xref: /titanic_44/usr/src/uts/common/inet/ip/ip_rts.c (revision cb8a054b1ab30d5caa746e6c44f29d4c9d3071c1)
1 /*
2  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 1988, 1991, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)rtsock.c	8.6 (Berkeley) 2/11/95
39  */
40 
41 /*
42  * This file contains routines that processes routing socket requests.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/stream.h>
47 #include <sys/stropts.h>
48 #include <sys/ddi.h>
49 #include <sys/strsubr.h>
50 #include <sys/cmn_err.h>
51 #include <sys/debug.h>
52 #include <sys/policy.h>
53 #include <sys/zone.h>
54 
55 #include <sys/systm.h>
56 #include <sys/param.h>
57 #include <sys/socket.h>
58 #include <sys/strsun.h>
59 #include <net/if.h>
60 #include <net/route.h>
61 #include <netinet/in.h>
62 #include <net/if_dl.h>
63 #include <netinet/ip6.h>
64 
65 #include <inet/common.h>
66 #include <inet/ip.h>
67 #include <inet/ip6.h>
68 #include <inet/ip_if.h>
69 #include <inet/ip_ire.h>
70 #include <inet/ip_ftable.h>
71 #include <inet/ip_rts.h>
72 
73 #include <inet/ipclassifier.h>
74 
75 #include <sys/tsol/tndb.h>
76 #include <sys/tsol/tnet.h>
77 
78 #define	RTS_MSG_SIZE(type, rtm_addrs, af, sacnt) \
79 	(rts_data_msg_size(rtm_addrs, af, sacnt) + rts_header_msg_size(type))
80 
81 static size_t	rts_copyfromsockaddr(struct sockaddr *sa, in6_addr_t *addrp);
82 static void	rts_fill_msg(int type, int rtm_addrs, ipaddr_t dst,
83     ipaddr_t mask, ipaddr_t gateway, ipaddr_t src_addr, ipaddr_t brd_addr,
84     ipaddr_t author, ipaddr_t ifaddr, const ill_t *ill, mblk_t *mp,
85     const tsol_gc_t *);
86 static int	rts_getaddrs(rt_msghdr_t *rtm, in6_addr_t *dst_addrp,
87     in6_addr_t *gw_addrp, in6_addr_t *net_maskp, in6_addr_t *authorp,
88     in6_addr_t *if_addrp, in6_addr_t *src_addrp, ushort_t *indexp,
89     sa_family_t *afp, tsol_rtsecattr_t *rtsecattr, int *error);
90 static void	rts_getifdata(if_data_t *if_data, const ipif_t *ipif);
91 static int	rts_getmetrics(ire_t *ire, ill_t *ill, rt_metrics_t *metrics);
92 static mblk_t	*rts_rtmget(mblk_t *mp, ire_t *ire, ire_t *ifire,
93     const in6_addr_t *setsrc, tsol_ire_gw_secattr_t *attrp, sa_family_t af);
94 static void	rts_setmetrics(ire_t *ire, uint_t which, rt_metrics_t *metrics);
95 static ire_t	*ire_lookup_v4(ipaddr_t dst_addr, ipaddr_t net_mask,
96     ipaddr_t gw_addr, const ill_t *ill, zoneid_t zoneid,
97     const ts_label_t *tsl, int match_flags, ip_stack_t *ipst, ire_t **pifire,
98     ipaddr_t *v4setsrcp, tsol_ire_gw_secattr_t **gwattrp);
99 static ire_t	*ire_lookup_v6(const in6_addr_t *dst_addr_v6,
100     const in6_addr_t *net_mask_v6, const in6_addr_t *gw_addr_v6,
101     const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, int match_flags,
102     ip_stack_t *ipst, ire_t **pifire,
103     in6_addr_t *v6setsrcp, tsol_ire_gw_secattr_t **gwattrp);
104 
105 /*
106  * Send `mp' to all eligible routing queues.  A queue is ineligible if:
107  *
108  *  1. SO_USELOOPBACK is off and it is not the originating queue.
109  *  2. RTA_UNDER_IPMP is on and RTSQ_UNDER_IPMP is not set in `flags'.
110  *  3. RTA_UNDER_IPMP is off and RTSQ_NORMAL is not set in `flags'.
111  *  4. It is not the same address family as `af', and `af' isn't AF_UNSPEC.
112  */
113 void
114 rts_queue_input(mblk_t *mp, conn_t *o_connp, sa_family_t af, uint_t flags,
115     ip_stack_t *ipst)
116 {
117 	mblk_t	*mp1;
118 	conn_t 	*connp, *next_connp;
119 
120 	/*
121 	 * Since we don't have an ill_t here, RTSQ_DEFAULT must already be
122 	 * resolved to one or more of RTSQ_NORMAL|RTSQ_UNDER_IPMP at this point.
123 	 */
124 	ASSERT(!(flags & RTSQ_DEFAULT));
125 
126 	mutex_enter(&ipst->ips_rts_clients->connf_lock);
127 	connp = ipst->ips_rts_clients->connf_head;
128 
129 	for (; connp != NULL; connp = next_connp) {
130 		next_connp = connp->conn_next;
131 		/*
132 		 * If there was a family specified when this routing socket was
133 		 * created and it doesn't match the family of the message to
134 		 * copy, then continue.
135 		 */
136 		if ((connp->conn_proto != AF_UNSPEC) &&
137 		    (connp->conn_proto != af))
138 			continue;
139 
140 		/*
141 		 * Queue the message only if the conn_t and flags match.
142 		 */
143 		if (connp->conn_rtaware & RTAW_UNDER_IPMP) {
144 			if (!(flags & RTSQ_UNDER_IPMP))
145 				continue;
146 		} else {
147 			if (!(flags & RTSQ_NORMAL))
148 				continue;
149 		}
150 		/*
151 		 * For the originating queue, we only copy the message upstream
152 		 * if loopback is set.  For others reading on the routing
153 		 * socket, we check if there is room upstream for a copy of the
154 		 * message.
155 		 */
156 		if ((o_connp == connp) && connp->conn_useloopback == 0) {
157 			connp = connp->conn_next;
158 			continue;
159 		}
160 		CONN_INC_REF(connp);
161 		mutex_exit(&ipst->ips_rts_clients->connf_lock);
162 		/* Pass to rts_input */
163 		if (IPCL_IS_NONSTR(connp) ? !connp->conn_flow_cntrld :
164 		    canputnext(connp->conn_rq)) {
165 			mp1 = dupmsg(mp);
166 			if (mp1 == NULL)
167 				mp1 = copymsg(mp);
168 			/* Note that we pass a NULL ira to rts_input */
169 			if (mp1 != NULL)
170 				(connp->conn_recv)(connp, mp1, NULL, NULL);
171 		}
172 
173 		mutex_enter(&ipst->ips_rts_clients->connf_lock);
174 		/* reload next_connp since conn_next may have changed */
175 		next_connp = connp->conn_next;
176 		CONN_DEC_REF(connp);
177 	}
178 	mutex_exit(&ipst->ips_rts_clients->connf_lock);
179 	freemsg(mp);
180 }
181 
182 /*
183  * Takes an ire and sends an ack to all the routing sockets. This
184  * routine is used
185  * - when a route is created/deleted through the ioctl interface.
186  * - when a stale redirect is deleted
187  */
188 void
189 ip_rts_rtmsg(int type, ire_t *ire, int error, ip_stack_t *ipst)
190 {
191 	mblk_t		*mp;
192 	rt_msghdr_t	*rtm;
193 	int		rtm_addrs = (RTA_DST | RTA_NETMASK | RTA_GATEWAY);
194 	sa_family_t	af;
195 	in6_addr_t	gw_addr_v6;
196 
197 	if (ire == NULL)
198 		return;
199 	ASSERT(ire->ire_ipversion == IPV4_VERSION ||
200 	    ire->ire_ipversion == IPV6_VERSION);
201 
202 	ASSERT(!(ire->ire_type & IRE_IF_CLONE));
203 
204 	if (ire->ire_flags & RTF_SETSRC)
205 		rtm_addrs |= RTA_SRC;
206 
207 	switch (ire->ire_ipversion) {
208 	case IPV4_VERSION:
209 		af = AF_INET;
210 		mp = rts_alloc_msg(type, rtm_addrs, af, 0);
211 		if (mp == NULL)
212 			return;
213 		rts_fill_msg(type, rtm_addrs, ire->ire_addr, ire->ire_mask,
214 		    ire->ire_gateway_addr, ire->ire_setsrc_addr, 0, 0, 0, NULL,
215 		    mp, NULL);
216 		break;
217 	case IPV6_VERSION:
218 		af = AF_INET6;
219 		mp = rts_alloc_msg(type, rtm_addrs, af, 0);
220 		if (mp == NULL)
221 			return;
222 		mutex_enter(&ire->ire_lock);
223 		gw_addr_v6 = ire->ire_gateway_addr_v6;
224 		mutex_exit(&ire->ire_lock);
225 		rts_fill_msg_v6(type, rtm_addrs, &ire->ire_addr_v6,
226 		    &ire->ire_mask_v6, &gw_addr_v6,
227 		    &ire->ire_setsrc_addr_v6, &ipv6_all_zeros, &ipv6_all_zeros,
228 		    &ipv6_all_zeros, NULL, mp, NULL);
229 		break;
230 	}
231 	rtm = (rt_msghdr_t *)mp->b_rptr;
232 	mp->b_wptr = (uchar_t *)&mp->b_rptr[rtm->rtm_msglen];
233 	rtm->rtm_addrs = rtm_addrs;
234 	rtm->rtm_flags = ire->ire_flags;
235 	if (error != 0)
236 		rtm->rtm_errno = error;
237 	else
238 		rtm->rtm_flags |= RTF_DONE;
239 	rts_queue_input(mp, NULL, af, RTSQ_ALL, ipst);
240 }
241 
242 /*
243  * This is a call from the RTS module
244  * indicating that this is a Routing Socket
245  * Stream. Insert this conn_t in routing
246  * socket client list.
247  */
248 void
249 ip_rts_register(conn_t *connp)
250 {
251 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
252 
253 	connp->conn_useloopback = 1;
254 	ipcl_hash_insert_wildcard(ipst->ips_rts_clients, connp);
255 }
256 
257 /*
258  * This is a call from the RTS module indicating that it is closing.
259  */
260 void
261 ip_rts_unregister(conn_t *connp)
262 {
263 	ipcl_hash_remove(connp);
264 }
265 
266 /*
267  * Processes requests received on a routing socket. It extracts all the
268  * arguments and calls the appropriate function to process the request.
269  *
270  * RTA_SRC bit flag requests are sent by 'route -setsrc'.
271  *
272  * In general, this function does not consume the message supplied but rather
273  * sends the message upstream with an appropriate UNIX errno.
274  */
275 int
276 ip_rts_request_common(mblk_t *mp, conn_t *connp, cred_t *ioc_cr)
277 {
278 	rt_msghdr_t	*rtm = NULL;
279 	in6_addr_t	dst_addr_v6;
280 	in6_addr_t	src_addr_v6;
281 	in6_addr_t	gw_addr_v6;
282 	in6_addr_t	net_mask_v6;
283 	in6_addr_t	author_v6;
284 	in6_addr_t	if_addr_v6;
285 	mblk_t		*mp1;
286 	ire_t		*ire = NULL;
287 	ire_t		*ifire = NULL;
288 	ipaddr_t	v4setsrc;
289 	in6_addr_t	v6setsrc = ipv6_all_zeros;
290 	tsol_ire_gw_secattr_t *gwattr = NULL;
291 	int		error = 0;
292 	int		match_flags = MATCH_IRE_DSTONLY;
293 	int		match_flags_local = MATCH_IRE_TYPE | MATCH_IRE_GW;
294 	int		found_addrs;
295 	sa_family_t	af;
296 	ipaddr_t	dst_addr;
297 	ipaddr_t	gw_addr;
298 	ipaddr_t	src_addr;
299 	ipaddr_t	net_mask;
300 	ushort_t	index;
301 	boolean_t	gcgrp_xtraref = B_FALSE;
302 	tsol_gcgrp_addr_t ga;
303 	tsol_rtsecattr_t rtsecattr;
304 	struct rtsa_s	*rtsap = NULL;
305 	tsol_gcgrp_t	*gcgrp = NULL;
306 	tsol_gc_t	*gc = NULL;
307 	ts_label_t	*tsl = NULL;
308 	zoneid_t	zoneid;
309 	ip_stack_t	*ipst;
310 	ill_t   	*ill = NULL;
311 
312 	zoneid = connp->conn_zoneid;
313 	ipst = connp->conn_netstack->netstack_ip;
314 
315 	if (mp->b_cont != NULL && !pullupmsg(mp, -1)) {
316 		freemsg(mp);
317 		error =  EINVAL;
318 		goto done;
319 	}
320 	if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
321 		freemsg(mp);
322 		error = EINVAL;
323 		goto done;
324 	}
325 
326 	/*
327 	 * Check the routing message for basic consistency including the
328 	 * version number and that the number of octets written is the same
329 	 * as specified by the rtm_msglen field.
330 	 *
331 	 * At this point, an error can be delivered back via rtm_errno.
332 	 */
333 	rtm = (rt_msghdr_t *)mp->b_rptr;
334 	if ((mp->b_wptr - mp->b_rptr) != rtm->rtm_msglen) {
335 		error = EINVAL;
336 		goto done;
337 	}
338 	if (rtm->rtm_version != RTM_VERSION) {
339 		error = EPROTONOSUPPORT;
340 		goto done;
341 	}
342 
343 	/* Only allow RTM_GET or RTM_RESOLVE for unprivileged process */
344 	if (rtm->rtm_type != RTM_GET &&
345 	    rtm->rtm_type != RTM_RESOLVE &&
346 	    (ioc_cr == NULL ||
347 	    secpolicy_ip_config(ioc_cr, B_FALSE) != 0)) {
348 		error = EPERM;
349 		goto done;
350 	}
351 
352 	found_addrs = rts_getaddrs(rtm, &dst_addr_v6, &gw_addr_v6, &net_mask_v6,
353 	    &author_v6, &if_addr_v6, &src_addr_v6, &index, &af, &rtsecattr,
354 	    &error);
355 
356 	if (error != 0)
357 		goto done;
358 
359 	if ((found_addrs & RTA_DST) == 0) {
360 		error = EINVAL;
361 		goto done;
362 	}
363 
364 	/*
365 	 * Based on the address family of the destination address, determine
366 	 * the destination, gateway and netmask and return the appropriate error
367 	 * if an unknown address family was specified (following the errno
368 	 * values that 4.4BSD-Lite2 returns.)
369 	 */
370 	switch (af) {
371 	case AF_INET:
372 		IN6_V4MAPPED_TO_IPADDR(&dst_addr_v6, dst_addr);
373 		IN6_V4MAPPED_TO_IPADDR(&src_addr_v6, src_addr);
374 		IN6_V4MAPPED_TO_IPADDR(&gw_addr_v6, gw_addr);
375 		if (((found_addrs & RTA_NETMASK) == 0) ||
376 		    (rtm->rtm_flags & RTF_HOST))
377 			net_mask = IP_HOST_MASK;
378 		else
379 			IN6_V4MAPPED_TO_IPADDR(&net_mask_v6, net_mask);
380 		break;
381 	case AF_INET6:
382 		if (((found_addrs & RTA_NETMASK) == 0) ||
383 		    (rtm->rtm_flags & RTF_HOST))
384 			net_mask_v6 = ipv6_all_ones;
385 		break;
386 	default:
387 		/*
388 		 * These errno values are meant to be compatible with
389 		 * 4.4BSD-Lite2 for the given message types.
390 		 */
391 		switch (rtm->rtm_type) {
392 		case RTM_ADD:
393 		case RTM_DELETE:
394 			error = ESRCH;
395 			goto done;
396 		case RTM_GET:
397 		case RTM_CHANGE:
398 			error = EAFNOSUPPORT;
399 			goto done;
400 		default:
401 			error = EOPNOTSUPP;
402 			goto done;
403 		}
404 	}
405 
406 	/*
407 	 * At this point, the address family must be something known.
408 	 */
409 	ASSERT(af == AF_INET || af == AF_INET6);
410 
411 	/* Handle RTA_IFP */
412 	if (index != 0) {
413 		ipif_t		*ipif;
414 lookup:
415 		ill = ill_lookup_on_ifindex(index, af == AF_INET6, ipst);
416 		if (ill == NULL) {
417 			error = EINVAL;
418 			goto done;
419 		}
420 
421 		/*
422 		 * Since all interfaces in an IPMP group must be equivalent,
423 		 * we prevent changes to a specific underlying interface's
424 		 * routing configuration.  However, for backward compatibility,
425 		 * we intepret a request to add a route on an underlying
426 		 * interface as a request to add a route on its IPMP interface.
427 		 */
428 		if (IS_UNDER_IPMP(ill)) {
429 			switch (rtm->rtm_type) {
430 			case RTM_CHANGE:
431 			case RTM_DELETE:
432 				error = EINVAL;
433 				goto done;
434 			case RTM_ADD:
435 				index = ipmp_ill_get_ipmp_ifindex(ill);
436 				ill_refrele(ill);
437 				if (index == 0) {
438 					ill = NULL; /* already refrele'd */
439 					error = EINVAL;
440 					goto done;
441 				}
442 				goto lookup;
443 			}
444 		}
445 
446 		match_flags |= MATCH_IRE_ILL;
447 		/*
448 		 * This provides the same zoneid as in Solaris 10
449 		 * that -ifp picks the zoneid from the first ipif on the ill.
450 		 * But it might not be useful since the first ipif will always
451 		 * have the same zoneid as the ill.
452 		 */
453 		ipif = ipif_get_next_ipif(NULL, ill);
454 		if (ipif != NULL) {
455 			zoneid = ipif->ipif_zoneid;
456 			ipif_refrele(ipif);
457 		}
458 	}
459 
460 	/*
461 	 * If a netmask was supplied in the message, then subsequent route
462 	 * lookups will attempt to match on the netmask as well.
463 	 */
464 	if ((found_addrs & RTA_NETMASK) != 0)
465 		match_flags |= MATCH_IRE_MASK;
466 
467 	/*
468 	 * We only process any passed-in route security attributes for
469 	 * either RTM_ADD or RTM_CHANGE message; We overload them
470 	 * to do an RTM_GET as a different label; ignore otherwise.
471 	 */
472 	if (rtm->rtm_type == RTM_ADD || rtm->rtm_type == RTM_CHANGE ||
473 	    rtm->rtm_type == RTM_GET) {
474 		ASSERT(rtsecattr.rtsa_cnt <= TSOL_RTSA_REQUEST_MAX);
475 		if (rtsecattr.rtsa_cnt > 0)
476 			rtsap = &rtsecattr.rtsa_attr[0];
477 	}
478 
479 	switch (rtm->rtm_type) {
480 	case RTM_ADD:
481 		/* if we are adding a route, gateway is a must */
482 		if ((found_addrs & RTA_GATEWAY) == 0) {
483 			error = EINVAL;
484 			goto done;
485 		}
486 
487 		/* Multirouting does not support net routes. */
488 		if ((rtm->rtm_flags & (RTF_MULTIRT | RTF_HOST)) ==
489 		    RTF_MULTIRT) {
490 			error = EADDRNOTAVAIL;
491 			goto done;
492 		}
493 
494 		/*
495 		 * Multirouting and user-specified source addresses
496 		 * do not support interface based routing.
497 		 * Assigning a source address to an interface based
498 		 * route is achievable by plumbing a new ipif and
499 		 * setting up the interface route via this ipif,
500 		 * though.
501 		 */
502 		if (rtm->rtm_flags & (RTF_MULTIRT | RTF_SETSRC)) {
503 			if ((rtm->rtm_flags & RTF_GATEWAY) == 0) {
504 				error = EADDRNOTAVAIL;
505 				goto done;
506 			}
507 		}
508 
509 		switch (af) {
510 		case AF_INET:
511 			if (src_addr != INADDR_ANY) {
512 				uint_t type;
513 
514 				/*
515 				 * The RTF_SETSRC flag is present, check that
516 				 * the supplied src address is not the loopback
517 				 * address. This would produce martian packets.
518 				 */
519 				if (src_addr == htonl(INADDR_LOOPBACK)) {
520 					error = EINVAL;
521 					goto done;
522 				}
523 				/*
524 				 * Also check that the supplied address is a
525 				 * valid, local one. Only allow IFF_UP ones
526 				 */
527 				type = ip_type_v4(src_addr, ipst);
528 				if (!(type & (IRE_LOCAL|IRE_LOOPBACK))) {
529 					error = EADDRNOTAVAIL;
530 					goto done;
531 				}
532 			} else {
533 				/*
534 				 * The RTF_SETSRC modifier must be associated
535 				 * to a non-null source address.
536 				 */
537 				if (rtm->rtm_flags & RTF_SETSRC) {
538 					error = EINVAL;
539 					goto done;
540 				}
541 			}
542 
543 			error = ip_rt_add(dst_addr, net_mask, gw_addr, src_addr,
544 			    rtm->rtm_flags, ill, &ire, B_FALSE,
545 			    rtsap, ipst, zoneid);
546 			if (ill != NULL)
547 				ASSERT(!MUTEX_HELD(&ill->ill_lock));
548 			break;
549 		case AF_INET6:
550 			if (!IN6_IS_ADDR_UNSPECIFIED(&src_addr_v6)) {
551 				uint_t type;
552 
553 				/*
554 				 * The RTF_SETSRC flag is present, check that
555 				 * the supplied src address is not the loopback
556 				 * address. This would produce martian packets.
557 				 */
558 				if (IN6_IS_ADDR_LOOPBACK(&src_addr_v6)) {
559 					error = EINVAL;
560 					goto done;
561 				}
562 				/*
563 				 * Also check that the supplied address is a
564 				 * valid, local one. Only allow UP ones.
565 				 */
566 				type = ip_type_v6(&src_addr_v6, ipst);
567 				if (!(type & (IRE_LOCAL|IRE_LOOPBACK))) {
568 					error = EADDRNOTAVAIL;
569 					goto done;
570 				}
571 
572 				error = ip_rt_add_v6(&dst_addr_v6, &net_mask_v6,
573 				    &gw_addr_v6, &src_addr_v6, rtm->rtm_flags,
574 				    ill, &ire, rtsap, ipst, zoneid);
575 				break;
576 			}
577 			/*
578 			 * The RTF_SETSRC modifier must be associated
579 			 * to a non-null source address.
580 			 */
581 			if (rtm->rtm_flags & RTF_SETSRC) {
582 				error = EINVAL;
583 				goto done;
584 			}
585 			error = ip_rt_add_v6(&dst_addr_v6, &net_mask_v6,
586 			    &gw_addr_v6, NULL, rtm->rtm_flags,
587 			    ill, &ire, rtsap, ipst, zoneid);
588 			if (ill != NULL)
589 				ASSERT(!MUTEX_HELD(&ill->ill_lock));
590 			break;
591 		}
592 		if (error != 0)
593 			goto done;
594 		ASSERT(ire != NULL);
595 		rts_setmetrics(ire, rtm->rtm_inits, &rtm->rtm_rmx);
596 		break;
597 	case RTM_DELETE:
598 		/* if we are deleting a route, gateway is a must */
599 		if ((found_addrs & RTA_GATEWAY) == 0) {
600 			error = EINVAL;
601 			goto done;
602 		}
603 		/*
604 		 * The RTF_SETSRC modifier does not make sense
605 		 * when deleting a route.
606 		 */
607 		if (rtm->rtm_flags & RTF_SETSRC) {
608 			error = EINVAL;
609 			goto done;
610 		}
611 
612 		switch (af) {
613 		case AF_INET:
614 			error = ip_rt_delete(dst_addr, net_mask, gw_addr,
615 			    found_addrs, rtm->rtm_flags, ill, B_FALSE,
616 			    ipst, zoneid);
617 			break;
618 		case AF_INET6:
619 			error = ip_rt_delete_v6(&dst_addr_v6, &net_mask_v6,
620 			    &gw_addr_v6, found_addrs, rtm->rtm_flags, ill,
621 			    ipst, zoneid);
622 			break;
623 		}
624 		break;
625 	case RTM_GET:
626 	case RTM_CHANGE:
627 		/*
628 		 * In the case of RTM_GET, the forwarding table should be
629 		 * searched recursively.  Also, if a gateway was
630 		 * specified then the gateway address must also be matched.
631 		 *
632 		 * In the case of RTM_CHANGE, the gateway address (if supplied)
633 		 * is the new gateway address so matching on the gateway address
634 		 * is not done.  This can lead to ambiguity when looking up the
635 		 * route to change as usually only the destination (and netmask,
636 		 * if supplied) is used for the lookup.  However if a RTA_IFP
637 		 * sockaddr is also supplied, it can disambiguate which route to
638 		 * change provided the ambigous routes are tied to distinct
639 		 * ill's (or interface indices).  If the routes are not tied to
640 		 * any particular interfaces (for example, with traditional
641 		 * gateway routes), then a RTA_IFP sockaddr will be of no use as
642 		 * it won't match any such routes.
643 		 * RTA_SRC is not supported for RTM_GET and RTM_CHANGE,
644 		 * except when RTM_CHANGE is combined to RTF_SETSRC.
645 		 */
646 		if (((found_addrs & RTA_SRC) != 0) &&
647 		    ((rtm->rtm_type == RTM_GET) ||
648 		    !(rtm->rtm_flags & RTF_SETSRC))) {
649 			error = EOPNOTSUPP;
650 			goto done;
651 		}
652 
653 		if (rtm->rtm_type == RTM_GET) {
654 			match_flags |= MATCH_IRE_SECATTR;
655 			match_flags_local |= MATCH_IRE_SECATTR;
656 			if ((found_addrs & RTA_GATEWAY) != 0)
657 				match_flags |= MATCH_IRE_GW;
658 			if (ioc_cr)
659 				tsl = crgetlabel(ioc_cr);
660 			if (rtsap != NULL) {
661 				if (rtsa_validate(rtsap) != 0) {
662 					error = EINVAL;
663 					goto done;
664 				}
665 				if (tsl != NULL &&
666 				    crgetzoneid(ioc_cr) != GLOBAL_ZONEID &&
667 				    (tsl->tsl_doi != rtsap->rtsa_doi ||
668 				    !bldominates(&tsl->tsl_label,
669 				    &rtsap->rtsa_slrange.lower_bound))) {
670 					error = EPERM;
671 					goto done;
672 				}
673 				tsl = labelalloc(
674 				    &rtsap->rtsa_slrange.lower_bound,
675 				    rtsap->rtsa_doi, KM_NOSLEEP);
676 			}
677 		}
678 		if (rtm->rtm_type == RTM_CHANGE) {
679 			if ((found_addrs & RTA_GATEWAY) &&
680 			    (rtm->rtm_flags & RTF_SETSRC)) {
681 				/*
682 				 * Do not want to change the gateway,
683 				 * but rather the source address.
684 				 */
685 				match_flags |= MATCH_IRE_GW;
686 			}
687 		}
688 
689 		/*
690 		 * If the netmask is all ones (either as supplied or as derived
691 		 * above), then first check for an IRE_LOOPBACK or
692 		 * IRE_LOCAL entry.
693 		 *
694 		 * If we didn't check for or find an IRE_LOOPBACK or IRE_LOCAL
695 		 * entry, then look for any other type of IRE.
696 		 */
697 		switch (af) {
698 		case AF_INET:
699 			if (net_mask == IP_HOST_MASK) {
700 				ire = ire_ftable_lookup_v4(dst_addr, 0, gw_addr,
701 				    IRE_LOCAL | IRE_LOOPBACK, NULL, zoneid,
702 				    tsl, match_flags_local, 0, ipst, NULL);
703 			}
704 			if (ire == NULL) {
705 				ire = ire_lookup_v4(dst_addr, net_mask,
706 				    gw_addr, ill, zoneid, tsl, match_flags,
707 				    ipst, &ifire, &v4setsrc, &gwattr);
708 				IN6_IPADDR_TO_V4MAPPED(v4setsrc, &v6setsrc);
709 			}
710 			break;
711 		case AF_INET6:
712 			if (IN6_ARE_ADDR_EQUAL(&net_mask_v6, &ipv6_all_ones)) {
713 				ire = ire_ftable_lookup_v6(&dst_addr_v6, NULL,
714 				    &gw_addr_v6, IRE_LOCAL | IRE_LOOPBACK, NULL,
715 				    zoneid, tsl, match_flags_local, 0, ipst,
716 				    NULL);
717 			}
718 			if (ire == NULL) {
719 				ire = ire_lookup_v6(&dst_addr_v6,
720 				    &net_mask_v6, &gw_addr_v6, ill, zoneid,
721 				    tsl, match_flags, ipst, &ifire, &v6setsrc,
722 				    &gwattr);
723 			}
724 			break;
725 		}
726 		if (tsl != NULL && tsl != crgetlabel(ioc_cr))
727 			label_rele(tsl);
728 
729 		if (ire == NULL) {
730 			error = ESRCH;
731 			goto done;
732 		}
733 		/*
734 		 * Want to return failure if we get an IRE_NOROUTE from
735 		 * ire_route_recursive
736 		 */
737 		if (ire->ire_type & IRE_NOROUTE) {
738 			ire_refrele(ire);
739 			ire = NULL;
740 			error = ESRCH;
741 			goto done;
742 		}
743 
744 		/* we know the IRE before we come here */
745 		switch (rtm->rtm_type) {
746 		case RTM_GET:
747 			mp1 = rts_rtmget(mp, ire, ifire, &v6setsrc, gwattr, af);
748 			if (mp1 == NULL) {
749 				error = ENOBUFS;
750 				goto done;
751 			}
752 			freemsg(mp);
753 			mp = mp1;
754 			rtm = (rt_msghdr_t *)mp->b_rptr;
755 			break;
756 		case RTM_CHANGE:
757 			/*
758 			 * Do not allow to the multirouting state of a route
759 			 * to be changed. This aims to prevent undesirable
760 			 * stages where both multirt and non-multirt routes
761 			 * for the same destination are declared.
762 			 */
763 			if ((ire->ire_flags & RTF_MULTIRT) !=
764 			    (rtm->rtm_flags & RTF_MULTIRT)) {
765 				error = EINVAL;
766 				goto done;
767 			}
768 			/*
769 			 * Note that we do not need to do
770 			 * ire_flush_cache_*(IRE_FLUSH_ADD) as a change
771 			 * in metrics or gateway will not affect existing
772 			 * routes since it does not create a more specific
773 			 * route.
774 			 */
775 			switch (af) {
776 			case AF_INET:
777 				if ((found_addrs & RTA_GATEWAY) != 0 &&
778 				    (ire->ire_gateway_addr != gw_addr)) {
779 					ire->ire_gateway_addr = gw_addr;
780 				}
781 
782 				if (rtsap != NULL) {
783 					ga.ga_af = AF_INET;
784 					IN6_IPADDR_TO_V4MAPPED(
785 					    ire->ire_gateway_addr, &ga.ga_addr);
786 
787 					gcgrp = gcgrp_lookup(&ga, B_TRUE);
788 					if (gcgrp == NULL) {
789 						error = ENOMEM;
790 						goto done;
791 					}
792 				}
793 
794 				if ((found_addrs & RTA_SRC) != 0 &&
795 				    (rtm->rtm_flags & RTF_SETSRC) != 0 &&
796 				    (ire->ire_setsrc_addr != src_addr)) {
797 					if (src_addr != INADDR_ANY) {
798 						uint_t type;
799 
800 						/*
801 						 * The RTF_SETSRC flag is
802 						 * present, check that the
803 						 * supplied src address is not
804 						 * the loopback address. This
805 						 * would produce martian
806 						 * packets.
807 						 */
808 						if (src_addr ==
809 						    htonl(INADDR_LOOPBACK)) {
810 							error = EINVAL;
811 							goto done;
812 						}
813 						/*
814 						 * Also check that the
815 						 * supplied addr is a valid
816 						 * local address.
817 						 */
818 						type = ip_type_v4(src_addr,
819 						    ipst);
820 						if (!(type &
821 						    (IRE_LOCAL|IRE_LOOPBACK))) {
822 							error = EADDRNOTAVAIL;
823 							goto done;
824 						}
825 						ire->ire_flags |= RTF_SETSRC;
826 						ire->ire_setsrc_addr =
827 						    src_addr;
828 					} else {
829 						ire->ire_flags &= ~RTF_SETSRC;
830 						ire->ire_setsrc_addr =
831 						    INADDR_ANY;
832 					}
833 					/*
834 					 * Let conn_ixa caching know that
835 					 * source address selection changed
836 					 */
837 					ip_update_source_selection(ipst);
838 				}
839 				ire_flush_cache_v4(ire, IRE_FLUSH_GWCHANGE);
840 				break;
841 			case AF_INET6:
842 				mutex_enter(&ire->ire_lock);
843 				if ((found_addrs & RTA_GATEWAY) != 0 &&
844 				    !IN6_ARE_ADDR_EQUAL(
845 				    &ire->ire_gateway_addr_v6, &gw_addr_v6)) {
846 					ire->ire_gateway_addr_v6 = gw_addr_v6;
847 				}
848 				mutex_exit(&ire->ire_lock);
849 
850 				if (rtsap != NULL) {
851 					ga.ga_af = AF_INET6;
852 					mutex_enter(&ire->ire_lock);
853 					ga.ga_addr = ire->ire_gateway_addr_v6;
854 					mutex_exit(&ire->ire_lock);
855 
856 					gcgrp = gcgrp_lookup(&ga, B_TRUE);
857 					if (gcgrp == NULL) {
858 						error = ENOMEM;
859 						goto done;
860 					}
861 				}
862 
863 				if ((found_addrs & RTA_SRC) != 0 &&
864 				    (rtm->rtm_flags & RTF_SETSRC) != 0 &&
865 				    !IN6_ARE_ADDR_EQUAL(
866 				    &ire->ire_setsrc_addr_v6, &src_addr_v6)) {
867 					if (!IN6_IS_ADDR_UNSPECIFIED(
868 					    &src_addr_v6)) {
869 						uint_t type;
870 
871 						/*
872 						 * The RTF_SETSRC flag is
873 						 * present, check that the
874 						 * supplied src address is not
875 						 * the loopback address. This
876 						 * would produce martian
877 						 * packets.
878 						 */
879 						if (IN6_IS_ADDR_LOOPBACK(
880 						    &src_addr_v6)) {
881 							error = EINVAL;
882 							goto done;
883 						}
884 						/*
885 						 * Also check that the
886 						 * supplied addr is a valid
887 						 * local address.
888 						 */
889 						type = ip_type_v6(&src_addr_v6,
890 						    ipst);
891 						if (!(type &
892 						    (IRE_LOCAL|IRE_LOOPBACK))) {
893 							error = EADDRNOTAVAIL;
894 							goto done;
895 						}
896 						mutex_enter(&ire->ire_lock);
897 						ire->ire_flags |= RTF_SETSRC;
898 						ire->ire_setsrc_addr_v6 =
899 						    src_addr_v6;
900 						mutex_exit(&ire->ire_lock);
901 					} else {
902 						mutex_enter(&ire->ire_lock);
903 						ire->ire_flags &= ~RTF_SETSRC;
904 						ire->ire_setsrc_addr_v6 =
905 						    ipv6_all_zeros;
906 						mutex_exit(&ire->ire_lock);
907 					}
908 					/*
909 					 * Let conn_ixa caching know that
910 					 * source address selection changed
911 					 */
912 					ip_update_source_selection(ipst);
913 				}
914 				ire_flush_cache_v6(ire, IRE_FLUSH_GWCHANGE);
915 				break;
916 			}
917 
918 			if (rtsap != NULL) {
919 				ASSERT(gcgrp != NULL);
920 
921 				/*
922 				 * Create and add the security attribute to
923 				 * prefix IRE; it will add a reference to the
924 				 * group upon allocating a new entry.  If it
925 				 * finds an already-existing entry for the
926 				 * security attribute, it simply returns it
927 				 * and no new group reference is made.
928 				 */
929 				gc = gc_create(rtsap, gcgrp, &gcgrp_xtraref);
930 				if (gc == NULL ||
931 				    (error = tsol_ire_init_gwattr(ire,
932 				    ire->ire_ipversion, gc)) != 0) {
933 					if (gc != NULL) {
934 						GC_REFRELE(gc);
935 					} else {
936 						/* gc_create failed */
937 						error = ENOMEM;
938 					}
939 					goto done;
940 				}
941 			}
942 			rts_setmetrics(ire, rtm->rtm_inits, &rtm->rtm_rmx);
943 			break;
944 		}
945 		break;
946 	default:
947 		error = EOPNOTSUPP;
948 		break;
949 	}
950 done:
951 	if (ire != NULL)
952 		ire_refrele(ire);
953 	if (ifire != NULL)
954 		ire_refrele(ifire);
955 	if (ill != NULL)
956 		ill_refrele(ill);
957 
958 	if (gcgrp_xtraref)
959 		GCGRP_REFRELE(gcgrp);
960 
961 	if (rtm != NULL) {
962 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
963 		if (error != 0) {
964 			rtm->rtm_errno = error;
965 			/* Send error ACK */
966 			ip1dbg(("ip_rts_request: error %d\n", error));
967 		} else {
968 			rtm->rtm_flags |= RTF_DONE;
969 			/* OK ACK already set up by caller except this */
970 			ip2dbg(("ip_rts_request: OK ACK\n"));
971 		}
972 		rts_queue_input(mp, connp, af, RTSQ_ALL, ipst);
973 	}
974 	return (error);
975 }
976 
977 /*
978  * Helper function that can do recursive lookups including when
979  * MATCH_IRE_GW and/or MATCH_IRE_MASK is set.
980  */
981 static ire_t *
982 ire_lookup_v4(ipaddr_t dst_addr, ipaddr_t net_mask, ipaddr_t gw_addr,
983     const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl,
984     int match_flags, ip_stack_t *ipst, ire_t **pifire, ipaddr_t *v4setsrcp,
985     tsol_ire_gw_secattr_t **gwattrp)
986 {
987 	ire_t		*ire;
988 	ire_t		*ifire = NULL;
989 	uint_t		ire_type;
990 
991 	*pifire = NULL;
992 	*v4setsrcp = INADDR_ANY;
993 	*gwattrp = NULL;
994 
995 	/* Skip IRE_IF_CLONE */
996 	match_flags |= MATCH_IRE_TYPE;
997 	ire_type = (IRE_ONLINK|IRE_OFFLINK) & ~IRE_IF_CLONE;
998 
999 	/*
1000 	 * ire_route_recursive can't match gateway or mask thus if they are
1001 	 * set we have to do two steps of lookups
1002 	 */
1003 	if (match_flags & (MATCH_IRE_GW|MATCH_IRE_MASK)) {
1004 		ire = ire_ftable_lookup_v4(dst_addr, net_mask, gw_addr,
1005 		    ire_type, ill, zoneid, tsl, match_flags, 0, ipst, NULL);
1006 
1007 		if (ire == NULL ||(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)))
1008 			return (ire);
1009 
1010 		if (ire->ire_type & IRE_ONLINK)
1011 			return (ire);
1012 
1013 		if (ire->ire_flags & RTF_SETSRC) {
1014 			ASSERT(ire->ire_setsrc_addr != INADDR_ANY);
1015 			*v4setsrcp = ire->ire_setsrc_addr;
1016 			v4setsrcp = NULL;
1017 		}
1018 
1019 		/* The first ire_gw_secattr is passed back */
1020 		if (ire->ire_gw_secattr != NULL) {
1021 			*gwattrp = ire->ire_gw_secattr;
1022 			gwattrp = NULL;
1023 		}
1024 
1025 		/* Look for an interface ire recursively based on the gateway */
1026 		dst_addr = ire->ire_gateway_addr;
1027 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_MASK);
1028 		/*
1029 		 * Don't allow anything unusual past the first iteration.
1030 		 * After the first lookup, we should no longer look for
1031 		 * (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST) or RTF_INDIRECT
1032 		 * routes.
1033 		 *
1034 		 * In addition, after we have found a direct IRE_OFFLINK,
1035 		 * we should only look for interface or clone routes.
1036 		 */
1037 		match_flags |= MATCH_IRE_DIRECT; /* no more RTF_INDIRECTs */
1038 
1039 		if ((ire->ire_type & IRE_OFFLINK) &&
1040 		    !(ire->ire_flags & RTF_INDIRECT)) {
1041 			ire_type = IRE_IF_ALL;
1042 		} else {
1043 			/*
1044 			 * no more local, loopback, broadcast routes
1045 			 */
1046 			if (!(match_flags & MATCH_IRE_TYPE))
1047 				ire_type = (IRE_OFFLINK|IRE_ONLINK);
1048 			ire_type &= ~(IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST);
1049 		}
1050 		match_flags |= MATCH_IRE_TYPE;
1051 
1052 		ifire = ire_route_recursive_v4(dst_addr, ire_type, ill, zoneid,
1053 		    tsl, match_flags, IRR_INCOMPLETE, 0, ipst, v4setsrcp,
1054 		    gwattrp, NULL);
1055 	} else {
1056 		ire = ire_route_recursive_v4(dst_addr, ire_type, ill, zoneid,
1057 		    tsl, match_flags, IRR_INCOMPLETE, 0, ipst, v4setsrcp,
1058 		    gwattrp, NULL);
1059 	}
1060 	*pifire = ifire;
1061 	return (ire);
1062 }
1063 
1064 static ire_t *
1065 ire_lookup_v6(const in6_addr_t *dst_addr_v6,
1066     const in6_addr_t *net_mask_v6, const in6_addr_t *gw_addr_v6,
1067     const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, int match_flags,
1068     ip_stack_t *ipst, ire_t **pifire,
1069     in6_addr_t *v6setsrcp, tsol_ire_gw_secattr_t **gwattrp)
1070 {
1071 	ire_t		*ire;
1072 	ire_t		*ifire = NULL;
1073 	uint_t		ire_type;
1074 
1075 	*pifire = NULL;
1076 	*v6setsrcp = ipv6_all_zeros;
1077 	*gwattrp = NULL;
1078 
1079 	/* Skip IRE_IF_CLONE */
1080 	match_flags |= MATCH_IRE_TYPE;
1081 	ire_type = (IRE_ONLINK|IRE_OFFLINK) & ~IRE_IF_CLONE;
1082 
1083 	/*
1084 	 * ire_route_recursive can't match gateway or mask thus if they are
1085 	 * set we have to do two steps of lookups
1086 	 */
1087 	if (match_flags & (MATCH_IRE_GW|MATCH_IRE_MASK)) {
1088 		in6_addr_t dst;
1089 
1090 		ire = ire_ftable_lookup_v6(dst_addr_v6, net_mask_v6,
1091 		    gw_addr_v6, ire_type, ill, zoneid, tsl, match_flags, 0,
1092 		    ipst, NULL);
1093 
1094 		if (ire == NULL ||(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)))
1095 			return (ire);
1096 
1097 		if (ire->ire_type & IRE_ONLINK)
1098 			return (ire);
1099 
1100 		if (ire->ire_flags & RTF_SETSRC) {
1101 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(
1102 			    &ire->ire_setsrc_addr_v6));
1103 			*v6setsrcp = ire->ire_setsrc_addr_v6;
1104 			v6setsrcp = NULL;
1105 		}
1106 
1107 		/* The first ire_gw_secattr is passed back */
1108 		if (ire->ire_gw_secattr != NULL) {
1109 			*gwattrp = ire->ire_gw_secattr;
1110 			gwattrp = NULL;
1111 		}
1112 
1113 		mutex_enter(&ire->ire_lock);
1114 		dst = ire->ire_gateway_addr_v6;
1115 		mutex_exit(&ire->ire_lock);
1116 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_MASK);
1117 		/*
1118 		 * Don't allow anything unusual past the first iteration.
1119 		 * After the first lookup, we should no longer look for
1120 		 * (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST) or RTF_INDIRECT
1121 		 * routes.
1122 		 *
1123 		 * In addition, after we have found a direct IRE_OFFLINK,
1124 		 * we should only look for interface or clone routes.
1125 		 */
1126 		match_flags |= MATCH_IRE_DIRECT; /* no more RTF_INDIRECTs */
1127 
1128 		if ((ire->ire_type & IRE_OFFLINK) &&
1129 		    !(ire->ire_flags & RTF_INDIRECT)) {
1130 			ire_type = IRE_IF_ALL;
1131 		} else {
1132 			/*
1133 			 * no more local, loopback routes
1134 			 */
1135 			if (!(match_flags & MATCH_IRE_TYPE))
1136 				ire_type = (IRE_OFFLINK|IRE_ONLINK);
1137 			ire_type &= ~(IRE_LOCAL|IRE_LOOPBACK);
1138 		}
1139 		match_flags |= MATCH_IRE_TYPE;
1140 
1141 		ifire = ire_route_recursive_v6(&dst, ire_type, ill, zoneid, tsl,
1142 		    match_flags, IRR_INCOMPLETE, 0, ipst, v6setsrcp, gwattrp,
1143 		    NULL);
1144 	} else {
1145 		ire = ire_route_recursive_v6(dst_addr_v6, ire_type, ill, zoneid,
1146 		    tsl, match_flags, IRR_INCOMPLETE, 0, ipst, v6setsrcp,
1147 		    gwattrp, NULL);
1148 	}
1149 	*pifire = ifire;
1150 	return (ire);
1151 }
1152 
1153 
1154 /*
1155  * Handle IP_IOC_RTS_REQUEST ioctls
1156  */
1157 int
1158 ip_rts_request(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
1159 {
1160 	conn_t	*connp = Q_TO_CONN(q);
1161 	IOCP	iocp = (IOCP)mp->b_rptr;
1162 	mblk_t	*mp1, *ioc_mp = mp;
1163 	int	error = 0;
1164 	ip_stack_t	*ipst;
1165 
1166 	ipst = connp->conn_netstack->netstack_ip;
1167 
1168 	ASSERT(mp->b_cont != NULL);
1169 	/* ioc_mp holds mp */
1170 	mp = mp->b_cont;
1171 
1172 	/*
1173 	 * The Routing Socket data starts on
1174 	 * next block. If there is no next block
1175 	 * this is an indication from routing module
1176 	 * that it is a routing socket stream queue.
1177 	 * We need to support that for compatibility with SDP since
1178 	 * it has a contract private interface to use IP_IOC_RTS_REQUEST.
1179 	 * Note: SDP no longer uses IP_IOC_RTS_REQUEST - we can remove this.
1180 	 */
1181 	if (mp->b_cont == NULL) {
1182 		/*
1183 		 * This is a message from SDP
1184 		 * indicating that this is a Routing Socket
1185 		 * Stream. Insert this conn_t in routing
1186 		 * socket client list.
1187 		 */
1188 		connp->conn_useloopback = 1;
1189 		ipcl_hash_insert_wildcard(ipst->ips_rts_clients, connp);
1190 		goto done;
1191 	}
1192 	mp1 = dupmsg(mp->b_cont);
1193 	if (mp1 == NULL) {
1194 		error  = ENOBUFS;
1195 		goto done;
1196 	}
1197 	mp = mp1;
1198 
1199 	error = ip_rts_request_common(mp, connp, ioc_cr);
1200 done:
1201 	iocp->ioc_error = error;
1202 	ioc_mp->b_datap->db_type = M_IOCACK;
1203 	if (iocp->ioc_error != 0)
1204 		iocp->ioc_count = 0;
1205 	/* Note that we pass a NULL ira to rts_input */
1206 	(connp->conn_recv)(connp, ioc_mp, NULL, NULL);
1207 
1208 	/* conn was refheld in ip_wput_ioctl. */
1209 	CONN_OPER_PENDING_DONE(connp);
1210 
1211 	return (error);
1212 }
1213 
1214 /*
1215  * Build a reply to the RTM_GET request contained in the given message block
1216  * using the retrieved IRE of the destination address, the parent IRE (if it
1217  * exists) and the address family.
1218  *
1219  * Returns a pointer to a message block containing the reply if successful,
1220  * otherwise NULL is returned.
1221  */
1222 static mblk_t *
1223 rts_rtmget(mblk_t *mp, ire_t *ire, ire_t *ifire, const in6_addr_t *setsrc,
1224     tsol_ire_gw_secattr_t *attrp, sa_family_t af)
1225 {
1226 	rt_msghdr_t	*rtm;
1227 	rt_msghdr_t	*new_rtm;
1228 	mblk_t		*new_mp;
1229 	int		rtm_addrs;
1230 	int		rtm_flags;
1231 	tsol_gc_t	*gc = NULL;
1232 	tsol_gcgrp_t	*gcgrp = NULL;
1233 	ill_t		*ill;
1234 	ipif_t		*ipif = NULL;
1235 	ipaddr_t	brdaddr;	/* IFF_POINTOPOINT destination */
1236 	ipaddr_t	ifaddr;
1237 	in6_addr_t	brdaddr6;	/* IFF_POINTOPOINT destination */
1238 	in6_addr_t	ifaddr6;
1239 	ipaddr_t	v4setsrc;
1240 
1241 	rtm = (rt_msghdr_t *)mp->b_rptr;
1242 
1243 	/*
1244 	 * Find the ill used to send packets. This will be NULL in case
1245 	 * of a reject or blackhole.
1246 	 */
1247 	if (ifire != NULL)
1248 		ill = ire_nexthop_ill(ifire);
1249 	else
1250 		ill = ire_nexthop_ill(ire);
1251 
1252 	if (attrp != NULL) {
1253 		mutex_enter(&attrp->igsa_lock);
1254 		if ((gc = attrp->igsa_gc) != NULL) {
1255 			gcgrp = gc->gc_grp;
1256 			ASSERT(gcgrp != NULL);
1257 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
1258 		}
1259 		mutex_exit(&attrp->igsa_lock);
1260 	}
1261 
1262 	/*
1263 	 * Always return RTA_DST, RTA_GATEWAY and RTA_NETMASK.
1264 	 *
1265 	 * The 4.4BSD-Lite2 code (net/rtsock.c) returns both
1266 	 * RTA_IFP and RTA_IFA if either is defined, and also
1267 	 * returns RTA_BRD if the appropriate interface is
1268 	 * point-to-point.
1269 	 */
1270 	rtm_addrs = (RTA_DST | RTA_GATEWAY | RTA_NETMASK);
1271 	if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) && ill != NULL) {
1272 		rtm_addrs |= (RTA_IFP | RTA_IFA);
1273 		/*
1274 		 * We associate an IRE with an ILL, hence we don't exactly
1275 		 * know what might make sense for RTA_IFA and RTA_BRD. We
1276 		 * pick the first ipif on the ill.
1277 		 */
1278 		ipif = ipif_get_next_ipif(NULL, ill);
1279 		if (ipif != NULL) {
1280 			if (ipif->ipif_isv6)
1281 				ifaddr6 = ipif->ipif_v6lcl_addr;
1282 			else
1283 				ifaddr = ipif->ipif_lcl_addr;
1284 			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
1285 				rtm_addrs |= RTA_BRD;
1286 				if (ipif->ipif_isv6)
1287 					brdaddr6 = ipif->ipif_v6pp_dst_addr;
1288 				else
1289 					brdaddr = ipif->ipif_pp_dst_addr;
1290 			}
1291 			ipif_refrele(ipif);
1292 		}
1293 	}
1294 
1295 	new_mp = rts_alloc_msg(RTM_GET, rtm_addrs, af, gc != NULL ? 1 : 0);
1296 	if (new_mp == NULL) {
1297 		if (gcgrp != NULL)
1298 			rw_exit(&gcgrp->gcgrp_rwlock);
1299 		if (ill != NULL)
1300 			ill_refrele(ill);
1301 		return (NULL);
1302 	}
1303 
1304 	/*
1305 	 * We set the destination address, gateway address,
1306 	 * netmask and flags in the RTM_GET response depending
1307 	 * on whether we found a parent IRE or not.
1308 	 * In particular, if we did find a parent IRE during the
1309 	 * recursive search, use that IRE's gateway address.
1310 	 * Otherwise, we use the IRE's source address for the
1311 	 * gateway address.
1312 	 */
1313 	ASSERT(af == AF_INET || af == AF_INET6);
1314 	switch (af) {
1315 	case AF_INET:
1316 		IN6_V4MAPPED_TO_IPADDR(setsrc, v4setsrc);
1317 		if (v4setsrc != INADDR_ANY)
1318 			rtm_addrs |= RTA_SRC;
1319 
1320 		rtm_flags = ire->ire_flags;
1321 		rts_fill_msg(RTM_GET, rtm_addrs, ire->ire_addr,
1322 		    ire->ire_mask, ire->ire_gateway_addr, v4setsrc,
1323 		    brdaddr, 0, ifaddr, ill, new_mp, gc);
1324 		break;
1325 	case AF_INET6:
1326 		if (!IN6_IS_ADDR_UNSPECIFIED(setsrc))
1327 			rtm_addrs |= RTA_SRC;
1328 
1329 		rtm_flags = ire->ire_flags;
1330 		rts_fill_msg_v6(RTM_GET, rtm_addrs, &ire->ire_addr_v6,
1331 		    &ire->ire_mask_v6, &ire->ire_gateway_addr_v6,
1332 		    setsrc, &brdaddr6, &ipv6_all_zeros,
1333 		    &ifaddr6, ill, new_mp, gc);
1334 		break;
1335 	}
1336 
1337 	if (gcgrp != NULL)
1338 		rw_exit(&gcgrp->gcgrp_rwlock);
1339 
1340 	new_rtm = (rt_msghdr_t *)new_mp->b_rptr;
1341 
1342 	/*
1343 	 * The rtm_msglen, rtm_version and rtm_type fields in
1344 	 * RTM_GET response are filled in by rts_fill_msg.
1345 	 *
1346 	 * rtm_addrs and rtm_flags are filled in based on what
1347 	 * was requested and the state of the IREs looked up
1348 	 * above.
1349 	 *
1350 	 * rtm_inits and rtm_rmx are filled in with metrics
1351 	 * based on whether a parent IRE was found or not.
1352 	 *
1353 	 * TODO: rtm_index and rtm_use should probably be
1354 	 * filled in with something resonable here and not just
1355 	 * copied from the request.
1356 	 */
1357 	new_rtm->rtm_index = rtm->rtm_index;
1358 	new_rtm->rtm_pid = rtm->rtm_pid;
1359 	new_rtm->rtm_seq = rtm->rtm_seq;
1360 	new_rtm->rtm_use = rtm->rtm_use;
1361 	new_rtm->rtm_addrs = rtm_addrs;
1362 	new_rtm->rtm_flags = rtm_flags;
1363 	new_rtm->rtm_inits = rts_getmetrics(ire, ill, &new_rtm->rtm_rmx);
1364 	if (ill != NULL)
1365 		ill_refrele(ill);
1366 	return (new_mp);
1367 }
1368 
1369 /*
1370  * Fill the given if_data_t with interface statistics.
1371  */
1372 static void
1373 rts_getifdata(if_data_t *if_data, const ipif_t *ipif)
1374 {
1375 	if_data->ifi_type = ipif->ipif_ill->ill_type;
1376 						/* ethernet, tokenring, etc */
1377 	if_data->ifi_addrlen = 0;		/* media address length */
1378 	if_data->ifi_hdrlen = 0;		/* media header length */
1379 	if_data->ifi_mtu = ipif->ipif_ill->ill_mtu;	/* mtu */
1380 						/* metric (external only) */
1381 	if_data->ifi_metric = ipif->ipif_ill->ill_metric;
1382 	if_data->ifi_baudrate = 0;		/* linespeed */
1383 
1384 	if_data->ifi_ipackets = 0;		/* packets received on if */
1385 	if_data->ifi_ierrors = 0;		/* input errors on interface */
1386 	if_data->ifi_opackets = 0;		/* packets sent on interface */
1387 	if_data->ifi_oerrors = 0;		/* output errors on if */
1388 	if_data->ifi_collisions = 0;		/* collisions on csma if */
1389 	if_data->ifi_ibytes = 0;		/* total number received */
1390 	if_data->ifi_obytes = 0;		/* total number sent */
1391 	if_data->ifi_imcasts = 0;		/* multicast packets received */
1392 	if_data->ifi_omcasts = 0;		/* multicast packets sent */
1393 	if_data->ifi_iqdrops = 0;		/* dropped on input */
1394 	if_data->ifi_noproto = 0;		/* destined for unsupported */
1395 						/* protocol. */
1396 }
1397 
1398 /*
1399  * Set the metrics on a forwarding table route.
1400  */
1401 static void
1402 rts_setmetrics(ire_t *ire, uint_t which, rt_metrics_t *metrics)
1403 {
1404 	clock_t		rtt;
1405 	clock_t		rtt_sd;
1406 	ill_t		*ill;
1407 	ifrt_t		*ifrt;
1408 	mblk_t		*mp;
1409 	in6_addr_t	gw_addr_v6;
1410 
1411 	/* Need to add back some metrics to the IRE? */
1412 	/*
1413 	 * Bypass obtaining the lock and searching ill_saved_ire_mp in the
1414 	 * common case of no metrics.
1415 	 */
1416 	if (which == 0)
1417 		return;
1418 	ire->ire_metrics.iulp_set = B_TRUE;
1419 
1420 	/*
1421 	 * iulp_rtt and iulp_rtt_sd are in milliseconds, but 4.4BSD-Lite2's
1422 	 * <net/route.h> says: rmx_rtt and rmx_rttvar are stored as
1423 	 * microseconds.
1424 	 */
1425 	if (which & RTV_RTT)
1426 		rtt = metrics->rmx_rtt / 1000;
1427 	if (which & RTV_RTTVAR)
1428 		rtt_sd = metrics->rmx_rttvar / 1000;
1429 
1430 	/*
1431 	 * Update the metrics in the IRE itself.
1432 	 */
1433 	mutex_enter(&ire->ire_lock);
1434 	if (which & RTV_MTU)
1435 		ire->ire_metrics.iulp_mtu = metrics->rmx_mtu;
1436 	if (which & RTV_RTT)
1437 		ire->ire_metrics.iulp_rtt = rtt;
1438 	if (which & RTV_SSTHRESH)
1439 		ire->ire_metrics.iulp_ssthresh = metrics->rmx_ssthresh;
1440 	if (which & RTV_RTTVAR)
1441 		ire->ire_metrics.iulp_rtt_sd = rtt_sd;
1442 	if (which & RTV_SPIPE)
1443 		ire->ire_metrics.iulp_spipe = metrics->rmx_sendpipe;
1444 	if (which & RTV_RPIPE)
1445 		ire->ire_metrics.iulp_rpipe = metrics->rmx_recvpipe;
1446 	mutex_exit(&ire->ire_lock);
1447 
1448 	/*
1449 	 * Search through the ifrt_t chain hanging off the ILL in order to
1450 	 * reflect the metric change there.
1451 	 */
1452 	ill = ire->ire_ill;
1453 	if (ill == NULL)
1454 		return;
1455 	ASSERT((ill->ill_isv6 && ire->ire_ipversion == IPV6_VERSION) ||
1456 	    ((!ill->ill_isv6 && ire->ire_ipversion == IPV4_VERSION)));
1457 	if (ill->ill_isv6) {
1458 		mutex_enter(&ire->ire_lock);
1459 		gw_addr_v6 = ire->ire_gateway_addr_v6;
1460 		mutex_exit(&ire->ire_lock);
1461 	}
1462 	mutex_enter(&ill->ill_saved_ire_lock);
1463 	for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
1464 		/*
1465 		 * On a given ill, the tuple of address, gateway, mask,
1466 		 * ire_type and zoneid unique for each saved IRE.
1467 		 */
1468 		ifrt = (ifrt_t *)mp->b_rptr;
1469 		if (ill->ill_isv6) {
1470 			if (!IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
1471 			    &ire->ire_addr_v6) ||
1472 			    !IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
1473 			    &gw_addr_v6) ||
1474 			    !IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
1475 			    &ire->ire_mask_v6))
1476 				continue;
1477 		} else {
1478 			if (ifrt->ifrt_addr != ire->ire_addr ||
1479 			    ifrt->ifrt_gateway_addr != ire->ire_gateway_addr ||
1480 			    ifrt->ifrt_mask != ire->ire_mask)
1481 				continue;
1482 		}
1483 		if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
1484 		    ifrt->ifrt_type != ire->ire_type)
1485 			continue;
1486 
1487 		if (which & RTV_MTU)
1488 			ifrt->ifrt_metrics.iulp_mtu = metrics->rmx_mtu;
1489 		if (which & RTV_RTT)
1490 			ifrt->ifrt_metrics.iulp_rtt = rtt;
1491 		if (which & RTV_SSTHRESH) {
1492 			ifrt->ifrt_metrics.iulp_ssthresh =
1493 			    metrics->rmx_ssthresh;
1494 		}
1495 		if (which & RTV_RTTVAR)
1496 			ifrt->ifrt_metrics.iulp_rtt_sd = metrics->rmx_rttvar;
1497 		if (which & RTV_SPIPE)
1498 			ifrt->ifrt_metrics.iulp_spipe = metrics->rmx_sendpipe;
1499 		if (which & RTV_RPIPE)
1500 			ifrt->ifrt_metrics.iulp_rpipe = metrics->rmx_recvpipe;
1501 		break;
1502 	}
1503 	mutex_exit(&ill->ill_saved_ire_lock);
1504 
1505 	/*
1506 	 * Update any IRE_IF_CLONE hanging created from this IRE_IF so they
1507 	 * get any new iulp_mtu.
1508 	 * We do that by deleting them; ire_create_if_clone will pick
1509 	 * up the new metrics.
1510 	 */
1511 	if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != 0)
1512 		ire_dep_delete_if_clone(ire);
1513 }
1514 
1515 /*
1516  * Get the metrics from a forwarding table route.
1517  */
1518 static int
1519 rts_getmetrics(ire_t *ire, ill_t *ill, rt_metrics_t *metrics)
1520 {
1521 	int	metrics_set = 0;
1522 
1523 	bzero(metrics, sizeof (rt_metrics_t));
1524 
1525 	/*
1526 	 * iulp_rtt and iulp_rtt_sd are in milliseconds, but 4.4BSD-Lite2's
1527 	 * <net/route.h> says: rmx_rtt and rmx_rttvar are stored as
1528 	 * microseconds.
1529 	 */
1530 	metrics->rmx_rtt = ire->ire_metrics.iulp_rtt * 1000;
1531 	metrics_set |= RTV_RTT;
1532 	if (ire->ire_metrics.iulp_mtu != 0) {
1533 		metrics->rmx_mtu = ire->ire_metrics.iulp_mtu;
1534 		metrics_set |= RTV_MTU;
1535 	} else if (ill != NULL) {
1536 		metrics->rmx_mtu = ill->ill_mtu;
1537 		metrics_set |= RTV_MTU;
1538 	}
1539 	metrics->rmx_ssthresh = ire->ire_metrics.iulp_ssthresh;
1540 	metrics_set |= RTV_SSTHRESH;
1541 	metrics->rmx_rttvar = ire->ire_metrics.iulp_rtt_sd * 1000;
1542 	metrics_set |= RTV_RTTVAR;
1543 	metrics->rmx_sendpipe = ire->ire_metrics.iulp_spipe;
1544 	metrics_set |= RTV_SPIPE;
1545 	metrics->rmx_recvpipe = ire->ire_metrics.iulp_rpipe;
1546 	metrics_set |= RTV_RPIPE;
1547 	return (metrics_set);
1548 }
1549 
1550 /*
1551  * Given two sets of metrics (src and dst), use the dst values if they are
1552  * set. If a dst value is not set but the src value is set, then we use
1553  * the src value.
1554  * dst is updated with the new values.
1555  * This is used to merge information from a dce_t and ire_metrics, where the
1556  * dce values takes precedence.
1557  */
1558 void
1559 rts_merge_metrics(iulp_t *dst, const iulp_t *src)
1560 {
1561 	if (!src->iulp_set)
1562 		return;
1563 
1564 	if (dst->iulp_ssthresh == 0)
1565 		dst->iulp_ssthresh = src->iulp_ssthresh;
1566 	if (dst->iulp_rtt == 0)
1567 		dst->iulp_rtt = src->iulp_rtt;
1568 	if (dst->iulp_rtt_sd == 0)
1569 		dst->iulp_rtt_sd = src->iulp_rtt_sd;
1570 	if (dst->iulp_spipe == 0)
1571 		dst->iulp_spipe = src->iulp_spipe;
1572 	if (dst->iulp_rpipe == 0)
1573 		dst->iulp_rpipe = src->iulp_rpipe;
1574 	if (dst->iulp_rtomax == 0)
1575 		dst->iulp_rtomax = src->iulp_rtomax;
1576 	if (dst->iulp_sack == 0)
1577 		dst->iulp_sack = src->iulp_sack;
1578 	if (dst->iulp_tstamp_ok == 0)
1579 		dst->iulp_tstamp_ok = src->iulp_tstamp_ok;
1580 	if (dst->iulp_wscale_ok == 0)
1581 		dst->iulp_wscale_ok = src->iulp_wscale_ok;
1582 	if (dst->iulp_ecn_ok == 0)
1583 		dst->iulp_ecn_ok = src->iulp_ecn_ok;
1584 	if (dst->iulp_pmtud_ok == 0)
1585 		dst->iulp_pmtud_ok = src->iulp_pmtud_ok;
1586 	if (dst->iulp_mtu == 0)
1587 		dst->iulp_mtu = src->iulp_mtu;
1588 }
1589 
1590 
1591 /*
1592  * Takes a pointer to a routing message and extracts necessary info by looking
1593  * at the rtm->rtm_addrs bits and store the requested sockaddrs in the pointers
1594  * passed (all of which must be valid).
1595  *
1596  * The bitmask of sockaddrs actually found in the message is returned, or zero
1597  * is returned in the case of an error.
1598  */
1599 static int
1600 rts_getaddrs(rt_msghdr_t *rtm, in6_addr_t *dst_addrp, in6_addr_t *gw_addrp,
1601     in6_addr_t *net_maskp, in6_addr_t *authorp, in6_addr_t *if_addrp,
1602     in6_addr_t *in_src_addrp, ushort_t *indexp, sa_family_t *afp,
1603     tsol_rtsecattr_t *rtsecattr, int *error)
1604 {
1605 	struct sockaddr *sa;
1606 	int	i;
1607 	int	addr_bits;
1608 	int	length;
1609 	int	found_addrs = 0;
1610 	caddr_t	cp;
1611 	size_t	size;
1612 	struct sockaddr_dl *sdl;
1613 
1614 	*dst_addrp = ipv6_all_zeros;
1615 	*gw_addrp = ipv6_all_zeros;
1616 	*net_maskp = ipv6_all_zeros;
1617 	*authorp = ipv6_all_zeros;
1618 	*if_addrp = ipv6_all_zeros;
1619 	*in_src_addrp = ipv6_all_zeros;
1620 	*indexp = 0;
1621 	*afp = AF_UNSPEC;
1622 	rtsecattr->rtsa_cnt = 0;
1623 	*error = 0;
1624 
1625 	/*
1626 	 * At present we handle only RTA_DST, RTA_GATEWAY, RTA_NETMASK, RTA_IFP,
1627 	 * RTA_IFA and RTA_AUTHOR.  The rest will be added as we need them.
1628 	 */
1629 	cp = (caddr_t)&rtm[1];
1630 	length = rtm->rtm_msglen;
1631 	for (i = 0; (i < RTA_NUMBITS) && ((cp - (caddr_t)rtm) < length); i++) {
1632 		/*
1633 		 * The address family we are working with starts out as
1634 		 * AF_UNSPEC, but is set to the one specified with the
1635 		 * destination address.
1636 		 *
1637 		 * If the "working" address family that has been set to
1638 		 * something other than AF_UNSPEC, then the address family of
1639 		 * subsequent sockaddrs must either be AF_UNSPEC (for
1640 		 * compatibility with older programs) or must be the same as our
1641 		 * "working" one.
1642 		 *
1643 		 * This code assumes that RTA_DST (1) comes first in the loop.
1644 		 */
1645 		sa = (struct sockaddr *)cp;
1646 		addr_bits = (rtm->rtm_addrs & (1 << i));
1647 		if (addr_bits == 0)
1648 			continue;
1649 		switch (addr_bits) {
1650 		case RTA_DST:
1651 			size = rts_copyfromsockaddr(sa, dst_addrp);
1652 			*afp = sa->sa_family;
1653 			break;
1654 		case RTA_GATEWAY:
1655 			if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC)
1656 				return (0);
1657 			size = rts_copyfromsockaddr(sa, gw_addrp);
1658 			break;
1659 		case RTA_NETMASK:
1660 			if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC)
1661 				return (0);
1662 			size = rts_copyfromsockaddr(sa, net_maskp);
1663 			break;
1664 		case RTA_IFP:
1665 			if (sa->sa_family != AF_LINK &&
1666 			    sa->sa_family != AF_UNSPEC)
1667 				return (0);
1668 			sdl = (struct sockaddr_dl *)cp;
1669 			*indexp = sdl->sdl_index;
1670 			size = sizeof (struct sockaddr_dl);
1671 			break;
1672 		case RTA_SRC:
1673 			/* Source address of the incoming packet */
1674 			size = rts_copyfromsockaddr(sa, in_src_addrp);
1675 			*afp = sa->sa_family;
1676 			break;
1677 		case RTA_IFA:
1678 			if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC)
1679 				return (0);
1680 			size = rts_copyfromsockaddr(sa, if_addrp);
1681 			break;
1682 		case RTA_AUTHOR:
1683 			if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC)
1684 				return (0);
1685 			size = rts_copyfromsockaddr(sa, authorp);
1686 			break;
1687 		default:
1688 			return (0);
1689 		}
1690 		if (size == 0)
1691 			return (0);
1692 		cp += size;
1693 		found_addrs |= addr_bits;
1694 	}
1695 
1696 	/*
1697 	 * Parse the routing message and look for any security-
1698 	 * related attributes for the route.  For each valid
1699 	 * attribute, allocate/obtain the corresponding kernel
1700 	 * route security attributes.
1701 	 */
1702 	if (((cp - (caddr_t)rtm) < length) && is_system_labeled()) {
1703 		*error = tsol_rtsa_init(rtm, rtsecattr, cp);
1704 		ASSERT(rtsecattr->rtsa_cnt <= TSOL_RTSA_REQUEST_MAX);
1705 	}
1706 
1707 	return (found_addrs);
1708 }
1709 
1710 /*
1711  * Fills the message with the given info.
1712  */
1713 static void
1714 rts_fill_msg(int type, int rtm_addrs, ipaddr_t dst, ipaddr_t mask,
1715     ipaddr_t gateway, ipaddr_t src_addr, ipaddr_t brd_addr, ipaddr_t author,
1716     ipaddr_t ifaddr, const ill_t *ill, mblk_t *mp,
1717     const tsol_gc_t *gc)
1718 {
1719 	rt_msghdr_t	*rtm;
1720 	sin_t		*sin;
1721 	size_t		data_size, header_size;
1722 	uchar_t		*cp;
1723 	int		i;
1724 
1725 	ASSERT(mp != NULL);
1726 	/*
1727 	 * First find the type of the message
1728 	 * and its length.
1729 	 */
1730 	header_size = rts_header_msg_size(type);
1731 	/*
1732 	 * Now find the size of the data
1733 	 * that follows the message header.
1734 	 */
1735 	data_size = rts_data_msg_size(rtm_addrs, AF_INET, gc != NULL ? 1 : 0);
1736 
1737 	rtm = (rt_msghdr_t *)mp->b_rptr;
1738 	mp->b_wptr = &mp->b_rptr[header_size];
1739 	cp = mp->b_wptr;
1740 	bzero(cp, data_size);
1741 	for (i = 0; i < RTA_NUMBITS; i++) {
1742 		sin = (sin_t *)cp;
1743 		switch (rtm_addrs & (1 << i)) {
1744 		case RTA_DST:
1745 			sin->sin_addr.s_addr = dst;
1746 			sin->sin_family = AF_INET;
1747 			cp += sizeof (sin_t);
1748 			break;
1749 		case RTA_GATEWAY:
1750 			sin->sin_addr.s_addr = gateway;
1751 			sin->sin_family = AF_INET;
1752 			cp += sizeof (sin_t);
1753 			break;
1754 		case RTA_NETMASK:
1755 			sin->sin_addr.s_addr = mask;
1756 			sin->sin_family = AF_INET;
1757 			cp += sizeof (sin_t);
1758 			break;
1759 		case RTA_IFP:
1760 			cp += ill_dls_info((struct sockaddr_dl *)cp, ill);
1761 			break;
1762 		case RTA_IFA:
1763 			sin->sin_addr.s_addr = ifaddr;
1764 			sin->sin_family = AF_INET;
1765 			cp += sizeof (sin_t);
1766 			break;
1767 		case RTA_SRC:
1768 			sin->sin_addr.s_addr = src_addr;
1769 			sin->sin_family = AF_INET;
1770 			cp += sizeof (sin_t);
1771 			break;
1772 		case RTA_AUTHOR:
1773 			sin->sin_addr.s_addr = author;
1774 			sin->sin_family = AF_INET;
1775 			cp += sizeof (sin_t);
1776 			break;
1777 		case RTA_BRD:
1778 			/*
1779 			 * RTA_BRD is used typically to specify a point-to-point
1780 			 * destination address.
1781 			 */
1782 			sin->sin_addr.s_addr = brd_addr;
1783 			sin->sin_family = AF_INET;
1784 			cp += sizeof (sin_t);
1785 			break;
1786 		}
1787 	}
1788 
1789 	if (gc != NULL) {
1790 		rtm_ext_t *rtm_ext;
1791 		struct rtsa_s *rp_dst;
1792 		tsol_rtsecattr_t *rsap;
1793 
1794 		ASSERT(gc->gc_grp != NULL);
1795 		ASSERT(RW_LOCK_HELD(&gc->gc_grp->gcgrp_rwlock));
1796 
1797 		rtm_ext = (rtm_ext_t *)cp;
1798 		rtm_ext->rtmex_type = RTMEX_GATEWAY_SECATTR;
1799 		rtm_ext->rtmex_len = TSOL_RTSECATTR_SIZE(1);
1800 
1801 		rsap = (tsol_rtsecattr_t *)(rtm_ext + 1);
1802 		rsap->rtsa_cnt = 1;
1803 		rp_dst = rsap->rtsa_attr;
1804 
1805 		ASSERT(gc->gc_db != NULL);
1806 		bcopy(&gc->gc_db->gcdb_attr, rp_dst, sizeof (*rp_dst));
1807 		cp = (uchar_t *)rp_dst;
1808 	}
1809 
1810 	mp->b_wptr = cp;
1811 	mp->b_cont = NULL;
1812 	/*
1813 	 * set the fields that are common to
1814 	 * to different messages.
1815 	 */
1816 	rtm->rtm_msglen = (short)(header_size + data_size);
1817 	rtm->rtm_version = RTM_VERSION;
1818 	rtm->rtm_type = (uchar_t)type;
1819 }
1820 
1821 /*
1822  * Allocates and initializes a routing socket message.
1823  * Note that sacnt is either zero or one.
1824  */
1825 mblk_t *
1826 rts_alloc_msg(int type, int rtm_addrs, sa_family_t af, uint_t sacnt)
1827 {
1828 	size_t	length;
1829 	mblk_t	*mp;
1830 
1831 	length = RTS_MSG_SIZE(type, rtm_addrs, af, sacnt);
1832 	mp = allocb(length, BPRI_MED);
1833 	if (mp == NULL)
1834 		return (mp);
1835 	bzero(mp->b_rptr, length);
1836 	return (mp);
1837 }
1838 
1839 /*
1840  * Returns the size of the routing
1841  * socket message header size.
1842  */
1843 size_t
1844 rts_header_msg_size(int type)
1845 {
1846 	switch (type) {
1847 	case RTM_DELADDR:
1848 	case RTM_NEWADDR:
1849 	case RTM_CHGADDR:
1850 	case RTM_FREEADDR:
1851 		return (sizeof (ifa_msghdr_t));
1852 	case RTM_IFINFO:
1853 		return (sizeof (if_msghdr_t));
1854 	default:
1855 		return (sizeof (rt_msghdr_t));
1856 	}
1857 }
1858 
1859 /*
1860  * Returns the size of the message needed with the given rtm_addrs and family.
1861  *
1862  * It is assumed that all of the sockaddrs (with the exception of RTA_IFP) are
1863  * of the same family (currently either AF_INET or AF_INET6).
1864  */
1865 size_t
1866 rts_data_msg_size(int rtm_addrs, sa_family_t af, uint_t sacnt)
1867 {
1868 	int	i;
1869 	size_t	length = 0;
1870 
1871 	for (i = 0; i < RTA_NUMBITS; i++) {
1872 		switch (rtm_addrs & (1 << i)) {
1873 		case RTA_IFP:
1874 			length += sizeof (struct sockaddr_dl);
1875 			break;
1876 		case RTA_DST:
1877 		case RTA_GATEWAY:
1878 		case RTA_NETMASK:
1879 		case RTA_SRC:
1880 		case RTA_IFA:
1881 		case RTA_AUTHOR:
1882 		case RTA_BRD:
1883 			ASSERT(af == AF_INET || af == AF_INET6);
1884 			switch (af) {
1885 			case AF_INET:
1886 				length += sizeof (sin_t);
1887 				break;
1888 			case AF_INET6:
1889 				length += sizeof (sin6_t);
1890 				break;
1891 			}
1892 			break;
1893 		}
1894 	}
1895 	if (sacnt > 0)
1896 		length += sizeof (rtm_ext_t) + TSOL_RTSECATTR_SIZE(sacnt);
1897 
1898 	return (length);
1899 }
1900 
1901 /*
1902  * This routine is called to generate a message to the routing
1903  * socket indicating that a redirect has occured, a routing lookup
1904  * has failed, or that a protocol has detected timeouts to a particular
1905  * destination. This routine is called for message types RTM_LOSING,
1906  * RTM_REDIRECT, and RTM_MISS.
1907  */
1908 void
1909 ip_rts_change(int type, ipaddr_t dst_addr, ipaddr_t gw_addr, ipaddr_t net_mask,
1910     ipaddr_t source, ipaddr_t author, int flags, int error, int rtm_addrs,
1911     ip_stack_t *ipst)
1912 {
1913 	rt_msghdr_t	*rtm;
1914 	mblk_t		*mp;
1915 
1916 	if (rtm_addrs == 0)
1917 		return;
1918 	mp = rts_alloc_msg(type, rtm_addrs, AF_INET, 0);
1919 	if (mp == NULL)
1920 		return;
1921 	rts_fill_msg(type, rtm_addrs, dst_addr, net_mask, gw_addr, source, 0,
1922 	    author, 0, NULL, mp, NULL);
1923 	rtm = (rt_msghdr_t *)mp->b_rptr;
1924 	rtm->rtm_flags = flags;
1925 	rtm->rtm_errno = error;
1926 	rtm->rtm_flags |= RTF_DONE;
1927 	rtm->rtm_addrs = rtm_addrs;
1928 	rts_queue_input(mp, NULL, AF_INET, RTSQ_ALL, ipst);
1929 }
1930 
1931 /*
1932  * This routine is called to generate a message to the routing
1933  * socket indicating that the status of a network interface has changed.
1934  * Message type generated RTM_IFINFO.
1935  */
1936 void
1937 ip_rts_ifmsg(const ipif_t *ipif, uint_t flags)
1938 {
1939 	ip_rts_xifmsg(ipif, 0, 0, flags);
1940 }
1941 
1942 void
1943 ip_rts_xifmsg(const ipif_t *ipif, uint64_t set, uint64_t clear, uint_t flags)
1944 {
1945 	if_msghdr_t	*ifm;
1946 	mblk_t		*mp;
1947 	sa_family_t	af;
1948 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1949 
1950 	/*
1951 	 * This message should be generated only
1952 	 * when the physical device is changing
1953 	 * state.
1954 	 */
1955 	if (ipif->ipif_id != 0)
1956 		return;
1957 	if (ipif->ipif_isv6) {
1958 		af = AF_INET6;
1959 		mp = rts_alloc_msg(RTM_IFINFO, RTA_IFP, af, 0);
1960 		if (mp == NULL)
1961 			return;
1962 		rts_fill_msg_v6(RTM_IFINFO, RTA_IFP, &ipv6_all_zeros,
1963 		    &ipv6_all_zeros, &ipv6_all_zeros, &ipv6_all_zeros,
1964 		    &ipv6_all_zeros, &ipv6_all_zeros, &ipv6_all_zeros,
1965 		    ipif->ipif_ill, mp, NULL);
1966 	} else {
1967 		af = AF_INET;
1968 		mp = rts_alloc_msg(RTM_IFINFO, RTA_IFP, af, 0);
1969 		if (mp == NULL)
1970 			return;
1971 		rts_fill_msg(RTM_IFINFO, RTA_IFP, 0, 0, 0, 0, 0, 0, 0,
1972 		    ipif->ipif_ill, mp, NULL);
1973 	}
1974 	ifm = (if_msghdr_t *)mp->b_rptr;
1975 	ifm->ifm_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
1976 	ifm->ifm_flags = (ipif->ipif_flags | ipif->ipif_ill->ill_flags |
1977 	    ipif->ipif_ill->ill_phyint->phyint_flags | set) & ~clear;
1978 	rts_getifdata(&ifm->ifm_data, ipif);
1979 	ifm->ifm_addrs = RTA_IFP;
1980 
1981 	if (flags & RTSQ_DEFAULT) {
1982 		flags = RTSQ_ALL;
1983 		/*
1984 		 * If this message is for an underlying interface, prevent
1985 		 * "normal" (IPMP-unaware) routing sockets from seeing it.
1986 		 */
1987 		if (IS_UNDER_IPMP(ipif->ipif_ill))
1988 			flags &= ~RTSQ_NORMAL;
1989 	}
1990 
1991 	rts_queue_input(mp, NULL, af, flags, ipst);
1992 }
1993 
1994 /*
1995  * If cmd is RTM_ADD or RTM_DELETE, generate the rt_msghdr_t message;
1996  * otherwise (RTM_NEWADDR, RTM_DELADDR, RTM_CHGADDR and RTM_FREEADDR)
1997  * generate the ifa_msghdr_t message.
1998  */
1999 static void
2000 rts_new_rtsmsg(int cmd, int error, const ipif_t *ipif, uint_t flags)
2001 {
2002 	int		rtm_addrs;
2003 	mblk_t		*mp;
2004 	ifa_msghdr_t	*ifam;
2005 	rt_msghdr_t	*rtm;
2006 	sa_family_t	af;
2007 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
2008 
2009 	/*
2010 	 * Do not report unspecified address if this is the RTM_CHGADDR or
2011 	 * RTM_FREEADDR message.
2012 	 */
2013 	if (cmd == RTM_CHGADDR || cmd == RTM_FREEADDR) {
2014 		if (!ipif->ipif_isv6) {
2015 			if (ipif->ipif_lcl_addr == INADDR_ANY)
2016 				return;
2017 		} else if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
2018 			return;
2019 		}
2020 	}
2021 
2022 	if (ipif->ipif_isv6)
2023 		af = AF_INET6;
2024 	else
2025 		af = AF_INET;
2026 
2027 	if (cmd == RTM_ADD || cmd == RTM_DELETE)
2028 		rtm_addrs = (RTA_DST | RTA_NETMASK);
2029 	else
2030 		rtm_addrs = (RTA_IFA | RTA_NETMASK | RTA_BRD | RTA_IFP);
2031 
2032 	mp = rts_alloc_msg(cmd, rtm_addrs, af, 0);
2033 	if (mp == NULL)
2034 		return;
2035 
2036 	if (cmd != RTM_ADD && cmd != RTM_DELETE) {
2037 		switch (af) {
2038 		case AF_INET:
2039 			rts_fill_msg(cmd, rtm_addrs, 0,
2040 			    ipif->ipif_net_mask, 0, ipif->ipif_lcl_addr,
2041 			    ipif->ipif_pp_dst_addr, 0,
2042 			    ipif->ipif_lcl_addr, ipif->ipif_ill,
2043 			    mp, NULL);
2044 			break;
2045 		case AF_INET6:
2046 			rts_fill_msg_v6(cmd, rtm_addrs,
2047 			    &ipv6_all_zeros, &ipif->ipif_v6net_mask,
2048 			    &ipv6_all_zeros, &ipif->ipif_v6lcl_addr,
2049 			    &ipif->ipif_v6pp_dst_addr, &ipv6_all_zeros,
2050 			    &ipif->ipif_v6lcl_addr, ipif->ipif_ill,
2051 			    mp, NULL);
2052 			break;
2053 		}
2054 		ifam = (ifa_msghdr_t *)mp->b_rptr;
2055 		ifam->ifam_index =
2056 		    ipif->ipif_ill->ill_phyint->phyint_ifindex;
2057 		ifam->ifam_metric = ipif->ipif_ill->ill_metric;
2058 		ifam->ifam_flags = ((cmd == RTM_NEWADDR) ? RTF_UP : 0);
2059 		ifam->ifam_addrs = rtm_addrs;
2060 	} else {
2061 		switch (af) {
2062 		case AF_INET:
2063 			rts_fill_msg(cmd, rtm_addrs,
2064 			    ipif->ipif_lcl_addr, ipif->ipif_net_mask, 0,
2065 			    0, 0, 0, 0, NULL, mp, NULL);
2066 			break;
2067 		case AF_INET6:
2068 			rts_fill_msg_v6(cmd, rtm_addrs,
2069 			    &ipif->ipif_v6lcl_addr,
2070 			    &ipif->ipif_v6net_mask, &ipv6_all_zeros,
2071 			    &ipv6_all_zeros, &ipv6_all_zeros,
2072 			    &ipv6_all_zeros, &ipv6_all_zeros,
2073 			    NULL, mp, NULL);
2074 			break;
2075 		}
2076 		rtm = (rt_msghdr_t *)mp->b_rptr;
2077 		rtm->rtm_index =
2078 		    ipif->ipif_ill->ill_phyint->phyint_ifindex;
2079 		rtm->rtm_flags = ((cmd == RTM_ADD) ? RTF_UP : 0);
2080 		rtm->rtm_errno = error;
2081 		if (error == 0)
2082 			rtm->rtm_flags |= RTF_DONE;
2083 		rtm->rtm_addrs = rtm_addrs;
2084 	}
2085 	rts_queue_input(mp, NULL, af, flags, ipst);
2086 }
2087 
2088 /*
2089  * This is called to generate messages to the routing socket
2090  * indicating a network interface has had addresses associated with it.
2091  * The structure of the code is based on the 4.4BSD-Lite2 <net/rtsock.c>.
2092  */
2093 void
2094 ip_rts_newaddrmsg(int cmd, int error, const ipif_t *ipif, uint_t flags)
2095 {
2096 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
2097 
2098 	if (flags & RTSQ_DEFAULT) {
2099 		flags = RTSQ_ALL;
2100 		/*
2101 		 * If this message is for an underlying interface, prevent
2102 		 * "normal" (IPMP-unaware) routing sockets from seeing it.
2103 		 */
2104 		if (IS_UNDER_IPMP(ipif->ipif_ill))
2105 			flags &= ~RTSQ_NORMAL;
2106 	}
2107 
2108 	/*
2109 	 * Let conn_ixa caching know that source address selection
2110 	 * changed
2111 	 */
2112 	if (cmd == RTM_ADD || cmd == RTM_DELETE)
2113 		ip_update_source_selection(ipst);
2114 
2115 	/*
2116 	 * If the request is DELETE, send RTM_DELETE and RTM_DELADDR.
2117 	 * if the request is ADD, send RTM_NEWADDR and RTM_ADD.
2118 	 * otherwise simply send the request.
2119 	 */
2120 	switch (cmd) {
2121 	case RTM_ADD:
2122 		rts_new_rtsmsg(RTM_NEWADDR, error, ipif, flags);
2123 		rts_new_rtsmsg(RTM_ADD, error, ipif, flags);
2124 		break;
2125 	case RTM_DELETE:
2126 		rts_new_rtsmsg(RTM_DELETE, error, ipif, flags);
2127 		rts_new_rtsmsg(RTM_DELADDR, error, ipif, flags);
2128 		break;
2129 	default:
2130 		rts_new_rtsmsg(cmd, error, ipif, flags);
2131 		break;
2132 	}
2133 }
2134 
2135 /*
2136  * Based on the address family specified in a sockaddr, copy the address field
2137  * into an in6_addr_t.
2138  *
2139  * In the case of AF_UNSPEC, we assume the family is actually AF_INET for
2140  * compatibility with programs that leave the family cleared in the sockaddr.
2141  * Callers of rts_copyfromsockaddr should check the family themselves if they
2142  * wish to verify its value.
2143  *
2144  * In the case of AF_INET6, a check is made to ensure that address is not an
2145  * IPv4-mapped address.
2146  */
2147 size_t
2148 rts_copyfromsockaddr(struct sockaddr *sa, in6_addr_t *addrp)
2149 {
2150 	switch (sa->sa_family) {
2151 	case AF_INET:
2152 	case AF_UNSPEC:
2153 		IN6_IPADDR_TO_V4MAPPED(((sin_t *)sa)->sin_addr.s_addr, addrp);
2154 		return (sizeof (sin_t));
2155 	case AF_INET6:
2156 		*addrp = ((sin6_t *)sa)->sin6_addr;
2157 		if (IN6_IS_ADDR_V4MAPPED(addrp))
2158 			return (0);
2159 		return (sizeof (sin6_t));
2160 	default:
2161 		return (0);
2162 	}
2163 }
2164