1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/stropts.h> 31 #include <sys/errno.h> 32 #include <sys/strlog.h> 33 #include <sys/tihdr.h> 34 #include <sys/socket.h> 35 #include <sys/ddi.h> 36 #include <sys/sunddi.h> 37 #include <sys/kmem.h> 38 #include <sys/sysmacros.h> 39 #include <sys/cmn_err.h> 40 #include <sys/vtrace.h> 41 #include <sys/debug.h> 42 #include <sys/atomic.h> 43 #include <sys/strsun.h> 44 #include <sys/random.h> 45 #include <netinet/in.h> 46 #include <net/if.h> 47 #include <netinet/ip6.h> 48 #include <net/pfkeyv2.h> 49 50 #include <inet/common.h> 51 #include <inet/mi.h> 52 #include <inet/nd.h> 53 #include <inet/ip.h> 54 #include <inet/ip6.h> 55 #include <inet/sadb.h> 56 #include <inet/ipsec_info.h> 57 #include <inet/ipsec_impl.h> 58 #include <inet/ipsecesp.h> 59 #include <inet/ipdrop.h> 60 #include <inet/tcp.h> 61 #include <sys/kstat.h> 62 #include <sys/policy.h> 63 #include <sys/strsun.h> 64 #include <inet/udp_impl.h> 65 #include <sys/taskq.h> 66 67 #include <sys/iphada.h> 68 69 /* Packet dropper for ESP drops. */ 70 static ipdropper_t esp_dropper; 71 72 static kmutex_t ipsecesp_param_lock; /* Protects ipsecesp_param_arr[] below. */ 73 /* 74 * Table of ND variables supported by ipsecesp. These are loaded into 75 * ipsecesp_g_nd in ipsecesp_init_nd. 76 * All of these are alterable, within the min/max values given, at run time. 77 */ 78 static ipsecespparam_t ipsecesp_param_arr[] = { 79 /* min max value name */ 80 { 0, 3, 0, "ipsecesp_debug"}, 81 { 125, 32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecesp_age_interval"}, 82 { 1, 10, 1, "ipsecesp_reap_delay"}, 83 { 1, SADB_MAX_REPLAY, 64, "ipsecesp_replay_size"}, 84 { 1, 300, 15, "ipsecesp_acquire_timeout"}, 85 { 1, 1800, 90, "ipsecesp_larval_timeout"}, 86 /* Default lifetime values for ACQUIRE messages. */ 87 { 0, 0xffffffffU, 0, "ipsecesp_default_soft_bytes"}, 88 { 0, 0xffffffffU, 0, "ipsecesp_default_hard_bytes"}, 89 { 0, 0xffffffffU, 24000, "ipsecesp_default_soft_addtime"}, 90 { 0, 0xffffffffU, 28800, "ipsecesp_default_hard_addtime"}, 91 { 0, 0xffffffffU, 0, "ipsecesp_default_soft_usetime"}, 92 { 0, 0xffffffffU, 0, "ipsecesp_default_hard_usetime"}, 93 { 0, 1, 0, "ipsecesp_log_unknown_spi"}, 94 { 0, 2, 1, "ipsecesp_padding_check"}, 95 }; 96 #define ipsecesp_debug ipsecesp_param_arr[0].ipsecesp_param_value 97 #define ipsecesp_age_interval ipsecesp_param_arr[1].ipsecesp_param_value 98 #define ipsecesp_age_int_max ipsecesp_param_arr[1].ipsecesp_param_max 99 #define ipsecesp_reap_delay ipsecesp_param_arr[2].ipsecesp_param_value 100 #define ipsecesp_replay_size ipsecesp_param_arr[3].ipsecesp_param_value 101 #define ipsecesp_acquire_timeout ipsecesp_param_arr[4].ipsecesp_param_value 102 #define ipsecesp_larval_timeout ipsecesp_param_arr[5].ipsecesp_param_value 103 #define ipsecesp_default_soft_bytes \ 104 ipsecesp_param_arr[6].ipsecesp_param_value 105 #define ipsecesp_default_hard_bytes \ 106 ipsecesp_param_arr[7].ipsecesp_param_value 107 #define ipsecesp_default_soft_addtime \ 108 ipsecesp_param_arr[8].ipsecesp_param_value 109 #define ipsecesp_default_hard_addtime \ 110 ipsecesp_param_arr[9].ipsecesp_param_value 111 #define ipsecesp_default_soft_usetime \ 112 ipsecesp_param_arr[10].ipsecesp_param_value 113 #define ipsecesp_default_hard_usetime \ 114 ipsecesp_param_arr[11].ipsecesp_param_value 115 #define ipsecesp_log_unknown_spi \ 116 ipsecesp_param_arr[12].ipsecesp_param_value 117 #define ipsecesp_padding_check \ 118 ipsecesp_param_arr[13].ipsecesp_param_value 119 120 #define esp0dbg(a) printf a 121 /* NOTE: != 0 instead of > 0 so lint doesn't complain. */ 122 #define esp1dbg(a) if (ipsecesp_debug != 0) printf a 123 #define esp2dbg(a) if (ipsecesp_debug > 1) printf a 124 #define esp3dbg(a) if (ipsecesp_debug > 2) printf a 125 126 static IDP ipsecesp_g_nd; 127 128 static int ipsecesp_open(queue_t *, dev_t *, int, int, cred_t *); 129 static int ipsecesp_close(queue_t *); 130 static void ipsecesp_rput(queue_t *, mblk_t *); 131 static void ipsecesp_wput(queue_t *, mblk_t *); 132 static void esp_send_acquire(ipsacq_t *, mblk_t *); 133 134 static ipsec_status_t esp_outbound_accelerated(mblk_t *, uint_t); 135 static ipsec_status_t esp_inbound_accelerated(mblk_t *, mblk_t *, 136 boolean_t, ipsa_t *); 137 138 static boolean_t esp_register_out(uint32_t, uint32_t, uint_t); 139 static boolean_t esp_strip_header(mblk_t *, boolean_t, uint32_t, 140 kstat_named_t **); 141 static ipsec_status_t esp_submit_req_inbound(mblk_t *, ipsa_t *, uint_t); 142 static ipsec_status_t esp_submit_req_outbound(mblk_t *, ipsa_t *, uchar_t *, 143 uint_t); 144 145 static struct module_info info = { 146 5137, "ipsecesp", 0, INFPSZ, 65536, 1024 147 }; 148 149 static struct qinit rinit = { 150 (pfi_t)ipsecesp_rput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info, 151 NULL 152 }; 153 154 static struct qinit winit = { 155 (pfi_t)ipsecesp_wput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info, 156 NULL 157 }; 158 159 struct streamtab ipsecespinfo = { 160 &rinit, &winit, NULL, NULL 161 }; 162 163 /* 164 * Keysock instance of ESP. "There can be only one." :) 165 * Use casptr() on this because I don't set it until KEYSOCK_HELLO comes down. 166 * Paired up with the esp_pfkey_q is the esp_event, which will age SAs. 167 */ 168 static queue_t *esp_pfkey_q; 169 static timeout_id_t esp_event; 170 static taskq_t *esp_taskq; 171 172 /* 173 * OTOH, this one is set at open/close, and I'm D_MTQPAIR for now. 174 * 175 * Question: Do I need this, given that all instance's esps->esps_wq point 176 * to IP? 177 * 178 * Answer: Yes, because I need to know which queue is BOUND to 179 * IPPROTO_ESP 180 */ 181 static mblk_t *esp_ip_unbind; 182 183 /* 184 * Stats. This may eventually become a full-blown SNMP MIB once that spec 185 * stabilizes. 186 */ 187 188 typedef struct { 189 kstat_named_t esp_stat_num_aalgs; 190 kstat_named_t esp_stat_good_auth; 191 kstat_named_t esp_stat_bad_auth; 192 kstat_named_t esp_stat_bad_padding; 193 kstat_named_t esp_stat_replay_failures; 194 kstat_named_t esp_stat_replay_early_failures; 195 kstat_named_t esp_stat_keysock_in; 196 kstat_named_t esp_stat_out_requests; 197 kstat_named_t esp_stat_acquire_requests; 198 kstat_named_t esp_stat_bytes_expired; 199 kstat_named_t esp_stat_out_discards; 200 kstat_named_t esp_stat_in_accelerated; 201 kstat_named_t esp_stat_out_accelerated; 202 kstat_named_t esp_stat_noaccel; 203 kstat_named_t esp_stat_crypto_sync; 204 kstat_named_t esp_stat_crypto_async; 205 kstat_named_t esp_stat_crypto_failures; 206 kstat_named_t esp_stat_num_ealgs; 207 kstat_named_t esp_stat_bad_decrypt; 208 } esp_kstats_t; 209 210 uint32_t esp_hash_size = IPSEC_DEFAULT_HASH_SIZE; 211 #define ESP_BUMP_STAT(x) (esp_kstats->esp_stat_ ## x).value.ui64++ 212 #define ESP_DEBUMP_STAT(x) (esp_kstats->esp_stat_ ## x).value.ui64-- 213 214 static kstat_t *esp_ksp; 215 static esp_kstats_t *esp_kstats; 216 217 static int esp_kstat_update(kstat_t *, int); 218 219 static boolean_t 220 esp_kstat_init(void) 221 { 222 esp_ksp = kstat_create("ipsecesp", 0, "esp_stat", "net", 223 KSTAT_TYPE_NAMED, sizeof (*esp_kstats) / sizeof (kstat_named_t), 224 KSTAT_FLAG_PERSISTENT); 225 226 if (esp_ksp == NULL) 227 return (B_FALSE); 228 229 esp_kstats = esp_ksp->ks_data; 230 231 esp_ksp->ks_update = esp_kstat_update; 232 233 #define K64 KSTAT_DATA_UINT64 234 #define KI(x) kstat_named_init(&(esp_kstats->esp_stat_##x), #x, K64) 235 236 KI(num_aalgs); 237 KI(num_ealgs); 238 KI(good_auth); 239 KI(bad_auth); 240 KI(bad_padding); 241 KI(replay_failures); 242 KI(replay_early_failures); 243 KI(keysock_in); 244 KI(out_requests); 245 KI(acquire_requests); 246 KI(bytes_expired); 247 KI(out_discards); 248 KI(in_accelerated); 249 KI(out_accelerated); 250 KI(noaccel); 251 KI(crypto_sync); 252 KI(crypto_async); 253 KI(crypto_failures); 254 KI(bad_decrypt); 255 256 #undef KI 257 #undef K64 258 259 kstat_install(esp_ksp); 260 261 return (B_TRUE); 262 } 263 264 static int 265 esp_kstat_update(kstat_t *kp, int rw) 266 { 267 esp_kstats_t *ekp; 268 269 if ((kp == NULL) || (kp->ks_data == NULL)) 270 return (EIO); 271 272 if (rw == KSTAT_WRITE) 273 return (EACCES); 274 275 ASSERT(kp == esp_ksp); 276 ekp = (esp_kstats_t *)kp->ks_data; 277 ASSERT(ekp == esp_kstats); 278 279 mutex_enter(&alg_lock); 280 ekp->esp_stat_num_aalgs.value.ui64 = ipsec_nalgs[IPSEC_ALG_AUTH]; 281 ekp->esp_stat_num_ealgs.value.ui64 = ipsec_nalgs[IPSEC_ALG_ENCR]; 282 mutex_exit(&alg_lock); 283 284 return (0); 285 } 286 287 #ifdef DEBUG 288 /* 289 * Debug routine, useful to see pre-encryption data. 290 */ 291 static char * 292 dump_msg(mblk_t *mp) 293 { 294 char tmp_str[3], tmp_line[256]; 295 296 while (mp != NULL) { 297 unsigned char *ptr; 298 299 printf("mblk address 0x%p, length %ld, db_ref %d " 300 "type %d, base 0x%p, lim 0x%p\n", 301 (void *) mp, (long)(mp->b_wptr - mp->b_rptr), 302 mp->b_datap->db_ref, mp->b_datap->db_type, 303 (void *)mp->b_datap->db_base, (void *)mp->b_datap->db_lim); 304 ptr = mp->b_rptr; 305 306 tmp_line[0] = '\0'; 307 while (ptr < mp->b_wptr) { 308 uint_t diff; 309 310 diff = (ptr - mp->b_rptr); 311 if (!(diff & 0x1f)) { 312 if (strlen(tmp_line) > 0) { 313 printf("bytes: %s\n", tmp_line); 314 tmp_line[0] = '\0'; 315 } 316 } 317 if (!(diff & 0x3)) 318 (void) strcat(tmp_line, " "); 319 (void) sprintf(tmp_str, "%02x", *ptr); 320 (void) strcat(tmp_line, tmp_str); 321 ptr++; 322 } 323 if (strlen(tmp_line) > 0) 324 printf("bytes: %s\n", tmp_line); 325 326 mp = mp->b_cont; 327 } 328 329 return ("\n"); 330 } 331 332 #else /* DEBUG */ 333 static char * 334 dump_msg(mblk_t *mp) 335 { 336 printf("Find value of mp %p.\n", mp); 337 return ("\n"); 338 } 339 #endif /* DEBUG */ 340 341 /* 342 * Don't have to lock age_interval, as only one thread will access it at 343 * a time, because I control the one function that does with timeout(). 344 */ 345 /* ARGSUSED */ 346 static void 347 esp_ager(void *ignoreme) 348 { 349 hrtime_t begin = gethrtime(); 350 351 sadb_ager(&esp_sadb.s_v4, esp_pfkey_q, esp_sadb.s_ip_q, 352 ipsecesp_reap_delay); 353 sadb_ager(&esp_sadb.s_v6, esp_pfkey_q, esp_sadb.s_ip_q, 354 ipsecesp_reap_delay); 355 356 esp_event = sadb_retimeout(begin, esp_pfkey_q, esp_ager, 357 &(ipsecesp_age_interval), ipsecesp_age_int_max, info.mi_idnum); 358 } 359 360 /* 361 * Get an ESP NDD parameter. 362 */ 363 /* ARGSUSED */ 364 static int 365 ipsecesp_param_get(q, mp, cp, cr) 366 queue_t *q; 367 mblk_t *mp; 368 caddr_t cp; 369 cred_t *cr; 370 { 371 ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp; 372 uint_t value; 373 374 mutex_enter(&ipsecesp_param_lock); 375 value = ipsecesppa->ipsecesp_param_value; 376 mutex_exit(&ipsecesp_param_lock); 377 378 (void) mi_mpprintf(mp, "%u", value); 379 return (0); 380 } 381 382 /* 383 * This routine sets an NDD variable in a ipsecespparam_t structure. 384 */ 385 /* ARGSUSED */ 386 static int 387 ipsecesp_param_set(q, mp, value, cp, cr) 388 queue_t *q; 389 mblk_t *mp; 390 char *value; 391 caddr_t cp; 392 cred_t *cr; 393 { 394 ulong_t new_value; 395 ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp; 396 397 /* 398 * Fail the request if the new value does not lie within the 399 * required bounds. 400 */ 401 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 || 402 new_value < ipsecesppa->ipsecesp_param_min || 403 new_value > ipsecesppa->ipsecesp_param_max) { 404 return (EINVAL); 405 } 406 407 /* Set the new value */ 408 mutex_enter(&ipsecesp_param_lock); 409 ipsecesppa->ipsecesp_param_value = new_value; 410 mutex_exit(&ipsecesp_param_lock); 411 return (0); 412 } 413 414 /* 415 * Using lifetime NDD variables, fill in an extended combination's 416 * lifetime information. 417 */ 418 void 419 ipsecesp_fill_defs(sadb_x_ecomb_t *ecomb) 420 { 421 ecomb->sadb_x_ecomb_soft_bytes = ipsecesp_default_soft_bytes; 422 ecomb->sadb_x_ecomb_hard_bytes = ipsecesp_default_hard_bytes; 423 ecomb->sadb_x_ecomb_soft_addtime = ipsecesp_default_soft_addtime; 424 ecomb->sadb_x_ecomb_hard_addtime = ipsecesp_default_hard_addtime; 425 ecomb->sadb_x_ecomb_soft_usetime = ipsecesp_default_soft_usetime; 426 ecomb->sadb_x_ecomb_hard_usetime = ipsecesp_default_hard_usetime; 427 } 428 429 /* 430 * Initialize things for ESP at module load time. 431 */ 432 boolean_t 433 ipsecesp_ddi_init(void) 434 { 435 int count; 436 ipsecespparam_t *espp = ipsecesp_param_arr; 437 438 for (count = A_CNT(ipsecesp_param_arr); count-- > 0; espp++) { 439 if (espp->ipsecesp_param_name != NULL && 440 espp->ipsecesp_param_name[0]) { 441 if (!nd_load(&ipsecesp_g_nd, espp->ipsecesp_param_name, 442 ipsecesp_param_get, ipsecesp_param_set, 443 (caddr_t)espp)) { 444 nd_free(&ipsecesp_g_nd); 445 return (B_FALSE); 446 } 447 } 448 } 449 450 if (!esp_kstat_init()) { 451 nd_free(&ipsecesp_g_nd); 452 return (B_FALSE); 453 } 454 455 esp_sadb.s_acquire_timeout = &ipsecesp_acquire_timeout; 456 esp_sadb.s_acqfn = esp_send_acquire; 457 sadbp_init("ESP", &esp_sadb, SADB_SATYPE_ESP, esp_hash_size); 458 459 esp_taskq = taskq_create("esp_taskq", 1, minclsyspri, 460 IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0); 461 462 mutex_init(&ipsecesp_param_lock, NULL, MUTEX_DEFAULT, 0); 463 464 ip_drop_register(&esp_dropper, "IPsec ESP"); 465 466 return (B_TRUE); 467 } 468 469 /* 470 * Destroy things for ESP at module unload time. 471 */ 472 void 473 ipsecesp_ddi_destroy(void) 474 { 475 esp1dbg(("In ipsecesp_ddi_destroy.\n")); 476 477 sadbp_destroy(&esp_sadb); 478 ip_drop_unregister(&esp_dropper); 479 taskq_destroy(esp_taskq); 480 mutex_destroy(&ipsecesp_param_lock); 481 nd_free(&ipsecesp_g_nd); 482 kstat_delete(esp_ksp); 483 } 484 485 /* 486 * ESP module open routine. 487 */ 488 /* ARGSUSED */ 489 static int 490 ipsecesp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 491 { 492 if (secpolicy_net_config(credp, B_FALSE) != 0) { 493 esp1dbg(("Non-privileged user trying to open ipsecesp.\n")); 494 return (EPERM); 495 } 496 497 if (q->q_ptr != NULL) 498 return (0); /* Re-open of an already open instance. */ 499 500 if (sflag != MODOPEN) 501 return (EINVAL); 502 503 /* 504 * ASSUMPTIONS (because I'm MT_OCEXCL): 505 * 506 * * I'm being pushed on top of IP for all my opens (incl. #1). 507 * * Only ipsecesp_open() can write into esp_sadb.s_ip_q. 508 * * Because of this, I can check lazily for esp_sadb.s_ip_q. 509 * 510 * If these assumptions are wrong, I'm in BIG trouble... 511 */ 512 513 q->q_ptr = q; /* just so I know I'm open */ 514 515 if (esp_sadb.s_ip_q == NULL) { 516 struct T_unbind_req *tur; 517 518 esp_sadb.s_ip_q = WR(q); 519 /* Allocate an unbind... */ 520 esp_ip_unbind = allocb(sizeof (struct T_unbind_req), BPRI_HI); 521 522 /* 523 * Send down T_BIND_REQ to bind IPPROTO_ESP. 524 * Handle the ACK here in ESP. 525 */ 526 qprocson(q); 527 if (esp_ip_unbind == NULL || 528 !sadb_t_bind_req(esp_sadb.s_ip_q, IPPROTO_ESP)) { 529 if (esp_ip_unbind != NULL) { 530 freeb(esp_ip_unbind); 531 esp_ip_unbind = NULL; 532 } 533 q->q_ptr = NULL; 534 return (ENOMEM); 535 } 536 537 esp_ip_unbind->b_datap->db_type = M_PROTO; 538 tur = (struct T_unbind_req *)esp_ip_unbind->b_rptr; 539 tur->PRIM_type = T_UNBIND_REQ; 540 } else { 541 qprocson(q); 542 } 543 544 /* 545 * For now, there's not much I can do. I'll be getting a message 546 * passed down to me from keysock (in my wput), and a T_BIND_ACK 547 * up from IP (in my rput). 548 */ 549 550 return (0); 551 } 552 553 /* 554 * ESP module close routine. 555 */ 556 static int 557 ipsecesp_close(queue_t *q) 558 { 559 /* 560 * If esp_sadb.s_ip_q is attached to this instance, send a 561 * T_UNBIND_REQ to IP for the instance before doing 562 * a qprocsoff(). 563 */ 564 if (WR(q) == esp_sadb.s_ip_q && esp_ip_unbind != NULL) { 565 putnext(WR(q), esp_ip_unbind); 566 esp_ip_unbind = NULL; 567 } 568 569 /* 570 * Clean up q_ptr, if needed. 571 */ 572 qprocsoff(q); 573 574 /* Keysock queue check is safe, because of OCEXCL perimeter. */ 575 576 if (q == esp_pfkey_q) { 577 esp0dbg(("ipsecesp_close: Ummm... keysock is closing ESP.\n")); 578 esp_pfkey_q = NULL; 579 /* Detach qtimeouts. */ 580 (void) quntimeout(q, esp_event); 581 } 582 583 if (WR(q) == esp_sadb.s_ip_q) { 584 /* 585 * If the esp_sadb.s_ip_q is attached to this instance, find 586 * another. The OCEXCL outer perimeter helps us here. 587 */ 588 esp_sadb.s_ip_q = NULL; 589 590 /* 591 * Find a replacement queue for esp_sadb.s_ip_q. 592 */ 593 if (esp_pfkey_q != NULL && esp_pfkey_q != RD(q)) { 594 /* 595 * See if we can use the pfkey_q. 596 */ 597 esp_sadb.s_ip_q = WR(esp_pfkey_q); 598 } 599 600 if (esp_sadb.s_ip_q == NULL || 601 !sadb_t_bind_req(esp_sadb.s_ip_q, IPPROTO_ESP)) { 602 esp1dbg(("ipsecesp: Can't reassign ip_q.\n")); 603 esp_sadb.s_ip_q = NULL; 604 } else { 605 esp_ip_unbind = allocb(sizeof (struct T_unbind_req), 606 BPRI_HI); 607 608 if (esp_ip_unbind != NULL) { 609 struct T_unbind_req *tur; 610 611 esp_ip_unbind->b_datap->db_type = M_PROTO; 612 tur = (struct T_unbind_req *) 613 esp_ip_unbind->b_rptr; 614 tur->PRIM_type = T_UNBIND_REQ; 615 } 616 /* If it's NULL, I can't do much here. */ 617 } 618 } 619 620 return (0); 621 } 622 623 /* 624 * Add a number of bytes to what the SA has protected so far. Return 625 * B_TRUE if the SA can still protect that many bytes. 626 * 627 * Caller must REFRELE the passed-in assoc. This function must REFRELE 628 * any obtained peer SA. 629 */ 630 static boolean_t 631 esp_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound) 632 { 633 ipsa_t *inassoc, *outassoc; 634 isaf_t *bucket; 635 boolean_t inrc, outrc, isv6; 636 sadb_t *sp; 637 int outhash; 638 639 /* No peer? No problem! */ 640 if (!assoc->ipsa_haspeer) { 641 return (sadb_age_bytes(esp_pfkey_q, assoc, bytes, 642 B_TRUE)); 643 } 644 645 /* 646 * Otherwise, we want to grab both the original assoc and its peer. 647 * There might be a race for this, but if it's a real race, two 648 * expire messages may occur. We limit this by only sending the 649 * expire message on one of the peers, we'll pick the inbound 650 * arbitrarily. 651 * 652 * If we need tight synchronization on the peer SA, then we need to 653 * reconsider. 654 */ 655 656 /* Use address length to select IPv6/IPv4 */ 657 isv6 = (assoc->ipsa_addrfam == AF_INET6); 658 sp = isv6 ? &esp_sadb.s_v6 : &esp_sadb.s_v4; 659 660 if (inbound) { 661 inassoc = assoc; 662 if (isv6) { 663 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) 664 &inassoc->ipsa_dstaddr)); 665 } else { 666 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) 667 &inassoc->ipsa_dstaddr)); 668 } 669 bucket = &sp->sdb_of[outhash]; 670 mutex_enter(&bucket->isaf_lock); 671 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, 672 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, 673 inassoc->ipsa_addrfam); 674 mutex_exit(&bucket->isaf_lock); 675 if (outassoc == NULL) { 676 /* Q: Do we wish to set haspeer == B_FALSE? */ 677 esp0dbg(("esp_age_bytes: " 678 "can't find peer for inbound.\n")); 679 return (sadb_age_bytes(esp_pfkey_q, inassoc, 680 bytes, B_TRUE)); 681 } 682 } else { 683 outassoc = assoc; 684 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); 685 mutex_enter(&bucket->isaf_lock); 686 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, 687 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, 688 outassoc->ipsa_addrfam); 689 mutex_exit(&bucket->isaf_lock); 690 if (inassoc == NULL) { 691 /* Q: Do we wish to set haspeer == B_FALSE? */ 692 esp0dbg(("esp_age_bytes: " 693 "can't find peer for outbound.\n")); 694 return (sadb_age_bytes(esp_pfkey_q, outassoc, 695 bytes, B_TRUE)); 696 } 697 } 698 699 inrc = sadb_age_bytes(esp_pfkey_q, inassoc, bytes, B_TRUE); 700 outrc = sadb_age_bytes(esp_pfkey_q, outassoc, bytes, B_FALSE); 701 702 /* 703 * REFRELE any peer SA. 704 * 705 * Because of the multi-line macro nature of IPSA_REFRELE, keep 706 * them in { }. 707 */ 708 if (inbound) { 709 IPSA_REFRELE(outassoc); 710 } else { 711 IPSA_REFRELE(inassoc); 712 } 713 714 return (inrc && outrc); 715 } 716 717 /* 718 * Do incoming NAT-T manipulations for packet. 719 */ 720 static ipsec_status_t 721 esp_fix_natt_checksums(mblk_t *data_mp, ipsa_t *assoc) 722 { 723 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 724 tcpha_t *tcph; 725 udpha_t *udpha; 726 /* Initialize to our inbound cksum adjustment... */ 727 uint32_t sum = assoc->ipsa_inbound_cksum; 728 729 switch (ipha->ipha_protocol) { 730 case IPPROTO_TCP: 731 tcph = (tcpha_t *)(data_mp->b_rptr + 732 IPH_HDR_LENGTH(ipha)); 733 734 #define DOWN_SUM(x) (x) = ((x) & 0xFFFF) + ((x) >> 16) 735 sum += ~ntohs(tcph->tha_sum) & 0xFFFF; 736 DOWN_SUM(sum); 737 DOWN_SUM(sum); 738 tcph->tha_sum = ~htons(sum); 739 break; 740 case IPPROTO_UDP: 741 udpha = (udpha_t *)(data_mp->b_rptr + IPH_HDR_LENGTH(ipha)); 742 743 if (udpha->uha_checksum != 0) { 744 /* Adujst if the inbound one was not zero. */ 745 sum += ~ntohs(udpha->uha_checksum) & 0xFFFF; 746 DOWN_SUM(sum); 747 DOWN_SUM(sum); 748 udpha->uha_checksum = ~htons(sum); 749 if (udpha->uha_checksum == 0) 750 udpha->uha_checksum = 0xFFFF; 751 } 752 #undef DOWN_SUM 753 break; 754 case IPPROTO_IP: 755 /* 756 * This case is only an issue for self-encapsulated 757 * packets. So for now, fall through. 758 */ 759 break; 760 } 761 return (IPSEC_STATUS_SUCCESS); 762 } 763 764 765 /* 766 * Strip ESP header and fix IP header 767 * Returns B_TRUE on success, B_FALSE if an error occured. 768 */ 769 static boolean_t 770 esp_strip_header(mblk_t *data_mp, boolean_t isv4, uint32_t ivlen, 771 kstat_named_t **counter) 772 { 773 ipha_t *ipha; 774 ip6_t *ip6h; 775 uint_t divpoint; 776 mblk_t *scratch; 777 uint8_t nexthdr, padlen; 778 uint8_t lastpad; 779 780 /* 781 * Strip ESP data and fix IP header. 782 * 783 * XXX In case the beginning of esp_inbound() changes to not do a 784 * pullup, this part of the code can remain unchanged. 785 */ 786 if (isv4) { 787 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ipha_t)); 788 ipha = (ipha_t *)data_mp->b_rptr; 789 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (esph_t) + 790 IPH_HDR_LENGTH(ipha)); 791 divpoint = IPH_HDR_LENGTH(ipha); 792 } else { 793 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ip6_t)); 794 ip6h = (ip6_t *)data_mp->b_rptr; 795 divpoint = ip_hdr_length_v6(data_mp, ip6h); 796 } 797 798 scratch = data_mp; 799 while (scratch->b_cont != NULL) 800 scratch = scratch->b_cont; 801 802 ASSERT((scratch->b_wptr - scratch->b_rptr) >= 3); 803 804 /* 805 * "Next header" and padding length are the last two bytes in the 806 * ESP-protected datagram, thus the explicit - 1 and - 2. 807 * lastpad is the last byte of the padding, which can be used for 808 * a quick check to see if the padding is correct. 809 */ 810 nexthdr = *(scratch->b_wptr - 1); 811 padlen = *(scratch->b_wptr - 2); 812 lastpad = *(scratch->b_wptr - 3); 813 814 if (isv4) { 815 /* Fix part of the IP header. */ 816 ipha->ipha_protocol = nexthdr; 817 /* 818 * Reality check the padlen. The explicit - 2 is for the 819 * padding length and the next-header bytes. 820 */ 821 if (padlen >= ntohs(ipha->ipha_length) - sizeof (ipha_t) - 2 - 822 sizeof (esph_t) - ivlen) { 823 ESP_BUMP_STAT(bad_decrypt); 824 ipsec_rl_strlog(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 825 "Possibly corrupt ESP packet."); 826 esp1dbg(("padlen (%d) is greater than:\n", padlen)); 827 esp1dbg(("pkt len(%d) - ip hdr - esp hdr - ivlen(%d) " 828 "= %d.\n", ntohs(ipha->ipha_length), ivlen, 829 (int)(ntohs(ipha->ipha_length) - sizeof (ipha_t) - 830 2 - sizeof (esph_t) - ivlen))); 831 *counter = &ipdrops_esp_bad_padlen; 832 return (B_FALSE); 833 } 834 835 /* 836 * Fix the rest of the header. The explicit - 2 is for the 837 * padding length and the next-header bytes. 838 */ 839 ipha->ipha_length = htons(ntohs(ipha->ipha_length) - padlen - 840 2 - sizeof (esph_t) - ivlen); 841 ipha->ipha_hdr_checksum = 0; 842 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); 843 } else { 844 if (ip6h->ip6_nxt == IPPROTO_ESP) { 845 ip6h->ip6_nxt = nexthdr; 846 } else { 847 ip6_pkt_t ipp; 848 849 bzero(&ipp, sizeof (ipp)); 850 (void) ip_find_hdr_v6(data_mp, ip6h, &ipp, NULL); 851 if (ipp.ipp_dstopts != NULL) { 852 ipp.ipp_dstopts->ip6d_nxt = nexthdr; 853 } else if (ipp.ipp_rthdr != NULL) { 854 ipp.ipp_rthdr->ip6r_nxt = nexthdr; 855 } else if (ipp.ipp_hopopts != NULL) { 856 ipp.ipp_hopopts->ip6h_nxt = nexthdr; 857 } else { 858 /* Panic a DEBUG kernel. */ 859 ASSERT(ipp.ipp_hopopts != NULL); 860 /* Otherwise, pretend it's IP + ESP. */ 861 cmn_err(CE_WARN, "ESP IPv6 headers wrong.\n"); 862 ip6h->ip6_nxt = nexthdr; 863 } 864 } 865 866 if (padlen >= ntohs(ip6h->ip6_plen) - 2 - sizeof (esph_t) - 867 ivlen) { 868 ESP_BUMP_STAT(bad_decrypt); 869 ipsec_rl_strlog(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 870 "Possibly corrupt ESP packet."); 871 esp1dbg(("padlen (%d) is greater than:\n", padlen)); 872 esp1dbg(("pkt len(%u) - ip hdr - esp hdr - ivlen(%d)" 873 " = %u.\n", (unsigned)(ntohs(ip6h->ip6_plen) 874 + sizeof (ip6_t)), ivlen, 875 (unsigned)(ntohs(ip6h->ip6_plen) - 2 - 876 sizeof (esph_t) - ivlen))); 877 *counter = &ipdrops_esp_bad_padlen; 878 return (B_FALSE); 879 } 880 881 882 /* 883 * Fix the rest of the header. The explicit - 2 is for the 884 * padding length and the next-header bytes. IPv6 is nice, 885 * because there's no hdr checksum! 886 */ 887 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - padlen - 888 2 - sizeof (esph_t) - ivlen); 889 } 890 891 if (ipsecesp_padding_check > 0 && 892 padlen != lastpad && padlen != 0) { 893 ipsec_rl_strlog(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 894 "Possibly corrupt ESP packet."); 895 esp1dbg(("lastpad (%d) not equal to padlen (%d):\n", 896 lastpad, padlen)); 897 ESP_BUMP_STAT(bad_padding); 898 *counter = &ipdrops_esp_bad_padding; 899 return (B_FALSE); 900 } 901 902 if (ipsecesp_padding_check > 1) { 903 uint8_t *last = (uint8_t *)(scratch->b_wptr - 3); 904 uint8_t lastval = *last; 905 906 /* 907 * this assert may have to become an if 908 * and a pullup if we start accepting 909 * multi-dblk mblks. Any packet here will 910 * have been pulled up in esp_inbound. 911 */ 912 ASSERT(MBLKL(scratch) >= lastval + 3); 913 914 while (lastval != 0) { 915 if (lastval != *last) { 916 ipsec_rl_strlog(info.mi_idnum, 0, 0, 917 SL_ERROR | SL_WARN, 918 "Possibly corrupt ESP packet."); 919 esp1dbg(("padding not in correct" 920 " format:\n")); 921 ESP_BUMP_STAT(bad_padding); 922 *counter = &ipdrops_esp_bad_padding; 923 return (B_FALSE); 924 } 925 lastval--; last--; 926 } 927 } 928 929 /* Trim off the padding. */ 930 ASSERT(data_mp->b_cont == NULL); 931 data_mp->b_wptr -= (padlen + 2); 932 933 /* 934 * Remove the ESP header. 935 * 936 * The above assertions about data_mp's size will make this work. 937 * 938 * XXX Question: If I send up and get back a contiguous mblk, 939 * would it be quicker to bcopy over, or keep doing the dupb stuff? 940 * I go with copying for now. 941 */ 942 943 if (IS_P2ALIGNED(data_mp->b_rptr, sizeof (uint32_t)) && 944 IS_P2ALIGNED(ivlen, sizeof (uint32_t))) { 945 uint8_t *start = data_mp->b_rptr; 946 uint32_t *src, *dst; 947 948 src = (uint32_t *)(start + divpoint); 949 dst = (uint32_t *)(start + divpoint + sizeof (esph_t) + ivlen); 950 951 ASSERT(IS_P2ALIGNED(dst, sizeof (uint32_t)) && 952 IS_P2ALIGNED(src, sizeof (uint32_t))); 953 954 do { 955 src--; 956 dst--; 957 *dst = *src; 958 } while (src != (uint32_t *)start); 959 960 data_mp->b_rptr = (uchar_t *)dst; 961 } else { 962 uint8_t *start = data_mp->b_rptr; 963 uint8_t *src, *dst; 964 965 src = start + divpoint; 966 dst = src + sizeof (esph_t) + ivlen; 967 968 do { 969 src--; 970 dst--; 971 *dst = *src; 972 } while (src != start); 973 974 data_mp->b_rptr = dst; 975 } 976 977 esp2dbg(("data_mp after inbound ESP adjustment:\n")); 978 esp2dbg((dump_msg(data_mp))); 979 980 return (B_TRUE); 981 } 982 983 /* 984 * Updating use times can be tricky business if the ipsa_haspeer flag is 985 * set. This function is called once in an SA's lifetime. 986 * 987 * Caller has to REFRELE "assoc" which is passed in. This function has 988 * to REFRELE any peer SA that is obtained. 989 */ 990 static void 991 esp_set_usetime(ipsa_t *assoc, boolean_t inbound) 992 { 993 ipsa_t *inassoc, *outassoc; 994 isaf_t *bucket; 995 sadb_t *sp; 996 int outhash; 997 boolean_t isv6; 998 999 /* No peer? No problem! */ 1000 if (!assoc->ipsa_haspeer) { 1001 sadb_set_usetime(assoc); 1002 return; 1003 } 1004 1005 /* 1006 * Otherwise, we want to grab both the original assoc and its peer. 1007 * There might be a race for this, but if it's a real race, the times 1008 * will be out-of-synch by at most a second, and since our time 1009 * granularity is a second, this won't be a problem. 1010 * 1011 * If we need tight synchronization on the peer SA, then we need to 1012 * reconsider. 1013 */ 1014 1015 /* Use address length to select IPv6/IPv4 */ 1016 isv6 = (assoc->ipsa_addrfam == AF_INET6); 1017 sp = isv6 ? &esp_sadb.s_v6 : &esp_sadb.s_v4; 1018 1019 if (inbound) { 1020 inassoc = assoc; 1021 if (isv6) { 1022 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) 1023 &inassoc->ipsa_dstaddr)); 1024 } else { 1025 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) 1026 &inassoc->ipsa_dstaddr)); 1027 } 1028 bucket = &sp->sdb_of[outhash]; 1029 mutex_enter(&bucket->isaf_lock); 1030 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, 1031 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, 1032 inassoc->ipsa_addrfam); 1033 mutex_exit(&bucket->isaf_lock); 1034 if (outassoc == NULL) { 1035 /* Q: Do we wish to set haspeer == B_FALSE? */ 1036 esp0dbg(("esp_set_usetime: " 1037 "can't find peer for inbound.\n")); 1038 sadb_set_usetime(inassoc); 1039 return; 1040 } 1041 } else { 1042 outassoc = assoc; 1043 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); 1044 mutex_enter(&bucket->isaf_lock); 1045 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, 1046 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, 1047 outassoc->ipsa_addrfam); 1048 mutex_exit(&bucket->isaf_lock); 1049 if (inassoc == NULL) { 1050 /* Q: Do we wish to set haspeer == B_FALSE? */ 1051 esp0dbg(("esp_set_usetime: " 1052 "can't find peer for outbound.\n")); 1053 sadb_set_usetime(outassoc); 1054 return; 1055 } 1056 } 1057 1058 /* Update usetime on both. */ 1059 sadb_set_usetime(inassoc); 1060 sadb_set_usetime(outassoc); 1061 1062 /* 1063 * REFRELE any peer SA. 1064 * 1065 * Because of the multi-line macro nature of IPSA_REFRELE, keep 1066 * them in { }. 1067 */ 1068 if (inbound) { 1069 IPSA_REFRELE(outassoc); 1070 } else { 1071 IPSA_REFRELE(inassoc); 1072 } 1073 } 1074 1075 /* 1076 * Handle ESP inbound data for IPv4 and IPv6. 1077 * On success returns B_TRUE, on failure returns B_FALSE and frees the 1078 * mblk chain ipsec_in_mp. 1079 */ 1080 ipsec_status_t 1081 esp_inbound(mblk_t *ipsec_in_mp, void *arg) 1082 { 1083 mblk_t *data_mp = ipsec_in_mp->b_cont; 1084 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr; 1085 esph_t *esph = (esph_t *)arg; 1086 ipsa_t *ipsa = ii->ipsec_in_esp_sa; 1087 1088 if (ipsa->ipsa_usetime == 0) 1089 esp_set_usetime(ipsa, B_TRUE); 1090 1091 /* 1092 * We may wish to check replay in-range-only here as an optimization. 1093 * Include the reality check of ipsa->ipsa_replay > 1094 * ipsa->ipsa_replay_wsize for times when it's the first N packets, 1095 * where N == ipsa->ipsa_replay_wsize. 1096 * 1097 * Another check that may come here later is the "collision" check. 1098 * If legitimate packets flow quickly enough, this won't be a problem, 1099 * but collisions may cause authentication algorithm crunching to 1100 * take place when it doesn't need to. 1101 */ 1102 if (!sadb_replay_peek(ipsa, esph->esph_replay)) { 1103 ESP_BUMP_STAT(replay_early_failures); 1104 IP_ESP_BUMP_STAT(in_discards); 1105 /* 1106 * TODO: Extract inbound interface from the IPSEC_IN 1107 * message's ii->ipsec_in_rill_index. 1108 */ 1109 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, 1110 &ipdrops_esp_early_replay, &esp_dropper); 1111 return (IPSEC_STATUS_FAILED); 1112 } 1113 1114 /* 1115 * Has this packet already been processed by a hardware 1116 * IPsec accelerator? 1117 */ 1118 if (ii->ipsec_in_accelerated) { 1119 ipsec_status_t rv; 1120 esp3dbg(("esp_inbound: pkt processed by ill=%d isv6=%d\n", 1121 ii->ipsec_in_ill_index, !ii->ipsec_in_v4)); 1122 rv = esp_inbound_accelerated(ipsec_in_mp, 1123 data_mp, ii->ipsec_in_v4, ipsa); 1124 return (rv); 1125 } 1126 ESP_BUMP_STAT(noaccel); 1127 1128 /* 1129 * Adjust the IP header's payload length to reflect the removal 1130 * of the ICV. 1131 */ 1132 if (!ii->ipsec_in_v4) { 1133 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 1134 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 1135 ipsa->ipsa_mac_len); 1136 } else { 1137 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 1138 ipha->ipha_length = htons(ntohs(ipha->ipha_length) - 1139 ipsa->ipsa_mac_len); 1140 } 1141 1142 /* submit the request to the crypto framework */ 1143 return (esp_submit_req_inbound(ipsec_in_mp, ipsa, 1144 (uint8_t *)esph - data_mp->b_rptr)); 1145 } 1146 1147 /* 1148 * Perform the really difficult work of inserting the proposed situation. 1149 * Called while holding the algorithm lock. 1150 */ 1151 static void 1152 esp_insert_prop(sadb_prop_t *prop, ipsacq_t *acqrec, uint_t combs) 1153 { 1154 sadb_comb_t *comb = (sadb_comb_t *)(prop + 1); 1155 ipsec_out_t *io; 1156 ipsec_action_t *ap; 1157 ipsec_prot_t *prot; 1158 1159 ASSERT(MUTEX_HELD(&alg_lock)); 1160 io = (ipsec_out_t *)acqrec->ipsacq_mp->b_rptr; 1161 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1162 1163 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 1164 prop->sadb_prop_len = SADB_8TO64(sizeof (sadb_prop_t)); 1165 *(uint32_t *)(&prop->sadb_prop_replay) = 0; /* Quick zero-out! */ 1166 1167 prop->sadb_prop_replay = ipsecesp_replay_size; 1168 1169 /* 1170 * Based upon algorithm properties, and what-not, prioritize 1171 * a proposal. If the IPSEC_OUT message has an algorithm specified, 1172 * use it first and foremost. 1173 * 1174 * For each action in policy list 1175 * Add combination. If I've hit limit, return. 1176 */ 1177 1178 for (ap = acqrec->ipsacq_act; ap != NULL; 1179 ap = ap->ipa_next) { 1180 ipsec_alginfo_t *ealg = NULL; 1181 ipsec_alginfo_t *aalg = NULL; 1182 1183 if (ap->ipa_act.ipa_type != IPSEC_POLICY_APPLY) 1184 continue; 1185 1186 prot = &ap->ipa_act.ipa_apply; 1187 1188 if (!(prot->ipp_use_esp)) 1189 continue; 1190 1191 if (prot->ipp_esp_auth_alg != 0) { 1192 aalg = ipsec_alglists[IPSEC_ALG_AUTH] 1193 [prot->ipp_esp_auth_alg]; 1194 if (aalg == NULL || !ALG_VALID(aalg)) 1195 continue; 1196 } 1197 1198 ASSERT(prot->ipp_encr_alg > 0); 1199 ealg = ipsec_alglists[IPSEC_ALG_ENCR][prot->ipp_encr_alg]; 1200 if (ealg == NULL || !ALG_VALID(ealg)) 1201 continue; 1202 1203 comb->sadb_comb_flags = 0; 1204 comb->sadb_comb_reserved = 0; 1205 comb->sadb_comb_encrypt = ealg->alg_id; 1206 comb->sadb_comb_encrypt_minbits = 1207 MAX(prot->ipp_espe_minbits, ealg->alg_ef_minbits); 1208 comb->sadb_comb_encrypt_maxbits = 1209 MIN(prot->ipp_espe_maxbits, ealg->alg_ef_maxbits); 1210 if (aalg == NULL) { 1211 comb->sadb_comb_auth = 0; 1212 comb->sadb_comb_auth_minbits = 0; 1213 comb->sadb_comb_auth_maxbits = 0; 1214 } else { 1215 comb->sadb_comb_auth = aalg->alg_id; 1216 comb->sadb_comb_auth_minbits = 1217 MAX(prot->ipp_espa_minbits, aalg->alg_ef_minbits); 1218 comb->sadb_comb_auth_maxbits = 1219 MIN(prot->ipp_espa_maxbits, aalg->alg_ef_maxbits); 1220 } 1221 1222 /* 1223 * The following may be based on algorithm 1224 * properties, but in the meantime, we just pick 1225 * some good, sensible numbers. Key mgmt. can 1226 * (and perhaps should) be the place to finalize 1227 * such decisions. 1228 */ 1229 1230 /* 1231 * No limits on allocations, since we really don't 1232 * support that concept currently. 1233 */ 1234 comb->sadb_comb_soft_allocations = 0; 1235 comb->sadb_comb_hard_allocations = 0; 1236 1237 /* 1238 * These may want to come from policy rule.. 1239 */ 1240 comb->sadb_comb_soft_bytes = ipsecesp_default_soft_bytes; 1241 comb->sadb_comb_hard_bytes = ipsecesp_default_hard_bytes; 1242 comb->sadb_comb_soft_addtime = ipsecesp_default_soft_addtime; 1243 comb->sadb_comb_hard_addtime = ipsecesp_default_hard_addtime; 1244 comb->sadb_comb_soft_usetime = ipsecesp_default_soft_usetime; 1245 comb->sadb_comb_hard_usetime = ipsecesp_default_hard_usetime; 1246 1247 prop->sadb_prop_len += SADB_8TO64(sizeof (*comb)); 1248 if (--combs == 0) 1249 break; /* out of space.. */ 1250 comb++; 1251 } 1252 } 1253 1254 /* 1255 * Prepare and actually send the SADB_ACQUIRE message to PF_KEY. 1256 */ 1257 static void 1258 esp_send_acquire(ipsacq_t *acqrec, mblk_t *extended) 1259 { 1260 mblk_t *pfkeymp, *msgmp; 1261 uint_t allocsize, combs; 1262 sadb_msg_t *samsg; 1263 sadb_prop_t *prop; 1264 uint8_t *cur, *end; 1265 1266 ESP_BUMP_STAT(acquire_requests); 1267 1268 ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock)); 1269 1270 pfkeymp = sadb_keysock_out(0); 1271 if (pfkeymp == NULL) { 1272 esp0dbg(("esp_send_acquire: 1st allocb() failed.\n")); 1273 /* Just bail. */ 1274 goto done; 1275 } 1276 1277 /* 1278 * First, allocate a basic ACQUIRE message. Beyond that, 1279 * you need to extract certificate info from 1280 */ 1281 allocsize = sizeof (sadb_msg_t) + sizeof (sadb_address_t) + 1282 sizeof (sadb_address_t) + sizeof (sadb_prop_t); 1283 1284 switch (acqrec->ipsacq_addrfam) { 1285 case AF_INET: 1286 allocsize += 2 * sizeof (struct sockaddr_in); 1287 break; 1288 case AF_INET6: 1289 allocsize += 2 * sizeof (struct sockaddr_in6); 1290 break; 1291 } 1292 1293 mutex_enter(&alg_lock); 1294 1295 combs = ipsec_nalgs[IPSEC_ALG_AUTH] * ipsec_nalgs[IPSEC_ALG_ENCR]; 1296 1297 allocsize += combs * sizeof (sadb_comb_t); 1298 1299 /* 1300 * XXX If there are: 1301 * certificate IDs 1302 * proxy address 1303 * <Others> 1304 * add additional allocation size. 1305 */ 1306 1307 msgmp = allocb(allocsize, BPRI_HI); 1308 if (msgmp == NULL) { 1309 esp0dbg(("esp_send_acquire: 2nd allocb() failed.\n")); 1310 /* Just bail. */ 1311 freemsg(pfkeymp); 1312 pfkeymp = NULL; 1313 goto done; 1314 } 1315 1316 cur = msgmp->b_rptr; 1317 end = cur + allocsize; 1318 samsg = (sadb_msg_t *)cur; 1319 pfkeymp->b_cont = msgmp; 1320 1321 /* Set up ACQUIRE. */ 1322 cur = sadb_setup_acquire(cur, end, acqrec); 1323 if (cur == NULL) { 1324 esp0dbg(("sadb_setup_acquire failed.\n")); 1325 /* Just bail. */ 1326 freemsg(pfkeymp); 1327 pfkeymp = NULL; 1328 goto done; 1329 } 1330 samsg->sadb_msg_satype = SADB_SATYPE_ESP; 1331 1332 /* XXX Insert proxy address information here. */ 1333 1334 /* XXX Insert identity information here. */ 1335 1336 /* XXXMLS Insert sensitivity information here. */ 1337 1338 /* Insert proposal here. */ 1339 1340 prop = (sadb_prop_t *)(((uint64_t *)samsg) + samsg->sadb_msg_len); 1341 esp_insert_prop(prop, acqrec, combs); 1342 samsg->sadb_msg_len += prop->sadb_prop_len; 1343 msgmp->b_wptr += SADB_64TO8(samsg->sadb_msg_len); 1344 1345 done: 1346 mutex_exit(&alg_lock); 1347 1348 /* 1349 * Must mutex_exit() before sending PF_KEY message up, in 1350 * order to avoid recursive mutex_enter() if there are no registered 1351 * listeners. 1352 * 1353 * Once I've sent the message, I'm cool anyway. 1354 */ 1355 mutex_exit(&acqrec->ipsacq_lock); 1356 if (esp_pfkey_q != NULL && pfkeymp != NULL) { 1357 if (extended != NULL) { 1358 putnext(esp_pfkey_q, extended); 1359 } 1360 putnext(esp_pfkey_q, pfkeymp); 1361 return; 1362 } 1363 /* XXX freemsg() works for extended == NULL. */ 1364 freemsg(extended); 1365 freemsg(pfkeymp); 1366 } 1367 1368 /* 1369 * Handle the SADB_GETSPI message. Create a larval SA. 1370 */ 1371 static void 1372 esp_getspi(mblk_t *mp, keysock_in_t *ksi) 1373 { 1374 ipsa_t *newbie, *target; 1375 isaf_t *outbound, *inbound; 1376 int rc, diagnostic; 1377 sadb_sa_t *assoc; 1378 keysock_out_t *kso; 1379 uint32_t newspi; 1380 1381 /* 1382 * Randomly generate a proposed SPI value 1383 */ 1384 (void) random_get_pseudo_bytes((uint8_t *)&newspi, sizeof (uint32_t)); 1385 newbie = sadb_getspi(ksi, newspi, &diagnostic); 1386 1387 if (newbie == NULL) { 1388 sadb_pfkey_error(esp_pfkey_q, mp, ENOMEM, diagnostic, 1389 ksi->ks_in_serial); 1390 return; 1391 } else if (newbie == (ipsa_t *)-1) { 1392 sadb_pfkey_error(esp_pfkey_q, mp, EINVAL, diagnostic, 1393 ksi->ks_in_serial); 1394 return; 1395 } 1396 1397 /* 1398 * XXX - We may randomly collide. We really should recover from this. 1399 * Unfortunately, that could require spending way-too-much-time 1400 * in here. For now, let the user retry. 1401 */ 1402 1403 if (newbie->ipsa_addrfam == AF_INET6) { 1404 outbound = OUTBOUND_BUCKET_V6(&esp_sadb.s_v6, 1405 *(uint32_t *)(newbie->ipsa_dstaddr)); 1406 inbound = INBOUND_BUCKET(&esp_sadb.s_v6, newbie->ipsa_spi); 1407 } else { 1408 ASSERT(newbie->ipsa_addrfam == AF_INET); 1409 outbound = OUTBOUND_BUCKET_V4(&esp_sadb.s_v4, 1410 *(uint32_t *)(newbie->ipsa_dstaddr)); 1411 inbound = INBOUND_BUCKET(&esp_sadb.s_v4, newbie->ipsa_spi); 1412 } 1413 1414 mutex_enter(&outbound->isaf_lock); 1415 mutex_enter(&inbound->isaf_lock); 1416 1417 /* 1418 * Check for collisions (i.e. did sadb_getspi() return with something 1419 * that already exists?). 1420 * 1421 * Try outbound first. Even though SADB_GETSPI is traditionally 1422 * for inbound SAs, you never know what a user might do. 1423 */ 1424 target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi, 1425 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam); 1426 if (target == NULL) { 1427 target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi, 1428 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, 1429 newbie->ipsa_addrfam); 1430 } 1431 1432 /* 1433 * I don't have collisions elsewhere! 1434 * (Nor will I because I'm still holding inbound/outbound locks.) 1435 */ 1436 1437 if (target != NULL) { 1438 rc = EEXIST; 1439 IPSA_REFRELE(target); 1440 } else { 1441 /* 1442 * sadb_insertassoc() also checks for collisions, so 1443 * if there's a colliding entry, rc will be set 1444 * to EEXIST. 1445 */ 1446 rc = sadb_insertassoc(newbie, inbound); 1447 (void) drv_getparm(TIME, &newbie->ipsa_hardexpiretime); 1448 newbie->ipsa_hardexpiretime += ipsecesp_larval_timeout; 1449 } 1450 1451 /* 1452 * Can exit outbound mutex. Hold inbound until we're done 1453 * with newbie. 1454 */ 1455 mutex_exit(&outbound->isaf_lock); 1456 1457 if (rc != 0) { 1458 mutex_exit(&inbound->isaf_lock); 1459 IPSA_REFRELE(newbie); 1460 sadb_pfkey_error(esp_pfkey_q, mp, rc, SADB_X_DIAGNOSTIC_NONE, 1461 ksi->ks_in_serial); 1462 return; 1463 } 1464 1465 1466 /* Can write here because I'm still holding the bucket lock. */ 1467 newbie->ipsa_type = SADB_SATYPE_ESP; 1468 1469 /* 1470 * Construct successful return message. We have one thing going 1471 * for us in PF_KEY v2. That's the fact that 1472 * sizeof (sadb_spirange_t) == sizeof (sadb_sa_t) 1473 */ 1474 assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE]; 1475 assoc->sadb_sa_exttype = SADB_EXT_SA; 1476 assoc->sadb_sa_spi = newbie->ipsa_spi; 1477 *((uint64_t *)(&assoc->sadb_sa_replay)) = 0; 1478 mutex_exit(&inbound->isaf_lock); 1479 1480 /* Convert KEYSOCK_IN to KEYSOCK_OUT. */ 1481 kso = (keysock_out_t *)ksi; 1482 kso->ks_out_len = sizeof (*kso); 1483 kso->ks_out_serial = ksi->ks_in_serial; 1484 kso->ks_out_type = KEYSOCK_OUT; 1485 1486 /* 1487 * Can safely putnext() to esp_pfkey_q, because this is a turnaround 1488 * from the esp_pfkey_q. 1489 */ 1490 putnext(esp_pfkey_q, mp); 1491 } 1492 1493 /* 1494 * Insert the ESP header into a packet. Duplicate an mblk, and insert a newly 1495 * allocated mblk with the ESP header in between the two. 1496 */ 1497 static boolean_t 1498 esp_insert_esp(mblk_t *mp, mblk_t *esp_mp, uint_t divpoint) 1499 { 1500 mblk_t *split_mp = mp; 1501 uint_t wheretodiv = divpoint; 1502 1503 while ((split_mp->b_wptr - split_mp->b_rptr) < wheretodiv) { 1504 wheretodiv -= (split_mp->b_wptr - split_mp->b_rptr); 1505 split_mp = split_mp->b_cont; 1506 ASSERT(split_mp != NULL); 1507 } 1508 1509 if (split_mp->b_wptr - split_mp->b_rptr != wheretodiv) { 1510 mblk_t *scratch; 1511 1512 /* "scratch" is the 2nd half, split_mp is the first. */ 1513 scratch = dupb(split_mp); 1514 if (scratch == NULL) { 1515 esp1dbg(("esp_insert_esp: can't allocate scratch.\n")); 1516 return (B_FALSE); 1517 } 1518 /* NOTE: dupb() doesn't set b_cont appropriately. */ 1519 scratch->b_cont = split_mp->b_cont; 1520 scratch->b_rptr += wheretodiv; 1521 split_mp->b_wptr = split_mp->b_rptr + wheretodiv; 1522 split_mp->b_cont = scratch; 1523 } 1524 /* 1525 * At this point, split_mp is exactly "wheretodiv" bytes long, and 1526 * holds the end of the pre-ESP part of the datagram. 1527 */ 1528 esp_mp->b_cont = split_mp->b_cont; 1529 split_mp->b_cont = esp_mp; 1530 1531 return (B_TRUE); 1532 } 1533 1534 /* 1535 * Finish processing of an inbound ESP packet after processing by the 1536 * crypto framework. 1537 * - Remove the ESP header. 1538 * - Send packet back to IP. 1539 * If authentication was performed on the packet, this function is called 1540 * only if the authentication succeeded. 1541 * On success returns B_TRUE, on failure returns B_FALSE and frees the 1542 * mblk chain ipsec_in_mp. 1543 */ 1544 static ipsec_status_t 1545 esp_in_done(mblk_t *ipsec_in_mp) 1546 { 1547 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr; 1548 mblk_t *data_mp; 1549 ipsa_t *assoc; 1550 uint_t espstart; 1551 uint32_t ivlen = 0; 1552 uint_t processed_len; 1553 esph_t *esph; 1554 kstat_named_t *counter; 1555 boolean_t is_natt; 1556 1557 assoc = ii->ipsec_in_esp_sa; 1558 ASSERT(assoc != NULL); 1559 1560 is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0); 1561 1562 /* get the pointer to the ESP header */ 1563 if (assoc->ipsa_encr_alg == SADB_EALG_NULL) { 1564 /* authentication-only ESP */ 1565 espstart = ii->ipsec_in_crypto_data.cd_offset; 1566 processed_len = ii->ipsec_in_crypto_data.cd_length; 1567 } else { 1568 /* encryption present */ 1569 ivlen = assoc->ipsa_iv_len; 1570 if (assoc->ipsa_auth_alg == SADB_AALG_NONE) { 1571 /* encryption-only ESP */ 1572 espstart = ii->ipsec_in_crypto_data.cd_offset - 1573 sizeof (esph_t) - assoc->ipsa_iv_len; 1574 processed_len = ii->ipsec_in_crypto_data.cd_length + 1575 ivlen; 1576 } else { 1577 /* encryption with authentication */ 1578 espstart = ii->ipsec_in_crypto_dual_data.dd_offset1; 1579 processed_len = ii->ipsec_in_crypto_dual_data.dd_len2 + 1580 ivlen; 1581 } 1582 } 1583 1584 data_mp = ipsec_in_mp->b_cont; 1585 esph = (esph_t *)(data_mp->b_rptr + espstart); 1586 1587 if (assoc->ipsa_auth_alg != IPSA_AALG_NONE) { 1588 /* authentication passed if we reach this point */ 1589 ESP_BUMP_STAT(good_auth); 1590 data_mp->b_wptr -= assoc->ipsa_mac_len; 1591 1592 /* 1593 * Check replay window here! 1594 * For right now, assume keysock will set the replay window 1595 * size to zero for SAs that have an unspecified sender. 1596 * This may change... 1597 */ 1598 1599 if (!sadb_replay_check(assoc, esph->esph_replay)) { 1600 /* 1601 * Log the event. As of now we print out an event. 1602 * Do not print the replay failure number, or else 1603 * syslog cannot collate the error messages. Printing 1604 * the replay number that failed opens a denial-of- 1605 * service attack. 1606 */ 1607 ipsec_assocfailure(info.mi_idnum, 0, 0, 1608 SL_ERROR | SL_WARN, 1609 "Replay failed for ESP spi 0x%x, dst %s.\n", 1610 assoc->ipsa_spi, assoc->ipsa_dstaddr, 1611 assoc->ipsa_addrfam); 1612 ESP_BUMP_STAT(replay_failures); 1613 counter = &ipdrops_esp_replay; 1614 goto drop_and_bail; 1615 } 1616 } 1617 1618 if (!esp_age_bytes(assoc, processed_len, B_TRUE)) { 1619 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 1620 ipsec_assocfailure(info.mi_idnum, 0, 0, 1621 SL_ERROR | SL_WARN, 1622 "ESP association 0x%x, dst %s had bytes expire.\n", 1623 assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam); 1624 ESP_BUMP_STAT(bytes_expired); 1625 counter = &ipdrops_esp_bytes_expire; 1626 goto drop_and_bail; 1627 } 1628 1629 /* 1630 * Remove ESP header and padding from packet. I hope the compiler 1631 * spews "branch, predict taken" code for this. 1632 */ 1633 1634 if (esp_strip_header(data_mp, ii->ipsec_in_v4, ivlen, &counter)) { 1635 if (is_natt) 1636 return (esp_fix_natt_checksums(data_mp, assoc)); 1637 return (IPSEC_STATUS_SUCCESS); 1638 } 1639 1640 esp1dbg(("esp_in_done: esp_strip_header() failed\n")); 1641 drop_and_bail: 1642 IP_ESP_BUMP_STAT(in_discards); 1643 /* 1644 * TODO: Extract inbound interface from the IPSEC_IN message's 1645 * ii->ipsec_in_rill_index. 1646 */ 1647 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, counter, &esp_dropper); 1648 return (IPSEC_STATUS_FAILED); 1649 } 1650 1651 /* 1652 * Called upon failing the inbound ICV check. The message passed as 1653 * argument is freed. 1654 */ 1655 static void 1656 esp_log_bad_auth(mblk_t *ipsec_in) 1657 { 1658 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in->b_rptr; 1659 ipsa_t *assoc = ii->ipsec_in_esp_sa; 1660 1661 /* 1662 * Log the event. Don't print to the console, block 1663 * potential denial-of-service attack. 1664 */ 1665 ESP_BUMP_STAT(bad_auth); 1666 1667 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 1668 "ESP Authentication failed for spi 0x%x, dst %s.\n", 1669 assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam); 1670 1671 IP_ESP_BUMP_STAT(in_discards); 1672 /* 1673 * TODO: Extract inbound interface from the IPSEC_IN 1674 * message's ii->ipsec_in_rill_index. 1675 */ 1676 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_esp_bad_auth, 1677 &esp_dropper); 1678 } 1679 1680 1681 /* 1682 * Invoked for outbound packets after ESP processing. If the packet 1683 * also requires AH, performs the AH SA selection and AH processing. 1684 * Returns B_TRUE if the AH processing was not needed or if it was 1685 * performed successfully. Returns B_FALSE and consumes the passed mblk 1686 * if AH processing was required but could not be performed. 1687 */ 1688 static boolean_t 1689 esp_do_outbound_ah(mblk_t *ipsec_mp) 1690 { 1691 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 1692 ipsec_status_t ipsec_rc; 1693 ipsec_action_t *ap; 1694 1695 ap = io->ipsec_out_act; 1696 if (ap == NULL) { 1697 ipsec_policy_t *pp = io->ipsec_out_policy; 1698 ap = pp->ipsp_act; 1699 } 1700 1701 if (!ap->ipa_want_ah) 1702 return (B_TRUE); 1703 1704 ASSERT(io->ipsec_out_ah_done == B_FALSE); 1705 1706 if (io->ipsec_out_ah_sa == NULL) { 1707 if (!ipsec_outbound_sa(ipsec_mp, IPPROTO_AH)) { 1708 sadb_acquire(ipsec_mp, io, B_TRUE, B_FALSE); 1709 return (B_FALSE); 1710 } 1711 } 1712 ASSERT(io->ipsec_out_ah_sa != NULL); 1713 1714 io->ipsec_out_ah_done = B_TRUE; 1715 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 1716 return (ipsec_rc == IPSEC_STATUS_SUCCESS); 1717 } 1718 1719 1720 /* 1721 * Kernel crypto framework callback invoked after completion of async 1722 * crypto requests. 1723 */ 1724 static void 1725 esp_kcf_callback(void *arg, int status) 1726 { 1727 mblk_t *ipsec_mp = (mblk_t *)arg; 1728 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 1729 boolean_t is_inbound = (ii->ipsec_in_type == IPSEC_IN); 1730 1731 ASSERT(ipsec_mp->b_cont != NULL); 1732 1733 if (status == CRYPTO_SUCCESS) { 1734 if (is_inbound) { 1735 if (esp_in_done(ipsec_mp) != IPSEC_STATUS_SUCCESS) 1736 return; 1737 1738 /* finish IPsec processing */ 1739 ip_fanout_proto_again(ipsec_mp, NULL, NULL, NULL); 1740 } else { 1741 /* 1742 * If a ICV was computed, it was stored by the 1743 * crypto framework at the end of the packet. 1744 */ 1745 ipha_t *ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1746 1747 /* do AH processing if needed */ 1748 if (!esp_do_outbound_ah(ipsec_mp)) 1749 return; 1750 1751 /* finish IPsec processing */ 1752 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 1753 ip_wput_ipsec_out(NULL, ipsec_mp, ipha, NULL, 1754 NULL); 1755 } else { 1756 ip6_t *ip6h = (ip6_t *)ipha; 1757 ip_wput_ipsec_out_v6(NULL, ipsec_mp, ip6h, 1758 NULL, NULL); 1759 } 1760 } 1761 1762 } else if (status == CRYPTO_INVALID_MAC) { 1763 esp_log_bad_auth(ipsec_mp); 1764 1765 } else { 1766 esp1dbg(("esp_kcf_callback: crypto failed with 0x%x\n", 1767 status)); 1768 ESP_BUMP_STAT(crypto_failures); 1769 if (is_inbound) 1770 IP_ESP_BUMP_STAT(in_discards); 1771 else 1772 ESP_BUMP_STAT(out_discards); 1773 ip_drop_packet(ipsec_mp, is_inbound, NULL, NULL, 1774 &ipdrops_esp_crypto_failed, &esp_dropper); 1775 } 1776 } 1777 1778 /* 1779 * Invoked on crypto framework failure during inbound and outbound processing. 1780 */ 1781 static void 1782 esp_crypto_failed(mblk_t *mp, boolean_t is_inbound, int kef_rc) 1783 { 1784 esp1dbg(("crypto failed for %s ESP with 0x%x\n", 1785 is_inbound ? "inbound" : "outbound", kef_rc)); 1786 ip_drop_packet(mp, is_inbound, NULL, NULL, &ipdrops_esp_crypto_failed, 1787 &esp_dropper); 1788 ESP_BUMP_STAT(crypto_failures); 1789 if (is_inbound) 1790 IP_ESP_BUMP_STAT(in_discards); 1791 else 1792 ESP_BUMP_STAT(out_discards); 1793 } 1794 1795 #define ESP_INIT_CALLREQ(_cr) { \ 1796 (_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_RESTRICTED; \ 1797 (_cr)->cr_callback_arg = ipsec_mp; \ 1798 (_cr)->cr_callback_func = esp_kcf_callback; \ 1799 } 1800 1801 #define ESP_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) { \ 1802 (mac)->cd_format = CRYPTO_DATA_RAW; \ 1803 (mac)->cd_offset = 0; \ 1804 (mac)->cd_length = icvlen; \ 1805 (mac)->cd_raw.iov_base = (char *)icvbuf; \ 1806 (mac)->cd_raw.iov_len = icvlen; \ 1807 } 1808 1809 #define ESP_INIT_CRYPTO_DATA(data, mp, off, len) { \ 1810 if (MBLKL(mp) >= (len) + (off)) { \ 1811 (data)->cd_format = CRYPTO_DATA_RAW; \ 1812 (data)->cd_raw.iov_base = (char *)(mp)->b_rptr; \ 1813 (data)->cd_raw.iov_len = MBLKL(mp); \ 1814 (data)->cd_offset = off; \ 1815 } else { \ 1816 (data)->cd_format = CRYPTO_DATA_MBLK; \ 1817 (data)->cd_mp = mp; \ 1818 (data)->cd_offset = off; \ 1819 } \ 1820 (data)->cd_length = len; \ 1821 } 1822 1823 #define ESP_INIT_CRYPTO_DUAL_DATA(data, mp, off1, len1, off2, len2) { \ 1824 (data)->dd_format = CRYPTO_DATA_MBLK; \ 1825 (data)->dd_mp = mp; \ 1826 (data)->dd_len1 = len1; \ 1827 (data)->dd_offset1 = off1; \ 1828 (data)->dd_len2 = len2; \ 1829 (data)->dd_offset2 = off2; \ 1830 } 1831 1832 static ipsec_status_t 1833 esp_submit_req_inbound(mblk_t *ipsec_mp, ipsa_t *assoc, uint_t esph_offset) 1834 { 1835 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 1836 boolean_t do_auth; 1837 uint_t auth_offset, msg_len, auth_len; 1838 crypto_call_req_t call_req; 1839 mblk_t *esp_mp; 1840 int kef_rc = CRYPTO_FAILED; 1841 uint_t icv_len = assoc->ipsa_mac_len; 1842 crypto_ctx_template_t auth_ctx_tmpl; 1843 boolean_t do_encr; 1844 uint_t encr_offset, encr_len; 1845 uint_t iv_len = assoc->ipsa_iv_len; 1846 crypto_ctx_template_t encr_ctx_tmpl; 1847 1848 ASSERT(ii->ipsec_in_type == IPSEC_IN); 1849 1850 do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE; 1851 do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL; 1852 1853 /* 1854 * An inbound packet is of the form: 1855 * IPSEC_IN -> [IP,options,ESP,IV,data,ICV,pad] 1856 */ 1857 esp_mp = ipsec_mp->b_cont; 1858 msg_len = MBLKL(esp_mp); 1859 1860 ESP_INIT_CALLREQ(&call_req); 1861 1862 if (do_auth) { 1863 /* force asynchronous processing? */ 1864 if (ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == 1865 IPSEC_ALGS_EXEC_ASYNC) 1866 call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; 1867 1868 /* authentication context template */ 1869 IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH, 1870 auth_ctx_tmpl); 1871 1872 /* ICV to be verified */ 1873 ESP_INIT_CRYPTO_MAC(&ii->ipsec_in_crypto_mac, 1874 icv_len, esp_mp->b_wptr - icv_len); 1875 1876 /* authentication starts at the ESP header */ 1877 auth_offset = esph_offset; 1878 auth_len = msg_len - auth_offset - icv_len; 1879 if (!do_encr) { 1880 /* authentication only */ 1881 /* initialize input data argument */ 1882 ESP_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data, 1883 esp_mp, auth_offset, auth_len); 1884 1885 /* call the crypto framework */ 1886 kef_rc = crypto_mac_verify(&assoc->ipsa_amech, 1887 &ii->ipsec_in_crypto_data, 1888 &assoc->ipsa_kcfauthkey, auth_ctx_tmpl, 1889 &ii->ipsec_in_crypto_mac, &call_req); 1890 } 1891 } 1892 1893 if (do_encr) { 1894 /* force asynchronous processing? */ 1895 if (ipsec_algs_exec_mode[IPSEC_ALG_ENCR] == 1896 IPSEC_ALGS_EXEC_ASYNC) 1897 call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; 1898 1899 /* encryption template */ 1900 IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR, 1901 encr_ctx_tmpl); 1902 1903 /* skip IV, since it is passed separately */ 1904 encr_offset = esph_offset + sizeof (esph_t) + iv_len; 1905 encr_len = msg_len - encr_offset; 1906 1907 if (!do_auth) { 1908 /* decryption only */ 1909 /* initialize input data argument */ 1910 ESP_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data, 1911 esp_mp, encr_offset, encr_len); 1912 1913 /* specify IV */ 1914 ii->ipsec_in_crypto_data.cd_miscdata = 1915 (char *)esp_mp->b_rptr + sizeof (esph_t) + 1916 esph_offset; 1917 1918 /* call the crypto framework */ 1919 kef_rc = crypto_decrypt(&assoc->ipsa_emech, 1920 &ii->ipsec_in_crypto_data, 1921 &assoc->ipsa_kcfencrkey, encr_ctx_tmpl, 1922 NULL, &call_req); 1923 } 1924 } 1925 1926 if (do_auth && do_encr) { 1927 /* dual operation */ 1928 /* initialize input data argument */ 1929 ESP_INIT_CRYPTO_DUAL_DATA(&ii->ipsec_in_crypto_dual_data, 1930 esp_mp, auth_offset, auth_len, 1931 encr_offset, encr_len - icv_len); 1932 1933 /* specify IV */ 1934 ii->ipsec_in_crypto_dual_data.dd_miscdata = 1935 (char *)esp_mp->b_rptr + sizeof (esph_t) + esph_offset; 1936 1937 /* call the framework */ 1938 kef_rc = crypto_mac_verify_decrypt(&assoc->ipsa_amech, 1939 &assoc->ipsa_emech, &ii->ipsec_in_crypto_dual_data, 1940 &assoc->ipsa_kcfauthkey, &assoc->ipsa_kcfencrkey, 1941 auth_ctx_tmpl, encr_ctx_tmpl, &ii->ipsec_in_crypto_mac, 1942 NULL, &call_req); 1943 } 1944 1945 switch (kef_rc) { 1946 case CRYPTO_SUCCESS: 1947 ESP_BUMP_STAT(crypto_sync); 1948 return (esp_in_done(ipsec_mp)); 1949 case CRYPTO_QUEUED: 1950 /* esp_kcf_callback() will be invoked on completion */ 1951 ESP_BUMP_STAT(crypto_async); 1952 return (IPSEC_STATUS_PENDING); 1953 case CRYPTO_INVALID_MAC: 1954 ESP_BUMP_STAT(crypto_sync); 1955 esp_log_bad_auth(ipsec_mp); 1956 return (IPSEC_STATUS_FAILED); 1957 } 1958 1959 esp_crypto_failed(ipsec_mp, B_TRUE, kef_rc); 1960 return (IPSEC_STATUS_FAILED); 1961 } 1962 1963 static ipsec_status_t 1964 esp_submit_req_outbound(mblk_t *ipsec_mp, ipsa_t *assoc, uchar_t *icv_buf, 1965 uint_t payload_len) 1966 { 1967 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 1968 uint_t auth_len; 1969 crypto_call_req_t call_req; 1970 mblk_t *esp_mp; 1971 int kef_rc = CRYPTO_FAILED; 1972 uint_t icv_len = assoc->ipsa_mac_len; 1973 crypto_ctx_template_t auth_ctx_tmpl; 1974 boolean_t do_auth; 1975 boolean_t do_encr; 1976 uint_t iv_len = assoc->ipsa_iv_len; 1977 crypto_ctx_template_t encr_ctx_tmpl; 1978 boolean_t is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0); 1979 size_t esph_offset = (is_natt ? UDPH_SIZE : 0); 1980 1981 esp3dbg(("esp_submit_req_outbound:%s", is_natt ? "natt" : "not natt")); 1982 1983 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1984 1985 do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL; 1986 do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE; 1987 1988 /* 1989 * Outbound IPsec packets are of the form: 1990 * IPSEC_OUT -> [IP,options] -> [ESP,IV] -> [data] -> [pad,ICV] 1991 * unless it's NATT, then it's 1992 * IPSEC_OUT -> [IP,options] -> [udp][ESP,IV] -> [data] -> [pad,ICV] 1993 * Get a pointer to the mblk containing the ESP header. 1994 */ 1995 ASSERT(ipsec_mp->b_cont != NULL && ipsec_mp->b_cont->b_cont != NULL); 1996 esp_mp = ipsec_mp->b_cont->b_cont; 1997 1998 ESP_INIT_CALLREQ(&call_req); 1999 2000 if (do_auth) { 2001 /* force asynchronous processing? */ 2002 if (ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == 2003 IPSEC_ALGS_EXEC_ASYNC) 2004 call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; 2005 2006 /* authentication context template */ 2007 IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH, 2008 auth_ctx_tmpl); 2009 2010 /* where to store the computed mac */ 2011 ESP_INIT_CRYPTO_MAC(&io->ipsec_out_crypto_mac, 2012 icv_len, icv_buf); 2013 2014 /* authentication starts at the ESP header */ 2015 auth_len = payload_len + iv_len + sizeof (esph_t); 2016 if (!do_encr) { 2017 /* authentication only */ 2018 /* initialize input data argument */ 2019 ESP_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data, 2020 esp_mp, esph_offset, auth_len); 2021 2022 /* call the crypto framework */ 2023 kef_rc = crypto_mac(&assoc->ipsa_amech, 2024 &io->ipsec_out_crypto_data, 2025 &assoc->ipsa_kcfauthkey, auth_ctx_tmpl, 2026 &io->ipsec_out_crypto_mac, &call_req); 2027 } 2028 } 2029 2030 if (do_encr) { 2031 /* force asynchronous processing? */ 2032 if (ipsec_algs_exec_mode[IPSEC_ALG_ENCR] == 2033 IPSEC_ALGS_EXEC_ASYNC) 2034 call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; 2035 2036 /* encryption context template */ 2037 IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR, 2038 encr_ctx_tmpl); 2039 2040 if (!do_auth) { 2041 /* encryption only, skip mblk that contains ESP hdr */ 2042 /* initialize input data argument */ 2043 ESP_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data, 2044 esp_mp->b_cont, 0, payload_len); 2045 2046 /* specify IV */ 2047 io->ipsec_out_crypto_data.cd_miscdata = 2048 (char *)esp_mp->b_rptr + sizeof (esph_t) + 2049 esph_offset; 2050 2051 /* call the crypto framework */ 2052 kef_rc = crypto_encrypt(&assoc->ipsa_emech, 2053 &io->ipsec_out_crypto_data, 2054 &assoc->ipsa_kcfencrkey, encr_ctx_tmpl, 2055 NULL, &call_req); 2056 } 2057 } 2058 2059 if (do_auth && do_encr) { 2060 /* 2061 * Encryption and authentication: 2062 * Pass the pointer to the mblk chain starting at the ESP 2063 * header to the framework. Skip the ESP header mblk 2064 * for encryption, which is reflected by an encryption 2065 * offset equal to the length of that mblk. Start 2066 * the authentication at the ESP header, i.e. use an 2067 * authentication offset of zero. 2068 */ 2069 ESP_INIT_CRYPTO_DUAL_DATA(&io->ipsec_out_crypto_dual_data, 2070 esp_mp, MBLKL(esp_mp), payload_len, esph_offset, auth_len); 2071 2072 /* specify IV */ 2073 io->ipsec_out_crypto_dual_data.dd_miscdata = 2074 (char *)esp_mp->b_rptr + sizeof (esph_t) + esph_offset; 2075 2076 /* call the framework */ 2077 kef_rc = crypto_encrypt_mac(&assoc->ipsa_emech, 2078 &assoc->ipsa_amech, NULL, 2079 &assoc->ipsa_kcfencrkey, &assoc->ipsa_kcfauthkey, 2080 encr_ctx_tmpl, auth_ctx_tmpl, 2081 &io->ipsec_out_crypto_dual_data, 2082 &io->ipsec_out_crypto_mac, &call_req); 2083 } 2084 2085 switch (kef_rc) { 2086 case CRYPTO_SUCCESS: 2087 ESP_BUMP_STAT(crypto_sync); 2088 return (IPSEC_STATUS_SUCCESS); 2089 case CRYPTO_QUEUED: 2090 /* esp_kcf_callback() will be invoked on completion */ 2091 ESP_BUMP_STAT(crypto_async); 2092 return (IPSEC_STATUS_PENDING); 2093 } 2094 2095 esp_crypto_failed(ipsec_mp, B_TRUE, kef_rc); 2096 return (IPSEC_STATUS_FAILED); 2097 } 2098 2099 /* 2100 * Handle outbound IPsec processing for IPv4 and IPv6 2101 * On success returns B_TRUE, on failure returns B_FALSE and frees the 2102 * mblk chain ipsec_in_mp. 2103 */ 2104 static ipsec_status_t 2105 esp_outbound(mblk_t *mp) 2106 { 2107 mblk_t *ipsec_out_mp, *data_mp, *espmp, *tailmp; 2108 ipsec_out_t *io; 2109 ipha_t *ipha; 2110 ip6_t *ip6h; 2111 esph_t *esph; 2112 uint_t af; 2113 uint8_t *nhp; 2114 uintptr_t divpoint, datalen, adj, padlen, i, alloclen; 2115 uintptr_t esplen = sizeof (esph_t); 2116 uint8_t protocol; 2117 ipsa_t *assoc; 2118 uint_t iv_len = 0, mac_len = 0; 2119 uchar_t *icv_buf; 2120 udpha_t *udpha; 2121 boolean_t is_natt = B_FALSE; 2122 2123 ESP_BUMP_STAT(out_requests); 2124 2125 ipsec_out_mp = mp; 2126 data_mp = ipsec_out_mp->b_cont; 2127 2128 /* 2129 * <sigh> We have to copy the message here, because TCP (for example) 2130 * keeps a dupb() of the message lying around for retransmission. 2131 * Since ESP changes the whole of the datagram, we have to create our 2132 * own copy lest we clobber TCP's data. Since we have to copy anyway, 2133 * we might as well make use of msgpullup() and get the mblk into one 2134 * contiguous piece! 2135 */ 2136 ipsec_out_mp->b_cont = msgpullup(data_mp, -1); 2137 if (ipsec_out_mp->b_cont == NULL) { 2138 esp0dbg(("esp_outbound: msgpullup() failed, " 2139 "dropping packet.\n")); 2140 ipsec_out_mp->b_cont = data_mp; 2141 /* 2142 * TODO: Find the outbound IRE for this packet and 2143 * pass it to ip_drop_packet(). 2144 */ 2145 ip_drop_packet(ipsec_out_mp, B_FALSE, NULL, NULL, 2146 &ipdrops_esp_nomem, &esp_dropper); 2147 return (IPSEC_STATUS_FAILED); 2148 } else { 2149 freemsg(data_mp); 2150 data_mp = ipsec_out_mp->b_cont; 2151 } 2152 2153 io = (ipsec_out_t *)ipsec_out_mp->b_rptr; 2154 2155 /* 2156 * Reality check.... 2157 */ 2158 2159 ipha = (ipha_t *)data_mp->b_rptr; /* So we can call esp_acquire(). */ 2160 2161 if (io->ipsec_out_v4) { 2162 af = AF_INET; 2163 divpoint = IPH_HDR_LENGTH(ipha); 2164 datalen = ntohs(ipha->ipha_length) - divpoint; 2165 nhp = (uint8_t *)&ipha->ipha_protocol; 2166 } else { 2167 ip6_pkt_t ipp; 2168 2169 af = AF_INET6; 2170 ip6h = (ip6_t *)ipha; 2171 bzero(&ipp, sizeof (ipp)); 2172 divpoint = ip_find_hdr_v6(data_mp, ip6h, &ipp, NULL); 2173 if (ipp.ipp_dstopts != NULL && 2174 ipp.ipp_dstopts->ip6d_nxt != IPPROTO_ROUTING) { 2175 /* 2176 * Destination options are tricky. If we get in here, 2177 * then we have a terminal header following the 2178 * destination options. We need to adjust backwards 2179 * so we insert ESP BEFORE the destination options 2180 * bag. (So that the dstopts get encrypted!) 2181 * 2182 * Since this is for outbound packets only, we know 2183 * that non-terminal destination options only precede 2184 * routing headers. 2185 */ 2186 divpoint -= ipp.ipp_dstoptslen; 2187 } 2188 datalen = ntohs(ip6h->ip6_plen) + sizeof (ip6_t) - divpoint; 2189 2190 if (ipp.ipp_rthdr != NULL) { 2191 nhp = &ipp.ipp_rthdr->ip6r_nxt; 2192 } else if (ipp.ipp_hopopts != NULL) { 2193 nhp = &ipp.ipp_hopopts->ip6h_nxt; 2194 } else { 2195 ASSERT(divpoint == sizeof (ip6_t)); 2196 /* It's probably IP + ESP. */ 2197 nhp = &ip6h->ip6_nxt; 2198 } 2199 } 2200 assoc = io->ipsec_out_esp_sa; 2201 ASSERT(assoc != NULL); 2202 2203 if (assoc->ipsa_usetime == 0) 2204 esp_set_usetime(assoc, B_FALSE); 2205 2206 if (assoc->ipsa_auth_alg != SADB_AALG_NONE) 2207 mac_len = assoc->ipsa_mac_len; 2208 2209 if (assoc->ipsa_flags & IPSA_F_NATT) { 2210 /* wedge in fake UDP */ 2211 is_natt = B_TRUE; 2212 esplen += UDPH_SIZE; 2213 } 2214 2215 if (assoc->ipsa_encr_alg != SADB_EALG_NULL) 2216 iv_len = assoc->ipsa_iv_len; 2217 2218 /* 2219 * Set up ESP header and encryption padding for ENCR PI request. 2220 */ 2221 2222 /* 2223 * Determine the padding length. Pad to 4-bytes. 2224 * 2225 * Include the two additional bytes (hence the - 2) for the padding 2226 * length and the next header. Take this into account when 2227 * calculating the actual length of the padding. 2228 */ 2229 2230 if (assoc->ipsa_encr_alg != SADB_EALG_NULL) { 2231 padlen = ((unsigned)(iv_len - datalen - 2)) % iv_len; 2232 } else { 2233 padlen = ((unsigned)(sizeof (uint32_t) - datalen - 2)) % 2234 sizeof (uint32_t); 2235 } 2236 2237 /* Allocate ESP header and IV. */ 2238 esplen += iv_len; 2239 2240 /* 2241 * Update association byte-count lifetimes. Don't forget to take 2242 * into account the padding length and next-header (hence the + 2). 2243 * 2244 * Use the amount of data fed into the "encryption algorithm". This 2245 * is the IV, the data length, the padding length, and the final two 2246 * bytes (padlen, and next-header). 2247 * 2248 */ 2249 2250 if (!esp_age_bytes(assoc, datalen + padlen + iv_len + 2, B_FALSE)) { 2251 /* 2252 * TODO: Find the outbound IRE for this packet and 2253 * pass it to ip_drop_packet(). 2254 */ 2255 ip_drop_packet(mp, B_FALSE, NULL, NULL, 2256 &ipdrops_esp_bytes_expire, &esp_dropper); 2257 return (IPSEC_STATUS_FAILED); 2258 } 2259 2260 espmp = allocb(esplen, BPRI_HI); 2261 if (espmp == NULL) { 2262 ESP_BUMP_STAT(out_discards); 2263 esp1dbg(("esp_outbound: can't allocate espmp.\n")); 2264 /* 2265 * TODO: Find the outbound IRE for this packet and 2266 * pass it to ip_drop_packet(). 2267 */ 2268 ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_esp_nomem, 2269 &esp_dropper); 2270 return (IPSEC_STATUS_FAILED); 2271 } 2272 espmp->b_wptr += esplen; 2273 esph = (esph_t *)espmp->b_rptr; 2274 2275 if (is_natt) { 2276 esp3dbg(("esp_outbound: NATT")); 2277 2278 udpha = (udpha_t *)espmp->b_rptr; 2279 udpha->uha_src_port = htons(IPPORT_IKE_NATT); 2280 if (assoc->ipsa_remote_port != 0) 2281 udpha->uha_dst_port = assoc->ipsa_remote_port; 2282 else 2283 udpha->uha_dst_port = htons(IPPORT_IKE_NATT); 2284 /* 2285 * Set the checksum to 0, so that the ip_wput_ipsec_out() 2286 * can do the right thing. 2287 */ 2288 udpha->uha_checksum = 0; 2289 esph = (esph_t *)(udpha + 1); 2290 } 2291 2292 esph->esph_spi = assoc->ipsa_spi; 2293 2294 esph->esph_replay = htonl(atomic_add_32_nv(&assoc->ipsa_replay, 1)); 2295 if (esph->esph_replay == 0 && assoc->ipsa_replay_wsize != 0) { 2296 /* 2297 * XXX We have replay counter wrapping. 2298 * We probably want to nuke this SA (and its peer). 2299 */ 2300 ipsec_assocfailure(info.mi_idnum, 0, 0, 2301 SL_ERROR | SL_CONSOLE | SL_WARN, 2302 "Outbound ESP SA (0x%x, %s) has wrapped sequence.\n", 2303 esph->esph_spi, assoc->ipsa_dstaddr, af); 2304 2305 ESP_BUMP_STAT(out_discards); 2306 sadb_replay_delete(assoc); 2307 /* 2308 * TODO: Find the outbound IRE for this packet and 2309 * pass it to ip_drop_packet(). 2310 */ 2311 ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_esp_replay, 2312 &esp_dropper); 2313 return (IPSEC_STATUS_FAILED); 2314 } 2315 2316 /* 2317 * Set the IV to a random quantity. We do not require the 2318 * highest quality random bits, but for best security with CBC 2319 * mode ciphers, the value must be unlikely to repeat and also 2320 * must not be known in advance to an adversary capable of 2321 * influencing the plaintext. 2322 */ 2323 (void) random_get_pseudo_bytes((uint8_t *)(esph + 1), iv_len); 2324 2325 /* Fix the IP header. */ 2326 alloclen = padlen + 2 + mac_len; 2327 adj = alloclen + (espmp->b_wptr - espmp->b_rptr); 2328 2329 protocol = *nhp; 2330 2331 if (io->ipsec_out_v4) { 2332 ipha->ipha_length = htons(ntohs(ipha->ipha_length) + adj); 2333 if (is_natt) { 2334 *nhp = IPPROTO_UDP; 2335 udpha->uha_length = htons(ntohs(ipha->ipha_length) - 2336 IPH_HDR_LENGTH(ipha)); 2337 } else { 2338 *nhp = IPPROTO_ESP; 2339 } 2340 ipha->ipha_hdr_checksum = 0; 2341 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); 2342 } else { 2343 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) + adj); 2344 *nhp = IPPROTO_ESP; 2345 } 2346 2347 /* I've got the two ESP mblks, now insert them. */ 2348 2349 esp2dbg(("data_mp before outbound ESP adjustment:\n")); 2350 esp2dbg((dump_msg(data_mp))); 2351 2352 if (!esp_insert_esp(data_mp, espmp, divpoint)) { 2353 ESP_BUMP_STAT(out_discards); 2354 /* NOTE: esp_insert_esp() only fails if there's no memory. */ 2355 /* 2356 * TODO: Find the outbound IRE for this packet and 2357 * pass it to ip_drop_packet(). 2358 */ 2359 ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_esp_nomem, 2360 &esp_dropper); 2361 freeb(espmp); 2362 return (IPSEC_STATUS_FAILED); 2363 } 2364 2365 /* Append padding (and leave room for ICV). */ 2366 for (tailmp = data_mp; tailmp->b_cont != NULL; tailmp = tailmp->b_cont) 2367 ; 2368 if (tailmp->b_wptr + alloclen > tailmp->b_datap->db_lim) { 2369 tailmp->b_cont = allocb(alloclen, BPRI_HI); 2370 if (tailmp->b_cont == NULL) { 2371 ESP_BUMP_STAT(out_discards); 2372 esp0dbg(("esp_outbound: Can't allocate tailmp.\n")); 2373 /* 2374 * TODO: Find the outbound IRE for this packet and 2375 * pass it to ip_drop_packet(). 2376 */ 2377 ip_drop_packet(mp, B_FALSE, NULL, NULL, 2378 &ipdrops_esp_nomem, &esp_dropper); 2379 return (IPSEC_STATUS_FAILED); 2380 } 2381 tailmp = tailmp->b_cont; 2382 } 2383 2384 /* 2385 * If there's padding, N bytes of padding must be of the form 0x1, 2386 * 0x2, 0x3... 0xN. 2387 */ 2388 for (i = 0; i < padlen; ) { 2389 i++; 2390 *tailmp->b_wptr++ = i; 2391 } 2392 *tailmp->b_wptr++ = i; 2393 *tailmp->b_wptr++ = protocol; 2394 2395 esp2dbg(("data_Mp before encryption:\n")); 2396 esp2dbg((dump_msg(data_mp))); 2397 2398 /* 2399 * The packet is eligible for hardware acceleration if the 2400 * following conditions are satisfied: 2401 * 2402 * 1. the packet will not be fragmented 2403 * 2. the provider supports the algorithms specified by SA 2404 * 3. there is no pending control message being exchanged 2405 * 4. snoop is not attached 2406 * 5. the destination address is not a multicast address 2407 * 2408 * All five of these conditions are checked by IP prior to 2409 * sending the packet to ESP. 2410 * 2411 * But We, and We Alone, can, nay MUST check if the packet 2412 * is over NATT, and then disqualify it from hardware 2413 * acceleration. 2414 */ 2415 2416 if (io->ipsec_out_is_capab_ill && !(assoc->ipsa_flags & IPSA_F_NATT)) { 2417 return (esp_outbound_accelerated(ipsec_out_mp, mac_len)); 2418 } 2419 ESP_BUMP_STAT(noaccel); 2420 2421 /* 2422 * Okay. I've set up the pre-encryption ESP. Let's do it! 2423 */ 2424 2425 if (mac_len > 0) { 2426 ASSERT(tailmp->b_wptr + mac_len <= tailmp->b_datap->db_lim); 2427 icv_buf = tailmp->b_wptr; 2428 tailmp->b_wptr += mac_len; 2429 } else { 2430 icv_buf = NULL; 2431 } 2432 2433 return (esp_submit_req_outbound(ipsec_out_mp, assoc, icv_buf, 2434 datalen + padlen + 2)); 2435 } 2436 2437 /* 2438 * IP calls this to validate the ICMP errors that 2439 * we got from the network. 2440 */ 2441 ipsec_status_t 2442 ipsecesp_icmp_error(mblk_t *ipsec_mp) 2443 { 2444 /* 2445 * Unless we get an entire packet back, this function is useless. 2446 * Why? 2447 * 2448 * 1.) Partial packets are useless, because the "next header" 2449 * is at the end of the decrypted ESP packet. Without the 2450 * whole packet, this is useless. 2451 * 2452 * 2.) If we every use a stateful cipher, such as a stream or a 2453 * one-time pad, we can't do anything. 2454 * 2455 * Since the chances of us getting an entire packet back are very 2456 * very small, we discard here. 2457 */ 2458 IP_ESP_BUMP_STAT(in_discards); 2459 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_esp_icmp, 2460 &esp_dropper); 2461 return (IPSEC_STATUS_FAILED); 2462 } 2463 2464 /* 2465 * ESP module read put routine. 2466 */ 2467 /* ARGSUSED */ 2468 static void 2469 ipsecesp_rput(queue_t *q, mblk_t *mp) 2470 { 2471 keysock_in_t *ksi; 2472 int *addrtype; 2473 ire_t *ire; 2474 mblk_t *ire_mp, *last_mp; 2475 2476 switch (mp->b_datap->db_type) { 2477 case M_CTL: 2478 /* 2479 * IPsec request of some variety from IP. IPSEC_{IN,OUT} 2480 * are the common cases, but even ICMP error messages from IP 2481 * may rise up here. 2482 * 2483 * Ummmm, actually, this can also be the reflected KEYSOCK_IN 2484 * message, with an IRE_DB_TYPE hung off at the end. 2485 */ 2486 switch (((ipsec_info_t *)(mp->b_rptr))->ipsec_info_type) { 2487 case KEYSOCK_IN: 2488 last_mp = mp; 2489 while (last_mp->b_cont != NULL && 2490 last_mp->b_cont->b_datap->db_type != IRE_DB_TYPE) 2491 last_mp = last_mp->b_cont; 2492 2493 if (last_mp->b_cont == NULL) { 2494 freemsg(mp); 2495 break; /* Out of switch. */ 2496 } 2497 2498 ire_mp = last_mp->b_cont; 2499 last_mp->b_cont = NULL; 2500 2501 ksi = (keysock_in_t *)mp->b_rptr; 2502 2503 if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) 2504 addrtype = &ksi->ks_in_srctype; 2505 else if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) 2506 addrtype = &ksi->ks_in_dsttype; 2507 else if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) 2508 addrtype = &ksi->ks_in_proxytype; 2509 2510 ire = (ire_t *)ire_mp->b_rptr; 2511 2512 *addrtype = sadb_addrset(ire); 2513 2514 freemsg(ire_mp); 2515 if (esp_pfkey_q != NULL) { 2516 /* 2517 * Decrement counter to make up for 2518 * auto-increment in ipsecesp_wput(). 2519 * I'm running all MT-hot through here, so 2520 * don't worry about perimeters and lateral 2521 * puts. 2522 */ 2523 ESP_DEBUMP_STAT(keysock_in); 2524 ipsecesp_wput(WR(esp_pfkey_q), mp); 2525 } else { 2526 freemsg(mp); 2527 } 2528 break; 2529 default: 2530 freemsg(mp); 2531 break; 2532 } 2533 break; 2534 case M_PROTO: 2535 case M_PCPROTO: 2536 /* TPI message of some sort. */ 2537 switch (*((t_scalar_t *)mp->b_rptr)) { 2538 case T_BIND_ACK: 2539 esp3dbg(("Thank you IP from ESP for T_BIND_ACK\n")); 2540 break; 2541 case T_ERROR_ACK: 2542 cmn_err(CE_WARN, 2543 "ipsecesp: ESP received T_ERROR_ACK from IP."); 2544 /* 2545 * Make esp_sadb.s_ip_q NULL, and in the 2546 * future, perhaps try again. 2547 */ 2548 esp_sadb.s_ip_q = NULL; 2549 break; 2550 case T_OK_ACK: 2551 /* Probably from a (rarely sent) T_UNBIND_REQ. */ 2552 break; 2553 default: 2554 esp0dbg(("Unknown M_{,PC}PROTO message.\n")); 2555 } 2556 freemsg(mp); 2557 break; 2558 default: 2559 /* For now, passthru message. */ 2560 esp2dbg(("ESP got unknown mblk type %d.\n", 2561 mp->b_datap->db_type)); 2562 putnext(q, mp); 2563 } 2564 } 2565 2566 /* 2567 * Construct an SADB_REGISTER message with the current algorithms. 2568 */ 2569 static boolean_t 2570 esp_register_out(uint32_t sequence, uint32_t pid, uint_t serial) 2571 { 2572 mblk_t *pfkey_msg_mp, *keysock_out_mp; 2573 sadb_msg_t *samsg; 2574 sadb_supported_t *sasupp_auth = NULL; 2575 sadb_supported_t *sasupp_encr = NULL; 2576 sadb_alg_t *saalg; 2577 uint_t allocsize = sizeof (*samsg); 2578 uint_t i, numalgs_snap; 2579 int current_aalgs; 2580 ipsec_alginfo_t **authalgs; 2581 uint_t num_aalgs; 2582 int current_ealgs; 2583 ipsec_alginfo_t **encralgs; 2584 uint_t num_ealgs; 2585 2586 /* Allocate the KEYSOCK_OUT. */ 2587 keysock_out_mp = sadb_keysock_out(serial); 2588 if (keysock_out_mp == NULL) { 2589 esp0dbg(("esp_register_out: couldn't allocate mblk.\n")); 2590 return (B_FALSE); 2591 } 2592 2593 /* 2594 * Allocate the PF_KEY message that follows KEYSOCK_OUT. 2595 */ 2596 2597 mutex_enter(&alg_lock); 2598 2599 /* 2600 * Fill SADB_REGISTER message's algorithm descriptors. Hold 2601 * down the lock while filling it. 2602 * 2603 * Return only valid algorithms, so the number of algorithms 2604 * to send up may be less than the number of algorithm entries 2605 * in the table. 2606 */ 2607 authalgs = ipsec_alglists[IPSEC_ALG_AUTH]; 2608 for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++) 2609 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) 2610 num_aalgs++; 2611 2612 if (num_aalgs != 0) { 2613 allocsize += (num_aalgs * sizeof (*saalg)); 2614 allocsize += sizeof (*sasupp_auth); 2615 } 2616 encralgs = ipsec_alglists[IPSEC_ALG_ENCR]; 2617 for (num_ealgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++) 2618 if (encralgs[i] != NULL && ALG_VALID(encralgs[i])) 2619 num_ealgs++; 2620 2621 if (num_ealgs != 0) { 2622 allocsize += (num_ealgs * sizeof (*saalg)); 2623 allocsize += sizeof (*sasupp_encr); 2624 } 2625 keysock_out_mp->b_cont = allocb(allocsize, BPRI_HI); 2626 if (keysock_out_mp->b_cont == NULL) { 2627 mutex_exit(&alg_lock); 2628 freemsg(keysock_out_mp); 2629 return (B_FALSE); 2630 } 2631 2632 pfkey_msg_mp = keysock_out_mp->b_cont; 2633 pfkey_msg_mp->b_wptr += allocsize; 2634 if (num_aalgs != 0) { 2635 sasupp_auth = (sadb_supported_t *) 2636 (pfkey_msg_mp->b_rptr + sizeof (*samsg)); 2637 saalg = (sadb_alg_t *)(sasupp_auth + 1); 2638 2639 ASSERT(((ulong_t)saalg & 0x7) == 0); 2640 2641 numalgs_snap = 0; 2642 for (i = 0; 2643 ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs)); i++) { 2644 if (authalgs[i] == NULL || !ALG_VALID(authalgs[i])) 2645 continue; 2646 2647 saalg->sadb_alg_id = authalgs[i]->alg_id; 2648 saalg->sadb_alg_ivlen = 0; 2649 saalg->sadb_alg_minbits = authalgs[i]->alg_ef_minbits; 2650 saalg->sadb_alg_maxbits = authalgs[i]->alg_ef_maxbits; 2651 saalg->sadb_x_alg_defincr = authalgs[i]->alg_ef_default; 2652 saalg->sadb_x_alg_increment = 2653 authalgs[i]->alg_increment; 2654 numalgs_snap++; 2655 saalg++; 2656 } 2657 ASSERT(numalgs_snap == num_aalgs); 2658 #ifdef DEBUG 2659 /* 2660 * Reality check to make sure I snagged all of the 2661 * algorithms. 2662 */ 2663 for (; i < IPSEC_MAX_ALGS; i++) { 2664 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) { 2665 cmn_err(CE_PANIC, "esp_register_out()! " 2666 "Missed aalg #%d.\n", i); 2667 } 2668 } 2669 #endif /* DEBUG */ 2670 } else { 2671 saalg = (sadb_alg_t *)(pfkey_msg_mp->b_rptr + sizeof (*samsg)); 2672 } 2673 2674 if (num_ealgs != 0) { 2675 sasupp_encr = (sadb_supported_t *)saalg; 2676 saalg = (sadb_alg_t *)(sasupp_encr + 1); 2677 2678 numalgs_snap = 0; 2679 for (i = 0; 2680 ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_ealgs)); i++) { 2681 if (encralgs[i] == NULL || !ALG_VALID(encralgs[i])) 2682 continue; 2683 saalg->sadb_alg_id = encralgs[i]->alg_id; 2684 saalg->sadb_alg_ivlen = encralgs[i]->alg_datalen; 2685 saalg->sadb_alg_minbits = encralgs[i]->alg_ef_minbits; 2686 saalg->sadb_alg_maxbits = encralgs[i]->alg_ef_maxbits; 2687 saalg->sadb_x_alg_defincr = encralgs[i]->alg_ef_default; 2688 saalg->sadb_x_alg_increment = 2689 encralgs[i]->alg_increment; 2690 numalgs_snap++; 2691 saalg++; 2692 } 2693 ASSERT(numalgs_snap == num_ealgs); 2694 #ifdef DEBUG 2695 /* 2696 * Reality check to make sure I snagged all of the 2697 * algorithms. 2698 */ 2699 for (; i < IPSEC_MAX_ALGS; i++) { 2700 if (encralgs[i] != NULL && ALG_VALID(encralgs[i])) { 2701 cmn_err(CE_PANIC, "esp_register_out()! " 2702 "Missed ealg #%d.\n", i); 2703 } 2704 } 2705 #endif /* DEBUG */ 2706 } 2707 2708 current_aalgs = num_aalgs; 2709 current_ealgs = num_ealgs; 2710 2711 mutex_exit(&alg_lock); 2712 2713 /* Now fill the rest of the SADB_REGISTER message. */ 2714 2715 samsg = (sadb_msg_t *)pfkey_msg_mp->b_rptr; 2716 samsg->sadb_msg_version = PF_KEY_V2; 2717 samsg->sadb_msg_type = SADB_REGISTER; 2718 samsg->sadb_msg_errno = 0; 2719 samsg->sadb_msg_satype = SADB_SATYPE_ESP; 2720 samsg->sadb_msg_len = SADB_8TO64(allocsize); 2721 samsg->sadb_msg_reserved = 0; 2722 /* 2723 * Assume caller has sufficient sequence/pid number info. If it's one 2724 * from me over a new alg., I could give two hoots about sequence. 2725 */ 2726 samsg->sadb_msg_seq = sequence; 2727 samsg->sadb_msg_pid = pid; 2728 2729 if (sasupp_auth != NULL) { 2730 sasupp_auth->sadb_supported_len = 2731 SADB_8TO64(sizeof (*sasupp_auth) + 2732 sizeof (*saalg) * current_aalgs); 2733 sasupp_auth->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 2734 sasupp_auth->sadb_supported_reserved = 0; 2735 } 2736 2737 if (sasupp_encr != NULL) { 2738 sasupp_encr->sadb_supported_len = 2739 SADB_8TO64(sizeof (*sasupp_encr) + 2740 sizeof (*saalg) * current_ealgs); 2741 sasupp_encr->sadb_supported_exttype = 2742 SADB_EXT_SUPPORTED_ENCRYPT; 2743 sasupp_encr->sadb_supported_reserved = 0; 2744 } 2745 2746 if (esp_pfkey_q != NULL) 2747 putnext(esp_pfkey_q, keysock_out_mp); 2748 else { 2749 freemsg(keysock_out_mp); 2750 return (B_FALSE); 2751 } 2752 2753 return (B_TRUE); 2754 } 2755 2756 /* 2757 * Invoked when the algorithm table changes. Causes SADB_REGISTER 2758 * messages continaining the current list of algorithms to be 2759 * sent up to the ESP listeners. 2760 */ 2761 void 2762 ipsecesp_algs_changed(void) 2763 { 2764 /* 2765 * Time to send a PF_KEY SADB_REGISTER message to ESP listeners 2766 * everywhere. (The function itself checks for NULL esp_pfkey_q.) 2767 */ 2768 (void) esp_register_out(0, 0, 0); 2769 } 2770 2771 /* 2772 * taskq_dispatch handler. 2773 */ 2774 static void 2775 inbound_task(void *arg) 2776 { 2777 esph_t *esph; 2778 mblk_t *mp = (mblk_t *)arg; 2779 ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; 2780 int ipsec_rc; 2781 2782 esp2dbg(("in ESP inbound_task")); 2783 2784 esph = ipsec_inbound_esp_sa(mp); 2785 if (esph == NULL) 2786 return; 2787 ASSERT(ii->ipsec_in_esp_sa != NULL); 2788 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func(mp, esph); 2789 if (ipsec_rc != IPSEC_STATUS_SUCCESS) 2790 return; 2791 ip_fanout_proto_again(mp, NULL, NULL, NULL); 2792 } 2793 2794 /* 2795 * Now that weak-key passed, actually ADD the security association, and 2796 * send back a reply ADD message. 2797 */ 2798 static int 2799 esp_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi) 2800 { 2801 isaf_t *primary, *secondary, *inbound, *outbound; 2802 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 2803 sadb_address_t *dstext = 2804 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 2805 struct sockaddr_in *dst; 2806 struct sockaddr_in6 *dst6; 2807 boolean_t is_ipv4, clone = B_FALSE, is_inbound = B_FALSE; 2808 uint32_t *dstaddr; 2809 ipsa_t *larval = NULL; 2810 ipsacq_t *acqrec; 2811 iacqf_t *acq_bucket; 2812 mblk_t *acq_msgs = NULL; 2813 int rc; 2814 sadb_t *sp; 2815 int outhash; 2816 mblk_t *lpkt; 2817 2818 /* 2819 * Locate the appropriate table(s). 2820 */ 2821 2822 dst = (struct sockaddr_in *)(dstext + 1); 2823 dst6 = (struct sockaddr_in6 *)dst; 2824 is_ipv4 = (dst->sin_family == AF_INET); 2825 if (is_ipv4) { 2826 sp = &esp_sadb.s_v4; 2827 dstaddr = (uint32_t *)(&dst->sin_addr); 2828 outhash = OUTBOUND_HASH_V4(sp, *(ipaddr_t *)dstaddr); 2829 } else { 2830 sp = &esp_sadb.s_v6; 2831 dstaddr = (uint32_t *)(&dst6->sin6_addr); 2832 outhash = OUTBOUND_HASH_V6(sp, *(in6_addr_t *)dstaddr); 2833 } 2834 2835 inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi); 2836 outbound = &sp->sdb_of[outhash]; 2837 2838 switch (ksi->ks_in_dsttype) { 2839 case KS_IN_ADDR_MBCAST: 2840 clone = B_TRUE; /* All mcast SAs can be bidirectional */ 2841 /* FALLTHRU */ 2842 case KS_IN_ADDR_ME: 2843 primary = inbound; 2844 secondary = outbound; 2845 /* 2846 * If the source address is either one of mine, or unspecified 2847 * (which is best summed up by saying "not 'not mine'"), 2848 * then the association is potentially bi-directional, 2849 * in that it can be used for inbound traffic and outbound 2850 * traffic. The best example of such an SA is a multicast 2851 * SA (which allows me to receive the outbound traffic). 2852 */ 2853 if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME) 2854 clone = B_TRUE; 2855 is_inbound = B_TRUE; 2856 break; 2857 case KS_IN_ADDR_NOTME: 2858 primary = outbound; 2859 secondary = inbound; 2860 /* 2861 * If the source address literally not mine (either 2862 * unspecified or not mine), then this SA may have an 2863 * address that WILL be mine after some configuration. 2864 * We pay the price for this by making it a bi-directional 2865 * SA. 2866 */ 2867 if (ksi->ks_in_srctype != KS_IN_ADDR_ME) 2868 clone = B_TRUE; 2869 break; 2870 default: 2871 samsg->sadb_x_msg_diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 2872 return (EINVAL); 2873 } 2874 2875 /* 2876 * Find a ACQUIRE list entry if possible. If we've added an SA that 2877 * suits the needs of an ACQUIRE list entry, we can eliminate the 2878 * ACQUIRE list entry and transmit the enqueued packets. Use the 2879 * high-bit of the sequence number to queue it. Key off destination 2880 * addr, and change acqrec's state. 2881 */ 2882 2883 if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) { 2884 acq_bucket = &sp->sdb_acq[outhash]; 2885 mutex_enter(&acq_bucket->iacqf_lock); 2886 for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL; 2887 acqrec = acqrec->ipsacq_next) { 2888 mutex_enter(&acqrec->ipsacq_lock); 2889 /* 2890 * Q: I only check sequence. Should I check dst? 2891 * A: Yes, check dest because those are the packets 2892 * that are queued up. 2893 */ 2894 if (acqrec->ipsacq_seq == samsg->sadb_msg_seq && 2895 IPSA_ARE_ADDR_EQUAL(dstaddr, 2896 acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam)) 2897 break; 2898 mutex_exit(&acqrec->ipsacq_lock); 2899 } 2900 if (acqrec != NULL) { 2901 /* 2902 * AHA! I found an ACQUIRE record for this SA. 2903 * Grab the msg list, and free the acquire record. 2904 * I already am holding the lock for this record, 2905 * so all I have to do is free it. 2906 */ 2907 acq_msgs = acqrec->ipsacq_mp; 2908 acqrec->ipsacq_mp = NULL; 2909 mutex_exit(&acqrec->ipsacq_lock); 2910 sadb_destroy_acquire(acqrec); 2911 } 2912 mutex_exit(&acq_bucket->iacqf_lock); 2913 } 2914 2915 /* 2916 * Find PF_KEY message, and see if I'm an update. If so, find entry 2917 * in larval list (if there). 2918 */ 2919 2920 if (samsg->sadb_msg_type == SADB_UPDATE) { 2921 mutex_enter(&inbound->isaf_lock); 2922 larval = ipsec_getassocbyspi(inbound, assoc->sadb_sa_spi, 2923 ALL_ZEROES_PTR, dstaddr, dst->sin_family); 2924 mutex_exit(&inbound->isaf_lock); 2925 2926 if (larval == NULL) { 2927 esp0dbg(("Larval update, but larval disappeared.\n")); 2928 return (ESRCH); 2929 } /* Else sadb_common_add unlinks it for me! */ 2930 } 2931 2932 lpkt = NULL; 2933 if (larval != NULL) 2934 lpkt = sadb_clear_lpkt(larval); 2935 2936 rc = sadb_common_add(esp_sadb.s_ip_q, esp_pfkey_q, mp, samsg, ksi, 2937 primary, secondary, larval, clone, is_inbound); 2938 2939 if (rc == 0 && lpkt != NULL) { 2940 rc = !taskq_dispatch(esp_taskq, inbound_task, 2941 (void *) lpkt, TQ_NOSLEEP); 2942 } 2943 2944 if (rc != 0) { 2945 ip_drop_packet(lpkt, B_TRUE, NULL, NULL, 2946 &ipdrops_sadb_inlarval_timeout, &esp_dropper); 2947 } 2948 2949 /* 2950 * How much more stack will I create with all of these 2951 * esp_outbound() calls? 2952 */ 2953 2954 while (acq_msgs != NULL) { 2955 mblk_t *mp = acq_msgs; 2956 2957 acq_msgs = acq_msgs->b_next; 2958 mp->b_next = NULL; 2959 if (rc == 0) { 2960 if (ipsec_outbound_sa(mp, IPPROTO_ESP)) { 2961 ((ipsec_out_t *)(mp->b_rptr))-> 2962 ipsec_out_esp_done = B_TRUE; 2963 if (esp_outbound(mp) == IPSEC_STATUS_SUCCESS) { 2964 ipha_t *ipha = (ipha_t *) 2965 mp->b_cont->b_rptr; 2966 2967 /* do AH processing if needed */ 2968 if (!esp_do_outbound_ah(mp)) 2969 continue; 2970 2971 /* finish IPsec processing */ 2972 if (is_ipv4) { 2973 ip_wput_ipsec_out(NULL, mp, 2974 ipha, NULL, NULL); 2975 } else { 2976 ip6_t *ip6h = (ip6_t *)ipha; 2977 ip_wput_ipsec_out_v6(NULL, 2978 mp, ip6h, NULL, NULL); 2979 } 2980 } 2981 continue; 2982 } 2983 } 2984 ESP_BUMP_STAT(out_discards); 2985 ip_drop_packet(mp, B_FALSE, NULL, NULL, 2986 &ipdrops_sadb_acquire_timeout, &esp_dropper); 2987 } 2988 2989 return (rc); 2990 } 2991 2992 /* 2993 * Add new ESP security association. This may become a generic AH/ESP 2994 * routine eventually. 2995 */ 2996 static int 2997 esp_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 2998 { 2999 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 3000 sadb_address_t *srcext = 3001 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 3002 sadb_address_t *dstext = 3003 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 3004 sadb_address_t *nttext_loc = 3005 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC]; 3006 sadb_address_t *nttext_rem = 3007 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM]; 3008 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; 3009 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT]; 3010 struct sockaddr_in *src, *dst; 3011 struct sockaddr_in *natt_loc, *natt_rem; 3012 struct sockaddr_in6 *natt_loc6, *natt_rem6; 3013 3014 sadb_lifetime_t *soft = 3015 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; 3016 sadb_lifetime_t *hard = 3017 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; 3018 3019 /* I need certain extensions present for an ADD message. */ 3020 if (srcext == NULL) { 3021 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 3022 return (EINVAL); 3023 } 3024 if (dstext == NULL) { 3025 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 3026 return (EINVAL); 3027 } 3028 if (assoc == NULL) { 3029 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 3030 return (EINVAL); 3031 } 3032 if (ekey == NULL && assoc->sadb_sa_encrypt != SADB_EALG_NULL) { 3033 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_EKEY; 3034 return (EINVAL); 3035 } 3036 3037 src = (struct sockaddr_in *)(srcext + 1); 3038 dst = (struct sockaddr_in *)(dstext + 1); 3039 natt_loc = (struct sockaddr_in *)(nttext_loc + 1); 3040 natt_loc6 = (struct sockaddr_in6 *)(nttext_loc + 1); 3041 natt_rem = (struct sockaddr_in *)(nttext_rem + 1); 3042 natt_rem6 = (struct sockaddr_in6 *)(nttext_rem + 1); 3043 3044 /* Sundry ADD-specific reality checks. */ 3045 /* XXX STATS : Logging/stats here? */ 3046 if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) { 3047 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 3048 return (EINVAL); 3049 } 3050 if (assoc->sadb_sa_encrypt == SADB_EALG_NONE) { 3051 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG; 3052 return (EINVAL); 3053 } 3054 3055 if (assoc->sadb_sa_encrypt == SADB_EALG_NULL && 3056 assoc->sadb_sa_auth == SADB_AALG_NONE) { 3057 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG; 3058 return (EINVAL); 3059 } 3060 3061 if (assoc->sadb_sa_flags & ~(SADB_SAFLAGS_NOREPLAY | 3062 SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM)) { 3063 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS; 3064 return (EINVAL); 3065 } 3066 3067 if ((*diagnostic = sadb_hardsoftchk(hard, soft)) != 0) { 3068 return (EINVAL); 3069 } 3070 if (src->sin_family != dst->sin_family) { 3071 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 3072 return (EINVAL); 3073 } 3074 3075 3076 if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_LOC) { 3077 if (nttext_loc == NULL) { 3078 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_LOC; 3079 return (EINVAL); 3080 } 3081 3082 if (natt_loc->sin_family == AF_INET6 && 3083 !IN6_IS_ADDR_V4MAPPED(&natt_loc6->sin6_addr)) { 3084 *diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC; 3085 return (EINVAL); 3086 } 3087 } 3088 3089 if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_REM) { 3090 if (nttext_rem == NULL) { 3091 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_REM; 3092 return (EINVAL); 3093 } 3094 if (natt_rem->sin_family == AF_INET6 && 3095 !IN6_IS_ADDR_V4MAPPED(&natt_rem6->sin6_addr)) { 3096 *diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM; 3097 return (EINVAL); 3098 } 3099 } 3100 3101 3102 /* Stuff I don't support, for now. XXX Diagnostic? */ 3103 if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL || 3104 ksi->ks_in_extv[SADB_EXT_SENSITIVITY] != NULL) 3105 return (EOPNOTSUPP); 3106 3107 /* 3108 * XXX Policy : I'm not checking identities or sensitivity 3109 * labels at this time, but if I did, I'd do them here, before I sent 3110 * the weak key check up to the algorithm. 3111 */ 3112 3113 mutex_enter(&alg_lock); 3114 3115 /* 3116 * First locate the authentication algorithm. 3117 */ 3118 if (akey != NULL) { 3119 ipsec_alginfo_t *aalg; 3120 3121 aalg = ipsec_alglists[IPSEC_ALG_AUTH][assoc->sadb_sa_auth]; 3122 if (aalg == NULL || !ALG_VALID(aalg)) { 3123 mutex_exit(&alg_lock); 3124 esp1dbg(("Couldn't find auth alg #%d.\n", 3125 assoc->sadb_sa_auth)); 3126 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG; 3127 return (EINVAL); 3128 } 3129 ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID); 3130 3131 /* sanity check key sizes */ 3132 if (!ipsec_valid_key_size(akey->sadb_key_bits, aalg)) { 3133 mutex_exit(&alg_lock); 3134 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS; 3135 return (EINVAL); 3136 } 3137 3138 /* check key and fix parity if needed */ 3139 if (ipsec_check_key(aalg->alg_mech_type, akey, B_TRUE, 3140 diagnostic) != 0) { 3141 mutex_exit(&alg_lock); 3142 return (EINVAL); 3143 } 3144 } 3145 3146 /* 3147 * Then locate the encryption algorithm. 3148 */ 3149 if (ekey != NULL) { 3150 ipsec_alginfo_t *ealg; 3151 3152 ealg = ipsec_alglists[IPSEC_ALG_ENCR][assoc->sadb_sa_encrypt]; 3153 if (ealg == NULL || !ALG_VALID(ealg)) { 3154 mutex_exit(&alg_lock); 3155 esp1dbg(("Couldn't find encr alg #%d.\n", 3156 assoc->sadb_sa_encrypt)); 3157 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG; 3158 return (EINVAL); 3159 } 3160 ASSERT(ealg->alg_mech_type != CRYPTO_MECHANISM_INVALID); 3161 3162 /* sanity check key sizes */ 3163 if (!ipsec_valid_key_size(ekey->sadb_key_bits, ealg)) { 3164 mutex_exit(&alg_lock); 3165 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EKEYBITS; 3166 return (EINVAL); 3167 } 3168 3169 /* check key */ 3170 if (ipsec_check_key(ealg->alg_mech_type, ekey, B_FALSE, 3171 diagnostic) != 0) { 3172 mutex_exit(&alg_lock); 3173 return (EINVAL); 3174 } 3175 } 3176 mutex_exit(&alg_lock); 3177 3178 return (esp_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi)); 3179 } 3180 3181 /* 3182 * Update a security association. Updates come in two varieties. The first 3183 * is an update of lifetimes on a non-larval SA. The second is an update of 3184 * a larval SA, which ends up looking a lot more like an add. 3185 */ 3186 static int 3187 esp_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 3188 { 3189 sadb_address_t *dstext = 3190 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 3191 struct sockaddr_in *sin; 3192 3193 if (dstext == NULL) { 3194 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 3195 return (EINVAL); 3196 } 3197 3198 sin = (struct sockaddr_in *)(dstext + 1); 3199 return (sadb_update_sa(mp, ksi, 3200 (sin->sin_family == AF_INET6) ? &esp_sadb.s_v6 : &esp_sadb.s_v4, 3201 diagnostic, esp_pfkey_q, esp_add_sa)); 3202 } 3203 3204 /* 3205 * Delete a security association. This is REALLY likely to be code common to 3206 * both AH and ESP. Find the association, then unlink it. 3207 */ 3208 static int 3209 esp_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 3210 { 3211 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 3212 sadb_address_t *dstext = 3213 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 3214 sadb_address_t *srcext = 3215 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 3216 struct sockaddr_in *sin; 3217 3218 if (assoc == NULL) { 3219 if (dstext != NULL) { 3220 sin = (struct sockaddr_in *)(dstext + 1); 3221 } else if (srcext != NULL) { 3222 sin = (struct sockaddr_in *)(srcext + 1); 3223 } else { 3224 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 3225 return (EINVAL); 3226 } 3227 return sadb_purge_sa(mp, ksi, 3228 (sin->sin_family == AF_INET6) ? &esp_sadb.s_v6 : 3229 &esp_sadb.s_v4, 3230 diagnostic, esp_pfkey_q, esp_sadb.s_ip_q); 3231 } 3232 3233 return (sadb_del_sa(mp, ksi, &esp_sadb, diagnostic, esp_pfkey_q)); 3234 } 3235 3236 /* 3237 * Convert the entire contents of all of ESP's SA tables into PF_KEY SADB_DUMP 3238 * messages. 3239 */ 3240 static void 3241 esp_dump(mblk_t *mp, keysock_in_t *ksi) 3242 { 3243 int error; 3244 sadb_msg_t *samsg; 3245 3246 /* 3247 * Dump each fanout, bailing if error is non-zero. 3248 */ 3249 3250 error = sadb_dump(esp_pfkey_q, mp, ksi->ks_in_serial, &esp_sadb.s_v4); 3251 if (error != 0) 3252 goto bail; 3253 3254 error = sadb_dump(esp_pfkey_q, mp, ksi->ks_in_serial, &esp_sadb.s_v6); 3255 bail: 3256 ASSERT(mp->b_cont != NULL); 3257 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 3258 samsg->sadb_msg_errno = (uint8_t)error; 3259 sadb_pfkey_echo(esp_pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi, 3260 NULL); 3261 } 3262 3263 /* 3264 * ESP parsing of PF_KEY messages. Keysock did most of the really silly 3265 * error cases. What I receive is a fully-formed, syntactically legal 3266 * PF_KEY message. I then need to check semantics... 3267 * 3268 * This code may become common to AH and ESP. Stay tuned. 3269 * 3270 * I also make the assumption that db_ref's are cool. If this assumption 3271 * is wrong, this means that someone other than keysock or me has been 3272 * mucking with PF_KEY messages. 3273 */ 3274 static void 3275 esp_parse_pfkey(mblk_t *mp) 3276 { 3277 mblk_t *msg = mp->b_cont; 3278 sadb_msg_t *samsg; 3279 keysock_in_t *ksi; 3280 int error; 3281 int diagnostic = SADB_X_DIAGNOSTIC_NONE; 3282 3283 ASSERT(msg != NULL); 3284 samsg = (sadb_msg_t *)msg->b_rptr; 3285 ksi = (keysock_in_t *)mp->b_rptr; 3286 3287 /* 3288 * If applicable, convert unspecified AF_INET6 to unspecified 3289 * AF_INET. 3290 */ 3291 sadb_srcaddrfix(ksi); 3292 3293 switch (samsg->sadb_msg_type) { 3294 case SADB_ADD: 3295 error = esp_add_sa(mp, ksi, &diagnostic); 3296 if (error != 0) { 3297 sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, 3298 ksi->ks_in_serial); 3299 } 3300 /* else esp_add_sa() took care of things. */ 3301 break; 3302 case SADB_DELETE: 3303 error = esp_del_sa(mp, ksi, &diagnostic); 3304 if (error != 0) { 3305 sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, 3306 ksi->ks_in_serial); 3307 } 3308 /* Else esp_del_sa() took care of things. */ 3309 break; 3310 case SADB_GET: 3311 error = sadb_get_sa(mp, ksi, &esp_sadb, &diagnostic, 3312 esp_pfkey_q); 3313 if (error != 0) { 3314 sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, 3315 ksi->ks_in_serial); 3316 } 3317 /* Else sadb_get_sa() took care of things. */ 3318 break; 3319 case SADB_FLUSH: 3320 sadbp_flush(&esp_sadb); 3321 sadb_pfkey_echo(esp_pfkey_q, mp, samsg, ksi, NULL); 3322 break; 3323 case SADB_REGISTER: 3324 /* 3325 * Hmmm, let's do it! Check for extensions (there should 3326 * be none), extract the fields, call esp_register_out(), 3327 * then either free or report an error. 3328 * 3329 * Keysock takes care of the PF_KEY bookkeeping for this. 3330 */ 3331 if (esp_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid, 3332 ksi->ks_in_serial)) { 3333 freemsg(mp); 3334 } else { 3335 /* 3336 * Only way this path hits is if there is a memory 3337 * failure. It will not return B_FALSE because of 3338 * lack of esp_pfkey_q if I am in wput(). 3339 */ 3340 sadb_pfkey_error(esp_pfkey_q, mp, ENOMEM, diagnostic, 3341 ksi->ks_in_serial); 3342 } 3343 break; 3344 case SADB_UPDATE: 3345 /* 3346 * Find a larval, if not there, find a full one and get 3347 * strict. 3348 */ 3349 error = esp_update_sa(mp, ksi, &diagnostic); 3350 if (error != 0) { 3351 sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, 3352 ksi->ks_in_serial); 3353 } 3354 /* else esp_update_sa() took care of things. */ 3355 break; 3356 case SADB_GETSPI: 3357 /* 3358 * Reserve a new larval entry. 3359 */ 3360 esp_getspi(mp, ksi); 3361 break; 3362 case SADB_ACQUIRE: 3363 /* 3364 * Find larval and/or ACQUIRE record and kill it (them), I'm 3365 * most likely an error. Inbound ACQUIRE messages should only 3366 * have the base header. 3367 */ 3368 sadb_in_acquire(samsg, &esp_sadb, esp_pfkey_q); 3369 freemsg(mp); 3370 break; 3371 case SADB_DUMP: 3372 /* 3373 * Dump all entries. 3374 */ 3375 esp_dump(mp, ksi); 3376 /* esp_dump will take care of the return message, etc. */ 3377 break; 3378 case SADB_EXPIRE: 3379 /* Should never reach me. */ 3380 sadb_pfkey_error(esp_pfkey_q, mp, EOPNOTSUPP, diagnostic, 3381 ksi->ks_in_serial); 3382 break; 3383 default: 3384 sadb_pfkey_error(esp_pfkey_q, mp, EINVAL, 3385 SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial); 3386 break; 3387 } 3388 } 3389 3390 /* 3391 * Handle case where PF_KEY says it can't find a keysock for one of my 3392 * ACQUIRE messages. 3393 */ 3394 static void 3395 esp_keysock_no_socket(mblk_t *mp) 3396 { 3397 sadb_msg_t *samsg; 3398 keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr; 3399 3400 if (mp->b_cont == NULL) { 3401 freemsg(mp); 3402 return; 3403 } 3404 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 3405 3406 /* 3407 * If keysock can't find any registered, delete the acquire record 3408 * immediately, and handle errors. 3409 */ 3410 if (samsg->sadb_msg_type == SADB_ACQUIRE) { 3411 samsg->sadb_msg_errno = kse->ks_err_errno; 3412 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg)); 3413 /* 3414 * Use the write-side of the esp_pfkey_q, in case there is 3415 * no esp_sadb.s_ip_q. 3416 */ 3417 sadb_in_acquire(samsg, &esp_sadb, WR(esp_pfkey_q)); 3418 } 3419 3420 freemsg(mp); 3421 } 3422 3423 /* 3424 * First-cut reality check for an inbound PF_KEY message. 3425 */ 3426 static boolean_t 3427 esp_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi) 3428 { 3429 int diagnostic; 3430 3431 if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) { 3432 diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT; 3433 goto badmsg; 3434 } 3435 if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL || 3436 ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) { 3437 diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT; 3438 goto badmsg; 3439 } 3440 if (ksi->ks_in_srctype == KS_IN_ADDR_MBCAST) { 3441 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC; 3442 goto badmsg; 3443 } 3444 if (ksi->ks_in_dsttype == KS_IN_ADDR_UNSPEC) { 3445 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 3446 goto badmsg; 3447 } 3448 3449 return (B_FALSE); /* False ==> no failures */ 3450 3451 badmsg: 3452 sadb_pfkey_error(esp_pfkey_q, mp, EINVAL, diagnostic, 3453 ksi->ks_in_serial); 3454 return (B_TRUE); /* True ==> failures */ 3455 } 3456 3457 /* 3458 * ESP module write put routine. 3459 */ 3460 static void 3461 ipsecesp_wput(queue_t *q, mblk_t *mp) 3462 { 3463 ipsec_info_t *ii; 3464 keysock_in_t *ksi; 3465 int rc; 3466 struct iocblk *iocp; 3467 3468 esp3dbg(("In esp_wput().\n")); 3469 3470 /* NOTE: Each case must take care of freeing or passing mp. */ 3471 switch (mp->b_datap->db_type) { 3472 case M_CTL: 3473 if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) { 3474 /* Not big enough message. */ 3475 freemsg(mp); 3476 break; 3477 } 3478 ii = (ipsec_info_t *)mp->b_rptr; 3479 3480 switch (ii->ipsec_info_type) { 3481 case KEYSOCK_OUT_ERR: 3482 esp1dbg(("Got KEYSOCK_OUT_ERR message.\n")); 3483 esp_keysock_no_socket(mp); 3484 break; 3485 case KEYSOCK_IN: 3486 ESP_BUMP_STAT(keysock_in); 3487 esp3dbg(("Got KEYSOCK_IN message.\n")); 3488 ksi = (keysock_in_t *)ii; 3489 /* 3490 * Some common reality checks. 3491 */ 3492 3493 if (esp_pfkey_reality_failures(mp, ksi)) 3494 return; 3495 3496 /* 3497 * Use 'q' instead of esp_sadb.s_ip_q, since 3498 * it's the write side already, and it'll go 3499 * down to IP. Use esp_pfkey_q because we 3500 * wouldn't get here if that weren't set, and 3501 * the RD(q) has been done already. 3502 */ 3503 if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) { 3504 rc = sadb_addrcheck(q, esp_pfkey_q, mp, 3505 ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC], 3506 ksi->ks_in_serial); 3507 if (rc == KS_IN_ADDR_UNKNOWN) 3508 return; 3509 else 3510 ksi->ks_in_srctype = rc; 3511 } 3512 if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) { 3513 rc = sadb_addrcheck(q, esp_pfkey_q, mp, 3514 ksi->ks_in_extv[SADB_EXT_ADDRESS_DST], 3515 ksi->ks_in_serial); 3516 if (rc == KS_IN_ADDR_UNKNOWN) 3517 return; 3518 else 3519 ksi->ks_in_dsttype = rc; 3520 } 3521 /* 3522 * XXX Proxy may be a different address family. 3523 */ 3524 if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) { 3525 rc = sadb_addrcheck(q, esp_pfkey_q, mp, 3526 ksi->ks_in_extv[SADB_EXT_ADDRESS_PROXY], 3527 ksi->ks_in_serial); 3528 if (rc == KS_IN_ADDR_UNKNOWN) 3529 return; 3530 else 3531 ksi->ks_in_proxytype = rc; 3532 } 3533 esp_parse_pfkey(mp); 3534 break; 3535 case KEYSOCK_HELLO: 3536 sadb_keysock_hello(&esp_pfkey_q, q, mp, 3537 esp_ager, &esp_event, SADB_SATYPE_ESP); 3538 break; 3539 default: 3540 esp2dbg(("Got M_CTL from above of 0x%x.\n", 3541 ii->ipsec_info_type)); 3542 freemsg(mp); 3543 break; 3544 } 3545 break; 3546 case M_IOCTL: 3547 iocp = (struct iocblk *)mp->b_rptr; 3548 switch (iocp->ioc_cmd) { 3549 case ND_SET: 3550 case ND_GET: 3551 if (nd_getset(q, ipsecesp_g_nd, mp)) { 3552 qreply(q, mp); 3553 return; 3554 } else { 3555 iocp->ioc_error = ENOENT; 3556 } 3557 /* FALLTHRU */ 3558 default: 3559 /* We really don't support any other ioctls, do we? */ 3560 3561 /* Return EINVAL */ 3562 if (iocp->ioc_error != ENOENT) 3563 iocp->ioc_error = EINVAL; 3564 iocp->ioc_count = 0; 3565 mp->b_datap->db_type = M_IOCACK; 3566 qreply(q, mp); 3567 return; 3568 } 3569 default: 3570 esp3dbg(("Got default message, type %d, passing to IP.\n", 3571 mp->b_datap->db_type)); 3572 putnext(q, mp); 3573 } 3574 } 3575 3576 /* 3577 * Process an outbound ESP packet that can be accelerated by a IPsec 3578 * hardware acceleration capable Provider. 3579 * The caller already inserted and initialized the ESP header. 3580 * This function allocates a tagging M_CTL, and adds room at the end 3581 * of the packet to hold the ICV if authentication is needed. 3582 * 3583 * On success returns B_TRUE, on failure returns B_FALSE and frees the 3584 * mblk chain ipsec_out. 3585 */ 3586 static ipsec_status_t 3587 esp_outbound_accelerated(mblk_t *ipsec_out, uint_t icv_len) 3588 { 3589 ipsec_out_t *io; 3590 mblk_t *lastmp; 3591 3592 ESP_BUMP_STAT(out_accelerated); 3593 3594 io = (ipsec_out_t *)ipsec_out->b_rptr; 3595 3596 /* mark packet as being accelerated in IPSEC_OUT */ 3597 ASSERT(io->ipsec_out_accelerated == B_FALSE); 3598 io->ipsec_out_accelerated = B_TRUE; 3599 3600 /* 3601 * add room at the end of the packet for the ICV if needed 3602 */ 3603 if (icv_len > 0) { 3604 /* go to last mblk */ 3605 lastmp = ipsec_out; /* For following while loop. */ 3606 do { 3607 lastmp = lastmp->b_cont; 3608 } while (lastmp->b_cont != NULL); 3609 3610 /* if not enough available room, allocate new mblk */ 3611 if ((lastmp->b_wptr + icv_len) > lastmp->b_datap->db_lim) { 3612 lastmp->b_cont = allocb(icv_len, BPRI_HI); 3613 if (lastmp->b_cont == NULL) { 3614 ESP_BUMP_STAT(out_discards); 3615 ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, 3616 &ipdrops_esp_nomem, &esp_dropper); 3617 return (IPSEC_STATUS_FAILED); 3618 } 3619 lastmp = lastmp->b_cont; 3620 } 3621 lastmp->b_wptr += icv_len; 3622 } 3623 3624 return (IPSEC_STATUS_SUCCESS); 3625 } 3626 3627 /* 3628 * Process an inbound accelerated ESP packet. 3629 * On success returns B_TRUE, on failure returns B_FALSE and frees the 3630 * mblk chain ipsec_in. 3631 */ 3632 static ipsec_status_t 3633 esp_inbound_accelerated(mblk_t *ipsec_in, mblk_t *data_mp, boolean_t isv4, 3634 ipsa_t *assoc) 3635 { 3636 ipsec_in_t *ii; 3637 mblk_t *hada_mp; 3638 uint32_t icv_len = 0; 3639 da_ipsec_t *hada; 3640 ipha_t *ipha; 3641 ip6_t *ip6h; 3642 kstat_named_t *counter; 3643 3644 ESP_BUMP_STAT(in_accelerated); 3645 3646 ii = (ipsec_in_t *)ipsec_in->b_rptr; 3647 hada_mp = ii->ipsec_in_da; 3648 ASSERT(hada_mp != NULL); 3649 hada = (da_ipsec_t *)hada_mp->b_rptr; 3650 3651 /* 3652 * We only support one level of decapsulation in hardware, so 3653 * nuke the pointer. 3654 */ 3655 ii->ipsec_in_da = NULL; 3656 ii->ipsec_in_accelerated = B_FALSE; 3657 3658 if (assoc->ipsa_auth_alg != IPSA_AALG_NONE) { 3659 /* 3660 * ESP with authentication. We expect the Provider to have 3661 * computed the ICV and placed it in the hardware acceleration 3662 * data attributes. 3663 * 3664 * Extract ICV length from attributes M_CTL and sanity check 3665 * its value. We allow the mblk to be smaller than da_ipsec_t 3666 * for a small ICV, as long as the entire ICV fits within the 3667 * mblk. 3668 * 3669 * Also ensures that the ICV length computed by Provider 3670 * corresponds to the ICV length of the agorithm specified by 3671 * the SA. 3672 */ 3673 icv_len = hada->da_icv_len; 3674 if ((icv_len != assoc->ipsa_mac_len) || 3675 (icv_len > DA_ICV_MAX_LEN) || (MBLKL(hada_mp) < 3676 (sizeof (da_ipsec_t) - DA_ICV_MAX_LEN + icv_len))) { 3677 esp0dbg(("esp_inbound_accelerated: " 3678 "ICV len (%u) incorrect or mblk too small (%u)\n", 3679 icv_len, (uint32_t)(MBLKL(hada_mp)))); 3680 counter = &ipdrops_esp_bad_auth; 3681 goto esp_in_discard; 3682 } 3683 } 3684 3685 /* get pointers to IP header */ 3686 if (isv4) { 3687 ipha = (ipha_t *)data_mp->b_rptr; 3688 } else { 3689 ip6h = (ip6_t *)data_mp->b_rptr; 3690 } 3691 3692 /* 3693 * Compare ICV in ESP packet vs ICV computed by adapter. 3694 * We also remove the ICV from the end of the packet since 3695 * it will no longer be needed. 3696 * 3697 * Assume that esp_inbound() already ensured that the pkt 3698 * was in one mblk. 3699 */ 3700 ASSERT(data_mp->b_cont == NULL); 3701 data_mp->b_wptr -= icv_len; 3702 /* adjust IP header */ 3703 if (isv4) 3704 ipha->ipha_length = htons(ntohs(ipha->ipha_length) - icv_len); 3705 else 3706 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - icv_len); 3707 if (icv_len && bcmp(hada->da_icv, data_mp->b_wptr, icv_len)) { 3708 int af; 3709 void *addr; 3710 3711 if (isv4) { 3712 addr = &ipha->ipha_dst; 3713 af = AF_INET; 3714 } else { 3715 addr = &ip6h->ip6_dst; 3716 af = AF_INET6; 3717 } 3718 3719 /* 3720 * Log the event. Don't print to the console, block 3721 * potential denial-of-service attack. 3722 */ 3723 ESP_BUMP_STAT(bad_auth); 3724 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 3725 "ESP Authentication failed spi %x, dst_addr %s", 3726 assoc->ipsa_spi, addr, af); 3727 counter = &ipdrops_esp_bad_auth; 3728 goto esp_in_discard; 3729 } 3730 3731 esp3dbg(("esp_inbound_accelerated: ESP authentication succeeded, " 3732 "checking replay\n")); 3733 3734 ipsec_in->b_cont = data_mp; 3735 3736 /* 3737 * Remove ESP header and padding from packet. 3738 */ 3739 if (!esp_strip_header(data_mp, ii->ipsec_in_v4, assoc->ipsa_iv_len, 3740 &counter)) { 3741 esp1dbg(("esp_inbound_accelerated: " 3742 "esp_strip_header() failed\n")); 3743 goto esp_in_discard; 3744 } 3745 3746 freeb(hada_mp); 3747 3748 /* 3749 * Account for usage.. 3750 */ 3751 if (!esp_age_bytes(assoc, msgdsize(data_mp), B_TRUE)) { 3752 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 3753 ESP_BUMP_STAT(bytes_expired); 3754 IP_ESP_BUMP_STAT(in_discards); 3755 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 3756 "ESP association 0x%x, dst %s had bytes expire.\n", 3757 assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam); 3758 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, 3759 &ipdrops_esp_bytes_expire, &esp_dropper); 3760 return (IPSEC_STATUS_FAILED); 3761 } 3762 3763 /* done processing the packet */ 3764 return (IPSEC_STATUS_SUCCESS); 3765 3766 esp_in_discard: 3767 IP_ESP_BUMP_STAT(in_discards); 3768 freeb(hada_mp); 3769 3770 ipsec_in->b_cont = data_mp; /* For ip_drop_packet()'s sake... */ 3771 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &esp_dropper); 3772 3773 return (IPSEC_STATUS_FAILED); 3774 } 3775 3776 /* 3777 * Wrapper to allow IP to trigger an ESP association failure message 3778 * during inbound SA selection. 3779 */ 3780 void 3781 ipsecesp_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt, 3782 uint32_t spi, void *addr, int af) 3783 { 3784 if (ipsecesp_log_unknown_spi) { 3785 ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi, 3786 addr, af); 3787 } 3788 3789 ip_drop_packet(mp, B_TRUE, NULL, NULL, &ipdrops_esp_no_sa, 3790 &esp_dropper); 3791 } 3792 3793 /* 3794 * Initialize the ESP input and output processing functions. 3795 */ 3796 void 3797 ipsecesp_init_funcs(ipsa_t *sa) 3798 { 3799 if (sa->ipsa_output_func == NULL) 3800 sa->ipsa_output_func = esp_outbound; 3801 if (sa->ipsa_input_func == NULL) 3802 sa->ipsa_input_func = esp_inbound; 3803 } 3804