1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsubr.h> 29 #include <sys/stropts.h> 30 #include <sys/strsun.h> 31 #include <sys/strlog.h> 32 #define _SUN_TPI_VERSION 2 33 #include <sys/tihdr.h> 34 #include <sys/timod.h> 35 #include <sys/ddi.h> 36 #include <sys/sunddi.h> 37 #include <sys/cmn_err.h> 38 #include <sys/proc.h> 39 #include <sys/suntpi.h> 40 #include <sys/policy.h> 41 #include <sys/zone.h> 42 #include <sys/disp.h> 43 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <netinet/in.h> 47 48 #include <inet/common.h> 49 #include <netinet/ip6.h> 50 #include <inet/ip.h> 51 #include <inet/ipclassifier.h> 52 #include <inet/proto_set.h> 53 #include <inet/nd.h> 54 #include <inet/optcom.h> 55 #include <netinet/ip_mroute.h> 56 #include <sys/isa_defs.h> 57 #include <net/route.h> 58 59 #include <inet/rts_impl.h> 60 #include <inet/ip_rts.h> 61 62 /* 63 * This is a transport provider for routing sockets. Downstream messages are 64 * wrapped with a IP_IOCTL header, and ip_wput_ioctl calls the appropriate entry 65 * in the ip_ioctl_ftbl callout table to pass the routing socket data into IP. 66 * Upstream messages are generated for listeners of the routing socket as well 67 * as the message sender (unless they have turned off their end using 68 * SO_USELOOPBACK or shutdown(3n)). Upstream messages may also be generated 69 * asynchronously when: 70 * 71 * Interfaces are brought up or down. 72 * Addresses are assigned to interfaces. 73 * ICMP redirects are processed and a IRE_HOST/RTF_DYNAMIC is installed. 74 * No route is found while sending a packet. 75 * When TCP requests IP to remove an IRE_CACHE of a troubled destination. 76 * 77 * Since all we do is reformat the messages between routing socket and 78 * ioctl forms, no synchronization is necessary in this module; all 79 * the dirty work is done down in ip. 80 */ 81 82 /* Default structure copied into T_INFO_ACK messages */ 83 static struct T_info_ack rts_g_t_info_ack = { 84 T_INFO_ACK, 85 T_INFINITE, /* TSDU_size. Maximum size messages. */ 86 T_INVALID, /* ETSDU_size. No expedited data. */ 87 T_INVALID, /* CDATA_size. No connect data. */ 88 T_INVALID, /* DDATA_size. No disconnect data. */ 89 0, /* ADDR_size. */ 90 0, /* OPT_size - not initialized here */ 91 64 * 1024, /* TIDU_size. rts allows maximum size messages. */ 92 T_COTS, /* SERV_type. rts supports connection oriented. */ 93 TS_UNBND, /* CURRENT_state. This is set from rts_state. */ 94 (XPG4_1) /* PROVIDER_flag */ 95 }; 96 97 /* 98 * Table of ND variables supported by rts. These are loaded into rts_g_nd 99 * in rts_open. 100 * All of these are alterable, within the min/max values given, at run time. 101 */ 102 static rtsparam_t lcl_param_arr[] = { 103 /* min max value name */ 104 { 4096, 65536, 8192, "rts_xmit_hiwat"}, 105 { 0, 65536, 1024, "rts_xmit_lowat"}, 106 { 4096, 65536, 8192, "rts_recv_hiwat"}, 107 { 65536, 1024*1024*1024, 256*1024, "rts_max_buf"}, 108 }; 109 #define rtss_xmit_hiwat rtss_params[0].rts_param_value 110 #define rtss_xmit_lowat rtss_params[1].rts_param_value 111 #define rtss_recv_hiwat rtss_params[2].rts_param_value 112 #define rtss_max_buf rtss_params[3].rts_param_value 113 114 static void rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, 115 int sys_error); 116 static void rts_input(void *, mblk_t *, void *); 117 static mblk_t *rts_ioctl_alloc(mblk_t *data, cred_t *cr); 118 static int rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 119 static boolean_t rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt); 120 static int rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 121 cred_t *cr); 122 static void rts_rsrv(queue_t *q); 123 static void *rts_stack_init(netstackid_t stackid, netstack_t *ns); 124 static void rts_stack_fini(netstackid_t stackid, void *arg); 125 static void rts_wput(queue_t *q, mblk_t *mp); 126 static void rts_wput_iocdata(queue_t *q, mblk_t *mp); 127 static void rts_wput_other(queue_t *q, mblk_t *mp); 128 static int rts_wrw(queue_t *q, struiod_t *dp); 129 130 static int rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, 131 cred_t *credp); 132 static conn_t *rts_open(int flag, cred_t *credp); 133 134 static int rts_stream_close(queue_t *q); 135 static int rts_close(sock_lower_handle_t proto_handle, int flags, 136 cred_t *cr); 137 138 static struct module_info rts_mod_info = { 139 129, "rts", 1, INFPSZ, 512, 128 140 }; 141 142 static struct qinit rtsrinit = { 143 NULL, (pfi_t)rts_rsrv, rts_stream_open, rts_stream_close, NULL, 144 &rts_mod_info 145 }; 146 147 static struct qinit rtswinit = { 148 (pfi_t)rts_wput, NULL, NULL, NULL, NULL, &rts_mod_info, 149 NULL, (pfi_t)rts_wrw, NULL, STRUIOT_STANDARD 150 }; 151 152 struct streamtab rtsinfo = { 153 &rtsrinit, &rtswinit 154 }; 155 156 /* 157 * This routine allocates the necessary 158 * message blocks for IOCTL wrapping the 159 * user data. 160 */ 161 static mblk_t * 162 rts_ioctl_alloc(mblk_t *data, cred_t *cr) 163 { 164 mblk_t *mp = NULL; 165 mblk_t *mp1 = NULL; 166 ipllc_t *ipllc; 167 struct iocblk *ioc; 168 169 mp = allocb_cred(sizeof (ipllc_t), cr); 170 if (mp == NULL) 171 return (NULL); 172 mp1 = allocb_cred(sizeof (struct iocblk), cr); 173 if (mp1 == NULL) { 174 freeb(mp); 175 return (NULL); 176 } 177 178 ipllc = (ipllc_t *)mp->b_rptr; 179 ipllc->ipllc_cmd = IP_IOC_RTS_REQUEST; 180 ipllc->ipllc_name_offset = 0; 181 ipllc->ipllc_name_length = 0; 182 mp->b_wptr += sizeof (ipllc_t); 183 mp->b_cont = data; 184 185 ioc = (struct iocblk *)mp1->b_rptr; 186 ioc->ioc_cmd = IP_IOCTL; 187 ioc->ioc_error = 0; 188 ioc->ioc_cr = NULL; 189 ioc->ioc_count = msgdsize(mp); 190 mp1->b_wptr += sizeof (struct iocblk); 191 mp1->b_datap->db_type = M_IOCTL; 192 mp1->b_cont = mp; 193 194 return (mp1); 195 } 196 197 /* 198 * This routine closes rts stream, by disabling 199 * put/srv routines and freeing the this module 200 * internal datastructure. 201 */ 202 static int 203 rts_common_close(queue_t *q, conn_t *connp) 204 { 205 206 ASSERT(connp != NULL && IPCL_IS_RTS(connp)); 207 208 ip_rts_unregister(connp); 209 210 ip_quiesce_conn(connp); 211 212 if (!IPCL_IS_NONSTR(connp)) { 213 qprocsoff(q); 214 215 /* 216 * Now we are truly single threaded on this stream, and can 217 * delete the things hanging off the connp, and finally the 218 * connp. 219 * We removed this connp from the fanout list, it cannot be 220 * accessed thru the fanouts, and we already waited for the 221 * conn_ref to drop to 0. We are already in close, so 222 * there cannot be any other thread from the top. qprocsoff 223 * has completed, and service has completed or won't run in 224 * future. 225 */ 226 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 227 } else { 228 ip_free_helper_stream(connp); 229 } 230 ASSERT(connp->conn_ref == 1); 231 232 233 connp->conn_ref--; 234 ipcl_conn_destroy(connp); 235 236 return (0); 237 } 238 239 static int 240 rts_stream_close(queue_t *q) 241 { 242 conn_t *connp = Q_TO_CONN(q); 243 244 (void) rts_common_close(q, connp); 245 q->q_ptr = WR(q)->q_ptr = NULL; 246 return (0); 247 } 248 249 /* 250 * This is the open routine for routing socket. It allocates 251 * rts_t structure for the stream and tells IP that it is a routing socket. 252 */ 253 /* ARGSUSED */ 254 static int 255 rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 256 { 257 conn_t *connp; 258 dev_t conn_dev; 259 rts_stack_t *rtss; 260 rts_t *rts; 261 262 /* If the stream is already open, return immediately. */ 263 if (q->q_ptr != NULL) 264 return (0); 265 266 if (sflag == MODOPEN) 267 return (EINVAL); 268 269 270 /* 271 * Since RTS is not used so heavily, allocating from the small 272 * arena should be sufficient. 273 */ 274 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 275 return (EBUSY); 276 } 277 278 connp = rts_open(flag, credp); 279 ASSERT(connp != NULL); 280 281 282 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 283 284 rts = connp->conn_rts; 285 286 rw_enter(&rts->rts_rwlock, RW_WRITER); 287 connp->conn_dev = conn_dev; 288 connp->conn_minor_arena = ip_minor_arena_sa; 289 290 /* 291 * Initialize the rts_t structure for this stream. 292 */ 293 q->q_ptr = connp; 294 WR(q)->q_ptr = connp; 295 connp->conn_rq = q; 296 connp->conn_wq = WR(q); 297 298 rtss = rts->rts_rtss; 299 q->q_hiwat = rtss->rtss_recv_hiwat; 300 WR(q)->q_hiwat = rtss->rtss_xmit_hiwat; 301 WR(q)->q_lowat = rtss->rtss_xmit_lowat; 302 303 304 305 mutex_enter(&connp->conn_lock); 306 connp->conn_state_flags &= ~CONN_INCIPIENT; 307 mutex_exit(&connp->conn_lock); 308 309 qprocson(q); 310 rw_exit(&rts->rts_rwlock); 311 /* 312 * Indicate the down IP module that this is a routing socket 313 * client by sending an RTS IOCTL without any user data. Although 314 * this is just a notification message (without any real routing 315 * request), we pass in any credential for correctness sake. 316 */ 317 ip_rts_register(connp); 318 319 return (0); 320 } 321 322 /* ARGSUSED */ 323 static conn_t * 324 rts_open(int flag, cred_t *credp) 325 { 326 netstack_t *ns; 327 rts_stack_t *rtss; 328 rts_t *rts; 329 conn_t *connp; 330 zoneid_t zoneid; 331 332 ns = netstack_find_by_cred(credp); 333 ASSERT(ns != NULL); 334 rtss = ns->netstack_rts; 335 ASSERT(rtss != NULL); 336 337 /* 338 * For exclusive stacks we set the zoneid to zero 339 * to make RTS operate as if in the global zone. 340 */ 341 if (ns->netstack_stackid != GLOBAL_NETSTACKID) 342 zoneid = GLOBAL_ZONEID; 343 else 344 zoneid = crgetzoneid(credp); 345 346 connp = ipcl_conn_create(IPCL_RTSCONN, KM_SLEEP, ns); 347 rts = connp->conn_rts; 348 349 /* 350 * ipcl_conn_create did a netstack_hold. Undo the hold that was 351 * done by netstack_find_by_cred() 352 */ 353 netstack_rele(ns); 354 355 356 rw_enter(&rts->rts_rwlock, RW_WRITER); 357 ASSERT(connp->conn_rts == rts); 358 ASSERT(rts->rts_connp == connp); 359 360 connp->conn_zoneid = zoneid; 361 connp->conn_flow_cntrld = B_FALSE; 362 363 connp->conn_ulp_labeled = is_system_labeled(); 364 365 rts->rts_rtss = rtss; 366 rts->rts_xmit_hiwat = rtss->rtss_xmit_hiwat; 367 368 connp->conn_recv = rts_input; 369 crhold(credp); 370 connp->conn_cred = credp; 371 372 /* 373 * rts sockets start out as bound and connected 374 * For streams based sockets, socket state is set to 375 * SS_ISBOUND | SS_ISCONNECTED in so_strinit. 376 */ 377 rts->rts_state = TS_DATA_XFER; 378 rw_exit(&rts->rts_rwlock); 379 380 return (connp); 381 } 382 383 /* 384 * This routine creates a T_ERROR_ACK message and passes it upstream. 385 */ 386 static void 387 rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) 388 { 389 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 390 qreply(q, mp); 391 } 392 393 /* 394 * This routine creates a T_OK_ACK message and passes it upstream. 395 */ 396 static void 397 rts_ok_ack(queue_t *q, mblk_t *mp) 398 { 399 if ((mp = mi_tpi_ok_ack_alloc(mp)) != NULL) 400 qreply(q, mp); 401 } 402 403 /* 404 * This routine is called by rts_wput to handle T_UNBIND_REQ messages. 405 */ 406 static void 407 rts_tpi_unbind(queue_t *q, mblk_t *mp) 408 { 409 conn_t *connp = Q_TO_CONN(q); 410 rts_t *rts = connp->conn_rts; 411 412 /* If a bind has not been done, we can't unbind. */ 413 if (rts->rts_state != TS_IDLE) { 414 rts_err_ack(q, mp, TOUTSTATE, 0); 415 return; 416 } 417 rts->rts_state = TS_UNBND; 418 rts_ok_ack(q, mp); 419 } 420 421 /* 422 * This routine is called to handle each 423 * O_T_BIND_REQ/T_BIND_REQ message passed to 424 * rts_wput. Note: This routine works with both 425 * O_T_BIND_REQ and T_BIND_REQ semantics. 426 */ 427 static void 428 rts_tpi_bind(queue_t *q, mblk_t *mp) 429 { 430 conn_t *connp = Q_TO_CONN(q); 431 rts_t *rts = connp->conn_rts; 432 mblk_t *mp1; 433 struct T_bind_req *tbr; 434 435 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 436 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 437 "rts_tpi_bind: bad data, %d", rts->rts_state); 438 rts_err_ack(q, mp, TBADADDR, 0); 439 return; 440 } 441 if (rts->rts_state != TS_UNBND) { 442 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 443 "rts_tpi_bind: bad state, %d", rts->rts_state); 444 rts_err_ack(q, mp, TOUTSTATE, 0); 445 return; 446 } 447 /* 448 * Reallocate the message to make sure we have enough room for an 449 * address and the protocol type. 450 */ 451 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin_t), 1); 452 if (mp1 == NULL) { 453 rts_err_ack(q, mp, TSYSERR, ENOMEM); 454 return; 455 } 456 mp = mp1; 457 tbr = (struct T_bind_req *)mp->b_rptr; 458 if (tbr->ADDR_length != 0) { 459 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 460 "rts_tpi_bind: bad ADDR_length %d", tbr->ADDR_length); 461 rts_err_ack(q, mp, TBADADDR, 0); 462 return; 463 } 464 /* Generic request */ 465 tbr->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_req); 466 tbr->ADDR_length = 0; 467 tbr->PRIM_type = T_BIND_ACK; 468 rts->rts_state = TS_IDLE; 469 qreply(q, mp); 470 } 471 472 static void 473 rts_copy_info(struct T_info_ack *tap, rts_t *rts) 474 { 475 *tap = rts_g_t_info_ack; 476 tap->CURRENT_state = rts->rts_state; 477 tap->OPT_size = rts_max_optsize; 478 } 479 480 /* 481 * This routine responds to T_CAPABILITY_REQ messages. It is called by 482 * rts_wput. Much of the T_CAPABILITY_ACK information is copied from 483 * rts_g_t_info_ack. The current state of the stream is copied from 484 * rts_state. 485 */ 486 static void 487 rts_capability_req(queue_t *q, mblk_t *mp) 488 { 489 conn_t *connp = Q_TO_CONN(q); 490 rts_t *rts = connp->conn_rts; 491 t_uscalar_t cap_bits1; 492 struct T_capability_ack *tcap; 493 494 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 495 496 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 497 mp->b_datap->db_type, T_CAPABILITY_ACK); 498 if (mp == NULL) 499 return; 500 501 tcap = (struct T_capability_ack *)mp->b_rptr; 502 tcap->CAP_bits1 = 0; 503 504 if (cap_bits1 & TC1_INFO) { 505 rts_copy_info(&tcap->INFO_ack, rts); 506 tcap->CAP_bits1 |= TC1_INFO; 507 } 508 509 qreply(q, mp); 510 } 511 512 /* 513 * This routine responds to T_INFO_REQ messages. It is called by rts_wput. 514 * Most of the T_INFO_ACK information is copied from rts_g_t_info_ack. 515 * The current state of the stream is copied from rts_state. 516 */ 517 static void 518 rts_info_req(queue_t *q, mblk_t *mp) 519 { 520 conn_t *connp = Q_TO_CONN(q); 521 rts_t *rts = connp->conn_rts; 522 523 mp = tpi_ack_alloc(mp, sizeof (rts_g_t_info_ack), M_PCPROTO, 524 T_INFO_ACK); 525 if (mp == NULL) 526 return; 527 rts_copy_info((struct T_info_ack *)mp->b_rptr, rts); 528 qreply(q, mp); 529 } 530 531 /* 532 * This routine gets default values of certain options whose default 533 * values are maintained by protcol specific code 534 */ 535 /* ARGSUSED */ 536 int 537 rts_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 538 { 539 /* no default value processed by protocol specific code currently */ 540 return (-1); 541 } 542 543 544 static int 545 rts_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 546 { 547 rts_t *rts = connp->conn_rts; 548 int *i1 = (int *)ptr; 549 550 ASSERT(RW_READ_HELD(&rts->rts_rwlock)); 551 552 switch (level) { 553 case SOL_SOCKET: 554 switch (name) { 555 case SO_DEBUG: 556 *i1 = rts->rts_debug; 557 break; 558 case SO_REUSEADDR: 559 *i1 = rts->rts_reuseaddr; 560 break; 561 case SO_TYPE: 562 *i1 = SOCK_RAW; 563 break; 564 /* 565 * The following three items are available here, 566 * but are only meaningful to IP. 567 */ 568 case SO_DONTROUTE: 569 *i1 = rts->rts_dontroute; 570 break; 571 case SO_USELOOPBACK: 572 *i1 = rts->rts_useloopback; 573 break; 574 case SO_BROADCAST: 575 *i1 = rts->rts_broadcast; 576 break; 577 case SO_PROTOTYPE: 578 *i1 = rts->rts_proto; 579 break; 580 /* 581 * The following two items can be manipulated, 582 * but changing them should do nothing. 583 */ 584 case SO_SNDBUF: 585 ASSERT(rts->rts_xmit_hiwat <= INT_MAX); 586 *i1 = (int)(rts->rts_xmit_hiwat); 587 break; 588 case SO_RCVBUF: 589 ASSERT(rts->rts_recv_hiwat <= INT_MAX); 590 *i1 = (int)(rts->rts_recv_hiwat); 591 break; 592 case SO_DOMAIN: 593 *i1 = PF_ROUTE; 594 break; 595 default: 596 return (-1); 597 } 598 break; 599 case SOL_ROUTE: 600 switch (name) { 601 case RT_AWARE: 602 mutex_enter(&connp->conn_lock); 603 *i1 = connp->conn_rtaware; 604 mutex_exit(&connp->conn_lock); 605 break; 606 } 607 break; 608 default: 609 return (-1); 610 } 611 return ((int)sizeof (int)); 612 } 613 614 /* ARGSUSED */ 615 static int 616 rts_do_opt_set(conn_t *connp, int level, int name, uint_t inlen, 617 uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, cred_t *cr, 618 void *thisdg_attrs, boolean_t checkonly) 619 { 620 int *i1 = (int *)invalp; 621 rts_t *rts = connp->conn_rts; 622 rts_stack_t *rtss = rts->rts_rtss; 623 624 ASSERT(RW_WRITE_HELD(&rts->rts_rwlock)); 625 626 /* 627 * For rts, we should have no ancillary data sent down 628 * (rts_wput doesn't handle options). 629 */ 630 ASSERT(thisdg_attrs == NULL); 631 632 /* 633 * For fixed length options, no sanity check 634 * of passed in length is done. It is assumed *_optcom_req() 635 * routines do the right thing. 636 */ 637 638 switch (level) { 639 case SOL_SOCKET: 640 switch (name) { 641 case SO_REUSEADDR: 642 if (!checkonly) { 643 rts->rts_reuseaddr = *i1 ? 1 : 0; 644 connp->conn_reuseaddr = *i1 ? 1 : 0; 645 } 646 break; /* goto sizeof (int) option return */ 647 case SO_DEBUG: 648 if (!checkonly) 649 rts->rts_debug = *i1 ? 1 : 0; 650 break; /* goto sizeof (int) option return */ 651 /* 652 * The following three items are available here, 653 * but are only meaningful to IP. 654 */ 655 case SO_DONTROUTE: 656 if (!checkonly) { 657 rts->rts_dontroute = *i1 ? 1 : 0; 658 connp->conn_dontroute = *i1 ? 1 : 0; 659 } 660 break; /* goto sizeof (int) option return */ 661 case SO_USELOOPBACK: 662 if (!checkonly) { 663 rts->rts_useloopback = *i1 ? 1 : 0; 664 connp->conn_loopback = *i1 ? 1 : 0; 665 } 666 break; /* goto sizeof (int) option return */ 667 case SO_BROADCAST: 668 if (!checkonly) { 669 rts->rts_broadcast = *i1 ? 1 : 0; 670 connp->conn_broadcast = *i1 ? 1 : 0; 671 } 672 break; /* goto sizeof (int) option return */ 673 case SO_PROTOTYPE: 674 /* 675 * Routing socket applications that call socket() with 676 * a third argument can filter which messages will be 677 * sent upstream thanks to sockfs. so_socket() sends 678 * down the SO_PROTOTYPE and rts_queue_input() 679 * implements the filtering. 680 */ 681 if (*i1 != AF_INET && *i1 != AF_INET6) 682 return (EPROTONOSUPPORT); 683 if (!checkonly) { 684 rts->rts_proto = *i1; 685 connp->conn_proto = *i1; 686 } 687 break; /* goto sizeof (int) option return */ 688 /* 689 * The following two items can be manipulated, 690 * but changing them should do nothing. 691 */ 692 case SO_SNDBUF: 693 if (*i1 > rtss->rtss_max_buf) { 694 *outlenp = 0; 695 return (ENOBUFS); 696 } 697 if (!checkonly) { 698 rts->rts_xmit_hiwat = *i1; 699 if (!IPCL_IS_NONSTR(connp)) 700 connp->conn_wq->q_hiwat = *i1; 701 } 702 break; /* goto sizeof (int) option return */ 703 case SO_RCVBUF: 704 if (*i1 > rtss->rtss_max_buf) { 705 *outlenp = 0; 706 return (ENOBUFS); 707 } 708 if (!checkonly) { 709 rts->rts_recv_hiwat = *i1; 710 rw_exit(&rts->rts_rwlock); 711 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 712 *i1); 713 rw_enter(&rts->rts_rwlock, RW_WRITER); 714 } 715 716 break; /* goto sizeof (int) option return */ 717 default: 718 *outlenp = 0; 719 return (EINVAL); 720 } 721 break; 722 case SOL_ROUTE: 723 switch (name) { 724 case RT_AWARE: 725 if (!checkonly) { 726 mutex_enter(&connp->conn_lock); 727 connp->conn_rtaware = *i1; 728 mutex_exit(&connp->conn_lock); 729 } 730 break; /* goto sizeof (int) option return */ 731 default: 732 *outlenp = 0; 733 return (EINVAL); 734 } 735 break; 736 default: 737 *outlenp = 0; 738 return (EINVAL); 739 } 740 /* 741 * Common case of return from an option that is sizeof (int) 742 */ 743 if (invalp != outvalp) { 744 /* don't trust bcopy for identical src/dst */ 745 (void) bcopy(invalp, outvalp, inlen); 746 } 747 *outlenp = (t_uscalar_t)sizeof (int); 748 return (0); 749 } 750 751 static int 752 rts_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 753 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 754 void *thisdg_attrs, cred_t *cr) 755 { 756 boolean_t checkonly = B_FALSE; 757 758 if (optset_context) { 759 switch (optset_context) { 760 case SETFN_OPTCOM_CHECKONLY: 761 checkonly = B_TRUE; 762 /* 763 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 764 * inlen != 0 implies value supplied and 765 * we have to "pretend" to set it. 766 * inlen == 0 implies that there is no value part 767 * in T_CHECK request and just validation 768 * done elsewhere should be enough, we just return here. 769 */ 770 if (inlen == 0) { 771 *outlenp = 0; 772 return (0); 773 } 774 break; 775 case SETFN_OPTCOM_NEGOTIATE: 776 checkonly = B_FALSE; 777 break; 778 case SETFN_UD_NEGOTIATE: 779 case SETFN_CONN_NEGOTIATE: 780 checkonly = B_FALSE; 781 /* 782 * Negotiating local and "association-related" options 783 * through T_UNITDATA_REQ or T_CONN_{REQ,CON} 784 * Not allowed in this module. 785 */ 786 return (EINVAL); 787 default: 788 /* 789 * We should never get here 790 */ 791 *outlenp = 0; 792 return (EINVAL); 793 } 794 795 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 796 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 797 798 } 799 return (rts_do_opt_set(connp, level, name, inlen, invalp, outlenp, 800 outvalp, cr, thisdg_attrs, checkonly)); 801 802 } 803 804 /* 805 * This routine retrieves the current status of socket options. 806 * It returns the size of the option retrieved. 807 */ 808 int 809 rts_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 810 { 811 rts_t *rts; 812 int err; 813 814 rts = Q_TO_RTS(q); 815 rw_enter(&rts->rts_rwlock, RW_READER); 816 err = rts_opt_get(Q_TO_CONN(q), level, name, ptr); 817 rw_exit(&rts->rts_rwlock); 818 return (err); 819 } 820 821 /* 822 * This routine sets socket options. 823 */ 824 /*ARGSUSED*/ 825 int 826 rts_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 827 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 828 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 829 { 830 conn_t *connp = Q_TO_CONN(q); 831 int error; 832 rts_t *rts = connp->conn_rts; 833 834 835 rw_enter(&rts->rts_rwlock, RW_WRITER); 836 error = rts_opt_set(connp, optset_context, level, name, inlen, invalp, 837 outlenp, outvalp, thisdg_attrs, cr); 838 rw_exit(&rts->rts_rwlock); 839 return (error); 840 } 841 842 /* 843 * This routine retrieves the value of an ND variable in a rtsparam_t 844 * structure. It is called through nd_getset when a user reads the 845 * variable. 846 */ 847 /* ARGSUSED */ 848 static int 849 rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 850 { 851 rtsparam_t *rtspa = (rtsparam_t *)cp; 852 853 (void) mi_mpprintf(mp, "%u", rtspa->rts_param_value); 854 return (0); 855 } 856 857 /* 858 * Walk through the param array specified registering each element with the 859 * named dispatch (ND) handler. 860 */ 861 static boolean_t 862 rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt) 863 { 864 for (; cnt-- > 0; rtspa++) { 865 if (rtspa->rts_param_name != NULL && rtspa->rts_param_name[0]) { 866 if (!nd_load(ndp, rtspa->rts_param_name, 867 rts_param_get, rts_param_set, (caddr_t)rtspa)) { 868 nd_free(ndp); 869 return (B_FALSE); 870 } 871 } 872 } 873 return (B_TRUE); 874 } 875 876 /* This routine sets an ND variable in a rtsparam_t structure. */ 877 /* ARGSUSED */ 878 static int 879 rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 880 { 881 ulong_t new_value; 882 rtsparam_t *rtspa = (rtsparam_t *)cp; 883 884 /* 885 * Fail the request if the new value does not lie within the 886 * required bounds. 887 */ 888 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 || 889 new_value < rtspa->rts_param_min || 890 new_value > rtspa->rts_param_max) { 891 return (EINVAL); 892 } 893 894 /* Set the new value */ 895 rtspa->rts_param_value = new_value; 896 return (0); 897 } 898 899 /* 900 * Empty rsrv routine which is used by rts_input to cause a wakeup 901 * of a thread in qwait. 902 */ 903 /*ARGSUSED*/ 904 static void 905 rts_rsrv(queue_t *q) 906 { 907 } 908 909 /* 910 * This routine handles synchronous messages passed downstream. It either 911 * consumes the message or passes it downstream; it never queues a 912 * a message. The data messages that go down are wrapped in an IOCTL 913 * message. 914 * 915 * Since it is synchronous, it waits for the M_IOCACK/M_IOCNAK so that 916 * it can return an immediate error (such as ENETUNREACH when adding a route). 917 * It uses the RTS_WRW_PENDING to ensure that each rts instance has only 918 * one M_IOCTL outstanding at any given time. 919 */ 920 static int 921 rts_wrw(queue_t *q, struiod_t *dp) 922 { 923 mblk_t *mp = dp->d_mp; 924 mblk_t *mp1; 925 int error; 926 rt_msghdr_t *rtm; 927 conn_t *connp = Q_TO_CONN(q); 928 rts_t *rts = connp->conn_rts; 929 930 while (rts->rts_flag & RTS_WRW_PENDING) { 931 if (qwait_rw(q)) { 932 rts->rts_error = EINTR; 933 goto err_ret; 934 } 935 } 936 rts->rts_flag |= RTS_WRW_PENDING; 937 938 if (isuioq(q) && (error = struioget(q, mp, dp, 0))) { 939 /* 940 * Uio error of some sort, so just return the error. 941 */ 942 rts->rts_error = error; 943 goto err_ret; 944 } 945 /* 946 * Pass the mblk (chain) onto wput(). 947 */ 948 dp->d_mp = 0; 949 950 switch (mp->b_datap->db_type) { 951 case M_PROTO: 952 case M_PCPROTO: 953 /* Expedite other than T_DATA_REQ to below the switch */ 954 if (((mp->b_wptr - mp->b_rptr) != 955 sizeof (struct T_data_req)) || 956 (((union T_primitives *)mp->b_rptr)->type != T_DATA_REQ)) 957 break; 958 if ((mp1 = mp->b_cont) == NULL) { 959 rts->rts_error = EINVAL; 960 goto err_ret; 961 } 962 freeb(mp); 963 mp = mp1; 964 /* FALLTHRU */ 965 case M_DATA: 966 /* 967 * The semantics of the routing socket is such that the rtm_pid 968 * field is automatically filled in during requests with the 969 * current process' pid. We do this here (where we still have 970 * user context) after checking we have at least a message the 971 * size of a routing message header. 972 */ 973 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { 974 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) { 975 rts->rts_error = EINVAL; 976 goto err_ret; 977 } 978 } 979 rtm = (rt_msghdr_t *)mp->b_rptr; 980 rtm->rtm_pid = curproc->p_pid; 981 break; 982 default: 983 break; 984 } 985 rts->rts_flag |= RTS_WPUT_PENDING; 986 rts_wput(q, mp); 987 while (rts->rts_flag & RTS_WPUT_PENDING) 988 if (qwait_rw(q)) { 989 /* RTS_WPUT_PENDING will be cleared below */ 990 rts->rts_error = EINTR; 991 break; 992 } 993 err_ret: 994 rts->rts_flag &= ~(RTS_WPUT_PENDING | RTS_WRW_PENDING); 995 return (rts->rts_error); 996 } 997 998 /* 999 * This routine handles all messages passed downstream. It either 1000 * consumes the message or passes it downstream; it never queues a 1001 * a message. The data messages that go down are wrapped in an IOCTL 1002 * message. 1003 * 1004 * FIXME? Should we call IP rts_request directly? Could punt on returning 1005 * errno in the case when it defers processing due to 1006 * IPIF_CHANGING/ILL_CHANGING??? 1007 */ 1008 static void 1009 rts_wput(queue_t *q, mblk_t *mp) 1010 { 1011 uchar_t *rptr = mp->b_rptr; 1012 mblk_t *mp1; 1013 conn_t *connp = Q_TO_CONN(q); 1014 rts_t *rts = connp->conn_rts; 1015 1016 switch (mp->b_datap->db_type) { 1017 case M_DATA: 1018 break; 1019 case M_PROTO: 1020 case M_PCPROTO: 1021 if ((mp->b_wptr - rptr) == sizeof (struct T_data_req)) { 1022 /* Expedite valid T_DATA_REQ to below the switch */ 1023 if (((union T_primitives *)rptr)->type == T_DATA_REQ) { 1024 mp1 = mp->b_cont; 1025 freeb(mp); 1026 if (mp1 == NULL) 1027 return; 1028 mp = mp1; 1029 break; 1030 } 1031 } 1032 /* FALLTHRU */ 1033 default: 1034 rts_wput_other(q, mp); 1035 return; 1036 } 1037 1038 1039 mp1 = rts_ioctl_alloc(mp, DB_CRED(mp)); 1040 if (mp1 == NULL) { 1041 ASSERT(rts != NULL); 1042 freemsg(mp); 1043 if (rts->rts_flag & RTS_WPUT_PENDING) { 1044 rts->rts_error = ENOMEM; 1045 rts->rts_flag &= ~RTS_WPUT_PENDING; 1046 } 1047 return; 1048 } 1049 ip_output(connp, mp1, q, IP_WPUT); 1050 } 1051 1052 1053 /* 1054 * Handles all the control message, if it 1055 * can not understand it, it will 1056 * pass down stream. 1057 */ 1058 static void 1059 rts_wput_other(queue_t *q, mblk_t *mp) 1060 { 1061 conn_t *connp = Q_TO_CONN(q); 1062 rts_t *rts = connp->conn_rts; 1063 uchar_t *rptr = mp->b_rptr; 1064 struct iocblk *iocp; 1065 cred_t *cr; 1066 rts_stack_t *rtss; 1067 1068 rtss = rts->rts_rtss; 1069 1070 cr = DB_CREDDEF(mp, connp->conn_cred); 1071 1072 switch (mp->b_datap->db_type) { 1073 case M_PROTO: 1074 case M_PCPROTO: 1075 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) { 1076 /* 1077 * If the message does not contain a PRIM_type, 1078 * throw it away. 1079 */ 1080 freemsg(mp); 1081 return; 1082 } 1083 switch (((union T_primitives *)rptr)->type) { 1084 case T_BIND_REQ: 1085 case O_T_BIND_REQ: 1086 rts_tpi_bind(q, mp); 1087 return; 1088 case T_UNBIND_REQ: 1089 rts_tpi_unbind(q, mp); 1090 return; 1091 case T_CAPABILITY_REQ: 1092 rts_capability_req(q, mp); 1093 return; 1094 case T_INFO_REQ: 1095 rts_info_req(q, mp); 1096 return; 1097 case T_SVR4_OPTMGMT_REQ: 1098 (void) svr4_optcom_req(q, mp, cr, &rts_opt_obj, 1099 B_TRUE); 1100 return; 1101 case T_OPTMGMT_REQ: 1102 (void) tpi_optcom_req(q, mp, cr, &rts_opt_obj, B_TRUE); 1103 return; 1104 case O_T_CONN_RES: 1105 case T_CONN_RES: 1106 case T_DISCON_REQ: 1107 /* Not supported by rts. */ 1108 rts_err_ack(q, mp, TNOTSUPPORT, 0); 1109 return; 1110 case T_DATA_REQ: 1111 case T_EXDATA_REQ: 1112 case T_ORDREL_REQ: 1113 /* Illegal for rts. */ 1114 freemsg(mp); 1115 (void) putnextctl1(RD(q), M_ERROR, EPROTO); 1116 return; 1117 1118 default: 1119 break; 1120 } 1121 break; 1122 case M_IOCTL: 1123 iocp = (struct iocblk *)mp->b_rptr; 1124 switch (iocp->ioc_cmd) { 1125 case ND_SET: 1126 case ND_GET: 1127 if (nd_getset(q, rtss->rtss_g_nd, mp)) { 1128 qreply(q, mp); 1129 return; 1130 } 1131 break; 1132 case TI_GETPEERNAME: 1133 mi_copyin(q, mp, NULL, 1134 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 1135 return; 1136 default: 1137 break; 1138 } 1139 case M_IOCDATA: 1140 rts_wput_iocdata(q, mp); 1141 return; 1142 default: 1143 break; 1144 } 1145 ip_output(connp, mp, q, IP_WPUT); 1146 } 1147 1148 /* 1149 * Called by rts_wput_other to handle all M_IOCDATA messages. 1150 */ 1151 static void 1152 rts_wput_iocdata(queue_t *q, mblk_t *mp) 1153 { 1154 conn_t *connp = Q_TO_CONN(q); 1155 struct sockaddr *rtsaddr; 1156 mblk_t *mp1; 1157 STRUCT_HANDLE(strbuf, sb); 1158 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 1159 1160 /* Make sure it is one of ours. */ 1161 switch (iocp->ioc_cmd) { 1162 case TI_GETPEERNAME: 1163 break; 1164 default: 1165 ip_output(connp, mp, q, IP_WPUT); 1166 return; 1167 } 1168 switch (mi_copy_state(q, mp, &mp1)) { 1169 case -1: 1170 return; 1171 case MI_COPY_CASE(MI_COPY_IN, 1): 1172 break; 1173 case MI_COPY_CASE(MI_COPY_OUT, 1): 1174 /* Copy out the strbuf. */ 1175 mi_copyout(q, mp); 1176 return; 1177 case MI_COPY_CASE(MI_COPY_OUT, 2): 1178 /* All done. */ 1179 mi_copy_done(q, mp, 0); 1180 return; 1181 default: 1182 mi_copy_done(q, mp, EPROTO); 1183 return; 1184 } 1185 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 1186 if (STRUCT_FGET(sb, maxlen) < (int)sizeof (sin_t)) { 1187 mi_copy_done(q, mp, EINVAL); 1188 return; 1189 } 1190 switch (iocp->ioc_cmd) { 1191 case TI_GETPEERNAME: 1192 break; 1193 default: 1194 mi_copy_done(q, mp, EPROTO); 1195 return; 1196 } 1197 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), sizeof (sin_t), 1198 B_TRUE); 1199 if (mp1 == NULL) 1200 return; 1201 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 1202 rtsaddr = (struct sockaddr *)mp1->b_rptr; 1203 mp1->b_wptr = (uchar_t *)&rtsaddr[1]; 1204 bzero(rtsaddr, sizeof (struct sockaddr)); 1205 rtsaddr->sa_family = AF_ROUTE; 1206 /* Copy out the address */ 1207 mi_copyout(q, mp); 1208 } 1209 1210 /*ARGSUSED2*/ 1211 static void 1212 rts_input(void *arg1, mblk_t *mp, void *arg2) 1213 { 1214 conn_t *connp = (conn_t *)arg1; 1215 rts_t *rts = connp->conn_rts; 1216 struct iocblk *iocp; 1217 mblk_t *mp1; 1218 struct T_data_ind *tdi; 1219 int error; 1220 1221 switch (mp->b_datap->db_type) { 1222 case M_IOCACK: 1223 case M_IOCNAK: 1224 iocp = (struct iocblk *)mp->b_rptr; 1225 if (IPCL_IS_NONSTR(connp)) { 1226 ASSERT(rts->rts_flag & (RTS_REQ_PENDING)); 1227 mutex_enter(&rts->rts_send_mutex); 1228 rts->rts_flag &= ~RTS_REQ_INPROG; 1229 rts->rts_error = iocp->ioc_error; 1230 cv_signal(&rts->rts_io_cv); 1231 mutex_exit(&rts->rts_send_mutex); 1232 freemsg(mp); 1233 return; 1234 } else { 1235 if (rts->rts_flag & (RTS_WPUT_PENDING)) { 1236 rts->rts_flag &= ~RTS_WPUT_PENDING; 1237 rts->rts_error = iocp->ioc_error; 1238 /* 1239 * Tell rts_wvw/qwait that we are done. 1240 * Note: there is no qwait_wakeup() we can use. 1241 */ 1242 qenable(connp->conn_rq); 1243 freemsg(mp); 1244 return; 1245 } 1246 } 1247 break; 1248 case M_DATA: 1249 /* 1250 * Prepend T_DATA_IND to prevent the stream head from 1251 * consolidating multiple messages together. 1252 * If the allocation fails just send up the M_DATA. 1253 */ 1254 mp1 = allocb(sizeof (*tdi), BPRI_MED); 1255 if (mp1 != NULL) { 1256 mp1->b_cont = mp; 1257 mp = mp1; 1258 1259 mp->b_datap->db_type = M_PROTO; 1260 mp->b_wptr += sizeof (*tdi); 1261 tdi = (struct T_data_ind *)mp->b_rptr; 1262 tdi->PRIM_type = T_DATA_IND; 1263 tdi->MORE_flag = 0; 1264 } 1265 break; 1266 default: 1267 break; 1268 } 1269 1270 if (IPCL_IS_NONSTR(connp)) { 1271 if ((*connp->conn_upcalls->su_recv) 1272 (connp->conn_upper_handle, mp, msgdsize(mp), 0, 1273 &error, NULL) < 0) { 1274 ASSERT(error == ENOSPC); 1275 /* 1276 * Let's confirm hoding the lock that 1277 * we are out of recv space. 1278 */ 1279 mutex_enter(&rts->rts_recv_mutex); 1280 if ((*connp->conn_upcalls->su_recv) 1281 (connp->conn_upper_handle, NULL, 0, 0, 1282 &error, NULL) < 0) { 1283 ASSERT(error == ENOSPC); 1284 connp->conn_flow_cntrld = B_TRUE; 1285 } 1286 mutex_exit(&rts->rts_recv_mutex); 1287 } 1288 } else { 1289 putnext(connp->conn_rq, mp); 1290 } 1291 } 1292 1293 1294 void 1295 rts_ddi_g_init(void) 1296 { 1297 rts_max_optsize = optcom_max_optsize(rts_opt_obj.odb_opt_des_arr, 1298 rts_opt_obj.odb_opt_arr_cnt); 1299 1300 /* 1301 * We want to be informed each time a stack is created or 1302 * destroyed in the kernel, so we can maintain the 1303 * set of rts_stack_t's. 1304 */ 1305 netstack_register(NS_RTS, rts_stack_init, NULL, rts_stack_fini); 1306 } 1307 1308 void 1309 rts_ddi_g_destroy(void) 1310 { 1311 netstack_unregister(NS_RTS); 1312 } 1313 1314 #define INET_NAME "ip" 1315 1316 /* 1317 * Initialize the RTS stack instance. 1318 */ 1319 /* ARGSUSED */ 1320 static void * 1321 rts_stack_init(netstackid_t stackid, netstack_t *ns) 1322 { 1323 rts_stack_t *rtss; 1324 rtsparam_t *pa; 1325 int error = 0; 1326 major_t major; 1327 1328 rtss = (rts_stack_t *)kmem_zalloc(sizeof (*rtss), KM_SLEEP); 1329 rtss->rtss_netstack = ns; 1330 1331 pa = (rtsparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 1332 rtss->rtss_params = pa; 1333 bcopy(lcl_param_arr, rtss->rtss_params, sizeof (lcl_param_arr)); 1334 1335 (void) rts_param_register(&rtss->rtss_g_nd, 1336 rtss->rtss_params, A_CNT(lcl_param_arr)); 1337 1338 major = mod_name_to_major(INET_NAME); 1339 error = ldi_ident_from_major(major, &rtss->rtss_ldi_ident); 1340 ASSERT(error == 0); 1341 return (rtss); 1342 } 1343 1344 /* 1345 * Free the RTS stack instance. 1346 */ 1347 /* ARGSUSED */ 1348 static void 1349 rts_stack_fini(netstackid_t stackid, void *arg) 1350 { 1351 rts_stack_t *rtss = (rts_stack_t *)arg; 1352 1353 nd_free(&rtss->rtss_g_nd); 1354 kmem_free(rtss->rtss_params, sizeof (lcl_param_arr)); 1355 rtss->rtss_params = NULL; 1356 ldi_ident_release(rtss->rtss_ldi_ident); 1357 kmem_free(rtss, sizeof (*rtss)); 1358 } 1359 1360 /* ARGSUSED */ 1361 int 1362 rts_accept(sock_lower_handle_t lproto_handle, 1363 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 1364 cred_t *cr) 1365 { 1366 return (EINVAL); 1367 } 1368 1369 /* ARGSUSED */ 1370 static int 1371 rts_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 1372 socklen_t len, cred_t *cr) 1373 { 1374 /* 1375 * rebind not allowed 1376 */ 1377 return (EINVAL); 1378 } 1379 1380 /* ARGSUSED */ 1381 int 1382 rts_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 1383 { 1384 return (EINVAL); 1385 } 1386 1387 /* ARGSUSED */ 1388 int 1389 rts_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 1390 socklen_t len, sock_connid_t *id, cred_t *cr) 1391 { 1392 /* 1393 * rts sockets start out as bound and connected 1394 */ 1395 *id = 0; 1396 return (EISCONN); 1397 } 1398 1399 /* ARGSUSED */ 1400 int 1401 rts_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 1402 socklen_t *addrlen, cred_t *cr) 1403 { 1404 conn_t *connp = (conn_t *)proto_handle; 1405 rts_t *rts = connp->conn_rts; 1406 1407 ASSERT(rts != NULL); 1408 1409 bzero(addr, sizeof (struct sockaddr)); 1410 addr->sa_family = AF_ROUTE; 1411 *addrlen = sizeof (struct sockaddr); 1412 1413 return (0); 1414 } 1415 1416 /* ARGSUSED */ 1417 int 1418 rts_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 1419 socklen_t *addrlen, cred_t *cr) 1420 { 1421 return (EOPNOTSUPP); 1422 } 1423 1424 static int 1425 rts_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 1426 void *optvalp, socklen_t *optlen, cred_t *cr) 1427 { 1428 conn_t *connp = (conn_t *)proto_handle; 1429 rts_t *rts = connp->conn_rts; 1430 int error; 1431 t_uscalar_t max_optbuf_len; 1432 void *optvalp_buf; 1433 int len; 1434 1435 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 1436 rts_opt_obj.odb_opt_des_arr, 1437 rts_opt_obj.odb_opt_arr_cnt, 1438 rts_opt_obj.odb_topmost_tpiprovider, 1439 B_FALSE, B_TRUE, cr); 1440 if (error != 0) { 1441 if (error < 0) 1442 error = proto_tlitosyserr(-error); 1443 return (error); 1444 } 1445 1446 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 1447 rw_enter(&rts->rts_rwlock, RW_READER); 1448 len = rts_opt_get(connp, level, option_name, optvalp_buf); 1449 rw_exit(&rts->rts_rwlock); 1450 1451 if (len < 0) { 1452 /* 1453 * Pass on to IP 1454 */ 1455 error = ip_get_options(connp, level, option_name, 1456 optvalp, optlen, cr); 1457 } else { 1458 /* 1459 * update optlen and copy option value 1460 */ 1461 t_uscalar_t size = MIN(len, *optlen); 1462 bcopy(optvalp_buf, optvalp, size); 1463 bcopy(&size, optlen, sizeof (size)); 1464 error = 0; 1465 } 1466 1467 kmem_free(optvalp_buf, max_optbuf_len); 1468 return (error); 1469 } 1470 1471 static int 1472 rts_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 1473 const void *optvalp, socklen_t optlen, cred_t *cr) 1474 { 1475 conn_t *connp = (conn_t *)proto_handle; 1476 rts_t *rts = connp->conn_rts; 1477 int error; 1478 1479 error = proto_opt_check(level, option_name, optlen, NULL, 1480 rts_opt_obj.odb_opt_des_arr, 1481 rts_opt_obj.odb_opt_arr_cnt, 1482 rts_opt_obj.odb_topmost_tpiprovider, 1483 B_TRUE, B_FALSE, cr); 1484 1485 if (error != 0) { 1486 if (error < 0) 1487 error = proto_tlitosyserr(-error); 1488 return (error); 1489 } 1490 1491 rw_enter(&rts->rts_rwlock, RW_WRITER); 1492 error = rts_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 1493 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 1494 NULL, cr); 1495 rw_exit(&rts->rts_rwlock); 1496 1497 ASSERT(error >= 0); 1498 1499 return (error); 1500 } 1501 1502 /* ARGSUSED */ 1503 static int 1504 rts_send(sock_lower_handle_t proto_handle, mblk_t *mp, 1505 struct nmsghdr *msg, cred_t *cr) 1506 { 1507 mblk_t *mp1; 1508 conn_t *connp = (conn_t *)proto_handle; 1509 rts_t *rts = connp->conn_rts; 1510 rt_msghdr_t *rtm; 1511 int error; 1512 1513 ASSERT(DB_TYPE(mp) == M_DATA); 1514 /* 1515 * The semantics of the routing socket is such that the rtm_pid 1516 * field is automatically filled in during requests with the 1517 * current process' pid. We do this here (where we still have 1518 * user context) after checking we have at least a message the 1519 * size of a routing message header. 1520 */ 1521 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { 1522 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) { 1523 rts->rts_error = EINVAL; 1524 freemsg(mp); 1525 return (rts->rts_error); 1526 } 1527 } 1528 rtm = (rt_msghdr_t *)mp->b_rptr; 1529 rtm->rtm_pid = curproc->p_pid; 1530 1531 mp1 = rts_ioctl_alloc(mp, DB_CRED(mp)); 1532 if (mp1 == NULL) { 1533 ASSERT(rts != NULL); 1534 freemsg(mp); 1535 return (ENOMEM); 1536 } 1537 1538 /* 1539 * Allow only one outstanding request(ioctl) at any given time 1540 */ 1541 mutex_enter(&rts->rts_send_mutex); 1542 while (rts->rts_flag & RTS_REQ_PENDING) { 1543 int ret; 1544 1545 ret = cv_wait_sig(&rts->rts_send_cv, &rts->rts_send_mutex); 1546 if (ret <= 0) { 1547 mutex_exit(&rts->rts_send_mutex); 1548 freemsg(mp); 1549 return (EINTR); 1550 } 1551 } 1552 1553 rts->rts_flag |= RTS_REQ_PENDING; 1554 1555 rts->rts_flag |= RTS_REQ_INPROG; 1556 1557 mutex_exit(&rts->rts_send_mutex); 1558 1559 CONN_INC_REF(connp); 1560 1561 error = ip_rts_request_common(rts->rts_connp->conn_wq, mp1, connp, 1562 DB_CREDDEF(mp, connp->conn_cred)); 1563 1564 mutex_enter(&rts->rts_send_mutex); 1565 if (error == EINPROGRESS) { 1566 ASSERT(rts->rts_flag & RTS_REQ_INPROG); 1567 if (rts->rts_flag & RTS_REQ_INPROG) { 1568 /* 1569 * Once the request has been issued we wait for 1570 * completion 1571 */ 1572 cv_wait(&rts->rts_io_cv, &rts->rts_send_mutex); 1573 error = rts->rts_error; 1574 } 1575 } 1576 1577 ASSERT((error != 0) || !(rts->rts_flag & RTS_REQ_INPROG)); 1578 ASSERT(MUTEX_HELD(&rts->rts_send_mutex)); 1579 1580 rts->rts_flag &= ~(RTS_REQ_PENDING | RTS_REQ_INPROG); 1581 cv_signal(&rts->rts_send_cv); 1582 mutex_exit(&rts->rts_send_mutex); 1583 return (error); 1584 } 1585 1586 /* ARGSUSED */ 1587 sock_lower_handle_t 1588 rts_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 1589 uint_t *smodep, int *errorp, int flags, cred_t *credp) 1590 { 1591 conn_t *connp; 1592 rts_t *rts; 1593 rts_stack_t *rtss; 1594 1595 if (family != AF_ROUTE || type != SOCK_RAW || 1596 (proto != 0 && proto != AF_INET && proto != AF_INET6)) { 1597 *errorp = EPROTONOSUPPORT; 1598 return (NULL); 1599 } 1600 1601 connp = rts_open(flags, credp); 1602 ASSERT(connp != NULL); 1603 connp->conn_flags |= IPCL_NONSTR; 1604 1605 rts = connp->conn_rts; 1606 rtss = rts->rts_rtss; 1607 1608 rts->rts_xmit_hiwat = rtss->rtss_xmit_hiwat; 1609 rts->rts_xmit_lowat = rtss->rtss_xmit_lowat; 1610 rts->rts_recv_hiwat = rtss->rtss_recv_hiwat; 1611 rts->rts_recv_lowat = rts_mod_info.mi_lowat; 1612 1613 ASSERT(rtss->rtss_ldi_ident != NULL); 1614 1615 *errorp = ip_create_helper_stream(connp, rtss->rtss_ldi_ident); 1616 if (*errorp != 0) { 1617 #ifdef DEBUG 1618 cmn_err(CE_CONT, "rts_create: create of IP helper stream" 1619 " failed\n"); 1620 #endif 1621 (void) rts_close((sock_lower_handle_t)connp, 0, credp); 1622 return (NULL); 1623 } 1624 1625 mutex_enter(&connp->conn_lock); 1626 connp->conn_state_flags &= ~CONN_INCIPIENT; 1627 mutex_exit(&connp->conn_lock); 1628 1629 *errorp = 0; 1630 *smodep = SM_ATOMIC; 1631 *sock_downcalls = &sock_rts_downcalls; 1632 return ((sock_lower_handle_t)connp); 1633 } 1634 1635 /* ARGSUSED */ 1636 void 1637 rts_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 1638 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 1639 { 1640 conn_t *connp = (conn_t *)proto_handle; 1641 rts_t *rts = connp->conn_rts; 1642 rts_stack_t *rtss = rts->rts_rtss; 1643 struct sock_proto_props sopp; 1644 1645 connp->conn_upcalls = sock_upcalls; 1646 connp->conn_upper_handle = sock_handle; 1647 1648 sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 1649 SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ; 1650 sopp.sopp_wroff = 0; 1651 sopp.sopp_rxhiwat = rtss->rtss_recv_hiwat; 1652 sopp.sopp_rxlowat = rts_mod_info.mi_lowat; 1653 sopp.sopp_maxblk = INFPSZ; 1654 sopp.sopp_maxpsz = rts_mod_info.mi_maxpsz; 1655 sopp.sopp_minpsz = (rts_mod_info.mi_minpsz == 1) ? 0 : 1656 rts_mod_info.mi_minpsz; 1657 1658 (*connp->conn_upcalls->su_set_proto_props) 1659 (connp->conn_upper_handle, &sopp); 1660 1661 /* 1662 * We treat it as already connected for routing socket. 1663 */ 1664 (*connp->conn_upcalls->su_connected) 1665 (connp->conn_upper_handle, 0, NULL, -1); 1666 1667 /* 1668 * Indicate the down IP module that this is a routing socket 1669 * client by sending an RTS IOCTL without any user data. Although 1670 * this is just a notification message (without any real routing 1671 * request), we pass in any credential for correctness sake. 1672 */ 1673 ip_rts_register(connp); 1674 } 1675 1676 /* ARGSUSED */ 1677 int 1678 rts_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 1679 { 1680 conn_t *connp = (conn_t *)proto_handle; 1681 1682 ASSERT(connp != NULL && IPCL_IS_RTS(connp)); 1683 return (rts_common_close(NULL, connp)); 1684 } 1685 1686 /* ARGSUSED */ 1687 int 1688 rts_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 1689 { 1690 conn_t *connp = (conn_t *)proto_handle; 1691 1692 /* shut down the send side */ 1693 if (how != SHUT_RD) 1694 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 1695 SOCK_OPCTL_SHUT_SEND, 0); 1696 /* shut down the recv side */ 1697 if (how != SHUT_WR) 1698 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 1699 SOCK_OPCTL_SHUT_RECV, 0); 1700 return (0); 1701 } 1702 1703 void 1704 rts_clr_flowctrl(sock_lower_handle_t proto_handle) 1705 { 1706 conn_t *connp = (conn_t *)proto_handle; 1707 rts_t *rts = connp->conn_rts; 1708 1709 mutex_enter(&rts->rts_recv_mutex); 1710 connp->conn_flow_cntrld = B_FALSE; 1711 mutex_exit(&rts->rts_recv_mutex); 1712 } 1713 1714 int 1715 rts_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 1716 int mode, int32_t *rvalp, cred_t *cr) 1717 { 1718 conn_t *connp = (conn_t *)proto_handle; 1719 int error; 1720 1721 switch (cmd) { 1722 case ND_SET: 1723 case ND_GET: 1724 case TI_GETPEERNAME: 1725 case TI_GETMYNAME: 1726 #ifdef DEUG 1727 cmn_err(CE_CONT, "rts_ioctl cmd 0x%x on non sreams" 1728 " socket", cmd); 1729 #endif 1730 error = EINVAL; 1731 break; 1732 default: 1733 /* 1734 * Pass on to IP using helper stream 1735 */ 1736 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 1737 cmd, arg, mode, cr, rvalp); 1738 break; 1739 } 1740 1741 return (error); 1742 } 1743 1744 sock_downcalls_t sock_rts_downcalls = { 1745 rts_activate, 1746 rts_accept, 1747 rts_bind, 1748 rts_listen, 1749 rts_connect, 1750 rts_getpeername, 1751 rts_getsockname, 1752 rts_getsockopt, 1753 rts_setsockopt, 1754 rts_send, 1755 NULL, 1756 NULL, 1757 NULL, 1758 rts_shutdown, 1759 rts_clr_flowctrl, 1760 rts_ioctl, 1761 rts_close 1762 }; 1763