1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stream.h> 28 #include <sys/strsubr.h> 29 #include <sys/stropts.h> 30 #include <sys/strsun.h> 31 #include <sys/strlog.h> 32 #define _SUN_TPI_VERSION 2 33 #include <sys/tihdr.h> 34 #include <sys/timod.h> 35 #include <sys/ddi.h> 36 #include <sys/sunddi.h> 37 #include <sys/cmn_err.h> 38 #include <sys/proc.h> 39 #include <sys/suntpi.h> 40 #include <sys/policy.h> 41 #include <sys/zone.h> 42 #include <sys/disp.h> 43 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <netinet/in.h> 47 48 #include <inet/common.h> 49 #include <netinet/ip6.h> 50 #include <inet/ip.h> 51 #include <inet/ipclassifier.h> 52 #include <inet/proto_set.h> 53 #include <inet/nd.h> 54 #include <inet/optcom.h> 55 #include <netinet/ip_mroute.h> 56 #include <sys/isa_defs.h> 57 #include <net/route.h> 58 59 #include <inet/rts_impl.h> 60 #include <inet/ip_rts.h> 61 62 /* 63 * This is a transport provider for routing sockets. Downstream messages are 64 * wrapped with a IP_IOCTL header, and ip_wput_ioctl calls the appropriate entry 65 * in the ip_ioctl_ftbl callout table to pass the routing socket data into IP. 66 * Upstream messages are generated for listeners of the routing socket as well 67 * as the message sender (unless they have turned off their end using 68 * SO_USELOOPBACK or shutdown(3n)). Upstream messages may also be generated 69 * asynchronously when: 70 * 71 * Interfaces are brought up or down. 72 * Addresses are assigned to interfaces. 73 * ICMP redirects are processed and a IRE_HOST/RTF_DYNAMIC is installed. 74 * No route is found while sending a packet. 75 * When TCP requests IP to remove an IRE_CACHE of a troubled destination. 76 * 77 * Since all we do is reformat the messages between routing socket and 78 * ioctl forms, no synchronization is necessary in this module; all 79 * the dirty work is done down in ip. 80 */ 81 82 /* Default structure copied into T_INFO_ACK messages */ 83 static struct T_info_ack rts_g_t_info_ack = { 84 T_INFO_ACK, 85 T_INFINITE, /* TSDU_size. Maximum size messages. */ 86 T_INVALID, /* ETSDU_size. No expedited data. */ 87 T_INVALID, /* CDATA_size. No connect data. */ 88 T_INVALID, /* DDATA_size. No disconnect data. */ 89 0, /* ADDR_size. */ 90 0, /* OPT_size - not initialized here */ 91 64 * 1024, /* TIDU_size. rts allows maximum size messages. */ 92 T_COTS, /* SERV_type. rts supports connection oriented. */ 93 TS_UNBND, /* CURRENT_state. This is set from rts_state. */ 94 (XPG4_1) /* PROVIDER_flag */ 95 }; 96 97 /* 98 * Table of ND variables supported by rts. These are loaded into rts_g_nd 99 * in rts_open. 100 * All of these are alterable, within the min/max values given, at run time. 101 */ 102 static rtsparam_t lcl_param_arr[] = { 103 /* min max value name */ 104 { 4096, 65536, 8192, "rts_xmit_hiwat"}, 105 { 0, 65536, 1024, "rts_xmit_lowat"}, 106 { 4096, 65536, 8192, "rts_recv_hiwat"}, 107 { 65536, 1024*1024*1024, 256*1024, "rts_max_buf"}, 108 }; 109 #define rtss_xmit_hiwat rtss_params[0].rts_param_value 110 #define rtss_xmit_lowat rtss_params[1].rts_param_value 111 #define rtss_recv_hiwat rtss_params[2].rts_param_value 112 #define rtss_max_buf rtss_params[3].rts_param_value 113 114 static void rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, 115 int sys_error); 116 static void rts_input(void *, mblk_t *, void *); 117 static mblk_t *rts_ioctl_alloc(mblk_t *data, cred_t *cr); 118 static int rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 119 static boolean_t rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt); 120 static int rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 121 cred_t *cr); 122 static void rts_rsrv(queue_t *q); 123 static void *rts_stack_init(netstackid_t stackid, netstack_t *ns); 124 static void rts_stack_fini(netstackid_t stackid, void *arg); 125 static void rts_wput(queue_t *q, mblk_t *mp); 126 static void rts_wput_iocdata(queue_t *q, mblk_t *mp); 127 static void rts_wput_other(queue_t *q, mblk_t *mp); 128 static int rts_wrw(queue_t *q, struiod_t *dp); 129 130 static int rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, 131 cred_t *credp); 132 static conn_t *rts_open(int flag, cred_t *credp); 133 134 static int rts_stream_close(queue_t *q); 135 static int rts_close(sock_lower_handle_t proto_handle, int flags, 136 cred_t *cr); 137 138 static struct module_info rts_mod_info = { 139 129, "rts", 1, INFPSZ, 512, 128 140 }; 141 142 static struct qinit rtsrinit = { 143 NULL, (pfi_t)rts_rsrv, rts_stream_open, rts_stream_close, NULL, 144 &rts_mod_info 145 }; 146 147 static struct qinit rtswinit = { 148 (pfi_t)rts_wput, NULL, NULL, NULL, NULL, &rts_mod_info, 149 NULL, (pfi_t)rts_wrw, NULL, STRUIOT_STANDARD 150 }; 151 152 struct streamtab rtsinfo = { 153 &rtsrinit, &rtswinit 154 }; 155 156 /* 157 * This routine allocates the necessary 158 * message blocks for IOCTL wrapping the 159 * user data. 160 */ 161 static mblk_t * 162 rts_ioctl_alloc(mblk_t *data, cred_t *cr) 163 { 164 mblk_t *mp = NULL; 165 mblk_t *mp1 = NULL; 166 ipllc_t *ipllc; 167 struct iocblk *ioc; 168 169 mp = allocb_cred(sizeof (ipllc_t), cr); 170 if (mp == NULL) 171 return (NULL); 172 mp1 = allocb_cred(sizeof (struct iocblk), cr); 173 if (mp1 == NULL) { 174 freeb(mp); 175 return (NULL); 176 } 177 178 ipllc = (ipllc_t *)mp->b_rptr; 179 ipllc->ipllc_cmd = IP_IOC_RTS_REQUEST; 180 ipllc->ipllc_name_offset = 0; 181 ipllc->ipllc_name_length = 0; 182 mp->b_wptr += sizeof (ipllc_t); 183 mp->b_cont = data; 184 185 ioc = (struct iocblk *)mp1->b_rptr; 186 ioc->ioc_cmd = IP_IOCTL; 187 ioc->ioc_error = 0; 188 ioc->ioc_cr = NULL; 189 ioc->ioc_count = msgdsize(mp); 190 mp1->b_wptr += sizeof (struct iocblk); 191 mp1->b_datap->db_type = M_IOCTL; 192 mp1->b_cont = mp; 193 194 return (mp1); 195 } 196 197 /* 198 * This routine closes rts stream, by disabling 199 * put/srv routines and freeing the this module 200 * internal datastructure. 201 */ 202 static int 203 rts_common_close(queue_t *q, conn_t *connp) 204 { 205 206 ASSERT(connp != NULL && IPCL_IS_RTS(connp)); 207 208 ip_rts_unregister(connp); 209 210 ip_quiesce_conn(connp); 211 212 if (!IPCL_IS_NONSTR(connp)) { 213 qprocsoff(q); 214 215 /* 216 * Now we are truly single threaded on this stream, and can 217 * delete the things hanging off the connp, and finally the 218 * connp. 219 * We removed this connp from the fanout list, it cannot be 220 * accessed thru the fanouts, and we already waited for the 221 * conn_ref to drop to 0. We are already in close, so 222 * there cannot be any other thread from the top. qprocsoff 223 * has completed, and service has completed or won't run in 224 * future. 225 */ 226 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 227 } else { 228 ip_close_helper_stream(connp); 229 } 230 ASSERT(connp->conn_ref == 1); 231 232 233 connp->conn_ref--; 234 ipcl_conn_destroy(connp); 235 236 return (0); 237 } 238 239 static int 240 rts_stream_close(queue_t *q) 241 { 242 conn_t *connp = Q_TO_CONN(q); 243 244 (void) rts_common_close(q, connp); 245 q->q_ptr = WR(q)->q_ptr = NULL; 246 return (0); 247 } 248 249 /* 250 * This is the open routine for routing socket. It allocates 251 * rts_t structure for the stream and tells IP that it is a routing socket. 252 */ 253 /* ARGSUSED */ 254 static int 255 rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 256 { 257 conn_t *connp; 258 dev_t conn_dev; 259 rts_stack_t *rtss; 260 rts_t *rts; 261 262 /* If the stream is already open, return immediately. */ 263 if (q->q_ptr != NULL) 264 return (0); 265 266 if (sflag == MODOPEN) 267 return (EINVAL); 268 269 270 /* 271 * Since RTS is not used so heavily, allocating from the small 272 * arena should be sufficient. 273 */ 274 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 275 return (EBUSY); 276 } 277 278 connp = rts_open(flag, credp); 279 ASSERT(connp != NULL); 280 281 282 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 283 284 rts = connp->conn_rts; 285 286 rw_enter(&rts->rts_rwlock, RW_WRITER); 287 connp->conn_dev = conn_dev; 288 connp->conn_minor_arena = ip_minor_arena_sa; 289 290 /* 291 * Initialize the rts_t structure for this stream. 292 */ 293 q->q_ptr = connp; 294 WR(q)->q_ptr = connp; 295 connp->conn_rq = q; 296 connp->conn_wq = WR(q); 297 298 rtss = rts->rts_rtss; 299 q->q_hiwat = rtss->rtss_recv_hiwat; 300 WR(q)->q_hiwat = rtss->rtss_xmit_hiwat; 301 WR(q)->q_lowat = rtss->rtss_xmit_lowat; 302 303 304 305 mutex_enter(&connp->conn_lock); 306 connp->conn_state_flags &= ~CONN_INCIPIENT; 307 mutex_exit(&connp->conn_lock); 308 309 qprocson(q); 310 rw_exit(&rts->rts_rwlock); 311 /* 312 * Indicate the down IP module that this is a routing socket 313 * client by sending an RTS IOCTL without any user data. Although 314 * this is just a notification message (without any real routing 315 * request), we pass in any credential for correctness sake. 316 */ 317 ip_rts_register(connp); 318 319 return (0); 320 } 321 322 /* ARGSUSED */ 323 static conn_t * 324 rts_open(int flag, cred_t *credp) 325 { 326 netstack_t *ns; 327 rts_stack_t *rtss; 328 rts_t *rts; 329 conn_t *connp; 330 zoneid_t zoneid; 331 332 ns = netstack_find_by_cred(credp); 333 ASSERT(ns != NULL); 334 rtss = ns->netstack_rts; 335 ASSERT(rtss != NULL); 336 337 /* 338 * For exclusive stacks we set the zoneid to zero 339 * to make RTS operate as if in the global zone. 340 */ 341 if (ns->netstack_stackid != GLOBAL_NETSTACKID) 342 zoneid = GLOBAL_ZONEID; 343 else 344 zoneid = crgetzoneid(credp); 345 346 connp = ipcl_conn_create(IPCL_RTSCONN, KM_SLEEP, ns); 347 rts = connp->conn_rts; 348 349 /* 350 * ipcl_conn_create did a netstack_hold. Undo the hold that was 351 * done by netstack_find_by_cred() 352 */ 353 netstack_rele(ns); 354 355 356 rw_enter(&rts->rts_rwlock, RW_WRITER); 357 ASSERT(connp->conn_rts == rts); 358 ASSERT(rts->rts_connp == connp); 359 360 connp->conn_zoneid = zoneid; 361 connp->conn_flow_cntrld = B_FALSE; 362 363 connp->conn_ulp_labeled = is_system_labeled(); 364 365 rts->rts_rtss = rtss; 366 rts->rts_xmit_hiwat = rtss->rtss_xmit_hiwat; 367 368 connp->conn_recv = rts_input; 369 crhold(credp); 370 connp->conn_cred = credp; 371 372 /* 373 * rts sockets start out as bound and connected 374 * For streams based sockets, socket state is set to 375 * SS_ISBOUND | SS_ISCONNECTED in so_strinit. 376 */ 377 rts->rts_state = TS_DATA_XFER; 378 rw_exit(&rts->rts_rwlock); 379 380 return (connp); 381 } 382 383 /* 384 * This routine creates a T_ERROR_ACK message and passes it upstream. 385 */ 386 static void 387 rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) 388 { 389 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 390 qreply(q, mp); 391 } 392 393 /* 394 * This routine creates a T_OK_ACK message and passes it upstream. 395 */ 396 static void 397 rts_ok_ack(queue_t *q, mblk_t *mp) 398 { 399 if ((mp = mi_tpi_ok_ack_alloc(mp)) != NULL) 400 qreply(q, mp); 401 } 402 403 /* 404 * This routine is called by rts_wput to handle T_UNBIND_REQ messages. 405 */ 406 static void 407 rts_tpi_unbind(queue_t *q, mblk_t *mp) 408 { 409 conn_t *connp = Q_TO_CONN(q); 410 rts_t *rts = connp->conn_rts; 411 412 /* If a bind has not been done, we can't unbind. */ 413 if (rts->rts_state != TS_IDLE) { 414 rts_err_ack(q, mp, TOUTSTATE, 0); 415 return; 416 } 417 rts->rts_state = TS_UNBND; 418 rts_ok_ack(q, mp); 419 } 420 421 /* 422 * This routine is called to handle each 423 * O_T_BIND_REQ/T_BIND_REQ message passed to 424 * rts_wput. Note: This routine works with both 425 * O_T_BIND_REQ and T_BIND_REQ semantics. 426 */ 427 static void 428 rts_tpi_bind(queue_t *q, mblk_t *mp) 429 { 430 conn_t *connp = Q_TO_CONN(q); 431 rts_t *rts = connp->conn_rts; 432 mblk_t *mp1; 433 struct T_bind_req *tbr; 434 435 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 436 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 437 "rts_tpi_bind: bad data, %d", rts->rts_state); 438 rts_err_ack(q, mp, TBADADDR, 0); 439 return; 440 } 441 if (rts->rts_state != TS_UNBND) { 442 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 443 "rts_tpi_bind: bad state, %d", rts->rts_state); 444 rts_err_ack(q, mp, TOUTSTATE, 0); 445 return; 446 } 447 /* 448 * Reallocate the message to make sure we have enough room for an 449 * address and the protocol type. 450 */ 451 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin_t), 1); 452 if (mp1 == NULL) { 453 rts_err_ack(q, mp, TSYSERR, ENOMEM); 454 return; 455 } 456 mp = mp1; 457 tbr = (struct T_bind_req *)mp->b_rptr; 458 if (tbr->ADDR_length != 0) { 459 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 460 "rts_tpi_bind: bad ADDR_length %d", tbr->ADDR_length); 461 rts_err_ack(q, mp, TBADADDR, 0); 462 return; 463 } 464 /* Generic request */ 465 tbr->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_req); 466 tbr->ADDR_length = 0; 467 tbr->PRIM_type = T_BIND_ACK; 468 rts->rts_state = TS_IDLE; 469 qreply(q, mp); 470 } 471 472 static void 473 rts_copy_info(struct T_info_ack *tap, rts_t *rts) 474 { 475 *tap = rts_g_t_info_ack; 476 tap->CURRENT_state = rts->rts_state; 477 tap->OPT_size = rts_max_optsize; 478 } 479 480 /* 481 * This routine responds to T_CAPABILITY_REQ messages. It is called by 482 * rts_wput. Much of the T_CAPABILITY_ACK information is copied from 483 * rts_g_t_info_ack. The current state of the stream is copied from 484 * rts_state. 485 */ 486 static void 487 rts_capability_req(queue_t *q, mblk_t *mp) 488 { 489 conn_t *connp = Q_TO_CONN(q); 490 rts_t *rts = connp->conn_rts; 491 t_uscalar_t cap_bits1; 492 struct T_capability_ack *tcap; 493 494 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 495 496 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 497 mp->b_datap->db_type, T_CAPABILITY_ACK); 498 if (mp == NULL) 499 return; 500 501 tcap = (struct T_capability_ack *)mp->b_rptr; 502 tcap->CAP_bits1 = 0; 503 504 if (cap_bits1 & TC1_INFO) { 505 rts_copy_info(&tcap->INFO_ack, rts); 506 tcap->CAP_bits1 |= TC1_INFO; 507 } 508 509 qreply(q, mp); 510 } 511 512 /* 513 * This routine responds to T_INFO_REQ messages. It is called by rts_wput. 514 * Most of the T_INFO_ACK information is copied from rts_g_t_info_ack. 515 * The current state of the stream is copied from rts_state. 516 */ 517 static void 518 rts_info_req(queue_t *q, mblk_t *mp) 519 { 520 conn_t *connp = Q_TO_CONN(q); 521 rts_t *rts = connp->conn_rts; 522 523 mp = tpi_ack_alloc(mp, sizeof (rts_g_t_info_ack), M_PCPROTO, 524 T_INFO_ACK); 525 if (mp == NULL) 526 return; 527 rts_copy_info((struct T_info_ack *)mp->b_rptr, rts); 528 qreply(q, mp); 529 } 530 531 /* 532 * This routine gets default values of certain options whose default 533 * values are maintained by protcol specific code 534 */ 535 /* ARGSUSED */ 536 int 537 rts_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 538 { 539 /* no default value processed by protocol specific code currently */ 540 return (-1); 541 } 542 543 544 static int 545 rts_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 546 { 547 rts_t *rts = connp->conn_rts; 548 int *i1 = (int *)ptr; 549 550 ASSERT(RW_READ_HELD(&rts->rts_rwlock)); 551 552 switch (level) { 553 case SOL_SOCKET: 554 switch (name) { 555 case SO_DEBUG: 556 *i1 = rts->rts_debug; 557 break; 558 case SO_REUSEADDR: 559 *i1 = rts->rts_reuseaddr; 560 break; 561 case SO_TYPE: 562 *i1 = SOCK_RAW; 563 break; 564 565 /* 566 * The following three items are available here, 567 * but are only meaningful to IP. 568 */ 569 case SO_DONTROUTE: 570 *i1 = rts->rts_dontroute; 571 break; 572 case SO_USELOOPBACK: 573 *i1 = rts->rts_useloopback; 574 break; 575 case SO_BROADCAST: 576 *i1 = rts->rts_broadcast; 577 break; 578 case SO_PROTOTYPE: 579 *i1 = rts->rts_proto; 580 break; 581 /* 582 * The following two items can be manipulated, 583 * but changing them should do nothing. 584 */ 585 case SO_SNDBUF: 586 ASSERT(rts->rts_xmit_hiwat <= INT_MAX); 587 *i1 = (int)(rts->rts_xmit_hiwat); 588 break; 589 case SO_RCVBUF: 590 ASSERT(rts->rts_recv_hiwat <= INT_MAX); 591 *i1 = (int)(rts->rts_recv_hiwat); 592 break; 593 case SO_DOMAIN: 594 *i1 = PF_ROUTE; 595 break; 596 default: 597 return (-1); 598 } 599 break; 600 default: 601 return (-1); 602 } 603 return ((int)sizeof (int)); 604 } 605 606 /* ARGSUSED */ 607 static int 608 rts_do_opt_set(conn_t *connp, int level, int name, uint_t inlen, 609 uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, cred_t *cr, 610 void *thisdg_attrs, boolean_t checkonly) 611 { 612 int *i1 = (int *)invalp; 613 rts_t *rts = connp->conn_rts; 614 rts_stack_t *rtss = rts->rts_rtss; 615 616 ASSERT(RW_WRITE_HELD(&rts->rts_rwlock)); 617 618 /* 619 * For rts, we should have no ancillary data sent down 620 * (rts_wput doesn't handle options). 621 */ 622 ASSERT(thisdg_attrs == NULL); 623 624 /* 625 * For fixed length options, no sanity check 626 * of passed in length is done. It is assumed *_optcom_req() 627 * routines do the right thing. 628 */ 629 630 switch (level) { 631 case SOL_SOCKET: 632 switch (name) { 633 case SO_REUSEADDR: 634 if (!checkonly) 635 rts->rts_reuseaddr = *i1; 636 break; /* goto sizeof (int) option return */ 637 case SO_DEBUG: 638 if (!checkonly) 639 rts->rts_debug = *i1; 640 break; /* goto sizeof (int) option return */ 641 /* 642 * The following three items are available here, 643 * but are only meaningful to IP. 644 */ 645 case SO_DONTROUTE: 646 if (!checkonly) 647 rts->rts_dontroute = *i1; 648 break; /* goto sizeof (int) option return */ 649 case SO_USELOOPBACK: 650 if (!checkonly) 651 rts->rts_useloopback = *i1; 652 break; /* goto sizeof (int) option return */ 653 case SO_BROADCAST: 654 if (!checkonly) 655 rts->rts_broadcast = *i1; 656 break; /* goto sizeof (int) option return */ 657 case SO_PROTOTYPE: 658 /* 659 * Routing socket applications that call socket() with 660 * a third argument can filter which messages will be 661 * sent upstream thanks to sockfs. so_socket() sends 662 * down the SO_PROTOTYPE and rts_queue_input() 663 * implements the filtering. 664 */ 665 if (*i1 != AF_INET && *i1 != AF_INET6) 666 return (EPROTONOSUPPORT); 667 if (!checkonly) 668 rts->rts_proto = *i1; 669 break; /* goto sizeof (int) option return */ 670 /* 671 * The following two items can be manipulated, 672 * but changing them should do nothing. 673 */ 674 case SO_SNDBUF: 675 if (*i1 > rtss->rtss_max_buf) { 676 *outlenp = 0; 677 return (ENOBUFS); 678 } 679 if (!checkonly) { 680 rts->rts_xmit_hiwat = *i1; 681 if (!IPCL_IS_NONSTR(connp)) 682 connp->conn_wq->q_hiwat = *i1; 683 } 684 break; /* goto sizeof (int) option return */ 685 case SO_RCVBUF: 686 if (*i1 > rtss->rtss_max_buf) { 687 *outlenp = 0; 688 return (ENOBUFS); 689 } 690 if (!checkonly) { 691 rts->rts_recv_hiwat = *i1; 692 rw_exit(&rts->rts_rwlock); 693 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 694 *i1); 695 rw_enter(&rts->rts_rwlock, RW_WRITER); 696 } 697 698 break; /* goto sizeof (int) option return */ 699 default: 700 *outlenp = 0; 701 return (EINVAL); 702 } 703 break; 704 default: 705 *outlenp = 0; 706 return (EINVAL); 707 } 708 /* 709 * Common case of return from an option that is sizeof (int) 710 */ 711 if (invalp != outvalp) { 712 /* don't trust bcopy for identical src/dst */ 713 (void) bcopy(invalp, outvalp, inlen); 714 } 715 *outlenp = (t_uscalar_t)sizeof (int); 716 return (0); 717 } 718 719 static int 720 rts_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 721 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 722 void *thisdg_attrs, cred_t *cr) 723 { 724 boolean_t checkonly = B_FALSE; 725 726 if (optset_context) { 727 switch (optset_context) { 728 case SETFN_OPTCOM_CHECKONLY: 729 checkonly = B_TRUE; 730 /* 731 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 732 * inlen != 0 implies value supplied and 733 * we have to "pretend" to set it. 734 * inlen == 0 implies that there is no value part 735 * in T_CHECK request and just validation 736 * done elsewhere should be enough, we just return here. 737 */ 738 if (inlen == 0) { 739 *outlenp = 0; 740 return (0); 741 } 742 break; 743 case SETFN_OPTCOM_NEGOTIATE: 744 checkonly = B_FALSE; 745 break; 746 case SETFN_UD_NEGOTIATE: 747 case SETFN_CONN_NEGOTIATE: 748 checkonly = B_FALSE; 749 /* 750 * Negotiating local and "association-related" options 751 * through T_UNITDATA_REQ or T_CONN_{REQ,CON} 752 * Not allowed in this module. 753 */ 754 return (EINVAL); 755 default: 756 /* 757 * We should never get here 758 */ 759 *outlenp = 0; 760 return (EINVAL); 761 } 762 763 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 764 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 765 766 } 767 return (rts_do_opt_set(connp, level, name, inlen, invalp, outlenp, 768 outvalp, cr, thisdg_attrs, checkonly)); 769 770 } 771 772 /* 773 * This routine retrieves the current status of socket options. 774 * It returns the size of the option retrieved. 775 */ 776 int 777 rts_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 778 { 779 rts_t *rts; 780 int err; 781 782 rts = Q_TO_RTS(q); 783 rw_enter(&rts->rts_rwlock, RW_READER); 784 err = rts_opt_get(Q_TO_CONN(q), level, name, ptr); 785 rw_exit(&rts->rts_rwlock); 786 return (err); 787 } 788 789 /* 790 * This routine sets socket options. 791 */ 792 /*ARGSUSED*/ 793 int 794 rts_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 795 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 796 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 797 { 798 conn_t *connp = Q_TO_CONN(q); 799 int error; 800 rts_t *rts = connp->conn_rts; 801 802 803 rw_enter(&rts->rts_rwlock, RW_WRITER); 804 error = rts_opt_set(connp, optset_context, level, name, inlen, invalp, 805 outlenp, outvalp, thisdg_attrs, cr); 806 rw_exit(&rts->rts_rwlock); 807 return (error); 808 } 809 810 /* 811 * This routine retrieves the value of an ND variable in a rtsparam_t 812 * structure. It is called through nd_getset when a user reads the 813 * variable. 814 */ 815 /* ARGSUSED */ 816 static int 817 rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 818 { 819 rtsparam_t *rtspa = (rtsparam_t *)cp; 820 821 (void) mi_mpprintf(mp, "%u", rtspa->rts_param_value); 822 return (0); 823 } 824 825 /* 826 * Walk through the param array specified registering each element with the 827 * named dispatch (ND) handler. 828 */ 829 static boolean_t 830 rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt) 831 { 832 for (; cnt-- > 0; rtspa++) { 833 if (rtspa->rts_param_name != NULL && rtspa->rts_param_name[0]) { 834 if (!nd_load(ndp, rtspa->rts_param_name, 835 rts_param_get, rts_param_set, (caddr_t)rtspa)) { 836 nd_free(ndp); 837 return (B_FALSE); 838 } 839 } 840 } 841 return (B_TRUE); 842 } 843 844 /* This routine sets an ND variable in a rtsparam_t structure. */ 845 /* ARGSUSED */ 846 static int 847 rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 848 { 849 ulong_t new_value; 850 rtsparam_t *rtspa = (rtsparam_t *)cp; 851 852 /* 853 * Fail the request if the new value does not lie within the 854 * required bounds. 855 */ 856 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 || 857 new_value < rtspa->rts_param_min || 858 new_value > rtspa->rts_param_max) { 859 return (EINVAL); 860 } 861 862 /* Set the new value */ 863 rtspa->rts_param_value = new_value; 864 return (0); 865 } 866 867 /* 868 * Empty rsrv routine which is used by rts_input to cause a wakeup 869 * of a thread in qwait. 870 */ 871 /*ARGSUSED*/ 872 static void 873 rts_rsrv(queue_t *q) 874 { 875 } 876 877 /* 878 * This routine handles synchronous messages passed downstream. It either 879 * consumes the message or passes it downstream; it never queues a 880 * a message. The data messages that go down are wrapped in an IOCTL 881 * message. 882 * 883 * Since it is synchronous, it waits for the M_IOCACK/M_IOCNAK so that 884 * it can return an immediate error (such as ENETUNREACH when adding a route). 885 * It uses the RTS_WRW_PENDING to ensure that each rts instance has only 886 * one M_IOCTL outstanding at any given time. 887 */ 888 static int 889 rts_wrw(queue_t *q, struiod_t *dp) 890 { 891 mblk_t *mp = dp->d_mp; 892 mblk_t *mp1; 893 int error; 894 rt_msghdr_t *rtm; 895 conn_t *connp = Q_TO_CONN(q); 896 rts_t *rts = connp->conn_rts; 897 898 while (rts->rts_flag & RTS_WRW_PENDING) { 899 if (qwait_rw(q)) { 900 rts->rts_error = EINTR; 901 goto err_ret; 902 } 903 } 904 rts->rts_flag |= RTS_WRW_PENDING; 905 906 if (isuioq(q) && (error = struioget(q, mp, dp, 0))) { 907 /* 908 * Uio error of some sort, so just return the error. 909 */ 910 rts->rts_error = error; 911 goto err_ret; 912 } 913 /* 914 * Pass the mblk (chain) onto wput(). 915 */ 916 dp->d_mp = 0; 917 918 switch (mp->b_datap->db_type) { 919 case M_PROTO: 920 case M_PCPROTO: 921 /* Expedite other than T_DATA_REQ to below the switch */ 922 if (((mp->b_wptr - mp->b_rptr) != 923 sizeof (struct T_data_req)) || 924 (((union T_primitives *)mp->b_rptr)->type != T_DATA_REQ)) 925 break; 926 if ((mp1 = mp->b_cont) == NULL) { 927 rts->rts_error = EINVAL; 928 goto err_ret; 929 } 930 freeb(mp); 931 mp = mp1; 932 /* FALLTHRU */ 933 case M_DATA: 934 /* 935 * The semantics of the routing socket is such that the rtm_pid 936 * field is automatically filled in during requests with the 937 * current process' pid. We do this here (where we still have 938 * user context) after checking we have at least a message the 939 * size of a routing message header. 940 */ 941 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { 942 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) { 943 rts->rts_error = EINVAL; 944 goto err_ret; 945 } 946 } 947 rtm = (rt_msghdr_t *)mp->b_rptr; 948 rtm->rtm_pid = curproc->p_pid; 949 break; 950 default: 951 break; 952 } 953 rts->rts_flag |= RTS_WPUT_PENDING; 954 rts_wput(q, mp); 955 while (rts->rts_flag & RTS_WPUT_PENDING) 956 if (qwait_rw(q)) { 957 /* RTS_WPUT_PENDING will be cleared below */ 958 rts->rts_error = EINTR; 959 break; 960 } 961 err_ret: 962 rts->rts_flag &= ~(RTS_WPUT_PENDING | RTS_WRW_PENDING); 963 return (rts->rts_error); 964 } 965 966 /* 967 * This routine handles all messages passed downstream. It either 968 * consumes the message or passes it downstream; it never queues a 969 * a message. The data messages that go down are wrapped in an IOCTL 970 * message. 971 * 972 * FIXME? Should we call IP rts_request directly? Could punt on returning 973 * errno in the case when it defers processing due to 974 * IPIF_CHANGING/ILL_CHANGING??? 975 */ 976 static void 977 rts_wput(queue_t *q, mblk_t *mp) 978 { 979 uchar_t *rptr = mp->b_rptr; 980 mblk_t *mp1; 981 conn_t *connp = Q_TO_CONN(q); 982 rts_t *rts = connp->conn_rts; 983 984 switch (mp->b_datap->db_type) { 985 case M_DATA: 986 break; 987 case M_PROTO: 988 case M_PCPROTO: 989 if ((mp->b_wptr - rptr) == sizeof (struct T_data_req)) { 990 /* Expedite valid T_DATA_REQ to below the switch */ 991 if (((union T_primitives *)rptr)->type == T_DATA_REQ) { 992 mp1 = mp->b_cont; 993 freeb(mp); 994 if (mp1 == NULL) 995 return; 996 mp = mp1; 997 break; 998 } 999 } 1000 /* FALLTHRU */ 1001 default: 1002 rts_wput_other(q, mp); 1003 return; 1004 } 1005 1006 1007 mp1 = rts_ioctl_alloc(mp, DB_CRED(mp)); 1008 if (mp1 == NULL) { 1009 ASSERT(rts != NULL); 1010 freemsg(mp); 1011 if (rts->rts_flag & RTS_WPUT_PENDING) { 1012 rts->rts_error = ENOMEM; 1013 rts->rts_flag &= ~RTS_WPUT_PENDING; 1014 } 1015 return; 1016 } 1017 ip_output(connp, mp1, q, IP_WPUT); 1018 } 1019 1020 1021 /* 1022 * Handles all the control message, if it 1023 * can not understand it, it will 1024 * pass down stream. 1025 */ 1026 static void 1027 rts_wput_other(queue_t *q, mblk_t *mp) 1028 { 1029 conn_t *connp = Q_TO_CONN(q); 1030 rts_t *rts = connp->conn_rts; 1031 uchar_t *rptr = mp->b_rptr; 1032 struct iocblk *iocp; 1033 cred_t *cr; 1034 rts_stack_t *rtss; 1035 1036 rtss = rts->rts_rtss; 1037 1038 cr = DB_CREDDEF(mp, connp->conn_cred); 1039 1040 switch (mp->b_datap->db_type) { 1041 case M_PROTO: 1042 case M_PCPROTO: 1043 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) { 1044 /* 1045 * If the message does not contain a PRIM_type, 1046 * throw it away. 1047 */ 1048 freemsg(mp); 1049 return; 1050 } 1051 switch (((union T_primitives *)rptr)->type) { 1052 case T_BIND_REQ: 1053 case O_T_BIND_REQ: 1054 rts_tpi_bind(q, mp); 1055 return; 1056 case T_UNBIND_REQ: 1057 rts_tpi_unbind(q, mp); 1058 return; 1059 case T_CAPABILITY_REQ: 1060 rts_capability_req(q, mp); 1061 return; 1062 case T_INFO_REQ: 1063 rts_info_req(q, mp); 1064 return; 1065 case T_SVR4_OPTMGMT_REQ: 1066 (void) svr4_optcom_req(q, mp, cr, &rts_opt_obj, 1067 B_TRUE); 1068 return; 1069 case T_OPTMGMT_REQ: 1070 (void) tpi_optcom_req(q, mp, cr, &rts_opt_obj, B_TRUE); 1071 return; 1072 case O_T_CONN_RES: 1073 case T_CONN_RES: 1074 case T_DISCON_REQ: 1075 /* Not supported by rts. */ 1076 rts_err_ack(q, mp, TNOTSUPPORT, 0); 1077 return; 1078 case T_DATA_REQ: 1079 case T_EXDATA_REQ: 1080 case T_ORDREL_REQ: 1081 /* Illegal for rts. */ 1082 freemsg(mp); 1083 (void) putnextctl1(RD(q), M_ERROR, EPROTO); 1084 return; 1085 1086 default: 1087 break; 1088 } 1089 break; 1090 case M_IOCTL: 1091 iocp = (struct iocblk *)mp->b_rptr; 1092 switch (iocp->ioc_cmd) { 1093 case ND_SET: 1094 case ND_GET: 1095 if (nd_getset(q, rtss->rtss_g_nd, mp)) { 1096 qreply(q, mp); 1097 return; 1098 } 1099 break; 1100 case TI_GETPEERNAME: 1101 mi_copyin(q, mp, NULL, 1102 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 1103 return; 1104 default: 1105 break; 1106 } 1107 case M_IOCDATA: 1108 rts_wput_iocdata(q, mp); 1109 return; 1110 default: 1111 break; 1112 } 1113 ip_output(connp, mp, q, IP_WPUT); 1114 } 1115 1116 /* 1117 * Called by rts_wput_other to handle all M_IOCDATA messages. 1118 */ 1119 static void 1120 rts_wput_iocdata(queue_t *q, mblk_t *mp) 1121 { 1122 conn_t *connp = Q_TO_CONN(q); 1123 struct sockaddr *rtsaddr; 1124 mblk_t *mp1; 1125 STRUCT_HANDLE(strbuf, sb); 1126 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 1127 1128 /* Make sure it is one of ours. */ 1129 switch (iocp->ioc_cmd) { 1130 case TI_GETPEERNAME: 1131 break; 1132 default: 1133 ip_output(connp, mp, q, IP_WPUT); 1134 return; 1135 } 1136 switch (mi_copy_state(q, mp, &mp1)) { 1137 case -1: 1138 return; 1139 case MI_COPY_CASE(MI_COPY_IN, 1): 1140 break; 1141 case MI_COPY_CASE(MI_COPY_OUT, 1): 1142 /* Copy out the strbuf. */ 1143 mi_copyout(q, mp); 1144 return; 1145 case MI_COPY_CASE(MI_COPY_OUT, 2): 1146 /* All done. */ 1147 mi_copy_done(q, mp, 0); 1148 return; 1149 default: 1150 mi_copy_done(q, mp, EPROTO); 1151 return; 1152 } 1153 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 1154 if (STRUCT_FGET(sb, maxlen) < (int)sizeof (sin_t)) { 1155 mi_copy_done(q, mp, EINVAL); 1156 return; 1157 } 1158 switch (iocp->ioc_cmd) { 1159 case TI_GETPEERNAME: 1160 break; 1161 default: 1162 mi_copy_done(q, mp, EPROTO); 1163 return; 1164 } 1165 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), sizeof (sin_t), 1166 B_TRUE); 1167 if (mp1 == NULL) 1168 return; 1169 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 1170 rtsaddr = (struct sockaddr *)mp1->b_rptr; 1171 mp1->b_wptr = (uchar_t *)&rtsaddr[1]; 1172 bzero(rtsaddr, sizeof (struct sockaddr)); 1173 rtsaddr->sa_family = AF_ROUTE; 1174 /* Copy out the address */ 1175 mi_copyout(q, mp); 1176 } 1177 1178 /*ARGSUSED2*/ 1179 static void 1180 rts_input(void *arg1, mblk_t *mp, void *arg2) 1181 { 1182 conn_t *connp = (conn_t *)arg1; 1183 rts_t *rts = connp->conn_rts; 1184 struct iocblk *iocp; 1185 mblk_t *mp1; 1186 struct T_data_ind *tdi; 1187 int error; 1188 1189 switch (mp->b_datap->db_type) { 1190 case M_IOCACK: 1191 case M_IOCNAK: 1192 iocp = (struct iocblk *)mp->b_rptr; 1193 if (IPCL_IS_NONSTR(connp)) { 1194 ASSERT(rts->rts_flag & (RTS_REQ_PENDING)); 1195 mutex_enter(&rts->rts_send_mutex); 1196 rts->rts_flag &= ~RTS_REQ_INPROG; 1197 rts->rts_error = iocp->ioc_error; 1198 cv_signal(&rts->rts_io_cv); 1199 mutex_exit(&rts->rts_send_mutex); 1200 freemsg(mp); 1201 return; 1202 } else { 1203 if (rts->rts_flag & (RTS_WPUT_PENDING)) { 1204 rts->rts_flag &= ~RTS_WPUT_PENDING; 1205 rts->rts_error = iocp->ioc_error; 1206 /* 1207 * Tell rts_wvw/qwait that we are done. 1208 * Note: there is no qwait_wakeup() we can use. 1209 */ 1210 qenable(connp->conn_rq); 1211 freemsg(mp); 1212 return; 1213 } 1214 } 1215 break; 1216 case M_DATA: 1217 /* 1218 * Prepend T_DATA_IND to prevent the stream head from 1219 * consolidating multiple messages together. 1220 * If the allocation fails just send up the M_DATA. 1221 */ 1222 mp1 = allocb(sizeof (*tdi), BPRI_MED); 1223 if (mp1 != NULL) { 1224 mp1->b_cont = mp; 1225 mp = mp1; 1226 1227 mp->b_datap->db_type = M_PROTO; 1228 mp->b_wptr += sizeof (*tdi); 1229 tdi = (struct T_data_ind *)mp->b_rptr; 1230 tdi->PRIM_type = T_DATA_IND; 1231 tdi->MORE_flag = 0; 1232 } 1233 break; 1234 default: 1235 break; 1236 } 1237 1238 if (IPCL_IS_NONSTR(connp)) { 1239 if ((*connp->conn_upcalls->su_recv) 1240 (connp->conn_upper_handle, mp, msgdsize(mp), 0, 1241 &error, NULL) < 0) { 1242 ASSERT(error == ENOSPC); 1243 /* 1244 * Let's confirm hoding the lock that 1245 * we are out of recv space. 1246 */ 1247 mutex_enter(&rts->rts_recv_mutex); 1248 if ((*connp->conn_upcalls->su_recv) 1249 (connp->conn_upper_handle, NULL, 0, 0, 1250 &error, NULL) < 0) { 1251 ASSERT(error == ENOSPC); 1252 connp->conn_flow_cntrld = B_TRUE; 1253 } 1254 mutex_exit(&rts->rts_recv_mutex); 1255 } 1256 } else { 1257 putnext(connp->conn_rq, mp); 1258 } 1259 } 1260 1261 1262 void 1263 rts_ddi_g_init(void) 1264 { 1265 rts_max_optsize = optcom_max_optsize(rts_opt_obj.odb_opt_des_arr, 1266 rts_opt_obj.odb_opt_arr_cnt); 1267 1268 /* 1269 * We want to be informed each time a stack is created or 1270 * destroyed in the kernel, so we can maintain the 1271 * set of rts_stack_t's. 1272 */ 1273 netstack_register(NS_RTS, rts_stack_init, NULL, rts_stack_fini); 1274 } 1275 1276 void 1277 rts_ddi_g_destroy(void) 1278 { 1279 netstack_unregister(NS_RTS); 1280 } 1281 1282 #define INET_NAME "ip" 1283 1284 /* 1285 * Initialize the RTS stack instance. 1286 */ 1287 /* ARGSUSED */ 1288 static void * 1289 rts_stack_init(netstackid_t stackid, netstack_t *ns) 1290 { 1291 rts_stack_t *rtss; 1292 rtsparam_t *pa; 1293 int error = 0; 1294 major_t major; 1295 1296 rtss = (rts_stack_t *)kmem_zalloc(sizeof (*rtss), KM_SLEEP); 1297 rtss->rtss_netstack = ns; 1298 1299 pa = (rtsparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 1300 rtss->rtss_params = pa; 1301 bcopy(lcl_param_arr, rtss->rtss_params, sizeof (lcl_param_arr)); 1302 1303 (void) rts_param_register(&rtss->rtss_g_nd, 1304 rtss->rtss_params, A_CNT(lcl_param_arr)); 1305 1306 major = mod_name_to_major(INET_NAME); 1307 error = ldi_ident_from_major(major, &rtss->rtss_ldi_ident); 1308 ASSERT(error == 0); 1309 return (rtss); 1310 } 1311 1312 /* 1313 * Free the RTS stack instance. 1314 */ 1315 /* ARGSUSED */ 1316 static void 1317 rts_stack_fini(netstackid_t stackid, void *arg) 1318 { 1319 rts_stack_t *rtss = (rts_stack_t *)arg; 1320 1321 nd_free(&rtss->rtss_g_nd); 1322 kmem_free(rtss->rtss_params, sizeof (lcl_param_arr)); 1323 rtss->rtss_params = NULL; 1324 ldi_ident_release(rtss->rtss_ldi_ident); 1325 kmem_free(rtss, sizeof (*rtss)); 1326 } 1327 1328 /* ARGSUSED */ 1329 int 1330 rts_accept(sock_lower_handle_t lproto_handle, 1331 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 1332 cred_t *cr) 1333 { 1334 return (EINVAL); 1335 } 1336 1337 /* ARGSUSED */ 1338 static int 1339 rts_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 1340 socklen_t len, cred_t *cr) 1341 { 1342 /* 1343 * rebind not allowed 1344 */ 1345 return (EINVAL); 1346 } 1347 1348 /* ARGSUSED */ 1349 int 1350 rts_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 1351 { 1352 return (EINVAL); 1353 } 1354 1355 /* ARGSUSED */ 1356 int 1357 rts_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 1358 socklen_t len, sock_connid_t *id, cred_t *cr) 1359 { 1360 /* 1361 * rts sockets start out as bound and connected 1362 */ 1363 *id = 0; 1364 return (EISCONN); 1365 } 1366 1367 /* ARGSUSED */ 1368 int 1369 rts_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 1370 socklen_t *addrlen, cred_t *cr) 1371 { 1372 conn_t *connp = (conn_t *)proto_handle; 1373 rts_t *rts = connp->conn_rts; 1374 1375 ASSERT(rts != NULL); 1376 1377 bzero(addr, sizeof (struct sockaddr)); 1378 addr->sa_family = AF_ROUTE; 1379 *addrlen = sizeof (struct sockaddr); 1380 1381 return (0); 1382 } 1383 1384 /* ARGSUSED */ 1385 int 1386 rts_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 1387 socklen_t *addrlen, cred_t *cr) 1388 { 1389 return (EOPNOTSUPP); 1390 } 1391 1392 static int 1393 rts_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 1394 void *optvalp, socklen_t *optlen, cred_t *cr) 1395 { 1396 conn_t *connp = (conn_t *)proto_handle; 1397 rts_t *rts = connp->conn_rts; 1398 int error; 1399 t_uscalar_t max_optbuf_len; 1400 void *optvalp_buf; 1401 int len; 1402 1403 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 1404 rts_opt_obj.odb_opt_des_arr, 1405 rts_opt_obj.odb_opt_arr_cnt, 1406 rts_opt_obj.odb_topmost_tpiprovider, 1407 B_FALSE, B_TRUE, cr); 1408 if (error != 0) { 1409 if (error < 0) 1410 error = proto_tlitosyserr(-error); 1411 return (error); 1412 } 1413 1414 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 1415 rw_enter(&rts->rts_rwlock, RW_READER); 1416 len = rts_opt_get(connp, level, option_name, optvalp_buf); 1417 rw_exit(&rts->rts_rwlock); 1418 1419 if (len < 0) { 1420 /* 1421 * Pass on to IP 1422 */ 1423 error = ip_get_options(connp, level, option_name, 1424 optvalp, optlen, cr); 1425 } else { 1426 /* 1427 * update optlen and copy option value 1428 */ 1429 t_uscalar_t size = MIN(len, *optlen); 1430 bcopy(optvalp_buf, optvalp, size); 1431 bcopy(&size, optlen, sizeof (size)); 1432 error = 0; 1433 } 1434 1435 kmem_free(optvalp_buf, max_optbuf_len); 1436 return (error); 1437 } 1438 1439 static int 1440 rts_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 1441 const void *optvalp, socklen_t optlen, cred_t *cr) 1442 { 1443 conn_t *connp = (conn_t *)proto_handle; 1444 rts_t *rts = connp->conn_rts; 1445 int error; 1446 1447 error = proto_opt_check(level, option_name, optlen, NULL, 1448 rts_opt_obj.odb_opt_des_arr, 1449 rts_opt_obj.odb_opt_arr_cnt, 1450 rts_opt_obj.odb_topmost_tpiprovider, 1451 B_TRUE, B_FALSE, cr); 1452 1453 if (error != 0) { 1454 if (error < 0) 1455 error = proto_tlitosyserr(-error); 1456 return (error); 1457 } 1458 1459 rw_enter(&rts->rts_rwlock, RW_WRITER); 1460 error = rts_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 1461 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 1462 NULL, cr); 1463 rw_exit(&rts->rts_rwlock); 1464 1465 ASSERT(error >= 0); 1466 1467 return (error); 1468 } 1469 1470 /* ARGSUSED */ 1471 static int 1472 rts_send(sock_lower_handle_t proto_handle, mblk_t *mp, 1473 struct nmsghdr *msg, cred_t *cr) 1474 { 1475 mblk_t *mp1; 1476 conn_t *connp = (conn_t *)proto_handle; 1477 rts_t *rts = connp->conn_rts; 1478 rt_msghdr_t *rtm; 1479 int error; 1480 1481 ASSERT(DB_TYPE(mp) == M_DATA); 1482 /* 1483 * The semantics of the routing socket is such that the rtm_pid 1484 * field is automatically filled in during requests with the 1485 * current process' pid. We do this here (where we still have 1486 * user context) after checking we have at least a message the 1487 * size of a routing message header. 1488 */ 1489 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { 1490 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) { 1491 rts->rts_error = EINVAL; 1492 freemsg(mp); 1493 return (rts->rts_error); 1494 } 1495 } 1496 rtm = (rt_msghdr_t *)mp->b_rptr; 1497 rtm->rtm_pid = curproc->p_pid; 1498 1499 mp1 = rts_ioctl_alloc(mp, DB_CRED(mp)); 1500 if (mp1 == NULL) { 1501 ASSERT(rts != NULL); 1502 freemsg(mp); 1503 return (ENOMEM); 1504 } 1505 1506 /* 1507 * Allow only one outstanding request(ioctl) at any given time 1508 */ 1509 mutex_enter(&rts->rts_send_mutex); 1510 while (rts->rts_flag & RTS_REQ_PENDING) { 1511 int ret; 1512 1513 ret = cv_wait_sig(&rts->rts_send_cv, &rts->rts_send_mutex); 1514 if (ret <= 0) { 1515 mutex_exit(&rts->rts_send_mutex); 1516 freemsg(mp); 1517 return (EINTR); 1518 } 1519 } 1520 1521 rts->rts_flag |= RTS_REQ_PENDING; 1522 1523 rts->rts_flag |= RTS_REQ_INPROG; 1524 1525 mutex_exit(&rts->rts_send_mutex); 1526 1527 CONN_INC_REF(connp); 1528 1529 error = ip_rts_request_common(rts->rts_connp->conn_wq, mp1, connp, 1530 DB_CREDDEF(mp, connp->conn_cred)); 1531 1532 mutex_enter(&rts->rts_send_mutex); 1533 if (error == EINPROGRESS) { 1534 ASSERT(rts->rts_flag & RTS_REQ_INPROG); 1535 if (rts->rts_flag & RTS_REQ_INPROG) { 1536 /* 1537 * Once the request has been issued we wait for 1538 * completion 1539 */ 1540 cv_wait(&rts->rts_io_cv, &rts->rts_send_mutex); 1541 error = rts->rts_error; 1542 } 1543 } 1544 1545 ASSERT((error != 0) || !(rts->rts_flag & RTS_REQ_INPROG)); 1546 ASSERT(MUTEX_HELD(&rts->rts_send_mutex)); 1547 1548 rts->rts_flag &= ~(RTS_REQ_PENDING | RTS_REQ_INPROG); 1549 cv_signal(&rts->rts_send_cv); 1550 mutex_exit(&rts->rts_send_mutex); 1551 return (error); 1552 } 1553 1554 /* ARGSUSED */ 1555 sock_lower_handle_t 1556 rts_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 1557 uint_t *smodep, int *errorp, int flags, cred_t *credp) 1558 { 1559 conn_t *connp; 1560 rts_t *rts; 1561 rts_stack_t *rtss; 1562 1563 if (family != AF_ROUTE || type != SOCK_RAW || 1564 (proto != 0 && proto != AF_INET && proto != AF_INET6)) { 1565 *errorp = EPROTONOSUPPORT; 1566 return (NULL); 1567 } 1568 1569 connp = rts_open(flags, credp); 1570 ASSERT(connp != NULL); 1571 connp->conn_flags |= IPCL_NONSTR; 1572 1573 rts = connp->conn_rts; 1574 rtss = rts->rts_rtss; 1575 1576 rts->rts_xmit_hiwat = rtss->rtss_xmit_hiwat; 1577 rts->rts_xmit_lowat = rtss->rtss_xmit_lowat; 1578 rts->rts_recv_hiwat = rtss->rtss_recv_hiwat; 1579 rts->rts_recv_lowat = rts_mod_info.mi_lowat; 1580 1581 ASSERT(rtss->rtss_ldi_ident != NULL); 1582 1583 *errorp = ip_create_helper_stream(connp, rtss->rtss_ldi_ident); 1584 if (*errorp != 0) { 1585 #ifdef DEBUG 1586 cmn_err(CE_CONT, "rts_create: create of IP helper stream" 1587 " failed\n"); 1588 #endif 1589 (void) rts_close((sock_lower_handle_t)connp, 0, credp); 1590 return (NULL); 1591 } 1592 1593 mutex_enter(&connp->conn_lock); 1594 connp->conn_state_flags &= ~CONN_INCIPIENT; 1595 mutex_exit(&connp->conn_lock); 1596 1597 *errorp = 0; 1598 *smodep = SM_ATOMIC; 1599 *sock_downcalls = &sock_rts_downcalls; 1600 return ((sock_lower_handle_t)connp); 1601 } 1602 1603 /* ARGSUSED */ 1604 void 1605 rts_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 1606 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 1607 { 1608 conn_t *connp = (conn_t *)proto_handle; 1609 rts_t *rts = connp->conn_rts; 1610 rts_stack_t *rtss = rts->rts_rtss; 1611 struct sock_proto_props sopp; 1612 1613 connp->conn_upcalls = sock_upcalls; 1614 connp->conn_upper_handle = sock_handle; 1615 1616 sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 1617 SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ; 1618 sopp.sopp_wroff = 0; 1619 sopp.sopp_rxhiwat = rtss->rtss_recv_hiwat; 1620 sopp.sopp_rxlowat = rts_mod_info.mi_lowat; 1621 sopp.sopp_maxblk = INFPSZ; 1622 sopp.sopp_maxpsz = rts_mod_info.mi_maxpsz; 1623 sopp.sopp_minpsz = (rts_mod_info.mi_minpsz == 1) ? 0 : 1624 rts_mod_info.mi_minpsz; 1625 1626 (*connp->conn_upcalls->su_set_proto_props) 1627 (connp->conn_upper_handle, &sopp); 1628 1629 /* 1630 * We treat it as already connected for routing socket. 1631 */ 1632 (*connp->conn_upcalls->su_connected) 1633 (connp->conn_upper_handle, 0, NULL, -1); 1634 1635 /* 1636 * Indicate the down IP module that this is a routing socket 1637 * client by sending an RTS IOCTL without any user data. Although 1638 * this is just a notification message (without any real routing 1639 * request), we pass in any credential for correctness sake. 1640 */ 1641 ip_rts_register(connp); 1642 } 1643 1644 /* ARGSUSED */ 1645 int 1646 rts_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 1647 { 1648 conn_t *connp = (conn_t *)proto_handle; 1649 1650 ASSERT(connp != NULL && IPCL_IS_RTS(connp)); 1651 return (rts_common_close(NULL, connp)); 1652 } 1653 1654 /* ARGSUSED */ 1655 int 1656 rts_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 1657 { 1658 conn_t *connp = (conn_t *)proto_handle; 1659 1660 /* shut down the send side */ 1661 if (how != SHUT_RD) 1662 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 1663 SOCK_OPCTL_SHUT_SEND, 0); 1664 /* shut down the recv side */ 1665 if (how != SHUT_WR) 1666 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 1667 SOCK_OPCTL_SHUT_RECV, 0); 1668 return (0); 1669 } 1670 1671 void 1672 rts_clr_flowctrl(sock_lower_handle_t proto_handle) 1673 { 1674 conn_t *connp = (conn_t *)proto_handle; 1675 rts_t *rts = connp->conn_rts; 1676 1677 mutex_enter(&rts->rts_recv_mutex); 1678 connp->conn_flow_cntrld = B_FALSE; 1679 mutex_exit(&rts->rts_recv_mutex); 1680 } 1681 1682 int 1683 rts_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 1684 int mode, int32_t *rvalp, cred_t *cr) 1685 { 1686 conn_t *connp = (conn_t *)proto_handle; 1687 int error; 1688 1689 switch (cmd) { 1690 case ND_SET: 1691 case ND_GET: 1692 case TI_GETPEERNAME: 1693 case TI_GETMYNAME: 1694 #ifdef DEUG 1695 cmn_err(CE_CONT, "rts_ioctl cmd 0x%x on non sreams" 1696 " socket", cmd); 1697 #endif 1698 error = EINVAL; 1699 break; 1700 default: 1701 /* 1702 * Pass on to IP using helper stream 1703 */ 1704 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 1705 cmd, arg, mode, cr, rvalp); 1706 break; 1707 } 1708 1709 return (error); 1710 } 1711 1712 sock_downcalls_t sock_rts_downcalls = { 1713 rts_activate, 1714 rts_accept, 1715 rts_bind, 1716 rts_listen, 1717 rts_connect, 1718 rts_getpeername, 1719 rts_getsockname, 1720 rts_getsockopt, 1721 rts_setsockopt, 1722 rts_send, 1723 NULL, 1724 NULL, 1725 NULL, 1726 rts_shutdown, 1727 rts_clr_flowctrl, 1728 rts_ioctl, 1729 rts_close 1730 }; 1731