xref: /titanic_44/usr/src/uts/common/inet/ip/spd.c (revision 25351652d920ae27c5a56c199da581033ce763f6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"@(#)spd.c	1.61	08/07/15 SMI"
27 
28 /*
29  * IPsec Security Policy Database.
30  *
31  * This module maintains the SPD and provides routines used by ip and ip6
32  * to apply IPsec policy to inbound and outbound datagrams.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/stropts.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strsubr.h>
40 #include <sys/strlog.h>
41 #include <sys/cmn_err.h>
42 #include <sys/zone.h>
43 
44 #include <sys/systm.h>
45 #include <sys/param.h>
46 #include <sys/kmem.h>
47 #include <sys/ddi.h>
48 
49 #include <sys/crypto/api.h>
50 
51 #include <inet/common.h>
52 #include <inet/mi.h>
53 
54 #include <netinet/ip6.h>
55 #include <netinet/icmp6.h>
56 #include <netinet/udp.h>
57 
58 #include <inet/ip.h>
59 #include <inet/ip6.h>
60 
61 #include <net/pfkeyv2.h>
62 #include <net/pfpolicy.h>
63 #include <inet/ipsec_info.h>
64 #include <inet/sadb.h>
65 #include <inet/ipsec_impl.h>
66 
67 #include <inet/ip_impl.h>	/* For IP_MOD_ID */
68 
69 #include <inet/ipsecah.h>
70 #include <inet/ipsecesp.h>
71 #include <inet/ipdrop.h>
72 #include <inet/ipclassifier.h>
73 #include <inet/tun.h>
74 
75 static void ipsec_update_present_flags(ipsec_stack_t *);
76 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *,
77     netstack_t *);
78 static void ipsec_out_free(void *);
79 static void ipsec_in_free(void *);
80 static mblk_t *ipsec_attach_global_policy(mblk_t **, conn_t *,
81     ipsec_selector_t *, netstack_t *);
82 static mblk_t *ipsec_apply_global_policy(mblk_t *, conn_t *,
83     ipsec_selector_t *, netstack_t *);
84 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
85     ipha_t *, ip6_t *, uint64_t, netstack_t *);
86 static void ipsec_in_release_refs(ipsec_in_t *);
87 static void ipsec_out_release_refs(ipsec_out_t *);
88 static void ipsec_action_free_table(ipsec_action_t *);
89 static void ipsec_action_reclaim(void *);
90 static void ipsec_action_reclaim_stack(netstack_t *);
91 static void ipsid_init(netstack_t *);
92 static void ipsid_fini(netstack_t *);
93 
94 /* sel_flags values for ipsec_init_inbound_sel(). */
95 #define	SEL_NONE	0x0000
96 #define	SEL_PORT_POLICY	0x0001
97 #define	SEL_IS_ICMP	0x0002
98 #define	SEL_TUNNEL_MODE	0x0004
99 
100 /* Return values for ipsec_init_inbound_sel(). */
101 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
102     selret_t;
103 
104 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
105     ipha_t *, ip6_t *, uint8_t);
106 
107 static boolean_t ipsec_check_ipsecin_action(struct ipsec_in_s *, mblk_t *,
108     struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
109     kstat_named_t **);
110 static void ipsec_unregister_prov_update(void);
111 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *);
112 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
113 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
114 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
115 static void ipsec_kstat_destroy(ipsec_stack_t *);
116 static int ipsec_free_tables(ipsec_stack_t *);
117 static int tunnel_compare(const void *, const void *);
118 static void ipsec_freemsg_chain(mblk_t *);
119 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *,
120     struct kstat_named *, ipdropper_t *);
121 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
122 static void ipsec_kstat_destroy(ipsec_stack_t *);
123 static int ipsec_free_tables(ipsec_stack_t *);
124 static int tunnel_compare(const void *, const void *);
125 static void ipsec_freemsg_chain(mblk_t *);
126 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *,
127     struct kstat_named *, ipdropper_t *);
128 
129 /*
130  * Selector hash table is statically sized at module load time.
131  * we default to 251 buckets, which is the largest prime number under 255
132  */
133 
134 #define	IPSEC_SPDHASH_DEFAULT 251
135 
136 /* SPD hash-size tunable per tunnel. */
137 #define	TUN_SPDHASH_DEFAULT 5
138 
139 uint32_t ipsec_spd_hashsize;
140 uint32_t tun_spd_hashsize;
141 
142 #define	IPSEC_SEL_NOHASH ((uint32_t)(~0))
143 
144 /*
145  * Handle global across all stack instances
146  */
147 static crypto_notify_handle_t prov_update_handle = NULL;
148 
149 static kmem_cache_t *ipsec_action_cache;
150 static kmem_cache_t *ipsec_sel_cache;
151 static kmem_cache_t *ipsec_pol_cache;
152 static kmem_cache_t *ipsec_info_cache;
153 
154 /* Frag cache prototypes */
155 static void ipsec_fragcache_clean(ipsec_fragcache_t *);
156 static ipsec_fragcache_entry_t *fragcache_delentry(int,
157     ipsec_fragcache_entry_t *, ipsec_fragcache_t *);
158 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
159 void ipsec_fragcache_uninit(ipsec_fragcache_t *);
160 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *, int,
161     ipsec_stack_t *);
162 
163 int ipsec_hdr_pullup_needed = 0;
164 int ipsec_weird_null_inbound_policy = 0;
165 
166 #define	ALGBITS_ROUND_DOWN(x, align)	(((x)/(align))*(align))
167 #define	ALGBITS_ROUND_UP(x, align)	ALGBITS_ROUND_DOWN((x)+(align)-1, align)
168 
169 /*
170  * Inbound traffic should have matching identities for both SA's.
171  */
172 
173 #define	SA_IDS_MATCH(sa1, sa2) 						\
174 	(((sa1) == NULL) || ((sa2) == NULL) ||				\
175 	(((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) &&		\
176 	    (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
177 
178 /*
179  * IPv4 Fragments
180  */
181 #define	IS_V4_FRAGMENT(ipha_fragment_offset_and_flags)			\
182 	(((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) ||	\
183 	((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0))
184 
185 /*
186  * IPv6 Fragments
187  */
188 #define	IS_V6_FRAGMENT(ipp)	(ipp.ipp_fields & IPPF_FRAGHDR)
189 
190 /*
191  * Policy failure messages.
192  */
193 static char *ipsec_policy_failure_msgs[] = {
194 
195 	/* IPSEC_POLICY_NOT_NEEDED */
196 	"%s: Dropping the datagram because the incoming packet "
197 	"is %s, but the recipient expects clear; Source %s, "
198 	"Destination %s.\n",
199 
200 	/* IPSEC_POLICY_MISMATCH */
201 	"%s: Policy Failure for the incoming packet (%s); Source %s, "
202 	"Destination %s.\n",
203 
204 	/* IPSEC_POLICY_AUTH_NOT_NEEDED	*/
205 	"%s: Authentication present while not expected in the "
206 	"incoming %s packet; Source %s, Destination %s.\n",
207 
208 	/* IPSEC_POLICY_ENCR_NOT_NEEDED */
209 	"%s: Encryption present while not expected in the "
210 	"incoming %s packet; Source %s, Destination %s.\n",
211 
212 	/* IPSEC_POLICY_SE_NOT_NEEDED */
213 	"%s: Self-Encapsulation present while not expected in the "
214 	"incoming %s packet; Source %s, Destination %s.\n",
215 };
216 
217 /*
218  * General overviews:
219  *
220  * Locking:
221  *
222  *	All of the system policy structures are protected by a single
223  *	rwlock.  These structures are threaded in a
224  *	fairly complex fashion and are not expected to change on a
225  *	regular basis, so this should not cause scaling/contention
226  *	problems.  As a result, policy checks should (hopefully) be MT-hot.
227  *
228  * Allocation policy:
229  *
230  *	We use custom kmem cache types for the various
231  *	bits & pieces of the policy data structures.  All allocations
232  *	use KM_NOSLEEP instead of KM_SLEEP for policy allocation.  The
233  *	policy table is of potentially unbounded size, so we don't
234  *	want to provide a way to hog all system memory with policy
235  *	entries..
236  */
237 
238 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
239 
240 /* Free all messages in an mblk chain */
241 static void
242 ipsec_freemsg_chain(mblk_t *mp)
243 {
244 	mblk_t *mpnext;
245 	while (mp != NULL) {
246 		ASSERT(mp->b_prev == NULL);
247 		mpnext = mp->b_next;
248 		mp->b_next = NULL;
249 		freemsg(mp);	/* Always works, even if NULL */
250 		mp = mpnext;
251 	}
252 }
253 
254 /* ip_drop all messages in an mblk chain */
255 static void
256 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *arriving,
257     ire_t *outbound_ire, struct kstat_named *counter, ipdropper_t *who_called)
258 {
259 	mblk_t *mpnext;
260 	while (mp != NULL) {
261 		ASSERT(mp->b_prev == NULL);
262 		mpnext = mp->b_next;
263 		mp->b_next = NULL;
264 		ip_drop_packet(mp, inbound, arriving, outbound_ire, counter,
265 		    who_called);
266 		mp = mpnext;
267 	}
268 }
269 
270 /*
271  * AVL tree comparison function.
272  * the in-kernel avl assumes unique keys for all objects.
273  * Since sometimes policy will duplicate rules, we may insert
274  * multiple rules with the same rule id, so we need a tie-breaker.
275  */
276 static int
277 ipsec_policy_cmpbyid(const void *a, const void *b)
278 {
279 	const ipsec_policy_t *ipa, *ipb;
280 	uint64_t idxa, idxb;
281 
282 	ipa = (const ipsec_policy_t *)a;
283 	ipb = (const ipsec_policy_t *)b;
284 	idxa = ipa->ipsp_index;
285 	idxb = ipb->ipsp_index;
286 
287 	if (idxa < idxb)
288 		return (-1);
289 	if (idxa > idxb)
290 		return (1);
291 	/*
292 	 * Tie-breaker #1: All installed policy rules have a non-NULL
293 	 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
294 	 * actually in-tree but rather a template node being used in
295 	 * an avl_find query; see ipsec_policy_delete().  This gives us
296 	 * a placeholder in the ordering just before the the first entry with
297 	 * a key >= the one we're looking for, so we can walk forward from
298 	 * that point to get the remaining entries with the same id.
299 	 */
300 	if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
301 		return (-1);
302 	if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
303 		return (1);
304 	/*
305 	 * At most one of the arguments to the comparison should have a
306 	 * NULL selector pointer; if not, the tree is broken.
307 	 */
308 	ASSERT(ipa->ipsp_sel != NULL);
309 	ASSERT(ipb->ipsp_sel != NULL);
310 	/*
311 	 * Tie-breaker #2: use the virtual address of the policy node
312 	 * to arbitrarily break ties.  Since we use the new tree node in
313 	 * the avl_find() in ipsec_insert_always, the new node will be
314 	 * inserted into the tree in the right place in the sequence.
315 	 */
316 	if (ipa < ipb)
317 		return (-1);
318 	if (ipa > ipb)
319 		return (1);
320 	return (0);
321 }
322 
323 /*
324  * Free what ipsec_alloc_table allocated.
325  */
326 void
327 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
328 {
329 	int dir;
330 	int i;
331 
332 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
333 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
334 
335 		if (ipr->ipr_hash == NULL)
336 			continue;
337 
338 		for (i = 0; i < ipr->ipr_nchains; i++) {
339 			ASSERT(ipr->ipr_hash[i].hash_head == NULL);
340 		}
341 		kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
342 		    sizeof (ipsec_policy_hash_t));
343 		ipr->ipr_hash = NULL;
344 	}
345 }
346 
347 void
348 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
349 {
350 	int dir;
351 
352 	avl_destroy(&iph->iph_rulebyid);
353 	rw_destroy(&iph->iph_lock);
354 
355 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
356 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
357 		int chain;
358 
359 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
360 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
361 
362 	}
363 	ipsec_polhead_free_table(iph);
364 }
365 
366 /*
367  * Free the IPsec stack instance.
368  */
369 /* ARGSUSED */
370 static void
371 ipsec_stack_fini(netstackid_t stackid, void *arg)
372 {
373 	ipsec_stack_t	*ipss = (ipsec_stack_t *)arg;
374 	void *cookie;
375 	ipsec_tun_pol_t *node;
376 	netstack_t	*ns = ipss->ipsec_netstack;
377 	int		i;
378 	ipsec_algtype_t	algtype;
379 
380 	ipsec_loader_destroy(ipss);
381 
382 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
383 	/*
384 	 * It's possible we can just ASSERT() the tree is empty.  After all,
385 	 * we aren't called until IP is ready to unload (and presumably all
386 	 * tunnels have been unplumbed).  But we'll play it safe for now, the
387 	 * loop will just exit immediately if it's empty.
388 	 */
389 	cookie = NULL;
390 	while ((node = (ipsec_tun_pol_t *)
391 	    avl_destroy_nodes(&ipss->ipsec_tunnel_policies,
392 	    &cookie)) != NULL) {
393 		ITP_REFRELE(node, ns);
394 	}
395 	avl_destroy(&ipss->ipsec_tunnel_policies);
396 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
397 	rw_destroy(&ipss->ipsec_tunnel_policy_lock);
398 
399 	ipsec_config_flush(ns);
400 
401 	ipsec_kstat_destroy(ipss);
402 
403 	ip_drop_unregister(&ipss->ipsec_dropper);
404 
405 	ip_drop_unregister(&ipss->ipsec_spd_dropper);
406 	ip_drop_destroy(ipss);
407 	/*
408 	 * Globals start with ref == 1 to prevent IPPH_REFRELE() from
409 	 * attempting to free them, hence they should have 1 now.
410 	 */
411 	ipsec_polhead_destroy(&ipss->ipsec_system_policy);
412 	ASSERT(ipss->ipsec_system_policy.iph_refs == 1);
413 	ipsec_polhead_destroy(&ipss->ipsec_inactive_policy);
414 	ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1);
415 
416 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
417 		ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head);
418 		ipss->ipsec_action_hash[i].hash_head = NULL;
419 		mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock));
420 	}
421 
422 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
423 		ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
424 		mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock));
425 	}
426 
427 	mutex_enter(&ipss->ipsec_alg_lock);
428 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) {
429 		int nalgs = ipss->ipsec_nalgs[algtype];
430 
431 		for (i = 0; i < nalgs; i++) {
432 			if (ipss->ipsec_alglists[algtype][i] != NULL)
433 				ipsec_alg_unreg(algtype, i, ns);
434 		}
435 	}
436 	mutex_exit(&ipss->ipsec_alg_lock);
437 	mutex_destroy(&ipss->ipsec_alg_lock);
438 
439 	ipsid_gc(ns);
440 	ipsid_fini(ns);
441 
442 	(void) ipsec_free_tables(ipss);
443 	kmem_free(ipss, sizeof (*ipss));
444 }
445 
446 void
447 ipsec_policy_g_destroy(void)
448 {
449 	kmem_cache_destroy(ipsec_action_cache);
450 	kmem_cache_destroy(ipsec_sel_cache);
451 	kmem_cache_destroy(ipsec_pol_cache);
452 	kmem_cache_destroy(ipsec_info_cache);
453 
454 	ipsec_unregister_prov_update();
455 
456 	netstack_unregister(NS_IPSEC);
457 }
458 
459 
460 /*
461  * Free what ipsec_alloc_tables allocated.
462  * Called when table allocation fails to free the table.
463  */
464 static int
465 ipsec_free_tables(ipsec_stack_t *ipss)
466 {
467 	int i;
468 
469 	if (ipss->ipsec_sel_hash != NULL) {
470 		for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
471 			ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
472 		}
473 		kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize *
474 		    sizeof (*ipss->ipsec_sel_hash));
475 		ipss->ipsec_sel_hash = NULL;
476 		ipss->ipsec_spd_hashsize = 0;
477 	}
478 	ipsec_polhead_free_table(&ipss->ipsec_system_policy);
479 	ipsec_polhead_free_table(&ipss->ipsec_inactive_policy);
480 
481 	return (ENOMEM);
482 }
483 
484 /*
485  * Attempt to allocate the tables in a single policy head.
486  * Return nonzero on failure after cleaning up any work in progress.
487  */
488 int
489 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
490     boolean_t global_cleanup, netstack_t *ns)
491 {
492 	int dir;
493 
494 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
495 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
496 
497 		ipr->ipr_nchains = nchains;
498 		ipr->ipr_hash = kmem_zalloc(nchains *
499 		    sizeof (ipsec_policy_hash_t), kmflag);
500 		if (ipr->ipr_hash == NULL)
501 			return (global_cleanup ?
502 			    ipsec_free_tables(ns->netstack_ipsec) :
503 			    ENOMEM);
504 	}
505 	return (0);
506 }
507 
508 /*
509  * Attempt to allocate the various tables.  Return nonzero on failure
510  * after cleaning up any work in progress.
511  */
512 static int
513 ipsec_alloc_tables(int kmflag, netstack_t *ns)
514 {
515 	int error;
516 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
517 
518 	error = ipsec_alloc_table(&ipss->ipsec_system_policy,
519 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
520 	if (error != 0)
521 		return (error);
522 
523 	error = ipsec_alloc_table(&ipss->ipsec_inactive_policy,
524 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
525 	if (error != 0)
526 		return (error);
527 
528 	ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize *
529 	    sizeof (*ipss->ipsec_sel_hash), kmflag);
530 
531 	if (ipss->ipsec_sel_hash == NULL)
532 		return (ipsec_free_tables(ipss));
533 
534 	return (0);
535 }
536 
537 /*
538  * After table allocation, initialize a policy head.
539  */
540 void
541 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
542 {
543 	int dir, chain;
544 
545 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
546 	avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
547 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
548 
549 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
550 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
551 		ipr->ipr_nchains = nchains;
552 
553 		for (chain = 0; chain < nchains; chain++) {
554 			mutex_init(&(ipr->ipr_hash[chain].hash_lock),
555 			    NULL, MUTEX_DEFAULT, NULL);
556 		}
557 	}
558 }
559 
560 static boolean_t
561 ipsec_kstat_init(ipsec_stack_t *ipss)
562 {
563 	ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net",
564 	    KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t),
565 	    KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid);
566 
567 	if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL)
568 		return (B_FALSE);
569 
570 	ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data;
571 
572 #define	KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64)
573 	KI(esp_stat_in_requests);
574 	KI(esp_stat_in_discards);
575 	KI(esp_stat_lookup_failure);
576 	KI(ah_stat_in_requests);
577 	KI(ah_stat_in_discards);
578 	KI(ah_stat_lookup_failure);
579 	KI(sadb_acquire_maxpackets);
580 	KI(sadb_acquire_qhiwater);
581 #undef KI
582 
583 	kstat_install(ipss->ipsec_ksp);
584 	return (B_TRUE);
585 }
586 
587 static void
588 ipsec_kstat_destroy(ipsec_stack_t *ipss)
589 {
590 	kstat_delete_netstack(ipss->ipsec_ksp,
591 	    ipss->ipsec_netstack->netstack_stackid);
592 	ipss->ipsec_kstats = NULL;
593 
594 }
595 
596 /*
597  * Initialize the IPsec stack instance.
598  */
599 /* ARGSUSED */
600 static void *
601 ipsec_stack_init(netstackid_t stackid, netstack_t *ns)
602 {
603 	ipsec_stack_t	*ipss;
604 	int i;
605 
606 	ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP);
607 	ipss->ipsec_netstack = ns;
608 
609 	/*
610 	 * FIXME: netstack_ipsec is used by some of the routines we call
611 	 * below, but it isn't set until this routine returns.
612 	 * Either we introduce optional xxx_stack_alloc() functions
613 	 * that will be called by the netstack framework before xxx_stack_init,
614 	 * or we switch spd.c and sadb.c to operate on ipsec_stack_t
615 	 * (latter has some include file order issues for sadb.h, but makes
616 	 * sense if we merge some of the ipsec related stack_t's together.
617 	 */
618 	ns->netstack_ipsec = ipss;
619 
620 	/*
621 	 * Make two attempts to allocate policy hash tables; try it at
622 	 * the "preferred" size (may be set in /etc/system) first,
623 	 * then fall back to the default size.
624 	 */
625 	ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ?
626 	    IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize;
627 
628 	if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) {
629 		cmn_err(CE_WARN,
630 		    "Unable to allocate %d entry IPsec policy hash table",
631 		    ipss->ipsec_spd_hashsize);
632 		ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
633 		cmn_err(CE_WARN, "Falling back to %d entries",
634 		    ipss->ipsec_spd_hashsize);
635 		(void) ipsec_alloc_tables(KM_SLEEP, ns);
636 	}
637 
638 	/* Just set a default for tunnels. */
639 	ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ?
640 	    TUN_SPDHASH_DEFAULT : tun_spd_hashsize;
641 
642 	ipsid_init(ns);
643 	/*
644 	 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
645 	 * to free them.
646 	 */
647 	ipss->ipsec_system_policy.iph_refs = 1;
648 	ipss->ipsec_inactive_policy.iph_refs = 1;
649 	ipsec_polhead_init(&ipss->ipsec_system_policy,
650 	    ipss->ipsec_spd_hashsize);
651 	ipsec_polhead_init(&ipss->ipsec_inactive_policy,
652 	    ipss->ipsec_spd_hashsize);
653 	rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
654 	avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare,
655 	    sizeof (ipsec_tun_pol_t), 0);
656 
657 	ipss->ipsec_next_policy_index = 1;
658 
659 	rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
660 	rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
661 
662 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
663 		mutex_init(&(ipss->ipsec_action_hash[i].hash_lock),
664 		    NULL, MUTEX_DEFAULT, NULL);
665 
666 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++)
667 		mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock),
668 		    NULL, MUTEX_DEFAULT, NULL);
669 
670 	mutex_init(&ipss->ipsec_alg_lock, NULL, MUTEX_DEFAULT, NULL);
671 	for (i = 0; i < IPSEC_NALGTYPES; i++) {
672 		ipss->ipsec_nalgs[i] = 0;
673 	}
674 
675 	ip_drop_init(ipss);
676 	ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD");
677 
678 	/* Set function to dummy until tun is loaded */
679 	rw_init(&ipss->ipsec_itp_get_byaddr_rw_lock, NULL, RW_DEFAULT, NULL);
680 	rw_enter(&ipss->ipsec_itp_get_byaddr_rw_lock, RW_WRITER);
681 	ipss->ipsec_itp_get_byaddr = itp_get_byaddr_dummy;
682 	rw_exit(&ipss->ipsec_itp_get_byaddr_rw_lock);
683 
684 	/* IP's IPsec code calls the packet dropper */
685 	ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing");
686 
687 	(void) ipsec_kstat_init(ipss);
688 
689 	ipsec_loader_init(ipss);
690 	ipsec_loader_start(ipss);
691 
692 	return (ipss);
693 }
694 
695 /* Global across all stack instances */
696 void
697 ipsec_policy_g_init(void)
698 {
699 	ipsec_action_cache = kmem_cache_create("ipsec_actions",
700 	    sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
701 	    ipsec_action_reclaim, NULL, NULL, 0);
702 	ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
703 	    sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
704 	    NULL, NULL, NULL, 0);
705 	ipsec_pol_cache = kmem_cache_create("ipsec_policy",
706 	    sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
707 	    NULL, NULL, NULL, 0);
708 	ipsec_info_cache = kmem_cache_create("ipsec_info",
709 	    sizeof (ipsec_info_t), _POINTER_ALIGNMENT, NULL, NULL,
710 	    NULL, NULL, NULL, 0);
711 
712 	/*
713 	 * We want to be informed each time a stack is created or
714 	 * destroyed in the kernel, so we can maintain the
715 	 * set of ipsec_stack_t's.
716 	 */
717 	netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini);
718 }
719 
720 /*
721  * Sort algorithm lists.
722  *
723  * I may need to split this based on
724  * authentication/encryption, and I may wish to have an administrator
725  * configure this list.  Hold on to some NDD variables...
726  *
727  * XXX For now, sort on minimum key size (GAG!).  While minimum key size is
728  * not the ideal metric, it's the only quantifiable measure available.
729  * We need a better metric for sorting algorithms by preference.
730  */
731 static void
732 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
733 {
734 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
735 	ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid];
736 	uint8_t holder, swap;
737 	uint_t i;
738 	uint_t count = ipss->ipsec_nalgs[at];
739 	ASSERT(ai != NULL);
740 	ASSERT(algid == ai->alg_id);
741 
742 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
743 
744 	holder = algid;
745 
746 	for (i = 0; i < count - 1; i++) {
747 		ipsec_alginfo_t *alt;
748 
749 		alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]];
750 		/*
751 		 * If you want to give precedence to newly added algs,
752 		 * add the = in the > comparison.
753 		 */
754 		if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
755 			/* Swap sortlist[i] and holder. */
756 			swap = ipss->ipsec_sortlist[at][i];
757 			ipss->ipsec_sortlist[at][i] = holder;
758 			holder = swap;
759 			ai = alt;
760 		} /* Else just continue. */
761 	}
762 
763 	/* Store holder in last slot. */
764 	ipss->ipsec_sortlist[at][i] = holder;
765 }
766 
767 /*
768  * Remove an algorithm from a sorted algorithm list.
769  * This should be considerably easier, even with complex sorting.
770  */
771 static void
772 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
773 {
774 	boolean_t copyback = B_FALSE;
775 	int i;
776 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
777 	int newcount = ipss->ipsec_nalgs[at];
778 
779 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
780 
781 	for (i = 0; i <= newcount; i++) {
782 		if (copyback) {
783 			ipss->ipsec_sortlist[at][i-1] =
784 			    ipss->ipsec_sortlist[at][i];
785 		} else if (ipss->ipsec_sortlist[at][i] == algid) {
786 			copyback = B_TRUE;
787 		}
788 	}
789 }
790 
791 /*
792  * Add the specified algorithm to the algorithm tables.
793  * Must be called while holding the algorithm table writer lock.
794  */
795 void
796 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns)
797 {
798 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
799 
800 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
801 
802 	ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL);
803 	ipsec_alg_fix_min_max(alg, algtype, ns);
804 	ipss->ipsec_alglists[algtype][alg->alg_id] = alg;
805 
806 	ipss->ipsec_nalgs[algtype]++;
807 	alg_insert_sortlist(algtype, alg->alg_id, ns);
808 }
809 
810 /*
811  * Remove the specified algorithm from the algorithm tables.
812  * Must be called while holding the algorithm table writer lock.
813  */
814 void
815 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns)
816 {
817 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
818 
819 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
820 
821 	ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL);
822 	ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]);
823 	ipss->ipsec_alglists[algtype][algid] = NULL;
824 
825 	ipss->ipsec_nalgs[algtype]--;
826 	alg_remove_sortlist(algtype, algid, ns);
827 }
828 
829 /*
830  * Hooks for spdsock to get a grip on system policy.
831  */
832 
833 ipsec_policy_head_t *
834 ipsec_system_policy(netstack_t *ns)
835 {
836 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
837 	ipsec_policy_head_t *h = &ipss->ipsec_system_policy;
838 
839 	IPPH_REFHOLD(h);
840 	return (h);
841 }
842 
843 ipsec_policy_head_t *
844 ipsec_inactive_policy(netstack_t *ns)
845 {
846 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
847 	ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy;
848 
849 	IPPH_REFHOLD(h);
850 	return (h);
851 }
852 
853 /*
854  * Lock inactive policy, then active policy, then exchange policy root
855  * pointers.
856  */
857 void
858 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive,
859     netstack_t *ns)
860 {
861 	int af, dir;
862 	avl_tree_t r1, r2;
863 
864 	rw_enter(&inactive->iph_lock, RW_WRITER);
865 	rw_enter(&active->iph_lock, RW_WRITER);
866 
867 	r1 = active->iph_rulebyid;
868 	r2 = inactive->iph_rulebyid;
869 	active->iph_rulebyid = r2;
870 	inactive->iph_rulebyid = r1;
871 
872 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
873 		ipsec_policy_hash_t *h1, *h2;
874 
875 		h1 = active->iph_root[dir].ipr_hash;
876 		h2 = inactive->iph_root[dir].ipr_hash;
877 		active->iph_root[dir].ipr_hash = h2;
878 		inactive->iph_root[dir].ipr_hash = h1;
879 
880 		for (af = 0; af < IPSEC_NAF; af++) {
881 			ipsec_policy_t *t1, *t2;
882 
883 			t1 = active->iph_root[dir].ipr_nonhash[af];
884 			t2 = inactive->iph_root[dir].ipr_nonhash[af];
885 			active->iph_root[dir].ipr_nonhash[af] = t2;
886 			inactive->iph_root[dir].ipr_nonhash[af] = t1;
887 			if (t1 != NULL) {
888 				t1->ipsp_hash.hash_pp =
889 				    &(inactive->iph_root[dir].ipr_nonhash[af]);
890 			}
891 			if (t2 != NULL) {
892 				t2->ipsp_hash.hash_pp =
893 				    &(active->iph_root[dir].ipr_nonhash[af]);
894 			}
895 
896 		}
897 	}
898 	active->iph_gen++;
899 	inactive->iph_gen++;
900 	ipsec_update_present_flags(ns->netstack_ipsec);
901 	rw_exit(&active->iph_lock);
902 	rw_exit(&inactive->iph_lock);
903 }
904 
905 /*
906  * Swap global policy primary/secondary.
907  */
908 void
909 ipsec_swap_global_policy(netstack_t *ns)
910 {
911 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
912 
913 	ipsec_swap_policy(&ipss->ipsec_system_policy,
914 	    &ipss->ipsec_inactive_policy, ns);
915 }
916 
917 /*
918  * Clone one policy rule..
919  */
920 static ipsec_policy_t *
921 ipsec_copy_policy(const ipsec_policy_t *src)
922 {
923 	ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
924 
925 	if (dst == NULL)
926 		return (NULL);
927 
928 	/*
929 	 * Adjust refcounts of cloned state.
930 	 */
931 	IPACT_REFHOLD(src->ipsp_act);
932 	src->ipsp_sel->ipsl_refs++;
933 
934 	HASH_NULL(dst, ipsp_hash);
935 	dst->ipsp_refs = 1;
936 	dst->ipsp_sel = src->ipsp_sel;
937 	dst->ipsp_act = src->ipsp_act;
938 	dst->ipsp_prio = src->ipsp_prio;
939 	dst->ipsp_index = src->ipsp_index;
940 
941 	return (dst);
942 }
943 
944 void
945 ipsec_insert_always(avl_tree_t *tree, void *new_node)
946 {
947 	void *node;
948 	avl_index_t where;
949 
950 	node = avl_find(tree, new_node, &where);
951 	ASSERT(node == NULL);
952 	avl_insert(tree, new_node, where);
953 }
954 
955 
956 static int
957 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
958     ipsec_policy_t **dstp)
959 {
960 	for (; src != NULL; src = src->ipsp_hash.hash_next) {
961 		ipsec_policy_t *dst = ipsec_copy_policy(src);
962 		if (dst == NULL)
963 			return (ENOMEM);
964 
965 		HASHLIST_INSERT(dst, ipsp_hash, *dstp);
966 		ipsec_insert_always(&dph->iph_rulebyid, dst);
967 	}
968 	return (0);
969 }
970 
971 
972 
973 /*
974  * Make one policy head look exactly like another.
975  *
976  * As with ipsec_swap_policy, we lock the destination policy head first, then
977  * the source policy head. Note that we only need to read-lock the source
978  * policy head as we are not changing it.
979  */
980 int
981 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph,
982     netstack_t *ns)
983 {
984 	int af, dir, chain, nchains;
985 
986 	rw_enter(&dph->iph_lock, RW_WRITER);
987 
988 	ipsec_polhead_flush(dph, ns);
989 
990 	rw_enter(&sph->iph_lock, RW_READER);
991 
992 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
993 		ipsec_policy_root_t *dpr = &dph->iph_root[dir];
994 		ipsec_policy_root_t *spr = &sph->iph_root[dir];
995 		nchains = dpr->ipr_nchains;
996 
997 		ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
998 
999 		for (af = 0; af < IPSEC_NAF; af++) {
1000 			if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
1001 			    &dpr->ipr_nonhash[af]))
1002 				goto abort_copy;
1003 		}
1004 
1005 		for (chain = 0; chain < nchains; chain++) {
1006 			if (ipsec_copy_chain(dph,
1007 			    spr->ipr_hash[chain].hash_head,
1008 			    &dpr->ipr_hash[chain].hash_head))
1009 				goto abort_copy;
1010 		}
1011 	}
1012 
1013 	dph->iph_gen++;
1014 
1015 	rw_exit(&sph->iph_lock);
1016 	rw_exit(&dph->iph_lock);
1017 	return (0);
1018 
1019 abort_copy:
1020 	ipsec_polhead_flush(dph, ns);
1021 	rw_exit(&sph->iph_lock);
1022 	rw_exit(&dph->iph_lock);
1023 	return (ENOMEM);
1024 }
1025 
1026 /*
1027  * Clone currently active policy to the inactive policy list.
1028  */
1029 int
1030 ipsec_clone_system_policy(netstack_t *ns)
1031 {
1032 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1033 
1034 	return (ipsec_copy_polhead(&ipss->ipsec_system_policy,
1035 	    &ipss->ipsec_inactive_policy, ns));
1036 }
1037 
1038 /*
1039  * Generic "do we have IPvN policy" answer.
1040  */
1041 boolean_t
1042 iph_ipvN(ipsec_policy_head_t *iph, boolean_t v6)
1043 {
1044 	int i, hval;
1045 	uint32_t valbit;
1046 	ipsec_policy_root_t *ipr;
1047 	ipsec_policy_t *ipp;
1048 
1049 	if (v6) {
1050 		valbit = IPSL_IPV6;
1051 		hval = IPSEC_AF_V6;
1052 	} else {
1053 		valbit = IPSL_IPV4;
1054 		hval = IPSEC_AF_V4;
1055 	}
1056 
1057 	ASSERT(RW_LOCK_HELD(&iph->iph_lock));
1058 	for (ipr = iph->iph_root; ipr < &(iph->iph_root[IPSEC_NTYPES]); ipr++) {
1059 		if (ipr->ipr_nonhash[hval] != NULL)
1060 			return (B_TRUE);
1061 		for (i = 0; i < ipr->ipr_nchains; i++) {
1062 			for (ipp = ipr->ipr_hash[i].hash_head; ipp != NULL;
1063 			    ipp = ipp->ipsp_hash.hash_next) {
1064 				if (ipp->ipsp_sel->ipsl_key.ipsl_valid & valbit)
1065 					return (B_TRUE);
1066 			}
1067 		}
1068 	}
1069 
1070 	return (B_FALSE);
1071 }
1072 
1073 /*
1074  * Extract the string from ipsec_policy_failure_msgs[type] and
1075  * log it.
1076  *
1077  */
1078 void
1079 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
1080     boolean_t secure, netstack_t *ns)
1081 {
1082 	char	sbuf[INET6_ADDRSTRLEN];
1083 	char	dbuf[INET6_ADDRSTRLEN];
1084 	char	*s;
1085 	char	*d;
1086 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1087 
1088 	ASSERT((ipha == NULL && ip6h != NULL) ||
1089 	    (ip6h == NULL && ipha != NULL));
1090 
1091 	if (ipha != NULL) {
1092 		s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
1093 		d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
1094 	} else {
1095 		s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
1096 		d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
1097 
1098 	}
1099 
1100 	/* Always bump the policy failure counter. */
1101 	ipss->ipsec_policy_failure_count[type]++;
1102 
1103 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1104 	    ipsec_policy_failure_msgs[type], func_name,
1105 	    (secure ? "secure" : "not secure"), s, d);
1106 }
1107 
1108 /*
1109  * Rate-limiting front-end to strlog() for AH and ESP.	Uses the ndd variables
1110  * in /dev/ip and the same rate-limiting clock so that there's a single
1111  * knob to turn to throttle the rate of messages.
1112  */
1113 void
1114 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
1115     char *fmt, ...)
1116 {
1117 	va_list adx;
1118 	hrtime_t current = gethrtime();
1119 	ip_stack_t	*ipst = ns->netstack_ip;
1120 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1121 
1122 	sl |= SL_CONSOLE;
1123 	/*
1124 	 * Throttle logging to stop syslog from being swamped. If variable
1125 	 * 'ipsec_policy_log_interval' is zero, don't log any messages at
1126 	 * all, otherwise log only one message every 'ipsec_policy_log_interval'
1127 	 * msec. Convert interval (in msec) to hrtime (in nsec).
1128 	 */
1129 
1130 	if (ipst->ips_ipsec_policy_log_interval) {
1131 		if (ipss->ipsec_policy_failure_last +
1132 		    ((hrtime_t)ipst->ips_ipsec_policy_log_interval *
1133 		    (hrtime_t)1000000) <= current) {
1134 			va_start(adx, fmt);
1135 			(void) vstrlog(mid, sid, level, sl, fmt, adx);
1136 			va_end(adx);
1137 			ipss->ipsec_policy_failure_last = current;
1138 		}
1139 	}
1140 }
1141 
1142 void
1143 ipsec_config_flush(netstack_t *ns)
1144 {
1145 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1146 
1147 	rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER);
1148 	ipsec_polhead_flush(&ipss->ipsec_system_policy, ns);
1149 	ipss->ipsec_next_policy_index = 1;
1150 	rw_exit(&ipss->ipsec_system_policy.iph_lock);
1151 	ipsec_action_reclaim_stack(ns);
1152 }
1153 
1154 /*
1155  * Clip a policy's min/max keybits vs. the capabilities of the
1156  * algorithm.
1157  */
1158 static void
1159 act_alg_adjust(uint_t algtype, uint_t algid,
1160     uint16_t *minbits, uint16_t *maxbits, netstack_t *ns)
1161 {
1162 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1163 	ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid];
1164 
1165 	if (algp != NULL) {
1166 		/*
1167 		 * If passed-in minbits is zero, we assume the caller trusts
1168 		 * us with setting the minimum key size.  We pick the
1169 		 * algorithms DEFAULT key size for the minimum in this case.
1170 		 */
1171 		if (*minbits == 0) {
1172 			*minbits = algp->alg_default_bits;
1173 			ASSERT(*minbits >= algp->alg_minbits);
1174 		} else {
1175 			*minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1176 			    algp->alg_minbits);
1177 		}
1178 		if (*maxbits == 0)
1179 			*maxbits = algp->alg_maxbits;
1180 		else
1181 			*maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1182 			    algp->alg_maxbits);
1183 		ASSERT(*minbits <= *maxbits);
1184 	} else {
1185 		*minbits = 0;
1186 		*maxbits = 0;
1187 	}
1188 }
1189 
1190 /*
1191  * Check an action's requested algorithms against the algorithms currently
1192  * loaded in the system.
1193  */
1194 boolean_t
1195 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns)
1196 {
1197 	ipsec_prot_t *ipp;
1198 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1199 
1200 	ipp = &act->ipa_apply;
1201 
1202 	if (ipp->ipp_use_ah &&
1203 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1204 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1205 		return (B_FALSE);
1206 	}
1207 	if (ipp->ipp_use_espa &&
1208 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] ==
1209 	    NULL) {
1210 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1211 		return (B_FALSE);
1212 	}
1213 	if (ipp->ipp_use_esp &&
1214 	    ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1215 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1216 		return (B_FALSE);
1217 	}
1218 
1219 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1220 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1221 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1222 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1223 	act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1224 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1225 
1226 	if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1227 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1228 		return (B_FALSE);
1229 	}
1230 	if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1231 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1232 		return (B_FALSE);
1233 	}
1234 	if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1235 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1236 		return (B_FALSE);
1237 	}
1238 	/* TODO: sanity check lifetimes */
1239 	return (B_TRUE);
1240 }
1241 
1242 /*
1243  * Set up a single action during wildcard expansion..
1244  */
1245 static void
1246 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1247     uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns)
1248 {
1249 	ipsec_prot_t *ipp;
1250 
1251 	*outact = *act;
1252 	ipp = &outact->ipa_apply;
1253 	ipp->ipp_auth_alg = (uint8_t)auth_alg;
1254 	ipp->ipp_encr_alg = (uint8_t)encr_alg;
1255 	ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1256 
1257 	act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1258 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1259 	act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1260 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1261 	act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1262 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1263 }
1264 
1265 /*
1266  * combinatoric expansion time: expand a wildcarded action into an
1267  * array of wildcarded actions; we return the exploded action list,
1268  * and return a count in *nact (output only).
1269  */
1270 static ipsec_act_t *
1271 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns)
1272 {
1273 	boolean_t use_ah, use_esp, use_espa;
1274 	boolean_t wild_auth, wild_encr, wild_eauth;
1275 	uint_t	auth_alg, auth_idx, auth_min, auth_max;
1276 	uint_t	eauth_alg, eauth_idx, eauth_min, eauth_max;
1277 	uint_t  encr_alg, encr_idx, encr_min, encr_max;
1278 	uint_t	action_count, ai;
1279 	ipsec_act_t *outact;
1280 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1281 
1282 	if (act->ipa_type != IPSEC_ACT_APPLY) {
1283 		outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1284 		*nact = 1;
1285 		if (outact != NULL)
1286 			bcopy(act, outact, sizeof (*act));
1287 		return (outact);
1288 	}
1289 	/*
1290 	 * compute the combinatoric explosion..
1291 	 *
1292 	 * we assume a request for encr if esp_req is PREF_REQUIRED
1293 	 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1294 	 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1295 	 */
1296 
1297 	use_ah = act->ipa_apply.ipp_use_ah;
1298 	use_esp = act->ipa_apply.ipp_use_esp;
1299 	use_espa = act->ipa_apply.ipp_use_espa;
1300 	auth_alg = act->ipa_apply.ipp_auth_alg;
1301 	eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1302 	encr_alg = act->ipa_apply.ipp_encr_alg;
1303 
1304 	wild_auth = use_ah && (auth_alg == 0);
1305 	wild_eauth = use_espa && (eauth_alg == 0);
1306 	wild_encr = use_esp && (encr_alg == 0);
1307 
1308 	action_count = 1;
1309 	auth_min = auth_max = auth_alg;
1310 	eauth_min = eauth_max = eauth_alg;
1311 	encr_min = encr_max = encr_alg;
1312 
1313 	/*
1314 	 * set up for explosion.. for each dimension, expand output
1315 	 * size by the explosion factor.
1316 	 *
1317 	 * Don't include the "any" algorithms, if defined, as no
1318 	 * kernel policies should be set for these algorithms.
1319 	 */
1320 
1321 #define	SET_EXP_MINMAX(type, wild, alg, min, max, ipss)		\
1322 	if (wild) {						\
1323 		int nalgs = ipss->ipsec_nalgs[type];		\
1324 		if (ipss->ipsec_alglists[type][alg] != NULL)	\
1325 			nalgs--;				\
1326 		action_count *= nalgs;				\
1327 		min = 0;					\
1328 		max = ipss->ipsec_nalgs[type] - 1;		\
1329 	}
1330 
1331 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1332 	    auth_min, auth_max, ipss);
1333 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1334 	    eauth_min, eauth_max, ipss);
1335 	SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1336 	    encr_min, encr_max, ipss);
1337 
1338 #undef	SET_EXP_MINMAX
1339 
1340 	/*
1341 	 * ok, allocate the whole mess..
1342 	 */
1343 
1344 	outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1345 	if (outact == NULL)
1346 		return (NULL);
1347 
1348 	/*
1349 	 * Now compute all combinations.  Note that non-wildcarded
1350 	 * dimensions just get a single value from auth_min, while
1351 	 * wildcarded dimensions indirect through the sortlist.
1352 	 *
1353 	 * We do encryption outermost since, at this time, there's
1354 	 * greater difference in security and performance between
1355 	 * encryption algorithms vs. authentication algorithms.
1356 	 */
1357 
1358 	ai = 0;
1359 
1360 #define	WHICH_ALG(type, wild, idx, ipss) \
1361 	((wild)?(ipss->ipsec_sortlist[type][idx]):(idx))
1362 
1363 	for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1364 		encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss);
1365 		if (wild_encr && encr_alg == SADB_EALG_NONE)
1366 			continue;
1367 		for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1368 			auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1369 			    auth_idx, ipss);
1370 			if (wild_auth && auth_alg == SADB_AALG_NONE)
1371 				continue;
1372 			for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1373 			    eauth_idx++) {
1374 				eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1375 				    wild_eauth, eauth_idx, ipss);
1376 				if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1377 					continue;
1378 
1379 				ipsec_setup_act(&outact[ai], act,
1380 				    auth_alg, encr_alg, eauth_alg, ns);
1381 				ai++;
1382 			}
1383 		}
1384 	}
1385 
1386 #undef WHICH_ALG
1387 
1388 	ASSERT(ai == action_count);
1389 	*nact = action_count;
1390 	return (outact);
1391 }
1392 
1393 /*
1394  * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1395  */
1396 static void
1397 ipsec_prot_from_req(ipsec_req_t *req, ipsec_prot_t *ipp)
1398 {
1399 	bzero(ipp, sizeof (*ipp));
1400 	/*
1401 	 * ipp_use_* are bitfields.  Look at "!!" in the following as a
1402 	 * "boolean canonicalization" operator.
1403 	 */
1404 	ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1405 	ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1406 	ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg);
1407 	ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1408 	ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1409 	    IPSEC_PREF_UNIQUE);
1410 	ipp->ipp_encr_alg = req->ipsr_esp_alg;
1411 	/*
1412 	 * SADB_AALG_ANY is a placeholder to distinguish "any" from
1413 	 * "none" above.  If auth is required, as determined above,
1414 	 * SADB_AALG_ANY becomes 0, which is the representation
1415 	 * of "any" and "none" in PF_KEY v2.
1416 	 */
1417 	ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ?
1418 	    req->ipsr_auth_alg : 0;
1419 	ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ?
1420 	    req->ipsr_esp_auth_alg : 0;
1421 }
1422 
1423 /*
1424  * Extract a new-style action from a request.
1425  */
1426 void
1427 ipsec_actvec_from_req(ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp,
1428     netstack_t *ns)
1429 {
1430 	struct ipsec_act act;
1431 
1432 	bzero(&act, sizeof (act));
1433 	if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1434 	    (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1435 		act.ipa_type = IPSEC_ACT_BYPASS;
1436 	} else {
1437 		act.ipa_type = IPSEC_ACT_APPLY;
1438 		ipsec_prot_from_req(req, &act.ipa_apply);
1439 	}
1440 	*actp = ipsec_act_wildcard_expand(&act, nactp, ns);
1441 }
1442 
1443 /*
1444  * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1445  * We assume caller has already zero'ed *req for us.
1446  */
1447 static int
1448 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1449 {
1450 	req->ipsr_esp_alg = ipp->ipp_encr_alg;
1451 	req->ipsr_auth_alg = ipp->ipp_auth_alg;
1452 	req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1453 
1454 	if (ipp->ipp_use_unique) {
1455 		req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1456 		req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1457 	}
1458 	if (ipp->ipp_use_se)
1459 		req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1460 	if (ipp->ipp_use_ah)
1461 		req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1462 	if (ipp->ipp_use_esp)
1463 		req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1464 	return (sizeof (*req));
1465 }
1466 
1467 /*
1468  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1469  * We assume caller has already zero'ed *req for us.
1470  */
1471 static int
1472 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1473 {
1474 	switch (ap->ipa_act.ipa_type) {
1475 	case IPSEC_ACT_BYPASS:
1476 		req->ipsr_ah_req = IPSEC_PREF_NEVER;
1477 		req->ipsr_esp_req = IPSEC_PREF_NEVER;
1478 		return (sizeof (*req));
1479 	case IPSEC_ACT_APPLY:
1480 		return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1481 	}
1482 	return (sizeof (*req));
1483 }
1484 
1485 /*
1486  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1487  * We assume caller has already zero'ed *req for us.
1488  */
1489 int
1490 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1491 {
1492 	ipsec_policy_t *p;
1493 
1494 	/*
1495 	 * FULL-PERSOCK: consult hash table, too?
1496 	 */
1497 	for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1498 	    p != NULL;
1499 	    p = p->ipsp_hash.hash_next) {
1500 		if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1501 			return (ipsec_req_from_act(p->ipsp_act, req));
1502 	}
1503 	return (sizeof (*req));
1504 }
1505 
1506 /*
1507  * Based on per-socket or latched policy, convert to an appropriate
1508  * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1509  * be tail-called from ip.
1510  */
1511 int
1512 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1513 {
1514 	ipsec_latch_t *ipl;
1515 	int rv = sizeof (ipsec_req_t);
1516 
1517 	bzero(req, sizeof (*req));
1518 
1519 	mutex_enter(&connp->conn_lock);
1520 	ipl = connp->conn_latch;
1521 
1522 	/*
1523 	 * Find appropriate policy.  First choice is latched action;
1524 	 * failing that, see latched policy; failing that,
1525 	 * look at configured policy.
1526 	 */
1527 	if (ipl != NULL) {
1528 		if (ipl->ipl_in_action != NULL) {
1529 			rv = ipsec_req_from_act(ipl->ipl_in_action, req);
1530 			goto done;
1531 		}
1532 		if (ipl->ipl_in_policy != NULL) {
1533 			rv = ipsec_req_from_act(ipl->ipl_in_policy->ipsp_act,
1534 			    req);
1535 			goto done;
1536 		}
1537 	}
1538 	if (connp->conn_policy != NULL)
1539 		rv = ipsec_req_from_head(connp->conn_policy, req, af);
1540 done:
1541 	mutex_exit(&connp->conn_lock);
1542 	return (rv);
1543 }
1544 
1545 void
1546 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1547 {
1548 	kmem_free(act, nact * sizeof (*act));
1549 }
1550 
1551 /*
1552  * When outbound policy is not cached, look it up the hard way and attach
1553  * an ipsec_out_t to the packet..
1554  */
1555 static mblk_t *
1556 ipsec_attach_global_policy(mblk_t **mp, conn_t *connp, ipsec_selector_t *sel,
1557     netstack_t *ns)
1558 {
1559 	ipsec_policy_t *p;
1560 
1561 	p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel, ns);
1562 
1563 	if (p == NULL)
1564 		return (NULL);
1565 	return (ipsec_attach_ipsec_out(mp, connp, p, sel->ips_protocol, ns));
1566 }
1567 
1568 /*
1569  * We have an ipsec_out already, but don't have cached policy; fill it in
1570  * with the right actions.
1571  */
1572 static mblk_t *
1573 ipsec_apply_global_policy(mblk_t *ipsec_mp, conn_t *connp,
1574     ipsec_selector_t *sel, netstack_t *ns)
1575 {
1576 	ipsec_out_t *io;
1577 	ipsec_policy_t *p;
1578 
1579 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
1580 	ASSERT(ipsec_mp->b_cont->b_datap->db_type == M_DATA);
1581 
1582 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
1583 
1584 	if (io->ipsec_out_policy == NULL) {
1585 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, io, sel, ns);
1586 		io->ipsec_out_policy = p;
1587 	}
1588 	return (ipsec_mp);
1589 }
1590 
1591 
1592 /*
1593  * Consumes a reference to ipsp.
1594  */
1595 static mblk_t *
1596 ipsec_check_loopback_policy(mblk_t *first_mp, boolean_t mctl_present,
1597     ipsec_policy_t *ipsp)
1598 {
1599 	mblk_t *ipsec_mp;
1600 	ipsec_in_t *ii;
1601 	netstack_t	*ns;
1602 
1603 	if (!mctl_present)
1604 		return (first_mp);
1605 
1606 	ipsec_mp = first_mp;
1607 
1608 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1609 	ns = ii->ipsec_in_ns;
1610 	ASSERT(ii->ipsec_in_loopback);
1611 	IPPOL_REFRELE(ipsp, ns);
1612 
1613 	/*
1614 	 * We should do an actual policy check here.  Revisit this
1615 	 * when we revisit the IPsec API.  (And pass a conn_t in when we
1616 	 * get there.)
1617 	 */
1618 
1619 	return (first_mp);
1620 }
1621 
1622 /*
1623  * Check that packet's inbound ports & proto match the selectors
1624  * expected by the SAs it traversed on the way in.
1625  */
1626 static boolean_t
1627 ipsec_check_ipsecin_unique(ipsec_in_t *ii, const char **reason,
1628     kstat_named_t **counter, uint64_t pkt_unique)
1629 {
1630 	uint64_t ah_mask, esp_mask;
1631 	ipsa_t *ah_assoc;
1632 	ipsa_t *esp_assoc;
1633 	netstack_t	*ns = ii->ipsec_in_ns;
1634 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1635 
1636 	ASSERT(ii->ipsec_in_secure);
1637 	ASSERT(!ii->ipsec_in_loopback);
1638 
1639 	ah_assoc = ii->ipsec_in_ah_sa;
1640 	esp_assoc = ii->ipsec_in_esp_sa;
1641 	ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1642 
1643 	ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1644 	esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1645 
1646 	if ((ah_mask == 0) && (esp_mask == 0))
1647 		return (B_TRUE);
1648 
1649 	/*
1650 	 * The pkt_unique check will also check for tunnel mode on the SA
1651 	 * vs. the tunneled_packet boolean.  "Be liberal in what you receive"
1652 	 * should not apply in this case.  ;)
1653 	 */
1654 
1655 	if (ah_mask != 0 &&
1656 	    ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1657 		*reason = "AH inner header mismatch";
1658 		*counter = DROPPER(ipss, ipds_spd_ah_innermismatch);
1659 		return (B_FALSE);
1660 	}
1661 	if (esp_mask != 0 &&
1662 	    esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1663 		*reason = "ESP inner header mismatch";
1664 		*counter = DROPPER(ipss, ipds_spd_esp_innermismatch);
1665 		return (B_FALSE);
1666 	}
1667 	return (B_TRUE);
1668 }
1669 
1670 static boolean_t
1671 ipsec_check_ipsecin_action(ipsec_in_t *ii, mblk_t *mp, ipsec_action_t *ap,
1672     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter)
1673 {
1674 	boolean_t ret = B_TRUE;
1675 	ipsec_prot_t *ipp;
1676 	ipsa_t *ah_assoc;
1677 	ipsa_t *esp_assoc;
1678 	boolean_t decaps;
1679 	netstack_t	*ns = ii->ipsec_in_ns;
1680 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1681 
1682 	ASSERT((ipha == NULL && ip6h != NULL) ||
1683 	    (ip6h == NULL && ipha != NULL));
1684 
1685 	if (ii->ipsec_in_loopback) {
1686 		/*
1687 		 * Besides accepting pointer-equivalent actions, we also
1688 		 * accept any ICMP errors we generated for ourselves,
1689 		 * regardless of policy.  If we do not wish to make this
1690 		 * assumption in the future, check here, and where
1691 		 * icmp_loopback is initialized in ip.c and ip6.c.  (Look for
1692 		 * ipsec_out_icmp_loopback.)
1693 		 */
1694 		if (ap == ii->ipsec_in_action || ii->ipsec_in_icmp_loopback)
1695 			return (B_TRUE);
1696 
1697 		/* Deep compare necessary here?? */
1698 		*counter = DROPPER(ipss, ipds_spd_loopback_mismatch);
1699 		*reason = "loopback policy mismatch";
1700 		return (B_FALSE);
1701 	}
1702 	ASSERT(!ii->ipsec_in_icmp_loopback);
1703 
1704 	ah_assoc = ii->ipsec_in_ah_sa;
1705 	esp_assoc = ii->ipsec_in_esp_sa;
1706 
1707 	decaps = ii->ipsec_in_decaps;
1708 
1709 	switch (ap->ipa_act.ipa_type) {
1710 	case IPSEC_ACT_DISCARD:
1711 	case IPSEC_ACT_REJECT:
1712 		/* Should "fail hard" */
1713 		*counter = DROPPER(ipss, ipds_spd_explicit);
1714 		*reason = "blocked by policy";
1715 		return (B_FALSE);
1716 
1717 	case IPSEC_ACT_BYPASS:
1718 	case IPSEC_ACT_CLEAR:
1719 		*counter = DROPPER(ipss, ipds_spd_got_secure);
1720 		*reason = "expected clear, got protected";
1721 		return (B_FALSE);
1722 
1723 	case IPSEC_ACT_APPLY:
1724 		ipp = &ap->ipa_act.ipa_apply;
1725 		/*
1726 		 * As of now we do the simple checks of whether
1727 		 * the datagram has gone through the required IPSEC
1728 		 * protocol constraints or not. We might have more
1729 		 * in the future like sensitive levels, key bits, etc.
1730 		 * If it fails the constraints, check whether we would
1731 		 * have accepted this if it had come in clear.
1732 		 */
1733 		if (ipp->ipp_use_ah) {
1734 			if (ah_assoc == NULL) {
1735 				ret = ipsec_inbound_accept_clear(mp, ipha,
1736 				    ip6h);
1737 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1738 				*reason = "unprotected not accepted";
1739 				break;
1740 			}
1741 			ASSERT(ah_assoc != NULL);
1742 			ASSERT(ipp->ipp_auth_alg != 0);
1743 
1744 			if (ah_assoc->ipsa_auth_alg !=
1745 			    ipp->ipp_auth_alg) {
1746 				*counter = DROPPER(ipss, ipds_spd_bad_ahalg);
1747 				*reason = "unacceptable ah alg";
1748 				ret = B_FALSE;
1749 				break;
1750 			}
1751 		} else if (ah_assoc != NULL) {
1752 			/*
1753 			 * Don't allow this. Check IPSEC NOTE above
1754 			 * ip_fanout_proto().
1755 			 */
1756 			*counter = DROPPER(ipss, ipds_spd_got_ah);
1757 			*reason = "unexpected AH";
1758 			ret = B_FALSE;
1759 			break;
1760 		}
1761 		if (ipp->ipp_use_esp) {
1762 			if (esp_assoc == NULL) {
1763 				ret = ipsec_inbound_accept_clear(mp, ipha,
1764 				    ip6h);
1765 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1766 				*reason = "unprotected not accepted";
1767 				break;
1768 			}
1769 			ASSERT(esp_assoc != NULL);
1770 			ASSERT(ipp->ipp_encr_alg != 0);
1771 
1772 			if (esp_assoc->ipsa_encr_alg !=
1773 			    ipp->ipp_encr_alg) {
1774 				*counter = DROPPER(ipss, ipds_spd_bad_espealg);
1775 				*reason = "unacceptable esp alg";
1776 				ret = B_FALSE;
1777 				break;
1778 			}
1779 			/*
1780 			 * If the client does not need authentication,
1781 			 * we don't verify the alogrithm.
1782 			 */
1783 			if (ipp->ipp_use_espa) {
1784 				if (esp_assoc->ipsa_auth_alg !=
1785 				    ipp->ipp_esp_auth_alg) {
1786 					*counter = DROPPER(ipss,
1787 					    ipds_spd_bad_espaalg);
1788 					*reason = "unacceptable esp auth alg";
1789 					ret = B_FALSE;
1790 					break;
1791 				}
1792 			}
1793 		} else if (esp_assoc != NULL) {
1794 				/*
1795 				 * Don't allow this. Check IPSEC NOTE above
1796 				 * ip_fanout_proto().
1797 				 */
1798 			*counter = DROPPER(ipss, ipds_spd_got_esp);
1799 			*reason = "unexpected ESP";
1800 			ret = B_FALSE;
1801 			break;
1802 		}
1803 		if (ipp->ipp_use_se) {
1804 			if (!decaps) {
1805 				ret = ipsec_inbound_accept_clear(mp, ipha,
1806 				    ip6h);
1807 				if (!ret) {
1808 					/* XXX mutant? */
1809 					*counter = DROPPER(ipss,
1810 					    ipds_spd_bad_selfencap);
1811 					*reason = "self encap not found";
1812 					break;
1813 				}
1814 			}
1815 		} else if (decaps) {
1816 			/*
1817 			 * XXX If the packet comes in tunneled and the
1818 			 * recipient does not expect it to be tunneled, it
1819 			 * is okay. But we drop to be consistent with the
1820 			 * other cases.
1821 			 */
1822 			*counter = DROPPER(ipss, ipds_spd_got_selfencap);
1823 			*reason = "unexpected self encap";
1824 			ret = B_FALSE;
1825 			break;
1826 		}
1827 		if (ii->ipsec_in_action != NULL) {
1828 			/*
1829 			 * This can happen if we do a double policy-check on
1830 			 * a packet
1831 			 * XXX XXX should fix this case!
1832 			 */
1833 			IPACT_REFRELE(ii->ipsec_in_action);
1834 		}
1835 		ASSERT(ii->ipsec_in_action == NULL);
1836 		IPACT_REFHOLD(ap);
1837 		ii->ipsec_in_action = ap;
1838 		break;	/* from switch */
1839 	}
1840 	return (ret);
1841 }
1842 
1843 static boolean_t
1844 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1845 {
1846 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1847 	return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1848 	    ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1849 }
1850 
1851 /*
1852  * Takes a latched conn and an inbound packet and returns a unique_id suitable
1853  * for SA comparisons.  Most of the time we will copy from the conn_t, but
1854  * there are cases when the conn_t is latched but it has wildcard selectors,
1855  * and then we need to fallback to scooping them out of the packet.
1856  *
1857  * Assume we'll never have 0 with a conn_t present, so use 0 as a failure.  We
1858  * can get away with this because we only have non-zero ports/proto for
1859  * latched conn_ts.
1860  *
1861  * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1862  * to not be a nice macro.
1863  */
1864 static uint64_t
1865 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1866 {
1867 	ipsec_selector_t sel;
1868 	uint8_t ulp = connp->conn_ulp;
1869 
1870 	ASSERT(connp->conn_latch->ipl_in_policy != NULL);
1871 
1872 	if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1873 	    (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1874 		/* Slow path - we gotta grab from the packet. */
1875 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1876 		    SEL_NONE) != SELRET_SUCCESS) {
1877 			/* Failure -> have caller free packet with ENOMEM. */
1878 			return (0);
1879 		}
1880 		return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1881 		    sel.ips_protocol, 0));
1882 	}
1883 
1884 #ifdef DEBUG_NOT_UNTIL_6478464
1885 	if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1886 	    SELRET_SUCCESS) {
1887 		ASSERT(sel.ips_local_port == connp->conn_lport);
1888 		ASSERT(sel.ips_remote_port == connp->conn_fport);
1889 		ASSERT(sel.ips_protocol == connp->conn_ulp);
1890 	}
1891 	ASSERT(connp->conn_ulp != 0);
1892 #endif
1893 
1894 	return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1895 }
1896 
1897 /*
1898  * Called to check policy on a latched connection, both from this file
1899  * and from tcp.c
1900  */
1901 boolean_t
1902 ipsec_check_ipsecin_latch(ipsec_in_t *ii, mblk_t *mp, ipsec_latch_t *ipl,
1903     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1904     conn_t *connp)
1905 {
1906 	netstack_t	*ns = ii->ipsec_in_ns;
1907 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1908 
1909 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1910 
1911 	if (!ii->ipsec_in_loopback) {
1912 		/*
1913 		 * Over loopback, there aren't real security associations,
1914 		 * so there are neither identities nor "unique" values
1915 		 * for us to check the packet against.
1916 		 */
1917 		if ((ii->ipsec_in_ah_sa != NULL) &&
1918 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_ah_sa))) {
1919 			*counter = DROPPER(ipss, ipds_spd_ah_badid);
1920 			*reason = "AH identity mismatch";
1921 			return (B_FALSE);
1922 		}
1923 
1924 		if ((ii->ipsec_in_esp_sa != NULL) &&
1925 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_esp_sa))) {
1926 			*counter = DROPPER(ipss, ipds_spd_esp_badid);
1927 			*reason = "ESP identity mismatch";
1928 			return (B_FALSE);
1929 		}
1930 
1931 		/*
1932 		 * Can fudge pkt_unique from connp because we're latched.
1933 		 * In DEBUG kernels (see conn_to_unique()'s implementation),
1934 		 * verify this even if it REALLY slows things down.
1935 		 */
1936 		if (!ipsec_check_ipsecin_unique(ii, reason, counter,
1937 		    conn_to_unique(connp, mp, ipha, ip6h))) {
1938 			return (B_FALSE);
1939 		}
1940 	}
1941 
1942 	return (ipsec_check_ipsecin_action(ii, mp, ipl->ipl_in_action,
1943 	    ipha, ip6h, reason, counter));
1944 }
1945 
1946 /*
1947  * Check to see whether this secured datagram meets the policy
1948  * constraints specified in ipsp.
1949  *
1950  * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1951  *
1952  * Consumes a reference to ipsp.
1953  */
1954 static mblk_t *
1955 ipsec_check_ipsecin_policy(mblk_t *first_mp, ipsec_policy_t *ipsp,
1956     ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, netstack_t *ns)
1957 {
1958 	ipsec_in_t *ii;
1959 	ipsec_action_t *ap;
1960 	const char *reason = "no policy actions found";
1961 	mblk_t *data_mp, *ipsec_mp;
1962 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1963 	ip_stack_t	*ipst = ns->netstack_ip;
1964 	kstat_named_t *counter;
1965 
1966 	counter = DROPPER(ipss, ipds_spd_got_secure);
1967 
1968 	data_mp = first_mp->b_cont;
1969 	ipsec_mp = first_mp;
1970 
1971 	ASSERT(ipsp != NULL);
1972 
1973 	ASSERT((ipha == NULL && ip6h != NULL) ||
1974 	    (ip6h == NULL && ipha != NULL));
1975 
1976 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1977 
1978 	if (ii->ipsec_in_loopback)
1979 		return (ipsec_check_loopback_policy(first_mp, B_TRUE, ipsp));
1980 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
1981 	ASSERT(ii->ipsec_in_secure);
1982 
1983 	if (ii->ipsec_in_action != NULL) {
1984 		/*
1985 		 * this can happen if we do a double policy-check on a packet
1986 		 * Would be nice to be able to delete this test..
1987 		 */
1988 		IPACT_REFRELE(ii->ipsec_in_action);
1989 	}
1990 	ASSERT(ii->ipsec_in_action == NULL);
1991 
1992 	if (!SA_IDS_MATCH(ii->ipsec_in_ah_sa, ii->ipsec_in_esp_sa)) {
1993 		reason = "inbound AH and ESP identities differ";
1994 		counter = DROPPER(ipss, ipds_spd_ahesp_diffid);
1995 		goto drop;
1996 	}
1997 
1998 	if (!ipsec_check_ipsecin_unique(ii, &reason, &counter, pkt_unique))
1999 		goto drop;
2000 
2001 	/*
2002 	 * Ok, now loop through the possible actions and see if any
2003 	 * of them work for us.
2004 	 */
2005 
2006 	for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
2007 		if (ipsec_check_ipsecin_action(ii, data_mp, ap,
2008 		    ipha, ip6h, &reason, &counter)) {
2009 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2010 			IPPOL_REFRELE(ipsp, ns);
2011 			return (first_mp);
2012 		}
2013 	}
2014 drop:
2015 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
2016 	    "ipsec inbound policy mismatch: %s, packet dropped\n",
2017 	    reason);
2018 	IPPOL_REFRELE(ipsp, ns);
2019 	ASSERT(ii->ipsec_in_action == NULL);
2020 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2021 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2022 	    &ipss->ipsec_spd_dropper);
2023 	return (NULL);
2024 }
2025 
2026 /*
2027  * sleazy prefix-length-based compare.
2028  * another inlining candidate..
2029  */
2030 boolean_t
2031 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
2032 {
2033 	int offset = pfxlen>>3;
2034 	int bitsleft = pfxlen & 7;
2035 	uint8_t *addr2 = (uint8_t *)addr2p;
2036 
2037 	/*
2038 	 * and there was much evil..
2039 	 * XXX should inline-expand the bcmp here and do this 32 bits
2040 	 * or 64 bits at a time..
2041 	 */
2042 	return ((bcmp(addr1, addr2, offset) == 0) &&
2043 	    ((bitsleft == 0) ||
2044 	    (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0)));
2045 }
2046 
2047 static ipsec_policy_t *
2048 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
2049     ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
2050 {
2051 	ipsec_selkey_t *isel;
2052 	ipsec_policy_t *p;
2053 	int bpri = best ? best->ipsp_prio : 0;
2054 
2055 	for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
2056 		uint32_t valid;
2057 
2058 		if (p->ipsp_prio <= bpri)
2059 			continue;
2060 		isel = &p->ipsp_sel->ipsl_key;
2061 		valid = isel->ipsl_valid;
2062 
2063 		if ((valid & IPSL_PROTOCOL) &&
2064 		    (isel->ipsl_proto != sel->ips_protocol))
2065 			continue;
2066 
2067 		if ((valid & IPSL_REMOTE_ADDR) &&
2068 		    !ip_addr_match((uint8_t *)&isel->ipsl_remote,
2069 		    isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6))
2070 			continue;
2071 
2072 		if ((valid & IPSL_LOCAL_ADDR) &&
2073 		    !ip_addr_match((uint8_t *)&isel->ipsl_local,
2074 		    isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6))
2075 			continue;
2076 
2077 		if ((valid & IPSL_REMOTE_PORT) &&
2078 		    isel->ipsl_rport != sel->ips_remote_port)
2079 			continue;
2080 
2081 		if ((valid & IPSL_LOCAL_PORT) &&
2082 		    isel->ipsl_lport != sel->ips_local_port)
2083 			continue;
2084 
2085 		if (!is_icmp_inv_acq) {
2086 			if ((valid & IPSL_ICMP_TYPE) &&
2087 			    (isel->ipsl_icmp_type > sel->ips_icmp_type ||
2088 			    isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
2089 				continue;
2090 			}
2091 
2092 			if ((valid & IPSL_ICMP_CODE) &&
2093 			    (isel->ipsl_icmp_code > sel->ips_icmp_code ||
2094 			    isel->ipsl_icmp_code_end <
2095 			    sel->ips_icmp_code)) {
2096 				continue;
2097 			}
2098 		} else {
2099 			/*
2100 			 * special case for icmp inverse acquire
2101 			 * we only want policies that aren't drop/pass
2102 			 */
2103 			if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
2104 				continue;
2105 		}
2106 
2107 		/* we matched all the packet-port-field selectors! */
2108 		best = p;
2109 		bpri = p->ipsp_prio;
2110 	}
2111 
2112 	return (best);
2113 }
2114 
2115 /*
2116  * Try to find and return the best policy entry under a given policy
2117  * root for a given set of selectors; the first parameter "best" is
2118  * the current best policy so far.  If "best" is non-null, we have a
2119  * reference to it.  We return a reference to a policy; if that policy
2120  * is not the original "best", we need to release that reference
2121  * before returning.
2122  */
2123 ipsec_policy_t *
2124 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
2125     int direction, ipsec_selector_t *sel, netstack_t *ns)
2126 {
2127 	ipsec_policy_t *curbest;
2128 	ipsec_policy_root_t *root;
2129 	uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
2130 	int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
2131 
2132 	curbest = best;
2133 	root = &head->iph_root[direction];
2134 
2135 #ifdef DEBUG
2136 	if (is_icmp_inv_acq) {
2137 		if (sel->ips_isv4) {
2138 			if (sel->ips_protocol != IPPROTO_ICMP) {
2139 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
2140 				    " expecting icmp, got %d",
2141 				    sel->ips_protocol);
2142 			}
2143 		} else {
2144 			if (sel->ips_protocol != IPPROTO_ICMPV6) {
2145 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
2146 				    " expecting icmpv6, got %d",
2147 				    sel->ips_protocol);
2148 			}
2149 		}
2150 	}
2151 #endif
2152 
2153 	rw_enter(&head->iph_lock, RW_READER);
2154 
2155 	if (root->ipr_nchains > 0) {
2156 		curbest = ipsec_find_policy_chain(curbest,
2157 		    root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
2158 		    is_icmp_inv_acq);
2159 	}
2160 	curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2161 	    is_icmp_inv_acq);
2162 
2163 	/*
2164 	 * Adjust reference counts if we found anything new.
2165 	 */
2166 	if (curbest != best) {
2167 		ASSERT(curbest != NULL);
2168 		IPPOL_REFHOLD(curbest);
2169 
2170 		if (best != NULL) {
2171 			IPPOL_REFRELE(best, ns);
2172 		}
2173 	}
2174 
2175 	rw_exit(&head->iph_lock);
2176 
2177 	return (curbest);
2178 }
2179 
2180 /*
2181  * Find the best system policy (either global or per-interface) which
2182  * applies to the given selector; look in all the relevant policy roots
2183  * to figure out which policy wins.
2184  *
2185  * Returns a reference to a policy; caller must release this
2186  * reference when done.
2187  */
2188 ipsec_policy_t *
2189 ipsec_find_policy(int direction, conn_t *connp, ipsec_out_t *io,
2190     ipsec_selector_t *sel, netstack_t *ns)
2191 {
2192 	ipsec_policy_t *p;
2193 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2194 
2195 	p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy,
2196 	    direction, sel, ns);
2197 	if ((connp != NULL) && (connp->conn_policy != NULL)) {
2198 		p = ipsec_find_policy_head(p, connp->conn_policy,
2199 		    direction, sel, ns);
2200 	} else if ((io != NULL) && (io->ipsec_out_polhead != NULL)) {
2201 		p = ipsec_find_policy_head(p, io->ipsec_out_polhead,
2202 		    direction, sel, ns);
2203 	}
2204 
2205 	return (p);
2206 }
2207 
2208 /*
2209  * Check with global policy and see whether this inbound
2210  * packet meets the policy constraints.
2211  *
2212  * Locate appropriate policy from global policy, supplemented by the
2213  * conn's configured and/or cached policy if the conn is supplied.
2214  *
2215  * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2216  * encrypted packet to see if they match.
2217  *
2218  * Otherwise, see if the policy allows cleartext; if not, drop it on the
2219  * floor.
2220  */
2221 mblk_t *
2222 ipsec_check_global_policy(mblk_t *first_mp, conn_t *connp,
2223     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present, netstack_t *ns)
2224 {
2225 	ipsec_policy_t *p;
2226 	ipsec_selector_t sel;
2227 	mblk_t *data_mp, *ipsec_mp;
2228 	boolean_t policy_present;
2229 	kstat_named_t *counter;
2230 	ipsec_in_t *ii = NULL;
2231 	uint64_t pkt_unique;
2232 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2233 	ip_stack_t	*ipst = ns->netstack_ip;
2234 
2235 	data_mp = mctl_present ? first_mp->b_cont : first_mp;
2236 	ipsec_mp = mctl_present ? first_mp : NULL;
2237 
2238 	sel.ips_is_icmp_inv_acq = 0;
2239 
2240 	ASSERT((ipha == NULL && ip6h != NULL) ||
2241 	    (ip6h == NULL && ipha != NULL));
2242 
2243 	if (ipha != NULL)
2244 		policy_present = ipss->ipsec_inbound_v4_policy_present;
2245 	else
2246 		policy_present = ipss->ipsec_inbound_v6_policy_present;
2247 
2248 	if (!policy_present && connp == NULL) {
2249 		/*
2250 		 * No global policy and no per-socket policy;
2251 		 * just pass it back (but we shouldn't get here in that case)
2252 		 */
2253 		return (first_mp);
2254 	}
2255 
2256 	if (ipsec_mp != NULL) {
2257 		ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2258 		ii = (ipsec_in_t *)(ipsec_mp->b_rptr);
2259 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
2260 	}
2261 
2262 	/*
2263 	 * If we have cached policy, use it.
2264 	 * Otherwise consult system policy.
2265 	 */
2266 	if ((connp != NULL) && (connp->conn_latch != NULL)) {
2267 		p = connp->conn_latch->ipl_in_policy;
2268 		if (p != NULL) {
2269 			IPPOL_REFHOLD(p);
2270 		}
2271 		/*
2272 		 * Fudge sel for UNIQUE_ID setting below.
2273 		 */
2274 		pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2275 	} else {
2276 		/* Initialize the ports in the selector */
2277 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2278 		    SEL_NONE) == SELRET_NOMEM) {
2279 			/*
2280 			 * Technically not a policy mismatch, but it is
2281 			 * an internal failure.
2282 			 */
2283 			ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2284 			    "ipsec_init_inbound_sel", ipha, ip6h, B_FALSE, ns);
2285 			counter = DROPPER(ipss, ipds_spd_nomem);
2286 			goto fail;
2287 		}
2288 
2289 		/*
2290 		 * Find the policy which best applies.
2291 		 *
2292 		 * If we find global policy, we should look at both
2293 		 * local policy and global policy and see which is
2294 		 * stronger and match accordingly.
2295 		 *
2296 		 * If we don't find a global policy, check with
2297 		 * local policy alone.
2298 		 */
2299 
2300 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel,
2301 		    ns);
2302 		pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2303 		    sel.ips_local_port, sel.ips_protocol, 0);
2304 	}
2305 
2306 	if (p == NULL) {
2307 		if (ipsec_mp == NULL) {
2308 			/*
2309 			 * We have no policy; default to succeeding.
2310 			 * XXX paranoid system design doesn't do this.
2311 			 */
2312 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2313 			return (first_mp);
2314 		} else {
2315 			counter = DROPPER(ipss, ipds_spd_got_secure);
2316 			ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
2317 			    "ipsec_check_global_policy", ipha, ip6h, B_TRUE,
2318 			    ns);
2319 			goto fail;
2320 		}
2321 	}
2322 	if ((ii != NULL) && (ii->ipsec_in_secure)) {
2323 		return (ipsec_check_ipsecin_policy(ipsec_mp, p, ipha, ip6h,
2324 		    pkt_unique, ns));
2325 	}
2326 	if (p->ipsp_act->ipa_allow_clear) {
2327 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2328 		IPPOL_REFRELE(p, ns);
2329 		return (first_mp);
2330 	}
2331 	IPPOL_REFRELE(p, ns);
2332 	/*
2333 	 * If we reach here, we will drop the packet because it failed the
2334 	 * global policy check because the packet was cleartext, and it
2335 	 * should not have been.
2336 	 */
2337 	ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2338 	    "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns);
2339 	counter = DROPPER(ipss, ipds_spd_got_clear);
2340 
2341 fail:
2342 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2343 	    &ipss->ipsec_spd_dropper);
2344 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2345 	return (NULL);
2346 }
2347 
2348 /*
2349  * We check whether an inbound datagram is a valid one
2350  * to accept in clear. If it is secure, it is the job
2351  * of IPSEC to log information appropriately if it
2352  * suspects that it may not be the real one.
2353  *
2354  * It is called only while fanning out to the ULP
2355  * where ULP accepts only secure data and the incoming
2356  * is clear. Usually we never accept clear datagrams in
2357  * such cases. ICMP is the only exception.
2358  *
2359  * NOTE : We don't call this function if the client (ULP)
2360  * is willing to accept things in clear.
2361  */
2362 boolean_t
2363 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2364 {
2365 	ushort_t iph_hdr_length;
2366 	icmph_t *icmph;
2367 	icmp6_t *icmp6;
2368 	uint8_t *nexthdrp;
2369 
2370 	ASSERT((ipha != NULL && ip6h == NULL) ||
2371 	    (ipha == NULL && ip6h != NULL));
2372 
2373 	if (ip6h != NULL) {
2374 		iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2375 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2376 		    &nexthdrp)) {
2377 			return (B_FALSE);
2378 		}
2379 		if (*nexthdrp != IPPROTO_ICMPV6)
2380 			return (B_FALSE);
2381 		icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2382 		/* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2383 		switch (icmp6->icmp6_type) {
2384 		case ICMP6_PARAM_PROB:
2385 			/* Corresponds to port/proto unreach in IPv4. */
2386 		case ICMP6_ECHO_REQUEST:
2387 			/* Just like IPv4. */
2388 			return (B_FALSE);
2389 
2390 		case MLD_LISTENER_QUERY:
2391 		case MLD_LISTENER_REPORT:
2392 		case MLD_LISTENER_REDUCTION:
2393 			/*
2394 			 * XXX Seperate NDD in IPv4 what about here?
2395 			 * Plus, mcast is important to ND.
2396 			 */
2397 		case ICMP6_DST_UNREACH:
2398 			/* Corresponds to HOST/NET unreachable in IPv4. */
2399 		case ICMP6_PACKET_TOO_BIG:
2400 		case ICMP6_ECHO_REPLY:
2401 			/* These are trusted in IPv4. */
2402 		case ND_ROUTER_SOLICIT:
2403 		case ND_ROUTER_ADVERT:
2404 		case ND_NEIGHBOR_SOLICIT:
2405 		case ND_NEIGHBOR_ADVERT:
2406 		case ND_REDIRECT:
2407 			/* Trust ND messages for now. */
2408 		case ICMP6_TIME_EXCEEDED:
2409 		default:
2410 			return (B_TRUE);
2411 		}
2412 	} else {
2413 		/*
2414 		 * If it is not ICMP, fail this request.
2415 		 */
2416 		if (ipha->ipha_protocol != IPPROTO_ICMP) {
2417 #ifdef FRAGCACHE_DEBUG
2418 			cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2419 			    ipha->ipha_protocol);
2420 #endif
2421 			return (B_FALSE);
2422 		}
2423 		iph_hdr_length = IPH_HDR_LENGTH(ipha);
2424 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2425 		/*
2426 		 * It is an insecure icmp message. Check to see whether we are
2427 		 * willing to accept this one.
2428 		 */
2429 
2430 		switch (icmph->icmph_type) {
2431 		case ICMP_ECHO_REPLY:
2432 		case ICMP_TIME_STAMP_REPLY:
2433 		case ICMP_INFO_REPLY:
2434 		case ICMP_ROUTER_ADVERTISEMENT:
2435 			/*
2436 			 * We should not encourage clear replies if this
2437 			 * client expects secure. If somebody is replying
2438 			 * in clear some mailicious user watching both the
2439 			 * request and reply, can do chosen-plain-text attacks.
2440 			 * With global policy we might be just expecting secure
2441 			 * but sending out clear. We don't know what the right
2442 			 * thing is. We can't do much here as we can't control
2443 			 * the sender here. Till we are sure of what to do,
2444 			 * accept them.
2445 			 */
2446 			return (B_TRUE);
2447 		case ICMP_ECHO_REQUEST:
2448 		case ICMP_TIME_STAMP_REQUEST:
2449 		case ICMP_INFO_REQUEST:
2450 		case ICMP_ADDRESS_MASK_REQUEST:
2451 		case ICMP_ROUTER_SOLICITATION:
2452 		case ICMP_ADDRESS_MASK_REPLY:
2453 			/*
2454 			 * Don't accept this as somebody could be sending
2455 			 * us plain text to get encrypted data. If we reply,
2456 			 * it will lead to chosen plain text attack.
2457 			 */
2458 			return (B_FALSE);
2459 		case ICMP_DEST_UNREACHABLE:
2460 			switch (icmph->icmph_code) {
2461 			case ICMP_FRAGMENTATION_NEEDED:
2462 				/*
2463 				 * Be in sync with icmp_inbound, where we have
2464 				 * already set ire_max_frag.
2465 				 */
2466 #ifdef FRAGCACHE_DEBUG
2467 			cmn_err(CE_WARN, "ICMP frag needed\n");
2468 #endif
2469 				return (B_TRUE);
2470 			case ICMP_HOST_UNREACHABLE:
2471 			case ICMP_NET_UNREACHABLE:
2472 				/*
2473 				 * By accepting, we could reset a connection.
2474 				 * How do we solve the problem of some
2475 				 * intermediate router sending in-secure ICMP
2476 				 * messages ?
2477 				 */
2478 				return (B_TRUE);
2479 			case ICMP_PORT_UNREACHABLE:
2480 			case ICMP_PROTOCOL_UNREACHABLE:
2481 			default :
2482 				return (B_FALSE);
2483 			}
2484 		case ICMP_SOURCE_QUENCH:
2485 			/*
2486 			 * If this is an attack, TCP will slow start
2487 			 * because of this. Is it very harmful ?
2488 			 */
2489 			return (B_TRUE);
2490 		case ICMP_PARAM_PROBLEM:
2491 			return (B_FALSE);
2492 		case ICMP_TIME_EXCEEDED:
2493 			return (B_TRUE);
2494 		case ICMP_REDIRECT:
2495 			return (B_FALSE);
2496 		default :
2497 			return (B_FALSE);
2498 		}
2499 	}
2500 }
2501 
2502 void
2503 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2504 {
2505 	mutex_enter(&ipl->ipl_lock);
2506 
2507 	if (ipl->ipl_ids_latched) {
2508 		/* I lost, someone else got here before me */
2509 		mutex_exit(&ipl->ipl_lock);
2510 		return;
2511 	}
2512 
2513 	if (local != NULL)
2514 		IPSID_REFHOLD(local);
2515 	if (remote != NULL)
2516 		IPSID_REFHOLD(remote);
2517 
2518 	ipl->ipl_local_cid = local;
2519 	ipl->ipl_remote_cid = remote;
2520 	ipl->ipl_ids_latched = B_TRUE;
2521 	mutex_exit(&ipl->ipl_lock);
2522 }
2523 
2524 void
2525 ipsec_latch_inbound(ipsec_latch_t *ipl, ipsec_in_t *ii)
2526 {
2527 	ipsa_t *sa;
2528 
2529 	if (!ipl->ipl_ids_latched) {
2530 		ipsid_t *local = NULL;
2531 		ipsid_t *remote = NULL;
2532 
2533 		if (!ii->ipsec_in_loopback) {
2534 			if (ii->ipsec_in_esp_sa != NULL)
2535 				sa = ii->ipsec_in_esp_sa;
2536 			else
2537 				sa = ii->ipsec_in_ah_sa;
2538 			ASSERT(sa != NULL);
2539 			local = sa->ipsa_dst_cid;
2540 			remote = sa->ipsa_src_cid;
2541 		}
2542 		ipsec_latch_ids(ipl, local, remote);
2543 	}
2544 	ipl->ipl_in_action = ii->ipsec_in_action;
2545 	IPACT_REFHOLD(ipl->ipl_in_action);
2546 }
2547 
2548 /*
2549  * Check whether the policy constraints are met either for an
2550  * inbound datagram; called from IP in numerous places.
2551  *
2552  * Note that this is not a chokepoint for inbound policy checks;
2553  * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2554  */
2555 mblk_t *
2556 ipsec_check_inbound_policy(mblk_t *first_mp, conn_t *connp,
2557     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
2558 {
2559 	ipsec_in_t *ii;
2560 	boolean_t ret;
2561 	mblk_t *mp = mctl_present ? first_mp->b_cont : first_mp;
2562 	mblk_t *ipsec_mp = mctl_present ? first_mp : NULL;
2563 	ipsec_latch_t *ipl;
2564 	uint64_t unique_id;
2565 	ipsec_stack_t	*ipss;
2566 	ip_stack_t	*ipst;
2567 	netstack_t	*ns;
2568 
2569 	ASSERT(connp != NULL);
2570 	ns = connp->conn_netstack;
2571 	ipss = ns->netstack_ipsec;
2572 	ipst = ns->netstack_ip;
2573 
2574 	if (ipsec_mp == NULL) {
2575 clear:
2576 		/*
2577 		 * This is the case where the incoming datagram is
2578 		 * cleartext and we need to see whether this client
2579 		 * would like to receive such untrustworthy things from
2580 		 * the wire.
2581 		 */
2582 		ASSERT(mp != NULL);
2583 
2584 		mutex_enter(&connp->conn_lock);
2585 		if (connp->conn_state_flags & CONN_CONDEMNED) {
2586 			mutex_exit(&connp->conn_lock);
2587 			ip_drop_packet(first_mp, B_TRUE, NULL,
2588 			    NULL, DROPPER(ipss, ipds_spd_got_clear),
2589 			    &ipss->ipsec_spd_dropper);
2590 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2591 			return (NULL);
2592 		}
2593 		if ((ipl = connp->conn_latch) != NULL) {
2594 			/* Hold a reference in case the conn is closing */
2595 			IPLATCH_REFHOLD(ipl);
2596 			mutex_exit(&connp->conn_lock);
2597 			/*
2598 			 * Policy is cached in the conn.
2599 			 */
2600 			if ((ipl->ipl_in_policy != NULL) &&
2601 			    (!ipl->ipl_in_policy->ipsp_act->ipa_allow_clear)) {
2602 				ret = ipsec_inbound_accept_clear(mp,
2603 				    ipha, ip6h);
2604 				if (ret) {
2605 					BUMP_MIB(&ipst->ips_ip_mib,
2606 					    ipsecInSucceeded);
2607 					IPLATCH_REFRELE(ipl, ns);
2608 					return (first_mp);
2609 				} else {
2610 					ipsec_log_policy_failure(
2611 					    IPSEC_POLICY_MISMATCH,
2612 					    "ipsec_check_inbound_policy", ipha,
2613 					    ip6h, B_FALSE, ns);
2614 					ip_drop_packet(first_mp, B_TRUE, NULL,
2615 					    NULL,
2616 					    DROPPER(ipss, ipds_spd_got_clear),
2617 					    &ipss->ipsec_spd_dropper);
2618 					BUMP_MIB(&ipst->ips_ip_mib,
2619 					    ipsecInFailed);
2620 					IPLATCH_REFRELE(ipl, ns);
2621 					return (NULL);
2622 				}
2623 			} else {
2624 				BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2625 				IPLATCH_REFRELE(ipl, ns);
2626 				return (first_mp);
2627 			}
2628 		} else {
2629 			uchar_t db_type;
2630 
2631 			mutex_exit(&connp->conn_lock);
2632 			/*
2633 			 * As this is a non-hardbound connection we need
2634 			 * to look at both per-socket policy and global
2635 			 * policy. As this is cleartext, mark the mp as
2636 			 * M_DATA in case if it is an ICMP error being
2637 			 * reported before calling ipsec_check_global_policy
2638 			 * so that it does not mistake it for IPSEC_IN.
2639 			 */
2640 			db_type = mp->b_datap->db_type;
2641 			mp->b_datap->db_type = M_DATA;
2642 			first_mp = ipsec_check_global_policy(first_mp, connp,
2643 			    ipha, ip6h, mctl_present, ns);
2644 			if (first_mp != NULL)
2645 				mp->b_datap->db_type = db_type;
2646 			return (first_mp);
2647 		}
2648 	}
2649 	/*
2650 	 * If it is inbound check whether the attached message
2651 	 * is secure or not. We have a special case for ICMP,
2652 	 * where we have a IPSEC_IN message and the attached
2653 	 * message is not secure. See icmp_inbound_error_fanout
2654 	 * for details.
2655 	 */
2656 	ASSERT(ipsec_mp != NULL);
2657 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2658 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
2659 
2660 	if (!ii->ipsec_in_secure)
2661 		goto clear;
2662 
2663 	/*
2664 	 * mp->b_cont could be either a M_CTL message
2665 	 * for icmp errors being sent up or a M_DATA message.
2666 	 */
2667 	ASSERT(mp->b_datap->db_type == M_CTL || mp->b_datap->db_type == M_DATA);
2668 
2669 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
2670 
2671 	mutex_enter(&connp->conn_lock);
2672 	/* Connection is closing */
2673 	if (connp->conn_state_flags & CONN_CONDEMNED) {
2674 		mutex_exit(&connp->conn_lock);
2675 		ip_drop_packet(first_mp, B_TRUE, NULL,
2676 		    NULL, DROPPER(ipss, ipds_spd_got_clear),
2677 		    &ipss->ipsec_spd_dropper);
2678 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2679 		return (NULL);
2680 	}
2681 
2682 	/*
2683 	 * Once a connection is latched it remains so for life, the conn_latch
2684 	 * pointer on the conn has not changed, simply initializing ipl here
2685 	 * as the earlier initialization was done only in the cleartext case.
2686 	 */
2687 	if ((ipl = connp->conn_latch) == NULL) {
2688 		mutex_exit(&connp->conn_lock);
2689 		/*
2690 		 * We don't have policies cached in the conn
2691 		 * for this stream. So, look at the global
2692 		 * policy. It will check against conn or global
2693 		 * depending on whichever is stronger.
2694 		 */
2695 		return (ipsec_check_global_policy(first_mp, connp,
2696 		    ipha, ip6h, mctl_present, ns));
2697 	}
2698 
2699 	IPLATCH_REFHOLD(ipl);
2700 	mutex_exit(&connp->conn_lock);
2701 
2702 	if (ipl->ipl_in_action != NULL) {
2703 		/* Policy is cached & latched; fast(er) path */
2704 		const char *reason;
2705 		kstat_named_t *counter;
2706 
2707 		if (ipsec_check_ipsecin_latch(ii, mp, ipl,
2708 		    ipha, ip6h, &reason, &counter, connp)) {
2709 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2710 			IPLATCH_REFRELE(ipl, ns);
2711 			return (first_mp);
2712 		}
2713 		ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0,
2714 		    SL_ERROR|SL_WARN|SL_CONSOLE,
2715 		    "ipsec inbound policy mismatch: %s, packet dropped\n",
2716 		    reason);
2717 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2718 		    &ipss->ipsec_spd_dropper);
2719 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2720 		IPLATCH_REFRELE(ipl, ns);
2721 		return (NULL);
2722 	} else if (ipl->ipl_in_policy == NULL) {
2723 		ipsec_weird_null_inbound_policy++;
2724 		IPLATCH_REFRELE(ipl, ns);
2725 		return (first_mp);
2726 	}
2727 
2728 	unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2729 	IPPOL_REFHOLD(ipl->ipl_in_policy);
2730 	first_mp = ipsec_check_ipsecin_policy(first_mp, ipl->ipl_in_policy,
2731 	    ipha, ip6h, unique_id, ns);
2732 	/*
2733 	 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2734 	 * ipsec_check_ipsecin_policy().
2735 	 */
2736 	if (first_mp != NULL)
2737 		ipsec_latch_inbound(ipl, ii);
2738 	IPLATCH_REFRELE(ipl, ns);
2739 	return (first_mp);
2740 }
2741 
2742 /*
2743  * Returns:
2744  *
2745  * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2746  * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2747  *		     gathering, the initial fragment is too short for
2748  *		     useful data.  Only returned if SEL_TUNNEL_FIRSTFRAG is
2749  *		     set.
2750  * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2751  * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet.  Caller
2752  *		      should put this packet in a fragment-gathering queue.
2753  *		      Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2754  *		      is set.
2755  */
2756 static selret_t
2757 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2758     ip6_t *ip6h, uint8_t sel_flags)
2759 {
2760 	uint16_t *ports;
2761 	ushort_t hdr_len;
2762 	int outer_hdr_len = 0;	/* For ICMP tunnel-mode cases... */
2763 	mblk_t *spare_mp = NULL;
2764 	uint8_t *nexthdrp;
2765 	uint8_t nexthdr;
2766 	uint8_t *typecode;
2767 	uint8_t check_proto;
2768 	ip6_pkt_t ipp;
2769 	boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2770 	boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2771 	boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2772 
2773 	ASSERT((ipha == NULL && ip6h != NULL) ||
2774 	    (ipha != NULL && ip6h == NULL));
2775 
2776 	if (ip6h != NULL) {
2777 		if (is_icmp)
2778 			outer_hdr_len = ((uint8_t *)ip6h) - mp->b_rptr;
2779 
2780 		check_proto = IPPROTO_ICMPV6;
2781 		sel->ips_isv4 = B_FALSE;
2782 		sel->ips_local_addr_v6 = ip6h->ip6_dst;
2783 		sel->ips_remote_addr_v6 = ip6h->ip6_src;
2784 
2785 		bzero(&ipp, sizeof (ipp));
2786 		(void) ip_find_hdr_v6(mp, ip6h, &ipp, NULL);
2787 
2788 		nexthdr = ip6h->ip6_nxt;
2789 		switch (nexthdr) {
2790 		case IPPROTO_HOPOPTS:
2791 		case IPPROTO_ROUTING:
2792 		case IPPROTO_DSTOPTS:
2793 		case IPPROTO_FRAGMENT:
2794 			/*
2795 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2796 			 * mblk that's contiguous to feed it
2797 			 */
2798 			if ((spare_mp = msgpullup(mp, -1)) == NULL)
2799 				return (SELRET_NOMEM);
2800 			if (!ip_hdr_length_nexthdr_v6(spare_mp,
2801 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2802 			    &hdr_len, &nexthdrp)) {
2803 				/* Malformed packet - caller frees. */
2804 				ipsec_freemsg_chain(spare_mp);
2805 				return (SELRET_BADPKT);
2806 			}
2807 			nexthdr = *nexthdrp;
2808 			/* We can just extract based on hdr_len now. */
2809 			break;
2810 		default:
2811 			hdr_len = IPV6_HDR_LEN;
2812 			break;
2813 		}
2814 
2815 		if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2816 			/* IPv6 Fragment */
2817 			ipsec_freemsg_chain(spare_mp);
2818 			return (SELRET_TUNFRAG);
2819 		}
2820 	} else {
2821 		if (is_icmp)
2822 			outer_hdr_len = ((uint8_t *)ipha) - mp->b_rptr;
2823 		check_proto = IPPROTO_ICMP;
2824 		sel->ips_isv4 = B_TRUE;
2825 		sel->ips_local_addr_v4 = ipha->ipha_dst;
2826 		sel->ips_remote_addr_v4 = ipha->ipha_src;
2827 		nexthdr = ipha->ipha_protocol;
2828 		hdr_len = IPH_HDR_LENGTH(ipha);
2829 
2830 		if (port_policy_present &&
2831 		    IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2832 		    !is_icmp) {
2833 			/* IPv4 Fragment */
2834 			ipsec_freemsg_chain(spare_mp);
2835 			return (SELRET_TUNFRAG);
2836 		}
2837 
2838 	}
2839 	sel->ips_protocol = nexthdr;
2840 
2841 	if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2842 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) ||
2843 	    (!port_policy_present && tunnel_mode)) {
2844 		sel->ips_remote_port = sel->ips_local_port = 0;
2845 		ipsec_freemsg_chain(spare_mp);
2846 		return (SELRET_SUCCESS);
2847 	}
2848 
2849 	if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) {
2850 		/* If we didn't pullup a copy already, do so now. */
2851 		/*
2852 		 * XXX performance, will upper-layers frequently split TCP/UDP
2853 		 * apart from IP or options?  If so, perhaps we should revisit
2854 		 * the spare_mp strategy.
2855 		 */
2856 		ipsec_hdr_pullup_needed++;
2857 		if (spare_mp == NULL &&
2858 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2859 			return (SELRET_NOMEM);
2860 		}
2861 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2862 	} else {
2863 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2864 	}
2865 
2866 	if (nexthdr == check_proto) {
2867 		typecode = (uint8_t *)ports;
2868 		sel->ips_icmp_type = *typecode++;
2869 		sel->ips_icmp_code = *typecode;
2870 		sel->ips_remote_port = sel->ips_local_port = 0;
2871 	} else {
2872 		sel->ips_remote_port = *ports++;
2873 		sel->ips_local_port = *ports;
2874 	}
2875 	ipsec_freemsg_chain(spare_mp);
2876 	return (SELRET_SUCCESS);
2877 }
2878 
2879 static boolean_t
2880 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2881     ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss)
2882 {
2883 	/*
2884 	 * XXX cut&paste shared with ipsec_init_inbound_sel
2885 	 */
2886 	uint16_t *ports;
2887 	ushort_t hdr_len;
2888 	mblk_t *spare_mp = NULL;
2889 	uint8_t *nexthdrp;
2890 	uint8_t nexthdr;
2891 	uint8_t *typecode;
2892 	uint8_t check_proto;
2893 
2894 	ASSERT((ipha == NULL && ip6h != NULL) ||
2895 	    (ipha != NULL && ip6h == NULL));
2896 
2897 	if (ip6h != NULL) {
2898 		check_proto = IPPROTO_ICMPV6;
2899 		nexthdr = ip6h->ip6_nxt;
2900 		switch (nexthdr) {
2901 		case IPPROTO_HOPOPTS:
2902 		case IPPROTO_ROUTING:
2903 		case IPPROTO_DSTOPTS:
2904 		case IPPROTO_FRAGMENT:
2905 			/*
2906 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2907 			 * mblk that's contiguous to feed it
2908 			 */
2909 			spare_mp = msgpullup(mp, -1);
2910 			if (spare_mp == NULL ||
2911 			    !ip_hdr_length_nexthdr_v6(spare_mp,
2912 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2913 			    &hdr_len, &nexthdrp)) {
2914 				/* Always works, even if NULL. */
2915 				ipsec_freemsg_chain(spare_mp);
2916 				ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2917 				    DROPPER(ipss, ipds_spd_nomem),
2918 				    &ipss->ipsec_spd_dropper);
2919 				return (B_FALSE);
2920 			} else {
2921 				nexthdr = *nexthdrp;
2922 				/* We can just extract based on hdr_len now. */
2923 			}
2924 			break;
2925 		default:
2926 			hdr_len = IPV6_HDR_LEN;
2927 			break;
2928 		}
2929 	} else {
2930 		check_proto = IPPROTO_ICMP;
2931 		hdr_len = IPH_HDR_LENGTH(ipha);
2932 		nexthdr = ipha->ipha_protocol;
2933 	}
2934 
2935 	sel->ips_protocol = nexthdr;
2936 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2937 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2938 		sel->ips_local_port = sel->ips_remote_port = 0;
2939 		ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2940 		return (B_TRUE);
2941 	}
2942 
2943 	if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2944 		/* If we didn't pullup a copy already, do so now. */
2945 		/*
2946 		 * XXX performance, will upper-layers frequently split TCP/UDP
2947 		 * apart from IP or options?  If so, perhaps we should revisit
2948 		 * the spare_mp strategy.
2949 		 *
2950 		 * XXX should this be msgpullup(mp, hdr_len+4) ???
2951 		 */
2952 		if (spare_mp == NULL &&
2953 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2954 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2955 			    DROPPER(ipss, ipds_spd_nomem),
2956 			    &ipss->ipsec_spd_dropper);
2957 			return (B_FALSE);
2958 		}
2959 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2960 	} else {
2961 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2962 	}
2963 
2964 	if (nexthdr == check_proto) {
2965 		typecode = (uint8_t *)ports;
2966 		sel->ips_icmp_type = *typecode++;
2967 		sel->ips_icmp_code = *typecode;
2968 		sel->ips_remote_port = sel->ips_local_port = 0;
2969 	} else {
2970 		sel->ips_local_port = *ports++;
2971 		sel->ips_remote_port = *ports;
2972 	}
2973 	ipsec_freemsg_chain(spare_mp);	/* Always works, even if NULL */
2974 	return (B_TRUE);
2975 }
2976 
2977 /*
2978  * Create an ipsec_action_t based on the way an inbound packet was protected.
2979  * Used to reflect traffic back to a sender.
2980  *
2981  * We don't bother interning the action into the hash table.
2982  */
2983 ipsec_action_t *
2984 ipsec_in_to_out_action(ipsec_in_t *ii)
2985 {
2986 	ipsa_t *ah_assoc, *esp_assoc;
2987 	uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2988 	ipsec_action_t *ap;
2989 	boolean_t unique;
2990 
2991 	ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2992 
2993 	if (ap == NULL)
2994 		return (NULL);
2995 
2996 	bzero(ap, sizeof (*ap));
2997 	HASH_NULL(ap, ipa_hash);
2998 	ap->ipa_next = NULL;
2999 	ap->ipa_refs = 1;
3000 
3001 	/*
3002 	 * Get the algorithms that were used for this packet.
3003 	 */
3004 	ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
3005 	ap->ipa_act.ipa_log = 0;
3006 	ah_assoc = ii->ipsec_in_ah_sa;
3007 	ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
3008 
3009 	esp_assoc = ii->ipsec_in_esp_sa;
3010 	ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
3011 
3012 	if (esp_assoc != NULL) {
3013 		encr_alg = esp_assoc->ipsa_encr_alg;
3014 		espa_alg = esp_assoc->ipsa_auth_alg;
3015 		ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
3016 	}
3017 	if (ah_assoc != NULL)
3018 		auth_alg = ah_assoc->ipsa_auth_alg;
3019 
3020 	ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
3021 	ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
3022 	ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
3023 	ap->ipa_act.ipa_apply.ipp_use_se = ii->ipsec_in_decaps;
3024 	unique = B_FALSE;
3025 
3026 	if (esp_assoc != NULL) {
3027 		ap->ipa_act.ipa_apply.ipp_espa_minbits =
3028 		    esp_assoc->ipsa_authkeybits;
3029 		ap->ipa_act.ipa_apply.ipp_espa_maxbits =
3030 		    esp_assoc->ipsa_authkeybits;
3031 		ap->ipa_act.ipa_apply.ipp_espe_minbits =
3032 		    esp_assoc->ipsa_encrkeybits;
3033 		ap->ipa_act.ipa_apply.ipp_espe_maxbits =
3034 		    esp_assoc->ipsa_encrkeybits;
3035 		ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
3036 		ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
3037 		if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
3038 			unique = B_TRUE;
3039 	}
3040 	if (ah_assoc != NULL) {
3041 		ap->ipa_act.ipa_apply.ipp_ah_minbits =
3042 		    ah_assoc->ipsa_authkeybits;
3043 		ap->ipa_act.ipa_apply.ipp_ah_maxbits =
3044 		    ah_assoc->ipsa_authkeybits;
3045 		ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
3046 		ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
3047 		if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
3048 			unique = B_TRUE;
3049 	}
3050 	ap->ipa_act.ipa_apply.ipp_use_unique = unique;
3051 	ap->ipa_want_unique = unique;
3052 	ap->ipa_allow_clear = B_FALSE;
3053 	ap->ipa_want_se = ii->ipsec_in_decaps;
3054 	ap->ipa_want_ah = (ah_assoc != NULL);
3055 	ap->ipa_want_esp = (esp_assoc != NULL);
3056 
3057 	ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
3058 
3059 	ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
3060 
3061 	return (ap);
3062 }
3063 
3064 
3065 /*
3066  * Compute the worst-case amount of extra space required by an action.
3067  * Note that, because of the ESP considerations listed below, this is
3068  * actually not the same as the best-case reduction in the MTU; in the
3069  * future, we should pass additional information to this function to
3070  * allow the actual MTU impact to be computed.
3071  *
3072  * AH: Revisit this if we implement algorithms with
3073  * a verifier size of more than 12 bytes.
3074  *
3075  * ESP: A more exact but more messy computation would take into
3076  * account the interaction between the cipher block size and the
3077  * effective MTU, yielding the inner payload size which reflects a
3078  * packet with *minimum* ESP padding..
3079  */
3080 int32_t
3081 ipsec_act_ovhd(const ipsec_act_t *act)
3082 {
3083 	int32_t overhead = 0;
3084 
3085 	if (act->ipa_type == IPSEC_ACT_APPLY) {
3086 		const ipsec_prot_t *ipp = &act->ipa_apply;
3087 
3088 		if (ipp->ipp_use_ah)
3089 			overhead += IPSEC_MAX_AH_HDR_SIZE;
3090 		if (ipp->ipp_use_esp) {
3091 			overhead += IPSEC_MAX_ESP_HDR_SIZE;
3092 			overhead += sizeof (struct udphdr);
3093 		}
3094 		if (ipp->ipp_use_se)
3095 			overhead += IP_SIMPLE_HDR_LENGTH;
3096 	}
3097 	return (overhead);
3098 }
3099 
3100 /*
3101  * This hash function is used only when creating policies and thus is not
3102  * performance-critical for packet flows.
3103  *
3104  * Future work: canonicalize the structures hashed with this (i.e.,
3105  * zeroize padding) so the hash works correctly.
3106  */
3107 /* ARGSUSED */
3108 static uint32_t
3109 policy_hash(int size, const void *start, const void *end)
3110 {
3111 	return (0);
3112 }
3113 
3114 
3115 /*
3116  * Hash function macros for each address type.
3117  *
3118  * The IPV6 hash function assumes that the low order 32-bits of the
3119  * address (typically containing the low order 24 bits of the mac
3120  * address) are reasonably well-distributed.  Revisit this if we run
3121  * into trouble from lots of collisions on ::1 addresses and the like
3122  * (seems unlikely).
3123  */
3124 #define	IPSEC_IPV4_HASH(a, n) ((a) % (n))
3125 #define	IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
3126 
3127 /*
3128  * These two hash functions should produce coordinated values
3129  * but have slightly different roles.
3130  */
3131 static uint32_t
3132 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns)
3133 {
3134 	uint32_t valid = selkey->ipsl_valid;
3135 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3136 
3137 	if (!(valid & IPSL_REMOTE_ADDR))
3138 		return (IPSEC_SEL_NOHASH);
3139 
3140 	if (valid & IPSL_IPV4) {
3141 		if (selkey->ipsl_remote_pfxlen == 32) {
3142 			return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3143 			    ipss->ipsec_spd_hashsize));
3144 		}
3145 	}
3146 	if (valid & IPSL_IPV6) {
3147 		if (selkey->ipsl_remote_pfxlen == 128) {
3148 			return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3149 			    ipss->ipsec_spd_hashsize));
3150 		}
3151 	}
3152 	return (IPSEC_SEL_NOHASH);
3153 }
3154 
3155 static uint32_t
3156 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
3157 {
3158 	if (sel->ips_isv4) {
3159 		return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
3160 		    root->ipr_nchains));
3161 	}
3162 	return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
3163 }
3164 
3165 /*
3166  * Intern actions into the action hash table.
3167  */
3168 ipsec_action_t *
3169 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns)
3170 {
3171 	int i;
3172 	uint32_t hval;
3173 	ipsec_action_t *ap;
3174 	ipsec_action_t *prev = NULL;
3175 	int32_t overhead, maxovhd = 0;
3176 	boolean_t allow_clear = B_FALSE;
3177 	boolean_t want_ah = B_FALSE;
3178 	boolean_t want_esp = B_FALSE;
3179 	boolean_t want_se = B_FALSE;
3180 	boolean_t want_unique = B_FALSE;
3181 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3182 
3183 	/*
3184 	 * TODO: should canonicalize a[] (i.e., zeroize any padding)
3185 	 * so we can use a non-trivial policy_hash function.
3186 	 */
3187 	for (i = n-1; i >= 0; i--) {
3188 		hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
3189 
3190 		HASH_LOCK(ipss->ipsec_action_hash, hval);
3191 
3192 		for (HASH_ITERATE(ap, ipa_hash,
3193 		    ipss->ipsec_action_hash, hval)) {
3194 			if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
3195 				continue;
3196 			if (ap->ipa_next != prev)
3197 				continue;
3198 			break;
3199 		}
3200 		if (ap != NULL) {
3201 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3202 			prev = ap;
3203 			continue;
3204 		}
3205 		/*
3206 		 * need to allocate a new one..
3207 		 */
3208 		ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
3209 		if (ap == NULL) {
3210 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3211 			if (prev != NULL)
3212 				ipsec_action_free(prev);
3213 			return (NULL);
3214 		}
3215 		HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval);
3216 
3217 		ap->ipa_next = prev;
3218 		ap->ipa_act = a[i];
3219 
3220 		overhead = ipsec_act_ovhd(&a[i]);
3221 		if (maxovhd < overhead)
3222 			maxovhd = overhead;
3223 
3224 		if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
3225 		    (a[i].ipa_type == IPSEC_ACT_CLEAR))
3226 			allow_clear = B_TRUE;
3227 		if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3228 			const ipsec_prot_t *ipp = &a[i].ipa_apply;
3229 
3230 			ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3231 			want_ah |= ipp->ipp_use_ah;
3232 			want_esp |= ipp->ipp_use_esp;
3233 			want_se |= ipp->ipp_use_se;
3234 			want_unique |= ipp->ipp_use_unique;
3235 		}
3236 		ap->ipa_allow_clear = allow_clear;
3237 		ap->ipa_want_ah = want_ah;
3238 		ap->ipa_want_esp = want_esp;
3239 		ap->ipa_want_se = want_se;
3240 		ap->ipa_want_unique = want_unique;
3241 		ap->ipa_refs = 1; /* from the hash table */
3242 		ap->ipa_ovhd = maxovhd;
3243 		if (prev)
3244 			prev->ipa_refs++;
3245 		prev = ap;
3246 		HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3247 	}
3248 
3249 	ap->ipa_refs++;		/* caller's reference */
3250 
3251 	return (ap);
3252 }
3253 
3254 /*
3255  * Called when refcount goes to 0, indicating that all references to this
3256  * node are gone.
3257  *
3258  * This does not unchain the action from the hash table.
3259  */
3260 void
3261 ipsec_action_free(ipsec_action_t *ap)
3262 {
3263 	for (;;) {
3264 		ipsec_action_t *np = ap->ipa_next;
3265 		ASSERT(ap->ipa_refs == 0);
3266 		ASSERT(ap->ipa_hash.hash_pp == NULL);
3267 		kmem_cache_free(ipsec_action_cache, ap);
3268 		ap = np;
3269 		/* Inlined IPACT_REFRELE -- avoid recursion */
3270 		if (ap == NULL)
3271 			break;
3272 		membar_exit();
3273 		if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0)
3274 			break;
3275 		/* End inlined IPACT_REFRELE */
3276 	}
3277 }
3278 
3279 /*
3280  * Called when the action hash table goes away.
3281  *
3282  * The actions can be queued on an mblk with ipsec_in or
3283  * ipsec_out, hence the actions might still be around.
3284  * But we decrement ipa_refs here since we no longer have
3285  * a reference to the action from the hash table.
3286  */
3287 static void
3288 ipsec_action_free_table(ipsec_action_t *ap)
3289 {
3290 	while (ap != NULL) {
3291 		ipsec_action_t *np = ap->ipa_next;
3292 
3293 		/* FIXME: remove? */
3294 		(void) printf("ipsec_action_free_table(%p) ref %d\n",
3295 		    (void *)ap, ap->ipa_refs);
3296 		ASSERT(ap->ipa_refs > 0);
3297 		IPACT_REFRELE(ap);
3298 		ap = np;
3299 	}
3300 }
3301 
3302 /*
3303  * Need to walk all stack instances since the reclaim function
3304  * is global for all instances
3305  */
3306 /* ARGSUSED */
3307 static void
3308 ipsec_action_reclaim(void *arg)
3309 {
3310 	netstack_handle_t nh;
3311 	netstack_t *ns;
3312 
3313 	netstack_next_init(&nh);
3314 	while ((ns = netstack_next(&nh)) != NULL) {
3315 		ipsec_action_reclaim_stack(ns);
3316 		netstack_rele(ns);
3317 	}
3318 	netstack_next_fini(&nh);
3319 }
3320 
3321 /*
3322  * Periodically sweep action hash table for actions with refcount==1, and
3323  * nuke them.  We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3324  * because we can't close the race between another thread finding the action
3325  * in the hash table without holding the bucket lock during IPACT_REFRELE.
3326  * Instead, we run this function sporadically to clean up after ourselves;
3327  * we also set it as the "reclaim" function for the action kmem_cache.
3328  *
3329  * Note that it may take several passes of ipsec_action_gc() to free all
3330  * "stale" actions.
3331  */
3332 static void
3333 ipsec_action_reclaim_stack(netstack_t *ns)
3334 {
3335 	int i;
3336 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3337 
3338 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3339 		ipsec_action_t *ap, *np;
3340 
3341 		/* skip the lock if nobody home */
3342 		if (ipss->ipsec_action_hash[i].hash_head == NULL)
3343 			continue;
3344 
3345 		HASH_LOCK(ipss->ipsec_action_hash, i);
3346 		for (ap = ipss->ipsec_action_hash[i].hash_head;
3347 		    ap != NULL; ap = np) {
3348 			ASSERT(ap->ipa_refs > 0);
3349 			np = ap->ipa_hash.hash_next;
3350 			if (ap->ipa_refs > 1)
3351 				continue;
3352 			HASH_UNCHAIN(ap, ipa_hash,
3353 			    ipss->ipsec_action_hash, i);
3354 			IPACT_REFRELE(ap);
3355 		}
3356 		HASH_UNLOCK(ipss->ipsec_action_hash, i);
3357 	}
3358 }
3359 
3360 /*
3361  * Intern a selector set into the selector set hash table.
3362  * This is simpler than the actions case..
3363  */
3364 static ipsec_sel_t *
3365 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns)
3366 {
3367 	ipsec_sel_t *sp;
3368 	uint32_t hval, bucket;
3369 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3370 
3371 	/*
3372 	 * Exactly one AF bit should be set in selkey.
3373 	 */
3374 	ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3375 	    !(selkey->ipsl_valid & IPSL_IPV6));
3376 
3377 	hval = selkey_hash(selkey, ns);
3378 	/* Set pol_hval to uninitialized until we put it in a polhead. */
3379 	selkey->ipsl_sel_hval = hval;
3380 
3381 	bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3382 
3383 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket));
3384 	HASH_LOCK(ipss->ipsec_sel_hash, bucket);
3385 
3386 	for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) {
3387 		if (bcmp(&sp->ipsl_key, selkey,
3388 		    offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3389 			break;
3390 	}
3391 	if (sp != NULL) {
3392 		sp->ipsl_refs++;
3393 
3394 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3395 		return (sp);
3396 	}
3397 
3398 	sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3399 	if (sp == NULL) {
3400 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3401 		return (NULL);
3402 	}
3403 
3404 	HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket);
3405 	sp->ipsl_refs = 2;	/* one for hash table, one for caller */
3406 	sp->ipsl_key = *selkey;
3407 	/* Set to uninitalized and have insertion into polhead fix things. */
3408 	if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3409 		sp->ipsl_key.ipsl_pol_hval = 0;
3410 	else
3411 		sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3412 
3413 	HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3414 
3415 	return (sp);
3416 }
3417 
3418 static void
3419 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns)
3420 {
3421 	ipsec_sel_t *sp = *spp;
3422 	int hval = sp->ipsl_key.ipsl_sel_hval;
3423 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3424 
3425 	*spp = NULL;
3426 
3427 	if (hval == IPSEC_SEL_NOHASH)
3428 		hval = 0;
3429 
3430 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval));
3431 	HASH_LOCK(ipss->ipsec_sel_hash, hval);
3432 	if (--sp->ipsl_refs == 1) {
3433 		HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval);
3434 		sp->ipsl_refs--;
3435 		HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3436 		ASSERT(sp->ipsl_refs == 0);
3437 		kmem_cache_free(ipsec_sel_cache, sp);
3438 		/* Caller unlocks */
3439 		return;
3440 	}
3441 
3442 	HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3443 }
3444 
3445 /*
3446  * Free a policy rule which we know is no longer being referenced.
3447  */
3448 void
3449 ipsec_policy_free(ipsec_policy_t *ipp, netstack_t *ns)
3450 {
3451 	ASSERT(ipp->ipsp_refs == 0);
3452 	ASSERT(ipp->ipsp_sel != NULL);
3453 	ASSERT(ipp->ipsp_act != NULL);
3454 
3455 	ipsec_sel_rel(&ipp->ipsp_sel, ns);
3456 	IPACT_REFRELE(ipp->ipsp_act);
3457 	kmem_cache_free(ipsec_pol_cache, ipp);
3458 }
3459 
3460 /*
3461  * Construction of new policy rules; construct a policy, and add it to
3462  * the appropriate tables.
3463  */
3464 ipsec_policy_t *
3465 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3466     int nacts, int prio, uint64_t *index_ptr, netstack_t *ns)
3467 {
3468 	ipsec_action_t *ap;
3469 	ipsec_sel_t *sp;
3470 	ipsec_policy_t *ipp;
3471 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3472 
3473 	if (index_ptr == NULL)
3474 		index_ptr = &ipss->ipsec_next_policy_index;
3475 
3476 	ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3477 	ap = ipsec_act_find(a, nacts, ns);
3478 	sp = ipsec_find_sel(keys, ns);
3479 
3480 	if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3481 		if (ap != NULL) {
3482 			IPACT_REFRELE(ap);
3483 		}
3484 		if (sp != NULL)
3485 			ipsec_sel_rel(&sp, ns);
3486 		if (ipp != NULL)
3487 			kmem_cache_free(ipsec_pol_cache, ipp);
3488 		return (NULL);
3489 	}
3490 
3491 	HASH_NULL(ipp, ipsp_hash);
3492 
3493 	ipp->ipsp_refs = 1;	/* caller's reference */
3494 	ipp->ipsp_sel = sp;
3495 	ipp->ipsp_act = ap;
3496 	ipp->ipsp_prio = prio;	/* rule priority */
3497 	ipp->ipsp_index = *index_ptr;
3498 	(*index_ptr)++;
3499 
3500 	return (ipp);
3501 }
3502 
3503 static void
3504 ipsec_update_present_flags(ipsec_stack_t *ipss)
3505 {
3506 	boolean_t hashpol;
3507 
3508 	hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0);
3509 
3510 	if (hashpol) {
3511 		ipss->ipsec_outbound_v4_policy_present = B_TRUE;
3512 		ipss->ipsec_outbound_v6_policy_present = B_TRUE;
3513 		ipss->ipsec_inbound_v4_policy_present = B_TRUE;
3514 		ipss->ipsec_inbound_v6_policy_present = B_TRUE;
3515 		return;
3516 	}
3517 
3518 	ipss->ipsec_outbound_v4_policy_present = (NULL !=
3519 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3520 	    ipr_nonhash[IPSEC_AF_V4]);
3521 	ipss->ipsec_outbound_v6_policy_present = (NULL !=
3522 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3523 	    ipr_nonhash[IPSEC_AF_V6]);
3524 	ipss->ipsec_inbound_v4_policy_present = (NULL !=
3525 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3526 	    ipr_nonhash[IPSEC_AF_V4]);
3527 	ipss->ipsec_inbound_v6_policy_present = (NULL !=
3528 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3529 	    ipr_nonhash[IPSEC_AF_V6]);
3530 }
3531 
3532 boolean_t
3533 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir,
3534 	netstack_t *ns)
3535 {
3536 	ipsec_sel_t *sp;
3537 	ipsec_policy_t *ip, *nip, *head;
3538 	int af;
3539 	ipsec_policy_root_t *pr = &php->iph_root[dir];
3540 
3541 	sp = ipsec_find_sel(keys, ns);
3542 
3543 	if (sp == NULL)
3544 		return (B_FALSE);
3545 
3546 	af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3547 
3548 	rw_enter(&php->iph_lock, RW_WRITER);
3549 
3550 	if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3551 		head = pr->ipr_nonhash[af];
3552 	} else {
3553 		head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3554 	}
3555 
3556 	for (ip = head; ip != NULL; ip = nip) {
3557 		nip = ip->ipsp_hash.hash_next;
3558 		if (ip->ipsp_sel != sp) {
3559 			continue;
3560 		}
3561 
3562 		IPPOL_UNCHAIN(php, ip, ns);
3563 
3564 		php->iph_gen++;
3565 		ipsec_update_present_flags(ns->netstack_ipsec);
3566 
3567 		rw_exit(&php->iph_lock);
3568 
3569 		ipsec_sel_rel(&sp, ns);
3570 
3571 		return (B_TRUE);
3572 	}
3573 
3574 	rw_exit(&php->iph_lock);
3575 	ipsec_sel_rel(&sp, ns);
3576 	return (B_FALSE);
3577 }
3578 
3579 int
3580 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index,
3581     netstack_t *ns)
3582 {
3583 	boolean_t found = B_FALSE;
3584 	ipsec_policy_t ipkey;
3585 	ipsec_policy_t *ip;
3586 	avl_index_t where;
3587 
3588 	(void) memset(&ipkey, 0, sizeof (ipkey));
3589 	ipkey.ipsp_index = policy_index;
3590 
3591 	rw_enter(&php->iph_lock, RW_WRITER);
3592 
3593 	/*
3594 	 * We could be cleverer here about the walk.
3595 	 * but well, (k+1)*log(N) will do for now (k==number of matches,
3596 	 * N==number of table entries
3597 	 */
3598 	for (;;) {
3599 		ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3600 		    (void *)&ipkey, &where);
3601 		ASSERT(ip == NULL);
3602 
3603 		ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3604 
3605 		if (ip == NULL)
3606 			break;
3607 
3608 		if (ip->ipsp_index != policy_index) {
3609 			ASSERT(ip->ipsp_index > policy_index);
3610 			break;
3611 		}
3612 
3613 		IPPOL_UNCHAIN(php, ip, ns);
3614 		found = B_TRUE;
3615 	}
3616 
3617 	if (found) {
3618 		php->iph_gen++;
3619 		ipsec_update_present_flags(ns->netstack_ipsec);
3620 	}
3621 
3622 	rw_exit(&php->iph_lock);
3623 
3624 	return (found ? 0 : ENOENT);
3625 }
3626 
3627 /*
3628  * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3629  * into the correct policy ruleset.  As a side-effect, it sets the hash
3630  * entries on "ipp"'s ipsp_pol_hval.
3631  *
3632  * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3633  * duplicate policy exists with exactly the same selectors), or an icmp
3634  * rule exists with a different encryption/authentication action.
3635  */
3636 boolean_t
3637 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3638 {
3639 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3640 	int af = -1;
3641 	ipsec_policy_t *p2, *head;
3642 	uint8_t check_proto;
3643 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3644 	uint32_t	valid = selkey->ipsl_valid;
3645 
3646 	if (valid & IPSL_IPV6) {
3647 		ASSERT(!(valid & IPSL_IPV4));
3648 		af = IPSEC_AF_V6;
3649 		check_proto = IPPROTO_ICMPV6;
3650 	} else {
3651 		ASSERT(valid & IPSL_IPV4);
3652 		af = IPSEC_AF_V4;
3653 		check_proto = IPPROTO_ICMP;
3654 	}
3655 
3656 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3657 
3658 	/*
3659 	 * Double-check that we don't have any duplicate selectors here.
3660 	 * Because selectors are interned below, we need only compare pointers
3661 	 * for equality.
3662 	 */
3663 	if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3664 		head = pr->ipr_nonhash[af];
3665 	} else {
3666 		selkey->ipsl_pol_hval =
3667 		    (selkey->ipsl_valid & IPSL_IPV4) ?
3668 		    IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3669 		    pr->ipr_nchains) :
3670 		    IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3671 		    pr->ipr_nchains);
3672 
3673 		head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3674 	}
3675 
3676 	for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3677 		if (p2->ipsp_sel == ipp->ipsp_sel)
3678 			return (B_FALSE);
3679 	}
3680 
3681 	/*
3682 	 * If it's ICMP and not a drop or pass rule, run through the ICMP
3683 	 * rules and make sure the action is either new or the same as any
3684 	 * other actions.  We don't have to check the full chain because
3685 	 * discard and bypass will override all other actions
3686 	 */
3687 
3688 	if (valid & IPSL_PROTOCOL &&
3689 	    selkey->ipsl_proto == check_proto &&
3690 	    (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3691 
3692 		for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3693 
3694 			if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3695 			    p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3696 			    (p2->ipsp_act->ipa_act.ipa_type ==
3697 			    IPSEC_ACT_APPLY)) {
3698 				return (ipsec_compare_action(p2, ipp));
3699 			}
3700 		}
3701 	}
3702 
3703 	return (B_TRUE);
3704 }
3705 
3706 /*
3707  * compare the action chains of two policies for equality
3708  * B_TRUE -> effective equality
3709  */
3710 
3711 static boolean_t
3712 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3713 {
3714 
3715 	ipsec_action_t *act1, *act2;
3716 
3717 	/* We have a valid rule. Let's compare the actions */
3718 	if (p1->ipsp_act == p2->ipsp_act) {
3719 		/* same action. We are good */
3720 		return (B_TRUE);
3721 	}
3722 
3723 	/* we have to walk the chain */
3724 
3725 	act1 = p1->ipsp_act;
3726 	act2 = p2->ipsp_act;
3727 
3728 	while (act1 != NULL && act2 != NULL) {
3729 
3730 		/* otherwise, Are we close enough? */
3731 		if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3732 		    act1->ipa_want_ah != act2->ipa_want_ah ||
3733 		    act1->ipa_want_esp != act2->ipa_want_esp ||
3734 		    act1->ipa_want_se != act2->ipa_want_se) {
3735 			/* Nope, we aren't */
3736 			return (B_FALSE);
3737 		}
3738 
3739 		if (act1->ipa_want_ah) {
3740 			if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3741 			    act2->ipa_act.ipa_apply.ipp_auth_alg) {
3742 				return (B_FALSE);
3743 			}
3744 
3745 			if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3746 			    act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3747 			    act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3748 			    act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3749 				return (B_FALSE);
3750 			}
3751 		}
3752 
3753 		if (act1->ipa_want_esp) {
3754 			if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3755 			    act2->ipa_act.ipa_apply.ipp_use_esp ||
3756 			    act1->ipa_act.ipa_apply.ipp_use_espa !=
3757 			    act2->ipa_act.ipa_apply.ipp_use_espa) {
3758 				return (B_FALSE);
3759 			}
3760 
3761 			if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3762 				if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3763 				    act2->ipa_act.ipa_apply.ipp_encr_alg) {
3764 					return (B_FALSE);
3765 				}
3766 
3767 				if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3768 				    act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3769 				    act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3770 				    act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3771 					return (B_FALSE);
3772 				}
3773 			}
3774 
3775 			if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3776 				if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3777 				    act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3778 					return (B_FALSE);
3779 				}
3780 
3781 				if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3782 				    act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3783 				    act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3784 				    act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3785 					return (B_FALSE);
3786 				}
3787 			}
3788 
3789 		}
3790 
3791 		act1 = act1->ipa_next;
3792 		act2 = act2->ipa_next;
3793 	}
3794 
3795 	if (act1 != NULL || act2 != NULL) {
3796 		return (B_FALSE);
3797 	}
3798 
3799 	return (B_TRUE);
3800 }
3801 
3802 
3803 /*
3804  * Given a constructed ipsec_policy_t policy rule, enter it into
3805  * the correct policy ruleset.
3806  *
3807  * ipsec_check_policy() is assumed to have succeeded first (to check for
3808  * duplicates).
3809  */
3810 void
3811 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction,
3812     netstack_t *ns)
3813 {
3814 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3815 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3816 	uint32_t valid = selkey->ipsl_valid;
3817 	uint32_t hval = selkey->ipsl_pol_hval;
3818 	int af = -1;
3819 
3820 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3821 
3822 	if (valid & IPSL_IPV6) {
3823 		ASSERT(!(valid & IPSL_IPV4));
3824 		af = IPSEC_AF_V6;
3825 	} else {
3826 		ASSERT(valid & IPSL_IPV4);
3827 		af = IPSEC_AF_V4;
3828 	}
3829 
3830 	php->iph_gen++;
3831 
3832 	if (hval == IPSEC_SEL_NOHASH) {
3833 		HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3834 	} else {
3835 		HASH_LOCK(pr->ipr_hash, hval);
3836 		HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3837 		HASH_UNLOCK(pr->ipr_hash, hval);
3838 	}
3839 
3840 	ipsec_insert_always(&php->iph_rulebyid, ipp);
3841 
3842 	ipsec_update_present_flags(ns->netstack_ipsec);
3843 }
3844 
3845 static void
3846 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr,
3847     netstack_t *ns)
3848 {
3849 	ipsec_policy_t *ip, *nip;
3850 	int af, chain, nchain;
3851 
3852 	for (af = 0; af < IPSEC_NAF; af++) {
3853 		for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3854 			nip = ip->ipsp_hash.hash_next;
3855 			IPPOL_UNCHAIN(php, ip, ns);
3856 		}
3857 		ipr->ipr_nonhash[af] = NULL;
3858 	}
3859 	nchain = ipr->ipr_nchains;
3860 
3861 	for (chain = 0; chain < nchain; chain++) {
3862 		for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3863 		    ip = nip) {
3864 			nip = ip->ipsp_hash.hash_next;
3865 			IPPOL_UNCHAIN(php, ip, ns);
3866 		}
3867 		ipr->ipr_hash[chain].hash_head = NULL;
3868 	}
3869 }
3870 
3871 void
3872 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns)
3873 {
3874 	int dir;
3875 
3876 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3877 
3878 	for (dir = 0; dir < IPSEC_NTYPES; dir++)
3879 		ipsec_ipr_flush(php, &php->iph_root[dir], ns);
3880 
3881 	ipsec_update_present_flags(ns->netstack_ipsec);
3882 }
3883 
3884 void
3885 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns)
3886 {
3887 	int dir;
3888 
3889 	ASSERT(php->iph_refs == 0);
3890 
3891 	rw_enter(&php->iph_lock, RW_WRITER);
3892 	ipsec_polhead_flush(php, ns);
3893 	rw_exit(&php->iph_lock);
3894 	rw_destroy(&php->iph_lock);
3895 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3896 		ipsec_policy_root_t *ipr = &php->iph_root[dir];
3897 		int chain;
3898 
3899 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
3900 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3901 
3902 	}
3903 	ipsec_polhead_free_table(php);
3904 	kmem_free(php, sizeof (*php));
3905 }
3906 
3907 static void
3908 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3909 {
3910 	int af;
3911 
3912 	ipr->ipr_nchains = 0;
3913 	ipr->ipr_hash = NULL;
3914 
3915 	for (af = 0; af < IPSEC_NAF; af++) {
3916 		ipr->ipr_nonhash[af] = NULL;
3917 	}
3918 }
3919 
3920 ipsec_policy_head_t *
3921 ipsec_polhead_create(void)
3922 {
3923 	ipsec_policy_head_t *php;
3924 
3925 	php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3926 	if (php == NULL)
3927 		return (php);
3928 
3929 	rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3930 	php->iph_refs = 1;
3931 	php->iph_gen = 0;
3932 
3933 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3934 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3935 
3936 	avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3937 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3938 
3939 	return (php);
3940 }
3941 
3942 /*
3943  * Clone the policy head into a new polhead; release one reference to the
3944  * old one and return the only reference to the new one.
3945  * If the old one had a refcount of 1, just return it.
3946  */
3947 ipsec_policy_head_t *
3948 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns)
3949 {
3950 	ipsec_policy_head_t *nphp;
3951 
3952 	if (php == NULL)
3953 		return (ipsec_polhead_create());
3954 	else if (php->iph_refs == 1)
3955 		return (php);
3956 
3957 	nphp = ipsec_polhead_create();
3958 	if (nphp == NULL)
3959 		return (NULL);
3960 
3961 	if (ipsec_copy_polhead(php, nphp, ns) != 0) {
3962 		ipsec_polhead_free(nphp, ns);
3963 		return (NULL);
3964 	}
3965 	IPPH_REFRELE(php, ns);
3966 	return (nphp);
3967 }
3968 
3969 /*
3970  * When sending a response to a ICMP request or generating a RST
3971  * in the TCP case, the outbound packets need to go at the same level
3972  * of protection as the incoming ones i.e we associate our outbound
3973  * policy with how the packet came in. We call this after we have
3974  * accepted the incoming packet which may or may not have been in
3975  * clear and hence we are sending the reply back with the policy
3976  * matching the incoming datagram's policy.
3977  *
3978  * NOTE : This technology serves two purposes :
3979  *
3980  * 1) If we have multiple outbound policies, we send out a reply
3981  *    matching with how it came in rather than matching the outbound
3982  *    policy.
3983  *
3984  * 2) For assymetric policies, we want to make sure that incoming
3985  *    and outgoing has the same level of protection. Assymetric
3986  *    policies exist only with global policy where we may not have
3987  *    both outbound and inbound at the same time.
3988  *
3989  * NOTE2:	This function is called by cleartext cases, so it needs to be
3990  *		in IP proper.
3991  */
3992 boolean_t
3993 ipsec_in_to_out(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h)
3994 {
3995 	ipsec_in_t  *ii;
3996 	ipsec_out_t  *io;
3997 	boolean_t v4;
3998 	mblk_t *mp;
3999 	boolean_t secure, attach_if;
4000 	uint_t ifindex;
4001 	ipsec_selector_t sel;
4002 	ipsec_action_t *reflect_action = NULL;
4003 	zoneid_t zoneid;
4004 	netstack_t	*ns;
4005 
4006 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4007 
4008 	bzero((void*)&sel, sizeof (sel));
4009 
4010 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
4011 
4012 	mp = ipsec_mp->b_cont;
4013 	ASSERT(mp != NULL);
4014 
4015 	if (ii->ipsec_in_action != NULL) {
4016 		/* transfer reference.. */
4017 		reflect_action = ii->ipsec_in_action;
4018 		ii->ipsec_in_action = NULL;
4019 	} else if (!ii->ipsec_in_loopback)
4020 		reflect_action = ipsec_in_to_out_action(ii);
4021 	secure = ii->ipsec_in_secure;
4022 	attach_if = ii->ipsec_in_attach_if;
4023 	ifindex = ii->ipsec_in_ill_index;
4024 	zoneid = ii->ipsec_in_zoneid;
4025 	ASSERT(zoneid != ALL_ZONES);
4026 	ns = ii->ipsec_in_ns;
4027 	v4 = ii->ipsec_in_v4;
4028 
4029 	ipsec_in_release_refs(ii);	/* No netstack_rele/hold needed */
4030 
4031 	/*
4032 	 * The caller is going to send the datagram out which might
4033 	 * go on the wire or delivered locally through ip_wput_local.
4034 	 *
4035 	 * 1) If it goes out on the wire, new associations will be
4036 	 *    obtained.
4037 	 * 2) If it is delivered locally, ip_wput_local will convert
4038 	 *    this IPSEC_OUT to a IPSEC_IN looking at the requests.
4039 	 */
4040 
4041 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4042 	bzero(io, sizeof (ipsec_out_t));
4043 	io->ipsec_out_type = IPSEC_OUT;
4044 	io->ipsec_out_len = sizeof (ipsec_out_t);
4045 	io->ipsec_out_frtn.free_func = ipsec_out_free;
4046 	io->ipsec_out_frtn.free_arg = (char *)io;
4047 	io->ipsec_out_act = reflect_action;
4048 
4049 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0,
4050 	    ns->netstack_ipsec))
4051 		return (B_FALSE);
4052 
4053 	io->ipsec_out_src_port = sel.ips_local_port;
4054 	io->ipsec_out_dst_port = sel.ips_remote_port;
4055 	io->ipsec_out_proto = sel.ips_protocol;
4056 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
4057 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
4058 
4059 	/*
4060 	 * Don't use global policy for this, as we want
4061 	 * to use the same protection that was applied to the inbound packet.
4062 	 */
4063 	io->ipsec_out_use_global_policy = B_FALSE;
4064 	io->ipsec_out_proc_begin = B_FALSE;
4065 	io->ipsec_out_secure = secure;
4066 	io->ipsec_out_v4 = v4;
4067 	io->ipsec_out_attach_if = attach_if;
4068 	io->ipsec_out_ill_index = ifindex;
4069 	io->ipsec_out_zoneid = zoneid;
4070 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4071 
4072 	return (B_TRUE);
4073 }
4074 
4075 mblk_t *
4076 ipsec_in_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns)
4077 {
4078 	ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
4079 	ipsec_in_t *nii;
4080 	mblk_t *nmp;
4081 	frtn_t nfrtn;
4082 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4083 
4084 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
4085 	ASSERT(ii->ipsec_in_len == sizeof (ipsec_in_t));
4086 
4087 	nmp = ipsec_in_alloc(ii->ipsec_in_v4, ns);
4088 	if (nmp == NULL) {
4089 		ip_drop_packet_chain(cont, B_FALSE, NULL, NULL,
4090 		    DROPPER(ipss, ipds_spd_nomem),
4091 		    &ipss->ipsec_spd_dropper);
4092 		return (NULL);
4093 	}
4094 
4095 	ASSERT(nmp->b_datap->db_type == M_CTL);
4096 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
4097 
4098 	/*
4099 	 * Bump refcounts.
4100 	 */
4101 	if (ii->ipsec_in_ah_sa != NULL)
4102 		IPSA_REFHOLD(ii->ipsec_in_ah_sa);
4103 	if (ii->ipsec_in_esp_sa != NULL)
4104 		IPSA_REFHOLD(ii->ipsec_in_esp_sa);
4105 	if (ii->ipsec_in_policy != NULL)
4106 		IPPH_REFHOLD(ii->ipsec_in_policy);
4107 
4108 	/*
4109 	 * Copy everything, but preserve the free routine provided by
4110 	 * ipsec_in_alloc().
4111 	 */
4112 	nii = (ipsec_in_t *)nmp->b_rptr;
4113 	nfrtn = nii->ipsec_in_frtn;
4114 	bcopy(ii, nii, sizeof (*ii));
4115 	nii->ipsec_in_frtn = nfrtn;
4116 
4117 	nmp->b_cont = cont;
4118 
4119 	return (nmp);
4120 }
4121 
4122 mblk_t *
4123 ipsec_out_tag(mblk_t *mp, mblk_t *cont, netstack_t *ns)
4124 {
4125 	ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr;
4126 	ipsec_out_t *nio;
4127 	mblk_t *nmp;
4128 	frtn_t nfrtn;
4129 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4130 
4131 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4132 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4133 
4134 	nmp = ipsec_alloc_ipsec_out(ns);
4135 	if (nmp == NULL) {
4136 		ip_drop_packet_chain(cont, B_FALSE, NULL, NULL,
4137 		    DROPPER(ipss, ipds_spd_nomem),
4138 		    &ipss->ipsec_spd_dropper);
4139 		return (NULL);
4140 	}
4141 	ASSERT(nmp->b_datap->db_type == M_CTL);
4142 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
4143 
4144 	/*
4145 	 * Bump refcounts.
4146 	 */
4147 	if (io->ipsec_out_ah_sa != NULL)
4148 		IPSA_REFHOLD(io->ipsec_out_ah_sa);
4149 	if (io->ipsec_out_esp_sa != NULL)
4150 		IPSA_REFHOLD(io->ipsec_out_esp_sa);
4151 	if (io->ipsec_out_polhead != NULL)
4152 		IPPH_REFHOLD(io->ipsec_out_polhead);
4153 	if (io->ipsec_out_policy != NULL)
4154 		IPPOL_REFHOLD(io->ipsec_out_policy);
4155 	if (io->ipsec_out_act != NULL)
4156 		IPACT_REFHOLD(io->ipsec_out_act);
4157 	if (io->ipsec_out_latch != NULL)
4158 		IPLATCH_REFHOLD(io->ipsec_out_latch);
4159 	if (io->ipsec_out_cred != NULL)
4160 		crhold(io->ipsec_out_cred);
4161 
4162 	/*
4163 	 * Copy everything, but preserve the free routine provided by
4164 	 * ipsec_alloc_ipsec_out().
4165 	 */
4166 	nio = (ipsec_out_t *)nmp->b_rptr;
4167 	nfrtn = nio->ipsec_out_frtn;
4168 	bcopy(io, nio, sizeof (*io));
4169 	nio->ipsec_out_frtn = nfrtn;
4170 
4171 	nmp->b_cont = cont;
4172 
4173 	return (nmp);
4174 }
4175 
4176 static void
4177 ipsec_out_release_refs(ipsec_out_t *io)
4178 {
4179 	netstack_t	*ns = io->ipsec_out_ns;
4180 
4181 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4182 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4183 	ASSERT(io->ipsec_out_ns != NULL);
4184 
4185 	/* Note: IPSA_REFRELE is multi-line macro */
4186 	if (io->ipsec_out_ah_sa != NULL)
4187 		IPSA_REFRELE(io->ipsec_out_ah_sa);
4188 	if (io->ipsec_out_esp_sa != NULL)
4189 		IPSA_REFRELE(io->ipsec_out_esp_sa);
4190 	if (io->ipsec_out_polhead != NULL)
4191 		IPPH_REFRELE(io->ipsec_out_polhead, ns);
4192 	if (io->ipsec_out_policy != NULL)
4193 		IPPOL_REFRELE(io->ipsec_out_policy, ns);
4194 	if (io->ipsec_out_act != NULL)
4195 		IPACT_REFRELE(io->ipsec_out_act);
4196 	if (io->ipsec_out_cred != NULL) {
4197 		crfree(io->ipsec_out_cred);
4198 		io->ipsec_out_cred = NULL;
4199 	}
4200 	if (io->ipsec_out_latch) {
4201 		IPLATCH_REFRELE(io->ipsec_out_latch, ns);
4202 		io->ipsec_out_latch = NULL;
4203 	}
4204 }
4205 
4206 static void
4207 ipsec_out_free(void *arg)
4208 {
4209 	ipsec_out_t *io = (ipsec_out_t *)arg;
4210 	ipsec_out_release_refs(io);
4211 	kmem_cache_free(ipsec_info_cache, arg);
4212 }
4213 
4214 static void
4215 ipsec_in_release_refs(ipsec_in_t *ii)
4216 {
4217 	netstack_t	*ns = ii->ipsec_in_ns;
4218 
4219 	ASSERT(ii->ipsec_in_ns != NULL);
4220 
4221 	/* Note: IPSA_REFRELE is multi-line macro */
4222 	if (ii->ipsec_in_ah_sa != NULL)
4223 		IPSA_REFRELE(ii->ipsec_in_ah_sa);
4224 	if (ii->ipsec_in_esp_sa != NULL)
4225 		IPSA_REFRELE(ii->ipsec_in_esp_sa);
4226 	if (ii->ipsec_in_policy != NULL)
4227 		IPPH_REFRELE(ii->ipsec_in_policy, ns);
4228 	if (ii->ipsec_in_da != NULL) {
4229 		freeb(ii->ipsec_in_da);
4230 		ii->ipsec_in_da = NULL;
4231 	}
4232 }
4233 
4234 static void
4235 ipsec_in_free(void *arg)
4236 {
4237 	ipsec_in_t *ii = (ipsec_in_t *)arg;
4238 	ipsec_in_release_refs(ii);
4239 	kmem_cache_free(ipsec_info_cache, arg);
4240 }
4241 
4242 /*
4243  * This is called only for outbound datagrams if the datagram needs to
4244  * go out secure.  A NULL mp can be passed to get an ipsec_out. This
4245  * facility is used by ip_unbind.
4246  *
4247  * NOTE : o As the data part could be modified by ipsec_out_process etc.
4248  *	    we can't make it fast by calling a dup.
4249  */
4250 mblk_t *
4251 ipsec_alloc_ipsec_out(netstack_t *ns)
4252 {
4253 	mblk_t *ipsec_mp;
4254 	ipsec_out_t *io = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
4255 
4256 	if (io == NULL)
4257 		return (NULL);
4258 
4259 	bzero(io, sizeof (ipsec_out_t));
4260 
4261 	io->ipsec_out_type = IPSEC_OUT;
4262 	io->ipsec_out_len = sizeof (ipsec_out_t);
4263 	io->ipsec_out_frtn.free_func = ipsec_out_free;
4264 	io->ipsec_out_frtn.free_arg = (char *)io;
4265 
4266 	/*
4267 	 * Set the zoneid to ALL_ZONES which is used as an invalid value. Code
4268 	 * using ipsec_out_zoneid should assert that the zoneid has been set to
4269 	 * a sane value.
4270 	 */
4271 	io->ipsec_out_zoneid = ALL_ZONES;
4272 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4273 
4274 	ipsec_mp = desballoc((uint8_t *)io, sizeof (ipsec_info_t), BPRI_HI,
4275 	    &io->ipsec_out_frtn);
4276 	if (ipsec_mp == NULL) {
4277 		ipsec_out_free(io);
4278 
4279 		return (NULL);
4280 	}
4281 	ipsec_mp->b_datap->db_type = M_CTL;
4282 	ipsec_mp->b_wptr = ipsec_mp->b_rptr + sizeof (ipsec_info_t);
4283 
4284 	return (ipsec_mp);
4285 }
4286 
4287 /*
4288  * Attach an IPSEC_OUT; use pol for policy if it is non-null.
4289  * Otherwise initialize using conn.
4290  *
4291  * If pol is non-null, we consume a reference to it.
4292  */
4293 mblk_t *
4294 ipsec_attach_ipsec_out(mblk_t **mp, conn_t *connp, ipsec_policy_t *pol,
4295     uint8_t proto, netstack_t *ns)
4296 {
4297 	mblk_t *ipsec_mp;
4298 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4299 
4300 	ASSERT((pol != NULL) || (connp != NULL));
4301 
4302 	ipsec_mp = ipsec_alloc_ipsec_out(ns);
4303 	if (ipsec_mp == NULL) {
4304 		ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_NOTE,
4305 		    "ipsec_attach_ipsec_out: Allocation failure\n");
4306 		ip_drop_packet(*mp, B_FALSE, NULL, NULL,
4307 		    DROPPER(ipss, ipds_spd_nomem),
4308 		    &ipss->ipsec_spd_dropper);
4309 		*mp = NULL;
4310 		return (NULL);
4311 	}
4312 	ipsec_mp->b_cont = *mp;
4313 	/*
4314 	 * If *mp is NULL, ipsec_init_ipsec_out() won't/should not be using it.
4315 	 */
4316 	return (ipsec_init_ipsec_out(ipsec_mp, mp, connp, pol, proto, ns));
4317 }
4318 
4319 /*
4320  * Initialize the IPSEC_OUT (ipsec_mp) using pol if it is non-null.
4321  * Otherwise initialize using conn.
4322  *
4323  * If pol is non-null, we consume a reference to it.
4324  */
4325 mblk_t *
4326 ipsec_init_ipsec_out(mblk_t *ipsec_mp, mblk_t **mp, conn_t *connp,
4327     ipsec_policy_t *pol, uint8_t proto, netstack_t *ns)
4328 {
4329 	ipsec_out_t *io;
4330 	ipsec_policy_t *p;
4331 	ipha_t *ipha;
4332 	ip6_t *ip6h;
4333 	ipsec_stack_t *ipss = ns->netstack_ipsec;
4334 
4335 	ASSERT(ipsec_mp->b_cont == *mp);
4336 
4337 	ASSERT((pol != NULL) || (connp != NULL));
4338 
4339 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4340 	ASSERT(ipsec_mp->b_wptr == (ipsec_mp->b_rptr + sizeof (ipsec_info_t)));
4341 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4342 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4343 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4344 	io->ipsec_out_latch = NULL;
4345 	/*
4346 	 * Set the zoneid when we have the connp.
4347 	 * Otherwise, we're called from ip_wput_attach_policy() who will take
4348 	 * care of setting the zoneid.
4349 	 */
4350 	if (connp != NULL)
4351 		io->ipsec_out_zoneid = connp->conn_zoneid;
4352 
4353 	io->ipsec_out_ns = ns;		/* No netstack_hold */
4354 
4355 	if (*mp != NULL) {
4356 		ipha = (ipha_t *)(*mp)->b_rptr;
4357 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
4358 			io->ipsec_out_v4 = B_TRUE;
4359 			ip6h = NULL;
4360 		} else {
4361 			io->ipsec_out_v4 = B_FALSE;
4362 			ip6h = (ip6_t *)ipha;
4363 			ipha = NULL;
4364 		}
4365 	} else {
4366 		ASSERT(connp != NULL && connp->conn_policy_cached);
4367 		ip6h = NULL;
4368 		ipha = NULL;
4369 		io->ipsec_out_v4 = !connp->conn_pkt_isv6;
4370 	}
4371 
4372 	p = NULL;
4373 
4374 	/*
4375 	 * Take latched policies over global policy.  Check here again for
4376 	 * this, in case we had conn_latch set while the packet was flying
4377 	 * around in IP.
4378 	 */
4379 	if (connp != NULL && connp->conn_latch != NULL) {
4380 		ASSERT(ns == connp->conn_netstack);
4381 		p = connp->conn_latch->ipl_out_policy;
4382 		io->ipsec_out_latch = connp->conn_latch;
4383 		IPLATCH_REFHOLD(connp->conn_latch);
4384 		if (p != NULL) {
4385 			IPPOL_REFHOLD(p);
4386 		}
4387 		io->ipsec_out_src_port = connp->conn_lport;
4388 		io->ipsec_out_dst_port = connp->conn_fport;
4389 		io->ipsec_out_icmp_type = io->ipsec_out_icmp_code = 0;
4390 		if (pol != NULL)
4391 			IPPOL_REFRELE(pol, ns);
4392 	} else if (pol != NULL) {
4393 		ipsec_selector_t sel;
4394 
4395 		bzero((void*)&sel, sizeof (sel));
4396 
4397 		p = pol;
4398 		/*
4399 		 * conn does not have the port information. Get
4400 		 * it from the packet.
4401 		 */
4402 
4403 		if (!ipsec_init_outbound_ports(&sel, *mp, ipha, ip6h, 0,
4404 		    ns->netstack_ipsec)) {
4405 			/* Callee did ip_drop_packet() on *mp. */
4406 			*mp = NULL;
4407 			freeb(ipsec_mp);
4408 			return (NULL);
4409 		}
4410 		io->ipsec_out_src_port = sel.ips_local_port;
4411 		io->ipsec_out_dst_port = sel.ips_remote_port;
4412 		io->ipsec_out_icmp_type = sel.ips_icmp_type;
4413 		io->ipsec_out_icmp_code = sel.ips_icmp_code;
4414 	}
4415 
4416 	io->ipsec_out_proto = proto;
4417 	io->ipsec_out_use_global_policy = B_TRUE;
4418 	io->ipsec_out_secure = (p != NULL);
4419 	io->ipsec_out_policy = p;
4420 
4421 	if (p == NULL) {
4422 		if (connp->conn_policy != NULL) {
4423 			io->ipsec_out_secure = B_TRUE;
4424 			ASSERT(io->ipsec_out_latch == NULL);
4425 			ASSERT(io->ipsec_out_use_global_policy == B_TRUE);
4426 			io->ipsec_out_need_policy = B_TRUE;
4427 			ASSERT(io->ipsec_out_polhead == NULL);
4428 			IPPH_REFHOLD(connp->conn_policy);
4429 			io->ipsec_out_polhead = connp->conn_policy;
4430 		}
4431 	} else {
4432 		/* Handle explicit drop action. */
4433 		if (p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_DISCARD ||
4434 		    p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_REJECT) {
4435 			ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
4436 			    DROPPER(ipss, ipds_spd_explicit),
4437 			    &ipss->ipsec_spd_dropper);
4438 			*mp = NULL;
4439 			ipsec_mp = NULL;
4440 		}
4441 	}
4442 
4443 	return (ipsec_mp);
4444 }
4445 
4446 /*
4447  * Allocate an IPSEC_IN mblk.  This will be prepended to an inbound datagram
4448  * and keep track of what-if-any IPsec processing will be applied to the
4449  * datagram.
4450  */
4451 mblk_t *
4452 ipsec_in_alloc(boolean_t isv4, netstack_t *ns)
4453 {
4454 	mblk_t *ipsec_in;
4455 	ipsec_in_t *ii = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
4456 
4457 	if (ii == NULL)
4458 		return (NULL);
4459 
4460 	bzero(ii, sizeof (ipsec_info_t));
4461 	ii->ipsec_in_type = IPSEC_IN;
4462 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4463 
4464 	ii->ipsec_in_v4 = isv4;
4465 	ii->ipsec_in_secure = B_TRUE;
4466 	ii->ipsec_in_ns = ns;		/* No netstack_hold */
4467 
4468 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4469 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4470 
4471 	ipsec_in = desballoc((uint8_t *)ii, sizeof (ipsec_info_t), BPRI_HI,
4472 	    &ii->ipsec_in_frtn);
4473 	if (ipsec_in == NULL) {
4474 		ip1dbg(("ipsec_in_alloc: IPSEC_IN allocation failure.\n"));
4475 		ipsec_in_free(ii);
4476 		return (NULL);
4477 	}
4478 
4479 	ipsec_in->b_datap->db_type = M_CTL;
4480 	ipsec_in->b_wptr += sizeof (ipsec_info_t);
4481 
4482 	return (ipsec_in);
4483 }
4484 
4485 /*
4486  * This is called from ip_wput_local when a packet which needs
4487  * security is looped back, to convert the IPSEC_OUT to a IPSEC_IN
4488  * before fanout, where the policy check happens.  In most of the
4489  * cases, IPSEC processing has *never* been done.  There is one case
4490  * (ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed) where
4491  * the packet is destined for localhost, IPSEC processing has already
4492  * been done.
4493  *
4494  * Future: This could happen after SA selection has occurred for
4495  * outbound.. which will tell us who the src and dst identities are..
4496  * Then it's just a matter of splicing the ah/esp SA pointers from the
4497  * ipsec_out_t to the ipsec_in_t.
4498  */
4499 void
4500 ipsec_out_to_in(mblk_t *ipsec_mp)
4501 {
4502 	ipsec_in_t  *ii;
4503 	ipsec_out_t *io;
4504 	ipsec_policy_t *pol;
4505 	ipsec_action_t *act;
4506 	boolean_t v4, icmp_loopback;
4507 	zoneid_t zoneid;
4508 	netstack_t *ns;
4509 
4510 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4511 
4512 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4513 
4514 	v4 = io->ipsec_out_v4;
4515 	zoneid = io->ipsec_out_zoneid;
4516 	icmp_loopback = io->ipsec_out_icmp_loopback;
4517 	ns = io->ipsec_out_ns;
4518 
4519 	act = io->ipsec_out_act;
4520 	if (act == NULL) {
4521 		pol = io->ipsec_out_policy;
4522 		if (pol != NULL) {
4523 			act = pol->ipsp_act;
4524 			IPACT_REFHOLD(act);
4525 		}
4526 	}
4527 	io->ipsec_out_act = NULL;
4528 
4529 	ipsec_out_release_refs(io);	/* No netstack_rele/hold needed */
4530 
4531 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
4532 	bzero(ii, sizeof (ipsec_in_t));
4533 	ii->ipsec_in_type = IPSEC_IN;
4534 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4535 	ii->ipsec_in_loopback = B_TRUE;
4536 	ii->ipsec_in_ns = ns;		/* No netstack_hold */
4537 
4538 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4539 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4540 	ii->ipsec_in_action = act;
4541 	ii->ipsec_in_zoneid = zoneid;
4542 
4543 	/*
4544 	 * In most of the cases, we can't look at the ipsec_out_XXX_sa
4545 	 * because this never went through IPSEC processing. So, look at
4546 	 * the requests and infer whether it would have gone through
4547 	 * IPSEC processing or not. Initialize the "done" fields with
4548 	 * the requests. The possible values for "done" fields are :
4549 	 *
4550 	 * 1) zero, indicates that a particular preference was never
4551 	 *    requested.
4552 	 * 2) non-zero, indicates that it could be IPSEC_PREF_REQUIRED/
4553 	 *    IPSEC_PREF_NEVER. If IPSEC_REQ_DONE is set, it means that
4554 	 *    IPSEC processing has been completed.
4555 	 */
4556 	ii->ipsec_in_secure = B_TRUE;
4557 	ii->ipsec_in_v4 = v4;
4558 	ii->ipsec_in_icmp_loopback = icmp_loopback;
4559 	ii->ipsec_in_attach_if = B_FALSE;
4560 }
4561 
4562 /*
4563  * Consults global policy to see whether this datagram should
4564  * go out secure. If so it attaches a ipsec_mp in front and
4565  * returns.
4566  */
4567 mblk_t *
4568 ip_wput_attach_policy(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
4569     conn_t *connp, boolean_t unspec_src, zoneid_t zoneid)
4570 {
4571 	mblk_t *mp;
4572 	ipsec_out_t *io = NULL;
4573 	ipsec_selector_t sel;
4574 	uint_t	ill_index;
4575 	boolean_t conn_dontroutex;
4576 	boolean_t conn_multicast_loopx;
4577 	boolean_t policy_present;
4578 	ip_stack_t	*ipst = ire->ire_ipst;
4579 	netstack_t	*ns = ipst->ips_netstack;
4580 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4581 
4582 	ASSERT((ipha != NULL && ip6h == NULL) ||
4583 	    (ip6h != NULL && ipha == NULL));
4584 
4585 	bzero((void*)&sel, sizeof (sel));
4586 
4587 	if (ipha != NULL)
4588 		policy_present = ipss->ipsec_outbound_v4_policy_present;
4589 	else
4590 		policy_present = ipss->ipsec_outbound_v6_policy_present;
4591 	/*
4592 	 * Fast Path to see if there is any policy.
4593 	 */
4594 	if (!policy_present) {
4595 		if (ipsec_mp->b_datap->db_type == M_CTL) {
4596 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
4597 			if (!io->ipsec_out_secure) {
4598 				/*
4599 				 * If there is no global policy and ip_wput
4600 				 * or ip_wput_multicast has attached this mp
4601 				 * for multicast case, free the ipsec_mp and
4602 				 * return the original mp.
4603 				 */
4604 				mp = ipsec_mp->b_cont;
4605 				freeb(ipsec_mp);
4606 				ipsec_mp = mp;
4607 				io = NULL;
4608 			}
4609 			ASSERT(io == NULL || !io->ipsec_out_tunnel);
4610 		}
4611 		if (((io == NULL) || (io->ipsec_out_polhead == NULL)) &&
4612 		    ((connp == NULL) || (connp->conn_policy == NULL)))
4613 			return (ipsec_mp);
4614 	}
4615 
4616 	ill_index = 0;
4617 	conn_multicast_loopx = conn_dontroutex = B_FALSE;
4618 	mp = ipsec_mp;
4619 	if (ipsec_mp->b_datap->db_type == M_CTL) {
4620 		mp = ipsec_mp->b_cont;
4621 		/*
4622 		 * This is a connection where we have some per-socket
4623 		 * policy or ip_wput has attached an ipsec_mp for
4624 		 * the multicast datagram.
4625 		 */
4626 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
4627 		if (!io->ipsec_out_secure) {
4628 			/*
4629 			 * This ipsec_mp was allocated in ip_wput or
4630 			 * ip_wput_multicast so that we will know the
4631 			 * value of ill_index, conn_dontroute,
4632 			 * conn_multicast_loop in the multicast case if
4633 			 * we inherit global policy here.
4634 			 */
4635 			ill_index = io->ipsec_out_ill_index;
4636 			conn_dontroutex = io->ipsec_out_dontroute;
4637 			conn_multicast_loopx = io->ipsec_out_multicast_loop;
4638 			freeb(ipsec_mp);
4639 			ipsec_mp = mp;
4640 			io = NULL;
4641 		}
4642 		ASSERT(io == NULL || !io->ipsec_out_tunnel);
4643 	}
4644 
4645 	if (ipha != NULL) {
4646 		sel.ips_local_addr_v4 = (ipha->ipha_src != 0 ?
4647 		    ipha->ipha_src : ire->ire_src_addr);
4648 		sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4649 		sel.ips_protocol = (uint8_t)ipha->ipha_protocol;
4650 		sel.ips_isv4 = B_TRUE;
4651 	} else {
4652 		ushort_t hdr_len;
4653 		uint8_t	*nexthdrp;
4654 		boolean_t is_fragment;
4655 
4656 		sel.ips_isv4 = B_FALSE;
4657 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
4658 			if (!unspec_src)
4659 				sel.ips_local_addr_v6 = ire->ire_src_addr_v6;
4660 		} else {
4661 			sel.ips_local_addr_v6 = ip6h->ip6_src;
4662 		}
4663 
4664 		sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, &is_fragment);
4665 		if (is_fragment) {
4666 			/*
4667 			 * It's a packet fragment for a packet that
4668 			 * we have already processed (since IPsec processing
4669 			 * is done before fragmentation), so we don't
4670 			 * have to do policy checks again. Fragments can
4671 			 * come back to us for processing if they have
4672 			 * been queued up due to flow control.
4673 			 */
4674 			if (ipsec_mp->b_datap->db_type == M_CTL) {
4675 				mp = ipsec_mp->b_cont;
4676 				freeb(ipsec_mp);
4677 				ipsec_mp = mp;
4678 			}
4679 			return (ipsec_mp);
4680 		}
4681 
4682 		/* IPv6 common-case. */
4683 		sel.ips_protocol = ip6h->ip6_nxt;
4684 		switch (ip6h->ip6_nxt) {
4685 		case IPPROTO_TCP:
4686 		case IPPROTO_UDP:
4687 		case IPPROTO_SCTP:
4688 		case IPPROTO_ICMPV6:
4689 			break;
4690 		default:
4691 			if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
4692 			    &hdr_len, &nexthdrp)) {
4693 				BUMP_MIB(&ipst->ips_ip6_mib,
4694 				    ipIfStatsOutDiscards);
4695 				freemsg(ipsec_mp); /* Not IPsec-related drop. */
4696 				return (NULL);
4697 			}
4698 			sel.ips_protocol = *nexthdrp;
4699 			break;
4700 		}
4701 	}
4702 
4703 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) {
4704 		if (ipha != NULL) {
4705 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
4706 		} else {
4707 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
4708 		}
4709 
4710 		/* Callee dropped the packet. */
4711 		return (NULL);
4712 	}
4713 
4714 	if (io != NULL) {
4715 		/*
4716 		 * We seem to have some local policy (we already have
4717 		 * an ipsec_out).  Look at global policy and see
4718 		 * whether we have to inherit or not.
4719 		 */
4720 		io->ipsec_out_need_policy = B_FALSE;
4721 		ipsec_mp = ipsec_apply_global_policy(ipsec_mp, connp,
4722 		    &sel, ns);
4723 		ASSERT((io->ipsec_out_policy != NULL) ||
4724 		    (io->ipsec_out_act != NULL));
4725 		ASSERT(io->ipsec_out_need_policy == B_FALSE);
4726 		return (ipsec_mp);
4727 	}
4728 	/*
4729 	 * We pass in a pointer to a pointer because mp can become
4730 	 * NULL due to allocation failures or explicit drops.  Callers
4731 	 * of this function should assume a NULL mp means the packet
4732 	 * was dropped.
4733 	 */
4734 	ipsec_mp = ipsec_attach_global_policy(&mp, connp, &sel, ns);
4735 	if (ipsec_mp == NULL)
4736 		return (mp);
4737 
4738 	/*
4739 	 * Copy the right port information.
4740 	 */
4741 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4742 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4743 
4744 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
4745 	ASSERT((io->ipsec_out_policy != NULL) ||
4746 	    (io->ipsec_out_act != NULL));
4747 	io->ipsec_out_src_port = sel.ips_local_port;
4748 	io->ipsec_out_dst_port = sel.ips_remote_port;
4749 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
4750 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
4751 	/*
4752 	 * Set ill_index, conn_dontroute and conn_multicast_loop
4753 	 * for multicast datagrams.
4754 	 */
4755 	io->ipsec_out_ill_index = ill_index;
4756 	io->ipsec_out_dontroute = conn_dontroutex;
4757 	io->ipsec_out_multicast_loop = conn_multicast_loopx;
4758 
4759 	if (zoneid == ALL_ZONES)
4760 		zoneid = GLOBAL_ZONEID;
4761 	io->ipsec_out_zoneid = zoneid;
4762 	return (ipsec_mp);
4763 }
4764 
4765 /*
4766  * When appropriate, this function caches inbound and outbound policy
4767  * for this connection.
4768  *
4769  * XXX need to work out more details about per-interface policy and
4770  * caching here!
4771  *
4772  * XXX may want to split inbound and outbound caching for ill..
4773  */
4774 int
4775 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4776 {
4777 	boolean_t global_policy_present;
4778 	netstack_t	*ns = connp->conn_netstack;
4779 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4780 
4781 	/*
4782 	 * There is no policy latching for ICMP sockets because we can't
4783 	 * decide on which policy to use until we see the packet and get
4784 	 * type/code selectors.
4785 	 */
4786 	if (connp->conn_ulp == IPPROTO_ICMP ||
4787 	    connp->conn_ulp == IPPROTO_ICMPV6) {
4788 		connp->conn_in_enforce_policy =
4789 		    connp->conn_out_enforce_policy = B_TRUE;
4790 		if (connp->conn_latch != NULL) {
4791 			IPLATCH_REFRELE(connp->conn_latch, ns);
4792 			connp->conn_latch = NULL;
4793 		}
4794 		connp->conn_flags |= IPCL_CHECK_POLICY;
4795 		return (0);
4796 	}
4797 
4798 	global_policy_present = isv4 ?
4799 	    (ipss->ipsec_outbound_v4_policy_present ||
4800 	    ipss->ipsec_inbound_v4_policy_present) :
4801 	    (ipss->ipsec_outbound_v6_policy_present ||
4802 	    ipss->ipsec_inbound_v6_policy_present);
4803 
4804 	if ((connp->conn_policy != NULL) || global_policy_present) {
4805 		ipsec_selector_t sel;
4806 		ipsec_policy_t	*p;
4807 
4808 		if (connp->conn_latch == NULL &&
4809 		    (connp->conn_latch = iplatch_create()) == NULL) {
4810 			return (ENOMEM);
4811 		}
4812 
4813 		sel.ips_protocol = connp->conn_ulp;
4814 		sel.ips_local_port = connp->conn_lport;
4815 		sel.ips_remote_port = connp->conn_fport;
4816 		sel.ips_is_icmp_inv_acq = 0;
4817 		sel.ips_isv4 = isv4;
4818 		if (isv4) {
4819 			sel.ips_local_addr_v4 = connp->conn_src;
4820 			sel.ips_remote_addr_v4 = connp->conn_rem;
4821 		} else {
4822 			sel.ips_local_addr_v6 = connp->conn_srcv6;
4823 			sel.ips_remote_addr_v6 = connp->conn_remv6;
4824 		}
4825 
4826 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel,
4827 		    ns);
4828 		if (connp->conn_latch->ipl_in_policy != NULL)
4829 			IPPOL_REFRELE(connp->conn_latch->ipl_in_policy, ns);
4830 		connp->conn_latch->ipl_in_policy = p;
4831 		connp->conn_in_enforce_policy = (p != NULL);
4832 
4833 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, &sel,
4834 		    ns);
4835 		if (connp->conn_latch->ipl_out_policy != NULL)
4836 			IPPOL_REFRELE(connp->conn_latch->ipl_out_policy, ns);
4837 		connp->conn_latch->ipl_out_policy = p;
4838 		connp->conn_out_enforce_policy = (p != NULL);
4839 
4840 		/* Clear the latched actions too, in case we're recaching. */
4841 		if (connp->conn_latch->ipl_out_action != NULL)
4842 			IPACT_REFRELE(connp->conn_latch->ipl_out_action);
4843 		if (connp->conn_latch->ipl_in_action != NULL)
4844 			IPACT_REFRELE(connp->conn_latch->ipl_in_action);
4845 	}
4846 
4847 	/*
4848 	 * We may or may not have policy for this endpoint.  We still set
4849 	 * conn_policy_cached so that inbound datagrams don't have to look
4850 	 * at global policy as policy is considered latched for these
4851 	 * endpoints.  We should not set conn_policy_cached until the conn
4852 	 * reflects the actual policy. If we *set* this before inheriting
4853 	 * the policy there is a window where the check
4854 	 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4855 	 * on the conn (because we have not yet copied the policy on to
4856 	 * conn and hence not set conn_in_enforce_policy) nor with the
4857 	 * global policy (because conn_policy_cached is already set).
4858 	 */
4859 	connp->conn_policy_cached = B_TRUE;
4860 	if (connp->conn_in_enforce_policy)
4861 		connp->conn_flags |= IPCL_CHECK_POLICY;
4862 	return (0);
4863 }
4864 
4865 void
4866 iplatch_free(ipsec_latch_t *ipl, netstack_t *ns)
4867 {
4868 	if (ipl->ipl_out_policy != NULL)
4869 		IPPOL_REFRELE(ipl->ipl_out_policy, ns);
4870 	if (ipl->ipl_in_policy != NULL)
4871 		IPPOL_REFRELE(ipl->ipl_in_policy, ns);
4872 	if (ipl->ipl_in_action != NULL)
4873 		IPACT_REFRELE(ipl->ipl_in_action);
4874 	if (ipl->ipl_out_action != NULL)
4875 		IPACT_REFRELE(ipl->ipl_out_action);
4876 	if (ipl->ipl_local_cid != NULL)
4877 		IPSID_REFRELE(ipl->ipl_local_cid);
4878 	if (ipl->ipl_remote_cid != NULL)
4879 		IPSID_REFRELE(ipl->ipl_remote_cid);
4880 	if (ipl->ipl_local_id != NULL)
4881 		crfree(ipl->ipl_local_id);
4882 	mutex_destroy(&ipl->ipl_lock);
4883 	kmem_free(ipl, sizeof (*ipl));
4884 }
4885 
4886 ipsec_latch_t *
4887 iplatch_create()
4888 {
4889 	ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP);
4890 	if (ipl == NULL)
4891 		return (ipl);
4892 	bzero(ipl, sizeof (*ipl));
4893 	mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4894 	ipl->ipl_refcnt = 1;
4895 	return (ipl);
4896 }
4897 
4898 /*
4899  * Hash function for ID hash table.
4900  */
4901 static uint32_t
4902 ipsid_hash(int idtype, char *idstring)
4903 {
4904 	uint32_t hval = idtype;
4905 	unsigned char c;
4906 
4907 	while ((c = *idstring++) != 0) {
4908 		hval = (hval << 4) | (hval >> 28);
4909 		hval ^= c;
4910 	}
4911 	hval = hval ^ (hval >> 16);
4912 	return (hval & (IPSID_HASHSIZE-1));
4913 }
4914 
4915 /*
4916  * Look up identity string in hash table.  Return identity object
4917  * corresponding to the name -- either preexisting, or newly allocated.
4918  *
4919  * Return NULL if we need to allocate a new one and can't get memory.
4920  */
4921 ipsid_t *
4922 ipsid_lookup(int idtype, char *idstring, netstack_t *ns)
4923 {
4924 	ipsid_t *retval;
4925 	char *nstr;
4926 	int idlen = strlen(idstring) + 1;
4927 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4928 	ipsif_t *bucket;
4929 
4930 	bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)];
4931 
4932 	mutex_enter(&bucket->ipsif_lock);
4933 
4934 	for (retval = bucket->ipsif_head; retval != NULL;
4935 	    retval = retval->ipsid_next) {
4936 		if (idtype != retval->ipsid_type)
4937 			continue;
4938 		if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4939 			continue;
4940 
4941 		IPSID_REFHOLD(retval);
4942 		mutex_exit(&bucket->ipsif_lock);
4943 		return (retval);
4944 	}
4945 
4946 	retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4947 	if (!retval) {
4948 		mutex_exit(&bucket->ipsif_lock);
4949 		return (NULL);
4950 	}
4951 
4952 	nstr = kmem_alloc(idlen, KM_NOSLEEP);
4953 	if (!nstr) {
4954 		mutex_exit(&bucket->ipsif_lock);
4955 		kmem_free(retval, sizeof (*retval));
4956 		return (NULL);
4957 	}
4958 
4959 	retval->ipsid_refcnt = 1;
4960 	retval->ipsid_next = bucket->ipsif_head;
4961 	if (retval->ipsid_next != NULL)
4962 		retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4963 	retval->ipsid_ptpn = &bucket->ipsif_head;
4964 	retval->ipsid_type = idtype;
4965 	retval->ipsid_cid = nstr;
4966 	bucket->ipsif_head = retval;
4967 	bcopy(idstring, nstr, idlen);
4968 	mutex_exit(&bucket->ipsif_lock);
4969 
4970 	return (retval);
4971 }
4972 
4973 /*
4974  * Garbage collect the identity hash table.
4975  */
4976 void
4977 ipsid_gc(netstack_t *ns)
4978 {
4979 	int i, len;
4980 	ipsid_t *id, *nid;
4981 	ipsif_t *bucket;
4982 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4983 
4984 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4985 		bucket = &ipss->ipsec_ipsid_buckets[i];
4986 		mutex_enter(&bucket->ipsif_lock);
4987 		for (id = bucket->ipsif_head; id != NULL; id = nid) {
4988 			nid = id->ipsid_next;
4989 			if (id->ipsid_refcnt == 0) {
4990 				*id->ipsid_ptpn = nid;
4991 				if (nid != NULL)
4992 					nid->ipsid_ptpn = id->ipsid_ptpn;
4993 				len = strlen(id->ipsid_cid) + 1;
4994 				kmem_free(id->ipsid_cid, len);
4995 				kmem_free(id, sizeof (*id));
4996 			}
4997 		}
4998 		mutex_exit(&bucket->ipsif_lock);
4999 	}
5000 }
5001 
5002 /*
5003  * Return true if two identities are the same.
5004  */
5005 boolean_t
5006 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
5007 {
5008 	if (id1 == id2)
5009 		return (B_TRUE);
5010 #ifdef DEBUG
5011 	if ((id1 == NULL) || (id2 == NULL))
5012 		return (B_FALSE);
5013 	/*
5014 	 * test that we're interning id's correctly..
5015 	 */
5016 	ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
5017 	    (id1->ipsid_type != id2->ipsid_type));
5018 #endif
5019 	return (B_FALSE);
5020 }
5021 
5022 /*
5023  * Initialize identity table; called during module initialization.
5024  */
5025 static void
5026 ipsid_init(netstack_t *ns)
5027 {
5028 	ipsif_t *bucket;
5029 	int i;
5030 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5031 
5032 	for (i = 0; i < IPSID_HASHSIZE; i++) {
5033 		bucket = &ipss->ipsec_ipsid_buckets[i];
5034 		mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
5035 	}
5036 }
5037 
5038 /*
5039  * Free identity table (preparatory to module unload)
5040  */
5041 static void
5042 ipsid_fini(netstack_t *ns)
5043 {
5044 	ipsif_t *bucket;
5045 	int i;
5046 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5047 
5048 	for (i = 0; i < IPSID_HASHSIZE; i++) {
5049 		bucket = &ipss->ipsec_ipsid_buckets[i];
5050 		ASSERT(bucket->ipsif_head == NULL);
5051 		mutex_destroy(&bucket->ipsif_lock);
5052 	}
5053 }
5054 
5055 /*
5056  * Update the minimum and maximum supported key sizes for the
5057  * specified algorithm. Must be called while holding the algorithms lock.
5058  */
5059 void
5060 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type,
5061     netstack_t *ns)
5062 {
5063 	size_t crypto_min = (size_t)-1, crypto_max = 0;
5064 	size_t cur_crypto_min, cur_crypto_max;
5065 	boolean_t is_valid;
5066 	crypto_mechanism_info_t *mech_infos;
5067 	uint_t nmech_infos;
5068 	int crypto_rc, i;
5069 	crypto_mech_usage_t mask;
5070 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5071 
5072 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
5073 
5074 	/*
5075 	 * Compute the min, max, and default key sizes (in number of
5076 	 * increments to the default key size in bits) as defined
5077 	 * by the algorithm mappings. This range of key sizes is used
5078 	 * for policy related operations. The effective key sizes
5079 	 * supported by the framework could be more limited than
5080 	 * those defined for an algorithm.
5081 	 */
5082 	alg->alg_default_bits = alg->alg_key_sizes[0];
5083 	if (alg->alg_increment != 0) {
5084 		/* key sizes are defined by range & increment */
5085 		alg->alg_minbits = alg->alg_key_sizes[1];
5086 		alg->alg_maxbits = alg->alg_key_sizes[2];
5087 
5088 		alg->alg_default = SADB_ALG_DEFAULT_INCR(alg->alg_minbits,
5089 		    alg->alg_increment, alg->alg_default_bits);
5090 	} else if (alg->alg_nkey_sizes == 0) {
5091 		/* no specified key size for algorithm */
5092 		alg->alg_minbits = alg->alg_maxbits = 0;
5093 	} else {
5094 		/* key sizes are defined by enumeration */
5095 		alg->alg_minbits = (uint16_t)-1;
5096 		alg->alg_maxbits = 0;
5097 
5098 		for (i = 0; i < alg->alg_nkey_sizes; i++) {
5099 			if (alg->alg_key_sizes[i] < alg->alg_minbits)
5100 				alg->alg_minbits = alg->alg_key_sizes[i];
5101 			if (alg->alg_key_sizes[i] > alg->alg_maxbits)
5102 				alg->alg_maxbits = alg->alg_key_sizes[i];
5103 		}
5104 		alg->alg_default = 0;
5105 	}
5106 
5107 	if (!(alg->alg_flags & ALG_FLAG_VALID))
5108 		return;
5109 
5110 	/*
5111 	 * Mechanisms do not apply to the NULL encryption
5112 	 * algorithm, so simply return for this case.
5113 	 */
5114 	if (alg->alg_id == SADB_EALG_NULL)
5115 		return;
5116 
5117 	/*
5118 	 * Find the min and max key sizes supported by the cryptographic
5119 	 * framework providers.
5120 	 */
5121 
5122 	/* get the key sizes supported by the framework */
5123 	crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
5124 	    &mech_infos, &nmech_infos, KM_SLEEP);
5125 	if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
5126 		alg->alg_flags &= ~ALG_FLAG_VALID;
5127 		return;
5128 	}
5129 
5130 	/* min and max key sizes supported by framework */
5131 	for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
5132 		int unit_bits;
5133 
5134 		/*
5135 		 * Ignore entries that do not support the operations
5136 		 * needed for the algorithm type.
5137 		 */
5138 		if (alg_type == IPSEC_ALG_AUTH) {
5139 			mask = CRYPTO_MECH_USAGE_MAC;
5140 		} else {
5141 			mask = CRYPTO_MECH_USAGE_ENCRYPT |
5142 			    CRYPTO_MECH_USAGE_DECRYPT;
5143 		}
5144 		if ((mech_infos[i].mi_usage & mask) != mask)
5145 			continue;
5146 
5147 		unit_bits = (mech_infos[i].mi_keysize_unit ==
5148 		    CRYPTO_KEYSIZE_UNIT_IN_BYTES)  ? 8 : 1;
5149 		/* adjust min/max supported by framework */
5150 		cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
5151 		cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
5152 
5153 		if (cur_crypto_min < crypto_min)
5154 			crypto_min = cur_crypto_min;
5155 
5156 		/*
5157 		 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
5158 		 * the crypto framework which means "no upper limit".
5159 		 */
5160 		if (mech_infos[i].mi_max_key_size ==
5161 		    CRYPTO_EFFECTIVELY_INFINITE) {
5162 			crypto_max = (size_t)-1;
5163 		} else if (cur_crypto_max > crypto_max) {
5164 			crypto_max = cur_crypto_max;
5165 		}
5166 
5167 		is_valid = B_TRUE;
5168 	}
5169 
5170 	kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
5171 	    nmech_infos);
5172 
5173 	if (!is_valid) {
5174 		/* no key sizes supported by framework */
5175 		alg->alg_flags &= ~ALG_FLAG_VALID;
5176 		return;
5177 	}
5178 
5179 	/*
5180 	 * Determine min and max key sizes from alg_key_sizes[].
5181 	 * defined for the algorithm entry. Adjust key sizes based on
5182 	 * those supported by the framework.
5183 	 */
5184 	alg->alg_ef_default_bits = alg->alg_key_sizes[0];
5185 	if (alg->alg_increment != 0) {
5186 		/* supported key sizes are defined by range  & increment */
5187 		crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
5188 		crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
5189 
5190 		alg->alg_ef_minbits = MAX(alg->alg_minbits,
5191 		    (uint16_t)crypto_min);
5192 		alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
5193 		    (uint16_t)crypto_max);
5194 
5195 		/*
5196 		 * If the sizes supported by the framework are outside
5197 		 * the range of sizes defined by the algorithm mappings,
5198 		 * the algorithm cannot be used. Check for this
5199 		 * condition here.
5200 		 */
5201 		if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
5202 			alg->alg_flags &= ~ALG_FLAG_VALID;
5203 			return;
5204 		}
5205 
5206 		if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
5207 			alg->alg_ef_default_bits = alg->alg_ef_minbits;
5208 		if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
5209 			alg->alg_ef_default_bits = alg->alg_ef_maxbits;
5210 
5211 		alg->alg_ef_default = SADB_ALG_DEFAULT_INCR(alg->alg_ef_minbits,
5212 		    alg->alg_increment, alg->alg_ef_default_bits);
5213 	} else if (alg->alg_nkey_sizes == 0) {
5214 		/* no specified key size for algorithm */
5215 		alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
5216 	} else {
5217 		/* supported key sizes are defined by enumeration */
5218 		alg->alg_ef_minbits = (uint16_t)-1;
5219 		alg->alg_ef_maxbits = 0;
5220 
5221 		for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
5222 			/*
5223 			 * Ignore the current key size if it is not in the
5224 			 * range of sizes supported by the framework.
5225 			 */
5226 			if (alg->alg_key_sizes[i] < crypto_min ||
5227 			    alg->alg_key_sizes[i] > crypto_max)
5228 				continue;
5229 			if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
5230 				alg->alg_ef_minbits = alg->alg_key_sizes[i];
5231 			if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
5232 				alg->alg_ef_maxbits = alg->alg_key_sizes[i];
5233 			is_valid = B_TRUE;
5234 		}
5235 
5236 		if (!is_valid) {
5237 			alg->alg_flags &= ~ALG_FLAG_VALID;
5238 			return;
5239 		}
5240 		alg->alg_ef_default = 0;
5241 	}
5242 }
5243 
5244 /*
5245  * Free the memory used by the specified algorithm.
5246  */
5247 void
5248 ipsec_alg_free(ipsec_alginfo_t *alg)
5249 {
5250 	if (alg == NULL)
5251 		return;
5252 
5253 	if (alg->alg_key_sizes != NULL) {
5254 		kmem_free(alg->alg_key_sizes,
5255 		    (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
5256 		alg->alg_key_sizes = NULL;
5257 	}
5258 	if (alg->alg_block_sizes != NULL) {
5259 		kmem_free(alg->alg_block_sizes,
5260 		    (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
5261 		alg->alg_block_sizes = NULL;
5262 	}
5263 	kmem_free(alg, sizeof (*alg));
5264 }
5265 
5266 /*
5267  * Check the validity of the specified key size for an algorithm.
5268  * Returns B_TRUE if key size is valid, B_FALSE otherwise.
5269  */
5270 boolean_t
5271 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
5272 {
5273 	if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
5274 		return (B_FALSE);
5275 
5276 	if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
5277 		/*
5278 		 * If the key sizes are defined by enumeration, the new
5279 		 * key size must be equal to one of the supported values.
5280 		 */
5281 		int i;
5282 
5283 		for (i = 0; i < alg->alg_nkey_sizes; i++)
5284 			if (key_size == alg->alg_key_sizes[i])
5285 				break;
5286 		if (i == alg->alg_nkey_sizes)
5287 			return (B_FALSE);
5288 	}
5289 
5290 	return (B_TRUE);
5291 }
5292 
5293 /*
5294  * Callback function invoked by the crypto framework when a provider
5295  * registers or unregisters. This callback updates the algorithms
5296  * tables when a crypto algorithm is no longer available or becomes
5297  * available, and triggers the freeing/creation of context templates
5298  * associated with existing SAs, if needed.
5299  *
5300  * Need to walk all stack instances since the callback is global
5301  * for all instances
5302  */
5303 void
5304 ipsec_prov_update_callback(uint32_t event, void *event_arg)
5305 {
5306 	netstack_handle_t nh;
5307 	netstack_t *ns;
5308 
5309 	netstack_next_init(&nh);
5310 	while ((ns = netstack_next(&nh)) != NULL) {
5311 		ipsec_prov_update_callback_stack(event, event_arg, ns);
5312 		netstack_rele(ns);
5313 	}
5314 	netstack_next_fini(&nh);
5315 }
5316 
5317 static void
5318 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg,
5319     netstack_t *ns)
5320 {
5321 	crypto_notify_event_change_t *prov_change =
5322 	    (crypto_notify_event_change_t *)event_arg;
5323 	uint_t algidx, algid, algtype, mech_count, mech_idx;
5324 	ipsec_alginfo_t *alg;
5325 	ipsec_alginfo_t oalg;
5326 	crypto_mech_name_t *mechs;
5327 	boolean_t alg_changed = B_FALSE;
5328 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5329 
5330 	/* ignore events for which we didn't register */
5331 	if (event != CRYPTO_EVENT_MECHS_CHANGED) {
5332 		ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
5333 		    " received from crypto framework\n", event));
5334 		return;
5335 	}
5336 
5337 	mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5338 	if (mechs == NULL)
5339 		return;
5340 
5341 	/*
5342 	 * Walk the list of currently defined IPsec algorithm. Update
5343 	 * the algorithm valid flag and trigger an update of the
5344 	 * SAs that depend on that algorithm.
5345 	 */
5346 	mutex_enter(&ipss->ipsec_alg_lock);
5347 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5348 		for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype];
5349 		    algidx++) {
5350 
5351 			algid = ipss->ipsec_sortlist[algtype][algidx];
5352 			alg = ipss->ipsec_alglists[algtype][algid];
5353 			ASSERT(alg != NULL);
5354 
5355 			/*
5356 			 * Skip the algorithms which do not map to the
5357 			 * crypto framework provider being added or removed.
5358 			 */
5359 			if (strncmp(alg->alg_mech_name,
5360 			    prov_change->ec_mech_name,
5361 			    CRYPTO_MAX_MECH_NAME) != 0)
5362 				continue;
5363 
5364 			/*
5365 			 * Determine if the mechanism is valid. If it
5366 			 * is not, mark the algorithm as being invalid. If
5367 			 * it is, mark the algorithm as being valid.
5368 			 */
5369 			for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5370 				if (strncmp(alg->alg_mech_name,
5371 				    mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5372 					break;
5373 			if (mech_idx == mech_count &&
5374 			    alg->alg_flags & ALG_FLAG_VALID) {
5375 				alg->alg_flags &= ~ALG_FLAG_VALID;
5376 				alg_changed = B_TRUE;
5377 			} else if (mech_idx < mech_count &&
5378 			    !(alg->alg_flags & ALG_FLAG_VALID)) {
5379 				alg->alg_flags |= ALG_FLAG_VALID;
5380 				alg_changed = B_TRUE;
5381 			}
5382 
5383 			/*
5384 			 * Update the supported key sizes, regardless
5385 			 * of whether a crypto provider was added or
5386 			 * removed.
5387 			 */
5388 			oalg = *alg;
5389 			ipsec_alg_fix_min_max(alg, algtype, ns);
5390 			if (!alg_changed &&
5391 			    alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5392 			    alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5393 			    alg->alg_ef_default != oalg.alg_ef_default ||
5394 			    alg->alg_ef_default_bits !=
5395 			    oalg.alg_ef_default_bits)
5396 				alg_changed = B_TRUE;
5397 
5398 			/*
5399 			 * Update the affected SAs if a software provider is
5400 			 * being added or removed.
5401 			 */
5402 			if (prov_change->ec_provider_type ==
5403 			    CRYPTO_SW_PROVIDER)
5404 				sadb_alg_update(algtype, alg->alg_id,
5405 				    prov_change->ec_change ==
5406 				    CRYPTO_MECH_ADDED, ns);
5407 		}
5408 	}
5409 	mutex_exit(&ipss->ipsec_alg_lock);
5410 	crypto_free_mech_list(mechs, mech_count);
5411 
5412 	if (alg_changed) {
5413 		/*
5414 		 * An algorithm has changed, i.e. it became valid or
5415 		 * invalid, or its support key sizes have changed.
5416 		 * Notify ipsecah and ipsecesp of this change so
5417 		 * that they can send a SADB_REGISTER to their consumers.
5418 		 */
5419 		ipsecah_algs_changed(ns);
5420 		ipsecesp_algs_changed(ns);
5421 	}
5422 }
5423 
5424 /*
5425  * Registers with the crypto framework to be notified of crypto
5426  * providers changes. Used to update the algorithm tables and
5427  * to free or create context templates if needed. Invoked after IPsec
5428  * is loaded successfully.
5429  *
5430  * This is called separately for each IP instance, so we ensure we only
5431  * register once.
5432  */
5433 void
5434 ipsec_register_prov_update(void)
5435 {
5436 	if (prov_update_handle != NULL)
5437 		return;
5438 
5439 	prov_update_handle = crypto_notify_events(
5440 	    ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5441 }
5442 
5443 /*
5444  * Unregisters from the framework to be notified of crypto providers
5445  * changes. Called from ipsec_policy_g_destroy().
5446  */
5447 static void
5448 ipsec_unregister_prov_update(void)
5449 {
5450 	if (prov_update_handle != NULL)
5451 		crypto_unnotify_events(prov_update_handle);
5452 }
5453 
5454 /*
5455  * Tunnel-mode support routines.
5456  */
5457 
5458 /*
5459  * Returns an mblk chain suitable for putnext() if policies match and IPsec
5460  * SAs are available.  If there's no per-tunnel policy, or a match comes back
5461  * with no match, then still return the packet and have global policy take
5462  * a crack at it in IP.
5463  *
5464  * Remember -> we can be forwarding packets.  Keep that in mind w.r.t.
5465  * inner-packet contents.
5466  */
5467 mblk_t *
5468 ipsec_tun_outbound(mblk_t *mp, tun_t *atp, ipha_t *inner_ipv4,
5469     ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len,
5470     netstack_t *ns)
5471 {
5472 	ipsec_tun_pol_t *itp = atp->tun_itp;
5473 	ipsec_policy_head_t *polhead;
5474 	ipsec_selector_t sel;
5475 	mblk_t *ipsec_mp, *ipsec_mp_head, *nmp;
5476 	mblk_t *spare_mp = NULL;
5477 	ipsec_out_t *io;
5478 	boolean_t is_fragment;
5479 	ipsec_policy_t *pol;
5480 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5481 
5482 	ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5483 	    outer_ipv4 != NULL && outer_ipv6 == NULL);
5484 	/* We take care of inners in a bit. */
5485 
5486 	/* No policy on this tunnel - let global policy have at it. */
5487 	if (itp == NULL || !(itp->itp_flags & ITPF_P_ACTIVE))
5488 		return (mp);
5489 	polhead = itp->itp_policy;
5490 
5491 	bzero(&sel, sizeof (sel));
5492 	if (inner_ipv4 != NULL) {
5493 		ASSERT(inner_ipv6 == NULL);
5494 		sel.ips_isv4 = B_TRUE;
5495 		sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5496 		sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5497 		sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5498 		is_fragment =
5499 		    IS_V4_FRAGMENT(inner_ipv4->ipha_fragment_offset_and_flags);
5500 	} else {
5501 		ASSERT(inner_ipv6 != NULL);
5502 		sel.ips_isv4 = B_FALSE;
5503 		sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5504 		/* Use ip_get_dst_v6() just for the fragment bit. */
5505 		sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6,
5506 		    &is_fragment);
5507 		/*
5508 		 * Reset, because we don't care about routing-header dests
5509 		 * in the forwarding/tunnel path.
5510 		 */
5511 		sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5512 	}
5513 
5514 	if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5515 		if (is_fragment) {
5516 			ipha_t *oiph;
5517 			ipha_t *iph = NULL;
5518 			ip6_t *ip6h = NULL;
5519 			int hdr_len;
5520 			uint16_t ip6_hdr_length;
5521 			uint8_t v6_proto;
5522 			uint8_t *v6_proto_p;
5523 
5524 			/*
5525 			 * We have a fragment we need to track!
5526 			 */
5527 			mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5528 			    outer_hdr_len, ipss);
5529 			if (mp == NULL)
5530 				return (NULL);
5531 
5532 			/*
5533 			 * If we get here, we have a full
5534 			 * fragment chain
5535 			 */
5536 
5537 			oiph = (ipha_t *)mp->b_rptr;
5538 			if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5539 				hdr_len = ((outer_hdr_len != 0) ?
5540 				    IPH_HDR_LENGTH(oiph) : 0);
5541 				iph = (ipha_t *)(mp->b_rptr + hdr_len);
5542 			} else {
5543 				ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5544 				if ((spare_mp = msgpullup(mp, -1)) == NULL) {
5545 					ip_drop_packet_chain(mp, B_FALSE,
5546 					    NULL, NULL,
5547 					    DROPPER(ipss, ipds_spd_nomem),
5548 					    &ipss->ipsec_spd_dropper);
5549 				}
5550 				ip6h = (ip6_t *)spare_mp->b_rptr;
5551 				(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
5552 				    &ip6_hdr_length, &v6_proto_p);
5553 				hdr_len = ip6_hdr_length;
5554 			}
5555 			outer_hdr_len = hdr_len;
5556 
5557 			if (sel.ips_isv4) {
5558 				if (iph == NULL) {
5559 					/* Was v6 outer */
5560 					iph = (ipha_t *)(mp->b_rptr + hdr_len);
5561 				}
5562 				inner_ipv4 = iph;
5563 				sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5564 				sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5565 				sel.ips_protocol =
5566 				    (uint8_t)inner_ipv4->ipha_protocol;
5567 			} else {
5568 				if ((spare_mp == NULL) &&
5569 				    ((spare_mp = msgpullup(mp, -1)) == NULL)) {
5570 					ip_drop_packet_chain(mp, B_FALSE,
5571 					    NULL, NULL,
5572 					    DROPPER(ipss, ipds_spd_nomem),
5573 					    &ipss->ipsec_spd_dropper);
5574 				}
5575 				inner_ipv6 = (ip6_t *)(spare_mp->b_rptr +
5576 				    hdr_len);
5577 				sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5578 				sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5579 				(void) ip_hdr_length_nexthdr_v6(spare_mp,
5580 				    inner_ipv6, &ip6_hdr_length,
5581 				    &v6_proto_p);
5582 				v6_proto = *v6_proto_p;
5583 				sel.ips_protocol = v6_proto;
5584 #ifdef FRAGCACHE_DEBUG
5585 				cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5586 				    sel.ips_protocol);
5587 #endif
5588 			}
5589 			/* Ports are extracted below */
5590 		}
5591 
5592 		/* Get ports... */
5593 		if (spare_mp != NULL) {
5594 			if (!ipsec_init_outbound_ports(&sel, spare_mp,
5595 			    inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5596 				/*
5597 				 * callee did ip_drop_packet_chain() on
5598 				 * spare_mp
5599 				 */
5600 				ipsec_freemsg_chain(mp);
5601 				return (NULL);
5602 			}
5603 		} else {
5604 			if (!ipsec_init_outbound_ports(&sel, mp,
5605 			    inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5606 				/* callee did ip_drop_packet_chain() on mp. */
5607 				return (NULL);
5608 			}
5609 		}
5610 #ifdef FRAGCACHE_DEBUG
5611 		if (inner_ipv4 != NULL)
5612 			cmn_err(CE_WARN,
5613 			    "(v4) sel.ips_protocol = %d, "
5614 			    "sel.ips_local_port = %d, "
5615 			    "sel.ips_remote_port = %d\n",
5616 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5617 			    ntohs(sel.ips_remote_port));
5618 		if (inner_ipv6 != NULL)
5619 			cmn_err(CE_WARN,
5620 			    "(v6) sel.ips_protocol = %d, "
5621 			    "sel.ips_local_port = %d, "
5622 			    "sel.ips_remote_port = %d\n",
5623 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5624 			    ntohs(sel.ips_remote_port));
5625 #endif
5626 		/* Success so far - done with spare_mp */
5627 		ipsec_freemsg_chain(spare_mp);
5628 	}
5629 	rw_enter(&polhead->iph_lock, RW_READER);
5630 	pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND,
5631 	    &sel, ns);
5632 	rw_exit(&polhead->iph_lock);
5633 	if (pol == NULL) {
5634 		/*
5635 		 * No matching policy on this tunnel, drop the packet.
5636 		 *
5637 		 * NOTE:  Tunnel-mode tunnels are different from the
5638 		 * IP global transport mode policy head.  For a tunnel-mode
5639 		 * tunnel, we drop the packet in lieu of passing it
5640 		 * along accepted the way a global-policy miss would.
5641 		 *
5642 		 * NOTE2:  "negotiate transport" tunnels should match ALL
5643 		 * inbound packets, but we do not uncomment the ASSERT()
5644 		 * below because if/when we open PF_POLICY, a user can
5645 		 * shoot him/her-self in the foot with a 0 priority.
5646 		 */
5647 
5648 		/* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5649 #ifdef FRAGCACHE_DEBUG
5650 		cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5651 		    "per-port policy\n");
5652 #endif
5653 		ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5654 		    DROPPER(ipss, ipds_spd_explicit),
5655 		    &ipss->ipsec_spd_dropper);
5656 		return (NULL);
5657 	}
5658 
5659 #ifdef FRAGCACHE_DEBUG
5660 	cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5661 #endif
5662 
5663 	/* Construct an IPSEC_OUT message. */
5664 	ipsec_mp = ipsec_mp_head = ipsec_alloc_ipsec_out(ns);
5665 	if (ipsec_mp == NULL) {
5666 		IPPOL_REFRELE(pol, ns);
5667 		ip_drop_packet(mp, B_FALSE, NULL, NULL,
5668 		    DROPPER(ipss, ipds_spd_nomem),
5669 		    &ipss->ipsec_spd_dropper);
5670 		return (NULL);
5671 	}
5672 	ipsec_mp->b_cont = mp;
5673 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
5674 	IPPH_REFHOLD(polhead);
5675 	/*
5676 	 * NOTE: free() function of ipsec_out mblk will release polhead and
5677 	 * pol references.
5678 	 */
5679 	io->ipsec_out_polhead = polhead;
5680 	io->ipsec_out_policy = pol;
5681 	io->ipsec_out_zoneid = atp->tun_zoneid;
5682 	io->ipsec_out_v4 = (outer_ipv4 != NULL);
5683 	io->ipsec_out_secure = B_TRUE;
5684 
5685 	if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5686 		/* Set up transport mode for tunnelled packets. */
5687 		io->ipsec_out_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5688 		    IPPROTO_IPV6;
5689 		return (ipsec_mp);
5690 	}
5691 
5692 	/* Fill in tunnel-mode goodies here. */
5693 	io->ipsec_out_tunnel = B_TRUE;
5694 	/* XXX Do I need to fill in all of the goodies here? */
5695 	if (inner_ipv4) {
5696 		io->ipsec_out_inaf = AF_INET;
5697 		io->ipsec_out_insrc[0] =
5698 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5699 		io->ipsec_out_indst[0] =
5700 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5701 	} else {
5702 		io->ipsec_out_inaf = AF_INET6;
5703 		io->ipsec_out_insrc[0] =
5704 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5705 		io->ipsec_out_insrc[1] =
5706 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5707 		io->ipsec_out_insrc[2] =
5708 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5709 		io->ipsec_out_insrc[3] =
5710 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5711 		io->ipsec_out_indst[0] =
5712 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5713 		io->ipsec_out_indst[1] =
5714 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5715 		io->ipsec_out_indst[2] =
5716 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5717 		io->ipsec_out_indst[3] =
5718 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5719 	}
5720 	io->ipsec_out_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5721 	io->ipsec_out_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5722 	/* NOTE:  These are used for transport mode too. */
5723 	io->ipsec_out_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5724 	io->ipsec_out_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5725 	io->ipsec_out_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5726 
5727 	/*
5728 	 * The mp pointer still valid
5729 	 * Add ipsec_out to each fragment.
5730 	 * The fragment head already has one
5731 	 */
5732 	nmp = mp->b_next;
5733 	mp->b_next = NULL;
5734 	mp = nmp;
5735 	ASSERT(ipsec_mp != NULL);
5736 	while (mp != NULL) {
5737 		nmp = mp->b_next;
5738 		ipsec_mp->b_next = ipsec_out_tag(ipsec_mp_head, mp, ns);
5739 		if (ipsec_mp->b_next == NULL) {
5740 			ip_drop_packet_chain(ipsec_mp_head, B_FALSE, NULL, NULL,
5741 			    DROPPER(ipss, ipds_spd_nomem),
5742 			    &ipss->ipsec_spd_dropper);
5743 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5744 			    DROPPER(ipss, ipds_spd_nomem),
5745 			    &ipss->ipsec_spd_dropper);
5746 			return (NULL);
5747 		}
5748 		ipsec_mp = ipsec_mp->b_next;
5749 		mp->b_next = NULL;
5750 		mp = nmp;
5751 	}
5752 	return (ipsec_mp_head);
5753 }
5754 
5755 /*
5756  * NOTE: The following releases pol's reference and
5757  * calls ip_drop_packet() for me on NULL returns.
5758  */
5759 mblk_t *
5760 ipsec_check_ipsecin_policy_reasm(mblk_t *ipsec_mp, ipsec_policy_t *pol,
5761     ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns)
5762 {
5763 	/* Assume ipsec_mp is a chain of b_next-linked IPSEC_IN M_CTLs. */
5764 	mblk_t *data_chain = NULL, *data_tail = NULL;
5765 	mblk_t *ii_next;
5766 
5767 	while (ipsec_mp != NULL) {
5768 		ii_next = ipsec_mp->b_next;
5769 		ipsec_mp->b_next = NULL;  /* No tripping asserts. */
5770 
5771 		/*
5772 		 * Need IPPOL_REFHOLD(pol) for extras because
5773 		 * ipsecin_policy does the refrele.
5774 		 */
5775 		IPPOL_REFHOLD(pol);
5776 
5777 		if (ipsec_check_ipsecin_policy(ipsec_mp, pol, inner_ipv4,
5778 		    inner_ipv6, pkt_unique, ns) != NULL) {
5779 			if (data_tail == NULL) {
5780 				/* First one */
5781 				data_chain = data_tail = ipsec_mp->b_cont;
5782 			} else {
5783 				data_tail->b_next = ipsec_mp->b_cont;
5784 				data_tail = data_tail->b_next;
5785 			}
5786 			freeb(ipsec_mp);
5787 		} else {
5788 			/*
5789 			 * ipsec_check_ipsecin_policy() freed ipsec_mp
5790 			 * already.   Need to get rid of any extra pol
5791 			 * references, and any remaining bits as well.
5792 			 */
5793 			IPPOL_REFRELE(pol, ns);
5794 			ipsec_freemsg_chain(data_chain);
5795 			ipsec_freemsg_chain(ii_next);	/* ipdrop stats? */
5796 			return (NULL);
5797 		}
5798 		ipsec_mp = ii_next;
5799 	}
5800 	/*
5801 	 * One last release because either the loop bumped it up, or we never
5802 	 * called ipsec_check_ipsecin_policy().
5803 	 */
5804 	IPPOL_REFRELE(pol, ns);
5805 
5806 	/* data_chain is ready for return to tun module. */
5807 	return (data_chain);
5808 }
5809 
5810 
5811 /*
5812  * Returns B_TRUE if the inbound packet passed an IPsec policy check.  Returns
5813  * B_FALSE if it failed or if it is a fragment needing its friends before a
5814  * policy check can be performed.
5815  *
5816  * Expects a non-NULL *data_mp, an optional ipsec_mp, and a non-NULL polhead.
5817  * data_mp may be reassigned with a b_next chain of packets if fragments
5818  * neeeded to be collected for a proper policy check.
5819  *
5820  * Always frees ipsec_mp, but only frees data_mp if returns B_FALSE.  This
5821  * function calls ip_drop_packet() on data_mp if need be.
5822  *
5823  * NOTE:  outer_hdr_len is signed.  If it's a negative value, the caller
5824  * is inspecting an ICMP packet.
5825  */
5826 boolean_t
5827 ipsec_tun_inbound(mblk_t *ipsec_mp, mblk_t **data_mp, ipsec_tun_pol_t *itp,
5828     ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5829     ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns)
5830 {
5831 	ipsec_policy_head_t *polhead;
5832 	ipsec_selector_t sel;
5833 	mblk_t *message = (ipsec_mp == NULL) ? *data_mp : ipsec_mp;
5834 	ipsec_policy_t *pol;
5835 	uint16_t tmpport;
5836 	selret_t rc;
5837 	boolean_t retval, port_policy_present, is_icmp, global_present;
5838 	in6_addr_t tmpaddr;
5839 	ipaddr_t tmp4;
5840 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5841 	uint8_t flags, *holder, *outer_hdr;
5842 
5843 	sel.ips_is_icmp_inv_acq = 0;
5844 
5845 	if (outer_ipv4 != NULL) {
5846 		ASSERT(outer_ipv6 == NULL);
5847 		outer_hdr = (uint8_t *)outer_ipv4;
5848 		global_present = ipss->ipsec_inbound_v4_policy_present;
5849 	} else {
5850 		outer_hdr = (uint8_t *)outer_ipv6;
5851 		global_present = ipss->ipsec_inbound_v6_policy_present;
5852 	}
5853 	ASSERT(outer_hdr != NULL);
5854 
5855 	ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5856 	    inner_ipv4 == NULL && inner_ipv6 != NULL);
5857 	ASSERT(message == *data_mp || message->b_cont == *data_mp);
5858 
5859 	if (outer_hdr_len < 0) {
5860 		outer_hdr_len = (-outer_hdr_len);
5861 		is_icmp = B_TRUE;
5862 	} else {
5863 		is_icmp = B_FALSE;
5864 	}
5865 
5866 	if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5867 		polhead = itp->itp_policy;
5868 		/*
5869 		 * We need to perform full Tunnel-Mode enforcement,
5870 		 * and we need to have inner-header data for such enforcement.
5871 		 *
5872 		 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5873 		 * and on return.
5874 		 */
5875 
5876 		port_policy_present = ((itp->itp_flags &
5877 		    ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5878 		flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5879 		    (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5880 
5881 		rc = ipsec_init_inbound_sel(&sel, *data_mp, inner_ipv4,
5882 		    inner_ipv6, flags);
5883 
5884 		switch (rc) {
5885 		case SELRET_NOMEM:
5886 			ip_drop_packet(message, B_TRUE, NULL, NULL,
5887 			    DROPPER(ipss, ipds_spd_nomem),
5888 			    &ipss->ipsec_spd_dropper);
5889 			return (B_FALSE);
5890 		case SELRET_TUNFRAG:
5891 			/*
5892 			 * At this point, if we're cleartext, we don't want
5893 			 * to go there.
5894 			 */
5895 			if (ipsec_mp == NULL) {
5896 				ip_drop_packet(*data_mp, B_TRUE, NULL, NULL,
5897 				    DROPPER(ipss, ipds_spd_got_clear),
5898 				    &ipss->ipsec_spd_dropper);
5899 				*data_mp = NULL;
5900 				return (B_FALSE);
5901 			}
5902 			ASSERT(((ipsec_in_t *)ipsec_mp->b_rptr)->
5903 			    ipsec_in_secure);
5904 			message = ipsec_fragcache_add(&itp->itp_fragcache,
5905 			    ipsec_mp, *data_mp, outer_hdr_len, ipss);
5906 
5907 			if (message == NULL) {
5908 				/*
5909 				 * Data is cached, fragment chain is not
5910 				 * complete.  I consume ipsec_mp and data_mp
5911 				 */
5912 				return (B_FALSE);
5913 			}
5914 
5915 			/*
5916 			 * If we get here, we have a full fragment chain.
5917 			 * Reacquire headers and selectors from first fragment.
5918 			 */
5919 			if (inner_ipv4 != NULL) {
5920 				inner_ipv4 = (ipha_t *)message->b_cont->b_rptr;
5921 				ASSERT(message->b_cont->b_wptr -
5922 				    message->b_cont->b_rptr > sizeof (ipha_t));
5923 			} else {
5924 				inner_ipv6 = (ip6_t *)message->b_cont->b_rptr;
5925 				ASSERT(message->b_cont->b_wptr -
5926 				    message->b_cont->b_rptr > sizeof (ip6_t));
5927 			}
5928 			/* Use SEL_NONE so we always get ports! */
5929 			rc = ipsec_init_inbound_sel(&sel, message->b_cont,
5930 			    inner_ipv4, inner_ipv6, SEL_NONE);
5931 			switch (rc) {
5932 			case SELRET_SUCCESS:
5933 				/*
5934 				 * Get to same place as first caller's
5935 				 * SELRET_SUCCESS case.
5936 				 */
5937 				break;
5938 			case SELRET_NOMEM:
5939 				ip_drop_packet_chain(message, B_TRUE,
5940 				    NULL, NULL,
5941 				    DROPPER(ipss, ipds_spd_nomem),
5942 				    &ipss->ipsec_spd_dropper);
5943 				return (B_FALSE);
5944 			case SELRET_BADPKT:
5945 				ip_drop_packet_chain(message, B_TRUE,
5946 				    NULL, NULL,
5947 				    DROPPER(ipss, ipds_spd_malformed_frag),
5948 				    &ipss->ipsec_spd_dropper);
5949 				return (B_FALSE);
5950 			case SELRET_TUNFRAG:
5951 				cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5952 				/* FALLTHRU */
5953 			default:
5954 				cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5955 				    " returns bizarro 0x%x", rc);
5956 				/* Guaranteed panic! */
5957 				ASSERT(rc == SELRET_NOMEM);
5958 				return (B_FALSE);
5959 			}
5960 			/* FALLTHRU */
5961 		case SELRET_SUCCESS:
5962 			/*
5963 			 * Common case:
5964 			 * No per-port policy or a non-fragment.  Keep going.
5965 			 */
5966 			break;
5967 		case SELRET_BADPKT:
5968 			/*
5969 			 * We may receive ICMP (with IPv6 inner) packets that
5970 			 * trigger this return value.  Send 'em in for
5971 			 * enforcement checking.
5972 			 */
5973 			cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5974 			    "sending 'bad packet' in for enforcement");
5975 			break;
5976 		default:
5977 			cmn_err(CE_WARN,
5978 			    "ipsec_init_inbound_sel() returns bizarro 0x%x",
5979 			    rc);
5980 			ASSERT(rc == SELRET_NOMEM);	/* Guaranteed panic! */
5981 			return (B_FALSE);
5982 		}
5983 
5984 		if (is_icmp) {
5985 			/*
5986 			 * Swap local/remote because this is an ICMP packet.
5987 			 */
5988 			tmpaddr = sel.ips_local_addr_v6;
5989 			sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5990 			sel.ips_remote_addr_v6 = tmpaddr;
5991 			tmpport = sel.ips_local_port;
5992 			sel.ips_local_port = sel.ips_remote_port;
5993 			sel.ips_remote_port = tmpport;
5994 		}
5995 
5996 		/* find_policy_head() */
5997 		rw_enter(&polhead->iph_lock, RW_READER);
5998 		pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5999 		    &sel, ns);
6000 		rw_exit(&polhead->iph_lock);
6001 		if (pol != NULL) {
6002 			if (ipsec_mp == NULL ||
6003 			    !((ipsec_in_t *)ipsec_mp->b_rptr)->
6004 			    ipsec_in_secure) {
6005 				retval = pol->ipsp_act->ipa_allow_clear;
6006 				if (!retval) {
6007 					/*
6008 					 * XXX should never get here with
6009 					 * tunnel reassembled fragments?
6010 					 */
6011 					ASSERT(message->b_next == NULL);
6012 					ip_drop_packet(message, B_TRUE, NULL,
6013 					    NULL,
6014 					    DROPPER(ipss, ipds_spd_got_clear),
6015 					    &ipss->ipsec_spd_dropper);
6016 				} else if (ipsec_mp != NULL) {
6017 					freeb(ipsec_mp);
6018 				}
6019 
6020 				IPPOL_REFRELE(pol, ns);
6021 				return (retval);
6022 			}
6023 			/*
6024 			 * NOTE: The following releases pol's reference and
6025 			 * calls ip_drop_packet() for me on NULL returns.
6026 			 *
6027 			 * "sel" is still good here, so let's use it!
6028 			 */
6029 			*data_mp = ipsec_check_ipsecin_policy_reasm(message,
6030 			    pol, inner_ipv4, inner_ipv6, SA_UNIQUE_ID(
6031 			    sel.ips_remote_port, sel.ips_local_port,
6032 			    (inner_ipv4 == NULL) ? IPPROTO_IPV6 :
6033 			    IPPROTO_ENCAP, sel.ips_protocol), ns);
6034 			return (*data_mp != NULL);
6035 		}
6036 
6037 		/*
6038 		 * Else fallthru and check the global policy on the outer
6039 		 * header(s) if this tunnel is an old-style transport-mode
6040 		 * one.  Drop the packet explicitly (no policy entry) for
6041 		 * a new-style tunnel-mode tunnel.
6042 		 */
6043 		if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
6044 			ip_drop_packet_chain(message, B_TRUE, NULL,
6045 			    NULL,
6046 			    DROPPER(ipss, ipds_spd_explicit),
6047 			    &ipss->ipsec_spd_dropper);
6048 			return (B_FALSE);
6049 		}
6050 	}
6051 
6052 	/*
6053 	 * NOTE:  If we reach here, we will not have packet chains from
6054 	 * fragcache_add(), because the only way I get chains is on a
6055 	 * tunnel-mode tunnel, which either returns with a pass, or gets
6056 	 * hit by the ip_drop_packet_chain() call right above here.
6057 	 */
6058 
6059 	/* If no per-tunnel security, check global policy now. */
6060 	if (ipsec_mp != NULL && !global_present) {
6061 		if (((ipsec_in_t *)(ipsec_mp->b_rptr))->
6062 		    ipsec_in_icmp_loopback) {
6063 			/*
6064 			 * This is an ICMP message with an ipsec_mp
6065 			 * attached.  We should accept it.
6066 			 */
6067 			if (ipsec_mp != NULL)
6068 				freeb(ipsec_mp);
6069 			return (B_TRUE);
6070 		}
6071 
6072 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
6073 		    DROPPER(ipss, ipds_spd_got_secure),
6074 		    &ipss->ipsec_spd_dropper);
6075 		return (B_FALSE);
6076 	}
6077 
6078 	/*
6079 	 * The following assertion is valid because only the tun module alters
6080 	 * the mblk chain - stripping the outer header by advancing mp->b_rptr.
6081 	 */
6082 	ASSERT(is_icmp || ((*data_mp)->b_datap->db_base <= outer_hdr &&
6083 	    outer_hdr < (*data_mp)->b_rptr));
6084 	holder = (*data_mp)->b_rptr;
6085 	(*data_mp)->b_rptr = outer_hdr;
6086 
6087 	if (is_icmp) {
6088 		/*
6089 		 * For ICMP packets, "outer_ipvN" is set to the outer header
6090 		 * that is *INSIDE* the ICMP payload.  For global policy
6091 		 * checking, we need to reverse src/dst on the payload in
6092 		 * order to construct selectors appropriately.  See "ripha"
6093 		 * constructions in ip.c.  To avoid a bug like 6478464 (see
6094 		 * earlier in this file), we will actually exchange src/dst
6095 		 * in the packet, and reverse if after the call to
6096 		 * ipsec_check_global_policy().
6097 		 */
6098 		if (outer_ipv4 != NULL) {
6099 			tmp4 = outer_ipv4->ipha_src;
6100 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
6101 			outer_ipv4->ipha_dst = tmp4;
6102 		} else {
6103 			ASSERT(outer_ipv6 != NULL);
6104 			tmpaddr = outer_ipv6->ip6_src;
6105 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
6106 			outer_ipv6->ip6_dst = tmpaddr;
6107 		}
6108 	}
6109 
6110 	/* NOTE:  Frees message if it returns NULL. */
6111 	if (ipsec_check_global_policy(message, NULL, outer_ipv4, outer_ipv6,
6112 	    (ipsec_mp != NULL), ns) == NULL) {
6113 		return (B_FALSE);
6114 	}
6115 
6116 	if (is_icmp) {
6117 		/* Set things back to normal. */
6118 		if (outer_ipv4 != NULL) {
6119 			tmp4 = outer_ipv4->ipha_src;
6120 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
6121 			outer_ipv4->ipha_dst = tmp4;
6122 		} else {
6123 			/* No need for ASSERT()s now. */
6124 			tmpaddr = outer_ipv6->ip6_src;
6125 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
6126 			outer_ipv6->ip6_dst = tmpaddr;
6127 		}
6128 	}
6129 
6130 	(*data_mp)->b_rptr = holder;
6131 
6132 	if (ipsec_mp != NULL)
6133 		freeb(ipsec_mp);
6134 
6135 	/*
6136 	 * At this point, we pretend it's a cleartext accepted
6137 	 * packet.
6138 	 */
6139 	return (B_TRUE);
6140 }
6141 
6142 /*
6143  * AVL comparison routine for our list of tunnel polheads.
6144  */
6145 static int
6146 tunnel_compare(const void *arg1, const void *arg2)
6147 {
6148 	ipsec_tun_pol_t *left, *right;
6149 	int rc;
6150 
6151 	left = (ipsec_tun_pol_t *)arg1;
6152 	right = (ipsec_tun_pol_t *)arg2;
6153 
6154 	rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
6155 	return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
6156 }
6157 
6158 /*
6159  * Free a tunnel policy node.
6160  */
6161 void
6162 itp_free(ipsec_tun_pol_t *node, netstack_t *ns)
6163 {
6164 	IPPH_REFRELE(node->itp_policy, ns);
6165 	IPPH_REFRELE(node->itp_inactive, ns);
6166 	mutex_destroy(&node->itp_lock);
6167 	kmem_free(node, sizeof (*node));
6168 }
6169 
6170 void
6171 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns)
6172 {
6173 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6174 
6175 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6176 	ipss->ipsec_tunnel_policy_gen++;
6177 	ipsec_fragcache_uninit(&node->itp_fragcache);
6178 	avl_remove(&ipss->ipsec_tunnel_policies, node);
6179 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6180 	ITP_REFRELE(node, ns);
6181 }
6182 
6183 /*
6184  * Public interface to look up a tunnel security policy by name.  Used by
6185  * spdsock mostly.  Returns "node" with a bumped refcnt.
6186  */
6187 ipsec_tun_pol_t *
6188 get_tunnel_policy(char *name, netstack_t *ns)
6189 {
6190 	ipsec_tun_pol_t *node, lookup;
6191 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6192 
6193 	(void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
6194 
6195 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
6196 	node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6197 	    &lookup, NULL);
6198 	if (node != NULL) {
6199 		ITP_REFHOLD(node);
6200 	}
6201 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6202 
6203 	return (node);
6204 }
6205 
6206 /*
6207  * Public interface to walk all tunnel security polcies.  Useful for spdsock
6208  * DUMP operations.  iterator() will not consume a reference.
6209  */
6210 void
6211 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *),
6212     void *arg, netstack_t *ns)
6213 {
6214 	ipsec_tun_pol_t *node;
6215 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6216 
6217 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
6218 	for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL;
6219 	    node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) {
6220 		iterator(node, arg, ns);
6221 	}
6222 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6223 }
6224 
6225 /*
6226  * Initialize policy head.  This can only fail if there's a memory problem.
6227  */
6228 static boolean_t
6229 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns)
6230 {
6231 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6232 
6233 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
6234 	iph->iph_refs = 1;
6235 	iph->iph_gen = 0;
6236 	if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize,
6237 	    KM_SLEEP, B_FALSE, ns) != 0) {
6238 		ipsec_polhead_free_table(iph);
6239 		return (B_FALSE);
6240 	}
6241 	ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize);
6242 	return (B_TRUE);
6243 }
6244 
6245 /*
6246  * Create a tunnel policy node with "name".  Set errno with
6247  * ENOMEM if there's a memory problem, and EEXIST if there's an existing
6248  * node.
6249  */
6250 ipsec_tun_pol_t *
6251 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns)
6252 {
6253 	ipsec_tun_pol_t *newbie, *existing;
6254 	avl_index_t where;
6255 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6256 
6257 	newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
6258 	if (newbie == NULL) {
6259 		*errno = ENOMEM;
6260 		return (NULL);
6261 	}
6262 	if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
6263 		kmem_free(newbie, sizeof (*newbie));
6264 		*errno = ENOMEM;
6265 		return (NULL);
6266 	}
6267 
6268 	(void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
6269 
6270 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6271 	existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6272 	    newbie, &where);
6273 	if (existing != NULL) {
6274 		itp_free(newbie, ns);
6275 		*errno = EEXIST;
6276 		rw_exit(&ipss->ipsec_tunnel_policy_lock);
6277 		return (NULL);
6278 	}
6279 	ipss->ipsec_tunnel_policy_gen++;
6280 	*gen = ipss->ipsec_tunnel_policy_gen;
6281 	newbie->itp_refcnt = 2;	/* One for the caller, one for the tree. */
6282 	newbie->itp_next_policy_index = 1;
6283 	avl_insert(&ipss->ipsec_tunnel_policies, newbie, where);
6284 	mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
6285 	newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
6286 	    KM_NOSLEEP);
6287 	if (newbie->itp_policy == NULL)
6288 		goto nomem;
6289 	newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
6290 	    KM_NOSLEEP);
6291 	if (newbie->itp_inactive == NULL) {
6292 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6293 		goto nomem;
6294 	}
6295 
6296 	if (!tunnel_polhead_init(newbie->itp_policy, ns)) {
6297 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6298 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6299 		goto nomem;
6300 	} else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) {
6301 		IPPH_REFRELE(newbie->itp_policy, ns);
6302 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6303 		goto nomem;
6304 	}
6305 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6306 
6307 	return (newbie);
6308 nomem:
6309 	*errno = ENOMEM;
6310 	kmem_free(newbie, sizeof (*newbie));
6311 	return (NULL);
6312 }
6313 
6314 /*
6315  * We can't call the tun_t lookup function until tun is
6316  * loaded, so create a dummy function to avoid symbol
6317  * lookup errors on boot.
6318  */
6319 /* ARGSUSED */
6320 ipsec_tun_pol_t *
6321 itp_get_byaddr_dummy(uint32_t *laddr, uint32_t *faddr, int af, netstack_t *ns)
6322 {
6323 	return (NULL);  /* Always return NULL. */
6324 }
6325 
6326 /*
6327  * Frag cache code, based on SunScreen 3.2 source
6328  *	screen/kernel/common/screen_fragcache.c
6329  */
6330 
6331 #define	IPSEC_FRAG_TTL_MAX	5
6332 /*
6333  * Note that the following parameters create 256 hash buckets
6334  * with 1024 free entries to be distributed.  Things are cleaned
6335  * periodically and are attempted to be cleaned when there is no
6336  * free space, but this system errs on the side of dropping packets
6337  * over creating memory exhaustion.  We may decide to make hash
6338  * factor a tunable if this proves to be a bad decision.
6339  */
6340 #define	IPSEC_FRAG_HASH_SLOTS	(1<<8)
6341 #define	IPSEC_FRAG_HASH_FACTOR	4
6342 #define	IPSEC_FRAG_HASH_SIZE	(IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
6343 
6344 #define	IPSEC_FRAG_HASH_MASK		(IPSEC_FRAG_HASH_SLOTS - 1)
6345 #define	IPSEC_FRAG_HASH_FUNC(id)	(((id) & IPSEC_FRAG_HASH_MASK) ^ \
6346 					    (((id) / \
6347 					    (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
6348 					    IPSEC_FRAG_HASH_MASK))
6349 
6350 /* Maximum fragments per packet.  48 bytes payload x 1366 packets > 64KB */
6351 #define	IPSEC_MAX_FRAGS		1366
6352 
6353 #define	V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
6354 				    IPH_OFFSET) << 3)
6355 #define	V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
6356 		IPH_MF)
6357 
6358 /*
6359  * Initialize an ipsec fragcache instance.
6360  * Returns B_FALSE if memory allocation fails.
6361  */
6362 boolean_t
6363 ipsec_fragcache_init(ipsec_fragcache_t *frag)
6364 {
6365 	ipsec_fragcache_entry_t *ftemp;
6366 	int i;
6367 
6368 	mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
6369 	frag->itpf_ptr = (ipsec_fragcache_entry_t **)
6370 	    kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) *
6371 	    IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
6372 	if (frag->itpf_ptr == NULL)
6373 		return (B_FALSE);
6374 
6375 	ftemp = (ipsec_fragcache_entry_t *)
6376 	    kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
6377 	    IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
6378 	if (ftemp == NULL) {
6379 		kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) *
6380 		    IPSEC_FRAG_HASH_SLOTS);
6381 		return (B_FALSE);
6382 	}
6383 
6384 	frag->itpf_freelist = NULL;
6385 
6386 	for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
6387 		ftemp->itpfe_next = frag->itpf_freelist;
6388 		frag->itpf_freelist = ftemp;
6389 		ftemp++;
6390 	}
6391 
6392 	frag->itpf_expire_hint = 0;
6393 
6394 	return (B_TRUE);
6395 }
6396 
6397 void
6398 ipsec_fragcache_uninit(ipsec_fragcache_t *frag)
6399 {
6400 	ipsec_fragcache_entry_t *fep;
6401 	int i;
6402 
6403 	mutex_enter(&frag->itpf_lock);
6404 	if (frag->itpf_ptr) {
6405 		/* Delete any existing fragcache entry chains */
6406 		for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6407 			fep = (frag->itpf_ptr)[i];
6408 			while (fep != NULL) {
6409 				/* Returned fep is next in chain or NULL */
6410 				fep = fragcache_delentry(i, fep, frag);
6411 			}
6412 		}
6413 		/*
6414 		 * Chase the pointers back to the beginning
6415 		 * of the memory allocation and then
6416 		 * get rid of the allocated freelist
6417 		 */
6418 		while (frag->itpf_freelist->itpfe_next != NULL)
6419 			frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6420 		/*
6421 		 * XXX - If we ever dynamically grow the freelist
6422 		 * then we'll have to free entries individually
6423 		 * or determine how many entries or chunks we have
6424 		 * grown since the initial allocation.
6425 		 */
6426 		kmem_free(frag->itpf_freelist,
6427 		    sizeof (ipsec_fragcache_entry_t) *
6428 		    IPSEC_FRAG_HASH_SIZE);
6429 		/* Free the fragcache structure */
6430 		kmem_free(frag->itpf_ptr,
6431 		    sizeof (ipsec_fragcache_entry_t *) *
6432 		    IPSEC_FRAG_HASH_SLOTS);
6433 	}
6434 	mutex_exit(&frag->itpf_lock);
6435 	mutex_destroy(&frag->itpf_lock);
6436 }
6437 
6438 /*
6439  * Add a fragment to the fragment cache.   Consumes mp if NULL is returned.
6440  * Returns mp if a whole fragment has been assembled, NULL otherwise
6441  */
6442 
6443 mblk_t *
6444 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *ipsec_mp, mblk_t *mp,
6445     int outer_hdr_len, ipsec_stack_t *ipss)
6446 {
6447 	boolean_t is_v4;
6448 	time_t itpf_time;
6449 	ipha_t *iph;
6450 	ipha_t *oiph;
6451 	ip6_t *ip6h = NULL;
6452 	uint8_t v6_proto;
6453 	uint8_t *v6_proto_p;
6454 	uint16_t ip6_hdr_length;
6455 	ip6_pkt_t ipp;
6456 	ip6_frag_t *fraghdr;
6457 	ipsec_fragcache_entry_t *fep;
6458 	int i;
6459 	mblk_t *nmp, *prevmp, *spare_mp = NULL;
6460 	int firstbyte, lastbyte;
6461 	int offset;
6462 	int last;
6463 	boolean_t inbound = (ipsec_mp != NULL);
6464 	mblk_t *first_mp = inbound ? ipsec_mp : mp;
6465 
6466 	mutex_enter(&frag->itpf_lock);
6467 
6468 	oiph  = (ipha_t *)mp->b_rptr;
6469 	iph  = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6470 	if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6471 		is_v4 = B_TRUE;
6472 	} else {
6473 		ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6474 		if ((spare_mp = msgpullup(mp, -1)) == NULL) {
6475 			mutex_exit(&frag->itpf_lock);
6476 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6477 			    DROPPER(ipss, ipds_spd_nomem),
6478 			    &ipss->ipsec_spd_dropper);
6479 			return (NULL);
6480 		}
6481 		ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
6482 
6483 		if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h, &ip6_hdr_length,
6484 		    &v6_proto_p)) {
6485 			/*
6486 			 * Find upper layer protocol.
6487 			 * If it fails we have a malformed packet
6488 			 */
6489 			mutex_exit(&frag->itpf_lock);
6490 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6491 			    DROPPER(ipss, ipds_spd_malformed_packet),
6492 			    &ipss->ipsec_spd_dropper);
6493 			freemsg(spare_mp);
6494 			return (NULL);
6495 		} else {
6496 			v6_proto = *v6_proto_p;
6497 		}
6498 
6499 
6500 		bzero(&ipp, sizeof (ipp));
6501 		(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6502 		if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6503 			/*
6504 			 * We think this is a fragment, but didn't find
6505 			 * a fragment header.  Something is wrong.
6506 			 */
6507 			mutex_exit(&frag->itpf_lock);
6508 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6509 			    DROPPER(ipss, ipds_spd_malformed_frag),
6510 			    &ipss->ipsec_spd_dropper);
6511 			freemsg(spare_mp);
6512 			return (NULL);
6513 		}
6514 		fraghdr = ipp.ipp_fraghdr;
6515 		is_v4 = B_FALSE;
6516 	}
6517 
6518 	/* Anything to cleanup? */
6519 
6520 	/*
6521 	 * This cleanup call could be put in a timer loop
6522 	 * but it may actually be just as reasonable a decision to
6523 	 * leave it here.  The disadvantage is this only gets called when
6524 	 * frags are added.  The advantage is that it is not
6525 	 * susceptible to race conditions like a time-based cleanup
6526 	 * may be.
6527 	 */
6528 	itpf_time = gethrestime_sec();
6529 	if (itpf_time >= frag->itpf_expire_hint)
6530 		ipsec_fragcache_clean(frag);
6531 
6532 	/* Lookup to see if there is an existing entry */
6533 
6534 	if (is_v4)
6535 		i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6536 	else
6537 		i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6538 
6539 	for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6540 		if (is_v4) {
6541 			ASSERT(iph != NULL);
6542 			if ((fep->itpfe_id == iph->ipha_ident) &&
6543 			    (fep->itpfe_src == iph->ipha_src) &&
6544 			    (fep->itpfe_dst == iph->ipha_dst) &&
6545 			    (fep->itpfe_proto == iph->ipha_protocol))
6546 				break;
6547 		} else {
6548 			ASSERT(fraghdr != NULL);
6549 			ASSERT(fep != NULL);
6550 			if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6551 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6552 			    &ip6h->ip6_src) &&
6553 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6554 			    &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6555 				break;
6556 		}
6557 	}
6558 
6559 	if (is_v4) {
6560 		firstbyte = V4_FRAG_OFFSET(iph);
6561 		lastbyte  = firstbyte + ntohs(iph->ipha_length) -
6562 		    IPH_HDR_LENGTH(iph);
6563 		last = (V4_MORE_FRAGS(iph) == 0);
6564 #ifdef FRAGCACHE_DEBUG
6565 		cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6566 		    "last = %d, id = %d\n", firstbyte, lastbyte, last,
6567 		    iph->ipha_ident);
6568 #endif
6569 	} else {
6570 		firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6571 		lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6572 		    sizeof (ip6_t) - ip6_hdr_length;
6573 		last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6574 #ifdef FRAGCACHE_DEBUG
6575 		cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6576 		    "last = %d, id = %d, fraghdr = %p, spare_mp = %p\n",
6577 		    firstbyte, lastbyte, last, fraghdr->ip6f_ident,
6578 		    fraghdr, spare_mp);
6579 #endif
6580 	}
6581 
6582 	/* check for bogus fragments and delete the entry */
6583 	if (firstbyte > 0 && firstbyte <= 8) {
6584 		if (fep != NULL)
6585 			(void) fragcache_delentry(i, fep, frag);
6586 		mutex_exit(&frag->itpf_lock);
6587 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6588 		    DROPPER(ipss, ipds_spd_malformed_frag),
6589 		    &ipss->ipsec_spd_dropper);
6590 		freemsg(spare_mp);
6591 		return (NULL);
6592 	}
6593 
6594 	/* Not found, allocate a new entry */
6595 	if (fep == NULL) {
6596 		if (frag->itpf_freelist == NULL) {
6597 			/* see if there is some space */
6598 			ipsec_fragcache_clean(frag);
6599 			if (frag->itpf_freelist == NULL) {
6600 				mutex_exit(&frag->itpf_lock);
6601 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6602 				    DROPPER(ipss, ipds_spd_nomem),
6603 				    &ipss->ipsec_spd_dropper);
6604 				freemsg(spare_mp);
6605 				return (NULL);
6606 			}
6607 		}
6608 
6609 		fep = frag->itpf_freelist;
6610 		frag->itpf_freelist = fep->itpfe_next;
6611 
6612 		if (is_v4) {
6613 			bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6614 			    sizeof (struct in_addr));
6615 			bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6616 			    sizeof (struct in_addr));
6617 			fep->itpfe_id = iph->ipha_ident;
6618 			fep->itpfe_proto = iph->ipha_protocol;
6619 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6620 		} else {
6621 			bcopy((in6_addr_t *)&ip6h->ip6_src,
6622 			    (in6_addr_t *)&fep->itpfe_src6,
6623 			    sizeof (struct in6_addr));
6624 			bcopy((in6_addr_t *)&ip6h->ip6_dst,
6625 			    (in6_addr_t *)&fep->itpfe_dst6,
6626 			    sizeof (struct in6_addr));
6627 			fep->itpfe_id = fraghdr->ip6f_ident;
6628 			fep->itpfe_proto = v6_proto;
6629 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6630 		}
6631 		itpf_time = gethrestime_sec();
6632 		fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6633 		fep->itpfe_last = 0;
6634 		fep->itpfe_fraglist = NULL;
6635 		fep->itpfe_depth = 0;
6636 		fep->itpfe_next = (frag->itpf_ptr)[i];
6637 		(frag->itpf_ptr)[i] = fep;
6638 
6639 		if (frag->itpf_expire_hint > fep->itpfe_exp)
6640 			frag->itpf_expire_hint = fep->itpfe_exp;
6641 
6642 	}
6643 	freemsg(spare_mp);
6644 
6645 	/* Insert it in the frag list */
6646 	/* List is in order by starting offset of fragments */
6647 
6648 	prevmp = NULL;
6649 	for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6650 		ipha_t *niph;
6651 		ipha_t *oniph;
6652 		ip6_t *nip6h;
6653 		ip6_pkt_t nipp;
6654 		ip6_frag_t *nfraghdr;
6655 		uint16_t nip6_hdr_length;
6656 		uint8_t *nv6_proto_p;
6657 		int nfirstbyte, nlastbyte;
6658 		char *data, *ndata;
6659 		mblk_t *nspare_mp = NULL;
6660 		mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6661 		int hdr_len;
6662 
6663 		oniph  = (ipha_t *)mp->b_rptr;
6664 		nip6h = NULL;
6665 		niph = NULL;
6666 
6667 		/*
6668 		 * Determine outer header type and length and set
6669 		 * pointers appropriately
6670 		 */
6671 
6672 		if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6673 			hdr_len = ((outer_hdr_len != 0) ?
6674 			    IPH_HDR_LENGTH(oiph) : 0);
6675 			niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6676 		} else {
6677 			ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6678 			if ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL) {
6679 				mutex_exit(&frag->itpf_lock);
6680 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6681 				    DROPPER(ipss, ipds_spd_nomem),
6682 				    &ipss->ipsec_spd_dropper);
6683 				return (NULL);
6684 			}
6685 			nip6h = (ip6_t *)nspare_mp->b_rptr;
6686 			(void) ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6687 			    &nip6_hdr_length, &v6_proto_p);
6688 			hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6689 		}
6690 
6691 		/*
6692 		 * Determine inner header type and length and set
6693 		 * pointers appropriately
6694 		 */
6695 
6696 		if (is_v4) {
6697 			if (niph == NULL) {
6698 				/* Was v6 outer */
6699 				niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6700 			}
6701 			nfirstbyte = V4_FRAG_OFFSET(niph);
6702 			nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6703 			    IPH_HDR_LENGTH(niph);
6704 		} else {
6705 			if ((nspare_mp == NULL) &&
6706 			    ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL)) {
6707 				mutex_exit(&frag->itpf_lock);
6708 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6709 				    DROPPER(ipss, ipds_spd_nomem),
6710 				    &ipss->ipsec_spd_dropper);
6711 				return (NULL);
6712 			}
6713 			nip6h = (ip6_t *)(nspare_mp->b_rptr + hdr_len);
6714 			if (!ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6715 			    &nip6_hdr_length, &nv6_proto_p)) {
6716 				mutex_exit(&frag->itpf_lock);
6717 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6718 				    DROPPER(ipss, ipds_spd_malformed_frag),
6719 				    &ipss->ipsec_spd_dropper);
6720 				ipsec_freemsg_chain(nspare_mp);
6721 				return (NULL);
6722 			}
6723 			bzero(&nipp, sizeof (nipp));
6724 			(void) ip_find_hdr_v6(nspare_mp, nip6h, &nipp, NULL);
6725 			nfraghdr = nipp.ipp_fraghdr;
6726 			nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6727 			    IP6F_OFF_MASK);
6728 			nlastbyte  = nfirstbyte + ntohs(nip6h->ip6_plen) +
6729 			    sizeof (ip6_t) - nip6_hdr_length;
6730 		}
6731 		ipsec_freemsg_chain(nspare_mp);
6732 
6733 		/* Check for overlapping fragments */
6734 		if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6735 			/*
6736 			 * Overlap Check:
6737 			 *  ~~~~---------		# Check if the newly
6738 			 * ~	ndata_mp|		# received fragment
6739 			 *  ~~~~---------		# overlaps with the
6740 			 *	 ---------~~~~~~	# current fragment.
6741 			 *	|    mp		~
6742 			 *	 ---------~~~~~~
6743 			 */
6744 			if (is_v4) {
6745 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6746 				    firstbyte - nfirstbyte;
6747 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6748 			} else {
6749 				data  = (char *)ip6h  +
6750 				    nip6_hdr_length + firstbyte -
6751 				    nfirstbyte;
6752 				ndata = (char *)nip6h + nip6_hdr_length;
6753 			}
6754 			if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) -
6755 			    firstbyte)) {
6756 				/* Overlapping data does not match */
6757 				(void) fragcache_delentry(i, fep, frag);
6758 				mutex_exit(&frag->itpf_lock);
6759 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6760 				    DROPPER(ipss, ipds_spd_overlap_frag),
6761 				    &ipss->ipsec_spd_dropper);
6762 				return (NULL);
6763 			}
6764 			/* Part of defense for jolt2.c fragmentation attack */
6765 			if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6766 				/*
6767 				 * Check for identical or subset fragments:
6768 				 *  ----------	    ~~~~--------~~~~~
6769 				 * |    nmp   | or  ~	   nmp	    ~
6770 				 *  ----------	    ~~~~--------~~~~~
6771 				 *  ----------		  ------
6772 				 * |	mp    |		 |  mp  |
6773 				 *  ----------		  ------
6774 				 */
6775 				mutex_exit(&frag->itpf_lock);
6776 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6777 				    DROPPER(ipss, ipds_spd_evil_frag),
6778 				    &ipss->ipsec_spd_dropper);
6779 				return (NULL);
6780 			}
6781 
6782 		}
6783 
6784 		/* Correct location for this fragment? */
6785 		if (firstbyte <= nfirstbyte) {
6786 			/*
6787 			 * Check if the tail end of the new fragment overlaps
6788 			 * with the head of the current fragment.
6789 			 *	  --------~~~~~~~
6790 			 *	 |    nmp	~
6791 			 *	  --------~~~~~~~
6792 			 *  ~~~~~--------
6793 			 *  ~	mp	 |
6794 			 *  ~~~~~--------
6795 			 */
6796 			if (lastbyte > nfirstbyte) {
6797 				/* Fragments overlap */
6798 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6799 				    firstbyte - nfirstbyte;
6800 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6801 				if (is_v4) {
6802 					data  = (char *)iph +
6803 					    IPH_HDR_LENGTH(iph) + firstbyte -
6804 					    nfirstbyte;
6805 					ndata = (char *)niph +
6806 					    IPH_HDR_LENGTH(niph);
6807 				} else {
6808 					data  = (char *)ip6h  +
6809 					    nip6_hdr_length + firstbyte -
6810 					    nfirstbyte;
6811 					ndata = (char *)nip6h + nip6_hdr_length;
6812 				}
6813 				if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6814 				    - nfirstbyte)) {
6815 					/* Overlap mismatch */
6816 					(void) fragcache_delentry(i, fep, frag);
6817 					mutex_exit(&frag->itpf_lock);
6818 					ip_drop_packet(first_mp, inbound, NULL,
6819 					    NULL, DROPPER(ipss,
6820 					    ipds_spd_overlap_frag),
6821 					    &ipss->ipsec_spd_dropper);
6822 					return (NULL);
6823 				}
6824 			}
6825 
6826 			/*
6827 			 * Fragment does not illegally overlap and can now
6828 			 * be inserted into the chain
6829 			 */
6830 			break;
6831 		}
6832 
6833 		prevmp = nmp;
6834 	}
6835 	first_mp->b_next = nmp;
6836 
6837 	if (prevmp == NULL) {
6838 		fep->itpfe_fraglist = first_mp;
6839 	} else {
6840 		prevmp->b_next = first_mp;
6841 	}
6842 	if (last)
6843 		fep->itpfe_last = 1;
6844 
6845 	/* Part of defense for jolt2.c fragmentation attack */
6846 	if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6847 		(void) fragcache_delentry(i, fep, frag);
6848 		mutex_exit(&frag->itpf_lock);
6849 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6850 		    DROPPER(ipss, ipds_spd_max_frags),
6851 		    &ipss->ipsec_spd_dropper);
6852 		return (NULL);
6853 	}
6854 
6855 	/* Check for complete packet */
6856 
6857 	if (!fep->itpfe_last) {
6858 		mutex_exit(&frag->itpf_lock);
6859 #ifdef FRAGCACHE_DEBUG
6860 		cmn_err(CE_WARN, "Fragment cached, not last.\n");
6861 #endif
6862 		return (NULL);
6863 	}
6864 
6865 #ifdef FRAGCACHE_DEBUG
6866 	cmn_err(CE_WARN, "Last fragment cached.\n");
6867 	cmn_err(CE_WARN, "mp = %p, first_mp = %p.\n", mp, first_mp);
6868 #endif
6869 
6870 	offset = 0;
6871 	for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6872 		mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6873 		int hdr_len;
6874 
6875 		oiph  = (ipha_t *)data_mp->b_rptr;
6876 		ip6h = NULL;
6877 		iph = NULL;
6878 
6879 		spare_mp = NULL;
6880 		if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6881 			hdr_len = ((outer_hdr_len != 0) ?
6882 			    IPH_HDR_LENGTH(oiph) : 0);
6883 			iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6884 		} else {
6885 			ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6886 			if ((spare_mp = msgpullup(data_mp, -1)) == NULL) {
6887 				mutex_exit(&frag->itpf_lock);
6888 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6889 				    DROPPER(ipss, ipds_spd_nomem),
6890 				    &ipss->ipsec_spd_dropper);
6891 				return (NULL);
6892 			}
6893 			ip6h = (ip6_t *)spare_mp->b_rptr;
6894 			(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6895 			    &ip6_hdr_length, &v6_proto_p);
6896 			hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6897 		}
6898 
6899 		/* Calculate current fragment start/end */
6900 		if (is_v4) {
6901 			if (iph == NULL) {
6902 				/* Was v6 outer */
6903 				iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6904 			}
6905 			firstbyte = V4_FRAG_OFFSET(iph);
6906 			lastbyte = firstbyte + ntohs(iph->ipha_length) -
6907 			    IPH_HDR_LENGTH(iph);
6908 		} else {
6909 			if ((spare_mp == NULL) &&
6910 			    ((spare_mp = msgpullup(data_mp, -1)) == NULL)) {
6911 				mutex_exit(&frag->itpf_lock);
6912 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6913 				    DROPPER(ipss, ipds_spd_nomem),
6914 				    &ipss->ipsec_spd_dropper);
6915 				return (NULL);
6916 			}
6917 			ip6h = (ip6_t *)(spare_mp->b_rptr + hdr_len);
6918 			if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6919 			    &ip6_hdr_length, &v6_proto_p)) {
6920 				mutex_exit(&frag->itpf_lock);
6921 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6922 				    DROPPER(ipss, ipds_spd_malformed_frag),
6923 				    &ipss->ipsec_spd_dropper);
6924 				ipsec_freemsg_chain(spare_mp);
6925 				return (NULL);
6926 			}
6927 			v6_proto = *v6_proto_p;
6928 			bzero(&ipp, sizeof (ipp));
6929 			(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6930 			fraghdr = ipp.ipp_fraghdr;
6931 			firstbyte = ntohs(fraghdr->ip6f_offlg &
6932 			    IP6F_OFF_MASK);
6933 			lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6934 			    sizeof (ip6_t) - ip6_hdr_length;
6935 		}
6936 
6937 		/*
6938 		 * If this fragment is greater than current offset,
6939 		 * we have a missing fragment so return NULL
6940 		 */
6941 		if (firstbyte > offset) {
6942 			mutex_exit(&frag->itpf_lock);
6943 #ifdef FRAGCACHE_DEBUG
6944 			/*
6945 			 * Note, this can happen when the last frag
6946 			 * gets sent through because it is smaller
6947 			 * than the MTU.  It is not necessarily an
6948 			 * error condition.
6949 			 */
6950 			cmn_err(CE_WARN, "Frag greater than offset! : "
6951 			    "missing fragment: firstbyte = %d, offset = %d, "
6952 			    "mp = %p\n", firstbyte, offset, mp);
6953 #endif
6954 			ipsec_freemsg_chain(spare_mp);
6955 			return (NULL);
6956 		}
6957 
6958 		/*
6959 		 * If we are at the last fragment, we have the complete
6960 		 * packet, so rechain things and return it to caller
6961 		 * for processing
6962 		 */
6963 
6964 		if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6965 		    (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6966 			mp = fep->itpfe_fraglist;
6967 			fep->itpfe_fraglist = NULL;
6968 			(void) fragcache_delentry(i, fep, frag);
6969 			mutex_exit(&frag->itpf_lock);
6970 
6971 			if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6972 			    65535)) || (!is_v4 && (firstbyte +
6973 			    ntohs(ip6h->ip6_plen) > 65535))) {
6974 				/* It is an invalid "ping-o-death" packet */
6975 				/* Discard it */
6976 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6977 				    DROPPER(ipss, ipds_spd_evil_frag),
6978 				    &ipss->ipsec_spd_dropper);
6979 				ipsec_freemsg_chain(spare_mp);
6980 				return (NULL);
6981 			}
6982 #ifdef FRAGCACHE_DEBUG
6983 			cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6984 			    "mp->b_next = %p", mp, mp->b_next);
6985 #endif
6986 			ipsec_freemsg_chain(spare_mp);
6987 			/*
6988 			 * For inbound case, mp has ipsec_in b_next'd chain
6989 			 * For outbound case, it is just data mp chain
6990 			 */
6991 			return (mp);
6992 		}
6993 		ipsec_freemsg_chain(spare_mp);
6994 
6995 		/*
6996 		 * Update new ending offset if this
6997 		 * fragment extends the packet
6998 		 */
6999 		if (offset < lastbyte)
7000 			offset = lastbyte;
7001 	}
7002 
7003 	mutex_exit(&frag->itpf_lock);
7004 
7005 	/* Didn't find last fragment, so return NULL */
7006 	return (NULL);
7007 }
7008 
7009 static void
7010 ipsec_fragcache_clean(ipsec_fragcache_t *frag)
7011 {
7012 	ipsec_fragcache_entry_t *fep;
7013 	int i;
7014 	ipsec_fragcache_entry_t *earlyfep = NULL;
7015 	time_t itpf_time;
7016 	int earlyexp;
7017 	int earlyi = 0;
7018 
7019 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
7020 
7021 	itpf_time = gethrestime_sec();
7022 	earlyexp = itpf_time + 10000;
7023 
7024 	for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
7025 		fep = (frag->itpf_ptr)[i];
7026 		while (fep) {
7027 			if (fep->itpfe_exp < itpf_time) {
7028 				/* found */
7029 				fep = fragcache_delentry(i, fep, frag);
7030 			} else {
7031 				if (fep->itpfe_exp < earlyexp) {
7032 					earlyfep = fep;
7033 					earlyexp = fep->itpfe_exp;
7034 					earlyi = i;
7035 				}
7036 				fep = fep->itpfe_next;
7037 			}
7038 		}
7039 	}
7040 
7041 	frag->itpf_expire_hint = earlyexp;
7042 
7043 	/* if (!found) */
7044 	if (frag->itpf_freelist == NULL)
7045 		(void) fragcache_delentry(earlyi, earlyfep, frag);
7046 }
7047 
7048 static ipsec_fragcache_entry_t *
7049 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
7050     ipsec_fragcache_t *frag)
7051 {
7052 	ipsec_fragcache_entry_t *targp;
7053 	ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
7054 
7055 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
7056 
7057 	/* Free up any fragment list still in cache entry */
7058 	ipsec_freemsg_chain(fep->itpfe_fraglist);
7059 
7060 	targp = (frag->itpf_ptr)[slot];
7061 	ASSERT(targp != 0);
7062 
7063 	if (targp == fep) {
7064 		/* unlink from head of hash chain */
7065 		(frag->itpf_ptr)[slot] = nextp;
7066 		/* link into free list */
7067 		fep->itpfe_next = frag->itpf_freelist;
7068 		frag->itpf_freelist = fep;
7069 		return (nextp);
7070 	}
7071 
7072 	/* maybe should use double linked list to make update faster */
7073 	/* must be past front of chain */
7074 	while (targp) {
7075 		if (targp->itpfe_next == fep) {
7076 			/* unlink from hash chain */
7077 			targp->itpfe_next = nextp;
7078 			/* link into free list */
7079 			fep->itpfe_next = frag->itpf_freelist;
7080 			frag->itpf_freelist = fep;
7081 			return (nextp);
7082 		}
7083 		targp = targp->itpfe_next;
7084 		ASSERT(targp != 0);
7085 	}
7086 	/* NOTREACHED */
7087 	return (NULL);
7088 }
7089