1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/ethernet.h> 51 #include <sys/cpuvar.h> 52 #include <sys/dlpi.h> 53 #include <sys/multidata.h> 54 #include <sys/multidata_impl.h> 55 #include <sys/pattr.h> 56 #include <sys/policy.h> 57 #include <sys/priv.h> 58 #include <sys/zone.h> 59 60 #include <sys/errno.h> 61 #include <sys/signal.h> 62 #include <sys/socket.h> 63 #include <sys/sockio.h> 64 #include <sys/isa_defs.h> 65 #include <sys/md5.h> 66 #include <sys/random.h> 67 #include <netinet/in.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <net/if.h> 72 #include <net/route.h> 73 #include <inet/ipsec_impl.h> 74 75 #include <inet/common.h> 76 #include <inet/ip.h> 77 #include <inet/ip_impl.h> 78 #include <inet/ip6.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/mi.h> 81 #include <inet/mib2.h> 82 #include <inet/nd.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <net/pfkeyv2.h> 89 #include <inet/ipsec_info.h> 90 #include <inet/ipdrop.h> 91 #include <inet/tcp_trace.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_if.h> 96 #include <inet/ipp_common.h> 97 #include <sys/squeue.h> 98 #include <inet/kssl/ksslapi.h> 99 #include <sys/tsol/label.h> 100 #include <sys/tsol/tnet.h> 101 #include <sys/sdt.h> 102 #include <rpc/pmap_prot.h> 103 104 /* 105 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 106 * 107 * (Read the detailed design doc in PSARC case directory) 108 * 109 * The entire tcp state is contained in tcp_t and conn_t structure 110 * which are allocated in tandem using ipcl_conn_create() and passing 111 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 112 * the references on the tcp_t. The tcp_t structure is never compressed 113 * and packets always land on the correct TCP perimeter from the time 114 * eager is created till the time tcp_t dies (as such the old mentat 115 * TCP global queue is not used for detached state and no IPSEC checking 116 * is required). The global queue is still allocated to send out resets 117 * for connection which have no listeners and IP directly calls 118 * tcp_xmit_listeners_reset() which does any policy check. 119 * 120 * Protection and Synchronisation mechanism: 121 * 122 * The tcp data structure does not use any kind of lock for protecting 123 * its state but instead uses 'squeues' for mutual exclusion from various 124 * read and write side threads. To access a tcp member, the thread should 125 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 126 * squeue_fill). Since the squeues allow a direct function call, caller 127 * can pass any tcp function having prototype of edesc_t as argument 128 * (different from traditional STREAMs model where packets come in only 129 * designated entry points). The list of functions that can be directly 130 * called via squeue are listed before the usual function prototype. 131 * 132 * Referencing: 133 * 134 * TCP is MT-Hot and we use a reference based scheme to make sure that the 135 * tcp structure doesn't disappear when its needed. When the application 136 * creates an outgoing connection or accepts an incoming connection, we 137 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 138 * The IP reference is just a symbolic reference since ip_tcpclose() 139 * looks at tcp structure after tcp_close_output() returns which could 140 * have dropped the last TCP reference. So as long as the connection is 141 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 142 * conn_t. The classifier puts its own reference when the connection is 143 * inserted in listen or connected hash. Anytime a thread needs to enter 144 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 145 * on write side or by doing a classify on read side and then puts a 146 * reference on the conn before doing squeue_enter/tryenter/fill. For 147 * read side, the classifier itself puts the reference under fanout lock 148 * to make sure that tcp can't disappear before it gets processed. The 149 * squeue will drop this reference automatically so the called function 150 * doesn't have to do a DEC_REF. 151 * 152 * Opening a new connection: 153 * 154 * The outgoing connection open is pretty simple. ip_tcpopen() does the 155 * work in creating the conn/tcp structure and initializing it. The 156 * squeue assignment is done based on the CPU the application 157 * is running on. So for outbound connections, processing is always done 158 * on application CPU which might be different from the incoming CPU 159 * being interrupted by the NIC. An optimal way would be to figure out 160 * the NIC <-> CPU binding at listen time, and assign the outgoing 161 * connection to the squeue attached to the CPU that will be interrupted 162 * for incoming packets (we know the NIC based on the bind IP address). 163 * This might seem like a problem if more data is going out but the 164 * fact is that in most cases the transmit is ACK driven transmit where 165 * the outgoing data normally sits on TCP's xmit queue waiting to be 166 * transmitted. 167 * 168 * Accepting a connection: 169 * 170 * This is a more interesting case because of various races involved in 171 * establishing a eager in its own perimeter. Read the meta comment on 172 * top of tcp_conn_request(). But briefly, the squeue is picked by 173 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 174 * 175 * Closing a connection: 176 * 177 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 178 * via squeue to do the close and mark the tcp as detached if the connection 179 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 180 * reference but tcp_close() drop IP's reference always. So if tcp was 181 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 182 * and 1 because it is in classifier's connected hash. This is the condition 183 * we use to determine that its OK to clean up the tcp outside of squeue 184 * when time wait expires (check the ref under fanout and conn_lock and 185 * if it is 2, remove it from fanout hash and kill it). 186 * 187 * Although close just drops the necessary references and marks the 188 * tcp_detached state, tcp_close needs to know the tcp_detached has been 189 * set (under squeue) before letting the STREAM go away (because a 190 * inbound packet might attempt to go up the STREAM while the close 191 * has happened and tcp_detached is not set). So a special lock and 192 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 193 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 194 * tcp_detached. 195 * 196 * Special provisions and fast paths: 197 * 198 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 199 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 200 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 201 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 202 * check to send packets directly to tcp_rput_data via squeue. Everyone 203 * else comes through tcp_input() on the read side. 204 * 205 * We also make special provisions for sockfs by marking tcp_issocket 206 * whenever we have only sockfs on top of TCP. This allows us to skip 207 * putting the tcp in acceptor hash since a sockfs listener can never 208 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 209 * since eager has already been allocated and the accept now happens 210 * on acceptor STREAM. There is a big blob of comment on top of 211 * tcp_conn_request explaining the new accept. When socket is POP'd, 212 * sockfs sends us an ioctl to mark the fact and we go back to old 213 * behaviour. Once tcp_issocket is unset, its never set for the 214 * life of that connection. 215 * 216 * IPsec notes : 217 * 218 * Since a packet is always executed on the correct TCP perimeter 219 * all IPsec processing is defered to IP including checking new 220 * connections and setting IPSEC policies for new connection. The 221 * only exception is tcp_xmit_listeners_reset() which is called 222 * directly from IP and needs to policy check to see if TH_RST 223 * can be sent out. 224 */ 225 226 extern major_t TCP6_MAJ; 227 228 /* 229 * Values for squeue switch: 230 * 1: squeue_enter_nodrain 231 * 2: squeue_enter 232 * 3: squeue_fill 233 */ 234 int tcp_squeue_close = 2; 235 int tcp_squeue_wput = 2; 236 237 squeue_func_t tcp_squeue_close_proc; 238 squeue_func_t tcp_squeue_wput_proc; 239 240 /* 241 * This controls how tiny a write must be before we try to copy it 242 * into the the mblk on the tail of the transmit queue. Not much 243 * speedup is observed for values larger than sixteen. Zero will 244 * disable the optimisation. 245 */ 246 int tcp_tx_pull_len = 16; 247 248 /* 249 * TCP Statistics. 250 * 251 * How TCP statistics work. 252 * 253 * There are two types of statistics invoked by two macros. 254 * 255 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 256 * supposed to be used in non MT-hot paths of the code. 257 * 258 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 259 * supposed to be used for DEBUG purposes and may be used on a hot path. 260 * 261 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 262 * (use "kstat tcp" to get them). 263 * 264 * There is also additional debugging facility that marks tcp_clean_death() 265 * instances and saves them in tcp_t structure. It is triggered by 266 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 267 * tcp_clean_death() calls that counts the number of times each tag was hit. It 268 * is triggered by TCP_CLD_COUNTERS define. 269 * 270 * How to add new counters. 271 * 272 * 1) Add a field in the tcp_stat structure describing your counter. 273 * 2) Add a line in tcp_statistics with the name of the counter. 274 * 275 * IMPORTANT!! - make sure that both are in sync !! 276 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 277 * 278 * Please avoid using private counters which are not kstat-exported. 279 * 280 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 281 * in tcp_t structure. 282 * 283 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 284 */ 285 286 #ifndef TCP_DEBUG_COUNTER 287 #ifdef DEBUG 288 #define TCP_DEBUG_COUNTER 1 289 #else 290 #define TCP_DEBUG_COUNTER 0 291 #endif 292 #endif 293 294 #define TCP_CLD_COUNTERS 0 295 296 #define TCP_TAG_CLEAN_DEATH 1 297 #define TCP_MAX_CLEAN_DEATH_TAG 32 298 299 #ifdef lint 300 static int _lint_dummy_; 301 #endif 302 303 #if TCP_CLD_COUNTERS 304 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 305 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 306 #elif defined(lint) 307 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 308 #else 309 #define TCP_CLD_STAT(x) 310 #endif 311 312 #if TCP_DEBUG_COUNTER 313 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 314 #elif defined(lint) 315 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 316 #else 317 #define TCP_DBGSTAT(x) 318 #endif 319 320 tcp_stat_t tcp_statistics = { 321 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 322 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 323 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 324 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 325 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 326 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 327 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 328 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 329 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 330 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 331 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 332 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 333 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 334 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 335 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 336 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 337 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 338 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 339 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 340 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 341 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 342 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 343 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 344 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 345 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 346 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 347 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 348 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 349 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 350 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 351 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 352 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 353 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 354 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 355 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 356 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 357 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 358 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 359 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 360 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 361 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 362 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 363 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 364 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 365 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 366 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 367 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 368 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 369 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 370 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 371 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 372 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 373 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 374 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 375 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 376 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 377 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 378 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 379 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 380 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 381 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 382 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 383 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 384 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 385 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 386 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 387 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 388 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 389 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 390 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 391 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 392 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 395 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 396 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 397 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 398 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 399 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 400 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 401 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 402 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 403 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 404 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 405 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 406 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 407 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 408 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 409 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 410 }; 411 412 static kstat_t *tcp_kstat; 413 414 /* 415 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 416 * tcp write side. 417 */ 418 #define CALL_IP_WPUT(connp, q, mp) { \ 419 ASSERT(((q)->q_flag & QREADR) == 0); \ 420 TCP_DBGSTAT(tcp_ip_output); \ 421 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 422 } 423 424 /* Macros for timestamp comparisons */ 425 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 426 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 427 428 /* 429 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 430 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 431 * by adding three components: a time component which grows by 1 every 4096 432 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 433 * a per-connection component which grows by 125000 for every new connection; 434 * and an "extra" component that grows by a random amount centered 435 * approximately on 64000. This causes the the ISS generator to cycle every 436 * 4.89 hours if no TCP connections are made, and faster if connections are 437 * made. 438 * 439 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 440 * components: a time component which grows by 250000 every second; and 441 * a per-connection component which grows by 125000 for every new connections. 442 * 443 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 444 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 445 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 446 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 447 * password. 448 */ 449 #define ISS_INCR 250000 450 #define ISS_NSEC_SHT 12 451 452 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 453 static kmutex_t tcp_iss_key_lock; 454 static MD5_CTX tcp_iss_key; 455 static sin_t sin_null; /* Zero address for quick clears */ 456 static sin6_t sin6_null; /* Zero address for quick clears */ 457 458 /* Packet dropper for TCP IPsec policy drops. */ 459 static ipdropper_t tcp_dropper; 460 461 /* 462 * This implementation follows the 4.3BSD interpretation of the urgent 463 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 464 * incompatible changes in protocols like telnet and rlogin. 465 */ 466 #define TCP_OLD_URP_INTERPRETATION 1 467 468 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 469 (TCP_IS_DETACHED(tcp) && \ 470 (!(tcp)->tcp_hard_binding)) 471 472 /* 473 * TCP reassembly macros. We hide starting and ending sequence numbers in 474 * b_next and b_prev of messages on the reassembly queue. The messages are 475 * chained using b_cont. These macros are used in tcp_reass() so we don't 476 * have to see the ugly casts and assignments. 477 */ 478 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 479 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 480 (mblk_t *)(uintptr_t)(u)) 481 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 482 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 483 (mblk_t *)(uintptr_t)(u)) 484 485 /* 486 * Implementation of TCP Timers. 487 * ============================= 488 * 489 * INTERFACE: 490 * 491 * There are two basic functions dealing with tcp timers: 492 * 493 * timeout_id_t tcp_timeout(connp, func, time) 494 * clock_t tcp_timeout_cancel(connp, timeout_id) 495 * TCP_TIMER_RESTART(tcp, intvl) 496 * 497 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 498 * after 'time' ticks passed. The function called by timeout() must adhere to 499 * the same restrictions as a driver soft interrupt handler - it must not sleep 500 * or call other functions that might sleep. The value returned is the opaque 501 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 502 * cancel the request. The call to tcp_timeout() may fail in which case it 503 * returns zero. This is different from the timeout(9F) function which never 504 * fails. 505 * 506 * The call-back function 'func' always receives 'connp' as its single 507 * argument. It is always executed in the squeue corresponding to the tcp 508 * structure. The tcp structure is guaranteed to be present at the time the 509 * call-back is called. 510 * 511 * NOTE: The call-back function 'func' is never called if tcp is in 512 * the TCPS_CLOSED state. 513 * 514 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 515 * request. locks acquired by the call-back routine should not be held across 516 * the call to tcp_timeout_cancel() or a deadlock may result. 517 * 518 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 519 * Otherwise, it returns an integer value greater than or equal to 0. In 520 * particular, if the call-back function is already placed on the squeue, it can 521 * not be canceled. 522 * 523 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 524 * within squeue context corresponding to the tcp instance. Since the 525 * call-back is also called via the same squeue, there are no race 526 * conditions described in untimeout(9F) manual page since all calls are 527 * strictly serialized. 528 * 529 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 530 * stored in tcp_timer_tid and starts a new one using 531 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 532 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 533 * field. 534 * 535 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 536 * call-back may still be called, so it is possible tcp_timer() will be 537 * called several times. This should not be a problem since tcp_timer() 538 * should always check the tcp instance state. 539 * 540 * 541 * IMPLEMENTATION: 542 * 543 * TCP timers are implemented using three-stage process. The call to 544 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 545 * when the timer expires. The tcp_timer_callback() arranges the call of the 546 * tcp_timer_handler() function via squeue corresponding to the tcp 547 * instance. The tcp_timer_handler() calls actual requested timeout call-back 548 * and passes tcp instance as an argument to it. Information is passed between 549 * stages using the tcp_timer_t structure which contains the connp pointer, the 550 * tcp call-back to call and the timeout id returned by the timeout(9F). 551 * 552 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 553 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 554 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 555 * returns the pointer to this mblk. 556 * 557 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 558 * looks like a normal mblk without actual dblk attached to it. 559 * 560 * To optimize performance each tcp instance holds a small cache of timer 561 * mblocks. In the current implementation it caches up to two timer mblocks per 562 * tcp instance. The cache is preserved over tcp frees and is only freed when 563 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 564 * timer processing happens on a corresponding squeue, the cache manipulation 565 * does not require any locks. Experiments show that majority of timer mblocks 566 * allocations are satisfied from the tcp cache and do not involve kmem calls. 567 * 568 * The tcp_timeout() places a refhold on the connp instance which guarantees 569 * that it will be present at the time the call-back function fires. The 570 * tcp_timer_handler() drops the reference after calling the call-back, so the 571 * call-back function does not need to manipulate the references explicitly. 572 */ 573 574 typedef struct tcp_timer_s { 575 conn_t *connp; 576 void (*tcpt_proc)(void *); 577 timeout_id_t tcpt_tid; 578 } tcp_timer_t; 579 580 static kmem_cache_t *tcp_timercache; 581 kmem_cache_t *tcp_sack_info_cache; 582 kmem_cache_t *tcp_iphc_cache; 583 584 /* 585 * For scalability, we must not run a timer for every TCP connection 586 * in TIME_WAIT state. To see why, consider (for time wait interval of 587 * 4 minutes): 588 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 589 * 590 * This list is ordered by time, so you need only delete from the head 591 * until you get to entries which aren't old enough to delete yet. 592 * The list consists of only the detached TIME_WAIT connections. 593 * 594 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 595 * becomes detached TIME_WAIT (either by changing the state and already 596 * being detached or the other way around). This means that the TIME_WAIT 597 * state can be extended (up to doubled) if the connection doesn't become 598 * detached for a long time. 599 * 600 * The list manipulations (including tcp_time_wait_next/prev) 601 * are protected by the tcp_time_wait_lock. The content of the 602 * detached TIME_WAIT connections is protected by the normal perimeters. 603 */ 604 605 typedef struct tcp_squeue_priv_s { 606 kmutex_t tcp_time_wait_lock; 607 /* Protects the next 3 globals */ 608 timeout_id_t tcp_time_wait_tid; 609 tcp_t *tcp_time_wait_head; 610 tcp_t *tcp_time_wait_tail; 611 tcp_t *tcp_free_list; 612 uint_t tcp_free_list_cnt; 613 } tcp_squeue_priv_t; 614 615 /* 616 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 617 * Running it every 5 seconds seems to give the best results. 618 */ 619 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 620 621 /* 622 * To prevent memory hog, limit the number of entries in tcp_free_list 623 * to 1% of available memory / number of cpus 624 */ 625 uint_t tcp_free_list_max_cnt = 0; 626 627 #define TCP_XMIT_LOWATER 4096 628 #define TCP_XMIT_HIWATER 49152 629 #define TCP_RECV_LOWATER 2048 630 #define TCP_RECV_HIWATER 49152 631 632 /* 633 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 634 */ 635 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 636 637 #define TIDUSZ 4096 /* transport interface data unit size */ 638 639 /* 640 * Bind hash list size and has function. It has to be a power of 2 for 641 * hashing. 642 */ 643 #define TCP_BIND_FANOUT_SIZE 512 644 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 645 /* 646 * Size of listen and acceptor hash list. It has to be a power of 2 for 647 * hashing. 648 */ 649 #define TCP_FANOUT_SIZE 256 650 651 #ifdef _ILP32 652 #define TCP_ACCEPTOR_HASH(accid) \ 653 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 654 #else 655 #define TCP_ACCEPTOR_HASH(accid) \ 656 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 657 #endif /* _ILP32 */ 658 659 #define IP_ADDR_CACHE_SIZE 2048 660 #define IP_ADDR_CACHE_HASH(faddr) \ 661 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 662 663 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 664 #define TCP_HSP_HASH_SIZE 256 665 666 #define TCP_HSP_HASH(addr) \ 667 (((addr>>24) ^ (addr >>16) ^ \ 668 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 669 670 /* 671 * TCP options struct returned from tcp_parse_options. 672 */ 673 typedef struct tcp_opt_s { 674 uint32_t tcp_opt_mss; 675 uint32_t tcp_opt_wscale; 676 uint32_t tcp_opt_ts_val; 677 uint32_t tcp_opt_ts_ecr; 678 tcp_t *tcp; 679 } tcp_opt_t; 680 681 /* 682 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 683 */ 684 685 #ifdef _BIG_ENDIAN 686 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 687 (TCPOPT_TSTAMP << 8) | 10) 688 #else 689 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 690 (TCPOPT_NOP << 8) | TCPOPT_NOP) 691 #endif 692 693 /* 694 * Flags returned from tcp_parse_options. 695 */ 696 #define TCP_OPT_MSS_PRESENT 1 697 #define TCP_OPT_WSCALE_PRESENT 2 698 #define TCP_OPT_TSTAMP_PRESENT 4 699 #define TCP_OPT_SACK_OK_PRESENT 8 700 #define TCP_OPT_SACK_PRESENT 16 701 702 /* TCP option length */ 703 #define TCPOPT_NOP_LEN 1 704 #define TCPOPT_MAXSEG_LEN 4 705 #define TCPOPT_WS_LEN 3 706 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 707 #define TCPOPT_TSTAMP_LEN 10 708 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 709 #define TCPOPT_SACK_OK_LEN 2 710 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 711 #define TCPOPT_REAL_SACK_LEN 4 712 #define TCPOPT_MAX_SACK_LEN 36 713 #define TCPOPT_HEADER_LEN 2 714 715 /* TCP cwnd burst factor. */ 716 #define TCP_CWND_INFINITE 65535 717 #define TCP_CWND_SS 3 718 #define TCP_CWND_NORMAL 5 719 720 /* Maximum TCP initial cwin (start/restart). */ 721 #define TCP_MAX_INIT_CWND 8 722 723 /* 724 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 725 * either tcp_slow_start_initial or tcp_slow_start_after idle 726 * depending on the caller. If the upper layer has not used the 727 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 728 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 729 * If the upper layer has changed set the tcp_init_cwnd, just use 730 * it to calculate the tcp_cwnd. 731 */ 732 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 733 { \ 734 if ((tcp)->tcp_init_cwnd == 0) { \ 735 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 736 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 737 } else { \ 738 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 739 } \ 740 tcp->tcp_cwnd_cnt = 0; \ 741 } 742 743 /* TCP Timer control structure */ 744 typedef struct tcpt_s { 745 pfv_t tcpt_pfv; /* The routine we are to call */ 746 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 747 } tcpt_t; 748 749 /* Host Specific Parameter structure */ 750 typedef struct tcp_hsp { 751 struct tcp_hsp *tcp_hsp_next; 752 in6_addr_t tcp_hsp_addr_v6; 753 in6_addr_t tcp_hsp_subnet_v6; 754 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 755 int32_t tcp_hsp_sendspace; 756 int32_t tcp_hsp_recvspace; 757 int32_t tcp_hsp_tstamp; 758 } tcp_hsp_t; 759 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 760 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 761 762 /* 763 * Functions called directly via squeue having a prototype of edesc_t. 764 */ 765 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 766 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 767 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 768 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 769 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 770 void tcp_input(void *arg, mblk_t *mp, void *arg2); 771 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 772 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 773 void tcp_output(void *arg, mblk_t *mp, void *arg2); 774 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 775 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 776 777 778 /* Prototype for TCP functions */ 779 static void tcp_random_init(void); 780 int tcp_random(void); 781 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 782 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 783 tcp_t *eager); 784 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 785 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 786 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 787 boolean_t user_specified); 788 static void tcp_closei_local(tcp_t *tcp); 789 static void tcp_close_detached(tcp_t *tcp); 790 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 791 mblk_t *idmp, mblk_t **defermp); 792 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 793 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 794 in_port_t dstport, uint_t srcid); 795 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 796 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 797 uint32_t scope_id); 798 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 799 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 800 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 801 static char *tcp_display(tcp_t *tcp, char *, char); 802 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 803 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 804 static void tcp_eager_unlink(tcp_t *tcp); 805 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 806 int unixerr); 807 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 808 int tlierr, int unixerr); 809 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 810 cred_t *cr); 811 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 812 char *value, caddr_t cp, cred_t *cr); 813 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 814 char *value, caddr_t cp, cred_t *cr); 815 static int tcp_tpistate(tcp_t *tcp); 816 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 817 int caller_holds_lock); 818 static void tcp_bind_hash_remove(tcp_t *tcp); 819 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 820 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 821 static void tcp_acceptor_hash_remove(tcp_t *tcp); 822 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 823 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 824 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 825 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 826 static int tcp_header_init_ipv4(tcp_t *tcp); 827 static int tcp_header_init_ipv6(tcp_t *tcp); 828 int tcp_init(tcp_t *tcp, queue_t *q); 829 static int tcp_init_values(tcp_t *tcp); 830 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 831 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 832 t_scalar_t addr_length); 833 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 834 static void tcp_ip_notify(tcp_t *tcp); 835 static mblk_t *tcp_ire_mp(mblk_t *mp); 836 static void tcp_iss_init(tcp_t *tcp); 837 static void tcp_keepalive_killer(void *arg); 838 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 839 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 840 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 841 int *do_disconnectp, int *t_errorp, int *sys_errorp); 842 static boolean_t tcp_allow_connopt_set(int level, int name); 843 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 844 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 845 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 846 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 847 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 848 mblk_t *mblk); 849 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 850 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 851 uchar_t *ptr, uint_t len); 852 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 853 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 854 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 855 caddr_t cp, cred_t *cr); 856 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 857 caddr_t cp, cred_t *cr); 858 static void tcp_iss_key_init(uint8_t *phrase, int len); 859 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 860 caddr_t cp, cred_t *cr); 861 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 862 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 863 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 864 static void tcp_reinit(tcp_t *tcp); 865 static void tcp_reinit_values(tcp_t *tcp); 866 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 867 tcp_t *thisstream, cred_t *cr); 868 869 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 870 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 871 static boolean_t tcp_send_rst_chk(void); 872 static void tcp_ss_rexmit(tcp_t *tcp); 873 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 874 static void tcp_process_options(tcp_t *, tcph_t *); 875 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 876 static void tcp_rsrv(queue_t *q); 877 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 878 static int tcp_snmp_state(tcp_t *tcp); 879 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 880 cred_t *cr); 881 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 882 cred_t *cr); 883 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 884 cred_t *cr); 885 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 886 cred_t *cr); 887 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 888 cred_t *cr); 889 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 890 caddr_t cp, cred_t *cr); 891 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 892 caddr_t cp, cred_t *cr); 893 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 894 cred_t *cr); 895 static void tcp_timer(void *arg); 896 static void tcp_timer_callback(void *); 897 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 898 boolean_t random); 899 static in_port_t tcp_get_next_priv_port(const tcp_t *); 900 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 901 void tcp_wput_accept(queue_t *q, mblk_t *mp); 902 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 903 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 904 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 905 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 906 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 907 const int num_sack_blk, int *usable, uint_t *snxt, 908 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 909 const int mdt_thres); 910 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 911 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 912 const int num_sack_blk, int *usable, uint_t *snxt, 913 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 914 const int mdt_thres); 915 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 916 int num_sack_blk); 917 static void tcp_wsrv(queue_t *q); 918 static int tcp_xmit_end(tcp_t *tcp); 919 static mblk_t *tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, 920 int32_t *offset, mblk_t **end_mp, uint32_t seq, 921 boolean_t sendall, uint32_t *seg_len, boolean_t rexmit); 922 static void tcp_ack_timer(void *arg); 923 static mblk_t *tcp_ack_mp(tcp_t *tcp); 924 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 925 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len); 926 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 927 uint32_t ack, int ctl); 928 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 929 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 930 static int setmaxps(queue_t *q, int maxpsz); 931 static void tcp_set_rto(tcp_t *, time_t); 932 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 933 boolean_t, boolean_t); 934 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 935 boolean_t ipsec_mctl); 936 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 937 char *opt, int optlen); 938 static int tcp_build_hdrs(queue_t *, tcp_t *); 939 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 940 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 941 tcph_t *tcph); 942 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 943 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 944 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 945 boolean_t tcp_reserved_port_check(in_port_t); 946 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 947 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 948 static mblk_t *tcp_mdt_info_mp(mblk_t *); 949 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 950 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 951 const boolean_t, const uint32_t, const uint32_t, 952 const uint32_t, const uint32_t); 953 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 954 const uint_t, const uint_t, boolean_t *); 955 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 956 extern mblk_t *tcp_timermp_alloc(int); 957 extern void tcp_timermp_free(tcp_t *); 958 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 959 static void tcp_stop_lingering(tcp_t *tcp); 960 static void tcp_close_linger_timeout(void *arg); 961 void tcp_ddi_init(void); 962 void tcp_ddi_destroy(void); 963 static void tcp_kstat_init(void); 964 static void tcp_kstat_fini(void); 965 static int tcp_kstat_update(kstat_t *kp, int rw); 966 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 967 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 968 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 969 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 970 tcph_t *tcph, mblk_t *idmp); 971 static squeue_func_t tcp_squeue_switch(int); 972 973 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 974 static int tcp_close(queue_t *, int); 975 static int tcpclose_accept(queue_t *); 976 static int tcp_modclose(queue_t *); 977 static void tcp_wput_mod(queue_t *, mblk_t *); 978 979 static void tcp_squeue_add(squeue_t *); 980 static boolean_t tcp_zcopy_check(tcp_t *); 981 static void tcp_zcopy_notify(tcp_t *); 982 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 983 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 984 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 985 986 extern void tcp_kssl_input(tcp_t *, mblk_t *); 987 988 /* 989 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 990 * 991 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 992 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 993 * (defined in tcp.h) needs to be filled in and passed into the kernel 994 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 995 * structure contains the four-tuple of a TCP connection and a range of TCP 996 * states (specified by ac_start and ac_end). The use of wildcard addresses 997 * and ports is allowed. Connections with a matching four tuple and a state 998 * within the specified range will be aborted. The valid states for the 999 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1000 * inclusive. 1001 * 1002 * An application which has its connection aborted by this ioctl will receive 1003 * an error that is dependent on the connection state at the time of the abort. 1004 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1005 * though a RST packet has been received. If the connection state is equal to 1006 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1007 * and all resources associated with the connection will be freed. 1008 */ 1009 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1010 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1011 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1012 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1013 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1014 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1015 boolean_t); 1016 1017 static struct module_info tcp_rinfo = { 1018 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1019 }; 1020 1021 static struct module_info tcp_winfo = { 1022 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1023 }; 1024 1025 /* 1026 * Entry points for TCP as a module. It only allows SNMP requests 1027 * to pass through. 1028 */ 1029 struct qinit tcp_mod_rinit = { 1030 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1031 }; 1032 1033 struct qinit tcp_mod_winit = { 1034 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1035 &tcp_rinfo 1036 }; 1037 1038 /* 1039 * Entry points for TCP as a device. The normal case which supports 1040 * the TCP functionality. 1041 */ 1042 struct qinit tcp_rinit = { 1043 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1044 }; 1045 1046 struct qinit tcp_winit = { 1047 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1048 }; 1049 1050 /* Initial entry point for TCP in socket mode. */ 1051 struct qinit tcp_sock_winit = { 1052 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1053 }; 1054 1055 /* 1056 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1057 * an accept. Avoid allocating data structures since eager has already 1058 * been created. 1059 */ 1060 struct qinit tcp_acceptor_rinit = { 1061 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1062 }; 1063 1064 struct qinit tcp_acceptor_winit = { 1065 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1066 }; 1067 1068 /* 1069 * Entry points for TCP loopback (read side only) 1070 */ 1071 struct qinit tcp_loopback_rinit = { 1072 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1073 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1074 }; 1075 1076 struct streamtab tcpinfo = { 1077 &tcp_rinit, &tcp_winit 1078 }; 1079 1080 extern squeue_func_t tcp_squeue_wput_proc; 1081 extern squeue_func_t tcp_squeue_timer_proc; 1082 1083 /* Protected by tcp_g_q_lock */ 1084 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1085 kmutex_t tcp_g_q_lock; 1086 1087 /* Protected by tcp_hsp_lock */ 1088 /* 1089 * XXX The host param mechanism should go away and instead we should use 1090 * the metrics associated with the routes to determine the default sndspace 1091 * and rcvspace. 1092 */ 1093 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1094 krwlock_t tcp_hsp_lock; 1095 1096 /* 1097 * Extra privileged ports. In host byte order. 1098 * Protected by tcp_epriv_port_lock. 1099 */ 1100 #define TCP_NUM_EPRIV_PORTS 64 1101 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1102 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1103 kmutex_t tcp_epriv_port_lock; 1104 1105 /* 1106 * The smallest anonymous port in the privileged port range which TCP 1107 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1108 */ 1109 static in_port_t tcp_min_anonpriv_port = 512; 1110 1111 /* Only modified during _init and _fini thus no locking is needed. */ 1112 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1113 1114 /* Hint not protected by any lock */ 1115 static uint_t tcp_next_port_to_try; 1116 1117 1118 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1119 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1120 1121 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1122 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1123 1124 /* 1125 * TCP has a private interface for other kernel modules to reserve a 1126 * port range for them to use. Once reserved, TCP will not use any ports 1127 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1128 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1129 * has to be verified. 1130 * 1131 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1132 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1133 * range is [port a, port b] inclusive. And each port range is between 1134 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1135 * 1136 * Note that the default anonymous port range starts from 32768. There is 1137 * no port "collision" between that and the reserved port range. If there 1138 * is port collision (because the default smallest anonymous port is lowered 1139 * or some apps specifically bind to ports in the reserved port range), the 1140 * system may not be able to reserve a port range even there are enough 1141 * unbound ports as a reserved port range contains consecutive ports . 1142 */ 1143 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1144 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1145 #define TCP_SMALLEST_RESERVED_PORT 10240 1146 #define TCP_LARGEST_RESERVED_PORT 20480 1147 1148 /* Structure to represent those reserved port ranges. */ 1149 typedef struct tcp_rport_s { 1150 in_port_t lo_port; 1151 in_port_t hi_port; 1152 tcp_t **temp_tcp_array; 1153 } tcp_rport_t; 1154 1155 /* The reserved port array. */ 1156 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1157 1158 /* Locks to protect the tcp_reserved_ports array. */ 1159 static krwlock_t tcp_reserved_port_lock; 1160 1161 /* The number of ranges in the array. */ 1162 uint32_t tcp_reserved_port_array_size = 0; 1163 1164 /* 1165 * MIB-2 stuff for SNMP 1166 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1167 */ 1168 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1169 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1170 1171 boolean_t tcp_icmp_source_quench = B_FALSE; 1172 /* 1173 * Following assumes TPI alignment requirements stay along 32 bit 1174 * boundaries 1175 */ 1176 #define ROUNDUP32(x) \ 1177 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1178 1179 /* Template for response to info request. */ 1180 static struct T_info_ack tcp_g_t_info_ack = { 1181 T_INFO_ACK, /* PRIM_type */ 1182 0, /* TSDU_size */ 1183 T_INFINITE, /* ETSDU_size */ 1184 T_INVALID, /* CDATA_size */ 1185 T_INVALID, /* DDATA_size */ 1186 sizeof (sin_t), /* ADDR_size */ 1187 0, /* OPT_size - not initialized here */ 1188 TIDUSZ, /* TIDU_size */ 1189 T_COTS_ORD, /* SERV_type */ 1190 TCPS_IDLE, /* CURRENT_state */ 1191 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1192 }; 1193 1194 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1195 T_INFO_ACK, /* PRIM_type */ 1196 0, /* TSDU_size */ 1197 T_INFINITE, /* ETSDU_size */ 1198 T_INVALID, /* CDATA_size */ 1199 T_INVALID, /* DDATA_size */ 1200 sizeof (sin6_t), /* ADDR_size */ 1201 0, /* OPT_size - not initialized here */ 1202 TIDUSZ, /* TIDU_size */ 1203 T_COTS_ORD, /* SERV_type */ 1204 TCPS_IDLE, /* CURRENT_state */ 1205 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1206 }; 1207 1208 #define MS 1L 1209 #define SECONDS (1000 * MS) 1210 #define MINUTES (60 * SECONDS) 1211 #define HOURS (60 * MINUTES) 1212 #define DAYS (24 * HOURS) 1213 1214 #define PARAM_MAX (~(uint32_t)0) 1215 1216 /* Max size IP datagram is 64k - 1 */ 1217 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1218 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1219 /* Max of the above */ 1220 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1221 1222 /* Largest TCP port number */ 1223 #define TCP_MAX_PORT (64 * 1024 - 1) 1224 1225 /* 1226 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1227 * layer header. It has to be a multiple of 4. 1228 */ 1229 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1230 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1231 1232 /* 1233 * All of these are alterable, within the min/max values given, at run time. 1234 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1235 * per the TCP spec. 1236 */ 1237 /* BEGIN CSTYLED */ 1238 tcpparam_t tcp_param_arr[] = { 1239 /*min max value name */ 1240 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1241 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1242 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1243 { 1, 1024, 1, "tcp_conn_req_min" }, 1244 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1245 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1246 { 0, 10, 0, "tcp_debug" }, 1247 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1248 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1249 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1250 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1251 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1252 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1253 { 1, 255, 64, "tcp_ipv4_ttl"}, 1254 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1255 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1256 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1257 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1258 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1259 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1260 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1261 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1262 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1263 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1264 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1265 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1266 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1267 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1268 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1269 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1270 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1271 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1272 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1273 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1274 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1275 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1276 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1277 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1278 /* 1279 * Question: What default value should I set for tcp_strong_iss? 1280 */ 1281 { 0, 2, 1, "tcp_strong_iss"}, 1282 { 0, 65536, 20, "tcp_rtt_updates"}, 1283 { 0, 1, 1, "tcp_wscale_always"}, 1284 { 0, 1, 0, "tcp_tstamp_always"}, 1285 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1286 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1287 { 0, 16, 2, "tcp_deferred_acks_max"}, 1288 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1289 { 1, 4, 4, "tcp_slow_start_initial"}, 1290 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1291 { 0, 2, 2, "tcp_sack_permitted"}, 1292 { 0, 1, 0, "tcp_trace"}, 1293 { 0, 1, 1, "tcp_compression_enabled"}, 1294 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1295 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1296 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1297 { 0, 1, 0, "tcp_rev_src_routes"}, 1298 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1299 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1300 { 0, 16, 8, "tcp_local_dacks_max"}, 1301 { 0, 2, 1, "tcp_ecn_permitted"}, 1302 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1303 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1304 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1305 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1306 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1307 }; 1308 /* END CSTYLED */ 1309 1310 /* 1311 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1312 * each header fragment in the header buffer. Each parameter value has 1313 * to be a multiple of 4 (32-bit aligned). 1314 */ 1315 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1316 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1317 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1318 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1319 1320 /* 1321 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1322 * the maximum number of payload buffers associated per Multidata. 1323 */ 1324 static tcpparam_t tcp_mdt_max_pbufs_param = 1325 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1326 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1327 1328 /* Round up the value to the nearest mss. */ 1329 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1330 1331 /* 1332 * Set ECN capable transport (ECT) code point in IP header. 1333 * 1334 * Note that there are 2 ECT code points '01' and '10', which are called 1335 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1336 * point ECT(0) for TCP as described in RFC 2481. 1337 */ 1338 #define SET_ECT(tcp, iph) \ 1339 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1340 /* We need to clear the code point first. */ \ 1341 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1342 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1343 } else { \ 1344 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1345 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1346 } 1347 1348 /* 1349 * The format argument to pass to tcp_display(). 1350 * DISP_PORT_ONLY means that the returned string has only port info. 1351 * DISP_ADDR_AND_PORT means that the returned string also contains the 1352 * remote and local IP address. 1353 */ 1354 #define DISP_PORT_ONLY 1 1355 #define DISP_ADDR_AND_PORT 2 1356 1357 /* 1358 * This controls the rate some ndd info report functions can be used 1359 * by non-privileged users. It stores the last time such info is 1360 * requested. When those report functions are called again, this 1361 * is checked with the current time and compare with the ndd param 1362 * tcp_ndd_get_info_interval. 1363 */ 1364 static clock_t tcp_last_ndd_get_info_time = 0; 1365 #define NDD_TOO_QUICK_MSG \ 1366 "ndd get info rate too high for non-privileged users, try again " \ 1367 "later.\n" 1368 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1369 1370 #define IS_VMLOANED_MBLK(mp) \ 1371 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1372 1373 /* 1374 * These two variables control the rate for TCP to generate RSTs in 1375 * response to segments not belonging to any connections. We limit 1376 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1377 * each 1 second interval. This is to protect TCP against DoS attack. 1378 */ 1379 static clock_t tcp_last_rst_intrvl; 1380 static uint32_t tcp_rst_cnt; 1381 1382 /* The number of RST not sent because of the rate limit. */ 1383 static uint32_t tcp_rst_unsent; 1384 1385 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1386 boolean_t tcp_mdt_chain = B_TRUE; 1387 1388 /* 1389 * MDT threshold in the form of effective send MSS multiplier; we take 1390 * the MDT path if the amount of unsent data exceeds the threshold value 1391 * (default threshold is 1*SMSS). 1392 */ 1393 uint_t tcp_mdt_smss_threshold = 1; 1394 1395 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1396 1397 /* 1398 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1399 * tunable settable via NDD. Otherwise, the per-connection behavior is 1400 * determined dynamically during tcp_adapt_ire(), which is the default. 1401 */ 1402 boolean_t tcp_static_maxpsz = B_FALSE; 1403 1404 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1405 uint32_t tcp_random_anon_port = 1; 1406 1407 /* 1408 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1409 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1410 * data, TCP will not respond with an ACK. RFC 793 requires that 1411 * TCP responds with an ACK for such a bogus ACK. By not following 1412 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1413 * an attacker successfully spoofs an acceptable segment to our 1414 * peer; or when our peer is "confused." 1415 */ 1416 uint32_t tcp_drop_ack_unsent_cnt = 10; 1417 1418 /* 1419 * Hook functions to enable cluster networking 1420 * On non-clustered systems these vectors must always be NULL. 1421 */ 1422 1423 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1424 uint8_t *laddrp, in_port_t lport) = NULL; 1425 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1426 uint8_t *laddrp, in_port_t lport) = NULL; 1427 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1428 uint8_t *laddrp, in_port_t lport, 1429 uint8_t *faddrp, in_port_t fport) = NULL; 1430 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1431 uint8_t *laddrp, in_port_t lport, 1432 uint8_t *faddrp, in_port_t fport) = NULL; 1433 1434 /* 1435 * The following are defined in ip.c 1436 */ 1437 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1438 uint8_t *laddrp); 1439 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1440 uint8_t *laddrp, uint8_t *faddrp); 1441 1442 #define CL_INET_CONNECT(tcp) { \ 1443 if (cl_inet_connect != NULL) { \ 1444 /* \ 1445 * Running in cluster mode - register active connection \ 1446 * information \ 1447 */ \ 1448 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1449 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1450 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1451 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1452 (in_port_t)(tcp)->tcp_lport, \ 1453 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1454 (in_port_t)(tcp)->tcp_fport); \ 1455 } \ 1456 } else { \ 1457 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1458 &(tcp)->tcp_ip6h->ip6_src)) {\ 1459 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1460 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1461 (in_port_t)(tcp)->tcp_lport, \ 1462 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1463 (in_port_t)(tcp)->tcp_fport); \ 1464 } \ 1465 } \ 1466 } \ 1467 } 1468 1469 #define CL_INET_DISCONNECT(tcp) { \ 1470 if (cl_inet_disconnect != NULL) { \ 1471 /* \ 1472 * Running in cluster mode - deregister active \ 1473 * connection information \ 1474 */ \ 1475 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1476 if ((tcp)->tcp_ip_src != 0) { \ 1477 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1478 AF_INET, \ 1479 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1480 (in_port_t)(tcp)->tcp_lport, \ 1481 (uint8_t *) \ 1482 (&((tcp)->tcp_ipha->ipha_dst)),\ 1483 (in_port_t)(tcp)->tcp_fport); \ 1484 } \ 1485 } else { \ 1486 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1487 &(tcp)->tcp_ip_src_v6)) { \ 1488 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1489 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1490 (in_port_t)(tcp)->tcp_lport, \ 1491 (uint8_t *) \ 1492 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1493 (in_port_t)(tcp)->tcp_fport); \ 1494 } \ 1495 } \ 1496 } \ 1497 } 1498 1499 /* 1500 * Cluster networking hook for traversing current connection list. 1501 * This routine is used to extract the current list of live connections 1502 * which must continue to to be dispatched to this node. 1503 */ 1504 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1505 1506 /* 1507 * Figure out the value of window scale opton. Note that the rwnd is 1508 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1509 * We cannot find the scale value and then do a round up of tcp_rwnd 1510 * because the scale value may not be correct after that. 1511 * 1512 * Set the compiler flag to make this function inline. 1513 */ 1514 static void 1515 tcp_set_ws_value(tcp_t *tcp) 1516 { 1517 int i; 1518 uint32_t rwnd = tcp->tcp_rwnd; 1519 1520 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1521 i++, rwnd >>= 1) 1522 ; 1523 tcp->tcp_rcv_ws = i; 1524 } 1525 1526 /* 1527 * Remove a connection from the list of detached TIME_WAIT connections. 1528 */ 1529 static void 1530 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1531 { 1532 boolean_t locked = B_FALSE; 1533 1534 if (tcp_time_wait == NULL) { 1535 tcp_time_wait = *((tcp_squeue_priv_t **) 1536 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1537 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1538 locked = B_TRUE; 1539 } 1540 1541 if (tcp->tcp_time_wait_expire == 0) { 1542 ASSERT(tcp->tcp_time_wait_next == NULL); 1543 ASSERT(tcp->tcp_time_wait_prev == NULL); 1544 if (locked) 1545 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1546 return; 1547 } 1548 ASSERT(TCP_IS_DETACHED(tcp)); 1549 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1550 1551 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1552 ASSERT(tcp->tcp_time_wait_prev == NULL); 1553 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1554 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1555 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1556 NULL; 1557 } else { 1558 tcp_time_wait->tcp_time_wait_tail = NULL; 1559 } 1560 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1561 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1562 ASSERT(tcp->tcp_time_wait_next == NULL); 1563 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1564 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1565 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1566 } else { 1567 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1568 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1569 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1570 tcp->tcp_time_wait_next; 1571 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1572 tcp->tcp_time_wait_prev; 1573 } 1574 tcp->tcp_time_wait_next = NULL; 1575 tcp->tcp_time_wait_prev = NULL; 1576 tcp->tcp_time_wait_expire = 0; 1577 1578 if (locked) 1579 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1580 } 1581 1582 /* 1583 * Add a connection to the list of detached TIME_WAIT connections 1584 * and set its time to expire. 1585 */ 1586 static void 1587 tcp_time_wait_append(tcp_t *tcp) 1588 { 1589 tcp_squeue_priv_t *tcp_time_wait = 1590 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1591 SQPRIVATE_TCP)); 1592 1593 tcp_timers_stop(tcp); 1594 1595 /* Freed above */ 1596 ASSERT(tcp->tcp_timer_tid == 0); 1597 ASSERT(tcp->tcp_ack_tid == 0); 1598 1599 /* must have happened at the time of detaching the tcp */ 1600 ASSERT(tcp->tcp_ptpahn == NULL); 1601 ASSERT(tcp->tcp_flow_stopped == 0); 1602 ASSERT(tcp->tcp_time_wait_next == NULL); 1603 ASSERT(tcp->tcp_time_wait_prev == NULL); 1604 ASSERT(tcp->tcp_time_wait_expire == NULL); 1605 ASSERT(tcp->tcp_listener == NULL); 1606 1607 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1608 /* 1609 * The value computed below in tcp->tcp_time_wait_expire may 1610 * appear negative or wrap around. That is ok since our 1611 * interest is only in the difference between the current lbolt 1612 * value and tcp->tcp_time_wait_expire. But the value should not 1613 * be zero, since it means the tcp is not in the TIME_WAIT list. 1614 * The corresponding comparison in tcp_time_wait_collector() uses 1615 * modular arithmetic. 1616 */ 1617 tcp->tcp_time_wait_expire += 1618 drv_usectohz(tcp_time_wait_interval * 1000); 1619 if (tcp->tcp_time_wait_expire == 0) 1620 tcp->tcp_time_wait_expire = 1; 1621 1622 ASSERT(TCP_IS_DETACHED(tcp)); 1623 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1624 ASSERT(tcp->tcp_time_wait_next == NULL); 1625 ASSERT(tcp->tcp_time_wait_prev == NULL); 1626 TCP_DBGSTAT(tcp_time_wait); 1627 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1628 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1629 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1630 tcp_time_wait->tcp_time_wait_head = tcp; 1631 } else { 1632 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1633 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1634 TCPS_TIME_WAIT); 1635 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1636 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1637 } 1638 tcp_time_wait->tcp_time_wait_tail = tcp; 1639 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1640 } 1641 1642 /* ARGSUSED */ 1643 void 1644 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1645 { 1646 conn_t *connp = (conn_t *)arg; 1647 tcp_t *tcp = connp->conn_tcp; 1648 1649 ASSERT(tcp != NULL); 1650 if (tcp->tcp_state == TCPS_CLOSED) { 1651 return; 1652 } 1653 1654 ASSERT((tcp->tcp_family == AF_INET && 1655 tcp->tcp_ipversion == IPV4_VERSION) || 1656 (tcp->tcp_family == AF_INET6 && 1657 (tcp->tcp_ipversion == IPV4_VERSION || 1658 tcp->tcp_ipversion == IPV6_VERSION))); 1659 ASSERT(!tcp->tcp_listener); 1660 1661 TCP_STAT(tcp_time_wait_reap); 1662 ASSERT(TCP_IS_DETACHED(tcp)); 1663 1664 /* 1665 * Because they have no upstream client to rebind or tcp_close() 1666 * them later, we axe the connection here and now. 1667 */ 1668 tcp_close_detached(tcp); 1669 } 1670 1671 void 1672 tcp_cleanup(tcp_t *tcp) 1673 { 1674 mblk_t *mp; 1675 char *tcp_iphc; 1676 int tcp_iphc_len; 1677 int tcp_hdr_grown; 1678 tcp_sack_info_t *tcp_sack_info; 1679 conn_t *connp = tcp->tcp_connp; 1680 1681 tcp_bind_hash_remove(tcp); 1682 tcp_free(tcp); 1683 1684 /* Release any SSL context */ 1685 if (tcp->tcp_kssl_ent != NULL) { 1686 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1687 tcp->tcp_kssl_ent = NULL; 1688 } 1689 1690 if (tcp->tcp_kssl_ctx != NULL) { 1691 kssl_release_ctx(tcp->tcp_kssl_ctx); 1692 tcp->tcp_kssl_ctx = NULL; 1693 } 1694 tcp->tcp_kssl_pending = B_FALSE; 1695 1696 conn_delete_ire(connp, NULL); 1697 if (connp->conn_flags & IPCL_TCPCONN) { 1698 if (connp->conn_latch != NULL) 1699 IPLATCH_REFRELE(connp->conn_latch); 1700 if (connp->conn_policy != NULL) 1701 IPPH_REFRELE(connp->conn_policy); 1702 } 1703 1704 /* 1705 * Since we will bzero the entire structure, we need to 1706 * remove it and reinsert it in global hash list. We 1707 * know the walkers can't get to this conn because we 1708 * had set CONDEMNED flag earlier and checked reference 1709 * under conn_lock so walker won't pick it and when we 1710 * go the ipcl_globalhash_remove() below, no walker 1711 * can get to it. 1712 */ 1713 ipcl_globalhash_remove(connp); 1714 1715 /* Save some state */ 1716 mp = tcp->tcp_timercache; 1717 1718 tcp_sack_info = tcp->tcp_sack_info; 1719 tcp_iphc = tcp->tcp_iphc; 1720 tcp_iphc_len = tcp->tcp_iphc_len; 1721 tcp_hdr_grown = tcp->tcp_hdr_grown; 1722 1723 if (connp->conn_cred != NULL) 1724 crfree(connp->conn_cred); 1725 if (connp->conn_peercred != NULL) 1726 crfree(connp->conn_peercred); 1727 bzero(connp, sizeof (conn_t)); 1728 bzero(tcp, sizeof (tcp_t)); 1729 1730 /* restore the state */ 1731 tcp->tcp_timercache = mp; 1732 1733 tcp->tcp_sack_info = tcp_sack_info; 1734 tcp->tcp_iphc = tcp_iphc; 1735 tcp->tcp_iphc_len = tcp_iphc_len; 1736 tcp->tcp_hdr_grown = tcp_hdr_grown; 1737 1738 1739 tcp->tcp_connp = connp; 1740 1741 connp->conn_tcp = tcp; 1742 connp->conn_flags = IPCL_TCPCONN; 1743 connp->conn_state_flags = CONN_INCIPIENT; 1744 connp->conn_ulp = IPPROTO_TCP; 1745 connp->conn_ref = 1; 1746 1747 ipcl_globalhash_insert(connp); 1748 } 1749 1750 /* 1751 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1752 * is done forwards from the head. 1753 */ 1754 /* ARGSUSED */ 1755 void 1756 tcp_time_wait_collector(void *arg) 1757 { 1758 tcp_t *tcp; 1759 clock_t now; 1760 mblk_t *mp; 1761 conn_t *connp; 1762 kmutex_t *lock; 1763 1764 squeue_t *sqp = (squeue_t *)arg; 1765 tcp_squeue_priv_t *tcp_time_wait = 1766 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1767 1768 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1769 tcp_time_wait->tcp_time_wait_tid = 0; 1770 1771 if (tcp_time_wait->tcp_free_list != NULL && 1772 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1773 TCP_STAT(tcp_freelist_cleanup); 1774 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1775 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1776 CONN_DEC_REF(tcp->tcp_connp); 1777 } 1778 tcp_time_wait->tcp_free_list_cnt = 0; 1779 } 1780 1781 /* 1782 * In order to reap time waits reliably, we should use a 1783 * source of time that is not adjustable by the user -- hence 1784 * the call to ddi_get_lbolt(). 1785 */ 1786 now = ddi_get_lbolt(); 1787 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1788 /* 1789 * Compare times using modular arithmetic, since 1790 * lbolt can wrapover. 1791 */ 1792 if ((now - tcp->tcp_time_wait_expire) < 0) { 1793 break; 1794 } 1795 1796 tcp_time_wait_remove(tcp, tcp_time_wait); 1797 1798 connp = tcp->tcp_connp; 1799 ASSERT(connp->conn_fanout != NULL); 1800 lock = &connp->conn_fanout->connf_lock; 1801 /* 1802 * This is essentially a TW reclaim fast path optimization for 1803 * performance where the timewait collector checks under the 1804 * fanout lock (so that no one else can get access to the 1805 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1806 * the classifier hash list. If ref count is indeed 2, we can 1807 * just remove the conn under the fanout lock and avoid 1808 * cleaning up the conn under the squeue, provided that 1809 * clustering callbacks are not enabled. If clustering is 1810 * enabled, we need to make the clustering callback before 1811 * setting the CONDEMNED flag and after dropping all locks and 1812 * so we forego this optimization and fall back to the slow 1813 * path. Also please see the comments in tcp_closei_local 1814 * regarding the refcnt logic. 1815 * 1816 * Since we are holding the tcp_time_wait_lock, its better 1817 * not to block on the fanout_lock because other connections 1818 * can't add themselves to time_wait list. So we do a 1819 * tryenter instead of mutex_enter. 1820 */ 1821 if (mutex_tryenter(lock)) { 1822 mutex_enter(&connp->conn_lock); 1823 if ((connp->conn_ref == 2) && 1824 (cl_inet_disconnect == NULL)) { 1825 ipcl_hash_remove_locked(connp, 1826 connp->conn_fanout); 1827 /* 1828 * Set the CONDEMNED flag now itself so that 1829 * the refcnt cannot increase due to any 1830 * walker. But we have still not cleaned up 1831 * conn_ire_cache. This is still ok since 1832 * we are going to clean it up in tcp_cleanup 1833 * immediately and any interface unplumb 1834 * thread will wait till the ire is blown away 1835 */ 1836 connp->conn_state_flags |= CONN_CONDEMNED; 1837 mutex_exit(lock); 1838 mutex_exit(&connp->conn_lock); 1839 if (tcp_time_wait->tcp_free_list_cnt < 1840 tcp_free_list_max_cnt) { 1841 /* Add to head of tcp_free_list */ 1842 mutex_exit( 1843 &tcp_time_wait->tcp_time_wait_lock); 1844 tcp_cleanup(tcp); 1845 mutex_enter( 1846 &tcp_time_wait->tcp_time_wait_lock); 1847 tcp->tcp_time_wait_next = 1848 tcp_time_wait->tcp_free_list; 1849 tcp_time_wait->tcp_free_list = tcp; 1850 tcp_time_wait->tcp_free_list_cnt++; 1851 continue; 1852 } else { 1853 /* Do not add to tcp_free_list */ 1854 mutex_exit( 1855 &tcp_time_wait->tcp_time_wait_lock); 1856 tcp_bind_hash_remove(tcp); 1857 conn_delete_ire(tcp->tcp_connp, NULL); 1858 CONN_DEC_REF(tcp->tcp_connp); 1859 } 1860 } else { 1861 CONN_INC_REF_LOCKED(connp); 1862 mutex_exit(lock); 1863 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1864 mutex_exit(&connp->conn_lock); 1865 /* 1866 * We can reuse the closemp here since conn has 1867 * detached (otherwise we wouldn't even be in 1868 * time_wait list). 1869 */ 1870 mp = &tcp->tcp_closemp; 1871 squeue_fill(connp->conn_sqp, mp, 1872 tcp_timewait_output, connp, 1873 SQTAG_TCP_TIMEWAIT); 1874 } 1875 } else { 1876 mutex_enter(&connp->conn_lock); 1877 CONN_INC_REF_LOCKED(connp); 1878 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1879 mutex_exit(&connp->conn_lock); 1880 /* 1881 * We can reuse the closemp here since conn has 1882 * detached (otherwise we wouldn't even be in 1883 * time_wait list). 1884 */ 1885 mp = &tcp->tcp_closemp; 1886 squeue_fill(connp->conn_sqp, mp, 1887 tcp_timewait_output, connp, 0); 1888 } 1889 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1890 } 1891 1892 if (tcp_time_wait->tcp_free_list != NULL) 1893 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1894 1895 tcp_time_wait->tcp_time_wait_tid = 1896 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1897 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1898 } 1899 1900 /* 1901 * Reply to a clients T_CONN_RES TPI message. This function 1902 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1903 * on the acceptor STREAM and processed in tcp_wput_accept(). 1904 * Read the block comment on top of tcp_conn_request(). 1905 */ 1906 static void 1907 tcp_accept(tcp_t *listener, mblk_t *mp) 1908 { 1909 tcp_t *acceptor; 1910 tcp_t *eager; 1911 tcp_t *tcp; 1912 struct T_conn_res *tcr; 1913 t_uscalar_t acceptor_id; 1914 t_scalar_t seqnum; 1915 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1916 mblk_t *ok_mp; 1917 mblk_t *mp1; 1918 1919 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1920 tcp_err_ack(listener, mp, TPROTO, 0); 1921 return; 1922 } 1923 tcr = (struct T_conn_res *)mp->b_rptr; 1924 1925 /* 1926 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1927 * read side queue of the streams device underneath us i.e. the 1928 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1929 * look it up in the queue_hash. Under LP64 it sends down the 1930 * minor_t of the accepting endpoint. 1931 * 1932 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1933 * fanout hash lock is held. 1934 * This prevents any thread from entering the acceptor queue from 1935 * below (since it has not been hard bound yet i.e. any inbound 1936 * packets will arrive on the listener or default tcp queue and 1937 * go through tcp_lookup). 1938 * The CONN_INC_REF will prevent the acceptor from closing. 1939 * 1940 * XXX It is still possible for a tli application to send down data 1941 * on the accepting stream while another thread calls t_accept. 1942 * This should not be a problem for well-behaved applications since 1943 * the T_OK_ACK is sent after the queue swapping is completed. 1944 * 1945 * If the accepting fd is the same as the listening fd, avoid 1946 * queue hash lookup since that will return an eager listener in a 1947 * already established state. 1948 */ 1949 acceptor_id = tcr->ACCEPTOR_id; 1950 mutex_enter(&listener->tcp_eager_lock); 1951 if (listener->tcp_acceptor_id == acceptor_id) { 1952 eager = listener->tcp_eager_next_q; 1953 /* only count how many T_CONN_INDs so don't count q0 */ 1954 if ((listener->tcp_conn_req_cnt_q != 1) || 1955 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1956 mutex_exit(&listener->tcp_eager_lock); 1957 tcp_err_ack(listener, mp, TBADF, 0); 1958 return; 1959 } 1960 if (listener->tcp_conn_req_cnt_q0 != 0) { 1961 /* Throw away all the eagers on q0. */ 1962 tcp_eager_cleanup(listener, 1); 1963 } 1964 if (listener->tcp_syn_defense) { 1965 listener->tcp_syn_defense = B_FALSE; 1966 if (listener->tcp_ip_addr_cache != NULL) { 1967 kmem_free(listener->tcp_ip_addr_cache, 1968 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1969 listener->tcp_ip_addr_cache = NULL; 1970 } 1971 } 1972 /* 1973 * Transfer tcp_conn_req_max to the eager so that when 1974 * a disconnect occurs we can revert the endpoint to the 1975 * listen state. 1976 */ 1977 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1978 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1979 /* 1980 * Get a reference on the acceptor just like the 1981 * tcp_acceptor_hash_lookup below. 1982 */ 1983 acceptor = listener; 1984 CONN_INC_REF(acceptor->tcp_connp); 1985 } else { 1986 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 1987 if (acceptor == NULL) { 1988 if (listener->tcp_debug) { 1989 (void) strlog(TCP_MOD_ID, 0, 1, 1990 SL_ERROR|SL_TRACE, 1991 "tcp_accept: did not find acceptor 0x%x\n", 1992 acceptor_id); 1993 } 1994 mutex_exit(&listener->tcp_eager_lock); 1995 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1996 return; 1997 } 1998 /* 1999 * Verify acceptor state. The acceptable states for an acceptor 2000 * include TCPS_IDLE and TCPS_BOUND. 2001 */ 2002 switch (acceptor->tcp_state) { 2003 case TCPS_IDLE: 2004 /* FALLTHRU */ 2005 case TCPS_BOUND: 2006 break; 2007 default: 2008 CONN_DEC_REF(acceptor->tcp_connp); 2009 mutex_exit(&listener->tcp_eager_lock); 2010 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2011 return; 2012 } 2013 } 2014 2015 /* The listener must be in TCPS_LISTEN */ 2016 if (listener->tcp_state != TCPS_LISTEN) { 2017 CONN_DEC_REF(acceptor->tcp_connp); 2018 mutex_exit(&listener->tcp_eager_lock); 2019 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2020 return; 2021 } 2022 2023 /* 2024 * Rendezvous with an eager connection request packet hanging off 2025 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2026 * tcp structure when the connection packet arrived in 2027 * tcp_conn_request(). 2028 */ 2029 seqnum = tcr->SEQ_number; 2030 eager = listener; 2031 do { 2032 eager = eager->tcp_eager_next_q; 2033 if (eager == NULL) { 2034 CONN_DEC_REF(acceptor->tcp_connp); 2035 mutex_exit(&listener->tcp_eager_lock); 2036 tcp_err_ack(listener, mp, TBADSEQ, 0); 2037 return; 2038 } 2039 } while (eager->tcp_conn_req_seqnum != seqnum); 2040 mutex_exit(&listener->tcp_eager_lock); 2041 2042 /* 2043 * At this point, both acceptor and listener have 2 ref 2044 * that they begin with. Acceptor has one additional ref 2045 * we placed in lookup while listener has 3 additional 2046 * ref for being behind the squeue (tcp_accept() is 2047 * done on listener's squeue); being in classifier hash; 2048 * and eager's ref on listener. 2049 */ 2050 ASSERT(listener->tcp_connp->conn_ref >= 5); 2051 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2052 2053 /* 2054 * The eager at this point is set in its own squeue and 2055 * could easily have been killed (tcp_accept_finish will 2056 * deal with that) because of a TH_RST so we can only 2057 * ASSERT for a single ref. 2058 */ 2059 ASSERT(eager->tcp_connp->conn_ref >= 1); 2060 2061 /* Pre allocate the stroptions mblk also */ 2062 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2063 if (opt_mp == NULL) { 2064 CONN_DEC_REF(acceptor->tcp_connp); 2065 CONN_DEC_REF(eager->tcp_connp); 2066 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2067 return; 2068 } 2069 DB_TYPE(opt_mp) = M_SETOPTS; 2070 opt_mp->b_wptr += sizeof (struct stroptions); 2071 2072 /* 2073 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2074 * from listener to acceptor. The message is chained on opt_mp 2075 * which will be sent onto eager's squeue. 2076 */ 2077 if (listener->tcp_bound_if != 0) { 2078 /* allocate optmgmt req */ 2079 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2080 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2081 sizeof (int)); 2082 if (mp1 != NULL) 2083 linkb(opt_mp, mp1); 2084 } 2085 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2086 uint_t on = 1; 2087 2088 /* allocate optmgmt req */ 2089 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2090 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2091 if (mp1 != NULL) 2092 linkb(opt_mp, mp1); 2093 } 2094 2095 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2096 if ((mp1 = copymsg(mp)) == NULL) { 2097 CONN_DEC_REF(acceptor->tcp_connp); 2098 CONN_DEC_REF(eager->tcp_connp); 2099 freemsg(opt_mp); 2100 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2101 return; 2102 } 2103 2104 tcr = (struct T_conn_res *)mp1->b_rptr; 2105 2106 /* 2107 * This is an expanded version of mi_tpi_ok_ack_alloc() 2108 * which allocates a larger mblk and appends the new 2109 * local address to the ok_ack. The address is copied by 2110 * soaccept() for getsockname(). 2111 */ 2112 { 2113 int extra; 2114 2115 extra = (eager->tcp_family == AF_INET) ? 2116 sizeof (sin_t) : sizeof (sin6_t); 2117 2118 /* 2119 * Try to re-use mp, if possible. Otherwise, allocate 2120 * an mblk and return it as ok_mp. In any case, mp 2121 * is no longer usable upon return. 2122 */ 2123 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2124 CONN_DEC_REF(acceptor->tcp_connp); 2125 CONN_DEC_REF(eager->tcp_connp); 2126 freemsg(opt_mp); 2127 /* Original mp has been freed by now, so use mp1 */ 2128 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2129 return; 2130 } 2131 2132 mp = NULL; /* We should never use mp after this point */ 2133 2134 switch (extra) { 2135 case sizeof (sin_t): { 2136 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2137 2138 ok_mp->b_wptr += extra; 2139 sin->sin_family = AF_INET; 2140 sin->sin_port = eager->tcp_lport; 2141 sin->sin_addr.s_addr = 2142 eager->tcp_ipha->ipha_src; 2143 break; 2144 } 2145 case sizeof (sin6_t): { 2146 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2147 2148 ok_mp->b_wptr += extra; 2149 sin6->sin6_family = AF_INET6; 2150 sin6->sin6_port = eager->tcp_lport; 2151 if (eager->tcp_ipversion == IPV4_VERSION) { 2152 sin6->sin6_flowinfo = 0; 2153 IN6_IPADDR_TO_V4MAPPED( 2154 eager->tcp_ipha->ipha_src, 2155 &sin6->sin6_addr); 2156 } else { 2157 ASSERT(eager->tcp_ip6h != NULL); 2158 sin6->sin6_flowinfo = 2159 eager->tcp_ip6h->ip6_vcf & 2160 ~IPV6_VERS_AND_FLOW_MASK; 2161 sin6->sin6_addr = 2162 eager->tcp_ip6h->ip6_src; 2163 } 2164 break; 2165 } 2166 default: 2167 break; 2168 } 2169 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2170 } 2171 2172 /* 2173 * If there are no options we know that the T_CONN_RES will 2174 * succeed. However, we can't send the T_OK_ACK upstream until 2175 * the tcp_accept_swap is done since it would be dangerous to 2176 * let the application start using the new fd prior to the swap. 2177 */ 2178 tcp_accept_swap(listener, acceptor, eager); 2179 2180 /* 2181 * tcp_accept_swap unlinks eager from listener but does not drop 2182 * the eager's reference on the listener. 2183 */ 2184 ASSERT(eager->tcp_listener == NULL); 2185 ASSERT(listener->tcp_connp->conn_ref >= 5); 2186 2187 /* 2188 * The eager is now associated with its own queue. Insert in 2189 * the hash so that the connection can be reused for a future 2190 * T_CONN_RES. 2191 */ 2192 tcp_acceptor_hash_insert(acceptor_id, eager); 2193 2194 /* 2195 * We now do the processing of options with T_CONN_RES. 2196 * We delay till now since we wanted to have queue to pass to 2197 * option processing routines that points back to the right 2198 * instance structure which does not happen until after 2199 * tcp_accept_swap(). 2200 * 2201 * Note: 2202 * The sanity of the logic here assumes that whatever options 2203 * are appropriate to inherit from listner=>eager are done 2204 * before this point, and whatever were to be overridden (or not) 2205 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2206 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2207 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2208 * This may not be true at this point in time but can be fixed 2209 * independently. This option processing code starts with 2210 * the instantiated acceptor instance and the final queue at 2211 * this point. 2212 */ 2213 2214 if (tcr->OPT_length != 0) { 2215 /* Options to process */ 2216 int t_error = 0; 2217 int sys_error = 0; 2218 int do_disconnect = 0; 2219 2220 if (tcp_conprim_opt_process(eager, mp1, 2221 &do_disconnect, &t_error, &sys_error) < 0) { 2222 eager->tcp_accept_error = 1; 2223 if (do_disconnect) { 2224 /* 2225 * An option failed which does not allow 2226 * connection to be accepted. 2227 * 2228 * We allow T_CONN_RES to succeed and 2229 * put a T_DISCON_IND on the eager queue. 2230 */ 2231 ASSERT(t_error == 0 && sys_error == 0); 2232 eager->tcp_send_discon_ind = 1; 2233 } else { 2234 ASSERT(t_error != 0); 2235 freemsg(ok_mp); 2236 /* 2237 * Original mp was either freed or set 2238 * to ok_mp above, so use mp1 instead. 2239 */ 2240 tcp_err_ack(listener, mp1, t_error, sys_error); 2241 goto finish; 2242 } 2243 } 2244 /* 2245 * Most likely success in setting options (except if 2246 * eager->tcp_send_discon_ind set). 2247 * mp1 option buffer represented by OPT_length/offset 2248 * potentially modified and contains results of setting 2249 * options at this point 2250 */ 2251 } 2252 2253 /* We no longer need mp1, since all options processing has passed */ 2254 freemsg(mp1); 2255 2256 putnext(listener->tcp_rq, ok_mp); 2257 2258 mutex_enter(&listener->tcp_eager_lock); 2259 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2260 tcp_t *tail; 2261 mblk_t *conn_ind; 2262 2263 /* 2264 * This path should not be executed if listener and 2265 * acceptor streams are the same. 2266 */ 2267 ASSERT(listener != acceptor); 2268 2269 tcp = listener->tcp_eager_prev_q0; 2270 /* 2271 * listener->tcp_eager_prev_q0 points to the TAIL of the 2272 * deferred T_conn_ind queue. We need to get to the head of 2273 * the queue in order to send up T_conn_ind the same order as 2274 * how the 3WHS is completed. 2275 */ 2276 while (tcp != listener) { 2277 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2278 break; 2279 else 2280 tcp = tcp->tcp_eager_prev_q0; 2281 } 2282 ASSERT(tcp != listener); 2283 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2284 ASSERT(conn_ind != NULL); 2285 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2286 2287 /* Move from q0 to q */ 2288 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2289 listener->tcp_conn_req_cnt_q0--; 2290 listener->tcp_conn_req_cnt_q++; 2291 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2292 tcp->tcp_eager_prev_q0; 2293 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2294 tcp->tcp_eager_next_q0; 2295 tcp->tcp_eager_prev_q0 = NULL; 2296 tcp->tcp_eager_next_q0 = NULL; 2297 tcp->tcp_conn_def_q0 = B_FALSE; 2298 2299 /* 2300 * Insert at end of the queue because sockfs sends 2301 * down T_CONN_RES in chronological order. Leaving 2302 * the older conn indications at front of the queue 2303 * helps reducing search time. 2304 */ 2305 tail = listener->tcp_eager_last_q; 2306 if (tail != NULL) 2307 tail->tcp_eager_next_q = tcp; 2308 else 2309 listener->tcp_eager_next_q = tcp; 2310 listener->tcp_eager_last_q = tcp; 2311 tcp->tcp_eager_next_q = NULL; 2312 mutex_exit(&listener->tcp_eager_lock); 2313 putnext(tcp->tcp_rq, conn_ind); 2314 } else { 2315 mutex_exit(&listener->tcp_eager_lock); 2316 } 2317 2318 /* 2319 * Done with the acceptor - free it 2320 * 2321 * Note: from this point on, no access to listener should be made 2322 * as listener can be equal to acceptor. 2323 */ 2324 finish: 2325 ASSERT(acceptor->tcp_detached); 2326 acceptor->tcp_rq = tcp_g_q; 2327 acceptor->tcp_wq = WR(tcp_g_q); 2328 (void) tcp_clean_death(acceptor, 0, 2); 2329 CONN_DEC_REF(acceptor->tcp_connp); 2330 2331 /* 2332 * In case we already received a FIN we have to make tcp_rput send 2333 * the ordrel_ind. This will also send up a window update if the window 2334 * has opened up. 2335 * 2336 * In the normal case of a successful connection acceptance 2337 * we give the O_T_BIND_REQ to the read side put procedure as an 2338 * indication that this was just accepted. This tells tcp_rput to 2339 * pass up any data queued in tcp_rcv_list. 2340 * 2341 * In the fringe case where options sent with T_CONN_RES failed and 2342 * we required, we would be indicating a T_DISCON_IND to blow 2343 * away this connection. 2344 */ 2345 2346 /* 2347 * XXX: we currently have a problem if XTI application closes the 2348 * acceptor stream in between. This problem exists in on10-gate also 2349 * and is well know but nothing can be done short of major rewrite 2350 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2351 * eager same squeue as listener (we can distinguish non socket 2352 * listeners at the time of handling a SYN in tcp_conn_request) 2353 * and do most of the work that tcp_accept_finish does here itself 2354 * and then get behind the acceptor squeue to access the acceptor 2355 * queue. 2356 */ 2357 /* 2358 * We already have a ref on tcp so no need to do one before squeue_fill 2359 */ 2360 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2361 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2362 } 2363 2364 /* 2365 * Swap information between the eager and acceptor for a TLI/XTI client. 2366 * The sockfs accept is done on the acceptor stream and control goes 2367 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2368 * called. In either case, both the eager and listener are in their own 2369 * perimeter (squeue) and the code has to deal with potential race. 2370 * 2371 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2372 */ 2373 static void 2374 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2375 { 2376 conn_t *econnp, *aconnp; 2377 2378 ASSERT(eager->tcp_rq == listener->tcp_rq); 2379 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2380 ASSERT(!eager->tcp_hard_bound); 2381 ASSERT(!TCP_IS_SOCKET(acceptor)); 2382 ASSERT(!TCP_IS_SOCKET(eager)); 2383 ASSERT(!TCP_IS_SOCKET(listener)); 2384 2385 acceptor->tcp_detached = B_TRUE; 2386 /* 2387 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2388 * the acceptor id. 2389 */ 2390 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2391 2392 /* remove eager from listen list... */ 2393 mutex_enter(&listener->tcp_eager_lock); 2394 tcp_eager_unlink(eager); 2395 ASSERT(eager->tcp_eager_next_q == NULL && 2396 eager->tcp_eager_last_q == NULL); 2397 ASSERT(eager->tcp_eager_next_q0 == NULL && 2398 eager->tcp_eager_prev_q0 == NULL); 2399 mutex_exit(&listener->tcp_eager_lock); 2400 eager->tcp_rq = acceptor->tcp_rq; 2401 eager->tcp_wq = acceptor->tcp_wq; 2402 2403 econnp = eager->tcp_connp; 2404 aconnp = acceptor->tcp_connp; 2405 2406 eager->tcp_rq->q_ptr = econnp; 2407 eager->tcp_wq->q_ptr = econnp; 2408 eager->tcp_detached = B_FALSE; 2409 2410 ASSERT(eager->tcp_ack_tid == 0); 2411 2412 econnp->conn_dev = aconnp->conn_dev; 2413 if (eager->tcp_cred != NULL) 2414 crfree(eager->tcp_cred); 2415 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2416 econnp->conn_zoneid = aconnp->conn_zoneid; 2417 aconnp->conn_cred = NULL; 2418 2419 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2420 aconnp->conn_mac_exempt = B_FALSE; 2421 2422 ASSERT(aconnp->conn_peercred == NULL); 2423 2424 /* Do the IPC initialization */ 2425 CONN_INC_REF(econnp); 2426 2427 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2428 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2429 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2430 econnp->conn_ulp = aconnp->conn_ulp; 2431 2432 /* Done with old IPC. Drop its ref on its connp */ 2433 CONN_DEC_REF(aconnp); 2434 } 2435 2436 2437 /* 2438 * Adapt to the information, such as rtt and rtt_sd, provided from the 2439 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2440 * 2441 * Checks for multicast and broadcast destination address. 2442 * Returns zero on failure; non-zero if ok. 2443 * 2444 * Note that the MSS calculation here is based on the info given in 2445 * the IRE. We do not do any calculation based on TCP options. They 2446 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2447 * knows which options to use. 2448 * 2449 * Note on how TCP gets its parameters for a connection. 2450 * 2451 * When a tcp_t structure is allocated, it gets all the default parameters. 2452 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2453 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2454 * default. But if there is an associated tcp_host_param, it will override 2455 * the metrics. 2456 * 2457 * An incoming SYN with a multicast or broadcast destination address, is dropped 2458 * in 1 of 2 places. 2459 * 2460 * 1. If the packet was received over the wire it is dropped in 2461 * ip_rput_process_broadcast() 2462 * 2463 * 2. If the packet was received through internal IP loopback, i.e. the packet 2464 * was generated and received on the same machine, it is dropped in 2465 * ip_wput_local() 2466 * 2467 * An incoming SYN with a multicast or broadcast source address is always 2468 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2469 * reject an attempt to connect to a broadcast or multicast (destination) 2470 * address. 2471 */ 2472 static int 2473 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2474 { 2475 tcp_hsp_t *hsp; 2476 ire_t *ire; 2477 ire_t *sire = NULL; 2478 iulp_t *ire_uinfo = NULL; 2479 uint32_t mss_max; 2480 uint32_t mss; 2481 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2482 conn_t *connp = tcp->tcp_connp; 2483 boolean_t ire_cacheable = B_FALSE; 2484 zoneid_t zoneid = connp->conn_zoneid; 2485 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2486 MATCH_IRE_SECATTR; 2487 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2488 ill_t *ill = NULL; 2489 boolean_t incoming = (ire_mp == NULL); 2490 2491 ASSERT(connp->conn_ire_cache == NULL); 2492 2493 if (tcp->tcp_ipversion == IPV4_VERSION) { 2494 2495 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2496 BUMP_MIB(&ip_mib, ipInDiscards); 2497 return (0); 2498 } 2499 /* 2500 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2501 * for the destination with the nexthop as gateway. 2502 * ire_ctable_lookup() is used because this particular 2503 * ire, if it exists, will be marked private. 2504 * If that is not available, use the interface ire 2505 * for the nexthop. 2506 * 2507 * TSol: tcp_update_label will detect label mismatches based 2508 * only on the destination's label, but that would not 2509 * detect label mismatches based on the security attributes 2510 * of routes or next hop gateway. Hence we need to pass the 2511 * label to ire_ftable_lookup below in order to locate the 2512 * right prefix (and/or) ire cache. Similarly we also need 2513 * pass the label to the ire_cache_lookup below to locate 2514 * the right ire that also matches on the label. 2515 */ 2516 if (tcp->tcp_connp->conn_nexthop_set) { 2517 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2518 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2519 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2520 if (ire == NULL) { 2521 ire = ire_ftable_lookup( 2522 tcp->tcp_connp->conn_nexthop_v4, 2523 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2524 tsl, match_flags); 2525 if (ire == NULL) 2526 return (0); 2527 } else { 2528 ire_uinfo = &ire->ire_uinfo; 2529 } 2530 } else { 2531 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2532 zoneid, tsl); 2533 if (ire != NULL) { 2534 ire_cacheable = B_TRUE; 2535 ire_uinfo = (ire_mp != NULL) ? 2536 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2537 &ire->ire_uinfo; 2538 2539 } else { 2540 if (ire_mp == NULL) { 2541 ire = ire_ftable_lookup( 2542 tcp->tcp_connp->conn_rem, 2543 0, 0, 0, NULL, &sire, zoneid, 0, 2544 tsl, (MATCH_IRE_RECURSIVE | 2545 MATCH_IRE_DEFAULT)); 2546 if (ire == NULL) 2547 return (0); 2548 ire_uinfo = (sire != NULL) ? 2549 &sire->ire_uinfo : 2550 &ire->ire_uinfo; 2551 } else { 2552 ire = (ire_t *)ire_mp->b_rptr; 2553 ire_uinfo = 2554 &((ire_t *) 2555 ire_mp->b_rptr)->ire_uinfo; 2556 } 2557 } 2558 } 2559 ASSERT(ire != NULL); 2560 2561 if ((ire->ire_src_addr == INADDR_ANY) || 2562 (ire->ire_type & IRE_BROADCAST)) { 2563 /* 2564 * ire->ire_mp is non null when ire_mp passed in is used 2565 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2566 */ 2567 if (ire->ire_mp == NULL) 2568 ire_refrele(ire); 2569 if (sire != NULL) 2570 ire_refrele(sire); 2571 return (0); 2572 } 2573 2574 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2575 ipaddr_t src_addr; 2576 2577 /* 2578 * ip_bind_connected() has stored the correct source 2579 * address in conn_src. 2580 */ 2581 src_addr = tcp->tcp_connp->conn_src; 2582 tcp->tcp_ipha->ipha_src = src_addr; 2583 /* 2584 * Copy of the src addr. in tcp_t is needed 2585 * for the lookup funcs. 2586 */ 2587 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2588 } 2589 /* 2590 * Set the fragment bit so that IP will tell us if the MTU 2591 * should change. IP tells us the latest setting of 2592 * ip_path_mtu_discovery through ire_frag_flag. 2593 */ 2594 if (ip_path_mtu_discovery) { 2595 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2596 htons(IPH_DF); 2597 } 2598 /* 2599 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2600 * for IP_NEXTHOP. No cache ire has been found for the 2601 * destination and we are working with the nexthop's 2602 * interface ire. Since we need to forward all packets 2603 * to the nexthop first, we "blindly" set tcp_localnet 2604 * to false, eventhough the destination may also be 2605 * onlink. 2606 */ 2607 if (ire_uinfo == NULL) 2608 tcp->tcp_localnet = 0; 2609 else 2610 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2611 } else { 2612 /* 2613 * For incoming connection ire_mp = NULL 2614 * For outgoing connection ire_mp != NULL 2615 * Technically we should check conn_incoming_ill 2616 * when ire_mp is NULL and conn_outgoing_ill when 2617 * ire_mp is non-NULL. But this is performance 2618 * critical path and for IPV*_BOUND_IF, outgoing 2619 * and incoming ill are always set to the same value. 2620 */ 2621 ill_t *dst_ill = NULL; 2622 ipif_t *dst_ipif = NULL; 2623 2624 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2625 2626 if (connp->conn_outgoing_ill != NULL) { 2627 /* Outgoing or incoming path */ 2628 int err; 2629 2630 dst_ill = conn_get_held_ill(connp, 2631 &connp->conn_outgoing_ill, &err); 2632 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2633 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2634 return (0); 2635 } 2636 match_flags |= MATCH_IRE_ILL; 2637 dst_ipif = dst_ill->ill_ipif; 2638 } 2639 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2640 0, 0, dst_ipif, zoneid, tsl, match_flags); 2641 2642 if (ire != NULL) { 2643 ire_cacheable = B_TRUE; 2644 ire_uinfo = (ire_mp != NULL) ? 2645 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2646 &ire->ire_uinfo; 2647 } else { 2648 if (ire_mp == NULL) { 2649 ire = ire_ftable_lookup_v6( 2650 &tcp->tcp_connp->conn_remv6, 2651 0, 0, 0, dst_ipif, &sire, zoneid, 2652 0, tsl, match_flags); 2653 if (ire == NULL) { 2654 if (dst_ill != NULL) 2655 ill_refrele(dst_ill); 2656 return (0); 2657 } 2658 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2659 &ire->ire_uinfo; 2660 } else { 2661 ire = (ire_t *)ire_mp->b_rptr; 2662 ire_uinfo = 2663 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2664 } 2665 } 2666 if (dst_ill != NULL) 2667 ill_refrele(dst_ill); 2668 2669 ASSERT(ire != NULL); 2670 ASSERT(ire_uinfo != NULL); 2671 2672 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2673 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2674 /* 2675 * ire->ire_mp is non null when ire_mp passed in is used 2676 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2677 */ 2678 if (ire->ire_mp == NULL) 2679 ire_refrele(ire); 2680 if (sire != NULL) 2681 ire_refrele(sire); 2682 return (0); 2683 } 2684 2685 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2686 in6_addr_t src_addr; 2687 2688 /* 2689 * ip_bind_connected_v6() has stored the correct source 2690 * address per IPv6 addr. selection policy in 2691 * conn_src_v6. 2692 */ 2693 src_addr = tcp->tcp_connp->conn_srcv6; 2694 2695 tcp->tcp_ip6h->ip6_src = src_addr; 2696 /* 2697 * Copy of the src addr. in tcp_t is needed 2698 * for the lookup funcs. 2699 */ 2700 tcp->tcp_ip_src_v6 = src_addr; 2701 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2702 &connp->conn_srcv6)); 2703 } 2704 tcp->tcp_localnet = 2705 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2706 } 2707 2708 /* 2709 * This allows applications to fail quickly when connections are made 2710 * to dead hosts. Hosts can be labeled dead by adding a reject route 2711 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2712 */ 2713 if ((ire->ire_flags & RTF_REJECT) && 2714 (ire->ire_flags & RTF_PRIVATE)) 2715 goto error; 2716 2717 /* 2718 * Make use of the cached rtt and rtt_sd values to calculate the 2719 * initial RTO. Note that they are already initialized in 2720 * tcp_init_values(). 2721 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2722 * IP_NEXTHOP, but instead are using the interface ire for the 2723 * nexthop, then we do not use the ire_uinfo from that ire to 2724 * do any initializations. 2725 */ 2726 if (ire_uinfo != NULL) { 2727 if (ire_uinfo->iulp_rtt != 0) { 2728 clock_t rto; 2729 2730 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2731 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2732 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2733 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2734 2735 if (rto > tcp_rexmit_interval_max) { 2736 tcp->tcp_rto = tcp_rexmit_interval_max; 2737 } else if (rto < tcp_rexmit_interval_min) { 2738 tcp->tcp_rto = tcp_rexmit_interval_min; 2739 } else { 2740 tcp->tcp_rto = rto; 2741 } 2742 } 2743 if (ire_uinfo->iulp_ssthresh != 0) 2744 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2745 else 2746 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2747 if (ire_uinfo->iulp_spipe > 0) { 2748 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2749 tcp_max_buf); 2750 if (tcp_snd_lowat_fraction != 0) 2751 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2752 tcp_snd_lowat_fraction; 2753 (void) tcp_maxpsz_set(tcp, B_TRUE); 2754 } 2755 /* 2756 * Note that up till now, acceptor always inherits receive 2757 * window from the listener. But if there is a metrics 2758 * associated with a host, we should use that instead of 2759 * inheriting it from listener. Thus we need to pass this 2760 * info back to the caller. 2761 */ 2762 if (ire_uinfo->iulp_rpipe > 0) { 2763 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2764 } 2765 2766 if (ire_uinfo->iulp_rtomax > 0) { 2767 tcp->tcp_second_timer_threshold = 2768 ire_uinfo->iulp_rtomax; 2769 } 2770 2771 /* 2772 * Use the metric option settings, iulp_tstamp_ok and 2773 * iulp_wscale_ok, only for active open. What this means 2774 * is that if the other side uses timestamp or window 2775 * scale option, TCP will also use those options. That 2776 * is for passive open. If the application sets a 2777 * large window, window scale is enabled regardless of 2778 * the value in iulp_wscale_ok. This is the behavior 2779 * since 2.6. So we keep it. 2780 * The only case left in passive open processing is the 2781 * check for SACK. 2782 * For ECN, it should probably be like SACK. But the 2783 * current value is binary, so we treat it like the other 2784 * cases. The metric only controls active open.For passive 2785 * open, the ndd param, tcp_ecn_permitted, controls the 2786 * behavior. 2787 */ 2788 if (!tcp_detached) { 2789 /* 2790 * The if check means that the following can only 2791 * be turned on by the metrics only IRE, but not off. 2792 */ 2793 if (ire_uinfo->iulp_tstamp_ok) 2794 tcp->tcp_snd_ts_ok = B_TRUE; 2795 if (ire_uinfo->iulp_wscale_ok) 2796 tcp->tcp_snd_ws_ok = B_TRUE; 2797 if (ire_uinfo->iulp_sack == 2) 2798 tcp->tcp_snd_sack_ok = B_TRUE; 2799 if (ire_uinfo->iulp_ecn_ok) 2800 tcp->tcp_ecn_ok = B_TRUE; 2801 } else { 2802 /* 2803 * Passive open. 2804 * 2805 * As above, the if check means that SACK can only be 2806 * turned on by the metric only IRE. 2807 */ 2808 if (ire_uinfo->iulp_sack > 0) { 2809 tcp->tcp_snd_sack_ok = B_TRUE; 2810 } 2811 } 2812 } 2813 2814 2815 /* 2816 * XXX: Note that currently, ire_max_frag can be as small as 68 2817 * because of PMTUd. So tcp_mss may go to negative if combined 2818 * length of all those options exceeds 28 bytes. But because 2819 * of the tcp_mss_min check below, we may not have a problem if 2820 * tcp_mss_min is of a reasonable value. The default is 1 so 2821 * the negative problem still exists. And the check defeats PMTUd. 2822 * In fact, if PMTUd finds that the MSS should be smaller than 2823 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2824 * value. 2825 * 2826 * We do not deal with that now. All those problems related to 2827 * PMTUd will be fixed later. 2828 */ 2829 ASSERT(ire->ire_max_frag != 0); 2830 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2831 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2832 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2833 mss = MIN(mss, IPV6_MIN_MTU); 2834 } 2835 } 2836 2837 /* Sanity check for MSS value. */ 2838 if (tcp->tcp_ipversion == IPV4_VERSION) 2839 mss_max = tcp_mss_max_ipv4; 2840 else 2841 mss_max = tcp_mss_max_ipv6; 2842 2843 if (tcp->tcp_ipversion == IPV6_VERSION && 2844 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2845 /* 2846 * After receiving an ICMPv6 "packet too big" message with a 2847 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2848 * will insert a 8-byte fragment header in every packet; we 2849 * reduce the MSS by that amount here. 2850 */ 2851 mss -= sizeof (ip6_frag_t); 2852 } 2853 2854 if (tcp->tcp_ipsec_overhead == 0) 2855 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2856 2857 mss -= tcp->tcp_ipsec_overhead; 2858 2859 if (mss < tcp_mss_min) 2860 mss = tcp_mss_min; 2861 if (mss > mss_max) 2862 mss = mss_max; 2863 2864 /* Note that this is the maximum MSS, excluding all options. */ 2865 tcp->tcp_mss = mss; 2866 2867 /* 2868 * Initialize the ISS here now that we have the full connection ID. 2869 * The RFC 1948 method of initial sequence number generation requires 2870 * knowledge of the full connection ID before setting the ISS. 2871 */ 2872 2873 tcp_iss_init(tcp); 2874 2875 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2876 tcp->tcp_loopback = B_TRUE; 2877 2878 if (tcp->tcp_ipversion == IPV4_VERSION) { 2879 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2880 } else { 2881 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2882 } 2883 2884 if (hsp != NULL) { 2885 /* Only modify if we're going to make them bigger */ 2886 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2887 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2888 if (tcp_snd_lowat_fraction != 0) 2889 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2890 tcp_snd_lowat_fraction; 2891 } 2892 2893 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2894 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2895 } 2896 2897 /* Copy timestamp flag only for active open */ 2898 if (!tcp_detached) 2899 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2900 } 2901 2902 if (sire != NULL) 2903 IRE_REFRELE(sire); 2904 2905 /* 2906 * If we got an IRE_CACHE and an ILL, go through their properties; 2907 * otherwise, this is deferred until later when we have an IRE_CACHE. 2908 */ 2909 if (tcp->tcp_loopback || 2910 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2911 /* 2912 * For incoming, see if this tcp may be MDT-capable. For 2913 * outgoing, this process has been taken care of through 2914 * tcp_rput_other. 2915 */ 2916 tcp_ire_ill_check(tcp, ire, ill, incoming); 2917 tcp->tcp_ire_ill_check_done = B_TRUE; 2918 } 2919 2920 mutex_enter(&connp->conn_lock); 2921 /* 2922 * Make sure that conn is not marked incipient 2923 * for incoming connections. A blind 2924 * removal of incipient flag is cheaper than 2925 * check and removal. 2926 */ 2927 connp->conn_state_flags &= ~CONN_INCIPIENT; 2928 2929 /* Must not cache forwarding table routes. */ 2930 if (ire_cacheable) { 2931 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2932 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2933 connp->conn_ire_cache = ire; 2934 IRE_UNTRACE_REF(ire); 2935 rw_exit(&ire->ire_bucket->irb_lock); 2936 mutex_exit(&connp->conn_lock); 2937 return (1); 2938 } 2939 rw_exit(&ire->ire_bucket->irb_lock); 2940 } 2941 mutex_exit(&connp->conn_lock); 2942 2943 if (ire->ire_mp == NULL) 2944 ire_refrele(ire); 2945 return (1); 2946 2947 error: 2948 if (ire->ire_mp == NULL) 2949 ire_refrele(ire); 2950 if (sire != NULL) 2951 ire_refrele(sire); 2952 return (0); 2953 } 2954 2955 /* 2956 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2957 * O_T_BIND_REQ/T_BIND_REQ message. 2958 */ 2959 static void 2960 tcp_bind(tcp_t *tcp, mblk_t *mp) 2961 { 2962 sin_t *sin; 2963 sin6_t *sin6; 2964 mblk_t *mp1; 2965 in_port_t requested_port; 2966 in_port_t allocated_port; 2967 struct T_bind_req *tbr; 2968 boolean_t bind_to_req_port_only; 2969 boolean_t backlog_update = B_FALSE; 2970 boolean_t user_specified; 2971 in6_addr_t v6addr; 2972 ipaddr_t v4addr; 2973 uint_t origipversion; 2974 int err; 2975 queue_t *q = tcp->tcp_wq; 2976 conn_t *connp; 2977 mlp_type_t addrtype, mlptype; 2978 zone_t *zone; 2979 cred_t *cr; 2980 in_port_t mlp_port; 2981 2982 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2983 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2984 if (tcp->tcp_debug) { 2985 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2986 "tcp_bind: bad req, len %u", 2987 (uint_t)(mp->b_wptr - mp->b_rptr)); 2988 } 2989 tcp_err_ack(tcp, mp, TPROTO, 0); 2990 return; 2991 } 2992 /* Make sure the largest address fits */ 2993 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 2994 if (mp1 == NULL) { 2995 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2996 return; 2997 } 2998 mp = mp1; 2999 tbr = (struct T_bind_req *)mp->b_rptr; 3000 if (tcp->tcp_state >= TCPS_BOUND) { 3001 if ((tcp->tcp_state == TCPS_BOUND || 3002 tcp->tcp_state == TCPS_LISTEN) && 3003 tcp->tcp_conn_req_max != tbr->CONIND_number && 3004 tbr->CONIND_number > 0) { 3005 /* 3006 * Handle listen() increasing CONIND_number. 3007 * This is more "liberal" then what the TPI spec 3008 * requires but is needed to avoid a t_unbind 3009 * when handling listen() since the port number 3010 * might be "stolen" between the unbind and bind. 3011 */ 3012 backlog_update = B_TRUE; 3013 goto do_bind; 3014 } 3015 if (tcp->tcp_debug) { 3016 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3017 "tcp_bind: bad state, %d", tcp->tcp_state); 3018 } 3019 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3020 return; 3021 } 3022 origipversion = tcp->tcp_ipversion; 3023 3024 switch (tbr->ADDR_length) { 3025 case 0: /* request for a generic port */ 3026 tbr->ADDR_offset = sizeof (struct T_bind_req); 3027 if (tcp->tcp_family == AF_INET) { 3028 tbr->ADDR_length = sizeof (sin_t); 3029 sin = (sin_t *)&tbr[1]; 3030 *sin = sin_null; 3031 sin->sin_family = AF_INET; 3032 mp->b_wptr = (uchar_t *)&sin[1]; 3033 tcp->tcp_ipversion = IPV4_VERSION; 3034 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3035 } else { 3036 ASSERT(tcp->tcp_family == AF_INET6); 3037 tbr->ADDR_length = sizeof (sin6_t); 3038 sin6 = (sin6_t *)&tbr[1]; 3039 *sin6 = sin6_null; 3040 sin6->sin6_family = AF_INET6; 3041 mp->b_wptr = (uchar_t *)&sin6[1]; 3042 tcp->tcp_ipversion = IPV6_VERSION; 3043 V6_SET_ZERO(v6addr); 3044 } 3045 requested_port = 0; 3046 break; 3047 3048 case sizeof (sin_t): /* Complete IPv4 address */ 3049 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3050 sizeof (sin_t)); 3051 if (sin == NULL || !OK_32PTR((char *)sin)) { 3052 if (tcp->tcp_debug) { 3053 (void) strlog(TCP_MOD_ID, 0, 1, 3054 SL_ERROR|SL_TRACE, 3055 "tcp_bind: bad address parameter, " 3056 "offset %d, len %d", 3057 tbr->ADDR_offset, tbr->ADDR_length); 3058 } 3059 tcp_err_ack(tcp, mp, TPROTO, 0); 3060 return; 3061 } 3062 /* 3063 * With sockets sockfs will accept bogus sin_family in 3064 * bind() and replace it with the family used in the socket 3065 * call. 3066 */ 3067 if (sin->sin_family != AF_INET || 3068 tcp->tcp_family != AF_INET) { 3069 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3070 return; 3071 } 3072 requested_port = ntohs(sin->sin_port); 3073 tcp->tcp_ipversion = IPV4_VERSION; 3074 v4addr = sin->sin_addr.s_addr; 3075 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3076 break; 3077 3078 case sizeof (sin6_t): /* Complete IPv6 address */ 3079 sin6 = (sin6_t *)mi_offset_param(mp, 3080 tbr->ADDR_offset, sizeof (sin6_t)); 3081 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3082 if (tcp->tcp_debug) { 3083 (void) strlog(TCP_MOD_ID, 0, 1, 3084 SL_ERROR|SL_TRACE, 3085 "tcp_bind: bad IPv6 address parameter, " 3086 "offset %d, len %d", tbr->ADDR_offset, 3087 tbr->ADDR_length); 3088 } 3089 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3090 return; 3091 } 3092 if (sin6->sin6_family != AF_INET6 || 3093 tcp->tcp_family != AF_INET6) { 3094 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3095 return; 3096 } 3097 requested_port = ntohs(sin6->sin6_port); 3098 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3099 IPV4_VERSION : IPV6_VERSION; 3100 v6addr = sin6->sin6_addr; 3101 break; 3102 3103 default: 3104 if (tcp->tcp_debug) { 3105 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3106 "tcp_bind: bad address length, %d", 3107 tbr->ADDR_length); 3108 } 3109 tcp_err_ack(tcp, mp, TBADADDR, 0); 3110 return; 3111 } 3112 tcp->tcp_bound_source_v6 = v6addr; 3113 3114 /* Check for change in ipversion */ 3115 if (origipversion != tcp->tcp_ipversion) { 3116 ASSERT(tcp->tcp_family == AF_INET6); 3117 err = tcp->tcp_ipversion == IPV6_VERSION ? 3118 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3119 if (err) { 3120 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3121 return; 3122 } 3123 } 3124 3125 /* 3126 * Initialize family specific fields. Copy of the src addr. 3127 * in tcp_t is needed for the lookup funcs. 3128 */ 3129 if (tcp->tcp_ipversion == IPV6_VERSION) { 3130 tcp->tcp_ip6h->ip6_src = v6addr; 3131 } else { 3132 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3133 } 3134 tcp->tcp_ip_src_v6 = v6addr; 3135 3136 /* 3137 * For O_T_BIND_REQ: 3138 * Verify that the target port/addr is available, or choose 3139 * another. 3140 * For T_BIND_REQ: 3141 * Verify that the target port/addr is available or fail. 3142 * In both cases when it succeeds the tcp is inserted in the 3143 * bind hash table. This ensures that the operation is atomic 3144 * under the lock on the hash bucket. 3145 */ 3146 bind_to_req_port_only = requested_port != 0 && 3147 tbr->PRIM_type != O_T_BIND_REQ; 3148 /* 3149 * Get a valid port (within the anonymous range and should not 3150 * be a privileged one) to use if the user has not given a port. 3151 * If multiple threads are here, they may all start with 3152 * with the same initial port. But, it should be fine as long as 3153 * tcp_bindi will ensure that no two threads will be assigned 3154 * the same port. 3155 * 3156 * NOTE: XXX If a privileged process asks for an anonymous port, we 3157 * still check for ports only in the range > tcp_smallest_non_priv_port, 3158 * unless TCP_ANONPRIVBIND option is set. 3159 */ 3160 mlptype = mlptSingle; 3161 mlp_port = requested_port; 3162 if (requested_port == 0) { 3163 requested_port = tcp->tcp_anon_priv_bind ? 3164 tcp_get_next_priv_port(tcp) : 3165 tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 3166 if (requested_port == 0) { 3167 tcp_err_ack(tcp, mp, TNOADDR, 0); 3168 return; 3169 } 3170 user_specified = B_FALSE; 3171 3172 /* 3173 * If the user went through one of the RPC interfaces to create 3174 * this socket and RPC is MLP in this zone, then give him an 3175 * anonymous MLP. 3176 */ 3177 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3178 connp = tcp->tcp_connp; 3179 if (connp->conn_anon_mlp && is_system_labeled()) { 3180 zone = crgetzone(cr); 3181 addrtype = tsol_mlp_addr_type(zone->zone_id, 3182 IPV6_VERSION, &v6addr); 3183 if (addrtype == mlptSingle) { 3184 tcp_err_ack(tcp, mp, TNOADDR, 0); 3185 return; 3186 } 3187 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3188 PMAPPORT, addrtype); 3189 mlp_port = PMAPPORT; 3190 } 3191 } else { 3192 int i; 3193 boolean_t priv = B_FALSE; 3194 3195 /* 3196 * If the requested_port is in the well-known privileged range, 3197 * verify that the stream was opened by a privileged user. 3198 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3199 * but instead the code relies on: 3200 * - the fact that the address of the array and its size never 3201 * changes 3202 * - the atomic assignment of the elements of the array 3203 */ 3204 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3205 if (requested_port < tcp_smallest_nonpriv_port) { 3206 priv = B_TRUE; 3207 } else { 3208 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3209 if (requested_port == 3210 tcp_g_epriv_ports[i]) { 3211 priv = B_TRUE; 3212 break; 3213 } 3214 } 3215 } 3216 if (priv) { 3217 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3218 if (tcp->tcp_debug) { 3219 (void) strlog(TCP_MOD_ID, 0, 1, 3220 SL_ERROR|SL_TRACE, 3221 "tcp_bind: no priv for port %d", 3222 requested_port); 3223 } 3224 tcp_err_ack(tcp, mp, TACCES, 0); 3225 return; 3226 } 3227 } 3228 user_specified = B_TRUE; 3229 3230 connp = tcp->tcp_connp; 3231 if (is_system_labeled()) { 3232 zone = crgetzone(cr); 3233 addrtype = tsol_mlp_addr_type(zone->zone_id, 3234 IPV6_VERSION, &v6addr); 3235 if (addrtype == mlptSingle) { 3236 tcp_err_ack(tcp, mp, TNOADDR, 0); 3237 return; 3238 } 3239 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3240 requested_port, addrtype); 3241 } 3242 } 3243 3244 if (mlptype != mlptSingle) { 3245 if (secpolicy_net_bindmlp(cr) != 0) { 3246 if (tcp->tcp_debug) { 3247 (void) strlog(TCP_MOD_ID, 0, 1, 3248 SL_ERROR|SL_TRACE, 3249 "tcp_bind: no priv for multilevel port %d", 3250 requested_port); 3251 } 3252 tcp_err_ack(tcp, mp, TACCES, 0); 3253 return; 3254 } 3255 3256 /* 3257 * If we're specifically binding a shared IP address and the 3258 * port is MLP on shared addresses, then check to see if this 3259 * zone actually owns the MLP. Reject if not. 3260 */ 3261 if (mlptype == mlptShared && addrtype == mlptShared) { 3262 zoneid_t mlpzone; 3263 3264 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3265 htons(mlp_port)); 3266 if (connp->conn_zoneid != mlpzone) { 3267 if (tcp->tcp_debug) { 3268 (void) strlog(TCP_MOD_ID, 0, 1, 3269 SL_ERROR|SL_TRACE, 3270 "tcp_bind: attempt to bind port " 3271 "%d on shared addr in zone %d " 3272 "(should be %d)", 3273 mlp_port, connp->conn_zoneid, 3274 mlpzone); 3275 } 3276 tcp_err_ack(tcp, mp, TACCES, 0); 3277 return; 3278 } 3279 } 3280 3281 if (!user_specified) { 3282 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3283 requested_port, B_TRUE); 3284 if (err != 0) { 3285 if (tcp->tcp_debug) { 3286 (void) strlog(TCP_MOD_ID, 0, 1, 3287 SL_ERROR|SL_TRACE, 3288 "tcp_bind: cannot establish anon " 3289 "MLP for port %d", 3290 requested_port); 3291 } 3292 tcp_err_ack(tcp, mp, TSYSERR, err); 3293 return; 3294 } 3295 connp->conn_anon_port = B_TRUE; 3296 } 3297 connp->conn_mlp_type = mlptype; 3298 } 3299 3300 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3301 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3302 3303 if (allocated_port == 0) { 3304 connp->conn_mlp_type = mlptSingle; 3305 if (connp->conn_anon_port) { 3306 connp->conn_anon_port = B_FALSE; 3307 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3308 requested_port, B_FALSE); 3309 } 3310 if (bind_to_req_port_only) { 3311 if (tcp->tcp_debug) { 3312 (void) strlog(TCP_MOD_ID, 0, 1, 3313 SL_ERROR|SL_TRACE, 3314 "tcp_bind: requested addr busy"); 3315 } 3316 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3317 } else { 3318 /* If we are out of ports, fail the bind. */ 3319 if (tcp->tcp_debug) { 3320 (void) strlog(TCP_MOD_ID, 0, 1, 3321 SL_ERROR|SL_TRACE, 3322 "tcp_bind: out of ports?"); 3323 } 3324 tcp_err_ack(tcp, mp, TNOADDR, 0); 3325 } 3326 return; 3327 } 3328 ASSERT(tcp->tcp_state == TCPS_BOUND); 3329 do_bind: 3330 if (!backlog_update) { 3331 if (tcp->tcp_family == AF_INET) 3332 sin->sin_port = htons(allocated_port); 3333 else 3334 sin6->sin6_port = htons(allocated_port); 3335 } 3336 if (tcp->tcp_family == AF_INET) { 3337 if (tbr->CONIND_number != 0) { 3338 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3339 sizeof (sin_t)); 3340 } else { 3341 /* Just verify the local IP address */ 3342 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3343 } 3344 } else { 3345 if (tbr->CONIND_number != 0) { 3346 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3347 sizeof (sin6_t)); 3348 } else { 3349 /* Just verify the local IP address */ 3350 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3351 IPV6_ADDR_LEN); 3352 } 3353 } 3354 if (mp1 == NULL) { 3355 if (connp->conn_anon_port) { 3356 connp->conn_anon_port = B_FALSE; 3357 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3358 requested_port, B_FALSE); 3359 } 3360 connp->conn_mlp_type = mlptSingle; 3361 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3362 return; 3363 } 3364 3365 tbr->PRIM_type = T_BIND_ACK; 3366 mp->b_datap->db_type = M_PCPROTO; 3367 3368 /* Chain in the reply mp for tcp_rput() */ 3369 mp1->b_cont = mp; 3370 mp = mp1; 3371 3372 tcp->tcp_conn_req_max = tbr->CONIND_number; 3373 if (tcp->tcp_conn_req_max) { 3374 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3375 tcp->tcp_conn_req_max = tcp_conn_req_min; 3376 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3377 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3378 /* 3379 * If this is a listener, do not reset the eager list 3380 * and other stuffs. Note that we don't check if the 3381 * existing eager list meets the new tcp_conn_req_max 3382 * requirement. 3383 */ 3384 if (tcp->tcp_state != TCPS_LISTEN) { 3385 tcp->tcp_state = TCPS_LISTEN; 3386 /* Initialize the chain. Don't need the eager_lock */ 3387 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3388 tcp->tcp_second_ctimer_threshold = 3389 tcp_ip_abort_linterval; 3390 } 3391 } 3392 3393 /* 3394 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3395 * processing continues in tcp_rput_other(). 3396 */ 3397 if (tcp->tcp_family == AF_INET6) { 3398 ASSERT(tcp->tcp_connp->conn_af_isv6); 3399 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3400 } else { 3401 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3402 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3403 } 3404 /* 3405 * If the bind cannot complete immediately 3406 * IP will arrange to call tcp_rput_other 3407 * when the bind completes. 3408 */ 3409 if (mp != NULL) { 3410 tcp_rput_other(tcp, mp); 3411 } else { 3412 /* 3413 * Bind will be resumed later. Need to ensure 3414 * that conn doesn't disappear when that happens. 3415 * This will be decremented in ip_resume_tcp_bind(). 3416 */ 3417 CONN_INC_REF(tcp->tcp_connp); 3418 } 3419 } 3420 3421 3422 /* 3423 * If the "bind_to_req_port_only" parameter is set, if the requested port 3424 * number is available, return it, If not return 0 3425 * 3426 * If "bind_to_req_port_only" parameter is not set and 3427 * If the requested port number is available, return it. If not, return 3428 * the first anonymous port we happen across. If no anonymous ports are 3429 * available, return 0. addr is the requested local address, if any. 3430 * 3431 * In either case, when succeeding update the tcp_t to record the port number 3432 * and insert it in the bind hash table. 3433 * 3434 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3435 * without setting SO_REUSEADDR. This is needed so that they 3436 * can be viewed as two independent transport protocols. 3437 */ 3438 static in_port_t 3439 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3440 int reuseaddr, boolean_t quick_connect, 3441 boolean_t bind_to_req_port_only, boolean_t user_specified) 3442 { 3443 /* number of times we have run around the loop */ 3444 int count = 0; 3445 /* maximum number of times to run around the loop */ 3446 int loopmax; 3447 conn_t *connp = tcp->tcp_connp; 3448 zoneid_t zoneid = connp->conn_zoneid; 3449 3450 /* 3451 * Lookup for free addresses is done in a loop and "loopmax" 3452 * influences how long we spin in the loop 3453 */ 3454 if (bind_to_req_port_only) { 3455 /* 3456 * If the requested port is busy, don't bother to look 3457 * for a new one. Setting loop maximum count to 1 has 3458 * that effect. 3459 */ 3460 loopmax = 1; 3461 } else { 3462 /* 3463 * If the requested port is busy, look for a free one 3464 * in the anonymous port range. 3465 * Set loopmax appropriately so that one does not look 3466 * forever in the case all of the anonymous ports are in use. 3467 */ 3468 if (tcp->tcp_anon_priv_bind) { 3469 /* 3470 * loopmax = 3471 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3472 */ 3473 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3474 } else { 3475 loopmax = (tcp_largest_anon_port - 3476 tcp_smallest_anon_port + 1); 3477 } 3478 } 3479 do { 3480 uint16_t lport; 3481 tf_t *tbf; 3482 tcp_t *ltcp; 3483 conn_t *lconnp; 3484 3485 lport = htons(port); 3486 3487 /* 3488 * Ensure that the tcp_t is not currently in the bind hash. 3489 * Hold the lock on the hash bucket to ensure that 3490 * the duplicate check plus the insertion is an atomic 3491 * operation. 3492 * 3493 * This function does an inline lookup on the bind hash list 3494 * Make sure that we access only members of tcp_t 3495 * and that we don't look at tcp_tcp, since we are not 3496 * doing a CONN_INC_REF. 3497 */ 3498 tcp_bind_hash_remove(tcp); 3499 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3500 mutex_enter(&tbf->tf_lock); 3501 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3502 ltcp = ltcp->tcp_bind_hash) { 3503 boolean_t not_socket; 3504 boolean_t exclbind; 3505 3506 if (lport != ltcp->tcp_lport) 3507 continue; 3508 3509 lconnp = ltcp->tcp_connp; 3510 3511 /* 3512 * On a labeled system, we must treat bindings to ports 3513 * on shared IP addresses by sockets with MAC exemption 3514 * privilege as being in all zones, as there's 3515 * otherwise no way to identify the right receiver. 3516 */ 3517 if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) && 3518 !lconnp->conn_mac_exempt && 3519 !connp->conn_mac_exempt) 3520 continue; 3521 3522 /* 3523 * If TCP_EXCLBIND is set for either the bound or 3524 * binding endpoint, the semantics of bind 3525 * is changed according to the following. 3526 * 3527 * spec = specified address (v4 or v6) 3528 * unspec = unspecified address (v4 or v6) 3529 * A = specified addresses are different for endpoints 3530 * 3531 * bound bind to allowed 3532 * ------------------------------------- 3533 * unspec unspec no 3534 * unspec spec no 3535 * spec unspec no 3536 * spec spec yes if A 3537 * 3538 * For labeled systems, SO_MAC_EXEMPT behaves the same 3539 * as TCP_EXCLBIND, except that zoneid is ignored. 3540 * 3541 * Note: 3542 * 3543 * 1. Because of TLI semantics, an endpoint can go 3544 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3545 * TCPS_BOUND, depending on whether it is originally 3546 * a listener or not. That is why we need to check 3547 * for states greater than or equal to TCPS_BOUND 3548 * here. 3549 * 3550 * 2. Ideally, we should only check for state equals 3551 * to TCPS_LISTEN. And the following check should be 3552 * added. 3553 * 3554 * if (ltcp->tcp_state == TCPS_LISTEN || 3555 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3556 * ... 3557 * } 3558 * 3559 * The semantics will be changed to this. If the 3560 * endpoint on the list is in state not equal to 3561 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3562 * set, let the bind succeed. 3563 * 3564 * Because of (1), we cannot do that for TLI 3565 * endpoints. But we can do that for socket endpoints. 3566 * If in future, we can change this going back 3567 * semantics, we can use the above check for TLI also. 3568 */ 3569 not_socket = !(TCP_IS_SOCKET(ltcp) && 3570 TCP_IS_SOCKET(tcp)); 3571 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3572 3573 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3574 (exclbind && (not_socket || 3575 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3576 if (V6_OR_V4_INADDR_ANY( 3577 ltcp->tcp_bound_source_v6) || 3578 V6_OR_V4_INADDR_ANY(*laddr) || 3579 IN6_ARE_ADDR_EQUAL(laddr, 3580 <cp->tcp_bound_source_v6)) { 3581 break; 3582 } 3583 continue; 3584 } 3585 3586 /* 3587 * Check ipversion to allow IPv4 and IPv6 sockets to 3588 * have disjoint port number spaces, if *_EXCLBIND 3589 * is not set and only if the application binds to a 3590 * specific port. We use the same autoassigned port 3591 * number space for IPv4 and IPv6 sockets. 3592 */ 3593 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3594 bind_to_req_port_only) 3595 continue; 3596 3597 /* 3598 * Ideally, we should make sure that the source 3599 * address, remote address, and remote port in the 3600 * four tuple for this tcp-connection is unique. 3601 * However, trying to find out the local source 3602 * address would require too much code duplication 3603 * with IP, since IP needs needs to have that code 3604 * to support userland TCP implementations. 3605 */ 3606 if (quick_connect && 3607 (ltcp->tcp_state > TCPS_LISTEN) && 3608 ((tcp->tcp_fport != ltcp->tcp_fport) || 3609 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3610 <cp->tcp_remote_v6))) 3611 continue; 3612 3613 if (!reuseaddr) { 3614 /* 3615 * No socket option SO_REUSEADDR. 3616 * If existing port is bound to 3617 * a non-wildcard IP address 3618 * and the requesting stream is 3619 * bound to a distinct 3620 * different IP addresses 3621 * (non-wildcard, also), keep 3622 * going. 3623 */ 3624 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3625 !V6_OR_V4_INADDR_ANY( 3626 ltcp->tcp_bound_source_v6) && 3627 !IN6_ARE_ADDR_EQUAL(laddr, 3628 <cp->tcp_bound_source_v6)) 3629 continue; 3630 if (ltcp->tcp_state >= TCPS_BOUND) { 3631 /* 3632 * This port is being used and 3633 * its state is >= TCPS_BOUND, 3634 * so we can't bind to it. 3635 */ 3636 break; 3637 } 3638 } else { 3639 /* 3640 * socket option SO_REUSEADDR is set on the 3641 * binding tcp_t. 3642 * 3643 * If two streams are bound to 3644 * same IP address or both addr 3645 * and bound source are wildcards 3646 * (INADDR_ANY), we want to stop 3647 * searching. 3648 * We have found a match of IP source 3649 * address and source port, which is 3650 * refused regardless of the 3651 * SO_REUSEADDR setting, so we break. 3652 */ 3653 if (IN6_ARE_ADDR_EQUAL(laddr, 3654 <cp->tcp_bound_source_v6) && 3655 (ltcp->tcp_state == TCPS_LISTEN || 3656 ltcp->tcp_state == TCPS_BOUND)) 3657 break; 3658 } 3659 } 3660 if (ltcp != NULL) { 3661 /* The port number is busy */ 3662 mutex_exit(&tbf->tf_lock); 3663 } else { 3664 /* 3665 * This port is ours. Insert in fanout and mark as 3666 * bound to prevent others from getting the port 3667 * number. 3668 */ 3669 tcp->tcp_state = TCPS_BOUND; 3670 tcp->tcp_lport = htons(port); 3671 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3672 3673 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3674 tcp->tcp_lport)] == tbf); 3675 tcp_bind_hash_insert(tbf, tcp, 1); 3676 3677 mutex_exit(&tbf->tf_lock); 3678 3679 /* 3680 * We don't want tcp_next_port_to_try to "inherit" 3681 * a port number supplied by the user in a bind. 3682 */ 3683 if (user_specified) 3684 return (port); 3685 3686 /* 3687 * This is the only place where tcp_next_port_to_try 3688 * is updated. After the update, it may or may not 3689 * be in the valid range. 3690 */ 3691 if (!tcp->tcp_anon_priv_bind) 3692 tcp_next_port_to_try = port + 1; 3693 return (port); 3694 } 3695 3696 if (tcp->tcp_anon_priv_bind) { 3697 port = tcp_get_next_priv_port(tcp); 3698 } else { 3699 if (count == 0 && user_specified) { 3700 /* 3701 * We may have to return an anonymous port. So 3702 * get one to start with. 3703 */ 3704 port = 3705 tcp_update_next_port(tcp_next_port_to_try, 3706 tcp, B_TRUE); 3707 user_specified = B_FALSE; 3708 } else { 3709 port = tcp_update_next_port(port + 1, tcp, 3710 B_FALSE); 3711 } 3712 } 3713 if (port == 0) 3714 break; 3715 3716 /* 3717 * Don't let this loop run forever in the case where 3718 * all of the anonymous ports are in use. 3719 */ 3720 } while (++count < loopmax); 3721 return (0); 3722 } 3723 3724 /* 3725 * We are dying for some reason. Try to do it gracefully. (May be called 3726 * as writer.) 3727 * 3728 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3729 * done by a service procedure). 3730 * TBD - Should the return value distinguish between the tcp_t being 3731 * freed and it being reinitialized? 3732 */ 3733 static int 3734 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3735 { 3736 mblk_t *mp; 3737 queue_t *q; 3738 3739 TCP_CLD_STAT(tag); 3740 3741 #if TCP_TAG_CLEAN_DEATH 3742 tcp->tcp_cleandeathtag = tag; 3743 #endif 3744 3745 if (tcp->tcp_fused) 3746 tcp_unfuse(tcp); 3747 3748 if (tcp->tcp_linger_tid != 0 && 3749 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3750 tcp_stop_lingering(tcp); 3751 } 3752 3753 ASSERT(tcp != NULL); 3754 ASSERT((tcp->tcp_family == AF_INET && 3755 tcp->tcp_ipversion == IPV4_VERSION) || 3756 (tcp->tcp_family == AF_INET6 && 3757 (tcp->tcp_ipversion == IPV4_VERSION || 3758 tcp->tcp_ipversion == IPV6_VERSION))); 3759 3760 if (TCP_IS_DETACHED(tcp)) { 3761 if (tcp->tcp_hard_binding) { 3762 /* 3763 * Its an eager that we are dealing with. We close the 3764 * eager but in case a conn_ind has already gone to the 3765 * listener, let tcp_accept_finish() send a discon_ind 3766 * to the listener and drop the last reference. If the 3767 * listener doesn't even know about the eager i.e. the 3768 * conn_ind hasn't gone up, blow away the eager and drop 3769 * the last reference as well. If the conn_ind has gone 3770 * up, state should be BOUND. tcp_accept_finish 3771 * will figure out that the connection has received a 3772 * RST and will send a DISCON_IND to the application. 3773 */ 3774 tcp_closei_local(tcp); 3775 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 3776 CONN_DEC_REF(tcp->tcp_connp); 3777 } else { 3778 tcp->tcp_state = TCPS_BOUND; 3779 } 3780 } else { 3781 tcp_close_detached(tcp); 3782 } 3783 return (0); 3784 } 3785 3786 TCP_STAT(tcp_clean_death_nondetached); 3787 3788 /* 3789 * If T_ORDREL_IND has not been sent yet (done when service routine 3790 * is run) postpone cleaning up the endpoint until service routine 3791 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3792 * client_errno since tcp_close uses the client_errno field. 3793 */ 3794 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3795 if (err != 0) 3796 tcp->tcp_client_errno = err; 3797 3798 tcp->tcp_deferred_clean_death = B_TRUE; 3799 return (-1); 3800 } 3801 3802 q = tcp->tcp_rq; 3803 3804 /* Trash all inbound data */ 3805 flushq(q, FLUSHALL); 3806 3807 /* 3808 * If we are at least part way open and there is error 3809 * (err==0 implies no error) 3810 * notify our client by a T_DISCON_IND. 3811 */ 3812 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3813 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3814 !TCP_IS_SOCKET(tcp)) { 3815 /* 3816 * Send M_FLUSH according to TPI. Because sockets will 3817 * (and must) ignore FLUSHR we do that only for TPI 3818 * endpoints and sockets in STREAMS mode. 3819 */ 3820 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3821 } 3822 if (tcp->tcp_debug) { 3823 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3824 "tcp_clean_death: discon err %d", err); 3825 } 3826 mp = mi_tpi_discon_ind(NULL, err, 0); 3827 if (mp != NULL) { 3828 putnext(q, mp); 3829 } else { 3830 if (tcp->tcp_debug) { 3831 (void) strlog(TCP_MOD_ID, 0, 1, 3832 SL_ERROR|SL_TRACE, 3833 "tcp_clean_death, sending M_ERROR"); 3834 } 3835 (void) putnextctl1(q, M_ERROR, EPROTO); 3836 } 3837 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3838 /* SYN_SENT or SYN_RCVD */ 3839 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3840 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3841 /* ESTABLISHED or CLOSE_WAIT */ 3842 BUMP_MIB(&tcp_mib, tcpEstabResets); 3843 } 3844 } 3845 3846 tcp_reinit(tcp); 3847 return (-1); 3848 } 3849 3850 /* 3851 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3852 * to expire, stop the wait and finish the close. 3853 */ 3854 static void 3855 tcp_stop_lingering(tcp_t *tcp) 3856 { 3857 clock_t delta = 0; 3858 3859 tcp->tcp_linger_tid = 0; 3860 if (tcp->tcp_state > TCPS_LISTEN) { 3861 tcp_acceptor_hash_remove(tcp); 3862 if (tcp->tcp_flow_stopped) { 3863 tcp_clrqfull(tcp); 3864 } 3865 3866 if (tcp->tcp_timer_tid != 0) { 3867 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3868 tcp->tcp_timer_tid = 0; 3869 } 3870 /* 3871 * Need to cancel those timers which will not be used when 3872 * TCP is detached. This has to be done before the tcp_wq 3873 * is set to the global queue. 3874 */ 3875 tcp_timers_stop(tcp); 3876 3877 3878 tcp->tcp_detached = B_TRUE; 3879 tcp->tcp_rq = tcp_g_q; 3880 tcp->tcp_wq = WR(tcp_g_q); 3881 3882 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3883 tcp_time_wait_append(tcp); 3884 TCP_DBGSTAT(tcp_detach_time_wait); 3885 goto finish; 3886 } 3887 3888 /* 3889 * If delta is zero the timer event wasn't executed and was 3890 * successfully canceled. In this case we need to restart it 3891 * with the minimal delta possible. 3892 */ 3893 if (delta >= 0) { 3894 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3895 delta ? delta : 1); 3896 } 3897 } else { 3898 tcp_closei_local(tcp); 3899 CONN_DEC_REF(tcp->tcp_connp); 3900 } 3901 finish: 3902 /* Signal closing thread that it can complete close */ 3903 mutex_enter(&tcp->tcp_closelock); 3904 tcp->tcp_detached = B_TRUE; 3905 tcp->tcp_rq = tcp_g_q; 3906 tcp->tcp_wq = WR(tcp_g_q); 3907 tcp->tcp_closed = 1; 3908 cv_signal(&tcp->tcp_closecv); 3909 mutex_exit(&tcp->tcp_closelock); 3910 } 3911 3912 /* 3913 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3914 * expires. 3915 */ 3916 static void 3917 tcp_close_linger_timeout(void *arg) 3918 { 3919 conn_t *connp = (conn_t *)arg; 3920 tcp_t *tcp = connp->conn_tcp; 3921 3922 tcp->tcp_client_errno = ETIMEDOUT; 3923 tcp_stop_lingering(tcp); 3924 } 3925 3926 static int 3927 tcp_close(queue_t *q, int flags) 3928 { 3929 conn_t *connp = Q_TO_CONN(q); 3930 tcp_t *tcp = connp->conn_tcp; 3931 mblk_t *mp = &tcp->tcp_closemp; 3932 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3933 3934 ASSERT(WR(q)->q_next == NULL); 3935 ASSERT(connp->conn_ref >= 2); 3936 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 3937 3938 /* 3939 * We are being closed as /dev/tcp or /dev/tcp6. 3940 * 3941 * Mark the conn as closing. ill_pending_mp_add will not 3942 * add any mp to the pending mp list, after this conn has 3943 * started closing. Same for sq_pending_mp_add 3944 */ 3945 mutex_enter(&connp->conn_lock); 3946 connp->conn_state_flags |= CONN_CLOSING; 3947 if (connp->conn_oper_pending_ill != NULL) 3948 conn_ioctl_cleanup_reqd = B_TRUE; 3949 CONN_INC_REF_LOCKED(connp); 3950 mutex_exit(&connp->conn_lock); 3951 tcp->tcp_closeflags = (uint8_t)flags; 3952 ASSERT(connp->conn_ref >= 3); 3953 3954 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 3955 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 3956 3957 mutex_enter(&tcp->tcp_closelock); 3958 3959 while (!tcp->tcp_closed) 3960 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3961 mutex_exit(&tcp->tcp_closelock); 3962 /* 3963 * In the case of listener streams that have eagers in the q or q0 3964 * we wait for the eagers to drop their reference to us. tcp_rq and 3965 * tcp_wq of the eagers point to our queues. By waiting for the 3966 * refcnt to drop to 1, we are sure that the eagers have cleaned 3967 * up their queue pointers and also dropped their references to us. 3968 */ 3969 if (tcp->tcp_wait_for_eagers) { 3970 mutex_enter(&connp->conn_lock); 3971 while (connp->conn_ref != 1) { 3972 cv_wait(&connp->conn_cv, &connp->conn_lock); 3973 } 3974 mutex_exit(&connp->conn_lock); 3975 } 3976 /* 3977 * ioctl cleanup. The mp is queued in the 3978 * ill_pending_mp or in the sq_pending_mp. 3979 */ 3980 if (conn_ioctl_cleanup_reqd) 3981 conn_ioctl_cleanup(connp); 3982 3983 qprocsoff(q); 3984 inet_minor_free(ip_minor_arena, connp->conn_dev); 3985 3986 tcp->tcp_cpid = -1; 3987 3988 /* 3989 * Drop IP's reference on the conn. This is the last reference 3990 * on the connp if the state was less than established. If the 3991 * connection has gone into timewait state, then we will have 3992 * one ref for the TCP and one more ref (total of two) for the 3993 * classifier connected hash list (a timewait connections stays 3994 * in connected hash till closed). 3995 * 3996 * We can't assert the references because there might be other 3997 * transient reference places because of some walkers or queued 3998 * packets in squeue for the timewait state. 3999 */ 4000 CONN_DEC_REF(connp); 4001 q->q_ptr = WR(q)->q_ptr = NULL; 4002 return (0); 4003 } 4004 4005 static int 4006 tcpclose_accept(queue_t *q) 4007 { 4008 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4009 4010 /* 4011 * We had opened an acceptor STREAM for sockfs which is 4012 * now being closed due to some error. 4013 */ 4014 qprocsoff(q); 4015 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4016 q->q_ptr = WR(q)->q_ptr = NULL; 4017 return (0); 4018 } 4019 4020 4021 /* 4022 * Called by streams close routine via squeues when our client blows off her 4023 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4024 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4025 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4026 * acked. 4027 * 4028 * NOTE: tcp_close potentially returns error when lingering. 4029 * However, the stream head currently does not pass these errors 4030 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4031 * errors to the application (from tsleep()) and not errors 4032 * like ECONNRESET caused by receiving a reset packet. 4033 */ 4034 4035 /* ARGSUSED */ 4036 static void 4037 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4038 { 4039 char *msg; 4040 conn_t *connp = (conn_t *)arg; 4041 tcp_t *tcp = connp->conn_tcp; 4042 clock_t delta = 0; 4043 4044 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4045 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4046 4047 /* Cancel any pending timeout */ 4048 if (tcp->tcp_ordrelid != 0) { 4049 if (tcp->tcp_timeout) { 4050 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4051 } 4052 tcp->tcp_ordrelid = 0; 4053 tcp->tcp_timeout = B_FALSE; 4054 } 4055 4056 mutex_enter(&tcp->tcp_eager_lock); 4057 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4058 /* Cleanup for listener */ 4059 tcp_eager_cleanup(tcp, 0); 4060 tcp->tcp_wait_for_eagers = 1; 4061 } 4062 mutex_exit(&tcp->tcp_eager_lock); 4063 4064 connp->conn_mdt_ok = B_FALSE; 4065 tcp->tcp_mdt = B_FALSE; 4066 4067 msg = NULL; 4068 switch (tcp->tcp_state) { 4069 case TCPS_CLOSED: 4070 case TCPS_IDLE: 4071 case TCPS_BOUND: 4072 case TCPS_LISTEN: 4073 break; 4074 case TCPS_SYN_SENT: 4075 msg = "tcp_close, during connect"; 4076 break; 4077 case TCPS_SYN_RCVD: 4078 /* 4079 * Close during the connect 3-way handshake 4080 * but here there may or may not be pending data 4081 * already on queue. Process almost same as in 4082 * the ESTABLISHED state. 4083 */ 4084 /* FALLTHRU */ 4085 default: 4086 if (tcp->tcp_fused) 4087 tcp_unfuse(tcp); 4088 4089 /* 4090 * If SO_LINGER has set a zero linger time, abort the 4091 * connection with a reset. 4092 */ 4093 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4094 msg = "tcp_close, zero lingertime"; 4095 break; 4096 } 4097 4098 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4099 /* 4100 * Abort connection if there is unread data queued. 4101 */ 4102 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4103 msg = "tcp_close, unread data"; 4104 break; 4105 } 4106 /* 4107 * tcp_hard_bound is now cleared thus all packets go through 4108 * tcp_lookup. This fact is used by tcp_detach below. 4109 * 4110 * We have done a qwait() above which could have possibly 4111 * drained more messages in turn causing transition to a 4112 * different state. Check whether we have to do the rest 4113 * of the processing or not. 4114 */ 4115 if (tcp->tcp_state <= TCPS_LISTEN) 4116 break; 4117 4118 /* 4119 * Transmit the FIN before detaching the tcp_t. 4120 * After tcp_detach returns this queue/perimeter 4121 * no longer owns the tcp_t thus others can modify it. 4122 */ 4123 (void) tcp_xmit_end(tcp); 4124 4125 /* 4126 * If lingering on close then wait until the fin is acked, 4127 * the SO_LINGER time passes, or a reset is sent/received. 4128 */ 4129 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4130 !(tcp->tcp_fin_acked) && 4131 tcp->tcp_state >= TCPS_ESTABLISHED) { 4132 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4133 tcp->tcp_client_errno = EWOULDBLOCK; 4134 } else if (tcp->tcp_client_errno == 0) { 4135 4136 ASSERT(tcp->tcp_linger_tid == 0); 4137 4138 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4139 tcp_close_linger_timeout, 4140 tcp->tcp_lingertime * hz); 4141 4142 /* tcp_close_linger_timeout will finish close */ 4143 if (tcp->tcp_linger_tid == 0) 4144 tcp->tcp_client_errno = ENOSR; 4145 else 4146 return; 4147 } 4148 4149 /* 4150 * Check if we need to detach or just close 4151 * the instance. 4152 */ 4153 if (tcp->tcp_state <= TCPS_LISTEN) 4154 break; 4155 } 4156 4157 /* 4158 * Make sure that no other thread will access the tcp_rq of 4159 * this instance (through lookups etc.) as tcp_rq will go 4160 * away shortly. 4161 */ 4162 tcp_acceptor_hash_remove(tcp); 4163 4164 if (tcp->tcp_flow_stopped) { 4165 tcp_clrqfull(tcp); 4166 } 4167 4168 if (tcp->tcp_timer_tid != 0) { 4169 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4170 tcp->tcp_timer_tid = 0; 4171 } 4172 /* 4173 * Need to cancel those timers which will not be used when 4174 * TCP is detached. This has to be done before the tcp_wq 4175 * is set to the global queue. 4176 */ 4177 tcp_timers_stop(tcp); 4178 4179 tcp->tcp_detached = B_TRUE; 4180 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4181 tcp_time_wait_append(tcp); 4182 TCP_DBGSTAT(tcp_detach_time_wait); 4183 ASSERT(connp->conn_ref >= 3); 4184 goto finish; 4185 } 4186 4187 /* 4188 * If delta is zero the timer event wasn't executed and was 4189 * successfully canceled. In this case we need to restart it 4190 * with the minimal delta possible. 4191 */ 4192 if (delta >= 0) 4193 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4194 delta ? delta : 1); 4195 4196 ASSERT(connp->conn_ref >= 3); 4197 goto finish; 4198 } 4199 4200 /* Detach did not complete. Still need to remove q from stream. */ 4201 if (msg) { 4202 if (tcp->tcp_state == TCPS_ESTABLISHED || 4203 tcp->tcp_state == TCPS_CLOSE_WAIT) 4204 BUMP_MIB(&tcp_mib, tcpEstabResets); 4205 if (tcp->tcp_state == TCPS_SYN_SENT || 4206 tcp->tcp_state == TCPS_SYN_RCVD) 4207 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4208 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4209 } 4210 4211 tcp_closei_local(tcp); 4212 CONN_DEC_REF(connp); 4213 ASSERT(connp->conn_ref >= 2); 4214 4215 finish: 4216 /* 4217 * Although packets are always processed on the correct 4218 * tcp's perimeter and access is serialized via squeue's, 4219 * IP still needs a queue when sending packets in time_wait 4220 * state so use WR(tcp_g_q) till ip_output() can be 4221 * changed to deal with just connp. For read side, we 4222 * could have set tcp_rq to NULL but there are some cases 4223 * in tcp_rput_data() from early days of this code which 4224 * do a putnext without checking if tcp is closed. Those 4225 * need to be identified before both tcp_rq and tcp_wq 4226 * can be set to NULL and tcp_q_q can disappear forever. 4227 */ 4228 mutex_enter(&tcp->tcp_closelock); 4229 /* 4230 * Don't change the queues in the case of a listener that has 4231 * eagers in its q or q0. It could surprise the eagers. 4232 * Instead wait for the eagers outside the squeue. 4233 */ 4234 if (!tcp->tcp_wait_for_eagers) { 4235 tcp->tcp_detached = B_TRUE; 4236 tcp->tcp_rq = tcp_g_q; 4237 tcp->tcp_wq = WR(tcp_g_q); 4238 } 4239 4240 /* Signal tcp_close() to finish closing. */ 4241 tcp->tcp_closed = 1; 4242 cv_signal(&tcp->tcp_closecv); 4243 mutex_exit(&tcp->tcp_closelock); 4244 } 4245 4246 4247 /* 4248 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4249 * Some stream heads get upset if they see these later on as anything but NULL. 4250 */ 4251 static void 4252 tcp_close_mpp(mblk_t **mpp) 4253 { 4254 mblk_t *mp; 4255 4256 if ((mp = *mpp) != NULL) { 4257 do { 4258 mp->b_next = NULL; 4259 mp->b_prev = NULL; 4260 } while ((mp = mp->b_cont) != NULL); 4261 4262 mp = *mpp; 4263 *mpp = NULL; 4264 freemsg(mp); 4265 } 4266 } 4267 4268 /* Do detached close. */ 4269 static void 4270 tcp_close_detached(tcp_t *tcp) 4271 { 4272 if (tcp->tcp_fused) 4273 tcp_unfuse(tcp); 4274 4275 /* 4276 * Clustering code serializes TCP disconnect callbacks and 4277 * cluster tcp list walks by blocking a TCP disconnect callback 4278 * if a cluster tcp list walk is in progress. This ensures 4279 * accurate accounting of TCPs in the cluster code even though 4280 * the TCP list walk itself is not atomic. 4281 */ 4282 tcp_closei_local(tcp); 4283 CONN_DEC_REF(tcp->tcp_connp); 4284 } 4285 4286 /* 4287 * Stop all TCP timers, and free the timer mblks if requested. 4288 */ 4289 void 4290 tcp_timers_stop(tcp_t *tcp) 4291 { 4292 if (tcp->tcp_timer_tid != 0) { 4293 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4294 tcp->tcp_timer_tid = 0; 4295 } 4296 if (tcp->tcp_ka_tid != 0) { 4297 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4298 tcp->tcp_ka_tid = 0; 4299 } 4300 if (tcp->tcp_ack_tid != 0) { 4301 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4302 tcp->tcp_ack_tid = 0; 4303 } 4304 if (tcp->tcp_push_tid != 0) { 4305 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4306 tcp->tcp_push_tid = 0; 4307 } 4308 } 4309 4310 /* 4311 * The tcp_t is going away. Remove it from all lists and set it 4312 * to TCPS_CLOSED. The freeing up of memory is deferred until 4313 * tcp_inactive. This is needed since a thread in tcp_rput might have 4314 * done a CONN_INC_REF on this structure before it was removed from the 4315 * hashes. 4316 */ 4317 static void 4318 tcp_closei_local(tcp_t *tcp) 4319 { 4320 ire_t *ire; 4321 conn_t *connp = tcp->tcp_connp; 4322 4323 if (!TCP_IS_SOCKET(tcp)) 4324 tcp_acceptor_hash_remove(tcp); 4325 4326 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4327 tcp->tcp_ibsegs = 0; 4328 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4329 tcp->tcp_obsegs = 0; 4330 4331 /* 4332 * If we are an eager connection hanging off a listener that 4333 * hasn't formally accepted the connection yet, get off his 4334 * list and blow off any data that we have accumulated. 4335 */ 4336 if (tcp->tcp_listener != NULL) { 4337 tcp_t *listener = tcp->tcp_listener; 4338 mutex_enter(&listener->tcp_eager_lock); 4339 /* 4340 * tcp_eager_conn_ind == NULL means that the 4341 * conn_ind has already gone to listener. At 4342 * this point, eager will be closed but we 4343 * leave it in listeners eager list so that 4344 * if listener decides to close without doing 4345 * accept, we can clean this up. In tcp_wput_accept 4346 * we take case of the case of accept on closed 4347 * eager. 4348 */ 4349 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4350 tcp_eager_unlink(tcp); 4351 mutex_exit(&listener->tcp_eager_lock); 4352 /* 4353 * We don't want to have any pointers to the 4354 * listener queue, after we have released our 4355 * reference on the listener 4356 */ 4357 tcp->tcp_rq = tcp_g_q; 4358 tcp->tcp_wq = WR(tcp_g_q); 4359 CONN_DEC_REF(listener->tcp_connp); 4360 } else { 4361 mutex_exit(&listener->tcp_eager_lock); 4362 } 4363 } 4364 4365 /* Stop all the timers */ 4366 tcp_timers_stop(tcp); 4367 4368 if (tcp->tcp_state == TCPS_LISTEN) { 4369 if (tcp->tcp_ip_addr_cache) { 4370 kmem_free((void *)tcp->tcp_ip_addr_cache, 4371 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4372 tcp->tcp_ip_addr_cache = NULL; 4373 } 4374 } 4375 if (tcp->tcp_flow_stopped) 4376 tcp_clrqfull(tcp); 4377 4378 tcp_bind_hash_remove(tcp); 4379 /* 4380 * If the tcp_time_wait_collector (which runs outside the squeue) 4381 * is trying to remove this tcp from the time wait list, we will 4382 * block in tcp_time_wait_remove while trying to acquire the 4383 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4384 * requires the ipcl_hash_remove to be ordered after the 4385 * tcp_time_wait_remove for the refcnt checks to work correctly. 4386 */ 4387 if (tcp->tcp_state == TCPS_TIME_WAIT) 4388 tcp_time_wait_remove(tcp, NULL); 4389 CL_INET_DISCONNECT(tcp); 4390 ipcl_hash_remove(connp); 4391 4392 /* 4393 * Delete the cached ire in conn_ire_cache and also mark 4394 * the conn as CONDEMNED 4395 */ 4396 mutex_enter(&connp->conn_lock); 4397 connp->conn_state_flags |= CONN_CONDEMNED; 4398 ire = connp->conn_ire_cache; 4399 connp->conn_ire_cache = NULL; 4400 mutex_exit(&connp->conn_lock); 4401 if (ire != NULL) 4402 IRE_REFRELE_NOTR(ire); 4403 4404 /* Need to cleanup any pending ioctls */ 4405 ASSERT(tcp->tcp_time_wait_next == NULL); 4406 ASSERT(tcp->tcp_time_wait_prev == NULL); 4407 ASSERT(tcp->tcp_time_wait_expire == 0); 4408 tcp->tcp_state = TCPS_CLOSED; 4409 4410 /* Release any SSL context */ 4411 if (tcp->tcp_kssl_ent != NULL) { 4412 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4413 tcp->tcp_kssl_ent = NULL; 4414 } 4415 if (tcp->tcp_kssl_ctx != NULL) { 4416 kssl_release_ctx(tcp->tcp_kssl_ctx); 4417 tcp->tcp_kssl_ctx = NULL; 4418 } 4419 tcp->tcp_kssl_pending = B_FALSE; 4420 } 4421 4422 /* 4423 * tcp is dying (called from ipcl_conn_destroy and error cases). 4424 * Free the tcp_t in either case. 4425 */ 4426 void 4427 tcp_free(tcp_t *tcp) 4428 { 4429 mblk_t *mp; 4430 ip6_pkt_t *ipp; 4431 4432 ASSERT(tcp != NULL); 4433 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4434 4435 tcp->tcp_rq = NULL; 4436 tcp->tcp_wq = NULL; 4437 4438 tcp_close_mpp(&tcp->tcp_xmit_head); 4439 tcp_close_mpp(&tcp->tcp_reass_head); 4440 if (tcp->tcp_rcv_list != NULL) { 4441 /* Free b_next chain */ 4442 tcp_close_mpp(&tcp->tcp_rcv_list); 4443 } 4444 if ((mp = tcp->tcp_urp_mp) != NULL) { 4445 freemsg(mp); 4446 } 4447 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4448 freemsg(mp); 4449 } 4450 4451 if (tcp->tcp_fused_sigurg_mp != NULL) { 4452 freeb(tcp->tcp_fused_sigurg_mp); 4453 tcp->tcp_fused_sigurg_mp = NULL; 4454 } 4455 4456 if (tcp->tcp_sack_info != NULL) { 4457 if (tcp->tcp_notsack_list != NULL) { 4458 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4459 } 4460 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4461 } 4462 4463 if (tcp->tcp_hopopts != NULL) { 4464 mi_free(tcp->tcp_hopopts); 4465 tcp->tcp_hopopts = NULL; 4466 tcp->tcp_hopoptslen = 0; 4467 } 4468 ASSERT(tcp->tcp_hopoptslen == 0); 4469 if (tcp->tcp_dstopts != NULL) { 4470 mi_free(tcp->tcp_dstopts); 4471 tcp->tcp_dstopts = NULL; 4472 tcp->tcp_dstoptslen = 0; 4473 } 4474 ASSERT(tcp->tcp_dstoptslen == 0); 4475 if (tcp->tcp_rtdstopts != NULL) { 4476 mi_free(tcp->tcp_rtdstopts); 4477 tcp->tcp_rtdstopts = NULL; 4478 tcp->tcp_rtdstoptslen = 0; 4479 } 4480 ASSERT(tcp->tcp_rtdstoptslen == 0); 4481 if (tcp->tcp_rthdr != NULL) { 4482 mi_free(tcp->tcp_rthdr); 4483 tcp->tcp_rthdr = NULL; 4484 tcp->tcp_rthdrlen = 0; 4485 } 4486 ASSERT(tcp->tcp_rthdrlen == 0); 4487 4488 ipp = &tcp->tcp_sticky_ipp; 4489 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4490 IPPF_RTHDR)) 4491 ip6_pkt_free(ipp); 4492 4493 /* 4494 * Free memory associated with the tcp/ip header template. 4495 */ 4496 4497 if (tcp->tcp_iphc != NULL) 4498 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4499 4500 /* 4501 * Following is really a blowing away a union. 4502 * It happens to have exactly two members of identical size 4503 * the following code is enough. 4504 */ 4505 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4506 4507 if (tcp->tcp_tracebuf != NULL) { 4508 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4509 tcp->tcp_tracebuf = NULL; 4510 } 4511 } 4512 4513 4514 /* 4515 * Put a connection confirmation message upstream built from the 4516 * address information within 'iph' and 'tcph'. Report our success or failure. 4517 */ 4518 static boolean_t 4519 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4520 mblk_t **defermp) 4521 { 4522 sin_t sin; 4523 sin6_t sin6; 4524 mblk_t *mp; 4525 char *optp = NULL; 4526 int optlen = 0; 4527 cred_t *cr; 4528 4529 if (defermp != NULL) 4530 *defermp = NULL; 4531 4532 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4533 /* 4534 * Return in T_CONN_CON results of option negotiation through 4535 * the T_CONN_REQ. Note: If there is an real end-to-end option 4536 * negotiation, then what is received from remote end needs 4537 * to be taken into account but there is no such thing (yet?) 4538 * in our TCP/IP. 4539 * Note: We do not use mi_offset_param() here as 4540 * tcp_opts_conn_req contents do not directly come from 4541 * an application and are either generated in kernel or 4542 * from user input that was already verified. 4543 */ 4544 mp = tcp->tcp_conn.tcp_opts_conn_req; 4545 optp = (char *)(mp->b_rptr + 4546 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4547 optlen = (int) 4548 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4549 } 4550 4551 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4552 ipha_t *ipha = (ipha_t *)iphdr; 4553 4554 /* packet is IPv4 */ 4555 if (tcp->tcp_family == AF_INET) { 4556 sin = sin_null; 4557 sin.sin_addr.s_addr = ipha->ipha_src; 4558 sin.sin_port = *(uint16_t *)tcph->th_lport; 4559 sin.sin_family = AF_INET; 4560 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4561 (int)sizeof (sin_t), optp, optlen); 4562 } else { 4563 sin6 = sin6_null; 4564 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4565 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4566 sin6.sin6_family = AF_INET6; 4567 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4568 (int)sizeof (sin6_t), optp, optlen); 4569 4570 } 4571 } else { 4572 ip6_t *ip6h = (ip6_t *)iphdr; 4573 4574 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4575 ASSERT(tcp->tcp_family == AF_INET6); 4576 sin6 = sin6_null; 4577 sin6.sin6_addr = ip6h->ip6_src; 4578 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4579 sin6.sin6_family = AF_INET6; 4580 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4581 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4582 (int)sizeof (sin6_t), optp, optlen); 4583 } 4584 4585 if (!mp) 4586 return (B_FALSE); 4587 4588 if ((cr = DB_CRED(idmp)) != NULL) { 4589 mblk_setcred(mp, cr); 4590 DB_CPID(mp) = DB_CPID(idmp); 4591 } 4592 4593 if (defermp == NULL) 4594 putnext(tcp->tcp_rq, mp); 4595 else 4596 *defermp = mp; 4597 4598 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4599 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4600 return (B_TRUE); 4601 } 4602 4603 /* 4604 * Defense for the SYN attack - 4605 * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest 4606 * one that doesn't have the dontdrop bit set. 4607 * 2. Don't drop a SYN request before its first timeout. This gives every 4608 * request at least til the first timeout to complete its 3-way handshake. 4609 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4610 * requests currently on the queue that has timed out. This will be used 4611 * as an indicator of whether an attack is under way, so that appropriate 4612 * actions can be taken. (It's incremented in tcp_timer() and decremented 4613 * either when eager goes into ESTABLISHED, or gets freed up.) 4614 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4615 * # of timeout drops back to <= q0len/32 => SYN alert off 4616 */ 4617 static boolean_t 4618 tcp_drop_q0(tcp_t *tcp) 4619 { 4620 tcp_t *eager; 4621 4622 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4623 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4624 /* 4625 * New one is added after next_q0 so prev_q0 points to the oldest 4626 * Also do not drop any established connections that are deferred on 4627 * q0 due to q being full 4628 */ 4629 4630 eager = tcp->tcp_eager_prev_q0; 4631 while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { 4632 eager = eager->tcp_eager_prev_q0; 4633 if (eager == tcp) { 4634 eager = tcp->tcp_eager_prev_q0; 4635 break; 4636 } 4637 } 4638 if (eager->tcp_syn_rcvd_timeout == 0) 4639 return (B_FALSE); 4640 4641 if (tcp->tcp_debug) { 4642 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4643 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4644 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4645 tcp->tcp_conn_req_cnt_q0, 4646 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4647 } 4648 4649 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4650 4651 /* 4652 * need to do refhold here because the selected eager could 4653 * be removed by someone else if we release the eager lock. 4654 */ 4655 CONN_INC_REF(eager->tcp_connp); 4656 mutex_exit(&tcp->tcp_eager_lock); 4657 4658 /* Mark the IRE created for this SYN request temporary */ 4659 tcp_ip_ire_mark_advice(eager); 4660 (void) tcp_clean_death(eager, ETIMEDOUT, 5); 4661 CONN_DEC_REF(eager->tcp_connp); 4662 4663 mutex_enter(&tcp->tcp_eager_lock); 4664 return (B_TRUE); 4665 } 4666 4667 int 4668 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4669 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4670 { 4671 tcp_t *ltcp = lconnp->conn_tcp; 4672 tcp_t *tcp = connp->conn_tcp; 4673 mblk_t *tpi_mp; 4674 ipha_t *ipha; 4675 ip6_t *ip6h; 4676 sin6_t sin6; 4677 in6_addr_t v6dst; 4678 int err; 4679 int ifindex = 0; 4680 cred_t *cr; 4681 4682 if (ipvers == IPV4_VERSION) { 4683 ipha = (ipha_t *)mp->b_rptr; 4684 4685 connp->conn_send = ip_output; 4686 connp->conn_recv = tcp_input; 4687 4688 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4689 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4690 4691 sin6 = sin6_null; 4692 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4693 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4694 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4695 sin6.sin6_family = AF_INET6; 4696 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4697 lconnp->conn_zoneid); 4698 if (tcp->tcp_recvdstaddr) { 4699 sin6_t sin6d; 4700 4701 sin6d = sin6_null; 4702 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4703 &sin6d.sin6_addr); 4704 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4705 sin6d.sin6_family = AF_INET; 4706 tpi_mp = mi_tpi_extconn_ind(NULL, 4707 (char *)&sin6d, sizeof (sin6_t), 4708 (char *)&tcp, 4709 (t_scalar_t)sizeof (intptr_t), 4710 (char *)&sin6d, sizeof (sin6_t), 4711 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4712 } else { 4713 tpi_mp = mi_tpi_conn_ind(NULL, 4714 (char *)&sin6, sizeof (sin6_t), 4715 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4716 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4717 } 4718 } else { 4719 ip6h = (ip6_t *)mp->b_rptr; 4720 4721 connp->conn_send = ip_output_v6; 4722 connp->conn_recv = tcp_input; 4723 4724 connp->conn_srcv6 = ip6h->ip6_dst; 4725 connp->conn_remv6 = ip6h->ip6_src; 4726 4727 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4728 ifindex = (int)DB_CKSUMSTUFF(mp); 4729 DB_CKSUMSTUFF(mp) = 0; 4730 4731 sin6 = sin6_null; 4732 sin6.sin6_addr = ip6h->ip6_src; 4733 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4734 sin6.sin6_family = AF_INET6; 4735 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4736 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4737 lconnp->conn_zoneid); 4738 4739 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4740 /* Pass up the scope_id of remote addr */ 4741 sin6.sin6_scope_id = ifindex; 4742 } else { 4743 sin6.sin6_scope_id = 0; 4744 } 4745 if (tcp->tcp_recvdstaddr) { 4746 sin6_t sin6d; 4747 4748 sin6d = sin6_null; 4749 sin6.sin6_addr = ip6h->ip6_dst; 4750 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4751 sin6d.sin6_family = AF_INET; 4752 tpi_mp = mi_tpi_extconn_ind(NULL, 4753 (char *)&sin6d, sizeof (sin6_t), 4754 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4755 (char *)&sin6d, sizeof (sin6_t), 4756 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4757 } else { 4758 tpi_mp = mi_tpi_conn_ind(NULL, 4759 (char *)&sin6, sizeof (sin6_t), 4760 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4761 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4762 } 4763 } 4764 4765 if (tpi_mp == NULL) 4766 return (ENOMEM); 4767 4768 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4769 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4770 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4771 connp->conn_fully_bound = B_FALSE; 4772 4773 if (tcp_trace) 4774 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4775 4776 /* Inherit information from the "parent" */ 4777 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4778 tcp->tcp_family = ltcp->tcp_family; 4779 tcp->tcp_wq = ltcp->tcp_wq; 4780 tcp->tcp_rq = ltcp->tcp_rq; 4781 tcp->tcp_mss = tcp_mss_def_ipv6; 4782 tcp->tcp_detached = B_TRUE; 4783 if ((err = tcp_init_values(tcp)) != 0) { 4784 freemsg(tpi_mp); 4785 return (err); 4786 } 4787 4788 if (ipvers == IPV4_VERSION) { 4789 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4790 freemsg(tpi_mp); 4791 return (err); 4792 } 4793 ASSERT(tcp->tcp_ipha != NULL); 4794 } else { 4795 /* ifindex must be already set */ 4796 ASSERT(ifindex != 0); 4797 4798 if (ltcp->tcp_bound_if != 0) { 4799 /* 4800 * Set newtcp's bound_if equal to 4801 * listener's value. If ifindex is 4802 * not the same as ltcp->tcp_bound_if, 4803 * it must be a packet for the ipmp group 4804 * of interfaces 4805 */ 4806 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4807 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4808 tcp->tcp_bound_if = ifindex; 4809 } 4810 4811 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4812 tcp->tcp_recvifindex = 0; 4813 tcp->tcp_recvhops = 0xffffffffU; 4814 ASSERT(tcp->tcp_ip6h != NULL); 4815 } 4816 4817 tcp->tcp_lport = ltcp->tcp_lport; 4818 4819 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4820 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4821 /* 4822 * Listener had options of some sort; eager inherits. 4823 * Free up the eager template and allocate one 4824 * of the right size. 4825 */ 4826 if (tcp->tcp_hdr_grown) { 4827 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4828 } else { 4829 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4830 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4831 } 4832 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4833 KM_NOSLEEP); 4834 if (tcp->tcp_iphc == NULL) { 4835 tcp->tcp_iphc_len = 0; 4836 freemsg(tpi_mp); 4837 return (ENOMEM); 4838 } 4839 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4840 tcp->tcp_hdr_grown = B_TRUE; 4841 } 4842 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4843 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4844 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4845 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4846 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4847 4848 /* 4849 * Copy the IP+TCP header template from listener to eager 4850 */ 4851 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4852 if (tcp->tcp_ipversion == IPV6_VERSION) { 4853 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4854 IPPROTO_RAW) { 4855 tcp->tcp_ip6h = 4856 (ip6_t *)(tcp->tcp_iphc + 4857 sizeof (ip6i_t)); 4858 } else { 4859 tcp->tcp_ip6h = 4860 (ip6_t *)(tcp->tcp_iphc); 4861 } 4862 tcp->tcp_ipha = NULL; 4863 } else { 4864 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4865 tcp->tcp_ip6h = NULL; 4866 } 4867 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4868 tcp->tcp_ip_hdr_len); 4869 } else { 4870 /* 4871 * only valid case when ipversion of listener and 4872 * eager differ is when listener is IPv6 and 4873 * eager is IPv4. 4874 * Eager header template has been initialized to the 4875 * maximum v4 header sizes, which includes space for 4876 * TCP and IP options. 4877 */ 4878 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4879 (tcp->tcp_ipversion == IPV4_VERSION)); 4880 ASSERT(tcp->tcp_iphc_len >= 4881 TCP_MAX_COMBINED_HEADER_LENGTH); 4882 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4883 /* copy IP header fields individually */ 4884 tcp->tcp_ipha->ipha_ttl = 4885 ltcp->tcp_ip6h->ip6_hops; 4886 bcopy(ltcp->tcp_tcph->th_lport, 4887 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4888 } 4889 4890 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4891 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4892 sizeof (in_port_t)); 4893 4894 if (ltcp->tcp_lport == 0) { 4895 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4896 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4897 sizeof (in_port_t)); 4898 } 4899 4900 if (tcp->tcp_ipversion == IPV4_VERSION) { 4901 ASSERT(ipha != NULL); 4902 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4903 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4904 4905 /* Source routing option copyover (reverse it) */ 4906 if (tcp_rev_src_routes) 4907 tcp_opt_reverse(tcp, ipha); 4908 } else { 4909 ASSERT(ip6h != NULL); 4910 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4911 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4912 } 4913 4914 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4915 /* 4916 * If the SYN contains a credential, it's a loopback packet; attach 4917 * the credential to the TPI message. 4918 */ 4919 if ((cr = DB_CRED(idmp)) != NULL) { 4920 mblk_setcred(tpi_mp, cr); 4921 DB_CPID(tpi_mp) = DB_CPID(idmp); 4922 } 4923 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4924 4925 /* Inherit the listener's SSL protection state */ 4926 4927 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4928 kssl_hold_ent(tcp->tcp_kssl_ent); 4929 tcp->tcp_kssl_pending = B_TRUE; 4930 } 4931 4932 return (0); 4933 } 4934 4935 4936 int 4937 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4938 tcph_t *tcph, mblk_t *idmp) 4939 { 4940 tcp_t *ltcp = lconnp->conn_tcp; 4941 tcp_t *tcp = connp->conn_tcp; 4942 sin_t sin; 4943 mblk_t *tpi_mp = NULL; 4944 int err; 4945 cred_t *cr; 4946 4947 sin = sin_null; 4948 sin.sin_addr.s_addr = ipha->ipha_src; 4949 sin.sin_port = *(uint16_t *)tcph->th_lport; 4950 sin.sin_family = AF_INET; 4951 if (ltcp->tcp_recvdstaddr) { 4952 sin_t sind; 4953 4954 sind = sin_null; 4955 sind.sin_addr.s_addr = ipha->ipha_dst; 4956 sind.sin_port = *(uint16_t *)tcph->th_fport; 4957 sind.sin_family = AF_INET; 4958 tpi_mp = mi_tpi_extconn_ind(NULL, 4959 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4960 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4961 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4962 } else { 4963 tpi_mp = mi_tpi_conn_ind(NULL, 4964 (char *)&sin, sizeof (sin_t), 4965 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4966 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4967 } 4968 4969 if (tpi_mp == NULL) { 4970 return (ENOMEM); 4971 } 4972 4973 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4974 connp->conn_send = ip_output; 4975 connp->conn_recv = tcp_input; 4976 connp->conn_fully_bound = B_FALSE; 4977 4978 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4979 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4980 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4981 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4982 4983 if (tcp_trace) { 4984 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4985 } 4986 4987 /* Inherit information from the "parent" */ 4988 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4989 tcp->tcp_family = ltcp->tcp_family; 4990 tcp->tcp_wq = ltcp->tcp_wq; 4991 tcp->tcp_rq = ltcp->tcp_rq; 4992 tcp->tcp_mss = tcp_mss_def_ipv4; 4993 tcp->tcp_detached = B_TRUE; 4994 if ((err = tcp_init_values(tcp)) != 0) { 4995 freemsg(tpi_mp); 4996 return (err); 4997 } 4998 4999 /* 5000 * Let's make sure that eager tcp template has enough space to 5001 * copy IPv4 listener's tcp template. Since the conn_t structure is 5002 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5003 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5004 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5005 * extension headers or with ip6i_t struct). Note that bcopy() below 5006 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5007 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5008 */ 5009 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5010 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5011 5012 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5013 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5014 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5015 tcp->tcp_ttl = ltcp->tcp_ttl; 5016 tcp->tcp_tos = ltcp->tcp_tos; 5017 5018 /* Copy the IP+TCP header template from listener to eager */ 5019 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5020 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5021 tcp->tcp_ip6h = NULL; 5022 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5023 tcp->tcp_ip_hdr_len); 5024 5025 /* Initialize the IP addresses and Ports */ 5026 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5027 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5028 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5029 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5030 5031 /* Source routing option copyover (reverse it) */ 5032 if (tcp_rev_src_routes) 5033 tcp_opt_reverse(tcp, ipha); 5034 5035 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5036 5037 /* 5038 * If the SYN contains a credential, it's a loopback packet; attach 5039 * the credential to the TPI message. 5040 */ 5041 if ((cr = DB_CRED(idmp)) != NULL) { 5042 mblk_setcred(tpi_mp, cr); 5043 DB_CPID(tpi_mp) = DB_CPID(idmp); 5044 } 5045 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5046 5047 /* Inherit the listener's SSL protection state */ 5048 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5049 kssl_hold_ent(tcp->tcp_kssl_ent); 5050 tcp->tcp_kssl_pending = B_TRUE; 5051 } 5052 5053 return (0); 5054 } 5055 5056 /* 5057 * sets up conn for ipsec. 5058 * if the first mblk is M_CTL it is consumed and mpp is updated. 5059 * in case of error mpp is freed. 5060 */ 5061 conn_t * 5062 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5063 { 5064 conn_t *connp = tcp->tcp_connp; 5065 conn_t *econnp; 5066 squeue_t *new_sqp; 5067 mblk_t *first_mp = *mpp; 5068 mblk_t *mp = *mpp; 5069 boolean_t mctl_present = B_FALSE; 5070 uint_t ipvers; 5071 5072 econnp = tcp_get_conn(sqp); 5073 if (econnp == NULL) { 5074 freemsg(first_mp); 5075 return (NULL); 5076 } 5077 if (DB_TYPE(mp) == M_CTL) { 5078 if (mp->b_cont == NULL || 5079 mp->b_cont->b_datap->db_type != M_DATA) { 5080 freemsg(first_mp); 5081 return (NULL); 5082 } 5083 mp = mp->b_cont; 5084 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5085 freemsg(first_mp); 5086 return (NULL); 5087 } 5088 5089 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5090 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5091 mctl_present = B_TRUE; 5092 } else { 5093 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5094 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5095 } 5096 5097 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5098 DB_CKSUMSTART(mp) = 0; 5099 5100 ASSERT(OK_32PTR(mp->b_rptr)); 5101 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5102 if (ipvers == IPV4_VERSION) { 5103 uint16_t *up; 5104 uint32_t ports; 5105 ipha_t *ipha; 5106 5107 ipha = (ipha_t *)mp->b_rptr; 5108 up = (uint16_t *)((uchar_t *)ipha + 5109 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5110 ports = *(uint32_t *)up; 5111 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5112 ipha->ipha_dst, ipha->ipha_src, ports); 5113 } else { 5114 uint16_t *up; 5115 uint32_t ports; 5116 uint16_t ip_hdr_len; 5117 uint8_t *nexthdrp; 5118 ip6_t *ip6h; 5119 tcph_t *tcph; 5120 5121 ip6h = (ip6_t *)mp->b_rptr; 5122 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5123 ip_hdr_len = IPV6_HDR_LEN; 5124 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5125 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5126 CONN_DEC_REF(econnp); 5127 freemsg(first_mp); 5128 return (NULL); 5129 } 5130 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5131 up = (uint16_t *)tcph->th_lport; 5132 ports = *(uint32_t *)up; 5133 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5134 ip6h->ip6_dst, ip6h->ip6_src, ports); 5135 } 5136 5137 /* 5138 * The caller already ensured that there is a sqp present. 5139 */ 5140 econnp->conn_sqp = new_sqp; 5141 5142 if (connp->conn_policy != NULL) { 5143 ipsec_in_t *ii; 5144 ii = (ipsec_in_t *)(first_mp->b_rptr); 5145 ASSERT(ii->ipsec_in_policy == NULL); 5146 IPPH_REFHOLD(connp->conn_policy); 5147 ii->ipsec_in_policy = connp->conn_policy; 5148 5149 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5150 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5151 CONN_DEC_REF(econnp); 5152 freemsg(first_mp); 5153 return (NULL); 5154 } 5155 } 5156 5157 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5158 CONN_DEC_REF(econnp); 5159 freemsg(first_mp); 5160 return (NULL); 5161 } 5162 5163 /* 5164 * If we know we have some policy, pass the "IPSEC" 5165 * options size TCP uses this adjust the MSS. 5166 */ 5167 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5168 if (mctl_present) { 5169 freeb(first_mp); 5170 *mpp = mp; 5171 } 5172 5173 return (econnp); 5174 } 5175 5176 /* 5177 * tcp_get_conn/tcp_free_conn 5178 * 5179 * tcp_get_conn is used to get a clean tcp connection structure. 5180 * It tries to reuse the connections put on the freelist by the 5181 * time_wait_collector failing which it goes to kmem_cache. This 5182 * way has two benefits compared to just allocating from and 5183 * freeing to kmem_cache. 5184 * 1) The time_wait_collector can free (which includes the cleanup) 5185 * outside the squeue. So when the interrupt comes, we have a clean 5186 * connection sitting in the freelist. Obviously, this buys us 5187 * performance. 5188 * 5189 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5190 * has multiple disadvantages - tying up the squeue during alloc, and the 5191 * fact that IPSec policy initialization has to happen here which 5192 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5193 * But allocating the conn/tcp in IP land is also not the best since 5194 * we can't check the 'q' and 'q0' which are protected by squeue and 5195 * blindly allocate memory which might have to be freed here if we are 5196 * not allowed to accept the connection. By using the freelist and 5197 * putting the conn/tcp back in freelist, we don't pay a penalty for 5198 * allocating memory without checking 'q/q0' and freeing it if we can't 5199 * accept the connection. 5200 * 5201 * Care should be taken to put the conn back in the same squeue's freelist 5202 * from which it was allocated. Best results are obtained if conn is 5203 * allocated from listener's squeue and freed to the same. Time wait 5204 * collector will free up the freelist is the connection ends up sitting 5205 * there for too long. 5206 */ 5207 void * 5208 tcp_get_conn(void *arg) 5209 { 5210 tcp_t *tcp = NULL; 5211 conn_t *connp = NULL; 5212 squeue_t *sqp = (squeue_t *)arg; 5213 tcp_squeue_priv_t *tcp_time_wait; 5214 5215 tcp_time_wait = 5216 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5217 5218 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5219 tcp = tcp_time_wait->tcp_free_list; 5220 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5221 if (tcp != NULL) { 5222 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5223 tcp_time_wait->tcp_free_list_cnt--; 5224 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5225 tcp->tcp_time_wait_next = NULL; 5226 connp = tcp->tcp_connp; 5227 connp->conn_flags |= IPCL_REUSED; 5228 return ((void *)connp); 5229 } 5230 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5231 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5232 return (NULL); 5233 return ((void *)connp); 5234 } 5235 5236 /* 5237 * Update the cached label for the given tcp_t. This should be called once per 5238 * connection, and before any packets are sent or tcp_process_options is 5239 * invoked. Returns B_FALSE if the correct label could not be constructed. 5240 */ 5241 static boolean_t 5242 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5243 { 5244 conn_t *connp = tcp->tcp_connp; 5245 5246 if (tcp->tcp_ipversion == IPV4_VERSION) { 5247 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5248 int added; 5249 5250 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5251 connp->conn_mac_exempt) != 0) 5252 return (B_FALSE); 5253 5254 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5255 if (added == -1) 5256 return (B_FALSE); 5257 tcp->tcp_hdr_len += added; 5258 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5259 tcp->tcp_ip_hdr_len += added; 5260 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5261 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5262 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5263 tcp->tcp_hdr_len); 5264 if (added == -1) 5265 return (B_FALSE); 5266 tcp->tcp_hdr_len += added; 5267 tcp->tcp_tcph = (tcph_t *) 5268 ((uchar_t *)tcp->tcp_tcph + added); 5269 tcp->tcp_ip_hdr_len += added; 5270 } 5271 } else { 5272 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5273 5274 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5275 connp->conn_mac_exempt) != 0) 5276 return (B_FALSE); 5277 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5278 &tcp->tcp_label_len, optbuf) != 0) 5279 return (B_FALSE); 5280 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5281 return (B_FALSE); 5282 } 5283 5284 connp->conn_ulp_labeled = 1; 5285 5286 return (B_TRUE); 5287 } 5288 5289 /* BEGIN CSTYLED */ 5290 /* 5291 * 5292 * The sockfs ACCEPT path: 5293 * ======================= 5294 * 5295 * The eager is now established in its own perimeter as soon as SYN is 5296 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5297 * completes the accept processing on the acceptor STREAM. The sending 5298 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5299 * listener but a TLI/XTI listener completes the accept processing 5300 * on the listener perimeter. 5301 * 5302 * Common control flow for 3 way handshake: 5303 * ---------------------------------------- 5304 * 5305 * incoming SYN (listener perimeter) -> tcp_rput_data() 5306 * -> tcp_conn_request() 5307 * 5308 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5309 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5310 * 5311 * Sockfs ACCEPT Path: 5312 * ------------------- 5313 * 5314 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5315 * as STREAM entry point) 5316 * 5317 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5318 * 5319 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5320 * association (we are not behind eager's squeue but sockfs is protecting us 5321 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5322 * is changed to point at tcp_wput(). 5323 * 5324 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5325 * listener (done on listener's perimeter). 5326 * 5327 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5328 * accept. 5329 * 5330 * TLI/XTI client ACCEPT path: 5331 * --------------------------- 5332 * 5333 * soaccept() sends T_CONN_RES on the listener STREAM. 5334 * 5335 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5336 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5337 * 5338 * Locks: 5339 * ====== 5340 * 5341 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5342 * and listeners->tcp_eager_next_q. 5343 * 5344 * Referencing: 5345 * ============ 5346 * 5347 * 1) We start out in tcp_conn_request by eager placing a ref on 5348 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5349 * 5350 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5351 * doing so we place a ref on the eager. This ref is finally dropped at the 5352 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5353 * reference is dropped by the squeue framework. 5354 * 5355 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5356 * 5357 * The reference must be released by the same entity that added the reference 5358 * In the above scheme, the eager is the entity that adds and releases the 5359 * references. Note that tcp_accept_finish executes in the squeue of the eager 5360 * (albeit after it is attached to the acceptor stream). Though 1. executes 5361 * in the listener's squeue, the eager is nascent at this point and the 5362 * reference can be considered to have been added on behalf of the eager. 5363 * 5364 * Eager getting a Reset or listener closing: 5365 * ========================================== 5366 * 5367 * Once the listener and eager are linked, the listener never does the unlink. 5368 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5369 * a message on all eager perimeter. The eager then does the unlink, clears 5370 * any pointers to the listener's queue and drops the reference to the 5371 * listener. The listener waits in tcp_close outside the squeue until its 5372 * refcount has dropped to 1. This ensures that the listener has waited for 5373 * all eagers to clear their association with the listener. 5374 * 5375 * Similarly, if eager decides to go away, it can unlink itself and close. 5376 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5377 * the reference to eager is still valid because of the extra ref we put 5378 * in tcp_send_conn_ind. 5379 * 5380 * Listener can always locate the eager under the protection 5381 * of the listener->tcp_eager_lock, and then do a refhold 5382 * on the eager during the accept processing. 5383 * 5384 * The acceptor stream accesses the eager in the accept processing 5385 * based on the ref placed on eager before sending T_conn_ind. 5386 * The only entity that can negate this refhold is a listener close 5387 * which is mutually exclusive with an active acceptor stream. 5388 * 5389 * Eager's reference on the listener 5390 * =================================== 5391 * 5392 * If the accept happens (even on a closed eager) the eager drops its 5393 * reference on the listener at the start of tcp_accept_finish. If the 5394 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5395 * the reference is dropped in tcp_closei_local. If the listener closes, 5396 * the reference is dropped in tcp_eager_kill. In all cases the reference 5397 * is dropped while executing in the eager's context (squeue). 5398 */ 5399 /* END CSTYLED */ 5400 5401 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5402 5403 /* 5404 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5405 * tcp_rput_data will not see any SYN packets. 5406 */ 5407 /* ARGSUSED */ 5408 void 5409 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5410 { 5411 tcph_t *tcph; 5412 uint32_t seg_seq; 5413 tcp_t *eager; 5414 uint_t ipvers; 5415 ipha_t *ipha; 5416 ip6_t *ip6h; 5417 int err; 5418 conn_t *econnp = NULL; 5419 squeue_t *new_sqp; 5420 mblk_t *mp1; 5421 uint_t ip_hdr_len; 5422 conn_t *connp = (conn_t *)arg; 5423 tcp_t *tcp = connp->conn_tcp; 5424 ire_t *ire; 5425 cred_t *credp; 5426 5427 if (tcp->tcp_state != TCPS_LISTEN) 5428 goto error2; 5429 5430 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5431 5432 mutex_enter(&tcp->tcp_eager_lock); 5433 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5434 mutex_exit(&tcp->tcp_eager_lock); 5435 TCP_STAT(tcp_listendrop); 5436 BUMP_MIB(&tcp_mib, tcpListenDrop); 5437 if (tcp->tcp_debug) { 5438 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5439 "tcp_conn_request: listen backlog (max=%d) " 5440 "overflow (%d pending) on %s", 5441 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5442 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5443 } 5444 goto error2; 5445 } 5446 5447 if (tcp->tcp_conn_req_cnt_q0 >= 5448 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5449 /* 5450 * Q0 is full. Drop a pending half-open req from the queue 5451 * to make room for the new SYN req. Also mark the time we 5452 * drop a SYN. 5453 * 5454 * A more aggressive defense against SYN attack will 5455 * be to set the "tcp_syn_defense" flag now. 5456 */ 5457 TCP_STAT(tcp_listendropq0); 5458 tcp->tcp_last_rcv_lbolt = lbolt64; 5459 if (!tcp_drop_q0(tcp)) { 5460 mutex_exit(&tcp->tcp_eager_lock); 5461 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5462 if (tcp->tcp_debug) { 5463 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5464 "tcp_conn_request: listen half-open queue " 5465 "(max=%d) full (%d pending) on %s", 5466 tcp_conn_req_max_q0, 5467 tcp->tcp_conn_req_cnt_q0, 5468 tcp_display(tcp, NULL, 5469 DISP_PORT_ONLY)); 5470 } 5471 goto error2; 5472 } 5473 } 5474 mutex_exit(&tcp->tcp_eager_lock); 5475 5476 /* 5477 * IP adds STRUIO_EAGER and ensures that the received packet is 5478 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5479 * link local address. If IPSec is enabled, db_struioflag has 5480 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5481 * otherwise an error case if neither of them is set. 5482 */ 5483 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5484 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5485 DB_CKSUMSTART(mp) = 0; 5486 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5487 econnp = (conn_t *)tcp_get_conn(arg2); 5488 if (econnp == NULL) 5489 goto error2; 5490 econnp->conn_sqp = new_sqp; 5491 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5492 /* 5493 * mp is updated in tcp_get_ipsec_conn(). 5494 */ 5495 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5496 if (econnp == NULL) { 5497 /* 5498 * mp freed by tcp_get_ipsec_conn. 5499 */ 5500 return; 5501 } 5502 } else { 5503 goto error2; 5504 } 5505 5506 ASSERT(DB_TYPE(mp) == M_DATA); 5507 5508 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5509 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5510 ASSERT(OK_32PTR(mp->b_rptr)); 5511 if (ipvers == IPV4_VERSION) { 5512 ipha = (ipha_t *)mp->b_rptr; 5513 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5514 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5515 } else { 5516 ip6h = (ip6_t *)mp->b_rptr; 5517 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5518 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5519 } 5520 5521 if (tcp->tcp_family == AF_INET) { 5522 ASSERT(ipvers == IPV4_VERSION); 5523 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5524 } else { 5525 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5526 } 5527 5528 if (err) 5529 goto error3; 5530 5531 eager = econnp->conn_tcp; 5532 5533 /* Inherit various TCP parameters from the listener */ 5534 eager->tcp_naglim = tcp->tcp_naglim; 5535 eager->tcp_first_timer_threshold = 5536 tcp->tcp_first_timer_threshold; 5537 eager->tcp_second_timer_threshold = 5538 tcp->tcp_second_timer_threshold; 5539 5540 eager->tcp_first_ctimer_threshold = 5541 tcp->tcp_first_ctimer_threshold; 5542 eager->tcp_second_ctimer_threshold = 5543 tcp->tcp_second_ctimer_threshold; 5544 5545 /* 5546 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5547 * If it does not, the eager's receive window will be set to the 5548 * listener's receive window later in this function. 5549 */ 5550 eager->tcp_rwnd = 0; 5551 5552 /* 5553 * Inherit listener's tcp_init_cwnd. Need to do this before 5554 * calling tcp_process_options() where tcp_mss_set() is called 5555 * to set the initial cwnd. 5556 */ 5557 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5558 5559 /* 5560 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5561 * zone id before the accept is completed in tcp_wput_accept(). 5562 */ 5563 econnp->conn_zoneid = connp->conn_zoneid; 5564 5565 /* Copy nexthop information from listener to eager */ 5566 if (connp->conn_nexthop_set) { 5567 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5568 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5569 } 5570 5571 /* 5572 * TSOL: tsol_input_proc() needs the eager's cred before the 5573 * eager is accepted 5574 */ 5575 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5576 crhold(credp); 5577 5578 /* 5579 * If the caller has the process-wide flag set, then default to MAC 5580 * exempt mode. This allows read-down to unlabeled hosts. 5581 */ 5582 if (getpflags(NET_MAC_AWARE, credp) != 0) 5583 econnp->conn_mac_exempt = B_TRUE; 5584 5585 if (is_system_labeled()) { 5586 cred_t *cr; 5587 5588 if (connp->conn_mlp_type != mlptSingle) { 5589 cr = econnp->conn_peercred = DB_CRED(mp); 5590 if (cr != NULL) 5591 crhold(cr); 5592 else 5593 cr = econnp->conn_cred; 5594 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5595 econnp, cred_t *, cr) 5596 } else { 5597 cr = econnp->conn_cred; 5598 DTRACE_PROBE2(syn_accept, conn_t *, 5599 econnp, cred_t *, cr) 5600 } 5601 5602 if (!tcp_update_label(eager, cr)) { 5603 DTRACE_PROBE3( 5604 tx__ip__log__error__connrequest__tcp, 5605 char *, "eager connp(1) label on SYN mp(2) failed", 5606 conn_t *, econnp, mblk_t *, mp); 5607 goto error3; 5608 } 5609 } 5610 5611 eager->tcp_hard_binding = B_TRUE; 5612 5613 tcp_bind_hash_insert(&tcp_bind_fanout[ 5614 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5615 5616 CL_INET_CONNECT(eager); 5617 5618 /* 5619 * No need to check for multicast destination since ip will only pass 5620 * up multicasts to those that have expressed interest 5621 * TODO: what about rejecting broadcasts? 5622 * Also check that source is not a multicast or broadcast address. 5623 */ 5624 eager->tcp_state = TCPS_SYN_RCVD; 5625 5626 5627 /* 5628 * There should be no ire in the mp as we are being called after 5629 * receiving the SYN. 5630 */ 5631 ASSERT(tcp_ire_mp(mp) == NULL); 5632 5633 /* 5634 * Adapt our mss, ttl, ... according to information provided in IRE. 5635 */ 5636 5637 if (tcp_adapt_ire(eager, NULL) == 0) { 5638 /* Undo the bind_hash_insert */ 5639 tcp_bind_hash_remove(eager); 5640 goto error3; 5641 } 5642 5643 /* Process all TCP options. */ 5644 tcp_process_options(eager, tcph); 5645 5646 /* Is the other end ECN capable? */ 5647 if (tcp_ecn_permitted >= 1 && 5648 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5649 eager->tcp_ecn_ok = B_TRUE; 5650 } 5651 5652 /* 5653 * listener->tcp_rq->q_hiwat should be the default window size or a 5654 * window size changed via SO_RCVBUF option. First round up the 5655 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5656 * scale option value if needed. Call tcp_rwnd_set() to finish the 5657 * setting. 5658 * 5659 * Note if there is a rpipe metric associated with the remote host, 5660 * we should not inherit receive window size from listener. 5661 */ 5662 eager->tcp_rwnd = MSS_ROUNDUP( 5663 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5664 eager->tcp_rwnd), eager->tcp_mss); 5665 if (eager->tcp_snd_ws_ok) 5666 tcp_set_ws_value(eager); 5667 /* 5668 * Note that this is the only place tcp_rwnd_set() is called for 5669 * accepting a connection. We need to call it here instead of 5670 * after the 3-way handshake because we need to tell the other 5671 * side our rwnd in the SYN-ACK segment. 5672 */ 5673 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5674 5675 /* 5676 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5677 * via soaccept()->soinheritoptions() which essentially applies 5678 * all the listener options to the new STREAM. The options that we 5679 * need to take care of are: 5680 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5681 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5682 * SO_SNDBUF, SO_RCVBUF. 5683 * 5684 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5685 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5686 * tcp_maxpsz_set() gets called later from 5687 * tcp_accept_finish(), the option takes effect. 5688 * 5689 */ 5690 /* Set the TCP options */ 5691 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5692 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5693 eager->tcp_oobinline = tcp->tcp_oobinline; 5694 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5695 eager->tcp_broadcast = tcp->tcp_broadcast; 5696 eager->tcp_useloopback = tcp->tcp_useloopback; 5697 eager->tcp_dontroute = tcp->tcp_dontroute; 5698 eager->tcp_linger = tcp->tcp_linger; 5699 eager->tcp_lingertime = tcp->tcp_lingertime; 5700 if (tcp->tcp_ka_enabled) 5701 eager->tcp_ka_enabled = 1; 5702 5703 /* Set the IP options */ 5704 econnp->conn_broadcast = connp->conn_broadcast; 5705 econnp->conn_loopback = connp->conn_loopback; 5706 econnp->conn_dontroute = connp->conn_dontroute; 5707 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5708 5709 /* Put a ref on the listener for the eager. */ 5710 CONN_INC_REF(connp); 5711 mutex_enter(&tcp->tcp_eager_lock); 5712 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5713 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5714 tcp->tcp_eager_next_q0 = eager; 5715 eager->tcp_eager_prev_q0 = tcp; 5716 5717 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5718 eager->tcp_listener = tcp; 5719 eager->tcp_saved_listener = tcp; 5720 5721 /* 5722 * Tag this detached tcp vector for later retrieval 5723 * by our listener client in tcp_accept(). 5724 */ 5725 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5726 tcp->tcp_conn_req_cnt_q0++; 5727 if (++tcp->tcp_conn_req_seqnum == -1) { 5728 /* 5729 * -1 is "special" and defined in TPI as something 5730 * that should never be used in T_CONN_IND 5731 */ 5732 ++tcp->tcp_conn_req_seqnum; 5733 } 5734 mutex_exit(&tcp->tcp_eager_lock); 5735 5736 if (tcp->tcp_syn_defense) { 5737 /* Don't drop the SYN that comes from a good IP source */ 5738 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5739 if (addr_cache != NULL && eager->tcp_remote == 5740 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5741 eager->tcp_dontdrop = B_TRUE; 5742 } 5743 } 5744 5745 /* 5746 * We need to insert the eager in its own perimeter but as soon 5747 * as we do that, we expose the eager to the classifier and 5748 * should not touch any field outside the eager's perimeter. 5749 * So do all the work necessary before inserting the eager 5750 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5751 * will succeed but undo everything if it fails. 5752 */ 5753 seg_seq = ABE32_TO_U32(tcph->th_seq); 5754 eager->tcp_irs = seg_seq; 5755 eager->tcp_rack = seg_seq; 5756 eager->tcp_rnxt = seg_seq + 1; 5757 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5758 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5759 eager->tcp_state = TCPS_SYN_RCVD; 5760 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5761 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5762 if (mp1 == NULL) 5763 goto error1; 5764 DB_CPID(mp1) = tcp->tcp_cpid; 5765 5766 /* 5767 * We need to start the rto timer. In normal case, we start 5768 * the timer after sending the packet on the wire (or at 5769 * least believing that packet was sent by waiting for 5770 * CALL_IP_WPUT() to return). Since this is the first packet 5771 * being sent on the wire for the eager, our initial tcp_rto 5772 * is at least tcp_rexmit_interval_min which is a fairly 5773 * large value to allow the algorithm to adjust slowly to large 5774 * fluctuations of RTT during first few transmissions. 5775 * 5776 * Starting the timer first and then sending the packet in this 5777 * case shouldn't make much difference since tcp_rexmit_interval_min 5778 * is of the order of several 100ms and starting the timer 5779 * first and then sending the packet will result in difference 5780 * of few micro seconds. 5781 * 5782 * Without this optimization, we are forced to hold the fanout 5783 * lock across the ipcl_bind_insert() and sending the packet 5784 * so that we don't race against an incoming packet (maybe RST) 5785 * for this eager. 5786 */ 5787 5788 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5789 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5790 5791 5792 /* 5793 * Insert the eager in its own perimeter now. We are ready to deal 5794 * with any packets on eager. 5795 */ 5796 if (eager->tcp_ipversion == IPV4_VERSION) { 5797 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5798 goto error; 5799 } 5800 } else { 5801 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5802 goto error; 5803 } 5804 } 5805 5806 /* mark conn as fully-bound */ 5807 econnp->conn_fully_bound = B_TRUE; 5808 5809 /* Send the SYN-ACK */ 5810 tcp_send_data(eager, eager->tcp_wq, mp1); 5811 freemsg(mp); 5812 5813 return; 5814 error: 5815 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 5816 freemsg(mp1); 5817 error1: 5818 /* Undo what we did above */ 5819 mutex_enter(&tcp->tcp_eager_lock); 5820 tcp_eager_unlink(eager); 5821 mutex_exit(&tcp->tcp_eager_lock); 5822 /* Drop eager's reference on the listener */ 5823 CONN_DEC_REF(connp); 5824 5825 /* 5826 * Delete the cached ire in conn_ire_cache and also mark 5827 * the conn as CONDEMNED 5828 */ 5829 mutex_enter(&econnp->conn_lock); 5830 econnp->conn_state_flags |= CONN_CONDEMNED; 5831 ire = econnp->conn_ire_cache; 5832 econnp->conn_ire_cache = NULL; 5833 mutex_exit(&econnp->conn_lock); 5834 if (ire != NULL) 5835 IRE_REFRELE_NOTR(ire); 5836 5837 /* 5838 * tcp_accept_comm inserts the eager to the bind_hash 5839 * we need to remove it from the hash if ipcl_conn_insert 5840 * fails. 5841 */ 5842 tcp_bind_hash_remove(eager); 5843 /* Drop the eager ref placed in tcp_open_detached */ 5844 CONN_DEC_REF(econnp); 5845 5846 /* 5847 * If a connection already exists, send the mp to that connections so 5848 * that it can be appropriately dealt with. 5849 */ 5850 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 5851 if (!IPCL_IS_CONNECTED(econnp)) { 5852 /* 5853 * Something bad happened. ipcl_conn_insert() 5854 * failed because a connection already existed 5855 * in connected hash but we can't find it 5856 * anymore (someone blew it away). Just 5857 * free this message and hopefully remote 5858 * will retransmit at which time the SYN can be 5859 * treated as a new connection or dealth with 5860 * a TH_RST if a connection already exists. 5861 */ 5862 freemsg(mp); 5863 } else { 5864 squeue_fill(econnp->conn_sqp, mp, tcp_input, 5865 econnp, SQTAG_TCP_CONN_REQ); 5866 } 5867 } else { 5868 /* Nobody wants this packet */ 5869 freemsg(mp); 5870 } 5871 return; 5872 error2: 5873 freemsg(mp); 5874 return; 5875 error3: 5876 CONN_DEC_REF(econnp); 5877 freemsg(mp); 5878 } 5879 5880 /* 5881 * In an ideal case of vertical partition in NUMA architecture, its 5882 * beneficial to have the listener and all the incoming connections 5883 * tied to the same squeue. The other constraint is that incoming 5884 * connections should be tied to the squeue attached to interrupted 5885 * CPU for obvious locality reason so this leaves the listener to 5886 * be tied to the same squeue. Our only problem is that when listener 5887 * is binding, the CPU that will get interrupted by the NIC whose 5888 * IP address the listener is binding to is not even known. So 5889 * the code below allows us to change that binding at the time the 5890 * CPU is interrupted by virtue of incoming connection's squeue. 5891 * 5892 * This is usefull only in case of a listener bound to a specific IP 5893 * address. For other kind of listeners, they get bound the 5894 * very first time and there is no attempt to rebind them. 5895 */ 5896 void 5897 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5898 { 5899 conn_t *connp = (conn_t *)arg; 5900 squeue_t *sqp = (squeue_t *)arg2; 5901 squeue_t *new_sqp; 5902 uint32_t conn_flags; 5903 5904 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5905 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5906 } else { 5907 goto done; 5908 } 5909 5910 if (connp->conn_fanout == NULL) 5911 goto done; 5912 5913 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5914 mutex_enter(&connp->conn_fanout->connf_lock); 5915 mutex_enter(&connp->conn_lock); 5916 /* 5917 * No one from read or write side can access us now 5918 * except for already queued packets on this squeue. 5919 * But since we haven't changed the squeue yet, they 5920 * can't execute. If they are processed after we have 5921 * changed the squeue, they are sent back to the 5922 * correct squeue down below. 5923 */ 5924 if (connp->conn_sqp != new_sqp) { 5925 while (connp->conn_sqp != new_sqp) 5926 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5927 } 5928 5929 do { 5930 conn_flags = connp->conn_flags; 5931 conn_flags |= IPCL_FULLY_BOUND; 5932 (void) cas32(&connp->conn_flags, connp->conn_flags, 5933 conn_flags); 5934 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5935 5936 mutex_exit(&connp->conn_fanout->connf_lock); 5937 mutex_exit(&connp->conn_lock); 5938 } 5939 5940 done: 5941 if (connp->conn_sqp != sqp) { 5942 CONN_INC_REF(connp); 5943 squeue_fill(connp->conn_sqp, mp, 5944 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 5945 } else { 5946 tcp_conn_request(connp, mp, sqp); 5947 } 5948 } 5949 5950 /* 5951 * Successful connect request processing begins when our client passes 5952 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5953 * our T_OK_ACK reply message upstream. The control flow looks like this: 5954 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 5955 * upstream <- tcp_rput() <- IP 5956 * After various error checks are completed, tcp_connect() lays 5957 * the target address and port into the composite header template, 5958 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5959 * request followed by an IRE request, and passes the three mblk message 5960 * down to IP looking like this: 5961 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5962 * Processing continues in tcp_rput() when we receive the following message: 5963 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5964 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5965 * to fire off the connection request, and then passes the T_OK_ACK mblk 5966 * upstream that we filled in below. There are, of course, numerous 5967 * error conditions along the way which truncate the processing described 5968 * above. 5969 */ 5970 static void 5971 tcp_connect(tcp_t *tcp, mblk_t *mp) 5972 { 5973 sin_t *sin; 5974 sin6_t *sin6; 5975 queue_t *q = tcp->tcp_wq; 5976 struct T_conn_req *tcr; 5977 ipaddr_t *dstaddrp; 5978 in_port_t dstport; 5979 uint_t srcid; 5980 5981 tcr = (struct T_conn_req *)mp->b_rptr; 5982 5983 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5984 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5985 tcp_err_ack(tcp, mp, TPROTO, 0); 5986 return; 5987 } 5988 5989 /* 5990 * Determine packet type based on type of address passed in 5991 * the request should contain an IPv4 or IPv6 address. 5992 * Make sure that address family matches the type of 5993 * family of the the address passed down 5994 */ 5995 switch (tcr->DEST_length) { 5996 default: 5997 tcp_err_ack(tcp, mp, TBADADDR, 0); 5998 return; 5999 6000 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6001 /* 6002 * XXX: The check for valid DEST_length was not there 6003 * in earlier releases and some buggy 6004 * TLI apps (e.g Sybase) got away with not feeding 6005 * in sin_zero part of address. 6006 * We allow that bug to keep those buggy apps humming. 6007 * Test suites require the check on DEST_length. 6008 * We construct a new mblk with valid DEST_length 6009 * free the original so the rest of the code does 6010 * not have to keep track of this special shorter 6011 * length address case. 6012 */ 6013 mblk_t *nmp; 6014 struct T_conn_req *ntcr; 6015 sin_t *nsin; 6016 6017 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6018 tcr->OPT_length, BPRI_HI); 6019 if (nmp == NULL) { 6020 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6021 return; 6022 } 6023 ntcr = (struct T_conn_req *)nmp->b_rptr; 6024 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6025 ntcr->PRIM_type = T_CONN_REQ; 6026 ntcr->DEST_length = sizeof (sin_t); 6027 ntcr->DEST_offset = sizeof (struct T_conn_req); 6028 6029 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6030 *nsin = sin_null; 6031 /* Get pointer to shorter address to copy from original mp */ 6032 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6033 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6034 if (sin == NULL || !OK_32PTR((char *)sin)) { 6035 freemsg(nmp); 6036 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6037 return; 6038 } 6039 nsin->sin_family = sin->sin_family; 6040 nsin->sin_port = sin->sin_port; 6041 nsin->sin_addr = sin->sin_addr; 6042 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6043 nmp->b_wptr = (uchar_t *)&nsin[1]; 6044 if (tcr->OPT_length != 0) { 6045 ntcr->OPT_length = tcr->OPT_length; 6046 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6047 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6048 (uchar_t *)ntcr + ntcr->OPT_offset, 6049 tcr->OPT_length); 6050 nmp->b_wptr += tcr->OPT_length; 6051 } 6052 freemsg(mp); /* original mp freed */ 6053 mp = nmp; /* re-initialize original variables */ 6054 tcr = ntcr; 6055 } 6056 /* FALLTHRU */ 6057 6058 case sizeof (sin_t): 6059 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6060 sizeof (sin_t)); 6061 if (sin == NULL || !OK_32PTR((char *)sin)) { 6062 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6063 return; 6064 } 6065 if (tcp->tcp_family != AF_INET || 6066 sin->sin_family != AF_INET) { 6067 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6068 return; 6069 } 6070 if (sin->sin_port == 0) { 6071 tcp_err_ack(tcp, mp, TBADADDR, 0); 6072 return; 6073 } 6074 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6075 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6076 return; 6077 } 6078 6079 break; 6080 6081 case sizeof (sin6_t): 6082 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6083 sizeof (sin6_t)); 6084 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6085 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6086 return; 6087 } 6088 if (tcp->tcp_family != AF_INET6 || 6089 sin6->sin6_family != AF_INET6) { 6090 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6091 return; 6092 } 6093 if (sin6->sin6_port == 0) { 6094 tcp_err_ack(tcp, mp, TBADADDR, 0); 6095 return; 6096 } 6097 break; 6098 } 6099 /* 6100 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6101 * should key on their sequence number and cut them loose. 6102 */ 6103 6104 /* 6105 * If options passed in, feed it for verification and handling 6106 */ 6107 if (tcr->OPT_length != 0) { 6108 mblk_t *ok_mp; 6109 mblk_t *discon_mp; 6110 mblk_t *conn_opts_mp; 6111 int t_error, sys_error, do_disconnect; 6112 6113 conn_opts_mp = NULL; 6114 6115 if (tcp_conprim_opt_process(tcp, mp, 6116 &do_disconnect, &t_error, &sys_error) < 0) { 6117 if (do_disconnect) { 6118 ASSERT(t_error == 0 && sys_error == 0); 6119 discon_mp = mi_tpi_discon_ind(NULL, 6120 ECONNREFUSED, 0); 6121 if (!discon_mp) { 6122 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6123 TSYSERR, ENOMEM); 6124 return; 6125 } 6126 ok_mp = mi_tpi_ok_ack_alloc(mp); 6127 if (!ok_mp) { 6128 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6129 TSYSERR, ENOMEM); 6130 return; 6131 } 6132 qreply(q, ok_mp); 6133 qreply(q, discon_mp); /* no flush! */ 6134 } else { 6135 ASSERT(t_error != 0); 6136 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6137 sys_error); 6138 } 6139 return; 6140 } 6141 /* 6142 * Success in setting options, the mp option buffer represented 6143 * by OPT_length/offset has been potentially modified and 6144 * contains results of option processing. We copy it in 6145 * another mp to save it for potentially influencing returning 6146 * it in T_CONN_CONN. 6147 */ 6148 if (tcr->OPT_length != 0) { /* there are resulting options */ 6149 conn_opts_mp = copyb(mp); 6150 if (!conn_opts_mp) { 6151 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6152 TSYSERR, ENOMEM); 6153 return; 6154 } 6155 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6156 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6157 /* 6158 * Note: 6159 * These resulting option negotiation can include any 6160 * end-to-end negotiation options but there no such 6161 * thing (yet?) in our TCP/IP. 6162 */ 6163 } 6164 } 6165 6166 /* 6167 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6168 * make sure that the template IP header in the tcp structure is an 6169 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6170 * need to this before we call tcp_bindi() so that the port lookup 6171 * code will look for ports in the correct port space (IPv4 and 6172 * IPv6 have separate port spaces). 6173 */ 6174 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6175 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6176 int err = 0; 6177 6178 err = tcp_header_init_ipv4(tcp); 6179 if (err != 0) { 6180 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6181 goto connect_failed; 6182 } 6183 if (tcp->tcp_lport != 0) 6184 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6185 } 6186 6187 switch (tcp->tcp_state) { 6188 case TCPS_IDLE: 6189 /* 6190 * We support quick connect, refer to comments in 6191 * tcp_connect_*() 6192 */ 6193 /* FALLTHRU */ 6194 case TCPS_BOUND: 6195 case TCPS_LISTEN: 6196 if (tcp->tcp_family == AF_INET6) { 6197 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6198 tcp_connect_ipv6(tcp, mp, 6199 &sin6->sin6_addr, 6200 sin6->sin6_port, sin6->sin6_flowinfo, 6201 sin6->__sin6_src_id, sin6->sin6_scope_id); 6202 return; 6203 } 6204 /* 6205 * Destination adress is mapped IPv6 address. 6206 * Source bound address should be unspecified or 6207 * IPv6 mapped address as well. 6208 */ 6209 if (!IN6_IS_ADDR_UNSPECIFIED( 6210 &tcp->tcp_bound_source_v6) && 6211 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6212 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6213 EADDRNOTAVAIL); 6214 break; 6215 } 6216 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6217 dstport = sin6->sin6_port; 6218 srcid = sin6->__sin6_src_id; 6219 } else { 6220 dstaddrp = &sin->sin_addr.s_addr; 6221 dstport = sin->sin_port; 6222 srcid = 0; 6223 } 6224 6225 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6226 return; 6227 default: 6228 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6229 break; 6230 } 6231 /* 6232 * Note: Code below is the "failure" case 6233 */ 6234 /* return error ack and blow away saved option results if any */ 6235 connect_failed: 6236 if (mp != NULL) 6237 putnext(tcp->tcp_rq, mp); 6238 else { 6239 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6240 TSYSERR, ENOMEM); 6241 } 6242 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6243 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6244 } 6245 6246 /* 6247 * Handle connect to IPv4 destinations, including connections for AF_INET6 6248 * sockets connecting to IPv4 mapped IPv6 destinations. 6249 */ 6250 static void 6251 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6252 uint_t srcid) 6253 { 6254 tcph_t *tcph; 6255 mblk_t *mp1; 6256 ipaddr_t dstaddr = *dstaddrp; 6257 int32_t oldstate; 6258 uint16_t lport; 6259 6260 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6261 6262 /* Check for attempt to connect to INADDR_ANY */ 6263 if (dstaddr == INADDR_ANY) { 6264 /* 6265 * SunOS 4.x and 4.3 BSD allow an application 6266 * to connect a TCP socket to INADDR_ANY. 6267 * When they do this, the kernel picks the 6268 * address of one interface and uses it 6269 * instead. The kernel usually ends up 6270 * picking the address of the loopback 6271 * interface. This is an undocumented feature. 6272 * However, we provide the same thing here 6273 * in order to have source and binary 6274 * compatibility with SunOS 4.x. 6275 * Update the T_CONN_REQ (sin/sin6) since it is used to 6276 * generate the T_CONN_CON. 6277 */ 6278 dstaddr = htonl(INADDR_LOOPBACK); 6279 *dstaddrp = dstaddr; 6280 } 6281 6282 /* Handle __sin6_src_id if socket not bound to an IP address */ 6283 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6284 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6285 tcp->tcp_connp->conn_zoneid); 6286 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6287 tcp->tcp_ipha->ipha_src); 6288 } 6289 6290 /* 6291 * Don't let an endpoint connect to itself. Note that 6292 * the test here does not catch the case where the 6293 * source IP addr was left unspecified by the user. In 6294 * this case, the source addr is set in tcp_adapt_ire() 6295 * using the reply to the T_BIND message that we send 6296 * down to IP here and the check is repeated in tcp_rput_other. 6297 */ 6298 if (dstaddr == tcp->tcp_ipha->ipha_src && 6299 dstport == tcp->tcp_lport) { 6300 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6301 goto failed; 6302 } 6303 6304 tcp->tcp_ipha->ipha_dst = dstaddr; 6305 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6306 6307 /* 6308 * Massage a source route if any putting the first hop 6309 * in iph_dst. Compute a starting value for the checksum which 6310 * takes into account that the original iph_dst should be 6311 * included in the checksum but that ip will include the 6312 * first hop in the source route in the tcp checksum. 6313 */ 6314 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6315 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6316 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6317 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6318 if ((int)tcp->tcp_sum < 0) 6319 tcp->tcp_sum--; 6320 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6321 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6322 (tcp->tcp_sum >> 16)); 6323 tcph = tcp->tcp_tcph; 6324 *(uint16_t *)tcph->th_fport = dstport; 6325 tcp->tcp_fport = dstport; 6326 6327 oldstate = tcp->tcp_state; 6328 /* 6329 * At this point the remote destination address and remote port fields 6330 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6331 * have to see which state tcp was in so we can take apropriate action. 6332 */ 6333 if (oldstate == TCPS_IDLE) { 6334 /* 6335 * We support a quick connect capability here, allowing 6336 * clients to transition directly from IDLE to SYN_SENT 6337 * tcp_bindi will pick an unused port, insert the connection 6338 * in the bind hash and transition to BOUND state. 6339 */ 6340 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6341 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6342 B_FALSE, B_FALSE); 6343 if (lport == 0) { 6344 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6345 goto failed; 6346 } 6347 } 6348 tcp->tcp_state = TCPS_SYN_SENT; 6349 6350 /* 6351 * TODO: allow data with connect requests 6352 * by unlinking M_DATA trailers here and 6353 * linking them in behind the T_OK_ACK mblk. 6354 * The tcp_rput() bind ack handler would then 6355 * feed them to tcp_wput_data() rather than call 6356 * tcp_timer(). 6357 */ 6358 mp = mi_tpi_ok_ack_alloc(mp); 6359 if (!mp) { 6360 tcp->tcp_state = oldstate; 6361 goto failed; 6362 } 6363 if (tcp->tcp_family == AF_INET) { 6364 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6365 sizeof (ipa_conn_t)); 6366 } else { 6367 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6368 sizeof (ipa6_conn_t)); 6369 } 6370 if (mp1) { 6371 /* Hang onto the T_OK_ACK for later. */ 6372 linkb(mp1, mp); 6373 mblk_setcred(mp1, tcp->tcp_cred); 6374 if (tcp->tcp_family == AF_INET) 6375 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6376 else { 6377 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6378 &tcp->tcp_sticky_ipp); 6379 } 6380 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6381 tcp->tcp_active_open = 1; 6382 /* 6383 * If the bind cannot complete immediately 6384 * IP will arrange to call tcp_rput_other 6385 * when the bind completes. 6386 */ 6387 if (mp1 != NULL) 6388 tcp_rput_other(tcp, mp1); 6389 return; 6390 } 6391 /* Error case */ 6392 tcp->tcp_state = oldstate; 6393 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6394 6395 failed: 6396 /* return error ack and blow away saved option results if any */ 6397 if (mp != NULL) 6398 putnext(tcp->tcp_rq, mp); 6399 else { 6400 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6401 TSYSERR, ENOMEM); 6402 } 6403 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6404 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6405 6406 } 6407 6408 /* 6409 * Handle connect to IPv6 destinations. 6410 */ 6411 static void 6412 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6413 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6414 { 6415 tcph_t *tcph; 6416 mblk_t *mp1; 6417 ip6_rthdr_t *rth; 6418 int32_t oldstate; 6419 uint16_t lport; 6420 6421 ASSERT(tcp->tcp_family == AF_INET6); 6422 6423 /* 6424 * If we're here, it means that the destination address is a native 6425 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6426 * reason why it might not be IPv6 is if the socket was bound to an 6427 * IPv4-mapped IPv6 address. 6428 */ 6429 if (tcp->tcp_ipversion != IPV6_VERSION) { 6430 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6431 goto failed; 6432 } 6433 6434 /* 6435 * Interpret a zero destination to mean loopback. 6436 * Update the T_CONN_REQ (sin/sin6) since it is used to 6437 * generate the T_CONN_CON. 6438 */ 6439 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6440 *dstaddrp = ipv6_loopback; 6441 } 6442 6443 /* Handle __sin6_src_id if socket not bound to an IP address */ 6444 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6445 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6446 tcp->tcp_connp->conn_zoneid); 6447 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6448 } 6449 6450 /* 6451 * Take care of the scope_id now and add ip6i_t 6452 * if ip6i_t is not already allocated through TCP 6453 * sticky options. At this point tcp_ip6h does not 6454 * have dst info, thus use dstaddrp. 6455 */ 6456 if (scope_id != 0 && 6457 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6458 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6459 ip6i_t *ip6i; 6460 6461 ipp->ipp_ifindex = scope_id; 6462 ip6i = (ip6i_t *)tcp->tcp_iphc; 6463 6464 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6465 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6466 /* Already allocated */ 6467 ip6i->ip6i_flags |= IP6I_IFINDEX; 6468 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6469 ipp->ipp_fields |= IPPF_SCOPE_ID; 6470 } else { 6471 int reterr; 6472 6473 ipp->ipp_fields |= IPPF_SCOPE_ID; 6474 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6475 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6476 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6477 if (reterr != 0) 6478 goto failed; 6479 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6480 } 6481 } 6482 6483 /* 6484 * Don't let an endpoint connect to itself. Note that 6485 * the test here does not catch the case where the 6486 * source IP addr was left unspecified by the user. In 6487 * this case, the source addr is set in tcp_adapt_ire() 6488 * using the reply to the T_BIND message that we send 6489 * down to IP here and the check is repeated in tcp_rput_other. 6490 */ 6491 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6492 (dstport == tcp->tcp_lport)) { 6493 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6494 goto failed; 6495 } 6496 6497 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6498 tcp->tcp_remote_v6 = *dstaddrp; 6499 tcp->tcp_ip6h->ip6_vcf = 6500 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6501 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6502 6503 6504 /* 6505 * Massage a routing header (if present) putting the first hop 6506 * in ip6_dst. Compute a starting value for the checksum which 6507 * takes into account that the original ip6_dst should be 6508 * included in the checksum but that ip will include the 6509 * first hop in the source route in the tcp checksum. 6510 */ 6511 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6512 if (rth != NULL) { 6513 6514 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6515 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6516 (tcp->tcp_sum >> 16)); 6517 } else { 6518 tcp->tcp_sum = 0; 6519 } 6520 6521 tcph = tcp->tcp_tcph; 6522 *(uint16_t *)tcph->th_fport = dstport; 6523 tcp->tcp_fport = dstport; 6524 6525 oldstate = tcp->tcp_state; 6526 /* 6527 * At this point the remote destination address and remote port fields 6528 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6529 * have to see which state tcp was in so we can take apropriate action. 6530 */ 6531 if (oldstate == TCPS_IDLE) { 6532 /* 6533 * We support a quick connect capability here, allowing 6534 * clients to transition directly from IDLE to SYN_SENT 6535 * tcp_bindi will pick an unused port, insert the connection 6536 * in the bind hash and transition to BOUND state. 6537 */ 6538 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6539 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6540 B_FALSE, B_FALSE); 6541 if (lport == 0) { 6542 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6543 goto failed; 6544 } 6545 } 6546 tcp->tcp_state = TCPS_SYN_SENT; 6547 /* 6548 * TODO: allow data with connect requests 6549 * by unlinking M_DATA trailers here and 6550 * linking them in behind the T_OK_ACK mblk. 6551 * The tcp_rput() bind ack handler would then 6552 * feed them to tcp_wput_data() rather than call 6553 * tcp_timer(). 6554 */ 6555 mp = mi_tpi_ok_ack_alloc(mp); 6556 if (!mp) { 6557 tcp->tcp_state = oldstate; 6558 goto failed; 6559 } 6560 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6561 if (mp1) { 6562 /* Hang onto the T_OK_ACK for later. */ 6563 linkb(mp1, mp); 6564 mblk_setcred(mp1, tcp->tcp_cred); 6565 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6566 &tcp->tcp_sticky_ipp); 6567 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6568 tcp->tcp_active_open = 1; 6569 /* ip_bind_v6() may return ACK or ERROR */ 6570 if (mp1 != NULL) 6571 tcp_rput_other(tcp, mp1); 6572 return; 6573 } 6574 /* Error case */ 6575 tcp->tcp_state = oldstate; 6576 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6577 6578 failed: 6579 /* return error ack and blow away saved option results if any */ 6580 if (mp != NULL) 6581 putnext(tcp->tcp_rq, mp); 6582 else { 6583 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6584 TSYSERR, ENOMEM); 6585 } 6586 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6587 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6588 } 6589 6590 /* 6591 * We need a stream q for detached closing tcp connections 6592 * to use. Our client hereby indicates that this q is the 6593 * one to use. 6594 */ 6595 static void 6596 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6597 { 6598 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6599 queue_t *q = tcp->tcp_wq; 6600 6601 mp->b_datap->db_type = M_IOCACK; 6602 iocp->ioc_count = 0; 6603 mutex_enter(&tcp_g_q_lock); 6604 if (tcp_g_q != NULL) { 6605 mutex_exit(&tcp_g_q_lock); 6606 iocp->ioc_error = EALREADY; 6607 } else { 6608 mblk_t *mp1; 6609 6610 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6611 if (mp1 == NULL) { 6612 mutex_exit(&tcp_g_q_lock); 6613 iocp->ioc_error = ENOMEM; 6614 } else { 6615 tcp_g_q = tcp->tcp_rq; 6616 mutex_exit(&tcp_g_q_lock); 6617 iocp->ioc_error = 0; 6618 iocp->ioc_rval = 0; 6619 /* 6620 * We are passing tcp_sticky_ipp as NULL 6621 * as it is not useful for tcp_default queue 6622 */ 6623 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6624 if (mp1 != NULL) 6625 tcp_rput_other(tcp, mp1); 6626 } 6627 } 6628 qreply(q, mp); 6629 } 6630 6631 /* 6632 * Our client hereby directs us to reject the connection request 6633 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6634 * of sending the appropriate RST, not an ICMP error. 6635 */ 6636 static void 6637 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6638 { 6639 tcp_t *ltcp = NULL; 6640 t_scalar_t seqnum; 6641 conn_t *connp; 6642 6643 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6644 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6645 tcp_err_ack(tcp, mp, TPROTO, 0); 6646 return; 6647 } 6648 6649 /* 6650 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6651 * when the stream is in BOUND state. Do not send a reset, 6652 * since the destination IP address is not valid, and it can 6653 * be the initialized value of all zeros (broadcast address). 6654 * 6655 * If TCP has sent down a bind request to IP and has not 6656 * received the reply, reject the request. Otherwise, TCP 6657 * will be confused. 6658 */ 6659 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6660 if (tcp->tcp_debug) { 6661 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6662 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6663 } 6664 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6665 return; 6666 } 6667 6668 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6669 6670 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6671 6672 /* 6673 * According to TPI, for non-listeners, ignore seqnum 6674 * and disconnect. 6675 * Following interpretation of -1 seqnum is historical 6676 * and implied TPI ? (TPI only states that for T_CONN_IND, 6677 * a valid seqnum should not be -1). 6678 * 6679 * -1 means disconnect everything 6680 * regardless even on a listener. 6681 */ 6682 6683 int old_state = tcp->tcp_state; 6684 6685 /* 6686 * The connection can't be on the tcp_time_wait_head list 6687 * since it is not detached. 6688 */ 6689 ASSERT(tcp->tcp_time_wait_next == NULL); 6690 ASSERT(tcp->tcp_time_wait_prev == NULL); 6691 ASSERT(tcp->tcp_time_wait_expire == 0); 6692 ltcp = NULL; 6693 /* 6694 * If it used to be a listener, check to make sure no one else 6695 * has taken the port before switching back to LISTEN state. 6696 */ 6697 if (tcp->tcp_ipversion == IPV4_VERSION) { 6698 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6699 tcp->tcp_ipha->ipha_src, 6700 tcp->tcp_connp->conn_zoneid); 6701 if (connp != NULL) 6702 ltcp = connp->conn_tcp; 6703 } else { 6704 /* Allow tcp_bound_if listeners? */ 6705 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6706 &tcp->tcp_ip6h->ip6_src, 0, 6707 tcp->tcp_connp->conn_zoneid); 6708 if (connp != NULL) 6709 ltcp = connp->conn_tcp; 6710 } 6711 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6712 tcp->tcp_state = TCPS_LISTEN; 6713 } else if (old_state > TCPS_BOUND) { 6714 tcp->tcp_conn_req_max = 0; 6715 tcp->tcp_state = TCPS_BOUND; 6716 } 6717 if (ltcp != NULL) 6718 CONN_DEC_REF(ltcp->tcp_connp); 6719 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6720 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6721 } else if (old_state == TCPS_ESTABLISHED || 6722 old_state == TCPS_CLOSE_WAIT) { 6723 BUMP_MIB(&tcp_mib, tcpEstabResets); 6724 } 6725 6726 if (tcp->tcp_fused) 6727 tcp_unfuse(tcp); 6728 6729 mutex_enter(&tcp->tcp_eager_lock); 6730 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6731 (tcp->tcp_conn_req_cnt_q != 0)) { 6732 tcp_eager_cleanup(tcp, 0); 6733 } 6734 mutex_exit(&tcp->tcp_eager_lock); 6735 6736 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6737 tcp->tcp_rnxt, TH_RST | TH_ACK); 6738 6739 tcp_reinit(tcp); 6740 6741 if (old_state >= TCPS_ESTABLISHED) { 6742 /* Send M_FLUSH according to TPI */ 6743 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6744 } 6745 mp = mi_tpi_ok_ack_alloc(mp); 6746 if (mp) 6747 putnext(tcp->tcp_rq, mp); 6748 return; 6749 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6750 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6751 return; 6752 } 6753 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6754 /* Send M_FLUSH according to TPI */ 6755 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6756 } 6757 mp = mi_tpi_ok_ack_alloc(mp); 6758 if (mp) 6759 putnext(tcp->tcp_rq, mp); 6760 } 6761 6762 /* 6763 * Diagnostic routine used to return a string associated with the tcp state. 6764 * Note that if the caller does not supply a buffer, it will use an internal 6765 * static string. This means that if multiple threads call this function at 6766 * the same time, output can be corrupted... Note also that this function 6767 * does not check the size of the supplied buffer. The caller has to make 6768 * sure that it is big enough. 6769 */ 6770 static char * 6771 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6772 { 6773 char buf1[30]; 6774 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6775 char *buf; 6776 char *cp; 6777 in6_addr_t local, remote; 6778 char local_addrbuf[INET6_ADDRSTRLEN]; 6779 char remote_addrbuf[INET6_ADDRSTRLEN]; 6780 6781 if (sup_buf != NULL) 6782 buf = sup_buf; 6783 else 6784 buf = priv_buf; 6785 6786 if (tcp == NULL) 6787 return ("NULL_TCP"); 6788 switch (tcp->tcp_state) { 6789 case TCPS_CLOSED: 6790 cp = "TCP_CLOSED"; 6791 break; 6792 case TCPS_IDLE: 6793 cp = "TCP_IDLE"; 6794 break; 6795 case TCPS_BOUND: 6796 cp = "TCP_BOUND"; 6797 break; 6798 case TCPS_LISTEN: 6799 cp = "TCP_LISTEN"; 6800 break; 6801 case TCPS_SYN_SENT: 6802 cp = "TCP_SYN_SENT"; 6803 break; 6804 case TCPS_SYN_RCVD: 6805 cp = "TCP_SYN_RCVD"; 6806 break; 6807 case TCPS_ESTABLISHED: 6808 cp = "TCP_ESTABLISHED"; 6809 break; 6810 case TCPS_CLOSE_WAIT: 6811 cp = "TCP_CLOSE_WAIT"; 6812 break; 6813 case TCPS_FIN_WAIT_1: 6814 cp = "TCP_FIN_WAIT_1"; 6815 break; 6816 case TCPS_CLOSING: 6817 cp = "TCP_CLOSING"; 6818 break; 6819 case TCPS_LAST_ACK: 6820 cp = "TCP_LAST_ACK"; 6821 break; 6822 case TCPS_FIN_WAIT_2: 6823 cp = "TCP_FIN_WAIT_2"; 6824 break; 6825 case TCPS_TIME_WAIT: 6826 cp = "TCP_TIME_WAIT"; 6827 break; 6828 default: 6829 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6830 cp = buf1; 6831 break; 6832 } 6833 switch (format) { 6834 case DISP_ADDR_AND_PORT: 6835 if (tcp->tcp_ipversion == IPV4_VERSION) { 6836 /* 6837 * Note that we use the remote address in the tcp_b 6838 * structure. This means that it will print out 6839 * the real destination address, not the next hop's 6840 * address if source routing is used. 6841 */ 6842 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6843 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6844 6845 } else { 6846 local = tcp->tcp_ip_src_v6; 6847 remote = tcp->tcp_remote_v6; 6848 } 6849 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6850 sizeof (local_addrbuf)); 6851 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6852 sizeof (remote_addrbuf)); 6853 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6854 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6855 ntohs(tcp->tcp_fport), cp); 6856 break; 6857 case DISP_PORT_ONLY: 6858 default: 6859 (void) mi_sprintf(buf, "[%u, %u] %s", 6860 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6861 break; 6862 } 6863 6864 return (buf); 6865 } 6866 6867 /* 6868 * Called via squeue to get on to eager's perimeter to send a 6869 * TH_RST. The listener wants the eager to disappear either 6870 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 6871 * being called. 6872 */ 6873 /* ARGSUSED */ 6874 void 6875 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6876 { 6877 conn_t *econnp = (conn_t *)arg; 6878 tcp_t *eager = econnp->conn_tcp; 6879 tcp_t *listener = eager->tcp_listener; 6880 6881 /* 6882 * We could be called because listener is closing. Since 6883 * the eager is using listener's queue's, its not safe. 6884 * Better use the default queue just to send the TH_RST 6885 * out. 6886 */ 6887 eager->tcp_rq = tcp_g_q; 6888 eager->tcp_wq = WR(tcp_g_q); 6889 6890 if (eager->tcp_state > TCPS_LISTEN) { 6891 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6892 eager, eager->tcp_snxt, 0, TH_RST); 6893 } 6894 6895 /* We are here because listener wants this eager gone */ 6896 if (listener != NULL) { 6897 mutex_enter(&listener->tcp_eager_lock); 6898 tcp_eager_unlink(eager); 6899 if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { 6900 /* 6901 * The eager has sent a conn_ind up to the 6902 * listener but listener decides to close 6903 * instead. We need to drop the extra ref 6904 * placed on eager in tcp_rput_data() before 6905 * sending the conn_ind to listener. 6906 */ 6907 CONN_DEC_REF(econnp); 6908 } 6909 mutex_exit(&listener->tcp_eager_lock); 6910 CONN_DEC_REF(listener->tcp_connp); 6911 } 6912 6913 if (eager->tcp_state > TCPS_BOUND) 6914 tcp_close_detached(eager); 6915 } 6916 6917 /* 6918 * Reset any eager connection hanging off this listener marked 6919 * with 'seqnum' and then reclaim it's resources. 6920 */ 6921 static boolean_t 6922 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6923 { 6924 tcp_t *eager; 6925 mblk_t *mp; 6926 6927 TCP_STAT(tcp_eager_blowoff_calls); 6928 eager = listener; 6929 mutex_enter(&listener->tcp_eager_lock); 6930 do { 6931 eager = eager->tcp_eager_next_q; 6932 if (eager == NULL) { 6933 mutex_exit(&listener->tcp_eager_lock); 6934 return (B_FALSE); 6935 } 6936 } while (eager->tcp_conn_req_seqnum != seqnum); 6937 CONN_INC_REF(eager->tcp_connp); 6938 mutex_exit(&listener->tcp_eager_lock); 6939 mp = &eager->tcp_closemp; 6940 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6941 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 6942 return (B_TRUE); 6943 } 6944 6945 /* 6946 * Reset any eager connection hanging off this listener 6947 * and then reclaim it's resources. 6948 */ 6949 static void 6950 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6951 { 6952 tcp_t *eager; 6953 mblk_t *mp; 6954 6955 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6956 6957 if (!q0_only) { 6958 /* First cleanup q */ 6959 TCP_STAT(tcp_eager_blowoff_q); 6960 eager = listener->tcp_eager_next_q; 6961 while (eager != NULL) { 6962 CONN_INC_REF(eager->tcp_connp); 6963 mp = &eager->tcp_closemp; 6964 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6965 tcp_eager_kill, eager->tcp_connp, 6966 SQTAG_TCP_EAGER_CLEANUP); 6967 eager = eager->tcp_eager_next_q; 6968 } 6969 } 6970 /* Then cleanup q0 */ 6971 TCP_STAT(tcp_eager_blowoff_q0); 6972 eager = listener->tcp_eager_next_q0; 6973 while (eager != listener) { 6974 CONN_INC_REF(eager->tcp_connp); 6975 mp = &eager->tcp_closemp; 6976 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6977 tcp_eager_kill, eager->tcp_connp, 6978 SQTAG_TCP_EAGER_CLEANUP_Q0); 6979 eager = eager->tcp_eager_next_q0; 6980 } 6981 } 6982 6983 /* 6984 * If we are an eager connection hanging off a listener that hasn't 6985 * formally accepted the connection yet, get off his list and blow off 6986 * any data that we have accumulated. 6987 */ 6988 static void 6989 tcp_eager_unlink(tcp_t *tcp) 6990 { 6991 tcp_t *listener = tcp->tcp_listener; 6992 6993 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6994 ASSERT(listener != NULL); 6995 if (tcp->tcp_eager_next_q0 != NULL) { 6996 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6997 6998 /* Remove the eager tcp from q0 */ 6999 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7000 tcp->tcp_eager_prev_q0; 7001 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7002 tcp->tcp_eager_next_q0; 7003 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7004 listener->tcp_conn_req_cnt_q0--; 7005 7006 tcp->tcp_eager_next_q0 = NULL; 7007 tcp->tcp_eager_prev_q0 = NULL; 7008 7009 if (tcp->tcp_syn_rcvd_timeout != 0) { 7010 /* we have timed out before */ 7011 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7012 listener->tcp_syn_rcvd_timeout--; 7013 } 7014 } else { 7015 tcp_t **tcpp = &listener->tcp_eager_next_q; 7016 tcp_t *prev = NULL; 7017 7018 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7019 if (tcpp[0] == tcp) { 7020 if (listener->tcp_eager_last_q == tcp) { 7021 /* 7022 * If we are unlinking the last 7023 * element on the list, adjust 7024 * tail pointer. Set tail pointer 7025 * to nil when list is empty. 7026 */ 7027 ASSERT(tcp->tcp_eager_next_q == NULL); 7028 if (listener->tcp_eager_last_q == 7029 listener->tcp_eager_next_q) { 7030 listener->tcp_eager_last_q = 7031 NULL; 7032 } else { 7033 /* 7034 * We won't get here if there 7035 * is only one eager in the 7036 * list. 7037 */ 7038 ASSERT(prev != NULL); 7039 listener->tcp_eager_last_q = 7040 prev; 7041 } 7042 } 7043 tcpp[0] = tcp->tcp_eager_next_q; 7044 tcp->tcp_eager_next_q = NULL; 7045 tcp->tcp_eager_last_q = NULL; 7046 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7047 listener->tcp_conn_req_cnt_q--; 7048 break; 7049 } 7050 prev = tcpp[0]; 7051 } 7052 } 7053 tcp->tcp_listener = NULL; 7054 } 7055 7056 /* Shorthand to generate and send TPI error acks to our client */ 7057 static void 7058 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7059 { 7060 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7061 putnext(tcp->tcp_rq, mp); 7062 } 7063 7064 /* Shorthand to generate and send TPI error acks to our client */ 7065 static void 7066 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7067 int t_error, int sys_error) 7068 { 7069 struct T_error_ack *teackp; 7070 7071 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7072 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7073 teackp = (struct T_error_ack *)mp->b_rptr; 7074 teackp->ERROR_prim = primitive; 7075 teackp->TLI_error = t_error; 7076 teackp->UNIX_error = sys_error; 7077 putnext(tcp->tcp_rq, mp); 7078 } 7079 } 7080 7081 /* 7082 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7083 * but instead the code relies on: 7084 * - the fact that the address of the array and its size never changes 7085 * - the atomic assignment of the elements of the array 7086 */ 7087 /* ARGSUSED */ 7088 static int 7089 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7090 { 7091 int i; 7092 7093 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7094 if (tcp_g_epriv_ports[i] != 0) 7095 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 7096 } 7097 return (0); 7098 } 7099 7100 /* 7101 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7102 * threads from changing it at the same time. 7103 */ 7104 /* ARGSUSED */ 7105 static int 7106 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7107 cred_t *cr) 7108 { 7109 long new_value; 7110 int i; 7111 7112 /* 7113 * Fail the request if the new value does not lie within the 7114 * port number limits. 7115 */ 7116 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7117 new_value <= 0 || new_value >= 65536) { 7118 return (EINVAL); 7119 } 7120 7121 mutex_enter(&tcp_epriv_port_lock); 7122 /* Check if the value is already in the list */ 7123 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7124 if (new_value == tcp_g_epriv_ports[i]) { 7125 mutex_exit(&tcp_epriv_port_lock); 7126 return (EEXIST); 7127 } 7128 } 7129 /* Find an empty slot */ 7130 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7131 if (tcp_g_epriv_ports[i] == 0) 7132 break; 7133 } 7134 if (i == tcp_g_num_epriv_ports) { 7135 mutex_exit(&tcp_epriv_port_lock); 7136 return (EOVERFLOW); 7137 } 7138 /* Set the new value */ 7139 tcp_g_epriv_ports[i] = (uint16_t)new_value; 7140 mutex_exit(&tcp_epriv_port_lock); 7141 return (0); 7142 } 7143 7144 /* 7145 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7146 * threads from changing it at the same time. 7147 */ 7148 /* ARGSUSED */ 7149 static int 7150 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7151 cred_t *cr) 7152 { 7153 long new_value; 7154 int i; 7155 7156 /* 7157 * Fail the request if the new value does not lie within the 7158 * port number limits. 7159 */ 7160 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7161 new_value >= 65536) { 7162 return (EINVAL); 7163 } 7164 7165 mutex_enter(&tcp_epriv_port_lock); 7166 /* Check that the value is already in the list */ 7167 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7168 if (tcp_g_epriv_ports[i] == new_value) 7169 break; 7170 } 7171 if (i == tcp_g_num_epriv_ports) { 7172 mutex_exit(&tcp_epriv_port_lock); 7173 return (ESRCH); 7174 } 7175 /* Clear the value */ 7176 tcp_g_epriv_ports[i] = 0; 7177 mutex_exit(&tcp_epriv_port_lock); 7178 return (0); 7179 } 7180 7181 /* Return the TPI/TLI equivalent of our current tcp_state */ 7182 static int 7183 tcp_tpistate(tcp_t *tcp) 7184 { 7185 switch (tcp->tcp_state) { 7186 case TCPS_IDLE: 7187 return (TS_UNBND); 7188 case TCPS_LISTEN: 7189 /* 7190 * Return whether there are outstanding T_CONN_IND waiting 7191 * for the matching T_CONN_RES. Therefore don't count q0. 7192 */ 7193 if (tcp->tcp_conn_req_cnt_q > 0) 7194 return (TS_WRES_CIND); 7195 else 7196 return (TS_IDLE); 7197 case TCPS_BOUND: 7198 return (TS_IDLE); 7199 case TCPS_SYN_SENT: 7200 return (TS_WCON_CREQ); 7201 case TCPS_SYN_RCVD: 7202 /* 7203 * Note: assumption: this has to the active open SYN_RCVD. 7204 * The passive instance is detached in SYN_RCVD stage of 7205 * incoming connection processing so we cannot get request 7206 * for T_info_ack on it. 7207 */ 7208 return (TS_WACK_CRES); 7209 case TCPS_ESTABLISHED: 7210 return (TS_DATA_XFER); 7211 case TCPS_CLOSE_WAIT: 7212 return (TS_WREQ_ORDREL); 7213 case TCPS_FIN_WAIT_1: 7214 return (TS_WIND_ORDREL); 7215 case TCPS_FIN_WAIT_2: 7216 return (TS_WIND_ORDREL); 7217 7218 case TCPS_CLOSING: 7219 case TCPS_LAST_ACK: 7220 case TCPS_TIME_WAIT: 7221 case TCPS_CLOSED: 7222 /* 7223 * Following TS_WACK_DREQ7 is a rendition of "not 7224 * yet TS_IDLE" TPI state. There is no best match to any 7225 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7226 * choose a value chosen that will map to TLI/XTI level 7227 * state of TSTATECHNG (state is process of changing) which 7228 * captures what this dummy state represents. 7229 */ 7230 return (TS_WACK_DREQ7); 7231 default: 7232 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7233 tcp->tcp_state, tcp_display(tcp, NULL, 7234 DISP_PORT_ONLY)); 7235 return (TS_UNBND); 7236 } 7237 } 7238 7239 static void 7240 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7241 { 7242 if (tcp->tcp_family == AF_INET6) 7243 *tia = tcp_g_t_info_ack_v6; 7244 else 7245 *tia = tcp_g_t_info_ack; 7246 tia->CURRENT_state = tcp_tpistate(tcp); 7247 tia->OPT_size = tcp_max_optsize; 7248 if (tcp->tcp_mss == 0) { 7249 /* Not yet set - tcp_open does not set mss */ 7250 if (tcp->tcp_ipversion == IPV4_VERSION) 7251 tia->TIDU_size = tcp_mss_def_ipv4; 7252 else 7253 tia->TIDU_size = tcp_mss_def_ipv6; 7254 } else { 7255 tia->TIDU_size = tcp->tcp_mss; 7256 } 7257 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7258 } 7259 7260 /* 7261 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7262 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7263 * tcp_g_t_info_ack. The current state of the stream is copied from 7264 * tcp_state. 7265 */ 7266 static void 7267 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7268 { 7269 t_uscalar_t cap_bits1; 7270 struct T_capability_ack *tcap; 7271 7272 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7273 freemsg(mp); 7274 return; 7275 } 7276 7277 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7278 7279 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7280 mp->b_datap->db_type, T_CAPABILITY_ACK); 7281 if (mp == NULL) 7282 return; 7283 7284 tcap = (struct T_capability_ack *)mp->b_rptr; 7285 tcap->CAP_bits1 = 0; 7286 7287 if (cap_bits1 & TC1_INFO) { 7288 tcp_copy_info(&tcap->INFO_ack, tcp); 7289 tcap->CAP_bits1 |= TC1_INFO; 7290 } 7291 7292 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7293 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7294 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7295 } 7296 7297 putnext(tcp->tcp_rq, mp); 7298 } 7299 7300 /* 7301 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7302 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7303 * The current state of the stream is copied from tcp_state. 7304 */ 7305 static void 7306 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7307 { 7308 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7309 T_INFO_ACK); 7310 if (!mp) { 7311 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7312 return; 7313 } 7314 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7315 putnext(tcp->tcp_rq, mp); 7316 } 7317 7318 /* Respond to the TPI addr request */ 7319 static void 7320 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7321 { 7322 sin_t *sin; 7323 mblk_t *ackmp; 7324 struct T_addr_ack *taa; 7325 7326 /* Make it large enough for worst case */ 7327 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7328 2 * sizeof (sin6_t), 1); 7329 if (ackmp == NULL) { 7330 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7331 return; 7332 } 7333 7334 if (tcp->tcp_ipversion == IPV6_VERSION) { 7335 tcp_addr_req_ipv6(tcp, ackmp); 7336 return; 7337 } 7338 taa = (struct T_addr_ack *)ackmp->b_rptr; 7339 7340 bzero(taa, sizeof (struct T_addr_ack)); 7341 ackmp->b_wptr = (uchar_t *)&taa[1]; 7342 7343 taa->PRIM_type = T_ADDR_ACK; 7344 ackmp->b_datap->db_type = M_PCPROTO; 7345 7346 /* 7347 * Note: Following code assumes 32 bit alignment of basic 7348 * data structures like sin_t and struct T_addr_ack. 7349 */ 7350 if (tcp->tcp_state >= TCPS_BOUND) { 7351 /* 7352 * Fill in local address 7353 */ 7354 taa->LOCADDR_length = sizeof (sin_t); 7355 taa->LOCADDR_offset = sizeof (*taa); 7356 7357 sin = (sin_t *)&taa[1]; 7358 7359 /* Fill zeroes and then intialize non-zero fields */ 7360 *sin = sin_null; 7361 7362 sin->sin_family = AF_INET; 7363 7364 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7365 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7366 7367 ackmp->b_wptr = (uchar_t *)&sin[1]; 7368 7369 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7370 /* 7371 * Fill in Remote address 7372 */ 7373 taa->REMADDR_length = sizeof (sin_t); 7374 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7375 taa->LOCADDR_length); 7376 7377 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7378 *sin = sin_null; 7379 sin->sin_family = AF_INET; 7380 sin->sin_addr.s_addr = tcp->tcp_remote; 7381 sin->sin_port = tcp->tcp_fport; 7382 7383 ackmp->b_wptr = (uchar_t *)&sin[1]; 7384 } 7385 } 7386 putnext(tcp->tcp_rq, ackmp); 7387 } 7388 7389 /* Assumes that tcp_addr_req gets enough space and alignment */ 7390 static void 7391 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7392 { 7393 sin6_t *sin6; 7394 struct T_addr_ack *taa; 7395 7396 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7397 ASSERT(OK_32PTR(ackmp->b_rptr)); 7398 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7399 2 * sizeof (sin6_t)); 7400 7401 taa = (struct T_addr_ack *)ackmp->b_rptr; 7402 7403 bzero(taa, sizeof (struct T_addr_ack)); 7404 ackmp->b_wptr = (uchar_t *)&taa[1]; 7405 7406 taa->PRIM_type = T_ADDR_ACK; 7407 ackmp->b_datap->db_type = M_PCPROTO; 7408 7409 /* 7410 * Note: Following code assumes 32 bit alignment of basic 7411 * data structures like sin6_t and struct T_addr_ack. 7412 */ 7413 if (tcp->tcp_state >= TCPS_BOUND) { 7414 /* 7415 * Fill in local address 7416 */ 7417 taa->LOCADDR_length = sizeof (sin6_t); 7418 taa->LOCADDR_offset = sizeof (*taa); 7419 7420 sin6 = (sin6_t *)&taa[1]; 7421 *sin6 = sin6_null; 7422 7423 sin6->sin6_family = AF_INET6; 7424 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7425 sin6->sin6_port = tcp->tcp_lport; 7426 7427 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7428 7429 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7430 /* 7431 * Fill in Remote address 7432 */ 7433 taa->REMADDR_length = sizeof (sin6_t); 7434 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7435 taa->LOCADDR_length); 7436 7437 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7438 *sin6 = sin6_null; 7439 sin6->sin6_family = AF_INET6; 7440 sin6->sin6_flowinfo = 7441 tcp->tcp_ip6h->ip6_vcf & 7442 ~IPV6_VERS_AND_FLOW_MASK; 7443 sin6->sin6_addr = tcp->tcp_remote_v6; 7444 sin6->sin6_port = tcp->tcp_fport; 7445 7446 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7447 } 7448 } 7449 putnext(tcp->tcp_rq, ackmp); 7450 } 7451 7452 /* 7453 * Handle reinitialization of a tcp structure. 7454 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7455 */ 7456 static void 7457 tcp_reinit(tcp_t *tcp) 7458 { 7459 mblk_t *mp; 7460 int err; 7461 7462 TCP_STAT(tcp_reinit_calls); 7463 7464 /* tcp_reinit should never be called for detached tcp_t's */ 7465 ASSERT(tcp->tcp_listener == NULL); 7466 ASSERT((tcp->tcp_family == AF_INET && 7467 tcp->tcp_ipversion == IPV4_VERSION) || 7468 (tcp->tcp_family == AF_INET6 && 7469 (tcp->tcp_ipversion == IPV4_VERSION || 7470 tcp->tcp_ipversion == IPV6_VERSION))); 7471 7472 /* Cancel outstanding timers */ 7473 tcp_timers_stop(tcp); 7474 7475 /* 7476 * Reset everything in the state vector, after updating global 7477 * MIB data from instance counters. 7478 */ 7479 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 7480 tcp->tcp_ibsegs = 0; 7481 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 7482 tcp->tcp_obsegs = 0; 7483 7484 tcp_close_mpp(&tcp->tcp_xmit_head); 7485 if (tcp->tcp_snd_zcopy_aware) 7486 tcp_zcopy_notify(tcp); 7487 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7488 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7489 if (tcp->tcp_flow_stopped && 7490 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7491 tcp_clrqfull(tcp); 7492 } 7493 tcp_close_mpp(&tcp->tcp_reass_head); 7494 tcp->tcp_reass_tail = NULL; 7495 if (tcp->tcp_rcv_list != NULL) { 7496 /* Free b_next chain */ 7497 tcp_close_mpp(&tcp->tcp_rcv_list); 7498 tcp->tcp_rcv_last_head = NULL; 7499 tcp->tcp_rcv_last_tail = NULL; 7500 tcp->tcp_rcv_cnt = 0; 7501 } 7502 tcp->tcp_rcv_last_tail = NULL; 7503 7504 if ((mp = tcp->tcp_urp_mp) != NULL) { 7505 freemsg(mp); 7506 tcp->tcp_urp_mp = NULL; 7507 } 7508 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7509 freemsg(mp); 7510 tcp->tcp_urp_mark_mp = NULL; 7511 } 7512 if (tcp->tcp_fused_sigurg_mp != NULL) { 7513 freeb(tcp->tcp_fused_sigurg_mp); 7514 tcp->tcp_fused_sigurg_mp = NULL; 7515 } 7516 7517 /* 7518 * Following is a union with two members which are 7519 * identical types and size so the following cleanup 7520 * is enough. 7521 */ 7522 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7523 7524 CL_INET_DISCONNECT(tcp); 7525 7526 /* 7527 * The connection can't be on the tcp_time_wait_head list 7528 * since it is not detached. 7529 */ 7530 ASSERT(tcp->tcp_time_wait_next == NULL); 7531 ASSERT(tcp->tcp_time_wait_prev == NULL); 7532 ASSERT(tcp->tcp_time_wait_expire == 0); 7533 7534 if (tcp->tcp_kssl_pending) { 7535 tcp->tcp_kssl_pending = B_FALSE; 7536 7537 /* Don't reset if the initialized by bind. */ 7538 if (tcp->tcp_kssl_ent != NULL) { 7539 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7540 KSSL_NO_PROXY); 7541 } 7542 } 7543 if (tcp->tcp_kssl_ctx != NULL) { 7544 kssl_release_ctx(tcp->tcp_kssl_ctx); 7545 tcp->tcp_kssl_ctx = NULL; 7546 } 7547 7548 /* 7549 * Reset/preserve other values 7550 */ 7551 tcp_reinit_values(tcp); 7552 ipcl_hash_remove(tcp->tcp_connp); 7553 conn_delete_ire(tcp->tcp_connp, NULL); 7554 7555 if (tcp->tcp_conn_req_max != 0) { 7556 /* 7557 * This is the case when a TLI program uses the same 7558 * transport end point to accept a connection. This 7559 * makes the TCP both a listener and acceptor. When 7560 * this connection is closed, we need to set the state 7561 * back to TCPS_LISTEN. Make sure that the eager list 7562 * is reinitialized. 7563 * 7564 * Note that this stream is still bound to the four 7565 * tuples of the previous connection in IP. If a new 7566 * SYN with different foreign address comes in, IP will 7567 * not find it and will send it to the global queue. In 7568 * the global queue, TCP will do a tcp_lookup_listener() 7569 * to find this stream. This works because this stream 7570 * is only removed from connected hash. 7571 * 7572 */ 7573 tcp->tcp_state = TCPS_LISTEN; 7574 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7575 tcp->tcp_connp->conn_recv = tcp_conn_request; 7576 if (tcp->tcp_family == AF_INET6) { 7577 ASSERT(tcp->tcp_connp->conn_af_isv6); 7578 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7579 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7580 } else { 7581 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7582 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7583 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7584 } 7585 } else { 7586 tcp->tcp_state = TCPS_BOUND; 7587 } 7588 7589 /* 7590 * Initialize to default values 7591 * Can't fail since enough header template space already allocated 7592 * at open(). 7593 */ 7594 err = tcp_init_values(tcp); 7595 ASSERT(err == 0); 7596 /* Restore state in tcp_tcph */ 7597 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7598 if (tcp->tcp_ipversion == IPV4_VERSION) 7599 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7600 else 7601 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7602 /* 7603 * Copy of the src addr. in tcp_t is needed in tcp_t 7604 * since the lookup funcs can only lookup on tcp_t 7605 */ 7606 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7607 7608 ASSERT(tcp->tcp_ptpbhn != NULL); 7609 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7610 tcp->tcp_rwnd = tcp_recv_hiwat; 7611 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7612 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7613 } 7614 7615 /* 7616 * Force values to zero that need be zero. 7617 * Do not touch values asociated with the BOUND or LISTEN state 7618 * since the connection will end up in that state after the reinit. 7619 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7620 * structure! 7621 */ 7622 static void 7623 tcp_reinit_values(tcp) 7624 tcp_t *tcp; 7625 { 7626 #ifndef lint 7627 #define DONTCARE(x) 7628 #define PRESERVE(x) 7629 #else 7630 #define DONTCARE(x) ((x) = (x)) 7631 #define PRESERVE(x) ((x) = (x)) 7632 #endif /* lint */ 7633 7634 PRESERVE(tcp->tcp_bind_hash); 7635 PRESERVE(tcp->tcp_ptpbhn); 7636 PRESERVE(tcp->tcp_acceptor_hash); 7637 PRESERVE(tcp->tcp_ptpahn); 7638 7639 /* Should be ASSERT NULL on these with new code! */ 7640 ASSERT(tcp->tcp_time_wait_next == NULL); 7641 ASSERT(tcp->tcp_time_wait_prev == NULL); 7642 ASSERT(tcp->tcp_time_wait_expire == 0); 7643 PRESERVE(tcp->tcp_state); 7644 PRESERVE(tcp->tcp_rq); 7645 PRESERVE(tcp->tcp_wq); 7646 7647 ASSERT(tcp->tcp_xmit_head == NULL); 7648 ASSERT(tcp->tcp_xmit_last == NULL); 7649 ASSERT(tcp->tcp_unsent == 0); 7650 ASSERT(tcp->tcp_xmit_tail == NULL); 7651 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7652 7653 tcp->tcp_snxt = 0; /* Displayed in mib */ 7654 tcp->tcp_suna = 0; /* Displayed in mib */ 7655 tcp->tcp_swnd = 0; 7656 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7657 7658 ASSERT(tcp->tcp_ibsegs == 0); 7659 ASSERT(tcp->tcp_obsegs == 0); 7660 7661 if (tcp->tcp_iphc != NULL) { 7662 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7663 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7664 } 7665 7666 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7667 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7668 DONTCARE(tcp->tcp_ipha); 7669 DONTCARE(tcp->tcp_ip6h); 7670 DONTCARE(tcp->tcp_ip_hdr_len); 7671 DONTCARE(tcp->tcp_tcph); 7672 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7673 tcp->tcp_valid_bits = 0; 7674 7675 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7676 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7677 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7678 tcp->tcp_last_rcv_lbolt = 0; 7679 7680 tcp->tcp_init_cwnd = 0; 7681 7682 tcp->tcp_urp_last_valid = 0; 7683 tcp->tcp_hard_binding = 0; 7684 tcp->tcp_hard_bound = 0; 7685 PRESERVE(tcp->tcp_cred); 7686 PRESERVE(tcp->tcp_cpid); 7687 PRESERVE(tcp->tcp_exclbind); 7688 7689 tcp->tcp_fin_acked = 0; 7690 tcp->tcp_fin_rcvd = 0; 7691 tcp->tcp_fin_sent = 0; 7692 tcp->tcp_ordrel_done = 0; 7693 7694 tcp->tcp_debug = 0; 7695 tcp->tcp_dontroute = 0; 7696 tcp->tcp_broadcast = 0; 7697 7698 tcp->tcp_useloopback = 0; 7699 tcp->tcp_reuseaddr = 0; 7700 tcp->tcp_oobinline = 0; 7701 tcp->tcp_dgram_errind = 0; 7702 7703 tcp->tcp_detached = 0; 7704 tcp->tcp_bind_pending = 0; 7705 tcp->tcp_unbind_pending = 0; 7706 tcp->tcp_deferred_clean_death = 0; 7707 7708 tcp->tcp_snd_ws_ok = B_FALSE; 7709 tcp->tcp_snd_ts_ok = B_FALSE; 7710 tcp->tcp_linger = 0; 7711 tcp->tcp_ka_enabled = 0; 7712 tcp->tcp_zero_win_probe = 0; 7713 7714 tcp->tcp_loopback = 0; 7715 tcp->tcp_localnet = 0; 7716 tcp->tcp_syn_defense = 0; 7717 tcp->tcp_set_timer = 0; 7718 7719 tcp->tcp_active_open = 0; 7720 ASSERT(tcp->tcp_timeout == B_FALSE); 7721 tcp->tcp_rexmit = B_FALSE; 7722 tcp->tcp_xmit_zc_clean = B_FALSE; 7723 7724 tcp->tcp_snd_sack_ok = B_FALSE; 7725 PRESERVE(tcp->tcp_recvdstaddr); 7726 tcp->tcp_hwcksum = B_FALSE; 7727 7728 tcp->tcp_ire_ill_check_done = B_FALSE; 7729 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7730 7731 tcp->tcp_mdt = B_FALSE; 7732 tcp->tcp_mdt_hdr_head = 0; 7733 tcp->tcp_mdt_hdr_tail = 0; 7734 7735 tcp->tcp_conn_def_q0 = 0; 7736 tcp->tcp_ip_forward_progress = B_FALSE; 7737 tcp->tcp_anon_priv_bind = 0; 7738 tcp->tcp_ecn_ok = B_FALSE; 7739 7740 tcp->tcp_cwr = B_FALSE; 7741 tcp->tcp_ecn_echo_on = B_FALSE; 7742 7743 if (tcp->tcp_sack_info != NULL) { 7744 if (tcp->tcp_notsack_list != NULL) { 7745 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7746 } 7747 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7748 tcp->tcp_sack_info = NULL; 7749 } 7750 7751 tcp->tcp_rcv_ws = 0; 7752 tcp->tcp_snd_ws = 0; 7753 tcp->tcp_ts_recent = 0; 7754 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7755 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7756 tcp->tcp_if_mtu = 0; 7757 7758 ASSERT(tcp->tcp_reass_head == NULL); 7759 ASSERT(tcp->tcp_reass_tail == NULL); 7760 7761 tcp->tcp_cwnd_cnt = 0; 7762 7763 ASSERT(tcp->tcp_rcv_list == NULL); 7764 ASSERT(tcp->tcp_rcv_last_head == NULL); 7765 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7766 ASSERT(tcp->tcp_rcv_cnt == 0); 7767 7768 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7769 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7770 tcp->tcp_csuna = 0; 7771 7772 tcp->tcp_rto = 0; /* Displayed in MIB */ 7773 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7774 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7775 tcp->tcp_rtt_update = 0; 7776 7777 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7778 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7779 7780 tcp->tcp_rack = 0; /* Displayed in mib */ 7781 tcp->tcp_rack_cnt = 0; 7782 tcp->tcp_rack_cur_max = 0; 7783 tcp->tcp_rack_abs_max = 0; 7784 7785 tcp->tcp_max_swnd = 0; 7786 7787 ASSERT(tcp->tcp_listener == NULL); 7788 7789 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7790 7791 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7792 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7793 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7794 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7795 7796 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7797 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7798 PRESERVE(tcp->tcp_conn_req_max); 7799 PRESERVE(tcp->tcp_conn_req_seqnum); 7800 7801 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7802 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7803 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7804 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7805 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7806 7807 tcp->tcp_lingertime = 0; 7808 7809 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7810 ASSERT(tcp->tcp_urp_mp == NULL); 7811 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7812 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7813 7814 ASSERT(tcp->tcp_eager_next_q == NULL); 7815 ASSERT(tcp->tcp_eager_last_q == NULL); 7816 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7817 tcp->tcp_eager_prev_q0 == NULL) || 7818 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7819 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7820 7821 tcp->tcp_client_errno = 0; 7822 7823 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7824 7825 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7826 7827 PRESERVE(tcp->tcp_bound_source_v6); 7828 tcp->tcp_last_sent_len = 0; 7829 tcp->tcp_dupack_cnt = 0; 7830 7831 tcp->tcp_fport = 0; /* Displayed in MIB */ 7832 PRESERVE(tcp->tcp_lport); 7833 7834 PRESERVE(tcp->tcp_acceptor_lockp); 7835 7836 ASSERT(tcp->tcp_ordrelid == 0); 7837 PRESERVE(tcp->tcp_acceptor_id); 7838 DONTCARE(tcp->tcp_ipsec_overhead); 7839 7840 /* 7841 * If tcp_tracing flag is ON (i.e. We have a trace buffer 7842 * in tcp structure and now tracing), Re-initialize all 7843 * members of tcp_traceinfo. 7844 */ 7845 if (tcp->tcp_tracebuf != NULL) { 7846 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 7847 } 7848 7849 PRESERVE(tcp->tcp_family); 7850 if (tcp->tcp_family == AF_INET6) { 7851 tcp->tcp_ipversion = IPV6_VERSION; 7852 tcp->tcp_mss = tcp_mss_def_ipv6; 7853 } else { 7854 tcp->tcp_ipversion = IPV4_VERSION; 7855 tcp->tcp_mss = tcp_mss_def_ipv4; 7856 } 7857 7858 tcp->tcp_bound_if = 0; 7859 tcp->tcp_ipv6_recvancillary = 0; 7860 tcp->tcp_recvifindex = 0; 7861 tcp->tcp_recvhops = 0; 7862 tcp->tcp_closed = 0; 7863 tcp->tcp_cleandeathtag = 0; 7864 if (tcp->tcp_hopopts != NULL) { 7865 mi_free(tcp->tcp_hopopts); 7866 tcp->tcp_hopopts = NULL; 7867 tcp->tcp_hopoptslen = 0; 7868 } 7869 ASSERT(tcp->tcp_hopoptslen == 0); 7870 if (tcp->tcp_dstopts != NULL) { 7871 mi_free(tcp->tcp_dstopts); 7872 tcp->tcp_dstopts = NULL; 7873 tcp->tcp_dstoptslen = 0; 7874 } 7875 ASSERT(tcp->tcp_dstoptslen == 0); 7876 if (tcp->tcp_rtdstopts != NULL) { 7877 mi_free(tcp->tcp_rtdstopts); 7878 tcp->tcp_rtdstopts = NULL; 7879 tcp->tcp_rtdstoptslen = 0; 7880 } 7881 ASSERT(tcp->tcp_rtdstoptslen == 0); 7882 if (tcp->tcp_rthdr != NULL) { 7883 mi_free(tcp->tcp_rthdr); 7884 tcp->tcp_rthdr = NULL; 7885 tcp->tcp_rthdrlen = 0; 7886 } 7887 ASSERT(tcp->tcp_rthdrlen == 0); 7888 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7889 7890 /* Reset fusion-related fields */ 7891 tcp->tcp_fused = B_FALSE; 7892 tcp->tcp_unfusable = B_FALSE; 7893 tcp->tcp_fused_sigurg = B_FALSE; 7894 tcp->tcp_direct_sockfs = B_FALSE; 7895 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7896 tcp->tcp_loopback_peer = NULL; 7897 tcp->tcp_fuse_rcv_hiwater = 0; 7898 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7899 tcp->tcp_fuse_rcv_unread_cnt = 0; 7900 7901 tcp->tcp_in_ack_unsent = 0; 7902 tcp->tcp_cork = B_FALSE; 7903 7904 PRESERVE(tcp->tcp_squeue_bytes); 7905 7906 ASSERT(tcp->tcp_kssl_ctx == NULL); 7907 ASSERT(!tcp->tcp_kssl_pending); 7908 PRESERVE(tcp->tcp_kssl_ent); 7909 7910 #undef DONTCARE 7911 #undef PRESERVE 7912 } 7913 7914 /* 7915 * Allocate necessary resources and initialize state vector. 7916 * Guaranteed not to fail so that when an error is returned, 7917 * the caller doesn't need to do any additional cleanup. 7918 */ 7919 int 7920 tcp_init(tcp_t *tcp, queue_t *q) 7921 { 7922 int err; 7923 7924 tcp->tcp_rq = q; 7925 tcp->tcp_wq = WR(q); 7926 tcp->tcp_state = TCPS_IDLE; 7927 if ((err = tcp_init_values(tcp)) != 0) 7928 tcp_timers_stop(tcp); 7929 return (err); 7930 } 7931 7932 static int 7933 tcp_init_values(tcp_t *tcp) 7934 { 7935 int err; 7936 7937 ASSERT((tcp->tcp_family == AF_INET && 7938 tcp->tcp_ipversion == IPV4_VERSION) || 7939 (tcp->tcp_family == AF_INET6 && 7940 (tcp->tcp_ipversion == IPV4_VERSION || 7941 tcp->tcp_ipversion == IPV6_VERSION))); 7942 7943 /* 7944 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7945 * will be close to tcp_rexmit_interval_initial. By doing this, we 7946 * allow the algorithm to adjust slowly to large fluctuations of RTT 7947 * during first few transmissions of a connection as seen in slow 7948 * links. 7949 */ 7950 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 7951 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 7952 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7953 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7954 tcp_conn_grace_period; 7955 if (tcp->tcp_rto < tcp_rexmit_interval_min) 7956 tcp->tcp_rto = tcp_rexmit_interval_min; 7957 tcp->tcp_timer_backoff = 0; 7958 tcp->tcp_ms_we_have_waited = 0; 7959 tcp->tcp_last_recv_time = lbolt; 7960 tcp->tcp_cwnd_max = tcp_cwnd_max_; 7961 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7962 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7963 7964 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 7965 7966 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 7967 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 7968 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 7969 /* 7970 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7971 * passive open. 7972 */ 7973 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 7974 7975 tcp->tcp_naglim = tcp_naglim_def; 7976 7977 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7978 7979 tcp->tcp_mdt_hdr_head = 0; 7980 tcp->tcp_mdt_hdr_tail = 0; 7981 7982 /* Reset fusion-related fields */ 7983 tcp->tcp_fused = B_FALSE; 7984 tcp->tcp_unfusable = B_FALSE; 7985 tcp->tcp_fused_sigurg = B_FALSE; 7986 tcp->tcp_direct_sockfs = B_FALSE; 7987 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7988 tcp->tcp_loopback_peer = NULL; 7989 tcp->tcp_fuse_rcv_hiwater = 0; 7990 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7991 tcp->tcp_fuse_rcv_unread_cnt = 0; 7992 7993 /* Initialize the header template */ 7994 if (tcp->tcp_ipversion == IPV4_VERSION) { 7995 err = tcp_header_init_ipv4(tcp); 7996 } else { 7997 err = tcp_header_init_ipv6(tcp); 7998 } 7999 if (err) 8000 return (err); 8001 8002 /* 8003 * Init the window scale to the max so tcp_rwnd_set() won't pare 8004 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8005 */ 8006 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8007 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 8008 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 8009 8010 tcp->tcp_cork = B_FALSE; 8011 /* 8012 * Init the tcp_debug option. This value determines whether TCP 8013 * calls strlog() to print out debug messages. Doing this 8014 * initialization here means that this value is not inherited thru 8015 * tcp_reinit(). 8016 */ 8017 tcp->tcp_debug = tcp_dbg; 8018 8019 tcp->tcp_ka_interval = tcp_keepalive_interval; 8020 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 8021 8022 return (0); 8023 } 8024 8025 /* 8026 * Initialize the IPv4 header. Loses any record of any IP options. 8027 */ 8028 static int 8029 tcp_header_init_ipv4(tcp_t *tcp) 8030 { 8031 tcph_t *tcph; 8032 uint32_t sum; 8033 conn_t *connp; 8034 8035 /* 8036 * This is a simple initialization. If there's 8037 * already a template, it should never be too small, 8038 * so reuse it. Otherwise, allocate space for the new one. 8039 */ 8040 if (tcp->tcp_iphc == NULL) { 8041 ASSERT(tcp->tcp_iphc_len == 0); 8042 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8043 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8044 if (tcp->tcp_iphc == NULL) { 8045 tcp->tcp_iphc_len = 0; 8046 return (ENOMEM); 8047 } 8048 } 8049 8050 /* options are gone; may need a new label */ 8051 connp = tcp->tcp_connp; 8052 connp->conn_mlp_type = mlptSingle; 8053 connp->conn_ulp_labeled = !is_system_labeled(); 8054 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8055 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8056 tcp->tcp_ip6h = NULL; 8057 tcp->tcp_ipversion = IPV4_VERSION; 8058 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8059 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8060 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8061 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8062 tcp->tcp_ipha->ipha_version_and_hdr_length 8063 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8064 tcp->tcp_ipha->ipha_ident = 0; 8065 8066 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 8067 tcp->tcp_tos = 0; 8068 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8069 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 8070 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8071 8072 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8073 tcp->tcp_tcph = tcph; 8074 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8075 /* 8076 * IP wants our header length in the checksum field to 8077 * allow it to perform a single pseudo-header+checksum 8078 * calculation on behalf of TCP. 8079 * Include the adjustment for a source route once IP_OPTIONS is set. 8080 */ 8081 sum = sizeof (tcph_t) + tcp->tcp_sum; 8082 sum = (sum >> 16) + (sum & 0xFFFF); 8083 U16_TO_ABE16(sum, tcph->th_sum); 8084 return (0); 8085 } 8086 8087 /* 8088 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8089 */ 8090 static int 8091 tcp_header_init_ipv6(tcp_t *tcp) 8092 { 8093 tcph_t *tcph; 8094 uint32_t sum; 8095 conn_t *connp; 8096 8097 /* 8098 * This is a simple initialization. If there's 8099 * already a template, it should never be too small, 8100 * so reuse it. Otherwise, allocate space for the new one. 8101 * Ensure that there is enough space to "downgrade" the tcp_t 8102 * to an IPv4 tcp_t. This requires having space for a full load 8103 * of IPv4 options, as well as a full load of TCP options 8104 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8105 * than a v6 header and a TCP header with a full load of TCP options 8106 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8107 * We want to avoid reallocation in the "downgraded" case when 8108 * processing outbound IPv4 options. 8109 */ 8110 if (tcp->tcp_iphc == NULL) { 8111 ASSERT(tcp->tcp_iphc_len == 0); 8112 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8113 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8114 if (tcp->tcp_iphc == NULL) { 8115 tcp->tcp_iphc_len = 0; 8116 return (ENOMEM); 8117 } 8118 } 8119 8120 /* options are gone; may need a new label */ 8121 connp = tcp->tcp_connp; 8122 connp->conn_mlp_type = mlptSingle; 8123 connp->conn_ulp_labeled = !is_system_labeled(); 8124 8125 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8126 tcp->tcp_ipversion = IPV6_VERSION; 8127 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8128 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8129 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8130 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8131 tcp->tcp_ipha = NULL; 8132 8133 /* Initialize the header template */ 8134 8135 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8136 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8137 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8138 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 8139 8140 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8141 tcp->tcp_tcph = tcph; 8142 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8143 /* 8144 * IP wants our header length in the checksum field to 8145 * allow it to perform a single psuedo-header+checksum 8146 * calculation on behalf of TCP. 8147 * Include the adjustment for a source route when IPV6_RTHDR is set. 8148 */ 8149 sum = sizeof (tcph_t) + tcp->tcp_sum; 8150 sum = (sum >> 16) + (sum & 0xFFFF); 8151 U16_TO_ABE16(sum, tcph->th_sum); 8152 return (0); 8153 } 8154 8155 /* At minimum we need 4 bytes in the TCP header for the lookup */ 8156 #define ICMP_MIN_TCP_HDR 12 8157 8158 /* 8159 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8160 * passed up by IP. The message is always received on the correct tcp_t. 8161 * Assumes that IP has pulled up everything up to and including the ICMP header. 8162 */ 8163 void 8164 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8165 { 8166 icmph_t *icmph; 8167 ipha_t *ipha; 8168 int iph_hdr_length; 8169 tcph_t *tcph; 8170 boolean_t ipsec_mctl = B_FALSE; 8171 boolean_t secure; 8172 mblk_t *first_mp = mp; 8173 uint32_t new_mss; 8174 uint32_t ratio; 8175 size_t mp_size = MBLKL(mp); 8176 uint32_t seg_ack; 8177 uint32_t seg_seq; 8178 8179 /* Assume IP provides aligned packets - otherwise toss */ 8180 if (!OK_32PTR(mp->b_rptr)) { 8181 freemsg(mp); 8182 return; 8183 } 8184 8185 /* 8186 * Since ICMP errors are normal data marked with M_CTL when sent 8187 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8188 * packets starting with an ipsec_info_t, see ipsec_info.h. 8189 */ 8190 if ((mp_size == sizeof (ipsec_info_t)) && 8191 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8192 ASSERT(mp->b_cont != NULL); 8193 mp = mp->b_cont; 8194 /* IP should have done this */ 8195 ASSERT(OK_32PTR(mp->b_rptr)); 8196 mp_size = MBLKL(mp); 8197 ipsec_mctl = B_TRUE; 8198 } 8199 8200 /* 8201 * Verify that we have a complete outer IP header. If not, drop it. 8202 */ 8203 if (mp_size < sizeof (ipha_t)) { 8204 noticmpv4: 8205 freemsg(first_mp); 8206 return; 8207 } 8208 8209 ipha = (ipha_t *)mp->b_rptr; 8210 /* 8211 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8212 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8213 */ 8214 switch (IPH_HDR_VERSION(ipha)) { 8215 case IPV6_VERSION: 8216 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8217 return; 8218 case IPV4_VERSION: 8219 break; 8220 default: 8221 goto noticmpv4; 8222 } 8223 8224 /* Skip past the outer IP and ICMP headers */ 8225 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8226 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8227 /* 8228 * If we don't have the correct outer IP header length or if the ULP 8229 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8230 * send it upstream. 8231 */ 8232 if (iph_hdr_length < sizeof (ipha_t) || 8233 ipha->ipha_protocol != IPPROTO_ICMP || 8234 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8235 goto noticmpv4; 8236 } 8237 ipha = (ipha_t *)&icmph[1]; 8238 8239 /* Skip past the inner IP and find the ULP header */ 8240 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8241 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8242 /* 8243 * If we don't have the correct inner IP header length or if the ULP 8244 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8245 * bytes of TCP header, drop it. 8246 */ 8247 if (iph_hdr_length < sizeof (ipha_t) || 8248 ipha->ipha_protocol != IPPROTO_TCP || 8249 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8250 goto noticmpv4; 8251 } 8252 8253 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8254 if (ipsec_mctl) { 8255 secure = ipsec_in_is_secure(first_mp); 8256 } else { 8257 secure = B_FALSE; 8258 } 8259 if (secure) { 8260 /* 8261 * If we are willing to accept this in clear 8262 * we don't have to verify policy. 8263 */ 8264 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8265 if (!tcp_check_policy(tcp, first_mp, 8266 ipha, NULL, secure, ipsec_mctl)) { 8267 /* 8268 * tcp_check_policy called 8269 * ip_drop_packet() on failure. 8270 */ 8271 return; 8272 } 8273 } 8274 } 8275 } else if (ipsec_mctl) { 8276 /* 8277 * This is a hard_bound connection. IP has already 8278 * verified policy. We don't have to do it again. 8279 */ 8280 freeb(first_mp); 8281 first_mp = mp; 8282 ipsec_mctl = B_FALSE; 8283 } 8284 8285 seg_ack = ABE32_TO_U32(tcph->th_ack); 8286 seg_seq = ABE32_TO_U32(tcph->th_seq); 8287 /* 8288 * TCP SHOULD check that the TCP sequence number contained in 8289 * payload of the ICMP error message is within the range 8290 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8291 */ 8292 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 8293 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8294 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8295 /* 8296 * If the ICMP message is bogus, should we kill the 8297 * connection, or should we just drop the bogus ICMP 8298 * message? It would probably make more sense to just 8299 * drop the message so that if this one managed to get 8300 * in, the real connection should not suffer. 8301 */ 8302 goto noticmpv4; 8303 } 8304 8305 switch (icmph->icmph_type) { 8306 case ICMP_DEST_UNREACHABLE: 8307 switch (icmph->icmph_code) { 8308 case ICMP_FRAGMENTATION_NEEDED: 8309 /* 8310 * Reduce the MSS based on the new MTU. This will 8311 * eliminate any fragmentation locally. 8312 * N.B. There may well be some funny side-effects on 8313 * the local send policy and the remote receive policy. 8314 * Pending further research, we provide 8315 * tcp_ignore_path_mtu just in case this proves 8316 * disastrous somewhere. 8317 * 8318 * After updating the MSS, retransmit part of the 8319 * dropped segment using the new mss by calling 8320 * tcp_wput_data(). Need to adjust all those 8321 * params to make sure tcp_wput_data() work properly. 8322 */ 8323 if (tcp_ignore_path_mtu) 8324 break; 8325 8326 /* 8327 * Decrease the MSS by time stamp options 8328 * IP options and IPSEC options. tcp_hdr_len 8329 * includes time stamp option and IP option 8330 * length. 8331 */ 8332 8333 new_mss = ntohs(icmph->icmph_du_mtu) - 8334 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8335 8336 /* 8337 * Only update the MSS if the new one is 8338 * smaller than the previous one. This is 8339 * to avoid problems when getting multiple 8340 * ICMP errors for the same MTU. 8341 */ 8342 if (new_mss >= tcp->tcp_mss) 8343 break; 8344 8345 /* 8346 * Stop doing PMTU if new_mss is less than 68 8347 * or less than tcp_mss_min. 8348 * The value 68 comes from rfc 1191. 8349 */ 8350 if (new_mss < MAX(68, tcp_mss_min)) 8351 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8352 0; 8353 8354 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8355 ASSERT(ratio >= 1); 8356 tcp_mss_set(tcp, new_mss); 8357 8358 /* 8359 * Make sure we have something to 8360 * send. 8361 */ 8362 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8363 (tcp->tcp_xmit_head != NULL)) { 8364 /* 8365 * Shrink tcp_cwnd in 8366 * proportion to the old MSS/new MSS. 8367 */ 8368 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8369 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8370 (tcp->tcp_unsent == 0)) { 8371 tcp->tcp_rexmit_max = tcp->tcp_fss; 8372 } else { 8373 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8374 } 8375 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8376 tcp->tcp_rexmit = B_TRUE; 8377 tcp->tcp_dupack_cnt = 0; 8378 tcp->tcp_snd_burst = TCP_CWND_SS; 8379 tcp_ss_rexmit(tcp); 8380 } 8381 break; 8382 case ICMP_PORT_UNREACHABLE: 8383 case ICMP_PROTOCOL_UNREACHABLE: 8384 switch (tcp->tcp_state) { 8385 case TCPS_SYN_SENT: 8386 case TCPS_SYN_RCVD: 8387 /* 8388 * ICMP can snipe away incipient 8389 * TCP connections as long as 8390 * seq number is same as initial 8391 * send seq number. 8392 */ 8393 if (seg_seq == tcp->tcp_iss) { 8394 (void) tcp_clean_death(tcp, 8395 ECONNREFUSED, 6); 8396 } 8397 break; 8398 } 8399 break; 8400 case ICMP_HOST_UNREACHABLE: 8401 case ICMP_NET_UNREACHABLE: 8402 /* Record the error in case we finally time out. */ 8403 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8404 tcp->tcp_client_errno = EHOSTUNREACH; 8405 else 8406 tcp->tcp_client_errno = ENETUNREACH; 8407 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8408 if (tcp->tcp_listener != NULL && 8409 tcp->tcp_listener->tcp_syn_defense) { 8410 /* 8411 * Ditch the half-open connection if we 8412 * suspect a SYN attack is under way. 8413 */ 8414 tcp_ip_ire_mark_advice(tcp); 8415 (void) tcp_clean_death(tcp, 8416 tcp->tcp_client_errno, 7); 8417 } 8418 } 8419 break; 8420 default: 8421 break; 8422 } 8423 break; 8424 case ICMP_SOURCE_QUENCH: { 8425 /* 8426 * use a global boolean to control 8427 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8428 * The default is false. 8429 */ 8430 if (tcp_icmp_source_quench) { 8431 /* 8432 * Reduce the sending rate as if we got a 8433 * retransmit timeout 8434 */ 8435 uint32_t npkt; 8436 8437 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8438 tcp->tcp_mss; 8439 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8440 tcp->tcp_cwnd = tcp->tcp_mss; 8441 tcp->tcp_cwnd_cnt = 0; 8442 } 8443 break; 8444 } 8445 } 8446 freemsg(first_mp); 8447 } 8448 8449 /* 8450 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8451 * error messages passed up by IP. 8452 * Assumes that IP has pulled up all the extension headers as well 8453 * as the ICMPv6 header. 8454 */ 8455 static void 8456 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8457 { 8458 icmp6_t *icmp6; 8459 ip6_t *ip6h; 8460 uint16_t iph_hdr_length; 8461 tcpha_t *tcpha; 8462 uint8_t *nexthdrp; 8463 uint32_t new_mss; 8464 uint32_t ratio; 8465 boolean_t secure; 8466 mblk_t *first_mp = mp; 8467 size_t mp_size; 8468 uint32_t seg_ack; 8469 uint32_t seg_seq; 8470 8471 /* 8472 * The caller has determined if this is an IPSEC_IN packet and 8473 * set ipsec_mctl appropriately (see tcp_icmp_error). 8474 */ 8475 if (ipsec_mctl) 8476 mp = mp->b_cont; 8477 8478 mp_size = MBLKL(mp); 8479 8480 /* 8481 * Verify that we have a complete IP header. If not, send it upstream. 8482 */ 8483 if (mp_size < sizeof (ip6_t)) { 8484 noticmpv6: 8485 freemsg(first_mp); 8486 return; 8487 } 8488 8489 /* 8490 * Verify this is an ICMPV6 packet, else send it upstream. 8491 */ 8492 ip6h = (ip6_t *)mp->b_rptr; 8493 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8494 iph_hdr_length = IPV6_HDR_LEN; 8495 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8496 &nexthdrp) || 8497 *nexthdrp != IPPROTO_ICMPV6) { 8498 goto noticmpv6; 8499 } 8500 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8501 ip6h = (ip6_t *)&icmp6[1]; 8502 /* 8503 * Verify if we have a complete ICMP and inner IP header. 8504 */ 8505 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8506 goto noticmpv6; 8507 8508 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8509 goto noticmpv6; 8510 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8511 /* 8512 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8513 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8514 * packet. 8515 */ 8516 if ((*nexthdrp != IPPROTO_TCP) || 8517 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8518 goto noticmpv6; 8519 } 8520 8521 /* 8522 * ICMP errors come on the right queue or come on 8523 * listener/global queue for detached connections and 8524 * get switched to the right queue. If it comes on the 8525 * right queue, policy check has already been done by IP 8526 * and thus free the first_mp without verifying the policy. 8527 * If it has come for a non-hard bound connection, we need 8528 * to verify policy as IP may not have done it. 8529 */ 8530 if (!tcp->tcp_hard_bound) { 8531 if (ipsec_mctl) { 8532 secure = ipsec_in_is_secure(first_mp); 8533 } else { 8534 secure = B_FALSE; 8535 } 8536 if (secure) { 8537 /* 8538 * If we are willing to accept this in clear 8539 * we don't have to verify policy. 8540 */ 8541 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8542 if (!tcp_check_policy(tcp, first_mp, 8543 NULL, ip6h, secure, ipsec_mctl)) { 8544 /* 8545 * tcp_check_policy called 8546 * ip_drop_packet() on failure. 8547 */ 8548 return; 8549 } 8550 } 8551 } 8552 } else if (ipsec_mctl) { 8553 /* 8554 * This is a hard_bound connection. IP has already 8555 * verified policy. We don't have to do it again. 8556 */ 8557 freeb(first_mp); 8558 first_mp = mp; 8559 ipsec_mctl = B_FALSE; 8560 } 8561 8562 seg_ack = ntohl(tcpha->tha_ack); 8563 seg_seq = ntohl(tcpha->tha_seq); 8564 /* 8565 * TCP SHOULD check that the TCP sequence number contained in 8566 * payload of the ICMP error message is within the range 8567 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8568 */ 8569 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8570 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8571 /* 8572 * If the ICMP message is bogus, should we kill the 8573 * connection, or should we just drop the bogus ICMP 8574 * message? It would probably make more sense to just 8575 * drop the message so that if this one managed to get 8576 * in, the real connection should not suffer. 8577 */ 8578 goto noticmpv6; 8579 } 8580 8581 switch (icmp6->icmp6_type) { 8582 case ICMP6_PACKET_TOO_BIG: 8583 /* 8584 * Reduce the MSS based on the new MTU. This will 8585 * eliminate any fragmentation locally. 8586 * N.B. There may well be some funny side-effects on 8587 * the local send policy and the remote receive policy. 8588 * Pending further research, we provide 8589 * tcp_ignore_path_mtu just in case this proves 8590 * disastrous somewhere. 8591 * 8592 * After updating the MSS, retransmit part of the 8593 * dropped segment using the new mss by calling 8594 * tcp_wput_data(). Need to adjust all those 8595 * params to make sure tcp_wput_data() work properly. 8596 */ 8597 if (tcp_ignore_path_mtu) 8598 break; 8599 8600 /* 8601 * Decrease the MSS by time stamp options 8602 * IP options and IPSEC options. tcp_hdr_len 8603 * includes time stamp option and IP option 8604 * length. 8605 */ 8606 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8607 tcp->tcp_ipsec_overhead; 8608 8609 /* 8610 * Only update the MSS if the new one is 8611 * smaller than the previous one. This is 8612 * to avoid problems when getting multiple 8613 * ICMP errors for the same MTU. 8614 */ 8615 if (new_mss >= tcp->tcp_mss) 8616 break; 8617 8618 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8619 ASSERT(ratio >= 1); 8620 tcp_mss_set(tcp, new_mss); 8621 8622 /* 8623 * Make sure we have something to 8624 * send. 8625 */ 8626 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8627 (tcp->tcp_xmit_head != NULL)) { 8628 /* 8629 * Shrink tcp_cwnd in 8630 * proportion to the old MSS/new MSS. 8631 */ 8632 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8633 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8634 (tcp->tcp_unsent == 0)) { 8635 tcp->tcp_rexmit_max = tcp->tcp_fss; 8636 } else { 8637 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8638 } 8639 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8640 tcp->tcp_rexmit = B_TRUE; 8641 tcp->tcp_dupack_cnt = 0; 8642 tcp->tcp_snd_burst = TCP_CWND_SS; 8643 tcp_ss_rexmit(tcp); 8644 } 8645 break; 8646 8647 case ICMP6_DST_UNREACH: 8648 switch (icmp6->icmp6_code) { 8649 case ICMP6_DST_UNREACH_NOPORT: 8650 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8651 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8652 (seg_seq == tcp->tcp_iss)) { 8653 (void) tcp_clean_death(tcp, 8654 ECONNREFUSED, 8); 8655 } 8656 break; 8657 8658 case ICMP6_DST_UNREACH_ADMIN: 8659 case ICMP6_DST_UNREACH_NOROUTE: 8660 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8661 case ICMP6_DST_UNREACH_ADDR: 8662 /* Record the error in case we finally time out. */ 8663 tcp->tcp_client_errno = EHOSTUNREACH; 8664 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8665 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8666 (seg_seq == tcp->tcp_iss)) { 8667 if (tcp->tcp_listener != NULL && 8668 tcp->tcp_listener->tcp_syn_defense) { 8669 /* 8670 * Ditch the half-open connection if we 8671 * suspect a SYN attack is under way. 8672 */ 8673 tcp_ip_ire_mark_advice(tcp); 8674 (void) tcp_clean_death(tcp, 8675 tcp->tcp_client_errno, 9); 8676 } 8677 } 8678 8679 8680 break; 8681 default: 8682 break; 8683 } 8684 break; 8685 8686 case ICMP6_PARAM_PROB: 8687 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8688 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8689 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8690 (uchar_t *)nexthdrp) { 8691 if (tcp->tcp_state == TCPS_SYN_SENT || 8692 tcp->tcp_state == TCPS_SYN_RCVD) { 8693 (void) tcp_clean_death(tcp, 8694 ECONNREFUSED, 10); 8695 } 8696 break; 8697 } 8698 break; 8699 8700 case ICMP6_TIME_EXCEEDED: 8701 default: 8702 break; 8703 } 8704 freemsg(first_mp); 8705 } 8706 8707 /* 8708 * IP recognizes seven kinds of bind requests: 8709 * 8710 * - A zero-length address binds only to the protocol number. 8711 * 8712 * - A 4-byte address is treated as a request to 8713 * validate that the address is a valid local IPv4 8714 * address, appropriate for an application to bind to. 8715 * IP does the verification, but does not make any note 8716 * of the address at this time. 8717 * 8718 * - A 16-byte address contains is treated as a request 8719 * to validate a local IPv6 address, as the 4-byte 8720 * address case above. 8721 * 8722 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8723 * use it for the inbound fanout of packets. 8724 * 8725 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8726 * use it for the inbound fanout of packets. 8727 * 8728 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8729 * information consisting of local and remote addresses 8730 * and ports. In this case, the addresses are both 8731 * validated as appropriate for this operation, and, if 8732 * so, the information is retained for use in the 8733 * inbound fanout. 8734 * 8735 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8736 * fanout information, like the 12-byte case above. 8737 * 8738 * IP will also fill in the IRE request mblk with information 8739 * regarding our peer. In all cases, we notify IP of our protocol 8740 * type by appending a single protocol byte to the bind request. 8741 */ 8742 static mblk_t * 8743 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8744 { 8745 char *cp; 8746 mblk_t *mp; 8747 struct T_bind_req *tbr; 8748 ipa_conn_t *ac; 8749 ipa6_conn_t *ac6; 8750 sin_t *sin; 8751 sin6_t *sin6; 8752 8753 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8754 ASSERT((tcp->tcp_family == AF_INET && 8755 tcp->tcp_ipversion == IPV4_VERSION) || 8756 (tcp->tcp_family == AF_INET6 && 8757 (tcp->tcp_ipversion == IPV4_VERSION || 8758 tcp->tcp_ipversion == IPV6_VERSION))); 8759 8760 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 8761 if (!mp) 8762 return (mp); 8763 mp->b_datap->db_type = M_PROTO; 8764 tbr = (struct T_bind_req *)mp->b_rptr; 8765 tbr->PRIM_type = bind_prim; 8766 tbr->ADDR_offset = sizeof (*tbr); 8767 tbr->CONIND_number = 0; 8768 tbr->ADDR_length = addr_length; 8769 cp = (char *)&tbr[1]; 8770 switch (addr_length) { 8771 case sizeof (ipa_conn_t): 8772 ASSERT(tcp->tcp_family == AF_INET); 8773 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8774 8775 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8776 if (mp->b_cont == NULL) { 8777 freemsg(mp); 8778 return (NULL); 8779 } 8780 mp->b_cont->b_wptr += sizeof (ire_t); 8781 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8782 8783 /* cp known to be 32 bit aligned */ 8784 ac = (ipa_conn_t *)cp; 8785 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 8786 ac->ac_faddr = tcp->tcp_remote; 8787 ac->ac_fport = tcp->tcp_fport; 8788 ac->ac_lport = tcp->tcp_lport; 8789 tcp->tcp_hard_binding = 1; 8790 break; 8791 8792 case sizeof (ipa6_conn_t): 8793 ASSERT(tcp->tcp_family == AF_INET6); 8794 8795 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8796 if (mp->b_cont == NULL) { 8797 freemsg(mp); 8798 return (NULL); 8799 } 8800 mp->b_cont->b_wptr += sizeof (ire_t); 8801 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8802 8803 /* cp known to be 32 bit aligned */ 8804 ac6 = (ipa6_conn_t *)cp; 8805 if (tcp->tcp_ipversion == IPV4_VERSION) { 8806 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 8807 &ac6->ac6_laddr); 8808 } else { 8809 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 8810 } 8811 ac6->ac6_faddr = tcp->tcp_remote_v6; 8812 ac6->ac6_fport = tcp->tcp_fport; 8813 ac6->ac6_lport = tcp->tcp_lport; 8814 tcp->tcp_hard_binding = 1; 8815 break; 8816 8817 case sizeof (sin_t): 8818 /* 8819 * NOTE: IPV6_ADDR_LEN also has same size. 8820 * Use family to discriminate. 8821 */ 8822 if (tcp->tcp_family == AF_INET) { 8823 sin = (sin_t *)cp; 8824 8825 *sin = sin_null; 8826 sin->sin_family = AF_INET; 8827 sin->sin_addr.s_addr = tcp->tcp_bound_source; 8828 sin->sin_port = tcp->tcp_lport; 8829 break; 8830 } else { 8831 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 8832 } 8833 break; 8834 8835 case sizeof (sin6_t): 8836 ASSERT(tcp->tcp_family == AF_INET6); 8837 sin6 = (sin6_t *)cp; 8838 8839 *sin6 = sin6_null; 8840 sin6->sin6_family = AF_INET6; 8841 sin6->sin6_addr = tcp->tcp_bound_source_v6; 8842 sin6->sin6_port = tcp->tcp_lport; 8843 break; 8844 8845 case IP_ADDR_LEN: 8846 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8847 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 8848 break; 8849 8850 } 8851 /* Add protocol number to end */ 8852 cp[addr_length] = (char)IPPROTO_TCP; 8853 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 8854 return (mp); 8855 } 8856 8857 /* 8858 * Notify IP that we are having trouble with this connection. IP should 8859 * blow the IRE away and start over. 8860 */ 8861 static void 8862 tcp_ip_notify(tcp_t *tcp) 8863 { 8864 struct iocblk *iocp; 8865 ipid_t *ipid; 8866 mblk_t *mp; 8867 8868 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8869 if (tcp->tcp_ipversion == IPV6_VERSION) 8870 return; 8871 8872 mp = mkiocb(IP_IOCTL); 8873 if (mp == NULL) 8874 return; 8875 8876 iocp = (struct iocblk *)mp->b_rptr; 8877 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8878 8879 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8880 if (!mp->b_cont) { 8881 freeb(mp); 8882 return; 8883 } 8884 8885 ipid = (ipid_t *)mp->b_cont->b_rptr; 8886 mp->b_cont->b_wptr += iocp->ioc_count; 8887 bzero(ipid, sizeof (*ipid)); 8888 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8889 ipid->ipid_ire_type = IRE_CACHE; 8890 ipid->ipid_addr_offset = sizeof (ipid_t); 8891 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8892 /* 8893 * Note: in the case of source routing we want to blow away the 8894 * route to the first source route hop. 8895 */ 8896 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8897 sizeof (tcp->tcp_ipha->ipha_dst)); 8898 8899 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8900 } 8901 8902 /* Unlink and return any mblk that looks like it contains an ire */ 8903 static mblk_t * 8904 tcp_ire_mp(mblk_t *mp) 8905 { 8906 mblk_t *prev_mp; 8907 8908 for (;;) { 8909 prev_mp = mp; 8910 mp = mp->b_cont; 8911 if (mp == NULL) 8912 break; 8913 switch (DB_TYPE(mp)) { 8914 case IRE_DB_TYPE: 8915 case IRE_DB_REQ_TYPE: 8916 if (prev_mp != NULL) 8917 prev_mp->b_cont = mp->b_cont; 8918 mp->b_cont = NULL; 8919 return (mp); 8920 default: 8921 break; 8922 } 8923 } 8924 return (mp); 8925 } 8926 8927 /* 8928 * Timer callback routine for keepalive probe. We do a fake resend of 8929 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8930 * check to see if we have heard anything from the other end for the last 8931 * RTO period. If we have, set the timer to expire for another 8932 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8933 * RTO << 1 and check again when it expires. Keep exponentially increasing 8934 * the timeout if we have not heard from the other side. If for more than 8935 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8936 * kill the connection unless the keepalive abort threshold is 0. In 8937 * that case, we will probe "forever." 8938 */ 8939 static void 8940 tcp_keepalive_killer(void *arg) 8941 { 8942 mblk_t *mp; 8943 conn_t *connp = (conn_t *)arg; 8944 tcp_t *tcp = connp->conn_tcp; 8945 int32_t firetime; 8946 int32_t idletime; 8947 int32_t ka_intrvl; 8948 8949 tcp->tcp_ka_tid = 0; 8950 8951 if (tcp->tcp_fused) 8952 return; 8953 8954 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 8955 ka_intrvl = tcp->tcp_ka_interval; 8956 8957 /* 8958 * Keepalive probe should only be sent if the application has not 8959 * done a close on the connection. 8960 */ 8961 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8962 return; 8963 } 8964 /* Timer fired too early, restart it. */ 8965 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8966 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8967 MSEC_TO_TICK(ka_intrvl)); 8968 return; 8969 } 8970 8971 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8972 /* 8973 * If we have not heard from the other side for a long 8974 * time, kill the connection unless the keepalive abort 8975 * threshold is 0. In that case, we will probe "forever." 8976 */ 8977 if (tcp->tcp_ka_abort_thres != 0 && 8978 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8979 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 8980 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8981 tcp->tcp_client_errno : ETIMEDOUT, 11); 8982 return; 8983 } 8984 8985 if (tcp->tcp_snxt == tcp->tcp_suna && 8986 idletime >= ka_intrvl) { 8987 /* Fake resend of last ACKed byte. */ 8988 mblk_t *mp1 = allocb(1, BPRI_LO); 8989 8990 if (mp1 != NULL) { 8991 *mp1->b_wptr++ = '\0'; 8992 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8993 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8994 freeb(mp1); 8995 /* 8996 * if allocation failed, fall through to start the 8997 * timer back. 8998 */ 8999 if (mp != NULL) { 9000 TCP_RECORD_TRACE(tcp, mp, 9001 TCP_TRACE_SEND_PKT); 9002 tcp_send_data(tcp, tcp->tcp_wq, mp); 9003 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 9004 if (tcp->tcp_ka_last_intrvl != 0) { 9005 /* 9006 * We should probe again at least 9007 * in ka_intrvl, but not more than 9008 * tcp_rexmit_interval_max. 9009 */ 9010 firetime = MIN(ka_intrvl - 1, 9011 tcp->tcp_ka_last_intrvl << 1); 9012 if (firetime > tcp_rexmit_interval_max) 9013 firetime = 9014 tcp_rexmit_interval_max; 9015 } else { 9016 firetime = tcp->tcp_rto; 9017 } 9018 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9019 tcp_keepalive_killer, 9020 MSEC_TO_TICK(firetime)); 9021 tcp->tcp_ka_last_intrvl = firetime; 9022 return; 9023 } 9024 } 9025 } else { 9026 tcp->tcp_ka_last_intrvl = 0; 9027 } 9028 9029 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9030 if ((firetime = ka_intrvl - idletime) < 0) { 9031 firetime = ka_intrvl; 9032 } 9033 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9034 MSEC_TO_TICK(firetime)); 9035 } 9036 9037 int 9038 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9039 { 9040 queue_t *q = tcp->tcp_rq; 9041 int32_t mss = tcp->tcp_mss; 9042 int maxpsz; 9043 9044 if (TCP_IS_DETACHED(tcp)) 9045 return (mss); 9046 9047 if (tcp->tcp_fused) { 9048 maxpsz = tcp_fuse_maxpsz_set(tcp); 9049 mss = INFPSZ; 9050 } else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { 9051 /* 9052 * Set the sd_qn_maxpsz according to the socket send buffer 9053 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9054 * instruct the stream head to copyin user data into contiguous 9055 * kernel-allocated buffers without breaking it up into smaller 9056 * chunks. We round up the buffer size to the nearest SMSS. 9057 */ 9058 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9059 if (tcp->tcp_kssl_ctx == NULL) 9060 mss = INFPSZ; 9061 else 9062 mss = SSL3_MAX_RECORD_LEN; 9063 } else { 9064 /* 9065 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9066 * (and a multiple of the mss). This instructs the stream 9067 * head to break down larger than SMSS writes into SMSS- 9068 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9069 */ 9070 maxpsz = tcp->tcp_maxpsz * mss; 9071 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9072 maxpsz = tcp->tcp_xmit_hiwater/2; 9073 /* Round up to nearest mss */ 9074 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9075 } 9076 } 9077 (void) setmaxps(q, maxpsz); 9078 tcp->tcp_wq->q_maxpsz = maxpsz; 9079 9080 if (set_maxblk) 9081 (void) mi_set_sth_maxblk(q, mss); 9082 9083 return (mss); 9084 } 9085 9086 /* 9087 * Extract option values from a tcp header. We put any found values into the 9088 * tcpopt struct and return a bitmask saying which options were found. 9089 */ 9090 static int 9091 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9092 { 9093 uchar_t *endp; 9094 int len; 9095 uint32_t mss; 9096 uchar_t *up = (uchar_t *)tcph; 9097 int found = 0; 9098 int32_t sack_len; 9099 tcp_seq sack_begin, sack_end; 9100 tcp_t *tcp; 9101 9102 endp = up + TCP_HDR_LENGTH(tcph); 9103 up += TCP_MIN_HEADER_LENGTH; 9104 while (up < endp) { 9105 len = endp - up; 9106 switch (*up) { 9107 case TCPOPT_EOL: 9108 break; 9109 9110 case TCPOPT_NOP: 9111 up++; 9112 continue; 9113 9114 case TCPOPT_MAXSEG: 9115 if (len < TCPOPT_MAXSEG_LEN || 9116 up[1] != TCPOPT_MAXSEG_LEN) 9117 break; 9118 9119 mss = BE16_TO_U16(up+2); 9120 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9121 tcpopt->tcp_opt_mss = mss; 9122 found |= TCP_OPT_MSS_PRESENT; 9123 9124 up += TCPOPT_MAXSEG_LEN; 9125 continue; 9126 9127 case TCPOPT_WSCALE: 9128 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9129 break; 9130 9131 if (up[2] > TCP_MAX_WINSHIFT) 9132 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9133 else 9134 tcpopt->tcp_opt_wscale = up[2]; 9135 found |= TCP_OPT_WSCALE_PRESENT; 9136 9137 up += TCPOPT_WS_LEN; 9138 continue; 9139 9140 case TCPOPT_SACK_PERMITTED: 9141 if (len < TCPOPT_SACK_OK_LEN || 9142 up[1] != TCPOPT_SACK_OK_LEN) 9143 break; 9144 found |= TCP_OPT_SACK_OK_PRESENT; 9145 up += TCPOPT_SACK_OK_LEN; 9146 continue; 9147 9148 case TCPOPT_SACK: 9149 if (len <= 2 || up[1] <= 2 || len < up[1]) 9150 break; 9151 9152 /* If TCP is not interested in SACK blks... */ 9153 if ((tcp = tcpopt->tcp) == NULL) { 9154 up += up[1]; 9155 continue; 9156 } 9157 sack_len = up[1] - TCPOPT_HEADER_LEN; 9158 up += TCPOPT_HEADER_LEN; 9159 9160 /* 9161 * If the list is empty, allocate one and assume 9162 * nothing is sack'ed. 9163 */ 9164 ASSERT(tcp->tcp_sack_info != NULL); 9165 if (tcp->tcp_notsack_list == NULL) { 9166 tcp_notsack_update(&(tcp->tcp_notsack_list), 9167 tcp->tcp_suna, tcp->tcp_snxt, 9168 &(tcp->tcp_num_notsack_blk), 9169 &(tcp->tcp_cnt_notsack_list)); 9170 9171 /* 9172 * Make sure tcp_notsack_list is not NULL. 9173 * This happens when kmem_alloc(KM_NOSLEEP) 9174 * returns NULL. 9175 */ 9176 if (tcp->tcp_notsack_list == NULL) { 9177 up += sack_len; 9178 continue; 9179 } 9180 tcp->tcp_fack = tcp->tcp_suna; 9181 } 9182 9183 while (sack_len > 0) { 9184 if (up + 8 > endp) { 9185 up = endp; 9186 break; 9187 } 9188 sack_begin = BE32_TO_U32(up); 9189 up += 4; 9190 sack_end = BE32_TO_U32(up); 9191 up += 4; 9192 sack_len -= 8; 9193 /* 9194 * Bounds checking. Make sure the SACK 9195 * info is within tcp_suna and tcp_snxt. 9196 * If this SACK blk is out of bound, ignore 9197 * it but continue to parse the following 9198 * blks. 9199 */ 9200 if (SEQ_LEQ(sack_end, sack_begin) || 9201 SEQ_LT(sack_begin, tcp->tcp_suna) || 9202 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9203 continue; 9204 } 9205 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9206 sack_begin, sack_end, 9207 &(tcp->tcp_num_notsack_blk), 9208 &(tcp->tcp_cnt_notsack_list)); 9209 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9210 tcp->tcp_fack = sack_end; 9211 } 9212 } 9213 found |= TCP_OPT_SACK_PRESENT; 9214 continue; 9215 9216 case TCPOPT_TSTAMP: 9217 if (len < TCPOPT_TSTAMP_LEN || 9218 up[1] != TCPOPT_TSTAMP_LEN) 9219 break; 9220 9221 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9222 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9223 9224 found |= TCP_OPT_TSTAMP_PRESENT; 9225 9226 up += TCPOPT_TSTAMP_LEN; 9227 continue; 9228 9229 default: 9230 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9231 break; 9232 up += up[1]; 9233 continue; 9234 } 9235 break; 9236 } 9237 return (found); 9238 } 9239 9240 /* 9241 * Set the mss associated with a particular tcp based on its current value, 9242 * and a new one passed in. Observe minimums and maximums, and reset 9243 * other state variables that we want to view as multiples of mss. 9244 * 9245 * This function is called in various places mainly because 9246 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9247 * other side's SYN/SYN-ACK packet arrives. 9248 * 2) PMTUd may get us a new MSS. 9249 * 3) If the other side stops sending us timestamp option, we need to 9250 * increase the MSS size to use the extra bytes available. 9251 */ 9252 static void 9253 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9254 { 9255 uint32_t mss_max; 9256 9257 if (tcp->tcp_ipversion == IPV4_VERSION) 9258 mss_max = tcp_mss_max_ipv4; 9259 else 9260 mss_max = tcp_mss_max_ipv6; 9261 9262 if (mss < tcp_mss_min) 9263 mss = tcp_mss_min; 9264 if (mss > mss_max) 9265 mss = mss_max; 9266 /* 9267 * Unless naglim has been set by our client to 9268 * a non-mss value, force naglim to track mss. 9269 * This can help to aggregate small writes. 9270 */ 9271 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9272 tcp->tcp_naglim = mss; 9273 /* 9274 * TCP should be able to buffer at least 4 MSS data for obvious 9275 * performance reason. 9276 */ 9277 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9278 tcp->tcp_xmit_hiwater = mss << 2; 9279 9280 /* 9281 * Check if we need to apply the tcp_init_cwnd here. If 9282 * it is set and the MSS gets bigger (should not happen 9283 * normally), we need to adjust the resulting tcp_cwnd properly. 9284 * The new tcp_cwnd should not get bigger. 9285 */ 9286 if (tcp->tcp_init_cwnd == 0) { 9287 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9288 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9289 } else { 9290 if (tcp->tcp_mss < mss) { 9291 tcp->tcp_cwnd = MAX(1, 9292 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9293 } else { 9294 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9295 } 9296 } 9297 tcp->tcp_mss = mss; 9298 tcp->tcp_cwnd_cnt = 0; 9299 (void) tcp_maxpsz_set(tcp, B_TRUE); 9300 } 9301 9302 static int 9303 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9304 { 9305 tcp_t *tcp = NULL; 9306 conn_t *connp; 9307 int err; 9308 dev_t conn_dev; 9309 zoneid_t zoneid = getzoneid(); 9310 9311 /* 9312 * Special case for install: miniroot needs to be able to access files 9313 * via NFS as though it were always in the global zone. 9314 */ 9315 if (credp == kcred && nfs_global_client_only != 0) 9316 zoneid = GLOBAL_ZONEID; 9317 9318 if (q->q_ptr != NULL) 9319 return (0); 9320 9321 if (sflag == MODOPEN) { 9322 /* 9323 * This is a special case. The purpose of a modopen 9324 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9325 * through for MIB browsers. Everything else is failed. 9326 */ 9327 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9328 9329 if (connp == NULL) 9330 return (ENOMEM); 9331 9332 connp->conn_flags |= IPCL_TCPMOD; 9333 connp->conn_cred = credp; 9334 connp->conn_zoneid = zoneid; 9335 q->q_ptr = WR(q)->q_ptr = connp; 9336 crhold(credp); 9337 q->q_qinfo = &tcp_mod_rinit; 9338 WR(q)->q_qinfo = &tcp_mod_winit; 9339 qprocson(q); 9340 return (0); 9341 } 9342 9343 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9344 return (EBUSY); 9345 9346 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9347 9348 if (flag & SO_ACCEPTOR) { 9349 q->q_qinfo = &tcp_acceptor_rinit; 9350 q->q_ptr = (void *)conn_dev; 9351 WR(q)->q_qinfo = &tcp_acceptor_winit; 9352 WR(q)->q_ptr = (void *)conn_dev; 9353 qprocson(q); 9354 return (0); 9355 } 9356 9357 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9358 if (connp == NULL) { 9359 inet_minor_free(ip_minor_arena, conn_dev); 9360 q->q_ptr = NULL; 9361 return (ENOSR); 9362 } 9363 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9364 tcp = connp->conn_tcp; 9365 9366 q->q_ptr = WR(q)->q_ptr = connp; 9367 if (getmajor(*devp) == TCP6_MAJ) { 9368 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9369 connp->conn_send = ip_output_v6; 9370 connp->conn_af_isv6 = B_TRUE; 9371 connp->conn_pkt_isv6 = B_TRUE; 9372 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9373 tcp->tcp_ipversion = IPV6_VERSION; 9374 tcp->tcp_family = AF_INET6; 9375 tcp->tcp_mss = tcp_mss_def_ipv6; 9376 } else { 9377 connp->conn_flags |= IPCL_TCP4; 9378 connp->conn_send = ip_output; 9379 connp->conn_af_isv6 = B_FALSE; 9380 connp->conn_pkt_isv6 = B_FALSE; 9381 tcp->tcp_ipversion = IPV4_VERSION; 9382 tcp->tcp_family = AF_INET; 9383 tcp->tcp_mss = tcp_mss_def_ipv4; 9384 } 9385 9386 /* 9387 * TCP keeps a copy of cred for cache locality reasons but 9388 * we put a reference only once. If connp->conn_cred 9389 * becomes invalid, tcp_cred should also be set to NULL. 9390 */ 9391 tcp->tcp_cred = connp->conn_cred = credp; 9392 crhold(connp->conn_cred); 9393 tcp->tcp_cpid = curproc->p_pid; 9394 connp->conn_zoneid = zoneid; 9395 connp->conn_mlp_type = mlptSingle; 9396 connp->conn_ulp_labeled = !is_system_labeled(); 9397 9398 /* 9399 * If the caller has the process-wide flag set, then default to MAC 9400 * exempt mode. This allows read-down to unlabeled hosts. 9401 */ 9402 if (getpflags(NET_MAC_AWARE, credp) != 0) 9403 connp->conn_mac_exempt = B_TRUE; 9404 9405 connp->conn_dev = conn_dev; 9406 9407 ASSERT(q->q_qinfo == &tcp_rinit); 9408 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9409 9410 if (flag & SO_SOCKSTR) { 9411 /* 9412 * No need to insert a socket in tcp acceptor hash. 9413 * If it was a socket acceptor stream, we dealt with 9414 * it above. A socket listener can never accept a 9415 * connection and doesn't need acceptor_id. 9416 */ 9417 connp->conn_flags |= IPCL_SOCKET; 9418 tcp->tcp_issocket = 1; 9419 WR(q)->q_qinfo = &tcp_sock_winit; 9420 } else { 9421 #ifdef _ILP32 9422 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9423 #else 9424 tcp->tcp_acceptor_id = conn_dev; 9425 #endif /* _ILP32 */ 9426 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9427 } 9428 9429 if (tcp_trace) 9430 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9431 9432 err = tcp_init(tcp, q); 9433 if (err != 0) { 9434 inet_minor_free(ip_minor_arena, connp->conn_dev); 9435 tcp_acceptor_hash_remove(tcp); 9436 CONN_DEC_REF(connp); 9437 q->q_ptr = WR(q)->q_ptr = NULL; 9438 return (err); 9439 } 9440 9441 RD(q)->q_hiwat = tcp_recv_hiwat; 9442 tcp->tcp_rwnd = tcp_recv_hiwat; 9443 9444 /* Non-zero default values */ 9445 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9446 /* 9447 * Put the ref for TCP. Ref for IP was already put 9448 * by ipcl_conn_create. Also Make the conn_t globally 9449 * visible to walkers 9450 */ 9451 mutex_enter(&connp->conn_lock); 9452 CONN_INC_REF_LOCKED(connp); 9453 ASSERT(connp->conn_ref == 2); 9454 connp->conn_state_flags &= ~CONN_INCIPIENT; 9455 mutex_exit(&connp->conn_lock); 9456 9457 qprocson(q); 9458 return (0); 9459 } 9460 9461 /* 9462 * Some TCP options can be "set" by requesting them in the option 9463 * buffer. This is needed for XTI feature test though we do not 9464 * allow it in general. We interpret that this mechanism is more 9465 * applicable to OSI protocols and need not be allowed in general. 9466 * This routine filters out options for which it is not allowed (most) 9467 * and lets through those (few) for which it is. [ The XTI interface 9468 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9469 * ever implemented will have to be allowed here ]. 9470 */ 9471 static boolean_t 9472 tcp_allow_connopt_set(int level, int name) 9473 { 9474 9475 switch (level) { 9476 case IPPROTO_TCP: 9477 switch (name) { 9478 case TCP_NODELAY: 9479 return (B_TRUE); 9480 default: 9481 return (B_FALSE); 9482 } 9483 /*NOTREACHED*/ 9484 default: 9485 return (B_FALSE); 9486 } 9487 /*NOTREACHED*/ 9488 } 9489 9490 /* 9491 * This routine gets default values of certain options whose default 9492 * values are maintained by protocol specific code 9493 */ 9494 /* ARGSUSED */ 9495 int 9496 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9497 { 9498 int32_t *i1 = (int32_t *)ptr; 9499 9500 switch (level) { 9501 case IPPROTO_TCP: 9502 switch (name) { 9503 case TCP_NOTIFY_THRESHOLD: 9504 *i1 = tcp_ip_notify_interval; 9505 break; 9506 case TCP_ABORT_THRESHOLD: 9507 *i1 = tcp_ip_abort_interval; 9508 break; 9509 case TCP_CONN_NOTIFY_THRESHOLD: 9510 *i1 = tcp_ip_notify_cinterval; 9511 break; 9512 case TCP_CONN_ABORT_THRESHOLD: 9513 *i1 = tcp_ip_abort_cinterval; 9514 break; 9515 default: 9516 return (-1); 9517 } 9518 break; 9519 case IPPROTO_IP: 9520 switch (name) { 9521 case IP_TTL: 9522 *i1 = tcp_ipv4_ttl; 9523 break; 9524 default: 9525 return (-1); 9526 } 9527 break; 9528 case IPPROTO_IPV6: 9529 switch (name) { 9530 case IPV6_UNICAST_HOPS: 9531 *i1 = tcp_ipv6_hoplimit; 9532 break; 9533 default: 9534 return (-1); 9535 } 9536 break; 9537 default: 9538 return (-1); 9539 } 9540 return (sizeof (int)); 9541 } 9542 9543 9544 /* 9545 * TCP routine to get the values of options. 9546 */ 9547 int 9548 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9549 { 9550 int *i1 = (int *)ptr; 9551 conn_t *connp = Q_TO_CONN(q); 9552 tcp_t *tcp = connp->conn_tcp; 9553 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9554 9555 switch (level) { 9556 case SOL_SOCKET: 9557 switch (name) { 9558 case SO_LINGER: { 9559 struct linger *lgr = (struct linger *)ptr; 9560 9561 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9562 lgr->l_linger = tcp->tcp_lingertime; 9563 } 9564 return (sizeof (struct linger)); 9565 case SO_DEBUG: 9566 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9567 break; 9568 case SO_KEEPALIVE: 9569 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9570 break; 9571 case SO_DONTROUTE: 9572 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9573 break; 9574 case SO_USELOOPBACK: 9575 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9576 break; 9577 case SO_BROADCAST: 9578 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9579 break; 9580 case SO_REUSEADDR: 9581 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9582 break; 9583 case SO_OOBINLINE: 9584 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9585 break; 9586 case SO_DGRAM_ERRIND: 9587 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9588 break; 9589 case SO_TYPE: 9590 *i1 = SOCK_STREAM; 9591 break; 9592 case SO_SNDBUF: 9593 *i1 = tcp->tcp_xmit_hiwater; 9594 break; 9595 case SO_RCVBUF: 9596 *i1 = RD(q)->q_hiwat; 9597 break; 9598 case SO_SND_COPYAVOID: 9599 *i1 = tcp->tcp_snd_zcopy_on ? 9600 SO_SND_COPYAVOID : 0; 9601 break; 9602 case SO_ALLZONES: 9603 *i1 = connp->conn_allzones ? 1 : 0; 9604 break; 9605 case SO_ANON_MLP: 9606 *i1 = connp->conn_anon_mlp; 9607 break; 9608 case SO_MAC_EXEMPT: 9609 *i1 = connp->conn_mac_exempt; 9610 break; 9611 case SO_EXCLBIND: 9612 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9613 break; 9614 default: 9615 return (-1); 9616 } 9617 break; 9618 case IPPROTO_TCP: 9619 switch (name) { 9620 case TCP_NODELAY: 9621 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9622 break; 9623 case TCP_MAXSEG: 9624 *i1 = tcp->tcp_mss; 9625 break; 9626 case TCP_NOTIFY_THRESHOLD: 9627 *i1 = (int)tcp->tcp_first_timer_threshold; 9628 break; 9629 case TCP_ABORT_THRESHOLD: 9630 *i1 = tcp->tcp_second_timer_threshold; 9631 break; 9632 case TCP_CONN_NOTIFY_THRESHOLD: 9633 *i1 = tcp->tcp_first_ctimer_threshold; 9634 break; 9635 case TCP_CONN_ABORT_THRESHOLD: 9636 *i1 = tcp->tcp_second_ctimer_threshold; 9637 break; 9638 case TCP_RECVDSTADDR: 9639 *i1 = tcp->tcp_recvdstaddr; 9640 break; 9641 case TCP_ANONPRIVBIND: 9642 *i1 = tcp->tcp_anon_priv_bind; 9643 break; 9644 case TCP_EXCLBIND: 9645 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9646 break; 9647 case TCP_INIT_CWND: 9648 *i1 = tcp->tcp_init_cwnd; 9649 break; 9650 case TCP_KEEPALIVE_THRESHOLD: 9651 *i1 = tcp->tcp_ka_interval; 9652 break; 9653 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9654 *i1 = tcp->tcp_ka_abort_thres; 9655 break; 9656 case TCP_CORK: 9657 *i1 = tcp->tcp_cork; 9658 break; 9659 default: 9660 return (-1); 9661 } 9662 break; 9663 case IPPROTO_IP: 9664 if (tcp->tcp_family != AF_INET) 9665 return (-1); 9666 switch (name) { 9667 case IP_OPTIONS: 9668 case T_IP_OPTIONS: { 9669 /* 9670 * This is compatible with BSD in that in only return 9671 * the reverse source route with the final destination 9672 * as the last entry. The first 4 bytes of the option 9673 * will contain the final destination. 9674 */ 9675 int opt_len; 9676 9677 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9678 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9679 ASSERT(opt_len >= 0); 9680 /* Caller ensures enough space */ 9681 if (opt_len > 0) { 9682 /* 9683 * TODO: Do we have to handle getsockopt on an 9684 * initiator as well? 9685 */ 9686 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9687 } 9688 return (0); 9689 } 9690 case IP_TOS: 9691 case T_IP_TOS: 9692 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9693 break; 9694 case IP_TTL: 9695 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9696 break; 9697 case IP_NEXTHOP: 9698 /* Handled at IP level */ 9699 return (-EINVAL); 9700 default: 9701 return (-1); 9702 } 9703 break; 9704 case IPPROTO_IPV6: 9705 /* 9706 * IPPROTO_IPV6 options are only supported for sockets 9707 * that are using IPv6 on the wire. 9708 */ 9709 if (tcp->tcp_ipversion != IPV6_VERSION) { 9710 return (-1); 9711 } 9712 switch (name) { 9713 case IPV6_UNICAST_HOPS: 9714 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9715 break; /* goto sizeof (int) option return */ 9716 case IPV6_BOUND_IF: 9717 /* Zero if not set */ 9718 *i1 = tcp->tcp_bound_if; 9719 break; /* goto sizeof (int) option return */ 9720 case IPV6_RECVPKTINFO: 9721 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9722 *i1 = 1; 9723 else 9724 *i1 = 0; 9725 break; /* goto sizeof (int) option return */ 9726 case IPV6_RECVTCLASS: 9727 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9728 *i1 = 1; 9729 else 9730 *i1 = 0; 9731 break; /* goto sizeof (int) option return */ 9732 case IPV6_RECVHOPLIMIT: 9733 if (tcp->tcp_ipv6_recvancillary & 9734 TCP_IPV6_RECVHOPLIMIT) 9735 *i1 = 1; 9736 else 9737 *i1 = 0; 9738 break; /* goto sizeof (int) option return */ 9739 case IPV6_RECVHOPOPTS: 9740 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9741 *i1 = 1; 9742 else 9743 *i1 = 0; 9744 break; /* goto sizeof (int) option return */ 9745 case IPV6_RECVDSTOPTS: 9746 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9747 *i1 = 1; 9748 else 9749 *i1 = 0; 9750 break; /* goto sizeof (int) option return */ 9751 case _OLD_IPV6_RECVDSTOPTS: 9752 if (tcp->tcp_ipv6_recvancillary & 9753 TCP_OLD_IPV6_RECVDSTOPTS) 9754 *i1 = 1; 9755 else 9756 *i1 = 0; 9757 break; /* goto sizeof (int) option return */ 9758 case IPV6_RECVRTHDR: 9759 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9760 *i1 = 1; 9761 else 9762 *i1 = 0; 9763 break; /* goto sizeof (int) option return */ 9764 case IPV6_RECVRTHDRDSTOPTS: 9765 if (tcp->tcp_ipv6_recvancillary & 9766 TCP_IPV6_RECVRTDSTOPTS) 9767 *i1 = 1; 9768 else 9769 *i1 = 0; 9770 break; /* goto sizeof (int) option return */ 9771 case IPV6_PKTINFO: { 9772 /* XXX assumes that caller has room for max size! */ 9773 struct in6_pktinfo *pkti; 9774 9775 pkti = (struct in6_pktinfo *)ptr; 9776 if (ipp->ipp_fields & IPPF_IFINDEX) 9777 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9778 else 9779 pkti->ipi6_ifindex = 0; 9780 if (ipp->ipp_fields & IPPF_ADDR) 9781 pkti->ipi6_addr = ipp->ipp_addr; 9782 else 9783 pkti->ipi6_addr = ipv6_all_zeros; 9784 return (sizeof (struct in6_pktinfo)); 9785 } 9786 case IPV6_TCLASS: 9787 if (ipp->ipp_fields & IPPF_TCLASS) 9788 *i1 = ipp->ipp_tclass; 9789 else 9790 *i1 = IPV6_FLOW_TCLASS( 9791 IPV6_DEFAULT_VERS_AND_FLOW); 9792 break; /* goto sizeof (int) option return */ 9793 case IPV6_NEXTHOP: { 9794 sin6_t *sin6 = (sin6_t *)ptr; 9795 9796 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9797 return (0); 9798 *sin6 = sin6_null; 9799 sin6->sin6_family = AF_INET6; 9800 sin6->sin6_addr = ipp->ipp_nexthop; 9801 return (sizeof (sin6_t)); 9802 } 9803 case IPV6_HOPOPTS: 9804 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9805 return (0); 9806 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9807 return (0); 9808 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9809 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9810 if (tcp->tcp_label_len > 0) { 9811 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9812 ptr[1] = (ipp->ipp_hopoptslen - 9813 tcp->tcp_label_len + 7) / 8 - 1; 9814 } 9815 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9816 case IPV6_RTHDRDSTOPTS: 9817 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9818 return (0); 9819 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9820 return (ipp->ipp_rtdstoptslen); 9821 case IPV6_RTHDR: 9822 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9823 return (0); 9824 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9825 return (ipp->ipp_rthdrlen); 9826 case IPV6_DSTOPTS: 9827 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9828 return (0); 9829 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9830 return (ipp->ipp_dstoptslen); 9831 case IPV6_SRC_PREFERENCES: 9832 return (ip6_get_src_preferences(connp, 9833 (uint32_t *)ptr)); 9834 case IPV6_PATHMTU: { 9835 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9836 9837 if (tcp->tcp_state < TCPS_ESTABLISHED) 9838 return (-1); 9839 9840 return (ip_fill_mtuinfo(&connp->conn_remv6, 9841 connp->conn_fport, mtuinfo)); 9842 } 9843 default: 9844 return (-1); 9845 } 9846 break; 9847 default: 9848 return (-1); 9849 } 9850 return (sizeof (int)); 9851 } 9852 9853 /* 9854 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9855 * Parameters are assumed to be verified by the caller. 9856 */ 9857 /* ARGSUSED */ 9858 int 9859 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9860 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9861 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9862 { 9863 conn_t *connp = Q_TO_CONN(q); 9864 tcp_t *tcp = connp->conn_tcp; 9865 int *i1 = (int *)invalp; 9866 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9867 boolean_t checkonly; 9868 int reterr; 9869 9870 switch (optset_context) { 9871 case SETFN_OPTCOM_CHECKONLY: 9872 checkonly = B_TRUE; 9873 /* 9874 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9875 * inlen != 0 implies value supplied and 9876 * we have to "pretend" to set it. 9877 * inlen == 0 implies that there is no 9878 * value part in T_CHECK request and just validation 9879 * done elsewhere should be enough, we just return here. 9880 */ 9881 if (inlen == 0) { 9882 *outlenp = 0; 9883 return (0); 9884 } 9885 break; 9886 case SETFN_OPTCOM_NEGOTIATE: 9887 checkonly = B_FALSE; 9888 break; 9889 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9890 case SETFN_CONN_NEGOTIATE: 9891 checkonly = B_FALSE; 9892 /* 9893 * Negotiating local and "association-related" options 9894 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9895 * primitives is allowed by XTI, but we choose 9896 * to not implement this style negotiation for Internet 9897 * protocols (We interpret it is a must for OSI world but 9898 * optional for Internet protocols) for all options. 9899 * [ Will do only for the few options that enable test 9900 * suites that our XTI implementation of this feature 9901 * works for transports that do allow it ] 9902 */ 9903 if (!tcp_allow_connopt_set(level, name)) { 9904 *outlenp = 0; 9905 return (EINVAL); 9906 } 9907 break; 9908 default: 9909 /* 9910 * We should never get here 9911 */ 9912 *outlenp = 0; 9913 return (EINVAL); 9914 } 9915 9916 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9917 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9918 9919 /* 9920 * For TCP, we should have no ancillary data sent down 9921 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9922 * has to be zero. 9923 */ 9924 ASSERT(thisdg_attrs == NULL); 9925 9926 /* 9927 * For fixed length options, no sanity check 9928 * of passed in length is done. It is assumed *_optcom_req() 9929 * routines do the right thing. 9930 */ 9931 9932 switch (level) { 9933 case SOL_SOCKET: 9934 switch (name) { 9935 case SO_LINGER: { 9936 struct linger *lgr = (struct linger *)invalp; 9937 9938 if (!checkonly) { 9939 if (lgr->l_onoff) { 9940 tcp->tcp_linger = 1; 9941 tcp->tcp_lingertime = lgr->l_linger; 9942 } else { 9943 tcp->tcp_linger = 0; 9944 tcp->tcp_lingertime = 0; 9945 } 9946 /* struct copy */ 9947 *(struct linger *)outvalp = *lgr; 9948 } else { 9949 if (!lgr->l_onoff) { 9950 ((struct linger *)outvalp)->l_onoff = 0; 9951 ((struct linger *)outvalp)->l_linger = 0; 9952 } else { 9953 /* struct copy */ 9954 *(struct linger *)outvalp = *lgr; 9955 } 9956 } 9957 *outlenp = sizeof (struct linger); 9958 return (0); 9959 } 9960 case SO_DEBUG: 9961 if (!checkonly) 9962 tcp->tcp_debug = onoff; 9963 break; 9964 case SO_KEEPALIVE: 9965 if (checkonly) { 9966 /* T_CHECK case */ 9967 break; 9968 } 9969 9970 if (!onoff) { 9971 if (tcp->tcp_ka_enabled) { 9972 if (tcp->tcp_ka_tid != 0) { 9973 (void) TCP_TIMER_CANCEL(tcp, 9974 tcp->tcp_ka_tid); 9975 tcp->tcp_ka_tid = 0; 9976 } 9977 tcp->tcp_ka_enabled = 0; 9978 } 9979 break; 9980 } 9981 if (!tcp->tcp_ka_enabled) { 9982 /* Crank up the keepalive timer */ 9983 tcp->tcp_ka_last_intrvl = 0; 9984 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9985 tcp_keepalive_killer, 9986 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9987 tcp->tcp_ka_enabled = 1; 9988 } 9989 break; 9990 case SO_DONTROUTE: 9991 /* 9992 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 9993 * only of interest to IP. We track them here only so 9994 * that we can report their current value. 9995 */ 9996 if (!checkonly) { 9997 tcp->tcp_dontroute = onoff; 9998 tcp->tcp_connp->conn_dontroute = onoff; 9999 } 10000 break; 10001 case SO_USELOOPBACK: 10002 if (!checkonly) { 10003 tcp->tcp_useloopback = onoff; 10004 tcp->tcp_connp->conn_loopback = onoff; 10005 } 10006 break; 10007 case SO_BROADCAST: 10008 if (!checkonly) { 10009 tcp->tcp_broadcast = onoff; 10010 tcp->tcp_connp->conn_broadcast = onoff; 10011 } 10012 break; 10013 case SO_REUSEADDR: 10014 if (!checkonly) { 10015 tcp->tcp_reuseaddr = onoff; 10016 tcp->tcp_connp->conn_reuseaddr = onoff; 10017 } 10018 break; 10019 case SO_OOBINLINE: 10020 if (!checkonly) 10021 tcp->tcp_oobinline = onoff; 10022 break; 10023 case SO_DGRAM_ERRIND: 10024 if (!checkonly) 10025 tcp->tcp_dgram_errind = onoff; 10026 break; 10027 case SO_SNDBUF: { 10028 tcp_t *peer_tcp; 10029 10030 if (*i1 > tcp_max_buf) { 10031 *outlenp = 0; 10032 return (ENOBUFS); 10033 } 10034 if (checkonly) 10035 break; 10036 10037 tcp->tcp_xmit_hiwater = *i1; 10038 if (tcp_snd_lowat_fraction != 0) 10039 tcp->tcp_xmit_lowater = 10040 tcp->tcp_xmit_hiwater / 10041 tcp_snd_lowat_fraction; 10042 (void) tcp_maxpsz_set(tcp, B_TRUE); 10043 /* 10044 * If we are flow-controlled, recheck the condition. 10045 * There are apps that increase SO_SNDBUF size when 10046 * flow-controlled (EWOULDBLOCK), and expect the flow 10047 * control condition to be lifted right away. 10048 * 10049 * For the fused tcp loopback case, in order to avoid 10050 * a race with the peer's tcp_fuse_rrw() we need to 10051 * hold its fuse_lock while accessing tcp_flow_stopped. 10052 */ 10053 peer_tcp = tcp->tcp_loopback_peer; 10054 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 10055 if (tcp->tcp_fused) 10056 mutex_enter(&peer_tcp->tcp_fuse_lock); 10057 10058 if (tcp->tcp_flow_stopped && 10059 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10060 tcp_clrqfull(tcp); 10061 } 10062 if (tcp->tcp_fused) 10063 mutex_exit(&peer_tcp->tcp_fuse_lock); 10064 break; 10065 } 10066 case SO_RCVBUF: 10067 if (*i1 > tcp_max_buf) { 10068 *outlenp = 0; 10069 return (ENOBUFS); 10070 } 10071 /* Silently ignore zero */ 10072 if (!checkonly && *i1 != 0) { 10073 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10074 (void) tcp_rwnd_set(tcp, *i1); 10075 } 10076 /* 10077 * XXX should we return the rwnd here 10078 * and tcp_opt_get ? 10079 */ 10080 break; 10081 case SO_SND_COPYAVOID: 10082 if (!checkonly) { 10083 /* we only allow enable at most once for now */ 10084 if (tcp->tcp_loopback || 10085 (!tcp->tcp_snd_zcopy_aware && 10086 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10087 *outlenp = 0; 10088 return (EOPNOTSUPP); 10089 } 10090 tcp->tcp_snd_zcopy_aware = 1; 10091 } 10092 break; 10093 case SO_ALLZONES: 10094 /* Handled at the IP level */ 10095 return (-EINVAL); 10096 case SO_ANON_MLP: 10097 if (!checkonly) { 10098 mutex_enter(&connp->conn_lock); 10099 connp->conn_anon_mlp = onoff; 10100 mutex_exit(&connp->conn_lock); 10101 } 10102 break; 10103 case SO_MAC_EXEMPT: 10104 if (secpolicy_net_mac_aware(cr) != 0 || 10105 IPCL_IS_BOUND(connp)) 10106 return (EACCES); 10107 if (!checkonly) { 10108 mutex_enter(&connp->conn_lock); 10109 connp->conn_mac_exempt = onoff; 10110 mutex_exit(&connp->conn_lock); 10111 } 10112 break; 10113 case SO_EXCLBIND: 10114 if (!checkonly) 10115 tcp->tcp_exclbind = onoff; 10116 break; 10117 default: 10118 *outlenp = 0; 10119 return (EINVAL); 10120 } 10121 break; 10122 case IPPROTO_TCP: 10123 switch (name) { 10124 case TCP_NODELAY: 10125 if (!checkonly) 10126 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10127 break; 10128 case TCP_NOTIFY_THRESHOLD: 10129 if (!checkonly) 10130 tcp->tcp_first_timer_threshold = *i1; 10131 break; 10132 case TCP_ABORT_THRESHOLD: 10133 if (!checkonly) 10134 tcp->tcp_second_timer_threshold = *i1; 10135 break; 10136 case TCP_CONN_NOTIFY_THRESHOLD: 10137 if (!checkonly) 10138 tcp->tcp_first_ctimer_threshold = *i1; 10139 break; 10140 case TCP_CONN_ABORT_THRESHOLD: 10141 if (!checkonly) 10142 tcp->tcp_second_ctimer_threshold = *i1; 10143 break; 10144 case TCP_RECVDSTADDR: 10145 if (tcp->tcp_state > TCPS_LISTEN) 10146 return (EOPNOTSUPP); 10147 if (!checkonly) 10148 tcp->tcp_recvdstaddr = onoff; 10149 break; 10150 case TCP_ANONPRIVBIND: 10151 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10152 *outlenp = 0; 10153 return (reterr); 10154 } 10155 if (!checkonly) { 10156 tcp->tcp_anon_priv_bind = onoff; 10157 } 10158 break; 10159 case TCP_EXCLBIND: 10160 if (!checkonly) 10161 tcp->tcp_exclbind = onoff; 10162 break; /* goto sizeof (int) option return */ 10163 case TCP_INIT_CWND: { 10164 uint32_t init_cwnd = *((uint32_t *)invalp); 10165 10166 if (checkonly) 10167 break; 10168 10169 /* 10170 * Only allow socket with network configuration 10171 * privilege to set the initial cwnd to be larger 10172 * than allowed by RFC 3390. 10173 */ 10174 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10175 tcp->tcp_init_cwnd = init_cwnd; 10176 break; 10177 } 10178 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 10179 *outlenp = 0; 10180 return (reterr); 10181 } 10182 if (init_cwnd > TCP_MAX_INIT_CWND) { 10183 *outlenp = 0; 10184 return (EINVAL); 10185 } 10186 tcp->tcp_init_cwnd = init_cwnd; 10187 break; 10188 } 10189 case TCP_KEEPALIVE_THRESHOLD: 10190 if (checkonly) 10191 break; 10192 10193 if (*i1 < tcp_keepalive_interval_low || 10194 *i1 > tcp_keepalive_interval_high) { 10195 *outlenp = 0; 10196 return (EINVAL); 10197 } 10198 if (*i1 != tcp->tcp_ka_interval) { 10199 tcp->tcp_ka_interval = *i1; 10200 /* 10201 * Check if we need to restart the 10202 * keepalive timer. 10203 */ 10204 if (tcp->tcp_ka_tid != 0) { 10205 ASSERT(tcp->tcp_ka_enabled); 10206 (void) TCP_TIMER_CANCEL(tcp, 10207 tcp->tcp_ka_tid); 10208 tcp->tcp_ka_last_intrvl = 0; 10209 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10210 tcp_keepalive_killer, 10211 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10212 } 10213 } 10214 break; 10215 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10216 if (!checkonly) { 10217 if (*i1 < tcp_keepalive_abort_interval_low || 10218 *i1 > tcp_keepalive_abort_interval_high) { 10219 *outlenp = 0; 10220 return (EINVAL); 10221 } 10222 tcp->tcp_ka_abort_thres = *i1; 10223 } 10224 break; 10225 case TCP_CORK: 10226 if (!checkonly) { 10227 /* 10228 * if tcp->tcp_cork was set and is now 10229 * being unset, we have to make sure that 10230 * the remaining data gets sent out. Also 10231 * unset tcp->tcp_cork so that tcp_wput_data() 10232 * can send data even if it is less than mss 10233 */ 10234 if (tcp->tcp_cork && onoff == 0 && 10235 tcp->tcp_unsent > 0) { 10236 tcp->tcp_cork = B_FALSE; 10237 tcp_wput_data(tcp, NULL, B_FALSE); 10238 } 10239 tcp->tcp_cork = onoff; 10240 } 10241 break; 10242 default: 10243 *outlenp = 0; 10244 return (EINVAL); 10245 } 10246 break; 10247 case IPPROTO_IP: 10248 if (tcp->tcp_family != AF_INET) { 10249 *outlenp = 0; 10250 return (ENOPROTOOPT); 10251 } 10252 switch (name) { 10253 case IP_OPTIONS: 10254 case T_IP_OPTIONS: 10255 reterr = tcp_opt_set_header(tcp, checkonly, 10256 invalp, inlen); 10257 if (reterr) { 10258 *outlenp = 0; 10259 return (reterr); 10260 } 10261 /* OK return - copy input buffer into output buffer */ 10262 if (invalp != outvalp) { 10263 /* don't trust bcopy for identical src/dst */ 10264 bcopy(invalp, outvalp, inlen); 10265 } 10266 *outlenp = inlen; 10267 return (0); 10268 case IP_TOS: 10269 case T_IP_TOS: 10270 if (!checkonly) { 10271 tcp->tcp_ipha->ipha_type_of_service = 10272 (uchar_t)*i1; 10273 tcp->tcp_tos = (uchar_t)*i1; 10274 } 10275 break; 10276 case IP_TTL: 10277 if (!checkonly) { 10278 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10279 tcp->tcp_ttl = (uchar_t)*i1; 10280 } 10281 break; 10282 case IP_BOUND_IF: 10283 case IP_NEXTHOP: 10284 /* Handled at the IP level */ 10285 return (-EINVAL); 10286 case IP_SEC_OPT: 10287 /* 10288 * We should not allow policy setting after 10289 * we start listening for connections. 10290 */ 10291 if (tcp->tcp_state == TCPS_LISTEN) { 10292 return (EINVAL); 10293 } else { 10294 /* Handled at the IP level */ 10295 return (-EINVAL); 10296 } 10297 default: 10298 *outlenp = 0; 10299 return (EINVAL); 10300 } 10301 break; 10302 case IPPROTO_IPV6: { 10303 ip6_pkt_t *ipp; 10304 10305 /* 10306 * IPPROTO_IPV6 options are only supported for sockets 10307 * that are using IPv6 on the wire. 10308 */ 10309 if (tcp->tcp_ipversion != IPV6_VERSION) { 10310 *outlenp = 0; 10311 return (ENOPROTOOPT); 10312 } 10313 /* 10314 * Only sticky options; no ancillary data 10315 */ 10316 ASSERT(thisdg_attrs == NULL); 10317 ipp = &tcp->tcp_sticky_ipp; 10318 10319 switch (name) { 10320 case IPV6_UNICAST_HOPS: 10321 /* -1 means use default */ 10322 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10323 *outlenp = 0; 10324 return (EINVAL); 10325 } 10326 if (!checkonly) { 10327 if (*i1 == -1) { 10328 tcp->tcp_ip6h->ip6_hops = 10329 ipp->ipp_unicast_hops = 10330 (uint8_t)tcp_ipv6_hoplimit; 10331 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10332 /* Pass modified value to IP. */ 10333 *i1 = tcp->tcp_ip6h->ip6_hops; 10334 } else { 10335 tcp->tcp_ip6h->ip6_hops = 10336 ipp->ipp_unicast_hops = 10337 (uint8_t)*i1; 10338 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10339 } 10340 reterr = tcp_build_hdrs(q, tcp); 10341 if (reterr != 0) 10342 return (reterr); 10343 } 10344 break; 10345 case IPV6_BOUND_IF: 10346 if (!checkonly) { 10347 int error = 0; 10348 10349 tcp->tcp_bound_if = *i1; 10350 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10351 B_TRUE, checkonly, level, name, mblk); 10352 if (error != 0) { 10353 *outlenp = 0; 10354 return (error); 10355 } 10356 } 10357 break; 10358 /* 10359 * Set boolean switches for ancillary data delivery 10360 */ 10361 case IPV6_RECVPKTINFO: 10362 if (!checkonly) { 10363 if (onoff) 10364 tcp->tcp_ipv6_recvancillary |= 10365 TCP_IPV6_RECVPKTINFO; 10366 else 10367 tcp->tcp_ipv6_recvancillary &= 10368 ~TCP_IPV6_RECVPKTINFO; 10369 /* Force it to be sent up with the next msg */ 10370 tcp->tcp_recvifindex = 0; 10371 } 10372 break; 10373 case IPV6_RECVTCLASS: 10374 if (!checkonly) { 10375 if (onoff) 10376 tcp->tcp_ipv6_recvancillary |= 10377 TCP_IPV6_RECVTCLASS; 10378 else 10379 tcp->tcp_ipv6_recvancillary &= 10380 ~TCP_IPV6_RECVTCLASS; 10381 } 10382 break; 10383 case IPV6_RECVHOPLIMIT: 10384 if (!checkonly) { 10385 if (onoff) 10386 tcp->tcp_ipv6_recvancillary |= 10387 TCP_IPV6_RECVHOPLIMIT; 10388 else 10389 tcp->tcp_ipv6_recvancillary &= 10390 ~TCP_IPV6_RECVHOPLIMIT; 10391 /* Force it to be sent up with the next msg */ 10392 tcp->tcp_recvhops = 0xffffffffU; 10393 } 10394 break; 10395 case IPV6_RECVHOPOPTS: 10396 if (!checkonly) { 10397 if (onoff) 10398 tcp->tcp_ipv6_recvancillary |= 10399 TCP_IPV6_RECVHOPOPTS; 10400 else 10401 tcp->tcp_ipv6_recvancillary &= 10402 ~TCP_IPV6_RECVHOPOPTS; 10403 } 10404 break; 10405 case IPV6_RECVDSTOPTS: 10406 if (!checkonly) { 10407 if (onoff) 10408 tcp->tcp_ipv6_recvancillary |= 10409 TCP_IPV6_RECVDSTOPTS; 10410 else 10411 tcp->tcp_ipv6_recvancillary &= 10412 ~TCP_IPV6_RECVDSTOPTS; 10413 } 10414 break; 10415 case _OLD_IPV6_RECVDSTOPTS: 10416 if (!checkonly) { 10417 if (onoff) 10418 tcp->tcp_ipv6_recvancillary |= 10419 TCP_OLD_IPV6_RECVDSTOPTS; 10420 else 10421 tcp->tcp_ipv6_recvancillary &= 10422 ~TCP_OLD_IPV6_RECVDSTOPTS; 10423 } 10424 break; 10425 case IPV6_RECVRTHDR: 10426 if (!checkonly) { 10427 if (onoff) 10428 tcp->tcp_ipv6_recvancillary |= 10429 TCP_IPV6_RECVRTHDR; 10430 else 10431 tcp->tcp_ipv6_recvancillary &= 10432 ~TCP_IPV6_RECVRTHDR; 10433 } 10434 break; 10435 case IPV6_RECVRTHDRDSTOPTS: 10436 if (!checkonly) { 10437 if (onoff) 10438 tcp->tcp_ipv6_recvancillary |= 10439 TCP_IPV6_RECVRTDSTOPTS; 10440 else 10441 tcp->tcp_ipv6_recvancillary &= 10442 ~TCP_IPV6_RECVRTDSTOPTS; 10443 } 10444 break; 10445 case IPV6_PKTINFO: 10446 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10447 return (EINVAL); 10448 if (checkonly) 10449 break; 10450 10451 if (inlen == 0) { 10452 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10453 } else { 10454 struct in6_pktinfo *pkti; 10455 10456 pkti = (struct in6_pktinfo *)invalp; 10457 /* 10458 * RFC 3542 states that ipi6_addr must be 10459 * the unspecified address when setting the 10460 * IPV6_PKTINFO sticky socket option on a 10461 * TCP socket. 10462 */ 10463 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10464 return (EINVAL); 10465 /* 10466 * ip6_set_pktinfo() validates the source 10467 * address and interface index. 10468 */ 10469 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10470 pkti, mblk); 10471 if (reterr != 0) 10472 return (reterr); 10473 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10474 ipp->ipp_addr = pkti->ipi6_addr; 10475 if (ipp->ipp_ifindex != 0) 10476 ipp->ipp_fields |= IPPF_IFINDEX; 10477 else 10478 ipp->ipp_fields &= ~IPPF_IFINDEX; 10479 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10480 ipp->ipp_fields |= IPPF_ADDR; 10481 else 10482 ipp->ipp_fields &= ~IPPF_ADDR; 10483 } 10484 reterr = tcp_build_hdrs(q, tcp); 10485 if (reterr != 0) 10486 return (reterr); 10487 break; 10488 case IPV6_TCLASS: 10489 if (inlen != 0 && inlen != sizeof (int)) 10490 return (EINVAL); 10491 if (checkonly) 10492 break; 10493 10494 if (inlen == 0) { 10495 ipp->ipp_fields &= ~IPPF_TCLASS; 10496 } else { 10497 if (*i1 > 255 || *i1 < -1) 10498 return (EINVAL); 10499 if (*i1 == -1) { 10500 ipp->ipp_tclass = 0; 10501 *i1 = 0; 10502 } else { 10503 ipp->ipp_tclass = *i1; 10504 } 10505 ipp->ipp_fields |= IPPF_TCLASS; 10506 } 10507 reterr = tcp_build_hdrs(q, tcp); 10508 if (reterr != 0) 10509 return (reterr); 10510 break; 10511 case IPV6_NEXTHOP: 10512 /* 10513 * IP will verify that the nexthop is reachable 10514 * and fail for sticky options. 10515 */ 10516 if (inlen != 0 && inlen != sizeof (sin6_t)) 10517 return (EINVAL); 10518 if (checkonly) 10519 break; 10520 10521 if (inlen == 0) { 10522 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10523 } else { 10524 sin6_t *sin6 = (sin6_t *)invalp; 10525 10526 if (sin6->sin6_family != AF_INET6) 10527 return (EAFNOSUPPORT); 10528 if (IN6_IS_ADDR_V4MAPPED( 10529 &sin6->sin6_addr)) 10530 return (EADDRNOTAVAIL); 10531 ipp->ipp_nexthop = sin6->sin6_addr; 10532 if (!IN6_IS_ADDR_UNSPECIFIED( 10533 &ipp->ipp_nexthop)) 10534 ipp->ipp_fields |= IPPF_NEXTHOP; 10535 else 10536 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10537 } 10538 reterr = tcp_build_hdrs(q, tcp); 10539 if (reterr != 0) 10540 return (reterr); 10541 break; 10542 case IPV6_HOPOPTS: { 10543 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10544 10545 /* 10546 * Sanity checks - minimum size, size a multiple of 10547 * eight bytes, and matching size passed in. 10548 */ 10549 if (inlen != 0 && 10550 inlen != (8 * (hopts->ip6h_len + 1))) 10551 return (EINVAL); 10552 10553 if (checkonly) 10554 break; 10555 10556 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10557 (uchar_t **)&ipp->ipp_hopopts, 10558 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10559 if (reterr != 0) 10560 return (reterr); 10561 if (ipp->ipp_hopoptslen == 0) 10562 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10563 else 10564 ipp->ipp_fields |= IPPF_HOPOPTS; 10565 reterr = tcp_build_hdrs(q, tcp); 10566 if (reterr != 0) 10567 return (reterr); 10568 break; 10569 } 10570 case IPV6_RTHDRDSTOPTS: { 10571 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10572 10573 /* 10574 * Sanity checks - minimum size, size a multiple of 10575 * eight bytes, and matching size passed in. 10576 */ 10577 if (inlen != 0 && 10578 inlen != (8 * (dopts->ip6d_len + 1))) 10579 return (EINVAL); 10580 10581 if (checkonly) 10582 break; 10583 10584 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10585 (uchar_t **)&ipp->ipp_rtdstopts, 10586 &ipp->ipp_rtdstoptslen, 0); 10587 if (reterr != 0) 10588 return (reterr); 10589 if (ipp->ipp_rtdstoptslen == 0) 10590 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10591 else 10592 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10593 reterr = tcp_build_hdrs(q, tcp); 10594 if (reterr != 0) 10595 return (reterr); 10596 break; 10597 } 10598 case IPV6_DSTOPTS: { 10599 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10600 10601 /* 10602 * Sanity checks - minimum size, size a multiple of 10603 * eight bytes, and matching size passed in. 10604 */ 10605 if (inlen != 0 && 10606 inlen != (8 * (dopts->ip6d_len + 1))) 10607 return (EINVAL); 10608 10609 if (checkonly) 10610 break; 10611 10612 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10613 (uchar_t **)&ipp->ipp_dstopts, 10614 &ipp->ipp_dstoptslen, 0); 10615 if (reterr != 0) 10616 return (reterr); 10617 if (ipp->ipp_dstoptslen == 0) 10618 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10619 else 10620 ipp->ipp_fields |= IPPF_DSTOPTS; 10621 reterr = tcp_build_hdrs(q, tcp); 10622 if (reterr != 0) 10623 return (reterr); 10624 break; 10625 } 10626 case IPV6_RTHDR: { 10627 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10628 10629 /* 10630 * Sanity checks - minimum size, size a multiple of 10631 * eight bytes, and matching size passed in. 10632 */ 10633 if (inlen != 0 && 10634 inlen != (8 * (rt->ip6r_len + 1))) 10635 return (EINVAL); 10636 10637 if (checkonly) 10638 break; 10639 10640 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10641 (uchar_t **)&ipp->ipp_rthdr, 10642 &ipp->ipp_rthdrlen, 0); 10643 if (reterr != 0) 10644 return (reterr); 10645 if (ipp->ipp_rthdrlen == 0) 10646 ipp->ipp_fields &= ~IPPF_RTHDR; 10647 else 10648 ipp->ipp_fields |= IPPF_RTHDR; 10649 reterr = tcp_build_hdrs(q, tcp); 10650 if (reterr != 0) 10651 return (reterr); 10652 break; 10653 } 10654 case IPV6_V6ONLY: 10655 if (!checkonly) 10656 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10657 break; 10658 case IPV6_USE_MIN_MTU: 10659 if (inlen != sizeof (int)) 10660 return (EINVAL); 10661 10662 if (*i1 < -1 || *i1 > 1) 10663 return (EINVAL); 10664 10665 if (checkonly) 10666 break; 10667 10668 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10669 ipp->ipp_use_min_mtu = *i1; 10670 break; 10671 case IPV6_BOUND_PIF: 10672 /* Handled at the IP level */ 10673 return (-EINVAL); 10674 case IPV6_SEC_OPT: 10675 /* 10676 * We should not allow policy setting after 10677 * we start listening for connections. 10678 */ 10679 if (tcp->tcp_state == TCPS_LISTEN) { 10680 return (EINVAL); 10681 } else { 10682 /* Handled at the IP level */ 10683 return (-EINVAL); 10684 } 10685 case IPV6_SRC_PREFERENCES: 10686 if (inlen != sizeof (uint32_t)) 10687 return (EINVAL); 10688 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10689 *(uint32_t *)invalp); 10690 if (reterr != 0) { 10691 *outlenp = 0; 10692 return (reterr); 10693 } 10694 break; 10695 default: 10696 *outlenp = 0; 10697 return (EINVAL); 10698 } 10699 break; 10700 } /* end IPPROTO_IPV6 */ 10701 default: 10702 *outlenp = 0; 10703 return (EINVAL); 10704 } 10705 /* 10706 * Common case of OK return with outval same as inval 10707 */ 10708 if (invalp != outvalp) { 10709 /* don't trust bcopy for identical src/dst */ 10710 (void) bcopy(invalp, outvalp, inlen); 10711 } 10712 *outlenp = inlen; 10713 return (0); 10714 } 10715 10716 /* 10717 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10718 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10719 * headers, and the maximum size tcp header (to avoid reallocation 10720 * on the fly for additional tcp options). 10721 * Returns failure if can't allocate memory. 10722 */ 10723 static int 10724 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10725 { 10726 char *hdrs; 10727 uint_t hdrs_len; 10728 ip6i_t *ip6i; 10729 char buf[TCP_MAX_HDR_LENGTH]; 10730 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10731 in6_addr_t src, dst; 10732 10733 /* 10734 * save the existing tcp header and source/dest IP addresses 10735 */ 10736 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10737 src = tcp->tcp_ip6h->ip6_src; 10738 dst = tcp->tcp_ip6h->ip6_dst; 10739 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10740 ASSERT(hdrs_len != 0); 10741 if (hdrs_len > tcp->tcp_iphc_len) { 10742 /* Need to reallocate */ 10743 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10744 if (hdrs == NULL) 10745 return (ENOMEM); 10746 if (tcp->tcp_iphc != NULL) { 10747 if (tcp->tcp_hdr_grown) { 10748 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10749 } else { 10750 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10751 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10752 } 10753 tcp->tcp_iphc_len = 0; 10754 } 10755 ASSERT(tcp->tcp_iphc_len == 0); 10756 tcp->tcp_iphc = hdrs; 10757 tcp->tcp_iphc_len = hdrs_len; 10758 tcp->tcp_hdr_grown = B_TRUE; 10759 } 10760 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10761 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10762 10763 /* Set header fields not in ipp */ 10764 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10765 ip6i = (ip6i_t *)tcp->tcp_iphc; 10766 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10767 } else { 10768 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10769 } 10770 /* 10771 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10772 * 10773 * tcp->tcp_tcp_hdr_len doesn't change here. 10774 */ 10775 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10776 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10777 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10778 10779 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10780 10781 tcp->tcp_ip6h->ip6_src = src; 10782 tcp->tcp_ip6h->ip6_dst = dst; 10783 10784 /* 10785 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10786 * the default value for TCP. 10787 */ 10788 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10789 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 10790 10791 /* 10792 * If we're setting extension headers after a connection 10793 * has been established, and if we have a routing header 10794 * among the extension headers, call ip_massage_options_v6 to 10795 * manipulate the routing header/ip6_dst set the checksum 10796 * difference in the tcp header template. 10797 * (This happens in tcp_connect_ipv6 if the routing header 10798 * is set prior to the connect.) 10799 * Set the tcp_sum to zero first in case we've cleared a 10800 * routing header or don't have one at all. 10801 */ 10802 tcp->tcp_sum = 0; 10803 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10804 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10805 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10806 (uint8_t *)tcp->tcp_tcph); 10807 if (rth != NULL) { 10808 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10809 rth); 10810 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10811 (tcp->tcp_sum >> 16)); 10812 } 10813 } 10814 10815 /* Try to get everything in a single mblk */ 10816 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 10817 return (0); 10818 } 10819 10820 /* 10821 * Transfer any source route option from ipha to buf/dst in reversed form. 10822 */ 10823 static int 10824 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10825 { 10826 ipoptp_t opts; 10827 uchar_t *opt; 10828 uint8_t optval; 10829 uint8_t optlen; 10830 uint32_t len = 0; 10831 10832 for (optval = ipoptp_first(&opts, ipha); 10833 optval != IPOPT_EOL; 10834 optval = ipoptp_next(&opts)) { 10835 opt = opts.ipoptp_cur; 10836 optlen = opts.ipoptp_len; 10837 switch (optval) { 10838 int off1, off2; 10839 case IPOPT_SSRR: 10840 case IPOPT_LSRR: 10841 10842 /* Reverse source route */ 10843 /* 10844 * First entry should be the next to last one in the 10845 * current source route (the last entry is our 10846 * address.) 10847 * The last entry should be the final destination. 10848 */ 10849 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10850 buf[IPOPT_OLEN] = (uint8_t)optlen; 10851 off1 = IPOPT_MINOFF_SR - 1; 10852 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10853 if (off2 < 0) { 10854 /* No entries in source route */ 10855 break; 10856 } 10857 bcopy(opt + off2, dst, IP_ADDR_LEN); 10858 /* 10859 * Note: use src since ipha has not had its src 10860 * and dst reversed (it is in the state it was 10861 * received. 10862 */ 10863 bcopy(&ipha->ipha_src, buf + off2, 10864 IP_ADDR_LEN); 10865 off2 -= IP_ADDR_LEN; 10866 10867 while (off2 > 0) { 10868 bcopy(opt + off2, buf + off1, 10869 IP_ADDR_LEN); 10870 off1 += IP_ADDR_LEN; 10871 off2 -= IP_ADDR_LEN; 10872 } 10873 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10874 buf += optlen; 10875 len += optlen; 10876 break; 10877 } 10878 } 10879 done: 10880 /* Pad the resulting options */ 10881 while (len & 0x3) { 10882 *buf++ = IPOPT_EOL; 10883 len++; 10884 } 10885 return (len); 10886 } 10887 10888 10889 /* 10890 * Extract and revert a source route from ipha (if any) 10891 * and then update the relevant fields in both tcp_t and the standard header. 10892 */ 10893 static void 10894 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 10895 { 10896 char buf[TCP_MAX_HDR_LENGTH]; 10897 uint_t tcph_len; 10898 int len; 10899 10900 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 10901 len = IPH_HDR_LENGTH(ipha); 10902 if (len == IP_SIMPLE_HDR_LENGTH) 10903 /* Nothing to do */ 10904 return; 10905 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 10906 (len & 0x3)) 10907 return; 10908 10909 tcph_len = tcp->tcp_tcp_hdr_len; 10910 bcopy(tcp->tcp_tcph, buf, tcph_len); 10911 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 10912 (tcp->tcp_ipha->ipha_dst & 0xffff); 10913 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 10914 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 10915 len += IP_SIMPLE_HDR_LENGTH; 10916 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 10917 (tcp->tcp_ipha->ipha_dst & 0xffff)); 10918 if ((int)tcp->tcp_sum < 0) 10919 tcp->tcp_sum--; 10920 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 10921 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 10922 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 10923 bcopy(buf, tcp->tcp_tcph, tcph_len); 10924 tcp->tcp_ip_hdr_len = len; 10925 tcp->tcp_ipha->ipha_version_and_hdr_length = 10926 (IP_VERSION << 4) | (len >> 2); 10927 len += tcph_len; 10928 tcp->tcp_hdr_len = len; 10929 } 10930 10931 /* 10932 * Copy the standard header into its new location, 10933 * lay in the new options and then update the relevant 10934 * fields in both tcp_t and the standard header. 10935 */ 10936 static int 10937 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 10938 { 10939 uint_t tcph_len; 10940 uint8_t *ip_optp; 10941 tcph_t *new_tcph; 10942 10943 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10944 return (EINVAL); 10945 10946 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 10947 return (EINVAL); 10948 10949 if (checkonly) { 10950 /* 10951 * do not really set, just pretend to - T_CHECK 10952 */ 10953 return (0); 10954 } 10955 10956 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 10957 if (tcp->tcp_label_len > 0) { 10958 int padlen; 10959 uint8_t opt; 10960 10961 /* convert list termination to no-ops */ 10962 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 10963 ip_optp += ip_optp[IPOPT_OLEN]; 10964 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 10965 while (--padlen >= 0) 10966 *ip_optp++ = opt; 10967 } 10968 tcph_len = tcp->tcp_tcp_hdr_len; 10969 new_tcph = (tcph_t *)(ip_optp + len); 10970 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 10971 tcp->tcp_tcph = new_tcph; 10972 bcopy(ptr, ip_optp, len); 10973 10974 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 10975 10976 tcp->tcp_ip_hdr_len = len; 10977 tcp->tcp_ipha->ipha_version_and_hdr_length = 10978 (IP_VERSION << 4) | (len >> 2); 10979 tcp->tcp_hdr_len = len + tcph_len; 10980 if (!TCP_IS_DETACHED(tcp)) { 10981 /* Always allocate room for all options. */ 10982 (void) mi_set_sth_wroff(tcp->tcp_rq, 10983 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 10984 } 10985 return (0); 10986 } 10987 10988 /* Get callback routine passed to nd_load by tcp_param_register */ 10989 /* ARGSUSED */ 10990 static int 10991 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 10992 { 10993 tcpparam_t *tcppa = (tcpparam_t *)cp; 10994 10995 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 10996 return (0); 10997 } 10998 10999 /* 11000 * Walk through the param array specified registering each element with the 11001 * named dispatch handler. 11002 */ 11003 static boolean_t 11004 tcp_param_register(tcpparam_t *tcppa, int cnt) 11005 { 11006 for (; cnt-- > 0; tcppa++) { 11007 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11008 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 11009 tcp_param_get, tcp_param_set, 11010 (caddr_t)tcppa)) { 11011 nd_free(&tcp_g_nd); 11012 return (B_FALSE); 11013 } 11014 } 11015 } 11016 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 11017 tcp_param_get, tcp_param_set_aligned, 11018 (caddr_t)&tcp_wroff_xtra_param)) { 11019 nd_free(&tcp_g_nd); 11020 return (B_FALSE); 11021 } 11022 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 11023 tcp_param_get, tcp_param_set_aligned, 11024 (caddr_t)&tcp_mdt_head_param)) { 11025 nd_free(&tcp_g_nd); 11026 return (B_FALSE); 11027 } 11028 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 11029 tcp_param_get, tcp_param_set_aligned, 11030 (caddr_t)&tcp_mdt_tail_param)) { 11031 nd_free(&tcp_g_nd); 11032 return (B_FALSE); 11033 } 11034 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 11035 tcp_param_get, tcp_param_set, 11036 (caddr_t)&tcp_mdt_max_pbufs_param)) { 11037 nd_free(&tcp_g_nd); 11038 return (B_FALSE); 11039 } 11040 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 11041 tcp_extra_priv_ports_get, NULL, NULL)) { 11042 nd_free(&tcp_g_nd); 11043 return (B_FALSE); 11044 } 11045 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 11046 NULL, tcp_extra_priv_ports_add, NULL)) { 11047 nd_free(&tcp_g_nd); 11048 return (B_FALSE); 11049 } 11050 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 11051 NULL, tcp_extra_priv_ports_del, NULL)) { 11052 nd_free(&tcp_g_nd); 11053 return (B_FALSE); 11054 } 11055 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 11056 NULL)) { 11057 nd_free(&tcp_g_nd); 11058 return (B_FALSE); 11059 } 11060 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 11061 NULL, NULL)) { 11062 nd_free(&tcp_g_nd); 11063 return (B_FALSE); 11064 } 11065 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 11066 NULL, NULL)) { 11067 nd_free(&tcp_g_nd); 11068 return (B_FALSE); 11069 } 11070 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 11071 NULL, NULL)) { 11072 nd_free(&tcp_g_nd); 11073 return (B_FALSE); 11074 } 11075 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 11076 NULL, NULL)) { 11077 nd_free(&tcp_g_nd); 11078 return (B_FALSE); 11079 } 11080 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 11081 tcp_host_param_set, NULL)) { 11082 nd_free(&tcp_g_nd); 11083 return (B_FALSE); 11084 } 11085 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 11086 tcp_host_param_set_ipv6, NULL)) { 11087 nd_free(&tcp_g_nd); 11088 return (B_FALSE); 11089 } 11090 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 11091 NULL)) { 11092 nd_free(&tcp_g_nd); 11093 return (B_FALSE); 11094 } 11095 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 11096 tcp_reserved_port_list, NULL, NULL)) { 11097 nd_free(&tcp_g_nd); 11098 return (B_FALSE); 11099 } 11100 /* 11101 * Dummy ndd variables - only to convey obsolescence information 11102 * through printing of their name (no get or set routines) 11103 * XXX Remove in future releases ? 11104 */ 11105 if (!nd_load(&tcp_g_nd, 11106 "tcp_close_wait_interval(obsoleted - " 11107 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11108 nd_free(&tcp_g_nd); 11109 return (B_FALSE); 11110 } 11111 return (B_TRUE); 11112 } 11113 11114 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11115 /* ARGSUSED */ 11116 static int 11117 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11118 cred_t *cr) 11119 { 11120 long new_value; 11121 tcpparam_t *tcppa = (tcpparam_t *)cp; 11122 11123 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11124 new_value < tcppa->tcp_param_min || 11125 new_value > tcppa->tcp_param_max) { 11126 return (EINVAL); 11127 } 11128 /* 11129 * Need to make sure new_value is a multiple of 4. If it is not, 11130 * round it up. For future 64 bit requirement, we actually make it 11131 * a multiple of 8. 11132 */ 11133 if (new_value & 0x7) { 11134 new_value = (new_value & ~0x7) + 0x8; 11135 } 11136 tcppa->tcp_param_val = new_value; 11137 return (0); 11138 } 11139 11140 /* Set callback routine passed to nd_load by tcp_param_register */ 11141 /* ARGSUSED */ 11142 static int 11143 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11144 { 11145 long new_value; 11146 tcpparam_t *tcppa = (tcpparam_t *)cp; 11147 11148 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11149 new_value < tcppa->tcp_param_min || 11150 new_value > tcppa->tcp_param_max) { 11151 return (EINVAL); 11152 } 11153 tcppa->tcp_param_val = new_value; 11154 return (0); 11155 } 11156 11157 /* 11158 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11159 * is filled, return as much as we can. The message passed in may be 11160 * multi-part, chained using b_cont. "start" is the starting sequence 11161 * number for this piece. 11162 */ 11163 static mblk_t * 11164 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11165 { 11166 uint32_t end; 11167 mblk_t *mp1; 11168 mblk_t *mp2; 11169 mblk_t *next_mp; 11170 uint32_t u1; 11171 11172 /* Walk through all the new pieces. */ 11173 do { 11174 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11175 (uintptr_t)INT_MAX); 11176 end = start + (int)(mp->b_wptr - mp->b_rptr); 11177 next_mp = mp->b_cont; 11178 if (start == end) { 11179 /* Empty. Blast it. */ 11180 freeb(mp); 11181 continue; 11182 } 11183 mp->b_cont = NULL; 11184 TCP_REASS_SET_SEQ(mp, start); 11185 TCP_REASS_SET_END(mp, end); 11186 mp1 = tcp->tcp_reass_tail; 11187 if (!mp1) { 11188 tcp->tcp_reass_tail = mp; 11189 tcp->tcp_reass_head = mp; 11190 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11191 UPDATE_MIB(&tcp_mib, 11192 tcpInDataUnorderBytes, end - start); 11193 continue; 11194 } 11195 /* New stuff completely beyond tail? */ 11196 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11197 /* Link it on end. */ 11198 mp1->b_cont = mp; 11199 tcp->tcp_reass_tail = mp; 11200 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11201 UPDATE_MIB(&tcp_mib, 11202 tcpInDataUnorderBytes, end - start); 11203 continue; 11204 } 11205 mp1 = tcp->tcp_reass_head; 11206 u1 = TCP_REASS_SEQ(mp1); 11207 /* New stuff at the front? */ 11208 if (SEQ_LT(start, u1)) { 11209 /* Yes... Check for overlap. */ 11210 mp->b_cont = mp1; 11211 tcp->tcp_reass_head = mp; 11212 tcp_reass_elim_overlap(tcp, mp); 11213 continue; 11214 } 11215 /* 11216 * The new piece fits somewhere between the head and tail. 11217 * We find our slot, where mp1 precedes us and mp2 trails. 11218 */ 11219 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11220 u1 = TCP_REASS_SEQ(mp2); 11221 if (SEQ_LEQ(start, u1)) 11222 break; 11223 } 11224 /* Link ourselves in */ 11225 mp->b_cont = mp2; 11226 mp1->b_cont = mp; 11227 11228 /* Trim overlap with following mblk(s) first */ 11229 tcp_reass_elim_overlap(tcp, mp); 11230 11231 /* Trim overlap with preceding mblk */ 11232 tcp_reass_elim_overlap(tcp, mp1); 11233 11234 } while (start = end, mp = next_mp); 11235 mp1 = tcp->tcp_reass_head; 11236 /* Anything ready to go? */ 11237 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11238 return (NULL); 11239 /* Eat what we can off the queue */ 11240 for (;;) { 11241 mp = mp1->b_cont; 11242 end = TCP_REASS_END(mp1); 11243 TCP_REASS_SET_SEQ(mp1, 0); 11244 TCP_REASS_SET_END(mp1, 0); 11245 if (!mp) { 11246 tcp->tcp_reass_tail = NULL; 11247 break; 11248 } 11249 if (end != TCP_REASS_SEQ(mp)) { 11250 mp1->b_cont = NULL; 11251 break; 11252 } 11253 mp1 = mp; 11254 } 11255 mp1 = tcp->tcp_reass_head; 11256 tcp->tcp_reass_head = mp; 11257 return (mp1); 11258 } 11259 11260 /* Eliminate any overlap that mp may have over later mblks */ 11261 static void 11262 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11263 { 11264 uint32_t end; 11265 mblk_t *mp1; 11266 uint32_t u1; 11267 11268 end = TCP_REASS_END(mp); 11269 while ((mp1 = mp->b_cont) != NULL) { 11270 u1 = TCP_REASS_SEQ(mp1); 11271 if (!SEQ_GT(end, u1)) 11272 break; 11273 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11274 mp->b_wptr -= end - u1; 11275 TCP_REASS_SET_END(mp, u1); 11276 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11277 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11278 break; 11279 } 11280 mp->b_cont = mp1->b_cont; 11281 TCP_REASS_SET_SEQ(mp1, 0); 11282 TCP_REASS_SET_END(mp1, 0); 11283 freeb(mp1); 11284 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11285 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11286 } 11287 if (!mp1) 11288 tcp->tcp_reass_tail = mp; 11289 } 11290 11291 /* 11292 * Send up all messages queued on tcp_rcv_list. 11293 */ 11294 static uint_t 11295 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11296 { 11297 mblk_t *mp; 11298 uint_t ret = 0; 11299 uint_t thwin; 11300 #ifdef DEBUG 11301 uint_t cnt = 0; 11302 #endif 11303 /* Can't drain on an eager connection */ 11304 if (tcp->tcp_listener != NULL) 11305 return (ret); 11306 11307 /* 11308 * Handle two cases here: we are currently fused or we were 11309 * previously fused and have some urgent data to be delivered 11310 * upstream. The latter happens because we either ran out of 11311 * memory or were detached and therefore sending the SIGURG was 11312 * deferred until this point. In either case we pass control 11313 * over to tcp_fuse_rcv_drain() since it may need to complete 11314 * some work. 11315 */ 11316 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11317 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11318 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11319 &tcp->tcp_fused_sigurg_mp)) 11320 return (ret); 11321 } 11322 11323 while ((mp = tcp->tcp_rcv_list) != NULL) { 11324 tcp->tcp_rcv_list = mp->b_next; 11325 mp->b_next = NULL; 11326 #ifdef DEBUG 11327 cnt += msgdsize(mp); 11328 #endif 11329 /* Does this need SSL processing first? */ 11330 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11331 tcp_kssl_input(tcp, mp); 11332 continue; 11333 } 11334 putnext(q, mp); 11335 } 11336 ASSERT(cnt == tcp->tcp_rcv_cnt); 11337 tcp->tcp_rcv_last_head = NULL; 11338 tcp->tcp_rcv_last_tail = NULL; 11339 tcp->tcp_rcv_cnt = 0; 11340 11341 /* Learn the latest rwnd information that we sent to the other side. */ 11342 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11343 << tcp->tcp_rcv_ws; 11344 /* This is peer's calculated send window (our receive window). */ 11345 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11346 /* 11347 * Increase the receive window to max. But we need to do receiver 11348 * SWS avoidance. This means that we need to check the increase of 11349 * of receive window is at least 1 MSS. 11350 */ 11351 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11352 /* 11353 * If the window that the other side knows is less than max 11354 * deferred acks segments, send an update immediately. 11355 */ 11356 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11357 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11358 ret = TH_ACK_NEEDED; 11359 } 11360 tcp->tcp_rwnd = q->q_hiwat; 11361 } 11362 /* No need for the push timer now. */ 11363 if (tcp->tcp_push_tid != 0) { 11364 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11365 tcp->tcp_push_tid = 0; 11366 } 11367 return (ret); 11368 } 11369 11370 /* 11371 * Queue data on tcp_rcv_list which is a b_next chain. 11372 * tcp_rcv_last_head/tail is the last element of this chain. 11373 * Each element of the chain is a b_cont chain. 11374 * 11375 * M_DATA messages are added to the current element. 11376 * Other messages are added as new (b_next) elements. 11377 */ 11378 void 11379 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11380 { 11381 ASSERT(seg_len == msgdsize(mp)); 11382 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11383 11384 if (tcp->tcp_rcv_list == NULL) { 11385 ASSERT(tcp->tcp_rcv_last_head == NULL); 11386 tcp->tcp_rcv_list = mp; 11387 tcp->tcp_rcv_last_head = mp; 11388 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11389 tcp->tcp_rcv_last_tail->b_cont = mp; 11390 } else { 11391 tcp->tcp_rcv_last_head->b_next = mp; 11392 tcp->tcp_rcv_last_head = mp; 11393 } 11394 11395 while (mp->b_cont) 11396 mp = mp->b_cont; 11397 11398 tcp->tcp_rcv_last_tail = mp; 11399 tcp->tcp_rcv_cnt += seg_len; 11400 tcp->tcp_rwnd -= seg_len; 11401 } 11402 11403 /* 11404 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11405 * 11406 * This is the default entry function into TCP on the read side. TCP is 11407 * always entered via squeue i.e. using squeue's for mutual exclusion. 11408 * When classifier does a lookup to find the tcp, it also puts a reference 11409 * on the conn structure associated so the tcp is guaranteed to exist 11410 * when we come here. We still need to check the state because it might 11411 * as well has been closed. The squeue processing function i.e. squeue_enter, 11412 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11413 * CONN_DEC_REF. 11414 * 11415 * Apart from the default entry point, IP also sends packets directly to 11416 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11417 * connections. 11418 */ 11419 void 11420 tcp_input(void *arg, mblk_t *mp, void *arg2) 11421 { 11422 conn_t *connp = (conn_t *)arg; 11423 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11424 11425 /* arg2 is the sqp */ 11426 ASSERT(arg2 != NULL); 11427 ASSERT(mp != NULL); 11428 11429 /* 11430 * Don't accept any input on a closed tcp as this TCP logically does 11431 * not exist on the system. Don't proceed further with this TCP. 11432 * For eg. this packet could trigger another close of this tcp 11433 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11434 * tcp_clean_death / tcp_closei_local must be called at most once 11435 * on a TCP. In this case we need to refeed the packet into the 11436 * classifier and figure out where the packet should go. Need to 11437 * preserve the recv_ill somehow. Until we figure that out, for 11438 * now just drop the packet if we can't classify the packet. 11439 */ 11440 if (tcp->tcp_state == TCPS_CLOSED || 11441 tcp->tcp_state == TCPS_BOUND) { 11442 conn_t *new_connp; 11443 11444 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11445 if (new_connp != NULL) { 11446 tcp_reinput(new_connp, mp, arg2); 11447 return; 11448 } 11449 /* We failed to classify. For now just drop the packet */ 11450 freemsg(mp); 11451 return; 11452 } 11453 11454 if (DB_TYPE(mp) == M_DATA) 11455 tcp_rput_data(connp, mp, arg2); 11456 else 11457 tcp_rput_common(tcp, mp); 11458 } 11459 11460 /* 11461 * The read side put procedure. 11462 * The packets passed up by ip are assume to be aligned according to 11463 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11464 */ 11465 static void 11466 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11467 { 11468 /* 11469 * tcp_rput_data() does not expect M_CTL except for the case 11470 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11471 * type. Need to make sure that any other M_CTLs don't make 11472 * it to tcp_rput_data since it is not expecting any and doesn't 11473 * check for it. 11474 */ 11475 if (DB_TYPE(mp) == M_CTL) { 11476 switch (*(uint32_t *)(mp->b_rptr)) { 11477 case TCP_IOC_ABORT_CONN: 11478 /* 11479 * Handle connection abort request. 11480 */ 11481 tcp_ioctl_abort_handler(tcp, mp); 11482 return; 11483 case IPSEC_IN: 11484 /* 11485 * Only secure icmp arrive in TCP and they 11486 * don't go through data path. 11487 */ 11488 tcp_icmp_error(tcp, mp); 11489 return; 11490 case IN_PKTINFO: 11491 /* 11492 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11493 * sockets that are receiving IPv4 traffic. tcp 11494 */ 11495 ASSERT(tcp->tcp_family == AF_INET6); 11496 ASSERT(tcp->tcp_ipv6_recvancillary & 11497 TCP_IPV6_RECVPKTINFO); 11498 tcp_rput_data(tcp->tcp_connp, mp, 11499 tcp->tcp_connp->conn_sqp); 11500 return; 11501 case MDT_IOC_INFO_UPDATE: 11502 /* 11503 * Handle Multidata information update; the 11504 * following routine will free the message. 11505 */ 11506 if (tcp->tcp_connp->conn_mdt_ok) { 11507 tcp_mdt_update(tcp, 11508 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11509 B_FALSE); 11510 } 11511 freemsg(mp); 11512 return; 11513 default: 11514 break; 11515 } 11516 } 11517 11518 /* No point processing the message if tcp is already closed */ 11519 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11520 freemsg(mp); 11521 return; 11522 } 11523 11524 tcp_rput_other(tcp, mp); 11525 } 11526 11527 11528 /* The minimum of smoothed mean deviation in RTO calculation. */ 11529 #define TCP_SD_MIN 400 11530 11531 /* 11532 * Set RTO for this connection. The formula is from Jacobson and Karels' 11533 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11534 * are the same as those in Appendix A.2 of that paper. 11535 * 11536 * m = new measurement 11537 * sa = smoothed RTT average (8 * average estimates). 11538 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11539 */ 11540 static void 11541 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11542 { 11543 long m = TICK_TO_MSEC(rtt); 11544 clock_t sa = tcp->tcp_rtt_sa; 11545 clock_t sv = tcp->tcp_rtt_sd; 11546 clock_t rto; 11547 11548 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11549 tcp->tcp_rtt_update++; 11550 11551 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11552 if (sa != 0) { 11553 /* 11554 * Update average estimator: 11555 * new rtt = 7/8 old rtt + 1/8 Error 11556 */ 11557 11558 /* m is now Error in estimate. */ 11559 m -= sa >> 3; 11560 if ((sa += m) <= 0) { 11561 /* 11562 * Don't allow the smoothed average to be negative. 11563 * We use 0 to denote reinitialization of the 11564 * variables. 11565 */ 11566 sa = 1; 11567 } 11568 11569 /* 11570 * Update deviation estimator: 11571 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11572 */ 11573 if (m < 0) 11574 m = -m; 11575 m -= sv >> 2; 11576 sv += m; 11577 } else { 11578 /* 11579 * This follows BSD's implementation. So the reinitialized 11580 * RTO is 3 * m. We cannot go less than 2 because if the 11581 * link is bandwidth dominated, doubling the window size 11582 * during slow start means doubling the RTT. We want to be 11583 * more conservative when we reinitialize our estimates. 3 11584 * is just a convenient number. 11585 */ 11586 sa = m << 3; 11587 sv = m << 1; 11588 } 11589 if (sv < TCP_SD_MIN) { 11590 /* 11591 * We do not know that if sa captures the delay ACK 11592 * effect as in a long train of segments, a receiver 11593 * does not delay its ACKs. So set the minimum of sv 11594 * to be TCP_SD_MIN, which is default to 400 ms, twice 11595 * of BSD DATO. That means the minimum of mean 11596 * deviation is 100 ms. 11597 * 11598 */ 11599 sv = TCP_SD_MIN; 11600 } 11601 tcp->tcp_rtt_sa = sa; 11602 tcp->tcp_rtt_sd = sv; 11603 /* 11604 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11605 * 11606 * Add tcp_rexmit_interval extra in case of extreme environment 11607 * where the algorithm fails to work. The default value of 11608 * tcp_rexmit_interval_extra should be 0. 11609 * 11610 * As we use a finer grained clock than BSD and update 11611 * RTO for every ACKs, add in another .25 of RTT to the 11612 * deviation of RTO to accomodate burstiness of 1/4 of 11613 * window size. 11614 */ 11615 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11616 11617 if (rto > tcp_rexmit_interval_max) { 11618 tcp->tcp_rto = tcp_rexmit_interval_max; 11619 } else if (rto < tcp_rexmit_interval_min) { 11620 tcp->tcp_rto = tcp_rexmit_interval_min; 11621 } else { 11622 tcp->tcp_rto = rto; 11623 } 11624 11625 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11626 tcp->tcp_timer_backoff = 0; 11627 } 11628 11629 /* 11630 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11631 * send queue which starts at the given seq. no. 11632 * 11633 * Parameters: 11634 * tcp_t *tcp: the tcp instance pointer. 11635 * uint32_t seq: the starting seq. no of the requested segment. 11636 * int32_t *off: after the execution, *off will be the offset to 11637 * the returned mblk which points to the requested seq no. 11638 * It is the caller's responsibility to send in a non-null off. 11639 * 11640 * Return: 11641 * A mblk_t pointer pointing to the requested segment in send queue. 11642 */ 11643 static mblk_t * 11644 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11645 { 11646 int32_t cnt; 11647 mblk_t *mp; 11648 11649 /* Defensive coding. Make sure we don't send incorrect data. */ 11650 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11651 return (NULL); 11652 11653 cnt = seq - tcp->tcp_suna; 11654 mp = tcp->tcp_xmit_head; 11655 while (cnt > 0 && mp != NULL) { 11656 cnt -= mp->b_wptr - mp->b_rptr; 11657 if (cnt < 0) { 11658 cnt += mp->b_wptr - mp->b_rptr; 11659 break; 11660 } 11661 mp = mp->b_cont; 11662 } 11663 ASSERT(mp != NULL); 11664 *off = cnt; 11665 return (mp); 11666 } 11667 11668 /* 11669 * This function handles all retransmissions if SACK is enabled for this 11670 * connection. First it calculates how many segments can be retransmitted 11671 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11672 * segments. A segment is eligible if sack_cnt for that segment is greater 11673 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11674 * all eligible segments, it checks to see if TCP can send some new segments 11675 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11676 * 11677 * Parameters: 11678 * tcp_t *tcp: the tcp structure of the connection. 11679 * uint_t *flags: in return, appropriate value will be set for 11680 * tcp_rput_data(). 11681 */ 11682 static void 11683 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11684 { 11685 notsack_blk_t *notsack_blk; 11686 int32_t usable_swnd; 11687 int32_t mss; 11688 uint32_t seg_len; 11689 mblk_t *xmit_mp; 11690 11691 ASSERT(tcp->tcp_sack_info != NULL); 11692 ASSERT(tcp->tcp_notsack_list != NULL); 11693 ASSERT(tcp->tcp_rexmit == B_FALSE); 11694 11695 /* Defensive coding in case there is a bug... */ 11696 if (tcp->tcp_notsack_list == NULL) { 11697 return; 11698 } 11699 notsack_blk = tcp->tcp_notsack_list; 11700 mss = tcp->tcp_mss; 11701 11702 /* 11703 * Limit the num of outstanding data in the network to be 11704 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11705 */ 11706 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11707 11708 /* At least retransmit 1 MSS of data. */ 11709 if (usable_swnd <= 0) { 11710 usable_swnd = mss; 11711 } 11712 11713 /* Make sure no new RTT samples will be taken. */ 11714 tcp->tcp_csuna = tcp->tcp_snxt; 11715 11716 notsack_blk = tcp->tcp_notsack_list; 11717 while (usable_swnd > 0) { 11718 mblk_t *snxt_mp, *tmp_mp; 11719 tcp_seq begin = tcp->tcp_sack_snxt; 11720 tcp_seq end; 11721 int32_t off; 11722 11723 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11724 if (SEQ_GT(notsack_blk->end, begin) && 11725 (notsack_blk->sack_cnt >= 11726 tcp_dupack_fast_retransmit)) { 11727 end = notsack_blk->end; 11728 if (SEQ_LT(begin, notsack_blk->begin)) { 11729 begin = notsack_blk->begin; 11730 } 11731 break; 11732 } 11733 } 11734 /* 11735 * All holes are filled. Manipulate tcp_cwnd to send more 11736 * if we can. Note that after the SACK recovery, tcp_cwnd is 11737 * set to tcp_cwnd_ssthresh. 11738 */ 11739 if (notsack_blk == NULL) { 11740 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11741 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11742 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11743 ASSERT(tcp->tcp_cwnd > 0); 11744 return; 11745 } else { 11746 usable_swnd = usable_swnd / mss; 11747 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11748 MAX(usable_swnd * mss, mss); 11749 *flags |= TH_XMIT_NEEDED; 11750 return; 11751 } 11752 } 11753 11754 /* 11755 * Note that we may send more than usable_swnd allows here 11756 * because of round off, but no more than 1 MSS of data. 11757 */ 11758 seg_len = end - begin; 11759 if (seg_len > mss) 11760 seg_len = mss; 11761 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11762 ASSERT(snxt_mp != NULL); 11763 /* This should not happen. Defensive coding again... */ 11764 if (snxt_mp == NULL) { 11765 return; 11766 } 11767 11768 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11769 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11770 if (xmit_mp == NULL) 11771 return; 11772 11773 usable_swnd -= seg_len; 11774 tcp->tcp_pipe += seg_len; 11775 tcp->tcp_sack_snxt = begin + seg_len; 11776 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 11777 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11778 11779 /* 11780 * Update the send timestamp to avoid false retransmission. 11781 */ 11782 snxt_mp->b_prev = (mblk_t *)lbolt; 11783 11784 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11785 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 11786 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 11787 /* 11788 * Update tcp_rexmit_max to extend this SACK recovery phase. 11789 * This happens when new data sent during fast recovery is 11790 * also lost. If TCP retransmits those new data, it needs 11791 * to extend SACK recover phase to avoid starting another 11792 * fast retransmit/recovery unnecessarily. 11793 */ 11794 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11795 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11796 } 11797 } 11798 } 11799 11800 /* 11801 * This function handles policy checking at TCP level for non-hard_bound/ 11802 * detached connections. 11803 */ 11804 static boolean_t 11805 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11806 boolean_t secure, boolean_t mctl_present) 11807 { 11808 ipsec_latch_t *ipl = NULL; 11809 ipsec_action_t *act = NULL; 11810 mblk_t *data_mp; 11811 ipsec_in_t *ii; 11812 const char *reason; 11813 kstat_named_t *counter; 11814 11815 ASSERT(mctl_present || !secure); 11816 11817 ASSERT((ipha == NULL && ip6h != NULL) || 11818 (ip6h == NULL && ipha != NULL)); 11819 11820 /* 11821 * We don't necessarily have an ipsec_in_act action to verify 11822 * policy because of assymetrical policy where we have only 11823 * outbound policy and no inbound policy (possible with global 11824 * policy). 11825 */ 11826 if (!secure) { 11827 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 11828 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 11829 return (B_TRUE); 11830 ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, 11831 "tcp_check_policy", ipha, ip6h, secure); 11832 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11833 &ipdrops_tcp_clear, &tcp_dropper); 11834 return (B_FALSE); 11835 } 11836 11837 /* 11838 * We have a secure packet. 11839 */ 11840 if (act == NULL) { 11841 ipsec_log_policy_failure(tcp->tcp_wq, 11842 IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, 11843 secure); 11844 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11845 &ipdrops_tcp_secure, &tcp_dropper); 11846 return (B_FALSE); 11847 } 11848 11849 /* 11850 * XXX This whole routine is currently incorrect. ipl should 11851 * be set to the latch pointer, but is currently not set, so 11852 * we initialize it to NULL to avoid picking up random garbage. 11853 */ 11854 if (ipl == NULL) 11855 return (B_TRUE); 11856 11857 data_mp = first_mp->b_cont; 11858 11859 ii = (ipsec_in_t *)first_mp->b_rptr; 11860 11861 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 11862 &counter)) { 11863 BUMP_MIB(&ip_mib, ipsecInSucceeded); 11864 return (B_TRUE); 11865 } 11866 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 11867 "tcp inbound policy mismatch: %s, packet dropped\n", 11868 reason); 11869 BUMP_MIB(&ip_mib, ipsecInFailed); 11870 11871 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 11872 return (B_FALSE); 11873 } 11874 11875 /* 11876 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 11877 * retransmission after a timeout. 11878 * 11879 * To limit the number of duplicate segments, we limit the number of segment 11880 * to be sent in one time to tcp_snd_burst, the burst variable. 11881 */ 11882 static void 11883 tcp_ss_rexmit(tcp_t *tcp) 11884 { 11885 uint32_t snxt; 11886 uint32_t smax; 11887 int32_t win; 11888 int32_t mss; 11889 int32_t off; 11890 int32_t burst = tcp->tcp_snd_burst; 11891 mblk_t *snxt_mp; 11892 11893 /* 11894 * Note that tcp_rexmit can be set even though TCP has retransmitted 11895 * all unack'ed segments. 11896 */ 11897 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 11898 smax = tcp->tcp_rexmit_max; 11899 snxt = tcp->tcp_rexmit_nxt; 11900 if (SEQ_LT(snxt, tcp->tcp_suna)) { 11901 snxt = tcp->tcp_suna; 11902 } 11903 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 11904 win -= snxt - tcp->tcp_suna; 11905 mss = tcp->tcp_mss; 11906 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 11907 11908 while (SEQ_LT(snxt, smax) && (win > 0) && 11909 (burst > 0) && (snxt_mp != NULL)) { 11910 mblk_t *xmit_mp; 11911 mblk_t *old_snxt_mp = snxt_mp; 11912 uint32_t cnt = mss; 11913 11914 if (win < cnt) { 11915 cnt = win; 11916 } 11917 if (SEQ_GT(snxt + cnt, smax)) { 11918 cnt = smax - snxt; 11919 } 11920 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 11921 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 11922 if (xmit_mp == NULL) 11923 return; 11924 11925 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11926 11927 snxt += cnt; 11928 win -= cnt; 11929 /* 11930 * Update the send timestamp to avoid false 11931 * retransmission. 11932 */ 11933 old_snxt_mp->b_prev = (mblk_t *)lbolt; 11934 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11935 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 11936 11937 tcp->tcp_rexmit_nxt = snxt; 11938 burst--; 11939 } 11940 /* 11941 * If we have transmitted all we have at the time 11942 * we started the retranmission, we can leave 11943 * the rest of the job to tcp_wput_data(). But we 11944 * need to check the send window first. If the 11945 * win is not 0, go on with tcp_wput_data(). 11946 */ 11947 if (SEQ_LT(snxt, smax) || win == 0) { 11948 return; 11949 } 11950 } 11951 /* Only call tcp_wput_data() if there is data to be sent. */ 11952 if (tcp->tcp_unsent) { 11953 tcp_wput_data(tcp, NULL, B_FALSE); 11954 } 11955 } 11956 11957 /* 11958 * Process all TCP option in SYN segment. Note that this function should 11959 * be called after tcp_adapt_ire() is called so that the necessary info 11960 * from IRE is already set in the tcp structure. 11961 * 11962 * This function sets up the correct tcp_mss value according to the 11963 * MSS option value and our header size. It also sets up the window scale 11964 * and timestamp values, and initialize SACK info blocks. But it does not 11965 * change receive window size after setting the tcp_mss value. The caller 11966 * should do the appropriate change. 11967 */ 11968 void 11969 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 11970 { 11971 int options; 11972 tcp_opt_t tcpopt; 11973 uint32_t mss_max; 11974 char *tmp_tcph; 11975 11976 tcpopt.tcp = NULL; 11977 options = tcp_parse_options(tcph, &tcpopt); 11978 11979 /* 11980 * Process MSS option. Note that MSS option value does not account 11981 * for IP or TCP options. This means that it is equal to MTU - minimum 11982 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 11983 * IPv6. 11984 */ 11985 if (!(options & TCP_OPT_MSS_PRESENT)) { 11986 if (tcp->tcp_ipversion == IPV4_VERSION) 11987 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 11988 else 11989 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 11990 } else { 11991 if (tcp->tcp_ipversion == IPV4_VERSION) 11992 mss_max = tcp_mss_max_ipv4; 11993 else 11994 mss_max = tcp_mss_max_ipv6; 11995 if (tcpopt.tcp_opt_mss < tcp_mss_min) 11996 tcpopt.tcp_opt_mss = tcp_mss_min; 11997 else if (tcpopt.tcp_opt_mss > mss_max) 11998 tcpopt.tcp_opt_mss = mss_max; 11999 } 12000 12001 /* Process Window Scale option. */ 12002 if (options & TCP_OPT_WSCALE_PRESENT) { 12003 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12004 tcp->tcp_snd_ws_ok = B_TRUE; 12005 } else { 12006 tcp->tcp_snd_ws = B_FALSE; 12007 tcp->tcp_snd_ws_ok = B_FALSE; 12008 tcp->tcp_rcv_ws = B_FALSE; 12009 } 12010 12011 /* Process Timestamp option. */ 12012 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12013 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12014 tmp_tcph = (char *)tcp->tcp_tcph; 12015 12016 tcp->tcp_snd_ts_ok = B_TRUE; 12017 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12018 tcp->tcp_last_rcv_lbolt = lbolt64; 12019 ASSERT(OK_32PTR(tmp_tcph)); 12020 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12021 12022 /* Fill in our template header with basic timestamp option. */ 12023 tmp_tcph += tcp->tcp_tcp_hdr_len; 12024 tmp_tcph[0] = TCPOPT_NOP; 12025 tmp_tcph[1] = TCPOPT_NOP; 12026 tmp_tcph[2] = TCPOPT_TSTAMP; 12027 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12028 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12029 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12030 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12031 } else { 12032 tcp->tcp_snd_ts_ok = B_FALSE; 12033 } 12034 12035 /* 12036 * Process SACK options. If SACK is enabled for this connection, 12037 * then allocate the SACK info structure. Note the following ways 12038 * when tcp_snd_sack_ok is set to true. 12039 * 12040 * For active connection: in tcp_adapt_ire() called in 12041 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12042 * is checked. 12043 * 12044 * For passive connection: in tcp_adapt_ire() called in 12045 * tcp_accept_comm(). 12046 * 12047 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12048 * That check makes sure that if we did not send a SACK OK option, 12049 * we will not enable SACK for this connection even though the other 12050 * side sends us SACK OK option. For active connection, the SACK 12051 * info structure has already been allocated. So we need to free 12052 * it if SACK is disabled. 12053 */ 12054 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12055 (tcp->tcp_snd_sack_ok || 12056 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12057 /* This should be true only in the passive case. */ 12058 if (tcp->tcp_sack_info == NULL) { 12059 ASSERT(TCP_IS_DETACHED(tcp)); 12060 tcp->tcp_sack_info = 12061 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12062 } 12063 if (tcp->tcp_sack_info == NULL) { 12064 tcp->tcp_snd_sack_ok = B_FALSE; 12065 } else { 12066 tcp->tcp_snd_sack_ok = B_TRUE; 12067 if (tcp->tcp_snd_ts_ok) { 12068 tcp->tcp_max_sack_blk = 3; 12069 } else { 12070 tcp->tcp_max_sack_blk = 4; 12071 } 12072 } 12073 } else { 12074 /* 12075 * Resetting tcp_snd_sack_ok to B_FALSE so that 12076 * no SACK info will be used for this 12077 * connection. This assumes that SACK usage 12078 * permission is negotiated. This may need 12079 * to be changed once this is clarified. 12080 */ 12081 if (tcp->tcp_sack_info != NULL) { 12082 ASSERT(tcp->tcp_notsack_list == NULL); 12083 kmem_cache_free(tcp_sack_info_cache, 12084 tcp->tcp_sack_info); 12085 tcp->tcp_sack_info = NULL; 12086 } 12087 tcp->tcp_snd_sack_ok = B_FALSE; 12088 } 12089 12090 /* 12091 * Now we know the exact TCP/IP header length, subtract 12092 * that from tcp_mss to get our side's MSS. 12093 */ 12094 tcp->tcp_mss -= tcp->tcp_hdr_len; 12095 /* 12096 * Here we assume that the other side's header size will be equal to 12097 * our header size. We calculate the real MSS accordingly. Need to 12098 * take into additional stuffs IPsec puts in. 12099 * 12100 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12101 */ 12102 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12103 ((tcp->tcp_ipversion == IPV4_VERSION ? 12104 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12105 12106 /* 12107 * Set MSS to the smaller one of both ends of the connection. 12108 * We should not have called tcp_mss_set() before, but our 12109 * side of the MSS should have been set to a proper value 12110 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12111 * STREAM head parameters properly. 12112 * 12113 * If we have a larger-than-16-bit window but the other side 12114 * didn't want to do window scale, tcp_rwnd_set() will take 12115 * care of that. 12116 */ 12117 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 12118 } 12119 12120 /* 12121 * Sends the T_CONN_IND to the listener. The caller calls this 12122 * functions via squeue to get inside the listener's perimeter 12123 * once the 3 way hand shake is done a T_CONN_IND needs to be 12124 * sent. As an optimization, the caller can call this directly 12125 * if listener's perimeter is same as eager's. 12126 */ 12127 /* ARGSUSED */ 12128 void 12129 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12130 { 12131 conn_t *lconnp = (conn_t *)arg; 12132 tcp_t *listener = lconnp->conn_tcp; 12133 tcp_t *tcp; 12134 struct T_conn_ind *conn_ind; 12135 ipaddr_t *addr_cache; 12136 boolean_t need_send_conn_ind = B_FALSE; 12137 12138 /* retrieve the eager */ 12139 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12140 ASSERT(conn_ind->OPT_offset != 0 && 12141 conn_ind->OPT_length == sizeof (intptr_t)); 12142 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12143 conn_ind->OPT_length); 12144 12145 /* 12146 * TLI/XTI applications will get confused by 12147 * sending eager as an option since it violates 12148 * the option semantics. So remove the eager as 12149 * option since TLI/XTI app doesn't need it anyway. 12150 */ 12151 if (!TCP_IS_SOCKET(listener)) { 12152 conn_ind->OPT_length = 0; 12153 conn_ind->OPT_offset = 0; 12154 } 12155 if (listener->tcp_state == TCPS_CLOSED || 12156 TCP_IS_DETACHED(listener)) { 12157 /* 12158 * If listener has closed, it would have caused a 12159 * a cleanup/blowoff to happen for the eager. We 12160 * just need to return. 12161 */ 12162 freemsg(mp); 12163 return; 12164 } 12165 12166 12167 /* 12168 * if the conn_req_q is full defer passing up the 12169 * T_CONN_IND until space is availabe after t_accept() 12170 * processing 12171 */ 12172 mutex_enter(&listener->tcp_eager_lock); 12173 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12174 tcp_t *tail; 12175 12176 /* 12177 * The eager already has an extra ref put in tcp_rput_data 12178 * so that it stays till accept comes back even though it 12179 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12180 */ 12181 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12182 listener->tcp_conn_req_cnt_q0--; 12183 listener->tcp_conn_req_cnt_q++; 12184 12185 /* Move from SYN_RCVD to ESTABLISHED list */ 12186 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12187 tcp->tcp_eager_prev_q0; 12188 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12189 tcp->tcp_eager_next_q0; 12190 tcp->tcp_eager_prev_q0 = NULL; 12191 tcp->tcp_eager_next_q0 = NULL; 12192 12193 /* 12194 * Insert at end of the queue because sockfs 12195 * sends down T_CONN_RES in chronological 12196 * order. Leaving the older conn indications 12197 * at front of the queue helps reducing search 12198 * time. 12199 */ 12200 tail = listener->tcp_eager_last_q; 12201 if (tail != NULL) 12202 tail->tcp_eager_next_q = tcp; 12203 else 12204 listener->tcp_eager_next_q = tcp; 12205 listener->tcp_eager_last_q = tcp; 12206 tcp->tcp_eager_next_q = NULL; 12207 /* 12208 * Delay sending up the T_conn_ind until we are 12209 * done with the eager. Once we have have sent up 12210 * the T_conn_ind, the accept can potentially complete 12211 * any time and release the refhold we have on the eager. 12212 */ 12213 need_send_conn_ind = B_TRUE; 12214 } else { 12215 /* 12216 * Defer connection on q0 and set deferred 12217 * connection bit true 12218 */ 12219 tcp->tcp_conn_def_q0 = B_TRUE; 12220 12221 /* take tcp out of q0 ... */ 12222 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12223 tcp->tcp_eager_next_q0; 12224 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12225 tcp->tcp_eager_prev_q0; 12226 12227 /* ... and place it at the end of q0 */ 12228 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12229 tcp->tcp_eager_next_q0 = listener; 12230 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12231 listener->tcp_eager_prev_q0 = tcp; 12232 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12233 } 12234 12235 /* we have timed out before */ 12236 if (tcp->tcp_syn_rcvd_timeout != 0) { 12237 tcp->tcp_syn_rcvd_timeout = 0; 12238 listener->tcp_syn_rcvd_timeout--; 12239 if (listener->tcp_syn_defense && 12240 listener->tcp_syn_rcvd_timeout <= 12241 (tcp_conn_req_max_q0 >> 5) && 12242 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12243 listener->tcp_last_rcv_lbolt)) { 12244 /* 12245 * Turn off the defense mode if we 12246 * believe the SYN attack is over. 12247 */ 12248 listener->tcp_syn_defense = B_FALSE; 12249 if (listener->tcp_ip_addr_cache) { 12250 kmem_free((void *)listener->tcp_ip_addr_cache, 12251 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12252 listener->tcp_ip_addr_cache = NULL; 12253 } 12254 } 12255 } 12256 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12257 if (addr_cache != NULL) { 12258 /* 12259 * We have finished a 3-way handshake with this 12260 * remote host. This proves the IP addr is good. 12261 * Cache it! 12262 */ 12263 addr_cache[IP_ADDR_CACHE_HASH( 12264 tcp->tcp_remote)] = tcp->tcp_remote; 12265 } 12266 mutex_exit(&listener->tcp_eager_lock); 12267 if (need_send_conn_ind) 12268 putnext(listener->tcp_rq, mp); 12269 } 12270 12271 mblk_t * 12272 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12273 uint_t *ifindexp, ip6_pkt_t *ippp) 12274 { 12275 in_pktinfo_t *pinfo; 12276 ip6_t *ip6h; 12277 uchar_t *rptr; 12278 mblk_t *first_mp = mp; 12279 boolean_t mctl_present = B_FALSE; 12280 uint_t ifindex = 0; 12281 ip6_pkt_t ipp; 12282 uint_t ipvers; 12283 uint_t ip_hdr_len; 12284 12285 rptr = mp->b_rptr; 12286 ASSERT(OK_32PTR(rptr)); 12287 ASSERT(tcp != NULL); 12288 ipp.ipp_fields = 0; 12289 12290 switch DB_TYPE(mp) { 12291 case M_CTL: 12292 mp = mp->b_cont; 12293 if (mp == NULL) { 12294 freemsg(first_mp); 12295 return (NULL); 12296 } 12297 if (DB_TYPE(mp) != M_DATA) { 12298 freemsg(first_mp); 12299 return (NULL); 12300 } 12301 mctl_present = B_TRUE; 12302 break; 12303 case M_DATA: 12304 break; 12305 default: 12306 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12307 freemsg(mp); 12308 return (NULL); 12309 } 12310 ipvers = IPH_HDR_VERSION(rptr); 12311 if (ipvers == IPV4_VERSION) { 12312 if (tcp == NULL) { 12313 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12314 goto done; 12315 } 12316 12317 ipp.ipp_fields |= IPPF_HOPLIMIT; 12318 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12319 12320 /* 12321 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12322 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12323 */ 12324 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12325 mctl_present) { 12326 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12327 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12328 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12329 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12330 ipp.ipp_fields |= IPPF_IFINDEX; 12331 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12332 ifindex = pinfo->in_pkt_ifindex; 12333 } 12334 freeb(first_mp); 12335 mctl_present = B_FALSE; 12336 } 12337 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12338 } else { 12339 ip6h = (ip6_t *)rptr; 12340 12341 ASSERT(ipvers == IPV6_VERSION); 12342 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12343 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12344 ipp.ipp_hoplimit = ip6h->ip6_hops; 12345 12346 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12347 uint8_t nexthdrp; 12348 12349 /* Look for ifindex information */ 12350 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12351 ip6i_t *ip6i = (ip6i_t *)ip6h; 12352 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12353 BUMP_MIB(&ip_mib, tcpInErrs); 12354 freemsg(first_mp); 12355 return (NULL); 12356 } 12357 12358 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12359 ASSERT(ip6i->ip6i_ifindex != 0); 12360 ipp.ipp_fields |= IPPF_IFINDEX; 12361 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12362 ifindex = ip6i->ip6i_ifindex; 12363 } 12364 rptr = (uchar_t *)&ip6i[1]; 12365 mp->b_rptr = rptr; 12366 if (rptr == mp->b_wptr) { 12367 mblk_t *mp1; 12368 mp1 = mp->b_cont; 12369 freeb(mp); 12370 mp = mp1; 12371 rptr = mp->b_rptr; 12372 } 12373 if (MBLKL(mp) < IPV6_HDR_LEN + 12374 sizeof (tcph_t)) { 12375 BUMP_MIB(&ip_mib, tcpInErrs); 12376 freemsg(first_mp); 12377 return (NULL); 12378 } 12379 ip6h = (ip6_t *)rptr; 12380 } 12381 12382 /* 12383 * Find any potentially interesting extension headers 12384 * as well as the length of the IPv6 + extension 12385 * headers. 12386 */ 12387 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12388 /* Verify if this is a TCP packet */ 12389 if (nexthdrp != IPPROTO_TCP) { 12390 BUMP_MIB(&ip_mib, tcpInErrs); 12391 freemsg(first_mp); 12392 return (NULL); 12393 } 12394 } else { 12395 ip_hdr_len = IPV6_HDR_LEN; 12396 } 12397 } 12398 12399 done: 12400 if (ipversp != NULL) 12401 *ipversp = ipvers; 12402 if (ip_hdr_lenp != NULL) 12403 *ip_hdr_lenp = ip_hdr_len; 12404 if (ippp != NULL) 12405 *ippp = ipp; 12406 if (ifindexp != NULL) 12407 *ifindexp = ifindex; 12408 if (mctl_present) { 12409 freeb(first_mp); 12410 } 12411 return (mp); 12412 } 12413 12414 /* 12415 * Handle M_DATA messages from IP. Its called directly from IP via 12416 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12417 * in this path. 12418 * 12419 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12420 * v4 and v6), we are called through tcp_input() and a M_CTL can 12421 * be present for options but tcp_find_pktinfo() deals with it. We 12422 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12423 * 12424 * The first argument is always the connp/tcp to which the mp belongs. 12425 * There are no exceptions to this rule. The caller has already put 12426 * a reference on this connp/tcp and once tcp_rput_data() returns, 12427 * the squeue will do the refrele. 12428 * 12429 * The TH_SYN for the listener directly go to tcp_conn_request via 12430 * squeue. 12431 * 12432 * sqp: NULL = recursive, sqp != NULL means called from squeue 12433 */ 12434 void 12435 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12436 { 12437 int32_t bytes_acked; 12438 int32_t gap; 12439 mblk_t *mp1; 12440 uint_t flags; 12441 uint32_t new_swnd = 0; 12442 uchar_t *iphdr; 12443 uchar_t *rptr; 12444 int32_t rgap; 12445 uint32_t seg_ack; 12446 int seg_len; 12447 uint_t ip_hdr_len; 12448 uint32_t seg_seq; 12449 tcph_t *tcph; 12450 int urp; 12451 tcp_opt_t tcpopt; 12452 uint_t ipvers; 12453 ip6_pkt_t ipp; 12454 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12455 uint32_t cwnd; 12456 uint32_t add; 12457 int npkt; 12458 int mss; 12459 conn_t *connp = (conn_t *)arg; 12460 squeue_t *sqp = (squeue_t *)arg2; 12461 tcp_t *tcp = connp->conn_tcp; 12462 12463 /* 12464 * RST from fused tcp loopback peer should trigger an unfuse. 12465 */ 12466 if (tcp->tcp_fused) { 12467 TCP_STAT(tcp_fusion_aborted); 12468 tcp_unfuse(tcp); 12469 } 12470 12471 iphdr = mp->b_rptr; 12472 rptr = mp->b_rptr; 12473 ASSERT(OK_32PTR(rptr)); 12474 12475 /* 12476 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12477 * processing here. For rest call tcp_find_pktinfo to fill up the 12478 * necessary information. 12479 */ 12480 if (IPCL_IS_TCP4(connp)) { 12481 ipvers = IPV4_VERSION; 12482 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12483 } else { 12484 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12485 NULL, &ipp); 12486 if (mp == NULL) { 12487 TCP_STAT(tcp_rput_v6_error); 12488 return; 12489 } 12490 iphdr = mp->b_rptr; 12491 rptr = mp->b_rptr; 12492 } 12493 ASSERT(DB_TYPE(mp) == M_DATA); 12494 12495 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12496 seg_seq = ABE32_TO_U32(tcph->th_seq); 12497 seg_ack = ABE32_TO_U32(tcph->th_ack); 12498 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12499 seg_len = (int)(mp->b_wptr - rptr) - 12500 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12501 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12502 do { 12503 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12504 (uintptr_t)INT_MAX); 12505 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12506 } while ((mp1 = mp1->b_cont) != NULL && 12507 mp1->b_datap->db_type == M_DATA); 12508 } 12509 12510 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12511 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12512 seg_len, tcph); 12513 return; 12514 } 12515 12516 if (sqp != NULL) { 12517 /* 12518 * This is the correct place to update tcp_last_recv_time. Note 12519 * that it is also updated for tcp structure that belongs to 12520 * global and listener queues which do not really need updating. 12521 * But that should not cause any harm. And it is updated for 12522 * all kinds of incoming segments, not only for data segments. 12523 */ 12524 tcp->tcp_last_recv_time = lbolt; 12525 } 12526 12527 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12528 12529 BUMP_LOCAL(tcp->tcp_ibsegs); 12530 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12531 12532 if ((flags & TH_URG) && sqp != NULL) { 12533 /* 12534 * TCP can't handle urgent pointers that arrive before 12535 * the connection has been accept()ed since it can't 12536 * buffer OOB data. Discard segment if this happens. 12537 * 12538 * Nor can it reassemble urgent pointers, so discard 12539 * if it's not the next segment expected. 12540 * 12541 * Otherwise, collapse chain into one mblk (discard if 12542 * that fails). This makes sure the headers, retransmitted 12543 * data, and new data all are in the same mblk. 12544 */ 12545 ASSERT(mp != NULL); 12546 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12547 freemsg(mp); 12548 return; 12549 } 12550 /* Update pointers into message */ 12551 iphdr = rptr = mp->b_rptr; 12552 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12553 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12554 /* 12555 * Since we can't handle any data with this urgent 12556 * pointer that is out of sequence, we expunge 12557 * the data. This allows us to still register 12558 * the urgent mark and generate the M_PCSIG, 12559 * which we can do. 12560 */ 12561 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12562 seg_len = 0; 12563 } 12564 } 12565 12566 switch (tcp->tcp_state) { 12567 case TCPS_SYN_SENT: 12568 if (flags & TH_ACK) { 12569 /* 12570 * Note that our stack cannot send data before a 12571 * connection is established, therefore the 12572 * following check is valid. Otherwise, it has 12573 * to be changed. 12574 */ 12575 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12576 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12577 freemsg(mp); 12578 if (flags & TH_RST) 12579 return; 12580 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12581 tcp, seg_ack, 0, TH_RST); 12582 return; 12583 } 12584 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12585 } 12586 if (flags & TH_RST) { 12587 freemsg(mp); 12588 if (flags & TH_ACK) 12589 (void) tcp_clean_death(tcp, 12590 ECONNREFUSED, 13); 12591 return; 12592 } 12593 if (!(flags & TH_SYN)) { 12594 freemsg(mp); 12595 return; 12596 } 12597 12598 /* Process all TCP options. */ 12599 tcp_process_options(tcp, tcph); 12600 /* 12601 * The following changes our rwnd to be a multiple of the 12602 * MIN(peer MSS, our MSS) for performance reason. 12603 */ 12604 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12605 tcp->tcp_mss)); 12606 12607 /* Is the other end ECN capable? */ 12608 if (tcp->tcp_ecn_ok) { 12609 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12610 tcp->tcp_ecn_ok = B_FALSE; 12611 } 12612 } 12613 /* 12614 * Clear ECN flags because it may interfere with later 12615 * processing. 12616 */ 12617 flags &= ~(TH_ECE|TH_CWR); 12618 12619 tcp->tcp_irs = seg_seq; 12620 tcp->tcp_rack = seg_seq; 12621 tcp->tcp_rnxt = seg_seq + 1; 12622 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12623 if (!TCP_IS_DETACHED(tcp)) { 12624 /* Allocate room for SACK options if needed. */ 12625 if (tcp->tcp_snd_sack_ok) { 12626 (void) mi_set_sth_wroff(tcp->tcp_rq, 12627 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12628 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12629 } else { 12630 (void) mi_set_sth_wroff(tcp->tcp_rq, 12631 tcp->tcp_hdr_len + 12632 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12633 } 12634 } 12635 if (flags & TH_ACK) { 12636 /* 12637 * If we can't get the confirmation upstream, pretend 12638 * we didn't even see this one. 12639 * 12640 * XXX: how can we pretend we didn't see it if we 12641 * have updated rnxt et. al. 12642 * 12643 * For loopback we defer sending up the T_CONN_CON 12644 * until after some checks below. 12645 */ 12646 mp1 = NULL; 12647 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12648 tcp->tcp_loopback ? &mp1 : NULL)) { 12649 freemsg(mp); 12650 return; 12651 } 12652 /* SYN was acked - making progress */ 12653 if (tcp->tcp_ipversion == IPV6_VERSION) 12654 tcp->tcp_ip_forward_progress = B_TRUE; 12655 12656 /* One for the SYN */ 12657 tcp->tcp_suna = tcp->tcp_iss + 1; 12658 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12659 tcp->tcp_state = TCPS_ESTABLISHED; 12660 12661 /* 12662 * If SYN was retransmitted, need to reset all 12663 * retransmission info. This is because this 12664 * segment will be treated as a dup ACK. 12665 */ 12666 if (tcp->tcp_rexmit) { 12667 tcp->tcp_rexmit = B_FALSE; 12668 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12669 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12670 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12671 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12672 tcp->tcp_ms_we_have_waited = 0; 12673 12674 /* 12675 * Set tcp_cwnd back to 1 MSS, per 12676 * recommendation from 12677 * draft-floyd-incr-init-win-01.txt, 12678 * Increasing TCP's Initial Window. 12679 */ 12680 tcp->tcp_cwnd = tcp->tcp_mss; 12681 } 12682 12683 tcp->tcp_swl1 = seg_seq; 12684 tcp->tcp_swl2 = seg_ack; 12685 12686 new_swnd = BE16_TO_U16(tcph->th_win); 12687 tcp->tcp_swnd = new_swnd; 12688 if (new_swnd > tcp->tcp_max_swnd) 12689 tcp->tcp_max_swnd = new_swnd; 12690 12691 /* 12692 * Always send the three-way handshake ack immediately 12693 * in order to make the connection complete as soon as 12694 * possible on the accepting host. 12695 */ 12696 flags |= TH_ACK_NEEDED; 12697 12698 /* 12699 * Special case for loopback. At this point we have 12700 * received SYN-ACK from the remote endpoint. In 12701 * order to ensure that both endpoints reach the 12702 * fused state prior to any data exchange, the final 12703 * ACK needs to be sent before we indicate T_CONN_CON 12704 * to the module upstream. 12705 */ 12706 if (tcp->tcp_loopback) { 12707 mblk_t *ack_mp; 12708 12709 ASSERT(!tcp->tcp_unfusable); 12710 ASSERT(mp1 != NULL); 12711 /* 12712 * For loopback, we always get a pure SYN-ACK 12713 * and only need to send back the final ACK 12714 * with no data (this is because the other 12715 * tcp is ours and we don't do T/TCP). This 12716 * final ACK triggers the passive side to 12717 * perform fusion in ESTABLISHED state. 12718 */ 12719 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12720 if (tcp->tcp_ack_tid != 0) { 12721 (void) TCP_TIMER_CANCEL(tcp, 12722 tcp->tcp_ack_tid); 12723 tcp->tcp_ack_tid = 0; 12724 } 12725 TCP_RECORD_TRACE(tcp, ack_mp, 12726 TCP_TRACE_SEND_PKT); 12727 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12728 BUMP_LOCAL(tcp->tcp_obsegs); 12729 BUMP_MIB(&tcp_mib, tcpOutAck); 12730 12731 /* Send up T_CONN_CON */ 12732 putnext(tcp->tcp_rq, mp1); 12733 12734 freemsg(mp); 12735 return; 12736 } 12737 /* 12738 * Forget fusion; we need to handle more 12739 * complex cases below. Send the deferred 12740 * T_CONN_CON message upstream and proceed 12741 * as usual. Mark this tcp as not capable 12742 * of fusion. 12743 */ 12744 TCP_STAT(tcp_fusion_unfusable); 12745 tcp->tcp_unfusable = B_TRUE; 12746 putnext(tcp->tcp_rq, mp1); 12747 } 12748 12749 /* 12750 * Check to see if there is data to be sent. If 12751 * yes, set the transmit flag. Then check to see 12752 * if received data processing needs to be done. 12753 * If not, go straight to xmit_check. This short 12754 * cut is OK as we don't support T/TCP. 12755 */ 12756 if (tcp->tcp_unsent) 12757 flags |= TH_XMIT_NEEDED; 12758 12759 if (seg_len == 0 && !(flags & TH_URG)) { 12760 freemsg(mp); 12761 goto xmit_check; 12762 } 12763 12764 flags &= ~TH_SYN; 12765 seg_seq++; 12766 break; 12767 } 12768 tcp->tcp_state = TCPS_SYN_RCVD; 12769 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 12770 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 12771 if (mp1) { 12772 DB_CPID(mp1) = tcp->tcp_cpid; 12773 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 12774 tcp_send_data(tcp, tcp->tcp_wq, mp1); 12775 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12776 } 12777 freemsg(mp); 12778 return; 12779 case TCPS_SYN_RCVD: 12780 if (flags & TH_ACK) { 12781 /* 12782 * In this state, a SYN|ACK packet is either bogus 12783 * because the other side must be ACKing our SYN which 12784 * indicates it has seen the ACK for their SYN and 12785 * shouldn't retransmit it or we're crossing SYNs 12786 * on active open. 12787 */ 12788 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 12789 freemsg(mp); 12790 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 12791 tcp, seg_ack, 0, TH_RST); 12792 return; 12793 } 12794 /* 12795 * NOTE: RFC 793 pg. 72 says this should be 12796 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 12797 * but that would mean we have an ack that ignored 12798 * our SYN. 12799 */ 12800 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 12801 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12802 freemsg(mp); 12803 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 12804 tcp, seg_ack, 0, TH_RST); 12805 return; 12806 } 12807 } 12808 break; 12809 case TCPS_LISTEN: 12810 /* 12811 * Only a TLI listener can come through this path when a 12812 * acceptor is going back to be a listener and a packet 12813 * for the acceptor hits the classifier. For a socket 12814 * listener, this can never happen because a listener 12815 * can never accept connection on itself and hence a 12816 * socket acceptor can not go back to being a listener. 12817 */ 12818 ASSERT(!TCP_IS_SOCKET(tcp)); 12819 /*FALLTHRU*/ 12820 case TCPS_CLOSED: 12821 case TCPS_BOUND: { 12822 conn_t *new_connp; 12823 12824 new_connp = ipcl_classify(mp, connp->conn_zoneid); 12825 if (new_connp != NULL) { 12826 tcp_reinput(new_connp, mp, connp->conn_sqp); 12827 return; 12828 } 12829 /* We failed to classify. For now just drop the packet */ 12830 freemsg(mp); 12831 return; 12832 } 12833 case TCPS_IDLE: 12834 /* 12835 * Handle the case where the tcp_clean_death() has happened 12836 * on a connection (application hasn't closed yet) but a packet 12837 * was already queued on squeue before tcp_clean_death() 12838 * was processed. Calling tcp_clean_death() twice on same 12839 * connection can result in weird behaviour. 12840 */ 12841 freemsg(mp); 12842 return; 12843 default: 12844 break; 12845 } 12846 12847 /* 12848 * Already on the correct queue/perimeter. 12849 * If this is a detached connection and not an eager 12850 * connection hanging off a listener then new data 12851 * (past the FIN) will cause a reset. 12852 * We do a special check here where it 12853 * is out of the main line, rather than check 12854 * if we are detached every time we see new 12855 * data down below. 12856 */ 12857 if (TCP_IS_DETACHED_NONEAGER(tcp) && 12858 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 12859 BUMP_MIB(&tcp_mib, tcpInClosed); 12860 TCP_RECORD_TRACE(tcp, 12861 mp, TCP_TRACE_RECV_PKT); 12862 12863 freemsg(mp); 12864 /* 12865 * This could be an SSL closure alert. We're detached so just 12866 * acknowledge it this last time. 12867 */ 12868 if (tcp->tcp_kssl_ctx != NULL) { 12869 kssl_release_ctx(tcp->tcp_kssl_ctx); 12870 tcp->tcp_kssl_ctx = NULL; 12871 12872 tcp->tcp_rnxt += seg_len; 12873 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12874 flags |= TH_ACK_NEEDED; 12875 goto ack_check; 12876 } 12877 12878 tcp_xmit_ctl("new data when detached", tcp, 12879 tcp->tcp_snxt, 0, TH_RST); 12880 (void) tcp_clean_death(tcp, EPROTO, 12); 12881 return; 12882 } 12883 12884 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12885 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 12886 new_swnd = BE16_TO_U16(tcph->th_win) << 12887 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 12888 mss = tcp->tcp_mss; 12889 12890 if (tcp->tcp_snd_ts_ok) { 12891 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 12892 /* 12893 * This segment is not acceptable. 12894 * Drop it and send back an ACK. 12895 */ 12896 freemsg(mp); 12897 flags |= TH_ACK_NEEDED; 12898 goto ack_check; 12899 } 12900 } else if (tcp->tcp_snd_sack_ok) { 12901 ASSERT(tcp->tcp_sack_info != NULL); 12902 tcpopt.tcp = tcp; 12903 /* 12904 * SACK info in already updated in tcp_parse_options. Ignore 12905 * all other TCP options... 12906 */ 12907 (void) tcp_parse_options(tcph, &tcpopt); 12908 } 12909 try_again:; 12910 gap = seg_seq - tcp->tcp_rnxt; 12911 rgap = tcp->tcp_rwnd - (gap + seg_len); 12912 /* 12913 * gap is the amount of sequence space between what we expect to see 12914 * and what we got for seg_seq. A positive value for gap means 12915 * something got lost. A negative value means we got some old stuff. 12916 */ 12917 if (gap < 0) { 12918 /* Old stuff present. Is the SYN in there? */ 12919 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 12920 (seg_len != 0)) { 12921 flags &= ~TH_SYN; 12922 seg_seq++; 12923 urp--; 12924 /* Recompute the gaps after noting the SYN. */ 12925 goto try_again; 12926 } 12927 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 12928 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 12929 (seg_len > -gap ? -gap : seg_len)); 12930 /* Remove the old stuff from seg_len. */ 12931 seg_len += gap; 12932 /* 12933 * Anything left? 12934 * Make sure to check for unack'd FIN when rest of data 12935 * has been previously ack'd. 12936 */ 12937 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 12938 /* 12939 * Resets are only valid if they lie within our offered 12940 * window. If the RST bit is set, we just ignore this 12941 * segment. 12942 */ 12943 if (flags & TH_RST) { 12944 freemsg(mp); 12945 return; 12946 } 12947 12948 /* 12949 * The arriving of dup data packets indicate that we 12950 * may have postponed an ack for too long, or the other 12951 * side's RTT estimate is out of shape. Start acking 12952 * more often. 12953 */ 12954 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 12955 tcp->tcp_rack_cnt >= 1 && 12956 tcp->tcp_rack_abs_max > 2) { 12957 tcp->tcp_rack_abs_max--; 12958 } 12959 tcp->tcp_rack_cur_max = 1; 12960 12961 /* 12962 * This segment is "unacceptable". None of its 12963 * sequence space lies within our advertized window. 12964 * 12965 * Adjust seg_len to the original value for tracing. 12966 */ 12967 seg_len -= gap; 12968 if (tcp->tcp_debug) { 12969 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12970 "tcp_rput: unacceptable, gap %d, rgap %d, " 12971 "flags 0x%x, seg_seq %u, seg_ack %u, " 12972 "seg_len %d, rnxt %u, snxt %u, %s", 12973 gap, rgap, flags, seg_seq, seg_ack, 12974 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 12975 tcp_display(tcp, NULL, 12976 DISP_ADDR_AND_PORT)); 12977 } 12978 12979 /* 12980 * Arrange to send an ACK in response to the 12981 * unacceptable segment per RFC 793 page 69. There 12982 * is only one small difference between ours and the 12983 * acceptability test in the RFC - we accept ACK-only 12984 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 12985 * will be generated. 12986 * 12987 * Note that we have to ACK an ACK-only packet at least 12988 * for stacks that send 0-length keep-alives with 12989 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 12990 * section 4.2.3.6. As long as we don't ever generate 12991 * an unacceptable packet in response to an incoming 12992 * packet that is unacceptable, it should not cause 12993 * "ACK wars". 12994 */ 12995 flags |= TH_ACK_NEEDED; 12996 12997 /* 12998 * Continue processing this segment in order to use the 12999 * ACK information it contains, but skip all other 13000 * sequence-number processing. Processing the ACK 13001 * information is necessary in order to 13002 * re-synchronize connections that may have lost 13003 * synchronization. 13004 * 13005 * We clear seg_len and flag fields related to 13006 * sequence number processing as they are not 13007 * to be trusted for an unacceptable segment. 13008 */ 13009 seg_len = 0; 13010 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13011 goto process_ack; 13012 } 13013 13014 /* Fix seg_seq, and chew the gap off the front. */ 13015 seg_seq = tcp->tcp_rnxt; 13016 urp += gap; 13017 do { 13018 mblk_t *mp2; 13019 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13020 (uintptr_t)UINT_MAX); 13021 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13022 if (gap > 0) { 13023 mp->b_rptr = mp->b_wptr - gap; 13024 break; 13025 } 13026 mp2 = mp; 13027 mp = mp->b_cont; 13028 freeb(mp2); 13029 } while (gap < 0); 13030 /* 13031 * If the urgent data has already been acknowledged, we 13032 * should ignore TH_URG below 13033 */ 13034 if (urp < 0) 13035 flags &= ~TH_URG; 13036 } 13037 /* 13038 * rgap is the amount of stuff received out of window. A negative 13039 * value is the amount out of window. 13040 */ 13041 if (rgap < 0) { 13042 mblk_t *mp2; 13043 13044 if (tcp->tcp_rwnd == 0) { 13045 BUMP_MIB(&tcp_mib, tcpInWinProbe); 13046 } else { 13047 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 13048 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 13049 } 13050 13051 /* 13052 * seg_len does not include the FIN, so if more than 13053 * just the FIN is out of window, we act like we don't 13054 * see it. (If just the FIN is out of window, rgap 13055 * will be zero and we will go ahead and acknowledge 13056 * the FIN.) 13057 */ 13058 flags &= ~TH_FIN; 13059 13060 /* Fix seg_len and make sure there is something left. */ 13061 seg_len += rgap; 13062 if (seg_len <= 0) { 13063 /* 13064 * Resets are only valid if they lie within our offered 13065 * window. If the RST bit is set, we just ignore this 13066 * segment. 13067 */ 13068 if (flags & TH_RST) { 13069 freemsg(mp); 13070 return; 13071 } 13072 13073 /* Per RFC 793, we need to send back an ACK. */ 13074 flags |= TH_ACK_NEEDED; 13075 13076 /* 13077 * Send SIGURG as soon as possible i.e. even 13078 * if the TH_URG was delivered in a window probe 13079 * packet (which will be unacceptable). 13080 * 13081 * We generate a signal if none has been generated 13082 * for this connection or if this is a new urgent 13083 * byte. Also send a zero-length "unmarked" message 13084 * to inform SIOCATMARK that this is not the mark. 13085 * 13086 * tcp_urp_last_valid is cleared when the T_exdata_ind 13087 * is sent up. This plus the check for old data 13088 * (gap >= 0) handles the wraparound of the sequence 13089 * number space without having to always track the 13090 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13091 * this max in its rcv_up variable). 13092 * 13093 * This prevents duplicate SIGURGS due to a "late" 13094 * zero-window probe when the T_EXDATA_IND has already 13095 * been sent up. 13096 */ 13097 if ((flags & TH_URG) && 13098 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13099 tcp->tcp_urp_last))) { 13100 mp1 = allocb(0, BPRI_MED); 13101 if (mp1 == NULL) { 13102 freemsg(mp); 13103 return; 13104 } 13105 if (!TCP_IS_DETACHED(tcp) && 13106 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13107 SIGURG)) { 13108 /* Try again on the rexmit. */ 13109 freemsg(mp1); 13110 freemsg(mp); 13111 return; 13112 } 13113 /* 13114 * If the next byte would be the mark 13115 * then mark with MARKNEXT else mark 13116 * with NOTMARKNEXT. 13117 */ 13118 if (gap == 0 && urp == 0) 13119 mp1->b_flag |= MSGMARKNEXT; 13120 else 13121 mp1->b_flag |= MSGNOTMARKNEXT; 13122 freemsg(tcp->tcp_urp_mark_mp); 13123 tcp->tcp_urp_mark_mp = mp1; 13124 flags |= TH_SEND_URP_MARK; 13125 tcp->tcp_urp_last_valid = B_TRUE; 13126 tcp->tcp_urp_last = urp + seg_seq; 13127 } 13128 /* 13129 * If this is a zero window probe, continue to 13130 * process the ACK part. But we need to set seg_len 13131 * to 0 to avoid data processing. Otherwise just 13132 * drop the segment and send back an ACK. 13133 */ 13134 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13135 flags &= ~(TH_SYN | TH_URG); 13136 seg_len = 0; 13137 goto process_ack; 13138 } else { 13139 freemsg(mp); 13140 goto ack_check; 13141 } 13142 } 13143 /* Pitch out of window stuff off the end. */ 13144 rgap = seg_len; 13145 mp2 = mp; 13146 do { 13147 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13148 (uintptr_t)INT_MAX); 13149 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13150 if (rgap < 0) { 13151 mp2->b_wptr += rgap; 13152 if ((mp1 = mp2->b_cont) != NULL) { 13153 mp2->b_cont = NULL; 13154 freemsg(mp1); 13155 } 13156 break; 13157 } 13158 } while ((mp2 = mp2->b_cont) != NULL); 13159 } 13160 ok:; 13161 /* 13162 * TCP should check ECN info for segments inside the window only. 13163 * Therefore the check should be done here. 13164 */ 13165 if (tcp->tcp_ecn_ok) { 13166 if (flags & TH_CWR) { 13167 tcp->tcp_ecn_echo_on = B_FALSE; 13168 } 13169 /* 13170 * Note that both ECN_CE and CWR can be set in the 13171 * same segment. In this case, we once again turn 13172 * on ECN_ECHO. 13173 */ 13174 if (tcp->tcp_ipversion == IPV4_VERSION) { 13175 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13176 13177 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13178 tcp->tcp_ecn_echo_on = B_TRUE; 13179 } 13180 } else { 13181 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13182 13183 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13184 htonl(IPH_ECN_CE << 20)) { 13185 tcp->tcp_ecn_echo_on = B_TRUE; 13186 } 13187 } 13188 } 13189 13190 /* 13191 * Check whether we can update tcp_ts_recent. This test is 13192 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13193 * Extensions for High Performance: An Update", Internet Draft. 13194 */ 13195 if (tcp->tcp_snd_ts_ok && 13196 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13197 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13198 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13199 tcp->tcp_last_rcv_lbolt = lbolt64; 13200 } 13201 13202 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13203 /* 13204 * FIN in an out of order segment. We record this in 13205 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13206 * Clear the FIN so that any check on FIN flag will fail. 13207 * Remember that FIN also counts in the sequence number 13208 * space. So we need to ack out of order FIN only segments. 13209 */ 13210 if (flags & TH_FIN) { 13211 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13212 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13213 flags &= ~TH_FIN; 13214 flags |= TH_ACK_NEEDED; 13215 } 13216 if (seg_len > 0) { 13217 /* Fill in the SACK blk list. */ 13218 if (tcp->tcp_snd_sack_ok) { 13219 ASSERT(tcp->tcp_sack_info != NULL); 13220 tcp_sack_insert(tcp->tcp_sack_list, 13221 seg_seq, seg_seq + seg_len, 13222 &(tcp->tcp_num_sack_blk)); 13223 } 13224 13225 /* 13226 * Attempt reassembly and see if we have something 13227 * ready to go. 13228 */ 13229 mp = tcp_reass(tcp, mp, seg_seq); 13230 /* Always ack out of order packets */ 13231 flags |= TH_ACK_NEEDED | TH_PUSH; 13232 if (mp) { 13233 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13234 (uintptr_t)INT_MAX); 13235 seg_len = mp->b_cont ? msgdsize(mp) : 13236 (int)(mp->b_wptr - mp->b_rptr); 13237 seg_seq = tcp->tcp_rnxt; 13238 /* 13239 * A gap is filled and the seq num and len 13240 * of the gap match that of a previously 13241 * received FIN, put the FIN flag back in. 13242 */ 13243 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13244 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13245 flags |= TH_FIN; 13246 tcp->tcp_valid_bits &= 13247 ~TCP_OFO_FIN_VALID; 13248 } 13249 } else { 13250 /* 13251 * Keep going even with NULL mp. 13252 * There may be a useful ACK or something else 13253 * we don't want to miss. 13254 * 13255 * But TCP should not perform fast retransmit 13256 * because of the ack number. TCP uses 13257 * seg_len == 0 to determine if it is a pure 13258 * ACK. And this is not a pure ACK. 13259 */ 13260 seg_len = 0; 13261 ofo_seg = B_TRUE; 13262 } 13263 } 13264 } else if (seg_len > 0) { 13265 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13266 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13267 /* 13268 * If an out of order FIN was received before, and the seq 13269 * num and len of the new segment match that of the FIN, 13270 * put the FIN flag back in. 13271 */ 13272 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13273 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13274 flags |= TH_FIN; 13275 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13276 } 13277 } 13278 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13279 if (flags & TH_RST) { 13280 freemsg(mp); 13281 switch (tcp->tcp_state) { 13282 case TCPS_SYN_RCVD: 13283 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13284 break; 13285 case TCPS_ESTABLISHED: 13286 case TCPS_FIN_WAIT_1: 13287 case TCPS_FIN_WAIT_2: 13288 case TCPS_CLOSE_WAIT: 13289 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13290 break; 13291 case TCPS_CLOSING: 13292 case TCPS_LAST_ACK: 13293 (void) tcp_clean_death(tcp, 0, 16); 13294 break; 13295 default: 13296 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13297 (void) tcp_clean_death(tcp, ENXIO, 17); 13298 break; 13299 } 13300 return; 13301 } 13302 if (flags & TH_SYN) { 13303 /* 13304 * See RFC 793, Page 71 13305 * 13306 * The seq number must be in the window as it should 13307 * be "fixed" above. If it is outside window, it should 13308 * be already rejected. Note that we allow seg_seq to be 13309 * rnxt + rwnd because we want to accept 0 window probe. 13310 */ 13311 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13312 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13313 freemsg(mp); 13314 /* 13315 * If the ACK flag is not set, just use our snxt as the 13316 * seq number of the RST segment. 13317 */ 13318 if (!(flags & TH_ACK)) { 13319 seg_ack = tcp->tcp_snxt; 13320 } 13321 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13322 TH_RST|TH_ACK); 13323 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13324 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13325 return; 13326 } 13327 /* 13328 * urp could be -1 when the urp field in the packet is 0 13329 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13330 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13331 */ 13332 if (flags & TH_URG && urp >= 0) { 13333 if (!tcp->tcp_urp_last_valid || 13334 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13335 /* 13336 * If we haven't generated the signal yet for this 13337 * urgent pointer value, do it now. Also, send up a 13338 * zero-length M_DATA indicating whether or not this is 13339 * the mark. The latter is not needed when a 13340 * T_EXDATA_IND is sent up. However, if there are 13341 * allocation failures this code relies on the sender 13342 * retransmitting and the socket code for determining 13343 * the mark should not block waiting for the peer to 13344 * transmit. Thus, for simplicity we always send up the 13345 * mark indication. 13346 */ 13347 mp1 = allocb(0, BPRI_MED); 13348 if (mp1 == NULL) { 13349 freemsg(mp); 13350 return; 13351 } 13352 if (!TCP_IS_DETACHED(tcp) && 13353 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13354 /* Try again on the rexmit. */ 13355 freemsg(mp1); 13356 freemsg(mp); 13357 return; 13358 } 13359 /* 13360 * Mark with NOTMARKNEXT for now. 13361 * The code below will change this to MARKNEXT 13362 * if we are at the mark. 13363 * 13364 * If there are allocation failures (e.g. in dupmsg 13365 * below) the next time tcp_rput_data sees the urgent 13366 * segment it will send up the MSG*MARKNEXT message. 13367 */ 13368 mp1->b_flag |= MSGNOTMARKNEXT; 13369 freemsg(tcp->tcp_urp_mark_mp); 13370 tcp->tcp_urp_mark_mp = mp1; 13371 flags |= TH_SEND_URP_MARK; 13372 #ifdef DEBUG 13373 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13374 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13375 "last %x, %s", 13376 seg_seq, urp, tcp->tcp_urp_last, 13377 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13378 #endif /* DEBUG */ 13379 tcp->tcp_urp_last_valid = B_TRUE; 13380 tcp->tcp_urp_last = urp + seg_seq; 13381 } else if (tcp->tcp_urp_mark_mp != NULL) { 13382 /* 13383 * An allocation failure prevented the previous 13384 * tcp_rput_data from sending up the allocated 13385 * MSG*MARKNEXT message - send it up this time 13386 * around. 13387 */ 13388 flags |= TH_SEND_URP_MARK; 13389 } 13390 13391 /* 13392 * If the urgent byte is in this segment, make sure that it is 13393 * all by itself. This makes it much easier to deal with the 13394 * possibility of an allocation failure on the T_exdata_ind. 13395 * Note that seg_len is the number of bytes in the segment, and 13396 * urp is the offset into the segment of the urgent byte. 13397 * urp < seg_len means that the urgent byte is in this segment. 13398 */ 13399 if (urp < seg_len) { 13400 if (seg_len != 1) { 13401 uint32_t tmp_rnxt; 13402 /* 13403 * Break it up and feed it back in. 13404 * Re-attach the IP header. 13405 */ 13406 mp->b_rptr = iphdr; 13407 if (urp > 0) { 13408 /* 13409 * There is stuff before the urgent 13410 * byte. 13411 */ 13412 mp1 = dupmsg(mp); 13413 if (!mp1) { 13414 /* 13415 * Trim from urgent byte on. 13416 * The rest will come back. 13417 */ 13418 (void) adjmsg(mp, 13419 urp - seg_len); 13420 tcp_rput_data(connp, 13421 mp, NULL); 13422 return; 13423 } 13424 (void) adjmsg(mp1, urp - seg_len); 13425 /* Feed this piece back in. */ 13426 tmp_rnxt = tcp->tcp_rnxt; 13427 tcp_rput_data(connp, mp1, NULL); 13428 /* 13429 * If the data passed back in was not 13430 * processed (ie: bad ACK) sending 13431 * the remainder back in will cause a 13432 * loop. In this case, drop the 13433 * packet and let the sender try 13434 * sending a good packet. 13435 */ 13436 if (tmp_rnxt == tcp->tcp_rnxt) { 13437 freemsg(mp); 13438 return; 13439 } 13440 } 13441 if (urp != seg_len - 1) { 13442 uint32_t tmp_rnxt; 13443 /* 13444 * There is stuff after the urgent 13445 * byte. 13446 */ 13447 mp1 = dupmsg(mp); 13448 if (!mp1) { 13449 /* 13450 * Trim everything beyond the 13451 * urgent byte. The rest will 13452 * come back. 13453 */ 13454 (void) adjmsg(mp, 13455 urp + 1 - seg_len); 13456 tcp_rput_data(connp, 13457 mp, NULL); 13458 return; 13459 } 13460 (void) adjmsg(mp1, urp + 1 - seg_len); 13461 tmp_rnxt = tcp->tcp_rnxt; 13462 tcp_rput_data(connp, mp1, NULL); 13463 /* 13464 * If the data passed back in was not 13465 * processed (ie: bad ACK) sending 13466 * the remainder back in will cause a 13467 * loop. In this case, drop the 13468 * packet and let the sender try 13469 * sending a good packet. 13470 */ 13471 if (tmp_rnxt == tcp->tcp_rnxt) { 13472 freemsg(mp); 13473 return; 13474 } 13475 } 13476 tcp_rput_data(connp, mp, NULL); 13477 return; 13478 } 13479 /* 13480 * This segment contains only the urgent byte. We 13481 * have to allocate the T_exdata_ind, if we can. 13482 */ 13483 if (!tcp->tcp_urp_mp) { 13484 struct T_exdata_ind *tei; 13485 mp1 = allocb(sizeof (struct T_exdata_ind), 13486 BPRI_MED); 13487 if (!mp1) { 13488 /* 13489 * Sigh... It'll be back. 13490 * Generate any MSG*MARK message now. 13491 */ 13492 freemsg(mp); 13493 seg_len = 0; 13494 if (flags & TH_SEND_URP_MARK) { 13495 13496 13497 ASSERT(tcp->tcp_urp_mark_mp); 13498 tcp->tcp_urp_mark_mp->b_flag &= 13499 ~MSGNOTMARKNEXT; 13500 tcp->tcp_urp_mark_mp->b_flag |= 13501 MSGMARKNEXT; 13502 } 13503 goto ack_check; 13504 } 13505 mp1->b_datap->db_type = M_PROTO; 13506 tei = (struct T_exdata_ind *)mp1->b_rptr; 13507 tei->PRIM_type = T_EXDATA_IND; 13508 tei->MORE_flag = 0; 13509 mp1->b_wptr = (uchar_t *)&tei[1]; 13510 tcp->tcp_urp_mp = mp1; 13511 #ifdef DEBUG 13512 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13513 "tcp_rput: allocated exdata_ind %s", 13514 tcp_display(tcp, NULL, 13515 DISP_PORT_ONLY)); 13516 #endif /* DEBUG */ 13517 /* 13518 * There is no need to send a separate MSG*MARK 13519 * message since the T_EXDATA_IND will be sent 13520 * now. 13521 */ 13522 flags &= ~TH_SEND_URP_MARK; 13523 freemsg(tcp->tcp_urp_mark_mp); 13524 tcp->tcp_urp_mark_mp = NULL; 13525 } 13526 /* 13527 * Now we are all set. On the next putnext upstream, 13528 * tcp_urp_mp will be non-NULL and will get prepended 13529 * to what has to be this piece containing the urgent 13530 * byte. If for any reason we abort this segment below, 13531 * if it comes back, we will have this ready, or it 13532 * will get blown off in close. 13533 */ 13534 } else if (urp == seg_len) { 13535 /* 13536 * The urgent byte is the next byte after this sequence 13537 * number. If there is data it is marked with 13538 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13539 * since it is not needed. Otherwise, if the code 13540 * above just allocated a zero-length tcp_urp_mark_mp 13541 * message, that message is tagged with MSGMARKNEXT. 13542 * Sending up these MSGMARKNEXT messages makes 13543 * SIOCATMARK work correctly even though 13544 * the T_EXDATA_IND will not be sent up until the 13545 * urgent byte arrives. 13546 */ 13547 if (seg_len != 0) { 13548 flags |= TH_MARKNEXT_NEEDED; 13549 freemsg(tcp->tcp_urp_mark_mp); 13550 tcp->tcp_urp_mark_mp = NULL; 13551 flags &= ~TH_SEND_URP_MARK; 13552 } else if (tcp->tcp_urp_mark_mp != NULL) { 13553 flags |= TH_SEND_URP_MARK; 13554 tcp->tcp_urp_mark_mp->b_flag &= 13555 ~MSGNOTMARKNEXT; 13556 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13557 } 13558 #ifdef DEBUG 13559 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13560 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13561 seg_len, flags, 13562 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13563 #endif /* DEBUG */ 13564 } else { 13565 /* Data left until we hit mark */ 13566 #ifdef DEBUG 13567 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13568 "tcp_rput: URP %d bytes left, %s", 13569 urp - seg_len, tcp_display(tcp, NULL, 13570 DISP_PORT_ONLY)); 13571 #endif /* DEBUG */ 13572 } 13573 } 13574 13575 process_ack: 13576 if (!(flags & TH_ACK)) { 13577 freemsg(mp); 13578 goto xmit_check; 13579 } 13580 } 13581 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13582 13583 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13584 tcp->tcp_ip_forward_progress = B_TRUE; 13585 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13586 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13587 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13588 /* 3-way handshake complete - pass up the T_CONN_IND */ 13589 tcp_t *listener = tcp->tcp_listener; 13590 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13591 13592 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13593 /* 13594 * We are here means eager is fine but it can 13595 * get a TH_RST at any point between now and till 13596 * accept completes and disappear. We need to 13597 * ensure that reference to eager is valid after 13598 * we get out of eager's perimeter. So we do 13599 * an extra refhold. 13600 */ 13601 CONN_INC_REF(connp); 13602 13603 /* 13604 * The listener also exists because of the refhold 13605 * done in tcp_conn_request. Its possible that it 13606 * might have closed. We will check that once we 13607 * get inside listeners context. 13608 */ 13609 CONN_INC_REF(listener->tcp_connp); 13610 if (listener->tcp_connp->conn_sqp == 13611 connp->conn_sqp) { 13612 tcp_send_conn_ind(listener->tcp_connp, mp, 13613 listener->tcp_connp->conn_sqp); 13614 CONN_DEC_REF(listener->tcp_connp); 13615 } else if (!tcp->tcp_loopback) { 13616 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13617 tcp_send_conn_ind, 13618 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13619 } else { 13620 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13621 tcp_send_conn_ind, listener->tcp_connp, 13622 SQTAG_TCP_CONN_IND); 13623 } 13624 } 13625 13626 if (tcp->tcp_active_open) { 13627 /* 13628 * We are seeing the final ack in the three way 13629 * hand shake of a active open'ed connection 13630 * so we must send up a T_CONN_CON 13631 */ 13632 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13633 freemsg(mp); 13634 return; 13635 } 13636 /* 13637 * Don't fuse the loopback endpoints for 13638 * simultaneous active opens. 13639 */ 13640 if (tcp->tcp_loopback) { 13641 TCP_STAT(tcp_fusion_unfusable); 13642 tcp->tcp_unfusable = B_TRUE; 13643 } 13644 } 13645 13646 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13647 bytes_acked--; 13648 /* SYN was acked - making progress */ 13649 if (tcp->tcp_ipversion == IPV6_VERSION) 13650 tcp->tcp_ip_forward_progress = B_TRUE; 13651 13652 /* 13653 * If SYN was retransmitted, need to reset all 13654 * retransmission info as this segment will be 13655 * treated as a dup ACK. 13656 */ 13657 if (tcp->tcp_rexmit) { 13658 tcp->tcp_rexmit = B_FALSE; 13659 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13660 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13661 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13662 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13663 tcp->tcp_ms_we_have_waited = 0; 13664 tcp->tcp_cwnd = mss; 13665 } 13666 13667 /* 13668 * We set the send window to zero here. 13669 * This is needed if there is data to be 13670 * processed already on the queue. 13671 * Later (at swnd_update label), the 13672 * "new_swnd > tcp_swnd" condition is satisfied 13673 * the XMIT_NEEDED flag is set in the current 13674 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13675 * called if there is already data on queue in 13676 * this state. 13677 */ 13678 tcp->tcp_swnd = 0; 13679 13680 if (new_swnd > tcp->tcp_max_swnd) 13681 tcp->tcp_max_swnd = new_swnd; 13682 tcp->tcp_swl1 = seg_seq; 13683 tcp->tcp_swl2 = seg_ack; 13684 tcp->tcp_state = TCPS_ESTABLISHED; 13685 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13686 13687 /* Fuse when both sides are in ESTABLISHED state */ 13688 if (tcp->tcp_loopback && do_tcp_fusion) 13689 tcp_fuse(tcp, iphdr, tcph); 13690 13691 } 13692 /* This code follows 4.4BSD-Lite2 mostly. */ 13693 if (bytes_acked < 0) 13694 goto est; 13695 13696 /* 13697 * If TCP is ECN capable and the congestion experience bit is 13698 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13699 * done once per window (or more loosely, per RTT). 13700 */ 13701 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13702 tcp->tcp_cwr = B_FALSE; 13703 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13704 if (!tcp->tcp_cwr) { 13705 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13706 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13707 tcp->tcp_cwnd = npkt * mss; 13708 /* 13709 * If the cwnd is 0, use the timer to clock out 13710 * new segments. This is required by the ECN spec. 13711 */ 13712 if (npkt == 0) { 13713 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13714 /* 13715 * This makes sure that when the ACK comes 13716 * back, we will increase tcp_cwnd by 1 MSS. 13717 */ 13718 tcp->tcp_cwnd_cnt = 0; 13719 } 13720 tcp->tcp_cwr = B_TRUE; 13721 /* 13722 * This marks the end of the current window of in 13723 * flight data. That is why we don't use 13724 * tcp_suna + tcp_swnd. Only data in flight can 13725 * provide ECN info. 13726 */ 13727 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13728 tcp->tcp_ecn_cwr_sent = B_FALSE; 13729 } 13730 } 13731 13732 mp1 = tcp->tcp_xmit_head; 13733 if (bytes_acked == 0) { 13734 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 13735 int dupack_cnt; 13736 13737 BUMP_MIB(&tcp_mib, tcpInDupAck); 13738 /* 13739 * Fast retransmit. When we have seen exactly three 13740 * identical ACKs while we have unacked data 13741 * outstanding we take it as a hint that our peer 13742 * dropped something. 13743 * 13744 * If TCP is retransmitting, don't do fast retransmit. 13745 */ 13746 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 13747 ! tcp->tcp_rexmit) { 13748 /* Do Limited Transmit */ 13749 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 13750 tcp_dupack_fast_retransmit) { 13751 /* 13752 * RFC 3042 13753 * 13754 * What we need to do is temporarily 13755 * increase tcp_cwnd so that new 13756 * data can be sent if it is allowed 13757 * by the receive window (tcp_rwnd). 13758 * tcp_wput_data() will take care of 13759 * the rest. 13760 * 13761 * If the connection is SACK capable, 13762 * only do limited xmit when there 13763 * is SACK info. 13764 * 13765 * Note how tcp_cwnd is incremented. 13766 * The first dup ACK will increase 13767 * it by 1 MSS. The second dup ACK 13768 * will increase it by 2 MSS. This 13769 * means that only 1 new segment will 13770 * be sent for each dup ACK. 13771 */ 13772 if (tcp->tcp_unsent > 0 && 13773 (!tcp->tcp_snd_sack_ok || 13774 (tcp->tcp_snd_sack_ok && 13775 tcp->tcp_notsack_list != NULL))) { 13776 tcp->tcp_cwnd += mss << 13777 (tcp->tcp_dupack_cnt - 1); 13778 flags |= TH_LIMIT_XMIT; 13779 } 13780 } else if (dupack_cnt == 13781 tcp_dupack_fast_retransmit) { 13782 13783 /* 13784 * If we have reduced tcp_ssthresh 13785 * because of ECN, do not reduce it again 13786 * unless it is already one window of data 13787 * away. After one window of data, tcp_cwr 13788 * should then be cleared. Note that 13789 * for non ECN capable connection, tcp_cwr 13790 * should always be false. 13791 * 13792 * Adjust cwnd since the duplicate 13793 * ack indicates that a packet was 13794 * dropped (due to congestion.) 13795 */ 13796 if (!tcp->tcp_cwr) { 13797 npkt = ((tcp->tcp_snxt - 13798 tcp->tcp_suna) >> 1) / mss; 13799 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13800 mss; 13801 tcp->tcp_cwnd = (npkt + 13802 tcp->tcp_dupack_cnt) * mss; 13803 } 13804 if (tcp->tcp_ecn_ok) { 13805 tcp->tcp_cwr = B_TRUE; 13806 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13807 tcp->tcp_ecn_cwr_sent = B_FALSE; 13808 } 13809 13810 /* 13811 * We do Hoe's algorithm. Refer to her 13812 * paper "Improving the Start-up Behavior 13813 * of a Congestion Control Scheme for TCP," 13814 * appeared in SIGCOMM'96. 13815 * 13816 * Save highest seq no we have sent so far. 13817 * Be careful about the invisible FIN byte. 13818 */ 13819 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13820 (tcp->tcp_unsent == 0)) { 13821 tcp->tcp_rexmit_max = tcp->tcp_fss; 13822 } else { 13823 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13824 } 13825 13826 /* 13827 * Do not allow bursty traffic during. 13828 * fast recovery. Refer to Fall and Floyd's 13829 * paper "Simulation-based Comparisons of 13830 * Tahoe, Reno and SACK TCP" (in CCR?) 13831 * This is a best current practise. 13832 */ 13833 tcp->tcp_snd_burst = TCP_CWND_SS; 13834 13835 /* 13836 * For SACK: 13837 * Calculate tcp_pipe, which is the 13838 * estimated number of bytes in 13839 * network. 13840 * 13841 * tcp_fack is the highest sack'ed seq num 13842 * TCP has received. 13843 * 13844 * tcp_pipe is explained in the above quoted 13845 * Fall and Floyd's paper. tcp_fack is 13846 * explained in Mathis and Mahdavi's 13847 * "Forward Acknowledgment: Refining TCP 13848 * Congestion Control" in SIGCOMM '96. 13849 */ 13850 if (tcp->tcp_snd_sack_ok) { 13851 ASSERT(tcp->tcp_sack_info != NULL); 13852 if (tcp->tcp_notsack_list != NULL) { 13853 tcp->tcp_pipe = tcp->tcp_snxt - 13854 tcp->tcp_fack; 13855 tcp->tcp_sack_snxt = seg_ack; 13856 flags |= TH_NEED_SACK_REXMIT; 13857 } else { 13858 /* 13859 * Always initialize tcp_pipe 13860 * even though we don't have 13861 * any SACK info. If later 13862 * we get SACK info and 13863 * tcp_pipe is not initialized, 13864 * funny things will happen. 13865 */ 13866 tcp->tcp_pipe = 13867 tcp->tcp_cwnd_ssthresh; 13868 } 13869 } else { 13870 flags |= TH_REXMIT_NEEDED; 13871 } /* tcp_snd_sack_ok */ 13872 13873 } else { 13874 /* 13875 * Here we perform congestion 13876 * avoidance, but NOT slow start. 13877 * This is known as the Fast 13878 * Recovery Algorithm. 13879 */ 13880 if (tcp->tcp_snd_sack_ok && 13881 tcp->tcp_notsack_list != NULL) { 13882 flags |= TH_NEED_SACK_REXMIT; 13883 tcp->tcp_pipe -= mss; 13884 if (tcp->tcp_pipe < 0) 13885 tcp->tcp_pipe = 0; 13886 } else { 13887 /* 13888 * We know that one more packet has 13889 * left the pipe thus we can update 13890 * cwnd. 13891 */ 13892 cwnd = tcp->tcp_cwnd + mss; 13893 if (cwnd > tcp->tcp_cwnd_max) 13894 cwnd = tcp->tcp_cwnd_max; 13895 tcp->tcp_cwnd = cwnd; 13896 if (tcp->tcp_unsent > 0) 13897 flags |= TH_XMIT_NEEDED; 13898 } 13899 } 13900 } 13901 } else if (tcp->tcp_zero_win_probe) { 13902 /* 13903 * If the window has opened, need to arrange 13904 * to send additional data. 13905 */ 13906 if (new_swnd != 0) { 13907 /* tcp_suna != tcp_snxt */ 13908 /* Packet contains a window update */ 13909 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 13910 tcp->tcp_zero_win_probe = 0; 13911 tcp->tcp_timer_backoff = 0; 13912 tcp->tcp_ms_we_have_waited = 0; 13913 13914 /* 13915 * Transmit starting with tcp_suna since 13916 * the one byte probe is not ack'ed. 13917 * If TCP has sent more than one identical 13918 * probe, tcp_rexmit will be set. That means 13919 * tcp_ss_rexmit() will send out the one 13920 * byte along with new data. Otherwise, 13921 * fake the retransmission. 13922 */ 13923 flags |= TH_XMIT_NEEDED; 13924 if (!tcp->tcp_rexmit) { 13925 tcp->tcp_rexmit = B_TRUE; 13926 tcp->tcp_dupack_cnt = 0; 13927 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13928 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 13929 } 13930 } 13931 } 13932 goto swnd_update; 13933 } 13934 13935 /* 13936 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 13937 * If the ACK value acks something that we have not yet sent, it might 13938 * be an old duplicate segment. Send an ACK to re-synchronize the 13939 * other side. 13940 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 13941 * state is handled above, so we can always just drop the segment and 13942 * send an ACK here. 13943 * 13944 * Should we send ACKs in response to ACK only segments? 13945 */ 13946 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13947 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 13948 /* drop the received segment */ 13949 freemsg(mp); 13950 13951 /* 13952 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 13953 * greater than 0, check if the number of such 13954 * bogus ACks is greater than that count. If yes, 13955 * don't send back any ACK. This prevents TCP from 13956 * getting into an ACK storm if somehow an attacker 13957 * successfully spoofs an acceptable segment to our 13958 * peer. 13959 */ 13960 if (tcp_drop_ack_unsent_cnt > 0 && 13961 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 13962 TCP_STAT(tcp_in_ack_unsent_drop); 13963 return; 13964 } 13965 mp = tcp_ack_mp(tcp); 13966 if (mp != NULL) { 13967 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 13968 BUMP_LOCAL(tcp->tcp_obsegs); 13969 BUMP_MIB(&tcp_mib, tcpOutAck); 13970 tcp_send_data(tcp, tcp->tcp_wq, mp); 13971 } 13972 return; 13973 } 13974 13975 /* 13976 * TCP gets a new ACK, update the notsack'ed list to delete those 13977 * blocks that are covered by this ACK. 13978 */ 13979 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 13980 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 13981 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 13982 } 13983 13984 /* 13985 * If we got an ACK after fast retransmit, check to see 13986 * if it is a partial ACK. If it is not and the congestion 13987 * window was inflated to account for the other side's 13988 * cached packets, retract it. If it is, do Hoe's algorithm. 13989 */ 13990 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 13991 ASSERT(tcp->tcp_rexmit == B_FALSE); 13992 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 13993 tcp->tcp_dupack_cnt = 0; 13994 /* 13995 * Restore the orig tcp_cwnd_ssthresh after 13996 * fast retransmit phase. 13997 */ 13998 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 13999 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14000 } 14001 tcp->tcp_rexmit_max = seg_ack; 14002 tcp->tcp_cwnd_cnt = 0; 14003 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14004 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14005 14006 /* 14007 * Remove all notsack info to avoid confusion with 14008 * the next fast retrasnmit/recovery phase. 14009 */ 14010 if (tcp->tcp_snd_sack_ok && 14011 tcp->tcp_notsack_list != NULL) { 14012 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14013 } 14014 } else { 14015 if (tcp->tcp_snd_sack_ok && 14016 tcp->tcp_notsack_list != NULL) { 14017 flags |= TH_NEED_SACK_REXMIT; 14018 tcp->tcp_pipe -= mss; 14019 if (tcp->tcp_pipe < 0) 14020 tcp->tcp_pipe = 0; 14021 } else { 14022 /* 14023 * Hoe's algorithm: 14024 * 14025 * Retransmit the unack'ed segment and 14026 * restart fast recovery. Note that we 14027 * need to scale back tcp_cwnd to the 14028 * original value when we started fast 14029 * recovery. This is to prevent overly 14030 * aggressive behaviour in sending new 14031 * segments. 14032 */ 14033 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14034 tcp_dupack_fast_retransmit * mss; 14035 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14036 flags |= TH_REXMIT_NEEDED; 14037 } 14038 } 14039 } else { 14040 tcp->tcp_dupack_cnt = 0; 14041 if (tcp->tcp_rexmit) { 14042 /* 14043 * TCP is retranmitting. If the ACK ack's all 14044 * outstanding data, update tcp_rexmit_max and 14045 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14046 * to the correct value. 14047 * 14048 * Note that SEQ_LEQ() is used. This is to avoid 14049 * unnecessary fast retransmit caused by dup ACKs 14050 * received when TCP does slow start retransmission 14051 * after a time out. During this phase, TCP may 14052 * send out segments which are already received. 14053 * This causes dup ACKs to be sent back. 14054 */ 14055 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14056 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14057 tcp->tcp_rexmit_nxt = seg_ack; 14058 } 14059 if (seg_ack != tcp->tcp_rexmit_max) { 14060 flags |= TH_XMIT_NEEDED; 14061 } 14062 } else { 14063 tcp->tcp_rexmit = B_FALSE; 14064 tcp->tcp_xmit_zc_clean = B_FALSE; 14065 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14066 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14067 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14068 } 14069 tcp->tcp_ms_we_have_waited = 0; 14070 } 14071 } 14072 14073 BUMP_MIB(&tcp_mib, tcpInAckSegs); 14074 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 14075 tcp->tcp_suna = seg_ack; 14076 if (tcp->tcp_zero_win_probe != 0) { 14077 tcp->tcp_zero_win_probe = 0; 14078 tcp->tcp_timer_backoff = 0; 14079 } 14080 14081 /* 14082 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14083 * Note that it cannot be the SYN being ack'ed. The code flow 14084 * will not reach here. 14085 */ 14086 if (mp1 == NULL) { 14087 goto fin_acked; 14088 } 14089 14090 /* 14091 * Update the congestion window. 14092 * 14093 * If TCP is not ECN capable or TCP is ECN capable but the 14094 * congestion experience bit is not set, increase the tcp_cwnd as 14095 * usual. 14096 */ 14097 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14098 cwnd = tcp->tcp_cwnd; 14099 add = mss; 14100 14101 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14102 /* 14103 * This is to prevent an increase of less than 1 MSS of 14104 * tcp_cwnd. With partial increase, tcp_wput_data() 14105 * may send out tinygrams in order to preserve mblk 14106 * boundaries. 14107 * 14108 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14109 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14110 * increased by 1 MSS for every RTTs. 14111 */ 14112 if (tcp->tcp_cwnd_cnt <= 0) { 14113 tcp->tcp_cwnd_cnt = cwnd + add; 14114 } else { 14115 tcp->tcp_cwnd_cnt -= add; 14116 add = 0; 14117 } 14118 } 14119 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14120 } 14121 14122 /* See if the latest urgent data has been acknowledged */ 14123 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14124 SEQ_GT(seg_ack, tcp->tcp_urg)) 14125 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14126 14127 /* Can we update the RTT estimates? */ 14128 if (tcp->tcp_snd_ts_ok) { 14129 /* Ignore zero timestamp echo-reply. */ 14130 if (tcpopt.tcp_opt_ts_ecr != 0) { 14131 tcp_set_rto(tcp, (int32_t)lbolt - 14132 (int32_t)tcpopt.tcp_opt_ts_ecr); 14133 } 14134 14135 /* If needed, restart the timer. */ 14136 if (tcp->tcp_set_timer == 1) { 14137 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14138 tcp->tcp_set_timer = 0; 14139 } 14140 /* 14141 * Update tcp_csuna in case the other side stops sending 14142 * us timestamps. 14143 */ 14144 tcp->tcp_csuna = tcp->tcp_snxt; 14145 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14146 /* 14147 * An ACK sequence we haven't seen before, so get the RTT 14148 * and update the RTO. But first check if the timestamp is 14149 * valid to use. 14150 */ 14151 if ((mp1->b_next != NULL) && 14152 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14153 tcp_set_rto(tcp, (int32_t)lbolt - 14154 (int32_t)(intptr_t)mp1->b_prev); 14155 else 14156 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14157 14158 /* Remeber the last sequence to be ACKed */ 14159 tcp->tcp_csuna = seg_ack; 14160 if (tcp->tcp_set_timer == 1) { 14161 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14162 tcp->tcp_set_timer = 0; 14163 } 14164 } else { 14165 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14166 } 14167 14168 /* Eat acknowledged bytes off the xmit queue. */ 14169 for (;;) { 14170 mblk_t *mp2; 14171 uchar_t *wptr; 14172 14173 wptr = mp1->b_wptr; 14174 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14175 bytes_acked -= (int)(wptr - mp1->b_rptr); 14176 if (bytes_acked < 0) { 14177 mp1->b_rptr = wptr + bytes_acked; 14178 /* 14179 * Set a new timestamp if all the bytes timed by the 14180 * old timestamp have been ack'ed. 14181 */ 14182 if (SEQ_GT(seg_ack, 14183 (uint32_t)(uintptr_t)(mp1->b_next))) { 14184 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14185 mp1->b_next = NULL; 14186 } 14187 break; 14188 } 14189 mp1->b_next = NULL; 14190 mp1->b_prev = NULL; 14191 mp2 = mp1; 14192 mp1 = mp1->b_cont; 14193 14194 /* 14195 * This notification is required for some zero-copy 14196 * clients to maintain a copy semantic. After the data 14197 * is ack'ed, client is safe to modify or reuse the buffer. 14198 */ 14199 if (tcp->tcp_snd_zcopy_aware && 14200 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14201 tcp_zcopy_notify(tcp); 14202 freeb(mp2); 14203 if (bytes_acked == 0) { 14204 if (mp1 == NULL) { 14205 /* Everything is ack'ed, clear the tail. */ 14206 tcp->tcp_xmit_tail = NULL; 14207 /* 14208 * Cancel the timer unless we are still 14209 * waiting for an ACK for the FIN packet. 14210 */ 14211 if (tcp->tcp_timer_tid != 0 && 14212 tcp->tcp_snxt == tcp->tcp_suna) { 14213 (void) TCP_TIMER_CANCEL(tcp, 14214 tcp->tcp_timer_tid); 14215 tcp->tcp_timer_tid = 0; 14216 } 14217 goto pre_swnd_update; 14218 } 14219 if (mp2 != tcp->tcp_xmit_tail) 14220 break; 14221 tcp->tcp_xmit_tail = mp1; 14222 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14223 (uintptr_t)INT_MAX); 14224 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14225 mp1->b_rptr); 14226 break; 14227 } 14228 if (mp1 == NULL) { 14229 /* 14230 * More was acked but there is nothing more 14231 * outstanding. This means that the FIN was 14232 * just acked or that we're talking to a clown. 14233 */ 14234 fin_acked: 14235 ASSERT(tcp->tcp_fin_sent); 14236 tcp->tcp_xmit_tail = NULL; 14237 if (tcp->tcp_fin_sent) { 14238 /* FIN was acked - making progress */ 14239 if (tcp->tcp_ipversion == IPV6_VERSION && 14240 !tcp->tcp_fin_acked) 14241 tcp->tcp_ip_forward_progress = B_TRUE; 14242 tcp->tcp_fin_acked = B_TRUE; 14243 if (tcp->tcp_linger_tid != 0 && 14244 TCP_TIMER_CANCEL(tcp, 14245 tcp->tcp_linger_tid) >= 0) { 14246 tcp_stop_lingering(tcp); 14247 } 14248 } else { 14249 /* 14250 * We should never get here because 14251 * we have already checked that the 14252 * number of bytes ack'ed should be 14253 * smaller than or equal to what we 14254 * have sent so far (it is the 14255 * acceptability check of the ACK). 14256 * We can only get here if the send 14257 * queue is corrupted. 14258 * 14259 * Terminate the connection and 14260 * panic the system. It is better 14261 * for us to panic instead of 14262 * continuing to avoid other disaster. 14263 */ 14264 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14265 tcp->tcp_rnxt, TH_RST|TH_ACK); 14266 panic("Memory corruption " 14267 "detected for connection %s.", 14268 tcp_display(tcp, NULL, 14269 DISP_ADDR_AND_PORT)); 14270 /*NOTREACHED*/ 14271 } 14272 goto pre_swnd_update; 14273 } 14274 ASSERT(mp2 != tcp->tcp_xmit_tail); 14275 } 14276 if (tcp->tcp_unsent) { 14277 flags |= TH_XMIT_NEEDED; 14278 } 14279 pre_swnd_update: 14280 tcp->tcp_xmit_head = mp1; 14281 swnd_update: 14282 /* 14283 * The following check is different from most other implementations. 14284 * For bi-directional transfer, when segments are dropped, the 14285 * "normal" check will not accept a window update in those 14286 * retransmitted segemnts. Failing to do that, TCP may send out 14287 * segments which are outside receiver's window. As TCP accepts 14288 * the ack in those retransmitted segments, if the window update in 14289 * the same segment is not accepted, TCP will incorrectly calculates 14290 * that it can send more segments. This can create a deadlock 14291 * with the receiver if its window becomes zero. 14292 */ 14293 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14294 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14295 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14296 /* 14297 * The criteria for update is: 14298 * 14299 * 1. the segment acknowledges some data. Or 14300 * 2. the segment is new, i.e. it has a higher seq num. Or 14301 * 3. the segment is not old and the advertised window is 14302 * larger than the previous advertised window. 14303 */ 14304 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14305 flags |= TH_XMIT_NEEDED; 14306 tcp->tcp_swnd = new_swnd; 14307 if (new_swnd > tcp->tcp_max_swnd) 14308 tcp->tcp_max_swnd = new_swnd; 14309 tcp->tcp_swl1 = seg_seq; 14310 tcp->tcp_swl2 = seg_ack; 14311 } 14312 est: 14313 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14314 14315 switch (tcp->tcp_state) { 14316 case TCPS_FIN_WAIT_1: 14317 if (tcp->tcp_fin_acked) { 14318 tcp->tcp_state = TCPS_FIN_WAIT_2; 14319 /* 14320 * We implement the non-standard BSD/SunOS 14321 * FIN_WAIT_2 flushing algorithm. 14322 * If there is no user attached to this 14323 * TCP endpoint, then this TCP struct 14324 * could hang around forever in FIN_WAIT_2 14325 * state if the peer forgets to send us 14326 * a FIN. To prevent this, we wait only 14327 * 2*MSL (a convenient time value) for 14328 * the FIN to arrive. If it doesn't show up, 14329 * we flush the TCP endpoint. This algorithm, 14330 * though a violation of RFC-793, has worked 14331 * for over 10 years in BSD systems. 14332 * Note: SunOS 4.x waits 675 seconds before 14333 * flushing the FIN_WAIT_2 connection. 14334 */ 14335 TCP_TIMER_RESTART(tcp, 14336 tcp_fin_wait_2_flush_interval); 14337 } 14338 break; 14339 case TCPS_FIN_WAIT_2: 14340 break; /* Shutdown hook? */ 14341 case TCPS_LAST_ACK: 14342 freemsg(mp); 14343 if (tcp->tcp_fin_acked) { 14344 (void) tcp_clean_death(tcp, 0, 19); 14345 return; 14346 } 14347 goto xmit_check; 14348 case TCPS_CLOSING: 14349 if (tcp->tcp_fin_acked) { 14350 tcp->tcp_state = TCPS_TIME_WAIT; 14351 /* 14352 * Unconditionally clear the exclusive binding 14353 * bit so this TIME-WAIT connection won't 14354 * interfere with new ones. 14355 */ 14356 tcp->tcp_exclbind = 0; 14357 if (!TCP_IS_DETACHED(tcp)) { 14358 TCP_TIMER_RESTART(tcp, 14359 tcp_time_wait_interval); 14360 } else { 14361 tcp_time_wait_append(tcp); 14362 TCP_DBGSTAT(tcp_rput_time_wait); 14363 } 14364 } 14365 /*FALLTHRU*/ 14366 case TCPS_CLOSE_WAIT: 14367 freemsg(mp); 14368 goto xmit_check; 14369 default: 14370 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14371 break; 14372 } 14373 } 14374 if (flags & TH_FIN) { 14375 /* Make sure we ack the fin */ 14376 flags |= TH_ACK_NEEDED; 14377 if (!tcp->tcp_fin_rcvd) { 14378 tcp->tcp_fin_rcvd = B_TRUE; 14379 tcp->tcp_rnxt++; 14380 tcph = tcp->tcp_tcph; 14381 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14382 14383 /* 14384 * Generate the ordrel_ind at the end unless we 14385 * are an eager guy. 14386 * In the eager case tcp_rsrv will do this when run 14387 * after tcp_accept is done. 14388 */ 14389 if (tcp->tcp_listener == NULL && 14390 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14391 flags |= TH_ORDREL_NEEDED; 14392 switch (tcp->tcp_state) { 14393 case TCPS_SYN_RCVD: 14394 case TCPS_ESTABLISHED: 14395 tcp->tcp_state = TCPS_CLOSE_WAIT; 14396 /* Keepalive? */ 14397 break; 14398 case TCPS_FIN_WAIT_1: 14399 if (!tcp->tcp_fin_acked) { 14400 tcp->tcp_state = TCPS_CLOSING; 14401 break; 14402 } 14403 /* FALLTHRU */ 14404 case TCPS_FIN_WAIT_2: 14405 tcp->tcp_state = TCPS_TIME_WAIT; 14406 /* 14407 * Unconditionally clear the exclusive binding 14408 * bit so this TIME-WAIT connection won't 14409 * interfere with new ones. 14410 */ 14411 tcp->tcp_exclbind = 0; 14412 if (!TCP_IS_DETACHED(tcp)) { 14413 TCP_TIMER_RESTART(tcp, 14414 tcp_time_wait_interval); 14415 } else { 14416 tcp_time_wait_append(tcp); 14417 TCP_DBGSTAT(tcp_rput_time_wait); 14418 } 14419 if (seg_len) { 14420 /* 14421 * implies data piggybacked on FIN. 14422 * break to handle data. 14423 */ 14424 break; 14425 } 14426 freemsg(mp); 14427 goto ack_check; 14428 } 14429 } 14430 } 14431 if (mp == NULL) 14432 goto xmit_check; 14433 if (seg_len == 0) { 14434 freemsg(mp); 14435 goto xmit_check; 14436 } 14437 if (mp->b_rptr == mp->b_wptr) { 14438 /* 14439 * The header has been consumed, so we remove the 14440 * zero-length mblk here. 14441 */ 14442 mp1 = mp; 14443 mp = mp->b_cont; 14444 freeb(mp1); 14445 } 14446 tcph = tcp->tcp_tcph; 14447 tcp->tcp_rack_cnt++; 14448 { 14449 uint32_t cur_max; 14450 14451 cur_max = tcp->tcp_rack_cur_max; 14452 if (tcp->tcp_rack_cnt >= cur_max) { 14453 /* 14454 * We have more unacked data than we should - send 14455 * an ACK now. 14456 */ 14457 flags |= TH_ACK_NEEDED; 14458 cur_max++; 14459 if (cur_max > tcp->tcp_rack_abs_max) 14460 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14461 else 14462 tcp->tcp_rack_cur_max = cur_max; 14463 } else if (TCP_IS_DETACHED(tcp)) { 14464 /* We don't have an ACK timer for detached TCP. */ 14465 flags |= TH_ACK_NEEDED; 14466 } else if (seg_len < mss) { 14467 /* 14468 * If we get a segment that is less than an mss, and we 14469 * already have unacknowledged data, and the amount 14470 * unacknowledged is not a multiple of mss, then we 14471 * better generate an ACK now. Otherwise, this may be 14472 * the tail piece of a transaction, and we would rather 14473 * wait for the response. 14474 */ 14475 uint32_t udif; 14476 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14477 (uintptr_t)INT_MAX); 14478 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14479 if (udif && (udif % mss)) 14480 flags |= TH_ACK_NEEDED; 14481 else 14482 flags |= TH_ACK_TIMER_NEEDED; 14483 } else { 14484 /* Start delayed ack timer */ 14485 flags |= TH_ACK_TIMER_NEEDED; 14486 } 14487 } 14488 tcp->tcp_rnxt += seg_len; 14489 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14490 14491 /* Update SACK list */ 14492 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14493 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14494 &(tcp->tcp_num_sack_blk)); 14495 } 14496 14497 if (tcp->tcp_urp_mp) { 14498 tcp->tcp_urp_mp->b_cont = mp; 14499 mp = tcp->tcp_urp_mp; 14500 tcp->tcp_urp_mp = NULL; 14501 /* Ready for a new signal. */ 14502 tcp->tcp_urp_last_valid = B_FALSE; 14503 #ifdef DEBUG 14504 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14505 "tcp_rput: sending exdata_ind %s", 14506 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14507 #endif /* DEBUG */ 14508 } 14509 14510 /* 14511 * Check for ancillary data changes compared to last segment. 14512 */ 14513 if (tcp->tcp_ipv6_recvancillary != 0) { 14514 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14515 if (mp == NULL) 14516 return; 14517 } 14518 14519 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14520 /* 14521 * Side queue inbound data until the accept happens. 14522 * tcp_accept/tcp_rput drains this when the accept happens. 14523 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14524 * T_EXDATA_IND) it is queued on b_next. 14525 * XXX Make urgent data use this. Requires: 14526 * Removing tcp_listener check for TH_URG 14527 * Making M_PCPROTO and MARK messages skip the eager case 14528 */ 14529 14530 if (tcp->tcp_kssl_pending) { 14531 tcp_kssl_input(tcp, mp); 14532 } else { 14533 tcp_rcv_enqueue(tcp, mp, seg_len); 14534 } 14535 } else { 14536 if (mp->b_datap->db_type != M_DATA || 14537 (flags & TH_MARKNEXT_NEEDED)) { 14538 if (tcp->tcp_rcv_list != NULL) { 14539 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14540 } 14541 ASSERT(tcp->tcp_rcv_list == NULL || 14542 tcp->tcp_fused_sigurg); 14543 if (flags & TH_MARKNEXT_NEEDED) { 14544 #ifdef DEBUG 14545 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14546 "tcp_rput: sending MSGMARKNEXT %s", 14547 tcp_display(tcp, NULL, 14548 DISP_PORT_ONLY)); 14549 #endif /* DEBUG */ 14550 mp->b_flag |= MSGMARKNEXT; 14551 flags &= ~TH_MARKNEXT_NEEDED; 14552 } 14553 14554 /* Does this need SSL processing first? */ 14555 if ((tcp->tcp_kssl_ctx != NULL) && 14556 (DB_TYPE(mp) == M_DATA)) { 14557 tcp_kssl_input(tcp, mp); 14558 } else { 14559 putnext(tcp->tcp_rq, mp); 14560 if (!canputnext(tcp->tcp_rq)) 14561 tcp->tcp_rwnd -= seg_len; 14562 } 14563 } else if ((flags & (TH_PUSH|TH_FIN)) || 14564 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14565 if (tcp->tcp_rcv_list != NULL) { 14566 /* 14567 * Enqueue the new segment first and then 14568 * call tcp_rcv_drain() to send all data 14569 * up. The other way to do this is to 14570 * send all queued data up and then call 14571 * putnext() to send the new segment up. 14572 * This way can remove the else part later 14573 * on. 14574 * 14575 * We don't this to avoid one more call to 14576 * canputnext() as tcp_rcv_drain() needs to 14577 * call canputnext(). 14578 */ 14579 tcp_rcv_enqueue(tcp, mp, seg_len); 14580 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14581 } else { 14582 /* Does this need SSL processing first? */ 14583 if ((tcp->tcp_kssl_ctx != NULL) && 14584 (DB_TYPE(mp) == M_DATA)) { 14585 tcp_kssl_input(tcp, mp); 14586 } else { 14587 putnext(tcp->tcp_rq, mp); 14588 if (!canputnext(tcp->tcp_rq)) 14589 tcp->tcp_rwnd -= seg_len; 14590 } 14591 } 14592 } else { 14593 /* 14594 * Enqueue all packets when processing an mblk 14595 * from the co queue and also enqueue normal packets. 14596 */ 14597 tcp_rcv_enqueue(tcp, mp, seg_len); 14598 } 14599 /* 14600 * Make sure the timer is running if we have data waiting 14601 * for a push bit. This provides resiliency against 14602 * implementations that do not correctly generate push bits. 14603 */ 14604 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 14605 /* 14606 * The connection may be closed at this point, so don't 14607 * do anything for a detached tcp. 14608 */ 14609 if (!TCP_IS_DETACHED(tcp)) 14610 tcp->tcp_push_tid = TCP_TIMER(tcp, 14611 tcp_push_timer, 14612 MSEC_TO_TICK(tcp_push_timer_interval)); 14613 } 14614 } 14615 xmit_check: 14616 /* Is there anything left to do? */ 14617 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14618 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14619 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14620 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14621 goto done; 14622 14623 /* Any transmit work to do and a non-zero window? */ 14624 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14625 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14626 if (flags & TH_REXMIT_NEEDED) { 14627 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14628 14629 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14630 if (snd_size > mss) 14631 snd_size = mss; 14632 if (snd_size > tcp->tcp_swnd) 14633 snd_size = tcp->tcp_swnd; 14634 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14635 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14636 B_TRUE); 14637 14638 if (mp1 != NULL) { 14639 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14640 tcp->tcp_csuna = tcp->tcp_snxt; 14641 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14642 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14643 TCP_RECORD_TRACE(tcp, mp1, 14644 TCP_TRACE_SEND_PKT); 14645 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14646 } 14647 } 14648 if (flags & TH_NEED_SACK_REXMIT) { 14649 tcp_sack_rxmit(tcp, &flags); 14650 } 14651 /* 14652 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14653 * out new segment. Note that tcp_rexmit should not be 14654 * set, otherwise TH_LIMIT_XMIT should not be set. 14655 */ 14656 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14657 if (!tcp->tcp_rexmit) { 14658 tcp_wput_data(tcp, NULL, B_FALSE); 14659 } else { 14660 tcp_ss_rexmit(tcp); 14661 } 14662 } 14663 /* 14664 * Adjust tcp_cwnd back to normal value after sending 14665 * new data segments. 14666 */ 14667 if (flags & TH_LIMIT_XMIT) { 14668 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14669 /* 14670 * This will restart the timer. Restarting the 14671 * timer is used to avoid a timeout before the 14672 * limited transmitted segment's ACK gets back. 14673 */ 14674 if (tcp->tcp_xmit_head != NULL) 14675 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14676 } 14677 14678 /* Anything more to do? */ 14679 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14680 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14681 goto done; 14682 } 14683 ack_check: 14684 if (flags & TH_SEND_URP_MARK) { 14685 ASSERT(tcp->tcp_urp_mark_mp); 14686 /* 14687 * Send up any queued data and then send the mark message 14688 */ 14689 if (tcp->tcp_rcv_list != NULL) { 14690 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14691 } 14692 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14693 14694 mp1 = tcp->tcp_urp_mark_mp; 14695 tcp->tcp_urp_mark_mp = NULL; 14696 #ifdef DEBUG 14697 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14698 "tcp_rput: sending zero-length %s %s", 14699 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14700 "MSGNOTMARKNEXT"), 14701 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14702 #endif /* DEBUG */ 14703 putnext(tcp->tcp_rq, mp1); 14704 flags &= ~TH_SEND_URP_MARK; 14705 } 14706 if (flags & TH_ACK_NEEDED) { 14707 /* 14708 * Time to send an ack for some reason. 14709 */ 14710 mp1 = tcp_ack_mp(tcp); 14711 14712 if (mp1 != NULL) { 14713 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14714 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14715 BUMP_LOCAL(tcp->tcp_obsegs); 14716 BUMP_MIB(&tcp_mib, tcpOutAck); 14717 } 14718 if (tcp->tcp_ack_tid != 0) { 14719 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14720 tcp->tcp_ack_tid = 0; 14721 } 14722 } 14723 if (flags & TH_ACK_TIMER_NEEDED) { 14724 /* 14725 * Arrange for deferred ACK or push wait timeout. 14726 * Start timer if it is not already running. 14727 */ 14728 if (tcp->tcp_ack_tid == 0) { 14729 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14730 MSEC_TO_TICK(tcp->tcp_localnet ? 14731 (clock_t)tcp_local_dack_interval : 14732 (clock_t)tcp_deferred_ack_interval)); 14733 } 14734 } 14735 if (flags & TH_ORDREL_NEEDED) { 14736 /* 14737 * Send up the ordrel_ind unless we are an eager guy. 14738 * In the eager case tcp_rsrv will do this when run 14739 * after tcp_accept is done. 14740 */ 14741 ASSERT(tcp->tcp_listener == NULL); 14742 if (tcp->tcp_rcv_list != NULL) { 14743 /* 14744 * Push any mblk(s) enqueued from co processing. 14745 */ 14746 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14747 } 14748 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14749 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 14750 tcp->tcp_ordrel_done = B_TRUE; 14751 putnext(tcp->tcp_rq, mp1); 14752 if (tcp->tcp_deferred_clean_death) { 14753 /* 14754 * tcp_clean_death was deferred 14755 * for T_ORDREL_IND - do it now 14756 */ 14757 (void) tcp_clean_death(tcp, 14758 tcp->tcp_client_errno, 20); 14759 tcp->tcp_deferred_clean_death = B_FALSE; 14760 } 14761 } else { 14762 /* 14763 * Run the orderly release in the 14764 * service routine. 14765 */ 14766 qenable(tcp->tcp_rq); 14767 /* 14768 * Caveat(XXX): The machine may be so 14769 * overloaded that tcp_rsrv() is not scheduled 14770 * until after the endpoint has transitioned 14771 * to TCPS_TIME_WAIT 14772 * and tcp_time_wait_interval expires. Then 14773 * tcp_timer() will blow away state in tcp_t 14774 * and T_ORDREL_IND will never be delivered 14775 * upstream. Unlikely but potentially 14776 * a problem. 14777 */ 14778 } 14779 } 14780 done: 14781 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14782 } 14783 14784 /* 14785 * This function does PAWS protection check. Returns B_TRUE if the 14786 * segment passes the PAWS test, else returns B_FALSE. 14787 */ 14788 boolean_t 14789 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 14790 { 14791 uint8_t flags; 14792 int options; 14793 uint8_t *up; 14794 14795 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 14796 /* 14797 * If timestamp option is aligned nicely, get values inline, 14798 * otherwise call general routine to parse. Only do that 14799 * if timestamp is the only option. 14800 */ 14801 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 14802 TCPOPT_REAL_TS_LEN && 14803 OK_32PTR((up = ((uint8_t *)tcph) + 14804 TCP_MIN_HEADER_LENGTH)) && 14805 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 14806 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 14807 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 14808 14809 options = TCP_OPT_TSTAMP_PRESENT; 14810 } else { 14811 if (tcp->tcp_snd_sack_ok) { 14812 tcpoptp->tcp = tcp; 14813 } else { 14814 tcpoptp->tcp = NULL; 14815 } 14816 options = tcp_parse_options(tcph, tcpoptp); 14817 } 14818 14819 if (options & TCP_OPT_TSTAMP_PRESENT) { 14820 /* 14821 * Do PAWS per RFC 1323 section 4.2. Accept RST 14822 * regardless of the timestamp, page 18 RFC 1323.bis. 14823 */ 14824 if ((flags & TH_RST) == 0 && 14825 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 14826 tcp->tcp_ts_recent)) { 14827 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 14828 PAWS_TIMEOUT)) { 14829 /* This segment is not acceptable. */ 14830 return (B_FALSE); 14831 } else { 14832 /* 14833 * Connection has been idle for 14834 * too long. Reset the timestamp 14835 * and assume the segment is valid. 14836 */ 14837 tcp->tcp_ts_recent = 14838 tcpoptp->tcp_opt_ts_val; 14839 } 14840 } 14841 } else { 14842 /* 14843 * If we don't get a timestamp on every packet, we 14844 * figure we can't really trust 'em, so we stop sending 14845 * and parsing them. 14846 */ 14847 tcp->tcp_snd_ts_ok = B_FALSE; 14848 14849 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14850 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14851 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 14852 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 14853 if (tcp->tcp_snd_sack_ok) { 14854 ASSERT(tcp->tcp_sack_info != NULL); 14855 tcp->tcp_max_sack_blk = 4; 14856 } 14857 } 14858 return (B_TRUE); 14859 } 14860 14861 /* 14862 * Attach ancillary data to a received TCP segments for the 14863 * ancillary pieces requested by the application that are 14864 * different than they were in the previous data segment. 14865 * 14866 * Save the "current" values once memory allocation is ok so that 14867 * when memory allocation fails we can just wait for the next data segment. 14868 */ 14869 static mblk_t * 14870 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 14871 { 14872 struct T_optdata_ind *todi; 14873 int optlen; 14874 uchar_t *optptr; 14875 struct T_opthdr *toh; 14876 uint_t addflag; /* Which pieces to add */ 14877 mblk_t *mp1; 14878 14879 optlen = 0; 14880 addflag = 0; 14881 /* If app asked for pktinfo and the index has changed ... */ 14882 if ((ipp->ipp_fields & IPPF_IFINDEX) && 14883 ipp->ipp_ifindex != tcp->tcp_recvifindex && 14884 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 14885 optlen += sizeof (struct T_opthdr) + 14886 sizeof (struct in6_pktinfo); 14887 addflag |= TCP_IPV6_RECVPKTINFO; 14888 } 14889 /* If app asked for hoplimit and it has changed ... */ 14890 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 14891 ipp->ipp_hoplimit != tcp->tcp_recvhops && 14892 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 14893 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14894 addflag |= TCP_IPV6_RECVHOPLIMIT; 14895 } 14896 /* If app asked for tclass and it has changed ... */ 14897 if ((ipp->ipp_fields & IPPF_TCLASS) && 14898 ipp->ipp_tclass != tcp->tcp_recvtclass && 14899 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 14900 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14901 addflag |= TCP_IPV6_RECVTCLASS; 14902 } 14903 /* 14904 * If app asked for hopbyhop headers and it has changed ... 14905 * For security labels, note that (1) security labels can't change on 14906 * a connected socket at all, (2) we're connected to at most one peer, 14907 * (3) if anything changes, then it must be some other extra option. 14908 */ 14909 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 14910 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 14911 (ipp->ipp_fields & IPPF_HOPOPTS), 14912 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 14913 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 14914 tcp->tcp_label_len; 14915 addflag |= TCP_IPV6_RECVHOPOPTS; 14916 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 14917 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 14918 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 14919 return (mp); 14920 } 14921 /* If app asked for dst headers before routing headers ... */ 14922 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 14923 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 14924 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14925 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 14926 optlen += sizeof (struct T_opthdr) + 14927 ipp->ipp_rtdstoptslen; 14928 addflag |= TCP_IPV6_RECVRTDSTOPTS; 14929 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 14930 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 14931 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 14932 return (mp); 14933 } 14934 /* If app asked for routing headers and it has changed ... */ 14935 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 14936 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 14937 (ipp->ipp_fields & IPPF_RTHDR), 14938 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 14939 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 14940 addflag |= TCP_IPV6_RECVRTHDR; 14941 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 14942 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 14943 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 14944 return (mp); 14945 } 14946 /* If app asked for dest headers and it has changed ... */ 14947 if ((tcp->tcp_ipv6_recvancillary & 14948 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 14949 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 14950 (ipp->ipp_fields & IPPF_DSTOPTS), 14951 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 14952 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 14953 addflag |= TCP_IPV6_RECVDSTOPTS; 14954 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 14955 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 14956 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 14957 return (mp); 14958 } 14959 14960 if (optlen == 0) { 14961 /* Nothing to add */ 14962 return (mp); 14963 } 14964 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 14965 if (mp1 == NULL) { 14966 /* 14967 * Defer sending ancillary data until the next TCP segment 14968 * arrives. 14969 */ 14970 return (mp); 14971 } 14972 mp1->b_cont = mp; 14973 mp = mp1; 14974 mp->b_wptr += sizeof (*todi) + optlen; 14975 mp->b_datap->db_type = M_PROTO; 14976 todi = (struct T_optdata_ind *)mp->b_rptr; 14977 todi->PRIM_type = T_OPTDATA_IND; 14978 todi->DATA_flag = 1; /* MORE data */ 14979 todi->OPT_length = optlen; 14980 todi->OPT_offset = sizeof (*todi); 14981 optptr = (uchar_t *)&todi[1]; 14982 /* 14983 * If app asked for pktinfo and the index has changed ... 14984 * Note that the local address never changes for the connection. 14985 */ 14986 if (addflag & TCP_IPV6_RECVPKTINFO) { 14987 struct in6_pktinfo *pkti; 14988 14989 toh = (struct T_opthdr *)optptr; 14990 toh->level = IPPROTO_IPV6; 14991 toh->name = IPV6_PKTINFO; 14992 toh->len = sizeof (*toh) + sizeof (*pkti); 14993 toh->status = 0; 14994 optptr += sizeof (*toh); 14995 pkti = (struct in6_pktinfo *)optptr; 14996 if (tcp->tcp_ipversion == IPV6_VERSION) 14997 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 14998 else 14999 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15000 &pkti->ipi6_addr); 15001 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15002 optptr += sizeof (*pkti); 15003 ASSERT(OK_32PTR(optptr)); 15004 /* Save as "last" value */ 15005 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15006 } 15007 /* If app asked for hoplimit and it has changed ... */ 15008 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15009 toh = (struct T_opthdr *)optptr; 15010 toh->level = IPPROTO_IPV6; 15011 toh->name = IPV6_HOPLIMIT; 15012 toh->len = sizeof (*toh) + sizeof (uint_t); 15013 toh->status = 0; 15014 optptr += sizeof (*toh); 15015 *(uint_t *)optptr = ipp->ipp_hoplimit; 15016 optptr += sizeof (uint_t); 15017 ASSERT(OK_32PTR(optptr)); 15018 /* Save as "last" value */ 15019 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15020 } 15021 /* If app asked for tclass and it has changed ... */ 15022 if (addflag & TCP_IPV6_RECVTCLASS) { 15023 toh = (struct T_opthdr *)optptr; 15024 toh->level = IPPROTO_IPV6; 15025 toh->name = IPV6_TCLASS; 15026 toh->len = sizeof (*toh) + sizeof (uint_t); 15027 toh->status = 0; 15028 optptr += sizeof (*toh); 15029 *(uint_t *)optptr = ipp->ipp_tclass; 15030 optptr += sizeof (uint_t); 15031 ASSERT(OK_32PTR(optptr)); 15032 /* Save as "last" value */ 15033 tcp->tcp_recvtclass = ipp->ipp_tclass; 15034 } 15035 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15036 toh = (struct T_opthdr *)optptr; 15037 toh->level = IPPROTO_IPV6; 15038 toh->name = IPV6_HOPOPTS; 15039 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15040 tcp->tcp_label_len; 15041 toh->status = 0; 15042 optptr += sizeof (*toh); 15043 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15044 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15045 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15046 ASSERT(OK_32PTR(optptr)); 15047 /* Save as last value */ 15048 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15049 (ipp->ipp_fields & IPPF_HOPOPTS), 15050 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15051 } 15052 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15053 toh = (struct T_opthdr *)optptr; 15054 toh->level = IPPROTO_IPV6; 15055 toh->name = IPV6_RTHDRDSTOPTS; 15056 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15057 toh->status = 0; 15058 optptr += sizeof (*toh); 15059 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15060 optptr += ipp->ipp_rtdstoptslen; 15061 ASSERT(OK_32PTR(optptr)); 15062 /* Save as last value */ 15063 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15064 &tcp->tcp_rtdstoptslen, 15065 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15066 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15067 } 15068 if (addflag & TCP_IPV6_RECVRTHDR) { 15069 toh = (struct T_opthdr *)optptr; 15070 toh->level = IPPROTO_IPV6; 15071 toh->name = IPV6_RTHDR; 15072 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15073 toh->status = 0; 15074 optptr += sizeof (*toh); 15075 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15076 optptr += ipp->ipp_rthdrlen; 15077 ASSERT(OK_32PTR(optptr)); 15078 /* Save as last value */ 15079 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15080 (ipp->ipp_fields & IPPF_RTHDR), 15081 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15082 } 15083 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15084 toh = (struct T_opthdr *)optptr; 15085 toh->level = IPPROTO_IPV6; 15086 toh->name = IPV6_DSTOPTS; 15087 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15088 toh->status = 0; 15089 optptr += sizeof (*toh); 15090 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15091 optptr += ipp->ipp_dstoptslen; 15092 ASSERT(OK_32PTR(optptr)); 15093 /* Save as last value */ 15094 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15095 (ipp->ipp_fields & IPPF_DSTOPTS), 15096 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15097 } 15098 ASSERT(optptr == mp->b_wptr); 15099 return (mp); 15100 } 15101 15102 15103 /* 15104 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15105 * or a "bad" IRE detected by tcp_adapt_ire. 15106 * We can't tell if the failure was due to the laddr or the faddr 15107 * thus we clear out all addresses and ports. 15108 */ 15109 static void 15110 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15111 { 15112 queue_t *q = tcp->tcp_rq; 15113 tcph_t *tcph; 15114 struct T_error_ack *tea; 15115 conn_t *connp = tcp->tcp_connp; 15116 15117 15118 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15119 15120 if (mp->b_cont) { 15121 freemsg(mp->b_cont); 15122 mp->b_cont = NULL; 15123 } 15124 tea = (struct T_error_ack *)mp->b_rptr; 15125 switch (tea->PRIM_type) { 15126 case T_BIND_ACK: 15127 /* 15128 * Need to unbind with classifier since we were just told that 15129 * our bind succeeded. 15130 */ 15131 tcp->tcp_hard_bound = B_FALSE; 15132 tcp->tcp_hard_binding = B_FALSE; 15133 15134 ipcl_hash_remove(connp); 15135 /* Reuse the mblk if possible */ 15136 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15137 sizeof (*tea)); 15138 mp->b_rptr = mp->b_datap->db_base; 15139 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15140 tea = (struct T_error_ack *)mp->b_rptr; 15141 tea->PRIM_type = T_ERROR_ACK; 15142 tea->TLI_error = TSYSERR; 15143 tea->UNIX_error = error; 15144 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15145 tea->ERROR_prim = T_CONN_REQ; 15146 } else { 15147 tea->ERROR_prim = O_T_BIND_REQ; 15148 } 15149 break; 15150 15151 case T_ERROR_ACK: 15152 if (tcp->tcp_state >= TCPS_SYN_SENT) 15153 tea->ERROR_prim = T_CONN_REQ; 15154 break; 15155 default: 15156 panic("tcp_bind_failed: unexpected TPI type"); 15157 /*NOTREACHED*/ 15158 } 15159 15160 tcp->tcp_state = TCPS_IDLE; 15161 if (tcp->tcp_ipversion == IPV4_VERSION) 15162 tcp->tcp_ipha->ipha_src = 0; 15163 else 15164 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15165 /* 15166 * Copy of the src addr. in tcp_t is needed since 15167 * the lookup funcs. can only look at tcp_t 15168 */ 15169 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15170 15171 tcph = tcp->tcp_tcph; 15172 tcph->th_lport[0] = 0; 15173 tcph->th_lport[1] = 0; 15174 tcp_bind_hash_remove(tcp); 15175 bzero(&connp->u_port, sizeof (connp->u_port)); 15176 /* blow away saved option results if any */ 15177 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15178 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15179 15180 conn_delete_ire(tcp->tcp_connp, NULL); 15181 putnext(q, mp); 15182 } 15183 15184 /* 15185 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15186 * messages. 15187 */ 15188 void 15189 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15190 { 15191 mblk_t *mp1; 15192 uchar_t *rptr = mp->b_rptr; 15193 queue_t *q = tcp->tcp_rq; 15194 struct T_error_ack *tea; 15195 uint32_t mss; 15196 mblk_t *syn_mp; 15197 mblk_t *mdti; 15198 int retval; 15199 mblk_t *ire_mp; 15200 15201 switch (mp->b_datap->db_type) { 15202 case M_PROTO: 15203 case M_PCPROTO: 15204 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15205 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15206 break; 15207 tea = (struct T_error_ack *)rptr; 15208 switch (tea->PRIM_type) { 15209 case T_BIND_ACK: 15210 /* 15211 * Adapt Multidata information, if any. The 15212 * following tcp_mdt_update routine will free 15213 * the message. 15214 */ 15215 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15216 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15217 b_rptr)->mdt_capab, B_TRUE); 15218 freemsg(mdti); 15219 } 15220 15221 /* Get the IRE, if we had requested for it */ 15222 ire_mp = tcp_ire_mp(mp); 15223 15224 if (tcp->tcp_hard_binding) { 15225 tcp->tcp_hard_binding = B_FALSE; 15226 tcp->tcp_hard_bound = B_TRUE; 15227 CL_INET_CONNECT(tcp); 15228 } else { 15229 if (ire_mp != NULL) 15230 freeb(ire_mp); 15231 goto after_syn_sent; 15232 } 15233 15234 retval = tcp_adapt_ire(tcp, ire_mp); 15235 if (ire_mp != NULL) 15236 freeb(ire_mp); 15237 if (retval == 0) { 15238 tcp_bind_failed(tcp, mp, 15239 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15240 ENETUNREACH : EADDRNOTAVAIL)); 15241 return; 15242 } 15243 /* 15244 * Don't let an endpoint connect to itself. 15245 * Also checked in tcp_connect() but that 15246 * check can't handle the case when the 15247 * local IP address is INADDR_ANY. 15248 */ 15249 if (tcp->tcp_ipversion == IPV4_VERSION) { 15250 if ((tcp->tcp_ipha->ipha_dst == 15251 tcp->tcp_ipha->ipha_src) && 15252 (BE16_EQL(tcp->tcp_tcph->th_lport, 15253 tcp->tcp_tcph->th_fport))) { 15254 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15255 return; 15256 } 15257 } else { 15258 if (IN6_ARE_ADDR_EQUAL( 15259 &tcp->tcp_ip6h->ip6_dst, 15260 &tcp->tcp_ip6h->ip6_src) && 15261 (BE16_EQL(tcp->tcp_tcph->th_lport, 15262 tcp->tcp_tcph->th_fport))) { 15263 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15264 return; 15265 } 15266 } 15267 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15268 /* 15269 * This should not be possible! Just for 15270 * defensive coding... 15271 */ 15272 if (tcp->tcp_state != TCPS_SYN_SENT) 15273 goto after_syn_sent; 15274 15275 if (is_system_labeled() && 15276 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15277 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15278 return; 15279 } 15280 15281 ASSERT(q == tcp->tcp_rq); 15282 /* 15283 * tcp_adapt_ire() does not adjust 15284 * for TCP/IP header length. 15285 */ 15286 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15287 15288 /* 15289 * Just make sure our rwnd is at 15290 * least tcp_recv_hiwat_mss * MSS 15291 * large, and round up to the nearest 15292 * MSS. 15293 * 15294 * We do the round up here because 15295 * we need to get the interface 15296 * MTU first before we can do the 15297 * round up. 15298 */ 15299 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15300 tcp_recv_hiwat_minmss * mss); 15301 q->q_hiwat = tcp->tcp_rwnd; 15302 tcp_set_ws_value(tcp); 15303 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15304 tcp->tcp_tcph->th_win); 15305 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15306 tcp->tcp_snd_ws_ok = B_TRUE; 15307 15308 /* 15309 * Set tcp_snd_ts_ok to true 15310 * so that tcp_xmit_mp will 15311 * include the timestamp 15312 * option in the SYN segment. 15313 */ 15314 if (tcp_tstamp_always || 15315 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15316 tcp->tcp_snd_ts_ok = B_TRUE; 15317 } 15318 15319 /* 15320 * tcp_snd_sack_ok can be set in 15321 * tcp_adapt_ire() if the sack metric 15322 * is set. So check it here also. 15323 */ 15324 if (tcp_sack_permitted == 2 || 15325 tcp->tcp_snd_sack_ok) { 15326 if (tcp->tcp_sack_info == NULL) { 15327 tcp->tcp_sack_info = 15328 kmem_cache_alloc(tcp_sack_info_cache, 15329 KM_SLEEP); 15330 } 15331 tcp->tcp_snd_sack_ok = B_TRUE; 15332 } 15333 15334 /* 15335 * Should we use ECN? Note that the current 15336 * default value (SunOS 5.9) of tcp_ecn_permitted 15337 * is 1. The reason for doing this is that there 15338 * are equipments out there that will drop ECN 15339 * enabled IP packets. Setting it to 1 avoids 15340 * compatibility problems. 15341 */ 15342 if (tcp_ecn_permitted == 2) 15343 tcp->tcp_ecn_ok = B_TRUE; 15344 15345 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15346 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15347 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15348 if (syn_mp) { 15349 cred_t *cr; 15350 pid_t pid; 15351 15352 /* 15353 * Obtain the credential from the 15354 * thread calling connect(); the credential 15355 * lives on in the second mblk which 15356 * originated from T_CONN_REQ and is echoed 15357 * with the T_BIND_ACK from ip. If none 15358 * can be found, default to the creator 15359 * of the socket. 15360 */ 15361 if (mp->b_cont == NULL || 15362 (cr = DB_CRED(mp->b_cont)) == NULL) { 15363 cr = tcp->tcp_cred; 15364 pid = tcp->tcp_cpid; 15365 } else { 15366 pid = DB_CPID(mp->b_cont); 15367 } 15368 15369 TCP_RECORD_TRACE(tcp, syn_mp, 15370 TCP_TRACE_SEND_PKT); 15371 mblk_setcred(syn_mp, cr); 15372 DB_CPID(syn_mp) = pid; 15373 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15374 } 15375 after_syn_sent: 15376 /* 15377 * A trailer mblk indicates a waiting client upstream. 15378 * We complete here the processing begun in 15379 * either tcp_bind() or tcp_connect() by passing 15380 * upstream the reply message they supplied. 15381 */ 15382 mp1 = mp; 15383 mp = mp->b_cont; 15384 freeb(mp1); 15385 if (mp) 15386 break; 15387 return; 15388 case T_ERROR_ACK: 15389 if (tcp->tcp_debug) { 15390 (void) strlog(TCP_MOD_ID, 0, 1, 15391 SL_TRACE|SL_ERROR, 15392 "tcp_rput_other: case T_ERROR_ACK, " 15393 "ERROR_prim == %d", 15394 tea->ERROR_prim); 15395 } 15396 switch (tea->ERROR_prim) { 15397 case O_T_BIND_REQ: 15398 case T_BIND_REQ: 15399 tcp_bind_failed(tcp, mp, 15400 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15401 ENETUNREACH : EADDRNOTAVAIL)); 15402 return; 15403 case T_UNBIND_REQ: 15404 tcp->tcp_hard_binding = B_FALSE; 15405 tcp->tcp_hard_bound = B_FALSE; 15406 if (mp->b_cont) { 15407 freemsg(mp->b_cont); 15408 mp->b_cont = NULL; 15409 } 15410 if (tcp->tcp_unbind_pending) 15411 tcp->tcp_unbind_pending = 0; 15412 else { 15413 /* From tcp_ip_unbind() - free */ 15414 freemsg(mp); 15415 return; 15416 } 15417 break; 15418 case T_SVR4_OPTMGMT_REQ: 15419 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15420 /* T_OPTMGMT_REQ generated by TCP */ 15421 printf("T_SVR4_OPTMGMT_REQ failed " 15422 "%d/%d - dropped (cnt %d)\n", 15423 tea->TLI_error, tea->UNIX_error, 15424 tcp->tcp_drop_opt_ack_cnt); 15425 freemsg(mp); 15426 tcp->tcp_drop_opt_ack_cnt--; 15427 return; 15428 } 15429 break; 15430 } 15431 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15432 tcp->tcp_drop_opt_ack_cnt > 0) { 15433 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15434 "- dropped (cnt %d)\n", 15435 tea->TLI_error, tea->UNIX_error, 15436 tcp->tcp_drop_opt_ack_cnt); 15437 freemsg(mp); 15438 tcp->tcp_drop_opt_ack_cnt--; 15439 return; 15440 } 15441 break; 15442 case T_OPTMGMT_ACK: 15443 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15444 /* T_OPTMGMT_REQ generated by TCP */ 15445 freemsg(mp); 15446 tcp->tcp_drop_opt_ack_cnt--; 15447 return; 15448 } 15449 break; 15450 default: 15451 break; 15452 } 15453 break; 15454 case M_CTL: 15455 /* 15456 * ICMP messages. 15457 */ 15458 tcp_icmp_error(tcp, mp); 15459 return; 15460 case M_FLUSH: 15461 if (*rptr & FLUSHR) 15462 flushq(q, FLUSHDATA); 15463 break; 15464 default: 15465 break; 15466 } 15467 /* 15468 * Make sure we set this bit before sending the ACK for 15469 * bind. Otherwise accept could possibly run and free 15470 * this tcp struct. 15471 */ 15472 putnext(q, mp); 15473 } 15474 15475 /* 15476 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15477 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15478 * tcp_rsrv() try again. 15479 */ 15480 static void 15481 tcp_ordrel_kick(void *arg) 15482 { 15483 conn_t *connp = (conn_t *)arg; 15484 tcp_t *tcp = connp->conn_tcp; 15485 15486 tcp->tcp_ordrelid = 0; 15487 tcp->tcp_timeout = B_FALSE; 15488 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15489 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15490 qenable(tcp->tcp_rq); 15491 } 15492 } 15493 15494 /* ARGSUSED */ 15495 static void 15496 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15497 { 15498 conn_t *connp = (conn_t *)arg; 15499 tcp_t *tcp = connp->conn_tcp; 15500 queue_t *q = tcp->tcp_rq; 15501 uint_t thwin; 15502 15503 freeb(mp); 15504 15505 TCP_STAT(tcp_rsrv_calls); 15506 15507 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15508 return; 15509 } 15510 15511 if (tcp->tcp_fused) { 15512 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15513 15514 ASSERT(tcp->tcp_fused); 15515 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15516 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15517 ASSERT(!TCP_IS_DETACHED(tcp)); 15518 ASSERT(tcp->tcp_connp->conn_sqp == 15519 peer_tcp->tcp_connp->conn_sqp); 15520 15521 /* 15522 * Normally we would not get backenabled in synchronous 15523 * streams mode, but in case this happens, we need to stop 15524 * synchronous streams temporarily to prevent a race with 15525 * tcp_fuse_rrw() or tcp_fuse_rinfop(). It is safe to access 15526 * tcp_rcv_list here because those entry points will return 15527 * right away when synchronous streams is stopped. 15528 */ 15529 TCP_FUSE_SYNCSTR_STOP(tcp); 15530 if (tcp->tcp_rcv_list != NULL) 15531 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15532 15533 tcp_clrqfull(peer_tcp); 15534 TCP_FUSE_SYNCSTR_RESUME(tcp); 15535 TCP_STAT(tcp_fusion_backenabled); 15536 return; 15537 } 15538 15539 if (canputnext(q)) { 15540 tcp->tcp_rwnd = q->q_hiwat; 15541 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15542 << tcp->tcp_rcv_ws; 15543 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15544 /* 15545 * Send back a window update immediately if TCP is above 15546 * ESTABLISHED state and the increase of the rcv window 15547 * that the other side knows is at least 1 MSS after flow 15548 * control is lifted. 15549 */ 15550 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15551 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15552 tcp_xmit_ctl(NULL, tcp, 15553 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15554 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15555 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15556 } 15557 } 15558 /* Handle a failure to allocate a T_ORDREL_IND here */ 15559 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15560 ASSERT(tcp->tcp_listener == NULL); 15561 if (tcp->tcp_rcv_list != NULL) { 15562 (void) tcp_rcv_drain(q, tcp); 15563 } 15564 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15565 mp = mi_tpi_ordrel_ind(); 15566 if (mp) { 15567 tcp->tcp_ordrel_done = B_TRUE; 15568 putnext(q, mp); 15569 if (tcp->tcp_deferred_clean_death) { 15570 /* 15571 * tcp_clean_death was deferred for 15572 * T_ORDREL_IND - do it now 15573 */ 15574 tcp->tcp_deferred_clean_death = B_FALSE; 15575 (void) tcp_clean_death(tcp, 15576 tcp->tcp_client_errno, 22); 15577 } 15578 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15579 /* 15580 * If there isn't already a timer running 15581 * start one. Use a 4 second 15582 * timer as a fallback since it can't fail. 15583 */ 15584 tcp->tcp_timeout = B_TRUE; 15585 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15586 MSEC_TO_TICK(4000)); 15587 } 15588 } 15589 } 15590 15591 /* 15592 * The read side service routine is called mostly when we get back-enabled as a 15593 * result of flow control relief. Since we don't actually queue anything in 15594 * TCP, we have no data to send out of here. What we do is clear the receive 15595 * window, and send out a window update. 15596 * This routine is also called to drive an orderly release message upstream 15597 * if the attempt in tcp_rput failed. 15598 */ 15599 static void 15600 tcp_rsrv(queue_t *q) 15601 { 15602 conn_t *connp = Q_TO_CONN(q); 15603 tcp_t *tcp = connp->conn_tcp; 15604 mblk_t *mp; 15605 15606 /* No code does a putq on the read side */ 15607 ASSERT(q->q_first == NULL); 15608 15609 /* Nothing to do for the default queue */ 15610 if (q == tcp_g_q) { 15611 return; 15612 } 15613 15614 mp = allocb(0, BPRI_HI); 15615 if (mp == NULL) { 15616 /* 15617 * We are under memory pressure. Return for now and we 15618 * we will be called again later. 15619 */ 15620 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15621 /* 15622 * If there isn't already a timer running 15623 * start one. Use a 4 second 15624 * timer as a fallback since it can't fail. 15625 */ 15626 tcp->tcp_timeout = B_TRUE; 15627 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15628 MSEC_TO_TICK(4000)); 15629 } 15630 return; 15631 } 15632 CONN_INC_REF(connp); 15633 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15634 SQTAG_TCP_RSRV); 15635 } 15636 15637 /* 15638 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15639 * We do not allow the receive window to shrink. After setting rwnd, 15640 * set the flow control hiwat of the stream. 15641 * 15642 * This function is called in 2 cases: 15643 * 15644 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15645 * connection (passive open) and in tcp_rput_data() for active connect. 15646 * This is called after tcp_mss_set() when the desired MSS value is known. 15647 * This makes sure that our window size is a mutiple of the other side's 15648 * MSS. 15649 * 2) Handling SO_RCVBUF option. 15650 * 15651 * It is ASSUMED that the requested size is a multiple of the current MSS. 15652 * 15653 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15654 * user requests so. 15655 */ 15656 static int 15657 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15658 { 15659 uint32_t mss = tcp->tcp_mss; 15660 uint32_t old_max_rwnd; 15661 uint32_t max_transmittable_rwnd; 15662 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15663 15664 if (tcp->tcp_fused) { 15665 size_t sth_hiwat; 15666 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15667 15668 ASSERT(peer_tcp != NULL); 15669 /* 15670 * Record the stream head's high water mark for 15671 * this endpoint; this is used for flow-control 15672 * purposes in tcp_fuse_output(). 15673 */ 15674 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15675 if (!tcp_detached) 15676 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15677 15678 /* 15679 * In the fusion case, the maxpsz stream head value of 15680 * our peer is set according to its send buffer size 15681 * and our receive buffer size; since the latter may 15682 * have changed we need to update the peer's maxpsz. 15683 */ 15684 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15685 return (rwnd); 15686 } 15687 15688 if (tcp_detached) 15689 old_max_rwnd = tcp->tcp_rwnd; 15690 else 15691 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15692 15693 /* 15694 * Insist on a receive window that is at least 15695 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15696 * funny TCP interactions of Nagle algorithm, SWS avoidance 15697 * and delayed acknowledgement. 15698 */ 15699 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15700 15701 /* 15702 * If window size info has already been exchanged, TCP should not 15703 * shrink the window. Shrinking window is doable if done carefully. 15704 * We may add that support later. But so far there is not a real 15705 * need to do that. 15706 */ 15707 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15708 /* MSS may have changed, do a round up again. */ 15709 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15710 } 15711 15712 /* 15713 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15714 * can be applied even before the window scale option is decided. 15715 */ 15716 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15717 if (rwnd > max_transmittable_rwnd) { 15718 rwnd = max_transmittable_rwnd - 15719 (max_transmittable_rwnd % mss); 15720 if (rwnd < mss) 15721 rwnd = max_transmittable_rwnd; 15722 /* 15723 * If we're over the limit we may have to back down tcp_rwnd. 15724 * The increment below won't work for us. So we set all three 15725 * here and the increment below will have no effect. 15726 */ 15727 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15728 } 15729 if (tcp->tcp_localnet) { 15730 tcp->tcp_rack_abs_max = 15731 MIN(tcp_local_dacks_max, rwnd / mss / 2); 15732 } else { 15733 /* 15734 * For a remote host on a different subnet (through a router), 15735 * we ack every other packet to be conforming to RFC1122. 15736 * tcp_deferred_acks_max is default to 2. 15737 */ 15738 tcp->tcp_rack_abs_max = 15739 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 15740 } 15741 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15742 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15743 else 15744 tcp->tcp_rack_cur_max = 0; 15745 /* 15746 * Increment the current rwnd by the amount the maximum grew (we 15747 * can not overwrite it since we might be in the middle of a 15748 * connection.) 15749 */ 15750 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15751 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15752 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15753 tcp->tcp_cwnd_max = rwnd; 15754 15755 if (tcp_detached) 15756 return (rwnd); 15757 /* 15758 * We set the maximum receive window into rq->q_hiwat. 15759 * This is not actually used for flow control. 15760 */ 15761 tcp->tcp_rq->q_hiwat = rwnd; 15762 /* 15763 * Set the Stream head high water mark. This doesn't have to be 15764 * here, since we are simply using default values, but we would 15765 * prefer to choose these values algorithmically, with a likely 15766 * relationship to rwnd. 15767 */ 15768 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 15769 return (rwnd); 15770 } 15771 15772 /* 15773 * Return SNMP stuff in buffer in mpdata. 15774 */ 15775 int 15776 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15777 { 15778 mblk_t *mpdata; 15779 mblk_t *mp_conn_ctl = NULL; 15780 mblk_t *mp_conn_tail; 15781 mblk_t *mp_attr_ctl = NULL; 15782 mblk_t *mp_attr_tail; 15783 mblk_t *mp6_conn_ctl = NULL; 15784 mblk_t *mp6_conn_tail; 15785 mblk_t *mp6_attr_ctl = NULL; 15786 mblk_t *mp6_attr_tail; 15787 struct opthdr *optp; 15788 mib2_tcpConnEntry_t tce; 15789 mib2_tcp6ConnEntry_t tce6; 15790 mib2_transportMLPEntry_t mlp; 15791 connf_t *connfp; 15792 conn_t *connp; 15793 int i; 15794 boolean_t ispriv; 15795 zoneid_t zoneid; 15796 int v4_conn_idx; 15797 int v6_conn_idx; 15798 15799 if (mpctl == NULL || 15800 (mpdata = mpctl->b_cont) == NULL || 15801 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15802 (mp_attr_ctl = copymsg(mpctl)) == NULL || 15803 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 15804 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 15805 freemsg(mp_conn_ctl); 15806 freemsg(mp_attr_ctl); 15807 freemsg(mp6_conn_ctl); 15808 freemsg(mp6_attr_ctl); 15809 return (0); 15810 } 15811 15812 /* build table of connections -- need count in fixed part */ 15813 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 15814 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 15815 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 15816 SET_MIB(tcp_mib.tcpMaxConn, -1); 15817 SET_MIB(tcp_mib.tcpCurrEstab, 0); 15818 15819 ispriv = 15820 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15821 zoneid = Q_TO_CONN(q)->conn_zoneid; 15822 15823 v4_conn_idx = v6_conn_idx = 0; 15824 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 15825 15826 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15827 15828 connfp = &ipcl_globalhash_fanout[i]; 15829 15830 connp = NULL; 15831 15832 while ((connp = 15833 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15834 tcp_t *tcp; 15835 boolean_t needattr; 15836 15837 if (connp->conn_zoneid != zoneid) 15838 continue; /* not in this zone */ 15839 15840 tcp = connp->conn_tcp; 15841 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 15842 tcp->tcp_ibsegs = 0; 15843 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 15844 tcp->tcp_obsegs = 0; 15845 15846 tce6.tcp6ConnState = tce.tcpConnState = 15847 tcp_snmp_state(tcp); 15848 if (tce.tcpConnState == MIB2_TCP_established || 15849 tce.tcpConnState == MIB2_TCP_closeWait) 15850 BUMP_MIB(&tcp_mib, tcpCurrEstab); 15851 15852 needattr = B_FALSE; 15853 bzero(&mlp, sizeof (mlp)); 15854 if (connp->conn_mlp_type != mlptSingle) { 15855 if (connp->conn_mlp_type == mlptShared || 15856 connp->conn_mlp_type == mlptBoth) 15857 mlp.tme_flags |= MIB2_TMEF_SHARED; 15858 if (connp->conn_mlp_type == mlptPrivate || 15859 connp->conn_mlp_type == mlptBoth) 15860 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 15861 needattr = B_TRUE; 15862 } 15863 if (connp->conn_peercred != NULL) { 15864 ts_label_t *tsl; 15865 15866 tsl = crgetlabel(connp->conn_peercred); 15867 mlp.tme_doi = label2doi(tsl); 15868 mlp.tme_label = *label2bslabel(tsl); 15869 needattr = B_TRUE; 15870 } 15871 15872 /* Create a message to report on IPv6 entries */ 15873 if (tcp->tcp_ipversion == IPV6_VERSION) { 15874 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15875 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15876 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15877 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15878 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15879 /* Don't want just anybody seeing these... */ 15880 if (ispriv) { 15881 tce6.tcp6ConnEntryInfo.ce_snxt = 15882 tcp->tcp_snxt; 15883 tce6.tcp6ConnEntryInfo.ce_suna = 15884 tcp->tcp_suna; 15885 tce6.tcp6ConnEntryInfo.ce_rnxt = 15886 tcp->tcp_rnxt; 15887 tce6.tcp6ConnEntryInfo.ce_rack = 15888 tcp->tcp_rack; 15889 } else { 15890 /* 15891 * Netstat, unfortunately, uses this to 15892 * get send/receive queue sizes. How to fix? 15893 * Why not compute the difference only? 15894 */ 15895 tce6.tcp6ConnEntryInfo.ce_snxt = 15896 tcp->tcp_snxt - tcp->tcp_suna; 15897 tce6.tcp6ConnEntryInfo.ce_suna = 0; 15898 tce6.tcp6ConnEntryInfo.ce_rnxt = 15899 tcp->tcp_rnxt - tcp->tcp_rack; 15900 tce6.tcp6ConnEntryInfo.ce_rack = 0; 15901 } 15902 15903 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15904 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15905 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 15906 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 15907 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 15908 15909 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 15910 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 15911 15912 mlp.tme_connidx = v6_conn_idx++; 15913 if (needattr) 15914 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 15915 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 15916 } 15917 /* 15918 * Create an IPv4 table entry for IPv4 entries and also 15919 * for IPv6 entries which are bound to in6addr_any 15920 * but don't have IPV6_V6ONLY set. 15921 * (i.e. anything an IPv4 peer could connect to) 15922 */ 15923 if (tcp->tcp_ipversion == IPV4_VERSION || 15924 (tcp->tcp_state <= TCPS_LISTEN && 15925 !tcp->tcp_connp->conn_ipv6_v6only && 15926 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 15927 if (tcp->tcp_ipversion == IPV6_VERSION) { 15928 tce.tcpConnRemAddress = INADDR_ANY; 15929 tce.tcpConnLocalAddress = INADDR_ANY; 15930 } else { 15931 tce.tcpConnRemAddress = 15932 tcp->tcp_remote; 15933 tce.tcpConnLocalAddress = 15934 tcp->tcp_ip_src; 15935 } 15936 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 15937 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 15938 /* Don't want just anybody seeing these... */ 15939 if (ispriv) { 15940 tce.tcpConnEntryInfo.ce_snxt = 15941 tcp->tcp_snxt; 15942 tce.tcpConnEntryInfo.ce_suna = 15943 tcp->tcp_suna; 15944 tce.tcpConnEntryInfo.ce_rnxt = 15945 tcp->tcp_rnxt; 15946 tce.tcpConnEntryInfo.ce_rack = 15947 tcp->tcp_rack; 15948 } else { 15949 /* 15950 * Netstat, unfortunately, uses this to 15951 * get send/receive queue sizes. How 15952 * to fix? 15953 * Why not compute the difference only? 15954 */ 15955 tce.tcpConnEntryInfo.ce_snxt = 15956 tcp->tcp_snxt - tcp->tcp_suna; 15957 tce.tcpConnEntryInfo.ce_suna = 0; 15958 tce.tcpConnEntryInfo.ce_rnxt = 15959 tcp->tcp_rnxt - tcp->tcp_rack; 15960 tce.tcpConnEntryInfo.ce_rack = 0; 15961 } 15962 15963 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15964 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15965 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 15966 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 15967 tce.tcpConnEntryInfo.ce_state = 15968 tcp->tcp_state; 15969 15970 (void) snmp_append_data2(mp_conn_ctl->b_cont, 15971 &mp_conn_tail, (char *)&tce, sizeof (tce)); 15972 15973 mlp.tme_connidx = v4_conn_idx++; 15974 if (needattr) 15975 (void) snmp_append_data2( 15976 mp_attr_ctl->b_cont, 15977 &mp_attr_tail, (char *)&mlp, 15978 sizeof (mlp)); 15979 } 15980 } 15981 } 15982 15983 /* fixed length structure for IPv4 and IPv6 counters */ 15984 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 15985 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 15986 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 15987 optp->level = MIB2_TCP; 15988 optp->name = 0; 15989 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 15990 optp->len = msgdsize(mpdata); 15991 qreply(q, mpctl); 15992 15993 /* table of connections... */ 15994 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 15995 sizeof (struct T_optmgmt_ack)]; 15996 optp->level = MIB2_TCP; 15997 optp->name = MIB2_TCP_CONN; 15998 optp->len = msgdsize(mp_conn_ctl->b_cont); 15999 qreply(q, mp_conn_ctl); 16000 16001 /* table of MLP attributes... */ 16002 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16003 sizeof (struct T_optmgmt_ack)]; 16004 optp->level = MIB2_TCP; 16005 optp->name = EXPER_XPORT_MLP; 16006 optp->len = msgdsize(mp_attr_ctl->b_cont); 16007 if (optp->len == 0) 16008 freemsg(mp_attr_ctl); 16009 else 16010 qreply(q, mp_attr_ctl); 16011 16012 /* table of IPv6 connections... */ 16013 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16014 sizeof (struct T_optmgmt_ack)]; 16015 optp->level = MIB2_TCP6; 16016 optp->name = MIB2_TCP6_CONN; 16017 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16018 qreply(q, mp6_conn_ctl); 16019 16020 /* table of IPv6 MLP attributes... */ 16021 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16022 sizeof (struct T_optmgmt_ack)]; 16023 optp->level = MIB2_TCP6; 16024 optp->name = EXPER_XPORT_MLP; 16025 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16026 if (optp->len == 0) 16027 freemsg(mp6_attr_ctl); 16028 else 16029 qreply(q, mp6_attr_ctl); 16030 return (1); 16031 } 16032 16033 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16034 /* ARGSUSED */ 16035 int 16036 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16037 { 16038 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16039 16040 switch (level) { 16041 case MIB2_TCP: 16042 switch (name) { 16043 case 13: 16044 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16045 return (0); 16046 /* TODO: delete entry defined by tce */ 16047 return (1); 16048 default: 16049 return (0); 16050 } 16051 default: 16052 return (1); 16053 } 16054 } 16055 16056 /* Translate TCP state to MIB2 TCP state. */ 16057 static int 16058 tcp_snmp_state(tcp_t *tcp) 16059 { 16060 if (tcp == NULL) 16061 return (0); 16062 16063 switch (tcp->tcp_state) { 16064 case TCPS_CLOSED: 16065 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16066 case TCPS_BOUND: 16067 return (MIB2_TCP_closed); 16068 case TCPS_LISTEN: 16069 return (MIB2_TCP_listen); 16070 case TCPS_SYN_SENT: 16071 return (MIB2_TCP_synSent); 16072 case TCPS_SYN_RCVD: 16073 return (MIB2_TCP_synReceived); 16074 case TCPS_ESTABLISHED: 16075 return (MIB2_TCP_established); 16076 case TCPS_CLOSE_WAIT: 16077 return (MIB2_TCP_closeWait); 16078 case TCPS_FIN_WAIT_1: 16079 return (MIB2_TCP_finWait1); 16080 case TCPS_CLOSING: 16081 return (MIB2_TCP_closing); 16082 case TCPS_LAST_ACK: 16083 return (MIB2_TCP_lastAck); 16084 case TCPS_FIN_WAIT_2: 16085 return (MIB2_TCP_finWait2); 16086 case TCPS_TIME_WAIT: 16087 return (MIB2_TCP_timeWait); 16088 default: 16089 return (0); 16090 } 16091 } 16092 16093 static char tcp_report_header[] = 16094 "TCP " MI_COL_HDRPAD_STR 16095 "zone dest snxt suna " 16096 "swnd rnxt rack rwnd rto mss w sw rw t " 16097 "recent [lport,fport] state"; 16098 16099 /* 16100 * TCP status report triggered via the Named Dispatch mechanism. 16101 */ 16102 /* ARGSUSED */ 16103 static void 16104 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16105 cred_t *cr) 16106 { 16107 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16108 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 16109 char cflag; 16110 in6_addr_t v6dst; 16111 char buf[80]; 16112 uint_t print_len, buf_len; 16113 16114 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16115 if (buf_len <= 0) 16116 return; 16117 16118 if (hashval >= 0) 16119 (void) sprintf(hash, "%03d ", hashval); 16120 else 16121 hash[0] = '\0'; 16122 16123 /* 16124 * Note that we use the remote address in the tcp_b structure. 16125 * This means that it will print out the real destination address, 16126 * not the next hop's address if source routing is used. This 16127 * avoid the confusion on the output because user may not 16128 * know that source routing is used for a connection. 16129 */ 16130 if (tcp->tcp_ipversion == IPV4_VERSION) { 16131 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16132 } else { 16133 v6dst = tcp->tcp_remote_v6; 16134 } 16135 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16136 /* 16137 * the ispriv checks are so that normal users cannot determine 16138 * sequence number information using NDD. 16139 */ 16140 16141 if (TCP_IS_DETACHED(tcp)) 16142 cflag = '*'; 16143 else 16144 cflag = ' '; 16145 print_len = snprintf((char *)mp->b_wptr, buf_len, 16146 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16147 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16148 hash, 16149 (void *)tcp, 16150 tcp->tcp_connp->conn_zoneid, 16151 addrbuf, 16152 (ispriv) ? tcp->tcp_snxt : 0, 16153 (ispriv) ? tcp->tcp_suna : 0, 16154 tcp->tcp_swnd, 16155 (ispriv) ? tcp->tcp_rnxt : 0, 16156 (ispriv) ? tcp->tcp_rack : 0, 16157 tcp->tcp_rwnd, 16158 tcp->tcp_rto, 16159 tcp->tcp_mss, 16160 tcp->tcp_snd_ws_ok, 16161 tcp->tcp_snd_ws, 16162 tcp->tcp_rcv_ws, 16163 tcp->tcp_snd_ts_ok, 16164 tcp->tcp_ts_recent, 16165 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16166 if (print_len < buf_len) { 16167 ((mblk_t *)mp)->b_wptr += print_len; 16168 } else { 16169 ((mblk_t *)mp)->b_wptr += buf_len; 16170 } 16171 } 16172 16173 /* 16174 * TCP status report (for listeners only) triggered via the Named Dispatch 16175 * mechanism. 16176 */ 16177 /* ARGSUSED */ 16178 static void 16179 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16180 { 16181 char addrbuf[INET6_ADDRSTRLEN]; 16182 in6_addr_t v6dst; 16183 uint_t print_len, buf_len; 16184 16185 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16186 if (buf_len <= 0) 16187 return; 16188 16189 if (tcp->tcp_ipversion == IPV4_VERSION) { 16190 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16191 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16192 } else { 16193 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16194 addrbuf, sizeof (addrbuf)); 16195 } 16196 print_len = snprintf((char *)mp->b_wptr, buf_len, 16197 "%03d " 16198 MI_COL_PTRFMT_STR 16199 "%d %s %05u %08u %d/%d/%d%c\n", 16200 hashval, (void *)tcp, 16201 tcp->tcp_connp->conn_zoneid, 16202 addrbuf, 16203 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16204 tcp->tcp_conn_req_seqnum, 16205 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16206 tcp->tcp_conn_req_max, 16207 tcp->tcp_syn_defense ? '*' : ' '); 16208 if (print_len < buf_len) { 16209 ((mblk_t *)mp)->b_wptr += print_len; 16210 } else { 16211 ((mblk_t *)mp)->b_wptr += buf_len; 16212 } 16213 } 16214 16215 /* TCP status report triggered via the Named Dispatch mechanism. */ 16216 /* ARGSUSED */ 16217 static int 16218 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16219 { 16220 tcp_t *tcp; 16221 int i; 16222 conn_t *connp; 16223 connf_t *connfp; 16224 zoneid_t zoneid; 16225 16226 /* 16227 * Because of the ndd constraint, at most we can have 64K buffer 16228 * to put in all TCP info. So to be more efficient, just 16229 * allocate a 64K buffer here, assuming we need that large buffer. 16230 * This may be a problem as any user can read tcp_status. Therefore 16231 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16232 * This should be OK as normal users should not do this too often. 16233 */ 16234 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16235 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16236 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16237 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16238 return (0); 16239 } 16240 } 16241 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16242 /* The following may work even if we cannot get a large buf. */ 16243 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16244 return (0); 16245 } 16246 16247 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16248 16249 zoneid = Q_TO_CONN(q)->conn_zoneid; 16250 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16251 16252 connfp = &ipcl_globalhash_fanout[i]; 16253 16254 connp = NULL; 16255 16256 while ((connp = 16257 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16258 tcp = connp->conn_tcp; 16259 if (zoneid != GLOBAL_ZONEID && 16260 zoneid != connp->conn_zoneid) 16261 continue; 16262 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16263 cr); 16264 } 16265 16266 } 16267 16268 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16269 return (0); 16270 } 16271 16272 /* TCP status report triggered via the Named Dispatch mechanism. */ 16273 /* ARGSUSED */ 16274 static int 16275 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16276 { 16277 tf_t *tbf; 16278 tcp_t *tcp; 16279 int i; 16280 zoneid_t zoneid; 16281 16282 /* Refer to comments in tcp_status_report(). */ 16283 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16284 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16285 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16286 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16287 return (0); 16288 } 16289 } 16290 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16291 /* The following may work even if we cannot get a large buf. */ 16292 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16293 return (0); 16294 } 16295 16296 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16297 16298 zoneid = Q_TO_CONN(q)->conn_zoneid; 16299 16300 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16301 tbf = &tcp_bind_fanout[i]; 16302 mutex_enter(&tbf->tf_lock); 16303 for (tcp = tbf->tf_tcp; tcp != NULL; 16304 tcp = tcp->tcp_bind_hash) { 16305 if (zoneid != GLOBAL_ZONEID && 16306 zoneid != tcp->tcp_connp->conn_zoneid) 16307 continue; 16308 CONN_INC_REF(tcp->tcp_connp); 16309 tcp_report_item(mp->b_cont, tcp, i, 16310 Q_TO_TCP(q), cr); 16311 CONN_DEC_REF(tcp->tcp_connp); 16312 } 16313 mutex_exit(&tbf->tf_lock); 16314 } 16315 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16316 return (0); 16317 } 16318 16319 /* TCP status report triggered via the Named Dispatch mechanism. */ 16320 /* ARGSUSED */ 16321 static int 16322 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16323 { 16324 connf_t *connfp; 16325 conn_t *connp; 16326 tcp_t *tcp; 16327 int i; 16328 zoneid_t zoneid; 16329 16330 /* Refer to comments in tcp_status_report(). */ 16331 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16332 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16333 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16334 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16335 return (0); 16336 } 16337 } 16338 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16339 /* The following may work even if we cannot get a large buf. */ 16340 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16341 return (0); 16342 } 16343 16344 (void) mi_mpprintf(mp, 16345 " TCP " MI_COL_HDRPAD_STR 16346 "zone IP addr port seqnum backlog (q0/q/max)"); 16347 16348 zoneid = Q_TO_CONN(q)->conn_zoneid; 16349 16350 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16351 connfp = &ipcl_bind_fanout[i]; 16352 connp = NULL; 16353 while ((connp = 16354 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16355 tcp = connp->conn_tcp; 16356 if (zoneid != GLOBAL_ZONEID && 16357 zoneid != connp->conn_zoneid) 16358 continue; 16359 tcp_report_listener(mp->b_cont, tcp, i); 16360 } 16361 } 16362 16363 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16364 return (0); 16365 } 16366 16367 /* TCP status report triggered via the Named Dispatch mechanism. */ 16368 /* ARGSUSED */ 16369 static int 16370 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16371 { 16372 connf_t *connfp; 16373 conn_t *connp; 16374 tcp_t *tcp; 16375 int i; 16376 zoneid_t zoneid; 16377 16378 /* Refer to comments in tcp_status_report(). */ 16379 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16380 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16381 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16382 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16383 return (0); 16384 } 16385 } 16386 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16387 /* The following may work even if we cannot get a large buf. */ 16388 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16389 return (0); 16390 } 16391 16392 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16393 ipcl_conn_fanout_size); 16394 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16395 16396 zoneid = Q_TO_CONN(q)->conn_zoneid; 16397 16398 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16399 connfp = &ipcl_conn_fanout[i]; 16400 connp = NULL; 16401 while ((connp = 16402 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16403 tcp = connp->conn_tcp; 16404 if (zoneid != GLOBAL_ZONEID && 16405 zoneid != connp->conn_zoneid) 16406 continue; 16407 tcp_report_item(mp->b_cont, tcp, i, 16408 Q_TO_TCP(q), cr); 16409 } 16410 } 16411 16412 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16413 return (0); 16414 } 16415 16416 /* TCP status report triggered via the Named Dispatch mechanism. */ 16417 /* ARGSUSED */ 16418 static int 16419 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16420 { 16421 tf_t *tf; 16422 tcp_t *tcp; 16423 int i; 16424 zoneid_t zoneid; 16425 16426 /* Refer to comments in tcp_status_report(). */ 16427 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16428 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16429 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16430 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16431 return (0); 16432 } 16433 } 16434 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16435 /* The following may work even if we cannot get a large buf. */ 16436 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16437 return (0); 16438 } 16439 16440 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16441 16442 zoneid = Q_TO_CONN(q)->conn_zoneid; 16443 16444 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16445 tf = &tcp_acceptor_fanout[i]; 16446 mutex_enter(&tf->tf_lock); 16447 for (tcp = tf->tf_tcp; tcp != NULL; 16448 tcp = tcp->tcp_acceptor_hash) { 16449 if (zoneid != GLOBAL_ZONEID && 16450 zoneid != tcp->tcp_connp->conn_zoneid) 16451 continue; 16452 tcp_report_item(mp->b_cont, tcp, i, 16453 Q_TO_TCP(q), cr); 16454 } 16455 mutex_exit(&tf->tf_lock); 16456 } 16457 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16458 return (0); 16459 } 16460 16461 /* 16462 * tcp_timer is the timer service routine. It handles the retransmission, 16463 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16464 * from the state of the tcp instance what kind of action needs to be done 16465 * at the time it is called. 16466 */ 16467 static void 16468 tcp_timer(void *arg) 16469 { 16470 mblk_t *mp; 16471 clock_t first_threshold; 16472 clock_t second_threshold; 16473 clock_t ms; 16474 uint32_t mss; 16475 conn_t *connp = (conn_t *)arg; 16476 tcp_t *tcp = connp->conn_tcp; 16477 16478 tcp->tcp_timer_tid = 0; 16479 16480 if (tcp->tcp_fused) 16481 return; 16482 16483 first_threshold = tcp->tcp_first_timer_threshold; 16484 second_threshold = tcp->tcp_second_timer_threshold; 16485 switch (tcp->tcp_state) { 16486 case TCPS_IDLE: 16487 case TCPS_BOUND: 16488 case TCPS_LISTEN: 16489 return; 16490 case TCPS_SYN_RCVD: { 16491 tcp_t *listener = tcp->tcp_listener; 16492 16493 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16494 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16495 /* it's our first timeout */ 16496 tcp->tcp_syn_rcvd_timeout = 1; 16497 mutex_enter(&listener->tcp_eager_lock); 16498 listener->tcp_syn_rcvd_timeout++; 16499 if (!listener->tcp_syn_defense && 16500 (listener->tcp_syn_rcvd_timeout > 16501 (tcp_conn_req_max_q0 >> 2)) && 16502 (tcp_conn_req_max_q0 > 200)) { 16503 /* We may be under attack. Put on a defense. */ 16504 listener->tcp_syn_defense = B_TRUE; 16505 cmn_err(CE_WARN, "High TCP connect timeout " 16506 "rate! System (port %d) may be under a " 16507 "SYN flood attack!", 16508 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16509 16510 listener->tcp_ip_addr_cache = kmem_zalloc( 16511 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16512 KM_NOSLEEP); 16513 } 16514 mutex_exit(&listener->tcp_eager_lock); 16515 } 16516 } 16517 /* FALLTHRU */ 16518 case TCPS_SYN_SENT: 16519 first_threshold = tcp->tcp_first_ctimer_threshold; 16520 second_threshold = tcp->tcp_second_ctimer_threshold; 16521 break; 16522 case TCPS_ESTABLISHED: 16523 case TCPS_FIN_WAIT_1: 16524 case TCPS_CLOSING: 16525 case TCPS_CLOSE_WAIT: 16526 case TCPS_LAST_ACK: 16527 /* If we have data to rexmit */ 16528 if (tcp->tcp_suna != tcp->tcp_snxt) { 16529 clock_t time_to_wait; 16530 16531 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16532 if (!tcp->tcp_xmit_head) 16533 break; 16534 time_to_wait = lbolt - 16535 (clock_t)tcp->tcp_xmit_head->b_prev; 16536 time_to_wait = tcp->tcp_rto - 16537 TICK_TO_MSEC(time_to_wait); 16538 /* 16539 * If the timer fires too early, 1 clock tick earlier, 16540 * restart the timer. 16541 */ 16542 if (time_to_wait > msec_per_tick) { 16543 TCP_STAT(tcp_timer_fire_early); 16544 TCP_TIMER_RESTART(tcp, time_to_wait); 16545 return; 16546 } 16547 /* 16548 * When we probe zero windows, we force the swnd open. 16549 * If our peer acks with a closed window swnd will be 16550 * set to zero by tcp_rput(). As long as we are 16551 * receiving acks tcp_rput will 16552 * reset 'tcp_ms_we_have_waited' so as not to trip the 16553 * first and second interval actions. NOTE: the timer 16554 * interval is allowed to continue its exponential 16555 * backoff. 16556 */ 16557 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16558 if (tcp->tcp_debug) { 16559 (void) strlog(TCP_MOD_ID, 0, 1, 16560 SL_TRACE, "tcp_timer: zero win"); 16561 } 16562 } else { 16563 /* 16564 * After retransmission, we need to do 16565 * slow start. Set the ssthresh to one 16566 * half of current effective window and 16567 * cwnd to one MSS. Also reset 16568 * tcp_cwnd_cnt. 16569 * 16570 * Note that if tcp_ssthresh is reduced because 16571 * of ECN, do not reduce it again unless it is 16572 * already one window of data away (tcp_cwr 16573 * should then be cleared) or this is a 16574 * timeout for a retransmitted segment. 16575 */ 16576 uint32_t npkt; 16577 16578 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16579 npkt = ((tcp->tcp_timer_backoff ? 16580 tcp->tcp_cwnd_ssthresh : 16581 tcp->tcp_snxt - 16582 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16583 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16584 tcp->tcp_mss; 16585 } 16586 tcp->tcp_cwnd = tcp->tcp_mss; 16587 tcp->tcp_cwnd_cnt = 0; 16588 if (tcp->tcp_ecn_ok) { 16589 tcp->tcp_cwr = B_TRUE; 16590 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16591 tcp->tcp_ecn_cwr_sent = B_FALSE; 16592 } 16593 } 16594 break; 16595 } 16596 /* 16597 * We have something to send yet we cannot send. The 16598 * reason can be: 16599 * 16600 * 1. Zero send window: we need to do zero window probe. 16601 * 2. Zero cwnd: because of ECN, we need to "clock out 16602 * segments. 16603 * 3. SWS avoidance: receiver may have shrunk window, 16604 * reset our knowledge. 16605 * 16606 * Note that condition 2 can happen with either 1 or 16607 * 3. But 1 and 3 are exclusive. 16608 */ 16609 if (tcp->tcp_unsent != 0) { 16610 if (tcp->tcp_cwnd == 0) { 16611 /* 16612 * Set tcp_cwnd to 1 MSS so that a 16613 * new segment can be sent out. We 16614 * are "clocking out" new data when 16615 * the network is really congested. 16616 */ 16617 ASSERT(tcp->tcp_ecn_ok); 16618 tcp->tcp_cwnd = tcp->tcp_mss; 16619 } 16620 if (tcp->tcp_swnd == 0) { 16621 /* Extend window for zero window probe */ 16622 tcp->tcp_swnd++; 16623 tcp->tcp_zero_win_probe = B_TRUE; 16624 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16625 } else { 16626 /* 16627 * Handle timeout from sender SWS avoidance. 16628 * Reset our knowledge of the max send window 16629 * since the receiver might have reduced its 16630 * receive buffer. Avoid setting tcp_max_swnd 16631 * to one since that will essentially disable 16632 * the SWS checks. 16633 * 16634 * Note that since we don't have a SWS 16635 * state variable, if the timeout is set 16636 * for ECN but not for SWS, this 16637 * code will also be executed. This is 16638 * fine as tcp_max_swnd is updated 16639 * constantly and it will not affect 16640 * anything. 16641 */ 16642 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16643 } 16644 tcp_wput_data(tcp, NULL, B_FALSE); 16645 return; 16646 } 16647 /* Is there a FIN that needs to be to re retransmitted? */ 16648 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16649 !tcp->tcp_fin_acked) 16650 break; 16651 /* Nothing to do, return without restarting timer. */ 16652 TCP_STAT(tcp_timer_fire_miss); 16653 return; 16654 case TCPS_FIN_WAIT_2: 16655 /* 16656 * User closed the TCP endpoint and peer ACK'ed our FIN. 16657 * We waited some time for for peer's FIN, but it hasn't 16658 * arrived. We flush the connection now to avoid 16659 * case where the peer has rebooted. 16660 */ 16661 if (TCP_IS_DETACHED(tcp)) { 16662 (void) tcp_clean_death(tcp, 0, 23); 16663 } else { 16664 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16665 } 16666 return; 16667 case TCPS_TIME_WAIT: 16668 (void) tcp_clean_death(tcp, 0, 24); 16669 return; 16670 default: 16671 if (tcp->tcp_debug) { 16672 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16673 "tcp_timer: strange state (%d) %s", 16674 tcp->tcp_state, tcp_display(tcp, NULL, 16675 DISP_PORT_ONLY)); 16676 } 16677 return; 16678 } 16679 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16680 /* 16681 * For zero window probe, we need to send indefinitely, 16682 * unless we have not heard from the other side for some 16683 * time... 16684 */ 16685 if ((tcp->tcp_zero_win_probe == 0) || 16686 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16687 second_threshold)) { 16688 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 16689 /* 16690 * If TCP is in SYN_RCVD state, send back a 16691 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16692 * should be zero in TCPS_SYN_RCVD state. 16693 */ 16694 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16695 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16696 "in SYN_RCVD", 16697 tcp, tcp->tcp_snxt, 16698 tcp->tcp_rnxt, TH_RST | TH_ACK); 16699 } 16700 (void) tcp_clean_death(tcp, 16701 tcp->tcp_client_errno ? 16702 tcp->tcp_client_errno : ETIMEDOUT, 25); 16703 return; 16704 } else { 16705 /* 16706 * Set tcp_ms_we_have_waited to second_threshold 16707 * so that in next timeout, we will do the above 16708 * check (lbolt - tcp_last_recv_time). This is 16709 * also to avoid overflow. 16710 * 16711 * We don't need to decrement tcp_timer_backoff 16712 * to avoid overflow because it will be decremented 16713 * later if new timeout value is greater than 16714 * tcp_rexmit_interval_max. In the case when 16715 * tcp_rexmit_interval_max is greater than 16716 * second_threshold, it means that we will wait 16717 * longer than second_threshold to send the next 16718 * window probe. 16719 */ 16720 tcp->tcp_ms_we_have_waited = second_threshold; 16721 } 16722 } else if (ms > first_threshold) { 16723 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16724 tcp->tcp_xmit_head != NULL) { 16725 tcp->tcp_xmit_head = 16726 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16727 } 16728 /* 16729 * We have been retransmitting for too long... The RTT 16730 * we calculated is probably incorrect. Reinitialize it. 16731 * Need to compensate for 0 tcp_rtt_sa. Reset 16732 * tcp_rtt_update so that we won't accidentally cache a 16733 * bad value. But only do this if this is not a zero 16734 * window probe. 16735 */ 16736 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16737 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16738 (tcp->tcp_rtt_sa >> 5); 16739 tcp->tcp_rtt_sa = 0; 16740 tcp_ip_notify(tcp); 16741 tcp->tcp_rtt_update = 0; 16742 } 16743 } 16744 tcp->tcp_timer_backoff++; 16745 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16746 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16747 tcp_rexmit_interval_min) { 16748 /* 16749 * This means the original RTO is tcp_rexmit_interval_min. 16750 * So we will use tcp_rexmit_interval_min as the RTO value 16751 * and do the backoff. 16752 */ 16753 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 16754 } else { 16755 ms <<= tcp->tcp_timer_backoff; 16756 } 16757 if (ms > tcp_rexmit_interval_max) { 16758 ms = tcp_rexmit_interval_max; 16759 /* 16760 * ms is at max, decrement tcp_timer_backoff to avoid 16761 * overflow. 16762 */ 16763 tcp->tcp_timer_backoff--; 16764 } 16765 tcp->tcp_ms_we_have_waited += ms; 16766 if (tcp->tcp_zero_win_probe == 0) { 16767 tcp->tcp_rto = ms; 16768 } 16769 TCP_TIMER_RESTART(tcp, ms); 16770 /* 16771 * This is after a timeout and tcp_rto is backed off. Set 16772 * tcp_set_timer to 1 so that next time RTO is updated, we will 16773 * restart the timer with a correct value. 16774 */ 16775 tcp->tcp_set_timer = 1; 16776 mss = tcp->tcp_snxt - tcp->tcp_suna; 16777 if (mss > tcp->tcp_mss) 16778 mss = tcp->tcp_mss; 16779 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16780 mss = tcp->tcp_swnd; 16781 16782 if ((mp = tcp->tcp_xmit_head) != NULL) 16783 mp->b_prev = (mblk_t *)lbolt; 16784 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16785 B_TRUE); 16786 16787 /* 16788 * When slow start after retransmission begins, start with 16789 * this seq no. tcp_rexmit_max marks the end of special slow 16790 * start phase. tcp_snd_burst controls how many segments 16791 * can be sent because of an ack. 16792 */ 16793 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16794 tcp->tcp_snd_burst = TCP_CWND_SS; 16795 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16796 (tcp->tcp_unsent == 0)) { 16797 tcp->tcp_rexmit_max = tcp->tcp_fss; 16798 } else { 16799 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16800 } 16801 tcp->tcp_rexmit = B_TRUE; 16802 tcp->tcp_dupack_cnt = 0; 16803 16804 /* 16805 * Remove all rexmit SACK blk to start from fresh. 16806 */ 16807 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16808 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16809 tcp->tcp_num_notsack_blk = 0; 16810 tcp->tcp_cnt_notsack_list = 0; 16811 } 16812 if (mp == NULL) { 16813 return; 16814 } 16815 /* Attach credentials to retransmitted initial SYNs. */ 16816 if (tcp->tcp_state == TCPS_SYN_SENT) { 16817 mblk_setcred(mp, tcp->tcp_cred); 16818 DB_CPID(mp) = tcp->tcp_cpid; 16819 } 16820 16821 tcp->tcp_csuna = tcp->tcp_snxt; 16822 BUMP_MIB(&tcp_mib, tcpRetransSegs); 16823 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 16824 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 16825 tcp_send_data(tcp, tcp->tcp_wq, mp); 16826 16827 } 16828 16829 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16830 static void 16831 tcp_unbind(tcp_t *tcp, mblk_t *mp) 16832 { 16833 conn_t *connp; 16834 16835 switch (tcp->tcp_state) { 16836 case TCPS_BOUND: 16837 case TCPS_LISTEN: 16838 break; 16839 default: 16840 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 16841 return; 16842 } 16843 16844 /* 16845 * Need to clean up all the eagers since after the unbind, segments 16846 * will no longer be delivered to this listener stream. 16847 */ 16848 mutex_enter(&tcp->tcp_eager_lock); 16849 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16850 tcp_eager_cleanup(tcp, 0); 16851 } 16852 mutex_exit(&tcp->tcp_eager_lock); 16853 16854 if (tcp->tcp_ipversion == IPV4_VERSION) { 16855 tcp->tcp_ipha->ipha_src = 0; 16856 } else { 16857 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16858 } 16859 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16860 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16861 tcp_bind_hash_remove(tcp); 16862 tcp->tcp_state = TCPS_IDLE; 16863 tcp->tcp_mdt = B_FALSE; 16864 /* Send M_FLUSH according to TPI */ 16865 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16866 connp = tcp->tcp_connp; 16867 connp->conn_mdt_ok = B_FALSE; 16868 ipcl_hash_remove(connp); 16869 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16870 mp = mi_tpi_ok_ack_alloc(mp); 16871 putnext(tcp->tcp_rq, mp); 16872 } 16873 16874 /* 16875 * Don't let port fall into the privileged range. 16876 * Since the extra privileged ports can be arbitrary we also 16877 * ensure that we exclude those from consideration. 16878 * tcp_g_epriv_ports is not sorted thus we loop over it until 16879 * there are no changes. 16880 * 16881 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16882 * but instead the code relies on: 16883 * - the fact that the address of the array and its size never changes 16884 * - the atomic assignment of the elements of the array 16885 * 16886 * Returns 0 if there are no more ports available. 16887 * 16888 * TS note: skip multilevel ports. 16889 */ 16890 static in_port_t 16891 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16892 { 16893 int i; 16894 boolean_t restart = B_FALSE; 16895 16896 if (random && tcp_random_anon_port != 0) { 16897 (void) random_get_pseudo_bytes((uint8_t *)&port, 16898 sizeof (in_port_t)); 16899 /* 16900 * Unless changed by a sys admin, the smallest anon port 16901 * is 32768 and the largest anon port is 65535. It is 16902 * very likely (50%) for the random port to be smaller 16903 * than the smallest anon port. When that happens, 16904 * add port % (anon port range) to the smallest anon 16905 * port to get the random port. It should fall into the 16906 * valid anon port range. 16907 */ 16908 if (port < tcp_smallest_anon_port) { 16909 port = tcp_smallest_anon_port + 16910 port % (tcp_largest_anon_port - 16911 tcp_smallest_anon_port); 16912 } 16913 } 16914 16915 retry: 16916 if (port < tcp_smallest_anon_port) 16917 port = (in_port_t)tcp_smallest_anon_port; 16918 16919 if (port > tcp_largest_anon_port) { 16920 if (restart) 16921 return (0); 16922 restart = B_TRUE; 16923 port = (in_port_t)tcp_smallest_anon_port; 16924 } 16925 16926 if (port < tcp_smallest_nonpriv_port) 16927 port = (in_port_t)tcp_smallest_nonpriv_port; 16928 16929 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 16930 if (port == tcp_g_epriv_ports[i]) { 16931 port++; 16932 /* 16933 * Make sure whether the port is in the 16934 * valid range. 16935 */ 16936 goto retry; 16937 } 16938 } 16939 if (is_system_labeled() && 16940 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 16941 IPPROTO_TCP, B_TRUE)) != 0) { 16942 port = i; 16943 goto retry; 16944 } 16945 return (port); 16946 } 16947 16948 /* 16949 * Return the next anonymous port in the privileged port range for 16950 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16951 * downwards. This is the same behavior as documented in the userland 16952 * library call rresvport(3N). 16953 * 16954 * TS note: skip multilevel ports. 16955 */ 16956 static in_port_t 16957 tcp_get_next_priv_port(const tcp_t *tcp) 16958 { 16959 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16960 in_port_t nextport; 16961 boolean_t restart = B_FALSE; 16962 16963 retry: 16964 if (next_priv_port < tcp_min_anonpriv_port || 16965 next_priv_port >= IPPORT_RESERVED) { 16966 next_priv_port = IPPORT_RESERVED - 1; 16967 if (restart) 16968 return (0); 16969 restart = B_TRUE; 16970 } 16971 if (is_system_labeled() && 16972 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 16973 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 16974 next_priv_port = nextport; 16975 goto retry; 16976 } 16977 return (next_priv_port--); 16978 } 16979 16980 /* The write side r/w procedure. */ 16981 16982 #if CCS_STATS 16983 struct { 16984 struct { 16985 int64_t count, bytes; 16986 } tot, hit; 16987 } wrw_stats; 16988 #endif 16989 16990 /* 16991 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16992 * messages. 16993 */ 16994 /* ARGSUSED */ 16995 static void 16996 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16997 { 16998 conn_t *connp = (conn_t *)arg; 16999 tcp_t *tcp = connp->conn_tcp; 17000 queue_t *q = tcp->tcp_wq; 17001 17002 ASSERT(DB_TYPE(mp) != M_IOCTL); 17003 /* 17004 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17005 * Once the close starts, streamhead and sockfs will not let any data 17006 * packets come down (close ensures that there are no threads using the 17007 * queue and no new threads will come down) but since qprocsoff() 17008 * hasn't happened yet, a M_FLUSH or some non data message might 17009 * get reflected back (in response to our own FLUSHRW) and get 17010 * processed after tcp_close() is done. The conn would still be valid 17011 * because a ref would have added but we need to check the state 17012 * before actually processing the packet. 17013 */ 17014 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17015 freemsg(mp); 17016 return; 17017 } 17018 17019 switch (DB_TYPE(mp)) { 17020 case M_IOCDATA: 17021 tcp_wput_iocdata(tcp, mp); 17022 break; 17023 case M_FLUSH: 17024 tcp_wput_flush(tcp, mp); 17025 break; 17026 default: 17027 CALL_IP_WPUT(connp, q, mp); 17028 break; 17029 } 17030 } 17031 17032 /* 17033 * The TCP fast path write put procedure. 17034 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17035 */ 17036 /* ARGSUSED */ 17037 void 17038 tcp_output(void *arg, mblk_t *mp, void *arg2) 17039 { 17040 int len; 17041 int hdrlen; 17042 int plen; 17043 mblk_t *mp1; 17044 uchar_t *rptr; 17045 uint32_t snxt; 17046 tcph_t *tcph; 17047 struct datab *db; 17048 uint32_t suna; 17049 uint32_t mss; 17050 ipaddr_t *dst; 17051 ipaddr_t *src; 17052 uint32_t sum; 17053 int usable; 17054 conn_t *connp = (conn_t *)arg; 17055 tcp_t *tcp = connp->conn_tcp; 17056 uint32_t msize; 17057 17058 /* 17059 * Try and ASSERT the minimum possible references on the 17060 * conn early enough. Since we are executing on write side, 17061 * the connection is obviously not detached and that means 17062 * there is a ref each for TCP and IP. Since we are behind 17063 * the squeue, the minimum references needed are 3. If the 17064 * conn is in classifier hash list, there should be an 17065 * extra ref for that (we check both the possibilities). 17066 */ 17067 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17068 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17069 17070 ASSERT(DB_TYPE(mp) == M_DATA); 17071 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17072 17073 mutex_enter(&connp->conn_lock); 17074 tcp->tcp_squeue_bytes -= msize; 17075 mutex_exit(&connp->conn_lock); 17076 17077 /* Bypass tcp protocol for fused tcp loopback */ 17078 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17079 return; 17080 17081 mss = tcp->tcp_mss; 17082 if (tcp->tcp_xmit_zc_clean) 17083 mp = tcp_zcopy_backoff(tcp, mp, 0); 17084 17085 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17086 len = (int)(mp->b_wptr - mp->b_rptr); 17087 17088 /* 17089 * Criteria for fast path: 17090 * 17091 * 1. no unsent data 17092 * 2. single mblk in request 17093 * 3. connection established 17094 * 4. data in mblk 17095 * 5. len <= mss 17096 * 6. no tcp_valid bits 17097 */ 17098 if ((tcp->tcp_unsent != 0) || 17099 (tcp->tcp_cork) || 17100 (mp->b_cont != NULL) || 17101 (tcp->tcp_state != TCPS_ESTABLISHED) || 17102 (len == 0) || 17103 (len > mss) || 17104 (tcp->tcp_valid_bits != 0)) { 17105 tcp_wput_data(tcp, mp, B_FALSE); 17106 return; 17107 } 17108 17109 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17110 ASSERT(tcp->tcp_fin_sent == 0); 17111 17112 /* queue new packet onto retransmission queue */ 17113 if (tcp->tcp_xmit_head == NULL) { 17114 tcp->tcp_xmit_head = mp; 17115 } else { 17116 tcp->tcp_xmit_last->b_cont = mp; 17117 } 17118 tcp->tcp_xmit_last = mp; 17119 tcp->tcp_xmit_tail = mp; 17120 17121 /* find out how much we can send */ 17122 /* BEGIN CSTYLED */ 17123 /* 17124 * un-acked usable 17125 * |--------------|-----------------| 17126 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17127 */ 17128 /* END CSTYLED */ 17129 17130 /* start sending from tcp_snxt */ 17131 snxt = tcp->tcp_snxt; 17132 17133 /* 17134 * Check to see if this connection has been idled for some 17135 * time and no ACK is expected. If it is, we need to slow 17136 * start again to get back the connection's "self-clock" as 17137 * described in VJ's paper. 17138 * 17139 * Refer to the comment in tcp_mss_set() for the calculation 17140 * of tcp_cwnd after idle. 17141 */ 17142 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17143 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17144 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 17145 } 17146 17147 usable = tcp->tcp_swnd; /* tcp window size */ 17148 if (usable > tcp->tcp_cwnd) 17149 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17150 usable -= snxt; /* subtract stuff already sent */ 17151 suna = tcp->tcp_suna; 17152 usable += suna; 17153 /* usable can be < 0 if the congestion window is smaller */ 17154 if (len > usable) { 17155 /* Can't send complete M_DATA in one shot */ 17156 goto slow; 17157 } 17158 17159 if (tcp->tcp_flow_stopped && 17160 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17161 tcp_clrqfull(tcp); 17162 } 17163 17164 /* 17165 * determine if anything to send (Nagle). 17166 * 17167 * 1. len < tcp_mss (i.e. small) 17168 * 2. unacknowledged data present 17169 * 3. len < nagle limit 17170 * 4. last packet sent < nagle limit (previous packet sent) 17171 */ 17172 if ((len < mss) && (snxt != suna) && 17173 (len < (int)tcp->tcp_naglim) && 17174 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17175 /* 17176 * This was the first unsent packet and normally 17177 * mss < xmit_hiwater so there is no need to worry 17178 * about flow control. The next packet will go 17179 * through the flow control check in tcp_wput_data(). 17180 */ 17181 /* leftover work from above */ 17182 tcp->tcp_unsent = len; 17183 tcp->tcp_xmit_tail_unsent = len; 17184 17185 return; 17186 } 17187 17188 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17189 17190 if (snxt == suna) { 17191 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17192 } 17193 17194 /* we have always sent something */ 17195 tcp->tcp_rack_cnt = 0; 17196 17197 tcp->tcp_snxt = snxt + len; 17198 tcp->tcp_rack = tcp->tcp_rnxt; 17199 17200 if ((mp1 = dupb(mp)) == 0) 17201 goto no_memory; 17202 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17203 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17204 17205 /* adjust tcp header information */ 17206 tcph = tcp->tcp_tcph; 17207 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17208 17209 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17210 sum = (sum >> 16) + (sum & 0xFFFF); 17211 U16_TO_ABE16(sum, tcph->th_sum); 17212 17213 U32_TO_ABE32(snxt, tcph->th_seq); 17214 17215 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 17216 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 17217 BUMP_LOCAL(tcp->tcp_obsegs); 17218 17219 /* Update the latest receive window size in TCP header. */ 17220 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17221 tcph->th_win); 17222 17223 tcp->tcp_last_sent_len = (ushort_t)len; 17224 17225 plen = len + tcp->tcp_hdr_len; 17226 17227 if (tcp->tcp_ipversion == IPV4_VERSION) { 17228 tcp->tcp_ipha->ipha_length = htons(plen); 17229 } else { 17230 tcp->tcp_ip6h->ip6_plen = htons(plen - 17231 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17232 } 17233 17234 /* see if we need to allocate a mblk for the headers */ 17235 hdrlen = tcp->tcp_hdr_len; 17236 rptr = mp1->b_rptr - hdrlen; 17237 db = mp1->b_datap; 17238 if ((db->db_ref != 2) || rptr < db->db_base || 17239 (!OK_32PTR(rptr))) { 17240 /* NOTE: we assume allocb returns an OK_32PTR */ 17241 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17242 tcp_wroff_xtra, BPRI_MED); 17243 if (!mp) { 17244 freemsg(mp1); 17245 goto no_memory; 17246 } 17247 mp->b_cont = mp1; 17248 mp1 = mp; 17249 /* Leave room for Link Level header */ 17250 /* hdrlen = tcp->tcp_hdr_len; */ 17251 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 17252 mp1->b_wptr = &rptr[hdrlen]; 17253 } 17254 mp1->b_rptr = rptr; 17255 17256 /* Fill in the timestamp option. */ 17257 if (tcp->tcp_snd_ts_ok) { 17258 U32_TO_BE32((uint32_t)lbolt, 17259 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17260 U32_TO_BE32(tcp->tcp_ts_recent, 17261 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17262 } else { 17263 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17264 } 17265 17266 /* copy header into outgoing packet */ 17267 dst = (ipaddr_t *)rptr; 17268 src = (ipaddr_t *)tcp->tcp_iphc; 17269 dst[0] = src[0]; 17270 dst[1] = src[1]; 17271 dst[2] = src[2]; 17272 dst[3] = src[3]; 17273 dst[4] = src[4]; 17274 dst[5] = src[5]; 17275 dst[6] = src[6]; 17276 dst[7] = src[7]; 17277 dst[8] = src[8]; 17278 dst[9] = src[9]; 17279 if (hdrlen -= 40) { 17280 hdrlen >>= 2; 17281 dst += 10; 17282 src += 10; 17283 do { 17284 *dst++ = *src++; 17285 } while (--hdrlen); 17286 } 17287 17288 /* 17289 * Set the ECN info in the TCP header. Note that this 17290 * is not the template header. 17291 */ 17292 if (tcp->tcp_ecn_ok) { 17293 SET_ECT(tcp, rptr); 17294 17295 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17296 if (tcp->tcp_ecn_echo_on) 17297 tcph->th_flags[0] |= TH_ECE; 17298 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17299 tcph->th_flags[0] |= TH_CWR; 17300 tcp->tcp_ecn_cwr_sent = B_TRUE; 17301 } 17302 } 17303 17304 if (tcp->tcp_ip_forward_progress) { 17305 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17306 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17307 tcp->tcp_ip_forward_progress = B_FALSE; 17308 } 17309 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17310 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17311 return; 17312 17313 /* 17314 * If we ran out of memory, we pretend to have sent the packet 17315 * and that it was lost on the wire. 17316 */ 17317 no_memory: 17318 return; 17319 17320 slow: 17321 /* leftover work from above */ 17322 tcp->tcp_unsent = len; 17323 tcp->tcp_xmit_tail_unsent = len; 17324 tcp_wput_data(tcp, NULL, B_FALSE); 17325 } 17326 17327 /* 17328 * The function called through squeue to get behind eager's perimeter to 17329 * finish the accept processing. 17330 */ 17331 /* ARGSUSED */ 17332 void 17333 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17334 { 17335 conn_t *connp = (conn_t *)arg; 17336 tcp_t *tcp = connp->conn_tcp; 17337 queue_t *q = tcp->tcp_rq; 17338 mblk_t *mp1; 17339 mblk_t *stropt_mp = mp; 17340 struct stroptions *stropt; 17341 uint_t thwin; 17342 17343 /* 17344 * Drop the eager's ref on the listener, that was placed when 17345 * this eager began life in tcp_conn_request. 17346 */ 17347 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17348 17349 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17350 /* 17351 * Someone blewoff the eager before we could finish 17352 * the accept. 17353 * 17354 * The only reason eager exists it because we put in 17355 * a ref on it when conn ind went up. We need to send 17356 * a disconnect indication up while the last reference 17357 * on the eager will be dropped by the squeue when we 17358 * return. 17359 */ 17360 ASSERT(tcp->tcp_listener == NULL); 17361 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17362 struct T_discon_ind *tdi; 17363 17364 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17365 /* 17366 * Let us reuse the incoming mblk to avoid memory 17367 * allocation failure problems. We know that the 17368 * size of the incoming mblk i.e. stroptions is greater 17369 * than sizeof T_discon_ind. So the reallocb below 17370 * can't fail. 17371 */ 17372 freemsg(mp->b_cont); 17373 mp->b_cont = NULL; 17374 ASSERT(DB_REF(mp) == 1); 17375 mp = reallocb(mp, sizeof (struct T_discon_ind), 17376 B_FALSE); 17377 ASSERT(mp != NULL); 17378 DB_TYPE(mp) = M_PROTO; 17379 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17380 tdi = (struct T_discon_ind *)mp->b_rptr; 17381 if (tcp->tcp_issocket) { 17382 tdi->DISCON_reason = ECONNREFUSED; 17383 tdi->SEQ_number = 0; 17384 } else { 17385 tdi->DISCON_reason = ENOPROTOOPT; 17386 tdi->SEQ_number = 17387 tcp->tcp_conn_req_seqnum; 17388 } 17389 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17390 putnext(q, mp); 17391 } else { 17392 freemsg(mp); 17393 } 17394 if (tcp->tcp_hard_binding) { 17395 tcp->tcp_hard_binding = B_FALSE; 17396 tcp->tcp_hard_bound = B_TRUE; 17397 } 17398 tcp->tcp_detached = B_FALSE; 17399 return; 17400 } 17401 17402 mp1 = stropt_mp->b_cont; 17403 stropt_mp->b_cont = NULL; 17404 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17405 stropt = (struct stroptions *)stropt_mp->b_rptr; 17406 17407 while (mp1 != NULL) { 17408 mp = mp1; 17409 mp1 = mp1->b_cont; 17410 mp->b_cont = NULL; 17411 tcp->tcp_drop_opt_ack_cnt++; 17412 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17413 } 17414 mp = NULL; 17415 17416 /* 17417 * For a loopback connection with tcp_direct_sockfs on, note that 17418 * we don't have to protect tcp_rcv_list yet because synchronous 17419 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17420 * possibly race with us. 17421 */ 17422 17423 /* 17424 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17425 * properly. This is the first time we know of the acceptor' 17426 * queue. So we do it here. 17427 */ 17428 if (tcp->tcp_rcv_list == NULL) { 17429 /* 17430 * Recv queue is empty, tcp_rwnd should not have changed. 17431 * That means it should be equal to the listener's tcp_rwnd. 17432 */ 17433 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17434 } else { 17435 #ifdef DEBUG 17436 uint_t cnt = 0; 17437 17438 mp1 = tcp->tcp_rcv_list; 17439 while ((mp = mp1) != NULL) { 17440 mp1 = mp->b_next; 17441 cnt += msgdsize(mp); 17442 } 17443 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17444 #endif 17445 /* There is some data, add them back to get the max. */ 17446 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17447 } 17448 17449 stropt->so_flags = SO_HIWAT; 17450 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17451 17452 stropt->so_flags |= SO_MAXBLK; 17453 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17454 17455 /* 17456 * This is the first time we run on the correct 17457 * queue after tcp_accept. So fix all the q parameters 17458 * here. 17459 */ 17460 /* Allocate room for SACK options if needed. */ 17461 stropt->so_flags |= SO_WROFF; 17462 if (tcp->tcp_fused) { 17463 ASSERT(tcp->tcp_loopback); 17464 ASSERT(tcp->tcp_loopback_peer != NULL); 17465 /* 17466 * For fused tcp loopback, set the stream head's write 17467 * offset value to zero since we won't be needing any room 17468 * for TCP/IP headers. This would also improve performance 17469 * since it would reduce the amount of work done by kmem. 17470 * Non-fused tcp loopback case is handled separately below. 17471 */ 17472 stropt->so_wroff = 0; 17473 /* 17474 * Record the stream head's high water mark for this endpoint; 17475 * this is used for flow-control purposes in tcp_fuse_output(). 17476 */ 17477 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17478 /* 17479 * Update the peer's transmit parameters according to 17480 * our recently calculated high water mark value. 17481 */ 17482 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17483 } else if (tcp->tcp_snd_sack_ok) { 17484 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17485 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17486 } else { 17487 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17488 tcp_wroff_xtra); 17489 } 17490 17491 /* 17492 * If this is endpoint is handling SSL, then reserve extra 17493 * offset and space at the end. 17494 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17495 * overriding the previous setting. The extra cost of signing and 17496 * encrypting multiple MSS-size records (12 of them with Ethernet), 17497 * instead of a single contiguous one by the stream head 17498 * largely outweighs the statistical reduction of ACKs, when 17499 * applicable. The peer will also save on decyption and verification 17500 * costs. 17501 */ 17502 if (tcp->tcp_kssl_ctx != NULL) { 17503 stropt->so_wroff += SSL3_WROFFSET; 17504 17505 stropt->so_flags |= SO_TAIL; 17506 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17507 17508 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17509 } 17510 17511 /* Send the options up */ 17512 putnext(q, stropt_mp); 17513 17514 /* 17515 * Pass up any data and/or a fin that has been received. 17516 * 17517 * Adjust receive window in case it had decreased 17518 * (because there is data <=> tcp_rcv_list != NULL) 17519 * while the connection was detached. Note that 17520 * in case the eager was flow-controlled, w/o this 17521 * code, the rwnd may never open up again! 17522 */ 17523 if (tcp->tcp_rcv_list != NULL) { 17524 /* We drain directly in case of fused tcp loopback */ 17525 if (!tcp->tcp_fused && canputnext(q)) { 17526 tcp->tcp_rwnd = q->q_hiwat; 17527 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17528 << tcp->tcp_rcv_ws; 17529 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17530 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17531 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17532 tcp_xmit_ctl(NULL, 17533 tcp, (tcp->tcp_swnd == 0) ? 17534 tcp->tcp_suna : tcp->tcp_snxt, 17535 tcp->tcp_rnxt, TH_ACK); 17536 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17537 } 17538 17539 } 17540 (void) tcp_rcv_drain(q, tcp); 17541 17542 /* 17543 * For fused tcp loopback, back-enable peer endpoint 17544 * if it's currently flow-controlled. 17545 */ 17546 if (tcp->tcp_fused && 17547 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17548 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17549 17550 ASSERT(peer_tcp != NULL); 17551 ASSERT(peer_tcp->tcp_fused); 17552 17553 tcp_clrqfull(peer_tcp); 17554 TCP_STAT(tcp_fusion_backenabled); 17555 } 17556 } 17557 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17558 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17559 mp = mi_tpi_ordrel_ind(); 17560 if (mp) { 17561 tcp->tcp_ordrel_done = B_TRUE; 17562 putnext(q, mp); 17563 if (tcp->tcp_deferred_clean_death) { 17564 /* 17565 * tcp_clean_death was deferred 17566 * for T_ORDREL_IND - do it now 17567 */ 17568 (void) tcp_clean_death(tcp, 17569 tcp->tcp_client_errno, 21); 17570 tcp->tcp_deferred_clean_death = B_FALSE; 17571 } 17572 } else { 17573 /* 17574 * Run the orderly release in the 17575 * service routine. 17576 */ 17577 qenable(q); 17578 } 17579 } 17580 if (tcp->tcp_hard_binding) { 17581 tcp->tcp_hard_binding = B_FALSE; 17582 tcp->tcp_hard_bound = B_TRUE; 17583 } 17584 17585 tcp->tcp_detached = B_FALSE; 17586 17587 /* We can enable synchronous streams now */ 17588 if (tcp->tcp_fused) { 17589 tcp_fuse_syncstr_enable_pair(tcp); 17590 } 17591 17592 if (tcp->tcp_ka_enabled) { 17593 tcp->tcp_ka_last_intrvl = 0; 17594 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17595 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17596 } 17597 17598 /* 17599 * At this point, eager is fully established and will 17600 * have the following references - 17601 * 17602 * 2 references for connection to exist (1 for TCP and 1 for IP). 17603 * 1 reference for the squeue which will be dropped by the squeue as 17604 * soon as this function returns. 17605 * There will be 1 additonal reference for being in classifier 17606 * hash list provided something bad hasn't happened. 17607 */ 17608 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17609 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17610 } 17611 17612 /* 17613 * The function called through squeue to get behind listener's perimeter to 17614 * send a deffered conn_ind. 17615 */ 17616 /* ARGSUSED */ 17617 void 17618 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17619 { 17620 conn_t *connp = (conn_t *)arg; 17621 tcp_t *listener = connp->conn_tcp; 17622 17623 if (listener->tcp_state == TCPS_CLOSED || 17624 TCP_IS_DETACHED(listener)) { 17625 /* 17626 * If listener has closed, it would have caused a 17627 * a cleanup/blowoff to happen for the eager. 17628 */ 17629 tcp_t *tcp; 17630 struct T_conn_ind *conn_ind; 17631 17632 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17633 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17634 conn_ind->OPT_length); 17635 /* 17636 * We need to drop the ref on eager that was put 17637 * tcp_rput_data() before trying to send the conn_ind 17638 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17639 * and tcp_wput_accept() is sending this deferred conn_ind but 17640 * listener is closed so we drop the ref. 17641 */ 17642 CONN_DEC_REF(tcp->tcp_connp); 17643 freemsg(mp); 17644 return; 17645 } 17646 putnext(listener->tcp_rq, mp); 17647 } 17648 17649 17650 /* 17651 * This is the STREAMS entry point for T_CONN_RES coming down on 17652 * Acceptor STREAM when sockfs listener does accept processing. 17653 * Read the block comment on top pf tcp_conn_request(). 17654 */ 17655 void 17656 tcp_wput_accept(queue_t *q, mblk_t *mp) 17657 { 17658 queue_t *rq = RD(q); 17659 struct T_conn_res *conn_res; 17660 tcp_t *eager; 17661 tcp_t *listener; 17662 struct T_ok_ack *ok; 17663 t_scalar_t PRIM_type; 17664 mblk_t *opt_mp; 17665 conn_t *econnp; 17666 17667 ASSERT(DB_TYPE(mp) == M_PROTO); 17668 17669 conn_res = (struct T_conn_res *)mp->b_rptr; 17670 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17671 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17672 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17673 if (mp != NULL) 17674 putnext(rq, mp); 17675 return; 17676 } 17677 switch (conn_res->PRIM_type) { 17678 case O_T_CONN_RES: 17679 case T_CONN_RES: 17680 /* 17681 * We pass up an err ack if allocb fails. This will 17682 * cause sockfs to issue a T_DISCON_REQ which will cause 17683 * tcp_eager_blowoff to be called. sockfs will then call 17684 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17685 * we need to do the allocb up here because we have to 17686 * make sure rq->q_qinfo->qi_qclose still points to the 17687 * correct function (tcpclose_accept) in case allocb 17688 * fails. 17689 */ 17690 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17691 if (opt_mp == NULL) { 17692 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17693 if (mp != NULL) 17694 putnext(rq, mp); 17695 return; 17696 } 17697 17698 bcopy(mp->b_rptr + conn_res->OPT_offset, 17699 &eager, conn_res->OPT_length); 17700 PRIM_type = conn_res->PRIM_type; 17701 mp->b_datap->db_type = M_PCPROTO; 17702 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17703 ok = (struct T_ok_ack *)mp->b_rptr; 17704 ok->PRIM_type = T_OK_ACK; 17705 ok->CORRECT_prim = PRIM_type; 17706 econnp = eager->tcp_connp; 17707 econnp->conn_dev = (dev_t)q->q_ptr; 17708 eager->tcp_rq = rq; 17709 eager->tcp_wq = q; 17710 rq->q_ptr = econnp; 17711 rq->q_qinfo = &tcp_rinit; 17712 q->q_ptr = econnp; 17713 q->q_qinfo = &tcp_winit; 17714 listener = eager->tcp_listener; 17715 eager->tcp_issocket = B_TRUE; 17716 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17717 17718 /* Put the ref for IP */ 17719 CONN_INC_REF(econnp); 17720 17721 /* 17722 * We should have minimum of 3 references on the conn 17723 * at this point. One each for TCP and IP and one for 17724 * the T_conn_ind that was sent up when the 3-way handshake 17725 * completed. In the normal case we would also have another 17726 * reference (making a total of 4) for the conn being in the 17727 * classifier hash list. However the eager could have received 17728 * an RST subsequently and tcp_closei_local could have removed 17729 * the eager from the classifier hash list, hence we can't 17730 * assert that reference. 17731 */ 17732 ASSERT(econnp->conn_ref >= 3); 17733 17734 /* 17735 * Send the new local address also up to sockfs. There 17736 * should already be enough space in the mp that came 17737 * down from soaccept(). 17738 */ 17739 if (eager->tcp_family == AF_INET) { 17740 sin_t *sin; 17741 17742 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17743 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17744 sin = (sin_t *)mp->b_wptr; 17745 mp->b_wptr += sizeof (sin_t); 17746 sin->sin_family = AF_INET; 17747 sin->sin_port = eager->tcp_lport; 17748 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17749 } else { 17750 sin6_t *sin6; 17751 17752 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17753 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17754 sin6 = (sin6_t *)mp->b_wptr; 17755 mp->b_wptr += sizeof (sin6_t); 17756 sin6->sin6_family = AF_INET6; 17757 sin6->sin6_port = eager->tcp_lport; 17758 if (eager->tcp_ipversion == IPV4_VERSION) { 17759 sin6->sin6_flowinfo = 0; 17760 IN6_IPADDR_TO_V4MAPPED( 17761 eager->tcp_ipha->ipha_src, 17762 &sin6->sin6_addr); 17763 } else { 17764 ASSERT(eager->tcp_ip6h != NULL); 17765 sin6->sin6_flowinfo = 17766 eager->tcp_ip6h->ip6_vcf & 17767 ~IPV6_VERS_AND_FLOW_MASK; 17768 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17769 } 17770 sin6->sin6_scope_id = 0; 17771 sin6->__sin6_src_id = 0; 17772 } 17773 17774 putnext(rq, mp); 17775 17776 opt_mp->b_datap->db_type = M_SETOPTS; 17777 opt_mp->b_wptr += sizeof (struct stroptions); 17778 17779 /* 17780 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17781 * from listener to acceptor. The message is chained on the 17782 * bind_mp which tcp_rput_other will send down to IP. 17783 */ 17784 if (listener->tcp_bound_if != 0) { 17785 /* allocate optmgmt req */ 17786 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17787 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 17788 sizeof (int)); 17789 if (mp != NULL) 17790 linkb(opt_mp, mp); 17791 } 17792 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17793 uint_t on = 1; 17794 17795 /* allocate optmgmt req */ 17796 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17797 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 17798 if (mp != NULL) 17799 linkb(opt_mp, mp); 17800 } 17801 17802 17803 mutex_enter(&listener->tcp_eager_lock); 17804 17805 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17806 17807 tcp_t *tail; 17808 tcp_t *tcp; 17809 mblk_t *mp1; 17810 17811 tcp = listener->tcp_eager_prev_q0; 17812 /* 17813 * listener->tcp_eager_prev_q0 points to the TAIL of the 17814 * deferred T_conn_ind queue. We need to get to the head 17815 * of the queue in order to send up T_conn_ind the same 17816 * order as how the 3WHS is completed. 17817 */ 17818 while (tcp != listener) { 17819 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17820 !tcp->tcp_kssl_pending) 17821 break; 17822 else 17823 tcp = tcp->tcp_eager_prev_q0; 17824 } 17825 /* None of the pending eagers can be sent up now */ 17826 if (tcp == listener) 17827 goto no_more_eagers; 17828 17829 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17830 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17831 /* Move from q0 to q */ 17832 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17833 listener->tcp_conn_req_cnt_q0--; 17834 listener->tcp_conn_req_cnt_q++; 17835 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17836 tcp->tcp_eager_prev_q0; 17837 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17838 tcp->tcp_eager_next_q0; 17839 tcp->tcp_eager_prev_q0 = NULL; 17840 tcp->tcp_eager_next_q0 = NULL; 17841 tcp->tcp_conn_def_q0 = B_FALSE; 17842 17843 /* 17844 * Insert at end of the queue because sockfs sends 17845 * down T_CONN_RES in chronological order. Leaving 17846 * the older conn indications at front of the queue 17847 * helps reducing search time. 17848 */ 17849 tail = listener->tcp_eager_last_q; 17850 if (tail != NULL) { 17851 tail->tcp_eager_next_q = tcp; 17852 } else { 17853 listener->tcp_eager_next_q = tcp; 17854 } 17855 listener->tcp_eager_last_q = tcp; 17856 tcp->tcp_eager_next_q = NULL; 17857 17858 /* Need to get inside the listener perimeter */ 17859 CONN_INC_REF(listener->tcp_connp); 17860 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 17861 tcp_send_pending, listener->tcp_connp, 17862 SQTAG_TCP_SEND_PENDING); 17863 } 17864 no_more_eagers: 17865 tcp_eager_unlink(eager); 17866 mutex_exit(&listener->tcp_eager_lock); 17867 17868 /* 17869 * At this point, the eager is detached from the listener 17870 * but we still have an extra refs on eager (apart from the 17871 * usual tcp references). The ref was placed in tcp_rput_data 17872 * before sending the conn_ind in tcp_send_conn_ind. 17873 * The ref will be dropped in tcp_accept_finish(). 17874 */ 17875 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 17876 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 17877 return; 17878 default: 17879 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17880 if (mp != NULL) 17881 putnext(rq, mp); 17882 return; 17883 } 17884 } 17885 17886 void 17887 tcp_wput(queue_t *q, mblk_t *mp) 17888 { 17889 conn_t *connp = Q_TO_CONN(q); 17890 tcp_t *tcp; 17891 void (*output_proc)(); 17892 t_scalar_t type; 17893 uchar_t *rptr; 17894 struct iocblk *iocp; 17895 uint32_t msize; 17896 17897 ASSERT(connp->conn_ref >= 2); 17898 17899 switch (DB_TYPE(mp)) { 17900 case M_DATA: 17901 tcp = connp->conn_tcp; 17902 ASSERT(tcp != NULL); 17903 17904 msize = msgdsize(mp); 17905 17906 mutex_enter(&connp->conn_lock); 17907 CONN_INC_REF_LOCKED(connp); 17908 17909 tcp->tcp_squeue_bytes += msize; 17910 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 17911 mutex_exit(&connp->conn_lock); 17912 tcp_setqfull(tcp); 17913 } else 17914 mutex_exit(&connp->conn_lock); 17915 17916 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17917 tcp_output, connp, SQTAG_TCP_OUTPUT); 17918 return; 17919 case M_PROTO: 17920 case M_PCPROTO: 17921 /* 17922 * if it is a snmp message, don't get behind the squeue 17923 */ 17924 tcp = connp->conn_tcp; 17925 rptr = mp->b_rptr; 17926 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 17927 type = ((union T_primitives *)rptr)->type; 17928 } else { 17929 if (tcp->tcp_debug) { 17930 (void) strlog(TCP_MOD_ID, 0, 1, 17931 SL_ERROR|SL_TRACE, 17932 "tcp_wput_proto, dropping one..."); 17933 } 17934 freemsg(mp); 17935 return; 17936 } 17937 if (type == T_SVR4_OPTMGMT_REQ) { 17938 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 17939 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 17940 cr)) { 17941 /* 17942 * This was a SNMP request 17943 */ 17944 return; 17945 } else { 17946 output_proc = tcp_wput_proto; 17947 } 17948 } else { 17949 output_proc = tcp_wput_proto; 17950 } 17951 break; 17952 case M_IOCTL: 17953 /* 17954 * Most ioctls can be processed right away without going via 17955 * squeues - process them right here. Those that do require 17956 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 17957 * are processed by tcp_wput_ioctl(). 17958 */ 17959 iocp = (struct iocblk *)mp->b_rptr; 17960 tcp = connp->conn_tcp; 17961 17962 switch (iocp->ioc_cmd) { 17963 case TCP_IOC_ABORT_CONN: 17964 tcp_ioctl_abort_conn(q, mp); 17965 return; 17966 case TI_GETPEERNAME: 17967 if (tcp->tcp_state < TCPS_SYN_RCVD) { 17968 iocp->ioc_error = ENOTCONN; 17969 iocp->ioc_count = 0; 17970 mp->b_datap->db_type = M_IOCACK; 17971 qreply(q, mp); 17972 return; 17973 } 17974 /* FALLTHRU */ 17975 case TI_GETMYNAME: 17976 mi_copyin(q, mp, NULL, 17977 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 17978 return; 17979 case ND_SET: 17980 /* nd_getset does the necessary checks */ 17981 case ND_GET: 17982 if (!nd_getset(q, tcp_g_nd, mp)) { 17983 CALL_IP_WPUT(connp, q, mp); 17984 return; 17985 } 17986 qreply(q, mp); 17987 return; 17988 case TCP_IOC_DEFAULT_Q: 17989 /* 17990 * Wants to be the default wq. Check the credentials 17991 * first, the rest is executed via squeue. 17992 */ 17993 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 17994 iocp->ioc_error = EPERM; 17995 iocp->ioc_count = 0; 17996 mp->b_datap->db_type = M_IOCACK; 17997 qreply(q, mp); 17998 return; 17999 } 18000 output_proc = tcp_wput_ioctl; 18001 break; 18002 default: 18003 output_proc = tcp_wput_ioctl; 18004 break; 18005 } 18006 break; 18007 default: 18008 output_proc = tcp_wput_nondata; 18009 break; 18010 } 18011 18012 CONN_INC_REF(connp); 18013 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18014 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18015 } 18016 18017 /* 18018 * Initial STREAMS write side put() procedure for sockets. It tries to 18019 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18020 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18021 * are handled by tcp_wput() as usual. 18022 * 18023 * All further messages will also be handled by tcp_wput() because we cannot 18024 * be sure that the above short cut is safe later. 18025 */ 18026 static void 18027 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18028 { 18029 conn_t *connp = Q_TO_CONN(wq); 18030 tcp_t *tcp = connp->conn_tcp; 18031 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18032 18033 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18034 wq->q_qinfo = &tcp_winit; 18035 18036 ASSERT(IPCL_IS_TCP(connp)); 18037 ASSERT(TCP_IS_SOCKET(tcp)); 18038 18039 if (DB_TYPE(mp) == M_PCPROTO && 18040 MBLKL(mp) == sizeof (struct T_capability_req) && 18041 car->PRIM_type == T_CAPABILITY_REQ) { 18042 tcp_capability_req(tcp, mp); 18043 return; 18044 } 18045 18046 tcp_wput(wq, mp); 18047 } 18048 18049 static boolean_t 18050 tcp_zcopy_check(tcp_t *tcp) 18051 { 18052 conn_t *connp = tcp->tcp_connp; 18053 ire_t *ire; 18054 boolean_t zc_enabled = B_FALSE; 18055 18056 if (do_tcpzcopy == 2) 18057 zc_enabled = B_TRUE; 18058 else if (tcp->tcp_ipversion == IPV4_VERSION && 18059 IPCL_IS_CONNECTED(connp) && 18060 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18061 connp->conn_dontroute == 0 && 18062 !connp->conn_nexthop_set && 18063 connp->conn_xmit_if_ill == NULL && 18064 connp->conn_nofailover_ill == NULL && 18065 do_tcpzcopy == 1) { 18066 /* 18067 * the checks above closely resemble the fast path checks 18068 * in tcp_send_data(). 18069 */ 18070 mutex_enter(&connp->conn_lock); 18071 ire = connp->conn_ire_cache; 18072 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18073 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18074 IRE_REFHOLD(ire); 18075 if (ire->ire_stq != NULL) { 18076 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18077 18078 zc_enabled = ill && (ill->ill_capabilities & 18079 ILL_CAPAB_ZEROCOPY) && 18080 (ill->ill_zerocopy_capab-> 18081 ill_zerocopy_flags != 0); 18082 } 18083 IRE_REFRELE(ire); 18084 } 18085 mutex_exit(&connp->conn_lock); 18086 } 18087 tcp->tcp_snd_zcopy_on = zc_enabled; 18088 if (!TCP_IS_DETACHED(tcp)) { 18089 if (zc_enabled) { 18090 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18091 TCP_STAT(tcp_zcopy_on); 18092 } else { 18093 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18094 TCP_STAT(tcp_zcopy_off); 18095 } 18096 } 18097 return (zc_enabled); 18098 } 18099 18100 static mblk_t * 18101 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18102 { 18103 if (do_tcpzcopy == 2) 18104 return (bp); 18105 else if (tcp->tcp_snd_zcopy_on) { 18106 tcp->tcp_snd_zcopy_on = B_FALSE; 18107 if (!TCP_IS_DETACHED(tcp)) { 18108 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18109 TCP_STAT(tcp_zcopy_disable); 18110 } 18111 } 18112 return (tcp_zcopy_backoff(tcp, bp, 0)); 18113 } 18114 18115 /* 18116 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18117 * the original desballoca'ed segmapped mblk. 18118 */ 18119 static mblk_t * 18120 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18121 { 18122 mblk_t *head, *tail, *nbp; 18123 if (IS_VMLOANED_MBLK(bp)) { 18124 TCP_STAT(tcp_zcopy_backoff); 18125 if ((head = copyb(bp)) == NULL) { 18126 /* fail to backoff; leave it for the next backoff */ 18127 tcp->tcp_xmit_zc_clean = B_FALSE; 18128 return (bp); 18129 } 18130 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18131 if (fix_xmitlist) 18132 tcp_zcopy_notify(tcp); 18133 else 18134 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18135 } 18136 nbp = bp->b_cont; 18137 if (fix_xmitlist) { 18138 head->b_prev = bp->b_prev; 18139 head->b_next = bp->b_next; 18140 if (tcp->tcp_xmit_tail == bp) 18141 tcp->tcp_xmit_tail = head; 18142 } 18143 bp->b_next = NULL; 18144 bp->b_prev = NULL; 18145 freeb(bp); 18146 } else { 18147 head = bp; 18148 nbp = bp->b_cont; 18149 } 18150 tail = head; 18151 while (nbp) { 18152 if (IS_VMLOANED_MBLK(nbp)) { 18153 TCP_STAT(tcp_zcopy_backoff); 18154 if ((tail->b_cont = copyb(nbp)) == NULL) { 18155 tcp->tcp_xmit_zc_clean = B_FALSE; 18156 tail->b_cont = nbp; 18157 return (head); 18158 } 18159 tail = tail->b_cont; 18160 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18161 if (fix_xmitlist) 18162 tcp_zcopy_notify(tcp); 18163 else 18164 tail->b_datap->db_struioflag |= 18165 STRUIO_ZCNOTIFY; 18166 } 18167 bp = nbp; 18168 nbp = nbp->b_cont; 18169 if (fix_xmitlist) { 18170 tail->b_prev = bp->b_prev; 18171 tail->b_next = bp->b_next; 18172 if (tcp->tcp_xmit_tail == bp) 18173 tcp->tcp_xmit_tail = tail; 18174 } 18175 bp->b_next = NULL; 18176 bp->b_prev = NULL; 18177 freeb(bp); 18178 } else { 18179 tail->b_cont = nbp; 18180 tail = nbp; 18181 nbp = nbp->b_cont; 18182 } 18183 } 18184 if (fix_xmitlist) { 18185 tcp->tcp_xmit_last = tail; 18186 tcp->tcp_xmit_zc_clean = B_TRUE; 18187 } 18188 return (head); 18189 } 18190 18191 static void 18192 tcp_zcopy_notify(tcp_t *tcp) 18193 { 18194 struct stdata *stp; 18195 18196 if (tcp->tcp_detached) 18197 return; 18198 stp = STREAM(tcp->tcp_rq); 18199 mutex_enter(&stp->sd_lock); 18200 stp->sd_flag |= STZCNOTIFY; 18201 cv_broadcast(&stp->sd_zcopy_wait); 18202 mutex_exit(&stp->sd_lock); 18203 } 18204 18205 static void 18206 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18207 { 18208 ipha_t *ipha; 18209 ipaddr_t src; 18210 ipaddr_t dst; 18211 uint32_t cksum; 18212 ire_t *ire; 18213 uint16_t *up; 18214 ill_t *ill; 18215 conn_t *connp = tcp->tcp_connp; 18216 uint32_t hcksum_txflags = 0; 18217 mblk_t *ire_fp_mp; 18218 uint_t ire_fp_mp_len; 18219 18220 ASSERT(DB_TYPE(mp) == M_DATA); 18221 18222 if (DB_CRED(mp) == NULL) 18223 mblk_setcred(mp, CONN_CRED(connp)); 18224 18225 ipha = (ipha_t *)mp->b_rptr; 18226 src = ipha->ipha_src; 18227 dst = ipha->ipha_dst; 18228 18229 /* 18230 * Drop off fast path for IPv6 and also if options are present or 18231 * we need to resolve a TS label. 18232 */ 18233 if (tcp->tcp_ipversion != IPV4_VERSION || 18234 !IPCL_IS_CONNECTED(connp) || 18235 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18236 connp->conn_dontroute || 18237 connp->conn_nexthop_set || 18238 connp->conn_xmit_if_ill != NULL || 18239 connp->conn_nofailover_ill != NULL || 18240 !connp->conn_ulp_labeled || 18241 ipha->ipha_ident == IP_HDR_INCLUDED || 18242 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18243 IPP_ENABLED(IPP_LOCAL_OUT)) { 18244 if (tcp->tcp_snd_zcopy_aware) 18245 mp = tcp_zcopy_disable(tcp, mp); 18246 TCP_STAT(tcp_ip_send); 18247 CALL_IP_WPUT(connp, q, mp); 18248 return; 18249 } 18250 18251 mutex_enter(&connp->conn_lock); 18252 ire = connp->conn_ire_cache; 18253 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18254 if (ire != NULL && ire->ire_addr == dst && 18255 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18256 IRE_REFHOLD(ire); 18257 mutex_exit(&connp->conn_lock); 18258 } else { 18259 boolean_t cached = B_FALSE; 18260 18261 /* force a recheck later on */ 18262 tcp->tcp_ire_ill_check_done = B_FALSE; 18263 18264 TCP_DBGSTAT(tcp_ire_null1); 18265 connp->conn_ire_cache = NULL; 18266 mutex_exit(&connp->conn_lock); 18267 if (ire != NULL) 18268 IRE_REFRELE_NOTR(ire); 18269 ire = ire_cache_lookup(dst, connp->conn_zoneid, 18270 MBLK_GETLABEL(mp)); 18271 if (ire == NULL) { 18272 if (tcp->tcp_snd_zcopy_aware) 18273 mp = tcp_zcopy_backoff(tcp, mp, 0); 18274 TCP_STAT(tcp_ire_null); 18275 CALL_IP_WPUT(connp, q, mp); 18276 return; 18277 } 18278 IRE_REFHOLD_NOTR(ire); 18279 /* 18280 * Since we are inside the squeue, there cannot be another 18281 * thread in TCP trying to set the conn_ire_cache now. The 18282 * check for IRE_MARK_CONDEMNED ensures that an interface 18283 * unplumb thread has not yet started cleaning up the conns. 18284 * Hence we don't need to grab the conn lock. 18285 */ 18286 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18287 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18288 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18289 connp->conn_ire_cache = ire; 18290 cached = B_TRUE; 18291 } 18292 rw_exit(&ire->ire_bucket->irb_lock); 18293 } 18294 18295 /* 18296 * We can continue to use the ire but since it was 18297 * not cached, we should drop the extra reference. 18298 */ 18299 if (!cached) 18300 IRE_REFRELE_NOTR(ire); 18301 18302 /* 18303 * Rampart note: no need to select a new label here, since 18304 * labels are not allowed to change during the life of a TCP 18305 * connection. 18306 */ 18307 } 18308 18309 if (ire->ire_flags & RTF_MULTIRT || 18310 ire->ire_stq == NULL || 18311 ire->ire_max_frag < ntohs(ipha->ipha_length) || 18312 (ire_fp_mp = ire->ire_fp_mp) == NULL || 18313 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 18314 if (tcp->tcp_snd_zcopy_aware) 18315 mp = tcp_zcopy_disable(tcp, mp); 18316 TCP_STAT(tcp_ip_ire_send); 18317 IRE_REFRELE(ire); 18318 CALL_IP_WPUT(connp, q, mp); 18319 return; 18320 } 18321 18322 ill = ire_to_ill(ire); 18323 if (connp->conn_outgoing_ill != NULL) { 18324 ill_t *conn_outgoing_ill = NULL; 18325 /* 18326 * Choose a good ill in the group to send the packets on. 18327 */ 18328 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18329 ill = ire_to_ill(ire); 18330 } 18331 ASSERT(ill != NULL); 18332 18333 if (!tcp->tcp_ire_ill_check_done) { 18334 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18335 tcp->tcp_ire_ill_check_done = B_TRUE; 18336 } 18337 18338 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18339 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18340 #ifndef _BIG_ENDIAN 18341 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18342 #endif 18343 18344 /* 18345 * Check to see if we need to re-enable MDT for this connection 18346 * because it was previously disabled due to changes in the ill; 18347 * note that by doing it here, this re-enabling only applies when 18348 * the packet is not dispatched through CALL_IP_WPUT(). 18349 * 18350 * That means for IPv4, it is worth re-enabling MDT for the fastpath 18351 * case, since that's how we ended up here. For IPv6, we do the 18352 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18353 */ 18354 if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18355 /* 18356 * Restore MDT for this connection, so that next time around 18357 * it is eligible to go through tcp_multisend() path again. 18358 */ 18359 TCP_STAT(tcp_mdt_conn_resumed1); 18360 tcp->tcp_mdt = B_TRUE; 18361 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18362 "interface %s\n", (void *)connp, ill->ill_name)); 18363 } 18364 18365 if (tcp->tcp_snd_zcopy_aware) { 18366 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18367 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18368 mp = tcp_zcopy_disable(tcp, mp); 18369 /* 18370 * we shouldn't need to reset ipha as the mp containing 18371 * ipha should never be a zero-copy mp. 18372 */ 18373 } 18374 18375 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18376 ASSERT(ill->ill_hcksum_capab != NULL); 18377 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18378 } 18379 18380 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18381 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18382 18383 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18384 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18385 18386 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18387 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18388 18389 /* Software checksum? */ 18390 if (DB_CKSUMFLAGS(mp) == 0) { 18391 TCP_STAT(tcp_out_sw_cksum); 18392 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18393 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18394 } 18395 18396 ipha->ipha_fragment_offset_and_flags |= 18397 (uint32_t)htons(ire->ire_frag_flag); 18398 18399 /* Calculate IP header checksum if hardware isn't capable */ 18400 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18401 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18402 ((uint16_t *)ipha)[4]); 18403 } 18404 18405 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18406 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18407 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18408 18409 UPDATE_OB_PKT_COUNT(ire); 18410 ire->ire_last_used_time = lbolt; 18411 BUMP_MIB(&ip_mib, ipOutRequests); 18412 18413 if (ILL_DLS_CAPABLE(ill)) { 18414 /* 18415 * Send the packet directly to DLD, where it may be queued 18416 * depending on the availability of transmit resources at 18417 * the media layer. 18418 */ 18419 IP_DLS_ILL_TX(ill, mp); 18420 } else { 18421 putnext(ire->ire_stq, mp); 18422 } 18423 IRE_REFRELE(ire); 18424 } 18425 18426 /* 18427 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18428 * if the receiver shrinks the window, i.e. moves the right window to the 18429 * left, the we should not send new data, but should retransmit normally the 18430 * old unacked data between suna and suna + swnd. We might has sent data 18431 * that is now outside the new window, pretend that we didn't send it. 18432 */ 18433 static void 18434 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18435 { 18436 uint32_t snxt = tcp->tcp_snxt; 18437 mblk_t *xmit_tail; 18438 int32_t offset; 18439 18440 ASSERT(shrunk_count > 0); 18441 18442 /* Pretend we didn't send the data outside the window */ 18443 snxt -= shrunk_count; 18444 18445 /* Get the mblk and the offset in it per the shrunk window */ 18446 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18447 18448 ASSERT(xmit_tail != NULL); 18449 18450 /* Reset all the values per the now shrunk window */ 18451 tcp->tcp_snxt = snxt; 18452 tcp->tcp_xmit_tail = xmit_tail; 18453 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18454 offset; 18455 tcp->tcp_unsent += shrunk_count; 18456 18457 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18458 /* 18459 * Make sure the timer is running so that we will probe a zero 18460 * window. 18461 */ 18462 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18463 } 18464 18465 18466 /* 18467 * The TCP normal data output path. 18468 * NOTE: the logic of the fast path is duplicated from this function. 18469 */ 18470 static void 18471 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18472 { 18473 int len; 18474 mblk_t *local_time; 18475 mblk_t *mp1; 18476 uint32_t snxt; 18477 int tail_unsent; 18478 int tcpstate; 18479 int usable = 0; 18480 mblk_t *xmit_tail; 18481 queue_t *q = tcp->tcp_wq; 18482 int32_t mss; 18483 int32_t num_sack_blk = 0; 18484 int32_t tcp_hdr_len; 18485 int32_t tcp_tcp_hdr_len; 18486 int mdt_thres; 18487 int rc; 18488 18489 tcpstate = tcp->tcp_state; 18490 if (mp == NULL) { 18491 /* 18492 * tcp_wput_data() with NULL mp should only be called when 18493 * there is unsent data. 18494 */ 18495 ASSERT(tcp->tcp_unsent > 0); 18496 /* Really tacky... but we need this for detached closes. */ 18497 len = tcp->tcp_unsent; 18498 goto data_null; 18499 } 18500 18501 #if CCS_STATS 18502 wrw_stats.tot.count++; 18503 wrw_stats.tot.bytes += msgdsize(mp); 18504 #endif 18505 ASSERT(mp->b_datap->db_type == M_DATA); 18506 /* 18507 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18508 * or before a connection attempt has begun. 18509 */ 18510 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18511 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18512 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18513 #ifdef DEBUG 18514 cmn_err(CE_WARN, 18515 "tcp_wput_data: data after ordrel, %s", 18516 tcp_display(tcp, NULL, 18517 DISP_ADDR_AND_PORT)); 18518 #else 18519 if (tcp->tcp_debug) { 18520 (void) strlog(TCP_MOD_ID, 0, 1, 18521 SL_TRACE|SL_ERROR, 18522 "tcp_wput_data: data after ordrel, %s\n", 18523 tcp_display(tcp, NULL, 18524 DISP_ADDR_AND_PORT)); 18525 } 18526 #endif /* DEBUG */ 18527 } 18528 if (tcp->tcp_snd_zcopy_aware && 18529 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18530 tcp_zcopy_notify(tcp); 18531 freemsg(mp); 18532 if (tcp->tcp_flow_stopped && 18533 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18534 tcp_clrqfull(tcp); 18535 } 18536 return; 18537 } 18538 18539 /* Strip empties */ 18540 for (;;) { 18541 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18542 (uintptr_t)INT_MAX); 18543 len = (int)(mp->b_wptr - mp->b_rptr); 18544 if (len > 0) 18545 break; 18546 mp1 = mp; 18547 mp = mp->b_cont; 18548 freeb(mp1); 18549 if (!mp) { 18550 return; 18551 } 18552 } 18553 18554 /* If we are the first on the list ... */ 18555 if (tcp->tcp_xmit_head == NULL) { 18556 tcp->tcp_xmit_head = mp; 18557 tcp->tcp_xmit_tail = mp; 18558 tcp->tcp_xmit_tail_unsent = len; 18559 } else { 18560 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18561 struct datab *dp; 18562 18563 mp1 = tcp->tcp_xmit_last; 18564 if (len < tcp_tx_pull_len && 18565 (dp = mp1->b_datap)->db_ref == 1 && 18566 dp->db_lim - mp1->b_wptr >= len) { 18567 ASSERT(len > 0); 18568 ASSERT(!mp1->b_cont); 18569 if (len == 1) { 18570 *mp1->b_wptr++ = *mp->b_rptr; 18571 } else { 18572 bcopy(mp->b_rptr, mp1->b_wptr, len); 18573 mp1->b_wptr += len; 18574 } 18575 if (mp1 == tcp->tcp_xmit_tail) 18576 tcp->tcp_xmit_tail_unsent += len; 18577 mp1->b_cont = mp->b_cont; 18578 if (tcp->tcp_snd_zcopy_aware && 18579 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18580 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18581 freeb(mp); 18582 mp = mp1; 18583 } else { 18584 tcp->tcp_xmit_last->b_cont = mp; 18585 } 18586 len += tcp->tcp_unsent; 18587 } 18588 18589 /* Tack on however many more positive length mblks we have */ 18590 if ((mp1 = mp->b_cont) != NULL) { 18591 do { 18592 int tlen; 18593 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18594 (uintptr_t)INT_MAX); 18595 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18596 if (tlen <= 0) { 18597 mp->b_cont = mp1->b_cont; 18598 freeb(mp1); 18599 } else { 18600 len += tlen; 18601 mp = mp1; 18602 } 18603 } while ((mp1 = mp->b_cont) != NULL); 18604 } 18605 tcp->tcp_xmit_last = mp; 18606 tcp->tcp_unsent = len; 18607 18608 if (urgent) 18609 usable = 1; 18610 18611 data_null: 18612 snxt = tcp->tcp_snxt; 18613 xmit_tail = tcp->tcp_xmit_tail; 18614 tail_unsent = tcp->tcp_xmit_tail_unsent; 18615 18616 /* 18617 * Note that tcp_mss has been adjusted to take into account the 18618 * timestamp option if applicable. Because SACK options do not 18619 * appear in every TCP segments and they are of variable lengths, 18620 * they cannot be included in tcp_mss. Thus we need to calculate 18621 * the actual segment length when we need to send a segment which 18622 * includes SACK options. 18623 */ 18624 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18625 int32_t opt_len; 18626 18627 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18628 tcp->tcp_num_sack_blk); 18629 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18630 2 + TCPOPT_HEADER_LEN; 18631 mss = tcp->tcp_mss - opt_len; 18632 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18633 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18634 } else { 18635 mss = tcp->tcp_mss; 18636 tcp_hdr_len = tcp->tcp_hdr_len; 18637 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18638 } 18639 18640 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18641 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18642 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 18643 } 18644 if (tcpstate == TCPS_SYN_RCVD) { 18645 /* 18646 * The three-way connection establishment handshake is not 18647 * complete yet. We want to queue the data for transmission 18648 * after entering ESTABLISHED state (RFC793). A jump to 18649 * "done" label effectively leaves data on the queue. 18650 */ 18651 goto done; 18652 } else { 18653 int usable_r; 18654 18655 /* 18656 * In the special case when cwnd is zero, which can only 18657 * happen if the connection is ECN capable, return now. 18658 * New segments is sent using tcp_timer(). The timer 18659 * is set in tcp_rput_data(). 18660 */ 18661 if (tcp->tcp_cwnd == 0) { 18662 /* 18663 * Note that tcp_cwnd is 0 before 3-way handshake is 18664 * finished. 18665 */ 18666 ASSERT(tcp->tcp_ecn_ok || 18667 tcp->tcp_state < TCPS_ESTABLISHED); 18668 return; 18669 } 18670 18671 /* NOTE: trouble if xmitting while SYN not acked? */ 18672 usable_r = snxt - tcp->tcp_suna; 18673 usable_r = tcp->tcp_swnd - usable_r; 18674 18675 /* 18676 * Check if the receiver has shrunk the window. If 18677 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18678 * cannot be set as there is unsent data, so FIN cannot 18679 * be sent out. Otherwise, we need to take into account 18680 * of FIN as it consumes an "invisible" sequence number. 18681 */ 18682 ASSERT(tcp->tcp_fin_sent == 0); 18683 if (usable_r < 0) { 18684 /* 18685 * The receiver has shrunk the window and we have sent 18686 * -usable_r date beyond the window, re-adjust. 18687 * 18688 * If TCP window scaling is enabled, there can be 18689 * round down error as the advertised receive window 18690 * is actually right shifted n bits. This means that 18691 * the lower n bits info is wiped out. It will look 18692 * like the window is shrunk. Do a check here to 18693 * see if the shrunk amount is actually within the 18694 * error in window calculation. If it is, just 18695 * return. Note that this check is inside the 18696 * shrunk window check. This makes sure that even 18697 * though tcp_process_shrunk_swnd() is not called, 18698 * we will stop further processing. 18699 */ 18700 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18701 tcp_process_shrunk_swnd(tcp, -usable_r); 18702 } 18703 return; 18704 } 18705 18706 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18707 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18708 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18709 18710 /* usable = MIN(usable, unsent) */ 18711 if (usable_r > len) 18712 usable_r = len; 18713 18714 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18715 if (usable_r > 0) { 18716 usable = usable_r; 18717 } else { 18718 /* Bypass all other unnecessary processing. */ 18719 goto done; 18720 } 18721 } 18722 18723 local_time = (mblk_t *)lbolt; 18724 18725 /* 18726 * "Our" Nagle Algorithm. This is not the same as in the old 18727 * BSD. This is more in line with the true intent of Nagle. 18728 * 18729 * The conditions are: 18730 * 1. The amount of unsent data (or amount of data which can be 18731 * sent, whichever is smaller) is less than Nagle limit. 18732 * 2. The last sent size is also less than Nagle limit. 18733 * 3. There is unack'ed data. 18734 * 4. Urgent pointer is not set. Send urgent data ignoring the 18735 * Nagle algorithm. This reduces the probability that urgent 18736 * bytes get "merged" together. 18737 * 5. The app has not closed the connection. This eliminates the 18738 * wait time of the receiving side waiting for the last piece of 18739 * (small) data. 18740 * 18741 * If all are satisified, exit without sending anything. Note 18742 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18743 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18744 * 4095). 18745 */ 18746 if (usable < (int)tcp->tcp_naglim && 18747 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18748 snxt != tcp->tcp_suna && 18749 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18750 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18751 goto done; 18752 } 18753 18754 if (tcp->tcp_cork) { 18755 /* 18756 * if the tcp->tcp_cork option is set, then we have to force 18757 * TCP not to send partial segment (smaller than MSS bytes). 18758 * We are calculating the usable now based on full mss and 18759 * will save the rest of remaining data for later. 18760 */ 18761 if (usable < mss) 18762 goto done; 18763 usable = (usable / mss) * mss; 18764 } 18765 18766 /* Update the latest receive window size in TCP header. */ 18767 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18768 tcp->tcp_tcph->th_win); 18769 18770 /* 18771 * Determine if it's worthwhile to attempt MDT, based on: 18772 * 18773 * 1. Simple TCP/IP{v4,v6} (no options). 18774 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18775 * 3. If the TCP connection is in ESTABLISHED state. 18776 * 4. The TCP is not detached. 18777 * 18778 * If any of the above conditions have changed during the 18779 * connection, stop using MDT and restore the stream head 18780 * parameters accordingly. 18781 */ 18782 if (tcp->tcp_mdt && 18783 ((tcp->tcp_ipversion == IPV4_VERSION && 18784 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 18785 (tcp->tcp_ipversion == IPV6_VERSION && 18786 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 18787 tcp->tcp_state != TCPS_ESTABLISHED || 18788 TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || 18789 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 18790 IPP_ENABLED(IPP_LOCAL_OUT))) { 18791 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 18792 tcp->tcp_mdt = B_FALSE; 18793 18794 /* Anything other than detached is considered pathological */ 18795 if (!TCP_IS_DETACHED(tcp)) { 18796 TCP_STAT(tcp_mdt_conn_halted1); 18797 (void) tcp_maxpsz_set(tcp, B_TRUE); 18798 } 18799 } 18800 18801 /* Use MDT if sendable amount is greater than the threshold */ 18802 if (tcp->tcp_mdt && 18803 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 18804 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 18805 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 18806 (tcp->tcp_valid_bits == 0 || 18807 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 18808 ASSERT(tcp->tcp_connp->conn_mdt_ok); 18809 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18810 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18811 local_time, mdt_thres); 18812 } else { 18813 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18814 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18815 local_time, INT_MAX); 18816 } 18817 18818 /* Pretend that all we were trying to send really got sent */ 18819 if (rc < 0 && tail_unsent < 0) { 18820 do { 18821 xmit_tail = xmit_tail->b_cont; 18822 xmit_tail->b_prev = local_time; 18823 ASSERT((uintptr_t)(xmit_tail->b_wptr - 18824 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 18825 tail_unsent += (int)(xmit_tail->b_wptr - 18826 xmit_tail->b_rptr); 18827 } while (tail_unsent < 0); 18828 } 18829 done:; 18830 tcp->tcp_xmit_tail = xmit_tail; 18831 tcp->tcp_xmit_tail_unsent = tail_unsent; 18832 len = tcp->tcp_snxt - snxt; 18833 if (len) { 18834 /* 18835 * If new data was sent, need to update the notsack 18836 * list, which is, afterall, data blocks that have 18837 * not been sack'ed by the receiver. New data is 18838 * not sack'ed. 18839 */ 18840 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 18841 /* len is a negative value. */ 18842 tcp->tcp_pipe -= len; 18843 tcp_notsack_update(&(tcp->tcp_notsack_list), 18844 tcp->tcp_snxt, snxt, 18845 &(tcp->tcp_num_notsack_blk), 18846 &(tcp->tcp_cnt_notsack_list)); 18847 } 18848 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 18849 tcp->tcp_rack = tcp->tcp_rnxt; 18850 tcp->tcp_rack_cnt = 0; 18851 if ((snxt + len) == tcp->tcp_suna) { 18852 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18853 } 18854 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 18855 /* 18856 * Didn't send anything. Make sure the timer is running 18857 * so that we will probe a zero window. 18858 */ 18859 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18860 } 18861 /* Note that len is the amount we just sent but with a negative sign */ 18862 tcp->tcp_unsent += len; 18863 if (tcp->tcp_flow_stopped) { 18864 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18865 tcp_clrqfull(tcp); 18866 } 18867 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 18868 tcp_setqfull(tcp); 18869 } 18870 } 18871 18872 /* 18873 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 18874 * outgoing TCP header with the template header, as well as other 18875 * options such as time-stamp, ECN and/or SACK. 18876 */ 18877 static void 18878 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 18879 { 18880 tcph_t *tcp_tmpl, *tcp_h; 18881 uint32_t *dst, *src; 18882 int hdrlen; 18883 18884 ASSERT(OK_32PTR(rptr)); 18885 18886 /* Template header */ 18887 tcp_tmpl = tcp->tcp_tcph; 18888 18889 /* Header of outgoing packet */ 18890 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18891 18892 /* dst and src are opaque 32-bit fields, used for copying */ 18893 dst = (uint32_t *)rptr; 18894 src = (uint32_t *)tcp->tcp_iphc; 18895 hdrlen = tcp->tcp_hdr_len; 18896 18897 /* Fill time-stamp option if needed */ 18898 if (tcp->tcp_snd_ts_ok) { 18899 U32_TO_BE32((uint32_t)now, 18900 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 18901 U32_TO_BE32(tcp->tcp_ts_recent, 18902 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 18903 } else { 18904 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18905 } 18906 18907 /* 18908 * Copy the template header; is this really more efficient than 18909 * calling bcopy()? For simple IPv4/TCP, it may be the case, 18910 * but perhaps not for other scenarios. 18911 */ 18912 dst[0] = src[0]; 18913 dst[1] = src[1]; 18914 dst[2] = src[2]; 18915 dst[3] = src[3]; 18916 dst[4] = src[4]; 18917 dst[5] = src[5]; 18918 dst[6] = src[6]; 18919 dst[7] = src[7]; 18920 dst[8] = src[8]; 18921 dst[9] = src[9]; 18922 if (hdrlen -= 40) { 18923 hdrlen >>= 2; 18924 dst += 10; 18925 src += 10; 18926 do { 18927 *dst++ = *src++; 18928 } while (--hdrlen); 18929 } 18930 18931 /* 18932 * Set the ECN info in the TCP header if it is not a zero 18933 * window probe. Zero window probe is only sent in 18934 * tcp_wput_data() and tcp_timer(). 18935 */ 18936 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 18937 SET_ECT(tcp, rptr); 18938 18939 if (tcp->tcp_ecn_echo_on) 18940 tcp_h->th_flags[0] |= TH_ECE; 18941 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18942 tcp_h->th_flags[0] |= TH_CWR; 18943 tcp->tcp_ecn_cwr_sent = B_TRUE; 18944 } 18945 } 18946 18947 /* Fill in SACK options */ 18948 if (num_sack_blk > 0) { 18949 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 18950 sack_blk_t *tmp; 18951 int32_t i; 18952 18953 wptr[0] = TCPOPT_NOP; 18954 wptr[1] = TCPOPT_NOP; 18955 wptr[2] = TCPOPT_SACK; 18956 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18957 sizeof (sack_blk_t); 18958 wptr += TCPOPT_REAL_SACK_LEN; 18959 18960 tmp = tcp->tcp_sack_list; 18961 for (i = 0; i < num_sack_blk; i++) { 18962 U32_TO_BE32(tmp[i].begin, wptr); 18963 wptr += sizeof (tcp_seq); 18964 U32_TO_BE32(tmp[i].end, wptr); 18965 wptr += sizeof (tcp_seq); 18966 } 18967 tcp_h->th_offset_and_rsrvd[0] += 18968 ((num_sack_blk * 2 + 1) << 4); 18969 } 18970 } 18971 18972 /* 18973 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 18974 * the destination address and SAP attribute, and if necessary, the 18975 * hardware checksum offload attribute to a Multidata message. 18976 */ 18977 static int 18978 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 18979 const uint32_t start, const uint32_t stuff, const uint32_t end, 18980 const uint32_t flags) 18981 { 18982 /* Add global destination address & SAP attribute */ 18983 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 18984 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 18985 "destination address+SAP\n")); 18986 18987 if (dlmp != NULL) 18988 TCP_STAT(tcp_mdt_allocfail); 18989 return (-1); 18990 } 18991 18992 /* Add global hwcksum attribute */ 18993 if (hwcksum && 18994 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 18995 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 18996 "checksum attribute\n")); 18997 18998 TCP_STAT(tcp_mdt_allocfail); 18999 return (-1); 19000 } 19001 19002 return (0); 19003 } 19004 19005 /* 19006 * Smaller and private version of pdescinfo_t used specifically for TCP, 19007 * which allows for only two payload spans per packet. 19008 */ 19009 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19010 19011 /* 19012 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19013 * scheme, and returns one the following: 19014 * 19015 * -1 = failed allocation. 19016 * 0 = success; burst count reached, or usable send window is too small, 19017 * and that we'd rather wait until later before sending again. 19018 */ 19019 static int 19020 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19021 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19022 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19023 const int mdt_thres) 19024 { 19025 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19026 multidata_t *mmd; 19027 uint_t obsegs, obbytes, hdr_frag_sz; 19028 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19029 int num_burst_seg, max_pld; 19030 pdesc_t *pkt; 19031 tcp_pdescinfo_t tcp_pkt_info; 19032 pdescinfo_t *pkt_info; 19033 int pbuf_idx, pbuf_idx_nxt; 19034 int seg_len, len, spill, af; 19035 boolean_t add_buffer, zcopy, clusterwide; 19036 boolean_t rconfirm = B_FALSE; 19037 boolean_t done = B_FALSE; 19038 uint32_t cksum; 19039 uint32_t hwcksum_flags; 19040 ire_t *ire; 19041 ill_t *ill; 19042 ipha_t *ipha; 19043 ip6_t *ip6h; 19044 ipaddr_t src, dst; 19045 ill_zerocopy_capab_t *zc_cap = NULL; 19046 uint16_t *up; 19047 int err; 19048 conn_t *connp; 19049 19050 #ifdef _BIG_ENDIAN 19051 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19052 #else 19053 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19054 #endif 19055 19056 #define PREP_NEW_MULTIDATA() { \ 19057 mmd = NULL; \ 19058 md_mp = md_hbuf = NULL; \ 19059 cur_hdr_off = 0; \ 19060 max_pld = tcp->tcp_mdt_max_pld; \ 19061 pbuf_idx = pbuf_idx_nxt = -1; \ 19062 add_buffer = B_TRUE; \ 19063 zcopy = B_FALSE; \ 19064 } 19065 19066 #define PREP_NEW_PBUF() { \ 19067 md_pbuf = md_pbuf_nxt = NULL; \ 19068 pbuf_idx = pbuf_idx_nxt = -1; \ 19069 cur_pld_off = 0; \ 19070 first_snxt = *snxt; \ 19071 ASSERT(*tail_unsent > 0); \ 19072 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19073 } 19074 19075 ASSERT(mdt_thres >= mss); 19076 ASSERT(*usable > 0 && *usable > mdt_thres); 19077 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19078 ASSERT(!TCP_IS_DETACHED(tcp)); 19079 ASSERT(tcp->tcp_valid_bits == 0 || 19080 tcp->tcp_valid_bits == TCP_FSS_VALID); 19081 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19082 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19083 (tcp->tcp_ipversion == IPV6_VERSION && 19084 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19085 19086 connp = tcp->tcp_connp; 19087 ASSERT(connp != NULL); 19088 ASSERT(CONN_IS_MD_FASTPATH(connp)); 19089 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19090 19091 /* 19092 * Note that tcp will only declare at most 2 payload spans per 19093 * packet, which is much lower than the maximum allowable number 19094 * of packet spans per Multidata. For this reason, we use the 19095 * privately declared and smaller descriptor info structure, in 19096 * order to save some stack space. 19097 */ 19098 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19099 19100 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19101 if (af == AF_INET) { 19102 dst = tcp->tcp_ipha->ipha_dst; 19103 src = tcp->tcp_ipha->ipha_src; 19104 ASSERT(!CLASSD(dst)); 19105 } 19106 ASSERT(af == AF_INET || 19107 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19108 19109 obsegs = obbytes = 0; 19110 num_burst_seg = tcp->tcp_snd_burst; 19111 md_mp_head = NULL; 19112 PREP_NEW_MULTIDATA(); 19113 19114 /* 19115 * Before we go on further, make sure there is an IRE that we can 19116 * use, and that the ILL supports MDT. Otherwise, there's no point 19117 * in proceeding any further, and we should just hand everything 19118 * off to the legacy path. 19119 */ 19120 mutex_enter(&connp->conn_lock); 19121 ire = connp->conn_ire_cache; 19122 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19123 if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || 19124 (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 19125 &tcp->tcp_ip6h->ip6_dst))) && 19126 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19127 IRE_REFHOLD(ire); 19128 mutex_exit(&connp->conn_lock); 19129 } else { 19130 boolean_t cached = B_FALSE; 19131 ts_label_t *tsl; 19132 19133 /* force a recheck later on */ 19134 tcp->tcp_ire_ill_check_done = B_FALSE; 19135 19136 TCP_DBGSTAT(tcp_ire_null1); 19137 connp->conn_ire_cache = NULL; 19138 mutex_exit(&connp->conn_lock); 19139 19140 /* Release the old ire */ 19141 if (ire != NULL) 19142 IRE_REFRELE_NOTR(ire); 19143 19144 tsl = crgetlabel(CONN_CRED(connp)); 19145 ire = (af == AF_INET) ? 19146 ire_cache_lookup(dst, connp->conn_zoneid, tsl) : 19147 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19148 connp->conn_zoneid, tsl); 19149 19150 if (ire == NULL) { 19151 TCP_STAT(tcp_ire_null); 19152 goto legacy_send_no_md; 19153 } 19154 19155 IRE_REFHOLD_NOTR(ire); 19156 /* 19157 * Since we are inside the squeue, there cannot be another 19158 * thread in TCP trying to set the conn_ire_cache now. The 19159 * check for IRE_MARK_CONDEMNED ensures that an interface 19160 * unplumb thread has not yet started cleaning up the conns. 19161 * Hence we don't need to grab the conn lock. 19162 */ 19163 if (!(connp->conn_state_flags & CONN_CLOSING)) { 19164 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19165 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19166 connp->conn_ire_cache = ire; 19167 cached = B_TRUE; 19168 } 19169 rw_exit(&ire->ire_bucket->irb_lock); 19170 } 19171 19172 /* 19173 * We can continue to use the ire but since it was not 19174 * cached, we should drop the extra reference. 19175 */ 19176 if (!cached) 19177 IRE_REFRELE_NOTR(ire); 19178 } 19179 19180 ASSERT(ire != NULL); 19181 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19182 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19183 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19184 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19185 /* 19186 * If we do support loopback for MDT (which requires modifications 19187 * to the receiving paths), the following assertions should go away, 19188 * and we would be sending the Multidata to loopback conn later on. 19189 */ 19190 ASSERT(!IRE_IS_LOCAL(ire)); 19191 ASSERT(ire->ire_stq != NULL); 19192 19193 ill = ire_to_ill(ire); 19194 ASSERT(ill != NULL); 19195 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19196 19197 if (!tcp->tcp_ire_ill_check_done) { 19198 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19199 tcp->tcp_ire_ill_check_done = B_TRUE; 19200 } 19201 19202 /* 19203 * If the underlying interface conditions have changed, or if the 19204 * new interface does not support MDT, go back to legacy path. 19205 */ 19206 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19207 /* don't go through this path anymore for this connection */ 19208 TCP_STAT(tcp_mdt_conn_halted2); 19209 tcp->tcp_mdt = B_FALSE; 19210 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19211 "interface %s\n", (void *)connp, ill->ill_name)); 19212 /* IRE will be released prior to returning */ 19213 goto legacy_send_no_md; 19214 } 19215 19216 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19217 zc_cap = ill->ill_zerocopy_capab; 19218 19219 /* go to legacy path if interface doesn't support zerocopy */ 19220 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19221 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19222 /* IRE will be released prior to returning */ 19223 goto legacy_send_no_md; 19224 } 19225 19226 /* does the interface support hardware checksum offload? */ 19227 hwcksum_flags = 0; 19228 if (ILL_HCKSUM_CAPABLE(ill) && 19229 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19230 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19231 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19232 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19233 HCKSUM_IPHDRCKSUM) 19234 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19235 19236 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19237 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19238 hwcksum_flags |= HCK_FULLCKSUM; 19239 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19240 HCKSUM_INET_PARTIAL) 19241 hwcksum_flags |= HCK_PARTIALCKSUM; 19242 } 19243 19244 /* 19245 * Each header fragment consists of the leading extra space, 19246 * followed by the TCP/IP header, and the trailing extra space. 19247 * We make sure that each header fragment begins on a 32-bit 19248 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19249 * aligned in tcp_mdt_update). 19250 */ 19251 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19252 tcp->tcp_mdt_hdr_tail), 4); 19253 19254 /* are we starting from the beginning of data block? */ 19255 if (*tail_unsent == 0) { 19256 *xmit_tail = (*xmit_tail)->b_cont; 19257 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19258 *tail_unsent = (int)MBLKL(*xmit_tail); 19259 } 19260 19261 /* 19262 * Here we create one or more Multidata messages, each made up of 19263 * one header buffer and up to N payload buffers. This entire 19264 * operation is done within two loops: 19265 * 19266 * The outer loop mostly deals with creating the Multidata message, 19267 * as well as the header buffer that gets added to it. It also 19268 * links the Multidata messages together such that all of them can 19269 * be sent down to the lower layer in a single putnext call; this 19270 * linking behavior depends on the tcp_mdt_chain tunable. 19271 * 19272 * The inner loop takes an existing Multidata message, and adds 19273 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19274 * packetizes those buffers by filling up the corresponding header 19275 * buffer fragments with the proper IP and TCP headers, and by 19276 * describing the layout of each packet in the packet descriptors 19277 * that get added to the Multidata. 19278 */ 19279 do { 19280 /* 19281 * If usable send window is too small, or data blocks in 19282 * transmit list are smaller than our threshold (i.e. app 19283 * performs large writes followed by small ones), we hand 19284 * off the control over to the legacy path. Note that we'll 19285 * get back the control once it encounters a large block. 19286 */ 19287 if (*usable < mss || (*tail_unsent <= mdt_thres && 19288 (*xmit_tail)->b_cont != NULL && 19289 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19290 /* send down what we've got so far */ 19291 if (md_mp_head != NULL) { 19292 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19293 obsegs, obbytes, &rconfirm); 19294 } 19295 /* 19296 * Pass control over to tcp_send(), but tell it to 19297 * return to us once a large-size transmission is 19298 * possible. 19299 */ 19300 TCP_STAT(tcp_mdt_legacy_small); 19301 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19302 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19303 tail_unsent, xmit_tail, local_time, 19304 mdt_thres)) <= 0) { 19305 /* burst count reached, or alloc failed */ 19306 IRE_REFRELE(ire); 19307 return (err); 19308 } 19309 19310 /* tcp_send() may have sent everything, so check */ 19311 if (*usable <= 0) { 19312 IRE_REFRELE(ire); 19313 return (0); 19314 } 19315 19316 TCP_STAT(tcp_mdt_legacy_ret); 19317 /* 19318 * We may have delivered the Multidata, so make sure 19319 * to re-initialize before the next round. 19320 */ 19321 md_mp_head = NULL; 19322 obsegs = obbytes = 0; 19323 num_burst_seg = tcp->tcp_snd_burst; 19324 PREP_NEW_MULTIDATA(); 19325 19326 /* are we starting from the beginning of data block? */ 19327 if (*tail_unsent == 0) { 19328 *xmit_tail = (*xmit_tail)->b_cont; 19329 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19330 (uintptr_t)INT_MAX); 19331 *tail_unsent = (int)MBLKL(*xmit_tail); 19332 } 19333 } 19334 19335 /* 19336 * max_pld limits the number of mblks in tcp's transmit 19337 * queue that can be added to a Multidata message. Once 19338 * this counter reaches zero, no more additional mblks 19339 * can be added to it. What happens afterwards depends 19340 * on whether or not we are set to chain the Multidata 19341 * messages. If we are to link them together, reset 19342 * max_pld to its original value (tcp_mdt_max_pld) and 19343 * prepare to create a new Multidata message which will 19344 * get linked to md_mp_head. Else, leave it alone and 19345 * let the inner loop break on its own. 19346 */ 19347 if (tcp_mdt_chain && max_pld == 0) 19348 PREP_NEW_MULTIDATA(); 19349 19350 /* adding a payload buffer; re-initialize values */ 19351 if (add_buffer) 19352 PREP_NEW_PBUF(); 19353 19354 /* 19355 * If we don't have a Multidata, either because we just 19356 * (re)entered this outer loop, or after we branched off 19357 * to tcp_send above, setup the Multidata and header 19358 * buffer to be used. 19359 */ 19360 if (md_mp == NULL) { 19361 int md_hbuflen; 19362 uint32_t start, stuff; 19363 19364 /* 19365 * Calculate Multidata header buffer size large enough 19366 * to hold all of the headers that can possibly be 19367 * sent at this moment. We'd rather over-estimate 19368 * the size than running out of space; this is okay 19369 * since this buffer is small anyway. 19370 */ 19371 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19372 19373 /* 19374 * Start and stuff offset for partial hardware 19375 * checksum offload; these are currently for IPv4. 19376 * For full checksum offload, they are set to zero. 19377 */ 19378 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19379 if (af == AF_INET) { 19380 start = IP_SIMPLE_HDR_LENGTH; 19381 stuff = IP_SIMPLE_HDR_LENGTH + 19382 TCP_CHECKSUM_OFFSET; 19383 } else { 19384 start = IPV6_HDR_LEN; 19385 stuff = IPV6_HDR_LEN + 19386 TCP_CHECKSUM_OFFSET; 19387 } 19388 } else { 19389 start = stuff = 0; 19390 } 19391 19392 /* 19393 * Create the header buffer, Multidata, as well as 19394 * any necessary attributes (destination address, 19395 * SAP and hardware checksum offload) that should 19396 * be associated with the Multidata message. 19397 */ 19398 ASSERT(cur_hdr_off == 0); 19399 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19400 ((md_hbuf->b_wptr += md_hbuflen), 19401 (mmd = mmd_alloc(md_hbuf, &md_mp, 19402 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19403 /* fastpath mblk */ 19404 (af == AF_INET) ? ire->ire_dlureq_mp : 19405 ire->ire_nce->nce_res_mp, 19406 /* hardware checksum enabled */ 19407 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19408 /* hardware checksum offsets */ 19409 start, stuff, 0, 19410 /* hardware checksum flag */ 19411 hwcksum_flags) != 0)) { 19412 legacy_send: 19413 if (md_mp != NULL) { 19414 /* Unlink message from the chain */ 19415 if (md_mp_head != NULL) { 19416 err = (intptr_t)rmvb(md_mp_head, 19417 md_mp); 19418 /* 19419 * We can't assert that rmvb 19420 * did not return -1, since we 19421 * may get here before linkb 19422 * happens. We do, however, 19423 * check if we just removed the 19424 * only element in the list. 19425 */ 19426 if (err == 0) 19427 md_mp_head = NULL; 19428 } 19429 /* md_hbuf gets freed automatically */ 19430 TCP_STAT(tcp_mdt_discarded); 19431 freeb(md_mp); 19432 } else { 19433 /* Either allocb or mmd_alloc failed */ 19434 TCP_STAT(tcp_mdt_allocfail); 19435 if (md_hbuf != NULL) 19436 freeb(md_hbuf); 19437 } 19438 19439 /* send down what we've got so far */ 19440 if (md_mp_head != NULL) { 19441 tcp_multisend_data(tcp, ire, ill, 19442 md_mp_head, obsegs, obbytes, 19443 &rconfirm); 19444 } 19445 legacy_send_no_md: 19446 if (ire != NULL) 19447 IRE_REFRELE(ire); 19448 /* 19449 * Too bad; let the legacy path handle this. 19450 * We specify INT_MAX for the threshold, since 19451 * we gave up with the Multidata processings 19452 * and let the old path have it all. 19453 */ 19454 TCP_STAT(tcp_mdt_legacy_all); 19455 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19456 tcp_tcp_hdr_len, num_sack_blk, usable, 19457 snxt, tail_unsent, xmit_tail, local_time, 19458 INT_MAX)); 19459 } 19460 19461 /* link to any existing ones, if applicable */ 19462 TCP_STAT(tcp_mdt_allocd); 19463 if (md_mp_head == NULL) { 19464 md_mp_head = md_mp; 19465 } else if (tcp_mdt_chain) { 19466 TCP_STAT(tcp_mdt_linked); 19467 linkb(md_mp_head, md_mp); 19468 } 19469 } 19470 19471 ASSERT(md_mp_head != NULL); 19472 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19473 ASSERT(md_mp != NULL && mmd != NULL); 19474 ASSERT(md_hbuf != NULL); 19475 19476 /* 19477 * Packetize the transmittable portion of the data block; 19478 * each data block is essentially added to the Multidata 19479 * as a payload buffer. We also deal with adding more 19480 * than one payload buffers, which happens when the remaining 19481 * packetized portion of the current payload buffer is less 19482 * than MSS, while the next data block in transmit queue 19483 * has enough data to make up for one. This "spillover" 19484 * case essentially creates a split-packet, where portions 19485 * of the packet's payload fragments may span across two 19486 * virtually discontiguous address blocks. 19487 */ 19488 seg_len = mss; 19489 do { 19490 len = seg_len; 19491 19492 ASSERT(len > 0); 19493 ASSERT(max_pld >= 0); 19494 ASSERT(!add_buffer || cur_pld_off == 0); 19495 19496 /* 19497 * First time around for this payload buffer; note 19498 * in the case of a spillover, the following has 19499 * been done prior to adding the split-packet 19500 * descriptor to Multidata, and we don't want to 19501 * repeat the process. 19502 */ 19503 if (add_buffer) { 19504 ASSERT(mmd != NULL); 19505 ASSERT(md_pbuf == NULL); 19506 ASSERT(md_pbuf_nxt == NULL); 19507 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19508 19509 /* 19510 * Have we reached the limit? We'd get to 19511 * this case when we're not chaining the 19512 * Multidata messages together, and since 19513 * we're done, terminate this loop. 19514 */ 19515 if (max_pld == 0) 19516 break; /* done */ 19517 19518 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19519 TCP_STAT(tcp_mdt_allocfail); 19520 goto legacy_send; /* out_of_mem */ 19521 } 19522 19523 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19524 zc_cap != NULL) { 19525 if (!ip_md_zcopy_attr(mmd, NULL, 19526 zc_cap->ill_zerocopy_flags)) { 19527 freeb(md_pbuf); 19528 TCP_STAT(tcp_mdt_allocfail); 19529 /* out_of_mem */ 19530 goto legacy_send; 19531 } 19532 zcopy = B_TRUE; 19533 } 19534 19535 md_pbuf->b_rptr += base_pld_off; 19536 19537 /* 19538 * Add a payload buffer to the Multidata; this 19539 * operation must not fail, or otherwise our 19540 * logic in this routine is broken. There 19541 * is no memory allocation done by the 19542 * routine, so any returned failure simply 19543 * tells us that we've done something wrong. 19544 * 19545 * A failure tells us that either we're adding 19546 * the same payload buffer more than once, or 19547 * we're trying to add more buffers than 19548 * allowed (max_pld calculation is wrong). 19549 * None of the above cases should happen, and 19550 * we panic because either there's horrible 19551 * heap corruption, and/or programming mistake. 19552 */ 19553 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19554 if (pbuf_idx < 0) { 19555 cmn_err(CE_PANIC, "tcp_multisend: " 19556 "payload buffer logic error " 19557 "detected for tcp %p mmd %p " 19558 "pbuf %p (%d)\n", 19559 (void *)tcp, (void *)mmd, 19560 (void *)md_pbuf, pbuf_idx); 19561 } 19562 19563 ASSERT(max_pld > 0); 19564 --max_pld; 19565 add_buffer = B_FALSE; 19566 } 19567 19568 ASSERT(md_mp_head != NULL); 19569 ASSERT(md_pbuf != NULL); 19570 ASSERT(md_pbuf_nxt == NULL); 19571 ASSERT(pbuf_idx != -1); 19572 ASSERT(pbuf_idx_nxt == -1); 19573 ASSERT(*usable > 0); 19574 19575 /* 19576 * We spillover to the next payload buffer only 19577 * if all of the following is true: 19578 * 19579 * 1. There is not enough data on the current 19580 * payload buffer to make up `len', 19581 * 2. We are allowed to send `len', 19582 * 3. The next payload buffer length is large 19583 * enough to accomodate `spill'. 19584 */ 19585 if ((spill = len - *tail_unsent) > 0 && 19586 *usable >= len && 19587 MBLKL((*xmit_tail)->b_cont) >= spill && 19588 max_pld > 0) { 19589 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19590 if (md_pbuf_nxt == NULL) { 19591 TCP_STAT(tcp_mdt_allocfail); 19592 goto legacy_send; /* out_of_mem */ 19593 } 19594 19595 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19596 zc_cap != NULL) { 19597 if (!ip_md_zcopy_attr(mmd, NULL, 19598 zc_cap->ill_zerocopy_flags)) { 19599 freeb(md_pbuf_nxt); 19600 TCP_STAT(tcp_mdt_allocfail); 19601 /* out_of_mem */ 19602 goto legacy_send; 19603 } 19604 zcopy = B_TRUE; 19605 } 19606 19607 /* 19608 * See comments above on the first call to 19609 * mmd_addpldbuf for explanation on the panic. 19610 */ 19611 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19612 if (pbuf_idx_nxt < 0) { 19613 panic("tcp_multisend: " 19614 "next payload buffer logic error " 19615 "detected for tcp %p mmd %p " 19616 "pbuf %p (%d)\n", 19617 (void *)tcp, (void *)mmd, 19618 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19619 } 19620 19621 ASSERT(max_pld > 0); 19622 --max_pld; 19623 } else if (spill > 0) { 19624 /* 19625 * If there's a spillover, but the following 19626 * xmit_tail couldn't give us enough octets 19627 * to reach "len", then stop the current 19628 * Multidata creation and let the legacy 19629 * tcp_send() path take over. We don't want 19630 * to send the tiny segment as part of this 19631 * Multidata for performance reasons; instead, 19632 * we let the legacy path deal with grouping 19633 * it with the subsequent small mblks. 19634 */ 19635 if (*usable >= len && 19636 MBLKL((*xmit_tail)->b_cont) < spill) { 19637 max_pld = 0; 19638 break; /* done */ 19639 } 19640 19641 /* 19642 * We can't spillover, and we are near 19643 * the end of the current payload buffer, 19644 * so send what's left. 19645 */ 19646 ASSERT(*tail_unsent > 0); 19647 len = *tail_unsent; 19648 } 19649 19650 /* tail_unsent is negated if there is a spillover */ 19651 *tail_unsent -= len; 19652 *usable -= len; 19653 ASSERT(*usable >= 0); 19654 19655 if (*usable < mss) 19656 seg_len = *usable; 19657 /* 19658 * Sender SWS avoidance; see comments in tcp_send(); 19659 * everything else is the same, except that we only 19660 * do this here if there is no more data to be sent 19661 * following the current xmit_tail. We don't check 19662 * for 1-byte urgent data because we shouldn't get 19663 * here if TCP_URG_VALID is set. 19664 */ 19665 if (*usable > 0 && *usable < mss && 19666 ((md_pbuf_nxt == NULL && 19667 (*xmit_tail)->b_cont == NULL) || 19668 (md_pbuf_nxt != NULL && 19669 (*xmit_tail)->b_cont->b_cont == NULL)) && 19670 seg_len < (tcp->tcp_max_swnd >> 1) && 19671 (tcp->tcp_unsent - 19672 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19673 !tcp->tcp_zero_win_probe) { 19674 if ((*snxt + len) == tcp->tcp_snxt && 19675 (*snxt + len) == tcp->tcp_suna) { 19676 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19677 } 19678 done = B_TRUE; 19679 } 19680 19681 /* 19682 * Prime pump for IP's checksumming on our behalf; 19683 * include the adjustment for a source route if any. 19684 * Do this only for software/partial hardware checksum 19685 * offload, as this field gets zeroed out later for 19686 * the full hardware checksum offload case. 19687 */ 19688 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19689 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19690 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19691 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19692 } 19693 19694 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19695 *snxt += len; 19696 19697 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19698 /* 19699 * We set the PUSH bit only if TCP has no more buffered 19700 * data to be transmitted (or if sender SWS avoidance 19701 * takes place), as opposed to setting it for every 19702 * last packet in the burst. 19703 */ 19704 if (done || 19705 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19706 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19707 19708 /* 19709 * Set FIN bit if this is our last segment; snxt 19710 * already includes its length, and it will not 19711 * be adjusted after this point. 19712 */ 19713 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19714 *snxt == tcp->tcp_fss) { 19715 if (!tcp->tcp_fin_acked) { 19716 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19717 BUMP_MIB(&tcp_mib, tcpOutControl); 19718 } 19719 if (!tcp->tcp_fin_sent) { 19720 tcp->tcp_fin_sent = B_TRUE; 19721 /* 19722 * tcp state must be ESTABLISHED 19723 * in order for us to get here in 19724 * the first place. 19725 */ 19726 tcp->tcp_state = TCPS_FIN_WAIT_1; 19727 19728 /* 19729 * Upon returning from this routine, 19730 * tcp_wput_data() will set tcp_snxt 19731 * to be equal to snxt + tcp_fin_sent. 19732 * This is essentially the same as 19733 * setting it to tcp_fss + 1. 19734 */ 19735 } 19736 } 19737 19738 tcp->tcp_last_sent_len = (ushort_t)len; 19739 19740 len += tcp_hdr_len; 19741 if (tcp->tcp_ipversion == IPV4_VERSION) 19742 tcp->tcp_ipha->ipha_length = htons(len); 19743 else 19744 tcp->tcp_ip6h->ip6_plen = htons(len - 19745 ((char *)&tcp->tcp_ip6h[1] - 19746 tcp->tcp_iphc)); 19747 19748 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19749 19750 /* setup header fragment */ 19751 PDESC_HDR_ADD(pkt_info, 19752 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19753 tcp->tcp_mdt_hdr_head, /* head room */ 19754 tcp_hdr_len, /* len */ 19755 tcp->tcp_mdt_hdr_tail); /* tail room */ 19756 19757 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 19758 hdr_frag_sz); 19759 ASSERT(MBLKIN(md_hbuf, 19760 (pkt_info->hdr_base - md_hbuf->b_rptr), 19761 PDESC_HDRSIZE(pkt_info))); 19762 19763 /* setup first payload fragment */ 19764 PDESC_PLD_INIT(pkt_info); 19765 PDESC_PLD_SPAN_ADD(pkt_info, 19766 pbuf_idx, /* index */ 19767 md_pbuf->b_rptr + cur_pld_off, /* start */ 19768 tcp->tcp_last_sent_len); /* len */ 19769 19770 /* create a split-packet in case of a spillover */ 19771 if (md_pbuf_nxt != NULL) { 19772 ASSERT(spill > 0); 19773 ASSERT(pbuf_idx_nxt > pbuf_idx); 19774 ASSERT(!add_buffer); 19775 19776 md_pbuf = md_pbuf_nxt; 19777 md_pbuf_nxt = NULL; 19778 pbuf_idx = pbuf_idx_nxt; 19779 pbuf_idx_nxt = -1; 19780 cur_pld_off = spill; 19781 19782 /* trim out first payload fragment */ 19783 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 19784 19785 /* setup second payload fragment */ 19786 PDESC_PLD_SPAN_ADD(pkt_info, 19787 pbuf_idx, /* index */ 19788 md_pbuf->b_rptr, /* start */ 19789 spill); /* len */ 19790 19791 if ((*xmit_tail)->b_next == NULL) { 19792 /* 19793 * Store the lbolt used for RTT 19794 * estimation. We can only record one 19795 * timestamp per mblk so we do it when 19796 * we reach the end of the payload 19797 * buffer. Also we only take a new 19798 * timestamp sample when the previous 19799 * timed data from the same mblk has 19800 * been ack'ed. 19801 */ 19802 (*xmit_tail)->b_prev = local_time; 19803 (*xmit_tail)->b_next = 19804 (mblk_t *)(uintptr_t)first_snxt; 19805 } 19806 19807 first_snxt = *snxt - spill; 19808 19809 /* 19810 * Advance xmit_tail; usable could be 0 by 19811 * the time we got here, but we made sure 19812 * above that we would only spillover to 19813 * the next data block if usable includes 19814 * the spilled-over amount prior to the 19815 * subtraction. Therefore, we are sure 19816 * that xmit_tail->b_cont can't be NULL. 19817 */ 19818 ASSERT((*xmit_tail)->b_cont != NULL); 19819 *xmit_tail = (*xmit_tail)->b_cont; 19820 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19821 (uintptr_t)INT_MAX); 19822 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 19823 } else { 19824 cur_pld_off += tcp->tcp_last_sent_len; 19825 } 19826 19827 /* 19828 * Fill in the header using the template header, and 19829 * add options such as time-stamp, ECN and/or SACK, 19830 * as needed. 19831 */ 19832 tcp_fill_header(tcp, pkt_info->hdr_rptr, 19833 (clock_t)local_time, num_sack_blk); 19834 19835 /* take care of some IP header businesses */ 19836 if (af == AF_INET) { 19837 ipha = (ipha_t *)pkt_info->hdr_rptr; 19838 19839 ASSERT(OK_32PTR((uchar_t *)ipha)); 19840 ASSERT(PDESC_HDRL(pkt_info) >= 19841 IP_SIMPLE_HDR_LENGTH); 19842 ASSERT(ipha->ipha_version_and_hdr_length == 19843 IP_SIMPLE_HDR_VERSION); 19844 19845 /* 19846 * Assign ident value for current packet; see 19847 * related comments in ip_wput_ire() about the 19848 * contract private interface with clustering 19849 * group. 19850 */ 19851 clusterwide = B_FALSE; 19852 if (cl_inet_ipident != NULL) { 19853 ASSERT(cl_inet_isclusterwide != NULL); 19854 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19855 AF_INET, 19856 (uint8_t *)(uintptr_t)src)) { 19857 ipha->ipha_ident = 19858 (*cl_inet_ipident) 19859 (IPPROTO_IP, AF_INET, 19860 (uint8_t *)(uintptr_t)src, 19861 (uint8_t *)(uintptr_t)dst); 19862 clusterwide = B_TRUE; 19863 } 19864 } 19865 19866 if (!clusterwide) { 19867 ipha->ipha_ident = (uint16_t) 19868 atomic_add_32_nv( 19869 &ire->ire_ident, 1); 19870 } 19871 #ifndef _BIG_ENDIAN 19872 ipha->ipha_ident = (ipha->ipha_ident << 8) | 19873 (ipha->ipha_ident >> 8); 19874 #endif 19875 } else { 19876 ip6h = (ip6_t *)pkt_info->hdr_rptr; 19877 19878 ASSERT(OK_32PTR((uchar_t *)ip6h)); 19879 ASSERT(IPVER(ip6h) == IPV6_VERSION); 19880 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 19881 ASSERT(PDESC_HDRL(pkt_info) >= 19882 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 19883 TCP_CHECKSUM_SIZE)); 19884 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 19885 19886 if (tcp->tcp_ip_forward_progress) { 19887 rconfirm = B_TRUE; 19888 tcp->tcp_ip_forward_progress = B_FALSE; 19889 } 19890 } 19891 19892 /* at least one payload span, and at most two */ 19893 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 19894 19895 /* add the packet descriptor to Multidata */ 19896 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 19897 KM_NOSLEEP)) == NULL) { 19898 /* 19899 * Any failure other than ENOMEM indicates 19900 * that we have passed in invalid pkt_info 19901 * or parameters to mmd_addpdesc, which must 19902 * not happen. 19903 * 19904 * EINVAL is a result of failure on boundary 19905 * checks against the pkt_info contents. It 19906 * should not happen, and we panic because 19907 * either there's horrible heap corruption, 19908 * and/or programming mistake. 19909 */ 19910 if (err != ENOMEM) { 19911 cmn_err(CE_PANIC, "tcp_multisend: " 19912 "pdesc logic error detected for " 19913 "tcp %p mmd %p pinfo %p (%d)\n", 19914 (void *)tcp, (void *)mmd, 19915 (void *)pkt_info, err); 19916 } 19917 TCP_STAT(tcp_mdt_addpdescfail); 19918 goto legacy_send; /* out_of_mem */ 19919 } 19920 ASSERT(pkt != NULL); 19921 19922 /* calculate IP header and TCP checksums */ 19923 if (af == AF_INET) { 19924 /* calculate pseudo-header checksum */ 19925 cksum = (dst >> 16) + (dst & 0xFFFF) + 19926 (src >> 16) + (src & 0xFFFF); 19927 19928 /* offset for TCP header checksum */ 19929 up = IPH_TCPH_CHECKSUMP(ipha, 19930 IP_SIMPLE_HDR_LENGTH); 19931 } else { 19932 up = (uint16_t *)&ip6h->ip6_src; 19933 19934 /* calculate pseudo-header checksum */ 19935 cksum = up[0] + up[1] + up[2] + up[3] + 19936 up[4] + up[5] + up[6] + up[7] + 19937 up[8] + up[9] + up[10] + up[11] + 19938 up[12] + up[13] + up[14] + up[15]; 19939 19940 /* Fold the initial sum */ 19941 cksum = (cksum & 0xffff) + (cksum >> 16); 19942 19943 up = (uint16_t *)(((uchar_t *)ip6h) + 19944 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 19945 } 19946 19947 if (hwcksum_flags & HCK_FULLCKSUM) { 19948 /* clear checksum field for hardware */ 19949 *up = 0; 19950 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 19951 uint32_t sum; 19952 19953 /* pseudo-header checksumming */ 19954 sum = *up + cksum + IP_TCP_CSUM_COMP; 19955 sum = (sum & 0xFFFF) + (sum >> 16); 19956 *up = (sum & 0xFFFF) + (sum >> 16); 19957 } else { 19958 /* software checksumming */ 19959 TCP_STAT(tcp_out_sw_cksum); 19960 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 19961 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 19962 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 19963 cksum + IP_TCP_CSUM_COMP); 19964 if (*up == 0) 19965 *up = 0xFFFF; 19966 } 19967 19968 /* IPv4 header checksum */ 19969 if (af == AF_INET) { 19970 ipha->ipha_fragment_offset_and_flags |= 19971 (uint32_t)htons(ire->ire_frag_flag); 19972 19973 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 19974 ipha->ipha_hdr_checksum = 0; 19975 } else { 19976 IP_HDR_CKSUM(ipha, cksum, 19977 ((uint32_t *)ipha)[0], 19978 ((uint16_t *)ipha)[4]); 19979 } 19980 } 19981 19982 /* advance header offset */ 19983 cur_hdr_off += hdr_frag_sz; 19984 19985 obbytes += tcp->tcp_last_sent_len; 19986 ++obsegs; 19987 } while (!done && *usable > 0 && --num_burst_seg > 0 && 19988 *tail_unsent > 0); 19989 19990 if ((*xmit_tail)->b_next == NULL) { 19991 /* 19992 * Store the lbolt used for RTT estimation. We can only 19993 * record one timestamp per mblk so we do it when we 19994 * reach the end of the payload buffer. Also we only 19995 * take a new timestamp sample when the previous timed 19996 * data from the same mblk has been ack'ed. 19997 */ 19998 (*xmit_tail)->b_prev = local_time; 19999 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20000 } 20001 20002 ASSERT(*tail_unsent >= 0); 20003 if (*tail_unsent > 0) { 20004 /* 20005 * We got here because we broke out of the above 20006 * loop due to of one of the following cases: 20007 * 20008 * 1. len < adjusted MSS (i.e. small), 20009 * 2. Sender SWS avoidance, 20010 * 3. max_pld is zero. 20011 * 20012 * We are done for this Multidata, so trim our 20013 * last payload buffer (if any) accordingly. 20014 */ 20015 if (md_pbuf != NULL) 20016 md_pbuf->b_wptr -= *tail_unsent; 20017 } else if (*usable > 0) { 20018 *xmit_tail = (*xmit_tail)->b_cont; 20019 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20020 (uintptr_t)INT_MAX); 20021 *tail_unsent = (int)MBLKL(*xmit_tail); 20022 add_buffer = B_TRUE; 20023 } 20024 } while (!done && *usable > 0 && num_burst_seg > 0 && 20025 (tcp_mdt_chain || max_pld > 0)); 20026 20027 /* send everything down */ 20028 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20029 &rconfirm); 20030 20031 #undef PREP_NEW_MULTIDATA 20032 #undef PREP_NEW_PBUF 20033 #undef IPVER 20034 20035 IRE_REFRELE(ire); 20036 return (0); 20037 } 20038 20039 /* 20040 * A wrapper function for sending one or more Multidata messages down to 20041 * the module below ip; this routine does not release the reference of the 20042 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20043 */ 20044 static void 20045 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20046 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20047 { 20048 uint64_t delta; 20049 nce_t *nce; 20050 20051 ASSERT(ire != NULL && ill != NULL); 20052 ASSERT(ire->ire_stq != NULL); 20053 ASSERT(md_mp_head != NULL); 20054 ASSERT(rconfirm != NULL); 20055 20056 /* adjust MIBs and IRE timestamp */ 20057 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20058 tcp->tcp_obsegs += obsegs; 20059 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 20060 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 20061 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 20062 20063 if (tcp->tcp_ipversion == IPV4_VERSION) { 20064 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 20065 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 20066 } else { 20067 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 20068 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 20069 } 20070 20071 ire->ire_ob_pkt_count += obsegs; 20072 if (ire->ire_ipif != NULL) 20073 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20074 ire->ire_last_used_time = lbolt; 20075 20076 /* send it down */ 20077 putnext(ire->ire_stq, md_mp_head); 20078 20079 /* we're done for TCP/IPv4 */ 20080 if (tcp->tcp_ipversion == IPV4_VERSION) 20081 return; 20082 20083 nce = ire->ire_nce; 20084 20085 ASSERT(nce != NULL); 20086 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20087 ASSERT(nce->nce_state != ND_INCOMPLETE); 20088 20089 /* reachability confirmation? */ 20090 if (*rconfirm) { 20091 nce->nce_last = TICK_TO_MSEC(lbolt64); 20092 if (nce->nce_state != ND_REACHABLE) { 20093 mutex_enter(&nce->nce_lock); 20094 nce->nce_state = ND_REACHABLE; 20095 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20096 mutex_exit(&nce->nce_lock); 20097 (void) untimeout(nce->nce_timeout_id); 20098 if (ip_debug > 2) { 20099 /* ip1dbg */ 20100 pr_addr_dbg("tcp_multisend_data: state " 20101 "for %s changed to REACHABLE\n", 20102 AF_INET6, &ire->ire_addr_v6); 20103 } 20104 } 20105 /* reset transport reachability confirmation */ 20106 *rconfirm = B_FALSE; 20107 } 20108 20109 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20110 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20111 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20112 20113 if (delta > (uint64_t)ill->ill_reachable_time) { 20114 mutex_enter(&nce->nce_lock); 20115 switch (nce->nce_state) { 20116 case ND_REACHABLE: 20117 case ND_STALE: 20118 /* 20119 * ND_REACHABLE is identical to ND_STALE in this 20120 * specific case. If reachable time has expired for 20121 * this neighbor (delta is greater than reachable 20122 * time), conceptually, the neighbor cache is no 20123 * longer in REACHABLE state, but already in STALE 20124 * state. So the correct transition here is to 20125 * ND_DELAY. 20126 */ 20127 nce->nce_state = ND_DELAY; 20128 mutex_exit(&nce->nce_lock); 20129 NDP_RESTART_TIMER(nce, delay_first_probe_time); 20130 if (ip_debug > 3) { 20131 /* ip2dbg */ 20132 pr_addr_dbg("tcp_multisend_data: state " 20133 "for %s changed to DELAY\n", 20134 AF_INET6, &ire->ire_addr_v6); 20135 } 20136 break; 20137 case ND_DELAY: 20138 case ND_PROBE: 20139 mutex_exit(&nce->nce_lock); 20140 /* Timers have already started */ 20141 break; 20142 case ND_UNREACHABLE: 20143 /* 20144 * ndp timer has detected that this nce is 20145 * unreachable and initiated deleting this nce 20146 * and all its associated IREs. This is a race 20147 * where we found the ire before it was deleted 20148 * and have just sent out a packet using this 20149 * unreachable nce. 20150 */ 20151 mutex_exit(&nce->nce_lock); 20152 break; 20153 default: 20154 ASSERT(0); 20155 } 20156 } 20157 } 20158 20159 /* 20160 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20161 * scheme, and returns one of the following: 20162 * 20163 * -1 = failed allocation. 20164 * 0 = success; burst count reached, or usable send window is too small, 20165 * and that we'd rather wait until later before sending again. 20166 * 1 = success; we are called from tcp_multisend(), and both usable send 20167 * window and tail_unsent are greater than the MDT threshold, and thus 20168 * Multidata Transmit should be used instead. 20169 */ 20170 static int 20171 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20172 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20173 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20174 const int mdt_thres) 20175 { 20176 int num_burst_seg = tcp->tcp_snd_burst; 20177 20178 for (;;) { 20179 struct datab *db; 20180 tcph_t *tcph; 20181 uint32_t sum; 20182 mblk_t *mp, *mp1; 20183 uchar_t *rptr; 20184 int len; 20185 20186 /* 20187 * If we're called by tcp_multisend(), and the amount of 20188 * sendable data as well as the size of current xmit_tail 20189 * is beyond the MDT threshold, return to the caller and 20190 * let the large data transmit be done using MDT. 20191 */ 20192 if (*usable > 0 && *usable > mdt_thres && 20193 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20194 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20195 ASSERT(tcp->tcp_mdt); 20196 return (1); /* success; do large send */ 20197 } 20198 20199 if (num_burst_seg-- == 0) 20200 break; /* success; burst count reached */ 20201 20202 len = mss; 20203 if (len > *usable) { 20204 len = *usable; 20205 if (len <= 0) { 20206 /* Terminate the loop */ 20207 break; /* success; too small */ 20208 } 20209 /* 20210 * Sender silly-window avoidance. 20211 * Ignore this if we are going to send a 20212 * zero window probe out. 20213 * 20214 * TODO: force data into microscopic window? 20215 * ==> (!pushed || (unsent > usable)) 20216 */ 20217 if (len < (tcp->tcp_max_swnd >> 1) && 20218 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20219 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20220 len == 1) && (! tcp->tcp_zero_win_probe)) { 20221 /* 20222 * If the retransmit timer is not running 20223 * we start it so that we will retransmit 20224 * in the case when the the receiver has 20225 * decremented the window. 20226 */ 20227 if (*snxt == tcp->tcp_snxt && 20228 *snxt == tcp->tcp_suna) { 20229 /* 20230 * We are not supposed to send 20231 * anything. So let's wait a little 20232 * bit longer before breaking SWS 20233 * avoidance. 20234 * 20235 * What should the value be? 20236 * Suggestion: MAX(init rexmit time, 20237 * tcp->tcp_rto) 20238 */ 20239 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20240 } 20241 break; /* success; too small */ 20242 } 20243 } 20244 20245 tcph = tcp->tcp_tcph; 20246 20247 *usable -= len; /* Approximate - can be adjusted later */ 20248 if (*usable > 0) 20249 tcph->th_flags[0] = TH_ACK; 20250 else 20251 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20252 20253 /* 20254 * Prime pump for IP's checksumming on our behalf 20255 * Include the adjustment for a source route if any. 20256 */ 20257 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20258 sum = (sum >> 16) + (sum & 0xFFFF); 20259 U16_TO_ABE16(sum, tcph->th_sum); 20260 20261 U32_TO_ABE32(*snxt, tcph->th_seq); 20262 20263 /* 20264 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20265 * set. For the case when TCP_FSS_VALID is the only valid 20266 * bit (normal active close), branch off only when we think 20267 * that the FIN flag needs to be set. Note for this case, 20268 * that (snxt + len) may not reflect the actual seg_len, 20269 * as len may be further reduced in tcp_xmit_mp(). If len 20270 * gets modified, we will end up here again. 20271 */ 20272 if (tcp->tcp_valid_bits != 0 && 20273 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20274 ((*snxt + len) == tcp->tcp_fss))) { 20275 uchar_t *prev_rptr; 20276 uint32_t prev_snxt = tcp->tcp_snxt; 20277 20278 if (*tail_unsent == 0) { 20279 ASSERT((*xmit_tail)->b_cont != NULL); 20280 *xmit_tail = (*xmit_tail)->b_cont; 20281 prev_rptr = (*xmit_tail)->b_rptr; 20282 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20283 (*xmit_tail)->b_rptr); 20284 } else { 20285 prev_rptr = (*xmit_tail)->b_rptr; 20286 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20287 *tail_unsent; 20288 } 20289 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20290 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20291 /* Restore tcp_snxt so we get amount sent right. */ 20292 tcp->tcp_snxt = prev_snxt; 20293 if (prev_rptr == (*xmit_tail)->b_rptr) { 20294 /* 20295 * If the previous timestamp is still in use, 20296 * don't stomp on it. 20297 */ 20298 if ((*xmit_tail)->b_next == NULL) { 20299 (*xmit_tail)->b_prev = local_time; 20300 (*xmit_tail)->b_next = 20301 (mblk_t *)(uintptr_t)(*snxt); 20302 } 20303 } else 20304 (*xmit_tail)->b_rptr = prev_rptr; 20305 20306 if (mp == NULL) 20307 return (-1); 20308 mp1 = mp->b_cont; 20309 20310 tcp->tcp_last_sent_len = (ushort_t)len; 20311 while (mp1->b_cont) { 20312 *xmit_tail = (*xmit_tail)->b_cont; 20313 (*xmit_tail)->b_prev = local_time; 20314 (*xmit_tail)->b_next = 20315 (mblk_t *)(uintptr_t)(*snxt); 20316 mp1 = mp1->b_cont; 20317 } 20318 *snxt += len; 20319 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20320 BUMP_LOCAL(tcp->tcp_obsegs); 20321 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20322 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20323 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20324 tcp_send_data(tcp, q, mp); 20325 continue; 20326 } 20327 20328 *snxt += len; /* Adjust later if we don't send all of len */ 20329 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20330 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20331 20332 if (*tail_unsent) { 20333 /* Are the bytes above us in flight? */ 20334 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20335 if (rptr != (*xmit_tail)->b_rptr) { 20336 *tail_unsent -= len; 20337 tcp->tcp_last_sent_len = (ushort_t)len; 20338 len += tcp_hdr_len; 20339 if (tcp->tcp_ipversion == IPV4_VERSION) 20340 tcp->tcp_ipha->ipha_length = htons(len); 20341 else 20342 tcp->tcp_ip6h->ip6_plen = 20343 htons(len - 20344 ((char *)&tcp->tcp_ip6h[1] - 20345 tcp->tcp_iphc)); 20346 mp = dupb(*xmit_tail); 20347 if (!mp) 20348 return (-1); /* out_of_mem */ 20349 mp->b_rptr = rptr; 20350 /* 20351 * If the old timestamp is no longer in use, 20352 * sample a new timestamp now. 20353 */ 20354 if ((*xmit_tail)->b_next == NULL) { 20355 (*xmit_tail)->b_prev = local_time; 20356 (*xmit_tail)->b_next = 20357 (mblk_t *)(uintptr_t)(*snxt-len); 20358 } 20359 goto must_alloc; 20360 } 20361 } else { 20362 *xmit_tail = (*xmit_tail)->b_cont; 20363 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20364 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20365 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20366 (*xmit_tail)->b_rptr); 20367 } 20368 20369 (*xmit_tail)->b_prev = local_time; 20370 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20371 20372 *tail_unsent -= len; 20373 tcp->tcp_last_sent_len = (ushort_t)len; 20374 20375 len += tcp_hdr_len; 20376 if (tcp->tcp_ipversion == IPV4_VERSION) 20377 tcp->tcp_ipha->ipha_length = htons(len); 20378 else 20379 tcp->tcp_ip6h->ip6_plen = htons(len - 20380 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20381 20382 mp = dupb(*xmit_tail); 20383 if (!mp) 20384 return (-1); /* out_of_mem */ 20385 20386 len = tcp_hdr_len; 20387 /* 20388 * There are four reasons to allocate a new hdr mblk: 20389 * 1) The bytes above us are in use by another packet 20390 * 2) We don't have good alignment 20391 * 3) The mblk is being shared 20392 * 4) We don't have enough room for a header 20393 */ 20394 rptr = mp->b_rptr - len; 20395 if (!OK_32PTR(rptr) || 20396 ((db = mp->b_datap), db->db_ref != 2) || 20397 rptr < db->db_base) { 20398 /* NOTE: we assume allocb returns an OK_32PTR */ 20399 20400 must_alloc:; 20401 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20402 tcp_wroff_xtra, BPRI_MED); 20403 if (!mp1) { 20404 freemsg(mp); 20405 return (-1); /* out_of_mem */ 20406 } 20407 mp1->b_cont = mp; 20408 mp = mp1; 20409 /* Leave room for Link Level header */ 20410 len = tcp_hdr_len; 20411 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20412 mp->b_wptr = &rptr[len]; 20413 } 20414 20415 /* 20416 * Fill in the header using the template header, and add 20417 * options such as time-stamp, ECN and/or SACK, as needed. 20418 */ 20419 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20420 20421 mp->b_rptr = rptr; 20422 20423 if (*tail_unsent) { 20424 int spill = *tail_unsent; 20425 20426 mp1 = mp->b_cont; 20427 if (!mp1) 20428 mp1 = mp; 20429 20430 /* 20431 * If we're a little short, tack on more mblks until 20432 * there is no more spillover. 20433 */ 20434 while (spill < 0) { 20435 mblk_t *nmp; 20436 int nmpsz; 20437 20438 nmp = (*xmit_tail)->b_cont; 20439 nmpsz = MBLKL(nmp); 20440 20441 /* 20442 * Excess data in mblk; can we split it? 20443 * If MDT is enabled for the connection, 20444 * keep on splitting as this is a transient 20445 * send path. 20446 */ 20447 if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { 20448 /* 20449 * Don't split if stream head was 20450 * told to break up larger writes 20451 * into smaller ones. 20452 */ 20453 if (tcp->tcp_maxpsz > 0) 20454 break; 20455 20456 /* 20457 * Next mblk is less than SMSS/2 20458 * rounded up to nearest 64-byte; 20459 * let it get sent as part of the 20460 * next segment. 20461 */ 20462 if (tcp->tcp_localnet && 20463 !tcp->tcp_cork && 20464 (nmpsz < roundup((mss >> 1), 64))) 20465 break; 20466 } 20467 20468 *xmit_tail = nmp; 20469 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 20470 /* Stash for rtt use later */ 20471 (*xmit_tail)->b_prev = local_time; 20472 (*xmit_tail)->b_next = 20473 (mblk_t *)(uintptr_t)(*snxt - len); 20474 mp1->b_cont = dupb(*xmit_tail); 20475 mp1 = mp1->b_cont; 20476 20477 spill += nmpsz; 20478 if (mp1 == NULL) { 20479 *tail_unsent = spill; 20480 freemsg(mp); 20481 return (-1); /* out_of_mem */ 20482 } 20483 } 20484 20485 /* Trim back any surplus on the last mblk */ 20486 if (spill >= 0) { 20487 mp1->b_wptr -= spill; 20488 *tail_unsent = spill; 20489 } else { 20490 /* 20491 * We did not send everything we could in 20492 * order to remain within the b_cont limit. 20493 */ 20494 *usable -= spill; 20495 *snxt += spill; 20496 tcp->tcp_last_sent_len += spill; 20497 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 20498 /* 20499 * Adjust the checksum 20500 */ 20501 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20502 sum += spill; 20503 sum = (sum >> 16) + (sum & 0xFFFF); 20504 U16_TO_ABE16(sum, tcph->th_sum); 20505 if (tcp->tcp_ipversion == IPV4_VERSION) { 20506 sum = ntohs( 20507 ((ipha_t *)rptr)->ipha_length) + 20508 spill; 20509 ((ipha_t *)rptr)->ipha_length = 20510 htons(sum); 20511 } else { 20512 sum = ntohs( 20513 ((ip6_t *)rptr)->ip6_plen) + 20514 spill; 20515 ((ip6_t *)rptr)->ip6_plen = 20516 htons(sum); 20517 } 20518 *tail_unsent = 0; 20519 } 20520 } 20521 if (tcp->tcp_ip_forward_progress) { 20522 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20523 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 20524 tcp->tcp_ip_forward_progress = B_FALSE; 20525 } 20526 20527 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20528 tcp_send_data(tcp, q, mp); 20529 BUMP_LOCAL(tcp->tcp_obsegs); 20530 } 20531 20532 return (0); 20533 } 20534 20535 /* Unlink and return any mblk that looks like it contains a MDT info */ 20536 static mblk_t * 20537 tcp_mdt_info_mp(mblk_t *mp) 20538 { 20539 mblk_t *prev_mp; 20540 20541 for (;;) { 20542 prev_mp = mp; 20543 /* no more to process? */ 20544 if ((mp = mp->b_cont) == NULL) 20545 break; 20546 20547 switch (DB_TYPE(mp)) { 20548 case M_CTL: 20549 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 20550 continue; 20551 ASSERT(prev_mp != NULL); 20552 prev_mp->b_cont = mp->b_cont; 20553 mp->b_cont = NULL; 20554 return (mp); 20555 default: 20556 break; 20557 } 20558 } 20559 return (mp); 20560 } 20561 20562 /* MDT info update routine, called when IP notifies us about MDT */ 20563 static void 20564 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 20565 { 20566 boolean_t prev_state; 20567 20568 /* 20569 * IP is telling us to abort MDT on this connection? We know 20570 * this because the capability is only turned off when IP 20571 * encounters some pathological cases, e.g. link-layer change 20572 * where the new driver doesn't support MDT, or in situation 20573 * where MDT usage on the link-layer has been switched off. 20574 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 20575 * if the link-layer doesn't support MDT, and if it does, it 20576 * will indicate that the feature is to be turned on. 20577 */ 20578 prev_state = tcp->tcp_mdt; 20579 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 20580 if (!tcp->tcp_mdt && !first) { 20581 TCP_STAT(tcp_mdt_conn_halted3); 20582 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 20583 (void *)tcp->tcp_connp)); 20584 } 20585 20586 /* 20587 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 20588 * so disable MDT otherwise. The checks are done here 20589 * and in tcp_wput_data(). 20590 */ 20591 if (tcp->tcp_mdt && 20592 (tcp->tcp_ipversion == IPV4_VERSION && 20593 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20594 (tcp->tcp_ipversion == IPV6_VERSION && 20595 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 20596 tcp->tcp_mdt = B_FALSE; 20597 20598 if (tcp->tcp_mdt) { 20599 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 20600 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 20601 "version (%d), expected version is %d", 20602 mdt_capab->ill_mdt_version, MDT_VERSION_2); 20603 tcp->tcp_mdt = B_FALSE; 20604 return; 20605 } 20606 20607 /* 20608 * We need the driver to be able to handle at least three 20609 * spans per packet in order for tcp MDT to be utilized. 20610 * The first is for the header portion, while the rest are 20611 * needed to handle a packet that straddles across two 20612 * virtually non-contiguous buffers; a typical tcp packet 20613 * therefore consists of only two spans. Note that we take 20614 * a zero as "don't care". 20615 */ 20616 if (mdt_capab->ill_mdt_span_limit > 0 && 20617 mdt_capab->ill_mdt_span_limit < 3) { 20618 tcp->tcp_mdt = B_FALSE; 20619 return; 20620 } 20621 20622 /* a zero means driver wants default value */ 20623 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 20624 tcp_mdt_max_pbufs); 20625 if (tcp->tcp_mdt_max_pld == 0) 20626 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 20627 20628 /* ensure 32-bit alignment */ 20629 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 20630 mdt_capab->ill_mdt_hdr_head), 4); 20631 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 20632 mdt_capab->ill_mdt_hdr_tail), 4); 20633 20634 if (!first && !prev_state) { 20635 TCP_STAT(tcp_mdt_conn_resumed2); 20636 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 20637 (void *)tcp->tcp_connp)); 20638 } 20639 } 20640 } 20641 20642 static void 20643 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) 20644 { 20645 conn_t *connp = tcp->tcp_connp; 20646 20647 ASSERT(ire != NULL); 20648 20649 /* 20650 * We may be in the fastpath here, and although we essentially do 20651 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, 20652 * we try to keep things as brief as possible. After all, these 20653 * are only best-effort checks, and we do more thorough ones prior 20654 * to calling tcp_multisend(). 20655 */ 20656 if (ip_multidata_outbound && check_mdt && 20657 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 20658 ill != NULL && ILL_MDT_CAPABLE(ill) && 20659 !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 20660 !(ire->ire_flags & RTF_MULTIRT) && 20661 !IPP_ENABLED(IPP_LOCAL_OUT) && 20662 CONN_IS_MD_FASTPATH(connp)) { 20663 /* Remember the result */ 20664 connp->conn_mdt_ok = B_TRUE; 20665 20666 ASSERT(ill->ill_mdt_capab != NULL); 20667 if (!ill->ill_mdt_capab->ill_mdt_on) { 20668 /* 20669 * If MDT has been previously turned off in the past, 20670 * and we currently can do MDT (due to IPQoS policy 20671 * removal, etc.) then enable it for this interface. 20672 */ 20673 ill->ill_mdt_capab->ill_mdt_on = 1; 20674 ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " 20675 "interface %s\n", (void *)connp, ill->ill_name)); 20676 } 20677 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 20678 } 20679 20680 /* 20681 * The goal is to reduce the number of generated tcp segments by 20682 * setting the maxpsz multiplier to 0; this will have an affect on 20683 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 20684 * into each packet, up to SMSS bytes. Doing this reduces the number 20685 * of outbound segments and incoming ACKs, thus allowing for better 20686 * network and system performance. In contrast the legacy behavior 20687 * may result in sending less than SMSS size, because the last mblk 20688 * for some packets may have more data than needed to make up SMSS, 20689 * and the legacy code refused to "split" it. 20690 * 20691 * We apply the new behavior on following situations: 20692 * 20693 * 1) Loopback connections, 20694 * 2) Connections in which the remote peer is not on local subnet, 20695 * 3) Local subnet connections over the bge interface (see below). 20696 * 20697 * Ideally, we would like this behavior to apply for interfaces other 20698 * than bge. However, doing so would negatively impact drivers which 20699 * perform dynamic mapping and unmapping of DMA resources, which are 20700 * increased by setting the maxpsz multiplier to 0 (more mblks per 20701 * packet will be generated by tcp). The bge driver does not suffer 20702 * from this, as it copies the mblks into pre-mapped buffers, and 20703 * therefore does not require more I/O resources than before. 20704 * 20705 * Otherwise, this behavior is present on all network interfaces when 20706 * the destination endpoint is non-local, since reducing the number 20707 * of packets in general is good for the network. 20708 * 20709 * TODO We need to remove this hard-coded conditional for bge once 20710 * a better "self-tuning" mechanism, or a way to comprehend 20711 * the driver transmit strategy is devised. Until the solution 20712 * is found and well understood, we live with this hack. 20713 */ 20714 if (!tcp_static_maxpsz && 20715 (tcp->tcp_loopback || !tcp->tcp_localnet || 20716 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 20717 /* override the default value */ 20718 tcp->tcp_maxpsz = 0; 20719 20720 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 20721 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 20722 ill != NULL ? ill->ill_name : ipif_loopback_name)); 20723 } 20724 20725 /* set the stream head parameters accordingly */ 20726 (void) tcp_maxpsz_set(tcp, B_TRUE); 20727 } 20728 20729 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 20730 static void 20731 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 20732 { 20733 uchar_t fval = *mp->b_rptr; 20734 mblk_t *tail; 20735 queue_t *q = tcp->tcp_wq; 20736 20737 /* TODO: How should flush interact with urgent data? */ 20738 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 20739 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 20740 /* 20741 * Flush only data that has not yet been put on the wire. If 20742 * we flush data that we have already transmitted, life, as we 20743 * know it, may come to an end. 20744 */ 20745 tail = tcp->tcp_xmit_tail; 20746 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 20747 tcp->tcp_xmit_tail_unsent = 0; 20748 tcp->tcp_unsent = 0; 20749 if (tail->b_wptr != tail->b_rptr) 20750 tail = tail->b_cont; 20751 if (tail) { 20752 mblk_t **excess = &tcp->tcp_xmit_head; 20753 for (;;) { 20754 mblk_t *mp1 = *excess; 20755 if (mp1 == tail) 20756 break; 20757 tcp->tcp_xmit_tail = mp1; 20758 tcp->tcp_xmit_last = mp1; 20759 excess = &mp1->b_cont; 20760 } 20761 *excess = NULL; 20762 tcp_close_mpp(&tail); 20763 if (tcp->tcp_snd_zcopy_aware) 20764 tcp_zcopy_notify(tcp); 20765 } 20766 /* 20767 * We have no unsent data, so unsent must be less than 20768 * tcp_xmit_lowater, so re-enable flow. 20769 */ 20770 if (tcp->tcp_flow_stopped) { 20771 tcp_clrqfull(tcp); 20772 } 20773 } 20774 /* 20775 * TODO: you can't just flush these, you have to increase rwnd for one 20776 * thing. For another, how should urgent data interact? 20777 */ 20778 if (fval & FLUSHR) { 20779 *mp->b_rptr = fval & ~FLUSHW; 20780 /* XXX */ 20781 qreply(q, mp); 20782 return; 20783 } 20784 freemsg(mp); 20785 } 20786 20787 /* 20788 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 20789 * messages. 20790 */ 20791 static void 20792 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 20793 { 20794 mblk_t *mp1; 20795 STRUCT_HANDLE(strbuf, sb); 20796 uint16_t port; 20797 queue_t *q = tcp->tcp_wq; 20798 in6_addr_t v6addr; 20799 ipaddr_t v4addr; 20800 uint32_t flowinfo = 0; 20801 int addrlen; 20802 20803 /* Make sure it is one of ours. */ 20804 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20805 case TI_GETMYNAME: 20806 case TI_GETPEERNAME: 20807 break; 20808 default: 20809 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20810 return; 20811 } 20812 switch (mi_copy_state(q, mp, &mp1)) { 20813 case -1: 20814 return; 20815 case MI_COPY_CASE(MI_COPY_IN, 1): 20816 break; 20817 case MI_COPY_CASE(MI_COPY_OUT, 1): 20818 /* Copy out the strbuf. */ 20819 mi_copyout(q, mp); 20820 return; 20821 case MI_COPY_CASE(MI_COPY_OUT, 2): 20822 /* All done. */ 20823 mi_copy_done(q, mp, 0); 20824 return; 20825 default: 20826 mi_copy_done(q, mp, EPROTO); 20827 return; 20828 } 20829 /* Check alignment of the strbuf */ 20830 if (!OK_32PTR(mp1->b_rptr)) { 20831 mi_copy_done(q, mp, EINVAL); 20832 return; 20833 } 20834 20835 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 20836 (void *)mp1->b_rptr); 20837 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 20838 20839 if (STRUCT_FGET(sb, maxlen) < addrlen) { 20840 mi_copy_done(q, mp, EINVAL); 20841 return; 20842 } 20843 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20844 case TI_GETMYNAME: 20845 if (tcp->tcp_family == AF_INET) { 20846 if (tcp->tcp_ipversion == IPV4_VERSION) { 20847 v4addr = tcp->tcp_ipha->ipha_src; 20848 } else { 20849 /* can't return an address in this case */ 20850 v4addr = 0; 20851 } 20852 } else { 20853 /* tcp->tcp_family == AF_INET6 */ 20854 if (tcp->tcp_ipversion == IPV4_VERSION) { 20855 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 20856 &v6addr); 20857 } else { 20858 v6addr = tcp->tcp_ip6h->ip6_src; 20859 } 20860 } 20861 port = tcp->tcp_lport; 20862 break; 20863 case TI_GETPEERNAME: 20864 if (tcp->tcp_family == AF_INET) { 20865 if (tcp->tcp_ipversion == IPV4_VERSION) { 20866 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 20867 v4addr); 20868 } else { 20869 /* can't return an address in this case */ 20870 v4addr = 0; 20871 } 20872 } else { 20873 /* tcp->tcp_family == AF_INET6) */ 20874 v6addr = tcp->tcp_remote_v6; 20875 if (tcp->tcp_ipversion == IPV6_VERSION) { 20876 /* 20877 * No flowinfo if tcp->tcp_ipversion is v4. 20878 * 20879 * flowinfo was already initialized to zero 20880 * where it was declared above, so only 20881 * set it if ipversion is v6. 20882 */ 20883 flowinfo = tcp->tcp_ip6h->ip6_vcf & 20884 ~IPV6_VERS_AND_FLOW_MASK; 20885 } 20886 } 20887 port = tcp->tcp_fport; 20888 break; 20889 default: 20890 mi_copy_done(q, mp, EPROTO); 20891 return; 20892 } 20893 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 20894 if (!mp1) 20895 return; 20896 20897 if (tcp->tcp_family == AF_INET) { 20898 sin_t *sin; 20899 20900 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 20901 sin = (sin_t *)mp1->b_rptr; 20902 mp1->b_wptr = (uchar_t *)&sin[1]; 20903 *sin = sin_null; 20904 sin->sin_family = AF_INET; 20905 sin->sin_addr.s_addr = v4addr; 20906 sin->sin_port = port; 20907 } else { 20908 /* tcp->tcp_family == AF_INET6 */ 20909 sin6_t *sin6; 20910 20911 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 20912 sin6 = (sin6_t *)mp1->b_rptr; 20913 mp1->b_wptr = (uchar_t *)&sin6[1]; 20914 *sin6 = sin6_null; 20915 sin6->sin6_family = AF_INET6; 20916 sin6->sin6_flowinfo = flowinfo; 20917 sin6->sin6_addr = v6addr; 20918 sin6->sin6_port = port; 20919 } 20920 /* Copy out the address */ 20921 mi_copyout(q, mp); 20922 } 20923 20924 /* 20925 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 20926 * messages. 20927 */ 20928 /* ARGSUSED */ 20929 static void 20930 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 20931 { 20932 conn_t *connp = (conn_t *)arg; 20933 tcp_t *tcp = connp->conn_tcp; 20934 queue_t *q = tcp->tcp_wq; 20935 struct iocblk *iocp; 20936 20937 ASSERT(DB_TYPE(mp) == M_IOCTL); 20938 /* 20939 * Try and ASSERT the minimum possible references on the 20940 * conn early enough. Since we are executing on write side, 20941 * the connection is obviously not detached and that means 20942 * there is a ref each for TCP and IP. Since we are behind 20943 * the squeue, the minimum references needed are 3. If the 20944 * conn is in classifier hash list, there should be an 20945 * extra ref for that (we check both the possibilities). 20946 */ 20947 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20948 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20949 20950 iocp = (struct iocblk *)mp->b_rptr; 20951 switch (iocp->ioc_cmd) { 20952 case TCP_IOC_DEFAULT_Q: 20953 /* Wants to be the default wq. */ 20954 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 20955 iocp->ioc_error = EPERM; 20956 iocp->ioc_count = 0; 20957 mp->b_datap->db_type = M_IOCACK; 20958 qreply(q, mp); 20959 return; 20960 } 20961 tcp_def_q_set(tcp, mp); 20962 return; 20963 case _SIOCSOCKFALLBACK: 20964 /* 20965 * Either sockmod is about to be popped and the socket 20966 * would now be treated as a plain stream, or a module 20967 * is about to be pushed so we could no longer use read- 20968 * side synchronous streams for fused loopback tcp. 20969 * Drain any queued data and disable direct sockfs 20970 * interface from now on. 20971 */ 20972 if (!tcp->tcp_issocket) { 20973 DB_TYPE(mp) = M_IOCNAK; 20974 iocp->ioc_error = EINVAL; 20975 } else { 20976 #ifdef _ILP32 20977 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 20978 #else 20979 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 20980 #endif 20981 /* 20982 * Insert this socket into the acceptor hash. 20983 * We might need it for T_CONN_RES message 20984 */ 20985 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 20986 20987 if (tcp->tcp_fused) { 20988 /* 20989 * This is a fused loopback tcp; disable 20990 * read-side synchronous streams interface 20991 * and drain any queued data. It is okay 20992 * to do this for non-synchronous streams 20993 * fused tcp as well. 20994 */ 20995 tcp_fuse_disable_pair(tcp, B_FALSE); 20996 } 20997 tcp->tcp_issocket = B_FALSE; 20998 TCP_STAT(tcp_sock_fallback); 20999 21000 DB_TYPE(mp) = M_IOCACK; 21001 iocp->ioc_error = 0; 21002 } 21003 iocp->ioc_count = 0; 21004 iocp->ioc_rval = 0; 21005 qreply(q, mp); 21006 return; 21007 } 21008 CALL_IP_WPUT(connp, q, mp); 21009 } 21010 21011 /* 21012 * This routine is called by tcp_wput() to handle all TPI requests. 21013 */ 21014 /* ARGSUSED */ 21015 static void 21016 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21017 { 21018 conn_t *connp = (conn_t *)arg; 21019 tcp_t *tcp = connp->conn_tcp; 21020 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21021 uchar_t *rptr; 21022 t_scalar_t type; 21023 int len; 21024 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 21025 21026 /* 21027 * Try and ASSERT the minimum possible references on the 21028 * conn early enough. Since we are executing on write side, 21029 * the connection is obviously not detached and that means 21030 * there is a ref each for TCP and IP. Since we are behind 21031 * the squeue, the minimum references needed are 3. If the 21032 * conn is in classifier hash list, there should be an 21033 * extra ref for that (we check both the possibilities). 21034 */ 21035 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21036 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21037 21038 rptr = mp->b_rptr; 21039 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21040 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21041 type = ((union T_primitives *)rptr)->type; 21042 if (type == T_EXDATA_REQ) { 21043 uint32_t msize = msgdsize(mp->b_cont); 21044 21045 len = msize - 1; 21046 if (len < 0) { 21047 freemsg(mp); 21048 return; 21049 } 21050 /* 21051 * Try to force urgent data out on the wire. 21052 * Even if we have unsent data this will 21053 * at least send the urgent flag. 21054 * XXX does not handle more flag correctly. 21055 */ 21056 len += tcp->tcp_unsent; 21057 len += tcp->tcp_snxt; 21058 tcp->tcp_urg = len; 21059 tcp->tcp_valid_bits |= TCP_URG_VALID; 21060 21061 /* Bypass tcp protocol for fused tcp loopback */ 21062 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21063 return; 21064 } else if (type != T_DATA_REQ) { 21065 goto non_urgent_data; 21066 } 21067 /* TODO: options, flags, ... from user */ 21068 /* Set length to zero for reclamation below */ 21069 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21070 freeb(mp); 21071 return; 21072 } else { 21073 if (tcp->tcp_debug) { 21074 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21075 "tcp_wput_proto, dropping one..."); 21076 } 21077 freemsg(mp); 21078 return; 21079 } 21080 21081 non_urgent_data: 21082 21083 switch ((int)tprim->type) { 21084 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21085 /* 21086 * save the kssl_ent_t from the next block, and convert this 21087 * back to a normal bind_req. 21088 */ 21089 if (mp->b_cont != NULL) { 21090 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21091 21092 if (tcp->tcp_kssl_ent != NULL) { 21093 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21094 KSSL_NO_PROXY); 21095 tcp->tcp_kssl_ent = NULL; 21096 } 21097 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21098 sizeof (kssl_ent_t)); 21099 kssl_hold_ent(tcp->tcp_kssl_ent); 21100 freemsg(mp->b_cont); 21101 mp->b_cont = NULL; 21102 } 21103 tprim->type = T_BIND_REQ; 21104 21105 /* FALLTHROUGH */ 21106 case O_T_BIND_REQ: /* bind request */ 21107 case T_BIND_REQ: /* new semantics bind request */ 21108 tcp_bind(tcp, mp); 21109 break; 21110 case T_UNBIND_REQ: /* unbind request */ 21111 tcp_unbind(tcp, mp); 21112 break; 21113 case O_T_CONN_RES: /* old connection response XXX */ 21114 case T_CONN_RES: /* connection response */ 21115 tcp_accept(tcp, mp); 21116 break; 21117 case T_CONN_REQ: /* connection request */ 21118 tcp_connect(tcp, mp); 21119 break; 21120 case T_DISCON_REQ: /* disconnect request */ 21121 tcp_disconnect(tcp, mp); 21122 break; 21123 case T_CAPABILITY_REQ: 21124 tcp_capability_req(tcp, mp); /* capability request */ 21125 break; 21126 case T_INFO_REQ: /* information request */ 21127 tcp_info_req(tcp, mp); 21128 break; 21129 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21130 /* Only IP is allowed to return meaningful value */ 21131 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21132 break; 21133 case T_OPTMGMT_REQ: 21134 /* 21135 * Note: no support for snmpcom_req() through new 21136 * T_OPTMGMT_REQ. See comments in ip.c 21137 */ 21138 /* Only IP is allowed to return meaningful value */ 21139 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21140 break; 21141 21142 case T_UNITDATA_REQ: /* unitdata request */ 21143 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21144 break; 21145 case T_ORDREL_REQ: /* orderly release req */ 21146 freemsg(mp); 21147 21148 if (tcp->tcp_fused) 21149 tcp_unfuse(tcp); 21150 21151 if (tcp_xmit_end(tcp) != 0) { 21152 /* 21153 * We were crossing FINs and got a reset from 21154 * the other side. Just ignore it. 21155 */ 21156 if (tcp->tcp_debug) { 21157 (void) strlog(TCP_MOD_ID, 0, 1, 21158 SL_ERROR|SL_TRACE, 21159 "tcp_wput_proto, T_ORDREL_REQ out of " 21160 "state %s", 21161 tcp_display(tcp, NULL, 21162 DISP_ADDR_AND_PORT)); 21163 } 21164 } 21165 break; 21166 case T_ADDR_REQ: 21167 tcp_addr_req(tcp, mp); 21168 break; 21169 default: 21170 if (tcp->tcp_debug) { 21171 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21172 "tcp_wput_proto, bogus TPI msg, type %d", 21173 tprim->type); 21174 } 21175 /* 21176 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21177 * to recover. 21178 */ 21179 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21180 break; 21181 } 21182 } 21183 21184 /* 21185 * The TCP write service routine should never be called... 21186 */ 21187 /* ARGSUSED */ 21188 static void 21189 tcp_wsrv(queue_t *q) 21190 { 21191 TCP_STAT(tcp_wsrv_called); 21192 } 21193 21194 /* Non overlapping byte exchanger */ 21195 static void 21196 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21197 { 21198 uchar_t uch; 21199 21200 while (len-- > 0) { 21201 uch = a[len]; 21202 a[len] = b[len]; 21203 b[len] = uch; 21204 } 21205 } 21206 21207 /* 21208 * Send out a control packet on the tcp connection specified. This routine 21209 * is typically called where we need a simple ACK or RST generated. 21210 */ 21211 static void 21212 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21213 { 21214 uchar_t *rptr; 21215 tcph_t *tcph; 21216 ipha_t *ipha = NULL; 21217 ip6_t *ip6h = NULL; 21218 uint32_t sum; 21219 int tcp_hdr_len; 21220 int tcp_ip_hdr_len; 21221 mblk_t *mp; 21222 21223 /* 21224 * Save sum for use in source route later. 21225 */ 21226 ASSERT(tcp != NULL); 21227 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21228 tcp_hdr_len = tcp->tcp_hdr_len; 21229 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21230 21231 /* If a text string is passed in with the request, pass it to strlog. */ 21232 if (str != NULL && tcp->tcp_debug) { 21233 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21234 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21235 str, seq, ack, ctl); 21236 } 21237 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21238 BPRI_MED); 21239 if (mp == NULL) { 21240 return; 21241 } 21242 rptr = &mp->b_rptr[tcp_wroff_xtra]; 21243 mp->b_rptr = rptr; 21244 mp->b_wptr = &rptr[tcp_hdr_len]; 21245 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21246 21247 if (tcp->tcp_ipversion == IPV4_VERSION) { 21248 ipha = (ipha_t *)rptr; 21249 ipha->ipha_length = htons(tcp_hdr_len); 21250 } else { 21251 ip6h = (ip6_t *)rptr; 21252 ASSERT(tcp != NULL); 21253 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21254 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21255 } 21256 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21257 tcph->th_flags[0] = (uint8_t)ctl; 21258 if (ctl & TH_RST) { 21259 BUMP_MIB(&tcp_mib, tcpOutRsts); 21260 BUMP_MIB(&tcp_mib, tcpOutControl); 21261 /* 21262 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21263 */ 21264 if (tcp->tcp_snd_ts_ok && 21265 tcp->tcp_state > TCPS_SYN_SENT) { 21266 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21267 *(mp->b_wptr) = TCPOPT_EOL; 21268 if (tcp->tcp_ipversion == IPV4_VERSION) { 21269 ipha->ipha_length = htons(tcp_hdr_len - 21270 TCPOPT_REAL_TS_LEN); 21271 } else { 21272 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21273 TCPOPT_REAL_TS_LEN); 21274 } 21275 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21276 sum -= TCPOPT_REAL_TS_LEN; 21277 } 21278 } 21279 if (ctl & TH_ACK) { 21280 if (tcp->tcp_snd_ts_ok) { 21281 U32_TO_BE32(lbolt, 21282 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21283 U32_TO_BE32(tcp->tcp_ts_recent, 21284 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21285 } 21286 21287 /* Update the latest receive window size in TCP header. */ 21288 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21289 tcph->th_win); 21290 tcp->tcp_rack = ack; 21291 tcp->tcp_rack_cnt = 0; 21292 BUMP_MIB(&tcp_mib, tcpOutAck); 21293 } 21294 BUMP_LOCAL(tcp->tcp_obsegs); 21295 U32_TO_BE32(seq, tcph->th_seq); 21296 U32_TO_BE32(ack, tcph->th_ack); 21297 /* 21298 * Include the adjustment for a source route if any. 21299 */ 21300 sum = (sum >> 16) + (sum & 0xFFFF); 21301 U16_TO_BE16(sum, tcph->th_sum); 21302 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21303 tcp_send_data(tcp, tcp->tcp_wq, mp); 21304 } 21305 21306 /* 21307 * If this routine returns B_TRUE, TCP can generate a RST in response 21308 * to a segment. If it returns B_FALSE, TCP should not respond. 21309 */ 21310 static boolean_t 21311 tcp_send_rst_chk(void) 21312 { 21313 clock_t now; 21314 21315 /* 21316 * TCP needs to protect itself from generating too many RSTs. 21317 * This can be a DoS attack by sending us random segments 21318 * soliciting RSTs. 21319 * 21320 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21321 * in each 1 second interval. In this way, TCP still generate 21322 * RSTs in normal cases but when under attack, the impact is 21323 * limited. 21324 */ 21325 if (tcp_rst_sent_rate_enabled != 0) { 21326 now = lbolt; 21327 /* lbolt can wrap around. */ 21328 if ((tcp_last_rst_intrvl > now) || 21329 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 21330 tcp_last_rst_intrvl = now; 21331 tcp_rst_cnt = 1; 21332 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 21333 return (B_FALSE); 21334 } 21335 } 21336 return (B_TRUE); 21337 } 21338 21339 /* 21340 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21341 */ 21342 static void 21343 tcp_ip_ire_mark_advice(tcp_t *tcp) 21344 { 21345 mblk_t *mp; 21346 ipic_t *ipic; 21347 21348 if (tcp->tcp_ipversion == IPV4_VERSION) { 21349 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21350 &ipic); 21351 } else { 21352 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21353 &ipic); 21354 } 21355 if (mp == NULL) 21356 return; 21357 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21358 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21359 } 21360 21361 /* 21362 * Return an IP advice ioctl mblk and set ipic to be the pointer 21363 * to the advice structure. 21364 */ 21365 static mblk_t * 21366 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21367 { 21368 struct iocblk *ioc; 21369 mblk_t *mp, *mp1; 21370 21371 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21372 if (mp == NULL) 21373 return (NULL); 21374 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21375 *ipic = (ipic_t *)mp->b_rptr; 21376 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21377 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21378 21379 bcopy(addr, *ipic + 1, addr_len); 21380 21381 (*ipic)->ipic_addr_length = addr_len; 21382 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21383 21384 mp1 = mkiocb(IP_IOCTL); 21385 if (mp1 == NULL) { 21386 freemsg(mp); 21387 return (NULL); 21388 } 21389 mp1->b_cont = mp; 21390 ioc = (struct iocblk *)mp1->b_rptr; 21391 ioc->ioc_count = sizeof (ipic_t) + addr_len; 21392 21393 return (mp1); 21394 } 21395 21396 /* 21397 * Generate a reset based on an inbound packet for which there is no active 21398 * tcp state that we can find. 21399 * 21400 * IPSEC NOTE : Try to send the reply with the same protection as it came 21401 * in. We still have the ipsec_mp that the packet was attached to. Thus 21402 * the packet will go out at the same level of protection as it came in by 21403 * converting the IPSEC_IN to IPSEC_OUT. 21404 */ 21405 static void 21406 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 21407 uint32_t ack, int ctl, uint_t ip_hdr_len) 21408 { 21409 ipha_t *ipha = NULL; 21410 ip6_t *ip6h = NULL; 21411 ushort_t len; 21412 tcph_t *tcph; 21413 int i; 21414 mblk_t *ipsec_mp; 21415 boolean_t mctl_present; 21416 ipic_t *ipic; 21417 ipaddr_t v4addr; 21418 in6_addr_t v6addr; 21419 int addr_len; 21420 void *addr; 21421 queue_t *q = tcp_g_q; 21422 tcp_t *tcp = Q_TO_TCP(q); 21423 cred_t *cr; 21424 21425 if (!tcp_send_rst_chk()) { 21426 tcp_rst_unsent++; 21427 freemsg(mp); 21428 return; 21429 } 21430 21431 if (mp->b_datap->db_type == M_CTL) { 21432 ipsec_mp = mp; 21433 mp = mp->b_cont; 21434 mctl_present = B_TRUE; 21435 } else { 21436 ipsec_mp = mp; 21437 mctl_present = B_FALSE; 21438 } 21439 21440 if (str && q && tcp_dbg) { 21441 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21442 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 21443 "flags 0x%x", 21444 str, seq, ack, ctl); 21445 } 21446 if (mp->b_datap->db_ref != 1) { 21447 mblk_t *mp1 = copyb(mp); 21448 freemsg(mp); 21449 mp = mp1; 21450 if (!mp) { 21451 if (mctl_present) 21452 freeb(ipsec_mp); 21453 return; 21454 } else { 21455 if (mctl_present) { 21456 ipsec_mp->b_cont = mp; 21457 } else { 21458 ipsec_mp = mp; 21459 } 21460 } 21461 } else if (mp->b_cont) { 21462 freemsg(mp->b_cont); 21463 mp->b_cont = NULL; 21464 } 21465 /* 21466 * We skip reversing source route here. 21467 * (for now we replace all IP options with EOL) 21468 */ 21469 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21470 ipha = (ipha_t *)mp->b_rptr; 21471 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 21472 mp->b_rptr[i] = IPOPT_EOL; 21473 /* 21474 * Make sure that src address isn't flagrantly invalid. 21475 * Not all broadcast address checking for the src address 21476 * is possible, since we don't know the netmask of the src 21477 * addr. No check for destination address is done, since 21478 * IP will not pass up a packet with a broadcast dest 21479 * address to TCP. Similar checks are done below for IPv6. 21480 */ 21481 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 21482 CLASSD(ipha->ipha_src)) { 21483 freemsg(ipsec_mp); 21484 BUMP_MIB(&ip_mib, ipInDiscards); 21485 return; 21486 } 21487 } else { 21488 ip6h = (ip6_t *)mp->b_rptr; 21489 21490 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 21491 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 21492 freemsg(ipsec_mp); 21493 BUMP_MIB(&ip6_mib, ipv6InDiscards); 21494 return; 21495 } 21496 21497 /* Remove any extension headers assuming partial overlay */ 21498 if (ip_hdr_len > IPV6_HDR_LEN) { 21499 uint8_t *to; 21500 21501 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 21502 ovbcopy(ip6h, to, IPV6_HDR_LEN); 21503 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 21504 ip_hdr_len = IPV6_HDR_LEN; 21505 ip6h = (ip6_t *)mp->b_rptr; 21506 ip6h->ip6_nxt = IPPROTO_TCP; 21507 } 21508 } 21509 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 21510 if (tcph->th_flags[0] & TH_RST) { 21511 freemsg(ipsec_mp); 21512 return; 21513 } 21514 tcph->th_offset_and_rsrvd[0] = (5 << 4); 21515 len = ip_hdr_len + sizeof (tcph_t); 21516 mp->b_wptr = &mp->b_rptr[len]; 21517 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21518 ipha->ipha_length = htons(len); 21519 /* Swap addresses */ 21520 v4addr = ipha->ipha_src; 21521 ipha->ipha_src = ipha->ipha_dst; 21522 ipha->ipha_dst = v4addr; 21523 ipha->ipha_ident = 0; 21524 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 21525 addr_len = IP_ADDR_LEN; 21526 addr = &v4addr; 21527 } else { 21528 /* No ip6i_t in this case */ 21529 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 21530 /* Swap addresses */ 21531 v6addr = ip6h->ip6_src; 21532 ip6h->ip6_src = ip6h->ip6_dst; 21533 ip6h->ip6_dst = v6addr; 21534 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 21535 addr_len = IPV6_ADDR_LEN; 21536 addr = &v6addr; 21537 } 21538 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 21539 U32_TO_BE32(ack, tcph->th_ack); 21540 U32_TO_BE32(seq, tcph->th_seq); 21541 U16_TO_BE16(0, tcph->th_win); 21542 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 21543 tcph->th_flags[0] = (uint8_t)ctl; 21544 if (ctl & TH_RST) { 21545 BUMP_MIB(&tcp_mib, tcpOutRsts); 21546 BUMP_MIB(&tcp_mib, tcpOutControl); 21547 } 21548 21549 /* IP trusts us to set up labels when required. */ 21550 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 21551 crgetlabel(cr) != NULL) { 21552 int err, adjust; 21553 21554 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 21555 err = tsol_check_label(cr, &mp, &adjust, 21556 tcp->tcp_connp->conn_mac_exempt); 21557 else 21558 err = tsol_check_label_v6(cr, &mp, &adjust, 21559 tcp->tcp_connp->conn_mac_exempt); 21560 if (mctl_present) 21561 ipsec_mp->b_cont = mp; 21562 else 21563 ipsec_mp = mp; 21564 if (err != 0) { 21565 freemsg(ipsec_mp); 21566 return; 21567 } 21568 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21569 ipha = (ipha_t *)mp->b_rptr; 21570 adjust += ntohs(ipha->ipha_length); 21571 ipha->ipha_length = htons(adjust); 21572 } else { 21573 ip6h = (ip6_t *)mp->b_rptr; 21574 } 21575 } 21576 21577 if (mctl_present) { 21578 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21579 21580 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21581 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 21582 return; 21583 } 21584 } 21585 /* 21586 * NOTE: one might consider tracing a TCP packet here, but 21587 * this function has no active TCP state and no tcp structure 21588 * that has a trace buffer. If we traced here, we would have 21589 * to keep a local trace buffer in tcp_record_trace(). 21590 * 21591 * TSol note: The mblk that contains the incoming packet was 21592 * reused by tcp_xmit_listener_reset, so it already contains 21593 * the right credentials and we don't need to call mblk_setcred. 21594 * Also the conn's cred is not right since it is associated 21595 * with tcp_g_q. 21596 */ 21597 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 21598 21599 /* 21600 * Tell IP to mark the IRE used for this destination temporary. 21601 * This way, we can limit our exposure to DoS attack because IP 21602 * creates an IRE for each destination. If there are too many, 21603 * the time to do any routing lookup will be extremely long. And 21604 * the lookup can be in interrupt context. 21605 * 21606 * Note that in normal circumstances, this marking should not 21607 * affect anything. It would be nice if only 1 message is 21608 * needed to inform IP that the IRE created for this RST should 21609 * not be added to the cache table. But there is currently 21610 * not such communication mechanism between TCP and IP. So 21611 * the best we can do now is to send the advice ioctl to IP 21612 * to mark the IRE temporary. 21613 */ 21614 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 21615 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21616 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21617 } 21618 } 21619 21620 /* 21621 * Initiate closedown sequence on an active connection. (May be called as 21622 * writer.) Return value zero for OK return, non-zero for error return. 21623 */ 21624 static int 21625 tcp_xmit_end(tcp_t *tcp) 21626 { 21627 ipic_t *ipic; 21628 mblk_t *mp; 21629 21630 if (tcp->tcp_state < TCPS_SYN_RCVD || 21631 tcp->tcp_state > TCPS_CLOSE_WAIT) { 21632 /* 21633 * Invalid state, only states TCPS_SYN_RCVD, 21634 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 21635 */ 21636 return (-1); 21637 } 21638 21639 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 21640 tcp->tcp_valid_bits |= TCP_FSS_VALID; 21641 /* 21642 * If there is nothing more unsent, send the FIN now. 21643 * Otherwise, it will go out with the last segment. 21644 */ 21645 if (tcp->tcp_unsent == 0) { 21646 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21647 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 21648 21649 if (mp) { 21650 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21651 tcp_send_data(tcp, tcp->tcp_wq, mp); 21652 } else { 21653 /* 21654 * Couldn't allocate msg. Pretend we got it out. 21655 * Wait for rexmit timeout. 21656 */ 21657 tcp->tcp_snxt = tcp->tcp_fss + 1; 21658 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21659 } 21660 21661 /* 21662 * If needed, update tcp_rexmit_snxt as tcp_snxt is 21663 * changed. 21664 */ 21665 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 21666 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 21667 } 21668 } else { 21669 /* 21670 * If tcp->tcp_cork is set, then the data will not get sent, 21671 * so we have to check that and unset it first. 21672 */ 21673 if (tcp->tcp_cork) 21674 tcp->tcp_cork = B_FALSE; 21675 tcp_wput_data(tcp, NULL, B_FALSE); 21676 } 21677 21678 /* 21679 * If TCP does not get enough samples of RTT or tcp_rtt_updates 21680 * is 0, don't update the cache. 21681 */ 21682 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 21683 return (0); 21684 21685 /* 21686 * NOTE: should not update if source routes i.e. if tcp_remote if 21687 * different from the destination. 21688 */ 21689 if (tcp->tcp_ipversion == IPV4_VERSION) { 21690 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 21691 return (0); 21692 } 21693 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21694 &ipic); 21695 } else { 21696 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 21697 &tcp->tcp_ip6h->ip6_dst))) { 21698 return (0); 21699 } 21700 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21701 &ipic); 21702 } 21703 21704 /* Record route attributes in the IRE for use by future connections. */ 21705 if (mp == NULL) 21706 return (0); 21707 21708 /* 21709 * We do not have a good algorithm to update ssthresh at this time. 21710 * So don't do any update. 21711 */ 21712 ipic->ipic_rtt = tcp->tcp_rtt_sa; 21713 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 21714 21715 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21716 return (0); 21717 } 21718 21719 /* 21720 * Generate a "no listener here" RST in response to an "unknown" segment. 21721 * Note that we are reusing the incoming mp to construct the outgoing 21722 * RST. 21723 */ 21724 void 21725 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len) 21726 { 21727 uchar_t *rptr; 21728 uint32_t seg_len; 21729 tcph_t *tcph; 21730 uint32_t seg_seq; 21731 uint32_t seg_ack; 21732 uint_t flags; 21733 mblk_t *ipsec_mp; 21734 ipha_t *ipha; 21735 ip6_t *ip6h; 21736 boolean_t mctl_present = B_FALSE; 21737 boolean_t check = B_TRUE; 21738 boolean_t policy_present; 21739 21740 TCP_STAT(tcp_no_listener); 21741 21742 ipsec_mp = mp; 21743 21744 if (mp->b_datap->db_type == M_CTL) { 21745 ipsec_in_t *ii; 21746 21747 mctl_present = B_TRUE; 21748 mp = mp->b_cont; 21749 21750 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21751 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21752 if (ii->ipsec_in_dont_check) { 21753 check = B_FALSE; 21754 if (!ii->ipsec_in_secure) { 21755 freeb(ipsec_mp); 21756 mctl_present = B_FALSE; 21757 ipsec_mp = mp; 21758 } 21759 } 21760 } 21761 21762 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21763 policy_present = ipsec_inbound_v4_policy_present; 21764 ipha = (ipha_t *)mp->b_rptr; 21765 ip6h = NULL; 21766 } else { 21767 policy_present = ipsec_inbound_v6_policy_present; 21768 ipha = NULL; 21769 ip6h = (ip6_t *)mp->b_rptr; 21770 } 21771 21772 if (check && policy_present) { 21773 /* 21774 * The conn_t parameter is NULL because we already know 21775 * nobody's home. 21776 */ 21777 ipsec_mp = ipsec_check_global_policy( 21778 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 21779 if (ipsec_mp == NULL) 21780 return; 21781 } 21782 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 21783 DTRACE_PROBE2( 21784 tx__ip__log__error__nolistener__tcp, 21785 char *, "Could not reply with RST to mp(1)", 21786 mblk_t *, mp); 21787 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 21788 freemsg(ipsec_mp); 21789 return; 21790 } 21791 21792 rptr = mp->b_rptr; 21793 21794 tcph = (tcph_t *)&rptr[ip_hdr_len]; 21795 seg_seq = BE32_TO_U32(tcph->th_seq); 21796 seg_ack = BE32_TO_U32(tcph->th_ack); 21797 flags = tcph->th_flags[0]; 21798 21799 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 21800 if (flags & TH_RST) { 21801 freemsg(ipsec_mp); 21802 } else if (flags & TH_ACK) { 21803 tcp_xmit_early_reset("no tcp, reset", 21804 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len); 21805 } else { 21806 if (flags & TH_SYN) { 21807 seg_len++; 21808 } else { 21809 /* 21810 * Here we violate the RFC. Note that a normal 21811 * TCP will never send a segment without the ACK 21812 * flag, except for RST or SYN segment. This 21813 * segment is neither. Just drop it on the 21814 * floor. 21815 */ 21816 freemsg(ipsec_mp); 21817 tcp_rst_unsent++; 21818 return; 21819 } 21820 21821 tcp_xmit_early_reset("no tcp, reset/ack", 21822 ipsec_mp, 0, seg_seq + seg_len, 21823 TH_RST | TH_ACK, ip_hdr_len); 21824 } 21825 } 21826 21827 /* 21828 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 21829 * ip and tcp header ready to pass down to IP. If the mp passed in is 21830 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 21831 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 21832 * otherwise it will dup partial mblks.) 21833 * Otherwise, an appropriate ACK packet will be generated. This 21834 * routine is not usually called to send new data for the first time. It 21835 * is mostly called out of the timer for retransmits, and to generate ACKs. 21836 * 21837 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 21838 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 21839 * of the original mblk chain will be returned in *offset and *end_mp. 21840 */ 21841 static mblk_t * 21842 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 21843 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 21844 boolean_t rexmit) 21845 { 21846 int data_length; 21847 int32_t off = 0; 21848 uint_t flags; 21849 mblk_t *mp1; 21850 mblk_t *mp2; 21851 uchar_t *rptr; 21852 tcph_t *tcph; 21853 int32_t num_sack_blk = 0; 21854 int32_t sack_opt_len = 0; 21855 21856 /* Allocate for our maximum TCP header + link-level */ 21857 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21858 BPRI_MED); 21859 if (!mp1) 21860 return (NULL); 21861 data_length = 0; 21862 21863 /* 21864 * Note that tcp_mss has been adjusted to take into account the 21865 * timestamp option if applicable. Because SACK options do not 21866 * appear in every TCP segments and they are of variable lengths, 21867 * they cannot be included in tcp_mss. Thus we need to calculate 21868 * the actual segment length when we need to send a segment which 21869 * includes SACK options. 21870 */ 21871 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21872 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21873 tcp->tcp_num_sack_blk); 21874 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21875 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21876 if (max_to_send + sack_opt_len > tcp->tcp_mss) 21877 max_to_send -= sack_opt_len; 21878 } 21879 21880 if (offset != NULL) { 21881 off = *offset; 21882 /* We use offset as an indicator that end_mp is not NULL. */ 21883 *end_mp = NULL; 21884 } 21885 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 21886 /* This could be faster with cooperation from downstream */ 21887 if (mp2 != mp1 && !sendall && 21888 data_length + (int)(mp->b_wptr - mp->b_rptr) > 21889 max_to_send) 21890 /* 21891 * Don't send the next mblk since the whole mblk 21892 * does not fit. 21893 */ 21894 break; 21895 mp2->b_cont = dupb(mp); 21896 mp2 = mp2->b_cont; 21897 if (!mp2) { 21898 freemsg(mp1); 21899 return (NULL); 21900 } 21901 mp2->b_rptr += off; 21902 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 21903 (uintptr_t)INT_MAX); 21904 21905 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 21906 if (data_length > max_to_send) { 21907 mp2->b_wptr -= data_length - max_to_send; 21908 data_length = max_to_send; 21909 off = mp2->b_wptr - mp->b_rptr; 21910 break; 21911 } else { 21912 off = 0; 21913 } 21914 } 21915 if (offset != NULL) { 21916 *offset = off; 21917 *end_mp = mp; 21918 } 21919 if (seg_len != NULL) { 21920 *seg_len = data_length; 21921 } 21922 21923 /* Update the latest receive window size in TCP header. */ 21924 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21925 tcp->tcp_tcph->th_win); 21926 21927 rptr = mp1->b_rptr + tcp_wroff_xtra; 21928 mp1->b_rptr = rptr; 21929 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 21930 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21931 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21932 U32_TO_ABE32(seq, tcph->th_seq); 21933 21934 /* 21935 * Use tcp_unsent to determine if the PUSH bit should be used assumes 21936 * that this function was called from tcp_wput_data. Thus, when called 21937 * to retransmit data the setting of the PUSH bit may appear some 21938 * what random in that it might get set when it should not. This 21939 * should not pose any performance issues. 21940 */ 21941 if (data_length != 0 && (tcp->tcp_unsent == 0 || 21942 tcp->tcp_unsent == data_length)) { 21943 flags = TH_ACK | TH_PUSH; 21944 } else { 21945 flags = TH_ACK; 21946 } 21947 21948 if (tcp->tcp_ecn_ok) { 21949 if (tcp->tcp_ecn_echo_on) 21950 flags |= TH_ECE; 21951 21952 /* 21953 * Only set ECT bit and ECN_CWR if a segment contains new data. 21954 * There is no TCP flow control for non-data segments, and 21955 * only data segment is transmitted reliably. 21956 */ 21957 if (data_length > 0 && !rexmit) { 21958 SET_ECT(tcp, rptr); 21959 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 21960 flags |= TH_CWR; 21961 tcp->tcp_ecn_cwr_sent = B_TRUE; 21962 } 21963 } 21964 } 21965 21966 if (tcp->tcp_valid_bits) { 21967 uint32_t u1; 21968 21969 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 21970 seq == tcp->tcp_iss) { 21971 uchar_t *wptr; 21972 21973 /* 21974 * If TCP_ISS_VALID and the seq number is tcp_iss, 21975 * TCP can only be in SYN-SENT, SYN-RCVD or 21976 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 21977 * our SYN is not ack'ed but the app closes this 21978 * TCP connection. 21979 */ 21980 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 21981 tcp->tcp_state == TCPS_SYN_RCVD || 21982 tcp->tcp_state == TCPS_FIN_WAIT_1); 21983 21984 /* 21985 * Tack on the MSS option. It is always needed 21986 * for both active and passive open. 21987 * 21988 * MSS option value should be interface MTU - MIN 21989 * TCP/IP header according to RFC 793 as it means 21990 * the maximum segment size TCP can receive. But 21991 * to get around some broken middle boxes/end hosts 21992 * out there, we allow the option value to be the 21993 * same as the MSS option size on the peer side. 21994 * In this way, the other side will not send 21995 * anything larger than they can receive. 21996 * 21997 * Note that for SYN_SENT state, the ndd param 21998 * tcp_use_smss_as_mss_opt has no effect as we 21999 * don't know the peer's MSS option value. So 22000 * the only case we need to take care of is in 22001 * SYN_RCVD state, which is done later. 22002 */ 22003 wptr = mp1->b_wptr; 22004 wptr[0] = TCPOPT_MAXSEG; 22005 wptr[1] = TCPOPT_MAXSEG_LEN; 22006 wptr += 2; 22007 u1 = tcp->tcp_if_mtu - 22008 (tcp->tcp_ipversion == IPV4_VERSION ? 22009 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22010 TCP_MIN_HEADER_LENGTH; 22011 U16_TO_BE16(u1, wptr); 22012 mp1->b_wptr = wptr + 2; 22013 /* Update the offset to cover the additional word */ 22014 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22015 22016 /* 22017 * Note that the following way of filling in 22018 * TCP options are not optimal. Some NOPs can 22019 * be saved. But there is no need at this time 22020 * to optimize it. When it is needed, we will 22021 * do it. 22022 */ 22023 switch (tcp->tcp_state) { 22024 case TCPS_SYN_SENT: 22025 flags = TH_SYN; 22026 22027 if (tcp->tcp_snd_ts_ok) { 22028 uint32_t llbolt = (uint32_t)lbolt; 22029 22030 wptr = mp1->b_wptr; 22031 wptr[0] = TCPOPT_NOP; 22032 wptr[1] = TCPOPT_NOP; 22033 wptr[2] = TCPOPT_TSTAMP; 22034 wptr[3] = TCPOPT_TSTAMP_LEN; 22035 wptr += 4; 22036 U32_TO_BE32(llbolt, wptr); 22037 wptr += 4; 22038 ASSERT(tcp->tcp_ts_recent == 0); 22039 U32_TO_BE32(0L, wptr); 22040 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22041 tcph->th_offset_and_rsrvd[0] += 22042 (3 << 4); 22043 } 22044 22045 /* 22046 * Set up all the bits to tell other side 22047 * we are ECN capable. 22048 */ 22049 if (tcp->tcp_ecn_ok) { 22050 flags |= (TH_ECE | TH_CWR); 22051 } 22052 break; 22053 case TCPS_SYN_RCVD: 22054 flags |= TH_SYN; 22055 22056 /* 22057 * Reset the MSS option value to be SMSS 22058 * We should probably add back the bytes 22059 * for timestamp option and IPsec. We 22060 * don't do that as this is a workaround 22061 * for broken middle boxes/end hosts, it 22062 * is better for us to be more cautious. 22063 * They may not take these things into 22064 * account in their SMSS calculation. Thus 22065 * the peer's calculated SMSS may be smaller 22066 * than what it can be. This should be OK. 22067 */ 22068 if (tcp_use_smss_as_mss_opt) { 22069 u1 = tcp->tcp_mss; 22070 U16_TO_BE16(u1, wptr); 22071 } 22072 22073 /* 22074 * If the other side is ECN capable, reply 22075 * that we are also ECN capable. 22076 */ 22077 if (tcp->tcp_ecn_ok) 22078 flags |= TH_ECE; 22079 break; 22080 default: 22081 /* 22082 * The above ASSERT() makes sure that this 22083 * must be FIN-WAIT-1 state. Our SYN has 22084 * not been ack'ed so retransmit it. 22085 */ 22086 flags |= TH_SYN; 22087 break; 22088 } 22089 22090 if (tcp->tcp_snd_ws_ok) { 22091 wptr = mp1->b_wptr; 22092 wptr[0] = TCPOPT_NOP; 22093 wptr[1] = TCPOPT_WSCALE; 22094 wptr[2] = TCPOPT_WS_LEN; 22095 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22096 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22097 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22098 } 22099 22100 if (tcp->tcp_snd_sack_ok) { 22101 wptr = mp1->b_wptr; 22102 wptr[0] = TCPOPT_NOP; 22103 wptr[1] = TCPOPT_NOP; 22104 wptr[2] = TCPOPT_SACK_PERMITTED; 22105 wptr[3] = TCPOPT_SACK_OK_LEN; 22106 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22107 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22108 } 22109 22110 /* allocb() of adequate mblk assures space */ 22111 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22112 (uintptr_t)INT_MAX); 22113 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22114 /* 22115 * Get IP set to checksum on our behalf 22116 * Include the adjustment for a source route if any. 22117 */ 22118 u1 += tcp->tcp_sum; 22119 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22120 U16_TO_BE16(u1, tcph->th_sum); 22121 BUMP_MIB(&tcp_mib, tcpOutControl); 22122 } 22123 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22124 (seq + data_length) == tcp->tcp_fss) { 22125 if (!tcp->tcp_fin_acked) { 22126 flags |= TH_FIN; 22127 BUMP_MIB(&tcp_mib, tcpOutControl); 22128 } 22129 if (!tcp->tcp_fin_sent) { 22130 tcp->tcp_fin_sent = B_TRUE; 22131 switch (tcp->tcp_state) { 22132 case TCPS_SYN_RCVD: 22133 case TCPS_ESTABLISHED: 22134 tcp->tcp_state = TCPS_FIN_WAIT_1; 22135 break; 22136 case TCPS_CLOSE_WAIT: 22137 tcp->tcp_state = TCPS_LAST_ACK; 22138 break; 22139 } 22140 if (tcp->tcp_suna == tcp->tcp_snxt) 22141 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22142 tcp->tcp_snxt = tcp->tcp_fss + 1; 22143 } 22144 } 22145 /* 22146 * Note the trick here. u1 is unsigned. When tcp_urg 22147 * is smaller than seq, u1 will become a very huge value. 22148 * So the comparison will fail. Also note that tcp_urp 22149 * should be positive, see RFC 793 page 17. 22150 */ 22151 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22152 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22153 u1 < (uint32_t)(64 * 1024)) { 22154 flags |= TH_URG; 22155 BUMP_MIB(&tcp_mib, tcpOutUrg); 22156 U32_TO_ABE16(u1, tcph->th_urp); 22157 } 22158 } 22159 tcph->th_flags[0] = (uchar_t)flags; 22160 tcp->tcp_rack = tcp->tcp_rnxt; 22161 tcp->tcp_rack_cnt = 0; 22162 22163 if (tcp->tcp_snd_ts_ok) { 22164 if (tcp->tcp_state != TCPS_SYN_SENT) { 22165 uint32_t llbolt = (uint32_t)lbolt; 22166 22167 U32_TO_BE32(llbolt, 22168 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22169 U32_TO_BE32(tcp->tcp_ts_recent, 22170 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22171 } 22172 } 22173 22174 if (num_sack_blk > 0) { 22175 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22176 sack_blk_t *tmp; 22177 int32_t i; 22178 22179 wptr[0] = TCPOPT_NOP; 22180 wptr[1] = TCPOPT_NOP; 22181 wptr[2] = TCPOPT_SACK; 22182 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22183 sizeof (sack_blk_t); 22184 wptr += TCPOPT_REAL_SACK_LEN; 22185 22186 tmp = tcp->tcp_sack_list; 22187 for (i = 0; i < num_sack_blk; i++) { 22188 U32_TO_BE32(tmp[i].begin, wptr); 22189 wptr += sizeof (tcp_seq); 22190 U32_TO_BE32(tmp[i].end, wptr); 22191 wptr += sizeof (tcp_seq); 22192 } 22193 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22194 } 22195 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22196 data_length += (int)(mp1->b_wptr - rptr); 22197 if (tcp->tcp_ipversion == IPV4_VERSION) { 22198 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22199 } else { 22200 ip6_t *ip6 = (ip6_t *)(rptr + 22201 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22202 sizeof (ip6i_t) : 0)); 22203 22204 ip6->ip6_plen = htons(data_length - 22205 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22206 } 22207 22208 /* 22209 * Prime pump for IP 22210 * Include the adjustment for a source route if any. 22211 */ 22212 data_length -= tcp->tcp_ip_hdr_len; 22213 data_length += tcp->tcp_sum; 22214 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22215 U16_TO_ABE16(data_length, tcph->th_sum); 22216 if (tcp->tcp_ip_forward_progress) { 22217 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22218 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22219 tcp->tcp_ip_forward_progress = B_FALSE; 22220 } 22221 return (mp1); 22222 } 22223 22224 /* This function handles the push timeout. */ 22225 void 22226 tcp_push_timer(void *arg) 22227 { 22228 conn_t *connp = (conn_t *)arg; 22229 tcp_t *tcp = connp->conn_tcp; 22230 22231 TCP_DBGSTAT(tcp_push_timer_cnt); 22232 22233 ASSERT(tcp->tcp_listener == NULL); 22234 22235 /* 22236 * We need to stop synchronous streams temporarily to prevent a race 22237 * with tcp_fuse_rrw() or tcp_fusion rinfop(). It is safe to access 22238 * tcp_rcv_list here because those entry points will return right 22239 * away when synchronous streams is stopped. 22240 */ 22241 TCP_FUSE_SYNCSTR_STOP(tcp); 22242 tcp->tcp_push_tid = 0; 22243 if ((tcp->tcp_rcv_list != NULL) && 22244 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 22245 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22246 TCP_FUSE_SYNCSTR_RESUME(tcp); 22247 } 22248 22249 /* 22250 * This function handles delayed ACK timeout. 22251 */ 22252 static void 22253 tcp_ack_timer(void *arg) 22254 { 22255 conn_t *connp = (conn_t *)arg; 22256 tcp_t *tcp = connp->conn_tcp; 22257 mblk_t *mp; 22258 22259 TCP_DBGSTAT(tcp_ack_timer_cnt); 22260 22261 tcp->tcp_ack_tid = 0; 22262 22263 if (tcp->tcp_fused) 22264 return; 22265 22266 /* 22267 * Do not send ACK if there is no outstanding unack'ed data. 22268 */ 22269 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22270 return; 22271 } 22272 22273 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22274 /* 22275 * Make sure we don't allow deferred ACKs to result in 22276 * timer-based ACKing. If we have held off an ACK 22277 * when there was more than an mss here, and the timer 22278 * goes off, we have to worry about the possibility 22279 * that the sender isn't doing slow-start, or is out 22280 * of step with us for some other reason. We fall 22281 * permanently back in the direction of 22282 * ACK-every-other-packet as suggested in RFC 1122. 22283 */ 22284 if (tcp->tcp_rack_abs_max > 2) 22285 tcp->tcp_rack_abs_max--; 22286 tcp->tcp_rack_cur_max = 2; 22287 } 22288 mp = tcp_ack_mp(tcp); 22289 22290 if (mp != NULL) { 22291 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22292 BUMP_LOCAL(tcp->tcp_obsegs); 22293 BUMP_MIB(&tcp_mib, tcpOutAck); 22294 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 22295 tcp_send_data(tcp, tcp->tcp_wq, mp); 22296 } 22297 } 22298 22299 22300 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 22301 static mblk_t * 22302 tcp_ack_mp(tcp_t *tcp) 22303 { 22304 uint32_t seq_no; 22305 22306 /* 22307 * There are a few cases to be considered while setting the sequence no. 22308 * Essentially, we can come here while processing an unacceptable pkt 22309 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 22310 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 22311 * If we are here for a zero window probe, stick with suna. In all 22312 * other cases, we check if suna + swnd encompasses snxt and set 22313 * the sequence number to snxt, if so. If snxt falls outside the 22314 * window (the receiver probably shrunk its window), we will go with 22315 * suna + swnd, otherwise the sequence no will be unacceptable to the 22316 * receiver. 22317 */ 22318 if (tcp->tcp_zero_win_probe) { 22319 seq_no = tcp->tcp_suna; 22320 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 22321 ASSERT(tcp->tcp_swnd == 0); 22322 seq_no = tcp->tcp_snxt; 22323 } else { 22324 seq_no = SEQ_GT(tcp->tcp_snxt, 22325 (tcp->tcp_suna + tcp->tcp_swnd)) ? 22326 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 22327 } 22328 22329 if (tcp->tcp_valid_bits) { 22330 /* 22331 * For the complex case where we have to send some 22332 * controls (FIN or SYN), let tcp_xmit_mp do it. 22333 */ 22334 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 22335 NULL, B_FALSE)); 22336 } else { 22337 /* Generate a simple ACK */ 22338 int data_length; 22339 uchar_t *rptr; 22340 tcph_t *tcph; 22341 mblk_t *mp1; 22342 int32_t tcp_hdr_len; 22343 int32_t tcp_tcp_hdr_len; 22344 int32_t num_sack_blk = 0; 22345 int32_t sack_opt_len; 22346 22347 /* 22348 * Allocate space for TCP + IP headers 22349 * and link-level header 22350 */ 22351 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22352 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22353 tcp->tcp_num_sack_blk); 22354 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22355 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22356 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 22357 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 22358 } else { 22359 tcp_hdr_len = tcp->tcp_hdr_len; 22360 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 22361 } 22362 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 22363 if (!mp1) 22364 return (NULL); 22365 22366 /* Update the latest receive window size in TCP header. */ 22367 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22368 tcp->tcp_tcph->th_win); 22369 /* copy in prototype TCP + IP header */ 22370 rptr = mp1->b_rptr + tcp_wroff_xtra; 22371 mp1->b_rptr = rptr; 22372 mp1->b_wptr = rptr + tcp_hdr_len; 22373 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22374 22375 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22376 22377 /* Set the TCP sequence number. */ 22378 U32_TO_ABE32(seq_no, tcph->th_seq); 22379 22380 /* Set up the TCP flag field. */ 22381 tcph->th_flags[0] = (uchar_t)TH_ACK; 22382 if (tcp->tcp_ecn_echo_on) 22383 tcph->th_flags[0] |= TH_ECE; 22384 22385 tcp->tcp_rack = tcp->tcp_rnxt; 22386 tcp->tcp_rack_cnt = 0; 22387 22388 /* fill in timestamp option if in use */ 22389 if (tcp->tcp_snd_ts_ok) { 22390 uint32_t llbolt = (uint32_t)lbolt; 22391 22392 U32_TO_BE32(llbolt, 22393 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22394 U32_TO_BE32(tcp->tcp_ts_recent, 22395 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22396 } 22397 22398 /* Fill in SACK options */ 22399 if (num_sack_blk > 0) { 22400 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22401 sack_blk_t *tmp; 22402 int32_t i; 22403 22404 wptr[0] = TCPOPT_NOP; 22405 wptr[1] = TCPOPT_NOP; 22406 wptr[2] = TCPOPT_SACK; 22407 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22408 sizeof (sack_blk_t); 22409 wptr += TCPOPT_REAL_SACK_LEN; 22410 22411 tmp = tcp->tcp_sack_list; 22412 for (i = 0; i < num_sack_blk; i++) { 22413 U32_TO_BE32(tmp[i].begin, wptr); 22414 wptr += sizeof (tcp_seq); 22415 U32_TO_BE32(tmp[i].end, wptr); 22416 wptr += sizeof (tcp_seq); 22417 } 22418 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 22419 << 4); 22420 } 22421 22422 if (tcp->tcp_ipversion == IPV4_VERSION) { 22423 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 22424 } else { 22425 /* Check for ip6i_t header in sticky hdrs */ 22426 ip6_t *ip6 = (ip6_t *)(rptr + 22427 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22428 sizeof (ip6i_t) : 0)); 22429 22430 ip6->ip6_plen = htons(tcp_hdr_len - 22431 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22432 } 22433 22434 /* 22435 * Prime pump for checksum calculation in IP. Include the 22436 * adjustment for a source route if any. 22437 */ 22438 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 22439 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22440 U16_TO_ABE16(data_length, tcph->th_sum); 22441 22442 if (tcp->tcp_ip_forward_progress) { 22443 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22444 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22445 tcp->tcp_ip_forward_progress = B_FALSE; 22446 } 22447 return (mp1); 22448 } 22449 } 22450 22451 /* 22452 * To create a temporary tcp structure for inserting into bind hash list. 22453 * The parameter is assumed to be in network byte order, ready for use. 22454 */ 22455 /* ARGSUSED */ 22456 static tcp_t * 22457 tcp_alloc_temp_tcp(in_port_t port) 22458 { 22459 conn_t *connp; 22460 tcp_t *tcp; 22461 22462 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 22463 if (connp == NULL) 22464 return (NULL); 22465 22466 tcp = connp->conn_tcp; 22467 22468 /* 22469 * Only initialize the necessary info in those structures. Note 22470 * that since INADDR_ANY is all 0, we do not need to set 22471 * tcp_bound_source to INADDR_ANY here. 22472 */ 22473 tcp->tcp_state = TCPS_BOUND; 22474 tcp->tcp_lport = port; 22475 tcp->tcp_exclbind = 1; 22476 tcp->tcp_reserved_port = 1; 22477 22478 /* Just for place holding... */ 22479 tcp->tcp_ipversion = IPV4_VERSION; 22480 22481 return (tcp); 22482 } 22483 22484 /* 22485 * To remove a port range specified by lo_port and hi_port from the 22486 * reserved port ranges. This is one of the three public functions of 22487 * the reserved port interface. Note that a port range has to be removed 22488 * as a whole. Ports in a range cannot be removed individually. 22489 * 22490 * Params: 22491 * in_port_t lo_port: the beginning port of the reserved port range to 22492 * be deleted. 22493 * in_port_t hi_port: the ending port of the reserved port range to 22494 * be deleted. 22495 * 22496 * Return: 22497 * B_TRUE if the deletion is successful, B_FALSE otherwise. 22498 */ 22499 boolean_t 22500 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 22501 { 22502 int i, j; 22503 int size; 22504 tcp_t **temp_tcp_array; 22505 tcp_t *tcp; 22506 22507 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22508 22509 /* First make sure that the port ranage is indeed reserved. */ 22510 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22511 if (tcp_reserved_port[i].lo_port == lo_port) { 22512 hi_port = tcp_reserved_port[i].hi_port; 22513 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 22514 break; 22515 } 22516 } 22517 if (i == tcp_reserved_port_array_size) { 22518 rw_exit(&tcp_reserved_port_lock); 22519 return (B_FALSE); 22520 } 22521 22522 /* 22523 * Remove the range from the array. This simple loop is possible 22524 * because port ranges are inserted in ascending order. 22525 */ 22526 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 22527 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 22528 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 22529 tcp_reserved_port[j].temp_tcp_array = 22530 tcp_reserved_port[j+1].temp_tcp_array; 22531 } 22532 22533 /* Remove all the temporary tcp structures. */ 22534 size = hi_port - lo_port + 1; 22535 while (size > 0) { 22536 tcp = temp_tcp_array[size - 1]; 22537 ASSERT(tcp != NULL); 22538 tcp_bind_hash_remove(tcp); 22539 CONN_DEC_REF(tcp->tcp_connp); 22540 size--; 22541 } 22542 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 22543 tcp_reserved_port_array_size--; 22544 rw_exit(&tcp_reserved_port_lock); 22545 return (B_TRUE); 22546 } 22547 22548 /* 22549 * Macro to remove temporary tcp structure from the bind hash list. The 22550 * first parameter is the list of tcp to be removed. The second parameter 22551 * is the number of tcps in the array. 22552 */ 22553 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 22554 { \ 22555 while ((num) > 0) { \ 22556 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 22557 tf_t *tbf; \ 22558 tcp_t *tcpnext; \ 22559 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 22560 mutex_enter(&tbf->tf_lock); \ 22561 tcpnext = tcp->tcp_bind_hash; \ 22562 if (tcpnext) { \ 22563 tcpnext->tcp_ptpbhn = \ 22564 tcp->tcp_ptpbhn; \ 22565 } \ 22566 *tcp->tcp_ptpbhn = tcpnext; \ 22567 mutex_exit(&tbf->tf_lock); \ 22568 kmem_free(tcp, sizeof (tcp_t)); \ 22569 (tcp_array)[(num) - 1] = NULL; \ 22570 (num)--; \ 22571 } \ 22572 } 22573 22574 /* 22575 * The public interface for other modules to call to reserve a port range 22576 * in TCP. The caller passes in how large a port range it wants. TCP 22577 * will try to find a range and return it via lo_port and hi_port. This is 22578 * used by NCA's nca_conn_init. 22579 * NCA can only be used in the global zone so this only affects the global 22580 * zone's ports. 22581 * 22582 * Params: 22583 * int size: the size of the port range to be reserved. 22584 * in_port_t *lo_port (referenced): returns the beginning port of the 22585 * reserved port range added. 22586 * in_port_t *hi_port (referenced): returns the ending port of the 22587 * reserved port range added. 22588 * 22589 * Return: 22590 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 22591 */ 22592 boolean_t 22593 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 22594 { 22595 tcp_t *tcp; 22596 tcp_t *tmp_tcp; 22597 tcp_t **temp_tcp_array; 22598 tf_t *tbf; 22599 in_port_t net_port; 22600 in_port_t port; 22601 int32_t cur_size; 22602 int i, j; 22603 boolean_t used; 22604 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 22605 zoneid_t zoneid = GLOBAL_ZONEID; 22606 22607 /* Sanity check. */ 22608 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 22609 return (B_FALSE); 22610 } 22611 22612 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22613 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 22614 rw_exit(&tcp_reserved_port_lock); 22615 return (B_FALSE); 22616 } 22617 22618 /* 22619 * Find the starting port to try. Since the port ranges are ordered 22620 * in the reserved port array, we can do a simple search here. 22621 */ 22622 *lo_port = TCP_SMALLEST_RESERVED_PORT; 22623 *hi_port = TCP_LARGEST_RESERVED_PORT; 22624 for (i = 0; i < tcp_reserved_port_array_size; 22625 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 22626 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 22627 *hi_port = tcp_reserved_port[i].lo_port - 1; 22628 break; 22629 } 22630 } 22631 /* No available port range. */ 22632 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 22633 rw_exit(&tcp_reserved_port_lock); 22634 return (B_FALSE); 22635 } 22636 22637 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 22638 if (temp_tcp_array == NULL) { 22639 rw_exit(&tcp_reserved_port_lock); 22640 return (B_FALSE); 22641 } 22642 22643 /* Go thru the port range to see if some ports are already bound. */ 22644 for (port = *lo_port, cur_size = 0; 22645 cur_size < size && port <= *hi_port; 22646 cur_size++, port++) { 22647 used = B_FALSE; 22648 net_port = htons(port); 22649 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 22650 mutex_enter(&tbf->tf_lock); 22651 for (tcp = tbf->tf_tcp; tcp != NULL; 22652 tcp = tcp->tcp_bind_hash) { 22653 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 22654 net_port == tcp->tcp_lport) { 22655 /* 22656 * A port is already bound. Search again 22657 * starting from port + 1. Release all 22658 * temporary tcps. 22659 */ 22660 mutex_exit(&tbf->tf_lock); 22661 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22662 *lo_port = port + 1; 22663 cur_size = -1; 22664 used = B_TRUE; 22665 break; 22666 } 22667 } 22668 if (!used) { 22669 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 22670 /* 22671 * Allocation failure. Just fail the request. 22672 * Need to remove all those temporary tcp 22673 * structures. 22674 */ 22675 mutex_exit(&tbf->tf_lock); 22676 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22677 rw_exit(&tcp_reserved_port_lock); 22678 kmem_free(temp_tcp_array, 22679 (hi_port - lo_port + 1) * 22680 sizeof (tcp_t *)); 22681 return (B_FALSE); 22682 } 22683 temp_tcp_array[cur_size] = tmp_tcp; 22684 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 22685 mutex_exit(&tbf->tf_lock); 22686 } 22687 } 22688 22689 /* 22690 * The current range is not large enough. We can actually do another 22691 * search if this search is done between 2 reserved port ranges. But 22692 * for first release, we just stop here and return saying that no port 22693 * range is available. 22694 */ 22695 if (cur_size < size) { 22696 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22697 rw_exit(&tcp_reserved_port_lock); 22698 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 22699 return (B_FALSE); 22700 } 22701 *hi_port = port - 1; 22702 22703 /* 22704 * Insert range into array in ascending order. Since this function 22705 * must not be called often, we choose to use the simplest method. 22706 * The above array should not consume excessive stack space as 22707 * the size must be very small. If in future releases, we find 22708 * that we should provide more reserved port ranges, this function 22709 * has to be modified to be more efficient. 22710 */ 22711 if (tcp_reserved_port_array_size == 0) { 22712 tcp_reserved_port[0].lo_port = *lo_port; 22713 tcp_reserved_port[0].hi_port = *hi_port; 22714 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 22715 } else { 22716 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 22717 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 22718 tmp_ports[j].lo_port = *lo_port; 22719 tmp_ports[j].hi_port = *hi_port; 22720 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22721 j++; 22722 } 22723 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 22724 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 22725 tmp_ports[j].temp_tcp_array = 22726 tcp_reserved_port[i].temp_tcp_array; 22727 } 22728 if (j == i) { 22729 tmp_ports[j].lo_port = *lo_port; 22730 tmp_ports[j].hi_port = *hi_port; 22731 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22732 } 22733 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 22734 } 22735 tcp_reserved_port_array_size++; 22736 rw_exit(&tcp_reserved_port_lock); 22737 return (B_TRUE); 22738 } 22739 22740 /* 22741 * Check to see if a port is in any reserved port range. 22742 * 22743 * Params: 22744 * in_port_t port: the port to be verified. 22745 * 22746 * Return: 22747 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 22748 */ 22749 boolean_t 22750 tcp_reserved_port_check(in_port_t port) 22751 { 22752 int i; 22753 22754 rw_enter(&tcp_reserved_port_lock, RW_READER); 22755 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22756 if (port >= tcp_reserved_port[i].lo_port || 22757 port <= tcp_reserved_port[i].hi_port) { 22758 rw_exit(&tcp_reserved_port_lock); 22759 return (B_TRUE); 22760 } 22761 } 22762 rw_exit(&tcp_reserved_port_lock); 22763 return (B_FALSE); 22764 } 22765 22766 /* 22767 * To list all reserved port ranges. This is the function to handle 22768 * ndd tcp_reserved_port_list. 22769 */ 22770 /* ARGSUSED */ 22771 static int 22772 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22773 { 22774 int i; 22775 22776 rw_enter(&tcp_reserved_port_lock, RW_READER); 22777 if (tcp_reserved_port_array_size > 0) 22778 (void) mi_mpprintf(mp, "The following ports are reserved:"); 22779 else 22780 (void) mi_mpprintf(mp, "No port is reserved."); 22781 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22782 (void) mi_mpprintf(mp, "%d-%d", 22783 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 22784 } 22785 rw_exit(&tcp_reserved_port_lock); 22786 return (0); 22787 } 22788 22789 /* 22790 * Hash list insertion routine for tcp_t structures. 22791 * Inserts entries with the ones bound to a specific IP address first 22792 * followed by those bound to INADDR_ANY. 22793 */ 22794 static void 22795 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 22796 { 22797 tcp_t **tcpp; 22798 tcp_t *tcpnext; 22799 22800 if (tcp->tcp_ptpbhn != NULL) { 22801 ASSERT(!caller_holds_lock); 22802 tcp_bind_hash_remove(tcp); 22803 } 22804 tcpp = &tbf->tf_tcp; 22805 if (!caller_holds_lock) { 22806 mutex_enter(&tbf->tf_lock); 22807 } else { 22808 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 22809 } 22810 tcpnext = tcpp[0]; 22811 if (tcpnext) { 22812 /* 22813 * If the new tcp bound to the INADDR_ANY address 22814 * and the first one in the list is not bound to 22815 * INADDR_ANY we skip all entries until we find the 22816 * first one bound to INADDR_ANY. 22817 * This makes sure that applications binding to a 22818 * specific address get preference over those binding to 22819 * INADDR_ANY. 22820 */ 22821 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 22822 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 22823 while ((tcpnext = tcpp[0]) != NULL && 22824 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 22825 tcpp = &(tcpnext->tcp_bind_hash); 22826 if (tcpnext) 22827 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22828 } else 22829 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22830 } 22831 tcp->tcp_bind_hash = tcpnext; 22832 tcp->tcp_ptpbhn = tcpp; 22833 tcpp[0] = tcp; 22834 if (!caller_holds_lock) 22835 mutex_exit(&tbf->tf_lock); 22836 } 22837 22838 /* 22839 * Hash list removal routine for tcp_t structures. 22840 */ 22841 static void 22842 tcp_bind_hash_remove(tcp_t *tcp) 22843 { 22844 tcp_t *tcpnext; 22845 kmutex_t *lockp; 22846 22847 if (tcp->tcp_ptpbhn == NULL) 22848 return; 22849 22850 /* 22851 * Extract the lock pointer in case there are concurrent 22852 * hash_remove's for this instance. 22853 */ 22854 ASSERT(tcp->tcp_lport != 0); 22855 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 22856 22857 ASSERT(lockp != NULL); 22858 mutex_enter(lockp); 22859 if (tcp->tcp_ptpbhn) { 22860 tcpnext = tcp->tcp_bind_hash; 22861 if (tcpnext) { 22862 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 22863 tcp->tcp_bind_hash = NULL; 22864 } 22865 *tcp->tcp_ptpbhn = tcpnext; 22866 tcp->tcp_ptpbhn = NULL; 22867 } 22868 mutex_exit(lockp); 22869 } 22870 22871 22872 /* 22873 * Hash list lookup routine for tcp_t structures. 22874 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 22875 */ 22876 static tcp_t * 22877 tcp_acceptor_hash_lookup(t_uscalar_t id) 22878 { 22879 tf_t *tf; 22880 tcp_t *tcp; 22881 22882 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22883 mutex_enter(&tf->tf_lock); 22884 for (tcp = tf->tf_tcp; tcp != NULL; 22885 tcp = tcp->tcp_acceptor_hash) { 22886 if (tcp->tcp_acceptor_id == id) { 22887 CONN_INC_REF(tcp->tcp_connp); 22888 mutex_exit(&tf->tf_lock); 22889 return (tcp); 22890 } 22891 } 22892 mutex_exit(&tf->tf_lock); 22893 return (NULL); 22894 } 22895 22896 22897 /* 22898 * Hash list insertion routine for tcp_t structures. 22899 */ 22900 void 22901 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 22902 { 22903 tf_t *tf; 22904 tcp_t **tcpp; 22905 tcp_t *tcpnext; 22906 22907 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22908 22909 if (tcp->tcp_ptpahn != NULL) 22910 tcp_acceptor_hash_remove(tcp); 22911 tcpp = &tf->tf_tcp; 22912 mutex_enter(&tf->tf_lock); 22913 tcpnext = tcpp[0]; 22914 if (tcpnext) 22915 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 22916 tcp->tcp_acceptor_hash = tcpnext; 22917 tcp->tcp_ptpahn = tcpp; 22918 tcpp[0] = tcp; 22919 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 22920 mutex_exit(&tf->tf_lock); 22921 } 22922 22923 /* 22924 * Hash list removal routine for tcp_t structures. 22925 */ 22926 static void 22927 tcp_acceptor_hash_remove(tcp_t *tcp) 22928 { 22929 tcp_t *tcpnext; 22930 kmutex_t *lockp; 22931 22932 /* 22933 * Extract the lock pointer in case there are concurrent 22934 * hash_remove's for this instance. 22935 */ 22936 lockp = tcp->tcp_acceptor_lockp; 22937 22938 if (tcp->tcp_ptpahn == NULL) 22939 return; 22940 22941 ASSERT(lockp != NULL); 22942 mutex_enter(lockp); 22943 if (tcp->tcp_ptpahn) { 22944 tcpnext = tcp->tcp_acceptor_hash; 22945 if (tcpnext) { 22946 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 22947 tcp->tcp_acceptor_hash = NULL; 22948 } 22949 *tcp->tcp_ptpahn = tcpnext; 22950 tcp->tcp_ptpahn = NULL; 22951 } 22952 mutex_exit(lockp); 22953 tcp->tcp_acceptor_lockp = NULL; 22954 } 22955 22956 /* ARGSUSED */ 22957 static int 22958 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 22959 { 22960 int error = 0; 22961 int retval; 22962 char *end; 22963 22964 tcp_hsp_t *hsp; 22965 tcp_hsp_t *hspprev; 22966 22967 ipaddr_t addr = 0; /* Address we're looking for */ 22968 in6_addr_t v6addr; /* Address we're looking for */ 22969 uint32_t hash; /* Hash of that address */ 22970 22971 /* 22972 * If the following variables are still zero after parsing the input 22973 * string, the user didn't specify them and we don't change them in 22974 * the HSP. 22975 */ 22976 22977 ipaddr_t mask = 0; /* Subnet mask */ 22978 in6_addr_t v6mask; 22979 long sendspace = 0; /* Send buffer size */ 22980 long recvspace = 0; /* Receive buffer size */ 22981 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 22982 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 22983 22984 rw_enter(&tcp_hsp_lock, RW_WRITER); 22985 22986 /* Parse and validate address */ 22987 if (af == AF_INET) { 22988 retval = inet_pton(af, value, &addr); 22989 if (retval == 1) 22990 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 22991 } else if (af == AF_INET6) { 22992 retval = inet_pton(af, value, &v6addr); 22993 } else { 22994 error = EINVAL; 22995 goto done; 22996 } 22997 if (retval == 0) { 22998 error = EINVAL; 22999 goto done; 23000 } 23001 23002 while ((*value) && *value != ' ') 23003 value++; 23004 23005 /* Parse individual keywords, set variables if found */ 23006 while (*value) { 23007 /* Skip leading blanks */ 23008 23009 while (*value == ' ' || *value == '\t') 23010 value++; 23011 23012 /* If at end of string, we're done */ 23013 23014 if (!*value) 23015 break; 23016 23017 /* We have a word, figure out what it is */ 23018 23019 if (strncmp("mask", value, 4) == 0) { 23020 value += 4; 23021 while (*value == ' ' || *value == '\t') 23022 value++; 23023 /* Parse subnet mask */ 23024 if (af == AF_INET) { 23025 retval = inet_pton(af, value, &mask); 23026 if (retval == 1) { 23027 V4MASK_TO_V6(mask, v6mask); 23028 } 23029 } else if (af == AF_INET6) { 23030 retval = inet_pton(af, value, &v6mask); 23031 } 23032 if (retval != 1) { 23033 error = EINVAL; 23034 goto done; 23035 } 23036 while ((*value) && *value != ' ') 23037 value++; 23038 } else if (strncmp("sendspace", value, 9) == 0) { 23039 value += 9; 23040 23041 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 23042 sendspace < TCP_XMIT_HIWATER || 23043 sendspace >= (1L<<30)) { 23044 error = EINVAL; 23045 goto done; 23046 } 23047 value = end; 23048 } else if (strncmp("recvspace", value, 9) == 0) { 23049 value += 9; 23050 23051 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 23052 recvspace < TCP_RECV_HIWATER || 23053 recvspace >= (1L<<30)) { 23054 error = EINVAL; 23055 goto done; 23056 } 23057 value = end; 23058 } else if (strncmp("timestamp", value, 9) == 0) { 23059 value += 9; 23060 23061 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 23062 timestamp < 0 || timestamp > 1) { 23063 error = EINVAL; 23064 goto done; 23065 } 23066 23067 /* 23068 * We increment timestamp so we know it's been set; 23069 * this is undone when we put it in the HSP 23070 */ 23071 timestamp++; 23072 value = end; 23073 } else if (strncmp("delete", value, 6) == 0) { 23074 value += 6; 23075 delete = B_TRUE; 23076 } else { 23077 error = EINVAL; 23078 goto done; 23079 } 23080 } 23081 23082 /* Hash address for lookup */ 23083 23084 hash = TCP_HSP_HASH(addr); 23085 23086 if (delete) { 23087 /* 23088 * Note that deletes don't return an error if the thing 23089 * we're trying to delete isn't there. 23090 */ 23091 if (tcp_hsp_hash == NULL) 23092 goto done; 23093 hsp = tcp_hsp_hash[hash]; 23094 23095 if (hsp) { 23096 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23097 &v6addr)) { 23098 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 23099 mi_free((char *)hsp); 23100 } else { 23101 hspprev = hsp; 23102 while ((hsp = hsp->tcp_hsp_next) != NULL) { 23103 if (IN6_ARE_ADDR_EQUAL( 23104 &hsp->tcp_hsp_addr_v6, &v6addr)) { 23105 hspprev->tcp_hsp_next = 23106 hsp->tcp_hsp_next; 23107 mi_free((char *)hsp); 23108 break; 23109 } 23110 hspprev = hsp; 23111 } 23112 } 23113 } 23114 } else { 23115 /* 23116 * We're adding/modifying an HSP. If we haven't already done 23117 * so, allocate the hash table. 23118 */ 23119 23120 if (!tcp_hsp_hash) { 23121 tcp_hsp_hash = (tcp_hsp_t **) 23122 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 23123 if (!tcp_hsp_hash) { 23124 error = EINVAL; 23125 goto done; 23126 } 23127 } 23128 23129 /* Get head of hash chain */ 23130 23131 hsp = tcp_hsp_hash[hash]; 23132 23133 /* Try to find pre-existing hsp on hash chain */ 23134 /* Doesn't handle CIDR prefixes. */ 23135 while (hsp) { 23136 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 23137 break; 23138 hsp = hsp->tcp_hsp_next; 23139 } 23140 23141 /* 23142 * If we didn't, create one with default values and put it 23143 * at head of hash chain 23144 */ 23145 23146 if (!hsp) { 23147 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 23148 if (!hsp) { 23149 error = EINVAL; 23150 goto done; 23151 } 23152 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 23153 tcp_hsp_hash[hash] = hsp; 23154 } 23155 23156 /* Set values that the user asked us to change */ 23157 23158 hsp->tcp_hsp_addr_v6 = v6addr; 23159 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 23160 hsp->tcp_hsp_vers = IPV4_VERSION; 23161 else 23162 hsp->tcp_hsp_vers = IPV6_VERSION; 23163 hsp->tcp_hsp_subnet_v6 = v6mask; 23164 if (sendspace > 0) 23165 hsp->tcp_hsp_sendspace = sendspace; 23166 if (recvspace > 0) 23167 hsp->tcp_hsp_recvspace = recvspace; 23168 if (timestamp > 0) 23169 hsp->tcp_hsp_tstamp = timestamp - 1; 23170 } 23171 23172 done: 23173 rw_exit(&tcp_hsp_lock); 23174 return (error); 23175 } 23176 23177 /* Set callback routine passed to nd_load by tcp_param_register. */ 23178 /* ARGSUSED */ 23179 static int 23180 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 23181 { 23182 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 23183 } 23184 /* ARGSUSED */ 23185 static int 23186 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23187 cred_t *cr) 23188 { 23189 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 23190 } 23191 23192 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 23193 /* ARGSUSED */ 23194 static int 23195 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23196 { 23197 tcp_hsp_t *hsp; 23198 int i; 23199 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 23200 23201 rw_enter(&tcp_hsp_lock, RW_READER); 23202 (void) mi_mpprintf(mp, 23203 "Hash HSP " MI_COL_HDRPAD_STR 23204 "Address Subnet Mask Send Receive TStamp"); 23205 if (tcp_hsp_hash) { 23206 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 23207 hsp = tcp_hsp_hash[i]; 23208 while (hsp) { 23209 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 23210 (void) inet_ntop(AF_INET, 23211 &hsp->tcp_hsp_addr, 23212 addrbuf, sizeof (addrbuf)); 23213 (void) inet_ntop(AF_INET, 23214 &hsp->tcp_hsp_subnet, 23215 subnetbuf, sizeof (subnetbuf)); 23216 } else { 23217 (void) inet_ntop(AF_INET6, 23218 &hsp->tcp_hsp_addr_v6, 23219 addrbuf, sizeof (addrbuf)); 23220 (void) inet_ntop(AF_INET6, 23221 &hsp->tcp_hsp_subnet_v6, 23222 subnetbuf, sizeof (subnetbuf)); 23223 } 23224 (void) mi_mpprintf(mp, 23225 " %03d " MI_COL_PTRFMT_STR 23226 "%s %s %010d %010d %d", 23227 i, 23228 (void *)hsp, 23229 addrbuf, 23230 subnetbuf, 23231 hsp->tcp_hsp_sendspace, 23232 hsp->tcp_hsp_recvspace, 23233 hsp->tcp_hsp_tstamp); 23234 23235 hsp = hsp->tcp_hsp_next; 23236 } 23237 } 23238 } 23239 rw_exit(&tcp_hsp_lock); 23240 return (0); 23241 } 23242 23243 23244 /* Data for fast netmask macro used by tcp_hsp_lookup */ 23245 23246 static ipaddr_t netmasks[] = { 23247 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 23248 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 23249 }; 23250 23251 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 23252 23253 /* 23254 * XXX This routine should go away and instead we should use the metrics 23255 * associated with the routes to determine the default sndspace and rcvspace. 23256 */ 23257 static tcp_hsp_t * 23258 tcp_hsp_lookup(ipaddr_t addr) 23259 { 23260 tcp_hsp_t *hsp = NULL; 23261 23262 /* Quick check without acquiring the lock. */ 23263 if (tcp_hsp_hash == NULL) 23264 return (NULL); 23265 23266 rw_enter(&tcp_hsp_lock, RW_READER); 23267 23268 /* This routine finds the best-matching HSP for address addr. */ 23269 23270 if (tcp_hsp_hash) { 23271 int i; 23272 ipaddr_t srchaddr; 23273 tcp_hsp_t *hsp_net; 23274 23275 /* We do three passes: host, network, and subnet. */ 23276 23277 srchaddr = addr; 23278 23279 for (i = 1; i <= 3; i++) { 23280 /* Look for exact match on srchaddr */ 23281 23282 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 23283 while (hsp) { 23284 if (hsp->tcp_hsp_vers == IPV4_VERSION && 23285 hsp->tcp_hsp_addr == srchaddr) 23286 break; 23287 hsp = hsp->tcp_hsp_next; 23288 } 23289 ASSERT(hsp == NULL || 23290 hsp->tcp_hsp_vers == IPV4_VERSION); 23291 23292 /* 23293 * If this is the first pass: 23294 * If we found a match, great, return it. 23295 * If not, search for the network on the second pass. 23296 */ 23297 23298 if (i == 1) 23299 if (hsp) 23300 break; 23301 else 23302 { 23303 srchaddr = addr & netmask(addr); 23304 continue; 23305 } 23306 23307 /* 23308 * If this is the second pass: 23309 * If we found a match, but there's a subnet mask, 23310 * save the match but try again using the subnet 23311 * mask on the third pass. 23312 * Otherwise, return whatever we found. 23313 */ 23314 23315 if (i == 2) { 23316 if (hsp && hsp->tcp_hsp_subnet) { 23317 hsp_net = hsp; 23318 srchaddr = addr & hsp->tcp_hsp_subnet; 23319 continue; 23320 } else { 23321 break; 23322 } 23323 } 23324 23325 /* 23326 * This must be the third pass. If we didn't find 23327 * anything, return the saved network HSP instead. 23328 */ 23329 23330 if (!hsp) 23331 hsp = hsp_net; 23332 } 23333 } 23334 23335 rw_exit(&tcp_hsp_lock); 23336 return (hsp); 23337 } 23338 23339 /* 23340 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 23341 * match lookup. 23342 */ 23343 static tcp_hsp_t * 23344 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 23345 { 23346 tcp_hsp_t *hsp = NULL; 23347 23348 /* Quick check without acquiring the lock. */ 23349 if (tcp_hsp_hash == NULL) 23350 return (NULL); 23351 23352 rw_enter(&tcp_hsp_lock, RW_READER); 23353 23354 /* This routine finds the best-matching HSP for address addr. */ 23355 23356 if (tcp_hsp_hash) { 23357 int i; 23358 in6_addr_t v6srchaddr; 23359 tcp_hsp_t *hsp_net; 23360 23361 /* We do three passes: host, network, and subnet. */ 23362 23363 v6srchaddr = *v6addr; 23364 23365 for (i = 1; i <= 3; i++) { 23366 /* Look for exact match on srchaddr */ 23367 23368 hsp = tcp_hsp_hash[TCP_HSP_HASH( 23369 V4_PART_OF_V6(v6srchaddr))]; 23370 while (hsp) { 23371 if (hsp->tcp_hsp_vers == IPV6_VERSION && 23372 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23373 &v6srchaddr)) 23374 break; 23375 hsp = hsp->tcp_hsp_next; 23376 } 23377 23378 /* 23379 * If this is the first pass: 23380 * If we found a match, great, return it. 23381 * If not, search for the network on the second pass. 23382 */ 23383 23384 if (i == 1) 23385 if (hsp) 23386 break; 23387 else { 23388 /* Assume a 64 bit mask */ 23389 v6srchaddr.s6_addr32[0] = 23390 v6addr->s6_addr32[0]; 23391 v6srchaddr.s6_addr32[1] = 23392 v6addr->s6_addr32[1]; 23393 v6srchaddr.s6_addr32[2] = 0; 23394 v6srchaddr.s6_addr32[3] = 0; 23395 continue; 23396 } 23397 23398 /* 23399 * If this is the second pass: 23400 * If we found a match, but there's a subnet mask, 23401 * save the match but try again using the subnet 23402 * mask on the third pass. 23403 * Otherwise, return whatever we found. 23404 */ 23405 23406 if (i == 2) { 23407 ASSERT(hsp == NULL || 23408 hsp->tcp_hsp_vers == IPV6_VERSION); 23409 if (hsp && 23410 !IN6_IS_ADDR_UNSPECIFIED( 23411 &hsp->tcp_hsp_subnet_v6)) { 23412 hsp_net = hsp; 23413 V6_MASK_COPY(*v6addr, 23414 hsp->tcp_hsp_subnet_v6, v6srchaddr); 23415 continue; 23416 } else { 23417 break; 23418 } 23419 } 23420 23421 /* 23422 * This must be the third pass. If we didn't find 23423 * anything, return the saved network HSP instead. 23424 */ 23425 23426 if (!hsp) 23427 hsp = hsp_net; 23428 } 23429 } 23430 23431 rw_exit(&tcp_hsp_lock); 23432 return (hsp); 23433 } 23434 23435 /* 23436 * Type three generator adapted from the random() function in 4.4 BSD: 23437 */ 23438 23439 /* 23440 * Copyright (c) 1983, 1993 23441 * The Regents of the University of California. All rights reserved. 23442 * 23443 * Redistribution and use in source and binary forms, with or without 23444 * modification, are permitted provided that the following conditions 23445 * are met: 23446 * 1. Redistributions of source code must retain the above copyright 23447 * notice, this list of conditions and the following disclaimer. 23448 * 2. Redistributions in binary form must reproduce the above copyright 23449 * notice, this list of conditions and the following disclaimer in the 23450 * documentation and/or other materials provided with the distribution. 23451 * 3. All advertising materials mentioning features or use of this software 23452 * must display the following acknowledgement: 23453 * This product includes software developed by the University of 23454 * California, Berkeley and its contributors. 23455 * 4. Neither the name of the University nor the names of its contributors 23456 * may be used to endorse or promote products derived from this software 23457 * without specific prior written permission. 23458 * 23459 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23460 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23461 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23462 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23463 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23464 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23465 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23466 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23467 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23468 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23469 * SUCH DAMAGE. 23470 */ 23471 23472 /* Type 3 -- x**31 + x**3 + 1 */ 23473 #define DEG_3 31 23474 #define SEP_3 3 23475 23476 23477 /* Protected by tcp_random_lock */ 23478 static int tcp_randtbl[DEG_3 + 1]; 23479 23480 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23481 static int *tcp_random_rptr = &tcp_randtbl[1]; 23482 23483 static int *tcp_random_state = &tcp_randtbl[1]; 23484 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23485 23486 kmutex_t tcp_random_lock; 23487 23488 void 23489 tcp_random_init(void) 23490 { 23491 int i; 23492 hrtime_t hrt; 23493 time_t wallclock; 23494 uint64_t result; 23495 23496 /* 23497 * Use high-res timer and current time for seed. Gethrtime() returns 23498 * a longlong, which may contain resolution down to nanoseconds. 23499 * The current time will either be a 32-bit or a 64-bit quantity. 23500 * XOR the two together in a 64-bit result variable. 23501 * Convert the result to a 32-bit value by multiplying the high-order 23502 * 32-bits by the low-order 32-bits. 23503 */ 23504 23505 hrt = gethrtime(); 23506 (void) drv_getparm(TIME, &wallclock); 23507 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23508 mutex_enter(&tcp_random_lock); 23509 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23510 (result & 0xffffffff); 23511 23512 for (i = 1; i < DEG_3; i++) 23513 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23514 + 12345; 23515 tcp_random_fptr = &tcp_random_state[SEP_3]; 23516 tcp_random_rptr = &tcp_random_state[0]; 23517 mutex_exit(&tcp_random_lock); 23518 for (i = 0; i < 10 * DEG_3; i++) 23519 (void) tcp_random(); 23520 } 23521 23522 /* 23523 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23524 * This range is selected to be approximately centered on TCP_ISS / 2, 23525 * and easy to compute. We get this value by generating a 32-bit random 23526 * number, selecting out the high-order 17 bits, and then adding one so 23527 * that we never return zero. 23528 */ 23529 int 23530 tcp_random(void) 23531 { 23532 int i; 23533 23534 mutex_enter(&tcp_random_lock); 23535 *tcp_random_fptr += *tcp_random_rptr; 23536 23537 /* 23538 * The high-order bits are more random than the low-order bits, 23539 * so we select out the high-order 17 bits and add one so that 23540 * we never return zero. 23541 */ 23542 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23543 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23544 tcp_random_fptr = tcp_random_state; 23545 ++tcp_random_rptr; 23546 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23547 tcp_random_rptr = tcp_random_state; 23548 23549 mutex_exit(&tcp_random_lock); 23550 return (i); 23551 } 23552 23553 /* 23554 * XXX This will go away when TPI is extended to send 23555 * info reqs to sockfs/timod ..... 23556 * Given a queue, set the max packet size for the write 23557 * side of the queue below stream head. This value is 23558 * cached on the stream head. 23559 * Returns 1 on success, 0 otherwise. 23560 */ 23561 static int 23562 setmaxps(queue_t *q, int maxpsz) 23563 { 23564 struct stdata *stp; 23565 queue_t *wq; 23566 stp = STREAM(q); 23567 23568 /* 23569 * At this point change of a queue parameter is not allowed 23570 * when a multiplexor is sitting on top. 23571 */ 23572 if (stp->sd_flag & STPLEX) 23573 return (0); 23574 23575 claimstr(stp->sd_wrq); 23576 wq = stp->sd_wrq->q_next; 23577 ASSERT(wq != NULL); 23578 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 23579 releasestr(stp->sd_wrq); 23580 return (1); 23581 } 23582 23583 static int 23584 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23585 int *t_errorp, int *sys_errorp) 23586 { 23587 int error; 23588 int is_absreq_failure; 23589 t_scalar_t *opt_lenp; 23590 t_scalar_t opt_offset; 23591 int prim_type; 23592 struct T_conn_req *tcreqp; 23593 struct T_conn_res *tcresp; 23594 cred_t *cr; 23595 23596 cr = DB_CREDDEF(mp, tcp->tcp_cred); 23597 23598 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23599 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23600 prim_type == T_CONN_RES); 23601 23602 switch (prim_type) { 23603 case T_CONN_REQ: 23604 tcreqp = (struct T_conn_req *)mp->b_rptr; 23605 opt_offset = tcreqp->OPT_offset; 23606 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23607 break; 23608 case O_T_CONN_RES: 23609 case T_CONN_RES: 23610 tcresp = (struct T_conn_res *)mp->b_rptr; 23611 opt_offset = tcresp->OPT_offset; 23612 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23613 break; 23614 } 23615 23616 *t_errorp = 0; 23617 *sys_errorp = 0; 23618 *do_disconnectp = 0; 23619 23620 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23621 opt_offset, cr, &tcp_opt_obj, 23622 NULL, &is_absreq_failure); 23623 23624 switch (error) { 23625 case 0: /* no error */ 23626 ASSERT(is_absreq_failure == 0); 23627 return (0); 23628 case ENOPROTOOPT: 23629 *t_errorp = TBADOPT; 23630 break; 23631 case EACCES: 23632 *t_errorp = TACCES; 23633 break; 23634 default: 23635 *t_errorp = TSYSERR; *sys_errorp = error; 23636 break; 23637 } 23638 if (is_absreq_failure != 0) { 23639 /* 23640 * The connection request should get the local ack 23641 * T_OK_ACK and then a T_DISCON_IND. 23642 */ 23643 *do_disconnectp = 1; 23644 } 23645 return (-1); 23646 } 23647 23648 /* 23649 * Split this function out so that if the secret changes, I'm okay. 23650 * 23651 * Initialize the tcp_iss_cookie and tcp_iss_key. 23652 */ 23653 23654 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23655 23656 static void 23657 tcp_iss_key_init(uint8_t *phrase, int len) 23658 { 23659 struct { 23660 int32_t current_time; 23661 uint32_t randnum; 23662 uint16_t pad; 23663 uint8_t ether[6]; 23664 uint8_t passwd[PASSWD_SIZE]; 23665 } tcp_iss_cookie; 23666 time_t t; 23667 23668 /* 23669 * Start with the current absolute time. 23670 */ 23671 (void) drv_getparm(TIME, &t); 23672 tcp_iss_cookie.current_time = t; 23673 23674 /* 23675 * XXX - Need a more random number per RFC 1750, not this crap. 23676 * OTOH, if what follows is pretty random, then I'm in better shape. 23677 */ 23678 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23679 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23680 23681 /* 23682 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23683 * as a good template. 23684 */ 23685 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23686 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23687 23688 /* 23689 * The pass-phrase. Normally this is supplied by user-called NDD. 23690 */ 23691 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23692 23693 /* 23694 * See 4010593 if this section becomes a problem again, 23695 * but the local ethernet address is useful here. 23696 */ 23697 (void) localetheraddr(NULL, 23698 (struct ether_addr *)&tcp_iss_cookie.ether); 23699 23700 /* 23701 * Hash 'em all together. The MD5Final is called per-connection. 23702 */ 23703 mutex_enter(&tcp_iss_key_lock); 23704 MD5Init(&tcp_iss_key); 23705 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 23706 sizeof (tcp_iss_cookie)); 23707 mutex_exit(&tcp_iss_key_lock); 23708 } 23709 23710 /* 23711 * Set the RFC 1948 pass phrase 23712 */ 23713 /* ARGSUSED */ 23714 static int 23715 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23716 cred_t *cr) 23717 { 23718 /* 23719 * Basically, value contains a new pass phrase. Pass it along! 23720 */ 23721 tcp_iss_key_init((uint8_t *)value, strlen(value)); 23722 return (0); 23723 } 23724 23725 /* ARGSUSED */ 23726 static int 23727 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23728 { 23729 bzero(buf, sizeof (tcp_sack_info_t)); 23730 return (0); 23731 } 23732 23733 /* ARGSUSED */ 23734 static int 23735 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23736 { 23737 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23738 return (0); 23739 } 23740 23741 void 23742 tcp_ddi_init(void) 23743 { 23744 int i; 23745 23746 /* Initialize locks */ 23747 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 23748 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23749 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23750 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23751 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23752 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 23753 23754 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23755 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 23756 MUTEX_DEFAULT, NULL); 23757 } 23758 23759 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23760 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 23761 MUTEX_DEFAULT, NULL); 23762 } 23763 23764 /* TCP's IPsec code calls the packet dropper. */ 23765 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 23766 23767 if (!tcp_g_nd) { 23768 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 23769 nd_free(&tcp_g_nd); 23770 } 23771 } 23772 23773 /* 23774 * Note: To really walk the device tree you need the devinfo 23775 * pointer to your device which is only available after probe/attach. 23776 * The following is safe only because it uses ddi_root_node() 23777 */ 23778 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23779 tcp_opt_obj.odb_opt_arr_cnt); 23780 23781 tcp_timercache = kmem_cache_create("tcp_timercache", 23782 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23783 NULL, NULL, NULL, NULL, NULL, 0); 23784 23785 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23786 sizeof (tcp_sack_info_t), 0, 23787 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23788 23789 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23790 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23791 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23792 23793 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 23794 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 23795 23796 ip_squeue_init(tcp_squeue_add); 23797 23798 /* Initialize the random number generator */ 23799 tcp_random_init(); 23800 23801 /* 23802 * Initialize RFC 1948 secret values. This will probably be reset once 23803 * by the boot scripts. 23804 * 23805 * Use NULL name, as the name is caught by the new lockstats. 23806 * 23807 * Initialize with some random, non-guessable string, like the global 23808 * T_INFO_ACK. 23809 */ 23810 23811 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23812 sizeof (tcp_g_t_info_ack)); 23813 23814 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 23815 "net", KSTAT_TYPE_NAMED, 23816 sizeof (tcp_statistics) / sizeof (kstat_named_t), 23817 KSTAT_FLAG_VIRTUAL)) != NULL) { 23818 tcp_kstat->ks_data = &tcp_statistics; 23819 kstat_install(tcp_kstat); 23820 } 23821 23822 tcp_kstat_init(); 23823 } 23824 23825 void 23826 tcp_ddi_destroy(void) 23827 { 23828 int i; 23829 23830 nd_free(&tcp_g_nd); 23831 23832 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23833 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 23834 } 23835 23836 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23837 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 23838 } 23839 23840 mutex_destroy(&tcp_iss_key_lock); 23841 rw_destroy(&tcp_hsp_lock); 23842 mutex_destroy(&tcp_g_q_lock); 23843 mutex_destroy(&tcp_random_lock); 23844 mutex_destroy(&tcp_epriv_port_lock); 23845 rw_destroy(&tcp_reserved_port_lock); 23846 23847 ip_drop_unregister(&tcp_dropper); 23848 23849 kmem_cache_destroy(tcp_timercache); 23850 kmem_cache_destroy(tcp_sack_info_cache); 23851 kmem_cache_destroy(tcp_iphc_cache); 23852 23853 tcp_kstat_fini(); 23854 } 23855 23856 /* 23857 * Generate ISS, taking into account NDD changes may happen halfway through. 23858 * (If the iss is not zero, set it.) 23859 */ 23860 23861 static void 23862 tcp_iss_init(tcp_t *tcp) 23863 { 23864 MD5_CTX context; 23865 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 23866 uint32_t answer[4]; 23867 23868 tcp_iss_incr_extra += (ISS_INCR >> 1); 23869 tcp->tcp_iss = tcp_iss_incr_extra; 23870 switch (tcp_strong_iss) { 23871 case 2: 23872 mutex_enter(&tcp_iss_key_lock); 23873 context = tcp_iss_key; 23874 mutex_exit(&tcp_iss_key_lock); 23875 arg.ports = tcp->tcp_ports; 23876 if (tcp->tcp_ipversion == IPV4_VERSION) { 23877 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 23878 &arg.src); 23879 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 23880 &arg.dst); 23881 } else { 23882 arg.src = tcp->tcp_ip6h->ip6_src; 23883 arg.dst = tcp->tcp_ip6h->ip6_dst; 23884 } 23885 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 23886 MD5Final((uchar_t *)answer, &context); 23887 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 23888 /* 23889 * Now that we've hashed into a unique per-connection sequence 23890 * space, add a random increment per strong_iss == 1. So I 23891 * guess we'll have to... 23892 */ 23893 /* FALLTHRU */ 23894 case 1: 23895 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 23896 break; 23897 default: 23898 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 23899 break; 23900 } 23901 tcp->tcp_valid_bits = TCP_ISS_VALID; 23902 tcp->tcp_fss = tcp->tcp_iss - 1; 23903 tcp->tcp_suna = tcp->tcp_iss; 23904 tcp->tcp_snxt = tcp->tcp_iss + 1; 23905 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23906 tcp->tcp_csuna = tcp->tcp_snxt; 23907 } 23908 23909 /* 23910 * Exported routine for extracting active tcp connection status. 23911 * 23912 * This is used by the Solaris Cluster Networking software to 23913 * gather a list of connections that need to be forwarded to 23914 * specific nodes in the cluster when configuration changes occur. 23915 * 23916 * The callback is invoked for each tcp_t structure. Returning 23917 * non-zero from the callback routine terminates the search. 23918 */ 23919 int 23920 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 23921 { 23922 tcp_t *tcp; 23923 cl_tcp_info_t cl_tcpi; 23924 connf_t *connfp; 23925 conn_t *connp; 23926 int i; 23927 23928 ASSERT(callback != NULL); 23929 23930 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 23931 23932 connfp = &ipcl_globalhash_fanout[i]; 23933 connp = NULL; 23934 23935 while ((connp = 23936 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 23937 23938 tcp = connp->conn_tcp; 23939 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 23940 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 23941 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 23942 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 23943 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 23944 /* 23945 * The macros tcp_laddr and tcp_faddr give the IPv4 23946 * addresses. They are copied implicitly below as 23947 * mapped addresses. 23948 */ 23949 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 23950 if (tcp->tcp_ipversion == IPV4_VERSION) { 23951 cl_tcpi.cl_tcpi_faddr = 23952 tcp->tcp_ipha->ipha_dst; 23953 } else { 23954 cl_tcpi.cl_tcpi_faddr_v6 = 23955 tcp->tcp_ip6h->ip6_dst; 23956 } 23957 23958 /* 23959 * If the callback returns non-zero 23960 * we terminate the traversal. 23961 */ 23962 if ((*callback)(&cl_tcpi, arg) != 0) { 23963 CONN_DEC_REF(tcp->tcp_connp); 23964 return (1); 23965 } 23966 } 23967 } 23968 23969 return (0); 23970 } 23971 23972 /* 23973 * Macros used for accessing the different types of sockaddr 23974 * structures inside a tcp_ioc_abort_conn_t. 23975 */ 23976 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 23977 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 23978 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 23979 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 23980 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 23981 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 23982 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 23983 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 23984 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 23985 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 23986 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 23987 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 23988 23989 /* 23990 * Return the correct error code to mimic the behavior 23991 * of a connection reset. 23992 */ 23993 #define TCP_AC_GET_ERRCODE(state, err) { \ 23994 switch ((state)) { \ 23995 case TCPS_SYN_SENT: \ 23996 case TCPS_SYN_RCVD: \ 23997 (err) = ECONNREFUSED; \ 23998 break; \ 23999 case TCPS_ESTABLISHED: \ 24000 case TCPS_FIN_WAIT_1: \ 24001 case TCPS_FIN_WAIT_2: \ 24002 case TCPS_CLOSE_WAIT: \ 24003 (err) = ECONNRESET; \ 24004 break; \ 24005 case TCPS_CLOSING: \ 24006 case TCPS_LAST_ACK: \ 24007 case TCPS_TIME_WAIT: \ 24008 (err) = 0; \ 24009 break; \ 24010 default: \ 24011 (err) = ENXIO; \ 24012 } \ 24013 } 24014 24015 /* 24016 * Check if a tcp structure matches the info in acp. 24017 */ 24018 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24019 (((acp)->ac_local.ss_family == AF_INET) ? \ 24020 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24021 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24022 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24023 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24024 (TCP_AC_V4LPORT((acp)) == 0 || \ 24025 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24026 (TCP_AC_V4RPORT((acp)) == 0 || \ 24027 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24028 (acp)->ac_start <= (tcp)->tcp_state && \ 24029 (acp)->ac_end >= (tcp)->tcp_state) : \ 24030 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24031 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24032 &(tcp)->tcp_ip_src_v6)) && \ 24033 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24034 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24035 &(tcp)->tcp_remote_v6)) && \ 24036 (TCP_AC_V6LPORT((acp)) == 0 || \ 24037 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24038 (TCP_AC_V6RPORT((acp)) == 0 || \ 24039 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24040 (acp)->ac_start <= (tcp)->tcp_state && \ 24041 (acp)->ac_end >= (tcp)->tcp_state)) 24042 24043 #define TCP_AC_MATCH(acp, tcp) \ 24044 (((acp)->ac_zoneid == ALL_ZONES || \ 24045 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24046 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24047 24048 /* 24049 * Build a message containing a tcp_ioc_abort_conn_t structure 24050 * which is filled in with information from acp and tp. 24051 */ 24052 static mblk_t * 24053 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24054 { 24055 mblk_t *mp; 24056 tcp_ioc_abort_conn_t *tacp; 24057 24058 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24059 if (mp == NULL) 24060 return (NULL); 24061 24062 mp->b_datap->db_type = M_CTL; 24063 24064 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24065 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24066 sizeof (uint32_t)); 24067 24068 tacp->ac_start = acp->ac_start; 24069 tacp->ac_end = acp->ac_end; 24070 tacp->ac_zoneid = acp->ac_zoneid; 24071 24072 if (acp->ac_local.ss_family == AF_INET) { 24073 tacp->ac_local.ss_family = AF_INET; 24074 tacp->ac_remote.ss_family = AF_INET; 24075 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24076 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24077 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24078 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24079 } else { 24080 tacp->ac_local.ss_family = AF_INET6; 24081 tacp->ac_remote.ss_family = AF_INET6; 24082 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24083 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24084 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24085 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24086 } 24087 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24088 return (mp); 24089 } 24090 24091 /* 24092 * Print a tcp_ioc_abort_conn_t structure. 24093 */ 24094 static void 24095 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24096 { 24097 char lbuf[128]; 24098 char rbuf[128]; 24099 sa_family_t af; 24100 in_port_t lport, rport; 24101 ushort_t logflags; 24102 24103 af = acp->ac_local.ss_family; 24104 24105 if (af == AF_INET) { 24106 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24107 lbuf, 128); 24108 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24109 rbuf, 128); 24110 lport = ntohs(TCP_AC_V4LPORT(acp)); 24111 rport = ntohs(TCP_AC_V4RPORT(acp)); 24112 } else { 24113 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24114 lbuf, 128); 24115 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24116 rbuf, 128); 24117 lport = ntohs(TCP_AC_V6LPORT(acp)); 24118 rport = ntohs(TCP_AC_V6RPORT(acp)); 24119 } 24120 24121 logflags = SL_TRACE | SL_NOTE; 24122 /* 24123 * Don't print this message to the console if the operation was done 24124 * to a non-global zone. 24125 */ 24126 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24127 logflags |= SL_CONSOLE; 24128 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24129 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24130 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24131 acp->ac_start, acp->ac_end); 24132 } 24133 24134 /* 24135 * Called inside tcp_rput when a message built using 24136 * tcp_ioctl_abort_build_msg is put into a queue. 24137 * Note that when we get here there is no wildcard in acp any more. 24138 */ 24139 static void 24140 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24141 { 24142 tcp_ioc_abort_conn_t *acp; 24143 24144 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24145 if (tcp->tcp_state <= acp->ac_end) { 24146 /* 24147 * If we get here, we are already on the correct 24148 * squeue. This ioctl follows the following path 24149 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24150 * ->tcp_ioctl_abort->squeue_fill (if on a 24151 * different squeue) 24152 */ 24153 int errcode; 24154 24155 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24156 (void) tcp_clean_death(tcp, errcode, 26); 24157 } 24158 freemsg(mp); 24159 } 24160 24161 /* 24162 * Abort all matching connections on a hash chain. 24163 */ 24164 static int 24165 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24166 boolean_t exact) 24167 { 24168 int nmatch, err = 0; 24169 tcp_t *tcp; 24170 MBLKP mp, last, listhead = NULL; 24171 conn_t *tconnp; 24172 connf_t *connfp = &ipcl_conn_fanout[index]; 24173 24174 startover: 24175 nmatch = 0; 24176 24177 mutex_enter(&connfp->connf_lock); 24178 for (tconnp = connfp->connf_head; tconnp != NULL; 24179 tconnp = tconnp->conn_next) { 24180 tcp = tconnp->conn_tcp; 24181 if (TCP_AC_MATCH(acp, tcp)) { 24182 CONN_INC_REF(tcp->tcp_connp); 24183 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24184 if (mp == NULL) { 24185 err = ENOMEM; 24186 CONN_DEC_REF(tcp->tcp_connp); 24187 break; 24188 } 24189 mp->b_prev = (mblk_t *)tcp; 24190 24191 if (listhead == NULL) { 24192 listhead = mp; 24193 last = mp; 24194 } else { 24195 last->b_next = mp; 24196 last = mp; 24197 } 24198 nmatch++; 24199 if (exact) 24200 break; 24201 } 24202 24203 /* Avoid holding lock for too long. */ 24204 if (nmatch >= 500) 24205 break; 24206 } 24207 mutex_exit(&connfp->connf_lock); 24208 24209 /* Pass mp into the correct tcp */ 24210 while ((mp = listhead) != NULL) { 24211 listhead = listhead->b_next; 24212 tcp = (tcp_t *)mp->b_prev; 24213 mp->b_next = mp->b_prev = NULL; 24214 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 24215 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 24216 } 24217 24218 *count += nmatch; 24219 if (nmatch >= 500 && err == 0) 24220 goto startover; 24221 return (err); 24222 } 24223 24224 /* 24225 * Abort all connections that matches the attributes specified in acp. 24226 */ 24227 static int 24228 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 24229 { 24230 sa_family_t af; 24231 uint32_t ports; 24232 uint16_t *pports; 24233 int err = 0, count = 0; 24234 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24235 int index = -1; 24236 ushort_t logflags; 24237 24238 af = acp->ac_local.ss_family; 24239 24240 if (af == AF_INET) { 24241 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24242 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24243 pports = (uint16_t *)&ports; 24244 pports[1] = TCP_AC_V4LPORT(acp); 24245 pports[0] = TCP_AC_V4RPORT(acp); 24246 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24247 } 24248 } else { 24249 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24250 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24251 pports = (uint16_t *)&ports; 24252 pports[1] = TCP_AC_V6LPORT(acp); 24253 pports[0] = TCP_AC_V6RPORT(acp); 24254 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24255 } 24256 } 24257 24258 /* 24259 * For cases where remote addr, local port, and remote port are non- 24260 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24261 */ 24262 if (index != -1) { 24263 err = tcp_ioctl_abort_bucket(acp, index, 24264 &count, exact); 24265 } else { 24266 /* 24267 * loop through all entries for wildcard case 24268 */ 24269 for (index = 0; index < ipcl_conn_fanout_size; index++) { 24270 err = tcp_ioctl_abort_bucket(acp, index, 24271 &count, exact); 24272 if (err != 0) 24273 break; 24274 } 24275 } 24276 24277 logflags = SL_TRACE | SL_NOTE; 24278 /* 24279 * Don't print this message to the console if the operation was done 24280 * to a non-global zone. 24281 */ 24282 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24283 logflags |= SL_CONSOLE; 24284 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24285 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24286 if (err == 0 && count == 0) 24287 err = ENOENT; 24288 return (err); 24289 } 24290 24291 /* 24292 * Process the TCP_IOC_ABORT_CONN ioctl request. 24293 */ 24294 static void 24295 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24296 { 24297 int err; 24298 IOCP iocp; 24299 MBLKP mp1; 24300 sa_family_t laf, raf; 24301 tcp_ioc_abort_conn_t *acp; 24302 zone_t *zptr; 24303 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 24304 24305 iocp = (IOCP)mp->b_rptr; 24306 24307 if ((mp1 = mp->b_cont) == NULL || 24308 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24309 err = EINVAL; 24310 goto out; 24311 } 24312 24313 /* check permissions */ 24314 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 24315 err = EPERM; 24316 goto out; 24317 } 24318 24319 if (mp1->b_cont != NULL) { 24320 freemsg(mp1->b_cont); 24321 mp1->b_cont = NULL; 24322 } 24323 24324 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24325 laf = acp->ac_local.ss_family; 24326 raf = acp->ac_remote.ss_family; 24327 24328 /* check that a zone with the supplied zoneid exists */ 24329 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24330 zptr = zone_find_by_id(zoneid); 24331 if (zptr != NULL) { 24332 zone_rele(zptr); 24333 } else { 24334 err = EINVAL; 24335 goto out; 24336 } 24337 } 24338 24339 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24340 acp->ac_start > acp->ac_end || laf != raf || 24341 (laf != AF_INET && laf != AF_INET6)) { 24342 err = EINVAL; 24343 goto out; 24344 } 24345 24346 tcp_ioctl_abort_dump(acp); 24347 err = tcp_ioctl_abort(acp); 24348 24349 out: 24350 if (mp1 != NULL) { 24351 freemsg(mp1); 24352 mp->b_cont = NULL; 24353 } 24354 24355 if (err != 0) 24356 miocnak(q, mp, 0, err); 24357 else 24358 miocack(q, mp, 0, 0); 24359 } 24360 24361 /* 24362 * tcp_time_wait_processing() handles processing of incoming packets when 24363 * the tcp is in the TIME_WAIT state. 24364 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24365 * on the time wait list. 24366 */ 24367 void 24368 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24369 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24370 { 24371 int32_t bytes_acked; 24372 int32_t gap; 24373 int32_t rgap; 24374 tcp_opt_t tcpopt; 24375 uint_t flags; 24376 uint32_t new_swnd = 0; 24377 conn_t *connp; 24378 24379 BUMP_LOCAL(tcp->tcp_ibsegs); 24380 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 24381 24382 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24383 new_swnd = BE16_TO_U16(tcph->th_win) << 24384 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24385 if (tcp->tcp_snd_ts_ok) { 24386 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24387 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24388 tcp->tcp_rnxt, TH_ACK); 24389 goto done; 24390 } 24391 } 24392 gap = seg_seq - tcp->tcp_rnxt; 24393 rgap = tcp->tcp_rwnd - (gap + seg_len); 24394 if (gap < 0) { 24395 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 24396 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 24397 (seg_len > -gap ? -gap : seg_len)); 24398 seg_len += gap; 24399 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24400 if (flags & TH_RST) { 24401 goto done; 24402 } 24403 if ((flags & TH_FIN) && seg_len == -1) { 24404 /* 24405 * When TCP receives a duplicate FIN in 24406 * TIME_WAIT state, restart the 2 MSL timer. 24407 * See page 73 in RFC 793. Make sure this TCP 24408 * is already on the TIME_WAIT list. If not, 24409 * just restart the timer. 24410 */ 24411 if (TCP_IS_DETACHED(tcp)) { 24412 tcp_time_wait_remove(tcp, NULL); 24413 tcp_time_wait_append(tcp); 24414 TCP_DBGSTAT(tcp_rput_time_wait); 24415 } else { 24416 ASSERT(tcp != NULL); 24417 TCP_TIMER_RESTART(tcp, 24418 tcp_time_wait_interval); 24419 } 24420 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24421 tcp->tcp_rnxt, TH_ACK); 24422 goto done; 24423 } 24424 flags |= TH_ACK_NEEDED; 24425 seg_len = 0; 24426 goto process_ack; 24427 } 24428 24429 /* Fix seg_seq, and chew the gap off the front. */ 24430 seg_seq = tcp->tcp_rnxt; 24431 } 24432 24433 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24434 /* 24435 * Make sure that when we accept the connection, pick 24436 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24437 * old connection. 24438 * 24439 * The next ISS generated is equal to tcp_iss_incr_extra 24440 * + ISS_INCR/2 + other components depending on the 24441 * value of tcp_strong_iss. We pre-calculate the new 24442 * ISS here and compare with tcp_snxt to determine if 24443 * we need to make adjustment to tcp_iss_incr_extra. 24444 * 24445 * The above calculation is ugly and is a 24446 * waste of CPU cycles... 24447 */ 24448 uint32_t new_iss = tcp_iss_incr_extra; 24449 int32_t adj; 24450 24451 switch (tcp_strong_iss) { 24452 case 2: { 24453 /* Add time and MD5 components. */ 24454 uint32_t answer[4]; 24455 struct { 24456 uint32_t ports; 24457 in6_addr_t src; 24458 in6_addr_t dst; 24459 } arg; 24460 MD5_CTX context; 24461 24462 mutex_enter(&tcp_iss_key_lock); 24463 context = tcp_iss_key; 24464 mutex_exit(&tcp_iss_key_lock); 24465 arg.ports = tcp->tcp_ports; 24466 /* We use MAPPED addresses in tcp_iss_init */ 24467 arg.src = tcp->tcp_ip_src_v6; 24468 if (tcp->tcp_ipversion == IPV4_VERSION) { 24469 IN6_IPADDR_TO_V4MAPPED( 24470 tcp->tcp_ipha->ipha_dst, 24471 &arg.dst); 24472 } else { 24473 arg.dst = 24474 tcp->tcp_ip6h->ip6_dst; 24475 } 24476 MD5Update(&context, (uchar_t *)&arg, 24477 sizeof (arg)); 24478 MD5Final((uchar_t *)answer, &context); 24479 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24480 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24481 break; 24482 } 24483 case 1: 24484 /* Add time component and min random (i.e. 1). */ 24485 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24486 break; 24487 default: 24488 /* Add only time component. */ 24489 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24490 break; 24491 } 24492 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24493 /* 24494 * New ISS not guaranteed to be ISS_INCR/2 24495 * ahead of the current tcp_snxt, so add the 24496 * difference to tcp_iss_incr_extra. 24497 */ 24498 tcp_iss_incr_extra += adj; 24499 } 24500 /* 24501 * If tcp_clean_death() can not perform the task now, 24502 * drop the SYN packet and let the other side re-xmit. 24503 * Otherwise pass the SYN packet back in, since the 24504 * old tcp state has been cleaned up or freed. 24505 */ 24506 if (tcp_clean_death(tcp, 0, 27) == -1) 24507 goto done; 24508 /* 24509 * We will come back to tcp_rput_data 24510 * on the global queue. Packets destined 24511 * for the global queue will be checked 24512 * with global policy. But the policy for 24513 * this packet has already been checked as 24514 * this was destined for the detached 24515 * connection. We need to bypass policy 24516 * check this time by attaching a dummy 24517 * ipsec_in with ipsec_in_dont_check set. 24518 */ 24519 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 24520 NULL) { 24521 TCP_STAT(tcp_time_wait_syn_success); 24522 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24523 return; 24524 } 24525 goto done; 24526 } 24527 24528 /* 24529 * rgap is the amount of stuff received out of window. A negative 24530 * value is the amount out of window. 24531 */ 24532 if (rgap < 0) { 24533 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 24534 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 24535 /* Fix seg_len and make sure there is something left. */ 24536 seg_len += rgap; 24537 if (seg_len <= 0) { 24538 if (flags & TH_RST) { 24539 goto done; 24540 } 24541 flags |= TH_ACK_NEEDED; 24542 seg_len = 0; 24543 goto process_ack; 24544 } 24545 } 24546 /* 24547 * Check whether we can update tcp_ts_recent. This test is 24548 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24549 * Extensions for High Performance: An Update", Internet Draft. 24550 */ 24551 if (tcp->tcp_snd_ts_ok && 24552 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24553 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24554 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24555 tcp->tcp_last_rcv_lbolt = lbolt64; 24556 } 24557 24558 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24559 /* Always ack out of order packets */ 24560 flags |= TH_ACK_NEEDED; 24561 seg_len = 0; 24562 } else if (seg_len > 0) { 24563 BUMP_MIB(&tcp_mib, tcpInClosed); 24564 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 24565 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 24566 } 24567 if (flags & TH_RST) { 24568 (void) tcp_clean_death(tcp, 0, 28); 24569 goto done; 24570 } 24571 if (flags & TH_SYN) { 24572 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24573 TH_RST|TH_ACK); 24574 /* 24575 * Do not delete the TCP structure if it is in 24576 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24577 */ 24578 goto done; 24579 } 24580 process_ack: 24581 if (flags & TH_ACK) { 24582 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24583 if (bytes_acked <= 0) { 24584 if (bytes_acked == 0 && seg_len == 0 && 24585 new_swnd == tcp->tcp_swnd) 24586 BUMP_MIB(&tcp_mib, tcpInDupAck); 24587 } else { 24588 /* Acks something not sent */ 24589 flags |= TH_ACK_NEEDED; 24590 } 24591 } 24592 if (flags & TH_ACK_NEEDED) { 24593 /* 24594 * Time to send an ack for some reason. 24595 */ 24596 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24597 tcp->tcp_rnxt, TH_ACK); 24598 } 24599 done: 24600 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24601 DB_CKSUMSTART(mp) = 0; 24602 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24603 TCP_STAT(tcp_time_wait_syn_fail); 24604 } 24605 freemsg(mp); 24606 } 24607 24608 /* 24609 * Allocate a T_SVR4_OPTMGMT_REQ. 24610 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 24611 * that tcp_rput_other can drop the acks. 24612 */ 24613 static mblk_t * 24614 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 24615 { 24616 mblk_t *mp; 24617 struct T_optmgmt_req *tor; 24618 struct opthdr *oh; 24619 uint_t size; 24620 char *optptr; 24621 24622 size = sizeof (*tor) + sizeof (*oh) + optlen; 24623 mp = allocb(size, BPRI_MED); 24624 if (mp == NULL) 24625 return (NULL); 24626 24627 mp->b_wptr += size; 24628 mp->b_datap->db_type = M_PROTO; 24629 tor = (struct T_optmgmt_req *)mp->b_rptr; 24630 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 24631 tor->MGMT_flags = T_NEGOTIATE; 24632 tor->OPT_length = sizeof (*oh) + optlen; 24633 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 24634 24635 oh = (struct opthdr *)&tor[1]; 24636 oh->level = level; 24637 oh->name = cmd; 24638 oh->len = optlen; 24639 if (optlen != 0) { 24640 optptr = (char *)&oh[1]; 24641 bcopy(opt, optptr, optlen); 24642 } 24643 return (mp); 24644 } 24645 24646 /* 24647 * TCP Timers Implementation. 24648 */ 24649 timeout_id_t 24650 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24651 { 24652 mblk_t *mp; 24653 tcp_timer_t *tcpt; 24654 tcp_t *tcp = connp->conn_tcp; 24655 24656 ASSERT(connp->conn_sqp != NULL); 24657 24658 TCP_DBGSTAT(tcp_timeout_calls); 24659 24660 if (tcp->tcp_timercache == NULL) { 24661 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24662 } else { 24663 TCP_DBGSTAT(tcp_timeout_cached_alloc); 24664 mp = tcp->tcp_timercache; 24665 tcp->tcp_timercache = mp->b_next; 24666 mp->b_next = NULL; 24667 ASSERT(mp->b_wptr == NULL); 24668 } 24669 24670 CONN_INC_REF(connp); 24671 tcpt = (tcp_timer_t *)mp->b_rptr; 24672 tcpt->connp = connp; 24673 tcpt->tcpt_proc = f; 24674 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 24675 return ((timeout_id_t)mp); 24676 } 24677 24678 static void 24679 tcp_timer_callback(void *arg) 24680 { 24681 mblk_t *mp = (mblk_t *)arg; 24682 tcp_timer_t *tcpt; 24683 conn_t *connp; 24684 24685 tcpt = (tcp_timer_t *)mp->b_rptr; 24686 connp = tcpt->connp; 24687 squeue_fill(connp->conn_sqp, mp, 24688 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 24689 } 24690 24691 static void 24692 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24693 { 24694 tcp_timer_t *tcpt; 24695 conn_t *connp = (conn_t *)arg; 24696 tcp_t *tcp = connp->conn_tcp; 24697 24698 tcpt = (tcp_timer_t *)mp->b_rptr; 24699 ASSERT(connp == tcpt->connp); 24700 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24701 24702 /* 24703 * If the TCP has reached the closed state, don't proceed any 24704 * further. This TCP logically does not exist on the system. 24705 * tcpt_proc could for example access queues, that have already 24706 * been qprocoff'ed off. Also see comments at the start of tcp_input 24707 */ 24708 if (tcp->tcp_state != TCPS_CLOSED) { 24709 (*tcpt->tcpt_proc)(connp); 24710 } else { 24711 tcp->tcp_timer_tid = 0; 24712 } 24713 tcp_timer_free(connp->conn_tcp, mp); 24714 } 24715 24716 /* 24717 * There is potential race with untimeout and the handler firing at the same 24718 * time. The mblock may be freed by the handler while we are trying to use 24719 * it. But since both should execute on the same squeue, this race should not 24720 * occur. 24721 */ 24722 clock_t 24723 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24724 { 24725 mblk_t *mp = (mblk_t *)id; 24726 tcp_timer_t *tcpt; 24727 clock_t delta; 24728 24729 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 24730 24731 if (mp == NULL) 24732 return (-1); 24733 24734 tcpt = (tcp_timer_t *)mp->b_rptr; 24735 ASSERT(tcpt->connp == connp); 24736 24737 delta = untimeout(tcpt->tcpt_tid); 24738 24739 if (delta >= 0) { 24740 TCP_DBGSTAT(tcp_timeout_canceled); 24741 tcp_timer_free(connp->conn_tcp, mp); 24742 CONN_DEC_REF(connp); 24743 } 24744 24745 return (delta); 24746 } 24747 24748 /* 24749 * Allocate space for the timer event. The allocation looks like mblk, but it is 24750 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24751 * 24752 * Dealing with failures: If we can't allocate from the timer cache we try 24753 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24754 * points to b_rptr. 24755 * If we can't allocate anything using allocb_tryhard(), we perform a last 24756 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24757 * save the actual allocation size in b_datap. 24758 */ 24759 mblk_t * 24760 tcp_timermp_alloc(int kmflags) 24761 { 24762 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 24763 kmflags & ~KM_PANIC); 24764 24765 if (mp != NULL) { 24766 mp->b_next = mp->b_prev = NULL; 24767 mp->b_rptr = (uchar_t *)(&mp[1]); 24768 mp->b_wptr = NULL; 24769 mp->b_datap = NULL; 24770 mp->b_queue = NULL; 24771 } else if (kmflags & KM_PANIC) { 24772 /* 24773 * Failed to allocate memory for the timer. Try allocating from 24774 * dblock caches. 24775 */ 24776 TCP_STAT(tcp_timermp_allocfail); 24777 mp = allocb_tryhard(sizeof (tcp_timer_t)); 24778 if (mp == NULL) { 24779 size_t size = 0; 24780 /* 24781 * Memory is really low. Try tryhard allocation. 24782 */ 24783 TCP_STAT(tcp_timermp_allocdblfail); 24784 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 24785 sizeof (tcp_timer_t), &size, kmflags); 24786 mp->b_rptr = (uchar_t *)(&mp[1]); 24787 mp->b_next = mp->b_prev = NULL; 24788 mp->b_wptr = (uchar_t *)-1; 24789 mp->b_datap = (dblk_t *)size; 24790 mp->b_queue = NULL; 24791 } 24792 ASSERT(mp->b_wptr != NULL); 24793 } 24794 TCP_DBGSTAT(tcp_timermp_alloced); 24795 24796 return (mp); 24797 } 24798 24799 /* 24800 * Free per-tcp timer cache. 24801 * It can only contain entries from tcp_timercache. 24802 */ 24803 void 24804 tcp_timermp_free(tcp_t *tcp) 24805 { 24806 mblk_t *mp; 24807 24808 while ((mp = tcp->tcp_timercache) != NULL) { 24809 ASSERT(mp->b_wptr == NULL); 24810 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 24811 kmem_cache_free(tcp_timercache, mp); 24812 } 24813 } 24814 24815 /* 24816 * Free timer event. Put it on the per-tcp timer cache if there is not too many 24817 * events there already (currently at most two events are cached). 24818 * If the event is not allocated from the timer cache, free it right away. 24819 */ 24820 static void 24821 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 24822 { 24823 mblk_t *mp1 = tcp->tcp_timercache; 24824 24825 if (mp->b_wptr != NULL) { 24826 /* 24827 * This allocation is not from a timer cache, free it right 24828 * away. 24829 */ 24830 if (mp->b_wptr != (uchar_t *)-1) 24831 freeb(mp); 24832 else 24833 kmem_free(mp, (size_t)mp->b_datap); 24834 } else if (mp1 == NULL || mp1->b_next == NULL) { 24835 /* Cache this timer block for future allocations */ 24836 mp->b_rptr = (uchar_t *)(&mp[1]); 24837 mp->b_next = mp1; 24838 tcp->tcp_timercache = mp; 24839 } else { 24840 kmem_cache_free(tcp_timercache, mp); 24841 TCP_DBGSTAT(tcp_timermp_freed); 24842 } 24843 } 24844 24845 /* 24846 * End of TCP Timers implementation. 24847 */ 24848 24849 /* 24850 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 24851 * on the specified backing STREAMS q. Note, the caller may make the 24852 * decision to call based on the tcp_t.tcp_flow_stopped value which 24853 * when check outside the q's lock is only an advisory check ... 24854 */ 24855 24856 void 24857 tcp_setqfull(tcp_t *tcp) 24858 { 24859 queue_t *q = tcp->tcp_wq; 24860 24861 if (!(q->q_flag & QFULL)) { 24862 mutex_enter(QLOCK(q)); 24863 if (!(q->q_flag & QFULL)) { 24864 /* still need to set QFULL */ 24865 q->q_flag |= QFULL; 24866 tcp->tcp_flow_stopped = B_TRUE; 24867 mutex_exit(QLOCK(q)); 24868 TCP_STAT(tcp_flwctl_on); 24869 } else { 24870 mutex_exit(QLOCK(q)); 24871 } 24872 } 24873 } 24874 24875 void 24876 tcp_clrqfull(tcp_t *tcp) 24877 { 24878 queue_t *q = tcp->tcp_wq; 24879 24880 if (q->q_flag & QFULL) { 24881 mutex_enter(QLOCK(q)); 24882 if (q->q_flag & QFULL) { 24883 q->q_flag &= ~QFULL; 24884 tcp->tcp_flow_stopped = B_FALSE; 24885 mutex_exit(QLOCK(q)); 24886 if (q->q_flag & QWANTW) 24887 qbackenable(q, 0); 24888 } else { 24889 mutex_exit(QLOCK(q)); 24890 } 24891 } 24892 } 24893 24894 /* 24895 * TCP Kstats implementation 24896 */ 24897 static void 24898 tcp_kstat_init(void) 24899 { 24900 tcp_named_kstat_t template = { 24901 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 24902 { "rtoMin", KSTAT_DATA_INT32, 0 }, 24903 { "rtoMax", KSTAT_DATA_INT32, 0 }, 24904 { "maxConn", KSTAT_DATA_INT32, 0 }, 24905 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 24906 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 24907 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 24908 { "estabResets", KSTAT_DATA_UINT32, 0 }, 24909 { "currEstab", KSTAT_DATA_UINT32, 0 }, 24910 { "inSegs", KSTAT_DATA_UINT32, 0 }, 24911 { "outSegs", KSTAT_DATA_UINT32, 0 }, 24912 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 24913 { "connTableSize", KSTAT_DATA_INT32, 0 }, 24914 { "outRsts", KSTAT_DATA_UINT32, 0 }, 24915 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 24916 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 24917 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 24918 { "outAck", KSTAT_DATA_UINT32, 0 }, 24919 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 24920 { "outUrg", KSTAT_DATA_UINT32, 0 }, 24921 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 24922 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 24923 { "outControl", KSTAT_DATA_UINT32, 0 }, 24924 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 24925 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 24926 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 24927 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 24928 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 24929 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 24930 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 24931 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 24932 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 24933 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 24934 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 24935 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 24936 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 24937 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 24938 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 24939 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 24940 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 24941 { "inClosed", KSTAT_DATA_UINT32, 0 }, 24942 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 24943 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 24944 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 24945 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 24946 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 24947 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 24948 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 24949 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 24950 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 24951 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 24952 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 24953 { "connTableSize6", KSTAT_DATA_INT32, 0 } 24954 }; 24955 24956 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 24957 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 24958 24959 if (tcp_mibkp == NULL) 24960 return; 24961 24962 template.rtoAlgorithm.value.ui32 = 4; 24963 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 24964 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 24965 template.maxConn.value.i32 = -1; 24966 24967 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 24968 24969 tcp_mibkp->ks_update = tcp_kstat_update; 24970 24971 kstat_install(tcp_mibkp); 24972 } 24973 24974 static void 24975 tcp_kstat_fini(void) 24976 { 24977 24978 if (tcp_mibkp != NULL) { 24979 kstat_delete(tcp_mibkp); 24980 tcp_mibkp = NULL; 24981 } 24982 } 24983 24984 static int 24985 tcp_kstat_update(kstat_t *kp, int rw) 24986 { 24987 tcp_named_kstat_t *tcpkp; 24988 tcp_t *tcp; 24989 connf_t *connfp; 24990 conn_t *connp; 24991 int i; 24992 24993 if (!kp || !kp->ks_data) 24994 return (EIO); 24995 24996 if (rw == KSTAT_WRITE) 24997 return (EACCES); 24998 24999 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25000 25001 tcpkp->currEstab.value.ui32 = 0; 25002 25003 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25004 connfp = &ipcl_globalhash_fanout[i]; 25005 connp = NULL; 25006 while ((connp = 25007 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25008 tcp = connp->conn_tcp; 25009 switch (tcp_snmp_state(tcp)) { 25010 case MIB2_TCP_established: 25011 case MIB2_TCP_closeWait: 25012 tcpkp->currEstab.value.ui32++; 25013 break; 25014 } 25015 } 25016 } 25017 25018 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 25019 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 25020 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 25021 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 25022 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 25023 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 25024 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 25025 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 25026 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 25027 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 25028 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 25029 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 25030 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 25031 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 25032 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 25033 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 25034 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 25035 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 25036 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 25037 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 25038 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 25039 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 25040 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 25041 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 25042 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 25043 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 25044 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 25045 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 25046 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 25047 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 25048 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 25049 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 25050 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 25051 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 25052 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 25053 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 25054 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 25055 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 25056 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 25057 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 25058 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 25059 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 25060 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 25061 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 25062 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 25063 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 25064 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 25065 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 25066 25067 return (0); 25068 } 25069 25070 void 25071 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25072 { 25073 uint16_t hdr_len; 25074 ipha_t *ipha; 25075 uint8_t *nexthdrp; 25076 tcph_t *tcph; 25077 25078 /* Already has an eager */ 25079 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25080 TCP_STAT(tcp_reinput_syn); 25081 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 25082 connp, SQTAG_TCP_REINPUT_EAGER); 25083 return; 25084 } 25085 25086 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25087 case IPV4_VERSION: 25088 ipha = (ipha_t *)mp->b_rptr; 25089 hdr_len = IPH_HDR_LENGTH(ipha); 25090 break; 25091 case IPV6_VERSION: 25092 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25093 &hdr_len, &nexthdrp)) { 25094 CONN_DEC_REF(connp); 25095 freemsg(mp); 25096 return; 25097 } 25098 break; 25099 } 25100 25101 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25102 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25103 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25104 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25105 } 25106 25107 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 25108 SQTAG_TCP_REINPUT); 25109 } 25110 25111 static squeue_func_t 25112 tcp_squeue_switch(int val) 25113 { 25114 squeue_func_t rval = squeue_fill; 25115 25116 switch (val) { 25117 case 1: 25118 rval = squeue_enter_nodrain; 25119 break; 25120 case 2: 25121 rval = squeue_enter; 25122 break; 25123 default: 25124 break; 25125 } 25126 return (rval); 25127 } 25128 25129 static void 25130 tcp_squeue_add(squeue_t *sqp) 25131 { 25132 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25133 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25134 25135 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25136 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 25137 sqp, TCP_TIME_WAIT_DELAY); 25138 if (tcp_free_list_max_cnt == 0) { 25139 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25140 max_ncpus : boot_max_ncpus); 25141 25142 /* 25143 * Limit number of entries to 1% of availble memory / tcp_ncpus 25144 */ 25145 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25146 (tcp_ncpus * sizeof (tcp_t) * 100); 25147 } 25148 tcp_time_wait->tcp_free_list_cnt = 0; 25149 } 25150