1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/ddi.h> 39 #include <sys/cmn_err.h> 40 #include <sys/policy.h> 41 42 #include <sys/systm.h> 43 #include <sys/kmem.h> 44 #include <sys/param.h> 45 #include <sys/socket.h> 46 #include <net/if.h> 47 #include <net/route.h> 48 #include <netinet/in.h> 49 #include <net/if_dl.h> 50 #include <netinet/ip6.h> 51 #include <netinet/icmp6.h> 52 53 #include <inet/common.h> 54 #include <inet/mi.h> 55 #include <inet/ip.h> 56 #include <inet/ip6.h> 57 #include <inet/ip_ndp.h> 58 #include <inet/arp.h> 59 #include <inet/ip_if.h> 60 #include <inet/ip_ire.h> 61 #include <inet/ip_ftable.h> 62 #include <inet/ip_rts.h> 63 #include <inet/nd.h> 64 65 #include <net/pfkeyv2.h> 66 #include <inet/ipsec_info.h> 67 #include <inet/sadb.h> 68 #include <sys/kmem.h> 69 #include <inet/tcp.h> 70 #include <inet/ipclassifier.h> 71 #include <sys/zone.h> 72 #include <sys/tsol/label.h> 73 #include <sys/tsol/tnet.h> 74 75 struct kmem_cache *rt_entry_cache; 76 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the respective tables (cache or forwarding tables). 86 * 87 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 89 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_ident, ire_refcnt 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_max_frag, ire_frag_flag 117 * 118 * - ire_lock is used to set/read both of them together. 119 * 120 * ire_tire_mark 121 * 122 * - Set in ire_create and updated in ire_expire, which is called 123 * by only one function namely ip_trash_timer_expire. Thus only 124 * one function updates and examines the value. 125 * 126 * ire_marks 127 * - bucket lock protects this. 128 * 129 * ire_ipsec_overhead/ire_ll_hdr_length 130 * 131 * - Place holder for returning the information to the upper layers 132 * when IRE_DB_REQ comes down. 133 * 134 * 135 * ipv6_ire_default_count is protected by the bucket lock of 136 * ip_forwarding_table_v6[0][0]. 137 * 138 * ipv6_ire_default_index is not protected as it is just a hint 139 * at which default gateway to use. There is nothing 140 * wrong in using the same gateway for two different connections. 141 * 142 * As we always hold the bucket locks in all the places while accessing 143 * the above values, it is natural to use them for protecting them. 144 * 145 * We have a separate cache table and forwarding table for IPv4 and IPv6. 146 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 147 * array of irb_t structure and forwarding table (ip_forwarding_table/ 148 * ip_forwarding_table_v6) is an array of pointers to array of irb_t 149 * structure. ip_forwarding_table[_v6] is allocated dynamically in 150 * ire_add_v4/v6. ire_ft_init_lock is used to serialize multiple threads 151 * initializing the same bucket. Once a bucket is initialized, it is never 152 * de-alloacted. This assumption enables us to access ip_forwarding_table[i] 153 * or ip_forwarding_table_v6[i] without any locks. 154 * 155 * Each irb_t - ire bucket structure has a lock to protect 156 * a bucket and the ires residing in the bucket have a back pointer to 157 * the bucket structure. It also has a reference count for the number 158 * of threads walking the bucket - irb_refcnt which is bumped up 159 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 160 * set to IRE_MARK_CONDEMNED indicating that there are some ires 161 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 162 * last thread to leave the bucket should delete the ires. Usually 163 * this is done by the IRB_REFRELE macro which is used to decrement 164 * the reference count on a bucket. 165 * 166 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 167 * decrements the reference count, ire_refcnt, atomically on the ire. 168 * ire_refcnt is modified only using this macro. Operations on the IRE 169 * could be described as follows : 170 * 171 * CREATE an ire with reference count initialized to 1. 172 * 173 * ADDITION of an ire holds the bucket lock, checks for duplicates 174 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 175 * bumping up once more i.e the reference count is 2. This is to avoid 176 * an extra lookup in the functions calling ire_add which wants to 177 * work with the ire after adding. 178 * 179 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 180 * macro. It is valid to bump up the referece count of the IRE, 181 * after the lookup has returned an ire. Following are the lookup 182 * functions that return an HELD ire : 183 * 184 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 185 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 186 * ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup. 187 * 188 * DELETION of an ire holds the bucket lock, removes it from the list 189 * and then decrements the reference count for having removed from the list 190 * by using the IRE_REFRELE macro. If some other thread has looked up 191 * the ire, the reference count would have been bumped up and hence 192 * this ire will not be freed once deleted. It will be freed once the 193 * reference count drops to zero. 194 * 195 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 196 * lookups acquire the bucket lock as RW_READER. 197 * 198 * NOTE : The only functions that does the IRE_REFRELE when an ire is 199 * passed as an argument are : 200 * 201 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 202 * broadcast ires it looks up internally within 203 * the function. Currently, for simplicity it does 204 * not differentiate the one that is passed in and 205 * the ones it looks up internally. It always 206 * IRE_REFRELEs. 207 * 2) ire_send 208 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 209 * that take ire as an argument, it has to selectively 210 * IRE_REFRELE the ire. To maintain symmetry, 211 * ire_send_v6 does the same. 212 * 213 * Otherwise, the general rule is to do the IRE_REFRELE in the function 214 * that is passing the ire as an argument. 215 * 216 * In trying to locate ires the following points are to be noted. 217 * 218 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 219 * to be ignored when walking the ires using ire_next. 220 * 221 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 222 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 223 * applications should not be seeing this ire and hence this ire is ignored 224 * in most cases in the search using ire_next. 225 * 226 * Zones note: 227 * Walking IREs within a given zone also walks certain ires in other 228 * zones. This is done intentionally. IRE walks with a specified 229 * zoneid are used only when doing informational reports, and 230 * zone users want to see things that they can access. See block 231 * comment in ire_walk_ill_match(). 232 */ 233 234 /* This is dynamically allocated in ip_ire_init */ 235 irb_t *ip_cache_table; 236 /* This is dynamically allocated in ire_add_mrtun */ 237 irb_t *ip_mrtun_table; 238 239 uint32_t ire_handle = 1; 240 /* 241 * ire_ft_init_lock is used while initializing ip_forwarding_table 242 * dynamically in ire_add. 243 */ 244 kmutex_t ire_ft_init_lock; 245 kmutex_t ire_mrtun_lock; /* Protects creation of table and it's count */ 246 kmutex_t ire_srcif_table_lock; /* Same as above */ 247 /* 248 * The following counts are used to determine whether a walk is 249 * needed through the reverse tunnel table or through ills 250 */ 251 kmutex_t ire_handle_lock; /* Protects ire_handle */ 252 uint_t ire_mrtun_count; /* Number of ires in reverse tun table */ 253 254 /* 255 * A per-interface routing table is created ( if not present) 256 * when the first entry is added to this special routing table. 257 * This special routing table is accessed through the ill data structure. 258 * The routing table looks like cache table. For example, currently it 259 * is used by mobile-ip foreign agent to forward data that only comes from 260 * the home agent tunnel for a mobile node. Thus if the outgoing interface 261 * is a RESOLVER interface, IP may need to resolve the hardware address for 262 * the outgoing interface. The routing entries in this table are not updated 263 * in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa- 264 * tion is lost as the write queue is passed to ip_wput. 265 * But, before sending the packet out, the hardware information must be updated 266 * in the special forwarding table. ire_srcif_table_count keeps track of total 267 * number of ires that are in interface based tables. Each interface based 268 * table hangs off of the incoming ill and each ill_t also keeps a refcnt 269 * of ires in that table. 270 */ 271 272 uint_t ire_srcif_table_count; /* Number of ires in all srcif tables */ 273 274 /* 275 * The minimum size of IRE cache table. It will be recalcuated in 276 * ip_ire_init(). 277 */ 278 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 279 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 280 281 /* 282 * The size of the forwarding table. We will make sure that it is a 283 * power of 2 in ip_ire_init(). 284 */ 285 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 286 287 struct kmem_cache *ire_cache; 288 static ire_t ire_null; 289 290 ire_stats_t ire_stats_v4; /* IPv4 ire statistics */ 291 ire_stats_t ire_stats_v6; /* IPv6 ire statistics */ 292 293 /* 294 * The threshold number of IRE in a bucket when the IREs are 295 * cleaned up. This threshold is calculated later in ip_open() 296 * based on the speed of CPU and available memory. This default 297 * value is the maximum. 298 * 299 * We have two kinds of cached IRE, temporary and 300 * non-temporary. Temporary IREs are marked with 301 * IRE_MARK_TEMPORARY. They are IREs created for non 302 * TCP traffic and for forwarding purposes. All others 303 * are non-temporary IREs. We don't mark IRE created for 304 * TCP as temporary because TCP is stateful and there are 305 * info stored in the IRE which can be shared by other TCP 306 * connections to the same destination. For connected 307 * endpoint, we also don't want to mark the IRE used as 308 * temporary because the same IRE will be used frequently, 309 * otherwise, the app should not do a connect(). We change 310 * the marking at ip_bind_connected_*() if necessary. 311 * 312 * We want to keep the cache IRE hash bucket length reasonably 313 * short, otherwise IRE lookup functions will take "forever." 314 * We use the "crude" function that the IRE bucket 315 * length should be based on the CPU speed, which is 1 entry 316 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 317 * (n). This means that with a 750MHz CPU, the max bucket 318 * length can be (750 >> n) entries. 319 * 320 * Note that this threshold is separate for temp and non-temp 321 * IREs. This means that the actual bucket length can be 322 * twice as that. And while we try to keep temporary IRE 323 * length at most at the threshold value, we do not attempt to 324 * make the length for non-temporary IREs fixed, for the 325 * reason stated above. Instead, we start trying to find 326 * "unused" non-temporary IREs when the bucket length reaches 327 * this threshold and clean them up. 328 * 329 * We also want to limit the amount of memory used by 330 * IREs. So if we are allowed to use ~3% of memory (M) 331 * for those IREs, each bucket should not have more than 332 * 333 * M / num of cache bucket / sizeof (ire_t) 334 * 335 * Again the above memory uses are separate for temp and 336 * non-temp cached IREs. 337 * 338 * We may also want the limit to be a function of the number 339 * of interfaces and number of CPUs. Doing the initialization 340 * in ip_open() means that every time an interface is plumbed, 341 * the max is re-calculated. Right now, we don't do anything 342 * different. In future, when we have more experience, we 343 * may want to change this behavior. 344 */ 345 uint32_t ip_ire_max_bucket_cnt = 10; 346 uint32_t ip6_ire_max_bucket_cnt = 10; 347 348 /* 349 * The minimum of the temporary IRE bucket count. We do not want 350 * the length of each bucket to be too short. This may hurt 351 * performance of some apps as the temporary IREs are removed too 352 * often. 353 */ 354 uint32_t ip_ire_min_bucket_cnt = 3; 355 uint32_t ip6_ire_min_bucket_cnt = 3; 356 357 /* 358 * The ratio of memory consumed by IRE used for temporary to available 359 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 360 * value can be changed in /etc/system. 6 is a reasonable number. 361 */ 362 uint32_t ip_ire_mem_ratio = 6; 363 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 364 uint32_t ip_ire_cpu_ratio = 7; 365 366 typedef struct nce_clookup_s { 367 ipaddr_t ncecl_addr; 368 boolean_t ncecl_found; 369 } nce_clookup_t; 370 371 /* 372 * The maximum number of buckets in IRE cache table. In future, we may 373 * want to make it a dynamic hash table. For the moment, we fix the 374 * size and allocate the table in ip_ire_init() when IP is first loaded. 375 * We take into account the amount of memory a system has. 376 */ 377 #define IP_MAX_CACHE_TABLE_SIZE 4096 378 379 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 380 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 381 382 #define NUM_ILLS 3 /* To build the ILL list to unlock */ 383 384 /* Zero iulp_t for initialization. */ 385 const iulp_t ire_uinfo_null = { 0 }; 386 387 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 388 ipsq_func_t func, boolean_t); 389 static int ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 390 ipsq_func_t func); 391 static ire_t *ire_update_srcif_v4(ire_t *ire); 392 static void ire_delete_v4(ire_t *ire); 393 static void ire_report_ctable(ire_t *ire, char *mp); 394 static void ire_report_mrtun_table(ire_t *ire, char *mp); 395 static void ire_report_srcif_table(ire_t *ire, char *mp); 396 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 397 zoneid_t zoneid); 398 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 399 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 400 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt); 401 extern void ill_unlock_ills(ill_t **list, int cnt); 402 static void ire_fastpath_list_add(ill_t *ill, ire_t *ire); 403 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 404 extern void th_trace_rrecord(th_trace_t *); 405 #ifdef IRE_DEBUG 406 static void ire_trace_inactive(ire_t *); 407 #endif 408 409 /* 410 * To avoid bloating the code, we call this function instead of 411 * using the macro IRE_REFRELE. Use macro only in performance 412 * critical paths. 413 * 414 * Must not be called while holding any locks. Otherwise if this is 415 * the last reference to be released there is a chance of recursive mutex 416 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 417 * to restart an ioctl. The one exception is when the caller is sure that 418 * this is not the last reference to be released. Eg. if the caller is 419 * sure that the ire has not been deleted and won't be deleted. 420 */ 421 void 422 ire_refrele(ire_t *ire) 423 { 424 IRE_REFRELE(ire); 425 } 426 427 void 428 ire_refrele_notr(ire_t *ire) 429 { 430 IRE_REFRELE_NOTR(ire); 431 } 432 433 /* 434 * kmem_cache_alloc constructor for IRE in kma space. 435 * Note that when ire_mp is set the IRE is stored in that mblk and 436 * not in this cache. 437 */ 438 /* ARGSUSED */ 439 static int 440 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 441 { 442 ire_t *ire = buf; 443 444 ire->ire_nce = NULL; 445 446 return (0); 447 } 448 449 /* ARGSUSED1 */ 450 static void 451 ip_ire_destructor(void *buf, void *cdrarg) 452 { 453 ire_t *ire = buf; 454 455 ASSERT(ire->ire_nce == NULL); 456 } 457 458 /* 459 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 460 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 461 * for an existing CACHED IRE. 462 */ 463 /* ARGSUSED */ 464 int 465 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 466 { 467 uchar_t *addr_ucp; 468 ipic_t *ipic; 469 ire_t *ire; 470 ipaddr_t addr; 471 in6_addr_t v6addr; 472 irb_t *irb; 473 zoneid_t zoneid; 474 475 ASSERT(q->q_next == NULL); 476 zoneid = Q_TO_CONN(q)->conn_zoneid; 477 478 /* 479 * Check privilege using the ioctl credential; if it is NULL 480 * then this is a kernel message and therefor privileged. 481 */ 482 if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) 483 return (EPERM); 484 485 ipic = (ipic_t *)mp->b_rptr; 486 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 487 ipic->ipic_addr_length))) { 488 return (EINVAL); 489 } 490 if (!OK_32PTR(addr_ucp)) 491 return (EINVAL); 492 switch (ipic->ipic_addr_length) { 493 case IP_ADDR_LEN: { 494 /* Extract the destination address. */ 495 addr = *(ipaddr_t *)addr_ucp; 496 /* Find the corresponding IRE. */ 497 ire = ire_cache_lookup(addr, zoneid, NULL); 498 break; 499 } 500 case IPV6_ADDR_LEN: { 501 /* Extract the destination address. */ 502 v6addr = *(in6_addr_t *)addr_ucp; 503 /* Find the corresponding IRE. */ 504 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL); 505 break; 506 } 507 default: 508 return (EINVAL); 509 } 510 511 if (ire == NULL) 512 return (ENOENT); 513 /* 514 * Update the round trip time estimate and/or the max frag size 515 * and/or the slow start threshold. 516 * 517 * We serialize multiple advises using ire_lock. 518 */ 519 mutex_enter(&ire->ire_lock); 520 if (ipic->ipic_rtt) { 521 /* 522 * If there is no old cached values, initialize them 523 * conservatively. Set them to be (1.5 * new value). 524 */ 525 if (ire->ire_uinfo.iulp_rtt != 0) { 526 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 527 ipic->ipic_rtt) >> 1; 528 } else { 529 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 530 (ipic->ipic_rtt >> 1); 531 } 532 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 533 ire->ire_uinfo.iulp_rtt_sd = 534 (ire->ire_uinfo.iulp_rtt_sd + 535 ipic->ipic_rtt_sd) >> 1; 536 } else { 537 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 538 (ipic->ipic_rtt_sd >> 1); 539 } 540 } 541 if (ipic->ipic_max_frag) 542 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 543 if (ipic->ipic_ssthresh != 0) { 544 if (ire->ire_uinfo.iulp_ssthresh != 0) 545 ire->ire_uinfo.iulp_ssthresh = 546 (ipic->ipic_ssthresh + 547 ire->ire_uinfo.iulp_ssthresh) >> 1; 548 else 549 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 550 } 551 /* 552 * Don't need the ire_lock below this. ire_type does not change 553 * after initialization. ire_marks is protected by irb_lock. 554 */ 555 mutex_exit(&ire->ire_lock); 556 557 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 558 /* 559 * Only increment the temporary IRE count if the original 560 * IRE is not already marked temporary. 561 */ 562 irb = ire->ire_bucket; 563 rw_enter(&irb->irb_lock, RW_WRITER); 564 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 565 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 566 irb->irb_tmp_ire_cnt++; 567 } 568 ire->ire_marks |= ipic->ipic_ire_marks; 569 rw_exit(&irb->irb_lock); 570 } 571 572 ire_refrele(ire); 573 return (0); 574 } 575 576 /* 577 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 578 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 579 * for a host that is not responding. This will force an attempt to 580 * establish a new route, if available, and flush out the ARP entry so 581 * it will re-resolve. Management processes may want to use the 582 * version that generates a reply. 583 * 584 * This function does not support IPv6 since Neighbor Unreachability Detection 585 * means that negative advise like this is useless. 586 */ 587 /* ARGSUSED */ 588 int 589 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 590 { 591 uchar_t *addr_ucp; 592 ipaddr_t addr; 593 ire_t *ire; 594 ipid_t *ipid; 595 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 596 zoneid_t zoneid; 597 ire_t *gire = NULL; 598 ill_t *ill; 599 mblk_t *arp_mp; 600 601 ASSERT(q->q_next == NULL); 602 zoneid = Q_TO_CONN(q)->conn_zoneid; 603 604 /* 605 * Check privilege using the ioctl credential; if it is NULL 606 * then this is a kernel message and therefor privileged. 607 */ 608 if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) 609 return (EPERM); 610 611 ipid = (ipid_t *)mp->b_rptr; 612 613 /* Only actions on IRE_CACHEs are acceptable at present. */ 614 if (ipid->ipid_ire_type != IRE_CACHE) 615 return (EINVAL); 616 617 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 618 ipid->ipid_addr_length); 619 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 620 return (EINVAL); 621 switch (ipid->ipid_addr_length) { 622 case IP_ADDR_LEN: 623 /* addr_ucp points at IP addr */ 624 break; 625 case sizeof (sin_t): { 626 sin_t *sin; 627 /* 628 * got complete (sockaddr) address - increment addr_ucp to point 629 * at the ip_addr field. 630 */ 631 sin = (sin_t *)addr_ucp; 632 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 633 break; 634 } 635 default: 636 return (EINVAL); 637 } 638 /* Extract the destination address. */ 639 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 640 641 /* Try to find the CACHED IRE. */ 642 ire = ire_cache_lookup(addr, zoneid, NULL); 643 644 /* Nail it. */ 645 if (ire) { 646 /* Allow delete only on CACHE entries */ 647 if (ire->ire_type != IRE_CACHE) { 648 ire_refrele(ire); 649 return (EINVAL); 650 } 651 652 /* 653 * Verify that the IRE has been around for a while. 654 * This is to protect against transport protocols 655 * that are too eager in sending delete messages. 656 */ 657 if (gethrestime_sec() < 658 ire->ire_create_time + ip_ignore_delete_time) { 659 ire_refrele(ire); 660 return (EINVAL); 661 } 662 /* 663 * Now we have a potentially dead cache entry. We need 664 * to remove it. 665 * If this cache entry is generated from a 666 * default route (i.e., ire_cmask == 0), 667 * search the default list and mark it dead and some 668 * background process will try to activate it. 669 */ 670 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 671 /* 672 * Make sure that we pick a different 673 * IRE_DEFAULT next time. 674 */ 675 ire_t *gw_ire; 676 irb_t *irb = NULL; 677 uint_t match_flags; 678 679 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 680 681 gire = ire_ftable_lookup(ire->ire_addr, 682 ire->ire_cmask, 0, 0, 683 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags); 684 685 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 686 (void *)gire)); 687 688 if (gire != NULL) { 689 irb = gire->ire_bucket; 690 691 /* 692 * We grab it as writer just to serialize 693 * multiple threads trying to bump up 694 * irb_rr_origin 695 */ 696 rw_enter(&irb->irb_lock, RW_WRITER); 697 if ((gw_ire = irb->irb_rr_origin) == NULL) { 698 rw_exit(&irb->irb_lock); 699 goto done; 700 } 701 702 703 /* Skip past the potentially bad gateway */ 704 if (ire->ire_gateway_addr == 705 gw_ire->ire_gateway_addr) 706 irb->irb_rr_origin = gw_ire->ire_next; 707 708 rw_exit(&irb->irb_lock); 709 } 710 } 711 done: 712 if (gire != NULL) 713 IRE_REFRELE(gire); 714 /* report the bad route to routing sockets */ 715 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 716 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 717 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); 718 routing_sock_info = B_TRUE; 719 720 /* 721 * TCP is really telling us to start over completely, and it 722 * expects that we'll resend the ARP query. Tell ARP to 723 * discard the entry, if this is a local destination. 724 */ 725 ill = ire->ire_stq->q_ptr; 726 if (ire->ire_gateway_addr == 0 && 727 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 728 putnext(ill->ill_rq, arp_mp); 729 } 730 731 ire_delete(ire); 732 ire_refrele(ire); 733 } 734 /* Also look for an IRE_HOST_REDIRECT and remove it if present */ 735 ire = ire_route_lookup(addr, 0, 0, IRE_HOST_REDIRECT, NULL, NULL, 736 ALL_ZONES, NULL, MATCH_IRE_TYPE); 737 738 /* Nail it. */ 739 if (ire) { 740 if (!routing_sock_info) { 741 ip_rts_change(RTM_LOSING, ire->ire_addr, 742 ire->ire_gateway_addr, ire->ire_mask, 743 ire->ire_src_addr, 0, 0, 0, 744 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); 745 } 746 ire_delete(ire); 747 ire_refrele(ire); 748 } 749 return (0); 750 } 751 752 /* 753 * Named Dispatch routine to produce a formatted report on all IREs. 754 * This report is accessed by using the ndd utility to "get" ND variable 755 * "ipv4_ire_status". 756 */ 757 /* ARGSUSED */ 758 int 759 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 760 { 761 zoneid_t zoneid; 762 763 (void) mi_mpprintf(mp, 764 "IRE " MI_COL_HDRPAD_STR 765 /* 01234567[89ABCDEF] */ 766 "rfq " MI_COL_HDRPAD_STR 767 /* 01234567[89ABCDEF] */ 768 "stq " MI_COL_HDRPAD_STR 769 /* 01234567[89ABCDEF] */ 770 " zone " 771 /* 12345 */ 772 "addr mask " 773 /* 123.123.123.123 123.123.123.123 */ 774 "src gateway mxfrg rtt rtt_sd ssthresh ref " 775 /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ 776 "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " 777 /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ 778 "recvpipe in/out/forward type"); 779 /* 12345678 in/out/forward xxxxxxxxxx */ 780 781 /* 782 * Because of the ndd constraint, at most we can have 64K buffer 783 * to put in all IRE info. So to be more efficient, just 784 * allocate a 64K buffer here, assuming we need that large buffer. 785 * This should be OK as only root can do ndd /dev/ip. 786 */ 787 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 788 /* The following may work even if we cannot get a large buf. */ 789 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 790 return (0); 791 } 792 793 zoneid = Q_TO_CONN(q)->conn_zoneid; 794 if (zoneid == GLOBAL_ZONEID) 795 zoneid = ALL_ZONES; 796 797 ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid); 798 ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid); 799 800 return (0); 801 } 802 803 804 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ 805 static void 806 ire_report_ctable(ire_t *ire, char *mp) 807 { 808 char buf1[16]; 809 char buf2[16]; 810 char buf3[16]; 811 char buf4[16]; 812 uint_t fo_pkt_count; 813 uint_t ib_pkt_count; 814 int ref; 815 uint_t print_len, buf_len; 816 817 if ((ire->ire_type & IRE_CACHETABLE) == 0) 818 return; 819 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 820 if (buf_len <= 0) 821 return; 822 823 /* Number of active references of this ire */ 824 ref = ire->ire_refcnt; 825 /* "inbound" to a non local address is a forward */ 826 ib_pkt_count = ire->ire_ib_pkt_count; 827 fo_pkt_count = 0; 828 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 829 fo_pkt_count = ib_pkt_count; 830 ib_pkt_count = 0; 831 } 832 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 833 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 834 "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 835 "%04d %08d %08d %d/%d/%d %s\n", 836 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 837 (int)ire->ire_zoneid, 838 ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), 839 ip_dot_addr(ire->ire_src_addr, buf3), 840 ip_dot_addr(ire->ire_gateway_addr, buf4), 841 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 842 ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, 843 ire->ire_uinfo.iulp_rtomax, 844 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 845 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 846 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 847 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 848 ire->ire_uinfo.iulp_sack, 849 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 850 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 851 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); 852 if (print_len < buf_len) { 853 ((mblk_t *)mp)->b_wptr += print_len; 854 } else { 855 ((mblk_t *)mp)->b_wptr += buf_len; 856 } 857 } 858 859 /* ARGSUSED */ 860 int 861 ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 862 { 863 (void) mi_mpprintf(mp, 864 "IRE " MI_COL_HDRPAD_STR 865 /* 01234567[89ABCDEF] */ 866 "stq " MI_COL_HDRPAD_STR 867 /* 01234567[89ABCDEF] */ 868 "in_ill " MI_COL_HDRPAD_STR 869 /* 01234567[89ABCDEF] */ 870 "in_src_addr " 871 /* 123.123.123.123 */ 872 "max_frag " 873 /* 12345 */ 874 "ref "); 875 /* 123 */ 876 877 ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, mp, NULL); 878 return (0); 879 } 880 881 /* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */ 882 883 static void 884 ire_report_mrtun_table(ire_t *ire, char *mp) 885 { 886 char buf1[INET_ADDRSTRLEN]; 887 int ref; 888 889 /* Number of active references of this ire */ 890 ref = ire->ire_refcnt; 891 ASSERT(ire->ire_type == IRE_MIPRTUN); 892 (void) mi_mpprintf((mblk_t *)mp, 893 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 894 "%s %05d %03d", 895 (void *)ire, (void *)ire->ire_stq, 896 (void *)ire->ire_in_ill, 897 ip_dot_addr(ire->ire_in_src_addr, buf1), 898 ire->ire_max_frag, ref); 899 } 900 901 /* 902 * Dispatch routine to format ires in interface based routine 903 */ 904 /* ARGSUSED */ 905 int 906 ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 907 { 908 909 /* Report all interface based ires */ 910 911 (void) mi_mpprintf(mp, 912 "IRE " MI_COL_HDRPAD_STR 913 /* 01234567[89ABCDEF] */ 914 "stq " MI_COL_HDRPAD_STR 915 /* 01234567[89ABCDEF] */ 916 "in_ill " MI_COL_HDRPAD_STR 917 /* 01234567[89ABCDEF] */ 918 "addr " 919 /* 123.123.123.123 */ 920 "gateway " 921 /* 123.123.123.123 */ 922 "max_frag " 923 /* 12345 */ 924 "ref " 925 /* 123 */ 926 "type " 927 /* ABCDEFGH */ 928 "in/out/forward"); 929 ire_walk_srcif_table_v4(ire_report_srcif_table, mp); 930 return (0); 931 } 932 933 /* Reports the interface table ires */ 934 static void 935 ire_report_srcif_table(ire_t *ire, char *mp) 936 { 937 char buf1[INET_ADDRSTRLEN]; 938 char buf2[INET_ADDRSTRLEN]; 939 int ref; 940 941 ref = ire->ire_refcnt; 942 (void) mi_mpprintf((mblk_t *)mp, 943 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 944 "%s %s %05d %03d %s %d", 945 (void *)ire, (void *)ire->ire_stq, 946 (void *)ire->ire_in_ill, 947 ip_dot_addr(ire->ire_addr, buf1), 948 ip_dot_addr(ire->ire_gateway_addr, buf2), 949 ire->ire_max_frag, ref, 950 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type), 951 ire->ire_ib_pkt_count); 952 953 } 954 /* 955 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 956 * down from the Upper Level Protocol to request a copy of the IRE (to check 957 * its type or to extract information like round-trip time estimates or the 958 * MTU.) 959 * The address is assumed to be in the ire_addr field. If no IRE is found 960 * an IRE is returned with ire_type being zero. 961 * Note that the upper lavel protocol has to check for broadcast 962 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 963 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 964 * end of the returned message. 965 * 966 * TCP sends down a message of this type with a connection request packet 967 * chained on. UDP and ICMP send it down to verify that a route exists for 968 * the destination address when they get connected. 969 */ 970 void 971 ip_ire_req(queue_t *q, mblk_t *mp) 972 { 973 ire_t *inire; 974 ire_t *ire; 975 mblk_t *mp1; 976 ire_t *sire = NULL; 977 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 978 979 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 980 !OK_32PTR(mp->b_rptr)) { 981 freemsg(mp); 982 return; 983 } 984 inire = (ire_t *)mp->b_rptr; 985 /* 986 * Got it, now take our best shot at an IRE. 987 */ 988 if (inire->ire_ipversion == IPV6_VERSION) { 989 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 990 NULL, &sire, zoneid, NULL, 991 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 992 } else { 993 ASSERT(inire->ire_ipversion == IPV4_VERSION); 994 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 995 NULL, &sire, zoneid, NULL, 996 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 997 } 998 999 /* 1000 * We prevent returning IRES with source address INADDR_ANY 1001 * as these were temporarily created for sending packets 1002 * from endpoints that have conn_unspec_src set. 1003 */ 1004 if (ire == NULL || 1005 (ire->ire_ipversion == IPV4_VERSION && 1006 ire->ire_src_addr == INADDR_ANY) || 1007 (ire->ire_ipversion == IPV6_VERSION && 1008 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 1009 inire->ire_type = 0; 1010 } else { 1011 bcopy(ire, inire, sizeof (ire_t)); 1012 /* Copy the route metrics from the parent. */ 1013 if (sire != NULL) { 1014 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 1015 sizeof (iulp_t)); 1016 } 1017 1018 /* 1019 * As we don't lookup global policy here, we may not 1020 * pass the right size if per-socket policy is not 1021 * present. For these cases, path mtu discovery will 1022 * do the right thing. 1023 */ 1024 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 1025 1026 /* Pass the latest setting of the ip_path_mtu_discovery */ 1027 inire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; 1028 } 1029 if (ire != NULL) 1030 ire_refrele(ire); 1031 if (sire != NULL) 1032 ire_refrele(sire); 1033 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 1034 mp->b_datap->db_type = IRE_DB_TYPE; 1035 1036 /* Put the IRE_DB_TYPE mblk last in the chain */ 1037 mp1 = mp->b_cont; 1038 if (mp1 != NULL) { 1039 mp->b_cont = NULL; 1040 linkb(mp1, mp); 1041 mp = mp1; 1042 } 1043 qreply(q, mp); 1044 } 1045 1046 /* 1047 * Send a packet using the specified IRE. 1048 * If ire_src_addr_v6 is all zero then discard the IRE after 1049 * the packet has been sent. 1050 */ 1051 static void 1052 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 1053 { 1054 mblk_t *ipsec_mp; 1055 boolean_t is_secure; 1056 uint_t ifindex; 1057 ill_t *ill; 1058 1059 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1060 ipsec_mp = pkt; 1061 is_secure = (pkt->b_datap->db_type == M_CTL); 1062 if (is_secure) 1063 pkt = pkt->b_cont; 1064 1065 /* If the packet originated externally then */ 1066 if (pkt->b_prev) { 1067 ire_refrele(ire); 1068 /* 1069 * Extract the ifindex from b_prev (set in ip_rput_noire). 1070 * Look up interface to see if it still exists (it could have 1071 * been unplumbed by the time the reply came back from ARP) 1072 */ 1073 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1074 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 1075 NULL, NULL, NULL, NULL); 1076 if (ill == NULL) { 1077 pkt->b_prev = NULL; 1078 pkt->b_next = NULL; 1079 freemsg(ipsec_mp); 1080 return; 1081 } 1082 q = ill->ill_rq; 1083 pkt->b_prev = NULL; 1084 /* 1085 * This packet has not gone through IPSEC processing 1086 * and hence we should not have any IPSEC message 1087 * prepended. 1088 */ 1089 ASSERT(ipsec_mp == pkt); 1090 put(q, pkt); 1091 ill_refrele(ill); 1092 } else if (pkt->b_next) { 1093 /* Packets from multicast router */ 1094 pkt->b_next = NULL; 1095 /* 1096 * We never get the IPSEC_OUT while forwarding the 1097 * packet for multicast router. 1098 */ 1099 ASSERT(ipsec_mp == pkt); 1100 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 1101 ire_refrele(ire); 1102 } else { 1103 /* Locally originated packets */ 1104 boolean_t is_inaddr_any; 1105 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 1106 1107 /* 1108 * We need to do an ire_delete below for which 1109 * we need to make sure that the IRE will be 1110 * around even after calling ip_wput_ire - 1111 * which does ire_refrele. Otherwise somebody 1112 * could potentially delete this ire and hence 1113 * free this ire and we will be calling ire_delete 1114 * on a freed ire below. 1115 */ 1116 is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); 1117 if (is_inaddr_any) { 1118 IRE_REFHOLD(ire); 1119 } 1120 /* 1121 * If we were resolving a router we can not use the 1122 * routers IRE for sending the packet (since it would 1123 * violate the uniqness of the IP idents) thus we 1124 * make another pass through ip_wput to create the IRE_CACHE 1125 * for the destination. 1126 * When IRE_MARK_NOADD is set, ire_add() is not called. 1127 * Thus ip_wput() will never find a ire and result in an 1128 * infinite loop. Thus we check whether IRE_MARK_NOADD is 1129 * is set. This also implies that IRE_MARK_NOADD can only be 1130 * used to send packets to directly connected hosts. 1131 */ 1132 if (ipha->ipha_dst != ire->ire_addr && 1133 !(ire->ire_marks & IRE_MARK_NOADD)) { 1134 ire_refrele(ire); /* Held in ire_add */ 1135 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, IRE_SEND); 1136 } else { 1137 if (is_secure) { 1138 ipsec_out_t *oi; 1139 ipha_t *ipha; 1140 1141 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1142 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1143 if (oi->ipsec_out_proc_begin) { 1144 /* 1145 * This is the case where 1146 * ip_wput_ipsec_out could not find 1147 * the IRE and recreated a new one. 1148 * As ip_wput_ipsec_out does ire 1149 * lookups, ire_refrele for the extra 1150 * bump in ire_add. 1151 */ 1152 ire_refrele(ire); 1153 ip_wput_ipsec_out(q, ipsec_mp, ipha, 1154 NULL, NULL); 1155 } else { 1156 /* 1157 * IRE_REFRELE will be done in 1158 * ip_wput_ire. 1159 */ 1160 ip_wput_ire(q, ipsec_mp, ire, NULL, 1161 IRE_SEND); 1162 } 1163 } else { 1164 /* 1165 * IRE_REFRELE will be done in ip_wput_ire. 1166 */ 1167 ip_wput_ire(q, ipsec_mp, ire, NULL, 1168 IRE_SEND); 1169 } 1170 } 1171 /* 1172 * Special code to support sending a single packet with 1173 * conn_unspec_src using an IRE which has no source address. 1174 * The IRE is deleted here after sending the packet to avoid 1175 * having other code trip on it. But before we delete the 1176 * ire, somebody could have looked up this ire. 1177 * We prevent returning/using this IRE by the upper layers 1178 * by making checks to NULL source address in other places 1179 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 1180 * Though, this does not completely prevent other threads 1181 * from using this ire, this should not cause any problems. 1182 * 1183 * NOTE : We use is_inaddr_any instead of using ire_src_addr 1184 * because for the normal case i.e !is_inaddr_any, ire_refrele 1185 * above could have potentially freed the ire. 1186 */ 1187 if (is_inaddr_any) { 1188 /* 1189 * If this IRE has been deleted by another thread, then 1190 * ire_bucket won't be NULL, but ire_ptpn will be NULL. 1191 * Thus, ire_delete will do nothing. This check 1192 * guards against calling ire_delete when the IRE was 1193 * never inserted in the table, which is handled by 1194 * ire_delete as dropping another reference. 1195 */ 1196 if (ire->ire_bucket != NULL) { 1197 ip1dbg(("ire_send: delete IRE\n")); 1198 ire_delete(ire); 1199 } 1200 ire_refrele(ire); /* Held above */ 1201 } 1202 } 1203 } 1204 1205 /* 1206 * Send a packet using the specified IRE. 1207 * If ire_src_addr_v6 is all zero then discard the IRE after 1208 * the packet has been sent. 1209 */ 1210 static void 1211 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 1212 { 1213 mblk_t *ipsec_mp; 1214 boolean_t secure; 1215 uint_t ifindex; 1216 1217 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1218 if (pkt->b_datap->db_type == M_CTL) { 1219 ipsec_mp = pkt; 1220 pkt = pkt->b_cont; 1221 secure = B_TRUE; 1222 } else { 1223 ipsec_mp = pkt; 1224 secure = B_FALSE; 1225 } 1226 1227 /* If the packet originated externally then */ 1228 if (pkt->b_prev) { 1229 ill_t *ill; 1230 /* 1231 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1232 * Look up interface to see if it still exists (it could have 1233 * been unplumbed by the time the reply came back from the 1234 * resolver). 1235 */ 1236 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1237 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1238 NULL, NULL, NULL, NULL); 1239 if (ill == NULL) { 1240 pkt->b_prev = NULL; 1241 pkt->b_next = NULL; 1242 freemsg(ipsec_mp); 1243 ire_refrele(ire); /* Held in ire_add */ 1244 return; 1245 } 1246 q = ill->ill_rq; 1247 pkt->b_prev = NULL; 1248 /* 1249 * This packet has not gone through IPSEC processing 1250 * and hence we should not have any IPSEC message 1251 * prepended. 1252 */ 1253 ASSERT(ipsec_mp == pkt); 1254 put(q, pkt); 1255 ill_refrele(ill); 1256 } else if (pkt->b_next) { 1257 /* Packets from multicast router */ 1258 pkt->b_next = NULL; 1259 /* 1260 * We never get the IPSEC_OUT while forwarding the 1261 * packet for multicast router. 1262 */ 1263 ASSERT(ipsec_mp == pkt); 1264 /* 1265 * XXX TODO IPv6. 1266 */ 1267 freemsg(pkt); 1268 #ifdef XXX 1269 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1270 #endif 1271 } else { 1272 if (secure) { 1273 ipsec_out_t *oi; 1274 ip6_t *ip6h; 1275 1276 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1277 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1278 if (oi->ipsec_out_proc_begin) { 1279 /* 1280 * This is the case where 1281 * ip_wput_ipsec_out could not find 1282 * the IRE and recreated a new one. 1283 */ 1284 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1285 NULL, NULL); 1286 } else { 1287 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, 1288 q, IRE_SEND); 1289 } 1290 } else { 1291 /* 1292 * Send packets through ip_output_v6 so that any 1293 * ip6_info header can be processed again. 1294 */ 1295 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1296 IRE_SEND); 1297 } 1298 /* 1299 * Special code to support sending a single packet with 1300 * conn_unspec_src using an IRE which has no source address. 1301 * The IRE is deleted here after sending the packet to avoid 1302 * having other code trip on it. But before we delete the 1303 * ire, somebody could have looked up this ire. 1304 * We prevent returning/using this IRE by the upper layers 1305 * by making checks to NULL source address in other places 1306 * like e.g ip_ire_append_v6, ip_ire_req and 1307 * ip_bind_connected_v6. Though, this does not completely 1308 * prevent other threads from using this ire, this should 1309 * not cause any problems. 1310 */ 1311 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1312 ip1dbg(("ire_send_v6: delete IRE\n")); 1313 ire_delete(ire); 1314 } 1315 } 1316 ire_refrele(ire); /* Held in ire_add */ 1317 } 1318 1319 /* 1320 * Make sure that IRE bucket does not get too long. 1321 * This can cause lock up because ire_cache_lookup() 1322 * may take "forever" to finish. 1323 * 1324 * We just remove cnt IREs each time. This means that 1325 * the bucket length will stay approximately constant, 1326 * depending on cnt. This should be enough to defend 1327 * against DoS attack based on creating temporary IREs 1328 * (for forwarding and non-TCP traffic). 1329 * 1330 * Note that new IRE is normally added at the tail of the 1331 * bucket. This means that we are removing the "oldest" 1332 * temporary IRE added. Only if there are IREs with 1333 * the same ire_addr, do we not add it at the tail. Refer 1334 * to ire_add_v*(). It should be OK for our purpose. 1335 * 1336 * For non-temporary cached IREs, we make sure that they 1337 * have not been used for some time (defined below), they 1338 * are non-local destinations, and there is no one using 1339 * them at the moment (refcnt == 1). 1340 * 1341 * The above means that the IRE bucket length may become 1342 * very long, consisting of mostly non-temporary IREs. 1343 * This can happen when the hash function does a bad job 1344 * so that most TCP connections cluster to a specific bucket. 1345 * This "hopefully" should never happen. It can also 1346 * happen if most TCP connections have very long lives. 1347 * Even with the minimal hash table size of 256, there 1348 * has to be a lot of such connections to make the bucket 1349 * length unreasonably long. This should probably not 1350 * happen either. The third can when this can happen is 1351 * when the machine is under attack, such as SYN flooding. 1352 * TCP should already have the proper mechanism to protect 1353 * that. So we should be safe. 1354 * 1355 * This function is called by ire_add_then_send() after 1356 * a new IRE is added and the packet is sent. 1357 * 1358 * The idle cutoff interval is set to 60s. It can be 1359 * changed using /etc/system. 1360 */ 1361 uint32_t ire_idle_cutoff_interval = 60000; 1362 1363 static void 1364 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt) 1365 { 1366 ire_t *ire; 1367 int tmp_cnt = cnt; 1368 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1369 1370 /* 1371 * irb is NULL if the IRE is not added to the hash. This 1372 * happens when IRE_MARK_NOADD is set in ire_add_then_send() 1373 * and when ires are returned from ire_update_srcif_v4() routine. 1374 */ 1375 if (irb == NULL) 1376 return; 1377 1378 IRB_REFHOLD(irb); 1379 if (irb->irb_tmp_ire_cnt > threshold) { 1380 for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0; 1381 ire = ire->ire_next) { 1382 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1383 continue; 1384 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1385 ASSERT(ire->ire_type == IRE_CACHE); 1386 ire_delete(ire); 1387 tmp_cnt--; 1388 } 1389 } 1390 } 1391 if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) { 1392 for (ire = irb->irb_ire; ire != NULL && cnt > 0; 1393 ire = ire->ire_next) { 1394 if (ire->ire_marks & IRE_MARK_CONDEMNED || 1395 ire->ire_gateway_addr == 0) { 1396 continue; 1397 } 1398 if ((ire->ire_type == IRE_CACHE) && 1399 (lbolt - ire->ire_last_used_time > cut_off) && 1400 (ire->ire_refcnt == 1)) { 1401 ire_delete(ire); 1402 cnt--; 1403 } 1404 } 1405 } 1406 IRB_REFRELE(irb); 1407 } 1408 1409 /* 1410 * ire_add_then_send is called when a new IRE has been created in order to 1411 * route an outgoing packet. Typically, it is called from ip_wput when 1412 * a response comes back down from a resolver. We add the IRE, and then 1413 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1414 * However, we do not add the newly created IRE in the cache when 1415 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1416 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned 1417 * by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get 1418 * deleted. 1419 * Multirouting support: the packet is silently discarded when the new IRE 1420 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1421 * RTF_MULTIRT flag for the same destination address. 1422 * In this case, we just want to register this additional ire without 1423 * sending the packet, as it has already been replicated through 1424 * existing multirt routes in ip_wput(). 1425 */ 1426 void 1427 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1428 { 1429 irb_t *irb; 1430 boolean_t drop = B_FALSE; 1431 /* LINTED : set but not used in function */ 1432 boolean_t mctl_present; 1433 mblk_t *first_mp = NULL; 1434 mblk_t *save_mp = NULL; 1435 ire_t *dst_ire; 1436 ipha_t *ipha; 1437 ip6_t *ip6h; 1438 1439 if (mp != NULL) { 1440 /* 1441 * We first have to retrieve the destination address carried 1442 * by the packet. 1443 * We can't rely on ire as it can be related to a gateway. 1444 * The destination address will help in determining if 1445 * other RTF_MULTIRT ires are already registered. 1446 * 1447 * We first need to know where we are going : v4 or V6. 1448 * the ire version is enough, as there is no risk that 1449 * we resolve an IPv6 address with an IPv4 ire 1450 * or vice versa. 1451 */ 1452 if (ire->ire_ipversion == IPV4_VERSION) { 1453 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1454 ipha = (ipha_t *)mp->b_rptr; 1455 save_mp = mp; 1456 mp = first_mp; 1457 1458 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1459 ire->ire_zoneid, MBLK_GETLABEL(mp)); 1460 } else { 1461 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1462 /* 1463 * Get a pointer to the beginning of the IPv6 header. 1464 * Ignore leading IPsec control mblks. 1465 */ 1466 first_mp = mp; 1467 if (mp->b_datap->db_type == M_CTL) { 1468 mp = mp->b_cont; 1469 } 1470 ip6h = (ip6_t *)mp->b_rptr; 1471 save_mp = mp; 1472 mp = first_mp; 1473 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1474 ire->ire_zoneid, MBLK_GETLABEL(mp)); 1475 } 1476 if (dst_ire != NULL) { 1477 if (dst_ire->ire_flags & RTF_MULTIRT) { 1478 /* 1479 * At least one resolved multirt route 1480 * already exists for the destination, 1481 * don't sent this packet: either drop it 1482 * or complete the pending resolution, 1483 * depending on the ire. 1484 */ 1485 drop = B_TRUE; 1486 } 1487 ip1dbg(("ire_add_then_send: dst_ire %p " 1488 "[dst %08x, gw %08x], drop %d\n", 1489 (void *)dst_ire, 1490 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1491 ntohl(dst_ire->ire_addr) : \ 1492 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1493 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1494 ntohl(dst_ire->ire_gateway_addr) : \ 1495 ntohl(V4_PART_OF_V6( 1496 dst_ire->ire_gateway_addr_v6)), 1497 drop)); 1498 ire_refrele(dst_ire); 1499 } 1500 } 1501 1502 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1503 /* 1504 * Regular packets with cache bound ires and 1505 * the packets from ARP response for ires which 1506 * belong to the ire_srcif_v4 table, are here. 1507 */ 1508 if (ire->ire_in_ill == NULL) { 1509 /* Add the ire */ 1510 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1511 } else { 1512 /* 1513 * This must be ARP response for ire in interface based 1514 * table. Note that we don't add them in cache table, 1515 * instead we update the existing table with dlureq_mp 1516 * information. The reverse tunnel ires do not come 1517 * here, as reverse tunnel is non-resolver interface. 1518 * XXX- another design alternative was to mark the 1519 * ires in interface based table with a special mark to 1520 * make absolutely sure that we operate in right ires. 1521 * This idea was not implemented as part of code review 1522 * suggestion, as ire_in_ill suffice to distinguish 1523 * between the regular ires and interface based 1524 * ires now and thus we save a bit in the ire_marks. 1525 */ 1526 ire = ire_update_srcif_v4(ire); 1527 } 1528 1529 if (ire == NULL) { 1530 mp->b_prev = NULL; 1531 mp->b_next = NULL; 1532 MULTIRT_DEBUG_UNTAG(mp); 1533 freemsg(mp); 1534 return; 1535 } 1536 if (mp == NULL) { 1537 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1538 return; 1539 } 1540 } 1541 if (drop) { 1542 /* 1543 * If we're adding an RTF_MULTIRT ire, the resolution 1544 * is over: we just drop the packet. 1545 */ 1546 if (ire->ire_flags & RTF_MULTIRT) { 1547 if (save_mp) { 1548 save_mp->b_prev = NULL; 1549 save_mp->b_next = NULL; 1550 } 1551 MULTIRT_DEBUG_UNTAG(mp); 1552 freemsg(mp); 1553 } else { 1554 /* 1555 * Otherwise, we're adding the ire to a gateway 1556 * for a multirt route. 1557 * Invoke ip_newroute() to complete the resolution 1558 * of the route. We will then come back here and 1559 * finally drop this packet in the above code. 1560 */ 1561 if (ire->ire_ipversion == IPV4_VERSION) { 1562 /* 1563 * TODO: in order for CGTP to work in non-global 1564 * zones, ip_newroute() must create the IRE 1565 * cache in the zone indicated by 1566 * ire->ire_zoneid. 1567 */ 1568 ip_newroute(q, mp, ipha->ipha_dst, 0, 1569 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 1570 } else { 1571 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1572 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1573 NULL, ire->ire_zoneid); 1574 } 1575 } 1576 1577 ire_refrele(ire); /* As done by ire_send(). */ 1578 return; 1579 } 1580 /* 1581 * Need to remember ire_bucket here as ire_send*() may delete 1582 * the ire so we cannot reference it after that. 1583 */ 1584 irb = ire->ire_bucket; 1585 if (ire->ire_ipversion == IPV6_VERSION) { 1586 ire_send_v6(q, mp, ire); 1587 /* 1588 * Clean up more than 1 IRE so that the clean up does not 1589 * need to be done every time when a new IRE is added and 1590 * the threshold is reached. 1591 */ 1592 ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2); 1593 } else { 1594 ire_send(q, mp, ire); 1595 ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2); 1596 } 1597 } 1598 1599 /* 1600 * Initialize the ire that is specific to IPv4 part and call 1601 * ire_init_common to finish it. 1602 */ 1603 ire_t * 1604 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1605 uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, 1606 queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, 1607 ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1608 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1609 { 1610 /* 1611 * Reject IRE security attribute creation/initialization 1612 * if system is not running in Trusted mode. 1613 */ 1614 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1615 return (NULL); 1616 1617 if (fp_mp != NULL) { 1618 /* 1619 * We can't dupb() here as multiple threads could be 1620 * calling dupb on the same mp which is incorrect. 1621 * First dupb() should be called only by one thread. 1622 */ 1623 fp_mp = copyb(fp_mp); 1624 if (fp_mp == NULL) 1625 return (NULL); 1626 } 1627 1628 if (dlureq_mp != NULL) { 1629 /* 1630 * We can't dupb() here as multiple threads could be 1631 * calling dupb on the same mp which is incorrect. 1632 * First dupb() should be called only by one thread. 1633 */ 1634 dlureq_mp = copyb(dlureq_mp); 1635 if (dlureq_mp == NULL) { 1636 if (fp_mp != NULL) 1637 freeb(fp_mp); 1638 return (NULL); 1639 } 1640 } 1641 1642 /* 1643 * Check that IRE_IF_RESOLVER and IRE_IF_NORESOLVER have a 1644 * dlureq_mp which is the ill_resolver_mp for IRE_IF_RESOLVER 1645 * and DL_UNITDATA_REQ for IRE_IF_NORESOLVER. 1646 */ 1647 if ((type & IRE_INTERFACE) && 1648 dlureq_mp == NULL) { 1649 ASSERT(fp_mp == NULL); 1650 ip0dbg(("ire_init: no dlureq_mp\n")); 1651 return (NULL); 1652 } 1653 1654 BUMP_IRE_STATS(ire_stats_v4, ire_stats_alloced); 1655 1656 if (addr != NULL) 1657 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1658 if (src_addr != NULL) 1659 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1660 if (mask != NULL) { 1661 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1662 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1663 } 1664 if (gateway != NULL) { 1665 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1666 } 1667 if (in_src_addr != NULL) { 1668 bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN); 1669 } 1670 1671 if (type == IRE_CACHE) 1672 ire->ire_cmask = cmask; 1673 1674 /* ire_init_common will free the mblks upon encountering any failure */ 1675 if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp, 1676 ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info, 1677 gc, gcgrp)) 1678 return (NULL); 1679 1680 return (ire); 1681 } 1682 1683 /* 1684 * Similar to ire_create except that it is called only when 1685 * we want to allocate ire as an mblk e.g. we have an external 1686 * resolver ARP. 1687 */ 1688 ire_t * 1689 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1690 uchar_t *in_src_addr, uint_t max_frag, mblk_t *fp_mp, queue_t *rfq, 1691 queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, 1692 ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, 1693 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1694 { 1695 ire_t *ire, *buf; 1696 ire_t *ret_ire; 1697 mblk_t *mp; 1698 size_t bufsize; 1699 frtn_t *frtnp; 1700 ill_t *ill; 1701 1702 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1703 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1704 if (buf == NULL) { 1705 ip1dbg(("ire_create_mp: alloc failed\n")); 1706 return (NULL); 1707 } 1708 frtnp = (frtn_t *)(buf + 1); 1709 frtnp->free_arg = (caddr_t)buf; 1710 frtnp->free_func = ire_freemblk; 1711 1712 /* 1713 * Allocate the new IRE. The ire created will hold a ref on 1714 * an nce_t after ire_nce_init, and this ref must either be 1715 * (a) transferred to the ire_cache entry created when ire_add_v4 1716 * is called after successful arp resolution, or, 1717 * (b) released, when arp resolution fails 1718 * Case (b) is handled in ire_freemblk() which will be called 1719 * when mp is freed as a result of failed arp. 1720 */ 1721 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1722 if (mp == NULL) { 1723 ip1dbg(("ire_create_mp: alloc failed\n")); 1724 kmem_free(buf, bufsize); 1725 return (NULL); 1726 } 1727 ire = (ire_t *)mp->b_rptr; 1728 mp->b_wptr = (uchar_t *)&ire[1]; 1729 1730 /* Start clean. */ 1731 *ire = ire_null; 1732 ire->ire_mp = mp; 1733 mp->b_datap->db_type = IRE_DB_TYPE; 1734 ire->ire_marks |= IRE_MARK_UNCACHED; 1735 1736 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, 1737 NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, 1738 phandle, ihandle, flags, ulp_info, gc, gcgrp); 1739 1740 if (ret_ire == NULL) { 1741 freeb(ire->ire_mp); 1742 return (NULL); 1743 } 1744 ill = ire_to_ill(ret_ire); 1745 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1746 ASSERT(ret_ire == ire); 1747 /* 1748 * ire_max_frag is normally zero here and is atomically set 1749 * under the irebucket lock in ire_add_v[46] except for the 1750 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1751 * is non-zero here. 1752 */ 1753 ire->ire_max_frag = max_frag; 1754 return (ire); 1755 } 1756 1757 /* 1758 * ire_create is called to allocate and initialize a new IRE. 1759 * 1760 * NOTE : This is called as writer sometimes though not required 1761 * by this function. 1762 */ 1763 ire_t * 1764 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1765 uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, 1766 queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, 1767 ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, 1768 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1769 { 1770 ire_t *ire; 1771 ire_t *ret_ire; 1772 1773 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1774 if (ire == NULL) { 1775 ip1dbg(("ire_create: alloc failed\n")); 1776 return (NULL); 1777 } 1778 *ire = ire_null; 1779 1780 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, 1781 max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, 1782 phandle, ihandle, flags, ulp_info, gc, gcgrp); 1783 1784 if (ret_ire == NULL) { 1785 kmem_cache_free(ire_cache, ire); 1786 return (NULL); 1787 } 1788 ASSERT(ret_ire == ire); 1789 return (ire); 1790 } 1791 1792 1793 /* 1794 * Common to IPv4 and IPv6 1795 */ 1796 boolean_t 1797 ire_init_common(ire_t *ire, uint_t *max_fragp, mblk_t *fp_mp, 1798 queue_t *rfq, queue_t *stq, ushort_t type, 1799 mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, uint32_t phandle, 1800 uint32_t ihandle, uint32_t flags, uchar_t ipversion, 1801 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1802 { 1803 ire->ire_max_fragp = max_fragp; 1804 ire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; 1805 1806 ASSERT(fp_mp == NULL || fp_mp->b_datap->db_type == M_DATA); 1807 #ifdef DEBUG 1808 if (ipif != NULL) { 1809 if (ipif->ipif_isv6) 1810 ASSERT(ipversion == IPV6_VERSION); 1811 else 1812 ASSERT(ipversion == IPV4_VERSION); 1813 } 1814 #endif /* DEBUG */ 1815 1816 /* 1817 * Create/initialize IRE security attribute only in Trusted mode; 1818 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1819 * has held a reference to it and will release it when this routine 1820 * returns a failure, otherwise we own the reference. We do this 1821 * prior to initializing the rest IRE fields. 1822 * 1823 * Don't allocate ire_gw_secattr for the resolver case to prevent 1824 * memory leak (in case of external resolution failure). We'll 1825 * allocate it after a successful external resolution, in ire_add(). 1826 * Note that ire->ire_mp != NULL here means this ire is headed 1827 * to an external resolver. 1828 */ 1829 if (is_system_labeled()) { 1830 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1831 IRE_INTERFACE)) != 0) { 1832 /* release references on behalf of caller */ 1833 if (gc != NULL) 1834 GC_REFRELE(gc); 1835 if (gcgrp != NULL) 1836 GCGRP_REFRELE(gcgrp); 1837 } else if ((ire->ire_mp == NULL) && 1838 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1839 /* free any caller-allocated mblks upon failure */ 1840 if (fp_mp != NULL) 1841 freeb(fp_mp); 1842 if (dlureq_mp != NULL) 1843 freeb(dlureq_mp); 1844 return (B_FALSE); 1845 } 1846 } 1847 1848 ire->ire_stq = stq; 1849 ire->ire_rfq = rfq; 1850 ire->ire_type = type; 1851 ire->ire_flags = RTF_UP | flags; 1852 ire->ire_ident = TICK_TO_MSEC(lbolt); 1853 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1854 1855 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1856 ire->ire_last_used_time = lbolt; 1857 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1858 1859 /* 1860 * If this IRE is an IRE_CACHE, inherit the handles from the 1861 * parent IREs. For others in the forwarding table, assign appropriate 1862 * new ones. 1863 * 1864 * The mutex protecting ire_handle is because ire_create is not always 1865 * called as a writer. 1866 */ 1867 if (ire->ire_type & IRE_OFFSUBNET) { 1868 mutex_enter(&ire_handle_lock); 1869 ire->ire_phandle = (uint32_t)ire_handle++; 1870 mutex_exit(&ire_handle_lock); 1871 } else if (ire->ire_type & IRE_INTERFACE) { 1872 mutex_enter(&ire_handle_lock); 1873 ire->ire_ihandle = (uint32_t)ire_handle++; 1874 mutex_exit(&ire_handle_lock); 1875 } else if (ire->ire_type == IRE_CACHE) { 1876 ire->ire_phandle = phandle; 1877 ire->ire_ihandle = ihandle; 1878 } 1879 ire->ire_in_ill = in_ill; 1880 ire->ire_ipif = ipif; 1881 if (ipif != NULL) { 1882 ire->ire_ipif_seqid = ipif->ipif_seqid; 1883 ire->ire_zoneid = ipif->ipif_zoneid; 1884 } else { 1885 ire->ire_zoneid = GLOBAL_ZONEID; 1886 } 1887 ire->ire_ipversion = ipversion; 1888 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1889 if (ipversion == IPV4_VERSION) { 1890 if (ire_nce_init(ire, fp_mp, dlureq_mp) != 0) { 1891 /* some failure occurred. propagate error back */ 1892 return (B_FALSE); 1893 } 1894 } else { 1895 ASSERT(ipversion == IPV6_VERSION); 1896 /* 1897 * IPv6 initializes the ire_nce in ire_add_v6, 1898 * which expects to find the ire_nce to be null when 1899 * when it is called. 1900 */ 1901 if (dlureq_mp) 1902 freemsg(dlureq_mp); 1903 if (fp_mp) 1904 freemsg(fp_mp); 1905 } 1906 ire->ire_refcnt = 1; 1907 1908 #ifdef IRE_DEBUG 1909 bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX); 1910 #endif 1911 1912 return (B_TRUE); 1913 } 1914 1915 /* 1916 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1917 * It is passed a pointer to a slot in an IRE pointer array into which to 1918 * place the pointer to the new IRE, if indeed we create one. If the 1919 * IRE corresponding to the address passed in would be a duplicate of an 1920 * existing one, we don't create the new one. irep is incremented before 1921 * return only if we do create a new IRE. (Always called as writer.) 1922 * 1923 * Note that with the "match_flags" parameter, we can match on either 1924 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1925 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1926 * we only create broadcast ire's on a per physical interface basis. If 1927 * someone is going to be mucking with logical interfaces, it is important 1928 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1929 * logical interface will not cause critical broadcast IRE's to be deleted. 1930 */ 1931 ire_t ** 1932 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1933 int match_flags) 1934 { 1935 ire_t *ire; 1936 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1937 1938 /* 1939 * No broadcast IREs for the LOOPBACK interface 1940 * or others such as point to point and IPIF_NOXMIT. 1941 */ 1942 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1943 (ipif->ipif_flags & IPIF_NOXMIT)) 1944 return (irep); 1945 1946 /* If this would be a duplicate, don't bother. */ 1947 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1948 ipif->ipif_zoneid, NULL, match_flags)) != NULL) { 1949 /* 1950 * We look for non-deprecated (and non-anycast, non-nolocal) 1951 * ipifs as the best choice. ipifs with check_flags matching 1952 * (deprecated, etc) are used only if non-deprecated ipifs 1953 * are not available. if the existing ire's ipif is deprecated 1954 * and the new ipif is non-deprecated, switch to the new ipif 1955 */ 1956 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1957 (ipif->ipif_flags & check_flags)) { 1958 ire_refrele(ire); 1959 return (irep); 1960 } 1961 /* 1962 * Bcast ires exist in pairs. Both have to be deleted, 1963 * Since we are exclusive we can make the above assertion. 1964 * The 1st has to be refrele'd since it was ctable_lookup'd. 1965 */ 1966 ASSERT(IAM_WRITER_IPIF(ipif)); 1967 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 1968 ire_delete(ire->ire_next); 1969 ire_delete(ire); 1970 ire_refrele(ire); 1971 } 1972 1973 irep = ire_create_bcast(ipif, addr, irep); 1974 1975 return (irep); 1976 } 1977 1978 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 1979 1980 /* 1981 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 1982 * It leaves all the verifying and deleting to those routines. So it always 1983 * creates 2 bcast ires and chains them into the ire array passed in. 1984 */ 1985 ire_t ** 1986 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 1987 { 1988 *irep++ = ire_create( 1989 (uchar_t *)&addr, /* dest addr */ 1990 (uchar_t *)&ip_g_all_ones, /* mask */ 1991 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 1992 NULL, /* no gateway */ 1993 NULL, /* no in_src_addr */ 1994 &ipif->ipif_mtu, /* max frag */ 1995 NULL, /* fast path header */ 1996 ipif->ipif_rq, /* recv-from queue */ 1997 ipif->ipif_wq, /* send-to queue */ 1998 IRE_BROADCAST, 1999 ipif->ipif_bcast_mp, /* xmit header */ 2000 ipif, 2001 NULL, 2002 0, 2003 0, 2004 0, 2005 0, 2006 &ire_uinfo_null, 2007 NULL, 2008 NULL); 2009 2010 *irep++ = ire_create( 2011 (uchar_t *)&addr, /* dest address */ 2012 (uchar_t *)&ip_g_all_ones, /* mask */ 2013 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 2014 NULL, /* no gateway */ 2015 NULL, /* no in_src_addr */ 2016 &ip_loopback_mtu, /* max frag size */ 2017 NULL, /* Fast Path header */ 2018 ipif->ipif_rq, /* recv-from queue */ 2019 NULL, /* no send-to queue */ 2020 IRE_BROADCAST, /* Needed for fanout in wput */ 2021 NULL, 2022 ipif, 2023 NULL, 2024 0, 2025 0, 2026 0, 2027 0, 2028 &ire_uinfo_null, 2029 NULL, 2030 NULL); 2031 2032 return (irep); 2033 } 2034 2035 /* 2036 * ire_walk routine to delete or update any IRE_CACHE that might contain 2037 * stale information. 2038 * The flags state which entries to delete or update. 2039 * Garbage collection is done separately using kmem alloc callbacks to 2040 * ip_trash_ire_reclaim. 2041 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 2042 * since other stale information is cleaned up using NUD. 2043 */ 2044 void 2045 ire_expire(ire_t *ire, char *arg) 2046 { 2047 int flush_flags = (int)(uintptr_t)arg; 2048 ill_t *stq_ill; 2049 2050 if ((flush_flags & FLUSH_REDIRECT_TIME) && 2051 ire->ire_type == IRE_HOST_REDIRECT) { 2052 /* Make sure we delete the corresponding IRE_CACHE */ 2053 ip1dbg(("ire_expire: all redirects\n")); 2054 ip_rts_rtmsg(RTM_DELETE, ire, 0); 2055 ire_delete(ire); 2056 atomic_dec_32(&ip_redirect_cnt); 2057 return; 2058 } 2059 if (ire->ire_type != IRE_CACHE) 2060 return; 2061 2062 if (flush_flags & FLUSH_ARP_TIME) { 2063 /* 2064 * Remove all IRE_CACHE. 2065 * Verify that create time is more than 2066 * ip_ire_arp_interval milliseconds ago. 2067 */ 2068 if (NCE_EXPIRED(ire->ire_nce)) { 2069 ire_delete(ire); 2070 return; 2071 } 2072 } 2073 2074 if (ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 2075 (ire->ire_ipif != NULL)) { 2076 /* Increase pmtu if it is less than the interface mtu */ 2077 mutex_enter(&ire->ire_lock); 2078 /* 2079 * If the ipif is a vni (whose mtu is 0, since it's virtual) 2080 * get the mtu from the sending interfaces' ipif 2081 */ 2082 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 2083 stq_ill = ire->ire_stq->q_ptr; 2084 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 2085 IP_MAXPACKET); 2086 } else { 2087 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 2088 IP_MAXPACKET); 2089 } 2090 ire->ire_frag_flag |= IPH_DF; 2091 mutex_exit(&ire->ire_lock); 2092 } 2093 } 2094 2095 /* 2096 * Do fast path probing if necessary. 2097 */ 2098 void 2099 ire_fastpath(ire_t *ire) 2100 { 2101 ill_t *ill; 2102 int res; 2103 2104 if (ire->ire_nce == NULL || ire->ire_nce->nce_fp_mp != NULL || 2105 ire->ire_nce->nce_state != ND_REACHABLE || 2106 ire->ire_nce->nce_res_mp == NULL) { 2107 2108 /* 2109 * Already contains fastpath info or 2110 * doesn't have DL_UNITDATA_REQ header or 2111 * or is an incomplete ire in the ire table 2112 * or is a loopback broadcast ire i.e. no stq. 2113 */ 2114 return; 2115 } 2116 ill = ire_to_ill(ire); 2117 if (ill == NULL) 2118 return; 2119 ire_fastpath_list_add(ill, ire); 2120 res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp); 2121 /* 2122 * EAGAIN is an indication of a transient error 2123 * i.e. allocation failure etc. leave the ire in the list it will 2124 * be updated when another probe happens for another ire if not 2125 * it will be taken out of the list when the ire is deleted. 2126 */ 2127 if (res != 0 && res != EAGAIN) 2128 ire_fastpath_list_delete(ill, ire); 2129 } 2130 2131 /* 2132 * Update all IRE's that are not in fastpath mode and 2133 * have an dlureq_mp that matches mp. mp->b_cont contains 2134 * the fastpath header. 2135 * 2136 * Returns TRUE if entry should be dequeued, or FALSE otherwise. 2137 */ 2138 boolean_t 2139 ire_fastpath_update(ire_t *ire, void *arg) 2140 { 2141 mblk_t *mp, *fp_mp; 2142 uchar_t *up, *up2; 2143 ptrdiff_t cmplen; 2144 nce_t *arpce; 2145 2146 ASSERT((ire->ire_type & (IRE_CACHE | IRE_BROADCAST | 2147 IRE_MIPRTUN)) != 0); 2148 2149 /* 2150 * Already contains fastpath info or doesn't have 2151 * DL_UNITDATA_REQ header or is an incomplete ire. 2152 */ 2153 if (ire->ire_nce == NULL || ire->ire_nce->nce_res_mp == NULL || 2154 ire->ire_nce->nce_fp_mp != NULL || 2155 ire->ire_nce->nce_state != ND_REACHABLE) 2156 return (B_TRUE); 2157 2158 ip2dbg(("ire_fastpath_update: trying\n")); 2159 mp = arg; 2160 up = mp->b_rptr; 2161 cmplen = mp->b_wptr - up; 2162 /* Serialize multiple fast path updates */ 2163 mutex_enter(&ire->ire_nce->nce_lock); 2164 up2 = ire->ire_nce->nce_res_mp->b_rptr; 2165 ASSERT(cmplen >= 0); 2166 if (ire->ire_nce->nce_res_mp->b_wptr - up2 != cmplen || 2167 bcmp(up, up2, cmplen) != 0) { 2168 mutex_exit(&ire->ire_nce->nce_lock); 2169 /* 2170 * Don't take the ire off the fastpath list yet, 2171 * since the response may come later. 2172 */ 2173 return (B_FALSE); 2174 } 2175 arpce = ire->ire_nce; 2176 /* Matched - install mp as the nce_fp_mp */ 2177 ip1dbg(("ire_fastpath_update: match\n")); 2178 fp_mp = dupb(mp->b_cont); 2179 if (fp_mp) { 2180 /* 2181 * We checked nce_fp_mp above. Check it again with the 2182 * lock. Update fp_mp only if it has not been done 2183 * already. 2184 */ 2185 if (arpce->nce_fp_mp == NULL) { 2186 /* 2187 * ire_ll_hdr_length is just an optimization to 2188 * store the length. It is used to return the 2189 * fast path header length to the upper layers. 2190 */ 2191 arpce->nce_fp_mp = fp_mp; 2192 ire->ire_ll_hdr_length = 2193 (uint_t)(fp_mp->b_wptr - fp_mp->b_rptr); 2194 } else { 2195 freeb(fp_mp); 2196 } 2197 } 2198 mutex_exit(&ire->ire_nce->nce_lock); 2199 return (B_TRUE); 2200 } 2201 2202 /* 2203 * This function handles the DL_NOTE_FASTPATH_FLUSH notification from the 2204 * driver. 2205 */ 2206 /* ARGSUSED */ 2207 void 2208 ire_fastpath_flush(ire_t *ire, void *arg) 2209 { 2210 ill_t *ill; 2211 int res; 2212 2213 /* No fastpath info? */ 2214 if (ire->ire_nce == NULL || 2215 ire->ire_nce->nce_fp_mp == NULL || ire->ire_nce->nce_res_mp == NULL) 2216 return; 2217 2218 /* 2219 * Just remove the IRE if it is for non-broadcast dest. Then 2220 * we will create another one which will have the correct 2221 * fastpath info. 2222 */ 2223 switch (ire->ire_type) { 2224 case IRE_CACHE: 2225 ire_delete(ire); 2226 break; 2227 case IRE_MIPRTUN: 2228 case IRE_BROADCAST: 2229 /* 2230 * We can't delete the ire since it is difficult to 2231 * recreate these ire's without going through the 2232 * ipif down/up dance. The nce_fp_mp is protected by the 2233 * nce_lock in the case of IRE_MIPRTUN and IRE_BROADCAST. 2234 * All access to ire->ire_nce->nce_fp_mp in the case of these 2235 * 2 ire types * is protected by nce_lock. 2236 */ 2237 mutex_enter(&ire->ire_nce->nce_lock); 2238 if (ire->ire_nce->nce_fp_mp != NULL) { 2239 freeb(ire->ire_nce->nce_fp_mp); 2240 ire->ire_nce->nce_fp_mp = NULL; 2241 mutex_exit(&ire->ire_nce->nce_lock); 2242 /* 2243 * No fastpath probe if there is no stq i.e. 2244 * i.e. the case of loopback broadcast ire. 2245 */ 2246 if (ire->ire_stq == NULL) 2247 break; 2248 ill = (ill_t *)((ire->ire_stq)->q_ptr); 2249 ire_fastpath_list_add(ill, ire); 2250 res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp); 2251 /* 2252 * EAGAIN is an indication of a transient error 2253 * i.e. allocation failure etc. leave the ire in the 2254 * list it will be updated when another probe happens 2255 * for another ire if not it will be taken out of the 2256 * list when the ire is deleted. 2257 */ 2258 if (res != 0 && res != EAGAIN) 2259 ire_fastpath_list_delete(ill, ire); 2260 } else { 2261 mutex_exit(&ire->ire_nce->nce_lock); 2262 } 2263 break; 2264 default: 2265 /* This should not happen! */ 2266 ip0dbg(("ire_fastpath_flush: Wrong ire type %s\n", 2267 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type))); 2268 break; 2269 } 2270 } 2271 2272 /* 2273 * Drain the list of ire's waiting for fastpath response. 2274 */ 2275 void 2276 ire_fastpath_list_dispatch(ill_t *ill, boolean_t (*func)(ire_t *, void *), 2277 void *arg) 2278 { 2279 ire_t *next_ire; 2280 ire_t *current_ire; 2281 ire_t *first_ire; 2282 ire_t *prev_ire = NULL; 2283 2284 ASSERT(ill != NULL); 2285 2286 mutex_enter(&ill->ill_lock); 2287 first_ire = current_ire = (ire_t *)ill->ill_fastpath_list; 2288 while (current_ire != (ire_t *)&ill->ill_fastpath_list) { 2289 next_ire = current_ire->ire_fastpath; 2290 /* 2291 * Take it off the list if we're flushing, or if the callback 2292 * routine tells us to do so. Otherwise, leave the ire in the 2293 * fastpath list to handle any pending response from the lower 2294 * layer. We can't drain the list when the callback routine 2295 * comparison failed, because the response is asynchronous in 2296 * nature, and may not arrive in the same order as the list 2297 * insertion. 2298 */ 2299 if (func == NULL || func(current_ire, arg)) { 2300 current_ire->ire_fastpath = NULL; 2301 if (current_ire == first_ire) 2302 ill->ill_fastpath_list = first_ire = next_ire; 2303 else 2304 prev_ire->ire_fastpath = next_ire; 2305 } else { 2306 /* previous element that is still in the list */ 2307 prev_ire = current_ire; 2308 } 2309 current_ire = next_ire; 2310 } 2311 mutex_exit(&ill->ill_lock); 2312 } 2313 2314 /* 2315 * Add ire to the ire fastpath list. 2316 */ 2317 static void 2318 ire_fastpath_list_add(ill_t *ill, ire_t *ire) 2319 { 2320 ASSERT(ill != NULL); 2321 ASSERT(ire->ire_stq != NULL); 2322 2323 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2324 mutex_enter(&ill->ill_lock); 2325 2326 /* 2327 * if ire has not been deleted and 2328 * is not already in the list add it. 2329 */ 2330 if (((ire->ire_marks & IRE_MARK_CONDEMNED) == 0) && 2331 (ire->ire_fastpath == NULL)) { 2332 ire->ire_fastpath = (ire_t *)ill->ill_fastpath_list; 2333 ill->ill_fastpath_list = ire; 2334 } 2335 2336 mutex_exit(&ill->ill_lock); 2337 rw_exit(&ire->ire_bucket->irb_lock); 2338 } 2339 2340 /* 2341 * remove ire from the ire fastpath list. 2342 */ 2343 void 2344 ire_fastpath_list_delete(ill_t *ill, ire_t *ire) 2345 { 2346 ire_t *ire_ptr; 2347 2348 ASSERT(ire->ire_stq != NULL && ill != NULL); 2349 2350 mutex_enter(&ill->ill_lock); 2351 if (ire->ire_fastpath == NULL) 2352 goto done; 2353 2354 ASSERT(ill->ill_fastpath_list != &ill->ill_fastpath_list); 2355 2356 if (ill->ill_fastpath_list == ire) { 2357 ill->ill_fastpath_list = ire->ire_fastpath; 2358 } else { 2359 ire_ptr = ill->ill_fastpath_list; 2360 while (ire_ptr != (ire_t *)&ill->ill_fastpath_list) { 2361 if (ire_ptr->ire_fastpath == ire) { 2362 ire_ptr->ire_fastpath = ire->ire_fastpath; 2363 break; 2364 } 2365 ire_ptr = ire_ptr->ire_fastpath; 2366 } 2367 } 2368 ire->ire_fastpath = NULL; 2369 done: 2370 mutex_exit(&ill->ill_lock); 2371 } 2372 2373 /* 2374 * Return any local address. We use this to target ourselves 2375 * when the src address was specified as 'default'. 2376 * Preference for IRE_LOCAL entries. 2377 */ 2378 ire_t * 2379 ire_lookup_local(zoneid_t zoneid) 2380 { 2381 ire_t *ire; 2382 irb_t *irb; 2383 ire_t *maybe = NULL; 2384 int i; 2385 2386 for (i = 0; i < ip_cache_table_size; i++) { 2387 irb = &ip_cache_table[i]; 2388 if (irb->irb_ire == NULL) 2389 continue; 2390 rw_enter(&irb->irb_lock, RW_READER); 2391 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2392 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 2393 (ire->ire_zoneid != zoneid && 2394 ire->ire_zoneid != ALL_ZONES)) 2395 continue; 2396 switch (ire->ire_type) { 2397 case IRE_LOOPBACK: 2398 if (maybe == NULL) { 2399 IRE_REFHOLD(ire); 2400 maybe = ire; 2401 } 2402 break; 2403 case IRE_LOCAL: 2404 if (maybe != NULL) { 2405 ire_refrele(maybe); 2406 } 2407 IRE_REFHOLD(ire); 2408 rw_exit(&irb->irb_lock); 2409 return (ire); 2410 } 2411 } 2412 rw_exit(&irb->irb_lock); 2413 } 2414 return (maybe); 2415 } 2416 2417 /* 2418 * If the specified IRE is associated with a particular ILL, return 2419 * that ILL pointer (May be called as writer.). 2420 * 2421 * NOTE : This is not a generic function that can be used always. 2422 * This function always returns the ill of the outgoing packets 2423 * if this ire is used. 2424 */ 2425 ill_t * 2426 ire_to_ill(const ire_t *ire) 2427 { 2428 ill_t *ill = NULL; 2429 2430 /* 2431 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 2432 * the source address from. ire_stq is the one where the 2433 * packets will be sent out on. We return that here. 2434 * 2435 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 2436 * copy and they always exist next to each other with loopback 2437 * copy being the first one. If we are called on the non-loopback 2438 * copy, return the one pointed by ire_stq. If it was called on 2439 * a loopback copy, we still return the one pointed by the next 2440 * ire's ire_stq pointer i.e the one pointed by the non-loopback 2441 * copy. We don't want use ire_ipif as it might represent the 2442 * source address (if we borrow source addresses for 2443 * IRE_BROADCASTS in the future). 2444 * However if an interface is currently coming up, the above 2445 * condition may not hold during that period since the ires 2446 * are added one at a time. Thus one of the pair could have been 2447 * added and the other not yet added. 2448 * 3) For all others return the ones pointed by ire_ipif->ipif_ill. 2449 */ 2450 2451 if (ire->ire_type == IRE_CACHE) { 2452 ill = (ill_t *)ire->ire_stq->q_ptr; 2453 } else if (ire->ire_type == IRE_BROADCAST) { 2454 if (ire->ire_stq != NULL) { 2455 ill = (ill_t *)ire->ire_stq->q_ptr; 2456 } else { 2457 ire_t *ire_next; 2458 2459 ire_next = ire->ire_next; 2460 if (ire_next != NULL && 2461 ire_next->ire_type == IRE_BROADCAST && 2462 ire_next->ire_addr == ire->ire_addr && 2463 ire_next->ire_ipif == ire->ire_ipif) { 2464 ill = (ill_t *)ire_next->ire_stq->q_ptr; 2465 } 2466 } 2467 } else if (ire->ire_ipif != NULL) { 2468 ill = ire->ire_ipif->ipif_ill; 2469 } 2470 return (ill); 2471 } 2472 2473 /* Arrange to call the specified function for every IRE in the world. */ 2474 void 2475 ire_walk(pfv_t func, void *arg) 2476 { 2477 ire_walk_ipvers(func, arg, 0, ALL_ZONES); 2478 } 2479 2480 void 2481 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid) 2482 { 2483 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid); 2484 } 2485 2486 void 2487 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid) 2488 { 2489 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid); 2490 } 2491 2492 /* 2493 * Walk a particular version. version == 0 means both v4 and v6. 2494 */ 2495 static void 2496 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid) 2497 { 2498 if (vers != IPV6_VERSION) { 2499 /* 2500 * ip_forwarding_table variable doesn't matter for IPv4 since 2501 * ire_walk_ill_tables directly calls with the ip_ftable global 2502 */ 2503 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 2504 0, NULL, 2505 ip_cache_table_size, ip_cache_table, NULL, zoneid); 2506 } 2507 if (vers != IPV4_VERSION) { 2508 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 2509 ip6_ftable_hash_size, ip_forwarding_table_v6, 2510 ip6_cache_table_size, ip_cache_table_v6, NULL, zoneid); 2511 } 2512 } 2513 2514 /* 2515 * Arrange to call the specified 2516 * function for every IRE that matches the ill. 2517 */ 2518 void 2519 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2520 ill_t *ill) 2521 { 2522 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); 2523 } 2524 2525 void 2526 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2527 ill_t *ill) 2528 { 2529 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2530 ill); 2531 } 2532 2533 void 2534 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2535 ill_t *ill) 2536 { 2537 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2538 ill); 2539 } 2540 2541 /* 2542 * Walk a particular ill and version. version == 0 means both v4 and v6. 2543 */ 2544 static void 2545 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2546 void *arg, uchar_t vers, ill_t *ill) 2547 { 2548 if (vers != IPV6_VERSION) { 2549 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2550 IP_MASK_TABLE_SIZE, 0, 2551 NULL, ip_cache_table_size, 2552 ip_cache_table, ill, ALL_ZONES); 2553 } 2554 if (vers != IPV4_VERSION) { 2555 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2556 IP6_MASK_TABLE_SIZE, ip6_ftable_hash_size, 2557 ip_forwarding_table_v6, ip6_cache_table_size, 2558 ip_cache_table_v6, ill, ALL_ZONES); 2559 } 2560 } 2561 2562 boolean_t 2563 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2564 ill_t *ill, zoneid_t zoneid) 2565 { 2566 ill_t *ire_stq_ill = NULL; 2567 ill_t *ire_ipif_ill = NULL; 2568 ill_group_t *ire_ill_group = NULL; 2569 2570 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2571 /* 2572 * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq. 2573 * The fast path update uses this to make sure it does not 2574 * update the fast path header of interface X with the fast 2575 * path updates it recieved on interface Y. It is similar 2576 * in handling DL_NOTE_FASTPATH_FLUSH. 2577 * 2578 * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2579 * pointed by ire_stq and ire_ipif. Only in the case of 2580 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2581 * different ills. But we want to keep this function generic 2582 * enough for future use. So, we always try to match on both. 2583 * The only caller of this function ire_walk_ill_tables, will 2584 * call "func" after we return from this function. We expect 2585 * "func" to do the right filtering of ires in this case. 2586 * 2587 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2588 * pointed by ire_stq and ire_ipif should always be the same. 2589 * So, we just match on only one of them. 2590 */ 2591 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2592 if (ire->ire_stq != NULL) 2593 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2594 if (ire->ire_ipif != NULL) 2595 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2596 if (ire_stq_ill != NULL) 2597 ire_ill_group = ire_stq_ill->ill_group; 2598 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2599 ire_ill_group = ire_ipif_ill->ill_group; 2600 } 2601 2602 if (zoneid != ALL_ZONES) { 2603 /* 2604 * We're walking the IREs for a specific zone. The only relevant 2605 * IREs are: 2606 * - all IREs with a matching ire_zoneid 2607 * - all IRE_OFFSUBNETs as they're shared across all zones 2608 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2609 * with a matching zone 2610 * - IRE_DEFAULTs with a gateway reachable from the zone 2611 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2612 * using the same rule; but the above rules are consistent with 2613 * the behavior of ire_ftable_lookup[_v6]() so that all the 2614 * routes that can be matched during lookup are also matched 2615 * here. 2616 */ 2617 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2618 /* 2619 * Note, IRE_INTERFACE can have the stq as NULL. For 2620 * example, if the default multicast route is tied to 2621 * the loopback address. 2622 */ 2623 if ((ire->ire_type & IRE_INTERFACE) && 2624 (ire->ire_stq != NULL)) { 2625 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2626 if (ire->ire_ipversion == IPV4_VERSION) { 2627 if (!ipif_usesrc_avail(ire_stq_ill, 2628 zoneid)) 2629 /* No usable src addr in zone */ 2630 return (B_FALSE); 2631 } else if (ire_stq_ill->ill_usesrc_ifindex 2632 != 0) { 2633 /* 2634 * For IPv6 use ipif_select_source_v6() 2635 * so the right scope selection is done 2636 */ 2637 ipif_t *src_ipif; 2638 src_ipif = 2639 ipif_select_source_v6(ire_stq_ill, 2640 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2641 IPV6_PREFER_SRC_DEFAULT, 2642 zoneid); 2643 if (src_ipif != NULL) { 2644 ipif_refrele(src_ipif); 2645 } else { 2646 return (B_FALSE); 2647 } 2648 } else { 2649 return (B_FALSE); 2650 } 2651 2652 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2653 return (B_FALSE); 2654 } 2655 } 2656 2657 /* 2658 * Match all default routes from the global zone, irrespective 2659 * of reachability. 2660 */ 2661 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2662 int ire_match_flags = 0; 2663 in6_addr_t gw_addr_v6; 2664 ire_t *rire; 2665 2666 if (ire->ire_ipif != NULL) { 2667 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2668 } 2669 if (ire->ire_ipversion == IPV4_VERSION) { 2670 rire = ire_route_lookup(ire->ire_gateway_addr, 2671 0, 0, 0, ire->ire_ipif, NULL, zoneid, NULL, 2672 ire_match_flags); 2673 } else { 2674 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2675 mutex_enter(&ire->ire_lock); 2676 gw_addr_v6 = ire->ire_gateway_addr_v6; 2677 mutex_exit(&ire->ire_lock); 2678 rire = ire_route_lookup_v6(&gw_addr_v6, 2679 NULL, NULL, 0, ire->ire_ipif, NULL, zoneid, 2680 NULL, ire_match_flags); 2681 } 2682 if (rire == NULL) { 2683 return (B_FALSE); 2684 } 2685 ire_refrele(rire); 2686 } 2687 } 2688 2689 if (((!(match_flags & MATCH_IRE_TYPE)) || 2690 (ire->ire_type & ire_type)) && 2691 ((!(match_flags & MATCH_IRE_WQ)) || 2692 (ire->ire_stq == ill->ill_wq)) && 2693 ((!(match_flags & MATCH_IRE_ILL)) || 2694 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2695 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2696 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2697 (ire_ill_group != NULL && 2698 ire_ill_group == ill->ill_group))) { 2699 return (B_TRUE); 2700 } 2701 return (B_FALSE); 2702 } 2703 2704 int 2705 rtfunc(struct radix_node *rn, void *arg) 2706 { 2707 struct rtfuncarg *rtf = arg; 2708 struct rt_entry *rt; 2709 irb_t *irb; 2710 ire_t *ire; 2711 boolean_t ret; 2712 2713 rt = (struct rt_entry *)rn; 2714 ASSERT(rt != NULL); 2715 irb = &rt->rt_irb; 2716 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2717 if ((rtf->rt_match_flags != 0) || 2718 (rtf->rt_zoneid != ALL_ZONES)) { 2719 ret = ire_walk_ill_match(rtf->rt_match_flags, 2720 rtf->rt_ire_type, ire, 2721 rtf->rt_ill, rtf->rt_zoneid); 2722 } else 2723 ret = B_TRUE; 2724 if (ret) 2725 (*rtf->rt_func)(ire, rtf->rt_arg); 2726 } 2727 return (0); 2728 } 2729 2730 /* 2731 * Walk the ftable and the ctable entries that match the ill. 2732 */ 2733 void 2734 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2735 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2736 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid) 2737 { 2738 irb_t *irb_ptr; 2739 irb_t *irb; 2740 ire_t *ire; 2741 int i, j; 2742 boolean_t ret; 2743 struct rtfuncarg rtfarg; 2744 2745 ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | 2746 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2747 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2748 /* 2749 * Optimize by not looking at the forwarding table if there 2750 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2751 * specified in ire_type. 2752 */ 2753 if (!(match_flags & MATCH_IRE_TYPE) || 2754 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2755 /* knobs such that routine is called only for v6 case */ 2756 if (ipftbl == ip_forwarding_table_v6) { 2757 for (i = (ftbl_sz - 1); i >= 0; i--) { 2758 if ((irb_ptr = ipftbl[i]) == NULL) 2759 continue; 2760 for (j = 0; j < htbl_sz; j++) { 2761 irb = &irb_ptr[j]; 2762 if (irb->irb_ire == NULL) 2763 continue; 2764 2765 IRB_REFHOLD(irb); 2766 for (ire = irb->irb_ire; ire != NULL; 2767 ire = ire->ire_next) { 2768 if (match_flags == 0 && 2769 zoneid == ALL_ZONES) { 2770 ret = B_TRUE; 2771 } else { 2772 ret = 2773 ire_walk_ill_match( 2774 match_flags, 2775 ire_type, ire, ill, 2776 zoneid); 2777 } 2778 if (ret) 2779 (*func)(ire, arg); 2780 } 2781 IRB_REFRELE(irb); 2782 } 2783 } 2784 } else { 2785 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2786 rtfarg.rt_func = func; 2787 rtfarg.rt_arg = arg; 2788 if (match_flags != 0) { 2789 rtfarg.rt_match_flags = match_flags; 2790 } 2791 rtfarg.rt_ire_type = ire_type; 2792 rtfarg.rt_ill = ill; 2793 rtfarg.rt_zoneid = zoneid; 2794 (void) ip_ftable->rnh_walktree(ip_ftable, rtfunc, 2795 &rtfarg); 2796 } 2797 } 2798 2799 /* 2800 * Optimize by not looking at the cache table if there 2801 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2802 * specified in ire_type. 2803 */ 2804 if (!(match_flags & MATCH_IRE_TYPE) || 2805 ((ire_type & IRE_CACHETABLE) != 0)) { 2806 for (i = 0; i < ctbl_sz; i++) { 2807 irb = &ipctbl[i]; 2808 if (irb->irb_ire == NULL) 2809 continue; 2810 IRB_REFHOLD(irb); 2811 for (ire = irb->irb_ire; ire != NULL; 2812 ire = ire->ire_next) { 2813 if (match_flags == 0 && zoneid == ALL_ZONES) { 2814 ret = B_TRUE; 2815 } else { 2816 ret = ire_walk_ill_match( 2817 match_flags, ire_type, 2818 ire, ill, zoneid); 2819 } 2820 if (ret) 2821 (*func)(ire, arg); 2822 } 2823 IRB_REFRELE(irb); 2824 } 2825 } 2826 } 2827 2828 /* 2829 * This routine walks through the ill chain to find if there is any 2830 * ire linked to the ill's interface based forwarding table 2831 * The arg could be ill or mp. This routine is called when a ill goes 2832 * down/deleted or the 'ipv4_ire_srcif_status' report is printed. 2833 */ 2834 void 2835 ire_walk_srcif_table_v4(pfv_t func, void *arg) 2836 { 2837 irb_t *irb; 2838 ire_t *ire; 2839 ill_t *ill, *next_ill; 2840 int i; 2841 int total_count; 2842 ill_walk_context_t ctx; 2843 2844 /* 2845 * Take care of ire's in other ill's per-interface forwarding 2846 * table. Check if any ire in any of the ill's ill_srcif_table 2847 * is pointing to this ill. 2848 */ 2849 mutex_enter(&ire_srcif_table_lock); 2850 if (ire_srcif_table_count == 0) { 2851 mutex_exit(&ire_srcif_table_lock); 2852 return; 2853 } 2854 mutex_exit(&ire_srcif_table_lock); 2855 2856 #ifdef DEBUG 2857 /* Keep accounting of all interface based table ires */ 2858 total_count = 0; 2859 rw_enter(&ill_g_lock, RW_READER); 2860 ill = ILL_START_WALK_V4(&ctx); 2861 while (ill != NULL) { 2862 mutex_enter(&ill->ill_lock); 2863 total_count += ill->ill_srcif_refcnt; 2864 next_ill = ill_next(&ctx, ill); 2865 mutex_exit(&ill->ill_lock); 2866 ill = next_ill; 2867 } 2868 rw_exit(&ill_g_lock); 2869 2870 /* Hold lock here to make sure ire_srcif_table_count is stable */ 2871 mutex_enter(&ire_srcif_table_lock); 2872 i = ire_srcif_table_count; 2873 mutex_exit(&ire_srcif_table_lock); 2874 ip1dbg(("ire_walk_srcif_v4: ire_srcif_table_count %d " 2875 "total ill_srcif_refcnt %d\n", i, total_count)); 2876 #endif 2877 rw_enter(&ill_g_lock, RW_READER); 2878 ill = ILL_START_WALK_V4(&ctx); 2879 while (ill != NULL) { 2880 mutex_enter(&ill->ill_lock); 2881 if ((ill->ill_srcif_refcnt == 0) || !ILL_CAN_LOOKUP(ill)) { 2882 next_ill = ill_next(&ctx, ill); 2883 mutex_exit(&ill->ill_lock); 2884 ill = next_ill; 2885 continue; 2886 } 2887 ill_refhold_locked(ill); 2888 mutex_exit(&ill->ill_lock); 2889 rw_exit(&ill_g_lock); 2890 if (ill->ill_srcif_table != NULL) { 2891 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 2892 irb = &(ill->ill_srcif_table[i]); 2893 if (irb->irb_ire == NULL) 2894 continue; 2895 IRB_REFHOLD(irb); 2896 for (ire = irb->irb_ire; ire != NULL; 2897 ire = ire->ire_next) { 2898 (*func)(ire, arg); 2899 } 2900 IRB_REFRELE(irb); 2901 } 2902 } 2903 rw_enter(&ill_g_lock, RW_READER); 2904 next_ill = ill_next(&ctx, ill); 2905 ill_refrele(ill); 2906 ill = next_ill; 2907 } 2908 rw_exit(&ill_g_lock); 2909 } 2910 2911 /* 2912 * This function takes a mask and returns 2913 * number of bits set in the mask. If no 2914 * bit is set it returns 0. 2915 * Assumes a contiguous mask. 2916 */ 2917 int 2918 ip_mask_to_plen(ipaddr_t mask) 2919 { 2920 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2921 } 2922 2923 /* 2924 * Convert length for a mask to the mask. 2925 */ 2926 ipaddr_t 2927 ip_plen_to_mask(uint_t masklen) 2928 { 2929 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2930 } 2931 2932 void 2933 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2934 { 2935 ill_t *ill_list[NUM_ILLS]; 2936 2937 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2938 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2939 ill_list[2] = ire->ire_in_ill; 2940 ill_unlock_ills(ill_list, NUM_ILLS); 2941 rw_exit(&irb_ptr->irb_lock); 2942 rw_exit(&ill_g_usesrc_lock); 2943 } 2944 2945 /* 2946 * ire_add_v[46] atomically make sure that the ipif or ill associated 2947 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2948 * before adding the ire to the table. This ensures that we don't create 2949 * new IRE_CACHEs with stale values for parameters that are passed to 2950 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2951 * to the ipif_mtu, and not the value. The actual value is derived from the 2952 * parent ire or ipif under the bucket lock. 2953 */ 2954 int 2955 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2956 ipsq_func_t func) 2957 { 2958 ill_t *stq_ill; 2959 ill_t *ipif_ill; 2960 ill_t *in_ill; 2961 ill_t *ill_list[NUM_ILLS]; 2962 int cnt = NUM_ILLS; 2963 int error = 0; 2964 ill_t *ill = NULL; 2965 2966 ill_list[0] = stq_ill = ire->ire_stq != 2967 NULL ? ire->ire_stq->q_ptr : NULL; 2968 ill_list[1] = ipif_ill = ire->ire_ipif != 2969 NULL ? ire->ire_ipif->ipif_ill : NULL; 2970 ill_list[2] = in_ill = ire->ire_in_ill; 2971 2972 ASSERT((q != NULL && mp != NULL && func != NULL) || 2973 (q == NULL && mp == NULL && func == NULL)); 2974 rw_enter(&ill_g_usesrc_lock, RW_READER); 2975 GRAB_CONN_LOCK(q); 2976 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 2977 ill_lock_ills(ill_list, cnt); 2978 2979 /* 2980 * While the IRE is in the process of being added, a user may have 2981 * invoked the ifconfig usesrc option on the stq_ill to make it a 2982 * usesrc client ILL. Check for this possibility here, if it is true 2983 * then we fail adding the IRE_CACHE. Another check is to make sure 2984 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 2985 * group. The ill_g_usesrc_lock is released in ire_atomic_end 2986 */ 2987 if ((ire->ire_type & IRE_CACHE) && 2988 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 2989 if (stq_ill->ill_usesrc_ifindex != 0) { 2990 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 2991 if ((ipif_ill->ill_phyint->phyint_ifindex != 2992 stq_ill->ill_usesrc_ifindex) || 2993 (ipif_ill->ill_usesrc_grp_next == NULL) || 2994 (ipif_ill->ill_usesrc_ifindex != 0)) { 2995 error = EINVAL; 2996 goto done; 2997 } 2998 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 2999 error = EINVAL; 3000 goto done; 3001 } 3002 } 3003 3004 /* 3005 * IPMP flag settings happen without taking the exclusive route 3006 * in ip_sioctl_flags. So we need to make an atomic check here 3007 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 3008 * FAILBACK=no case. 3009 */ 3010 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 3011 if (stq_ill->ill_state_flags & ILL_CHANGING) { 3012 ill = stq_ill; 3013 error = EAGAIN; 3014 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 3015 (ill_is_probeonly(stq_ill) && 3016 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 3017 error = EINVAL; 3018 } 3019 goto done; 3020 } 3021 3022 /* 3023 * We don't check for OFFLINE/FAILED in this case because 3024 * the source address selection logic (ipif_select_source) 3025 * may still select a source address from such an ill. The 3026 * assumption is that these addresses will be moved by in.mpathd 3027 * soon. (i.e. this is a race). However link local addresses 3028 * will not move and hence ipif_select_source_v6 tries to avoid 3029 * FAILED ills. Please see ipif_select_source_v6 for more info 3030 */ 3031 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 3032 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 3033 ill = ipif_ill; 3034 error = EAGAIN; 3035 goto done; 3036 } 3037 3038 if ((in_ill != NULL) && !IAM_WRITER_ILL(in_ill) && 3039 (in_ill->ill_state_flags & ILL_CHANGING)) { 3040 ill = in_ill; 3041 error = EAGAIN; 3042 goto done; 3043 } 3044 3045 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 3046 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 3047 ill = ire->ire_ipif->ipif_ill; 3048 ASSERT(ill != NULL); 3049 error = EAGAIN; 3050 goto done; 3051 } 3052 3053 done: 3054 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 3055 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 3056 mutex_enter(&ipsq->ipsq_lock); 3057 ire_atomic_end(irb_ptr, ire); 3058 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 3059 mutex_exit(&ipsq->ipsq_lock); 3060 error = EINPROGRESS; 3061 } else if (error != 0) { 3062 ire_atomic_end(irb_ptr, ire); 3063 } 3064 3065 RELEASE_CONN_LOCK(q); 3066 return (error); 3067 } 3068 3069 /* 3070 * Add a fully initialized IRE to an appropriate table based on 3071 * ire_type. 3072 * 3073 * allow_unresolved == B_FALSE indicates a legacy code-path call 3074 * that has prohibited the addition of incomplete ire's. If this 3075 * parameter is set, and we find an nce that is in a state other 3076 * than ND_REACHABLE, we fail the add. Note that nce_state could be 3077 * something other than ND_REACHABLE if nce_reinit has just 3078 * kicked in and reset the nce. 3079 */ 3080 int 3081 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 3082 boolean_t allow_unresolved) 3083 { 3084 ire_t *ire1; 3085 ill_t *stq_ill = NULL; 3086 ill_t *ill; 3087 ipif_t *ipif = NULL; 3088 ill_walk_context_t ctx; 3089 ire_t *ire = *irep; 3090 int error; 3091 boolean_t ire_is_mblk = B_FALSE; 3092 tsol_gcgrp_t *gcgrp = NULL; 3093 tsol_gcgrp_addr_t ga; 3094 3095 ASSERT(ire->ire_type != IRE_MIPRTUN); 3096 3097 /* get ready for the day when original ire is not created as mblk */ 3098 if (ire->ire_mp != NULL) { 3099 ire_is_mblk = B_TRUE; 3100 /* Copy the ire to a kmem_alloc'ed area */ 3101 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 3102 if (ire1 == NULL) { 3103 ip1dbg(("ire_add: alloc failed\n")); 3104 ire_delete(ire); 3105 *irep = NULL; 3106 return (ENOMEM); 3107 } 3108 ire->ire_marks &= ~IRE_MARK_UNCACHED; 3109 *ire1 = *ire; 3110 ire1->ire_mp = NULL; 3111 ire1->ire_stq_ifindex = 0; 3112 freeb(ire->ire_mp); 3113 ire = ire1; 3114 } 3115 if (ire->ire_stq != NULL) 3116 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3117 3118 if (ire->ire_type == IRE_CACHE) { 3119 /* 3120 * If this interface is FAILED, or INACTIVE or has hit 3121 * the FAILBACK=no case, we create IRE_CACHES marked 3122 * HIDDEN for some special cases e.g. bind to 3123 * IPIF_NOFAILOVER address etc. So, if this interface 3124 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 3125 * not creating hidden ires, we should not allow that. 3126 * This happens because the state of the interface 3127 * changed while we were waiting in ARP. If this is the 3128 * daemon sending probes, the next probe will create 3129 * HIDDEN ires and we will create an ire then. This 3130 * cannot happen with NDP currently because IRE is 3131 * never queued in NDP. But it can happen in the 3132 * future when we have external resolvers with IPv6. 3133 * If the interface gets marked with OFFLINE while we 3134 * are waiting in ARP, don't add the ire. 3135 */ 3136 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 3137 (ill_is_probeonly(stq_ill) && 3138 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 3139 /* 3140 * We don't know whether it is a valid ipif or not. 3141 * unless we do the check below. So, set it to NULL. 3142 */ 3143 ire->ire_ipif = NULL; 3144 ire_delete(ire); 3145 *irep = NULL; 3146 return (EINVAL); 3147 } 3148 } 3149 3150 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 3151 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 3152 rw_enter(&ill_g_lock, RW_READER); 3153 ill = ILL_START_WALK_ALL(&ctx); 3154 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 3155 mutex_enter(&ill->ill_lock); 3156 if (ill->ill_state_flags & ILL_CONDEMNED) { 3157 mutex_exit(&ill->ill_lock); 3158 continue; 3159 } 3160 /* 3161 * We need to make sure that the ipif is a valid one 3162 * before adding the IRE_CACHE. This happens only 3163 * with IRE_CACHE when there is an external resolver. 3164 * 3165 * We can unplumb a logical interface while the 3166 * packet is waiting in ARP with the IRE. Then, 3167 * later on when we feed the IRE back, the ipif 3168 * has to be re-checked. This can't happen with 3169 * NDP currently, as we never queue the IRE with 3170 * the packet. We always try to recreate the IRE 3171 * when the resolution is completed. But, we do 3172 * it for IPv6 also here so that in future if 3173 * we have external resolvers, it will work without 3174 * any change. 3175 */ 3176 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 3177 if (ipif != NULL) { 3178 ipif_refhold_locked(ipif); 3179 mutex_exit(&ill->ill_lock); 3180 break; 3181 } 3182 mutex_exit(&ill->ill_lock); 3183 } 3184 rw_exit(&ill_g_lock); 3185 if (ipif == NULL || 3186 (ipif->ipif_isv6 && 3187 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 3188 &ipif->ipif_v6src_addr)) || 3189 (!ipif->ipif_isv6 && 3190 ire->ire_src_addr != ipif->ipif_src_addr) || 3191 ire->ire_zoneid != ipif->ipif_zoneid) { 3192 3193 if (ipif != NULL) 3194 ipif_refrele(ipif); 3195 ire->ire_ipif = NULL; 3196 ire_delete(ire); 3197 *irep = NULL; 3198 return (EINVAL); 3199 } 3200 3201 3202 ASSERT(ill != NULL); 3203 /* 3204 * If this group was dismantled while this packets was 3205 * queued in ARP, don't add it here. 3206 */ 3207 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 3208 /* We don't want ire_inactive bump stats for this */ 3209 ipif_refrele(ipif); 3210 ire->ire_ipif = NULL; 3211 ire_delete(ire); 3212 *irep = NULL; 3213 return (EINVAL); 3214 } 3215 3216 /* 3217 * Since we didn't attach label security attributes to the 3218 * ire for the resolver case, we need to add it now. (only 3219 * for v4 resolver and v6 xresolv case). 3220 */ 3221 if (is_system_labeled() && ire_is_mblk) { 3222 if (ire->ire_ipversion == IPV4_VERSION) { 3223 ga.ga_af = AF_INET; 3224 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 3225 INADDR_ANY ? ire->ire_gateway_addr : 3226 ire->ire_addr, &ga.ga_addr); 3227 } else { 3228 ga.ga_af = AF_INET6; 3229 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 3230 &ire->ire_gateway_addr_v6) ? 3231 ire->ire_addr_v6 : 3232 ire->ire_gateway_addr_v6; 3233 } 3234 gcgrp = gcgrp_lookup(&ga, B_FALSE); 3235 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 3236 NULL, gcgrp); 3237 if (error != 0) { 3238 if (gcgrp != NULL) { 3239 GCGRP_REFRELE(gcgrp); 3240 gcgrp = NULL; 3241 } 3242 ipif_refrele(ipif); 3243 ire->ire_ipif = NULL; 3244 ire_delete(ire); 3245 *irep = NULL; 3246 return (error); 3247 } 3248 } 3249 } 3250 3251 /* 3252 * In case ire was changed 3253 */ 3254 *irep = ire; 3255 if (ire->ire_ipversion == IPV6_VERSION) { 3256 error = ire_add_v6(irep, q, mp, func); 3257 } else { 3258 if (ire->ire_in_ill == NULL) 3259 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 3260 else 3261 error = ire_add_srcif_v4(irep, q, mp, func); 3262 } 3263 if (ipif != NULL) 3264 ipif_refrele(ipif); 3265 return (error); 3266 } 3267 3268 /* 3269 * Add an initialized IRE to an appropriate table based on ire_type. 3270 * 3271 * The forward table contains IRE_PREFIX/IRE_HOST/IRE_HOST_REDIRECT 3272 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 3273 * 3274 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 3275 * and IRE_CACHE. 3276 * 3277 * NOTE : This function is called as writer though not required 3278 * by this function. 3279 */ 3280 static int 3281 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 3282 boolean_t allow_unresolved) 3283 { 3284 ire_t *ire1; 3285 irb_t *irb_ptr; 3286 ire_t **irep; 3287 int flags; 3288 ire_t *pire = NULL; 3289 ill_t *stq_ill; 3290 ire_t *ire = *ire_p; 3291 int error; 3292 boolean_t need_refrele = B_FALSE; 3293 nce_t *nce; 3294 3295 if (ire->ire_ipif != NULL) 3296 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3297 if (ire->ire_stq != NULL) 3298 ASSERT(!MUTEX_HELD( 3299 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 3300 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3301 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 3302 ASSERT(ire->ire_in_ill == NULL); /* No srcif entries */ 3303 3304 /* Find the appropriate list head. */ 3305 switch (ire->ire_type) { 3306 case IRE_HOST: 3307 ire->ire_mask = IP_HOST_MASK; 3308 ire->ire_masklen = IP_ABITS; 3309 if ((ire->ire_flags & RTF_SETSRC) == 0) 3310 ire->ire_src_addr = 0; 3311 break; 3312 case IRE_HOST_REDIRECT: 3313 ire->ire_mask = IP_HOST_MASK; 3314 ire->ire_masklen = IP_ABITS; 3315 ire->ire_src_addr = 0; 3316 break; 3317 case IRE_CACHE: 3318 case IRE_BROADCAST: 3319 case IRE_LOCAL: 3320 case IRE_LOOPBACK: 3321 ire->ire_mask = IP_HOST_MASK; 3322 ire->ire_masklen = IP_ABITS; 3323 break; 3324 case IRE_PREFIX: 3325 if ((ire->ire_flags & RTF_SETSRC) == 0) 3326 ire->ire_src_addr = 0; 3327 break; 3328 case IRE_DEFAULT: 3329 if ((ire->ire_flags & RTF_SETSRC) == 0) 3330 ire->ire_src_addr = 0; 3331 break; 3332 case IRE_IF_RESOLVER: 3333 case IRE_IF_NORESOLVER: 3334 break; 3335 default: 3336 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 3337 (void *)ire, ire->ire_type)); 3338 ire_delete(ire); 3339 *ire_p = NULL; 3340 return (EINVAL); 3341 } 3342 3343 /* Make sure the address is properly masked. */ 3344 ire->ire_addr &= ire->ire_mask; 3345 3346 /* 3347 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 3348 * of the interface route while adding an IRE_CACHE for an on-link 3349 * destination in the IRE_IF_RESOLVER case, since the ire has to 3350 * go to ARP and return. We can't do a REFHOLD on the 3351 * associated interface ire for fear of ARP freeing the message. 3352 * Here we look up the interface ire in the forwarding table and 3353 * make sure that the interface route has not been deleted. 3354 */ 3355 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 3356 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 3357 3358 ASSERT(ire->ire_max_fragp == NULL); 3359 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 3360 /* 3361 * The ihandle that we used in ip_newroute_multi 3362 * comes from the interface route corresponding 3363 * to ire_ipif. Lookup here to see if it exists 3364 * still. 3365 * If the ire has a source address assigned using 3366 * RTF_SETSRC, ire_ipif is the logical interface holding 3367 * this source address, so we can't use it to check for 3368 * the existence of the interface route. Instead we rely 3369 * on the brute force ihandle search in 3370 * ire_ihandle_lookup_onlink() below. 3371 */ 3372 pire = ipif_to_ire(ire->ire_ipif); 3373 if (pire == NULL) { 3374 ire_delete(ire); 3375 *ire_p = NULL; 3376 return (EINVAL); 3377 } else if (pire->ire_ihandle != ire->ire_ihandle) { 3378 ire_refrele(pire); 3379 ire_delete(ire); 3380 *ire_p = NULL; 3381 return (EINVAL); 3382 } 3383 } else { 3384 pire = ire_ihandle_lookup_onlink(ire); 3385 if (pire == NULL) { 3386 ire_delete(ire); 3387 *ire_p = NULL; 3388 return (EINVAL); 3389 } 3390 } 3391 /* Prevent pire from getting deleted */ 3392 IRB_REFHOLD(pire->ire_bucket); 3393 /* Has it been removed already ? */ 3394 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 3395 IRB_REFRELE(pire->ire_bucket); 3396 ire_refrele(pire); 3397 ire_delete(ire); 3398 *ire_p = NULL; 3399 return (EINVAL); 3400 } 3401 } else { 3402 ASSERT(ire->ire_max_fragp != NULL); 3403 } 3404 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 3405 3406 if (ire->ire_ipif != NULL) { 3407 /* 3408 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 3409 * for historic reasons and to maintain symmetry with 3410 * IPv6 code path. Historically this was used by 3411 * multicast code to create multiple IRE_CACHES on 3412 * a single ill with different ipifs. This was used 3413 * so that multicast packets leaving the node had the 3414 * right source address. This is no longer needed as 3415 * ip_wput initializes the address correctly. 3416 */ 3417 flags |= MATCH_IRE_IPIF; 3418 /* 3419 * If we are creating hidden ires, make sure we search on 3420 * this ill (MATCH_IRE_ILL) and a hidden ire, 3421 * while we are searching for duplicates below. Otherwise we 3422 * could potentially find an IRE on some other interface 3423 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 3424 * shouldn't do this as this will lead to an infinite loop 3425 * (if we get to ip_wput again) eventually we need an hidden 3426 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 3427 * done below. 3428 */ 3429 if (ire->ire_type == IRE_CACHE && 3430 (ire->ire_marks & IRE_MARK_HIDDEN)) 3431 flags |= (MATCH_IRE_MARK_HIDDEN); 3432 } 3433 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 3434 irb_ptr = ire_get_bucket(ire); 3435 need_refrele = B_TRUE; 3436 if (irb_ptr == NULL) { 3437 /* 3438 * This assumes that the ire has not added 3439 * a reference to the ipif. 3440 */ 3441 ire->ire_ipif = NULL; 3442 ire_delete(ire); 3443 if (pire != NULL) { 3444 IRB_REFRELE(pire->ire_bucket); 3445 ire_refrele(pire); 3446 } 3447 *ire_p = NULL; 3448 return (EINVAL); 3449 } 3450 } else { 3451 irb_ptr = &(ip_cache_table[IRE_ADDR_HASH(ire->ire_addr, 3452 ip_cache_table_size)]); 3453 } 3454 3455 /* 3456 * Start the atomic add of the ire. Grab the ill locks, 3457 * ill_g_usesrc_lock and the bucket lock. Check for condemned 3458 * 3459 * If ipif or ill is changing ire_atomic_start() may queue the 3460 * request and return EINPROGRESS. 3461 * To avoid lock order problems, get the ndp4.ndp_g_lock. 3462 */ 3463 mutex_enter(&ndp4.ndp_g_lock); 3464 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 3465 if (error != 0) { 3466 mutex_exit(&ndp4.ndp_g_lock); 3467 /* 3468 * We don't know whether it is a valid ipif or not. 3469 * So, set it to NULL. This assumes that the ire has not added 3470 * a reference to the ipif. 3471 */ 3472 ire->ire_ipif = NULL; 3473 ire_delete(ire); 3474 if (pire != NULL) { 3475 IRB_REFRELE(pire->ire_bucket); 3476 ire_refrele(pire); 3477 } 3478 *ire_p = NULL; 3479 if (need_refrele) 3480 IRB_REFRELE(irb_ptr); 3481 return (error); 3482 } 3483 /* 3484 * To avoid creating ires having stale values for the ire_max_frag 3485 * we get the latest value atomically here. For more details 3486 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 3487 * in ip_rput_dlpi_writer 3488 */ 3489 if (ire->ire_max_fragp == NULL) { 3490 if (CLASSD(ire->ire_addr)) 3491 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 3492 else 3493 ire->ire_max_frag = pire->ire_max_frag; 3494 } else { 3495 uint_t max_frag; 3496 3497 max_frag = *ire->ire_max_fragp; 3498 ire->ire_max_fragp = NULL; 3499 ire->ire_max_frag = max_frag; 3500 } 3501 /* 3502 * Atomically check for duplicate and insert in the table. 3503 */ 3504 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 3505 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 3506 continue; 3507 if (ire->ire_ipif != NULL) { 3508 /* 3509 * We do MATCH_IRE_ILL implicitly here for IREs 3510 * with a non-null ire_ipif, including IRE_CACHEs. 3511 * As ire_ipif and ire_stq could point to two 3512 * different ills, we can't pass just ire_ipif to 3513 * ire_match_args and get a match on both ills. 3514 * This is just needed for duplicate checks here and 3515 * so we don't add an extra argument to 3516 * ire_match_args for this. Do it locally. 3517 * 3518 * NOTE : Currently there is no part of the code 3519 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 3520 * match for IRE_CACHEs. Thus we don't want to 3521 * extend the arguments to ire_match_args. 3522 */ 3523 if (ire1->ire_stq != ire->ire_stq) 3524 continue; 3525 /* 3526 * Multiroute IRE_CACHEs for a given destination can 3527 * have the same ire_ipif, typically if their source 3528 * address is forced using RTF_SETSRC, and the same 3529 * send-to queue. We differentiate them using the parent 3530 * handle. 3531 */ 3532 if (ire->ire_type == IRE_CACHE && 3533 (ire1->ire_flags & RTF_MULTIRT) && 3534 (ire->ire_flags & RTF_MULTIRT) && 3535 (ire1->ire_phandle != ire->ire_phandle)) 3536 continue; 3537 } 3538 if (ire1->ire_zoneid != ire->ire_zoneid) 3539 continue; 3540 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 3541 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 3542 ire->ire_zoneid, 0, NULL, flags)) { 3543 /* 3544 * Return the old ire after doing a REFHOLD. 3545 * As most of the callers continue to use the IRE 3546 * after adding, we return a held ire. This will 3547 * avoid a lookup in the caller again. If the callers 3548 * don't want to use it, they need to do a REFRELE. 3549 */ 3550 ip1dbg(("found dup ire existing %p new %p", 3551 (void *)ire1, (void *)ire)); 3552 IRE_REFHOLD(ire1); 3553 ire_atomic_end(irb_ptr, ire); 3554 mutex_exit(&ndp4.ndp_g_lock); 3555 ire_delete(ire); 3556 if (pire != NULL) { 3557 /* 3558 * Assert that it is not removed from the 3559 * list yet. 3560 */ 3561 ASSERT(pire->ire_ptpn != NULL); 3562 IRB_REFRELE(pire->ire_bucket); 3563 ire_refrele(pire); 3564 } 3565 *ire_p = ire1; 3566 if (need_refrele) 3567 IRB_REFRELE(irb_ptr); 3568 return (0); 3569 } 3570 } 3571 if (ire->ire_type & IRE_CACHE) { 3572 ASSERT(ire->ire_stq != NULL); 3573 nce = ndp_lookup_v4(ire_to_ill(ire), 3574 ((ire->ire_gateway_addr != INADDR_ANY) ? 3575 &ire->ire_gateway_addr : &ire->ire_addr), 3576 B_TRUE); 3577 if (nce != NULL) 3578 mutex_enter(&nce->nce_lock); 3579 /* 3580 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 3581 * and the caller has prohibited the addition of incomplete 3582 * ire's, we fail the add. Note that nce_state could be 3583 * something other than ND_REACHABLE if nce_reinit has just 3584 * kicked in and reset the nce. 3585 */ 3586 if ((nce == NULL) || 3587 (nce->nce_flags & NCE_F_CONDEMNED) || 3588 (!allow_unresolved && 3589 ((nce->nce_state & ND_REACHABLE) == 0))) { 3590 if (nce != NULL) 3591 mutex_exit(&nce->nce_lock); 3592 ire_atomic_end(irb_ptr, ire); 3593 mutex_exit(&ndp4.ndp_g_lock); 3594 if (nce != NULL) 3595 NCE_REFRELE(nce); 3596 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 3597 ire_delete(ire); 3598 if (pire != NULL) { 3599 IRB_REFRELE(pire->ire_bucket); 3600 ire_refrele(pire); 3601 } 3602 *ire_p = NULL; 3603 if (need_refrele) 3604 IRB_REFRELE(irb_ptr); 3605 return (EINVAL); 3606 } else { 3607 ire->ire_nce = nce; 3608 mutex_exit(&nce->nce_lock); 3609 /* 3610 * We are associating this nce to the ire, so 3611 * change the nce ref taken in ndp_lookup_v4() from 3612 * NCE_REFHOLD to NCE_REFHOLD_NOTR 3613 */ 3614 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 3615 } 3616 } 3617 /* 3618 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3619 * grouping identical addresses together on the hash chain. We also 3620 * don't want to send multiple copies out if there are two ills part 3621 * of the same group. Thus we group the ires with same addr and same 3622 * ill group together so that ip_wput_ire can easily skip all the 3623 * ires with same addr and same group after sending the first copy. 3624 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3625 * interested in such groupings only for broadcasts. 3626 * 3627 * NOTE : If the interfaces are brought up first and then grouped, 3628 * illgrp_insert will handle it. We come here when the interfaces 3629 * are already in group and we are bringing them UP. 3630 * 3631 * Find the first entry that matches ire_addr. *irep will be null 3632 * if no match. 3633 */ 3634 irep = (ire_t **)irb_ptr; 3635 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3636 irep = &ire1->ire_next; 3637 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3638 /* 3639 * We found some ire (i.e *irep) with a matching addr. We 3640 * want to group ires with same addr and same ill group 3641 * together. 3642 * 3643 * First get to the entry that matches our address and 3644 * ill group i.e stop as soon as we find the first ire 3645 * matching the ill group and address. If there is only 3646 * an address match, we should walk and look for some 3647 * group match. These are some of the possible scenarios : 3648 * 3649 * 1) There are no groups at all i.e all ire's ill_group 3650 * are NULL. In that case we will essentially group 3651 * all the ires with the same addr together. Same as 3652 * the "else" block of this "if". 3653 * 3654 * 2) There are some groups and this ire's ill_group is 3655 * NULL. In this case, we will first find the group 3656 * that matches the address and a NULL group. Then 3657 * we will insert the ire at the end of that group. 3658 * 3659 * 3) There are some groups and this ires's ill_group is 3660 * non-NULL. In this case we will first find the group 3661 * that matches the address and the ill_group. Then 3662 * we will insert the ire at the end of that group. 3663 */ 3664 /* LINTED : constant in conditional context */ 3665 while (1) { 3666 ire1 = *irep; 3667 if ((ire1->ire_next == NULL) || 3668 (ire1->ire_next->ire_addr != ire->ire_addr) || 3669 (ire1->ire_type != IRE_BROADCAST) || 3670 (ire1->ire_ipif->ipif_ill->ill_group == 3671 ire->ire_ipif->ipif_ill->ill_group)) 3672 break; 3673 irep = &ire1->ire_next; 3674 } 3675 ASSERT(*irep != NULL); 3676 irep = &((*irep)->ire_next); 3677 3678 /* 3679 * Either we have hit the end of the list or the address 3680 * did not match or the group *matched*. If we found 3681 * a match on the group, skip to the end of the group. 3682 */ 3683 while (*irep != NULL) { 3684 ire1 = *irep; 3685 if ((ire1->ire_addr != ire->ire_addr) || 3686 (ire1->ire_type != IRE_BROADCAST) || 3687 (ire1->ire_ipif->ipif_ill->ill_group != 3688 ire->ire_ipif->ipif_ill->ill_group)) 3689 break; 3690 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3691 ire1->ire_ipif == ire->ire_ipif) { 3692 irep = &ire1->ire_next; 3693 break; 3694 } 3695 irep = &ire1->ire_next; 3696 } 3697 } else if (*irep != NULL) { 3698 /* 3699 * Find the last ire which matches ire_addr. 3700 * Needed to do tail insertion among entries with the same 3701 * ire_addr. 3702 */ 3703 while (ire->ire_addr == ire1->ire_addr) { 3704 irep = &ire1->ire_next; 3705 ire1 = *irep; 3706 if (ire1 == NULL) 3707 break; 3708 } 3709 } 3710 3711 /* Insert at *irep */ 3712 ire1 = *irep; 3713 if (ire1 != NULL) 3714 ire1->ire_ptpn = &ire->ire_next; 3715 ire->ire_next = ire1; 3716 /* Link the new one in. */ 3717 ire->ire_ptpn = irep; 3718 3719 /* 3720 * ire_walk routines de-reference ire_next without holding 3721 * a lock. Before we point to the new ire, we want to make 3722 * sure the store that sets the ire_next of the new ire 3723 * reaches global visibility, so that ire_walk routines 3724 * don't see a truncated list of ires i.e if the ire_next 3725 * of the new ire gets set after we do "*irep = ire" due 3726 * to re-ordering, the ire_walk thread will see a NULL 3727 * once it accesses the ire_next of the new ire. 3728 * membar_producer() makes sure that the following store 3729 * happens *after* all of the above stores. 3730 */ 3731 membar_producer(); 3732 *irep = ire; 3733 ire->ire_bucket = irb_ptr; 3734 /* 3735 * We return a bumped up IRE above. Keep it symmetrical 3736 * so that the callers will always have to release. This 3737 * helps the callers of this function because they continue 3738 * to use the IRE after adding and hence they don't have to 3739 * lookup again after we return the IRE. 3740 * 3741 * NOTE : We don't have to use atomics as this is appearing 3742 * in the list for the first time and no one else can bump 3743 * up the reference count on this yet. 3744 */ 3745 IRE_REFHOLD_LOCKED(ire); 3746 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 3747 3748 irb_ptr->irb_ire_cnt++; 3749 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3750 irb_ptr->irb_nire++; 3751 3752 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3753 irb_ptr->irb_tmp_ire_cnt++; 3754 3755 if (ire->ire_ipif != NULL) { 3756 ire->ire_ipif->ipif_ire_cnt++; 3757 if (ire->ire_stq != NULL) { 3758 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3759 stq_ill->ill_ire_cnt++; 3760 } 3761 } else { 3762 ASSERT(ire->ire_stq == NULL); 3763 } 3764 3765 ire_atomic_end(irb_ptr, ire); 3766 mutex_exit(&ndp4.ndp_g_lock); 3767 3768 if (pire != NULL) { 3769 /* Assert that it is not removed from the list yet */ 3770 ASSERT(pire->ire_ptpn != NULL); 3771 IRB_REFRELE(pire->ire_bucket); 3772 ire_refrele(pire); 3773 } 3774 3775 if (ire->ire_type != IRE_CACHE) { 3776 /* 3777 * For ire's with host mask see if there is an entry 3778 * in the cache. If there is one flush the whole cache as 3779 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3780 * If no entry is found than there is no need to flush the 3781 * cache. 3782 */ 3783 if (ire->ire_mask == IP_HOST_MASK) { 3784 ire_t *lire; 3785 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3786 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3787 if (lire != NULL) { 3788 ire_refrele(lire); 3789 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3790 } 3791 } else { 3792 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3793 } 3794 } 3795 /* 3796 * We had to delay the fast path probe until the ire is inserted 3797 * in the list. Otherwise the fast path ack won't find the ire in 3798 * the table. 3799 */ 3800 if (ire->ire_type == IRE_CACHE || ire->ire_type == IRE_BROADCAST) 3801 ire_fastpath(ire); 3802 if (ire->ire_ipif != NULL) 3803 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3804 *ire_p = ire; 3805 if (need_refrele) { 3806 IRB_REFRELE(irb_ptr); 3807 } 3808 return (0); 3809 } 3810 3811 /* 3812 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3813 * do the final cleanup for this ire. 3814 */ 3815 void 3816 ire_cleanup(ire_t *ire) 3817 { 3818 ire_t *ire_next; 3819 3820 ASSERT(ire != NULL); 3821 3822 while (ire != NULL) { 3823 ire_next = ire->ire_next; 3824 if (ire->ire_ipversion == IPV4_VERSION) { 3825 ire_delete_v4(ire); 3826 BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); 3827 } else { 3828 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3829 ire_delete_v6(ire); 3830 BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); 3831 } 3832 /* 3833 * Now it's really out of the list. Before doing the 3834 * REFRELE, set ire_next to NULL as ire_inactive asserts 3835 * so. 3836 */ 3837 ire->ire_next = NULL; 3838 IRE_REFRELE_NOTR(ire); 3839 ire = ire_next; 3840 } 3841 } 3842 3843 /* 3844 * IRB_REFRELE is the only caller of the function. It calls to unlink 3845 * all the CONDEMNED ires from this bucket. 3846 */ 3847 ire_t * 3848 ire_unlink(irb_t *irb) 3849 { 3850 ire_t *ire; 3851 ire_t *ire1; 3852 ire_t **ptpn; 3853 ire_t *ire_list = NULL; 3854 3855 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3856 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3857 (irb->irb_refcnt == 0)); 3858 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3859 ASSERT(irb->irb_ire != NULL); 3860 3861 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3862 ire1 = ire->ire_next; 3863 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3864 ptpn = ire->ire_ptpn; 3865 ire1 = ire->ire_next; 3866 if (ire1) 3867 ire1->ire_ptpn = ptpn; 3868 *ptpn = ire1; 3869 ire->ire_ptpn = NULL; 3870 ire->ire_next = NULL; 3871 if (ire->ire_type == IRE_DEFAULT) { 3872 /* 3873 * IRE is out of the list. We need to adjust 3874 * the accounting before the caller drops 3875 * the lock. 3876 */ 3877 if (ire->ire_ipversion == IPV6_VERSION) { 3878 ASSERT(ipv6_ire_default_count != 0); 3879 ipv6_ire_default_count--; 3880 } 3881 } 3882 /* 3883 * We need to call ire_delete_v4 or ire_delete_v6 3884 * to clean up the cache or the redirects pointing at 3885 * the default gateway. We need to drop the lock 3886 * as ire_flush_cache/ire_delete_host_redircts require 3887 * so. But we can't drop the lock, as ire_unlink needs 3888 * to atomically remove the ires from the list. 3889 * So, create a temporary list of CONDEMNED ires 3890 * for doing ire_delete_v4/ire_delete_v6 operations 3891 * later on. 3892 */ 3893 ire->ire_next = ire_list; 3894 ire_list = ire; 3895 } 3896 } 3897 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3898 return (ire_list); 3899 } 3900 3901 /* 3902 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3903 * ARP message on any of its interface queue, it scans the nce table and 3904 * deletes and calls ndp_delete() for the appropriate nce. This action 3905 * also deletes all the neighbor/ire cache entries for that address. 3906 * This function is called from ip_arp_news in ip.c and also for 3907 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3908 * true if it finds a nce entry which is used by ip_arp_news to determine if 3909 * it needs to do an ire_walk_v4. The return value is also used for the 3910 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3911 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3912 * ip_if->ipif_ill also needs to be matched. 3913 */ 3914 boolean_t 3915 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif) 3916 { 3917 ill_t *ill; 3918 nce_t *nce; 3919 3920 ill = (ipif ? ipif->ipif_ill : NULL); 3921 3922 if (ill != NULL) { 3923 /* 3924 * clean up the nce (and any relevant ire's) that matches 3925 * on addr and ill. 3926 */ 3927 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3928 if (nce != NULL) { 3929 ndp_delete(nce); 3930 return (B_TRUE); 3931 } 3932 } else { 3933 /* 3934 * ill is wildcard. clean up all nce's and 3935 * ire's that match on addr 3936 */ 3937 nce_clookup_t cl; 3938 3939 cl.ncecl_addr = addr; 3940 cl.ncecl_found = B_FALSE; 3941 3942 ndp_walk_common(&ndp4, NULL, 3943 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3944 3945 /* 3946 * ncecl_found would be set by ip_nce_clookup_and_delete if 3947 * we found a matching nce. 3948 */ 3949 return (cl.ncecl_found); 3950 } 3951 return (B_FALSE); 3952 3953 } 3954 3955 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3956 static void 3957 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 3958 { 3959 nce_clookup_t *cl = (nce_clookup_t *)arg; 3960 ipaddr_t nce_addr; 3961 3962 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 3963 if (nce_addr == cl->ncecl_addr) { 3964 cl->ncecl_found = B_TRUE; 3965 /* clean up the nce (and any relevant ire's) */ 3966 ndp_delete(nce); 3967 } 3968 } 3969 3970 /* 3971 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 3972 * when there are no ire's left in the bucket. Returns TRUE if the bucket 3973 * is deleted and freed. 3974 */ 3975 boolean_t 3976 irb_inactive(irb_t *irb) 3977 { 3978 struct rt_entry *rt; 3979 struct radix_node *rn; 3980 3981 rt = IRB2RT(irb); 3982 rn = (struct radix_node *)rt; 3983 3984 /* first remove it from the radix tree. */ 3985 RADIX_NODE_HEAD_WLOCK(ip_ftable); 3986 rw_enter(&irb->irb_lock, RW_WRITER); 3987 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 3988 rn = ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 3989 ip_ftable); 3990 DTRACE_PROBE1(irb__free, rt_t *, rt); 3991 ASSERT((void *)rn == (void *)rt); 3992 Free(rt, rt_entry_cache); 3993 /* irb_lock is freed */ 3994 RADIX_NODE_HEAD_UNLOCK(ip_ftable); 3995 return (B_TRUE); 3996 } 3997 rw_exit(&irb->irb_lock); 3998 RADIX_NODE_HEAD_UNLOCK(ip_ftable); 3999 return (B_FALSE); 4000 } 4001 4002 /* 4003 * Delete the specified IRE. 4004 */ 4005 void 4006 ire_delete(ire_t *ire) 4007 { 4008 ire_t *ire1; 4009 ire_t **ptpn; 4010 irb_t *irb; 4011 4012 if ((irb = ire->ire_bucket) == NULL) { 4013 /* 4014 * It was never inserted in the list. Should call REFRELE 4015 * to free this IRE. 4016 */ 4017 IRE_REFRELE_NOTR(ire); 4018 return; 4019 } 4020 4021 rw_enter(&irb->irb_lock, RW_WRITER); 4022 4023 if (irb->irb_rr_origin == ire) { 4024 irb->irb_rr_origin = NULL; 4025 } 4026 4027 /* 4028 * In case of V4 we might still be waiting for fastpath ack. 4029 */ 4030 if (ire->ire_ipversion == IPV4_VERSION && ire->ire_stq != NULL) { 4031 ill_t *ill; 4032 4033 ill = ire_to_ill(ire); 4034 if (ill != NULL) 4035 ire_fastpath_list_delete(ill, ire); 4036 } 4037 4038 if (ire->ire_ptpn == NULL) { 4039 /* 4040 * Some other thread has removed us from the list. 4041 * It should have done the REFRELE for us. 4042 */ 4043 rw_exit(&irb->irb_lock); 4044 return; 4045 } 4046 4047 if (irb->irb_refcnt != 0) { 4048 /* 4049 * The last thread to leave this bucket will 4050 * delete this ire. 4051 */ 4052 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 4053 irb->irb_ire_cnt--; 4054 if (ire->ire_marks & IRE_MARK_TEMPORARY) 4055 irb->irb_tmp_ire_cnt--; 4056 ire->ire_marks |= IRE_MARK_CONDEMNED; 4057 } 4058 irb->irb_marks |= IRB_MARK_CONDEMNED; 4059 rw_exit(&irb->irb_lock); 4060 return; 4061 } 4062 4063 /* 4064 * Normally to delete an ire, we walk the bucket. While we 4065 * walk the bucket, we normally bump up irb_refcnt and hence 4066 * we return from above where we mark CONDEMNED and the ire 4067 * gets deleted from ire_unlink. This case is where somebody 4068 * knows the ire e.g by doing a lookup, and wants to delete the 4069 * IRE. irb_refcnt would be 0 in this case if nobody is walking 4070 * the bucket. 4071 */ 4072 ptpn = ire->ire_ptpn; 4073 ire1 = ire->ire_next; 4074 if (ire1 != NULL) 4075 ire1->ire_ptpn = ptpn; 4076 ASSERT(ptpn != NULL); 4077 *ptpn = ire1; 4078 ire->ire_ptpn = NULL; 4079 ire->ire_next = NULL; 4080 if (ire->ire_ipversion == IPV6_VERSION) { 4081 BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); 4082 } else { 4083 BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); 4084 } 4085 /* 4086 * ip_wput/ip_wput_v6 checks this flag to see whether 4087 * it should still use the cached ire or not. 4088 */ 4089 ire->ire_marks |= IRE_MARK_CONDEMNED; 4090 if (ire->ire_type == IRE_DEFAULT) { 4091 /* 4092 * IRE is out of the list. We need to adjust the 4093 * accounting before we drop the lock. 4094 */ 4095 if (ire->ire_ipversion == IPV6_VERSION) { 4096 ASSERT(ipv6_ire_default_count != 0); 4097 ipv6_ire_default_count--; 4098 } 4099 } 4100 irb->irb_ire_cnt--; 4101 4102 if (ire->ire_marks & IRE_MARK_TEMPORARY) 4103 irb->irb_tmp_ire_cnt--; 4104 rw_exit(&irb->irb_lock); 4105 4106 if (ire->ire_ipversion == IPV6_VERSION) { 4107 ire_delete_v6(ire); 4108 } else { 4109 ire_delete_v4(ire); 4110 } 4111 /* 4112 * We removed it from the list. Decrement the 4113 * reference count. 4114 */ 4115 IRE_REFRELE_NOTR(ire); 4116 } 4117 4118 /* 4119 * Delete the specified IRE. 4120 * All calls should use ire_delete(). 4121 * Sometimes called as writer though not required by this function. 4122 * 4123 * NOTE : This function is called only if the ire was added 4124 * in the list. 4125 */ 4126 static void 4127 ire_delete_v4(ire_t *ire) 4128 { 4129 ASSERT(ire->ire_refcnt >= 1); 4130 ASSERT(ire->ire_ipversion == IPV4_VERSION); 4131 4132 if (ire->ire_type != IRE_CACHE) 4133 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 4134 if (ire->ire_type == IRE_DEFAULT) { 4135 /* 4136 * when a default gateway is going away 4137 * delete all the host redirects pointing at that 4138 * gateway. 4139 */ 4140 ire_delete_host_redirects(ire->ire_gateway_addr); 4141 } 4142 } 4143 4144 /* 4145 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 4146 * to free the ire when the reference count goes to zero. 4147 */ 4148 void 4149 ire_inactive(ire_t *ire) 4150 { 4151 nce_t *nce; 4152 ill_t *ill = NULL; 4153 ill_t *stq_ill = NULL; 4154 ill_t *in_ill = NULL; 4155 ipif_t *ipif; 4156 boolean_t need_wakeup = B_FALSE; 4157 irb_t *irb; 4158 4159 ASSERT(ire->ire_refcnt == 0); 4160 ASSERT(ire->ire_ptpn == NULL); 4161 ASSERT(ire->ire_next == NULL); 4162 4163 if (ire->ire_gw_secattr != NULL) { 4164 ire_gw_secattr_free(ire->ire_gw_secattr); 4165 ire->ire_gw_secattr = NULL; 4166 } 4167 4168 if (ire->ire_mp != NULL) { 4169 ASSERT(ire->ire_fastpath == NULL); 4170 ASSERT(ire->ire_bucket == NULL); 4171 mutex_destroy(&ire->ire_lock); 4172 BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed); 4173 if (ire->ire_nce != NULL) 4174 NCE_REFRELE_NOTR(ire->ire_nce); 4175 freeb(ire->ire_mp); 4176 return; 4177 } 4178 4179 if ((nce = ire->ire_nce) != NULL) { 4180 NCE_REFRELE_NOTR(nce); 4181 ire->ire_nce = NULL; 4182 } 4183 4184 if (ire->ire_ipif == NULL) 4185 goto end; 4186 4187 ipif = ire->ire_ipif; 4188 ill = ipif->ipif_ill; 4189 4190 if (ire->ire_bucket == NULL) { 4191 /* The ire was never inserted in the table. */ 4192 goto end; 4193 } 4194 4195 /* 4196 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 4197 * non-null ill_ire_count also goes down by 1. If the in_ill is 4198 * non-null either ill_mrtun_refcnt or ill_srcif_refcnt goes down by 1. 4199 * 4200 * The ipif that is associated with an ire is ire->ire_ipif and 4201 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 4202 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 4203 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 4204 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 4205 * different. If this is different from ire->ire_ipif->ipif_ill and 4206 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 4207 * ipif_ill_refrele_tail on the stq_ill. If mobile ip is in use 4208 * in_ill could be non-null. If it is a reverse tunnel related ire 4209 * ill_mrtun_refcnt is non-zero. If it is forward tunnel related ire 4210 * ill_srcif_refcnt is non-null. 4211 */ 4212 4213 if (ire->ire_stq != NULL) 4214 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 4215 if (ire->ire_in_ill != NULL) 4216 in_ill = ire->ire_in_ill; 4217 4218 if ((stq_ill == NULL || stq_ill == ill) && (in_ill == NULL)) { 4219 /* Optimize the most common case */ 4220 mutex_enter(&ill->ill_lock); 4221 ASSERT(ipif->ipif_ire_cnt != 0); 4222 ipif->ipif_ire_cnt--; 4223 if (ipif->ipif_ire_cnt == 0) 4224 need_wakeup = B_TRUE; 4225 if (stq_ill != NULL) { 4226 ASSERT(stq_ill->ill_ire_cnt != 0); 4227 stq_ill->ill_ire_cnt--; 4228 if (stq_ill->ill_ire_cnt == 0) 4229 need_wakeup = B_TRUE; 4230 } 4231 if (need_wakeup) { 4232 /* Drops the ill lock */ 4233 ipif_ill_refrele_tail(ill); 4234 } else { 4235 mutex_exit(&ill->ill_lock); 4236 } 4237 } else { 4238 /* 4239 * We can't grab all the ill locks at the same time. 4240 * It can lead to recursive lock enter in the call to 4241 * ipif_ill_refrele_tail and later. Instead do it 1 at 4242 * a time. 4243 */ 4244 mutex_enter(&ill->ill_lock); 4245 ASSERT(ipif->ipif_ire_cnt != 0); 4246 ipif->ipif_ire_cnt--; 4247 if (ipif->ipif_ire_cnt == 0) { 4248 /* Drops the lock */ 4249 ipif_ill_refrele_tail(ill); 4250 } else { 4251 mutex_exit(&ill->ill_lock); 4252 } 4253 if (stq_ill != NULL) { 4254 mutex_enter(&stq_ill->ill_lock); 4255 ASSERT(stq_ill->ill_ire_cnt != 0); 4256 stq_ill->ill_ire_cnt--; 4257 if (stq_ill->ill_ire_cnt == 0) { 4258 /* Drops the ill lock */ 4259 ipif_ill_refrele_tail(stq_ill); 4260 } else { 4261 mutex_exit(&stq_ill->ill_lock); 4262 } 4263 } 4264 if (in_ill != NULL) { 4265 mutex_enter(&in_ill->ill_lock); 4266 if (ire->ire_type == IRE_MIPRTUN) { 4267 /* 4268 * Mobile IP reverse tunnel ire. 4269 * Decrement table count and the 4270 * ill reference count. This signifies 4271 * mipagent is deleting reverse tunnel 4272 * route for a particular mobile node. 4273 */ 4274 mutex_enter(&ire_mrtun_lock); 4275 ire_mrtun_count--; 4276 mutex_exit(&ire_mrtun_lock); 4277 ASSERT(in_ill->ill_mrtun_refcnt != 0); 4278 in_ill->ill_mrtun_refcnt--; 4279 if (in_ill->ill_mrtun_refcnt == 0) { 4280 /* Drops the ill lock */ 4281 ipif_ill_refrele_tail(in_ill); 4282 } else { 4283 mutex_exit(&in_ill->ill_lock); 4284 } 4285 } else { 4286 mutex_enter(&ire_srcif_table_lock); 4287 ire_srcif_table_count--; 4288 mutex_exit(&ire_srcif_table_lock); 4289 ASSERT(in_ill->ill_srcif_refcnt != 0); 4290 in_ill->ill_srcif_refcnt--; 4291 if (in_ill->ill_srcif_refcnt == 0) { 4292 /* Drops the ill lock */ 4293 ipif_ill_refrele_tail(in_ill); 4294 } else { 4295 mutex_exit(&in_ill->ill_lock); 4296 } 4297 } 4298 } 4299 } 4300 end: 4301 /* This should be true for both V4 and V6 */ 4302 ASSERT(ire->ire_fastpath == NULL); 4303 4304 if ((ire->ire_type & IRE_FORWARDTABLE) && 4305 (ire->ire_ipversion == IPV4_VERSION) && 4306 ((irb = ire->ire_bucket) != NULL)) { 4307 rw_enter(&irb->irb_lock, RW_WRITER); 4308 irb->irb_nire--; 4309 /* 4310 * Instead of examining the conditions for freeing 4311 * the radix node here, we do it by calling 4312 * IRB_REFRELE which is a single point in the code 4313 * that embeds that logic. Bump up the refcnt to 4314 * be able to call IRB_REFRELE 4315 */ 4316 IRB_REFHOLD_LOCKED(irb); 4317 rw_exit(&irb->irb_lock); 4318 IRB_REFRELE(irb); 4319 } 4320 ire->ire_ipif = NULL; 4321 4322 if (ire->ire_in_ill != NULL) { 4323 ire->ire_in_ill = NULL; 4324 } 4325 4326 #ifdef IRE_DEBUG 4327 ire_trace_inactive(ire); 4328 #endif 4329 mutex_destroy(&ire->ire_lock); 4330 if (ire->ire_ipversion == IPV6_VERSION) { 4331 BUMP_IRE_STATS(ire_stats_v6, ire_stats_freed); 4332 } else { 4333 BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed); 4334 } 4335 ASSERT(ire->ire_mp == NULL); 4336 /* Has been allocated out of the cache */ 4337 kmem_cache_free(ire_cache, ire); 4338 } 4339 4340 /* 4341 * ire_walk routine to delete all IRE_CACHE/IRE_HOST_REDIRECT entries 4342 * that have a given gateway address. 4343 */ 4344 void 4345 ire_delete_cache_gw(ire_t *ire, char *cp) 4346 { 4347 ipaddr_t gw_addr; 4348 4349 if (!(ire->ire_type & (IRE_CACHE|IRE_HOST_REDIRECT))) 4350 return; 4351 4352 bcopy(cp, &gw_addr, sizeof (gw_addr)); 4353 if (ire->ire_gateway_addr == gw_addr) { 4354 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 4355 (int)ntohl(ire->ire_addr), ire->ire_type, 4356 (int)ntohl(ire->ire_gateway_addr))); 4357 ire_delete(ire); 4358 } 4359 } 4360 4361 /* 4362 * Remove all IRE_CACHE entries that match the ire specified. 4363 * 4364 * The flag argument indicates if the flush request is due to addition 4365 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 4366 * 4367 * This routine takes only the IREs from the forwarding table and flushes 4368 * the corresponding entries from the cache table. 4369 * 4370 * When flushing due to the deletion of an old route, it 4371 * just checks the cache handles (ire_phandle and ire_ihandle) and 4372 * deletes the ones that match. 4373 * 4374 * When flushing due to the creation of a new route, it checks 4375 * if a cache entry's address matches the one in the IRE and 4376 * that the cache entry's parent has a less specific mask than the 4377 * one in IRE. The destination of such a cache entry could be the 4378 * gateway for other cache entries, so we need to flush those as 4379 * well by looking for gateway addresses matching the IRE's address. 4380 */ 4381 void 4382 ire_flush_cache_v4(ire_t *ire, int flag) 4383 { 4384 int i; 4385 ire_t *cire; 4386 irb_t *irb; 4387 4388 if (ire->ire_type & IRE_CACHE) 4389 return; 4390 4391 /* 4392 * If a default is just created, there is no point 4393 * in going through the cache, as there will not be any 4394 * cached ires. 4395 */ 4396 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 4397 return; 4398 if (flag == IRE_FLUSH_ADD) { 4399 /* 4400 * This selective flush is due to the addition of 4401 * new IRE. 4402 */ 4403 for (i = 0; i < ip_cache_table_size; i++) { 4404 irb = &ip_cache_table[i]; 4405 if ((cire = irb->irb_ire) == NULL) 4406 continue; 4407 IRB_REFHOLD(irb); 4408 for (cire = irb->irb_ire; cire != NULL; 4409 cire = cire->ire_next) { 4410 if (cire->ire_type != IRE_CACHE) 4411 continue; 4412 /* 4413 * If 'cire' belongs to the same subnet 4414 * as the new ire being added, and 'cire' 4415 * is derived from a prefix that is less 4416 * specific than the new ire being added, 4417 * we need to flush 'cire'; for instance, 4418 * when a new interface comes up. 4419 */ 4420 if (((cire->ire_addr & ire->ire_mask) == 4421 (ire->ire_addr & ire->ire_mask)) && 4422 (ip_mask_to_plen(cire->ire_cmask) <= 4423 ire->ire_masklen)) { 4424 ire_delete(cire); 4425 continue; 4426 } 4427 /* 4428 * This is the case when the ire_gateway_addr 4429 * of 'cire' belongs to the same subnet as 4430 * the new ire being added. 4431 * Flushing such ires is sometimes required to 4432 * avoid misrouting: say we have a machine with 4433 * two interfaces (I1 and I2), a default router 4434 * R on the I1 subnet, and a host route to an 4435 * off-link destination D with a gateway G on 4436 * the I2 subnet. 4437 * Under normal operation, we will have an 4438 * on-link cache entry for G and an off-link 4439 * cache entry for D with G as ire_gateway_addr, 4440 * traffic to D will reach its destination 4441 * through gateway G. 4442 * If the administrator does 'ifconfig I2 down', 4443 * the cache entries for D and G will be 4444 * flushed. However, G will now be resolved as 4445 * an off-link destination using R (the default 4446 * router) as gateway. Then D will also be 4447 * resolved as an off-link destination using G 4448 * as gateway - this behavior is due to 4449 * compatibility reasons, see comment in 4450 * ire_ihandle_lookup_offlink(). Traffic to D 4451 * will go to the router R and probably won't 4452 * reach the destination. 4453 * The administrator then does 'ifconfig I2 up'. 4454 * Since G is on the I2 subnet, this routine 4455 * will flush its cache entry. It must also 4456 * flush the cache entry for D, otherwise 4457 * traffic will stay misrouted until the IRE 4458 * times out. 4459 */ 4460 if ((cire->ire_gateway_addr & ire->ire_mask) == 4461 (ire->ire_addr & ire->ire_mask)) { 4462 ire_delete(cire); 4463 continue; 4464 } 4465 } 4466 IRB_REFRELE(irb); 4467 } 4468 } else { 4469 /* 4470 * delete the cache entries based on 4471 * handle in the IRE as this IRE is 4472 * being deleted/changed. 4473 */ 4474 for (i = 0; i < ip_cache_table_size; i++) { 4475 irb = &ip_cache_table[i]; 4476 if ((cire = irb->irb_ire) == NULL) 4477 continue; 4478 IRB_REFHOLD(irb); 4479 for (cire = irb->irb_ire; cire != NULL; 4480 cire = cire->ire_next) { 4481 if (cire->ire_type != IRE_CACHE) 4482 continue; 4483 if ((cire->ire_phandle == 0 || 4484 cire->ire_phandle != ire->ire_phandle) && 4485 (cire->ire_ihandle == 0 || 4486 cire->ire_ihandle != ire->ire_ihandle)) 4487 continue; 4488 ire_delete(cire); 4489 } 4490 IRB_REFRELE(irb); 4491 } 4492 } 4493 } 4494 4495 /* 4496 * Matches the arguments passed with the values in the ire. 4497 * 4498 * Note: for match types that match using "ipif" passed in, ipif 4499 * must be checked for non-NULL before calling this routine. 4500 */ 4501 boolean_t 4502 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4503 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 4504 const ts_label_t *tsl, int match_flags) 4505 { 4506 ill_t *ire_ill = NULL, *dst_ill; 4507 ill_t *ipif_ill = NULL; 4508 ill_group_t *ire_ill_group = NULL; 4509 ill_group_t *ipif_ill_group = NULL; 4510 4511 ASSERT(ire->ire_ipversion == IPV4_VERSION); 4512 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 4513 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 4514 (ipif != NULL && !ipif->ipif_isv6)); 4515 ASSERT(!(match_flags & MATCH_IRE_WQ)); 4516 4517 /* 4518 * HIDDEN cache entries have to be looked up specifically with 4519 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 4520 * when the interface is FAILED or INACTIVE. In that case, 4521 * any IRE_CACHES that exists should be marked with 4522 * IRE_MARK_HIDDEN. So, we don't really need to match below 4523 * for IRE_MARK_HIDDEN. But we do so for consistency. 4524 */ 4525 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 4526 (ire->ire_marks & IRE_MARK_HIDDEN)) 4527 return (B_FALSE); 4528 4529 /* 4530 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 4531 * is used. In that case the routing table is bypassed and the 4532 * packets are sent directly to the specified nexthop. The 4533 * IRE_CACHE entry representing this route should be marked 4534 * with IRE_MARK_PRIVATE_ADDR. 4535 */ 4536 4537 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 4538 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 4539 return (B_FALSE); 4540 4541 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 4542 ire->ire_zoneid != ALL_ZONES) { 4543 /* 4544 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 4545 * valid and does not match that of ire_zoneid, a failure to 4546 * match is reported at this point. Otherwise, since some IREs 4547 * that are available in the global zone can be used in local 4548 * zones, additional checks need to be performed: 4549 * 4550 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 4551 * entries should never be matched in this situation. 4552 * 4553 * IRE entries that have an interface associated with them 4554 * should in general not match unless they are an IRE_LOCAL 4555 * or in the case when MATCH_IRE_DEFAULT has been set in 4556 * the caller. In the case of the former, checking of the 4557 * other fields supplied should take place. 4558 * 4559 * In the case where MATCH_IRE_DEFAULT has been set, 4560 * all of the ipif's associated with the IRE's ill are 4561 * checked to see if there is a matching zoneid. If any 4562 * one ipif has a matching zoneid, this IRE is a 4563 * potential candidate so checking of the other fields 4564 * takes place. 4565 * 4566 * In the case where the IRE_INTERFACE has a usable source 4567 * address (indicated by ill_usesrc_ifindex) in the 4568 * correct zone then it's permitted to return this IRE 4569 */ 4570 if (match_flags & MATCH_IRE_ZONEONLY) 4571 return (B_FALSE); 4572 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 4573 return (B_FALSE); 4574 /* 4575 * Note, IRE_INTERFACE can have the stq as NULL. For 4576 * example, if the default multicast route is tied to 4577 * the loopback address. 4578 */ 4579 if ((ire->ire_type & IRE_INTERFACE) && 4580 (ire->ire_stq != NULL)) { 4581 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 4582 /* 4583 * If there is a usable source address in the 4584 * zone, then it's ok to return an 4585 * IRE_INTERFACE 4586 */ 4587 if (ipif_usesrc_avail(dst_ill, zoneid)) { 4588 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 4589 (void *)dst_ill, 4590 (ire->ire_addr == (addr & mask)))); 4591 } else { 4592 ip3dbg(("ire_match_args: src_ipif NULL" 4593 " dst_ill %p\n", (void *)dst_ill)); 4594 return (B_FALSE); 4595 } 4596 } 4597 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 4598 !(ire->ire_type & IRE_INTERFACE)) { 4599 ipif_t *tipif; 4600 4601 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 4602 return (B_FALSE); 4603 } 4604 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 4605 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 4606 tipif != NULL; tipif = tipif->ipif_next) { 4607 if (IPIF_CAN_LOOKUP(tipif) && 4608 (tipif->ipif_flags & IPIF_UP) && 4609 (tipif->ipif_zoneid == zoneid || 4610 tipif->ipif_zoneid == ALL_ZONES)) 4611 break; 4612 } 4613 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 4614 if (tipif == NULL) { 4615 return (B_FALSE); 4616 } 4617 } 4618 } 4619 4620 /* 4621 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 4622 * somebody wants to send out on a particular interface which 4623 * is given by ire_stq and hence use ire_stq to derive the ill 4624 * value. ire_ipif for IRE_CACHES is just the means of getting 4625 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 4626 * ire_to_ill does the right thing for this. 4627 */ 4628 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 4629 ire_ill = ire_to_ill(ire); 4630 if (ire_ill != NULL) 4631 ire_ill_group = ire_ill->ill_group; 4632 ipif_ill = ipif->ipif_ill; 4633 ipif_ill_group = ipif_ill->ill_group; 4634 } 4635 4636 if ((ire->ire_addr == (addr & mask)) && 4637 ((!(match_flags & MATCH_IRE_GW)) || 4638 (ire->ire_gateway_addr == gateway)) && 4639 ((!(match_flags & MATCH_IRE_TYPE)) || 4640 (ire->ire_type & type)) && 4641 ((!(match_flags & MATCH_IRE_SRC)) || 4642 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4643 ((!(match_flags & MATCH_IRE_IPIF)) || 4644 (ire->ire_ipif == ipif)) && 4645 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4646 (ire->ire_type != IRE_CACHE || 4647 ire->ire_marks & IRE_MARK_HIDDEN)) && 4648 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4649 (ire->ire_type != IRE_CACHE || 4650 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4651 ((!(match_flags & MATCH_IRE_ILL)) || 4652 (ire_ill == ipif_ill)) && 4653 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4654 (ire->ire_ihandle == ihandle)) && 4655 ((!(match_flags & MATCH_IRE_MASK)) || 4656 (ire->ire_mask == mask)) && 4657 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4658 (ire_ill == ipif_ill) || 4659 (ire_ill_group != NULL && 4660 ire_ill_group == ipif_ill_group)) && 4661 ((!(match_flags & MATCH_IRE_SECATTR)) || 4662 (!is_system_labeled()) || 4663 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4664 /* We found the matched IRE */ 4665 return (B_TRUE); 4666 } 4667 return (B_FALSE); 4668 } 4669 4670 4671 /* 4672 * Lookup for a route in all the tables 4673 */ 4674 ire_t * 4675 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4676 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4677 const ts_label_t *tsl, int flags) 4678 { 4679 ire_t *ire = NULL; 4680 4681 /* 4682 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4683 * MATCH_IRE_ILL is set. 4684 */ 4685 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4686 (ipif == NULL)) 4687 return (NULL); 4688 4689 /* 4690 * might be asking for a cache lookup, 4691 * This is not best way to lookup cache, 4692 * user should call ire_cache_lookup directly. 4693 * 4694 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4695 * in the forwarding table, if the applicable type flags were set. 4696 */ 4697 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4698 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4699 tsl, flags); 4700 if (ire != NULL) 4701 return (ire); 4702 } 4703 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4704 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4705 zoneid, 0, tsl, flags); 4706 } 4707 return (ire); 4708 } 4709 4710 4711 /* 4712 * Delete the IRE cache for the gateway and all IRE caches whose 4713 * ire_gateway_addr points to this gateway, and allow them to 4714 * be created on demand by ip_newroute. 4715 */ 4716 void 4717 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid) 4718 { 4719 irb_t *irb; 4720 ire_t *ire; 4721 4722 irb = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4723 IRB_REFHOLD(irb); 4724 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4725 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4726 continue; 4727 4728 ASSERT(ire->ire_mask == IP_HOST_MASK); 4729 ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); 4730 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4731 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4732 ire_delete(ire); 4733 } 4734 } 4735 IRB_REFRELE(irb); 4736 4737 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid); 4738 } 4739 4740 /* 4741 * Looks up cache table for a route. 4742 * specific lookup can be indicated by 4743 * passing the MATCH_* flags and the 4744 * necessary parameters. 4745 */ 4746 ire_t * 4747 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4748 zoneid_t zoneid, const ts_label_t *tsl, int flags) 4749 { 4750 irb_t *irb_ptr; 4751 ire_t *ire; 4752 4753 /* 4754 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4755 * MATCH_IRE_ILL is set. 4756 */ 4757 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4758 (ipif == NULL)) 4759 return (NULL); 4760 4761 irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4762 rw_enter(&irb_ptr->irb_lock, RW_READER); 4763 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4764 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4765 continue; 4766 ASSERT(ire->ire_mask == IP_HOST_MASK); 4767 ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); 4768 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4769 ipif, zoneid, 0, tsl, flags)) { 4770 IRE_REFHOLD(ire); 4771 rw_exit(&irb_ptr->irb_lock); 4772 return (ire); 4773 } 4774 } 4775 rw_exit(&irb_ptr->irb_lock); 4776 return (NULL); 4777 } 4778 4779 /* 4780 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4781 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4782 * to the hidden ones. 4783 */ 4784 ire_t * 4785 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl) 4786 { 4787 irb_t *irb_ptr; 4788 ire_t *ire; 4789 4790 irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4791 rw_enter(&irb_ptr->irb_lock, RW_READER); 4792 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4793 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4794 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4795 continue; 4796 } 4797 if (ire->ire_addr == addr) { 4798 /* 4799 * Finally, check if the security policy has any 4800 * restriction on using this route for the specified 4801 * message. 4802 */ 4803 if (tsl != NULL && 4804 ire->ire_gw_secattr != NULL && 4805 tsol_ire_match_gwattr(ire, tsl) != 0) { 4806 continue; 4807 } 4808 4809 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4810 ire->ire_zoneid == ALL_ZONES || 4811 ire->ire_type == IRE_LOCAL) { 4812 IRE_REFHOLD(ire); 4813 rw_exit(&irb_ptr->irb_lock); 4814 return (ire); 4815 } 4816 } 4817 } 4818 rw_exit(&irb_ptr->irb_lock); 4819 return (NULL); 4820 } 4821 4822 /* 4823 * Locate the interface ire that is tied to the cache ire 'cire' via 4824 * cire->ire_ihandle. 4825 * 4826 * We are trying to create the cache ire for an offlink destn based 4827 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4828 * as found by ip_newroute(). We are called from ip_newroute() in 4829 * the IRE_CACHE case. 4830 */ 4831 ire_t * 4832 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4833 { 4834 ire_t *ire; 4835 int match_flags; 4836 ipaddr_t gw_addr; 4837 ipif_t *gw_ipif; 4838 4839 ASSERT(cire != NULL && pire != NULL); 4840 4841 /* 4842 * We don't need to specify the zoneid to ire_ftable_lookup() below 4843 * because the ihandle refers to an ipif which can be in only one zone. 4844 */ 4845 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4846 /* 4847 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4848 * for on-link hosts. We should never be here for onlink. 4849 * Thus, use MATCH_IRE_ILL_GROUP. 4850 */ 4851 if (pire->ire_ipif != NULL) 4852 match_flags |= MATCH_IRE_ILL_GROUP; 4853 /* 4854 * We know that the mask of the interface ire equals cire->ire_cmask. 4855 * (When ip_newroute() created 'cire' for the gateway it set its 4856 * cmask from the interface ire's mask) 4857 */ 4858 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4859 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4860 NULL, match_flags); 4861 if (ire != NULL) 4862 return (ire); 4863 /* 4864 * If we didn't find an interface ire above, we can't declare failure. 4865 * For backwards compatibility, we need to support prefix routes 4866 * pointing to next hop gateways that are not on-link. 4867 * 4868 * Assume we are trying to ping some offlink destn, and we have the 4869 * routing table below. 4870 * 4871 * Eg. default - gw1 <--- pire (line 1) 4872 * gw1 - gw2 (line 2) 4873 * gw2 - hme0 (line 3) 4874 * 4875 * If we already have a cache ire for gw1 in 'cire', the 4876 * ire_ftable_lookup above would have failed, since there is no 4877 * interface ire to reach gw1. We will fallthru below. 4878 * 4879 * Here we duplicate the steps that ire_ftable_lookup() did in 4880 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 4881 * The differences are the following 4882 * i. We want the interface ire only, so we call ire_ftable_lookup() 4883 * instead of ire_route_lookup() 4884 * ii. We look for only prefix routes in the 1st call below. 4885 * ii. We want to match on the ihandle in the 2nd call below. 4886 */ 4887 match_flags = MATCH_IRE_TYPE; 4888 if (pire->ire_ipif != NULL) 4889 match_flags |= MATCH_IRE_ILL_GROUP; 4890 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 4891 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags); 4892 if (ire == NULL) 4893 return (NULL); 4894 /* 4895 * At this point 'ire' corresponds to the entry shown in line 2. 4896 * gw_addr is 'gw2' in the example above. 4897 */ 4898 gw_addr = ire->ire_gateway_addr; 4899 gw_ipif = ire->ire_ipif; 4900 ire_refrele(ire); 4901 4902 match_flags |= MATCH_IRE_IHANDLE; 4903 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 4904 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags); 4905 return (ire); 4906 } 4907 4908 /* 4909 * ire_mrtun_lookup() is called by ip_rput() when packet is to be 4910 * tunneled through reverse tunnel. This is only supported for 4911 * IPv4 packets 4912 */ 4913 4914 ire_t * 4915 ire_mrtun_lookup(ipaddr_t srcaddr, ill_t *ill) 4916 { 4917 irb_t *irb_ptr; 4918 ire_t *ire; 4919 4920 ASSERT(ill != NULL); 4921 ASSERT(!(ill->ill_isv6)); 4922 4923 if (ip_mrtun_table == NULL) 4924 return (NULL); 4925 irb_ptr = &ip_mrtun_table[IRE_ADDR_HASH(srcaddr, IP_MRTUN_TABLE_SIZE)]; 4926 rw_enter(&irb_ptr->irb_lock, RW_READER); 4927 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4928 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4929 continue; 4930 if ((ire->ire_in_src_addr == srcaddr) && 4931 ire->ire_in_ill == ill) { 4932 IRE_REFHOLD(ire); 4933 rw_exit(&irb_ptr->irb_lock); 4934 return (ire); 4935 } 4936 } 4937 rw_exit(&irb_ptr->irb_lock); 4938 return (NULL); 4939 } 4940 4941 /* 4942 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 4943 * ire associated with the specified ipif. 4944 * 4945 * This might occasionally be called when IPIF_UP is not set since 4946 * the IP_MULTICAST_IF as well as creating interface routes 4947 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 4948 * 4949 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 4950 * the ipif, this routine might return NULL. 4951 */ 4952 ire_t * 4953 ipif_to_ire(const ipif_t *ipif) 4954 { 4955 ire_t *ire; 4956 4957 ASSERT(!ipif->ipif_isv6); 4958 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 4959 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 4960 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 4961 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4962 /* In this case we need to lookup destination address. */ 4963 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 4964 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 4965 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK)); 4966 } else { 4967 ire = ire_ftable_lookup(ipif->ipif_subnet, 4968 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 4969 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 4970 MATCH_IRE_MASK)); 4971 } 4972 return (ire); 4973 } 4974 4975 /* 4976 * ire_walk function. 4977 * Count the number of IRE_CACHE entries in different categories. 4978 */ 4979 void 4980 ire_cache_count(ire_t *ire, char *arg) 4981 { 4982 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 4983 4984 if (ire->ire_type != IRE_CACHE) 4985 return; 4986 4987 icc->icc_total++; 4988 4989 if (ire->ire_ipversion == IPV6_VERSION) { 4990 mutex_enter(&ire->ire_lock); 4991 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 4992 mutex_exit(&ire->ire_lock); 4993 icc->icc_onlink++; 4994 return; 4995 } 4996 mutex_exit(&ire->ire_lock); 4997 } else { 4998 if (ire->ire_gateway_addr == 0) { 4999 icc->icc_onlink++; 5000 return; 5001 } 5002 } 5003 5004 ASSERT(ire->ire_ipif != NULL); 5005 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 5006 icc->icc_pmtu++; 5007 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 5008 ire->ire_ib_pkt_count) 5009 icc->icc_offlink++; 5010 else 5011 icc->icc_unused++; 5012 } 5013 5014 /* 5015 * ire_walk function called by ip_trash_ire_reclaim(). 5016 * Free a fraction of the IRE_CACHE cache entries. The fractions are 5017 * different for different categories of IRE_CACHE entries. 5018 * A fraction of zero means to not free any in that category. 5019 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 5020 * is N then every Nth hash bucket chain will be freed. 5021 */ 5022 void 5023 ire_cache_reclaim(ire_t *ire, char *arg) 5024 { 5025 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 5026 uint_t rand; 5027 5028 if (ire->ire_type != IRE_CACHE) 5029 return; 5030 5031 if (ire->ire_ipversion == IPV6_VERSION) { 5032 rand = (uint_t)lbolt + 5033 IRE_ADDR_HASH_V6(ire->ire_addr_v6, ip6_cache_table_size); 5034 mutex_enter(&ire->ire_lock); 5035 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 5036 mutex_exit(&ire->ire_lock); 5037 if (icr->icr_onlink != 0 && 5038 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 5039 ire_delete(ire); 5040 return; 5041 } 5042 goto done; 5043 } 5044 mutex_exit(&ire->ire_lock); 5045 } else { 5046 rand = (uint_t)lbolt + 5047 IRE_ADDR_HASH(ire->ire_addr, ip_cache_table_size); 5048 if (ire->ire_gateway_addr == 0) { 5049 if (icr->icr_onlink != 0 && 5050 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 5051 ire_delete(ire); 5052 return; 5053 } 5054 goto done; 5055 } 5056 } 5057 /* Not onlink IRE */ 5058 ASSERT(ire->ire_ipif != NULL); 5059 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 5060 /* Use ptmu fraction */ 5061 if (icr->icr_pmtu != 0 && 5062 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 5063 ire_delete(ire); 5064 return; 5065 } 5066 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 5067 ire->ire_ib_pkt_count) { 5068 /* Use offlink fraction */ 5069 if (icr->icr_offlink != 0 && 5070 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 5071 ire_delete(ire); 5072 return; 5073 } 5074 } else { 5075 /* Use unused fraction */ 5076 if (icr->icr_unused != 0 && 5077 (rand/icr->icr_unused)*icr->icr_unused == rand) { 5078 ire_delete(ire); 5079 return; 5080 } 5081 } 5082 done: 5083 /* 5084 * Update tire_mark so that those that haven't been used since this 5085 * reclaim will be considered unused next time we reclaim. 5086 */ 5087 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 5088 } 5089 5090 static void 5091 power2_roundup(uint32_t *value) 5092 { 5093 int i; 5094 5095 for (i = 1; i < 31; i++) { 5096 if (*value <= (1 << i)) 5097 break; 5098 } 5099 *value = (1 << i); 5100 } 5101 5102 void 5103 ip_ire_init() 5104 { 5105 int i; 5106 5107 mutex_init(&ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 5108 mutex_init(&ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 5109 mutex_init(&ire_mrtun_lock, NULL, MUTEX_DEFAULT, NULL); 5110 mutex_init(&ire_srcif_table_lock, NULL, MUTEX_DEFAULT, NULL); 5111 mutex_init(&ndp4.ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5112 5113 rn_init(); 5114 (void) rn_inithead((void **)&ip_ftable, 32); 5115 /* 5116 * mark kernel ip ftable with RNF_SUNW_FT flag. 5117 */ 5118 ip_ftable->rnh_treetop->rn_flags |= RNF_SUNW_FT; 5119 rt_entry_cache = kmem_cache_create("rt_entry", 5120 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 5121 5122 /* Calculate the IPv4 cache table size. */ 5123 ip_cache_table_size = MAX(ip_cache_table_size, 5124 ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / 5125 ip_ire_max_bucket_cnt)); 5126 if (ip_cache_table_size > ip_max_cache_table_size) 5127 ip_cache_table_size = ip_max_cache_table_size; 5128 /* 5129 * Make sure that the table size is always a power of 2. The 5130 * hash macro IRE_ADDR_HASH() depends on that. 5131 */ 5132 power2_roundup(&ip_cache_table_size); 5133 5134 ip_cache_table = (irb_t *)kmem_zalloc(ip_cache_table_size * 5135 sizeof (irb_t), KM_SLEEP); 5136 5137 for (i = 0; i < ip_cache_table_size; i++) { 5138 rw_init(&ip_cache_table[i].irb_lock, NULL, 5139 RW_DEFAULT, NULL); 5140 } 5141 5142 /* Calculate the IPv6 cache table size. */ 5143 ip6_cache_table_size = MAX(ip6_cache_table_size, 5144 ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / 5145 ip6_ire_max_bucket_cnt)); 5146 if (ip6_cache_table_size > ip6_max_cache_table_size) 5147 ip6_cache_table_size = ip6_max_cache_table_size; 5148 /* 5149 * Make sure that the table size is always a power of 2. The 5150 * hash macro IRE_ADDR_HASH_V6() depends on that. 5151 */ 5152 power2_roundup(&ip6_cache_table_size); 5153 5154 ip_cache_table_v6 = (irb_t *)kmem_zalloc(ip6_cache_table_size * 5155 sizeof (irb_t), KM_SLEEP); 5156 5157 for (i = 0; i < ip6_cache_table_size; i++) { 5158 rw_init(&ip_cache_table_v6[i].irb_lock, NULL, 5159 RW_DEFAULT, NULL); 5160 } 5161 /* 5162 * Create ire caches, ire_reclaim() 5163 * will give IRE_CACHE back to system when needed. 5164 * This needs to be done here before anything else, since 5165 * ire_add() expects the cache to be created. 5166 */ 5167 ire_cache = kmem_cache_create("ire_cache", 5168 sizeof (ire_t), 0, ip_ire_constructor, 5169 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 5170 5171 /* 5172 * Initialize ip_mrtun_table to NULL now, it will be 5173 * populated by ip_rt_add if reverse tunnel is created 5174 */ 5175 ip_mrtun_table = NULL; 5176 5177 /* 5178 * Make sure that the forwarding table size is a power of 2. 5179 * The IRE*_ADDR_HASH() macroes depend on that. 5180 */ 5181 power2_roundup(&ip6_ftable_hash_size); 5182 } 5183 5184 void 5185 ip_ire_fini() 5186 { 5187 int i; 5188 5189 mutex_destroy(&ire_ft_init_lock); 5190 mutex_destroy(&ire_handle_lock); 5191 mutex_destroy(&ndp4.ndp_g_lock); 5192 5193 rn_fini(); 5194 RADIX_NODE_HEAD_DESTROY(ip_ftable); 5195 kmem_cache_destroy(rt_entry_cache); 5196 5197 for (i = 0; i < ip_cache_table_size; i++) { 5198 rw_destroy(&ip_cache_table[i].irb_lock); 5199 } 5200 kmem_free(ip_cache_table, ip_cache_table_size * sizeof (irb_t)); 5201 5202 for (i = 0; i < ip6_cache_table_size; i++) { 5203 rw_destroy(&ip_cache_table_v6[i].irb_lock); 5204 } 5205 kmem_free(ip_cache_table_v6, ip6_cache_table_size * sizeof (irb_t)); 5206 5207 if (ip_mrtun_table != NULL) { 5208 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5209 rw_destroy(&ip_mrtun_table[i].irb_lock); 5210 } 5211 kmem_free(ip_mrtun_table, IP_MRTUN_TABLE_SIZE * sizeof (irb_t)); 5212 } 5213 kmem_cache_destroy(ire_cache); 5214 } 5215 5216 int 5217 ire_add_mrtun(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) 5218 { 5219 ire_t *ire1; 5220 irb_t *irb_ptr; 5221 ire_t **irep; 5222 ire_t *ire; 5223 int i; 5224 uint_t max_frag; 5225 ill_t *stq_ill; 5226 int error; 5227 5228 ire = *ire_p; 5229 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5230 /* Is ip_mrtun_table empty ? */ 5231 5232 if (ip_mrtun_table == NULL) { 5233 /* create the mrtun table */ 5234 mutex_enter(&ire_mrtun_lock); 5235 if (ip_mrtun_table == NULL) { 5236 ip_mrtun_table = 5237 (irb_t *)kmem_zalloc(IP_MRTUN_TABLE_SIZE * 5238 sizeof (irb_t), KM_NOSLEEP); 5239 5240 if (ip_mrtun_table == NULL) { 5241 ip2dbg(("ire_add_mrtun: allocation failure\n")); 5242 mutex_exit(&ire_mrtun_lock); 5243 ire_refrele(ire); 5244 *ire_p = NULL; 5245 return (ENOMEM); 5246 } 5247 5248 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5249 rw_init(&ip_mrtun_table[i].irb_lock, NULL, 5250 RW_DEFAULT, NULL); 5251 } 5252 ip2dbg(("ire_add_mrtun: mrtun table is created\n")); 5253 } 5254 /* some other thread got it and created the table */ 5255 mutex_exit(&ire_mrtun_lock); 5256 } 5257 5258 /* 5259 * Check for duplicate in the bucket and insert in the table 5260 */ 5261 irb_ptr = &(ip_mrtun_table[IRE_ADDR_HASH(ire->ire_in_src_addr, 5262 IP_MRTUN_TABLE_SIZE)]); 5263 5264 /* 5265 * Start the atomic add of the ire. Grab the ill locks, 5266 * ill_g_usesrc_lock and the bucket lock. 5267 * 5268 * If ipif or ill is changing ire_atomic_start() may queue the 5269 * request and return EINPROGRESS. 5270 */ 5271 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 5272 if (error != 0) { 5273 /* 5274 * We don't know whether it is a valid ipif or not. 5275 * So, set it to NULL. This assumes that the ire has not added 5276 * a reference to the ipif. 5277 */ 5278 ire->ire_ipif = NULL; 5279 ire_delete(ire); 5280 ip1dbg(("ire_add_mrtun: ire_atomic_start failed\n")); 5281 *ire_p = NULL; 5282 return (error); 5283 } 5284 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 5285 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 5286 continue; 5287 /* has anyone inserted the route in the meanwhile ? */ 5288 if (ire1->ire_in_ill == ire->ire_in_ill && 5289 ire1->ire_in_src_addr == ire->ire_in_src_addr) { 5290 ip1dbg(("ire_add_mrtun: Duplicate entry exists\n")); 5291 IRE_REFHOLD(ire1); 5292 ire_atomic_end(irb_ptr, ire); 5293 ire_delete(ire); 5294 /* Return the old ire */ 5295 *ire_p = ire1; 5296 return (0); 5297 } 5298 } 5299 5300 /* Atomically set the ire_max_frag */ 5301 max_frag = *ire->ire_max_fragp; 5302 ire->ire_max_fragp = NULL; 5303 ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); 5304 ASSERT(ire->ire_type != IRE_CACHE); 5305 irep = (ire_t **)irb_ptr; 5306 if (*irep != NULL) { 5307 /* Find the last ire which matches ire_in_src_addr */ 5308 ire1 = *irep; 5309 while (ire1->ire_in_src_addr == ire->ire_in_src_addr) { 5310 irep = &ire1->ire_next; 5311 ire1 = *irep; 5312 if (ire1 == NULL) 5313 break; 5314 } 5315 } 5316 ire1 = *irep; 5317 if (ire1 != NULL) 5318 ire1->ire_ptpn = &ire->ire_next; 5319 ire->ire_next = ire1; 5320 /* Link the new one in. */ 5321 ire->ire_ptpn = irep; 5322 membar_producer(); 5323 *irep = ire; 5324 ire->ire_bucket = irb_ptr; 5325 IRE_REFHOLD_LOCKED(ire); 5326 5327 ip2dbg(("ire_add_mrtun: created and linked ire %p\n", (void *)*irep)); 5328 5329 /* 5330 * Protect ire_mrtun_count and ill_mrtun_refcnt from 5331 * another thread trying to add ire in the table 5332 */ 5333 mutex_enter(&ire_mrtun_lock); 5334 ire_mrtun_count++; 5335 mutex_exit(&ire_mrtun_lock); 5336 /* 5337 * ill_mrtun_refcnt is protected by the ill_lock held via 5338 * ire_atomic_start 5339 */ 5340 ire->ire_in_ill->ill_mrtun_refcnt++; 5341 5342 if (ire->ire_ipif != NULL) { 5343 ire->ire_ipif->ipif_ire_cnt++; 5344 if (ire->ire_stq != NULL) { 5345 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 5346 stq_ill->ill_ire_cnt++; 5347 } 5348 } else { 5349 ASSERT(ire->ire_stq == NULL); 5350 } 5351 5352 ire_atomic_end(irb_ptr, ire); 5353 ire_fastpath(ire); 5354 *ire_p = ire; 5355 return (0); 5356 } 5357 5358 5359 /* Walks down the mrtun table */ 5360 5361 void 5362 ire_walk_ill_mrtun(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 5363 ill_t *ill) 5364 { 5365 irb_t *irb; 5366 ire_t *ire; 5367 int i; 5368 int ret; 5369 5370 ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | 5371 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 5372 ASSERT(match_flags == 0 || ire_type == IRE_MIPRTUN); 5373 5374 mutex_enter(&ire_mrtun_lock); 5375 if (ire_mrtun_count == 0) { 5376 mutex_exit(&ire_mrtun_lock); 5377 return; 5378 } 5379 mutex_exit(&ire_mrtun_lock); 5380 5381 ip2dbg(("ire_walk_ill_mrtun:walking the reverse tunnel table \n")); 5382 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5383 5384 irb = &(ip_mrtun_table[i]); 5385 if (irb->irb_ire == NULL) 5386 continue; 5387 IRB_REFHOLD(irb); 5388 for (ire = irb->irb_ire; ire != NULL; 5389 ire = ire->ire_next) { 5390 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5391 if (match_flags != 0) { 5392 ret = ire_walk_ill_match( 5393 match_flags, ire_type, 5394 ire, ill, ALL_ZONES); 5395 } 5396 if (match_flags == 0 || ret) 5397 (*func)(ire, arg); 5398 } 5399 IRB_REFRELE(irb); 5400 } 5401 } 5402 5403 /* 5404 * Source interface based lookup routine (IPV4 only). 5405 * This routine is called only when RTA_SRCIFP bitflag is set 5406 * by routing socket while adding/deleting the route and it is 5407 * also called from ip_rput() when packets arrive from an interface 5408 * for which ill_srcif_ref_cnt is positive. This function is useful 5409 * when a packet coming from one interface must be forwarded to another 5410 * designated interface to reach the correct node. This function is also 5411 * called from ip_newroute when the link-layer address of an ire is resolved. 5412 * We need to make sure that ip_newroute searches for IRE_IF_RESOLVER type 5413 * ires--thus the ire_type parameter is needed. 5414 */ 5415 5416 ire_t * 5417 ire_srcif_table_lookup(ipaddr_t dst_addr, int ire_type, ipif_t *ipif, 5418 ill_t *in_ill, int flags) 5419 { 5420 irb_t *irb_ptr; 5421 ire_t *ire; 5422 irb_t *ire_srcif_table; 5423 5424 ASSERT(in_ill != NULL && !in_ill->ill_isv6); 5425 ASSERT(!(flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) || 5426 (ipif != NULL && !ipif->ipif_isv6)); 5427 5428 /* 5429 * No need to lock the ill since it is refheld by the caller of this 5430 * function 5431 */ 5432 if (in_ill->ill_srcif_table == NULL) { 5433 return (NULL); 5434 } 5435 5436 if (!(flags & MATCH_IRE_TYPE)) { 5437 flags |= MATCH_IRE_TYPE; 5438 ire_type = IRE_INTERFACE; 5439 } 5440 ire_srcif_table = in_ill->ill_srcif_table; 5441 irb_ptr = &ire_srcif_table[IRE_ADDR_HASH(dst_addr, 5442 IP_SRCIF_TABLE_SIZE)]; 5443 rw_enter(&irb_ptr->irb_lock, RW_READER); 5444 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 5445 if (ire->ire_marks & IRE_MARK_CONDEMNED) 5446 continue; 5447 if (ire_match_args(ire, dst_addr, ire->ire_mask, 0, 5448 ire_type, ipif, ire->ire_zoneid, 0, NULL, flags)) { 5449 IRE_REFHOLD(ire); 5450 rw_exit(&irb_ptr->irb_lock); 5451 return (ire); 5452 } 5453 } 5454 /* Not Found */ 5455 rw_exit(&irb_ptr->irb_lock); 5456 return (NULL); 5457 } 5458 5459 5460 /* 5461 * Adds the ire into the special routing table which is hanging off of 5462 * the src_ipif->ipif_ill. It also increments the refcnt in the ill. 5463 * The forward table contains only IRE_IF_RESOLVER, IRE_IF_NORESOLVER 5464 * i,e. IRE_INTERFACE entries. Originally the dlureq_mp field is NULL 5465 * for IRE_IF_RESOLVER entry because we do not have the dst_addr's 5466 * link-layer address at the time of addition. 5467 * Upon resolving the address from ARP, dlureq_mp field is updated with 5468 * proper information in ire_update_srcif_v4. 5469 */ 5470 static int 5471 ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) 5472 { 5473 ire_t *ire1; 5474 irb_t *ire_srcifp_table = NULL; 5475 irb_t *irb_ptr = NULL; 5476 ire_t **irep; 5477 ire_t *ire; 5478 int flags; 5479 int i; 5480 ill_t *stq_ill; 5481 uint_t max_frag; 5482 int error = 0; 5483 5484 ire = *ire_p; 5485 ASSERT(ire->ire_in_ill != NULL); 5486 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5487 ASSERT(ire->ire_type == IRE_IF_NORESOLVER || 5488 ire->ire_type == IRE_IF_RESOLVER); 5489 5490 ire->ire_mask = IP_HOST_MASK; 5491 /* 5492 * Update ire_nce->nce_res_mp with NULL value upon creation; 5493 * first free the default res_mp created by ire_nce_init. 5494 */ 5495 freeb(ire->ire_nce->nce_res_mp); 5496 if (ire->ire_type == IRE_IF_RESOLVER) { 5497 /* 5498 * assign NULL now, it will be updated 5499 * with correct value upon returning from 5500 * ARP 5501 */ 5502 ire->ire_nce->nce_res_mp = NULL; 5503 } else { 5504 ire->ire_nce->nce_res_mp = ill_dlur_gen(NULL, 5505 ire->ire_ipif->ipif_ill->ill_phys_addr_length, 5506 ire->ire_ipif->ipif_ill->ill_sap, 5507 ire->ire_ipif->ipif_ill->ill_sap_length); 5508 } 5509 /* Make sure the address is properly masked. */ 5510 ire->ire_addr &= ire->ire_mask; 5511 5512 ASSERT(ire->ire_max_fragp != NULL); 5513 max_frag = *ire->ire_max_fragp; 5514 ire->ire_max_fragp = NULL; 5515 ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); 5516 5517 mutex_enter(&ire->ire_in_ill->ill_lock); 5518 if (ire->ire_in_ill->ill_srcif_table == NULL) { 5519 /* create the incoming interface based table */ 5520 ire->ire_in_ill->ill_srcif_table = 5521 (irb_t *)kmem_zalloc(IP_SRCIF_TABLE_SIZE * 5522 sizeof (irb_t), KM_NOSLEEP); 5523 if (ire->ire_in_ill->ill_srcif_table == NULL) { 5524 ip1dbg(("ire_add_srcif_v4: Allocation fail\n")); 5525 mutex_exit(&ire->ire_in_ill->ill_lock); 5526 ire_delete(ire); 5527 *ire_p = NULL; 5528 return (ENOMEM); 5529 } 5530 ire_srcifp_table = ire->ire_in_ill->ill_srcif_table; 5531 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 5532 rw_init(&ire_srcifp_table[i].irb_lock, NULL, 5533 RW_DEFAULT, NULL); 5534 } 5535 ip2dbg(("ire_add_srcif_v4: table created for ill %p\n", 5536 (void *)ire->ire_in_ill)); 5537 } 5538 /* Check for duplicate and insert */ 5539 ASSERT(ire->ire_in_ill->ill_srcif_table != NULL); 5540 irb_ptr = 5541 &(ire->ire_in_ill->ill_srcif_table[IRE_ADDR_HASH(ire->ire_addr, 5542 IP_SRCIF_TABLE_SIZE)]); 5543 mutex_exit(&ire->ire_in_ill->ill_lock); 5544 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 5545 flags |= MATCH_IRE_IPIF; 5546 5547 /* 5548 * Start the atomic add of the ire. Grab the ill locks, 5549 * ill_g_usesrc_lock and the bucket lock. 5550 * 5551 * If ipif or ill is changing ire_atomic_start() may queue the 5552 * request and return EINPROGRESS. 5553 */ 5554 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 5555 if (error != 0) { 5556 /* 5557 * We don't know whether it is a valid ipif or not. 5558 * So, set it to NULL. This assumes that the ire has not added 5559 * a reference to the ipif. 5560 */ 5561 ire->ire_ipif = NULL; 5562 ire_delete(ire); 5563 ip1dbg(("ire_add_srcif_v4: ire_atomic_start failed\n")); 5564 *ire_p = NULL; 5565 return (error); 5566 } 5567 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 5568 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 5569 continue; 5570 if (ire1->ire_zoneid != ire->ire_zoneid) 5571 continue; 5572 /* Has anyone inserted route in the meanwhile ? */ 5573 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 0, 5574 ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, NULL, 5575 flags)) { 5576 ip1dbg(("ire_add_srcif_v4 : Duplicate entry exists\n")); 5577 IRE_REFHOLD(ire1); 5578 ire_atomic_end(irb_ptr, ire); 5579 ire_delete(ire); 5580 /* Return old ire as in ire_add_v4 */ 5581 *ire_p = ire1; 5582 return (0); 5583 } 5584 } 5585 irep = (ire_t **)irb_ptr; 5586 if (*irep != NULL) { 5587 /* Find the last ire which matches ire_addr */ 5588 ire1 = *irep; 5589 while (ire1->ire_addr == ire->ire_addr) { 5590 irep = &ire1->ire_next; 5591 ire1 = *irep; 5592 if (ire1 == NULL) 5593 break; 5594 } 5595 } 5596 ire1 = *irep; 5597 if (ire1 != NULL) 5598 ire1->ire_ptpn = &ire->ire_next; 5599 ire->ire_next = ire1; 5600 /* Link the new one in. */ 5601 ire->ire_ptpn = irep; 5602 membar_producer(); 5603 *irep = ire; 5604 ire->ire_bucket = irb_ptr; 5605 IRE_REFHOLD_LOCKED(ire); 5606 5607 /* 5608 * Protect ire_in_ill->ill_srcif_refcnt and table reference count. 5609 * Note, ire_atomic_start already grabs the ire_in_ill->ill_lock 5610 * so ill_srcif_refcnt is already protected. 5611 */ 5612 ire->ire_in_ill->ill_srcif_refcnt++; 5613 mutex_enter(&ire_srcif_table_lock); 5614 ire_srcif_table_count++; 5615 mutex_exit(&ire_srcif_table_lock); 5616 irb_ptr->irb_ire_cnt++; 5617 if (ire->ire_ipif != NULL) { 5618 ire->ire_ipif->ipif_ire_cnt++; 5619 if (ire->ire_stq != NULL) { 5620 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 5621 stq_ill->ill_ire_cnt++; 5622 } 5623 } else { 5624 ASSERT(ire->ire_stq == NULL); 5625 } 5626 5627 ire_atomic_end(irb_ptr, ire); 5628 *ire_p = ire; 5629 return (0); 5630 } 5631 5632 5633 /* 5634 * This function is called by ire_add_then_send when ARP request comes 5635 * back to ip_wput->ire_add_then_send for resolved ire in the interface 5636 * based routing table. At this point, it only needs to update the resolver 5637 * information for the ire. The passed ire is returned to the caller as it 5638 * is the ire which is created as mblk. 5639 */ 5640 5641 static ire_t * 5642 ire_update_srcif_v4(ire_t *ire) 5643 { 5644 ire_t *ire1; 5645 irb_t *irb; 5646 int error; 5647 5648 ASSERT(ire->ire_type != IRE_MIPRTUN && 5649 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER); 5650 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5651 5652 /* 5653 * This ire is from ARP. Update 5654 * ire_nce->nce_res_mp info 5655 */ 5656 ire1 = ire_srcif_table_lookup(ire->ire_addr, 5657 IRE_IF_RESOLVER, ire->ire_ipif, 5658 ire->ire_in_ill, 5659 MATCH_IRE_ILL | MATCH_IRE_TYPE); 5660 if (ire1 == NULL) { 5661 /* Mobile node registration expired ? */ 5662 ire_delete(ire); 5663 return (NULL); 5664 } 5665 irb = ire1->ire_bucket; 5666 ASSERT(irb != NULL); 5667 /* 5668 * Start the atomic add of the ire. Grab the ill locks, 5669 * ill_g_usesrc_lock and the bucket lock. 5670 */ 5671 error = ire_atomic_start(irb, ire1, NULL, NULL, NULL); 5672 if (error != 0) { 5673 /* 5674 * We don't know whether it is a valid ipif or not. 5675 * So, set it to NULL. This assumes that the ire has not added 5676 * a reference to the ipif. 5677 */ 5678 ire->ire_ipif = NULL; 5679 ire_delete(ire); 5680 ip1dbg(("ire_update_srcif_v4: ire_atomic_start failed\n")); 5681 return (NULL); 5682 } 5683 ASSERT(ire->ire_max_fragp == NULL); 5684 ire->ire_max_frag = ire1->ire_max_frag; 5685 /* 5686 * Update resolver information and 5687 * send-to queue. 5688 */ 5689 ASSERT(ire->ire_nce->nce_res_mp != NULL); 5690 ire1->ire_nce->nce_res_mp = copyb(ire->ire_nce->nce_res_mp); 5691 if (ire1->ire_nce->nce_res_mp == NULL) { 5692 ip0dbg(("ire_update_srcif: copyb failed\n")); 5693 ire_refrele(ire1); 5694 ire_refrele(ire); 5695 ire_atomic_end(irb, ire1); 5696 return (NULL); 5697 } 5698 ire1->ire_stq = ire->ire_stq; 5699 5700 ASSERT(ire->ire_nce->nce_fp_mp == NULL); 5701 5702 ire_atomic_end(irb, ire1); 5703 ire_refrele(ire1); 5704 /* Return the passed ire */ 5705 return (ire); /* Update done */ 5706 } 5707 5708 5709 /* 5710 * Check if another multirt route resolution is needed. 5711 * B_TRUE is returned is there remain a resolvable route, 5712 * or if no route for that dst is resolved yet. 5713 * B_FALSE is returned if all routes for that dst are resolved 5714 * or if the remaining unresolved routes are actually not 5715 * resolvable. 5716 * This only works in the global zone. 5717 */ 5718 boolean_t 5719 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl) 5720 { 5721 ire_t *first_fire; 5722 ire_t *first_cire; 5723 ire_t *fire; 5724 ire_t *cire; 5725 irb_t *firb; 5726 irb_t *cirb; 5727 int unres_cnt = 0; 5728 boolean_t resolvable = B_FALSE; 5729 5730 /* Retrieve the first IRE_HOST that matches the destination */ 5731 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 5732 NULL, ALL_ZONES, 0, tsl, 5733 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 5734 5735 /* No route at all */ 5736 if (first_fire == NULL) { 5737 return (B_TRUE); 5738 } 5739 5740 firb = first_fire->ire_bucket; 5741 ASSERT(firb != NULL); 5742 5743 /* Retrieve the first IRE_CACHE ire for that destination. */ 5744 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl); 5745 5746 /* No resolved route. */ 5747 if (first_cire == NULL) { 5748 ire_refrele(first_fire); 5749 return (B_TRUE); 5750 } 5751 5752 /* 5753 * At least one route is resolved. Here we look through the forward 5754 * and cache tables, to compare the number of declared routes 5755 * with the number of resolved routes. The search for a resolvable 5756 * route is performed only if at least one route remains 5757 * unresolved. 5758 */ 5759 cirb = first_cire->ire_bucket; 5760 ASSERT(cirb != NULL); 5761 5762 /* Count the number of routes to that dest that are declared. */ 5763 IRB_REFHOLD(firb); 5764 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5765 if (!(fire->ire_flags & RTF_MULTIRT)) 5766 continue; 5767 if (fire->ire_addr != dst) 5768 continue; 5769 unres_cnt++; 5770 } 5771 IRB_REFRELE(firb); 5772 5773 /* Then subtract the number of routes to that dst that are resolved */ 5774 IRB_REFHOLD(cirb); 5775 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 5776 if (!(cire->ire_flags & RTF_MULTIRT)) 5777 continue; 5778 if (cire->ire_addr != dst) 5779 continue; 5780 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 5781 continue; 5782 unres_cnt--; 5783 } 5784 IRB_REFRELE(cirb); 5785 5786 /* At least one route is unresolved; search for a resolvable route. */ 5787 if (unres_cnt > 0) 5788 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 5789 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl); 5790 5791 if (first_fire != NULL) 5792 ire_refrele(first_fire); 5793 5794 if (first_cire != NULL) 5795 ire_refrele(first_cire); 5796 5797 return (resolvable); 5798 } 5799 5800 5801 /* 5802 * Explore a forward_table bucket, starting from fire_arg. 5803 * fire_arg MUST be an IRE_HOST entry. 5804 * 5805 * Return B_TRUE and update *ire_arg and *fire_arg 5806 * if at least one resolvable route is found. *ire_arg 5807 * is the IRE entry for *fire_arg's gateway. 5808 * 5809 * Return B_FALSE otherwise (all routes are resolved or 5810 * the remaining unresolved routes are all unresolvable). 5811 * 5812 * The IRE selection relies on a priority mechanism 5813 * driven by the flags passed in by the caller. 5814 * The caller, such as ip_newroute_ipif(), can get the most 5815 * relevant ire at each stage of a multiple route resolution. 5816 * 5817 * The rules are: 5818 * 5819 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 5820 * ires are preferred for the gateway. This gives the highest 5821 * priority to routes that can be resolved without using 5822 * a resolver. 5823 * 5824 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 5825 * is specified but no IRE_CACHETABLE ire entry for the gateway 5826 * is found, the following rules apply. 5827 * 5828 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 5829 * ires for the gateway, that have not been tried since 5830 * a configurable amount of time, are preferred. 5831 * This applies when a resolver must be invoked for 5832 * a missing route, but we don't want to use the resolver 5833 * upon each packet emission. If no such resolver is found, 5834 * B_FALSE is returned. 5835 * The MULTIRT_USESTAMP flag can be combined with 5836 * MULTIRT_CACHEGW. 5837 * 5838 * - if MULTIRT_USESTAMP is not specified in flags, the first 5839 * unresolved but resolvable route is selected. 5840 * 5841 * - Otherwise, there is no resolvalble route, and 5842 * B_FALSE is returned. 5843 * 5844 * At last, MULTIRT_SETSTAMP can be specified in flags to 5845 * request the timestamp of unresolvable routes to 5846 * be refreshed. This prevents the useless exploration 5847 * of those routes for a while, when MULTIRT_USESTAMP is used. 5848 * 5849 * This only works in the global zone. 5850 */ 5851 boolean_t 5852 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 5853 const ts_label_t *tsl) 5854 { 5855 clock_t delta; 5856 ire_t *best_fire = NULL; 5857 ire_t *best_cire = NULL; 5858 ire_t *first_fire; 5859 ire_t *first_cire; 5860 ire_t *fire; 5861 ire_t *cire; 5862 irb_t *firb = NULL; 5863 irb_t *cirb = NULL; 5864 ire_t *gw_ire; 5865 boolean_t already_resolved; 5866 boolean_t res; 5867 ipaddr_t dst; 5868 ipaddr_t gw; 5869 5870 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 5871 (void *)*ire_arg, (void *)*fire_arg, flags)); 5872 5873 ASSERT(ire_arg != NULL); 5874 ASSERT(fire_arg != NULL); 5875 5876 /* Not an IRE_HOST ire; give up. */ 5877 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 5878 return (B_FALSE); 5879 } 5880 5881 /* This is the first IRE_HOST ire for that destination. */ 5882 first_fire = *fire_arg; 5883 firb = first_fire->ire_bucket; 5884 ASSERT(firb != NULL); 5885 5886 dst = first_fire->ire_addr; 5887 5888 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 5889 5890 /* 5891 * Retrieve the first IRE_CACHE ire for that destination; 5892 * if we don't find one, no route for that dest is 5893 * resolved yet. 5894 */ 5895 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl); 5896 if (first_cire != NULL) { 5897 cirb = first_cire->ire_bucket; 5898 } 5899 5900 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 5901 5902 /* 5903 * Search for a resolvable route, giving the top priority 5904 * to routes that can be resolved without any call to the resolver. 5905 */ 5906 IRB_REFHOLD(firb); 5907 5908 if (!CLASSD(dst)) { 5909 /* 5910 * For all multiroute IRE_HOST ires for that destination, 5911 * check if the route via the IRE_HOST's gateway is 5912 * resolved yet. 5913 */ 5914 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5915 5916 if (!(fire->ire_flags & RTF_MULTIRT)) 5917 continue; 5918 if (fire->ire_addr != dst) 5919 continue; 5920 5921 if (fire->ire_gw_secattr != NULL && 5922 tsol_ire_match_gwattr(fire, tsl) != 0) { 5923 continue; 5924 } 5925 5926 gw = fire->ire_gateway_addr; 5927 5928 ip2dbg(("ire_multirt_lookup: fire %p, " 5929 "ire_addr %08x, ire_gateway_addr %08x\n", 5930 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 5931 5932 already_resolved = B_FALSE; 5933 5934 if (first_cire != NULL) { 5935 ASSERT(cirb != NULL); 5936 5937 IRB_REFHOLD(cirb); 5938 /* 5939 * For all IRE_CACHE ires for that 5940 * destination. 5941 */ 5942 for (cire = first_cire; 5943 cire != NULL; 5944 cire = cire->ire_next) { 5945 5946 if (!(cire->ire_flags & RTF_MULTIRT)) 5947 continue; 5948 if (cire->ire_addr != dst) 5949 continue; 5950 if (cire->ire_marks & 5951 (IRE_MARK_CONDEMNED | 5952 IRE_MARK_HIDDEN)) 5953 continue; 5954 5955 if (cire->ire_gw_secattr != NULL && 5956 tsol_ire_match_gwattr(cire, 5957 tsl) != 0) { 5958 continue; 5959 } 5960 5961 /* 5962 * Check if the IRE_CACHE's gateway 5963 * matches the IRE_HOST's gateway. 5964 */ 5965 if (cire->ire_gateway_addr == gw) { 5966 already_resolved = B_TRUE; 5967 break; 5968 } 5969 } 5970 IRB_REFRELE(cirb); 5971 } 5972 5973 /* 5974 * This route is already resolved; 5975 * proceed with next one. 5976 */ 5977 if (already_resolved) { 5978 ip2dbg(("ire_multirt_lookup: found cire %p, " 5979 "already resolved\n", (void *)cire)); 5980 continue; 5981 } 5982 5983 /* 5984 * The route is unresolved; is it actually 5985 * resolvable, i.e. is there a cache or a resolver 5986 * for the gateway? 5987 */ 5988 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 5989 ALL_ZONES, tsl, 5990 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR); 5991 5992 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 5993 (void *)gw_ire)); 5994 5995 /* 5996 * If gw_ire is typed IRE_CACHETABLE, 5997 * this route can be resolved without any call to the 5998 * resolver. If the MULTIRT_CACHEGW flag is set, 5999 * give the top priority to this ire and exit the 6000 * loop. 6001 * This is typically the case when an ARP reply 6002 * is processed through ip_wput_nondata(). 6003 */ 6004 if ((flags & MULTIRT_CACHEGW) && 6005 (gw_ire != NULL) && 6006 (gw_ire->ire_type & IRE_CACHETABLE)) { 6007 ASSERT(gw_ire->ire_nce == NULL || 6008 gw_ire->ire_nce->nce_state == ND_REACHABLE); 6009 /* 6010 * Release the resolver associated to the 6011 * previous candidate best ire, if any. 6012 */ 6013 if (best_cire != NULL) { 6014 ire_refrele(best_cire); 6015 ASSERT(best_fire != NULL); 6016 } 6017 6018 best_fire = fire; 6019 best_cire = gw_ire; 6020 6021 ip2dbg(("ire_multirt_lookup: found top prio " 6022 "best_fire %p, best_cire %p\n", 6023 (void *)best_fire, (void *)best_cire)); 6024 break; 6025 } 6026 6027 /* 6028 * Compute the time elapsed since our preceding 6029 * attempt to resolve that route. 6030 * If the MULTIRT_USESTAMP flag is set, we take that 6031 * route into account only if this time interval 6032 * exceeds ip_multirt_resolution_interval; 6033 * this prevents us from attempting to resolve a 6034 * broken route upon each sending of a packet. 6035 */ 6036 delta = lbolt - fire->ire_last_used_time; 6037 delta = TICK_TO_MSEC(delta); 6038 6039 res = (boolean_t) 6040 ((delta > ip_multirt_resolution_interval) || 6041 (!(flags & MULTIRT_USESTAMP))); 6042 6043 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 6044 "res %d\n", 6045 (void *)fire, delta, res)); 6046 6047 if (res) { 6048 /* 6049 * We are here if MULTIRT_USESTAMP flag is set 6050 * and the resolver for fire's gateway 6051 * has not been tried since 6052 * ip_multirt_resolution_interval, or if 6053 * MULTIRT_USESTAMP is not set but gw_ire did 6054 * not fill the conditions for MULTIRT_CACHEGW, 6055 * or if neither MULTIRT_USESTAMP nor 6056 * MULTIRT_CACHEGW are set. 6057 */ 6058 if (gw_ire != NULL) { 6059 if (best_fire == NULL) { 6060 ASSERT(best_cire == NULL); 6061 6062 best_fire = fire; 6063 best_cire = gw_ire; 6064 6065 ip2dbg(("ire_multirt_lookup:" 6066 "found candidate " 6067 "best_fire %p, " 6068 "best_cire %p\n", 6069 (void *)best_fire, 6070 (void *)best_cire)); 6071 6072 /* 6073 * If MULTIRT_CACHEGW is not 6074 * set, we ignore the top 6075 * priority ires that can 6076 * be resolved without any 6077 * call to the resolver; 6078 * In that case, there is 6079 * actually no need 6080 * to continue the loop. 6081 */ 6082 if (!(flags & 6083 MULTIRT_CACHEGW)) { 6084 break; 6085 } 6086 continue; 6087 } 6088 } else { 6089 /* 6090 * No resolver for the gateway: the 6091 * route is not resolvable. 6092 * If the MULTIRT_SETSTAMP flag is 6093 * set, we stamp the IRE_HOST ire, 6094 * so we will not select it again 6095 * during this resolution interval. 6096 */ 6097 if (flags & MULTIRT_SETSTAMP) 6098 fire->ire_last_used_time = 6099 lbolt; 6100 } 6101 } 6102 6103 if (gw_ire != NULL) 6104 ire_refrele(gw_ire); 6105 } 6106 } else { /* CLASSD(dst) */ 6107 6108 for (fire = first_fire; 6109 fire != NULL; 6110 fire = fire->ire_next) { 6111 6112 if (!(fire->ire_flags & RTF_MULTIRT)) 6113 continue; 6114 if (fire->ire_addr != dst) 6115 continue; 6116 6117 if (fire->ire_gw_secattr != NULL && 6118 tsol_ire_match_gwattr(fire, tsl) != 0) { 6119 continue; 6120 } 6121 6122 already_resolved = B_FALSE; 6123 6124 gw = fire->ire_gateway_addr; 6125 6126 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 6127 NULL, NULL, ALL_ZONES, 0, tsl, 6128 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 6129 MATCH_IRE_SECATTR); 6130 6131 /* No resolver for the gateway; we skip this ire. */ 6132 if (gw_ire == NULL) { 6133 continue; 6134 } 6135 ASSERT(gw_ire->ire_nce == NULL || 6136 gw_ire->ire_nce->nce_state == ND_REACHABLE); 6137 6138 if (first_cire != NULL) { 6139 6140 IRB_REFHOLD(cirb); 6141 /* 6142 * For all IRE_CACHE ires for that 6143 * destination. 6144 */ 6145 for (cire = first_cire; 6146 cire != NULL; 6147 cire = cire->ire_next) { 6148 6149 if (!(cire->ire_flags & RTF_MULTIRT)) 6150 continue; 6151 if (cire->ire_addr != dst) 6152 continue; 6153 if (cire->ire_marks & 6154 (IRE_MARK_CONDEMNED | 6155 IRE_MARK_HIDDEN)) 6156 continue; 6157 6158 if (cire->ire_gw_secattr != NULL && 6159 tsol_ire_match_gwattr(cire, 6160 tsl) != 0) { 6161 continue; 6162 } 6163 6164 /* 6165 * Cache entries are linked to the 6166 * parent routes using the parent handle 6167 * (ire_phandle). If no cache entry has 6168 * the same handle as fire, fire is 6169 * still unresolved. 6170 */ 6171 ASSERT(cire->ire_phandle != 0); 6172 if (cire->ire_phandle == 6173 fire->ire_phandle) { 6174 already_resolved = B_TRUE; 6175 break; 6176 } 6177 } 6178 IRB_REFRELE(cirb); 6179 } 6180 6181 /* 6182 * This route is already resolved; proceed with 6183 * next one. 6184 */ 6185 if (already_resolved) { 6186 ire_refrele(gw_ire); 6187 continue; 6188 } 6189 6190 /* 6191 * Compute the time elapsed since our preceding 6192 * attempt to resolve that route. 6193 * If the MULTIRT_USESTAMP flag is set, we take 6194 * that route into account only if this time 6195 * interval exceeds ip_multirt_resolution_interval; 6196 * this prevents us from attempting to resolve a 6197 * broken route upon each sending of a packet. 6198 */ 6199 delta = lbolt - fire->ire_last_used_time; 6200 delta = TICK_TO_MSEC(delta); 6201 6202 res = (boolean_t) 6203 ((delta > ip_multirt_resolution_interval) || 6204 (!(flags & MULTIRT_USESTAMP))); 6205 6206 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 6207 "flags %04x, res %d\n", 6208 (void *)fire, delta, flags, res)); 6209 6210 if (res) { 6211 if (best_cire != NULL) { 6212 /* 6213 * Release the resolver associated 6214 * to the preceding candidate best 6215 * ire, if any. 6216 */ 6217 ire_refrele(best_cire); 6218 ASSERT(best_fire != NULL); 6219 } 6220 best_fire = fire; 6221 best_cire = gw_ire; 6222 continue; 6223 } 6224 6225 ire_refrele(gw_ire); 6226 } 6227 } 6228 6229 if (best_fire != NULL) { 6230 IRE_REFHOLD(best_fire); 6231 } 6232 IRB_REFRELE(firb); 6233 6234 /* Release the first IRE_CACHE we initially looked up, if any. */ 6235 if (first_cire != NULL) 6236 ire_refrele(first_cire); 6237 6238 /* Found a resolvable route. */ 6239 if (best_fire != NULL) { 6240 ASSERT(best_cire != NULL); 6241 6242 if (*fire_arg != NULL) 6243 ire_refrele(*fire_arg); 6244 if (*ire_arg != NULL) 6245 ire_refrele(*ire_arg); 6246 6247 /* 6248 * Update the passed-in arguments with the 6249 * resolvable multirt route we found. 6250 */ 6251 *fire_arg = best_fire; 6252 *ire_arg = best_cire; 6253 6254 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 6255 "*fire_arg %p, *ire_arg %p\n", 6256 (void *)best_fire, (void *)best_cire)); 6257 6258 return (B_TRUE); 6259 } 6260 6261 ASSERT(best_cire == NULL); 6262 6263 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 6264 "*ire_arg %p\n", 6265 (void *)*fire_arg, (void *)*ire_arg)); 6266 6267 /* No resolvable route. */ 6268 return (B_FALSE); 6269 } 6270 6271 /* 6272 * The purpose of the next two functions is to provide some external access to 6273 * routing/l2 lookup functionality while hiding the implementation of routing 6274 * and interface data structures (IRE/ILL). Thus, interfaces are passed/ 6275 * returned by name instead of by ILL reference. These functions are used by 6276 * IP Filter. 6277 * Return a link layer header suitable for an IP packet being sent to the 6278 * dst_addr IP address. The interface associated with the route is put into 6279 * ifname, which must be a buffer of LIFNAMSIZ bytes. The dst_addr is the 6280 * packet's ultimate destination address, not a router address. 6281 * 6282 * This function is used when the caller wants to know the outbound interface 6283 * and MAC header for a packet given only the address. 6284 */ 6285 mblk_t * 6286 ip_nexthop_route(const struct sockaddr *target, char *ifname) 6287 { 6288 struct nce_s *nce; 6289 ire_t *dir; 6290 ill_t *ill; 6291 mblk_t *mp, *tmp_mp; 6292 6293 /* parameter sanity */ 6294 if (ifname == NULL || target == NULL) 6295 return (NULL); 6296 6297 /* Find the route entry, if it exists. */ 6298 switch (target->sa_family) { 6299 case AF_INET: 6300 dir = ire_route_lookup( 6301 ((struct sockaddr_in *)target)->sin_addr.s_addr, 6302 0xffffffff, 6303 0, 0, NULL, NULL, ALL_ZONES, NULL, 6304 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); 6305 break; 6306 case AF_INET6: 6307 dir = ire_route_lookup_v6( 6308 &((struct sockaddr_in6 *)target)->sin6_addr, 6309 NULL, 6310 0, 0, NULL, NULL, ALL_ZONES, NULL, 6311 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); 6312 if ((dir != NULL) && (dir->ire_nce == NULL)) { 6313 ire_refrele(dir); 6314 dir = NULL; 6315 } 6316 break; 6317 default: 6318 dir = NULL; 6319 break; 6320 } 6321 6322 if (dir == NULL) { 6323 return (NULL); 6324 } 6325 6326 /* Map the IRE to an ILL so we can fill in ifname. */ 6327 ill = ire_to_ill(dir); 6328 if (ill == NULL) { 6329 ire_refrele(dir); 6330 return (NULL); 6331 } 6332 (void) strncpy(ifname, ill->ill_name, LIFNAMSIZ); 6333 6334 if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) { 6335 mp = copyb(ill->ill_resolver_mp); 6336 ire_refrele(dir); 6337 return (mp); 6338 } 6339 6340 /* Return a copy of the header to the caller. */ 6341 switch (target->sa_family) { 6342 case AF_INET : 6343 if (dir->ire_nce != NULL && 6344 dir->ire_nce->nce_state == ND_REACHABLE) { 6345 if (dir->ire_nce->nce_fp_mp != NULL) 6346 tmp_mp = dir->ire_nce->nce_fp_mp; 6347 else 6348 tmp_mp = dir->ire_nce->nce_fp_mp; 6349 if ((mp = dupb(tmp_mp)) == NULL) 6350 mp = copyb(tmp_mp); 6351 } else { 6352 mp = copyb(ill->ill_resolver_mp); 6353 } 6354 break; 6355 case AF_INET6 : 6356 nce = dir->ire_nce; 6357 if (nce->nce_fp_mp != NULL) { 6358 if ((mp = dupb(nce->nce_fp_mp)) == NULL) 6359 mp = copyb(nce->nce_fp_mp); 6360 } else if (nce->nce_res_mp != NULL) { 6361 if ((mp = dupb(nce->nce_res_mp)) == NULL) 6362 mp = copyb(nce->nce_res_mp); 6363 } else { 6364 mp = NULL; 6365 } 6366 break; 6367 } 6368 6369 ire_refrele(dir); 6370 return (mp); 6371 } 6372 6373 6374 /* 6375 * Return a link layer header suitable for an IP packet being sent to the 6376 * dst_addr IP address on the specified output interface. The dst_addr 6377 * may be the packet's ultimate destination or a predetermined next hop 6378 * router's address. 6379 * ifname must be nul-terminated. 6380 * 6381 * This function is used when the caller knows the outbound interface (usually 6382 * because it was specified by policy) and only needs the MAC header for a 6383 * packet. 6384 */ 6385 mblk_t * 6386 ip_nexthop(const struct sockaddr *target, const char *ifname) 6387 { 6388 struct nce_s *nce; 6389 ill_walk_context_t ctx; 6390 t_uscalar_t sap; 6391 ire_t *dir; 6392 ill_t *ill; 6393 mblk_t *mp; 6394 6395 /* parameter sanity */ 6396 if (ifname == NULL || target == NULL) 6397 return (NULL); 6398 6399 switch (target->sa_family) { 6400 case AF_INET : 6401 sap = IP_DL_SAP; 6402 break; 6403 case AF_INET6 : 6404 sap = IP6_DL_SAP; 6405 break; 6406 default: 6407 return (NULL); 6408 } 6409 6410 /* Lock ill_g_lock before walking through the list */ 6411 rw_enter(&ill_g_lock, RW_READER); 6412 /* 6413 * Can we find the interface name among those currently configured? 6414 */ 6415 for (ill = ILL_START_WALK_ALL(&ctx); ill != NULL; 6416 ill = ill_next(&ctx, ill)) { 6417 if ((strcmp(ifname, ill->ill_name) == 0) && 6418 (ill->ill_sap == sap)) 6419 break; 6420 } 6421 if (ill == NULL || ill->ill_ipif == NULL) { 6422 rw_exit(&ill_g_lock); 6423 return (NULL); 6424 } 6425 6426 mutex_enter(&ill->ill_lock); 6427 if (!ILL_CAN_LOOKUP(ill)) { 6428 mutex_exit(&ill->ill_lock); 6429 rw_exit(&ill_g_lock); 6430 return (NULL); 6431 } 6432 ill_refhold_locked(ill); 6433 mutex_exit(&ill->ill_lock); 6434 rw_exit(&ill_g_lock); 6435 6436 /* Find the resolver entry, if it exists. */ 6437 switch (target->sa_family) { 6438 case AF_INET: 6439 dir = ire_route_lookup( 6440 ((struct sockaddr_in *)target)->sin_addr.s_addr, 6441 0xffffffff, 6442 0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL, 6443 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| 6444 MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); 6445 if ((dir != NULL) && dir->ire_nce != NULL && 6446 dir->ire_nce->nce_state != ND_REACHABLE) { 6447 ire_refrele(dir); 6448 dir = NULL; 6449 } 6450 break; 6451 case AF_INET6: 6452 dir = ire_route_lookup_v6( 6453 &((struct sockaddr_in6 *)target)->sin6_addr, NULL, 6454 0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL, 6455 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| 6456 MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); 6457 if ((dir != NULL) && (dir->ire_nce == NULL)) { 6458 ire_refrele(dir); 6459 dir = NULL; 6460 } 6461 break; 6462 default: 6463 dir = NULL; 6464 break; 6465 } 6466 6467 if (dir == NULL) { 6468 return (NULL); 6469 } 6470 6471 if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) { 6472 mp = copyb(ill->ill_resolver_mp); 6473 ill_refrele(ill); 6474 ire_refrele(dir); 6475 return (mp); 6476 } 6477 6478 /* Return a copy of the header to the caller. */ 6479 switch (target->sa_family) { 6480 case AF_INET : 6481 if (dir->ire_nce->nce_fp_mp != NULL) { 6482 if ((mp = dupb(dir->ire_nce->nce_fp_mp)) == NULL) 6483 mp = copyb(dir->ire_nce->nce_fp_mp); 6484 } else if (dir->ire_nce->nce_res_mp != NULL) { 6485 if ((mp = dupb(dir->ire_nce->nce_res_mp)) == NULL) 6486 mp = copyb(dir->ire_nce->nce_res_mp); 6487 } else { 6488 mp = copyb(ill->ill_resolver_mp); 6489 } 6490 break; 6491 case AF_INET6 : 6492 nce = dir->ire_nce; 6493 if (nce->nce_fp_mp != NULL) { 6494 if ((mp = dupb(nce->nce_fp_mp)) == NULL) 6495 mp = copyb(nce->nce_fp_mp); 6496 } else if (nce->nce_res_mp != NULL) { 6497 if ((mp = dupb(nce->nce_res_mp)) == NULL) 6498 mp = copyb(nce->nce_res_mp); 6499 } else { 6500 mp = NULL; 6501 } 6502 break; 6503 } 6504 6505 ire_refrele(dir); 6506 ill_refrele(ill); 6507 return (mp); 6508 } 6509 6510 /* 6511 * IRE iterator for inbound and loopback broadcast processing. 6512 * Given an IRE_BROADCAST ire, walk the ires with the same destination 6513 * address, but skip over the passed-in ire. Returns the next ire without 6514 * a hold - assumes that the caller holds a reference on the IRE bucket. 6515 */ 6516 ire_t * 6517 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 6518 { 6519 ill_t *ill; 6520 6521 if (curr == NULL) { 6522 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 6523 curr = curr->ire_next) { 6524 if (curr->ire_addr == ire->ire_addr) 6525 break; 6526 } 6527 } else { 6528 curr = curr->ire_next; 6529 } 6530 ill = ire_to_ill(ire); 6531 for (; curr != NULL; curr = curr->ire_next) { 6532 if (curr->ire_addr != ire->ire_addr) { 6533 /* 6534 * All the IREs to a given destination are contiguous; 6535 * break out once the address doesn't match. 6536 */ 6537 break; 6538 } 6539 if (curr == ire) { 6540 /* skip over the passed-in ire */ 6541 continue; 6542 } 6543 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 6544 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 6545 /* 6546 * If the passed-in ire is loopback, skip over 6547 * non-loopback ires and vice versa. 6548 */ 6549 continue; 6550 } 6551 if (ire_to_ill(curr) != ill) { 6552 /* skip over IREs going through a different interface */ 6553 continue; 6554 } 6555 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 6556 /* skip over deleted IREs */ 6557 continue; 6558 } 6559 return (curr); 6560 } 6561 return (NULL); 6562 } 6563 6564 #ifdef IRE_DEBUG 6565 th_trace_t * 6566 th_trace_ire_lookup(ire_t *ire) 6567 { 6568 int bucket_id; 6569 th_trace_t *th_trace; 6570 6571 ASSERT(MUTEX_HELD(&ire->ire_lock)); 6572 6573 bucket_id = IP_TR_HASH(curthread); 6574 ASSERT(bucket_id < IP_TR_HASH_MAX); 6575 6576 for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL; 6577 th_trace = th_trace->th_next) { 6578 if (th_trace->th_id == curthread) 6579 return (th_trace); 6580 } 6581 return (NULL); 6582 } 6583 6584 void 6585 ire_trace_ref(ire_t *ire) 6586 { 6587 int bucket_id; 6588 th_trace_t *th_trace; 6589 6590 /* 6591 * Attempt to locate the trace buffer for the curthread. 6592 * If it does not exist, then allocate a new trace buffer 6593 * and link it in list of trace bufs for this ipif, at the head 6594 */ 6595 mutex_enter(&ire->ire_lock); 6596 if (ire->ire_trace_disable == B_TRUE) { 6597 mutex_exit(&ire->ire_lock); 6598 return; 6599 } 6600 th_trace = th_trace_ire_lookup(ire); 6601 if (th_trace == NULL) { 6602 bucket_id = IP_TR_HASH(curthread); 6603 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6604 KM_NOSLEEP); 6605 if (th_trace == NULL) { 6606 ire->ire_trace_disable = B_TRUE; 6607 mutex_exit(&ire->ire_lock); 6608 ire_trace_inactive(ire); 6609 return; 6610 } 6611 6612 th_trace->th_id = curthread; 6613 th_trace->th_next = ire->ire_trace[bucket_id]; 6614 th_trace->th_prev = &ire->ire_trace[bucket_id]; 6615 if (th_trace->th_next != NULL) 6616 th_trace->th_next->th_prev = &th_trace->th_next; 6617 ire->ire_trace[bucket_id] = th_trace; 6618 } 6619 ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1); 6620 th_trace->th_refcnt++; 6621 th_trace_rrecord(th_trace); 6622 mutex_exit(&ire->ire_lock); 6623 } 6624 6625 void 6626 ire_trace_free(th_trace_t *th_trace) 6627 { 6628 /* unlink th_trace and free it */ 6629 *th_trace->th_prev = th_trace->th_next; 6630 if (th_trace->th_next != NULL) 6631 th_trace->th_next->th_prev = th_trace->th_prev; 6632 th_trace->th_next = NULL; 6633 th_trace->th_prev = NULL; 6634 kmem_free(th_trace, sizeof (th_trace_t)); 6635 } 6636 6637 void 6638 ire_untrace_ref(ire_t *ire) 6639 { 6640 th_trace_t *th_trace; 6641 6642 mutex_enter(&ire->ire_lock); 6643 6644 if (ire->ire_trace_disable == B_TRUE) { 6645 mutex_exit(&ire->ire_lock); 6646 return; 6647 } 6648 6649 th_trace = th_trace_ire_lookup(ire); 6650 ASSERT(th_trace != NULL && th_trace->th_refcnt > 0); 6651 th_trace_rrecord(th_trace); 6652 th_trace->th_refcnt--; 6653 6654 if (th_trace->th_refcnt == 0) 6655 ire_trace_free(th_trace); 6656 6657 mutex_exit(&ire->ire_lock); 6658 } 6659 6660 static void 6661 ire_trace_inactive(ire_t *ire) 6662 { 6663 th_trace_t *th_trace; 6664 int i; 6665 6666 mutex_enter(&ire->ire_lock); 6667 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6668 while (ire->ire_trace[i] != NULL) { 6669 th_trace = ire->ire_trace[i]; 6670 6671 /* unlink th_trace and free it */ 6672 ire->ire_trace[i] = th_trace->th_next; 6673 if (th_trace->th_next != NULL) 6674 th_trace->th_next->th_prev = 6675 &ire->ire_trace[i]; 6676 6677 th_trace->th_next = NULL; 6678 th_trace->th_prev = NULL; 6679 kmem_free(th_trace, sizeof (th_trace_t)); 6680 } 6681 } 6682 6683 mutex_exit(&ire->ire_lock); 6684 } 6685 6686 /* ARGSUSED */ 6687 void 6688 ire_thread_exit(ire_t *ire, caddr_t arg) 6689 { 6690 th_trace_t *th_trace; 6691 6692 mutex_enter(&ire->ire_lock); 6693 th_trace = th_trace_ire_lookup(ire); 6694 if (th_trace == NULL) { 6695 mutex_exit(&ire->ire_lock); 6696 return; 6697 } 6698 ASSERT(th_trace->th_refcnt == 0); 6699 6700 ire_trace_free(th_trace); 6701 mutex_exit(&ire->ire_lock); 6702 } 6703 6704 #endif 6705 6706 /* 6707 * Generate a message chain with an arp request to resolve the in_ire. 6708 * It is assumed that in_ire itself is currently in the ire cache table, 6709 * so we create a fake_ire filled with enough information about ire_addr etc. 6710 * to retrieve in_ire when the DL_UNITDATA response from the resolver 6711 * comes back. The fake_ire itself is created by calling esballoc with 6712 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 6713 * invoked when the mblk containing fake_ire is freed. 6714 */ 6715 void 6716 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 6717 { 6718 areq_t *areq; 6719 ipaddr_t *addrp; 6720 mblk_t *ire_mp, *dlureq_mp; 6721 ire_t *ire, *buf; 6722 size_t bufsize; 6723 frtn_t *frtnp; 6724 ill_t *ill; 6725 6726 /* 6727 * Construct message chain for the resolver 6728 * of the form: 6729 * ARP_REQ_MBLK-->IRE_MBLK 6730 * 6731 * NOTE : If the response does not 6732 * come back, ARP frees the packet. For this reason, 6733 * we can't REFHOLD the bucket of save_ire to prevent 6734 * deletions. We may not be able to REFRELE the bucket 6735 * if the response never comes back. Thus, before 6736 * adding the ire, ire_add_v4 will make sure that the 6737 * interface route does not get deleted. This is the 6738 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 6739 * where we can always prevent deletions because of 6740 * the synchronous nature of adding IRES i.e 6741 * ire_add_then_send is called after creating the IRE. 6742 */ 6743 6744 /* 6745 * We use esballoc to allocate the second part(the ire_t size mblk) 6746 * of the message chain depicted above. THis mblk will be freed 6747 * by arp when there is a timeout, and otherwise passed to IP 6748 * and IP will * free it after processing the ARP response. 6749 */ 6750 6751 bufsize = sizeof (ire_t) + sizeof (frtn_t); 6752 buf = kmem_alloc(bufsize, KM_NOSLEEP); 6753 if (buf == NULL) { 6754 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 6755 return; 6756 } 6757 frtnp = (frtn_t *)(buf + 1); 6758 frtnp->free_arg = (caddr_t)buf; 6759 frtnp->free_func = ire_freemblk; 6760 6761 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 6762 6763 if (ire_mp == NULL) { 6764 ip1dbg(("ire_arpresolve: esballoc failed\n")); 6765 kmem_free(buf, bufsize); 6766 return; 6767 } 6768 ASSERT(in_ire->ire_nce != NULL); 6769 dlureq_mp = copyb(dst_ill->ill_resolver_mp); 6770 if (dlureq_mp == NULL) { 6771 kmem_free(buf, bufsize); 6772 return; 6773 } 6774 6775 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 6776 ire = (ire_t *)buf; 6777 /* 6778 * keep enough info in the fake ire so that we can pull up 6779 * the incomplete ire (in_ire) after result comes back from 6780 * arp and make it complete. 6781 */ 6782 *ire = ire_null; 6783 ire->ire_u = in_ire->ire_u; 6784 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 6785 ire->ire_ipif = in_ire->ire_ipif; 6786 ire->ire_stq = in_ire->ire_stq; 6787 ill = ire_to_ill(ire); 6788 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 6789 ire->ire_zoneid = in_ire->ire_zoneid; 6790 /* 6791 * ire_freemblk will be called when ire_mp is freed, both for 6792 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 6793 * when the arp resolution failed. 6794 */ 6795 ire->ire_marks |= IRE_MARK_UNCACHED; 6796 ire->ire_mp = ire_mp; 6797 ire_mp->b_wptr = (uchar_t *)&ire[1]; 6798 ire_mp->b_cont = NULL; 6799 ASSERT(dlureq_mp != NULL); 6800 linkb(dlureq_mp, ire_mp); 6801 6802 /* 6803 * Fill in the source and dest addrs for the resolver. 6804 * NOTE: this depends on memory layouts imposed by 6805 * ill_init(). 6806 */ 6807 areq = (areq_t *)dlureq_mp->b_rptr; 6808 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 6809 *addrp = ire->ire_src_addr; 6810 6811 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 6812 if (ire->ire_gateway_addr != INADDR_ANY) { 6813 *addrp = ire->ire_gateway_addr; 6814 } else { 6815 *addrp = ire->ire_addr; 6816 } 6817 6818 /* Up to the resolver. */ 6819 if (canputnext(dst_ill->ill_rq)) { 6820 putnext(dst_ill->ill_rq, dlureq_mp); 6821 } else { 6822 /* Prepare for cleanup */ 6823 freemsg(dlureq_mp); 6824 } 6825 } 6826 6827 /* 6828 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 6829 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 6830 * 6831 * This function can be called by ARP via free routine for ire_mp or 6832 * by IPv4(both host and forwarding path) via ire_delete 6833 * in case ARP resolution fails. 6834 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 6835 * (for IP to talk to ARP, it still has to send AR* messages). 6836 * 6837 * Note that the ARP/IP merge should replace the functioanlity by providing 6838 * direct function calls to clean up unresolved entries in ire/nce lists. 6839 */ 6840 void 6841 ire_freemblk(ire_t *ire_mp) 6842 { 6843 nce_t *nce = NULL; 6844 ill_t *ill; 6845 6846 ASSERT(ire_mp != NULL); 6847 6848 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 6849 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 6850 (void *)ire_mp)); 6851 goto cleanup; 6852 } 6853 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 6854 goto cleanup; /* everything succeeded. just free and return */ 6855 } 6856 6857 /* 6858 * the arp information corresponding to this ire_mp was not 6859 * transferred to a ire_cache entry. Need 6860 * to clean up incomplete ire's and nce, if necessary. 6861 */ 6862 ASSERT(ire_mp->ire_stq != NULL); 6863 ASSERT(ire_mp->ire_stq_ifindex != 0); 6864 /* 6865 * Get any nce's corresponding to this ire_mp. We first have to 6866 * make sure that the ill is still around. 6867 */ 6868 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, B_FALSE, 6869 NULL, NULL, NULL, NULL); 6870 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 6871 (ill->ill_state_flags & ILL_CONDEMNED)) { 6872 /* 6873 * ill went away. no nce to clean up. 6874 * Note that the ill_state_flags could be set to 6875 * ILL_CONDEMNED after this point, but if we know 6876 * that it is CONDEMNED now, we just bail out quickly. 6877 */ 6878 if (ill != NULL) 6879 ill_refrele(ill); 6880 goto cleanup; 6881 } 6882 nce = ndp_lookup_v4(ill, 6883 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 6884 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 6885 B_FALSE); 6886 ill_refrele(ill); 6887 6888 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 6889 /* 6890 * some incomplete nce was found. 6891 */ 6892 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 6893 nce_t *, nce, ire_t *, ire_mp); 6894 /* 6895 * Send the icmp_unreachable messages for the queued mblks in 6896 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 6897 * for this ire 6898 */ 6899 arp_resolv_failed(nce); 6900 /* 6901 * Delete the nce and clean up all ire's pointing at this nce 6902 * in the cachetable 6903 */ 6904 ndp_delete(nce); 6905 } 6906 if (nce != NULL) 6907 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 6908 6909 cleanup: 6910 /* 6911 * Get rid of the ire buffer 6912 * We call kmem_free here(instead of ire_delete()), since 6913 * this is the freeb's callback. 6914 */ 6915 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 6916 } 6917 6918 6919 /* 6920 * create the neighbor cache entry nce_t for IRE_CACHE and 6921 * non-loopback IRE_BROADCAST ire's. Note that IRE_BROADCAST 6922 * (non-loopback) entries have the nce_res_mp set to the 6923 * template passed in (generated from ill_bcast_mp); IRE_CACHE ire's 6924 * contain the information for the nexthop (ire_gateway_addr) in the 6925 * case of indirect routes, and for the dst itself (ire_addr) in the 6926 * case of direct routes, with the nce_res_mp containing a template 6927 * DL_UNITDATA request. 6928 * 6929 * This function always consumes res_mp and fp_mp. 6930 * 6931 * The actual association of the ire_nce to the nce created here is 6932 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 6933 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 6934 * the ire_nce assignment is done in ire_add_then_send, and mobile-ip 6935 * where the assignment is done in ire_add_mrtun(). 6936 */ 6937 int 6938 ire_nce_init(ire_t *ire, mblk_t *fp_mp, mblk_t *res_mp) 6939 { 6940 in_addr_t addr4, mask4; 6941 int err; 6942 nce_t *arpce = NULL; 6943 ill_t *ire_ill; 6944 uint16_t nce_state, nce_flags; 6945 6946 if (ire->ire_stq == NULL) { 6947 if (res_mp) 6948 freemsg(res_mp); 6949 if (fp_mp) 6950 freemsg(fp_mp); 6951 return (0); /* no need to create nce for local/loopback */ 6952 } 6953 6954 mask4 = IP_HOST_MASK; 6955 switch (ire->ire_type) { 6956 case IRE_CACHE: 6957 if (ire->ire_gateway_addr != INADDR_ANY) 6958 addr4 = ire->ire_gateway_addr; /* 'G' route */ 6959 else 6960 addr4 = ire->ire_addr; /* direct route */ 6961 break; 6962 case IRE_BROADCAST: 6963 addr4 = ire->ire_addr; 6964 break; 6965 default: 6966 if (res_mp) 6967 freemsg(res_mp); 6968 if (fp_mp) 6969 freemsg(fp_mp); 6970 return (0); 6971 } 6972 6973 /* 6974 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 6975 * rules in ire_forward_src_ipif. We want the dlureq_mp 6976 * for the outgoing interface, which we get from the ire_stq. 6977 */ 6978 ire_ill = ire_to_ill(ire); 6979 6980 /* 6981 * if we are creating an nce for the first time, and this is 6982 * a NORESOLVER interface, atomically create the nce in the 6983 * REACHABLE state; else create it in the ND_INITIAL state. 6984 */ 6985 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) { 6986 nce_state = ND_REACHABLE; 6987 nce_flags = NCE_F_PERMANENT; 6988 } else { 6989 if (fp_mp != NULL) 6990 nce_state = ND_REACHABLE; 6991 else 6992 nce_state = ND_INITIAL; 6993 nce_flags = 0; 6994 } 6995 6996 err = ndp_lookup_then_add(ire_ill, NULL, 6997 &addr4, &mask4, NULL, 0, nce_flags, nce_state, &arpce, 6998 fp_mp, res_mp); 6999 7000 ip1dbg(("ire 0x%p addr 0x%lx mask 0x%lx type 0x%x; " 7001 "found nce 0x%p err %d\n", (void *)ire, (ulong_t)addr4, 7002 (ulong_t)mask4, ire->ire_type, (void *)arpce, err)); 7003 7004 switch (err) { 7005 case 0: 7006 break; 7007 case EEXIST: 7008 /* 7009 * return a pointer to an existing nce_t; 7010 * note that the ire-nce mapping is many-one, i.e., 7011 * multiple ire's could point to the same nce_t; 7012 */ 7013 if (fp_mp != NULL) { 7014 freemsg(fp_mp); 7015 } 7016 if (res_mp != NULL) { 7017 freemsg(res_mp); 7018 } 7019 break; 7020 default: 7021 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 7022 if (res_mp) 7023 freemsg(res_mp); 7024 if (fp_mp) 7025 freemsg(fp_mp); 7026 return (EINVAL); 7027 } 7028 #if DEBUG 7029 /* 7030 * if an nce_fp_mp was passed in, we should be picking up an 7031 * existing nce_t in the ND_REACHABLE state. 7032 */ 7033 mutex_enter(&arpce->nce_lock); 7034 ASSERT(arpce->nce_fp_mp == NULL || arpce->nce_state == ND_REACHABLE); 7035 mutex_exit(&arpce->nce_lock); 7036 #endif 7037 if (ire->ire_type == IRE_BROADCAST) { 7038 /* 7039 * Two bcast ires are created for each interface; 7040 * 1. loopback copy (which does not have an 7041 * ire_stq, and therefore has no ire_nce), and, 7042 * 2. the non-loopback copy, which has the nce_res_mp 7043 * initialized to a copy of the ill_bcast_mp, and 7044 * is marked as ND_REACHABLE at this point. 7045 * This nce does not undergo any further state changes, 7046 * and exists as long as the interface is plumbed. 7047 * Note: we do the ire_nce assignment here for IRE_BROADCAST 7048 * because some functions like ill_mark_bcast() inline the 7049 * ire_add functionality; 7050 */ 7051 mutex_enter(&arpce->nce_lock); 7052 arpce->nce_state = ND_REACHABLE; 7053 arpce->nce_flags |= NCE_F_PERMANENT; 7054 arpce->nce_last = TICK_TO_MSEC(lbolt64); 7055 ire->ire_nce = arpce; 7056 mutex_exit(&arpce->nce_lock); 7057 /* 7058 * We are associating this nce to the ire, 7059 * so change the nce ref taken in 7060 * ndp_lookup_then_add_v4() from 7061 * NCE_REFHOLD to NCE_REFHOLD_NOTR 7062 */ 7063 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 7064 } else { 7065 if (NCE_EXPIRED(arpce)) 7066 arpce = nce_reinit(arpce); 7067 if (arpce != NULL) { 7068 /* 7069 * We are not using this nce_t just yet so release 7070 * the ref taken in ndp_lookup_then_add_v4() 7071 */ 7072 NCE_REFRELE(arpce); 7073 } else { 7074 ip0dbg(("can't reinit arpce for ill 0x%p;\n", 7075 (void *)ire_ill)); 7076 } 7077 } 7078 return (0); 7079 } 7080