xref: /titanic_44/usr/src/uts/common/inet/ipf/fil.c (revision bd670b35a010421b6e1a5536c34453a827007c81)
1 /*
2  * Copyright (C) 1993-2003 by Darren Reed.
3  *
4  * See the IPFILTER.LICENCE file for details on licencing.
5  *
6  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
7  * Use is subject to license terms.
8  */
9 
10 #if defined(KERNEL) || defined(_KERNEL)
11 # undef KERNEL
12 # undef _KERNEL
13 # define        KERNEL	1
14 # define        _KERNEL	1
15 #endif
16 #include <sys/errno.h>
17 #include <sys/types.h>
18 #include <sys/param.h>
19 #include <sys/time.h>
20 #if defined(__NetBSD__)
21 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL)
22 #  include "opt_ipfilter_log.h"
23 # endif
24 #endif
25 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
26     (__FreeBSD_version >= 220000)
27 # if (__FreeBSD_version >= 400000)
28 #  if !defined(IPFILTER_LKM)
29 #   include "opt_inet6.h"
30 #  endif
31 #  if (__FreeBSD_version == 400019)
32 #   define CSUM_DELAY_DATA
33 #  endif
34 # endif
35 # include <sys/filio.h>
36 #else
37 # include <sys/ioctl.h>
38 #endif
39 #if !defined(_AIX51)
40 # include <sys/fcntl.h>
41 #endif
42 #if defined(_KERNEL)
43 # include <sys/systm.h>
44 # include <sys/file.h>
45 #else
46 # include <stdio.h>
47 # include <string.h>
48 # include <stdlib.h>
49 # include <stddef.h>
50 # include <sys/file.h>
51 # define _KERNEL
52 # ifdef __OpenBSD__
53 struct file;
54 # endif
55 # include <sys/uio.h>
56 # undef _KERNEL
57 #endif
58 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
59     !defined(linux)
60 # include <sys/mbuf.h>
61 #else
62 # if !defined(linux)
63 #  include <sys/byteorder.h>
64 # endif
65 # if (SOLARIS2 < 5) && defined(sun)
66 #  include <sys/dditypes.h>
67 # endif
68 #endif
69 #ifdef __hpux
70 # define _NET_ROUTE_INCLUDED
71 #endif
72 #if !defined(linux)
73 # include <sys/protosw.h>
74 #endif
75 #include <sys/socket.h>
76 #include <net/if.h>
77 #ifdef sun
78 # include <net/af.h>
79 #endif
80 #if !defined(_KERNEL) && defined(__FreeBSD__)
81 # include "radix_ipf.h"
82 #endif
83 #include <net/route.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #if !defined(linux)
88 # include <netinet/ip_var.h>
89 #endif
90 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
91 # include <sys/hashing.h>
92 # include <netinet/in_var.h>
93 #endif
94 #include <netinet/tcp.h>
95 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
96 # include <netinet/udp.h>
97 # include <netinet/ip_icmp.h>
98 #endif
99 #ifdef __hpux
100 # undef _NET_ROUTE_INCLUDED
101 #endif
102 #include "netinet/ip_compat.h"
103 #ifdef	USE_INET6
104 # include <netinet/icmp6.h>
105 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
106 #  include <netinet6/in6_var.h>
107 # endif
108 #endif
109 #include <netinet/tcpip.h>
110 #include "netinet/ip_fil.h"
111 #include "netinet/ip_nat.h"
112 #include "netinet/ip_frag.h"
113 #include "netinet/ip_state.h"
114 #include "netinet/ip_proxy.h"
115 #include "netinet/ip_auth.h"
116 #include "netinet/ipf_stack.h"
117 #ifdef IPFILTER_SCAN
118 # include "netinet/ip_scan.h"
119 #endif
120 #ifdef IPFILTER_SYNC
121 # include "netinet/ip_sync.h"
122 #endif
123 #include "netinet/ip_pool.h"
124 #include "netinet/ip_htable.h"
125 #ifdef IPFILTER_COMPILED
126 # include "netinet/ip_rules.h"
127 #endif
128 #if defined(IPFILTER_BPF) && defined(_KERNEL)
129 # include <net/bpf.h>
130 #endif
131 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
132 # include <sys/malloc.h>
133 # if defined(_KERNEL) && !defined(IPFILTER_LKM)
134 #  include "opt_ipfilter.h"
135 # endif
136 #endif
137 #include "netinet/ipl.h"
138 /* END OF INCLUDES */
139 
140 #if !defined(lint)
141 static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
142 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $";
143 #endif
144 
145 #ifndef	_KERNEL
146 # include "ipf.h"
147 # include "ipt.h"
148 # include "bpf-ipf.h"
149 extern	int	opts;
150 
151 # define	FR_VERBOSE(verb_pr)			verbose verb_pr
152 # define	FR_DEBUG(verb_pr)			debug verb_pr
153 #else /* #ifndef _KERNEL */
154 # define	FR_VERBOSE(verb_pr)
155 # define	FR_DEBUG(verb_pr)
156 #endif /* _KERNEL */
157 
158 
159 char	ipfilter_version[] = IPL_VERSION;
160 int	fr_features = 0
161 #ifdef	IPFILTER_LKM
162 		| IPF_FEAT_LKM
163 #endif
164 #ifdef	IPFILTER_LOG
165 		| IPF_FEAT_LOG
166 #endif
167 #ifdef	IPFILTER_LOOKUP
168 		| IPF_FEAT_LOOKUP
169 #endif
170 #ifdef	IPFILTER_BPF
171 		| IPF_FEAT_BPF
172 #endif
173 #ifdef	IPFILTER_COMPILED
174 		| IPF_FEAT_COMPILED
175 #endif
176 #ifdef	IPFILTER_CKSUM
177 		| IPF_FEAT_CKSUM
178 #endif
179 #ifdef	IPFILTER_SYNC
180 		| IPF_FEAT_SYNC
181 #endif
182 #ifdef	IPFILTER_SCAN
183 		| IPF_FEAT_SCAN
184 #endif
185 #ifdef	USE_INET6
186 		| IPF_FEAT_IPV6
187 #endif
188 	;
189 
190 #define	IPF_BUMP(x)	(x)++
191 
192 static	INLINE int	fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
193 static	INLINE int	fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
194 static	int		fr_portcheck __P((frpcmp_t *, u_short *));
195 static	int		frflushlist __P((int, minor_t, int *, frentry_t **,
196 					 ipf_stack_t *));
197 static	ipfunc_t	fr_findfunc __P((ipfunc_t));
198 static	frentry_t	*fr_firewall __P((fr_info_t *, u_32_t *));
199 static	int		fr_funcinit __P((frentry_t *fr, ipf_stack_t *));
200 static	INLINE void	frpr_ah __P((fr_info_t *));
201 static	INLINE void	frpr_esp __P((fr_info_t *));
202 static	INLINE void	frpr_gre __P((fr_info_t *));
203 static	INLINE void	frpr_udp __P((fr_info_t *));
204 static	INLINE void	frpr_tcp __P((fr_info_t *));
205 static	INLINE void	frpr_icmp __P((fr_info_t *));
206 static	INLINE void	frpr_ipv4hdr __P((fr_info_t *));
207 static	INLINE int	frpr_pullup __P((fr_info_t *, int));
208 static	INLINE void	frpr_short __P((fr_info_t *, int));
209 static	INLINE void	frpr_tcpcommon __P((fr_info_t *));
210 static	INLINE void	frpr_udpcommon __P((fr_info_t *));
211 static	INLINE int	fr_updateipid __P((fr_info_t *));
212 #ifdef	IPFILTER_LOOKUP
213 static	int		fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *));
214 static	INLINE void	*fr_resolvelookup __P((u_int, u_int, lookupfunc_t *,
215 					       ipf_stack_t *));
216 #endif
217 static	void		frsynclist __P((int, int, void *, char *, frentry_t *,
218     ipf_stack_t *));
219 static	void		*fr_ifsync __P((int, int, char *, char *,
220 					void *, void *, ipf_stack_t *));
221 static	ipftuneable_t	*fr_findtunebyname __P((const char *, ipf_stack_t *));
222 static	ipftuneable_t	*fr_findtunebycookie __P((void *, void **, ipf_stack_t *));
223 
224 /*
225  * bit values for identifying presence of individual IP options
226  * All of these tables should be ordered by increasing key value on the left
227  * hand side to allow for binary searching of the array and include a trailer
228  * with a 0 for the bitmask for linear searches to easily find the end with.
229  */
230 const	struct	optlist	ipopts[20] = {
231 	{ IPOPT_NOP,	0x000001 },
232 	{ IPOPT_RR,	0x000002 },
233 	{ IPOPT_ZSU,	0x000004 },
234 	{ IPOPT_MTUP,	0x000008 },
235 	{ IPOPT_MTUR,	0x000010 },
236 	{ IPOPT_ENCODE,	0x000020 },
237 	{ IPOPT_TS,	0x000040 },
238 	{ IPOPT_TR,	0x000080 },
239 	{ IPOPT_SECURITY, 0x000100 },
240 	{ IPOPT_LSRR,	0x000200 },
241 	{ IPOPT_E_SEC,	0x000400 },
242 	{ IPOPT_CIPSO,	0x000800 },
243 	{ IPOPT_SATID,	0x001000 },
244 	{ IPOPT_SSRR,	0x002000 },
245 	{ IPOPT_ADDEXT,	0x004000 },
246 	{ IPOPT_VISA,	0x008000 },
247 	{ IPOPT_IMITD,	0x010000 },
248 	{ IPOPT_EIP,	0x020000 },
249 	{ IPOPT_FINN,	0x040000 },
250 	{ 0,		0x000000 }
251 };
252 
253 #ifdef USE_INET6
254 struct optlist ip6exthdr[] = {
255 	{ IPPROTO_HOPOPTS,		0x000001 },
256 	{ IPPROTO_IPV6,			0x000002 },
257 	{ IPPROTO_ROUTING,		0x000004 },
258 	{ IPPROTO_FRAGMENT,		0x000008 },
259 	{ IPPROTO_ESP,			0x000010 },
260 	{ IPPROTO_AH,			0x000020 },
261 	{ IPPROTO_NONE,			0x000040 },
262 	{ IPPROTO_DSTOPTS,		0x000080 },
263 	{ 0,				0 }
264 };
265 #endif
266 
267 struct optlist tcpopts[] = {
268 	{ TCPOPT_NOP,			0x000001 },
269 	{ TCPOPT_MAXSEG,		0x000002 },
270 	{ TCPOPT_WINDOW,		0x000004 },
271 	{ TCPOPT_SACK_PERMITTED,	0x000008 },
272 	{ TCPOPT_SACK,			0x000010 },
273 	{ TCPOPT_TIMESTAMP,		0x000020 },
274 	{ 0,				0x000000 }
275 };
276 
277 /*
278  * bit values for identifying presence of individual IP security options
279  */
280 const	struct	optlist	secopt[8] = {
281 	{ IPSO_CLASS_RES4,	0x01 },
282 	{ IPSO_CLASS_TOPS,	0x02 },
283 	{ IPSO_CLASS_SECR,	0x04 },
284 	{ IPSO_CLASS_RES3,	0x08 },
285 	{ IPSO_CLASS_CONF,	0x10 },
286 	{ IPSO_CLASS_UNCL,	0x20 },
287 	{ IPSO_CLASS_RES2,	0x40 },
288 	{ IPSO_CLASS_RES1,	0x80 }
289 };
290 
291 
292 /*
293  * Table of functions available for use with call rules.
294  */
295 static ipfunc_resolve_t fr_availfuncs[] = {
296 #ifdef	IPFILTER_LOOKUP
297 	{ "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit },
298 	{ "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit },
299 #endif
300 	{ "", NULL }
301 };
302 
303 
304 /*
305  * Below we declare a list of constants used only by the ipf_extraflush()
306  * routine.  We are placing it here, instead of in ipf_extraflush() itself,
307  * because we want to make it visible to tools such as mdb, nm etc., so the
308  * values can easily be altered during debugging.
309  */
310 static	const	int	idletime_tab[] = {
311 	IPF_TTLVAL(30),		/* 30 seconds */
312 	IPF_TTLVAL(1800),	/* 30 minutes */
313 	IPF_TTLVAL(43200),	/* 12 hours */
314 	IPF_TTLVAL(345600),	/* 4 days */
315 };
316 
317 
318 /*
319  * The next section of code is a a collection of small routines that set
320  * fields in the fr_info_t structure passed based on properties of the
321  * current packet.  There are different routines for the same protocol
322  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
323  * will "special" inspection for setup, is now more easily done by adding
324  * a new routine and expanding the frpr_ipinit*() function rather than by
325  * adding more code to a growing switch statement.
326  */
327 #ifdef USE_INET6
328 static	INLINE int	frpr_ah6 __P((fr_info_t *));
329 static	INLINE void	frpr_esp6 __P((fr_info_t *));
330 static	INLINE void	frpr_gre6 __P((fr_info_t *));
331 static	INLINE void	frpr_udp6 __P((fr_info_t *));
332 static	INLINE void	frpr_tcp6 __P((fr_info_t *));
333 static	INLINE void	frpr_icmp6 __P((fr_info_t *));
334 static	INLINE void	frpr_ipv6hdr __P((fr_info_t *));
335 static	INLINE void	frpr_short6 __P((fr_info_t *, int));
336 static	INLINE int	frpr_hopopts6 __P((fr_info_t *));
337 static	INLINE int	frpr_routing6 __P((fr_info_t *));
338 static	INLINE int	frpr_dstopts6 __P((fr_info_t *));
339 static	INLINE int	frpr_fragment6 __P((fr_info_t *));
340 static	INLINE int	frpr_ipv6exthdr __P((fr_info_t *, int, int));
341 
342 
343 /* ------------------------------------------------------------------------ */
344 /* Function:    frpr_short6                                                 */
345 /* Returns:     void                                                        */
346 /* Parameters:  fin(I) - pointer to packet information                      */
347 /*                                                                          */
348 /* IPv6 Only                                                                */
349 /* This is function enforces the 'is a packet too short to be legit' rule   */
350 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
351 /* for frpr_short() for more details.                                       */
352 /* ------------------------------------------------------------------------ */
353 static INLINE void frpr_short6(fin, xmin)
354 fr_info_t *fin;
355 int xmin;
356 {
357 
358 	if (fin->fin_dlen < xmin)
359 		fin->fin_flx |= FI_SHORT;
360 }
361 
362 
363 /* ------------------------------------------------------------------------ */
364 /* Function:    frpr_ipv6hdr                                                */
365 /* Returns:     Nil                                                         */
366 /* Parameters:  fin(I) - pointer to packet information                      */
367 /*                                                                          */
368 /* IPv6 Only                                                                */
369 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
370 /* per-protocol analyzer if it exists.                                      */
371 /* ------------------------------------------------------------------------ */
372 static INLINE void frpr_ipv6hdr(fin)
373 fr_info_t *fin;
374 {
375 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
376 	int p, go = 1, i, hdrcount;
377 	fr_ip_t *fi = &fin->fin_fi;
378 
379 	fin->fin_off = 0;
380 
381 	fi->fi_tos = 0;
382 	fi->fi_optmsk = 0;
383 	fi->fi_secmsk = 0;
384 	fi->fi_auth = 0;
385 
386 	p = ip6->ip6_nxt;
387 	fi->fi_ttl = ip6->ip6_hlim;
388 	fi->fi_src.in6 = ip6->ip6_src;
389 	fi->fi_dst.in6 = ip6->ip6_dst;
390 	fin->fin_id = 0;
391 
392 	hdrcount = 0;
393 	while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) {
394 		switch (p)
395 		{
396 		case IPPROTO_UDP :
397 			frpr_udp6(fin);
398 			go = 0;
399 			break;
400 
401 		case IPPROTO_TCP :
402 			frpr_tcp6(fin);
403 			go = 0;
404 			break;
405 
406 		case IPPROTO_ICMPV6 :
407 			frpr_icmp6(fin);
408 			go = 0;
409 			break;
410 
411 		case IPPROTO_GRE :
412 			frpr_gre6(fin);
413 			go = 0;
414 			break;
415 
416 		case IPPROTO_HOPOPTS :
417 			/*
418 			 * hop by hop ext header is only allowed
419 			 * right after IPv6 header.
420 			 */
421 			if (hdrcount != 0) {
422 				fin->fin_flx |= FI_BAD;
423 				p = IPPROTO_NONE;
424 			} else {
425 				p = frpr_hopopts6(fin);
426 			}
427 			break;
428 
429 		case IPPROTO_DSTOPTS :
430 			p = frpr_dstopts6(fin);
431 			break;
432 
433 		case IPPROTO_ROUTING :
434 			p = frpr_routing6(fin);
435 			break;
436 
437 		case IPPROTO_AH :
438 			p = frpr_ah6(fin);
439 			break;
440 
441 		case IPPROTO_ESP :
442 			frpr_esp6(fin);
443 			go = 0;
444 			break;
445 
446 		case IPPROTO_IPV6 :
447 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
448 				if (ip6exthdr[i].ol_val == p) {
449 					fin->fin_flx |= ip6exthdr[i].ol_bit;
450 					break;
451 				}
452 			go = 0;
453 			break;
454 
455 		case IPPROTO_NONE :
456 			go = 0;
457 			break;
458 
459 		case IPPROTO_FRAGMENT :
460 			p = frpr_fragment6(fin);
461 			if (fin->fin_off != 0)  /* Not the first frag */
462 				go = 0;
463 			break;
464 
465 		default :
466 			go = 0;
467 			break;
468 		}
469 		hdrcount++;
470 
471 		/*
472 		 * It is important to note that at this point, for the
473 		 * extension headers (go != 0), the entire header may not have
474 		 * been pulled up when the code gets to this point.  This is
475 		 * only done for "go != 0" because the other header handlers
476 		 * will all pullup their complete header.  The other indicator
477 		 * of an incomplete packet is that this was just an extension
478 		 * header.
479 		 */
480 		if ((go != 0) && (p != IPPROTO_NONE) &&
481 		    (frpr_pullup(fin, 0) == -1)) {
482 			p = IPPROTO_NONE;
483 			go = 0;
484 		}
485 	}
486 	fi->fi_p = p;
487 }
488 
489 
490 /* ------------------------------------------------------------------------ */
491 /* Function:    frpr_ipv6exthdr                                             */
492 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
493 /* Parameters:  fin(I)      - pointer to packet information                 */
494 /*              multiple(I) - flag indicating yes/no if multiple occurances */
495 /*                            of this extension header are allowed.         */
496 /*              proto(I)    - protocol number for this extension header     */
497 /*                                                                          */
498 /* IPv6 Only                                                                */
499 /* This function expects to find an IPv6 extension header at fin_dp.        */
500 /* There must be at least 8 bytes of data at fin_dp for there to be a valid */
501 /* extension header present. If a good one is found, fin_dp is advanced to  */
502 /* point at the first piece of data after the extension header, fin_exthdr  */
503 /* points to the start of the extension header and the "protocol" of the    */
504 /* *NEXT* header is returned.                                               */
505 /* ------------------------------------------------------------------------ */
506 static INLINE int frpr_ipv6exthdr(fin, multiple, proto)
507 fr_info_t *fin;
508 int multiple, proto;
509 {
510 	struct ip6_ext *hdr;
511 	u_short shift;
512 	int i;
513 
514 	fin->fin_flx |= FI_V6EXTHDR;
515 
516 				/* 8 is default length of extension hdr */
517 	if ((fin->fin_dlen - 8) < 0) {
518 		fin->fin_flx |= FI_SHORT;
519 		return IPPROTO_NONE;
520 	}
521 
522 	if (frpr_pullup(fin, 8) == -1)
523 		return IPPROTO_NONE;
524 
525 	hdr = fin->fin_dp;
526 	shift = 8 + (hdr->ip6e_len << 3);
527 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
528 		fin->fin_flx |= FI_BAD;
529 		return IPPROTO_NONE;
530 	}
531 
532 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
533 		if (ip6exthdr[i].ol_val == proto) {
534 			/*
535 			 * Most IPv6 extension headers are only allowed once.
536 			 */
537 			if ((multiple == 0) &&
538 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
539 				fin->fin_flx |= FI_BAD;
540 			else
541 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
542 			break;
543 		}
544 
545 	fin->fin_dp = (char *)fin->fin_dp + shift;
546 	fin->fin_dlen -= shift;
547 
548 	return hdr->ip6e_nxt;
549 }
550 
551 
552 /* ------------------------------------------------------------------------ */
553 /* Function:    frpr_hopopts6                                               */
554 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
555 /* Parameters:  fin(I) - pointer to packet information                      */
556 /*                                                                          */
557 /* IPv6 Only                                                                */
558 /* This is function checks pending hop by hop options extension header      */
559 /* ------------------------------------------------------------------------ */
560 static INLINE int frpr_hopopts6(fin)
561 fr_info_t *fin;
562 {
563 	return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
564 }
565 
566 
567 /* ------------------------------------------------------------------------ */
568 /* Function:    frpr_routing6                                               */
569 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
570 /* Parameters:  fin(I) - pointer to packet information                      */
571 /*                                                                          */
572 /* IPv6 Only                                                                */
573 /* This is function checks pending routing extension header                 */
574 /* ------------------------------------------------------------------------ */
575 static INLINE int frpr_routing6(fin)
576 fr_info_t *fin;
577 {
578 	struct ip6_ext *hdr;
579 	int shift;
580 
581 	hdr = fin->fin_dp;
582 	if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE)
583 		return IPPROTO_NONE;
584 
585 	shift = 8 + (hdr->ip6e_len << 3);
586 	/*
587 	 * Nasty extension header length?
588 	 */
589 	if ((hdr->ip6e_len << 3) & 15) {
590 		fin->fin_flx |= FI_BAD;
591 		/*
592 		 * Compensate for the changes made in frpr_ipv6exthdr()
593 		 */
594 		fin->fin_dlen += shift;
595 		fin->fin_dp = (char *)fin->fin_dp - shift;
596 		return IPPROTO_NONE;
597 	}
598 
599 	return hdr->ip6e_nxt;
600 }
601 
602 
603 /* ------------------------------------------------------------------------ */
604 /* Function:    frpr_fragment6                                              */
605 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
606 /* Parameters:  fin(I) - pointer to packet information                      */
607 /*                                                                          */
608 /* IPv6 Only                                                                */
609 /* Examine the IPv6 fragment header and extract fragment offset information.*/
610 /*                                                                          */
611 /* We don't know where the transport layer header (or whatever is next is), */
612 /* as it could be behind destination options (amongst others).  Because     */
613 /* there is no fragment cache, there is no knowledge about whether or not an*/
614 /* upper layer header has been seen (or where it ends) and thus we are not  */
615 /* able to continue processing beyond this header with any confidence.      */
616 /* ------------------------------------------------------------------------ */
617 static INLINE int frpr_fragment6(fin)
618 fr_info_t *fin;
619 {
620 	struct ip6_frag *frag;
621 	int extoff = 0;
622 
623 	fin->fin_flx |= FI_FRAG;
624 
625 	/*
626 	 * A fragmented IPv6 packet implies that there must be something
627 	 * else after the fragment.
628 	 */
629 	if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE)
630 		goto badv6frag;
631 
632 	if (frpr_pullup(fin, sizeof(*frag)) == -1)
633 		goto badv6frag;
634 
635 	frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag));
636 	/*
637 	 * Fragment but no fragmentation info set?  Bad packet...
638 	 */
639 	if (frag->ip6f_offlg == 0)
640 		goto badv6frag;
641 
642 	fin->fin_id = frag->ip6f_ident;
643 	fin->fin_dp = (char *)frag + sizeof(*frag);
644 	fin->fin_dlen -= sizeof(*frag);
645 	/* length of hdrs(after frag hdr) + data */
646 	extoff = sizeof(*frag);
647 
648 	/*
649 	 * If the frag is not the last one and the payload length
650 	 * is not multiple of 8, it must be dropped.
651 	 */
652 	if (((frag->ip6f_offlg & IP6F_MORE_FRAG) && (fin->fin_dlen & 7)) ||
653 	    (frag->ip6f_offlg == 0)) {
654 badv6frag:
655 		fin->fin_dp = (char *)fin->fin_dp - extoff;
656 		fin->fin_dlen += extoff;
657 		fin->fin_flx |= FI_BAD;
658 		return IPPROTO_NONE;
659 	}
660 
661 	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
662 	if (fin->fin_off != 0)
663 		fin->fin_flx |= FI_FRAGBODY;
664 
665 	if (frag->ip6f_offlg & IP6F_MORE_FRAG)
666 		fin->fin_flx |= FI_MOREFRAG;
667 
668 	return frag->ip6f_nxt;
669 }
670 
671 
672 /* ------------------------------------------------------------------------ */
673 /* Function:    frpr_dstopts6                                               */
674 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
675 /* Parameters:  fin(I) - pointer to packet information                      */
676 /*              nextheader(I) - stores next header value                    */
677 /*                                                                          */
678 /* IPv6 Only                                                                */
679 /* This is function checks pending destination options extension header     */
680 /* ------------------------------------------------------------------------ */
681 static INLINE int frpr_dstopts6(fin)
682 fr_info_t *fin;
683 {
684 	return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS);
685 }
686 
687 
688 /* ------------------------------------------------------------------------ */
689 /* Function:    frpr_icmp6                                                  */
690 /* Returns:     void                                                        */
691 /* Parameters:  fin(I) - pointer to packet information                      */
692 /*                                                                          */
693 /* IPv6 Only                                                                */
694 /* This routine is mainly concerned with determining the minimum valid size */
695 /* for an ICMPv6 packet.                                                    */
696 /* ------------------------------------------------------------------------ */
697 static INLINE void frpr_icmp6(fin)
698 fr_info_t *fin;
699 {
700 	int minicmpsz = sizeof(struct icmp6_hdr);
701 	struct icmp6_hdr *icmp6;
702 
703 	if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1)
704 		return;
705 
706 	if (fin->fin_dlen > 1) {
707 		icmp6 = fin->fin_dp;
708 
709 		fin->fin_data[0] = *(u_short *)icmp6;
710 
711 		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
712 			fin->fin_flx |= FI_ICMPQUERY;
713 
714 		switch (icmp6->icmp6_type)
715 		{
716 		case ICMP6_ECHO_REPLY :
717 		case ICMP6_ECHO_REQUEST :
718 			if (fin->fin_dlen >= 6)
719 				fin->fin_data[1] = icmp6->icmp6_id;
720 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
721 			break;
722 		case ICMP6_DST_UNREACH :
723 		case ICMP6_PACKET_TOO_BIG :
724 		case ICMP6_TIME_EXCEEDED :
725 		case ICMP6_PARAM_PROB :
726 			if ((fin->fin_m != NULL) &&
727 			    (M_LEN(fin->fin_m) < fin->fin_plen)) {
728 				if (fr_coalesce(fin) != 1)
729 					return;
730 			}
731 			fin->fin_flx |= FI_ICMPERR;
732 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
733 			break;
734 		default :
735 			break;
736 		}
737 	}
738 
739 	frpr_short6(fin, minicmpsz);
740 }
741 
742 
743 /* ------------------------------------------------------------------------ */
744 /* Function:    frpr_udp6                                                   */
745 /* Returns:     void                                                        */
746 /* Parameters:  fin(I) - pointer to packet information                      */
747 /*                                                                          */
748 /* IPv6 Only                                                                */
749 /* Analyse the packet for IPv6/UDP properties.                              */
750 /* Is not expected to be called for fragmented packets.                     */
751 /* ------------------------------------------------------------------------ */
752 static INLINE void frpr_udp6(fin)
753 fr_info_t *fin;
754 {
755 
756 	fr_checkv6sum(fin);
757 
758 	frpr_short6(fin, sizeof(struct udphdr));
759 	if (frpr_pullup(fin, sizeof(struct udphdr)) == -1)
760 		return;
761 
762 	frpr_udpcommon(fin);
763 }
764 
765 
766 /* ------------------------------------------------------------------------ */
767 /* Function:    frpr_tcp6                                                   */
768 /* Returns:     void                                                        */
769 /* Parameters:  fin(I) - pointer to packet information                      */
770 /*                                                                          */
771 /* IPv6 Only                                                                */
772 /* Analyse the packet for IPv6/TCP properties.                              */
773 /* Is not expected to be called for fragmented packets.                     */
774 /* ------------------------------------------------------------------------ */
775 static INLINE void frpr_tcp6(fin)
776 fr_info_t *fin;
777 {
778 
779 	fr_checkv6sum(fin);
780 
781 	frpr_short6(fin, sizeof(struct tcphdr));
782 	if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1)
783 		return;
784 
785 	frpr_tcpcommon(fin);
786 }
787 
788 
789 /* ------------------------------------------------------------------------ */
790 /* Function:    frpr_esp6                                                   */
791 /* Returns:     void                                                        */
792 /* Parameters:  fin(I) - pointer to packet information                      */
793 /*                                                                          */
794 /* IPv6 Only                                                                */
795 /* Analyse the packet for ESP properties.                                   */
796 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
797 /* even though the newer ESP packets must also have a sequence number that  */
798 /* is 32bits as well, it is not possible(?) to determine the version from a */
799 /* simple packet header.                                                    */
800 /* ------------------------------------------------------------------------ */
801 static INLINE void frpr_esp6(fin)
802 fr_info_t *fin;
803 {
804 	int i;
805 	frpr_short6(fin, sizeof(grehdr_t));
806 
807 	(void) frpr_pullup(fin, 8);
808 
809 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
810 		if (ip6exthdr[i].ol_val == IPPROTO_ESP) {
811 			fin->fin_optmsk |= ip6exthdr[i].ol_bit;
812 			break;
813 		}
814 }
815 
816 
817 /* ------------------------------------------------------------------------ */
818 /* Function:    frpr_ah6                                                    */
819 /* Returns:     void                                                        */
820 /* Parameters:  fin(I) - pointer to packet information                      */
821 /*                                                                          */
822 /* IPv6 Only                                                                */
823 /* Analyse the packet for AH properties.                                    */
824 /* The minimum length is taken to be the combination of all fields in the   */
825 /* header being present and no authentication data (null algorithm used.)   */
826 /* ------------------------------------------------------------------------ */
827 static INLINE int frpr_ah6(fin)
828 fr_info_t *fin;
829 {
830 	authhdr_t *ah;
831 	int i, shift;
832 
833 	frpr_short6(fin, 12);
834 
835 	if (frpr_pullup(fin, sizeof(*ah)) == -1)
836 		return IPPROTO_NONE;
837 
838 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
839 		if (ip6exthdr[i].ol_val == IPPROTO_AH) {
840 			fin->fin_optmsk |= ip6exthdr[i].ol_bit;
841 			break;
842 		}
843 
844 	ah = (authhdr_t *)fin->fin_dp;
845 
846 	shift = (ah->ah_plen + 2) * 4;
847 	fin->fin_dlen -= shift;
848 	fin->fin_dp = (char*)fin->fin_dp + shift;
849 
850 	return ah->ah_next;
851 }
852 
853 
854 /* ------------------------------------------------------------------------ */
855 /* Function:    frpr_gre6                                                   */
856 /* Returns:     void                                                        */
857 /* Parameters:  fin(I) - pointer to packet information                      */
858 /*                                                                          */
859 /* Analyse the packet for GRE properties.                                   */
860 /* ------------------------------------------------------------------------ */
861 static INLINE void frpr_gre6(fin)
862 fr_info_t *fin;
863 {
864 	grehdr_t *gre;
865 
866 	frpr_short6(fin, sizeof(grehdr_t));
867 
868 	if (frpr_pullup(fin, sizeof(grehdr_t)) == -1)
869 		return;
870 
871 	gre = fin->fin_dp;
872 	if (GRE_REV(gre->gr_flags) == 1)
873 		fin->fin_data[0] = gre->gr_call;
874 }
875 #endif	/* USE_INET6 */
876 
877 
878 /* ------------------------------------------------------------------------ */
879 /* Function:    frpr_pullup                                                 */
880 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
881 /* Parameters:  fin(I)  - pointer to packet information                     */
882 /*              plen(I) - length (excluding L3 header) to pullup            */
883 /*                                                                          */
884 /* Short inline function to cut down on code duplication to perform a call  */
885 /* to fr_pullup to ensure there is the required amount of data,             */
886 /* consecutively in the packet buffer.                                      */
887 /* ------------------------------------------------------------------------ */
888 static INLINE int frpr_pullup(fin, plen)
889 fr_info_t *fin;
890 int plen;
891 {
892 #if defined(_KERNEL)
893 	if (fin->fin_m != NULL) {
894 		int ipoff;
895 
896 		ipoff = (char *)fin->fin_ip - MTOD(fin->fin_m, char *);
897 
898 		if (fin->fin_dp != NULL)
899 			plen += (char *)fin->fin_dp -
900 				((char *)fin->fin_ip + fin->fin_hlen);
901 		plen += fin->fin_hlen;
902 		/*
903 		 * We don't do 'plen += ipoff;' here. The fr_pullup() will
904 		 * do it for us.
905 		 */
906 		if (M_LEN(fin->fin_m) < plen + ipoff) {
907 			if (fr_pullup(fin->fin_m, fin, plen) == NULL)
908 				return -1;
909 		}
910 	}
911 #endif
912 	return 0;
913 }
914 
915 
916 /* ------------------------------------------------------------------------ */
917 /* Function:    frpr_short                                                  */
918 /* Returns:     void                                                        */
919 /* Parameters:  fin(I)  - pointer to packet information                     */
920 /*              xmin(I) - minimum header size                               */
921 /*                                                                          */
922 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
923 /* applying here is that the packet must not be fragmented within the layer */
924 /* 4 header.  That is, it must not be a fragment that has its offset set to */
925 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
926 /* entire layer 4 header must be present (min).                             */
927 /* ------------------------------------------------------------------------ */
928 static INLINE void frpr_short(fin, xmin)
929 fr_info_t *fin;
930 int xmin;
931 {
932 
933 	if (fin->fin_off == 0) {
934 		if (fin->fin_dlen < xmin)
935 			fin->fin_flx |= FI_SHORT;
936 	} else if (fin->fin_off < xmin) {
937 		fin->fin_flx |= FI_SHORT;
938 	}
939 }
940 
941 
942 /* ------------------------------------------------------------------------ */
943 /* Function:    frpr_icmp                                                   */
944 /* Returns:     void                                                        */
945 /* Parameters:  fin(I) - pointer to packet information                      */
946 /*                                                                          */
947 /* IPv4 Only                                                                */
948 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
949 /* except extrememly bad packets, both type and code will be present.       */
950 /* The expected minimum size of an ICMP packet is very much dependent on    */
951 /* the type of it.                                                          */
952 /*                                                                          */
953 /* XXX - other ICMP sanity checks?                                          */
954 /* ------------------------------------------------------------------------ */
955 static INLINE void frpr_icmp(fin)
956 fr_info_t *fin;
957 {
958 	int minicmpsz = sizeof(struct icmp);
959 	icmphdr_t *icmp;
960 	ip_t *oip;
961 	ipf_stack_t *ifs = fin->fin_ifs;
962 
963 	if (fin->fin_off != 0) {
964 		frpr_short(fin, ICMPERR_ICMPHLEN);
965 		return;
966 	}
967 
968 	if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1)
969 		return;
970 
971 	fr_checkv4sum(fin);
972 
973 	/*
974 	 * This is a right place to set icmp pointer, since the memory
975 	 * referenced by fin_dp could get reallocated. The code down below can
976 	 * rely on fact icmp variable always points to ICMP header.
977 	 */
978 	icmp = fin->fin_dp;
979 	fin->fin_data[0] = *(u_short *)icmp;
980 	fin->fin_data[1] = icmp->icmp_id;
981 
982 	switch (icmp->icmp_type)
983 	{
984 	case ICMP_ECHOREPLY :
985 	case ICMP_ECHO :
986 	/* Router discovery messaes - RFC 1256 */
987 	case ICMP_ROUTERADVERT :
988 	case ICMP_ROUTERSOLICIT :
989 		minicmpsz = ICMP_MINLEN;
990 		break;
991 	/*
992 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
993 	 * 3 * timestamp(3 * 4)
994 	 */
995 	case ICMP_TSTAMP :
996 	case ICMP_TSTAMPREPLY :
997 		minicmpsz = 20;
998 		break;
999 	/*
1000 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1001 	 * mask(4)
1002 	 */
1003 	case ICMP_MASKREQ :
1004 	case ICMP_MASKREPLY :
1005 			minicmpsz = 12;
1006 			break;
1007 	/*
1008 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1009 	 */
1010 	case ICMP_UNREACH :
1011 		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1012 			if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu)
1013 				fin->fin_flx |= FI_BAD;
1014 		}
1015 		/* FALLTHRU */
1016 	case ICMP_SOURCEQUENCH :
1017 	case ICMP_REDIRECT :
1018 	case ICMP_TIMXCEED :
1019 	case ICMP_PARAMPROB :
1020 		fin->fin_flx |= FI_ICMPERR;
1021 		if (fr_coalesce(fin) != 1)
1022 			return;
1023 		/*
1024 		 * ICMP error packets should not be generated for IP
1025 		 * packets that are a fragment that isn't the first
1026 		 * fragment.
1027 		 */
1028 		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1029 		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
1030 			fin->fin_flx |= FI_BAD;
1031 		break;
1032 	default :
1033 		break;
1034 	}
1035 
1036 	frpr_short(fin, minicmpsz);
1037 }
1038 
1039 
1040 /* ------------------------------------------------------------------------ */
1041 /* Function:    frpr_tcpcommon                                              */
1042 /* Returns:     void                                                        */
1043 /* Parameters:  fin(I) - pointer to packet information                      */
1044 /*                                                                          */
1045 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1046 /* and make some checks with how they interact with other fields.           */
1047 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1048 /* valid and mark the packet as bad if not.                                 */
1049 /* ------------------------------------------------------------------------ */
1050 static INLINE void frpr_tcpcommon(fin)
1051 fr_info_t *fin;
1052 {
1053 	int flags, tlen;
1054 	tcphdr_t *tcp;
1055 
1056 	fin->fin_flx |= FI_TCPUDP;
1057 	if (fin->fin_off != 0)
1058 		return;
1059 
1060 	if (frpr_pullup(fin, sizeof(*tcp)) == -1)
1061 		return;
1062 	tcp = fin->fin_dp;
1063 
1064 	if (fin->fin_dlen > 3) {
1065 		fin->fin_sport = ntohs(tcp->th_sport);
1066 		fin->fin_dport = ntohs(tcp->th_dport);
1067 	}
1068 
1069 	if ((fin->fin_flx & FI_SHORT) != 0)
1070 		return;
1071 
1072 	/*
1073 	 * Use of the TCP data offset *must* result in a value that is at
1074 	 * least the same size as the TCP header.
1075 	 */
1076 	tlen = TCP_OFF(tcp) << 2;
1077 	if (tlen < sizeof(tcphdr_t)) {
1078 		fin->fin_flx |= FI_BAD;
1079 		return;
1080 	}
1081 
1082 	flags = tcp->th_flags;
1083 	fin->fin_tcpf = tcp->th_flags;
1084 
1085 	/*
1086 	 * If the urgent flag is set, then the urgent pointer must
1087 	 * also be set and vice versa.  Good TCP packets do not have
1088 	 * just one of these set.
1089 	 */
1090 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1091 		fin->fin_flx |= FI_BAD;
1092 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1093 		/* Ignore this case, it shows up in "real" traffic with */
1094 		/* bogus values in the urgent pointer field. */
1095 		flags = flags; /* LINT */
1096 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1097 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1098 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1099 		fin->fin_flx |= FI_BAD;
1100 	} else if (!(flags & TH_ACK)) {
1101 		/*
1102 		 * If the ack bit isn't set, then either the SYN or
1103 		 * RST bit must be set.  If the SYN bit is set, then
1104 		 * we expect the ACK field to be 0.  If the ACK is
1105 		 * not set and if URG, PSH or FIN are set, consdier
1106 		 * that to indicate a bad TCP packet.
1107 		 */
1108 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1109 			/*
1110 			 * Cisco PIX sets the ACK field to a random value.
1111 			 * In light of this, do not set FI_BAD until a patch
1112 			 * is available from Cisco to ensure that
1113 			 * interoperability between existing systems is
1114 			 * achieved.
1115 			 */
1116 			/*fin->fin_flx |= FI_BAD*/;
1117 			flags = flags; /* LINT */
1118 		} else if (!(flags & (TH_RST|TH_SYN))) {
1119 			fin->fin_flx |= FI_BAD;
1120 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1121 			fin->fin_flx |= FI_BAD;
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * At this point, it's not exactly clear what is to be gained by
1127 	 * marking up which TCP options are and are not present.  The one we
1128 	 * are most interested in is the TCP window scale.  This is only in
1129 	 * a SYN packet [RFC1323] so we don't need this here...?
1130 	 * Now if we were to analyse the header for passive fingerprinting,
1131 	 * then that might add some weight to adding this...
1132 	 */
1133 	if (tlen == sizeof(tcphdr_t))
1134 		return;
1135 
1136 	if (frpr_pullup(fin, tlen) == -1)
1137 		return;
1138 
1139 #if 0
1140 	ip = fin->fin_ip;
1141 	s = (u_char *)(tcp + 1);
1142 	off = IP_HL(ip) << 2;
1143 # ifdef _KERNEL
1144 	if (fin->fin_mp != NULL) {
1145 		mb_t *m = *fin->fin_mp;
1146 
1147 		if (off + tlen > M_LEN(m))
1148 			return;
1149 	}
1150 # endif
1151 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1152 		opt = *s;
1153 		if (opt == '\0')
1154 			break;
1155 		else if (opt == TCPOPT_NOP)
1156 			ol = 1;
1157 		else {
1158 			if (tlen < 2)
1159 				break;
1160 			ol = (int)*(s + 1);
1161 			if (ol < 2 || ol > tlen)
1162 				break;
1163 		}
1164 
1165 		for (i = 9, mv = 4; mv >= 0; ) {
1166 			op = ipopts + i;
1167 			if (opt == (u_char)op->ol_val) {
1168 				optmsk |= op->ol_bit;
1169 				break;
1170 			}
1171 		}
1172 		tlen -= ol;
1173 		s += ol;
1174 	}
1175 #endif /* 0 */
1176 }
1177 
1178 
1179 
1180 /* ------------------------------------------------------------------------ */
1181 /* Function:    frpr_udpcommon                                              */
1182 /* Returns:     void                                                        */
1183 /* Parameters:  fin(I) - pointer to packet information                      */
1184 /*                                                                          */
1185 /* Extract the UDP source and destination ports, if present.  If compiled   */
1186 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1187 /* ------------------------------------------------------------------------ */
1188 static INLINE void frpr_udpcommon(fin)
1189 fr_info_t *fin;
1190 {
1191 	udphdr_t *udp;
1192 
1193 	fin->fin_flx |= FI_TCPUDP;
1194 
1195 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1196 		if (frpr_pullup(fin, sizeof(*udp)) == -1) {
1197 			fin->fin_flx |= FI_SHORT;
1198 			return;
1199 		}
1200 
1201 		udp = fin->fin_dp;
1202 
1203 		fin->fin_sport = ntohs(udp->uh_sport);
1204 		fin->fin_dport = ntohs(udp->uh_dport);
1205 	}
1206 }
1207 
1208 
1209 /* ------------------------------------------------------------------------ */
1210 /* Function:    frpr_tcp                                                    */
1211 /* Returns:     void                                                        */
1212 /* Parameters:  fin(I) - pointer to packet information                      */
1213 /*                                                                          */
1214 /* IPv4 Only                                                                */
1215 /* Analyse the packet for IPv4/TCP properties.                              */
1216 /* ------------------------------------------------------------------------ */
1217 static INLINE void frpr_tcp(fin)
1218 fr_info_t *fin;
1219 {
1220 
1221 	fr_checkv4sum(fin);
1222 
1223 	frpr_short(fin, sizeof(tcphdr_t));
1224 
1225 	frpr_tcpcommon(fin);
1226 }
1227 
1228 
1229 /* ------------------------------------------------------------------------ */
1230 /* Function:    frpr_udp                                                    */
1231 /* Returns:     void                                                        */
1232 /* Parameters:  fin(I) - pointer to packet information                      */
1233 /*                                                                          */
1234 /* IPv4 Only                                                                */
1235 /* Analyse the packet for IPv4/UDP properties.                              */
1236 /* ------------------------------------------------------------------------ */
1237 static INLINE void frpr_udp(fin)
1238 fr_info_t *fin;
1239 {
1240 
1241 	fr_checkv4sum(fin);
1242 
1243 	frpr_short(fin, sizeof(udphdr_t));
1244 
1245 	frpr_udpcommon(fin);
1246 }
1247 
1248 
1249 /* ------------------------------------------------------------------------ */
1250 /* Function:    frpr_esp                                                    */
1251 /* Returns:     void                                                        */
1252 /* Parameters:  fin(I) - pointer to packet information                      */
1253 /*                                                                          */
1254 /* Analyse the packet for ESP properties.                                   */
1255 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1256 /* even though the newer ESP packets must also have a sequence number that  */
1257 /* is 32bits as well, it is not possible(?) to determine the version from a */
1258 /* simple packet header.                                                    */
1259 /* ------------------------------------------------------------------------ */
1260 static INLINE void frpr_esp(fin)
1261 fr_info_t *fin;
1262 {
1263 	if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1))
1264 		return;
1265 
1266 	frpr_short(fin, 8);
1267 }
1268 
1269 
1270 /* ------------------------------------------------------------------------ */
1271 /* Function:    frpr_ah                                                     */
1272 /* Returns:     void                                                        */
1273 /* Parameters:  fin(I) - pointer to packet information                      */
1274 /*                                                                          */
1275 /* Analyse the packet for AH properties.                                    */
1276 /* The minimum length is taken to be the combination of all fields in the   */
1277 /* header being present and no authentication data (null algorithm used.)   */
1278 /* ------------------------------------------------------------------------ */
1279 static INLINE void frpr_ah(fin)
1280 fr_info_t *fin;
1281 {
1282 	authhdr_t *ah;
1283 	int len;
1284 
1285 	if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1))
1286 		return;
1287 
1288 	ah = (authhdr_t *)fin->fin_dp;
1289 
1290 	len = (ah->ah_plen + 2) << 2;
1291 	frpr_short(fin, len);
1292 }
1293 
1294 
1295 /* ------------------------------------------------------------------------ */
1296 /* Function:    frpr_gre                                                    */
1297 /* Returns:     void                                                        */
1298 /* Parameters:  fin(I) - pointer to packet information                      */
1299 /*                                                                          */
1300 /* Analyse the packet for GRE properties.                                   */
1301 /* ------------------------------------------------------------------------ */
1302 static INLINE void frpr_gre(fin)
1303 fr_info_t *fin;
1304 {
1305 	grehdr_t *gre;
1306 
1307 	if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1))
1308 		return;
1309 
1310 	frpr_short(fin, sizeof(grehdr_t));
1311 
1312 	if (fin->fin_off == 0) {
1313 		gre = fin->fin_dp;
1314 		if (GRE_REV(gre->gr_flags) == 1)
1315 			fin->fin_data[0] = gre->gr_call;
1316 	}
1317 }
1318 
1319 
1320 /* ------------------------------------------------------------------------ */
1321 /* Function:    frpr_ipv4hdr                                                */
1322 /* Returns:     void                                                        */
1323 /* Parameters:  fin(I) - pointer to packet information                      */
1324 /*                                                                          */
1325 /* IPv4 Only                                                                */
1326 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1327 /* Check all options present and flag their presence if any exist.          */
1328 /* ------------------------------------------------------------------------ */
1329 static INLINE void frpr_ipv4hdr(fin)
1330 fr_info_t *fin;
1331 {
1332 	u_short optmsk = 0, secmsk = 0, auth = 0;
1333 	int hlen, ol, mv, p, i;
1334 	const struct optlist *op;
1335 	u_char *s, opt;
1336 	u_short off;
1337 	fr_ip_t *fi;
1338 	ip_t *ip;
1339 
1340 	fi = &fin->fin_fi;
1341 	hlen = fin->fin_hlen;
1342 
1343 	ip = fin->fin_ip;
1344 	p = ip->ip_p;
1345 	fi->fi_p = p;
1346 	fi->fi_tos = ip->ip_tos;
1347 	fin->fin_id = ip->ip_id;
1348 	off = ip->ip_off;
1349 
1350 	/* Get both TTL and protocol */
1351 	fi->fi_p = ip->ip_p;
1352 	fi->fi_ttl = ip->ip_ttl;
1353 #if 0
1354 	(*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4));
1355 #endif
1356 
1357 	/* Zero out bits not used in IPv6 address */
1358 	fi->fi_src.i6[1] = 0;
1359 	fi->fi_src.i6[2] = 0;
1360 	fi->fi_src.i6[3] = 0;
1361 	fi->fi_dst.i6[1] = 0;
1362 	fi->fi_dst.i6[2] = 0;
1363 	fi->fi_dst.i6[3] = 0;
1364 
1365 	fi->fi_saddr = ip->ip_src.s_addr;
1366 	fi->fi_daddr = ip->ip_dst.s_addr;
1367 
1368 	/*
1369 	 * set packet attribute flags based on the offset and
1370 	 * calculate the byte offset that it represents.
1371 	 */
1372 	off &= IP_MF|IP_OFFMASK;
1373 	if (off != 0) {
1374 		int morefrag = off & IP_MF;
1375 
1376 		fi->fi_flx |= FI_FRAG;
1377 		if (morefrag)
1378 			fi->fi_flx |= FI_MOREFRAG;
1379 		off &= IP_OFFMASK;
1380 		if (off != 0) {
1381 			fin->fin_flx |= FI_FRAGBODY;
1382 			off <<= 3;
1383 			if ((off + fin->fin_dlen > 65535) ||
1384 			    (fin->fin_dlen == 0) ||
1385 			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1386 				/*
1387 				 * The length of the packet, starting at its
1388 				 * offset cannot exceed 65535 (0xffff) as the
1389 				 * length of an IP packet is only 16 bits.
1390 				 *
1391 				 * Any fragment that isn't the last fragment
1392 				 * must have a length greater than 0 and it
1393 				 * must be an even multiple of 8.
1394 				 */
1395 				fi->fi_flx |= FI_BAD;
1396 			}
1397 		}
1398 	}
1399 	fin->fin_off = off;
1400 
1401 	/*
1402 	 * Call per-protocol setup and checking
1403 	 */
1404 	switch (p)
1405 	{
1406 	case IPPROTO_UDP :
1407 		frpr_udp(fin);
1408 		break;
1409 	case IPPROTO_TCP :
1410 		frpr_tcp(fin);
1411 		break;
1412 	case IPPROTO_ICMP :
1413 		frpr_icmp(fin);
1414 		break;
1415 	case IPPROTO_AH :
1416 		frpr_ah(fin);
1417 		break;
1418 	case IPPROTO_ESP :
1419 		frpr_esp(fin);
1420 		break;
1421 	case IPPROTO_GRE :
1422 		frpr_gre(fin);
1423 		break;
1424 	}
1425 
1426 	ip = fin->fin_ip;
1427 	if (ip == NULL)
1428 		return;
1429 
1430 	/*
1431 	 * If it is a standard IP header (no options), set the flag fields
1432 	 * which relate to options to 0.
1433 	 */
1434 	if (hlen == sizeof(*ip)) {
1435 		fi->fi_optmsk = 0;
1436 		fi->fi_secmsk = 0;
1437 		fi->fi_auth = 0;
1438 		return;
1439 	}
1440 
1441 	/*
1442 	 * So the IP header has some IP options attached.  Walk the entire
1443 	 * list of options present with this packet and set flags to indicate
1444 	 * which ones are here and which ones are not.  For the somewhat out
1445 	 * of date and obscure security classification options, set a flag to
1446 	 * represent which classification is present.
1447 	 */
1448 	fi->fi_flx |= FI_OPTIONS;
1449 
1450 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1451 		opt = *s;
1452 		if (opt == '\0')
1453 			break;
1454 		else if (opt == IPOPT_NOP)
1455 			ol = 1;
1456 		else {
1457 			if (hlen < 2)
1458 				break;
1459 			ol = (int)*(s + 1);
1460 			if (ol < 2 || ol > hlen)
1461 				break;
1462 		}
1463 		for (i = 9, mv = 4; mv >= 0; ) {
1464 			op = ipopts + i;
1465 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1466 				optmsk |= op->ol_bit;
1467 				if (opt == IPOPT_SECURITY) {
1468 					const struct optlist *sp;
1469 					u_char	sec;
1470 					int j, m;
1471 
1472 					sec = *(s + 2);	/* classification */
1473 					for (j = 3, m = 2; m >= 0; ) {
1474 						sp = secopt + j;
1475 						if (sec == sp->ol_val) {
1476 							secmsk |= sp->ol_bit;
1477 							auth = *(s + 3);
1478 							auth *= 256;
1479 							auth += *(s + 4);
1480 							break;
1481 						}
1482 						if (sec < sp->ol_val)
1483 							j -= m;
1484 						else
1485 							j += m;
1486 						m--;
1487 					}
1488 				}
1489 				break;
1490 			}
1491 			if (opt < op->ol_val)
1492 				i -= mv;
1493 			else
1494 				i += mv;
1495 			mv--;
1496 		}
1497 		hlen -= ol;
1498 		s += ol;
1499 	}
1500 
1501 	/*
1502 	 *
1503 	 */
1504 	if (auth && !(auth & 0x0100))
1505 		auth &= 0xff00;
1506 	fi->fi_optmsk = optmsk;
1507 	fi->fi_secmsk = secmsk;
1508 	fi->fi_auth = auth;
1509 }
1510 
1511 
1512 /* ------------------------------------------------------------------------ */
1513 /* Function:    fr_makefrip                                                 */
1514 /* Returns:     int - 1 == hdr checking error, 0 == OK                      */
1515 /* Parameters:  hlen(I) - length of IP packet header                        */
1516 /*              ip(I)   - pointer to the IP header                          */
1517 /*              fin(IO) - pointer to packet information                     */
1518 /*                                                                          */
1519 /* Compact the IP header into a structure which contains just the info.     */
1520 /* which is useful for comparing IP headers with and store this information */
1521 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
1522 /* this function will be called with either an IPv4 or IPv6 packet.         */
1523 /* ------------------------------------------------------------------------ */
1524 int	fr_makefrip(hlen, ip, fin)
1525 int hlen;
1526 ip_t *ip;
1527 fr_info_t *fin;
1528 {
1529 	int v;
1530 
1531 	fin->fin_depth = 0;
1532 	fin->fin_hlen = (u_short)hlen;
1533 	fin->fin_ip = ip;
1534 	fin->fin_rule = 0xffffffff;
1535 	fin->fin_group[0] = -1;
1536 	fin->fin_group[1] = '\0';
1537 	fin->fin_dlen = fin->fin_plen - hlen;
1538 	fin->fin_dp = (char *)ip + hlen;
1539 
1540 	v = fin->fin_v;
1541 	if (v == 4)
1542 		frpr_ipv4hdr(fin);
1543 #ifdef	USE_INET6
1544 	else if (v == 6)
1545 		frpr_ipv6hdr(fin);
1546 #endif
1547 	if (fin->fin_ip == NULL)
1548 		return -1;
1549 	return 0;
1550 }
1551 
1552 
1553 /* ------------------------------------------------------------------------ */
1554 /* Function:    fr_portcheck                                                */
1555 /* Returns:     int - 1 == port matched, 0 == port match failed             */
1556 /* Parameters:  frp(I) - pointer to port check `expression'                 */
1557 /*              pop(I) - pointer to port number to evaluate                 */
1558 /*                                                                          */
1559 /* Perform a comparison of a port number against some other(s), using a     */
1560 /* structure with compare information stored in it.                         */
1561 /* ------------------------------------------------------------------------ */
1562 static INLINE int fr_portcheck(frp, pop)
1563 frpcmp_t *frp;
1564 u_short *pop;
1565 {
1566 	u_short tup, po;
1567 	int err = 1;
1568 
1569 	tup = *pop;
1570 	po = frp->frp_port;
1571 
1572 	/*
1573 	 * Do opposite test to that required and continue if that succeeds.
1574 	 */
1575 	switch (frp->frp_cmp)
1576 	{
1577 	case FR_EQUAL :
1578 		if (tup != po) /* EQUAL */
1579 			err = 0;
1580 		break;
1581 	case FR_NEQUAL :
1582 		if (tup == po) /* NOTEQUAL */
1583 			err = 0;
1584 		break;
1585 	case FR_LESST :
1586 		if (tup >= po) /* LESSTHAN */
1587 			err = 0;
1588 		break;
1589 	case FR_GREATERT :
1590 		if (tup <= po) /* GREATERTHAN */
1591 			err = 0;
1592 		break;
1593 	case FR_LESSTE :
1594 		if (tup > po) /* LT or EQ */
1595 			err = 0;
1596 		break;
1597 	case FR_GREATERTE :
1598 		if (tup < po) /* GT or EQ */
1599 			err = 0;
1600 		break;
1601 	case FR_OUTRANGE :
1602 		if (tup >= po && tup <= frp->frp_top) /* Out of range */
1603 			err = 0;
1604 		break;
1605 	case FR_INRANGE :
1606 		if (tup <= po || tup >= frp->frp_top) /* In range */
1607 			err = 0;
1608 		break;
1609 	case FR_INCRANGE :
1610 		if (tup < po || tup > frp->frp_top) /* Inclusive range */
1611 			err = 0;
1612 		break;
1613 	default :
1614 		break;
1615 	}
1616 	return err;
1617 }
1618 
1619 
1620 /* ------------------------------------------------------------------------ */
1621 /* Function:    fr_tcpudpchk                                                */
1622 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
1623 /* Parameters:  fin(I) - pointer to packet information                      */
1624 /*              ft(I)  - pointer to structure with comparison data          */
1625 /*                                                                          */
1626 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
1627 /* structure containing information that we want to match against.          */
1628 /* ------------------------------------------------------------------------ */
1629 int fr_tcpudpchk(fin, ft)
1630 fr_info_t *fin;
1631 frtuc_t *ft;
1632 {
1633 	int err = 1;
1634 
1635 	/*
1636 	 * Both ports should *always* be in the first fragment.
1637 	 * So far, I cannot find any cases where they can not be.
1638 	 *
1639 	 * compare destination ports
1640 	 */
1641 	if (ft->ftu_dcmp)
1642 		err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport);
1643 
1644 	/*
1645 	 * compare source ports
1646 	 */
1647 	if (err && ft->ftu_scmp)
1648 		err = fr_portcheck(&ft->ftu_src, &fin->fin_sport);
1649 
1650 	/*
1651 	 * If we don't have all the TCP/UDP header, then how can we
1652 	 * expect to do any sort of match on it ?  If we were looking for
1653 	 * TCP flags, then NO match.  If not, then match (which should
1654 	 * satisfy the "short" class too).
1655 	 */
1656 	if (err && (fin->fin_p == IPPROTO_TCP)) {
1657 		if (fin->fin_flx & FI_SHORT)
1658 			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
1659 		/*
1660 		 * Match the flags ?  If not, abort this match.
1661 		 */
1662 		if (ft->ftu_tcpfm &&
1663 		    ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) {
1664 			FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf,
1665 				 ft->ftu_tcpfm, ft->ftu_tcpf));
1666 			err = 0;
1667 		}
1668 	}
1669 	return err;
1670 }
1671 
1672 
1673 /* ------------------------------------------------------------------------ */
1674 /* Function:    fr_ipfcheck                                                 */
1675 /* Returns:     int - 0 == match, 1 == no match                             */
1676 /* Parameters:  fin(I)     - pointer to packet information                  */
1677 /*              fr(I)      - pointer to filter rule                         */
1678 /*              portcmp(I) - flag indicating whether to attempt matching on */
1679 /*                           TCP/UDP port data.                             */
1680 /*                                                                          */
1681 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
1682 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
1683 /* this function.                                                           */
1684 /* ------------------------------------------------------------------------ */
1685 static INLINE int fr_ipfcheck(fin, fr, portcmp)
1686 fr_info_t *fin;
1687 frentry_t *fr;
1688 int portcmp;
1689 {
1690 	u_32_t	*ld, *lm, *lip;
1691 	fripf_t *fri;
1692 	fr_ip_t *fi;
1693 	int i;
1694 	ipf_stack_t *ifs = fin->fin_ifs;
1695 
1696 	fi = &fin->fin_fi;
1697 	fri = fr->fr_ipf;
1698 	lip = (u_32_t *)fi;
1699 	lm = (u_32_t *)&fri->fri_mip;
1700 	ld = (u_32_t *)&fri->fri_ip;
1701 
1702 	/*
1703 	 * first 32 bits to check coversion:
1704 	 * IP version, TOS, TTL, protocol
1705 	 */
1706 	i = ((*lip & *lm) != *ld);
1707 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
1708 		   *lip, *lm, *ld));
1709 	if (i)
1710 		return 1;
1711 
1712 	/*
1713 	 * Next 32 bits is a constructed bitmask indicating which IP options
1714 	 * are present (if any) in this packet.
1715 	 */
1716 	lip++, lm++, ld++;
1717 	i |= ((*lip & *lm) != *ld);
1718 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
1719 		   *lip, *lm, *ld));
1720 	if (i)
1721 		return 1;
1722 
1723 	lip++, lm++, ld++;
1724 	/*
1725 	 * Unrolled loops (4 each, for 32 bits) for address checks.
1726 	 */
1727 	/*
1728 	 * Check the source address.
1729 	 */
1730 #ifdef	IPFILTER_LOOKUP
1731 	if (fr->fr_satype == FRI_LOOKUP) {
1732 		i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, ifs);
1733 		if (i == -1)
1734 			return 1;
1735 		lip += 3;
1736 		lm += 3;
1737 		ld += 3;
1738 	} else {
1739 #endif
1740 		i = ((*lip & *lm) != *ld);
1741 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
1742 			   *lip, *lm, *ld));
1743 		if (fi->fi_v == 6) {
1744 			lip++, lm++, ld++;
1745 			i |= ((*lip & *lm) != *ld);
1746 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
1747 				   *lip, *lm, *ld));
1748 			lip++, lm++, ld++;
1749 			i |= ((*lip & *lm) != *ld);
1750 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
1751 				   *lip, *lm, *ld));
1752 			lip++, lm++, ld++;
1753 			i |= ((*lip & *lm) != *ld);
1754 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
1755 				   *lip, *lm, *ld));
1756 		} else {
1757 			lip += 3;
1758 			lm += 3;
1759 			ld += 3;
1760 		}
1761 #ifdef	IPFILTER_LOOKUP
1762 	}
1763 #endif
1764 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
1765 	if (i)
1766 		return 1;
1767 
1768 	/*
1769 	 * Check the destination address.
1770 	 */
1771 	lip++, lm++, ld++;
1772 #ifdef	IPFILTER_LOOKUP
1773 	if (fr->fr_datype == FRI_LOOKUP) {
1774 		i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, ifs);
1775 		if (i == -1)
1776 			return 1;
1777 		lip += 3;
1778 		lm += 3;
1779 		ld += 3;
1780 	} else {
1781 #endif
1782 		i = ((*lip & *lm) != *ld);
1783 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
1784 			   *lip, *lm, *ld));
1785 		if (fi->fi_v == 6) {
1786 			lip++, lm++, ld++;
1787 			i |= ((*lip & *lm) != *ld);
1788 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
1789 				   *lip, *lm, *ld));
1790 			lip++, lm++, ld++;
1791 			i |= ((*lip & *lm) != *ld);
1792 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
1793 				   *lip, *lm, *ld));
1794 			lip++, lm++, ld++;
1795 			i |= ((*lip & *lm) != *ld);
1796 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
1797 				   *lip, *lm, *ld));
1798 		} else {
1799 			lip += 3;
1800 			lm += 3;
1801 			ld += 3;
1802 		}
1803 #ifdef	IPFILTER_LOOKUP
1804 	}
1805 #endif
1806 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
1807 	if (i)
1808 		return 1;
1809 	/*
1810 	 * IP addresses matched.  The next 32bits contains:
1811 	 * mast of old IP header security & authentication bits.
1812 	 */
1813 	lip++, lm++, ld++;
1814 	i |= ((*lip & *lm) != *ld);
1815 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n",
1816 		   *lip, *lm, *ld));
1817 
1818 	/*
1819 	 * Next we have 32 bits of packet flags.
1820 	 */
1821 	lip++, lm++, ld++;
1822 	i |= ((*lip & *lm) != *ld);
1823 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n",
1824 		   *lip, *lm, *ld));
1825 
1826 	if (i == 0) {
1827 		/*
1828 		 * If a fragment, then only the first has what we're
1829 		 * looking for here...
1830 		 */
1831 		if (portcmp) {
1832 			if (!fr_tcpudpchk(fin, &fr->fr_tuc))
1833 				i = 1;
1834 		} else {
1835 			if (fr->fr_dcmp || fr->fr_scmp ||
1836 			    fr->fr_tcpf || fr->fr_tcpfm)
1837 				i = 1;
1838 			if (fr->fr_icmpm || fr->fr_icmp) {
1839 				if (((fi->fi_p != IPPROTO_ICMP) &&
1840 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
1841 				    fin->fin_off || (fin->fin_dlen < 2))
1842 					i = 1;
1843 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
1844 					 fr->fr_icmp) {
1845 					FR_DEBUG(("i. %#x & %#x != %#x\n",
1846 						 fin->fin_data[0],
1847 						 fr->fr_icmpm, fr->fr_icmp));
1848 					i = 1;
1849 				}
1850 			}
1851 		}
1852 	}
1853 	return i;
1854 }
1855 
1856 
1857 /* ------------------------------------------------------------------------ */
1858 /* Function:    fr_scanlist                                                 */
1859 /* Returns:     int - result flags of scanning filter list                  */
1860 /* Parameters:  fin(I) - pointer to packet information                      */
1861 /*              pass(I) - default result to return for filtering            */
1862 /*                                                                          */
1863 /* Check the input/output list of rules for a match to the current packet.  */
1864 /* If a match is found, the value of fr_flags from the rule becomes the     */
1865 /* return value and fin->fin_fr points to the matched rule.                 */
1866 /*                                                                          */
1867 /* This function may be called recusively upto 16 times (limit inbuilt.)    */
1868 /* When unwinding, it should finish up with fin_depth as 0.                 */
1869 /*                                                                          */
1870 /* Could be per interface, but this gets real nasty when you don't have,    */
1871 /* or can't easily change, the kernel source code to .                      */
1872 /* ------------------------------------------------------------------------ */
1873 int fr_scanlist(fin, pass)
1874 fr_info_t *fin;
1875 u_32_t pass;
1876 {
1877 	int rulen, portcmp, off, logged, skip;
1878 	struct frentry *fr, *fnext;
1879 	u_32_t passt, passo;
1880 	ipf_stack_t *ifs = fin->fin_ifs;
1881 
1882 	/*
1883 	 * Do not allow nesting deeper than 16 levels.
1884 	 */
1885 	if (fin->fin_depth >= 16)
1886 		return pass;
1887 
1888 	fr = fin->fin_fr;
1889 
1890 	/*
1891 	 * If there are no rules in this list, return now.
1892 	 */
1893 	if (fr == NULL)
1894 		return pass;
1895 
1896 	skip = 0;
1897 	logged = 0;
1898 	portcmp = 0;
1899 	fin->fin_depth++;
1900 	fin->fin_fr = NULL;
1901 	off = fin->fin_off;
1902 
1903 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
1904 		portcmp = 1;
1905 
1906 	for (rulen = 0; fr; fr = fnext, rulen++) {
1907 		fnext = fr->fr_next;
1908 		if (skip != 0) {
1909 			FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags));
1910 			skip--;
1911 			continue;
1912 		}
1913 
1914 		/*
1915 		 * In all checks below, a null (zero) value in the
1916 		 * filter struture is taken to mean a wildcard.
1917 		 *
1918 		 * check that we are working for the right interface
1919 		 */
1920 #ifdef	_KERNEL
1921 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1922 			continue;
1923 #else
1924 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
1925 			printf("\n");
1926 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
1927 				  FR_ISPASS(pass) ? 'p' :
1928 				  FR_ISACCOUNT(pass) ? 'A' :
1929 				  FR_ISAUTH(pass) ? 'a' :
1930 				  (pass & FR_NOMATCH) ? 'n' :'b'));
1931 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1932 			continue;
1933 		FR_VERBOSE((":i"));
1934 #endif
1935 
1936 		switch (fr->fr_type)
1937 		{
1938 		case FR_T_IPF :
1939 		case FR_T_IPF|FR_T_BUILTIN :
1940 			if (fr_ipfcheck(fin, fr, portcmp))
1941 				continue;
1942 			break;
1943 #if defined(IPFILTER_BPF)
1944 		case FR_T_BPFOPC :
1945 		case FR_T_BPFOPC|FR_T_BUILTIN :
1946 		    {
1947 			u_char *mc;
1948 
1949 			if (*fin->fin_mp == NULL)
1950 				continue;
1951 			if (fin->fin_v != fr->fr_v)
1952 				continue;
1953 			mc = (u_char *)fin->fin_m;
1954 			if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0))
1955 				continue;
1956 			break;
1957 		    }
1958 #endif
1959 		case FR_T_CALLFUNC|FR_T_BUILTIN :
1960 		    {
1961 			frentry_t *f;
1962 
1963 			f = (*fr->fr_func)(fin, &pass);
1964 			if (f != NULL)
1965 				fr = f;
1966 			else
1967 				continue;
1968 			break;
1969 		    }
1970 		default :
1971 			break;
1972 		}
1973 
1974 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
1975 			if (fin->fin_nattag == NULL)
1976 				continue;
1977 			if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
1978 				continue;
1979 		}
1980 		FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen));
1981 
1982 		passt = fr->fr_flags;
1983 
1984 		/*
1985 		 * Allowing a rule with the "keep state" flag set to match
1986 		 * packets that have been tagged "out of window" by the TCP
1987 		 * state tracking is foolish as the attempt to add a new
1988 		 * state entry to the table will fail.
1989 		 */
1990 		if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW))
1991 			continue;
1992 
1993 		/*
1994 		 * If the rule is a "call now" rule, then call the function
1995 		 * in the rule, if it exists and use the results from that.
1996 		 * If the function pointer is bad, just make like we ignore
1997 		 * it, except for increasing the hit counter.
1998 		 */
1999 		if ((passt & FR_CALLNOW) != 0) {
2000 			IPF_BUMP(fr->fr_hits);
2001 			if ((fr->fr_func != NULL) &&
2002 			    (fr->fr_func != (ipfunc_t)-1)) {
2003 				frentry_t *frs;
2004 
2005 				frs = fin->fin_fr;
2006 				fin->fin_fr = fr;
2007 				fr = (*fr->fr_func)(fin, &passt);
2008 				if (fr == NULL) {
2009 					fin->fin_fr = frs;
2010 					continue;
2011 				}
2012 				passt = fr->fr_flags;
2013 				fin->fin_fr = fr;
2014 			}
2015 		} else {
2016 			fin->fin_fr = fr;
2017 		}
2018 
2019 #ifdef  IPFILTER_LOG
2020 		/*
2021 		 * Just log this packet...
2022 		 */
2023 		if ((passt & FR_LOGMASK) == FR_LOG) {
2024 			if (ipflog(fin, passt) == -1) {
2025 				if (passt & FR_LOGORBLOCK) {
2026 					passt &= ~FR_CMDMASK;
2027 					passt |= FR_BLOCK|FR_QUICK;
2028 				}
2029 				IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_skip);
2030 			}
2031 			IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_pkl);
2032 			logged = 1;
2033 		}
2034 #endif /* IPFILTER_LOG */
2035 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2036 		passo = pass;
2037 		if (FR_ISSKIP(passt))
2038 			skip = fr->fr_arg;
2039 		else if ((passt & FR_LOGMASK) != FR_LOG)
2040 			pass = passt;
2041 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2042 			fin->fin_icode = fr->fr_icode;
2043 		FR_DEBUG(("pass %#x\n", pass));
2044 		IPF_BUMP(fr->fr_hits);
2045 		fin->fin_rule = rulen;
2046 		(void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN);
2047 		if (fr->fr_grp != NULL) {
2048 			fin->fin_fr = *fr->fr_grp;
2049 			pass = fr_scanlist(fin, pass);
2050 			if (fin->fin_fr == NULL) {
2051 				fin->fin_rule = rulen;
2052 				(void) strncpy(fin->fin_group, fr->fr_group,
2053 					       FR_GROUPLEN);
2054 				fin->fin_fr = fr;
2055 			}
2056 			if (fin->fin_flx & FI_DONTCACHE)
2057 				logged = 1;
2058 		}
2059 
2060 		if (pass & FR_QUICK) {
2061 			/*
2062 			 * Finally, if we've asked to track state for this
2063 			 * packet, set it up.  Add state for "quick" rules
2064 			 * here so that if the action fails we can consider
2065 			 * the rule to "not match" and keep on processing
2066 			 * filter rules.
2067 			 */
2068 			if ((pass & FR_KEEPSTATE) &&
2069 			    !(fin->fin_flx & FI_STATE)) {
2070 				int out = fin->fin_out;
2071 
2072 				if (fr_addstate(fin, NULL, 0) != NULL) {
2073 					IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2074 				} else {
2075 					IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2076 					pass = passo;
2077 					continue;
2078 				}
2079 			}
2080 			break;
2081 		}
2082 	}
2083 	if (logged)
2084 		fin->fin_flx |= FI_DONTCACHE;
2085 	fin->fin_depth--;
2086 	return pass;
2087 }
2088 
2089 
2090 /* ------------------------------------------------------------------------ */
2091 /* Function:    fr_acctpkt                                                  */
2092 /* Returns:     frentry_t* - always returns NULL                            */
2093 /* Parameters:  fin(I) - pointer to packet information                      */
2094 /*              passp(IO) - pointer to current/new filter decision (unused) */
2095 /*                                                                          */
2096 /* Checks a packet against accounting rules, if there are any for the given */
2097 /* IP protocol version.                                                     */
2098 /*                                                                          */
2099 /* N.B.: this function returns NULL to match the prototype used by other    */
2100 /* functions called from the IPFilter "mainline" in fr_check().             */
2101 /* ------------------------------------------------------------------------ */
2102 frentry_t *fr_acctpkt(fin, passp)
2103 fr_info_t *fin;
2104 u_32_t *passp;
2105 {
2106 	char group[FR_GROUPLEN];
2107 	frentry_t *fr, *frsave;
2108 	u_32_t pass, rulen;
2109 	ipf_stack_t *ifs = fin->fin_ifs;
2110 
2111 	passp = passp;
2112 #ifdef	USE_INET6
2113 	if (fin->fin_v == 6)
2114 		fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active];
2115 	else
2116 #endif
2117 		fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active];
2118 
2119 	if (fr != NULL) {
2120 		frsave = fin->fin_fr;
2121 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2122 		rulen = fin->fin_rule;
2123 		fin->fin_fr = fr;
2124 		pass = fr_scanlist(fin, FR_NOMATCH);
2125 		if (FR_ISACCOUNT(pass)) {
2126 			IPF_BUMP(ifs->ifs_frstats[0].fr_acct);
2127 		}
2128 		fin->fin_fr = frsave;
2129 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2130 		fin->fin_rule = rulen;
2131 	}
2132 	return NULL;
2133 }
2134 
2135 
2136 /* ------------------------------------------------------------------------ */
2137 /* Function:    fr_firewall                                                 */
2138 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2139 /*                           were found, returns NULL.                      */
2140 /* Parameters:  fin(I) - pointer to packet information                      */
2141 /*              passp(IO) - pointer to current/new filter decision (unused) */
2142 /*                                                                          */
2143 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2144 /* there are any matches.  The first check is to see if a match can be seen */
2145 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2146 /* matching rule is found, take any appropriate actions as defined by the   */
2147 /* rule - except logging.                                                   */
2148 /* ------------------------------------------------------------------------ */
2149 static frentry_t *fr_firewall(fin, passp)
2150 fr_info_t *fin;
2151 u_32_t *passp;
2152 {
2153 	frentry_t *fr;
2154 	fr_info_t *fc;
2155 	u_32_t pass;
2156 	int out;
2157 	ipf_stack_t *ifs = fin->fin_ifs;
2158 
2159 	out = fin->fin_out;
2160 	pass = *passp;
2161 
2162 #ifdef	USE_INET6
2163 	if (fin->fin_v == 6)
2164 		fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active];
2165 	else
2166 #endif
2167 		fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active];
2168 
2169 	/*
2170 	 * If there are no rules loaded skip all checks and return.
2171 	 */
2172 	if (fin->fin_fr == NULL) {
2173 
2174 		if ((pass & FR_NOMATCH)) {
2175 			IPF_BUMP(ifs->ifs_frstats[out].fr_nom);
2176 		}
2177 
2178 		return (NULL);
2179 	}
2180 
2181 	fc = &ifs->ifs_frcache[out][CACHE_HASH(fin)];
2182 	READ_ENTER(&ifs->ifs_ipf_frcache);
2183 	if (!bcmp((char *)fin, (char *)fc, FI_CSIZE)) {
2184 		/*
2185 		 * copy cached data so we can unlock the mutexes earlier.
2186 		 */
2187 		bcopy((char *)fc, (char *)fin, FI_COPYSIZE);
2188 		RWLOCK_EXIT(&ifs->ifs_ipf_frcache);
2189 		IPF_BUMP(ifs->ifs_frstats[out].fr_chit);
2190 
2191 		if ((fr = fin->fin_fr) != NULL) {
2192 			IPF_BUMP(fr->fr_hits);
2193 			pass = fr->fr_flags;
2194 		}
2195 	} else {
2196 		RWLOCK_EXIT(&ifs->ifs_ipf_frcache);
2197 
2198 		pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2199 
2200 		if (((pass & FR_KEEPSTATE) == 0) &&
2201 		    ((fin->fin_flx & FI_DONTCACHE) == 0)) {
2202 			WRITE_ENTER(&ifs->ifs_ipf_frcache);
2203 			bcopy((char *)fin, (char *)fc, FI_COPYSIZE);
2204 			RWLOCK_EXIT(&ifs->ifs_ipf_frcache);
2205 		}
2206 
2207 		fr = fin->fin_fr;
2208 	}
2209 
2210 	if ((pass & FR_NOMATCH)) {
2211 		IPF_BUMP(ifs->ifs_frstats[out].fr_nom);
2212 	}
2213 
2214 	/*
2215 	 * Apply packets per second rate-limiting to a rule as required.
2216 	 */
2217 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2218 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2219 		pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST);
2220 		pass |= FR_BLOCK;
2221 		IPF_BUMP(ifs->ifs_frstats[out].fr_ppshit);
2222 	}
2223 
2224 	/*
2225 	 * If we fail to add a packet to the authorization queue, then we
2226 	 * drop the packet later.  However, if it was added then pretend
2227 	 * we've dropped it already.
2228 	 */
2229 	if (FR_ISAUTH(pass)) {
2230 		if (fr_newauth(fin->fin_m, fin) != 0) {
2231 #ifdef	_KERNEL
2232 			fin->fin_m = *fin->fin_mp = NULL;
2233 #else
2234 			;
2235 #endif
2236 			fin->fin_error = 0;
2237 		} else
2238 			fin->fin_error = ENOSPC;
2239 	}
2240 
2241 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2242 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2243 		(void) (*fr->fr_func)(fin, &pass);
2244 
2245 	/*
2246 	 * If a rule is a pre-auth rule, check again in the list of rules
2247 	 * loaded for authenticated use.  It does not particulary matter
2248 	 * if this search fails because a "preauth" result, from a rule,
2249 	 * is treated as "not a pass", hence the packet is blocked.
2250 	 */
2251 	if (FR_ISPREAUTH(pass)) {
2252 		if ((fin->fin_fr = ifs->ifs_ipauth) != NULL)
2253 			pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2254 	}
2255 
2256 	/*
2257 	 * If the rule has "keep frag" and the packet is actually a fragment,
2258 	 * then create a fragment state entry.
2259 	 */
2260 	if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) {
2261 		if (fin->fin_flx & FI_FRAG) {
2262 			if (fr_newfrag(fin, pass) == -1) {
2263 				IPF_BUMP(ifs->ifs_frstats[out].fr_bnfr);
2264 			} else {
2265 				IPF_BUMP(ifs->ifs_frstats[out].fr_nfr);
2266 			}
2267 		} else {
2268 			IPF_BUMP(ifs->ifs_frstats[out].fr_cfr);
2269 		}
2270 	}
2271 
2272 	/*
2273 	 * Finally, if we've asked to track state for this packet, set it up.
2274 	 */
2275 	if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) {
2276 		if (fr_addstate(fin, NULL, 0) != NULL) {
2277 			IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2278 		} else {
2279 			IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2280 			if (FR_ISPASS(pass)) {
2281 				pass &= ~FR_CMDMASK;
2282 				pass |= FR_BLOCK;
2283 			}
2284 		}
2285 	}
2286 
2287 	fr = fin->fin_fr;
2288 
2289 	if (passp != NULL)
2290 		*passp = pass;
2291 
2292 	return fr;
2293 }
2294 
2295 /* ------------------------------------------------------------------------ */
2296 /* Function:    fr_check                                                    */
2297 /* Returns:     int -  0 == packet allowed through,                         */
2298 /*              User space:                                                 */
2299 /*                    -1 == packet blocked                                  */
2300 /*                     1 == packet not matched                              */
2301 /*                    -2 == requires authentication                         */
2302 /*              Kernel:                                                     */
2303 /*                   > 0 == filter error # for packet                       */
2304 /* Parameters: ip(I)   - pointer to start of IPv4/6 packet                  */
2305 /*             hlen(I) - length of header                                   */
2306 /*             ifp(I)  - pointer to interface this packet is on             */
2307 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2308 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2309 /*                       IP packet.                                         */
2310 /* Solaris & HP-UX ONLY :                                                   */
2311 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2312 /*                       interface & direction.                             */
2313 /*                                                                          */
2314 /* fr_check() is the master function for all IPFilter packet processing.    */
2315 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2316 /* authorisation (or pre-authorisation), presence of related state info.,   */
2317 /* generating log entries, IP packet accounting, routing of packets as      */
2318 /* directed by firewall rules and of course whether or not to allow the     */
2319 /* packet to be further processed by the kernel.                            */
2320 /*                                                                          */
2321 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2322 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2323 /* by "mp" changed to a new buffer.                                         */
2324 /* ------------------------------------------------------------------------ */
2325 int fr_check(ip, hlen, ifp, out
2326 #if defined(_KERNEL) && defined(MENTAT)
2327 , qif, mp, ifs)
2328 void *qif;
2329 #else
2330 , mp, ifs)
2331 #endif
2332 mb_t **mp;
2333 ip_t *ip;
2334 int hlen;
2335 void *ifp;
2336 int out;
2337 ipf_stack_t *ifs;
2338 {
2339 	/*
2340 	 * The above really sucks, but short of writing a diff
2341 	 */
2342 	fr_info_t frinfo;
2343 	fr_info_t *fin = &frinfo;
2344 	u_32_t pass;
2345 	frentry_t *fr = NULL;
2346 	int v = IP_V(ip);
2347 	mb_t *mc = NULL;
2348 	mb_t *m;
2349 #ifdef USE_INET6
2350 	ip6_t *ip6;
2351 #endif
2352 #ifdef	_KERNEL
2353 # ifdef MENTAT
2354 	qpktinfo_t *qpi = qif;
2355 #endif
2356 #endif
2357 
2358 	SPL_INT(s);
2359 	pass = ifs->ifs_fr_pass;
2360 
2361 	/*
2362 	 * The first part of fr_check() deals with making sure that what goes
2363 	 * into the filtering engine makes some sense.  Information about the
2364 	 * the packet is distilled, collected into a fr_info_t structure and
2365 	 * the an attempt to ensure the buffer the packet is in is big enough
2366 	 * to hold all the required packet headers.
2367 	 */
2368 #ifdef	_KERNEL
2369 # ifdef MENTAT
2370 	if (!OK_32PTR(ip))
2371 		return 2;
2372 # endif
2373 
2374 
2375 	if (ifs->ifs_fr_running <= 0) {
2376 		return 0;
2377 	}
2378 
2379 	bzero((char *)fin, sizeof(*fin));
2380 
2381 # ifdef MENTAT
2382 	fin->fin_flx = qpi->qpi_flags & (FI_NOCKSUM|FI_MBCAST|FI_MULTICAST|
2383 					 FI_BROADCAST);
2384 	m = qpi->qpi_m;
2385 	fin->fin_qfm = m;
2386 	fin->fin_qpi = qpi;
2387 # else /* MENTAT */
2388 
2389 	m = *mp;
2390 
2391 #  if defined(M_MCAST)
2392 	if ((m->m_flags & M_MCAST) != 0)
2393 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2394 #  endif
2395 #  if defined(M_MLOOP)
2396 	if ((m->m_flags & M_MLOOP) != 0)
2397 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2398 #  endif
2399 #  if defined(M_BCAST)
2400 	if ((m->m_flags & M_BCAST) != 0)
2401 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2402 #  endif
2403 #  ifdef M_CANFASTFWD
2404 	/*
2405 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2406 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2407 	 * XXX get a "can-fast-forward" filter rule.
2408 	 */
2409 	m->m_flags &= ~M_CANFASTFWD;
2410 #  endif /* M_CANFASTFWD */
2411 #  ifdef CSUM_DELAY_DATA
2412 	/*
2413 	 * disable delayed checksums.
2414 	 */
2415 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2416 		in_delayed_cksum(m);
2417 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2418 	}
2419 #  endif /* CSUM_DELAY_DATA */
2420 # endif /* MENTAT */
2421 #else
2422 
2423 	bzero((char *)fin, sizeof(*fin));
2424 	m = *mp;
2425 #endif /* _KERNEL */
2426 
2427 	fin->fin_v = v;
2428 	fin->fin_m = m;
2429 	fin->fin_ip = ip;
2430 	fin->fin_mp = mp;
2431 	fin->fin_out = out;
2432 	fin->fin_ifp = ifp;
2433 	fin->fin_error = ENETUNREACH;
2434 	fin->fin_hlen = (u_short)hlen;
2435 	fin->fin_dp = (char *)ip + hlen;
2436 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2437 	fin->fin_ifs = ifs;
2438 
2439 	SPL_NET(s);
2440 
2441 #ifdef	USE_INET6
2442 	if (v == 6) {
2443 		IPF_BUMP(ifs->ifs_frstats[out].fr_ipv6);
2444 		/*
2445 		 * Jumbo grams are quite likely too big for internal buffer
2446 		 * structures to handle comfortably, for now, so just drop
2447 		 * them.
2448 		 */
2449 		ip6 = (ip6_t *)ip;
2450 		fin->fin_plen = ntohs(ip6->ip6_plen);
2451 		if (fin->fin_plen == 0) {
2452 			READ_ENTER(&ifs->ifs_ipf_mutex);
2453 			pass = FR_BLOCK|FR_NOMATCH;
2454 			goto filtered;
2455 		}
2456 		fin->fin_plen += sizeof(ip6_t);
2457 	} else
2458 #endif
2459 	{
2460 #if (OpenBSD >= 200311) && defined(_KERNEL)
2461 		ip->ip_len = ntohs(ip->ip_len);
2462 		ip->ip_off = ntohs(ip->ip_off);
2463 #endif
2464 		fin->fin_plen = ip->ip_len;
2465 	}
2466 
2467 	if (fr_makefrip(hlen, ip, fin) == -1) {
2468 		READ_ENTER(&ifs->ifs_ipf_mutex);
2469 		pass = FR_BLOCK;
2470 		goto filtered;
2471 	}
2472 
2473 	/*
2474 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2475 	 * becomes NULL and so we have no packet to free.
2476 	 */
2477 	if (*fin->fin_mp == NULL)
2478 		goto finished;
2479 
2480 	if (!out) {
2481 		if (v == 4) {
2482 #ifdef _KERNEL
2483 			if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2484 				IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2485 				fin->fin_flx |= FI_BADSRC;
2486 			}
2487 #endif
2488 			if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) {
2489 				IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2490 				fin->fin_flx |= FI_LOWTTL;
2491 			}
2492 		}
2493 #ifdef USE_INET6
2494 		else  if (v == 6) {
2495 			ip6 = (ip6_t *)ip;
2496 #ifdef _KERNEL
2497 			if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2498 				IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2499 				fin->fin_flx |= FI_BADSRC;
2500 			}
2501 #endif
2502 			if (ip6->ip6_hlim < ifs->ifs_fr_minttl) {
2503 				IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2504 				fin->fin_flx |= FI_LOWTTL;
2505 			}
2506 		}
2507 #endif
2508 	}
2509 
2510 	if (fin->fin_flx & FI_SHORT) {
2511 		IPF_BUMP(ifs->ifs_frstats[out].fr_short);
2512 	}
2513 
2514 	READ_ENTER(&ifs->ifs_ipf_mutex);
2515 
2516 	/*
2517 	 * Check auth now.  This, combined with the check below to see if apass
2518 	 * is 0 is to ensure that we don't count the packet twice, which can
2519 	 * otherwise occur when we reprocess it.  As it is, we only count it
2520 	 * after it has no auth. table matchup.  This also stops NAT from
2521 	 * occuring until after the packet has been auth'd.
2522 	 */
2523 	fr = fr_checkauth(fin, &pass);
2524 	if (!out) {
2525 		switch (fin->fin_v)
2526 		{
2527 		case 4 :
2528 			if (fr_checknatin(fin, &pass) == -1) {
2529 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2530 				goto finished;
2531 			}
2532 			break;
2533 #ifdef	USE_INET6
2534 		case 6 :
2535 			if (fr_checknat6in(fin, &pass) == -1) {
2536 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2537 				goto finished;
2538 			}
2539 			break;
2540 #endif
2541 		default :
2542 			break;
2543 		}
2544 	}
2545 	if (!out)
2546 		(void) fr_acctpkt(fin, NULL);
2547 
2548 	if (fr == NULL)
2549 		if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG)
2550 			fr = fr_knownfrag(fin, &pass);
2551 	if (fr == NULL)
2552 		fr = fr_checkstate(fin, &pass);
2553 
2554 	if ((pass & FR_NOMATCH) || (fr == NULL))
2555 		fr = fr_firewall(fin, &pass);
2556 
2557 	fin->fin_fr = fr;
2558 
2559 	/*
2560 	 * Only count/translate packets which will be passed on, out the
2561 	 * interface.
2562 	 */
2563 	if (out && FR_ISPASS(pass)) {
2564 		(void) fr_acctpkt(fin, NULL);
2565 
2566 		switch (fin->fin_v)
2567 		{
2568 		case 4 :
2569 			if (fr_checknatout(fin, &pass) == -1) {
2570 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2571 				goto finished;
2572 			}
2573 			break;
2574 #ifdef	USE_INET6
2575 		case 6 :
2576 			if (fr_checknat6out(fin, &pass) == -1) {
2577 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2578 				goto finished;
2579 			}
2580 			break;
2581 #endif
2582 		default :
2583 			break;
2584 		}
2585 
2586 		if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) {
2587 			if (fr_updateipid(fin) == -1) {
2588 				IPF_BUMP(ifs->ifs_frstats[1].fr_ipud);
2589 				pass &= ~FR_CMDMASK;
2590 				pass |= FR_BLOCK;
2591 			} else {
2592 				IPF_BUMP(ifs->ifs_frstats[0].fr_ipud);
2593 			}
2594 		}
2595 	}
2596 
2597 #ifdef	IPFILTER_LOG
2598 	if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
2599 		(void) fr_dolog(fin, &pass);
2600 	}
2601 #endif
2602 
2603 	/*
2604 	 * The FI_STATE flag is cleared here so that calling fr_checkstate
2605 	 * will work when called from inside of fr_fastroute.  Although
2606 	 * there is a similar flag, FI_NATED, for NAT, it does have the same
2607 	 * impact on code execution.
2608 	 */
2609 	fin->fin_flx &= ~FI_STATE;
2610 
2611 	/*
2612 	 * Only allow FR_DUP to work if a rule matched - it makes no sense to
2613 	 * set FR_DUP as a "default" as there are no instructions about where
2614 	 * to send the packet.  Use fin_m here because it may have changed
2615 	 * (without an update of 'm') in prior processing.
2616 	 */
2617 	if ((fr != NULL) && (pass & FR_DUP)) {
2618 		mc = M_DUPLICATE(fin->fin_m);
2619 #ifdef _KERNEL
2620 		mc->b_rptr += fin->fin_ipoff;
2621 #endif
2622 	}
2623 
2624 	if (pass & (FR_RETRST|FR_RETICMP)) {
2625 		/*
2626 		 * Should we return an ICMP packet to indicate error
2627 		 * status passing through the packet filter ?
2628 		 * WARNING: ICMP error packets AND TCP RST packets should
2629 		 * ONLY be sent in repsonse to incoming packets.  Sending them
2630 		 * in response to outbound packets can result in a panic on
2631 		 * some operating systems.
2632 		 */
2633 		if (!out) {
2634 			if (pass & FR_RETICMP) {
2635 				int dst;
2636 
2637 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
2638 					dst = 1;
2639 				else
2640 					dst = 0;
2641 #if defined(_KERNEL) && (SOLARIS2 >= 10)
2642 				/*
2643 				 * Assume it's possible to enter insane rule:
2644 				 * 	pass return-icmp in proto udp ...
2645 				 * then we have no other option than to forward
2646 				 * packet on loopback and give up any attempt
2647 				 * to create a fake response.
2648 				 */
2649 				if (IPF_IS_LOOPBACK(qpi->qpi_flags) &&
2650 				    FR_ISBLOCK(pass)) {
2651 
2652 					if (fr_make_icmp(fin) == 0) {
2653 						IPF_BUMP(
2654 						ifs->ifs_frstats[out].fr_ret);
2655 					}
2656 					/*
2657 					 * we drop packet silently in case we
2658 					 * failed assemble fake response for it
2659 					 */
2660 					else if (*mp != NULL) {
2661 						FREE_MB_T(*mp);
2662 						m = *mp = NULL;
2663 					}
2664 
2665 					IPF_BUMP(
2666 					    ifs->ifs_frstats[out].fr_block);
2667 					RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2668 
2669 					return (0);
2670 				}
2671 #endif	/* _KERNEL && SOLARIS2 >= 10 */
2672 
2673 				(void) fr_send_icmp_err(ICMP_UNREACH, fin, dst);
2674 				IPF_BUMP(ifs->ifs_frstats[out].fr_ret);
2675 
2676 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
2677 				   !(fin->fin_flx & FI_SHORT)) {
2678 
2679 #if defined(_KERNEL) && (SOLARIS2 >= 10)
2680 				/*
2681 				 * Assume it's possible to enter insane rule:
2682 				 * 	pass return-rst in proto tcp ...
2683 				 * then we have no other option than to forward
2684 				 * packet on loopback and give up any attempt
2685 				 * to create a fake response.
2686 				 */
2687 				if (IPF_IS_LOOPBACK(qpi->qpi_flags) &&
2688 				    FR_ISBLOCK(pass)) {
2689 					if (fr_make_rst(fin) == 0) {
2690 						IPF_BUMP(
2691 						ifs->ifs_frstats[out].fr_ret);
2692 					}
2693 					else if (mp != NULL) {
2694 					/*
2695 					 * we drop packet silently in case we
2696 					 * failed assemble fake response for it
2697 					 */
2698 						FREE_MB_T(*mp);
2699 						m = *mp = NULL;
2700 					}
2701 
2702 					IPF_BUMP(
2703 					    ifs->ifs_frstats[out].fr_block);
2704 					RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2705 
2706 					return (0);
2707 				 }
2708 #endif /* _KERNEL && _SOLARIS2 >= 10 */
2709 				if (fr_send_reset(fin) == 0) {
2710 					IPF_BUMP(ifs->ifs_frstats[1].fr_ret);
2711 				}
2712 			}
2713 		} else {
2714 			if (pass & FR_RETRST)
2715 				fin->fin_error = ECONNRESET;
2716 		}
2717 	}
2718 
2719 	/*
2720 	 * If we didn't drop off the bottom of the list of rules (and thus
2721 	 * the 'current' rule fr is not NULL), then we may have some extra
2722 	 * instructions about what to do with a packet.
2723 	 * Once we're finished return to our caller, freeing the packet if
2724 	 * we are dropping it (* BSD ONLY *).
2725 	 * Reassign m from fin_m as we may have a new buffer, now.
2726 	 */
2727 filtered:
2728 	m = fin->fin_m;
2729 
2730 	if (fr != NULL) {
2731 		frdest_t *fdp;
2732 
2733 		fdp = &fr->fr_tifs[fin->fin_rev];
2734 
2735 		if (!out && (pass & FR_FASTROUTE)) {
2736 			/*
2737 			 * For fastroute rule, no destioation interface defined
2738 			 * so pass NULL as the frdest_t parameter
2739 			 */
2740 			(void) fr_fastroute(m, mp, fin, NULL);
2741 			m = *mp = NULL;
2742 		} else if ((fdp->fd_ifp != NULL) &&
2743 			   (fdp->fd_ifp != (struct ifnet *)-1)) {
2744 			/* this is for to rules: */
2745 			(void) fr_fastroute(m, mp, fin, fdp);
2746 			m = *mp = NULL;
2747 		}
2748 
2749 		/*
2750 		 * Generate a duplicated packet.
2751 		 */
2752 		if (mc != NULL)
2753 			(void) fr_fastroute(mc, &mc, fin, &fr->fr_dif);
2754 	}
2755 
2756 	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
2757 		nat_uncreate(fin);
2758 
2759 	/*
2760 	 * This late because the likes of fr_fastroute() use fin_fr.
2761 	 */
2762 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2763 
2764 finished:
2765 	if (!FR_ISPASS(pass)) {
2766 		IPF_BUMP(ifs->ifs_frstats[out].fr_block);
2767 		if (*mp != NULL) {
2768 			FREE_MB_T(*mp);
2769 			m = *mp = NULL;
2770 		}
2771 	} else {
2772 		IPF_BUMP(ifs->ifs_frstats[out].fr_pass);
2773 #if defined(_KERNEL) && defined(__sgi)
2774 		if ((fin->fin_hbuf != NULL) &&
2775 		    (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
2776 			COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf);
2777 		}
2778 #endif
2779 	}
2780 
2781 	SPL_X(s);
2782 
2783 #ifdef _KERNEL
2784 # if OpenBSD >= 200311
2785 	if (FR_ISPASS(pass) && (v == 4)) {
2786 		ip = fin->fin_ip;
2787 		ip->ip_len = ntohs(ip->ip_len);
2788 		ip->ip_off = ntohs(ip->ip_off);
2789 	}
2790 # endif
2791 	return (FR_ISPASS(pass)) ? 0 : fin->fin_error;
2792 #else /* _KERNEL */
2793 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
2794 	if ((pass & FR_NOMATCH) != 0)
2795 		return 1;
2796 
2797 	if ((pass & FR_RETMASK) != 0)
2798 		switch (pass & FR_RETMASK)
2799 		{
2800 		case FR_RETRST :
2801 			return 3;
2802 		case FR_RETICMP :
2803 			return 4;
2804 		case FR_FAKEICMP :
2805 			return 5;
2806 		}
2807 
2808 	switch (pass & FR_CMDMASK)
2809 	{
2810 	case FR_PASS :
2811 		return 0;
2812 	case FR_BLOCK :
2813 		return -1;
2814 	case FR_AUTH :
2815 		return -2;
2816 	case FR_ACCOUNT :
2817 		return -3;
2818 	case FR_PREAUTH :
2819 		return -4;
2820 	}
2821 	return 2;
2822 #endif /* _KERNEL */
2823 }
2824 
2825 
2826 #ifdef	IPFILTER_LOG
2827 /* ------------------------------------------------------------------------ */
2828 /* Function:    fr_dolog                                                    */
2829 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
2830 /* Parameters:  fin(I) - pointer to packet information                      */
2831 /*              passp(IO) - pointer to current/new filter decision (unused) */
2832 /*                                                                          */
2833 /* Checks flags set to see how a packet should be logged, if it is to be    */
2834 /* logged.  Adjust statistics based on its success or not.                  */
2835 /* ------------------------------------------------------------------------ */
2836 frentry_t *fr_dolog(fin, passp)
2837 fr_info_t *fin;
2838 u_32_t *passp;
2839 {
2840 	u_32_t pass;
2841 	int out;
2842 	ipf_stack_t *ifs = fin->fin_ifs;
2843 
2844 	out = fin->fin_out;
2845 	pass = *passp;
2846 
2847 	if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
2848 		pass |= FF_LOGNOMATCH;
2849 		IPF_BUMP(ifs->ifs_frstats[out].fr_npkl);
2850 		goto logit;
2851 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
2852 	    (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) {
2853 		if ((pass & FR_LOGMASK) != FR_LOGP)
2854 			pass |= FF_LOGPASS;
2855 		IPF_BUMP(ifs->ifs_frstats[out].fr_ppkl);
2856 		goto logit;
2857 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
2858 		   (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) {
2859 		if ((pass & FR_LOGMASK) != FR_LOGB)
2860 			pass |= FF_LOGBLOCK;
2861 		IPF_BUMP(ifs->ifs_frstats[out].fr_bpkl);
2862 logit:
2863 		if (ipflog(fin, pass) == -1) {
2864 			IPF_BUMP(ifs->ifs_frstats[out].fr_skip);
2865 
2866 			/*
2867 			 * If the "or-block" option has been used then
2868 			 * block the packet if we failed to log it.
2869 			 */
2870 			if ((pass & FR_LOGORBLOCK) &&
2871 			    FR_ISPASS(pass)) {
2872 				pass &= ~FR_CMDMASK;
2873 				pass |= FR_BLOCK;
2874 			}
2875 		}
2876 		*passp = pass;
2877 	}
2878 
2879 	return fin->fin_fr;
2880 }
2881 #endif /* IPFILTER_LOG */
2882 
2883 
2884 /* ------------------------------------------------------------------------ */
2885 /* Function:    ipf_cksum                                                   */
2886 /* Returns:     u_short - IP header checksum                                */
2887 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
2888 /*              len(I)  - length of buffer in bytes                         */
2889 /*                                                                          */
2890 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
2891 /*                                                                          */
2892 /* N.B.: addr should be 16bit aligned.                                      */
2893 /* ------------------------------------------------------------------------ */
2894 u_short ipf_cksum(addr, len)
2895 u_short *addr;
2896 int len;
2897 {
2898 	u_32_t sum = 0;
2899 
2900 	for (sum = 0; len > 1; len -= 2)
2901 		sum += *addr++;
2902 
2903 	/* mop up an odd byte, if necessary */
2904 	if (len == 1)
2905 		sum += *(u_char *)addr;
2906 
2907 	/*
2908 	 * add back carry outs from top 16 bits to low 16 bits
2909 	 */
2910 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
2911 	sum += (sum >> 16);			/* add carry */
2912 	return (u_short)(~sum);
2913 }
2914 
2915 
2916 /* ------------------------------------------------------------------------ */
2917 /* Function:    fr_cksum                                                    */
2918 /* Returns:     u_short - layer 4 checksum                                  */
2919 /* Parameters:  m(I  )     - pointer to buffer holding packet               */
2920 /*              ip(I)      - pointer to IP header                           */
2921 /*              l4proto(I) - protocol to caclulate checksum for             */
2922 /*              l4hdr(I)   - pointer to layer 4 header                      */
2923 /*                                                                          */
2924 /* Calculates the TCP checksum for the packet held in "m", using the data   */
2925 /* in the IP header "ip" to seed it.                                        */
2926 /*                                                                          */
2927 /* NB: This function assumes we've pullup'd enough for all of the IP header */
2928 /* and the TCP header.  We also assume that data blocks aren't allocated in */
2929 /* odd sizes.                                                               */
2930 /*                                                                          */
2931 /* Expects ip_len to be in host byte order when called.                     */
2932 /* ------------------------------------------------------------------------ */
2933 u_short fr_cksum(m, ip, l4proto, l4hdr)
2934 mb_t *m;
2935 ip_t *ip;
2936 int l4proto;
2937 void *l4hdr;
2938 {
2939 	u_short *sp, slen, sumsave, l4hlen, *csump;
2940 	u_int sum, sum2;
2941 	int hlen;
2942 #ifdef	USE_INET6
2943 	ip6_t *ip6;
2944 #endif
2945 
2946 	csump = NULL;
2947 	sumsave = 0;
2948 	l4hlen = 0;
2949 	sp = NULL;
2950 	slen = 0;
2951 	hlen = 0;
2952 	sum = 0;
2953 
2954 	/*
2955 	 * Add up IP Header portion
2956 	 */
2957 #ifdef	USE_INET6
2958 	if (IP_V(ip) == 4) {
2959 #endif
2960 		hlen = IP_HL(ip) << 2;
2961 		slen = ip->ip_len - hlen;
2962 		sum = htons((u_short)l4proto);
2963 		sum += htons(slen);
2964 		sp = (u_short *)&ip->ip_src;
2965 		sum += *sp++;	/* ip_src */
2966 		sum += *sp++;
2967 		sum += *sp++;	/* ip_dst */
2968 		sum += *sp++;
2969 #ifdef	USE_INET6
2970 	} else if (IP_V(ip) == 6) {
2971 		ip6 = (ip6_t *)ip;
2972 		hlen = sizeof(*ip6);
2973 		slen = ntohs(ip6->ip6_plen);
2974 		sum = htons((u_short)l4proto);
2975 		sum += htons(slen);
2976 		sp = (u_short *)&ip6->ip6_src;
2977 		sum += *sp++;	/* ip6_src */
2978 		sum += *sp++;
2979 		sum += *sp++;
2980 		sum += *sp++;
2981 		sum += *sp++;
2982 		sum += *sp++;
2983 		sum += *sp++;
2984 		sum += *sp++;
2985 		sum += *sp++;	/* ip6_dst */
2986 		sum += *sp++;
2987 		sum += *sp++;
2988 		sum += *sp++;
2989 		sum += *sp++;
2990 		sum += *sp++;
2991 		sum += *sp++;
2992 		sum += *sp++;
2993 	}
2994 #endif
2995 
2996 	switch (l4proto)
2997 	{
2998 	case IPPROTO_UDP :
2999 		csump = &((udphdr_t *)l4hdr)->uh_sum;
3000 		l4hlen = sizeof(udphdr_t);
3001 		break;
3002 
3003 	case IPPROTO_TCP :
3004 		csump = &((tcphdr_t *)l4hdr)->th_sum;
3005 		l4hlen = sizeof(tcphdr_t);
3006 		break;
3007 	case IPPROTO_ICMP :
3008 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3009 		l4hlen = 4;
3010 		sum = 0;
3011 		break;
3012 	default :
3013 		break;
3014 	}
3015 
3016 	if (csump != NULL) {
3017 		sumsave = *csump;
3018 		*csump = 0;
3019 	}
3020 
3021 	l4hlen = l4hlen;	/* LINT */
3022 
3023 #ifdef	_KERNEL
3024 # ifdef MENTAT
3025 	{
3026 	void *rp = m->b_rptr;
3027 
3028 	if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr)
3029 		m->b_rptr = (u_char *)ip;
3030 	sum2 = ip_cksum(m, hlen, sum);	/* hlen == offset */
3031 	m->b_rptr = rp;
3032 	sum2 = (sum2 & 0xffff) + (sum2 >> 16);
3033 	sum2 = ~sum2 & 0xffff;
3034 	}
3035 # else /* MENTAT */
3036 #  if defined(BSD) || defined(sun)
3037 #   if BSD >= 199103
3038 	m->m_data += hlen;
3039 #   else
3040 	m->m_off += hlen;
3041 #   endif
3042 	m->m_len -= hlen;
3043 	sum2 = in_cksum(m, slen);
3044 	m->m_len += hlen;
3045 #   if BSD >= 199103
3046 	m->m_data -= hlen;
3047 #   else
3048 	m->m_off -= hlen;
3049 #   endif
3050 	/*
3051 	 * Both sum and sum2 are partial sums, so combine them together.
3052 	 */
3053 	sum += ~sum2 & 0xffff;
3054 	while (sum > 0xffff)
3055 		sum = (sum & 0xffff) + (sum >> 16);
3056 	sum2 = ~sum & 0xffff;
3057 #  else /* defined(BSD) || defined(sun) */
3058 {
3059 	union {
3060 		u_char	c[2];
3061 		u_short	s;
3062 	} bytes;
3063 	u_short len = ip->ip_len;
3064 #   if defined(__sgi)
3065 	int add;
3066 #   endif
3067 
3068 	/*
3069 	 * Add up IP Header portion
3070 	 */
3071 	if (sp != (u_short *)l4hdr)
3072 		sp = (u_short *)l4hdr;
3073 
3074 	switch (l4proto)
3075 	{
3076 	case IPPROTO_UDP :
3077 		sum += *sp++;	/* sport */
3078 		sum += *sp++;	/* dport */
3079 		sum += *sp++;	/* udp length */
3080 		sum += *sp++;	/* checksum */
3081 		break;
3082 
3083 	case IPPROTO_TCP :
3084 		sum += *sp++;	/* sport */
3085 		sum += *sp++;	/* dport */
3086 		sum += *sp++;	/* seq */
3087 		sum += *sp++;
3088 		sum += *sp++;	/* ack */
3089 		sum += *sp++;
3090 		sum += *sp++;	/* off */
3091 		sum += *sp++;	/* win */
3092 		sum += *sp++;	/* checksum */
3093 		sum += *sp++;	/* urp */
3094 		break;
3095 	case IPPROTO_ICMP :
3096 		sum = *sp++;	/* type/code */
3097 		sum += *sp++;	/* checksum */
3098 		break;
3099 	}
3100 
3101 #   ifdef	__sgi
3102 	/*
3103 	 * In case we had to copy the IP & TCP header out of mbufs,
3104 	 * skip over the mbuf bits which are the header
3105 	 */
3106 	if ((caddr_t)ip != mtod(m, caddr_t)) {
3107 		hlen = (caddr_t)sp - (caddr_t)ip;
3108 		while (hlen) {
3109 			add = MIN(hlen, m->m_len);
3110 			sp = (u_short *)(mtod(m, caddr_t) + add);
3111 			hlen -= add;
3112 			if (add == m->m_len) {
3113 				m = m->m_next;
3114 				if (!hlen) {
3115 					if (!m)
3116 						break;
3117 					sp = mtod(m, u_short *);
3118 				}
3119 				PANIC((!m),("fr_cksum(1): not enough data"));
3120 			}
3121 		}
3122 	}
3123 #   endif
3124 
3125 	len -= (l4hlen + hlen);
3126 	if (len <= 0)
3127 		goto nodata;
3128 
3129 	while (len > 1) {
3130 		if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) {
3131 			m = m->m_next;
3132 			PANIC((!m),("fr_cksum(2): not enough data"));
3133 			sp = mtod(m, u_short *);
3134 		}
3135 		if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) {
3136 			bytes.c[0] = *(u_char *)sp;
3137 			m = m->m_next;
3138 			PANIC((!m),("fr_cksum(3): not enough data"));
3139 			sp = mtod(m, u_short *);
3140 			bytes.c[1] = *(u_char *)sp;
3141 			sum += bytes.s;
3142 			sp = (u_short *)((u_char *)sp + 1);
3143 		}
3144 		if ((u_long)sp & 1) {
3145 			bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s));
3146 			sum += bytes.s;
3147 		} else
3148 			sum += *sp++;
3149 		len -= 2;
3150 	}
3151 
3152 	if (len != 0)
3153 		sum += ntohs(*(u_char *)sp << 8);
3154 nodata:
3155 	while (sum > 0xffff)
3156 		sum = (sum & 0xffff) + (sum >> 16);
3157 	sum2 = (u_short)(~sum & 0xffff);
3158 }
3159 #  endif /*  defined(BSD) || defined(sun) */
3160 # endif /* MENTAT */
3161 #else /* _KERNEL */
3162 	for (; slen > 1; slen -= 2)
3163 	        sum += *sp++;
3164 	if (slen)
3165 		sum += ntohs(*(u_char *)sp << 8);
3166 	while (sum > 0xffff)
3167 		sum = (sum & 0xffff) + (sum >> 16);
3168 	sum2 = (u_short)(~sum & 0xffff);
3169 #endif /* _KERNEL */
3170 	if (csump != NULL)
3171 		*csump = sumsave;
3172 	return sum2;
3173 }
3174 
3175 
3176 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \
3177     defined(__sgi) ) && !defined(linux) && !defined(_AIX51)
3178 /*
3179  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3180  *	The Regents of the University of California.  All rights reserved.
3181  *
3182  * Redistribution and use in source and binary forms, with or without
3183  * modification, are permitted provided that the following conditions
3184  * are met:
3185  * 1. Redistributions of source code must retain the above copyright
3186  *    notice, this list of conditions and the following disclaimer.
3187  * 2. Redistributions in binary form must reproduce the above copyright
3188  *    notice, this list of conditions and the following disclaimer in the
3189  *    documentation and/or other materials provided with the distribution.
3190  * 3. Neither the name of the University nor the names of its contributors
3191  *    may be used to endorse or promote products derived from this software
3192  *    without specific prior written permission.
3193  *
3194  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3195  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3196  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3197  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3198  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3199  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3200  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3201  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3202  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3203  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3204  * SUCH DAMAGE.
3205  *
3206  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
3207  * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $
3208  */
3209 /*
3210  * Copy data from an mbuf chain starting "off" bytes from the beginning,
3211  * continuing for "len" bytes, into the indicated buffer.
3212  */
3213 void
3214 m_copydata(m, off, len, cp)
3215 	mb_t *m;
3216 	int off;
3217 	int len;
3218 	caddr_t cp;
3219 {
3220 	unsigned count;
3221 
3222 	if (off < 0 || len < 0)
3223 		panic("m_copydata");
3224 	while (off > 0) {
3225 		if (m == 0)
3226 			panic("m_copydata");
3227 		if (off < m->m_len)
3228 			break;
3229 		off -= m->m_len;
3230 		m = m->m_next;
3231 	}
3232 	while (len > 0) {
3233 		if (m == 0)
3234 			panic("m_copydata");
3235 		count = MIN(m->m_len - off, len);
3236 		bcopy(mtod(m, caddr_t) + off, cp, count);
3237 		len -= count;
3238 		cp += count;
3239 		off = 0;
3240 		m = m->m_next;
3241 	}
3242 }
3243 
3244 
3245 /*
3246  * Copy data from a buffer back into the indicated mbuf chain,
3247  * starting "off" bytes from the beginning, extending the mbuf
3248  * chain if necessary.
3249  */
3250 void
3251 m_copyback(m0, off, len, cp)
3252 	struct	mbuf *m0;
3253 	int off;
3254 	int len;
3255 	caddr_t cp;
3256 {
3257 	int mlen;
3258 	struct mbuf *m = m0, *n;
3259 	int totlen = 0;
3260 
3261 	if (m0 == 0)
3262 		return;
3263 	while (off > (mlen = m->m_len)) {
3264 		off -= mlen;
3265 		totlen += mlen;
3266 		if (m->m_next == 0) {
3267 			n = m_getclr(M_DONTWAIT, m->m_type);
3268 			if (n == 0)
3269 				goto out;
3270 			n->m_len = min(MLEN, len + off);
3271 			m->m_next = n;
3272 		}
3273 		m = m->m_next;
3274 	}
3275 	while (len > 0) {
3276 		mlen = min(m->m_len - off, len);
3277 		bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
3278 		cp += mlen;
3279 		len -= mlen;
3280 		mlen += off;
3281 		off = 0;
3282 		totlen += mlen;
3283 		if (len == 0)
3284 			break;
3285 		if (m->m_next == 0) {
3286 			n = m_get(M_DONTWAIT, m->m_type);
3287 			if (n == 0)
3288 				break;
3289 			n->m_len = min(MLEN, len);
3290 			m->m_next = n;
3291 		}
3292 		m = m->m_next;
3293 	}
3294 out:
3295 #if 0
3296 	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
3297 		m->m_pkthdr.len = totlen;
3298 #endif
3299 	return;
3300 }
3301 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */
3302 
3303 
3304 /* ------------------------------------------------------------------------ */
3305 /* Function:    fr_findgroup                                                */
3306 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3307 /* Parameters:  group(I) - group name to search for                         */
3308 /*              unit(I)  - device to which this group belongs               */
3309 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3310 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3311 /*                         to where to add the next (last) group or where   */
3312 /*                         to delete group from.                            */
3313 /*                                                                          */
3314 /* Search amongst the defined groups for a particular group number.         */
3315 /* ------------------------------------------------------------------------ */
3316 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs)
3317 char *group;
3318 minor_t unit;
3319 int set;
3320 frgroup_t ***fgpp;
3321 ipf_stack_t *ifs;
3322 {
3323 	frgroup_t *fg, **fgp;
3324 
3325 	/*
3326 	 * Which list of groups to search in is dependent on which list of
3327 	 * rules are being operated on.
3328 	 */
3329 	fgp = &ifs->ifs_ipfgroups[unit][set];
3330 
3331 	while ((fg = *fgp) != NULL) {
3332 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3333 			break;
3334 		else
3335 			fgp = &fg->fg_next;
3336 	}
3337 	if (fgpp != NULL)
3338 		*fgpp = fgp;
3339 	return fg;
3340 }
3341 
3342 
3343 /* ------------------------------------------------------------------------ */
3344 /* Function:    fr_addgroup                                                 */
3345 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3346 /*                            != NULL == pointer to the group               */
3347 /* Parameters:  num(I)   - group number to add                              */
3348 /*              head(I)  - rule pointer that is using this as the head      */
3349 /*              flags(I) - rule flags which describe the type of rule it is */
3350 /*              unit(I)  - device to which this group will belong to        */
3351 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3352 /* Write Locks: ipf_mutex                                                   */
3353 /*                                                                          */
3354 /* Add a new group head, or if it already exists, increase the reference    */
3355 /* count to it.                                                             */
3356 /* ------------------------------------------------------------------------ */
3357 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs)
3358 char *group;
3359 void *head;
3360 u_32_t flags;
3361 minor_t unit;
3362 int set;
3363 ipf_stack_t *ifs;
3364 {
3365 	frgroup_t *fg, **fgp;
3366 	u_32_t gflags;
3367 
3368 	if (group == NULL)
3369 		return NULL;
3370 
3371 	if (unit == IPL_LOGIPF && *group == '\0')
3372 		return NULL;
3373 
3374 	fgp = NULL;
3375 	gflags = flags & FR_INOUT;
3376 
3377 	fg = fr_findgroup(group, unit, set, &fgp, ifs);
3378 	if (fg != NULL) {
3379 		if (fg->fg_flags == 0)
3380 			fg->fg_flags = gflags;
3381 		else if (gflags != fg->fg_flags)
3382 			return NULL;
3383 		fg->fg_ref++;
3384 		return fg;
3385 	}
3386 	KMALLOC(fg, frgroup_t *);
3387 	if (fg != NULL) {
3388 		fg->fg_head = head;
3389 		fg->fg_start = NULL;
3390 		fg->fg_next = *fgp;
3391 		bcopy(group, fg->fg_name, FR_GROUPLEN);
3392 		fg->fg_flags = gflags;
3393 		fg->fg_ref = 1;
3394 		*fgp = fg;
3395 	}
3396 	return fg;
3397 }
3398 
3399 
3400 /* ------------------------------------------------------------------------ */
3401 /* Function:    fr_delgroup                                                 */
3402 /* Returns:     Nil                                                         */
3403 /* Parameters:  group(I) - group name to delete                             */
3404 /*              unit(I)  - device to which this group belongs               */
3405 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3406 /* Write Locks: ipf_mutex                                                   */
3407 /*                                                                          */
3408 /* Attempt to delete a group head.                                          */
3409 /* Only do this when its reference count reaches 0.                         */
3410 /* ------------------------------------------------------------------------ */
3411 void fr_delgroup(group, unit, set, ifs)
3412 char *group;
3413 minor_t unit;
3414 int set;
3415 ipf_stack_t *ifs;
3416 {
3417 	frgroup_t *fg, **fgp;
3418 
3419 	fg = fr_findgroup(group, unit, set, &fgp, ifs);
3420 	if (fg == NULL)
3421 		return;
3422 
3423 	fg->fg_ref--;
3424 	if (fg->fg_ref == 0) {
3425 		*fgp = fg->fg_next;
3426 		KFREE(fg);
3427 	}
3428 }
3429 
3430 
3431 /* ------------------------------------------------------------------------ */
3432 /* Function:    fr_getrulen                                                 */
3433 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3434 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3435 /*              flags(I) - which set of rules to find the rule in           */
3436 /*              group(I) - group name                                       */
3437 /*              n(I)     - rule number to find                              */
3438 /*                                                                          */
3439 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3440 /* group # g doesn't exist or there are less than n rules in the group.     */
3441 /* ------------------------------------------------------------------------ */
3442 frentry_t *fr_getrulen(unit, group, n, ifs)
3443 int unit;
3444 char *group;
3445 u_32_t n;
3446 ipf_stack_t *ifs;
3447 {
3448 	frentry_t *fr;
3449 	frgroup_t *fg;
3450 
3451 	fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs);
3452 	if (fg == NULL)
3453 		return NULL;
3454 	for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--)
3455 		;
3456 	if (n != 0)
3457 		return NULL;
3458 	return fr;
3459 }
3460 
3461 
3462 /* ------------------------------------------------------------------------ */
3463 /* Function:    fr_rulen                                                    */
3464 /* Returns:     int - >= 0 - rule number, -1 == search failed               */
3465 /* Parameters:  unit(I) - device for which to count the rule's number       */
3466 /*              fr(I)   - pointer to rule to match                          */
3467 /*                                                                          */
3468 /* Return the number for a rule on a specific filtering device.             */
3469 /* ------------------------------------------------------------------------ */
3470 int fr_rulen(unit, fr, ifs)
3471 int unit;
3472 frentry_t *fr;
3473 ipf_stack_t *ifs;
3474 {
3475 	frentry_t *fh;
3476 	frgroup_t *fg;
3477 	u_32_t n = 0;
3478 
3479 	if (fr == NULL)
3480 		return -1;
3481 	fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs);
3482 	if (fg == NULL)
3483 		return -1;
3484 	for (fh = fg->fg_head; fh; n++, fh = fh->fr_next)
3485 		if (fh == fr)
3486 			break;
3487 	if (fh == NULL)
3488 		return -1;
3489 	return n;
3490 }
3491 
3492 
3493 /* ------------------------------------------------------------------------ */
3494 /* Function:    frflushlist                                                 */
3495 /* Returns:     int - >= 0 - number of flushed rules                        */
3496 /* Parameters:  set(I)   - which set of rules (inactive/inactive) this is   */
3497 /*              unit(I)  - device for which to flush rules                  */
3498 /*              flags(I) - which set of rules to flush                      */
3499 /*              nfreedp(O) - pointer to int where flush count is stored     */
3500 /*              listp(I)   - pointer to list to flush pointer               */
3501 /* Write Locks: ipf_mutex                                                   */
3502 /*                                                                          */
3503 /* Recursively flush rules from the list, descending groups as they are     */
3504 /* encountered.  if a rule is the head of a group and it has lost all its   */
3505 /* group members, then also delete the group reference.  nfreedp is needed  */
3506 /* to store the accumulating count of rules removed, whereas the returned   */
3507 /* value is just the number removed from the current list.  The latter is   */
3508 /* needed to correctly adjust reference counts on rules that define groups. */
3509 /*                                                                          */
3510 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3511 /* ------------------------------------------------------------------------ */
3512 static int frflushlist(set, unit, nfreedp, listp, ifs)
3513 int set;
3514 minor_t unit;
3515 int *nfreedp;
3516 frentry_t **listp;
3517 ipf_stack_t *ifs;
3518 {
3519 	int freed = 0;
3520 	frentry_t *fp;
3521 
3522 	while ((fp = *listp) != NULL) {
3523 		if ((fp->fr_type & FR_T_BUILTIN) ||
3524 		    !(fp->fr_flags & FR_COPIED)) {
3525 			listp = &fp->fr_next;
3526 			continue;
3527 		}
3528 		*listp = fp->fr_next;
3529 		if (fp->fr_grp != NULL) {
3530 			(void) frflushlist(set, unit, nfreedp, fp->fr_grp, ifs);
3531 		}
3532 
3533 		if (fp->fr_grhead != NULL) {
3534 			fr_delgroup(fp->fr_grhead, unit, set, ifs);
3535 			*fp->fr_grhead = '\0';
3536 		}
3537 
3538 		ASSERT(fp->fr_ref > 0);
3539 		fp->fr_next = NULL;
3540 		if (fr_derefrule(&fp, ifs) == 0)
3541 			freed++;
3542 	}
3543 	*nfreedp += freed;
3544 	return freed;
3545 }
3546 
3547 
3548 /* ------------------------------------------------------------------------ */
3549 /* Function:    frflush                                                     */
3550 /* Returns:     int - >= 0 - number of flushed rules                        */
3551 /* Parameters:  unit(I)  - device for which to flush rules                  */
3552 /*              flags(I) - which set of rules to flush                      */
3553 /*                                                                          */
3554 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3555 /* and IPv6) as defined by the value of flags.                              */
3556 /* ------------------------------------------------------------------------ */
3557 int frflush(unit, proto, flags, ifs)
3558 minor_t unit;
3559 int proto, flags;
3560 ipf_stack_t *ifs;
3561 {
3562 	int flushed = 0, set;
3563 
3564 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
3565 	bzero((char *)ifs->ifs_frcache, sizeof (ifs->ifs_frcache));
3566 
3567 	set = ifs->ifs_fr_active;
3568 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3569 		set = 1 - set;
3570 
3571 	if (flags & FR_OUTQUE) {
3572 		if (proto == 0 || proto == 6) {
3573 			(void) frflushlist(set, unit,
3574 			    &flushed, &ifs->ifs_ipfilter6[1][set], ifs);
3575 			(void) frflushlist(set, unit,
3576 			    &flushed, &ifs->ifs_ipacct6[1][set], ifs);
3577 		}
3578 		if (proto == 0 || proto == 4) {
3579 			(void) frflushlist(set, unit,
3580 			    &flushed, &ifs->ifs_ipfilter[1][set], ifs);
3581 			(void) frflushlist(set, unit,
3582 			    &flushed, &ifs->ifs_ipacct[1][set], ifs);
3583 		}
3584 	}
3585 	if (flags & FR_INQUE) {
3586 		if (proto == 0 || proto == 6) {
3587 			(void) frflushlist(set, unit,
3588 			    &flushed, &ifs->ifs_ipfilter6[0][set], ifs);
3589 			(void) frflushlist(set, unit,
3590 			    &flushed, &ifs->ifs_ipacct6[0][set], ifs);
3591 		}
3592 		if (proto == 0 || proto == 4) {
3593 			(void) frflushlist(set, unit,
3594 			    &flushed, &ifs->ifs_ipfilter[0][set], ifs);
3595 			(void) frflushlist(set, unit,
3596 			    &flushed, &ifs->ifs_ipacct[0][set], ifs);
3597 		}
3598 	}
3599 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3600 
3601 	if (unit == IPL_LOGIPF) {
3602 		int tmp;
3603 
3604 		tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs);
3605 		if (tmp >= 0)
3606 			flushed += tmp;
3607 	}
3608 	return flushed;
3609 }
3610 
3611 
3612 /* ------------------------------------------------------------------------ */
3613 /* Function:    memstr                                                      */
3614 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3615 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3616 /*              dst(I)  - pointer to byte sequence to search                */
3617 /*              slen(I) - match length                                      */
3618 /*              dlen(I) - length available to search in                     */
3619 /*                                                                          */
3620 /* Search dst for a sequence of bytes matching those at src and extend for  */
3621 /* slen bytes.                                                              */
3622 /* ------------------------------------------------------------------------ */
3623 char *memstr(src, dst, slen, dlen)
3624 char *src, *dst;
3625 int slen, dlen;
3626 {
3627 	char *s = NULL;
3628 
3629 	while (dlen >= slen) {
3630 		if (bcmp(src, dst, slen) == 0) {
3631 			s = dst;
3632 			break;
3633 		}
3634 		dst++;
3635 		dlen--;
3636 	}
3637 	return s;
3638 }
3639 /* ------------------------------------------------------------------------ */
3640 /* Function:    fr_fixskip                                                  */
3641 /* Returns:     Nil                                                         */
3642 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3643 /*              rp(I)        - rule added/removed with skip in it.          */
3644 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3645 /*                             depending on whether a rule was just added   */
3646 /*                             or removed.                                  */
3647 /*                                                                          */
3648 /* Adjust all the rules in a list which would have skip'd past the position */
3649 /* where we are inserting to skip to the right place given the change.      */
3650 /* ------------------------------------------------------------------------ */
3651 void fr_fixskip(listp, rp, addremove)
3652 frentry_t **listp, *rp;
3653 int addremove;
3654 {
3655 	int rules, rn;
3656 	frentry_t *fp;
3657 
3658 	rules = 0;
3659 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3660 		rules++;
3661 
3662 	if (!fp)
3663 		return;
3664 
3665 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3666 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3667 			fp->fr_arg += addremove;
3668 }
3669 
3670 
3671 #ifdef	_KERNEL
3672 /* ------------------------------------------------------------------------ */
3673 /* Function:    count4bits                                                  */
3674 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3675 /* Parameters:  ip(I) - 32bit IP address                                    */
3676 /*                                                                          */
3677 /* IPv4 ONLY                                                                */
3678 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3679 /* consecutive 1's is different to that passed, return -1, else return #    */
3680 /* of bits.                                                                 */
3681 /* ------------------------------------------------------------------------ */
3682 int	count4bits(ip)
3683 u_32_t	ip;
3684 {
3685 	u_32_t	ipn;
3686 	int	cnt = 0, i, j;
3687 
3688 	ip = ipn = ntohl(ip);
3689 	for (i = 32; i; i--, ipn *= 2)
3690 		if (ipn & 0x80000000)
3691 			cnt++;
3692 		else
3693 			break;
3694 	ipn = 0;
3695 	for (i = 32, j = cnt; i; i--, j--) {
3696 		ipn *= 2;
3697 		if (j > 0)
3698 			ipn++;
3699 	}
3700 	if (ipn == ip)
3701 		return cnt;
3702 	return -1;
3703 }
3704 
3705 
3706 #ifdef USE_INET6
3707 /* ------------------------------------------------------------------------ */
3708 /* Function:    count6bits                                                  */
3709 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3710 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3711 /*                                                                          */
3712 /* IPv6 ONLY                                                                */
3713 /* count consecutive 1's in bit mask.                                       */
3714 /* ------------------------------------------------------------------------ */
3715 int count6bits(msk)
3716 u_32_t *msk;
3717 {
3718 	int i = 0, k;
3719 	u_32_t j;
3720 
3721 	for (k = 3; k >= 0; k--)
3722 		if (msk[k] == 0xffffffff)
3723 			i += 32;
3724 		else {
3725 			for (j = msk[k]; j; j <<= 1)
3726 				if (j & 0x80000000)
3727 					i++;
3728 		}
3729 	return i;
3730 }
3731 # endif
3732 #endif /* _KERNEL */
3733 
3734 
3735 /* ------------------------------------------------------------------------ */
3736 /* Function:    fr_ifsync                                                   */
3737 /* Returns:     void *    - new interface identifier                        */
3738 /* Parameters:  action(I)  - type of synchronisation to do                  */
3739 /*              v(I)       - IP version being sync'd (v4 or v6)             */
3740 /*              newifp(I)  - interface identifier being introduced/removed  */
3741 /*              oldifp(I)  - interface identifier in a filter rule          */
3742 /*              newname(I) - name associated with newifp interface          */
3743 /*              oldname(I) - name associated with oldifp interface          */
3744 /*		ifs       - pointer to IPF stack instance		    */
3745 /*                                                                          */
3746 /* This function returns what the new value for "oldifp" should be for its  */
3747 /* caller.  In some cases it will not change, in some it will.              */
3748 /* action == IPFSYNC_RESYNC                                                 */
3749 /*   a new value for oldifp will always be looked up, according to oldname, */
3750 /*   the values of newname and newifp are ignored.                          */
3751 /* action == IPFSYNC_NEWIFP                                                 */
3752 /*   if oldname matches newname then we are doing a sync for the matching   */
3753 /*   interface, so we return newifp to be used in place of oldifp.  If the  */
3754 /*   the names don't match, just return oldifp.                             */
3755 /* action == IPFSYNC_OLDIFP                                                 */
3756 /*   if oldifp matches newifp then we are are doing a sync to remove any    */
3757 /*   references to oldifp, so we return "-1".                               */
3758 /* -----								    */
3759 /* NOTE:								    */
3760 /* This function processes NIC event from PF_HOOKS. The action parameter    */
3761 /* is set in ipf_nic_event_v4()/ipf_nic_event_v6() function. There is	    */
3762 /* one single switch statement() in ipf_nic_event_vx() function, which	    */
3763 /* translates the HOOK event type to action parameter passed to fr_ifsync.  */
3764 /* The translation table looks as follows:				    */
3765 /*	event		| action					    */
3766 /*	----------------+-------------					    */
3767 /*	NE_PLUMB	| IPFSYNC_NEWIFP				    */
3768 /*	NE_UNPLUMB	| IPFSYNC_OLDIFP				    */
3769 /*    NE_ADDRESS_CHANGE	| IPFSYNC_RESYNC				    */
3770 /*									    */
3771 /* The oldname and oldifp parameters are taken from IPF entry (rule, state  */
3772 /* table entry, NAT table entry, fragment ...). The newname and newifp	    */
3773 /* parameters come from hook event data, parameters are taken from event    */
3774 /* in ipf_nic_event_vx() functions. Any time NIC changes, the IPF is	    */
3775 /* notified by hook function.						    */
3776 /*									    */
3777 /* We get NE_UNPLUMB event from PF_HOOKS even if someone coincidently tries */
3778 /* to plumb the interface, which is already plumbed. In such case we always */
3779 /* get the event from PF_HOOKS as follows:				    */
3780 /*	event:	NE_PLUMB						    */
3781 /*	NIC:	0x0							    */
3782 /* ------------------------------------------------------------------------ */
3783 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs)
3784 int action, v;
3785 char *newname, *oldname;
3786 void *newifp, *oldifp;
3787 ipf_stack_t *ifs;
3788 {
3789 	void *rval = oldifp;
3790 
3791 	switch (action)
3792 	{
3793 	case IPFSYNC_RESYNC :
3794 		if (oldname[0] != '\0') {
3795 			rval = fr_resolvenic(oldname, v, ifs);
3796 		}
3797 		break;
3798 	case IPFSYNC_NEWIFP :
3799 		if (!strncmp(newname, oldname, LIFNAMSIZ))
3800 			rval = newifp;
3801 		break;
3802 	case IPFSYNC_OLDIFP :
3803 		/*
3804 		 * If interface gets unplumbed it must be invalidated, which
3805 		 * means set all existing references to the interface to -1.
3806 		 * We don't want to invalidate references for wildcard
3807 		 * (unbound) rules (entries).
3808 		 */
3809 		if (newifp == oldifp)
3810 			rval = (oldifp) ? (void *)-1 : NULL;
3811 		break;
3812 	}
3813 
3814 	return rval;
3815 }
3816 
3817 
3818 /* ------------------------------------------------------------------------ */
3819 /* Function:    frsynclist                                                  */
3820 /* Returns:     void                                                        */
3821 /* Parameters:  action(I) - type of synchronisation to do                   */
3822 /*              v(I)      - IP version being sync'd (v4 or v6)              */
3823 /*              ifp(I)    - interface identifier associated with action     */
3824 /*              ifname(I) - name associated with ifp parameter              */
3825 /*              fr(I)     - pointer to filter rule                          */
3826 /*		ifs       - pointer to IPF stack instance		    */
3827 /* Write Locks: ipf_mutex                                                   */
3828 /*                                                                          */
3829 /* Walk through a list of filter rules and resolve any interface names into */
3830 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3831 /* used in the rule.  The interface pointer is used to limit the lookups to */
3832 /* a specific set of matching names if it is non-NULL.                      */
3833 /* ------------------------------------------------------------------------ */
3834 static void frsynclist(action, v, ifp, ifname, fr, ifs)
3835 int action, v;
3836 void *ifp;
3837 char *ifname;
3838 frentry_t *fr;
3839 ipf_stack_t *ifs;
3840 {
3841 	frdest_t *fdp;
3842 	int rv, i;
3843 
3844 	for (; fr; fr = fr->fr_next) {
3845 		rv = fr->fr_v;
3846 		if (v != 0 && v != rv)
3847 			continue;
3848 
3849 		/*
3850 		 * Lookup all the interface names that are part of the rule.
3851 		 */
3852 		for (i = 0; i < 4; i++) {
3853 			fr->fr_ifas[i] = fr_ifsync(action, rv, ifname,
3854 						   fr->fr_ifnames[i],
3855 						   ifp, fr->fr_ifas[i],
3856 						   ifs);
3857 		}
3858 
3859 		fdp = &fr->fr_tifs[0];
3860 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3861 					   ifp, fdp->fd_ifp, ifs);
3862 
3863 		fdp = &fr->fr_tifs[1];
3864 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3865 					   ifp, fdp->fd_ifp, ifs);
3866 
3867 		fdp = &fr->fr_dif;
3868 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3869 					   ifp, fdp->fd_ifp, ifs);
3870 
3871 		if (action != IPFSYNC_RESYNC)
3872 			continue;
3873 
3874 		if (fr->fr_type == FR_T_IPF) {
3875 			if (fr->fr_satype != FRI_NORMAL &&
3876 			    fr->fr_satype != FRI_LOOKUP) {
3877 				(void)fr_ifpaddr(rv, fr->fr_satype,
3878 						 fr->fr_ifas[fr->fr_sifpidx],
3879 						 &fr->fr_src, &fr->fr_smsk,
3880 						 ifs);
3881 			}
3882 			if (fr->fr_datype != FRI_NORMAL &&
3883 			    fr->fr_datype != FRI_LOOKUP) {
3884 				(void)fr_ifpaddr(rv, fr->fr_datype,
3885 						 fr->fr_ifas[fr->fr_difpidx],
3886 						 &fr->fr_dst, &fr->fr_dmsk,
3887 						 ifs);
3888 			}
3889 		}
3890 
3891 #ifdef	IPFILTER_LOOKUP
3892 		if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP &&
3893 		    fr->fr_srcptr == NULL) {
3894 			fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype,
3895 							 fr->fr_srcnum,
3896 							 &fr->fr_srcfunc, ifs);
3897 		}
3898 		if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP &&
3899 		    fr->fr_dstptr == NULL) {
3900 			fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype,
3901 							 fr->fr_dstnum,
3902 							 &fr->fr_dstfunc, ifs);
3903 		}
3904 #endif
3905 	}
3906 }
3907 
3908 
3909 #ifdef	_KERNEL
3910 /* ------------------------------------------------------------------------ */
3911 /* Function:    frsync                                                      */
3912 /* Returns:     void                                                        */
3913 /* Parameters:  action(I) - type of synchronisation to do                   */
3914 /*              v(I)      - IP version being sync'd (v4 or v6)              */
3915 /*              ifp(I)    - interface identifier associated with action     */
3916 /*              name(I)   - name associated with ifp parameter              */
3917 /*                                                                          */
3918 /* frsync() is called when we suspect that the interface list or            */
3919 /* information about interfaces (like IP#) has changed.  Go through all     */
3920 /* filter rules, NAT entries and the state table and check if anything      */
3921 /* needs to be changed/updated.                                             */
3922 /* With the filtering hooks added to Solaris, we needed to change the manner*/
3923 /* in which this was done to support three different types of sync:         */
3924 /* - complete resync of all interface name/identifiers                      */
3925 /* - new interface being announced with its name and identifier             */
3926 /* - interface removal being announced by only its identifier               */
3927 /* ------------------------------------------------------------------------ */
3928 void frsync(action, v, ifp, name, ifs)
3929 int action, v;
3930 void *ifp;
3931 char *name;
3932 ipf_stack_t *ifs;
3933 {
3934 	int i;
3935 
3936 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
3937 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs);
3938 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs);
3939 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs);
3940 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs);
3941 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs);
3942 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs);
3943 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs);
3944 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs);
3945 
3946 	for (i = 0; i < IPL_LOGSIZE; i++) {
3947 		frgroup_t *g;
3948 
3949 		for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next)
3950 			frsynclist(action, v, ifp, name, g->fg_start, ifs);
3951 		for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next)
3952 			frsynclist(action, v, ifp, name, g->fg_start, ifs);
3953 	}
3954 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3955 }
3956 
3957 
3958 /*
3959  * In the functions below, bcopy() is called because the pointer being
3960  * copied _from_ in this instance is a pointer to a char buf (which could
3961  * end up being unaligned) and on the kernel's local stack.
3962  */
3963 /* ------------------------------------------------------------------------ */
3964 /* Function:    copyinptr                                                   */
3965 /* Returns:     int - 0 = success, else failure                             */
3966 /* Parameters:  src(I)  - pointer to the source address                     */
3967 /*              dst(I)  - destination address                               */
3968 /*              size(I) - number of bytes to copy                           */
3969 /*                                                                          */
3970 /* Copy a block of data in from user space, given a pointer to the pointer  */
3971 /* to start copying from (src) and a pointer to where to store it (dst).    */
3972 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
3973 /* ------------------------------------------------------------------------ */
3974 int copyinptr(src, dst, size)
3975 void *src, *dst;
3976 size_t size;
3977 {
3978 	caddr_t ca;
3979 	int err;
3980 
3981 # if SOLARIS
3982 	err = COPYIN(src, (caddr_t)&ca, sizeof(ca));
3983 	if (err != 0)
3984 		return err;
3985 # else
3986 	bcopy(src, (caddr_t)&ca, sizeof(ca));
3987 # endif
3988 	err = COPYIN(ca, dst, size);
3989 	return err;
3990 }
3991 
3992 
3993 /* ------------------------------------------------------------------------ */
3994 /* Function:    copyoutptr                                                  */
3995 /* Returns:     int - 0 = success, else failure                             */
3996 /* Parameters:  src(I)  - pointer to the source address                     */
3997 /*              dst(I)  - destination address                               */
3998 /*              size(I) - number of bytes to copy                           */
3999 /*                                                                          */
4000 /* Copy a block of data out to user space, given a pointer to the pointer   */
4001 /* to start copying from (src) and a pointer to where to store it (dst).    */
4002 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4003 /* ------------------------------------------------------------------------ */
4004 int copyoutptr(src, dst, size)
4005 void *src, *dst;
4006 size_t size;
4007 {
4008 	caddr_t ca;
4009 	int err;
4010 
4011 # if SOLARIS
4012 	err = COPYIN(dst, (caddr_t)&ca, sizeof(ca));
4013 	if (err != 0)
4014 		return err;
4015 # else
4016 	bcopy(dst, (caddr_t)&ca, sizeof(ca));
4017 # endif
4018 	err = COPYOUT(src, ca, size);
4019 	return err;
4020 }
4021 #endif
4022 
4023 
4024 /* ------------------------------------------------------------------------ */
4025 /* Function:    fr_lock                                                     */
4026 /* Returns:	int - 0 = success, else error				    */
4027 /* Parameters:  data(I)  - pointer to lock value to set                     */
4028 /*              lockp(O) - pointer to location to store old lock value      */
4029 /*                                                                          */
4030 /* Get the new value for the lock integer, set it and return the old value  */
4031 /* in *lockp.                                                               */
4032 /* ------------------------------------------------------------------------ */
4033 int fr_lock(data, lockp)
4034 caddr_t data;
4035 int *lockp;
4036 {
4037 	int arg, err;
4038 
4039 	err = BCOPYIN(data, (caddr_t)&arg, sizeof(arg));
4040 	if (err != 0)
4041 		return (EFAULT);
4042 	err = BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp));
4043 	if (err != 0)
4044 		return (EFAULT);
4045 	*lockp = arg;
4046 	return (0);
4047 }
4048 
4049 
4050 /* ------------------------------------------------------------------------ */
4051 /* Function:    fr_getstat                                                  */
4052 /* Returns:     Nil                                                         */
4053 /* Parameters:  fiop(I)  - pointer to ipfilter stats structure              */
4054 /*                                                                          */
4055 /* Stores a copy of current pointers, counters, etc, in the friostat        */
4056 /* structure.                                                               */
4057 /* ------------------------------------------------------------------------ */
4058 void fr_getstat(fiop, ifs)
4059 friostat_t *fiop;
4060 ipf_stack_t *ifs;
4061 {
4062 	int i, j;
4063 
4064 	bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st,
4065 	    sizeof(filterstats_t) * 2);
4066 	fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock;
4067 	fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock;
4068 	fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock;
4069 	fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock;
4070 
4071 	for (i = 0; i < 2; i++)
4072 		for (j = 0; j < 2; j++) {
4073 			fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j];
4074 			fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j];
4075 			fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j];
4076 			fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j];
4077 		}
4078 
4079 	fiop->f_ticks = ifs->ifs_fr_ticks;
4080 	fiop->f_active = ifs->ifs_fr_active;
4081 	fiop->f_froute[0] = ifs->ifs_fr_frouteok[0];
4082 	fiop->f_froute[1] = ifs->ifs_fr_frouteok[1];
4083 
4084 	fiop->f_running = ifs->ifs_fr_running;
4085 	for (i = 0; i < IPL_LOGSIZE; i++) {
4086 		fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0];
4087 		fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1];
4088 	}
4089 #ifdef  IPFILTER_LOG
4090 	fiop->f_logging = 1;
4091 #else
4092 	fiop->f_logging = 0;
4093 #endif
4094 	fiop->f_defpass = ifs->ifs_fr_pass;
4095 	fiop->f_features = fr_features;
4096 	(void) strncpy(fiop->f_version, ipfilter_version,
4097 		       sizeof(fiop->f_version));
4098 }
4099 
4100 
4101 #ifdef	USE_INET6
4102 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4103 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4104 	-1,			/* 1: UNUSED */
4105 	-1,			/* 2: UNUSED */
4106 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4107 	-1,			/* 4: ICMP_SOURCEQUENCH */
4108 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4109 	-1,			/* 6: UNUSED */
4110 	-1,			/* 7: UNUSED */
4111 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4112 	-1,			/* 9: UNUSED */
4113 	-1,			/* 10: UNUSED */
4114 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4115 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4116 	-1,			/* 13: ICMP_TSTAMP */
4117 	-1,			/* 14: ICMP_TSTAMPREPLY */
4118 	-1,			/* 15: ICMP_IREQ */
4119 	-1,			/* 16: ICMP_IREQREPLY */
4120 	-1,			/* 17: ICMP_MASKREQ */
4121 	-1,			/* 18: ICMP_MASKREPLY */
4122 };
4123 
4124 
4125 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4126 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4127 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4128 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4129 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4130 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4131 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4132 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4133 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4134 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4135 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4136 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4137 	-1,				/* 11: ICMP_UNREACH_TOSNET */
4138 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4139 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4140 };
4141 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4142 #endif
4143 
4144 int	icmpreplytype4[ICMP_MAXTYPE + 1];
4145 
4146 
4147 /* ------------------------------------------------------------------------ */
4148 /* Function:    fr_matchicmpqueryreply                                      */
4149 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4150 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4151 /*              ic(I)   - ICMP information                                  */
4152 /*              icmp(I) - ICMP packet header                                */
4153 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4154 /*                                                                          */
4155 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4156 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
4157 /* else return 0 for no match.                                              */
4158 /* ------------------------------------------------------------------------ */
4159 int fr_matchicmpqueryreply(v, ic, icmp, rev)
4160 int v;
4161 icmpinfo_t *ic;
4162 icmphdr_t *icmp;
4163 int rev;
4164 {
4165 	int ictype;
4166 
4167 	ictype = ic->ici_type;
4168 
4169 	if (v == 4) {
4170 		/*
4171 		 * If we matched its type on the way in, then when going out
4172 		 * it will still be the same type.
4173 		 */
4174 		if ((!rev && (icmp->icmp_type == ictype)) ||
4175 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4176 			if (icmp->icmp_type != ICMP_ECHOREPLY)
4177 				return 1;
4178 			if (icmp->icmp_id == ic->ici_id)
4179 				return 1;
4180 		}
4181 	}
4182 #ifdef	USE_INET6
4183 	else if (v == 6) {
4184 		if ((!rev && (icmp->icmp_type == ictype)) ||
4185 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4186 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4187 				return 1;
4188 			if (icmp->icmp_id == ic->ici_id)
4189 				return 1;
4190 		}
4191 	}
4192 #endif
4193 	return 0;
4194 }
4195 
4196 
4197 #ifdef	IPFILTER_LOOKUP
4198 /* ------------------------------------------------------------------------ */
4199 /* Function:    fr_resolvelookup                                            */
4200 /* Returns:     void * - NULL = failure, else success.                      */
4201 /* Parameters:  type(I)     - type of lookup these parameters are for.      */
4202 /*              number(I)   - table number to use when searching            */
4203 /*              funcptr(IO) - pointer to pointer for storing IP address     */
4204 /*                           searching function.                            */
4205 /*                                                                          */
4206 /* Search for the "table" number passed in amongst those configured for     */
4207 /* that particular type.  If the type is recognised then the function to    */
4208 /* call to do the IP address search will be change, regardless of whether   */
4209 /* or not the "table" number exists.                                        */
4210 /* ------------------------------------------------------------------------ */
4211 static void *fr_resolvelookup(type, number, funcptr, ifs)
4212 u_int type, number;
4213 lookupfunc_t *funcptr;
4214 ipf_stack_t *ifs;
4215 {
4216 	char name[FR_GROUPLEN];
4217 	iphtable_t *iph;
4218 	ip_pool_t *ipo;
4219 	void *ptr;
4220 
4221 #if defined(SNPRINTF) && defined(_KERNEL)
4222 	(void) SNPRINTF(name, sizeof(name), "%u", number);
4223 #else
4224 	(void) sprintf(name, "%u", number);
4225 #endif
4226 
4227 	READ_ENTER(&ifs->ifs_ip_poolrw);
4228 
4229 	switch (type)
4230 	{
4231 	case IPLT_POOL :
4232 # if (defined(__osf__) && defined(_KERNEL))
4233 		ptr = NULL;
4234 		*funcptr = NULL;
4235 # else
4236 		ipo = ip_pool_find(IPL_LOGIPF, name, ifs);
4237 		ptr = ipo;
4238 		if (ipo != NULL) {
4239 			ATOMIC_INC32(ipo->ipo_ref);
4240 		}
4241 		*funcptr = ip_pool_search;
4242 # endif
4243 		break;
4244 	case IPLT_HASH :
4245 		iph = fr_findhtable(IPL_LOGIPF, name, ifs);
4246 		ptr = iph;
4247 		if (iph != NULL) {
4248 			ATOMIC_INC32(iph->iph_ref);
4249 		}
4250 		*funcptr = fr_iphmfindip;
4251 		break;
4252 	default:
4253 		ptr = NULL;
4254 		*funcptr = NULL;
4255 		break;
4256 	}
4257 	RWLOCK_EXIT(&ifs->ifs_ip_poolrw);
4258 
4259 	return ptr;
4260 }
4261 #endif
4262 
4263 
4264 /* ------------------------------------------------------------------------ */
4265 /* Function:    frrequest                                                   */
4266 /* Returns:     int - 0 == success, > 0 == errno value                      */
4267 /* Parameters:  unit(I)     - device for which this is for                  */
4268 /*              req(I)      - ioctl command (SIOC*)                         */
4269 /*              data(I)     - pointr to ioctl data                          */
4270 /*              set(I)      - 1 or 0 (filter set)                           */
4271 /*              makecopy(I) - flag indicating whether data points to a rule */
4272 /*                            in kernel space & hence doesn't need copying. */
4273 /*                                                                          */
4274 /* This function handles all the requests which operate on the list of      */
4275 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4276 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4277 /* names are resolved here and other sanity checks are made on the content  */
4278 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4279 /* then make sure they are created and initialised before exiting.          */
4280 /* ------------------------------------------------------------------------ */
4281 int frrequest(unit, req, data, set, makecopy, ifs)
4282 int unit;
4283 ioctlcmd_t req;
4284 int set, makecopy;
4285 caddr_t data;
4286 ipf_stack_t *ifs;
4287 {
4288 	frentry_t frd, *fp, *f, **fprev, **ftail;
4289 	int error = 0, in, v;
4290 	void *ptr, *uptr;
4291 	u_int *p, *pp;
4292 	frgroup_t *fg;
4293 	char *group;
4294 
4295 	fg = NULL;
4296 	fp = &frd;
4297 	if (makecopy != 0) {
4298 		error = fr_inobj(data, fp, IPFOBJ_FRENTRY);
4299 		if (error)
4300 			return EFAULT;
4301 		if ((fp->fr_flags & FR_T_BUILTIN) != 0)
4302 			return EINVAL;
4303 		fp->fr_ref = 0;
4304 		fp->fr_flags |= FR_COPIED;
4305 	} else {
4306 		fp = (frentry_t *)data;
4307 		if ((fp->fr_type & FR_T_BUILTIN) == 0)
4308 			return EINVAL;
4309 		fp->fr_flags &= ~FR_COPIED;
4310 	}
4311 
4312 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4313 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL)))
4314 		return EINVAL;
4315 
4316 	v = fp->fr_v;
4317 	uptr = fp->fr_data;
4318 
4319 	/*
4320 	 * Only filter rules for IPv4 or IPv6 are accepted.
4321 	 */
4322 	if (v == 4)
4323 		/*EMPTY*/;
4324 #ifdef	USE_INET6
4325 	else if (v == 6)
4326 		/*EMPTY*/;
4327 #endif
4328 	else {
4329 		return EINVAL;
4330 	}
4331 
4332 	/*
4333 	 * If the rule is being loaded from user space, i.e. we had to copy it
4334 	 * into kernel space, then do not trust the function pointer in the
4335 	 * rule.
4336 	 */
4337 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4338 		if (fr_findfunc(fp->fr_func) == NULL)
4339 			return ESRCH;
4340 		error = fr_funcinit(fp, ifs);
4341 		if (error != 0)
4342 			return error;
4343 	}
4344 
4345 	ptr = NULL;
4346 	/*
4347 	 * Check that the group number does exist and that its use (in/out)
4348 	 * matches what the rule is.
4349 	 */
4350 	if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN))
4351 		*fp->fr_grhead = '\0';
4352 	group = fp->fr_group;
4353 	if (!strncmp(group, "0", FR_GROUPLEN))
4354 		*group = '\0';
4355 
4356 	if (FR_ISACCOUNT(fp->fr_flags))
4357 		unit = IPL_LOGCOUNT;
4358 
4359 	if ((req != (int)SIOCZRLST) && (*group != '\0')) {
4360 		fg = fr_findgroup(group, unit, set, NULL, ifs);
4361 		if (fg == NULL)
4362 			return ESRCH;
4363 		if (fg->fg_flags == 0)
4364 			fg->fg_flags = fp->fr_flags & FR_INOUT;
4365 		else if (fg->fg_flags != (fp->fr_flags & FR_INOUT))
4366 			return ESRCH;
4367 	}
4368 
4369 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4370 
4371 	/*
4372 	 * Work out which rule list this change is being applied to.
4373 	 */
4374 	ftail = NULL;
4375 	fprev = NULL;
4376 	if (unit == IPL_LOGAUTH)
4377 		fprev = &ifs->ifs_ipauth;
4378 	else if (v == 4) {
4379 		if (FR_ISACCOUNT(fp->fr_flags))
4380 			fprev = &ifs->ifs_ipacct[in][set];
4381 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4382 			fprev = &ifs->ifs_ipfilter[in][set];
4383 	} else if (v == 6) {
4384 		if (FR_ISACCOUNT(fp->fr_flags))
4385 			fprev = &ifs->ifs_ipacct6[in][set];
4386 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4387 			fprev = &ifs->ifs_ipfilter6[in][set];
4388 	}
4389 	if (fprev == NULL)
4390 		return ESRCH;
4391 
4392 	if (*group != '\0') {
4393 	    if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs)))
4394 			return ESRCH;
4395 		fprev = &fg->fg_start;
4396 	}
4397 
4398 	ftail = fprev;
4399 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4400 		if (fp->fr_collect <= f->fr_collect) {
4401 			ftail = fprev;
4402 			f = NULL;
4403 			break;
4404 		}
4405 		fprev = ftail;
4406 	}
4407 
4408 	/*
4409 	 * Copy in extra data for the rule.
4410 	 */
4411 	if (fp->fr_dsize != 0) {
4412 		if (makecopy != 0) {
4413 			KMALLOCS(ptr, void *, fp->fr_dsize);
4414 			if (!ptr)
4415 				return ENOMEM;
4416 			error = COPYIN(uptr, ptr, fp->fr_dsize);
4417 		} else {
4418 			ptr = uptr;
4419 			error = 0;
4420 		}
4421 		if (error != 0) {
4422 			KFREES(ptr, fp->fr_dsize);
4423 			return EFAULT;
4424 		}
4425 		fp->fr_data = ptr;
4426 	} else
4427 		fp->fr_data = NULL;
4428 
4429 	/*
4430 	 * Perform per-rule type sanity checks of their members.
4431 	 */
4432 	switch (fp->fr_type & ~FR_T_BUILTIN)
4433 	{
4434 #if defined(IPFILTER_BPF)
4435 	case FR_T_BPFOPC :
4436 		if (fp->fr_dsize == 0)
4437 			return EINVAL;
4438 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4439 			if (makecopy && fp->fr_data != NULL) {
4440 				KFREES(fp->fr_data, fp->fr_dsize);
4441 			}
4442 			return EINVAL;
4443 		}
4444 		break;
4445 #endif
4446 	case FR_T_IPF :
4447 		if (fp->fr_dsize != sizeof(fripf_t)) {
4448 			if (makecopy && fp->fr_data != NULL) {
4449 				KFREES(fp->fr_data, fp->fr_dsize);
4450 			}
4451 			return EINVAL;
4452 		}
4453 
4454 		/*
4455 		 * Allowing a rule with both "keep state" and "with oow" is
4456 		 * pointless because adding a state entry to the table will
4457 		 * fail with the out of window (oow) flag set.
4458 		 */
4459 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4460 			if (makecopy && fp->fr_data != NULL) {
4461 				KFREES(fp->fr_data, fp->fr_dsize);
4462 			}
4463 			return EINVAL;
4464 		}
4465 
4466 		switch (fp->fr_satype)
4467 		{
4468 		case FRI_BROADCAST :
4469 		case FRI_DYNAMIC :
4470 		case FRI_NETWORK :
4471 		case FRI_NETMASKED :
4472 		case FRI_PEERADDR :
4473 			if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) {
4474 				if (makecopy && fp->fr_data != NULL) {
4475 					KFREES(fp->fr_data, fp->fr_dsize);
4476 				}
4477 				return EINVAL;
4478 			}
4479 			break;
4480 #ifdef	IPFILTER_LOOKUP
4481 		case FRI_LOOKUP :
4482 			fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype,
4483 							 fp->fr_srcnum,
4484 							 &fp->fr_srcfunc, ifs);
4485 			break;
4486 #endif
4487 		default :
4488 			break;
4489 		}
4490 
4491 		switch (fp->fr_datype)
4492 		{
4493 		case FRI_BROADCAST :
4494 		case FRI_DYNAMIC :
4495 		case FRI_NETWORK :
4496 		case FRI_NETMASKED :
4497 		case FRI_PEERADDR :
4498 			if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) {
4499 				if (makecopy && fp->fr_data != NULL) {
4500 					KFREES(fp->fr_data, fp->fr_dsize);
4501 				}
4502 				return EINVAL;
4503 			}
4504 			break;
4505 #ifdef	IPFILTER_LOOKUP
4506 		case FRI_LOOKUP :
4507 			fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype,
4508 							 fp->fr_dstnum,
4509 							 &fp->fr_dstfunc, ifs);
4510 			break;
4511 #endif
4512 		default :
4513 			break;
4514 		}
4515 		break;
4516 	case FR_T_NONE :
4517 		break;
4518 	case FR_T_CALLFUNC :
4519 		break;
4520 	case FR_T_COMPIPF :
4521 		break;
4522 	default :
4523 		if (makecopy && fp->fr_data != NULL) {
4524 			KFREES(fp->fr_data, fp->fr_dsize);
4525 		}
4526 		return EINVAL;
4527 	}
4528 
4529 	/*
4530 	 * Lookup all the interface names that are part of the rule.
4531 	 */
4532 	frsynclist(0, 0, NULL, NULL, fp, ifs);
4533 	fp->fr_statecnt = 0;
4534 
4535 	/*
4536 	 * Look for an existing matching filter rule, but don't include the
4537 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4538 	 * This elminates rules which are indentical being loaded.  Checksum
4539 	 * the constant part of the filter rule to make comparisons quicker
4540 	 * (this meaning no pointers are included).
4541 	 */
4542 	for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4543 	     p < pp; p++)
4544 		fp->fr_cksum += *p;
4545 	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4546 	for (p = (u_int *)fp->fr_data; p < pp; p++)
4547 		fp->fr_cksum += *p;
4548 
4549 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
4550 	bzero((char *)ifs->ifs_frcache, sizeof (ifs->ifs_frcache));
4551 
4552 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4553 		if ((fp->fr_cksum != f->fr_cksum) ||
4554 		    (f->fr_dsize != fp->fr_dsize))
4555 			continue;
4556 		if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ))
4557 			continue;
4558 		if ((!ptr && !f->fr_data) ||
4559 		    (ptr && f->fr_data &&
4560 		     !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize)))
4561 			break;
4562 	}
4563 
4564 	/*
4565 	 * If zero'ing statistics, copy current to caller and zero.
4566 	 */
4567 	if (req == (ioctlcmd_t)SIOCZRLST) {
4568 		if (f == NULL)
4569 			error = ESRCH;
4570 		else {
4571 			/*
4572 			 * Copy and reduce lock because of impending copyout.
4573 			 * Well we should, but if we do then the atomicity of
4574 			 * this call and the correctness of fr_hits and
4575 			 * fr_bytes cannot be guaranteed.  As it is, this code
4576 			 * only resets them to 0 if they are successfully
4577 			 * copied out into user space.
4578 			 */
4579 			bcopy((char *)f, (char *)fp, sizeof(*f));
4580 
4581 			/*
4582 			 * When we copy this rule back out, set the data
4583 			 * pointer to be what it was in user space.
4584 			 */
4585 			fp->fr_data = uptr;
4586 			error = fr_outobj(data, fp, IPFOBJ_FRENTRY);
4587 
4588 			if (error == 0) {
4589 				if ((f->fr_dsize != 0) && (uptr != NULL))
4590 					error = COPYOUT(f->fr_data, uptr,
4591 							f->fr_dsize);
4592 				if (error == 0) {
4593 					f->fr_hits = 0;
4594 					f->fr_bytes = 0;
4595 				}
4596 			}
4597 		}
4598 
4599 		if ((ptr != NULL) && (makecopy != 0)) {
4600 			KFREES(ptr, fp->fr_dsize);
4601 		}
4602 		RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4603 		return error;
4604 	}
4605 
4606 	if (!f) {
4607 		/*
4608 		 * At the end of this, ftail must point to the place where the
4609 		 * new rule is to be saved/inserted/added.
4610 		 * For SIOCAD*FR, this should be the last rule in the group of
4611 		 * rules that have equal fr_collect fields.
4612 		 * For SIOCIN*FR, ...
4613 		 */
4614 		if (req == (ioctlcmd_t)SIOCADAFR ||
4615 		    req == (ioctlcmd_t)SIOCADIFR) {
4616 
4617 			for (ftail = fprev; (f = *ftail) != NULL; ) {
4618 				if (f->fr_collect > fp->fr_collect)
4619 					break;
4620 				ftail = &f->fr_next;
4621 			}
4622 			f = NULL;
4623 			ptr = NULL;
4624 			error = 0;
4625 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
4626 			   req == (ioctlcmd_t)SIOCINIFR) {
4627 			while ((f = *fprev) != NULL) {
4628 				if (f->fr_collect >= fp->fr_collect)
4629 					break;
4630 				fprev = &f->fr_next;
4631 			}
4632 			ftail = fprev;
4633 			if (fp->fr_hits != 0) {
4634 				while (fp->fr_hits && (f = *ftail)) {
4635 					if (f->fr_collect != fp->fr_collect)
4636 						break;
4637 					fprev = ftail;
4638 					ftail = &f->fr_next;
4639 					fp->fr_hits--;
4640 				}
4641 			}
4642 			f = NULL;
4643 			ptr = NULL;
4644 			error = 0;
4645 		}
4646 	}
4647 
4648 	/*
4649 	 * Request to remove a rule.
4650 	 */
4651 	if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) {
4652 		if (!f)
4653 			error = ESRCH;
4654 		else {
4655 			/*
4656 			 * Do not allow activity from user space to interfere
4657 			 * with rules not loaded that way.
4658 			 */
4659 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4660 				error = EPERM;
4661 				goto done;
4662 			}
4663 
4664 			/*
4665 			 * Return EBUSY if the rule is being reference by
4666 			 * something else (eg state information.
4667 			 */
4668 			if (f->fr_ref > 1) {
4669 				error = EBUSY;
4670 				goto done;
4671 			}
4672 #ifdef	IPFILTER_SCAN
4673 			if (f->fr_isctag[0] != '\0' &&
4674 			    (f->fr_isc != (struct ipscan *)-1))
4675 				ipsc_detachfr(f);
4676 #endif
4677 			if (unit == IPL_LOGAUTH) {
4678 				error = fr_preauthcmd(req, f, ftail, ifs);
4679 				goto done;
4680 			}
4681 			if (*f->fr_grhead != '\0')
4682 				fr_delgroup(f->fr_grhead, unit, set, ifs);
4683 			fr_fixskip(ftail, f, -1);
4684 			*ftail = f->fr_next;
4685 			f->fr_next = NULL;
4686 			(void)fr_derefrule(&f, ifs);
4687 		}
4688 	} else {
4689 		/*
4690 		 * Not removing, so we must be adding/inserting a rule.
4691 		 */
4692 		if (f)
4693 			error = EEXIST;
4694 		else {
4695 			if (unit == IPL_LOGAUTH) {
4696 				error = fr_preauthcmd(req, fp, ftail, ifs);
4697 				goto done;
4698 			}
4699 			if (makecopy) {
4700 				KMALLOC(f, frentry_t *);
4701 			} else
4702 				f = fp;
4703 			if (f != NULL) {
4704 				if (fp != f)
4705 					bcopy((char *)fp, (char *)f,
4706 					      sizeof(*f));
4707 				MUTEX_NUKE(&f->fr_lock);
4708 				MUTEX_INIT(&f->fr_lock, "filter rule lock");
4709 #ifdef	IPFILTER_SCAN
4710 				if (f->fr_isctag[0] != '\0' &&
4711 				    ipsc_attachfr(f))
4712 					f->fr_isc = (struct ipscan *)-1;
4713 #endif
4714 				f->fr_hits = 0;
4715 				if (makecopy != 0)
4716 					f->fr_ref = 1;
4717 				f->fr_next = *ftail;
4718 				*ftail = f;
4719 				if (req == (ioctlcmd_t)SIOCINIFR ||
4720 				    req == (ioctlcmd_t)SIOCINAFR)
4721 					fr_fixskip(ftail, f, 1);
4722 				f->fr_grp = NULL;
4723 				group = f->fr_grhead;
4724 				if (*group != '\0') {
4725 					fg = fr_addgroup(group, f, f->fr_flags,
4726 							 unit, set, ifs);
4727 					if (fg != NULL)
4728 						f->fr_grp = &fg->fg_start;
4729 				}
4730 			} else
4731 				error = ENOMEM;
4732 		}
4733 	}
4734 done:
4735 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4736 	if ((ptr != NULL) && (error != 0) && (makecopy != 0)) {
4737 		KFREES(ptr, fp->fr_dsize);
4738 	}
4739 	return (error);
4740 }
4741 
4742 
4743 /* ------------------------------------------------------------------------ */
4744 /* Function:    fr_funcinit                                                 */
4745 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
4746 /* Parameters:  fr(I) - pointer to filter rule                              */
4747 /*                                                                          */
4748 /* If a rule is a call rule, then check if the function it points to needs  */
4749 /* an init function to be called now the rule has been loaded.              */
4750 /* ------------------------------------------------------------------------ */
4751 static int fr_funcinit(fr, ifs)
4752 frentry_t *fr;
4753 ipf_stack_t *ifs;
4754 {
4755 	ipfunc_resolve_t *ft;
4756 	int err;
4757 
4758 	err = ESRCH;
4759 
4760 	for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4761 		if (ft->ipfu_addr == fr->fr_func) {
4762 			err = 0;
4763 			if (ft->ipfu_init != NULL)
4764 				err = (*ft->ipfu_init)(fr, ifs);
4765 			break;
4766 		}
4767 	return err;
4768 }
4769 
4770 
4771 /* ------------------------------------------------------------------------ */
4772 /* Function:    fr_findfunc                                                 */
4773 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
4774 /* Parameters:  funcptr(I) - function pointer to lookup                     */
4775 /*                                                                          */
4776 /* Look for a function in the table of known functions.                     */
4777 /* ------------------------------------------------------------------------ */
4778 static ipfunc_t fr_findfunc(funcptr)
4779 ipfunc_t funcptr;
4780 {
4781 	ipfunc_resolve_t *ft;
4782 
4783 	for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4784 		if (ft->ipfu_addr == funcptr)
4785 			return funcptr;
4786 	return NULL;
4787 }
4788 
4789 
4790 /* ------------------------------------------------------------------------ */
4791 /* Function:    fr_resolvefunc                                              */
4792 /* Returns:     int - 0 == success, else error                              */
4793 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
4794 /*                                                                          */
4795 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
4796 /* This will either be the function name (if the pointer is set) or the     */
4797 /* function pointer if the name is set.  When found, fill in the other one  */
4798 /* so that the entire, complete, structure can be copied back to user space.*/
4799 /* ------------------------------------------------------------------------ */
4800 int fr_resolvefunc(data)
4801 void *data;
4802 {
4803 	ipfunc_resolve_t res, *ft;
4804 	int err;
4805 
4806 	err = BCOPYIN(data, &res, sizeof(res));
4807 	if (err != 0)
4808 		return EFAULT;
4809 
4810 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
4811 		for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4812 			if (strncmp(res.ipfu_name, ft->ipfu_name,
4813 				    sizeof(res.ipfu_name)) == 0) {
4814 				res.ipfu_addr = ft->ipfu_addr;
4815 				res.ipfu_init = ft->ipfu_init;
4816 				if (COPYOUT(&res, data, sizeof(res)) != 0)
4817 					return EFAULT;
4818 				return 0;
4819 			}
4820 	}
4821 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
4822 		for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4823 			if (ft->ipfu_addr == res.ipfu_addr) {
4824 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
4825 					       sizeof(res.ipfu_name));
4826 				res.ipfu_init = ft->ipfu_init;
4827 				if (COPYOUT(&res, data, sizeof(res)) != 0)
4828 					return EFAULT;
4829 				return 0;
4830 			}
4831 	}
4832 	return ESRCH;
4833 }
4834 
4835 
4836 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \
4837     (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \
4838     (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \
4839     (defined(__OpenBSD__) && (OpenBSD < 200006))
4840 /*
4841  * From: NetBSD
4842  * ppsratecheck(): packets (or events) per second limitation.
4843  */
4844 int
4845 ppsratecheck(lasttime, curpps, maxpps)
4846 	struct timeval *lasttime;
4847 	int *curpps;
4848 	int maxpps;	/* maximum pps allowed */
4849 {
4850 	struct timeval tv, delta;
4851 	int rv;
4852 
4853 	GETKTIME(&tv);
4854 
4855 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
4856 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
4857 	if (delta.tv_usec < 0) {
4858 		delta.tv_sec--;
4859 		delta.tv_usec += 1000000;
4860 	}
4861 
4862 	/*
4863 	 * check for 0,0 is so that the message will be seen at least once.
4864 	 * if more than one second have passed since the last update of
4865 	 * lasttime, reset the counter.
4866 	 *
4867 	 * we do increment *curpps even in *curpps < maxpps case, as some may
4868 	 * try to use *curpps for stat purposes as well.
4869 	 */
4870 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
4871 	    delta.tv_sec >= 1) {
4872 		*lasttime = tv;
4873 		*curpps = 0;
4874 		rv = 1;
4875 	} else if (maxpps < 0)
4876 		rv = 1;
4877 	else if (*curpps < maxpps)
4878 		rv = 1;
4879 	else
4880 		rv = 0;
4881 	*curpps = *curpps + 1;
4882 
4883 	return (rv);
4884 }
4885 #endif
4886 
4887 
4888 /* ------------------------------------------------------------------------ */
4889 /* Function:    fr_derefrule                                                */
4890 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
4891 /* Parameters:  fr(I) - pointer to filter rule                              */
4892 /*                                                                          */
4893 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
4894 /* free it and any associated storage space being used by it.               */
4895 /* ------------------------------------------------------------------------ */
4896 int fr_derefrule(frp, ifs)
4897 frentry_t **frp;
4898 ipf_stack_t *ifs;
4899 {
4900 	frentry_t *fr;
4901 
4902 	fr = *frp;
4903 
4904 	MUTEX_ENTER(&fr->fr_lock);
4905 	fr->fr_ref--;
4906 	if (fr->fr_ref == 0) {
4907 		MUTEX_EXIT(&fr->fr_lock);
4908 		MUTEX_DESTROY(&fr->fr_lock);
4909 
4910 #ifdef IPFILTER_LOOKUP
4911 		if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP)
4912 		    ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs);
4913 		if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP)
4914 		    ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs);
4915 #endif
4916 
4917 		if (fr->fr_dsize) {
4918 			KFREES(fr->fr_data, fr->fr_dsize);
4919 		}
4920 		if ((fr->fr_flags & FR_COPIED) != 0) {
4921 			KFREE(fr);
4922 			return 0;
4923 		}
4924 		return 1;
4925 	} else {
4926 		MUTEX_EXIT(&fr->fr_lock);
4927 	}
4928 	*frp = NULL;
4929 	return -1;
4930 }
4931 
4932 
4933 #ifdef	IPFILTER_LOOKUP
4934 /* ------------------------------------------------------------------------ */
4935 /* Function:    fr_grpmapinit                                               */
4936 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
4937 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
4938 /*                                                                          */
4939 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
4940 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap.                   */
4941 /* ------------------------------------------------------------------------ */
4942 static int fr_grpmapinit(fr, ifs)
4943 frentry_t *fr;
4944 ipf_stack_t *ifs;
4945 {
4946 	char name[FR_GROUPLEN];
4947 	iphtable_t *iph;
4948 
4949 #if defined(SNPRINTF) && defined(_KERNEL)
4950 	(void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
4951 #else
4952 	(void) sprintf(name, "%d", fr->fr_arg);
4953 #endif
4954 	iph = fr_findhtable(IPL_LOGIPF, name, ifs);
4955 	if (iph == NULL)
4956 		return ESRCH;
4957 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT))
4958 		return ESRCH;
4959 	fr->fr_ptr = iph;
4960 	return 0;
4961 }
4962 
4963 
4964 /* ------------------------------------------------------------------------ */
4965 /* Function:    fr_srcgrpmap                                                */
4966 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
4967 /* Parameters:  fin(I)    - pointer to packet information                   */
4968 /*              passp(IO) - pointer to current/new filter decision (unused) */
4969 /*                                                                          */
4970 /* Look for a rule group head in a hash table, using the source address as  */
4971 /* the key, and descend into that group and continue matching rules against */
4972 /* the packet.                                                              */
4973 /* ------------------------------------------------------------------------ */
4974 frentry_t *fr_srcgrpmap(fin, passp)
4975 fr_info_t *fin;
4976 u_32_t *passp;
4977 {
4978 	frgroup_t *fg;
4979 	void *rval;
4980 	ipf_stack_t *ifs = fin->fin_ifs;
4981 
4982 	rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs);
4983 	if (rval == NULL)
4984 		return NULL;
4985 
4986 	fg = rval;
4987 	fin->fin_fr = fg->fg_start;
4988 	(void) fr_scanlist(fin, *passp);
4989 	return fin->fin_fr;
4990 }
4991 
4992 
4993 /* ------------------------------------------------------------------------ */
4994 /* Function:    fr_dstgrpmap                                                */
4995 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
4996 /* Parameters:  fin(I)    - pointer to packet information                   */
4997 /*              passp(IO) - pointer to current/new filter decision (unused) */
4998 /*                                                                          */
4999 /* Look for a rule group head in a hash table, using the destination        */
5000 /* address as the key, and descend into that group and continue matching    */
5001 /* rules against  the packet.                                               */
5002 /* ------------------------------------------------------------------------ */
5003 frentry_t *fr_dstgrpmap(fin, passp)
5004 fr_info_t *fin;
5005 u_32_t *passp;
5006 {
5007 	frgroup_t *fg;
5008 	void *rval;
5009 	ipf_stack_t *ifs = fin->fin_ifs;
5010 
5011 	rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs);
5012 	if (rval == NULL)
5013 		return NULL;
5014 
5015 	fg = rval;
5016 	fin->fin_fr = fg->fg_start;
5017 	(void) fr_scanlist(fin, *passp);
5018 	return fin->fin_fr;
5019 }
5020 #endif /* IPFILTER_LOOKUP */
5021 
5022 /*
5023  * Queue functions
5024  * ===============
5025  * These functions manage objects on queues for efficient timeouts.  There are
5026  * a number of system defined queues as well as user defined timeouts.  It is
5027  * expected that a lock is held in the domain in which the queue belongs
5028  * (i.e. either state or NAT) when calling any of these functions that prevents
5029  * fr_freetimeoutqueue() from being called at the same time as any other.
5030  */
5031 
5032 
5033 /* ------------------------------------------------------------------------ */
5034 /* Function:    fr_addtimeoutqueue                                          */
5035 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5036 /*                               timeout queue with given interval.         */
5037 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5038 /*                           of interface queues.                           */
5039 /*              seconds(I) - timeout value in seconds for this queue.       */
5040 /*                                                                          */
5041 /* This routine first looks for a timeout queue that matches the interval   */
5042 /* being requested.  If it finds one, increments the reference counter and  */
5043 /* returns a pointer to it.  If none are found, it allocates a new one and  */
5044 /* inserts it at the top of the list.                                       */
5045 /*                                                                          */
5046 /* Locking.                                                                 */
5047 /* It is assumed that the caller of this function has an appropriate lock   */
5048 /* held (exclusively) in the domain that encompases 'parent'.               */
5049 /* ------------------------------------------------------------------------ */
5050 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs)
5051 ipftq_t **parent;
5052 u_int seconds;
5053 ipf_stack_t *ifs;
5054 {
5055 	ipftq_t *ifq;
5056 	u_int period;
5057 
5058 	period = seconds * IPF_HZ_DIVIDE;
5059 
5060 	MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock);
5061 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5062 		if (ifq->ifq_ttl == period) {
5063 			/*
5064 			 * Reset the delete flag, if set, so the structure
5065 			 * gets reused rather than freed and reallocated.
5066 			 */
5067 			MUTEX_ENTER(&ifq->ifq_lock);
5068 			ifq->ifq_flags &= ~IFQF_DELETE;
5069 			ifq->ifq_ref++;
5070 			MUTEX_EXIT(&ifq->ifq_lock);
5071 			MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
5072 
5073 			return ifq;
5074 		}
5075 	}
5076 
5077 	KMALLOC(ifq, ipftq_t *);
5078 	if (ifq != NULL) {
5079 		ifq->ifq_ttl = period;
5080 		ifq->ifq_head = NULL;
5081 		ifq->ifq_tail = &ifq->ifq_head;
5082 		ifq->ifq_next = *parent;
5083 		ifq->ifq_pnext = parent;
5084 		ifq->ifq_ref = 1;
5085 		ifq->ifq_flags = IFQF_USER;
5086 		*parent = ifq;
5087 		ifs->ifs_fr_userifqs++;
5088 		MUTEX_NUKE(&ifq->ifq_lock);
5089 		MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex");
5090 	}
5091 	MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
5092 	return ifq;
5093 }
5094 
5095 
5096 /* ------------------------------------------------------------------------ */
5097 /* Function:    fr_deletetimeoutqueue                                       */
5098 /* Returns:     int    - new reference count value of the timeout queue     */
5099 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5100 /* Locks:       ifq->ifq_lock                                               */
5101 /*                                                                          */
5102 /* This routine must be called when we're discarding a pointer to a timeout */
5103 /* queue object, taking care of the reference counter.                      */
5104 /*                                                                          */
5105 /* Now that this just sets a DELETE flag, it requires the expire code to    */
5106 /* check the list of user defined timeout queues and call the free function */
5107 /* below (currently commented out) to stop memory leaking.  It is done this */
5108 /* way because the locking may not be sufficient to safely do a free when   */
5109 /* this function is called.                                                 */
5110 /* ------------------------------------------------------------------------ */
5111 int fr_deletetimeoutqueue(ifq)
5112 ipftq_t *ifq;
5113 {
5114 
5115 	ifq->ifq_ref--;
5116 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5117 		ifq->ifq_flags |= IFQF_DELETE;
5118 	}
5119 
5120 	return ifq->ifq_ref;
5121 }
5122 
5123 
5124 /* ------------------------------------------------------------------------ */
5125 /* Function:    fr_freetimeoutqueue                                         */
5126 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5127 /* Returns:     Nil                                                         */
5128 /*                                                                          */
5129 /* Locking:                                                                 */
5130 /* It is assumed that the caller of this function has an appropriate lock   */
5131 /* held (exclusively) in the domain that encompases the callers "domain".   */
5132 /* The ifq_lock for this structure should not be held.                      */
5133 /*                                                                          */
5134 /* Remove a user definde timeout queue from the list of queues it is in and */
5135 /* tidy up after this is done.                                              */
5136 /* ------------------------------------------------------------------------ */
5137 void fr_freetimeoutqueue(ifq, ifs)
5138 ipftq_t *ifq;
5139 ipf_stack_t *ifs;
5140 {
5141 
5142 
5143 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5144 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5145 		printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5146 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5147 		       ifq->ifq_ref);
5148 		return;
5149 	}
5150 
5151 	/*
5152 	 * Remove from its position in the list.
5153 	 */
5154 	*ifq->ifq_pnext = ifq->ifq_next;
5155 	if (ifq->ifq_next != NULL)
5156 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5157 
5158 	MUTEX_DESTROY(&ifq->ifq_lock);
5159 	ifs->ifs_fr_userifqs--;
5160 	KFREE(ifq);
5161 }
5162 
5163 
5164 /* ------------------------------------------------------------------------ */
5165 /* Function:    fr_deletequeueentry                                         */
5166 /* Returns:     Nil                                                         */
5167 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
5168 /*              ifq(I) - timeout queue to remove entry from                 */
5169 /*                                                                          */
5170 /* Remove a tail queue entry from its queue and make it an orphan.          */
5171 /* fr_deletetimeoutqueue is called to make sure the reference count on the  */
5172 /* queue is correct.  We can't, however, call fr_freetimeoutqueue because   */
5173 /* the correct lock(s) may not be held that would make it safe to do so.    */
5174 /* ------------------------------------------------------------------------ */
5175 void fr_deletequeueentry(tqe)
5176 ipftqent_t *tqe;
5177 {
5178 	ipftq_t *ifq;
5179 
5180 	ifq = tqe->tqe_ifq;
5181 	if (ifq == NULL)
5182 		return;
5183 
5184 	MUTEX_ENTER(&ifq->ifq_lock);
5185 
5186 	if (tqe->tqe_pnext != NULL) {
5187 		*tqe->tqe_pnext = tqe->tqe_next;
5188 		if (tqe->tqe_next != NULL)
5189 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5190 		else    /* we must be the tail anyway */
5191 			ifq->ifq_tail = tqe->tqe_pnext;
5192 
5193 		tqe->tqe_pnext = NULL;
5194 		tqe->tqe_ifq = NULL;
5195 	}
5196 
5197 	(void) fr_deletetimeoutqueue(ifq);
5198 
5199 	MUTEX_EXIT(&ifq->ifq_lock);
5200 }
5201 
5202 
5203 /* ------------------------------------------------------------------------ */
5204 /* Function:    fr_queuefront                                               */
5205 /* Returns:     Nil                                                         */
5206 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5207 /*                                                                          */
5208 /* Move a queue entry to the front of the queue, if it isn't already there. */
5209 /* ------------------------------------------------------------------------ */
5210 void fr_queuefront(tqe)
5211 ipftqent_t *tqe;
5212 {
5213 	ipftq_t *ifq;
5214 
5215 	ifq = tqe->tqe_ifq;
5216 	if (ifq == NULL)
5217 		return;
5218 
5219 	MUTEX_ENTER(&ifq->ifq_lock);
5220 	if (ifq->ifq_head != tqe) {
5221 		*tqe->tqe_pnext = tqe->tqe_next;
5222 		if (tqe->tqe_next)
5223 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5224 		else
5225 			ifq->ifq_tail = tqe->tqe_pnext;
5226 
5227 		tqe->tqe_next = ifq->ifq_head;
5228 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5229 		ifq->ifq_head = tqe;
5230 		tqe->tqe_pnext = &ifq->ifq_head;
5231 	}
5232 	MUTEX_EXIT(&ifq->ifq_lock);
5233 }
5234 
5235 
5236 /* ------------------------------------------------------------------------ */
5237 /* Function:    fr_queueback                                                */
5238 /* Returns:     Nil                                                         */
5239 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5240 /*                                                                          */
5241 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5242 /* ------------------------------------------------------------------------ */
5243 void fr_queueback(tqe, ifs)
5244 ipftqent_t *tqe;
5245 ipf_stack_t *ifs;
5246 {
5247 	ipftq_t *ifq;
5248 
5249 	ifq = tqe->tqe_ifq;
5250 	if (ifq == NULL)
5251 		return;
5252 	tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5253 
5254 	MUTEX_ENTER(&ifq->ifq_lock);
5255 	if (tqe->tqe_next == NULL) {		/* at the end already ? */
5256 		MUTEX_EXIT(&ifq->ifq_lock);
5257 		return;
5258 	}
5259 
5260 	/*
5261 	 * Remove from list
5262 	 */
5263 	*tqe->tqe_pnext = tqe->tqe_next;
5264 	tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5265 
5266 	/*
5267 	 * Make it the last entry.
5268 	 */
5269 	tqe->tqe_next = NULL;
5270 	tqe->tqe_pnext = ifq->ifq_tail;
5271 	*ifq->ifq_tail = tqe;
5272 	ifq->ifq_tail = &tqe->tqe_next;
5273 	MUTEX_EXIT(&ifq->ifq_lock);
5274 }
5275 
5276 
5277 /* ------------------------------------------------------------------------ */
5278 /* Function:    fr_queueappend                                              */
5279 /* Returns:     Nil                                                         */
5280 /* Parameters:  tqe(I)    - pointer to timeout queue entry                  */
5281 /*              ifq(I)    - pointer to timeout queue                        */
5282 /*              parent(I) - owing object pointer                            */
5283 /*                                                                          */
5284 /* Add a new item to this queue and put it on the very end.                 */
5285 /* ------------------------------------------------------------------------ */
5286 void fr_queueappend(tqe, ifq, parent, ifs)
5287 ipftqent_t *tqe;
5288 ipftq_t *ifq;
5289 void *parent;
5290 ipf_stack_t *ifs;
5291 {
5292 
5293 	MUTEX_ENTER(&ifq->ifq_lock);
5294 	tqe->tqe_parent = parent;
5295 	tqe->tqe_pnext = ifq->ifq_tail;
5296 	*ifq->ifq_tail = tqe;
5297 	ifq->ifq_tail = &tqe->tqe_next;
5298 	tqe->tqe_next = NULL;
5299 	tqe->tqe_ifq = ifq;
5300 	tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5301 	ifq->ifq_ref++;
5302 	MUTEX_EXIT(&ifq->ifq_lock);
5303 }
5304 
5305 
5306 /* ------------------------------------------------------------------------ */
5307 /* Function:    fr_movequeue                                                */
5308 /* Returns:     Nil                                                         */
5309 /* Parameters:  tq(I)   - pointer to timeout queue information              */
5310 /*              oifp(I) - old timeout queue entry was on                    */
5311 /*              nifp(I) - new timeout queue to put entry on                 */
5312 /*		ifs	- ipf stack instance				    */
5313 /*                                                                          */
5314 /* Move a queue entry from one timeout queue to another timeout queue.      */
5315 /* If it notices that the current entry is already last and does not need   */
5316 /* to move queue, the return.                                               */
5317 /* ------------------------------------------------------------------------ */
5318 void fr_movequeue(tqe, oifq, nifq, ifs)
5319 ipftqent_t *tqe;
5320 ipftq_t *oifq, *nifq;
5321 ipf_stack_t *ifs;
5322 {
5323 	/*
5324 	 * If the queue isn't changing, and the clock hasn't ticked
5325 	 * since the last update, the operation will be a no-op.
5326 	 */
5327 	if (oifq == nifq && tqe->tqe_touched == ifs->ifs_fr_ticks)
5328 		return;
5329 
5330 	/*
5331 	 * Grab the lock and update the timers.
5332 	 */
5333 	MUTEX_ENTER(&oifq->ifq_lock);
5334 	tqe->tqe_touched = ifs->ifs_fr_ticks;
5335 	tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl;
5336 
5337 	/*
5338 	 * The remainder of the operation can still be a no-op.
5339 	 *
5340 	 * If the queue isn't changing, check to see if
5341 	 * an update would be meaningless.
5342 	 */
5343 	if (oifq == nifq) {
5344 		if ((tqe->tqe_next == NULL) ||
5345 		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5346 			MUTEX_EXIT(&oifq->ifq_lock);
5347 			return;
5348 		}
5349 	}
5350 
5351 	/*
5352 	 * Remove from the old queue
5353 	 */
5354 	*tqe->tqe_pnext = tqe->tqe_next;
5355 	if (tqe->tqe_next)
5356 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5357 	else
5358 		oifq->ifq_tail = tqe->tqe_pnext;
5359 	tqe->tqe_next = NULL;
5360 
5361 	/*
5362 	 * If we're moving from one queue to another, release the lock on the
5363 	 * old queue and get a lock on the new queue.  For user defined queues,
5364 	 * if we're moving off it, call delete in case it can now be freed.
5365 	 */
5366 	if (oifq != nifq) {
5367 		tqe->tqe_ifq = NULL;
5368 
5369 		(void) fr_deletetimeoutqueue(oifq);
5370 
5371 		MUTEX_EXIT(&oifq->ifq_lock);
5372 
5373 		MUTEX_ENTER(&nifq->ifq_lock);
5374 
5375 		tqe->tqe_ifq = nifq;
5376 		nifq->ifq_ref++;
5377 	}
5378 
5379 	/*
5380 	 * Add to the bottom of the new queue
5381 	 */
5382 	tqe->tqe_pnext = nifq->ifq_tail;
5383 	*nifq->ifq_tail = tqe;
5384 	nifq->ifq_tail = &tqe->tqe_next;
5385 	MUTEX_EXIT(&nifq->ifq_lock);
5386 }
5387 
5388 
5389 /* ------------------------------------------------------------------------ */
5390 /* Function:    fr_updateipid                                               */
5391 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
5392 /* Parameters:  fin(I) - pointer to packet information                      */
5393 /*                                                                          */
5394 /* When we are doing NAT, change the IP of every packet to represent a      */
5395 /* single sequence of packets coming from the host, hiding any host         */
5396 /* specific sequencing that might otherwise be revealed.  If the packet is  */
5397 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
5398 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
5399 /* has no match in the cache, return an error.                              */
5400 /* ------------------------------------------------------------------------ */
5401 static INLINE int fr_updateipid(fin)
5402 fr_info_t *fin;
5403 {
5404 	u_short id, ido, sums;
5405 	u_32_t sumd, sum;
5406 	ip_t *ip;
5407 
5408 	if (fin->fin_off != 0) {
5409 		sum = fr_ipid_knownfrag(fin);
5410 		if (sum == 0xffffffff)
5411 			return -1;
5412 		sum &= 0xffff;
5413 		id = (u_short)sum;
5414 	} else {
5415 		id = fr_nextipid(fin);
5416 		if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5417 			(void) fr_ipid_newfrag(fin, (u_32_t)id);
5418 	}
5419 
5420 	ip = fin->fin_ip;
5421 	ido = ntohs(ip->ip_id);
5422 	if (id == ido)
5423 		return 0;
5424 	ip->ip_id = htons(id);
5425 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
5426 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
5427 	sum += sumd;
5428 	sum = (sum >> 16) + (sum & 0xffff);
5429 	sum = (sum >> 16) + (sum & 0xffff);
5430 	sums = ~(u_short)sum;
5431 	ip->ip_sum = htons(sums);
5432 	return 0;
5433 }
5434 
5435 
5436 #ifdef	NEED_FRGETIFNAME
5437 /* ------------------------------------------------------------------------ */
5438 /* Function:    fr_getifname                                                */
5439 /* Returns:     char *    - pointer to interface name                       */
5440 /* Parameters:  ifp(I)    - pointer to network interface                    */
5441 /*              buffer(O) - pointer to where to store interface name        */
5442 /*                                                                          */
5443 /* Constructs an interface name in the buffer passed.  The buffer passed is */
5444 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
5445 /* as a NULL pointer then return a pointer to a static array.               */
5446 /* ------------------------------------------------------------------------ */
5447 char *fr_getifname(ifp, buffer)
5448 struct ifnet *ifp;
5449 char *buffer;
5450 {
5451 	static char namebuf[LIFNAMSIZ];
5452 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5453      defined(__sgi) || defined(linux) || defined(_AIX51) || \
5454      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5455 	int unit, space;
5456 	char temp[20];
5457 	char *s;
5458 # endif
5459 
5460 	ASSERT(buffer != NULL);
5461 #ifdef notdef
5462 	if (buffer == NULL)
5463 		buffer = namebuf;
5464 #endif
5465 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5466 	buffer[LIFNAMSIZ - 1] = '\0';
5467 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5468      defined(__sgi) || defined(_AIX51) || \
5469      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5470 	for (s = buffer; *s; s++)
5471 		;
5472 	unit = ifp->if_unit;
5473 	space = LIFNAMSIZ - (s - buffer);
5474 	if (space > 0) {
5475 #  if defined(SNPRINTF) && defined(_KERNEL)
5476 		(void) SNPRINTF(temp, sizeof(temp), "%d", unit);
5477 #  else
5478 		(void) sprintf(temp, "%d", unit);
5479 #  endif
5480 		(void) strncpy(s, temp, space);
5481 	}
5482 # endif
5483 	return buffer;
5484 }
5485 #endif
5486 
5487 
5488 /* ------------------------------------------------------------------------ */
5489 /* Function:    fr_ioctlswitch                                              */
5490 /* Returns:     int     - -1 continue processing, else ioctl return value   */
5491 /* Parameters:  unit(I) - device unit opened                                */
5492 /*              data(I) - pointer to ioctl data                             */
5493 /*              cmd(I)  - ioctl command                                     */
5494 /*              mode(I) - mode value                                        */
5495 /*                                                                          */
5496 /* Based on the value of unit, call the appropriate ioctl handler or return */
5497 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
5498 /* for the device in order to execute the ioctl.                            */
5499 /* ------------------------------------------------------------------------ */
5500 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs)
5501 int unit, mode, uid;
5502 ioctlcmd_t cmd;
5503 void *data, *ctx;
5504 ipf_stack_t *ifs;
5505 {
5506 	int error = 0;
5507 
5508 	switch (unit)
5509 	{
5510 	case IPL_LOGIPF :
5511 		error = -1;
5512 		break;
5513 	case IPL_LOGNAT :
5514 		if (ifs->ifs_fr_running > 0)
5515 			error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs);
5516 		else
5517 			error = EIO;
5518 		break;
5519 	case IPL_LOGSTATE :
5520 		if (ifs->ifs_fr_running > 0)
5521 			error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs);
5522 		else
5523 			error = EIO;
5524 		break;
5525 	case IPL_LOGAUTH :
5526 		if (ifs->ifs_fr_running > 0) {
5527 			if ((cmd == (ioctlcmd_t)SIOCADAFR) ||
5528 			    (cmd == (ioctlcmd_t)SIOCRMAFR)) {
5529 				if (!(mode & FWRITE)) {
5530 					error = EPERM;
5531 				} else {
5532 					error = frrequest(unit, cmd, data,
5533 						  ifs->ifs_fr_active, 1, ifs);
5534 				}
5535 			} else {
5536 				error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs);
5537 			}
5538 		} else
5539 			error = EIO;
5540 		break;
5541 	case IPL_LOGSYNC :
5542 #ifdef IPFILTER_SYNC
5543 		if (ifs->ifs_fr_running > 0)
5544 			error = fr_sync_ioctl(data, cmd, mode, ifs);
5545 		else
5546 #endif
5547 			error = EIO;
5548 		break;
5549 	case IPL_LOGSCAN :
5550 #ifdef IPFILTER_SCAN
5551 		if (ifs->ifs_fr_running > 0)
5552 			error = fr_scan_ioctl(data, cmd, mode, ifs);
5553 		else
5554 #endif
5555 			error = EIO;
5556 		break;
5557 	case IPL_LOGLOOKUP :
5558 #ifdef IPFILTER_LOOKUP
5559 		if (ifs->ifs_fr_running > 0)
5560 			error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs);
5561 		else
5562 #endif
5563 			error = EIO;
5564 		break;
5565 	default :
5566 		error = EIO;
5567 		break;
5568 	}
5569 
5570 	return error;
5571 }
5572 
5573 
5574 /*
5575  * This array defines the expected size of objects coming into the kernel
5576  * for the various recognised object types.
5577  */
5578 #define	NUM_OBJ_TYPES	19
5579 
5580 static	int	fr_objbytes[NUM_OBJ_TYPES][2] = {
5581 	{ 1,	sizeof(struct frentry) },		/* frentry */
5582 	{ 0,	sizeof(struct friostat) },
5583 	{ 0,	sizeof(struct fr_info) },
5584 	{ 0,	sizeof(struct fr_authstat) },
5585 	{ 0,	sizeof(struct ipfrstat) },
5586 	{ 0,	sizeof(struct ipnat) },
5587 	{ 0,	sizeof(struct natstat) },
5588 	{ 0,	sizeof(struct ipstate_save) },
5589 	{ 1,	sizeof(struct nat_save) },		/* nat_save */
5590 	{ 0,	sizeof(struct natlookup) },
5591 	{ 1,	sizeof(struct ipstate) },		/* ipstate */
5592 	{ 0,	sizeof(struct ips_stat) },
5593 	{ 0,	sizeof(struct frauth) },
5594 	{ 0,	sizeof(struct ipftune) },
5595 	{ 0,	sizeof(struct nat) },                   /* nat_t */
5596 	{ 0,	sizeof(struct ipfruleiter) },
5597 	{ 0,	sizeof(struct ipfgeniter) },
5598 	{ 0,	sizeof(struct ipftable) },
5599 	{ 0,	sizeof(struct ipflookupiter) }
5600 };
5601 
5602 
5603 /* ------------------------------------------------------------------------ */
5604 /* Function:    fr_inobj                                                    */
5605 /* Returns:     int     - 0 = success, else failure                         */
5606 /* Parameters:  data(I) - pointer to ioctl data                             */
5607 /*              ptr(I)  - pointer to store real data in                     */
5608 /*              type(I) - type of structure being moved                     */
5609 /*                                                                          */
5610 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
5611 /* add things to check for version numbers, sizes, etc, to make it backward */
5612 /* compatible at the ABI for user land.                                     */
5613 /* ------------------------------------------------------------------------ */
5614 int fr_inobj(data, ptr, type)
5615 void *data;
5616 void *ptr;
5617 int type;
5618 {
5619 	ipfobj_t obj;
5620 	int error = 0;
5621 
5622 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5623 		return EINVAL;
5624 
5625 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5626 	if (error != 0)
5627 		return EFAULT;
5628 
5629 	if (obj.ipfo_type != type)
5630 		return EINVAL;
5631 
5632 #ifndef	IPFILTER_COMPAT
5633 	if ((fr_objbytes[type][0] & 1) != 0) {
5634 		if (obj.ipfo_size < fr_objbytes[type][1])
5635 			return EINVAL;
5636 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5637 		return EINVAL;
5638 #else
5639 	if (obj.ipfo_rev != IPFILTER_VERSION) {
5640 		error = fr_incomptrans(&obj, ptr);
5641 		return error;
5642 	}
5643 
5644 	if ((fr_objbytes[type][0] & 1) != 0 &&
5645 	    obj.ipfo_size < fr_objbytes[type][1] ||
5646 	    obj.ipfo_size != fr_objbytes[type][1])
5647 		return EINVAL;
5648 #endif
5649 
5650 	if ((fr_objbytes[type][0] & 1) != 0) {
5651 		error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5652 				fr_objbytes[type][1]);
5653 	} else {
5654 		error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5655 				obj.ipfo_size);
5656 	}
5657 	return error;
5658 }
5659 
5660 
5661 /* ------------------------------------------------------------------------ */
5662 /* Function:    fr_inobjsz                                                  */
5663 /* Returns:     int     - 0 = success, else failure                         */
5664 /* Parameters:  data(I) - pointer to ioctl data                             */
5665 /*              ptr(I)  - pointer to store real data in                     */
5666 /*              type(I) - type of structure being moved                     */
5667 /*              sz(I)   - size of data to copy                              */
5668 /*                                                                          */
5669 /* As per fr_inobj, except the size of the object to copy in is passed in   */
5670 /* but it must not be smaller than the size defined for the type and the    */
5671 /* type must allow for varied sized objects.  The extra requirement here is */
5672 /* that sz must match the size of the object being passed in - this is not  */
5673 /* not possible nor required in fr_inobj().                                 */
5674 /* ------------------------------------------------------------------------ */
5675 int fr_inobjsz(data, ptr, type, sz)
5676 void *data;
5677 void *ptr;
5678 int type, sz;
5679 {
5680 	ipfobj_t obj;
5681 	int error;
5682 
5683 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5684 		return EINVAL;
5685 	if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1]))
5686 		return EINVAL;
5687 
5688 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5689 	if (error != 0)
5690 		return EFAULT;
5691 
5692 	if (obj.ipfo_type != type)
5693 		return EINVAL;
5694 
5695 #ifndef	IPFILTER_COMPAT
5696 	if (obj.ipfo_size != sz)
5697 		return EINVAL;
5698 #else
5699 	if (obj.ipfo_rev != IPFILTER_VERSION)
5700 		/*XXX compatibility hook here */
5701 		/*EMPTY*/;
5702 	if (obj.ipfo_size != sz)
5703 		/* XXX compatibility hook here */
5704 		return EINVAL;
5705 #endif
5706 
5707 	error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz);
5708 	return error;
5709 }
5710 
5711 
5712 /* ------------------------------------------------------------------------ */
5713 /* Function:    fr_outobjsz                                                 */
5714 /* Returns:     int     - 0 = success, else failure                         */
5715 /* Parameters:  data(I) - pointer to ioctl data                             */
5716 /*              ptr(I)  - pointer to store real data in                     */
5717 /*              type(I) - type of structure being moved                     */
5718 /*              sz(I)   - size of data to copy                              */
5719 /*                                                                          */
5720 /* As per fr_outobj, except the size of the object to copy out is passed in */
5721 /* but it must not be smaller than the size defined for the type and the    */
5722 /* type must allow for varied sized objects.  The extra requirement here is */
5723 /* that sz must match the size of the object being passed in - this is not  */
5724 /* not possible nor required in fr_outobj().                                */
5725 /* ------------------------------------------------------------------------ */
5726 int fr_outobjsz(data, ptr, type, sz)
5727 void *data;
5728 void *ptr;
5729 int type, sz;
5730 {
5731 	ipfobj_t obj;
5732 	int error;
5733 
5734 	if ((type < 0) || (type > NUM_OBJ_TYPES-1) ||
5735 	    ((fr_objbytes[type][0] & 1) == 0) ||
5736 	    (sz < fr_objbytes[type][1]))
5737 		return EINVAL;
5738 
5739 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5740 	if (error != 0)
5741 		return EFAULT;
5742 
5743 	if (obj.ipfo_type != type)
5744 		return EINVAL;
5745 
5746 #ifndef	IPFILTER_COMPAT
5747 	if (obj.ipfo_size != sz)
5748 		return EINVAL;
5749 #else
5750 	if (obj.ipfo_rev != IPFILTER_VERSION)
5751 		/* XXX compatibility hook here */
5752 		/*EMPTY*/;
5753 	if (obj.ipfo_size != sz)
5754 		/* XXX compatibility hook here */
5755 		return EINVAL;
5756 #endif
5757 
5758 	error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz);
5759 	return error;
5760 }
5761 
5762 
5763 /* ------------------------------------------------------------------------ */
5764 /* Function:    fr_outobj                                                   */
5765 /* Returns:     int     - 0 = success, else failure                         */
5766 /* Parameters:  data(I) - pointer to ioctl data                             */
5767 /*              ptr(I)  - pointer to store real data in                     */
5768 /*              type(I) - type of structure being moved                     */
5769 /*                                                                          */
5770 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
5771 /* future, we add things to check for version numbers, sizes, etc, to make  */
5772 /* it backward  compatible at the ABI for user land.                        */
5773 /* ------------------------------------------------------------------------ */
5774 int fr_outobj(data, ptr, type)
5775 void *data;
5776 void *ptr;
5777 int type;
5778 {
5779 	ipfobj_t obj;
5780 	int error;
5781 
5782 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5783 		return EINVAL;
5784 
5785 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5786 	if (error != 0)
5787 		return EFAULT;
5788 
5789 	if (obj.ipfo_type != type)
5790 		return EINVAL;
5791 
5792 #ifndef	IPFILTER_COMPAT
5793 	if ((fr_objbytes[type][0] & 1) != 0) {
5794 		if (obj.ipfo_size < fr_objbytes[type][1])
5795 			return EINVAL;
5796 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5797 		return EINVAL;
5798 #else
5799 	if (obj.ipfo_rev != IPFILTER_VERSION) {
5800 		error = fr_outcomptrans(&obj, ptr);
5801 		return error;
5802 	}
5803 
5804 	if ((fr_objbytes[type][0] & 1) != 0 &&
5805 	    obj.ipfo_size < fr_objbytes[type][1] ||
5806 	    obj.ipfo_size != fr_objbytes[type][1])
5807 		return EINVAL;
5808 #endif
5809 
5810 	error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size);
5811 	return error;
5812 }
5813 
5814 
5815 /* ------------------------------------------------------------------------ */
5816 /* Function:    fr_checkl4sum                                               */
5817 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
5818 /* Parameters:  fin(I) - pointer to packet information                      */
5819 /*                                                                          */
5820 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
5821 /* not possible, return without indicating a failure or success but in a    */
5822 /* way that is ditinguishable.                                              */
5823 /* ------------------------------------------------------------------------ */
5824 int fr_checkl4sum(fin)
5825 fr_info_t *fin;
5826 {
5827 	u_short sum, hdrsum, *csump;
5828 	udphdr_t *udp;
5829 	int dosum;
5830 	ipf_stack_t *ifs = fin->fin_ifs;
5831 
5832 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5833 	net_handle_t net_data_p;
5834 	if (fin->fin_v == 4)
5835 		net_data_p = ifs->ifs_ipf_ipv4;
5836 	else
5837 		net_data_p = ifs->ifs_ipf_ipv6;
5838 #endif
5839 
5840 	if ((fin->fin_flx & FI_NOCKSUM) != 0)
5841 		return 0;
5842 
5843 	/*
5844 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
5845 	 * isn't already considered "bad", then validate the checksum.  If
5846 	 * this check fails then considered the packet to be "bad".
5847 	 */
5848 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
5849 		return 1;
5850 
5851 	csump = NULL;
5852 	hdrsum = 0;
5853 	dosum = 0;
5854 	sum = 0;
5855 
5856 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5857 	ASSERT(fin->fin_m != NULL);
5858 	if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) ||
5859 	    NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) {
5860 			hdrsum = 0;
5861 			sum = 0;
5862 	} else {
5863 #endif
5864 		switch (fin->fin_p)
5865 		{
5866 		case IPPROTO_TCP :
5867 			csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
5868 			dosum = 1;
5869 			break;
5870 
5871 		case IPPROTO_UDP :
5872 			udp = fin->fin_dp;
5873 			if (udp->uh_sum != 0) {
5874 				csump = &udp->uh_sum;
5875 				dosum = 1;
5876 			}
5877 			break;
5878 
5879 		case IPPROTO_ICMP :
5880 			csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
5881 			dosum = 1;
5882 			break;
5883 
5884 		default :
5885 			return 1;
5886 			/*NOTREACHED*/
5887 		}
5888 
5889 		if (csump != NULL)
5890 			hdrsum = *csump;
5891 
5892 		if (dosum)
5893 			sum = fr_cksum(fin->fin_m, fin->fin_ip,
5894 				       fin->fin_p, fin->fin_dp);
5895 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5896 	}
5897 #endif
5898 #if !defined(_KERNEL)
5899 	if (sum == hdrsum) {
5900 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
5901 	} else {
5902 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
5903 	}
5904 #endif
5905 	if (hdrsum == sum)
5906 		return 0;
5907 	return -1;
5908 }
5909 
5910 
5911 /* ------------------------------------------------------------------------ */
5912 /* Function:    fr_ifpfillv4addr                                            */
5913 /* Returns:     int     - 0 = address update, -1 = address not updated      */
5914 /* Parameters:  atype(I)   - type of network address update to perform      */
5915 /*              sin(I)     - pointer to source of address information       */
5916 /*              mask(I)    - pointer to source of netmask information       */
5917 /*              inp(I)     - pointer to destination address store           */
5918 /*              inpmask(I) - pointer to destination netmask store           */
5919 /*                                                                          */
5920 /* Given a type of network address update (atype) to perform, copy          */
5921 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
5922 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
5923 /* which case the operation fails.  For all values of atype other than      */
5924 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
5925 /* value.                                                                   */
5926 /* ------------------------------------------------------------------------ */
5927 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask)
5928 int atype;
5929 struct sockaddr_in *sin, *mask;
5930 struct in_addr *inp, *inpmask;
5931 {
5932 	if (inpmask != NULL && atype != FRI_NETMASKED)
5933 		inpmask->s_addr = 0xffffffff;
5934 
5935 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
5936 		if (atype == FRI_NETMASKED) {
5937 			if (inpmask == NULL)
5938 				return -1;
5939 			inpmask->s_addr = mask->sin_addr.s_addr;
5940 		}
5941 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
5942 	} else {
5943 		inp->s_addr = sin->sin_addr.s_addr;
5944 	}
5945 	return 0;
5946 }
5947 
5948 
5949 #ifdef	USE_INET6
5950 /* ------------------------------------------------------------------------ */
5951 /* Function:    fr_ifpfillv6addr                                            */
5952 /* Returns:     int     - 0 = address update, -1 = address not updated      */
5953 /* Parameters:  atype(I)   - type of network address update to perform      */
5954 /*              sin(I)     - pointer to source of address information       */
5955 /*              mask(I)    - pointer to source of netmask information       */
5956 /*              inp(I)     - pointer to destination address store           */
5957 /*              inpmask(I) - pointer to destination netmask store           */
5958 /*                                                                          */
5959 /* Given a type of network address update (atype) to perform, copy          */
5960 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
5961 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
5962 /* which case the operation fails.  For all values of atype other than      */
5963 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
5964 /* value.                                                                   */
5965 /* ------------------------------------------------------------------------ */
5966 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask)
5967 int atype;
5968 struct sockaddr_in6 *sin, *mask;
5969 struct in_addr *inp, *inpmask;
5970 {
5971 	i6addr_t *src, *dst, *and, *dmask;
5972 
5973 	src = (i6addr_t *)&sin->sin6_addr;
5974 	and = (i6addr_t *)&mask->sin6_addr;
5975 	dst = (i6addr_t *)inp;
5976 	dmask = (i6addr_t *)inpmask;
5977 
5978 	if (inpmask != NULL && atype != FRI_NETMASKED) {
5979 		dmask->i6[0] = 0xffffffff;
5980 		dmask->i6[1] = 0xffffffff;
5981 		dmask->i6[2] = 0xffffffff;
5982 		dmask->i6[3] = 0xffffffff;
5983 	}
5984 
5985 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
5986 		if (atype == FRI_NETMASKED) {
5987 			if (inpmask == NULL)
5988 				return -1;
5989 			dmask->i6[0] = and->i6[0];
5990 			dmask->i6[1] = and->i6[1];
5991 			dmask->i6[2] = and->i6[2];
5992 			dmask->i6[3] = and->i6[3];
5993 		}
5994 
5995 		dst->i6[0] = src->i6[0] & and->i6[0];
5996 		dst->i6[1] = src->i6[1] & and->i6[1];
5997 		dst->i6[2] = src->i6[2] & and->i6[2];
5998 		dst->i6[3] = src->i6[3] & and->i6[3];
5999 	} else {
6000 		dst->i6[0] = src->i6[0];
6001 		dst->i6[1] = src->i6[1];
6002 		dst->i6[2] = src->i6[2];
6003 		dst->i6[3] = src->i6[3];
6004 	}
6005 	return 0;
6006 }
6007 #endif
6008 
6009 
6010 /* ------------------------------------------------------------------------ */
6011 /* Function:    fr_matchtag                                                 */
6012 /* Returns:     0 == mismatch, 1 == match.                                  */
6013 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
6014 /*              tag2(I) - pointer to second tag to compare                  */
6015 /*                                                                          */
6016 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
6017 /* considered to be a match or not match, respectively.  The tag is 16      */
6018 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6019 /* compare the ints instead, for speed. tag1 is the master of the           */
6020 /* comparison.  This function should only be called with both tag1 and tag2 */
6021 /* as non-NULL pointers.                                                    */
6022 /* ------------------------------------------------------------------------ */
6023 int fr_matchtag(tag1, tag2)
6024 ipftag_t *tag1, *tag2;
6025 {
6026 	if (tag1 == tag2)
6027 		return 1;
6028 
6029 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6030 		return 1;
6031 
6032 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6033 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6034 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6035 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6036 		return 1;
6037 	return 0;
6038 }
6039 
6040 
6041 /* ------------------------------------------------------------------------ */
6042 /* Function:    fr_coalesce                                                 */
6043 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
6044 /* Parameters:  fin(I) - pointer to packet information                      */
6045 /*                                                                          */
6046 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
6047 /* If this call returns a failure then the buffers have also been freed.    */
6048 /* ------------------------------------------------------------------------ */
6049 int fr_coalesce(fin)
6050 fr_info_t *fin;
6051 {
6052 	ipf_stack_t *ifs = fin->fin_ifs;
6053 	if ((fin->fin_flx & FI_COALESCE) != 0)
6054 		return 1;
6055 
6056 	/*
6057 	 * If the mbuf pointers indicate that there is no mbuf to work with,
6058 	 * return but do not indicate success or failure.
6059 	 */
6060 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6061 		return 0;
6062 
6063 #if defined(_KERNEL)
6064 	if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6065 		IPF_BUMP(ifs->ifs_fr_badcoalesces[fin->fin_out]);
6066 # ifdef MENTAT
6067 		FREE_MB_T(*fin->fin_mp);
6068 # endif
6069 		*fin->fin_mp = NULL;
6070 		fin->fin_m = NULL;
6071 		return -1;
6072 	}
6073 #else
6074 	fin = fin;	/* LINT */
6075 #endif
6076 	return 1;
6077 }
6078 
6079 
6080 /*
6081  * The following table lists all of the tunable variables that can be
6082  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT.  The format of each row
6083  * in the table below is as follows:
6084  *
6085  * pointer to value, name of value, minimum, maximum, size of the value's
6086  *     container, value attribute flags
6087  *
6088  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6089  * means the value can only be written to when IPFilter is loaded but disabled.
6090  * The obvious implication is if neither of these are set then the value can be
6091  * changed at any time without harm.
6092  */
6093 ipftuneable_t lcl_ipf_tuneables[] = {
6094 	/* filtering */
6095 	{ { NULL },	"fr_flags",		0,	0xffffffff,
6096 			0,		0 },
6097 	{ { NULL },	"fr_active",		0,	0,
6098 			0,		IPFT_RDONLY },
6099 	{ { NULL },	"fr_control_forwarding",	0, 1,
6100 			0,		0 },
6101 	{ { NULL },	"fr_update_ipid",	0,	1,
6102 			0,		0 },
6103 	{ { NULL },	"fr_chksrc",		0,	1,
6104 			0,		0 },
6105 	{ { NULL },	"fr_minttl",		0,	1,
6106 			0,		0 },
6107 	{ { NULL }, 	"fr_icmpminfragmtu",	0,	1,
6108 			0,		0 },
6109 	{ { NULL },		"fr_pass",		0,	0xffffffff,
6110 			0,		0 },
6111 #if SOLARIS2 >= 10
6112 	{ { NULL },	"ipf_loopback",		0,	1,
6113 			0,		IPFT_WRDISABLED },
6114 #endif
6115 	/* state */
6116 	{ { NULL }, "fr_tcpidletimeout",	1,	0x7fffffff,
6117 			0,	IPFT_WRDISABLED },
6118 	{ { NULL },	"fr_tcpclosewait",	1,	0x7fffffff,
6119 			0,	IPFT_WRDISABLED },
6120 	{ { NULL },	"fr_tcplastack",	1,	0x7fffffff,
6121 			0,		IPFT_WRDISABLED },
6122 	{ { NULL },	"fr_tcptimeout",	1,	0x7fffffff,
6123 			0,		IPFT_WRDISABLED },
6124 	{ { NULL },	"fr_tcpclosed",		1,	0x7fffffff,
6125 			0,		IPFT_WRDISABLED },
6126 	{ { NULL },	"fr_tcphalfclosed",	1,	0x7fffffff,
6127 			0,	IPFT_WRDISABLED },
6128 	{ { NULL },	"fr_udptimeout",	1,	0x7fffffff,
6129 			0,		IPFT_WRDISABLED },
6130 	{ { NULL }, "fr_udpacktimeout",	1,	0x7fffffff,
6131 			0,	IPFT_WRDISABLED },
6132 	{ { NULL },	"fr_icmptimeout",	1,	0x7fffffff,
6133 			0,		IPFT_WRDISABLED },
6134 	{ { NULL }, "fr_icmpacktimeout",	1,	0x7fffffff,
6135 			0,	IPFT_WRDISABLED },
6136 	{ { NULL }, "fr_iptimeout",		1,	0x7fffffff,
6137 			0,		IPFT_WRDISABLED },
6138 	{ { NULL },	"fr_statemax",		1,	0x7fffffff,
6139 			0,		0 },
6140 	{ { NULL },	"fr_statesize",		1,	0x7fffffff,
6141 			0,		IPFT_WRDISABLED },
6142 	{ { NULL },	"fr_state_lock",	0,	1,
6143 			0,		IPFT_RDONLY },
6144 	{ { NULL }, "fr_state_maxbucket", 1,	0x7fffffff,
6145 			0,	IPFT_WRDISABLED },
6146 	{ { NULL }, "fr_state_maxbucket_reset",	0, 1,
6147 			0, IPFT_WRDISABLED },
6148 	{ { NULL },	"ipstate_logging",	0,	1,
6149 			0,	0 },
6150 	{ { NULL },	"state_flush_level_hi",	1,	100,
6151 			0,		0 },
6152 	{ { NULL },	"state_flush_level_lo",	1,	100,
6153 			0,		0 },
6154 	/* nat */
6155 	{ { NULL },		"fr_nat_lock",		0,	1,
6156 			0,		IPFT_RDONLY },
6157 	{ { NULL },	"ipf_nattable_sz",	1,	0x7fffffff,
6158 			0,	IPFT_WRDISABLED },
6159 	{ { NULL }, "ipf_nattable_max",	1,	0x7fffffff,
6160 			0,	0 },
6161 	{ { NULL },	"ipf_natrules_sz",	1,	0x7fffffff,
6162 			0,	IPFT_WRDISABLED },
6163 	{ { NULL },	"ipf_rdrrules_sz",	1,	0x7fffffff,
6164 			0,	IPFT_WRDISABLED },
6165 	{ { NULL },	"ipf_hostmap_sz",	1,	0x7fffffff,
6166 			0,		IPFT_WRDISABLED },
6167 	{ { NULL }, "fr_nat_maxbucket",	1,	0x7fffffff,
6168 			0,	IPFT_WRDISABLED },
6169 	{ { NULL },	"fr_nat_maxbucket_reset",	0, 1,
6170 			0,	IPFT_WRDISABLED },
6171 	{ { NULL },		"nat_logging",		0,	1,
6172 			0,		0 },
6173 	{ { NULL },	"fr_defnatage",		1,	0x7fffffff,
6174 			0,		IPFT_WRDISABLED },
6175 	{ { NULL },	"fr_defnatipage",	1,	0x7fffffff,
6176 			0,		IPFT_WRDISABLED },
6177 	{ { NULL }, "fr_defnaticmpage",	1,	0x7fffffff,
6178 			0,	IPFT_WRDISABLED },
6179 	{ { NULL },	"nat_flush_level_hi",	1,	100,
6180 			0,		0 },
6181 	{ { NULL },	"nat_flush_level_lo",	1,	100,
6182 			0,		0 },
6183 	/* frag */
6184 	{ { NULL },	"ipfr_size",		1,	0x7fffffff,
6185 			0,		IPFT_WRDISABLED },
6186 	{ { NULL },	"fr_ipfrttl",		1,	0x7fffffff,
6187 			0,		IPFT_WRDISABLED },
6188 #ifdef IPFILTER_LOG
6189 	/* log */
6190 	{ { NULL },	"ipl_suppress",		0,	1,
6191 			0,		0 },
6192 	{ { NULL },	"ipl_buffer_sz",	0,	0,
6193 			0,		IPFT_RDONLY },
6194 	{ { NULL },	"ipl_logmax",		0,	0x7fffffff,
6195 			0,		IPFT_WRDISABLED },
6196 	{ { NULL },	"ipl_logall",		0,	1,
6197 			0,		0 },
6198 	{ { NULL },	"ipl_logsize",		0,	0x80000,
6199 			0,		0 },
6200 #endif
6201 	{ { NULL },		NULL,			0,	0 }
6202 };
6203 
6204 static ipftuneable_t *
6205 tune_lookup(ipf_stack_t *ifs, char *name)
6206 {
6207     int i;
6208 
6209     for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) {
6210 	if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0)
6211 	    return (&ifs->ifs_ipf_tuneables[i]);
6212     }
6213     return (NULL);
6214 }
6215 
6216 #ifdef _KERNEL
6217 extern dev_info_t *ipf_dev_info;
6218 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *));
6219 #endif
6220 
6221 /* -------------------------------------------------------------------- */
6222 /* Function:	ipftuneable_setdefs()					*/
6223 /* Returns:		void						*/
6224 /* Parameters:	ifs - pointer to newly allocated IPF instance		*/
6225 /*				assigned to	IP instance		*/
6226 /*									*/
6227 /* Function initializes IPF instance variables. Function is invoked	*/
6228 /* from	ipftuneable_alloc(). ipftuneable_alloc() is called only one	*/
6229 /* time during IP instance lifetime - at the time of IP instance	*/
6230 /* creation. Anytime IP	instance is being created new private IPF	*/
6231 /* instance is allocated and assigned to it. The moment of IP 		*/
6232 /* instance creation is the right time to initialize those IPF 		*/
6233 /* variables.								*/
6234 /*									*/
6235 /* -------------------------------------------------------------------- */
6236 static void ipftuneable_setdefs(ipf_stack_t *ifs)
6237 {
6238 	ifs->ifs_ipfr_size = IPFT_SIZE;
6239 	ifs->ifs_fr_ipfrttl = 120;	/* 60 seconds */
6240 
6241 	/* it comes from fr_authinit() in IPF auth */
6242 	ifs->ifs_fr_authsize = FR_NUMAUTH;
6243 	ifs->ifs_fr_defaultauthage = 600;
6244 
6245 	/* it comes from fr_stateinit() in IPF state */
6246 	ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5);	/* five days */
6247 	ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL);
6248 	ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL);
6249 	ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL);
6250 	ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60);
6251 	ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600);	/* 2 hours */
6252 	ifs->ifs_fr_udptimeout = IPF_TTLVAL(120);
6253 	ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12);
6254 	ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60);
6255 	ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6);
6256 	ifs->ifs_fr_iptimeout = IPF_TTLVAL(60);
6257 	ifs->ifs_fr_statemax = IPSTATE_MAX;
6258 	ifs->ifs_fr_statesize = IPSTATE_SIZE;
6259 	ifs->ifs_fr_state_maxbucket_reset = 1;
6260 	ifs->ifs_state_flush_level_hi = ST_FLUSH_HI;
6261 	ifs->ifs_state_flush_level_lo = ST_FLUSH_LO;
6262 
6263 	/* it comes from fr_natinit() in ipnat */
6264 	ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ;
6265 	ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX;
6266 	ifs->ifs_ipf_natrules_sz = NAT_SIZE;
6267 	ifs->ifs_ipf_rdrrules_sz = RDR_SIZE;
6268 	ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE;
6269 	ifs->ifs_fr_nat_maxbucket_reset = 1;
6270 	ifs->ifs_fr_defnatage = DEF_NAT_AGE;
6271 	ifs->ifs_fr_defnatipage = 120;		/* 60 seconds */
6272 	ifs->ifs_fr_defnaticmpage = 6;		/* 3 seconds */
6273 	ifs->ifs_nat_flush_level_hi = NAT_FLUSH_HI;
6274 	ifs->ifs_nat_flush_level_lo = NAT_FLUSH_LO;
6275 
6276 #ifdef IPFILTER_LOG
6277 	/* it comes from fr_loginit() in IPF log */
6278 	ifs->ifs_ipl_suppress = 1;
6279 	ifs->ifs_ipl_logmax = IPL_LOGMAX;
6280 	ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE;
6281 
6282 	/* from fr_natinit() */
6283 	ifs->ifs_nat_logging = 1;
6284 
6285 	/* from fr_stateinit() */
6286 	ifs->ifs_ipstate_logging = 1;
6287 #else
6288 	/* from fr_natinit() */
6289 	ifs->ifs_nat_logging = 0;
6290 
6291 	/* from fr_stateinit() */
6292 	ifs->ifs_ipstate_logging = 0;
6293 #endif
6294 	ifs->ifs_ipf_loopback = 0;
6295 
6296 }
6297 /*
6298  * Allocate a per-stack tuneable and copy in the names. Then
6299  * set it to point to each of the per-stack tunables.
6300  */
6301 void
6302 ipftuneable_alloc(ipf_stack_t *ifs)
6303 {
6304     ipftuneable_t *item;
6305 
6306     KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *,
6307 	sizeof (lcl_ipf_tuneables));
6308     bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables,
6309 	sizeof (lcl_ipf_tuneables));
6310 
6311 #define TUNE_SET(_ifs, _name, _field)			\
6312     item = tune_lookup((_ifs), (_name));		\
6313     if (item != NULL) {					\
6314 	item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field);	\
6315 	item->ipft_sz = sizeof ((_ifs)->_field);	\
6316     }
6317 
6318     TUNE_SET(ifs, "fr_flags", ifs_fr_flags);
6319     TUNE_SET(ifs, "fr_active", ifs_fr_active);
6320     TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding);
6321     TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid);
6322     TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc);
6323     TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl);
6324     TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu);
6325     TUNE_SET(ifs, "fr_pass", ifs_fr_pass);
6326     TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout);
6327     TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait);
6328     TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack);
6329     TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout);
6330     TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed);
6331     TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed);
6332     TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout);
6333     TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout);
6334     TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout);
6335     TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout);
6336     TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout);
6337     TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax);
6338     TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize);
6339     TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock);
6340     TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket);
6341     TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset);
6342     TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging);
6343     TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock);
6344     TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz);
6345     TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max);
6346     TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz);
6347     TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz);
6348     TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz);
6349     TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket);
6350     TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset);
6351     TUNE_SET(ifs, "nat_logging", ifs_nat_logging);
6352     TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage);
6353     TUNE_SET(ifs, "fr_defnatipage", ifs_fr_defnatipage);
6354     TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage);
6355     TUNE_SET(ifs, "nat_flush_level_hi", ifs_nat_flush_level_hi);
6356     TUNE_SET(ifs, "nat_flush_level_lo", ifs_nat_flush_level_lo);
6357     TUNE_SET(ifs, "state_flush_level_hi", ifs_state_flush_level_hi);
6358     TUNE_SET(ifs, "state_flush_level_lo", ifs_state_flush_level_lo);
6359     TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size);
6360     TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl);
6361     TUNE_SET(ifs, "ipf_loopback", ifs_ipf_loopback);
6362 #ifdef IPFILTER_LOG
6363     TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress);
6364     TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz);
6365     TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax);
6366     TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall);
6367     TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize);
6368 #endif
6369 #undef TUNE_SET
6370 
6371 	ipftuneable_setdefs(ifs);
6372 
6373 #ifdef _KERNEL
6374     (void) ipf_property_update(ipf_dev_info, ifs);
6375 #endif
6376 }
6377 
6378 void
6379 ipftuneable_free(ipf_stack_t *ifs)
6380 {
6381 	KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables));
6382 	ifs->ifs_ipf_tuneables = NULL;
6383 }
6384 
6385 /* ------------------------------------------------------------------------ */
6386 /* Function:    fr_findtunebycookie                                         */
6387 /* Returns:     NULL = search failed, else pointer to tune struct           */
6388 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6389 /*              next(O)   - pointer to place to store the cookie for the    */
6390 /*                          "next" tuneable, if it is desired.              */
6391 /*                                                                          */
6392 /* This function is used to walk through all of the existing tunables with  */
6393 /* successive calls.  It searches the known tunables for the one which has  */
6394 /* a matching value for "cookie" - ie its address.  When returning a match, */
6395 /* the next one to be found may be returned inside next.                    */
6396 /* ------------------------------------------------------------------------ */
6397 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs)
6398 void *cookie, **next;
6399 ipf_stack_t * ifs;
6400 {
6401 	ipftuneable_t *ta, **tap;
6402 
6403 	for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6404 		if (ta == cookie) {
6405 			if (next != NULL) {
6406 				/*
6407 				 * If the next entry in the array has a name
6408 				 * present, then return a pointer to it for
6409 				 * where to go next, else return a pointer to
6410 				 * the dynaminc list as a key to search there
6411 				 * next.  This facilitates a weak linking of
6412 				 * the two "lists" together.
6413 				 */
6414 				if ((ta + 1)->ipft_name != NULL)
6415 					*next = ta + 1;
6416 				else
6417 					*next = &ifs->ifs_ipf_tunelist;
6418 			}
6419 			return ta;
6420 		}
6421 
6422 	for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6423 		if (tap == cookie) {
6424 			if (next != NULL)
6425 				*next = &ta->ipft_next;
6426 			return ta;
6427 		}
6428 
6429 	if (next != NULL)
6430 		*next = NULL;
6431 	return NULL;
6432 }
6433 
6434 
6435 /* ------------------------------------------------------------------------ */
6436 /* Function:    fr_findtunebyname                                           */
6437 /* Returns:     NULL = search failed, else pointer to tune struct           */
6438 /* Parameters:  name(I) - name of the tuneable entry to find.               */
6439 /*                                                                          */
6440 /* Search the static array of tuneables and the list of dynamic tuneables   */
6441 /* for an entry with a matching name.  If we can find one, return a pointer */
6442 /* to the matching structure.                                               */
6443 /* ------------------------------------------------------------------------ */
6444 static ipftuneable_t *fr_findtunebyname(name, ifs)
6445 const char *name;
6446 ipf_stack_t *ifs;
6447 {
6448 	ipftuneable_t *ta;
6449 
6450 	for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6451 		if (!strcmp(ta->ipft_name, name)) {
6452 			return ta;
6453 		}
6454 
6455 	for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next)
6456 		if (!strcmp(ta->ipft_name, name)) {
6457 			return ta;
6458 		}
6459 
6460 	return NULL;
6461 }
6462 
6463 
6464 /* ------------------------------------------------------------------------ */
6465 /* Function:    fr_addipftune                                               */
6466 /* Returns:     int - 0 == success, else failure                            */
6467 /* Parameters:  newtune - pointer to new tune struct to add to tuneables    */
6468 /*                                                                          */
6469 /* Appends the tune structure pointer to by "newtune" to the end of the     */
6470 /* current list of "dynamic" tuneable parameters.  Once added, the owner    */
6471 /* of the object is not expected to ever change "ipft_next".                */
6472 /* ------------------------------------------------------------------------ */
6473 int fr_addipftune(newtune, ifs)
6474 ipftuneable_t *newtune;
6475 ipf_stack_t *ifs;
6476 {
6477 	ipftuneable_t *ta, **tap;
6478 
6479 	ta = fr_findtunebyname(newtune->ipft_name, ifs);
6480 	if (ta != NULL)
6481 		return EEXIST;
6482 
6483 	for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next)
6484 		;
6485 
6486 	newtune->ipft_next = NULL;
6487 	*tap = newtune;
6488 	return 0;
6489 }
6490 
6491 
6492 /* ------------------------------------------------------------------------ */
6493 /* Function:    fr_delipftune                                               */
6494 /* Returns:     int - 0 == success, else failure                            */
6495 /* Parameters:  oldtune - pointer to tune struct to remove from the list of */
6496 /*                        current dynamic tuneables                         */
6497 /*                                                                          */
6498 /* Search for the tune structure, by pointer, in the list of those that are */
6499 /* dynamically added at run time.  If found, adjust the list so that this   */
6500 /* structure is no longer part of it.                                       */
6501 /* ------------------------------------------------------------------------ */
6502 int fr_delipftune(oldtune, ifs)
6503 ipftuneable_t *oldtune;
6504 ipf_stack_t *ifs;
6505 {
6506 	ipftuneable_t *ta, **tap;
6507 
6508 	for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6509 		if (ta == oldtune) {
6510 			*tap = oldtune->ipft_next;
6511 			oldtune->ipft_next = NULL;
6512 			return 0;
6513 		}
6514 
6515 	return ESRCH;
6516 }
6517 
6518 
6519 /* ------------------------------------------------------------------------ */
6520 /* Function:    fr_ipftune                                                  */
6521 /* Returns:     int - 0 == success, else failure                            */
6522 /* Parameters:  cmd(I)  - ioctl command number                              */
6523 /*              data(I) - pointer to ioctl data structure                   */
6524 /*                                                                          */
6525 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
6526 /* three ioctls provide the means to access and control global variables    */
6527 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
6528 /* changed without rebooting, reloading or recompiling.  The initialisation */
6529 /* and 'destruction' routines of the various components of ipfilter are all */
6530 /* each responsible for handling their own values being too big.            */
6531 /* ------------------------------------------------------------------------ */
6532 int fr_ipftune(cmd, data, ifs)
6533 ioctlcmd_t cmd;
6534 void *data;
6535 ipf_stack_t *ifs;
6536 {
6537 	ipftuneable_t *ta;
6538 	ipftune_t tu;
6539 	void *cookie;
6540 	int error;
6541 
6542 	error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE);
6543 	if (error != 0)
6544 		return error;
6545 
6546 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
6547 	cookie = tu.ipft_cookie;
6548 	ta = NULL;
6549 
6550 	switch (cmd)
6551 	{
6552 	case SIOCIPFGETNEXT :
6553 		/*
6554 		 * If cookie is non-NULL, assume it to be a pointer to the last
6555 		 * entry we looked at, so find it (if possible) and return a
6556 		 * pointer to the next one after it.  The last entry in the
6557 		 * the table is a NULL entry, so when we get to it, set cookie
6558 		 * to NULL and return that, indicating end of list, erstwhile
6559 		 * if we come in with cookie set to NULL, we are starting anew
6560 		 * at the front of the list.
6561 		 */
6562 		if (cookie != NULL) {
6563 			ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs);
6564 		} else {
6565 			ta = ifs->ifs_ipf_tuneables;
6566 			tu.ipft_cookie = ta + 1;
6567 		}
6568 		if (ta != NULL) {
6569 			/*
6570 			 * Entry found, but does the data pointed to by that
6571 			 * row fit in what we can return?
6572 			 */
6573 			if (ta->ipft_sz > sizeof(tu.ipft_un))
6574 				return EINVAL;
6575 
6576 			tu.ipft_vlong = 0;
6577 			if (ta->ipft_sz == sizeof(u_long))
6578 				tu.ipft_vlong = *ta->ipft_plong;
6579 			else if (ta->ipft_sz == sizeof(u_int))
6580 				tu.ipft_vint = *ta->ipft_pint;
6581 			else if (ta->ipft_sz == sizeof(u_short))
6582 				tu.ipft_vshort = *ta->ipft_pshort;
6583 			else if (ta->ipft_sz == sizeof(u_char))
6584 				tu.ipft_vchar = *ta->ipft_pchar;
6585 
6586 			tu.ipft_sz = ta->ipft_sz;
6587 			tu.ipft_min = ta->ipft_min;
6588 			tu.ipft_max = ta->ipft_max;
6589 			tu.ipft_flags = ta->ipft_flags;
6590 			bcopy(ta->ipft_name, tu.ipft_name,
6591 			      MIN(sizeof(tu.ipft_name),
6592 				  strlen(ta->ipft_name) + 1));
6593 		}
6594 		error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6595 		break;
6596 
6597 	case SIOCIPFGET :
6598 	case SIOCIPFSET :
6599 		/*
6600 		 * Search by name or by cookie value for a particular entry
6601 		 * in the tuning paramter table.
6602 		 */
6603 		error = ESRCH;
6604 		if (cookie != NULL) {
6605 			ta = fr_findtunebycookie(cookie, NULL, ifs);
6606 			if (ta != NULL)
6607 				error = 0;
6608 		} else if (tu.ipft_name[0] != '\0') {
6609 			ta = fr_findtunebyname(tu.ipft_name, ifs);
6610 			if (ta != NULL)
6611 				error = 0;
6612 		}
6613 		if (error != 0)
6614 			break;
6615 
6616 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
6617 			/*
6618 			 * Fetch the tuning parameters for a particular value
6619 			 */
6620 			tu.ipft_vlong = 0;
6621 			if (ta->ipft_sz == sizeof(u_long))
6622 				tu.ipft_vlong = *ta->ipft_plong;
6623 			else if (ta->ipft_sz == sizeof(u_int))
6624 				tu.ipft_vint = *ta->ipft_pint;
6625 			else if (ta->ipft_sz == sizeof(u_short))
6626 				tu.ipft_vshort = *ta->ipft_pshort;
6627 			else if (ta->ipft_sz == sizeof(u_char))
6628 				tu.ipft_vchar = *ta->ipft_pchar;
6629 			tu.ipft_cookie = ta;
6630 			tu.ipft_sz = ta->ipft_sz;
6631 			tu.ipft_min = ta->ipft_min;
6632 			tu.ipft_max = ta->ipft_max;
6633 			tu.ipft_flags = ta->ipft_flags;
6634 			error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6635 
6636 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
6637 			/*
6638 			 * Set an internal parameter.  The hard part here is
6639 			 * getting the new value safely and correctly out of
6640 			 * the kernel (given we only know its size, not type.)
6641 			 */
6642 			u_long in;
6643 
6644 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
6645 			    (ifs->ifs_fr_running > 0)) {
6646 				error = EBUSY;
6647 				break;
6648 			}
6649 
6650 			in = tu.ipft_vlong;
6651 			if (in < ta->ipft_min || in > ta->ipft_max) {
6652 				error = EINVAL;
6653 				break;
6654 			}
6655 
6656 			if (ta->ipft_sz == sizeof(u_long)) {
6657 				tu.ipft_vlong = *ta->ipft_plong;
6658 				*ta->ipft_plong = in;
6659 			} else if (ta->ipft_sz == sizeof(u_int)) {
6660 				tu.ipft_vint = *ta->ipft_pint;
6661 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
6662 			} else if (ta->ipft_sz == sizeof(u_short)) {
6663 				tu.ipft_vshort = *ta->ipft_pshort;
6664 				*ta->ipft_pshort = (u_short)(in & 0xffff);
6665 			} else if (ta->ipft_sz == sizeof(u_char)) {
6666 				tu.ipft_vchar = *ta->ipft_pchar;
6667 				*ta->ipft_pchar = (u_char)(in & 0xff);
6668 			}
6669 			error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6670 		}
6671 		break;
6672 
6673 	default :
6674 		error = EINVAL;
6675 		break;
6676 	}
6677 
6678 	return error;
6679 }
6680 
6681 
6682 /* ------------------------------------------------------------------------ */
6683 /* Function:    fr_initialise                                               */
6684 /* Returns:     int - 0 == success,  < 0 == failure                         */
6685 /* Parameters:  None.                                                       */
6686 /*                                                                          */
6687 /* Call of the initialise functions for all the various subsystems inside   */
6688 /* of IPFilter.  If any of them should fail, return immeadiately a failure  */
6689 /* BUT do not try to recover from the error here.                           */
6690 /* ------------------------------------------------------------------------ */
6691 int fr_initialise(ifs)
6692 ipf_stack_t *ifs;
6693 {
6694 	int i;
6695 
6696 #ifdef IPFILTER_LOG
6697 	i = fr_loginit(ifs);
6698 	if (i < 0)
6699 		return -10 + i;
6700 #endif
6701 	i = fr_natinit(ifs);
6702 	if (i < 0)
6703 		return -20 + i;
6704 
6705 	i = fr_stateinit(ifs);
6706 	if (i < 0)
6707 		return -30 + i;
6708 
6709 	i = fr_authinit(ifs);
6710 	if (i < 0)
6711 		return -40 + i;
6712 
6713 	i = fr_fraginit(ifs);
6714 	if (i < 0)
6715 		return -50 + i;
6716 
6717 	i = appr_init(ifs);
6718 	if (i < 0)
6719 		return -60 + i;
6720 
6721 #ifdef IPFILTER_SYNC
6722 	i = ipfsync_init(ifs);
6723 	if (i < 0)
6724 		return -70 + i;
6725 #endif
6726 #ifdef IPFILTER_SCAN
6727 	i = ipsc_init(ifs);
6728 	if (i < 0)
6729 		return -80 + i;
6730 #endif
6731 #ifdef IPFILTER_LOOKUP
6732 	i = ip_lookup_init(ifs);
6733 	if (i < 0)
6734 		return -90 + i;
6735 #endif
6736 #ifdef IPFILTER_COMPILED
6737 	ipfrule_add(ifs);
6738 #endif
6739 	return 0;
6740 }
6741 
6742 
6743 /* ------------------------------------------------------------------------ */
6744 /* Function:    fr_deinitialise                                             */
6745 /* Returns:     None.                                                       */
6746 /* Parameters:  None.                                                       */
6747 /*                                                                          */
6748 /* Call all the various subsystem cleanup routines to deallocate memory or  */
6749 /* destroy locks or whatever they've done that they need to now undo.       */
6750 /* The order here IS important as there are some cross references of        */
6751 /* internal data structures.                                                */
6752 /* ------------------------------------------------------------------------ */
6753 void fr_deinitialise(ifs)
6754 ipf_stack_t *ifs;
6755 {
6756 	fr_fragunload(ifs);
6757 	fr_authunload(ifs);
6758 	fr_natunload(ifs);
6759 	fr_stateunload(ifs);
6760 #ifdef IPFILTER_SCAN
6761 	fr_scanunload(ifs);
6762 #endif
6763 	appr_unload(ifs);
6764 
6765 #ifdef IPFILTER_COMPILED
6766 	ipfrule_remove(ifs);
6767 #endif
6768 
6769 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6770 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs);
6771 	(void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6772 	(void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs);
6773 
6774 #ifdef IPFILTER_LOOKUP
6775 	ip_lookup_unload(ifs);
6776 #endif
6777 
6778 #ifdef IPFILTER_LOG
6779 	fr_logunload(ifs);
6780 #endif
6781 }
6782 
6783 
6784 /* ------------------------------------------------------------------------ */
6785 /* Function:    fr_zerostats                                                */
6786 /* Returns:     int - 0 = success, else failure                             */
6787 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
6788 /*                                                                          */
6789 /* Copies the current statistics out to userspace and then zero's the       */
6790 /* current ones in the kernel. The lock is only held across the bzero() as  */
6791 /* the copyout may result in paging (ie network activity.)                  */
6792 /* ------------------------------------------------------------------------ */
6793 int	fr_zerostats(data, ifs)
6794 caddr_t	data;
6795 ipf_stack_t *ifs;
6796 {
6797 	friostat_t fio;
6798 	int error;
6799 
6800 	fr_getstat(&fio, ifs);
6801 	error = copyoutptr(&fio, data, sizeof(fio));
6802 	if (error)
6803 		return EFAULT;
6804 
6805 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
6806 	bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2);
6807 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
6808 
6809 	return 0;
6810 }
6811 
6812 
6813 #ifdef _KERNEL
6814 /* ------------------------------------------------------------------------ */
6815 /* Function:    fr_resolvedest                                              */
6816 /* Returns:     Nil                                                         */
6817 /* Parameters:  fdp(IO) - pointer to destination information to resolve     */
6818 /*              v(I)    - IP protocol version to match                      */
6819 /*                                                                          */
6820 /* Looks up an interface name in the frdest structure pointed to by fdp and */
6821 /* if a matching name can be found for the particular IP protocol version   */
6822 /* then store the interface pointer in the frdest struct.  If no match is   */
6823 /* found, then set the interface pointer to be -1 as NULL is considered to  */
6824 /* indicate there is no information at all in the structure.                */
6825 /* ------------------------------------------------------------------------ */
6826 void fr_resolvedest(fdp, v, ifs)
6827 frdest_t *fdp;
6828 int v;
6829 ipf_stack_t *ifs;
6830 {
6831 	fdp->fd_ifp = NULL;
6832 
6833   	if (*fdp->fd_ifname != '\0') {
6834  		fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs);
6835 		if (fdp->fd_ifp == NULL)
6836 			fdp->fd_ifp = (void *)-1;
6837 	}
6838 }
6839 #endif /* _KERNEL */
6840 
6841 
6842 /* ------------------------------------------------------------------------ */
6843 /* Function:    fr_resolvenic                                               */
6844 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
6845 /*                      pointer to interface structure for NIC              */
6846 /* Parameters:  name(I) - complete interface name                           */
6847 /*              v(I)    - IP protocol version                               */
6848 /*                                                                          */
6849 /* Look for a network interface structure that firstly has a matching name  */
6850 /* to that passed in and that is also being used for that IP protocol       */
6851 /* version (necessary on some platforms where there are separate listings   */
6852 /* for both IPv4 and IPv6 on the same physical NIC.                         */
6853 /*                                                                          */
6854 /* One might wonder why name gets terminated with a \0 byte in here.  The   */
6855 /* reason is an interface name could get into the kernel structures of ipf  */
6856 /* in any number of ways and so long as they all use the same sized array   */
6857 /* to put the name in, it makes sense to ensure it gets null terminated     */
6858 /* before it is used for its intended purpose - finding its match in the    */
6859 /* kernel's list of configured interfaces.                                  */
6860 /*                                                                          */
6861 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an     */
6862 /*       array for the name that is LIFNAMSIZ bytes (at least) in length.   */
6863 /* ------------------------------------------------------------------------ */
6864 void *fr_resolvenic(name, v, ifs)
6865 char *name;
6866 int v;
6867 ipf_stack_t *ifs;
6868 {
6869 	void *nic;
6870 
6871 	if (name[0] == '\0')
6872 		return NULL;
6873 
6874 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
6875 		return NULL;
6876 	}
6877 
6878 	name[LIFNAMSIZ - 1] = '\0';
6879 
6880 	nic = GETIFP(name, v, ifs);
6881 	if (nic == NULL)
6882 		nic = (void *)-1;
6883 	return nic;
6884 }
6885 
6886 
6887 /* ------------------------------------------------------------------------ */
6888 /* Function:    ipf_expiretokens                                            */
6889 /* Returns:     None.                                                       */
6890 /* Parameters:  ifs - ipf stack instance                                    */
6891 /*                                                                          */
6892 /* This function is run every ipf tick to see if there are any tokens that  */
6893 /* have been held for too long and need to be freed up.                     */
6894 /* ------------------------------------------------------------------------ */
6895 void ipf_expiretokens(ifs)
6896 ipf_stack_t *ifs;
6897 {
6898 	ipftoken_t *it;
6899 
6900 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6901 	while ((it = ifs->ifs_ipftokenhead) != NULL) {
6902 		if (it->ipt_die > ifs->ifs_fr_ticks)
6903 			break;
6904 
6905 		ipf_freetoken(it, ifs);
6906 	}
6907 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
6908 }
6909 
6910 
6911 /* ------------------------------------------------------------------------ */
6912 /* Function:    ipf_deltoken                                                */
6913 /* Returns:     int - 0 = success, else error                               */
6914 /* Parameters:  type(I) - the token type to match                           */
6915 /*              uid(I)  - uid owning the token                              */
6916 /*              ptr(I)  - context pointer for the token                     */
6917 /*              ifs - ipf stack instance                                    */
6918 /*                                                                          */
6919 /* This function looks for a a token in the current list that matches up    */
6920 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
6921 /* call ipf_freetoken() to remove it from the list.                         */
6922 /* ------------------------------------------------------------------------ */
6923 int ipf_deltoken(type, uid, ptr, ifs)
6924 int type, uid;
6925 void *ptr;
6926 ipf_stack_t *ifs;
6927 {
6928 	ipftoken_t *it;
6929 	int error = ESRCH;
6930 
6931 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6932 	for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next)
6933 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
6934 		    uid == it->ipt_uid) {
6935 			ipf_freetoken(it, ifs);
6936 			error = 0;
6937 			break;
6938 	}
6939 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
6940 
6941 	return error;
6942 }
6943 
6944 
6945 /* ------------------------------------------------------------------------ */
6946 /* Function:    ipf_unlinktoken                                             */
6947 /* Returns:     None.                                                       */
6948 /* Parameters:  token(I) - pointer to token structure                       */
6949 /*              ifs - ipf stack instance                                    */
6950 /*                                                                          */
6951 /* This function unlinks a token structure from the linked list of tokens   */
6952 /* that it belongs to.  The head pointer never needs to be explicitly       */
6953 /* adjusted, but the tail does due to the linked list implementation.       */
6954 /* ------------------------------------------------------------------------ */
6955 static void ipf_unlinktoken(token, ifs)
6956 ipftoken_t *token;
6957 ipf_stack_t *ifs;
6958 {
6959 
6960 	if (ifs->ifs_ipftokentail == &token->ipt_next)
6961 		ifs->ifs_ipftokentail = token->ipt_pnext;
6962 
6963 	*token->ipt_pnext = token->ipt_next;
6964 	if (token->ipt_next != NULL)
6965 		token->ipt_next->ipt_pnext = token->ipt_pnext;
6966 }
6967 
6968 
6969 /* ------------------------------------------------------------------------ */
6970 /* Function:    ipf_findtoken                                               */
6971 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
6972 /* Parameters:  type(I) - the token type to match                           */
6973 /*              uid(I) - uid owning the token                               */
6974 /*              ptr(I) - context pointer for the token                      */
6975 /*              ifs - ipf stack instance                                    */
6976 /*                                                                          */
6977 /* This function looks for a live token in the list of current tokens that  */
6978 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
6979 /* allocated.  If one is found then it is moved to the top of the list of   */
6980 /* currently active tokens.                                                 */
6981 /*                                                                          */
6982 /* NOTE: It is by design that this function returns holding a read lock on  */
6983 /*       ipf_tokens.  Callers must make sure they release it!               */
6984 /* ------------------------------------------------------------------------ */
6985 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs)
6986 int type, uid;
6987 void *ptr;
6988 ipf_stack_t *ifs;
6989 {
6990 	ipftoken_t *it, *new;
6991 
6992 	KMALLOC(new, ipftoken_t *);
6993 
6994 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6995 	for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) {
6996 		if (it->ipt_alive == 0)
6997 			continue;
6998 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
6999 		    uid == it->ipt_uid)
7000 			break;
7001 	}
7002 
7003 	if (it == NULL) {
7004 		it = new;
7005 		new = NULL;
7006 		if (it == NULL)
7007 			return NULL;
7008 		it->ipt_data = NULL;
7009 		it->ipt_ctx = ptr;
7010 		it->ipt_uid = uid;
7011 		it->ipt_type = type;
7012 		it->ipt_next = NULL;
7013 		it->ipt_alive = 1;
7014 	} else {
7015 		if (new != NULL) {
7016 			KFREE(new);
7017 			new = NULL;
7018 		}
7019 
7020 		ipf_unlinktoken(it, ifs);
7021 	}
7022 	it->ipt_pnext = ifs->ifs_ipftokentail;
7023 	*ifs->ifs_ipftokentail = it;
7024 	ifs->ifs_ipftokentail = &it->ipt_next;
7025 	it->ipt_next = NULL;
7026 
7027 	it->ipt_die = ifs->ifs_fr_ticks + 2;
7028 
7029 	MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens);
7030 
7031 	return it;
7032 }
7033 
7034 
7035 /* ------------------------------------------------------------------------ */
7036 /* Function:    ipf_freetoken                                               */
7037 /* Returns:     None.                                                       */
7038 /* Parameters:  token(I) - pointer to token structure                       */
7039 /*              ifs - ipf stack instance                                    */
7040 /*                                                                          */
7041 /* This function unlinks a token from the linked list and on the path to    */
7042 /* free'ing the data, it calls the dereference function that is associated  */
7043 /* with the type of data pointed to by the token as it is considered to     */
7044 /* hold a reference to it.                                                  */
7045 /* ------------------------------------------------------------------------ */
7046 void ipf_freetoken(token, ifs)
7047 ipftoken_t *token;
7048 ipf_stack_t *ifs;
7049 {
7050 	void *data, **datap;
7051 
7052 	ipf_unlinktoken(token, ifs);
7053 
7054 	data = token->ipt_data;
7055 	datap = &data;
7056 
7057 	if ((data != NULL) && (data != (void *)-1)) {
7058 		switch (token->ipt_type)
7059 		{
7060 		case IPFGENITER_IPF :
7061 			(void)fr_derefrule((frentry_t **)datap, ifs);
7062 			break;
7063 		case IPFGENITER_IPNAT :
7064 			WRITE_ENTER(&ifs->ifs_ipf_nat);
7065 			fr_ipnatderef((ipnat_t **)datap, ifs);
7066 			RWLOCK_EXIT(&ifs->ifs_ipf_nat);
7067 			break;
7068 		case IPFGENITER_NAT :
7069 			fr_natderef((nat_t **)datap, ifs);
7070 			break;
7071 		case IPFGENITER_STATE :
7072 			fr_statederef((ipstate_t **)datap, ifs);
7073 			break;
7074 		case IPFGENITER_FRAG :
7075 			fr_fragderef((ipfr_t **)datap, &ifs->ifs_ipf_frag, ifs);
7076 			break;
7077 		case IPFGENITER_NATFRAG :
7078  			fr_fragderef((ipfr_t **)datap,
7079 				     &ifs->ifs_ipf_natfrag, ifs);
7080 			break;
7081 		case IPFGENITER_HOSTMAP :
7082 			WRITE_ENTER(&ifs->ifs_ipf_nat);
7083 			fr_hostmapdel((hostmap_t **)datap);
7084 			RWLOCK_EXIT(&ifs->ifs_ipf_nat);
7085 			break;
7086 		default :
7087 			(void) ip_lookup_iterderef(token->ipt_type, data, ifs);
7088 			break;
7089 		}
7090 	}
7091 
7092 	KFREE(token);
7093 }
7094 
7095 
7096 /* ------------------------------------------------------------------------ */
7097 /* Function:    ipf_getnextrule                                             */
7098 /* Returns:     int - 0 = success, else error                               */
7099 /* Parameters:  t(I)   - pointer to destination information to resolve      */
7100 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7101 /*              ifs - ipf stack instance                                    */
7102 /*                                                                          */
7103 /* This function's first job is to bring in the ipfruleiter_t structure via */
7104 /* the ipfobj_t structure to determine what should be the next rule to      */
7105 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7106 /* find the 'next rule'.  This may include searching rule group lists or    */
7107 /* just be as simple as looking at the 'next' field in the rule structure.  */
7108 /* When we have found the rule to return, increase its reference count and  */
7109 /* if we used an existing rule to get here, decrease its reference count.   */
7110 /* ------------------------------------------------------------------------ */
7111 int ipf_getnextrule(t, ptr, ifs)
7112 ipftoken_t *t;
7113 void *ptr;
7114 ipf_stack_t *ifs;
7115 {
7116 	frentry_t *fr, *next, zero;
7117 	int error, out, count;
7118 	ipfruleiter_t it;
7119 	frgroup_t *fg;
7120 	char *dst;
7121 
7122 	if (t == NULL || ptr == NULL)
7123 		return EFAULT;
7124 	error = fr_inobj(ptr, &it, IPFOBJ_IPFITER);
7125 	if (error != 0)
7126 		return error;
7127 	if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6))
7128 		return EINVAL;
7129 	if ((it.iri_inout < 0) || (it.iri_inout > 3))
7130 		return EINVAL;
7131 	if (it.iri_nrules == 0)
7132 		return EINVAL;
7133 	if ((it.iri_active != 0) && (it.iri_active != 1))
7134 		return EINVAL;
7135 	if (it.iri_rule == NULL)
7136 		return EFAULT;
7137 
7138 	/*
7139 	 * Use bitmask on it.iri_inout to determine direction.
7140 	 * F_OUT (1) and F_ACOUT (3) mask to out = 1, while
7141 	 * F_IN (0) and F_ACIN (2) mask to out = 0.
7142 	 */
7143 	out = it.iri_inout & F_OUT;
7144 	READ_ENTER(&ifs->ifs_ipf_mutex);
7145 
7146 	/*
7147 	 * Retrieve "previous" entry from token and find the next entry.
7148 	 */
7149 	fr = t->ipt_data;
7150 	if (fr == NULL) {
7151 		if (*it.iri_group == '\0') {
7152 			/*
7153 			 * Use bitmask again to determine accounting or not.
7154 			 * F_ACIN will mask to accounting cases F_ACIN (2)
7155 			 * or F_ACOUT (3), but not F_IN or F_OUT.
7156 			 */
7157 			if ((it.iri_inout & F_ACIN) != 0) {
7158 				if (it.iri_ver == AF_INET)
7159 					next = ifs->ifs_ipacct
7160 					    [out][it.iri_active];
7161 				else
7162 					next = ifs->ifs_ipacct6
7163 					    [out][it.iri_active];
7164 			} else {
7165 				if (it.iri_ver == AF_INET)
7166 					next = ifs->ifs_ipfilter
7167 					    [out][it.iri_active];
7168 				else
7169 					next = ifs->ifs_ipfilter6
7170 					    [out][it.iri_active];
7171 			}
7172 		} else {
7173 			fg = fr_findgroup(it.iri_group, IPL_LOGIPF,
7174 					  it.iri_active, NULL, ifs);
7175 			if (fg != NULL)
7176 				next = fg->fg_start;
7177 			else
7178 				next = NULL;
7179 		}
7180 	} else {
7181 		next = fr->fr_next;
7182 	}
7183 
7184 	dst = (char *)it.iri_rule;
7185 	/*
7186 	 * The ipfruleiter may ask for more than 1 rule at a time to be
7187 	 * copied out, so long as that many exist in the list to start with!
7188 	 */
7189 	for (count = it.iri_nrules; count > 0; count--) {
7190 		/*
7191 		 * If we found an entry, add reference to it and update token.
7192 		 * Otherwise, zero out data to be returned and NULL out token.
7193 		 */
7194 		if (next != NULL) {
7195 			MUTEX_ENTER(&next->fr_lock);
7196 			next->fr_ref++;
7197 			MUTEX_EXIT(&next->fr_lock);
7198 			t->ipt_data = next;
7199 		} else {
7200 			bzero(&zero, sizeof(zero));
7201 			next = &zero;
7202 			t->ipt_data = NULL;
7203 		}
7204 
7205 		/*
7206 		 * Now that we have ref, it's save to give up lock.
7207 		 */
7208 		RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
7209 
7210 		/*
7211 		 * Copy out data and clean up references and token as needed.
7212 		 */
7213 		error = COPYOUT(next, dst, sizeof(*next));
7214 		if (error != 0)
7215 			error = EFAULT;
7216 		if (t->ipt_data == NULL) {
7217 			ipf_freetoken(t, ifs);
7218 			break;
7219 		} else {
7220 			if (fr != NULL)
7221 				(void) fr_derefrule(&fr, ifs);
7222 			if (next->fr_data != NULL) {
7223 				dst += sizeof(*next);
7224 				error = COPYOUT(next->fr_data, dst,
7225 						next->fr_dsize);
7226 				if (error != 0)
7227 					error = EFAULT;
7228 				else
7229 					dst += next->fr_dsize;
7230 			}
7231 			if (next->fr_next == NULL) {
7232 				ipf_freetoken(t, ifs);
7233 				break;
7234 			}
7235 		}
7236 
7237 		if ((count == 1) || (error != 0))
7238 			break;
7239 
7240 		READ_ENTER(&ifs->ifs_ipf_mutex);
7241 		fr = next;
7242 		next = fr->fr_next;
7243 	}
7244 
7245 	return error;
7246 }
7247 
7248 
7249 /* ------------------------------------------------------------------------ */
7250 /* Function:    fr_frruleiter                                               */
7251 /* Returns:     int - 0 = success, else error                               */
7252 /* Parameters:  data(I) - the token type to match                           */
7253 /*              uid(I) - uid owning the token                               */
7254 /*              ptr(I) - context pointer for the token                      */
7255 /*              ifs - ipf stack instance                                    */
7256 /*                                                                          */
7257 /* This function serves as a stepping stone between fr_ipf_ioctl and        */
7258 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7259 /* the process doing the ioctl and use that to ask for the next rule.       */
7260 /* ------------------------------------------------------------------------ */
7261 int ipf_frruleiter(data, uid, ctx, ifs)
7262 void *data, *ctx;
7263 int uid;
7264 ipf_stack_t *ifs;
7265 {
7266 	ipftoken_t *token;
7267 	int error;
7268 
7269 	token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs);
7270 	if (token != NULL)
7271 		error = ipf_getnextrule(token, data, ifs);
7272 	else
7273 		error = EFAULT;
7274 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7275 
7276 	return error;
7277 }
7278 
7279 
7280 /* ------------------------------------------------------------------------ */
7281 /* Function:    ipf_geniter                                                 */
7282 /* Returns:     int - 0 = success, else error                               */
7283 /* Parameters:  token(I) - pointer to ipftoken structure                    */
7284 /*              itp(I) - pointer to ipfgeniter structure                    */
7285 /*              ifs - ipf stack instance                                    */
7286 /*                                                                          */
7287 /* Generic iterator called from ipf_genericiter.  Currently only used for   */
7288 /* walking through list of fragments.                                       */
7289 /* ------------------------------------------------------------------------ */
7290 int ipf_geniter(token, itp, ifs)
7291 ipftoken_t *token;
7292 ipfgeniter_t *itp;
7293 ipf_stack_t *ifs;
7294 {
7295 	int error;
7296 
7297 	switch (itp->igi_type)
7298 	{
7299 	case IPFGENITER_FRAG :
7300 		error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list,
7301 				    &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag,
7302 				    ifs);
7303 		break;
7304 	default :
7305 		error = EINVAL;
7306 		break;
7307 	}
7308 
7309 	return error;
7310 }
7311 
7312 
7313 /* ------------------------------------------------------------------------ */
7314 /* Function:    ipf_genericiter                                             */
7315 /* Returns:     int - 0 = success, else error                               */
7316 /* Parameters:  data(I) - the token type to match                           */
7317 /*              uid(I) - uid owning the token                               */
7318 /*              ptr(I) - context pointer for the token                      */
7319 /*              ifs - ipf stack instance                                    */
7320 /*                                                                          */
7321 /* This function serves as a stepping stone between fr_ipf_ioctl and        */
7322 /* ipf_geniter when handling SIOCGENITER.  It's role is to find the right   */
7323 /* token in the kernel for the process using the ioctl, and to use that     */
7324 /* token when calling ipf_geniter.                                          */
7325 /* ------------------------------------------------------------------------ */
7326 int ipf_genericiter(data, uid, ctx, ifs)
7327 void *data, *ctx;
7328 int uid;
7329 ipf_stack_t *ifs;
7330 {
7331 	ipftoken_t *token;
7332 	ipfgeniter_t iter;
7333 	int error;
7334 
7335 	error = fr_inobj(data, &iter, IPFOBJ_GENITER);
7336 	if (error != 0)
7337 		return error;
7338 
7339 	token = ipf_findtoken(iter.igi_type, uid, ctx, ifs);
7340 	if (token != NULL) {
7341 		token->ipt_subtype = iter.igi_type;
7342 		error = ipf_geniter(token, &iter, ifs);
7343 	} else
7344 		error = EFAULT;
7345 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7346 
7347 	return error;
7348 }
7349 
7350 
7351 /* --------------------------------------------------------------------- */
7352 /* Function:    ipf_earlydrop                                            */
7353 /* Returns:     number of dropped/removed entries from the queue         */
7354 /* Parameters:	flushtype - which table we're cleaning (NAT or State)	 */
7355 /*              ifq	- pointer to queue with entries to be deleted    */
7356 /*              idletime - entry must be idle this long to be deleted    */
7357 /*              ifs     - ipf stack instance                             */
7358 /*                                                                       */
7359 /* Function is invoked from state/NAT flush routines to remove entries   */
7360 /* from specified timeout queue, based on how long they've sat idle,     */
7361 /* without waiting for it to happen on its own.                          */
7362 /* --------------------------------------------------------------------- */
7363 int ipf_earlydrop(flushtype, ifq, idletime, ifs)
7364 int flushtype;
7365 ipftq_t *ifq;
7366 int idletime;
7367 ipf_stack_t *ifs;
7368 {
7369         ipftqent_t *tqe, *tqn;
7370         unsigned int dropped;
7371         int droptick;
7372 	void *ent;
7373 
7374         if (ifq == NULL)
7375                 return (0);
7376 
7377         dropped = 0;
7378 
7379         /*
7380          * Determine the tick representing the idle time we're interested
7381          * in.  If an entry exists in the queue, and it was touched before
7382          * that tick, then it's been idle longer than idletime, so it should
7383 	 * be deleted.
7384          */
7385         droptick = ifs->ifs_fr_ticks - idletime;
7386         tqn = ifq->ifq_head;
7387         while ((tqe = tqn) != NULL && tqe->tqe_touched < droptick) {
7388                 tqn = tqe->tqe_next;
7389 		ent = tqe->tqe_parent;
7390 		switch (flushtype)
7391 		{
7392 		case NAT_FLUSH:
7393 			if (nat_delete((nat_t *)ent, NL_FLUSH, ifs) == 0)
7394 				dropped++;
7395 			break;
7396 		case STATE_FLUSH:
7397 			if (fr_delstate((ipstate_t *)ent, ISL_FLUSH, ifs) == 0)
7398 				dropped++;
7399 			break;
7400 		default:
7401 			return (0);
7402 		}
7403         }
7404         return (dropped);
7405 }
7406 
7407 
7408 /* --------------------------------------------------------------------- */
7409 /* Function:    ipf_flushclosing                                         */
7410 /* Returns:     int - number of entries deleted                          */
7411 /* Parameters:	flushtype - which table we're cleaning (NAT or State)	 */
7412 /*              stateval - TCP state at which to start removing entries  */
7413 /*              ipfqs - pointer to timeout queues                        */
7414 /*              userqs - pointer to user defined queues                  */
7415 /*              ifs  - ipf stack instance                                */
7416 /*                                                                       */
7417 /* Remove state/NAT table entries for TCP connections which are in the   */
7418 /* process of closing, and have at least reached the state specified by  */
7419 /* the 'stateval' parameter.                                             */
7420 /* --------------------------------------------------------------------- */
7421 int ipf_flushclosing(flushtype, stateval, ipfqs, userqs, ifs)
7422 int flushtype, stateval;
7423 ipftq_t *ipfqs, *userqs;
7424 ipf_stack_t *ifs;
7425 {
7426 	ipftq_t *ifq, *ifqn;
7427         ipftqent_t *tqe, *tqn;
7428         int dropped;
7429 	void *ent;
7430 	nat_t *nat;
7431 	ipstate_t *is;
7432 
7433         dropped = 0;
7434 
7435         /*
7436          * Start by deleting any entries in specific timeout queues.
7437          */
7438 	ifqn = &ipfqs[stateval];
7439         while ((ifq = ifqn) != NULL) {
7440                 ifqn = ifq->ifq_next;
7441                 dropped += ipf_earlydrop(flushtype, ifq, (int)0, ifs);
7442         }
7443 
7444         /*
7445          * Next, look through user defined queues for closing entries.
7446          */
7447 	ifqn = userqs;
7448         while ((ifq = ifqn) != NULL) {
7449                 ifqn = ifq->ifq_next;
7450                 tqn = ifq->ifq_head;
7451                 while ((tqe = tqn) != NULL) {
7452                         tqn = tqe->tqe_next;
7453 			ent = tqe->tqe_parent;
7454 			switch (flushtype)
7455 			{
7456 			case NAT_FLUSH:
7457 				nat = (nat_t *)ent;
7458 				if ((nat->nat_p == IPPROTO_TCP) &&
7459 				    (nat->nat_tcpstate[0] >= stateval) &&
7460 				    (nat->nat_tcpstate[1] >= stateval) &&
7461 				    (nat_delete(nat, NL_EXPIRE, ifs) == 0))
7462 					dropped++;
7463 				break;
7464 			case STATE_FLUSH:
7465 				is = (ipstate_t *)ent;
7466 				if ((is->is_p == IPPROTO_TCP) &&
7467 				    (is->is_state[0] >= stateval) &&
7468 				    (is->is_state[1] >= stateval) &&
7469 				    (fr_delstate(is, ISL_EXPIRE, ifs) == 0))
7470 					dropped++;
7471 				break;
7472 			default:
7473 				return (0);
7474 			}
7475                 }
7476         }
7477         return (dropped);
7478 }
7479 
7480 
7481 /* --------------------------------------------------------------------- */
7482 /* Function:    ipf_extraflush                                           */
7483 /* Returns:     int - number of entries flushed (0 = none)               */
7484 /* Parameters:	flushtype - which table we're cleaning (NAT or State)	 */
7485 /*              ipfqs - pointer to 'established' timeout queue           */
7486 /*              userqs - pointer to user defined queues                  */
7487 /*              ifs  - ipf stack instance                                */
7488 /*                                                                       */
7489 /* This function gets called when either NAT or state tables fill up.    */
7490 /* We need to try a bit harder to free up some space.  The function will */
7491 /* flush entries for TCP connections which have been idle a long time.   */
7492 /*                                                                       */
7493 /* Currently, the idle time is checked using values from ideltime_tab[]	 */
7494 /* --------------------------------------------------------------------- */
7495 int ipf_extraflush(flushtype, ipfqs, userqs, ifs)
7496 int flushtype;
7497 ipftq_t *ipfqs, *userqs;
7498 ipf_stack_t *ifs;
7499 {
7500 	ipftq_t *ifq, *ifqn;
7501 	int idletime, removed, idle_idx;
7502 
7503 	removed = 0;
7504 
7505 	/*
7506   	 * Determine initial threshold for minimum idle time based on
7507 	 * how long ipfilter has been running.  Ipfilter needs to have
7508 	 * been up as long as the smallest interval to continue on.
7509 	 *
7510 	 * Minimum idle times stored in idletime_tab and indexed by
7511 	 * idle_idx.  Start at upper end of array and work backwards.
7512 	 *
7513 	 * Once the index is found, set the initial idle time to the
7514 	 * first interval before the current ipfilter run time.
7515 	 */
7516 	if (ifs->ifs_fr_ticks < idletime_tab[0])
7517 		return (0);
7518 	idle_idx = (sizeof (idletime_tab) / sizeof (int)) - 1;
7519 	if (ifs->ifs_fr_ticks > idletime_tab[idle_idx]) {
7520 		idletime = idletime_tab[idle_idx];
7521 	} else {
7522 		while ((idle_idx > 0) &&
7523 		    (ifs->ifs_fr_ticks < idletime_tab[idle_idx]))
7524 			idle_idx--;
7525 
7526 		idletime = (ifs->ifs_fr_ticks /
7527 			    idletime_tab[idle_idx]) *
7528 			    idletime_tab[idle_idx];
7529 	}
7530 
7531 	while (idle_idx >= 0) {
7532 		/*
7533 		 * Check to see if we need to delete more entries.
7534 		 * If we do, start with appropriate timeout queue.
7535 		 */
7536 		if (flushtype == NAT_FLUSH) {
7537 			if (NAT_TAB_WATER_LEVEL(ifs) <=
7538 			    ifs->ifs_nat_flush_level_lo)
7539 				break;
7540 		} else if (flushtype == STATE_FLUSH) {
7541 			if (ST_TAB_WATER_LEVEL(ifs) <=
7542 			    ifs->ifs_state_flush_level_lo)
7543 				break;
7544 		} else {
7545 			break;
7546 		}
7547 
7548 		removed += ipf_earlydrop(flushtype, ipfqs, idletime, ifs);
7549 
7550 		/*
7551 		 * Next, check the user defined queues.  But first, make
7552 		 * certain that timeout queue deletions didn't do enough.
7553 		 */
7554 		if (flushtype == NAT_FLUSH) {
7555 			if (NAT_TAB_WATER_LEVEL(ifs) <=
7556 			    ifs->ifs_nat_flush_level_lo)
7557 				break;
7558 		} else {
7559 			if (ST_TAB_WATER_LEVEL(ifs) <=
7560 			    ifs->ifs_state_flush_level_lo)
7561 				break;
7562 		}
7563 		ifqn = userqs;
7564 		while ((ifq = ifqn) != NULL) {
7565 			ifqn = ifq->ifq_next;
7566 			removed += ipf_earlydrop(flushtype, ifq, idletime, ifs);
7567 		}
7568 
7569 		/*
7570 		 * Adjust the granularity of idle time.
7571 		 *
7572 		 * If we reach an interval boundary, we need to
7573 		 * either adjust the idle time accordingly or exit
7574 		 * the loop altogether (if this is very last check).
7575 		 */
7576 		idletime -= idletime_tab[idle_idx];
7577 		if (idletime < idletime_tab[idle_idx]) {
7578 			if (idle_idx != 0) {
7579 				idletime = idletime_tab[idle_idx] -
7580 				idletime_tab[idle_idx - 1];
7581 				idle_idx--;
7582 			} else {
7583 				break;
7584 			}
7585 		}
7586 	}
7587 
7588 	return (removed);
7589 }
7590