releases, we find 22138 * that we should provide more reserved port ranges, this function 22139 * has to be modified to be more efficient. 22140 */ 22141 if (tcp_reserved_port_array_size == 0) { 22142 tcp_reserved_port[0].lo_port = *lo_port; 22143 tcp_reserved_port[0].hi_port = *hi_port; 22144 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 22145 } else { 22146 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 22147 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 22148 tmp_ports[j].lo_port = *lo_port; 22149 tmp_ports[j].hi_port = *hi_port; 22150 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22151 j++; 22152 } 22153 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 22154 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 22155 tmp_ports[j].temp_tcp_array = 22156 tcp_reserved_port[i].temp_tcp_array; 22157 } 22158 if (j == i) { 22159 tmp_ports[j].lo_port = *lo_port; 22160 tmp_ports[j].hi_port = *hi_port; 22161 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22162 } 22163 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 22164 } 22165 tcp_reserved_port_array_size++; 22166 rw_exit(&tcp_reserved_port_lock); 22167 return (B_TRUE); 22168 } 22169 22170 /* 22171 * Check to see if a port is in any reserved port range. 22172 * 22173 * Params: 22174 * in_port_t port: the port to be verified. 22175 * 22176 * Return: 22177 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 22178 */ 22179 boolean_t 22180 tcp_reserved_port_check(in_port_t port) 22181 { 22182 int i; 22183 22184 rw_enter(&tcp_reserved_port_lock, RW_READER); 22185 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22186 if (port >= tcp_reserved_port[i].lo_port || 22187 port <= tcp_reserved_port[i].hi_port) { 22188 rw_exit(&tcp_reserved_port_lock); 22189 return (B_TRUE); 22190 } 22191 } 22192 rw_exit(&tcp_reserved_port_lock); 22193 return (B_FALSE); 22194 } 22195 22196 /* 22197 * To list all reserved port ranges. This is the function to handle 22198 * ndd tcp_reserved_port_list. 22199 */ 22200 /* ARGSUSED */ 22201 static int 22202 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22203 { 22204 int i; 22205 22206 rw_enter(&tcp_reserved_port_lock, RW_READER); 22207 if (tcp_reserved_port_array_size > 0) 22208 (void) mi_mpprintf(mp, "The following ports are reserved:"); 22209 else 22210 (void) mi_mpprintf(mp, "No port is reserved."); 22211 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22212 (void) mi_mpprintf(mp, "%d-%d", 22213 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 22214 } 22215 rw_exit(&tcp_reserved_port_lock); 22216 return (0); 22217 } 22218 22219 /* 22220 * Hash list insertion routine for tcp_t structures. 22221 * Inserts entries with the ones bound to a specific IP address first 22222 * followed by those bound to INADDR_ANY. 22223 */ 22224 static void 22225 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 22226 { 22227 tcp_t **tcpp; 22228 tcp_t *tcpnext; 22229 22230 if (tcp->tcp_ptpbhn != NULL) { 22231 ASSERT(!caller_holds_lock); 22232 tcp_bind_hash_remove(tcp); 22233 } 22234 tcpp = &tbf->tf_tcp; 22235 if (!caller_holds_lock) { 22236 mutex_enter(&tbf->tf_lock); 22237 } else { 22238 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 22239 } 22240 tcpnext = tcpp[0]; 22241 if (tcpnext) { 22242 /* 22243 * If the new tcp bound to the INADDR_ANY address 22244 * and the first one in the list is not bound to 22245 * INADDR_ANY we skip all entries until we find the 22246 * first one bound to INADDR_ANY. 22247 * This makes sure that applications binding to a 22248 * specific address get preference over those binding to 22249 * INADDR_ANY. 22250 */ 22251 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 22252 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 22253 while ((tcpnext = tcpp[0]) != NULL && 22254 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 22255 tcpp = &(tcpnext->tcp_bind_hash); 22256 if (tcpnext) 22257 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22258 } else 22259 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22260 } 22261 tcp->tcp_bind_hash = tcpnext; 22262 tcp->tcp_ptpbhn = tcpp; 22263 tcpp[0] = tcp; 22264 if (!caller_holds_lock) 22265 mutex_exit(&tbf->tf_lock); 22266 } 22267 22268 /* 22269 * Hash list removal routine for tcp_t structures. 22270 */ 22271 static void 22272 tcp_bind_hash_remove(tcp_t *tcp) 22273 { 22274 tcp_t *tcpnext; 22275 kmutex_t *lockp; 22276 22277 if (tcp->tcp_ptpbhn == NULL) 22278 return; 22279 22280 /* 22281 * Extract the lock pointer in case there are concurrent 22282 * hash_remove's for this instance. 22283 */ 22284 ASSERT(tcp->tcp_lport != 0); 22285 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 22286 22287 ASSERT(lockp != NULL); 22288 mutex_enter(lockp); 22289 if (tcp->tcp_ptpbhn) { 22290 tcpnext = tcp->tcp_bind_hash; 22291 if (tcpnext) { 22292 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 22293 tcp->tcp_bind_hash = NULL; 22294 } 22295 *tcp->tcp_ptpbhn = tcpnext; 22296 tcp->tcp_ptpbhn = NULL; 22297 } 22298 mutex_exit(lockp); 22299 } 22300 22301 22302 /* 22303 * Hash list lookup routine for tcp_t structures. 22304 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 22305 */ 22306 static tcp_t * 22307 tcp_acceptor_hash_lookup(t_uscalar_t id) 22308 { 22309 tf_t *tf; 22310 tcp_t *tcp; 22311 22312 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22313 mutex_enter(&tf->tf_lock); 22314 for (tcp = tf->tf_tcp; tcp != NULL; 22315 tcp = tcp->tcp_acceptor_hash) { 22316 if (tcp->tcp_acceptor_id == id) { 22317 CONN_INC_REF(tcp->tcp_connp); 22318 mutex_exit(&tf->tf_lock); 22319 return (tcp); 22320 } 22321 } 22322 mutex_exit(&tf->tf_lock); 22323 return (NULL); 22324 } 22325 22326 22327 /* 22328 * Hash list insertion routine for tcp_t structures. 22329 */ 22330 void 22331 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 22332 { 22333 tf_t *tf; 22334 tcp_t **tcpp; 22335 tcp_t *tcpnext; 22336 22337 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22338 22339 if (tcp->tcp_ptpahn != NULL) 22340 tcp_acceptor_hash_remove(tcp); 22341 tcpp = &tf->tf_tcp; 22342 mutex_enter(&tf->tf_lock); 22343 tcpnext = tcpp[0]; 22344 if (tcpnext) 22345 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 22346 tcp->tcp_acceptor_hash = tcpnext; 22347 tcp->tcp_ptpahn = tcpp; 22348 tcpp[0] = tcp; 22349 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 22350 mutex_exit(&tf->tf_lock); 22351 } 22352 22353 /* 22354 * Hash list removal routine for tcp_t structures. 22355 */ 22356 static void 22357 tcp_acceptor_hash_remove(tcp_t *tcp) 22358 { 22359 tcp_t *tcpnext; 22360 kmutex_t *lockp; 22361 22362 /* 22363 * Extract the lock pointer in case there are concurrent 22364 * hash_remove's for this instance. 22365 */ 22366 lockp = tcp->tcp_acceptor_lockp; 22367 22368 if (tcp->tcp_ptpahn == NULL) 22369 return; 22370 22371 ASSERT(lockp != NULL); 22372 mutex_enter(lockp); 22373 if (tcp->tcp_ptpahn) { 22374 tcpnext = tcp->tcp_acceptor_hash; 22375 if (tcpnext) { 22376 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 22377 tcp->tcp_acceptor_hash = NULL; 22378 } 22379 *tcp->tcp_ptpahn = tcpnext; 22380 tcp->tcp_ptpahn = NULL; 22381 } 22382 mutex_exit(lockp); 22383 tcp->tcp_acceptor_lockp = NULL; 22384 } 22385 22386 /* ARGSUSED */ 22387 static int 22388 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 22389 { 22390 int error = 0; 22391 int retval; 22392 char *end; 22393 22394 tcp_hsp_t *hsp; 22395 tcp_hsp_t *hspprev; 22396 22397 ipaddr_t addr = 0; /* Address we're looking for */ 22398 in6_addr_t v6addr; /* Address we're looking for */ 22399 uint32_t hash; /* Hash of that address */ 22400 22401 /* 22402 * If the following variables are still zero after parsing the input 22403 * string, the user didn't specify them and we don't change them in 22404 * the HSP. 22405 */ 22406 22407 ipaddr_t mask = 0; /* Subnet mask */ 22408 in6_addr_t v6mask; 22409 long sendspace = 0; /* Send buffer size */ 22410 long recvspace = 0; /* Receive buffer size */ 22411 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 22412 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 22413 22414 rw_enter(&tcp_hsp_lock, RW_WRITER); 22415 22416 /* Parse and validate address */ 22417 if (af == AF_INET) { 22418 retval = inet_pton(af, value, &addr); 22419 if (retval == 1) 22420 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 22421 } else if (af == AF_INET6) { 22422 retval = inet_pton(af, value, &v6addr); 22423 } else { 22424 error = EINVAL; 22425 goto done; 22426 } 22427 if (retval == 0) { 22428 error = EINVAL; 22429 goto done; 22430 } 22431 22432 while ((*value) && *value != ' ') 22433 value++; 22434 22435 /* Parse individual keywords, set variables if found */ 22436 while (*value) { 22437 /* Skip leading blanks */ 22438 22439 while (*value == ' ' || *value == '\t') 22440 value++; 22441 22442 /* If at end of string, we're done */ 22443 22444 if (!*value) 22445 break; 22446 22447 /* We have a word, figure out what it is */ 22448 22449 if (strncmp("mask", value, 4) == 0) { 22450 value += 4; 22451 while (*value == ' ' || *value == '\t') 22452 value++; 22453 /* Parse subnet mask */ 22454 if (af == AF_INET) { 22455 retval = inet_pton(af, value, &mask); 22456 if (retval == 1) { 22457 V4MASK_TO_V6(mask, v6mask); 22458 } 22459 } else if (af == AF_INET6) { 22460 retval = inet_pton(af, value, &v6mask); 22461 } 22462 if (retval != 1) { 22463 error = EINVAL; 22464 goto done; 22465 } 22466 while ((*value) && *value != ' ') 22467 value++; 22468 } else if (strncmp("sendspace", value, 9) == 0) { 22469 value += 9; 22470 22471 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 22472 sendspace < TCP_XMIT_HIWATER || 22473 sendspace >= (1L<<30)) { 22474 error = EINVAL; 22475 goto done; 22476 } 22477 value = end; 22478 } else if (strncmp("recvspace", value, 9) == 0) { 22479 value += 9; 22480 22481 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 22482 recvspace < TCP_RECV_HIWATER || 22483 recvspace >= (1L<<30)) { 22484 error = EINVAL; 22485 goto done; 22486 } 22487 value = end; 22488 } else if (strncmp("timestamp", value, 9) == 0) { 22489 value += 9; 22490 22491 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 22492 timestamp < 0 || timestamp > 1) { 22493 error = EINVAL; 22494 goto done; 22495 } 22496 22497 /* 22498 * We increment timestamp so we know it's been set; 22499 * this is undone when we put it in the HSP 22500 */ 22501 timestamp++; 22502 value = end; 22503 } else if (strncmp("delete", value, 6) == 0) { 22504 value += 6; 22505 delete = B_TRUE; 22506 } else { 22507 error = EINVAL; 22508 goto done; 22509 } 22510 } 22511 22512 /* Hash address for lookup */ 22513 22514 hash = TCP_HSP_HASH(addr); 22515 22516 if (delete) { 22517 /* 22518 * Note that deletes don't return an error if the thing 22519 * we're trying to delete isn't there. 22520 */ 22521 if (tcp_hsp_hash == NULL) 22522 goto done; 22523 hsp = tcp_hsp_hash[hash]; 22524 22525 if (hsp) { 22526 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 22527 &v6addr)) { 22528 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 22529 mi_free((char *)hsp); 22530 } else { 22531 hspprev = hsp; 22532 while ((hsp = hsp->tcp_hsp_next) != NULL) { 22533 if (IN6_ARE_ADDR_EQUAL( 22534 &hsp->tcp_hsp_addr_v6, &v6addr)) { 22535 hspprev->tcp_hsp_next = 22536 hsp->tcp_hsp_next; 22537 mi_free((char *)hsp); 22538 break; 22539 } 22540 hspprev = hsp; 22541 } 22542 } 22543 } 22544 } else { 22545 /* 22546 * We're adding/modifying an HSP. If we haven't already done 22547 * so, allocate the hash table. 22548 */ 22549 22550 if (!tcp_hsp_hash) { 22551 tcp_hsp_hash = (tcp_hsp_t **) 22552 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 22553 if (!tcp_hsp_hash) { 22554 error = EINVAL; 22555 goto done; 22556 } 22557 } 22558 22559 /* Get head of hash chain */ 22560 22561 hsp = tcp_hsp_hash[hash]; 22562 22563 /* Try to find pre-existing hsp on hash chain */ 22564 /* Doesn't handle CIDR prefixes. */ 22565 while (hsp) { 22566 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 22567 break; 22568 hsp = hsp->tcp_hsp_next; 22569 } 22570 22571 /* 22572 * If we didn't, create one with default values and put it 22573 * at head of hash chain 22574 */ 22575 22576 if (!hsp) { 22577 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 22578 if (!hsp) { 22579 error = EINVAL; 22580 goto done; 22581 } 22582 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 22583 tcp_hsp_hash[hash] = hsp; 22584 } 22585 22586 /* Set values that the user asked us to change */ 22587 22588 hsp->tcp_hsp_addr_v6 = v6addr; 22589 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 22590 hsp->tcp_hsp_vers = IPV4_VERSION; 22591 else 22592 hsp->tcp_hsp_vers = IPV6_VERSION; 22593 hsp->tcp_hsp_subnet_v6 = v6mask; 22594 if (sendspace > 0) 22595 hsp->tcp_hsp_sendspace = sendspace; 22596 if (recvspace > 0) 22597 hsp->tcp_hsp_recvspace = recvspace; 22598 if (timestamp > 0) 22599 hsp->tcp_hsp_tstamp = timestamp - 1; 22600 } 22601 22602 done: 22603 rw_exit(&tcp_hsp_lock); 22604 return (error); 22605 } 22606 22607 /* Set callback routine passed to nd_load by tcp_param_register. */ 22608 /* ARGSUSED */ 22609 static int 22610 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 22611 { 22612 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 22613 } 22614 /* ARGSUSED */ 22615 static int 22616 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22617 cred_t *cr) 22618 { 22619 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 22620 } 22621 22622 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 22623 /* ARGSUSED */ 22624 static int 22625 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22626 { 22627 tcp_hsp_t *hsp; 22628 int i; 22629 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 22630 22631 rw_enter(&tcp_hsp_lock, RW_READER); 22632 (void) mi_mpprintf(mp, 22633 "Hash HSP " MI_COL_HDRPAD_STR 22634 "Address Subnet Mask Send Receive TStamp"); 22635 if (tcp_hsp_hash) { 22636 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 22637 hsp = tcp_hsp_hash[i]; 22638 while (hsp) { 22639 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 22640 (void) inet_ntop(AF_INET, 22641 &hsp->tcp_hsp_addr, 22642 addrbuf, sizeof (addrbuf)); 22643 (void) inet_ntop(AF_INET, 22644 &hsp->tcp_hsp_subnet, 22645 subnetbuf, sizeof (subnetbuf)); 22646 } else { 22647 (void) inet_ntop(AF_INET6, 22648 &hsp->tcp_hsp_addr_v6, 22649 addrbuf, sizeof (addrbuf)); 22650 (void) inet_ntop(AF_INET6, 22651 &hsp->tcp_hsp_subnet_v6, 22652 subnetbuf, sizeof (subnetbuf)); 22653 } 22654 (void) mi_mpprintf(mp, 22655 " %03d " MI_COL_PTRFMT_STR 22656 "%s %s %010d %010d %d", 22657 i, 22658 (void *)hsp, 22659 addrbuf, 22660 subnetbuf, 22661 hsp->tcp_hsp_sendspace, 22662 hsp->tcp_hsp_recvspace, 22663 hsp->tcp_hsp_tstamp); 22664 22665 hsp = hsp->tcp_hsp_next; 22666 } 22667 } 22668 } 22669 rw_exit(&tcp_hsp_lock); 22670 return (0); 22671 } 22672 22673 22674 /* Data for fast netmask macro used by tcp_hsp_lookup */ 22675 22676 static ipaddr_t netmasks[] = { 22677 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 22678 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 22679 }; 22680 22681 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 22682 22683 /* 22684 * XXX This routine should go away and instead we should use the metrics 22685 * associated with the routes to determine the default sndspace and rcvspace. 22686 */ 22687 static tcp_hsp_t * 22688 tcp_hsp_lookup(ipaddr_t addr) 22689 { 22690 tcp_hsp_t *hsp = NULL; 22691 22692 /* Quick check without acquiring the lock. */ 22693 if (tcp_hsp_hash == NULL) 22694 return (NULL); 22695 22696 rw_enter(&tcp_hsp_lock, RW_READER); 22697 22698 /* This routine finds the best-matching HSP for address addr. */ 22699 22700 if (tcp_hsp_hash) { 22701 int i; 22702 ipaddr_t srchaddr; 22703 tcp_hsp_t *hsp_net; 22704 22705 /* We do three passes: host, network, and subnet. */ 22706 22707 srchaddr = addr; 22708 22709 for (i = 1; i <= 3; i++) { 22710 /* Look for exact match on srchaddr */ 22711 22712 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 22713 while (hsp) { 22714 if (hsp->tcp_hsp_vers == IPV4_VERSION && 22715 hsp->tcp_hsp_addr == srchaddr) 22716 break; 22717 hsp = hsp->tcp_hsp_next; 22718 } 22719 ASSERT(hsp == NULL || 22720 hsp->tcp_hsp_vers == IPV4_VERSION); 22721 22722 /* 22723 * If this is the first pass: 22724 * If we found a match, great, return it. 22725 * If not, search for the network on the second pass. 22726 */ 22727 22728 if (i == 1) 22729 if (hsp) 22730 break; 22731 else 22732 { 22733 srchaddr = addr & netmask(addr); 22734 continue; 22735 } 22736 22737 /* 22738 * If this is the second pass: 22739 * If we found a match, but there's a subnet mask, 22740 * save the match but try again using the subnet 22741 * mask on the third pass. 22742 * Otherwise, return whatever we found. 22743 */ 22744 22745 if (i == 2) { 22746 if (hsp && hsp->tcp_hsp_subnet) { 22747 hsp_net = hsp; 22748 srchaddr = addr & hsp->tcp_hsp_subnet; 22749 continue; 22750 } else { 22751 break; 22752 } 22753 } 22754 22755 /* 22756 * This must be the third pass. If we didn't find 22757 * anything, return the saved network HSP instead. 22758 */ 22759 22760 if (!hsp) 22761 hsp = hsp_net; 22762 } 22763 } 22764 22765 rw_exit(&tcp_hsp_lock); 22766 return (hsp); 22767 } 22768 22769 /* 22770 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 22771 * match lookup. 22772 */ 22773 static tcp_hsp_t * 22774 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 22775 { 22776 tcp_hsp_t *hsp = NULL; 22777 22778 /* Quick check without acquiring the lock. */ 22779 if (tcp_hsp_hash == NULL) 22780 return (NULL); 22781 22782 rw_enter(&tcp_hsp_lock, RW_READER); 22783 22784 /* This routine finds the best-matching HSP for address addr. */ 22785 22786 if (tcp_hsp_hash) { 22787 int i; 22788 in6_addr_t v6srchaddr; 22789 tcp_hsp_t *hsp_net; 22790 22791 /* We do three passes: host, network, and subnet. */ 22792 22793 v6srchaddr = *v6addr; 22794 22795 for (i = 1; i <= 3; i++) { 22796 /* Look for exact match on srchaddr */ 22797 22798 hsp = tcp_hsp_hash[TCP_HSP_HASH( 22799 V4_PART_OF_V6(v6srchaddr))]; 22800 while (hsp) { 22801 if (hsp->tcp_hsp_vers == IPV6_VERSION && 22802 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 22803 &v6srchaddr)) 22804 break; 22805 hsp = hsp->tcp_hsp_next; 22806 } 22807 22808 /* 22809 * If this is the first pass: 22810 * If we found a match, great, return it. 22811 * If not, search for the network on the second pass. 22812 */ 22813 22814 if (i == 1) 22815 if (hsp) 22816 break; 22817 else { 22818 /* Assume a 64 bit mask */ 22819 v6srchaddr.s6_addr32[0] = 22820 v6addr->s6_addr32[0]; 22821 v6srchaddr.s6_addr32[1] = 22822 v6addr->s6_addr32[1]; 22823 v6srchaddr.s6_addr32[2] = 0; 22824 v6srchaddr.s6_addr32[3] = 0; 22825 continue; 22826 } 22827 22828 /* 22829 * If this is the second pass: 22830 * If we found a match, but there's a subnet mask, 22831 * save the match but try again using the subnet 22832 * mask on the third pass. 22833 * Otherwise, return whatever we found. 22834 */ 22835 22836 if (i == 2) { 22837 ASSERT(hsp == NULL || 22838 hsp->tcp_hsp_vers == IPV6_VERSION); 22839 if (hsp && 22840 !IN6_IS_ADDR_UNSPECIFIED( 22841 &hsp->tcp_hsp_subnet_v6)) { 22842 hsp_net = hsp; 22843 V6_MASK_COPY(*v6addr, 22844 hsp->tcp_hsp_subnet_v6, v6srchaddr); 22845 continue; 22846 } else { 22847 break; 22848 } 22849 } 22850 22851 /* 22852 * This must be the third pass. If we didn't find 22853 * anything, return the saved network HSP instead. 22854 */ 22855 22856 if (!hsp) 22857 hsp = hsp_net; 22858 } 22859 } 22860 22861 rw_exit(&tcp_hsp_lock); 22862 return (hsp); 22863 } 22864 22865 /* 22866 * Type three generator adapted from the random() function in 4.4 BSD: 22867 */ 22868 22869 /* 22870 * Copyright (c) 1983, 1993 22871 * The Regents of the University of California. All rights reserved. 22872 * 22873 * Redistribution and use in source and binary forms, with or without 22874 * modification, are permitted provided that the following conditions 22875 * are met: 22876 * 1. Redistributions of source code must retain the above copyright 22877 * notice, this list of conditions and the following disclaimer. 22878 * 2. Redistributions in binary form must reproduce the above copyright 22879 * notice, this list of conditions and the following disclaimer in the 22880 * documentation and/or other materials provided with the distribution. 22881 * 3. All advertising materials mentioning features or use of this software 22882 * must display the following acknowledgement: 22883 * This product includes software developed by the University of 22884 * California, Berkeley and its contributors. 22885 * 4. Neither the name of the University nor the names of its contributors 22886 * may be used to endorse or promote products derived from this software 22887 * without specific prior written permission. 22888 * 22889 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22890 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22891 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22892 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22893 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22894 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22895 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22896 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22897 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22898 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 22899 * SUCH DAMAGE. 22900 */ 22901 22902 /* Type 3 -- x**31 + x**3 + 1 */ 22903 #define DEG_3 31 22904 #define SEP_3 3 22905 22906 22907 /* Protected by tcp_random_lock */ 22908 static int tcp_randtbl[DEG_3 + 1]; 22909 22910 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 22911 static int *tcp_random_rptr = &tcp_randtbl[1]; 22912 22913 static int *tcp_random_state = &tcp_randtbl[1]; 22914 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 22915 22916 kmutex_t tcp_random_lock; 22917 22918 void 22919 tcp_random_init(void) 22920 { 22921 int i; 22922 hrtime_t hrt; 22923 time_t wallclock; 22924 uint64_t result; 22925 22926 /* 22927 * Use high-res timer and current time for seed. Gethrtime() returns 22928 * a longlong, which may contain resolution down to nanoseconds. 22929 * The current time will either be a 32-bit or a 64-bit quantity. 22930 * XOR the two together in a 64-bit result variable. 22931 * Convert the result to a 32-bit value by multiplying the high-order 22932 * 32-bits by the low-order 32-bits. 22933 */ 22934 22935 hrt = gethrtime(); 22936 (void) drv_getparm(TIME, &wallclock); 22937 result = (uint64_t)wallclock ^ (uint64_t)hrt; 22938 mutex_enter(&tcp_random_lock); 22939 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 22940 (result & 0xffffffff); 22941 22942 for (i = 1; i < DEG_3; i++) 22943 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 22944 + 12345; 22945 tcp_random_fptr = &tcp_random_state[SEP_3]; 22946 tcp_random_rptr = &tcp_random_state[0]; 22947 mutex_exit(&tcp_random_lock); 22948 for (i = 0; i < 10 * DEG_3; i++) 22949 (void) tcp_random(); 22950 } 22951 22952 /* 22953 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 22954 * This range is selected to be approximately centered on TCP_ISS / 2, 22955 * and easy to compute. We get this value by generating a 32-bit random 22956 * number, selecting out the high-order 17 bits, and then adding one so 22957 * that we never return zero. 22958 */ 22959 int 22960 tcp_random(void) 22961 { 22962 int i; 22963 22964 mutex_enter(&tcp_random_lock); 22965 *tcp_random_fptr += *tcp_random_rptr; 22966 22967 /* 22968 * The high-order bits are more random than the low-order bits, 22969 * so we select out the high-order 17 bits and add one so that 22970 * we never return zero. 22971 */ 22972 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 22973 if (++tcp_random_fptr >= tcp_random_end_ptr) { 22974 tcp_random_fptr = tcp_random_state; 22975 ++tcp_random_rptr; 22976 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 22977 tcp_random_rptr = tcp_random_state; 22978 22979 mutex_exit(&tcp_random_lock); 22980 return (i); 22981 } 22982 22983 /* 22984 * XXX This will go away when TPI is extended to send 22985 * info reqs to sockfs/timod ..... 22986 * Given a queue, set the max packet size for the write 22987 * side of the queue below stream head. This value is 22988 * cached on the stream head. 22989 * Returns 1 on success, 0 otherwise. 22990 */ 22991 static int 22992 setmaxps(queue_t *q, int maxpsz) 22993 { 22994 struct stdata *stp; 22995 queue_t *wq; 22996 stp = STREAM(q); 22997 22998 /* 22999 * At this point change of a queue parameter is not allowed 23000 * when a multiplexor is sitting on top. 23001 */ 23002 if (stp->sd_flag & STPLEX) 23003 return (0); 23004 23005 claimstr(stp->sd_wrq); 23006 wq = stp->sd_wrq->q_next; 23007 ASSERT(wq != NULL); 23008 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 23009 releasestr(stp->sd_wrq); 23010 return (1); 23011 } 23012 23013 static int 23014 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23015 int *t_errorp, int *sys_errorp) 23016 { 23017 int error; 23018 int is_absreq_failure; 23019 t_scalar_t *opt_lenp; 23020 t_scalar_t opt_offset; 23021 int prim_type; 23022 struct T_conn_req *tcreqp; 23023 struct T_conn_res *tcresp; 23024 cred_t *cr; 23025 23026 cr = DB_CREDDEF(mp, tcp->tcp_cred); 23027 23028 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23029 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23030 prim_type == T_CONN_RES); 23031 23032 switch (prim_type) { 23033 case T_CONN_REQ: 23034 tcreqp = (struct T_conn_req *)mp->b_rptr; 23035 opt_offset = tcreqp->OPT_offset; 23036 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23037 break; 23038 case O_T_CONN_RES: 23039 case T_CONN_RES: 23040 tcresp = (struct T_conn_res *)mp->b_rptr; 23041 opt_offset = tcresp->OPT_offset; 23042 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23043 break; 23044 } 23045 23046 *t_errorp = 0; 23047 *sys_errorp = 0; 23048 *do_disconnectp = 0; 23049 23050 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23051 opt_offset, cr, &tcp_opt_obj, 23052 NULL, &is_absreq_failure); 23053 23054 switch (error) { 23055 case 0: /* no error */ 23056 ASSERT(is_absreq_failure == 0); 23057 return (0); 23058 case ENOPROTOOPT: 23059 *t_errorp = TBADOPT; 23060 break; 23061 case EACCES: 23062 *t_errorp = TACCES; 23063 break; 23064 default: 23065 *t_errorp = TSYSERR; *sys_errorp = error; 23066 break; 23067 } 23068 if (is_absreq_failure != 0) { 23069 /* 23070 * The connection request should get the local ack 23071 * T_OK_ACK and then a T_DISCON_IND. 23072 */ 23073 *do_disconnectp = 1; 23074 } 23075 return (-1); 23076 } 23077 23078 /* 23079 * Split this function out so that if the secret changes, I'm okay. 23080 * 23081 * Initialize the tcp_iss_cookie and tcp_iss_key. 23082 */ 23083 23084 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23085 23086 static void 23087 tcp_iss_key_init(uint8_t *phrase, int len) 23088 { 23089 struct { 23090 int32_t current_time; 23091 uint32_t randnum; 23092 uint16_t pad; 23093 uint8_t ether[6]; 23094 uint8_t passwd[PASSWD_SIZE]; 23095 } tcp_iss_cookie; 23096 time_t t; 23097 23098 /* 23099 * Start with the current absolute time. 23100 */ 23101 (void) drv_getparm(TIME, &t); 23102 tcp_iss_cookie.current_time = t; 23103 23104 /* 23105 * XXX - Need a more random number per RFC 1750, not this crap. 23106 * OTOH, if what follows is pretty random, then I'm in better shape. 23107 */ 23108 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23109 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23110 23111 /* 23112 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23113 * as a good template. 23114 */ 23115 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23116 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23117 23118 /* 23119 * The pass-phrase. Normally this is supplied by user-called NDD. 23120 */ 23121 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23122 23123 /* 23124 * See 4010593 if this section becomes a problem again, 23125 * but the local ethernet address is useful here. 23126 */ 23127 (void) localetheraddr(NULL, 23128 (struct ether_addr *)&tcp_iss_cookie.ether); 23129 23130 /* 23131 * Hash 'em all together. The MD5Final is called per-connection. 23132 */ 23133 mutex_enter(&tcp_iss_key_lock); 23134 MD5Init(&tcp_iss_key); 23135 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 23136 sizeof (tcp_iss_cookie)); 23137 mutex_exit(&tcp_iss_key_lock); 23138 } 23139 23140 /* 23141 * Set the RFC 1948 pass phrase 23142 */ 23143 /* ARGSUSED */ 23144 static int 23145 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23146 cred_t *cr) 23147 { 23148 /* 23149 * Basically, value contains a new pass phrase. Pass it along! 23150 */ 23151 tcp_iss_key_init((uint8_t *)value, strlen(value)); 23152 return (0); 23153 } 23154 23155 /* ARGSUSED */ 23156 static int 23157 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23158 { 23159 bzero(buf, sizeof (tcp_sack_info_t)); 23160 return (0); 23161 } 23162 23163 /* ARGSUSED */ 23164 static int 23165 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23166 { 23167 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23168 return (0); 23169 } 23170 23171 void 23172 tcp_ddi_init(void) 23173 { 23174 int i; 23175 23176 /* Initialize locks */ 23177 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 23178 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23179 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23180 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23181 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23182 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 23183 23184 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23185 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 23186 MUTEX_DEFAULT, NULL); 23187 } 23188 23189 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23190 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 23191 MUTEX_DEFAULT, NULL); 23192 } 23193 23194 /* TCP's IPsec code calls the packet dropper. */ 23195 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 23196 23197 if (!tcp_g_nd) { 23198 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 23199 nd_free(&tcp_g_nd); 23200 } 23201 } 23202 23203 /* 23204 * Note: To really walk the device tree you need the devinfo 23205 * pointer to your device which is only available after probe/attach. 23206 * The following is safe only because it uses ddi_root_node() 23207 */ 23208 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23209 tcp_opt_obj.odb_opt_arr_cnt); 23210 23211 tcp_timercache = kmem_cache_create("tcp_timercache", 23212 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23213 NULL, NULL, NULL, NULL, NULL, 0); 23214 23215 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23216 sizeof (tcp_sack_info_t), 0, 23217 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23218 23219 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23220 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23221 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23222 23223 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 23224 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 23225 23226 ip_squeue_init(tcp_squeue_add); 23227 23228 /* Initialize the random number generator */ 23229 tcp_random_init(); 23230 23231 /* 23232 * Initialize RFC 1948 secret values. This will probably be reset once 23233 * by the boot scripts. 23234 * 23235 * Use NULL name, as the name is caught by the new lockstats. 23236 * 23237 * Initialize with some random, non-guessable string, like the global 23238 * T_INFO_ACK. 23239 */ 23240 23241 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23242 sizeof (tcp_g_t_info_ack)); 23243 23244 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 23245 "net", KSTAT_TYPE_NAMED, 23246 sizeof (tcp_statistics) / sizeof (kstat_named_t), 23247 KSTAT_FLAG_VIRTUAL)) != NULL) { 23248 tcp_kstat->ks_data = &tcp_statistics; 23249 kstat_install(tcp_kstat); 23250 } 23251 23252 tcp_kstat_init(); 23253 } 23254 23255 void 23256 tcp_ddi_destroy(void) 23257 { 23258 int i; 23259 23260 nd_free(&tcp_g_nd); 23261 23262 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23263 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 23264 } 23265 23266 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23267 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 23268 } 23269 23270 mutex_destroy(&tcp_iss_key_lock); 23271 rw_destroy(&tcp_hsp_lock); 23272 mutex_destroy(&tcp_g_q_lock); 23273 mutex_destroy(&tcp_random_lock); 23274 mutex_destroy(&tcp_epriv_port_lock); 23275 rw_destroy(&tcp_reserved_port_lock); 23276 23277 ip_drop_unregister(&tcp_dropper); 23278 23279 kmem_cache_destroy(tcp_timercache); 23280 kmem_cache_destroy(tcp_sack_info_cache); 23281 kmem_cache_destroy(tcp_iphc_cache); 23282 23283 tcp_kstat_fini(); 23284 } 23285 23286 /* 23287 * Generate ISS, taking into account NDD changes may happen halfway through. 23288 * (If the iss is not zero, set it.) 23289 */ 23290 23291 static void 23292 tcp_iss_init(tcp_t *tcp) 23293 { 23294 MD5_CTX context; 23295 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 23296 uint32_t answer[4]; 23297 23298 tcp_iss_incr_extra += (ISS_INCR >> 1); 23299 tcp->tcp_iss = tcp_iss_incr_extra; 23300 switch (tcp_strong_iss) { 23301 case 2: 23302 mutex_enter(&tcp_iss_key_lock); 23303 context = tcp_iss_key; 23304 mutex_exit(&tcp_iss_key_lock); 23305 arg.ports = tcp->tcp_ports; 23306 if (tcp->tcp_ipversion == IPV4_VERSION) { 23307 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 23308 &arg.src); 23309 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 23310 &arg.dst); 23311 } else { 23312 arg.src = tcp->tcp_ip6h->ip6_src; 23313 arg.dst = tcp->tcp_ip6h->ip6_dst; 23314 } 23315 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 23316 MD5Final((uchar_t *)answer, &context); 23317 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 23318 /* 23319 * Now that we've hashed into a unique per-connection sequence 23320 * space, add a random increment per strong_iss == 1. So I 23321 * guess we'll have to... 23322 */ 23323 /* FALLTHRU */ 23324 case 1: 23325 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 23326 break; 23327 default: 23328 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 23329 break; 23330 } 23331 tcp->tcp_valid_bits = TCP_ISS_VALID; 23332 tcp->tcp_fss = tcp->tcp_iss - 1; 23333 tcp->tcp_suna = tcp->tcp_iss; 23334 tcp->tcp_snxt = tcp->tcp_iss + 1; 23335 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23336 tcp->tcp_csuna = tcp->tcp_snxt; 23337 } 23338 23339 /* 23340 * Exported routine for extracting active tcp connection status. 23341 * 23342 * This is used by the Solaris Cluster Networking software to 23343 * gather a list of connections that need to be forwarded to 23344 * specific nodes in the cluster when configuration changes occur. 23345 * 23346 * The callback is invoked for each tcp_t structure. Returning 23347 * non-zero from the callback routine terminates the search. 23348 */ 23349 int 23350 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 23351 { 23352 tcp_t *tcp; 23353 cl_tcp_info_t cl_tcpi; 23354 connf_t *connfp; 23355 conn_t *connp; 23356 int i; 23357 23358 ASSERT(callback != NULL); 23359 23360 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 23361 23362 connfp = &ipcl_globalhash_fanout[i]; 23363 connp = NULL; 23364 23365 while ((connp = 23366 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 23367 23368 tcp = connp->conn_tcp; 23369 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 23370 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 23371 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 23372 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 23373 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 23374 /* 23375 * The macros tcp_laddr and tcp_faddr give the IPv4 23376 * addresses. They are copied implicitly below as 23377 * mapped addresses. 23378 */ 23379 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 23380 if (tcp->tcp_ipversion == IPV4_VERSION) { 23381 cl_tcpi.cl_tcpi_faddr = 23382 tcp->tcp_ipha->ipha_dst; 23383 } else { 23384 cl_tcpi.cl_tcpi_faddr_v6 = 23385 tcp->tcp_ip6h->ip6_dst; 23386 } 23387 23388 /* 23389 * If the callback returns non-zero 23390 * we terminate the traversal. 23391 */ 23392 if ((*callback)(&cl_tcpi, arg) != 0) { 23393 CONN_DEC_REF(tcp->tcp_connp); 23394 return (1); 23395 } 23396 } 23397 } 23398 23399 return (0); 23400 } 23401 23402 /* 23403 * Macros used for accessing the different types of sockaddr 23404 * structures inside a tcp_ioc_abort_conn_t. 23405 */ 23406 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 23407 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 23408 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 23409 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 23410 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 23411 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 23412 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 23413 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 23414 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 23415 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 23416 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 23417 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 23418 23419 /* 23420 * Return the correct error code to mimic the behavior 23421 * of a connection reset. 23422 */ 23423 #define TCP_AC_GET_ERRCODE(state, err) { \ 23424 switch ((state)) { \ 23425 case TCPS_SYN_SENT: \ 23426 case TCPS_SYN_RCVD: \ 23427 (err) = ECONNREFUSED; \ 23428 break; \ 23429 case TCPS_ESTABLISHED: \ 23430 case TCPS_FIN_WAIT_1: \ 23431 case TCPS_FIN_WAIT_2: \ 23432 case TCPS_CLOSE_WAIT: \ 23433 (err) = ECONNRESET; \ 23434 break; \ 23435 case TCPS_CLOSING: \ 23436 case TCPS_LAST_ACK: \ 23437 case TCPS_TIME_WAIT: \ 23438 (err) = 0; \ 23439 break; \ 23440 default: \ 23441 (err) = ENXIO; \ 23442 } \ 23443 } 23444 23445 /* 23446 * Check if a tcp structure matches the info in acp. 23447 */ 23448 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 23449 (((acp)->ac_local.ss_family == AF_INET) ? \ 23450 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 23451 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 23452 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 23453 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 23454 (TCP_AC_V4LPORT((acp)) == 0 || \ 23455 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 23456 (TCP_AC_V4RPORT((acp)) == 0 || \ 23457 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 23458 (acp)->ac_start <= (tcp)->tcp_state && \ 23459 (acp)->ac_end >= (tcp)->tcp_state) : \ 23460 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 23461 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 23462 &(tcp)->tcp_ip_src_v6)) && \ 23463 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 23464 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 23465 &(tcp)->tcp_remote_v6)) && \ 23466 (TCP_AC_V6LPORT((acp)) == 0 || \ 23467 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 23468 (TCP_AC_V6RPORT((acp)) == 0 || \ 23469 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 23470 (acp)->ac_start <= (tcp)->tcp_state && \ 23471 (acp)->ac_end >= (tcp)->tcp_state)) 23472 23473 #define TCP_AC_MATCH(acp, tcp) \ 23474 (((acp)->ac_zoneid == ALL_ZONES || \ 23475 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 23476 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 23477 23478 /* 23479 * Build a message containing a tcp_ioc_abort_conn_t structure 23480 * which is filled in with information from acp and tp. 23481 */ 23482 static mblk_t * 23483 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 23484 { 23485 mblk_t *mp; 23486 tcp_ioc_abort_conn_t *tacp; 23487 23488 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 23489 if (mp == NULL) 23490 return (NULL); 23491 23492 mp->b_datap->db_type = M_CTL; 23493 23494 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 23495 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 23496 sizeof (uint32_t)); 23497 23498 tacp->ac_start = acp->ac_start; 23499 tacp->ac_end = acp->ac_end; 23500 tacp->ac_zoneid = acp->ac_zoneid; 23501 23502 if (acp->ac_local.ss_family == AF_INET) { 23503 tacp->ac_local.ss_family = AF_INET; 23504 tacp->ac_remote.ss_family = AF_INET; 23505 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 23506 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 23507 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 23508 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 23509 } else { 23510 tacp->ac_local.ss_family = AF_INET6; 23511 tacp->ac_remote.ss_family = AF_INET6; 23512 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 23513 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 23514 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 23515 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 23516 } 23517 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 23518 return (mp); 23519 } 23520 23521 /* 23522 * Print a tcp_ioc_abort_conn_t structure. 23523 */ 23524 static void 23525 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 23526 { 23527 char lbuf[128]; 23528 char rbuf[128]; 23529 sa_family_t af; 23530 in_port_t lport, rport; 23531 ushort_t logflags; 23532 23533 af = acp->ac_local.ss_family; 23534 23535 if (af == AF_INET) { 23536 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 23537 lbuf, 128); 23538 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 23539 rbuf, 128); 23540 lport = ntohs(TCP_AC_V4LPORT(acp)); 23541 rport = ntohs(TCP_AC_V4RPORT(acp)); 23542 } else { 23543 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 23544 lbuf, 128); 23545 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 23546 rbuf, 128); 23547 lport = ntohs(TCP_AC_V6LPORT(acp)); 23548 rport = ntohs(TCP_AC_V6RPORT(acp)); 23549 } 23550 23551 logflags = SL_TRACE | SL_NOTE; 23552 /* 23553 * Don't print this message to the console if the operation was done 23554 * to a non-global zone. 23555 */ 23556 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 23557 logflags |= SL_CONSOLE; 23558 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 23559 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 23560 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 23561 acp->ac_start, acp->ac_end); 23562 } 23563 23564 /* 23565 * Called inside tcp_rput when a message built using 23566 * tcp_ioctl_abort_build_msg is put into a queue. 23567 * Note that when we get here there is no wildcard in acp any more. 23568 */ 23569 static void 23570 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 23571 { 23572 tcp_ioc_abort_conn_t *acp; 23573 23574 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 23575 if (tcp->tcp_state <= acp->ac_end) { 23576 /* 23577 * If we get here, we are already on the correct 23578 * squeue. This ioctl follows the following path 23579 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 23580 * ->tcp_ioctl_abort->squeue_fill (if on a 23581 * different squeue) 23582 */ 23583 int errcode; 23584 23585 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 23586 (void) tcp_clean_death(tcp, errcode, 26); 23587 } 23588 freemsg(mp); 23589 } 23590 23591 /* 23592 * Abort all matching connections on a hash chain. 23593 */ 23594 static int 23595 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 23596 boolean_t exact) 23597 { 23598 int nmatch, err = 0; 23599 tcp_t *tcp; 23600 MBLKP mp, last, listhead = NULL; 23601 conn_t *tconnp; 23602 connf_t *connfp = &ipcl_conn_fanout[index]; 23603 23604 startover: 23605 nmatch = 0; 23606 23607 mutex_enter(&connfp->connf_lock); 23608 for (tconnp = connfp->connf_head; tconnp != NULL; 23609 tconnp = tconnp->conn_next) { 23610 tcp = tconnp->conn_tcp; 23611 if (TCP_AC_MATCH(acp, tcp)) { 23612 CONN_INC_REF(tcp->tcp_connp); 23613 mp = tcp_ioctl_abort_build_msg(acp, tcp); 23614 if (mp == NULL) { 23615 err = ENOMEM; 23616 CONN_DEC_REF(tcp->tcp_connp); 23617 break; 23618 } 23619 mp->b_prev = (mblk_t *)tcp; 23620 23621 if (listhead == NULL) { 23622 listhead = mp; 23623 last = mp; 23624 } else { 23625 last->b_next = mp; 23626 last = mp; 23627 } 23628 nmatch++; 23629 if (exact) 23630 break; 23631 } 23632 23633 /* Avoid holding lock for too long. */ 23634 if (nmatch >= 500) 23635 break; 23636 } 23637 mutex_exit(&connfp->connf_lock); 23638 23639 /* Pass mp into the correct tcp */ 23640 while ((mp = listhead) != NULL) { 23641 listhead = listhead->b_next; 23642 tcp = (tcp_t *)mp->b_prev; 23643 mp->b_next = mp->b_prev = NULL; 23644 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 23645 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 23646 } 23647 23648 *count += nmatch; 23649 if (nmatch >= 500 && err == 0) 23650 goto startover; 23651 return (err); 23652 } 23653 23654 /* 23655 * Abort all connections that matches the attributes specified in acp. 23656 */ 23657 static int 23658 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 23659 { 23660 sa_family_t af; 23661 uint32_t ports; 23662 uint16_t *pports; 23663 int err = 0, count = 0; 23664 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 23665 int index = -1; 23666 ushort_t logflags; 23667 23668 af = acp->ac_local.ss_family; 23669 23670 if (af == AF_INET) { 23671 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 23672 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 23673 pports = (uint16_t *)&ports; 23674 pports[1] = TCP_AC_V4LPORT(acp); 23675 pports[0] = TCP_AC_V4RPORT(acp); 23676 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 23677 } 23678 } else { 23679 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 23680 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 23681 pports = (uint16_t *)&ports; 23682 pports[1] = TCP_AC_V6LPORT(acp); 23683 pports[0] = TCP_AC_V6RPORT(acp); 23684 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 23685 } 23686 } 23687 23688 /* 23689 * For cases where remote addr, local port, and remote port are non- 23690 * wildcards, tcp_ioctl_abort_bucket will only be called once. 23691 */ 23692 if (index != -1) { 23693 err = tcp_ioctl_abort_bucket(acp, index, 23694 &count, exact); 23695 } else { 23696 /* 23697 * loop through all entries for wildcard case 23698 */ 23699 for (index = 0; index < ipcl_conn_fanout_size; index++) { 23700 err = tcp_ioctl_abort_bucket(acp, index, 23701 &count, exact); 23702 if (err != 0) 23703 break; 23704 } 23705 } 23706 23707 logflags = SL_TRACE | SL_NOTE; 23708 /* 23709 * Don't print this message to the console if the operation was done 23710 * to a non-global zone. 23711 */ 23712 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 23713 logflags |= SL_CONSOLE; 23714 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 23715 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 23716 if (err == 0 && count == 0) 23717 err = ENOENT; 23718 return (err); 23719 } 23720 23721 /* 23722 * Process the TCP_IOC_ABORT_CONN ioctl request. 23723 */ 23724 static void 23725 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 23726 { 23727 int err; 23728 IOCP iocp; 23729 MBLKP mp1; 23730 sa_family_t laf, raf; 23731 tcp_ioc_abort_conn_t *acp; 23732 zone_t *zptr; 23733 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 23734 23735 iocp = (IOCP)mp->b_rptr; 23736 23737 if ((mp1 = mp->b_cont) == NULL || 23738 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 23739 err = EINVAL; 23740 goto out; 23741 } 23742 23743 /* check permissions */ 23744 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 23745 err = EPERM; 23746 goto out; 23747 } 23748 23749 if (mp1->b_cont != NULL) { 23750 freemsg(mp1->b_cont); 23751 mp1->b_cont = NULL; 23752 } 23753 23754 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 23755 laf = acp->ac_local.ss_family; 23756 raf = acp->ac_remote.ss_family; 23757 23758 /* check that a zone with the supplied zoneid exists */ 23759 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 23760 zptr = zone_find_by_id(zoneid); 23761 if (zptr != NULL) { 23762 zone_rele(zptr); 23763 } else { 23764 err = EINVAL; 23765 goto out; 23766 } 23767 } 23768 23769 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 23770 acp->ac_start > acp->ac_end || laf != raf || 23771 (laf != AF_INET && laf != AF_INET6)) { 23772 err = EINVAL; 23773 goto out; 23774 } 23775 23776 tcp_ioctl_abort_dump(acp); 23777 err = tcp_ioctl_abort(acp); 23778 23779 out: 23780 if (mp1 != NULL) { 23781 freemsg(mp1); 23782 mp->b_cont = NULL; 23783 } 23784 23785 if (err != 0) 23786 miocnak(q, mp, 0, err); 23787 else 23788 miocack(q, mp, 0, 0); 23789 } 23790 23791 /* 23792 * tcp_time_wait_processing() handles processing of incoming packets when 23793 * the tcp is in the TIME_WAIT state. 23794 * A TIME_WAIT tcp that has an associated open TCP stream is never put 23795 * on the time wait list. 23796 */ 23797 void 23798 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 23799 uint32_t seg_ack, int seg_len, tcph_t *tcph) 23800 { 23801 int32_t bytes_acked; 23802 int32_t gap; 23803 int32_t rgap; 23804 tcp_opt_t tcpopt; 23805 uint_t flags; 23806 uint32_t new_swnd = 0; 23807 conn_t *connp; 23808 23809 BUMP_LOCAL(tcp->tcp_ibsegs); 23810 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 23811 23812 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 23813 new_swnd = BE16_TO_U16(tcph->th_win) << 23814 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 23815 if (tcp->tcp_snd_ts_ok) { 23816 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 23817 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 23818 tcp->tcp_rnxt, TH_ACK); 23819 goto done; 23820 } 23821 } 23822 gap = seg_seq - tcp->tcp_rnxt; 23823 rgap = tcp->tcp_rwnd - (gap + seg_len); 23824 if (gap < 0) { 23825 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 23826 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 23827 (seg_len > -gap ? -gap : seg_len)); 23828 seg_len += gap; 23829 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 23830 if (flags & TH_RST) { 23831 goto done; 23832 } 23833 if ((flags & TH_FIN) && seg_len == -1) { 23834 /* 23835 * When TCP receives a duplicate FIN in 23836 * TIME_WAIT state, restart the 2 MSL timer. 23837 * See page 73 in RFC 793. Make sure this TCP 23838 * is already on the TIME_WAIT list. If not, 23839 * just restart the timer. 23840 */ 23841 if (TCP_IS_DETACHED(tcp)) { 23842 tcp_time_wait_remove(tcp, NULL); 23843 tcp_time_wait_append(tcp); 23844 TCP_DBGSTAT(tcp_rput_time_wait); 23845 } else { 23846 ASSERT(tcp != NULL); 23847 TCP_TIMER_RESTART(tcp, 23848 tcp_time_wait_interval); 23849 } 23850 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 23851 tcp->tcp_rnxt, TH_ACK); 23852 goto done; 23853 } 23854 flags |= TH_ACK_NEEDED; 23855 seg_len = 0; 23856 goto process_ack; 23857 } 23858 23859 /* Fix seg_seq, and chew the gap off the front. */ 23860 seg_seq = tcp->tcp_rnxt; 23861 } 23862 23863 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 23864 /* 23865 * Make sure that when we accept the connection, pick 23866 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 23867 * old connection. 23868 * 23869 * The next ISS generated is equal to tcp_iss_incr_extra 23870 * + ISS_INCR/2 + other components depending on the 23871 * value of tcp_strong_iss. We pre-calculate the new 23872 * ISS here and compare with tcp_snxt to determine if 23873 * we need to make adjustment to tcp_iss_incr_extra. 23874 * 23875 * The above calculation is ugly and is a 23876 * waste of CPU cycles... 23877 */ 23878 uint32_t new_iss = tcp_iss_incr_extra; 23879 int32_t adj; 23880 23881 switch (tcp_strong_iss) { 23882 case 2: { 23883 /* Add time and MD5 components. */ 23884 uint32_t answer[4]; 23885 struct { 23886 uint32_t ports; 23887 in6_addr_t src; 23888 in6_addr_t dst; 23889 } arg; 23890 MD5_CTX context; 23891 23892 mutex_enter(&tcp_iss_key_lock); 23893 context = tcp_iss_key; 23894 mutex_exit(&tcp_iss_key_lock); 23895 arg.ports = tcp->tcp_ports; 23896 /* We use MAPPED addresses in tcp_iss_init */ 23897 arg.src = tcp->tcp_ip_src_v6; 23898 if (tcp->tcp_ipversion == IPV4_VERSION) { 23899 IN6_IPADDR_TO_V4MAPPED( 23900 tcp->tcp_ipha->ipha_dst, 23901 &arg.dst); 23902 } else { 23903 arg.dst = 23904 tcp->tcp_ip6h->ip6_dst; 23905 } 23906 MD5Update(&context, (uchar_t *)&arg, 23907 sizeof (arg)); 23908 MD5Final((uchar_t *)answer, &context); 23909 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 23910 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 23911 break; 23912 } 23913 case 1: 23914 /* Add time component and min random (i.e. 1). */ 23915 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 23916 break; 23917 default: 23918 /* Add only time component. */ 23919 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 23920 break; 23921 } 23922 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 23923 /* 23924 * New ISS not guaranteed to be ISS_INCR/2 23925 * ahead of the current tcp_snxt, so add the 23926 * difference to tcp_iss_incr_extra. 23927 */ 23928 tcp_iss_incr_extra += adj; 23929 } 23930 /* 23931 * If tcp_clean_death() can not perform the task now, 23932 * drop the SYN packet and let the other side re-xmit. 23933 * Otherwise pass the SYN packet back in, since the 23934 * old tcp state has been cleaned up or freed. 23935 */ 23936 if (tcp_clean_death(tcp, 0, 27) == -1) 23937 goto done; 23938 /* 23939 * We will come back to tcp_rput_data 23940 * on the global queue. Packets destined 23941 * for the global queue will be checked 23942 * with global policy. But the policy for 23943 * this packet has already been checked as 23944 * this was destined for the detached 23945 * connection. We need to bypass policy 23946 * check this time by attaching a dummy 23947 * ipsec_in with ipsec_in_dont_check set. 23948 */ 23949 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 23950 NULL) { 23951 TCP_STAT(tcp_time_wait_syn_success); 23952 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 23953 return; 23954 } 23955 goto done; 23956 } 23957 23958 /* 23959 * rgap is the amount of stuff received out of window. A negative 23960 * value is the amount out of window. 23961 */ 23962 if (rgap < 0) { 23963 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 23964 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 23965 /* Fix seg_len and make sure there is something left. */ 23966 seg_len += rgap; 23967 if (seg_len <= 0) { 23968 if (flags & TH_RST) { 23969 goto done; 23970 } 23971 flags |= TH_ACK_NEEDED; 23972 seg_len = 0; 23973 goto process_ack; 23974 } 23975 } 23976 /* 23977 * Check whether we can update tcp_ts_recent. This test is 23978 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 23979 * Extensions for High Performance: An Update", Internet Draft. 23980 */ 23981 if (tcp->tcp_snd_ts_ok && 23982 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 23983 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 23984 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 23985 tcp->tcp_last_rcv_lbolt = lbolt64; 23986 } 23987 23988 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 23989 /* Always ack out of order packets */ 23990 flags |= TH_ACK_NEEDED; 23991 seg_len = 0; 23992 } else if (seg_len > 0) { 23993 BUMP_MIB(&tcp_mib, tcpInClosed); 23994 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 23995 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 23996 } 23997 if (flags & TH_RST) { 23998 (void) tcp_clean_death(tcp, 0, 28); 23999 goto done; 24000 } 24001 if (flags & TH_SYN) { 24002 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24003 TH_RST|TH_ACK); 24004 /* 24005 * Do not delete the TCP structure if it is in 24006 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24007 */ 24008 goto done; 24009 } 24010 process_ack: 24011 if (flags & TH_ACK) { 24012 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24013 if (bytes_acked <= 0) { 24014 if (bytes_acked == 0 && seg_len == 0 && 24015 new_swnd == tcp->tcp_swnd) 24016 BUMP_MIB(&tcp_mib, tcpInDupAck); 24017 } else { 24018 /* Acks something not sent */ 24019 flags |= TH_ACK_NEEDED; 24020 } 24021 } 24022 if (flags & TH_ACK_NEEDED) { 24023 /* 24024 * Time to send an ack for some reason. 24025 */ 24026 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24027 tcp->tcp_rnxt, TH_ACK); 24028 } 24029 done: 24030 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24031 DB_CKSUMSTART(mp) = 0; 24032 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24033 TCP_STAT(tcp_time_wait_syn_fail); 24034 } 24035 freemsg(mp); 24036 } 24037 24038 /* 24039 * Return zero if the buffers are identical in length and content. 24040 * This is used for comparing extension header buffers. 24041 * Note that an extension header would be declared different 24042 * even if all that changed was the next header value in that header i.e. 24043 * what really changed is the next extension header. 24044 */ 24045 static boolean_t 24046 tcp_cmpbuf(void *a, uint_t alen, boolean_t b_valid, void *b, uint_t blen) 24047 { 24048 if (!b_valid) 24049 blen = 0; 24050 24051 if (alen != blen) 24052 return (B_TRUE); 24053 if (alen == 0) 24054 return (B_FALSE); /* Both zero length */ 24055 return (bcmp(a, b, alen)); 24056 } 24057 24058 /* 24059 * Preallocate memory for tcp_savebuf(). Returns B_TRUE if ok. 24060 * Return B_FALSE if memory allocation fails - don't change any state! 24061 */ 24062 static boolean_t 24063 tcp_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24064 void *src, uint_t srclen) 24065 { 24066 void *dst; 24067 24068 if (!src_valid) 24069 srclen = 0; 24070 24071 ASSERT(*dstlenp == 0); 24072 if (src != NULL && srclen != 0) { 24073 dst = mi_alloc(srclen, BPRI_MED); 24074 if (dst == NULL) 24075 return (B_FALSE); 24076 } else { 24077 dst = NULL; 24078 } 24079 if (*dstp != NULL) { 24080 mi_free(*dstp); 24081 *dstp = NULL; 24082 *dstlenp = 0; 24083 } 24084 *dstp = dst; 24085 if (dst != NULL) 24086 *dstlenp = srclen; 24087 else 24088 *dstlenp = 0; 24089 return (B_TRUE); 24090 } 24091 24092 /* 24093 * Replace what is in *dst, *dstlen with the source. 24094 * Assumes tcp_allocbuf has already been called. 24095 */ 24096 static void 24097 tcp_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24098 void *src, uint_t srclen) 24099 { 24100 if (!src_valid) 24101 srclen = 0; 24102 24103 ASSERT(*dstlenp == srclen); 24104 if (src != NULL && srclen != 0) { 24105 bcopy(src, *dstp, srclen); 24106 } 24107 } 24108 24109 /* 24110 * Allocate a T_SVR4_OPTMGMT_REQ. 24111 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 24112 * that tcp_rput_other can drop the acks. 24113 */ 24114 static mblk_t * 24115 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 24116 { 24117 mblk_t *mp; 24118 struct T_optmgmt_req *tor; 24119 struct opthdr *oh; 24120 uint_t size; 24121 char *optptr; 24122 24123 size = sizeof (*tor) + sizeof (*oh) + optlen; 24124 mp = allocb(size, BPRI_MED); 24125 if (mp == NULL) 24126 return (NULL); 24127 24128 mp->b_wptr += size; 24129 mp->b_datap->db_type = M_PROTO; 24130 tor = (struct T_optmgmt_req *)mp->b_rptr; 24131 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 24132 tor->MGMT_flags = T_NEGOTIATE; 24133 tor->OPT_length = sizeof (*oh) + optlen; 24134 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 24135 24136 oh = (struct opthdr *)&tor[1]; 24137 oh->level = level; 24138 oh->name = cmd; 24139 oh->len = optlen; 24140 if (optlen != 0) { 24141 optptr = (char *)&oh[1]; 24142 bcopy(opt, optptr, optlen); 24143 } 24144 return (mp); 24145 } 24146 24147 /* 24148 * TCP Timers Implementation. 24149 */ 24150 timeout_id_t 24151 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24152 { 24153 mblk_t *mp; 24154 tcp_timer_t *tcpt; 24155 tcp_t *tcp = connp->conn_tcp; 24156 24157 ASSERT(connp->conn_sqp != NULL); 24158 24159 TCP_DBGSTAT(tcp_timeout_calls); 24160 24161 if (tcp->tcp_timercache == NULL) { 24162 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24163 } else { 24164 TCP_DBGSTAT(tcp_timeout_cached_alloc); 24165 mp = tcp->tcp_timercache; 24166 tcp->tcp_timercache = mp->b_next; 24167 mp->b_next = NULL; 24168 ASSERT(mp->b_wptr == NULL); 24169 } 24170 24171 CONN_INC_REF(connp); 24172 tcpt = (tcp_timer_t *)mp->b_rptr; 24173 tcpt->connp = connp; 24174 tcpt->tcpt_proc = f; 24175 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 24176 return ((timeout_id_t)mp); 24177 } 24178 24179 static void 24180 tcp_timer_callback(void *arg) 24181 { 24182 mblk_t *mp = (mblk_t *)arg; 24183 tcp_timer_t *tcpt; 24184 conn_t *connp; 24185 24186 tcpt = (tcp_timer_t *)mp->b_rptr; 24187 connp = tcpt->connp; 24188 squeue_fill(connp->conn_sqp, mp, 24189 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 24190 } 24191 24192 static void 24193 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24194 { 24195 tcp_timer_t *tcpt; 24196 conn_t *connp = (conn_t *)arg; 24197 tcp_t *tcp = connp->conn_tcp; 24198 24199 tcpt = (tcp_timer_t *)mp->b_rptr; 24200 ASSERT(connp == tcpt->connp); 24201 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24202 24203 /* 24204 * If the TCP has reached the closed state, don't proceed any 24205 * further. This TCP logically does not exist on the system. 24206 * tcpt_proc could for example access queues, that have already 24207 * been qprocoff'ed off. Also see comments at the start of tcp_input 24208 */ 24209 if (tcp->tcp_state != TCPS_CLOSED) { 24210 (*tcpt->tcpt_proc)(connp); 24211 } else { 24212 tcp->tcp_timer_tid = 0; 24213 } 24214 tcp_timer_free(connp->conn_tcp, mp); 24215 } 24216 24217 /* 24218 * There is potential race with untimeout and the handler firing at the same 24219 * time. The mblock may be freed by the handler while we are trying to use 24220 * it. But since both should execute on the same squeue, this race should not 24221 * occur. 24222 */ 24223 clock_t 24224 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24225 { 24226 mblk_t *mp = (mblk_t *)id; 24227 tcp_timer_t *tcpt; 24228 clock_t delta; 24229 24230 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 24231 24232 if (mp == NULL) 24233 return (-1); 24234 24235 tcpt = (tcp_timer_t *)mp->b_rptr; 24236 ASSERT(tcpt->connp == connp); 24237 24238 delta = untimeout(tcpt->tcpt_tid); 24239 24240 if (delta >= 0) { 24241 TCP_DBGSTAT(tcp_timeout_canceled); 24242 tcp_timer_free(connp->conn_tcp, mp); 24243 CONN_DEC_REF(connp); 24244 } 24245 24246 return (delta); 24247 } 24248 24249 /* 24250 * Allocate space for the timer event. The allocation looks like mblk, but it is 24251 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24252 * 24253 * Dealing with failures: If we can't allocate from the timer cache we try 24254 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24255 * points to b_rptr. 24256 * If we can't allocate anything using allocb_tryhard(), we perform a last 24257 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24258 * save the actual allocation size in b_datap. 24259 */ 24260 mblk_t * 24261 tcp_timermp_alloc(int kmflags) 24262 { 24263 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 24264 kmflags & ~KM_PANIC); 24265 24266 if (mp != NULL) { 24267 mp->b_next = mp->b_prev = NULL; 24268 mp->b_rptr = (uchar_t *)(&mp[1]); 24269 mp->b_wptr = NULL; 24270 mp->b_datap = NULL; 24271 mp->b_queue = NULL; 24272 } else if (kmflags & KM_PANIC) { 24273 /* 24274 * Failed to allocate memory for the timer. Try allocating from 24275 * dblock caches. 24276 */ 24277 TCP_STAT(tcp_timermp_allocfail); 24278 mp = allocb_tryhard(sizeof (tcp_timer_t)); 24279 if (mp == NULL) { 24280 size_t size = 0; 24281 /* 24282 * Memory is really low. Try tryhard allocation. 24283 */ 24284 TCP_STAT(tcp_timermp_allocdblfail); 24285 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 24286 sizeof (tcp_timer_t), &size, kmflags); 24287 mp->b_rptr = (uchar_t *)(&mp[1]); 24288 mp->b_next = mp->b_prev = NULL; 24289 mp->b_wptr = (uchar_t *)-1; 24290 mp->b_datap = (dblk_t *)size; 24291 mp->b_queue = NULL; 24292 } 24293 ASSERT(mp->b_wptr != NULL); 24294 } 24295 TCP_DBGSTAT(tcp_timermp_alloced); 24296 24297 return (mp); 24298 } 24299 24300 /* 24301 * Free per-tcp timer cache. 24302 * It can only contain entries from tcp_timercache. 24303 */ 24304 void 24305 tcp_timermp_free(tcp_t *tcp) 24306 { 24307 mblk_t *mp; 24308 24309 while ((mp = tcp->tcp_timercache) != NULL) { 24310 ASSERT(mp->b_wptr == NULL); 24311 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 24312 kmem_cache_free(tcp_timercache, mp); 24313 } 24314 } 24315 24316 /* 24317 * Free timer event. Put it on the per-tcp timer cache if there is not too many 24318 * events there already (currently at most two events are cached). 24319 * If the event is not allocated from the timer cache, free it right away. 24320 */ 24321 static void 24322 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 24323 { 24324 mblk_t *mp1 = tcp->tcp_timercache; 24325 24326 if (mp->b_wptr != NULL) { 24327 /* 24328 * This allocation is not from a timer cache, free it right 24329 * away. 24330 */ 24331 if (mp->b_wptr != (uchar_t *)-1) 24332 freeb(mp); 24333 else 24334 kmem_free(mp, (size_t)mp->b_datap); 24335 } else if (mp1 == NULL || mp1->b_next == NULL) { 24336 /* Cache this timer block for future allocations */ 24337 mp->b_rptr = (uchar_t *)(&mp[1]); 24338 mp->b_next = mp1; 24339 tcp->tcp_timercache = mp; 24340 } else { 24341 kmem_cache_free(tcp_timercache, mp); 24342 TCP_DBGSTAT(tcp_timermp_freed); 24343 } 24344 } 24345 24346 /* 24347 * End of TCP Timers implementation. 24348 */ 24349 24350 /* 24351 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 24352 * on the specified backing STREAMS q. Note, the caller may make the 24353 * decision to call based on the tcp_t.tcp_flow_stopped value which 24354 * when check outside the q's lock is only an advisory check ... 24355 */ 24356 24357 void 24358 tcp_setqfull(tcp_t *tcp) 24359 { 24360 queue_t *q = tcp->tcp_wq; 24361 24362 if (!(q->q_flag & QFULL)) { 24363 mutex_enter(QLOCK(q)); 24364 if (!(q->q_flag & QFULL)) { 24365 /* still need to set QFULL */ 24366 q->q_flag |= QFULL; 24367 tcp->tcp_flow_stopped = B_TRUE; 24368 mutex_exit(QLOCK(q)); 24369 TCP_STAT(tcp_flwctl_on); 24370 } else { 24371 mutex_exit(QLOCK(q)); 24372 } 24373 } 24374 } 24375 24376 void 24377 tcp_clrqfull(tcp_t *tcp) 24378 { 24379 queue_t *q = tcp->tcp_wq; 24380 24381 if (q->q_flag & QFULL) { 24382 mutex_enter(QLOCK(q)); 24383 if (q->q_flag & QFULL) { 24384 q->q_flag &= ~QFULL; 24385 tcp->tcp_flow_stopped = B_FALSE; 24386 mutex_exit(QLOCK(q)); 24387 if (q->q_flag & QWANTW) 24388 qbackenable(q, 0); 24389 } else { 24390 mutex_exit(QLOCK(q)); 24391 } 24392 } 24393 } 24394 24395 /* 24396 * TCP Kstats implementation 24397 */ 24398 static void 24399 tcp_kstat_init(void) 24400 { 24401 tcp_named_kstat_t template = { 24402 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 24403 { "rtoMin", KSTAT_DATA_INT32, 0 }, 24404 { "rtoMax", KSTAT_DATA_INT32, 0 }, 24405 { "maxConn", KSTAT_DATA_INT32, 0 }, 24406 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 24407 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 24408 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 24409 { "estabResets", KSTAT_DATA_UINT32, 0 }, 24410 { "currEstab", KSTAT_DATA_UINT32, 0 }, 24411 { "inSegs", KSTAT_DATA_UINT32, 0 }, 24412 { "outSegs", KSTAT_DATA_UINT32, 0 }, 24413 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 24414 { "connTableSize", KSTAT_DATA_INT32, 0 }, 24415 { "outRsts", KSTAT_DATA_UINT32, 0 }, 24416 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 24417 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 24418 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 24419 { "outAck", KSTAT_DATA_UINT32, 0 }, 24420 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 24421 { "outUrg", KSTAT_DATA_UINT32, 0 }, 24422 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 24423 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 24424 { "outControl", KSTAT_DATA_UINT32, 0 }, 24425 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 24426 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 24427 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 24428 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 24429 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 24430 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 24431 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 24432 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 24433 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 24434 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 24435 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 24436 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 24437 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 24438 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 24439 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 24440 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 24441 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 24442 { "inClosed", KSTAT_DATA_UINT32, 0 }, 24443 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 24444 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 24445 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 24446 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 24447 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 24448 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 24449 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 24450 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 24451 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 24452 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 24453 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 24454 { "connTableSize6", KSTAT_DATA_INT32, 0 } 24455 }; 24456 24457 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 24458 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 24459 24460 if (tcp_mibkp == NULL) 24461 return; 24462 24463 template.rtoAlgorithm.value.ui32 = 4; 24464 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 24465 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 24466 template.maxConn.value.i32 = -1; 24467 24468 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 24469 24470 tcp_mibkp->ks_update = tcp_kstat_update; 24471 24472 kstat_install(tcp_mibkp); 24473 } 24474 24475 static void 24476 tcp_kstat_fini(void) 24477 { 24478 24479 if (tcp_mibkp != NULL) { 24480 kstat_delete(tcp_mibkp); 24481 tcp_mibkp = NULL; 24482 } 24483 } 24484 24485 static int 24486 tcp_kstat_update(kstat_t *kp, int rw) 24487 { 24488 tcp_named_kstat_t *tcpkp; 24489 tcp_t *tcp; 24490 connf_t *connfp; 24491 conn_t *connp; 24492 int i; 24493 24494 if (!kp || !kp->ks_data) 24495 return (EIO); 24496 24497 if (rw == KSTAT_WRITE) 24498 return (EACCES); 24499 24500 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 24501 24502 tcpkp->currEstab.value.ui32 = 0; 24503 24504 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24505 connfp = &ipcl_globalhash_fanout[i]; 24506 connp = NULL; 24507 while ((connp = 24508 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24509 tcp = connp->conn_tcp; 24510 switch (tcp_snmp_state(tcp)) { 24511 case MIB2_TCP_established: 24512 case MIB2_TCP_closeWait: 24513 tcpkp->currEstab.value.ui32++; 24514 break; 24515 } 24516 } 24517 } 24518 24519 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 24520 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 24521 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 24522 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 24523 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 24524 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 24525 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 24526 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 24527 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 24528 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 24529 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 24530 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 24531 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 24532 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 24533 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 24534 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 24535 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 24536 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 24537 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 24538 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 24539 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 24540 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 24541 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 24542 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 24543 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 24544 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 24545 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 24546 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 24547 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 24548 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 24549 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 24550 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 24551 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 24552 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 24553 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 24554 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 24555 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 24556 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 24557 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 24558 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 24559 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 24560 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 24561 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 24562 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 24563 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 24564 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 24565 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 24566 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 24567 24568 return (0); 24569 } 24570 24571 void 24572 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 24573 { 24574 uint16_t hdr_len; 24575 ipha_t *ipha; 24576 uint8_t *nexthdrp; 24577 tcph_t *tcph; 24578 24579 /* Already has an eager */ 24580 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24581 TCP_STAT(tcp_reinput_syn); 24582 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 24583 connp, SQTAG_TCP_REINPUT_EAGER); 24584 return; 24585 } 24586 24587 switch (IPH_HDR_VERSION(mp->b_rptr)) { 24588 case IPV4_VERSION: 24589 ipha = (ipha_t *)mp->b_rptr; 24590 hdr_len = IPH_HDR_LENGTH(ipha); 24591 break; 24592 case IPV6_VERSION: 24593 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 24594 &hdr_len, &nexthdrp)) { 24595 CONN_DEC_REF(connp); 24596 freemsg(mp); 24597 return; 24598 } 24599 break; 24600 } 24601 24602 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 24603 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 24604 mp->b_datap->db_struioflag |= STRUIO_EAGER; 24605 DB_CKSUMSTART(mp) = (intptr_t)sqp; 24606 } 24607 24608 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 24609 SQTAG_TCP_REINPUT); 24610 } 24611 24612 static squeue_func_t 24613 tcp_squeue_switch(int val) 24614 { 24615 squeue_func_t rval = squeue_fill; 24616 24617 switch (val) { 24618 case 1: 24619 rval = squeue_enter_nodrain; 24620 break; 24621 case 2: 24622 rval = squeue_enter; 24623 break; 24624 default: 24625 break; 24626 } 24627 return (rval); 24628 } 24629 24630 static void 24631 tcp_squeue_add(squeue_t *sqp) 24632 { 24633 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 24634 sizeof (tcp_squeue_priv_t), KM_SLEEP); 24635 24636 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 24637 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 24638 sqp, TCP_TIME_WAIT_DELAY); 24639 } 24640