1 /* 2 * Copyright (C) 1993-2003 by Darren Reed. 3 * 4 * See the IPFILTER.LICENCE file for details on licencing. 5 * 6 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 7 * Use is subject to license terms. 8 */ 9 10 #pragma ident "%Z%%M% %I% %E% SMI" 11 12 #if defined(KERNEL) || defined(_KERNEL) 13 # undef KERNEL 14 # undef _KERNEL 15 # define KERNEL 1 16 # define _KERNEL 1 17 #endif 18 #include <sys/errno.h> 19 #include <sys/types.h> 20 #include <sys/param.h> 21 #include <sys/time.h> 22 #if defined(__NetBSD__) 23 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL) 24 # include "opt_ipfilter_log.h" 25 # endif 26 #endif 27 #if defined(_KERNEL) && defined(__FreeBSD_version) && \ 28 (__FreeBSD_version >= 220000) 29 # if (__FreeBSD_version >= 400000) 30 # if !defined(IPFILTER_LKM) 31 # include "opt_inet6.h" 32 # endif 33 # if (__FreeBSD_version == 400019) 34 # define CSUM_DELAY_DATA 35 # endif 36 # endif 37 # include <sys/filio.h> 38 #else 39 # include <sys/ioctl.h> 40 #endif 41 #if !defined(_AIX51) 42 # include <sys/fcntl.h> 43 #endif 44 #if defined(_KERNEL) 45 # include <sys/systm.h> 46 # include <sys/file.h> 47 #else 48 # include <stdio.h> 49 # include <string.h> 50 # include <stdlib.h> 51 # include <stddef.h> 52 # include <sys/file.h> 53 # define _KERNEL 54 # ifdef __OpenBSD__ 55 struct file; 56 # endif 57 # include <sys/uio.h> 58 # undef _KERNEL 59 #endif 60 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \ 61 !defined(linux) 62 # include <sys/mbuf.h> 63 #else 64 # if !defined(linux) 65 # include <sys/byteorder.h> 66 # endif 67 # if (SOLARIS2 < 5) && defined(sun) 68 # include <sys/dditypes.h> 69 # endif 70 #endif 71 #ifdef __hpux 72 # define _NET_ROUTE_INCLUDED 73 #endif 74 #if !defined(linux) 75 # include <sys/protosw.h> 76 #endif 77 #include <sys/socket.h> 78 #include <net/if.h> 79 #ifdef sun 80 # include <net/af.h> 81 #endif 82 #if !defined(_KERNEL) && defined(__FreeBSD__) 83 # include "radix_ipf.h" 84 #endif 85 #include <net/route.h> 86 #include <netinet/in.h> 87 #include <netinet/in_systm.h> 88 #include <netinet/ip.h> 89 #if !defined(linux) 90 # include <netinet/ip_var.h> 91 #endif 92 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */ 93 # include <sys/hashing.h> 94 # include <netinet/in_var.h> 95 #endif 96 #include <netinet/tcp.h> 97 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL) 98 # include <netinet/udp.h> 99 # include <netinet/ip_icmp.h> 100 #endif 101 #ifdef __hpux 102 # undef _NET_ROUTE_INCLUDED 103 #endif 104 #include "netinet/ip_compat.h" 105 #ifdef USE_INET6 106 # include <netinet/icmp6.h> 107 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux) 108 # include <netinet6/in6_var.h> 109 # endif 110 #endif 111 #include <netinet/tcpip.h> 112 #include "netinet/ip_fil.h" 113 #include "netinet/ip_nat.h" 114 #include "netinet/ip_frag.h" 115 #include "netinet/ip_state.h" 116 #include "netinet/ip_proxy.h" 117 #include "netinet/ip_auth.h" 118 #include "netinet/ipf_stack.h" 119 #ifdef IPFILTER_SCAN 120 # include "netinet/ip_scan.h" 121 #endif 122 #ifdef IPFILTER_SYNC 123 # include "netinet/ip_sync.h" 124 #endif 125 #include "netinet/ip_pool.h" 126 #include "netinet/ip_htable.h" 127 #ifdef IPFILTER_COMPILED 128 # include "netinet/ip_rules.h" 129 #endif 130 #if defined(IPFILTER_BPF) && defined(_KERNEL) 131 # include <net/bpf.h> 132 #endif 133 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000) 134 # include <sys/malloc.h> 135 # if defined(_KERNEL) && !defined(IPFILTER_LKM) 136 # include "opt_ipfilter.h" 137 # endif 138 #endif 139 #include "netinet/ipl.h" 140 /* END OF INCLUDES */ 141 142 #if !defined(lint) 143 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed"; 144 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $"; 145 #endif 146 147 #ifndef _KERNEL 148 # include "ipf.h" 149 # include "ipt.h" 150 # include "bpf-ipf.h" 151 extern int opts; 152 153 # define FR_VERBOSE(verb_pr) verbose verb_pr 154 # define FR_DEBUG(verb_pr) debug verb_pr 155 #else /* #ifndef _KERNEL */ 156 # define FR_VERBOSE(verb_pr) 157 # define FR_DEBUG(verb_pr) 158 #endif /* _KERNEL */ 159 160 161 char ipfilter_version[] = IPL_VERSION; 162 int fr_features = 0 163 #ifdef IPFILTER_LKM 164 | IPF_FEAT_LKM 165 #endif 166 #ifdef IPFILTER_LOG 167 | IPF_FEAT_LOG 168 #endif 169 #ifdef IPFILTER_LOOKUP 170 | IPF_FEAT_LOOKUP 171 #endif 172 #ifdef IPFILTER_BPF 173 | IPF_FEAT_BPF 174 #endif 175 #ifdef IPFILTER_COMPILED 176 | IPF_FEAT_COMPILED 177 #endif 178 #ifdef IPFILTER_CKSUM 179 | IPF_FEAT_CKSUM 180 #endif 181 #ifdef IPFILTER_SYNC 182 | IPF_FEAT_SYNC 183 #endif 184 #ifdef IPFILTER_SCAN 185 | IPF_FEAT_SCAN 186 #endif 187 #ifdef USE_INET6 188 | IPF_FEAT_IPV6 189 #endif 190 ; 191 192 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int)); 193 static int fr_portcheck __P((frpcmp_t *, u_short *)); 194 static int frflushlist __P((int, minor_t, int *, frentry_t **, 195 ipf_stack_t *)); 196 static ipfunc_t fr_findfunc __P((ipfunc_t)); 197 static frentry_t *fr_firewall __P((fr_info_t *, u_32_t *)); 198 static int fr_funcinit __P((frentry_t *fr, ipf_stack_t *)); 199 static INLINE void frpr_ah __P((fr_info_t *)); 200 static INLINE void frpr_esp __P((fr_info_t *)); 201 static INLINE void frpr_gre __P((fr_info_t *)); 202 static INLINE void frpr_udp __P((fr_info_t *)); 203 static INLINE void frpr_tcp __P((fr_info_t *)); 204 static INLINE void frpr_icmp __P((fr_info_t *)); 205 static INLINE void frpr_ipv4hdr __P((fr_info_t *)); 206 static INLINE int frpr_pullup __P((fr_info_t *, int)); 207 static INLINE void frpr_short __P((fr_info_t *, int)); 208 static INLINE void frpr_tcpcommon __P((fr_info_t *)); 209 static INLINE void frpr_udpcommon __P((fr_info_t *)); 210 static INLINE int fr_updateipid __P((fr_info_t *)); 211 #ifdef IPFILTER_LOOKUP 212 static int fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *)); 213 static INLINE void *fr_resolvelookup __P((u_int, u_int, lookupfunc_t *, 214 ipf_stack_t *)); 215 #endif 216 static void frsynclist __P((int, int, void *, char *, frentry_t *, 217 ipf_stack_t *)); 218 static void *fr_ifsync __P((int, int, char *, char *, 219 void *, void *, ipf_stack_t *)); 220 static ipftuneable_t *fr_findtunebyname __P((const char *, ipf_stack_t *)); 221 static ipftuneable_t *fr_findtunebycookie __P((void *, void **, ipf_stack_t *)); 222 223 224 /* 225 * bit values for identifying presence of individual IP options 226 * All of these tables should be ordered by increasing key value on the left 227 * hand side to allow for binary searching of the array and include a trailer 228 * with a 0 for the bitmask for linear searches to easily find the end with. 229 */ 230 const struct optlist ipopts[20] = { 231 { IPOPT_NOP, 0x000001 }, 232 { IPOPT_RR, 0x000002 }, 233 { IPOPT_ZSU, 0x000004 }, 234 { IPOPT_MTUP, 0x000008 }, 235 { IPOPT_MTUR, 0x000010 }, 236 { IPOPT_ENCODE, 0x000020 }, 237 { IPOPT_TS, 0x000040 }, 238 { IPOPT_TR, 0x000080 }, 239 { IPOPT_SECURITY, 0x000100 }, 240 { IPOPT_LSRR, 0x000200 }, 241 { IPOPT_E_SEC, 0x000400 }, 242 { IPOPT_CIPSO, 0x000800 }, 243 { IPOPT_SATID, 0x001000 }, 244 { IPOPT_SSRR, 0x002000 }, 245 { IPOPT_ADDEXT, 0x004000 }, 246 { IPOPT_VISA, 0x008000 }, 247 { IPOPT_IMITD, 0x010000 }, 248 { IPOPT_EIP, 0x020000 }, 249 { IPOPT_FINN, 0x040000 }, 250 { 0, 0x000000 } 251 }; 252 253 #ifdef USE_INET6 254 struct optlist ip6exthdr[] = { 255 { IPPROTO_HOPOPTS, 0x000001 }, 256 { IPPROTO_IPV6, 0x000002 }, 257 { IPPROTO_ROUTING, 0x000004 }, 258 { IPPROTO_FRAGMENT, 0x000008 }, 259 { IPPROTO_ESP, 0x000010 }, 260 { IPPROTO_AH, 0x000020 }, 261 { IPPROTO_NONE, 0x000040 }, 262 { IPPROTO_DSTOPTS, 0x000080 }, 263 { 0, 0 } 264 }; 265 #endif 266 267 struct optlist tcpopts[] = { 268 { TCPOPT_NOP, 0x000001 }, 269 { TCPOPT_MAXSEG, 0x000002 }, 270 { TCPOPT_WINDOW, 0x000004 }, 271 { TCPOPT_SACK_PERMITTED, 0x000008 }, 272 { TCPOPT_SACK, 0x000010 }, 273 { TCPOPT_TIMESTAMP, 0x000020 }, 274 { 0, 0x000000 } 275 }; 276 277 /* 278 * bit values for identifying presence of individual IP security options 279 */ 280 const struct optlist secopt[8] = { 281 { IPSO_CLASS_RES4, 0x01 }, 282 { IPSO_CLASS_TOPS, 0x02 }, 283 { IPSO_CLASS_SECR, 0x04 }, 284 { IPSO_CLASS_RES3, 0x08 }, 285 { IPSO_CLASS_CONF, 0x10 }, 286 { IPSO_CLASS_UNCL, 0x20 }, 287 { IPSO_CLASS_RES2, 0x40 }, 288 { IPSO_CLASS_RES1, 0x80 } 289 }; 290 291 292 /* 293 * Table of functions available for use with call rules. 294 */ 295 static ipfunc_resolve_t fr_availfuncs[] = { 296 #ifdef IPFILTER_LOOKUP 297 { "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit }, 298 { "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit }, 299 #endif 300 { "", NULL } 301 }; 302 303 304 /* 305 * The next section of code is a a collection of small routines that set 306 * fields in the fr_info_t structure passed based on properties of the 307 * current packet. There are different routines for the same protocol 308 * for each of IPv4 and IPv6. Adding a new protocol, for which there 309 * will "special" inspection for setup, is now more easily done by adding 310 * a new routine and expanding the frpr_ipinit*() function rather than by 311 * adding more code to a growing switch statement. 312 */ 313 #ifdef USE_INET6 314 static INLINE int frpr_ah6 __P((fr_info_t *)); 315 static INLINE void frpr_esp6 __P((fr_info_t *)); 316 static INLINE void frpr_gre6 __P((fr_info_t *)); 317 static INLINE void frpr_udp6 __P((fr_info_t *)); 318 static INLINE void frpr_tcp6 __P((fr_info_t *)); 319 static INLINE void frpr_icmp6 __P((fr_info_t *)); 320 static INLINE int frpr_ipv6hdr __P((fr_info_t *)); 321 static INLINE void frpr_short6 __P((fr_info_t *, int)); 322 static INLINE int frpr_hopopts6 __P((fr_info_t *)); 323 static INLINE int frpr_routing6 __P((fr_info_t *)); 324 static INLINE int frpr_dstopts6 __P((fr_info_t *)); 325 static INLINE int frpr_fragment6 __P((fr_info_t *)); 326 static INLINE int frpr_ipv6exthdr __P((fr_info_t *, int, int)); 327 328 329 /* ------------------------------------------------------------------------ */ 330 /* Function: frpr_short6 */ 331 /* Returns: void */ 332 /* Parameters: fin(I) - pointer to packet information */ 333 /* */ 334 /* IPv6 Only */ 335 /* This is function enforces the 'is a packet too short to be legit' rule */ 336 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */ 337 /* for frpr_short() for more details. */ 338 /* ------------------------------------------------------------------------ */ 339 static INLINE void frpr_short6(fin, xmin) 340 fr_info_t *fin; 341 int xmin; 342 { 343 344 if (fin->fin_dlen < xmin) 345 fin->fin_flx |= FI_SHORT; 346 } 347 348 349 /* ------------------------------------------------------------------------ */ 350 /* Function: frpr_ipv6hdr */ 351 /* Returns: int */ 352 /* Parameters: fin(I) - pointer to packet information */ 353 /* */ 354 /* IPv6 Only */ 355 /* Copy values from the IPv6 header into the fr_info_t struct and call the */ 356 /* per-protocol analyzer if it exists. */ 357 /* ------------------------------------------------------------------------ */ 358 static INLINE int frpr_ipv6hdr(fin) 359 fr_info_t *fin; 360 { 361 ip6_t *ip6 = (ip6_t *)fin->fin_ip; 362 int p, go = 1, i, hdrcount; 363 fr_ip_t *fi = &fin->fin_fi; 364 365 fin->fin_off = 0; 366 367 fi->fi_tos = 0; 368 fi->fi_optmsk = 0; 369 fi->fi_secmsk = 0; 370 fi->fi_auth = 0; 371 372 p = ip6->ip6_nxt; 373 fi->fi_ttl = ip6->ip6_hlim; 374 fi->fi_src.in6 = ip6->ip6_src; 375 fi->fi_dst.in6 = ip6->ip6_dst; 376 fin->fin_id = 0; 377 378 hdrcount = 0; 379 while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) { 380 switch (p) 381 { 382 case IPPROTO_UDP : 383 frpr_udp6(fin); 384 go = 0; 385 break; 386 387 case IPPROTO_TCP : 388 frpr_tcp6(fin); 389 go = 0; 390 break; 391 392 case IPPROTO_ICMPV6 : 393 frpr_icmp6(fin); 394 go = 0; 395 break; 396 397 case IPPROTO_GRE : 398 frpr_gre6(fin); 399 go = 0; 400 break; 401 402 case IPPROTO_HOPOPTS : 403 /* 404 * hop by hop ext header is only allowed 405 * right after IPv6 header. 406 */ 407 if (hdrcount != 0) { 408 fin->fin_flx |= FI_BAD; 409 p = IPPROTO_NONE; 410 } else { 411 p = frpr_hopopts6(fin); 412 } 413 break; 414 415 case IPPROTO_DSTOPTS : 416 p = frpr_dstopts6(fin); 417 break; 418 419 case IPPROTO_ROUTING : 420 p = frpr_routing6(fin); 421 break; 422 423 case IPPROTO_AH : 424 p = frpr_ah6(fin); 425 break; 426 427 case IPPROTO_ESP : 428 frpr_esp6(fin); 429 go = 0; 430 break; 431 432 case IPPROTO_IPV6 : 433 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 434 if (ip6exthdr[i].ol_val == p) { 435 fin->fin_flx |= ip6exthdr[i].ol_bit; 436 break; 437 } 438 go = 0; 439 break; 440 441 case IPPROTO_NONE : 442 go = 0; 443 break; 444 445 case IPPROTO_FRAGMENT : 446 p = frpr_fragment6(fin); 447 if (fin->fin_off != 0) /* Not the first frag */ 448 go = 0; 449 break; 450 451 default : 452 go = 0; 453 break; 454 } 455 hdrcount++; 456 457 /* 458 * It is important to note that at this point, for the 459 * extension headers (go != 0), the entire header may not have 460 * been pulled up when the code gets to this point. This is 461 * only done for "go != 0" because the other header handlers 462 * will all pullup their complete header. The other indicator 463 * of an incomplete packet is that this was just an extension 464 * header. 465 */ 466 if ((go != 0) && (p != IPPROTO_NONE) && 467 (frpr_pullup(fin, 0) == -1)) { 468 p = IPPROTO_NONE; 469 go = 0; 470 } 471 } 472 fi->fi_p = p; 473 474 if (fin->fin_flx & FI_BAD) 475 return -1; 476 477 return 0; 478 } 479 480 481 /* ------------------------------------------------------------------------ */ 482 /* Function: frpr_ipv6exthdr */ 483 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 484 /* Parameters: fin(I) - pointer to packet information */ 485 /* multiple(I) - flag indicating yes/no if multiple occurances */ 486 /* of this extension header are allowed. */ 487 /* proto(I) - protocol number for this extension header */ 488 /* */ 489 /* IPv6 Only */ 490 /* ------------------------------------------------------------------------ */ 491 static INLINE int frpr_ipv6exthdr(fin, multiple, proto) 492 fr_info_t *fin; 493 int multiple, proto; 494 { 495 struct ip6_ext *hdr; 496 u_short shift; 497 int i; 498 499 fin->fin_flx |= FI_V6EXTHDR; 500 501 /* 8 is default length of extension hdr */ 502 if ((fin->fin_dlen - 8) < 0) { 503 fin->fin_flx |= FI_SHORT; 504 return IPPROTO_NONE; 505 } 506 507 if (frpr_pullup(fin, 8) == -1) 508 return IPPROTO_NONE; 509 510 hdr = fin->fin_dp; 511 shift = 8 + (hdr->ip6e_len << 3); 512 if (shift > fin->fin_dlen) { /* Nasty extension header length? */ 513 fin->fin_flx |= FI_BAD; 514 return IPPROTO_NONE; 515 } 516 517 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 518 if (ip6exthdr[i].ol_val == proto) { 519 /* 520 * Most IPv6 extension headers are only allowed once. 521 */ 522 if ((multiple == 0) && 523 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) 524 fin->fin_flx |= FI_BAD; 525 else 526 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 527 break; 528 } 529 530 fin->fin_dp = (char *)fin->fin_dp + shift; 531 fin->fin_dlen -= shift; 532 533 return hdr->ip6e_nxt; 534 } 535 536 537 /* ------------------------------------------------------------------------ */ 538 /* Function: frpr_hopopts6 */ 539 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 540 /* Parameters: fin(I) - pointer to packet information */ 541 /* */ 542 /* IPv6 Only */ 543 /* This is function checks pending hop by hop options extension header */ 544 /* ------------------------------------------------------------------------ */ 545 static INLINE int frpr_hopopts6(fin) 546 fr_info_t *fin; 547 { 548 return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS); 549 } 550 551 552 /* ------------------------------------------------------------------------ */ 553 /* Function: frpr_routing6 */ 554 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 555 /* Parameters: fin(I) - pointer to packet information */ 556 /* */ 557 /* IPv6 Only */ 558 /* This is function checks pending routing extension header */ 559 /* ------------------------------------------------------------------------ */ 560 static INLINE int frpr_routing6(fin) 561 fr_info_t *fin; 562 { 563 struct ip6_ext *hdr; 564 int shift; 565 566 hdr = fin->fin_dp; 567 if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE) 568 return IPPROTO_NONE; 569 570 shift = 8 + (hdr->ip6e_len << 3); 571 /* 572 * Nasty extension header length? 573 */ 574 if ((hdr->ip6e_len << 3) & 15) { 575 fin->fin_flx |= FI_BAD; 576 /* 577 * Compensate for the changes made in frpr_ipv6exthdr() 578 */ 579 fin->fin_dlen += shift; 580 fin->fin_dp = (char *)fin->fin_dp - shift; 581 return IPPROTO_NONE; 582 } 583 584 return hdr->ip6e_nxt; 585 } 586 587 588 /* ------------------------------------------------------------------------ */ 589 /* Function: frpr_fragment6 */ 590 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 591 /* Parameters: fin(I) - pointer to packet information */ 592 /* */ 593 /* IPv6 Only */ 594 /* Examine the IPv6 fragment header and extract fragment offset information.*/ 595 /* */ 596 /* We don't know where the transport layer header (or whatever is next is), */ 597 /* as it could be behind destination options (amongst others). Because */ 598 /* there is no fragment cache, there is no knowledge about whether or not an*/ 599 /* upper layer header has been seen (or where it ends) and thus we are not */ 600 /* able to continue processing beyond this header with any confidence. */ 601 /* ------------------------------------------------------------------------ */ 602 static INLINE int frpr_fragment6(fin) 603 fr_info_t *fin; 604 { 605 struct ip6_frag *frag; 606 int dlen; 607 608 fin->fin_flx |= FI_FRAG; 609 610 dlen = fin->fin_dlen; 611 if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE) 612 return IPPROTO_NONE; 613 614 if (frpr_pullup(fin, sizeof(*frag)) == -1) 615 return IPPROTO_NONE; 616 617 frpr_short6(fin, sizeof(*frag)); 618 619 if ((fin->fin_flx & FI_SHORT) != 0) 620 return IPPROTO_NONE; 621 622 frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag)); 623 /* 624 * Fragment but no fragmentation info set? Bad packet... 625 */ 626 if (frag->ip6f_offlg == 0) { 627 fin->fin_flx |= FI_BAD; 628 return IPPROTO_NONE; 629 } 630 631 fin->fin_id = frag->ip6f_ident; 632 fin->fin_off = frag->ip6f_offlg & IP6F_OFF_MASK; 633 fin->fin_off = ntohs(fin->fin_off); 634 if (fin->fin_off != 0) 635 fin->fin_flx |= FI_FRAGBODY; 636 637 fin->fin_dp = (char *)frag + sizeof(*frag); 638 fin->fin_dlen = dlen - sizeof(*frag); 639 640 /* length of hdrs(after frag hdr) + data */ 641 fin->fin_flen = fin->fin_dlen; 642 643 /* 644 * If the frag is not the last one and the payload length 645 * is not multiple of 8, it must be dropped. 646 */ 647 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) && (dlen % 8)) { 648 fin->fin_flx |= FI_BAD; 649 return IPPROTO_NONE; 650 } 651 652 return frag->ip6f_nxt; 653 } 654 655 656 /* ------------------------------------------------------------------------ */ 657 /* Function: frpr_dstopts6 */ 658 /* Returns: int - value of the next header or IPPROTO_NONE if error */ 659 /* Parameters: fin(I) - pointer to packet information */ 660 /* nextheader(I) - stores next header value */ 661 /* */ 662 /* IPv6 Only */ 663 /* This is function checks pending destination options extension header */ 664 /* ------------------------------------------------------------------------ */ 665 static INLINE int frpr_dstopts6(fin) 666 fr_info_t *fin; 667 { 668 return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS); 669 } 670 671 672 /* ------------------------------------------------------------------------ */ 673 /* Function: frpr_icmp6 */ 674 /* Returns: void */ 675 /* Parameters: fin(I) - pointer to packet information */ 676 /* */ 677 /* IPv6 Only */ 678 /* This routine is mainly concerned with determining the minimum valid size */ 679 /* for an ICMPv6 packet. */ 680 /* ------------------------------------------------------------------------ */ 681 static INLINE void frpr_icmp6(fin) 682 fr_info_t *fin; 683 { 684 int minicmpsz = sizeof(struct icmp6_hdr); 685 struct icmp6_hdr *icmp6; 686 687 if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) 688 return; 689 690 if (fin->fin_dlen > 1) { 691 icmp6 = fin->fin_dp; 692 693 fin->fin_data[0] = *(u_short *)icmp6; 694 695 switch (icmp6->icmp6_type) 696 { 697 case ICMP6_ECHO_REPLY : 698 case ICMP6_ECHO_REQUEST : 699 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t); 700 break; 701 case ICMP6_DST_UNREACH : 702 case ICMP6_PACKET_TOO_BIG : 703 case ICMP6_TIME_EXCEEDED : 704 case ICMP6_PARAM_PROB : 705 if ((fin->fin_m != NULL) && 706 (M_LEN(fin->fin_m) < fin->fin_plen)) { 707 if (fr_coalesce(fin) != 1) 708 return; 709 } 710 fin->fin_flx |= FI_ICMPERR; 711 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t); 712 break; 713 default : 714 break; 715 } 716 } 717 718 frpr_short6(fin, minicmpsz); 719 fin->fin_flen -= fin->fin_dlen - minicmpsz; 720 } 721 722 723 /* ------------------------------------------------------------------------ */ 724 /* Function: frpr_udp6 */ 725 /* Returns: void */ 726 /* Parameters: fin(I) - pointer to packet information */ 727 /* */ 728 /* IPv6 Only */ 729 /* Analyse the packet for IPv6/UDP properties. */ 730 /* Is not expected to be called for fragmented packets. */ 731 /* ------------------------------------------------------------------------ */ 732 static INLINE void frpr_udp6(fin) 733 fr_info_t *fin; 734 { 735 736 fr_checkv6sum(fin); 737 738 frpr_short6(fin, sizeof(struct udphdr)); 739 if (frpr_pullup(fin, sizeof(struct udphdr)) == -1) 740 return; 741 742 fin->fin_flen -= fin->fin_dlen - sizeof(struct udphdr); 743 744 frpr_udpcommon(fin); 745 } 746 747 748 /* ------------------------------------------------------------------------ */ 749 /* Function: frpr_tcp6 */ 750 /* Returns: void */ 751 /* Parameters: fin(I) - pointer to packet information */ 752 /* */ 753 /* IPv6 Only */ 754 /* Analyse the packet for IPv6/TCP properties. */ 755 /* Is not expected to be called for fragmented packets. */ 756 /* ------------------------------------------------------------------------ */ 757 static INLINE void frpr_tcp6(fin) 758 fr_info_t *fin; 759 { 760 761 fr_checkv6sum(fin); 762 763 frpr_short6(fin, sizeof(struct tcphdr)); 764 if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1) 765 return; 766 767 fin->fin_flen -= fin->fin_dlen - sizeof(struct tcphdr); 768 769 frpr_tcpcommon(fin); 770 } 771 772 773 /* ------------------------------------------------------------------------ */ 774 /* Function: frpr_esp6 */ 775 /* Returns: void */ 776 /* Parameters: fin(I) - pointer to packet information */ 777 /* */ 778 /* IPv6 Only */ 779 /* Analyse the packet for ESP properties. */ 780 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 781 /* even though the newer ESP packets must also have a sequence number that */ 782 /* is 32bits as well, it is not possible(?) to determine the version from a */ 783 /* simple packet header. */ 784 /* ------------------------------------------------------------------------ */ 785 static INLINE void frpr_esp6(fin) 786 fr_info_t *fin; 787 { 788 int i; 789 frpr_short6(fin, sizeof(grehdr_t)); 790 791 (void) frpr_pullup(fin, 8); 792 793 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 794 if (ip6exthdr[i].ol_val == IPPROTO_ESP) { 795 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 796 break; 797 } 798 } 799 800 801 /* ------------------------------------------------------------------------ */ 802 /* Function: frpr_ah6 */ 803 /* Returns: void */ 804 /* Parameters: fin(I) - pointer to packet information */ 805 /* */ 806 /* IPv6 Only */ 807 /* Analyse the packet for AH properties. */ 808 /* The minimum length is taken to be the combination of all fields in the */ 809 /* header being present and no authentication data (null algorithm used.) */ 810 /* ------------------------------------------------------------------------ */ 811 static INLINE int frpr_ah6(fin) 812 fr_info_t *fin; 813 { 814 authhdr_t *ah; 815 int i, shift; 816 817 frpr_short6(fin, 12); 818 819 if (frpr_pullup(fin, sizeof(*ah)) == -1) 820 return IPPROTO_NONE; 821 822 for (i = 0; ip6exthdr[i].ol_bit != 0; i++) 823 if (ip6exthdr[i].ol_val == IPPROTO_AH) { 824 fin->fin_optmsk |= ip6exthdr[i].ol_bit; 825 break; 826 } 827 828 ah = (authhdr_t *)fin->fin_dp; 829 830 shift = (ah->ah_plen + 2) * 4; 831 fin->fin_dlen -= shift; 832 fin->fin_dp = (char*)fin->fin_dp + shift; 833 834 return ah->ah_next; 835 } 836 837 838 /* ------------------------------------------------------------------------ */ 839 /* Function: frpr_gre6 */ 840 /* Returns: void */ 841 /* Parameters: fin(I) - pointer to packet information */ 842 /* */ 843 /* Analyse the packet for GRE properties. */ 844 /* ------------------------------------------------------------------------ */ 845 static INLINE void frpr_gre6(fin) 846 fr_info_t *fin; 847 { 848 grehdr_t *gre; 849 850 frpr_short6(fin, sizeof(grehdr_t)); 851 852 if (frpr_pullup(fin, sizeof(grehdr_t)) == -1) 853 return; 854 855 gre = fin->fin_dp; 856 if (GRE_REV(gre->gr_flags) == 1) 857 fin->fin_data[0] = gre->gr_call; 858 } 859 #endif /* USE_INET6 */ 860 861 862 /* ------------------------------------------------------------------------ */ 863 /* Function: frpr_pullup */ 864 /* Returns: int - 0 == pullup succeeded, -1 == failure */ 865 /* Parameters: fin(I) - pointer to packet information */ 866 /* plen(I) - length (excluding L3 header) to pullup */ 867 /* */ 868 /* Short inline function to cut down on code duplication to perform a call */ 869 /* to fr_pullup to ensure there is the required amount of data, */ 870 /* consecutively in the packet buffer. */ 871 /* ------------------------------------------------------------------------ */ 872 static INLINE int frpr_pullup(fin, plen) 873 fr_info_t *fin; 874 int plen; 875 { 876 #if defined(_KERNEL) 877 if (fin->fin_m != NULL) { 878 if (fin->fin_dp != NULL) 879 plen += (char *)fin->fin_dp - 880 ((char *)fin->fin_ip + fin->fin_hlen); 881 plen += ((char *)fin->fin_ip - MTOD(fin->fin_m, char *)) + 882 fin->fin_hlen; 883 if (M_LEN(fin->fin_m) < plen) { 884 if (fr_pullup(fin->fin_m, fin, plen) == NULL) 885 return -1; 886 } 887 } 888 #endif 889 return 0; 890 } 891 892 893 /* ------------------------------------------------------------------------ */ 894 /* Function: frpr_short */ 895 /* Returns: void */ 896 /* Parameters: fin(I) - pointer to packet information */ 897 /* xmin(I) - minimum header size */ 898 /* */ 899 /* Check if a packet is "short" as defined by xmin. The rule we are */ 900 /* applying here is that the packet must not be fragmented within the layer */ 901 /* 4 header. That is, it must not be a fragment that has its offset set to */ 902 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */ 903 /* entire layer 4 header must be present (min). */ 904 /* ------------------------------------------------------------------------ */ 905 static INLINE void frpr_short(fin, xmin) 906 fr_info_t *fin; 907 int xmin; 908 { 909 910 if (fin->fin_off == 0) { 911 if (fin->fin_dlen < xmin) 912 fin->fin_flx |= FI_SHORT; 913 } else if (fin->fin_off < xmin) { 914 fin->fin_flx |= FI_SHORT; 915 } 916 } 917 918 919 /* ------------------------------------------------------------------------ */ 920 /* Function: frpr_icmp */ 921 /* Returns: void */ 922 /* Parameters: fin(I) - pointer to packet information */ 923 /* */ 924 /* IPv4 Only */ 925 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */ 926 /* except extrememly bad packets, both type and code will be present. */ 927 /* The expected minimum size of an ICMP packet is very much dependent on */ 928 /* the type of it. */ 929 /* */ 930 /* XXX - other ICMP sanity checks? */ 931 /* ------------------------------------------------------------------------ */ 932 static INLINE void frpr_icmp(fin) 933 fr_info_t *fin; 934 { 935 int minicmpsz = sizeof(struct icmp); 936 icmphdr_t *icmp; 937 ip_t *oip; 938 ipf_stack_t *ifs = fin->fin_ifs; 939 940 if (fin->fin_off != 0) { 941 frpr_short(fin, ICMPERR_ICMPHLEN); 942 return; 943 } 944 945 if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1) 946 return; 947 948 fr_checkv4sum(fin); 949 950 if (fin->fin_dlen > 1) { 951 icmp = fin->fin_dp; 952 953 fin->fin_data[0] = *(u_short *)icmp; 954 955 switch (icmp->icmp_type) 956 { 957 case ICMP_ECHOREPLY : 958 case ICMP_ECHO : 959 /* Router discovery messaes - RFC 1256 */ 960 case ICMP_ROUTERADVERT : 961 case ICMP_ROUTERSOLICIT : 962 minicmpsz = ICMP_MINLEN; 963 break; 964 /* 965 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 966 * 3 * timestamp(3 * 4) 967 */ 968 case ICMP_TSTAMP : 969 case ICMP_TSTAMPREPLY : 970 minicmpsz = 20; 971 break; 972 /* 973 * type(1) + code(1) + cksum(2) + id(2) seq(2) + 974 * mask(4) 975 */ 976 case ICMP_MASKREQ : 977 case ICMP_MASKREPLY : 978 minicmpsz = 12; 979 break; 980 /* 981 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+) 982 */ 983 case ICMP_UNREACH : 984 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) { 985 if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu) 986 fin->fin_flx |= FI_BAD; 987 } 988 /* FALLTHRU */ 989 case ICMP_SOURCEQUENCH : 990 case ICMP_REDIRECT : 991 case ICMP_TIMXCEED : 992 case ICMP_PARAMPROB : 993 fin->fin_flx |= FI_ICMPERR; 994 if (fr_coalesce(fin) != 1) 995 return; 996 /* 997 * ICMP error packets should not be generated for IP 998 * packets that are a fragment that isn't the first 999 * fragment. 1000 */ 1001 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN); 1002 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) 1003 fin->fin_flx |= FI_BAD; 1004 break; 1005 default : 1006 break; 1007 } 1008 1009 if (fin->fin_dlen >= 6) /* ID field */ 1010 fin->fin_data[1] = icmp->icmp_id; 1011 } 1012 1013 frpr_short(fin, minicmpsz); 1014 } 1015 1016 1017 /* ------------------------------------------------------------------------ */ 1018 /* Function: frpr_tcpcommon */ 1019 /* Returns: void */ 1020 /* Parameters: fin(I) - pointer to packet information */ 1021 /* */ 1022 /* TCP header sanity checking. Look for bad combinations of TCP flags, */ 1023 /* and make some checks with how they interact with other fields. */ 1024 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */ 1025 /* valid and mark the packet as bad if not. */ 1026 /* ------------------------------------------------------------------------ */ 1027 static INLINE void frpr_tcpcommon(fin) 1028 fr_info_t *fin; 1029 { 1030 int flags, tlen; 1031 tcphdr_t *tcp; 1032 1033 fin->fin_flx |= FI_TCPUDP; 1034 if (fin->fin_off != 0) 1035 return; 1036 1037 if (frpr_pullup(fin, sizeof(*tcp)) == -1) 1038 return; 1039 tcp = fin->fin_dp; 1040 1041 if (fin->fin_dlen > 3) { 1042 fin->fin_sport = ntohs(tcp->th_sport); 1043 fin->fin_dport = ntohs(tcp->th_dport); 1044 } 1045 1046 if ((fin->fin_flx & FI_SHORT) != 0) 1047 return; 1048 1049 /* 1050 * Use of the TCP data offset *must* result in a value that is at 1051 * least the same size as the TCP header. 1052 */ 1053 tlen = TCP_OFF(tcp) << 2; 1054 if (tlen < sizeof(tcphdr_t)) { 1055 fin->fin_flx |= FI_BAD; 1056 return; 1057 } 1058 1059 flags = tcp->th_flags; 1060 fin->fin_tcpf = tcp->th_flags; 1061 1062 /* 1063 * If the urgent flag is set, then the urgent pointer must 1064 * also be set and vice versa. Good TCP packets do not have 1065 * just one of these set. 1066 */ 1067 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) { 1068 fin->fin_flx |= FI_BAD; 1069 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) { 1070 /* Ignore this case, it shows up in "real" traffic with */ 1071 /* bogus values in the urgent pointer field. */ 1072 flags = flags; /* LINT */ 1073 } else if (((flags & (TH_SYN|TH_FIN)) != 0) && 1074 ((flags & (TH_RST|TH_ACK)) == TH_RST)) { 1075 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */ 1076 fin->fin_flx |= FI_BAD; 1077 } else if (!(flags & TH_ACK)) { 1078 /* 1079 * If the ack bit isn't set, then either the SYN or 1080 * RST bit must be set. If the SYN bit is set, then 1081 * we expect the ACK field to be 0. If the ACK is 1082 * not set and if URG, PSH or FIN are set, consdier 1083 * that to indicate a bad TCP packet. 1084 */ 1085 if ((flags == TH_SYN) && (tcp->th_ack != 0)) { 1086 /* 1087 * Cisco PIX sets the ACK field to a random value. 1088 * In light of this, do not set FI_BAD until a patch 1089 * is available from Cisco to ensure that 1090 * interoperability between existing systems is 1091 * achieved. 1092 */ 1093 /*fin->fin_flx |= FI_BAD*/; 1094 flags = flags; /* LINT */ 1095 } else if (!(flags & (TH_RST|TH_SYN))) { 1096 fin->fin_flx |= FI_BAD; 1097 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) { 1098 fin->fin_flx |= FI_BAD; 1099 } 1100 } 1101 1102 /* 1103 * At this point, it's not exactly clear what is to be gained by 1104 * marking up which TCP options are and are not present. The one we 1105 * are most interested in is the TCP window scale. This is only in 1106 * a SYN packet [RFC1323] so we don't need this here...? 1107 * Now if we were to analyse the header for passive fingerprinting, 1108 * then that might add some weight to adding this... 1109 */ 1110 if (tlen == sizeof(tcphdr_t)) 1111 return; 1112 1113 if (frpr_pullup(fin, tlen) == -1) 1114 return; 1115 1116 #if 0 1117 ip = fin->fin_ip; 1118 s = (u_char *)(tcp + 1); 1119 off = IP_HL(ip) << 2; 1120 # ifdef _KERNEL 1121 if (fin->fin_mp != NULL) { 1122 mb_t *m = *fin->fin_mp; 1123 1124 if (off + tlen > M_LEN(m)) 1125 return; 1126 } 1127 # endif 1128 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) { 1129 opt = *s; 1130 if (opt == '\0') 1131 break; 1132 else if (opt == TCPOPT_NOP) 1133 ol = 1; 1134 else { 1135 if (tlen < 2) 1136 break; 1137 ol = (int)*(s + 1); 1138 if (ol < 2 || ol > tlen) 1139 break; 1140 } 1141 1142 for (i = 9, mv = 4; mv >= 0; ) { 1143 op = ipopts + i; 1144 if (opt == (u_char)op->ol_val) { 1145 optmsk |= op->ol_bit; 1146 break; 1147 } 1148 } 1149 tlen -= ol; 1150 s += ol; 1151 } 1152 #endif /* 0 */ 1153 } 1154 1155 1156 1157 /* ------------------------------------------------------------------------ */ 1158 /* Function: frpr_udpcommon */ 1159 /* Returns: void */ 1160 /* Parameters: fin(I) - pointer to packet information */ 1161 /* */ 1162 /* Extract the UDP source and destination ports, if present. If compiled */ 1163 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */ 1164 /* ------------------------------------------------------------------------ */ 1165 static INLINE void frpr_udpcommon(fin) 1166 fr_info_t *fin; 1167 { 1168 udphdr_t *udp; 1169 1170 fin->fin_flx |= FI_TCPUDP; 1171 1172 if (!fin->fin_off && (fin->fin_dlen > 3)) { 1173 if (frpr_pullup(fin, sizeof(*udp)) == -1) { 1174 fin->fin_flx |= FI_SHORT; 1175 return; 1176 } 1177 1178 udp = fin->fin_dp; 1179 1180 fin->fin_sport = ntohs(udp->uh_sport); 1181 fin->fin_dport = ntohs(udp->uh_dport); 1182 } 1183 } 1184 1185 1186 /* ------------------------------------------------------------------------ */ 1187 /* Function: frpr_tcp */ 1188 /* Returns: void */ 1189 /* Parameters: fin(I) - pointer to packet information */ 1190 /* */ 1191 /* IPv4 Only */ 1192 /* Analyse the packet for IPv4/TCP properties. */ 1193 /* ------------------------------------------------------------------------ */ 1194 static INLINE void frpr_tcp(fin) 1195 fr_info_t *fin; 1196 { 1197 1198 fr_checkv4sum(fin); 1199 1200 frpr_short(fin, sizeof(tcphdr_t)); 1201 1202 frpr_tcpcommon(fin); 1203 } 1204 1205 1206 /* ------------------------------------------------------------------------ */ 1207 /* Function: frpr_udp */ 1208 /* Returns: void */ 1209 /* Parameters: fin(I) - pointer to packet information */ 1210 /* */ 1211 /* IPv4 Only */ 1212 /* Analyse the packet for IPv4/UDP properties. */ 1213 /* ------------------------------------------------------------------------ */ 1214 static INLINE void frpr_udp(fin) 1215 fr_info_t *fin; 1216 { 1217 1218 fr_checkv4sum(fin); 1219 1220 frpr_short(fin, sizeof(udphdr_t)); 1221 1222 frpr_udpcommon(fin); 1223 } 1224 1225 1226 /* ------------------------------------------------------------------------ */ 1227 /* Function: frpr_esp */ 1228 /* Returns: void */ 1229 /* Parameters: fin(I) - pointer to packet information */ 1230 /* */ 1231 /* Analyse the packet for ESP properties. */ 1232 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */ 1233 /* even though the newer ESP packets must also have a sequence number that */ 1234 /* is 32bits as well, it is not possible(?) to determine the version from a */ 1235 /* simple packet header. */ 1236 /* ------------------------------------------------------------------------ */ 1237 static INLINE void frpr_esp(fin) 1238 fr_info_t *fin; 1239 { 1240 if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1)) 1241 return; 1242 1243 frpr_short(fin, 8); 1244 } 1245 1246 1247 /* ------------------------------------------------------------------------ */ 1248 /* Function: frpr_ah */ 1249 /* Returns: void */ 1250 /* Parameters: fin(I) - pointer to packet information */ 1251 /* */ 1252 /* Analyse the packet for AH properties. */ 1253 /* The minimum length is taken to be the combination of all fields in the */ 1254 /* header being present and no authentication data (null algorithm used.) */ 1255 /* ------------------------------------------------------------------------ */ 1256 static INLINE void frpr_ah(fin) 1257 fr_info_t *fin; 1258 { 1259 authhdr_t *ah; 1260 int len; 1261 1262 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1)) 1263 return; 1264 1265 ah = (authhdr_t *)fin->fin_dp; 1266 1267 len = (ah->ah_plen + 2) << 2; 1268 frpr_short(fin, len); 1269 } 1270 1271 1272 /* ------------------------------------------------------------------------ */ 1273 /* Function: frpr_gre */ 1274 /* Returns: void */ 1275 /* Parameters: fin(I) - pointer to packet information */ 1276 /* */ 1277 /* Analyse the packet for GRE properties. */ 1278 /* ------------------------------------------------------------------------ */ 1279 static INLINE void frpr_gre(fin) 1280 fr_info_t *fin; 1281 { 1282 grehdr_t *gre; 1283 1284 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1)) 1285 return; 1286 1287 frpr_short(fin, sizeof(grehdr_t)); 1288 1289 if (fin->fin_off == 0) { 1290 gre = fin->fin_dp; 1291 if (GRE_REV(gre->gr_flags) == 1) 1292 fin->fin_data[0] = gre->gr_call; 1293 } 1294 } 1295 1296 1297 /* ------------------------------------------------------------------------ */ 1298 /* Function: frpr_ipv4hdr */ 1299 /* Returns: void */ 1300 /* Parameters: fin(I) - pointer to packet information */ 1301 /* */ 1302 /* IPv4 Only */ 1303 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */ 1304 /* Check all options present and flag their presence if any exist. */ 1305 /* ------------------------------------------------------------------------ */ 1306 static INLINE void frpr_ipv4hdr(fin) 1307 fr_info_t *fin; 1308 { 1309 u_short optmsk = 0, secmsk = 0, auth = 0; 1310 int hlen, ol, mv, p, i; 1311 const struct optlist *op; 1312 u_char *s, opt; 1313 u_short off; 1314 fr_ip_t *fi; 1315 ip_t *ip; 1316 1317 fi = &fin->fin_fi; 1318 hlen = fin->fin_hlen; 1319 1320 ip = fin->fin_ip; 1321 p = ip->ip_p; 1322 fi->fi_p = p; 1323 fi->fi_tos = ip->ip_tos; 1324 fin->fin_id = ip->ip_id; 1325 off = ip->ip_off; 1326 1327 /* Get both TTL and protocol */ 1328 fi->fi_p = ip->ip_p; 1329 fi->fi_ttl = ip->ip_ttl; 1330 #if 0 1331 (*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4)); 1332 #endif 1333 1334 /* Zero out bits not used in IPv6 address */ 1335 fi->fi_src.i6[1] = 0; 1336 fi->fi_src.i6[2] = 0; 1337 fi->fi_src.i6[3] = 0; 1338 fi->fi_dst.i6[1] = 0; 1339 fi->fi_dst.i6[2] = 0; 1340 fi->fi_dst.i6[3] = 0; 1341 1342 fi->fi_saddr = ip->ip_src.s_addr; 1343 fi->fi_daddr = ip->ip_dst.s_addr; 1344 1345 /* 1346 * set packet attribute flags based on the offset and 1347 * calculate the byte offset that it represents. 1348 */ 1349 off &= IP_MF|IP_OFFMASK; 1350 if (off != 0) { 1351 fi->fi_flx |= FI_FRAG; 1352 off &= IP_OFFMASK; 1353 if (off != 0) { 1354 fin->fin_flx |= FI_FRAGBODY; 1355 off <<= 3; 1356 if ((off + fin->fin_dlen > 65535) || 1357 (fin->fin_dlen == 0) || 1358 ((ip->ip_off & IP_MF) && (fin->fin_dlen & 7))) { 1359 /* 1360 * The length of the packet, starting at its 1361 * offset cannot exceed 65535 (0xffff) as the 1362 * length of an IP packet is only 16 bits. 1363 * 1364 * Any fragment that isn't the last fragment 1365 * must have a length greater than 0 and it 1366 * must be an even multiple of 8. 1367 */ 1368 fi->fi_flx |= FI_BAD; 1369 } 1370 } 1371 } 1372 fin->fin_off = off; 1373 1374 /* 1375 * Call per-protocol setup and checking 1376 */ 1377 switch (p) 1378 { 1379 case IPPROTO_UDP : 1380 frpr_udp(fin); 1381 break; 1382 case IPPROTO_TCP : 1383 frpr_tcp(fin); 1384 break; 1385 case IPPROTO_ICMP : 1386 frpr_icmp(fin); 1387 break; 1388 case IPPROTO_AH : 1389 frpr_ah(fin); 1390 break; 1391 case IPPROTO_ESP : 1392 frpr_esp(fin); 1393 break; 1394 case IPPROTO_GRE : 1395 frpr_gre(fin); 1396 break; 1397 } 1398 1399 ip = fin->fin_ip; 1400 if (ip == NULL) 1401 return; 1402 1403 /* 1404 * If it is a standard IP header (no options), set the flag fields 1405 * which relate to options to 0. 1406 */ 1407 if (hlen == sizeof(*ip)) { 1408 fi->fi_optmsk = 0; 1409 fi->fi_secmsk = 0; 1410 fi->fi_auth = 0; 1411 return; 1412 } 1413 1414 /* 1415 * So the IP header has some IP options attached. Walk the entire 1416 * list of options present with this packet and set flags to indicate 1417 * which ones are here and which ones are not. For the somewhat out 1418 * of date and obscure security classification options, set a flag to 1419 * represent which classification is present. 1420 */ 1421 fi->fi_flx |= FI_OPTIONS; 1422 1423 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) { 1424 opt = *s; 1425 if (opt == '\0') 1426 break; 1427 else if (opt == IPOPT_NOP) 1428 ol = 1; 1429 else { 1430 if (hlen < 2) 1431 break; 1432 ol = (int)*(s + 1); 1433 if (ol < 2 || ol > hlen) 1434 break; 1435 } 1436 for (i = 9, mv = 4; mv >= 0; ) { 1437 op = ipopts + i; 1438 if ((opt == (u_char)op->ol_val) && (ol > 4)) { 1439 optmsk |= op->ol_bit; 1440 if (opt == IPOPT_SECURITY) { 1441 const struct optlist *sp; 1442 u_char sec; 1443 int j, m; 1444 1445 sec = *(s + 2); /* classification */ 1446 for (j = 3, m = 2; m >= 0; ) { 1447 sp = secopt + j; 1448 if (sec == sp->ol_val) { 1449 secmsk |= sp->ol_bit; 1450 auth = *(s + 3); 1451 auth *= 256; 1452 auth += *(s + 4); 1453 break; 1454 } 1455 if (sec < sp->ol_val) 1456 j -= m; 1457 else 1458 j += m; 1459 m--; 1460 } 1461 } 1462 break; 1463 } 1464 if (opt < op->ol_val) 1465 i -= mv; 1466 else 1467 i += mv; 1468 mv--; 1469 } 1470 hlen -= ol; 1471 s += ol; 1472 } 1473 1474 /* 1475 * 1476 */ 1477 if (auth && !(auth & 0x0100)) 1478 auth &= 0xff00; 1479 fi->fi_optmsk = optmsk; 1480 fi->fi_secmsk = secmsk; 1481 fi->fi_auth = auth; 1482 } 1483 1484 1485 /* ------------------------------------------------------------------------ */ 1486 /* Function: fr_makefrip */ 1487 /* Returns: int - 1 == hdr checking error, 0 == OK */ 1488 /* Parameters: hlen(I) - length of IP packet header */ 1489 /* ip(I) - pointer to the IP header */ 1490 /* fin(IO) - pointer to packet information */ 1491 /* */ 1492 /* Compact the IP header into a structure which contains just the info. */ 1493 /* which is useful for comparing IP headers with and store this information */ 1494 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */ 1495 /* this function will be called with either an IPv4 or IPv6 packet. */ 1496 /* ------------------------------------------------------------------------ */ 1497 int fr_makefrip(hlen, ip, fin) 1498 int hlen; 1499 ip_t *ip; 1500 fr_info_t *fin; 1501 { 1502 int v; 1503 1504 fin->fin_nat = NULL; 1505 fin->fin_state = NULL; 1506 fin->fin_depth = 0; 1507 fin->fin_hlen = (u_short)hlen; 1508 fin->fin_ip = ip; 1509 fin->fin_rule = 0xffffffff; 1510 fin->fin_group[0] = -1; 1511 fin->fin_group[1] = '\0'; 1512 fin->fin_dlen = fin->fin_plen - hlen; 1513 fin->fin_dp = (char *)ip + hlen; 1514 1515 v = fin->fin_v; 1516 if (v == 4) 1517 frpr_ipv4hdr(fin); 1518 #ifdef USE_INET6 1519 else if (v == 6) { 1520 if (frpr_ipv6hdr(fin) == -1) 1521 return -1; 1522 } 1523 #endif 1524 if (fin->fin_ip == NULL) 1525 return -1; 1526 return 0; 1527 } 1528 1529 1530 /* ------------------------------------------------------------------------ */ 1531 /* Function: fr_portcheck */ 1532 /* Returns: int - 1 == port matched, 0 == port match failed */ 1533 /* Parameters: frp(I) - pointer to port check `expression' */ 1534 /* pop(I) - pointer to port number to evaluate */ 1535 /* */ 1536 /* Perform a comparison of a port number against some other(s), using a */ 1537 /* structure with compare information stored in it. */ 1538 /* ------------------------------------------------------------------------ */ 1539 static INLINE int fr_portcheck(frp, pop) 1540 frpcmp_t *frp; 1541 u_short *pop; 1542 { 1543 u_short tup, po; 1544 int err = 1; 1545 1546 tup = *pop; 1547 po = frp->frp_port; 1548 1549 /* 1550 * Do opposite test to that required and continue if that succeeds. 1551 */ 1552 switch (frp->frp_cmp) 1553 { 1554 case FR_EQUAL : 1555 if (tup != po) /* EQUAL */ 1556 err = 0; 1557 break; 1558 case FR_NEQUAL : 1559 if (tup == po) /* NOTEQUAL */ 1560 err = 0; 1561 break; 1562 case FR_LESST : 1563 if (tup >= po) /* LESSTHAN */ 1564 err = 0; 1565 break; 1566 case FR_GREATERT : 1567 if (tup <= po) /* GREATERTHAN */ 1568 err = 0; 1569 break; 1570 case FR_LESSTE : 1571 if (tup > po) /* LT or EQ */ 1572 err = 0; 1573 break; 1574 case FR_GREATERTE : 1575 if (tup < po) /* GT or EQ */ 1576 err = 0; 1577 break; 1578 case FR_OUTRANGE : 1579 if (tup >= po && tup <= frp->frp_top) /* Out of range */ 1580 err = 0; 1581 break; 1582 case FR_INRANGE : 1583 if (tup <= po || tup >= frp->frp_top) /* In range */ 1584 err = 0; 1585 break; 1586 case FR_INCRANGE : 1587 if (tup < po || tup > frp->frp_top) /* Inclusive range */ 1588 err = 0; 1589 break; 1590 default : 1591 break; 1592 } 1593 return err; 1594 } 1595 1596 1597 /* ------------------------------------------------------------------------ */ 1598 /* Function: fr_tcpudpchk */ 1599 /* Returns: int - 1 == protocol matched, 0 == check failed */ 1600 /* Parameters: fin(I) - pointer to packet information */ 1601 /* ft(I) - pointer to structure with comparison data */ 1602 /* */ 1603 /* Compares the current pcket (assuming it is TCP/UDP) information with a */ 1604 /* structure containing information that we want to match against. */ 1605 /* ------------------------------------------------------------------------ */ 1606 int fr_tcpudpchk(fin, ft) 1607 fr_info_t *fin; 1608 frtuc_t *ft; 1609 { 1610 int err = 1; 1611 1612 /* 1613 * Both ports should *always* be in the first fragment. 1614 * So far, I cannot find any cases where they can not be. 1615 * 1616 * compare destination ports 1617 */ 1618 if (ft->ftu_dcmp) 1619 err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport); 1620 1621 /* 1622 * compare source ports 1623 */ 1624 if (err && ft->ftu_scmp) 1625 err = fr_portcheck(&ft->ftu_src, &fin->fin_sport); 1626 1627 /* 1628 * If we don't have all the TCP/UDP header, then how can we 1629 * expect to do any sort of match on it ? If we were looking for 1630 * TCP flags, then NO match. If not, then match (which should 1631 * satisfy the "short" class too). 1632 */ 1633 if (err && (fin->fin_p == IPPROTO_TCP)) { 1634 if (fin->fin_flx & FI_SHORT) 1635 return !(ft->ftu_tcpf | ft->ftu_tcpfm); 1636 /* 1637 * Match the flags ? If not, abort this match. 1638 */ 1639 if (ft->ftu_tcpfm && 1640 ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) { 1641 FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf, 1642 ft->ftu_tcpfm, ft->ftu_tcpf)); 1643 err = 0; 1644 } 1645 } 1646 return err; 1647 } 1648 1649 1650 /* ------------------------------------------------------------------------ */ 1651 /* Function: fr_ipfcheck */ 1652 /* Returns: int - 0 == match, 1 == no match */ 1653 /* Parameters: fin(I) - pointer to packet information */ 1654 /* fr(I) - pointer to filter rule */ 1655 /* portcmp(I) - flag indicating whether to attempt matching on */ 1656 /* TCP/UDP port data. */ 1657 /* */ 1658 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */ 1659 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */ 1660 /* this function. */ 1661 /* ------------------------------------------------------------------------ */ 1662 static INLINE int fr_ipfcheck(fin, fr, portcmp) 1663 fr_info_t *fin; 1664 frentry_t *fr; 1665 int portcmp; 1666 { 1667 u_32_t *ld, *lm, *lip; 1668 fripf_t *fri; 1669 fr_ip_t *fi; 1670 int i; 1671 ipf_stack_t *ifs = fin->fin_ifs; 1672 1673 fi = &fin->fin_fi; 1674 fri = fr->fr_ipf; 1675 lip = (u_32_t *)fi; 1676 lm = (u_32_t *)&fri->fri_mip; 1677 ld = (u_32_t *)&fri->fri_ip; 1678 1679 /* 1680 * first 32 bits to check coversion: 1681 * IP version, TOS, TTL, protocol 1682 */ 1683 i = ((*lip & *lm) != *ld); 1684 FR_DEBUG(("0. %#08x & %#08x != %#08x\n", 1685 *lip, *lm, *ld)); 1686 if (i) 1687 return 1; 1688 1689 /* 1690 * Next 32 bits is a constructed bitmask indicating which IP options 1691 * are present (if any) in this packet. 1692 */ 1693 lip++, lm++, ld++; 1694 i |= ((*lip & *lm) != *ld); 1695 FR_DEBUG(("1. %#08x & %#08x != %#08x\n", 1696 *lip, *lm, *ld)); 1697 if (i) 1698 return 1; 1699 1700 lip++, lm++, ld++; 1701 /* 1702 * Unrolled loops (4 each, for 32 bits) for address checks. 1703 */ 1704 /* 1705 * Check the source address. 1706 */ 1707 #ifdef IPFILTER_LOOKUP 1708 if (fr->fr_satype == FRI_LOOKUP) { 1709 i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, ifs); 1710 if (i == -1) 1711 return 1; 1712 lip += 3; 1713 lm += 3; 1714 ld += 3; 1715 } else { 1716 #endif 1717 i = ((*lip & *lm) != *ld); 1718 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n", 1719 *lip, *lm, *ld)); 1720 if (fi->fi_v == 6) { 1721 lip++, lm++, ld++; 1722 i |= ((*lip & *lm) != *ld); 1723 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n", 1724 *lip, *lm, *ld)); 1725 lip++, lm++, ld++; 1726 i |= ((*lip & *lm) != *ld); 1727 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n", 1728 *lip, *lm, *ld)); 1729 lip++, lm++, ld++; 1730 i |= ((*lip & *lm) != *ld); 1731 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n", 1732 *lip, *lm, *ld)); 1733 } else { 1734 lip += 3; 1735 lm += 3; 1736 ld += 3; 1737 } 1738 #ifdef IPFILTER_LOOKUP 1739 } 1740 #endif 1741 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6; 1742 if (i) 1743 return 1; 1744 1745 /* 1746 * Check the destination address. 1747 */ 1748 lip++, lm++, ld++; 1749 #ifdef IPFILTER_LOOKUP 1750 if (fr->fr_datype == FRI_LOOKUP) { 1751 i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, ifs); 1752 if (i == -1) 1753 return 1; 1754 lip += 3; 1755 lm += 3; 1756 ld += 3; 1757 } else { 1758 #endif 1759 i = ((*lip & *lm) != *ld); 1760 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n", 1761 *lip, *lm, *ld)); 1762 if (fi->fi_v == 6) { 1763 lip++, lm++, ld++; 1764 i |= ((*lip & *lm) != *ld); 1765 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n", 1766 *lip, *lm, *ld)); 1767 lip++, lm++, ld++; 1768 i |= ((*lip & *lm) != *ld); 1769 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n", 1770 *lip, *lm, *ld)); 1771 lip++, lm++, ld++; 1772 i |= ((*lip & *lm) != *ld); 1773 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n", 1774 *lip, *lm, *ld)); 1775 } else { 1776 lip += 3; 1777 lm += 3; 1778 ld += 3; 1779 } 1780 #ifdef IPFILTER_LOOKUP 1781 } 1782 #endif 1783 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7; 1784 if (i) 1785 return 1; 1786 /* 1787 * IP addresses matched. The next 32bits contains: 1788 * mast of old IP header security & authentication bits. 1789 */ 1790 lip++, lm++, ld++; 1791 i |= ((*lip & *lm) != *ld); 1792 FR_DEBUG(("4. %#08x & %#08x != %#08x\n", 1793 *lip, *lm, *ld)); 1794 1795 /* 1796 * Next we have 32 bits of packet flags. 1797 */ 1798 lip++, lm++, ld++; 1799 i |= ((*lip & *lm) != *ld); 1800 FR_DEBUG(("5. %#08x & %#08x != %#08x\n", 1801 *lip, *lm, *ld)); 1802 1803 if (i == 0) { 1804 /* 1805 * If a fragment, then only the first has what we're 1806 * looking for here... 1807 */ 1808 if (portcmp) { 1809 if (!fr_tcpudpchk(fin, &fr->fr_tuc)) 1810 i = 1; 1811 } else { 1812 if (fr->fr_dcmp || fr->fr_scmp || 1813 fr->fr_tcpf || fr->fr_tcpfm) 1814 i = 1; 1815 if (fr->fr_icmpm || fr->fr_icmp) { 1816 if (((fi->fi_p != IPPROTO_ICMP) && 1817 (fi->fi_p != IPPROTO_ICMPV6)) || 1818 fin->fin_off || (fin->fin_dlen < 2)) 1819 i = 1; 1820 else if ((fin->fin_data[0] & fr->fr_icmpm) != 1821 fr->fr_icmp) { 1822 FR_DEBUG(("i. %#x & %#x != %#x\n", 1823 fin->fin_data[0], 1824 fr->fr_icmpm, fr->fr_icmp)); 1825 i = 1; 1826 } 1827 } 1828 } 1829 } 1830 return i; 1831 } 1832 1833 1834 /* ------------------------------------------------------------------------ */ 1835 /* Function: fr_scanlist */ 1836 /* Returns: int - result flags of scanning filter list */ 1837 /* Parameters: fin(I) - pointer to packet information */ 1838 /* pass(I) - default result to return for filtering */ 1839 /* */ 1840 /* Check the input/output list of rules for a match to the current packet. */ 1841 /* If a match is found, the value of fr_flags from the rule becomes the */ 1842 /* return value and fin->fin_fr points to the matched rule. */ 1843 /* */ 1844 /* This function may be called recusively upto 16 times (limit inbuilt.) */ 1845 /* When unwinding, it should finish up with fin_depth as 0. */ 1846 /* */ 1847 /* Could be per interface, but this gets real nasty when you don't have, */ 1848 /* or can't easily change, the kernel source code to . */ 1849 /* ------------------------------------------------------------------------ */ 1850 int fr_scanlist(fin, pass) 1851 fr_info_t *fin; 1852 u_32_t pass; 1853 { 1854 int rulen, portcmp, off, logged, skip; 1855 struct frentry *fr, *fnext; 1856 u_32_t passt, passo; 1857 ipf_stack_t *ifs = fin->fin_ifs; 1858 1859 /* 1860 * Do not allow nesting deeper than 16 levels. 1861 */ 1862 if (fin->fin_depth >= 16) 1863 return pass; 1864 1865 fr = fin->fin_fr; 1866 1867 /* 1868 * If there are no rules in this list, return now. 1869 */ 1870 if (fr == NULL) 1871 return pass; 1872 1873 skip = 0; 1874 logged = 0; 1875 portcmp = 0; 1876 fin->fin_depth++; 1877 fin->fin_fr = NULL; 1878 off = fin->fin_off; 1879 1880 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off) 1881 portcmp = 1; 1882 1883 for (rulen = 0; fr; fr = fnext, rulen++) { 1884 fnext = fr->fr_next; 1885 if (skip != 0) { 1886 FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags)); 1887 skip--; 1888 continue; 1889 } 1890 1891 /* 1892 * In all checks below, a null (zero) value in the 1893 * filter struture is taken to mean a wildcard. 1894 * 1895 * check that we are working for the right interface 1896 */ 1897 #ifdef _KERNEL 1898 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1899 continue; 1900 #else 1901 if (opts & (OPT_VERBOSE|OPT_DEBUG)) 1902 printf("\n"); 1903 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' : 1904 FR_ISPASS(pass) ? 'p' : 1905 FR_ISACCOUNT(pass) ? 'A' : 1906 FR_ISAUTH(pass) ? 'a' : 1907 (pass & FR_NOMATCH) ? 'n' :'b')); 1908 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp) 1909 continue; 1910 FR_VERBOSE((":i")); 1911 #endif 1912 1913 switch (fr->fr_type) 1914 { 1915 case FR_T_IPF : 1916 case FR_T_IPF|FR_T_BUILTIN : 1917 if (fr_ipfcheck(fin, fr, portcmp)) 1918 continue; 1919 break; 1920 #if defined(IPFILTER_BPF) 1921 case FR_T_BPFOPC : 1922 case FR_T_BPFOPC|FR_T_BUILTIN : 1923 { 1924 u_char *mc; 1925 1926 if (*fin->fin_mp == NULL) 1927 continue; 1928 if (fin->fin_v != fr->fr_v) 1929 continue; 1930 mc = (u_char *)fin->fin_m; 1931 if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0)) 1932 continue; 1933 break; 1934 } 1935 #endif 1936 case FR_T_CALLFUNC|FR_T_BUILTIN : 1937 { 1938 frentry_t *f; 1939 1940 f = (*fr->fr_func)(fin, &pass); 1941 if (f != NULL) 1942 fr = f; 1943 else 1944 continue; 1945 break; 1946 } 1947 default : 1948 break; 1949 } 1950 1951 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) { 1952 if (fin->fin_nattag == NULL) 1953 continue; 1954 if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0) 1955 continue; 1956 } 1957 FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen)); 1958 1959 passt = fr->fr_flags; 1960 1961 /* 1962 * Allowing a rule with the "keep state" flag set to match 1963 * packets that have been tagged "out of window" by the TCP 1964 * state tracking is foolish as the attempt to add a new 1965 * state entry to the table will fail. 1966 */ 1967 if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW)) 1968 continue; 1969 1970 /* 1971 * If the rule is a "call now" rule, then call the function 1972 * in the rule, if it exists and use the results from that. 1973 * If the function pointer is bad, just make like we ignore 1974 * it, except for increasing the hit counter. 1975 */ 1976 if ((passt & FR_CALLNOW) != 0) { 1977 ATOMIC_INC64(fr->fr_hits); 1978 if ((fr->fr_func != NULL) && 1979 (fr->fr_func != (ipfunc_t)-1)) { 1980 frentry_t *frs; 1981 1982 frs = fin->fin_fr; 1983 fin->fin_fr = fr; 1984 fr = (*fr->fr_func)(fin, &passt); 1985 if (fr == NULL) { 1986 fin->fin_fr = frs; 1987 continue; 1988 } 1989 passt = fr->fr_flags; 1990 fin->fin_fr = fr; 1991 } 1992 } else { 1993 fin->fin_fr = fr; 1994 } 1995 1996 #ifdef IPFILTER_LOG 1997 /* 1998 * Just log this packet... 1999 */ 2000 if ((passt & FR_LOGMASK) == FR_LOG) { 2001 if (ipflog(fin, passt) == -1) { 2002 if (passt & FR_LOGORBLOCK) { 2003 passt &= ~FR_CMDMASK; 2004 passt |= FR_BLOCK|FR_QUICK; 2005 } 2006 ATOMIC_INCL(ifs->ifs_frstats[fin->fin_out].fr_skip); 2007 } 2008 ATOMIC_INCL(ifs->ifs_frstats[fin->fin_out].fr_pkl); 2009 logged = 1; 2010 } 2011 #endif /* IPFILTER_LOG */ 2012 fr->fr_bytes += (U_QUAD_T)fin->fin_plen; 2013 passo = pass; 2014 if (FR_ISSKIP(passt)) 2015 skip = fr->fr_arg; 2016 else if ((passt & FR_LOGMASK) != FR_LOG) 2017 pass = passt; 2018 if (passt & (FR_RETICMP|FR_FAKEICMP)) 2019 fin->fin_icode = fr->fr_icode; 2020 FR_DEBUG(("pass %#x\n", pass)); 2021 ATOMIC_INC64(fr->fr_hits); 2022 fin->fin_rule = rulen; 2023 (void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN); 2024 if (fr->fr_grp != NULL) { 2025 fin->fin_fr = *fr->fr_grp; 2026 pass = fr_scanlist(fin, pass); 2027 if (fin->fin_fr == NULL) { 2028 fin->fin_rule = rulen; 2029 (void) strncpy(fin->fin_group, fr->fr_group, 2030 FR_GROUPLEN); 2031 fin->fin_fr = fr; 2032 } 2033 if (fin->fin_flx & FI_DONTCACHE) 2034 logged = 1; 2035 } 2036 2037 if (pass & FR_QUICK) { 2038 /* 2039 * Finally, if we've asked to track state for this 2040 * packet, set it up. Add state for "quick" rules 2041 * here so that if the action fails we can consider 2042 * the rule to "not match" and keep on processing 2043 * filter rules. 2044 */ 2045 if ((pass & FR_KEEPSTATE) && 2046 !(fin->fin_flx & FI_STATE)) { 2047 int out = fin->fin_out; 2048 2049 if (fr_addstate(fin, NULL, 0) != NULL) { 2050 ATOMIC_INCL(ifs->ifs_frstats[out].fr_ads); 2051 } else { 2052 ATOMIC_INCL(ifs->ifs_frstats[out].fr_bads); 2053 pass = passo; 2054 continue; 2055 } 2056 } 2057 break; 2058 } 2059 } 2060 if (logged) 2061 fin->fin_flx |= FI_DONTCACHE; 2062 fin->fin_depth--; 2063 return pass; 2064 } 2065 2066 2067 /* ------------------------------------------------------------------------ */ 2068 /* Function: fr_acctpkt */ 2069 /* Returns: frentry_t* - always returns NULL */ 2070 /* Parameters: fin(I) - pointer to packet information */ 2071 /* passp(IO) - pointer to current/new filter decision (unused) */ 2072 /* */ 2073 /* Checks a packet against accounting rules, if there are any for the given */ 2074 /* IP protocol version. */ 2075 /* */ 2076 /* N.B.: this function returns NULL to match the prototype used by other */ 2077 /* functions called from the IPFilter "mainline" in fr_check(). */ 2078 /* ------------------------------------------------------------------------ */ 2079 frentry_t *fr_acctpkt(fin, passp) 2080 fr_info_t *fin; 2081 u_32_t *passp; 2082 { 2083 char group[FR_GROUPLEN]; 2084 frentry_t *fr, *frsave; 2085 u_32_t pass, rulen; 2086 ipf_stack_t *ifs = fin->fin_ifs; 2087 2088 passp = passp; 2089 #ifdef USE_INET6 2090 if (fin->fin_v == 6) 2091 fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active]; 2092 else 2093 #endif 2094 fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active]; 2095 2096 if (fr != NULL) { 2097 frsave = fin->fin_fr; 2098 bcopy(fin->fin_group, group, FR_GROUPLEN); 2099 rulen = fin->fin_rule; 2100 fin->fin_fr = fr; 2101 pass = fr_scanlist(fin, FR_NOMATCH); 2102 if (FR_ISACCOUNT(pass)) { 2103 ATOMIC_INCL(ifs->ifs_frstats[0].fr_acct); 2104 } 2105 fin->fin_fr = frsave; 2106 bcopy(group, fin->fin_group, FR_GROUPLEN); 2107 fin->fin_rule = rulen; 2108 } 2109 return NULL; 2110 } 2111 2112 2113 /* ------------------------------------------------------------------------ */ 2114 /* Function: fr_firewall */ 2115 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */ 2116 /* were found, returns NULL. */ 2117 /* Parameters: fin(I) - pointer to packet information */ 2118 /* passp(IO) - pointer to current/new filter decision (unused) */ 2119 /* */ 2120 /* Applies an appropriate set of firewall rules to the packet, to see if */ 2121 /* there are any matches. The first check is to see if a match can be seen */ 2122 /* in the cache. If not, then search an appropriate list of rules. Once a */ 2123 /* matching rule is found, take any appropriate actions as defined by the */ 2124 /* rule - except logging. */ 2125 /* ------------------------------------------------------------------------ */ 2126 static frentry_t *fr_firewall(fin, passp) 2127 fr_info_t *fin; 2128 u_32_t *passp; 2129 { 2130 frentry_t *fr; 2131 fr_info_t *fc; 2132 u_32_t pass; 2133 int out; 2134 ipf_stack_t *ifs = fin->fin_ifs; 2135 2136 out = fin->fin_out; 2137 pass = *passp; 2138 2139 /* 2140 * If a packet is found in the auth table, then skip checking 2141 * the access lists for permission but we do need to consider 2142 * the result as if it were from the ACL's. 2143 */ 2144 fc = &ifs->ifs_frcache[out][CACHE_HASH(fin)]; 2145 READ_ENTER(&ifs->ifs_ipf_frcache); 2146 if (!bcmp((char *)fin, (char *)fc, FI_CSIZE)) { 2147 /* 2148 * copy cached data so we can unlock the mutexes earlier. 2149 */ 2150 bcopy((char *)fc, (char *)fin, FI_COPYSIZE); 2151 RWLOCK_EXIT(&ifs->ifs_ipf_frcache); 2152 ATOMIC_INCL(ifs->ifs_frstats[out].fr_chit); 2153 2154 if ((fr = fin->fin_fr) != NULL) { 2155 ATOMIC_INC64(fr->fr_hits); 2156 pass = fr->fr_flags; 2157 } 2158 } else { 2159 RWLOCK_EXIT(&ifs->ifs_ipf_frcache); 2160 2161 #ifdef USE_INET6 2162 if (fin->fin_v == 6) 2163 fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active]; 2164 else 2165 #endif 2166 fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active]; 2167 if (fin->fin_fr != NULL) 2168 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2169 2170 if (((pass & FR_KEEPSTATE) == 0) && 2171 ((fin->fin_flx & FI_DONTCACHE) == 0)) { 2172 WRITE_ENTER(&ifs->ifs_ipf_frcache); 2173 bcopy((char *)fin, (char *)fc, FI_COPYSIZE); 2174 RWLOCK_EXIT(&ifs->ifs_ipf_frcache); 2175 } 2176 if ((pass & FR_NOMATCH)) { 2177 ATOMIC_INCL(ifs->ifs_frstats[out].fr_nom); 2178 } 2179 fr = fin->fin_fr; 2180 } 2181 2182 /* 2183 * Apply packets per second rate-limiting to a rule as required. 2184 */ 2185 if ((fr != NULL) && (fr->fr_pps != 0) && 2186 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) { 2187 pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST); 2188 pass |= FR_BLOCK; 2189 ATOMIC_INCL(ifs->ifs_frstats[out].fr_ppshit); 2190 } 2191 2192 /* 2193 * If we fail to add a packet to the authorization queue, then we 2194 * drop the packet later. However, if it was added then pretend 2195 * we've dropped it already. 2196 */ 2197 if (FR_ISAUTH(pass)) { 2198 if (fr_newauth(fin->fin_m, fin) != 0) { 2199 #ifdef _KERNEL 2200 fin->fin_m = *fin->fin_mp = NULL; 2201 #else 2202 ; 2203 #endif 2204 fin->fin_error = 0; 2205 } else 2206 fin->fin_error = ENOSPC; 2207 } 2208 2209 if ((fr != NULL) && (fr->fr_func != NULL) && 2210 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW)) 2211 (void) (*fr->fr_func)(fin, &pass); 2212 2213 /* 2214 * If a rule is a pre-auth rule, check again in the list of rules 2215 * loaded for authenticated use. It does not particulary matter 2216 * if this search fails because a "preauth" result, from a rule, 2217 * is treated as "not a pass", hence the packet is blocked. 2218 */ 2219 if (FR_ISPREAUTH(pass)) { 2220 if ((fin->fin_fr = ifs->ifs_ipauth) != NULL) 2221 pass = fr_scanlist(fin, ifs->ifs_fr_pass); 2222 } 2223 2224 /* 2225 * If the rule has "keep frag" and the packet is actually a fragment, 2226 * then create a fragment state entry. 2227 */ 2228 if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) { 2229 if (fin->fin_flx & FI_FRAG) { 2230 if (fr_newfrag(fin, pass) == -1) { 2231 ATOMIC_INCL(ifs->ifs_frstats[out].fr_bnfr); 2232 } else { 2233 ATOMIC_INCL(ifs->ifs_frstats[out].fr_nfr); 2234 } 2235 } else { 2236 ATOMIC_INCL(ifs->ifs_frstats[out].fr_cfr); 2237 } 2238 } 2239 2240 /* 2241 * Finally, if we've asked to track state for this packet, set it up. 2242 */ 2243 if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) { 2244 if (fr_addstate(fin, NULL, 0) != NULL) { 2245 ATOMIC_INCL(ifs->ifs_frstats[out].fr_ads); 2246 } else { 2247 ATOMIC_INCL(ifs->ifs_frstats[out].fr_bads); 2248 if (FR_ISPASS(pass)) { 2249 pass &= ~FR_CMDMASK; 2250 pass |= FR_BLOCK; 2251 } 2252 } 2253 } 2254 2255 fr = fin->fin_fr; 2256 2257 if (passp != NULL) 2258 *passp = pass; 2259 2260 return fr; 2261 } 2262 2263 2264 /* ------------------------------------------------------------------------ */ 2265 /* Function: fr_check */ 2266 /* Returns: int - 0 == packet allowed through, */ 2267 /* User space: */ 2268 /* -1 == packet blocked */ 2269 /* 1 == packet not matched */ 2270 /* -2 == requires authentication */ 2271 /* Kernel: */ 2272 /* > 0 == filter error # for packet */ 2273 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */ 2274 /* hlen(I) - length of header */ 2275 /* ifp(I) - pointer to interface this packet is on */ 2276 /* out(I) - 0 == packet going in, 1 == packet going out */ 2277 /* mp(IO) - pointer to caller's buffer pointer that holds this */ 2278 /* IP packet. */ 2279 /* Solaris & HP-UX ONLY : */ 2280 /* qpi(I) - pointer to STREAMS queue information for this */ 2281 /* interface & direction. */ 2282 /* */ 2283 /* fr_check() is the master function for all IPFilter packet processing. */ 2284 /* It orchestrates: Network Address Translation (NAT), checking for packet */ 2285 /* authorisation (or pre-authorisation), presence of related state info., */ 2286 /* generating log entries, IP packet accounting, routing of packets as */ 2287 /* directed by firewall rules and of course whether or not to allow the */ 2288 /* packet to be further processed by the kernel. */ 2289 /* */ 2290 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */ 2291 /* freed. Packets passed may be returned with the pointer pointed to by */ 2292 /* by "mp" changed to a new buffer. */ 2293 /* ------------------------------------------------------------------------ */ 2294 int fr_check(ip, hlen, ifp, out 2295 #if defined(_KERNEL) && defined(MENTAT) 2296 , qif, mp, ifs) 2297 void *qif; 2298 #else 2299 , mp, ifs) 2300 #endif 2301 mb_t **mp; 2302 ip_t *ip; 2303 int hlen; 2304 void *ifp; 2305 int out; 2306 ipf_stack_t *ifs; 2307 { 2308 /* 2309 * The above really sucks, but short of writing a diff 2310 */ 2311 fr_info_t frinfo; 2312 fr_info_t *fin = &frinfo; 2313 u_32_t pass; 2314 frentry_t *fr = NULL; 2315 int v = IP_V(ip); 2316 mb_t *mc = NULL; 2317 mb_t *m; 2318 #ifdef USE_INET6 2319 ip6_t *ip6; 2320 #endif 2321 #ifdef _KERNEL 2322 # ifdef MENTAT 2323 qpktinfo_t *qpi = qif; 2324 #endif 2325 #endif 2326 2327 SPL_INT(s); 2328 pass = ifs->ifs_fr_pass; 2329 2330 /* 2331 * The first part of fr_check() deals with making sure that what goes 2332 * into the filtering engine makes some sense. Information about the 2333 * the packet is distilled, collected into a fr_info_t structure and 2334 * the an attempt to ensure the buffer the packet is in is big enough 2335 * to hold all the required packet headers. 2336 */ 2337 #ifdef _KERNEL 2338 # ifdef MENTAT 2339 if (!OK_32PTR(ip)) 2340 return 2; 2341 # endif 2342 2343 READ_ENTER(&ifs->ifs_ipf_global); 2344 2345 if (ifs->ifs_fr_running <= 0) { 2346 RWLOCK_EXIT(&ifs->ifs_ipf_global); 2347 return 0; 2348 } 2349 2350 bzero((char *)fin, sizeof(*fin)); 2351 2352 # ifdef MENTAT 2353 if (qpi->qpi_flags & QPI_NOCKSUM) 2354 fin->fin_flx |= FI_NOCKSUM; 2355 m = qpi->qpi_m; 2356 fin->fin_qfm = m; 2357 fin->fin_qpi = qpi; 2358 # else /* MENTAT */ 2359 2360 m = *mp; 2361 2362 # if defined(M_MCAST) 2363 if ((m->m_flags & M_MCAST) != 0) 2364 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2365 # endif 2366 # if defined(M_MLOOP) 2367 if ((m->m_flags & M_MLOOP) != 0) 2368 fin->fin_flx |= FI_MBCAST|FI_MULTICAST; 2369 # endif 2370 # if defined(M_BCAST) 2371 if ((m->m_flags & M_BCAST) != 0) 2372 fin->fin_flx |= FI_MBCAST|FI_BROADCAST; 2373 # endif 2374 # ifdef M_CANFASTFWD 2375 /* 2376 * XXX For now, IP Filter and fast-forwarding of cached flows 2377 * XXX are mutually exclusive. Eventually, IP Filter should 2378 * XXX get a "can-fast-forward" filter rule. 2379 */ 2380 m->m_flags &= ~M_CANFASTFWD; 2381 # endif /* M_CANFASTFWD */ 2382 # ifdef CSUM_DELAY_DATA 2383 /* 2384 * disable delayed checksums. 2385 */ 2386 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { 2387 in_delayed_cksum(m); 2388 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 2389 } 2390 # endif /* CSUM_DELAY_DATA */ 2391 # endif /* MENTAT */ 2392 #else 2393 READ_ENTER(&ifs->ifs_ipf_global); 2394 2395 bzero((char *)fin, sizeof(*fin)); 2396 m = *mp; 2397 #endif /* _KERNEL */ 2398 2399 fin->fin_v = v; 2400 fin->fin_m = m; 2401 fin->fin_ip = ip; 2402 fin->fin_mp = mp; 2403 fin->fin_out = out; 2404 fin->fin_ifp = ifp; 2405 fin->fin_error = ENETUNREACH; 2406 fin->fin_hlen = (u_short)hlen; 2407 fin->fin_dp = (char *)ip + hlen; 2408 fin->fin_ipoff = (char *)ip - MTOD(m, char *); 2409 fin->fin_ifs = ifs; 2410 2411 SPL_NET(s); 2412 2413 #ifdef USE_INET6 2414 if (v == 6) { 2415 ATOMIC_INCL(ifs->ifs_frstats[out].fr_ipv6); 2416 /* 2417 * Jumbo grams are quite likely too big for internal buffer 2418 * structures to handle comfortably, for now, so just drop 2419 * them. 2420 */ 2421 ip6 = (ip6_t *)ip; 2422 fin->fin_plen = ntohs(ip6->ip6_plen); 2423 if (fin->fin_plen == 0) { 2424 READ_ENTER(&ifs->ifs_ipf_mutex); 2425 pass = FR_BLOCK|FR_NOMATCH; 2426 goto filtered; 2427 } 2428 fin->fin_plen += sizeof(ip6_t); 2429 } else 2430 #endif 2431 { 2432 #if (OpenBSD >= 200311) && defined(_KERNEL) 2433 ip->ip_len = ntohs(ip->ip_len); 2434 ip->ip_off = ntohs(ip->ip_off); 2435 #endif 2436 fin->fin_plen = ip->ip_len; 2437 } 2438 2439 if (fr_makefrip(hlen, ip, fin) == -1) { 2440 READ_ENTER(&ifs->ifs_ipf_mutex); 2441 pass = FR_BLOCK; 2442 goto filtered; 2443 } 2444 2445 /* 2446 * For at least IPv6 packets, if a m_pullup() fails then this pointer 2447 * becomes NULL and so we have no packet to free. 2448 */ 2449 if (*fin->fin_mp == NULL) 2450 goto finished; 2451 2452 if (!out) { 2453 if (v == 4) { 2454 #ifdef _KERNEL 2455 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2456 ATOMIC_INCL(ifs->ifs_frstats[0].fr_badsrc); 2457 fin->fin_flx |= FI_BADSRC; 2458 } 2459 #endif 2460 if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) { 2461 ATOMIC_INCL(ifs->ifs_frstats[0].fr_badttl); 2462 fin->fin_flx |= FI_LOWTTL; 2463 } 2464 } 2465 #ifdef USE_INET6 2466 else if (v == 6) { 2467 ip6 = (ip6_t *)ip; 2468 #ifdef _KERNEL 2469 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) { 2470 ATOMIC_INCL(ifs->ifs_frstats[0].fr_badsrc); 2471 fin->fin_flx |= FI_BADSRC; 2472 } 2473 #endif 2474 if (ip6->ip6_hlim < ifs->ifs_fr_minttl) { 2475 ATOMIC_INCL(ifs->ifs_frstats[0].fr_badttl); 2476 fin->fin_flx |= FI_LOWTTL; 2477 } 2478 } 2479 #endif 2480 } 2481 2482 if (fin->fin_flx & FI_SHORT) { 2483 ATOMIC_INCL(ifs->ifs_frstats[out].fr_short); 2484 } 2485 2486 READ_ENTER(&ifs->ifs_ipf_mutex); 2487 2488 /* 2489 * Check auth now. This, combined with the check below to see if apass 2490 * is 0 is to ensure that we don't count the packet twice, which can 2491 * otherwise occur when we reprocess it. As it is, we only count it 2492 * after it has no auth. table matchup. This also stops NAT from 2493 * occuring until after the packet has been auth'd. 2494 */ 2495 fr = fr_checkauth(fin, &pass); 2496 if (!out) { 2497 if (fr_checknatin(fin, &pass) == -1) { 2498 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2499 goto finished; 2500 } 2501 } 2502 if (!out) 2503 (void) fr_acctpkt(fin, NULL); 2504 2505 if (fr == NULL) 2506 if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG) 2507 fr = fr_knownfrag(fin, &pass); 2508 if (fr == NULL) 2509 fr = fr_checkstate(fin, &pass); 2510 2511 if ((pass & FR_NOMATCH) || (fr == NULL)) 2512 fr = fr_firewall(fin, &pass); 2513 2514 fin->fin_fr = fr; 2515 2516 /* 2517 * Only count/translate packets which will be passed on, out the 2518 * interface. 2519 */ 2520 if (out && FR_ISPASS(pass)) { 2521 (void) fr_acctpkt(fin, NULL); 2522 2523 if (fr_checknatout(fin, &pass) == -1) { 2524 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2525 goto finished; 2526 } else if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) { 2527 if (fr_updateipid(fin) == -1) { 2528 ATOMIC_INCL(ifs->ifs_frstats[1].fr_ipud); 2529 pass &= ~FR_CMDMASK; 2530 pass |= FR_BLOCK; 2531 } else { 2532 ATOMIC_INCL(ifs->ifs_frstats[0].fr_ipud); 2533 } 2534 } 2535 } 2536 2537 #ifdef IPFILTER_LOG 2538 if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) { 2539 (void) fr_dolog(fin, &pass); 2540 } 2541 #endif 2542 2543 if (fin->fin_state != NULL) 2544 fr_statederef(fin, (ipstate_t **)&fin->fin_state, ifs); 2545 2546 if (fin->fin_nat != NULL) 2547 fr_natderef((nat_t **)&fin->fin_nat, ifs); 2548 2549 /* 2550 * Only allow FR_DUP to work if a rule matched - it makes no sense to 2551 * set FR_DUP as a "default" as there are no instructions about where 2552 * to send the packet. Use fin_m here because it may have changed 2553 * (without an update of 'm') in prior processing. 2554 */ 2555 if ((fr != NULL) && (pass & FR_DUP)) { 2556 mc = M_DUPLICATE(fin->fin_m); 2557 } 2558 2559 if (pass & (FR_RETRST|FR_RETICMP)) { 2560 /* 2561 * Should we return an ICMP packet to indicate error 2562 * status passing through the packet filter ? 2563 * WARNING: ICMP error packets AND TCP RST packets should 2564 * ONLY be sent in repsonse to incoming packets. Sending them 2565 * in response to outbound packets can result in a panic on 2566 * some operating systems. 2567 */ 2568 if (!out) { 2569 if (pass & FR_RETICMP) { 2570 int dst; 2571 2572 if ((pass & FR_RETMASK) == FR_FAKEICMP) 2573 dst = 1; 2574 else 2575 dst = 0; 2576 (void) fr_send_icmp_err(ICMP_UNREACH, fin, dst); 2577 ATOMIC_INCL(ifs->ifs_frstats[0].fr_ret); 2578 } else if (((pass & FR_RETMASK) == FR_RETRST) && 2579 !(fin->fin_flx & FI_SHORT)) { 2580 if (fr_send_reset(fin) == 0) { 2581 ATOMIC_INCL(ifs->ifs_frstats[1].fr_ret); 2582 } 2583 } 2584 } else { 2585 if (pass & FR_RETRST) 2586 fin->fin_error = ECONNRESET; 2587 } 2588 } 2589 2590 /* 2591 * If we didn't drop off the bottom of the list of rules (and thus 2592 * the 'current' rule fr is not NULL), then we may have some extra 2593 * instructions about what to do with a packet. 2594 * Once we're finished return to our caller, freeing the packet if 2595 * we are dropping it (* BSD ONLY *). 2596 * Reassign m from fin_m as we may have a new buffer, now. 2597 */ 2598 filtered: 2599 m = fin->fin_m; 2600 2601 if (fr != NULL) { 2602 frdest_t *fdp; 2603 2604 fdp = &fr->fr_tifs[fin->fin_rev]; 2605 2606 if (!out && (pass & FR_FASTROUTE)) { 2607 /* 2608 * For fastroute rule, no destioation interface defined 2609 * so pass NULL as the frdest_t parameter 2610 */ 2611 (void) fr_fastroute(m, mp, fin, NULL); 2612 m = *mp = NULL; 2613 } else if ((fdp->fd_ifp != NULL) && 2614 (fdp->fd_ifp != (struct ifnet *)-1)) { 2615 /* this is for to rules: */ 2616 (void) fr_fastroute(m, mp, fin, fdp); 2617 m = *mp = NULL; 2618 } 2619 2620 /* 2621 * Generate a duplicated packet. 2622 */ 2623 if (mc != NULL) 2624 (void) fr_fastroute(mc, &mc, fin, &fr->fr_dif); 2625 } 2626 2627 /* 2628 * This late because the likes of fr_fastroute() use fin_fr. 2629 */ 2630 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 2631 2632 finished: 2633 if (!FR_ISPASS(pass)) { 2634 ATOMIC_INCL(ifs->ifs_frstats[out].fr_block); 2635 if (*mp != NULL) { 2636 FREE_MB_T(*mp); 2637 m = *mp = NULL; 2638 } 2639 } else { 2640 ATOMIC_INCL(ifs->ifs_frstats[out].fr_pass); 2641 #if defined(_KERNEL) && defined(__sgi) 2642 if ((fin->fin_hbuf != NULL) && 2643 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) { 2644 COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf); 2645 } 2646 #endif 2647 } 2648 2649 SPL_X(s); 2650 RWLOCK_EXIT(&ifs->ifs_ipf_global); 2651 2652 #ifdef _KERNEL 2653 # if OpenBSD >= 200311 2654 if (FR_ISPASS(pass) && (v == 4)) { 2655 ip = fin->fin_ip; 2656 ip->ip_len = ntohs(ip->ip_len); 2657 ip->ip_off = ntohs(ip->ip_off); 2658 } 2659 # endif 2660 return (FR_ISPASS(pass)) ? 0 : fin->fin_error; 2661 #else /* _KERNEL */ 2662 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass)); 2663 if ((pass & FR_NOMATCH) != 0) 2664 return 1; 2665 2666 if ((pass & FR_RETMASK) != 0) 2667 switch (pass & FR_RETMASK) 2668 { 2669 case FR_RETRST : 2670 return 3; 2671 case FR_RETICMP : 2672 return 4; 2673 case FR_FAKEICMP : 2674 return 5; 2675 } 2676 2677 switch (pass & FR_CMDMASK) 2678 { 2679 case FR_PASS : 2680 return 0; 2681 case FR_BLOCK : 2682 return -1; 2683 case FR_AUTH : 2684 return -2; 2685 case FR_ACCOUNT : 2686 return -3; 2687 case FR_PREAUTH : 2688 return -4; 2689 } 2690 return 2; 2691 #endif /* _KERNEL */ 2692 } 2693 2694 2695 #ifdef IPFILTER_LOG 2696 /* ------------------------------------------------------------------------ */ 2697 /* Function: fr_dolog */ 2698 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */ 2699 /* Parameters: fin(I) - pointer to packet information */ 2700 /* passp(IO) - pointer to current/new filter decision (unused) */ 2701 /* */ 2702 /* Checks flags set to see how a packet should be logged, if it is to be */ 2703 /* logged. Adjust statistics based on its success or not. */ 2704 /* ------------------------------------------------------------------------ */ 2705 frentry_t *fr_dolog(fin, passp) 2706 fr_info_t *fin; 2707 u_32_t *passp; 2708 { 2709 u_32_t pass; 2710 int out; 2711 ipf_stack_t *ifs = fin->fin_ifs; 2712 2713 out = fin->fin_out; 2714 pass = *passp; 2715 2716 if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) { 2717 pass |= FF_LOGNOMATCH; 2718 ATOMIC_INCL(ifs->ifs_frstats[out].fr_npkl); 2719 goto logit; 2720 } else if (((pass & FR_LOGMASK) == FR_LOGP) || 2721 (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) { 2722 if ((pass & FR_LOGMASK) != FR_LOGP) 2723 pass |= FF_LOGPASS; 2724 ATOMIC_INCL(ifs->ifs_frstats[out].fr_ppkl); 2725 goto logit; 2726 } else if (((pass & FR_LOGMASK) == FR_LOGB) || 2727 (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) { 2728 if ((pass & FR_LOGMASK) != FR_LOGB) 2729 pass |= FF_LOGBLOCK; 2730 ATOMIC_INCL(ifs->ifs_frstats[out].fr_bpkl); 2731 logit: 2732 if (ipflog(fin, pass) == -1) { 2733 ATOMIC_INCL(ifs->ifs_frstats[out].fr_skip); 2734 2735 /* 2736 * If the "or-block" option has been used then 2737 * block the packet if we failed to log it. 2738 */ 2739 if ((pass & FR_LOGORBLOCK) && 2740 FR_ISPASS(pass)) { 2741 pass &= ~FR_CMDMASK; 2742 pass |= FR_BLOCK; 2743 } 2744 } 2745 *passp = pass; 2746 } 2747 2748 return fin->fin_fr; 2749 } 2750 #endif /* IPFILTER_LOG */ 2751 2752 2753 /* ------------------------------------------------------------------------ */ 2754 /* Function: ipf_cksum */ 2755 /* Returns: u_short - IP header checksum */ 2756 /* Parameters: addr(I) - pointer to start of buffer to checksum */ 2757 /* len(I) - length of buffer in bytes */ 2758 /* */ 2759 /* Calculate the two's complement 16 bit checksum of the buffer passed. */ 2760 /* */ 2761 /* N.B.: addr should be 16bit aligned. */ 2762 /* ------------------------------------------------------------------------ */ 2763 u_short ipf_cksum(addr, len) 2764 u_short *addr; 2765 int len; 2766 { 2767 u_32_t sum = 0; 2768 2769 for (sum = 0; len > 1; len -= 2) 2770 sum += *addr++; 2771 2772 /* mop up an odd byte, if necessary */ 2773 if (len == 1) 2774 sum += *(u_char *)addr; 2775 2776 /* 2777 * add back carry outs from top 16 bits to low 16 bits 2778 */ 2779 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ 2780 sum += (sum >> 16); /* add carry */ 2781 return (u_short)(~sum); 2782 } 2783 2784 2785 /* ------------------------------------------------------------------------ */ 2786 /* Function: fr_cksum */ 2787 /* Returns: u_short - layer 4 checksum */ 2788 /* Parameters: m(I ) - pointer to buffer holding packet */ 2789 /* ip(I) - pointer to IP header */ 2790 /* l4proto(I) - protocol to caclulate checksum for */ 2791 /* l4hdr(I) - pointer to layer 4 header */ 2792 /* */ 2793 /* Calculates the TCP checksum for the packet held in "m", using the data */ 2794 /* in the IP header "ip" to seed it. */ 2795 /* */ 2796 /* NB: This function assumes we've pullup'd enough for all of the IP header */ 2797 /* and the TCP header. We also assume that data blocks aren't allocated in */ 2798 /* odd sizes. */ 2799 /* */ 2800 /* Expects ip_len to be in host byte order when called. */ 2801 /* ------------------------------------------------------------------------ */ 2802 u_short fr_cksum(m, ip, l4proto, l4hdr) 2803 mb_t *m; 2804 ip_t *ip; 2805 int l4proto; 2806 void *l4hdr; 2807 { 2808 u_short *sp, slen, sumsave, l4hlen, *csump; 2809 u_int sum, sum2; 2810 int hlen; 2811 #ifdef USE_INET6 2812 ip6_t *ip6; 2813 #endif 2814 2815 csump = NULL; 2816 sumsave = 0; 2817 l4hlen = 0; 2818 sp = NULL; 2819 slen = 0; 2820 hlen = 0; 2821 sum = 0; 2822 2823 /* 2824 * Add up IP Header portion 2825 */ 2826 #ifdef USE_INET6 2827 if (IP_V(ip) == 4) { 2828 #endif 2829 hlen = IP_HL(ip) << 2; 2830 slen = ip->ip_len - hlen; 2831 sum = htons((u_short)l4proto); 2832 sum += htons(slen); 2833 sp = (u_short *)&ip->ip_src; 2834 sum += *sp++; /* ip_src */ 2835 sum += *sp++; 2836 sum += *sp++; /* ip_dst */ 2837 sum += *sp++; 2838 #ifdef USE_INET6 2839 } else if (IP_V(ip) == 6) { 2840 ip6 = (ip6_t *)ip; 2841 hlen = sizeof(*ip6); 2842 slen = ntohs(ip6->ip6_plen); 2843 sum = htons((u_short)l4proto); 2844 sum += htons(slen); 2845 sp = (u_short *)&ip6->ip6_src; 2846 sum += *sp++; /* ip6_src */ 2847 sum += *sp++; 2848 sum += *sp++; 2849 sum += *sp++; 2850 sum += *sp++; 2851 sum += *sp++; 2852 sum += *sp++; 2853 sum += *sp++; 2854 sum += *sp++; /* ip6_dst */ 2855 sum += *sp++; 2856 sum += *sp++; 2857 sum += *sp++; 2858 sum += *sp++; 2859 sum += *sp++; 2860 sum += *sp++; 2861 sum += *sp++; 2862 } 2863 #endif 2864 2865 switch (l4proto) 2866 { 2867 case IPPROTO_UDP : 2868 csump = &((udphdr_t *)l4hdr)->uh_sum; 2869 l4hlen = sizeof(udphdr_t); 2870 break; 2871 2872 case IPPROTO_TCP : 2873 csump = &((tcphdr_t *)l4hdr)->th_sum; 2874 l4hlen = sizeof(tcphdr_t); 2875 break; 2876 case IPPROTO_ICMP : 2877 csump = &((icmphdr_t *)l4hdr)->icmp_cksum; 2878 l4hlen = 4; 2879 sum = 0; 2880 break; 2881 default : 2882 break; 2883 } 2884 2885 if (csump != NULL) { 2886 sumsave = *csump; 2887 *csump = 0; 2888 } 2889 2890 l4hlen = l4hlen; /* LINT */ 2891 2892 #ifdef _KERNEL 2893 # ifdef MENTAT 2894 { 2895 void *rp = m->b_rptr; 2896 2897 if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr) 2898 m->b_rptr = (u_char *)ip; 2899 sum2 = ip_cksum(m, hlen, sum); /* hlen == offset */ 2900 m->b_rptr = rp; 2901 sum2 = (sum2 & 0xffff) + (sum2 >> 16); 2902 sum2 = ~sum2 & 0xffff; 2903 } 2904 # else /* MENTAT */ 2905 # if defined(BSD) || defined(sun) 2906 # if BSD >= 199103 2907 m->m_data += hlen; 2908 # else 2909 m->m_off += hlen; 2910 # endif 2911 m->m_len -= hlen; 2912 sum2 = in_cksum(m, slen); 2913 m->m_len += hlen; 2914 # if BSD >= 199103 2915 m->m_data -= hlen; 2916 # else 2917 m->m_off -= hlen; 2918 # endif 2919 /* 2920 * Both sum and sum2 are partial sums, so combine them together. 2921 */ 2922 sum += ~sum2 & 0xffff; 2923 while (sum > 0xffff) 2924 sum = (sum & 0xffff) + (sum >> 16); 2925 sum2 = ~sum & 0xffff; 2926 # else /* defined(BSD) || defined(sun) */ 2927 { 2928 union { 2929 u_char c[2]; 2930 u_short s; 2931 } bytes; 2932 u_short len = ip->ip_len; 2933 # if defined(__sgi) 2934 int add; 2935 # endif 2936 2937 /* 2938 * Add up IP Header portion 2939 */ 2940 if (sp != (u_short *)l4hdr) 2941 sp = (u_short *)l4hdr; 2942 2943 switch (l4proto) 2944 { 2945 case IPPROTO_UDP : 2946 sum += *sp++; /* sport */ 2947 sum += *sp++; /* dport */ 2948 sum += *sp++; /* udp length */ 2949 sum += *sp++; /* checksum */ 2950 break; 2951 2952 case IPPROTO_TCP : 2953 sum += *sp++; /* sport */ 2954 sum += *sp++; /* dport */ 2955 sum += *sp++; /* seq */ 2956 sum += *sp++; 2957 sum += *sp++; /* ack */ 2958 sum += *sp++; 2959 sum += *sp++; /* off */ 2960 sum += *sp++; /* win */ 2961 sum += *sp++; /* checksum */ 2962 sum += *sp++; /* urp */ 2963 break; 2964 case IPPROTO_ICMP : 2965 sum = *sp++; /* type/code */ 2966 sum += *sp++; /* checksum */ 2967 break; 2968 } 2969 2970 # ifdef __sgi 2971 /* 2972 * In case we had to copy the IP & TCP header out of mbufs, 2973 * skip over the mbuf bits which are the header 2974 */ 2975 if ((caddr_t)ip != mtod(m, caddr_t)) { 2976 hlen = (caddr_t)sp - (caddr_t)ip; 2977 while (hlen) { 2978 add = MIN(hlen, m->m_len); 2979 sp = (u_short *)(mtod(m, caddr_t) + add); 2980 hlen -= add; 2981 if (add == m->m_len) { 2982 m = m->m_next; 2983 if (!hlen) { 2984 if (!m) 2985 break; 2986 sp = mtod(m, u_short *); 2987 } 2988 PANIC((!m),("fr_cksum(1): not enough data")); 2989 } 2990 } 2991 } 2992 # endif 2993 2994 len -= (l4hlen + hlen); 2995 if (len <= 0) 2996 goto nodata; 2997 2998 while (len > 1) { 2999 if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) { 3000 m = m->m_next; 3001 PANIC((!m),("fr_cksum(2): not enough data")); 3002 sp = mtod(m, u_short *); 3003 } 3004 if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) { 3005 bytes.c[0] = *(u_char *)sp; 3006 m = m->m_next; 3007 PANIC((!m),("fr_cksum(3): not enough data")); 3008 sp = mtod(m, u_short *); 3009 bytes.c[1] = *(u_char *)sp; 3010 sum += bytes.s; 3011 sp = (u_short *)((u_char *)sp + 1); 3012 } 3013 if ((u_long)sp & 1) { 3014 bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s)); 3015 sum += bytes.s; 3016 } else 3017 sum += *sp++; 3018 len -= 2; 3019 } 3020 3021 if (len != 0) 3022 sum += ntohs(*(u_char *)sp << 8); 3023 nodata: 3024 while (sum > 0xffff) 3025 sum = (sum & 0xffff) + (sum >> 16); 3026 sum2 = (u_short)(~sum & 0xffff); 3027 } 3028 # endif /* defined(BSD) || defined(sun) */ 3029 # endif /* MENTAT */ 3030 #else /* _KERNEL */ 3031 for (; slen > 1; slen -= 2) 3032 sum += *sp++; 3033 if (slen) 3034 sum += ntohs(*(u_char *)sp << 8); 3035 while (sum > 0xffff) 3036 sum = (sum & 0xffff) + (sum >> 16); 3037 sum2 = (u_short)(~sum & 0xffff); 3038 #endif /* _KERNEL */ 3039 if (csump != NULL) 3040 *csump = sumsave; 3041 return sum2; 3042 } 3043 3044 3045 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \ 3046 defined(__sgi) ) && !defined(linux) && !defined(_AIX51) 3047 /* 3048 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3049 * The Regents of the University of California. All rights reserved. 3050 * 3051 * Redistribution and use in source and binary forms, with or without 3052 * modification, are permitted provided that the following conditions 3053 * are met: 3054 * 1. Redistributions of source code must retain the above copyright 3055 * notice, this list of conditions and the following disclaimer. 3056 * 2. Redistributions in binary form must reproduce the above copyright 3057 * notice, this list of conditions and the following disclaimer in the 3058 * documentation and/or other materials provided with the distribution. 3059 * 3. Neither the name of the University nor the names of its contributors 3060 * may be used to endorse or promote products derived from this software 3061 * without specific prior written permission. 3062 * 3063 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3064 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3065 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3066 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3067 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3068 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3069 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3070 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3071 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3072 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3073 * SUCH DAMAGE. 3074 * 3075 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 3076 * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $ 3077 */ 3078 /* 3079 * Copy data from an mbuf chain starting "off" bytes from the beginning, 3080 * continuing for "len" bytes, into the indicated buffer. 3081 */ 3082 void 3083 m_copydata(m, off, len, cp) 3084 mb_t *m; 3085 int off; 3086 int len; 3087 caddr_t cp; 3088 { 3089 unsigned count; 3090 3091 if (off < 0 || len < 0) 3092 panic("m_copydata"); 3093 while (off > 0) { 3094 if (m == 0) 3095 panic("m_copydata"); 3096 if (off < m->m_len) 3097 break; 3098 off -= m->m_len; 3099 m = m->m_next; 3100 } 3101 while (len > 0) { 3102 if (m == 0) 3103 panic("m_copydata"); 3104 count = MIN(m->m_len - off, len); 3105 bcopy(mtod(m, caddr_t) + off, cp, count); 3106 len -= count; 3107 cp += count; 3108 off = 0; 3109 m = m->m_next; 3110 } 3111 } 3112 3113 3114 /* 3115 * Copy data from a buffer back into the indicated mbuf chain, 3116 * starting "off" bytes from the beginning, extending the mbuf 3117 * chain if necessary. 3118 */ 3119 void 3120 m_copyback(m0, off, len, cp) 3121 struct mbuf *m0; 3122 int off; 3123 int len; 3124 caddr_t cp; 3125 { 3126 int mlen; 3127 struct mbuf *m = m0, *n; 3128 int totlen = 0; 3129 3130 if (m0 == 0) 3131 return; 3132 while (off > (mlen = m->m_len)) { 3133 off -= mlen; 3134 totlen += mlen; 3135 if (m->m_next == 0) { 3136 n = m_getclr(M_DONTWAIT, m->m_type); 3137 if (n == 0) 3138 goto out; 3139 n->m_len = min(MLEN, len + off); 3140 m->m_next = n; 3141 } 3142 m = m->m_next; 3143 } 3144 while (len > 0) { 3145 mlen = min(m->m_len - off, len); 3146 bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen); 3147 cp += mlen; 3148 len -= mlen; 3149 mlen += off; 3150 off = 0; 3151 totlen += mlen; 3152 if (len == 0) 3153 break; 3154 if (m->m_next == 0) { 3155 n = m_get(M_DONTWAIT, m->m_type); 3156 if (n == 0) 3157 break; 3158 n->m_len = min(MLEN, len); 3159 m->m_next = n; 3160 } 3161 m = m->m_next; 3162 } 3163 out: 3164 #if 0 3165 if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 3166 m->m_pkthdr.len = totlen; 3167 #endif 3168 return; 3169 } 3170 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */ 3171 3172 3173 /* ------------------------------------------------------------------------ */ 3174 /* Function: fr_findgroup */ 3175 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */ 3176 /* Parameters: group(I) - group name to search for */ 3177 /* unit(I) - device to which this group belongs */ 3178 /* set(I) - which set of rules (inactive/inactive) this is */ 3179 /* fgpp(O) - pointer to place to store pointer to the pointer */ 3180 /* to where to add the next (last) group or where */ 3181 /* to delete group from. */ 3182 /* */ 3183 /* Search amongst the defined groups for a particular group number. */ 3184 /* ------------------------------------------------------------------------ */ 3185 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs) 3186 char *group; 3187 minor_t unit; 3188 int set; 3189 frgroup_t ***fgpp; 3190 ipf_stack_t *ifs; 3191 { 3192 frgroup_t *fg, **fgp; 3193 3194 /* 3195 * Which list of groups to search in is dependent on which list of 3196 * rules are being operated on. 3197 */ 3198 fgp = &ifs->ifs_ipfgroups[unit][set]; 3199 3200 while ((fg = *fgp) != NULL) { 3201 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0) 3202 break; 3203 else 3204 fgp = &fg->fg_next; 3205 } 3206 if (fgpp != NULL) 3207 *fgpp = fgp; 3208 return fg; 3209 } 3210 3211 3212 /* ------------------------------------------------------------------------ */ 3213 /* Function: fr_addgroup */ 3214 /* Returns: frgroup_t * - NULL == did not create group, */ 3215 /* != NULL == pointer to the group */ 3216 /* Parameters: num(I) - group number to add */ 3217 /* head(I) - rule pointer that is using this as the head */ 3218 /* flags(I) - rule flags which describe the type of rule it is */ 3219 /* unit(I) - device to which this group will belong to */ 3220 /* set(I) - which set of rules (inactive/inactive) this is */ 3221 /* Write Locks: ipf_mutex */ 3222 /* */ 3223 /* Add a new group head, or if it already exists, increase the reference */ 3224 /* count to it. */ 3225 /* ------------------------------------------------------------------------ */ 3226 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs) 3227 char *group; 3228 void *head; 3229 u_32_t flags; 3230 minor_t unit; 3231 int set; 3232 ipf_stack_t *ifs; 3233 { 3234 frgroup_t *fg, **fgp; 3235 u_32_t gflags; 3236 3237 if (group == NULL) 3238 return NULL; 3239 3240 if (unit == IPL_LOGIPF && *group == '\0') 3241 return NULL; 3242 3243 fgp = NULL; 3244 gflags = flags & FR_INOUT; 3245 3246 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3247 if (fg != NULL) { 3248 if (fg->fg_flags == 0) 3249 fg->fg_flags = gflags; 3250 else if (gflags != fg->fg_flags) 3251 return NULL; 3252 fg->fg_ref++; 3253 return fg; 3254 } 3255 KMALLOC(fg, frgroup_t *); 3256 if (fg != NULL) { 3257 fg->fg_head = head; 3258 fg->fg_start = NULL; 3259 fg->fg_next = *fgp; 3260 bcopy(group, fg->fg_name, FR_GROUPLEN); 3261 fg->fg_flags = gflags; 3262 fg->fg_ref = 1; 3263 *fgp = fg; 3264 } 3265 return fg; 3266 } 3267 3268 3269 /* ------------------------------------------------------------------------ */ 3270 /* Function: fr_delgroup */ 3271 /* Returns: Nil */ 3272 /* Parameters: group(I) - group name to delete */ 3273 /* unit(I) - device to which this group belongs */ 3274 /* set(I) - which set of rules (inactive/inactive) this is */ 3275 /* Write Locks: ipf_mutex */ 3276 /* */ 3277 /* Attempt to delete a group head. */ 3278 /* Only do this when its reference count reaches 0. */ 3279 /* ------------------------------------------------------------------------ */ 3280 void fr_delgroup(group, unit, set, ifs) 3281 char *group; 3282 minor_t unit; 3283 int set; 3284 ipf_stack_t *ifs; 3285 { 3286 frgroup_t *fg, **fgp; 3287 3288 fg = fr_findgroup(group, unit, set, &fgp, ifs); 3289 if (fg == NULL) 3290 return; 3291 3292 fg->fg_ref--; 3293 if (fg->fg_ref == 0) { 3294 *fgp = fg->fg_next; 3295 KFREE(fg); 3296 } 3297 } 3298 3299 3300 /* ------------------------------------------------------------------------ */ 3301 /* Function: fr_getrulen */ 3302 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */ 3303 /* Parameters: unit(I) - device for which to count the rule's number */ 3304 /* flags(I) - which set of rules to find the rule in */ 3305 /* group(I) - group name */ 3306 /* n(I) - rule number to find */ 3307 /* */ 3308 /* Find rule # n in group # g and return a pointer to it. Return NULl if */ 3309 /* group # g doesn't exist or there are less than n rules in the group. */ 3310 /* ------------------------------------------------------------------------ */ 3311 frentry_t *fr_getrulen(unit, group, n, ifs) 3312 int unit; 3313 char *group; 3314 u_32_t n; 3315 ipf_stack_t *ifs; 3316 { 3317 frentry_t *fr; 3318 frgroup_t *fg; 3319 3320 fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs); 3321 if (fg == NULL) 3322 return NULL; 3323 for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--) 3324 ; 3325 if (n != 0) 3326 return NULL; 3327 return fr; 3328 } 3329 3330 3331 /* ------------------------------------------------------------------------ */ 3332 /* Function: fr_rulen */ 3333 /* Returns: int - >= 0 - rule number, -1 == search failed */ 3334 /* Parameters: unit(I) - device for which to count the rule's number */ 3335 /* fr(I) - pointer to rule to match */ 3336 /* */ 3337 /* Return the number for a rule on a specific filtering device. */ 3338 /* ------------------------------------------------------------------------ */ 3339 int fr_rulen(unit, fr, ifs) 3340 int unit; 3341 frentry_t *fr; 3342 ipf_stack_t *ifs; 3343 { 3344 frentry_t *fh; 3345 frgroup_t *fg; 3346 u_32_t n = 0; 3347 3348 if (fr == NULL) 3349 return -1; 3350 fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs); 3351 if (fg == NULL) 3352 return -1; 3353 for (fh = fg->fg_head; fh; n++, fh = fh->fr_next) 3354 if (fh == fr) 3355 break; 3356 if (fh == NULL) 3357 return -1; 3358 return n; 3359 } 3360 3361 3362 /* ------------------------------------------------------------------------ */ 3363 /* Function: frflushlist */ 3364 /* Returns: int - >= 0 - number of flushed rules */ 3365 /* Parameters: set(I) - which set of rules (inactive/inactive) this is */ 3366 /* unit(I) - device for which to flush rules */ 3367 /* flags(I) - which set of rules to flush */ 3368 /* nfreedp(O) - pointer to int where flush count is stored */ 3369 /* listp(I) - pointer to list to flush pointer */ 3370 /* Write Locks: ipf_mutex */ 3371 /* */ 3372 /* Recursively flush rules from the list, descending groups as they are */ 3373 /* encountered. if a rule is the head of a group and it has lost all its */ 3374 /* group members, then also delete the group reference. nfreedp is needed */ 3375 /* to store the accumulating count of rules removed, whereas the returned */ 3376 /* value is just the number removed from the current list. The latter is */ 3377 /* needed to correctly adjust reference counts on rules that define groups. */ 3378 /* */ 3379 /* NOTE: Rules not loaded from user space cannot be flushed. */ 3380 /* ------------------------------------------------------------------------ */ 3381 static int frflushlist(set, unit, nfreedp, listp, ifs) 3382 int set; 3383 minor_t unit; 3384 int *nfreedp; 3385 frentry_t **listp; 3386 ipf_stack_t *ifs; 3387 { 3388 int freed = 0, i; 3389 frentry_t *fp; 3390 3391 while ((fp = *listp) != NULL) { 3392 if ((fp->fr_type & FR_T_BUILTIN) || 3393 !(fp->fr_flags & FR_COPIED)) { 3394 listp = &fp->fr_next; 3395 continue; 3396 } 3397 *listp = fp->fr_next; 3398 if (fp->fr_grp != NULL) { 3399 i = frflushlist(set, unit, nfreedp, fp->fr_grp, ifs); 3400 fp->fr_ref -= i; 3401 } 3402 3403 if (fp->fr_grhead != NULL) { 3404 fr_delgroup(fp->fr_grhead, unit, set, ifs); 3405 *fp->fr_grhead = '\0'; 3406 } 3407 3408 ASSERT(fp->fr_ref > 0); 3409 fp->fr_next = NULL; 3410 if (fr_derefrule(&fp, ifs) == 0) 3411 freed++; 3412 } 3413 *nfreedp += freed; 3414 return freed; 3415 } 3416 3417 3418 /* ------------------------------------------------------------------------ */ 3419 /* Function: frflush */ 3420 /* Returns: int - >= 0 - number of flushed rules */ 3421 /* Parameters: unit(I) - device for which to flush rules */ 3422 /* flags(I) - which set of rules to flush */ 3423 /* */ 3424 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */ 3425 /* and IPv6) as defined by the value of flags. */ 3426 /* ------------------------------------------------------------------------ */ 3427 int frflush(unit, proto, flags, ifs) 3428 minor_t unit; 3429 int proto, flags; 3430 ipf_stack_t *ifs; 3431 { 3432 int flushed = 0, set; 3433 3434 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3435 bzero((char *)&ifs->ifs_frcache, sizeof (ifs->ifs_frcache)); 3436 3437 set = ifs->ifs_fr_active; 3438 if ((flags & FR_INACTIVE) == FR_INACTIVE) 3439 set = 1 - set; 3440 3441 if (flags & FR_OUTQUE) { 3442 if (proto == 0 || proto == 6) { 3443 (void) frflushlist(set, unit, 3444 &flushed, &ifs->ifs_ipfilter6[1][set], ifs); 3445 (void) frflushlist(set, unit, 3446 &flushed, &ifs->ifs_ipacct6[1][set], ifs); 3447 } 3448 if (proto == 0 || proto == 4) { 3449 (void) frflushlist(set, unit, 3450 &flushed, &ifs->ifs_ipfilter[1][set], ifs); 3451 (void) frflushlist(set, unit, 3452 &flushed, &ifs->ifs_ipacct[1][set], ifs); 3453 } 3454 } 3455 if (flags & FR_INQUE) { 3456 if (proto == 0 || proto == 6) { 3457 (void) frflushlist(set, unit, 3458 &flushed, &ifs->ifs_ipfilter6[0][set], ifs); 3459 (void) frflushlist(set, unit, 3460 &flushed, &ifs->ifs_ipacct6[0][set], ifs); 3461 } 3462 if (proto == 0 || proto == 4) { 3463 (void) frflushlist(set, unit, 3464 &flushed, &ifs->ifs_ipfilter[0][set], ifs); 3465 (void) frflushlist(set, unit, 3466 &flushed, &ifs->ifs_ipacct[0][set], ifs); 3467 } 3468 } 3469 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3470 3471 if (unit == IPL_LOGIPF) { 3472 int tmp; 3473 3474 tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs); 3475 if (tmp >= 0) 3476 flushed += tmp; 3477 } 3478 return flushed; 3479 } 3480 3481 3482 /* ------------------------------------------------------------------------ */ 3483 /* Function: memstr */ 3484 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */ 3485 /* Parameters: src(I) - pointer to byte sequence to match */ 3486 /* dst(I) - pointer to byte sequence to search */ 3487 /* slen(I) - match length */ 3488 /* dlen(I) - length available to search in */ 3489 /* */ 3490 /* Search dst for a sequence of bytes matching those at src and extend for */ 3491 /* slen bytes. */ 3492 /* ------------------------------------------------------------------------ */ 3493 char *memstr(src, dst, slen, dlen) 3494 char *src, *dst; 3495 int slen, dlen; 3496 { 3497 char *s = NULL; 3498 3499 while (dlen >= slen) { 3500 if (bcmp(src, dst, slen) == 0) { 3501 s = dst; 3502 break; 3503 } 3504 dst++; 3505 dlen--; 3506 } 3507 return s; 3508 } 3509 /* ------------------------------------------------------------------------ */ 3510 /* Function: fr_fixskip */ 3511 /* Returns: Nil */ 3512 /* Parameters: listp(IO) - pointer to start of list with skip rule */ 3513 /* rp(I) - rule added/removed with skip in it. */ 3514 /* addremove(I) - adjustment (-1/+1) to make to skip count, */ 3515 /* depending on whether a rule was just added */ 3516 /* or removed. */ 3517 /* */ 3518 /* Adjust all the rules in a list which would have skip'd past the position */ 3519 /* where we are inserting to skip to the right place given the change. */ 3520 /* ------------------------------------------------------------------------ */ 3521 void fr_fixskip(listp, rp, addremove) 3522 frentry_t **listp, *rp; 3523 int addremove; 3524 { 3525 int rules, rn; 3526 frentry_t *fp; 3527 3528 rules = 0; 3529 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next) 3530 rules++; 3531 3532 if (!fp) 3533 return; 3534 3535 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++) 3536 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules)) 3537 fp->fr_arg += addremove; 3538 } 3539 3540 3541 #ifdef _KERNEL 3542 /* ------------------------------------------------------------------------ */ 3543 /* Function: count4bits */ 3544 /* Returns: int - >= 0 - number of consecutive bits in input */ 3545 /* Parameters: ip(I) - 32bit IP address */ 3546 /* */ 3547 /* IPv4 ONLY */ 3548 /* count consecutive 1's in bit mask. If the mask generated by counting */ 3549 /* consecutive 1's is different to that passed, return -1, else return # */ 3550 /* of bits. */ 3551 /* ------------------------------------------------------------------------ */ 3552 int count4bits(ip) 3553 u_32_t ip; 3554 { 3555 u_32_t ipn; 3556 int cnt = 0, i, j; 3557 3558 ip = ipn = ntohl(ip); 3559 for (i = 32; i; i--, ipn *= 2) 3560 if (ipn & 0x80000000) 3561 cnt++; 3562 else 3563 break; 3564 ipn = 0; 3565 for (i = 32, j = cnt; i; i--, j--) { 3566 ipn *= 2; 3567 if (j > 0) 3568 ipn++; 3569 } 3570 if (ipn == ip) 3571 return cnt; 3572 return -1; 3573 } 3574 3575 3576 #ifdef USE_INET6 3577 /* ------------------------------------------------------------------------ */ 3578 /* Function: count6bits */ 3579 /* Returns: int - >= 0 - number of consecutive bits in input */ 3580 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */ 3581 /* */ 3582 /* IPv6 ONLY */ 3583 /* count consecutive 1's in bit mask. */ 3584 /* ------------------------------------------------------------------------ */ 3585 int count6bits(msk) 3586 u_32_t *msk; 3587 { 3588 int i = 0, k; 3589 u_32_t j; 3590 3591 for (k = 3; k >= 0; k--) 3592 if (msk[k] == 0xffffffff) 3593 i += 32; 3594 else { 3595 for (j = msk[k]; j; j <<= 1) 3596 if (j & 0x80000000) 3597 i++; 3598 } 3599 return i; 3600 } 3601 # endif 3602 #endif /* _KERNEL */ 3603 3604 3605 /* ------------------------------------------------------------------------ */ 3606 /* Function: fr_ifsync */ 3607 /* Returns: void * - new interface identifier */ 3608 /* Parameters: action(I) - type of synchronisation to do */ 3609 /* v(I) - IP version being sync'd (v4 or v6) */ 3610 /* newifp(I) - interface identifier being introduced/removed */ 3611 /* oldifp(I) - interface identifier in a filter rule */ 3612 /* newname(I) - name associated with oldifp interface */ 3613 /* oldname(I) - name associated with newifp interface */ 3614 /* */ 3615 /* This function returns what the new value for "oldifp" should be for its */ 3616 /* caller. In some cases it will not change, in some it will. */ 3617 /* action == IPFSYNC_RESYNC */ 3618 /* a new value for oldifp will always be looked up, according to oldname, */ 3619 /* the values of newname and newifp are ignored. */ 3620 /* action == IPFSYNC_NEWIFP */ 3621 /* if oldname matches newname then we are doing a sync for the matching */ 3622 /* interface, so we return newifp to be used in place of oldifp. If the */ 3623 /* the names don't match, just return oldifp. */ 3624 /* action == IPFSYNC_OLDIFP */ 3625 /* if oldifp matches newifp then we are are doing a sync to remove any */ 3626 /* references to oldifp, so we return "-1". */ 3627 /* ------------------------------------------------------------------------ */ 3628 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs) 3629 int action, v; 3630 char *newname, *oldname; 3631 void *newifp, *oldifp; 3632 ipf_stack_t *ifs; 3633 { 3634 void *rval = oldifp; 3635 3636 switch (action) 3637 { 3638 case IPFSYNC_RESYNC : 3639 if (oldname[0] != '\0') { 3640 rval = fr_resolvenic(oldname, v, ifs); 3641 } 3642 break; 3643 case IPFSYNC_NEWIFP : 3644 if (!strncmp(newname, oldname, LIFNAMSIZ)) 3645 rval = newifp; 3646 break; 3647 case IPFSYNC_OLDIFP : 3648 if (newifp == oldifp) 3649 rval = (void *)-1; 3650 break; 3651 } 3652 3653 return rval; 3654 } 3655 3656 3657 /* ------------------------------------------------------------------------ */ 3658 /* Function: frsynclist */ 3659 /* Returns: void */ 3660 /* Parameters: action(I) - type of synchronisation to do */ 3661 /* v(I) - IP version being sync'd (v4 or v6) */ 3662 /* ifp(I) - interface identifier associated with action */ 3663 /* name(I) - name associated with ifp parameter */ 3664 /* Write Locks: ipf_mutex */ 3665 /* */ 3666 /* Walk through a list of filter rules and resolve any interface names into */ 3667 /* pointers. Where dynamic addresses are used, also update the IP address */ 3668 /* used in the rule. The interface pointer is used to limit the lookups to */ 3669 /* a specific set of matching names if it is non-NULL. */ 3670 /* ------------------------------------------------------------------------ */ 3671 static void frsynclist(action, v, ifp, ifname, fr, ifs) 3672 int action, v; 3673 void *ifp; 3674 char *ifname; 3675 frentry_t *fr; 3676 ipf_stack_t *ifs; 3677 { 3678 frdest_t *fdp; 3679 int rv, i; 3680 3681 for (; fr; fr = fr->fr_next) { 3682 rv = fr->fr_v; 3683 if (v != 0 && v != rv) 3684 continue; 3685 3686 /* 3687 * Lookup all the interface names that are part of the rule. 3688 */ 3689 for (i = 0; i < 4; i++) { 3690 fr->fr_ifas[i] = fr_ifsync(action, rv, ifname, 3691 fr->fr_ifnames[i], 3692 ifp, fr->fr_ifas[i], 3693 ifs); 3694 } 3695 3696 fdp = &fr->fr_tifs[0]; 3697 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3698 ifp, fdp->fd_ifp, ifs); 3699 3700 fdp = &fr->fr_tifs[1]; 3701 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3702 ifp, fdp->fd_ifp, ifs); 3703 3704 fdp = &fr->fr_dif; 3705 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname, 3706 ifp, fdp->fd_ifp, ifs); 3707 3708 if (action != IPFSYNC_RESYNC) 3709 continue; 3710 3711 if (fr->fr_type == FR_T_IPF) { 3712 if (fr->fr_satype != FRI_NORMAL && 3713 fr->fr_satype != FRI_LOOKUP) { 3714 (void)fr_ifpaddr(rv, fr->fr_satype, 3715 fr->fr_ifas[fr->fr_sifpidx], 3716 &fr->fr_src, &fr->fr_smsk, 3717 ifs); 3718 } 3719 if (fr->fr_datype != FRI_NORMAL && 3720 fr->fr_datype != FRI_LOOKUP) { 3721 (void)fr_ifpaddr(rv, fr->fr_datype, 3722 fr->fr_ifas[fr->fr_difpidx], 3723 &fr->fr_dst, &fr->fr_dmsk, 3724 ifs); 3725 } 3726 } 3727 3728 #ifdef IPFILTER_LOOKUP 3729 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP && 3730 fr->fr_srcptr == NULL) { 3731 fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype, 3732 fr->fr_srcnum, 3733 &fr->fr_srcfunc, ifs); 3734 } 3735 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP && 3736 fr->fr_dstptr == NULL) { 3737 fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype, 3738 fr->fr_dstnum, 3739 &fr->fr_dstfunc, ifs); 3740 } 3741 #endif 3742 } 3743 } 3744 3745 3746 #ifdef _KERNEL 3747 /* ------------------------------------------------------------------------ */ 3748 /* Function: frsync */ 3749 /* Returns: void */ 3750 /* Parameters: action(I) - type of synchronisation to do */ 3751 /* v(I) - IP version being sync'd (v4 or v6) */ 3752 /* ifp(I) - interface identifier associated with action */ 3753 /* name(I) - name associated with ifp parameter */ 3754 /* */ 3755 /* frsync() is called when we suspect that the interface list or */ 3756 /* information about interfaces (like IP#) has changed. Go through all */ 3757 /* filter rules, NAT entries and the state table and check if anything */ 3758 /* needs to be changed/updated. */ 3759 /* With the filtering hooks added to Solaris, we needed to change the manner*/ 3760 /* in which this was done to support three different types of sync: */ 3761 /* - complete resync of all interface name/identifiers */ 3762 /* - new interface being announced with its name and identifier */ 3763 /* - interface removal being announced by only its identifier */ 3764 /* ------------------------------------------------------------------------ */ 3765 void frsync(action, v, ifp, name, ifs) 3766 int action, v; 3767 void *ifp; 3768 char *name; 3769 ipf_stack_t *ifs; 3770 { 3771 int i; 3772 3773 WRITE_ENTER(&ifs->ifs_ipf_mutex); 3774 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs); 3775 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs); 3776 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs); 3777 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs); 3778 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs); 3779 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs); 3780 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs); 3781 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs); 3782 3783 for (i = 0; i < IPL_LOGSIZE; i++) { 3784 frgroup_t *g; 3785 3786 for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next) 3787 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3788 for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next) 3789 frsynclist(action, v, ifp, name, g->fg_start, ifs); 3790 } 3791 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 3792 } 3793 3794 3795 /* 3796 * In the functions below, bcopy() is called because the pointer being 3797 * copied _from_ in this instance is a pointer to a char buf (which could 3798 * end up being unaligned) and on the kernel's local stack. 3799 */ 3800 /* ------------------------------------------------------------------------ */ 3801 /* Function: copyinptr */ 3802 /* Returns: int - 0 = success, else failure */ 3803 /* Parameters: src(I) - pointer to the source address */ 3804 /* dst(I) - destination address */ 3805 /* size(I) - number of bytes to copy */ 3806 /* */ 3807 /* Copy a block of data in from user space, given a pointer to the pointer */ 3808 /* to start copying from (src) and a pointer to where to store it (dst). */ 3809 /* NB: src - pointer to user space pointer, dst - kernel space pointer */ 3810 /* ------------------------------------------------------------------------ */ 3811 int copyinptr(src, dst, size) 3812 void *src, *dst; 3813 size_t size; 3814 { 3815 caddr_t ca; 3816 int err; 3817 3818 # if SOLARIS 3819 err = COPYIN(src, (caddr_t)&ca, sizeof(ca)); 3820 if (err != 0) 3821 return err; 3822 # else 3823 bcopy(src, (caddr_t)&ca, sizeof(ca)); 3824 # endif 3825 err = COPYIN(ca, dst, size); 3826 return err; 3827 } 3828 3829 3830 /* ------------------------------------------------------------------------ */ 3831 /* Function: copyoutptr */ 3832 /* Returns: int - 0 = success, else failure */ 3833 /* Parameters: src(I) - pointer to the source address */ 3834 /* dst(I) - destination address */ 3835 /* size(I) - number of bytes to copy */ 3836 /* */ 3837 /* Copy a block of data out to user space, given a pointer to the pointer */ 3838 /* to start copying from (src) and a pointer to where to store it (dst). */ 3839 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */ 3840 /* ------------------------------------------------------------------------ */ 3841 int copyoutptr(src, dst, size) 3842 void *src, *dst; 3843 size_t size; 3844 { 3845 caddr_t ca; 3846 int err; 3847 3848 # if SOLARIS 3849 err = COPYIN(dst, (caddr_t)&ca, sizeof(ca)); 3850 if (err != 0) 3851 return err; 3852 # else 3853 bcopy(dst, (caddr_t)&ca, sizeof(ca)); 3854 # endif 3855 err = COPYOUT(src, ca, size); 3856 return err; 3857 } 3858 #endif 3859 3860 3861 /* ------------------------------------------------------------------------ */ 3862 /* Function: fr_lock */ 3863 /* Returns: (void) */ 3864 /* Parameters: data(I) - pointer to lock value to set */ 3865 /* lockp(O) - pointer to location to store old lock value */ 3866 /* */ 3867 /* Get the new value for the lock integer, set it and return the old value */ 3868 /* in *lockp. */ 3869 /* ------------------------------------------------------------------------ */ 3870 void fr_lock(data, lockp) 3871 caddr_t data; 3872 int *lockp; 3873 { 3874 int arg; 3875 3876 BCOPYIN(data, (caddr_t)&arg, sizeof(arg)); 3877 BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp)); 3878 *lockp = arg; 3879 } 3880 3881 3882 /* ------------------------------------------------------------------------ */ 3883 /* Function: fr_getstat */ 3884 /* Returns: Nil */ 3885 /* Parameters: fiop(I) - pointer to ipfilter stats structure */ 3886 /* */ 3887 /* Stores a copy of current pointers, counters, etc, in the friostat */ 3888 /* structure. */ 3889 /* ------------------------------------------------------------------------ */ 3890 void fr_getstat(fiop, ifs) 3891 friostat_t *fiop; 3892 ipf_stack_t *ifs; 3893 { 3894 int i, j; 3895 3896 bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st, 3897 sizeof(filterstats_t) * 2); 3898 fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock; 3899 fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock; 3900 fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock; 3901 fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock; 3902 3903 for (i = 0; i < 2; i++) 3904 for (j = 0; j < 2; j++) { 3905 fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j]; 3906 fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j]; 3907 fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j]; 3908 fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j]; 3909 } 3910 3911 fiop->f_ticks = ifs->ifs_fr_ticks; 3912 fiop->f_active = ifs->ifs_fr_active; 3913 fiop->f_froute[0] = ifs->ifs_fr_frouteok[0]; 3914 fiop->f_froute[1] = ifs->ifs_fr_frouteok[1]; 3915 3916 fiop->f_running = ifs->ifs_fr_running; 3917 for (i = 0; i < IPL_LOGSIZE; i++) { 3918 fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0]; 3919 fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1]; 3920 } 3921 #ifdef IPFILTER_LOG 3922 fiop->f_logging = 1; 3923 #else 3924 fiop->f_logging = 0; 3925 #endif 3926 fiop->f_defpass = ifs->ifs_fr_pass; 3927 fiop->f_features = fr_features; 3928 (void) strncpy(fiop->f_version, ipfilter_version, 3929 sizeof(fiop->f_version)); 3930 } 3931 3932 3933 #ifdef USE_INET6 3934 int icmptoicmp6types[ICMP_MAXTYPE+1] = { 3935 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */ 3936 -1, /* 1: UNUSED */ 3937 -1, /* 2: UNUSED */ 3938 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */ 3939 -1, /* 4: ICMP_SOURCEQUENCH */ 3940 ND_REDIRECT, /* 5: ICMP_REDIRECT */ 3941 -1, /* 6: UNUSED */ 3942 -1, /* 7: UNUSED */ 3943 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */ 3944 -1, /* 9: UNUSED */ 3945 -1, /* 10: UNUSED */ 3946 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */ 3947 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */ 3948 -1, /* 13: ICMP_TSTAMP */ 3949 -1, /* 14: ICMP_TSTAMPREPLY */ 3950 -1, /* 15: ICMP_IREQ */ 3951 -1, /* 16: ICMP_IREQREPLY */ 3952 -1, /* 17: ICMP_MASKREQ */ 3953 -1, /* 18: ICMP_MASKREPLY */ 3954 }; 3955 3956 3957 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = { 3958 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */ 3959 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */ 3960 -1, /* 2: ICMP_UNREACH_PROTOCOL */ 3961 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */ 3962 -1, /* 4: ICMP_UNREACH_NEEDFRAG */ 3963 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */ 3964 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */ 3965 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */ 3966 -1, /* 8: ICMP_UNREACH_ISOLATED */ 3967 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */ 3968 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */ 3969 -1, /* 11: ICMP_UNREACH_TOSNET */ 3970 -1, /* 12: ICMP_UNREACH_TOSHOST */ 3971 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */ 3972 }; 3973 int icmpreplytype6[ICMP6_MAXTYPE + 1]; 3974 #endif 3975 3976 int icmpreplytype4[ICMP_MAXTYPE + 1]; 3977 3978 3979 /* ------------------------------------------------------------------------ */ 3980 /* Function: fr_matchicmpqueryreply */ 3981 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */ 3982 /* Parameters: v(I) - IP protocol version (4 or 6) */ 3983 /* ic(I) - ICMP information */ 3984 /* icmp(I) - ICMP packet header */ 3985 /* rev(I) - direction (0 = forward/1 = reverse) of packet */ 3986 /* */ 3987 /* Check if the ICMP packet defined by the header pointed to by icmp is a */ 3988 /* reply to one as described by what's in ic. If it is a match, return 1, */ 3989 /* else return 0 for no match. */ 3990 /* ------------------------------------------------------------------------ */ 3991 int fr_matchicmpqueryreply(v, ic, icmp, rev) 3992 int v; 3993 icmpinfo_t *ic; 3994 icmphdr_t *icmp; 3995 int rev; 3996 { 3997 int ictype; 3998 3999 ictype = ic->ici_type; 4000 4001 if (v == 4) { 4002 /* 4003 * If we matched its type on the way in, then when going out 4004 * it will still be the same type. 4005 */ 4006 if ((!rev && (icmp->icmp_type == ictype)) || 4007 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) { 4008 if (icmp->icmp_type != ICMP_ECHOREPLY) 4009 return 1; 4010 if (icmp->icmp_id == ic->ici_id) 4011 return 1; 4012 } 4013 } 4014 #ifdef USE_INET6 4015 else if (v == 6) { 4016 if ((!rev && (icmp->icmp_type == ictype)) || 4017 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) { 4018 if (icmp->icmp_type != ICMP6_ECHO_REPLY) 4019 return 1; 4020 if (icmp->icmp_id == ic->ici_id) 4021 return 1; 4022 } 4023 } 4024 #endif 4025 return 0; 4026 } 4027 4028 4029 #ifdef IPFILTER_LOOKUP 4030 /* ------------------------------------------------------------------------ */ 4031 /* Function: fr_resolvelookup */ 4032 /* Returns: void * - NULL = failure, else success. */ 4033 /* Parameters: type(I) - type of lookup these parameters are for. */ 4034 /* number(I) - table number to use when searching */ 4035 /* funcptr(IO) - pointer to pointer for storing IP address */ 4036 /* searching function. */ 4037 /* */ 4038 /* Search for the "table" number passed in amongst those configured for */ 4039 /* that particular type. If the type is recognised then the function to */ 4040 /* call to do the IP address search will be change, regardless of whether */ 4041 /* or not the "table" number exists. */ 4042 /* ------------------------------------------------------------------------ */ 4043 static void *fr_resolvelookup(type, number, funcptr, ifs) 4044 u_int type, number; 4045 lookupfunc_t *funcptr; 4046 ipf_stack_t *ifs; 4047 { 4048 char name[FR_GROUPLEN]; 4049 iphtable_t *iph; 4050 ip_pool_t *ipo; 4051 void *ptr; 4052 4053 #if defined(SNPRINTF) && defined(_KERNEL) 4054 (void) SNPRINTF(name, sizeof(name), "%u", number); 4055 #else 4056 (void) sprintf(name, "%u", number); 4057 #endif 4058 4059 READ_ENTER(&ifs->ifs_ip_poolrw); 4060 4061 switch (type) 4062 { 4063 case IPLT_POOL : 4064 # if (defined(__osf__) && defined(_KERNEL)) 4065 ptr = NULL; 4066 *funcptr = NULL; 4067 # else 4068 ipo = ip_pool_find(IPL_LOGIPF, name, ifs); 4069 ptr = ipo; 4070 if (ipo != NULL) { 4071 ATOMIC_INC32(ipo->ipo_ref); 4072 } 4073 *funcptr = ip_pool_search; 4074 # endif 4075 break; 4076 case IPLT_HASH : 4077 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 4078 ptr = iph; 4079 if (iph != NULL) { 4080 ATOMIC_INC32(iph->iph_ref); 4081 } 4082 *funcptr = fr_iphmfindip; 4083 break; 4084 default: 4085 ptr = NULL; 4086 *funcptr = NULL; 4087 break; 4088 } 4089 RWLOCK_EXIT(&ifs->ifs_ip_poolrw); 4090 4091 return ptr; 4092 } 4093 #endif 4094 4095 4096 /* ------------------------------------------------------------------------ */ 4097 /* Function: frrequest */ 4098 /* Returns: int - 0 == success, > 0 == errno value */ 4099 /* Parameters: unit(I) - device for which this is for */ 4100 /* req(I) - ioctl command (SIOC*) */ 4101 /* data(I) - pointr to ioctl data */ 4102 /* set(I) - 1 or 0 (filter set) */ 4103 /* makecopy(I) - flag indicating whether data points to a rule */ 4104 /* in kernel space & hence doesn't need copying. */ 4105 /* */ 4106 /* This function handles all the requests which operate on the list of */ 4107 /* filter rules. This includes adding, deleting, insertion. It is also */ 4108 /* responsible for creating groups when a "head" rule is loaded. Interface */ 4109 /* names are resolved here and other sanity checks are made on the content */ 4110 /* of the rule structure being loaded. If a rule has user defined timeouts */ 4111 /* then make sure they are created and initialised before exiting. */ 4112 /* ------------------------------------------------------------------------ */ 4113 int frrequest(unit, req, data, set, makecopy, ifs) 4114 int unit; 4115 ioctlcmd_t req; 4116 int set, makecopy; 4117 caddr_t data; 4118 ipf_stack_t *ifs; 4119 { 4120 frentry_t frd, *fp, *f, **fprev, **ftail; 4121 int error = 0, in, v; 4122 void *ptr, *uptr; 4123 u_int *p, *pp; 4124 frgroup_t *fg; 4125 char *group; 4126 4127 fg = NULL; 4128 fp = &frd; 4129 if (makecopy != 0) { 4130 error = fr_inobj(data, fp, IPFOBJ_FRENTRY); 4131 if (error) 4132 return EFAULT; 4133 if ((fp->fr_flags & FR_T_BUILTIN) != 0) 4134 return EINVAL; 4135 fp->fr_ref = 0; 4136 fp->fr_flags |= FR_COPIED; 4137 } else { 4138 fp = (frentry_t *)data; 4139 if ((fp->fr_type & FR_T_BUILTIN) == 0) 4140 return EINVAL; 4141 fp->fr_flags &= ~FR_COPIED; 4142 } 4143 4144 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) || 4145 ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) 4146 return EINVAL; 4147 4148 v = fp->fr_v; 4149 uptr = fp->fr_data; 4150 4151 /* 4152 * Only filter rules for IPv4 or IPv6 are accepted. 4153 */ 4154 if (v == 4) 4155 /*EMPTY*/; 4156 #ifdef USE_INET6 4157 else if (v == 6) 4158 /*EMPTY*/; 4159 #endif 4160 else { 4161 return EINVAL; 4162 } 4163 4164 /* 4165 * If the rule is being loaded from user space, i.e. we had to copy it 4166 * into kernel space, then do not trust the function pointer in the 4167 * rule. 4168 */ 4169 if ((makecopy == 1) && (fp->fr_func != NULL)) { 4170 if (fr_findfunc(fp->fr_func) == NULL) 4171 return ESRCH; 4172 error = fr_funcinit(fp, ifs); 4173 if (error != 0) 4174 return error; 4175 } 4176 4177 ptr = NULL; 4178 /* 4179 * Check that the group number does exist and that its use (in/out) 4180 * matches what the rule is. 4181 */ 4182 if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN)) 4183 *fp->fr_grhead = '\0'; 4184 group = fp->fr_group; 4185 if (!strncmp(group, "0", FR_GROUPLEN)) 4186 *group = '\0'; 4187 4188 if (FR_ISACCOUNT(fp->fr_flags)) 4189 unit = IPL_LOGCOUNT; 4190 4191 if ((req != (int)SIOCZRLST) && (*group != '\0')) { 4192 fg = fr_findgroup(group, unit, set, NULL, ifs); 4193 if (fg == NULL) 4194 return ESRCH; 4195 if (fg->fg_flags == 0) 4196 fg->fg_flags = fp->fr_flags & FR_INOUT; 4197 else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) 4198 return ESRCH; 4199 } 4200 4201 in = (fp->fr_flags & FR_INQUE) ? 0 : 1; 4202 4203 /* 4204 * Work out which rule list this change is being applied to. 4205 */ 4206 ftail = NULL; 4207 fprev = NULL; 4208 if (unit == IPL_LOGAUTH) 4209 fprev = &ifs->ifs_ipauth; 4210 else if (v == 4) { 4211 if (FR_ISACCOUNT(fp->fr_flags)) 4212 fprev = &ifs->ifs_ipacct[in][set]; 4213 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4214 fprev = &ifs->ifs_ipfilter[in][set]; 4215 } else if (v == 6) { 4216 if (FR_ISACCOUNT(fp->fr_flags)) 4217 fprev = &ifs->ifs_ipacct6[in][set]; 4218 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0) 4219 fprev = &ifs->ifs_ipfilter6[in][set]; 4220 } 4221 if (fprev == NULL) 4222 return ESRCH; 4223 4224 if (*group != '\0') { 4225 if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs))) 4226 return ESRCH; 4227 fprev = &fg->fg_start; 4228 } 4229 4230 ftail = fprev; 4231 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) { 4232 if (fp->fr_collect <= f->fr_collect) { 4233 ftail = fprev; 4234 f = NULL; 4235 break; 4236 } 4237 fprev = ftail; 4238 } 4239 4240 /* 4241 * Copy in extra data for the rule. 4242 */ 4243 if (fp->fr_dsize != 0) { 4244 if (makecopy != 0) { 4245 KMALLOCS(ptr, void *, fp->fr_dsize); 4246 if (!ptr) 4247 return ENOMEM; 4248 error = COPYIN(uptr, ptr, fp->fr_dsize); 4249 } else { 4250 ptr = uptr; 4251 error = 0; 4252 } 4253 if (error != 0) { 4254 KFREES(ptr, fp->fr_dsize); 4255 return ENOMEM; 4256 } 4257 fp->fr_data = ptr; 4258 } else 4259 fp->fr_data = NULL; 4260 4261 /* 4262 * Perform per-rule type sanity checks of their members. 4263 */ 4264 switch (fp->fr_type & ~FR_T_BUILTIN) 4265 { 4266 #if defined(IPFILTER_BPF) 4267 case FR_T_BPFOPC : 4268 if (fp->fr_dsize == 0) 4269 return EINVAL; 4270 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) { 4271 if (makecopy && fp->fr_data != NULL) { 4272 KFREES(fp->fr_data, fp->fr_dsize); 4273 } 4274 return EINVAL; 4275 } 4276 break; 4277 #endif 4278 case FR_T_IPF : 4279 if (fp->fr_dsize != sizeof(fripf_t)) 4280 return EINVAL; 4281 4282 /* 4283 * Allowing a rule with both "keep state" and "with oow" is 4284 * pointless because adding a state entry to the table will 4285 * fail with the out of window (oow) flag set. 4286 */ 4287 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) 4288 return EINVAL; 4289 4290 switch (fp->fr_satype) 4291 { 4292 case FRI_BROADCAST : 4293 case FRI_DYNAMIC : 4294 case FRI_NETWORK : 4295 case FRI_NETMASKED : 4296 case FRI_PEERADDR : 4297 if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) { 4298 if (makecopy && fp->fr_data != NULL) { 4299 KFREES(fp->fr_data, fp->fr_dsize); 4300 } 4301 return EINVAL; 4302 } 4303 break; 4304 #ifdef IPFILTER_LOOKUP 4305 case FRI_LOOKUP : 4306 fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype, 4307 fp->fr_srcnum, 4308 &fp->fr_srcfunc, ifs); 4309 break; 4310 #endif 4311 default : 4312 break; 4313 } 4314 4315 switch (fp->fr_datype) 4316 { 4317 case FRI_BROADCAST : 4318 case FRI_DYNAMIC : 4319 case FRI_NETWORK : 4320 case FRI_NETMASKED : 4321 case FRI_PEERADDR : 4322 if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) { 4323 if (makecopy && fp->fr_data != NULL) { 4324 KFREES(fp->fr_data, fp->fr_dsize); 4325 } 4326 return EINVAL; 4327 } 4328 break; 4329 #ifdef IPFILTER_LOOKUP 4330 case FRI_LOOKUP : 4331 fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype, 4332 fp->fr_dstnum, 4333 &fp->fr_dstfunc, ifs); 4334 break; 4335 #endif 4336 default : 4337 break; 4338 } 4339 break; 4340 case FR_T_NONE : 4341 break; 4342 case FR_T_CALLFUNC : 4343 break; 4344 case FR_T_COMPIPF : 4345 break; 4346 default : 4347 if (makecopy && fp->fr_data != NULL) { 4348 KFREES(fp->fr_data, fp->fr_dsize); 4349 } 4350 return EINVAL; 4351 } 4352 4353 /* 4354 * Lookup all the interface names that are part of the rule. 4355 */ 4356 frsynclist(0, 0, NULL, NULL, fp, ifs); 4357 fp->fr_statecnt = 0; 4358 4359 /* 4360 * Look for an existing matching filter rule, but don't include the 4361 * next or interface pointer in the comparison (fr_next, fr_ifa). 4362 * This elminates rules which are indentical being loaded. Checksum 4363 * the constant part of the filter rule to make comparisons quicker 4364 * (this meaning no pointers are included). 4365 */ 4366 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum; 4367 p < pp; p++) 4368 fp->fr_cksum += *p; 4369 pp = (u_int *)(fp->fr_caddr + fp->fr_dsize); 4370 for (p = (u_int *)fp->fr_data; p < pp; p++) 4371 fp->fr_cksum += *p; 4372 4373 WRITE_ENTER(&ifs->ifs_ipf_mutex); 4374 bzero((char *)&ifs->ifs_frcache, sizeof (ifs->ifs_frcache)); 4375 4376 for (; (f = *ftail) != NULL; ftail = &f->fr_next) { 4377 if ((fp->fr_cksum != f->fr_cksum) || 4378 (f->fr_dsize != fp->fr_dsize)) 4379 continue; 4380 if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ)) 4381 continue; 4382 if ((!ptr && !f->fr_data) || 4383 (ptr && f->fr_data && 4384 !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize))) 4385 break; 4386 } 4387 4388 /* 4389 * If zero'ing statistics, copy current to caller and zero. 4390 */ 4391 if (req == (ioctlcmd_t)SIOCZRLST) { 4392 if (f == NULL) 4393 error = ESRCH; 4394 else { 4395 /* 4396 * Copy and reduce lock because of impending copyout. 4397 * Well we should, but if we do then the atomicity of 4398 * this call and the correctness of fr_hits and 4399 * fr_bytes cannot be guaranteed. As it is, this code 4400 * only resets them to 0 if they are successfully 4401 * copied out into user space. 4402 */ 4403 bcopy((char *)f, (char *)fp, sizeof(*f)); 4404 /* MUTEX_DOWNGRADE(&ipf_mutex); */ 4405 4406 /* 4407 * When we copy this rule back out, set the data 4408 * pointer to be what it was in user space. 4409 */ 4410 fp->fr_data = uptr; 4411 error = fr_outobj(data, fp, IPFOBJ_FRENTRY); 4412 4413 if (error == 0) { 4414 if ((f->fr_dsize != 0) && (uptr != NULL)) 4415 error = COPYOUT(f->fr_data, uptr, 4416 f->fr_dsize); 4417 if (error == 0) { 4418 f->fr_hits = 0; 4419 f->fr_bytes = 0; 4420 } 4421 } 4422 } 4423 4424 if ((ptr != NULL) && (makecopy != 0)) { 4425 KFREES(ptr, fp->fr_dsize); 4426 } 4427 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4428 return error; 4429 } 4430 4431 if (!f) { 4432 /* 4433 * At the end of this, ftail must point to the place where the 4434 * new rule is to be saved/inserted/added. 4435 * For SIOCAD*FR, this should be the last rule in the group of 4436 * rules that have equal fr_collect fields. 4437 * For SIOCIN*FR, ... 4438 */ 4439 if (req == (ioctlcmd_t)SIOCADAFR || 4440 req == (ioctlcmd_t)SIOCADIFR) { 4441 4442 for (ftail = fprev; (f = *ftail) != NULL; ) { 4443 if (f->fr_collect > fp->fr_collect) 4444 break; 4445 ftail = &f->fr_next; 4446 } 4447 f = NULL; 4448 ptr = NULL; 4449 error = 0; 4450 } else if (req == (ioctlcmd_t)SIOCINAFR || 4451 req == (ioctlcmd_t)SIOCINIFR) { 4452 while ((f = *fprev) != NULL) { 4453 if (f->fr_collect >= fp->fr_collect) 4454 break; 4455 fprev = &f->fr_next; 4456 } 4457 ftail = fprev; 4458 if (fp->fr_hits != 0) { 4459 while (fp->fr_hits && (f = *ftail)) { 4460 if (f->fr_collect != fp->fr_collect) 4461 break; 4462 fprev = ftail; 4463 ftail = &f->fr_next; 4464 fp->fr_hits--; 4465 } 4466 } 4467 f = NULL; 4468 ptr = NULL; 4469 error = 0; 4470 } 4471 } 4472 4473 /* 4474 * Request to remove a rule. 4475 */ 4476 if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) { 4477 if (!f) 4478 error = ESRCH; 4479 else { 4480 /* 4481 * Do not allow activity from user space to interfere 4482 * with rules not loaded that way. 4483 */ 4484 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) { 4485 error = EPERM; 4486 goto done; 4487 } 4488 4489 /* 4490 * Return EBUSY if the rule is being reference by 4491 * something else (eg state information. 4492 */ 4493 if (f->fr_ref > 1) { 4494 error = EBUSY; 4495 goto done; 4496 } 4497 #ifdef IPFILTER_SCAN 4498 if (f->fr_isctag[0] != '\0' && 4499 (f->fr_isc != (struct ipscan *)-1)) 4500 ipsc_detachfr(f); 4501 #endif 4502 if ((fg != NULL) && (fg->fg_head != NULL)) 4503 fg->fg_head->fr_ref--; 4504 if (unit == IPL_LOGAUTH) { 4505 error = fr_preauthcmd(req, f, ftail, ifs); 4506 goto done; 4507 } 4508 if (*f->fr_grhead != '\0') 4509 fr_delgroup(f->fr_grhead, unit, set, ifs); 4510 fr_fixskip(ftail, f, -1); 4511 *ftail = f->fr_next; 4512 f->fr_next = NULL; 4513 (void)fr_derefrule(&f, ifs); 4514 } 4515 } else { 4516 /* 4517 * Not removing, so we must be adding/inserting a rule. 4518 */ 4519 if (f) 4520 error = EEXIST; 4521 else { 4522 if (unit == IPL_LOGAUTH) { 4523 error = fr_preauthcmd(req, fp, ftail, ifs); 4524 goto done; 4525 } 4526 if (makecopy) { 4527 KMALLOC(f, frentry_t *); 4528 } else 4529 f = fp; 4530 if (f != NULL) { 4531 if (fg != NULL && fg->fg_head != NULL) 4532 fg->fg_head->fr_ref++; 4533 if (fp != f) 4534 bcopy((char *)fp, (char *)f, 4535 sizeof(*f)); 4536 MUTEX_NUKE(&f->fr_lock); 4537 MUTEX_INIT(&f->fr_lock, "filter rule lock"); 4538 #ifdef IPFILTER_SCAN 4539 if (f->fr_isctag[0] != '\0' && 4540 ipsc_attachfr(f)) 4541 f->fr_isc = (struct ipscan *)-1; 4542 #endif 4543 f->fr_hits = 0; 4544 if (makecopy != 0) 4545 f->fr_ref = 1; 4546 f->fr_next = *ftail; 4547 *ftail = f; 4548 if (req == (ioctlcmd_t)SIOCINIFR || 4549 req == (ioctlcmd_t)SIOCINAFR) 4550 fr_fixskip(ftail, f, 1); 4551 f->fr_grp = NULL; 4552 group = f->fr_grhead; 4553 if (*group != '\0') { 4554 fg = fr_addgroup(group, f, f->fr_flags, 4555 unit, set, ifs); 4556 if (fg != NULL) 4557 f->fr_grp = &fg->fg_start; 4558 } 4559 } else 4560 error = ENOMEM; 4561 } 4562 } 4563 done: 4564 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 4565 if ((ptr != NULL) && (error != 0) && (makecopy != 0)) { 4566 KFREES(ptr, fp->fr_dsize); 4567 } 4568 return (error); 4569 } 4570 4571 4572 /* ------------------------------------------------------------------------ */ 4573 /* Function: fr_funcinit */ 4574 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */ 4575 /* Parameters: fr(I) - pointer to filter rule */ 4576 /* */ 4577 /* If a rule is a call rule, then check if the function it points to needs */ 4578 /* an init function to be called now the rule has been loaded. */ 4579 /* ------------------------------------------------------------------------ */ 4580 static int fr_funcinit(fr, ifs) 4581 frentry_t *fr; 4582 ipf_stack_t *ifs; 4583 { 4584 ipfunc_resolve_t *ft; 4585 int err; 4586 4587 err = ESRCH; 4588 4589 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4590 if (ft->ipfu_addr == fr->fr_func) { 4591 err = 0; 4592 if (ft->ipfu_init != NULL) 4593 err = (*ft->ipfu_init)(fr, ifs); 4594 break; 4595 } 4596 return err; 4597 } 4598 4599 4600 /* ------------------------------------------------------------------------ */ 4601 /* Function: fr_findfunc */ 4602 /* Returns: ipfunc_t - pointer to function if found, else NULL */ 4603 /* Parameters: funcptr(I) - function pointer to lookup */ 4604 /* */ 4605 /* Look for a function in the table of known functions. */ 4606 /* ------------------------------------------------------------------------ */ 4607 static ipfunc_t fr_findfunc(funcptr) 4608 ipfunc_t funcptr; 4609 { 4610 ipfunc_resolve_t *ft; 4611 4612 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4613 if (ft->ipfu_addr == funcptr) 4614 return funcptr; 4615 return NULL; 4616 } 4617 4618 4619 /* ------------------------------------------------------------------------ */ 4620 /* Function: fr_resolvefunc */ 4621 /* Returns: int - 0 == success, else error */ 4622 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */ 4623 /* */ 4624 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */ 4625 /* This will either be the function name (if the pointer is set) or the */ 4626 /* function pointer if the name is set. When found, fill in the other one */ 4627 /* so that the entire, complete, structure can be copied back to user space.*/ 4628 /* ------------------------------------------------------------------------ */ 4629 int fr_resolvefunc(data) 4630 void *data; 4631 { 4632 ipfunc_resolve_t res, *ft; 4633 4634 BCOPYIN(data, &res, sizeof(res)); 4635 4636 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') { 4637 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4638 if (strncmp(res.ipfu_name, ft->ipfu_name, 4639 sizeof(res.ipfu_name)) == 0) { 4640 res.ipfu_addr = ft->ipfu_addr; 4641 res.ipfu_init = ft->ipfu_init; 4642 if (COPYOUT(&res, data, sizeof(res)) != 0) 4643 return EFAULT; 4644 return 0; 4645 } 4646 } 4647 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') { 4648 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++) 4649 if (ft->ipfu_addr == res.ipfu_addr) { 4650 (void) strncpy(res.ipfu_name, ft->ipfu_name, 4651 sizeof(res.ipfu_name)); 4652 res.ipfu_init = ft->ipfu_init; 4653 if (COPYOUT(&res, data, sizeof(res)) != 0) 4654 return EFAULT; 4655 return 0; 4656 } 4657 } 4658 return ESRCH; 4659 } 4660 4661 4662 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \ 4663 (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \ 4664 (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \ 4665 (defined(__OpenBSD__) && (OpenBSD < 200006)) 4666 /* 4667 * From: NetBSD 4668 * ppsratecheck(): packets (or events) per second limitation. 4669 */ 4670 int 4671 ppsratecheck(lasttime, curpps, maxpps) 4672 struct timeval *lasttime; 4673 int *curpps; 4674 int maxpps; /* maximum pps allowed */ 4675 { 4676 struct timeval tv, delta; 4677 int rv; 4678 4679 GETKTIME(&tv); 4680 4681 delta.tv_sec = tv.tv_sec - lasttime->tv_sec; 4682 delta.tv_usec = tv.tv_usec - lasttime->tv_usec; 4683 if (delta.tv_usec < 0) { 4684 delta.tv_sec--; 4685 delta.tv_usec += 1000000; 4686 } 4687 4688 /* 4689 * check for 0,0 is so that the message will be seen at least once. 4690 * if more than one second have passed since the last update of 4691 * lasttime, reset the counter. 4692 * 4693 * we do increment *curpps even in *curpps < maxpps case, as some may 4694 * try to use *curpps for stat purposes as well. 4695 */ 4696 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || 4697 delta.tv_sec >= 1) { 4698 *lasttime = tv; 4699 *curpps = 0; 4700 rv = 1; 4701 } else if (maxpps < 0) 4702 rv = 1; 4703 else if (*curpps < maxpps) 4704 rv = 1; 4705 else 4706 rv = 0; 4707 *curpps = *curpps + 1; 4708 4709 return (rv); 4710 } 4711 #endif 4712 4713 4714 /* ------------------------------------------------------------------------ */ 4715 /* Function: fr_derefrule */ 4716 /* Returns: int - 0 == rule freed up, else rule not freed */ 4717 /* Parameters: fr(I) - pointer to filter rule */ 4718 /* */ 4719 /* Decrement the reference counter to a rule by one. If it reaches zero, */ 4720 /* free it and any associated storage space being used by it. */ 4721 /* ------------------------------------------------------------------------ */ 4722 int fr_derefrule(frp, ifs) 4723 frentry_t **frp; 4724 ipf_stack_t *ifs; 4725 { 4726 frentry_t *fr; 4727 4728 fr = *frp; 4729 4730 MUTEX_ENTER(&fr->fr_lock); 4731 fr->fr_ref--; 4732 if (fr->fr_ref == 0) { 4733 MUTEX_EXIT(&fr->fr_lock); 4734 MUTEX_DESTROY(&fr->fr_lock); 4735 4736 #ifdef IPFILTER_LOOKUP 4737 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP) 4738 ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs); 4739 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP) 4740 ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs); 4741 #endif 4742 4743 if (fr->fr_dsize) { 4744 KFREES(fr->fr_data, fr->fr_dsize); 4745 } 4746 if ((fr->fr_flags & FR_COPIED) != 0) { 4747 KFREE(fr); 4748 return 0; 4749 } 4750 return 1; 4751 } else { 4752 MUTEX_EXIT(&fr->fr_lock); 4753 } 4754 *frp = NULL; 4755 return -1; 4756 } 4757 4758 4759 #ifdef IPFILTER_LOOKUP 4760 /* ------------------------------------------------------------------------ */ 4761 /* Function: fr_grpmapinit */ 4762 /* Returns: int - 0 == success, else ESRCH because table entry not found*/ 4763 /* Parameters: fr(I) - pointer to rule to find hash table for */ 4764 /* */ 4765 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */ 4766 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap. */ 4767 /* ------------------------------------------------------------------------ */ 4768 static int fr_grpmapinit(fr, ifs) 4769 frentry_t *fr; 4770 ipf_stack_t *ifs; 4771 { 4772 char name[FR_GROUPLEN]; 4773 iphtable_t *iph; 4774 4775 #if defined(SNPRINTF) && defined(_KERNEL) 4776 (void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg); 4777 #else 4778 (void) sprintf(name, "%d", fr->fr_arg); 4779 #endif 4780 iph = fr_findhtable(IPL_LOGIPF, name, ifs); 4781 if (iph == NULL) 4782 return ESRCH; 4783 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) 4784 return ESRCH; 4785 fr->fr_ptr = iph; 4786 return 0; 4787 } 4788 4789 4790 /* ------------------------------------------------------------------------ */ 4791 /* Function: fr_srcgrpmap */ 4792 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 4793 /* Parameters: fin(I) - pointer to packet information */ 4794 /* passp(IO) - pointer to current/new filter decision (unused) */ 4795 /* */ 4796 /* Look for a rule group head in a hash table, using the source address as */ 4797 /* the key, and descend into that group and continue matching rules against */ 4798 /* the packet. */ 4799 /* ------------------------------------------------------------------------ */ 4800 frentry_t *fr_srcgrpmap(fin, passp) 4801 fr_info_t *fin; 4802 u_32_t *passp; 4803 { 4804 frgroup_t *fg; 4805 void *rval; 4806 ipf_stack_t *ifs = fin->fin_ifs; 4807 4808 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs); 4809 if (rval == NULL) 4810 return NULL; 4811 4812 fg = rval; 4813 fin->fin_fr = fg->fg_start; 4814 (void) fr_scanlist(fin, *passp); 4815 return fin->fin_fr; 4816 } 4817 4818 4819 /* ------------------------------------------------------------------------ */ 4820 /* Function: fr_dstgrpmap */ 4821 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */ 4822 /* Parameters: fin(I) - pointer to packet information */ 4823 /* passp(IO) - pointer to current/new filter decision (unused) */ 4824 /* */ 4825 /* Look for a rule group head in a hash table, using the destination */ 4826 /* address as the key, and descend into that group and continue matching */ 4827 /* rules against the packet. */ 4828 /* ------------------------------------------------------------------------ */ 4829 frentry_t *fr_dstgrpmap(fin, passp) 4830 fr_info_t *fin; 4831 u_32_t *passp; 4832 { 4833 frgroup_t *fg; 4834 void *rval; 4835 ipf_stack_t *ifs = fin->fin_ifs; 4836 4837 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs); 4838 if (rval == NULL) 4839 return NULL; 4840 4841 fg = rval; 4842 fin->fin_fr = fg->fg_start; 4843 (void) fr_scanlist(fin, *passp); 4844 return fin->fin_fr; 4845 } 4846 #endif /* IPFILTER_LOOKUP */ 4847 4848 /* 4849 * Queue functions 4850 * =============== 4851 * These functions manage objects on queues for efficient timeouts. There are 4852 * a number of system defined queues as well as user defined timeouts. It is 4853 * expected that a lock is held in the domain in which the queue belongs 4854 * (i.e. either state or NAT) when calling any of these functions that prevents 4855 * fr_freetimeoutqueue() from being called at the same time as any other. 4856 */ 4857 4858 4859 /* ------------------------------------------------------------------------ */ 4860 /* Function: fr_addtimeoutqueue */ 4861 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */ 4862 /* timeout queue with given interval. */ 4863 /* Parameters: parent(I) - pointer to pointer to parent node of this list */ 4864 /* of interface queues. */ 4865 /* seconds(I) - timeout value in seconds for this queue. */ 4866 /* */ 4867 /* This routine first looks for a timeout queue that matches the interval */ 4868 /* being requested. If it finds one, increments the reference counter and */ 4869 /* returns a pointer to it. If none are found, it allocates a new one and */ 4870 /* inserts it at the top of the list. */ 4871 /* */ 4872 /* Locking. */ 4873 /* It is assumed that the caller of this function has an appropriate lock */ 4874 /* held (exclusively) in the domain that encompases 'parent'. */ 4875 /* ------------------------------------------------------------------------ */ 4876 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs) 4877 ipftq_t **parent; 4878 u_int seconds; 4879 ipf_stack_t *ifs; 4880 { 4881 ipftq_t *ifq; 4882 u_int period; 4883 4884 period = seconds * IPF_HZ_DIVIDE; 4885 4886 MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock); 4887 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) { 4888 if (ifq->ifq_ttl == period) { 4889 /* 4890 * Reset the delete flag, if set, so the structure 4891 * gets reused rather than freed and reallocated. 4892 */ 4893 MUTEX_ENTER(&ifq->ifq_lock); 4894 ifq->ifq_flags &= ~IFQF_DELETE; 4895 ifq->ifq_ref++; 4896 MUTEX_EXIT(&ifq->ifq_lock); 4897 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 4898 4899 return ifq; 4900 } 4901 } 4902 4903 KMALLOC(ifq, ipftq_t *); 4904 if (ifq != NULL) { 4905 ifq->ifq_ttl = period; 4906 ifq->ifq_head = NULL; 4907 ifq->ifq_tail = &ifq->ifq_head; 4908 ifq->ifq_next = *parent; 4909 ifq->ifq_pnext = parent; 4910 ifq->ifq_ref = 1; 4911 ifq->ifq_flags = IFQF_USER; 4912 *parent = ifq; 4913 ifs->ifs_fr_userifqs++; 4914 MUTEX_NUKE(&ifq->ifq_lock); 4915 MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex"); 4916 } 4917 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock); 4918 return ifq; 4919 } 4920 4921 4922 /* ------------------------------------------------------------------------ */ 4923 /* Function: fr_deletetimeoutqueue */ 4924 /* Returns: int - new reference count value of the timeout queue */ 4925 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 4926 /* Locks: ifq->ifq_lock */ 4927 /* */ 4928 /* This routine must be called when we're discarding a pointer to a timeout */ 4929 /* queue object, taking care of the reference counter. */ 4930 /* */ 4931 /* Now that this just sets a DELETE flag, it requires the expire code to */ 4932 /* check the list of user defined timeout queues and call the free function */ 4933 /* below (currently commented out) to stop memory leaking. It is done this */ 4934 /* way because the locking may not be sufficient to safely do a free when */ 4935 /* this function is called. */ 4936 /* ------------------------------------------------------------------------ */ 4937 int fr_deletetimeoutqueue(ifq) 4938 ipftq_t *ifq; 4939 { 4940 4941 ifq->ifq_ref--; 4942 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) { 4943 ifq->ifq_flags |= IFQF_DELETE; 4944 } 4945 4946 return ifq->ifq_ref; 4947 } 4948 4949 4950 /* ------------------------------------------------------------------------ */ 4951 /* Function: fr_freetimeoutqueue */ 4952 /* Parameters: ifq(I) - timeout queue which is losing a reference. */ 4953 /* Returns: Nil */ 4954 /* */ 4955 /* Locking: */ 4956 /* It is assumed that the caller of this function has an appropriate lock */ 4957 /* held (exclusively) in the domain that encompases the callers "domain". */ 4958 /* The ifq_lock for this structure should not be held. */ 4959 /* */ 4960 /* Remove a user definde timeout queue from the list of queues it is in and */ 4961 /* tidy up after this is done. */ 4962 /* ------------------------------------------------------------------------ */ 4963 void fr_freetimeoutqueue(ifq, ifs) 4964 ipftq_t *ifq; 4965 ipf_stack_t *ifs; 4966 { 4967 4968 4969 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) || 4970 ((ifq->ifq_flags & IFQF_USER) == 0)) { 4971 printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n", 4972 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl, 4973 ifq->ifq_ref); 4974 return; 4975 } 4976 4977 /* 4978 * Remove from its position in the list. 4979 */ 4980 *ifq->ifq_pnext = ifq->ifq_next; 4981 if (ifq->ifq_next != NULL) 4982 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext; 4983 4984 MUTEX_DESTROY(&ifq->ifq_lock); 4985 ifs->ifs_fr_userifqs--; 4986 KFREE(ifq); 4987 } 4988 4989 4990 /* ------------------------------------------------------------------------ */ 4991 /* Function: fr_deletequeueentry */ 4992 /* Returns: Nil */ 4993 /* Parameters: tqe(I) - timeout queue entry to delete */ 4994 /* ifq(I) - timeout queue to remove entry from */ 4995 /* */ 4996 /* Remove a tail queue entry from its queue and make it an orphan. */ 4997 /* fr_deletetimeoutqueue is called to make sure the reference count on the */ 4998 /* queue is correct. We can't, however, call fr_freetimeoutqueue because */ 4999 /* the correct lock(s) may not be held that would make it safe to do so. */ 5000 /* ------------------------------------------------------------------------ */ 5001 void fr_deletequeueentry(tqe) 5002 ipftqent_t *tqe; 5003 { 5004 ipftq_t *ifq; 5005 5006 ifq = tqe->tqe_ifq; 5007 if (ifq == NULL) 5008 return; 5009 5010 MUTEX_ENTER(&ifq->ifq_lock); 5011 5012 if (tqe->tqe_pnext != NULL) { 5013 *tqe->tqe_pnext = tqe->tqe_next; 5014 if (tqe->tqe_next != NULL) 5015 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5016 else /* we must be the tail anyway */ 5017 ifq->ifq_tail = tqe->tqe_pnext; 5018 5019 tqe->tqe_pnext = NULL; 5020 tqe->tqe_ifq = NULL; 5021 } 5022 5023 (void) fr_deletetimeoutqueue(ifq); 5024 5025 MUTEX_EXIT(&ifq->ifq_lock); 5026 } 5027 5028 5029 /* ------------------------------------------------------------------------ */ 5030 /* Function: fr_queuefront */ 5031 /* Returns: Nil */ 5032 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5033 /* */ 5034 /* Move a queue entry to the front of the queue, if it isn't already there. */ 5035 /* ------------------------------------------------------------------------ */ 5036 void fr_queuefront(tqe) 5037 ipftqent_t *tqe; 5038 { 5039 ipftq_t *ifq; 5040 5041 ifq = tqe->tqe_ifq; 5042 if (ifq == NULL) 5043 return; 5044 5045 MUTEX_ENTER(&ifq->ifq_lock); 5046 if (ifq->ifq_head != tqe) { 5047 *tqe->tqe_pnext = tqe->tqe_next; 5048 if (tqe->tqe_next) 5049 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5050 else 5051 ifq->ifq_tail = tqe->tqe_pnext; 5052 5053 tqe->tqe_next = ifq->ifq_head; 5054 ifq->ifq_head->tqe_pnext = &tqe->tqe_next; 5055 ifq->ifq_head = tqe; 5056 tqe->tqe_pnext = &ifq->ifq_head; 5057 } 5058 MUTEX_EXIT(&ifq->ifq_lock); 5059 } 5060 5061 5062 /* ------------------------------------------------------------------------ */ 5063 /* Function: fr_queueback */ 5064 /* Returns: Nil */ 5065 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5066 /* */ 5067 /* Move a queue entry to the back of the queue, if it isn't already there. */ 5068 /* ------------------------------------------------------------------------ */ 5069 void fr_queueback(tqe, ifs) 5070 ipftqent_t *tqe; 5071 ipf_stack_t *ifs; 5072 { 5073 ipftq_t *ifq; 5074 5075 ifq = tqe->tqe_ifq; 5076 if (ifq == NULL) 5077 return; 5078 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5079 5080 MUTEX_ENTER(&ifq->ifq_lock); 5081 if (tqe->tqe_next == NULL) { /* at the end already ? */ 5082 MUTEX_EXIT(&ifq->ifq_lock); 5083 return; 5084 } 5085 5086 /* 5087 * Remove from list 5088 */ 5089 *tqe->tqe_pnext = tqe->tqe_next; 5090 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5091 5092 /* 5093 * Make it the last entry. 5094 */ 5095 tqe->tqe_next = NULL; 5096 tqe->tqe_pnext = ifq->ifq_tail; 5097 *ifq->ifq_tail = tqe; 5098 ifq->ifq_tail = &tqe->tqe_next; 5099 MUTEX_EXIT(&ifq->ifq_lock); 5100 } 5101 5102 5103 /* ------------------------------------------------------------------------ */ 5104 /* Function: fr_queueappend */ 5105 /* Returns: Nil */ 5106 /* Parameters: tqe(I) - pointer to timeout queue entry */ 5107 /* ifq(I) - pointer to timeout queue */ 5108 /* parent(I) - owing object pointer */ 5109 /* */ 5110 /* Add a new item to this queue and put it on the very end. */ 5111 /* ------------------------------------------------------------------------ */ 5112 void fr_queueappend(tqe, ifq, parent, ifs) 5113 ipftqent_t *tqe; 5114 ipftq_t *ifq; 5115 void *parent; 5116 ipf_stack_t *ifs; 5117 { 5118 5119 MUTEX_ENTER(&ifq->ifq_lock); 5120 tqe->tqe_parent = parent; 5121 tqe->tqe_pnext = ifq->ifq_tail; 5122 *ifq->ifq_tail = tqe; 5123 ifq->ifq_tail = &tqe->tqe_next; 5124 tqe->tqe_next = NULL; 5125 tqe->tqe_ifq = ifq; 5126 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl; 5127 ifq->ifq_ref++; 5128 MUTEX_EXIT(&ifq->ifq_lock); 5129 } 5130 5131 5132 /* ------------------------------------------------------------------------ */ 5133 /* Function: fr_movequeue */ 5134 /* Returns: Nil */ 5135 /* Parameters: tq(I) - pointer to timeout queue information */ 5136 /* oifp(I) - old timeout queue entry was on */ 5137 /* nifp(I) - new timeout queue to put entry on */ 5138 /* */ 5139 /* Move a queue entry from one timeout queue to another timeout queue. */ 5140 /* If it notices that the current entry is already last and does not need */ 5141 /* to move queue, the return. */ 5142 /* ------------------------------------------------------------------------ */ 5143 void fr_movequeue(tqe, oifq, nifq, ifs) 5144 ipftqent_t *tqe; 5145 ipftq_t *oifq, *nifq; 5146 ipf_stack_t *ifs; 5147 { 5148 /* 5149 * Is the operation here going to be a no-op ? 5150 */ 5151 MUTEX_ENTER(&oifq->ifq_lock); 5152 if (oifq == nifq && *oifq->ifq_tail == tqe) { 5153 MUTEX_EXIT(&oifq->ifq_lock); 5154 return; 5155 } 5156 5157 /* 5158 * Remove from the old queue 5159 */ 5160 *tqe->tqe_pnext = tqe->tqe_next; 5161 if (tqe->tqe_next) 5162 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext; 5163 else 5164 oifq->ifq_tail = tqe->tqe_pnext; 5165 tqe->tqe_next = NULL; 5166 5167 /* 5168 * If we're moving from one queue to another, release the lock on the 5169 * old queue and get a lock on the new queue. For user defined queues, 5170 * if we're moving off it, call delete in case it can now be freed. 5171 */ 5172 if (oifq != nifq) { 5173 tqe->tqe_ifq = NULL; 5174 5175 (void) fr_deletetimeoutqueue(oifq); 5176 5177 MUTEX_EXIT(&oifq->ifq_lock); 5178 5179 MUTEX_ENTER(&nifq->ifq_lock); 5180 5181 tqe->tqe_ifq = nifq; 5182 nifq->ifq_ref++; 5183 } 5184 5185 /* 5186 * Add to the bottom of the new queue 5187 */ 5188 tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl; 5189 tqe->tqe_pnext = nifq->ifq_tail; 5190 *nifq->ifq_tail = tqe; 5191 nifq->ifq_tail = &tqe->tqe_next; 5192 MUTEX_EXIT(&nifq->ifq_lock); 5193 } 5194 5195 5196 /* ------------------------------------------------------------------------ */ 5197 /* Function: fr_updateipid */ 5198 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */ 5199 /* Parameters: fin(I) - pointer to packet information */ 5200 /* */ 5201 /* When we are doing NAT, change the IP of every packet to represent a */ 5202 /* single sequence of packets coming from the host, hiding any host */ 5203 /* specific sequencing that might otherwise be revealed. If the packet is */ 5204 /* a fragment, then store the 'new' IPid in the fragment cache and look up */ 5205 /* the fragment cache for non-leading fragments. If a non-leading fragment */ 5206 /* has no match in the cache, return an error. */ 5207 /* ------------------------------------------------------------------------ */ 5208 static INLINE int fr_updateipid(fin) 5209 fr_info_t *fin; 5210 { 5211 u_short id, ido, sums; 5212 u_32_t sumd, sum; 5213 ip_t *ip; 5214 5215 if (fin->fin_off != 0) { 5216 sum = fr_ipid_knownfrag(fin); 5217 if (sum == 0xffffffff) 5218 return -1; 5219 sum &= 0xffff; 5220 id = (u_short)sum; 5221 } else { 5222 id = fr_nextipid(fin); 5223 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0) 5224 (void) fr_ipid_newfrag(fin, (u_32_t)id); 5225 } 5226 5227 ip = fin->fin_ip; 5228 ido = ntohs(ip->ip_id); 5229 if (id == ido) 5230 return 0; 5231 ip->ip_id = htons(id); 5232 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */ 5233 sum = (~ntohs(ip->ip_sum)) & 0xffff; 5234 sum += sumd; 5235 sum = (sum >> 16) + (sum & 0xffff); 5236 sum = (sum >> 16) + (sum & 0xffff); 5237 sums = ~(u_short)sum; 5238 ip->ip_sum = htons(sums); 5239 return 0; 5240 } 5241 5242 5243 #ifdef NEED_FRGETIFNAME 5244 /* ------------------------------------------------------------------------ */ 5245 /* Function: fr_getifname */ 5246 /* Returns: char * - pointer to interface name */ 5247 /* Parameters: ifp(I) - pointer to network interface */ 5248 /* buffer(O) - pointer to where to store interface name */ 5249 /* */ 5250 /* Constructs an interface name in the buffer passed. The buffer passed is */ 5251 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */ 5252 /* as a NULL pointer then return a pointer to a static array. */ 5253 /* ------------------------------------------------------------------------ */ 5254 char *fr_getifname(ifp, buffer) 5255 struct ifnet *ifp; 5256 char *buffer; 5257 { 5258 static char namebuf[LIFNAMSIZ]; 5259 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5260 defined(__sgi) || defined(linux) || defined(_AIX51) || \ 5261 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5262 int unit, space; 5263 char temp[20]; 5264 char *s; 5265 # endif 5266 5267 ASSERT(buffer != NULL); 5268 #ifdef notdef 5269 if (buffer == NULL) 5270 buffer = namebuf; 5271 #endif 5272 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ); 5273 buffer[LIFNAMSIZ - 1] = '\0'; 5274 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \ 5275 defined(__sgi) || defined(_AIX51) || \ 5276 (defined(sun) && !defined(__SVR4) && !defined(__svr4__)) 5277 for (s = buffer; *s; s++) 5278 ; 5279 unit = ifp->if_unit; 5280 space = LIFNAMSIZ - (s - buffer); 5281 if (space > 0) { 5282 # if defined(SNPRINTF) && defined(_KERNEL) 5283 (void) SNPRINTF(temp, sizeof(temp), "%d", unit); 5284 # else 5285 (void) sprintf(temp, "%d", unit); 5286 # endif 5287 (void) strncpy(s, temp, space); 5288 } 5289 # endif 5290 return buffer; 5291 } 5292 #endif 5293 5294 5295 /* ------------------------------------------------------------------------ */ 5296 /* Function: fr_ioctlswitch */ 5297 /* Returns: int - -1 continue processing, else ioctl return value */ 5298 /* Parameters: unit(I) - device unit opened */ 5299 /* data(I) - pointer to ioctl data */ 5300 /* cmd(I) - ioctl command */ 5301 /* mode(I) - mode value */ 5302 /* */ 5303 /* Based on the value of unit, call the appropriate ioctl handler or return */ 5304 /* EIO if ipfilter is not running. Also checks if write perms are req'd */ 5305 /* for the device in order to execute the ioctl. */ 5306 /* ------------------------------------------------------------------------ */ 5307 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs) 5308 int unit, mode, uid; 5309 ioctlcmd_t cmd; 5310 void *data, *ctx; 5311 ipf_stack_t *ifs; 5312 { 5313 int error = 0; 5314 5315 switch (unit) 5316 { 5317 case IPL_LOGIPF : 5318 error = -1; 5319 break; 5320 case IPL_LOGNAT : 5321 if (ifs->ifs_fr_running > 0) 5322 error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs); 5323 else 5324 error = EIO; 5325 break; 5326 case IPL_LOGSTATE : 5327 if (ifs->ifs_fr_running > 0) 5328 error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs); 5329 else 5330 error = EIO; 5331 break; 5332 case IPL_LOGAUTH : 5333 if (ifs->ifs_fr_running > 0) { 5334 if ((cmd == (ioctlcmd_t)SIOCADAFR) || 5335 (cmd == (ioctlcmd_t)SIOCRMAFR)) { 5336 if (!(mode & FWRITE)) { 5337 error = EPERM; 5338 } else { 5339 error = frrequest(unit, cmd, data, 5340 ifs->ifs_fr_active, 1, ifs); 5341 } 5342 } else { 5343 error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs); 5344 } 5345 } else 5346 error = EIO; 5347 break; 5348 case IPL_LOGSYNC : 5349 #ifdef IPFILTER_SYNC 5350 if (ifs->ifs_fr_running > 0) 5351 error = fr_sync_ioctl(data, cmd, mode, ifs); 5352 else 5353 #endif 5354 error = EIO; 5355 break; 5356 case IPL_LOGSCAN : 5357 #ifdef IPFILTER_SCAN 5358 if (ifs->ifs_fr_running > 0) 5359 error = fr_scan_ioctl(data, cmd, mode, ifs); 5360 else 5361 #endif 5362 error = EIO; 5363 break; 5364 case IPL_LOGLOOKUP : 5365 #ifdef IPFILTER_LOOKUP 5366 if (ifs->ifs_fr_running > 0) 5367 error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs); 5368 else 5369 #endif 5370 error = EIO; 5371 break; 5372 default : 5373 error = EIO; 5374 break; 5375 } 5376 5377 return error; 5378 } 5379 5380 5381 /* 5382 * This array defines the expected size of objects coming into the kernel 5383 * for the various recognised object types. 5384 */ 5385 #define NUM_OBJ_TYPES 19 5386 5387 static int fr_objbytes[NUM_OBJ_TYPES][2] = { 5388 { 1, sizeof(struct frentry) }, /* frentry */ 5389 { 0, sizeof(struct friostat) }, 5390 { 0, sizeof(struct fr_info) }, 5391 { 0, sizeof(struct fr_authstat) }, 5392 { 0, sizeof(struct ipfrstat) }, 5393 { 0, sizeof(struct ipnat) }, 5394 { 0, sizeof(struct natstat) }, 5395 { 0, sizeof(struct ipstate_save) }, 5396 { 1, sizeof(struct nat_save) }, /* nat_save */ 5397 { 0, sizeof(struct natlookup) }, 5398 { 1, sizeof(struct ipstate) }, /* ipstate */ 5399 { 0, sizeof(struct ips_stat) }, 5400 { 0, sizeof(struct frauth) }, 5401 { 0, sizeof(struct ipftune) }, 5402 { 0, sizeof(struct nat) }, /* nat_t */ 5403 { 0, sizeof(struct ipfruleiter) }, 5404 { 0, sizeof(struct ipfgeniter) }, 5405 { 0, sizeof(struct ipftable) }, 5406 { 0, sizeof(struct ipflookupiter) } 5407 }; 5408 5409 5410 /* ------------------------------------------------------------------------ */ 5411 /* Function: fr_inobj */ 5412 /* Returns: int - 0 = success, else failure */ 5413 /* Parameters: data(I) - pointer to ioctl data */ 5414 /* ptr(I) - pointer to store real data in */ 5415 /* type(I) - type of structure being moved */ 5416 /* */ 5417 /* Copy in the contents of what the ipfobj_t points to. In future, we */ 5418 /* add things to check for version numbers, sizes, etc, to make it backward */ 5419 /* compatible at the ABI for user land. */ 5420 /* ------------------------------------------------------------------------ */ 5421 int fr_inobj(data, ptr, type) 5422 void *data; 5423 void *ptr; 5424 int type; 5425 { 5426 ipfobj_t obj; 5427 int error = 0; 5428 5429 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5430 return EINVAL; 5431 5432 BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5433 5434 if (obj.ipfo_type != type) 5435 return EINVAL; 5436 5437 #ifndef IPFILTER_COMPAT 5438 if ((fr_objbytes[type][0] & 1) != 0) { 5439 if (obj.ipfo_size < fr_objbytes[type][1]) 5440 return EINVAL; 5441 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5442 return EINVAL; 5443 #else 5444 if (obj.ipfo_rev != IPFILTER_VERSION) 5445 /* XXX compatibility hook here */ 5446 ; 5447 if ((fr_objbytes[type][0] & 1) != 0) { 5448 if (obj.ipfo_size < fr_objbytes[type][1]) 5449 /* XXX compatibility hook here */ 5450 return EINVAL; 5451 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5452 /* XXX compatibility hook here */ 5453 return EINVAL; 5454 #endif 5455 5456 if ((fr_objbytes[type][0] & 1) != 0) { 5457 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5458 fr_objbytes[type][1]); 5459 } else { 5460 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, 5461 obj.ipfo_size); 5462 } 5463 return error; 5464 } 5465 5466 5467 /* ------------------------------------------------------------------------ */ 5468 /* Function: fr_inobjsz */ 5469 /* Returns: int - 0 = success, else failure */ 5470 /* Parameters: data(I) - pointer to ioctl data */ 5471 /* ptr(I) - pointer to store real data in */ 5472 /* type(I) - type of structure being moved */ 5473 /* sz(I) - size of data to copy */ 5474 /* */ 5475 /* As per fr_inobj, except the size of the object to copy in is passed in */ 5476 /* but it must not be smaller than the size defined for the type and the */ 5477 /* type must allow for varied sized objects. The extra requirement here is */ 5478 /* that sz must match the size of the object being passed in - this is not */ 5479 /* not possible nor required in fr_inobj(). */ 5480 /* ------------------------------------------------------------------------ */ 5481 int fr_inobjsz(data, ptr, type, sz) 5482 void *data; 5483 void *ptr; 5484 int type, sz; 5485 { 5486 ipfobj_t obj; 5487 int error; 5488 5489 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5490 return EINVAL; 5491 if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1])) 5492 return EINVAL; 5493 5494 BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5495 5496 if (obj.ipfo_type != type) 5497 return EINVAL; 5498 5499 #ifndef IPFILTER_COMPAT 5500 if (obj.ipfo_size != sz) 5501 return EINVAL; 5502 #else 5503 if (obj.ipfo_rev != IPFILTER_VERSION) 5504 /* XXX compatibility hook here */ 5505 ; 5506 if (obj.ipfo_size != sz) 5507 /* XXX compatibility hook here */ 5508 return EINVAL; 5509 #endif 5510 5511 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz); 5512 return error; 5513 } 5514 5515 5516 /* ------------------------------------------------------------------------ */ 5517 /* Function: fr_outobjsz */ 5518 /* Returns: int - 0 = success, else failure */ 5519 /* Parameters: data(I) - pointer to ioctl data */ 5520 /* ptr(I) - pointer to store real data in */ 5521 /* type(I) - type of structure being moved */ 5522 /* sz(I) - size of data to copy */ 5523 /* */ 5524 /* As per fr_outobj, except the size of the object to copy out is passed in */ 5525 /* but it must not be smaller than the size defined for the type and the */ 5526 /* type must allow for varied sized objects. The extra requirement here is */ 5527 /* that sz must match the size of the object being passed in - this is not */ 5528 /* not possible nor required in fr_outobj(). */ 5529 /* ------------------------------------------------------------------------ */ 5530 int fr_outobjsz(data, ptr, type, sz) 5531 void *data; 5532 void *ptr; 5533 int type, sz; 5534 { 5535 ipfobj_t obj; 5536 int error; 5537 5538 if ((type < 0) || (type > NUM_OBJ_TYPES-1) || 5539 ((fr_objbytes[type][0] & 1) == 0) || 5540 (sz < fr_objbytes[type][1])) 5541 return EINVAL; 5542 5543 BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5544 5545 if (obj.ipfo_type != type) 5546 return EINVAL; 5547 5548 #ifndef IPFILTER_COMPAT 5549 if (obj.ipfo_size != sz) 5550 return EINVAL; 5551 #else 5552 if (obj.ipfo_rev != IPFILTER_VERSION) 5553 /* XXX compatibility hook here */ 5554 ; 5555 if (obj.ipfo_size != sz) 5556 /* XXX compatibility hook here */ 5557 return EINVAL; 5558 #endif 5559 5560 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz); 5561 return error; 5562 } 5563 5564 5565 /* ------------------------------------------------------------------------ */ 5566 /* Function: fr_outobj */ 5567 /* Returns: int - 0 = success, else failure */ 5568 /* Parameters: data(I) - pointer to ioctl data */ 5569 /* ptr(I) - pointer to store real data in */ 5570 /* type(I) - type of structure being moved */ 5571 /* */ 5572 /* Copy out the contents of what ptr is to where ipfobj points to. In */ 5573 /* future, we add things to check for version numbers, sizes, etc, to make */ 5574 /* it backward compatible at the ABI for user land. */ 5575 /* ------------------------------------------------------------------------ */ 5576 int fr_outobj(data, ptr, type) 5577 void *data; 5578 void *ptr; 5579 int type; 5580 { 5581 ipfobj_t obj; 5582 int error; 5583 5584 if ((type < 0) || (type > NUM_OBJ_TYPES-1)) 5585 return EINVAL; 5586 5587 BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj)); 5588 5589 if (obj.ipfo_type != type) 5590 return EINVAL; 5591 5592 #ifndef IPFILTER_COMPAT 5593 if ((fr_objbytes[type][0] & 1) != 0) { 5594 if (obj.ipfo_size < fr_objbytes[type][1]) 5595 return EINVAL; 5596 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5597 return EINVAL; 5598 #else 5599 if (obj.ipfo_rev != IPFILTER_VERSION) 5600 /* XXX compatibility hook here */ 5601 ; 5602 if ((fr_objbytes[type][0] & 1) != 0) { 5603 if (obj.ipfo_size < fr_objbytes[type][1]) 5604 /* XXX compatibility hook here */ 5605 return EINVAL; 5606 } else if (obj.ipfo_size != fr_objbytes[type][1]) 5607 /* XXX compatibility hook here */ 5608 return EINVAL; 5609 #endif 5610 5611 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size); 5612 return error; 5613 } 5614 5615 5616 /* ------------------------------------------------------------------------ */ 5617 /* Function: fr_checkl4sum */ 5618 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */ 5619 /* Parameters: fin(I) - pointer to packet information */ 5620 /* */ 5621 /* If possible, calculate the layer 4 checksum for the packet. If this is */ 5622 /* not possible, return without indicating a failure or success but in a */ 5623 /* way that is ditinguishable. */ 5624 /* ------------------------------------------------------------------------ */ 5625 int fr_checkl4sum(fin) 5626 fr_info_t *fin; 5627 { 5628 u_short sum, hdrsum, *csump; 5629 udphdr_t *udp; 5630 int dosum; 5631 ipf_stack_t *ifs = fin->fin_ifs; 5632 5633 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5634 net_data_t net_data_p; 5635 if (fin->fin_v == 4) 5636 net_data_p = ifs->ifs_ipf_ipv4; 5637 else 5638 net_data_p = ifs->ifs_ipf_ipv6; 5639 #endif 5640 5641 if ((fin->fin_flx & FI_NOCKSUM) != 0) 5642 return 0; 5643 5644 /* 5645 * If the TCP packet isn't a fragment, isn't too short and otherwise 5646 * isn't already considered "bad", then validate the checksum. If 5647 * this check fails then considered the packet to be "bad". 5648 */ 5649 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0) 5650 return 1; 5651 5652 csump = NULL; 5653 hdrsum = 0; 5654 dosum = 0; 5655 sum = 0; 5656 5657 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5658 ASSERT(fin->fin_m != NULL); 5659 if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) || 5660 NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) { 5661 hdrsum = 0; 5662 sum = 0; 5663 } else { 5664 #endif 5665 switch (fin->fin_p) 5666 { 5667 case IPPROTO_TCP : 5668 csump = &((tcphdr_t *)fin->fin_dp)->th_sum; 5669 dosum = 1; 5670 break; 5671 5672 case IPPROTO_UDP : 5673 udp = fin->fin_dp; 5674 if (udp->uh_sum != 0) { 5675 csump = &udp->uh_sum; 5676 dosum = 1; 5677 } 5678 break; 5679 5680 case IPPROTO_ICMP : 5681 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum; 5682 dosum = 1; 5683 break; 5684 5685 default : 5686 return 1; 5687 /*NOTREACHED*/ 5688 } 5689 5690 if (csump != NULL) 5691 hdrsum = *csump; 5692 5693 if (dosum) 5694 sum = fr_cksum(fin->fin_m, fin->fin_ip, 5695 fin->fin_p, fin->fin_dp); 5696 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6) 5697 } 5698 #endif 5699 #if !defined(_KERNEL) 5700 if (sum == hdrsum) { 5701 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum)); 5702 } else { 5703 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum)); 5704 } 5705 #endif 5706 if (hdrsum == sum) 5707 return 0; 5708 return -1; 5709 } 5710 5711 5712 /* ------------------------------------------------------------------------ */ 5713 /* Function: fr_ifpfillv4addr */ 5714 /* Returns: int - 0 = address update, -1 = address not updated */ 5715 /* Parameters: atype(I) - type of network address update to perform */ 5716 /* sin(I) - pointer to source of address information */ 5717 /* mask(I) - pointer to source of netmask information */ 5718 /* inp(I) - pointer to destination address store */ 5719 /* inpmask(I) - pointer to destination netmask store */ 5720 /* */ 5721 /* Given a type of network address update (atype) to perform, copy */ 5722 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 5723 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 5724 /* which case the operation fails. For all values of atype other than */ 5725 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 5726 /* value. */ 5727 /* ------------------------------------------------------------------------ */ 5728 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask) 5729 int atype; 5730 struct sockaddr_in *sin, *mask; 5731 struct in_addr *inp, *inpmask; 5732 { 5733 if (inpmask != NULL && atype != FRI_NETMASKED) 5734 inpmask->s_addr = 0xffffffff; 5735 5736 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 5737 if (atype == FRI_NETMASKED) { 5738 if (inpmask == NULL) 5739 return -1; 5740 inpmask->s_addr = mask->sin_addr.s_addr; 5741 } 5742 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr; 5743 } else { 5744 inp->s_addr = sin->sin_addr.s_addr; 5745 } 5746 return 0; 5747 } 5748 5749 5750 #ifdef USE_INET6 5751 /* ------------------------------------------------------------------------ */ 5752 /* Function: fr_ifpfillv6addr */ 5753 /* Returns: int - 0 = address update, -1 = address not updated */ 5754 /* Parameters: atype(I) - type of network address update to perform */ 5755 /* sin(I) - pointer to source of address information */ 5756 /* mask(I) - pointer to source of netmask information */ 5757 /* inp(I) - pointer to destination address store */ 5758 /* inpmask(I) - pointer to destination netmask store */ 5759 /* */ 5760 /* Given a type of network address update (atype) to perform, copy */ 5761 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */ 5762 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */ 5763 /* which case the operation fails. For all values of atype other than */ 5764 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */ 5765 /* value. */ 5766 /* ------------------------------------------------------------------------ */ 5767 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask) 5768 int atype; 5769 struct sockaddr_in6 *sin, *mask; 5770 struct in_addr *inp, *inpmask; 5771 { 5772 i6addr_t *src, *dst, *and, *dmask; 5773 5774 src = (i6addr_t *)&sin->sin6_addr; 5775 and = (i6addr_t *)&mask->sin6_addr; 5776 dst = (i6addr_t *)inp; 5777 dmask = (i6addr_t *)inpmask; 5778 5779 if (inpmask != NULL && atype != FRI_NETMASKED) { 5780 dmask->i6[0] = 0xffffffff; 5781 dmask->i6[1] = 0xffffffff; 5782 dmask->i6[2] = 0xffffffff; 5783 dmask->i6[3] = 0xffffffff; 5784 } 5785 5786 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) { 5787 if (atype == FRI_NETMASKED) { 5788 if (inpmask == NULL) 5789 return -1; 5790 dmask->i6[0] = and->i6[0]; 5791 dmask->i6[1] = and->i6[1]; 5792 dmask->i6[2] = and->i6[2]; 5793 dmask->i6[3] = and->i6[3]; 5794 } 5795 5796 dst->i6[0] = src->i6[0] & and->i6[0]; 5797 dst->i6[1] = src->i6[1] & and->i6[1]; 5798 dst->i6[2] = src->i6[2] & and->i6[2]; 5799 dst->i6[3] = src->i6[3] & and->i6[3]; 5800 } else { 5801 dst->i6[0] = src->i6[0]; 5802 dst->i6[1] = src->i6[1]; 5803 dst->i6[2] = src->i6[2]; 5804 dst->i6[3] = src->i6[3]; 5805 } 5806 return 0; 5807 } 5808 #endif 5809 5810 5811 /* ------------------------------------------------------------------------ */ 5812 /* Function: fr_matchtag */ 5813 /* Returns: 0 == mismatch, 1 == match. */ 5814 /* Parameters: tag1(I) - pointer to first tag to compare */ 5815 /* tag2(I) - pointer to second tag to compare */ 5816 /* */ 5817 /* Returns true (non-zero) or false(0) if the two tag structures can be */ 5818 /* considered to be a match or not match, respectively. The tag is 16 */ 5819 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */ 5820 /* compare the ints instead, for speed. tag1 is the master of the */ 5821 /* comparison. This function should only be called with both tag1 and tag2 */ 5822 /* as non-NULL pointers. */ 5823 /* ------------------------------------------------------------------------ */ 5824 int fr_matchtag(tag1, tag2) 5825 ipftag_t *tag1, *tag2; 5826 { 5827 if (tag1 == tag2) 5828 return 1; 5829 5830 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0)) 5831 return 1; 5832 5833 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) && 5834 (tag1->ipt_num[1] == tag2->ipt_num[1]) && 5835 (tag1->ipt_num[2] == tag2->ipt_num[2]) && 5836 (tag1->ipt_num[3] == tag2->ipt_num[3])) 5837 return 1; 5838 return 0; 5839 } 5840 5841 5842 /* ------------------------------------------------------------------------ */ 5843 /* Function: fr_coalesce */ 5844 /* Returns: 1 == success, -1 == failure, 0 == no change */ 5845 /* Parameters: fin(I) - pointer to packet information */ 5846 /* */ 5847 /* Attempt to get all of the packet data into a single, contiguous buffer. */ 5848 /* If this call returns a failure then the buffers have also been freed. */ 5849 /* ------------------------------------------------------------------------ */ 5850 int fr_coalesce(fin) 5851 fr_info_t *fin; 5852 { 5853 ipf_stack_t *ifs = fin->fin_ifs; 5854 if ((fin->fin_flx & FI_COALESCE) != 0) 5855 return 1; 5856 5857 /* 5858 * If the mbuf pointers indicate that there is no mbuf to work with, 5859 * return but do not indicate success or failure. 5860 */ 5861 if (fin->fin_m == NULL || fin->fin_mp == NULL) 5862 return 0; 5863 5864 #if defined(_KERNEL) 5865 if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) { 5866 ATOMIC_INCL(ifs->ifs_fr_badcoalesces[fin->fin_out]); 5867 # ifdef MENTAT 5868 FREE_MB_T(*fin->fin_mp); 5869 # endif 5870 *fin->fin_mp = NULL; 5871 fin->fin_m = NULL; 5872 return -1; 5873 } 5874 #else 5875 fin = fin; /* LINT */ 5876 #endif 5877 return 1; 5878 } 5879 5880 5881 /* 5882 * The following table lists all of the tunable variables that can be 5883 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT. The format of each row 5884 * in the table below is as follows: 5885 * 5886 * pointer to value, name of value, minimum, maximum, size of the value's 5887 * container, value attribute flags 5888 * 5889 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED 5890 * means the value can only be written to when IPFilter is loaded but disabled. 5891 * The obvious implication is if neither of these are set then the value can be 5892 * changed at any time without harm. 5893 */ 5894 ipftuneable_t lcl_ipf_tuneables[] = { 5895 /* filtering */ 5896 { { NULL }, "fr_flags", 0, 0xffffffff, 5897 0, 0 }, 5898 { { NULL }, "fr_active", 0, 0, 5899 0, IPFT_RDONLY }, 5900 { { NULL }, "fr_control_forwarding", 0, 1, 5901 0, 0 }, 5902 { { NULL }, "fr_update_ipid", 0, 1, 5903 0, 0 }, 5904 { { NULL }, "fr_chksrc", 0, 1, 5905 0, 0 }, 5906 { { NULL }, "fr_minttl", 0, 1, 5907 0, 0 }, 5908 { { NULL }, "fr_icmpminfragmtu", 0, 1, 5909 0, 0 }, 5910 { { NULL }, "fr_pass", 0, 0xffffffff, 5911 0, 0 }, 5912 #if SOLARIS2 >= 10 5913 { { NULL }, "ipf_loopback", 0, 1, 5914 0, IPFT_WRDISABLED }, 5915 #endif 5916 /* state */ 5917 { { NULL }, "fr_tcpidletimeout", 1, 0x7fffffff, 5918 0, IPFT_WRDISABLED }, 5919 { { NULL }, "fr_tcpclosewait", 1, 0x7fffffff, 5920 0, IPFT_WRDISABLED }, 5921 { { NULL }, "fr_tcplastack", 1, 0x7fffffff, 5922 0, IPFT_WRDISABLED }, 5923 { { NULL }, "fr_tcptimeout", 1, 0x7fffffff, 5924 0, IPFT_WRDISABLED }, 5925 { { NULL }, "fr_tcpclosed", 1, 0x7fffffff, 5926 0, IPFT_WRDISABLED }, 5927 { { NULL }, "fr_tcphalfclosed", 1, 0x7fffffff, 5928 0, IPFT_WRDISABLED }, 5929 { { NULL }, "fr_udptimeout", 1, 0x7fffffff, 5930 0, IPFT_WRDISABLED }, 5931 { { NULL }, "fr_udpacktimeout", 1, 0x7fffffff, 5932 0, IPFT_WRDISABLED }, 5933 { { NULL }, "fr_icmptimeout", 1, 0x7fffffff, 5934 0, IPFT_WRDISABLED }, 5935 { { NULL }, "fr_icmpacktimeout", 1, 0x7fffffff, 5936 0, IPFT_WRDISABLED }, 5937 { { NULL }, "fr_iptimeout", 1, 0x7fffffff, 5938 0, IPFT_WRDISABLED }, 5939 { { NULL }, "fr_statemax", 1, 0x7fffffff, 5940 0, 0 }, 5941 { { NULL }, "fr_statesize", 1, 0x7fffffff, 5942 0, IPFT_WRDISABLED }, 5943 { { NULL }, "fr_state_lock", 0, 1, 5944 0, IPFT_RDONLY }, 5945 { { NULL }, "fr_state_maxbucket", 1, 0x7fffffff, 5946 0, IPFT_WRDISABLED }, 5947 { { NULL }, "fr_state_maxbucket_reset", 0, 1, 5948 0, IPFT_WRDISABLED }, 5949 { { NULL }, "ipstate_logging", 0, 1, 5950 0, 0 }, 5951 /* nat */ 5952 { { NULL }, "fr_nat_lock", 0, 1, 5953 0, IPFT_RDONLY }, 5954 { { NULL }, "ipf_nattable_sz", 1, 0x7fffffff, 5955 0, IPFT_WRDISABLED }, 5956 { { NULL }, "ipf_nattable_max", 1, 0x7fffffff, 5957 0, 0 }, 5958 { { NULL }, "ipf_natrules_sz", 1, 0x7fffffff, 5959 0, IPFT_WRDISABLED }, 5960 { { NULL }, "ipf_rdrrules_sz", 1, 0x7fffffff, 5961 0, IPFT_WRDISABLED }, 5962 { { NULL }, "ipf_hostmap_sz", 1, 0x7fffffff, 5963 0, IPFT_WRDISABLED }, 5964 { { NULL }, "fr_nat_maxbucket", 1, 0x7fffffff, 5965 0, IPFT_WRDISABLED }, 5966 { { NULL }, "fr_nat_maxbucket_reset", 0, 1, 5967 0, IPFT_WRDISABLED }, 5968 { { NULL }, "nat_logging", 0, 1, 5969 0, 0 }, 5970 { { NULL }, "fr_defnatage", 1, 0x7fffffff, 5971 0, IPFT_WRDISABLED }, 5972 { { NULL }, "fr_defnatipage", 1, 0x7fffffff, 5973 0, IPFT_WRDISABLED }, 5974 { { NULL }, "fr_defnaticmpage", 1, 0x7fffffff, 5975 0, IPFT_WRDISABLED }, 5976 { { NULL }, "nat_flush_lvl_hi", 1, 100, 5977 0, 0 }, 5978 { { NULL }, "nat_flush_lvl_lo", 1, 100, 5979 0, 0 }, 5980 /* frag */ 5981 { { NULL }, "ipfr_size", 1, 0x7fffffff, 5982 0, IPFT_WRDISABLED }, 5983 { { NULL }, "fr_ipfrttl", 1, 0x7fffffff, 5984 0, IPFT_WRDISABLED }, 5985 #ifdef IPFILTER_LOG 5986 /* log */ 5987 { { NULL }, "ipl_suppress", 0, 1, 5988 0, 0 }, 5989 { { NULL }, "ipl_buffer_sz", 0, 0, 5990 0, IPFT_RDONLY }, 5991 { { NULL }, "ipl_logmax", 0, 0x7fffffff, 5992 0, IPFT_WRDISABLED }, 5993 { { NULL }, "ipl_logall", 0, 1, 5994 0, 0 }, 5995 { { NULL }, "ipl_logsize", 0, 0x80000, 5996 0, 0 }, 5997 #endif 5998 { { NULL }, NULL, 0, 0 } 5999 }; 6000 6001 static ipftuneable_t * 6002 tune_lookup(ipf_stack_t *ifs, char *name) 6003 { 6004 int i; 6005 6006 for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) { 6007 if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0) 6008 return (&ifs->ifs_ipf_tuneables[i]); 6009 } 6010 return (NULL); 6011 } 6012 6013 #ifdef _KERNEL 6014 extern dev_info_t *ipf_dev_info; 6015 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *)); 6016 #endif 6017 6018 /* -------------------------------------------------------------------- */ 6019 /* Function: ipftuneable_setdefs() */ 6020 /* Returns: void */ 6021 /* Parameters: ifs - pointer to newly allocated IPF instance */ 6022 /* assigned to IP instance */ 6023 /* */ 6024 /* Function initializes IPF instance variables. Function is invoked */ 6025 /* from ipftuneable_alloc(). ipftuneable_alloc() is called only one */ 6026 /* time during IP instance lifetime - at the time of IP instance */ 6027 /* creation. Anytime IP instance is being created new private IPF */ 6028 /* instance is allocated and assigned to it. The moment of IP */ 6029 /* instance creation is the right time to initialize those IPF */ 6030 /* variables. */ 6031 /* */ 6032 /* -------------------------------------------------------------------- */ 6033 static void ipftuneable_setdefs(ipf_stack_t *ifs) 6034 { 6035 ifs->ifs_ipfr_size = IPFT_SIZE; 6036 ifs->ifs_fr_ipfrttl = 120; /* 60 seconds */ 6037 6038 /* it comes from fr_authinit() in IPF auth */ 6039 ifs->ifs_fr_authsize = FR_NUMAUTH; 6040 ifs->ifs_fr_defaultauthage = 600; 6041 6042 /* it comes from fr_stateinit() in IPF state */ 6043 ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5); /* five days */ 6044 ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL); 6045 ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL); 6046 ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL); 6047 ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60); 6048 ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600); /* 2 hours */ 6049 ifs->ifs_fr_udptimeout = IPF_TTLVAL(120); 6050 ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12); 6051 ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60); 6052 ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6); 6053 ifs->ifs_fr_iptimeout = IPF_TTLVAL(60); 6054 ifs->ifs_fr_statemax = IPSTATE_MAX; 6055 ifs->ifs_fr_statesize = IPSTATE_SIZE; 6056 ifs->ifs_fr_state_maxbucket_reset = 1; 6057 6058 /* it comes from fr_natinit() in ipnat */ 6059 ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ; 6060 ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX; 6061 ifs->ifs_ipf_natrules_sz = NAT_SIZE; 6062 ifs->ifs_ipf_rdrrules_sz = RDR_SIZE; 6063 ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE; 6064 ifs->ifs_fr_nat_maxbucket_reset = 1; 6065 ifs->ifs_fr_defnatage = DEF_NAT_AGE; 6066 ifs->ifs_fr_defnatipage = 120; /* 60 seconds */ 6067 ifs->ifs_fr_defnaticmpage = 6; /* 3 seconds */ 6068 ifs->ifs_nat_flush_lvl_hi = NAT_FLUSH_HI; 6069 ifs->ifs_nat_flush_lvl_lo = NAT_FLUSH_LO; 6070 6071 #ifdef IPFILTER_LOG 6072 /* it comes from fr_loginit() in IPF log */ 6073 ifs->ifs_ipl_suppress = 1; 6074 ifs->ifs_ipl_logmax = IPL_LOGMAX; 6075 ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE; 6076 6077 /* from fr_natinit() */ 6078 ifs->ifs_nat_logging = 1; 6079 6080 /* from fr_stateinit() */ 6081 ifs->ifs_ipstate_logging = 1; 6082 #else 6083 /* from fr_natinit() */ 6084 ifs->ifs_nat_logging = 0; 6085 6086 /* from fr_stateinit() */ 6087 ifs->ifs_ipstate_logging = 0; 6088 #endif 6089 6090 } 6091 /* 6092 * Allocate a per-stack tuneable and copy in the names. Then 6093 * set it to point to each of the per-stack tunables. 6094 */ 6095 void 6096 ipftuneable_alloc(ipf_stack_t *ifs) 6097 { 6098 ipftuneable_t *item; 6099 6100 KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *, 6101 sizeof (lcl_ipf_tuneables)); 6102 bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables, 6103 sizeof (lcl_ipf_tuneables)); 6104 6105 #define TUNE_SET(_ifs, _name, _field) \ 6106 item = tune_lookup((_ifs), (_name)); \ 6107 if (item != NULL) { \ 6108 item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field); \ 6109 item->ipft_sz = sizeof ((_ifs)->_field); \ 6110 } 6111 6112 TUNE_SET(ifs, "fr_flags", ifs_fr_flags); 6113 TUNE_SET(ifs, "fr_active", ifs_fr_active); 6114 TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding); 6115 TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid); 6116 TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc); 6117 TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl); 6118 TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu); 6119 TUNE_SET(ifs, "fr_pass", ifs_fr_pass); 6120 TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout); 6121 TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait); 6122 TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack); 6123 TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout); 6124 TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed); 6125 TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed); 6126 TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout); 6127 TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout); 6128 TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout); 6129 TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout); 6130 TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout); 6131 TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax); 6132 TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize); 6133 TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock); 6134 TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket); 6135 TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset); 6136 TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging); 6137 TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock); 6138 TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz); 6139 TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max); 6140 TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz); 6141 TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz); 6142 TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz); 6143 TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket); 6144 TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset); 6145 TUNE_SET(ifs, "nat_logging", ifs_nat_logging); 6146 TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage); 6147 TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage); 6148 TUNE_SET(ifs, "nat_flush_lvl_hi", ifs_nat_flush_lvl_hi); 6149 TUNE_SET(ifs, "nat_flush_lvl_lo", ifs_nat_flush_lvl_lo); 6150 TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size); 6151 TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl); 6152 #ifdef IPFILTER_LOG 6153 TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress); 6154 TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz); 6155 TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax); 6156 TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall); 6157 TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize); 6158 #endif 6159 #undef TUNE_SET 6160 6161 ipftuneable_setdefs(ifs); 6162 6163 #ifdef _KERNEL 6164 (void) ipf_property_update(ipf_dev_info, ifs); 6165 #endif 6166 } 6167 6168 void 6169 ipftuneable_free(ipf_stack_t *ifs) 6170 { 6171 KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables)); 6172 ifs->ifs_ipf_tuneables = NULL; 6173 } 6174 6175 /* ------------------------------------------------------------------------ */ 6176 /* Function: fr_findtunebycookie */ 6177 /* Returns: NULL = search failed, else pointer to tune struct */ 6178 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */ 6179 /* next(O) - pointer to place to store the cookie for the */ 6180 /* "next" tuneable, if it is desired. */ 6181 /* */ 6182 /* This function is used to walk through all of the existing tunables with */ 6183 /* successive calls. It searches the known tunables for the one which has */ 6184 /* a matching value for "cookie" - ie its address. When returning a match, */ 6185 /* the next one to be found may be returned inside next. */ 6186 /* ------------------------------------------------------------------------ */ 6187 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs) 6188 void *cookie, **next; 6189 ipf_stack_t * ifs; 6190 { 6191 ipftuneable_t *ta, **tap; 6192 6193 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6194 if (ta == cookie) { 6195 if (next != NULL) { 6196 /* 6197 * If the next entry in the array has a name 6198 * present, then return a pointer to it for 6199 * where to go next, else return a pointer to 6200 * the dynaminc list as a key to search there 6201 * next. This facilitates a weak linking of 6202 * the two "lists" together. 6203 */ 6204 if ((ta + 1)->ipft_name != NULL) 6205 *next = ta + 1; 6206 else 6207 *next = &ifs->ifs_ipf_tunelist; 6208 } 6209 return ta; 6210 } 6211 6212 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6213 if (tap == cookie) { 6214 if (next != NULL) 6215 *next = &ta->ipft_next; 6216 return ta; 6217 } 6218 6219 if (next != NULL) 6220 *next = NULL; 6221 return NULL; 6222 } 6223 6224 6225 /* ------------------------------------------------------------------------ */ 6226 /* Function: fr_findtunebyname */ 6227 /* Returns: NULL = search failed, else pointer to tune struct */ 6228 /* Parameters: name(I) - name of the tuneable entry to find. */ 6229 /* */ 6230 /* Search the static array of tuneables and the list of dynamic tuneables */ 6231 /* for an entry with a matching name. If we can find one, return a pointer */ 6232 /* to the matching structure. */ 6233 /* ------------------------------------------------------------------------ */ 6234 static ipftuneable_t *fr_findtunebyname(name, ifs) 6235 const char *name; 6236 ipf_stack_t *ifs; 6237 { 6238 ipftuneable_t *ta; 6239 6240 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++) 6241 if (!strcmp(ta->ipft_name, name)) { 6242 return ta; 6243 } 6244 6245 for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next) 6246 if (!strcmp(ta->ipft_name, name)) { 6247 return ta; 6248 } 6249 6250 return NULL; 6251 } 6252 6253 6254 /* ------------------------------------------------------------------------ */ 6255 /* Function: fr_addipftune */ 6256 /* Returns: int - 0 == success, else failure */ 6257 /* Parameters: newtune - pointer to new tune struct to add to tuneables */ 6258 /* */ 6259 /* Appends the tune structure pointer to by "newtune" to the end of the */ 6260 /* current list of "dynamic" tuneable parameters. Once added, the owner */ 6261 /* of the object is not expected to ever change "ipft_next". */ 6262 /* ------------------------------------------------------------------------ */ 6263 int fr_addipftune(newtune, ifs) 6264 ipftuneable_t *newtune; 6265 ipf_stack_t *ifs; 6266 { 6267 ipftuneable_t *ta, **tap; 6268 6269 ta = fr_findtunebyname(newtune->ipft_name, ifs); 6270 if (ta != NULL) 6271 return EEXIST; 6272 6273 for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next) 6274 ; 6275 6276 newtune->ipft_next = NULL; 6277 *tap = newtune; 6278 return 0; 6279 } 6280 6281 6282 /* ------------------------------------------------------------------------ */ 6283 /* Function: fr_delipftune */ 6284 /* Returns: int - 0 == success, else failure */ 6285 /* Parameters: oldtune - pointer to tune struct to remove from the list of */ 6286 /* current dynamic tuneables */ 6287 /* */ 6288 /* Search for the tune structure, by pointer, in the list of those that are */ 6289 /* dynamically added at run time. If found, adjust the list so that this */ 6290 /* structure is no longer part of it. */ 6291 /* ------------------------------------------------------------------------ */ 6292 int fr_delipftune(oldtune, ifs) 6293 ipftuneable_t *oldtune; 6294 ipf_stack_t *ifs; 6295 { 6296 ipftuneable_t *ta, **tap; 6297 6298 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next) 6299 if (ta == oldtune) { 6300 *tap = oldtune->ipft_next; 6301 oldtune->ipft_next = NULL; 6302 return 0; 6303 } 6304 6305 return ESRCH; 6306 } 6307 6308 6309 /* ------------------------------------------------------------------------ */ 6310 /* Function: fr_ipftune */ 6311 /* Returns: int - 0 == success, else failure */ 6312 /* Parameters: cmd(I) - ioctl command number */ 6313 /* data(I) - pointer to ioctl data structure */ 6314 /* */ 6315 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */ 6316 /* three ioctls provide the means to access and control global variables */ 6317 /* within IPFilter, allowing (for example) timeouts and table sizes to be */ 6318 /* changed without rebooting, reloading or recompiling. The initialisation */ 6319 /* and 'destruction' routines of the various components of ipfilter are all */ 6320 /* each responsible for handling their own values being too big. */ 6321 /* ------------------------------------------------------------------------ */ 6322 int fr_ipftune(cmd, data, ifs) 6323 ioctlcmd_t cmd; 6324 void *data; 6325 ipf_stack_t *ifs; 6326 { 6327 ipftuneable_t *ta; 6328 ipftune_t tu; 6329 void *cookie; 6330 int error; 6331 6332 error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE); 6333 if (error != 0) 6334 return error; 6335 6336 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0'; 6337 cookie = tu.ipft_cookie; 6338 ta = NULL; 6339 6340 switch (cmd) 6341 { 6342 case SIOCIPFGETNEXT : 6343 /* 6344 * If cookie is non-NULL, assume it to be a pointer to the last 6345 * entry we looked at, so find it (if possible) and return a 6346 * pointer to the next one after it. The last entry in the 6347 * the table is a NULL entry, so when we get to it, set cookie 6348 * to NULL and return that, indicating end of list, erstwhile 6349 * if we come in with cookie set to NULL, we are starting anew 6350 * at the front of the list. 6351 */ 6352 if (cookie != NULL) { 6353 ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs); 6354 } else { 6355 ta = ifs->ifs_ipf_tuneables; 6356 tu.ipft_cookie = ta + 1; 6357 } 6358 if (ta != NULL) { 6359 /* 6360 * Entry found, but does the data pointed to by that 6361 * row fit in what we can return? 6362 */ 6363 if (ta->ipft_sz > sizeof(tu.ipft_un)) 6364 return EINVAL; 6365 6366 tu.ipft_vlong = 0; 6367 if (ta->ipft_sz == sizeof(u_long)) 6368 tu.ipft_vlong = *ta->ipft_plong; 6369 else if (ta->ipft_sz == sizeof(u_int)) 6370 tu.ipft_vint = *ta->ipft_pint; 6371 else if (ta->ipft_sz == sizeof(u_short)) 6372 tu.ipft_vshort = *ta->ipft_pshort; 6373 else if (ta->ipft_sz == sizeof(u_char)) 6374 tu.ipft_vchar = *ta->ipft_pchar; 6375 6376 tu.ipft_sz = ta->ipft_sz; 6377 tu.ipft_min = ta->ipft_min; 6378 tu.ipft_max = ta->ipft_max; 6379 tu.ipft_flags = ta->ipft_flags; 6380 bcopy(ta->ipft_name, tu.ipft_name, 6381 MIN(sizeof(tu.ipft_name), 6382 strlen(ta->ipft_name) + 1)); 6383 } 6384 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6385 break; 6386 6387 case SIOCIPFGET : 6388 case SIOCIPFSET : 6389 /* 6390 * Search by name or by cookie value for a particular entry 6391 * in the tuning paramter table. 6392 */ 6393 error = ESRCH; 6394 if (cookie != NULL) { 6395 ta = fr_findtunebycookie(cookie, NULL, ifs); 6396 if (ta != NULL) 6397 error = 0; 6398 } else if (tu.ipft_name[0] != '\0') { 6399 ta = fr_findtunebyname(tu.ipft_name, ifs); 6400 if (ta != NULL) 6401 error = 0; 6402 } 6403 if (error != 0) 6404 break; 6405 6406 if (cmd == (ioctlcmd_t)SIOCIPFGET) { 6407 /* 6408 * Fetch the tuning parameters for a particular value 6409 */ 6410 tu.ipft_vlong = 0; 6411 if (ta->ipft_sz == sizeof(u_long)) 6412 tu.ipft_vlong = *ta->ipft_plong; 6413 else if (ta->ipft_sz == sizeof(u_int)) 6414 tu.ipft_vint = *ta->ipft_pint; 6415 else if (ta->ipft_sz == sizeof(u_short)) 6416 tu.ipft_vshort = *ta->ipft_pshort; 6417 else if (ta->ipft_sz == sizeof(u_char)) 6418 tu.ipft_vchar = *ta->ipft_pchar; 6419 tu.ipft_cookie = ta; 6420 tu.ipft_sz = ta->ipft_sz; 6421 tu.ipft_min = ta->ipft_min; 6422 tu.ipft_max = ta->ipft_max; 6423 tu.ipft_flags = ta->ipft_flags; 6424 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6425 6426 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) { 6427 /* 6428 * Set an internal parameter. The hard part here is 6429 * getting the new value safely and correctly out of 6430 * the kernel (given we only know its size, not type.) 6431 */ 6432 u_long in; 6433 6434 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) && 6435 (ifs->ifs_fr_running > 0)) { 6436 error = EBUSY; 6437 break; 6438 } 6439 6440 in = tu.ipft_vlong; 6441 if (in < ta->ipft_min || in > ta->ipft_max) { 6442 error = EINVAL; 6443 break; 6444 } 6445 6446 if (ta->ipft_sz == sizeof(u_long)) { 6447 tu.ipft_vlong = *ta->ipft_plong; 6448 *ta->ipft_plong = in; 6449 } else if (ta->ipft_sz == sizeof(u_int)) { 6450 tu.ipft_vint = *ta->ipft_pint; 6451 *ta->ipft_pint = (u_int)(in & 0xffffffff); 6452 } else if (ta->ipft_sz == sizeof(u_short)) { 6453 tu.ipft_vshort = *ta->ipft_pshort; 6454 *ta->ipft_pshort = (u_short)(in & 0xffff); 6455 } else if (ta->ipft_sz == sizeof(u_char)) { 6456 tu.ipft_vchar = *ta->ipft_pchar; 6457 *ta->ipft_pchar = (u_char)(in & 0xff); 6458 } 6459 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE); 6460 } 6461 break; 6462 6463 default : 6464 error = EINVAL; 6465 break; 6466 } 6467 6468 return error; 6469 } 6470 6471 6472 /* ------------------------------------------------------------------------ */ 6473 /* Function: fr_initialise */ 6474 /* Returns: int - 0 == success, < 0 == failure */ 6475 /* Parameters: None. */ 6476 /* */ 6477 /* Call of the initialise functions for all the various subsystems inside */ 6478 /* of IPFilter. If any of them should fail, return immeadiately a failure */ 6479 /* BUT do not try to recover from the error here. */ 6480 /* ------------------------------------------------------------------------ */ 6481 int fr_initialise(ifs) 6482 ipf_stack_t *ifs; 6483 { 6484 int i; 6485 6486 #ifdef IPFILTER_LOG 6487 i = fr_loginit(ifs); 6488 if (i < 0) 6489 return -10 + i; 6490 #endif 6491 i = fr_natinit(ifs); 6492 if (i < 0) 6493 return -20 + i; 6494 6495 i = fr_stateinit(ifs); 6496 if (i < 0) 6497 return -30 + i; 6498 6499 i = fr_authinit(ifs); 6500 if (i < 0) 6501 return -40 + i; 6502 6503 i = fr_fraginit(ifs); 6504 if (i < 0) 6505 return -50 + i; 6506 6507 i = appr_init(ifs); 6508 if (i < 0) 6509 return -60 + i; 6510 6511 #ifdef IPFILTER_SYNC 6512 i = ipfsync_init(ifs); 6513 if (i < 0) 6514 return -70 + i; 6515 #endif 6516 #ifdef IPFILTER_SCAN 6517 i = ipsc_init(ifs); 6518 if (i < 0) 6519 return -80 + i; 6520 #endif 6521 #ifdef IPFILTER_LOOKUP 6522 i = ip_lookup_init(ifs); 6523 if (i < 0) 6524 return -90 + i; 6525 #endif 6526 #ifdef IPFILTER_COMPILED 6527 ipfrule_add(ifs); 6528 #endif 6529 return 0; 6530 } 6531 6532 6533 /* ------------------------------------------------------------------------ */ 6534 /* Function: fr_deinitialise */ 6535 /* Returns: None. */ 6536 /* Parameters: None. */ 6537 /* */ 6538 /* Call all the various subsystem cleanup routines to deallocate memory or */ 6539 /* destroy locks or whatever they've done that they need to now undo. */ 6540 /* The order here IS important as there are some cross references of */ 6541 /* internal data structures. */ 6542 /* ------------------------------------------------------------------------ */ 6543 void fr_deinitialise(ifs) 6544 ipf_stack_t *ifs; 6545 { 6546 fr_fragunload(ifs); 6547 fr_authunload(ifs); 6548 fr_natunload(ifs); 6549 fr_stateunload(ifs); 6550 #ifdef IPFILTER_SCAN 6551 fr_scanunload(ifs); 6552 #endif 6553 appr_unload(ifs); 6554 6555 #ifdef IPFILTER_COMPILED 6556 ipfrule_remove(ifs); 6557 #endif 6558 6559 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6560 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs); 6561 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs); 6562 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs); 6563 6564 #ifdef IPFILTER_LOOKUP 6565 ip_lookup_unload(ifs); 6566 #endif 6567 6568 #ifdef IPFILTER_LOG 6569 fr_logunload(ifs); 6570 #endif 6571 } 6572 6573 6574 /* ------------------------------------------------------------------------ */ 6575 /* Function: fr_zerostats */ 6576 /* Returns: int - 0 = success, else failure */ 6577 /* Parameters: data(O) - pointer to pointer for copying data back to */ 6578 /* */ 6579 /* Copies the current statistics out to userspace and then zero's the */ 6580 /* current ones in the kernel. The lock is only held across the bzero() as */ 6581 /* the copyout may result in paging (ie network activity.) */ 6582 /* ------------------------------------------------------------------------ */ 6583 int fr_zerostats(data, ifs) 6584 caddr_t data; 6585 ipf_stack_t *ifs; 6586 { 6587 friostat_t fio; 6588 int error; 6589 6590 fr_getstat(&fio, ifs); 6591 error = copyoutptr(&fio, data, sizeof(fio)); 6592 if (error) 6593 return EFAULT; 6594 6595 WRITE_ENTER(&ifs->ifs_ipf_mutex); 6596 bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2); 6597 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 6598 6599 return 0; 6600 } 6601 6602 6603 #ifdef _KERNEL 6604 /* ------------------------------------------------------------------------ */ 6605 /* Function: fr_resolvedest */ 6606 /* Returns: Nil */ 6607 /* Parameters: fdp(IO) - pointer to destination information to resolve */ 6608 /* v(I) - IP protocol version to match */ 6609 /* */ 6610 /* Looks up an interface name in the frdest structure pointed to by fdp and */ 6611 /* if a matching name can be found for the particular IP protocol version */ 6612 /* then store the interface pointer in the frdest struct. If no match is */ 6613 /* found, then set the interface pointer to be -1 as NULL is considered to */ 6614 /* indicate there is no information at all in the structure. */ 6615 /* ------------------------------------------------------------------------ */ 6616 void fr_resolvedest(fdp, v, ifs) 6617 frdest_t *fdp; 6618 int v; 6619 ipf_stack_t *ifs; 6620 { 6621 fdp->fd_ifp = NULL; 6622 6623 if (*fdp->fd_ifname != '\0') { 6624 fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs); 6625 if (fdp->fd_ifp == NULL) 6626 fdp->fd_ifp = (void *)-1; 6627 } 6628 } 6629 #endif /* _KERNEL */ 6630 6631 6632 /* ------------------------------------------------------------------------ */ 6633 /* Function: fr_resolvenic */ 6634 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */ 6635 /* pointer to interface structure for NIC */ 6636 /* Parameters: name(I) - complete interface name */ 6637 /* v(I) - IP protocol version */ 6638 /* */ 6639 /* Look for a network interface structure that firstly has a matching name */ 6640 /* to that passed in and that is also being used for that IP protocol */ 6641 /* version (necessary on some platforms where there are separate listings */ 6642 /* for both IPv4 and IPv6 on the same physical NIC. */ 6643 /* */ 6644 /* One might wonder why name gets terminated with a \0 byte in here. The */ 6645 /* reason is an interface name could get into the kernel structures of ipf */ 6646 /* in any number of ways and so long as they all use the same sized array */ 6647 /* to put the name in, it makes sense to ensure it gets null terminated */ 6648 /* before it is used for its intended purpose - finding its match in the */ 6649 /* kernel's list of configured interfaces. */ 6650 /* */ 6651 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an */ 6652 /* array for the name that is LIFNAMSIZ bytes (at least) in length. */ 6653 /* ------------------------------------------------------------------------ */ 6654 void *fr_resolvenic(name, v, ifs) 6655 char *name; 6656 int v; 6657 ipf_stack_t *ifs; 6658 { 6659 void *nic; 6660 6661 if (name[0] == '\0') 6662 return NULL; 6663 6664 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) { 6665 return NULL; 6666 } 6667 6668 name[LIFNAMSIZ - 1] = '\0'; 6669 6670 nic = GETIFP(name, v, ifs); 6671 if (nic == NULL) 6672 nic = (void *)-1; 6673 return nic; 6674 } 6675 6676 void ipf_expiretokens(ifs) 6677 ipf_stack_t *ifs; 6678 { 6679 ipftoken_t *it; 6680 6681 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6682 while ((it = ifs->ifs_ipftokenhead) != NULL) { 6683 if (it->ipt_die > ifs->ifs_fr_ticks) 6684 break; 6685 6686 ipf_freetoken(it, ifs); 6687 } 6688 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 6689 } 6690 6691 6692 int ipf_deltoken(type, uid, ptr, ifs) 6693 int type, uid; 6694 void *ptr; 6695 ipf_stack_t *ifs; 6696 { 6697 ipftoken_t *it; 6698 int error = ESRCH; 6699 6700 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6701 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) 6702 if (ptr == it->ipt_ctx && type == it->ipt_type && 6703 uid == it->ipt_uid) { 6704 ipf_freetoken(it, ifs); 6705 error = 0; 6706 break; 6707 } 6708 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 6709 6710 return error; 6711 } 6712 6713 void ipf_unlinktoken(token, ifs) 6714 ipftoken_t *token; 6715 ipf_stack_t *ifs; 6716 { 6717 6718 if (ifs->ifs_ipftokentail == &token->ipt_next) 6719 ifs->ifs_ipftokentail = token->ipt_pnext; 6720 6721 *token->ipt_pnext = token->ipt_next; 6722 if (token->ipt_next != NULL) 6723 token->ipt_next->ipt_pnext = token->ipt_pnext; 6724 } 6725 6726 6727 6728 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs) 6729 int type, uid; 6730 void *ptr; 6731 ipf_stack_t *ifs; 6732 { 6733 ipftoken_t *it, *new; 6734 6735 KMALLOC(new, ipftoken_t *); 6736 6737 WRITE_ENTER(&ifs->ifs_ipf_tokens); 6738 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) { 6739 if (it->ipt_alive == 0) 6740 continue; 6741 if (ptr == it->ipt_ctx && type == it->ipt_type && 6742 uid == it->ipt_uid) 6743 break; 6744 } 6745 6746 if (it == NULL) { 6747 it = new; 6748 new = NULL; 6749 if (it == NULL) 6750 return NULL; 6751 it->ipt_data = NULL; 6752 it->ipt_ctx = ptr; 6753 it->ipt_uid = uid; 6754 it->ipt_type = type; 6755 it->ipt_next = NULL; 6756 it->ipt_alive = 1; 6757 } else { 6758 if (new != NULL) { 6759 KFREE(new); 6760 new = NULL; 6761 } 6762 6763 ipf_unlinktoken(it, ifs); 6764 } 6765 it->ipt_pnext = ifs->ifs_ipftokentail; 6766 *ifs->ifs_ipftokentail = it; 6767 ifs->ifs_ipftokentail = &it->ipt_next; 6768 it->ipt_next = NULL; 6769 6770 /* XXX: more needed */ 6771 it->ipt_die = ifs->ifs_fr_ticks + 2; 6772 6773 MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens); 6774 6775 return it; 6776 } 6777 6778 6779 void ipf_freetoken(token, ifs) 6780 ipftoken_t *token; 6781 ipf_stack_t *ifs; 6782 { 6783 void *data; 6784 6785 ipf_unlinktoken(token, ifs); 6786 6787 data = token->ipt_data; 6788 6789 if ((data != NULL) && (data != (void *)-1)) { 6790 switch (token->ipt_type) 6791 { 6792 case IPFGENITER_IPF : 6793 (void)fr_derefrule((frentry_t **)&data, ifs); 6794 break; 6795 case IPFGENITER_IPNAT : 6796 WRITE_ENTER(&ifs->ifs_ipf_nat); 6797 fr_ipnatderef((ipnat_t **)&data, ifs); 6798 RWLOCK_EXIT(&ifs->ifs_ipf_nat); 6799 break; 6800 case IPFGENITER_NAT : 6801 fr_natderef((nat_t **)&data, ifs); 6802 break; 6803 case IPFGENITER_STATE : 6804 fr_statederef(NULL, (ipstate_t **)&data, ifs); 6805 break; 6806 case IPFGENITER_FRAG : 6807 fr_fragderef((ipfr_t **)&data, &ifs->ifs_ipf_frag, ifs); 6808 break; 6809 case IPFGENITER_NATFRAG : 6810 fr_fragderef((ipfr_t **)&data, &ifs->ifs_ipf_natfrag, ifs); 6811 break; 6812 case IPFGENITER_HOSTMAP : 6813 fr_hostmapderef((hostmap_t **)&data); 6814 break; 6815 default : 6816 (void) ip_lookup_iterderef(token->ipt_type, data, ifs); 6817 break; 6818 } 6819 } 6820 6821 KFREE(token); 6822 } 6823 6824 int ipf_getnextrule(ipftoken_t *t, void *ptr, ipf_stack_t *ifs) 6825 { 6826 frentry_t *fr, *next, zero; 6827 ipfruleiter_t it; 6828 frgroup_t *fg; 6829 int error; 6830 6831 if (t == NULL || ptr == NULL) 6832 return EFAULT; 6833 error = fr_inobj(ptr, &it, IPFOBJ_IPFITER); 6834 if (error != 0) 6835 return error; 6836 if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6)) 6837 return EINVAL; 6838 if ((it.iri_inout != 0) && (it.iri_inout != 1)) 6839 return EINVAL; 6840 if ((it.iri_active != 0) && (it.iri_active != 1)) 6841 return EINVAL; 6842 if (it.iri_rule == NULL) 6843 return EFAULT; 6844 6845 fr = t->ipt_data; 6846 READ_ENTER(&ifs->ifs_ipf_mutex); 6847 if (fr == NULL) { 6848 if (*it.iri_group == '\0') { 6849 if (it.iri_ver == AF_INET) 6850 next = ifs->ifs_ipfilter 6851 [it.iri_inout][it.iri_active]; 6852 else 6853 next = ifs->ifs_ipfilter6 6854 [it.iri_inout][it.iri_active]; 6855 } else { 6856 fg = fr_findgroup(it.iri_group, IPL_LOGIPF, 6857 it.iri_active, NULL, ifs); 6858 if (fg != NULL) 6859 next = fg->fg_start; 6860 else 6861 next = NULL; 6862 } 6863 } else { 6864 next = fr->fr_next; 6865 } 6866 6867 if (next != NULL) { 6868 if (next->fr_next == NULL) { 6869 t->ipt_alive = 0; 6870 ipf_unlinktoken(t, ifs); 6871 KFREE(t); 6872 } else { 6873 MUTEX_ENTER(&next->fr_lock); 6874 next->fr_ref++; 6875 MUTEX_EXIT(&next->fr_lock); 6876 t->ipt_data = next; 6877 } 6878 } else { 6879 bzero(&zero, sizeof(zero)); 6880 next = &zero; 6881 ipf_freetoken(t, ifs); 6882 fr = NULL; 6883 } 6884 RWLOCK_EXIT(&ifs->ifs_ipf_mutex); 6885 6886 if (fr != NULL) { 6887 (void)fr_derefrule(&fr, ifs); 6888 } 6889 6890 error = COPYOUT(next, it.iri_rule, sizeof(*next)); 6891 if (error != 0) 6892 return EFAULT; 6893 6894 if (next->fr_data != NULL) { 6895 error = COPYOUT(next->fr_data, 6896 (char *)it.iri_rule + sizeof(*next), 6897 next->fr_dsize); 6898 if (error != 0) 6899 error = EFAULT; 6900 } 6901 6902 return error; 6903 } 6904 6905 6906 int ipf_frruleiter(data, uid, ctx, ifs) 6907 void *data, *ctx; 6908 int uid; 6909 ipf_stack_t *ifs; 6910 { 6911 ipftoken_t *token; 6912 int error; 6913 6914 token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs); 6915 if (token != NULL) 6916 error = ipf_getnextrule(token, data, ifs); 6917 else 6918 error = EFAULT; 6919 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 6920 6921 return error; 6922 } 6923 6924 6925 int ipf_geniter(token, itp, ifs) 6926 ipftoken_t *token; 6927 ipfgeniter_t *itp; 6928 ipf_stack_t *ifs; 6929 { 6930 int error; 6931 6932 switch (itp->igi_type) 6933 { 6934 case IPFGENITER_FRAG : 6935 error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list, 6936 &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag, ifs); 6937 break; 6938 default : 6939 error = EINVAL; 6940 break; 6941 } 6942 6943 return error; 6944 } 6945 6946 6947 int ipf_genericiter(data, uid, ctx, ifs) 6948 void *data, *ctx; 6949 int uid; 6950 ipf_stack_t *ifs; 6951 { 6952 ipftoken_t *token; 6953 ipfgeniter_t iter; 6954 int error; 6955 6956 error = fr_inobj(data, &iter, IPFOBJ_GENITER); 6957 if (error != 0) 6958 return error; 6959 6960 token = ipf_findtoken(iter.igi_type, uid, ctx, ifs); 6961 if (token != NULL) { 6962 token->ipt_subtype = iter.igi_type; 6963 error = ipf_geniter(token, &iter, ifs); 6964 } else 6965 error = EFAULT; 6966 RWLOCK_EXIT(&ifs->ifs_ipf_tokens); 6967 6968 return error; 6969 } 6970