1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/stropts.h> 32 #include <sys/errno.h> 33 #include <sys/strlog.h> 34 #include <sys/tihdr.h> 35 #include <sys/socket.h> 36 #include <sys/ddi.h> 37 #include <sys/sunddi.h> 38 #include <sys/kmem.h> 39 #include <sys/cmn_err.h> 40 #include <sys/vtrace.h> 41 #include <sys/debug.h> 42 #include <sys/atomic.h> 43 #include <sys/strsun.h> 44 #include <sys/random.h> 45 #include <netinet/in.h> 46 #include <net/if.h> 47 #include <netinet/ip6.h> 48 #include <netinet/icmp6.h> 49 #include <net/pfkeyv2.h> 50 51 #include <inet/common.h> 52 #include <inet/mi.h> 53 #include <inet/ip.h> 54 #include <inet/ip6.h> 55 #include <inet/nd.h> 56 #include <inet/ipsec_info.h> 57 #include <inet/ipsec_impl.h> 58 #include <inet/sadb.h> 59 #include <inet/ipsecah.h> 60 #include <inet/ipsec_impl.h> 61 #include <inet/ipdrop.h> 62 #include <sys/taskq.h> 63 #include <sys/policy.h> 64 #include <sys/iphada.h> 65 #include <sys/strsun.h> 66 67 #include <sys/crypto/common.h> 68 #include <sys/crypto/api.h> 69 #include <sys/kstat.h> 70 71 /* Packet dropper for AH drops. */ 72 static ipdropper_t ah_dropper; 73 74 static kmutex_t ipsecah_param_lock; /* Protect ipsecah_param_arr[] below. */ 75 /* 76 * Table of ND variables supported by ipsecah. These are loaded into 77 * ipsecah_g_nd in ipsecah_init_nd. 78 * All of these are alterable, within the min/max values given, at run time. 79 */ 80 static ipsecahparam_t ipsecah_param_arr[] = { 81 /* min max value name */ 82 { 0, 3, 0, "ipsecah_debug"}, 83 { 125, 32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecah_age_interval"}, 84 { 1, 10, 1, "ipsecah_reap_delay"}, 85 { 1, SADB_MAX_REPLAY, 64, "ipsecah_replay_size"}, 86 { 1, 300, 15, "ipsecah_acquire_timeout"}, 87 { 1, 1800, 90, "ipsecah_larval_timeout"}, 88 /* Default lifetime values for ACQUIRE messages. */ 89 { 0, 0xffffffffU, 0, "ipsecah_default_soft_bytes"}, 90 { 0, 0xffffffffU, 0, "ipsecah_default_hard_bytes"}, 91 { 0, 0xffffffffU, 24000, "ipsecah_default_soft_addtime"}, 92 { 0, 0xffffffffU, 28800, "ipsecah_default_hard_addtime"}, 93 { 0, 0xffffffffU, 0, "ipsecah_default_soft_usetime"}, 94 { 0, 0xffffffffU, 0, "ipsecah_default_hard_usetime"}, 95 { 0, 1, 0, "ipsecah_log_unknown_spi"}, 96 }; 97 #define ipsecah_debug ipsecah_param_arr[0].ipsecah_param_value 98 #define ipsecah_age_interval ipsecah_param_arr[1].ipsecah_param_value 99 #define ipsecah_age_int_max ipsecah_param_arr[1].ipsecah_param_max 100 #define ipsecah_reap_delay ipsecah_param_arr[2].ipsecah_param_value 101 #define ipsecah_replay_size ipsecah_param_arr[3].ipsecah_param_value 102 #define ipsecah_acquire_timeout ipsecah_param_arr[4].ipsecah_param_value 103 #define ipsecah_larval_timeout ipsecah_param_arr[5].ipsecah_param_value 104 #define ipsecah_default_soft_bytes ipsecah_param_arr[6].ipsecah_param_value 105 #define ipsecah_default_hard_bytes ipsecah_param_arr[7].ipsecah_param_value 106 #define ipsecah_default_soft_addtime ipsecah_param_arr[8].ipsecah_param_value 107 #define ipsecah_default_hard_addtime ipsecah_param_arr[9].ipsecah_param_value 108 #define ipsecah_default_soft_usetime ipsecah_param_arr[10].ipsecah_param_value 109 #define ipsecah_default_hard_usetime ipsecah_param_arr[11].ipsecah_param_value 110 #define ipsecah_log_unknown_spi ipsecah_param_arr[12].ipsecah_param_value 111 112 #define ah0dbg(a) printf a 113 /* NOTE: != 0 instead of > 0 so lint doesn't complain. */ 114 #define ah1dbg(a) if (ipsecah_debug != 0) printf a 115 #define ah2dbg(a) if (ipsecah_debug > 1) printf a 116 #define ah3dbg(a) if (ipsecah_debug > 2) printf a 117 118 static IDP ipsecah_g_nd; 119 120 /* 121 * XXX This is broken. Padding should be determined dynamically 122 * depending on the ICV size and IP version number so that the 123 * total AH header size is a multiple of 32 bits or 64 bits 124 * for V4 and V6 respectively. For 96bit ICVs we have no problems. 125 * Anything different from that, we need to fix our code. 126 */ 127 #define IPV4_PADDING_ALIGN 0x04 /* Multiple of 32 bits */ 128 #define IPV6_PADDING_ALIGN 0x04 /* Multiple of 32 bits */ 129 130 /* 131 * Helper macro. Avoids a call to msgdsize if there is only one 132 * mblk in the chain. 133 */ 134 #define AH_MSGSIZE(mp) ((mp)->b_cont != NULL ? msgdsize(mp) : MBLKL(mp)) 135 136 static ipsec_status_t ah_auth_out_done(mblk_t *); 137 static ipsec_status_t ah_auth_in_done(mblk_t *); 138 static mblk_t *ah_process_ip_options_v4(mblk_t *, ipsa_t *, int *, uint_t, 139 boolean_t); 140 static mblk_t *ah_process_ip_options_v6(mblk_t *, ipsa_t *, int *, uint_t, 141 boolean_t); 142 static void ah_getspi(mblk_t *, keysock_in_t *); 143 static ipsec_status_t ah_inbound_accelerated(mblk_t *, boolean_t, ipsa_t *, 144 uint32_t); 145 static ipsec_status_t ah_outbound_accelerated_v4(mblk_t *, ipsa_t *); 146 static ipsec_status_t ah_outbound_accelerated_v6(mblk_t *, ipsa_t *); 147 static ipsec_status_t ah_outbound(mblk_t *); 148 149 static int ipsecah_open(queue_t *, dev_t *, int, int, cred_t *); 150 static int ipsecah_close(queue_t *); 151 static void ipsecah_rput(queue_t *, mblk_t *); 152 static void ipsecah_wput(queue_t *, mblk_t *); 153 static void ah_send_acquire(ipsacq_t *, mblk_t *); 154 static boolean_t ah_register_out(uint32_t, uint32_t, uint_t); 155 156 static struct module_info info = { 157 5136, "ipsecah", 0, INFPSZ, 65536, 1024 158 }; 159 160 static struct qinit rinit = { 161 (pfi_t)ipsecah_rput, NULL, ipsecah_open, ipsecah_close, NULL, &info, 162 NULL 163 }; 164 165 static struct qinit winit = { 166 (pfi_t)ipsecah_wput, NULL, ipsecah_open, ipsecah_close, NULL, &info, 167 NULL 168 }; 169 170 struct streamtab ipsecahinfo = { 171 &rinit, &winit, NULL, NULL 172 }; 173 174 /* 175 * Keysock instance of AH. "There can be only one." :) 176 * Use casptr() on this because I don't set it until KEYSOCK_HELLO comes down. 177 * Paired up with the ah_pfkey_q is the ah_event, which will age SAs. 178 */ 179 static queue_t *ah_pfkey_q; 180 static timeout_id_t ah_event; 181 static taskq_t *ah_taskq; 182 183 static mblk_t *ah_ip_unbind; 184 185 /* 186 * Stats. This may eventually become a full-blown SNMP MIB once that spec 187 * stabilizes. 188 */ 189 typedef struct 190 { 191 kstat_named_t ah_stat_num_aalgs; 192 kstat_named_t ah_stat_good_auth; 193 kstat_named_t ah_stat_bad_auth; 194 kstat_named_t ah_stat_replay_failures; 195 kstat_named_t ah_stat_replay_early_failures; 196 kstat_named_t ah_stat_keysock_in; 197 kstat_named_t ah_stat_out_requests; 198 kstat_named_t ah_stat_acquire_requests; 199 kstat_named_t ah_stat_bytes_expired; 200 kstat_named_t ah_stat_out_discards; 201 kstat_named_t ah_stat_in_accelerated; 202 kstat_named_t ah_stat_out_accelerated; 203 kstat_named_t ah_stat_noaccel; 204 kstat_named_t ah_stat_crypto_sync; 205 kstat_named_t ah_stat_crypto_async; 206 kstat_named_t ah_stat_crypto_failures; 207 } ah_kstats_t; 208 209 #define AH_BUMP_STAT(x) (ah_kstats->ah_stat_ ## x).value.ui64++ 210 #define AH_DEBUMP_STAT(x) (ah_kstats->ah_stat_ ## x).value.ui64-- 211 212 uint32_t ah_hash_size = IPSEC_DEFAULT_HASH_SIZE; 213 static kstat_t *ah_ksp; 214 static ah_kstats_t *ah_kstats; 215 216 static int ah_kstat_update(kstat_t *, int); 217 218 static boolean_t 219 ah_kstat_init(void) 220 { 221 222 ah_ksp = kstat_create("ipsecah", 0, "ah_stat", "net", 223 KSTAT_TYPE_NAMED, sizeof (*ah_kstats) / sizeof (kstat_named_t), 224 KSTAT_FLAG_PERSISTENT); 225 226 if (ah_ksp == NULL) 227 return (B_FALSE); 228 229 ah_kstats = ah_ksp->ks_data; 230 231 ah_ksp->ks_update = ah_kstat_update; 232 233 #define K64 KSTAT_DATA_UINT64 234 #define KI(x) kstat_named_init(&(ah_kstats->ah_stat_##x), #x, K64) 235 236 KI(num_aalgs); 237 KI(good_auth); 238 KI(bad_auth); 239 KI(replay_failures); 240 KI(replay_early_failures); 241 KI(keysock_in); 242 KI(out_requests); 243 KI(acquire_requests); 244 KI(bytes_expired); 245 KI(out_discards); 246 KI(in_accelerated); 247 KI(out_accelerated); 248 KI(noaccel); 249 KI(crypto_sync); 250 KI(crypto_async); 251 KI(crypto_failures); 252 253 #undef KI 254 #undef K64 255 256 kstat_install(ah_ksp); 257 258 return (B_TRUE); 259 } 260 261 static int 262 ah_kstat_update(kstat_t *kp, int rw) 263 { 264 ah_kstats_t *ekp; 265 266 if ((kp == NULL) || (kp->ks_data == NULL)) 267 return (EIO); 268 269 if (rw == KSTAT_WRITE) 270 return (EACCES); 271 272 ASSERT(kp == ah_ksp); 273 ekp = (ah_kstats_t *)kp->ks_data; 274 ASSERT(ekp == ah_kstats); 275 276 mutex_enter(&alg_lock); 277 ekp->ah_stat_num_aalgs.value.ui64 = ipsec_nalgs[IPSEC_ALG_AUTH]; 278 mutex_exit(&alg_lock); 279 280 return (0); 281 } 282 283 /* 284 * Don't have to lock ipsec_age_interval, as only one thread will access it at 285 * a time, because I control the one function that does a qtimeout() on 286 * ah_pfkey_q. 287 */ 288 /* ARGSUSED */ 289 static void 290 ah_ager(void *ignoreme) 291 { 292 hrtime_t begin = gethrtime(); 293 294 sadb_ager(&ah_sadb.s_v4, ah_pfkey_q, ah_sadb.s_ip_q, 295 ipsecah_reap_delay); 296 sadb_ager(&ah_sadb.s_v6, ah_pfkey_q, ah_sadb.s_ip_q, 297 ipsecah_reap_delay); 298 299 ah_event = sadb_retimeout(begin, ah_pfkey_q, ah_ager, 300 &ipsecah_age_interval, ipsecah_age_int_max, info.mi_idnum); 301 } 302 303 /* 304 * Get an AH NDD parameter. 305 */ 306 /* ARGSUSED */ 307 static int 308 ipsecah_param_get(q, mp, cp, cr) 309 queue_t *q; 310 mblk_t *mp; 311 caddr_t cp; 312 cred_t *cr; 313 { 314 ipsecahparam_t *ipsecahpa = (ipsecahparam_t *)cp; 315 uint_t value; 316 317 mutex_enter(&ipsecah_param_lock); 318 value = ipsecahpa->ipsecah_param_value; 319 mutex_exit(&ipsecah_param_lock); 320 321 (void) mi_mpprintf(mp, "%u", value); 322 return (0); 323 } 324 325 /* 326 * This routine sets an NDD variable in a ipsecahparam_t structure. 327 */ 328 /* ARGSUSED */ 329 static int 330 ipsecah_param_set(q, mp, value, cp, cr) 331 queue_t *q; 332 mblk_t *mp; 333 char *value; 334 caddr_t cp; 335 cred_t *cr; 336 { 337 ulong_t new_value; 338 ipsecahparam_t *ipsecahpa = (ipsecahparam_t *)cp; 339 340 /* 341 * Fail the request if the new value does not lie within the 342 * required bounds. 343 */ 344 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 || 345 new_value < ipsecahpa->ipsecah_param_min || 346 new_value > ipsecahpa->ipsecah_param_max) { 347 return (EINVAL); 348 } 349 350 /* Set the new value */ 351 mutex_enter(&ipsecah_param_lock); 352 ipsecahpa->ipsecah_param_value = new_value; 353 mutex_exit(&ipsecah_param_lock); 354 return (0); 355 } 356 357 /* 358 * Using lifetime NDD variables, fill in an extended combination's 359 * lifetime information. 360 */ 361 void 362 ipsecah_fill_defs(sadb_x_ecomb_t *ecomb) 363 { 364 ecomb->sadb_x_ecomb_soft_bytes = ipsecah_default_soft_bytes; 365 ecomb->sadb_x_ecomb_hard_bytes = ipsecah_default_hard_bytes; 366 ecomb->sadb_x_ecomb_soft_addtime = ipsecah_default_soft_addtime; 367 ecomb->sadb_x_ecomb_hard_addtime = ipsecah_default_hard_addtime; 368 ecomb->sadb_x_ecomb_soft_usetime = ipsecah_default_soft_usetime; 369 ecomb->sadb_x_ecomb_hard_usetime = ipsecah_default_hard_usetime; 370 } 371 372 /* 373 * Initialize things for AH at module load time. 374 */ 375 boolean_t 376 ipsecah_ddi_init(void) 377 { 378 int count; 379 ipsecahparam_t *ahp = ipsecah_param_arr; 380 381 for (count = A_CNT(ipsecah_param_arr); count-- > 0; ahp++) { 382 if (ahp->ipsecah_param_name != NULL && 383 ahp->ipsecah_param_name[0]) { 384 if (!nd_load(&ipsecah_g_nd, ahp->ipsecah_param_name, 385 ipsecah_param_get, ipsecah_param_set, 386 (caddr_t)ahp)) { 387 nd_free(&ipsecah_g_nd); 388 return (B_FALSE); 389 } 390 } 391 } 392 393 if (!ah_kstat_init()) { 394 nd_free(&ipsecah_g_nd); 395 return (B_FALSE); 396 } 397 398 ah_taskq = taskq_create("ah_taskq", 1, minclsyspri, 399 IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0); 400 401 ah_sadb.s_acquire_timeout = &ipsecah_acquire_timeout; 402 ah_sadb.s_acqfn = ah_send_acquire; 403 404 sadbp_init("AH", &ah_sadb, SADB_SATYPE_AH, ah_hash_size); 405 406 mutex_init(&ipsecah_param_lock, NULL, MUTEX_DEFAULT, 0); 407 408 ip_drop_register(&ah_dropper, "IPsec AH"); 409 410 return (B_TRUE); 411 } 412 413 /* 414 * Destroy things for AH at module unload time. 415 */ 416 void 417 ipsecah_ddi_destroy(void) 418 { 419 ah1dbg(("In ddi_destroy.\n")); 420 421 sadbp_destroy(&ah_sadb); 422 ip_drop_unregister(&ah_dropper); 423 taskq_destroy(ah_taskq); 424 mutex_destroy(&ipsecah_param_lock); 425 nd_free(&ipsecah_g_nd); 426 427 kstat_delete(ah_ksp); 428 } 429 430 /* 431 * AH module open routine. The module should be opened by keysock. 432 */ 433 /* ARGSUSED */ 434 static int 435 ipsecah_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 436 { 437 if (secpolicy_net_config(credp, B_FALSE) != 0) { 438 ah1dbg(("Non-privileged user trying to open ipsecah.\n")); 439 return (EPERM); 440 } 441 442 if (q->q_ptr != NULL) 443 return (0); /* Re-open of an already open instance. */ 444 445 if (sflag != MODOPEN) 446 return (EINVAL); 447 448 /* 449 * ASSUMPTIONS (because I'm MT_OCEXCL): 450 * 451 * * I'm being pushed on top of IP for all my opens (incl. #1). 452 * * Only ipsecah_open() can write into ah_sadb.s_ip_q. 453 * * Because of this, I can check lazily for ah_sadb.s_ip_q. 454 * 455 * If these assumptions are wrong, I'm in BIG trouble... 456 */ 457 458 q->q_ptr = q; /* just so I know I'm open */ 459 460 if (ah_sadb.s_ip_q == NULL) { 461 struct T_unbind_req *tur; 462 463 ah_sadb.s_ip_q = WR(q); 464 /* Allocate an unbind... */ 465 ah_ip_unbind = allocb(sizeof (struct T_unbind_req), BPRI_HI); 466 467 /* 468 * Send down T_BIND_REQ to bind IPPROTO_AH. 469 * Handle the ACK here in AH. 470 */ 471 qprocson(q); 472 if (ah_ip_unbind == NULL || 473 !sadb_t_bind_req(ah_sadb.s_ip_q, IPPROTO_AH)) { 474 if (ah_ip_unbind != NULL) { 475 freeb(ah_ip_unbind); 476 ah_ip_unbind = NULL; 477 } 478 q->q_ptr = NULL; 479 qprocsoff(q); 480 return (ENOMEM); 481 } 482 483 ah_ip_unbind->b_datap->db_type = M_PROTO; 484 tur = (struct T_unbind_req *)ah_ip_unbind->b_rptr; 485 tur->PRIM_type = T_UNBIND_REQ; 486 } else { 487 qprocson(q); 488 } 489 490 /* 491 * For now, there's not much I can do. I'll be getting a message 492 * passed down to me from keysock (in my wput), and a T_BIND_ACK 493 * up from IP (in my rput). 494 */ 495 496 return (0); 497 } 498 499 /* 500 * AH module close routine. 501 */ 502 static int 503 ipsecah_close(queue_t *q) 504 { 505 /* 506 * If ah_sadb.s_ip_q is attached to this instance, send a 507 * T_UNBIND_REQ to IP for the instance before doing 508 * a qprocsoff(). 509 */ 510 if (WR(q) == ah_sadb.s_ip_q && ah_ip_unbind != NULL) { 511 putnext(WR(q), ah_ip_unbind); 512 ah_ip_unbind = NULL; 513 } 514 515 /* 516 * Clean up q_ptr, if needed. 517 */ 518 qprocsoff(q); 519 520 /* Keysock queue check is safe, because of OCEXCL perimeter. */ 521 522 if (q == ah_pfkey_q) { 523 ah0dbg(("ipsecah_close: Ummm... keysock is closing AH.\n")); 524 ah_pfkey_q = NULL; 525 /* Detach qtimeouts. */ 526 (void) quntimeout(q, ah_event); 527 } 528 529 if (WR(q) == ah_sadb.s_ip_q) { 530 /* 531 * If the ah_sadb.s_ip_q is attached to this instance, find 532 * another. The OCEXCL outer perimeter helps us here. 533 */ 534 535 ah_sadb.s_ip_q = NULL; 536 537 /* 538 * Find a replacement queue for ah_sadb.s_ip_q. 539 */ 540 if (ah_pfkey_q != NULL && ah_pfkey_q != RD(q)) { 541 /* 542 * See if we can use the pfkey_q. 543 */ 544 ah_sadb.s_ip_q = WR(ah_pfkey_q); 545 } 546 547 if (ah_sadb.s_ip_q == NULL || 548 !sadb_t_bind_req(ah_sadb.s_ip_q, IPPROTO_AH)) { 549 ah1dbg(("ipsecah: Can't reassign ah_sadb.s_ip_q.\n")); 550 ah_sadb.s_ip_q = NULL; 551 } else { 552 ah_ip_unbind = allocb(sizeof (struct T_unbind_req), 553 BPRI_HI); 554 555 if (ah_ip_unbind != NULL) { 556 struct T_unbind_req *tur; 557 558 ah_ip_unbind->b_datap->db_type = M_PROTO; 559 tur = (struct T_unbind_req *) 560 ah_ip_unbind->b_rptr; 561 tur->PRIM_type = T_UNBIND_REQ; 562 } 563 /* If it's NULL, I can't do much here. */ 564 } 565 } 566 567 return (0); 568 } 569 570 /* 571 * AH module read put routine. 572 */ 573 /* ARGSUSED */ 574 static void 575 ipsecah_rput(queue_t *q, mblk_t *mp) 576 { 577 keysock_in_t *ksi; 578 int *addrtype; 579 ire_t *ire; 580 mblk_t *ire_mp, *last_mp; 581 582 switch (mp->b_datap->db_type) { 583 case M_CTL: 584 /* 585 * IPsec request of some variety from IP. IPSEC_{IN,OUT} 586 * are the common cases, but even ICMP error messages from IP 587 * may rise up here. 588 * 589 * Ummmm, actually, this can also be the reflected KEYSOCK_IN 590 * message, with an IRE_DB_TYPE hung off at the end. 591 */ 592 switch (((ipsec_info_t *)(mp->b_rptr))->ipsec_info_type) { 593 case KEYSOCK_IN: 594 last_mp = mp; 595 while (last_mp->b_cont != NULL && 596 last_mp->b_cont->b_datap->db_type != IRE_DB_TYPE) 597 last_mp = last_mp->b_cont; 598 599 if (last_mp->b_cont == NULL) { 600 freemsg(mp); 601 break; /* Out of switch. */ 602 } 603 604 ire_mp = last_mp->b_cont; 605 last_mp->b_cont = NULL; 606 607 ksi = (keysock_in_t *)mp->b_rptr; 608 609 if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) 610 addrtype = &ksi->ks_in_srctype; 611 else if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) 612 addrtype = &ksi->ks_in_dsttype; 613 else if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) 614 addrtype = &ksi->ks_in_proxytype; 615 616 ire = (ire_t *)ire_mp->b_rptr; 617 618 *addrtype = sadb_addrset(ire); 619 620 freemsg(ire_mp); 621 if (ah_pfkey_q != NULL) { 622 /* 623 * Decrement counter to make up for 624 * auto-increment in ipsecah_wput(). 625 * I'm running all MT-hot through here, so 626 * don't worry about perimeters and lateral 627 * puts. 628 */ 629 AH_DEBUMP_STAT(keysock_in); 630 ipsecah_wput(WR(ah_pfkey_q), mp); 631 } else { 632 freemsg(mp); 633 } 634 break; 635 default: 636 freemsg(mp); 637 break; 638 } 639 break; 640 case M_PROTO: 641 case M_PCPROTO: 642 /* TPI message of some sort. */ 643 switch (*((t_scalar_t *)mp->b_rptr)) { 644 case T_BIND_ACK: 645 /* We expect this. */ 646 ah3dbg(("Thank you IP from AH for T_BIND_ACK\n")); 647 break; 648 case T_ERROR_ACK: 649 cmn_err(CE_WARN, 650 "ipsecah: AH received T_ERROR_ACK from IP."); 651 break; 652 case T_OK_ACK: 653 /* Probably from a (rarely sent) T_UNBIND_REQ. */ 654 break; 655 default: 656 ah1dbg(("Unknown M_{,PC}PROTO message.\n")); 657 } 658 freemsg(mp); 659 break; 660 default: 661 /* For now, passthru message. */ 662 ah2dbg(("AH got unknown mblk type %d.\n", 663 mp->b_datap->db_type)); 664 putnext(q, mp); 665 } 666 } 667 668 /* 669 * Construct an SADB_REGISTER message with the current algorithms. 670 */ 671 static boolean_t 672 ah_register_out(uint32_t sequence, uint32_t pid, uint_t serial) 673 { 674 mblk_t *mp; 675 boolean_t rc = B_TRUE; 676 sadb_msg_t *samsg; 677 sadb_supported_t *sasupp; 678 sadb_alg_t *saalg; 679 uint_t allocsize = sizeof (*samsg); 680 uint_t i, numalgs_snap; 681 ipsec_alginfo_t **authalgs; 682 uint_t num_aalgs; 683 684 /* Allocate the KEYSOCK_OUT. */ 685 mp = sadb_keysock_out(serial); 686 if (mp == NULL) { 687 ah0dbg(("ah_register_out: couldn't allocate mblk.\n")); 688 return (B_FALSE); 689 } 690 691 /* 692 * Allocate the PF_KEY message that follows KEYSOCK_OUT. 693 * The alg reader lock needs to be held while allocating 694 * the variable part (i.e. the algorithms) of the message. 695 */ 696 697 mutex_enter(&alg_lock); 698 699 /* 700 * Return only valid algorithms, so the number of algorithms 701 * to send up may be less than the number of algorithm entries 702 * in the table. 703 */ 704 authalgs = ipsec_alglists[IPSEC_ALG_AUTH]; 705 for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++) 706 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) 707 num_aalgs++; 708 709 /* 710 * Fill SADB_REGISTER message's algorithm descriptors. Hold 711 * down the lock while filling it. 712 */ 713 if (num_aalgs != 0) { 714 allocsize += (num_aalgs * sizeof (*saalg)); 715 allocsize += sizeof (*sasupp); 716 } 717 mp->b_cont = allocb(allocsize, BPRI_HI); 718 if (mp->b_cont == NULL) { 719 mutex_exit(&alg_lock); 720 freemsg(mp); 721 return (B_FALSE); 722 } 723 724 mp->b_cont->b_wptr += allocsize; 725 if (num_aalgs != 0) { 726 727 saalg = (sadb_alg_t *)(mp->b_cont->b_rptr + sizeof (*samsg) + 728 sizeof (*sasupp)); 729 ASSERT(((ulong_t)saalg & 0x7) == 0); 730 731 numalgs_snap = 0; 732 for (i = 0; 733 ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs)); i++) { 734 if (authalgs[i] == NULL || !ALG_VALID(authalgs[i])) 735 continue; 736 737 saalg->sadb_alg_id = authalgs[i]->alg_id; 738 saalg->sadb_alg_ivlen = 0; 739 saalg->sadb_alg_minbits = authalgs[i]->alg_ef_minbits; 740 saalg->sadb_alg_maxbits = authalgs[i]->alg_ef_maxbits; 741 saalg->sadb_x_alg_increment = 742 authalgs[i]->alg_increment; 743 saalg->sadb_x_alg_defincr = authalgs[i]->alg_ef_default; 744 numalgs_snap++; 745 saalg++; 746 } 747 ASSERT(numalgs_snap == num_aalgs); 748 #ifdef DEBUG 749 /* 750 * Reality check to make sure I snagged all of the 751 * algorithms. 752 */ 753 for (; i < IPSEC_MAX_ALGS; i++) 754 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) 755 cmn_err(CE_PANIC, 756 "ah_register_out()! Missed #%d.\n", i); 757 #endif /* DEBUG */ 758 } 759 760 mutex_exit(&alg_lock); 761 762 /* Now fill the restof the SADB_REGISTER message. */ 763 764 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 765 samsg->sadb_msg_version = PF_KEY_V2; 766 samsg->sadb_msg_type = SADB_REGISTER; 767 samsg->sadb_msg_errno = 0; 768 samsg->sadb_msg_satype = SADB_SATYPE_AH; 769 samsg->sadb_msg_len = SADB_8TO64(allocsize); 770 samsg->sadb_msg_reserved = 0; 771 /* 772 * Assume caller has sufficient sequence/pid number info. If it's one 773 * from me over a new alg., I could give two hoots about sequence. 774 */ 775 samsg->sadb_msg_seq = sequence; 776 samsg->sadb_msg_pid = pid; 777 778 if (allocsize > sizeof (*samsg)) { 779 sasupp = (sadb_supported_t *)(samsg + 1); 780 sasupp->sadb_supported_len = 781 SADB_8TO64(allocsize - sizeof (sadb_msg_t)); 782 sasupp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 783 sasupp->sadb_supported_reserved = 0; 784 } 785 786 if (ah_pfkey_q != NULL) 787 putnext(ah_pfkey_q, mp); 788 else { 789 rc = B_FALSE; 790 freemsg(mp); 791 } 792 793 return (rc); 794 } 795 796 /* 797 * Invoked when the algorithm table changes. Causes SADB_REGISTER 798 * messages continaining the current list of algorithms to be 799 * sent up to the AH listeners. 800 */ 801 void 802 ipsecah_algs_changed(void) 803 { 804 /* 805 * Time to send a PF_KEY SADB_REGISTER message to AH listeners 806 * everywhere. (The function itself checks for NULL ah_pfkey_q.) 807 */ 808 (void) ah_register_out(0, 0, 0); 809 } 810 811 /* 812 * Stub function that taskq_dispatch() invokes to take the mblk (in arg) 813 * and put() it into AH and STREAMS again. 814 */ 815 static void 816 inbound_task(void *arg) 817 { 818 ah_t *ah; 819 mblk_t *mp = (mblk_t *)arg; 820 ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; 821 int ipsec_rc; 822 823 ah2dbg(("in AH inbound_task")); 824 825 ah = ipsec_inbound_ah_sa(mp); 826 if (ah == NULL) 827 return; 828 ASSERT(ii->ipsec_in_ah_sa != NULL); 829 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func(mp, ah); 830 if (ipsec_rc != IPSEC_STATUS_SUCCESS) 831 return; 832 ip_fanout_proto_again(mp, NULL, NULL, NULL); 833 } 834 835 836 /* 837 * Now that weak-key passed, actually ADD the security association, and 838 * send back a reply ADD message. 839 */ 840 static int 841 ah_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi) 842 { 843 isaf_t *primary, *secondary, *inbound; 844 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 845 sadb_address_t *dstext = 846 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 847 struct sockaddr_in *dst; 848 struct sockaddr_in6 *dst6; 849 boolean_t is_ipv4, clone = B_FALSE, is_inbound = B_FALSE; 850 uint32_t *dstaddr; 851 ipsa_t *larval; 852 ipsacq_t *acqrec; 853 iacqf_t *acq_bucket; 854 mblk_t *acq_msgs = NULL; 855 mblk_t *lpkt; 856 int rc; 857 sadb_t *sp; 858 int outhash; 859 860 /* 861 * Locate the appropriate table(s). 862 */ 863 864 dst = (struct sockaddr_in *)(dstext + 1); 865 dst6 = (struct sockaddr_in6 *)dst; 866 is_ipv4 = (dst->sin_family == AF_INET); 867 if (is_ipv4) { 868 sp = &ah_sadb.s_v4; 869 dstaddr = (uint32_t *)(&dst->sin_addr); 870 outhash = OUTBOUND_HASH_V4(sp, *(ipaddr_t *)dstaddr); 871 } else { 872 ASSERT(dst->sin_family == AF_INET6); 873 sp = &ah_sadb.s_v6; 874 dstaddr = (uint32_t *)(&dst6->sin6_addr); 875 outhash = OUTBOUND_HASH_V6(sp, *(in6_addr_t *)dstaddr); 876 } 877 878 inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi); 879 880 switch (ksi->ks_in_dsttype) { 881 case KS_IN_ADDR_MBCAST: 882 clone = B_TRUE; /* All mcast SAs can be bidirectional */ 883 /* FALLTHRU */ 884 case KS_IN_ADDR_ME: 885 primary = inbound; 886 secondary = &sp->sdb_of[outhash]; 887 /* 888 * If the source address is either one of mine, or unspecified 889 * (which is best summed up by saying "not 'not mine'"), 890 * then the association is potentially bi-directional, 891 * in that it can be used for inbound traffic and outbound 892 * traffic. The best example of such and SA is a multicast 893 * SA (which allows me to receive the outbound traffic). 894 */ 895 if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME) 896 clone = B_TRUE; 897 is_inbound = B_TRUE; 898 break; 899 case KS_IN_ADDR_NOTME: 900 primary = &sp->sdb_of[outhash]; 901 secondary = inbound; 902 /* 903 * If the source address literally not mine (either 904 * unspecified or not mine), then this SA may have an 905 * address that WILL be mine after some configuration. 906 * We pay the price for this by making it a bi-directional 907 * SA. 908 */ 909 if (ksi->ks_in_srctype != KS_IN_ADDR_ME) 910 clone = B_TRUE; 911 break; 912 default: 913 samsg->sadb_x_msg_diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 914 return (EINVAL); 915 } 916 917 /* 918 * Find a ACQUIRE list entry if possible. If we've added an SA that 919 * suits the needs of an ACQUIRE list entry, we can eliminate the 920 * ACQUIRE list entry and transmit the enqueued packets. Use the 921 * high-bit of the sequence number to queue it. Key off destination 922 * addr, and change acqrec's state. 923 */ 924 925 if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) { 926 acq_bucket = &sp->sdb_acq[outhash]; 927 mutex_enter(&acq_bucket->iacqf_lock); 928 for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL; 929 acqrec = acqrec->ipsacq_next) { 930 mutex_enter(&acqrec->ipsacq_lock); 931 /* 932 * Q: I only check sequence. Should I check dst? 933 * A: Yes, check dest because those are the packets 934 * that are queued up. 935 */ 936 if (acqrec->ipsacq_seq == samsg->sadb_msg_seq && 937 IPSA_ARE_ADDR_EQUAL(dstaddr, 938 acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam)) 939 break; 940 mutex_exit(&acqrec->ipsacq_lock); 941 } 942 if (acqrec != NULL) { 943 /* 944 * AHA! I found an ACQUIRE record for this SA. 945 * Grab the msg list, and free the acquire record. 946 * I already am holding the lock for this record, 947 * so all I have to do is free it. 948 */ 949 acq_msgs = acqrec->ipsacq_mp; 950 acqrec->ipsacq_mp = NULL; 951 mutex_exit(&acqrec->ipsacq_lock); 952 sadb_destroy_acquire(acqrec); 953 } 954 mutex_exit(&acq_bucket->iacqf_lock); 955 } 956 957 /* 958 * Find PF_KEY message, and see if I'm an update. If so, find entry 959 * in larval list (if there). 960 */ 961 962 larval = NULL; 963 964 if (samsg->sadb_msg_type == SADB_UPDATE) { 965 mutex_enter(&inbound->isaf_lock); 966 larval = ipsec_getassocbyspi(inbound, assoc->sadb_sa_spi, 967 ALL_ZEROES_PTR, dstaddr, dst->sin_family); 968 mutex_exit(&inbound->isaf_lock); 969 970 if ((larval == NULL) || 971 (larval->ipsa_state != IPSA_STATE_LARVAL)) { 972 ah0dbg(("Larval update, but larval disappeared.\n")); 973 return (ESRCH); 974 } /* Else sadb_common_add unlinks it for me! */ 975 } 976 977 lpkt = NULL; 978 if (larval != NULL) 979 lpkt = sadb_clear_lpkt(larval); 980 981 rc = sadb_common_add(ah_sadb.s_ip_q, ah_pfkey_q, mp, samsg, ksi, 982 primary, secondary, larval, clone, is_inbound); 983 984 /* 985 * How much more stack will I create with all of these 986 * ah_inbound_* and ah_outbound_*() calls? 987 */ 988 989 990 if (rc == 0 && lpkt != NULL) 991 rc = !taskq_dispatch(ah_taskq, inbound_task, 992 (void *) lpkt, TQ_NOSLEEP); 993 994 if (rc != 0) { 995 ip_drop_packet(lpkt, B_TRUE, NULL, NULL, 996 &ipdrops_sadb_inlarval_timeout, &ah_dropper); 997 } 998 999 while (acq_msgs != NULL) { 1000 mblk_t *mp = acq_msgs; 1001 1002 acq_msgs = acq_msgs->b_next; 1003 mp->b_next = NULL; 1004 if (rc == 0) { 1005 ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr; 1006 1007 ASSERT(ah_sadb.s_ip_q != NULL); 1008 if (ipsec_outbound_sa(mp, IPPROTO_AH)) { 1009 io->ipsec_out_ah_done = B_TRUE; 1010 if (ah_outbound(mp) == IPSEC_STATUS_SUCCESS) { 1011 ipha_t *ipha = (ipha_t *) 1012 mp->b_cont->b_rptr; 1013 if (is_ipv4) { 1014 ip_wput_ipsec_out(NULL, mp, 1015 ipha, NULL, NULL); 1016 } else { 1017 ip6_t *ip6h = (ip6_t *)ipha; 1018 ip_wput_ipsec_out_v6(NULL, 1019 mp, ip6h, NULL, NULL); 1020 } 1021 } 1022 continue; 1023 } 1024 } 1025 AH_BUMP_STAT(out_discards); 1026 ip_drop_packet(mp, B_FALSE, NULL, NULL, 1027 &ipdrops_sadb_acquire_timeout, &ah_dropper); 1028 } 1029 1030 return (rc); 1031 } 1032 1033 /* 1034 * Add new AH security association. This may become a generic AH/ESP 1035 * routine eventually. 1036 */ 1037 static int 1038 ah_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 1039 { 1040 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 1041 sadb_address_t *srcext = 1042 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 1043 sadb_address_t *dstext = 1044 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 1045 sadb_key_t *key = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; 1046 struct sockaddr_in *src, *dst; 1047 /* We don't need sockaddr_in6 for now. */ 1048 sadb_lifetime_t *soft = 1049 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; 1050 sadb_lifetime_t *hard = 1051 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; 1052 ipsec_alginfo_t *aalg; 1053 1054 /* I need certain extensions present for an ADD message. */ 1055 if (srcext == NULL) { 1056 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; 1057 return (EINVAL); 1058 } 1059 if (dstext == NULL) { 1060 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 1061 return (EINVAL); 1062 } 1063 if (assoc == NULL) { 1064 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 1065 return (EINVAL); 1066 } 1067 if (key == NULL) { 1068 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_AKEY; 1069 return (EINVAL); 1070 } 1071 1072 src = (struct sockaddr_in *)(srcext + 1); 1073 dst = (struct sockaddr_in *)(dstext + 1); 1074 1075 /* Sundry ADD-specific reality checks. */ 1076 /* XXX STATS : Logging/stats here? */ 1077 1078 if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) { 1079 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; 1080 return (EINVAL); 1081 } 1082 if (assoc->sadb_sa_encrypt != SADB_EALG_NONE) { 1083 *diagnostic = SADB_X_DIAGNOSTIC_ENCR_NOTSUPP; 1084 return (EINVAL); 1085 } 1086 if (assoc->sadb_sa_flags & ~(SADB_SAFLAGS_NOREPLAY)) { 1087 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS; 1088 return (EINVAL); 1089 } 1090 1091 if ((*diagnostic = sadb_hardsoftchk(hard, soft)) != 0) 1092 return (EINVAL); 1093 1094 if (src->sin_family != dst->sin_family) { 1095 *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; 1096 return (EINVAL); 1097 } 1098 1099 /* Stuff I don't support, for now. XXX Diagnostic? */ 1100 if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL || 1101 ksi->ks_in_extv[SADB_EXT_SENSITIVITY] != NULL) 1102 return (EOPNOTSUPP); 1103 1104 /* 1105 * XXX Policy : I'm not checking identities or sensitivity 1106 * labels at this time, but if I did, I'd do them here, before I sent 1107 * the weak key check up to the algorithm. 1108 */ 1109 1110 /* verify that there is a mapping for the specified algorithm */ 1111 mutex_enter(&alg_lock); 1112 aalg = ipsec_alglists[IPSEC_ALG_AUTH][assoc->sadb_sa_auth]; 1113 if (aalg == NULL || !ALG_VALID(aalg)) { 1114 mutex_exit(&alg_lock); 1115 ah1dbg(("Couldn't find auth alg #%d.\n", assoc->sadb_sa_auth)); 1116 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG; 1117 return (EINVAL); 1118 } 1119 ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID); 1120 1121 /* sanity check key sizes */ 1122 if (!ipsec_valid_key_size(key->sadb_key_bits, aalg)) { 1123 mutex_exit(&alg_lock); 1124 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS; 1125 return (EINVAL); 1126 } 1127 1128 /* check key and fix parity if needed */ 1129 if (ipsec_check_key(aalg->alg_mech_type, key, B_TRUE, 1130 diagnostic) != 0) { 1131 mutex_exit(&alg_lock); 1132 return (EINVAL); 1133 } 1134 1135 mutex_exit(&alg_lock); 1136 1137 return (ah_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi)); 1138 } 1139 1140 /* 1141 * Update a security association. Updates come in two varieties. The first 1142 * is an update of lifetimes on a non-larval SA. The second is an update of 1143 * a larval SA, which ends up looking a lot more like an add. 1144 */ 1145 static int 1146 ah_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 1147 { 1148 sadb_address_t *dstext = 1149 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 1150 struct sockaddr_in *sin; 1151 1152 if (dstext == NULL) { 1153 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; 1154 return (EINVAL); 1155 } 1156 sin = (struct sockaddr_in *)(dstext + 1); 1157 return (sadb_update_sa(mp, ksi, 1158 (sin->sin_family == AF_INET6) ? &ah_sadb.s_v6 : &ah_sadb.s_v4, 1159 diagnostic, ah_pfkey_q, ah_add_sa)); 1160 } 1161 1162 /* 1163 * Delete a security association. This is REALLY likely to be code common to 1164 * both AH and ESP. Find the association, then unlink it. 1165 */ 1166 static int 1167 ah_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) 1168 { 1169 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; 1170 sadb_address_t *dstext = 1171 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; 1172 sadb_address_t *srcext = 1173 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; 1174 struct sockaddr_in *sin; 1175 1176 if (assoc == NULL) { 1177 if (dstext != NULL) 1178 sin = (struct sockaddr_in *)(dstext + 1); 1179 else if (srcext != NULL) 1180 sin = (struct sockaddr_in *)(srcext + 1); 1181 else { 1182 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; 1183 return (EINVAL); 1184 } 1185 return sadb_purge_sa(mp, ksi, 1186 (sin->sin_family == AF_INET6) ? &ah_sadb.s_v6 : 1187 &ah_sadb.s_v4, 1188 diagnostic, ah_pfkey_q, ah_sadb.s_ip_q); 1189 } 1190 1191 return (sadb_del_sa(mp, ksi, &ah_sadb, diagnostic, ah_pfkey_q)); 1192 } 1193 1194 /* 1195 * Convert the entire contents of all of AH's SA tables into PF_KEY SADB_DUMP 1196 * messages. 1197 */ 1198 static void 1199 ah_dump(mblk_t *mp, keysock_in_t *ksi) 1200 { 1201 int error; 1202 sadb_msg_t *samsg; 1203 1204 /* 1205 * Dump each fanout, bailing if error is non-zero. 1206 */ 1207 1208 error = sadb_dump(ah_pfkey_q, mp, ksi->ks_in_serial, &ah_sadb.s_v4); 1209 if (error != 0) 1210 goto bail; 1211 1212 error = sadb_dump(ah_pfkey_q, mp, ksi->ks_in_serial, &ah_sadb.s_v6); 1213 bail: 1214 ASSERT(mp->b_cont != NULL); 1215 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 1216 samsg->sadb_msg_errno = (uint8_t)error; 1217 sadb_pfkey_echo(ah_pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi, 1218 NULL); 1219 } 1220 1221 /* 1222 * AH parsing of PF_KEY messages. Keysock did most of the really silly 1223 * error cases. What I receive is a fully-formed, syntactically legal 1224 * PF_KEY message. I then need to check semantics... 1225 * 1226 * This code may become common to AH and ESP. Stay tuned. 1227 * 1228 * I also make the assumption that db_ref's are cool. If this assumption 1229 * is wrong, this means that someone other than keysock or me has been 1230 * mucking with PF_KEY messages. 1231 */ 1232 static void 1233 ah_parse_pfkey(mblk_t *mp) 1234 { 1235 mblk_t *msg = mp->b_cont; 1236 sadb_msg_t *samsg; 1237 keysock_in_t *ksi; 1238 int error; 1239 int diagnostic = SADB_X_DIAGNOSTIC_NONE; 1240 1241 ASSERT(msg != NULL); 1242 samsg = (sadb_msg_t *)msg->b_rptr; 1243 ksi = (keysock_in_t *)mp->b_rptr; 1244 1245 /* 1246 * If applicable, convert unspecified AF_INET6 to unspecified 1247 * AF_INET. 1248 */ 1249 sadb_srcaddrfix(ksi); 1250 1251 switch (samsg->sadb_msg_type) { 1252 case SADB_ADD: 1253 error = ah_add_sa(mp, ksi, &diagnostic); 1254 if (error != 0) { 1255 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1256 ksi->ks_in_serial); 1257 } 1258 /* else ah_add_sa() took care of things. */ 1259 break; 1260 case SADB_DELETE: 1261 error = ah_del_sa(mp, ksi, &diagnostic); 1262 if (error != 0) { 1263 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1264 ksi->ks_in_serial); 1265 } 1266 /* Else ah_del_sa() took care of things. */ 1267 break; 1268 case SADB_GET: 1269 error = sadb_get_sa(mp, ksi, &ah_sadb, &diagnostic, ah_pfkey_q); 1270 if (error != 0) { 1271 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1272 ksi->ks_in_serial); 1273 } 1274 /* Else sadb_get_sa() took care of things. */ 1275 break; 1276 case SADB_FLUSH: 1277 sadbp_flush(&ah_sadb); 1278 sadb_pfkey_echo(ah_pfkey_q, mp, samsg, ksi, NULL); 1279 break; 1280 case SADB_REGISTER: 1281 /* 1282 * Hmmm, let's do it! Check for extensions (there should 1283 * be none), extract the fields, call ah_register_out(), 1284 * then either free or report an error. 1285 * 1286 * Keysock takes care of the PF_KEY bookkeeping for this. 1287 */ 1288 if (ah_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid, 1289 ksi->ks_in_serial)) { 1290 freemsg(mp); 1291 } else { 1292 /* 1293 * Only way this path hits is if there is a memory 1294 * failure. It will not return B_FALSE because of 1295 * lack of ah_pfkey_q if I am in wput(). 1296 */ 1297 sadb_pfkey_error(ah_pfkey_q, mp, ENOMEM, diagnostic, 1298 ksi->ks_in_serial); 1299 } 1300 break; 1301 case SADB_UPDATE: 1302 /* 1303 * Find a larval, if not there, find a full one and get 1304 * strict. 1305 */ 1306 error = ah_update_sa(mp, ksi, &diagnostic); 1307 if (error != 0) { 1308 sadb_pfkey_error(ah_pfkey_q, mp, error, diagnostic, 1309 ksi->ks_in_serial); 1310 } 1311 /* else ah_update_sa() took care of things. */ 1312 break; 1313 case SADB_GETSPI: 1314 /* 1315 * Reserve a new larval entry. 1316 */ 1317 ah_getspi(mp, ksi); 1318 break; 1319 case SADB_ACQUIRE: 1320 /* 1321 * Find larval and/or ACQUIRE record and kill it (them), I'm 1322 * most likely an error. Inbound ACQUIRE messages should only 1323 * have the base header. 1324 */ 1325 sadb_in_acquire(samsg, &ah_sadb, ah_pfkey_q); 1326 freemsg(mp); 1327 break; 1328 case SADB_DUMP: 1329 /* 1330 * Dump all entries. 1331 */ 1332 ah_dump(mp, ksi); 1333 /* ah_dump will take care of the return message, etc. */ 1334 break; 1335 case SADB_EXPIRE: 1336 /* Should never reach me. */ 1337 sadb_pfkey_error(ah_pfkey_q, mp, EOPNOTSUPP, diagnostic, 1338 ksi->ks_in_serial); 1339 break; 1340 default: 1341 sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, 1342 SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial); 1343 break; 1344 } 1345 } 1346 1347 /* 1348 * Handle case where PF_KEY says it can't find a keysock for one of my 1349 * ACQUIRE messages. 1350 */ 1351 static void 1352 ah_keysock_no_socket(mblk_t *mp) 1353 { 1354 sadb_msg_t *samsg; 1355 keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr; 1356 1357 if (mp->b_cont == NULL) { 1358 freemsg(mp); 1359 return; 1360 } 1361 samsg = (sadb_msg_t *)mp->b_cont->b_rptr; 1362 1363 /* 1364 * If keysock can't find any registered, delete the acquire record 1365 * immediately, and handle errors. 1366 */ 1367 if (samsg->sadb_msg_type == SADB_ACQUIRE) { 1368 samsg->sadb_msg_errno = kse->ks_err_errno; 1369 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg)); 1370 /* 1371 * Use the write-side of the ah_pfkey_q, in case there is 1372 * no ah_sadb.s_ip_q. 1373 */ 1374 sadb_in_acquire(samsg, &ah_sadb, WR(ah_pfkey_q)); 1375 } 1376 1377 freemsg(mp); 1378 } 1379 1380 /* 1381 * First-cut reality check for an inbound PF_KEY message. 1382 */ 1383 static boolean_t 1384 ah_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi) 1385 { 1386 int diagnostic; 1387 1388 if (mp->b_cont == NULL) { 1389 freemsg(mp); 1390 return (B_TRUE); 1391 } 1392 1393 if (ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT] != NULL) { 1394 diagnostic = SADB_X_DIAGNOSTIC_EKEY_PRESENT; 1395 goto badmsg; 1396 } 1397 if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) { 1398 diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT; 1399 goto badmsg; 1400 } 1401 if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL || 1402 ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) { 1403 diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT; 1404 goto badmsg; 1405 } 1406 if (ksi->ks_in_srctype == KS_IN_ADDR_MBCAST) { 1407 diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC; 1408 goto badmsg; 1409 } 1410 if (ksi->ks_in_dsttype == KS_IN_ADDR_UNSPEC) { 1411 diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; 1412 goto badmsg; 1413 } 1414 1415 return (B_FALSE); /* False ==> no failures */ 1416 1417 badmsg: 1418 sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, diagnostic, ksi->ks_in_serial); 1419 return (B_TRUE); /* True ==> failures */ 1420 } 1421 1422 /* 1423 * AH module write put routine. 1424 */ 1425 static void 1426 ipsecah_wput(queue_t *q, mblk_t *mp) 1427 { 1428 ipsec_info_t *ii; 1429 keysock_in_t *ksi; 1430 int rc; 1431 struct iocblk *iocp; 1432 1433 ah3dbg(("In ah_wput().\n")); 1434 1435 /* NOTE: Each case must take care of freeing or passing mp. */ 1436 switch (mp->b_datap->db_type) { 1437 case M_CTL: 1438 if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) { 1439 /* Not big enough message. */ 1440 freemsg(mp); 1441 break; 1442 } 1443 ii = (ipsec_info_t *)mp->b_rptr; 1444 1445 switch (ii->ipsec_info_type) { 1446 case KEYSOCK_OUT_ERR: 1447 ah1dbg(("Got KEYSOCK_OUT_ERR message.\n")); 1448 ah_keysock_no_socket(mp); 1449 break; 1450 case KEYSOCK_IN: 1451 AH_BUMP_STAT(keysock_in); 1452 ah3dbg(("Got KEYSOCK_IN message.\n")); 1453 ksi = (keysock_in_t *)ii; 1454 /* 1455 * Some common reality checks. 1456 */ 1457 1458 if (ah_pfkey_reality_failures(mp, ksi)) 1459 return; 1460 1461 /* 1462 * Use 'q' instead of ah_sadb.s_ip_q, since 1463 * it's the write side already, and it'll go 1464 * down to IP. Use ah_pfkey_q because we 1465 * wouldn't get here if that weren't set, and 1466 * the RD(q) has been done already. 1467 */ 1468 if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) { 1469 rc = sadb_addrcheck(q, ah_pfkey_q, mp, 1470 ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC], 1471 ksi->ks_in_serial); 1472 if (rc == KS_IN_ADDR_UNKNOWN) 1473 return; 1474 else 1475 ksi->ks_in_srctype = rc; 1476 } 1477 if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) { 1478 rc = sadb_addrcheck(q, ah_pfkey_q, mp, 1479 ksi->ks_in_extv[SADB_EXT_ADDRESS_DST], 1480 ksi->ks_in_serial); 1481 if (rc == KS_IN_ADDR_UNKNOWN) 1482 return; 1483 else 1484 ksi->ks_in_dsttype = rc; 1485 } 1486 /* 1487 * XXX Proxy may be a different address family. 1488 */ 1489 if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) { 1490 rc = sadb_addrcheck(q, ah_pfkey_q, mp, 1491 ksi->ks_in_extv[SADB_EXT_ADDRESS_PROXY], 1492 ksi->ks_in_serial); 1493 if (rc == KS_IN_ADDR_UNKNOWN) 1494 return; 1495 else 1496 ksi->ks_in_proxytype = rc; 1497 } 1498 ah_parse_pfkey(mp); 1499 break; 1500 case KEYSOCK_HELLO: 1501 sadb_keysock_hello(&ah_pfkey_q, q, mp, 1502 ah_ager, &ah_event, SADB_SATYPE_AH); 1503 break; 1504 default: 1505 ah1dbg(("Got M_CTL from above of 0x%x.\n", 1506 ii->ipsec_info_type)); 1507 freemsg(mp); 1508 break; 1509 } 1510 break; 1511 case M_IOCTL: 1512 iocp = (struct iocblk *)mp->b_rptr; 1513 switch (iocp->ioc_cmd) { 1514 case ND_SET: 1515 case ND_GET: 1516 if (nd_getset(q, ipsecah_g_nd, mp)) { 1517 qreply(q, mp); 1518 return; 1519 } else { 1520 iocp->ioc_error = ENOENT; 1521 } 1522 /* FALLTHRU */ 1523 default: 1524 /* We really don't support any other ioctls, do we? */ 1525 1526 /* Return EINVAL */ 1527 if (iocp->ioc_error != ENOENT) 1528 iocp->ioc_error = EINVAL; 1529 iocp->ioc_count = 0; 1530 mp->b_datap->db_type = M_IOCACK; 1531 qreply(q, mp); 1532 return; 1533 } 1534 default: 1535 ah3dbg(("Got default message, type %d, passing to IP.\n", 1536 mp->b_datap->db_type)); 1537 putnext(q, mp); 1538 } 1539 } 1540 1541 /* 1542 * Updating use times can be tricky business if the ipsa_haspeer flag is 1543 * set. This function is called once in an SA's lifetime. 1544 * 1545 * Caller has to REFRELE "assoc" which is passed in. This function has 1546 * to REFRELE any peer SA that is obtained. 1547 */ 1548 static void 1549 ah_set_usetime(ipsa_t *assoc, boolean_t inbound) 1550 { 1551 ipsa_t *inassoc, *outassoc; 1552 isaf_t *bucket; 1553 sadb_t *sp; 1554 int outhash; 1555 boolean_t isv6; 1556 1557 /* No peer? No problem! */ 1558 if (!assoc->ipsa_haspeer) { 1559 sadb_set_usetime(assoc); 1560 return; 1561 } 1562 1563 /* 1564 * Otherwise, we want to grab both the original assoc and its peer. 1565 * There might be a race for this, but if it's a real race, the times 1566 * will be out-of-synch by at most a second, and since our time 1567 * granularity is a second, this won't be a problem. 1568 * 1569 * If we need tight synchronization on the peer SA, then we need to 1570 * reconsider. 1571 */ 1572 1573 /* Use address family to select IPv6/IPv4 */ 1574 isv6 = (assoc->ipsa_addrfam == AF_INET6); 1575 if (isv6) { 1576 sp = &ah_sadb.s_v6; 1577 } else { 1578 sp = &ah_sadb.s_v4; 1579 ASSERT(assoc->ipsa_addrfam == AF_INET); 1580 } 1581 if (inbound) { 1582 inassoc = assoc; 1583 if (isv6) 1584 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) 1585 &inassoc->ipsa_dstaddr)); 1586 else 1587 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) 1588 &inassoc->ipsa_dstaddr)); 1589 bucket = &sp->sdb_of[outhash]; 1590 1591 mutex_enter(&bucket->isaf_lock); 1592 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, 1593 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, 1594 inassoc->ipsa_addrfam); 1595 mutex_exit(&bucket->isaf_lock); 1596 if (outassoc == NULL) { 1597 /* Q: Do we wish to set haspeer == B_FALSE? */ 1598 ah0dbg(("ah_set_usetime: " 1599 "can't find peer for inbound.\n")); 1600 sadb_set_usetime(inassoc); 1601 return; 1602 } 1603 } else { 1604 outassoc = assoc; 1605 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); 1606 mutex_enter(&bucket->isaf_lock); 1607 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, 1608 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, 1609 outassoc->ipsa_addrfam); 1610 mutex_exit(&bucket->isaf_lock); 1611 if (inassoc == NULL) { 1612 /* Q: Do we wish to set haspeer == B_FALSE? */ 1613 ah0dbg(("ah_set_usetime: " 1614 "can't find peer for outbound.\n")); 1615 sadb_set_usetime(outassoc); 1616 return; 1617 } 1618 } 1619 1620 /* Update usetime on both. */ 1621 sadb_set_usetime(inassoc); 1622 sadb_set_usetime(outassoc); 1623 1624 /* 1625 * REFRELE any peer SA. 1626 * 1627 * Because of the multi-line macro nature of IPSA_REFRELE, keep 1628 * them in { }. 1629 */ 1630 if (inbound) { 1631 IPSA_REFRELE(outassoc); 1632 } else { 1633 IPSA_REFRELE(inassoc); 1634 } 1635 } 1636 1637 /* 1638 * Add a number of bytes to what the SA has protected so far. Return 1639 * B_TRUE if the SA can still protect that many bytes. 1640 * 1641 * Caller must REFRELE the passed-in assoc. This function must REFRELE 1642 * any obtained peer SA. 1643 */ 1644 static boolean_t 1645 ah_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound) 1646 { 1647 ipsa_t *inassoc, *outassoc; 1648 isaf_t *bucket; 1649 boolean_t inrc, outrc, isv6; 1650 sadb_t *sp; 1651 int outhash; 1652 1653 /* No peer? No problem! */ 1654 if (!assoc->ipsa_haspeer) { 1655 return (sadb_age_bytes(ah_pfkey_q, assoc, bytes, 1656 B_TRUE)); 1657 } 1658 1659 /* 1660 * Otherwise, we want to grab both the original assoc and its peer. 1661 * There might be a race for this, but if it's a real race, two 1662 * expire messages may occur. We limit this by only sending the 1663 * expire message on one of the peers, we'll pick the inbound 1664 * arbitrarily. 1665 * 1666 * If we need tight synchronization on the peer SA, then we need to 1667 * reconsider. 1668 */ 1669 1670 /* Pick v4/v6 bucket based on addrfam. */ 1671 isv6 = (assoc->ipsa_addrfam == AF_INET6); 1672 if (isv6) { 1673 sp = &ah_sadb.s_v6; 1674 } else { 1675 sp = &ah_sadb.s_v4; 1676 ASSERT(assoc->ipsa_addrfam == AF_INET); 1677 } 1678 if (inbound) { 1679 inassoc = assoc; 1680 if (isv6) 1681 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) 1682 &inassoc->ipsa_dstaddr)); 1683 else 1684 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) 1685 &inassoc->ipsa_dstaddr)); 1686 bucket = &sp->sdb_of[outhash]; 1687 mutex_enter(&bucket->isaf_lock); 1688 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, 1689 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, 1690 inassoc->ipsa_addrfam); 1691 mutex_exit(&bucket->isaf_lock); 1692 if (outassoc == NULL) { 1693 /* Q: Do we wish to set haspeer == B_FALSE? */ 1694 ah0dbg(("ah_age_bytes: " 1695 "can't find peer for inbound.\n")); 1696 return (sadb_age_bytes(ah_pfkey_q, inassoc, 1697 bytes, B_TRUE)); 1698 } 1699 } else { 1700 outassoc = assoc; 1701 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); 1702 mutex_enter(&bucket->isaf_lock); 1703 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, 1704 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, 1705 outassoc->ipsa_addrfam); 1706 mutex_exit(&bucket->isaf_lock); 1707 if (inassoc == NULL) { 1708 /* Q: Do we wish to set haspeer == B_FALSE? */ 1709 ah0dbg(("ah_age_bytes: " 1710 "can't find peer for outbound.\n")); 1711 return (sadb_age_bytes(ah_pfkey_q, outassoc, 1712 bytes, B_TRUE)); 1713 } 1714 } 1715 1716 inrc = sadb_age_bytes(ah_pfkey_q, inassoc, bytes, B_TRUE); 1717 outrc = sadb_age_bytes(ah_pfkey_q, outassoc, bytes, B_FALSE); 1718 1719 /* 1720 * REFRELE any peer SA. 1721 * 1722 * Because of the multi-line macro nature of IPSA_REFRELE, keep 1723 * them in { }. 1724 */ 1725 if (inbound) { 1726 IPSA_REFRELE(outassoc); 1727 } else { 1728 IPSA_REFRELE(inassoc); 1729 } 1730 1731 return (inrc && outrc); 1732 } 1733 1734 /* 1735 * Perform the really difficult work of inserting the proposed situation. 1736 * Called while holding the algorithm lock. 1737 */ 1738 static void 1739 ah_insert_prop(sadb_prop_t *prop, ipsacq_t *acqrec, uint_t combs) 1740 { 1741 sadb_comb_t *comb = (sadb_comb_t *)(prop + 1); 1742 ipsec_out_t *io; 1743 ipsec_action_t *ap; 1744 ipsec_prot_t *prot; 1745 io = (ipsec_out_t *)acqrec->ipsacq_mp->b_rptr; 1746 1747 ASSERT(MUTEX_HELD(&alg_lock)); 1748 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1749 1750 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 1751 prop->sadb_prop_len = SADB_8TO64(sizeof (sadb_prop_t)); 1752 *(uint32_t *)(&prop->sadb_prop_replay) = 0; /* Quick zero-out! */ 1753 1754 prop->sadb_prop_replay = ipsecah_replay_size; 1755 1756 /* 1757 * Based upon algorithm properties, and what-not, prioritize a 1758 * proposal, based on the ordering of the ah algorithms in the 1759 * alternatives presented in the policy rule passed down 1760 * through the ipsec_out_t and attached to the acquire record. 1761 */ 1762 1763 for (ap = acqrec->ipsacq_act; ap != NULL; 1764 ap = ap->ipa_next) { 1765 ipsec_alginfo_t *aalg; 1766 1767 if ((ap->ipa_act.ipa_type != IPSEC_POLICY_APPLY) || 1768 (!ap->ipa_act.ipa_apply.ipp_use_ah)) 1769 continue; 1770 1771 prot = &ap->ipa_act.ipa_apply; 1772 1773 ASSERT(prot->ipp_auth_alg > 0); 1774 1775 aalg = ipsec_alglists[IPSEC_ALG_AUTH][prot->ipp_auth_alg]; 1776 if (aalg == NULL || !ALG_VALID(aalg)) 1777 continue; 1778 1779 /* XXX check aalg for duplicates??.. */ 1780 1781 comb->sadb_comb_flags = 0; 1782 comb->sadb_comb_reserved = 0; 1783 comb->sadb_comb_encrypt = 0; 1784 comb->sadb_comb_encrypt_minbits = 0; 1785 comb->sadb_comb_encrypt_maxbits = 0; 1786 1787 comb->sadb_comb_auth = aalg->alg_id; 1788 comb->sadb_comb_auth_minbits = prot->ipp_ah_minbits; 1789 comb->sadb_comb_auth_maxbits = prot->ipp_ah_maxbits; 1790 1791 /* 1792 * The following may be based on algorithm 1793 * properties, but in the meantime, we just pick 1794 * some good, sensible numbers. Key mgmt. can 1795 * (and perhaps should) be the place to finalize 1796 * such decisions. 1797 */ 1798 1799 /* 1800 * No limits on allocations, since we really don't 1801 * support that concept currently. 1802 */ 1803 comb->sadb_comb_soft_allocations = 0; 1804 comb->sadb_comb_hard_allocations = 0; 1805 1806 /* 1807 * These may want to come from policy rule.. 1808 */ 1809 comb->sadb_comb_soft_bytes = ipsecah_default_soft_bytes; 1810 comb->sadb_comb_hard_bytes = ipsecah_default_hard_bytes; 1811 comb->sadb_comb_soft_addtime = ipsecah_default_soft_addtime; 1812 comb->sadb_comb_hard_addtime = ipsecah_default_hard_addtime; 1813 comb->sadb_comb_soft_usetime = ipsecah_default_soft_usetime; 1814 comb->sadb_comb_hard_usetime = ipsecah_default_hard_usetime; 1815 1816 prop->sadb_prop_len += SADB_8TO64(sizeof (*comb)); 1817 if (--combs == 0) 1818 return; /* out of space.. */ 1819 comb++; 1820 } 1821 } 1822 1823 /* 1824 * Prepare and actually send the SADB_ACQUIRE message to PF_KEY. 1825 */ 1826 static void 1827 ah_send_acquire(ipsacq_t *acqrec, mblk_t *extended) 1828 { 1829 mblk_t *pfkeymp, *msgmp; 1830 uint_t allocsize, combs; 1831 sadb_msg_t *samsg; 1832 sadb_prop_t *prop; 1833 uint8_t *cur, *end; 1834 1835 AH_BUMP_STAT(acquire_requests); 1836 1837 ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock)); 1838 1839 pfkeymp = sadb_keysock_out(0); 1840 if (pfkeymp == NULL) { 1841 ah1dbg(("ah_send_acquire: 1st allocb() failed.\n")); 1842 /* Just bail. */ 1843 goto done; 1844 } 1845 1846 /* 1847 * First, allocate a basic ACQUIRE message. Beyond that, 1848 * you need to extract certificate info from 1849 */ 1850 allocsize = sizeof (sadb_msg_t) + sizeof (sadb_address_t) + 1851 sizeof (sadb_address_t) + sizeof (sadb_prop_t); 1852 1853 switch (acqrec->ipsacq_addrfam) { 1854 case AF_INET: 1855 allocsize += 2 * sizeof (struct sockaddr_in); 1856 break; 1857 case AF_INET6: 1858 allocsize += 2 * sizeof (struct sockaddr_in6); 1859 break; 1860 } 1861 1862 mutex_enter(&alg_lock); 1863 1864 combs = ipsec_nalgs[IPSEC_ALG_AUTH]; 1865 1866 allocsize += combs * sizeof (sadb_comb_t); 1867 1868 /* 1869 * XXX If there are: 1870 * certificate IDs 1871 * proxy address 1872 * <Others> 1873 * add additional allocation size. 1874 */ 1875 1876 msgmp = allocb(allocsize, BPRI_HI); 1877 if (msgmp == NULL) { 1878 ah0dbg(("ah_send_acquire: 2nd allocb() failed.\n")); 1879 /* Just bail. */ 1880 freemsg(pfkeymp); 1881 pfkeymp = NULL; 1882 goto done; 1883 } 1884 1885 cur = msgmp->b_rptr; 1886 end = cur + allocsize; 1887 samsg = (sadb_msg_t *)cur; 1888 pfkeymp->b_cont = msgmp; 1889 1890 /* Set up ACQUIRE. */ 1891 cur = sadb_setup_acquire(cur, end, acqrec); 1892 if (cur == NULL) { 1893 ah0dbg(("sadb_setup_acquire failed.\n")); 1894 /* Just bail. */ 1895 freemsg(pfkeymp); 1896 pfkeymp = NULL; 1897 goto done; 1898 } 1899 samsg->sadb_msg_satype = SADB_SATYPE_AH; 1900 1901 /* XXX Insert proxy address information here. */ 1902 1903 /* XXX Insert identity information here. */ 1904 1905 /* XXXMLS Insert sensitivity information here. */ 1906 1907 /* Insert proposal here. */ 1908 1909 prop = (sadb_prop_t *)(((uint64_t *)samsg) + samsg->sadb_msg_len); 1910 ah_insert_prop(prop, acqrec, combs); 1911 samsg->sadb_msg_len += prop->sadb_prop_len; 1912 msgmp->b_wptr += SADB_64TO8(samsg->sadb_msg_len); 1913 1914 done: 1915 mutex_exit(&alg_lock); 1916 1917 /* 1918 * Must mutex_exit() before sending PF_KEY message up, in 1919 * order to avoid recursive mutex_enter() if there are no registered 1920 * listeners. 1921 * 1922 * Once I've sent the message, I'm cool anyway. 1923 */ 1924 mutex_exit(&acqrec->ipsacq_lock); 1925 if (ah_pfkey_q != NULL && pfkeymp != NULL) { 1926 if (extended != NULL) { 1927 putnext(ah_pfkey_q, extended); 1928 } 1929 putnext(ah_pfkey_q, pfkeymp); 1930 return; 1931 } 1932 /* NOTE: freemsg() works for extended == NULL. */ 1933 freemsg(extended); 1934 freemsg(pfkeymp); 1935 } 1936 1937 /* 1938 * Handle the SADB_GETSPI message. Create a larval SA. 1939 */ 1940 static void 1941 ah_getspi(mblk_t *mp, keysock_in_t *ksi) 1942 { 1943 ipsa_t *newbie, *target; 1944 isaf_t *outbound, *inbound; 1945 int rc, diagnostic; 1946 sadb_sa_t *assoc; 1947 keysock_out_t *kso; 1948 uint32_t newspi; 1949 1950 /* 1951 * Randomly generate a proposed SPI value. 1952 */ 1953 (void) random_get_pseudo_bytes((uint8_t *)&newspi, sizeof (uint32_t)); 1954 newbie = sadb_getspi(ksi, newspi, &diagnostic); 1955 1956 if (newbie == NULL) { 1957 sadb_pfkey_error(ah_pfkey_q, mp, ENOMEM, diagnostic, 1958 ksi->ks_in_serial); 1959 return; 1960 } else if (newbie == (ipsa_t *)-1) { 1961 sadb_pfkey_error(ah_pfkey_q, mp, EINVAL, diagnostic, 1962 ksi->ks_in_serial); 1963 return; 1964 } 1965 1966 /* 1967 * XXX - We may randomly collide. We really should recover from this. 1968 * Unfortunately, that could require spending way-too-much-time 1969 * in here. For now, let the user retry. 1970 */ 1971 1972 if (newbie->ipsa_addrfam == AF_INET6) { 1973 outbound = OUTBOUND_BUCKET_V6(&ah_sadb.s_v6, 1974 *(uint32_t *)(newbie->ipsa_dstaddr)); 1975 inbound = INBOUND_BUCKET(&ah_sadb.s_v6, newbie->ipsa_spi); 1976 } else { 1977 outbound = OUTBOUND_BUCKET_V4(&ah_sadb.s_v4, 1978 *(uint32_t *)(newbie->ipsa_dstaddr)); 1979 inbound = INBOUND_BUCKET(&ah_sadb.s_v4, newbie->ipsa_spi); 1980 } 1981 1982 mutex_enter(&outbound->isaf_lock); 1983 mutex_enter(&inbound->isaf_lock); 1984 1985 /* 1986 * Check for collisions (i.e. did sadb_getspi() return with something 1987 * that already exists?). 1988 * 1989 * Try outbound first. Even though SADB_GETSPI is traditionally 1990 * for inbound SAs, you never know what a user might do. 1991 */ 1992 target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi, 1993 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam); 1994 if (target == NULL) { 1995 target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi, 1996 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, 1997 newbie->ipsa_addrfam); 1998 } 1999 2000 /* 2001 * I don't have collisions elsewhere! 2002 * (Nor will I because I'm still holding inbound/outbound locks.) 2003 */ 2004 2005 if (target != NULL) { 2006 rc = EEXIST; 2007 IPSA_REFRELE(target); 2008 } else { 2009 /* 2010 * sadb_insertassoc() also checks for collisions, so 2011 * if there's a colliding larval entry, rc will be set 2012 * to EEXIST. 2013 */ 2014 rc = sadb_insertassoc(newbie, inbound); 2015 (void) drv_getparm(TIME, &newbie->ipsa_hardexpiretime); 2016 newbie->ipsa_hardexpiretime += ipsecah_larval_timeout; 2017 } 2018 2019 /* 2020 * Can exit outbound mutex. Hold inbound until we're done with 2021 * newbie. 2022 */ 2023 mutex_exit(&outbound->isaf_lock); 2024 2025 if (rc != 0) { 2026 mutex_exit(&inbound->isaf_lock); 2027 IPSA_REFRELE(newbie); 2028 sadb_pfkey_error(ah_pfkey_q, mp, rc, SADB_X_DIAGNOSTIC_NONE, 2029 ksi->ks_in_serial); 2030 return; 2031 } 2032 2033 /* Can write here because I'm still holding the bucket lock. */ 2034 newbie->ipsa_type = SADB_SATYPE_AH; 2035 2036 /* 2037 * Construct successful return message. We have one thing going 2038 * for us in PF_KEY v2. That's the fact that 2039 * sizeof (sadb_spirange_t) == sizeof (sadb_sa_t) 2040 */ 2041 assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE]; 2042 assoc->sadb_sa_exttype = SADB_EXT_SA; 2043 assoc->sadb_sa_spi = newbie->ipsa_spi; 2044 *((uint64_t *)(&assoc->sadb_sa_replay)) = 0; 2045 mutex_exit(&inbound->isaf_lock); 2046 2047 /* Convert KEYSOCK_IN to KEYSOCK_OUT. */ 2048 kso = (keysock_out_t *)ksi; 2049 kso->ks_out_len = sizeof (*kso); 2050 kso->ks_out_serial = ksi->ks_in_serial; 2051 kso->ks_out_type = KEYSOCK_OUT; 2052 2053 /* 2054 * Can safely putnext() to ah_pfkey_q, because this is a turnaround 2055 * from the ah_pfkey_q. 2056 */ 2057 putnext(ah_pfkey_q, mp); 2058 } 2059 2060 /* 2061 * IPv6 sends up the ICMP errors for validation and the removal of the AH 2062 * header. 2063 */ 2064 static ipsec_status_t 2065 ah_icmp_error_v6(mblk_t *ipsec_mp) 2066 { 2067 mblk_t *mp; 2068 ip6_t *ip6h, *oip6h; 2069 uint16_t hdr_length, ah_length; 2070 uint8_t *nexthdrp; 2071 ah_t *ah; 2072 icmp6_t *icmp6; 2073 isaf_t *isaf; 2074 ipsa_t *assoc; 2075 uint8_t *post_ah_ptr; 2076 2077 mp = ipsec_mp->b_cont; 2078 ASSERT(mp->b_datap->db_type == M_CTL); 2079 2080 /* 2081 * Change the type to M_DATA till we finish pullups. 2082 */ 2083 mp->b_datap->db_type = M_DATA; 2084 2085 /* 2086 * Eat the cost of a pullupmsg() for now. It makes the rest of this 2087 * code far less convoluted. 2088 */ 2089 if (!pullupmsg(mp, -1) || 2090 !ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, &hdr_length, 2091 &nexthdrp) || 2092 mp->b_rptr + hdr_length + sizeof (icmp6_t) + sizeof (ip6_t) + 2093 sizeof (ah_t) > mp->b_wptr) { 2094 IP_AH_BUMP_STAT(in_discards); 2095 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 2096 &ah_dropper); 2097 return (IPSEC_STATUS_FAILED); 2098 } 2099 2100 oip6h = (ip6_t *)mp->b_rptr; 2101 icmp6 = (icmp6_t *)((uint8_t *)oip6h + hdr_length); 2102 ip6h = (ip6_t *)(icmp6 + 1); 2103 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp)) { 2104 IP_AH_BUMP_STAT(in_discards); 2105 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2106 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 2107 return (IPSEC_STATUS_FAILED); 2108 } 2109 ah = (ah_t *)((uint8_t *)ip6h + hdr_length); 2110 2111 isaf = OUTBOUND_BUCKET_V6(&ah_sadb.s_v6, ip6h->ip6_dst); 2112 mutex_enter(&isaf->isaf_lock); 2113 assoc = ipsec_getassocbyspi(isaf, ah->ah_spi, 2114 (uint32_t *)&ip6h->ip6_src, (uint32_t *)&ip6h->ip6_dst, AF_INET6); 2115 mutex_exit(&isaf->isaf_lock); 2116 2117 if (assoc == NULL) { 2118 IP_AH_BUMP_STAT(lookup_failure); 2119 IP_AH_BUMP_STAT(in_discards); 2120 if (ipsecah_log_unknown_spi) { 2121 ipsec_assocfailure(info.mi_idnum, 0, 0, 2122 SL_CONSOLE | SL_WARN | SL_ERROR, 2123 "Bad ICMP message - No association for the " 2124 "attached AH header whose spi is 0x%x, " 2125 "sender is 0x%x\n", 2126 ah->ah_spi, &oip6h->ip6_src, AF_INET6); 2127 } 2128 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa, 2129 &ah_dropper); 2130 return (IPSEC_STATUS_FAILED); 2131 } 2132 2133 IPSA_REFRELE(assoc); 2134 2135 /* 2136 * There seems to be a valid association. If there is enough of AH 2137 * header remove it, otherwise bail. One could check whether it has 2138 * complete AH header plus 8 bytes but it does not make sense if an 2139 * icmp error is returned for ICMP messages e.g ICMP time exceeded, 2140 * that are being sent up. Let the caller figure out. 2141 * 2142 * NOTE: ah_length is the number of 32 bit words minus 2. 2143 */ 2144 ah_length = (ah->ah_length << 2) + 8; 2145 post_ah_ptr = (uint8_t *)ah + ah_length; 2146 2147 if (post_ah_ptr > mp->b_wptr) { 2148 IP_AH_BUMP_STAT(in_discards); 2149 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2150 &ipdrops_ah_bad_length, &ah_dropper); 2151 return (IPSEC_STATUS_FAILED); 2152 } 2153 2154 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - ah_length); 2155 *nexthdrp = ah->ah_nexthdr; 2156 ovbcopy(post_ah_ptr, ah, 2157 (size_t)((uintptr_t)mp->b_wptr - (uintptr_t)post_ah_ptr)); 2158 mp->b_wptr -= ah_length; 2159 /* Rewhack to be an ICMP error. */ 2160 mp->b_datap->db_type = M_CTL; 2161 2162 return (IPSEC_STATUS_SUCCESS); 2163 } 2164 2165 /* 2166 * IP sends up the ICMP errors for validation and the removal of 2167 * the AH header. 2168 */ 2169 static ipsec_status_t 2170 ah_icmp_error_v4(mblk_t *ipsec_mp) 2171 { 2172 mblk_t *mp; 2173 mblk_t *mp1; 2174 icmph_t *icmph; 2175 int iph_hdr_length; 2176 int hdr_length; 2177 isaf_t *hptr; 2178 ipsa_t *assoc; 2179 int ah_length; 2180 ipha_t *ipha; 2181 ipha_t *oipha; 2182 ah_t *ah; 2183 uint32_t length; 2184 int alloc_size; 2185 uint8_t nexthdr; 2186 2187 mp = ipsec_mp->b_cont; 2188 ASSERT(mp->b_datap->db_type == M_CTL); 2189 2190 /* 2191 * Change the type to M_DATA till we finish pullups. 2192 */ 2193 mp->b_datap->db_type = M_DATA; 2194 2195 oipha = ipha = (ipha_t *)mp->b_rptr; 2196 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2197 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2198 2199 ipha = (ipha_t *)&icmph[1]; 2200 hdr_length = IPH_HDR_LENGTH(ipha); 2201 2202 /* 2203 * See if we have enough to locate the SPI 2204 */ 2205 if ((uchar_t *)ipha + hdr_length + 8 > mp->b_wptr) { 2206 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 8 - 2207 mp->b_rptr)) { 2208 ipsec_rl_strlog(info.mi_idnum, 0, 0, 2209 SL_WARN | SL_ERROR, 2210 "ICMP error: Small AH header\n"); 2211 IP_AH_BUMP_STAT(in_discards); 2212 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2213 &ipdrops_ah_bad_length, &ah_dropper); 2214 return (IPSEC_STATUS_FAILED); 2215 } 2216 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2217 ipha = (ipha_t *)&icmph[1]; 2218 } 2219 2220 ah = (ah_t *)((uint8_t *)ipha + hdr_length); 2221 nexthdr = ah->ah_nexthdr; 2222 2223 hptr = OUTBOUND_BUCKET_V4(&ah_sadb.s_v4, ipha->ipha_dst); 2224 mutex_enter(&hptr->isaf_lock); 2225 assoc = ipsec_getassocbyspi(hptr, ah->ah_spi, 2226 (uint32_t *)&ipha->ipha_src, (uint32_t *)&ipha->ipha_dst, AF_INET); 2227 mutex_exit(&hptr->isaf_lock); 2228 2229 if (assoc == NULL) { 2230 IP_AH_BUMP_STAT(lookup_failure); 2231 IP_AH_BUMP_STAT(in_discards); 2232 if (ipsecah_log_unknown_spi) { 2233 ipsec_assocfailure(info.mi_idnum, 0, 0, 2234 SL_CONSOLE | SL_WARN | SL_ERROR, 2235 "Bad ICMP message - No association for the " 2236 "attached AH header whose spi is 0x%x, " 2237 "sender is 0x%x\n", 2238 ah->ah_spi, &oipha->ipha_src, AF_INET); 2239 } 2240 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa, 2241 &ah_dropper); 2242 return (IPSEC_STATUS_FAILED); 2243 } 2244 2245 IPSA_REFRELE(assoc); 2246 /* 2247 * There seems to be a valid association. If there 2248 * is enough of AH header remove it, otherwise remove 2249 * as much as possible and send it back. One could check 2250 * whether it has complete AH header plus 8 bytes but it 2251 * does not make sense if an icmp error is returned for 2252 * ICMP messages e.g ICMP time exceeded, that are being 2253 * sent up. Let the caller figure out. 2254 * 2255 * NOTE: ah_length is the number of 32 bit words minus 2. 2256 */ 2257 ah_length = (ah->ah_length << 2) + 8; 2258 2259 if ((uchar_t *)ipha + hdr_length + ah_length > mp->b_wptr) { 2260 if (mp->b_cont == NULL) { 2261 /* 2262 * There is nothing to pullup. Just remove as 2263 * much as possible. This is a common case for 2264 * IPV4. 2265 */ 2266 ah_length = (mp->b_wptr - ((uchar_t *)ipha + 2267 hdr_length)); 2268 goto done; 2269 } 2270 /* Pullup the full ah header */ 2271 if (!pullupmsg(mp, (uchar_t *)ah + ah_length - mp->b_rptr)) { 2272 /* 2273 * pullupmsg could have failed if there was not 2274 * enough to pullup or memory allocation failed. 2275 * We tried hard, give up now. 2276 */ 2277 IP_AH_BUMP_STAT(in_discards); 2278 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, 2279 &ipdrops_ah_nomem, &ah_dropper); 2280 return (IPSEC_STATUS_FAILED); 2281 } 2282 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2283 ipha = (ipha_t *)&icmph[1]; 2284 } 2285 done: 2286 /* 2287 * Remove the AH header and change the protocol. 2288 * Don't update the spi fields in the ipsec_in 2289 * message as we are called just to validate the 2290 * message attached to the ICMP message. 2291 * 2292 * If we never pulled up since all of the message 2293 * is in one single mblk, we can't remove the AH header 2294 * by just setting the b_wptr to the beginning of the 2295 * AH header. We need to allocate a mblk that can hold 2296 * up until the inner IP header and copy them. 2297 */ 2298 alloc_size = iph_hdr_length + sizeof (icmph_t) + hdr_length; 2299 2300 if ((mp1 = allocb(alloc_size, BPRI_LO)) == NULL) { 2301 IP_AH_BUMP_STAT(in_discards); 2302 ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 2303 &ah_dropper); 2304 return (IPSEC_STATUS_FAILED); 2305 } 2306 /* ICMP errors are M_CTL messages */ 2307 mp1->b_datap->db_type = M_CTL; 2308 ipsec_mp->b_cont = mp1; 2309 bcopy(mp->b_rptr, mp1->b_rptr, alloc_size); 2310 mp1->b_wptr += alloc_size; 2311 2312 /* 2313 * Skip whatever we have copied and as much of AH header 2314 * possible. If we still have something left in the original 2315 * message, tag on. 2316 */ 2317 mp->b_rptr = (uchar_t *)ipha + hdr_length + ah_length; 2318 2319 if (mp->b_rptr != mp->b_wptr) { 2320 mp1->b_cont = mp; 2321 } else { 2322 if (mp->b_cont != NULL) 2323 mp1->b_cont = mp->b_cont; 2324 freeb(mp); 2325 } 2326 2327 ipha = (ipha_t *)(mp1->b_rptr + iph_hdr_length + sizeof (icmph_t)); 2328 ipha->ipha_protocol = nexthdr; 2329 length = ntohs(ipha->ipha_length); 2330 length -= ah_length; 2331 ipha->ipha_length = htons((uint16_t)length); 2332 ipha->ipha_hdr_checksum = 0; 2333 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); 2334 2335 return (IPSEC_STATUS_SUCCESS); 2336 } 2337 2338 /* 2339 * IP calls this to validate the ICMP errors that 2340 * we got from the network. 2341 */ 2342 ipsec_status_t 2343 ipsecah_icmp_error(mblk_t *mp) 2344 { 2345 ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; 2346 2347 if (ii->ipsec_in_v4) 2348 return (ah_icmp_error_v4(mp)); 2349 else 2350 return (ah_icmp_error_v6(mp)); 2351 } 2352 2353 static int 2354 ah_fix_tlv_options_v6(uint8_t *oi_opt, uint8_t *pi_opt, uint_t ehdrlen, 2355 uint8_t hdr_type, boolean_t copy_always) 2356 { 2357 uint8_t opt_type; 2358 uint_t optlen; 2359 2360 ASSERT(hdr_type == IPPROTO_DSTOPTS || hdr_type == IPPROTO_HOPOPTS); 2361 2362 /* 2363 * Copy the next header and hdr ext. len of the HOP-by-HOP 2364 * and Destination option. 2365 */ 2366 *pi_opt++ = *oi_opt++; 2367 *pi_opt++ = *oi_opt++; 2368 ehdrlen -= 2; 2369 2370 /* 2371 * Now handle all the TLV encoded options. 2372 */ 2373 while (ehdrlen != 0) { 2374 opt_type = *oi_opt; 2375 2376 if (opt_type == IP6OPT_PAD1) { 2377 optlen = 1; 2378 } else { 2379 if (ehdrlen < 2) 2380 goto bad_opt; 2381 optlen = 2 + oi_opt[1]; 2382 if (optlen > ehdrlen) 2383 goto bad_opt; 2384 } 2385 if (copy_always || !(opt_type & IP6OPT_MUTABLE)) { 2386 bcopy(oi_opt, pi_opt, optlen); 2387 } else { 2388 if (optlen == 1) { 2389 *pi_opt = 0; 2390 } else { 2391 /* 2392 * Copy the type and data length fields. 2393 * Zero the option data by skipping 2394 * option type and option data len 2395 * fields. 2396 */ 2397 *pi_opt = *oi_opt; 2398 *(pi_opt + 1) = *(oi_opt + 1); 2399 bzero(pi_opt + 2, optlen - 2); 2400 } 2401 } 2402 ehdrlen -= optlen; 2403 oi_opt += optlen; 2404 pi_opt += optlen; 2405 } 2406 return (0); 2407 bad_opt: 2408 return (-1); 2409 } 2410 2411 /* 2412 * Construct a pseudo header for AH, processing all the options. 2413 * 2414 * oip6h is the IPv6 header of the incoming or outgoing packet. 2415 * ip6h is the pointer to the pseudo headers IPV6 header. All 2416 * the space needed for the options have been allocated including 2417 * the AH header. 2418 * 2419 * If copy_always is set, all the options that appear before AH are copied 2420 * blindly without checking for IP6OPT_MUTABLE. This is used by 2421 * ah_auth_out_done(). Please refer to that function for details. 2422 * 2423 * NOTE : 2424 * 2425 * * AH header is never copied in this function even if copy_always 2426 * is set. It just returns the ah_offset - offset of the AH header 2427 * and the caller needs to do the copying. This is done so that we 2428 * don't have pass extra arguments e.g. SA etc. and also, 2429 * it is not needed when ah_auth_out_done is calling this function. 2430 */ 2431 static uint_t 2432 ah_fix_phdr_v6(ip6_t *ip6h, ip6_t *oip6h, boolean_t outbound, 2433 boolean_t copy_always) 2434 { 2435 uint8_t *oi_opt; 2436 uint8_t *pi_opt; 2437 uint8_t nexthdr; 2438 uint8_t *prev_nexthdr; 2439 ip6_hbh_t *hbhhdr; 2440 ip6_dest_t *dsthdr = NULL; 2441 ip6_rthdr0_t *rthdr; 2442 int ehdrlen; 2443 ah_t *ah; 2444 int ret; 2445 2446 /* 2447 * In the outbound case for source route, ULP has already moved 2448 * the first hop, which is now in ip6_dst. We need to re-arrange 2449 * the header to make it look like how it would appear in the 2450 * receiver i.e 2451 * 2452 * Because of ip_massage_options_v6 the header looks like 2453 * this : 2454 * 2455 * ip6_src = S, ip6_dst = I1. followed by I2,I3,D. 2456 * 2457 * When it reaches the receiver, it would look like 2458 * 2459 * ip6_src = S, ip6_dst = D. followed by I1,I2,I3. 2460 * 2461 * NOTE : We assume that there are no problems with the options 2462 * as IP should have already checked this. 2463 */ 2464 2465 oi_opt = (uchar_t *)&oip6h[1]; 2466 pi_opt = (uchar_t *)&ip6h[1]; 2467 2468 /* 2469 * We set the prev_nexthdr properly in the pseudo header. 2470 * After we finish authentication and come back from the 2471 * algorithm module, pseudo header will become the real 2472 * IP header. 2473 */ 2474 prev_nexthdr = (uint8_t *)&ip6h->ip6_nxt; 2475 nexthdr = oip6h->ip6_nxt; 2476 /* Assume IP has already stripped it */ 2477 ASSERT(nexthdr != IPPROTO_FRAGMENT && nexthdr != IPPROTO_RAW); 2478 ah = NULL; 2479 dsthdr = NULL; 2480 for (;;) { 2481 switch (nexthdr) { 2482 case IPPROTO_HOPOPTS: 2483 hbhhdr = (ip6_hbh_t *)oi_opt; 2484 nexthdr = hbhhdr->ip6h_nxt; 2485 ehdrlen = 8 * (hbhhdr->ip6h_len + 1); 2486 ret = ah_fix_tlv_options_v6(oi_opt, pi_opt, ehdrlen, 2487 IPPROTO_HOPOPTS, copy_always); 2488 /* 2489 * Return a zero offset indicating error if there 2490 * was error. 2491 */ 2492 if (ret == -1) 2493 return (0); 2494 hbhhdr = (ip6_hbh_t *)pi_opt; 2495 prev_nexthdr = (uint8_t *)&hbhhdr->ip6h_nxt; 2496 break; 2497 case IPPROTO_ROUTING: 2498 rthdr = (ip6_rthdr0_t *)oi_opt; 2499 nexthdr = rthdr->ip6r0_nxt; 2500 ehdrlen = 8 * (rthdr->ip6r0_len + 1); 2501 if (!copy_always && outbound) { 2502 int i, left; 2503 ip6_rthdr0_t *prthdr; 2504 in6_addr_t *ap, *pap; 2505 2506 left = rthdr->ip6r0_segleft; 2507 prthdr = (ip6_rthdr0_t *)pi_opt; 2508 pap = (in6_addr_t *)(prthdr + 1); 2509 ap = (in6_addr_t *)(rthdr + 1); 2510 /* 2511 * First eight bytes except seg_left 2512 * does not change en route. 2513 */ 2514 bcopy(oi_opt, pi_opt, 8); 2515 prthdr->ip6r0_segleft = 0; 2516 /* 2517 * First address has been moved to 2518 * the destination address of the 2519 * ip header by ip_massage_options_v6. 2520 * And the real destination address is 2521 * in the last address part of the 2522 * option. 2523 */ 2524 *pap = oip6h->ip6_dst; 2525 for (i = 1; i < left - 1; i++) 2526 pap[i] = ap[i - 1]; 2527 ip6h->ip6_dst = *(ap + left - 1); 2528 } else { 2529 bcopy(oi_opt, pi_opt, ehdrlen); 2530 } 2531 rthdr = (ip6_rthdr0_t *)pi_opt; 2532 prev_nexthdr = (uint8_t *)&rthdr->ip6r0_nxt; 2533 break; 2534 case IPPROTO_DSTOPTS: 2535 /* 2536 * Destination options are tricky. If there is 2537 * a terminal (e.g. non-IPv6-extension) header 2538 * following the destination options, don't 2539 * reset prev_nexthdr or advance the AH insertion 2540 * point and just treat this as a terminal header. 2541 * 2542 * If this is an inbound packet, just deal with 2543 * it as is. 2544 */ 2545 dsthdr = (ip6_dest_t *)oi_opt; 2546 /* 2547 * XXX I hope common-subexpression elimination 2548 * saves us the double-evaluate. 2549 */ 2550 if (outbound && dsthdr->ip6d_nxt != IPPROTO_ROUTING && 2551 dsthdr->ip6d_nxt != IPPROTO_HOPOPTS) 2552 goto terminal_hdr; 2553 nexthdr = dsthdr->ip6d_nxt; 2554 ehdrlen = 8 * (dsthdr->ip6d_len + 1); 2555 ret = ah_fix_tlv_options_v6(oi_opt, pi_opt, ehdrlen, 2556 IPPROTO_DSTOPTS, copy_always); 2557 /* 2558 * Return a zero offset indicating error if there 2559 * was error. 2560 */ 2561 if (ret == -1) 2562 return (0); 2563 break; 2564 case IPPROTO_AH: 2565 /* 2566 * Be conservative in what you send. We shouldn't 2567 * see two same-scoped AH's in one packet. 2568 * (Inner-IP-scoped AH will be hit by terminal 2569 * header of IP or IPv6.) 2570 */ 2571 ASSERT(!outbound); 2572 return ((uint_t)(pi_opt - (uint8_t *)ip6h)); 2573 default: 2574 ASSERT(outbound); 2575 terminal_hdr: 2576 *prev_nexthdr = IPPROTO_AH; 2577 ah = (ah_t *)pi_opt; 2578 ah->ah_nexthdr = nexthdr; 2579 return ((uint_t)(pi_opt - (uint8_t *)ip6h)); 2580 } 2581 pi_opt += ehdrlen; 2582 oi_opt += ehdrlen; 2583 } 2584 /* NOTREACHED */ 2585 } 2586 2587 static boolean_t 2588 ah_finish_up(ah_t *phdr_ah, ah_t *inbound_ah, ipsa_t *assoc, 2589 int ah_data_sz, int ah_align_sz) 2590 { 2591 int i; 2592 2593 /* 2594 * Padding : 2595 * 2596 * 1) Authentication data may have to be padded 2597 * before ICV calculation if ICV is not a multiple 2598 * of 64 bits. This padding is arbitrary and transmitted 2599 * with the packet at the end of the authentication data. 2600 * Payload length should include the padding bytes. 2601 * 2602 * 2) Explicit padding of the whole datagram may be 2603 * required by the algorithm which need not be 2604 * transmitted. It is assumed that this will be taken 2605 * care by the algorithm module. 2606 */ 2607 bzero(phdr_ah + 1, ah_data_sz); /* Zero out ICV for pseudo-hdr. */ 2608 2609 if (inbound_ah == NULL) { 2610 /* Outbound AH datagram. */ 2611 2612 phdr_ah->ah_length = (ah_align_sz >> 2) + 1; 2613 phdr_ah->ah_reserved = 0; 2614 phdr_ah->ah_spi = assoc->ipsa_spi; 2615 2616 phdr_ah->ah_replay = 2617 htonl(atomic_add_32_nv(&assoc->ipsa_replay, 1)); 2618 if (phdr_ah->ah_replay == 0 && assoc->ipsa_replay_wsize != 0) { 2619 /* 2620 * XXX We have replay counter wrapping. We probably 2621 * want to nuke this SA (and its peer). 2622 */ 2623 ipsec_assocfailure(info.mi_idnum, 0, 0, 2624 SL_ERROR | SL_CONSOLE | SL_WARN, 2625 "Outbound AH SA (0x%x), dst %s has wrapped " 2626 "sequence.\n", phdr_ah->ah_spi, 2627 assoc->ipsa_dstaddr, assoc->ipsa_addrfam); 2628 2629 sadb_replay_delete(assoc); 2630 /* Caller will free phdr_mp and return NULL. */ 2631 return (B_FALSE); 2632 } 2633 2634 if (ah_data_sz != ah_align_sz) { 2635 uchar_t *pad = ((uchar_t *)phdr_ah + sizeof (ah_t) + 2636 ah_data_sz); 2637 2638 for (i = 0; i < (ah_align_sz - ah_data_sz); i++) { 2639 pad[i] = (uchar_t)i; /* Fill the padding */ 2640 } 2641 } 2642 } else { 2643 /* Inbound AH datagram. */ 2644 phdr_ah->ah_nexthdr = inbound_ah->ah_nexthdr; 2645 phdr_ah->ah_length = inbound_ah->ah_length; 2646 phdr_ah->ah_reserved = 0; 2647 ASSERT(inbound_ah->ah_spi == assoc->ipsa_spi); 2648 phdr_ah->ah_spi = inbound_ah->ah_spi; 2649 phdr_ah->ah_replay = inbound_ah->ah_replay; 2650 2651 if (ah_data_sz != ah_align_sz) { 2652 uchar_t *opad = ((uchar_t *)inbound_ah + sizeof (ah_t) + 2653 ah_data_sz); 2654 uchar_t *pad = ((uchar_t *)phdr_ah + sizeof (ah_t) + 2655 ah_data_sz); 2656 2657 for (i = 0; i < (ah_align_sz - ah_data_sz); i++) { 2658 pad[i] = opad[i]; /* Copy the padding */ 2659 } 2660 } 2661 } 2662 2663 return (B_TRUE); 2664 } 2665 2666 /* 2667 * Called upon failing the inbound ICV check. The message passed as 2668 * argument is freed. 2669 */ 2670 static void 2671 ah_log_bad_auth(mblk_t *ipsec_in) 2672 { 2673 mblk_t *mp = ipsec_in->b_cont->b_cont; 2674 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in->b_rptr; 2675 boolean_t isv4 = ii->ipsec_in_v4; 2676 ipsa_t *assoc = ii->ipsec_in_ah_sa; 2677 int af; 2678 void *addr; 2679 2680 mp->b_rptr -= ii->ipsec_in_skip_len; 2681 2682 if (isv4) { 2683 ipha_t *ipha = (ipha_t *)mp->b_rptr; 2684 addr = &ipha->ipha_dst; 2685 af = AF_INET; 2686 } else { 2687 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 2688 addr = &ip6h->ip6_dst; 2689 af = AF_INET6; 2690 } 2691 2692 /* 2693 * Log the event. Don't print to the console, block 2694 * potential denial-of-service attack. 2695 */ 2696 AH_BUMP_STAT(bad_auth); 2697 2698 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 2699 "AH Authentication failed spi %x, dst_addr %s", 2700 assoc->ipsa_spi, addr, af); 2701 2702 IP_AH_BUMP_STAT(in_discards); 2703 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_bad_auth, 2704 &ah_dropper); 2705 } 2706 2707 /* 2708 * Kernel crypto framework callback invoked after completion of async 2709 * crypto requests. 2710 */ 2711 static void 2712 ah_kcf_callback(void *arg, int status) 2713 { 2714 mblk_t *ipsec_mp = (mblk_t *)arg; 2715 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 2716 boolean_t is_inbound = (ii->ipsec_in_type == IPSEC_IN); 2717 2718 ASSERT(ipsec_mp->b_cont != NULL); 2719 2720 if (status == CRYPTO_SUCCESS) { 2721 if (is_inbound) { 2722 if (ah_auth_in_done(ipsec_mp) != IPSEC_STATUS_SUCCESS) 2723 return; 2724 /* finish IPsec processing */ 2725 ip_fanout_proto_again(ipsec_mp, NULL, NULL, NULL); 2726 } else { 2727 ipha_t *ipha; 2728 2729 if (ah_auth_out_done(ipsec_mp) != IPSEC_STATUS_SUCCESS) 2730 return; 2731 2732 /* finish IPsec processing */ 2733 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 2734 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 2735 ip_wput_ipsec_out(NULL, ipsec_mp, ipha, NULL, 2736 NULL); 2737 } else { 2738 ip6_t *ip6h = (ip6_t *)ipha; 2739 ip_wput_ipsec_out_v6(NULL, ipsec_mp, ip6h, 2740 NULL, NULL); 2741 } 2742 } 2743 2744 } else if (status == CRYPTO_INVALID_MAC) { 2745 ah_log_bad_auth(ipsec_mp); 2746 2747 } else { 2748 ah1dbg(("ah_kcf_callback: crypto failed with 0x%x\n", status)); 2749 AH_BUMP_STAT(crypto_failures); 2750 if (is_inbound) 2751 IP_AH_BUMP_STAT(in_discards); 2752 else 2753 AH_BUMP_STAT(out_discards); 2754 ip_drop_packet(ipsec_mp, is_inbound, NULL, NULL, 2755 &ipdrops_ah_crypto_failed, &ah_dropper); 2756 } 2757 } 2758 2759 /* 2760 * Invoked on kernel crypto failure during inbound and outbound processing. 2761 */ 2762 static void 2763 ah_crypto_failed(mblk_t *mp, boolean_t is_inbound, int kef_rc) 2764 { 2765 ah1dbg(("crypto failed for %s AH with 0x%x\n", 2766 is_inbound ? "inbound" : "outbound", kef_rc)); 2767 ip_drop_packet(mp, is_inbound, NULL, NULL, &ipdrops_ah_crypto_failed, 2768 &ah_dropper); 2769 AH_BUMP_STAT(crypto_failures); 2770 if (is_inbound) 2771 IP_AH_BUMP_STAT(in_discards); 2772 else 2773 AH_BUMP_STAT(out_discards); 2774 } 2775 2776 /* 2777 * Helper macros for the ah_submit_req_{inbound,outbound}() functions. 2778 */ 2779 2780 #define AH_INIT_CALLREQ(_cr) { \ 2781 (_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_RESTRICTED; \ 2782 if (ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == IPSEC_ALGS_EXEC_ASYNC) \ 2783 (_cr)->cr_flag |= CRYPTO_ALWAYS_QUEUE; \ 2784 (_cr)->cr_callback_arg = ipsec_mp; \ 2785 (_cr)->cr_callback_func = ah_kcf_callback; \ 2786 } 2787 2788 #define AH_INIT_CRYPTO_DATA(data, msglen, mblk) { \ 2789 (data)->cd_format = CRYPTO_DATA_MBLK; \ 2790 (data)->cd_mp = mblk; \ 2791 (data)->cd_offset = 0; \ 2792 (data)->cd_length = msglen; \ 2793 } 2794 2795 #define AH_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) { \ 2796 (mac)->cd_format = CRYPTO_DATA_RAW; \ 2797 (mac)->cd_offset = 0; \ 2798 (mac)->cd_length = icvlen; \ 2799 (mac)->cd_raw.iov_base = icvbuf; \ 2800 (mac)->cd_raw.iov_len = icvlen; \ 2801 } 2802 2803 /* 2804 * Submit an inbound packet for processing by the crypto framework. 2805 */ 2806 static ipsec_status_t 2807 ah_submit_req_inbound(mblk_t *ipsec_mp, size_t skip_len, uint32_t ah_offset, 2808 ipsa_t *assoc) 2809 { 2810 int kef_rc; 2811 mblk_t *phdr_mp; 2812 crypto_call_req_t call_req; 2813 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 2814 uint_t icv_len = assoc->ipsa_mac_len; 2815 crypto_ctx_template_t ctx_tmpl; 2816 2817 phdr_mp = ipsec_mp->b_cont; 2818 ASSERT(phdr_mp != NULL); 2819 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2820 2821 /* init arguments for the crypto framework */ 2822 AH_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data, AH_MSGSIZE(phdr_mp), 2823 phdr_mp); 2824 2825 AH_INIT_CRYPTO_MAC(&ii->ipsec_in_crypto_mac, icv_len, 2826 (char *)phdr_mp->b_cont->b_rptr - skip_len + ah_offset + 2827 sizeof (ah_t)); 2828 2829 AH_INIT_CALLREQ(&call_req); 2830 2831 ii->ipsec_in_skip_len = skip_len; 2832 2833 IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH, ctx_tmpl); 2834 2835 /* call KEF to do the MAC operation */ 2836 kef_rc = crypto_mac_verify(&assoc->ipsa_amech, 2837 &ii->ipsec_in_crypto_data, &assoc->ipsa_kcfauthkey, ctx_tmpl, 2838 &ii->ipsec_in_crypto_mac, &call_req); 2839 2840 switch (kef_rc) { 2841 case CRYPTO_SUCCESS: 2842 AH_BUMP_STAT(crypto_sync); 2843 return (ah_auth_in_done(ipsec_mp)); 2844 case CRYPTO_QUEUED: 2845 /* ah_callback() will be invoked on completion */ 2846 AH_BUMP_STAT(crypto_async); 2847 return (IPSEC_STATUS_PENDING); 2848 case CRYPTO_INVALID_MAC: 2849 AH_BUMP_STAT(crypto_sync); 2850 ah_log_bad_auth(ipsec_mp); 2851 return (IPSEC_STATUS_FAILED); 2852 } 2853 2854 ah_crypto_failed(ipsec_mp, B_TRUE, kef_rc); 2855 return (IPSEC_STATUS_FAILED); 2856 } 2857 2858 /* 2859 * Submit an outbound packet for processing by the crypto framework. 2860 */ 2861 static ipsec_status_t 2862 ah_submit_req_outbound(mblk_t *ipsec_mp, size_t skip_len, ipsa_t *assoc) 2863 { 2864 int kef_rc; 2865 mblk_t *phdr_mp; 2866 crypto_call_req_t call_req; 2867 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 2868 uint_t icv_len = assoc->ipsa_mac_len; 2869 2870 phdr_mp = ipsec_mp->b_cont; 2871 ASSERT(phdr_mp != NULL); 2872 ASSERT(io->ipsec_out_type == IPSEC_OUT); 2873 2874 /* init arguments for the crypto framework */ 2875 AH_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data, AH_MSGSIZE(phdr_mp), 2876 phdr_mp); 2877 2878 AH_INIT_CRYPTO_MAC(&io->ipsec_out_crypto_mac, icv_len, 2879 (char *)phdr_mp->b_wptr); 2880 2881 AH_INIT_CALLREQ(&call_req); 2882 2883 io->ipsec_out_skip_len = skip_len; 2884 2885 ASSERT(io->ipsec_out_ah_sa != NULL); 2886 2887 /* call KEF to do the MAC operation */ 2888 kef_rc = crypto_mac(&assoc->ipsa_amech, &io->ipsec_out_crypto_data, 2889 &assoc->ipsa_kcfauthkey, assoc->ipsa_authtmpl, 2890 &io->ipsec_out_crypto_mac, &call_req); 2891 2892 switch (kef_rc) { 2893 case CRYPTO_SUCCESS: 2894 AH_BUMP_STAT(crypto_sync); 2895 return (ah_auth_out_done(ipsec_mp)); 2896 case CRYPTO_QUEUED: 2897 /* ah_callback() will be invoked on completion */ 2898 AH_BUMP_STAT(crypto_async); 2899 return (IPSEC_STATUS_PENDING); 2900 } 2901 2902 ah_crypto_failed(ipsec_mp, B_FALSE, kef_rc); 2903 return (IPSEC_STATUS_FAILED); 2904 } 2905 2906 /* 2907 * This function constructs a pseudo header by looking at the IP header 2908 * and options if any. This is called for both outbound and inbound, 2909 * before computing the ICV. 2910 */ 2911 static mblk_t * 2912 ah_process_ip_options_v6(mblk_t *mp, ipsa_t *assoc, int *length_to_skip, 2913 uint_t ah_data_sz, boolean_t outbound) 2914 { 2915 ip6_t *ip6h; 2916 ip6_t *oip6h; 2917 mblk_t *phdr_mp; 2918 int option_length; 2919 uint_t ah_align_sz; 2920 uint_t ah_offset; 2921 int hdr_size; 2922 2923 /* 2924 * Allocate space for the authentication data also. It is 2925 * useful both during the ICV calculation where we need to 2926 * feed in zeroes and while sending the datagram back to IP 2927 * where we will be using the same space. 2928 * 2929 * We need to allocate space for padding bytes if it is not 2930 * a multiple of IPV6_PADDING_ALIGN. 2931 * 2932 * In addition, we allocate space for the ICV computed by 2933 * the kernel crypto framework, saving us a separate kmem 2934 * allocation down the road. 2935 */ 2936 2937 ah_align_sz = P2ALIGN(ah_data_sz + IPV6_PADDING_ALIGN - 1, 2938 IPV6_PADDING_ALIGN); 2939 2940 ASSERT(ah_align_sz >= ah_data_sz); 2941 2942 hdr_size = ipsec_ah_get_hdr_size_v6(mp, B_FALSE); 2943 option_length = hdr_size - IPV6_HDR_LEN; 2944 2945 /* This was not included in ipsec_ah_get_hdr_size_v6() */ 2946 hdr_size += (sizeof (ah_t) + ah_align_sz); 2947 2948 if (!outbound && (MBLKL(mp) < hdr_size)) { 2949 /* 2950 * We have post-AH header options in a separate mblk, 2951 * a pullup is required. 2952 */ 2953 if (!pullupmsg(mp, hdr_size)) 2954 return (NULL); 2955 } 2956 2957 if ((phdr_mp = allocb(hdr_size + ah_data_sz, BPRI_HI)) == NULL) { 2958 return (NULL); 2959 } 2960 2961 oip6h = (ip6_t *)mp->b_rptr; 2962 2963 /* 2964 * Form the basic IP header first. Zero out the header 2965 * so that the mutable fields are zeroed out. 2966 */ 2967 ip6h = (ip6_t *)phdr_mp->b_rptr; 2968 bzero(ip6h, sizeof (ip6_t)); 2969 ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 2970 2971 if (outbound) { 2972 /* 2973 * Include the size of AH and authentication data. 2974 * This is how our recipient would compute the 2975 * authentication data. Look at what we do in the 2976 * inbound case below. 2977 */ 2978 ip6h->ip6_plen = htons(ntohs(oip6h->ip6_plen) + 2979 sizeof (ah_t) + ah_align_sz); 2980 } else { 2981 ip6h->ip6_plen = oip6h->ip6_plen; 2982 } 2983 2984 ip6h->ip6_src = oip6h->ip6_src; 2985 ip6h->ip6_dst = oip6h->ip6_dst; 2986 2987 *length_to_skip = IPV6_HDR_LEN; 2988 if (option_length == 0) { 2989 /* Form the AH header */ 2990 ip6h->ip6_nxt = IPPROTO_AH; 2991 ((ah_t *)(ip6h + 1))->ah_nexthdr = oip6h->ip6_nxt; 2992 ah_offset = *length_to_skip; 2993 } else { 2994 ip6h->ip6_nxt = oip6h->ip6_nxt; 2995 /* option_length does not include the AH header's size */ 2996 *length_to_skip += option_length; 2997 2998 ah_offset = ah_fix_phdr_v6(ip6h, oip6h, outbound, B_FALSE); 2999 if (ah_offset == 0) { 3000 ip_drop_packet(phdr_mp, !outbound, NULL, NULL, 3001 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 3002 return (NULL); 3003 } 3004 } 3005 3006 if (!ah_finish_up(((ah_t *)((uint8_t *)ip6h + ah_offset)), 3007 (outbound ? NULL : ((ah_t *)((uint8_t *)oip6h + ah_offset))), 3008 assoc, ah_data_sz, ah_align_sz)) { 3009 freeb(phdr_mp); 3010 /* 3011 * Returning NULL will tell the caller to 3012 * IPSA_REFELE(), free the memory, etc. 3013 */ 3014 return (NULL); 3015 } 3016 3017 phdr_mp->b_wptr = ((uint8_t *)ip6h + ah_offset + sizeof (ah_t) + 3018 ah_align_sz); 3019 if (!outbound) 3020 *length_to_skip += sizeof (ah_t) + ah_align_sz; 3021 return (phdr_mp); 3022 } 3023 3024 /* 3025 * This function constructs a pseudo header by looking at the IP header 3026 * and options if any. This is called for both outbound and inbound, 3027 * before computing the ICV. 3028 */ 3029 static mblk_t * 3030 ah_process_ip_options_v4(mblk_t *mp, ipsa_t *assoc, int *length_to_skip, 3031 uint_t ah_data_sz, boolean_t outbound) 3032 { 3033 ipoptp_t opts; 3034 uint32_t option_length; 3035 ipha_t *ipha; 3036 ipha_t *oipha; 3037 mblk_t *phdr_mp; 3038 int size; 3039 uchar_t *optptr; 3040 uint8_t optval; 3041 uint8_t optlen; 3042 ipaddr_t dst; 3043 uint32_t v_hlen_tos_len; 3044 int ip_hdr_length; 3045 uint_t ah_align_sz; 3046 uint32_t off; 3047 3048 #ifdef _BIG_ENDIAN 3049 #define V_HLEN (v_hlen_tos_len >> 24) 3050 #else 3051 #define V_HLEN (v_hlen_tos_len & 0xFF) 3052 #endif 3053 3054 oipha = (ipha_t *)mp->b_rptr; 3055 v_hlen_tos_len = ((uint32_t *)oipha)[0]; 3056 3057 /* 3058 * Allocate space for the authentication data also. It is 3059 * useful both during the ICV calculation where we need to 3060 * feed in zeroes and while sending the datagram back to IP 3061 * where we will be using the same space. 3062 * 3063 * We need to allocate space for padding bytes if it is not 3064 * a multiple of IPV4_PADDING_ALIGN. 3065 * 3066 * In addition, we allocate space for the ICV computed by 3067 * the kernel crypto framework, saving us a separate kmem 3068 * allocation down the road. 3069 */ 3070 3071 ah_align_sz = P2ALIGN(ah_data_sz + IPV4_PADDING_ALIGN - 1, 3072 IPV4_PADDING_ALIGN); 3073 3074 ASSERT(ah_align_sz >= ah_data_sz); 3075 3076 size = IP_SIMPLE_HDR_LENGTH + sizeof (ah_t) + ah_align_sz + 3077 ah_data_sz; 3078 3079 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 3080 option_length = oipha->ipha_version_and_hdr_length - 3081 (uint8_t)((IP_VERSION << 4) + 3082 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 3083 option_length <<= 2; 3084 size += option_length; 3085 } 3086 3087 if ((phdr_mp = allocb(size, BPRI_HI)) == NULL) { 3088 return (NULL); 3089 } 3090 3091 /* 3092 * Form the basic IP header first. 3093 */ 3094 ipha = (ipha_t *)phdr_mp->b_rptr; 3095 ipha->ipha_version_and_hdr_length = oipha->ipha_version_and_hdr_length; 3096 ipha->ipha_type_of_service = 0; 3097 3098 if (outbound) { 3099 /* 3100 * Include the size of AH and authentication data. 3101 * This is how our recipient would compute the 3102 * authentication data. Look at what we do in the 3103 * inbound case below. 3104 */ 3105 ipha->ipha_length = ntohs(htons(oipha->ipha_length) + 3106 sizeof (ah_t) + ah_align_sz); 3107 } else { 3108 ipha->ipha_length = oipha->ipha_length; 3109 } 3110 3111 ipha->ipha_ident = oipha->ipha_ident; 3112 ipha->ipha_fragment_offset_and_flags = 0; 3113 ipha->ipha_ttl = 0; 3114 ipha->ipha_protocol = IPPROTO_AH; 3115 ipha->ipha_hdr_checksum = 0; 3116 ipha->ipha_src = oipha->ipha_src; 3117 ipha->ipha_dst = dst = oipha->ipha_dst; 3118 3119 /* 3120 * If there is no option to process return now. 3121 */ 3122 ip_hdr_length = IP_SIMPLE_HDR_LENGTH; 3123 3124 if (V_HLEN == IP_SIMPLE_HDR_VERSION) { 3125 /* Form the AH header */ 3126 goto ah_hdr; 3127 } 3128 3129 ip_hdr_length += option_length; 3130 3131 /* 3132 * We have options. In the outbound case for source route, 3133 * ULP has already moved the first hop, which is now in 3134 * ipha_dst. We need the final destination for the calculation 3135 * of authentication data. And also make sure that mutable 3136 * and experimental fields are zeroed out in the IP options. 3137 */ 3138 3139 bcopy(&oipha[1], &ipha[1], option_length); 3140 3141 for (optval = ipoptp_first(&opts, ipha); 3142 optval != IPOPT_EOL; 3143 optval = ipoptp_next(&opts)) { 3144 optptr = opts.ipoptp_cur; 3145 optlen = opts.ipoptp_len; 3146 switch (optval) { 3147 case IPOPT_EXTSEC: 3148 case IPOPT_COMSEC: 3149 case IPOPT_RA: 3150 case IPOPT_SDMDD: 3151 case IPOPT_SECURITY: 3152 /* 3153 * These options are Immutable, leave them as-is. 3154 * Note that IPOPT_NOP is also Immutable, but it 3155 * was skipped by ipoptp_next() and thus remains 3156 * intact in the header. 3157 */ 3158 break; 3159 case IPOPT_SSRR: 3160 case IPOPT_LSRR: 3161 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) 3162 goto bad_ipv4opt; 3163 /* 3164 * These two are mutable and will be zeroed, but 3165 * first get the final destination. 3166 */ 3167 off = optptr[IPOPT_OFFSET]; 3168 /* 3169 * If one of the conditions is true, it means 3170 * end of options and dst already has the right 3171 * value. So, just fall through. 3172 */ 3173 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 3174 off = optlen - IP_ADDR_LEN; 3175 bcopy(&optptr[off], &dst, IP_ADDR_LEN); 3176 } 3177 /* FALLTHRU */ 3178 case IPOPT_RR: 3179 case IPOPT_TS: 3180 case IPOPT_SATID: 3181 default: 3182 /* 3183 * optlen should include from the beginning of an 3184 * option. 3185 * NOTE : Stream Identifier Option (SID): RFC 791 3186 * shows the bit pattern of optlen as 2 and documents 3187 * the length as 4. We assume it to be 2 here. 3188 */ 3189 bzero(optptr, optlen); 3190 break; 3191 } 3192 } 3193 3194 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 3195 bad_ipv4opt: 3196 ah1dbg(("AH : bad IPv4 option")); 3197 freeb(phdr_mp); 3198 return (NULL); 3199 } 3200 3201 /* 3202 * Don't change ipha_dst for an inbound datagram as it points 3203 * to the right value. Only for the outbound with LSRR/SSRR, 3204 * because of ip_massage_options called by the ULP, ipha_dst 3205 * points to the first hop and we need to use the final 3206 * destination for computing the ICV. 3207 */ 3208 3209 if (outbound) 3210 ipha->ipha_dst = dst; 3211 ah_hdr: 3212 ((ah_t *)((uint8_t *)ipha + ip_hdr_length))->ah_nexthdr = 3213 oipha->ipha_protocol; 3214 if (!ah_finish_up(((ah_t *)((uint8_t *)ipha + ip_hdr_length)), 3215 (outbound ? NULL : ((ah_t *)((uint8_t *)oipha + ip_hdr_length))), 3216 assoc, ah_data_sz, ah_align_sz)) { 3217 freeb(phdr_mp); 3218 /* 3219 * Returning NULL will tell the caller to IPSA_REFELE(), free 3220 * the memory, etc. 3221 */ 3222 return (NULL); 3223 } 3224 3225 phdr_mp->b_wptr = ((uchar_t *)ipha + ip_hdr_length + 3226 sizeof (ah_t) + ah_align_sz); 3227 3228 ASSERT(phdr_mp->b_wptr <= phdr_mp->b_datap->db_lim); 3229 if (outbound) 3230 *length_to_skip = ip_hdr_length; 3231 else 3232 *length_to_skip = ip_hdr_length + sizeof (ah_t) + ah_align_sz; 3233 return (phdr_mp); 3234 } 3235 3236 /* 3237 * Authenticate an outbound datagram. This function is called 3238 * whenever IP sends an outbound datagram that needs authentication. 3239 */ 3240 static ipsec_status_t 3241 ah_outbound(mblk_t *ipsec_out) 3242 { 3243 mblk_t *mp; 3244 mblk_t *phdr_mp; 3245 ipsec_out_t *oi; 3246 ipsa_t *assoc; 3247 int length_to_skip; 3248 uint_t ah_align_sz; 3249 uint_t age_bytes; 3250 3251 /* 3252 * Construct the chain of mblks 3253 * 3254 * IPSEC_OUT->PSEUDO_HDR->DATA 3255 * 3256 * one by one. 3257 */ 3258 3259 AH_BUMP_STAT(out_requests); 3260 3261 ASSERT(ipsec_out->b_datap->db_type == M_CTL); 3262 3263 ASSERT(MBLKL(ipsec_out) >= sizeof (ipsec_info_t)); 3264 3265 mp = ipsec_out->b_cont; 3266 oi = (ipsec_out_t *)ipsec_out->b_rptr; 3267 3268 ASSERT(mp->b_datap->db_type == M_DATA); 3269 3270 assoc = oi->ipsec_out_ah_sa; 3271 ASSERT(assoc != NULL); 3272 if (assoc->ipsa_usetime == 0) 3273 ah_set_usetime(assoc, B_FALSE); 3274 3275 /* 3276 * Age SA according to number of bytes that will be sent after 3277 * adding the AH header, ICV, and padding to the packet. 3278 */ 3279 3280 if (oi->ipsec_out_v4) { 3281 ipha_t *ipha = (ipha_t *)mp->b_rptr; 3282 ah_align_sz = P2ALIGN(assoc->ipsa_mac_len + 3283 IPV4_PADDING_ALIGN - 1, IPV4_PADDING_ALIGN); 3284 age_bytes = ntohs(ipha->ipha_length) + sizeof (ah_t) + 3285 ah_align_sz; 3286 } else { 3287 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 3288 ah_align_sz = P2ALIGN(assoc->ipsa_mac_len + 3289 IPV6_PADDING_ALIGN - 1, IPV6_PADDING_ALIGN); 3290 age_bytes = sizeof (ip6_t) + ntohs(ip6h->ip6_plen) + 3291 sizeof (ah_t) + ah_align_sz; 3292 } 3293 3294 if (!ah_age_bytes(assoc, age_bytes, B_FALSE)) { 3295 /* rig things as if ipsec_getassocbyconn() failed */ 3296 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 3297 "AH association 0x%x, dst %s had bytes expire.\n", 3298 ntohl(assoc->ipsa_spi), assoc->ipsa_dstaddr, AF_INET); 3299 freemsg(ipsec_out); 3300 return (IPSEC_STATUS_FAILED); 3301 } 3302 3303 if (oi->ipsec_out_is_capab_ill) { 3304 ah3dbg(("ah_outbound: pkt can be accelerated\n")); 3305 if (oi->ipsec_out_v4) 3306 return (ah_outbound_accelerated_v4(ipsec_out, assoc)); 3307 else 3308 return (ah_outbound_accelerated_v6(ipsec_out, assoc)); 3309 } 3310 AH_BUMP_STAT(noaccel); 3311 3312 /* 3313 * Insert pseudo header: 3314 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP 3315 */ 3316 3317 if (oi->ipsec_out_v4) { 3318 phdr_mp = ah_process_ip_options_v4(mp, assoc, &length_to_skip, 3319 assoc->ipsa_mac_len, B_TRUE); 3320 } else { 3321 phdr_mp = ah_process_ip_options_v6(mp, assoc, &length_to_skip, 3322 assoc->ipsa_mac_len, B_TRUE); 3323 } 3324 3325 if (phdr_mp == NULL) { 3326 AH_BUMP_STAT(out_discards); 3327 ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, 3328 &ipdrops_ah_bad_v4_opts, &ah_dropper); 3329 return (IPSEC_STATUS_FAILED); 3330 } 3331 3332 ipsec_out->b_cont = phdr_mp; 3333 phdr_mp->b_cont = mp; 3334 mp->b_rptr += length_to_skip; 3335 3336 /* 3337 * At this point ipsec_out points to the IPSEC_OUT, new_mp 3338 * points to an mblk containing the pseudo header (IP header, 3339 * AH header, and ICV with mutable fields zero'ed out). 3340 * mp points to the mblk containing the ULP data. The original 3341 * IP header is kept before the ULP data in mp. 3342 */ 3343 3344 /* submit MAC request to KCF */ 3345 return (ah_submit_req_outbound(ipsec_out, length_to_skip, assoc)); 3346 } 3347 3348 static ipsec_status_t 3349 ah_inbound(mblk_t *ipsec_in_mp, void *arg) 3350 { 3351 mblk_t *data_mp = ipsec_in_mp->b_cont; 3352 ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr; 3353 ah_t *ah = (ah_t *)arg; 3354 ipsa_t *assoc = ii->ipsec_in_ah_sa; 3355 int length_to_skip; 3356 int ah_length; 3357 mblk_t *phdr_mp; 3358 uint32_t ah_offset; 3359 3360 ASSERT(assoc != NULL); 3361 if (assoc->ipsa_usetime == 0) 3362 ah_set_usetime(assoc, B_TRUE); 3363 3364 /* 3365 * We may wish to check replay in-range-only here as an optimization. 3366 * Include the reality check of ipsa->ipsa_replay > 3367 * ipsa->ipsa_replay_wsize for times when it's the first N packets, 3368 * where N == ipsa->ipsa_replay_wsize. 3369 * 3370 * Another check that may come here later is the "collision" check. 3371 * If legitimate packets flow quickly enough, this won't be a problem, 3372 * but collisions may cause authentication algorithm crunching to 3373 * take place when it doesn't need to. 3374 */ 3375 if (!sadb_replay_peek(assoc, ah->ah_replay)) { 3376 AH_BUMP_STAT(replay_early_failures); 3377 IP_AH_BUMP_STAT(in_discards); 3378 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, 3379 &ipdrops_ah_early_replay, &ah_dropper); 3380 return (IPSEC_STATUS_FAILED); 3381 } 3382 3383 /* 3384 * The offset of the AH header can be computed from its pointer 3385 * within the data mblk, which was pulled up until the AH header 3386 * by ipsec_inbound_ah_sa() during SA selection. 3387 */ 3388 ah_offset = (uchar_t *)ah - data_mp->b_rptr; 3389 3390 /* 3391 * Has this packet already been processed by a hardware 3392 * IPsec accelerator? 3393 */ 3394 if (ii->ipsec_in_accelerated) { 3395 ah3dbg(("ah_inbound_v6: pkt processed by ill=%d isv6=%d\n", 3396 ii->ipsec_in_ill_index, !ii->ipsec_in_v4)); 3397 return (ah_inbound_accelerated(ipsec_in_mp, ii->ipsec_in_v4, 3398 assoc, ah_offset)); 3399 } 3400 AH_BUMP_STAT(noaccel); 3401 3402 /* 3403 * We need to pullup until the ICV before we call 3404 * ah_process_ip_options_v6. 3405 */ 3406 ah_length = (ah->ah_length << 2) + 8; 3407 3408 /* 3409 * NOTE : If we want to use any field of IP/AH header, you need 3410 * to re-assign following the pullup. 3411 */ 3412 if (((uchar_t *)ah + ah_length) > data_mp->b_wptr) { 3413 if (!pullupmsg(data_mp, (uchar_t *)ah + ah_length - 3414 data_mp->b_rptr)) { 3415 (void) ipsec_rl_strlog(info.mi_idnum, 0, 0, 3416 SL_WARN | SL_ERROR, 3417 "ah_inbound: Small AH header\n"); 3418 IP_AH_BUMP_STAT(in_discards); 3419 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, 3420 &ipdrops_ah_nomem, &ah_dropper); 3421 return (IPSEC_STATUS_FAILED); 3422 } 3423 } 3424 3425 /* 3426 * Insert pseudo header: 3427 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP 3428 */ 3429 if (ii->ipsec_in_v4) { 3430 phdr_mp = ah_process_ip_options_v4(data_mp, assoc, 3431 &length_to_skip, assoc->ipsa_mac_len, B_FALSE); 3432 } else { 3433 phdr_mp = ah_process_ip_options_v6(data_mp, assoc, 3434 &length_to_skip, assoc->ipsa_mac_len, B_FALSE); 3435 } 3436 3437 if (phdr_mp == NULL) { 3438 IP_AH_BUMP_STAT(in_discards); 3439 ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, 3440 ii->ipsec_in_v4 ? &ipdrops_ah_bad_v4_opts : 3441 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 3442 return (IPSEC_STATUS_FAILED); 3443 } 3444 3445 ipsec_in_mp->b_cont = phdr_mp; 3446 phdr_mp->b_cont = data_mp; 3447 data_mp->b_rptr += length_to_skip; 3448 3449 /* submit request to KCF */ 3450 return (ah_submit_req_inbound(ipsec_in_mp, length_to_skip, ah_offset, 3451 assoc)); 3452 } 3453 3454 /* 3455 * ah_inbound_accelerated: 3456 * Called from ah_inbound() to process IPsec packets that have been 3457 * accelerated by hardware. 3458 * 3459 * Basically does what ah_auth_in_done() with some changes since 3460 * no pseudo-headers are involved, i.e. the passed message is a 3461 * IPSEC_INFO->DATA. 3462 * 3463 * It is assumed that only packets that have been successfully 3464 * processed by the adapter come here. 3465 * 3466 * 1. get algorithm structure corresponding to association 3467 * 2. calculate pointers to authentication header and ICV 3468 * 3. compare ICV in AH header with ICV in data attributes 3469 * 3.1 if different: 3470 * 3.1.1 generate error 3471 * 3.1.2 discard message 3472 * 3.2 if ICV matches: 3473 * 3.2.1 check replay 3474 * 3.2.2 remove AH header 3475 * 3.2.3 age SA byte 3476 * 3.2.4 send to IP 3477 */ 3478 ipsec_status_t 3479 ah_inbound_accelerated(mblk_t *ipsec_in, boolean_t isv4, ipsa_t *assoc, 3480 uint32_t ah_offset) 3481 { 3482 mblk_t *mp; 3483 ipha_t *ipha; 3484 ah_t *ah; 3485 ipsec_in_t *ii; 3486 uint32_t icv_len; 3487 uint32_t align_len; 3488 uint32_t age_bytes; 3489 ip6_t *ip6h; 3490 uint8_t *in_icv; 3491 mblk_t *hada_mp; 3492 uint32_t next_hdr; 3493 da_ipsec_t *hada; 3494 kstat_named_t *counter; 3495 3496 AH_BUMP_STAT(in_accelerated); 3497 3498 ii = (ipsec_in_t *)ipsec_in->b_rptr; 3499 mp = ipsec_in->b_cont; 3500 hada_mp = ii->ipsec_in_da; 3501 ASSERT(hada_mp != NULL); 3502 hada = (da_ipsec_t *)hada_mp->b_rptr; 3503 3504 /* 3505 * We only support one level of decapsulation in hardware, so 3506 * nuke the pointer. 3507 */ 3508 ii->ipsec_in_da = NULL; 3509 ii->ipsec_in_accelerated = B_FALSE; 3510 3511 /* 3512 * Extract ICV length from attributes M_CTL and sanity check 3513 * its value. We allow the mblk to be smaller than da_ipsec_t 3514 * for a small ICV, as long as the entire ICV fits within the mblk. 3515 * Also ensures that the ICV length computed by Provider 3516 * corresponds to the ICV length of the algorithm specified by the SA. 3517 */ 3518 icv_len = hada->da_icv_len; 3519 if ((icv_len != assoc->ipsa_mac_len) || 3520 (icv_len > DA_ICV_MAX_LEN) || (MBLKL(hada_mp) < 3521 (sizeof (da_ipsec_t) - DA_ICV_MAX_LEN + icv_len))) { 3522 ah0dbg(("ah_inbound_accelerated: " 3523 "ICV len (%u) incorrect or mblk too small (%u)\n", 3524 icv_len, (uint32_t)(MBLKL(hada_mp)))); 3525 counter = &ipdrops_ah_bad_length; 3526 goto ah_in_discard; 3527 } 3528 ASSERT(icv_len != 0); 3529 3530 /* compute the padded AH ICV len */ 3531 if (isv4) { 3532 ipha = (ipha_t *)mp->b_rptr; 3533 align_len = (icv_len + IPV4_PADDING_ALIGN - 1) & 3534 -IPV4_PADDING_ALIGN; 3535 } else { 3536 ip6h = (ip6_t *)mp->b_rptr; 3537 align_len = (icv_len + IPV6_PADDING_ALIGN - 1) & 3538 -IPV6_PADDING_ALIGN; 3539 } 3540 3541 ah = (ah_t *)(mp->b_rptr + ah_offset); 3542 in_icv = (uint8_t *)ah + sizeof (ah_t); 3543 3544 /* compare ICV in AH header vs ICV computed by adapter */ 3545 if (bcmp(hada->da_icv, in_icv, icv_len)) { 3546 int af; 3547 void *addr; 3548 3549 if (isv4) { 3550 addr = &ipha->ipha_dst; 3551 af = AF_INET; 3552 } else { 3553 addr = &ip6h->ip6_dst; 3554 af = AF_INET6; 3555 } 3556 3557 /* 3558 * Log the event. Don't print to the console, block 3559 * potential denial-of-service attack. 3560 */ 3561 AH_BUMP_STAT(bad_auth); 3562 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, 3563 "AH Authentication failed spi %x, dst_addr %s", 3564 assoc->ipsa_spi, addr, af); 3565 counter = &ipdrops_ah_bad_auth; 3566 goto ah_in_discard; 3567 } 3568 3569 ah3dbg(("AH succeeded, checking replay\n")); 3570 AH_BUMP_STAT(good_auth); 3571 3572 if (!sadb_replay_check(assoc, ah->ah_replay)) { 3573 int af; 3574 void *addr; 3575 3576 if (isv4) { 3577 addr = &ipha->ipha_dst; 3578 af = AF_INET; 3579 } else { 3580 addr = &ip6h->ip6_dst; 3581 af = AF_INET6; 3582 } 3583 3584 /* 3585 * Log the event. As of now we print out an event. 3586 * Do not print the replay failure number, or else 3587 * syslog cannot collate the error messages. Printing 3588 * the replay number that failed (or printing to the 3589 * console) opens a denial-of-service attack. 3590 */ 3591 AH_BUMP_STAT(replay_failures); 3592 ipsec_assocfailure(info.mi_idnum, 0, 0, 3593 SL_ERROR | SL_WARN, 3594 "Replay failed for AH spi %x, dst_addr %s", 3595 assoc->ipsa_spi, addr, af); 3596 counter = &ipdrops_ah_replay; 3597 goto ah_in_discard; 3598 } 3599 3600 /* 3601 * Remove AH header. We do this by copying everything before 3602 * the AH header onto the AH header+ICV. 3603 */ 3604 /* overwrite AH with what was preceeding it (IP header) */ 3605 next_hdr = ah->ah_nexthdr; 3606 ovbcopy(mp->b_rptr, mp->b_rptr + sizeof (ah_t) + align_len, 3607 ah_offset); 3608 mp->b_rptr += sizeof (ah_t) + align_len; 3609 if (isv4) { 3610 /* adjust IP header next protocol */ 3611 ipha = (ipha_t *)mp->b_rptr; 3612 ipha->ipha_protocol = next_hdr; 3613 3614 age_bytes = ipha->ipha_length; 3615 3616 /* adjust length in IP header */ 3617 ipha->ipha_length -= (sizeof (ah_t) + align_len); 3618 3619 /* recalculate checksum */ 3620 ipha->ipha_hdr_checksum = 0; 3621 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); 3622 } else { 3623 /* adjust IP header next protocol */ 3624 ip6h = (ip6_t *)mp->b_rptr; 3625 ip6h->ip6_nxt = next_hdr; 3626 3627 age_bytes = sizeof (ip6_t) + ntohs(ip6h->ip6_plen) + 3628 sizeof (ah_t); 3629 3630 /* adjust length in IP header */ 3631 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 3632 (sizeof (ah_t) + align_len)); 3633 } 3634 3635 /* age SA */ 3636 if (!ah_age_bytes(assoc, age_bytes, B_TRUE)) { 3637 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 3638 ipsec_assocfailure(info.mi_idnum, 0, 0, 3639 SL_ERROR | SL_WARN, 3640 "AH Association 0x%x, dst %s had bytes expire.\n", 3641 assoc->ipsa_spi, assoc->ipsa_dstaddr, 3642 AF_INET); 3643 AH_BUMP_STAT(bytes_expired); 3644 counter = &ipdrops_ah_bytes_expire; 3645 goto ah_in_discard; 3646 } 3647 3648 freeb(hada_mp); 3649 return (IPSEC_STATUS_SUCCESS); 3650 3651 ah_in_discard: 3652 IP_AH_BUMP_STAT(in_discards); 3653 freeb(hada_mp); 3654 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &ah_dropper); 3655 return (IPSEC_STATUS_FAILED); 3656 } 3657 3658 /* 3659 * ah_outbound_accelerated_v4: 3660 * Called from ah_outbound_v4() and once it is determined that the 3661 * packet is elligible for hardware acceleration. 3662 * 3663 * We proceed as follows: 3664 * 1. allocate and initialize attributes mblk 3665 * 2. mark IPSEC_OUT to indicate that pkt is accelerated 3666 * 3. insert AH header 3667 */ 3668 static ipsec_status_t 3669 ah_outbound_accelerated_v4(mblk_t *ipsec_mp, ipsa_t *assoc) 3670 { 3671 mblk_t *mp, *new_mp; 3672 ipsec_out_t *oi; 3673 uint_t ah_data_sz; /* ICV length, algorithm dependent */ 3674 uint_t ah_align_sz; /* ICV length + padding */ 3675 uint32_t v_hlen_tos_len; /* from original IP header */ 3676 ipha_t *oipha; /* original IP header */ 3677 ipha_t *nipha; /* new IP header */ 3678 uint_t option_length = 0; 3679 uint_t new_hdr_len; /* new header length */ 3680 uint_t iphdr_length; 3681 ah_t *ah_hdr; /* ptr to AH header */ 3682 3683 AH_BUMP_STAT(out_accelerated); 3684 3685 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 3686 mp = ipsec_mp->b_cont; 3687 3688 oipha = (ipha_t *)mp->b_rptr; 3689 v_hlen_tos_len = ((uint32_t *)oipha)[0]; 3690 3691 /* mark packet as being accelerated in IPSEC_OUT */ 3692 ASSERT(oi->ipsec_out_accelerated == B_FALSE); 3693 oi->ipsec_out_accelerated = B_TRUE; 3694 3695 /* calculate authentication data length, i.e. ICV + padding */ 3696 ah_data_sz = assoc->ipsa_mac_len; 3697 ah_align_sz = (ah_data_sz + IPV4_PADDING_ALIGN - 1) & 3698 -IPV4_PADDING_ALIGN; 3699 3700 /* 3701 * Insert pseudo header: 3702 * IPSEC_INFO -> [IP, ULP] => IPSEC_INFO -> [IP, AH, ICV] -> ULP 3703 */ 3704 3705 /* IP + AH + authentication + padding data length */ 3706 new_hdr_len = IP_SIMPLE_HDR_LENGTH + sizeof (ah_t) + ah_align_sz; 3707 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 3708 option_length = oipha->ipha_version_and_hdr_length - 3709 (uint8_t)((IP_VERSION << 4) + 3710 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 3711 option_length <<= 2; 3712 new_hdr_len += option_length; 3713 } 3714 3715 /* allocate pseudo-header mblk */ 3716 if ((new_mp = allocb(new_hdr_len, BPRI_HI)) == NULL) { 3717 /* IPsec kstats: bump bean counter here */ 3718 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3719 &ipdrops_ah_nomem, &ah_dropper); 3720 return (IPSEC_STATUS_FAILED); 3721 } 3722 3723 new_mp->b_cont = mp; 3724 ipsec_mp->b_cont = new_mp; 3725 new_mp->b_wptr += new_hdr_len; 3726 3727 /* copy original IP header to new header */ 3728 bcopy(mp->b_rptr, new_mp->b_rptr, IP_SIMPLE_HDR_LENGTH + 3729 option_length); 3730 3731 /* update IP header */ 3732 nipha = (ipha_t *)new_mp->b_rptr; 3733 nipha->ipha_protocol = IPPROTO_AH; 3734 iphdr_length = ntohs(nipha->ipha_length); 3735 iphdr_length += sizeof (ah_t) + ah_align_sz; 3736 nipha->ipha_length = htons(iphdr_length); 3737 nipha->ipha_hdr_checksum = 0; 3738 nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha); 3739 3740 /* skip original IP header in mp */ 3741 mp->b_rptr += IP_SIMPLE_HDR_LENGTH + option_length; 3742 3743 /* initialize AH header */ 3744 ah_hdr = (ah_t *)(new_mp->b_rptr + IP_SIMPLE_HDR_LENGTH + 3745 option_length); 3746 ah_hdr->ah_nexthdr = oipha->ipha_protocol; 3747 if (!ah_finish_up(ah_hdr, NULL, assoc, ah_data_sz, ah_align_sz)) { 3748 /* Only way this fails is if outbound replay counter wraps. */ 3749 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3750 &ipdrops_ah_replay, &ah_dropper); 3751 return (IPSEC_STATUS_FAILED); 3752 } 3753 3754 return (IPSEC_STATUS_SUCCESS); 3755 } 3756 3757 /* 3758 * ah_outbound_accelerated_v6: 3759 * 3760 * Called from ah_outbound_v6() once it is determined that the packet 3761 * is eligible for hardware acceleration. 3762 * 3763 * We proceed as follows: 3764 * 1. allocate and initialize attributes mblk 3765 * 2. mark IPSEC_OUT to indicate that pkt is accelerated 3766 * 3. insert AH header 3767 */ 3768 static ipsec_status_t 3769 ah_outbound_accelerated_v6(mblk_t *ipsec_mp, ipsa_t *assoc) 3770 { 3771 mblk_t *mp, *phdr_mp; 3772 ipsec_out_t *oi; 3773 uint_t ah_data_sz; /* ICV length, algorithm dependent */ 3774 uint_t ah_align_sz; /* ICV length + padding */ 3775 ip6_t *oip6h; /* original IP header */ 3776 ip6_t *ip6h; /* new IP header */ 3777 uint_t option_length = 0; 3778 uint_t hdr_size; 3779 uint_t ah_offset; 3780 ah_t *ah_hdr; /* ptr to AH header */ 3781 3782 AH_BUMP_STAT(out_accelerated); 3783 3784 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 3785 mp = ipsec_mp->b_cont; 3786 3787 oip6h = (ip6_t *)mp->b_rptr; 3788 3789 /* mark packet as being accelerated in IPSEC_OUT */ 3790 ASSERT(oi->ipsec_out_accelerated == B_FALSE); 3791 oi->ipsec_out_accelerated = B_TRUE; 3792 3793 /* calculate authentication data length, i.e. ICV + padding */ 3794 ah_data_sz = assoc->ipsa_mac_len; 3795 ah_align_sz = (ah_data_sz + IPV4_PADDING_ALIGN - 1) & 3796 -IPV4_PADDING_ALIGN; 3797 3798 ASSERT(ah_align_sz >= ah_data_sz); 3799 3800 hdr_size = ipsec_ah_get_hdr_size_v6(mp, B_FALSE); 3801 option_length = hdr_size - IPV6_HDR_LEN; 3802 3803 /* This was not included in ipsec_ah_get_hdr_size_v6() */ 3804 hdr_size += (sizeof (ah_t) + ah_align_sz); 3805 3806 if ((phdr_mp = allocb(hdr_size, BPRI_HI)) == NULL) { 3807 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, &ipdrops_ah_nomem, 3808 &ah_dropper); 3809 return (IPSEC_STATUS_FAILED); 3810 } 3811 phdr_mp->b_wptr += hdr_size; 3812 3813 /* 3814 * Form the basic IP header first. We always assign every bit 3815 * of the v6 basic header, so a separate bzero is unneeded. 3816 */ 3817 ip6h = (ip6_t *)phdr_mp->b_rptr; 3818 ip6h->ip6_vcf = oip6h->ip6_vcf; 3819 ip6h->ip6_hlim = oip6h->ip6_hlim; 3820 ip6h->ip6_src = oip6h->ip6_src; 3821 ip6h->ip6_dst = oip6h->ip6_dst; 3822 /* 3823 * Include the size of AH and authentication data. 3824 * This is how our recipient would compute the 3825 * authentication data. Look at what we do in the 3826 * inbound case below. 3827 */ 3828 ip6h->ip6_plen = htons(ntohs(oip6h->ip6_plen) + sizeof (ah_t) + 3829 ah_align_sz); 3830 3831 /* 3832 * Insert pseudo header: 3833 * IPSEC_INFO -> [IP6, LLH, ULP] => 3834 * IPSEC_INFO -> [IP, LLH, AH, ICV] -> ULP 3835 */ 3836 3837 if (option_length == 0) { 3838 /* Form the AH header */ 3839 ip6h->ip6_nxt = IPPROTO_AH; 3840 ((ah_t *)(ip6h + 1))->ah_nexthdr = oip6h->ip6_nxt; 3841 ah_offset = IPV6_HDR_LEN; 3842 } else { 3843 ip6h->ip6_nxt = oip6h->ip6_nxt; 3844 /* option_length does not include the AH header's size */ 3845 ah_offset = ah_fix_phdr_v6(ip6h, oip6h, B_TRUE, B_FALSE); 3846 if (ah_offset == 0) { 3847 freemsg(phdr_mp); 3848 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3849 &ipdrops_ah_bad_v6_hdrs, &ah_dropper); 3850 return (IPSEC_STATUS_FAILED); 3851 } 3852 } 3853 3854 phdr_mp->b_cont = mp; 3855 ipsec_mp->b_cont = phdr_mp; 3856 3857 /* skip original IP header in mp */ 3858 mp->b_rptr += IPV6_HDR_LEN + option_length; 3859 3860 /* initialize AH header */ 3861 ah_hdr = (ah_t *)(phdr_mp->b_rptr + IPV6_HDR_LEN + option_length); 3862 ah_hdr->ah_nexthdr = oip6h->ip6_nxt; 3863 3864 if (!ah_finish_up(((ah_t *)((uint8_t *)ip6h + ah_offset)), NULL, 3865 assoc, ah_data_sz, ah_align_sz)) { 3866 /* Only way this fails is if outbound replay counter wraps. */ 3867 ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL, 3868 &ipdrops_ah_replay, &ah_dropper); 3869 return (IPSEC_STATUS_FAILED); 3870 } 3871 3872 return (IPSEC_STATUS_SUCCESS); 3873 } 3874 3875 /* 3876 * Invoked after processing of an inbound packet by the 3877 * kernel crypto framework. Called by ah_submit_req() for a sync request, 3878 * or by the kcf callback for an async request. 3879 * Returns IPSEC_STATUS_SUCCESS on success, IPSEC_STATUS_FAILED on failure. 3880 * On failure, the mblk chain ipsec_in is freed by this function. 3881 */ 3882 static ipsec_status_t 3883 ah_auth_in_done(mblk_t *ipsec_in) 3884 { 3885 mblk_t *phdr_mp; 3886 ipha_t *ipha; 3887 uint_t ah_offset = 0; 3888 mblk_t *mp; 3889 int align_len; 3890 ah_t *ah; 3891 ipha_t *nipha; 3892 uint32_t length; 3893 ipsec_in_t *ii; 3894 boolean_t isv4; 3895 ip6_t *ip6h; 3896 ip6_t *nip6h; 3897 uint_t icv_len; 3898 ipsa_t *assoc; 3899 kstat_named_t *counter; 3900 3901 ii = (ipsec_in_t *)ipsec_in->b_rptr; 3902 isv4 = ii->ipsec_in_v4; 3903 assoc = ii->ipsec_in_ah_sa; 3904 icv_len = (uint_t)ii->ipsec_in_crypto_mac.cd_raw.iov_len; 3905 3906 phdr_mp = ipsec_in->b_cont; 3907 if (phdr_mp == NULL) { 3908 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 3909 &ah_dropper); 3910 return (IPSEC_STATUS_FAILED); 3911 } 3912 3913 mp = phdr_mp->b_cont; 3914 if (mp == NULL) { 3915 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_ah_nomem, 3916 &ah_dropper); 3917 return (IPSEC_STATUS_FAILED); 3918 } 3919 mp->b_rptr -= ii->ipsec_in_skip_len; 3920 3921 if (isv4) { 3922 ipha = (ipha_t *)mp->b_rptr; 3923 ah_offset = ipha->ipha_version_and_hdr_length - 3924 (uint8_t)((IP_VERSION << 4)); 3925 ah_offset <<= 2; 3926 align_len = P2ALIGN(icv_len + IPV4_PADDING_ALIGN - 1, 3927 IPV4_PADDING_ALIGN); 3928 } else { 3929 ip6h = (ip6_t *)mp->b_rptr; 3930 ah_offset = ipsec_ah_get_hdr_size_v6(mp, B_TRUE); 3931 ASSERT((mp->b_wptr - mp->b_rptr) >= ah_offset); 3932 align_len = P2ALIGN(icv_len + IPV6_PADDING_ALIGN - 1, 3933 IPV6_PADDING_ALIGN); 3934 } 3935 3936 ah = (ah_t *)(mp->b_rptr + ah_offset); 3937 3938 /* 3939 * We get here only when authentication passed. 3940 */ 3941 3942 ah3dbg(("AH succeeded, checking replay\n")); 3943 AH_BUMP_STAT(good_auth); 3944 3945 if (!sadb_replay_check(assoc, ah->ah_replay)) { 3946 int af; 3947 void *addr; 3948 3949 if (isv4) { 3950 addr = &ipha->ipha_dst; 3951 af = AF_INET; 3952 } else { 3953 addr = &ip6h->ip6_dst; 3954 af = AF_INET6; 3955 } 3956 3957 /* 3958 * Log the event. As of now we print out an event. 3959 * Do not print the replay failure number, or else 3960 * syslog cannot collate the error messages. Printing 3961 * the replay number that failed (or printing to the 3962 * console) opens a denial-of-service attack. 3963 */ 3964 AH_BUMP_STAT(replay_failures); 3965 ipsec_assocfailure(info.mi_idnum, 0, 0, 3966 SL_ERROR | SL_WARN, 3967 "Replay failed for AH spi %x, dst_addr %s", 3968 assoc->ipsa_spi, addr, af); 3969 counter = &ipdrops_ah_replay; 3970 goto ah_in_discard; 3971 } 3972 3973 /* 3974 * We need to remove the AH header from the original 3975 * datagram. Easy way to do this is to use phdr_mp 3976 * to hold the IP header and the orginal mp to hold 3977 * the rest of it. So, we copy the IP header on to 3978 * phdr_mp, and set the b_rptr in mp past AH header. 3979 */ 3980 if (isv4) { 3981 bcopy(mp->b_rptr, phdr_mp->b_rptr, ah_offset); 3982 phdr_mp->b_wptr = phdr_mp->b_rptr + ah_offset; 3983 nipha = (ipha_t *)phdr_mp->b_rptr; 3984 /* 3985 * Assign the right protocol, adjust the length as we 3986 * are removing the AH header and adjust the checksum to 3987 * account for the protocol and length. 3988 */ 3989 nipha->ipha_protocol = ah->ah_nexthdr; 3990 length = ntohs(nipha->ipha_length); 3991 if (!ah_age_bytes(assoc, length, B_TRUE)) { 3992 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 3993 ipsec_assocfailure(info.mi_idnum, 0, 0, 3994 SL_ERROR | SL_WARN, 3995 "AH Association 0x%x, dst %s had bytes expire.\n", 3996 assoc->ipsa_spi, assoc->ipsa_dstaddr, 3997 AF_INET); 3998 AH_BUMP_STAT(bytes_expired); 3999 counter = &ipdrops_ah_bytes_expire; 4000 goto ah_in_discard; 4001 } 4002 length -= (sizeof (ah_t) + align_len); 4003 4004 nipha->ipha_length = htons((uint16_t)length); 4005 nipha->ipha_hdr_checksum = 0; 4006 nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha); 4007 /* 4008 * Skip IP,AH and the authentication data in the 4009 * original datagram. 4010 */ 4011 mp->b_rptr += (ah_offset + sizeof (ah_t) + align_len); 4012 } else { 4013 uchar_t *whereptr; 4014 int hdrlen; 4015 uint8_t *nexthdr; 4016 ip6_hbh_t *hbhhdr; 4017 ip6_dest_t *dsthdr; 4018 ip6_rthdr0_t *rthdr; 4019 4020 nip6h = (ip6_t *)phdr_mp->b_rptr; 4021 4022 /* 4023 * Make phdr_mp hold until the AH header and make 4024 * mp hold everything past AH header. 4025 */ 4026 length = ntohs(nip6h->ip6_plen); 4027 if (!ah_age_bytes(assoc, length + sizeof (ip6_t), B_TRUE)) { 4028 /* The ipsa has hit hard expiration, LOG and AUDIT. */ 4029 ipsec_assocfailure(info.mi_idnum, 0, 0, 4030 SL_ERROR | SL_WARN, 4031 "AH Association 0x%x, dst %s had bytes " 4032 "expire.\n", assoc->ipsa_spi, &ip6h->ip6_dst, 4033 AF_INET6); 4034 AH_BUMP_STAT(bytes_expired); 4035 counter = &ipdrops_ah_bytes_expire; 4036 goto ah_in_discard; 4037 } 4038 bcopy(ip6h, nip6h, ah_offset); 4039 phdr_mp->b_wptr = phdr_mp->b_rptr + ah_offset; 4040 mp->b_rptr += (ah_offset + sizeof (ah_t) + align_len); 4041 4042 /* 4043 * Update the next header field of the header preceding 4044 * AH with the next header field of AH. Start with the 4045 * IPv6 header and proceed with the extension headers 4046 * until we find what we're looking for. 4047 */ 4048 nexthdr = &nip6h->ip6_nxt; 4049 whereptr = (uchar_t *)nip6h; 4050 hdrlen = sizeof (ip6_t); 4051 4052 while (*nexthdr != IPPROTO_AH) { 4053 whereptr += hdrlen; 4054 /* Assume IP has already stripped it */ 4055 ASSERT(*nexthdr != IPPROTO_FRAGMENT && 4056 *nexthdr != IPPROTO_RAW); 4057 switch (*nexthdr) { 4058 case IPPROTO_HOPOPTS: 4059 hbhhdr = (ip6_hbh_t *)whereptr; 4060 nexthdr = &hbhhdr->ip6h_nxt; 4061 hdrlen = 8 * (hbhhdr->ip6h_len + 1); 4062 break; 4063 case IPPROTO_DSTOPTS: 4064 dsthdr = (ip6_dest_t *)whereptr; 4065 nexthdr = &dsthdr->ip6d_nxt; 4066 hdrlen = 8 * (dsthdr->ip6d_len + 1); 4067 break; 4068 case IPPROTO_ROUTING: 4069 rthdr = (ip6_rthdr0_t *)whereptr; 4070 nexthdr = &rthdr->ip6r0_nxt; 4071 hdrlen = 8 * (rthdr->ip6r0_len + 1); 4072 break; 4073 } 4074 } 4075 *nexthdr = ah->ah_nexthdr; 4076 4077 length -= (sizeof (ah_t) + align_len); 4078 nip6h->ip6_plen = htons((uint16_t)length); 4079 } 4080 4081 return (IPSEC_STATUS_SUCCESS); 4082 4083 ah_in_discard: 4084 IP_AH_BUMP_STAT(in_discards); 4085 ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &ah_dropper); 4086 return (IPSEC_STATUS_FAILED); 4087 } 4088 4089 /* 4090 * Invoked after processing of an outbound packet by the 4091 * kernel crypto framework, either by ah_submit_req() for a request 4092 * executed syncrhonously, or by the KEF callback for a request 4093 * executed asynchronously. 4094 */ 4095 static ipsec_status_t 4096 ah_auth_out_done(mblk_t *ipsec_out) 4097 { 4098 mblk_t *phdr_mp; 4099 mblk_t *mp; 4100 int align_len; 4101 uint32_t hdrs_length; 4102 uchar_t *ptr; 4103 uint32_t length; 4104 boolean_t isv4; 4105 ipsec_out_t *io; 4106 size_t icv_len; 4107 4108 io = (ipsec_out_t *)ipsec_out->b_rptr; 4109 isv4 = io->ipsec_out_v4; 4110 icv_len = io->ipsec_out_crypto_mac.cd_raw.iov_len; 4111 4112 phdr_mp = ipsec_out->b_cont; 4113 if (phdr_mp == NULL) { 4114 ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, 4115 &ipdrops_ah_nomem, &ah_dropper); 4116 return (IPSEC_STATUS_FAILED); 4117 } 4118 4119 mp = phdr_mp->b_cont; 4120 if (mp == NULL) { 4121 ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, 4122 &ipdrops_ah_nomem, &ah_dropper); 4123 return (IPSEC_STATUS_FAILED); 4124 } 4125 mp->b_rptr -= io->ipsec_out_skip_len; 4126 4127 if (isv4) { 4128 ipha_t *ipha; 4129 ipha_t *nipha; 4130 4131 ipha = (ipha_t *)mp->b_rptr; 4132 hdrs_length = ipha->ipha_version_and_hdr_length - 4133 (uint8_t)((IP_VERSION << 4)); 4134 hdrs_length <<= 2; 4135 align_len = P2ALIGN(icv_len + IPV4_PADDING_ALIGN - 1, 4136 IPV4_PADDING_ALIGN); 4137 /* 4138 * phdr_mp must have the right amount of space for the 4139 * combined IP and AH header. Copy the IP header and 4140 * the ack_data onto AH. Note that the AH header was 4141 * already formed before the ICV calculation and hence 4142 * you don't have to copy it here. 4143 */ 4144 bcopy(mp->b_rptr, phdr_mp->b_rptr, hdrs_length); 4145 4146 ptr = phdr_mp->b_rptr + hdrs_length + sizeof (ah_t); 4147 bcopy(phdr_mp->b_wptr, ptr, icv_len); 4148 4149 /* 4150 * Compute the new header checksum as we are assigning 4151 * IPPROTO_AH and adjusting the length here. 4152 */ 4153 nipha = (ipha_t *)phdr_mp->b_rptr; 4154 4155 nipha->ipha_protocol = IPPROTO_AH; 4156 length = ntohs(nipha->ipha_length); 4157 length += (sizeof (ah_t) + align_len); 4158 nipha->ipha_length = htons((uint16_t)length); 4159 nipha->ipha_hdr_checksum = 0; 4160 nipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(nipha); 4161 } else { 4162 ip6_t *ip6h; 4163 ip6_t *nip6h; 4164 uint_t ah_offset; 4165 4166 ip6h = (ip6_t *)mp->b_rptr; 4167 nip6h = (ip6_t *)phdr_mp->b_rptr; 4168 align_len = P2ALIGN(icv_len + IPV6_PADDING_ALIGN - 1, 4169 IPV6_PADDING_ALIGN); 4170 /* 4171 * phdr_mp must have the right amount of space for the 4172 * combined IP and AH header. Copy the IP header with 4173 * options into the pseudo header. When we constructed 4174 * a pseudo header, we did not copy some of the mutable 4175 * fields. We do it now by calling ah_fix_phdr_v6() 4176 * with the last argument B_TRUE. It returns the 4177 * ah_offset into the pseudo header. 4178 */ 4179 4180 bcopy(ip6h, nip6h, IPV6_HDR_LEN); 4181 ah_offset = ah_fix_phdr_v6(nip6h, ip6h, B_TRUE, B_TRUE); 4182 ASSERT(ah_offset != 0); 4183 /* 4184 * phdr_mp can hold exactly the whole IP header with options 4185 * plus the AH header also. Thus subtracting the AH header's 4186 * size should give exactly how much of the original header 4187 * should be skipped. 4188 */ 4189 hdrs_length = (phdr_mp->b_wptr - phdr_mp->b_rptr) - 4190 sizeof (ah_t) - icv_len; 4191 bcopy(phdr_mp->b_wptr, ((uint8_t *)nip6h + ah_offset + 4192 sizeof (ah_t)), icv_len); 4193 length = ntohs(nip6h->ip6_plen); 4194 length += (sizeof (ah_t) + align_len); 4195 nip6h->ip6_plen = htons((uint16_t)length); 4196 } 4197 4198 /* Skip the original IP header */ 4199 mp->b_rptr += hdrs_length; 4200 if (mp->b_rptr == mp->b_wptr) { 4201 phdr_mp->b_cont = mp->b_cont; 4202 freeb(mp); 4203 } 4204 4205 return (IPSEC_STATUS_SUCCESS); 4206 } 4207 4208 /* 4209 * Wrapper to allow IP to trigger an AH strlog message if an error 4210 * condition is found during SA selection. 4211 */ 4212 void 4213 ipsecah_rl_strlog(char level, ushort_t sl, char *fmt, ...) 4214 { 4215 va_list adx; 4216 4217 va_start(adx, fmt); 4218 ipsec_rl_strlog(info.mi_idnum, 0, level, sl, fmt, adx); 4219 va_end(adx); 4220 } 4221 4222 /* 4223 * Wrapper to allow IP to trigger an AH association failure message 4224 * during SA inbound selection. 4225 */ 4226 void 4227 ipsecah_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt, 4228 uint32_t spi, void *addr, int af) 4229 { 4230 if (ipsecah_log_unknown_spi) { 4231 ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi, 4232 addr, af); 4233 } 4234 4235 ip_drop_packet(mp, B_TRUE, NULL, NULL, &ipdrops_ah_no_sa, 4236 &ah_dropper); 4237 } 4238 4239 /* 4240 * Initialize the AH input and output processing functions. 4241 */ 4242 void 4243 ipsecah_init_funcs(ipsa_t *sa) 4244 { 4245 if (sa->ipsa_output_func == NULL) 4246 sa->ipsa_output_func = ah_outbound; 4247 if (sa->ipsa_input_func == NULL) 4248 sa->ipsa_input_func = ah_inbound; 4249 } 4250